


This book helps students understand and 
solve the most fundamental problems in 
differential equations and linear algebra. 

Differential equations 

Continuous problems 
Systems in motion 
dy/dt = Ay + q 

Yparticular 

Ynullspace 

Ayp=b 

Ayn =0 

dyp /dt = Ayp + q 

dy
n

/dt = Ay
n 
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Matrix equations 

Discrete problems 
Systems at rest 
Ay = b and Ax = h 

Ycomplete 

A{fp+Yn)=b 

dy/dt = Ay + q 

You have conquered this course when you 
can solve these eight linear equations. 
First order 

dy/dt = ay 
dy/dt = ay + q 

Second order 

d2y/dt2 + Bdy/dt + Cy= O 
d2y/dt2 + Bdy/dt + Cy= q 

First order systems 

dy/dt = Ay 
dy/dt = Ay + q 

Second order systems 

d2y/dt2 + Sy= O 

d2y/dt2 + Sy= q 

Advanced problems 

Nonlinear dy/dt = f(t,y) 
Heat eq n 8u/ 8t = a2u/ 8x2 

Wave eqn 82u/8t2 = 82u/8x2 

Differential equations and linear algebra 
are the heart of undergraduate mathematics. 
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Preface 

Differential equations and linear algebra are the two crucial courses in undergraduate 
mathematics. This new textbook develops those subjects separately and together. 
Separate is normal-these ideas are truly important. This book presents the basic course 
on differential equations, in full : 

Chapter 1 First order equations 
Chapter 2 Second order equations 
Chapter 3 Graphical and numerical methods 
Chapter 4 Matrices and linear systems 
Chapter 6 Eigenvalues and eigenvectors 

I will write below about the highlights and the support for readers. Here I focus on the 
option to include more linear algebra. Many colleges and universities want to move in 
this direction, by connecting two essential subjects. 

More than ever, the central place of linear algebra is recognized. Limiting a student to 
the mechanics of matrix operations is over. Without planning it or foreseeing it, my lifework 
has been the presentation of linear algebra in books and video lectures : 

Introduction to Linear Algebra (Wellesley-Cambridge Press) 
MIT OpenCourseWare (ocw.mit.edu, Mathematics 18.06 in 2000 and 2014). 

Linear algebra courses keep growing because the need keeps growing. At the same time, 
a rethinking of the MIT differential equations course 18.03 led to a new syllabus. 
And independently, it led to this book. 

The underlying reason is that time is short and precious. The curriculum for many 
students is just about full. Still these two topics cannot be missed-and linear differential 
equations go in parallel with linear matrix equations. The prerequisite is calculus, for a single 
variable only-the key functions in these pages are inputs f ( t) and outputs y( t). 
For all linear equations, continuous and discrete, the complete solution has two parts : 

One particular solution Y
P 

All null solutions Yn 

Those right hand sides add to b + 0 = b. The crucial point is that the left hand sides 
add to A(y

p 
+ Yn )- When the inputs add, and the equation is linear, the outputs add. 

The equality A(y
p 

+ Yn ) = b + 0 tells us all solutions to Ay = b: 

The complete solution to a linear equation is y = (one Y
p

) + (all Yn )­

V 



vi Preface 

The same steps give the complete solution to dy / dt = f ( t), for the same reason. 
We know the answer from calculus-it is the form of the answer that is important here : 

dy
p = f(t) 

dt 
dyn = O
dt 

!� = f(t) 

t 

is solved by Y
p

(t) = J f(x) dx 

is solved by Yn(t) = C (any constant) 

is completely solved by y(t) = y
p

(t) + C

For every differential equation dy/dt = Ay + f(t), our job is to find Y
p 

and Yn: 
one particular solution and all homogeneous solutions. My deeper purpose is to 
build confidence, so the solution can be understood and used. 

Differential Equations 

The whole point of learning calculus is to understand movement. An economy grows, 
currents flow, the moon rises, messages travel, your hand moves. The action is fast or 
slow depending on forces from inside and outside : competition, pressure, voltage, desire. 
Calculus explains the meaning of dy / dt, but to stop without putting it into an equation 
(a differential equation) is to miss the whole purpose. 

That equation may describe growth (often exponential growth eat). It may describe os­
cillation and rotation (with sines and cosines). Very frequently the motion approaches an 
equilibrium, where forces balance. That balance point is found by linear algebra, when the 
rate of change dy / dt is zero. 

The need is to explain what mathematics can do. I believe in looking partly outside 
mathematics, to include what scientists and engineers and economists actually remember 
and constantly use. My conclusion is that first place goes to linear equations. The essence 
of calculus is to linearize around a present position, to find the direction and the speed 
of movement. 

Section 1.1 begins with the equations dy / dt = y and dy / dt = y2
. It is simply wonderful 

that solving those two equations leads us here: 

dy 

dt 
= y 

dy 
- 2 

dt 
- y 

1 2 1 3 y = I + t + 
2

t + 
6

t + · · ·

y = 1 + t + t2 + t3 + • • • y = 1/(1 - t) 

To meet the two most important series in mathematics, right at the start, that is pure 
pleasure. No better practice is possible as the course begins. 
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Important Choices of f ( t) 

Let me emphasize that a textbook must do more than solve random problems. We could 
invent functions f ( t) forever, but that is not right. Much better to understand a small number 
of highly important functions: 

f(t) =
f(t) =
f(t) =
f(t) =

sines and cosines 

exponentials 

1 fort> 0 

impulse 

( oscillating and rotating) 
(growing and decaying) 
(a switch is turned on) 
(a sudden shock) 

The solution y(t) is the response to those inputs-frequency response, exponential
response, step response, impulse response. These particular functions and particular 
solutions are the best-the easiest to find and by far the most useful. All other solutions 
are built from these. 

I know that an impulse (a delta function that acts in an instant) is new to most students. 
This idea deserves to be here ! You will see how neatly it works. The response is like the 
inverse of a matrix-it gives a formula for all solutions. The book will be supplemented by 
video lectures on many topics like this, because a visual explanation can be so effective. 

Support for Readers 

Readers should know all the support that comes with this book : 

math.mit.edu/dela is the key website. The time has passed for printing solutions to 
odd-numbered problems in the back of the book. The website can provide more detailed 
solutions and serious help. This includes additional worked problems, and codes for nu­
merical experiments, and much more. Please make use of everything and contribute. 

ocw.mit.edu has complete sets of video lectures on both subjects (OpenCourseWare 
is also on YouTube). Many students know about the linear algebra lectures for 18.06 and 
18.06 SC. I am so happy they are helpful. For differential equations, the 18.03 SC videos 
and notes and exams are extremely useful. 

The new videos will be about special topics-possibly even the Tumbling Box. 

Linear Algebra 

I must add more about linear algebra. My wntmg life has been an effort to present 
this subject clearly. Not abstractly, not with a minimum of words, but in a way that is 
helpful to the reader. It is such good fortune that the central ideas in matrix algebra 
(a basis for a vector space, factorization of matrices, the properties of symmetric and 
orthogonal matrices), are exactly the ideas that make this subject so useful. Chapter 5 
emphasizes those ideas and Chapter 7 explains the applications of AT A. 

Matrices are essential, not just optional. We are constantly acquiring and organizing 
and presenting data-the format we use most is a matrix. The goal is to see the relation 
between input and output. Often this relation is linear. In that case we can understand it. 
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The idea of a vector space is so central. Take all combinations of two vectors or two 
functions. I am always encouraging students to visualize that space--examples are really 
the best. When you see all solutions to v1 + v2 + v3 = 0 and d2y / dt2 

+ y = 0, you 
have the idea of a vector space. This opens up the big questions of linear independence and 
basis and dimension-by example. 

If f (t) comes in continuous time, our model is a differential equation. If the input comes 
in discrete time steps, we use linear algebra. The model predicts the output y(t) this is 
created by the input f(t). But some inputs are simply more important than others-they are 
easier to understand and much more likely to appear. Those are the right equations to present 
in this course. 

Notes to Faculty (and All Readers) 

One reason for publishing with Wellesley-Cambridge Press can be mentioned here. 
I work hard to keep book costs reasonable for students. This was just as important for 
Introduction to Linear Algebra. A comparison on Amazon shows that textbook prices 
from big publishers are more than double. Wellesley-Cambridge books are distributed by 
SIAM inside North America and Cambridge University Press outside, and from Wellesley, 
with the same motive. Certainly quality comes first. 

I hope you will see what this book offers. The first chapters are a normal textbook 
on differential equations, for a new generation. The complete book is a year's course 
on differential equations and linear algebra, including Fourier and Laplace transforms­
plus PDE's (Laplace equation, heat equation, wave equation) and the FFT and the SVD. 

This is extremely useful mathematics ! I cannot hope that you will read every word. 
But why should the reader be asked to look elsewhere, when the applications can come 
so naturally here? 

A special note goes to engineering faculty who look for support from mathematics. I 
have the good fortune to teach hundreds of engineering students every year. My work with 
finite elements and signal processing and computational science helped me to know what 
students need-and to speak their language. I see texts that mention the impulse response 
(for example) in one paragraph or not at all. But this is the fundamental solution from 
which all 'particular solutions come. In the book it is computed in the time domain, starting 
with eat , and again with Laplace transforms. The website goes further. 

I know from experience that every first edition needs help. I hope you will tell me what 
should be explained more clearly. You are holding a book with a valuable goal-to become 
a textbook for a world of students and readers in a new generation and a new time, with 
limits and pressing demands on that time. The book won't be perfect. I will be so grateful 
if you contribute, in any way, to making it better. 
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1.6 
1.7 
1.8 

Outline of Chapter 1 : First Order Equations 

Solve dy/dt = ay 
Solve dy/dt = ay + q(t) 

Solve dy/dt = ay + est

Solve dy/dt = a(t)y + q(t) 

Solve dy/dt = ay - by2 

Solve dy/dt = g(t)/ f(y) 

Construct the exponential eat 

Four special q(t) and all q(t) 

Growth and oscillation : s = a + iw 

Integrating factor = 1/ growth factor 
The equation for z = l / y is linear 
Separate J f(y) dy from J g(t) dt 

The key formula in 1.4 gives the solution y(t) = eat
y (O) + J ea (t-s) q (s)ds.

0 

The website with solutions and codes and extra examples and videos is math.mit.edu/dela

Please contact diffeqla@gmail.com with questions and book orders and ideas. 



Chapter 1 

First Order Equations 

1.1 Four Examples: Linear versus Nonlinear 

A first order differential equation connects a function y( t) to its derivative dy / dt. 
That rate of change in y is decided by y itself (and possibly also by the time t). 

Here are four examples. Example 1 is the most important differential equation of all. 

dy 
2) - = -y

dt 

dy 
3) - = 2ty 

dt 
4) 

Those examples illustrate three linear differential equations (1, 2, and 3) and a 
nonlinear differential equation. The unknown function y(t) is squared in Example 4. 
The derivative y or -y or 2ty is proportional to the function y in Examples 1, 2, 3. 
The graph of dy / dt versus y becomes a parabola in Example 4, because of y2

• 

It is true that t multiplies y in Example 3. That equation is still linear in y and dy / dt. 
It has a variable coefficient 2t, changing with time. Examples 1 and 2 have constant 
coefficient (the coefficients of y are 1 and -1). 

Solutions to the Four Examples 

We can write down a solution to each example. This will be one solution but it is not 
the complete solution, because each equation has a family of solutions. Eventually there will 
be a constant C in the complete solution. This number C is decided by the 
starting value of y at t = 0, exactly as in ordinary integration. The integral off (t) solves the 
simplest differential equation of all, with y(O) = C: 

5) 
dy 

= f(t) 
dt 

The complete solution is 

1 

y(t) = lo
t 

f(s) ds + C 
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For now we just write one solution to Examples 1 - 4. They all start at y(O) = 1. 

1 

2 

3 

dy 

dt 
= y 

dy 
- =-y
dt 

dy 
- =2ty
dt

dy 2 

dt 
= y 

is solved by y(t) = et 

is solved by y(t) = e-t 

is solved by y(t) = et
2 

is solved by 
1 

y(t) = --.

1-t

Notice : The three linear equations are solved by exponential functions (powers of e). 
The nonlinear equation 4 is solved by a different type of function; here it is 1/(1 - t). 
Its derivative is dy / dt = 1 / ( 1 - t ) 2 , which agrees with y2

• 

Our special interest now is in linear equations with constant coefficients, like 1 and 2. 

In fact dy / dt = y is the most important property of the great function y = et . Calculus
had to create et , because a function from algebra (like y = tn) cannot equal its derivative
(the derivative of tn is ntn- 1). But a combination of all the powers tn can do it. That
good combination is et in Section 1.3.

The final example extends 1 and 2, to allow any constant coefficient a : 

6) 
dy 
- = ay is solved by y = eat (and also y = ceat).
dt 

If the constant growth rate a is positive, the solution increases. If a is negative, as in 
dy/dt = -y with a= -1, the slope is negative and the solution e- t decays toward zero.
Figure 1.1 shows three exponentials, with dy/dt equal toy and 2y and -y. 

0 t=l t 

Figure 1.1: Growth, faster growth, and decay. The solutions are et and e2t and e-t _
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When a is larger than 1, the solution grows faster than et. That is natural. The neat thing 
is that we still follow the exponential curve-but eat climbs that curve faster. You could see 
the same result by rescaling the time axis. In Figure 1.1, the steepest curve 
(for a= 2) is the same as the first curve-but the time axis is compressed by 2. 

Calculus sees this factor of 2 from the chain rule for e2t. It sees the factor 2t from 
the chain rule for et 2

. This exponent is t2 , the factor 2t is its derivative: 

.!!__ ( e2t ) = ( e2t ) times 2 
dt 

Problem Set 1.1: Complex Numbers 

1 Draw the graph of y = et by hand, for -1 ::; t ::; 1. What is its slope dy / dt at
t = 0 ? Add the straight line graph of y = et. Where do those two graphs cross ?

2 Draw the graph of y1 = e2t on top of y2 = 2et. Which function is larger at t = 0 ? 
Which function is larger at t = 1 ? 

3 What is the slope of y = e-t at t = 0? Find the slope dy / dt at t = 1.

4 What "logarithm" do we use for the number t (the exponent) when et = 4? 

5 State the chain rule for the derivative dy / dt if y( t) = f ( u( t)) ( chain off and u). 

6 The second derivative of et is again et . So y = et solves d2y / dt2 = y. A sec­
ond order differential equation should have another solution, different from y = Get.
What is that second solution ? 

7 Show that the nonlinear example dy / dt = y2 is solved by y = C / ( 1 - Ct)
for every constant C. The choice C = 1 gave y = 1/ (1 - t), starting from y(0) = 1.

8 Why will the solution to dy / dt = y2 grow faster than the solution to dy / dt = y 
(if we start them both from y = 1 at t = 0)? The first solution blows up at t = 1.
The second solution et grows exponentially fast but it never blows up. 

9 Find a solution to dyjdt = -y2 starting from y(0) = 1. Integrate dy/y2 and -dt. 
(Or work with z = 1/y. Then dz/dt = (dzjdy) (dy/dt) = (-1/y2 )(-y2 ) = 1.
From dzjdt = 1 you will know z(t) and y = 1/z.)

10 Which of these differential equations are linear (in y)? 

(a) y'+ siny=t (b) y' = t2 (y - t)

11 The product rule gives what derivative for ete- t ? This function is constant. At t = 0 
this constant is 1. Then ete- t = 1 for all t. 

12 dy / dt = y + 1 is not solved by y = et 
+ t. Substitute that y to show it fails. We can't

just add the solutions to y' = y and y' = 1. What number c makes y = et 
+ c into a

correct solution ? 
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1.2 The Calculus You Need 

The prerequisite for differential equations is calculus. This may mean a year or more of 
ideas and homework problems and rules for computing derivatives and integrals. Some of 
those topics are essential, but others (as we all acknowledge) are not really of first impor­
tance. These pages have a positive purpose, to bring together essential facts of calculus. 
This section is to read and refer to-it doesn't end with a Problem Set. 

I hope this outline may have value also at the end of a single-variable calculus course. 
Textbooks could include a summary of the crucial ideas, but usually they don't. Certainly 
the reader will not agree with every choice made here, and the best outcome would be a more 
perfect list. This one is a lot shorter than I expected. 

At the end, a useful formula in differential equations is confirmed by the product rule, 
the derivative of ex , and the Fundamental Theorem of Calculus. 

1. Derivatives of key functions: x
n sin x cos x ex ln x 

The derivatives of x, x2
, x3

, . . . come from first principles, as limits of D.y / D.x. The 
derivatives of sinx and cosx focus on the limit of (sinb.x)/b.x. Then comes the great 
function ex . It solves the differential equation dy/dx = y starting from y(O) = 1. 
This is the single most important fact needed from calculus : the knowledge of ex .

2. Rules for derivatives : Sum rule Product rule Quotient rule Chain rule

When we add, subtract, multiply, and divide the five original functions, these rules give the 
derivatives. The sum rule is the quiet one, applied all the time to linear differential equations. 
This equation is linear (a crucial property): 

� � d 

dt 
=ay+f(t) and 

dt 
=az+g(t) add to 

dt
(y+z)=a(y+z)+(f+g). 

With a = 0 that is a straightforward sum rule for the derivative of y + z. We can always 
add equations as shown, because a(t)y is linear in y. This confirms superposition of the 
separate solutions y and z. Linear equations add and their solutions add. 

The chain rule is the most prolific, in computing the derivatives of very remarkable func­
tions. The chain y = ex and x = sin t produces y = esin t (the composite of two 
functions). The chain rule gives dy/ dt by multiplying the derivatives dy/dx and dx/dt: 

Chain rule 
dy dy dx 
- = - - = ex cost = y cost. 
dt dx dt 

Then esin t solves that differential equation !� = ay with varying growth rate a = cost.
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3. The Fundamental Theorem of Calculus

The derivative of the integral of f ( x) is f ( x). The integral from O to x of the derivative
df /dx is f(x) - f(0). One operation inverts the other, when f(0) = 0. This is not so easy
to prove, because both the derivative and the integral involve a limit step D.x --+ 0. 

One way to go forward starts with numbers y0, y1, ... , Yn · Their differences are like
derivatives. Adding up those differences is like integrating the derivative : 

Sum of differences (Y1 -yo)+(Y2 -y1)+ · · · + (Yn -Yn-1) =Yn -Yo.,...._ (1)

Only Yn and -yo are left because all other numbers y1, Y2, ... come twice and cancel.
To make that equation look like calculus, multiply every term by D.x / D.x = 1 : 

[Y1 - Yo + Y2 - Y1 + ... + Yn - Yn-1] D. = 
_ 

D.x D.x D.x 
x Yn Yo. (2)

Again, this is true for all numbers Yo, y1, ... , Yn · Those can be heights of the graph of a
function y(x). The points x0, ... , Xn can be equally spaced between x = a and x = b. Then
each ratio D.y / D.x is a slope between two points of the graph : 

D.y Yk - Yk-1 

D.x Xk - Xk-l 

distance up 
1 . = s ope.

distance across 
(3)

This slope is exactly correct if the graph is a straight line between the points Xk-l and Xk,
If the graph is a curve, the approximate slope D.y / D.x becomes exact as D.x --+ 0. 

The delicate part is the requirement nD.x = b - a, to space the points evenly
from x0 = a to Xn = b. Then n will increase as D.x decreases. Equation (2) remains
correct at every step, with y0 = y(a) at the first point and Yn = y(b) at the last point.
As D.x --+ 0 and n --+ oo, the slopes D.y / D.x approach the derivative dy / dx. At the
same time the sum approaches the integral of dy/dx. Equation (2) turns into equation (4): 

Fundamental 

Theorem 

of Calculus 

J dy - dx = y(b) - y(a)
dx 

a 

d 1
"' 

- f(s) ds = f(x)
dx a 

(4) 

The limits of D.y / D.x in (3) and the sum in (2) produce dy / dx and its integral. Of course
this presentation of the Fundamental Theorem needs more careful attention. But equation
(1) holds a key idea: a sum of differences. This leads to an integral of derivatives.

4. The meaning of symbols and the operations of algebra

Mathematics is a language. The way to learn this language is to use it. So textbooks have 
thousands of exercises, to practice reading and writing symbols like y(x) and y(x 

+ 
D.x).

Here is a typical line of symbols : 

Derivative of y 
dy ) -

. y(t + �t) - y(t) 
-(t - hm ------. 
dt at-+O �t 

(5)

I am not very sure that this is clear. One function is y, the other function is its derivative y 1• 
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Could the symbol y' be better than dy / dt? Both are standard in this book. In calculus
we know y( t), in differential equations we don't. The whole point of the differential equation 
is to connect y and y'. From that connection we have to discover what they are.

A first example is y' = y. That equation forces the unknown function y to grow expo­
nentially: y(t) = Get . At the end of this section I want to propose a more complicated
equation and its solution. But I could never find a more important example than et . 

5. Three ways to use dy/dx � Ay/ Ax 

On the graph of a function y(x), the exact slope is dy/dx and the approximate slope
(between nearby points) is 6,.y / D,.x. If we know any two of the numbers dy / dx and
6,.y and 6,.x, then we have a good approximation to the third number. All three approxi­
mations are important, because dy / dx is such a central idea in calculus.

(A) When we know Ax and dy/dx, we have Ay � (Ax)(dy/dx).
This is linear approximation. From a starting point x0, we move a distance 6,.x. That
produces a change 6,.y. The graph of y(x) can go up or down, and the best information
we have is the slope dy / dx at x0. (That number gives no way to account for bending of the
graph, which appears in the next derivative d2y / dx2 .)

Linear approximation is equivalent to following the tangent line -not the curve : 

dy 
Ay � Ax -

dx (6) 

(B) Ay and dy/dx lead to Ax� (Ay)/(dy/dx). This is Newton's Method.

Newton's Method is a way to solve y(x) = 0, starting at a point x0. We want y(x) to
drop from y(x0) to zero at the new point x1. The desired change in y is 6,.y = 0 - y(x0).
What we don't know is D,.x, which locates x1. The exact slope dy / dx will be close to
6,.y / D,.x, and that tells us a good D,.x :

Newton's Method 
Ay Ax� --­

dy/dx 
-y(xo)

Xi - xo = 

dy/dx(xo) (7) 

Guess x0, improve to x1. This is an excellent way to solve nonlinear equations y(x) = 0. 

(C) Dividing Ay by Ax gives the approximation dy/dx � Ay/ Ax .
That is the point of equation (5), but something important often escapes our attention. 
Are x and x + 6,.x the best two places to compute y? Writing 6,.y = y(x + 6,.x) - y(x) 
doesn't seem to offer other choices. If we notice that D,.x can be negative, this allows
x + D,.x to be on the left side of x (leading to a backward difference) . The best choice
is not forward or backward but centered around x: a half step each way. 

Centered difference 
dy 6,.y y(x + ½Ax) - y(x - ½Ax) 
dx � D,.x = Ax 

(8)
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Why is centering better? When y = Cx + D has a straight line graph, all ratios
t::.y/ t::.x give the correct slope C. But the parabola y = x2 has the simplest possible 
bending, and only this centered difference gives the correct slope 2x (varying with x). 

Exact slope 
for parabolas 
by centering 

t::.y (x + ½t::.x)2 
-

(x - ½t::.x)2 x t::.x - (-x t::.x) - - --�----��- - ------ - 2x
t::.x - t::.x - t::.x -

The key step in scientific computing is improving first order accuracy (forward differences) to 
second order accuracy (centered differences). For integrals, rectangle rules improve 
to trapezoidal rules. This is a big step to good algorithms. 

6. Taylor series: Predicting y ( x) from all the derivatives at x = x0 

From the height y0 and the slope Yb at x0, we can predict the height y(x) at nearby points.
But the tangent line in equation (6) assumes that y(x) has constant slope. That first order 
prediction becomes a second order prediction (much more accurate) when we use 
the second derivative yi at xo. 

Tangent parabola using yi y(xo + t::.x) �Yo+ (t::.x)yb + ½(Llx) 2yi. (9) 

Adding this (t::.x) 2 term moves us from constant slope to constant bending. For the 
parabola y = x2 , equation (9) is exact: (x0 + t::.x )2 = (x5) + (t::.x )(2x0) + ½ (t::.x )2 (2).

Taylor added more terms-infinitely many. His formula gets all derivatives correct 
at x0. The pattern is set by ½(t::.x) 2yi. The nth derivative y(nl(x) contributes a new

term ¾f (t::.x )nyt). The complete Taylor series includes all derivatives at the point x = x0: 

Taylor series y(x0 + t::.x) 

Stop at y' for tangent line

Stop at y" for parabola

Yo + ( t::.x ) yb + .. · + 
I: (Llx) n 

y(n)(xo)
n=O n! 

J_(f:::. )n (n) +
1 

x Yo n. 

(10) 

Those equal signs are not always right. There is no way we can stop y(x) from making a 
sudden change after x moves away from x0. Taylor's prediction of y(x0 + t::.x) is exactly 
correct for ex and sin x and cos x-good functions like those are "analytic" at all x. 

Let me include here the two most important examples in all of mathematics. They are 
solutions to dy / dx = y and dy / dx = y2 

- the most basic linear and nonlinear equations.

Exponential series with y(n) (0) = 1 

Geometric series with y(n) (0) = n ! 

1 1 
y = e"' 

= l + x + - x2 + - x3 + ...
2! 3! 

1 
y = -- = l + x + x2 + x3 + 

l-x 

(11) 

(12) 

The center point is x0 = 0. The series (11) gives ex for every x. The series (12) gives 
1/(1-x) when x is between -1 and 1. Its derivative 1 + 2x + 3x2 + · · · is 1/(1 - x) 2

. 
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For x 2 that geometric series will certainly not produce 1/(1 - 2) = -1. Notice 
that 1 + x + x2 

+ · · · becomes infinite at x = 1, exactly where 1/(1 - x) becomes 1/0. 

The key point for ex is that its n th derivative is 1 at x = 0. The n th derivative of 
1/(1- x) is n ! at x = 0. This pattern starts with y, y', y", y"' equal to 1, 1, 2, 6 at x = 0: 

y = (l - x)- 1 y' = (1 - x)-2 y" = 2(1 - x)-3 y"' = 6(1 - x)-4
• 

Taylor's formula combines the contributions of all derivatives at x = 0, to produce y(x). 

7. Application: An important differential equation

The linear differential equation y' = ay + q(t) is a perfect multipurpose model. It 

includes the growth rate a and the external source term q(t). We want the particular 
solution that starts from y(0) = 0. Creating that solution uses the most essential idea 
behind integration. Verifying that the solution is correct uses the basic rules for derivatives. 
Many students in my graduate class had forgotten the derivative of the integral. 

Here is the solution y(t) followed by its interpretation, with a= 1 for simplicity: 

is solved by 
t 

y(t) = J et-sq(s) ds.

0 

(13) 

Key idea : At each time s between 0 and t, the input is a source of strength q ( s). That input 

grows or decays over the remaining time t - s. The input q( s) is multiplied by et-s

to give an output at time t. Then the total output y( t) is the integral of et-sq( s). 

We will reach y(t) in other ways. Section 1.4 uses an "integrating factor." Section 1.6 
explains "variation of parameters." The key is to see where the formula comes from. 
Inputs lead to outputs, the equation is linear, and the principle of superposition applies. 
The total output is the sum (in this case, the integral) of all those outputs. 

We will confirm formula (13) by computing dy/dt. First, et-s equals et 
times e-s. 

Then et comes outside the integral of e-8 q(s). Use the product rule on those two factors: 

Producing y + q (14) 

The first term on the right side is exactly y( t). How to recognize that last term as q( t) ? 
We don't need to know the function q(t). What we do know (and need) is the Fun­

damental Theorem of Calculus. The derivative of the integral of e-tq(t) is e-tq(t). 
Then multiplying by et gives the hoped-for result q(t), because ete-t 

= 1. The linear 
differential equation y 1 = y + q with y(0) = 0 is solved by the integral of et-sq(s ). 
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1.3 The Exponentials et and eat

Here is the key message from this section: The solutions to dy/ dt = ay are y(t) = Ceat _ 
That free constant C matches the starting value y(O). Then y(t) = y(O)eat _ 

I realize that you already know the function y = et . It is the star of precalculus 
and calculus. Now it becomes the key to linear differential equations. Here I focus on the 
two most important properties of this function et 

1. The slope dy / dt equals the function y. As y grows, its graph gets steeper:

2. y(t) = et follows the addition rule for exponents:

(1) 

(2) 

How is this exponential function constructed? Only calculus can do it, because 
somewhere we must have a "limit step." Functions from ordinary algebra can get close 
to et , but they can't reach it. If we choose those functions to come closer 
and closer, then their limit is et . 

This is like using fractions to approach the extraordinary number 1r. The fractions 
can start with 3/1 and 31/10 and 314/100. The neat fraction 22/7 is close to 1r. But 
"taking the limit" can't be avoided, because 1r itself is not a fraction. 

Similarly e is not a fraction. On this book's home page math.mit.edu/dela is an 
article called Introducing ex . It describes four popular ways to construct this function. 
The one chosen now is my favorite, because it is the most direct way. 

Construct y = e1 so that 
dy . 

f - = y (startmg rom y = 1 at t = 0) 
dt 

To show how this construction works, here are ordinary polynomials y and dy / dt : 

1. 

2. 

1 
y = 1 + t + -t2 

2 
1 1 

y = 1 + t + - t2 
+ -t3 

2 6 

The derivative is dy / dt = 0 + 1 + t

1 
The derivative is dy/dt = 0 + 1 + t + -t2 

2 

You see that dy/dt does not fully agree with y. It always falls one term short of y. 
We could get t3 /6 into the derivative by including t4 /24 in y. But now dy / dt will be 
missing t4 /24. 

You can see that dy/dt won't catch up toy. The way out is to have infinitely many terms: 
Don't stop. Then you get dy / dt = y. 
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The limit step reaches an infinite series, adding new terms and never stopping. Every
term has the form tn divided by n ! (nfactorial). Its derivative is the previous term: 

The derivative of 
(n) ... (l)

is 
(n- 1) ... (1)

tn-1

(n - 1) ! (3) 

So if tn /n! is missing in dy/dt, we will capture it by including tn+ 1 /(n + 1)! in y.

Of course dy / dt never completely catches up to y-until we allow an infinite series.
There is a term tn /n !for every n. The term for n = 0 is t0 /0 ! = 1. 

Construction of e• 
t2 t3 t4 00 tn 

y = et = 1 + t + - + - + - + · · · = I: - (4)
2 6 24 n=O n! 

Taking the derivative of every term produces all the same terms. So dy / dt = y. 
Notice: If you change every t to at , the derivative of y = eat becomes a times eat :

- 1 +at+ -- + -- + · · · = a 1 + at + -- + · · · = aeat 
d 

( a2t2 a3t3 ) ( a2t2 )
& 2 6 2 

(5)

This construction of et brings up two questions, to be discussed in the Chapter 1 Notes.
Does the infinite series add to a finite number (a different number for each choice of t)? 
Can we add the derivatives of each tn /n! and safely get the derivative of the sum et ?
Fortunately both answers are yes. The terms get very small, very fast, as n increases.
The limiting step is n --+ oo, producing the exact et. 

When t = 1, we can watch the terms get small. We must do this, because t = 1 leads to
the all-important number e1 which is e: 

The series for e at t = 1 
1 1 1

e = 1 + 1 + - + - + - + · · · � 2.718
2 6 24

The first three terms add to 2.5. The first five terms almost reach 2. 71. We never reach 2. 72.
With enough terms you can barely pass 2.71828. It is certain that the total sum e is not a 
fraction. It never appears in algebra, but it is the key number for calculus. 

The Series for et is a Taylor Series 

The infinite series (4) for et is the same as the Taylor series. Section 1.2 went from the
tangent line 1 + t to the tangent parabola 1 + t + ½t2

. The next term will be ¼t3
, because

that matches the third derivative y111 
= 1 at t = 0. All derivatives are equal to 1 at t = 0,

when we start from the basic equation y' = y. That equation gives y" = y' = y and
the next derivative gives y"' = y" = y' = y. 

Conclusion: tn /n ! has the correct nth derivative (which is 1) at the point t = 0.
All these terms go into the Taylor series. The result is exactly the exponential series (4).
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Multiplying Powers by Adding Exponents 

We write 3 2 for 3 times 3. We write e2 fore times e. The question is, does e = 2.718 ... 
times e = 2.718 ... give the same answer as setting t = 2 in the infinite series to get e2? 

The answer is again yes. I could say "fortunately yes" but that might suggest a 
lucky accident. The amazing fact is that Property 1 (y' = y is now confirmed) leads 
automatically to Property 2. The exponential starts from y(0) = e0 

= 1 at time t = 0. 

Property 2. et times eT equals et+T so (e1 ) (e1 ) = e2 

This is a differential equations course, so the proofs will use Property 1 : dy / dt = y. 

First Proof. We can solve y' = (a+ b)y two ways, starting from y(0) = 1. We know that 
y(t) = e<a+b)t. Another solution is y(t) = eatebt, as the product rule shows:

(6) 

This solution eatebt also starts at e0e0 
= 1. It must be the same as the first solution e(a+b)t _

The equation y' = (a+ b)y only has one solution. At t = 1 this says that ea+b 
= eaeb _ 

QED. 

Second Proof. Starting with y = l at t = 0, the solution out to time t is et. The 
solution to time t +Tis et+T _ The question is, do we also get that answer in two steps? 

Starting from y = l at t = 0, we go to et. Then start from et at time t and continue an 
additional time T. This would give eT starting from y = l, but here the starting value is 

et. So C = et multiplies eT. At time t + T we have perfect agreement: 

et times eT (which is C times eT ) agrees with one big step et+T _ 

Negative Exponents 

Remember the example dy/dt = -y with solution y = e-t _ That exponent-tis negative. 
The solution decays toward zero. The exponent rule eteT 

= et+T still holds for 
negative exponents. In particular et times e-t is et -t 

= e0 
= l : 

Negative exponents 
1 -t 1 -1 1 1 1 
- = e and - = e = 1 - 1 + -- - + -- · · · 
et e 2 6 24 

This number 1/e is about .36. The series always succeeds! The graph of y = e-t 

shows that e-t stays positive. It is very small fort > 32. Your computer might use 32 
bit arithmetic and ignore numbers that are this small. 

Why does et grow so fast? The slope is y itself. So the slope increases when the 
function increases. That steep slope makes y increase faster-and then the slope too. 
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Interest Rates and Difference Equations 

There is another approach to et and eat , which is not based on an infinite series. (At least, 
not at the start.) It connects to interest on bank accounts. For et the rate is a = 1 = 100%. 
For eat the differential equation is dy / dt = ay and the interest rate is a.

The different approach is to construct et and eat as the limit of compound interest. 

et = limit (1 
+ _!_) N 

N-too N 
eat = limit 

N-too 

(1 
+ 

a
N
t)

N 

(7) 

The beauty of these formulas is that a bank does exactly what a computational scientist 
does. They both start with the differential equation dy / dt = ay and the initial condition
y = 1 at t = 0. Banks and scientists don't have computers that give exact solutions, when 
y(t) changes continuously with time. Both take finite time steps 6-t instead of infinitesimal
steps dt. They reach time t in N steps of size at = t / N. Their approximations are 
Y1 , Y2 , ... , YN with Yo = 1. Compound interest produces a difference equation:

dy 
-= ay becomes
dt (8) 

Each step multiplies the bank balance by 1 + aD..t. The new balance is the old balance
Yn plus a 6-tYn (the interest on Yn in the time interval D..t). This is ordinary compound 
interest that all banks offer, not continuous compounding as in dy / dt. The time step
can be 6-t = 1 year or 1 month. The balance at t = 2 years = 24 months is Y2 or Y24 : 

Y2 = (1 + a) 2 Yo (9) 

If the rate is a = 3 per cent per year= .03 per year, continuous compounding for 2 years 
would produce the exponential factor e·06 

:;:::j 1.06184. Monthly compounding produces 
(1.0025) 24 

:;:::j 1.06176. We only Jose a little, when the differential equation y' = ay is
approximated by the difference equation in (8). 

The computational scientist is usually not willing to accept this loss of accuracy in Y. 

Equation (8) with a forward difference Yn+l - Yn is called Euler's method.

Its accuracy is not high and not hard to improve. It is the natural choice for a bank, 
because a backward difference costs them even more than continuous compounding : 

Backward difference 
1 

or Yn = 

D.. 
Yn-1· 

1- a t
(10)

Yn connects backward to the earlier Yn-l· Now each step divides by 1- aD..t. After N steps
of size 6-t = t / N, we are again close to eat. But with backward differences and a > 0, we
overshoot the differential equation and the bank pays a little too much: 

(1 + aD..t) N is below eat 
1 

6-t) N 
is above eat . 
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Complex Exponents 

This isn't the time and place to study complex numbers in detail. It will be the pages 
about oscillations and eiwt that cannot go forward without the imaginary number i. 
Here we are solving dy / dt = ay, and all I want to do is to choose a = i. 

I can think of two ways to solve the complex equation dy/dt = iy. The fast way uses 
derivatives of sine and cosine, which we know well : 

Proposed solution 

Compare dy / dt 

with the right side iy 

y 

dy/dt 

iy 

cost + i sint 

-sin t + i cos t

i cost + i2 sin t

(11) 

To check dy/dt = iy, compare the last two lines. Use the rule i2 
= -1. (We had 

to imagine this number, because no real number has x2 
= -1.) Then -sin t is the same 

as i2 sin t. So y = cost + i sin t solves the equation dy / dt = iy. This solution starts 
at y = 1 when t = 0, because cos0 = 1 and sin0 = 0. 

The slower approach to dy / dt = iy uses the infinite series. Since a = i, the solution eat 

becomes eit. Formally, the series for y = eit certainly solves dy / dt = iy : 

Complex exponential y = eit = 1 +(it)+ !(it)2 + !(it)3 + · · · 
2 6 

(12) 

The derivative of each term is i times the previous term. Since the series never stops, the 
derivative dy / dt perfectly matches iy. And we are still starting at y = 1 when we substitute 
t = 0. This infinite series eit equals the first solution cost+ i sin t.

Now use the rule i2 = -1. For (it)2 I will write -t2
. And (it)3 equals -it3

. The
fourth power of i is i4 = i2i2 = ( -1 )2 = 1. That sequence i, -1, -i, 1 repeats forever. 

i = i5 i2 
= i6 

= -1 i3 = i7 = -i i4 = i8 = 1 

The infinite series (12) includes those four numbers multiplying powers oft: 

This may be the first time a textbook has ever written out nine terms. You can see the 
full repeat of i, -1, -i, 1. That last coefficient divides by 8! = 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1 
which is 40320. 

The main point is that the solution y = cost + i sin t in equation ( 11) must be the same 
as this series solution eit. They both solve dy / dt = iy. They both start at y = 1 when t = 0. 
The equality between them is one of the greatest formulas in mathematics. 

I Euler's Formula is eit =cost+ i sint. , (13) 

Then e
i1r = cosn + i sin 1r = -1. And e

i21r = 1 + i21r + �(i2n)2 + · · · must add to 1 ! 
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I cannot resist comparing cost + i sin t with the series for eit. The real part of that
series must be cost. The imaginary part (which multiplies i) must be sin t. The even
powers 1, t2 , t4 , ... give cosines. The odd powers t, t3

, t5 , .•. are multiplied by i : 

Cosine is even 1 
1

2 
1

4 
t6 

(14) cost = 
- -t + -t + ...

2 24 6! 

Sine is odd sin t 
1 3 1

5 
t

7 

(15) = t - -t + -t + . . .

6 120 7! 

These two pieces of the series for eit are famous functions on their own, and now we see 
their Taylor series . They are beautifully connected by Euler's Formula. 

The derivative of the sine series is the cosine series: 

d 

dt 
sm t =cost 

d 1 
3 

1 
2 - ( t - -t + · · · ) = 1 - -t + · · ·

dt 6 2 

The derivative of the cosine series is minus the sine series : 

cosine 

d 

dt 
cos t = - sm t .!!:_ (1 - !t2 + _!_t4 - · · · ) = - t + !t3 • • • = - sine 

dt 2 24 6 

All this important information came from allowing the exponent in eit to be imaginary. 
And eit times e- it is exactly cos2 t + sin2 

t = 1. 

Matrix Exponents 

One more thing, which you can safely ignore for now. The exponent in eat could become 
a square matrix. Instead of solving dy / dt = ay by eat , we can solve the matrix equation
dy / dt = Ay by the matrix eAt. Start with the identity matrix I instead of the number 1. 

eAt is a matrix 
1 1 

eAt = I + At + - ( At ) 2 + - ( At ) 3 + · · · 
2 6 

(16) 

The series has the usual form, with the matrix A instead of the number a. Here I stop, 
because matrices come in Chapter 4: Systems of Equations. When the matrix A is three by 
three, the equation dy / dt = Ay represents three ordinary differential equations. Still first 
order linear, still constant coefficients, solved by eAt in Section 6.4. 

There is one big difference for matrices: eAteBt = e<A+B)t is not true. For
numbers a and b this equation is correct. For matrices A and B something goes wrong 
in equation (6). When you look closely, you see that b moved in front of eat _ 
But eAt B = BeAt is false for matrices. 
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• REVIEW OF THE KEY IDEAS •

1. In the series for et, each term tn / n ! is the derivative of the next term.

2. Then the derivative of et is et, and the exponent rule holds: et eT = et+T.

15 

3. Another approach to dy/dt = y is by finite differences (Yn+l - Yn)/6.t = Yn.
Yn+l = Yn + D..tYn is the same as compound interest. Then Yn is close to en6.ty0 _ 

4. y = eat solves y' = ay, and a= i leads to eit =cost+ i sin t (Euler's Formula).

5. cost = 1 - t2 /2 + · · · and sin t = t - t3 /6 + · · · are the even and odd parts of eit.

Problem Set 1.3 

1 Set t = 2 in the infinite series for e2
. The sum must be e times e, close to 7 .39. 

How many terms in the series to reach a sum of 7? How many terms to pass 7.3? 

2 Starting from y(O) = 1, find the solution to dy/dt = y at time t = 1. Starting from 
that y(l), solve dy/dt = -y to time t = 2. Draw a rough graph of y(t) from 
t = 0 tot= 2. What does this say about e- 1 times e? 

3 Start with y(O) = $5000. If this grows by dy / dt = .02y until t = 5 and then jumps to 
a = .04 per year until t = 10, what is the account balance at t = 10 ? 

4 Change Problem 3 to start with $5000 growing at dy / dt = .04y for the first five years. 
Then drop to a = .02 until t = 10. What is now the balance at t = 10 ? 

Problems 5-8 are about y = e
at 

and its infinite series.

5 Replace t by at in the exponential series to find eat : 

at 1 ( )2 1 ( )n e = 1 + at + - at + · · · + - at + · · ·
2 n! 

Take the derivative of every term (keep five terms). Factor out a to show that 
the derivative of eat equals aeat. At what time T does eat reach 2? 

6 Start from y' = ay. Take the derivative of that equation. Take the nth derivative. 
Construct the Taylor series that matches all these derivatives at t = 0, starting from 
1 +at+ ½(at)2 . Confirm that this series for y(t) is the series for eat in Problem 5. 

7 At what times t do these events happen? 

(a) eat= e (b) eat 
= e2 

8 If you multiply the series for eat in Problem 5 by itself you should get the series 
for e2at. Multiply the first 3 terms by the same 3 terms to see the first 3 terms in e2at. 
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9 (recommended) Find y(t) if dy/dt = ay and y(T) = 1 (instead of y(0) = 1). 

10 (a) If dy / dt = (ln 2)y, explain why y(l) = 2y(0).
(b) If dy / dt = -(ln 2)y, how is y(l) related to y(0) ?

11 In a one-year investment of y(0) = $100, suppose the interest rate jumps from 
6% to 10% after six months. Does the equivalent rate for a whole year equal 8%, 
or more than 8%, or less than 8% ? 

12 If you invest y(0) = $100 at 4% interest compounded continuously, then 
dy / dt = .04y. Why do you have more than $104 at the end of the year? 

13 What linear differential equation dy / dt = a( t )y is satisfied by y( t) = ecos t ? 

14 If the interest rate is a = 0.l per year in y' = ay, how many years does it take for 
your investment to be multiplied by e ? How many years to be multiplied by e2 ? 

15 Write the first four terms in the series for y = et2
• Check that dy / dt = 2ty.

16 Find the derivative of Y ( t) = ( 1 + ! ) n . If n is large, this dY / dt is close to Y !
n 

17 Suppose the exponent in y = eu(t) is u(t) = integral of a(t). What equation 
dy / dt = __ y does this solve ? If u(0) = 0 what is the starting value y(0) ? 

Challenge Problems 

18 ed/dx = l + d/dx + ½(d/dx)2 + · · · is a sum of higher and higher derivatives.
Applying this series to f(x) at x = 0 would give f + f' + ½J" + · · · at x = 0.
The Taylor series says : This is equal to f ( x) at x = __ .

19 (Computer or calculator, 2.xx is close enough) Find the time t when et = 10. 
The initial y(0) has increased by an order of magnitude-a factor of 10. The 
exact statement of the answer is t = . At what time t does et reach 100 ? 

-t
2 /2 20 The most important curve in probability is the bell-shaped graph of e 

With a calculator or computer find this function at t = -2,-1,0,1,2. Sketch 
the graph of e-t2 12 from t = -oo tot = oo. It never goes below zero.

21 Explain why Y1 = e(a+b+c)t is the same as Y2 = eatebtect _ They both start at 
y(0) = 1. They both solve what differential equation? 

22 For y' = y with a = l, Euler's first step chooses Y1 = (1 + .6.t)Y0. Backward
Euler chooses Y1 = Y0/(1 - .6.t). Explain why 1 + .6.t is smaller than the exact et:,.t 

and 1 / ( 1 - .6.t) is larger than et:,.t. (Compare the series for 1 / ( 1 - x) with ex .) 
Note Section 3.5 presents an accurate Runge-Kutta method that captures three 
more terms of eaM than Euler. For dy / dt = ay here is the step to Yn+l : 

( 
a2 .6.t2 

a
3 .6.t3 

a
4 .6.t4

) Runge-Kutta for y 1 
= ay Yn+l = l + a.6.t + -2- + -

6
- + � Yn .
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1.4 Four Particular Solutions 

The equation dyjdt = ay is solved by y(t) = eaty(0). All the input is in that starting 
value y(0). The solution grows exponentially when a > 0 and it decays when a < 0. 
This section allows new inputs q( t) after the starting time t = 0. That input q is a 
"source" when we add to y(t), and a "sink" when we subtract. If y(t) is the balance 
in a bank account at time t, then q(t) is the rate of new deposits and withdrawals. 

The basic first order linear differential equation (1) is fundamental to this course. 
We must and will solve this equation. Please pay attention to this section. In every way, 
this Section 1 .4 is important. 

-=ay+q(t) 
dy 

I dt 
---

starting from y(O) at t = 0. (1) 

Important I will separate the solution y(t) into two parts. One part comes from the 
starting value y(0). The other part comes from the source term q(t). This separation is 
a crucial step for all linear equations, and I take this chance to give names to the two parts. 
The part Yn = Ceat is what we already know. The part Y

p 
from the source q(t) is new. 

1 Homogeneous solution or null solution Yn ( t) with no source : q = 0 

This part Yn(t) = Ceat solves the equation dy/dt = ay. The source term q is zero 
(null). We are really solving y' - ay = 0, an equation with zero on the right hand side. 
That equation is homogeneous-we can multiply a solution by any constant to get 
another solution cy(t). This book will choose the simpler word null and the subscript n, 
because this connects differential equations to linear algebra. 

2 Particular solution Y
p

(t) with source q(t) 

This part y
p
(t) comes from the source term q(t). The previous section had no source 

and therefore no reason to mention y
p
(t). Now our whole task is to find a 

particular solution Y
p 

( t), because the null solutions Yn ( t) = C eat are already set. 

3 The complete solution is y(t) = Yn (t) + Yp
(t) 

For linear equations-and only for linear equations-adding the two parts gives the complete 
solution y = Yn + Y

p
- This is also called the "general solution." 

Null y� ayn O Yn can start from y(0) 
Particular y; ay

P 
q(t) Y

p 
can start from y = 0 

--------------------

y = Yn + Yp 
y' ay q(t) y must start from y(0) 

A nonlinear equation could include a quadratic term y2
. In that case adding Yn 

2 to Y
p 

2 

would not give (Yn + Y
p
)2

• The null equation y' - y2 
= 0 would not be homogeneous, 

and we can't multiply y by a constant C. This will happen for the "logistic equation" in 
Section 1.7. You will see that y(0) enters the solution y(t) in a more complicated way. 

The back cover of this book shows one particular solution Y
p 

combining with all null 
solutions Yn . This important picture is repeated for matrix equations and linear algebra. 
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Particular Solutions and the Complete Solution 

We can draw the complete solution to u + v = 6. These points ( u, v) fill a straight line. We 
can also draw all the null solutions to u + v = 0. They fill a parallel straight line, going 
through the center point (0, 0). Figure 1.2 shows how the null solutions combine with one 
particular solution (3, 3) to give the line of complete solutions. 

null line 

Yn = (C,-C) 

V 

one particular solution YP = 
(3, 3)

another particular solution YP = (6, 0) 
-------->I�--->----+ u

u+v=O 
Figure 1.2: By adding all the null solutions to one particular solution, you get every solution 
(the complete line). You can start from any particular Y

p 
that solves u + v = 6. 

Starting from Y
p 

= (3, 3), the complete solution has u = 3 + C and v = 3- C.

This includes a null solution C + (-C) 0, plus the particular solution 3 + 3 = 6.

Null Un + Vn 0 C + (-C) 0 

Particular U
p 

+ V
p 

6 3 + 3 6 

Complete u + V 6 (3 + C) + (3 - C) 6 

The null solution (C, -C) allows any constant C (like y(0)). The particular solution could 
have any numbers u

p 
and v

p 
that add to 6. We made a special choice U

p 
= 3 and V

p 
= 3. 

In the equation y' - ay = q we will often make the special choice Y
p

(0) = 0. 
There are many particular solutions ! You could say that we chose a very particular

solution. In the differential equation we chose to start from y
p

(0) = 0. For the equation
u + v = 6 we chose u = 3 and v = 3. We could equally well choose u = 6 and v = 0. This 
particular solution is different, but we get the same complete solution line: 

Ycomplete = (6 + c, 0 - c) is the same solution line as Ycomplete = (3 + C, 3 - C). 

If c is 5, then C is 8. From all e's and all C's, you get the same line. 
I want to repeat this pattern of null solution plus particular solution by showing 

how it looks for an ordinary matrix equation Av = b (Chapter 4 explains matrices): 

Null solution Avn = 0 Particular solution Av
p 

= b Complete solution v = Vn + V
p 

Always the key is linearity: Av equals Avn + Av
p
. Therefore Av= 0 + b = b. 

Often the only solution to Avn = 0 is Vn = 0. Then a particular solution V
p 

is also
the complete solution. This will happen when A is an "invertible matrix." 
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Inputs q(t) and Responses y(t) 

For any input source q(t), equation (4) will solve dyjdt = ay + q(t). But when
mathematics is applied to science and engineering and our society, problems don't 
involve "any q(t)." Certain functions q(t) are the most important. Those functions are
constantly met in applied mathematics. Here is a short list of special inputs: 

1. Constant source

2. Step function at T
3. Delta function at T

q(t) = q
q(t) = H(t - T)
q(t) = t5(t - T)

4. Exponential q(t) = ect 

This section will solve dy / dt = ay + q( t) for the four functions on that short list.
The next section adds one more source q(t). It is a combination of sine and cosine.
Or q(t) can be a complex exponential (which has one term and is usually easier):

5. Sinusoid q(t) = Acoswt + Bsinwt or Reiwt 

Solving Linear Equations by an Integrating Factor 

The equation y' = ay + q is so important that I will solve it in different ways. The first way
uses an integrating factor M(t). Put bothy terms on the left. Keep q(t) on the right.

Problem Solve y' - ay = q(t) starting from any y(O) 

Method Multiply both sides by the integrating factor M(t) = e-at _

We chose that factor e-at so that M times y' - ay is exactly the derivative of My:

Perfect derivative e-at(y' - ay) agrees with d
d 

(e-aty) = !!:_(My). (2)
t dt 

When both sides of y' - ay = q are multiplied by M = e-at , our equation is irnrnediately
ready to be integrated. The right side is M q ,  the left side is the derivative of My .

The integral of !(My)= Mq is M(t)y(t)- M(0)y(0) = j M(s)q(s) ds (3) 

At t = 0 we know that M(O) = e0 
= 1. Multiply both sides of equation (3) by eat 

(which is 1/ M) to see y(t) = Yn + Y
p

· This solution comes many times in the book! 
To give meaning to formula (4), I will apply it to the most important inputs q(t).

The key formula 
Solution to y' = ay + q(t)

I y(t ) = eat y(O) + eat j e-as q(s) ds.

I
o 

(4) 

I 
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Constant Source q(t) = q

When q(t) is a constant, the integration for the particular solution in equation (4) is easy. 

t 
-as S = t

l e-as qds = [�] = :I(l -e-at ).
-a s = 0 a 

0 

Multiply by eat to find y
p
(t). An important solution to an important equation. 

Solution for constant source q y(t) = eat y(O) + �(eat - 1)
a 

(5) 

Example 1 has a positive growth rate a > 0. The solution will increase when q > 0. 
Example 2 will have a negative rate a < 0. In that case y(t) approaches a steady state. 

Example 1 Solve dy/dt -5y = 3 starting from y(O) = 2. Here a= 5 and q = 3. 
This fits perfectly with y' -ay = q. Equation (5) gives the solution y(t): 

Solution y(t) = Yn + Y
p 

= 2e5t + �(e5t - 1). Sett= 0 to check that y(O) = 2. 

Looking at that solution, I have to admit that y' -5y = 3 is not so obvious. This becomes 
much clearer when the two parts (null + particular) are separated: 

Yn(t) 2e5t certainly has y� -5yn = 0 with Yn(O) = 2 

Y
p
(t) ¾( e5t -1) has y/, = 3e5t . This agrees with 5Yp + 3.

Example 2 Solve dy/dt = 3 -6y starting from y(O) = 2. 

Formula (5) still gives the answer, but this y(t) is decreasing because a = -6 is negative:

3 3 1 
y(t) = 2e-6t 

+ -(e-6t -1) = -e-6t + -.
-6 2 2 

When t = 0, that solution starts at y(O) = 2. The solution decreases because of e-6t . 
Ast -+ oo the solution approaches y00 = ½- This value -q/ a at t = oo is a steady state.

q 1 . � � At y = -- = - the equat10n -
d 

= 3 -6y becomes - = 0. Nothing moves.
a 2 t dt 

Please notice that the steady state is y00 = ½ for every initial value y(O). That is because the
null solution Yn = y(O)e-6t approaches zero. It is the particular solution that balances the 
source term q = 3 with the decay term ay = -6y to approach y00 = -q/a = 3/6.
Question If y(O) = ½, what is y(t)? Answer y(t) = ½ at all times. 6y balances 3. 
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y(0) = 3/4 
y' = 3 - 6y

y(0) = 1/2 

Every starting value leads to 
y(0) = 1/4 y = -q/a = (-3)/(-6) 

y(0) = 0 �-------------

Figure 1.3: When a is negative, eat approaches zero and y(t) approaches y00 = -q/a. 

Here is an important way to rewrite that basic equation y' = ay + q when a < 0. 
The right hand side is the same as a(y + � ). But y + ! is exactly the distance y - y00 • 

Rewrite y' = ay + q as an easy equation Y' = aY by introducing Y = y - y00 • 

New unknown Y = y - y00 New equation Y' = aY New start Y(0) = y(0) - y00 

The solution to Y' = aY is certainly Y(t) = Y(0)eat _ This approaches Y00 = 0 when 
a< 0. The original y = Y + y00 still approaches y00 which is -q/a: see Figure 1.3 . 

(y - Yoo ) 1 
= a(y - Yo:i ) has solution y(t) - Yoo = eat(y(O) - Yoo ) (6)

Section 1.6 will present physical examples with a < 0: Newton's Law of Cooling, 
the level of messenger RNA, the decaying concentration of a drug in the bloodstream. 

Step Function 

The unit step function or "Heaviside step function " H ( t) jumps from O to 1 at t = 0.

Figure 1.4 shows its graph. The effect of H(t) is like turning on a switch. 
The second graph shows a shifted step function H(t - T) which jumps from 0 to 1 

at time T. This is the moment when t - T = 0, so H jumps at that moment T. 

H(t) I jump from 0 to 1 

• t
t=0 

H(t - T) .-----I jump at time T 

I - • t
t=0 t=T 

Figure 1.4: The unit step function is H(t). Its shift H(t - T) jumps to 1 at t = T. 
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When the step comes at t = 0, the solution to y ' - a y = H ( t) is the step response
That step response is easy to find because this equation is simply y 

1 
- ay = 1.

The starting value is y (0) = 0. Put q = l into formula (5): 

Step response 
1

y(t) = -(eat - 1) (7) 
a 

The interesting case is a< 0. The solution starts at y (0) = 0. It grows to y(oo) = -1/a.
The system rises to that steady state after the switch is turned on. The graph of y ( t) is
the bottom curve in Figure 1 .3, except that y00 is 1/6 because the step function has q = 1.

The step response is the output y( t) when the step function is the input. We are depositing
at a constant rate q = l. But when a < 0, we are losing ay in real value because of inflation.
Then growth stops at y = - l / a, where the deposits just balance the loss. 

Now tum on the switch at time T instead of time 0. The step function H(t - T) is
piecewise constant with two pieces: zero and one. If I multiply by any constant q, the source
q H ( t - T) jumps from 0 to strength q at time T. 

The left side of our differential equation is still y' - ay, no change. The integrating
factor M = 

e-at still makes that into a perfect derivative: M( y' - ay) equals (My)'.
The only change is on the right side, where the constant source doesn't start acting
until the jump time T. At that time, the step function source H(t - T) is turned on: 

t 

(e-at
y)' = 

e-at H(t - T) now gives e-at
y (t) - e0t 

y (0) =
j e-as ds. (8)
T 

The only change fort � T is to start that integral at the turn-on time T:

ft 
[
e-as

] 
s=t 1 e-as ds = --=-- = 

-(e-aT _ e-at).
a s=T a 

(9) 

Multiply by eat to get the particular solution yp
(t) beyond time T, and add Yn = 

eat
y (0).

1 
Solution with unit step y(t) = eat

y(0) + - (ea(t-T) - 1) for t > T.
a 

(10)

As always, y (0) grows or decays with eat in the null solution Yn · The step response is the
particular solution, as soon as the input begins. But nothing enters until time T. 

Example 3 Suppose the input turns on at time t = 0 and turns off at t = T. Find y (t).

Solution The input isH(t)-H(t-T). The output isy(t) =¾(eat - ea(t-T)) ,t � T.
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Delta Function 

Now we meet a remarkable function o(t). This "delta function" is everywhere zero, except
at the instant t = 0. In that one moment it gives a unit input. Instead of a continuing
source spread out over time, o(t) is a point source completely concentrated at t = 0. 

For a point source shifted to o(t - T), everything enters exactly at time T.

There is no source before that time or after that time. The delta function is zero except
at one point. This "impulse " is by no means an ordinary function. 

Here is one way to think about o ( t). The delta function is the derivative of the unit step
function H(t). But H is constant and dH/dt is zero except at t = 0. Take
the integral of o(t) = dH/dt from any negative number N to any positive number P.

Integral of '5 ( t) is 1 
p p 

J '5(t) dt = J d
d
� dt = H(P) - H(N) = 1 - 0.

N N 

( 11) 

"The area under the graph of o(t) is 1. All that area is above the single point t = 0."
Those words are in quotes because area at a point is impossible for ordinary functions. o ( t) 
may seem new and strange (it is useful!). Look at dR/dt H and dH/dt = o.

H(t) = dR/dt '5(t) = dH/dt
delta ramp ?t) 

7' 
step 

I ------''-----------. t ____ ...._ ___ t 

0 (slope 1) 0 (jump 1) 0 (area 1) 

Slope of the ramp jumps to 1. Slope of the step function is the delta function. 
The value of <5(0) is infinite. But that one word does not give full information.

The real way to understand delta functions is by their integrals. 

00 00 

j o(t) dt = 1 J o(t) F(t) dt = F(O) 

-oo -oo 

00 

J o(t -T) F(t) dt = F(T) (12)
-oo 

Please visualize a tall thin box function-equal to 1 / h between t = 0 and t = h.
Now imagine h going to zero. The width h becomes zero and the height 1/h becomes
infinite. The area stays at 1. All integrals of o(t)F(t) are concentrated at t = 0: the "spike". 

Here is a quick way to solve y' - ay = o(t), and then we will do it more slowly. We
know that the derivative of a step function H(t) is the delta function o(t). So the derivative
of the step response must be the impulse response : 

d 
- (step) = delta
dt 

d ( step ) = 
!!:__ ( 

eat - 1) = eat =
dt response dt a 

impulse 
response (13)
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The Impulse Response Solves y' - ay = <5(t)

Start your bank account with one deposit. Start your heart with a sudden shock. 
Hit a golf ball. Fire a bullet. Many motions start with an "impulse" and then the source 
term is a delta function J ( t). 

The impulse response y(t) jumps immediately to y(O) = 1. You can see that by 
integrating every term in dy / dt - ay = b ( t). Integrating J ( t) from t = -h to h gives 1. 
Integrating dy/dt gives y(h) - y(-h), which is y(h). The integral of ay becomes zero as 
h--+ 0. That limit step when h--+ 0 leaves y(O) = 1. 

After the jump to y(0) = 1, the impulse J(t) is immediately zero. So we just have the 
ordinary null solution to y 1 

= ay starting from y(0) = 1: 

Impulse response 

Notice the different responses to an impulse and a step function. The impulse deposits 
everything at t = 0. The step function goes on depositing forever. If a < 0 and inflation 
reduces our wealth, the impulse response dies out to Yeo = 0. The step response increases 
from 0 to Yeo = -1/ a, where the deposits balance the loss from inflation. 

I want to emphasize : eat is the growth or decay factor G ( t) for all inputs. When the 
input is y(0), the output at time t is eaty(0). When the input is q( s) at time s, 
the output later at t is ea (t-s)q(s). The growth is only over the remaining time t - s.
Our main formula ( 4) is adding up all the outputs that come from all the inputs. 

Delayed Delta Function 

The source q(t) = J(t - T) turns on at time T. Then immediately it turns off. In that 
one instant of time, the value of y jumps by 1. "We deposited $ 1 at that moment." 
The integral of dy / dt = b ( t - T) is 1. This is the change in y, before T to after T. 

Coming up to time T, the solution is y(t) = eaty(0). At time T we add 1. After 
time T, that input has the shorter period t - T in which to grow. Multiply 1 by ea (t-T) : 

Solution for q = '5(t - T) y(t) = Yn(t) + Yv(t) = eat y(O) + ea(t-T). (15) 

The solution y jumps by e a (T-T) 
= e0 

= 1, when that second term appears at t = T.

Example 4 Solve the equation y' - 5y = 3'5(t - 4) starting from y(0) = 2. 
The null solution toy' - 5y = 0 starting at y(0) = 2 is Yn(t) = 2e5t . This we know. 
The particular solution is yp (t) = 0 up tot = 4. At that moment y jumps by 3, from 36. 
Its growth factor is e5 <t-4). Then Yv(t) = 3e5 <t-4) after t = 4.

Complete solution with jump of 3 Yn + Yv = 2e5t 
+ 3e5 (t-4) H(t - 4) (16)

The step function H ( t - 4) combines Yp = 0 before the jump and Yp after the jump into 
one formula. At t = 4 the solution jumps by 3. Then this 3 grows to 3e5 (t-4). 



1.4. Four Particular Solutions 25 

Remark 1 This solution makes me realize that the initial value y(O) is like having a delta 
function at time t = 0. The solution ''jumps" to y(O). I don't know if you agree with that. 

Remark 2 q(t) = -cS(t - T) would be negative (a sink instead of a source). A bank 
account could be earning interest at the rate a, and suddenly you withdraw 1 at time T. The 
balance y(T) had reached eaT y(O), and it drops by 1. From time T onwards, the growth 
factor ea (t-T) multiplies the new balance, and y(t) = eaty(O) - ea (t-T). 

Remark 3 (a little mysterious) We could think of an ordinary continuous input q(t) as 
a lot of delta functions-a delta function of strength q(T) at every time T. Instead of 
"a lot" I need to say "an integral". Every continuous function q( t) is an integral of delta 
functions q(T) c5(t - T) at all T. The integral picks out q(t) at the spike point. 

Any q(t) = combination of delta functions= j q(T) cS(t - T) dT. (17) 

Example 5 (q = 1) The integral of all impulses for T � 0 is the step function H(t). 

Then the integral of all impulse responses is the step response. The integral of eat from 
0 tot is (eat - 1)/a. Derivative of step response= impulse response as in (13). 

Exponential Input ect 

The source q(t) = ect starts at time zero and continues forever. The particular solution 
Yp ( t) is easy to find, because Yp is a multiple Y ect of this same exponential ect.
That is the beauty of exponentials . These are the most important functions and the best to 
work with. They allow growth or decay or oscillation from c > 0 and c < 0 and c = iw. 

Substitute Yp = Y ect into y' - ay = ect 

When we cancel ect this leaves a simple formula for the number Y in Y ect : 

cY-aY=l gives 
1 

Y=-­
c-a 

and 
ect 

Yp (t) =
--

c-a
(18) 

Example 6 Solve y' - 5y = 3e4t starting from y(O) = 2. Now Y = _

3
_ = -

3
-. 

c-a 4-5
The null solution still involves e5t. The particular solution is Y times e4t !

Yp (t) = Ye4t y� - 5y
p = (4Y - 5Y)e4t = 3e4t . Then Y = -3.

This particular solution -3e4t starts at -3. Since y(O) = 2, the other part starts at +5. 

Complete solution y(t) = 5e5t - 3e4t _
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The null solution grows at rate a = 5. One particular solution grows at rate c = 4. 
The equation y' - ay = ect is solved for c -/- a but two final comments are needed. 

1. This particular solution y( t) = ect / ( c - a) is not the "very particular" solution
that starts from y

p
(0) = 0. It is still perfectly good, except it starts at 1/(c - a).

So the complete solution starting at y(0) has to include the usual y(0)eat and
also a term to cancel 1 / ( c - a) at time zero :

y' - ay = ect 
Ycomplete 

eat ect 

y(O) eat - -- + -­
c - a c-a 

(19) 

There you see a null solution Yn (two terms) and our particular Y
p 

(the last term). 
Or the last two terms together are the very particular solution (ect - eat)/(c - a). 

2. For c = a we are in serious trouble. The formulas fail because we can't divide by
c - a = 0. This problem y' - ay = eat is a type of resonance , when the exponent
c in the source happens to equal the exponent a in the natural growth from y' = ay.
The integral in our main formula (4) becomes J e-as eas ds = J 1 ds = t.

Resonance c=a y' - ay = eat y = y(O)eat + teat (20) 

That extra growth factor t is because Yn resonates with Y
p

· They both have eat . 

• REVIEW OF THE KEY IDEAS •

1. Complete solution to a linear equation = null solution(s) + particular solution.

2. The integrating factor e-at multiplies y' - ay = q(t) to give (e-at y)' = e-at q(t).

Integrate and multiply by eat : y(t) = Yn + Y
p 

= eaty(O) + eat J e- 08 q(s) ds.

3. For y' - ay = q = constant, the particular solution with Y
p 
( 0) = 0 is q ( eat - 1) / a.

4. q ( t) = H ( t) : the response to a unit step function is Y
p 

= ( eat - 1) / a.

5. q ( t) = '5 ( t) : the impulse response to a unit delta function is Y
p 

= eat .

6. q(t) = ect gives Y
p 

= (ect - eat)/(c - a). In case c = a, change to Y
p 

= teat _
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Problem Set 1.4 

1 All solutions to dy / dt = -y + 2 approach the steady state where dy / dt is zero and 
y = Yoo = _. That constant y = y00 is a particular solution Yp -

Which Yn = ce-t combines with this steady state Yp to start from y(O) = 4? 
This question chose Yp + Yn to be y00 + transient (decaying to zero). 

2 For the same equation dy / dt = -y + 2, choose the null solution Yn that starts from 
y(O) = 4. Find the particular solution Yr that starts from y(O) = 0. 

This splitting chooses the two parts eat
y(O) + integral of ea (t-s)q in equation (4). 

3 The equation dy/dt = -2y + 8 has two natural splittings Ys + YT = YN + YP: 

1. Steady (ys = y00) + Transient (YT -+ 0). What are those parts if y(O) = 6?

2. (yfv = -2yN from YN(0) = 6) + (y; = -2yp + 8 starting from yp(0) = 0).

4 All null solutions to u - 2v = 0 have the form ( u, v) = ( c, __ ) . 

One particular solution to u - 2v = 3 has the form (u, v) = (7, __ ). 

Every solution to u - 2v = 3 has the form (7, __ ) + c(l, __ ). 

But also every solution has the form (3, __ ) + C(l, __ ) for C = c + 4. 

5 The equation dy/dt = 5 with y(O) = 2 is solved by y = __ . A natural split­
ting Yn(t) = _ and Yp(t) = _ comes from Yn = eat

y(O) and Yp = J ea (t-s)5 ds. 

This small example has a = 0 (so ay is absent) and c = 0 (the source is q = 5e0t). 
When a= c we have "resonance." A factor twill appear in the solution y. 

Starting with Problem 6, choose the very particular YP that starts from Yp(O) = 0.

6 For these equations starting at y(O) = 1, find Yn(t) and yp(t) and y(t) = Yn + Yp · 

(a) y' - 9y = 90 (b) y' + 9y = 90

7 Find a linear differential equation that produces Yn(t) = e2t and yp(t) = 5(e8t - 1). 

8 Find a resonant equation ( a = c) that produces Yn ( t) = e2t and Yp ( t) = 3te2t. 

9 y ' = 3y + e3t has Yn = e3t
y(O). Find the resonant Yp with Yp(O) = 0. 

Problems 10-13 are about y' - ay = constant source q.

10 Solve these linear equations in the form y = Yn + Yp with Yn = y(O)eat _ 

(a) y' - 4y = -8 (b) y' + 4y = 8 Which one has a steady state? 

11 Find a formula for y ( t) with y ( 0) = 1 and draw its graph. What is y00 ? 

(a) y' + 2y = 6 (b) y' + 2y = -6
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12 Write the equations in Problem 11 as Y' = -2Y with Y = y - y00 • What is Y(0)?

13 If a drip feeds q = 0.3 grams per minute into your arm, and your body eliminates the 
drug at the rate 6y grams per minute, what is the steady state concentration y00 ? Then 
in= out and Yoo is constant. Write a differential equation for Y = y - y00 . 

Problems 14-18 are about y' - ay = step function H(t - T): 

14 Why is y00 the same for y' + y = H(t - 2) and y' + y = H(t - 10)? 

15 Draw the ramp function that solves y' = H(t - T) with y(0) = 2. 

16 Find Yn(t) and Y
p

(t) as in equation (10), with step function inputs starting at T = 4. 

(a) y' - 5y = 3H(t - 4) (b) y' + y = 7H(t - 4) (What is y00 ? )  

17 Suppose the step function turns on at T = 4 and off at T = 6. Then q(t) 
H(t - 4) - H(t - 6). Starting from y(0) = 0, solve y' + 2y = q(t). What is y00? 

18 Suppose y' = H(t - 1) + H(t - 2) + H(t - 3), starting at y(0) = 0. Find y(t). 

Problems 19-25 are about delta functions and solutions toy' - ay = q 8(t - T). 

19 For all t > 0 find these integrals a(t), b(t), c(t) of point sources and graph b(t): 

t t t 

(a) J o(T - 2) dT (b) J (o(T - 2) - o(T - 3)) dT (c) J o(T - 2)o(T - 3)dT

0 0 0 

20 Why are these answers reasonable? (They are all correct.) 
00 00 00 

(a) J eto(t)dt = l Cb) j (o(t))2 dt = oo (c) J eT o(t - T)dT = et 

- 00 - oo - oo 

21 The solution toy' = 2y + o(t - 3) jumps up by lat t = 3. Before and after t = 3, 
the delta function is zero and y grows like e2t. Draw the graph of y(t) when
(a) y(0) = 0 and (b) y(0) = 1. Write formulas for y(t) before and after t = 3.

22 Solve these differential equations starting at y(0) = 2: 

(a) y' - y = o(t - 2) (b) y' + y = o(t - 2). (What is y00 ?) 

23 Solve dy/dt = H(t - 1) + o(t - 1) starting from y(0) = 0: jump and ramp. 

24 (My small favorite) What is the steady state y00 for y' = -y + o(t - 1) + H(t - 3)? 

25 Which q and y(0) in y' - 3y = q(t) produce the step solution y(t) = H(t - 1)? 
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Problems 26-31 are about exponential sources q(t) = Qect and resonance. 

26 Solve these equations y' - ay = Qect as in (19), starting from y(O) = 2: 

(a) y' - y = 8e3t (b) y' + y = 8e-3t (What is Yoo ?)

29 

27 When c = 2.01 is very close to a = 2, solve y' - 2y = ect starting from y(O) = 1. By 
hand or by computer, draw the graph of y( t) : near resonance. 

28 When c = 2 is exactly equal to a = 2, solve y' - 2y = e2t starting from y(O) = 1. 
This is resonance as in equation (20). By hand or computer, draw the graph of y(t). 

29 Solve y' + 4y = 8e-4t + 20 starting from y(O) = 0. What is y00 ? 

30 The solution toy' - ay = ect didn't come from the main formula ( 4 ), but it could. Inte­
grate e-asecs in (4) to reach the very particular solution (ect - eat )/(c - a). 

31 The easiest possible equation y' = 1 has resonance ! The solution y = t shows the 
factor t. What number is the growth rate a and also the exponent c in the source? 

32 Suppose you know two solutions y1 and Y2 to the equation y' - a(t)y = q(t). 

(a) Find a null solution toy' - a(t)y = 0.

(b) Find all null solutions Yn · Find all particular solutions Y
p

·

33 Tum back to the first page of this Section 1.4. Without looking, can you write down a 
solution to y 1 - ay = q( t) for all four source functions q, H ( t), '5 ( t), ect ? 

34 Three of those sources in Problem 33 are actually the same, if you choose the right 
values for q and c and y(O). What are those values? 

35 What differential equations y 1 = ay + q( t) would be solved by y1 ( t) and y2 ( t) ?
Jumps, ramps, corners-maybe harder than expected (math.mit.edu/dela/Pset1 .4). 

0 1 2 0 1 2 
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1.5 Real and Complex Sinusoids 

Section 1.4 ended with the equation y' - ay = ect. A particular solution was easy to 
produce, because we kept ect. We simply chose the correct multiplier Y = 1 / ( c - a) in 
Y

p 
( t) = Y ect . This section changes the real number c to an imaginary number iw. 

The multiplier is now Y = 1 / ( iw - a) . The solution formula Y eiwt will stay exactly 
the same, but we need complex numbers (with real part and imaginary part). The 
payoff is that we can solve all real problems y' - ay = A cos wt + B sin wt at once. 

Many scientific and engineering applications are driven by sources q(t) that oscillate 
like cos wt and sin wt (sinusoids ). Pistons go up and down to drive a car, voltages go 
up and down to drive current (alternating current). The input frequency is w, and the output 
frequency is also w. The problem is to find the amplitude and the phase in the output 
(the response to the input). The real solution will bey = M cos wt + N sin wt. 

This y(t) will be a particular solution (steady solution). It is not the transient solution 

Yn
(t) that decays to zero. We solve y' - ay = q(t) when the source q(t) is a sinusoid. 

For this section and the next, applications come from biology and chemistry and medicine 
and more. The number a is often a rate constant. It tells the speed of a chemical reaction. 

Note that RLC circuits (resistor-inductor-capacitor) produce equations with second 
derivatives. Those will go into Chapter 2, but RC and RL circuits (first order equations) 
belong here. Our plan for this section is straightforward: Real then complex. 

1 (Real) Solve dy/dt - ay = q(t) = A cos wt+ B sin wt. 

This leads to two equations for the two coefficients M, N in y = M cos wt + N sin wt. 

2 (Complex) Solve dy/dt - ay = q(t) = Reiwt _ 

This leads to one easy equation for the coefficient in y = Y eiwt . But that number Y is 
complex, so we still have two real numbers to find (real and imaginary parts of Y). 

3 (A key idea) Write the complex number 1/(iw - a) in its polar form G e-ia.

The positive number G is the gain . The angle a is the phase lag . Those have impor­
tant meanings and they are perfect to graph separately. In many problems (most problems) 
G and a are more useful than the real and imaginary parts of 1 / ( iw - a). 

So we need to explain and review complex numbers. They are worth knowing and 
not difficult. The next page will solve the real problem 1 and the complex problem 2. We 
can't simplify the real problem by using cosines alone, because the term dy/dt in the equa­
tion would unavoidably involve sin wt. 

The Review of the Key Ideas at the end organizes the important steps. 

Real Sinusoids 

We want a particular real solution y(t) when the source q(t) oscillates with frequency w. 

First order linear equation 
dy 

A B . 
dt 

- ay = cos wt+ smwt. (1)
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The solution will have the same form y M cos wt + N sin wt as the source term. By
matching the cos wt terms and separately the sin wt terms, you get two equations for M and
N. Just subtract ay = aM cos wt+ aN sin wt from dy/dt = -wM sin wt+ wN cos wt. 

dy 
- -ay = q
dt 

cos wt terms 

sin wt terms 

-a M+w N=A
-w M- a N=B

(2) 

Those two equations tell us Mand Nin the real solution y(t) = M coswt + N sinwt.
I will write down the solution to equation (2), and then describe two ways to find it. 

Source q = A cos wt + B sin wt

Solution y = M cos wt + N sin wt
M = 

_ aA + wB 
N = 

wA -aB
w

2 + a2 
w

2 + a2 

-

(3) 

I would find N by eliminating Min equation (2). If you multiply the first equation by w
and the second equation by a, then subtraction removes M. The right side is wA -aB,
the left side is (w2 

+ a2 )N. Then N is correct in equation (3). Similarly we find M.
For two equations it is also practical to find M and N from the 2 by 2 inverse matrix 

[ = : _ � ] [ � ] = [ 1 ] gives 
[M] 1 [-a -w][A] 

N - w2 + a2 w -a B ·

The matrix on the left times its inverse on the right gives the identity matrix I in Chapter 4. 
That denominator w2 

+ a2 of the inverse matrix appears in M and N, in the solution (3).

Complex Sinusoid eiwt 

Now we come to the very important input q(t) = R eiwt _ That input is oscillating with
frequency w radians per second. The output y(t) will oscillate with the same frequency w.
This is true because a is constant in the differential equation. When y(t) = Yeiwt includes 
the same factor eiwt , that factor cancels from every term in the equation: 

q(t) = Reiwt 

y(t) = Yeiwt 
y' -ay = q becomes iwYeiwt -aYeiwt 

= Reiwt _ (4) 

When we divide by eiwt , this leaves an easy algebra problem for the complex number Y :

Response Y ( w) iwY-aY =R gives
R 

Y=--- and y = Yeiwt _ (5) iw-a

The simplicity of the solution y = Y eiwt comes from one key fact: The derivative of eiwt is a 
multiple of eiwt (the multiplying factor is iw). This was not true for coswt.
Its derivative brings in sinwt. So we had to solve two real equations for M and N,
while (5) is one complex equation for Y. 
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Complex Numbers : Rectangular and Polar 

The complex number z = x + iy has real part x and imaginary part y. The basic ideas 
are explained here; more details are in Section 2.2. We plot all z in the complex plane

(the real-imaginary plane). Figure 1.5 shows the particular number z = 4 + 3i with 
x = Re z = 4 and y = Im z = 3. No problem with the rectangular form 4 + 3i, 
except that multiplying and dividing are not at all convenient in x - y coordinates. 

The first figure also shows the polar form of the same number z. The magnitude (or 
modulus) is r. The phase is the angle 0. From x and y we can find rand 0. 

The magnitude is r = J x2 + y2 
= v'25 = 

5. The angle 0 has tangent y / x = 3 / 4. 

Imaginary 

z = 4 + 3i = 5ei0 

y = 3 = r sin 0 

-i

x=4=rcos0 

z = 2 + i = v'5 ei& 

different 0 
from part (a) 

z = 2 - i = v'5 e- i& 

complex conjugate z 

Figure 1.5: (a) z = 4 + 3i is a point in the complex plane. Its polar form is z = 5 ei0. 

The polar form is perfect for multiplication and division of complex numbers. To 
multiply rei& times Reier. , add the angles and multiply r times R. To divide, subtract 
the angles and divide r by R.

Divide 
·ere' r ·co- ) --.- = - e' °' 

R ew 
R 

The polar form is also perfect for squaring a complex number rei& and for 1/rei& : 

Invert 

(6) 

(7) 

Let me compare that polar form of 1/z with 1/(x +iy). Multiply by (x -iy)/(x- iy) = 1. 

1 
z 

1 1 X - iy ----
x + iy X + iy X - iy

X - iy
x2 + y2 

1 
4 + 3i 

4 - 3i 1
-i0 

---=-e 

42 + 32 5 

This number x -iy appears often. It is the complex conjugate z of the number z = x + iy. 

Notice that x + iy times x - iy is x2 
+ y2

. In other words z times z is lzl2 
= r2

. 
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i 

z = eie = cos 0 + i sin 0 

33 

e 2ia = (eicr.)2 

ei a  

-1
unit 

circle 

1 

·e 1 
z = e-i = -.- = cos0 - isin0 

e'e 
-i 

Figure 1.6: Points eie on the unit circle have r = l. When ei0 multiplies eia , angles add.

The Unit Circle 

Figure 1.6 shows the unit circle , where every radial distance is r = l. Then we just add 
the angles to multiply, or double the angles to square, or subtract the angles to divide : 

On the circle (ei0)(eia) = ei(e+a) (ei0)(e-i0) = 1 _!_ = e-iO
ei0 

e-iO is the complex conjugate of ei0
, the mirror image across the axis in Figure 1.6 . 

Example 1 Describe the paths of the numbers est and eiwt and e(s+iw)t in the complex 
plane (reals and real w). The time t goes from Oto oo. Those paths start at 1. 

Solution If s > 0, the number est goes from 1 out the real axis to infinity. If s < 0, 
then est goes from 1 in to zero. All real. 

The path of eiwt goes around the unit circle with constant speed. At time T = 21r / w 
(and also 2T, 3T, ... ) it comes back to e21ri = 1. The path goes clockwise if w < 0. 

The path of e(s+iw)t spirals outward to infinity if s > 0. It spirals inward to zero 
if s < 0. At time T = 21r / w it is a real number esT, because the factor eiwT = e21ri is 1. 

The Gain G and the Phase Lag a 

The complex number 1/(iw - a) multiplies the input q(t) = Reiwt to give the output 
y( t) = Y eiwt. What is the magnitude of 1 / ( iw - a) and what is its angle? We need 
its polar form 1/(iw - a)= Ge-io.. Start with iw - a = reia and then invert: 

iw -a= reio. 
imaginary part w 

r = ,vw2 + a2 and tan a= ----- = - -.
real part a 

We want 1/(reia). This will be Ge-ia _ The gain is G = 1/r = 1/ v'w2 + a2
: 

GainG 

Phase angle a 

1 1 -iCY. ---=-e 

iw-a r 

1 
----;::::::;;::::=::;::: e-ia = Ge-io.. 
Jw2 + a2 

(8)
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a 

Figure 1.7: Dimensionless gain G and phase angle¢ as functions of frequency w.

The gain G(w) and the angle a(w) are often graphed. The graphs below are variations of 
"Bode plots." The amplitude response G(w) is especially important, and 
you are very likely to see that gain G by itself-often including an extra factor lal. 

Note One common variation is to include the rate constant a in the forcing term 
q( t) = a R eiwt. We still think of R eiwt as the input, then a gives q the right physical units. 
That factor a will appear in the output. So the gain G = loutputl / linputl will be increased by 
that factor la\. Then G la\/Vw2 + a2 is 1 at the frequency w 0. 

Sinusoids R cos(wt - ¢) 

The next page will show that any combination of cos wt and sin wt is a shifted cosine. It has 
frequency w and amplitude R and phase lag ¢. If you know w and R and ¢, it is no problem 
to graph y ( t) = R cos ( wt - </>). To go the other way, and read off those three numbers
from the graph, is much more interesting. 

This mystery sinusoid came from lecture notes for MIT's course 18.03. The website 
mathlets.org has interactive experiments. The question here is: Find w, R, and</>.
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The Sinusoidal Identity 

We want to choose the magnitude R and the angle cf> so that A cos wt + B sin wt
is the real part of Rei(wt-¢)_ We can and will solve y' - ay = Rei(wt-¢) quickly. 
When we take the real part of all terms in this differential equation, the correct input 
q(t) = Reos (wt - cf>) will appear on the right side and the correct output y(t) will 
appear on the left side. The real equation will be solved in one step. 

So we want this identity for the "sinusoidal" input q(t): 

Sinusoidal identity A cos wt+ Bsinwt = Rcos(wt- ¢) (9) 

The right side has the same period 27!' / w as the left side-and only one term. 
To find R and cf>, expand Rcos(wt - cf>) into Rcoswtcos cf>+ R sin wt sin cf>. Then 

match cosines to find A and match sines to find B : 

A = R cos cf> and B = R sin cf> I A' +B' = R' 
B 

and tan </J = -.
A 

(10) 

So we know R = J A 2 + B2 and cf> = tan-1 ( B /A) in the sinusoidal identity. The beauty of 
R and cf> is that they match sinusoids to the polar form of complex numbers. 

LLJ 
A+iB = Rei¢ polar form of A + iB

R = JA2 +B2 produces R and cf> in the 

A 

B 

tan cf> =B/A sinusoidal identity (9) 

For practice with this important formula, Problem 1 will develop a slightly different proof. 

Example 2 Write q(t) = cos 3t + sin 3t as R cos (3t - cf>): the real part of Rei(3t-¢). 
Solution A= I and B = I so that R = -/2. The angle cf>= "i has tan cf>= B/A = 1. 
Then cos 3t + sin 3t = v'2 cos (3t - -;f ). 

Example 3 Write the real part of ei5t / ( J3 + i) in the form A cos 5t + B sin 5t. 
Solution J3 + i is 2ei7f /6 (why?) Then ei5t / ( J3 + i) is ½ei(St-7f /5). Its real part is

1 
( 

7!'
) 

1 
( 

7r . . 7!'
) 

J3 1 . 
2 

cos 5t -
6 

= 
2 

cos 5t cos 
6 

+ sm 5t sm 
6 

= 
4 

cos 5t + 
4 

sm 5t. 

Real Solution y from Complex Solution Ye 

The sinusoidal identity solves y' - ay = A cos wt + B sin wt in three steps: 

1. This equation is the real part of the complex equation ye' - aye = R ei(wt-¢ l.

2. The complex solution is Ye= R ei(wt-¢) /(iw - a)= RG ei (wt-cf>-o:).

3. The real part of that complex solution Ye is the desired real solution y ( t).
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Those three steps are 1 (real to complex) 2 (solve complex) 3 (complex to real).
This will succeed. The second step expresses 1/(iw - a) as Ge-ia to keep the polar form. 
The third step produces y = M cos wt+ N sin wt directly as y = RG cos(wt - </J - o:). 

Example 4 Take those three steps real-complex-real to solve y' -y = cos t - sin t.

We have to find R, ¢, G, and a from the numbers a = l, w = 1, A = l, and B = -1. 
Notice that RG = l. 

R = J A2 + B2 
= V2 

B tr
tan ¢ = - = -1 and </J = - -

A 4 

The angle for iw -a = i - 1 is o: = 

3.; . Its tangent is -� = -1. 

G = --;=:;;:1=:::;;: 
,/w2 + a2 

1. The sinusoidal identity is cost - sin t = ,/2 cos( t - ¢) = v'2 cos ( t + 1r / 4).

1 
v'2 

2• Ycomplex 
v'2 ei(t+7T'/4) 1 1 1 -----. Here -. -- = 

--
= Ge-ia. 

= 
- e-31ri/4

i-1 iw-a i- 1 ,/2 

3. Ycomplex = RG ei (wt-o:-cf>)=ei(t-7T'/2). Then Yreal = cos(t-i) = sint. 

That example was chosen so that G = 1 / ,/2 cancelled R = ,/2. If we keep all the 
symbols R, ¢, G, a then the solution Yreal = R G cos ( wt - </J - o:) from Step 3 must 
agree with the solution y = M cos wt + N sin wt at the start of this section. 

The key point in many applications is not necessarily the numbers in the formula for y( t). 
Very often the goal is to see from the formula how y( t) depends on parameters like a and win 
the differential equation. The gain G I output 1/1 input I is a convenient 
and very important guide. 

The truth is that the complex solution is better. The sinusoidal identity shows how 
every combination A cos wt + B sin wt is the real part R cos( wt - ¢) of a complex 
exponential Rei(wt-¢). So we can convert real to complex and complex back to real. 

In between, solve the complex form by using the frequency response l / ( iw - a). 
Conclusion When the input q(t) is Reiwt , the output y(t) multiplies by 1/(iw - a).
This multiplying factor is a complex number, and it changes with the frequency w. 
We absolutely need to understand that number Y and graph its magnitude G and its phase. 

• REVIEW OF THE KEY IDEAS •

1. (Real) y 1 - ay = A cos wt + B sin wt leads to Yreal = M cos wt + N sin wt.

2. (Sinusoidal identity) A cos wt + B sin wt equals R cos( wt - ¢) with R2 
= A 2 + B2 . 

3. (Complex) y 1 
- ay=Rei(wt-¢) leads to Ycomplex=Rei (wt-¢) /(iw -a).

4. (Complex gain) l/(iw -a)= Ge-io: with G = 1/,/w2 + a2 and tan a= -w/a.

5. (Realpart ofthecomplexsolu tion)yreal = Re(Ycomplex) = RGcos(wt - o: - ¢).
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Problem Set 1.5 

Problems 1-6 are about the sinusoidal identity (9). It is stated again in Problem 1. 

1 These steps lead again to the sinusoidal identity. This approach doesn't start with 
the usual formula cos ( wt -¢) = cos wt cos ¢ + sin wt sin ¢ from trigonometry. 
The identity says : 

If A + iB = Rei<P then A cos wt + B sin wt = R cos(wt - ¢). 

Here are the four steps to find that real part of Rei (wt-<f,). Explain A - iB in Step 3. 

R cos (wt - </J) = Re [Rei (wt-4>)] = Re [ eiwt(Re-i<i>)] = (what is Re-i</> ?) 

= Re [(cos wt+ i sin wt) (A- iB)] = A cos wt+ B sin wt. 

2 To express sin5t + cos5t as R cos (wt -¢), what are Rand¢? 

3 To express 6 cos 2t + 8 sin 2t as R cos (2t -¢ ), what are Rand tan¢ and¢? 

4 Integrate cos wt to find (sin wt)/w in this complex way. 

(i) dyreal/ dt = cos wt is the real part of dYcomplex/ dt = eiwt . 

(ii) Take the real part of the complex solution.

5 The sinusoidal identity for A = 0 and B = - l says that -sin wt = R cos( wt -¢). 
Find Rand¢. 

6 Why is the sinusoidal identity useless for the source q(t) = cos t + sin 2t? 

7 Write 2+3i as rei</>, so that 2_;3i = �e-i</>. Then write y = eiwt / (2+3i) in polar form.
Then find the real and imaginary parts of y. And also find those real and imaginary 
parts directly from (2 - 3i)eiwt / (2 - 3i) (2 + 3i). 

8 Write these functions A cos wt + B sin wt in the form R cos( wt -¢) : Right triangle 
with sides A, B, Rand angle¢. 

1) cos 3t -sin 3t 2) v'3 cos 1rt -sin 1rt 3) 3 cos(t -¢) + 4 sin(t -¢)

Problems 9-15 solve real equations using the real formula (3) for Mand N.

9 Solve dy / dt = 2y + 3 cost+ 4 sin t after recognizing a and w. Null solutions Ce2t . 

10 Find a particular solution to dy / dt = -y -cos 2t.

11 What equation y 1 
- ay = A cos wt + B sin wt is solved by y = 3 cos 2t + 4 sin 2t? 

12 The particular solution to y 1 
= y + cost in Section 1.4 is Y

p 
= et J e-s cos s ds.

Look this up or integrate by parts, from s = 0 tot. Compare this Y
p 

to formula (3). 
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13 Find a solution y = M cos wt+ N sin wt toy' - 4y = cos 3t + sin 3t. 

14 Find the solution toy' - ay = A cos wt+ B sin wt starting from y(O) = 0. 

15 If a= 0 show that Mand Nin equation (3) still solve y' = A cos wt+ B sin wt. 

Problems 16-20 solve the complex equation y 1 
- ay = Rei (wt-</>). 

16 Write down complex solutions Yp = Yeiwt to these three equations: 

(a) y' - 3y = 

5e2it (b) y' = Rei (wt-¢) (c) y 1=2y-eit 

17 Find complex solutions Zp = zeiwt to these complex equations: 

(a) z' + 4z = 
e8it (b) z' + 4iz = 

e8it (c) z' + 4iz = 
e8t 

18 Start with the real equation y 1 - ay = R cos ( wt-cp). Change to the complex equation 
z 1 - az = Rei (wt-¢). Solve for z(t). Then take its real part Yp = Re z. 

19 What is the initial value Yp (O) of the particular solution Yp from Problem 18? 
If the desired initial value is y(O), how much of the null solution Yn = Ceat 

would you add to Yp ? 

20 Find the real solution toy'-2y = cos wt startingfromy(O) = O,in three steps: Solve 
the complex equation z 1 - 2z = eiwt , take Yp = Re z, and add the null 
solution Yn = Ce2t with the right C.

Problems 21-27 solve real equations by making them complex. First a note on a. 

Example 4 was y 1 - y = cost - sin t, with growth rate a = I and frequency w = l. 
The magnitude of iw - a is V2 and the polar angle has tan a = -w / a = -1. Notice:
Both a = 31r / 4 and a = -1r / 4 have that tangent ! How to choose the correct angle a?

The complex number iw - a = i - I is in the second quadrant. Its angle is a = 31r / 4. 
We had to look at the actual number and not just the tangent of its angle. 

21 Find rand a to write each iw - a as reia. Then write 1/reia as Ge- ia.

(a) v3i+l (b) v3i - 1 (c) i - v3

22 Use G and a from Problem 21 to solve (a)-(b)-(c). Then take the real part of each 
equation and the real part of each solution. 

(a) y' + y = eh!'3t (b) y' -y = eiv'3t (c) y
' - \/3

y = eit 
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23 Solve y' - y = cos wt+ sin wt in three steps: real to complex, solve complex, take 
real part. This is an important example. 

(1) Find R and ¢ in the sinusoidal identity to write cos wt + sin wt as the real part
of Rei (wt-<t>).

(2) Solve y' - y = eiwt by y = ce-ic>eiwt. Multiply by Re-i</> to solve
z' - z = Rei (wt-</>)_

(3) Take the real part y(t) = Rez(t). Check that y 1 -y = cos wt+ sin wt.

24 Solve y 1 - v'3y = cos t + sin t by the same three steps with a = v'3 and w = l.

25 (Challenge) Solve y 1 - ay = A cos wt + B sin wt in two ways. First, find 
R and ¢ on the right and G and a on the left. Show that the final real solution 
RC cos (wt -¢ - a) agrees with M cos wt+ N sin wt in equation (2). 

26 We don't have resonance for y 1 - ay = Reiwt when a and w -:/- 0 are real. Why not?
(Resonance appears when Yn = Ceat and Y

p 
= Yect share the exponent a= c.) 

27 If you took the imaginary party= Im z of the complex solution to z 1 -az = Rei (wt-</>), 
what equation would y(t) solve? Answer first with¢= 0. 

Problems 28-31 solve first order circuit equations : not RLC but RL and RC. 

Vcoswt L R 

current I ( t) 

Vcoswt R C 

�7 
q(t) = integral of I(t) 

28 SolveLdI/dt+RI(t) = V cos wtfor the currentI(t) =ln +I
p

in theRL loop. 

29 With L = 0 and w = 0, that equation is Ohm's Law V = IR for direct current. 

30 

31 

The complex impedance Z = R + iwL replaces R when L-:/- 0 and I(t) = I eiwt .

LdI/dt + RI(t) = (iwL + R)Jeiwt = Veiwt gives Z I= V. 

What is the magnitude IZI = IR+ iwLI? What is the phase angle in Z = 1Zlei0? 
Is the current III larger or smaller because of L? 

dq 1 
Solve R- + -q(t) = V cos wt for the charge q(t) = Qn + Q

p 
in the RC loop. 

dt C 

Why is the complex impedance now Z = R + i�
C

? Find its magnitude IZI. 
Note that mathematics prefers i = v=T, we are not conceding yet to j = v=T ! 
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1.6 Models of Growth and Decay 

This is an important section. It combines formulas with their applications. The formulas 
solve the key linear equation y' - a(t)y = q(t)-we are very close to the solution. 
Now a can vary with t. The final step is to see the purpose of those formulas. 

The point of this subject and this course is to understand change. Calculus is about 

change. A differential equation is a model of change. It connects dy / dt to the current value 
of y and to inputs/outputs that produce change. We see this as a math equation and solve it 
by a formula. If we stop there, we miss the whole reason for differential equations. 

I will select five models of growth or decay, and five equations to describe them. 
Often the hardest part is to get the right equation. (Definitely harder than the right solution 
formula.) This section presents both steps of applied mathematics: 

1. From the model to the equation 2. From the equation to the solution.

Our plan is to take the second step (the easier step) first: Solve the equation. Find the 
output y(t) from inputs a(t) and q(t) and y(0). Then come the models. 

Here is the differential equation for y(t). We want a formula to solve it-and we want to 
understand where that formula comes from. The solution y(t) must use the three inputs a(t) 
and q(t) and y(0), because they define the problem. Sometimes a(t) changes with time. 

This possibility was not allowed in Sections 1.4 and 1.5. 

Differential equation 
dy 
- = a(t)y + q(t) 
dt 

starting from y(0) at t = 0. (1) 

Up to now, our models had limited options for those inputs (and a was constant): 

Growth rate a(t) The classic exponential y(t) = et had a= 1

Source term q(t) 

Initial value y(0) 

Sections 1.4 and 1.5 had five particular inputs like ect and eiwt 

The starting value for y(t) = et was y(O) = 1

The "initial value" y(0) is like a deposit to open a bank account. The source or sink q(t) 
comes from saving or spending as time goes on. The solution y(t) is the balance in the 
account at time t. I will reveal the final formula now, so you know where we are going. 

Growth factor G(s, t) 
from time s to time t 

t 

y(t) = G(O, t) y(O) + J G(s, t) q(s) ds.

0 

(2) 

Formula (2) has two parts. The first part Yn = G(O, t)y(0) has q = 0: no source. 
The second part Yv introduces the source q(t), which adds fresh growth G times q 
(or subtracts when q(t) is negative). Go forward 2 pages to see the factor G(s, t). 

y = ( Null solution with q = 0) + (Particular solution from the input q). 
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Particular Solution from q(t) 

On this page a is constant. The particular solution Yp (t) is so important that 
we will reach it in three ways. Of course those three approaches will be closely related­
but they are different enough and valuable enough to be presented separately: 

1. Integrating factor 2. Variation of parameters 3. Combine all outputs.

1. The integrating factor M(t) = e-at was seen in Section 1.4. It solves M' = -aM.
For constant growth rate a, multiplying the equation y' - ay = q(t) by M = e-at
turns the left side into an exact derivative of My :

Then we integrate the left and right hand sides to find y = Yp (t) with Yp (O) = 0: 

t 

e-at y(t) = J e-as q(s) ds 

0 

t 

and y(t) = J ea(t-s) q(s) ds. 

0 

(3) 

(4)

2. Variation of parameters starts with the solutions Yn Ceat to the null equation 
y' - ay = 0. The new idea is to let C vary with time in the particular solution. 

Substitute y = C(t)eat into the equation y' - ay = q(t) to find C'eat = q(t): 

(Ceat)' - aCeat = C'eat + aCeat - aCeat = C'eat 
= q(t). (5) 

Then C' = e-atq(t). Integrate to find C and the solution formula we want: 

t 

C(t) = J e-as q(s) ds 

0 

t 
y(t) = C(t)eat 

= J ea(t-s) q(s) ds.
0 

(6) 

The integrating factor M changes the equation. Varying C(t) changes the solution. 
C(t) will stay important for systems of n equations; integrating factors lose out. 

3. Each input q(s) grows to ea(t-s) q(s) in the time betweens and t. Then the
solution y(t) comes from these inputs q(t) and growth factor G = ea(t-s). 
Add up (integrate) all those outputs: 

Growing time for q( s) is t - s 

t 

Output y(t) = J ea(t-s) q(s) ds. (7)
0 

To me, this third approach captures the meaning of the formulas (4) = (6) = (7). I like to 
think of each input q(s) growing by the factor G(s, t) = ea(t-s) in the time t - s. 
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Changing Growth Rate a(t) 

The next step is to let a(t) change in time. For example a(t) could be 1 + cost, varying 
between 2 and 0. Certainly interest rates do change. The growth rate a of your bank 
balance often slows down or speeds up. Then the growth factor G(O, t) is not just eat _ 

The null solution toy� = a(t)yn shows this clearly-the growth from time O to time t: 

Integrate a from Oto t
Take the exponential 

t 

J a(s) ds 
G(O, t) = 

e o Yn(t) = G(O, t) y(O). (8) 

The key point is that dG/dt = a(t) G. First, the derivative of the integral of a(t) 
is a(t)-by the Fundamental Theorem of Calculus. Second, the chain rule produces the 

derivative of G, when that integral goes into the exponent. Here is dG / dt: 

:
t 

( eintegral of a) = ( eintegral of a) :
t 

(integral of a)
dG 
dt = (G)(a(t)) (9) 

When a is constant, that integral is just at. This leads to the usual growth G = eat . 
When a varies, the exponent is messier than at but the idea is the same: dG / dt = aG. 

Our example is a( t) = 1 + cost. The integral of a( t) is t + sin t. This is the exponent: 

Growth factor G(O, t) = 
et+sin t Null solution Yn(t) = 

et+sinty(O) 

Now we tackle the particular solution that comes from the inputs q(t) when they grow. 
Again this Yv(t) can come from an integrating factor or variation of parameters or 
an integral of all outputs from all inputs.

t 

-Ja(s)ds 
1. The integratingfactor isM(t) = 1/G(t) = e O 

• This hasM' = -a(t)M.

Then the derivative of My is exactly M q, when we use M' = -aM. 

Product rule 
Chain rule 

d
-(My)= My'+ M'y = M(y' - a(t)y) = Mq(t).
dt 

Integrate both sides of (My) 1 = M q starting from Yv(0) = 0. Then divide by M: 
t 

M(t)yv(t) =j M(s) q(s) ds 
0 

t t s 

J a(s) ds 

J 
- J a(s) ds 

Yv(t) = e 0 e O q(s)ds 
0 

(10) 

(11) 

When you multiply those exponentials, the exponents combine . The integral from 0 to t,
minus the integral from 0 to s, equals the integral from s to t. Each q ( s) enters at s. 
The exponential of the integral of a from s to t is the growth factor G ( s, t) 

f a(T) dT 
Growth factor G(s, t) = e 8 

t 
Solution Yp(t) =! G(s, t) q(s) ds (12) 

0 
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2. Variation of parameters . I will save this method to use in Chapter 2 for second
order equations (with y 11). Then all three methods get an equal chance-variation of
parameters can solve equations that go beyond y 1 = a(t)y + q(t).

3. Integral of outputs (my own choice). The input q(s) enters at time s. It grows
or decays until time t. The growth factor multiplying q over that time is G(s, t).
Since a(t) changes, the growth factor needs the integral of a. The inputs are q(s),
the outputs are G ( s, t) q ( s), and the total output Y

v 
(t) agrees with (12) :

f a(T) dT 

G(s,t)=e s 

t 

Y
v

(t) = j G(s, t) q(s) ds (13) 

0 

When q is a delta function at times (an impulse), the response is Y
v 

= G(s, t) at time t.

Example 1 The growth rate a( t) = 2t puts the economy into serious inflation. The integral 
t 

of a(t) is J 2T dT = t2 
-s2

. Then G is the growth from s tot: 
s 

t 

I J t 2 2 

y = 2ty + q(t) has Yp
(t) = e -s q(s) ds. 

0 

Example 2 Here is an interesting case for investors. Suppose the interest rate a goes to 

zero. What happens to the solution formula? The first term Yn becomes y(0). This deposit 
doesn't grow or disappear, it stays fixed. The growth factor is G = l and we just add up all 
the inputs (they didn't grow): 

a=O 

t 

y' = q(t) has the particular solution y
p
(t) = j q(s)ds.

0 

The problem comes when we start with the formula to solve y' = ay + q (constant q): 

t 

J eat - l 
y(t) = eaty(0) + ea (t -s)q ds = eaty(0) + q -

a
-. 

0 

That looks bad at a = 0 because of dividing by a .  But the factor eat - l is also zero. 
This is a case for l'Hopital's Rule. Wonde,ful ! We can make sense of 0/0: 

limit 
a--+ 0 

Derivative with respect to a t 
- - -t

Derivative with respect to a - l -

The particular solution from y' = q reduces to q times t. That is the total savings during 
the time from 0 to t. With a = 0 it doesn't grow. Like putting money under a mattress, 
a= 0 means no risk and no gain. Then dy/dt = q has y(t) = y(0) + qt. 

Now the solution formula can be applied to real problems. 
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Models of Growth and Decay 

The whole point of a differential equation is to give a mathematical model of a practical 
problem. It is my duty to show you examples. This section will offer growth equations 
(a> 0), decay equations (a< 0), and the balance equation that controls the temperature of 
the Earth. That balance equation is not linear. 

Please understand that a linear equation is only an approximation to reality. The 
approximation can be very good over an important range of values. Newton's Law F = ma 
is linear and we live by it every day. But Einstein showed that the mass m is not a constant, 
it increases with the velocity. We don't notice this until we are near the speed of light. 

Similarly the stretch in a spring is proportional to the force-for a while. A really large 
force will stretch the spring way out of shape. That takes us to nonlinear elasticity. Eventually 
the spring breaks. 

The same for analysis of a car crash. Linear at very slow speed, nonlinear at normal 
speeds, total wreck at high speeds. A crash is a very difficult problem in computational 
mechanics. So is the effect of dropping a cell phone. This has been studied in great detail. 

Back to linear equations, starting with constant a and y(0) and q. 

Model 1 y ( t) = money in a savings account 

This is the example we already started. We have a formula for the answer, now we use it. 
That formula is based on a continuous savings rate q( t) ( deposits every instant, not every
month). It also has continuous interest ay (computed every instant, not every month or every 
year). Continuous compounding does not bring instant riches. Just a little more income, by 
computing interest day and night. 

Suppose we get 3% interest. This number is a= .03, but what are the "units" of a? The 
rate is 3% per year. There is a time dimension. If we change to months, the same rate is
now a = 

1

3

2 
% = .0025 per month. 

Units of a are �
time

To change from years to months, divide a by 12. 

You can see this in the equation dy / dt = ay. Both sides have y. So a on the right 
agrees dimensionally with 1/t on the left. Frequency is also 1/ time; iw - a is good! 

The savings rate q has the same dimension as ay. The dimension of q is money/ time. 
We see that in the words too: q = 100 dollars per month. 

Question: Does y(t) grow or decay? This depends on y(0) and a and q.

So far a and q have been positive; we were saving. If we spend money constantly, 
then q changes to negative. Interest is still entering because a is positive. Does q win or 
does a win? Do we spend all our deposit and drop to y = 0, or does the interest ay(t) 
allow us to keep up the spending level q forever? 

Answer : If we start with a y ( 0) + q > 0, then y ( t) will grow even if q < 0. 

The reason is in the differential equation dy / dt = ay( t) + q. If the right side is positive at 
time t = 0, then y starts growing. So the right side stays positive, and y keeps growing. 
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Common sense gives the same answer: If ay + q > 0, the interest ay coming in stays 
ahead of the spending going out. 

A question for you. Suppose a < 0 but q > 0. Your investment is going down at rate a. 

You are adding new investments at rate q. Overall, does your account go up or down? 
You won't actually hit zero, because eat stays positive forever, even if a < 0. You 

approach the steady state y00 = -q/a. In reality, the end of prosperity has come. 

Now I will compare continuous compounding (expressed by a differential equation) 
with ordinary compounding (a difference equation). The difference equation starts with the 
same Yo = y(0). This changes to Y1 and then Y2 and Y3, taking a finite step each year. 
When the time step !:lt is one year, the interest rate is A per year and the saving rate is 
Q dollars per year: 

dy 

dt 
= ay + q changes to 

Yn+l - Yn 
= AY. Q 

f:lt 
n + (14) 

We don't need calculus for difference equations. The derivative enters when the time 
step !:lt approaches zero. The model looks simpler if I multiply equation (14) by /:lt : 

One step, n to n + 1 Yn+l = (1 + A tlt)Yn + Q !:lt (15) 

At the end of yearn, the bank adds interest AtltYn to the balance Yn you already have. 
You also put in new savings (or you spend if Q < 0). The new year starts with Yn+l· 

In case A !:lt = at/N and Q = 0, we are back to Yn+l = (1 + at/N)Yn : 

N steps from O to N as N -----too. 

Model2 Radioactive Decay 

The next models will deal with decay. The growth rate a is negative. The solution y 

is decreasing. Decay is an expected and natural result when a < 0. In fact the differential 
equation is called stable when all solutions approach zero. In many applications this is highly 
desired. 

Exponential growth with a > 0 may be good for bank accounts, but not for a drug in our 
bloodstream. Here are examples where any starting amount y(0) decays exponentially: 

A radioactive isotope like Carbon 14 
Newton's Law of Cooling 
The concentration of a drug in our bloodstream 

I will emphasize the half-life-the time for half of the Carbon 14 to decay, or half 
of the drug to disappear. This is decided by the decay rate a < 0 in the equation y' = ay. 

The half-life His the opposite of the doubling time D, when a> 0 and eaD = 2. 
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Half-life and Doubling Time 

How long does it take for y( t) to be reduced to half of y(0)? The equation y 1 = ay has the 
solution eat

y (0), and we know that a < 0. 

Half-life H aH 1 e = -
2 

1 
aH = In - = -ln 2 

2 

-ln2
H=-­

a 

That answer H is positive because a < 0. For Carbon 14 the half-life H is 5730 years. 
It has just taken 150 hours on a Cray XT5 supercomputer to find 8 eigenvalues of 

a matrix of size 1 billion-to explain that long half-life. Other carbon isotopes have 
H = 20 minutes. Going in reverse, H tells us the decay rate: 

Decay rate a 
-ln2

a =
5730 

� 1.216 x 10-4 per year. 

The "quarter-life" would be 2H, twice as long as the half-life. The time to divide by e is 

-1
Relaxation time T aT = -1 T=­

a 

Question. Suppose we find a sample where 60 % of the Carbon 14 remains. How old 
is the sample? If the carbon came from a tree, its decay started at the 
moment when the tree died. 

Answer. The age T is the time when eaT = 0.6. At that time 
-0.51

aT = ln(0.6) T = -- = 4200 years. 
a 

The doubling time D uses the same ideas but now the growth rate is a > 0 : 

Doubling time aD = ln2 
ln2 

D=­
a 

At 5% interest (a = .05/year) the doubling time is less than 14 years. Not 20 years. 

Model3 Newton's Law of Cooling 

When you put water in a freezer, it cools down. So does a cup of hot coffee on a table. 
The rate of cooling is proportional to the temperature difference. 

Newton's Law Tex, = surrounding temperature 

This is a linear constant coefficient equation. The solution approaches T 00• Include that 
constant on the left side, to make the equation and the solution clear: 

d(T-T00) 
= k(T - T)

dt 
OO 
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Question. Suppose the starting temperature difference T0 - T00 is 80°. After 90 minutes 
the difference T1 - T00 has dropped to 20°. At what time will the difference be 10° ? 
When will the temperature reach T 00 ? 

Answer. The starting difference 80° is divided by 4 in 90 minutes. To divide again by 2 
takes 45 minutes from 20° to 10° . There you see a fundamental rule for exponentials : 

If e90k 
= 1/4 then e45k 

= Ji/4 = 1/2. It is not necessary to know k. 

The temperature never reaches T 00 exactly. The exponential e-kt never reaches O exactly. 

Model4 Drug Elimination 

The concentration C(t) of a drug in the bloodstream drops at a rate proportional to C(t) 
itself. Then dC / dt = -kC. The elimination constant k > 0 is carefully measured, and 
C(t) = e-ktC(o). 

Suppose you want to maintain at least G grams in your body. If you are taking the drug 
every 8 hours, what dose should you take ? 

t = 8 hours k = decay rate per hour Take e8k G grams. 

Model5 Population growth 

Certainly the world population is increasing. Its growth rate a is the birth rate minus the death 
rate. A reasonable estimate for a right now is 1.3% a year, or a = .013/year 
(the dimension of a is 1/time). A first model assumes this growth rate to be constant, 
continuing forever: Now we ask for the doubling time, a number that is independent of 
the starting value y(O): 

Doubling time D

World population 

e
aD 

= 2 or 
ln 2 

D = -- years = 53 years. 
.013 

dy 
dt 

= .013 y and y(t) = e·0 13ty(0). 

The "forever" part is unrealistic. After 1000 years, it produces e13y(0). That number e13 

is enormous. If we start today (so that t = 0 is the year we are living in) 
then eventually we will have about one atom each. Ridiculous. But it is quite possible 
that the pure growth equation y' = ay does describe the real population for a short time. 

Eventually the equation has to be corrected. We need a nonlinear term like -by2
, 

to model the effect of competition (y against y). As y gets large, y2 gets much larger. 
Then -by2 subtracts from dy/dt and eventually competition stops growth. 

This is the famous "logistic equation" dy / dt = ay - by2
. It is solved in Section 1. 7. 

Here I want to end with a problem of scientific importance-the changing temperature of the 
Earth. The equations are nonlinear. The data is incomplete. There is no solution formula. 
This is the reality of science. 
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Energy Balance Equations 

The Earth gets practically all its energy from the Sun. A lot of that energy goes back out 
into space. This is radiation in and radiation out. The energy that doesn't go back is 
responsible for changing the Earth's temperature T. 

This energy balance is crucial to our lives. It won't permit life on Mercury (too hot), and 
certainly not on Pluto (too cold). We are extremely fortunate to live on Earth. The form of 
the temperature equation is completely typical of balance equations in applied mathematics : 

Energy in minus energy out 

This raises the temperature T

dT 
C- = Ein - Eout 

dt 
(16) 

There is a coefficient C in every equation like this. Let me show you another balance equa­
tion, to emphasize how the problem can change but the form stays the same. 

Flow into a bathtub minus flow out 

This raises the water height H 

dH 
A -- = Fln - Fout 

dt 
(17) 

The tap controls the incoming flow F10 • The drain controls the outgoing flow Fout· The
volume of water changes according to dV / dt = Fln - Fout· That volume change dV / dt

is a height change dH / dt multiplied by A = area of the water surface. Check units :

H = meters A= (meters)2 V = (meters)3 
t = seconds F = (meters)3 /second 

I include this bathtub example because it makes the balance clear: 

1. Flow rate in minus flow rate out equals fill rate dV / dt.

2. Volume change dV / dt splits into (A) ( dH / dt) = area times height change.

In a curved bathtub, the water area A changes with the height H. Then equation ( 17) 
is nonlinear. Every scientist looks immediately at the balance equation: Can it be linear? 
Can its coefficients be constant? The true answer is no, the practical answer is often yes. 
(Numerical methods are slowed by nonlinearity. Analytical methods are usually destroyed.) 

Energy Balance for the Earth 

The energy balance equation CT 1 = Ein - Eout is the start. Temperature is in Kelvin 
(degrees Celsius are also used). The heat capacity C is the energy needed to raise the 
temperature by 1 degree (just as the area A was the volume of water that raises the height 
of water by 1 meter). That heat capacity C truly changes between ice and ocean and land. 
Exactly as predicted, the starting simplification is C = constant. 



1.6. Models of Growth and Decay 49 

On the right side of the equation, the energy Ein is corning from the Sun. A serious 
fraction o: of the arriving energy bounces back and is never absorbed. This fraction o: is the 
albedo. It can vary from .80 for snow to .08 for ocean. On a global scale, we have to simplify 
the albedo formula to a constant, and then improve it : 

Constant o: = .30 for all T Piecewise linear o: = { ·60
.20 

if T :=; 255K 
if T 2 290K 

The main point is that Ein = (1 - a)Q, where Q measures energy flow from the Sun 
to a unit area of the Earth. Now we turn to Eout· 

Radiation of energy is theoretically proportional to T4 (the Stefan-Boltzmann law). There 
is an ideal constant O' from quantum theory, but the Earth is not ideal. The "greenhouse 
effect" of particles in the atmosphere reduces O' by an emission factor close to 
E = .62. For a unit area, the radiation Eout is EO'T4 and the radiation Ein is (1 - o:)Q: 

Energy balance Ein = Eout (1- a)Q = EaT4 

You understand that these are not fixed laws like Einstein's e = mc2 . Satellites measure 
the actual radiation, sensors measure the actual temperature. That nonlinear T4 formula 
is often replaced by a linear A+ BT. This gives the most basic model of a steady state. 

Multiple Steady States 

I will take one more step with that model-we are on the edge of real science. You know 
that the albedo o: (the bounceback of solar energy) depends on the temperature T. The 
coefficients A and B and E also depend on T. The temperature balance equation 
CdT / dt = Ein - Eout and the steady equilibrium equation Ein = Eaut are not linear. 

From a nonlinear model, what can we learn ? 

Point 1 Ein(T) = E0u1(T) can easily have more than one solution T. 

Point 2 Those steady states when dT / dt = 0 can be stable or unstable. 

Point 3 You can see T1 and T3 (stable) and T2 (unstable) in this graph of Ein and Eout · 

Why is T2 unstable? If T is just above T2 , then Ein > Eaut · Therefore dT / dt > 0 
and the temperature climbs further away from T2 . If Tis just below T2 , then Ein < E001 • 

Therefore dT / dt < 0 and T falls further below T2. 

The next section 1. 7 shows how to decide stability or instability for any equation 
dT/dt = J(T) or dy/dt = f(y). Just as here, each steady state has f(T) = 0. 
Stable steady states also have df / dT < 0 or df / dy < 0. Simple and important. 
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Figure 1.8: The analysis and the graph are from Mathematics and Climate by Hans Kaper 
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Problem Set 1.6 

Solve the equation dy / dt = y + l up to time t, starting from y(0) = 4. 

You have $1000 to invest at rate a = l = 100 %. Compare after one year the result 
of depositing y(0) = 1000 immediately with q = 0, or choosing y(0) = 0 and 
q = 1000/year to deposit continually during the year. In both cases dy/dt = y + q. 

If dy / dt = y - l, when does your original deposit y(0) = ½ drop to zero? 

Solve 
dy 

= y + t2 from y(0) = 1 with increasing source term t2
. 

dt 

Solve !� = y + et (resonance a = c !) from y(0) = 1 with exponential source et . 

Solve !� = y - t2 from an initial deposit y(0) = 1. The spending q(t) = -t2 is 

growing. When (if ever) does y( t) drop to zero ? 

Solve !� = y - et from an initial deposit y(0) = 1. This spending term -et grows at 

the same et rate as the initial deposit. When (if ever) does y drop to zero ? 

Solve 
dy 

= y - e2t from y(0) = 1. At what time Tis y(T) = 0 ?
dt 
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9 Which solution (y or Y) is eventually larger if y(O) = 0 and Y(0) = 0? 

dy 
dt 

= y + 2t or 
dY 
dt = 2Y +t.

51 

10 Compare the linear equation y 1 = y to the separable equation y 1 = y2 starting from 
y(O) = 1. Which solution y(t) must grow faster? It grows so fast that it blows up to 
y(T) = oo at what time T ? 

11 Y' = 2Y has a larger growth factor (because a = 2) than y' = y + q(t). 
What source q(t) would be needed to keep y(t) = Y(t) for all time? 

12 Starting from y(O) = Y(0) = 1, does y(t) or Y(t) eventually become larger? 

dy 
dt 

= 2y + et 
dY 
dt = y + e

2t
_ 

Questions 13-18 are about the growth factor G(s, t) from times to time t.

13 What is the factor G(s,s) in zero time? Find G(s,oo) if a =  -1 and if a =  l. 

14 Explain the important statement after equation (13): The growth factor G(s, t) is the 
solution to y' = a(t)y + o(t - s). The source o(t - s) deposits $1 at time s. 

15 Now explain this meaning of G(s, t) when tis less than s. We go backwards in time. 
For t < s, G ( s, t) is the value at time t that will grow to equal 1 at time s. 

When t = 0, G(s, 0) is the "present value" of a promise to pay $1 at time s. If 
the interest rate is a = 0.1 = 10 % per year, what is the present value G(s, 0) of 
a million dollar inheritance promised in s = 10 years ? 

16 (a) What is the growth factor G(s, t) for the equation y' = (sin t)y + Q sin t?

(b) What is the null solution Yn = G(O, t) toy'= (sin t)y when y(O) = 1?

( c) What is the particular solution Y
p 

= J G ( s, t) Q sin s ds ?
0 

17 (a) What is the growth factor G(s, t) for the equation y' = y/(t + 1) + 10?

(b) What is the null solution Yn = G(O, t) toy'= y/(t + 1) with y(O) = 1?

t 

(c) What is the particular solution y
p 

= lOJG(s,t)ds?
0 

18 Why is G(t, s) = 1/G(s, t)? Why is G(s, t) = G(s, S)G(S, t)? 
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Problems 19-22 are about the "units" or "dimensions" in differential equations. 

19 (recommended) If dy / dt = ay + qeiwt , with t in seconds and y in meters, what are 
the units for a and q and w ? 

20 The logistic equation dy/dt = ay - by2 often measures the time tin years (and y 
counts people). What are the units of a and b? 

21 Newton's Law is m d2y / dt2 
+ ky = F. If the mass m is in grams, y is in meters, 

and t is in seconds, what are the units of the stiffness k and the force F ? 

22 Why is our favorite example y 1 
= y + l very unsatisfactory dimensionally ? Solve it 

anyway starting from y(0) = -1 and from y(0) = 0. 

23 The difference equation Yn+l = cYn + Qn produces Y1 = cYo + Qo. Show that the 
next step produces Y2 = c2Y0 + cQ0 + Q1. After N steps, the solution formula for Y N 

is like the solution formula for y 1 
= ay + q(t). Exponentials of a change to powers of 

c, the null solution eaty(0) becomes cNY0 . The particular solution 

t 

YN = cN-1Qo + · · · + QN-1 is like y(t) = J ea (t-s)q(s)ds.
0 

24 Suppose a fungus doubles in size every day, and it weighs a pound after 10 days. 
If another fungus was twice as large at the start, would it weigh a pound in 5 days ? 
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1.7 The Logistic Equation 

This section presents one particular nonlinear differential equation-the logistic equation. 
It is a model of growth slowed down by competition. In later chapters, one group y1 will 
compete against another group y2• Here the competition is inside one group. The growth 
comes from ay as usual. The competition (y against y) comes from -by2

. 

Logistic equation/ nonlinear 
dy 
- = ay-by2 

(1) 
dt 

We will discuss the meaning of this equation, and its solution y(t). 
One key idea comes right away: the steady state. Any time we have dy/dt = f(y), it 

is important to know when f(y) is zero. Growth stops at that point because dy/dt is zero. 
If the number Y solves f (Y) = 0, the constant function y(t) = Y solves the equation 
dy/dt = J(y): both sides are zero. For the special starting value y(O) = Y, the solution 
would stay at Y. It is a steady solution, not changing with time. 

The logistic equation has two steady states with f (Y) = 0: 

dy 
= ay - by2 

= 0 when aY = bY2
. Then Y = 0 or Y = a/b. (2) 

dt 

That point a/b is where competition balances growth. It is the top of the "S-curve" 
in Figure 1.9, where the curve goes flat. It is the end of growth. The solution y(t) cannot 
get past the value a/b. At the start of the S-curve, the other steady state Y = 0 is unstable. 
The curve goes away from Y = 0 and toward Y = a/b. 

In some applications, this number a/b is the carrying capacity (K) of the system. 
If a/b = K then b = a/ K. So the logistic equation can be written in terms of a and 
K: 

dy 2 a 2 ( Y) 
dt 

=ay- by =ay-
K

y =ay 1-
K 

. (3) 

Mathematically, we have done nothing interesting. But the number K may be easier to 
work with than b. We might have an estimate like K = 12 billion people for the maximum 
population that the world can deal with. Rewriting the equation doesn't change the solution, 
but it can help our understanding. 

Solution of the Logistic Equation 

What is y( t) ? The logistic equation is nonlinear because of y2 , and most nonlinear equations 
have no solution formula. (y = Ceat is extremely unlikely.) But the particular equation 
dy / dt = ay - by2 can be solved, and I want to present two ways to do it: 

1 (by magic) The equation for z = 1/y happens to be linear: dz/dt = -az + b. 
We can solve that equation and then we know y. 

2 (by partial fractions) This systematic approach takes longer. In principle, partial 
fractions can be used any time dy / dt is a ratio of polynomials in y. 

You will appreciate method 1 (only two steps A and B) after you see method 2. 
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(A) 
1 . . dz -l dy . dy 

If z = - , the cham rule gives -
d 

= 2 -d 
. Substitute ay - by2 for - :y t y t dt 

dz l 
2 

a 
- = - ( - ay + by ) = - - + b = - a z + b.
dt y2 Y 

(4) 

(B) This is the linear equation z' + az = b that was solved in the previous sections.
Change a to - a in the solution formula. Change y and q to z and b:

Solution 
b de-at+ b z(t) = e-atz(O) - - (e-at - 1) = ---

a a 
The number d collects all the constants a, y(O), bin one place:

d b l a 
- = z(O) - - and z(O) = - produce d = -- - b. 
a a y(O) y(O) 

Now turn equation (5) upside down to find y = 1/ z: 

Solution to the logistic equation 
a 

y(t) = --­

de-at+ b

This is a beautiful solution. Look at its value for large positive t and large negative t: 

Approaching t = +oo 

Approaching t = -oo

and 

and 

a 
y(t) --+ b
y(t) --+ 0

(5)

(6) 

(7) 

Far back in time, the population was near Y = 0. Far forward in time, the population 
will approach Y = a/b. Those are the two steady states, the points where ay - by2 

is zero and the curve becomes flat. Then dy / dt is zero and y never changes.
In between, the population y(t) is following an S-curve, climbing toward a/b. It is 

symmetric around the halfway pointy = a/2b. The world is near that point right now. 

y = a/b 

halfway time 

a=l 

b = 1 
d=3 

Figure 1.9: The S-curve solves the logistic equation. The inflection point is halfway. 
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Simplest Example of the S - curve

The best example has a = b = 1. The top of the S-curve is Y = a/b = 1. The bottom
is Y = 0. The halfway time is t = 0, where y(0) = ½- Then the logistic equation and its 
solution are as simple as possible: 

dy 1 
- = y - y2 has the solution y(t) = --­

dt 1 + e-t 

1 
starting from y(O) = -.

2 
(8) 

That solution 1/(1 + e-t) approaches 1 when t---+ oo. It approaches 0 when t---+ -oo. 
Let me review the "z = 1/y method" to solve the logistic equation y' = y - y2

. 

dz -1 dy
dt y2 dt

-y+y2 

--
2

- =  -z+l.
y 

1 
Then z(t) = 1 + Ce-t. Take C = 1 to match y(0) = ½ and z(0) = 2. Now y = ---

1 + e-t · 

World Population and the Carrying Capacity K

What are the numbers a and b for human population ? Ecologists estimate the natural growth 
rate at a = .029 per year. This is not the actual rate, because of b. About 1930, the world 
population was near y = 3 billion. The ay term predicts a one-year increase of (.029) (3
billion) = 87 million. The actual growth was more like dy / dt = 60 million/year. In this
simple model, that difference of 27 million/year was caused by by2 

27 million/year= b (3 billion) 2 leads to b = 3 times 10- 12 /year. 

When we know b, we know the steady state y(oo) = K = a/b. At that point the loss by2 

from competition balances the gain ay from growth:

a .029 2 . .  
Estimated capacity K = b = -

3
-101 

� 9.7 billion people. 

This number is low, and y is growing faster. The estimates I see now are closer to 

y(oo) > 10 billion and y(2014) � 7.2 billion. 

Our world is beyond the halfway point y = a/2b on the curve. That looks like an
inflection point (by symmetry of the graph), and the test d2 y / dt2 = 0 confirms that it is.

The inflection point with y 11 = 0 is halfway up the curve in Figure 1.9 

!!:_ (
dy

) = !!:_(ay - by2 ) = (a - 2by) 
dy 

= 0 when y = !!:__dt dt dt dt 2b (9) 

After this halfway point, the S-curve bends downward. The population y is still increasing, 
but its growth rate dy / dt is decreasing. (Notice the difference.) The inflection point
separates "bending up" from "bending down" and the rate of growth is a maximum at
that point. You will understand that this simple model must be and has been improved. 



56 Chapter 1. First Order Equations 

Partial Fractions 

The logistic equation is nonlinear but it is separable . We can separate y from t as follows :

dy 
( b ) 

dy 
-d = ay -by2 = a y - -y2 leads to b = a dt.t a y _ -y2 

a 

(10)

In this separated form, the problem is reduced to two ordinary integrations (y-integration on
the left side, t-integration on the right side). The integral of a dt on the right side is certainly
at+ C. The left side can be looked up in a table of integrals or produced by software like
Mathematica or discovered by ourselves. 

I will explain the idea of partial fractions that produces this integral. You may know it as
a "Technique of Integration" from first-year calculus (it is really just algebra).
The plan is to split the fraction in two pieces so the integration becomes easy : 

Partial fractions 
1 

separates into 
A B 
-+-­y 1-h 

(11)

I factored y -¾Y2 into y times 1 -¾Y- I put those two denominators on the right side.
We need to know A and B. To compare with the left side, combine those two fractions :

Common denominator 
� 

+ 
B _ A (l - h) + By 

y l-¾Y- y(l-¾y) 

The correct A and B must produce 1 in the numerator, to match the 1 in equation (11):

A ( 1 -�y) + By = l when A = 1
b 

and B = -. 

a 

This completes the algebra of partial fractions, by finding A and Bin equation (11):

Two fractions 
1

y-¾Y2 

1 1 b/a 
---,--- = - + b 

. y(l -¾Y) y 1 - -;;,Y

(12)

(13) 

(14) 

Integrate the Partial Fractions 

With A = l and B = b / a, integrate the two partial fractions separately:

/ 
1 

iy 
+ J 

1 
�/t(;;�y = ln y -ln ( 1 - �y) . (15)

This is the calculus part (the integration) in solving the logistic equation. After the
integration, use algebra to write the answer y(t) in a good form. 
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Actually that good form of y(t) was already found by our first method. The magic
of z = l / y produced a linear equation dz/ dt = -az + b. Then returning to y = l / z 
put the crucial factor e-at into the denominator of (7), and we repeat that solution here: 

Solution in (7) 
a 

y(t) = 

de-a 
with d = -- - b.

y(O) 
(16) 

This same answer must come from the integral (15) that used partial fractions. The 
integral has the form lny - lnx, which is the same as ln(y/x) (and xis 1 - (b/a)y). 

J d
� 

2 
= J a dt gives

Y - aY 
y y(0) 

ln --b-
= at + C = at + ln

b 
. 

1 - aY 1 - °'y(0) 
(17) 

I chose the integration constant C to make (17) correct at t = 0. Now take exponentials 
of both sides : 

Y at y(0) 
--b- =e 

b 
· 

1 - aY l - °'y(0)
(18) 

The final algebra part is to solve this equation for y. Let me move that into Problem 3. Then
we recover the good formula ( 16) that came so much faster from y = l / z.

Looking ahead, partial fractions will appear again in Section 2. 7. They simplify the 
Laplace transform so you can recognize the inverse transform. That section gives a formula 
PF2 for the numbers A and Bin the fractions-it is previewed here in Problem 14. 

Again, we solved dy / dt = f (y) by separating J dy / f (y) from J dt. 

Autonomous Equations dy/dt = f(y) 

The logistic equation is autonomous. This means that f depends only on y, and not on t:
dy / dt = f (y ). A linear example is y 1 

= y. The big advantage of an autonomous equation
is that the solution curve can stay the same, when the starting value y(0) is changed. "We
just climb onto the curve at height y(0) and keep going."

You saw how Figure 1.9 had the same S-curve for every y(0) between 0 and a/b. 
The equation dy/dt = y has the same exponential curve y = et for every y(0) > 0.
Just mark the t = 0 point wherever the height is y(0). 

This means that time t is not essential in the graphs. The graph off ( y) against y is the

key. For the logistic equation, the parabola f(y) = ay- by2 tells you everything (except the
time for each y ). y( t) increases when this parabola f (y) is above the axis
(because dy / dt > 0 when f > 0). So I only drew one S-curve.

There is also a decreasing curve starting from y(0) > a/b. It approaches the steady

state Y = a/b from above. Another curve starts below Y = 0 and drops to -oo. The up­
going S-curve is sandwiched between two downgoing curves, because in Figure 1.10 
the positive piece of ay - by2 is sandwiched between two negative pieces.
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Stability of Steady States 

The steady states of dy / dt = f (y) are solutions of f (Y) = 0. The differential equation 
becomes O = 0 when y(t) = Y is constant (steady). Here is the stability question: 

Starting close to Y, does y(t) approach Y (stable) or does it leave Y (unstable)? 

We had a formula for the S-curve. So we could answer this stability question. One Y is 
stable (that is Y = a/b at the end). The steady state Y = 0 is unstable. It is important 
(and not hard) to be able to decide stability without a formula for y( t).

Everything depends on the derivative df /dy at the steady value y = Y. That slope 
of f (y) will be called c. Here is the test for stability, followed by a reason and examples. 

Stable if c < 0 The steady state Y is stable if df / dy < 0 at y = Y.

Reason: Near the steady state, f (y) is close to c(y - Y). Then y' = f (y) is close to 
(y - Y) 1 = c(y - Y). Then y - Y is like ect , and y-+ Y when c < 0 and ect -+ 0. 

Let me explain in detail for any autonomous equation dy / dt = f (y). Suppose that 
Y = 0 is a steady state. This means that f (O) = 0. Calculus gives the linear approximation 
f (y) � cy, where c is the slope of the tangent line. That number is c = df / dy at Y = 0. If 
c is negative then y(t) will move toward Y = 0 (stability): 

For small y(0) > 0 
For small y(0) < 0 

dy/dt = f(y) � cy < 0 
dy/dt = f(y) � cy > 0 

y(t) decreases toward 0 
y( t) increases toward 0 

For any other steady state Y, calculus gives the linear approximation f(y) � c(y - Y). 
Now that number is c = df / dy, the slope of the tangent line at y = Y.

For y(0) just above Y dy/dt = f(y) � c(y - Y) < 0 y(t) decreases toward Y 
For y(0) just below Y dy/dt = f(y) � c(y - Y) > 0 y(t) increases toward Y

Example 1 (logistic) The derivative of ay - by2 is df / dy = a - 2by. 

At the steady state Y = 0, df / dy is a > 0 : Y = 0 is unstable. 

At Y = a/b, this derivative is a - 2b(a/b) = -a. Y = a/bis stable. 

For dy/ dt = ay - by2 this stability line shows which way y(t) moves from any y(0). 

If y(0) is here, 
.. ..

then y(t) goes to - oo 

Y = 0 If y(0) is here, 

I • • 
then y(t) goes to a/b 

Y = a/b If y(0) is here, 

I .,. .,. 

then y(t) goes to a/b 

The steady states have to alternate between stable and unstable, because df / dy will 
alternate between negative and pos1t1ve. I am excluding the undecided cases when 
f (Y) = 0 and also df / dy(Y) = 0. This is a borderline case for critical harvesting. 
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The Harvesting Equation 

Suppose the logistic equation also includes a constant harvesting rate -h. This will 
reduce the growth rate dy / dt. Let me start with the logistic equation dy / dt = 4y - y2 , 

where the S-curve rises from Y = 0 to the other steady state Y = a/b = 4/1. If the new 
harvesting term is -h = -3, the steady states change from O and 4 to 1 and 3: 

dy 
2 

- = 4y - y - 3 has new steady states Y = l and Y = 3. (19) 
dt 

I found 1 and 3 by factoring 4Y - Y2 
- 3 into -(Y - l)(Y - 3). Those populations Y = l 

and Y = 3 are the points where the equation is dy / dt = 0. Then y = Y stays steady. 

J(y) = ay - by2 

Logistic 
Y is stable 

f(y) = 4y - y2 
- h

---------­,,,,,, 
--... 

,, ...
... � 

,, ', 

-3. ,,, ',, 
! ' 
. .. -4 / ... : \ 

-5 • Harvesting ' 

Figure 1.10: Harvesting lowers the parabola f(y) = ay - by2 
- h. Steady Y's disappear. 

This figure shows the stability or instability of the steady states. Y = 0 in the logistic 
graph and Y = l in the harvesting graph are unstable. At those points f (y) climbs from 
negative to positive. Above Y, the graph shows dy/dt = f(y) as positive. So y(t) will 
increase, and it moves away from Y. 

Y = a/bin the logistic graph and Y = 3 in the harvesting graph are stable. Beyond 
those points f(y) is negative. This is dy/dt. So y(t) decreases back toward Y. The graphs 
are a little tricky to read, because they don't show y(t). They show the phase plane with 

y' = f (y) against y : Velocity versus position, not position versus time ! 

Looking again at the figure, h = 4 gives critical harvesting : One double stationary 

point Y = 2. That curve shows dy/dt = f(y) as always negative, so y(t) will 
decrease. If y(O) is greater than 2, then y(t) must come back toward Y = 2. But this is 
one-sided stability, because if y(O) is smaller then 2, then y(t) will decrease and go 
far away from 2. 

The lowest curve has h = 5 and no steady states. At all points dy / dt = f (y) is 
negative. All solutions y(t) are decreasing. If we can find a formula for y(t), we can watch 
this happen: y(t) --+ -cx:i. The logistic and harvesting equations are terrific nonlinear 
examples, because we can actually find y(t). 
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Solving the Harvesting Equation 

We have three types of harvesting equations, with 2 or 1 or O steady states : 

h < 4 y' = 4y - y2 
- h will reduce to a logistic equation : underharvesting

h = 4 y' = -(y - 2)2 has a double steady state: critical harvesting

h > 4 y' stays below zero and y(t) approaches -oo: overharvesting.

All these equations are autonomous, so they separate into dy/ f(y) = dt. Integrate 1/ f(y). 

Small h = 3 Factor f(y) into -(y - l)(y - 3) Then Y = 1 and Y = 3 

Let me shift those steady states down to V = 0 and V = 2, by shifting y(t) to 
v ( t) = y ( t) - 1. The equation for v ( t) is logistic, and its S-curve climbs from O to 2 : 

(1 + v) 1 = -( v) ( v - 2) is v 1 
= 2v - v2 (20) 

When you add back the 1 to get y = 1 + v, its S-curve climbs from 1 to 3. 

Critical h = 4 Factor f(y) = 4y - y2 
- 4 = -(y - 2)2 Then Y = 2 and 2 

The equation is y' = -(y - 2) 2
. Shifting to v(t) = y(t) - 2 gives dv/dt = -v2

. 

Page 1 of this book had the equation dy / dt = + y2 (with time going the other way). 
The solution looks so innocent: 

v(0) 
v(t) = 

_l _+_tv -(0-) 
goes gently to v = 0 as t-+ oo provided v(0) > 0 
goes suddenly to v = -oo when 1 + tv(0) = 0 

This shows (one-sided) stability if y(0) > 2 and v(0) > 0. 
When harvesting is more than critical, the population dies out from every y(0). 

Overharvesting h = 5 Write y' = 4y- y2 
- 5 = -1- (y - 2)2

• Always y 1 
< 0. 

Now v = y - 2 simplifies the equation to v 1 
= -1 - v2

. Integrate dv / ( 1 + v2 ) = -dt to 
get tan- 1 v = -t + C. If v(0) = 0 then C = 0. Now go back toy= v + 2: 

dv 
= -1 - v2 with v(0) = 0 gives v(t) = tan(-t). Then y(t) = 2 - tan t. (21) 

dt 

When the tangent reaches 2, the population y = 0 is all gone. If the solution continues 
tot= 1r /2, then tan t is infinite. The model loses meaning and y(1r /2) = -oo. 

Overall, I hope you see how a simple stability test tells so much about y' = f (y) : 

1 Find all solutions to f (y) = 0 2 If df / dy < 0 at y = Y, that state is stable. 
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• REVIEW OF THE KEY IDEAS •

61 

1. The logistic equation dy/dt = ay - by2 has steady states at Y = 0 and Y = a/b.

2. The S-curve y(t) = a/(de-at + b) approaches the carrying capacity y(oo) = a/b.

3. The equation for z = t is linear! Or we can separate into dy / ( y - �y2 ) = a dt.

4. The stability test dj /dy = a - 2by < 0 is passed at Y =a/band failed at Y = 0. 

5. This stability test applies to all equations y 1 
= f (y) including y 1 = ay - by2 

- h.

Problem Set 1. 7 

1 If y(0) = a/2b, the halfway point on the S-curve is at t = 0. Show that d = band
a a l a y(t) = 

d t b
= -b t 

. Sketch the curve from Y-oo = 0 to y00 = -. e-a + e-a + l b

2 If the carrying capacity of the Earth is K = a/b = 14 billion people, what will be the 
population at the inflection point? What is dy / dt at that point? The actual population 
was 7.14 billion on January 1, 2014. 

3 Equation (18) must give the same formula for the solution y(t) as equation (16).
If the right side of ( 18) is called R, we can solve that equation for y : 

---+ y=--�-(l + R¾)"

Simplify that answer by algebra to recover equation ( 16) for y( t).

4 Change the logistic equation to y' = y + y2 . Now the nonlinear term is positive, 
and cooperation of y with y promotes growth. Use z = l/y to find and solve a 
linear equation for z, starting from z(0) = y(0) = 1. Show that y(T) = oo when 
e-T = 1/2. Cooperation looks bad, the population will explode at t = T.

5 The US population grew from 313,873,685 in 2012 to 316,128,839 in 2014. If it
were following a logistic S-curve, what equations would give you a, b, din the formula
(4)? Is the logistic equation reasonable and how to account for immigration? 

6 The Bernoulli equation y' = ay - byn has competition term byn . Introduce 
z = y1 -n which matches the logistic case when n = 2. Follow equation (4) to
show that z' = (n - l)(-az + b). Write z(t) as in (5)-(6). Then you have y(t).



62 Chapter 1. First Order Equations 

Problems 7-13 develop better pictures of the logistic and harvesting equations. 

7 y' = y - y2 is solved by y(t) = 1/(de-t + 1). This is an S-curve when y(0) = 1/2 
and d = 1. But show that y( t) is very different if y(0) > 1 or if y(0) < 0. 

If y(0) = 2 then d = ½ - 1 = -½- Show that y(t) -+ 1 from above. 
If y(0) = -1 then d = _:1 - 1 = -2. At what time Tis y(T) = -oo? 

8 (recommended) Show those 3 solutions to y' = y - y2 in one graph ! They start 
from y(0) = 1/2 and 2 and -1. The S-curve climbs from ½ to 1. Above that, 
y(t) descends from 2 to 1. Below the S-curve, y(t) drops from -1 to -oo. 

Can you see 3 regions in the picture? Dropin curves above y = 1 and S-curves

sandwiched between O and 1 and dropoff curves below y = 0. 

9 Graph f(y) = y - y2 to see the unstable steady state Y = 0 and the stable Y = 1. 
Then graph f(y) = y-y2 

- 2/9 with harvesting h = 2/9. What are the steady states 
Y1 and Y2 ? The 3 regions in Problem 8 now have Z-curves above y = 2/3, S-curve 
sandwiched between 1/3 and 2/3, dropoff curves below y = 1/3. 

10 What equation produces an S-curve climbing to y00 = K from Y-oo = L? 

11 y 1 = y - y2 
- ¼ = -(y - ½ )2 shows critical harvesting with a double steady state 

at y = Y = ½- The layer of S-curves shrinks to that single line. Sketch a dropin 
curve that starts above y(0) = ½ and a dropoff curve that starts below y(0) = ½-

12 Solve the equation y 1 = -(y - ½ )2 by substituting v = y - ½ and solving v 1 = -v2
. 

13 With overharvesting, every curve y(t) drops to -oo. There are no steady states. 
Solve Y - Y2 

- h = 0 (quadratic formula) to find only complex roots if 4h > 1. 

The solutions for h = ¾ are y(t) = ½ - tan(t + C). Sketch that dropoff if 
C = 0. Animal populations don't normally collapse like this from overharvesting. 

14 With two partial fractions, this is my preferred way to find A= -
1
-, B = -

1
-

r -s s-r

PF2 
1 1 1 

------=------+------
(y - r)(y - s) (y - r)(r - s) (y - s)(s - r) 

Check that equation : The common denominator on the right is ( y - r) ( y - s) ( r - s). 
The numerator should cancel the r - s when you combine the two fractions. 

1 1 . f . A B
Separate -

2
-- and -

2
-- mto two ractions -- + -- .

y - 1 y -y y-r y-s 

Note When y approaches r, the left side of PF2 has a blowup factor 1/(y - r). 
The other factor 1/(y - s) correctly approaches A = 1/(r - s). So the right side 
of PF2 needs the same blowup at y = r. The first term A/(y - r) fits the bill. 
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15 The threshold equation is the logistic equation backward in time : 

dy 
2 

-- = ay - by is the same as 
dt 

dy 
2 

- = -ay+by.
dt 
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Now Y = 0 is the stable steady state. Y = a/b is the unstable state (why?). 
If y(0) is below the threshold a/b then y(t) -t 0 and the species will die out. 

Graph y(t) with y(0) < a/b (reverse S-curve). Then graph y(t) with y(0) > a/b. 

16 (Cubic nonlinearity) The equation y 1 
= y(l - y)(2 - y) has three steady states:

Y = 0, 1, 2. By computing the derivative df / dy at y = 0, 1, 2, decide whether 
each of these states is stable or unstable. 

Draw the stability line for this equation, to show y(t) leaving the unstable Y's. 
Sketch a graph that shows y(t) starting from y(0) = ½ and� and ½-

17 (a) Find the steady states of the Gompertz equation dy/ dt = y(l - In y).

(b) Show that z = In y satisfies the linear equation dz/ dt = 1 - z.

(c) The solution z(t) = 1 + e-t(z(0) - 1) gives what formula for y(t) from y(0)?

18 Decide stability or instability for the steady states of 

(a) dy/dt = 2(1 - y)(l - eY) (b) dy/dt = (1 - y2)(4 - y2 ) 

19 Stefan's Law of Radiation is dy/ dt = K(M4 -y4). It is unusual to see fourth powers. 
Find all real steady states and their stability. Starting from y(0) = M /2, sketch a graph 
of y(t). 

20 dy / dt = ay - y3 has how many steady states Y for a < 0 and then a > 0 ? 
Graph those values Y (a) to see a pitchfork bifurcation-new steady states suddenly 
appear as a passes zero. The graph of Y (a) looks like a pitchfork. 

21 (Recommended) The equation dy / dt = sin y has infinitely many steady states.

What are they and which ones are stable? Draw the stability line to show whether 
y(t) increases or decreases when y(0) is between two of the steady states. 

22 Change Problem 21 to dy/dt = (sin y) 2
• The steady states are the same, but now the 

derivative of f(y) = (sin y) 2 is zero at all those states (because sin y is zero). What 
will the solution actually do if y(0) is between two steady states? 

23 (Research project) Find actual data on the US population in the years 1950, 1980, 
and 2010. What values of a, b, d in the solution formula (7) will fit these values? Is 
the formula accurate at 2000, and what population does it predict for 2020 and 2100? 

You could reset t = 0 to the year 1950 and rescale time so that t = 3 is 1980. 
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24 If dy/dt = f(y), what is the limit y(oo) starting from each point y(0)?

l
�(y) 

--
1

--0 ---2-�---· 
y

25 (a) Draw a function f(y) so that y(t) approaches y(oo) = 3 from every y(0).
(b) Draw f(y) so thaty(oo) = 4ify(0) > 0 andy(oo) = -2ify(0) < 0.

26 Which exponents n in dy / dt = yn produce blowup y(T) = oo in a finite time?
You could separate the equation into dy/yn = dt and integrate from y(0) = 1. 

27 Find the steady states of dy / dt = y2 
- y4 and decide whether they are stable, unstable,

or one-sided stable. Draw a stability line to show the final value y( oo) from each initial
value y(0).

28 For an autonomous equation y 1 = f (y), why is it impossible for y( t) to be increasing
at one time ti and decreasing at another time t2 ? 

The website math.mit.edu/dela has more graph questions for autonomous y' = f (y). 

Notes on feedback The S-curve represents a good response from an elevator. The transient
response in the middle of the S is the fast movement between floors. The elevator slows
down as it approaches steady state (the floor it is going to). There is afeedback loop to tell
the elevator how far it is from its destination, and control its speed. 

An open-loop system has no feedback. A simple toaster will keep going and burn your
toast. The end time is entirely controlled by the input setting. A closed-loop system feeds 
back the difference between the state y(t) and the desired steady state y00 • A toaster oven 
can avoid burning by feeding back the temperature. 

The logistic equation is nonlinear because of its feedback term -by2
. This is so common

in other examples of movement and growth. Our brain controls arm movement and brings
it to a stop. Your car has thousands of computer chips and controllers that measure position
and speed, to slow down and stop before disaster. 

I admit that I don't use cruise control because the car might keep cruising-I am not too
sure it will stop. But it does have a feedback loop to keep the car below a set speed. 
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1.8 Separable Equations and Exact Equations 

This section presents two special types of first order nonlinear differential equations. 
They are a bridge between y' = ay and the very general form y' = f(t, y). These pages 
explain how to solve the two types in between, by ordinary integration. Separable 
equations are the simplest. For exact equations, see formulas (12) and (15). 

Separable 

dy g(t) 
- --

dt f(y) 

Exact 
dy g(y, t) 
dt f(y,t) 

when 8f
at 

8g 

8y 

1. Separable Equations f(y)dy = g(t)dt

With f(y) on one side and g(t) on the other side, you see the meaning of separable. 
The ordinary way to write this equation would be 

dy 
dt 

g(t) 
f(y) 

starting from y(0) at time t = 0. (1) 

When dy/dt has this separable form, we combine f(y) with dy and g(t) with dt. Those 
functions f and g need to be integrated. The integrals F(y) and G(t) start at y = y(0) 
and t = 0: 

F(y) = j j(u) du

y(O) 

t 

G(t) = J g(x) dx (2) 

x=O 

The dummy variables u and x were chosen because y and t are needed in the upper limits 
of integration. Every author faces this question, to select variables. To show that the 
letters u and x don't matter, I could change them to Y and T.

After integrating f and g, we have implicitly solved the differential equation: 

Solution 
dy g(t) . 
dt 

= 

f(y) 
mtegrates to F(y) = G(t). (3) 

To get an explicit solution y = ... we have to solve this equation F(y) = G(t) to find y. 

dy t 1 1 
Example 1 

-d 
is y dy = t dt. Integrate to find - (y(t) 2 - y(0) 2 ) = -t2 

t y 2 2 . 
Solve this implicit equation to find y(t) explicitly: 

Solution y(t) = Jy(0) 2 + t2 . Then 
dy 
dt 

t t 

Jy(0)2 + t2 y 
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Example 2 dy/dt = 2ty has g(t) = 2t divided by f(y) = 1/y. 

Solution Separate 1/y from 2t and integrate to get F = ln y - ln y(0) and G = t2
: 

dy = 2t dt leads to 
y J

Y du 
----;; = ln y - ln y(0) and

y(O) 

j 2xdx = t2 

0 

In this example, F(y) = G(t) produces ln y = ln y(0) + t2
. Take exponentials of both sides 

to find the solution y : 
y = eln y(O)et

2 

= y(O) et
2

. (4) 

I always check the derivative dy / dt and the starting value y( 0): 

:t (y(O) et
2) = 2t (y(O) et

2) = 2ty y(0) et
2 

= y(0) at t = 0. (5) 

Example 3 Our favorite equation t = ay + q is separable when a and q are constant. 
Move y + ; to the left side below dy. Keep a dt on the right side. Then integrate 
both sides, and you have solved this equation once more ! 

dy 
d . --

9. 
= a t gives ln(y + <J.) = at + C. 

Y+ a 
a 

Take exponentials to find y, and sett= 0 to find C: 

Exponential growth y(t) + <J. = eateC and y(0) + <J. = e0 . 
a a 

Substitute for e0 in the left equation, to get the answer we know: 

y(t) +;: = eat (y(O) + ;:) q and then y(t) = eat
y(O) + -(eat - 1). 

a 

(6) 

(7) 

(8) 

This answer was the key to Section 1.4. Here the formulas came faster (the first one 
in that box looks attractive). But I like the old way : Follow each input as it grows. 

Example 4 (Logistic equation ) 

dy 
2 

- = ay- by 
dt J

Y 

du 
= 

ft 

dx 
au - bu2 

y(O) t(O) 

(9) 

The right side is certainly G(t) = t - t(0). I am including t(0) to show how the system 
allows any starting value fort as well as y. We don't know a perfect starting time for the 
Earth's population, so we pick a year like t(0) = 2 000 and work from there. The key point 
is that two integrals F(y) and G(t) give the answer. 

Section 1.7 computed those integrals and solved the logistic equation. 
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2. Exact Equations f (y, t)dy = g(y, t)dt

A separable equation has dy/dt = g(t)/ f(y). We wrote this as f(y)dy = g(t)dt. We 
integrated the two sides separately to get F (y) = G ( t). This solved the equation. 

Exact equations are not required to be separable. The functions f and g can depend 
on both variables t and y. The equation does not split into a pure y-integration and a pure 
t-integration. We now have f(y, t) dy = g(y, t) dt. But it sometimes succeeds to integrate
the left side f (y, t) with respect to y, as if t were a constant which it is not.

Step 1 Integrate f with respect toy j f(y, t) dy = F(y, t) + C(t). (10) 

Normally, any constant C can be added to an integral. The answer stays correct, because the 
derivative of C is zero. Here, any function of t can be added to the integral, 
because they derivative of any C(t) is zero. Now F(y, t) + C(t) has more flexibility. 

a 
Step 2 (if possible) Choose C(t) so that 

at 
(F(y, t) + C(t)) = -g(y, t). (11) 

If that choice of C ( t) is possible, our original equation involving g and f is solved: 

Step 3 
dy 

dt 

g(y, t) 

j(y, t) 
is solved by F(y, t) + C(t) = any constant. 

Before I show when and why this works, here is an example of success. 

dy 2yt - 1 
Example 5 The equation -

d 
= --- has g = 2yt -I and f = y 2 

-t2
. 

t y2 - t2 

(12) 

1 aF 
Step 1 Integrate fdy = (y 2 

- t2 )dy to find F(y, t) = 
3

y3 
- yt2 . Then 8t = -2ty.

Step 2 Solve equation (11) for C(t). For our particular f and g, this is possible: 
dC . dC 

-2ty + dt = -(2yt - 1) gives dt = I and C(t) = t.

Step 3 The original !� = J is solved by F(y, t) + C(t) =constant:

Solution from F + C 
Constant is set by y(O) 

1 1 
-y3 - yt2 + t = -y(0)3 .
3 3 

To check this answer, take its time derivative implicitly (which means: just do it). 

2
dY 2

dy 
Implicit differentiation y - - t - - 2yt +I= 0. 

dt dt 

This is our equation dy / dt = (2yt - 1) / (y2 - t2 ) as we hoped. Now to explain why. 
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The Exactness Condition 

When is Step 2 possible ? Sometimes there is C(t ) to solve equation (11), but usually not. 
To find the condition for exactness, take they-derivative of both sides in Step 2: 

8 8 8 ay at 
(F(y, t ) + C(t ) )  = - ay (g(y, t)). (13) 

8 8 . 8 8 The order of oy and a
t 

can always be reversed. Certamly oy C(t ) = 0 and oy F = f.

Thele fts i de of(13)is :
y 

:
t 

F(y, t ) = :
t 

:
y F(y, t ) which is :/(y, t ). (14)

Comparing (14) with (13), Step 2 is only possible when our original differential equation 
dy/dt = g/ f is exact: 

Exactness condition 
8 8 
8t f(y, t) = - 8y 

g(y, t). (15) 

When the equation is exact, Step 2 will produce C(t ). The final question is about Step 3. 
Why is F (y, t ) + C ( t ) = constant for the original differential equation dy / dt = g / f ? To 
see this, take the time derivative of F(y, t ) + C(t) using the (implicit) chain rule: 

8Fdy 8F 8C -Oay dt 
+ at + at -

8F 8F 8C Step 1 produced oy = f. Step 2 produced at+ at = -g. We have success:

Equation ( 16) is f �� - g = 0. This is our original problem �� = y · 

(16) 

8f 8g Example 5 was exact because g = 2yt - land f = y2 
- t2 agree on - = -- = -2t. 

at ay 

Example 6 Steps 1, 2, 3 must be possible because this non-separable equation is exact : 

Step 1 

Step 2 

Step 3 

dy = 
t - y 

= g(y, t ) 
has 

of 
= -

og 
= l.dt t + y f (y, t) a

t 
ay 

Integrate J fdy = J (t + y)dy to find F = ty + ½Y2
. 

Write out � (F + C) = -g = y - t to find C(t ) = -½t2 

(17) 

ut l 1 
The example is solved by F + C = ty + 

2
y2 

-

2
t2 =constant= ½ y(0) 2

. 

To check that solution, find the total time derivative of F + C by the chain rule : 

dy dy h" . dy 
t dt 

+ Y + y d
t 

- t = 0. T lS lS d
t 

t -y 
as desired.

t+y 
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Final Note : Separable is Exact 

Notice that a separable equation dy / dt = g( t) / f (y) is always exact:

(15) is satisfied
8 8 

at J(y) = - By g(t) becomes O = 0.

No problem with integrating J f(y) dy and J g(t) dt to find F(y) and G(t) = -C(t).

• REVIEW OF THE KEY IDEAS •

1. A separable equation !� = }�;
) is solved by J f (y )dy =Jg( t )dt+ any constant.

2. That solution gives y implicitly. Solve to find y explicitly as a function oft.

. dy g(y, t) 8g 8f
3. Anexactequat1on-d = -

f( ) has - = --. ThenF(y,t) +C(t) =constant.
t y, t 8y at 

4. The solution has F(y, t) = J f (y, t)dy for each t, and C(t) = -J ( 3:;' + g) dt.

5. The exactness condition in 3 removes y from that integral for C(t) in 4.

Problem Set 1.8 

1 Finally we can solve the example dy / dt = y2 in Section 1.1 of this book.
y t 

Start from y(O) = 1. Then J �; = J dt. Notice the limits on y and t. Find y(t).
1 0 

2 Start the same equation dy/dt = y2 from any value y(O). At what time t does the
solution blow up? For which starting values y(O) does it never blow up? 

3 Solve dy/dt = a (t)y as a separable equation starting from y(O) = 1, by choosing
f(y) = 1/y. This equation gave the growth factor G(O, t) in Section 1.6. 

4 Solve these separable equations starting from y(O) = 0:

5

6

dy
(a) dt = 

ty (b)

Solve 
d
d
y 

= a(t)y2 = a
/

(t� as a separable equation starting from y(O) = 1.
t 1 y 

The equation !� = y + t is not separable or exact. But it is linear and y = __ .
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7 

8 

9 

10 

11 

12 

Chapter 1. First Order Equations 

The equation 
d

d

y 
= '!j_ has the solution y = At for every constant A. Find this solution

t t 
by separating f = 1/y from g = 1/t. Then integrate dy/y = dt/t. Where does the 
constant A come from ? 

F h. h b A 
. dy ct - ay . 

? F h. 
A 1 h or w IC num er IS - = A an exact equation . or t 1s , so ve t e 

dt t+by 
equation by finding a suitable function F(y, t) + C(t).

Find a function y ( t) different from y = t that has dy / dt = y2 / t2 . 

These equations are separable after factoring the right hand sides : 

Solve dy and 
dt 

= yt + y + t + 1.

These equations are linear and separable: Solve 
dy 

= (y + 4) cost and 
dy 

= yet .
dt dt 

Solve these three separable equations starting from y(O) = 1 : 

dy 
(a) - = -4ty

dt 
(b) 

dy 
- = ty3 

dt 
(c) 

dy 
(1 + t) 

dt 
= 4y

Test the exactness condition 8g/8y = -8f /8t and solve Problems 13-14.

13 

14 

15 

16 

(a) 
dy 

= 
-3t2 - 2y2 

(b) 
dy 1 + yety

dt 4ty + 6y2 dt 2y + tety 

(a) 
dy 4t-y 

(b) 
dy 3t2 

+ 2y2 

dt t-6y dt 4ty + 6y2 

Sh h 
dy y2 . b h . dy y . 

ow t at -
d 

= -- 1s exact ut t e same equation - = - - 1s not exact. 
t 2ty dt 2t 

Solve both equations. (This problem suggests that many equations become exact 
when multiplied by an integrating factor.) 

Exactness is really the condition to solve two equations with the same function H ( t, y)

aH aH . aJ ag 
8y = f(t, y) and 8t = -g(t, y) can be solved 1f 

at 
= -

ay
.

Take the t derivative of a H / ay and the y derivative of a H / at to show that exactness 
is necessary. It is also sufficient to guarantee that a solution H will exist. 

17 The linear equation !; = aty + q is not exact or separable. Multiply by the integrating

factor e- fat dt and solve the equation starting from y(O).
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Second order equations F(t,y,y',y") = 0 involve the second derivative y".
This reduces to a first order equation for y' (not y) in two important cases :

I. When y is missing in F, set y' = v and y" = v'. Then F(t, v, v ') = 0.

II Wh . . . . F II dv dv dy dv 
h F ( 

dv) . en t 1s missmg m , set y = 
dt 

= 
dy dt 

= v 
dy

. T en y, v, v 
dy 

= 0.

See the website for reduction of order when one solution y(t) is known.

18 (y is missing) Solve these differential equations for v = y I with v ( 0) = 1. Then
solve for y with y(0) = 0. 

(a) y11 +y'=0 (b) 2ty" - y' = 0.

19 Bothy and t are missing in y" = (y ') 2
. Set v = y I and go two ways:

dv dy I. (y missing) Solve -
d 

= v2 for v(t) and then - = v(t )
t dt 

II. ( t missing)

with y(0) = 0, y '(0) = 1. 
dv dy 

Solve v 
dy 

= v2 for v(y) and then 
dt 

= v(y)

with y(0) = 0, y'(0) = 1. 

20 An autonomous equation y' = f(y) has no terms that contain t (t is missing).

Explain why every autonomous equation is separable. A non-autonomous equation
could be separable or not. For a linear equation we usually say LTI (linear time­

invariant ) when it is autonomous: coefficients are constant, not varying with t.

21 my 11 + ky = 0 is a highly important LTI equation. Two solutions are cos wt and
sin wt when w2 = k/m. Solve differently by reducing to a first order equation for
y1 = dy / dt = v with y 11 = v dv / dy as above : 

mv !� + ky = 0 integrates to �mv2 
+ �ky2 = constant E.

For a mass on a spring, kinetic energy ½mv2 plus potential energy ½ ky2 is a con­
stant energy E. What is E when y = coswt? What integral solves the separable
m(y') 2 = 2E - ky2 ? I would not solve the linear oscillation equation this way. 

22 my 11 + k sin y = 0 is the nonlinear oscillation equation: not so simple. Reduce to a
first order equation as in Problem 21 : 

dv k . 0 . 1 
2 k mv 

dy 
+ smy = mtegrates to 

2
mv - cosy= constant E.

With v = dy / dt what impossible integral is needed for this first order separable
equation? Actually that integral gives the period of a nonlinear pendulum-this
integral is extremely important and well studied even if impossible.
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• CHAPTER 1 NOTES • 

The great function of calculus is et. How best to define this exponential function?

Section 1.3 constructed y = et from its infinite series 1 + t + ½t2 + ½t3 + · · ·. Euler would 
approve ! Taking the derivative of each term brings back et . This property d y / dt = y is the 
most important tool we have-it is the foundation of our subject. 

I like this approach to et for at least two reasons: 

1. It is based on the derivatives oft and t2 and tn : well known.

2. The Chapter 3 Notes solve nonlinear equations in exactly the same way.

The limiting step required here is to add up an infinite series. We don't expect a simple 
answer like 1 + ½ + ¼ + ½ + · · · = 2. But the numbers 1/n ! in et are (much smaller) than 
these numbers 1/2n. 

This is really the key point, to see that the terms tn /n ! approach zero quickly. 
The infinite series 1 + t + t2 /2 + · · · + tn /n ! + · · · converges for every t.

Proof Each term tn /n ! multiplies the previous term tn-l /(n - 1) ! by t/n. At some point 
n = N, that number t / N goes below ½. From this point on, we know that 

tN tN+l tN+2

N! 
+ 

(N+l)! 
+ 

(N+2)! 
+··· is less than

The right side is tN / N ! times 2. The left side is smaller. The first N terms that come before 
tN / N ! have no effect on convergence of the series (they just enter the final sum). So the
series for et always converges.

If t is negative, use its absolute value ltl and the proof still succeeds. The series for 
the derivative of et is the same as the series for et . So we know: This series is absolutely 
convergent. We can safely say that y' = y. 

Four approaches to et Looking back at my own teaching and writing, I really missed the 
importance of this big step in calculus. Just another function? Not at all. Textbooks offer 
four main ways to construct y = et : 

1. Add all the terms tn / n ! . The derivative of each term is the previous tn-l / ( n - 1) !

2. Take the nth power of (1 + t/n) as in compound interest. Let n approach infinity.

3. The slope of bt is C times bt . Choose e as the value of b that makes C = 1.

4. Integrate 1 / y to construct t = ln y. Invert this function to find y = et .

I believe that 3 and 4 are too tricky. Explicit constructions are the winners. You want to 
say, "Here is the function." In method 2 you are working with (1 + t/nt: not too bad. 
In 1 you see step by step and term by term that d y/dt = y. 



Chapter 2 

Second Order Equations 

2.1 Second Derivatives in Science and Engineering 

Second order equations involve the second derivative d2y / dt2
. Often this is shortened to y", 

and then the first derivative is y'. In physical problems, y' can represent velocity v and the 
second derivative y" = a is acceleration: the rate dy 1 / dt that velocity is changing. 

The most important equation in dynamics is Newton's Second Law F = ma. 
Compare a second order equation to a first order equation, and allow them to be nonlinear : 

First order y' = f(t, y) Second order y 11 = F(t, y, y') (1) 

The second order equation needs two initial conditions, normally y(O) and y'(O)­
the initial velocity as well as the initial position. Then the equation tells us y 11 (0) and 
the movement begins. 

When you press the gas pedal, that produces acceleration. The brake pedal also brings 
acceleration but it is negative (the velocity decreases). The steering wheel produces 
acceleration too ! Steering changes the direction of velocity, not the speed. 

Right now we stay with straight line motion and one-dimensional problems : 

d2y
->O
dt2 

(speeding up) 
d2y
-<O
dt2 

(slowing down). 

The graph of y(t) bends upwards for y" > 0 (the right word is convex). Then the 
velocity y' (slope of the graph) is increasing. The graph bends downwards for y" < 0 
(concave). Figure 2.1 shows the graph of y = sin t, when the acceleration is a = 
d2y/dt2 

= - sin t. The important equation y" = -y leads to sin t and cost. 

Notice how the velocity dy / dt (slope of the graph) changes sign in between zeros of y. 

73 
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y = sint a=y">O 

', t--------------�----------�3'-'"7r'--� t

y 11 = �:�� �-( y is going down and bending u
�--- - y' = cost

Figure 2.1: y" > 0 means that velocity y' (or slope) increases. The curve bends upward.

The best examples of F = ma come when the force F is -ky, a constant k times
the "position" or "displacement" y(t). This produces the oscillation equation. 

Fundamental equation of mechanics 
d2 y 

rn-+ky = 0 
dt 2 (2) 

Think of a mass hanging at the bottom of a spring (Figure 2.2). The top of the spring 
is fixed, and the spring will stretch. Now stretch it a little more (move the mass downward 
by y(O)) and let go. The spring pulls back on the mass. Hooke's Law says that the force is
F = -ky, proportional to the stretching distance y. Hooke's constant is k.

The mass will oscillate up and down. The oscillation goes on forever, because equation 
(2) does not include any friction (damping term b dy / dt). The oscillation is a perfect cosine,
with y = cos wt and w = Jklm, because the second derivative has to produce k/m to
match y" = -(k/m)y.

Oscillation at frequency w = /!J;;, y = y(O) cos ( /!/;;, t). (3) 

At time t = 0, this shows the extra stretching y(O). The derivative of cos wt has a factor
w = Jklm. The second derivative y" has the required w2 = k/m, so my" = -ky.

The movement of one spring and one mass is especially simple. There is only one fre­
quency w. When we connect N masses by a line of springs there will be N frequencies-then
Chapter 6 has to study the eigenvalues of N by N matrices. 

d2 y 
rn- = -ky

dt2 

y 

y < 0 y" > 0 
spring pushes down 

y > 0 y" < 0 spring pulls up 

Figure 2.2: Larger k = stiffer spring= faster w. Larger m = heavier mass= slower w.
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Initial Velocity y1 ( O) 

Second order equations have two initial conditions. The motion starts in an initial position 
y(0), and its initial velocity is y'(0). We need both y(0) and y'(0) to determine the two
constants c1 and c2 in the complete solution to my" + ky = 0 : 

"Simple harmonic motion" (4) 

Up to now the motion has started from rest (y'(0) = 0, no initial velocity). Then c1 is 
y(0) and c2 is zero: only cosines. As soon as we allow an initial velocity, the sine solution
y = c2 sin wt must be included. But its coefficient c2 is not just y' (0).

dy y'(O) At t = 0, dt = c2 w cos wt matches y'(0) when c2 = �- (5) 

The original solution y = y(0) cos wt matched y(0), with zero velocity at t = 0. The
new solution y = (y' ( 0) / w) sin wt has the right initial velocity and it starts from zero. When
we combine those two solutions, y(t) matches both conditions y(0) and y'(0): 

Unforced oscillation 
y'(O) 

� 
y(t) = y(O) cos wt+ -- sinwt with w = -. 

w m 
(6) 

With a trigonometric identity, I can combine those two terms (cosine and sine) into one. 

Cosine with Phase Shift 

We want to rewrite the solution ( 6) as y ( t) = R cos ( wt - a). The amplitude of y ( t) 
will be the positive number R. The phase shift or lag in this solution will be the angle a.
By using the right identity for the cosine of wt - a, we match both cos wt and sin wt: 

R cos(wt - a) = R cos wt cos a+ R sin wt sin a. (7) 

This combination of cos wt and sin wt agrees with the solution (6) if

R cos a= y(0) and R sin a= 
y'(O) . (8) 

w 

Squaring those equations and adding will produce R2 

Amplitude R R2 
= R2 (cos2 a+ sin2 a) = (y(0))2 + ( y'

�O
)
)

2 

(9) 

The ratio of the equations (8) will produce the tangent of a: 

R sin a y'(0) 
tan a= --- = ---.Reos a w y(0) Phase lag a (10) 

Problem 14 will discuss the angle a we should choose, since different angles can have the 
same tangent. The tangent is the same if a is increased by 1r or any multiple of 1r. 

The pure cosine solution that started from y' (0) = 0 has no phase shift: a = 0. 
Then the new form y(t) = R cos (wt - a) is the same as the old form y(0) cos wt. 
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Frequency w or f 

If the time t is measured in seconds, the frequency w is in radians per second. 
Then wt is in radians-it is an angle and cos wt is its cosine. But not everyone thinks 
naturally about radians. Complete cycles are easier to visualize. So frequency is also mea­
sured in cycles per second. A typical frequency in your home is f = 60 cycles per second. 
One cycle per second is usually shortened to f = 1 Hertz. A complete cycle is 21r radians, 
so f = 60 Hertz is the same frequency as w = 1201r radians per second. 

The period is the time T for one complete cycle. Thus T = 1/ f. This is the only page 
where f is a frequency-on all other pages J(t) is the driving function. 

Frequency 

y = A cos wt

= A cos /!!;;,t

w = 2-rrf Period 

1 27T 
T---­

- f - w 

w=f§; 

1 2-rr 
T=-=-

f w 

-�---�---------+----�-----+-----
t = 0 t = T 

Figure 2.3: Simple harmonic motion y = A cos wt: amplitude A and frequency w. 

Harmonic Motion and Circular Motion 

Harmonic motion is up and down (or side to side). When a point is in circular motion, 
its projections on the x and y axes are in harmonic motion. Those motions are closely 
related, which is why a piston going up and down can produce circular motion of a flywheel. 
The harmonic motion "speeds up in the middle and slows down at the ends" while the 
point moves with constant speed around the circle. 

1 y = sin wt

0 

Figure 2.4: Steady motion around a circle produces cosine and sine motion along the axes. 



2.1. Second Derivatives in Science and Engineering 77 

Response Functions 

I want to introduce some important words. The response is the output y(t). Up to now 
the only inputs were the initial values y(O) and y'(O). In this case y(t) would be the initial 
value response (but I have never seen those words). When we only see a few cycles of the 
motion, initial values make a big difference. In the long run, what counts is the response to a 

forcing function like f = cos wt. 

Now w is the driving frequency on the right hand side, where the natural frequency 
Wn = � is decided by the left hand side: w comes from Y

p
, Wn comes from Yn ·

When the motion is driven by cos wt, a particular solution is Y
p 

= Y cos wt :

Forced motion Y
p 

( t) 
at frequency w my"+ ky = cos wt 

1 
Y

p (t) = --- cos wt. 
k-mw2 

(11) 

To find Y
p
(t), I put Y cos wt into my" + ky and the result was (k - mw2)Y cos wt. 

This matches the driving function cos wt when Y = l/(k - mw2 ). 

The initial conditions are nowhere in equation (11). Those conditions contribute the null 
solution Yn , which oscillates at the natural frequency Wn = �- Then k = mw;. 

If I replace k by mw; in the response y
p
(t), I see w; - w2 in the denominator: 

Response to cos wt 
1 

Y
p (t) = ( 2 2)m w

n
-w 

cos wt. (12) 

Our equation my" + ky = coswt has no damping term. That will come in Section 2.3.
It will produce a phase shift a. Damping will also reduce the amplitude IY ( w) [. The 
amplitude is all we are seeing here in Y ( w) cos wt : 

Frequency response 
1 1 

Y(w) = --- = ----. 
k -mw2 m (w� -w2 ) 

(13) 

The mass and spring, or the inductance and capacitance, decide the natural frequency Wn . 
The response to a driving term cos wt (or eiwt) is multiplication by the frequency response 
Y(w). Thefonnula changes when w = Wn-we will study resonance!

With damping in Section 2.3, the frequency response Y(w) will be a complex num­
ber. We can't escape complex arithmetic and we don't want to. The magnitude [Y(w)[ 
will give the magnitude response (or amplitude response). The angle 0 in the complex 
plane will decide the phase response (then a = -0 because we measure the phase lag).

The response is Y(w)eiwt to f(t) = eiwt and the response is g(t) to f(t) = b(t).
These show the frequency response Y from equation (13) and the impulse response g from 
equation (15). Yeiwt and g(t) are the two key solutions to my"+ ky = f(t).
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Impulse Response = Fundamental Solution 

The most important solution to a linear differential equation will be called g ( t). In mathemat­
ics g is the fundamental solution. In engineering g is the impulse response. It is 
a particular solution when the right side J(t) = 8(t) is an impulse (a delta function). 

The same g(t) solves mg"+ kg= 0 when the initial velocity is g'(0) = 1/m. 

Fundamental solution 

sinwnt 
g(t) = --

with zero initial conditions ( 14) 

1 
has g(O) =0 and g '(O) = -. (15) 

m 

Null solution also 

To find that null solution, I just put its initial values 0 and 1/m into equation (6). 
The cosine term disappeared because g(0) = 0. 

I will show that those two problems give the same answer. Then this whole chapter will 
show why g(t) is so important. For first order equations y' = ay + q in Chapter 1, 
the fundamental solution (impulse response, growth factor) was g(t) = eat _ The first two 
names were not used, but you saw how eat dominated that whole chapter. 

I will first explain the response g(t) in physical language. We strike the mass and it starts 
to move. All our force is acting at one instant of time: an impulse. A finite force within one 
moment is impossible for an ordinary function, only possible for a delta function. Remember 
that the integral of 8(t) jumps to 1 when we pass the point t = 0. 

If we integrate mg" = o(t), nothing happens before t = 0. In that instant, the integral 
jumps to 1. The integral of the left side mg II is mg 1• Then mg 1 = 1 instantly at t = 0. 
This gives g 1(0) = 1/m. You see that computing with an impulse 8(t) needs some faith. 

The point of g(t) is that it solves the equation for any forcing function f(t): 

t 

my"+ ky = f(t) has the particular solution y(t) = J g(t - s)f(s) ds. 
0 

(16) 

That was the key formula of Chapter 1, when g(t - s) was ea(t-s) and the equation was first 
order. Section 2.3 will find g(t) when the differential equation includes damping. 
The coefficients in the equation will stay constant, to allow a neat formula for g(t). 

You may feel uncertain about working with delta functions-a means to an end. 
We will verify this final solution y(t) in three different ways: 

1 Substitute y(t) from (16) directly into the differential equation (Problem 21) 

2 Solve for y(t) by variation of parameters (Section 2.6) 

3 Solve again by using the Laplace transform Y(s) (Section 2.7). 
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1. my 11 + ky = 0 : A mass on a spring oscillates at the natural frequency Wn = -/k[m.
2. my"+ ky = cos wt: This driving force produces Y

p 
= (coswt)/m (w; - w2 ).

3. There is resonance when Wn = w. The solution Y
p 

= t sin wt includes a new factor t.
4. mg" +kg= o(t) gives g(t) = (sin wnt) /rnwn = null solution with g'(0) = 1/m.

t 

5. Fundamental solution g: Every driving function f gives y(t) = J g(t - s)f(s) ds.
0 

6. Frequency: w radians per second or f cycles per second (f Hertz). Period T = l / f.

Problem Set 2.1 

1 Find a cosine and a sine that solve d2y / dt2 
= -9y. This is a second order equation

so we expect two constants C and D (from integrating twice):
Simple harmonic motion y(t) = C cos wt+ D sin wt. What is w?

If the system starts from rest (this means dy / dt = 0 at t = 0), which constant C or D
will be zero ?

2 In Problem 1, which C and D will give the starting values y(0) = 0 and y'(0) = 1?
3 Draw Figure 2.3 to show simple harmonic motion y = A cos (wt - a) with phases

a= 1r/3 and a= -1r/2.
4 Suppose the circle in Figure 2.4 has radius 3 and circular frequency f = 60 Hertz.

If the moving point starts at the angle -45 °, find its x-coordinate A cos ( wt - a). Thephase lag is a = 45°. When does the point first hit the x axis? 
5 If you drive at 60 miles per hour on a circular track with radius R = 3 miles, what isthe time T for one complete circuit? Your circular frequency is f = __ and your

angular frequency is w = __ (with what units?). The period is T.

6 The total energy E in the oscillating spring-mass system is
. . . . . . m dy k ( )

2 

E = kmetic energy m mass+ potential energy m spnng = 2 dt 
+ 2y2 .

Compute E when y = C cos wt + D sin wt. The energy is constant !
7 Another way to show that the total energy E is constant :

Multiply rny" + ky = 0 by y'. Then integrate my 1y 11 and kyy 1
• 
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8 A forced oscillation has another term in the equation and A cos wt in the solution : 

d2y 

dt2 
+ 4y = F cos wt has y = C cos 2t + D sin 2t + A cos wt. 

(a) Substitute y into the equation to see how C and D disappear (they give Yn)- Find
the forced amplitude A in the particular solution Y

p 
= A cos wt.

(b) In case w = 2 (forcing frequency= natural frequency), what answer does your
formula give for A? The solution formula for y breaks down in this case.

9 Following Problem 8, write down the complete solution Yn + Y
p 

to the equation 

d2y 
m 

dt2 
+ ky = F cos wt with w-:/- Wn = � (no resonance). 

The answer y has free constants C and D to match y(0) and y' (0) (A is fixed by F). 

10 Suppose Newton's Law F = ma has the force Fin the same direction as a: 

my 11 = + ky including y 11 = 4y. 

Find two possible choices of s in the exponential solutions y = est
. The solution is 

not sinusoidal and s is real and the oscillations are gone. Now y is unstable. 

11 Here is afourth order equation: d4y/dt4 = l6y. Findfour values of s that give 
exponential solutions y = est

. You could expect four initial conditions on y : 
y(0) is given along with what three other conditions? 

12 To find a particular solution to y 11 + 9y = ect, I would look for a multiple 
y

p
(t) = Y ect of the forcing function. What is that number Y? When does your

formula give Y = oo? (Resonance needs a new formula for Y.) 

13 In a particular solution y = Aeiwt to y" + 9y = eiwt , what is the amplitude A? 
The formula blows up when the forcing frequency w = what natural frequency? 

14 Equation (10) says that the tangent of the phase angle is tana = y'(0)/wy(0). 
First, check that tan a is dimensionless when y is in meters and time is in seconds. 
Next, if that ratio is tan a = 1, should you choose a = 1r / 4 or a = 51r / 4? 
Answer: 

Separately you want R cos a = y ( 0) and R sin a = y' ( 0) / w. 

If those right hand sides are positive, choose the angle a between 0 and 1r /2. 
If those right hand sides are negative, add 1r and choose a = 51r / 4. 

Question: If y(0) > 0 and y' (0) < 0, does a fall between 1r /2 and 1r or between 
31r/2 and 21r? If you plot the vector from (0,0) to (y(0),y'(0)/w), its angle is a. 
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15 Find a point on the sine curve in Figure 2.1 where y > 0 but v = y' < 0 and also 
a = y" < 0. The curve is sloping down and bending down. 

Find a point where y < 0 but y' > 0 and y" > 0. The point is below the x-axis but 
the curve is sloping __ and bending __ . 

16 (a) Solve y" + lO0y = 0 starting from y(0) = 1 and y'(0) = 10. (This is Yn ,)

(b) Solve y" + lO0y = coswt with y(0) = 0 and y'(0) = 0. (This can be y
p

,)

17 Find a particular solution Yp 
= R cos( wt - a) to y" + lO0y = cos wt - sin wt. 

18 Simple harmonic motion also comes from a linear pendulum (like a grandfather 
clock). At time t, the height is A cos wt. What is the frequency w if the pendulum 
comes back to the start after 1 second ? The period does not depend on the amplitude 
(a large clock or a small metronome or the movement in a watch can all have T = 1). 

19 If the phase lag is a, what is the time lag in graphing cos( wt - a) ? 

20 What is the response y(t) to a delayed impulse if my"+ ky = o(t - T)? 

t 

21 (Good challenge) Show that y = J g(t - s)f(s) ds has my"+ ky = f(t). 
0 

t 

1 Why is y' = J g'(t - s)f(s) ds + g(0)f(t)? Notice the two t's in y. 
0 

t 

2 Using g(0) = 0, explain why y" = J g"(t - s)f(s) ds + g'(0)f(t). 
0 

3 Now use g'(0) = 1/m and mg"+ kg = 0 to confirm my"+ ky f(t). 

22 With f = l ( direct current has w = 0) verify that my 11 + ky = 1 for this y : 

Step response 

t 

J 
sinwn(t - s) 

y(t) = --�� 1 ds = Yp +Yn 
mwn 

0 

1 1 
equals - - - cos w t.

k k 
n 

23 (Recommended) For the equation d2y / dt2 
= 0 find the null solution. Then for 

d2g/dt2 
= o(t) find the fundamental solution (start the null solution with g(0) = 0 

andg'(0) = 1). Fory" = f(t) find the particular solution usingformula(l6). 

24 For the equation d2y/dt2 
= eiwt find a particular solution y = Y(w )eiwt . Then Y(w) 

is the frequency response. Note the "resonance" when w = 0 with the null solution 

Yn = l. 

25 Find a particular solution Y eiwt to my 11 - ky = eiwt. The equation has -ky 
instead of ky. What is the frequency response Y ( w) ? For which w is Y infinite ?
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2.2 Key Facts About Complex Numbers 

The solutions to differential equations involve real numbers a and imaginary numbers iw. 
They combine into complex numbers s = a+ iw (real plus imaginary). Here are 
three equations and their solutions: 

dy 
- =ay
dt

y = ceat 

Chapter 1 solved y' = ay. Section 2.1 solved y" + w2y = 0. Section 2.3 will solve the last
equation Ay 11 + By 1 + Cy = 0. The balance between real and imaginary (between a and 
iw) will come down to a competition between B2 and 4AC. 

This course cannot go forward without complex numbers. You see their rectangular form 
in s = a + iw (real part and imaginary part). What you must also see is their 
polar form. It is est , more than s by itself, that demands to be seen in polar form :

est
= e(a + iw)t = eat eiwt 

eat gives growth or decay eiwt gives oscillation and rotation

The real part a is the rate of growth. The imaginary part w is the frequency of oscilla­
tion. The addition a+ iw turns into the multiplication eateiwt because of the rule for ex­
ponentials. We will surely see exponentials everywhere, because they solve all constant 
coefficient equations : The solution to y 1 = sy is y = Gest. With a forcing function eiwt ,
a particular solution to y 1 - sy = eiwt is Yp = eiwt / ( iw - s) : a complex function.

Euler's formula eiwt = cos wt + i sin wt brings back two real functions (cosine and
sine). Real equations have real solutions. When the forcing function on the right side is 
f = A cos wt + B sin wt, a good particular solution is Yp = M cos wt + N sin wt. 

In this real world, the amplitudes -J A2 + B2 and -J M2 + N2 are all-important.
The amplitude is what we see (in light) and hear (in sound) and feel (in vibration). 

The null solutions Yn and the particular solution Yp need complex numbers. The form of 
Yn is C est. The form of Yp is Y eiwt . The complex gain is Y. Notice that the w in s = a + iw 
is the natural frequency in the null solution Yn · The w in the right hand side eiwt is the
driving frequency in the particular solution Yp · 

If wnatural = wdriving, we will see "resonance" and we will need new formulas.

Here is the plan for this section. 

1 Multiply complex numbers s 1 and s2 (review). 

2 Use the polar forms = rei8 to find the powers sn 
= rneinB (review).

3 Look especially at the equation sn = l. It has n roots, all on the unit circle.

4 Find the exponential est and watch it move in the complex plane.
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Complex Numbers : Rectangular and Polar 

A complex number a+ iw has a real part a and an imaginary part w. Two complex numbers 
are easy to add: real part a1 + a2 , imaginary part w1 + w2 . It is multiplication that looks 
messy in equation (1). The good way is in equation (5 ). 

Multiplication 

Just multiply each part a1 and iw1 by each part a2 and iw2 . 

Important case s times s (a+ iw) (a - iw) = a2 
+ w2 

: Real number. (2)

s = a - iw is the complex conjugate of s = a+ iw. Equation (2) says that ss = 1s12
. 

Isl = v'a2 + w2 is the absolute value or magnitude or modulus of s = a + iw. 

Imaginary axis 

s =a+ iw 

'lW i rsin 0 

Real axis 

Figure 2.5: (i) The rectangular forms= a+ iw. (ii) The polar forms= rei0 with absolute 
valuer= Isl= Ja2 + w2 . The complex conjugate of sis s = a - iw = re- i0_ 

The polar form of s uses that distance r = Isl to the center point (0, 0). The real numbers 
a and w (rectangular) are connected tor and 0 (polar) by 

a= rcos0 w = rsin0 s = a + iw = r ( cos 0 + i sin 0) = re iO. 
(3) 

At that moment you see Euler's Formula ei0 = cos 0 + i sin 0. I could regard this as the 
complex definition of the exponential. Or I can separate the infinite series for ei0 into its real 
part (the series for cos 0) and imaginary part (the series for sin 0). 

Euler's Formula is used all the time, to express ei0 in terms of cos 0 and sin 0. It is 
useful to go the other way, and express the cosine and sine in terms of ei0 and e- iO: 

Cosines from exponentials 
ei0 + e-i0 

cos0= -----
2 

ei0 _ e-i0 

sin0= -----
2i 

The sine comes from subtraction. Cancel cos 0 to get 2i sin 0. We need to divide by 2i. 

(4)
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The Polar Form of s
0 

and 1 / s

The polar form is perfect for multiplication and for powers sn . We just multiply absolute 
values of s1 and s2 , and add their angles. Multiply r1 r2 and add 01 + 02 . 

Multiplication s1s2 

Powers of s = rei8 

(r1 ei01) (r2 e
i02) = r1r2 ei(01 + 02)

Sn 
= (r e

i0) 
n 

= rn 
e

in0 

(5) 

(6) 

If n = 2, we are multiplying re
i0 

times re
i0 

to get r2ei20. (0 is added to 0.) If n = -1, we 
are dividing. The rectangular form of 1 / ( a + iw) matches the polar form of 1 / ( re 

iO) :

1 

a+iw 

1 a-iw

a+iw a-iw 

a-iw

a2 +w2 

1 1 1 1 .
0 

--
= 

- - = -e-• 
rei8 r e•0 r (7) 

That magnitude is r = I a + iw I = v' a2 + w2. Equation (7) says that 1 / s equals s /Is I 2 . 
In solving y' -ay = e

iwt, what we meet is y = e
iwt /(iw -a):

Gain G and Phase a iw -a= re
i°' __ 1_ 

= 
! 

e -ia 
= 

c
e -ia 

iw-a r 
(8) 

I prefer this polar form. Whens = re
i0 , the absolute value of 1/ sis 1/r. The angle is -0.

Examples The polar form of 1 + i is ,J2ei1r/4: absolute valuer= vITI = V2. 
The polar form of its conjugate 1 - i is V2e-1ri/4. 

The polar form of its reciprocal 1/ (1 + i) is (1/ V2)e-1ri/4• 

Notice that we can add 21r to the angle 0. That brings us around a circle and back to the 
same point. Then ei0 = ei(0+21r) and e-i1r/4 

= e77ri/4. 

The Unit Circle 

The polar form brings out the importance of the unit circle in the complex plane. That circle 
contains all complex numbers with absolute value r = Is I = 1. The numbers on the unit 

circle are exactly s = ei8 
= cos 0 + i sin 0. 

Since r = 1, every rn is also 1. All powers like s2 and s-1 stay on the unit circle.
The angles in Figure 2.6 become 20 and -0. The nth power sn 

has angle n0.

Here is a nice application of complex numbers to trigonometry. The "double angle" 
formulas for cos 20 and sin 20 are not so easy to remember. The "triple angle" formulas for 
cos 30 and sin 30 are even harder. But all these formulas come from one simple fact : 

(cos0 + i sin et= cosn0 + i sin n0.

If you take n = 2, you are squaring ei0 
= cos 0 + i sin 0 to get e

i20 :
(9) 

(cos0 + isin0)2 
= cos2 0 -sin2 0 + 2i cos 0 sin 0 = cos 20 + i sin 20. (10) 

The real part cos2 0 - sin2 0 is cos 20. The imaginary part 2 sin 0 cos 0 is sin 20. 
For triple angles, multiply again by cos 0 + i sin 0 (in Problem 4). 
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= i 

s4 
= -1 

s
6 

. 7f v'2 . v'2 
Sln - = - +i-

4 2 2 
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Figure 2.6: The numbers = ei0 has s2 = ei20 and s- 1 = e-i&, all on the circle with r = 1. 
Here 0 = 45° which is 7r/4 radians. So 20 = 90° and 8 2 = i. Then 8

8 = 1. 

The Equation sn 
= 1

There are two numbers with s2 = 1 (they are s = 1 and -1). There are four numbers with 

s4 = 1 (they are 1 and -1 and i and -i). Those four numbers are equally spaced around the

unit circle. This is the pattern for every equation sn = 1 : n numbers equally spaced around 
the unit circle, starting with s = 1. The Fundamental Theorem of Algebra says that nth 

degree equations haven (possibly complex) solutions. The equation sn = 1 is no exception, 
and all its roots are on the unit circle. 

n roots of 8 n = I s = e21ri/n , s = e41ri/n , ... , s = e2n1ri/n = e21ri = l.

These are the powers s, s2
, ... , sn of the special complex numbers= e21ri/n. This number

s = e21ri/S is the first of the 8 solutions to s8 = 1, going around the circle in Figure 2.6. 
Here is a remarkable fact about the solutions to sn = 1. Those n numbers add to zero.

In Figure 2.6, you can see that s5 = -sand s6 = -s2 and s7 = -s3 and s8 = -s4. 
The roots pair off. Each pair adds to zero. So the 8 roots add to zero. 

For n = 3 or 5 or 7, this pairing off will not work. The three solutions to s3 = 1 are at 

120° angles. (s and s2 are e21ri/3 and e41ri/3, at angles 120° and 240°. Then comes 360° .) 
To show that those three numbers add to zero, I will factor s3 

-1 = 0 : 

0 = s3 -1 = (s - l)(s2 
+ s + 1) leads to 8

2 + 8 + 1 = 0. (11) 

The n numbers on the unit circle go into the Fourier matrix. They are the key to the 
overwhelming success of the Fast Fourier Transform in Section 8.2. 

The Exponentials eiwt and eist 

We use complex numbers to solve differential equations. For dy / dt = ay the solution 
y = Ceat is real. But second order equations can bring oscillations eiwt together with 

growth/decay from eat. Now y has sines and cosines, or complex exponentials. 

y = c1 e(a + iw)t + c2 e(a - iw)t or y = C1 eat cos wt+ C2 eat sin wt. (1 2) 
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Our goal is to follow those pieces of the complete solution to Ay" + By' + Cy = 0. 
Where does the point e<a+iw)t travel in the complex plane ? The next section connects 
a and w to the numbers A, B, C and solves the differential equation. 

The best way to track the path of e<a+iw)t is to separate a from iw. The path of eiwt is a 
circle. The factor eat turns the circle into a spiral. 

Rule for exponentials (13) 

This is the polar form! The factor eat is the absolute value r. The angle wt is the phase 
angle 0. As the time t increases, we follow those two parts: 

Absolute value eat grows with t if a > 0 eat decays if a < 0 

Phase angle eiwt goes around the unit circle when t increases by 21r / w 

The real part a decides stability. This is just like Chapter 1. We will see that damping 
produces a < 0 which is stability. In that case B > 0 in y" + By' + Cy = 0. 

This section is about the iw part of the exponent s. That produces the eiwt part of the 
solution y = est . The pure oscillations in Section 2.1 came from my" + ky = 0 with 
no damping. They had only this eiwt part (along with e- iwt , which travels in the opposite 
direction around the unit circle). The frequency is w = film,. 

Watch eiwt as it goes around the circle. If you follow its horizontal motion (its shadow 
on the x axis) you will see cos wt. If you follow its height on the y axis, you will see sin wt. 
The circle is complete when wt = 21r. So the period is T = 21r / w. 

y = sin wt 

t 

0 

Figure 2.7: y 11 + w2y = 0: One complex solution eiwt produces two real solutions. 

When we multiply eiwt by eat , their product est gives a spiral. The spiral goes 
in to the center if a is negative. The spiral goes outward a > 0. You are seeing the benefit of 
complex numbers, to merge oscillation and decay into one function. The real functions are 
eat cos wt and eat sin wt. The complex function is eat eiwt 

= est. 
Question What will be the time T and the crossing point X, when the spiral completes 

one loop and returns to the positive x-axis ? 

Answer The time T will be 21r / w, to complete each loop of the spiral. The crossing 
point on the x-axis will be X = eaT. At time 2T, the crossing will be at X2

. 
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Problem Set 2.2 

1 Mark the numbers s1 = 2 + i and s2 = 1 -2i as points in the complex plane. (The 
plane has a real axis and an imaginary axis.) Then mark the sum s1 + s2 and the 
difference s1 - s2. 

2 Multiply s1 = 2 + i times s2 = 1 -2i. Check absolute values : isi I I s2 I = I s1 s2 l-

3 Find the real and imaginary parts of 1/(2 + i). Multiply by (2 -i)/(2 -i): 

4 

1 
2+i 

2-i 2-i -------?
2 -i - 12 + il 2 - • 

Triple angles Multiply equation (10) by another ei0 

formulas for cos 30 and sin 30. 
cos 0 + i sin 0 to find 

5 Addition formulas Multiply ei0 
= cos 0 + i sin 0 times ei¢ = cos ¢ + i sin ¢ 

to get eiC0H) . Its real part is cos (0 + ¢) = cos 0 cos¢ -sin 0 sin¢. What is its 
imaginary part sin ( 0 + ¢) ? 

6 Find the real part and the imaginary part of each cube root of 1. Show directly that the 
three roots add to zero, as equation (11) predicts. 

7 The three cube roots of 1 are z and z2 and 1, when z = e21ri/3
. What are the three 

cube roots of 8 and the three cube roots of i ? (The angle for i is 90° or 1r /2, so 
the angle for one of its cube roots will be __ . The roots are spaced by 120°.) 

8 (a) The number i is equal to e1ri/2
. Then its /h power ii comes out equal to

a real number, using the fact that (es) t 
= est

. What is that real number ii ?

(b) ei1r /2 is also equal to e51ri/2
. Increasing the angle by 21r does not

change ei0 
- it comes around a full circle and back to i. Then ii has another

real value ( e51ri/2)i 
= e-51r 12

• What are all the possible values of ii ?

9 The numbers s = 3 + i and s = 3 -i are complex conjugates. Find their sum 
s + s = -Band their product (s)(s) = C. Then show that s2 + Bs + C = 0 and also 
s2 + Bs + C = 0. Those numbers s and s are the two roots of the quadratic equation 
x2 +Bx+C = 0. 

10 The numbers s = a+ iw ands = a -iw are complex conjugates. Find their sum 
s + s = -Band their product (s)(s) = C. Then show that s2 + Bs + C = 0. The 
two solutions of x2 

+ Bx + C = 0 are s ands. 

11 (a) Find the numbers (1 + i)4 and (1 + i)8
. 

(b) Find the polar form rei0 of (1 + iv3)/( v13 + i).
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12 The number z = e2rri/n solves Z
n 

= 1. The number z = e2rri/2n solves z2n 
= 1.

How is z related to Z? (This plays a big part in the Fast Fourier Transform.) 

13 (a) If you know ei0 and e-ie, how can you find sin 0?

(b) Find all angles 0 with ei0 
= -1, and all angles¢ with ei</J = i.

14 Locate all these points on one complex plane : 

(a) 2 + i (b) (2 + i)2 
(c) 

1 
2+i 

(d) 12 + ii

15 Find the absolute values r = lzl of these four numbers. If 0 is the angle for 6 + Si, 
what are the angles for these four numbers ? 

(a) 6 - Si (b) (6 - Si)2 
(c) 

1 
6 - Si 

(d) Si + 6

16 What are the real and imaginary parts of ea + i1l" and ea + iw ?

17 (a) If isl = 2 and lzl = 3, what are the absolute values of sz ands/ z?

(b) Find upper and lower bounds in L :s; is+ zi :s; U. When does Is+ zi = U?

18 (a) Where is the product (sin 0 + i cos 0)(cos 0 + i sin 0) in the complex plane?

(b) Find the absolute value ISi and the polar angle¢ for S = sin 0 + i cos 0.

This is my favorite problem, because S combines cos 0 and sin 0 in a new way. 
To find ¢, you could plot S or add angles in the multiplication of part (a).

19 Draw the spirals e(1 - i)t and e(2 - 2i)t . Do those follow the same curves? Do
they go clockwise or anticlockwise ? When the first one reaches the negative x-axis, 
what is the time T ? What point has the second one reached at that time ? 

20 The solution to d2 y / dt2 
= -y is y = cos t if the initial conditions are y(O)

__ and y'(O) = __ . The solution is y = sin t when y(O) = __ and 
y'(O) = __ . Write each of those solutions in the form c1 eit + c2 e-it, to see 
that real solutions can come from complex c1 and c2. 

21 Suppose y(t) = e-t eit solves y" + By' + Cy = 0. What are Band C? If this 
equation is solved by y = e3it , what are B and C?

22 From the multiplication eiA e-iB = ei(A - B), find the "subtraction formulas" 
for cos (A - B) and sin (A - B).

23 (a) If rand Rare the absolute values of sand S, show that r R is the absolute value
of sS. (Hint: Polar form!)

(b) Ifs and Sare the complex conjugates of sand S, show that sS is the complex
conjugate of sS. (Polar form!)
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24 Suppose a complex number s solves a real equation s3 
+ As2 

+ Bs + C = 0 
(with A, B, C real). Why does the complex conjugates also solve this equation? 
"Complex solutions to real equations come in conjugate pairs s and s."

25 (a) If two complex numbers add to s + S = 6 and multiply to sS = 10, what are

sand S? (They are complex conjugates.)

(b) If two numbers add to s + S = 6 and multiply to sS = -16, what are s and
S? (Now they are real.)

26 If two numbers sand S add to s + S = -Band multiply to sS = C, show thats and 

S solve the quadratic equation s2 
+ Bs + C = 0. 

27 Find three solutions to s3 
= -8i and plot the three points in.the complex plane. What 

is the sum of the three solutions ? 

28 (a) For which complex numbers s = a + iw does est approach O as t -+ oo?
Those numbers s fill which "half-plane" in the complex plane?

(b) For which complex numbers s = a+ iw does sn approach O as n -+ oo?

Those numbers s fill which part of the complex plane? Not a half-plane!
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2.3 Constant Coefficients A, B, C 

Section 2.1 presented the important equation my" + ky = 0. That is a special case of 
this second order constant coefficient equation. We still need two initial conditions : 

d2y dy 
A-+B-+Cy=O 

dt2 dt 
starting from y(0) and y'(0). (1) 

The coefficients A, B, C can be any constants. For pure oscillation, A was the mass m 
and C was the spring constant k, both positive. B > 0 introduces damping. In this 
section the numbers A, B, C can be positive or negative or zero, so we may have 
exponential growth or decay or (damped) oscillation. With zero on the right hand side of 
equation (1), this section is finding null solutions Yn: unforced motion. 

Our first job is to solve equation (1). When the coefficients are constant, we always 
look for exponentials est

. That number s can be positive (y will grow) or negative 
(y decays) or pure imaginary (y oscillates). If s is a complex number a + iw, then its 
real part a controls growth or decay. The imaginary part w controls oscillation. 

We will see the solutions clearly, because A, B, C are constant. The right choice of 
y(0) and y'(0) will produce the growth factor g(t) that multiplies all inputs to give Y

v
· 

The key step is to find the rate s in y = 
est

. A second order equation normally has 
two possible rates s1 and s2. To find those numbers, substitute y = est into equation (1): 

(2) 

The factor est can be divided out because it is never zero. This leaves an all-important 
equation to determine s : 

Characteristic equation As2 + Bs + C = 0. (3) 

This is an ordinary quadratic equation for s. Every quadratic has two roots s1 and s2. 

They could be real, they could be complex, they could be equal. The two roots come from 
the quadratic formula: 

Two values for s 
-B+,vB2 -4AC

S1 = 
2A 

-B - ,vB2 - 4AC
2A 

(4) 

Those roots add up to s1 + s2 = -B / A. The roots multiply to give s1 s2 = C / A. 
The question of real roots or complex roots is highly important, and it has a direct answer: 

. Real roots B2 > 4AC Equal roots B2 
= 4AC Complex roots B2 < 4AC 

When B2 
- 4AC is positive, its square root is real. Then we have real roots s1 > s2 . 

When B2 
- 4AC = 0, its square root is zero and s1 = s2 (borderline case: equal roots). 

When B2 
- 4AC is negative, its square root is imaginary. The quadratic formula (4) 

produces two complex numbers a + iw and a - iw with the same real part a = -B /2A. 
Let me look at all three cases, starting with examples. 
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Two Real Roots, One Double Root, No Real Roots 

A picture will show you how B2 
- 4AC decides real vs. complex. The three parabolas 

in Figure 2.8 have C = 0 and C = 1 and C = 2. By increasing C we lift the parabolas.

The critical value is C = 1, when the middle parabola barely touches y = 0 at s = l. 
C = 1 gives a double root and in this case B2 = 4AC = 4. 

C 

2 
y = s2 - 2s + 2; s=l±i 

no real roots y = s2 - 2s + 1 = (s - 1)2 s = 1, 1 

1 

y = s2 - 2s + 0 = s(s - 2) s = 0,2 

real roots 

Figure 2.8: Lowest curve: Two roots for C = 0. Middle curve: Double root for C = 1. 
Highest curve misses the axis: No real roots for C = 2 -+ complex roots a+ iw.

All three parabolas have A = l and B = -2 and B2 = 4. The test that compares 
B2 to 4AC is comparing 4 to 4C. This shows again that C = 1 is at the critical 
borderline B2 = 4AC. Any value C > 1 will lift the parabola above the y = 0 axis. 
The roots of s2 

- 2s + C = 0 will be complex, and y 11 - 2y' + Cy = 0 will give damped
oscillation.

For C = 2 that equation becomes (s - 1)2 = -1. Thens - l = i ors - l = -z. 
The two complex roots ares= l + i ands = l - i. The quadratic formula (4) agrees. 

Example 1 y" + 3y' + 2y = 0 with y = est 

Real Roots s1 > s2 

Substitute A, B, C = 1, 3, 2 to finds. 

As2 +Bs+C=s2 +3s+2=0 factors into (s+l)(s+2)=0. (5) 

The roots are both negative: s1 = -1 and s2 = -2. Those numbers come from the quadratic 
formula (4) and they come faster from the factors in (5): The first factor s + l is 
zero when s1 = -1, ands+ 2 = 0 when s2 = -2. Damping-+ negatives-+ stability.
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The complete solution to our linear differential equation is any combination of the 
two pure exponential solutions. These are null solutions (homogeneous solutions). 

Null solutions (6) 

The numbers c1 and c2 are chosen to make y(0) and y'(0) correct when t = 0: 

Sett= o y(0) = C1 + C2 and y'(0) = -c1 - 2c2 . (7) 

Those two equations safely determine c1 = 2y(0) + y' (0) and c2 = -y(0) - y' (0) : 

Final solution y(t) = c1 e-t + c2 e- 2t = y(0)(2e-t - e-2t) + y'(0)(e-t - e-2t). 

Example 2 Solve y" - 3y' + 2y = 0. The coefficient B has changed from 3 to -3. 
Solution Substitute y = est as before. Negative damping gives positive s.

s2 
- 3s + 2 = 0 (s-l)(s- 2 )=0 s1 = 2 and s2 = 1. 

The complete solution is now y(t) = c1 e2t + c2 et . Exponential growth= instability. 

Equal Roots s1 = s2 

The roots of As
2 

+ Bs + C will be equal when B2 = 4AC. When you factor the quadratic, 
you see (s - s1)2 times A. The factors - s1 appears twice: s = s1 is now a double root.

Our est method has a problem when it finds one double roots = s1. After y = es 1 t , 
what is a second solution to our second order equation ? 

We will show that y = te81t is also a solution when s2 = s1. 

Example 3 Solve y" - 2y' + y = 0. Those coefficients 1, -2 , 1 have B2 = 4AC.

Solution Substitute y = est as usual. The roots = 1 is repeated: two equal roots.

s2 - 2s + 1 = 0

With that root, y = et solves the equation: easy to check. A second solution is needed ! We 
now confirm that y = test = tet is also a solution of y" - 2y' + y = 0 : 

A double root of As2 + Bs + C = 0 mustbes1 = -B/2A.
Then Y1 = e51t 

and also Y2 = tesit solve Ay" +By'+ Cy= 0.

Proof With simple roots, the lowest parabola in Figure 2.8 cuts across Y = 0. 
The middle parabola Y = (s - 1)2 is tangent to the Y = 0 axis at the double root 1, 1. 
"The graph touches twice at the same point s = s1 ." The root is s1 = s2 = - B /2A. 
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Height zero 

Slope zero 

dY 
Y = Asi + Bs1 + C = 0 and also ds = 2As1 + B = 0. (8) 

To confirm that Ay" +By'+ Cy is zero for y = tes1t , look at y and y' and y": 

y' s1tes1t 
+ es1t 

= 
S1Y + es1t 

y" s1y' + s1esit 
= s1(s1y + esit ) + s1esit 

= 
s�y + 2s1e81t 

Substituting y" and y' and y into Ay" + By' + Cy, we get 0 + 0 from equation (8) : 

The quadratic formula agrees with s1 = -B /2A = s2 , because B2 
- 4AC = 0. 

The square root disappears, leaving -B /2A for both solutions. Here is the simplest example 
of a double root s1 = s2 and a factor t in the second solution. 

Example 4 Solve y" = 0. The coefficients 1, 0, 0 have B2 
= 4AC. 

Solution Substitute y = est to find s2est
= 0 and s2 

= 0. The double root is s = 0. 
The usual solution y = est 

= e0t 
= 1 does have y 11 = 0. We need a second solution. 

The rule y = test still applies when s = 0. That second solution is y = te0t 
= t.

We know this already : y = l and y = t solve y" = 0. 

Higher Order Equations 

Problem 18 will extend these ideas to nth order equations (still constant coefficients!). 
Substitute y = est to get an nth degree polynomial in s. Now there are n roots. If those 
roots s1, s2, ... , Sn are all different, they give n independent solutions y = est

. But 
if a root s1 is repeated two or three or m times, we need m different solutions for s = s1 : 

Multiplicity m Them solutions are y = 
e81t , y = t e81t, ... , y = 

t=-1 e81t. (9)

A simple example would be the equation y"" = 0. Substituting y = est leads to s4 
= 0. 

This equation has four zero roots (multiplicity m = 4). The four solutions predicted by 
equation (9) are y = l, t, t2

, t3. No surprise that those all satisfy the equation y"" = 0: 
their fourth derivatives are zero. 

Here is a fourth order equation that produces two real roots and two complex roots : 

y"" - y = 0 y = est leads to s4 - 1 = 0 (10) 

The four roots are s1 = 1 and s2 -1 and s3 = i and s4 = -i. Then the complete
solution toy"" = y is y = c1 et 

+ c2e-t 
+ c3eit 

+ c4e-it. 



94 Chapter 2. Second Order Equations 

Complex Roots s1 = a + iw and s2 = a - iw

The formula for the roots of a quadratic includes the square root of B2 - 4AC.
When that number is negative, the square root is imaginary. The example y" + y = 0 
has A, B, C equal to 1, 0, 1, so B2 -4AC = -4. The quadratic is As2 +Bs+C = s2 + 1. 

The solutions to s2 + 1 = 0 are s = i and s = -i. The solutions to s2 + 4 = 0 are s = 2i 
ands= -2i. The oscillations from y" + 4y = 0 can be written in two ways: 

B = 0 : No damping I y = c1 e2it + c2 e-2it = C1 cos 2t + C2 sin 2t. (11) 

The real part of s is zero when B = 0 : pure oscillation. 
Now bring in damping: y" + y 1 

+ y = 0. For the solutions to s2 + s + 1 = 0, 
go to the quadratic formula: A, B, C are 1, 1, 1 and B2 - 4AC is -3 : 

s
2 + s + 1 = 0

-1+\/-3 1 v3. 
S1 = ---- = -- +-i 2 2 2 

1 v3 
S2 = -- - -'I,. 

2 2 

The two complex roots s1 and s2 have the same real part a = -1 /2. Their imaginary parts 
w and -w have opposite signs (as in ./3/2 and -./3/2). Those are the plus and 
minus signs on the square root of B2 - 4AC. Assuming that A, B, Care real numbers, 
the two roots of As2 + Bs + C = 0 are complex conjugates. If I place s1 and s2 onto 
the complex plane, they are symmetric mirror images across the real axis. 

imaginary axis 
iw 

-iw

y])2 - 1 2 
-

The roots are 
a + iw and a - iw.
Their product is 
a2 +w2 =C/A=l. 

The conjugate of s = a + iw is s = a - iw. The magnitude is Is I = v a2 + w2 . 
In the example with a = -1/2 and w = ./3/2, the magnitude is exactly Isl = 1. 

This is because (-1/2) 2 + ( ./3/2) 2 
= 1. The circle in the picture has radius 1. The unit 

circle is extremely important to recognize. The complex numbers on that circle 
have the form s = cos 0 + i sin 0, because (cosine) 2 + (sine) 2 = 1. The angle 0 is measured 
from the positive real axis. In the figure this angle is 120° or 1r /3. 
The points on the unit circle are given by Euler's Formula ei9 = cos 0 + i sin 0. 

We can switch between the complex form for y( t) and its equivalent real form. 

Real y(t) = eat (C1 cos wt+ C2 sin wt) 

Euler's formula for eiwt and e- iwt shows that C1 = c1 + c2 and C2 = ic1 - ic2 . 
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With those key facts about complex numbers a + iw, we come back to the example 
s2 + s + 1 = 0 and the differential equation it comes from : 

This number e(a + 'iw)t is not on the unit circle. The real part a = -1/2 is responsible.
When a= 0, eiwt goes around the circle. When a < 0, e(a+iw)t spirals to zero: damped.

The magnitude of eiwt is 1, but eat grows large or small depending on the sign of a: 

Growth a > 0 

Decay a < 0 

Magnitude le(a+iw)tl = eat ---+ oo 
Magnitude le(a+iw)tl = eat ---+ O 

That real part is always a = -B /2A. Every equation Ay" + By' + Cy = 0 will have
damping and decay if A and B are positive. Here is an example with B = -1 :

Negative damping -+ growth s2 
- s + 1 = 0 

That changes a to + ½. The roots a ± iw are now coming from s2 
- s + l = 0 : 

. l v'3. h . d s1 =a+ iw = +
2 

+ 
2

i as magmtu e isil=Va2 +w2 =1.

This point s1 is on the unit circle, because I s1 I = 1. Its real part a is + ½, so s1 is on 
the right side (not left side) of the imaginary axis. The angle in s1 = ei0 changes to 0 =

60° . Now s1 and s2 are on the right half of the unit circle (the unstable half: est grows). 

"Anti-damping" B = -1 
1 

Growth rate a =
2 

In most physical problems we expect positive damping B > 0 and negative growth rate 
a < 0. Then the differential equation is stable and its null solutions die out as t ---+ oo. 

Overdamping versus Underdamping 

This section emphasizes the difference between B2 > 4AC and B2 < 4AC. That is the 
difference between real roots and complex roots. This is a difference you can see-with your 
own eyes and not just with formulas. For damping coefficients B 1, 2, 3 
the solutions to y 11 + By 1 + y = 0 will approach zero in different ways (Figure 2.9). 

At this time I want to vary the damping B instead of the stiffness C.
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y(O) 

0 

Figure 2.9: y(t) goes directly to zero (overdamped) or it oscillates (underdamped). 

The four damping possibilities match the four possibilities for roots of As2 
+ Bs + C = 0. 

This table brings the whole section together : 

Overdamping B2 
> 4AC Real roots es ,t and es2t 

Critical damping B2 = 4AC Double root e81 t and te81 t

Underdamping B2 
< 4AC Complex roots eat cos wt, eatsin wt

No damping B = 0 Imaginary roots cos wt and sin wt

Figure 2.9 shows how the graph crosses zero and comes back, for underdamping. 
This is like a child's swing that is settling to zero (so the child can get off the swing). 
When B = 0 we have a = 0 and imaginary roots ±iw and pure spring-mass oscillation. 

Figure 2.10 shows four parabolas all with A = C = 1. The damping coefficients are 
B = 0, l, 2, 3. When B = 3 the damping is strong and s2 

- 3s + l = 0 has real roots. 

When B = 2 the damping is critical and s2 
- 2s + 1 = 0 has a double root s = l, 1. 

When B = l the damping is weak and the roots are complex. The solutions y = eat cos wt

and y = eat sin wt oscillate as the eat term goes to zero. When B = 0 there is no decay. 

y = s2 
+ 0 s + 1 s = i, -i 

y=s2 +1s+l s=(-l±v3i)/2 

------\-------"-�"-----+-+--- s y = s2 + 2 s + 1 s = -1, -1 
s2 

overdamped 
B>2

y = s2 
+ 3 s + 1 s = (-3 ± v'5)/2 

Figure 2.10: As B increases, the lowest point on the parabola moves left and down. 
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Fundamental Solution = Growth Factor = Impulse Response 

One special choice of initial conditions is all-important: g ( 0) = 0 and g 1 ( 0) = 1 / A.
The letter g instead of y picks out this fundamental solution. This is a null solution 
with the jump start g'(0). It is also a particular solution to Ag"+ Bg' + Cg = o(t). 
This fundamental solution from the delta function will lead us to all solutions. 

Review: The roots of As2 
+ Bs + C = 0 are s1 and s2. They give two solutions e81 t 

and e82 t to the null equation, if s1 -=/- s2. We want the combination g = c1e81 t 
+ c2e82 t that 

matches g ( 0) = 0 and g 1 ( 0) = 1 / A. Choose the right c1 and c2 : 

g(0) = C1 + C2 = 0 
g'(0)=s1c1+s2c2= 1/A 

Multiply by s2 
Then subtract 

S2 C1 + S2 C2 = 0 
(s1 -s2)c1= 1/A 

es1t _ es2t 1 
The fundamental solution g(t) = ----- bas c1 =

( 
= - c2 (12) 

A(s1 -s2) A 81 - 82) 

No damping For the oscillation equation my 11 + ky = 0, the roots of ms2 
+ k = 0 are 

imaginary: s1 = i� = iw and s2 = -i� = -iw. Then the fundamental solution 
has a simple form with A = m : 

es1t_es2t eiwt_e-iwt 2isinwt sinwt 
g(t) = 

m(s1 -s2) 
= 

m(2iw) 2imw Aw 
(l3) 

This is exactly the impulse response from Section 2.1. Clearly g(0) = 0 and g'(0) = l/A. 

Underdamping Now s1 = a+ iw and s2 = a -iw. There is decay from a = -B /2A 
and oscillation from w. Soon we will write p for B /2A and wd for w.

e(a+ iw)t_e(a-iw)t sinwt sinwdt 
g(t) = . = eat -- = e-pt ____ (14) 

A(2iw) Aw Awd 

Critical damping Now B2 
= 4AC and the roots are equal: s1 = s2 = -B /2A.

The second solution to the differential equation (after e81 t) is g(t) = te81 t. Dividing by A, 
this is exactly the solution that has g(0) = 0 and g '(0) = 1/ A. 

tes 1t t e-Bt/2A
g(t) =-=---

A A 
(15) 

Overdamping When B2 > 4AC, the roots s1 and s2 are real. Formula (12) is best. 

The real purpose of g(t) is to solve Ay" +By'+ Cy= f(t) with any right side f(t). 
This impulse response g is the fundamental solution that gives all other solutions : 

t 

Solution for any f ( t) Yp
(t) = j g(t -s)f(s)ds (16) 

0 

The step response to J(t) = 1 is Y
p 

= integral of g(t). This comes in Section 2.5. 
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Delta Function and Impulse Response 

In this section g(t) is a null solution with initial velocity g'(0) = 1/A. The same g(t) is a 
particular solution in the next section, with initial velocity zero but driven by an impulse 
f (t) = o(t). Only a delta function could make this possible: g(t) is Yn for one problem 
and Yp for another problem. 

The informal explanation is to integrate all terms in Ag 11 + B g 1 + Cg = 8 ( t). 
On the right side the integral is 1. The integration is over a very short interval 0 to D.. 
On the left side the integral of Ag" is Ag'(D-), plus terms of order D. going to 0. 
To match 1 on the right side, the impulse response g(t) starts immediately with g' = l/A. 

Example 5 The best example is g " ( t) = 8 ( t) with ramp function g ( t) = t. 

I 
The derivative of the ramp is a step function. You see the sudden jump to g' = l. 
The ramp g(t) = t agrees with formula (15) in this case with A = l and B = C = 0. 
The null equation g 11 

= 0 starting from g(0) = 0 and g'(0) = 1 is solved by g(t) = t. 
Everything is zero fort< 0. Then we see the ramp g(t) and the step g'(t) and g 11 

= o(t). 
This is the limiting case of equation (12) when Band C and s1 and s2 approach zero. 

A personal note Thank you for accepting the slightly illegal input 8 ( t) and its response g ( t). 
I could have left those out of the book. But I couldn't have lived with myself. They are truly 
the key to theory and applications. 

Shift Invariance from Constant Coefficients 

For a constant coefficient equation, the growth from time s to time t is exactly equal to 
the growth from Oto t - s. The problem is shift invariant. We can start the time interval 
anywhere we want. For all intervals of the same length, we will see the same growth 
factor g ( t - s). This is the growth of input 

Inputs f ( s) at times s 

t 

Total output y(t) = j g(t - s) f(s) ds. 

0 

(17) 

This is exactly like the main formula y(t) = J ea (t -s)q(s) ds in Chapter 1. There the 
growth factor wasg(t) = eat _ The equationdy/dt- ay = q(t) had constant a. 

Shift invariance is lost if any of the coefficients A, B, C change with time. The growth 
factor becomes g(s, t), depending on the specific start s and end t (not just on the 
elapsed time t - s). In this harder case the solution is y(t) = Jg( s, t) f ( s) ds. 

For a first order equation, Section 1.6 found g(s, t). But second order equations 
with time-varying coefficients are usually impossible to solve with familiar functions. 
We often have no formula for g(s, t)-the response at time t to an impulse at time s. 
Shift invariance (constant coefficients) is the key to successful solution formulas. 
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Better Formulas for s1 and s2 

The solutions to As2 
+ Bs + C = 0 are s 1 and s2 . The formula for those two roots 

involves B2 - 4AC. We have seen that B2 > 4AC is very different from B2 < 4AC.

Overdamping leads to real roots, underdamping leads to complex roots and oscillations. 
The formulas are so important that the whole world of science and engineering has tried 
to make them simpler. 

Here is the natural way to start. Assign letters to the ratios B /2A and C / A. We know 
C / A as w;. This is k / m in mechanics. It gives the "natural frequency" with no damping. 
For the ratio B /2A I will use the letter p. The main point is to simplify s 1 and s2 : 

-B± ../B2 -4AC

2A 
(18) 

A big improvement ! Two symbols instead of three, which makes sense because we can 
divide As2 

+ Bs + C = 0 by A. By introducing p = B /2A we remove the 2 and the 4 
in equation (18). 

The comparison of B2 to 4AC is now the comparison of p2 tow;. When p2 > w;, 
the roots are real (overdamping). When p2 - w; is negative, s 1 and s2 will be complex. 
We have oscillation at a damped frequency wd, lower than the natural frequency Wn 

s1 and s2 
- -p ± iJw� - p2 (19) 

The Damping Ratio Z

The presentation could stop there. We see that the ratio of p to Wn is highly important. This 
fact suggests one final step, that we take now: Z = p/wn is the damping ratio Z. In 
engineering this ratio is called zeta (the Greek letter is (). To make it easier to write, allow 
me to use Z (capital zeta in Greek= capital Z in Roman.) Then we can replace p by Zwn. 
Now the formulas = -p ± iwd uses Wn and Z: 

Damping ratio Z = _!!_ 
Wn 

The damped w� is w; - p2 = w;(l - Z 2 ). Its square root wd is the damped frequency. The 
null solutions are Yn(t) = e-Zwn t (c1 COS Wdt + C2 sin Wdt). 

Underdamping is Z < l, critical damping is Z = l, and overdamping is Z > l. 
The key points become clear because this ratio Z is dimensionless : 

Damping ratio z _ _ P 
__ B_/_2A _ _ _ B_

- Wn - vc/A - v'4AC

b 
v14mf" 

(21)
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If time is measured in minutes instead of seconds, the numbers A, B, C are changed by
602 and 60 and 1. The ratio of B to v 4AC is not changed : a factor of 60 for both.
This confirms that B2 

- 4AC is a suitable quantity to appear in the quadratic formula,
because B2 and 4AC have the same units.

One last point is a good approximation when Z is small. The square root of 1 - Z2 is
close to 1 - ½ Z2

. This comes from calculus (linear approximation using the tangent line).
The good way to confirm it is to square both sides. Then Z4 / 4 is very small.

v'l - Z2 � 1 - �Z2 becomes 1 - Z2 
� 1 - Z2 + �Z4

. (22)2 4

The good measure of damping is the ratio Z = B / J 4AC. This key dimensionless
number decides everything :

Z > l B2 > 4AC and real roots: Overdamping and no oscillation.
Z < l B2 < 4AC and complex roots: Underdamping and slow oscillation.
Z = l B2 = 4AC and a double root -B /2A: critical damping.

Here is a curious fact. For very large B, the roots are approximately s1 = -1 / B and
s2 = -B. That root s2 gives fast decay. But the actual decay of y( t) is controlled by s1, 

which approaches zero ! So increasing B actually slows down this dominant decay mode.
Note that many authors refer to s1 and s2 as poles. They are poles of the transfer function

Y(s) 1/(As2 
+ Bs + C), where Y becomes 1/0. We will come back to

transfer functions ! Some authors emphasize time constants rather than exponents. The
exponential e-pt has time constant T = l/p. In that time T, e-pt decays by a factor e.

• REVIEW OF THE KEY IDEAS •

1. The equation Ay 11 + By 1 + Cy = 0 is solved by y = est when As2 
+ Bs + C = 0.

2. The roots s1, s2 are real if B2 > 4AC, equal if B2 = 4AC, complex if B2 < 4AC.

3. Negative real roots give stability and overdamping: y(t) = c1 e81 t + c2 e82t --+ 0.

4. Equal roots s = -B /2A when B2 = 4AC. Change the second solution to y2 = te
st

. 

5. Complex roots a ± iw give underdamped oscillations : eat ( C 1 cos wt + C2 sin wt).

6. The initial valuesg(0) = 0 andg 1(0) = 1/A giveg(t) = (e81 t - e82t) /A(s1 - s2). 
The same g(t) solves Ag"+ Bg' + Cg = o(t). This is the fundamental solution.

7. s1 and s2 become -p ± iwd with p = B /2A and w� = w� - p2
. With damping ratio

z = B/v4AC < 1, those complex S1 and S2 are -Zwn ± iwn v'I - Z2
. 
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Problem Set 2.3 

1 Substitute y = est and solve the characteristic equation for 8 : 

(a) 2y11 +8y 1 +6y=0 (b) y1111 - 2y11 + y = 
0. 

2 Substitute y = est and solve the characteristic equation for 8 = a + iw : 

(a) y"+2y'+5y=0 (b) y 1111 + 2y 11 + y = 0

101 

3 Which second order equation is solved by y = c1e-2t + c2e-4t? Or y = te5t? 

4 Which second order equation has solutions y = c1 e-2t cos 3t + c2e-2t sin 3t? 

5 Which numbers B give (under)(critical) (over) damping in 4y11 + By 1 + 16y = 0? 

6 If you want oscillation from my 11 + by 1 + ky = 0, then b must stay below __ . 

Problems 7-16 are about the equation As2 + Bs + C = 0 and the roots s1, s2• 

7 The roots 81 and 82 satisfy 81 + 82 = -2p = -B /2A and 8182 = w;_ = C / A. Show 
this two ways : 

(a) StartfromA82+B8+C = A (8-81 )(8-82). Multiply to see8182 and81 +82.

(b) Start from 81 = -p + iwd, 82 = -p - iwd

8 Find 8 and y at the bottom point of the graph of y = A82 + B8 + C. At that minimum 
point 8 = 8min and y = Ymin, the slope is dy/d8 = 0. 

9 The parabolas in Figure 2.10 show how the graph of y = A82 + B8 + C is raised 
by increasing B. Using Problem 8, show that the bottom point of the graph moves left 
(change in 8min) and down (change in Ymin) when B is increased by !}.B . 

10 (recommended) Draw a picture to show the paths of 81 and 82 when 82 + B8 + 1 = 0 
and the damping increases from B = 0 to B = oo. At B = 0, the roots are on the 
__ axis. As B increases, the roots travel on a circle (why?). At B = 2 ,  the 
roots meet on the real axis. For B > 2 the roots separate to approach O and -oo. 
Why is their product 8182 always equal to 1? 

11 (this too if possible) Draw the paths of 81 and 82 when 82 + 28 + k = 0 and the 
stiffness increases from k = 0 to k = oo. When k = 0, the roots are __ . 
At k = 1, the roots meet at 8 = __ . Fork -+ oo the two roots travel up/down 
on a __ in the complex plane. Why is their sum 81 + 82 always equal to - 2 ?  

12 If a polynomial P( 8) has a double root at 8 = 81, then ( 8 -81) is a double factor and 
P(8) = (8 - 81 )2 Q(8). Certainly P = 0 at 8 = 81. Show that also dP/d8 = 0 
at 8 = 81. Use the product rule to find dP / d8. 

13 Show that y" = 2ay' - (a 2 + w2)y leads to 8 =a± iw. Solve y" - 2y1 + lOy = 0. 
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14 The undamped natural frequency is Wn = �. The two roots of ms2 
+ k = 0 are 

s = ± iwn (pure imaginary). With p = b/2m, the roots of ms2 
+ bs + k = 0 are 

si, s2 = -p ± Jp2 - w�. The coefficient p = b/2m has the units of 1/time. 

Solve s2 
+ 0.1s + 1 = 0 and s2 

+ 10s + 1 = 0 with numbers correct to two decimals. 

15 With large overdamping p >> Wn, the square root Jp2 -w; is close to 
p - w;/2p. Show that the roots of ms2 

+ bs + k are s1 :::::;; -w!/ 2p = (small) 
and s2 :::::;; -2p = -b/rn (large). 

16 With small underdamping p < < Wn, the square root of p2 
- w; is approximately 

iwn - ip2 /2wn. Square that to come close to p2 
- w;. Then the frequency for small 

underdamping is reduced to wd :::::;; Wn - p2 /2wn. 

17 Here is an 8th order equation with eight choices for solutions y = est : 

18 

d8y 
- = y becomes s8 est 

= 
est and s8 = 1 : Eight roots in Figure 2.6.

dt8 

Find two solutions est that don't oscillate (s is real). Find two solutions that only 
oscillate (s is imaginary). Find two that spiral in to zero and two that spiral out. 

dny dy n An -d 
+ · · · + A1 -d 

+ Aoy = 0 leads to An s + · · · + A1s + Ao = 0.
tn t 

Then roots s1, ... , Sn produce n solutions y(t) = est (if those roots are distinct). 
Write down n equations for the constants c1 to Cn in y = c1es , t 

+ · · · + Cnes"t by 
matching then initial conditions for y(O), y 1 (0), ... , Dn- 1y(O). 

19 Find two solutions to d2015y / dt2015 = dy / dt. Describe all solutions to s2015 = s. 

20 The solution toy" = 1 starting from y(O) = y'(O) = 0 is y(t) = t2 /2. The 
fundamental solution to g 11 = <5 ( t) is g ( t) = t by Example 5. Does the integral 
J g(t - s)f ( s  )ds = J(t - s )ds from Oto t give the correct solution y = t2 /2? 

21 The solution toy 11 + y = 1 starting from y(O) = y 1 (0) = 0 is y = 1 - cost. The 
solution tog"+ g = J(t) is g(t) = sint by equation (13) with w = 1 and A= 
1. Show that 1 - cost agrees with the integral J g(t - s)f(s)ds = J sin(t - s)ds.

22 The step function H(t) = 1 fort 2: 0 is the integral of the delta function. So the step 

response r(t) is the integral of the impulse response. This fact must also come 
from our basic solution formula : 

t 

Ar"+ Br'+ Cr= 1 with r(O) = r'(O) = 0 has r(t) = j g(t - s ) 1 ds 

0 

t 

Change t - s to T and change ds to -dT to confirm that r( t) = Jg( T )dT. 
0 

Section 2.5 will find two good formulas for the step response r(t). 
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2.4 Forced Oscillations and Exponential Response 

The equation Ay" +By'+ Cy = 0 has no forcing term. Its right side is zero. This equation is 
homogeneous. The null solution Yn(t) c1esit 

+ c2es2t is controlled by
the initial conditions y ( 0) and y' ( 0). If those are zero, the system never moves. 

The equation Ay" + By' + Cy = f (t) is forced or driven by that new term f (t). 
Previously y = 0 was a possible solution. Now we can expect a particular solution Yp· 

This section is about driving forces f = est and eiwt and cos wt and sin wt. For 
f = est , the next example will show you how to find Yp · 

Exponential Driving Force 

In this example, one particular solution Yp(t) = Yest is a multiple of the input e4t. 
All we have to do is find that number Y, by substituting into the differential equation. 

Example 1 Solve y" + 5y' + 6y = e4t. One particular solution will be Yp = Y e4t. 

When Y e4t is substituted into the equation, all terms contain e4t : 

y" + 5y' + 6y = l6Y e4t + 20Y e4t + 6Y e4t 
= e4t . (1) 

The left side is 42 Y e4t. This matches the right side e4t when Y = l / 42 : 

Particular Y
v 

42 Y e4t 
= e4t gives 42 Y = 1 (2) 

The complete solution has the form y = Yp + Yn· There are two arbitrary constants 
c1 and c2 in the solution Yn(t) to the homogeneous equation (the null equation with 
forcing term = zero). Look for the two exponents s1 and s2 that solve the quadratic 
equation As2 

+ Bs + C = 0. We know how to find the null solution Yn· 

Substitute y = est into y" + 5y' + 6y = 0. Cancel est to find s2 + 5s + 6 = 0. 

That quadratic factors into (s + 2)(s + 3). This is zero for s = -2 and s = -3. 
Those roots of the "characteristic equation" are the exponents in the null solution Yn ( t). 
This is the homogeneous solution = complementary solution = transient solution,
which decays to zero at t = oo when there is damping. 

Null solution 

The final step is to choose c1 and c2 so that y = Yp + Yn = }
2 
e4t 

+ Yn satisfies the initial 
conditions. This will complete Example 1, by getting it right at t = 0. 

Initial position 

Initial velocity 

1 
y(0) = 

42 
+ C1 + C2 

y' ( 0) = _±_ - 2 C1 - 3 C2 
42 

Those two equations tel1 us the correct values c1 and c2 , when y(0) and y'(0) are given. 
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Exponential Response Formula 

We can turn that example into a formula for Y that almost always succeeds. Put y = Yest 

into the equation. Each derivative multiplies y by s .  So A y 11 + B y 
1 + Cy will multiply

y = Yest by the number As 2 + Bs + C. Divide by that number to see Y: 

Ay" +By'+ Cy= est is solved by 
1 

Bs + C 
est 

(3) 

That fraction Y is called the transfer function. It 'transfers' the exponential input est 

into the exponential output Yp = Yest
. The formula allows s to be an imaginary iw

or any complex numbers = a + iw. Use the exponents that is in the driving force f:

. t 
1 · 

A y" +B y'+ Cy = eiw leads to yp (t) = --------- eiwt _ 
A(iw) 2 + B(iw) + C 

(4) 

Example 2 y" + y' = eit has s = iw = i. Substitute y = Y eit and solve for Y: 

(i2 +i)Y = 1
1 

't Yp (t) = _1 + i e• . (5) 

Example 3 (important) Solve y" + y' = cost. The cosine is the real part of eit .

Warning: The solution will not have the form y = Y cost. The derivative -Y sin t
would appear in the differential equation, with no other term to cancel it. The correct
solution involves both cost and sin t. Damping from y 

I delays the cosine. 
Here Yp (t) in Example 3 is the real part of yp

(t) in Example 2. Please use this idea:
The real part of the input e iwt produces the real part of the output Ye iwt . 

Step 1 Write Y = -
1- = -

1- (
-l -i

) = 
- l -i.

-l+i -l+i -1-i 2 
. -1-i 1 

Step2 The real part of Ye•t = -- ( cost+isint) is Yp = -(-cost+sint).
2 2 

The exponential response formulas are (3) and (4). The only time they fail is when the
denominator in the fraction is zero. The formula would then contain 1/0. That happens
when the exponent s in the driving term equals one of the exponents s 1 and s 2 in the null
solution Yn = c1 

es ' t + c2e
s2t . This is called resonance: s = s1 or s = s2. 

You see that we cannot allow Yp to be included among the null solutions Yn · If the right
side is f # 0 for Yp, it cannot also be f = 0 as required by Yn · We will see that the correct
form for a resonant solution Yp includes an extra factor t in Y test

. 

A special effort goes into the oscillating case s = iw. Null solutions Yn = est 

depend only on A, B, C. That part comes from the roots of As 2 +Bs+C = 0. The new part
is the forced oscillation yp (t), a particular solution that is driven by coswt.
It will be Yp (t) = G cos(wt - a) with a phase shift a and a gain Gin the amplitude.
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Equations of Order N and Order 2 

I would like to outline the work ahead, because this section is important. It started with a 
specific example y" +5y 1 +6y = e4t . Those numbers 1, 5, 6, 4 changed to letters A, B, C, s. 
We solved the second order equation Ay 11 + By 1 + Cy = est

. The solution Yest introduced 
the transfer function Y = 1 / ( As2 

+ B s + C). 
Now we have two ways to go, both essential. One is to see the same formula y = Yest 

for every constant coefficient equation. Y comes from the "exponential response formula" 
because Yest is the response to the exponential f ( t) = est

. One formula covers almost all
equations (but resonance is special and Y has to change). 

The other crucial step is to focus on second order equations driven by f = 
eiwt.

Yes, this is covered by the formula. But if we are serious, we won't stop with Y(iw). 
We truly need the rectangular and polar forms of that complex number: 

1 
Y(iw) = -------- = M - iN = Ge-m. (6) 

A(iw) 2 + B(iw) + C 

M, N, G, a will be in equations (23) to (27). The solution driven by f = cos wt becomes 
y = M cos wt+ N sin wt. Damped motion (B > 0) can be compared with undamped. 
And the big applications in Section 2.5 need the better notation using Z : 

Natural C 
w

2 
= -

frequency n A 
Da?1ping Z 

= 

B 
ratio y'4AC 

Damped w2 = w2 (1 - z2) frequency d n 

(7) 
The damping ratio Zand those frequencies Wn and Wd give meaning to the solution y(t). 

Complete Solution Yp + Yn 

Let me summarize the case of undamped forced oscillation (driving force Fcoswt). 
If B = 0, the complete solution to Ay" + Cy = F cos wt is one particular solution Yp 
plus any null solution Yn at the natural frequency Wn = vc7A. Notice the two w's: 

Particular solution ( w) 
Unforced solution (wn) 

F · t · t
Y = ----coswt + c eiwn + c e-iwn 

C -Aw2 i 2 (8) 

To repeat : Any time we have a linear equation Ly = f, the complete solution has the 
form y = yp +Yn · The particular solution solves Lyp = f. The null solution solves Lyn = 0. 
Linearity of L guarantees that y = Yp + Yn solves Ly = f : 

Complete solution y = Yp + Yn If Lyp = f and Lyn = 0 then Ly = f. (9) 

This book emphasizes linear equations. You will see Yp + Yn again, always with the rule of 
linearity Ly = Lyp + Lyn. This applies to linear differential equations and matrix 
equations. In differential equations, L is called a linear operator. 
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dN
y dy 

Linear operator Ly = Ay 11 + By 1 + Cy or Ly = AN -- + · · · + A1 - + A0y 
dtN dt 

For an operator L, the inputs y and the outputs Ly are functions. 

Every solution to Ly = f has the form Yp + Yn · Suppose we start with one 
particular solution Yp · If y is any other solution, then L(y - Yp ) = 0: 

Yn = y - Yp 
is a null solution Lyn= Ly - Lyp = f - f = 0. (10)

Example 4 Suppose the linear equation is just Ly = x1 - x2 = 1 : one equation 
in two unknowns x1 and x2• The solutions are vectors y = ( x1, x2). The right side f = 1 
is not zero. The bold line in Figure 2.11 is the graph of all solutions. 

Y = Yp + Yn 

Null solution line : Lyn = 0 Complete solution line : Ly = 1 

Figure 2.11: Complete solution = one particular solution + all null solutions. 

Every point on that bold line is a particular solution to x 1 - x2 = 1. We marked only 
one Yp- Null solutions lie on a parallel line x 1 - x2 = 0 through the center (0, 0). 

Example 5 Second order equations Ay" + By' + Cy = e st or eiwt have complete 
solutions y = Yp + Yn · The particular solution Yp = Ye

st is a multiple of e
st . 

The null solutions are Yn = c1es , t 
+ c2es2 t . If s2 = s1, replace es2 t by tes 1 t .

Example 6 The complete solution to the impressive equation 5y = 10 is y = 2. This 
is our only choice for the particular solution, Yp = 2. The null solutions solve 5yn = 0, 
and the only possibility is Yn = 0. The one and only solution is y = Yp + Yn = 2 + 0. 

That seems boring, when Yn = 0 is the only null solution. But this is what we want (and 
usually get) for matrix equations. If A is an invertible matrix, the only solution to Ay = b is 

y = Yp = A- 1 b. Then the only null solution to Ayn = 0 is Yn = 0.

Higher Order Equations 

Up to this moment, third derivatives have not been seen. They don't arise often in 
physical problems. But exponential solutions Ye

st and Y e
i
w

t still appear. The one essential 
requirement is that the equation must have constant coefficients. 
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Equation of order N
dNy dy 

AN --+···+ A1- + Aoy = f(t) 
dtN dt 
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(11) 

When f 0, the best solutions of the null equation are still exponentials Yn est . 

Substitute est into the equation to find N possible exponents s1, s2, • • •  , s N. 

f = 0 and Yn = est (12) 

The exponents s in Yn are the N roots of that polynomial. So we (usually) have N 

independent solutions e81t , ... , esNt. All their combinations are still solutions. If the 
polynomial in (12) happens to have a double root at s, our two solutions are est and test. 

Example 7 Solve the third order equation y"' 
+ 2y" + y' = e3t .

Solution To find the null solutions Yn , substitute Yn = est with right hand side zero : 

s3 + 2s2 + s = 0 s(s2 
+ 2s + 1) = 0 s(s + 1)2 

= 0. 

The exponents are s = 0, -1, -1. The null solutions are c1 e
0t and c2 e-t and c3te-t 

(the extra t comes from the double root). A particular solution Yp is Y e3t (since 3 is not 
one of the exponents O and -1 in Yn), Substitute Y e3t to find Y = l / 48: 

27 Y e3t 
+ l8Y e3t 

+ 3Y e3t 
= e3t and 48Y = 1 and Yp = e3t / 48. 

The transfer function is Y ( s) = 1 / ( s3 + 2s2 
+ s). For e3t puts= 3. Then Y = l / 48. 

Here is the plan for this section on constant coefficient equations with forced oscillations. 

1 Find the exponential response y(t) = Y(s)e8t to the driving function f(t) = est.

2 Adjust that formula when Y ( s) = oo because of resonance. 

3 Solve the real equation Ay 11 + By' + Cy = cos wt to see the effect of damping. 

This is the key example for applications : y is the real part of Y ( s) est when s = iw. 
The solution in equation (23) is y ( t) = M cos wt + N sin wt = G cos ( wt - a). 

Exponential Response Function = Transfer Function 

This book concentrates on first and second order equations. When the coefficients are con­
stant and the right side is an exponential, we have solved three important problems: 

First order 

Oscillation 

Second order 

y' - ay = ect 

my" + ky = eiwt 

Ay" + By' + Cy = est 

YP = ect / ( c - a) 

Yp = eiwt /(k - mw2) 

Yp = est /(As2 + Bs + C)

It is natural (natural to a mathematician) to try to solve all constant coefficient equations 
of all orders by one formula. We can almost do it, but resonance gets in the way. 
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Let me write D for each derivative d/ dt. Then D2 is d2 / dt2
. All our equations involve 

powers of D, and equations of order N involve DN . Here N = 2. 

Polynomial P(D) Ay" +By'+ Cy = (AD2 
+ BD + C) y = P(D) y. (13) 

The null solutions and the particular solution all come from this polynomial P(D). 

Find N null solutions Yn= est A82 
+ B8 + C= 0 is exactly P(s) = 0 (14) 

Find a particular yp =Yect P(D)y= ect gives the numberY=l/P(c) (15) 

The value Y of the transfer function gives the exponential response Y
P 

= ect / P ( c).

Please understand: In the null solutions, 8 has N specific values 81, ... , 8 N. Those are 
the roots of the Nth degree characteristic equation P( 8) = 0. In the particular solution 
ect / P( c), the specific value 8 = c is the exponent in the right hand side f = ect . 

The exponents c and 8 are completely allowed to be imaginary or complex. 

P(D)y = ect (16) 

That fraction Y = 1 / P( c) "transfers" the input f = ect into the output y = Y ect . You 
often see it as 1/ P(8) with the variable 8. It is sometimes called the system function.

There is only one exception to this simple and beautiful exponential response formula. 
The forcing exponent c might be one of the exponents 81, ... , 8 N in the null solution. 
In this case P ( c) is zero. We cannot divide by P ( c) when it is zero. 

Exception If P(c) = 0 then y = ect / P(c) cannot solve P(D)y = ect _

P(c) = 0 is the exceptional case of resonance. The formula ect / P(c) has to change. 

Resonance 

We may be pushing a swing at its natural frequency. Then c = iwn = i�. The 
polynomial P(D) from my" + ky is mD2 

+ k, and we have P(c) = 0 at this natural 
frequency. Here is the exponential response formula adjusted for resonance. 

Resonant response If P(c) = 0 then (17) 

That extra factor t enters the solution when P( c) = 0. We replace 1 / P( c) by t / P' ( c).
This succeeds unless there is "double resonance" and P'(c) is also zero. Then the formula 
moves on to the second derivative of P, and Y

p 
( t) = t2 ect / P" ( c). 

The odds against double resonance are pretty high. The point is that the equation 
P(D)y = ect has a neat solution in terms of the polynomial P: usually y = ect / P(c).
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I can explain that resonant solution y = tect / P'(c) when P(c) 0 and P'(c) =/- 0. 
We have seen this happen in Section 1.5 for the first order equation y' - ay = ect . 
That equation has P(D) = D - a and P(c) = c - a and resonance when c =a: 

y' - ay = ect 
ect _ eat 

has the very particular solution Yvp 
= ----c-a

As c approaches a, Yvp 
approaches 

derivative of top teat 

derivative of bottom 1 

That is l'Hopital's Rule ! The only unusual thing is that we have c in place of x, and 
c-derivatives in place of x-derivatives. The very particular solution is the one starting from
Yvp 

= 0 at t = 0. The resonant solution teat fits our formula tect /P'(c) because
c = a and P(c) = c - a and P'(c) = 1.

When the equation has order N, the polynomial P has degree N. Suppose the exponent 
c is close to a-which is one of the exponents s1, ... , s N in the null solution. Then 
P( a) = 0 and eat is a null solution and ect / P( c) is one particular solution: 

ect _ eat 

A very particular solution to P(D)y = ect is Yvp 
= 

P(c) _ P(a) 
(18)

To emphasize: c close to a is fine. But c = a is not fine. Formula (16) changes at c = a: 

Resonance If c = a then l'Hopital's limit in {16) is 
teat 

Yvp 
=

P'(a). 
(19) 

Take the c-derivatives of ect - eat and P(c) - P(a) at c = a, to get teatand P'(a). 

Summary The transfer function is Y(s) = 1/ P(s). It has "poles" at the N roots of 
P( s) = 0. Those are the exponents in the null solutions Yn ( t). The particular solution 
Y

p 
= Y ect has the same exponent c as the driving term f = ect . The transfer function 

Y(c) = 1/ P(c) decides the amplitude of y
p
(t). If c is a pole of Y, we have resonance. 

Example 8 The 4th degree equation D4y = d4y / dt4 
= 1 has 4-way resonance. 

What are the null solutions to y1111 
= 0? By trying y = est we get s4 

= 0. This has 
all four roots at s = 0. Then one null solution is y = e0t , which is y = 1. The other null 
solutions have factors t, t2

, t3 because of the four-way zero. Altogether: 

The null solutions to y"" = 0 have the form Yn(t) = c1 + c2t + c3 t2 + c4t3
. 

Now find a particular solution to y1111 
= ect . For most exponents c we get Yp 

= 
ect / c4

. 

This is exactly ect / P( c). But c = 0 gives quadruple resonance: c4 = 0 has a 4-way root. 
A quadruple l'Hopital rule gives the fourth derivative P1111 and the very particular solution to 
y1111 

= 1 that you knew before taking this course and seeing this book : 

y"" = 1 = e0t has c = a = 0 and P = s4 
t4eot 

Yp(t) = 

P""(O)

t4 

24 
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Real Second Order Equations with Damping 

Now we focus on the key equation: second order. The left side is Ay 11 + By' + Cy. 
The transfer function is Y ( s) = 1 / ( As2 

+ B s + C). When the right side is f ( t) = eiwt ,
the exponent is s = iw. When A, B, Care nonzero, we won't have resonance: 

No resonance A(iw)2 
+ B(iw) + C = (C - Aw2) + i(Bw) =I= 0.

We know that the response to f(t) = eiwt is Yp(t) = Y(iw)eiwt _ This is a perfect example,
except that those functions are not real. 

In applications to real life (and this equation has many), we want f(t) = coswt. 
We must solve this problem. You will say, just solve for eiwt and e-iwt , and take half
of each solution. Even faster than that, solve for eiwt and take the real part of Y

p
(t). 

Or you could stay entirely real and look for a solution y(t) = M cos wt+ N sin wt. 

All those ideas will succeed. They all give the same answer (in different forms). 
The best form has to bring out the most important number in the answer y(t). That 
number is the amplitude G of the forced oscillation. So first place goes to the 
polar form y(t) = G cos(wt - a), because this shows the gain G. 

The null solutions decay because the solutions s 1 and s2 to As2 
+ Bs + C = 0 have

negative real parts -B /2A. The particular solution G cos( wt - a) does not decay, because 
it is driven by a forcing function f = cos wt that never stops. 

The next pages will find G and a. This is algebra put to good use. We are working with 
letters A, B, C that represent physical quantities. In Section 2.5 they will be 
mass-damping-stiffness or inductance-resistance-inverse capacitance. Those are not the 
only possible examples ! Biology and chemistry and management and the economics of 
a whole country also see damped oscillations. I hope you will find those models. 

Damped Oscillations in Rectangular Form 

I will start with the rectangular form y(t) = M cos wt+ N sin wt. It is not as useful as 
the polar form, but it is easier to compute. Substitute this y(t) into the differential equation 
Ay 11 + By 1 + Cy = cos wt. Match the cosine terms and the sine terms : 

Cosines on both sides 

Sines on the left side 

-Aw2M +BwN +CM = 1 

-Aw2N-BwM +CN = 0 

(20) 

(21) 

To solve for M, multiply equation (20) by C - Aw2. Then multiply equation (21) by
Bw and subtract from (20). The coefficient of N will be zero. So N is eliminated and 
we have an equation for M alone. M is multiplied by the important number D : 

C - Aw
2 times (20) 

minus Bw times (21) 
[(C - Aw2 ) 2 + (Bw)2 ]M = DM = C - Aw2. (22)
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We divide by D to find M = (C - Aw2 )/ D. Then equation (21) tells us N = Bw/ D. And equation (27) will tell us that M2 + N2 
= 1 / D.

Real solution Y
P 

is 

M coswt+N sin wt D 
(23)

Let me say right away : The complex number Y ( iw) is just M - iN. This calcula­tion will connect real to complex and rectangular to polar. When I multiply and divideby Y(-iw), you will see that the denominator of Y(iw) is D = (C -Aw2) 2 
+ (Bw) 2 :

1 x (C-Aw2)-iBw=(C-Aw2)-iBw=M-iN. (24)
(C -Aw2 ) + iBw (C -Aw2 ) - iBw D 

Y = M - iN is exactly what we want and need. The input f = cos wt is the real partof eiwt , so the output y is the real part of Y eiwt . That real part is the rectangular form
y = M cos wt + N sin wt :

Damped Oscillations in Polar Form 

The solution we want is the real part of Y ( iw )eiwt. Equation (25) computed that solutionin its rectangular form. To compute y ( t) in polar form, the first step ( almost the only step)
is to put Y ( iw) in polar form. This number is the complex gain:

. 1 N 
Complex gain Y(iw) = M - iN = Gew. with G = r.=- and tan a=-. (26)

vD M 

That amplitude G is simply called the "gain". It is the most important quantity in all thesepages of calculations. The input cos wt had amplitude 1, the output y(t) has amplitude G. Of course that output is not y = G cos wt ! Damping produces a phase lag o:. Atthe same time damping reduces the amplitude of the output. 
The undamped amplitude IY I = 1 /IC - Aw2 I is reduced to G = 1 / vJ5: 

- 2 2 - ((C -Aw2) 2 (Bw) 2 ) 1/
2 - (.!!_) 1;2 

G - V M + N - D2 
+ D2 

- D2 

I will collect all these beautiful(?) important(!) formulas after one example.
(27)

Example 9 Solve y 11 
+ y 1 

+ 2y = cos t in rectangular form and also in polar form.
Solution The equation has A = 1, B = 1, C = 2, and w = 1. We are finding a particularsolution. Let me use the formulas directly and then comment briefly. The numbers give
C -Aw2 

= 1 and Bw = 1, so D = 12 
+ 12 

= 2.
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Therefore the solution has G = ,/1fi and M = N = ½ and tan a = 1 and a = 1r / 4 : 

Rectangular 

Polar 

y(t) = M cos wt+ N sin wt= ½(cost+ sin t) 

y(t) = Re (Ge- i"'eiwt ) = G cos (wt -a) = � cos (t - �)-

For this example we verify directly that polar = rectangular: 

( 7r) 1 
( 1r 7r) 1 

G cos t -
4 

= v'2 cost cos 
4 

+ sin t sin 
4 

= 

2 
( cos t + sin t).

The rectangular form has simpler numbers. But the polar form has the most important 
number G = l / 

v'2
. That gain G is less than the undamped gain IY I by a factor cos a. 

1 1 1 
Undamped IYI = 

IC_ Aw 2 I 
= 1 Damped G = 

.,fJ5 
= v'2 = cos a.

Undamped versus Damped 

The undamped equation Ay" + Cy = coswt has B = 0 and Y = 1/(C - Aw2 ).
Compare that amplitude of y(t) = Y cos wt from Section 2.1 with the harder problem 
we just solved. The comparison lets you see how the damping contributes Bs = Biw in 
the transfer function that multiplies the input eiwt . Damping causes a phase lag a.
Damping also reduces the amplitude to G = Y cos a. Here are the key formulas: 

Equation 

Solution 

Magnitude 

Phase lag 

Undamped 

Ay" +Cy= cos wt

y = Ycoswt 

1 
IY

l
=

1c-Aw 2 1 

Damped 

Ay" +By'+ Cy= cos wt

y = Gcos(wt- a) 

1 
G=--=Ycosa 

.,fJ5 

N Bw
tan a = 

M 
= 

C -Aw2

When the driving function is F cos wt, the solutions include that extra factor F.

When the driving function is sin wt, that is the same as cos ( wt - i). So the solutions 
have¢= 1r /2 as an additional phase lag: y = G cos(wt -a -1r /2) = G sin(wt -a). 

When the driving function is A cos wt + B sin wt, that equals R cos( wt -¢). This is 
the sinusoidal identity from Section 1.5. Then the solution is RG cos ( wt - a - <p).
This is the particular solution Y

p 
that oscillates with the same frequency w as the input. 

Let me show why the gain is reduced to G = Y cos a from its undamped value 
IYI = 1/IC -Aw 2 1. We know from (27) that G = ../M2 + N2 = 1/vD. And we 
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know from (23) that Y M = 1/ D:

Damped gain Y cos a = 
y M 

=
l/ D 

= 
G

JM2 + N2 1/,/15 
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(28) 

Better Notation 

A good plan is to divide my 11 + by 1 + ky = kF( t) by the mass m, for several reasons: 

II b / k k 
( )  y + -y + -y = -F t . 

m m m 
(29) 

First, the coefficient of y" becomes 1. Second, replacing k/m by w; gives it meaning. 
Third, the input F has the same units as the output y. So now the gain G = IYI/IFI is 
dimensionless. This happened because the original f(t) with unsuitable units was 
replaced by kF(t)-which is now divided by m. 

Most valuable of all is a new way to write the damping term b / m, which is B / A. 
The key point is that b

2 and mk have the same dimensions. From the equation, 
my" and by' and ky have the same dimensions. Then so do (by')2 and (my")(ky). And 
also (y ') 2 and (y")(y)-they both contain 1/(time) 2

. This leaves b2 and mk. 
This quantity Z = b/� is highly useful. Overdamping is Z > 1. Underdamping 

is Z < 1. The coefficient b/m in equation (29) has a better form 2Zwn in (30). 

y 11 + 2Zwny 1 + w�y = w�F(t) (30)

Z is the damping ratio. The correct symbol is a Greek zeta((). But a capital zeta= Z 
is so much easier to read and write. (The MATLAB command is also named zeta.) 
Watch how this ratio of B to v14AC brings out the important parts of every formula. 
If Z < l, the natural frequency Wn is reduced to the damped frequency wd = Wn v'l - Z2 . 

Roots 81 and 82 s2 
+ 2Zwns + Wn 

2 = 0 gives s = -Zwn ± Wn J Z2 
- l 

Null solutions 

(31) 

(32) 

(33) 

The null solutions are not pure oscillations. They include the exponential e-Zwnt. 
Their frequency changes to wd. The graph of y(t) oscillates as it approaches zero, and the 
peak times when y = Ymax are spaced by 2n/wd, 

The page after Problem Set 2.4 collects our solution formulas in one place. 
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• REVIEW OF THE KEV IDEAS •

1. A particular solution to Ay" +By '+ Cy = est is est /(As2 
+ Bs + C).

2. This is a constant coefficient equation P(D)y = ect with solution Yp = ect / P(c). 

3. Resonance occurs if ect is a null solution of P(D)y = 0. This means that P(c) = 0. 

4. Resonance leads to an extra t: Yp(t) = tect / P'(c) when P(c) = 0 and P'(c) -::J. 0. 

5. For second order equations with f = coswt the gain is G = 1/IP(iw) I = 1/v'D. 

6. The real solution is M cos wt + N sin wt = G cos( wt - a) with tan a = N / M. 

7. With damping ratio Z = B/v4AC, the equation is y
11 

+ 2wnZy' + w;. y = w;.F(t). 

8. If Z < 1, the damped frequency is Wd = Wn Vl - Z2 . Then s1, s2 are -Zwn ± iwd. 

Problem Set 2.4 

Problems 1-4 use the exponential response Yp 
= ect / P( c) to solve P(D)y = ect . 

1 Solve these constant coefficient equations with exponential driving force: 

(c) y"" = et 

2 These equations P(D)y = ect use the symbol D for d/dt. Solve for yp (t): 

(a) (D2 
+ l)yp (t) = 10e-3t (b) (D2 

+ 2D + l)yp (t) = eiwt 

(c) (D4 
+ D2 

+ l)yp (t) = eiwt 

3 How could Yp = ect / P(c) solve y
11 

+ y = eteit and then y 
11 

+ y = et cost? 

4 (a) What are the roots s 1 to s3 and the null solutions to y�' - Yn = 0 ? 

(b) Find particular solutions to yi' - Yp = eit and to yi' - Yp = et - eiwt _ 

Problems 5-6 involve repeated roots s in Yn and resonance P ( c) = 0 in Yw 

5 Which value of C gives resonance in y 
11 +Cy = eiwt ? Why do we never get resonance 

in y 
II 

+ 5y' + Cy = eiwt ? 

6 Suppose the third order equation P(D)yn = 0 has solutions y = c1 et + c2e2t 
+ c3e3t . 

What are the null solutions to the sixth order equation P(D)P(D)yn = 0? 
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7 Complete this table with equations for roots s1 and s2 and solutions Yn and Y p : 

Undamped free oscillation 

Undamped forced oscillation 

Damped free motion 

Damped forced motion 

my"+ky
= 0 

my"+ ky = eiwt 

my"+by'+ky= 0 
my 11 +by'+ ky = ect 

Yn = -­
Yp

= -­
Yn = -­
Yp

= --
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8 Complete the same table when the coefficients are 1 and 2Zwn and w;;, with Z < 1. 

Undamped and free 

Undamped and forced 

Underdamped and free 

Underdamped and forced 

y
11 +w;;,y = 0 

y" + w;;,y = eiwt 

y
11 + 2Zwny

1 + w;;,y = 0 
y

11 + 2Zwny
1 +w;;,

y = ect 

9 What equations y 
11 + By 

1 + Cy = f have these solutions ? 
(a) y = c1 cos2t + c2 sin2t + cos3t
(b) y=c1e-tcos4t+c2e-tsin4t+cos5t
(c) y = c1e-t + c2te-t + eiwt 

Yn = -­
Yp

= __ 
Yn = -­
Yp

= __ 

10 If Y p = te- 6t cos 7t solves a second order equation Ay
11 + By' + Cy f, 

what does that tell you about A, B, C, and f?

11 ( a) Find the steady oscillation Y p ( t) that solves y 
11 + 4y 

1 + 3y = 5 cos wt.
(b) Find the amplitude A of yp (t) and its phase lag a.
(c) Which frequency w gives maximum amplitude (maximum gain)?

12 Solve y11 + y = sin wt starting from y(0) = 0 and y'(0) = 0. Find the limit of y(t) 
as w approaches 1, and the problem approaches resonance. 

13 Does critical damping and a double roots = 1 in y 
11 + 2y 1 + y = ect produce an extra 

factor t in the null solution Yn or in the particular Y p (proportional to ect) ? What is Yn 

with constants c1, c2 ? What is Y p = Y ect ? 

14 If c = iw in Problem 13, the solution Y p to y 
11 + 2y 1 + y = eiwt is __ . That fraction 

Y is the transfer function at iw. What are the magnitude and phase in Y = Ge- ia? 
By rescaling both t and y, we can reach A = C = 1. Then Wn = 1 and

B = 2Z. The model problem is y" + 2Zy' + y = f(t). 

15 What are the roots of s2 + 2Z s + 1 = 0 ? Find two roots for Z

and identify each type of damping. The natural frequency is now Wn = 1. 
0, ½, 1, 2 

16 Find two solutions to y 
11 + 2Z y 

1 + y = 0 for every Z except Z = 1 and -1. Which 
solution g(t) starts from g(0) = 0 and g 1 (0) = 1? What is different about Z = 1? 
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17 The equation my"+ ky = coswnt is exactly at resonance. The driving frequency 
on the right side equals the natural frequency Wn = � on the left side. 
Substitute y = Rt sin(� t) to find R. This resonant solution grows in time be­
cause of the factor t.

18 Comparing the equations Ay" +By' +Cy= f(t) and 4Az" +Bz' + (C /4)z = f(t), 
what is the difference in their solutions ? 

19 Find the fundamental solution to the equation g 
11 - 3g

1 
+ 2g = J(t). 

20 (Challenge problem) Find the solution to y 11 + By 1 + y = cos t that starts from 
y(O) = 0 and y '(O) = 0. Then let the damping constant B approach zero, to reach the 
resonant equation y 11 + y = cos t in Problem 17, with m = k = 1. 

Show that your solution y(t) is approaching the resonant solution ½t sin t.

21 Suppose you know three solutions YI, Y2, y3 to y" + B(t)y' + C(t)y f(t). 
How could you find B(t) and C(t) and f(t)? 
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Solution Page Linear Constant Coefficient Equations 

d � d 
First order 

d
y 

= ay + f(t) Second order A 2y + B 
d
y +Cy= f(t)

t dt t 
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dNy dy N Nth order AN -
N 

+···+A1-
d 

+Aoy=(AND +···+Ao )y=P(D)y=f(t)
dt t 

Null solutions Yn have f(t) = 0 Substitute y = 
est to find the N exponents s 

d 
First order -( est ) = a est s = a and Yn = eeat 

dt 
Second order As2 

+ Bs + C = 0 Yn = ci e81 t 
+ e2e82 t 

Nth order P(s) = 0 

Exponential response to f ( t) = 
ect Step response for c = 0 Look for y = Y ect 

First order 

Second order Y(Ae2 +Be+ C ) ect = ect 

Nth order 

ect 1 
Yp = -- has Y = --

e - a e-a
ect 

y --�----Y ect 

P - Ae2 +Be+ C -
ect tect 

Yp = 
P(e) 

or 
P'(e) when P(e) = 0 

Fundamental solution g(t) = Impulse response when f(t) = o(t)

First order g(t) = eat 

es1 t _ es2t 

Second order g( t) = ---­
A( s1 - s2) 

Undamped 

Nth order 

( ) sin Wnt
g t=--­

Awn 

g(t) 
= Yn(t) 

starting from g(O) = 1

starting from g(O) = 0 and g'(O) = 1/A

Z t sin wdt 
underdamped g(t) = e- Wn -�� 

Awd 

g(O) = g'(O) = ... = O,g(N-1)(0) = 1/AN 

Very particular solution for each driving function f ( t) : zero initial conditions on Yvp 

Multiply input at every time s 
by the growth factor over t - s y(t) = j g(t - s) f(s) ds 

Undetermined coefficients 
Variation of parameters 
Solution by Laplace transform 
Solution by convolution 

Direct solution for special f (t) in Section 2.6 

Yp(t) comes from Yn(t) in Section 2.6

Transfer function= transform of g(t) in Section 2.7

y (t) = g(t) * f(t) in Section 8.6
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2.5 Electrical Networks and Mechanical Systems 

Section 2.4 solved the equation Ay" +By'+ Cy= cos wt. Now we want to understand the 
meaning of A, B, C in real applications. This is the fundamental equation of engineering for 
a one-unknown system, when the forcing function is a sinusoid. It is a perfect opportunity to 
use the transfer function. This connects the input to the response. 

For mechanical engineers the unknown y gives the position of one mass-oscillating 
or rotating or vibrating. For electrical engineers the unknown y is the voltage V(t) or the 
current I(t) in a one-loop RLC circuit. Those letters R, L, C represent a resistor, an inductor, 
and a capacitor. For a chemical engineer or a scientist or an economist the equation is a 
model of ..... I have to stop or this presentation will go out of control. 

The great differential equations of applied mathematics are first order or second order. 
The equations we understand best are linear with constant coefficients. 

In later chapters the single unknown becomes a vector. Its coefficients become square 
matrices in dy/dt = Ay and d2 y/dt2 = -Sy. We have a system of n equations 
for voltages at nodes or currents along edges or positions of n masses. Linear algebra 
will organize the equations and their solutions. Matrix differential equations give us the 
right language to express applied mathematics. 

Our goals are to find and solve the equations for y(t) in real applications. These are 
balance equations: balance of forces and balance of currents. Flow in equals flow out. 

Spring-Mass-Dashpot Equation and Loop Equation 

In mechanics, y and y' and y" are the position, the velocity, and the acceleration. The 
numbers A, B, C represent the mass m, the damping b, and the stiffness k: 

Newton's Law F = ma my"+ by'+ ky = applied force. (1) 

The picture in Figure 2.12 shows the mass m attached to a spring and also a dashpot. 
Those two are responsible for the forces -ky and -by'. The stretched spring pulls back 
on the mass. By Hooke's Law that force is -ky. The damping force comes from a dashpot 
(old-fashioned word, key idea). You could visualize the mass moving in a heavy liquid 
like oil. The friction force is -by 1, proportional to velocity and in the opposite direction. 

For an electrical network, it was Kirchhoff and not Newton who provided the balance 
equations. Kirchhoff's Voltage Law says that the sum of voltage drops around any 

closed loop is zero. The current is I(t) and we start with one loop: 

Voltage law KVL 
dJ 1 

L - + RI + - J I dt = applied voltage. 
dt C 

(2)
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f 

Figure 2.12: Three forces enter F =my": spring force ky, friction by', driving force f. 

The numbers L, R, Care the inductance, the resistance, and the capacitance. (Unfortunately 
we divide by the capacitance C. In the end the equation has constant coefficients and regard­
less of the letters we solve it.) To produce a second order differential equation for J(t), and 
to remove the integration in equation (2), take the derivative of every term : 

Loop equation for the current I ( t) LI"+ RI'+ CI= Fcoswt. (3) 

That force F cos wt comes from a battery or a generator, when we close the switch. We will
be looking for a particular solution I

p
(t). That solution is produced by the applied force. 

We are not looking at initial conditions and Yn ( t). Those null solutions Yn are transient, with 
f = 0. They die out exponentially fast. 

source f(t) 

capacitance C inductance L 

current I ( t) 

resistance R

Figure 2.13: A one-loop RLC circuit with a source and a switch. 
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The Mechanical-Electrical Analogy 

Both applications produce second order equations Ay" +By'+ Cy = f(t). This means 
we can solve both problems at once-not only mathematically but also physically. We can 
predict the behavior of a mechanical system by testing an electrical analog, when simple 
circuit elements are more convenient to work with. The basic idea is to match the three 
numbers m, b, k with the numbers L, R, and 1/C. 

Mechanical System 

Mass m +------+ 
Damping constant b +------+ 
Spring constant k +------+ 
Natural frequency w; = k/m +------+ 

Electrical System 

Inductance L 
Resistance R 
Reciprocal capacitance 1 / C 
Natural frequency w; = 1/ LC 

Before solving for the loop current I(t), let me outline three solution methods-our past 
method, our present method, and our future method. 

cos wt to eiwt to Y(w)

Past method Section 2.4 solved Ay" + By' + Cy = F cos wt. The equation was real 
and the solution was real. That solution had a sine-cosine form and also an amplitude-phase 
form: 

y(t) = M cos wt+ N sin wt= G cos(wt - a). (4) 

The connections between inputs F and outputs M, N came by substituting y(t) into the 
differential equation and matching terms. Then G2 

= M2 
+ N2 and M = G cos a. 

Present method Instead of working with cos wt and sin wt, it is much cleaner to work with 
a complex input V 

eiwt . Then the output (the current) is a multiple of V eiwt .
That multiple Y is a complex number. It tells us amplitudes and also phase shifts. 

This is the right way to see the response of a one-loop RLC circuit. When the input 
frequency is w, the output frequency is also w. 

Equation 

Solution 

dI 1 
L - + RI + - JI dt = applied voltage = V eiwt 

dt C 

Veiwt 

I(t) - -----­
iwL + R + 1/iwC 

input 

impedance 

We will study that complex impedance in detail. 

(5) 

(6) 

Future method Once we see the advantages of a complex eiwt , we won't go back. 
What we are really doing is to change a differential equation for y in the time domain

into an algebraic equation for Yin the frequency domain: 

Set y = Yeiwt Ay" +By'+ Cy= eiwt becomes (i2w2 A+ iwB + C)Y = l.
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Derivatives of y(t) become multiplications by iw. We are talking here about the most 
important and useful simplification in applied mathematics. It requires constant coefficients 
A, B, C. This allows us to factor out eiwt. 

The transfer function Y ( s) takes two more steps from derivatives to algebra. First, 
it changes e

iwt to e
st. That exponent s can be pure imaginary ( s = iw). It can also be 

any complex number ( s = a + iw). We recover the freedom of Chapter 1, to allow 
growth or decay from a > 0 or a < 0. We are interested in all s and not just the 
special s1 and s2 that came from solving As2 

+ Bs + C = 0. 
The exponentials e

s,t and es2t went into the transient solution Yn (t). Now we are 
working with the long-time solution y

p
(t) corning from an applied force Fest . 

The second contribution of the transfer function is to give a name to the all-important 
multiplier in the system. It multiplies the input to give the output. 

The transfer function is Y ( s) = 
A 2 � 

C
. The output is Y ( s) times e8t. 

s + s+ 

Derivatives and integrals become multiplications and divisions (by s). One more name is 
needed. Y ( s) is the Laplace transform of the impulse response g ( t).

Input f = c5(t) 
Input f = step 

Output y = g(t) = impulse response 

Output y = r(t) = step response 

Transform Y ( s) 
Transform Y ( s) / s 

The step function is the integral of the impulse 8(t). The step response is the integral 
of the impulse response g(t). For their Laplace transforms, integration becomes division 
by s. Calculus in the time domain becomes algebra in the frequency domain. 

The rules for the transforms of dy / dt and J y ( t) dt, and also a table 
of inverse Laplace transforms to recover y(t) from Y(s), will come in Section 2.7. 

Complex Impedance 

The present method uses V eiwt for the alternating current input. The output divides that 
input by the impedance Z. This is like Ohm's Law I = E / R, but the resistance R 
changes to the impedance Z for this RLC loop : 

Current 
Ve

iwt 

I ( t) = -iw_L_+_R _+-1/...,....i _w _C z 

input 

impedance· 
(7) 

The complex impedance Z depends on w. The real part of Z is the resistance R. 
The imaginary part of Z is the "reactance" wL - l/wC. From those rectangular coordi­
nates Re Zand Im Z, we know the polar form IZleia of this complex number: 

Magnitude 

Phase angle 

Loop current 

IZI = )R2 + (wL - 1/wC) 2 

ImZ wL- l/wC 
tan a = -- = -----

Re Z R 
V iwt V 

I(t) = + = TzT e•(wt-a) 

(8) 

(9) 

(10)
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The phase angle a tells us the time lag of the current behind the voltage. 
Remember that R is the damping constant, like the coefficient Bin Ay" + By' + Cy.

In the language of Section 2.4, we have forced damped motion. The damping keeps us
away from exact resonance with the natural frequency of free undamped motion-which
has wL = l/wC and w = lj/LC. The magnitude IZI is smallest and V/IZI
is largest at that natural frequency. We tune a radio to this w to get a loud clear signal. 

Example 1 Suppose the RLC circuit has resistance R = 10 ohms and inductance L = O. l
henry and capacitance C = 10-4 farad. The units of Rand wL and 1/ wC must agree. Since 
frequency w is measured in inverse seconds, all three units can be given in terms of V =

volts and A = amps (for current) and seconds: 

=V/A = 1 volt per amp R OhmO 
L Henry H 
C Farad F 

= V · sec/A
=A· sec/V

= 1 volt-second per amp
= 1 amp-second per volt

Example 2 Find the impedance Z, its magnitude IZI, and the phase angle a for an RLC
loop when the frequency is w 60 cycles/second = 60 Hz = 120n radians/second.

The impedance of this loop is Z = R + i ( wL -
w

l
C

) = IZle-ia.

The magnitude of the impedance is I Z I = .. .

The phase angle producing time delay is a = .. .

Example 3 To tune a radio to a station with frequency w, what should be the
capacitance C (which you adjust)? Suppose Rand Lare fixed and known. 

Solution The goal of tuning is to achieve wL = l/wC. Then the imaginary part of Z
is zero: inductance cancels capacitance. Tuning achieves Z = R, that real part R is fixed.

1 
wL=­

wC
2 

1 
w =-

LC
1

C= 
Lw2

Example 4 Suppose the network contains two RLC branches in parallel. Find the
total impedance Z12 from the impedances Z1 and Z2 of the two separate branches. 

1 1 1 Z1 + Z2 
-=-+-=---
Z12 Z1 Z2 Z1Z2 

li2 = Ii + I2
Z1Z2 Veiwt 

Z1 +Z2 
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Loop Equations Versus Node Equations : KVL or KCL 

Equation (2) expressed Kirchhoff's Voltage Law. The sum of voltage drops around a 

closed loop is zero. In principle, we could find a set of independent loops in any larger 
electrical network. Then the Voltage Law will give an equation like (2) around each of 
the independent loops. Those loop currents determine the currents on all the edges of the 
network and the voltages at all the nodes. 

Most codes to solve problems on large networks do not use the voltage law ! The 
preferred approach is Kirchhoff's Current Law: The net current into each node is zero. 

The balance equations of KCL say that "current in = current out" at every node. 
Let me illustrate nodal analysis using the network in Figure 2.14 . The unknowns 

are the voltages Vi and Vi. The currents are easy to find once those voltages are known. 

Current 

source 

0 

Vi 

0 

C 

0 

Figure 2.14: Four currents in and out of Node 1. Node 2: Current in, current out. 

A problem of this size can be solved symbolically or numerically: 

Symbolically Work in the s-domain and find the transfer function. Since R1 is in 

parallel with L, and R2 is in series with C, we can find the currents on all the 

edges in terms of Vi and Vi- Here is Kirchhoff's Current Law at those nodes: 

and (11) 

Numerically Assign values to R1, L, R2, C and w. Compute Vi and Vi from 

current balance at the nodes. Compute the currents from Vi/ R1 and Vi/iLw. 

For a larger network, the algebra in the s-domain (iw domain) becomes humanly impos­
sible. A symbolic package could go further but in the end (and for nonlinear networks) the 
numerical approach will win. Widely known codes developed from the original SPICE code 
created at UC Berkeley. The SPICE codes use nodal analysis instead of loop analysis, for 
realistic networks. 

Computational mechanics faced the same choice between nodal analysis and loop 
analysis. It reached the same conclusion. A complicated structure is broken up into 
finite elements-small pieces in which linear or quadratic approximation is adequate. 
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The choice is between displacements at nodes or stresses inside the elements, as the pri­
mary unknowns. The finite element community has made the same decision as the circuit 
simulation community: Work with displacements (and work with voltages) at the nodes.

A network produces a large system of equations-linear equations with simple RLC 
elements and nonlinear equations for circuit elements like transistors. The nodes connected

by the edges form a graph. To organize the equations, you need the basic concepts of graph 
theory in Section 5.5: 

An incidence matrix A tells which pairs of nodes are connected by which edges. 

A conductivity matrix C expresses the physical properties along each edge. 

Then the overall conductance matrix is K = ATC A. The system we solve, for linear 
problems in circuit simulation and in structural mechanics, has the matrix form Ky = f.

Chapter 4 will explain matrices and Section 5.5 will focus on the incidence matrix A 
of a graph. Those are necessary preparations for Kirchhoff's Current Law at all the nodes. 
Then Sections 7.4 and 7.5 create the stiffness matrix K (for mechanics) and the graph 
Laplacian matrix (for networks): basic ideas in applied mathematics. 

Step Response 

This book has emphasized the two fundamental problems for differential equations. 
One is the response to a delta function. The other is the response to a step function. 
For second order equations the impulse response g(t) was computed in Section 2.3. 
This is our chance to find the step response, and we have to take it. 

The two responses are closely related because the two inputs are related. The delta 
function is the derivative of the step function H ( t). The step function is the integral of the 
delta function. For constant coefficient equations, we can integrate every term. The integral

of the impulse response g(t) is the step response r(t). 

Impulse response g(t) 

Step response r ( t) Ar"+ Br'+ Cr = CH(t) (13) 

We are following the "better notation" convention that includes the coefficient C on the 
right hand side. Its purpose is to give the output y or g or r the same units as the forcing 
term. Then the gain G = !output/input! is dimensionless. For the step function with 
input H(t) = 1, the steady state of the step response will be r( oo) 

= 1. 

I see two ways to compute that step response. One is to integrate the impulse response. 
The other is to solve equation (13) directly. The particular solution is r

p
(t) = 1. The 

null solution is a combination of e81 t and e82 t , using the two roots of As2 
+ Bs + C = 0. 



2.5. Electrical Networks and Mechanical Systems 

To be safe, it seems reasonable to find r(t) both ways.

Method 1 

Method 2 

Integrate the impulse response 

Solve Ar"+ Br'+ Cr= C 

c es1t _ es2t 

g( t) =

A _S_1 ___ S _2_ 

with r(0) = r 1 (0) = 0. 
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(14) 

(15) 

Computing the Step Response 

Method 2 is the normal way to solve differential equations. Substitute est to find s1 

Null solutions est As2 
+ Bs + C = 0 has roots s1 and s2. 

The complete solution to Ar 11 + Br 1 + Cr = C is particular + null: 

(16) 

The step response starts from r(0) = 0 and r'(0) = 0. A switch is turned on at t = 0, 
and the solution rises to r( oo) = 1. The conditions at t = 0 determine c1 and c2 :

r(0) = 1 + c1 + c2 = 0 (17) 

Those coefficients are c1 = s2/(s1 - s2) and c2 = -si/(s1 - s2). Then we know r(t): 

(18) 

The same answer must come from integrating g(t) in equation (14) from 0 to t.
Remember that the roots of any quadratic multiply to give s1 s2 = C / A.

Step response = integral of g ( t) (19) 

The coefficient of e81 t is the same s2/(s1 - s2) as in (18). Similarly for the coefficient of 
e82 t . The constant term equals 1, so (18) and (19) are the same: 

Better Notation 

Our formula for the step response r(t) can't stop with equation (18). Those roots s 1 and s 2 
will depend on the physical parameters A, B, C. In mechanics these numbers are m, b, k. 
For a one-loop network the numbers are L, R, 1/C. We need to express r(t) with numbers
we know, instead of s 1 and s 2. 
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Remember that combinations of A, B, C are especially useful. The simplest choices are 
p = B /2A and w�: 

II B I C C
II I 2 2 r + -r + -r = - becomes r + 2pr + w

n
r = w

n
. (20) 

A A A 

The same exponents s 1 and s2 are now roots of s2 
+ 2ps + w� = 0. Suppose p < Wn : 

Null solutions est 

Substituting for s 1 and s2 in equation (18) gives a beautiful expression for r(t): 

Step response 

That angle ¢ is in the right triangle that connects Wn top and wd : 

w� +p2 
= w� 

p 

Wd 
sin</>= -

Wn 

p 
cos</>= -

Wn 

Now we check that r(0) = 0 and r '(0) = 0-then formula (22) must be correct: 

( ) 
Wn . r O = 1 - - sm ¢ = 0 
Wd 

r 1 (0) = Wn (p sin¢ -Wd cos¢) = 0.
Wd 

(21) 

(22) 

That final solution (22) combines cPt sin wdt and e-pt cos wdt. This null solution is a 
combination of e81 t and e82 t with s = -p ± iwd, as required. The particular solution is 
r(oo) = 1. We see this steady state appear when the transients decay to zero withe-pt _ 
The step response rises to 1. 

The number p = B /2A can be replaced by Wn times the damping ratio, if preferred. 

Practical Resonance: Minimum D, Maximum Gain 

The gain is 1 / v'J5. If D is small then the gain is large. That is how you tune a radio, 
by choosing the frequency Wres that minimizes D and maximizes G. Then you can hear 
the signal. It is not perfect resonance-the gain does not become infinite-but it is 
resonance in practice. 

Practical resonance 

Derivative of D is zero 

Minimize D = (C -Aw2 )
2 

+ (Bw)2 

-4Aw(C -Aw2 ) + 2B2w = 0.

When you cancel w and solve 2B2 
= 4A(C -Aw2 ), that gives the frequency Wres with 

largest gain. When B = 0 this is the natural frequency Wn 
with infinite gain: Aw� = C. 
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For 2Z2 < 1 there is practical resonance when 2B2 
= 4A( C - Aw2) at Wres :

Largest gain 
2 - C B2 

- C 
( 

B2 
) - 2 ( 2) 

Wres - A - 2A2 - A l - 2AC - Wn 1 - 2Z .

• REVIEW OF THE KEY IDEAS •
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1. L, R, C in LI"+ RI'+ tJI = eiwt are the inductance, resistance, capacitance.

2. For networks, node equations replace that loop equation : KCL instead of KVL.

3. The response to a step function rises from r(O) = 0 to a steady valuer( oo) = 1.

4. Practical resonance (the maximum gain) is at the frequency Wres = Wn Jl - 2(2
• 

Important note We computed the step response r(t) in the time domain. Using the Laplace
transform in Section 2. 7, this computation can be moved to the s-domain. The 
transform of a unit step is 1/ s. Derivatives int become multiplications bys:

. C 
The state equationAr"+Br'+Cr = Ctransforms to (As2 +Bs+C)R( s) = -.

The problem is to find the inverse Laplace transform r(t) of this function R(s ). There are
excellent control engineering textbooks that leave this as an exercise in partial fractions.
The time domain (state space) solution in this section reached r(t) successfully. 

Problem Set 2.5 

1 (Resistors in parallel) Two parallel resistors R1 and R2 connect a node at voltage V
to a node at voltage zero. The currents are V / R1 and V / R2 . What is the total current
I between the nodes? Writing R12 for the ratio V / I, what is R12 in terms of R1 and
R2? 

2 (Inductor and capacitor in parallel) Those elements connect a node at voltage V eiwt to
a node at voltage zero (grounded node). The currents are (V/iwL )eiwt and
V ( iwC)eiwt . The total current I eiwt between the nodes is their sum. Writing
Z12 for the ratio V eiwt / I eiwt , what is Z12 in terms of iwL and iwC? 

3 The impedance of an RLC loop is Z = iwL + R + l/iwC. This impedance Z is real
when w = __ . This impedance is pure imaginary when __ . This impedance
is zero when 

4 What is the impedance Z of an RLC loop when R = L = C = 1 ? Draw a graph that 
shows the magnitude JZI as a function of w.
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5 Why does an LC loop with no resistor produce a 90° phase shift between current 
and voltage? Current goes around the loop from a battery of voltage V in the loop. 

6 The mechanical equivalent of zero resistance is zero damping: my 11 + ky = cos wt. 
Find c1 and Y starting from y(O) = 0 and y'(O) = 0 with w; = k/m. 

y(t) = C1 coswnt + Y cos wt. 

That answer can be written in two equivalent ways : 

(wn - w)t (wn + w)t 
y = Y(coswt - coswnt) = 2Y sin 

2 
sin 

2 
. 

7 Suppose the driving frequency w is close to Wn in Problem 6. A fast oscillation 
sin[(wn + w)t/2] is multiplying a very slow oscillation 2Ysin[(wn - w)t/2]. 
By hand or by computer, draw the graph of y = ( sin t) ( sin 9t) from O to 21r. 

You should see a fast sine curve inside a slow sine curve. This is a beat. 

8 What m, b, k, F equation for a mass-dashpot-spring-force corresponds to Kirchhoff's 
Voltage Law around a loop ? What force balance equation on a mass corresponds to 
Kirchhoff's Current Law? 

9 If you only know the natural frequency Wn and the damping coefficient b for one 
mass and one spring, why is that not enough to find the damped frequency Wd? 

If you know all of m, b, k what is wd ? 

10 Varying the number a in a first order equation y 1 - ay = l changes the speed of the
response. Varying B and C in a second order equation y 11 + By 1 + Cy = l changes 
the form of the response. Explain the difference. 

11 Find the step response r( t) = Y
p 

+ Yn for this overdamped system: 

r" + 2.5r' + r = 1 with r(O) = 0 and r'(O) = 0. 

12 Find the step response r(t) = Y
p 

+ Yn for this critically damped system. The double 
root s = - l produces what form for the null solution ? 

r" + 2r 1 
+ r = 1 with r(O) = 0 and r'(O) = 0. 

13 Find the step response r(t) for this underdamped system using equation (22): 

r" + r 1 
+ r = 1 with r(O) = 0 and r'(O) = 0. 

14 Find the step response r(t) for this undamped system and compare with (22): 

r" + r = 1 with r(O) = 0 and r'(O) = 0. 

15 For b2 < 4mk (underdamping), what parameter decides the speed at which the step 
response r( t) rises to r( oo) = 1 ? Show that the peak time is T = 1r / Wd when 
r(t) reaches its maximum before settling back tor = l. At peak time r'(T) = 0. 
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16 If the voltage source V ( t) in an RLC loop is a unit step function, what resistance R
will produce an overshoot to rmax = 1.2 if C = 10-6 Farads and L = 1 Henry? 
(Problem 15 found the peak time T when r(T) = rmax

)-

Sketch two graphs of r(t) for p1 < P2- Sketch two graphs as Wd increases. 

17 What values of m, b, k will give the step response r( t) = 1 - J2e-t sin( t + -;£) ?

18 What happens to the p - Wd - Wn right triangle as the damping ratio wn
/P increases 

to 1 ( critical damping)? At that point the damped frequency Wd becomes __ . The 
step response becomes r(t) = __ . 

19 The roots s1, s2 = -p ± iwd are poles ofthe transferfunction 1/(As2 +Bs+C) 

Show directly that the product of the roots 81 = -p + iwd and 82 = -p - iwd is 
8182 = w;. The sum of the roots is -2p. The quadratic equation with those roots 
is 8

2 
+ 2p8 + w; = 0. 

Imaginary axis 

S1 ------- iwd 

:-p 
-------+------- Real axis 

Circle of radius Wn 

S2 ------- - iwd 

20 Suppose p is increased while Wn is held constant. How do the roots 81 and 82 move? 

21 Suppose the mass m is increased while the coefficients b and k are unchanged. What 
happens to the roots 81 and 82 ? 

22 Ramp response How could you find y(t) when F =tis a ramp function? 

y 11 +2py 1 +w;,,y=w;,,t startingfrom y(0)=0 and y1 (0)=0.

A particular solution (straight line) is Y
p 

= __ . The null solution still has the 
form Yn = __ . Find the coefficients c1 and c2 in the null solution from the two 
conditions at t = 0. 

This ramp response y ( t) can also be seen as the integral of __ . 
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2.6 Solutions to Second Order Equations 

Up to now, all forcing terms f(t) for second order equations have been est or coswt. 
How can you find a particular solution when f ( t) is not a sinusoid or exponential? This 
section gives one answer for constant coefficients A, B, C and then a general answer VP:

UC If f(t) is a polynomial in t, then y
p
(t) is also a polynomial int. 

VP Suppose we know the null solutions Yn = c1 y1 ( t) + c2y2 ( t). Then 
a particular solution has the form Y

p 
= c1 ( t )y1 ( t) + c2 ( t )Y2 ( t). 

Those methods are called "undetermined coefficients" and "variation of parameters". 

The special method is simple to execute (you will like it). When f ( t) is a quadratic, 
then one solution is also a quadratic: y

p
(t) = at2 

+ bt + c. Those numbers a, b, c are the 
undetermined coefficients. The differential equation will determine them. This succeeds 
for any constant coefficient differential equation-always limited to special J(t). 

That method UC can be pushed further. If J(t) is a polynomial times an exponential, 
then Y

p 
( t) has the same form. The highest power of t allowed in Y

p 
is the same as in f. 

Those polynomials normally have the same degree. 
Only in the case of resonance must we allow an extra factor t in the solution. This is like 

the exponential response to f (t) = ect in Section 2.4. That presented a perfect example of 
an undetermined coefficient Y in Y

p 
( t) = Yest. The coefficient Y = l / ( As2 

+ B s + C)
was determined by the equation. This is Y = l/P(s) for all equations P(D)y = est. 

With resonance we move to Y
p 

= test / P 1 ( s). 

Variation of parameters is a more powerful method. It applies to all f (t). It even 
applies when the equation A(t)y" + B(t)y' + C(t)y = f(t) has variable coefficients. But 
it starts with a big assumption : We have to know the null solutions y1 ( t) and y2 ( t). 

The method will succeed completely when the coefficients A, B, C are constant. This 
important case gives formula (17). Variation of parameters also succeeded in Chapter 1, 
for first order equations y' - a(t)y = q(t). In that case we could solve the null equation 
y' = a(t)y. For second order equations with variable coefficients, like Airy's equation 
y 11 

= ty, the null equation is a difficult obstacle. 
I guess we have to realize that not all problems lead to simple formulas. 

The Method of Undetermined Coefficients 

This direct approach finds a particular solution Y
p

, when the forcing term f (t) has a 
special form. I can explain the method of undetermined coefficients by four examples. 

Example 1 y" + y = t2 bas a solution of the form y = at
2 + bt + c. 

The reason for this choice of y is that y' and y" will have a similar form. They will also be 
combinations of t2 and t and 1. All the terms in y" + y = t2 will have this special form. 
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Choose the numbers a, b, c to satisfy that equation : 

y" + y = ( at2 + bt + C) 11 + ( at2 + bt + C) = t2. (1)

Key idea: We can separately match the coefficients of t2 and t and 1 in equation (1) : 

(t) b = 0 (1) 2a+c=0

Then c = -2a = -2 and the answer is y = at2 + c = t2 
- 2. This solves y" + y = t2

. 

Example 2 Find the complete solution toy" + 4y' + 3y = e-t + t. 

(2)

Answer First find the null solution to Yn" + 4yn' + 3yn 
= 0, by substituting Yn 

= est : 

(s2 +4s+3)est=0 leads to s2+4s+3=(s+l)(s+3)=0. 

The roots are s1 = -1 and s2 = -3. The null solutions are Yn = c1 e-t + c2 e-3t . 
Now find one particular solution. With f = e-t + t, the usual form with undetermined 

coefficients would be Yp = ae-t + bt + c (notice c in the polynomial). But e-t is a

null solution. Therefore the assumed form for y needs an extra factor t multiplying e-t. 
Substitute y = ate-t+ bt+ c into the differential equation, so y'= ae-t - ate-t+b: 

y" + 4y' + 3y = (-2ae-t + ate-t) + 4(ae-t - ate-t + b) + 3(ate-t + bt + c) = e-t + t. 

The coefficients of te-t are a - 4a + 3a = 0. No problem with this te-t term. We must 
balance the coefficients of e-t and t and 1: 

Find a, b, c -2a + 4a = 1 3b = 1 4b + 3c = 0 

Then a = ½ and b = ½ and c = -! produce the particular Yp = ½ te-t + ½ t - f 
The null solution is c1 e-t + c2e-3t _ The complete solution is always y = Yp + Yn ·

The method only applies to very special forcing functions, but when it succeeds it is as 
fast and simple as possible. Let me list special inputs f ( t) and the form of a solution 
y(t) when the differential equation Ay" + By + Cy = f (t) has constant coefficients. 

1. f ( t) = polynomial in t
2. f(t) = A cos wt+ B sin wt
3. f ( t) = exponential est 

4. f (t) = product t2 est 

y(t) = polynomial int (same degree) 
y(t) = M cos wt + Nsinwt 
y(t) = Yest

y(t) = (at2 + bt + c) est 

t2 est is included in 4 by multiplying possibilities 1 and 3. The good form for y(t) 
multiplies the solutions to 1 and 3 .  The coefficients M, N, Y, a, b, c are "undetermined" 
until you substitute y(t) into the differential equation. That equation determines a, b, c. 
Note to professors It seems to me that a polynomial times et2 

shares the key property. 
Its derivatives have the same form. But their polynomial degree goes up. Not good. 
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Example 3 Find a particular solution to y" + y = t est = polynomial times est . 

The good form to assume for y( t) is ( at + b) est . Please notice that b est is included.
Even though f doesn't have est by itself, that will appear in the derivatives of test .
To be sure we capture every derivative, at + b must include that constant b. 
I need to find the second derivative of the undetermined y(t) = (at+ b) est . 

y' = s(at + b) est + a est y" = s2 ( at + b) est 
+ 2as est .

Substitute y and y" into the equation y" + y = test and match terms to find a and b:

Coefficient of t est 

Coefficient of est 

1 
Those two equations produce a=--

1 + s2 

as2 + a 
bs2 + 2as + b 

1 
= 0 

and 
-2as -2s

b--------,-� 
- 1 + s2 - (1 + s2 ) 2 · 

Now y ( t) = ( at + b) est is a particular solution of y" + y = t est .

(3) 

Possible difficulty of the method Suppose s = i or -i in the forcing term f = test 

Those exponents s = i ands = -i have 1 + s2 = 0. Our answer in (3) for a and b is dividing 
by zero. The result is useless. What went wrong ? 

Explanation If s = i, the assumed form y = (at + b)eit includes a solution beit 

of y" + y = 0. We have accidentally included a null solution Yn = beit . There is no 
hope of determining b. That coefficient is truly undetermined and it stays that way. 

We are seeing a problem of resonance, when the hoped-for Y
p 

is already a part of Yn · The 
result in Section 2.4 was that resonant solutions have and need an extra factor t. The same 
is true here. Whens= i ors= -i, the good form to assume is Y

p 
= t (at + b) est .

When you substitute this Y
p 

into y" + y = t est , the coefficients a and b will be 
properly determined. Ifs = i, could you verify that a = -1 / 4 and b = i / 4? 

Example 4 Let me apply "undetermined coefficients" to an equation you already know: 

Ay" + By' + Cy = cos wt. (4) 

Solution by undetermined coefficients Look for y(t) = M cos wt+ Nsinwt. Those 
coefficients Mand N are also in equation (21) of Section 2.4. 

C-Aw2 

M=---­
D 

N= Bw
D 

Is this perfect? Not quite. In case the denominator is D = 0, the method will fail. That 
is exactly the case of resonance, when A w2 = C and B = 0. The coefficients M and 
N become 0/0. The equation becomes A (y" + w2 y) = cos wt. The particular Y

p 
cannot 

be M cos wt + N sin wt because coswt and sinwt are null solutions Yn ·
They have y" + w2 y = 0. The same w is on both sides of the equation. 
Resonant solutions In case D = 0, the particular solution again has an extra factor t. 

Then put Y
P 

= Mtcoswt + Ntsinwt into equation (4) to find M = 0 and N = 1/2 . 
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Summary of the Method of Undetermined Coefficients 

When the forcing term f ( t) is a polynomial or a sinusoid or an exponential, look for a 
particular solution Y

P ( t) of the same form. Derivatives of polynomials are polynomials, 
derivatives of sinusoids are sinusoids, derivatives of exponentials are exponentials. Then 
all terms in Ay" +By'+ Cy= f will share the same form. 

When f (t) = sum of exponentials, look for y(t) = sum of exponentials. When f is a 
polynomial times a sinusoid or an exponential, y(t) has the same form. When a sinusoid or 
an exponential inf happens to be a null solution (resonance), include an extra t in Y

p
· 

Question What form would you assume for y(t) when f(t) = 4et 
+ 5 cos 2t + t? 

Answer Look for y(t) = Yet 
+ M cos 2t + N sin 2t + at + b. The coefficients in 

the differential equation need to be constants. Then Ay", By', Cy and f all look like y. 

Variation of Parameters 

Now we want to allow any forcing function f (t). The equation might even have variable 
coefficients. If we know the null solutions, the method called "variation of parameters" 
can find a particular solution. 

Suppose the null solution with f = 0 is Yn ( t) = c1 Y1 ( t) + c2 Y2 ( t). We know y1 and y2. 
For a particular solution when f (t) cf. 0, allow c1 and c2 to vary with time:

Variation of parameters 

This idea applies to any second order linear differential equation like 

d2y dy 
dt2 

+ B(t) 
dt 

+ C(t)y = f(t). 

(5) 

(6) 

Substituting y
p
(t) from (5) gives a first equation for c1' and c2'. Those are the parameters 

varying with t. To recognize a convenient second equation for c1' and c2', compute the 
derivative of Y

p 
by the product rule : 

(7) 

A good choice is to require that the second sum be zero : 

Second equation for c1', c/ (8) 

Now the second sum in (7) drops out and we compute yp'' (product rule again) : 

y
p
'' = (c1(t)yi'' + c2(t)y/') + (ci'(t)yi' + c/(t)y/). (9) 

Put Y
p
, yp', y

p
'' from (5), (7), (9) into the differential equation to get a wonderful 

result : 

First equation for c1', c/ (10)
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That became simple because the null solutions Yi and y2 satisfy y" + B(t)y' + C(t)y = 0. 
We now have two equations (8) and (10) for two unknowns ci'(t) and c2'(t). At each 

time t, the four coefficients P, Q, R, Sin the two equations are the numbers Yi(t), y2(t), 
Yi'(t), y2 '(t). Solve those two equations, first using P, Q, R, S: 

Pei'+ Qc2' = 0 
Rei'+ Sc/= f 

lead to I 
-Qf

Ci = 

PS-QR 
and I Pf 

C2 = 

PS-QR' 
(11) 

When you multiply those fractions by P and Q, they cancel. When you multiply the fractions 
by Rand Sand add, the result is the second equation Rei'+ Sc2 ' = f (t). 

Linear equations come at the beginning of linear algebra in Chapter 4. Here we have a 
separate problem for each time t, and the solution (11) becomes (12) when P, Q, R, Sare 
Yi(t), Y2(t), Yi'(t), Y2 '(t). I will write W for PS -QR:

C '(t) =
-y2(t)f(t)

1 
W(t) 

c '(t) = 
Yi(t)f(t) 

W(t) = Y1Y21 

- Y2Y1' (12)2 
W(t) 

This denominator W(t) is the Wronskian of the two null solutions Yi(t) and y2(t). 
It was introduced in Section 2.1, and the independence of Yi ( t) and y2 ( t) guarantees that 
W ( t) -=/- 0. The divisions by W ( t) in (12) are safe. The varying parameters c1 ( t) and

c2(t) are the integrals of c1'(t) and c2'(t) in (12). 
We have found a particular solution ciyi + c2y2 to the differential equation (6): 

If Yi and Y2 are independent null solutions toy"+ B(t)y' + C(t)y = 0, then a 
particular solution Y

p 
( t) with right side f ( t) is ci ( t )Yi ( t) + c2 ( t )Y2 ( t) : 

Example 5 Variation of parameters: Find a particular solution for y" + y = t. 

The right side f ( t) = t is not a sinusoid. No problem to find the independent solutions 
Yi ( t) = cost and y2 ( t) = sin t to the null equation y" + y = 0. The Wronskian is 1 : 

W(t) = YiY2' -Y2Yi' = cos2 t + sin2 t = 1 (never zero as predicted). 

The particular solution Y
p 
( t) = ci ( t) cost + c2 ( t) sin t needs integrals of ci' and c2 ' : 

1 (-sint)tdt . ci ( t) =
1 

= t cos t -sm t J 
(cost)tdt . c2(t) =

1 
= tsmt + cost. 

Variation of parameters has found a particular solution ciyi + c2y2 , and it simplifies: 

Y
P 

= (t cos t -sin t) cos t+ (t sin t + cos t) sin t = t. (14) 

Apologies ! We could have seen by ourselves that y = t solves y" + y = t. And the method 
of undetermined coefficients would find y t much faster: no integrations. 
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Example 6 Solve y" + y = o(t) by variation of parameters. The null solutions cost
and sin t still give W ( t) = 1. The delta function f goes into the integrals for c1 and c2 : 

ci = j (sint\<5(t) dt = sin O = 0 c2 = j (cost\o(t) dt = cos O = 1

Then y
p
(t) = (l)y2 (t) = sin t. With f o(t), this is the fundamental solution g(t)

(the impulse response). Then sin tis also the solution toy 11 +y = 0 that starts from y(0) = 0
and y 1 (0 ) = 1. We will find this growth factor again in (17) with s1 = -s2 = i. 

Constant Coefficients and the Solution Formula 

The one time we are sure to know the null solutions y1 and y2 is when the differential
equation has constant coefficients. Substituting y = est into Ay 11 + By 1 + Cy = 0 leads
to As2 +Es+ C = 0. The roots are s1 and s2. The null solutions are e81t and es2t.
Notice that we are free to assume that A = l. (If not, divide the equation by A.)

Variation of parameters gives the solution (13). All we need is the Wronskian W(t),
and for these null solutions it is beautiful:

Immediately we know that W(t) =I- 0 unless s1 = s2. With equal roots we expect to need
the special null solution y2 = test

. Even in that case the Wronskian looks terrific:

When you substitute y1 and y2 and W into ( 13 ), that "VP formula" produces Y
p 

( t).
Unequal roots s1 -::f. s2. The first integral has y2/W = e-sit /(s2 - s1). The second
integral has yi/W = e-s2t /(s2 - s 1). Put those into (13):

t t 
ar ICU ar sou I�n

Y
p
(t) = � e-s1T f(T)dT + _e__ e-s2T f(T)dTP t• I J t' sit 

J 
s2t 

J Constant coefficients s2 - s1 s2 - s1 
0 0 

To me, a growth factor g( t - T) is multiplying the inputs f (T). The integrals just sum up
the outputs. Here is the same formula for Y

p
(t) written so it uses g( t) :

es1t _ es2t
Growth factor g(t) = ---­

s1 - S2 

t 
Solution Y

p
(t) = J g(t - T)f(T)dT

0 

(17)

That might be the nicest formula in the book. Probably I am writing those words because
I didn't see this formula coming. Section 2.3 discovered the same response g(t) ! 

Forgive me for that personal note. I will go on to the other case, with s1 = s2. 
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Equal roots s1 = s2 = s with W = e2st. The first integral in (13) still has y1 = est and 
now Y2/W = te- st. The second integral has Y2 = test and yi/W = e-st:

Particular solution Y
p 

Null solutions est, test 

t t 

Y
p
(t) =

-est J Te-sT f (T)dT + test J e- sT f (T)dT. 

0 0 

This also has a perfect form when you identify the factor g(t - T) that is multiplying f: 

Growth factor g ( t) 
= 

test Solution Y
p

(t) = J g(t - T)f(T)dT (18) 

0 

Formulas that good never happen by accident, g(t) must mean something important: 

The growth factor g ( t) is the impulse response : Y
p 

( t) is g ( t) when f ( t) is <5 ( t).

Let me close Section 2.6 on that high note. Then Section 2.7 will take the Laplace 
transform of the growth factors g ( t) to get the transfer function Y ( s) : 

es1t _ es2t 1 1 
The transform of g(t) = ---- is 

( )( ) 2 
C = Y(s). 

s1 - s2 s - s1 s - s2 s + Bs +
1 1 

The transform of g(t) = te81t is 
( )2 =

2 B C when s1 = s2. 
S - S1 S + S + 

Y(s) comes from Band C. The solution y(t) comes from g(t) = "Green's function." 
The last pages of the book will see the integral of g(t - T)f (T) as a convolution. 

• REVIEW OF THE KEY IDEAS •

1. Undetermined coefficients in Y
p 

apply when f ( t) has only est, cos wt, sin wt, tn.

2. Set Y
p 

= exponential/sinusoid/polynomial. Find coefficients a, b, ... to match f (t).

3. Variation of parameters : c1 and c2 vary with t in Y
P 

= c1 ( t) Y1 ( t) + c2 ( t) Y2 ( t).

4. Two equations for ci' and c2' lead to c1 and c2 = integrals of -y2 f /Wand Y1 f /W.

5. For constant coefficients c1 and c2 those are integrals of e-s, t f(t) and e- s2 t f(t).

6. Then Y
p 

= J g(t - s)f(s)ds when g(t) = response to the impulse f = 8(t). 
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Problem Set 2.6 

Find a particular solution by inspection ( or the method of undetermined coefficients) 

1 

2 

3 

4 

5 

(a) y
ll+y=4 (b) 

(a) y
11+y '+y=et (b)

(a) y
11 -y =cost (b) 

y
ll+y '=4

y 
II + y 

I + y = ect 

y 
II + y = COS 2t

(c) y
ll = 4

(c) y
11+y=t+et 

For these f (t), predict the form of y(t) with undetermined coefficients: 

(a) f (t) = t3 (b) f (t) = cos 2t (c) J(t)=t cost

Predict the form for y(t) when the right hand side is 

(a) f (t) = ect (b) f (t) = tect (c) f (t) = et cost

6 For J(t) = ect when is the prediction for y (t) different from Yect ? 

Use the method of undetermined coefficients to find a solution Y
p 

( t). 

7 

8 

9 

10 

11 

(a) y
11 + 9y = e2t 

(a) 

(a) 

y
11+y '=t+l 

y II + 3y = COS t

(a) y
11+y '+y=t2 

(a) y
11 + y ' + y =cost

(b) 

(b) 

(b) 

(b) 

(b) 

y
11 + 9y = te2t 

y 
II + y 

I = t2 + 1

y 
II + 3y = t COS t

y 
II + y 

I + y = t3 

y 
11 + y 

1 + y = t sin t

Problems 12-14 involve resonance. Multiply the usual form of Y
p 

by t. 

12 (a) y 11+y=eit (b) y
11+y=cost 

13 (a) y
11-4

y
1+3y=et (b) y

11-4
y

1+3y=e3t 

14 (a) y '-y=et (b) y 
I -

y = tet (c) y
1-y=et cost

15 For y 
11 + 4y = et sin t ( exponential times sinusoidal) we have two choices: 

1 (Real) Substitute Yp = Met cos t + Net sin t : determine M and N 
2 (Complex) Solve z 11 + 4z = eU+i)t . Then y is the imaginary part of z.

Use both methods to find the same y(t)-which do you prefer? 

16 (a) Which values of c give resonance for y 11 + 3y
1 - 4

y = tect ?

(b) What form would you substitute for y( t) if there is no resonance?

( c) What form would you use when c produces resonance?
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17 This is the rule for equations P(D)y = ect with resonance P(c) = 0:

If P(c) = 0 and P'(c)-/= 0, look for a solution Y
p 

= Ctect (m = 1)
If c is a root of multiplicity m, then Y

p 
has the form __ . 

18 (a) To solve d4y / dt4 - y = t3 e5t , what form do you expect for y( t) ?

(b) If the right side becomes t3 cos 5t, which 8 coefficients are to be determined?

19 For y 1 - ay = J(t), the method ofundetermined coefficients is looking for all J(t) so
that the usual formula Y

p 
= eat J e-as f ( s )ds is easy to integrate. Find these integrals

for the "nice functions" f = ect , f = eiwt , and f = t :

Problems 20-27 develop the method of variation of parameters. 

20 Find two solutions y1, y2 to y 11 
+ 3y 1 

+ 2y = 0. Use those in formula (13) to solve

(a) y 11+3y'+2y=et (b) y 11 
+ 3y 1 

+ 2y = e-t

21 Find two solutions to y 11 + 
4y 1 = 0 and use variation of parameters for 

(a) y" +4y 1 
= 

e2t (b) y 11 
+

4y 1 
= e-4t 

22 Find an equation y 11 + By 1 + Cy = 0 that is solved by y1 = et and y2 tet. 
If the right side is f ( t) = 1, what solution comes from the VP formula ( 13) ? 

23 y 11 - 5y 1 + 6y = 0 is solved by Y1 = 
e2t and Y2 = e3t, because s = 2 and 

s = 3 come from s2 
- 5s + 6 

= 0. Now solve y 11 
- 5y 1 

+ 6y = 12 in two ways: 

1. Undetermined coefficients ( or inspection) 2. Variation of parameters using ( 13)

The answers are different. Are the initial conditions different? 

24 What are the initial conditions y(O) and y 1 (0) for the solution (13) coming from
variation of parameters, starting from any Y1 and Y2 ? 

25 The equation y 11 = 0 is solved by y1 = 1 and y2 = t. Use variation of parameters to
solve y 11 

= t and also y 11 
= t2

• 

26 Solve y 8 

1
1 + y 8 = 1 for the step response using variation of parameters, starting from

the null solutions y1 = cos t and Y2 = sin t. 

27 Solve Ys 1
1 
+ 3y8 

1 
+ 2ys = 1 for the step response starting from the null solutions 

Y1 = e-t and Y2 = 
e-2t.

28 Solve Ay 1
1 + Cy = cos wt when Aw2 

= C (the case of resonance). Example 4
suggests to substitute y = Mt cos wt + N t sin wt. Find M and N. 

29 Put g ( t) into the great formulas (17)-(18) to see the equations above them. 
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2. 7 Laplace Transforms Y ( s) and F ( s)

If you think about the functions that have dominated this book, the list is not very long. 
They are the right hand sides of linear differential equations and also the solutions y(t): 

1. Exponentials eat 

2. Sinusoids cos wt and sin wt

3. Polynomials starting with 1 and t and t2 

4. Step functions H ( t - T)

5. Delta functions 6 ( t - T)

6. Products of 1 to 5

Why are these functions special? I believe this is an important question. 

The answer that strikes me first is something I had not thought about: 

The derivatives and integrals of these functions are also on the list (almost). 

That was true from the very start of Chapter 1. Example 1 on page 1 was y = et . Its 
fundamental property is dy/dt = y. The derivative leaves it unchanged, which puts it on the 
list. And the product of two exponentials is another exponential. In fact exponentials could 
be a short list by themselves. 

Cosines and sines were written separately, but those are combinations of eiwt and e- iwt . 
They just move us to complex numbers. The constant polynomial is e0t 

= 1. Integrals and 
derivatives of polynomials are polynomials. The product rule for derivatives (and the reverse 
rule which is integration by parts) keep the list self-contained: no new functions. 

There is one flaw but it is easily fixed. The delta function J(t) is the derivative of the 
step function H(t), but we need all derivatives and integrals. Include them on the list! 
Solving dy/dt = step function gives y(t) = ramp function. This is zero fort ::; 0, and 
y(t) = t fort :::: 0. Its graph has a comer and its slope has a jump. The integral of that 
linear ramp is a parabolic ramp. The next integral leads toward a cubic spline. The 
derivative of a delta function is a very singular object (see Problem 25). 

In the end, all these ideal functions can go on the list which is now complete. 

The Algebra of Differential Equations 

With those special functions, solving a constant coefficient linear differential equation is 
not so difficult. It reduces to an algebra problem. The null solution Yn is a combination 
of exponentials (possibly times powers of t). The particular solution Y

p 
has a known 

form like Yeiwt_the differential equation will decide the undetermined coefficient Y. 
For functions 1 to 6, the integrals using variation of parameters are already on the list. 
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The Laplace transform gives a systematic way to do the algebra. Functions of t 
become functions of s. Instead of derivatives dy/dt, we have multiplications sY(s). Then 
differential equations int become algebra equations in s. Start with these examples: 

Left side y(t)-+ Y (s) y' (t)---+ sY(s) and y "(t) ---+ s2Y(s) when y(0) = y '(0) =0 

Right side f (t)-+ F(s) I f =eat ---+ F = 1/ (s -a) and impulse f = o(t)---+ F = 1. 

Solving a differential equation by using the Laplace transform involves three steps: 

1 Transform every term 2 Solve for Y ( s) 3 Find y( t) whose transform is Y ( s). 

You will see how initial values for y(0) and y'(0) go into the s-equation for Y(s). And 
most important, you will see how the zeros of the polynomial s2 

+ Bs + C become 
"poles" of Y ( s). Those exponents s1 and s2 give us the null solution Yn 

( t). Dividing 
by that polynomial gives the transfer function 1/(s2 

+ Bs + C). Now we see all of this as a 
natural part of the Laplace transform. 

Example 1 Start from y(0) = 0 and y '(0) = 0. With those initial conditions, the 
transform of y I is s Y and the transform of y II is s2Y. We can transform a whole equation: 

1 
Step 1 y 11 -4y 1 + 3y = eat transforms to ( s2 

- 4s + 3) Y ( s) = -­
s -a 

1
Step2 The transform ofy(t) isY(s)=

( 2 

1 
)( ) s - 4s + 3 s - a (s -3)(s -l)(s -a)

Step 3 The inverse Laplace transform of Y ( s) is y ( t) = C1 e3t + C2 et + Geat . 

C1 and C2 come from matching the initial conditions y(0) = 0 and y'(0) = 0. The gain 
G = 1/(a2 

- 4a + 3) is the transfer function at s = a. The inverse transform of Y(s) is 
computed in equations (12) and (14). Step 2 revealed the poles of Y(s): 

1 
( ) ( ) ( ) 

has poles at s = 3 and s = 1 and 
s-3 s-1 s-a 

s = a. 

Those three numbers are the all-important exponents in y(t) = C1 e3t 
+ C2 et 

+ Geat _ 
Now they are seen as the poles 3, 1, a where Y ( s) becomes infinite. 

Example 2 Change from f = eat to f = c5(t) = impulse. Keep y(0) = y'(0) = 0. 

Step 1 y11 +By'+ Cy= c5(t) transforms to (s2 + Bs + C) Y(s) = 1. 

1 
Step 2 The transform of y( t) is Y ( s) = ----- = transfer function. 

s2 + Bs + C 

es1t _ es2t 
Step 3 ' The inverse transform is y(t) = g(t) = ----=impulse response. 

81 - 82 
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Those roots s1, s2 of s2 
+ Bs + C = ( s -s1) ( s -s2) give poles in Y ( s) and exponentials

in y(t). You have to be impressed by how quickly steps 1-2-3 led to this central fact. 
When f = 8 ( t), the transform of the impulse response g is the transfer function Y. 

The Laplace Transform 

Our first Table of Transforms will include the most essential functions and no more. A
more complete presentation of this transform will be saved for the last sections of the book.
We will define Y ( s) here, but the shift rule for transforms will be developed there. All
step functions H(t - T) are left for Chapter 8, except for one comment below. 

Especially we point to the final Section 8.6 on "convolutions". These are the inverse
transforms of products Y(s) = F(s)G(s). Convolution is exactly what we need when
f ( t) is not a simple function like eat and F ( s) is not a simple function like 1 / ( s - a). 

To create the Table of Transforms we start with the integral that defines F( s) : 

The Laplace transform of f(t) is F(s) = j f(t) e-st dt. (1) 

The first function to transform is certainly f ( t) = eat. Then F ( s) = 1 / ( s - a) as expected :

J
oo 

[
e(a-s)t

] 
t=oo 1 1 

F(s) = eate-st dt = --- = 0 - -- = --. 
a - s t=O a - s s - a 

0 

(2)

That integral would be infinite if a 2'. s. It is typical of Laplace transforms to requires > a.
Then the factor e-st in the integral brings us safely to zero at t = oo. The following rule
is natural for all functions J(t), when you look at the integral (1) from t = 0 tot = oo: 

By definition f(t) = 0 for all t < 0. Functions don't start until t = 0. 

Then the step function H ( t) and the constant function f = l have the same transform !

The transform of f(t) = 1 is F(s) = J le-st dt = �­
o 

(3) 

This is the transform of eat when the exponent a goes to O and 1 / ( s - a) goes to 1 / s.

Transform of the Derivative 

Now comes the most important rule-the whole basis for solving differential equations.
If the transform of y( t) is Y ( s ), what is the transform of the derivative dy / dt? 

Derivative Rule The transform of dy/dt is sY(s) - y(O).



142 Chapter 2. Second Order Equations 

The derivative rule shows how the initial conditions enter the transformed problem­
not as separate side conditions, but directly into the equation for Y ( s). The proof uses 
integration by parts. The integral of dy/dt is y(t) and the derivative of e-st is -se-st:

00 

J dy 
e-st dt

dt 
0 

Transform 

of dy/dt 

00 

-J y(t)(-se-st) dt + [y( t)e-st
];; 

0 

(4) 

Again s must be large enough-or more exactly, the real part of s must be large enough­
to assure that y(t)e-st drops to zero at t = oo.

We can immediately solve the model problem of Chapter 1 : A first order linear 
equation. The solution steps 1, 2, 3 produce Y ( s) with poles (blowup values for s) at 
the two key exponents s = a and s = c: 

Example 3 
dy 

Solve - - ay = ect starting from any y(O). 
dt 

1
Step 1 Transform the equation to sY(s) - y(O) -aY(s) = --.

s-c

Step 2 (s -a)Y(s) = y(O) + -
1
- gives Y(s) = 

y(O) 
+

1 

s-c s-a (s-a)(s-c)

Step 3 The inverse transform of 
y(O) 

is the null solution Yn(t) = y(O)eat .
s-a

1 ect _ eat 

The inverse transform of 
( ) ( ) 

is the very particular solution 
s-a s-c c- a 

(5) 

(6) 

(7) 

(8) 

I have to say, this is beautiful. The effort we made in Chapter 1 has been reduced to its 
bare minimum. All that is left is the derivative rule, the transform of exponentials, and "par­
tial fractions." Those partial fractions were the algebra from Step 2 to Step 3 : 
separating 1 / ( s -a) ( s - c) with two poles a and c into two fractions with one pole each.

PF2 
1 1 1 

------=------+------
(s - a)(s - c) (s - a)(a -c) (c -a)(s - c) 

(9) 

PF2 was used in Example 2 to find the impulse response. In that case a and c were s1 
and s2• Partial fractions were also used in Example 1, with f = eat and three poles 3, 1 a. 
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Partial Fractions 

Example 1 reached Y(s) = l/(s + 3)(s + l)(s - a). We didn't immediately know 
its inverse transform y(t). But finding y(t) becomes simple when Y(s) is separated into 
three terms with one pole each. Those three pieces are the Partial Fractions in PF3: 

1 1 1 1 
( s - 3) ( s - 1 ) ( s -a) 

= -( s -- -3-) (-3 -- 1-)-(3---a) +-(1- - -3)- ( s- --1-) (-1 ---a) +-( a--- 3 -) (-a --1 )-( s---a-)

Usually I would show you where this PF3 formula comes from. In this case I would rather 
show you that it is correct. Above all, you must see the main point : The three separate terms 
with one pole each lead immediately to the three parts C1 e3t and C2 et and Y eat . 

Officially, correctness can be proved by multiplying PF3 by (s - 3)(s - l)(s - a).

1 
(s- l)(s-a) (s-3)(s-a) (s- 3)(s- 1)

=-'----'--'-----'-+-'----'---'-----'-+-'----'--'-----'-
(3 - 1)(3 - a) (1 - 3)(1 - a) (a - 3)(a - 1)· (10) 

At s = 3, the last two terms disappear and we have 1 = 1 (as desired). At s = 1, 
the second term equals 1. At s = a, the third term equals 1. Thus (10) is an equation 
of the form 1 = As2 

+ Bs + C, and the equation is correct at three values s = 3, 1, a. 
Therefore the equation must be always correct, and PF3 is shown to be true. 

Remark The theory of partial fractions usually computes C1 and C2 and Y so that 

1 C1 C2 Y 
-------- = -- + -- + --. 
(s - 3)(s - l){s - a) s - 3 s - 1 s - a 

(11) 

The idea is to put the right side over a common denominator, which is on the left side. 
Matching the coefficients of s2 and s and 1 gives three equations for C1 and C2 and Y. 
My shortcut was to go directly to the answers C1 , C2, G that you see in PF3 : 

1 
Ci=----­

(3 - 1)(3 - a)

1 
C2=-----

(l - 3)(1 -a)
Y= 

1 
(a - 3)(a - 1) 

(12) 

I think it is easier to remember this pattern than to solve for a new C1 and C2 and Y, 
every time you change the poles 3 and 1 and a. To repeat, from the three partial 
fractions in PF3 we read off the coefficients C1 , C2, Yin equation (12). 

Very Particular Solution 

Look at what we have in those three parts. The last part Y eat is a particular solution­
the one that comes from the transfer function and the exponential response formula. 
The equation was y" - 4y' + 3 y = eat , and the response to eat is 

y ( t) = y eat = 
1 

eat = 
1 

eat 

P a 2 - 4a + 3 ( a - 3) ( a - l) · (13)



144 Chapter 2. Second Order Equations 

That is old news. This is not the very particular solution, it doesn't start at y(0) = 0 and 
y' (0) = 0. The solution with that particular start is the one from the Laplace transform: 

Theveryparticularsolution is allof Yvp
(t) = C1 e3t + C2et + Yeat _ (14) 

Remember, any null solution Yn can be added to one particular Yv · That gives another Yv · 
The very particular solution Yvv starts from rest. 

The complete solution adjusts the free constants c1 and c2 (note the small c) to match 
any starting values y(0) and y' (0) : 

3t t y at 

Ycomplete = C1e + c2e + e . (15) 

You could solve for c1 and c2 as usual, by setting t = 0 in y and y'. Then you are working 
in the time domain. Or you could use y(0) and y'(0) in finding Y(s), when you trans­
form the equation in the first place. Let me show you that way, compared to the usual way. 

Including y(O) and y1 (0) in the Transform 

We know that the transform of y' is sY(s) - y(0). To find the transform of y", use that 
first derivative rule twice. This brings in y' (0) along with y(0). 

transform of y" = s(transform of y') - y' (0) 

= s(sY(s) - y(0)) - y' (0) 

= s2Y(s) - sy(O) - y'(O). (16) 

Now we can solve the equation y 11 
- 4y 1 

+ 3y = e
at entirely by Laplace transform:

1 
Step l Transform to (s2Y(s) - sy(0) - y'(0)) - 4(sY(s) - y(0)) + 3Y(s) = --

s - a 

Step 2 Rewrite as (s2 
- 4s + 3)Y(s) = (s - 4)y(0) + y'(0) + 1/(s - a). 

Solve forY(s) Y(s) =
(s - 4)y(0) + y'(0) 

+ 
1 

s2 
- 4s + 3 (s2 

- 4s + 3)(s - a)' 

Step 3 Invert both pieces of Y ( s) to find Yn ( t) + Yp ( t). 

(17) 

This looks more painful to me! The last part of Y(s) is fine-that is what we already 
worked with to find Yv · Its inverse transform is the very particular solution in (14). The 
first part of Y(s) involves y(0) and y'(0). We have to do partial fractions again: not good. 

The denominator s2 
- 4s + 3 has two factors (s - 3)(s - 1) and not three factors. 

But I would prefer to find c1 and c2 in the complete solution (15), by setting t = 0 
and solving these two equations: 

C1 + C2 + y = y(0) 

3c1 + c2 + aY = y'(0) 
(18) 

When y(0) and y 1 (0) are zero, that's when c1 and c2 and y equal C1 and C2 and Yvv · 
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Transforms at Resonance 

The reader will remember that when two exponents come together, and two solutions 
become one solution like eat, another solution is born. It is like atomic fission or fusion. 
The new solution has the form teat . We want to find its Laplace transform. 

Equal exponents can happen in two different ways for y 11 +By'+ Cy= f (t). 

1 (Null solution) Two roots 81 and 82 of the characteristic polynomial become equal. 
2 (Particular solution) The exponent in f = eat equals 81 or 82 in the null solution. 
In a truly extreme case we might have 81 = 82 = a, three equal exponents. Then the 
null solution is c1 eat 

+ c2 teat, and a particular solution is Gt
2 eat . 

We are seeing these possibilities in the "time domain" and we can see them in the 
"frequency domain". Double roots in the t-domain become double poles in Y ( 8).

1
The Laplace transform of teat is ---- with a double pole. (19) 

(8 - a) 2 

A nice proof starts with a simple pole in the transform. The transform of eat is 1/(s - a).
Now take derivatives of both sides with respect to a: 

1 

(s - a) 2 

If we take another a-derivative, the transform of t2 eat is seen as 2(8 - a)-3 with a
triple pole. The simplest example of this extreme case would be the equation y" = 2. 

y" = 2 has exponents 0 and 0 in Yn (t) = c1 + c2
t and a= 0 in y

p
(t) = t2 e0t 

= 
t2

. 

The initial conditions give c1 = y(0) and c2 = y' (0). The solution is easy to check: 

y = y(O) + ty'(O) + t2 solves y" = 2. 

To find this solution by Laplace transform, start by transforming y" and 2 : 

2 / 
2 

s Y(s) - y(0)s - y (0) = -

s 

. y(0) y'(0) 2 
gives Y(8) = - + -- + -.

S s
2 

s
3 

(20) 

(21) 

The inverse transforms of 1 / 8 and 1 / 82 are 1 and t. The inverse transform of 2 / 83 is t2
. 

So the inverse transform of Y ( s) is the correct y = y( 0) + ty' ( 0) + t2 in (20). 
Those are really e0t and te0t and t2 e0t : three zero exponents, a truly extreme case. 
The inverse of equation (19) tells us the fundamental solution g(t) when the transfer 

function 1/(82 +Es+ C) has a double pole and 82 +Es+ C = 0 has s1 = s2 : 

If s2 
+ Bs + C = (s - s1) 2 then the fundamental solution is g(t) 

= te81 t . 
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The Transforms of cos wt and sin wt

In all of this section on Laplace transforms, there is no requirement that a must be real. That
exponent can be iw or -iw or any complex number a + iw. From the identity cos wt =
½(eiwt 

+ e-iwt), and from the linearity of the formula for F(s) = J f(t)e-stdt, we can
combine the known transforms of eiwt and e-iwt : 

The transform of f(t) = cos wtisF(s) = ! (-1
-.- + -

1
-.-) = 2 

8 

2 2 s - iw s + iw s + w 

The twin identity sin wt= ;i (
eiwt - e-iwt) also comes from Euler's formula.

The transform of f(t) = sin wtisF(s) = � (-1
-.- - -

1
-.-) = 2 

w 
2. 2i s - iw s + iw s + w 

(22)

(23)

Those transforms appear in the fundamental example of a mass hanging from a spring :

Step 1 my" +ky = cos wt transforms to m(s2 Y(s )- sy(O)-y' (0)) +kY(s) = 
2 

8 

2
. 

s +w 

The transform Y(s) is multiplied by ms2 
+ k. The transfer function is 1/(ms2 + k).

The transfer function multiplies the input to give the output. The input is on the
right hand side, the output is the solution. Both of those are now in transform space !

1 ( 
I 

S ) 
Step2 Solve for Y(s) = ms2 + k 

sy(0) + Y (0) + 
82 + w2 

(24)

We are ready for Step 3, but it doesn't look so easy. It requires the inverse transform of this
Y ( s). Our simple mass-spring problem has led us to a fourth degree denominator ( ms2 

+ 

k) ( s2 
+ w2 ). We need partial fractions to separate Y ( s) into two pieces with

second degree denominators. That algebra is not so bad, and it can be left for Problem
26. 

The result is that y(t) has a term in cos wt and another term in cos wnt. The driv­
ing frequency is w, the natural frequency Wn = � comes from the zeros of ms2 

+ k. 

The frequencies in the solution y ( t) are the poles ±iw and ±iwn in its transform Y ( s).
That bold statement is really the important message from a Laplace transform. We

engineer the system or the network by moving those poles. Often we keep them well
separated to avoid instability. And we add damping to push the zeros of ms2 

+ bs + k
(poles of Y ( s)) off the imaginary axis and into the stable left halfplane where Re s < 0.

f(t) 1,t,t2 

F(s) 
1 1 2 

I -;'s2'sa 

eat, teat, t2 eat 

1 1 2 
s - a'(s - a)2 '(s - a)3 

cos wt, sin wt 

s w 
82 + w2 ' 82 + w2 

y, y', y"

Y, sY -y(O), 
s2Y -sy(O)-y'(O) 
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Complex Roots a ± iw

Finally we come to the most typical case for physical systems. It has damping, and it has 
oscillation. The roots of 82 + 2s + 5 are complex. Their real parts are a = -2 /2 = -1. 
Their imaginary parts ±v B2 - 4AC /2 are ±iw = ±v"=l6/2 = ±2i. We are in 
the underdamped case and the solutions to y" + 2y' + 5y = 0 can be written two ways : 

y=c
1
e{-l+2i)t+c

2
e(-l-2i)t or y=e-t(C1 cos2t+C2sin2t). (25)

What does this problem look like in the s-domain, after a Laplace transform? 

y" + 2y' + 5y = 0 transforms to (s2 + 2s + 5) Y(s) - (s + 2) y(0) -y'(0) = 0. (26) 

That quadratic 8
2 + 2s + 5 will go into the denominator of Y ( s), as always. This part of

Y(s) is the transfer function 1/(s2 + 2s + 5). The numerator is (s + 2)y(0) + y'(0) 
from the initial conditions. The right hand side of our null equation (26) is zero and the 
transfer function is connecting the inputs y(0) and y '(0) to the solution: 

The transform of y ( t) is Y(s) 
= (s+2)y(0)+y'(0)

_ 
s2 + 2s + 5 

(27) 

This is the point where partial fractions can enter, if we choose. We can separate 
s2 + 2s + 5 into its linear factors ( s - s1) ( s - s2). I suggest not to do it. Those roots
s1 and s2 are complex numbers, and it is easier to stay with one real quadratic. 

We are close to the transforms of cos wt and sin wt, already in the Table above. The 
new factor is eat = e-t from the real part, and it gives decay. 

t t 
s-a w 

ea cos wt and ea sin wt transform to
( )2 2 and 

( )2 2. (28)
s-a +w s-a +w

For (27), the key is to separate s2 + 2s + 5 into (s + 1)2 + 4. From this we recognize 
a = -1 and w = 2 as expected. Then the inverse transform combines e-t cos 2t and 
e-t sin 2t. The numerator in (27) is linear, call it H s + K. To fit perfectly with the numerator
s - a in (28), we can split any H s + K into H ( s - a) + ( K + Ha) : 

The inverse transform of 
(s-a)2 +w2 

Hs+K sin wt 
is Heat cos wt + ( K + Ha) eat __ 

w 
(29) 

For higher order equations, and for equations with exponential driving functions f (t), 
the transform Y ( s) involves polynomials of higher degree. In principle, partial fractions 
can reduce to degree 1 and degree 2. Those produce the real poles and complex poles 
of Y(s)-the real and complex exponentials est in y(t). I would certainly turn first to the 
method of undetermined coefficients in Section 2.6. 

The best contribution of Laplace transforms is to focus attention on transfer functions 
like 1/(As2 +Es+ C) and their poles. 
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• REVIEW OF THE KEV IDEAS •

1. The Laplace transform of f(t) is F(s) = J f(t)e- stdt. f =eat --+ F = s�
a

· 

2. Ay" +By'+ Cy transforms to (As2 
+ Bs + C) Y(s) - (As+ B)y(O) - Ay'(O).

3. Step 1 transforms the equation, Step 2 solves for Y ( s ), Step 3 inverts Y ( s) to y( t).

4. The exponents in the solutions Yn ( t) and Y
p 
( t) are the poles in Y ( s).

5. Partial fractions can simplify Y(s) using PF2 and PF3, to help invert to y(t).

Problem Set 2. 7 

1 Take the Laplace transform of each term in these equations and solve for Y ( s),
with y(O) = 0 and y1(0) = 1. Find the roots s1 and s2 -the poles ofY(s): 

Undamped 

Underdamped 

Critically damped 

Overdamped 

y11 
+ Oy1 

+ 16y = 0
y" + 2y' + 16y = 0 
y11 

+ 8y1 
+ 16y = Q

y
11 

+
lOy1 

+ 16y = 0

For the overdamped case use PF2 to write Y(s) = A/(s - s1) + B /(s - s2). 

2 Invert the four transforms Y(s) in Problem 1 to find y(t).

3 (a) Find the Laplace transform Y(s) from the equation y1 
= eat with y(O) = A.

(b) Use PF2 to break Y(s) into two fractions Ci /(s - a)+ C2/s.

(c) Invert Y ( s) to find y( t) and check that y' = eat and y(O) = A.

4 (a) Find the transform Y(s) when y11 
= eat with y(O) = A and y'(O) = B.

(b) Split Y(s) into Ci /(s - a)+ C2/(s - a)2 
+ C3 /s.

(c) Invert Y(s) to find y(t). Check y" = eat and y(O) = A and y1(0) = B.

5 Transform these differential equations to find Y ( s) : 

(a) y" - y' = 1 with y(O) = 4 and y'(O) = 0
(b) y11 

+ y = cos wt with y(O) = y1(0) = 0 and w-/- 1 
(c) y11 

+ y = cost with y(O) = y'(O) = 0. What changed for w = 1? 

6 Find the Laplace transforms F1, F2, F3 of these functions Ji , h, h :

h(t) = tcos t
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7 For any real or complex a, the transform of f = teat is By writing 
cos wt as (eiwt 

+ e-iwt)/2, transform g(t) = tcos wt and h(t) = tetcos wt.
(Notice that the transform of his new.) 

8 Invert the transforms Fi, F2 , F3 using PF2 and PF3 to discover Ji, h, h : 

1 
Fi(8) = 

(8 -a)(8 -b) 
8 

F2 (8) = 

(8 -a)(8 -b) 
1 

F3(8) = -
3
-

8 - 8 

9 Step 1 transforms these equations and initial conditions. Step 2 solves for Y ( 8). 
Step 3 inverts to find y(t): 

(a) y' -ay = t with y(O) = 0
(b) y" + a2y = 1 with y(O) = 1 and y'(O) = 2 
(c) y" + 3y' + 2y = 1 with y(O) = 4 and y'(O) = 5. 

What particular solution Yp to (c) comes from using "undetermined coefficients"? 

Questions 10-16 are about partial fractions. 

10 Show that PF2 in equation (9) is correct. Multiply both sides by ( 8 - a) ( 8 - b) :

(*) 1= -- + --· 

( a) What do those two fractions in ( *) equal at the points 8 = a and 8 = b ? 
(b) The equation ( *) is correct at those two points a and b. It is the equation of

a straight __ . So why is it correct for every 8 ?

11 Here is the PF2 formula with numerators. Formula ( *) had K = 1 and H = 0: 

PF2' 
H8+K Ha+K Hb+K 

-----=-----+-----(8-a)(8-b) (8-a)(a-b) (b-a)(8-b) 

To show that PF2' is correct, multiply both sides by (8 -a)(8 -b). You are left 
with the equation of a straight __ . Check your equation at 8 = a and at 8 = b. 
Now it must be correct for all 8, and PF2' is proved. 

12 Break these functions into two partial fractions using PF2 and PF2' : 

1 
(a) --

82 -4 
(b) 

8 

82 -4 
(c) 

H8+K
82 

- 58 + 6

13 Find the integrals of (a)(b)(c) in Problem 12 by integrating each partial fraction. The 
integrals of C / ( 8 - a) and D / ( 8 - b) are logarithms. 

14 Extend PF3 to PF3' in the same way that PF2 extended to PF2': 

G82 +H8+K Ga2 +Ha+K ? ? 
(3-a)(8-b)(8-c) 

= 
(3-a)(a-b)(a-c)

+
?

+
?. 

PF3' 
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15 The linear polynomial ( s - b) / ( a - b) equals 1 at s = a and 0 at s = b. Write down a 
quadratic polynomial that equals 1 at s = a and 0 at s = b and s = c. 

16 What is the number C so that C(s - b)(s - c)(s - d) equals 1 at s =a? 

Note A complete theory of partial fractions must allow double roots (when b = a). The 
formula can be discovered from l'Hopital's Rule (in PF3 for example) when 
b approaches a. Multiple roots lose the beauty of PF3 and PF3' -we are happy 
to stay with simple roots a, b, c. 

Questions 17-21 involve the transform F(s) = 1 of the delta function f(t) = '5(t). 

17 Find F(s) from its definition J f(t)e- stdt when j(t) = c5(t - T), T � 0.
0 

18 Transform y 11 - 2y' + y = c5 ( t). The impulse response y( t) transforms into Y ( s) = 
transfer function. The double root s1 = s2 = 1 gives a double pole and a new y(t). 

19 Find the inverse transforms y(t) of these transfer functions Y (s) : 

s 
(a) --

s-a

(b) 
s 

s
2 

- a
2 

(c) 
s

2 

s
2 

- a
2 

20 Solve y" + y = c5(t) by Laplace transform, with y(0) = y'(0) = 0. If you found 
y(t) = sin t as I did, this involves a serious mystery: That sine solves y" + y = 0, 
and it doesn't have y'(0) = 0. Where does c5(t) come from? In other words, what is 
the derivative of y 1 = cos t if all functions are zero for t < 0 ? 

If y = sin t, explain why y" = - sin t + 15 ( t). Remember that y = 0 for t < 0. 

Problem (20) connects to a remarkable fact. The same impulse response y = g(t) 
solves both of these equations : An impulse at t = 0 makes the velocity y 1 ( 0)
jump by 1. Both equations start from y(0) = 0. 

y" +By'+ Cy= '5(t) with y'(0) = 0 y" +By'+ Cy= 0 with y'(0) = 1. 

21 (Similar mystery) These two problems give the same Y(s) = s/(s2 
+ 1) and the same 

impulse response y(t) = g(t) =cost. How can this be? 

y' = -sin t with y(0) = 1 y' = -sin t + '5(t) with "y(0) = 0" 

Problems 22-24 involve the Laplace transform of the integral of y(t). 

t 
22 If f(t) transforms to F(s), what is the transform of the integral h(t) = J f(T)dT? 

0 

Answer by transforming the equation dh/dt = f(t) with h(0) = 0. 
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t 

23 Transform and solve the integro-differential equation y' + J y dt = l, y(O) = 0. 
0 

t 

A mystery like Problem 20: y = cos t seems to solve y' + J ydt = 0, y(O) = l. 
0 

t 

24 Transform and solve the amazing equation dy / dt + J y dt = O ( t). 
0 

25 The derivative of the delta function is not easy to imagine-it is called a "doublet" 
because it jumps up to +oo and back down to -oo. Find the Laplace transform of the 
doublet do/ dt from the rule for the transform of a derivative. 

Adoubleto'(t) is known by its integral: f o'(t)F(t)dt = -f o(t)F'(t)dt = -F'(O). 

26 (Challenge) What function y(t) has the transform Y(s) = 1/(s2 
+ w

2)(s2 
+ a

2 )? 
First use partial fractions to find H and K : 

H K 
Y(s) = --- + --

s
2 + w

2 
s

2 + a
2 

27 Why is the Laplace transform of a unit step function H(t) the same as the Laplace 
transform of a constant function f ( t) = 1 ? 
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Chapter 3 

Graphical and Numerical Methods 

The world of differential equations is large (very large). This page aims to see what is already 
done and what remains to do. 

Chapters 1 and 2 concentrated on equations we can solve. Compared to digging for 
coal or drilling for oil, this was the equivalent of picking up gold. Solutions were wait­
ing for us. Looking back honestly, we just wrote them down (not so easy in Chapter 2). 

Above all I am thinking of eat in Chapter 1 and est in Chapter 2 and e>-tx coming 
in Chapter 6 (with eigenvalues and eigenvectors). When the equation is linear, and 
its coefficients are constant, then its solutions are exponentials. 

Chapter 1 First order equations (linear or separable or exact or special) 

Chapter 2 Second order equations Ay 11 + By 1 
+ Cy = f ( t) 

Chapter 6 First order systems y 1 
= Ay + f ( t) with matrices A and vectors y. 

Chapter 3 will be different. Instead of f(t) we have f(t, y). Most nonlinear problems 
don't allow a formula for y(t). "A solution exists but it has no formula." This is the 
hard reality of differential equations y 1 

= f ( t, y). The equations are important but they 
don't have exponential answers. This chapter pictures the solution, computes the solution, 
and decides if the solution is stable. 

Section 3.1 Pictures for nonlinear equations y' = f (t, y): Stability decided by 8 f joy. 
Section 3.2 Pictures for linear second order equations and 2 by 2 systems : Stable or not. 

Section 3.3 Test for stability at critical points by linearizing systems of equations. 

Section 3.4 Euler methods (safe but slow) for computing approximations toy. 

Section 3.5 Fast and accurate computations, by methods more efficient than Euler. 

Science and engineering and finance constantly use Runge-Kutta. 

After this chapter, the book will move into high dimensions : the world of linear algebra. 

One particle and one resistor and one spring and one of anything: that was only a start. The 
reality is a network of connections: a brain, a living body, a modem machine, a web of 
processors. Every network leads to a matrix. You will learn how to read a matrix. 

In my opinion, linear algebra is pure gold. 
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3.1 Nonlinear Equations y' = f ( t, y) 

This section aims to get a picture of y(t), not a formula. The pictures will be graphs in 
the t - y plane (t across and y(t) up). The differential equation is dy/dt = f(t, y) 
and everything depends on that function f. I can start with a linear equation y 1 = 2y. 

The solutions to y 1 = 2y are y( t) = C e2t . For every number C this gives a solution 
curve from t = -oo to t = oo. Those curves cover every point in the t - y plane. 
This is the "solution picture" we want for nonlinear equations y 1 = f ( t, y).

That solution y = Ce2t has a graph. The plane is filled with those graphs. Every point 
t, y has one of those curves going through it (choose the right C). A different equation 
y 1 

= sin ty won't have a formula. Its picture starts with just this one fact: 

dy/dt = sin ty The solution curve through the point t, y has the slope sin ty. 

From that point picture we have to build a curve picture. This section tries to connect 
small arrows at points into solution curves through those points. The arrow at the point 
t, y has the right slope f(t, y). Connecting with other arrows is the hard part. 

I will separate this section into facts about y ( t) and pictures of y ( t).

Facts About y ( t) 

The facts will be answers to these questions, and the Chapter 3 Notes add more: 

1. Starting from y(O) at t = 0, does dy/dt = f(t, y) have a solution?

2. Could there be two or more solutions that start from the same y(O)?

Question 1 is about existence of y(t). Is there a solution curve through t=O, y=y(O)?

Question 2 is about uniqueness of y(t). Could two solution curves go through one point? 

When f(t, y) is reasonable, we expect exactly one curve through every point t, y:
existence and also uniqueness. Which functions are reasonable? Here are answers: 

1. A solution exists if f(t, y) is a continuous function fort near 0 and y near y(O).

2. There can't be two solutions with the same y(O) when of joy is also continuous.

The word "continuous" has a precise technical meaning. Let me be imprecise and
nontechnical. Continuity at a point rules out jumps and infinities in a small neighborhood 
of that point. The particular function f = y /tis certainly ruled out at points where t = 0: 

dy 
= '}!_ with y(O) = 0 has infinitely many solutions y = Ct.

dt t 

The particular function f = t/y is also ruled out when y(O) = 0 (no division by 0): 

dy 

dt 

t with y(O) = 0 has two solutions y(t) = t and y(t) = -t.
y 
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In those examples, y/t and t/y are starting from 0/0. Solutions do exist (that fact 
wasn't guaranteed). Solutions are not unique (no surprise). We ask more from f(t, y).

There is one important point that we emphasize here, because it could easily be missed. 

Continuity off and {) f at all points does not guarantee that solutions reach t = CX). 

{)y 

Yes, there will be a solution starting from y(0). That solution will be unique. But y(t) could 
blow up at some finite time t. The first nonlinear equation in the book (Section 1.1) was an 
example of early explosion: 

Blow-up at t = 1 The solution to 
dy 

= y2 with y(0) = 1 is y(t) = -

1
-. 

ill 1-t

That function f = y2 is certainly continuous. Its derivative 8 f / 8y = 2y is also continuous. 
But the derivative 2y grows when the solution grows. To be sure there is no explosion at a 
finite time t, we ask for an upper bound L on the continuous function 8 f / 8y: 

If I:� I � L for all t and y there is a unique solution through y(O) reaching all t.

For a linear differential equation y' = a(t)y + q(t), the derivative 8 f / 8y of the right hand 
side is just a(t). Then if la(t) I � Land q(t) is continuous for all time, solution curves go 
from t = -oo tot= oo. Chapter 1 found a formula for y(t) in this linear case. 

I will end with one final nonlinear fact. The condition 18 f / 8yl � Lis pushed to its limit 
when 8 f / 8y = L exactly. Then y 1 

= Ly + q( t). A comparison with this linear equation 
gives information about the nonlinear equation, when 18 f / 8y I � L : 

If y' = J(t, y) and z' = J(t, z), then ly(t) - z(t)I � eLt ly(0) - z(0)I. (1) 

If y(t) and z(t) start very close, they stay close. This is the opposite of what you see on 
the cover of this book. The cover shows a famous example of chaos: solutions go wild.
A slight change in y(0) will send the solution on a completely different (and distant) path. 
We now know that Pluto's orbit is chaotic: very very unpredictable. The equations allow it, 
because they don't have 18 f / 8yl � L. Pluto is not a planet. 

Pictures of the Solution 

Example 1 dy/dt = 2 -y Solution y(t) = 2 + ce-t y(CX)) = 2
The perfect picture of y 1 

= 2 - y would show a small arrow at every point t, y. The 
arrow would have slope s = 2 - y. Along the all-important "steady state line" y = 2,
this slope would be zero. The arrows are flat ( s = 0) along that line : a constant solution. 

Above that steady line, the slope 2-y is negative. The vectors have components dt across 
and dy = (2 - y)dt down. We don't have space for an arrow at every point, 
but Figure 3 .1 gives the idea. MATLAB calls the field of arrows a "quiver". 
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Figure 3.1: (a) Arrows with slopes f(t,y) show the direction of the solution curves y(t). 
(b) Along an isocline f(t, y) = s, all arrows have the same slopes. Heres = 2 - y. 

Notice that all arrows point toward the line y = 2. That steady state solution is stable.

The formula y(t) = 2 + Ce-t confirms that the solutions approach y = 2. 
First key idea: The solution curves y(t) = 2 + ce-t are tangent to the arrows.

Tangent means : The curves have the same slope s = 2 - y as the arrows ! The curves 
solve the equation, the equation specifies the slopes, the arrows have correct slopes. 
Second key idea : Put your arrows along isoclines. An isocline (meaning "same slope") 
is a curve f(t, y) = constant. This idea makes the arrows much easier to draw. All the 
isoclines 2 - y = s are horizontal lines for this equation y' = 2 - y. When the differential 
equation is dy/dt = f(t, y), each choice of slopes produces an isocline f(t, y) = s. 

In our example, those isoclines 2 -y = s are flat because f ( t, y) = 2 -y does not depend 
on t (autonomous equation). I start the picture by drawing a few isoclines. 
I always draw the isocline f(t, y) = 0 (here 2 - y = 0 is the steady state line y = 2). 
For this equation, that "nullcline" or "zerocline" with s = 0 is also a solution curve.

The arrows have slope zero when y = 2, so they point along the flat line. 
How to understand these pictures ? The arrows are pointing along the solution curves.

The curves cross over isoclines. But they don't cross over the zero isocline y = 2. 
All arrows are pointing toward the line y = 2. Those arrows will eventually take us 

across every other isocline. The pictures say that the solution curves y(t) are asymptotic to 
that line y = 2. For this equation dy / dt = 2 - y we know the solutions y = 2 + C e-t. 

Figure 3.2: Solution curves (tangent to arrows) go through isoclines: y' = 2 - y. 
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Example 2 
dy 
-

= y-y2 

dt 

1 
Solutions y( t) = 

-
---

1 + Ce-t 
y(t) -+ 1 or -(X) 

The slope of every small arrow is y - y2
. In the range 0 < y < 1, y will be larger 

than y2
. The arrows have positive slope y - y2 in this range (small slope near y = 0, 

small slope near y = 1, all up and to the right). The other two ranges are above y = 1 
and below y = 0. There the slopes y - y2 are negative-arrows go down and right. 
The solution curves are steep when y is large, because y2 

> > y. 
Figure 3.3 shows the isoclines f(t, y) = y - y2 

= s = constant. Again f does not de­
pend on t ! The equation is autonomous, the isoclines are flat lines. There are two zeroclines 
y = 1 and y = 0 (where dy/dt 0 and y is constant). Those arrows have 
zero slope and the graph of y ( t) runs along each zerocline : a steady state. 

The question is about all the other solution curves : What do they do ? We happen to 
have a formula for y(t), but the point is that we don't need it. Figure 3.3 shows the three 
possibilities for the solution curves to the logistic equation y 1 = y - y2 

: 

1. Curves above y = 1 go from +oo down toward the line y = 1 (dropin curves)

2. Curves between y = 0 and y = 1 go up toward that line y = 1 (S-curves)

3. Curves below y = 0 go down (fast) toward y = -oo (dropoff curves).

The solution curves go across all isoclines except the two zeroclines where y - y2 
= 0. 

Figure 3.3: The arrows form a "direction field". Isoclines y - y2 
s attract or repel. 

You see the S-curves between 0 and 1. The arrows are flat as they leave y = 0, steepest 
at y = ½, flat again as they approach y = 1. The dropoff curves are below y = 0. 
Those arrows get very steep and the curves never reach t = oo: y = 1/(1 - e-t) gives 
1/0 = minus infinity when t = 0. That dropoff curve never gets out of the third quadrant. 
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Important Solution curves have a special feature for autonomous equations y 1 = f(y). 
Suppose the curve y(t) is shifted right or left to the curve Y(t) = y(t + C). Then Y(t) 
solves the same equation Y 1 = f (Y)-both sides are just shifted in the same way. 

Conclusion : The solution curves for autonomous equations y 1 = f (y) just shift along 
with no change in shape. You can also see this by integrating dy/ f(y) = dt (separable equa­
tion). The right side integrates to t + C. We get all solutions by allowing all C. 

In the logistic example, all S-curves and dropin curves and dropoff curves come from 
shifting one S-curve and one dropin curve and one dropoff curve. 

Solution Curves Don't Meet 

Is there a solution curve through every point (t, y)? Could two solution curves meet at 
that point? Could a solution curve suddenly end at a point? These "picture questions" 
are already answered by the facts. 

At the start of this section, the functions f and 8 f / oy were required to be continuous 
near t = 0, y = y(0). Then there is a unique solution toy'= f(t,y) with that start. In 
the picture this means : There is exactly one solution curve going through the point. The 
curve doesn't stop. By requiring f and 8 f / oy to be continuous at and near all points, we 
guarantee one non-stopping solution curve through every point. 

Example 3 will fail! The solution curves for dy/dt = -t/y are half-circles and not 
whole circles. They start and stop and meet on the line y = 0 (where f = -t/y is not 

continuous). Exactly one semicircular curve passes through every point with y i=- 0. 

Example 3 dy / dt = -t / y is separable. Then y dy = -t dt leads to y2 + t2 
= C. 

Start again with pictures. The isocline f(t,y) = -t/y =sis the line y = (-l/s)t. 
All those isoclines go through (0, 0) which is a very singular point. In this example the 
direction arrows with slope s are perpendicular to the isoclines with slope dy / dt = - l / s. 

The isoclines are rays out from (0, 0). The arrow directions are perpendicular to 
those rays and tangent to the solution curves. The curves are half-circles y2 + t2 

= C.
(There is another half-circle on the opposite side of the axis. So two solutions start from 
y = 0 at time -T and go forward toy = 0 at time T.) The solution curves stop at y = 0, 
where the function f = -t/y loses its continuity and the solution loses its life. 

Figure 3.4: For y' -t/y the isoclines are rays. The solution curves are half-circles.
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Example 4 y 1 
= 1 + t - y is linear but not separable. The isoclines trap the solution. 

Trapping between isoclines is a neat part of the picture. It is based on the arrows. 
All arrows go one way across an isocline, so all solution curves go that way. Solutions 
that cross the isocline can't cross back. The zero isocline f(t, y) = 1 + t - y = 0 in Fig­
ure 3.5 is the line y = t + 1. Along that isocline the arrows have slope 0. The solution curves 
must cross from above to below. 

The central isocline 1 + t - y = 1 in Figure 3.5 is the 45° line y = t. This solves 
the differential equation ! The arrow directions are exactly along the line: slope s = 1. 
Other solution curves could never touch this one. 

The picture shows solution curves in a "lobster trap" between the lines : the curves 
can't escape. They are trapped between the line y = t and every isocline 1 + t - y = s 
above or below it. The trap gets tighter and tighter as s increases from O to 1, and the iso­
cline gets closer toy= t. Conclusion from the picture: The solution y(t) must approach

t. 
This is a linear equation y 1 

+ y = l + t. The null solutions toy'+ y = 0 are Ce-t . 
The forcing term 1 + t is a polynomial. A particular solution comes by substituting 
y

p
(t) = at+ b into the equation and solving for those undetermined coefficients a and b: 

(at+ b)' = 1 + t - (at+ b) a= 1 and b = 0 y = Yn + Yp = ce-t + t (2) 

The solution curves y = Ge t + t do approach the line y = t asymptotically as t---+ oo. 

\ \ 
\ \ \ 

\ \ 

I 

Figure 3.5: The solution curves for y 1 
= 1 + t - y get trapped between the 45° isoclines. 

• REVIEW OF THE KEY IDEAS •

1. The direction field for y' = f(t, y) has an arrow with slope fat each point t, y.

2. Along the isocline f(t, y) = s, all arrows have the same slopes.

3. The solution curves y(t) are tangent to the arrows. One way through isoclines !

4. Fact: When f and 8 f / ay are continuous, the curves cover the plane and don't meet.

5. The solution curves for autonomous y 1 
= f (y) shift left- right to Y ( t) = y( t - T).
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Problem Set 3.1 

1 (a) Why do two isoclines f(t, y) = s 1 and f(t, y) = s2 never meet? 

(b) Along the isocline f ( t, y) = s, what is the slope of all the arrows ?

( c) Then all solution curves go only one way across an __ .

2 (a) Are isoclines f(t, y) = s 1 and f(t, y) = s2 always parallel? Always straight? 

(b) An isocline f ( t, y) = s is a solution curve when its slope equals __ .

(c) The zerocline f(t, y) = 0 is a solution curve only when y is __ : slope 0.

3 If Y1(0) < Y2(0), what continuity of f(t,y) assures that y1(t) < Y2(t) for all t? 

4 The equation dy/dt = t/y is completely safe if y(0) =/- 0. Write the equation as 
y dy = t dt and find its unique solution starting from y(0) = -1. The solution curves 
are hyperbolas-can you draw two on the same graph ? 

5 The equation dy/dt = y/t has many solutions y = Ct in case y(0) = 0. It has 
no solution if y(0) =/- 0. When you look at all solution curves y = Ct, which points 
in the t, y plane have no curve passing through ? 

6 For y' = ty draw the isoclines ty = 1 and ty = 2 (those will be hyperbolas). 
On each isocline draw four arrows (they have slopes 1 and 2). Sketch pieces of solution 
curves that fit your picture between the isoclines. 

7 The solutions to y 1 = y are y = C et . Changing C gives a higher or lower curve. But 
y 1 = y is autonomous, its solution curves should be shifting right and left ! 

Draw y = 2et and y = -2et to show that they really are right-left shifts of y = et 

and y = - et. The shifted solutions to y' = y are et+c and - et+c. 

8 For y 1 = 1 - y2 the flat lines y = constant are isoclines 1 - y2 
= s. Draw the

lines y = 0 and y = 1 and y = -1. On each line draw arrows with slope 1 - y2 . 

The picture says that y = __ and y = __ are steady state solutions. From 
the arrows on y = 0, guess a shape for the solution curve y = ( et - e-t) / ( et 

+ e-t). 

9 The parabola y = t2 / 4 and the line y = 0 are both solution curves for y' = JiyT. 
Those curves meet at the point t = 0, y = 0. What continuity requirement is failed 
by f(y) = J\yT, to allow more than one solution through that point? 

10 Suppose y = 0 up to time Tis followed by the curve y = (t - T)2 /4. Does this 
solve y' = JiyT? Draw this y(t) going through flat isoclines JlyT = 1 and 2. 

11 The equation y' = y2 
- t is often a favorite in MIT's course 18.03: not too easy.

Why do solutions y(t) rise to their maximum on y2 = t and then descend ? 

12 Construct f(t, y) with two isoclines so solution curves go up through the higher 
isocline and other solution curves go down through the lower isocline. True or false : 
Some solution curve will stay between those isoclines: A continental divide.
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3.2 Sources, Sinks, Saddles, and Spirals 

The pictures in this section show solutions to Ay" + By' + Cy = 0. These are linear
equations with constant coefficients A, B, and C. The graphs show solutions y on the
horizontal axis and their slopes y' = dy / dt on the vertical axis. These pairs (y( t), y' ( t))
depend on time, but time is not in the pictures. The paths show where the solution goes,
but they don't show when. 

Each specific solution starts at a particular point (y(0),y'(0)) given by the initial
conditions. The point moves along its path as the time t moves forward from t = 0. 
We know that the solutions to Ay" + By' + Cy = 0 depend on the two solutions to
As2 

+ Es + C = 0 (an ordinary quadratic equation for s). When we find the roots s1 

and s2, we have found all possible solutions: 

(1) 

The numbers s1 and s2 tell us which picture we are in. Then the numbers c1 and c2 tell us
which path we are on. 

Since s1 and s2 determine the picture for each equation, it is essential to see the six
possibilities. We write all six here in one place, to compare them. Later they will appear in
six different places, one with each figure. The first three have real solutions s1 and s2. The
last three have complex pairs s = a± iw. 

Sources Sinks Saddles Spiral out Spiral in Center 
s1 > s2 > 0 s1 < s2 < 0 s2 < 0 < s1 a = Re s > 0 a = Re s < 0 a = Re s = 0

In addition to those six, there will be limiting cases s = 0 and s1 = s2 (as in resonance). 
Stability This word is important for differential equations. Do solutions decay to zero ?
The solutions are controlled by esit and es2t (and in Chapter 6 by e>- 1 t and e>-2t).
We can identify the two pictures (out of six) that are displaying full stability: the sinks.
A center s = ±iw is at the edge of stability ( eiwt is neither decaying or growing).

2. Sinks are stable
5. Spiral sinks are stable

S1 < S2 < 0 

Re s1 = Re s2 < 0
Then y(t) -+ 0 
Then y(t) -+ 0 

Special note. May I mention here that the same six pictures also apply to a system of
two first order equations. Instead of y and y', the equations have unknowns y1 and y2. 

Instead of the constant coefficients A, B, C, the equations will have a 2 by 2 matrix.
Instead of the roots s1 and s2, that matrix will have eigenvalues .-\1 and .-\2. Those
eigenvalues are the roots of an equation A>..2 + B>.. + C = 0, just like s1 and s2. 

We will see the same six possibilities for the ,\'s, and the same six pictures. The
eigenvalues of the 2 by 2 matrix give the growth rates or decay rates, in place of s1 and s2. 

[ Y�] [ a b] [Yi] has solutions [ Yi(t)] = [vi] e>-t . 
Y2 C d Y2 Y2(t) V2 

The eigenvalue is ,\ and the eigenvector is v = ( v1, v2). The solution is y( t) = ve>-t .
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The First Three Pictures 

We are starting with the case of real roots s1 and s2. In the equation Ay" + By' + Cy = 0, 
this means that B2 2:: 4AC. Then B is relatively large. The square root in the quadratic 
formula produces a real number )B2 - 4AC. If A, B, C have the same sign, we have 
overdamping and negative roots and stability. The solutions decay to (0, 0) : a sink. 

If A and C have opposite sign to B as in y" - 3y' + 2y = 0, we have negative damping 
and positive roots s1, s2. The solutions grow (this is instability : a source at (0, 0)). 

Suppose A and C have different signs, as in y" - 3y' - 2y = 0. Then s1 and s2 also 
have different signs and the picture shows a saddle. The moving point (y ( t), y' ( t)) can 
start in toward (0, 0) before it turns out to infinity. The positive s gives est -+ oo. 
Second example for a saddle: y" - 4y = 0 leads to s2 - 4 = (s - 2)(s + 2) = 0. 
The roots s1 = 2 and s2 = -2 have opposite signs. Solutions c1e2t 

+ c2e- 2t grow 
unless c1 = 0. Only that one line with c1 = 0 has arrows inward. 

In every case with B2 � 4AC, the roots are real. The solutions y(t) have growing 
exponentials or decaying exponentials. We don't see sines and cosines and oscillation. 

The first figure shows growth : 0 < s2 < s1. Since e81 t grows faster than e82t , the larger 
number s1 will dominate. The solution path for (y, y') will approach the straight line of 
slope s1. That is because the ratio of y' = c1 s1 e81 t to y = c1 e81 t is exactly s1. 

If the initial condition is on the "s1 line" then the solution (y, y') stays on that line: 
c2 = 0. If the initial condition is exactly on the "s2 line" then the solution stays on that
secondary line : c1 = 0. You can see that if c1 =f. 0, the c1e81t part takes over as t-+ oo. 

0 < S2 < S1 

Source: Unstable 

Reverse all 
the arrows in 
the left figure. 
Paths go in 
toward (0, 0) 

S1 < S2 < 0 
Sink : Stable 

S2 < 0 < S1 

Saddle: Unstable 

Figure 3.6: Real roots s1 and s2. The paths of the point (y(t), y'(t)) lead out when roots 
are positive and lead in when roots are negative. With s2 < 0 < s1, the srline leads in 
but all other paths eventually go out near the s1 -line: The picture shows a saddle point. 
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Example for a source: y" - 3y' + 2y = 0 leads to s2 
- 3s + 2 = (s - 2)(s - 1) = 0. 

The roots 1 and 2 are positive. The solutions grow and e2t dominates. 

Example for a sink: y" + 3y' + 2y = 0 leads to s2 
+ 3s + 2 = (s + 2)(s + 1) = 0. 

The roots -2 and -1 are negative. The solutions decay and e-t dominates. 

The Second Three Pictures 

We move to the case of complex roots s1 and s2. In the equation Ay" +By'+ Cy = 0,
this means that B2 < 4AC. Then A and C have the same signs and B is relatively small 
(underdamping). The square root in the quadratic formula (2) is an imaginary number. 
The exponents s1 and s2 are now a complex pair a ± iw :

Complex roots of 

As2 + Bs + C = 0 

B ../B2 -4AC 
s1, s2 = -

2A ± 2A 
=a± iw. (2) 

The path of (y, y') spirals around the center. Because of eat , the spiral goes out 
if a > 0 :  spiral source. Solutions spiral in if a < 0 : spiral sink. The frequency w 
controls how fast the solutions oscillate and how quickly the spirals go around (0, 0). 

In case a = -B /2A is zero (no damping), we have a center at (0, 0). The only terms 
left in y are eiwt and e- iwt , in other words coswt and sinwt. Those paths are ellipses in 
the last part of Figure 3.7. The solutions y(t) are periodic, because increasing t by 21r/w 
will not change cos wt and sin wt. That circling time 21r /w is the period. 

a= Res> 0 
Spiral source : Unstable 

Reverse all 
the arrows in 
the left figure. 
Paths go in 
toward (0, 0). 

a= Res< 0 
Spiral sink : Stable 

a= Res= 0 
Center: Neutrally stable 

Figure 3.7: Complex roots s 1 and s2. The paths go once around (0, 0) when t increases 
by 21r/w. The paths spiral in when A and B have the same signs and a = -B/2A is
negative. They spiral out when a is positive. If B = 0 (no damping) and 4AC > 0, 
we have a center. The simplest center is y = sin t, y' = cos t (circle) from y" + y = 0. 
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First Order Equations for Yl and Y2

On the first page of this section, a "Special Note" mentioned another application of the same
pictures. Instead of graphing the path of (y(t),y'(t)) for one second order equation, we
could follow the path of (y1 ( t), y2 ( t)) for two first order equations. The two equations
look like this: 

First order system y' = Ay 
dyif dt = ay1 + by2 

dy2/dt = cy1 + dy2
(3)

The starting values y1 (0) and Y2 (0) are given. The point (y1, Y2) will move along a path
in one of the six figures, depending on the numbers a, b, c, d. 

Looking ahead, those four numbers will go into a 2 by 2 matrix A. Equation (3) will be­
come dy/dt = Ay. The symbol yin boldface stands for the vector y = (y1,y2). 
And most important for the six figures, the exponents s 1 and s2 in the solution y(t) 
will be the eigenvalues .X.1 and .X.2 of the matrix A. 

Companion Matrices 

Here is the connection between a second order equation and two first order equations. All
equations on this page are linear and all coefficients are constant. I just want you to see the
special "companion matrix" that appears in the first order equations y' = Ay. 

Notice that y is printed in boldface type because it is a vector. It has two components y1 
and y2 (those are in lightface type). The first y1 is the same as the unknown yin the second
order equation. The second component y2 is the velocity dy / dt : 

Y1 = Y 
Y2 = y' y" + 4y' + 3y = 0 becomes Y2' + 4y2 + 3y1 = 0. (4)

On the right you see one of the first order equations connecting y1 and y2 . We need
a second equation (two equations for two unknowns). It is hiding at the far left! There
you see that y1' = y2. In the original second order problem this is the trivial statement
y' = y'. In the vector form y' = Ay it gives the first equation in our system.
The first row of our matrix is O 1. When y and y' become y1 and Y2, 

y" + 4y' + 3y = 0 becomes Y1' = Y2 [ 0 1
] [Yi] Y2' = -3y1 -4y2 - -3 -4 Y2 (5)

That first row O 1 makes this a 2 by 2 companion matrix. It is the companion to the
second order equation. The key point is that the first order and second order
problems have the same "characteristic equation" because they are the same problem. 

The equation s2 
+ 4s + 3 = 0 gives the exponents s 1 = -3 and s2 = -1

The equation .X2 
+ 4.X + 3 = 0 gives the eigenvalues .X1 = -3 and >-2 = -1
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The problems are the same, the exponents -3 and -1 are the same, the figures will be
the same. Those figures show a sink because -3 and -1 are real and both negative.
Solutions approach (0, 0). These equations are stable. 

The companion matrix for y" + By 1 
+ Cy = 0 is A= [ _i -� ] . 

Row 1 of y 1 = Ay is y{ = Y2 · Row 2 is y.J, = -Cy1 - By2. When you replace Y2 by y{,
this means that y{' + By{ + Cy1 = 0: correct. 

Stability for 2 by 2 Matrices 

I can explain when a 2 by 2 system y 1 = Ay is stable. This requires that all solutions 
y(t) = (Y1 (t), Y2 (t)) approach zero as t-+ oo. When the matrix A is a companion matrix, 
this 2 by 2 system comes from one second order equation y 11 + By 1 + Cy = 0. In that case 
we know that stability depends on the roots of s2 + Bs + C = 0. Companion matrices are 
stable when B > 0 and C > 0. 

From the quadratic formula, the roots have s1 + s2 = -Band s1s2 = C.

If s1 and s2 are negative, this means that B > 0 and C > 0. 
If s1 = a + iw and s2 = a - iw and a < 0, this again means B > 0 and C > 0 

Those complex roots add to s1 + s2 = 2a. Negative a (stability) means positive B, since
s1 +s2 = -B. Those roots multiply tos1s2 = a2 +w2. This means thatCis positive,since
S1S2 = C. 

For companion matrices, stability is decided by B > 0 and C > 0. What is the stability
test for any 2 by 2 matrix? This is the key question, and Chapter 6 will answer it properly. 
We will find the equation for the eigenvalues of any matrix (Section 6.1). We will test 
those eigenvalues for stability (Section 6.4). Eigenvalues and eigenvectors are a major topic,
the most important link between differential equations and linear algebra. Fortunately, the 
eigenvalues of 2 by 2 matrices are especially simple. 

The eigenvalues of the matrix A = [ � ! ] have ,\ 2 - TA + D = 0. 

The number T is a + d. The number D is ad - be.

Companion matrices have a = 0 and b = l and e = -C and d = -B. Then the characteris­
tic equation ,\2 - TA+ D = 0 is exactly s2 + Bs + C = 0. 

Companion matrices have [ O 1 ] T =a+ d = -B and D = ad - be= C.
-C -B 

The stability test B > 0 and C > 0 is turning into the stability test T < 0 and D > O.

This is the test for any 2 by 2 matrix. Stability requires T < 0 and D > 0. Let me give 
four examples and then collect together the main facts about stability. 
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A1 = [ -� �] is unstable because T = 0 + 3 is positive

A2 = [ 
0 1] 2 -3 is unstable because D = -(1)(2) is negative

A3 = [ -� -�] is stable because T = -3 and D = +2

A4 = [-1 1 ] -1 -1 is stable because T = -1 - 1 is negative

and D = 1 + 1 is positive

The eigenvalues always come from ,\2 -T ,\ + D = 0. For that last matrix A4, this eigenvalue
equation is ,\2 

+ 2,\ + 2 0. The eigenvalues are ,\1 -1 + i and
,\2 = -1 - i. They add to T = -2 and they multiply to D = +2. This is a spiral
sink and it is stable. 

Stability for 
2 by 2 matrices 

[ab] T=a +d <0A = c d is stable if D = ad _ be > 0

The six pictures for (y, y ') become six pictures for (y1 , y2 ). The first three pictures have
real eigenvalues from T2 2". 4D. The second three pictures have complex eigenvalues from
T2 

< 4D. This corresponds perfectly to the tests for y 11 + By 1 + Cy = 0 and its companion
matrix:

Real eigenvalues
Complex eigenvalues

T2 2". 4D

T2 < 4D 

B2 2:: 4C
B2 < 4C

Overdamping
U nderdamping

That gives one picture of eigenvalues ,\ : Real or complex. The second picture is different:
Stable or unstable. Both of those splittings are decided by T and D (or-Band C). 

1. Source T > 0, D > 0, T2 2". 4D Ustable

2. Sink T < 0, D > 0, T2 2". 4D Stable 

3. Saddle D <0 and T2 2".4D Unstable 

4. Spiral source T > 0, D > 0, T2 < 4D Unstable 

5. Spiral Sink T < 0, D > 0, T2 < 4D Stable 

6. Center T = 0, D > 0, T2 <4D Neutral

That neutrally stable center has eigenvalues ,\ 1 = iw and >-2 = -iw and undamped oscilla­
tion. 

Section 3.3 will use this information to decide the stability of nonlinear equations.
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Eigenvectors of Companion Matrices 

Eigenvalues of A come with eigenvectors. If we stay a little longer with a companion
matrix, we can see its eigenvectors. Chapter 6 will develop these ideas for any matrix,
and we need more linear algebra to understand them properly. But our vectors (Yi, Y2) 
come from (y, y') in a differential equation, and that connection makes the eigenvectors
of a companion matrix especially simple. 

The fundamental idea for constant coefficient linear equations is always the same:
Look for exponential solutions. For a second order equation those solutions are
y = est . For a system of two first order equations those solutions are y = ve>-.t . The

vector v = ( v1, v2) is the eigenvector that goes with the eigenvalue .\. 

Substitute Yi = vie>-.t 

Y2 = v2e>-.t into the equations y{ = ayi + by2 

y5, = cyi + dy2 

and factor out e>-.t .

Because e>-.t is the same for both Yi and Y2 , it will appear in every term. When all factors e>-.t 

are removed, we will see the equations for vi and v2 . That vector v = (vi, v2) will satisfy
the eigenvector equation Av = >.v. This is the key to Chapter 6. 

Here I only look at eigenvectors for companion matrices, because v has a specially nice
form. The equations are y{ = y2 and y5, = -Cyi - By2 . 

Substitute Yi = vie>-.t 

Y2 = v2e>-.t Then >.vie>-.t = v2e>-.t 

>.v2e>-.t = -Cvi e>-.t - Bv2e>-.t .

Cancel every e>-.t . The first equation becomes >.vi = v2 . This is our answer:

Eigenvectors of companion matrices are multiples of the vector v = [ l ] . 

• REVIEW OF THE KEY IDEAS •

1. If B2 =I- 4AC =I- 0, six pictures show the paths of (y, y') for Ay" + By' + Cy = 0.

2. Real solutions to As2 
+ Bs + C = 0 lead to sources and sinks and saddles at (0, 0).

3. Complex roots s =a± iw give spirals around (0, 0) (or closed loops if a= 0).

' 

4. Roots s become eigenvalues >. for [ t, ] = [ _ � _ 1] [ t,] . Same six pictures.
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Problem Set 3.2 

1 Draw Figure 3.6 for a sink (the missing middle figure) with y = c1 e-2t 
+ c2e-t . 

Which term dominates as t -+ oo ? The paths approach the dominating line as they 
go in toward zero. The slopes of the lines are -2 and -1 (the numbers 81 and 82). 

2 Draw Figure 3.7 for a spiral sink (the missing middle figure) with roots 8 = -l ± i. 
The solutions are y = C1 e-t cost + C2e-t sin t. They approach zero because 
of the factor e- t . They spiral around the origin because of cost and sin t.

3 Which path does the solution take in Figure 3.6 if y = et 
+ et/2? Draw the 

curve (y(t), y'(t)) more carefully starting at t = 0 where (y, y') = (2, 1.5). 

4 Which path does the solution take around the saddle in Figure 3.6 if y = et/2 
+ e-t? 

5 

Draw the curve more carefully starting at t = 0 where (y, y') = (2, -½)-

Redraw the first part of Figure 3.6 when the roots are equal: 81 = 82 

y = c1 et 
+ c2tet . There is no 82 -line. Sketch the path for y =et + tet . 

1 and 

6 The solution y = e2t - 4et gives a source (Figure 3.6), with y 1 = 2e2t - 4et . Starting 
at t = 0 with (y, y') = (-3, -2), where is (y, y') when et 

= 1.1 and et 
= .25 and 

et = 2? 

7 The solution y = et (cost + sin t) has y 1 = 2et cost. This spirals out because of et . 
Plot the points (y, y ') at t = 0 and t = 1r /2 and t = 1r, and try to connect them with a 
spiral. Note that e1r 12 

� 4.8 and e1r � 23. 

8 The roots 81 and 82 are ±2i when the differential equation is __ . Starting from 
y(0) = 1 and y'(0) = 0, draw the path of (y(t), y'(t)) around the center. Mark the 
points when t = 1r /2, 1r, 31r /2, 21r. Does the path go clockwise? 

9 The equation y" +By'+ y = 0 leads to 82 
+ B8 + l = 0. For B = -3, -2, -1, 0, 

1, 2, 3 decide which of the six figures is involved. For B = -2 and 2, why do we not 
have a perfect match with the source and sink figures ? 

10 For y" + y' + Cy = 0 with damping B = l, the characteristic equation will be 
8

2 
+ 8 + C = 0. Which C gives the changeover from a sink ( overdamping) to a spiral

sink (underdamping)? Which figure has C < 0? 

Problems 11-18 are about dy / dt = Ay with companion matrices [ _i _ � ] · 
11 The eigenvalue equation is .X2 + B.X + C = 0. Which values of B and C give 

complex eigenvalues? Which values of B and C give >.1 = >.2 ? 
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12 Find ,\ 1 and >.2 if B = 8 and C = 7. Which eigenvalue is more important as t --too ?
Is this a sink or a saddle? 

13 Why do the eigenvalues have >- 1 + >-2 = -B? Why is >-1 >.2 = C? 

14 Which second order equations did these matrices come from ? 

A1 = [ � � ] (saddle) A2 = [ -� � ] (center)

15 The equation y" = 4y produces a saddle point at (0, 0). Find s1 > 0 and s2 < 0 
in the solution y = c1 esit 

+ c2e82t . If c1 c2 =/- 0, this solution will be (large) (small) as
t --t oo and also as t --t -oo. 

The only way to go toward the saddle (y, y') = (0, 0) as t --too is c1 = 0. 

16 If B = 5 and C = 6 the eigenvalues are >.1 = 3 and >-2 = 2. The vectors v = (1, 3) 
and v = (1, 2) are eigenvectors of the matrix A: Multiply Av to get 3v and 2v. 

17 In Problem 16, write the two solutions y = ve>-t to the equations y 1 
= Ay. 

Write the complete solution as a combination of those two solutions. 

18 The eigenvectors of a companion matrix have the form v = (1, >.). Multiply by A 
to show that Av = >.v gives one trivial equation and the characteristic equation >.2 

+

B>. + C = 0. 

is 
>- = >­

-C - B>. = >.2 

Find the eigenvalues and eigenvectors of A = [ f ! ] . 
19 An equation is stable and all its solutions y = c1 e81 t + c2e82 t go to y(oo) 0 

exactly when 

20 If Ay" +By'+ Cy= Dis stable, what is y(oo)? 

(Re s1 < 0 and Re s2 < 0)? 
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3.3 Linearization and Stability in 20 and 30 

The logistic equation y 1 = y -y2 has two steady states Y = 0 and Y = 1. Those are critical 
points, where the function f(y) = y -y2 is zero. Along the lines Y = 0 and Y = 1 the 
equation y 1 = f (y) becomes O = 0. We have those two steady solutions, and their stability 
or instability is important. Do nearby solutions approach Y or not ? 

The stability test requires df / dy < 0 at Y. This is the slope of the tangent to f (y) : 

f(y - Y) � f(Y) + (:) (y - Y) = 0 + A(y - Y). (1) 

The linearization of y' = J(y) at the critical pointy = Y comes from f � A(y - Y). 
Replace f by this linear part and include the constant Y on the left side too : 

Linearized equation near a critical point Y (y - Y) I= A(y - Y). (2) 

The solution y - Y = CeAt grows if A > 0 (instability). The solution decays if A < 0. 
The logistic equation has f(y) = y -y2 with derivative A = 1 - 2y. At the steady state 
Y = 0 this shows instability ( A = + 1). The other critical point Y = 1 is stable ( A = -1). 

The stability line or phase line in Section 1. 7 showed Y = 1 as the attractor : 

y(t)� - 00 

• • 

left arrows : y -y2 < O 
... 

Y = 0 y(t)�l 

I • ., • 

y -y2 > 0 

y = 1 

I 

y(t)� 1 
.. . .. 

left arrows : y -y2 < 0 

The arrows in Section 3 .1 had slopes f ( t, y). Stability is decided by the slope df / dy. 

Note The most basic example is y' = y. The only steady state solution is Y = 0. That 
must be unstable, because f = y has A = df / dy = 1. All other solutions y ( t) = C et travel 
far away from Y = 0, even when C = y(0) is close to zero. 

Opposite case: y' = 6 - y is stable (A= -1). Solutions approach Y = y00 = 6. 

Solution Curves in the yz Plane

Those paragraphs were review for one unknown y(t). Section 3.2 had two unknowns y and 
z in two linear first order equations ( or y and y I in a linear second order equation). 

Move now to nonlinear. The equations will be autonomous, the same at all times t: 

dy dz 
- = f(y,z) and - = g(y,z)
dt dt 

starting from y(O) and z(O). (3) 

A critical point Y, Z solves f (Y, Z) = 0 and g(Y, Z) = 0. It is a steady solution: constant 
y = Y and constant z = Z. 
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Critical point f(Y, Z) = 0 and g(Y, Z) = 0 (4) 

For every critical point Y, Z we must decide : stable or unstable or neutral ? 
To graph the solutions, there is a problem with y and z and t. Three variables won't fit 

into a 2D picture. Our solution curves for autonomous equations will omit t. The curves 
y(t), z(t) show the paths of solutions in they, z plane but not the times along those paths. 

Those pictures do not show the time t, as the solution moves. Different equations 
dy/dt = cf(y, z) and dz/dt = cg(y, z) will produce the same picture for all c -/- 0. 
That constant c just rescales the time and the speed along the same path y(ct), z(ct). 
Time and speed are not shown by the pictures. 

Each steady state y(t) = Y, z(t) = Z will be one point in the picture! The stability 
question is whether paths near that point (those are nearby solutions) go in toward Y, Z 
or away from Y, Z or around Y, Z: stable or unstable or neutrally stable. 

That stability question is answered by the eigenvalues of a 2 by 2 matrix A. 

Solutions Near a Critical Point 

Here is the key to this section. Very close to a critical point where f (Y, Z) = 0 and 

g(Y, Z) = 0, solution curves have the same six possibilities that we already know: 

Stable Sink 
Spiral sink 

Neutral Center 

Unstable Source 
Spiral source 
Saddle point 

The pictures for linear equations were in Section 3.2. They came from six possibilities 
for the roots of As2 

+ Bs + C = 0, and from six types of 2 by 2 matrices A: 

Linear equations 

Constant coefficients (5) 

Those model problems in 2D have the critical point Y =0, Z =0. That is the point where 
f(y, z) = ay + bz = 0 and g(y, z) = cy + dz = 0. There is one critical point (0, 0) at the 
center of each picture in Section 3.2. Now we are saying that nonlinear equations look like 

linear equations when you look near each critical point. 

This is the 2D equivalent of one equation (y - Y) 1 = A(y - Y). That number A 
was df / dy. Now we have two unknowns y and z, and two functions f (y, z) and g (y, z). 
There are four partial derivatives off and g, and they go into the 2 by 2 matrix A: 

First derivative matrix 

"Jacobian matrix" 
A=[ 

af/ay
ag/ay (6)
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Linearization of a Nonlinear Equation 

For one equation, linearization was based on the tangent line. The beginning of the Taylor
series around Y is f (Y) + ( df / d y) (y - Y). Critical points have f (Y) = 0, removing the
constant term. Two variables y and z lead to the same idea, but now it is a tangent plane : 

f (y, z) � f (Y, Z) + ( :�) (y - Y) + ( :�) ( z - Z)

g(y, z ) � g(Y, Z) + (::) (y-Y) + (:!) (z - Z)

A critical point has f (Y, Z) = g(Y, Z) = 0. The four linear terms take over:

[ (y-Y)'] � [ 8f/8y 8f/8z] [ y-Y
] =A[ 

y-Y
](z - Z)' 8g/8y 8g/8z z - Z z - Z ·

(7)

(8)

There stands the linearized equation. It is centered and linearized around the special point
(Y, Z). If we reset by shifting (Y, Z) to (0, 0), equation (8) is one of our model problems: 

(9) 

Example 1 Linearize y 1 = sin( ay + bz ) and z 
1 
= sin( cy + dz) at Y = 0, Z = 0.

Solution Check first: f = sin(ay + bz ) and g = sin(cy + dz) are zero at (Y, Z) = (0, 0).
This is a critical point. The first derivatives of f and g at that point go into A. 

8f /8y = acos(ay + bz) = acos0 = a when (y, z ) = (0, 0)

The other three partial derivatives give b and c and d. They enter the matrix A :

y' = sin(ay + bz ) 
z' = sin(cy + d z ) linearizes to y' = ay + bz = [ a b ] [ y ] .

z 
1 
= cy + d z c d z 

That example just moved the simple linearization sin x � x into two variables.

I -

Example 2 (Predator-Prey) Linearize Y, - Y - yz 
at all critical points.

z = yz - z 

(10)

Meaning of these predator-prey equations The prey y is like rabbits, the predator
z is like foxes. On their own with no foxes, the rabbits grow by nibbling grass: y' = y. 
On their own with no rabbits, the foxes don't eat well and z 

1 
= -z. Then the

multiplication yz accounts for the interactions between y rabbits and z foxes. Those
interactions end up in more foxes and fewer rabbits. 

This example has simplified coefficients 1 and -1 multiplying y and z and yz .
The predator-prey model is a great example and we will develop it further. 
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Linearize Predator-Prey at Critical Points 

Set f = Y - YZ = 0 and also g = YZ - Z = 0. Solve for all critical points Y, Z.

Y - YZ = Y(l - Z) = 0 and YZ-Z=(Y-l)Z=O.

The critical points Y, Z are 0, 0 and 1, 1. Track their stability using the matrix A.

AtY,Z = O,O A= [ 8f /8y 8f /8z ] = [ 
1

- Z -Y 
] = [ 

1 0 
] 8g/8y 8g/8z Z Y - 1 0 -1 ·

This is a saddle point: unstable. Starting near 0, 0 the rabbit population y(t) will grow.
The eigenvalues are 1 (for the rabbits) and -1 (for the foxes) from y 1 

= y and z 
1 
= -z.

An all-fox population would decay (this is the only path in to the saddle point). 

At Y, Z = 1, 1 = [ 1 - Z -Y ] [ 0 -1 ] A Z Y-l 1 0 .

This matrix has imaginary eigenvalues A 1 = i and A2 = -i. Their real parts are zero.

The stability is neutral. The critical point Y = 1, Z = 1 is a center. A solution that
starts near that point will go around 1, 1 and return where it started: 

Extra rabbits --+ Foxes increase --+ Rabbits decrease --+ Foxes decrease --+ Extra rabbits

We can see without eigenvalues that the solution to the linearized equations makes a
perfect circle around ( 1, 1). The matrix A has -1 in row 1 and + 1 in row 2. 

(y - 1) I = - ( Z - l) 
(z- 1) 1 =+(y-1) 

is solved by y-l 
z-l 

= rcost 
= r sin t (11)

The actual nonlinear solution y(t), z(t) won't make a perfect circle. Usually we can't
find its exact path, but in this case we can. The y - z equation is separable and solvable: 

dy dy / dt J y(l - z) . y - 1 1 - z
-d 

= 
d /d 

= - = 
( ) 

separates mto -- dy = -- dz. (12)
z z t g y-lz y z 

Integration of 1 and 1/y and 1/ z gives y - ln y = ln z - z + C. That constant is
C = 2 when y = z = l (critical). These solution curves are drawn in Figure 3.8 for
C = 2.1, 2.2, 2.3, 2.4. They are nearly circular near C = 2. That is linearization ! 

As C increases, y and z move further away from 1 and the circles are lost. But the
nonlinear solution is still periodic. The rabbit-fox population comes back to its starting
point and goes around again. Populations can be close to cyclic. 

Equation (12) took time out of the picture. A numerical solution (Euler or Runge-Kutta)
puts time back. This famous model came from Lotka and Volterra in 1925. 
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C= 2.4 

y=l

Figure 3.8: Solution paths y + z - In y - In z = C around the critical point: a center.

Predator- Prey- Logistic Equation 

When Example 2 has no foxes (z = 0), the rabbit equation is y 1 = y. There is no control of 
rabbits and y = Get . When we add a logistic term like -qy2 (rabbits eventually competing 
with rabbits for available lettuce) this makes the equations more realistic. 

We also allow different coefficients p, r, s, t (not all 1 or -1) in the other terms: 

Rabbits y ' = y (p - qy - r z)

Foxes z ' = z ( - s + wy) 

First critical point (Y, Z) = (0, 0) 

Second point (Y, Z) = (p/q, 0) 

Thirds= wY andp = qY + rZ

At those critical points, y I and z I are zero. The solutions are steady states y = Y, z = Z.

Near those points we linearize the equation to decide stability. The derivatives of 
f (y, z) and g (y, z) are in control, because f = g = 0 at the critical points : 

First derivatives 
[ 

8f /8y 8f /8z l 
= [ 

p - 2qy- rz -ry l 
= [ 

p O l ·
Jacobian at0,0 8g/8y 8g/8z wz -s+wy O -s 

(0, 0) is a saddle point: unstable. Small populations have y 1 � py and z 1 � -sz.
Rabbits increase and foxes decrease. One eigenvalue p is positive, the other eigenvalue 
-s is negative. Near this (0, 0) point, the competition terms -qy2 and -ryz and wyz
are higher order. Those terms disappear in the linearization.

The second critical point has Y = p / q and Z = 0. This point is a sink or a saddle: 

Linearization 
around (p/q, 0) [ y - y] '=A [ y - y] z-Z z-Z 

with A= [-qo -rp/q ]
-s + wp/q
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Ifs > wp/ q, that last entry is negative. So is -q, and we have a sink: two negative eigen­
values. 
If s < wp / q, that last entry is positive. In this case we have a saddle. 

The third critical point (Y, Z) is different. At this point p = q Y + r Z and s = w Y.
This leaves only three simple terms in the first derivative matrix above : 

Linearization 
around (Y, Z) 

The new term -qy2 in the rabbit equation has produced -qY = -qs/w in the matrix A.

This is a negative number, it stabilizes the equation. It pulls both of the eigenvalues 
(previously imaginary) to negative real parts. Neutral stability changes to full stability. 

2 by 2 matrices are special (with only two eigenvalues >. 1 and >.2 ). I can reveal the two 
facts that produce those two eigenvalues of A: Add the ,\'s and multiply the ,\'s. 

Sum >. 1 + >-2 equals the sum T of diagonal entries T = -q Y

Product >. 1 >-2 equals the determinant D of the matrix D = r Y w Z

Our matrix has .A1 + .A2 < 0 and .A1 .A2 > 0. This suggests two negative eigenvalues 
>. 1 and >-2 (a sink). It also allows >. 1 = a + ib and >.2 = a - ib (a < 0, a spiral sink). 
Our conclusion is: The third critical point Y, Z is stable. 

Final Tests for Stability : Trace and Determinant 

We can bring this whole section together. It started with finding the critical points Y, Z and 
linearizing the differential equations. Now we can give simple tests on the 2 by 2 
linearized matrix A. We don't need to compute the eigenvalues before testing them­
because the matrix immediately tells us their sum >. 1 + >.2 and their product >. 1 >.2 . 
That sum and product (the trace and determinant of A) are all we need. 

Step 1 Find all critical points ( steady states) of y 1 = f (y, z) and z 1 = g(y, z)
by solving f (Y, Z) = 0 and g(Y, Z) = 0. 

Step 2 At each critical point find the matrix A from derivatives off and g 

[ 
a b 

] [ 
of /oy of /oz 

]A= C d = og/oy og/oz at the pomt Y, z

Step 3 Decide stability from the trace T = a + d and determinant D = ad - be 

Unstable 

Neutral 

Stable 

T > 0 or D < 0 or both 

T = 0 and D 2 0 

T < 0 and D > 0 

If T2 2 4D > 0, the stable critical point is a sink : real eigenvalues less than zero. 
If T2 < 4D, the stable critical point is a spiral sink: complex eigenvalues with Re,\ < 0. 
Section 6.4 will explain these rules and draw the stable region T < 0, D > 0. 
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The solution curves y(t), z(t) are paths in the yz plane. Near each critical point Y, Z, 
the paths are close to one of the six possibilities in Section 3.2. Source, sink, or saddle 

for real eigenvalues; Spiral source, spiral sink, or center for complex eigenvalues. 

A Special 3 by 3 System : A Tumbling Box 

You understand that 3 by 3 systems will be more complicated. The pictures don't stay in 
a plane. There are 9 partial derivatives off, g, h with respect to x, y, z. The matrix A 
with those entries is 3 by 3. Its three eigenvalues decide stability (T and D are not enough). 

But we live in three dimensions. The most ordinary motions will follow a space curve 
and not a plane curve. We can imagine the whole of three-dimensional space filled with 
those curves-that picture is hard to draw. Still there are important special motions that 
we can understand (and even test for ourselves). Here is a beautiful example. 

Throw a closed box up in the air. Throw a cell phone. Throw this book. 

Those all have unequal sides s 1 < s2 < s3. Gravity will bring the book or the box back 
down, but that is not the interesting part. The key is how it turns in space. 

There are three special ways to throw the box. It can rotate around the short side s1. 

It can rotate around the longest side s3• The box can try to rotate around its middle side s2• 

Those three motions will be critical points. Your throwing experiment will quickly find that 
two of the rotations are stable and one is unstable. In this book on differential equations, 
we want to understand why. Please put a rubber band around the book. 

Since the up and down motion from gravity is not important, we will remove it. 
Keep the origin (0, 0, 0) at the center of the box. The box turns around that center point. 
At every moment in time, a 3 D rotation is around an axis. If the box tumbles around 
in the air, that rotation axis is changing with time. 

After writing about boxes I thought of another important example. Throw a football. 

If you throw it the right way, spinning around its long axis, it flies smoothly. Any 
quarterback does that automatically. But if your arm is hit while throwing, the ball wobbles. 
A football has one long axis and two equal short axes, s 1 = s2 < s3. 

One more: A well-thrown frisbee spins around its short axis (very short). Its long axes 
go out to the edges of the frisbee, so s 1 < s2 = s3. A bad throw will make it tumble. 

Tumbling indicates an unstable critical point for the equations of motion. 

Equations of Motion : Simplest Form 

For a box of the right shape, Euler found these three equations. The unknowns x, y, z give 
the angular momentum around axes 1, 2, 3 (short, medium, long). 

f(x,y,z) 
g(x,y,z) 
h(x,y,z) 

dx/dt = yz 
dy/dt =-2xz 
dz/dt = xy 

Critical points X, Y, Z have f = g = h = 0 

There are 6 critical points on a sphere 

(X, Y, Z) = (±1, 0, 0) (0, ±1, 0) (0, 0, ±1) 
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Multiply the three equations by x, y, z and add them together, to see the sphere: 

dx dy dz 
x- + y- + z- = xyz - 2xyz + xyz = 0

dt dt dt 
x2 + y2 + z2 

= constant. 

The point x, y, z travels on a sphere. There are six critical points X, Y, Z (steady rota­
tions). The question is, which steady states are stable? Try the experiment. Toss up a book. 

Linearize at Each Critical Point 

When you take 9 partial derivatives off = yz and g = -2xz and h = xy, you get the 3 
by 3 Jacobian matrix J. Its first row O z y contains the partial derivatives off = yz. 
At each critical point, substitute X, Y, Z into J to see the matrix A in the linearized equa­
tions. The six critical points (X, Y, Z) are (±1, 0, 0) and (0, ±1, 0) and (0, 0, ±1). 

H][ 
0 1 

-2 0 

0 0 � l o I

That middle matrix A with two ones gives instability around the point (0, 1, 0). Start the 
linearized equations from the nearby point ( c, 1, c). 

x' = z 
y 1 

= 0 Then 
z 1 

= X 

x = cet 

y=l 
z = cet 

(13) 

Those solutions with et are leaving the critical point. You are seeing the eigenvalue ,\ = 1. 
The other eigenvalues are O and -1 : a saddle point. When you try to spin a box around 
its middle axis, the wobble quickly gets worse. It is humanly impossible to spin the box 
peifectly because that axis is unstable. 

The other two axes are neutrally stable. Their matrices A have -2 and + 1. Their 
eigenvalues are v'2 i and -v'2 i and 0. Around the short axis (1, 0, 0), the essential part 
of A is 2 by 2. We see sines and cosines (not et and instability): 

r n r n -n r n r + 1 
X = 1 

Then y = '\1'2c cos ( v'2 t) 
z = c sin ( v'2 t) 

The turning axis (x, y, z) travels in an ellipse around (1, 0, 0). This indicates a center. 
Let me go back to the nonlinear equations to see that elliptical cylinder y2 

+ 2z2 
= C.

Multiply x 1 =yz,y 1 =-2xz,z 1 =xy by 0,y,2z. Add to get yy'+2zz 1 =0. 

The derivative of y2 
+ 2z2 is zero. Every path x( t), y( t), z( t) is an ellipse on the sphere. 
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Alar Toomre's Picture of the Solutions 

At this point we know a lot about every solution to x 1 = yz and y 1 = -2xz and z 1 = xy. 

Stays on a sphere x2 
+ y2 

+ z2 
= C1 Multiply the equations by x, y, z. 

Stays on an elliptical cylinder 2x2 
+ y2 

= C2 Multiply by 2x, y, 0 and add. 
Stays on an elliptical cylinder y2 

+ 2z2 
= C3 Multiply by 0, y, 2z and add. 

Stays on a hyperbolic cylinder x2 
- z2 

= C4 Multiply by x, 0, -z and add. 

Professor Alar Toornre made the tumbling box famous among MIT students. The year when I 
went to his 18.03 lecture, he tossed up a book several times (in all three ways). 
The book turned or tumbled around its short and middle and long axes: stable, unstable, 

and stable. Actually the stability is only neutral, and wobbles don't grow or disappear. 

Maybe you can see those ellipses around two critical points: cylinders intersect a sphere. 
The website will show one of those cylinders going around (1, 0, 0): a neutrally stable case. 
It is harder to visualize the hyperbolas x2 

- z2 
= C4 around the unstable point (0, 1, 0). 

This figure shows the value of seeing a solution-not just its formula. With good fortune 
a video of this experiment will go onto the book's website math.mit.edu/dela.

y 
X 

Figure 3.9: Toornre's picture of solution paths x(t ), y(t), z(t) from Euler's three equations. 

I will end this example with a square box : two equal axes. The symmetry of a football 
also produces two equal axes. The Earth itself is flatter near the North Pole and South Pole, 
and symmetric around that short axis. Fortunately for us this case is neutrally stable. 

The Earth's wobble doesn't go away, at the same time it doesn't get worse. The spin axis 
passes about five meters from the North Pole. 
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Flattened sphere 
Square book 
Two equal axes 

dx/dt = 0 

dy/dt = -xz
dz/dt = xy

Critical points (±1, o, 0) at Poles 
Critical plane (0, y, z) 

(the plane of the Equator) 

The partial derivatives of -xz and xy are quick to compute at (X, Y, Z) = (1, 0, 0):

A = [ � � -� ] has eigenvalues ),, = i and ),, = - i and >,, = 0
0 1 0 

The path of x, y, z is a circle around the North Pole (for the nonlinear equations too). 
The Earth wobbles as it spins, but it stays stable. Not like a tumbling box. 

Epidemics and the SIR Model 

An epidemic can spread until a serious fraction of the population gets sick-or the epidemic 
can die out early. Unstable or stable: always the important question. Suppose it is a flu 
epidemic on a closed campus (with no flu shots). The population divides into three groups: 

S = Susceptible

I = Infected 

R = Recovered

(may catch the flu) 

(sick with the flu) 

(after having the flu) 

The equations for S(t), I(t), R(t) will involve an infection constant /3 and a recovery con­
stant a. The infection rate is (3SI, proportional to the susceptible fraction S times the in­
fected (and infectious) fraction I. The recovery rate is simply al. This simple model has
been improved in many ways-SIR is now a highly developed technique. Epidemiology
has major importance, and we want to present this small model: 

dS/dt = -(3SI = J(S, I)
dI/dt = /3SI-al= g(S, I)
dR/dt = al

We work with fractions of the total population, so S + I + R = 1. Adding the equations
confirms that S + I+ R is constant (their derivatives add to zero). It is enough to study
Sand I. We are ignoring births and deaths-our system is closed and the epidemic is fast.

The important critical point is S = 1, I = 0. The population is well, but everyone
is susceptible. Flu is coming. Is that critical point stable if a few people get sick? 

[of/as af /aI ] [ -/3I -/3S ] [ o -/3 ]
og/8S og/81 = (31 (3S-a = o (3-a 

at S = l, I=O 

The eigenvalues of that matrix are 0 and (3 - a. We certainly need /3 < a for stability.
"Sick must get well faster than well get sick." The other eigenvalue ),, = 0 needs a closer
analysis, and the model itself requires improvement. 
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A neutral eigenvalue like A = 0 can be pushed either way by nonlinear terms. One way 
to establish nonlinear stability is to solve the equations-after removing t: 

dl 

dS 

dl/dt 

dS/dt 

(/3S-l)I 1 

-(3SI 
= 

-l + 
(3S

lnS 
gives I= -S + � + C.

The moving point travels along the curve I+ S - (ln S)/ f3 = I(O) + S(O) - (In S(O))/ (3. 

An important fact about epidemics is the serious difficulty of estimating a and /3. Their 
ratio Ro = f3 / a controls the spread of disease : The epidemic dies out if Ro < 1. One 
comment about estimating f3: When the epidemic is over, you could compare I + S -
(In S) / f3 at t = 0 and t = oo. Much more is in the books by Brauer and Castillo-Chavez, 
especially Mathematical Models in Population Biology and Epidemiology. 

The Law of Mass Action 

When two chemical species react, the law of mass action decides the rate : 

S+E-t SE 
dy 
- =kse
dt

This is like predator-prey and epidemics (multiply one population times the other, s times e). 
Then y is the concentration of SE. When Eis an enzyme, there is also a reverse reaction 
SE -t S + E and a forward reaction SE -t P + E. For a chemist, the desired product is 
P. For us, there are three mass action laws with rates k1 , k_ 1, k2 : 

Life depends on enzymes: Very low concentrations e(O) < < s(O) and very fast reactions. 
Without E, blood would take years to clot. Steaks would take decades to digest. This 
math course might take a century to learn. The enzyme is the catalyst (like platinum in a 
catalytic converter). 

After the fast reaction that uses E, the slower reactions bring the enzyme back. Beauti­
fully, separating the two time scales leads to a separable equation for y : 

Michaelis-Menten equation 
dy 

dt 

cy 
---

y+K 

Maini and Baker have shown how matching fast time to slow time leads to (14). 

(14) 

This is just one example of the nonlinear differential equations of biology. Mathematics 
can reveal the main features of the solution. For a detailed picture we turn to accurate nu­
merical methods-and those come in the next section. 
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Continuous Chaos and Discrete Chaos 

This section about stability will now end with extreme instability : Chaos. For this we need 
three differential equations (or two difference equations). Chaotic problems are a recent dis­
covery, but now we know they are everywhere: Chaos is more common than stable equations 
and even more common than ordinary instability. 

This is a deep subject, but you can see its remarkable features from simple experiments.
Here are suggestions for one equation, then two, then the big one (Lorenz): 

1. Newton's method on page 6 finds square roots by solving f(x) = x2 
- c = 0.

Compute x1 , then x2, then X3, ... Then Xn approaches ±y'c. 

f (xn) x;. - c 1 
( c )Xn+l = Xn - f'(xn) = Xn - � = 

2 
Xn + Xn 

But if c = -1, these real x's cannot approach the imaginary square roots x = ±i. 
The Xn will move around wildly when Xn+1 = ½ (xn - x;;- 1 ). Try 100 steps from
xo = v'3 and xo = 2.

2. The Henon map approaches a "strange attractor" in the xy plane :

Stretching and folding Xn+l = 1 + Yn - l.4x;;_ and Yn = 0.3xn 

Try four steps, starting from many different x0, y0 between -1 and 1.

3. The Lorenz equations arise in trying to predict atmospheric convection and weather:

x'=a(y-x) y 1=x(b-z)-y z 1 = xy - cz
Lorenz himself chose a= 10, b = 28, c = 8/3. The system becomes chaotic. The so­
lutions are extremely sensitive to changes in the starting values. Harvey Mudd College
has an ODE Architect Library that includes Lorenz and suggests great experiments.
Try it! 

• REVIEW OF THE KEV IDEAS •

1. The critical points of y' = f (y, z), z' = g(y, z) solve f (Y, Z) = g(Y, Z) = 0. Steady
state y(t) = Y, z(t) = Z. 

2. Near that steady state, f(y, z) � (of /oy)(y - Y) + (of /oz)(z - Z). Similarlyg(y, z) is "linearized" at Y, Z. These derivatives off and g go in a 2 x 2 matrix A. 

3. The equations (y, z)' = (!, g) are stable at Y, Z when the linearized equations
(y - Y, z - Z) 1 = A(y - Y, z - Z) are stable. Then .X1 and .X2 have real parts < 0.

. . . of og of og of og . 
4. Stab1hty at Y, Z requires oy + oz < 0 and oy oz > oz oy . This means that

the eigenvalues have A1 + .X2 =a+ d < 0 and .X1.X2 = ad - be> 0. 



182 Chapter 3. Graphical and Numerical Methods 

5. Boxes and books tumble unstably around their middle axes. Footballs are neutral.

6. Epidemics and kinetics are nonlinear when species 1 multiplies species 2 :y 1 
= kyz. 

Problem Set 3.3 

1 If y 1 
= 2y + 3z + 4y2 

+ 5z2 and z' = 6z + 7yz, how do you know that Y = 0,
Z = 0 is a critical point ? What is the 2 by 2 matrix A for linearization around
(0, 0) ? This steady state is certainly unstable because __ . 

2 In Problem 1, change 2y and 6z to -2y and -6z. What is now the matrix A for
linearization around (0, 0) ? How do you know this steady state is stable? 

3 The system y 1 
= J(y,z) = 1 - y2 

- z, z' = g(y,z) = -5z has a critical point
at Y = 1, Z = 0. Find the matrix A of partial derivatives off and g at that point:
stable or unstable ? 

4 This linearization is wrong but the zero derivatives are correct. What is missing ?
Y = 0, Z = 0 is not a critical point of y' = cos (ay + bz), z' = cos (cy + dz).

[ 
y 1 ] [ -a s_in O -b s�n O 

] [ 
y 

] [ 
0 0 

] [ 
y 

] .z' -csm0 -dsm0 z 0 0 z 

5 Find the linearized matrix A at every critical point. Is that point stable ? 

y 1 
= 1 - yz 

(a) z'=y-z 3 (b) 
y' = -y3 - z
z' = y + z3 

6 Can you create two equations y 1 
= f (y, z) and z 1 

= g (y, z) with four critical points :
( 1, 1) and ( 1, -1) and ( -1, 1) and ( -1, -1) ?

I don't think all four points could be stable ? This would be like a surface with
four minimum points and no maximum. 

7 The second order nonlinear equation for a damped pendulum is y 11 
+ y 1 

+ sin y = 0.
Write z for the damping term y 1, so the equation is z 1 

+ z + sin y = 0.
Show that Y = 0, Z = 0 is a stable critical point at the bottom of the pendulum.
Show that Y = n, Z = 0 is an unstable critical point at the top of the pendulum.

8 Those pendulum equations y 1 = z and z' = - sin y - z have infinitely many critical
points ! What are two more and are they stable ? 

9 The Lienard equation y 11 
+ p(y ) y' + q(y) = 0 gives the first order system y 1 

= z and
z 1 

= __ . What are the equations for a critical point ? When is it stable ?

10 Are these matrices stable or neutrally stable or unstable (source or saddle)?

[ 0 9 ] [ -1 2 ] [ -1 -2 ] [ 0
-1 0 -1 -1 -1 -1 -1
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11 Suppose a predator x eats a prey y that eats a smaller prey z : 

dx/dt = -x + xy 
dy/dt = -xy + y + yz 
dz/dt = -yz + 2z 

Find all critical points X, Y, Z 

Find A at each critical point 
(9 partial derivatives) 

183 

12 The damping in y" + (y')3 + y 0 depends on the velocity y 1 = z. Then 
z 1 + z3 + y = 0 completes the system. Damping makes this nonlinear system
stable-is the linearized system stable ? 

13 Determine the stability of the critical points (0, 0) and (2, 1): 

y' = -y+4z+yz 
(a) 

z 1 = -y - 2z + 2yz (b) 
y' = -y2 +4z 
z' = y - 2x4 

Problems 14-17 are about Euler's equations for a tumbling box. 

14 The correct coefficients involve the moments of inertia Ii, h, h around the axes. 
The unknowns x, y, z give the angular momentum around the three principal axes : 

dx/dt = ayz 
dy/dt = bxz 
dz/dt = cxy 

with 
with 
with 

a= (l/h -1/h) 
b = (l/ Ji - 1/ /3) 
c = (1/12 -1/fi). 

Multiply those equations by x, y, z and add. This proves that x2 
+ y2 

+ z2 is __ . 

15 Find the 3 by 3 first derivative matrix from those three right hand sides f, g, h. 
What is the matrix A in the 6 linearizations at the same 6 critical points? 

16 You almost always catch an unstable tumbling book at a moment when it is flat. 
That tells us: The point x(t), y(t), z(t) spends most of its time (near) (far from) 
the critical point ( 0, 1, 0). This brings the travel time t into the picture. 

17 In reality what happens when you 

(a) throw a baseball with no spin (a knuckleball)?

(b) hit a tennis ball with overspin ?

( c) hit a golf ball left of center ?

(d) shoot a basketball with underspin (a free throw)?
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3.4 The Basic Euler Methods 

For most differential equations, solutions are numerical. We solve model equations to 
understand what to expect in more complicated problems. Then the numbers we need­
close to exact but never perfect--<:ome from finite time steps 6.t. 

This section will show you the key ideas. The approximations will be simple and clear, 
but not highly accurate. The next section comes closer to the reality of modem codes. 
The Runge-Kutta method is still frequently used, with refinements that those two creators 
certainly did not anticipate. The cycle of predicting at t + at, correcting at t + at, and 
adjusting the stepsize at for the next step is now highly developed. 

Local accuracy comes from small steps, but speed comes from larger steps. The right bal­
ance depends on the particular equation and the user's need for accuracy. Always 
there is a requirement of stability-because small errors are unavoidable. But after the 
numerical errors enter the calculation, they must not grow faster than the solution itself. 

Euler's First Step Yl 
= YO + at fo 

The equation to solve is dy / dt = f ( t, y). The initial value y(0) is given-this will be our 
starting y0. A difference equation will go forward to YI· That is our approximation to the 
exact solution at tI = 6.t (the end of the first time step and the start of the next step). 
By going forward in steps of size 6.tI, 6.t2, ... we compute values YI, Y2, ... that are close 
to the exact solution. 

We know two facts at t = 0. The value of y is y0 and the slope dy / dt at that point 
is given by J in the equation. That slope is called J 0• It is the right side J ( t, y) when 
y = y0 and t = 0. With value Yo and slope Jo, we know the tangent line y = Yo + tJo 
to the curve y(t). So we can take a step 6.t along that tangent line-not too large a step 
or we will wander too far from the exact curve y(t). 

Figure 3.10 shows YI for the model equation y 1 = 2y. At Yo = 1 the slope is Jo 2 
(since J (y) = 2y ). We follow that tangent line as far as y1 = 1 + 2at. 

Yo = 1 

y = e2dt 

on the solution curve 

y1 = 1 + 2dt

on the tangent line 

0 ill t 

Figure 3.10: The tangent line y =Yo+ tJo starts at Yo- Euler stops at Y1 =Yo+ atfo. 
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Euler's Method Yn+l = Yn + .6...tfn 

On the graph, we are following pieces of tangent lines. This is the same as approximating 
the derivative dy/ dt (which changes during a time step) by the forward difference 6.y/ 6.t
(which is held constant during a time step): 

dy 

dt 
= f(t, y) becomes Y1 - Yo=.,, 

At JO· (2) 

There is a new tangent line for the second time step. That step starts at y1 (which we just 
computed). The slope at that point in time is Ji = J(6.t, y1). We are using the differential 
equation y' = f ( t, y) to tell us the slopes f o, Ji, h, . . .  at the start of every time step : 

nth time step
Ay 
- = f ( tn , Yn) is Euler's method
At 

Yn+l - Yn ----- =fn 
At 

(3) 

The model equation dy/dt = 2y has the exact solution y(t) =
e2t. Euler's method 

Yn+l = Yn + 6.tf n will multiply Yn at every step by the number 1 + 26.t: 

Yn+l = Yn + 6.t(2yn) = (1 + 26.t)yn leads to Yn = (1 + 2At) nYo- (4)

We have seen powers of (1 + ¼) and (1 + �) in Section 1.3 from compound interest.
The current balance was Yn and the interest at rate a was a6.tyn . Then the new balance was 
Yn+l = (1 + a6.t)Yn · This is exactly Euler's method to solve dy/dt = ay, and our example 
has a= 2. 

Approximating e2t 
(5) 

The errors Yn - y grow as n increases. But the errors at each step also shrink as 6.t -+ 0. 
If we hold n 6.t fixed at some value T, then we are taking n steps to reach that time T.
As n increases and 6.t decreases, the steps are smaller-the tangent lines stay closer. 
Then Euler's Yn approaches the exact y(T) = 

e2T. 

Euler's Error 

The error En is y ( n 6.t) - Yn · This is the exact solution minus the computed solution Yn 

at time n 6.t. It comes from accumulating small errors at every time step-the tangent 
lines move away from the true graph of y(t).

First, estimate those small errors at the n separate time steps. How far is a tangent line
from a curve, after a step 6.t? The answer comes from calculus. 

Local error 

Taylor series 

1 
y(t + 6.t) = y(t) + 6.t y'(t) + -(At) 2y"(t) + · · ·

2 

When we keep two terms and omit the third term, the error is� ½(6.t) 2 IY"lmax-

(6)
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y4 = (1 + 2 new 6.t) 4 

Yo = l 

0 new 6.t old 6.t = 4 (new 6.t) 
Figure 3.1 1: Euler's method converges to y(T) as n-+ oo, with n steps of size 6,.t = T /n.

The Mean Value Theorem would establish that bound of order ( 6,.t) 2. This is the error
in one step-a tangent line moving away from the curve. We will take n steps to reach
the time n 6,.t = T. If all goes well, the 1-step error C(!:,.t) 2 grows in n steps to CT/:,.t.

The error at time T after n steps is jy(T) - Yn l � Cn(At) 2 
= CT At. (7) 

Conclusion: Euler's method is first-order accurate. The error is proportional to 6,.t.
If we take 2n steps of size 6,.t/2, and do twice as much work, that will divide the error
by 2 (approximately). This is really minimum accuracy. 

The Runge-Kutta method has error proportional to ( 6,.t )4
. Then reducing 6,.t to 6,.t /2 im­

proves the error by a factor near 16. We will be matching many more terms in the
Taylor series, where Euler only matched the first derivative. In the example y' = 2y, we
know that y(T) = 

e2T : 

First-order accuracy ( 2T)n C
(1 + 2 6,.t)n 

= 1 + --:;; 
� e2T with error n (8) 

This table shows the slow improvement as n increases, compared to the superfast
improvement from keeping more terms in the Taylor series: 

n (1 + ¼) n from Euler Taylor series for e

1 2.0000000 2.0000000
2 2.2500000 2.5000000
3 2.3703704 2.6666667
4 2.4414062 2.7083333
5 2.4883200 2.7166667
6 2.5216264 2.7180556
7 2.5464997 2.7182540
8 2.5657845 2.7182788
9 2.5811748 2.7182815

10 2.5937425 2.7182818 
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Stability 

We jumped over an important point when we converted n local errors of size (,6.t)2 

to one global error of size ,6.t. The local errors occur in each step. The global errorat T is the composite of n local errors. We assumed that local errors at early times would not grow much before the final time T. Think of the local error as a small bank deposit every day. The global error at the end ofa year (T = 365 ,6.t) includes 365 small errors. Those small deposits should grow during the year (they earn interest too). The constant C in equation (8) allows for this growth.
What if the equation is dy / dt = -lO0y? This shows decay, not growth. The solu­tion starting at y(0) = 1 is y(T) = e-rnoT, very small. But does Euler's method show thesame fast decay in the approximate solution, when the equation has f n = -lO0yn ? 

Yn+l = Yn + ,6.tf n = (1 - 100 ,6.t)y
n (9) 

If 100 ,6.t is small, then 1 - 100 ,6.t is less than 1 and its powers decay as they should.But we will have l00At = 3 when ,6.t = 0.03. That step seems small but it is not. The number 1 - 100 ,6.t will be -2. Equation (9) shows that every step multiplies by -2.The powers of -2 grow exponentially! 
Yn = 1, -2, 4, -8,... Yn = (1 - 100,6,.ttyo = (-2)n

Yo is exponentially unstable.

Conclusion: Stability for y 1 
= -lO0y requires I 1 - 100 ,6.tj ::; 1. We need At � 2 / 100. 

In a way this limit on ,6.t is acceptable. Euler is missing the ½(100 ,6.t)2 term in theTaylor series for e-lOOt_ We would want 100 ,6.t < 1 just for reasonable accuracy. Thestability requirement 100 ,6.t < 2 is not a heavy burden. But read further.
Stiff Equations 

Imagine an equation with solutions e-t and e-100t. Then e-t will dominate, becauseit has much slower decay than e-lOOt_ We have decay rates s = -1 and s = -100 : 
y" + lOly' + lO0y = 0 with s2 

+ 10 1 s  + 100 = (s + l)(s + 100). (10)
This is certainly overdamped. The roots s = -1 and s = -100 are real. Euler's methodneeds to follow e-t accurately, because that is the important solution. But stability still 
requires At � 2/100. The unimportant solution e-lOOt is getting in the way. It reduces ,6.t and therefore addsmore work (many steps), beyond the ordinary demand of first order accuracy. A problemlike equation (10) is called stiff: stability can be too expensive for ordinary Euler. We can see this second order problem as two first order equations. Introduce y I as asecond unknown. As in Section 3.1, a "companion matrix" multiplies the vector (y, y 1): 

y" + l0ly' + l00y = 0 is the same as ! [ �, ] [ _ 1°00 _110 1 ] [ �' ] . (11)
The eigenvalues of the matrix are the same roots -1 and -100. That is a stiff problem :
slow decay together with fast decay. 
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Euler's method for this matrix equation is just like Euler for y' = Ay :
Yn+l - Yn _ A (I+ A "'t) (12) 

6.t - Yn or Yn+l = � Yn ·

Every step multiplies by I + Abi.t. That matrix has eigenvalues 1 - 6.t and 1 - 1006.t. 
Normally 1 - 6.t is more important and larger. But if 1006.t is greater than 2, then the 
second number 1 - 1006.t is below -1. Its powers will show extreme instability. 

The cure for stiff systems is to switch to an implicit method.

Backward Euler = Implicit Euler 

The idea of implicit methods is to use backward differences. Go back from Yn+i and 
tn+l and f n+l, instead of going forward from Yn and tn and f n · 

Backward Euler 

The example y I B - l00y will divide by 1 + 1006.t instead of multiplying by 1 - 1006.t:
Yn+l - Yn _ 00 B 

( A ) B _ 
6.t - -1 Yn+i is 1 + l00�t Yn+i - Yn · 

That division happens at every time step. After n steps this method remains very stable: 

"Implicit Euler" y;; = ( 1 
bi. ) n Yo is decreasing correctly.

1 + 100 t 
For this linear equation, division is no more expensive than multiplication. Implicit is 

the way to go. But we pay a much higher price for implicit when the problem is nonlinear. 
Instead of substituting the known Yn to find fn = f(n 6.t, Yn) in ordinary "explicit" Euler,
we now have to solve a nonlinear equation to find the unknown yf!

+l 

Each step must solve for y:"f
+i 

(14) 

If the forcing function f is complicated, even an approximate solution for yf!
+l will be 

expensive. You see the struggle that is constantly presented: Implicit methods are more
stable but much slower. For y 1 = Ay, the matrix to invert is in (I - 6.t A)yf!

+ 1 
= Yn · 

Difference Equations vs Differential Equations 

Compare an with eat: powers and exponentials. The powers come from a difference equa­
tion Yn+l = aYn . The exponentials come from a differential equation y 1 

= ay. Stability 
means that those solutions approach zero. For ordinary numbers (this includes complex 
numbers) the test on a is easy. 

an -+ 0 when I a I < 1 eat -+ 0 when Re a< 0. 

When we have a matrix A, the same tests are applied to the eigenvalues : 

An -+ 0 when all I.XI < 1 eAt -+ 0 when all Re Ai < 0. 

t 
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• REVIEW OF THE KEY IDEAS •

1. Euler's method is (Yn+l -yn)/D..t = fn oryn+I = Yn + dtf(ndt,yn)-

189 

2. That step to Yn+l follows the tangent line at Yn, not the curve y(t). Error� (D..t) 2
• 

3. After n steps to time T = n D..t, the error is proportional to D..t: First order accuracy.

4. Stability requires Yn to grow no faster than the exact y(t): Often a size limit on D..t.

5. Backward Euler is Y;;+1 
- Yn = D..tf(Yft

+1). Harder to find yft
+i but more stable.

Problem Set 3.4 

1 Apply Euler's method Yn+l = Yn + D..tf n to find Y1 and Y2 with D..t = ½: 

(a) y'=y (b) y' = y2 (c) y' = 2ty (all with y(O) = Yo = 1) 

2 For the equations in Problem 1, find y1 and y2 with the step size reduced to D..t = ¼­
Now the value y2 is an approximation to the exact y(t) at what time t? 
Then y2 in this question corresponds to which Yn in Problem 1 ? 

3 (a) For dy / dt = y starting from Yo = 1, what is Euler's Yn when D..t = l?

(b) Is it larger or smaller than the true solution y = et at time t = n?

(c) What is Euler's y2n when D..t = ½? This is closer to the true y(n) = en.

4 For dy / dt = -y starting from Yo = 1, what is Euler's approximation Yn after n steps 
of size D..t? Find all the Yn 's when D..t = l. Find all the Yn 's when D..t = 2. Those 
time steps are too large for this equation. 

5 The true solution to y' = y2 starting from y(O) = 1 is y(t) = 1/(1 - t). This 
explodes at t = l. Take 3 steps of Euler's method with D..t = ½ and take 4 steps 
with D..t = ¼- Are you seeing any sign of explosion? 

6 The true solution to dy / dt = -2ty with y ( 0) = 1 is the bell-shaped curve y = e-t
2

• It
decays quickly to zero. Show that step n + l of Euler's method gives
Yn+l = (1 - 2nD..t2)Yn · Do the Yn's decay toward zero? Do they stay there? 

7 The equations y 1 = -y and z 1 = - lOz are uncoupled. If we use Euler's method for 
both equations with the same D..t between ?o and 2, show that Yn ---+ 0 but lzn / ---+ oo. 
The method is failing on the solution z = e-lOt that should decay fastest.

8 What values Y1 and Y2 come from backward Euler for dy / dt = -y starting from 
y0 = 1 ? Show that yf < l and y!j < l even if D..t is very large. We have absolute 
stability: no limit on the size of D..t. 
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9 The logistic equation y 1 = y - y2 has an S-curve solution in Section 1.7 thatapproaches y( oo) = 1. This is a steady state because y 1 
= 0 when y = l.

Write Euler's approximation Yn+l = __ to this logistic equation, with stepsizef:::..t. Show that this has the same steady state : Yn+ l equals Yn if Yn = l. 
10 The important question in Problem 9 is whether the steady state Yn = l is stableor unstable. Subtract 1 from both sides of Euler's Yn+ l = Yn + f:::..t(yn - y;,) : 

Yn+ l - 1 = Yn + f:::..t(yn - y;) - 1 = (Yn - 1)(1 - f:::..tyn)-
Each step multiplies the distance from 1 by (1 - f:::..tyn)- Near the steady y00 = 1,
1 - f:::..t Yn has size [ 1 - f:::..t [. For which f:::..t is this smaller than 1 to give stability ?

11 Apply backward Euler Y:'!+ 1 = Yn + f:::..tf:!+ 1 = Yn + f:::..t [Y:'!+1 - (Y:'!+ 1)
2

] to the
logistic equation y' = f(y) = y - y2 . What is yf if y0 = ½ and f:::..t = ¼?

You have to solve a quadratic equation to find yf. I am finding two answers for yf.
A computer code might choose the answer closer to y0. 

12 For the bell-shaped curve equation y 1 
= -2ty, show that backward Euler divides

Yn by 1 + 2n( f:::..t ) 2 to find y;;
+l. As n --+ oo, what is the main difference from

forward Euler in Problem 6 ? 
13 The equation y 1 

= vlYI has many solutions starting from y(0) = 0. One solution
stays at y(t) = 0, another solution is y = t2 /4. (Then y' = t/2 agrees with .jy.)Other solutions can stay at y = 0 up to t = T, and then switch to the parabola
y = (t - T)2 /4. As soon as y leaves the bad point y = 0, where f(y) = y112 

has infinite slope, the equation has only one solution.
Backward Euler y1 - t::..tv'fy"J = Yo = 0 gives two correct values yf = 0 andyf = ( t::..t ) 2 • What are the three possible values of y!J ?

14 Every finite difference person will think of averaging forward and backward Euler:
Centered Euler / Trapezoidal Y�+1 - Yn = At (tfn + tf�+1). 

For y' = -y the key questions are accuracy and stability. Start with y(0) = 1.
c ( 1 1 c) . c 1 - At/2 y - yo= f:::..t - -yo - -y gives y = 

----yo.1 2 2 1 1 1 + At/2 
Stability Show that [1 - f:::..t/2[ < [1 + f:::..t/2[ for all f:::..t. No stability limit on f:::..t.
Accuracy For Yo = l compare the exact y1 = e-t:,.t = 1 - f:::..t + ½t::..t2 - · · · 

with yf = (1 - ½t::..t)/(1 - ½t::..t) = (1 - ½t::..t)(l - ½t::..t + ¼t::..t2 - .•. ). 

An extra power of t::..t is correct: Second order accuracy. A good method.
The website has codes for Euler and Backward Euler and Centered Euler. Thosemethods are slow and steady with first order and second order accuracy. The test problems
give comparisons with faster methods like Runge-Kutta.
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3.5 Higher Accuracy with Runge-Kutta 

The section on basic Euler methods contained two messages. First, those methods are 
simple to understand (they follow a tangent line). Second, those methods are too simple 
to give good or even adequate accuracy. This section brings major improvements. The 
fourth order Runge-Kutta method is the basis for ode 45, the workhorse among all of 
MATLAB's codes for solvingy' = f(t,y).

Notice that this equation-linear or more likely nonlinear-involves first derivatives y 1 

and no higher derivatives. In case the original equation is y" = F(t,y,y'), introduce
y' = Y2 as a new equation together with the original y� = F(t, y, y2). The unknowns
Yi = y and Y2 = y' go into a vector y. The right hand sides Y2 and F go into a vector f.

n equations for 

n unknown y 's 
Y� = Y2 
Y� = F(t, Yi, Y2)

In the middle is a system of two equations coming from y 11 = F. On the right is a system 
of n equations for the vector y of n unknowns. The n equations y 1 

= f ( t, y) start from n
initial conditions Yi ( 0), ... , Yn ( 0), and f is a vector of n right hand sides.

We are ready for more accurate approximations toy'= f(t, y) and y' = f(t, y).

Improved Euler = Simplified Runge-Kutta 

Euler's first order method is yff+i = Yn + 6..tf n · Let me describe an improvement to sec­
ond order accuracy, which means an error of size (t6..t)2. This uses the Runge-Kutta idea: 
Substitute Euler's yff+i once more into f. Use that output to get a better Y�+i :

Improved Euler 

Simplified R-K (1) 

Let me show you the improvement for y 1 
= ay. In this case f ( t, y) is ay. You can see yE as

a prediction of the next value Yn+i and y8 as a correction:

yE = Yn + a at Yn goes into y8 = Yn + �a 6..tyn + �a 6..t(yn + a at Yn )- (2)

When that last term is multiplied out, we see the correct (t6..t)2 term included in Y�+i:

Linear case y' = ay s 1 2 2 Yn+i = Yn + a 6..t Yn + 
2a (6..t) Yn · (3) 

We are following the tangent parabola starting at Yn · The parabola stays much closer to the
true y(t) curve than the tangent line. This improvement means a (t6..t)3 error at each step.
With stability, those errors produce a (t6..t)2 overall error after n = T / 6..t steps.

The exact y(t + 6..t) is eat:,.ty(t). Equation (3) has three correct terms of eat:,.t _ Euler
uses the slope y' = f(t, y) only at the start of the time step, but the improvement y8 

in equation (l) averages the slope at the start and the end of the step. 
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Simplified Adams Method 

Here is another way to achieve second order accuracy. Save and reuse the computed

value Yn-I at the previous time t - At. With the right coefficients 3 /2 and -1 /2, 
and essentially no extra work, we can again capture the term½ (llt)2y II that Euler missed. 

Adams-Bashforth 

Multistep method 
A 3 1 

Yn+I = Yn + 
21:ltf(tn, Yn) - 21:ltf(tn-1, Yn-1), (4)

All we do is to save each computed value off n for one more step. That number becomes the 
f n-1 term in ( 4 ). The right hand side of ( 4) gives the correct y I and y II terms : 

3 I 1 / 3 / 1 ( / II
) I l ( ) 2 II Yn + 2f:ltyn -

2f:ltyn-l ::::0 Yn + 2f:ltyn -
2f:lt Yn -6.tyn = Yn + Atyn 

+ 
2 

At Yn 

Each extra step back to Yn-2, Yn-3, ... can increase the accuracy by 1. Those multi-step 
methods compete with Runge-Kutta and eventually they win. But fourth order is still mostly 
on the R-K side. One reason is that Adams needs a special effort to compute Y-l before the 
first step can begin. Runge-Kutta starts cold. 

Runge-Kutta easily changes 6.t from one step to the next. On the other hand, its four 
evaluations off ( t, y) could be expensive. Stiff systems need backward differences. 

Fourth Order Runge-Kutta 

The famous version of Runge-Kutta uses four evaluations of the right side. It starts at time 
tn with solution y;;K. It reaches time tn+l = tn + 6.t with approximate solution y;;_f1. 
On the way, Runge-Kutta stops twice for k2 and k3 at tn+i;2 = tn + ½llt. 

At each step k1 f(tn, Yn)/2 
from tn to tn+I k2 f(tn+l/2, Yn + 6.t k1)/2 
compute k3 f(tn+l/2, Yn + 6.t k2)/2 
k1, k2, k3, k4 k4 f(tn+l, Yn + 26.t k3)/2 

A combination of those four k's gives fourth-order accuracy for y;;_f1
: 

Runge-Kutta step 

RK _ 
lYn+I Yn 

= -(k + 2k + 2k + k ) 
At 3 1 2 3 4 (5) 

That short line is one of the most important formulas in this book. Among highly accu­
rate methods, Runge-Kutta is especially easy to code and run-probably the easiest there is. 
Before each step, we decide on 6.t. For the model problem y 1 = y the R-K combination pro­
duces five correct terms in the series for etlt. You can see evaluations off inside evaluations 
off, starting with k1 = f n/2 = y/2: 

Problem 1 will simplify k1 + 2k2 + 2k3 + k4. The new Yn+i at the end of the step is 
Yn+I = (1 + At + · · · + ;ff ( At ) 4 )Yn · All terms correct for etlt and 4th order accuracy. 
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The Stability of Runge-Kutta 

To determine the limit of stability, apply the method to y 1 = -y. The true solution y = 
e-ty(0) will decrease. But if 6-t is too large, the approximations Yn will increase in size.
The first example of possible instability was Euler's method:

Euler instability for at > 2 Y�+i = (1 - 6-t)yn has I 1 - 6-tl > 1 

When we apply the same test to Runge-Kutta, instability enters for at > 2. 78: 

1 1 1 11 
RK instability for at 2:: 3 1- 3 + -9 - -27 + -81 = - > 1.

2 6 24 8 

The full infinite series would give the small number e-3
. But these five terms give 

a multiplier 11/8 that is larger than 1. If we take this over-large step n times, the 
Runge-Kutta approximation Yn = (11/8) n will be enormous and completely wrong. 
The more exact stability limit is a 6-t < 2. 78 for y 1 = ay. 

Example 1 Apply all three methods to dy/dt = y. The true solution y = e
t 

reaches 
y = e = 2. 71828 . . .  at time t = 1. Try 6-t = 0.2 and 0.1.

at= 0.2 Y
E 

Y
s yRK at= 0.1 Y

E yS yRK 

t=0 1 1 1 t=0 1 1 1 
.1 1.10 1.1050 1.1051708 

t = .2 1.20 1.220 1.221400 .2 1.21 1.2210 1.2214026 
.3 1.33 1.3492 1.3498585 

t = .4 1.44 1.488 1.491818 .4 1.46 1.4909 1.4918242 
.5 1.61 1.6474 1.6487206 

t = .6 1.73 1.816 1.822106 .6 1.77 1.8204 1.8221180 
.7 1.95 2.0116 2.0137516 

t = .8 2.07 2.215 2.225521 .8 2.14 2.2228 2.2255396 
.9 2.36 2.4562 2.4596014 

t = 1 2.49 2.703 2.718251 1.0 2.59 2.7141 2.7182797 

The error in y8 is divided by 4 (from .015 to .004 at t = 1) when 6-t is cut in half. 
This indicates second order accuracy for simplified Runge-Kutta, as the theory predicted. 
The work is only doubled. 

ode 45 and ODEPACK and More 

Runge-Kutta is accurate and easy to code. The final value Yn+l can be made even better. 
With six evalutions of f (not four) we can also compute a value Y:+l that has fifth order 
accuracy. By comparing with yf;_fi_ we get an estimate of the error, which indicates whether 
a larger 6-t is possible or a smaller 6-t is necessary. This is the heart of Matlab's ode 45 code. 
A good solver for stiff systems is ode 15s.

ODEPACK and SUNDIALS are open collections of Fortran 77 codes from Livermore 
Laboratory. Those emphasize Adams methods (backward differences for stiff problems). 
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Mathematica has DSolve for solution formulas and NDSolve for numerical solutions.
Wolfram Alpha is remakable for the very wide range of problems it solves. SciPy and SymPy
and Scilab are also free and high quality. See the web !

• REVIEW OF THE KEY IDEAS •

1. Higher order equations like y" + y' + y = F(t,y,y') reduce toy' = f(t,y).
Most finite difference methods prefer this first order system with y = (y, y'). 

2. Y!+i = Yn + 6.tfn improves to second order accuracy by also using J(tn +l, Y!+ 1). 

3. Fourth order Runge-Kutta uses that substitution into f ( t, y) four times in each step.

4. The Runge-Kutta error is divided by almost 24 
= 16 when 6.t is divided by 2.

5. Stability for y' = ay requires a6.tE > -2 and a6.t8 > -2 and a6.tRK > -2.78.
Otherwise disaster for a < 0 : the approximations Yn will start to grow. 

Problem Set 3.5 

Runge-Kutta can only be appreciated by using it. A simple code is on math.mit.edu/dela. 

Professional codes are ode 45 (in MATLAB) and ODEPACK and many more. 

1 For y' = y with y(0) = 1, show that simplified Runge-Kutta and full Runge-Kutta
give these approximations y1 to the exact y(6.t) = et:.t:

2 With 6.t = 0.1 compute those numbers yf and y(lK and subtract from the exact
y = et:.t _ The errors should be close to (6.t)3 /6 and (6.t) 5 /120. 

3 Those values yf and yf,K have errors of order ( 6.t ) 3 and (6.t)5
. Errors of this size at

every time step will produce total errors of size __ and __ at time T, from N
steps of size 6.t = T / n.

Those estimates of total error are correct provided errors don't grow (stability).

4 dy/dt = f(t) with y(0) = 0 is solved by integration when f does not involve y.
From time t = 0 to 6.t, simplified Runge-Kutta approximates the integral off (t): 

t:.t f (0) 
C] f(6.t)

yf = 6.t (�f(O) + �f(6.t)) is close to y(6.t) = j f(t)dt
o O 6.t
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Suppose the graph of f ( t) is a straight line as shown. Then the region is a trapezaid. 
Check that its area is exactly yf. Second order means exact for linear f. 

5 Suppose again that f does not involve y, so dy/dt = f(t) with y(O) = 0. Then full 
Runge-Kutta from t = 0 to D..t approximates the integral off ( t) by yfK : 

yfK 
= D..t (cif(O) + c2f(6.t/2) + c3f(6.t)). 

6..t 

This approximation to J f (t) dt is called Simpson's Rule. It has 4th order accuracy. 
0 

6 Reduce these second order equations to first order systems y 1 
= f ( t, y) for the vector 

y = (y, y 1). Write the two components of yf (Euler) and yf 

(a) y" +yy' +y4 
= 1 (b) my"+by'+ky=cost

7 When my 11 
+ by 1 

+ ky = cos t in Problem 6 is reduced to a vector equation y 1 = 
Ay + f find yf and yr_ from the initial vector y0

. 

8 For y' = -y and y0 = 1 the exact solution y = e-t is approximated at time D..t by 2 
or 3 or 5 terms : 

(a) With D..t = 1 compare those three numbers to the exact e- 1
. What error E?

(b) With D..t = 1/2 compare those three numbers to e- 1/2. Is the error near E/16?

9 For y' = ay, simplified Runge-Kutta gives y�+l = (1 + aD..t + ½(a6.t) 2)Yn · 
This multiplier of Yn reaches 1 - 2 + 2 = 1 when aD..t =:= -2: the stability limit. 

(Computer experiment) For N = 1, 2, ... , 10 discover the stability limit L = LN 
when the series fore-Lis cut off after N + 1 terms: 

1- L + -L - -L + .. · ± -L = 1.
I 

1 2 1 
3 

1 NI 
2 6 N! 

We know L = 2 for N = 1 and N = 2. Runge-Kutta has L = 2. 78 for N = 4. 
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• CHAPTER 3 NOTES • 

Proof that y' = f(t, y) has a solution Functions y0, y1, y2, ... approach y(t) 
Section 3 .1 stated a fact : dy / dt = f ( t, y) has one solution starting from y( 0), when f 

is a good function: Assume f and df / dy are continuous at all points. Since we have no 
formula for y (and we don't expect one ), how can we know that a solution exists? 

One good answer constructs YI from Yo = y(O), then y2 from YI, then y3 from y2 , ... 

Equation 
dy

;t
1 

= f(t, Yn(t)) Solution Yn+1 = Yo+ 1
t 

f(s,yn(s))ds 

Let me practice with y 1 = y and y(O) = 1. The solution is et. Take three steps to y3 : 

Yci = 0 

y(O) = 1 

y{ = Yo 

YI = 1 + t

Y� = YI 
t2

Y2 = 1 + t + -
2 

t2 t3 
y3 = 1 + t+ - + -

2 6 

(6) 

The same construction of et was in Section 1.3. Now we go much further, to solve nonlinear 
equations y 1 

= J(t, y). The key idea is to compare Yn+I -Yn with the previous Yn -Yn-I· 
Subtract equation (6) for Yn from equation (6) for Yn+l: 

Yn+1(t) -yn(t) = 1
t 

[f(s,yn(s)) - f(s,Yn-I(s))] ds.

When lo f /oyl ::::; L, the difference l f(Yn) - f(Yn-I)I is not larger than LIYn -Yn-II•

IY2 -YII < 1
t 

LIYI -Yol ds
o

t 

IY3 -Y2 I < 1 LIY2 -YII ds

< LtlYI -Yolrnax 

f 2 L2t2 

< 
Jo 

L tlYI -yolrnax = -2-IYI -Yolrnax

(7) 

We are seeing Lt and L2t2 /2 and next will be L3t3 /6. Those numbers Lntn /n ! approach
zero quickly because of n ! If n is large and N is larger, then 

Lntn 

IYN -Ynl::::; IYN -YN-II + IYN-I -YN-2 1 + · · · + IYn+I -Ynl::::; C-1-n. 

This is what we need to know : the differences y N ( t) -Yn ( t) approach zero. Cauchy showed
that the numbers Yn(t) must approach a limit y(t). (Of course Yn+l will approach the same
limit.) That limiting function y(t) will be our desired solution: 

Yn+1(t) =Yo+ 1f(s, Yn(s)) ds --+ y(t) =Yo+ fo1·(s, y(s)) ds. Then y 1 = f(t, y).



Chapter 4 

Linear Equations and Inverse 

Matrices 

4.1 Two Pictures of Linear Equations 

The central problem of linear algebra is to solve a system of equations. Those equations are 
linear, which means that the unknowns are only multiplied by numbers-we never see x2 or 
x times y. Our first linear system is deceptively small, only "2 by 2." But you will see how 
far it leads : 

Two equations 

Two unknowns 

X 2y 
2x + y 

1 
7 (1) 

We begin a row at a time. The first equation x - 2y = 1 produces a straight line in the 
xy plane. The point x = l, y = 0 is on the line because it solves that equation. The 
point x = 3, y = l is also on the line because 3 - 2 = 1. For x = 101 we find y = 50. 

The slope of this line in Figure 4.1 is ½, because y increases by 1 when x changes 
by 2. But slopes are important in calculus and this is linear algebra! 

y 

1 

Figure 4.1: Row picture: The point (3, 1) where the two lines meet is the solution. 
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The second line in this "row picture" comes from the second equation 2x + y = 7. You 
can't miss the intersection point where the two lines meet. The point x = 3, y = 1 lies on 

both lines. It solves both equations at once. This is the solution to our two equations. 

ROWS The row picture shows two lines meeting at a single point (the solution). 

Turn now to the column picture. I want to recognize the same linear system as a 
"vector equation." Instead of numbers we need to see vectors. If you separate the original 
system into its columns instead of its rows, you get a vector equation : 

Combination equals b (2) 

This has two column vectors on the left side. The problem is to .find the combination of 

those vectors that equals the vector on the right. We are multiplying the first column by 
x and the second column by y, and adding vectors. With the right choices x = 3 and 
y = 1 (the same numbers as before), this produces 3(column 1) + l(column 2) = b. 

COLUMNS The column picture combines the column vectors on the left side 

of the equations to produce the vector b on the right side. 

6 6 I 

I 

I 

4 I/ 
I b 

I 

column 2 2
I 

2 

[�] [:J+[-n [-n [-n 
-2 -1 0 1 2 3 -2 -1 0 1 2 3 

Figure 4.2: Column picture: A combination 3 (column 1) + 1 (column 2) gives the vector b. 

Figure 4.2 is the "column picture" of two equations in two unknowns. The left side 
shows the two separate columns, and column 1 is multiplied by 3. This multiplication by a 
scalar (a number) is one of the two basic operations in linear algebra: 

Scalar multiplication 
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If the components of a vector v are v1 and v2, then cv has components cv1 and cv2. 

The other basic operation is vector addition. We add the first components and the second 
components separately. 3 - 2 and 6 + 1 give the vector sum (1, 7) as desired: 

Vector addition 

The right side of Figure 4.2 shows this addition. The sum along the diagonal is the vector 
b = ( 1, 7) on the right side of the linear equations. 

To repeat : The left side of the vector equation is a linear combination of the columns. 
The problem is to find the right coefficients x = 3 and y = 1. We are combining scalar mul­
tiplication and vector addition into one step. That combination step is crucially important, 
because it contains both of the basic operations on vectors : multiply and add. 

Linear combination 

of the 2 columns 

Of course the solution x = 3, y = 1 is the same as in the row picture. I don't know 
which picture you prefer ! Two intersecting lines are more familiar at first. You may like 
the row picture better, but only for a day. My own preference is to combine column vectors. 
It is a lot easier to see a combination of four vectors in four-dimensional space, than to 
visualize how four "planes" might possibly meet at a point. (Even one three-dimensional 
plane in four-dimensional space is hard enough. . . )

The coefficient matrix on the left side of equation (I) is the 2 by 2 matrix A : 

Coefficient matrix 
[ 1 -2 ] 

A
= 2 1 

. 

This is very typical of linear algebra, to look at a matrix by rows and also by columns. 
Its rows give the row picture and its columns give the column picture. Same numbers, 
different pictures, same equations. We write those equations as a matrix problem Av = b: 

Matrix muJtiplies vector 

The row picture deals with the two rows of A. The column picture combines the columns. 
The numbers x = 3 and y = 1 go into the solution vector v. Here is matrix-vector multipli­
cation, matrix A times vector v. Please look at this multiplication Av! 

Dot products with rows 

Combination of columns 
Av= b 1s (3)
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Linear Combinations of Vectors 

Before I go to three dimensions, let me show you the most important operation on vectors. 
We can see a vector like v = (3, 1) as a pair of numbers, or as a point in the plane, or 
as an arrow that starts from (0, 0). The arrow ends at the point (3, 1) in Figure 4.3. 

1 

V = [ �] 

column vector 

• 

1 2 3 

point (3, 1) 

(0, 0) 

arrow to (3, 1) 

Figure 4.3: The vector v is given by two numbers or a point or an arrow from (0, 0). 

A first step is to multiply that vector by any number c. If c = 2 then the vector is doubled 
to 2v. If c = -1 then it changes direction to -v. Always the "scalar" c multiplies each 
separate component (here 3 and 1) of the vector v. The arrow doubles the length to show 2v 
and it reverses direction to show -v : 

2v = [ � ] - V = [ =� ] 
-v

column vectors arrows to (6, 2) and (-3, -1) 

Figure 4.4: Multiply the vector v = (3, 1) by scalars c = 2 and -1 to get cv = (3c, c). 

If we have another vector w = ( -1, 1), we can add it to v. Vector addition v + w

can use numbers (the normal way) or it can use the arrows (to visualize v + w). The 
arrows in Figure 4.5 go head to tail : At the end of v, place the start of w. 

� 
W V 

-1 2 3 

Figure 4.5: The sum of v = (3, 1) and w = (-1, 1) is v + w = (2, 2). This is also w + v.

Allow me to say, adding v + w and multiplying cv will soon be second nature. In 
themselves they are not impressive. What really counts is when you do both at once. 
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Multiply cv and also dw, then add to get the linear combination cv + dw. 

Linear combination 2v + 3w 

______________ .... _-_-_-_-_-_-_-_-_-_"'."_--::==· ====== ..... 

This is the basic operation of linear algebra ! If you have two 5-dimensional vectors like 
v = (l, 1, 1, 1, 2) and w = (3, 0, 0, 1, 0), you can multiply v by 2 and w by 1. You 
can combine to get 2v + w = (5, 2, 2, 3, 4). Every combination cv + dw is a vector in 
the big 5-dimensional space R5

. 

I admit that there is no picture to show these vectors in R5
. Somehow I imagine arrows 

going to v and w. If you think of all the vectors cv, they form a line in R5
. The line 

goes in both directions from (0, 0, 0, 0, 0) because c can be positive or negative or zero. 

Similarly there is a line of all vectors dw. The hard but all-important part is to imagine 
all the combinations cv + dw. Add all vectors on one line to all vectors on the other line, 
and what do you get? It is a "2-dimensional plane" inside the big 5-dimensional space. 
I don't lose sleep trying to visualize that plane. (There is no problem in working with the 
five numbers.) For linear combinations in high dimensions, algebra wins. 

Dot Product of v and w 

The other important operation on vectors is a kind of multiplication. This is not ordinary 
multiplication and we don't write vw. The output from v and w will be one number and it 
is called the dot product v · w.

DEFINITION The dot product of v = ( v1, v2) and w = ( w1, w2) is the number v · w :

The dot product of v = (3, 1) and w = (-1, 1) is v · w = (3)(-1) + (1)(1) = -2.

Example 1 The column vectors (1, 2) and (-2, 1) have a zero dot product: 

Dot product is zero 

Perpendicular vectors 
[ ; ] · [ -� ] = -2 + 2 = 0.

In mathematics, zero is always a special number. For dot products, it means that these two 

vectors are perpendicular. The angle between them is 90° . 

The clearest example of two perpendicular vectors is i = (1, 0) along the x axis and 
j = (0, 1) up they axis. Again the dot product is i · j = 0 + 0 = 0. Those vectors i and j
form a right angle. They are the columns of the 2 by 2 identity matrix I.

The dot product of v = (3, 1) and w = (l, 2) is 5. Soon v · w will reveal the angle 
between v and w (not 90°). Please check that w ·vis also 5. 
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Multiplying a Matrix A and a Vector v

Linear equations have the form Av = b. The right side bis a column vector. On the left side,
the coefficient matrix A multiplies the unknown column vector v (we don't use a "dot" for
Av). The all-important fact is that Av is computed by dot products in the

row picture, and Av is a combination of the columns in the column picture. 
I put those words "combination of the columns" in boldface, because this is an essential

idea that is sometimes missed. One definition is usually enough in linear algebra, but Av has
two definitions-the rows and the columns produce the same output vector Av. 

The rules stay the same if A has n columns a1, ... , an . Then v has n components.
The vector Av is still a combination of the columns, Av = v1a1 + v2 a2 + · · · + vn an . 

The numbers in v multiply the columns in A. Let me start with n = 2. 

By rows Av= [ (row 1) · v ](row 2) · v 
By columns Av= v1(column 1) +v2(column 2).

Example 2 In equation (3) I wrote "dot products with rows" and "combination of
columns." Now you know what those mean. They are the two ways to look at Av: 

Dot products with rows 
Combination of columns (5) 

You might naturally ask, which way to find Av? My own answer is this: I compute by
rows and I visualize (and understand) by columns. Combinations of columns are truly funda­
mental. But to calculate the answer Av, I have to find one component at a time.
Those components of Av are the dot products with the rows of A. 

Singular Matrices and Parallel Lines 

The row picture and column picture can fail-and they will fail together. For a 2 by 2 matrix,
the row picture fails when the lines from row 1 and row 2 are parallel. The lines don't meet
and Av = b has no solution: 

A=[� 2v1 - 3v2 = 6
4v1 - 6v2 = 0

Parallel lines 
no solution 

The row picture shows the problem and so does the algebra: 2 times equation 1 produces
4v1 - 6v2 = 12. But equation 2 requires 4v1 - 6v2 = 0. Notice that this line goes
through the center point (0, 0) because the right side is zero. 
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How does the column picture fail ? Columns l and 2 point in the same direction.When the rows are "dependent", the columns are also dependent. All combinations of the columns (2, 4) and (3, 6) lie in the same direction. Since the right side b = (6, 0) is not on that line, bis not a combination of those two column vectors of A. Figure 4.6 (a)shows that there is no solution to the equation.
6 [!] 6 

5 5 

[�] 
line of columns 

4 4 

3 3 

b not on line bis on line
2 

[�] b= 

2 

b = [ 1�]
1 2 3 4 5 6 1 2 3 4 5 

Figure 4.6: Column pictures (a) No solution (b) Infinity of solutions

Example 3 Same matrix A, now b = (6, 12), infinitely many solutions to Av = b

2v1 - 3v2 = 6 4v1 - 6v2 = 12 

6 

In the row picture, the two lines are the same. All points on that line solve both equations.Two times equation 1 gives equation 2. Those close lines are one line. In the column picture above, the right side b = (6, 12) falls right onto the line of the columns. Later we will say: b is in the column space of A. There are infinitely many waysto produce (6, 12) as a combination of the columns. They come from infinitely many ways to produce b = (0, 0) (choose any c). Add one way to produce b = (6, 12) = 3(2, 4).
[ � ] = 3c [ � ] + 2c [ =! ] [ 1� ] = 3 [ � ] + 0 [ =! ] . (6) 

The vector Vn = (3c, 2c) is a null solution and vp = (3, 0) is a particular solution.
Avn equals zero and Avp equals b. Then A( Vp + vn) = b. Together, Vp and Vn give the
complete solution, all the ways to produce b = (6, 12) from the columns of A:

Complete solution to Av= b Vcomplete = Vp + Vn = [ � ] + [ �: ] . (7)
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Equations and Pictures in Three Dimensions 

In three dimensions, a linear equation like x + y + 2z = 6 produces a plane. The plane would 
go through (0, 0, 0) if the right side were 0. In this case the "6" moves us to a 
parallel plane that misses the center point (0, 0, 0). 

A second linear equation will produce another plane. Normally the two planes meet in 
a line. Then a third plane (from a third equation) normally cuts through that line at a point. 

That point will lie on all three planes, so it solves all three equations. 

This is the row picture, three planes in three-dimensional space. They meet at the 
solution. One big problem is that this row picture is hard to draw. Three planes are too 
many to see clearly how they meet (maybe Picasso could do it). 

The column picture of Av = bis easier. It starts with three column vectors in three­
dimensional space. We want to combine those columns of A to produce the vector 
v1 ( column 1) + v2 ( column 2) + v3 ( column 3) = b. Normally there is one way to do 
it. That gives the solution ( v1, v2, v3) - which is also the meeting point in the row picture. 

I want to give an example of success (one solution) and an example of failure (no solu­
tion). Both examples are simple, but they really go deeply into linear algebra. 

Example 4 Invertible matrix A, one solution v for any right side b. 

Av=b is [ -i
0 
1 

-1
(8) 

This matrix is lower triangular. It has zeros above the main diagonal. Lower triangular 
systems are quickly solved by forward substitution, top to bottom. The top equation gives 
v1, then move down. First v1 = 1. Then -v1 + v2 = 3 gives v2 = 4. Then -v2 + V3 = 5 
gives V3 = 9. 

Figure 4.7 shows the three columns a1, a2, a3. When you combine them with 1, 4, 9 
you produce b = (1, 3, 5). In reverse, v = (1, 4, 9) must be the solution to Av = b. 

3 

a3 = rn 
2 

a1 = hl a2 = [ _: l 1 1 

Figure 4. 7: Independent columns a1, a2, a3 not in a plane. Dependent columns c1, c2, C3 

are three vectors all in the same plane. 
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Example 5 Singular matrix: no solution to Cv

(depending on b).

205 

b or infinitely many solutions 

This matrix C is a "circulant." The diagonals are constants, all 1 's or all O's or all -1 's. The 
diagonals circle around so each diagonal has three equal entries. Circulant matrices will be 
perfect for the Fast Fourier Transform (FFT) in Chapter 8. 

To see if Cw = b has a solution, add those three equations to get 0 = b1 + b2 + b3. 

Left side ( W1 - W3 ) + ( -w1 + W2 ) + ( -w2 + W3 ) = 0. (10) 

Cw = b cannot have a solution unless 0 = b1 + b2 + b3. The components of b = (1, 3, 5) 
do not add to zero, so Cw = (1, 3, 5) has no solution. 

Figure 4.7 shows the problem. The three columns of C lie in a plane. All combina­

tions Cw of those columns will lie in that same plane. If the right side vector b is not 
in the plane, then Cw = b cannot be solved. The vector b = (1, 3, 5) is off the plane, 
because the equation of the plane requires b1 + b2 + b3 = 0. 

Of course Cw = (0, 0, 0) always has the zero solution w = (0, 0, 0). But when the 
columns of C are in a plane (as here), there are additional nonzero solutions to Cw = 0. 
Those three equations are w1 = W3 and w1 = w2 and w2 = W3. The null solutions

are Wn = (c, c, c). When all three components are equal, we have Cwn = 0. 
The vector b = (1, 2, -3) is also in the plane of the columns, because it does have 

b1 + b2 + b3 = 0. In this good case there must be a particular solution to Cw
p 

= b.

There are many particular solutions W
p

, since any solution can be a particular solution. 
I will choose the particular W

p 
= (1, 3, 0) that ends in w3 = 0: 

1 
-1

0

0 
1 

-1

The complete solution is 

wcomplete = W
p + any Wn 

Summary These two matrices A and C, with third columns a3 and c3, allow me to 
mention two key words of linear algebra: independence and dependence. This book will 
develop those ideas much further. I am happy if you see them early in the two examples : 

a1, a2, a3 are independent 

c1, c2, c3 are dependent 

A is invertible 

C is singular 

Av= b has one solution v 

Cw= 0 has many solutions Wn 

Eventually we will have n column vectors in n-dimensional space. The matrix will be 
n by n. The key question is whether Av = 0 has only the zero solution. Then the columns 
don't lie in any "hyperplane." When columns are independent, the matrix is invertible. 
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Problem Set 4.1 

Problems 1-8 are about the row and column pictures of Av = b. 

1 With A = I (the identity matrix) draw the planes in the row picture. Three sides of a
box meet at the solution v = (x, y, z) = (2, 3, 4): 

Ix+ Oy +Oz= 2 
Ox+ ly +Oz= 3 
Ox+ Oy + lz = 4

or 

Draw the four vectors in the column picture. Two times column 1 plus three times 
column 2 plus four times column 3 equals the right side b. 

2 If the equations in Problem 1 are multiplied by 2, 3, 4 they become DV = B:

Why is the row picture the same? Is the solution V the same as v? What is changed 
in the column picture-the columns or the right combination to give B?

3 If equation 1 is added to equation 2, which of these are changed: the planes in the row 
picture, the vectors in the column picture, the coefficient matrix, the solution? The 
new equations in Problem 1 would be x = 2, x + y = 5, z = 4.

4 Find a point with z = 2 on the intersection line of the planes x + y + 3z = 6 and 
x - y + z = 4. Find the point with z = 0. Find a third point halfway between.

5 The first of these equations plus the second equals the third: 

x+ y+ z=2 
X + 2y + Z = 3

2x + 3y + 2z = 5.

The first two planes meet along a line. The third plane contains that line, because 
if x, y, z satisfy the first two equations then they also __ . The equations have 
infinitely many solutions (the whole line L). Find three solutions on L. 

6 Move the third plane in Problem 5 to a parallel plane 2x + 3y + 2z = 9. Now the three
equations have no solution-why not? The first two planes meet along the line L, but 
the third plane doesn't __ that line. 

7 In Problem 5 the columns are (1, 1, 2) and (1, 2, 3) and (1, 1, 2). This is a "singular 
case" because the third column is . Find two combinations of the columns that 
give b = (2, 3, 5). This is only possible for b = ( 4, 6, c) if c = __ .
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8 Normally 4 "planes" in 4-dimensional space meet at a 
vectors in 4-dimensional space can combine to produce 
of (1, 0, 0, 0), (1, 1, 0, 0), (1, 1, 1, 0), (1, 1, 1, 1) produces 

Normally 4 
b. What combination
b = (3, 3, 3, 2)? 

Problems 9-14 are about multiplying matrices and vectors. 

9 

10 

11 

12 

Compute each Ax by dot products of the rows with the column vector: 

(a) [ -� � i ] [ � ]
-4 1 2 3 

(b)

[ � 

1 0 

nlll 
2 1 
1 2 
0 1 

Compute each Ax in Problem 9 as a combination of the columns: 

How many separate multiplications for Ax, when the matrix is "3 by 3"? 

Find the two components of Ax by rows or by columns: 

[; n [�J and [� 1�] [ _i] and [; 
2 

i] m. 0 

Multiply A times x to find three components of Ax:

[� 
0 

�l m [� 
1

rn -:i rn �l [:].1 and 2 and 
0 3 

13 (a) A matrix with m rows and n columns multiplies a vector with __ compo-
nents to produce a vector with __ components.

(b) The planes from the m equations Ax = b are in __ -dimensional space. The 
combination of the columns of A is in __ -dimensional space. 

14 Write 2x + 3y + z + 5t = 8 as a matrix A (how many rows?) multiplying the column 
vector x = (x, y, z, t) to produce b. The solutions x fill a plane or "hyperplane" 
in 4-dimensional space. The plane is 3-dimensional with no 4D volume.

Problems 15-22 ask for matrices that act in special ways on vectors. 

15 (a) What is the 2 by 2 identity matrix? I times [;] equals [;].

(b) What is the 2 by 2 exchange matrix? P times [;] equals [ t] .
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16 (a) What2by2matrixRrotates every vector by90° ? Rtimes [;]is[_�]­

(b) What 2 by 2 matrix R2 rotates every vector by 180° ?

17 Find the matrix P that multiplies (x, y, z) to give (y, z, x). Find the matrix Q that 
multiplies (y, z, x) to bring back (x, y, z). 

18 What 2 by 2 matrix E subtracts the first component from the second component ? 
What 3 by 3 matrix does the same ? 

and 

19 What 3 by 3 matrix E multiplies (x, y, z) to give (x, y, z + x) ? What matrix E- 1 

multiplies (x, y, z) to give (x, y, z - x) ? If you multiply (3, 4, 5) by E and then 
multiply by E- 1

, the two results are ( __ ) and ( __ ). 

20 What 2 by 2 matrix Pi projects the vector (x, y) onto the x axis to produce (x, 0) ? 
What matrix A projects onto the y axis to produce (0, y) ? If you multiply (5, 7) 
by Pi and then multiply by P2, you get ( _ _  ) and ( __ ). 

21 What 2 by 2 matrix R rotates every vector through 45° ? The vector (1, 0) goes 
to ( v2/2, v2/2). The vector (0, 1) goes to (-v2/2, v2/2). Those determine the 
matrix. Draw these particular vectors in the xy plane and find R.

22 Write the dot product of (1, 4, 5) and (x, y, z) as a matrix multiplication Av. The 
matrix A has one row. The solutions to Av = 0 lie on a __ perpendicular to the 
vector __ . The columns of A are only in _ _  -dimensional space. 

23 In MATLAB notation , write the commands that define this matrix A and the column 
vectors v and b. What command would test whether or not Av = b?

b = [ � ] 
24 If you multiply the 4 by 4 all-ones matrix A= ones(4) and the column v = ones(4,1), 

what is Aw ? (Computer not needed.) If you multiply B = eye(4) + ones(4) times 
w = zeros(4, 1) + 2*ones(4, 1 ), what is B*w ? 

Questions 25-27 review the row and column pictures in 2, 3, and 4 dimensions. 

25 Draw the row and column pictures for the equations x -2y = 0, x + y = 6. 

26 For two linear equations in three unknowns x, y, z, the row picture will show (2 or 3) 
(lines or planes) in (2 or 3)-dimensional space. The column picture is in (2 or 3)­
dimensional space. The solutions normally lie on a _ _  . 

27 For four linear equations in two unknowns x and y, the row picture shows four __ . 
The column picture is in __ -dimensional space. The equations have no solution 
unless the vector on the right side is a combination of __ . 
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Challenge Problems 

28 Invent a 3 by 3 magic matrix M3 with entries 1, 2, ... , 9. All rows and columns
and diagonals add to 15. The first row could be 8, 3, 4. What is M3 times (1, 1, 1) ?
What is M4 times (1, 1, 1, 1) if a 4 by 4 magic matrix has entries 1, ... , 16? 

29 Suppose u and v are the first two columns of a 3 by 3 matrix A. Which third columns
w would make this matrix singular? Describe a typical column picture of Av = bin
that singular case, and a typical row picture (for a random b). 

30 Multiplying by A is a "linear transformation". Those important words mean:

If w is a combination of u and v, then Aw is the same combination of Au and Av.

It is this "linearity" Aw = cAu + dAv that gives us the name linear algebra.

If u = [ � ] and v = [ � ] then Au and Av are the columns of A.

Combine w = cu+ dv. If w = [ � ] how is Aw connected to Au and Av?

31 A 9 by 9 Sudoku matrix S has the numbers 1, ... , 9 in every row and column, and
in every 3 by 3 block. For the all-ones vector v = (1, ... , 1), what is Sv? 

A better question is: Which row exchanges will produce another Sudoku matrix ?
Also, which exchanges of block rows give another Sudoku matrix ? 
Section 4.5 will look at all possible permutations (reorderings) of the rows. I see
6 orders for the first 3 rows, all giving Sudoku matrices. Also 6 permutations of the
next 3 rows, and of the last 3 rows. And 6 block permutations of the block rows ?

32 Suppose the second row of A is some number c times the first row :

A=[a b] 
ca cb 

Then if a =I- 0, the second column of A is what number d times the first column?
A square matrix with dependent rows will also have dependent columns. This is
a crucial fact coming soon. 
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4.2 Solving Linear Equations by Elimination 

This section explains a systematic way to solve linear equations-the best way we know. 
The method is called "elimination", and you can see it in this 2 by 2 example. Before 
elimination, x and y appear in both equations. After elimination, the first unknown x has 
disappeared from the second equation 5y = 5. 

x - 2y = 1 ( multiply equation 1 by 2 ) 

2x + y = 7 ( subtract to eliminate 2x ) 

After �=l
elimination 

�= 5 

The new equation 5y = 5 instantly gives y = 1. Substituting y = 1 back into the first 
equation leaves x - 2 = 1. Therefore x = 3 and the solution (x, y) = (3, 1) is complete. 

Elimination produces an upper triangular system-this is the goal. The nonzero co­
efficients 1, -2, 5 form a triangle. That system is solved from the bottom upwards, first 
y = 1 and then x = 3. This quick process is called back substitution. It is used for upper 
triangular systems of any size, after elimination produces a triangle. 

Important point : The original equations have the same solution x = 3 and y = 1. Before 
and after elimination, the lines meet at the same point (3, 1). Every step worked with both 
sides of correct equations. 

The step that eliminated x from equation 2 is the fundamental operation in this chapter. 
We use it so often that we look at it closely: 

To eliminate 2x: Subtract a multiple of equation lfrom equation 2.

Two times x - 2y = 1 gives 2x - 4y = 2. When this is subtracted from 2x + y = 7, 
the right side becomes 7 - 2 = 5. The main point is that 2x cancels 2x. The system 
becomes triangular. 

Ask yourself how that multiplier C = 2 was found. The first equation contains lx. So the 

first pivot was 1 (the coefficient of x). The second equation contains 2x, so the multiplier 
was 2. Then subtraction 2x - 2x produced the zero and the triangle.

You will see the multiplier rule if I change the first equation to 3x - 6y = 3. 
(Same straight line but the first pivot becomes 3.) The correct multiplier is now C = l 
To find that multiplier, divide the coefficient "2" to be eliminated by the pivot "3" : 

3x - 6y = 3 
2x +y = 7 

Multiply equation 1 by i 
Subtract from equation 2 

3x - 6y = 3 
5y = 5. 

The final system is triangular and the last equation still gives y = 1. Back substitution 
produces 3x - 6 = 3 and 3x = 9 and x = 3. We changed the numbers but not the lines 
or the solution. Divide by the pivot to find that multiplier R, = i : 

Pivot 

Multiplier 

first nonzero in the row that does the elimination 

(entry to eliminate) divided by (pivot) 
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The new second equation starts with the second pivot, which is 5. We would use it to 
eliminate y from the third equation if there were one. To solve n equations we want n 

pivots. The pivots are on the diagonal of the triangle after elimination. 

You could have solved those equations for x and y without reading this book. It is an 
extremely humble problem, but we stay with it a little longer. Even for a 2 by 2 system, 
elimination might break down. By understanding the possible breakdown (when we can't 
find a full set of pivots), you will understand the whole process of elimination. 

Breakdown of Elimination 

Normally, elimination produces the pivots that take us to the solution. But failure is possible. 
At some point, the method might ask us to divide by zero. We can't do it. The process has to 
stop. There might be a way to adjust and continue---or failure may be unavoidable. 

Example 1 fails with no solution to Oy = 5. Example 2 fails with too many solutions to 
Oy = 0. Example 3 succeeds by exchanging the equations. 

Example 1 Permanent failure with no solution. Elimination makes this clear: 

X - 2y = 1

2x - 4y = 7 

Subtract 2 times 

eqn. 1 from eqn. 2 

X - 2y = 1

Oy = 5.

There is no solution to Oy = 5. This system has no second pivot. (Zero is never allowed as a 

pivot!) If there is no solution, elimination discovers that fact by reaching an 
impossible equation like Oy = 5. 

The row picture of failure shows parallel lines-which never meet. The column picture 
shows the two columns (1, 2) and (-2, -4) in the same direction. All combinations of the 

columns lie along a line. But the column from the right side is in a different direction (1, 7). 
No combination of the columns can produce this right side-therefore no solution. 

When we change the right side from (1, 7) to (1, 2), failure shows as a whole line of 
solution points. Instead of no solution, Example 2 changes to infinitely many solutions. 

Example 2 Failure with in.finitely many solutions. Change b = (l, 7) to (l, 2). 

X - 2y = 1

2x - 4y = 2 

Subtract 2 times 

eqn. 1 from eqn. 2 

X - 2y = 1

Oy = 0

Too few pivots 

Too many solutions 

Every y satisfies Oy = 0. There is really only one equation x - 2y = 1. The unknown y is 
''free". After y is freely chosen, x is determined as x = l + 2y. I prefer to see a particular 

solution Vp = (1, 0) and a line of null solutions Vn = c (2, 1) in v = Vp + Vn. 

Complete solution [xyl [
o
l] + c [2

1
] -- particular Vp + null Vn. (1) 

In the row picture, the parallel lines have become the same line. Every point ( x, y) on that 
line satisfies both equations. 
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In the column picture, b = (1, 2) is now the same as column 1. So we can choose x = 1 
and y = 0. We can also choose x = 0 and y = -½; column 2 times-½ equals b. Every 
(x, y) that solves the row problem also solves the column problem. 

Failure For n equations we do not get n pivots. The rows combine into a zero row. 

Success We do get n pivots. But we may have to exchange the n equations.

Elimination can go wrong in a third way-but this time it can be fixed. Suppose the first 
pivot position contains zero. We refuse to allow zero as a pivot. When the first equation has 
no term involving x, we can exchange it with an equation below : 

Example 3 Temporary failure (zero in pivot). A row exchange produces two pivots :

Ox+ 2y = 4 

3x - 2y = 5 
Exchange the 
two equations 

The new system is already triangular. This small example is ready for back substitution. The 
last equation gives y = 2, and then the first equation gives x = 3. The row picture is normal 
(two intersecting lines). The column picture is also normal (column vectors not in the same 
direction). The pivots 3 and 2 are normal-but a row exchange was required. 

Examples 1 and 2 are singular-there is no second pivot. Example 3 is nonsingular­

there is a full set of pivots and exactly one solution. Singular equations have no solution or 
infinitely many solutions. Pivots must be nonzero because we have to divide by them. 

Three Equations in Three Unknowns 

To understand Gaussian elimination, you have to go beyond 2 by 2 systems. Three by three 
is enough to see the pattern. For now the matrices are square-an equal number of rows 
and columns. Here is a 3 by 3 system, specially constructed so that all steps lead to whole 
numbers and not fractions : 

2x+ 4y- 2z = 2 
4x + 9y - 3z = 8 

-2x - 3y + 7 z = 10
(2) 

What are the steps? The first pivot is the boldface 2 (upper left). Below that pivot we want 
to eliminate the 4. The first multiplier is the ratio 4/2 = 2. Multiply the pivot equation by 
.€21 = 2 and subtract. Subtraction removes the 4x from the second equation: 

Step 1 Subtract 2 times equation 1 from equation 2. This leaves y + z = 4. 

We also eliminate -2x from equation 3, still using the first pivot. The quick way is to add 
equation 1 to equation 3. Then 2x cancels -2x. We do exactly that, but the rule in this book 
is to subtract rather than add. The systematic pattern has multiplier £31 = -2 /2 = -1. 
Subtracting -1 times an equation is the same as adding : 

Step 2 Subtract -1 times equation 1 from equation 3. This leaves y + 5z = 12. 
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The two new equations involve only y and z. The second pivot (in boldface) is 1: 

xis eliminated 
ly + lz = 4 

ly + 5z = 12 

We have reached a 2 by 2 system. The final step eliminates y to make it 1 by 1 : 

Step3 Subtract equation 2new from 3new- The multiplier is 1/1 = 1. Then 4z = 8. 

The original Av = b has been converted into an upper triangular U v = c :

2x + 4y - 2z = 2 

4x + 9y- 3z = 8 

-2x - 3y + 7 z = 10 

Av =b 
has become 

Uv=c 

2x + 4y- 2z = 2 

ly + lz = 4 

4z = 8. 

(3) 

The goal is achieved-forward elimination is complete from A to U. The pivots are

2, 1, 4 on the diagonal of U. The pivots 1 and 4 were hidden in the original system.
Elimination brought them out. U v = c is ready for back substitution, which is quick:

(4z = 8 gives z = 2) (y + z = 4 gives y = 2) (equation 1 gives x = -1)

The solution is ( x, y, z) = ( -1, 2, 2). The row picture has three planes from the three 
equations. All the planes go through this solution. This picture is not easy to draw (it is 
totally impossible for larger systems). 

The column picture shows a combination Av of column vectors producing the right side
b. The coefficients in that combination are -1, 2, 2 (the solution):

The numbers x, y, z multiply columns 1, 2, 3 in Av= band also in the triangular Uv = c.

For a 4 by 4 problem, or an n by n problem, elimination proceeds the same way. 
Here is the whole idea, column by column from A to U, when elimination succeeds.

Column 1. Use the first equation to create zeros below the first pivot. 

Column 2. Use the new equation 2 to create zeros below the second pivot. 

Columns 3 to n. Keep going to find all n pivots and the triangular U. 

After column 2 we have r �� �: 
x

x
x

x 
x

:

x 
l We want U = r

x 

: x: 
x

:

x

l 
(5) 

The result of forward elimination is an upper triangular system. The matrix will be 
nonsingular (= invertible) if and only if there is a full set of n pivots (never zero!). 
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Here is a final example to show the original Av = b, the triangular system U v = c, and 
the solution v = ( x, y, z) from back substitution: 

x+ y+ z=6 x+y+z=6 

x + 2y + 2z = 9 Forward y + z = 3 

x + 2y + 3z = 10 Forward z = 1 

Back 

Back 

All multipliers are 1. All pivots are 1. All planes meet at the solution v 
The columns of A combine with coefficients 3, 2, 1 to give b = (6, 9, 10): 

(3, 2, 1). 

The numbers 6, 9, 10 are dot products. The first number 6 is the dot product of the 
first row (1, 1, 1) with v = (3, 2, 1). 

Question What coefficient of z in equation 3 would make the system singular? 
Answer The third pivot would drop from 1 to O if the original 3z dropped to 2z. Then the 
planes in the row picture have no point in common. 

There is no solution to the new Av = b. The three columns in the column picture 
would lie in the same plane, and b = (6, 9, 10) is not in that plane. So b will not be a 
combination of the columns, if the third column becomes (1, 2, 2). In this example 
column 3 becomes the same as column 2-useless, we need "independent" columns ! 

Question What coefficient of y in equation 2 would become O in the first elimination step? 
Would the system become singular or not? 

Answer Change equation 2 to x + y + 2z = 7 (for example). The coefficient of y 
is now 1. Subtracting equation 1 leaves Oy + z = 3. Now we can exchange equations 
2 and 3. This system is nonsingular. No problem except equations in the wrong order. 

• REVIEW OF THE KEY IDEAS •

1. A linear system Av= b becomes upper triangular (Uv = c) by elimination.

2. We subtract R,ij times equation j from equation i, to make the ( i, j) entry zero.

. . . entry to eliminate in row i . 
3. The mult1pher 1s Rij = pivot in row j . Pivots can not be zero ! 

4. A zero in the pivot position can be exchanged if there is a nonzero below it.

5. Back substitution solves the upper triangular system (bottom to top).

6. When breakdown is permanent, the system has no solution or infinitely many.
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Problem Set 4.2 

Problems 1-10 are about elimination on 2 by 2 systems. 

1 What multiple £21 of equation 1 should be subtracted from equation 2? 

2x + 3y = 1 

lOx + 9y = 11. 

215 

After this step, solve the triangular system by back substitution, y before x. Verify that 
x times (2, 10) plus y times (3, 9) equals (1, 11 ). If the right side changes to ( 4, 44), 
what is the new solution ? 

2 If you find solutions v and w to Av = b and Aw = c, what is the solution u to 
Au = b + c? What is the solution U to AU = 3b + 4c? (We saw superposi­
tion for linear differential equations, it works in the same way for all linear equations.) 

3 What multiple of equation 1 should be subtracted from equation 2 ? 

2x -4y = 6 

-x + 5y = 0.

After this elimination step, solve the triangular system. If the right side changes to 
(-6, 0), what is the new solution? 

4 What multiple e of equation 1 should be subtracted from equation 2 to remove ex? 

ax+by=f 

ex+ dy = g. 

The first pivot is a (assumed nonzero). Elimination produces what formula for the 
second pivot? The second pivot is missing when ad= be: that is the singular case. 

5 Choose a right side which gives no solution and another right side which gives 
infinitely many solutions. What are two of those solutions? 

Singular system 3x + 2y = 10 

6x +4y =

6 Choose a coefficient b that makes this system singular. Then choose a right side g that 
makes it solvable. Find two solutions in that singular case. 

2x +by= 16 

4x + 8y = g. 
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7 For which a does elimination break down (1) permanently or (2) temporarily? 

ax + 3y = -3 

4x + 6y = 6. 

Solve for x and y after fixing the temporary breakdown by a row exchange. 

8 For which three numbers k does elimination break down ? Which is fixed by a row 
exchange? In these three cases, is the number of solutions 0 or 1 or oo ? 

kx + 3y = 6 

3x + ky = -6. 

9 What test on bi and b2 decides whether these two equations allow a solution ? How 
many solutions will they have? Draw the column picture for b = (l, 2) and (1, 0). 

3x - 2y = bi 

6x - 4y = b2. 

10 In the xy plane, draw the lines x + y = 5 and x + 2y = 6 and the equation y = __

that comes from elimination. The line 5x - 4y = c will go through the solution of 
these equations if c = __ .

11 (Recommended) A system of linear equations can't have exactly two solutions. If 
(x, y) and (X, Y) are two solutions to Av= b, what is another solution?

Problems 12-20 study elimination on 3 by 3 systems (and possible failure). 

12 Reduce this system to upper triangular form by two row operations: 

Eliminate x ---+ 
Eliminate y ---+ 

2x+3y + z = 8 
4x+7y + 5z = 20 

-2y + 2z = 0.

Circle the pivots. Solve by back substitution for z, y, x. 

13 Apply elimination (circle the pivots) and back substitution to solve 

2x - 3y = 3 

4x - 5y + z = 7 

2x - y- 3z = 5. 

List the three row operations : Subtract __ times row __ from row __ . 

14 Which number d forces a row exchange? What is the triangular system (not singular) 
for that d? Which d makes this system singular (no third pivot)? 

2x + 5y + z = 0 

4x + dy + z = 2 

y- z = 3.
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15 Which number b leads later to a row exchange? Which b leads to a singular problem 
that row exchanges cannot fix? In that singular case find a nonzero solution x, y, z. 

x+by =0 

X - 2y - Z = 0

y + z = 0.

16 (a) Construct a 3 by 3 system that needs two row exchanges to reach a triangular
form.

(b) Construct a 3 by 3 system that needs a row exchange for pivot 2, but breaks down
for pivot 3.

17 If rows 1 and 2 are the same, how far can you get with elimination (allowing row 
exchange) ? If columns 1 and 2 are the same, which pivot is missing ? 

Equal 2x - y + z = 0 
rows 2x - y + z = 0 

4x+y+z=2 

2x + 2y + z = 0 Equal 

4x + 4y + z = 0 columns 

6x + 6y + z = 2. 

18 Construct a 3 by 3 example that has 9 different coefficients on the left side, but 
rows 2 and 3 become zero in elimination. How many solutions to your system with 
b = (1, 10, 100) and how many with b = (0, 0, 0)? 

19 Which number q makes this system singular and which right side t gives it infinitely 
many solutions ? Find the solution that has z = 1. 

X + 4y - 2z = 1 

X + 7y- 6z = 6 

3y + qz = t.

20 Three planes can fail to have an intersection point, even if no planes are parallel. 

The system is singular if row 3 is a combination of the first two rows. Find a third 
equation that can't be solved together with x + y + z = 0 and x - 2y - z = 1. 

21 Find the pivots and the solution for both systems (Av = band Sw = b): 

2x+ y

X + 2y + Z 

=0 

=0 

y + 2z + t = 0 

z + 2t = 5 

2x- y

-x + 2y- z

=0 

=0 

y + 2z - t = 0 

- z + 2t = 5.

22 If you extend Problem 21 following the 1, 2, 1 pattern or the -1, 2, -1 pattern, 
what is the fifth pivot ? What is the nth pivot? S is my favorite matrix. 

23 If elimination leads to x + y = 1 and 2y = 3, find three possible original problems. 
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24 For which two numbers a will elimination fail on A = [: �] ?

25 For which three numbers a will elimination fail to give three pivots ? 

A __
[a: 2

: 
3:] 

is singular for three values of a.

26 Look for a matrix that has row sums 4 and 8, and column sums 2 and s : 

. [a b] 
Matnx = 

c d 

a+b=4 

c+d=8 

a+c=2 

b+d=s 

The four equations are solvable only if s = . Then find two different matri­
ces that have the correct row and column sums. Extra credit: Write down the 4 by 4 
system Av = ( 4, 8, 2, s) with v = ( a, b, c, d) and make A triangular by elimination.

27 Elimination in the usual order gives what matrix U and what solution (x, y, z) to
this "lower triangular" system? We are really solving by forward substitution : 

3x = 3 
6x + 2y = 8 
9x - 2y + z = 9. 

28 Create a MATLAB command A(2, : ) = . . . for the new row 2, to subtract 3 times
row 1 from the existing row 2 if the matrix A is already known.

29 If the last comer entry of A is A(5, 5) 11 and the last pivot of A is
U(5, 5) = 4, what different entry A(5, 5) would have made A singular?

Challenge Problems 

30 Suppose elimination takes A to U without row exchanges. Then row i of U is a
combination of which rows of A? If Av= 0, is Uv = 0? If Av= b, is Uv = b? 

31 Start with 100 equations Av = 0 for 100 unknowns v = ( v1, ... , v100). Suppose
elimination reduces the 100th equation to 0 = 0, so the system is "singular". 

(a) Elimination takes linear combinations of the rows. So this singular system has
the singular property: Some linear combination of the 100 rows is __ .

(b) Singular systems Av = 0 have infinitely many solutions. This means that some
linear combination of the 100 columns is 

(c) Invent a 100 by 100 singular matrix with no zero entries.

(d) For your matrix, describe in words the row picture and the column picture of
Av = 0. Not necessary to draw 100-dimensional space.
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4.3 Matrix Multiplication 

We know how to multiply A times a column vector v. Now we want to multiply A times a 
matrix B (matrix-matrix multiplication). The rule is exactly what we would hope for: 

Multiply A times each column of B to get a column of AB 

The entry in row i ,  column j of AB is ( row i of A) · ( column j of B ) 

If B has only one column (call it v), this is the same matrix-vector multiplication as before. 
When B has n columns, so has AB. The rule for matrix sizes makes dot products possible. 

Rule The number of columns in A must match the number of rows in B.

Figure 4.8 shows a typical (rowi) · (columnj) in the matrix multiplication AB. 

* * b1j * * *

r 
* 

a;s 1 
[· 

* 

ai1 a,;2 
b2j 

(AB)ij* * 

* 
* 

* 
* 

A is 4 by 5 Bis 5 by 6 AB is 4 by 6 

* 

Figure 4.8: Here i = 2 and j = 3. Then (AB)23 is (row 2 of A)· (column 3 of B). 

·1

Let me say right away that normally AB is entirely different from BA. Those have 
different shapes unless A and B are square and the same size. But even the top left corner 
of BA has nothing to do with the top left corner of AB (and then BA -:j::. AB). 

Top left ( row 1 of B) · ( column 1 of A) -:j::. ( row 1 of A) · ( column 1 of B ). 

Example 1 Here A has two columns and B has two rows. We can multiply AB. 

[: !][� � !] [: ! ::!]· 
Column 3 of Bis (1, 1). Then column 3 of AB is A times (1, 1). 

Example 2 Here Bis the 3 by 3 identity matrix (very special, always written B = I). 

[: H][i H] [: H] 
B = Identity matrix I 

AI = A when sizes are right 

The first column of that answer is A times the first column (1, 0 ,  0) of B = I. This just 
reproduces the first column of A. Each column of A is unchanged in AI. 

Now put the identity matrix first, as in I B. Multiplication gives I B = B for every B 
(including B = A). We have here an unusual case, when the order AI gives the same answer 
as I A. If A is any square matrix and I has the same size, then AI = I A = A.
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Example 3 Another special matrix is the inverse of A. That matrix B is written A - 1 : 

A times A - I is I [: H][ 
2 -1

-1 2 
0 -1 -n [ � ! n

The dot product of a row of A with a column of A- 1 is 1 or 0. A- 1 times A is also I. 
To find that matrix A- 1, I had to look ahead to Section 4.4-this is a long calculation.

We avoid computing A - 1 wherever possible, and so does any good linear algebra code.

The key fact about matrix multiplication is that (AB) C = A (BC). (1) 

To multiply three matrices A, B, C you must keep them in order. But you can choose to 
multiply AB first or BC first. Parentheses can be moved, and parentheses can be removed. 

Example 4 Suppose A and C are 3 by 1 matrices ( those are column vectors ). Suppose B 
is 1 by 3 ( a row vector ). Compute and compare (AB)C and A(BC). 

Solution BC is (1 x 3) times (3 x 1) = 1 x 1. One number d from one dot product: 

(2) 

On the other hand, AB is (3 x 1) times (1 x 3) = 3 x 3. This AB is a full-size matrix! 

AB times C ( [:�i[b1 b2 b3]) [:�] = [:��� :��� :��:] [:�]- (3)
a3 C3 a3bi a3b2 a3b3 c3 

If you multiply that first row of AB times C, you will see a1 d. Multiplying the other rows 
by C gives a2d and a3d. (AB)Cin equation (3) equalsA(BC) in equation (2). 

The Laws for Matrix Operations 

May I put on record six laws that matrices do obey, while emphasizing an equation they 
don't obey? The matrices can be square or rectangular, and the laws involving A+ Bare all 
simple and all obeyed. Here are three addition laws: 

A+B 
C (A+ B) 
A+ (B+C) 

=B+A 
= cA+cB 
= (A+B) +C 

(commutative law) 
( distributive law) 
(associative law). 

Three more laws hold for multiplication, but AB = BA is not one of them: 

AB=/- BA 

A(B+C) =AB+AC 
(A+ B)C =AC+ BC 

A(BC) = (AB)C 

( the commutative "law" is usually broken) 

( distributive law from the left) 
( distributive law from the right) 

(associative law for ABC) (parentheses not needed). 
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When A and B are not square, AB is a different size from BA. These matrices can't be 
equal-even if both multiplications are allowed. For square matrices, almost any example 
shows that AB is different from BA: 

AB = [ � �] [ � �] = [ � �] but BA = [ � �] [ � �] = [ � �] . 

It is true that AI = I A. All square matrices commute with I and also with cl. Only these 
matrices cJ commute with all other matrices. 

The law A(B + C) = AB+ AC is proved a column at a time. Start with A(b + c) =
Ab+ Ac for the first column. That is the key to everything-linearity. Say no more. 

Powers of Matrices 

Look at the special case when A = B = C = square matrix. Then (A times A2 ) is equal 
to (A2 times A). The product in either order is A3 • The matrix powers AP follow the same 
rules as numbers : 

AP = AAA · · · A (p factors) 

Those are the ordinary laws for exponents. A3 times A4 is A7 (seven factors). A3 to 
the fourth power is A12 (twelve A's). When p and q are zero or negative these rules still 
hold, provided A has a "-1 power"-which is the inverse matrix A- 1

. Then A0 
= I is the 

identity matrix (no factors). 
For a number, a- 1 is 1/ a. For a matrix, the inverse is written A- 1

. (It is never I/ A. 
But backslash A \I is allowed in MATLAB.) Every number has an inverse except a = 0. 
To decide when A has an inverse is a central problem in linear algebra. This section is 
like a Bill of Rights for matrices, to say when A and B can be multiplied and how. 

Elimination Matrices 

We now combine two ideas-elimination and matrices. The goal is to express all the steps 
of elimination in the clearest possible way. You will see how to subtract a multiple fl,ij times 
row j from row i-using a matrix E. 

The column vector b is multiplied by the elimination matrix E : 

Subtract 2b1 from b2 (4) 

Whatever we do to one side of Av = b, we do to the other side. Elimination is multiplying 
both sides by E. On the left side, we see row operations. 

EA= [ -� 
� � ] [ ;�: ; ] = [ �:: � - 2 row 1 ] ·
0 1 row 3 row3 

(5)
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EA will be our matrix after the first elimination step. The multiplier 2 was chosen to 
produce O in the 2, 1 position (row 2, column 1). This matrix E should be named E21 
because it eliminates the original entry a21 to leave zero. 

The next step of elimination comes from a matrix E31 (producing zero in place of a31). 
Then E32 produces zero in row 3, column 2, using a multiplier £32 . Altogether, the three
steps from A to the upper triangular U come from three elimination matrices: 

Elimination by matrices A becomes E32E31E21A = U (upper triangular).

We do the same operations on the right side. E32 E31 E21 b becomes the new right side vector
c. Then back substitution solves U v = c.

Example 5 Choose the multiplier £21 = c/ a to produce zero in U21, using E = E21 :

EA= [ 1 0 ] [ a b ] = [ a b ] = U 
-c/a 1 c d O d-(c/a)b · 

Undo this elimination by adding c/ a times row 1 of U to row 2 of U:

Thus U = EA and A= E- 1 u. Often we write this as A= LU. 

(6) 

Four Ways to Multiply AB

I will end this section by writing down four different ways to compute AB. All four ways 
give the same answer. In the end we are doing the same calculations, but we are seeing those 
steps in different orders. 

1. (Rows of A) times (columns of B) (dot products)

2. A times (columns of B) (matrix-vector multiplications) 

3. (Rows of A) times B (vector-matrix multiplications ) 

4. (Columns of A) times (rows of B) (add up n column-times-row matrices)

Let me look at the 1, 1 entry in the top comer of AB. The usual way is a dot product: 

( rowlofA) · ( columnlofB) = (AB)n = anbn+a12b21+··· +a1nbn1 (7)

Orders 2 and 3 give that same dot product in AB. Here is order 4, columns times rows: 

[ 
an l 

(column 1 of A)(row 1 of B) = a
�1 [ bn . ] = . [ 

anbn 
(8) 

The next column-times-row matrix is ( column 2 of A )  ( row 2 of B ). That starts with 
a12b21 in the top left corner. We get a11 b11 when column j of A multiplies row j of B.
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Adding these simple matrices will produce the correct dot product (the sum of a1jbj1) in the
top left comer-and in every entry of AB. 

When A and Bare n by n matrices, so is AB. It contains n2 dot products. So it needs
n3 separate multiplications. For matrices of order n = 100 this is a million multiplications.
No problem, that may only take one second (on the computer). 

When A is an m by n matrix and B is n by p, the product AB is m by p. It contains
mp dot products. So it needs mnp separate multiplications. 

Matrices of order n = 10,000 need a trillion (1012) multiplications. Codes avoid mul­
tiplying full matrices whenever possible. And they watch especially for sparse matrices,

when many of the entries (almost all) are zero. The codes don't waste time multiplying by
zero. 

Problem Set 4.3 

Problems 1-16 are about the laws of matrix multiplication. 

1 A is 3 by 5, B is 5 by 3, C is 5 by 1, and Dis 3 by 1. All entries are 1. Which of these
matrix operations are allowed, and what are the results ? 

BA AB ABD DEA 

2 What rows or columns or matrices do you multiply to find

(a) the third column of AB?

(b) the first row of AB ?
(c) the entry in row 3, column 4 of AB?

( d) the entry in row 1, column 1 of CD E ?

3 Add AB to AC and compare with A(B + C):

A(B + C). 

A = [ � � ] and B = [ � � ] and C = [ i � ] . 
4 In Problem 3, multiply A times BC. Then multiply AB times C.

5 Compute A 2 and A 3. Make a prediction for A 5 and An :

A = [ � � ] and A = [ � � ] .

6 Show that (A+ B)2 is different from A2 
+ 2AB + B2, when

A = [ � � ] and B = [ ! � ] . 
Write down the correct rule for (A+ B)(A + B) = A2 

+ __ + B2. 
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7 True or false. Give a specific example when false : 

(a) If columns l and 3 of Bare the same, so are columns 1 and 3 of AB.
(b) If rows 1 and 3 of B are the same, so are rows 1 and 3 of AB.
(c) If rows 1 and 3 of A are the same, so are rows 1 and 3 of ABC.
(d) (AB)2 = A2 B2

• 

8 How is each row of DA and EA related to the rows of A, when

D = [ � � ] and E = [ � � ] and A = [ � : ] ?

How is each column of AD and AE related to the columns of A ?

9 Row 1 of A is added to row 2. This gives EA below. Then column 1 of EA is added
to column 2 to produce (EA)F. Notice E and Fin boldface. 

EA _ [ 1 0 ] [ a b ] _ [ a b ]
- 1 1 c d - a+c b+d 

(EA)F = (EA) [ � 
� ] [ 

a 
a+c 

a+b ]
a+c+b+d 

Do those steps in the opposite order, first multiply AF and then E(AF). Compare
with (EA)F. What law is obeyed by matrix multiplication? 

10 Row 1 of A is added to row 2 to produce EA. Then F adds row 2 of EA to row 1.
Now Fis on the left, for row operations. The result is F(EA): 

Do those steps in the opposite order: first add row 2 to row 1 by FA, then add row 1
of FA to row 2. What law is or is not obeyed by matrix multiplication ? 

11 (3 by 3 matrices) Choose the only B so that for every matrix A

(a) BA= 4A
(b) BA= 4B (tricky)
(c) BA has rows 1 and 3 of A reversed and row 2 unchanged
(d) All rows of BA are the same as row 1 of A.

12 Suppose AB= BA and AC= CA for these two particular matrices Band C:

A = [ � : ] commutes with B = [ � � ] and C = [ � � ] .

Prove that a = d and b = c = 0. Then A is a multiple of I. The only matrices that
commute with Band C and all other 2 by 2 matrices are A = multiple of I. 
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13 Which of the following matrices are guaranteed to equal (A - B) 2: A2 
- B2

, 

(B - A)2, A2 
- 2AB + B2

, A(A - B) - B(A - B), A2 
- AB - BA+ B2 ?

14 True or false : 

(a) If A 2 is defined then A is necessarily square.
(b) If AB and BA are defined then A and Bare square.
(c) If AB and BA are defined then AB and BA are square.
(d) If AB= B then A= I.

15 If A ism by n, how many separate multiplications are involved when 

(a) A multiplies a vector x with n components?
(b) A multiplies an n by p matrix B ?
( c) A multiplies itself to produce A 2 ? Here m = n and A is square.

16 For A= [; =;] and B = [ ½ g:], compute these answers and nothing more:

(a) column 2 of AB

(d) row2ofA3
. 

(b) row 2 of AB (c) row 2 of A2 

Problems 17-19 use aii for the entry in row i, column j of A.

17 Write down the 3 by 3 matrix A whose entries are 

(a) aij = minimum of i and j (c) % = i/j.

18 What words would you use to describe each of these classes of matrices ? Give a 
3 by 3 example in each class. Which matrix belongs to all four classes ? 

(a)%= Oifi c/-j

(d) aij =a1j· 

(b) % = 0 if i < j

19 The entries of A are aij· Assuming that zeros don't appear, what is 

(a) the first pivot?
(b) the multiplier £31 of row 1 to be subtracted from row 3?
( c) the new entry that replaces a32 after that subtraction ?
(d) the second pivot?

Problems 20-24 involve powers of A.

20 Compute A2
, A3

, A4 and also Av, A2v, A3v, A4v for 
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21 Find all the powers A2
, A3

, . . .  and AB, (AB)2, .. . for 

22 By trial and error find real nonzero 2 by 2 matrices such that 

A2 
= -I BC=O DE= -ED (not allowing DE= 0). 

23 (a) Find a nonzero matrix A for which A2 
= 0.

(b) Find a matrix that has A2 =I= 0 but A3 
= 0.

24 By experiment with n = 2 and n = 3 predict An for these matrices: 

Problems 25-31 use column-row multiplication and block multiplication. 

25 Multiply A times I using columns of A (3 by 3) times rows of I. 

26 Multiply AB using columns times rows : 

27 Show that the product of two upper triangular matrices is always upper triangular: 

AB 
= 

[ � : : l [ � : : l = 
[ � l ·O O x O O x  O O x 

Proof using dot products (Row-times-column) (Row 2 of A)· (column 1 of B) = 0. 
Which other dot products give zeros ? 

Proof using full matrices (Column-times-row) Draw x's and O's in (column 2 of A) 

times (row 2 of B). Also show (column 3 of A) times (row 3 of B). 

28 If A is 2 by 3 with rows 1, 1, 1 and 2, 2, 2, and Bis 3 by 4 with columns 1, 1, 1 and 2, 
2, 2 and 3, 3, 3 and 4, 4, 4, use each of the four multiplication rules to find AB : 

(1) Rows of A times columns of B.

(2) Matrix A times columns of B.

(3) Rows of A times the matrix B.

( 4) Columns of A times rows of B.

Inner products ( each entry in AB) 

Columns of AB

Rows of AB

Outer products (3 matrices add to AB) 
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29 Which matrices E21 and E31 produce zeros in the (2, 1) and (3, 1) positions of E21A 
and E31A?

A
= [

-
� � � l · 8 5 3 

Find the single matrix E = E31E21 that produces both zeros at once. Multiply EA.

30 Block multiplication produces zeros below the pivot in one big step : 

[ 
1 O

][
ab

] 
[a b 

]
· EA= 

-
c

/
a 1 c D = 0 D _ cb

/
a with vectors 0, b, c.

In Problem 29, what are c and D and what is the block D - cb
/ 

a? 

31 With i2 = -1, the product of (A+iB) and (x +iy) is Ax +iBx +iAy - By. Use
blocks to separate the real part without i from the imaginary part that multiplies i : 

[ 
A -B

] [ x 
] = [ Ax - By 

] :eal �art
? ? y ? 1magmary part 

32 (Very important) Suppose you solve Av = b for three special right sides b:

If the three solutions v 1, v2, v3 are the columns of a matrix X, what is A times X? 

33 If the three solutions in Question 32 are v1 = (1, 1, 1) and v2 = (0, 1, 1) and 
v3 = (0, 0, 1 ), solve Av = b when b = (3, 5, 8). Challenge problem: What is A?

34 Practical question Suppose A is m by n, B is n by p, and C is p by q. Then 
the multiplication count for (AB)C is mnp + mpq. The same answer comes from 
A times BC, now with mnq + npq separate multiplications. Notice npq for BC.

(a) If A is 2 by 4, Bis 4 by 7, and C is 7 by 10, do you prefer (AB)C or A(BC)?

(b) With N-component vectors, would you choose ( u T v )w T or u T ( vw T)?
(c) Divide by mnpq to show that (AB)C is faster when n-1 

+ q-1 < m-1 
+ p-1. 

35 Unexpected fact 

A=[��] 
A friend in England looked at powers of a 2 x 2 matrix : 

A2 = [ 7 10 ]15 22 

He noticed that the ratios 2/3 and 10/15 and 54/81 are all the same. This is true for 
all powers. It doesn't work for an n x n matrix, unless A is tridiagonal. One neat proof 
is to look at the equal (1, 1) entries of An A and AAn . Can you use that idea to show 
that B /C = 2/3 in this example?
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4.4 Inverse Matrices 

Suppose A is a square matrix. We look for an "inverse matrix" A - l of the same size, so 
that A - l times A equals I. Whatever A does, A - l undoes. Their product is the identity
matrix-which leaves all vectors unchanged, so A- 1 Av = v. But A- 1 might not exist. 

What a matrix mostly does is to multiply a vector v. Multiplying Av = b by A- 1 

gives A- 1 Av = A- 1 b. This is v = A- 1 b. The product A- 1 A is like multiplying by a
number and then dividing by that number. A number has an inverse if it is not zero-matrices 
are more complicated and more interesting. The matrix A- 1 is called "A inverse."

DEFINITION The matrix A is invertible if there exists a matrix A- 1 such that

(1) 

Not all matrices have inverses. This is the first question we ask about a square matrix: 
Is A invertible? We don't mean that we immediately calculate A- 1. In most problems
we never compute it! Here are six "notes" about A - 1. 

Note 1 A- 1 exists if and only if elimination produces n pivots (row exchanges 
are allowed). Elimination solves Av = b without explicitly using the matrix A- 1. 

Note 2 The matrix A cannot have two different inverses. Suppose BA = I and also 
AC= I. Then B = C, according to this "proof by parentheses": 

B(AC) = (BA)C gives BI= IC or B = C. (2) 

This shows that a left-inverse B (multiplying from the left) and a right-inverse C (multiplying
A from the right to give AC = I) must be the same matrix. 

Note 3 If A is invertible, the one and only solution to Av = bis v = A- 1 b:

Note 4 (Important) Suppose there is a nonzero vector v such that Av 
A cannot have an inverse. No matrix can bring O back to v. 

0. Then

If A is invertible, then Av = 0 can only have the zero solution v = A- 10 = 0.

Note 5 A 2 by 2 matrix is invertible if and only if ad - be is not zero :

2 by 2 Inverse 

Divide by ad - be 
[ a b ]-l 1 

[ e d - ad - be 
d

-c

(3) 

This number ad - be is the determinant of A. A matrix is invertible if its determinant is
not zero. A- 1 always involves a division by the determinant of A.
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Note 6 A diagonal matrix has an inverse provided no diagonal entries are zero : 
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Example 1 The 2 by 2 matrix A = [ ½ �] is not invertible. It fails the test in Note 5, 
because ad - be equals 2 - 2 = 0. It fails the test in Note 3, because Av = 0 when 
v = (2, -1). It fails to have two pivots as required by Note 1. 

Elimination turns the second row of this matrix A into a zero row. 

The Inverse of a Product AB 

For two nonzero numbers a and b, the sum a + b might or might not be invertible. The 
numbers a = 3 and b = -3 have inverses ½ and -½- Their sum a + b = 0 has no inverse. 
But the product ab= -9 does have an inverse, which is½ times-½-

For two matrices A and B, the situation is similar. It is hard to say much about the 
invertibility of A+ B. But the product AB has an inverse, if and only if the two factors 
A and Bare separately invertible (and the same size). The important point is that A- 1 and 
B- 1 come in reverse order:

If A and Bare invertible then so is AB. The inverse of a product AB is 

(4) 

To see why the order is reversed, multiply AB times B- 1 A- 1
. Inside that is BB- 1 

= I: 

Inverse of AB 

We moved parentheses to multiply BB- 1 first. Similarly B- 1 A- 1 times AB equals I. 
This illustrates a basic rule of mathematics : Inverses come in reverse order. It is also 
common sense : If you put on socks and then shoes, the first to be taken off are the __ . 
The same reverse order applies to three or more matrices : 

Reverse order (5) 

Example 2 Inverse of an elimination matrix. If E subtracts 5 times row 1 from row 2, 
then E-

1 adds 5 times row 1 to row 2: 

Esubtracts 

E-
1 

adds 
[ 1 0 0 l

E = -5 1 0
0 0 1

Multiply EE- 1 to get the identity matrix I. Also multiply E- 1 E to get I. We are adding 
and subtracting the same 5 times row 1. Whether we add and then subtract (this is EE- 1)
or subtract and then add (this is E-

1 E), we are back at the start. 
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For square matrices, an inverse on one side is automatically an inverse on the other side. 

If AB = I then automatically BA = I for square matrices. In that case B is A-1. This is 
extremely useful to know but we are not ready to prove it. 

Example 3 Suppose F subtracts 4 times row 2 from row 3, and p-l adds it back: 

Now multiply F by the matrix E in Example 2 to find FE. Also multiply E-1 times p-l
to find (F E)-1. Notice the required order (F E)-1 

= E-1 p-l for the inverses. 

Right order 

Good inverse 
FE=[-� � :1 

20 - 4 1 
and E-1 p-l = [ 051 0: 0:1 (6) 

The result is beautiful and correct. The product FE contains "20" but its inverse doesn't. 
E subtracts 5 times row 1 from row 2. Then F subtracts 4 times the new row 2 (changed 
by row 1) from row 3. In this order FE, row 3/eels an effect from row 1. 

In the order E-1 p-1, that effect does not happen. First p-l adds 4 times row 2 to row 3. 
After that, E-1 adds 5 times row 1 to row 2. There is no 20, because row 3 doesn't change 
again. In this order E-1 F-1, row 3/eels no effect from row 1. 

E-1 F-1 is quick. The multipliers 5, 4/all into place below the diagonal of 1 's.

Calculating A - l by Gauss-Jordan Elimination

I hinted that A-1 might not be explicitly needed. The equation Av = b is solved by 
v = A-1 b. But it is not necessary or efficient to compute A-1 and multiply it times b.

Elimination goes directly to v. Elimination is also the way to find A -1, as we now show. 

The Gauss-Jordan idea is to solve AA- 1 =I.Find each column of A-1
. 

A multiplies the first column of A-1 ( call that v1) to give the first column of I ( call 
that e1). This is our equation Av1 = e1 = (1, 0, 0). There will be two more equations. 
Each of the columns v1, v2, v3 of A-1 is multiplied by A to produce a column of I:

3 columns of A- 1 
(7) 

To invert a 3 by 3 matrix A, we have to solve three systems of equations: Av1 = e1 and 
Av2 = e2 = (0, 1, 0) and Av3 = e3 = (0, 0, 1). Gauss-Jordan finds A-1 this way. 

The Gauss-Jordan method computes A-1 by solving all n equations together.
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Usually the "augmented matrix" [A b] has one extra column b. Now we have three right 
sides (the columns of I). So the augmented matrix is the block matrix [ A I]. 

e,] � r

2 -1 0 1 0 

�] 
Start Gauss-Jordan on [ A I]

[ A e1 e2 -1 2 -1 0 1 

0 -1 2 0 0 

-+ [ 
2 -1 0 1 0 

;J 0 3 -1 1 
1 ( ½ row l + row 2) 2 2 

0 -1 2 0 0 

-+ [ 
2 -1 0 1 0 

�] 0 3 
-1

1 
1 2 2 

0 0 4 1 2 ( i row 2 + row 3) 3 3 3

We are halfway to A-1. The matrix in the first three columns is U (upper triangular).
The pivots 2, ! , ½ are on its diagonal. Gauss would finish by back substitution. Jordan's

idea is to continue with elimination! He goes all the way to the identity matrix. 
Rows are subtracted from rows above, to produce zeros above the pivots : 

( 

Zero above 

) 
third pivot 

( 

Zero above 

) 
second pivot 

---+ 

---+ 

[ � 

[ : 

-1
3 

2
0

0
3 

2
0

0 
0 
4 
3 

0 
0 
4 
3 

1 
3 

4 
1 
3 
3 

2 
3 

4 
1 
3 

0 
3 

2 
2 
3 

1 
3 

2 
2 
3 

n 
t l4 

1 

( ¾ row 3 + row 2) 

(i row 2 +row 1) 

The last Gauss-Jordan step is to divide each row by its pivot. The new pivots are 1. 
We have reached I in the first half of the matrix, because A is invertible. 

The three columns of A - l are in the second half of [ J A - l ] : 

( divide by 2) 
( divide by ! ) 
( divide by ½) 

0 

1 

0 

0 

0 

1 

3 

4 
1 
2 
1 
4 

1 
2 

1 

1 
2 

Starting from the 3 by 6 matrix [ A I], we ended with [ J A- 1 ] . Here is the whole 
Gauss-Jordan process on one line for any invertible matrix A: 

Gauss-Jordan Multiply [A I] by A- 1 toget [I A- 1]. 

The elimination steps create the inverse matrix while changing A to I. For large matrices, 
we probably don't want A- 1 at all. But for small matrices, it can be very worthwhile to know 
the inverse. We add three observations about this particular A - l because it is an important 
example. We introduce the words symmetric, tridiagonal, and determinant:
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1. A is symmetric across its main diagonal. So is A - l. 

2. A is tridiagonal (only three nonzero diagonals). But A- 1 is a full matrix with
no zeros. That is another reason we don't often compute inverse matrices. The
inverse of a sparse matrix is generally a full matrix.

3. The product of pivots is 2( !)(½) = 4. This number 4 is the determinant of A.

A - 1 involves division by the determinant (8) 

This is why an invertible matrix cannot have a zero determinant. 

Example 4 Find A - l by Gauss-Jordan elimination starting from A = [ � �]. There are
two row operations and then a division to put l's in the pivots: 

[ A I] = [! 3 1 
�] [i 3 1 

�] ( this is [ U L - 1 ]) 7 0 -+ 1 -2

-+ [�
0 7 -3] 

[
l 0 I.

-u (this is [ I A-1]) . 1 -+ 0 1 -2 1 -2

That A- 1 involves division by the determinant ad - be = 2 · 7 - 3 · 4 = 2. The matrix 
A must be invertible, or elimination cannot reduce it to I (in the left half of [ J A- 1 ] ). 

Gauss-Jordan shows why A- 1 is expensive. We must solve n equations for its n columns. 

To solve Av = b without A - 1, we deal with one column b to find one column v.

In defense of A - 1, we want to say that its cost is not n times the cost of one system.
Surprisingly, the cost for n columns is only multiplied by 3. This saving is because the n 
equations Avi = ei all involve the same matrix A. Working with the right sides is relatively 
cheap, because elimination only has to be done once on A.

The complete A- 1 needs n3 elimination steps, where one equation needs n3 /3. 

Singular versus Invertible 

We come back to the central question. Which matrices have inverses? The start of this 
section proposed the pivot test : A - 1 exists exactly when A has a full set of n pivots.

(Row exchanges are allowed.) Now we can prove that by Gauss-Jordan elimination: 

1. With n pivots, elimination solves all the equations Avi = ei. The columns Vi go into 
A - 1. Then AA - 1 

= I and A - l is at least a right-inverse.

2. Elimination is really a sequence of multiplications by E's and P's and n- 1: 

Left-inverse of A (n-1. · -E· · .p. · -E)A = I. (9) 
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D-1 divides by the pivots. The matrices E produce zeros below and above the pivots. 
Permutations P will exchange rows if needed. The product matrix in equation (9) is 
a left-inverse. With n pivots we have reached A- 1 A = I.

The right-inverse equals the left-inverse. That was Note 2 at the start of in this section. 
So a square matrix with a full set of pivots will always have a two-sided inverse. 

Reasoning in reverse will now show that A must haven pivots if AC = I. (Then we 
deduce that C is also a left-inverse and CA = I.) Here is one route to those conclusions: 

1. If A doesn't haven pivots, elimination will lead to a zero row.

2. Those elimination steps are taken by an invertible M. So a row of MA is zero.

3. If AC= I had been possible, then MAC= M. The zero row of MA, times C, gives
a zero row of M itself.

4. An invertible matrix M can't have a zero row! So A must haven pivots if AC= I.

That argument took four steps, but the outcome is short and important. 

Elimination gives a complete test for invertibility of a square matrix. A- 1 exists (and

Gauss-Jordan finds it) exactly when A has n pivots. The argument above shows more: 

If AC=I then CA=I and C=A-1 

Example 5 Here L is lower triangular with 1 's on the diagonal. Then L- 1 is too.

A triangular matrix is invertible if and only if no diagonal entries are zero. 

Here L has l's so L- 1 also has l's. Use the Gauss-Jordan method to construct L- 1. 

Start by subtracting multiples of pivot rows from rows below. Normally this gets us 
halfway to the inverse, but for L it gets us all the way. L - 1 appears on the right when
I appears on the left. Notice how L - 1 contains 11, from 3 times 5 minus 4.

Gauss-Jordan 

on triangular L [! 
-+ p � 0 

-+ [ � 

0 

1 

5 

0 

1 
5 

0 

1 
0 

0 

0 

1 

0 

0 

1 

0 

0 

1 

1 0 n � [L I]0 1 
0 0 

1 0 n ( 3 times row 1 from row 2) 
-3 1 ( 4 times row 1 from row 3) 
-4 0 ( then 5 times row 2 from row 3) 

1 0 n �[IL-'] -3 1 

11 -5

L goes to I by a product of elimination matrices E32E31E21. So that product is L-1
. 

The 11 in L -I does not come into L, to spoil 3, 4, 5 in the good order K;/ Ei/ K;_;;} = L. 
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• REVIEW OF THE KEY IDEAS •

1. The inverse matrix gives AA- 1 
= I and A- 1 A = I.

2. A is invertible if and only if it has n pivots (row exchanges allowed).

3. If Av = 0 for a nonzero vector v, then A has no inverse.

4. The inverse of AB is the reverse product B- 1 A- 1
. And (ABC)- 1 = c-

1 B- 1 A- 1
. 

5. The Gauss-Jordan method solves AA- 1 = I to find the n columns of A- 1
. The

augmented matrix [ A I] is row-reduced to [ I A- 1 ] . 

Problem Set 4.4 

1 Find the inverses of A, B, C ( directly or from the 2 by 2 formula): 

2 For these "permutation matrices" find p- 1 by trial and error (with l's and O's): 

3 Solve for the first column (x, y) and second column (t, z) of A- 1: 

[ �� �� l [: l [ � l and 
[ �� �� l [: l [ � l . 

4 Show that [ � �) is not invertible by trying to solve AA - 1 
= I for column 1 of A - 1 : 

[� �] [:] [�] (For a different A, could column 1 of A- 1) 
be possible to find but not column 2? 

5 Find an upper triangular U (not diagonal) with U2 
= I which gives U = u- 1

. 

6 (a) If A is invertible and AB= AC, prove quickly that B = C.

(b) If A= [ ½ ½], find two different matrices such that AB = AC.
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7 (Important) If A has row 1 + row 2 = row 3, show that A is not invertible: 

(a) Explain why Av = (1, 0, 0) cannot have a solution.

(b) Which right sides (b1 , b2, b3 ) might allow a solution to Av
=

b? 

(c) What happens to row 3 in elimination?

8 If A has column 1 + column 2 = column 3, show that A is not invertible: 

(a) Find a nonzero solution x to Ax = 0. The matrix is 3 by 3.
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(b) Elimination keeps column 1 + column 2 = column 3. Why is no third pivot ? 

9 Suppose A is invertible and you exchange its first two rows to reach B. Is the new
matrix B invertible and how would you find B- 1 from A- 1?

10 Find the inverses (in any legal way) of 

A
= r� � � �1 5 0 0 0 r! � � �1 and B = 

0 0 6 5 
0 0 7 6 

11 (a) Find invertible matrices A and B such that A+ Bis not invertible.

(b) Find singular matrices A and B such that A + B is invertible.

12 If the product C = AB is invertible (A and Bare square), then A itself is invertible. 
Find a formula for A- 1 that involves c-

1 and B. 

13 If the product M = ABC of three square matrices is invertible, then Bis invertible. 
(So are A and C.) Find a formula for B- 1 that involves M- 1 and A and C.

14 If you add row 1 of A to row 2 to get B, how do you find B- 1 from A- 1 7

Notice the order. The inverse of B = [ � �] A is

15 Prove that a matrix with a column of zeros cannot have an inverse. 

16 Multiply [ � �] times [ _� -�]. What is the inverse of each matrix if ad =I- be? 

17 (a) What 3 by 3 matrix E has the same effect as these three steps? Subtract row 1
from row 2, subtract row 1 from row 3, then subtract row 2 from row 3.

(b) What single matrix L has the same effect as these three reverse steps? Add row
2 to row 3, add row 1 to row 3, then add row 1 to row 2.

18 If B is the inverse of A 2, show that AB is the inverse of A.
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19 (Recommended) A is a 4 by 4 matrix with l's on the diagonal and -a, -b, -con the 
diagonal above. Find A - l for this bidiagonal matrix. 

20 Find the numbers a and b that give the inverse of 5 * eye(4) - ones(4,4): 

[ 51-ones r1 = 

r_: -/ =� =�i-l r: : : :1--l - 1 4 - 1 b b a b 
-1 - 1 -1 4 b b b a 

What are a and bin the inverse of 6 * eye(S) - ones(S,5) ? In MATLAB,/ = eye. 

21 Sixteen 2 by 2 matrices contain only l's and O's. How many of them are invertible? 

Questions 22-28 are about the Gauss-Jordan method for calculating A - 1• 

22 Change I into A - 1 as you reduce A to I (by row operations) : 

[A I] = [
1 3 1 o] [ l 

[
1 4 1 o]2 7 0 1 

and A I = 
3 9 0 1 

23 Follow the 3 by 3 text example of Gauss-Jordan but with all plus signs in A.

Eliminate above and below the pivots to reduce [ A I] to [ I A - 1 ] : 

[2 1 0 1 
[ A I] = l 2 1 0 

0 1 2 0 

o o
l 1 0 

0 1 

24 Use Gauss-Jordan elimination on [ U I] to find the upper triangular u- 1: 

uu-
1 

= 1 

25 Find A- 1 and B- 1 (if they exist) by elimination on [ A I] and [ B I] : 

and B = [-�
-

/ =�]-
-1 - 1 2 

26 What three matrices E21 and E12 and D-1 reduce A 

matrix? Multiply D-1 E12E21 to find A-1 . 

[ � ! ] to the identity
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27 Invert these matrices A by the Gauss-Jordan method starting with [ A I] : 

28 Exchange rows and continue with Gauss-Jordan to find A - l : 

[ A I] = 
[o 2 1 o] ·

2 2 0 1 

29 True or false ( with a counterexample if false and a reason if true) : 

(a) A 4 by 4 matrix with a row of zeros is not invertible.

(b) Every matrix with 1 's down the main diagonal is invertible.

( c) If A is invertible then A - 1 and A 2 are invertible.

30 For which three numbers c is this matrix not invertible, and why not? 

31 Prove that A is invertible if a -/- 0 and a -/- b (find the pivots or A- 1): 
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32 This matrix has a remarkable inverse. Find A- 1 by elimination on [ A I]. Extend to
a 5 by 5 "alternating matrix" and guess its inverse; then multiply to confirm. 

InvertA= r� -/ -� -/] and solveAv= r�i 0 0 1-1 1 

0 0 0 1 1 

33 (Puzzle) Could a 4 by 4 matrix A be invertible if every row contains the numbers 
0, 1, 2, 3 in some order? What if every row of B contains 0, 1, 2, -3 in some order? 

34 Find and check the inverses (assuming they exist) of these block matrices: 
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4.5 Symmetric Matrices and Orthogonal Matrices 

This section introduces the transpose of a matrix. Start with any m by n matrix A. Then
the rows of A become the columns of AT (called "A transpose"). The columns of A are the
rows of AT . The m by n matrix is flipped across its main diagonal. Then AT is n by m.

Transpose If A=[l 2 6] 
0 0 5 

then AT = [�1 0�] 
The entry in row i, column j of AT comes from row j, column i of A. So ( A T)ij = Aji­

The transpose of a lower triangular matrix is upper triangular. Two key rules :

Products AB

Inverses A - 1 

The transpose of AB is (AB) T = BT AT 

The transpose of A - 1 is ( A - 1) T = (AT ) -1_

(1)

(2) 

Notice especially how BT AT comes in reverse order. For inverses, this reverse order is quick
to check: B- 1 A- 1 times AB produces B- 1 (A- 1 A)B = I. For transposes, rules (1) and
(2) are tested and explained in the problem set. We want to move to the essential matrices of
this section because they are the most important matrices in mathematics : 

Symmetric matrices AT equals A. Then A is square and aij = aji· 

--w- -- _______ , _______ _,. 

Orthogonal matrices AT equals A -1. Then A is square and AT A = I.

Here is a symmetric example S and also an orthogonal example Q :

Symmetric S = [ � : ] [ cos0 Orthogonal Q = . 0 Slll 

-sin 0 ]cos0 

Symmetry of S is easy to see : 4 = 4. For orthogonality I will check that QT Q = I:

Columns are orthogonal 
Columns are unit vectors [ cos 0 sin 0 ] [ cos 0 

-sin 0 cos 0 sin 0 
-sin 0 ] = [ 1 0 ] cos 0 0 I .

Those words at the left tell you the key facts about the columns q1 and q2 : 

q�q2] = [l o1].Qz Qz 0 

(3) 

(4) 

Off the diagonal you see Qi q2 = 0 and q'.f q1 = 0. The columns are orthogonal vectors.
On the diagonal Qi q

1 
= 1 and q'.f q2 = 1. The q's are unit column vectors: length 1. 

Symmetric matrices will have the special letter S and orthogonal matrices will be Q.
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Symmetric Matrices S = AT A

The full glory of symmetric matrices comes with their eigenvalues ,\ and eigenvectors x. 
Those strange words, half German and half English, are at the heart of Chapter 6. You 
will see the key equation Ax = >.x (this puts Ax in the same direction as x). Let me 
write here only two facts that show why symmetric matrices are special: 

Sx = .\x Symmetric matrices have real eigenvalues.\ and orthogonal eigenvectors x.

Those facts will be crucial in solving symmetric systems y' = Sy and y" + Sy = 0. 
It is equally important to know where symmetric matrices come from. One part of applied 

mathematics and engineering mathematics is solving equations. We have solved Av = b

and we will soon solve dy/dt = Ay. Solving is one half of our subject, the other half is 
discovering the equations in the first place. 

Start with a physical or biological or economic problem. Model it by equations. 
Solving F = ma and e = mc2 may take thought, but we give first place to Newton and 
Einstein for discovering those equations. 

To repeat : Where do symmetric matrices come from? In my experience, you start with 
a matrix A. Often this matrix is rectangular (m by n). Its transpose is also rectangular 
(AT is n by m). Sooner or later, you are almost sure to see the matrix AT A. At that moment 
you have a square symmetric n by n matrix : 

S =AT A is always symmetric. Its transpose is ST = (AT A) T =AT ATT =8. (5)

This matrix AT A is automatically square, because (n by m) times (m by n) is (n by n). 

Example 1 
1 

0 

3][
1 0

]=[ 11 

4 l O 12
3 4 

12 
] 

16 .

The number 12 comes twice in AT A. It is (row 1 of AT ) · (column 2 of A) and also 
(row 2 of AT ) · (column 1 of A). The numbers 11 and 16 on the diagonal are dot products 
of a column with itself. So they give the length squared of the columns. These diagonal 
entries of AT A cannot be negative. 

Comment. Since A is 3 by 2, the system Av = b has three equations but only 
two unknowns v1 and v2 . Almost surely there will be no solution. But if those numbers 
b1 , b2 , b3 came from careful and expensive measurements, we cannot say "no solution" 
and stop. We want to find the "best solution" or "closest solution" to Av = b. 

In practice we usually choose the vector v that makes Av as close as possible to b.

The error vector e = b - Av is as short as possible. We are minimizing I I e I 1 2 
= e Te,

the squared length of the error. The best vector v is the least squares solution.
In Section 7 .1, minimizing the error is a calculus problem and also a linear algebra 

problem. Both approaches lead to the equation AT Av = ATb. The best v involves AT A. 
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Difference Matrices 

I want to show you larger examples of AT A that are truly important. Start with a backward 
difference matrix A. It can have n + l rows and n columns. Here n = 3 : 

Difference matrix 

Differences of v' s (6) 

That vector Av in linear algebra corresponds to the derivative dv / dx in calculus. 
You see backward differences �v = [ v(x) - v(x - �x)] / �x in calculus. This is 
before the stepsize �x approaches zero and �v / �x approaches dv / dx. 

More often you see forward differences [ v(x + �x) - v(x)] / �x, where the small �x 
goes forward from x. Those appear in linear algebra when we transpose the matrix A.

But first differences are "anti-symmetric" and AT will be minus a forward difference. 
So the vector AT w corresponds to the derivative -dw / dx : 

3 by 4 matrix 

Differences of w' s 
AT� [ I 

-1
1 -1

1 -1 l (7)

Now comes the symmetric matrix S = AT A. It will be 3 by 3. Since A and AT are 
"first differences" with 1 and -1, AT A will be a second difference matrix with -1, 2, -1 : 

(8) 

The main diagonal of S has 2's, because each column of A produces 12 
+ (-1 )2 

= 2. 
The subdiagonal and superdiagonal of S have -1 's, because this is the dot product of a 
column of A with the next column. 

Let me admit quietly that S is my favorite matrix. You are seeing the 3 by 3 version, 
what I really like is n by n. Chapter 7 makes the link with calculus, where the first derivative 
of the first derivative is the second derivative: 

Sv corresponds to 
v(x + �x) - 2v(x) + v(x - �x) d2v 

(�x) 2 � dx2 
· 

(9)

All of Chapter 2 was about second order equations involving y". Newton's Law F = ma 
puts second derivatives (the acceleration a) at the heart of physics. When springs 
oscillate, and when current goes through a network, this matrix S = AT A will appear. 

The truth is that we need to know everything about S-its pivots, its determinant, 
its inverse, its eigenvalues, its eigenvectors. We will. 
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The matrix L = AA T is almost as important. Please recognize that L is also symmetric,
but Lis different from S. When A has n columns and n + l rows, S = AT A is n by n.

But L = AAT is square of size n + l. We keep n = 3 and n + l = 4 :

Second differences in L 

New boundary conditions 
L = AAT = 

-1
2

-1
-1

2
-1 -J (10) 

This matrix has no inverse ! Can you see a vector w that has Lw = 0 ? It is the vector 
of all ones, w = (l, 1, 1, 1). Each row of L adds to zero and that will produce Lw = 0.

Permutation Matrices 

A quick way to produce orthogonal matrices is to use the columns of the identity matrix. 
In any order, the columns of I are orthonormal. The new order is called a "permutation" 
of the original order. So the new matrix is called a permutation matrix.

Important: We could put the rows of I into the new order. That also produces a permu­
tation matrix. If this row exchange matrix is P, then the column exchange matrix is pT _ 
You can see the transpose in this 3 by 3 example starting from I: 

Rows in the 
order 2, 3, 1 

Columns in pT = 
[ 

0

0
1 

�l 0� ] · order 2, 3, 1 (11) 

When P multiplies a vector v, it puts the components of v in the new order y, z, x.

Then pT puts them back in the original order x, y, z: 

These are orthogonal matrices, so p- 1 is the same as pT _ Then pT P = ppT = I.

We can complete the list of all 3 by 3 permutation matrices (including the identity ma­
trix itself, which exchanges nothing: the identity permutation). The other permutations 
exchange two rows or two columns of I. There are P and pT in (11), and four more. 

Altogether 6 permutation matrices when n = 3. And n! permutation matrices of size n.
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The effect of Pi2 is to exchange (permute) rows 1 and 2, when we multiply A2A or A2b. 

[
row 1 of A

l [
row 2 of A

lA2 row 2 of A = row 1 of A 

row 3 of A row 3 of A 

This is exactly what we do in elimination, when a zero appears in the first pivot position. 
If a11 = 0 and a21 -:/- 0, P12 exchanges rows to produce a nonzero pivot. 

Elimination by matrices Eliminate by EiJ, exchange rows by PJk· 

The elimination matrix EiJ subtracts a multiple £iJ of row j from a lower row i > j.

Before that, a permutation matrix PJk may put row k into row j, to produce a better number 
(a larger number) in the pivot position. 

We must use Pjk to get a nonzero pivot. We may use Pjk to get a larger pivot. The 
LA PACK code ( open source) chooses the largest available number as the pivot. The 
jth pivot (in column j) will be the largest number in row j or below. LAPACK is the foun­
dation for the linear algebra part of many important software systems, including MATLAB. 

Orthogonal Matrices 

When A has orthogonal columns, the symmetric matrix AT A is diagonal. The off-diagonal 
entries are dot products of different columns of A, so they are all zero. 

When the columns of A are unit vectors (length 1), all diagonal entries of AT A are 1. 
Those entries are (row i of AT) · (column i of A) = length squared= 1. Dot products 
of columns with themselves are on the main diagonal of AT A. 

The best case is orthonormal columns. Those are orthogonal unit vectors, both 
properties at the same time. In this case we write q for the vectors and Q for the matrix :

Orthogonal q; % = 0
Unit vectors q; qi = 1 

(12) 

When Q is square, I call it an orthogonal matrix. (The name "orthonormal matrix" 
might have been better.) I still use the letter Q when the matrix is rectangular, with 
m > n. But a rectangular QT is only a left-inverse of Q : 

(13) 

QT Q = I is a very powerful property. When we multiply any vector by Q, its length 
will not change : 

Same length I IQvl I = I lvl I for every vector v. (14) 

The proof comes directly from 11Qvll2 = (Qv?(Qv) = vTQTQv. The matrix QTQ is 
the identity. So we are left with v T v = 11 v 112 . 
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The fact that lengths don't change makes orthogonal matrices very safe to compute with. 
Nothing blows up, nothing becomes too small (no overflow and no underflow). 
The basic computation in linear algebra is the solution of a linear system, and for 
(square) orthogonal matrices this is incredibly easy: 

The solution of Qv = b is v = QT b. (15) 

To solve the equations, we just transpose the matrix. The greatest example is the Fourier

matrix, which breaks up a signal b into separate pure frequencies. The vector b in the time 
domain is transformed to v in the frequency domain. The "energy" can be measured in either 
domain, because llbll2 is equal to llvll2-as we saw above. 

The Fourier matrix F is exceptional because multiplications by F and p- 1 are 
extremely fast. They break up into diagonal matrices and permutation matrices. This is 
the insight behind the Fast Fourier Transform. (The FFT is in Section 8.2.) 

The equation Qv = b has a clear geometrical meaning when Q is 2 by 2. Qv is ex­
pressing that vector bas a combination of the columns of Q. Those columns q1 , q2 

give the 
perpendicular axes in Figure 4.9 . We are finding the component of bin each direction. 

Those two components are v1 = q
1 

·band v2 = q2 • b. Solving Qv = b by v = QT b 
is just a change from x, y axes to q1 , q2 axes. 

y 

b 

Figure 4.9: Every b = (x, y) splits into b = v1q 1 + vzq2 . And Jlbll2 
= x2 

+ y2 
= vf + v�. 

Both Symmetric and Orthogonal 

Symmetric matrices are the best, they are everywhere in applied mathematics. Orthogonal 
matrices are a strong second, starting with rotation matrices and the Fourier matrix. Most 
symmetric matrices are not orthogonal and most orthogonal matrices are not symmetric. 
It is natural to wonder when and if we can have both properties at once. 

Exchange and reflection and "Hadamard" matrices are symmetric and orthogonal : 

R = [
-c�s0 sin0

]sm0 cos 0 [

-1 
H= ! 1 

2 1 
1 

1 
-1

1 
1 

1 
1 

-1
1 : l -1 

(16) 

Notice that the columns of Hare unit vectors: ¾((-1) 2 
+ 12 

+ 12 
+ 12 ) = 1. Nobody 

knows which dimensions allow n orthogonal vectors of 1 's and -1 's (not odd dimensions!). 
Wikipedia describes this unsolved problem on its "Hadamard matrix" page. 
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To find more symmetric orthogonal matrices, and eventually all of them, we can use 
an important fact about orthogonal matrices : 

IfQ1 and Q2 are orthogonal,sois theirproduct Q = Q1Q2. 

The test is always to check QTQ = I. Here this is (Q1Q2?(Q1Q2) = Q'J'QTQ1Q2. 
In the middle is QT Q1 = I. Then the outside has Q'J' Q2 = I. 
Conclusion: We can multiply orthogonal matrices and stay orthogonal. 
Problem: We can't always multiply symmetric matrices and stay symmetric. 

Here is one approach that succeeds with both properties. Start with any diagonal matrix 
D of l's followed by -1 's: 

Symmetric and orthogonal D = diag ( 1, ... , 1, -1, ... , -1). (17) 

Multiply D on the left side by any orthogonal Q and on the right side by QT . That 
"symmetric multiplication " keeps the matrix QDQT symmetric: 

Symmetric and orthogonal (18) 

This product of orthogonal matrices is also orthogonal. When you meet eigenvalues in 
Chapter 6, you will see that all symmetric orthogonal matrices have this form Q DQT . 
Possibly that small fact is appearing for the first time in a textbook. 

Factoring a Matrix 

That was for fun, this is more important. "A symmetric matrix S is like a real number r ." 
"An orthogonal matrix Q is like a complex number ei0 with absolute value 1." Every 
complex number can be written in polar form rei0

, and what we hope for is true: 

Every square matrix A can be written in polar form A = SQ. 

A = SQ is equivalent to the Singular Value Decomposition (this is explained in 
Section 7 .2). The SYD is the last and most remarkable step in the Fundamental Theorem 
of Linear Algebra. The polar form is in the Chapter 7 Notes. 

• REVIEW OF THE KEY IDEAS •

1. The transpose has A0 = Aji · Then (AB)T 
= BT AT and Av· w equals v · ATw. 

2. Symmetric matrices have ST 
= S. Orthogonal matrices have QT 

= Q- 1. 

3. AT A is always a symmetric matrix. Key examples are second difference matrices. 

4. The columns of Q are orthogonal vectors of length 1. Then 11 Qx 11 = 11 x 11 for all x. 

5. The n ! permutation matrices P reorder the rows of I ( n by n), and pT 
= 

p- 1. 
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Problem Set 4.5 

Questions 1-9 are about transposes AT and symmetric matrices S = ST . 

1 Find AT and A- 1 and ( A - l? and ( AT )- 1 for

A = [ � � ] and also A = [ � � ] .

2 (a) Find 2 by 2 symmetric matrices A and B so that AB is not symmetric.
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(b) With AT 
= A and BT 

= B, show that AB = BA ensures that AB will now
be symmetric. The product is symmetric only when A commutes with B. 

3 (a) The matrix ((AB)- 1 )T comes from (A- 1 )T and (B- 1 )T. In what order?

(b) If U is upper triangular then (U- 1 )T is __ triangular.

4 Show that A2 
= 0 is possible but AT A= 0 is not possible (unless A= zero matrix).

5 Every square matrix A has a symmetric part and an antisymmetric part :

(A+AT

) (A- AT

) A = symmetric + antisymmetric = 
2 + 2 

·

Transpose the antisymmetric part to get minus that part. Split these in two parts :

A=[;�] 

6 The transpose of a block matrix M = [ � g] is MT = __ . Test an example
to be sure. Under what conditions on A, B, C, Dis the block matrix symmetric?

7 True or false:

(a) The block matrix [ -2_ *] is automatically symmetric.

(b) If A and B are symmetric then their product AB is symmetric.

( c) If A is not symmetric then A - l is not symmetric.
(d) When A, B, Care symmetric, the transpose of ABC is CEA.

8 (a) How many entries of Scan be chosen independently, if S = ST is 5 by 5?

(b) How many entries can be chosen if A is skew-symmetric ? (AT 
= -A).

9 Transpose the equation A- 1 A = I. The result shows that the inverse of AT is __ .
If Sis symmetric, how does this show that s-

1 is also symmetric? 
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Questions 10-14 are about permutation matrices. 

10 Why are there n! permutation matrices of size n? They given! orders of 1, ... , n. 

11 If A and A are permutation matrices, so is A P2. This still has the rows of I in some 
order. Give examples with AP2 =I= P2Pi and P3P4 = P4P3. 

12 There are 12 "even" permutations of (1, 2, 3, 4), with an even number of exchanges. 
Two of them are (1, 2, 3, 4) with no exchanges and ( 4, 3, 2, 1) with two exchanges. 
List the other ten. Instead of writing each 4 by 4 matrix, just order the numbers. 

13 If P has l's on the antidiagonal from (1, n) to (n, 1), describe PAP. Is P even? 

14 (a) Find a 3 by 3 permutation matrix with P3 = I (but not P = I).

(b) Find a 4 by 4 permutation with P 4 =I= I.

Questions 15-18 are about first differences A and second differences AT A and AA T. 

15 Write down the 5 by 4 backward difference matrix A.

(a) Compute the symmetric second difference matrices S = AT A and L = AAT .

(b) Show that Sis invertible by finding s-
1

. Show that Lis singular.

16 In Problem 15, find the pivots of Sand L (4 by 4 and 5 by 5). The pivots of Sin 
equation (8) are 2, 3/2, 4/3. The pivots of Lin equation (10) are 1, 1, 1, 0 (fail). 

17 (Computer problem) Create the 9 by 10 backward difference matrix A. Multiply to 
find S = AT A and L = AA T. If you have linear algebra software, ask for the 
determinants det( S) and det( L). 

Challenge : By experiment find det( S) when S = AT A is n by n. 

18 (Infinite computer problem) Imagine that the second difference matrix Sis infinitely 
large. The diagonals of 2's and -1 's go from minus infinity to plus infinity: 

Infinite tridiagonal matrix s� [ _; 2 -1 
-1 2 

(a) Multiply S times the infinite all-ones vector v = ( ... , 1, 1, 1, 1, ... )

(b) Multiply S times the infinite linear vector w = ( ... , 0, 1, 2, 3, ... )

(c) Multiply S times the infinite squares vector u = ( ... , 0, 1, 4, 9, ... ).

(d) Multiply S times the infinite cubes vector c = ( ... , 0, 1, 8, 27, ... ).

The answers correspond to second derivatives (with minus sign) of 1 and x2 and x3
. 
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Questions 19-28 are about matrices with QT Q = I. If Q is square, then it is an

orthogonal matrix and QT = Q- 1 and QQT = I.

19 Complete these matrices to be orthogonal matrices : 

(a) Q - [ 
1/2 

1;2 ] (b) Q � ½ [ 
-
� l 1 

1 
-1
-1 l 

20 (a) Suppose Q is an orthogonal matrix. Why is Q- 1 
= QT also an orthogonal

matrix?

(b) From QT Q = I, the columns of Qare orthogonal unit vectors (orthonormal
vectors). Why are the rows of Q (square matrix) also orthonormal vectors?

21 (a) Which vectors can be the first column of an orthogonal matrix?

(b) If Q'fQ1 = I and Q;f Q2 = I, is it true that (Q1 Q2)T (Q1 Q2) =I? Assume
that the matrix shapes allow the multiplication Q1 Q2. 

22 If u is a unit column vector (length 1, u Tu = l), show why H = I - 2u u T is 

(a) a symmetric matrix: H = HT (b) an orthogonal matrix: HT H = I.

23 If u = (cos0,sin0), what are the four entries in H = I - 2uuT? Show that 
Hu= -u and Hv = v for v = (-sin0,cos0). This H is a reflection matrix:

the v-line is a mirror and the u-line is reflected across that mirror. 

24 Suppose the matrix Q is orthogonal and also upper triangular. What can Q look like? 
Must it be diagonal ? 

25 (a) To construct a 3 by 3 orthogonal matrix Q whose first column is in the direction
w, what first column q1 = cw would you choose?

(b) The next column q
2 

can be any unit vector perpendicular to q
1

. To find q
3

, 

choose a solution v = ( v1, v2, v3) to the two equations q'f v = 0 and q;f v = 0.
Why is there always a nonzero solution v ?

26 Why is every solution v to Av = 0 orthogonal to every row of A? 

27 Suppose QT Q = I but Q is not square. The matrix P = QQT is not I. But show that 
P is symmetric and P2 = P. This is a projection matrix.

28 A 5 by 4 matrix Q can have QT Q = I but it cannot possibly have QQT = I.

Explain in words why the four equations QT v = 0 must have a nonzero solution v. 
Then v is not the same as QQTv and I is not the same as QQT . 
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Challenge Problems 

29 Can you find a rotation matrix Q so that QDQT is a permutation? 

[c?s0 -sin0] [1
sm0 cos0 

] [ cos 0 sin 0 ] -1 -sin 0 cos 0 equals [ � �] .

30 Split an orthogonal matrix ( QT Q = QQT = I) into two rectangular submatrices:

and 

(a) What are those four blocks in QT Q = I ?
(b) QQT = Q1QT + Q2Q'.f = I is column times row multiplication. Insert

the diagonal matrix D = [ � _ �] and do the same multiplication for Q DQT .

Note: The description of all symmetric orthogonal matrices S in (18) becomes 
S = Q DQT = Q1 QI - Q2Q'.f. This is exactly the reflection matrix I - 2Q2Q'.f.

31 The real reason that the transpose "flips A across its main diagonal" is to obey 
this dot product law: (Av)· w = v · (ATw). That rule (Av)Tw = vT(AT w) 
becomes integration by parts in calculus, where A = d/dx and AT = -d/dx.

(a) For 2 by 2 matrices, write out both sides ( 4 terms) and compare:

( [ � �] [ �: ]) · [ :: ] is equal to [ �: ] · ( [ : � ] [ :: ]) . 

(b) The rule (AB)T = BT AT comes slowly but directly from part (a):

(AB) v · w = A(Bv) · w = Bv · ATw = v . BT(ATw) = v . (BT AT)w

Steps 1 and 4 are the __ law. Steps 2 and 3 are the dot product law.

32 How is a matrix S = ST decided by its entries on and above the diagonal?
How is Q with orthonormal columns decided by its entries below the diagonal ? 
Together this matches the number of entries in an n by n matrix. So it is reasonable 
that every matrix can be factored into A = SQ (like rei0 ). 
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• CHAPTER 4 NOTES • 

Important Question Where do the rules for matrix-matrix multiplication AB come from? 
Answer From matrix-vector multiplication Av. The matrix AB is defined so that 

AB times v equals A times Ev. Then AB times C equals A times BC. 

Key idea: Choose the special vector v = (1, 0, ... , 0). Then AB times this v is the first 
column of AB. And Ev is the first column of B. So column 1 of AB equals A times column 

1 of B. This was the AB rule from the start. Every other column of AB goes the same way, 
by moving the "1" in v. 

Thus (AB)v = A(Bv). With several v's in a matrix C, this becomes (AB)C = A(BC). 

Elimination factors A into LU = (lower triangular) times (upper triangular). 

The MATLAB command [L, U] = lu(A) will output L and U, unless there are row 
exchanges. L and U are a complete record of elimination on the left side of Av = b.

The solution v comes from the right side b by solving the two triangular systems : 

From bto e 
Forward substitution 

Le= b 
From e to v
Back substitution 

Then vis the correct solution : Av = LUv = Le = b. The forward substitution is what 
happened to b as elimination went forward on [ A b]. 

Second difference matrices have beautiful inverses and LU factors if the first diagonal entry 
is 1 instead of 2. Here is the 3 by 3 tridiagonal matrix T and its inverse: 

T11 = 1 

One approach is Gauss-Jordan elimination on [ T I]. That seems too mechanical. 
I would rather write T using first differences L and U. The inverses are sum matrices 
u- 1 and L- 1

: 

T � [-i _: J [
! -: -:]

difference difference 

y-1 =

sum sum 

Question. ( 4 by 4) What are the pivots of T ? What is its 4 by 4 inverse ? 



This Page was intentionally left blank



Chapter 5 

Vector Spaces and Subspaces 

5.1 The Column Space of a Matrix 

To a newcomer, matrix calculations involve a lot of numbers. To you, they involve vectors. 
The columns of Av and AB are linear combinations of n vectors-the columns of A. This 
chapter moves from numbers and vectors to a third level of understanding (the highest level). 
Instead of individual columns, we look at "spaces " of vectors. Without seeing 
vector spaces and their subspaces, you haven't understood everything about Av = b. 

Since this chapter goes a little deeper, it may seem a little harder. That is natural. We are 
looking inside the calculations, to find the mathematics. The author's job is to make it clear. 
Section 5.5 will present the "Fundamental Theorem of Linear Algebra." 

We begin with the most important vector spaces. They are denoted by R1
, R 2, R 3, R 4, 

.... Each space Rn consists of a whole collection of vectors. R 5 contains all column vectors
with five components. This is called " 5-dimensional space." 

DEFINITION The space R" consists of all column vectors v with n components. 

The components of v are real numbers, which is the reason for the letter R. When the 
n components are complex numbers, v lies in the space en .

The vector space R 2 is represented by the usual xy plane. Each vector v in R 2 has two 
components. The word "space" asks us to think of all those vectors-the whole plane. Each 
vector gives the x and y coordinates of a point in the plane : v = ( x, y). 

Similarly the vectors in R3 correspond to points (x, y, z) in three-dimensional space. 
The one-dimensional space R 1 is a line (like the x axis). As before, we print vectors as a 
column between brackets, or along a line using commas and parentheses : 

[!] is inR2
, ( 1 , 1,0, 1, l )is inR5

, U=n is inC2
. 

The great thing about linear algebra is that it deals easily with five-dimensional space. 
We don't draw the vectors, we just need the five numbers (or n numbers). 

251 
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To multiply v by 7, multiply every component by 7. Here 7 is a "scalar." To add vectors 
in R 5, add them a component at a time: five additions. The two essential vector operations 
go on inside the vector space, and they produce linear combinations: 

We can add any vectors in Rn , and we can multiply any vector v by any scalar c. 

"Inside the vector space" means that the result stays in the space : This is crucial. 

If vis in R4 with components 1, 0, 0, 1, then 2v is the vector in R4 with components 
2, 0, 0, 2. (In this case 2 is the scalar.) A whole series of properties can be verified in Rn. 
The commutative law is v + w = w + v; the distributive law is c(v + w) = cv + cw. 
Every vector space has a unique "zero vector" satisfying O + v = v. Those are three of the 
eight conditions listed in the Chapter 5 Notes. 

These eight conditions are required of every vector space. There are vectors other than 
column vectors, and there are vector spaces other than Rn. All vector spaces have to obey 
the eight reasonable rules. 

A real vector space is a set of "vectors" together with rules for vector addition and 
multiplication by real numbers. The addition and the multiplication must produce vectors 
that are in the space. And the eight conditions must be satisfied (which is usually no 
problem). You need to see three vector spaces other than R"' : 

M The vector space of all real 2 by 2 matrices. 

Y The vector space of all solutions y(t) to Ay" +By'+ Cy= 0. 
Z The vector space that consists only of a zero vector. 

In M the "vectors" are really matrices. In Y the vectors are functions of t, like y = est . 

In Z the only addition is O + 0 = 0. In each space we can add: matrices to matrices, 
functions to functions, zero vector to zero vector. We can multiply a matrix by 4 or 
a function by 4 or the zero vector by 4. The result is still in Mor Y or Z. 

The space R4 is four-dimensional, and so is the space M of 2 by 2 matrices. Vectors 
in those spaces are determined by four numbers. The solution space Y is two-dimensional, 
because second order differential equations have two independent solutions. Section 5.4 will 
pin down those key words, independence of vectors and dimension of a space. 

The space Z is zero-dimensional (by any reasonable definition of dimension). It is the 
smallest possible vector space. We hesitate to call it RO

, which means no components-you 
might think there was no vector. The vector space Z contains exactly one vector. 
No space can do without that zero vector. Each space has its own zero vector-the 
zero matrix, the zero function, the vector ( 0, 0, 0) in R 3. 

Subspaces 

At different times, we will ask you to think of matrices and functions as vectors. But at all 
times, the vectors that we need most are ordinary column vectors. They are vectors with 
n components-but maybe not all of the vectors with n components. There are important 
vector spaces inside Rn. Those are subspaces of Rn . 
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z 

typical vector in M 

p 

y 

X 

Figure 5.1: "4-dimensional" matrix space M. 3 subspaces of R 3 : plane P, line L, point Z.

Start with the usual three-dimensional space R 3• Choose a plane through the origin
(0, 0, 0). That plane is a vector space in its own right. If we add two vectors in the plane, 
their sum is in the plane. If we multiply an in-plane vector by 2 or -5, it is still in the plane. 
A plane in three-dimensional space is not R2 (even if it looks like R2 ). The vectors have 
three components and they belong to R 3. The plane P is a vector space inside R 3. 

This illustrates one of the most fundamental ideas in linear algebra. The plane going 
through (0, 0, 0) is a subspace of the full vector space R3 . 

DEFINITION A subspace of a vector space is a set of vectors (including 0) that satisfies 
two requirements : If v and w are vectors in the subspace and c is any scalar, then 

v + w is in the subspace and cv is in the subspace. 

In other words, the set of vectors is "closed" under addition v + w and multiplication cv

(and dw). Those operations leave us in the subspace. We can also subtract, because -w is 
in the subspace and its sum with vis v - w. In short, all linear combinations cv + dw stay 

in the subspace. 

First fact: Every subspace contains the zero vector. The plane in R3 has to go through 
(0, 0, 0). We mention this separately, for extra emphasis, but it follows directly from rule (ii). 
Choose c = 0, and the rule requires 0v to be in the subspace. 

Planes that don't contain the origin fail those tests. When vis on such a plane, -v and 0v

are not on the plane. A plane that misses the origin is not a subspace. 

Lines through the origin are also subspaces. When we multiply by 5, or add two vectors 
on the line, we stay on the line. But the line must go through (0, 0, 0). 

Another subspace is all of R 3. The whole space is a subspace (of itself). That is a fourth
subspace in the figure. Here is a list of all the possible subspaces of R 3 : 

(L) Any line through (0, 0, 0)
(P) Any plane through (0, 0, 0)

(R 3) The whole space
(Z) The single vector (0, 0, 0)
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If we try to keep only part of a plane or line, the requirements for a subspace don't hold.Look at these examples in R 2• 

Example 1 Keep only the vectors (x, y) whose components are positive or zero (this isa quarter-plane). The vector (2, 3) is included but ( -2, -3) is not. So rule (ii) is violatedwhen we try to multiply by c = -1. The quarter-plane is not a subspace. 

Example 2 Include also the vectors whose components are both negative. Now we havetwo quarter-planes. Requirement (ii) is satisfied; we can multiply by any c. But rule (i) nowfails. The sum of v = (2, 3) and w = (-3, -2) is (-1, 1), which is outside the quarter­planes. Two quarter-planes don't make a subspace. 

Rules (i) and (ii) involve vector addition v + w and multiplication by scalars like cand d. The rules can be combined into a single requirement-the rule for subspaces:

Example 3 Inside the vector space M of all 2 by 2 matrices, here are two subspaces :
(U) All upper triangular matrices [ � � ] (D) All diagonal matrices [ � � ] .

Add any two matrices in U, and the sum is in U. Add diagonal matrices, and the sum isdiagonal. In this case D is also a subspace of U ! The zero matrix alone is also a subspace,
when a, b, and d all equal zero. For a smaller subspace of diagonal matrices, we could require a = d. The matrices aremultiples of the identity matrix I. These al form a "line of matrices" in Mand U and D. Is the matrix I a subspace by itself? Certainly not. Only the zero matrix is. Your mindwill invent more subspaces of 2 by 2 matrices-write them down for Problem 6. 

The Column Space of A

The most important subspaces are tied directly to a matrix A. We are trying to solve
Av = b. If A is not invertible, the system is solvable for some b and not solvable for
other b. We want to describe the good right sides b----the vectors that can be written as Atimes v. Those b' s form the "column space" of A. Remember that Av is a combination of the columns of A. To get every possible b, weuse every possible v. Start with the columns of A, and take all their linear combinations. 

This produces the column space of A It contains not just the n columns of A ! 

The column space consists of all combinations of the columns. 

The combinations are all possible vectors Av. They fill the column space C(A).This column space is crucial to the whole book, and here is why. To solve Av = bis to 

express bas a combination of the columns. The right side b has to be in the column space 

produced by A on the left side. If bis not in C(A), Av = b has no solution.
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The system Av = b is solvable if and only if b is in the column space of A 

When b is in the column space, it is a combination of the columns. The coefficients in that 
combination give us a solution v to the system Av = b. 

Suppose A is an m by n matrix. Its columns have m components (not n). So the 
columns belong to Rm. The column space of A is a subspace of Rm (not Rn ). The set 
of all column combinations Ax satisfies rules (i) and (ii) for a subspace : When we add 
linear combinations or multiply by scalars, we still produce combinations of the columns. 
The word "subspace" is always justified by taking all linear combinations. 

Here is a 3 by 2 matrix A, whose column space is a subspace of R 3. The column space 
of A is a plane in Figure 5.2. 

Plane = C (A) = all vectors Av 

Figure 5.2: The column space C(A) is a plane contammg the two columns of A. 
Av= bis solvable when bis on that plane. Then bis a combination of the columns. 

We drew one particular b (a combination of the columns). This b = Av lies on the plane. 
The plane has zero thickness, so most right sides b in R 3 are not in the column space. 
For most b there is no solution to our 3 equations in 2 unknowns. 

Of course (0, 0, 0) is in the column space. The plane passes through the origin. There is 
certainly a solution to Av = 0. That solution, always available, is v = __ .

To repeat, the attainable right sides b are exactly the vectors in the column space. One 
possibility is the first column itself-take v1 = 1 and v2 = 0. Another combination is the 
second column-take v1 = 0 and v2 = 1. The new level of understanding is to see all 

combinations-the whole subspace is generated by those two columns. 

Notation The column space of A is denoted by C(A). Start with the columns and take all 
their linear combinations. We might get the whole Rm or only a small subspace. 
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Important Instead of columns in Rm , we could start with any set of vectors in a vector
space V. To get a subspace SS of V, we take all combinations of the vectors in that set: 

S set of vectors sin V (S is probably not a subspace)
SS all combinations of vectors in S (SS is a subspace) 

the subspace of V "spanned" by S

When S is the set of columns, SS is the column space. When there is only one nonzero
vector v in S, the subspace SS is the line through v. Always SS is the smallest subspace
containing S. This is a fundamental way to create subspaces and we will come back to it. 

The subspace SS is the "span" of S, containing all combinations of vectors in S. 

Example 4 Describe the column spaces (they are subspaces of R2
) for these matrices:

I=[��] and A= [ t � ] and B = [ � 2 3 ]
0 4 

Solution The column space of I is the whole space R2
. Every vector is a combination of

the columns of I. In vector space language, C ( I) equals R 2. 

The column space of A is only a line. The second column (2, 4) is a multiple of the first
column (1, 2). Those vectors are different, but our eye is on vector spaces. The column space
contains ( 1, 2) and ( 2, 4) and all other vectors ( c, 2c) along that line. The equation Av = b

is only solvable when b is on the line. 
For the third matrix (with three columns) the column space C(B) is all of R2

. Every b
is attainable. The vector b = (5, 4) is column 2 plus column 3, so v can be (0, 1, 1). The
same vector (5, 4) is also 2(column 1) + column 3, so another possible vis (2, 0, 1). This
matrix has the same column space as I-any b is allowed. But now v has extra components
and Av = b has more solutions-more combinations that give b. 

The next section creates the nullspace N(A), to describe all the solutions of Av = 0.
This section created the column space C(A), to describe all the attainable right sides b.

• REVIEW OF THE KEY IDEAS •

1. Rn contains all column vectors with n real components.

2. M (2 by 2 matrices) and Y (functions) and Z (zero vector alone) are vector spaces.

3. A subspace containing v and w must contain all their combinations cv + dw.

4. The combinations of the columns of A form the column space C (A). Then the column
space is "spanned" by the columns. 

5. Av = b has a solution exactly when bis in the column space of A.
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• WORKED EXAMPLES • 

5.1 A We are given three different vectors b1 , b2 , b3 . Construct a matrix so that theequations Av = b1 and Av = b2 are solvable, but Av = b3 is not solvable. How can you
decide if this is possible ? How could you construct A ?

Solution We want to have b1 and b2 in the column space of A. Then Av = b1 and
Av = b2 will be solvable. The quickest way is to make b1 and b2 the two columns of A.

Then the solutions are v = (1, 0) and v = (0, 1).
Also, we don't want Av = b3 to be solvable. So don't make the column space any

larger! Keeping only the columns b1 and b2, the question is: Do we already have b3 ?
Is Av= [ b1 b2 ] [ �� ] = b3 solvable? Is b3 a combination of b1 and b2 ?

If the answer is no, we have the desired matrix A. If b3 is a combination of b1 and b2 , then it is not possible to construct A. The column space C(A) will have to contain b3 . 

5.1 8 Describe a subspace S of each vector space V, and then a subspace SS of S.
V 3 all combinations of ( 1, 1, 0, 0) and (1, 1, 1, 0) and ( 1, 1, 1, 1)V2 all vectors v perpendicular to u = (1, 2, 1), sou· v = 0 
V4 all solutions y(x) to the equation d4y/dx4 

= 0
Describe each V two ways: (1) All combinations of .... (2) All solutions of ....

Solution V3 starts with three vectors. A subspace S comes from all combinations of thefirst two vectors (1, 1, 0, 0) and (1, 1, 1, 0). A subspace SS of S comes from all multiples( c, c, 0, 0) of the first vector. So many possibilities.
A subspace S of V 2 is the line through ( 1, -1, 1). This line is perpendicular to u.The zero vector z = (0, 0, 0) is in S. The smallest subspace SS is Z.
V 4 contains all cubic polynomials y = a + bx + cx2 

+ dx3
, with d4y / dx4 

= 0. The
quadratic polynomials (without an x3 term) give a subspace S. The linear polynomialsare one choice of SS. The constants y = a could be SSS. 

In all three parts we could take S = V itself, and SS = the zero subspace Z.
Each V can be described as all combinations of .... and as all solutions of .... :

all combinations of the 3 vectors all combinations of (1, 0, -1) and (1, -1, 1)
all combinations of 1, x, x2

, x3 

V 3 = all solutions of v1 - v2 = 0.V 2 = all solutions of u · v = 0.
V 4 = all solutions to d4y / dx4 

= 0.
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Problem Set 5.1 

Questions 1-10 are about the "subspace requirements": v + w and cv (and then all

linear combinations cv + dw) stay in the subspace.

1 One requirement can be met while the other fails. Show this by finding 

(a) A set of vectors in R 2 for which v + w stays in the set but ½v may be outside.

(b) A set of vectors in R2 (other than two quarter-planes) for which every cv stays
in the set but v + w may be outside.

2 Which of the following subsets of R 3 are actually subspaces? 

(a) The plane of vectors (b1, b2, b3) with b1 = h
(b) The plane of vectors with b1 = 1. 

(c) The vectors with bib2b3 = 0. 

(d) All linear combinations of v = (1, 4, 0) and w == (2, 2, 2).

(e) All vectors that satisfy b1 + b2 + b3 = 0. 
(f) All vectors with b1 ::; b2 ::; h

3 Describe the smallest subspace of the matrix space M that contains 

4 Let P be the plane in R3 with equation x + y - 2z == 4. The origin (0, 0, 0) is not in 
P ! Find two vectors in P and check that their sum is not in P. 

5 Let Po be the plane through (0, 0, 0) parallel to the previous plane P. What is the 
equation for Po? Find two vectors in Po and check that their sum is in Po. 

6 The subspaces of R 3 are planes, lines, R 3 itself, or Z containing only ( 0, 0, 0). 

(a) Describe the three types of subspaces of R2
. 

(b) Describe all subspaces of D, the space of 2 by 2 diagonal matrices.

7 (a) The intersection of two planes through (0, 0, 0) is probably a __ but it could
be a . It can't be Z !

(b) The intersection of a plane through (0, 0, 0) with a line through (0, 0, 0) is
probably a __ but it could be a __ .

( c) If S and T are subspaces of R 5, prove that their intersection S n T is a
subspace of R 5. Here S n T consists of the vectors that lie in both subspaces.
Check the requirements on v + w and cv.

8 Suppose P is a plane through (0, 0, 0) and Lis a line through (0, 0, 0). The smallest 
vector space P + L containing both P and L is either __ or __ . 
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9 (a) Show that the set of invertible matrices in Mis not a subspace.
(b) Show that the set of singular matrices in M is not a subspace.

10 True or false ( check addition in each case by an example) : 

(a) The symmetric matrices in M (with AT = A) form a subspace.
(b) The skew-symmetric matrices in M (with AT = -A) form a subspace.
(c) The unsymmetric matrices in M (with AT =/- A) form a subspace.

Questions 11-19 are about column spaces C(A) and the equation Av = b. 

11 Describe the column spaces (lines or planes) of these particular matrices: 
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12 For which right sides (find a condition on b1 , b2 , b3) are these systems solvable? 

(b) [ � ! l [ Vi ] = [ t� l-1 -4 V2 b3 

13 Adding row 1 of A to row 2 produces B. Adding column 1 to column 2 produces C. 
Which matrices have the same column space ? Which have the same row space ? 

A = [ � ! ] and B = [ ! � ] and C = [ � ! ] .
14 For which vectors (b1, b2 , b3) do these systems have a solution? 

15 (Recommended) If we add an extra column b to a matrix A, then the column space gets 
larger unless __ . Give an example where the column space gets larger 
and an example where it doesn't. Why is Av = b solvable exactly when the 
column space doesn't get larger? Then it is the same for A and [ A b]. 

16 The columns of AB are combinations of the columns of A. This means : The

column space of AB is contained in (possibly equal to) the column space of A. 
Give an example where the column spaces of A and AB are not equal. 
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17 Suppose Av = band Aw = b* are both solvable. Then Az = b + b* is solvable. 
What is z? This translates into: If b and b* are in the column space C(A), then 
b + b* is also in C(A). 

18 If A is any 5 by 5 invertible matrix, then its column space is __ . Why ? 

19 True or false ( with a counterexample if false) : 

(a) The vectors b that are not in the column space C(A) form a subspace.

(b) If C(A) contains only the zero vector, then A is the zero matrix.

( c) The column space of 2A equals the column space of A.

(d) The column space of A - I equals the column space of A (test this).

20 Construct a 3 by 3 matrix whose column space contains (1, 1, 0) and (1, 0, 1) but not 
(1, 1, 1). Construct a 3 by 3 matrix whose column space is only a line. 

21 If the 9 by 12 system Av = bis solvable for every b, then C(A) must be __ . 

Challenge Problems 

22 Suppose S and T are two subspaces of a vector space V. The sum S + T contains all 
sums s + t of a vector s in S and a vector t in T. Then S + T is a vector space. 

If S and T are lines in Rm , what is the difference between S + T and S U T? 
That union contains all vectors from S and all vectors from T. Explain this state­
ment: The span of SU Tis S + T. 

23 If S is the column space of A and T is C(B), then S + T is the column space of 
what matrix M ? The columns of A and B and M are all in Rm . (I don't think 
A+ Bis always a correct M.) 

24 Show that the matrices A and [ A AB] (this has extra columns) have the same 
column space. But find a square matrix with C(A2 ) smaller than C(A). 

25 Ann by n matrix has C(A) = Rn exactly when A is an __ matrix. 
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5.2 The Nullspace of A: Solving Av= 0

This section is about the subspace containing all solutions to Av = 0. Them by n matrix A
can be square or rectangular. One immediate solution is v = 0. For invertible matrices this is
the only solution. For other matrices, not invertible, there are nonzero solutions to Av = 0. 
Each solution v belongs to the nullspace of N(A). 

Elimination will find all solutions and identify this very important subspace. 

The nullspace of A consists of all solutions to Av = 0. These vectors v are in Rn.

Check that the solution vectors form a subspace. Suppose v and w are in the nullspace, 
so that Av = 0 and Aw = 0. The rules of matrix multiplication give A( v + w) = 0 + 0. 
The rules also give A( cv) = cO. The right sides are still zero. Therefore v + w and cv are 
also in the nullspace N(A). Since we can add and multiply without leaving the nullspace, it 
is a subspace. 

The solution vectors v haven components. They are vectors in Rn , so the nullspace 
N(A) is a subspace of Rn. The column space C(A) is a subspace of Rm. 

If the right side b is not zero, the solutions of Av = b do not form a subspace. The 
vector v = 0 is only a solution if b = 0. When the set of solutions does not include v = 0, 
it cannot be a subspace. Section 5.3 will show how the solutions to Av = b (if there are any 
solutions) are shifted away from the origin by one particular solution Vp, 

Example 1 x + 2y + 3z = 0 comes from the 1 by 3 matrix A = [ 1 2 3 ].
This equation Av = 0 produces a plane through the origin (0, 0, 0). The plane is a 
subspace of R3

, and it is the nullspace of A. 
The solutions to x + 2y + 3z = 6 also form a plane, but not a subspace. 

Example 2 Describe the nullspace of A = [ ! � ] . This matrix is singular !

Solution Apply elimination to the linear equations Av = 0:

V1 + 2V2 = 0 
3v1 + 6v2 = 0 

--+ 

There is really only one equation. The second equation is the first equation multiplied 
by 3. In the row picture, the line v1 + 2v2 = 0 is the same as the line 3v1 + 6v2 = 0. 
That line is the nulls pace N (A). It contains all solutions v = ( v1, v2). 

To describe this line of solutions, here is an efficient way. Choose one point on the line 
( one "special solution"). Then all points on the line are multiples of this one. We choose the 
second component to be v2 = 1 (a special choice). From the equation v1 + 2v2 = 0, the first 
component must be v1 = -2. The special solutions is (-2, 1): 

Special 

solution 
The nullspace of A = [ ! �] contains all multiples of s = [ -�] . 
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This is the best way to describe the nullspace, by computing special solutions to Av = 0.
The nulls pace consists of all combinations of the special solutions. 

The plane x + 2y + 3z = 0 in Example 1 had two special solutions:

[ J 2 3] m � O has the speciru solutions s, � n l and 8

, � n l
Those vectors s 1 and s2 lie on the plane x + 2y + 3z = 0, which is the nullspace of
A= [ 1 2 3]. All vectors on the plane are combinations of s 1 and s2. 

Notice what is special about s 1 and s2. They have ones and zeros in the last two
components. Those components are "free" and we choose them specially as 1 and 0.Then the first components -2 and -3 are determined by the equation Av = 0. The first column of A = [ 1 2 3] contains the pivot, so the first component v 1 is not

free. The free components correspond to columns without pivots. This description of specialsolutions will be completed after one more example. The special choice ( one or zero) is only for the free variables in the special solutions.
Example 3 Describe the nullspaces N (A), N ( B), N ( C) of these three matrices:

A=[! �] C = [ A 2A] = [! 2
8

2
6

Solution The equation Av = 0 has only the zero solution v = 0. The nullspace is Z.It contains only the single point v = 0 in R2
. This comes from elimination: 

A is invertible. There are no special solutions. All columns of this A have pivots. The rectangular matrix B has the same nullspace Z. The first two equations in Bv = 0
again require v = 0. The last two equations would also force v = 0. When we addextra equations, the nullspace certainly cannot become larger. The extra rows impose more
conditions on the vectors v in the nullspace. The rectangular matrix C is different. It has extra columns instead of extra rows. Thesolution vector v has four components. Elimination will produce pivots in the first two
columns of C, but the last two columns are "free". They don't have pivots: 

2 pivot columns 

2 free columns 

2
8

2 
6 1:] becomes U = [ � � 2 4]

0 4 

t t t t 

pivot columns free columns 

For the free variables v3 and v4, we make special choices of ones and zeros. First v3 = 1,
v4 = 0 and second v3 = 0, v4 = 1. Then the pivot variables v1 and v2 are determined.
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Solve Uv = 0 to get two special solutions in the nullspace of C (and U).

Special solutions 

s1 and s2 

+- pivot +- variables
+- free +- variables
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One more comment to anticipate what is coming soon. Elimination will not stop at the
upper triangular U ! We can continue to make this matrix simpler, in two ways : 

1. Produce zeros above the pivots. Eliminate upward.

2. Produce ones in the pivots. Divide the whole row by its pivot.

Those steps don't change the zero vector on the right side of the equation. The nullspace
stays the same. This nullspace becomes easiest to see when we reach the reduced row

echelon form R. It has I in the pivot columns, when row 2 is divided by 2 : 
Reduced 

formR 
U=[� 2 

2 
2 4 ]
0 4 

becomes R= [ � �
t t 

2 
0 � ] .

Now the pivot columns contain I 

I subtracted row 2 of U from row 1, and then multiplied row 2 by ½. The original twoequations have simplified to x 1 + 2x3 = 0 and x2 + 2x4 = 0. The first special solution is still s 1 = (-2, 0, 1, 0). All special solutions are unchanged.Special solutions are much easier to find from the reduced system Rv = 0. 
Before moving tom by n matrices A and their nullspaces N(A) and special solutions,allow me to repeat one comment. For many matrices, the only solution to Av = 0 is v =

0. Their nullspaces N(A) = Z contain only that zero vector. The only combination of
the columns that produces b = 0 is then the "zero combination" or "trivial combination".The solution is trivial (just v = 0) but the idea is not trivial. 

This case of a zero nullspace Z is of the greatest importance. It says that the columns 
of A are independent. No combination of columns gives the zero vector (except the zerocombination). All columns have pivots, and no columns are free. You will see this idea of
independence again ... 

Solving Av= 0 by Elimination 

This is important. A is rectangular and we still use elimination. We solve m equations inn unknowns. After A is simplified to U or to R, we read off the solution (or solutions).
Remember the two stages (forward and back) in solving Av = 0: 
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1. Elimination takes A to a triangular U (or its reduced form R).

2. Back substitution in Uv = 0 or Rv = 0 produces v.

You will notice a difference in back substitution, when A and U have fewer than n pivots. 
We are allowing all matrices in this chapter, not just the nice ones (which are square matrices with inverses). Pivots are still nonzero. The columns below the pivots are still zero. But it might happen that a column has no pivot. That free column doesn't stop the calculation. Go on

to the next column. The first example is a 3 by 4 matrix with two pivots: 
Elimination on 

1 2 3 
2 8 10 1� l 13 

Certainly an = 1 is the first pivot. Clear out the 2 and 3 below that pivot: 
[ 1 1 

A-+ 0 0 

0 0 !!] ( subtract 2 x row 1)( subtract 3 x row 1)
The second column has a zero in the pivot position. We look below the zero for a nonzero entry, ready to do a row exchange. The entry below that position is also zero. Elimination can do nothing with the second column. This signals trouble, which we expect anyway for a rectangular matrix. There is no reason to quit, and we go on to the third column. The second pivot is 4 (but it is in the third column). Subtracting row 2 from row 3 clears out that third column below the pivot. The pivot columns are 1 and 3 : 

Triangular U 

Only two pivots 

The last equation 

became O = 0

The fourth column also has a zero in the pivot position-but nothing can be done. There is no row below it to exchange, and forward elimination is complete. The matrix has three rows, four columns, and only two pivots. The third equation in Av = 0 is the sum of the first two. It is automatically satisfied (0 = 0) when the first two equations are satisfied. Elimination reveals the inner truth about Av = 0. Soon we push on from U to R.Now comes back substitution, to find all solutions to U 11 = 0. With four unknowns and only two pivots, there are many solutions. The question is how to write them all down. A good method is to separate the pivot variables from the free variables.

p 

F 

The pivot variables are v1 and V3. Columns 1 and 3 contain pivots.

The free variables are v2 and v4. Columns 2 and 4 have no pivots.
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The free variables v2 and v4 can be given any values whatsoever. Then back substitution finds
the pivot variables v1 and v3. (In Chapter 2 no variables were free. When A is invertible, all
variables are pivot variables.) The simplest choices for the free variables are ones and zeros.
Those choices give the special solutions.

Special solutions to v1 + v2 + 2v3 + 3v4 = 0 and 4v3 + 4v4 = 0

• Set v2 = 1 and v4 = 0. By back substitution V3 = 0. Then v1 = -1.

• Set v2 = 0 and v4 = l. By back substitution v3 = -1. Then v1 = -1.

These special solutions solve Uv = 0 and therefore Av= 0. They are in the nullspace. The
good thing is that every solution is a combination of the special solutions. 

Complete solution 

to Av= 0

special special complete 

Please look again at that answer. It is the main goal of this section. The vector 81 

(1) 

( -1, 1, 0, 0) is the special solution when v2 = 1 and v4 = 0. The second special solu­
tion has v2 = 0 and v4 = l. All solutions are linear combinations of 81 and 82• The
special solutions are in the nullspace N(A), and their combinations fill the whole nullspace.

There is a special solution for each free variable. If no variables are free-this means all
n columns have pivots-then the only solution to Uv = 0 and Av= 0 is the trivial solution
v = 0. With no free variables, the nullspace is Z. 

Example 4 Find the nullspace of U = [ � � �] . 

The second column of U has no pivot. So v2 is free. The special solution has v2 = 1. Back
substitution into 9v3 = 0 gives v3 = 0. Then v1 + 5v2 = 0 or v1 = -5. The solutions to
U v = 0 are multiples of one special solution 81 : 

The nullspace of U is a line in R3
. 

It contains multiples of the special solution 81 = (-5, 1, 0).
One variable is free. 

The matrix R has zeros above and below the pivots, and ones in the pivots.

By continuing elimination on U, the 7 is removed and the pivot changes from 9 to 1. The
final result will be the reduced row echelon form R : 

[
157

] [
15 

U = 0 0 9 reduces to R = 0 0 � ] = rref(U).
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Echelon Matrices 

Forward elimination goes from A to U. It acts by row operations, including row exchanges. 
It goes on to the next column when no pivot is available in the current column. The m by n 

"staircase" U is an echelon matrix. 

Here is a 4 by 7 echelon matrix with the three pivots p highlighted in boldface : 

X X X 

p X X 

0 0 0 

0 0 0 

X X 

X X 

0 p 

0 0 � l 
Three pivot variables v1, v2, v6 
Four free variables vs, v4, v5, V7 

Four special solutions in N{U) 
R will have p = l and bold x = 0 

Question What are the column space and the nullspace for this matrix ? 

Answer The columns have four components so they lie in R4
. (Not in R3 !) The fourth 

component of every column is zero. The column space C(U) consists of all vectors of the 

form (b1,b2,b3,0). For those vectors we can solve Uv = b by back substitution. These 
vectors b are all possible combinations of the seven columns. 

The nullspace N(U) is a subspace of R7
. The solutions to Uv = 0 are all the combi-

nations of the four special solutions-one for each free variable: 

1. Columns 3, 4, 5, 7 have no pivots. The free variables are V3, v4, v5, v7. 

2. Set one free variable to 1 and set the other free variables to zero.

3. Solve U v = 0 for the pivot variables v1, v2, v6 to get a special solution.

The nonzero rows of an echelon matrix go down in a staircase pattern. The pivots are the 
first nonzero entries in those rows. There is a column of zeros below every pivot. 

The Counting Theorem 

Counting the pivots leads to an extremely important theorem. Suppose A has more columns 
than rows. With n > m there is at least one free variable. The system Av = 0 has at least 
one special solution. This solution is not zero ! 

Suppose Av= 0 has more unknowns than equations (n > m, more columns than rows). 
Then there are nonzero solutions in N(A). There must be free columns, without pivots. 

A short wide matrix (n > m) always has nonzero vectors in its nullspace. There must be at 
least n - m free variables, since the number of pivots cannot exceed m. (The matrix only 
has m rows, and a row never has two pivots.) Of course a row might have no pivot-which 
means an extra free variable. But here is the point: When there is a free variable, it can be 
set to 1. Then the equation Av = 0 has a nonzero solution. 
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To repeat: There are at most m pivots. With n > m, the system Av = 0 has a nonzero 
solution. Actually there are infinitely many solutions, since any multiple cv is also a solution. 
The nullspace contains at least a line of solutions. With two free variables, there will be two 
special solutions and the nullspace will be even larger. 

The nullspace is a subspace. Its "dimension" is the number of special solutions. 
This central idea-the dimension of a subspace-is defined and explained in this chapter. 

Dimension of C (A) = rank of matrix = number of pivot columns 
Dimension of N (A) = nullity of matrix = number of free columns. 

Counting Theorem with n columns Rank r plus nullity n - r equals n.

The Reduced Row Echelon Matrix R 

From an echelon matrix U we go one more step. Continue with a 3 by 4 example: 

[
l 1 2 3

] U= 0 0 4 4 . 
0 0 0 0 

We can divide the second row by 4. Then both pivots equal 1. We can subtract 2 times this 
new row [ 0 0 1 1 ] from the row above. The reduced row echelon matrix R has zeros
above the pivots as well as below : 

Reduced row 

echelon matrix 
R � ,,,f(A) � [ � 

1 0 
0 1 
0 0 

Pivot rows 

contain I

R has l's as pivots. Zeros above pivots come from upward elimination.

Important If A is invertible, its reduced row echelon form is the identity matrix R = I. 
This is the ultimate in row reduction. Of course the nullspace is then Z. 

The zeros in R make it easy to find the special solutions (the same as before): 

1. Set v2 = 1 and v4 = 0. Solve Rv = 0. Then v1 = -1 and v3 = 0. 
Those numbers -1 and Oare sitting in column 2 of R (with plus signs). 

2. Set v2 = 0 and V4 = l. Solve Rv = 0. Then v1 = -1 and V3 = -1.
Those numbers -1 and -1 are sitting in column 4 ( with plus signs). 

By reversing signs we can read off the special solutions directly from R. The nullspace 
N(A) = N(U) = N(R) contains all combinations of the special solutions: 

v � v, r-i 1 +v, l: � 1 � (conpktesolution of Av d).

The next section of the book moves firmly from U to the row reduced form R. The 
MATLAB command [ R, pi vcol ] = rref( A) produces R and a list of the pivot columns. 
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• REVIEW OF THE KEY IDEAS •

1. The nullspace N(A) is a subspace of Rn . It contains all solutions to Av = 0. 

2. Elimination produces an echelon matrix U, and then a row reduced R (pivots = 1). 

3. Every free column of U or R leads to a special solution. The free variable equals 1
and the other free variables equal 0. Back substitution solves Av = 0. 

4. The complete solution to Av = 0 is a combination of the special solutions. 

5. A has at least one free column and one special solution if n > m: N(A) is not Z.

6. The count of pivot columns and free columns is r + ( n - r) = n. 

• WORKED EXAMPLES • 

3.2 A Create a 3 by 4 matrix R whose special solutions to Rv = 0 are s 1 and s2 : 

pivot columns 1 and 3 
free variables v2 and V4 

Describe all matrices A with this nullspace N(A) = combinations of s 1 and s2• 

Solution The reduced matrix R has pivots = 1 in columns 1 and 3. There is no third 
pivot, so the third row of R is all zeros. The free columns 2 and 4 will be combinations of 
the pivot columns: 

[ 
1 3 0 

R = 0 0 l
0 0 0 

has Rs1 = 0 and Rs2 = 0. 

The entries 3, 2, 6 in Rare the negatives of -3, -2, -6 in the special solutions! 
R is only one matrix (one possible A) with the required nullspace. We could do any 

elementary operations on R--exchange rows, multiply a row by any c =I= 0, subtract any 
multiple of one row from another. R can be multiplied (on the left) by any invertible

matrix, without changing its nullspace. 

Every 3 by 4 matrix has at least one special solution. These matrices have two.
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3.2 B Find the special solutions and the complete solutions to Av = 0 and A2v = 0: 

[3 6 3 6] A2 = [ A A ] = 1 2 1 2 .

Which are the pivot columns? Which are the free variables? What is R in each case? 

Solution Av = 0 has one special solution s = (-2, 1). The line of all cs is the 
complete solution. The first column of A is its pivot column, and v2 is the free variable: 

A=[f �]-+R=[� �] 
Notice that R2 has only one pivot column (the first column). All the variables v2, v3, v4 

are free. There are three special solutions to A2 v = 0 (and also R2 v = 0):

With r pivots, A has n - r free variables and Av= 0 has n - r special solutions. 

Problem Set 5.2 

Questions 1-4 and 5-8 are about the matrices in Problems 1 and 5. 

1 Reduce these matrices to their ordinary echelon forms U : 

[ 
1 2 2 4 6 l 

A= 1 2 3 6 9 
0 0 1 2 3 

Which are the free variables and which are the pivot variables ? 

2 For the matrices in Problem 1, find a special solution for each free variable. (Set the 
free variable to I. Set the other free variables to zero.) 

3 By combining the special solutions in Problem 2, describe every solution to Av = 0 
and Bv = 0. The nullspace contains only v = 0 when there are no __ . 

4 By further row operations on each U in Problem 1, find the reduced echelon form R.

True or false: The nullspace of R equals the nullspace of U.

5 By row operations reduce this new A and B to triangular echelon form U. Write down 
a 2 by 2 lower triangular L such that B = LU.

[
-1 3 5

] A= -2 6 10 
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6 For the same A and B, find the special solutions to Av= 0 and Bv = 0. For an m by 

n matrix, the number of pivot variables plus the number of free variables is __ . 

7 In Problem 5, describe the nullspaces of A and B in two ways. Give the equations for 

the plane or the line, and give all vectors v that satisfy those equations as combinations 

of the special solutions. 

8 Reduce the echelon forms U in Problem 5 to R. For each R draw a box around the 

identity matrix that is in the pivot rows and pivot columns. 

Questions 9-17 are about free variables and pivot variables. 

9 True or false ( with reason if true or example to show it is false) : 

(a) A square matrix has no free variables.

(b) An invertible matrix has no free variables.

( c) An m by n matrix has no more than n pivot variables.

( d) An m by n matrix has no more than m pivot variables.

10 Construct 3 by 3 matrices A to satisfy these requirements (if possible): 

(a) A has no zero entries but U = I.

(b) A has no zero entries but R = I.

( c) A has no zero entries but R = U.

(d) A= U = 2R.

11 Put as many l's as possible in a 4 by 7 echelon matrix U whose pivot columns are 

(a) 2, 4, 5

(b) 1, 3, 6, 7

(c) 4 and 6.

12 Put as many l's as possible in a 4 by 8 reduced echelon matrix R so that the free 

columns are 

(a) 2, 4, 5, 6

(b) 1, 3, 6, 7, 8.

13 Suppose column 4 of a 3 by 5 matrix is all zero. Then v4 is certainly a __ variable. 

The special solution for this variable is the vector s = __ .

14 Suppose the first and last columns of a 3 by 5 matrix are the same (not zero). Then 

__ is a free variable. Find the special solution for this variable. 

15 Suppose an m by n matrix has r pivots. The number of special solutions is __ . 

The nullspace contains only v = 0 when r = __ . The column space is all of Rm 

whenr =
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16 The nullspace of a 5 by 5 matrix contains only v = 0 when the matrix has 
pivots. The column space is R5 when there are __ pivots. Explain why. 
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17 The equation x - 3y - z = 0 determines a plane in R3
. What is the matrix A in 

this equation? Which are the free variables? The special solutions are (3, 1, 0) and 

18 (Recommended) The plane x - 3y - z = 12 is parallel to the plane x - 3y - z = 0 
in Problem 17. One particular point on this plane is (12, 0, 0). All points on the plane 
have the form (fill in the first components) 

19 Prove that U and A = LU have the same nullspace when L is invertible: 

If Uv = 0 then LUv = 0. If LUv = 0, how do you know Uv = 0? 

20 Suppose column 1 + column 3 + column 5 = 0 in a 4 by 5 matrix with four pivots. 
Which column is sure to have no pivot (and which variable is free)? What is the 
special solution ? What is the nullspace? 

Questions 21-28 ask for matrices (if possible) with specific properties. 

21 Construct a matrix whose nullspace consists of all combinations of (2, 2, 1, 0) and 
(3, 1, 0, 1). 

22 Construct a matrix whose nullspace consists of all multiples of ( 4, 3, 2, 1 ). 

23 Construct a matrix whose column space contains (1, 1, 5) and (0, 3, 1) and whose nullspace 
contains (1, 1, 2). 

24 Construct a matrix whose column space contains (1, 1, 0) and (0, 1, 1) and whose nullspace 
contains (1, 0, 1) and (0, 0, 1). 

25 Construct a matrix whose column space contains (1, 1, 1) and whose nullspace is the 
line of multiples of (1, 1, 1, 1 ). 

26 Construct a 2 by 2 matrix whose nullspace equals its column space. This is possible. 

27 Why does no 3 by 3 matrix have a nullspace that equals its column space? 

28 (Important) If AB = 0 then the column space of B is contained in the __ of A.

Give an example of A and B.

29 The reduced form R of a 3 by 3 matrix with randomly chosen entries is almost sure to 
be __ . What reduced form R is virtually certain if the random A is 4 by 3 ? 
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30 Show by example that these three statements are generally false: 

(a) A and AT have the same nullspace.

(b) A and AT have the same free variables.

( c) If R is the reduced form of A then RT is the reduced form of AT .

31 If the nullspace of A consists of all multiples of v = (2, 1, 0, 1 ), how many pivots 
appear in U ? What is R ? 

32 If the special solutions to Rv = 0 are in the columns of these N, go backward to find 
the nonzero rows of the reduced matrices R : 

N � [ [ n and N � [ n and N � [ l (empty 3 by !)

33 (a) What are the five 2 by 2 reduced echelon matrices R whose entries are all O's and
l's?

(b) What are the eight 1 by 3 matrices containing only O's and 1 's? Are all eight of
them reduced echelon matrices R?

34 Explain why A and -A always have the same reduced echelon form R. 

Challenge Problems 

35 If A is 4 by 4 and invertible, describe all vectors in the nullspace of the 4 by 8 matrix 
B=[A A]. 

36 How is the nullspace N( C) related to the spaces N(A) and N(B), if C = [ � ] ?

37 Kirchhoff's Law says that current in = current out at every node. This network has 
six currents y1, ... , Y6 ( the arrows show the positive direction, each Yi could be 
positive or negative). Find the four equations Ay = 0 for Kirchhoff's Law at the 
four nodes. Reduce to Uy = 0. Find three special solutions in the nullspace of A. 

Y3 

3 



5.3. The Complete Solution to Av = b 273 

5.3 The Complete Solution to Av = b 

To solve Av = b by elimination, include bas a new column next to then columns of A. This 
"augmented matrix" is [ A b]. When the steps of elimination operate on A (the left side 
of the equations), they also operate on the right side b. So we always keep correct equations, 
and they become simple to solve. 

There are still r pivot columns and n - r free columns in A. Each free column still 
gives a special solution to Av = 0. The new question is to find a particular solution Vp 

with Av
p 

= b. That solution will exist unless elimination leads to an impossible equation 
(a zero row on the left side, a nonzero number on the right side). Then back substitution 
finds v

p
. Every solution to Av = b has the form v

P 
+ Vn. 

In the process of elimination, we discover the rank of A. This is the number of pivots. 
The rank is also the number of nonzero rows after elimination. We start with m equations 
Av = 0, but the true number of equations is the rank r. We don't want to count repeated 
rows, or rows that are combinations of previous rows, or zero rows. You will soon see that 
r counts the number of independent rows. And the great fact, still to prove and explain, 
is that the rank r also counts the number of independent columns:

number of pivots = number of independent rows = number of independent columns.

This is part of the Fundamental Theorem of Linear Algebra in Section 5 .5. 
An example of Av = b will make the possibilities clear. 

[� 
3 0 

!] [ �!] m 
has the 

[� 
3 0 2

�]�[Ab] 0 1 augmented 0 1 4 
3 1 matrix 3 1 6 

The augmented matrix is just [ A b]. When we apply the usual elimination steps to A
and b, all the equations stay correct. Those steps produce R and d. 

In this example we subtract row 1 from row 3 and then subtract row 2 from row 3. 
This produces a row of zeros in R, and it changes b to a new right sided= (1, 6, 0): 

[� 
3 0 

i] mi m 
has the 

[� 
3 0 2 

i] � [R d] 
0 1 augmented 0 1 4 
0 0 matrix 0 0 0 

That very last zero is crucial. The third equation has become O = 0, and we are safe. 
The equations can be solved. In the original matrix A, the first row plus the second row 
equals the third row. If the equations are consistent, this must be true on the right side 
of the equations also ! The all-important property on the right side was 1 + 6 = 7. 

Here are the same augmented matrices for any vector b = (b1, b2, b3): 

3 
0 
3 

0 
1 
1 

2 
4 
6 

3 
0 
0 

0 
1 
0 

2 
4 
0 

=[Rd] 
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Now we get 0 = 0 in the third equation provided b3 - b1 - b2 = 0. This is b1 + b2 = b3 . 

The example satisfied this requirement with 1 + 6 = 7. You see how elimination on [ A b]
brings out the test on b for Av = b to be solvable. 

One Particular Solution 

For an easy solution Vp, choose the free variables to be v2 = v4 = 0. Then the two 
nonzero equations give the two pivot variables v 1 = 1 and v3 = 6. Our particular solution 
to Av = b (and also Rv = d) is Vp = (1, 0, 6, 0). This particular solution is my favorite :
free variables are zero, pivot variables come from d. The method always works. 

For Rv = d to have a solution, zero rows in R must also be zero in d.

When I is in the pivot rows and columns of R, the pivot variables are in d : 

[ � 

3 

0 

0 

0 

1 

0 il [il [n
Pivot variables 1, 6 
Free variables 0, 0 

Notice how we choose the free variables (as zero) and solve for the pivot variables. After 
the row reduction to R, those steps are quick. When the free variables are zero, the pivot 
variables for Vp are already seen in the right side vector d.

Vparticular The particular solution vp solves 

Vnullspace The n - r special solutions solve 

That particular solution to Av = b and Rv = d is (1, 0, 6, 0). The two special (null) 
solutions to Rv = 0 come from the two free columns of R, by reversing signs of 3, 2, and 4. 
Please notice the form I use for the complete solution V p + 'Vn to Av= b: 

Complete solution 
onev

p 

manyvn 

Question Suppose A is a square invertible matrix, m = n = r. What are v
p and Vn? 

Answer If A- 1 exists, the particular solution is the one and only solution v = A- 1 b.

There are no special solutions or free variables. R = I has no zero rows. The only vector 
in the nulls pace is Vn = 0. The complete solution is v = v

p 
+ Vn = A- 1 b + 0. 

This was the situation in Chapter 4. We didn't mention the nullspace in that chapter. 
N (A) contained only the zero vector. Reduction goes from [ A b] to [ J A- 1 b] . The 
original Av = bis reduced all the way to v = A- 1 b which is d. This is a special case 
here, but square invertible matrices are the ones we see most often in practice. So they got 
their own chapter at the start of linear algebra. 
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For small examples we can reduce [ A b] to [ R d] . For a large matrix, 
MATLAB does it better. One particular solution (not necessarily ours) is A \b from the
backslash command. Here is an example with full column rank. Both columns have pivots.

Example 1 Find the condition on (b1, b2, b3) for Av= b to be solvable, if 

A� u j] and b� [::]

This condition puts bin the column space of A. Find the complete v = Vp + Vn, 

Solution Use the augmented matrix, with its extra column b. Subtract row 1 of [ A b]
from row 2, and add 2 times row 1 to row 3 to reach [ R d] :

1 
1 

-1

The last equation is O = 0 provided b3 + b1 + b2 = 0. This is the condition that puts
b in the column space; then Av = b will be solvable. The rows of A add to the zero row. 
So for consistency (these are equations!) the entries of b must also add to zero. This example 
has no free variables since n - r = 2 - 2. Therefore no special solutions. The rank is r = n 
so the only null solution is Vn = 0. The unique particular solution to Av = band Rv = d 

is at the top of the augmented column d :

Only one solution V = Vp + Vn = [ �:1
_ -b�

2
] + [ � ] .

If b3 +bi + b2 is not zero, there is no solution to Av= b (vp doesn't exist).
This example is typical of an extremely important case : A has full column rank.

Every column has a pivot. The rank is r = n. The matrix is tall and thin (m 2 n).
Elimination puts I at the top, when A is reduced to R with rank n : 

F 11 1 k R [ I ] [ n by n identity matrix ]u co umn ran = 0 m - n rows of zeros 
There are no free columns or free variables. The nullspace is Z. 
We will collect together the different ways of recognizing this type of matrix. 

Every matrix A with full column rank ( r = n) has all these properties : 

1. All columns of A are pivot columns. They are independent.

2. There are no free variables or special solutions.

3. Only the zero vector v = 0 solves Av = 0 and is in the nullspace N(A). 

4. If Av = b has a solution (it might not) then it has only one solution.

(1)
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In the essential language of the next section, A has independent columns if r = n.

Av = 0 only happens when v = 0. Eventually we will add one more fact to the list: 
The square matrix AT A is invertible when the columns are independent. 

In Example 1 the nullspace of A (and R) has shrunk to the zero vector. The solution to 
Av = bis unique (if it exists). There will be m - n (here 3 - 2) zero rows in R. There are 
m - n conditions on b to have O = 0 in those rows. Then b is in the column space. 
With full column rank, Av = b has one solution or no solution: m > n is overdetermined. 

The Complete Solution 

The other extreme case is full row rank. Now Av = b has one or infinitely many solutions. 
In this case A must be short and wide (m :::; n). A matrix has full row rank if r = m 

("independent rows"). Every row has a pivot, and here is an example. 

Example 2 There are n = 3 unknowns but only m = 2 equations : 

Full row rank 
x+ y+z=3 

X + 2y - Z = 4 
(rankr = m = 2) 

These are two planes in xyz space. The planes are not parallel so they intersect in a line. 
This line of solutions is exactly what elimination will find. The particular solution will

be one point on the line. Adding the nullspace vectors Vn will move us along the line.

Then v = Vp + Vn gives the whole line of solutions. 
We find V

p 
and Vn by elimination on [ A b]. Subtract row 1 from row 2 and then 

subtract row 2 from row 1 : 

[ � 
1 1
2 -1

1 1 
1 -2 

3] [1 0 3 2] 
1

-+ 0 1-2 1 
=[Rd]. 

The particular solution has free variable V3 = 0. The special solution has v3 = 1 : 

V
particular comes directly from don the right side: V

p 
= (2, 1, 0) 

s comes from the third column (free column) of R: s = ( -3, 2, 1) 
It is wise to check that V

p ands satisfy the original equations Av
p 

=band As = 0:

2+1 3 -3+2+1 0 
2+2 = 4 -3+4-1 = 0 

The nullspace solution Vn is any multiple of s. It moves along the line of solutions, 
starting at V

particular· Please notice again how to write the answer:

Complete solution 



5.3. The Complete Solution to Av = b 277 

Line of solutions to Av = b 

Av= b+O 

Line of solutions to Av = 0 

Figure 5.3: Complete solution= one particular solution+ all nullspace solutions. 

The line of solutions is drawn in Figure 5.3. Any point on the line could have been chosen 

as the particular solution; we chose the point with v3 = 0. 

The particular solution is not multiplied by an arbitrary constant ! The special solution 

is, and you understand why. 

Now we summarize this short wide case of full row rank. If m < n the equations Av = b 

are underdetermined (they have many solutions if they have one). 

Every matrix A with full row rank ( r = rn) has all these properties : 

1. All m rows have pivots, and R has no zero rows.

2. Av = b has a solution for every right side b.

3. The column space is the whole space Rm.

4. There are n - r = n - m special solutions in the nullspace of A.

In this case with m pivots, the rows are "linearly independent." We are more than ready 

for the idea of linear independence, as soon as we summarize the four possibilities­

which depend on the rank. Notice how r, m, n are the critical numbers. 

The four possibilities for linear equations depend on the rank r. 

r = rn and r=n Square and invertible Av =b has 1 solution 

r =rn and r<n Short and wide Av=b has oo solutions 

r <m and r=n Tall and thin Av =b has O or 1 solution 

r <m and r<n Not full rank Av =b has O or oo solutions 

The reduced R will fall in the same category as the matrix A. They have the same rank. 

In case the pivot columns happen to come first, we can display these four possibilities for 

R. For Rv = d and Av = b to be solvable, d must end m m - r zeros.

Four types 

Their ranks 

R=[I] [IF] [�] [� :] 
r = rn = n r = rn < n r = n < rn r < rn, r < n 

Cases 1 and 2 have full row rank r = m. Cases 1 and 3 have full column rank r n. 

Case 4 is the most general in theory and it is the least common in practice. 
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• REVIEW OF THE KEY IDEAS •

1. The rank r is the number of pivots. The reduced matrix R has m - r zero rows.
2. Av = b is solvable if and only if the last m - r equations in Rv = dare O = 0. 
3. One particular solution Vp has all free variables equal to zero.
4. The r pivot variables are determined after the n - r free variables are chosen.
5. Full column rank r = n means no free variables : one solution or no solution. 
6. Full row rank r = m means one solution if m = n or infinitely many if m < n.

• WORKED EXAMPLES • 

5.3 A This question connects elimination (pivot columns and back substitution) to 
column space-nullspace-rank-solvability (the full picture). A is 3 by 4 with rank 2: 

v1 + 2v2 + 3v3 + 5v4 = b1 
Av= b 1s 2v1 + 4v2 + 8v3 + 12v4 = b2 3v1 + 6v2 + 7v3 + 13v4 = b3 

1. Reduce [ A b] to [ U c], so that Av = b becomes a triangular system U v = c. 
2. Find the condition on b1, b2, b3 for Av= b to have a solution.
3. Describe the column space of A. Which plane in R3 is the column space?
4. Describe the nullspace of A. What are the special solutions in R4 ?
5. Find a particular solution to Av = (0, 6, -6) and then the complete solution. 

Solution 

1. The multipliers in elimination are 2 and 3 and -1. They take [ A b] into [ U c].
[ 1 2 3 5 b1 l [ 1 2 3 5 b1 ] [ 1 2 3 5 2 4 8 12 b2 -+ 0 0 2 2 b2 - 2b1 -+ 0 0 2 2 3 6 7 13 b3 0 0 -2 -2 b3 - 3b1 0 0 0 0 
2. The last equation shows the solvability condition b3 + b2 - 5b1 = 0. Then O = 0. 
3. First description : The column space is the plane containing all combinations of thepivot columns (1, 2, 3) and (3, 8, 7). Those columns are in A, not in U or R.

Second description: The column space contains all vectors with b3 + b2 - 5b1 = 0. That makes Av = b solvable. All columns of A pass this test b3 + b2 - 5b1 = 0. This

is the equation for the plane in the first description of the column space. 

4. The special solutions have free variables v2 = 1, v4 = 0 and then v2 = 0, v4 = 1: s1 = (-2, 1, 0, 0) and s2 = (-2, 0, -1, 1). The nullspace contains all c1s1 + c2s2. 
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5. One particular solution Vp has free variables = zero. Back substitute in U v = c:

Particular solution to Av
p 

= b = (0, 6, -6)
This vector b satisfies b3 + b2 - 5b1 = 0
The complete solution is v = Vp + Vn· 

5.3 B Find the complete solution v = Vp + Vn by forward elimination on [A b] :

[ ; � ! � i r �: 1 [ ; i 4 8 6 8 
�: 

10 

Find numbers Y1,Y2,Y3 so that y1 (rowl) + y2 (row2) + y3 (row3) = zero row.

Check that b = ( 4, 2, 10) satisfies the condition y1b1 + y2b2 + y3b3 = 0. Why is this
the condition for the equations to be solvable and b to be in the column space?

Solution Forward elimination on [A b] produces a zero row in [U c]. The third equation
becomes O = 0. The equations are consistent (and solvable because O = 0): 

[ ; � ! � � l --+ [ � � ; � _: l --+ [ � � ; � _: l ·4 8 6 8 10 0 0 2 8 -6 0 0 0 0 0 

Columns 1 and 3 contain pivots. The variables v2 and v4 are free. If v2 = v4 = 0 we can
solve (back substitution) for the particular solution v

p 
= (7, 0, - 3, 0). The 7 and -3 appear

again if elimination continues all the way to the row reduced [R d]: 

[ � � ; � _: l --+ [ � � � � _: ] --+ [ � � � -: -� l ·0000 0 0000 0 000 0 0 

For the nullspace part Vn with b = 0, set the free variables v2, v4 to 1 ,  0 and also 0, 1 :

Special solutions s1=(- 2,1 ,0,0) and s2=(4,0,-4,1)

Then the complete solution to Av= b (and Rv = d) is Vcomplete = Vp + c1s1 + c2s2.
The rows of A produced the zero row from 2(row 1 )  + (row 2) - (row 3) = (0, 0, 0, 0).

Thus y = (2, 1 ,  -1 ). The same combination for b = (4, 2, 10) gives 2(4) + (2) - (10) = 0.
Combinations that give y TA = zero must also give y Tb = zero. Otherwise no solution. 

Later we will say this in different words: y = (2, 1, -1 ), is in the nullspace of AT .
Then y will be perpendicular to every b in the column space of A. I am looking ahead ...
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Problem Set 5.3 

1 (Recommended) Execute the six steps of Worked Example 3.4 A to describe the 

column space and nullspace of A and the complete solution to Av = b:

A=[�:�!] b=[��i [!] 
2 3 5 2 b3 5 

2 Carry out the same six steps for this matrix A with rank one. You will find two

conditions on b1, b2, b3 for Av = b to be solvable. Together these two conditions

put b into the __ space. 

Questions 3-15 are about the solution of Av = b. Follow the steps in the text to vp 
and vn. Start from the augmented matrix [ A b]. 

3 Write the complete solution as Vp plus any multiple of s in the nullspace: 

X + 3y + 3z = 1
2x+6y+9z = 5 

-x - 3y + 3z = 5.

4 Find the complete solution (also called the general solution) to 

5 Under what condition on bi , b2, b3 is this system solvable? Include b as a fourth 

column in elimination. Find all solutions when that condition holds: 

X + 2y - 2z = b1

2x + 5y - 4z = b2 

4x + 9y - 8z = b3.

6 What conditions on b1, b2, b3, b4 make each system solvable ? Find v in that case : 
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7 Show by elimination that (b1, b2, b3) is in the column space if b3 - 2b2 + 4b1 = 0. 

What combination y1 (row 1) + y2 (row 2) + y3 (row 3) gives the zero row? 

8 Which vectors ( b1 , b2 , b3
) are in the column space of A ? Which combinations of the 

rows of A give zero ?

(b) A= [ � � ! l
2 4 8 

9 In Worked Example 5.3 A, combine the pivot columns of A with the numbers
-9 and 3 in the particular solution Vp. What is that linear combination and why?

10 Construct a 2 by 3 system Av = b with particular solution Vp = (2, 4, 0) and
null (homogeneous) solution Vn = any multiple of (1, 1, 1). 

11 Why can't a 1 by 3 system have Vp = (2, 4, 0) and Vn = any multiple of (1, 1, 1)? 

12 (a) If Av= b has two solutions v1 and v2 , find two solutions to Av= 0.

(b) Then find another solution to Av= b.

13 Explain why these are all false: 

(a) The complete solution is any linear combination of Vp and Vn­

(b) A system Av= b has at most one particular solution.

(c) The solution Vp with all free variables zero is the shortest solution (minimum
length llvll). Find a 2 by 2 counterexample.

(d) If A is invertible there is no solution Vn in the nullspace.

14 Suppose column 5 has no pivot. Then v5 is a __ variable. The zero vector (is) 
(is not) the only solution to Av = 0. If Av = b has a solution, then it has __
solutions. 

15 Suppose row 3 has no pivot. Then that row is __ . The equation Rv = dis only
solvable provided __ . The equation Av = b (is) (is not) (might not be) solvable.

Questions 16-21 are about matrices of "full rank" r = m or r = n. 

16 The largest possible rank of a 3 by 5 matrix is __ . Then there is a pivot in 
every __ of U and R. The solution to Av = b (always exists) (is unique).
The column space of A is __ . An example is A = __ .
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17 The largest possible rank of a 6 by 4 matrix is __ . Then there is a pivot in 
every __ of U and R. The solution to Av = b (always exists) (is unique).

The nullspace of A is __ . An example is A = ___ .

18 Find by elimination the rank of A and also the rank of AT : 

A= 2 11 5 [ 1 4 0 l
and A--

[
1

� 

0

� :
l

l (rank depends on q). -1 2 10
19 Find the rank of A and also of AT A and also of AA T : 

20 Reduce A to its echelon form U. Then find a triangular L so that A= LU.

A=[3 4 1 OJ 
6 5 2 1 

and A= 2 2 0 3 . [
1 o 1 o

l 
0 6 5 4 

21 Find the complete solution in the form Vp + Vn to these full rank systems : 

(a) X + y + Z = 4 (b) 
x+y+z=4 

X -y + Z = 4. 

22 If Av = b has infinitely many solutions, why is it impossible for Av

right side) to have only one solution? Could Av = B have no solution? 

23 Choose the number q so that (if possible) the ranks are (a) 1, (b) 2, (c) 3: 

24 Give examples of matrices A for which the number of solutions to Av = bis 

(a) 0 or 1, depending on b

(b) oo, regardless of b

( c) 0 or oo, depending on b

( d) 1, regardless of b.

B (new 



5.3. The Complete Solution to Av = b

25 Write down all known relations between rand m and n if Av = b has
(a) no solution for some b
(b) infinitely many solutions for every b
(c) exactly one solution for some b, no solution for other b
(d) exactly one solution for every b.
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Questions 26-33 are about Gauss-Jordan elimination (upwards as well as downwards) 

and the reduced echelon matrix R.

26 Continue elimination from U to R. Divide rows by pivots so the new pivots are all 1.Then produce zeros above those pivots to reach R : 

27 Suppose U is square with n pivots (an invertible matrix). Explain why R = I.

28 Apply Gauss-Jordan elimination to U v = 0 and U v = c. Reach Rv = 0 and
Rv =d: 

[ U O ] = [ � � � � ] and [ U c ] = [ � � � : ] .

Solve Rv = 0 to find Vn (its free variable is v2 (its free variable is v2 = 0). 1). Solve Rv 

29 Apply Gauss-Jordan elimination to reduce to Rv = 0 and Rv = d:

d to find Vp 

Solve Uv = 0 or Rv = 0 to find Vn (free variable= 1). What are the solutions to
Rv =d? 

30 Reduce to U v = c (Gaussian elimination) and then Rv = d (Gauss-Jordan) :

Find a particular solution Vp and all homogeneous (null) solutions Vn. 
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31 Find matrices A and B with the given property or explain why you can't: 
(a) The only solution of Av� [ � ] is v � [ � ]
(b) Tbe only solution ofBv � [ � ] is v � [ i l 

32 Reduce [ A b] to [ R d] and find the complete solution to Av = b:

33 The complete solution to Av = [ ! ] is v = [ � ] + c [ � ] . Find A.

Challenge Problems 

34 Suppose you know that the 3 by 4 matrix A has the vectors = (2, 3, 1, 0) as the only special solution to Av = 0.
(a) What is the rank of A and the complete solution to Av = 0?
(b) What is the exact row reduced echelon form R of A ? Good question.(c) How do you know that Av = b can be solved for all b?

35 If you have this information about the solutions to Av = b for a specific b, what doesthat tell you about the shape of A (m and n)? And possibly about r and b. 

1. There is exactly one solution.2. All solutions to Av = b have the form v = [ i] + c [ ½ ] .3. There are no solutions.4. All solutions to Av = b have the form v = [ ! ] + c [ �]
5. There are infinitely many solutions.

36 Suppose Av = b and Cv = b have the same (complete) solutions for every b.Is it true that A = C ? 
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5.4 Independence, Basis and Dimension 

This important section is about the true size of a subspace. There are n columns in an m by 

n matrix. But the true "dimension" of the column space is not necessarily n. The dimension 

is measured by counting independent columns-and we have to say what that means. We 

will see that the true dimension of the column space is the rank r. 

The idea of independence applies to any vectors u1, ... , Un in any vector space. Most 

of this section concentrates on the subspaces that we know and use-especially the column 

space and the nullspace of A. In the last part we also study "vectors" that are not column 

vectors. They can be matrices, or solutions to differential equations. They can be linearly 

independent (or dependent). First come the key examples using column vectors. 

The goal is to understand a basis: independent vectors that "span the space". 

Any basis Each vector in the space is a unique combination of the basis vectors. 

We are at the heart of our subject, and we cannot go on without a basis. The four essential 

ideas in this section (with first hints at their meaning) are: 

1. Independent vectors

2. Spanning a space

3. Basis for a space

4. Dimension of a space

(no extra vectors) 

(their combinations produce the whole space) 

(independent and spanning: not too many or too few) 

(the number of vectors in each and every basis) 

Bases for Important Spaces 

Here are three examples to show you what a basis looks like (before the definition). 

A basis is a set of vectors that perfectly describes all vectors in the space. Take all 

combinations of the basis vectors to get every vector in the space. 

1. Basis for the column space of A

A natural choice is the r pivot columns. Their combinations yield all columns.

2. Basis for the nullspace of A

A natural choice is the set of n - r special solutions to Av = 0.

3. Basis for the space of null solutions to Ay" + By' + Cy = 0

A natural choice is the pair of solutions Y1 = e
sit and Y2 = e82 t . These exponents

s1 and s2 satisfy As2 
+ Bs + C = 0, so y1 and y2 solve the differential equation.

Ifs is a double root of the quadratic, then y2 = te
st can be the second member

of the basis. (Always two y's for a linear second order equation.) All other solutions

are combinations of Y1 and Y2- Then Y1 and Y2 span the solution space.
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The dimension of a space is easy. Just count the number of basis vectors:

Column space 
Dimension r

Nullspace 
Dimension n - r 

Solution space 
Dimension 2 

Those bases were natural choices. They are not at all the only bases. A space has many 
different bases. The column space of this matrix A is the whole space R2

. 

A= [ � 
3
5 

Bases for C(A) 
1. Pivot columns 1 and 2
2. Columns 1 and 3, or columns 2 and 3
3. Any independent v and win R2 

The vectors (1, 0) and (0, 1) are a perfectly good basis for the column space of this A.

Linear Independence 

Our first definition of independence is not so conventional, but you are ready for it. 

DEFINITION The columns of A are linearly independent when the only solution to 
Av= 0 is v = 0. No combination Av of the columns is the zero vector, except v = 0. 

The columns are independent when the nullspace N (A) contains only the zero vector. 
Let me illustrate linear independence (and dependence) with three vectors in R3

: 

1. If three vectors are not in the same plane, they are independent. No combination of
u1, u2, u3 in Figure 5 .4 gives zero except the combination O u1 + 0 u2 + 0 u3. 

2. If three vectors w1, w2, W3 are in the same plane, they are dependent.

This idea of independence applies to 7 vectors in 12-dimensional space. If they are the 
columns of A, and independent, the nullspace only contains v = 0. None of the vectors is a 
combination of the other six vectors. 

Now we express the same idea in different words. The following definition of indepen­
dence will apply to any sequence of vectors in any vector space. When the vectors are the 
columns of A, the two definitions say exactly the same thing.

Notin r' 
aplane� u 2 

U3 

In a plane 
0 

�--
-
----

�

-,�

2 
W1 

Figure 5.4: Independent vectors u1, u2, u3. Only 0u1 + 0u2 + 0u3 gives the vector 0.

Dependent vectors w1, w2, w3• The combination w1 - w2 + w3 is (0, 0, 0). 
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DEFINITION The sequence of vectors u1, .. . , Un is linearly independent if the only

combination that gives the zero vector is 0u1 + 0u2 + · · · + Oun .

X1 u1 + x2u2 + · · · + Xn Un = 0 only happens when all x's are zero. (1) 

If a combination gives 0, when the x's are not all zero, the vectors are dependent.

Correct language: "The sequence of vectors is linearly independent." Acceptable

shortcut: "The vectors are independent." Not acceptable: "The matrix is independent." 
A sequence of vectors is either dependent or independent. They can be combined to give 

the zero vector (with nonzero x's) or they can't. So the key question is: Which combinations 
of the vectors give zero? We begin with some small examples in R2

: 

(a) The vectors (1, 0) and (1, 0.00001) are independent.

(b) The vectors ( 1, 1) and ( -1, -1) on the same line through ( 0, 0) are dependent.

(c) The vectors (1, 1) and (0, 0) are dependent because of the zero vector.

( d) In R 2, any three vectors ( a, b) and ( c, d) and ( e, f) are dependent.

The columns of A are dependent exactly when there is a nonzero vector in the nullspace.

If one of the u's is the zero vector, independence has no chance. Why not? 
Three vectors in R 2 cannot be independent ! The matrix A with those three columns 

must have a free variable and then a special solution As = 0. The nullspace is larger than 
Z. For three vectors in R3

, we put them in a matrix and try to solve Av= 0.
Example 1 The columns of this A are dependent. The nonzero vector v has Av = 0. 

The rank is only r = 2. Independent columns produce full column rank r = n.

In that matrix the rows are also dependent. Row 1 minus row 3 is the zero row. For a 
square matrix, we will show that dependent columns imply dependent rows. 
Question How to find that solution to Av = 0? The systematic way is elimination. 

A-u ! n reduces toR-
u 

! -! l
The solution v = (-3, 1, 1) was exactly the special solution. It shows how the free column 
( column 3) is a combination of the pivot columns. That kills independence ! 

Full column rank n.

The columns of A are independent when the rank is r = n : 
n pivots and no free variables. Only v = 0 is in the nullspace. 
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Dependent columns if n > m. Suppose seven columns have five components each( m = 5 is less than n = 7). Then the columns must be dependent. Any seven vectors
from R5 are dependent. The rank of A cannot be larger than 5. There cannot be more than
five pivots in five rows. Av = 0 has at least 7 - 5 = 2 free variables, so it has nonzerosolutions-which means that the columns are dependent. 

Any set of n vectors in Rm must be linearly dependent if n > m.
This type of matrix has more columns than rows-it is short and wide. The columns arecertainly dependent if n > m, because Av = 0 has a nonzero solution. Elimination willreveal the r pivot columns. Those r pivot columns are independent. 

Note Another way to describe linear dependence is this : "One vector is a combination of

the other vectors." That sounds clear. Why don't we say this? Our definition was longer: 
"Some combination gives the zero vector, other than the trivial combination with every 

v = O." Our definition doesn't pick out one particular vector as guilty.
All columns of A are treated the same. We look at Av = 0, and it has a nonzero

solution or it hasn't. In the end that is better than asking if the last column (or the first, ora column in the middle) is a combination of the others. 
Spanning a Subspace 

The first subspace in this book was the column space. Starting with columns a1, ... , an , thesubspace was filled out by including all their v combinations v1 a 1 + · · · + vn an .

The column space consists of all combinations Av of the columns. We now introduce thesingle word "span" to describe this : The column space is spanned by the columns. 

A set of vectors spans a space if their linear combinations fill the space.

The columns of a matrix span its column space. They might be dependent. 

Example 2 [ 
1 ] and u2 = [ 0 ] span the full two-dimensional space R2 U1 = 0 1 

Example 3 U1 = [ � ] , Uz = [ � ] , U3 = [ i ] also span the full space R2
. 

Example 4 W1 [ � ] and w2 = [ =� ] only span a line in R2
. So does w1 alone.

Think of two vectors coming out from (0, 0, 0) in 3-dimensional space. Generally they
span a plane. Your mind fills in that plane by taking linear combinations. Mathematically you know other possibilities : two vectors could span a line, three vectors could span all of
R3

, or they could span only a plane or a line or Z. 
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It is possible that three vectors span only a line in R 5, or ten vectors span only a plane. 
They are certainly not independent ! 

The columns span the column space. Here is a new subspace-spanned by the rows. 
The combinations of the rows produce the "row space". 

DEFINITION The row space of a matrix is the subspace of Rn spanned by the rows. 

The row space of A is C(AT ). It is the column space of AT. 

The rows of an m by n matrix haven components. They are vectors in Rn-or they 
would be if they were written as column vectors. There is a quick way to fix that: 
Transpose the matrix. Instead of the rows of A, look at the columns of AT . Same numbers, 
but now in the column space of AT . This row space C ( AT ) is a subspace of Rn . 

Example 5 The column space of A is a plane. The row space is all of R2
. 

2 
7 

! ] . Here m = 3 and n = 2. 

The row space is spanned by the three rows of A (which are columns of AT). The columns 
are in Rm spanning the column space. Same numbers, different vectors, different spaces. 

A Basis for a Vector Space 

Two vectors can't span all of R3
, even if they are independent. Four vectors can't be 

independent, even if they span R 3. We want enough independent vectors to span the 

space (and not more). A "basis" is just right. 

DEFINITION A basis for a vector space is a sequence of vectors with two properties : 

The basis vectors are linearly independent and they span the space. 

This combination of properties is fundamental to linear algebra. Every vector u in the space 
is a combination of the basis vectors, because they span the space. More than that, the com­
bination that produces u is unique, because the basis vectors u1, ... , Un are independent: 

There is one and only one way to write u as a combination of the basis vectors. 

Reason : Suppose u = a1 u1 + · · ·+an Un and also u = bi u1 + · · · + bn Un . By subtraction 
(a1 - b1 )u1 + · · · + (an - bn )un is the zero vector. From the independence of the u's, 
each ai - bi = 0. Hence ai = bi, and there are not two ways to produce u. 
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Example 6 The columns of the identity matrix I are the "standard basis" for Rn.

The basis vectors i = [ � ] and j = [ � ] are independent. They span R2
. 

Everybody thinks of this basis first. The vector i goes across and j goes straight up.
The columns of the 3 by 3 identity matrix are the standard basis i, j, k for R 3• 

Now we find many other bases (infinitely many). The basis is not unique! 

Example 7 (Important) The columns of every invertible n by n matrix give a basis for Rn :

Invertible matrix 
Independent columns A =
Column space is R 3 

Singular matrix 
[ 

1 
Dependent columns B = 1
Column space -/- R 3 1

0 
1 
1 

The only solution to Av= 0 is v = A- 10 = 0. The columns are independent. They span
the whole space Rn-because every vector bis a combination of the columns. Av= b can
always be solved by v = A- 1 b. Do you see how everything comes together for invertible
matrices? Here it is in one sentence: 

The vectors v 1, ... , Vn are a basis for Rn exactly when they are the columns of an

n by n invertible matrix. The vector space Rn has infinitely many different bases. 

When the columns are dependent, we keep only the pivot columns-the first two columns
of B above, with its two pivots. They are independent and they span the column space. 

The pivot columns of A are a basis for its column space. The pivot rows are a basis
for the row space. The pivot rows of the reduced R are also a basis for the row space.

Example 8 This matrix is not invertible. Its columns are not a basis for anything !

One pivot column 
One pivot row (r = 1) A = [ � : ] reduces to R = [ � � ] .

Column 1 of A is the pivot column. That column alone is a basis for its column space.
Column 1 of R is not a basis for the column space of A. That column (1, 0) in R does
not even belong to the column space of A. Elimination changes column spaces. (But the
dimension remains the same: here dimension= 1.) 

The row space of A is the same as the row space of R. It contains (2, 4) and (1, 2) and all
other multiples of those vectors. As always, there are infinitely many bases to choose from.
One natural choice is to pick the nonzero rows of R (rows with a pivot). So this matrix A
with rank one has only one vector in the basis: 

Basis for the column space : [ � ] . Basis for the row space : [ � ] .
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Example 9 Find bases for the column and row spaces of this rank two matrix : 
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Columns 1 and 3 are the pivot columns. They are a basis for the column space (of R !). 
The vectors in that column space all have the form b = (x, y, 0). This space is the 
"xy plane" inside the full xyz space. That plane is not R

2
, it is a subspace of R3

. 

Columns 2 and 3 are also a basis for the same column space. Which pairs of columns of R
are not a basis for its column space? 

The row space of R is a subspace of R4
. The simplest basis for that row space is the 

two nonzero rows of R. The third row (the zero vector) is in the row space too. But it is 
not in a basis for the row space. The basis vectors must be independent. 

Question Given five vectors in R7
, how do you find a basis for the space they span?

First answer Make them the rows of A, and eliminate to find the nonzero rows of R. 

Second answer Put the five vectors into the columns of A. Eliminate to find the pivot 
columns (of A not R). Could another basis have more vectors, or fewer? This question 
has a good answer: No ! All bases for a vector space contain the same number of vectors. 

Dimension of a Vector Space 

The number of vectors, in any and every basis, is the "dimension" of the space. 

We have to prove what was stated above. There are many choices for the basis vectors, but 
the number of basis vectors doesn't change. 

If u1, ... , Um and w1, ... , Wn are both bases for the same vector space, then m = n. 

Proof Suppose that there are more w's than u's. From n > m we want to reach a con­
tradiction. The u's are a basis, so w1 must be a combination of the u's. If w1 equals 
a11 u1 + · · · + am1 Um, this is the first column of a matrix multiplication U A: 

Each w is a 

combination 

of the u's 

We don't know each number aij, but we know the shape of A (it ism by n). The second 
vector w2 is also a combination of the u's. The coefficients in that combination fill the 
second column of A. The key is that A has a row for every u and a column for every w. 

A is a short wide matrix, since n > m. So Av= 0 has a nonzero solution. 

Av = 0 gives U Av = 0 which is W v = 0. A combination of the w 's gives zero ! 
Then thew's could not be a basis--our assumption n > mis not possible for two bases. 
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If m > n we exchange the u's and w's and repeat the same steps. The only way to avoid 
a contradiction is to have m = n. This completes the proof that m = n.

The number of basis vectors depends on the space-not on a particular basis. The number 
is the same for every basis, and it counts the "degrees of freedom" in the space. The dimen­
sion of the space Rn is n. We now introduce the important word dimension

for other vector spaces too. 

DEFINITION The dimension of a space is the number of vectors in every basis. 

This matches our intuition. The line through u = ( 1, 5, 2) has dimension one. It is a subspace 
with this one vector u in its basis. Perpendicular to that line is the plane 
x + 5y + 2z = 0. This plane has dimension 2. To prove it, we find a basis (-5, 1, 0) 
and (-2, 0, 1). The dimension is 2 because the basis contains two vectors. 

The plane is the nullspace of the matrix A = [ 1 5 2], which has two free variables. 
Our basis vectors (-5, 1, 0) and (-2, 0, 1) are the "special solutions" to Av= 0. Then - r

special solutions give a basis for the nullspace, so the dimension of N(A) is n - r.

Note about the language of linear algebra We never say "the rank of a space" or "the 
dimension of a basis" or "the basis of a matrix". Those terms have no meaning. It is the 
dimension of the column space that equals the rank of the matrix.

Bases for Matrix Spaces and Function Spaces 

The words "independence" and "basis" and "dimension" are not at all restricted to column 
vectors. We can ask whether three matrices A 1 , A2, A3 are independent. When they are in 
the space of all 3 by 4 matrices, some combination might give the zero matrix. We can also 
ask the dimension of the full 3 by 4 matrix space. (It is 12.) 

In differential equations, d2y / dx2 = y has a space of solutions. One basis is y = ex and 
y = e-x . Counting the basis functions gives the dimension 2 for the space of all solutions. 
(The dimension is 2 because of the second derivative.) 

Matrix spaces and function spaces may look a little strange after Rn . But in some way, 
you haven't got the ideas of basis and dimension straight until you can apply them to "vec­
tors" other than column vectors. 

Example 10 Find a basis for the space of 3 by 3 symmetric matrices. 

The basis vectors will be matrices! We need enough to span the space (then every A = 
AT is a combination). The matrices must be independent (combinations don't give the zero 
matrix). Here is one basis for the symmetric matrices (many other bases). 

[ ! 
0 
0 
0 

0 
0 
0 

1 
0 
0 

0 
0 
1 ! l
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You could write every A = AT as a combination of those six matrices. What coefficients 
would produce 1, 4, 5 and 4, 2, 8 and 5, 8, 9 in the rows? There is only one way to do 
this. The six matrices are independent. The dimension of symmetric matrix space (3 by 3 
matrices) is 6. 

To push this further, think about the space of all n by n matrices. One possible basis uses 
matrices that have only a single nonzero entry (that entry is 1). There are n2 positions for 
that 1, so there are n 2 basis matrices : 

The dimension of the whole n by n matrix space is n 2 . 

The dimension of the subspace of upper triangular matrices is ½n2 
+ ½n. 

The dimension of the subspace of diagonal matrices is n. 

The dimension of the subspace of symmetric matrices is ½n2 
+ ½n (why ?). 

Function spaces The equations d2y/dt2 
= 0 and d2y/dt2 

= -y and d2y/dt2 y 
involve the second derivative. In calculus we solve to find the functions y(t): 

y" = 0 
y" = -y 
y" = y 

is solved by any linear function y = ct + d 
is solved by any combination y = c sin t + d cost 
is solved by any combination y = cet 

+ de- t . 

That solution space for y" = -y has two basis functions: sin t and cost. The space for 
y" = 0 has t and 1. It is the "nullspace" of the second derivative ! The dimension is 2 in 
each case (these are second-order equations). We are finding the null solutions Yn ·

The solutions of y" = 2 don't form a subspace-the right side b = 2 is not zero. A 
particular solution is y = t2

. The complete solution is y = Y
p 

+ Yn = t2 
+ ct + d.

That complete solution is one particular solution plus any function in the nullspace. A 
linear differential equation is like a linear matrix equation Av = b. But we solve it by 
calculus instead of linear algebra. 

We end here with the space Z that contains only the zero vector. The dimension of this 
space is zero. The empty set (containing no vectors) is a basis for Z. We can never allow the 
zero vector into a basis, because then linear independence is lost. 

• REVIEW OF THE KEY IDEAS •

1. The columns of A are independent if v = 0 is the only solution to Av = 0.

2. The vectors u1, ... , Ur span a space if their combinations fill that space. Spanning
vectors can be dependent or independent.

3. A basis consists of linearly independent vectors that span the space. Every vector
in the space is a unique combination of the basis vectors.



294 Chapter 5. Vector Spaces and Subspaces 

4. All bases for a space have the same number of vectors. This number of vectors in a
basis is the dimension of the space.

5. The pivot columns are one basis for the column space. The dimension is the rank r.

6. The n - r special solutions will be seen as a basis for the nullspace.

• WORKED EXAMPLES • 

5.4 A Start with the vectors u1 = (1, 2, 0) and u2 = (2, 3, 0). (a) Are they linearly 
independent? (b) Are they a basis for any space? (c) What space V do they span? 
(d) What is the dimension of V? (e) Which matrices A have V as their column space?
(f) Which matrices have Vas their nullspace?

Solution 

(a) u1 and u2 are independent-the only combination to give O is Ou1 + Ou2. 

(b) Yes, they are a basis for the space they span.

(c) That space V contains all vectors (x, y, 0). It is the xy plane in R3
. 

( d) The dimension of V is 2 since the basis contains two vectors.

(e) This V is the column space of any 3 by n matrix A of rank 2, if row 3 is all zero.
In particular A could just have columns u1 and u2.

(f) This Vis the nullspace of any m by 3 matrix B of rank 1, if every row has the form
(0, 0, c). In particular take B = [0 0 1 ]. Then Bu1 = 0 and Bu2 = 0.

5.4 B (Important example) Suppose u1, ... , Un is a basis for Rn and the n by n 
matrix A is invertible. Show that Au1, ... , Aun is also a basis for Rn . 

Solution In matrix language: Put the basis vectors u1, ... , Un in the columns of an 
invertible(!) matrix U. Then Au1, ... , Aun are the columns of AU. Since A and U are 
invertible, so is AU and its columns give a basis. 

In vector language: Suppose c1Au1 + · · · + enAun = 0. This is Av = 0 with 
v = c1 u1 + · · · + CnUn . Multiply by A- 1 to reach v = 0. Linear independence of the u's 
forces all Ci = 0. This shows that the Au's are independent. 

To show that the Au's span Rn , solve c1Au1 + · · · + cnAUn = b. This is the same as 
c1 u1 + · · · + CnUn = A- 1b. Since the u's are a basis, this must be solvable for all b. 
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Problem Set 5.4 

Questions 1-10 are about linear independence and linear dependence. 

1 Show that u1, u2, u3 are independent but u1, u2, u3, u4 are dependent: 

Solve c1 u1 + c2u2 + c3u3 + c4u4 = 0 or Ac= 0. The u's go in the columns of A. 

2 (Recommended) Find the largest possible number of independent vectors among 

3 Prove that if a= 0 or d = 0 or f = 0 (3 cases), the columns of Uare dependent: 

4 

[ a b C l 
U

= � i ; . 

If a, d, f in Question 3 are all nonzero, show that the only solution to U v 
v = 0. Then the upper triangular Uhas independent columns. 

5 Decide the dependence or independence of 

(a) the vectors (1, 3, 2) and (2, 1, 3) and (3, 2, 1)

(b) the vectors (1, -3, 2) and (2, 1, -3) and (-3, 2, 1).

6 Choose three independent columns of Uand A. Then make two other choices. 

0 is 

7 If w1, w2, w3 are independent vectors, show that the differences v1 = w2 -w3 and 
v2 = w1 - w3 and v3 = w1 -w2 are dependent. Find a combination of the v's that
gives zero. Which singular matrix gives [ v1 v2 v3 ] = [ w1 w2 w3 ] A? 

8 If w1, w2, w3 are independent vectors, show that the sums v1 = w2 + w3 and 
V2 = W1 + W3 and V3 = W1 + W2 are independent. (Write C1 V1 + C2V2 + C3V3 = 0 
in terms of thew's. Find and solve equations for the e's, to show they are zero.) 
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9 Suppose u1, u2, U3, u4 are vectors in R3
. 

(a) These four vectors are dependent because __ .
(b) The two vectors u 1 and u2 will be dependent if __ .

(c) The vectors u1 and (0, 0, 0) are dependent because __ .

10 Find two independent vectors on the plane x + 2y -3z - t = 0 in R4
. Then find three 

independent vectors. Why not four? This plane is the nullspace of what matrix? 

Questions 11-14 are about the space spanned by a set of vectors. Take all linear com­

binations of the vectors, to find the space they span. 

11 Describe the subspace of R3 (is it a line or plane or R3?) spanned by 

(a) the two vectors (1, 1, -1) and (-1, -1, 1)

(b) the three vectors (0, 1, 1) and (1, 1, 0) and (0, 0, 0)

( c) all vectors in R 3 with whole number components

(d) all vectors with positive components.

12 The vector b is in the subspace spanned by the columns of A when has a 
solution. The vector c is in the row space of A when __ has a solution. 
True or false : If the zero vector is in the row space, the rows are dependent. 

13 Find the dimensions of these 4 spaces. Which two of the spaces are the same? 
(a) column space of A (b) column space of U (c) row space of A (d) row space
ofU:

[ 
1 1 0 l and U = [ 0

0

1 
2
0

1 0

0
1 l 

A= ! i -� 
14 v +wand v -ware combinations of v and w. Write v and was combinations of 

v + w and v -w. The two pairs of vectors __ the same space. When are they a 
basis for the same space? 

Questions 15-25 are about the requirements for a basis. 

15 If v1, ... , Vn are linearly independent, the space they span has dimension 
These vectors are a __ for that space. If the vectors are the columns of an m by n
matrix, then m is __ than n. If m = n, that matrix is __ . 

16 Suppose v1, v2, ... , v6 are six vectors in R4
. 

(a) Those vectors (do) (do not) (might not) span R4
. 

(b) Those vectors (are) (are not) (might be) linearly independent.

(c) Any four of those vectors (are)(are not)(might be) a basis for R4
. 
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17 Find three different bases for the column space of U = [ � � � � � ] . Then

find two different bases for the row space of U.

18 Find a basis for each of these subspaces of R4 
: 

(a) All vectors whose components are equal.

(b) All vectors whose components add to zero.
(c) All vectors that are perpendicular to (1, 1, 0, 0) and (1, 0, 1, 1 ).

( d) The column space and the nullspace of I ( 4 by 4).

19 The columns of A are n vectors from Rm. If they are linearly independent, what
is the rank of A? If they span Rm , what is the rank? If they are a basis for Rm ,
what then? Looking ahead: The rank r counts the number of __ columns. 

20 Find a basis for the plane x - 2y + 3z = 0 in R3
. Find a basis for the intersection

of that plane with the xy plane. Then find a basis for all vectors perpendicular to the
plane. 

21 Suppose the columns of a 5 by 5 matrix A are a basis for R5
. 

(a) The equation Av = 0 has only the solution v = 0 because __ .

(b) If bis in R5 then Av= bis solvable because the basis vectors R5
. 

Conclusion: A is invertible. Its rank is 5. Its rows are also a basis for R 5. 

22 Suppose S is a 5-dimensional subspace of R6
. True or false ( example if false) :

(a) Every basis for Scan be extended to a basis for R6 by adding one more vector.
(b) Every basis for R6 can be reduced to a basis for S by removing one vector.

23 U comes from A by subtracting row 1 from row 3 :

Find bases for the two column spaces. Find bases for the two row spaces. Find bases
for the two nullspaces. Which spaces stay fixed in elimination? 

24 True or false (give a good reason) :

(a) If the columns of a matrix are dependent, so are the rows.
(b) The column space of a 2 by 2 matrix is the same as its row space.

( c) The column space of a 2 by 2 matrix has the same dimension as its row space.

(d) The columns of a matrix are a basis for the column space.
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25 For which numbers c and d do these matrices have rank 2 ? 

[1 2 5 0 5] A= 0 0 c 2 2 
0 0 0 d 2 

and B = [ � : ] · 

Questions 26-28 are about spaces where the "vectors" are matrices. 

26 Find a basis (and the dimension) for these subspaces of 3 by 3 matrices: 

(a) All diagonal matrices.

(b) All skew-symmetric matrices (AT = -A).

27 Construct six linearly independent 3 by 3 echelon matrices U1, ... , U6, What space of 
3 by 3 matrices do they span? 

28 Find a basis for the space of all 2 by 3 matrices whose columns add to zero. 
Find a basis for the subspace whose rows also add to zero. 

Questions 29-32 are about spaces where the "vectors" are functions. 

29 (a) Find all functions that satisfy * = 0. 

(b) Choose a particular function that satisfies * = 3. 

(c) Find all functions that satisfy * = 3. 

30 The cosine space F 3 contains all combinations y( x) = A cos x + B cos 2x + C cos 3x. 
Find a basis for the subspace S with y(O) = 0. What is the dimension of S?

31 Find a basis for the space of functions that satisfy 

(a) * - 2y = 0 (b) 

32 Suppose y1, Y2, y3 are three different functions of x. The space they span could 
have dimension 1, 2, or 3. Give an example of y1, Y2, y3 to show each possibility. 

33 Find a basis for the space S of vectors ( a, b, c, d) with a + c + d = 0 and also for the 
space T with a + b = 0 and c = 2d. What is the dimension of the intersection S n T?

34 Which of the following are bases for R 3? 

(a) (1, 2, 0) and (0, 1, -1)

(b) (1, 1, -1), (2, 3, 4), (4, 1, -1), (0, 1, -1)

(c) (1,2,2),(-1,2,1),(0,8,0)

(d) (1,2,2),(-1,2,1),(0,8,6)

35 Suppose A is 5 by 4 with rank 4. Show that Av = b has no solution when the 5 by 5 
matrix [ A b] is invertible. Show that Av = bis solvable when [ A b] is singular. 

36 (a) Find a basis for all solutions to d4y/dx4 
= y(x).

(b) Find a particular solution to d4y / dx4 = y( x) + 1. Find the complete solution. 
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Challenge Problems 

37 Write the 3 by 3 identity matrix as a combination of the other five permutation 
matrices ! Then show that those five matrices are linearly independent. (Assume a 
combination gives c1Pi + · · · + c5P5 = zero matrix, and prove that each ci = 0.) 

38 Intersections and sums have dim(V) + dim(W) = dim(V n W) + dim(V + W). 
Start with a basis u1, ... , Ur for the intersection V n W. Extend with v1, ... , v8 to 
a basis for V, and separately with w 1, ... , Wt to a basis for W. Prove that the u's, 
v's and w's together are independent. The dimensions have (r + s) + (r + t) =

(r) + (r + s + t) as desired.

39 Inside Rn , suppose dimension (V) + dimension (W) > n. Why is some nonzero 
vector in both V and W? Start with bases v 1, ... , v

p 
and w1, ... , w

q
, p + q > n. 

40 Suppose A is 10 by 10 and A2 
= 0 (zero matrix): A times each column of A is 0.

This means that the column space of A is contained in the __ . If A has rank r, 
those subspaces have dimension r ::; 10 - r. So the rank of A is r ::; 5, if A2 

= 0. 
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5.5 The Four Fundamental Subspaces 

The figure on this page is the big picture of linear algebra. The Four Fundamental 
Subspaces are in position : Two orthogonal subspaces in Rn and two in Rm. For any b 

in the column space, the complete solution to Av = b has one particular solution Vp in the 
row space, plus any Vn in the nullspace. 

Av =b 

Avn = 0

Figure 5.5: The Four Fundamental Subspaces. The complete solution Vp + Vn to Av = b. 

The main theorem in this chapter connects rank and dimension. The rank of a matrix 
is the number of pivots. The dimension of a subspace is the number of vectors in a basis. 
We count pivots or we count basis vectors. The rank of A reveals the dimensions of 

all four fundamental subspaces. Here are the subspaces, including the new one. 
Two subspaces come directly from A, and the other two come from AT : 

Four Fundamental Subspaces 

1. The row space C (AT ) Subspace of Rn . 

2. The column space C (A) Subspace of Rm . 

3. The nullspace N (A) Subspace of Rn . 

4. The left nullspace N (AT ) Subspace of Rm . This is our new space.

Dimensions 

r 

r 

n-r

rn - r

In this book the column space and nullspace came first. We know C(A) and N(A) pretty 
well. Now the other two subspaces come forward. The row space contains all combinations 
of the rows. This is the column space of AT .



5.5. The Four Fundamental Subspaces 301 

For the left nullspace we solve AT y = 0-that system is n by m. This is the nulls pace 

N(AT). The vectors y go on the left side of A when we transpose to get yT A = oT . The 
matrices A and AT are usually different. So are their column spaces and their nulls paces. 
But those spaces are connected in an absolutely beautiful way. 

Part 1 of the Fundamental Theorem finds the dimensions of the four subspaces. One 
fact stands out: The row space and column space have the same dimension r. This is 
the rank of the matrix. The other important fact involves the two nullspaces: 

N (A) and N (AT) have dimensions n - r and m - r, to make up the full n and m. 

Part 2 of the Fundamental Theorem will describe how the four subspaces fit together 
(two in Rn and two in Rm ). That completes the "right way" to understand every Av = b.

Stay with it-you are doing real mathematics. 

The Four Subspaces for R

Suppose A is reduced to its row echelon form R. For that special form, the four subspaces 
are easy to identify. We will find a basis for each subspace and check its dimension. Then 
we watch how the subspaces change (two of them don't change) as we look back at A.

The main point will be that the four dimensions are the same for A and R. 

As a specific 3 by 5 example, look at the four subspaces for this echelon matrix R:

m=3 
n=5 

r=2 [ ! 
3 

0 

0 

5 

0 

0 

0 

1 

0 

pivot rows 1 and 2 

pivot columns 1 and 4 

The rank of this matrix R is r = 2 (two pivots). Take the four subspaces in order. 

1. The row space of R has dimension 2, matching the rank.

Reason: The first two rows are a basis. The row space contains combinations of all three 
rows, but the third row (the zero row) adds nothing new. So rows 1 and 2 span the row space. 
C(RT ). 

The pivot rows 1 and 2 are independent. That is obvious for this example, and it is always 
true. If we look only at the pivot columns, we see the r by r identity matrix. 
There is no way to combine its rows to give the zero row ( except by the combination with all 
coefficients zero). So the r pivot rows are a basis for the row space. 

The dimension of the row space is the rank r. The nonzero rows of R form a basis. 

2. The column space of R also has dimension r = 2, matching the rank.

Reason: The pivot columns 1 and 4 form a basis for C(R). They are independent because 
they start with the r by r identity matrix. No combination of those pivot columns can give 
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the zero column (except the combination with all coefficients zero). And they also span 
the column space. Every other (free) column is a combination of the pivot columns. 

The combinations we need are revealed by the three special solutions : 

Column 2 is 3 times column 1. The special solution is (-3, 1, 0, 0, 0). 

Column 3 is 5 times column 1. The special solution is (-5, 0, 1, 0, 0, ). 

Column 5 is 7 (column 1) + 2 (column 4). That solution is (-7, 0, 0, -2, 1). 

The pivot columns are independent, and they span C(R), so they are a basis for C(R). 

The dimension of the column space is the rank r. The pivot columns form a basis. 

3. The nullspace has dimension n - r = 5 - 2. There are n - r = 3 free variables.
v2, v3, v5 are free (no pivots in those columns). They yield the three special solutions 82, 

83, 85 to Rv = 0. Set a free variable to 1, and solve for the pivot variables v1 and v4. 

Rv = 0 has the 
complete solution 
V = Vz8z + V383 + V585 

There is a special solution for each free variable. With n variables and r pivot variables, that 
leaves n - r free variables and special solutions. N(R) has dimension n - r.

The nullspace has dimension n - r. The special solutions form a basis. 

The special solutions are independent, because they contain the identity matrix in 
rows 2, 3, 5. All solutions are combinations of special solutions, v = v282 + v383 + v5s5, 

because this puts v2, V3 and v5 in the correct positions. Then the pivot variables v1 

and v4 are totally determined by the equations Rv = 0. 

4. The nullspace of RT (the left nullspace of R) has dimension m - r = 3 - 2.

Reason: The equation RT y = 0 looks for combinations of the columns of RT (the rows of

R) that produce zero. You see why Y1 and Y2 must be zero, and y3 is free.

Y1 [ 1, 3, 
+Y2 [0, 0,
+y3 [0, 0,

Left nullspace [O 0 y3]R = [0, 0, 

5 
0, 
0, 

0, 

0, 7] 
1, 2] 
0, O] 

0, O] 

(1)
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N(A) 

row space 
allATy 

nullspace 

Av= 0 

dimension n - r

pivot C(A) 
rows dimr 

pivot column space 
columns all Av 

The big picture 

special 

solutions 

last rows 

ofE: EA= R

left nullspace 

AT
y =0

N(AT ) 

Figure 5.6: Bases and dimensions of the Four Fundamental Subspaces. 
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In all cases R ends with m - r zero rows. Every combination of these m - r rows 
gives zero. These are the only combinations of the rows of R that give zero, because the 
r pivot rows are linearly independent. The left nullspace of R contains all these solutions 
y = (

0
, ... ,0,Yr+l, ... ,Ym

) to RTy = 0. 

If A is m by n of rank r, its left nullspace has dimension m - r.

This subspace came fourth, and it completes the picture of linear algebra. 

In Rn the row space and nullspace have dimensions r and n - r ( adding to n).
In Rm the column space and left nullspace have dimensions r and m - r ( total m). 

So far this is proved for echelon matrices R. Figure 5.6 shows the same for A. 

The Four Subspaces for A

We have a job still to do. The subspace dimensions for A are the same as for R.

The job is to explain why. A is now any matrix that reduces to R = rref(A). 

This A reduces to R 
3 5 

0 0 

3 5 

0 
7 l1 2 

1 9 
Notice C(A) -/- C(R) (2)

An elimination matrix takes A to R. The big picture (Figure 5.6) applies to both. 
The invertible matrix E is the product of the elementary matrices that reduce A to R: 

A to R and back EA= R and A= E- 1R (3)



304 Chapter 5. Vector Spaces and Subspaces 

1 A has the same row space as R. Same dimension r and same basis. 

Reason: Every row of A is a combination of the rows of R. Also every row of R is a 
combination of the rows of A. Elimination changes rows, but not row spaces. 

Since A has the same row space as R, we can choose the first r rows of R as a basis. 
The first r rows of A could be dependent. The good r rows of A end up as pivot rows. 

2 The column space of A has dimension r. The r pivot columns of A are a basis. 

The number of independent columns equals the number of independent rows. 

Wrong reason: "A and R have the same column space." This is false. The columns of R 

often end in zeros. The columns of A don't often end in zeros. The column spaces can be 
different! But their dimensions are the same-both equal tor. 

Right reason: The same combinations of the columns are zero (or nonzero) for A and R. 

Say that another way: Av = 0 exactly when Rv = 0. Pivot columns are independent. 

We have just given one proof of the first great theorem of linear algebra: Row rank equals 
column rank. This was easy for R, and the ranks are the same for A. The Chapter 5 Notes 
propose three direct proofs not using R. 

3 A has the same nullspace as R Same dimension n -- r and same basis. 

Reason: The elimination steps don't change the solutions. The special solutions are a 
basis for this nullspace (as we always knew). There are n - r free variables, so the 
dimension of the null space is n - r. Notice that r + ( n - r) equals n: 

( dimension of column space) + ( dimension of nullspace) = dimension of Rn . 

That beautiful fact is the Counting Theorem. Now apply it also to AT . 

4 The left nullspace of A (the nullspace of AT) has dimension rn - r. 

Reason: AT is just as good a matrix as A. When we know the dimensions for every A, 
we also know them for AT . Its column space was proved to have dimension r. Since AT 

is n by m, the "whole space" is now Rm . The counting rule for A was r + ( n - r) = n. 
The counting rule for AT is r + ( m - r) = m. We have all details of the main theorem : 

Fundamental Theorem of Linear Algebra, Part 1 

The column space and row space both have dimension r. 

The nullspaces have dimensions n - rand rn - r. 

By concentrating on spaces of vectors, not on individual numbers or vectors, we get these 
clean rules. You will soon take them for granted. But for an 11 by 17 matrix with 187 
nonzero entries, I don't think most people would see why these facts are true: 

Two key facts 
dimension of C (A) = dimension of C (AT) = rank of A 

dimension of C(A) + dimension of N(A) = 17. 
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Example 1 A = [ 1 2 3 ] has m = 1 and n = 3 and rank r = 1.
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The row space is a line in R3
. The nullspace is the plane Av = x + 2y + 3z = 0. 

This plane has dimension 2 (which is 3 - 1). The dimensions add to 1 + 2 = 3. 
The columns of this 1 by 3 matrix are in R1

. The column space is all of R 1. The left 
nullspace contains only the zero vector. The only solution to AT y = 0 is y = 0, no other 
multiple of [ 1 2 3] gives the zero row. Thus N(AT) is Z, the zero space with dimension 
0 (which ism - r). In R= the dimensions add to 1 + 0 = 1.

Example 2 A = [; � ! ] has m = 2 and n = 3 and rank r = 1.

The row space is the same line through (1, 2, 3). The nullspace must be the same plane 
x + 2y + 3z = 0. The dimensions of those two spaces still add to n : 1 + 2 = 3. 

All columns are multiples of the first column (1, 2). Twice the first row minus the sec­
ond row is the zero row. Therefore AT y = 0 has the solution y = ( 2, -1). The column
space and left nullspace are perpendicular lines in R 2. Dimensions add to m : 1 + 1 = 2.

Column space = line through [ �] Left null space = line through [ _ �] .

If A has three equal rows, its rank is __ . What are two of the y's in its left nullspace? 

The y's in the left nullspace combine with the rows to give the zero row. 

Matrices of Rank One 

Those examples had rank r = 1-and rank one matrices are special. We can describe them
all. You will see again that dimension of row space = dimension of column space. When
r = 1, every row is a multiple of the same row r T: 

A= crT 
A - 2 4 6 is c - 2 

[ 

1 2 3

] [ 

l

l -
-� -� -� - -�

times [ 1 2 3 ] = r T. 

A column times a row (4 by 1 times 1 by 3) produces a matrix (4 by 3). All rows are 
multiples of the row rT = (1, 2, 3). All columns are multiples of the first column
c = (1, 2, -3, 0). The row space is a line in Rn , and the column space is a line in R=. 

Every rank one matrix has the special form A = c r T = column times row.

All columns are multiples of c. All rows are multiples of r T. The nulls pace is the
plane perpendicular to r. (Av = 0 means that c(rTv) = 0 and then rTv = 0.) This
perpendicularity of the subspaces will become Part 2 of the Fundamental Theorem. 

A column vector c times a row vector r T is often called an outer product.
The inner product r Tc is a number, the outer product er T is a matrix. 
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Perpendicular Subspaces 

Look at the equation Av = 0. This says that v is in the nullspace of A. It also says that 
v is perpendicular to every row of A. The first row multiplies v to give the first zero 
in Av= 0:

The vector v = (l, -3, 2) in the nullspace is perpendicular to the first row (1, 1, 1). Their 
dot product is 1 - 3 + 2 = 0. That vector vis also perpendicular to the rows (3, 1, 0) and 
(0, 2, 3)-because of the zeros on the right hand side. The dot product of every row and 
every v is zero. 

Every v in the nullspace is perpendicular to the whole row space. It is perpendicular 
to each row and it is perpendicular to all combinations of rows. We have found new words 
to describe the nullspace of A : 

N(A) contains all vectors v that a perpendicular to the row space of A.

These two fundamental subspaces N(A) and R(AT) now have a position in space. They 
are "orthogonal subspaces" like the xy plane and the z axis in R3

• Tilt that picture and 
you still have orthogonal subspaces. Their dimensions 2 and 1 still add to 3 : the dimension
of the whole space. For any matrix, the r-dimensional row space is perpendicular to the
( n - r )-dimensional nullspace. If that matrix is AT instead of A, we have subspaces of Rm .

All solutions to Av = 0 are perpendicular to all rows of A.

All solutions to AT y = 0 are perpendicular to all columns of A. 

If A is square and invertible, the two nullspaces are just Z : only the zero vector. The row 
and column spaces are the whole space. These are the extreme in perpendicular subspaces : 
everything and nothing. No, not nothing, the zero vector is perpendicular to everything. 

Let me draw the big picture using this new insight of perpendicular subspaces. 

C(A) 

N(A) 
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This perpendicularity is Part 2 of the Fundamental Theorem of Linear Algebra. We use 
a new symbol s.1.. (called S perp) for all vectors that are orthogonal to the subspace S.

Fundamental Theorem, Part 2 : N(A) = C(AT).l and N(AT) = C(A).l . 

We know we have all perpendicular vectors (not just some of them, like 2 lines in space). 
The dimensions r and n - r add to the full dimension n. For a line and plane in R3 

: 

(Line in space).l 
= (Plane in space) and 1 + 2 = 3. 

Here is Problem 37 in the problem set: Explain why (S.l).L 
= S.

• REVIEW OF THE KEY IDEAS •

1. The r pivot rows of Rare a basis for the row spaces of Rand A (same space).

2. The r pivot columns of A (not R) are a basis for its column space C(A).

3. Then - r special solutions are a basis for the nullspaces of A and R (same space).

4. The last m - r rows of I are a basis for the left nullspace of R.

5. The last m - r rows of E are a basis for the left nullspace of A, if EA= R.

6. R( AT) is perpendicular to N (A). And C (A) is perpendicular to N (AT).

• WORKED EXAMPLES • 

5.5 A Find bases and dimensions for all four fundamental subspaces if you know that 

[
1 o o

l [
1 3 o 5

] A= 2 1 0 0 0 1 6 = E- 1 R. 
5 0 1 0 0 0 0 

By changing only one number in R, change the dimensions of all four subspaces. 

Solution This matrix has pivots in columns 1 and 3. Its rank is r = 2. 

Row space Basis (1, 3, 0, 5) and (0, 0, 1, 6) from R. Dimension 2. 
Column space Basis (1, 2, 5) and (0, 1, 0) from E- 1 (and A). Dimension 2. 
Nullspace Basis (-3, 1, 0, 0) and (-5, 0, -6, 1) from R. Dimension 2. 

Nullspace of AT Basis (-5, 0, 1) from row 3 of E. Dimension 3 - 2 = 1.



308 Chapter 5. Vector Spaces and Subspaces 

We need to comment on that left nullspace N(AT). EA = R says that the last row of E
combines the three rows of A into the zero row of R. So that last row of E is a basis vector 
for the left nullspace. If R had two zero rows, then the last two rows of E would be a basis. 
(Just like elimination, yT A= oT combines rows of A to give zero rows in R.)

To change all these dimensions we need to change the rank r. The way to do that is to 
change the zero row of R. The best entry to change is R34 in the corner.

5.5 B How can you put four l's into a 5 by 6 matrix of zeros, so that its row space

has dimension 1 ? Describe all the ways to make its column space have dimension 1. 
Describe all the ways to make the dimension of its nullspace N(A) as small as possible. 
How would you make the sum of the dimensions of all four subspaces small ? 

Solution The rank is 1 if the four l's go into the same row, or into the same column. They 
can also go into two rows and two columns (so aii = aij = a1i = a11 = l).
Since the column space and row space always have the same dimension, this answers the 
first two questions: The smallest dimension is 1. 

The nullspace has its smallest possible dimension 6 - 4 = 2 when the rank is r = 4.
To achieve rank 4, the l's must go into four different rows and columns. 

You can't do anything about the sum r + (n - r) + r + (m - r) = n + m. It will be
6 + 5 = 11 no matter how the l's are placed. The sum is 11 even if there aren't any l's ... 

If all the other entries of A are 2's instead of O's, how do these answers change ? 

Problem Set 5.5 

1 (a) If a 7 by 9 matrix has rank 5, what are the dimensions of the four subspaces ?
What is the sum of all four dimensions?

(b) If a 3 by 4 matrix has rank 3, what are its column space and left nullspace?

2 Find bases and dimensions for the four subspaces associated with A and B:

A=[� 2 4 ] and B = [ � 2 4 
] 4 8 5 8 

3 Find a basis for each of the four subspaces associated with A:

A�[� 1 2 3 

i l [ i 
0 

� ][ � 

1 2 3

n1 2 4 1 0 0 1 
0 0 1 1 0 0 0 

4 Construct a matrix with the required property or explain why this is impossible: 

(a) Column space contains [ ! ] , [�],row space contains [ �], [ �].

(b) Column space has basis [ l] , nulls pace has basis [ ½] .
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( c) Dimension of nullspace = 1 + dimension of left nullspace.( d) Left nulls pace contains [ �] , row space contains [ � ] .( e) Row space = column space, nullspace -/- left nulls pace.
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5 If V is the subspace spanned by (1, 1, 1) and (2, 1, 0), find a matrix A that has V as its row space. Find a matrix B that has V as its nullspace. 
6 Without elimination, find dimensions and bases for the four subspaces for 

[o 3 3 3]A= 0 0 0 0 0 1 0 1 and B- [ n 
7 Suppose the 3 by 3 matrix A is invertible. Write down bases for the four subspaces for 

A, and also for the 3 by 6 matrix B = [ A A].
8 What are the dimensions of the four subspaces for A, B, and C, if I is the 3 by 3 identity matrix and O is the 3 by 2 zero matrix? 

A = [ J O ] and B = [ 0;, 0;, ] and C = [ 0] .
9 Which subspaces are the same for these matrices of different sizes? 

(a) [A] and [ 1 ] 
Prove that all three of those matrices have the same rank r.

10 If the entries of a 3 by 3 matrix are chosen randomly between O and 1, what are the most likely dimensions of the four subspaces ? What if the matrix is 3 by 5? 
11 (Important) A is an m by n matrix of rank r. Suppose there are right sides b for which 

Av = b has no solution.

(a) What are all inequalities ( < or :S) that must be true between m, n, and r?(b) How do you know that AT y = 0 has solutions other than y = O?
12 Construct a matrix with ( 1, 0, 1) and ( 1, 2, 0) as a basis for its row space and its column space. Why can't this be a basis for the row space and nullspace? 
13 True or false (with a reason or a counterexample): 

(a) If m = n then the row space of A equals the column space.(b) The matrices A and -A share the same four subspaces.(c) If A and B share the same four subspaces then A is a multiple of B.
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14 Without computing A, find bases for its four fundamental subspaces: 

[1 o 0][1 2 3 4] A = 6 1 0 0 1 2 3 .

9 8 1 0 0 1 2 

15 If you exchange the first two rows of A, which of the four subspaces stay the same ? 
If v = (l, 2, 3, 4) is in the left nullspace of A, write down a vector in the left nullspace 
of the new matrix. 

16 Explain why v = (l, 0, -1) cannot be a row of A and also in the nullspace.

17 Describe the four subspaces of R3 associated with 

18 (Left nullspace) Add the extra column band reduce A to echelon form: 

[ 
1 2 3 b1 l [Ab]= 456b2 

7 8 9 b3 
--+ 

2 3 
-3 -6

0 0 

A combination of the rows of A has produced the zero row. What combination is it? 
(Look at b3 - 2b2 + b1 on the right side.) Which vectors are in the nullspace of AT 

and which vectors are in the nullspace of A?

19
.. 

Following the method of Problem 18, reduce A to echelon form and look at the zero 
lo.ws. The b column tells which combinations you have taken of the rows: 

(b) [ i � i ]
From the b column after elimination, read off m - r basis vectors in the left nullspace. 
Those y's are combinations of rows that give zero rows. 

20 (a) Find the solutions to Av = 0. Check that vis are perpendicular to the rows:

� � � l = ER. 0 0 0 
(b) How many independent solutions to AT y = O? Why is y T the last row of E- 1 ? 
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21 Suppose A is the sum of two matrices of rank one: A = uv T + wz T.

(a) Which vectors span the column space of A?

(b) Which vectors span the row space of A?

( c) The rank is less than 2 if or if 
(d) Compute A and its rank if u = z = (1, 0, 0) and v = w = (0, 0, 1).
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22 Construct A =  uvT + wzT whose column space has basis (1,2,4),(2,2,1) and
whose row space has basis (1, 0), (1, 1). Write A as (3 by 2) times (2 by 2).

23 Without multiplying matrices, find bases for the row and column spaces of A: 

[1 2][3 o 3] A= � � 1 1 2 .

How do you know from these shapes that A = (3 by 2) (2 by 3) cannot be invertible? 

24 (Important) AT y = d is solvable when d is in which of the four subspaces? The
solution y is unique when the __ contains only the zero vector. 

25 True or false (with a reason or a counterexample): 

(a) A and AT have the same number of pivots.
(b) A and AT have the same left nullspace.
( c) If the row space equals the column space then AT = A.
(d) If AT= -A then the row space of A equals the column space of A.

26 (Rank of AB :S: ranks of A and B) If AB = C, the rows of C are combinations
of the rows of __ . So the rank of C is not greater than the rank of __ . Since
BT AT = cT , the rank of C is also not greater than the rank of __ .

27 If a, b, c are given with a =/ 0, how would you choose d so that [ � �] has rank 1? 
Find a basis for the row space and nullspace. Show they are perpendicular! 

28 Find the ranks of the 8 by 8 checkerboard matrix B and the chess matrix C: 

1 1 0 1 0 1 0 1 0

1 
0 1 0 1 0 1 0 1 

B 

= 
� � � � � � � � 
0 1 0 1 0 1 0 1 

and 

I r n b q k b 

p p p p p p 
C = four zero rows 

p p p p p p 
r n b q k b 

n r 

Ip p 

p p 
n r 

The numbers r, n, b, q, k, p are all different. Find bases for the row space and the 
left nullspace of B and C. Challenge problem: Find a basis for the nullspace of C. 
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29 Can tic-tac-toe be completed (5 ones and 4 zeros in A) so that rank (A) = 2 but neither 
side passed up a winning move ? 

Problems 30-33 are about perpendicularity of the fundamental subspaces (two per­

pendicular pairs.) 

30 The floor and a wall of your room are not perpendicular subspaces in R3
. Why not ? 

I am extending the floor and wall to be planes in R3
• 

31 Explain why every y in N (AT ) is perpendicular to every column of A. 

32 Suppose P is the plane of vectors R4 satisfying v1 + v2 + v3 + v4 = 0. Find a basis 
for PJ_ . Find a matrix A with N(A) = P.

33 Why can't A have (1, 4, 5) in its row space and (4, 5, 1) in its nullspace ? 

Challenge Problems 

34 If A = uvT is a 2 by 2 matrix of rank 1, redraw Figure 5.6 to show clearly the 
Four Fundamental Subspaces in terms of u and v. If another matrix B produces those 
same four subspaces, what is the exact relation of B to A? 

35 M is the 9-dimensional space of 3 by 3 matrices. Multiply every matrix X by A: 

(a) Which matrices X lead to AX= zero matrix?

(b) Which matrices have the form AX for some matrix X?

(a) finds the "nullspace" of that operation AX and (b) finds the "column space". What
are the dimensions of those two subspaces of M? Why do the dimensions add to
(n-r)+r=9?

36 Suppose the m by n matrices A and B lead to the same four subspaces. If both 
matrices are already in row reduced echelon form, prove that F must equal G: 

B=[� �]-
37 For any subspace S of Rn , why is (SJ_ ) J_ 

= S ?  "If SJ_ contains all vectors perpen­
dicular to S, then S contains all vectors perpendicular to SJ_ ." Dimensions add ton. 

38 If AT Av= 0 then Av= 0. Reason: This Av is in the nullspace of AT . Every Av is 
in the column space of A (why?). Those spaces are perpendicular, and only Av = 0 
can be perpendicular to itself. So AT A has the same nulls pace as A. 
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5.6 Graphs and Networks 

Over the years I have seen one model so often, and I found it so basic and useful, that I 
always put it first. The model consists of nodes connected by edges. This is called a graph. 

Graphs of the usual kind display functions f ( x). Graphs of this node-edge kind lead to 
matrices. This section is about the incidence matrix of a graph-which tells how the n nodes 
are connected by the m edges. Normally m > n, there are more edges than nodes. 

Every entry of an incidence matrix is O or 1 or -1. This continues to hold during elim­
ination. All pivots and multipliers are ± 1. Then the echelon matrix R after elimination 
also contains O, 1, -1. So do the special solutions ! All four subspaces have basis vectors 
with these exceptionally simple components. The matrices are not concocted for a textbook, 
they come from a model that is absolutely essential in pure and applied mathematics. 

For these incidence matrices, the four fundamental subspaces have meaning and impor­
tance. Up to now, I have created small matrix examples to show the column space and 
nullspace. I was claiming that all four subspaces need to be understood, but you wouldn't 
know their importance from such small examples. Now comes the chance to learn about the 
most valuable models in discrete mathematics-graphs and their matrices. 

Graphs and Incidence Matrices 

Figure 5.7 displays a graph with m = 6 edges and n = 4 nodes. Its incidence matrix 
will be 6 by 4. This matrix A tells which nodes are connected by which edges. The 
entries -1 and + 1 also tell the direction of each arrow. The first row -l, 1, 0, 0 of A 

(the incidence matrix) shows that the first edge goes from node l to node 2. 

CD 
node 

CD@®© 

-1 1 0 0 1 
-1 0 1 0 2 

A= 
0 -1 1 0 3 

edge 
-1 0 0 1 4 

0 -1 0 1 5 

@ G) 
0 0 -1 1 6 

3 
Figure 5.7: Complete graph with m = 6 edges and n = 4 nodes. Edge 1 gives row 1. 

Row numbers in A are edge numbers on the graph. Column numbers are node numbers. 
This particular graph is complete--every pair of nodes is connected by an edge. You can 
write down A immediately by looking at the graph. The graph and the matrix have the same 
information. 

If edge 6 is removed from the graph, row 6 is removed from the matrix. The constant 
vector ( 1, 1, 1, 1) is still in the nulls pace of A. Our goal is to understand all four of the 
fundamental subspaces coming from A. 
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For the nullspace we solve Av

A is a difference matrix : 

-1 1 

-1 0 

Av= 
0 -1

-1 0 
0 -1

0 0 

Chapter 5. Vector Spaces and Subspaces 

The Nullspace and Row Space 

0. By writing down those m equations we see that

0 0 V2 -V1 

1 0 

[ Ii l 
V3 -V1 

1 0 V3 - V2 
(1) 0 1 

= 

V4 - VI 

0 1 V4 -V2 

-1 1 V4 -V3 

The numbers v1, v2, V3, v4 can represent voltages at the nodes. Then Av gives the voltage 

differences across the six edges. It is these differences that make currents flow. 
The nullspace contains the solutions to Av = 0. All six voltage differences are zero. 

This means: All four voltages are equal. Every v in the nullspace is a constant vector 

v = ( c, c, c, c). The nulls pace of A is a line in Rn. Its dimension is n - r = 1, so r = 3. 

Counting Theorem r + ( n - r) = 3 + 1 = 4 = count of columns. 

We can raise or lower all voltages by the same c, without changing the voltage 
differences. There is an "arbitrary constant" in v. For functions, we can raise or lower 
f ( x) by any constant amount C, without changing its derivative. 

Calculus adds an arbitrary constant "+C" to indefinite integrals. Graph theory adds 
( c, c, c, c) to the voltages. Linear algebra adds any vector Vn in the null space to one 
particular solution of Av = b.

The row space of A is also a subspace of R 4. Every row adds to zero, because -1 
cancels + 1 in each row. Then every combination of the rows also adds to zero. This is just 
saying that v = ( c, c, c, c) in the nulls pace is orthogonal to every vector in the row space. 

For any connected graph with n nodes, the situation is the same. The vectors v = 
( c, ... , c) fill the nullspace in Rn. All rows are orthogonal to v ; their components add to 
zero. The row space C(AT) has dimension n - 1. This is the rank of A. 

The Column Space and Left Nullspace 

The column space contains all combinations of the four columns. We expect three inde­
pendent columns, since the rank is r = n - 1 = 3. The first three columns are independent 
(so are any three). But the four columns add to the zero vector, which says again that 
(1, 1, 1, 1) is in the nullspace. How can we tell if a particular vector bis in the column 

space of an incidence matrix ? 

First answer Apply elimination to Av = b. On the left side, some combinations of rows 
will give zero rows. Then the same combination of b's on the right side must be zero ! 
Here is the first combination that elimination will discover: 

Row 1 - Row 2 + Row 3 = Zero row. The right side b needs b1 - b2 + b3 = 0. (2) 
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Since A has m = 6 rows and its rank is r = 3, elimination leads to 6 - 3 zero rows 

in the reduced matrix R. There will be three tests for the vector b to lie in the column space. 

Elimination will lead to three conditions on b for Av = b to be solvable. 

I want to find those conditions in a better way. The graph has three small loops. 

Second answer using loops Av contains differences in v's. If we add differences 

around a closed loop in the graph, the cancellation leaves zero. Around the big triangle 

formed by edges 1, 3, -2 (the arrow goes backward on edge 2) the differences cancel out: 

Around a loop 

The components of Av add to zero around every loop. When bis in the column space 

of A, then Av= b. The vector b must obey the voltage law: 

KVL Kirchhoff's Voltage La.w ( on a typical loop) 

By testing all the loops, we decide whether b is in the column space. Av = b can be 

solved exactly when the components of b satisfy all the same dependencies as the rows of A. 

Then KVL is satisfied, elimination leads to O = 0, and Av =bis consistent. 

Question I can see four loops in the graph, three small and one large. We are only expecting 

three tests, not four, for b to be in C(A). What is the explanation? 

Answer Those four loops are not independent. If you combine the small loops in 

Figure 5.8 , you get the large loop. So the tests from the small loops combine to give the 

test from the large loop. We only have to test KVL on the small loops. 

We have described the column space of A in two ways. First, C(A) contains all com­

binations of the columns (and n - 1 columns are enough , the nth column is dependent). 

Second, C(A) contains all vectors b that satisfy the Voltage Law. Around every loop the 

components of b add to zero. We will now see that this is requiring b to be orthogonal 

to every vector yin the nullspace of AT . C(A) is orthogonal to the left nullspace N(AT). 

G) 

Loop A 
LoopB 

LoopC 

Voltage laws 

b1 - b4 + b5 = 0 

b4 - b6 - b2 = 0 

b3 + b6 - b5 = 0 

Figure 5.8: Loops reveal the column space of A and the nullspace of AT and the tests on b. 
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N (A
T

) contains all solutions to AT y = 0. Its dimension is m - r = 6 - 3: three y's. 

Y1 

-1 -1 0 -1 0 

-!1 
Y2 

ATy= 
1 0 -1 0 -1 Y3 

0 1 1 0 0 Y4 

0 0 0 1 1 Y5 [ � l. (3) 
Y6 

The true number of equations is r = 3 and not n = 4. Reason : The four equations add to 
0 = 0. The fourth equation follows automatically from the first three. 

What do the equations mean? The first equation says that -y1 - y2 - y4 = 0. 
The net flow into node 1 is zero. The fourth equation says that y4 + y5 + y6 = 0. 
Flow into the node minus flow out is zero. These equations are famous and fundamental : 

Kirchhoff's Current Law Flow in equals flow out at each node. 

This law deserves first place among the equations of applied mathematics. It expresses 
"conservation" and "continuity" and "balance." Nothing is lost, nothing is gained. When 
currents or forces are balanced, the equation to solve is AT y = 0. Notice the beautiful 
fact that the matrix in this balance equation is the transpose of the incidence matrix A. 

What are the actual solutions to AT y = 0? The currents must balance themselves. 
The easiest way is to flow around a loop. If a unit of current goes around the big triangle 
(forward on edge 1, forward on 3, backward on 2), the vector is y = (1, -1, 1, 0, 0, 0). This 
satisfies AT y = 0. Every loop current is a solution to Kirchhoff's Current Law. 

Around the loop, flow in equals flow out at every node. The smaller loop A goes forward 
on edge 1, forward on 5, back on 4. Then y = (1,0,0,--1,1,0) will have ATy = 0. 
Each loop in the graph gives a vector yin N(AT ) .. 

We expect three independent y's, since 6 - 3 = 3. The three small loops in the graph 
are independent. The big triangle seems to give a fourth y, but it is the sum of flows around 
the small loops. The small loops A, B, C give a basis y

1
, y

2
, y

3 
for the nullspace of AT. 

1 0 0 1 
Solutions to AT y = O 0 0 -1 -1
Big loop 0 1 0 1
from three Y1 + Y2 + Y3 = -1

+ 
0 

+ 
1 0

small loops l -1 0 0
0 1 -1 0

A B C A+B+C 
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Summary The m by n incidence matrix A comes from a connected graph with n nodes 
and m edges. The row space and column space have dimension r = n - l = rank of A.
The nullspaces of A and AT have dimension I and m - r = m - n + l: 

1 The constant vectors (c, c, ... , c) make up the nullspace N(A).

2 There are r = n - l independent rows, from n - l edges with no loops (a tree). 

3 Vo ltage law gives C(A): The components of Av add to zero around every loop. 

4 Current law AT y = 0 : N (AT) from currents on m - r independent loops. 

For every graph in a plane, linear algebra yields Eul er's fo rmula : 

(numberof no des) - (numberof edges) + (numberof smallloops) = 1.

This is ( n) - ( rn) + ( rn - n + 1) = 1. The graph in our example has 4 - 6 + 3 = 1. 
A single triangle has (3 nodes) - (3 edges) + (I loop). On a 10-node tree with 9 edges 

and no loops, Euler's count is 10 - 9 + 0 = 1. All planar graphs lead to the answer 1. 

Trees 

A tree is a graph with no loops. Figure 5.9 shows two trees with n = 4 nodes. These 
graphs (and all our graphs) are connected: Between every two nodes there is a path of edges, 
so the graph doesn't break into separate pieces. The tree must have m = n - l edges, 
to connect all n nodes. The rank of the incidence matrix is also r = n - l. Then the 
number of loops in a tree is confirmed as m - r = 0 (no loops). 

CD CD 

[
-1 I 0

�] 2 A1 = -1 0 1 Tree 2 
0 -1 0

© 

@ Tree 1 ® @ 3 ® 

Figure 5.9: Two trees with n = 4 nodes and m = 3 edges. The rank of A1 is r = m. 

The incidence matrix A of a tree has independent rows. In fact the three rows of A1 are 
three independent rows 1, 2, 5 of the previous 6 by 4 matrix (for the complete graph). 

That original graph contains 16 different trees. 
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The Adjacency Matrix and the Graph Laplacian 

The adjacency matrix W is square. With n nodes in the graph, this matrix is n by n. If there 
is an edge from node i to node j, then Wij = l. If no edge, then Wij = 0. Since our edges 
go both ways, W is symmetric. The diagonal entries are zero. 

All information about the graph is in the adjacency matrix W, except the numbering and 
arrow directions of the edges. 

There are m l's above the diagonal of W, and also below. Section 7.5 will study the 
graph Laplacian matrix AT A (A is the incidence matrix) and find this formula: 

Graph Laplacian AT A = D - W = ( degree matrix)- ( adjacency matrix).

The diagonal matrix D tells the "degree" of every node. This is the number of edges that 
go in or out of that node. Here are W and AT A for the complete graph with six edges. 

Adjacency W = r �� �� 0
�1 0�

1 1 r 
3 

-1
Graph Laplacian AT A = _ 1 

-1

-1
3

-1
-1

-1
-1

3
-1

-1

1

-1
-1

3 

Every row of AT A adds to zero. The degree 3 on the diagonal cancels the -l's off 
the diagonal. The vector ( 1, 1, 1, 1) in the null space of A is also in the nullspace of AT A.

Challenge Reconstruct a graph with arrows from A and a graph without arrows from W.

0 
-1

0
-1

0 
1 

-1
0

• REVIEW OF THE KEY IDEAS •

1. The n nodes and m edges of a graph give n columns and m rows in A.

2. Each row of the incidence matrix A has -1 and 1 (start and end of that edge).

3. Voltage Law for C(A): The components of Av add to zero around any loop.

4. Current Law for N(AT): AT
y = (flow in) minus (flow out)= zero at every node.

5. Rank of A = n - 1. Then AT 
y = 0 for the currents y around m - n + 1 small loops.

6. The adjacency matrix W and the graph Laplacian AT A are symmetric n by n.
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Problem Set 5.6 

Problems 1-7 and 8-13 are about the incidence matrices for these two graphs. 

CD CD @
1 

edge 1 edge2 2 3 4 

@ ® 
5 

edge 3 ® © 

1 Write down the 3 by 3 incidence matrix A for the triangle graph. The first row has 
-1 in column 1 and + 1 in column 2. What vectors ( v1 , v2 , v3 ) are in its nullspace?
How do you know that (1, 0, 0) is not in its row space?

2 Write down AT for the triangle graph. Find a vector yin its nullspace. The compo­
nents of y are currents on the edges-how much current is going around the triangle ? 

3 By elimination on A find the echelon matrix R. What tree corresponds to the two 
nonzero rows of R ? 

Av=b 
-V1 + V2 = b1
-V1 + V3 = b2 
-V2 + V3 = b3. 

4 Choose a vector (b1 , b2 , b3 ) for which Av = b can be solved, and another vector b that 
allows no solution. What are the dot products y Tb for y = ( 1, -1, 1) ? 

5 Choose a vector (Ji, h, h) for which AT
y = f can be solved, and a vector f 

that allows no solution. How are those f's related to v = (l, 1, 1)? The equation 
AT

y = f is Kirchhoff's __ law. 

6 Multiply matrices to find AT A. Choose a vector f for which AT Av = f can be 
solved, and solve for v. Put those voltages v and currents y = -Av onto the triangle 
graph. The vector f represents "current sources." 

7 Multiply AT A (still for the first graph) and find its nullspace-it should be the same 
as N(A). Which vectors fare in its column space? 

8 Write down the 5 by 4 incidence matrix A for the square graph with two loops. 
Find one solution to Av = 0 and two solutions to AT 

y = 0. The rank is __ . 

9 Find two requirements on the b's for the five differences v2 - v1, v3 - v1, v3 - v2, 

V4 - v2, V4 - V3 to equal bi, b2, b3, b4, b5. You have found Kirchhoff's Law
around the two __ in the graph. 
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10 By elimination, reduce A to U. The three nonzero rows give the incidence matrix 
for what graph? You found one tree in the square graph-find the other seven trees. 

11 Multiply AT A and explain how its entries come from columns of A (and the graph). 

(a) The diagonal of the Laplacian matrix AT A counts edges into each node (the
degree). Why is this the dot product of a column with itself?

(b) The off-diagonals -1 or O tell which nodes i and j are connected. Why is -1
or 0 the dot product of column i with another column j ?

12 Find the rank and the nullspace of AT A. Why does AT Av = f have a solution only 
if Ji + h + h + f 4 = 0? 

13 Write down the 4 by 4 adjacency matrix W for the square graph. Its entries 1 or 0 
count paths of length 1 between nodes (those are just edges). 

Important. Compute W2 and check that its entries count the paths of length 2 
between nodes. Why does (W2)ii = degree of node i? Those paths go out and back. 

14 A connected graph with 7 nodes and 7 edges has how many loops ? 

15 For the graph with 4 nodes, 6 edges, and 3 loops, add a new node. If you connect it 
to one old node, Euler's formula becomes ( ) - ( ) + ( ) = 1. If you connect it 
to two old nodes, Euler's formula becomes ( ) - ( ) + ( ) = 1. 

16 Suppose A is a 12 by 9 incidence matrix from a connected (but unknown) graph. 

(a) How many columns of A are independent?

(b) What condition on f makes it possible to solve AT y = f ?

( c) The diagonal entries of AT A give the number of edges into each node. What is
the sum of those diagonal entries ?

17 Why does a complete graph with n = 6 nodes have m = 15 edges? A tree that 
connects 6 nodes has only __ edges and __ loops. 

18 How do you know that any n - l columns of the incidence matrix A are independent? 
If they were dependent, the nullspace would contain a vector with a zero component. 
But the nullspace of A actually contains __ . 

19 (a) Find the Laplacian AT A for a complete graph with n nodes.

(b) If the edge from node 1 to node 3 is removed, what is the change in AT A ?

20 Suppose batteries of strength b1, ... , bm are inserted into them edges. Then the volt­
age differences across edges become Av-b. Unit resistances give currents Av-b and 
Kirchhoff's Current Law is AT (Av - b) = 0. Solve this system for the 
square graph above when b = (1, 1, ... , 1). 
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• CHAPTER 5 NOTES • 

Vectors are not necessarily column vectors. In the definition of a vector space, 
addition x + y and scalar multiplication ex must obey the following eight rules :

(1) X + y = y + X 

(2) x+(y+z)=(x+y)+z

(3) There is a unique "zero vector" such that x + 0 = x for all x

( 4) For each x there is a unique vector -x such that x + ( -x) = 0

(5) 1 times x equals x

(6) (c1c2)x = c1(c2x)

(7) c( x + y) = ex + cy

Here are practice questions to bring out the meaning of those eight rules. 

1. Suppose (x1, x2) + (y1, y2) is defined to be (x1 + Y2, x2 + y1). With the usual
multiplication ex = ( cx1, cx2), which of the eight conditions are not satisfied?

2. Suppose the multiplication ex is defined to produce ( cx1, 0) instead of ( cx1, cx2).
With the usual addition in R 2 , are the eight conditions satisfied ?

3. (a) Which rules are broken if we keep only the positive numbers x > 0 in R 1?
Every c must be allowed. The half-line is not a subspace. 

(b) The positive numbers with x + y and ex redefined to equal the usual xy and xc 

do satisfy the eight rules. Test rule 7 when c = 3, x = 2, y = l. (Then x + y = 2
and ex = 8.) Which number acts as the "zero vector"?

4. The matrix A = [ � =�] is a "vector" in the space M of all 2 by 2 matrices. Write
down the zero vector in this space, the vector ½ A, and the vector -A. What matrices
are in the smallest subspace containing A ?

5. The functions f(x) = x2 and g(x) = 5x are "vectors in function space." Which
rule is broken if multiplying f ( x) by c gives f (ex) instead of cf ( x) ? Keep the usual
addition f(x) + g(x).

6. If the sum of the "vectors" f(x) and g(x) is defined to be the function f(g(x)),
then the "zero vector" is g(x) = x. Keep the usual scalar multiplication cf (x) and
find two rules that are broken.
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Row rank equals column rank : The first big theorem 

The dimension of the row space C(AT ) equals the dimension of the column space C(A).
Here I can outline four proofs (the fourth is neat). Proofs 2, 3, 4 do not use elimination.

Proof 1 Reduce A to R without changing the dimensions of the row and column spaces.
The row space actually stays the same. The column space changes, going from A to R,
but its dimension stays the same. The theorem is clear for R : 

r nonzero rows in R +-+ 
r pivot columns in R +-+ 

r = dimension of row space
r = dimension of column space

Proof 2 (G. Mackiw, Mathematics Magazine 68 1996). Suppose x1, ... , Xr is a basis
for the row space of A. The next paragraph will show that Ax1, . . .  , Axr are independent
vectors in the column space. Then dim (row space)= r :S dim (column space). The same
reasoning applies to AT , reversing that inequality. So the two dimensions must be equal.

Suppose c1AX1 + · · · + CrAXr = A(c1X1 + · · · + CrXr) =Av= 0.

Then v is in the nullspace of A and also in the row space (it is a combination of the x's).
So vis orthogonal to itself and v = 0. All the e's must be zero since the x's are a basis. 

This shows that c1Ax1 + · · · + crAXr = 0 requires that all Ci = 0. Therefore
Ax 1, ... , Axr are independent vectors in the column space : dimension of C (A) 2:: r.

Proof 3 If A has r independent rows and s independent columns, we can move those rows
to the top of A and those columns to the left. They meet in an r by s submatrix B : 

A = [ � i] r rows

Suppose s > r. Since Bv = 0 has r equations in s unknowns, it has a solution v =I= 0.

The upper part of the matrix has Bv + CO = 0 as shown. The lower rows of A are
combinations of the upper rows, so they also have Dv + EO = 0. But now a combination

of the firsts independent columns [ � ] of A, with coefficients from v, is producing zero.

Conclusion : s > r cannot happen. Thinking similarly for AT , r > s cannot happen.

Proof 4 Suppose r column vectors u1, ... , Ur are a basis for the column space C(A).
Then each column of A is a combination of u's. Column 1 of A is w11 u1 + · · · + wr1 Ur, 

with some coefficients w. The whole matrix A equals UW = (m by r)(r by n). 

Now look differently at A = UW. Each row of A is a combination of the r rows of W !
Therefore the row space of A has dimension :Sr.

This proves that ( dimension of row space) :S ( dimension of column space) for any A.
Apply this reasoning to AT , and the two dimensions must be equal. 

To my way of thinking, that is a really cool proof. 
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The Transpose and Row Space of d/ dt 

This book is constantly emphasizing the parallels between linear differential equations and 
matrix equations. In both cases we have null solutions and particular solutions. The 
nullspace for a differential equation Dy = 0 contains the null solutions Yn : 

Matrices A Avn =0 Derivatives D

The nullspace of this D has dimension 2. This is the reason that y needs two initial 
conditions. We look for solutions Yn = est and usually we find e81 t and e82 t . 
These functions are a basis for the nullspace. In case s2 = s1, the second function is te81 t . 
All is completely parallel to matrix equations, until we ask this question: 

What is the "row space" of D when a differential operator has no rows ? 

I want to propose two answers to this question. They come from faithfully imitating the 
Fundamental Theorem of Linear Algebra. That theorem applies to D, because D is linear. 
Answer 1 The row space of D contains all functions Yr ( t) orthogonal to e81 t and e82 t . 
Answer 2 The row space of D contains all outputs Yr(t) = DT

q(t) from inputs q(t). 

This looks good, but when are functions "orthogonal" ? What is the "transpose" of D?

Dot product of functions 
( (t) 

(t)) _ j
(t) (t)dt

Inner product of Yn and Yr 
Yn ' Yr - Yn Yr 

-oo 

Do you see this as reasonable? For vectors, we add the products VjWj, For functions, we 
integrate YnYr · If tlle vectors or functions are complex, we add VjWj or integrate Yn

Yr · 
Then ( v, v) and (Yr, Yr) give the squared lengths JJvJJ 2 for vectors and 11Yr ll2 for functions. 

The inner product tells us the correct meaning of the transpose. For matrices, AT is 
the matrix that obeys the inner product law (Av, w) = ( v, AT w). For differential equations, 

00 00 

(Df,g) = I(!"+ Bf'+ Cf)g(t)dt = I f(t)(g" - Bg' + Cg)dt = (f, DTg).
-oo -oo 

Integration by parts gave J f' g = -J f g'. Two integrations gave J f" g = J f g" 
with a plus sign (from two minus signs). Formally, that equation tells us DT: 

leads to 
d2 d 

DT =--B-+Cdt2 dt ( 
d . . . 

) dt 
1s antisymmetric 

Now the row space of all DT
q(t) makes sense even when D has no rows. Can we just 

verify that any row space function DT q( t) is orthogonal to any nulls pace function Yn ( t) ? 

00 

(Yn(t),DT

q(t)) = (Dyn(t),q(t)) = J (O) q(t) dt = 0.
-oo 

Shakespeare said it best at the end of Hamlet: The rest is silence.
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Chapter 6 

Eigenvalues and Eigenvectors 

6.1 Introduction to Eigenvalues 

Eigenvalues are the key to a system of n differential equations: dy / dt = ay becomes
dy/dt = Ay. Now A is a matrix and y is a vector (y1 (t), ... ,yn (t)). The vector
y changes with time. Here is a system of two equations with its 2 by 2 matrix A : 

Y11 = 4y1 + Y2 
Y2' = 3y1 + 2y2 

is (1) 

How to solve this coupled system, y 1 
= Ay with y1 and Y2 in both equations? The

good way is to find solutions that "uncouple" the problem. We want y1 and y2 to grow
or decay in exactly the same way (with the same e>-t): 

Y1(t) = e>.t a
Look for In vector notation this is I y(t) = e>.tx I (2)

Y2(t) = e>.t b

That vector x = (a, b) is called an eigenvector. The growth rate A is an eigenvalue. This
section will show how to find x and A. Here I will jump to x and A for the matrix in (1).

First eigenvector x = [ � ] = [ i ] and first eigenvalue A= 5 in y = e5tx

Y1 = e5t 

Y2 = e5t 
has Y1' = 5 e5t = 4y1 + Y2

Y2' = 5e5t = 3y1 + 2y2

Second eigenvector x = [ � ] = [ _! ] and second eigenvalue A = 1 in y = etx

This y = e>.tx is a Y1 et Y11 = et = 4y1 + Y2
has

second solution Y2 = -3et Y21 = -3et = 3y1 + 2y2

325 
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Those two x's and >..'s combine with any c1, c2 to give the complete solution toy' = Ay:

Complete solution y(t) = c1 [ ::: ] + c2 [ _ 3 :: ] = c1 e5t [ �] + c2et [ -�] . (3)

This is exactly what we hope to achieve for other equations y' = Ay with constant A.

The solutions we want have the special form y(t) = e>--tx. Substitute that solution
into y' = Ay, to see the equation Ax = ,\x for an eigenvalue ,\ and its eigenvector x:

Divide both sides by e>-.t .

Eigenvalue and eigenvector of A Ax= ,\x (4)

Those eigenvalues (5 and 1 for this A) are a new way to see into the heart of a matrix.
This chapter enters a different part of linear algebra, based on Ax = ,\x. The last page of
Chapter 6 has eigenvalue-eigenvector information about many different matrices. 

Finding Eigenvalues from det( A - >..I) = O

Almost all vectors change direction, when they are multiplied by A. Certain very

exceptional vectors x are in the same direction as Ax. Those are the "eigenvectors." 

The vector Ax (in the same direction as x) is a number,\ times the original x.
The eigenvalue ,\ tells whether the eigenvector x is stretched or shrunk or reversed

or left unchanged-when it is multiplied by A. We may find ,\ = 2 or ½ or -1 or 1.
The eigenvalue ,\ could be zero ! Ax = Ox puts this eigenvector x in the nullspace of A. 

If A is the identity matrix, every vector has Ax = x. All vectors are eigenvectors of I.
Most 2 by 2 matrices have two eigenvector directions and two eigenvalues ,\1 and ,\2. 

To find the eigenvalues, write the equation Ax = ,\x in the good form (A - ,\I)x = 0.

If (A - ,\J)x = 0, then A -,\J is a singular matrix. Its determinant must be zero.

The determinant of A- ,\J = [ a� ,\ d � ).. ] is (a - >..)(d - >..) - be= 0.

Our goal is to shift A by the right amount ,\I, so that (A - ,\I)x = 0 has a solution.
Then x is the eigenvector, ,\ is the eigenvalue, and A - ,\J is not invertible. So we look
for numbers,\ that make det(A - >..J) = 0. I will start with the matrix A in equation (1).

Example 1 For A = [ ! � ] , subtract ,\ from the diagonal and find the determinant:

det(A - >..J) = <let [ 4; ,\ 
2 

� 
,\ 

] = ,\2 - 6,\ + 5 = (>.. - 5)(>.. - 1). (5)

I factored the quadratic, to see the two eigenvalues ,\1 = 5 and ,\2 = 1. The matrices
A - 51 and A - I are singular. We have found the ,\'s from <let (A - ,\I) = 0. 
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For each of the eigenvalues 5 and 1, we now find an eigenvector x: 

(A- 51) x = 0 is

(A - II) x = 0 is

[ -! -! ] [ X ] [ � ] 
[� �] [x] [�] 

and x = [ 1
1 ] 

and x = [ 1]
-3 

Those were the vectors (a, b) in our special solutions y = e>-tx. Both components of y
have the growth rate.\, so the differential equation was easily solved: y = e>-tx. 

Two eigenvectors gave two solutions. Combinations c1 y
1 

+ c2 y2 give all solutions. 

Example2 Find the eigenvalues and eigenvectors of the Markov matrix A = [ ·8. 2

[ 8 - .\ 
det(A - Al) = <let · _2 

.
3 ] .7 .

I factored the quadratic into .\ - 1 times .\ -½, to see the two eigenvalues >. = 1 and ½. 
The eigenvectors x1 and x2 are in the nullspaces of A - I and A - ½ J.

(A - I) X1 = 0 is Ax1 = x1 

(A -½I) x2 = 0 is Ax2 = ½x2 

The first eigenvector is 
The second eigenvector is 

X1 = (.6,.4)

X2 = (1, -1) 

X1 = [ ::] and Ax1 = [ 
·8 .

3 l [ ·6] = Xl .2 .7 .4 
(Ax = x means that .\1 = 1) 

X2 = [-�l and Ax2 = [ 
·8 .

3 l [ _ 
1 l.2 .7 1 [ _::] (this is½ x2 so >-2 = ½)-

If x1 is multiplied again by A, we still get x1 . Every power of A will give Anx1 = x1. 
Multiplying x2 by A gave ½x2 , and if we multiply again we get ( ½ ) 2 times x2. 

When A is squared, the eigenvectors x stay the same. A 2 x = A ( >.x) = >. (Ax) = >. 2 x. 

Notice ,\ 2 . This pattern keeps going, because the eigenvectors stay in their own directions. 
They never get mixed. The eigenvectors of A 100 are the same x1 and x2• The eigenvalues
of A 1 00 are 11 00 

= 1 and ( ½) 1 00 
= very small number. 

We mention that this particular A is a Markov matrix. Its entries are positive and
every column adds to 1. Those facts guarantee that the largest eigenvalue must be >- = 1. 
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< 

>. = .5 

>.2 
= 1 

/

A= [ .8 .3 ].2 .7 

Figure 6.1: The eigenvectors keep their directions. A2 has eigenvalues 12 and ( .5) 2 . 

The eigenvector Ax1 = x 1 is the steady state-which all columns of Ak will approach. 
Giant Markov matrices are the key to Google's search algorithm. It ranks web pages.

Linear algebra has made Google one of the most valuable companies in the world. 

Powers of a Matrix 

When the eigenvalues of A are known, we immediately know the eigenvalues of all 
powers A k and shifts A + cl and all functions of A. Each eigenvector of A is also an 
eigenvector of A k and A -l and A + cl : 

1 
If Ax= >.x then Akx = >.kx and A- 1 x = >.°x and (A+ cI)x = (>. + c)x. (6) 

Start again with A2x, which is A times Ax = >.x. Then A>.x is the same as >.Ax for any 
number>., and >.Ax is >.2x. We have proved that A2 x = >.2 x. 

For higher powers Ak x, continue multiplying Ax = >.x by A. Step by step you reach 
Akx = >.kx. For the eigenvalues of A-1, first multiply by A- 1 and then divide by>.: 

1 
Eigenvalues of A- 1 are 

A

We are assuming that A- 1 exists ! If A is invertible then >. will never be zero. 
Invertible matrices have all >. =/- 0. Singular matrices have the eigenvalue >. = 0. 

The shift from A to A + cl just adds c to every eigenvalue (don't change x) : 

(7) 

Shift of A If Ax = >.x then (A+ cI)x '=Ax+ ex= (>. + c)x. (8) 

As long as we keep the same eigenvector x, we can allow any function of A:

Functions of A (A2 
+ 2A + 5I)x = (>.2 

+ 2>. + 5)x (9)
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I slipped in e
A = I+ A+ ½A2 + · · · to show that infinite series produce matrices too.

Let me show you the powers of the Markov matrix A in Example 2. That starting matrix is unrecognizable after a few steps. 
[ .8 .3] .2 .7 [ .70 .45].30 .55 

A 

[.650 .350 .525] .475 [ .6000 .4000 
AlDO 

(10) 

A 100 was found by using,\ = 1 and its eigenvector [.6, .4], not by multiplying 100 matrices. The eigenvalues of A are 1 and ½, so the eigenvalues of A 100 are 1 and ( ½) 100
. That lastnumber is extremely small, and we can't see it in the first 30 digits of A 100

. How could you multiply A99 times another vector like v = (.8, .2)? This is not aneigenvector, but vis a combination of eigenvectors. This is a key idea, to express any vector v by using the eigenvectors. 
Separate into eigenvectors 

V 
= X 1 + (.2)x2 V 

= 
[ :: l [ ::] + [ -:� l . ( 11) 

Each eigenvector is multiplied by its eigenvalue, when we multiply the vector by A. After 99 steps, x 1 is unchanged and x2 is multiplied by ( ½ )99 
: 

A99 [::] is + small . [ _6] [ very l 
·4 vector 

This is the first column of A 100
, because v = ( .8, .2) is the first column of A. The numberwe originally wrote as .6000 was not exact. We left out (.2)(½)99 which wouldn't show up for 30 decimal places. The eigenvector x 1 = (.6, .4) is a "steady state" that doesn't change (because ,\1 = 1). The eigenvector x2 is a "decaying mode" that virtually disappears (because >.2 = 1/2). The higher the power of A, the more closely its columns approach the steady state. 

Bad News About AB and A + B 

Normally the eigenvalues of A and B (separately) do not tell us the eigenvalues of AB.We also don't know about A + B. When A and B have different eigenvectors,our reasoning fails. The good results for A2 are wrong for AB and A+ B, when AB is different from BA. The eigenvalues won't come from A and B separately: 
A= [ � �] B = [ � �] AB= [ � �] BA= [ � �] A+ B = [ � �] 

All the eigenvalues of A and Bare zero. But AB has an eigenvalue,\ = 1, and A+ Bhas eigenvalues 1 and -1. But one rule holds : AB and BA have the same eigenvalues.
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Determinants 

The determinant is a single number with amazing properties. It is zero when the matrix has 
no inverse. That leads to the eigenvalue equation det(A - >..I) = 0. When A is invertible, 
the determinant of A- 1 is 1/( detA). Every entry in A- 1 is a ratio of two determinants. 

I want to summarize the algebra, leaving the details for my companion textbook 
Introduction to Linear Algebra. The difficulty with det(A - >..I) = 0 is that an n by n 

determinant involves n ! terms. For n = 5 this is 120 terms-generally impossible to use. 

For n = 3 there are six terms, three with plus signs and three with minus. Each of 
those six terms includes one number from every row and every column : 

- + + + 

Determinant from n! = 6 terms 

Three plus signs, three minus signs 

+(1)(5)(9) 

-(3)(5)(7) 

+(2)(6)(7) +(3)(4)(8) 

-(1)(6)(8) -(2)(4)(9) 

That shows how to find the six terms. For this particular matrix the total must be det A = 0, 
because the matrix happens to be singular : row 1 + row 3 equals 2 ( row 2). 

Let me start with five useful properties of determinants, for all square matrices. 

1. Subtracting a multiple of one row from another row leaves det A unchanged.

2. The determinant reverses sign when two rows are exchanged.

3. If A is triangular then det A = product of diagonal entries.

4. The determinant of AB equals ( det A) times ( det B).

5. The determinant of AT equals the determinant of A.

By combining 1, 2, 3 you will see how the determinant comes from elimination: 

The determinant equals ± (product of the pivots). (12) 

Property 1 
Property 2 
Property 3 

says that A and U have the same determinant, unless rows are exchanged. 
says that an odd number of exchanges would leave det A = -det U.

says that det U is the product of the pivots on its main diagonal. 

When elimination takes A to U, we find det A = ± (product of the pivots). This is how 
all numerical software (like MATLAB or Python or Julia ) would compute det A.

Plus and minus signs play a big part in determinants. Half of the n ! terms have plus 
signs, and half come with minus signs. For n = 3, one row exchange puts 3 - 5 - 7 
or 1 - 6 - 8 or 2 - 4 - 9 on the main diagonal. A minus sign from one row exchange. 
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Two row exchanges (an even number) take you back to (2) (6) (7) and (3) (4) (8). This indi­
cates how the 24 terms would go for n = 4, twelve terms with plus and twelve with minus.

Even permutation matrices have det P = l and odd permutations have det P = -l. 
Inverse of A If det A-/= 0, you can solve Av = band find A-1 using determinants:

Cramer's Rule 
detB1 

vi = 
detA

detB2 
v2 = 

detA
. . .

detBn 
Vn = 

detA 
(13) 

The matrix B1 replaces the j1h column of A by the vector b. Cramer's Rule is expensive! 
To find the columns of A-1, we solve AA- 1 = I. That is the Gauss-Jordan idea: For

each column bin I, solve Av = b to find a column v of A-1.
In this special case, when bis a column of I, the numbers detB1 in Cramer's Rule are 

called cofactors. They reduce to determinants of size n - l, because b has so many zeros. 
Every entry of A -l is a cofactor of A divided by the determinant of A 

I will close with three examples, to introduce the "trace" of a matrix and to show 
that real matrices can have imaginary (or complex) eigenvalues and eigenvectors. 

Example 3 Find the eigenvalues and eigenvectors of S = [ � �] · 

Solution You can see that x = (l, 1) will be in the same direction as Sx = (3, 3). 
Then x is an eigenvector of S with >. = 3. We want the matrix S - >.I to be singular. 

S= [� �] det ( S - >.I) = det = .X 2 - 4.X + 3 = 0. [
2 - >. 1 l 

1 2 - >. 

Notice that 3 is the determinant of S (without >.). And 4 is the sum 2 + 2 down the central 
diagonal of S. The diagonal sum 4 is the "trace" of A. It equals .X1 + .X2 = 3 + 1. 

Now factor >.2 - 4>. + 3 into (>. - 3)(>. - 1). The matrix S - >.I is singular (zero 
determinant) for >. = 3 and >. = l. Each eigenvalue has an eigenvector: 

>-1 = 3 (S-3I)x1 [-� -�] [� ] [�] 

A2 = 1 ( 8 - I) X2 = [ � � ] [ _ i] [ � ]
The eigenvalues 3 and 1 are real. The eigenvectors (1, 1) and (1, -1) are orthogonal.

Those properties always come together for symmetric matrices (Section 6.5). 
Here is an antisymmetric matrix with AT = -A. It rotates all real vectors by 0 = 90° . 

Real vectors can't be eigenvectors of a rotation matrix because it changes their direction. 
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Example 4 This real matrix has imaginary eigenvalues i, --i and complex eigenvectors:

[->. det(A - U) = det 1
That determinant >.2 + 1 is zero for>. = i and -i. The eigenvectors are (1, -i) and (1, i):

Somehow those complex vectors x1 and x2 don't get rotated (I don't really know how).
Multiplying the eigenvalues ( i) ( -i) gives det A = 1. Adding the eigenvalues gives

( i) + ( -i) = 0. This equals the sum 0 + 0 down the diagonal of A.

Product of eigenvalues = determinant Sum of eigenvalues= "trace" (14) 

Those are true statements for all square matrices. The trace is the sum au + · · · + ann 

down the main diagonal of A. This sum and product are is especially valuable for 2 by 2
matrices, when the determinant >.1 >.2 

= ad - be and the trace >.1 + >.2 
= a + d completely 

determine >.1 and >.2. Look now at rotation of a plane through any angle 0.

Example 5 Rotation comes from an orthogonal matrix Q. Then >.1 = ei0 and >.2 
= e- ie:

Q= [c?s0 -sin0] >.1 = cos0+i sin0 >.1 +>.2
= 2cos0 = trace 

sm 0 cos 0 >.2 
= cos 0 - i sin 0 >.1 >.2 

= 1 = determinant

I multiplied (>.1 )(>.2 ) to get cos2 0 + sin2 0 = 1. In polar form ei0 times e- ie is 1.
The eigenvectors of Qare (1, -i) and (1, i) for all rotation angles 0. 

Before ending this section, I need to tell you the truth. It is not easy to find eigenvalues
and eigenvectors of large matrices. The equation det(A - >.I) = 0 is more or less limited
to 2 by 2 and 3 by 3. For larger matrices, we can gradually make them triangular without
changing the eigenvalues. For triangular matrices the eigenvalues are on the diagonal.
A good code to compute>. and xis free in LAPACK. The MATLAB command is eig (A).

• REVIEW OF THE KEY IDEAS •

1. Ax = >.x says that eigenvectors x keep the same direction when multiplied by A.

2. Ax = >.x also says that det(A - >.I) = 0. This equation determines n eigenvalues.

3. The eigenvalues of A2 and A - l are >. 2 and >. - 1 , with the same eigenvectors as A.

4. Singular matrices have>. = 0. Triangular matrices have >.'s on their diagonal.

5. The sum down the main diagonal of A (the trace) is the sum of the eigenvalues.

6. The determinant is the product of the >.'s. It is also± (product of the pivots).
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Problem Set 6.1 

1 Example 2 has powers of this Markov matrix A : 

A= [·8 .3]
.2 .7 

d A2 = [ .70 an 
.30 

.
4

5
].55 d Aoo = [·6 .6]an 

.
4
.

4· 
(a) A has eigenvalues 1 and½- Find the eigenvalues of A2 and A00

. 

(b) What are the eigenvectors of A 00 ? One eigenvector is in the nullspace.
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(c) Check the determinant of A2 and A00
• Compare with (det A) 2 and (det A) 00

• 

2 Find the eigenvalues and the eigenvectors of these two matrices : 

A = [ � : ] and A + I = [ � : ] .

A + I has the __ eigenvectors as A. Its eigenvalues are __ by 1. 

3 Compute the eigenvalues and eigenvectors of A and also A - l : 

A = 
[01 21] -1 [-1/2 1]and A = 112 0 . 

A-1 has the __ eigenvectors as A. When A has eigenvalues ,,\ 1 and ,,\2 , its inverse 
has eigenvalues __ . Check that ,,\ 1 + >-2 = trace of A = 0 + l. 

4 Compute the eigenvalues and eigenvectors of A and A 2 
: 

A=[-2
1 

0
3

] 
2 [ 7 -3

] and A = _2 6 . 

A2 has the same __ as A. When A has eigenvalues ,,\1 and >-2 , the eigenvalues of 
A2 are __ . In this example, why is >-r + >-� = 13? 

5 Find the eigenvalues of A and B (easy for triangular matrices) and A+ B:

A = u n and B = [ � ! ] and A + B = [ 1 �] . 
Eigenvalues of A+ B (are equal to) (might not be equal to) eigenvalues of A plus 
eigenvalues of B. 
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6 Find the eigenvalues of A and Band AB and BA:

A = [ i n and B = [ � i] and AB = [ i �] and BA = [ f i] .
(a) Are the eigenvalues of AB equal to eigenvalues of A times eigenvalues of B?

(b) Are the eigenvalues of AB equal to the eigenvalues of BA? Yes!

7 Elimination produces a triangular matrix U. The eigenvalues of U are on its diago­
nal (why?). They are not the eigenvalues of A. Give a 2 by 2 example of A and U.

8 (a) If you know that x is an eigenvector, the way to find>- is to __ .

(b) If you know that >- is an eigenvalue, the way to find x is to __ .

9 What do you do to the equation Ax = >-x, in order to prove (a), (b), and (c)?

(a) >-2 is an eigenvalue of A2
, as in Problem 4.

(b) A - 1 is an eigenvalue of A - 1
, as in Problem 3.

( c) >- + 1 is an eigenvalue of A + I, as in Problem 2.

10 Find the eigenvalues and eigenvectors for both of these Markov matrices A and A 00• 

Explain from those answers why A100 is close to A00
: 

A=[
·6 .2] 
.4 .8 

d A
oo = [ 

1/3 1/3] an 2/3 2/3 ·

11 A 3 by 3 matrix B has eigenvalues 0, 1, 2. This information allows you to find:

(a) the rank of B (b) the eigenvalues of B2 (c) the eigenvalues of (B2 
+ J)- 1 . 

12 Find three eigenvectors for this matrix P. Projection matrices only have>-= 1 and 0.
Eigenvectors are in or orthogonal to the subspace that P projects onto.

Projection matrix P2 = P = pT P =  [:� :! �i 
0 0 1 

If two eigenvectors x and y share the same repeated eigenvalue >-, so do all their
combinations ex+ dy. Find an eigenvector of P with no zero components. 

13 From the unit vector u = ( ½, ½, ¾, ¾) construct the rank one projection matrix
P = uu T. This matrix has P2 = P because u Tu = 1.

(a) Explain why Pu= ( uu T)u equals u. Then u is an eigenvector with>,= 1.

(b) If v is perpendicular to u show that Pv = 0. Then A = 0.

(c) Find three independent eigenvectors of Pall with eigenvalue>-= 0.
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14 Solve <let ( Q - >..I) = 0 by the quadratic formula to reach ,\ = cos 0 ± i sin 0 :
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Q = [c�s0 

sm0 

- sin0 ] cos0 
rotates the xy plane by the angle 0. No real >..'s.

Find the eigenvectors of Q by solving ( Q - >..I)x = 0. Use i2 = -1.

15 Find three 2 by 2 matrices that have >..1 = >..2 = 0. The trace is zero and the
determinant is zero. A might not be the zero matrix but check that A 2 is all zeros. 

16 This matrix is singular with rank one. Find three ,\'s and three eigenvectors:

Rank one 

17 When a+ b=c + d show that (1, 1) is an eigenvector and find both eigenvalues:

Use the trace to find >..2 A=[� !] A=[��]-

18 If A has A1 = 4 and A2 = 5 then det(A - AI) = (A - 4)(A - 5) = A2 
- 9A + 20.

Find three matrices that have trace a + d = 9 and determinant 20, so A = 4 and 5.

19 Suppose Au= Ou and Av= 3v and Aw= 5w. The eigenvalues are 0, 3, 5.

(a) Give a basis for the nullspace of A and a basis for the column space.

(b) Find a particular solution to Ax = v + w. Find all solutions.

( c) Ax= u has no solution. If it did then __ would be in the column space.

20 Choose the last row of A to produce (a) eigenvalues 4 and 7 (b) any A1 and A2 . 

Companion matrix A=[�!]-
21 The eigenvalues of A equal the eigenvalues of AT. This is because <let ( A - AI)

equals det(AT - AI). That is true because __ . Show by an example that the
eigenvectors of A and AT are not the same. 

22 Construct any 3 by 3 Markov matrix M : positive entries down each column add to 1.
Show that MT(l, 1, 1) = (1, 1, 1). By Problem 21, A = l is also an eigenvalue
of M. Challenge: A 3 by 3 singular Markov matrix with trace ½ has what A's?

23 Suppose A and B have the same eigenvalues A1 , . . .  , An with the same independent
eigenvectors x 1 , . . .  , Xn- Then A = B. Reason: Any vector v is a combination
c1X1 + · · · + CnXn- What is Av? What is Bv? 
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24 The block B has eigenvalues 1, 2 and C has eigenvalues 3, 4 and D has eigenval­
ues 5, 7. Find the eigenvalues of the 4 by 4 matrix A : 

[-i 
1 3

!] 
A=[i �]

= 3 0 
0 6 
0 1 

25 Find the rank and the four eigenvalues of A and C : 

[l 
1 1 

ll [i 
0 1

�] A= 
1 1 and C = 1 0 
1 1 0 1 
1 1 1 0 

26 Subtract I from the previous A. Find the eigenvalues of B and -B : 

[l 
1 1 

ii -B� [ :
-1 -1

-
1 

l 
B=A-1= 

0 1 and 0 -1 -1 
1 0 -1 -1 0 -1 .

1 1 -1 -1 -1 0 

27 (Review) Find the eigenvalues of A, B, and C: 

[� 
2 

i] [! 
0 

�] [� 
2

�] A= 4 and B = 2 and C = 2 
0 0 2 

28 Every permutation matrix leaves x = (1, 1, ... , 1) unchanged. Then>. = 1. Find 
two more A's (possibly complex) for these permutations, from det(P - >.I) = 0: 

29 The determinant of A equals the product >.1>.2 ···An . Start with the polynomial
det(A - >J) separated into its n factors (always possible). Then set>. = 0: 

det(A - >.I) = (>.1 ->.)(>.2 - >.) · · · (>.n - >.) so det A=

30 The sum of the diagonal entries ( the trace) equals the sum of the eigenvalues : 

A = [ � �] has det ( A - >.I) = >. 2 - ( a + d) >. + ad - be = 0.

The quadratic formula gives the eigenvalues>.= (a+d+ V)/2 and>.= __ .
Their sum is __ . If A has A1 = 3 and A2 = 4 then det(A - AI)= __ .
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6.2 Diagonalizing a Matrix 

When x is an eigenvector, multiplication by A is just multiplication by a number A : 
Ax = AX. All the difficulties of matrices are swept away. Instead of an interconnected 
system, we can follow the eigenvectors separately. It is like having a diagonal matrix, with 
no off-diagonal interconnections. The 100th power of a diagonal matrix is easy. 

The point of this section is very direct. The matrix A turns into a diagonal matrix A 
when we use the eigenvectors properly. This is the matrix form of our key idea. We start 
right off with that one essential computation. 

Diagonalization Suppose the n by n matrix A has n linearly independent eigenvectors 
x1, ... , Xn. Put them into the columns of an eigenvector matrix V. Then v-1 AV is the
eigenvalue matrix A, and A is diagonal: 

Eigenvector matrix V 

Eigenvalue matrix A 
[ 

A1 
. . 

\n l ·v-
1 AV=A= 

"' 
(1) 

The matrix A is "diagonalized." We use capital lambda for the eigenvalue matrix, because 
of the small A's (the eigenvalues) on its diagonal. 

Proof Multiply A times its eigenvectors, which are the columns of V. The first column of 
AV is Ax1. That is A1 x1. Each column of V is multiplied by its eigenvalue Ai : 

A times V 

The trick is to split this matrix AV into V times A : 

V times A 

Keep those matrices in the right order! Then A1 multiplies the first column x1, as shown. 
The diagonalization is complete, and we can write AV = VA in two good ways : 

I AV=VA is v- 1AV=A or A=VAv- 1. I (2) 

The matrix V has an inverse, because its columns (the eigenvectors of A) were assumed 
to be linearly independent. Without n independent eigenvectors, we can't diagonalize.

A and A have the same eigenvalues A1, ... , An . The eigenvectors are different. The 
job of the original eigenvectors x1, ... , Xn was to diagonalize A. Those eigenvectors in V 
produce A = VA v- 1

. You will soon see the simplicity and importance and meaning of 
the k th power Ak 

= VA kv- 1. 
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Sections 6.2 and 6.3 solve first order difference and differential equations. 

6.2 

6.3 dy/dt = Ay 

Uk = Akuo = c1>.tx1 +

y (
t
)

= eAt
y (

O
)

= c1e>- 1 tx1 +

+ CnA�Xn 

+ Cne>-ntxn.

The idea is the same for both problems : n independent eigenvectors give a basis. 

We can write u0 and y (
O

) 
as combinations of eigenvectors. Then we follow each eigen­

vector ask increases and t increases: Akx is >.kx and eAtx is e>,.tx. 
Some matrices don't have n independent eigenvectors (because of repeated >.'s). 

Then Aku0 and eAt
y (

O
) 

are still correct, but they lead to k>.k x and te>-tx: not so good.

Example 1 Here A is triangular so the >.'s are on its diagonal: >. = 1 and>.= 6.

Eigenvectors in V [ �
v-

1 
A 

[ � � ] 
V 

[ � � ] 
A 

In other words A= VAv- 1
. Then watch A2 = VAV- 1VAv- 1

. When you remove
v-

1 V =I, this becomes A 
2 

= VA 2 
v-

1
. The same eigenvectors for A and A 2 are in V. 

The squared eigenvalues are in A 2 • 

The k th power will be A k = VA kv- 1
. And A k just contains 1 k and 6k :

Powers Ak

With k = 1 we get A. With k = 0 we get A0 = I (eigenvalues >.0 1). With k = -1
we get the inverse A- 1

. You can see how A2 = [1 35; 0 36] fits the formula when k = 2.
Here are four remarks before we use A again.

Remark 1 When the eigenvalues >.1, . . .  , An are all different, the eigenvectors x1, . . .  , Xn
are independent. Any matrix that has no repeated eigenvalues can be diagonalized. 

Remark 2 We can multiply eigenvectors by any nonzero constants. Ax = >.x will remain
true. In Example 1, we can divide the eigenvector (1, 1) by v'2 to produce a unit vector.

Remark 3 The eigenvectors in V come in the same order as the eigenvalues in A. To reverse
the order 1, 6 in A, put the eigenvector ( 1, 1) before ( 1, 0) in V : 

New order 6, 1 

New order in V

To diagonalize A we must use an eigenvector matrix. From v- 1 AV = A we know that
AV = VA. Suppose the first column of V is x. Then the first columns of AV and VA are
Ax and >.1 x. For those to be equal, x must be an eigenvector.
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Remark 4 (Warning for repeated eigenvalues) Some matrices have too few 
eigenvectors (less than n). Those matrices cannot be diagonalized. Here are examples: 

Not diagonalizable 

Only 1 eigenvector 
A = [ � = � ] and B = [ � � ] .

Their eigenvalues happen to be O and 0. The problem is the repetition of>.. 

Only one line 

of eigenvectors 
Ax = Ox means [ � = � ] [ x ] [ �] and x = c [ � ] .

There is no second eigenvector, so the unusual matrix A cannot be diagonalized. 
Those matrices are the best examples to test any statement about eigenvectors. In many 

true-false questions, non-diagonalizable matrices lead to false.
Remember that there is no connection between invertibility and diagonalizability : 

- Invertibility is concerned with the eigenvalues (,\ = 0 or ,\ =/- 0).

- Diagonalizability needs n independent eigenvectors.

Each eigenvalue has at least one eigenvector! A - ,\J is singular. If (A - >.I)x = 0
leads you to x = 0, ,\ is not an eigenvalue. Look for a mistake in solving det(A - >.I) = 0. 

Eigenvectors for n different ,\'s are independent. Then v-
1 AV = A will succeed.

Eigenvectors for repeated A's could be dependent. V might not be invertible. 

Example 2 Powers of A The Markov matrix A in the last section had ,\1 = 1 and 
,\2 = .5. Here is A = VA v- 1 with those eigenvalues in the matrix A: 

[ :� :; ] = [ :� -�] [ � �5] [ .! -.! ] = VAV-
1

• 

The eigenvectors (.6, .4) and (1, -1) are in the columns ofV. They are also the eigenvectors 
of A 2. Watch how A 2 has the same V, and the eigenvalue matrix of A 2 is A 2 

: 

Same V for A2 (3) 

Just keep going, and you see why the high powers Ak approach a "steady state": 

Powers of A Ak =VAkv-1=[·6 l
][

lk O 
][

1 1
] .4 -1 0 (.5)k .4 -.6 .

Ask gets larger, (.5)k gets smaller. In the limit it disappears completely. That limit is A00
: 

Limit k-+ oo Aoo = [ 
.6 

_ 
1 

] [ 
1 0 

] [ 
1 

_ 
1 

] [ 
.6 

.4 1 0 0 .4 .6 .4 
.6 

] .4 .

The limit has the steady state eigenvector x 1 in both columns. 

Question When does A k -+ zero matrix ? Answer All I.XI < 1. 

(4)
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Fibonacci Numbers 

We present a famous example, where eigenvalues tell how fast the Fibonacci numbers grow.
Every new Fibonacci number is the sum of the two previous F's :

The seque11ce 0,1,1,2,3,5,8,13, ... comes from 

These numbers turn up in a fantastic variety of applications. Plants a grow in spirals, and a
pear tree has 8 growths for every 3 turns. The champion is a sunflower that had 233 seeds in
144 loops. Those are the Fibonacci numbers F13 and Fi2. Our problem is more basic. 

Problem: Find the Fibonacci number F100. The slow way is to apply the rule 
Fk+2 = Fk+l + Fk one step at a time. By adding F5 = 8 to F1 = 13 we reach Fs = 21.
Eventually we come to Fi00. Linear algebra gives a better way. 

The key is to begin with a matrix equation uk+1 = Auk. That is a one-step rule for
vectors, while Fibonacci gave a two-step rule for scalars. We match those rules by putting
two Fibonacci numbers into a vector Uk. Then you will see the matrix A.

= Fk+1 +Fk . [ 1
r,, lS Uk+l = l

= I'k+l 

Every step multiplies by A = [ i liJ. After 100 steps we reach u10o = A 100uo :

...
' U100 = [F101] 

F100 

This problem is just right for eigenvalues. To find them, subtract >.I from A:

A - >.I= [ 
1 - >. 1 

] leads to det(A - >.I) = >.2 - >. - 1.1 ->. 

(5)

The equation >.2 
- >. - 1 = 0 is solved by the quadratic formula (-b ± v'b2 - 4ac) /2a:

Eigenvalues >-1 = l + V5 
;::o 1 618

2 and 
l - V5 >-2 = -- ;::o -.618.

2 

These eigenvalues lead to eigenvectors x 1 = ( >.1, 1) and x2
combination of those eigenvectors that gives u0 = ( 1, 0) : 

(>.2, 1). Step 2 finds the

or

Step 3 multiplies the eigenvectors x1 and x2 by ( >.1) 100 and ( >.2) 100 : 

A 100 times uo

(6) 

(7)
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We want F100 = second component of u100. The second components of x1 and x2 are 1. The difference between (1 + v's)/2 and (1 - v's)/2 is ..\1 - ..\2 = 
,/5. We have F100:

1 [(1 + ,/5) lOO (1 _ ,/5) 100] Fioo = v'5 -
2

- - -
2

- R::: 3.54 · 1020. (8) 
Is this a whole number? Yes. The fractions and square roots must disappear, because Fibonacci's rule Fk+2 = Fk+l + Fk stays with integers. The second term in (8) is less than ½, so it must move the first term to the nearest whole number:,.\k _ ,.\k l ( l + ,/5) k 

kth Fibonacci number = ,.\� _ ,.\: = nearest integer to v15 --
2
- (9) 

The ratio of F5 to F5 is 8/5 = 1.6. The ratio F1oi/ Fioo must be very close to the limiting ratio (1 + ,/5)/2. The Greeks called this number the "golden mean".For some reason a rectangle with sides 1.618 and I looks especially graceful. 
Matrix Powers A k 

Fibonacci's example is a typical difference equation Uk+1 = Auk . Each step multiplies

by A. The solution is Uk = Aku0. We want to make clear how diagonalizing the matrix gives a quick way to compute Ak and find Uk in three steps. The eigenvector matrix V produces A = VA v-1
. This is perfectly suited to computing powers, because every time v-

1 multiplies V we get I: 
Powers of A Aku0 = (V Av-1) · · · (V Av- 1 )u0 = VA kv-1u0 

I will split VA kv-1u0 into three steps. Equation (10) puts those steps together in uk .
1. Write u0 as a combination c1 :z: 1 + · · · + Cn Xn of the eigenvectors. Then c = v-1u0.
2. Multiply each number ci by (..\;.) k . Now we have Akv- 1u0. 

(10) 
In matrix language Aku0 equals (VAv- 1 )ku0. The 3 steps are V times Ak times v- 1u0. 

I am taking time with the three steps to compute Aku0, because you will see exactly the same steps for differential equations and eAt _ The equation will be dy/dt = Ay. Please compare equation (10) for Aku0 with this solution eAt
y (O) from Section 6.3. 

Solve dy / dt = Ay (11) 
Those parallel equations (10) and (11) show the point of eigenvalues and eigenvectors. They split the solutions into n simple pieces. By following each eigenvector separately-this is the result of diagonalizing the matrix-we have n scalar equations. 
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The growth factor >.. k in ( 10) is like e>..t in ( 11).

Summary I will display the matrices in those steps. Here is u0 = V c : 

Step 1 
This says that 
UQ = C1X1 + · · · + Cn Xn 

(12) 

The coefficients in Step 1 are c = v-
1u0. Then Step 2 multiplies by Ak. Then Step 3

adds up all the ci (Ai) k Xi to get the product of V and A k and v-
1 u0 : 

This result is exactly Uk = c1 (A1 ) kx1 + · · · + cn (An)kxn. It solves Uk+i = Auk. 

Example 3 Start from u0 = (1, 0). Compute A ku0 when V and A contain these eigen­
vectors and eigenvalues: 

This matrix A is like Fibonacci except the rule is changed to Fk+2 = Fk+l + 2Fk.
The new numbers 0, 1, 1, 3, ... grow faster because A= 2 is larger than (1 + VS)/2. 

Step 1 

Step2 

Step 3 

Uo = 
[ � ]

= i [ i ] + i [ -� ] 
Multiply the two eigenvectors by (A1 ) k = 2k and (A2)k = (-l)k 

Combine the pieces intouk = i2k [ i] + i(-l) k [ -� ].

Behind these examples lies the fundamental idea: Follow each eigenvector.

Nondiagonalizable Matrices (Optional} 

Suppose A is an eigenvalue of A We discover that fact in two ways : 

1. Eigenvectors (geometric) There are nonzero solutions to Ax= AX.

2. Eigenvalues (algebraic) The determinant of A - Al is zero.
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The number ,\ may be a simple eigenvalue or a multiple eigenvalue, and we want to know 
its multiplicity. Most eigenvalues have multiplicity M = l (simple eigenvalues). Then there 
is a single line of eigenvectors, and det(A - >.I) does not have a double factor. 

For exceptional matrices, an eigenvalue can be repeated. Then there are two different

ways to count its multiplicity. Always GM :::; AM for each eigenvalue. 

1. (Geometric Multiplicity = GM) Count the independent eigenvectors for >..

2. 

Th1s is the dimension of the nullspace of A ->.I.

Count the repetitions of the same .X among 

the eigenvalues. Look at then roots of det(A - >.I) = 0. 

If A has,\= 4, 4, 4, that eigenvalue has AM= 3 (triple root) and GM= 1 or 2 or 3.

The following matrix A is the standard example of trouble. Its eigenvalue ,\ 0 is 
repeated. It is a double eigenvalue (AM= 2) with only one eigenvector (GM= 1). 

AM= 2 

GM= 1 

[ o 1 J I -,\ A = 0 0 has <let ( A ->.I) = 0
.X = 0,0 but

1 eigenvector 

There "should" be two eigenvectors, because ,\ 2 = 0 has a double root. The double factor 
.-\2 makes AM = 2. But there is only one eigenvector x = (l, 0). This shortage of

eigenvectors when GM is below AM means that A is not diagonalizable.

These three matrices have,\ = 5, 5. Traces are 10, determinants are 25. They only have 
one eigenvector: 

A=[o5 5
1
] [

6 -1
] and A= 1 4 and A= [ -

� � ] .

Those all have det(A - >.I) = (>. - 5)2 • The algebraic multiplicity is AM= 2. But each 
A - 5I has rank r = l. The geometric multiplicity is GM = 1. There is only one line of 
eigenvectors for ,\ = 5, and these matrices are not diagonalizable. 

• REVIEW OF THE KEY IDEAS •

1. If A has n independent eigenvectors x 1 , ... , Xn, they go into the columns of V.

A is diagonalized by V v- 1AV = A and A= VAv- 1
. 

2. The powers of A are Ak = VA k v- 1
. The eigenvectors in V are unchanged.

3. The eigenvalues of A k are ( ,\1 
t, ... , (An) k in the matrix A k .
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4. The solution to Uk+i = Auk starting from uo is Uk= Aku0 = VAk v- 1 u0: 

That shows Steps 1, 2, 3 (e's from v-
1u0, powers >._k from Ak , and x's from V).

• WORKED EXAMPLES • 

6.2 A Find the inverse and the eigenvalues and the determinant of A : 
[ 

4 
-1A= 5 * eye(4) - ones(4) = 

_ 1 -1
-1 -14 -1-1 4-1 -1

-1
1

-1-1
4Describe an eigenvector matrix V that gives v- 1 AV = A. 

Solution What are the eigenvalues of the all-ones matrix ones( 4)? Its rank is certainly 1, so three eigenvalues are >. = 0, 0, 0. Its trace is 4, so the other eigenvalue is >.. = 4. Subtract the all-ones matrix from 51 to get our matrix A = 51 - ones( 4) : 
Subtract the eigenvalues 4, O, O, 0 from 5, 5, 5, 5. The eigenvalues of A are 1, 5, 5, 5. 

The A1 s add to 16. So does 4 + 4 + 4 + 4 from diag (A). Multiply A's: det A = 125. The eigenvector for >. = 1 is x = ( 1, 1, 1, 1). The other eigenvectors are perpendicular to x (since A is symmetric). The nicest eigenvector matrix V is the symmetric orthogonal Hadamard matrix. Multiply by 1/2 to have unit vectors in its columns. 
O,thonormal elgenvecto.-s V � Q � i [ i 

1 1 
_; 1 -1 1 =QT=Q-1.1 --1 -1 -1 -1 1 The eigenvalues of A - 1 are 1, ½, ½, ½. The eigenvectors are the same as for A. This inverse matrix A-1 = QA-1Q-1 is surprisingly neat: 

1 1 
r�� �� 2�1 2�11 A- 1 

= 

5 
* (eye(4) + ones(4)) =

5 

To check that AA- 1 
= l, use (ones) (ones)= 4(ones). Question: Can you find A3

?
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Problem Set 6.2 

Questions 1-7 are about the eigenvalue and eigenvector matrices A and V. 

1 (a) Factor these two matrices into A= V Av- 1
: 

A=[��] and A=[!!]-

(b) If A= VAv-1 then A3 = ( )( )( ) and A- 1 = ( )( )( ).

345 

2 If A has >-1 = 2 with eigenvector x1 = ["Al and >-2 = 5 with x2 = [ ½ l,
use VA v- 1 to find A. No other matrix has the same >.'s and x's.

3 Suppose A = VA v- 1
. What is the eigenvalue matrix for A + 21? What is the 

eigenvector matrix ? Check that A + 21 = ( ) ( ) ( )- 1
. 

4 True or false: If the columns of V ( eigenvectors of A) are linearly independent, then 
(a) A is invertible
( c) V is invertible

(b) A is diagonalizable
( d) V is diagonalizable.

5 If the eigenvectors of A are the columns of 1, then A is a __ matrix. If the eigen­
vector matrix Vis triangular, then v- 1 is triangular. Prove that A is also triangular. 

6 Describe all matrices V that diagonalize this matrix A (find all eigenvectors): 

A=[1 �]-
Then describe all matrices that diagonalize A - 1

. 

7 Write down the most general matrix that has eigenvectors [ ½ l and [_� l-

Questions 8-10 are about Fibonacci and Gibonacci numbers. 

8 Diagonalize the Fibonacci matrix by completing v- 1
: 

Do the multiplication VA kv-1 ["Al to find its second component. This is the kth 
Fibonacci number A = ( >.} - A�)/ ( >-1 - >-2). 

9 Suppose Gk+2 is the average of the two previous numbers Gk+1 and Gk: 

= ½Gk+1 + ½Gk 
= Gk+1 is A 

(a) Find A and its eigenvalues and eigenvectors.
(b) Find the limit as n -+ oo of the matrices An = VA n v- 1

. 

(c) If Go = 0 and G1 = 1 show that the Gibonacci numbers approach l
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10 Prove that every third Fibonacci number in 0, 1, 1, 2, 3, ... is even. 

Questions 11-14 are about diagonalizability. 

11 True or false: If the eigenvalues of A are 2, 2, 5 then the matrix is certainly 

(a) invertible (b) diagonalizable ( c) not diagonalizable.

12 True or false : If the only eigenvectors of A are multiples of ( 1, 4) then A has

(a) no inverse (b) a repeated eigenvalue ( c) no diagonalization VA v- 1
. 

13 Complete these matrices so that det A = 25. Then check that A = 5 is repeated­
the trace is 10 so the determinant of A - >-I is(>- - 5) 2

. Find an eigenvector with 
Ax = 5x. These matrices will not be diagonalizable because there is no second line
of eigenvectors. 

14 The matrix A = [ � } ] is not diagonalizable because the rank of A - 31 is __ .
Change one entry to make A diagonalizable. Which entries could you change? 

Questions 15-19 are about powers of matrices. 

15 A k = VA k v- 1 approaches the zero matrix as k ---+ oo if and only if every >- has
absolute value less than . Which of these matrices has A k ---+ 0 ? 

A1 = [ .6 .9 ] .4 .1 and A = [ .6 .9 ] 2 .1 .6 
.

16 (Recommended) Find A and V to diagonalize A1 in Problem 15. What is the limit 
of A k as k ---+ oo ? What is the limit of VA k v- 1 ? In the columns of this limiting 
matrix you see the __ . 

17 Find A and V to diagonalize A2 in Problem 15. What is (A2 ) 1°u0 for these u0 ?

uo = [ � ] and uo = [ _ � ] and u0 = [ � ] . 

18 Diagonalize A and compute VA
k v- 1 to prove this formula for Ak: 

A=[ 2 -l
J

-1 2 
has 
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19 Diagonalize B and compute VA kv- 1 to prove this formula for Bk :

B=[� !] has
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20 Suppose A = VA v- 1. Take determinants to prove det A = det A = ,\1 ,\2 · · · An .
This quick proof only works when A can be __ . 

21 Show that trace VT= trace TV, by adding the diagonal entries of VT and TV:

V=[� �] and

Choose T as Av- 1. Then VAv- 1 has the same trace as Av- 1v = A. The trace
of A equals the trace of A, which is certainly the sum of the eigenvalues. 

22 AB - BA = I is impossible since the left side has trace = 

elimination matrix so that A = E and B = ET give 

AB - BA = [ -� � ] which has trace zero.

But find an

23 If A = VA v- 1, diagonalize the block matrix B = [ t 2�]. Find its eigenvalue and
eigenvector (block) matrices. 

24 Consider all 4 by 4 matrices A that are diagonalized by the same fixed eigenvector
matrix V. Show that the A's form a subspace (cA and A1 + A2 have this same V).
What is this subspace when V = I ? What is its dimension ? 

25 Suppose A2 
= A. On the left side A multiplies each column of A. Which of our four

subspaces contains eigenvectors with ,\ = 1 ? Which subspace contains eigenvectors
with ,\ = 0 ? From the dimensions of those subspaces, A has a full set of independent
eigenvectors. So every matrix with A2 

= A can be diagonalized. 

26 (Recommended) Suppose Ax = ,\x. If ,\ = 0 then x is in the nullspace. If ,\ -/ 0
then x is in the column space. Those spaces have dimensions ( n - r) + r = n. So
why doesn't every square matrix haven linearly independent eigenvectors? 

27 The eigenvalues of A are 1 and 9, and the eigenvalues of B are -1 and 9:

and B=[! �]-
Find a matrix square root of A from R = V vA v-

1. Why is there no real matrix
square root of B ? 
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28 The powers A k approach zero if all I Ai I < 1 and they blow up if any I Ai I > 1.
Peter Lax gives these striking examples in his book Linear Algebra : 

B _ [ 
3 2]- -5 -3 C _ [ 5 7]- -3 -4 D = [ 5 6.9]-3 -4 

IIA1024 11 > 10100 n1024 = I 01024 = -C IID 1024 11 < 10-78 

Find the eigenvalues A = ei0 of B and C to show B4 = I and C3 = -I.

29 If A and B have the same A's with the same full set of independent eigenvectors, 
their factorizations into are the same. So A = B.

30 Suppose the same V diagonalizes both A and B. They have the same eigenvectors 
in A= VA1 v-1 and B = VA2 v-1

. Prove that AB= BA.

31 (a) If A = [ 0 �] then the determinant of A - Al is (A - a)(A - d). Check the
"Cayley-Hamilton Theorem" that (A - aI)(A - dI) = zero matrix. 

(b) Test the Cayley-Hamilton Theorem on Fibonacci's A = [i A]. The theorem
predicts that A2 

- A - I= 0, since the polynomial det(A - Al) is A2 
- A - l.

32 Substitute A =  VAv-1 into the product (A - A1I)(A - A2I) ···(A - Anl) and
explain why this produces the zero matrix. We are substituting the matrix A for the 
number A in the polynomial p(A) = det(A - U). The Cayley-Hamilton Theorem

says that this product is always p(A) = zero matrix, even if A is not diagonalizable. 

Challenge Problems 

33 The nth power of rotation through 0 is rotation through n0 : 

- sin 0 ] n [ cos n0 
cos 0 sin n0 

- sinn0 
] .

cosn0 

Prove that neat formula by diagonalizing A = VA v-1. The eigenvectors (columns
of V) are (1, i) and (i, 1). You need to know Euler's formula eie = cos 0 + i sin 0. 

34 The transpose of A = VA v-1 is AT = (v- 1 ? A VT . The eigenvectors in AT y = 
AY are the columns of that matrix (v-1) T. They are often called left eigenvectors. 

How do you multiply three matrices VAv- 1 to find this formula for A?

Sum ofrank-1 matrices A= VAv-1 = A1X1Yi + ... + AnXnyJ.

35 The inverse of A = eye(n) + ones(n) is A-1 = eye(n) + C * ones(n). Multiply 
AA- 1 to find that number C (depending on n). 
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6.3 Linear Systems y' = Ay 

This section is about first order systems of linear differential equations. The key words are 
systems and linear. A system allows n equations for n unknown functions Y1 ( t), ... , Yn ( t). 
A linear system multiplies that unknown vector y(t) by a matrix A. Then a first order 
linear system can include a source term q(t), or not: 

Without source !� = Ay(t) 
dy 

With source dt = Ay(t) + q(t) 

Without a source term, the only input is y(O) at the start. With q(t) included, there is 
also a continuing input q(t)dt between times t and t + dt. Forward from time t, this in­
put grows or decays along with the y(t) that just arrived from the past. That is important. 

The transient solution Yn(t) starts from y(O), when q(t) = 0. The output coming 
from the source q(t) is one particular solution y

'I?
(t). Linearity allows superposition!

The complete solution with source included is y(t) = Yn(t) + Yp(t) as always.

The serious work of this section is to find Yn (t), the null solution to Yn' - Ayn = 0. 
Then Section 6.4 accounts for the source term q(t) and finds a particular solution. 

We want to use the eigenvalues and eigenvectors of A. We don't want those to change 
with time. So we kept our equation linear time-invariant, with a constant matrix A. For­
tunately, many important systems have A = constant in the first place. The system is not 
changing, it is only the state of the system that changes: constant A, evolving state y(t). 

We will express y(t) as a combination of eigenvectors of A. Section 6.4 uses eAt _

Solution by Eigenvectors and Eigenvalues 

Suppose the n by n matrix A has n independent eigenvectors. This is automatic if A 
has n different eigenvalues >.. Then the eigenvectors x1, ... , Xn are a basis in which we 
can express any starting vector y(O) 

Initial condition y(O) = c1X1 + · · · + CnXn for some numbers c1, ... , Cn. 

Computing the e's is Step 1 in the solution, after finding the >.'s and x's. 

Step 2 solves the equation y' = Ay using y = e::-.tx. Start from any eigenvector:

If Ax= >.x then y(t) = e""tx solves !� = Ay. 

This solution y = e::-.tx separates the time-dependent e::-.t from the constant vector x: 

dy 
-A 

dt - y becomes

(1) 

(2) 

(3) 

Step 3 is the final solution step. Add the n separate solutions from the n eigenvectors. 

Superposition (4) 

At t = 0 this matches y(O) in equation (1). That was Step 1, where we chose the e's. 
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Example 1 Find all solutions toy' = [
-� -�] y. Which solution has y(O) = [ �] ?

Solution First we find >. = -1 and - 3. Their eigenvectors x1 and x2 go into V :

[ 
-2 - >. 1 

]det 1 _ 2 _ >. = >.2 + 4>. + 3

Ax1 = -lx1
Ax2 = -3x2

factors into

Step 1 Solve y(O) = V c. Then y(O) is a mixture 4x1 + 2x2 of the eigenvectors:

Step 2 finds the separate solutions ce>..tx given by 4e-tx1 and 2e-3tx2. Now add:

Step 3 [ 
1 

] [ 
1 

] [ 
4e-t + 2e-3t 

] y(t) = 4e-t 1 + 2e-3t -1 
= 

4e-t - 2e-3t . 

For a larger matrix the computations are harder. The idea doesn't change.

(5)

Now I want to show a matrix with complex eigenvalues and eigenvectors. This will
lead us to complex numbers in y(t). But A is real and y(O) is real, so y(t) must be real! 
Euler's formula eit = cos t + i sin t will get us back to real numbers. 

Example 2 Find all solutions toy' = [ =� -�] y. Which solution has y(O) = [ �] ?

Solution Again we find the eigenvalues and eigenvectors, now complex :

det ( A - >..I) = 0 [ 
-2 - >. 1 

] det _1 _2_>. 
= >..2 +4>..+5 (no realfactors)

We use the quadratic formula to solve >.2 + 4>. + 5 = 0. The eigenvectors are x = (1, ±i).

A.1 = -2 + i 

A.2 = -2 - i 
-4±J42 - 4(5) -4±2i 

>. = ----'----- = --- = -2 ± i
2 2 

[ =� -� J [n = (-2+i) [!J 
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To solve y' = Ay, Step 1 expresses y(O) = (6, 2) as a combination of those eigenvectors:
[ � ] = (3 - i) [ � ] + (3 + i) [ -! ] . 

Step 2 finds the solutions c1e>- 1 tx1 and c2e>-2 tx2. Step 3 combines them into y(t):

Solution y(t) = c1e>- 1 tx1 +c2e>-2 t x2 = (3-i)eC-2+i)t [ � ] +(3+i)eC-2-i)t [ _!].
As expected, this looks complex. As promised, it must be real. Factoring out e-2t leaves
(3 -i)(cos t + i sin t) [ ! ] + (3 + i)(cos t -i sin t) [ _!] = [ � ::: � � � :!: �] . (6)

Put back the factor e-2t to find the (real) y(t). It would be wise to check y' = Ay:

y(O) = [ �] and (t) = e-2t [6 cost+ 2 s�n t]Y 2 cos t - 6 sm t (7) 

The factor e-2t from the real part of>. means decay. The cost and sin t factors from theimaginary part mean oscillation. The oscillation frequency in cost = cos wt is w = 1. 
Note The -2's on the diagonal of A (which is exactly -2!) are responsible for thereal parts -2 of the ,\'s. They give the decay factor e-2t. Without the -2's we wouldonly have sines and cosines, which converts into circular motion in the y1 - y2 plane. That is a very important example to see by itself.
Example 3 Pure circular motion and pure imaginary eigenvalues 

y'= 
[ y� ] [ 0 1 ] [ Y1 ] [ 

Y2 ] 
y� -1 0 Y2 -y1 

sends y around a circle.

Discussion The equations are y� = y2 and y� = -y1. One solution is y1 = sin t andy2 = cost. A second solution is y1 = cost and Y2 = -sin t. We need two solutions tomatch two required values y1(0) and y2(0). Those solutions would come in the usual way from the eigenvalues >. = ±i and the eigenvectors. Figure 6.2 a shows the solution to Example 2 spiralling in to zero (because of e-2t).Figure 6.2 b shows the solution to Example 3 staying on the circle (because of sine andcosine). These are good examples to see the "phase plane" with axes Y1 and y1
1 = Y2-

Without the -2's, the matrix A = [-� �] is a rotation by go0
• At every instant,

y' is at a go0 angle with y. That keeps y moving in a circle. Its length is constant:
Constant length 

Circular orbit 
(8)
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Y2 
y (0) = (6, 2)
y'(0) = (2, -6)

-+---�""+---+-t--+--+-t+--->- Y1 
Spiral 

y(t) 

Yi+ Y3 = 40 e-4t 

y'(O) = (-10,-10)

[-2 1] 
A= -1 -2 �] 

Yi+ y� = 40 

Figure 6.2: (a) The solution (7) including e-2t. (b) The solution (6) without e- 2t.

Conservative Motion 

Travel around a circle is an example of conservative motion for n = 2. The length of y
does not change. "Energy is conserved." For n = 3 this would become travel on a sphere.
For n > 3 the vector y would move with constant length around a hypersphere. 

Which linear differential equations produce this conservative motion ? We are asking for
the squared length I I y I I 2 = y Ty to stay constant. So its derivative is zero : 

The first step was the product rule. Then dy / dt was replaced by Ay. Conclusion :

11 y I I 
2 is constant when A is antisymmetric: AT + A = 0 and AT 

= -A. (10)

The simplest example is A = [ _ � �] . Then y goes around the circle in Figure 6.2 b.

The initial vector y ( 0) decides the size of the circle : 11 y ( t) 11 = 11 y ( 0) 11 for all time.
When A is antisymmetric, its eigenvalues are pure imaginary. This comes in Section 6.5.

Stable Motion 

Motion around a circle is only "neutral" stability. For a truly stable linear system, the

solution y(t) always goes to zero. It is the spiral in Figure 6.2a that shows stability:

A= [ -2 
-1 _; ] has eigenvalues >- = -2 ± i. This A is a stable matrix.

The key is in the eigenvalues of A, which give the simple solutions y = e>..tx. When
A is diagonalizable (n independent eigenvectors), every solution is a combination of
e>- 1 tx1, ... , e>-ntxn . So we only have to ask when those simple solutions approach zero:

Stability e:..tx -+ 0 when the real part of>- is negative : Re A < 0.
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The real parts -2 give the exponential decay factor e-2t in the solution y. That
factor produces the inward spiral in Figure 6.2 a and the stability of the equation y' = Ay.
The imaginary parts of >. = -2 ± i give oscillations : sines and cosines that stay bounded.

Test for Stability When n = 2 

For a 2 by 2 matrix, the trace and determinant tell us both eigenvalues. So the trace and
determinant must decide stability. A real matrix A has two possibilities R and C : 

R Real eigenvalues >-1 and >-2 

C Complex conjugate pair >.1 = s + iw and >.2 = s - iw

Adding the eigenvalues gives the trace of A. Multiplying the eigenvalues gives the deter­
minant of A. We check the two possibilities Rand C, to see when Re(>.) < 0. 

R If >-1 < 0 and >-2 < 0, then trace = >.1 + >-2 < 0 and determinant = >.1 >.2 > 0
C Ifs< 0 in >.= s ± iw, then trace = 2s < 0 and determinant = s2 

+ w2 
> 0

Both cases give the same stability requirement: Negative trace and positive determinant.

A = [ � ! ] is stable exactly when
trace = a + d < 0 

det = ad - be > 0
(11) 

It was the quadratic formula that led us to the possibilities R and C, real or complex.
Remember the equation det ( A - >.I) = 0 for the eigenvalues : 

det [
a

�
>. 

d � >-] = .X2 
- (a+ d) >.+(ad - be) = .X2 

- (trace) A+ (det) = 0.

The quadratic formula for the two eigenvalues includes an all-important square root :

Real or complex >. >. = � [trace ± J(trace)2 
- 4(det)] . (12) 

The roots are real (case R) when (trace)2 2: 4 (det). The roots are complex (case C) when
(trace)2 

< 4 (det). The line between Rand C is the parabola in the stability picture: 

(Trace)2 = 4 (det) [ -� _ � ] is stable [ � � ] is unstable 

Stable matrices only fill one quadrant of the trace-determinant plane: trace < 0, det > 0. 
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Stability 

picture 

determinant D > 0 
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Examples 

\ 

both.\< 0 

stable 

both Re,\< 0 

stable 

C 

both Re.\> 0 

unstable 

/ 

/ 

R 

both.\> 0 

unstable 

det < 0 means >. 1 < 0 and >.2 > 0 : unstable

[� 
-1] 
-3 

stable 

[! -!J unstable 

[� _:] unstable 

[� -�J neutral 

trace T

Second Order Equation to First Order System 

Chapter 2 of this book studied the second order equation y" + By' + Cy = 0. Often
this is oscillation with underdamping. The solutions y = e<a+iw)t and e<a-iw)t come from
the quadratic equation s2 + B s + C = 0, when we search for solutions y = est .
If B2 is larger than 4C, then the roots are real and the solutions are es, t and e82 t .
In that overdamped case, the oscillations are gone. 

I want to show you exactly the same solutions in the language of y' = Ay. Instead of
one equation with y" we will reach two equations with y' = (yi', y2'). You have seen
the key idea before: The original y and y' become y1 and y2• Then the matrix A is a
companion matrix. 

y" + By' + Cy = 0 0 

-C
(13) 

It is important to see why the roots s 1 and s2 are also the eigenvalues >. 1 and >.2 . 

The reason is, these are still the roots of the same equation s2 + Bs + C = 0. Only
the letter s is changed to 

>.
.

[ -
>. det(A - U) = det -
C 

1 ] 2 -B->. =>- +B>.+C=0. (14) 

This was foreshadowed when we drew the six solution paths in Section 3.2: Sources, Sinks, 
Spirals, and Saddles. Those pictures were in the y, y' plane (the phase plane). Now the
same pictures are in the y1, Y2 plane. I specially want to show you again the trace and
determinant of A and the whole new-old understanding of stability.

[ _i _ � ] has trace = -B and determinant= C.

First the test for real roots of s2 + Bs + C = 0 and for real eigenvalues of A:

R Real roots and real eigenvalues B2 > 4C
C Complex roots and eigenvalues A = a ± iw B2 < 4C

(trace) 2 � 4(det) 

(trace) 2 < 4(det) 

In the picture, the dashed parabola T2 = 4D separates real from complex : R from C.
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More than that, the highlighted quadrant displays the three possibilities for damping. 

These are all stable: B > 0 and C > 0. 

Underdamping 

Critical damping 

Overdamping 

Complex roots 

Equal roots 

Real roots 

B2 < 4AC above the parabola 

B2 
= 4AC on the parabola 

B2 > 4AC below the parabola 

The undamped case B 0 is on the vertical axis: eigenvalues ± iw with w2 = C. 
Everything comes together for 2 by 2 companion matrices. The eigenvectors are attractive 

too: 

The same method applies to systems with n oscillators. B and C become matrices. The 

vectors y and y' haven components and the joint vector z = (y, y') has 2n components.

The network leads ton second order equations for y, or 2n first order equations for z: 

y" + By' + Cy = 0 z' = [ :,: ] [ 0 

-C
_ 1 ] [ :, ] = Az · (16) 

Eigenvectors give the null solutions Yn · Real problems come with forcing terms q = Fest . 

Here I make just one point about repeated roots and repeated eigenvalues : 

If .X1 = .X2 there is no second eigenvector of the companion matrix A. That matrix 

can't be diagonalized and the eigenvector method fails. The next section will succeed with 

eAt , even without a full set of eigenvectors. 

Higher Order Equations Give First Order Systems 

A third order (or higher order) equation reduces to first order in the same way. Introduce 

derivatives of y as new unknowns. This is easy to see for a single third order equation 

with constant coefficients : 

y"' + By" + Cy' + Dy = 0 (17)

The idea is to create a vector unknown z = (y, y', y"). The first component y satisfies a 

very simple equation : its derivative is the second component y'. Then the matrix below 

has 0, 1, 0 in its first row. Similarly the derivative of y I is y 11• The second row of the

companion matrix is 0, 0, 1. The third row contains the original differential equation (17): 

z' = Az u 
1 

0 

-C J] [�:,] (18) 

Companion matrices have l's on their superdiagonal. We want to know their eigenvalues. 
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Eigenvalues of the Companion Matrix = Roots of the Polynomial 

Start with the eigenvalues of the 2 by 2 companion matrix :

[ -.A. det (A - >..I)= det 
-C 

1 ] 2 

-B->.. 
=A +B>..+C=0. 

Compare that with substituting y = e>--t in the single equation y" + By' + Cy = 0:

>..2e>-.t 
+ B>..e>--t 

+ Ce>-.t gives >..2 
+ B>.. + C = 0.

(19)

(20)

The equations are the same. The ,X's in special solutions y = e>--t are the same as the
eigenvalues in special solutions z = e>--tx. This is our main point and it is true again for
3 by 3. The eigenvalue equation det (A - >..I) = 0 is exactly the polynomial equation
from substituting y = e>--t in y"' + By" + Cy' + Dy = 0 : 

[ -.A. det 0
-D 

-� � l = -(>..3 
+ B>..2 

+ C>.. + D) = 0.
-C -B->..

(21)

The eigenvectors of this companion matrix have the special form x = (1, >.., >..2). 

Fourth order equations become z' = Az with z = (y, y', y", y"'). 4 by 4 companion matrix,
eigenvalues from >..4 

+ B>..3 
+ C>..2 

+ D>.. + E = 0. 

Example 4 (>.. - 2)2 = >..2 
- 4>.. + 4 = 0 comes from y" - 4y' + 4y = 0:

Companion matrix A
Repeated root>..= 2, 2 A= [ -

� ! ] det (A - >..I) = >..2 - 4>.. + 4 .

>.. = 2 must have one eigenvector, and it is x = (1, 2). There is no second eigenvector.
The first order system z' = Az and the second order equation y" - 4y' + 4y = 0 are
in (the same) trouble. The only pure exponential solution is y = 

e2t . 
The way out for y is the solution te2t. It needs that new form (including t).

The way out for z is a "generalized eigenvector" but we are not going there. 

• REVIEW OF THE KEY IDEAS •

1. The system y1 = Ay is linear with constant coefficients, starting from y(0).

2. Its solution is usually a combination of exponentials e,\t times eigenvectors x :

n independent eigenvectors y(t) = C1eA1t
X1 + · · · + CneAnt

Xn. 

3. The constants c1, . . .  , Cn are determined by y(0) = c1X1 + · · · + CnXn. This is V c !

4. y( t) approaches zero (stability) if every>.. has negative real part: Re>.. < 0.

5. 2 by 2 systems are stable if trace T = a + d < 0 and det D = ad - be > 0.

6. y 11 +By' + Cy = 0 leads to a companion matrix with trace= - B and det = C.
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Problem Set 6.3 

1 Find all solutions y = cie>-1 txI + c2e>-2tx2 to y' = [ � ! ] y. Which solution

starts from y(0) = CIXI + C2X2 = (2, 2)? 

2 Find two solutions of the form y = e>-tx toy' = [ 32 
10 ] 
4 

y.

3 If a =I d, find the eigenvalues and eigenvectors and the complete solution to y' = Ay. 
This equation is stable when a and d are __ . 

, 
[ 

a b 
] y = 0 d y.

A = [ � t ] . Why is y' = Ay not stable ?

5 Find the eigenvalues )q , .-\2, ,\3 and the eigenvectors XI, x2, x3 of A. Write 
y(0) = (0, 1, 0) as a combination cixI + c2x2 + c3x3 = V c and solve y' = Ay. 
What is the limit of y(t) as t -t oo (the steady state)? Steady states come from,\ = 0. 

A= [ -i _; � l ·
0 1 -1 

6 The simplest 2 by 2 matrix without two independent eigenvectors has ,\ = 0, 0: 

[ �: r = Ay = [ � � ] [ �: ] has a first solution [ �: ] = eat [ � ] . 

Find a second solution to these equations YI' = Y2 and y2' = 0. That second solution 
starts with t times the first solution to give YI = t. What is y2 ? 

Note A complete discussion of y' = Ay for all cases of repeated ,\ 's would involve 
the Jordan form of A: too technical. Section 6.4 shows that a triangular form is 
sufficient, as Problems 6 and 8 confirm. We can solve for y2 and then YI. 

7 Find two ,\'s and x's so that y = e>-.tx solves 

dy 
[ 

4 3 ] dt 
= 

0 l 
y.
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8 Solve Problem 7 for y = (y, z) by back substitution, z before y: 
dz dy Solve -= z from z(0) = -2. Then solve -

d 
= 4y + 3z from y(0) = 5. ill t 

The solution for y will be a combination of e4t and et . The .\'s are 4 and 1. 
9 (a) If every column of A adds to zero, why is .\ = 0 an eigenvalue ? 

(b) With negative diagonal and positive off-diagonal adding to zero, y' = Aywill be a "continuous" Markov equation. Find the eigenvalues and eigenvectors,and the steady state as t -+ oo : 
dy [-2 Solve dt = 2 -�JY with y(0)=[1]- What isy(oo)?

10 A door is opened between rooms that hold v(0) = 30 people and w(0) = 10 people.The movement between rooms is proportional to the difference v - w: 
dv -= w-v and 
dt 

dw 
dt =v-w.

Show that the total v + w is constant ( 40 people). Find the matrix in dy / dt = Ayand its eigenvalues and eigenvectors. What are v and w at t = 1 and t = oo? 
11 Reverse the diffusion of people in Problem 10 to dz/ dt = -Az : 

dv - =v-w
dt

and dw - =w-v.
dt

The total v + w still remains constant. How are the .A's changed now that A is changedto -A? But show that v(t) grows to infinity from v(0) = 30. 
12 A has real eigenvalues but B has complex eigenvalues: 

A--[a1 al] B--[1b -lb] ( a and bare real) 

Find the stability conditions on a and b so that all solutions of dy / dt = Ayand dz/dt = Bz approach zero as t-+ oo. 
13 Suppose P is the projection matrix onto the 45° line y = x in R2

. Its eigenvalues are1 and 0 with eigenvectors (1, 1) and (1, -1). If dy/dt = -Py (notice minus sign)can you find the limit of y(t) at t = oo starting from y(0) = (3, 1)? 
14 The rabbit population shows fast growth (from 6r) but loss to wolves (from -2w). The wolf population always grows in this model (-w2 would control wolves): 

dr 
- = 6r - 2w
dt 

and dw 
- = 2r+w. 
dt 

Find the eigenvalues and eigenvectors. If r(0) = w(0) = 30 what are the populations 
at time t? After a long time, what is the ratio of rabbits to wolves? 
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15 (a) Write (4, 0) as a combination c1 x1 + c2x2 of these two eigenvectors of A:

(b) The solution to dy/dt = Ay starting from (4, 0) is c1 eitx1 + c2e-itx2. 
Substitute eit = cost + i sin t and cit = cost - i sin t to find y( t).

Questions 16-19 reduce second-order equations to first-order systems for (y, y'). 

16 Find A to change the scalar equation y 11 

y = (y, y'):
5y 1 

+ 4y into a vector equation for

dy 
dt [{,] [ ] [:,] = Ay.

What are the eigenvalues of A? Find them also by substituting y
y" = 5y' + 4y.

e>-t into 

17 Substitute y = e>-t into y" = 6y' - 9y to show that >. = 3 is a repeated root.
This is trouble; we need a second solution after e3t. The matrix equation is 

! [ :, ] = [ -� ! ] [ :, ] .
Show that this matrix has>. = 3, 3 and only one line of eigenvectors. Trouble here too.
Show that the second solution to y" = 6y' - 9y is y = te3t .

18 (a) Write down two familiar functions that solve the equation d2y/dt2 = -9y.
Which one starts with y(O) = 3 and y'(O) = 0? 

(b) This second-order equation y" = -9y produces a vector equation y' = Ay:

y = [:,]
dy

[ 
y I ] [ 0 1 

] [ 
y 

] dt = y" = -9 0 y' = Ay.

Find y(t) by using the eigenvalues and eigenvectors of A: y(O) = (3, 0).

19 If c is not an eigenvalue of A, substitute y = ectv and find a particular solution to
dy/dt = Ay - ectb. How does it break down when c is an eigenvalue of A ?  

20 A particular solution to dy / dt = Ay - b is Y
p 

= A- 1 b, if A is invertible. The
usual solutions to dy/dt = Ay give Yn · Find the complete solution y = Y

p 
+ Yn :

dy 
(a) - = y-4

dt 
(b) !� = [ � � ] y -

[: l
21 Find a matrix A to illustrate each of the unstable regions in the stability picture : 

(a) >.1 < 0 and>.2 > 0 (b) >.1 > 0 and>.2 > 0 (c) >. = a±ibwitha > 0.
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22 Which of these matrices are stable ? Then Re A < 0, trace < 0, and det > 0. 

_ [ -2 -3 ]A1 - -4 -5 
_ [ -1 -2 ]

A2 - -3 -6 [ -1 2 ] 
A3 = -3 -6 .

23 For an n by n matrix with trace (A) = T and det (A) = D, find the trace and
determinant of -A. Why is z' = -Az unstable whenever y' = Ay is stable ? 

24 (a) For a real 3 by 3 matrix with stable eigenvalues (Re A < 0), show that trace< 0 
and det < 0. Either three real negative A or else A2 = >."1 and A3 is real.

(b) The trace and determinant of a 3 by 3 matrix do not determine all three
eigenvalues ! Show that A is unstable even with trace < 0 and determinant < 0 :

25 You might think that y' = -A2y would always be stable because you are squaring

the eigenvalues of A. But why is that equation unstable for A = [ _ � � ] ?

26 Find the three eigenvalues of A and the three roots of s3 - s2 + s - 1 = 0 (including
s = 1 ). The equation y"' - y 11 + y' - y = 0 becomes

l �:, r l � 
1 ol 

[
Y l 

0 1 y 1 

-1 1 y 11 

Each eigenvalue A has an eigenvector x = (1, A, A2 ).

or z' = Az.

27 Find the two eigenvalues of A and the double root of s2 + 6s + 9 = 0:

I

y 11 
+ 6y 1 + 9y = O becomes [ � 1 ] = [ � ! ] [ � 1 ] or z 1 = Az. 

The repeated eigenvalue gives only one solution z = e>-.tx. Find a second solution z
from the second solution y = te>-.t . 

28 Explain why a 3 by 3 companion matrix has eigenvectors x = (l, .X, .X2 ). 

First Way: If the first component is x 1 = 1, the first row of Ax = AX gives the
second component x2 = __ . Then the second row of Ax = Ax gives the third
component x3 = A 2. 

Second Way: y' = Ay starts with y{ = y2 and y� = y3. y = e>-.tx solves
those equations. At t = 0 the equations become Ax 1 = x2 and __ .
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29 Find A to change the scalar equation y" 5y' - 4y into a vector equation for 
z = (y, y'):

dz 

dt 
] [ �1 ] = Az. 

What are the eigenvalues of the companion matrix A? Find them also by substituting 
y = e>.t into y" = 5y' - 4y.

30 (a) Write down two familiar functions that solve the equation d2y/dt2 = -9y.
Which one starts with y(O) = 3 and y 1 (0) = 0?

(b) This second-order equation y" = -9y produces a vector equation z 1 = Az:

dz 
[ 

y
1 ] [ 0 1 ] [ y ] 

dt 
= 

y
" = -9 0 y

' = Az. 

Find z(t) by using the eigenvalues and eigenvectors of A: z(0) = (3, 0). 

31 (a) Change the third order equation y111 
- 2y" - y' + 2y = 0 to a first order system

z' = Az for the unknown z = (y, y', y"). The companion matrix A is 3 by 3.

(b) Substitute y = e>.t and also find det (A - AI). Those lead to the same )..'s.

( c) One root is ).. = 1. Find the other roots and these complete solutions :

32 These companion matrices have).. = 2, 1 and)..= 4, 1. Find their eigenvectors: 

A= [ -� ! ] and B = [ -� ! ] Notice trace and determinant!



362 Chapter 6. Eigenvalues and Eigenvectors 

6.4 The Exponential of a Matrix 

This section expresses the solution to a system d y / dt = Ay in a different way. Instead 
of combining eigenvector solutions e>-t x, the new form uses the matrix exponential eAt: 

Solution to y' = Ay (1) 

This matrix eAt matches eat when n = 1 : the scalar case. For matrices, we can still 
write the exponential as an infinite series. In one way this is better than depending on 
eigenvectors-but maybe not in practice : 

Advantage We don't need n independent eigenvectors for eAt . 
Disadvantage An infinite series is usually not so practical. 

The new way produces one short symbol eAt for the "solution matrix." Still we 
often compute in the old way with eigenvectors. This is like a linear system Av = b,

where A- 1 is the solution matrix but we compute v by elimination. 
For large matrices, y 

1 = Ay uses completely different ways - often finite differences. 

The Exponential Series 

The most direct way to define the matrix eAt is by an infinite series of powers of A: 

Matrix exponential eAt =I+ At+ �(At)2 
+2 

00 

= L)At) n /n ! (2)
n=O 

This series always converges, like the scalar case eat in Chapter 1. eAt is the great 
function of matrix calculus. The quickly growing factors n! still assure convergence. 
The two key properties of eat continue to hold when a becomes a matrix A : 

1. The derivative of eAt is AeAt 

Property 1 says that y(t) = eAt
y(O) has derivative y' = A y . And y(t) starts correctly 

from y(O) at t = 0, since eAO = I from equation (2). So eAt
y (O) solves y ' = Ay. 

Suppose we set T =-t in Property 2. Then t + T = 0: 

The inverse of eAt is e - At eAteAT 
= e0 

= I when T is - t. (3) 
eAt has properties 1 and 2 even if A cannot be diagonalized. When A does have n 
independent eigenvectors, the same eigenvector matrix V diagonalizes A and eAt . The 
next page shows that eAt 

= V eAt 
v-

1 
: this is the good way to find eAt . 
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Assume A has n independent eigenvectors, so it is diagonalizable. Substitute A = VA v-
1

into the series for eAt _ Whenever V Av-1 
V Av-1 appears, take out v-1 

V = I. 

Use the series 

Factor out Vand v- 1 

Diagonalize e
At 

=I+ VAv-1t + ½(VAv-1t)(VAv-1t) + ...
= V [I+ A t+ ½(At)2 + · · ·] v-1 
= VeAty-1_ 

(4) 

The numbers e>..;t are on the diagonal of eAt. Multiply VeAtv-1
y (0) to see y (t).

Second Proof eAt has the same eigenvectors x as A. The eigenvalues of eAt are e>.t :

So the same eigenvector matrix V diagonalizes both A and eAt . The eigenvalue matrix for
eAt is diag ( e>..1 t , ... , e>..nt). This is exactly eAt. Again eAt = V eAt v-1. 

The eigenvalues of the inverse matrix e -At are e->..t. This is 1 / e>..t as expected.

Example 1 The rotation matrix A = [ _ � �] has eigenvalues >.1 = i and >.2 = -i :

At
=V 

Atv-1= [l l] [eit O.] ! [l e e i -i O e-it 2 1 
-�] = [ c�s t sin t] .

i - smt cost (6) 

This produces eAt without adding up an infinite series. We could also begin the series :

[ 1 0] [ 0 t ] 
1 [-t2 

0 1 + 
-t O + 

2 0 
0 ] 

1 
[ 0 

-t2 + 
6 t3

-t3

] = [ 
1 - ½t2 

0 -t + l. t3 

6 

t - ¾t3 ] 

1 - l. t
2 

2 

The cosine series starts with 1 - ½t2. The sine series starts with t - ¾t3. The full series for
eAt gives the full series for cos t and sin t : very exceptional.

Example 1 continued What is the solution to dy/dt = Ay with y(0) = (1, 0)?
Answer We know that y ( t) = (y1 , y2) is eAt

y (O), and equation (6) gives eAt:

[ Y1 (t) ] [ 
Y2(t) 

cost 
- sint 

sin t ] [ 1 ] [ cost 0 
cost] - sin t (7)

Right! The derivative of cost is - sin t. The derivative of y2 = - sin t is - cost.
The equations y' = Ay are satisfied. When t = 0, we start correctly at y(0) = (1, 0). 

This solution is important in physics and engineering. The point y ( t) is on the unit circle
Yi + Y§ = cos2 t + sin2 

t = l. It goes around the circle with constant speed.
The second derivative (acceleration) is y" = (-sin t, -cost) because A2 = -I. This 

vector y" points in to the center (0, 0). We have a planet going in a circle around the sun. 
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Example 2 Suppose A is triangular but we can't diagonalize it (only one eigenvector): 

y' = Ay = [ � i ] [ �� ] Y� = Y1 + Y2 
y; = 0 + Y2 (8) 

A has no invertible eigenvector matrix V. How to find y( t) without two eigenvectors?

Solution Since A is triangular, back substitution will solve y' = Ay. Begin by solving
the last equation y2' = y2. Then solve for y1: 

Y2(t) = ety2(0) Then Y1' = Y1 + Y2 = Y1 + ety2(0)

That equation for y1 has a source term q( t) = et
y2 ( 0). Chapter 1 found the solution y1 ( t) :

t t 

ety1(0) + J et- sq(s) ds = ety1(0) + ety2(0) J ds == ety1(0) + tety2(0). (9)
0 0 

At last we have a reason for the extra factor t. The natural growth rate of y1 is also
the growth rate of y2. This leads to "resonance" in y1' = y1 + y2, and the growth of tet 

is extra fast. We saw resonance with test in Chapter 2. Now we are seeing the t in eAt _

Y1(t) = et y1(0) + tety2(0) 
Y2(t) = ety2(0) 

A 
[ 

et tet 

] means that e t = 0 et (10) 

Example 2 (using eAt) For this triangular matrix A, we can also add the series for eAt : 

=I+ At+ !(At)2 
+ !(At)3 

+ ...
2 6 

= [ � � J + [ � ! J + � [ r :t J + � [ �
3 

:t J + . . . (11)

because 1 
tet 

= t + t2 + - t3 + ... 
2 

All the powers of a triangular matrix are triangular. So the diagonal entries of A give the 
diagonal entries of eAt . Those are the eigenvalues of eAt and here they are both et . 

Source Term in y' = Ay + q 

We can solve y ' = ay + q for a single equation (1 by 1). Now allow a matrix A:

eat - 1 
Old 

y(t) = eat
y(O) + --q 

a 
New dy 

dt = Ay+q

Change a to A! For constant q, that is the only change in the formula for y: 

y' = Ay+q is solved by 

(12) 

(13)
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The derivative of y produces Ay, except for the constant A- 1q with derivative = zero. 
But this term A- 1q disappears safely in Ay + q, because -AA- 1q + q = 0.

Chapter 1 was built on the growth factor eat in the integral for Y
p

· Now it is eAt ! 

Principle Each input q ( s) has growth factor eA ( t - 8) from time s to time t.
For constant A, the growth (or decay) over time t - sis just multiplication by eA (t - s) :

t 
y' = Ay + q(t) is solved by y(t) = eAty(O) + J eA (t - s)q(s) ds. 

0 

(14) 

Similar Matrices A and B 

To end this section, I will solve y' = Ay in one more way. Same result, new approach.

Change of variables. Write y = V z to change from y(t) to the new variable z (t).

dy 
-A 

dt - y becomes V dz 
= AVz 

dt 
which is !: = v-

1
AVz.

The matrix A has changed to B = v-
1 AV. Then the solution for z involves eBt : 

B = v-
1
Av z' = Bz produces z(t) = eBt

z(O) 

(15) 

(16)

Changing back toy= Vz, that solution becomes y(t) = VeBt
z(O) = VeBt v- 1y(O). 

The exponential of A = V Bv- 1 is eAt = VeBtv- 1
. (17) 

Special case : When V is the eigenvector matrix, B is the eigenvalue matrix A.

Here is my point. Equation (17) is true for any invertible matrix V. Choosing the 
eigenvector matrix of A makes B diagonal; in fact B = v- 1 AV = A. This is the
outstanding choice for V, to produce B = A when A has n independent eigenvectors.
But any invertible V is now allowed, and we have a name for B : similar matrix.

Every matrix B = v-
1 
AV is "similar" to A. They have the same eigenvalues. 

I can quickly prove that eigenvalues stay unchanged. Eigenvectors change to u = v- 1 x: 

If Ax= AX then v- 1 Ax= AV- 1x which is v- 1 AVu =Bu= AU. (18) 

By allowing all invertible V, we have a whole family of matrices B = v-
1 AV. All are

similar to A, all have the same eigenvalues as A, only the eigenvectors change with V. 
In case A cannot be diagonalized, a good choice of V makes B upper triangular.

V is not easy to compute, but it greatly simplifies the problem. Example 2 showed how
z(t) comes from back substitution in z 

1 
= Bz. Then y(t) = V z(t) solves y 1 = Ay 

without n independent eigenvectors of A. 
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Fundamental Matrices (Optional Topic) 

A linear system dy/dt = A(t)y is completely solved when you have n independent
solutions Y i (t) to Yn(t). Put those solutions into the columns of an n by n matrix M(t): 

Fundamental matrix M(t) = [ Y i (t) ... Yn(t)] 
dM

has - = AM(t). 
dt 

(19)

Every column of dM / dt has dy / dt = Ay. All columns together give dM / dt = AM.
"Linear independence" means that M is invertible. The determinant of M is not zero.

This determinant W(t) is called the "Wronskian" of then solutions in the columns of M: 

W(t) = Wronskian of Y i (t), ... , Y
n 

(t) = Determinant of M(t). (20)

The beautiful fact is this: If the Wronskian starts from W =f. 0 at time t = 0, then 
W(t) =f. 0 for all t. Independence at the start means independence forever. A combination
y(t) = Ci Y i (t) + · · · + CnY

n
(t) can only be zero at time t if it started from y(0) = 0.

Solutions toy' = Ay don't hit zero! So W(t) = 0 requires W(0) = 0, as in this neat 
formula discussed in the Chapter 6 Notes (exponentials are never zero). 

d: = (traceA(t))W and then W(t) = ef traceA(t) dt W(0). (21)

What are M(t) and W(t) for a second order equation y 11 
+ B(t)y' + C(t)y = 0? We

know how to convert this to a first order system y 1 = A( t )y. The vector unknown is
y = (y,y') and A(t) is a companion matrix containing -B(t) and -C(t). The two
independent solutions in the columns of M(t) are (Yi , Yi ') and (Y2, Y2 '): 

MatrixM(t)= [Yi , Y2,] WronskianW(t)=det M=yiy2 1 -y2yi '. (22)Yi Y2 

Again W ( t) -/- 0 is the test for Yi and y2 to be independent. The test is passed for all t
if W(0) -/- 0. In the mysterious formula (21), the trace of A(t) is -B(t).

You will naturally ask: What is this fundamental matrix M ( t) ? Why are we only see­
ing it now? One answer is that you already know the growth factor G from Chapter 1 :
M = G(0, t) = exp (J a(t)dt). For systems, you also know M = eAt _ That is the perfect
answer when A is constant. eAt is the best possible M(t) because it starts from M(0) = I.

It is often hard to find M(t) when the matrix A depends on t (then nothing is easy).
We know that y 1 = A(t)y has n independent solutions y(t). But in most cases we don't 
know what those solutions are. The point of fundamental matrices is that the solution y(t) 
comes directly from M ( t), when and if we know M : 

I y(t) = M(t)M(o)- iy(0) for any M(t) I (23) 

Let me say a little more about constant A and varying A(t), and then stop.
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Constant A with n independent eigenvectors in V We known solutions y = e>-tx: 

Put those y's into M(t) = [e>-1 tx 1 e>-2 tx2 ... e>-ntxn] = VeAt _ 

How does this differ from eAt ? You can see everything at t = 0, when this M(t) is V.
If you want the fundamental matrix that equals I at t = 0, just multiply by M(o)- 1 = v- 1 :

When A= VA v- 1 , the best fundamental matrix is M = VeAt v- 1 which is eAt . 

Time-varying A(t) with time-varying eigenvectors The equation y' = A(t)y is more
difficult. The next page shows how the expected solution formula fails. The chain rule
goes wrong. Finding even one solution y1 (t) is a big challenge. The optimistic point 
is that if we can find y1 (t), then "variation of parameters" will lead us to y2 = C(t)y1. 

Let me focus on a famous equation that has been studied by great mathematicians : 

Bessel's equation 
d2y dy 

x2 - +x- + (x2 
-p

2 )y = 0.
dx2 dx (24) 

The solutions are Bessel functions of order p. When the order is p
y1 and y2 are quite special (the variable tis usually changed to x). 

½, these solutions 

Y1 (x)=ffsinx and y2(x)=lfcosx go into M= [�:, �:,] 

Those are independent solutions and the Wronskian W = Y1Y; - Y2Y{ is never zero. 
The most important Bessel functions have p = 0, 1, 2, ... and whole books are written

about these functions. They are not simple ! The first and most famous Bessel function is
y = Jo (x), with order p = 0: 

x2 x4 x6 

Jo (x) = 1 - 22 + 2242 - 224252 + ... resembles a damped cosine. 

The second solution Yo, independent of J0 , blows up at x = 0. When you divide Bessel's 
equation (24) by x2 , so as to start the equation with y", you see that its coefficients are 
singular: 1 / x and 1 - p2 / x2 also blow up at x = 0 : A singular point. 

Failure of a Formula 

A single equation dy/dt = a(t)y has a neat solution y = eP (t)y(0). We choose P(t) as the
integral of a(t). By the chain rule, dy/dt has the desired factor a(t) = dP/dt. I am very
sorry to say that y = eP (tly(0) fails for matrices A(t) and systems y' = A(t)y. 

There is no doubt that the derivative of the integral of time-varying A(t) is A(t).
Even for matrices, this part is true : 

Fundamental Theorem of Calculus 

t 

d 
J 

dP 
dt 

A(s) ds = dt = A(t).
0 

(25)



368 Chapter 6. Eigenvalues and Eigenvectors 

When A is a constant matrix, that integral is P = At and its derivative is A. Then 
the derivative of eAt is AeAt . This whole section is built on that true statement. We hope 
that the same chain rule will give the answer when A(t) is varying and not constant: 

The derivative of G � exp ( I A (,) d,) "should be" A( t )G. Not alway,! (26) 

When the matrix A(t) is changing with time, the chain rule in (26) can let us down. 
This leaves no simple formula for y ( t). How can things go wrong ? 

The difficulty is that eA times eB may not be the same as eA+B _ Problem 7 gives an 
example of A and B. Those matrices do not satisfy AB = BA and this destroys the rule for 
exponents. It is true that eAeB 

= eA+B when AB= BA, but not here. 
Let me use those matrices in Problem 7 to construct a two-part example: 

y 
1 
= B y for t :S 1 and then y' = Ay for t > 1 (27) 

Our time-varying matrix A(t) jumps from B to A at t = 1. The integral of A(t) is P(t):
t 

P(t) = j A(s) ds = Et (for t :S 1) and A(t --1) + B (for t > 1). (28) 
0 

But the exponential of P(t) does not solve our differential equation (27) at t 2: 

P(2) = j A(s) ds =A+ B is correct but y(2) = eA+By(O) is wrong.

0 

The correct answer is y(2) = e\,By(O). First B then A. The solution is eBty(O) 
up to time t = 1, when B changes to A. After t = 1 the solution is eA(t-l)eBy(O).

The chain rule in (26) is wrong, because e�B is different from eA+B . 

• REVIEW OF THE KEY IDEAS •

1. The exponential of At is eAt =I+ At+ ½(At)2 
+ ¼(At)3 

+ ...

2. The solution toy'= Ay is y(t) = eAty(O). This is VeAtv- 1 y(O) if v- 1 exists.

4. The solution toy'= Ay + q (constant source) is y(t) = eAty(O) + (eAt - I)A- 1 q. 

5. All similar matrices B = V Av- 1 (with any V) have the same eigenvalues as A.

6. If A(t) is time-varying, easy formulas for the fundamental matrix M(t) will fail.
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• WORKED EXAMPLE • 

Step 2 Starting from an eigenvector x, the solution is y = ce>--tx. 

Step 3 Add those n solutions to get VeAtc = VeAtv- 1
y (O) = eAt

y (O). 

Here are those steps for a triangular matrix A. Suppose y (O) = (5, 3). First A and V: 

Step 1 y (O) = [ � ] = 2 [ � ] + 3 [ � ] = [ � � ] [ � ] = V c. 

Step 2 The separate solutions ce>--tx from eigenvectors are 2etx1 and 3e2tx2 . 

Step 3 The final y (t) = eAt
y (O) = VeAtv- 1

y (O) is the sum 2etx1 + 3e2tx2 . 

Challenge Find eAt for the companion matrices [ _i � ] and [ _i -� ] . 
Their eigenvectors in VeAt v- 1 are always (1, >.). 

Problem Set 6.4 

1 If Ax = >.x, find an eigenvalue and an eigenvector of eAt and also of -e-At. 

2 (a) From the infinite series eAt =I+ At+··· show that its derivative is AeAt _

(b) The series for eAt ends quickly if A= [ � � ] because A2 = [ � � ] .

Find eAt and take its derivative (which should agree with AeAt). 

3 For A= [ � � ] with eigenvectors in V = [ � � ] , compute eAt = VeAtv- 1• 

4 Why is e (A+ 3I)t equal to eAt multiplied by e3t ?

5 Why is eA � 
1 

not the inverse of eA ? What is the correct inverse of eA ? 

6 Compute An = [ � � ] 
n

. Add the series to find eAt = [ �
t c( et - 1) ] 1 
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7 Find e A and e B by using Problem 6 for c = 4 and c = -4. Multiply to show that
the matrices e A e B and e B e A and e A+Bare all different. 

A=[��] A+B=[� �]-

8 Multiply the first terms I + A + ½ A 2 of e A by the first terms I + B + ½ B2 of e B . 
Do you get the correct first three terms of e A+B ? Conclusion: e A+B is not always 
equal to (e A)(e B ). The exponent rule only applies when AB= BA. 

9 Write A= [fit] in the form VA v- 1
. Find e At from Ve At v- 1. 

10 Starting from y(0) the solution at time t is e At
y(O). Go an additional time t

to reach e At e At
y(O). Conclusion: e At times e At equals __ . 

11 Diagonalize A by V and confirm this formula for e At by using Ve At v- 1
: 

A=[�!] eAt = [ e
0

2t 4( e 3t - e 2t)
] e 3t At t = 0 this matrix is __ .

12 (a) Find A2 and A3 and An for A = [ � � ] with repeated eigenvalues>. = 1, 1.

(b) Add the infinite series to find e At _ (The Ve Atv- 1 method won't work.)

13 (a) Solve y' = Ay as a combination of eigenvectors of this matrix A:

/ [ 0 1 
] y = 1 0 y with y(0) = [ : ] 

(b) Write the equations as Yi = Y2 and y; = Y1. Find an equation for yr with Y2
eliminated. Solve for y1 (t) and compare with part (a). 

14 Similar matrices A and B = v- 1 AV have the same eigenvalues if V is invertible.

Second proof det (V- 1 AV ->.I) = (det v- 1) (det (A - >.I)) (det V).

Why is this equation true? Then both sides are zero when det (A ->.I) = 0.

15 If B is similar to A, the growth rates for z' = Bz are the same as for y' = Ay.
That equation converts to the equation for z when B = v- 1 AV and z = __ . 

16 If Ax = >.x -/- 0, what is an eigenvalue and eigenvector of ( e At - I) A - 1 ? 

17 The matrix B = [ g -�] has B2 = 0. Find e st from a (short) infinite series.
Check that the derivative of e st is Be st .
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18 Starting from y(0) = 0, solve y' = Ay + q as a combination of the eigenvectors.
Suppose the source is q = q1x1 + · · · + qnxn . Solve for one eigenvector at a time, 
using the solution y(t) = (eat - l)q/a to the scalar equation y' = ay + q.

Then y(t) = (eAt - I)A- 1
q is a combination of eigenvectors when all ,\i =/=- 0.

19 Solve for y(t) as a combination of the eigenvectors x1 = (1, 0) and x2 = (1, 1):

y' = Ay+q 

20 Solve y' = Ay = [ ; � ] yin three steps. First find the ,\'s and x's.

(1) Write '!J\0) = (3, 1) as a combination c1 x1 + c2x2 

(2) Multiply c1 and c2 by e>- 1 t and e>-2t .

(3) Add the solutions c1e>- 1 tx1 + c2e>-2 tx2.

21 Write five terms of the infinite series for eAt . Take the t derivative of each term. Show
that you have four terms of AeAt _ Conclusion: eAty(0) solves dy/dt = Ay.

Problems 22-25 are about time-varying systems y' = A(t)y. Success then failure.

22 Suppose the constant matrix C has Cx = >.x, and p(t) is the integral of a(t).
Substitute y = e>-p (t)x to show that dy/dt = a(t)Cy. Eigenvectors still solve
this special time-varying system: constant matrix C multiplied by the scalar a( t).

23 Continuing Problem 22, show from the series for M(t) = eP (t)C that dM/dt = 
a(t)CM. Then Mis the fundamental matrix for the special system y' = a(t)Cy.
If a(t) = 1 then its integral is p(t) = t and we recover M = ect _ 

24 The integral of A = [ b �t ] is P = [ � ti ] . The exponential of P is

eP = [ f t( et 

1
- 1) ] . From the chain rule we might hope that the derivative

of eP (t) is P 'eP (t) = AeP (t). Compute the derivative of eP (t) and compare with
the wrong answer AeP (t). (One reason this feels wrong: Writing the chain rule as
( d/ dt)eP = eP dP / dt would give eP A instead of A eP . That is wrong too.)

25 Find the solution toy'= A(t)y in Problem 24 by solving for y2 and then y1: 

Solve [ :��j :n = [ b �
t ] [ ��] starting from [ �� ��n . 

Certainly y2(t) stays at Y2(0). Find y1(t) by "undetermined coefficients" A, B, C:
y{ = Y1 + 2ty2(0) is solved by Y1 = Yp + Yn =At+ B + Get . 

Choose A, B, C to satisfy the equation and match the initial condition y1 ( 0).
The wrong answer in Problem 24 included the incorrect factor tet in eP (t).
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6.5 Second Order Systems and Symmetric Matrices 

This section solves a differential equation that is crucial in engineering and physics:

Oscillation equation (1)

Since this is second order in time, we need two vectors as initial conditions at t = 0 :

Starting position and starting velocity y(O) and v(O) = �� (0) are given.

If y has n components, we have n second order equations and 2n initial conditions.
This is the right number to find y(t). Allow me to say this early: The oscillation
equation (1) is the most basic form of the Fundamental Equation of Engineering.

The more general equation includes a damping term B dy / dt and a forcing term
F cos 0,t. Those give damped forced oscillations, where equation (1) is about "free"
oscillations. For one mass and one equation, Chapter 2 took that step to damping and forcing.
Now we have n masses and n equations and three n by n matrices M, B, K.

Fundamental Equation (2)

The mass matrix is M, the stiffness matrix is K. Those are the pieces we always see and
always need. When the damping matrix B and the forcing vector F are removed, that takes
us to the heart of the fundamental equation: free oscillations.

Mass and stiffness matrices My" +Ky= 0 . (3)

The matrix Sin equation (1) is M- 1 K. Its symmetric form is M- 1/2 KM- 112
. In many

applications the mass matrix M is diagonal.
If we look for eigenvector solutions y = eiwt x, the differential equation produces

K x = w2 M x. This "generalized" eigenvalue problem has an extra matrix M, 
but it is not more difficult than Sx = >.x. The MATLAB command is eig(K, M). An
essential point is that the eigenvalues are still real and positive, when both M and K are 
positive definite. Positive eigenvalues and positive energy are the key to Chapter 7. 

When the forcing term is a constant F, the damping brings us to a steady state y00
• 

Then the time dependence is gone; those derivatives dy/dt and d2y/dt2 are zero.
The external force F is balanced by the internal force K y00 • The system is in equilibrium:

Steady state equation K Yoo = F = constant. (4) 

The central problem of computational mechanics is to create the stiffness matrix K and
force vector F. Then the computer solves My"+ Ky = 0 and Ky00 = F. For large
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problems, the finite element method is now the favorite way to take those steps.
This is a sensational achievement by the collective efforts of thousands of engineers. 1 

Solution by Eigenvalues 

We want to solve y" + Sy = 0. This is a linear system with constant coefficients. Our
solution method will be the same as for y' = Ay. We use the eigenvectors and eigenvalues
of S to find special solutions, and we combine those to find the complete solution. 

Each eigenvector of S leads to two special solutions to y" + Sy = 0 : 

Two solutions If Sx = -\x then y(t) = (coswt)x and y(t) = (sinwt)x. (5)

The "frequency" w is />.. Substitute y = ( cos wt )x into the differential equation:

A = w2 
and Sx = w2x y" +Sy = -w2(coswt)x + S(coswt)x = 0. (6)

When cos wt is factored out, we see the requirement on x. It must be an eigenvector of S.
We expect n eigenvectors (normal modes of oscillation). The eigenvectors don't interact.
That is their beauty, each one goes its own way. And each eigenvector gives us two solutions
from ( cos wt )x and ( sin wt )x, so we have 2n special solutions. 

A combination of those 2n solutions will match the 2n initial conditions (n positions and
n velocities at t = 0). This determines the 2n constants Ai and Bi in the complete solution
to y" + Sy = 0: 

Complete solution y(t) = I: (Ai cos At+ Bi sin At) Xi. (7)
i=l 

Since sin 0 = 0, it is the Ai that match the vector y(0) of initial positions. It is the
Bi that match the vector v(0) = y' (0) of initial velocities. 

Example 1 Two masses are connected by three identical springs in Figure 6.3.
Find the stiffness matrix S and its positive eigenvalues -\1 = w? and -\2 = w�. If the
system starts from rest, with the top spring unstretched (y1 (0) = 0) and the lower
mass moved down (y2(0) = 2), find the positions y = (y1, Y2) at all later times: 

m ::; +Sy = 0 with y(0) = [ � ] and y'(0) = [ � ] .

y(t) has eigenvectors x1 , x2 times cosine and sine. Four conditions for A1, A2, B1, B2.

Solution Construct the matrix S that expresses Newton's Law my" + Sy = 0. The
acceleration is y", and the force is -Sy. 

1 The finite element method is a key part of my textbook on Computational Science and Engineering.

The foundations of the method and the reasons for its success are developed in An Analysis of the Finite

Element Method (also published by Wellesley-Cambridge Press). 
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What force F is acting on the upper mass ? The stretched top spring is pulling that mass 
up. The force is proportional to the stretch y1. This is Hooke's Law F = -ky1• 

The middle spring is connected to both masses. It is stretched a distance y2 - y1. 
(No stretching if y2 = y1, the spring would just be shifted up or down.) The difference
Y2 - y1 produces spring forces k(y2 - y1), pulling mass 1 down and mass 2 up.

The bottom spring with fixed end is stretched by O - y2, so the force is -ky2• 

F = m,a at the upper mass 
F = m,a at the lower mass 

-ky1 + k(y2 - Y1) = my{'

-k(y2 - Y1) - ky2 = myf

These equations -Sy = my" or my"+ Sy
k=m=l: 

0 have a symmetric matrix S. Take 

11 d
2 

[ Y1 
] [ 

2 y +Sy = 

dt2 Y2 
+ -1 -� ] [ �� ] 

= 
[ � ] .

(8) 

The modeling part is complete, now for the solution part. The eigenvalues of that 
matrix are .\1 = 1 and .\2 = 3. The trace is 1 + 3 = 4, the determinant is (1)(3) = 3. 
The first eigenvector x1 = (1, 1) has the springs moving in the same direction in 
Figure 6.3 . The second eigenvector x2 = (1, -1) has the springs moving oppositely, 
with higher frequency because W§ = .\2 = 3.

Formula (7) for y(t) becomes a combination of eigenvectors times cosines: 

(9) 

I removed B1 sin t and B2 sin v'3t because the example started from rest (zero velocity). 
At time t = O, cosines give position y(O) and sines give velocity v(O).

spri� At t = 0 X1 == [ �] 
r�[-:J m1 Y1(0) = 0 

1 1 
push or pull 

Y2(0) = 2 1 -1
on the masses 

Figure 6.3: The masses oscillate up and down, y(t) combines (cost) x1 and (cos v'3t) x2. 
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The final step is to find A1 and A2 from the initial position y(O) = (0, 2):

Initial condition A1 U] + A2 [ _ 
�] = [ �] gives A 1 = 1 and A2 = -1.

Final answer : y1 ( t) = ( cos t - cos v'3t) and y2 ( t) = ( cos t + cos v'3t). The two masses
oscillate forever. The solution part was easier than the modeling part. This is very typical. 

Symmetric Matrices 

Example 1 led to a symmetric matrix S. Many many examples lead to symmetric matrices.

Perhaps this is an extension of Newton's third law, that every action produces an equal and
opposite reaction. We really must focus on the special properties of symmetric matrices,
because those properties are so useful and the matrices appear so often. 

Eigenvalues and eigenvectors-this is the information we need from the matrix.
For every class of matrices, we ask about A and x. Are the eigenvalues real? Are they 
positive, so we can take square roots in A = w2 ? Are there n independent eigenvectors ? 
Are the x's orthogonal? The example with A1 = 1 and A2 = 3 was perfect in all respects: 

S = [ _ � -�] is symmetric positive definite
Positive real .X = 1 and 3

Orthogonal x = (1, 1), (1, -1) 

Real eigenvalues All the eigenvalues of a real symmetric matrix are real. 

Proof Suppose that Sx = AX. Until we know otherwise, A might be a complex number
and x might be a complex vector. If that did happen, the rules for complex conjugates would
give Sx =Xx.The key idea is to look at xT Sx: 

S is symmetric and real (10) 

The left side is xT AX. The right side is xTX x. One side has A, the other side has X.
They multiply xT x which is not zero-it is the squared length lx 1 1 2 

+ · · · + lxn 1 2 . 

Therefore A = X.
When A = a + ib equals X = a - ib, we know that b = 0 and A is real.

Then the vector x in the nullspace of the real matrix S - Al can also be kept real. 

Orthogonal eigenvectors 

Proof Take the dot product of the first equation with y and the second equation with x :

Use sT = s (11) 

Since A1 =/- A2 , this proves that x T y = 0. The eigenvectors are perpendicular.
Remember: The main goal of eigenvectors is to diagonalize a matrix, A = VA v� 1 . 

Here the matrix is Sand its eigenvectors are orthogonal. We can certainly make them unit
vectors, so x T x = 1 and x Ty = 0. The matrix V with the eigenvectors in its columns
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has become an orthogonal matrix: VT V = I. The right letter for this orthogonal matrixV is Q. The eigenvector matrix V in VA v- 1 can be orthogonal: QT Q = I. 

Spectral theorem/Principal axis theorem (12)

In algebra, the eigenvectors are orthogonal. In geometry, the principal axes of an ellipse
are orthogonal. If the ellipse equation is 2x2 - 2xy + 2y2 = 1, this corresponds to theexample matrix S. Its principal axes ( 1, 1) and ( 1, -1) (eigenvectors) are at +45 ° and
-45° from the x axis. The ellipse is turned by +45° from horizontal and vertical axes.

With repeated eigenvalues, S = QAQT is still correct. Every symmetric S has a full
set of n independent eigenvectors (Chapter 6 Notes) even if eigenvalues are repeated.

To summarize, QAQT is a perfect description of symmetric matrices S. Every S hasthose factors and every matrix of this form is sure to be symmetric: ( Q AQT) T equals
QTT A T QT which is Q AQT . If we multiply columns of Q times rows of AQT, we seeSin a new way (a sum of rank one matrices): 
Matrices Axx T 

[ with rank 1 S = x 1 

add to S 

(13)

This is the great factorization S = Q AQT , in terms of eigenvalues and eigenvectors.
Example 2 The eigenvectors ( 1, 1) and ( -1, 1) with >. = 16 and 4 give unit eigenvectors
x1 = (1, 1)/\1'2 and x2 = (-1, 1)/\1'2: 

S = [ 10 -6 ]-6 10 
Those eigenvectors still point in the 45° direction and the 135° direction (90° apart). They
are the same as in Example 1, because this new S is 6 times the original S, minus 2I.Then the new eigenvalues 16 and 4 of S must be 6 times the original 3 and 1, minus 2.

The eigenvectors in Qare the principal axes of an ellipse 10x2 - 12xy + 10y2 = 1.
If I change -6 and -6 off the diagonal to 6i and -6i, the determinant is still 6 4.The trace is still 20 and the eigenvalues are still 16 and 4 (real!). For complex matrices,we want a symmetric real part and an antisymmetric imaginary part. Let me explain why.

Complex Matrices 

Important: The squared length is xT x and not x T x when x has complex components.
We want lx1 1 2 + · · · + lxnl2 because this is a positive number or zero. We don't wantXi + · · · + x;, because that could be any complex number, and we are looking forllxll2 = length squared� 0. When a component of x is a +  bi, we want a2 + b2 and
not (a+bi) 2

. The lengthsquaredofx = (1,i) is llxll2 = 12 + 12 = 2 andnotl2 +i2 = 0. 
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This changes all inner products ( dot products) from x Ty to xT y. Complex vectorsx and y are perpendicular when xT y = 0. This complex inner product forces us to
replace the usual transpose by the conjugate transpose (A) T = A*, when A is complex :

-)T T-T Al
i 

is Aii Then Ax· y = (Ax y = x A y = x · A*y. (14)
MATLAB automatically takes the conjugate transpose to give A*, when you type x' or A'.

To keep the row space of A perpendicular to the nulls pace, we must use C (A*) forthe row space. This is the column space of A*, not just the column space of AT . Replace
every i by -i. And an important name: the complex version of a symmetric matrix

AT= A is a "Hermitian matrix" A* = A. 

Hermitian matrix Aij = Aji Then Ax·y=x·A*y becomes Ax•y=x·Ay.

Example 3 This 2 by 2 complex matrix is Hermitian (notice i and -i):
A= [ -� 1] = A*

The determinant is 8 (real). The trace is 6 (the main diagonal of a Hermitian matrix is real).
The eigenvalues of this matrix are 2 and 4 (both real!). 

Hermitian matrices A = A* have real eigenvalues and perpendicular eigenvectors. 

The eigenvectors of A are x1 = (1, i) and x2 = (1, -i). They are perpendicular:x1 *x2 = 12 
+ (-i) 2 = 0. Divide by v'2 to make them unit vectors. Then they are the

columns of a complex orthogonal matrix Q. The right meaning of "complex orthogonal"is Q* = Q- 1, and the right name when Q is complex is unitary: 

Unitary matrix Q* Q = I The columns of Q are perpendicular unit vectors.
The great factorization A = Q AQT ofreal symmetric matrices becomes A = Q AQ*.

Orthogonal Matrices and Unitary Matrices 

We have seen the big theorem: If S is symmetric or Hermitian, its eigenvector matrixis orthogonal or unitary. The real case is S = QAQT = ST and the complex case is
S = Q AQ* = S*. The eigenvalues in A are real. 

What if our matrix is anti-symmetric or anti-Hermitian? Then AT = -A or A* = -A.

The matrix A could even be i times S. (In that case A* will be -i times S* which is
exactly -iS = -A.) Multiplying by i changes Hermitian to anti-Hermitian. The real
eigenvalues ,\ of S change to the imaginary eigenvalues i.\ of A. The eigenvectors do
not change : still orthogonal, still going into Q. 

Anti-Hermitian matrices have imaginary eigenvalues and orthogonal eigenvectors. 

Our standard examples are A = [ _ � �] = -AT and A = [ � �] = -A*. A = ±i
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Finally, what if our matrix is orthogonal or unitary? Then QTQ = I or Q*Q = I. 

The eigenvalues of Q are complex numbers>.= e
i9 on the unit circle.

If Q*Q = I then all eigenvalues of Q have magnitude I.XI = 1. 

The proof starts with Qx = AX. The conjugate transpose is x*Q* = Xx*. Multiply the 
left hand sides using Q*Q = I, and multiply the right hand sides using XA = IAl 2

: 

x*Q*Qx = Xx* AX is the same as x*x = IAl 2 x*x. Then IAl 2 
= 1 and IAI = 1. 

The eigenvectors of Q, like the eigenvectors of S and A, can be chosen orthogonal. 
These are the essential facts about the best matrices. The eigenvalues of S and A and Q are 
on the real axis, the imaginary axis, and the unit circle in the complex plane. 

In the eigenvalue-eigenvector world, a triangular matrix is not really one of the best. 
Its eigenvalues are easy (on the main diagonal). But its eigenvectors are not orthogonal. 
It may even fail to be diagonalizable. Matrices without n eigenvectors are the worst. 

Symmetric and Orthogonal 

At the end of Chapter 4, we looked at symmetric matrices that are also orthogonal : AT 
= A

and AT 
= A- 1

. Every diagonal matrix D of l's and -l's has both properties. Then 
every A = QDQT also has both properties. Symmetry is clear, and a product of 
orthogonal matrices Q and D and QT is sure to stay orthogonal. 

The question we could not answer was: Does QDQT give all possible examples? 

The answer is yes, and now we can see why A has this form-based on eigenvalues. 
When A is symmetric, its eigenvalues are real. When A is orthogonal, its eigenvalues 

have IAI = 1. The only possibilities for both are A = 1 and A = -1. The eigenvalue 
matrix A = D is a diagonal matrix of l's and -1 's. Then the great fact about symmetric 
matrices (the Spectral Theorem) guarantees that A has the form QAQT which is QDQT . 

• REVIEW OF THE KEY IDEAS •

1. A real symmetric matrix S has real eigenvalues and perpendicular eigenvectors.

2. Diagonalization S = VA v- 1 becomes S = Q AQT with an orthogonal matrix Q.

3. A complex matrix is Hermitian if S
T

= S (often written S* = S): real A's.

4. Every Hermitian matrix is S = QAQ
T 

= QAQ*. Dot products are x · y = x*y.

5. All three matrices S and A = iS = -A* and Q have orthogonal eigenvectors.

6. Symmetric matrices in y 11 + Sy = 0 and My 11 + Ky = 0 give oscillation.
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Problem Set 6.5 

Problems 1-14 are about eigenvalues. Then come differential equations. 

1 Which of A, B, C have two real A's? Which have two independent eigenvectors?

A=[ 
7 -11

]-11 7 C=[� -1�] 

2 Show that A has real eigenvalues if b 2'. 0 and nonreal eigenvalues if b < 0 :

A = [ � � ] and A = [ � t ] . 

3 Find the eigenvalues and the unit eigenvectors of the symmetric matrices

4 Find an orthogonal matrix Q that diagonalizes S = [ -62 �]. What is A?

5 Show that this A (symmetric but complex) has only one line of eigenvectors:

6

A= [ { 1 ] is not even diagonalizable. Its eigenvalues are O and 0.
-i 

AT = A is not so special for complex matrices. The good property is A
T = A. 

Find all orthogonal matrices from all x 1, x2 to diagonalize S = [ 1; 
7 (a) Find a symmetric matrix S = [ i t ] that has a negative eigenvalue.

(b) How do you know that S must have a negative pivot?

(c) How do you know that S can't have two negative eigenvalues?

12]
16 

8 If A2 = 0 then the eigenvalues of A must be __ . Give an example with A =J 0.
But if A is symmetric, diagonalize it to prove that the matrix is A = 0. 

9 If A = a + ibis an eigenvalue of a real matrix A, then its conjugate X = a - ibis also
an eigenvalue. (If Ax = Ax then also Ax= Xx.) Prove that every real 3 by 3 matrix
has at least one real eigenvalue. 
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10 Here is a quick "proof" that the eigenvalues of all real matrices are real: 

False proof Ax = >.x gives x T Ax = >.x T x so xTAx 
>.=-­

xTx 
is real. 

Find the flaw in this reasoning-a hidden assumption that is not justified. You could 
test those steps on the 90° rotation matrix [ 0 -1; 1 0] with >. = i and x = ( i, 1 ). 

A=[�!] 
12 

] 
16 

12 What number bin [� g] makes A = QAQT possible? What number makes A
V Av-1 impossible? What number makes A-1 impossible? 

13 This A is nearly symmetric. But its eigenvectors are far from orthogonal: 

10-15 
] 1 + 10-15 has eigenvectors [ � ] and

What is the dot product of the two unit eigenvectors ? A small angle ! 

[ ? l 
14 (Recommended) This matrix M is skew-symmetric and also orthogonal. Then all its 

eigenvalues are pure imaginary and they also have l>-1 = 1. They can only be i or -i. 
Find all four eigenvalues from the trace of M: [ 0 

1 -1M--
- v13 -1

-1

1 
0 
1 

-1

1 
-1

0
1 -i 1 can only have eigenvalues i or - i.

15 The complete solution to equation (8) for two oscillating springs (Figure 6.3) is 

y(t) = (A1 cost+ B1 sin t) [ � ] + (A2 cos v'3t + B2 sin v'3t) [ _1
1 ] .

Find the numbers A1 , A2 , B1 , B2 if y(O) = (3, 5) and y' (0) = (2, 0). 

16 If the springs in Figure 6.3 have different constants k1 , k2 , k3 then y" + Sy = 0 is 

Upper mass yr+ k1Y1 -k2(Y2 -Y1) = 0 
Lower mass y; + k2(Y2 -Y1) + k3y2 = 0 

For k1 = 1, k2 = 4, k3 = 1 find the eigenvalues >. = w2 of S and the complete 
sine/cosine solution y(t) in equation (7). 
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17 Suppose the third spring is removed (k3 0 and nothing is below mass 2). With 
k1 = 3, k2 = 2 in Problem 16, find S and its real eigenvalues and orthogonal
eigenvectors. What is the sine/cosine solution y(t) if y(0) = (1, 2) gives the cosines
and y'(0) = (2, -1) gives the sines? 

18 Suppose the top spring is also removed (k1 = 0 and also k3 = 0). Sis singular!
Find its eigenvalues and eigenvectors. If y(0) = (1, -1) and y' = (0, 0) find y(t).
If y(0) changes from (1, -1) to (1, 1) what is y(t) ? 

19 The matrix in this question is skew-symmetric (AT = -A). Energy is conserved.

dy = -c O a y 
[ 0 C -bi 

dt b -a 0 or 
y{ = cy2 - by3
y� = ay3 - cy1 
y£ = by1 - ay2.

The derivative of lly(t)ll2 Yi + Y? + Y5 is 2y1y� + 2y2y; + 2y3y�. 
Substitute y�, y;, y� to get zero. The energy lly(t) 112 stays equal to lly(0) 112

. 

20 When A = -AT is skew-symmetric, eAt is orthogonal. Prove (eAt)T = e-At 

from the series eAt = I + At + ½ A 2t2 + .... 

21 The mass matrix M can have masses m 1 = 1 and m2 = 2. Show that the eigenvalues 
for K x = AM x are A = 2 ± v12, starting from det( K - AM) = 0:

M = [ � �] and K = [ _; -�] are positive definite.

Find the two eigenvectors x 1 and x2 . Show that Xf x2 =/- 0 but Xf M x2 = 0.

22 What difference equation would you use to solve y 11 = -Sy ?

23 The second order equation y 11 + Sy = 0 reduces to a first order system y1 1 = y
2 

and y2 1 = -Sy
1

. If Sx = w2x show that the companion matrix A = [O I ; -S O]
has eigenvalues iw and -iw with eigenvectors (x, iwx) and (x, -iwx). 

24 Find the eigenvalues A and eigenfunctions y( x) for the differential equation 
y 11 = Ay with y(0) = y(1r) = 0. There are infinitely many!
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Table of Eigenvalues and Eigenvectors 

How are the properties of a matrix reflected in its eigenvalues and eigenvectors? 
This question is fundamental throughout Chapter 6. A table that organizes the key facts may 
be helpful. Here are the special properties of the eigenvalues Ai and the eigenvectors Xi. 

Symmetric: 5T = S 
Orthogonal: QT= Q-1

Skew-symmetric: AT = -A 

Complex Hermitian: I
P 

= S 
Positive Definite: xT Sx > 0 
Markov: mij > 0, I:�=l mij = 1 
Similar: B = v-

1 AV 
Projection: P = P2 = pT 

Plane Rotation : cos 0, sin 0 
Reflection: I - 2uu T 
Rank One: uvT 

Inverse: A-1

Shift: A+ cl

Function: any f (A) 
Stable Powers: An -+ 0 
Stable Exponential: eAt -+ 0 

Tridiagonal: diagonals -1, 2, -1 

real A's 
all IAI = 1 
imaginary A's 

real A's 
all>.> 0 
Amax = 1 
A(B) = A(A) 
A= l; 0 
ei0 and e-iO 
A= -1; 1, .. , 1 
A=vTu; 0, .. ,0 
1/ A(A) 
A(A) + C 

f(A1), · · ·, f(An) 
all IAI < 1 
all Re A< 0 

Ak = 2 - 2 cos ..EfI_ n+l 

orthogonal x; Xj = 0 
orthogonal x; x j = 0 
orthogonal x; Xj = 0 

orthogonal x; x j = 0 
orthogonal since ST = S 

steady state x > 0 
x(B) = v-

1 x(A) 
column space; nullspace 
x = (l, i) and (1, -i) 

u; whole plane u l.. 

u; whole plane vl.. 

keep eigenvectors of A 
keep eigenvectors of A 
keep eigenvectors of A 

any eigenvectors 
any eigenvectors 

( . k1r . 2k1r ) Xk = Slll n+l, Slll n+l, · · · 

Factorizations Based on Eigenvalues (Singular Values in :E) 

Diagonalizable: A = VA v-
1 

Symmetric: S = QAQT 

Jordan form: J = v- 1 AV 
SVD for any A: A = UI:VT 

diagonal of A has Ai 
diagonal of A (real Ai) 
diagonal of J is A 
rank(A) = rank(I:) 

eigenvectors in V
orthonormal eigenvectors in Q 

each block gives x = (0, .. , 1, .. , 0) 
eigenvectors of AT A, AAT in V, U 
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• CHAPTER 6 NOTES • 

A symmetric matrix S has perpendicular eigenvectors. Suppose Sx

Sy= >..2y and >.. 1 -/- >..2. Subtract )ql from both equations: 

and 

383 

This puts x in the nullspace and y in the column space of S - >.. 1 1. That matrix is real 
symmetric, so its column space is also its row space. Then x in the nullspace is sure to be 
perpendicular to y in the row space. A new proof that x Ty = 0. 

Several proofs that S has a full set of n independent (and orthogonal) eigenvectors­
even in the case of repeated eigenvalues-are on the course website for linear algebra : 
web.mit.edu/18.06 (Proofs of the Spectral Theorem). 

Similar Matrices and the Jordan Form 

For every A, we want to choose V so that v-
1 AV is as nearly diagonal as possible. When 

A has a full set of n eigenvectors, they go into the columns of V. Then the matrix v- 1 AV

is diagonal, period. This matrix A is the Jordan form of A-when A can be diagonalized. 
But if eigenvectors are missing, A can't be reached. 

Suppose A has s independent eigenvectors. Then it is similar to a matrix with s blocks. 
Each block has the eigenvalue >.. on the diagonal with l's just above it. This block accounts 
for one eigenvector. When there are n eigenvectors and n blocks, J is A. 

(Jordan form) If A has s independent eigenvectors, it is similar to a matrix J that has 
Jordan blocks J1 to ]8 on its diagonal. Some matrix V puts A into its Jordan form J : 

Jordan form 

Each block in J has one eigenvalue >..i, one eigenvector, and l's above the diagonal: 

Jordan block 

A is similar to B if they share the same Jordan form J-not otherwise. 

The Jordan form J has an off-diagonal 1 for each missing eigenvector (and the l's are next 
to the eigenvalues). This is the big theorem about matrix similarity. In every family of 
similar matrices, we are picking one outstanding member called J. It is nearly diagonal 
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(or if possible completely diagonal). We can solve dz/dt = Jz by back substitution. 
Then we have solved dy / dt = Ay with y = V z. 

Jordan's Theorem is proved in my textbook Linear Algebra and Its Applications.

The reasoning is rather intricate and the Jordan form is not at all popular in computations. 
A slight change in A will separate the repeated eigenvalues and bring a diagonal A. 

Time-varying systems y' = A(t)y: Wrong formula and correct formula for y(t)
Section 6.4 recognized that linear systems are more difficult when the matrix depends on t. 
The formula y(t) = exp(f A(t)dt)y(0) is not correct. The underlying reason is that eA+B 

(the wrong matrix) is generally different from eAeB (the correct matrix at t = 2, when the
system jumps from y' = By to y'= Ay at t = 1.) Go forward in time: eB and then eA.

It is not usual for a basic textbook to attempt a correct formula. But this is a chance to
emphasize that Euler's difference equation goes forward in the right order. It steps from Y n 
at time n6.t to Y n+l at time (n + 1)6.t, using the current matrix A at time n6.t. 

Euler's method 6-Y / 6-t = AY or Yn+1 = EnY n with En= I+ 6.tA(n6.t).

When we reach Y N , we have multiplied YO by N matrices E0 to EN-l in the right order:

Basic theory says that Euler's Y N approaches the correct y(t), when 6-t = t/N and
N ---+ oo. That product of E's approaches the correct replacement for eAt _ When A is a
constant matrix, not changing with time, all E's are the same and we reach eAt from EN :

Constant matrix A eAt = limit of (I+ 6-tA( = limit of (1 + ! ) N 

This came from compound interest in Section 1.3, when A was a number (1 by 1 matrix). 
The limit of EN-iEN-2 ... E1E0 is called a product integral. An ordinary

"sum integral" J A(t)dt is the limit of a sum of N terms 6-tA (each term going to zero). 
Now we are multiplying N terms I + 6-tA (each term going to J). Term by term,
I + 6-tA is close to e6tA. But matrices don't always commute, and exp J A(t)dt is
wrong. Matrix products EN_ 1 ... E1 E0 approach a product integral and the correct y ( t). 

Product integral M(t) = limit of EN-iEN-2 ... E,Eo. Then y(t) = M(t)y(0). 

One final good note. The determinant W ( t) of the matrix M ( t) has a nice formula. 
This succeeds because numbers det A (but not matrices A) can be multiplied in any order. 
Here is the beautiful fact that gives the equation for the Wronskian determinant W ( t) 

dM dW 
If dt = AM then dt = (trace(A))W. Therefore W(t) = eftrace(A(t))dtW(O).

This is equation (21) in Section 6.4. We see again that the Wronskian W(t) is never zero, 
because exponentials are never zero. For y" + B(t)y' + C(t)y = 0, the companion matrix
has trace -B(t). The Wronskian is W(t) = e- I B (t)dtW(O) as Abel discovered.



Chapter 7 

Applied Mathematics and AT 
A

A chapter title that includes the symbols AT A is not usual. Most textbooks deal with A 
and its eigenvalues, and stop. When the original problem involves a rectangular matrix, 

as so many problems do, the steps to reach a square matrix are omitted. In reality, 

rectangular matrices are everywhere-they connect current and voltage, displacement 

and force, position and momentum, prices and income, pairs of unknowns. 

It is true that the eventual equation contains a square matrix (very often symmetric). 

We start from A and we reach AT A. Those two matrices have the same nullspace. We want 

AT A to be invertible so we can solve the problem. Then A must have independent columns 

(no nullspace except the zero vector) as we now assume: A must be "tall and thin" with 

m ::::: n and full column rank r = n. 

S = AT A has positive eigenvalues. It is a positive definite symmetric matrix. Its 

eigenvectors lead us to the Singular Value Decomposition of A. The SVD in Section 7.2 

is the best way to discover what is important, when a large matrix is filled with data. 

The singular vectors are like eigenvectors for a square matrix, with the extra guarantee of 

orthogonality. 

The chapter starts with m equations in n unknowns-too many equations, too few 

unknowns, and no solution to Av = b. This is a major application of linear algebra 

(and geometry and calculus). A sensor or a scanner or a counter makes thousands of 

measurements. Often we are overwhelmed with data. If it lies close to a straight line, 

that line v1 + v2t or C + Dt has only n = 2 parameters. Those are the two numbers 

we want, coming from m = 1000 or 1000000 measurements. 

Our first applications, are least squares and weighted least squares. The 2 by 2 matrix 

AT A or ATC A will appear ( C contains the weights). This is the symmetric matrix S of 

Section 6.5 and Section 7 .1, and the stiffness matrix K of Section 7.4, and the conductance 

matrix of Section 7.5, and the second derivative AT A = -d2 / dx2 in 7.3. (A minus sign is 

included, because if A = d/ dx is the first derivative then -d/ dx is its transpose.) 

"Symmetric positive definite"-those are three important words in linear algebra. 

And they are key ideas in applied mathematics, to be presented in this chapter. 

385 
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7 .1 Least Squares and Projections 

Start with Av = b. The matrix A has n independent columns; its rank is n. But A has m
rows, and m is greater than n. We have m measurements in b, and we want to choose 
n < m parameters v that fit those measurements. An exact fit Av = b is generally 
impossible. We look for the closest fit to the data-the best solution v.

The error vector e = b - Av tells how close we are to solving Av = b. The errors in 
the m equations are e1, ... , em. Make the sum of squares as small as possible. 

Least squares solution v Minimize llell2 = e� + · · · + e� = lib - Avll2 . 

This is our goal, to reduce e. If Av = b has a solution (and possibly it could), then 
the best v is certainly that solution vector v. In this case the error is e = 0, certainly 
a minimum. But normally there is no exact solution to the m equations Av = b. The 
column space of A is only an n-dimensional subspace of Rm. Almost all vectors b are 
outside that subspace-they are not combinations of the columns of A. We reduce the error 
E = 11 e 112 as far as possible, but we cannot reach zero error. 

Example 1 Find the straight line b = C + Dt that goes through 4 points: b = 1, 9, 9, 21 
at t = 0, 1, 3, 4. Those are four equations for C and D, and they have no solution. The four 
crosses in Figure 7 .1 are not on a straight line : 

Av= b has 
no solution 

C+0D 1 

C+lD 9 
C+3D 9 

C +4D = 21 r 2l 1 ([) 

C = 1 solves the first equation, then D = 8 solves the second equation. Then the other 
equations fail by a lot. We want a better balance, where no equation is exact but the total 
squared error E = ei + e� + e� + d from all four equations is as small as possible. 

The best C and Dare 2 and 4. The best vis v = (2, 4). The best line is 2 + 4t.

At the four measurement times t = 0, 1, 3, 4, this best line has heights 2, 6, 14, 18. 
In other words, Av is p = (2, 6, 14, 18) which is as close as possible to b = (1, 9, 9, 21). 

For that vector p = (2, 6, 14, 18), the four bullets in Figure 7.1 fall on the line 2 + 4t. 
How do we find that best solution v = (C, D) = (2, 4)? It has the smallest error E: 

E = ef+e�+e�+d = (1-C-0D)2 +(9-C-1D)2 +(9-C-3D)2 +(21-C-4D)2 .

We can use pure linear algebra to find C = 2 and D = 4, or pure calculus. To use calculus, 
set two partial derivatives to zero: aE / ac = 0 and aE / aD = 0. Solve for C and D.

Linear algebra gives the right triangle in Figure 7 .1. The vector b is split into p + e. 
The heights p lie on a line and the errors e are as small as possible. I will use calculus first, 
and then the linear algebra that I prefer-because it produces a right triangle p + e = b.
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e4 =3 
p4 = 18 best line 

2 +4t 14 

P1 = 2 
e1 =-1 
bi = 1 =o---+1---+---3+------14

b= 
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=b-p 

projection 
of b onto 
columns 
of A

Figure 7.1: Two pictures! The best line has eTe = 1 + 9 + 25 + 9 = 44 = lib - Pll2
. 

Let me give away the answer immediately (the equation for C and D). Then you can 
compute the best solution v and the projection p = Av and the error e = b - Av. 
The best least squares estimate v = (C, D) solves the "normal equations" using the

square symmetric invertible matrix AT A : 

Normal equations to find v

In short, multiply the unsolvable equations Av= b by AT to get AT Av= ATb. 
Example 1 (completed) The normal equations AT Av= ATb are 

[ � 
1
1 [ � 

1
1

After multiplication this matrix AT A is square and symmetric and positive definite : 

(2) 

(3) 

At t = 0, 1, 3, 4 this best line 2 + 4t in Figure 7.1 has heights p = 2, 6, 14, 18. The min­
imum error b - p is e = (-1, 3, -5, 3). The picture on the right is the "linear algebra 
way" to see least squares. We project b to p in the column space of A (you see how p
is perpendicular to the error vector e). Then Av = p has the best possible right side p.

The solution v = ( C, D) = (2, 4) is the least squares choice of C and D.
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Normal equations using calculus The two equations are 8E / ac = 0 and 8E / 8D = 0. 

The first column shows the four terms ei + e� + e§ + e� that add to E. Next to them 
are the derivatives that add to 8E / 8C and 8E / 8D. Notice how the chain rule brings factors 
0, 1, 3, 4 in the third column for 8E / 8D. 

Add 

each 
column 

(C+0D-1)2 

E-
(C+lD-9)2 

-(C+3D-9)2 

(C + 4D -21)2 

2(C+0D-l) 
8E 2(C + lD -9) 
8C-2(C+3D-9) 

2(C + 4D -21) 

2(C + OD - 1)(0) 
8E 2(C + lD - 9)(1) 
8D -2(C + 3D -9)(3) 

2(C + 4D -21)(4) 

No problem to divide all derivatives by 2, when 8E/8C = 0 and 8E/8D = 0. The last 
two columns are added by matrix multiplication (notice the numbers 0, 1, 3, 4 in 8E /8D). 

� [ 8E/8C ]2 8E/8D [ 0
1 1 1 1 

] [ 
g ! �� :=

1 3 4 C + 3D 
C+4D 

i] [�]-
21 

(5) 

The 2 by 4 matrix is AT . The 4 by 1 vector is Av - b. Calculus has found AT Av= A Tb. 

Example 2 Suppose we have two equations for one unknown v. Thus n = l but m = 2 
(probably there is no solution). One unknown means only one column in A : 

Av= b is For example 2v = 1 
3v = 8 

The matrix A is 2 by 1. The squared error is E = et + e§ = (1 - 2v )2 
+ (8 - 3v )2

. 

Sum of squares 

(6) 

The graph of E( v) is a parabola. Its bottom point is at the least squares solution v. The 
minimum error occurs when dE / dv = 0 : 

Equation for v (7) 

Cancel the 2's, so (at + a§)v = (a1b1 + a2b2). The left side has ai + a� AT A. 
The right side is a1b1 + a2b2 = ATb. Calculus has again found AT Av= ATb:

(8) 

The numerical example has a = (2, 3) and b = (l, 8) and v = a Tb/ a T a= 26/13 = 2.
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Example 3 The special case a1 = a2 = 1 has two measurements v = b1 and v = b2 
of the same quantity (like pulse rate or blood pressure). The matrix has AT 

= [1 1]. 
To minimize ( v - b1) 2 + ( v - b2) 2, the best vis just the average measurement:

The linear algebra picture in Figure 7 .2 shows the projection of b onto the line through a. 
The projection is p, the angle is 90° , and the other side of the right triangle is e = b - p. 

The normal equations are saying that e is perpendicular to the line through a. 

Least Squares by Linear Algebra 

Here is the linear algebra approach to AT Av = AT b. It takes one wonderful line : 

e = b - Av is perpendicular to the column space of A. So e is in the nullspace of AT . 

Then ATb = AT Av. That fourth subspace N(AT) is exactly what least squares needs: e 
is perpendicular to the whole column space of A and not just top= Av = A(AT A)- 1 A Tb.

Figure 7.2 shows the projection pas an m by m matrix P multiplying b. To project any 
vector onto the column space of A, multiply by the projection matrix P. 

Projection matrix gives p = Pb

The first form of P gives the projection on the line through a. Here A has only one 
column and AT A = a Ta. We can divide by that number, but for n > 1 the right notation 
is (AT A)- 1. The second form gives P in all cases, provided only that AT A is invertible:

Two key properties of projection matrices pT 
= P and P2 

= P. (10) 

The projection of p is p itself (because p = Pb is already in the column space). Then 
two projections give the same result as one projection : P(Pb) = Pb and P2 

= P. 

Figure 7.2: The projection p is the nearest point to b in the column space of A. 
Left (n = 1) : column space= line through a. Right (n = 2): Column space= plane. 
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Let me review the four essential equations of (unweighted) least squares: 

1. Av= b m equations, n unknowns, probably no solution

2. AT Av= ATb normal equations, v = (AT A)- 1 ATb = best v 

3. p =Av= A(AT A)- 1 ATb projection p of b onto the column space of A

4. P = A(AT A)- 1 AT projection matrix P produces p = Pb for any b

Example 4 If A� 
[ ; ! ] and b � [ � ] find V and p and the matrix P. 

Solution Compute the square matrix AT A and also the vector AT b : 

AT A= [1 1
0 1 ;J [: !] � [� �]and[� 

Now solve the normal equations AT Av= ATb to find v:

1 
1 ;i m [ �]

[ � ! ] [ g� ] [ � ] gives v = [ �� ] [ 
-� ] . (11) 

The combination p = Av is the projection of b onto the column space of A: 

Two checks on the calculation. First, the error e = (1, -2, 1) is perpendicular to both 
columns (1, 1, 1) and (0, 1, 2). Second, the projection matrix P times b = (6, 0, 0) correctly 
gives p = (5, 2, -1). That solves the problem for one particular b.

To find p = Pb for every b, compute P = A(AT A)- 1 AT . The determinant of AT A is 
15 - 9 = 6; then (AT A)- 1 is easy. Multiply A times (AT A)- 1 times AT to reach P: 

3 
] 

1 
[ 

5 

3 
and p = 

6 -i 

2 
2 
2 

-1

l 2
5

(13) 

We must have P2 
= P, because a second projection doesn't change the first projection. 

Warning The matrix P = A(AT A)- 1 AT is deceptive. You might try to split (AT A)- 1 

into A - 1 times (AT )- 1
. If you make that mistake, and substitute it into P, you will find 

P = AA- 1 (AT )- 1 AT . Apparently everything cancels. This looks like P = I, the identity 
matrix. The next two lines explain why this is wrong. 
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The matrix A is rectangular. It has no inverse matrix. We cannot split (AT A)-1 into 
A-1 times (AT )- 1 because there is no A -1 in the first place. 

In our experience, a problem that involves a rectangular matrix almost always leads to 
AT A. When A has independent columns, AT A is invertible. This fact is so crucial that we 
state it clearly and give a proof. 

AT A is invertible if and only if A has linearly independent columns. 

Proof AT A is a square matrix ( n by n). For every matrix A, we will now show that 
AT A has the same nullspace as A. When A has independent columns, its nullspace contains 
only the zero vector. Then AT A, with this same nullspace, is invertible. 

Let A be any matrix. If xis in its nullspace, then Ax = 0. Multiplying by AT gives 
AT Ax = 0. So x is also in the nullspace of AT A. 

Now start with the nullspace of AT A. From AT Ax = 0 we must prove Ax = 0.

We can't multiply by (AT)-1, which generally doesn't exist. Just multiply by xT: 

This says: If AT Ax= 0 then Ax has length zero. Therefore Ax= 0. 
Every vector x in one nullspace is in the other nullspace. If AT A has dependent columns, 

so has A. If AT A has independent columns, so has A. This is the good case : 

When A has independent columns, AT A is square, symmetric, and invertible. 

To repeat for emphasis: AT A is (n by m) times (m by n). Then AT A is square (n by n).
It is symmetric, because its transpose is (AT A) T 

= AT (AT) T which equals AT A. We just 
proved that AT A is invertible-provided A has independent columns. Watch the difference
between dependent columns and independent columns : 

A 

[1 1 OJ 2 2 0 [ i � l 
dependent singular independent invertible 

Very brief summary To find the projectionp = V1U1 + · · · + VnUn, solve AT Av= ATb_
This gives v. The projection is Av and the error is e = b - p = b - Av. The projection 
matrix P = A(AT A)-1 AT multiplies b to give the projection p = Pb. 

This matrix satisfies P2 
= P. The distance from b to the subspace is lie/I. 
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Weighted Least Squares 

There is normally error in the measurements b. That produces error in the output v.
Some measurements bi may be more reliable than others (from less accurate sensors). 
We should give heavier weight to those reliable bi . 

We assume that the expected error in each bi is zero. Then negative errors balance 
positive errors in the long run, and the mean error is zero. The expected squared error
in the measurement bi (the "mean squared error") is its variance u?: 

Variance u? = expected squared error E[e;] (14) 

We should give equation i more weight when CJi is small. Then bi is more reliable. 
Statistically, the right weight is Wi = 1/ui. We multiply Av = b by the diagonal matrix 

W with those weights w1 , ... , Wm. Then solve W Av = Wb by ordinary least squares, 
using WA and Wb instead of A and b : 

C = WT W goes between AT and A, to produce the weighted matrix K = ATCA.

Example 5 Your pulse rate v is measured twice. Using unweighted least squares 
(w1 = w2 = 1), the best estimate is v = ½(bi + b2). Example 3 finds that least square 
solution v to two equations v = b1 and v = b2 • But if you were more nervous the first 
time, then u1 is larger than u2. The first measurement b1 has a larger variance than b2 . 

We should weight the two measurements by w1 = 1/u1 and w2 = 1/u2 : 

With weights 
W1V = W1b1 

W2V = W2b2 
(16) 

When w1 = w2 = 1, that answer v reduces to the unweighted estimate ½(bi + b2). 
The weighted K = ATC A has the same good properties as the unweighted AT A : 

square, symmetric, and invertible when A has independent columns (as in the example). 
Then all eigenvalues of AT A and ATC A have ..\ > 0: positive definite matrices ! 

• REVIEW OF THE KEY IDEAS •

1. The least squares solution v minimizes E = lib - Avll2 • Then AT Av= ATb.

2. To fit m points by a line C + Dt, A ism by 2 and v = (C, D) gives the best line. 

3. The projection of b on the column space of A is p = Av= Pb: closest point to b.

4. The error is e = b - p. The projection matrix is P = A(AT A)- 1 AT with P2 
= P. 

5. Weighted least squares has AT C Av = AT Cb. Good weights Ci are I/variance of bi . 
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Problem Set 7.1 

1 Suppose your pulse is measured at b1 = 70 beats per minute, then b2 = 120, then 
b3 = 80. The least squares solution to three equations v = b1, v = b2, v = b3 with 
AT = [1 1 1] is v = (AT A)- 1 A Tb= __ . Use calculus and projections: 

(a) Minimize E = (v - 70)2 
+ (v - 120)2 

+ (v - 80)2 by solving dE/dv = 0.

(b) Project b = (70,120, 80) onto a= (l, 1, 1) to find v = a Tb/a Ta.

2 Suppose Av = b has m equations aiv = bi in one unknown v. For the sum of squares 
E = (a1v -b1) 2 

+ · · · + (amv - bm)2 , find the minimizing vby calculus. Then form 
AT Av = AT b with one column in A, and reach the same v. 

3 With b = ( 4, 1, 0, 1) at the points x = (0, 1, 2, 3) set up and solve the normal equation 
for the coefficients v = (C, D) in the nearest line C+Dx. Start with the four equations 
Av = b that would be solvable if the points fell on a line. 

4 In Problem 3, find the projection p = Av. Check that those four values lie on the line 
C + Dx. Compute the error e = b - p and verify that AT e = 0. 

5 (Problem 3 by calculus) Write down E = I lb - Avll2 as a sum of four squares: the 
last one is (1 - C - 3D)2

• Find the derivative equations 8E/8C = 8E/8D = 0.
Divide by 2 to obtain AT Av= ATb. 

6 For the closest parabola C + Dt+ Et2 to the same four points, write down 4 unsolvable 
equations Av = b for v = ( C, D, E). Set up the normal equations for v. If you fit the 
best cubic C + Dt + Et2 

+ Ft3 to those four points (thought experiment), what is the 
error vector e ? 

7 Write down three equations for the line b = C + Dt to go through b = 7 at 
t = -1, b = 7 at t = 1, and b = 21 at t = 2. Find the least squares solution 
v = (C, D) and draw the closest line. 

8 Find the projection p = Av in Problem 7. This gives the three heights of the closest 
line. Show that the error vector ise = (2, -6, 4). 

9 Suppose the measurements at t = -1, 1, 2 are the errors 2, -6, 4 in Problem 8. 
Compute v and the closest line to these new measurements. Explain the answer: 
b = (2, -6, 4) is perpendicular to __ so the projection is p = 0. 

10 Suppose the measurements at t = -1, 1, 2 are b = (5, 13, 17). Compute v and the 
closest line e. The error is e = 0 because this b is 

11 Find the best line C + Dt to fit b = 4, 2, -1, 0, 0 at times t = -2, -1, 0, 1, 2. 

12 Find the plane that gives the best fit to the 4 values b = (0, 1, 3, 4) at the corners 
(1, 0) and (0, 1) and (-1, 0) and (0, -1) of a square. At those 4 points, the equations 
C + Dx + Ey =bare Av= b with 3 unknowns v = (C, D, E). 
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13 With b = 0, 8, 8, 20 at t = 0, 1, 3, 4 set up and solve the normal equations AT Av =
ATb. For the best straight line C + Dt, find its four heights Pi and four errors ei.
What is the minimum value E = ei + e� + e� + e� ? 

14 (By calculus) Write down E = \lb - Av\\2 as a sum of four squares-the last one 
is (C + 4D - 20)2 . Find the derivative equations 8E/8C = 0 and 8E/8D = 0. 
Divide by 2 to obtain the normal equations AT Av= ATb. 

15 Which of the four subspaces contains the error vector e ? Which contains p ? Which 
contains v?

16 Find the height C of the best horizantal line to fit b = (0, 8, 8, 20). An exact fit 
would solve the four unsolvable equations C = 0, C = 8, C = 8, C = 20. Find 
the 4 by 1 matrix A in these equations and solve AT Av= ATb. 

17 Write down three equations for the line b = C + Dt to go through b = 7 at 
t = -1, b = 7 at t = 1, and b = 21 at t = 2. Find the least squares solution 
v = ( C, D) and draw the closest line. 

18 Find the projection p = Av in Problem 17. This gives the three heights of the closest 
line. Show that the error vector ise = (2, -6, 4). Why is Pe = 0? 

19 Suppose the measurements at t = -1, 1, 2 are the errors 2, -6, 4 in Problem 18. Com­
pute v and the closest line to these new measurements. Explain the answer: 
b = (2, -6, 4) is perpendicular to __ so the projection is p = 0. 

20 Suppose the measurements at t = -1, 1, 2 are b = (5, 13, 17). Compute v and the 
closest line and e. The error is e = 0 because this bis ? 

Questions 21-26 ask for projections onto lines. Also errors e = b - p and matrices P.

21 Project the vector b onto the line through a. Check that e is perpendicular to a : 

22 Draw the projection of b onto a and also compute it from p = va: 

[ 
cos 0 

] [ 
1 

](a) b = sin 0 and a = 0 

23 In Problem 22 find the projection matrix P = aa T / a Ta onto each vector a. Verify 
in both cases that P2 = P. Multiply Pb in each case to find the projection p. 

24 Construct the projection matrices Pi and P2 onto the lines through the a's in 
Problem 22. Is it true that (Pi + P2 ) 2 =Pi+ P2 ? This would be true if PiP2 = 0. 

25 Compute the projection matrices aa T / a Ta onto the lines through a1 = (-1, 2, 2) 
and a2 = (2, 2, -1). Multiply those two matrices PiP2 and explain the answer. 
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26 Continuing Problem 25, find the projection matrix P3 onto a 3 = (2, -1, 2). Verify 
that Pi+ P2 + P3 =I.The basis a1, a 2 , a 3 is orthogonal! 

27 Project the vector b = (1, 1) onto the lines through a1 = (1, 0 )  and a 2 = (1, 2). 
Draw the projections p1 

and p2 and add p1 + p2. The projections do not add to b 
because the a's are not orthogonal. 

28 (Quick and recommended) Suppose A is the 4 by 4 identity matrix with its last column 
removed. A is 4 by 3. Project b = (1, 2, 3, 4) onto the column space of A. What shape 
is the projection matrix P and what is P? 

29 If A is doubled, then P = 2A(4AT A)- 1 2AT. This is the same as A(AT A)- 1 AT . 
The column space of 2A is the same as __ . Is v the same for A and 2A? 

30 What linear combination of (1, 2, -1) and (1, 0 ,  1) is closest to b = (2, 1, 1) ? 

31 (Important) If P2 = P show that ( I -P)2 = I -P. When P projects onto the column 
space of A, I -P projects onto which fundamental subspace ? 

32 If Pis the 3 by 3 projection matrix onto the line through (1, 1, 1), then I -Pis the 
projection matrix onto __ . 

33 Multiply the matrix P = A(AT A)- 1 AT by itself. Cancel to prove that P2 = P. 
Explain why P(Pb) always equals Pb: The vector Pb is in the column space so its 
projection is __ . 

34 If A is square and invertible, the warning against splitting (AT A)- 1 does not apply. 
Then AA- 1 (AT )- 1 AT = I is true. When A is invertible, why is P = I and e = 0 ?  

35 An important fact about AT A is this: If AT Ax = 0 then Ax = 0. New proof: 
The vector Ax is in the nullspace of __ . Ax is always in the column space of 
__ . To be in both of those perpendicular spaces, Ax must be zero. 

Notes on mean and variance and test grades 

If all grades on a test are 90, the mean is m = 90 and the variance is CY
2 = 0. Suppose 

the expected grades are g 1 , ... , g N. Then CY
2 comes from squaring distances to the mean : 

g1 + · · · + gN 
Mean m= 

N 
. 2 

(g1 -m)2 + · · · + (gN - m)2 

Variance CY = 

N 

After every test my class wants to know m and CY. My expectations are usually way off. 

36 Show that CY2 also equals ti (gf + · · · + g'J.J) -m 2. 

37 If you flip a fair coin N times (1 for heads, 0 for tails) what is the expected number 
m of heads ? What is the variance CY2 ? 
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7.2 Positive Definite Matrices and the SVD 

This chapter about applications of AT A depends on two important ideas in linear algebra. 
These ideas have big parts to play, we focus on them now. 

1. Positive definite symmetric matrices (both AT A and AT C A are positive definite) 

2. Singular Value Decomposition (A= UI;VT gives perfect bases for the 4 subspaces)

Those are orthogonal matrices U and V in the SVD. Their columns are orthonormal 
eigenvectors of AA T and AT 

A. The entries in the diagonal matrix I; are the square 

roots of the eigenvalues. The matrices AAT and AT A have the same nonzero eigenvalues. 
Section 6.5 showed that the eigenvectors of these symmetric matrices are orthogonal. 

I will show now that the eigenvalues of AT A are positive, if A has independent columns. 

I separated xT AT Ax into (Ax)T (Ax) = 11Axll 2
. We don't have A = 0 because AT A is 

invertible (since A has independent columns). The eigenvalues must be positive. 
Those are the key steps to understanding positive definite matrices. They give us three 

tests on S-three ways to recognize when a symmetric matrix S is positive definite : 

Positive 

definite 

symmetric 

1. All the eigenvalues of S are positive.

2. The "energy" xT Sx is positive for all nonzero vectors x.

3. S has the form S = AT A with independent columns in A. 

There is also a test on the pivots (all > 0) and a test on n determinants (all > 0). 

Example 1 Are these matrices positive definite ? When their eigenvalues are positive, 
construct matrices A with S = AT A and find the positive energy xT Sx. 

(a) S = [ � � ] (b) s = [ � : ] (c) S = [ : � ] 

Solution The answers are yes, yes, and no. The eigenvalues of those matrices S are 

(a) 4 and 1 : positive (b) 9 and 1 : positive (c) 9 and -1 : not positive.

A quicker test than eigenvalues uses two determinants : the 1 by 1 determinant Sn and 
the 2 by 2 determinant of S. Example (b) has S11 == 5 and det S = 25 - 16 = 9 (pass). 

Example (c) has Sn = 4 but det S = 16 - 25 = -9 (fail the test). 
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Positive energy is equivalent to positive eigenvalues, when Sis symmetric. Let me test 
the energy xT Sx in all three examples. Two examples pass and the third fails: 

[x1 X2] [ 6 
� ] [ X1 X2 

[x1 x2] [ � : ] [ X1 X2 
[x1 x2] [ : 

� ] [ X1 X2 

] = 4xr + x� > 0 

] = 5Xi + 8X1X2 + 5x� 

] = 4xr + l0x1x2 + 4x� 

Positive energy when x#O

Positive energy when x#O

Energy -2 when x = (l, -1)

Positive energy is a fundamental property. This is the best definition of positive definiteness. 

When the eigenvalues are positive, there will be many matrices A that give AT A = S. 
One choice of A is symmetric and positive definite ! Then AT A is A 2, and this choice
A= ,Is is a true square root of S. The successful examples (a) and (b) have S = A2

: 

[ � � ] [ � � ] and [ � : ]

We know that all sylllllletric matrices have the form S = VA VT with orthonormal 
eigenvectors in V. The diagonal matrix A has a square root VJ\, when all eigenvalues are
positive. In this case A = ,Is = V VJ\ VT is the symmetric positive definite square root : 

Starting from this unique square root ,Is, other choices of A come easily. Multiply ,Is
by any matrix Q that has orthonormal columns (so that QTQ = I). Then Q,/s is another
choice for A (not a symmetric choice). In fact all choices come this way: 

(1) 

I will choose a particular Q in Example 1, to get particular choices of A. 

Example 1 (continued) Choose Q = [ � -�] to multiply ,Is. Then A = Q,/s. 

A = 
[

� 
-� ] [ � � ] = 

[ 
� 

-�] has s =ATA=[6 
� ] 

A = 
[

� 
-� ] [ � � ] = 

[ 
-1 

-�] has s =ATA=[� : ] . 

2 
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Positive Semidefinite Matrices 

Positive semidefinite matrices include positive definite matrices, and more. Eigenvalues of 
Scan be zero. Columns of A can be dependent. The energy xT Sx can be zero-but not 

negative. This gives new equivalent conditions on a (possibly singular) matrix S = 5T . 

1' All eigenvalues of S satisfy >. 2 0 (semidefinite allows zero eigenvalues). 

2' The energy is nonnegative for every x : x T Sx 2 0 (zero energy is allowed). 

3' S has the form AT A (every A is allowed; its columns can be dependent). 

Example 2 The first two matrices are singular and positive semidefinite-but not the third : 

(d) s = [ � � ] (e) S = [ ! ! ] 
The eigenvalues are 1, 0 and 8, 0 and -8, 0. The energies x T Sx are X§ and 4(x1 + x2

) 2 and
-4( x1 - x2 ) 2. So the third matrix is actually negative semidefinite.

Singular Value Decomposition 

Now we start with A, square or rectangular. Applications also start this way-the matrix 
comes from the model. The SVD splits any matrix into orthogonal U times diagonal I; times 
orthogonal V

T

. Those orthogonal factors will give orthogonal bases for the four 
fundamental subspaces associated with A.

Let me describe the goal for any m by n matrix, and then how to achieve that goal. 

Find orthonormal bases v1, ... , Vn for R
n 

and u1, ... , Um for R
m 

so that

(2) 

The rank of A is r. Those requirements in ( 4) are expressed by a multiplication AV = U�.

The r nonzero singular values a1 2 a2 2 ... 2 a r > 0 are on the diagonal of I; : 

The last n - r vectors in V are a basis for the nullspace of A. The last m - r vectors in U 
are a basis for the nullspace of AT . The diagonal matrix I; ism by n, with r nonzeros. 

Remember that v- 1 = VT , because the columns v1, ... , Vn are orthonormal in Rn :

Singular Value Decomposition (4)
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The SVD has orthogonal matrices U and V, containing eigenvectors of AA T and AT 

A.

Comment. A square matrix is diagonalized by its eigenvectors : Axi = AiXi is like 
Avi = IJiUi, But even if A has n eigenvectors, they may not be orthogonal. We need two

bases-an input basis of v's in Rn and an output basis of u's in Rm. With two bases, any 
m by n matrix can be diagonalized. The beauty of those bases is that they can be chosen 
orthonormal. Then uT u = I and VTV = I.

The v's are eigenvectors of the symmetric matrix S = AT 
A. We can guarantee their

orthogonality, so that v 'J Vi = 0 for j =/= i. That matrix S is positive semidefinite, so its 
eigenvalues are 1Jf 2: 0. The key to the SVD is that Avj is orthogonal to Avi : 

Orthogonal u's (Avjl(Avi) = v;(AT Avi) = v;(1J;vi) = { �; if j = i
ifj=/-i (5) 

This says that the vectors ui = Avi/ /Ji are orthonormal for i = 
1, ... , r. They are a basis 

for the column space of A. And the u's are eigenvectors of the symmetric matrix AAT , 
which is usually different from s = AT A (but the eigenvalues /Jr' ... '(,; are the same). 

Example 3 Find the input and output eigenvectors v and u for the rectangular matrix A : 

Solution Compute S = AT A and its unit eigenvectors v1, v2 , v3. The eigenvalues 1J2 

are 8, 2, 0 so the positive singular values are 1J1 = VS and 1J2 = -v'2:

1 
[

-v'2
] has v1 = 2 � ,

The outputs u1 = Av i/ 1J1 and u2 = Av2/ 1J2 are also orthonormal, with 1J1 
1J2 = -v'2. Those vectors u1 and u2 are in the column space of A : 

VS and 

[ 
2 2 0 

] 
V1 [ 1 

] [ 
2 2 Q 

] 
V2 [ Q 

] u1 = -1 1 0 VS = 0 and U2 = -1 1 0 -v'2 
= 1 .

Then U = I and the Singular Value Decomposition for this 2 by 3 matrix is U�V
T 

A=[ 
2

-1 [� �] [� 
OO

]
l

[
-v'2

v'2 o 2 � 
-v'2 

--v'2 
0 �r 
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The Fundamental Theorem of Linear Algebra 

I think of the SYD as the final step in the Fundamental Theorem. First come the dim ensions

of the four subspaces in Figure 7 .3 . Then come the orthogonality of those pairs of subspaces.
Now come the orthonormal bases of v 'sand u 's that diagonalize A: 

SYD 
ajUj for j :s; r-
0 for j > r-

ajVj for j :s; r-
0 for j > r-

Multiplying Avj = ajUj by AT and dividing by aj gives that equation AT Uj = <TjVj. 

dimr 

dimn - r

row 

space 

of A

dimr 

Figure 7 .3: Orthonormal bases of v's and u's that diagonalize A: m by n with rank r-.

The "norm" of A is its largest singular value : 11 A 11 = a1. This measures the largest
possible ratio of IIAvll to llvll- That ratio of lengths is a maximum when v = V1 and
Av = a1 u1. This singular value a1 is a much better measure for the size of a matrix than
the largest eigenvalue. An extreme case can have zero eigenvalues and just one eigenvector
(1, 1) for A. But AT A can still be large: if v = (1, -1) then Av is 200 times larger. 

A
= 

[ 
100 
100 

-100
] _ 100 has >-max = 0. But <Tmax = norm of A = 200. (6)
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The Condition Number 

A valuable property of A = UEVT is that it puts the pieces of A in order of importance.Multiplying a column Ui times a row UiV[ produces one piece of the matrix. There will be 
r nonzero pieces from r nonzero u's, when A has rank r. The pieces add up to A, when we multiply columns of U times rows of EVT 

The pieces 

have rank 1 
A� [ u, ... u, ] [ :::� ] � u, (a,vf) + + u,(a,vJ). (7) 

The first piece gives the norm of A which is u1. The last piece gives the norm of A - 1
, which is 1/ Un when A is invertible. The condition number is u1 times 1/un : 

Condition number of A c(A) = IIAII IIA- 111 = o-1

. O"n 
(8) 

This number c(A) is the key to numerical stability in solving Av = b. When A is anorthogonal matrix, the symmetric S = AT A is the identity matrix. So all singular values of an orthogonal matrix are u = 1. At the other extreme, a singular matrix has Un = 0. In that case c = oo. Orthogonal matrices have the best condition number c = 1. 
Data Matrices : Application of the SVD 

"Big data" is the linear algebra problem of this century (and we won't solve it here). Sensors and scanners and imaging devices produce enormous volumes of information. Making decisive sense of that data is the problem for a world of analysts (mathematicians and statisticians of a new type). Most often the data comes in the form of a matrix. The usual approach is by PCA-Principal Component Analysis. That is essentially the SYD. The first piece u1 u1 vI holds the most information (in statistics this piece has the greatest variance). It tells us the most. The Chapter 7 Notes include references. 
• REVIEW OF THE KEY IDEAS •

1. Positive definite symmetric matrices have positive eigenvalues and pivots and energy.
2. S = AT A is positive definite if and only if A has independent columns. 
3. xT AT Ax= (Ax)T(Ax) is zero when Ax= 0. AT A can be positive semidefinite.

4. The SVD is a factorization A= UEVT 
= (orthogonal) (diagonal) (orthogonal). 

5. The columns of V and U are eigenvectors of AT A and AAT (singular vectors of A).
6. Those orthonormal bases achieve Avi = uiui and A is diagonalized.
7. The largest piece of A = u1 u1 vt + · · · + UrUrv; gives the norm I IAI I = u1. 
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Problem Set 7.2 

1 For a 2 by 2 matrix, suppose the 1 by 1 and 2 by 2 determinants a and ac - b2 are positive. Then c > b2 / a is also positive. 
(i) >. 1 and >.2 have the same sign because their product >.1 >.2 equals __ .
(i) That sign is positive because ,\1 + ,\2 equals __ .

Conclusion: The tests a > 0, ac - b2 > 0 guarantee positive eigenvalues >. 1 , >.2 . 

2 Which of S1, S2, S3, S4 has two positive eigenvalues? Use a and ac - b2, don'tcompute the ,\'s. Find an x with x T S1 x < 0, confirming that A1 fails the test. 
_ [-1 -2] S2 - -2 -5 10]100 

3 For which numbers b and c are these matrices positive definite ? 
S= [! �] s 

= [� !] S=[��]-

10]101 

4 What is the energy q = ax2 + 2bxy + cy2 = x T Sx for each of these matrices? Complete the square to write q as a sum of squares d1 ( )2 
+ d2 ( )2 . 

s 
= [� �] and 

s = [! �] . 
5 x T Sx = 2x1 x2 certainly has a saddle point and not a minimum at (0, 0). What symmetric matrix S produces this energy ? What are its eigenvalues? 
6 Test to see if AT A is positive definite in each case : 

and A= [� 12 �] 
7 Which 3 by 3 symmetric matrices S and T produce these quadratic energies ? 

x T Sx = 2 ( Xi + x� + x� - x1 x2 - x2x3). Why is S positive definite? 
x TTx = 2 ( Xi + x� + x� - x1 x2 - x1 x3 - x2x3). Why is T semidefinite?

8 Compute the three upper left determinants of S to establish positive definiteness. (The first is 2.) Verify that their ratios give the second and third pivots. 
Pivots = ratios of determinants 
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9 For what numbers c and dare Sand T positive definite? Test the 3 determinants:

and

10 If S is positive definite then s-
1 is positive definite. Best proof: The eigenvaluesof s-

1 are positive because __ . Second proof ( only for 2 by 2) :
1 1 [ C -b]The entries of 

s- = ac _ b2 -b a 
pass the determinant tests

11 If S and T are positive definite, their sum S + T is positive definite. Pivots andeigenvalues are not convenient for S + T. Better to prove x T (S + T)x > 0. 
12 A positive definite matrix cannot have a zero (or even worse, a negative number)

on its diagonal. Show that this matrix fails to have x T Sx > 0:

[xl X2 X3] [4i �
1 

�
l

l [
x

::
1
] is not positive when ( x1, x2, X3) = ( ) 

13 A diagonal entry ajj of a symmetric matrix cannot be smaller than all the ,\'s. If it
were, then A - ajj I would have __ eigenvalues and would be positive definite.But A - ajj I has a __ on the main diagonal. 

14 Show that if all,\ > 0 then xTSx > 0. We must do this for every nonzero x,not just the eigenvectors. So write x as a combination of the eigenvectors and
explain why all "cross terms" are x; Xj = 0. Then xT Sx is

15 Give a quick reason why each of these statements is true:
(a) Every positive definite matrix is invertible.
(b) The only positive definite projection matrix is P = I.

(c) A diagonal matrix with positive diagonal entries is positive definite.
(d) A symmetric matrix with a positive determinant might not be positive definite!

16 With positive pivots in D, the factorization S = LDLT becomes L,/J5,/J5LT . (Square roots of the pivots give D = ,/15,/15.) Then A = ,/J5LT yields the
Cholesky factorization S = AT A which is "symmetrized L U" : 

From A = rn �] find S. From S = [ ! 2:] find A= chol(S).
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17 [cos0Without multiplying S = sin 0

Chapter 7. Applied Mathematics and AT 
A

- sin0
] [

2 O
J 
I cos0 

cos 0 0 5 l- sin 0
sin 0], findcos0 

(a) the determinant of S
( c) the eigenvectors of S

(b) the eigenvalues of S
( d) a reason why S is symmetric positive definite.

18 For F1(x,y) = ¼x4 
+ x2y + y2 and F2(x,y) = x3 

+ xy - x find the second 
derivative matrices H1 and H2 : 

[ 
EPF/8x2 82F/8x8y

l Test for minimum H = 

2 2 2 
is positive definite 

8 F/8y8x 8 F/oy 

H 1 is positive definite so Fi is concave up ( = convex). Find the minimum point of F1 
and the saddle point of F2 (look only where first derivatives are zero). 

19 The graph of z = x2 
+ y2 is a bowl opening upward. The graph of z = x2 - y2 is 

a saddle. The graph of z = -x2 - y2 is a bowl opening downward. What is a test on
a, b, c for z = ax2 

+ 2bxy + cy2 to have a saddle point at (0, 0)? 

20 Which values of c give a bowl and which c give a saddle point for the graph of 
z = 4x2 

+ 12xy + cy2 ? Describe this graph at the borderline value of c. 

21 When S and T are symmetric positive definite, ST might not even be symmetric. 
But its eigenvalues are still positive. Start from STx = >.x and take dot products 
with Tx. Then prove >. > 0. 

22 Suppose C is positive definite (so y T Cy > 0 whenever y -:/- 0) and A has indepen­
dent columns (so Ax -:/- 0 whenever x -:/- 0). Apply the energy test to xT ATCAx 
to show that AT C A is positive definite : the crucial matrix in engineering. 

23 Find the eigenvalues and unit eigenvectors v1, v2 of AT 
A. Then find u1 = Avi/ cr1 : 

[
1 2

] T [
10 20

] T [ 5 15] A = 

3 6 
and A A = 20 40 and AA = 15 45 . 

Verify that u1 is a unit eigenvector of AAT . Complete the matrices U, �, V. 

24 Write down orthonormal bases for the four fundamental subspaces of this A.

25 (a) Why is the trace of AT A equal to the sum of all a;
j
?

(b) For every rank-one matrix, why is d = sum of all a;
1

? 
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26 Find the eigenvalues and unit eigenvectors of AT A and AAT . Keep each Av = o-u:

Fibonacci matrix A=[��] 

Construct the singular value decomposition and verify that A equals UEVT .

27 Compute AT A and AA T and their eigenvalues and unit eigenvectors for V and U.

Rectangular matrix A= [ � 1
1 � ] .

Check AV= UE (this will decide± signs in U). E has the same shape as A.

28 Construct the matrix with rank one that has Av = 12u for v = ½(1, 1, 1, 1) and
u = ½(2, 2, 1). Its only singular value is a1 = __ .

29 Suppose A is invertible (with 0-1 > 0-2 > 0). Change A by as small a matrix as
possible to produce a singular matrix A0. Hint: U and V do not change. 

From A= [ u1 u2 ] [ 171 
172 

] [ v1 v2 ] T find the nearest A0. 

30 The SVD for A+ I doesn't use E + I. Why is a(A + I) not just a(A) +I?

31 Multiply AT Av = a2v by A. Put in parentheses to show that Av is an eigenvector
of AAT . We divide by its length IIAvll = o- to get the unit eigenvector u. 

32 My favorite example of the SVD is when Av(x) = dv/dx, with the endpoint con­
ditions v(0) = 0 and v(l) = 0. We are looking for orthogonal functions v(x)
so that their derivatives Av = dv/dx are also orthogonal. The perfect choice is
v1 = sin 1rx and v2 = sin 21rx and Vk = sin k1rx. Then each Uk is a cosine. 

The derivative of v1 is Av1 = 1r cos 1rx = 1ru1. The singular values are o-1 = 7r 

and O-k = k1r. Orthogonality of the sines (and orthogonality of the cosines) is the 
foundation for Fourier series. 

You may object to AV = UE. The derivative A = d/ dx is not a matrix ! The
orthogonal factor V has functions sin k1rx in its columns, not vectors. The matrix U
has cosine functions cos k1rx. Since when is this allowed? One answer is to refer you 
to the chebfun package on the web. This extends linear algebra to matrices whose 
columns are functions-not vectors. 

Another answer is to replace d/dx by a first difference matrix A. Its shape will be
N + 1 by N. A has 1 's down the diagonal and -1 's on the diagonal below. Then
AV = UE has discrete sines in V and discrete cosines in U. For N = 2 those will be
sines and cosines of 30° and 60° in v1 and u1. 

** Can you construct the difference matrix A (3 by 2) and AT A (2 by 2)? The discrete
sines are v1 = ( ,/3/2, ,/3/2) and v2 = ( ,/3/2, -,/3/2). Test that Av 1 is orthogonal
to Av2. What are the singular values o-1 and o-2 in E? 
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7.3 Boundary Conditions Replace Initial Conditions 

This section is about steady-state problems, not initial-value problems. The time variable t
is replaced by the space variable x. Instead of two initial conditions at t = 0, we have one 
boundary condition at x = 0 and another boundary condition at x = l. 

Here is the simplest two-point boundary value problem for y(x). Start with f(x) = l. 

Two boundary conditions 
d2y 

- - = f(x) with y(O) = 0 and y(l) = 0. (1)
dx2 

One particular solution Y
p 

( x) will come from integrating f ( x) twice. If f ( x) = 1 then 
two integrations give x2 /2, and the minus sign in (1) leads to Y

p 
= -x2 /2. 

The null solutions Yn ( x) solve the equation with zero force: -y� = 0. The second 
derivative is zero for any linear function Yn = Cx + D. These are the null solutions. 

We can use those two constants C and D to satisfy the two boundary conditions on the 
complete solution y(x) = Y

p 
+ Yn = -x2 /2 + Cx + D.

y(O) = 0 and y(l) = 0 Set x = 0 and x = 1 1
D = 0 and - - + C + D = 0 2 

The boundary conditions give D = 0 and C = ½. Then the solution is y = Y
p 

+ Yn :

Solution 

to -y" = 1

x2 x x - x2 

y(x) = - 2 
+ 

2 = 2
' X 

0 1 

The graph of the parabola starts at y = 0 and returns (fixed ends). The slope y' = ½ - x is 
decreasing. The second derivative is y" = -1 and the parabola is bending down. 

r 
X 

1 
r 

y(x) 

This boundary-value problem describes a bar that has its top and 
bottom both fixed. The weight of the bar stretches it downward. 
At point x down the bar, the displacement is y(x). So this fixed­
fixed bar has y(O) = 0 and y(l) = 0. The force of gravity can 
be f ( x) = 1. The bar stretches in the top half where dy / dx > 0. 
The bottom half is compressed because dy / dx < 0. Halfway down 
at x = ½ is the largest displacement (top of the parabola). That 
h If · h _ 1 ( .2 ) _ 1 a way pomt as Ymax - 2 x - :1, - 8 ·

I think of this elastic bar as one long spring. If we pulled it down 
in the middle, it would start to oscillate. That is not our problem
now. Our bar is not moving-the oscillation is all damped out. The 
stretching comes from the bar's own weight. 
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A Delta Function 

This is my chance to introduce again the mysterious but extremely useful function 
f ( x) = 8 ( x - a). This delta function is zero except at x = a. The bar is now so 
light that we can ignore its weight. All the force on the bar is at one point x = a. At 
that point a unit weight is stretching the bar above x = a and compressing the bar below. 

Here is an informal definition of the delta function (the symbol oo doesn't carry 
enough information by itself). The good definition is based on integrating the function 
across the point x = a. The integral is 1. 

,... ·-- ---

f 8(x - a) dx = l 

f 8(x - a) F(x) dx = F(a) 
Delta functfon I J(x _a)� r�--: � :-
L....-==·"·--�---==============:::::...�"'::-=-=-=-=-=-=-::-=-==========-::.-=--=--=--=--=--=-

The graph of o ( x - a) has an infinite spike at x = a. That spike is at x = a = 0 for 
the standard delta function o(x). The function is zero away from the spike and infinite 
at that one point. The area under this one-point spike is 1. 

This tells us that o ( x) cannot be a true function. It is somehow a limit of box functions 
B N ( x) that have height N over short intervals of width 1 / N. The area of each box is 1 : 

{ 0 lxl > 1/2N 
Box functions BN(x) =

I I / N x < l 2N

J BN(x) = box area = 1

J BN(x)F(x) dx approaches F(O)

Mathematically, o ( x) and its shifts o ( x - a) are not functions. Physically, they represent 
action that is concentrated at a single point. In reality that action is probably over a very 
short interval, like the box functions, but the width of that interval is of no importance. 
What matters is the total impulse when a bat hits a ball, or the total force when a weight 
hangs on a bar. 

The shifted delta function o(x - a) is the derivative of the step function H(x - a). 
The step function jumps from O to 1 at x = a. Then o must integrate to 1. 

Response to a Delta Function is a Ramp Function 

How to solve the differential equation -y" = o(x - a)? One integration of the delta 
function gives a step function. A second integration gives a ramp function or corner 
function. The solution y(x) must be linear (straight line graph) to the left of x = a, 
because d2 y/dx2 

= 0. And y(x) is also linear to the right of x = a: constant slope.

The slope of y ( x) drops by 1 at the point x = a. To see why -1 is the jump in slope 
(there is no jump in y !), integrate y" across the point x = a to get the change -1 in y': 

y" = - 8 ( X - a) J y" dx = 

[dy] right of a=!-
o(x - a)dx = -1 (2)

dx left of a 



408 Chapter 7. Applied Mathematics and AT A 

The solution y(x) starts with a fixed slope s. At x = a it changes to slope s - 1 
(the slope drops by 1). At the point x = l, the bottom of the bar is fixed at y(l) = 0. 

The constant upward slope s over a distance a and the downward slope s - 1 over the 
remaining distance 1 - a must bring the function y(x) to zero: 

sa + (s - 1)(1 - a) = 0 gives sa + s - sa - 1 +a= 0. Then s = 1 - a. (3) 

The graph of y = sx goes up to sa = (1 - a)a. Then y(x) goes back down to zero. 

Ymax = i� 

�
-x)

� 0 1 
a=½ 

1 - a ---- slope dy / dx

X a 

o >-----+-----�

1

1 

-a

Figure 7.4: -y" = c5(x - a) is solved by a ramp function that has a comer at x = a.
At that comer point the slope y' (which is a step function) drops by 1. Then y 11 = - 6.

How is the elastic bar stretched and compressed by this point load at x = a = ½ ? 
The top third of the bar is stretched, the lower two thirds are compressed. The point x = a
shows the highest point on the graph of y( x) and the greatest displacement. That downward 
displacement is y(a) = a(l - a)=�-

Uniform stretching above the point load. Uniform compression below the point load. 

Eigenvalues and Eigenfunctions 

For a square matrix, the eigenvector equation is Ax = >.x. For the second derivative (with 
a minus sign) and for a boundary condition at both endpoints, the eigenvector x becomes 
an eigenfunction y ( x) 

Eigenvalues of 
d2

y 
-- = >.y with y(O) = 0 and y(l) = 0. (4) dx2 

We can find these eigenfunctions y(x). The solutions to the second order equation 
y" + >.y = 0 are sines and cosines when >. 2". 0. The boundary conditions choose sines: 

y( x) = A cos ( V),. x) + B sin ( V),. x) before applying the boundary conditions 
y(O) = 0 requires A = 0 y = sinv>,. = 0 at x = l requires v':x = n-rr

The eigenfunction is y(x) = sin n-rrx. The eigenvalue is>.. = n2-rr2 for n = 1, 2, 3, ...
Then -y" = >.y. We have infinitely many y and>., not surprising since S = -d2 / dx2 is not 
a matrix. It is an " operator" and it acts on functions y ( x). 
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The Second Derivative -d2 / dx2 is Symmetric Positive Definite

The derivatives Ay = d y  / dx and Sy = -d 2 y / dx2 are linear operators. The first derivative
A is antisymmetric. The second derivative S is symmetric. S is also positive definite,

because of that minus sign. Its eigenvalues >. = n2rr2 are all positive. 
We will use the symbols AT and ST , even though A and S are not matrices. To give

meaning to AT = -A and ST = S, we need the inner product (f, g) of two functions:

1 

Inner product of f and g (f(x), g(x)) = f f(x) g(x) dx. (5) 

0 

This is the continuous form of the dot product u · v = u T v of two vectors. For u · v
we multiply the components ui and Vi, and add. For functions we multiply the values 
of f(x) and g(x), and then integrate as in (5).

A matrix is symmetric if Su· v equals u · Sv for all vectors. Then (Su) T v = u T ( sT v)
agrees with u T ( Sv). An operator is symmetric if (Sf, g) equals (f, S g) for all functions that
satisfy the boundary conditions. Use two integrations by parts to shift the second derivative 
operator S from f onto g :

Integration 

by parts 

twice 

1 1 1 f d 2 f f df dg f ( d 2 g
) - - g(x)dx = - -dx = f(x) - - dx.

dx2 dx dx dx2 

0 0 0 

(6) 

The integrated terms [g df / dx ]6 and [f dg / dx ]6 in the two integrations by parts are zero
because f = g = 0 at both endpoints. 

The left side and right side of (6) are the inner products (Sf, g) and (f, Sg). Moving S
from f onto g always produces ST . Here we have S = ST and symmetry is confirmed. 

Thus the second derivative S = -d2 / dx2 is symmetric positive definite (this is why we
included the minus sign). Section 7 .2 gave two other tests, in addition to positive eigenvalues. 
One test is positive energy, and that test is also passed. Choose g = f :

Positive energy fT Sf
fl d 2j fl (df)2 (Sf, f) = 

-dx2 
f(x) dx = 

dx dx > 0.

0 0 

(7) 

Zero energy requires df /dx = 0. Then the boundary conditions ensures f(x) = 0. 
The third test for a positive definite S looks for A so that S = AT A. Here A is the first

derivative (Af = df /dx). The boundary conditions are still f(0) = 0 and f(l) = 0. 
Problem 1 will show that AT g is -dg / dx, with a minus sign from one integration by
parts. Altogether S = -d2 /dx2 

= (-d/dx)(d/dx) = AT A.
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Solving the Heat Equation 

Differential equations in time give a chance to use all the eigenfunctions sin ( mrx). 
An outstanding example is the heat equation 8u/8t = 82 u/8x2 = -Su. The 
eigenvalues of -S are -n21r2

, and the negative definite -S leads to decay in time and 
not growth. Temperatures die out exponentially when there is no fire. Here are the 
two steps (developed much further in Section 8.3) to solve the heat equation Ut = Uxx: 

1. Write the initial function u(O, x) as a combination of the eigenfunctions sin n1rx:

Fourier sine series Ustart = b1 sin 1rx + b2 sin 21rx + · · · + bn sin n1rx + · · · (8) 

2. With,,\ = -n21r2
, every eigenfunction decays. Superposition gives u at time t:

CX) 

u(t, x) = b1 e-1r
2
t sin 1rx + b2 e-41r

2
t sin 21rx + · · · = L bne-n2

-rr

2

t sin n1rx (9)
1 

This is the famous Fourier series solution to the heat equation. Section 8.1 will show
how to compute the Fourier coefficients bi, b2, ... (a simple formula even when there
are infinitely many b' s). You see how the solution is exactly analogous to
y(t) = c1 e-.>.1 tx1 + c2e-.>.2 tx2. That solves an ODE, the heat equation is a PDE.

Second Difference Matrix K

These pages will take a crucial first step in scientific computing. This is where differential 
equations meet matrix equations. The continuous problem (here continuous in x, previ­
ously in t) becomes discrete. Chapter 3 took that step for initial value problems, starting 
with Euler's forward difference y(t + t:.t) - y(t). Now we have problems -y" = f(x)
with second derivatives. So we use second differences y(x + t:.x) - 2y(x) + y(x - t:.x).

The second derivative is the derivative of dy / dx. The second difference is the 
difference of t:.y/ t:.x. For first differences we have choices-forward or backward or 
centered differences. To approximate the second derivative Sy = -y" there is one
outstanding centered choice. This uses the tridiagonal second difference matrix K : 

d2
y KY

-; I 
Y1 -

dx2 � (..lx) 2 
[ 2 -1 

-1 2 --1 Y2 
KY= -1 (10) 

-1 2 -1 from
-1 YN -Yi+1 + 2Yi - Yi-1

The numbers Y1 to YN are approximations to the true values y(t:.x), ... , y(N t:.x)
in the continuous problem. The boundary conditions y(O) = 0 and y(l) = 0 become 
Yo = 0 and YN+ l = 0. The step tl.x has length 1/(N + 1). The matrix K correctly 
takes Yo and YN+ l to be zero, by working only with Y1 to YN. 
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The Matrix K is Positive Definite 

We know that the operator S = -d2 / dx2 is positive definite. All of its eigenvectors 
sin mrx have positive eigenvalues .\ = n2 1r2 . So we hope that the matrix K is also 
positive definite. That is true-and most unusually for a matrix of any large size N,

we can find every eigenvector and eigenvalue of K.

The eigenvectors are the key. It doesn't happen often that sampling the continuous

eigenfunctions at N points produces the discrete eigenvectors. This is the most important 
example in all of applied mathematics, of this unprecedented sampling for y = sin n1rx : 

The N eigenvectors of Kare Y
n 

= (sin nm'.�x, sin 2n1r�x, ... , sinNn1r�x). (11) 

The N eigenvalues of Kare the positive numbers >-n = 2 - 2 cos�. (12) 
N+l 

The 2 in every eigenvalue.\ comes from the 2's along the diagonal of K (that diagonal 
is 2I). The cosine in .\ and in the equation Ky

n 
= AnY

n 
are checked in Problem 12. 

All eigenvalues are positive because the cosines are below 1. Then K is positive definite.

It is natural to try the other positive definite tests too (we don't have to do this, 
.\ > 0 is enough). With a rectangular first difference matrix A, we have K = AT A: 

-1
1 -1

1 

-1
2

-1
(13) 

The three columns of that matrix A are certainly independent. Therefore AT A is a positive 
definite matrix, now proved twice. 

Notice that AT is minus the usual forward difference matrix. A is plus a backward 
difference matrix. That sign change reflects the continuous case (for derivatives) where 
the "transpose" of d/ dx is - d/ dx. For every vector f, the energy fT 

K f is the same as 
fT ATAf = (Af)T (Af) > 0: 

1 

The energy j ( :�) 
2 

dx becomes

0 

N+l 

fT Kf = (Af?(Af) = L.)fn -fn-i)2 > 0. 
n=l

The test of positive energy fT 
K f is passed, and K is again proved to be positive definite. 

Boundary Conditions on the Slope 

The fixed-fixed boundary conditions are y(0) = 0 and y(l) = 0. One or both of those
conditions can change to a slope condition on y' = dy / dx. If the left condition changes 
to y' (0) 0, the top of our elastic bar is free instead of fixed. This is like a tall 
building; x = 0 is up in the air (free) and x = I is down at the ground (fixed).
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A fixed-free hanging bar combines y(O) = 0 at the top with y'(l) = 0 at the bottom. 
Its matrix is still positive definite. But a free-free bar has no supports: semidefinite! 

Free-free Sy = f 
d2y . dy dy 

-
dx2 

= J(x) with 
dx 

(0) = 0 and 
dx 

(1) = 0. (14)

You will see that this problem generally has no solution. One eigenvalue is now .X = 0. 

Free-free Sy = .Xy 
d2y . dy 

-
dx2 

= >.y(x) with 
dx 

= 0 at x = 0 and x = l. (15)

The fixed-fixed problem had eigenfunctions y(x) = sin mrx and eigenvalues>.= n2
71'

2
. This 

free-free problem will have y(x) = cosnrrx and again>.= n2
71'

2
. Those cosines start and 

end with zero slope. Also very important: The free-free problem has an extra eigenfunction 
y = cos Ox (which is the constant function y = l). And then>.= 0: 

Constant y and zero .X 
d2y 

y = l solves - - = >.y with eigenvalue >. = 0 
dx2 

Conclusion: The free-free problem (14) is only positive semidefinite. The eigenvalues 
include>.= 0. The problem is singular and for most loads f(x) there is no solution. 

Example with f(x) = x Show that -y" = x has no solution with y'(O) = y'(l) = 0. 

Solution Integrate both sides of -y" = x from x = 0 to x = l. The right side gives 
J x dx = ½- The left side gives - J y" dx = y'(O) - y'(l). But the boundary conditions 
make this zero and there can be no solution to 0 = ½. An operator with a zero eigenvalue is 
not invertible. 

Free-free Difference Matrix B 

This problem -y" = J(x) with free-free conditions y'(O) = y'(l) = 0 leads to a singular 
matrix (not invertible). This is still a second difference matrix, to approximate the second 
derivative. But row 1 and row N of the matrix are changed by the free-free boundary 
conditions : 

Free-free matrix B 

[ : 

-1

-JChange Kn= Bu 
2 -1 

is not invertible. 2 to =1 B= -1 2 
Change KN� 2 to BNN = 1 -1

The slope dy / dx is approximated by a first difference in row 1 and row N. All other rows 
still contain the second difference -1, 2, -1. The usual 1, -2, 1 has signs reversed because 
the differential equation has -d2y / dx2

. 

How to see that B is not invertible ? MATLAB would find pivots 1, 1, ... , 1, 0 from 
elimination. The zero in the last pivot position means failure. We can see this failure directly 
by solving By = 0. This is the fast way to show that a matrix is singular. 

To show that B is not invertible, find the constant solution to By = zero vector. 
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r
-1

H 1 l rn 
y = constant vector -1 2 -1

(16) 
B = singular matrix 

By= 
-1 2 -1

-1 1 

If B- 1 existed, we could multiply By = 0 by B- 1 to find y = 0. But this y is not zero. 

B is positive semidefinite but it is not positive definite. We can still write the matrix 
B as AT A, but in this free-free case the columns of A will not be independent. 

-1
2 -1

-1

-1
1 -1

1 _J 
With only 3 rows, the 4 columns of A must be dependent. They add up to a zero column. 

• REVIEW OF THE KEY IDEAS •

1. Two initial conditions for y(0) and y'(0) can change to two boundary conditions.

2. The fixed-fixed problem -y" = >..y with y(0) = 0 and y(l) = 0 has >.. = n2 n2
. 

3. The second difference matrix K has An = 2 - 2 cos ;;,;1 
> 0. Positive definite.

4. Eigenfunctions and eigenvectors are sines, from fixed-fixed boundary conditions.

5. The free-free problem with y' (0) = y' (1) = 0 has y = cosines. This allows >.. = 0.

6. The free-free matrix B has >.. = 0 with the eigenvector y = ( 1, ... , 1). Semidefinite.

Problem Set 7.3 

1 Transpose the derivative with integration by parts: (dy/dx,g) = -(y,dg/dx). 

Ay is dy / dx with boundary conditions y(0) = 0 and y(l) = 0. Why is J y' gdx 
equal to - J yg' dx? Then AT (which is normally written as A*) is AT g = -dg / dx 
with no boundary conditions on g. AT Ay is -y" with y(0) = 0 and y(l) = 0. 
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Problems 2-6 have boundary conditions at x = 0 and x = 1 : no initial conditions. 

2 Solve this boundary value problem in two steps. Find the complete solution Yp + Yn 

with two constants in Yn , and find those constants from the boundary conditions: 

Solve -y 11 = 12x2 with y(0) = 0 and y(l) = 0 and Yp = -x4
• 

3 Solve the same equation -y 11 
= 12x2 with y(0) = 0 and y'(l) = 0 (zero slope). 

4 Solve the same equation -y 11 
= 12x2 with y'(0) = 0 and y(l) = 0. Then try for

both slopes y'(0) = 0 and y 1 (1) = 0: this has no solution y = -x4 +Ax+ B.

5 Solve -y 11 
= 6x with y(0) = 2 and y(l) = 4. Boundary values need not be zero.

6 Solve -y 11 = ex with y(0) = 5 and y(l) = 0, starting from y = Yp + Yn · 

Problems 7-11 are about the LU factors and the inverses of second difference matrices. 

7 The matrix T with Tn = 1 factors perfectly into LU= AT A (all its pivots are 1). 

[-: 
-1

-�]�[-: 
J

[

I -1

-: j
�

w 
2 -1 1 1 -1 

T= -1 2 -1 1 1 
-1 -1 

Each elimination step adds the pivot row to the next row (and L subtracts to recover 
T from U). The inverses of those difference matrices L and U are sum matrices.

Then the inverse of T = LU is u-1 L-1
: 

[ 

1 1 

; ][ 
1 

I 

j � u-' L-'. r-1 = 

1 1 1 1 
1 1 1 1 

1 1 1 

Compute r-1 for N = 4 (as shown) and for any N. 

8 The matrix equation TY = (0, 1, 0, 0) = delta vector is like the differential equation 
-y" = o(x - a) with a= 26.x = g. The boundary conditions are y'(0) = 0 and 
y(l) = 0. Solve for y(x) and graph it from Oto 1. Also graph Y = second column of 
r-

1 at the points x = ½, ¾, ¾, t· The two graphs are ramp functions. 

9 The matrix B has Bn = 1 (like Tn = 1) and also BNN = 1 (where T NN = 2). Why 
does B have the same pivots 1, 1, ... as T, except for zero in the last pivot position? 
The early pivots don't know BN N = 1. 

Then Bis not invertible: -y" = o(x - a) has no solution with y'(0) = y'(l) = 0.
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10 When you compute K-1

, multiply by det K = N + l to get nice numbers: 
415 

Column 2 of 5K-1 solves the equation K v = 58 when the delta vector is 8 = __

We know from K K- 1 
= I that K times each column of K- 1 is a delta vector.6 

0 1 

graph of 

column 2 

11 K comes with two boundary conditions. T only has y(l) = 0. B has no boundary conditions on y. Verify that K = AT A. Then remove the first row of A to get 
T = AI A1. Then remove the last row to get dependent rows: B = AJ A0. 

The backwarrd fust difference A - [ -: _: _: ] gives K � A'l'A. 
12 Multiply K3 by its eigenvector Y

n 
= (sin mrh, sin 2mrh, sin 3mrh) to verify that the eigenvalues >.1, >.2, .A3 are An = 2 - 2cos n

4
1r in Kyn = AnYn · This uses the trigonometric identity sin( A + B) + sin( A - B) = 2 sin A cos B. 13 Those eigenvalues of K3 are 2 - J2 and 2 and 2 + )2. Those add to 6, which is the trace of K3. Multiply those eigenvalues to get the determinant of K3. 14 The slope of a ramp function is a step function. The slope of a step function is a delta function. Suppose the ramp function is r(x) = -x for x::; 0 and r(x) = x for x 2'. 0 (so r(x) = Ix!). Find dr/dx and d2r/dx2

. 15 Find the second differences Yn+l - 2yn + Yn-l of these infinitely long vectors y:

Constant 

Linear 

Quadratic 

Cubic 

Ramp 

Exponential 

( ... , 1, 1, 1, 1, 1, ... ) 

( ... ,-1,0,1,2,3, ... ) 

( ... ,1,0,1,4,9, ... ) ( ... , -1, 0, 1, 8, 27, ... ) 
( ... ,o,o,0,1,2, ... ) ( -iw O iw 2iw ) . . .  , e , e , e , e , . . . . It is amazing how closely those second differences follow second derivatives for 

y(x) = 1, x, x2
, x3

, max(x, 0), and eiwx _ From eiwx we also get coswx and sin wx.
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7 .4 Laplace's Equation and AT 
A

Section 7.3 solved the differential equation -d2y/dx2 = c5(x - a). Boundary values 
were given at x = 0 and x = 1 (our examples began with y = 0 at both endpoints). 
The solutions y(x) went linearly up from zero and linearly back to zero. These boundary 
value problems correspond to a steady state-with no dependence on time. 

Those are "1-dimensional Laplace equations"--certainly the simplest of their kind. 
This section is more ambitious, in three important ways : 

1 We will solve the 2-dimensional Laplace equation-our first PDE. The list of solu­
tions is infinite, and they are particularly beautiful. Amazingly the imaginary number 
i = A enters this real problem. 

Laplace's partial differential equation (1) 

2 The discrete form of (1) is a matrix equation for a vector U. That vector has 
components U1, ... , Un at then nodes of a graph. The graph could be a line in lD 
or a grid in 2D, or any network of nodes connected by m edges (Figure 7.5 ). 

y � 

grid line 

n=4 

m=3 
n = 16 
m=24 

X network n = 4 m = 6 

Figure 7 .5: A lD line graph, a 2D grid, and a complete graph: n nodes and m edges. 

The natural discrete analog of Laplace's equation (1) is a "5-point scheme" on a grid: 

fl;,U + fl;U 2nd difference across grid
(flx)2 (fly)2 

= +2nd difference down grid
= 0. (2) 

For these equations we are given boundary values of u and U. Instead of an interval 
like 0 ::; x ::; 1, there is a region in the plane: u is given along its boundary. U is 
given at the 12 boundary points of the 4 by 4 grid. Equation (2) holds at each inside point. 

3 The continuous and discrete Laplace equations are good examples of AT Au. 
AT A is symmetric with eigenvalues .\ 2: 0. And one more matrix will produce AT C A 
in Section 7.5 . In engineering, C contains the physical properties of the material: stiffness 
and conductivity and permeability. You will be seeing the structure of applied mathematics. 
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Laplace's Equation is AT Au = O

This is our first partial differential equation. It represents equilibrium, not change.

Laplace's equation for u (x, y) (3)

I have included minus signs to make the left side into AT Au. In one dimension, A
was d/dx and AT was -d/dx. Now we have two space variables x and y, and two partial
derivatives 8 / ox and 8 / oy will go into A. Then -8 / ox and -8 / oy go into AT . 

The vector Au has two components au/ OX and au/ oy. This is the "gradient vector."
We are into the 2D world of multivariable calculus and partial derivatives : 

Gradient of u [ 
8/ox 

] [ 
8u/8x 

] Au
= 

grad u ( X' y) = 8 I oy 
u 

= 8u I 8y 
. (4) 

I will skip double integrals and the Divergence Theorem (which is the 2D form of the
Fundamental Theorem of Calculus). Since A is 2 by 1, you can guess that AT is 1 by 2 :

Divergence AT w = - div w = [ - :x _ _!!_] [ w1 (x, y)
] =- 8w1 _ 8w2. (S)

oy W2 (x, y) 8x 8y 

Then AT Au is (minus) the divergence of the gradient of u(x, y). This is the Laplacian :

AT Au = - div grad u ATAu= [-_!!_ _ _!!_] r::1 =-
82u_ 82u_ (6)ox oy OU 8x2 8y

2 

ay 

You recognize AT Au = 0 as Laplace's equation. With zero on the right hand side, the
minus sign can be included or not. We usually give Poisson's name when the equation has a
nonzero source (or a sink) f(x, y) on the right hand side :

u"'"' + Uyy = f (x, y) is Poisson's equation. 

The subscripts in Uxx and Uyy indicate second partial derivatives: Uxx = 82u/8x2 and
uyy = 82u/8y

2 
. In this notation, Ut indicates au/at. Previously that was u', in the

ordinary differential equations of earlier chapters. PDEs bring these new notations. 

Example 1 u = xy solves Laplace's equation Uxx + Uyy = 0. And Up = x2 + y2 

solves Poisson's equation Uxx + Uyy = 4 with a constant source. The complete solution
for Poisson is this particular solution x2 

+ y2 plus any null solution for Laplace. 
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Solutions to Laplace's Equation 

We want a complete set of solutions to u"'"' + Uyy = 0. The list will be infinitely long. 
Combinations of those solutions will also be solutions. Laplace's equation is linear, so 
superposition is allowed. Four solutions are easy to find: u 1, x, y, xy. 
For those four, Uxx and Uyy are both zero. To find further solutions, we need Uxx to 
cancel uyy· 

Start with u = x2
, which has Uxx = 2 .  Then Uyy = -2 is achieved by -y2

. 

The combination u = x2 
- y2 solves Laplace's equation. This solution has "degree 2" 

because if x and y are multiplied by C, then u is multiplied by 02
. The same was true 

of u = xy, also degree 2 because (Cx)(Cy) is 02 times xy. 

The real question starts with x3 • Can this be completed to a solution of degree 3 ? 
From u = x3 we will have Uxx = 6x. To cancel 6x, we need a piece that has Uyy = -6x. 
That piece is -3xy2 . The combination u = x3 

- 3xy2 has degree 3 and goes into our list. 

The hope is to find two solutions of every degree. Here is the list so far. I will write each 
pair of solutions in polar coordinates too, starting with u = x = r cos 0. 

degree 1 X y rcos0 r sin0 

degree 2 x2 -y2 2xy r2 cos 20 r2 sin 20 

degree 3 x3 
- 3xy2 ?? r3 cos 30 r3 sin 30 

On the polar coordinate list, the pattern is clear. The pairs of solutions to Laplace's equation 
are rn cos n0 and rn sin n0. Those will be solutions also for n = 4, 5, ... 

The first list (pairs of x, y polynomials) also has a remarkable pattern. Those are the 
real and imaginary parts of ( x + i y) n. Degree n = 2 shows the two parts clearly : 

(x + iy) 2 is x2 
- y2 

+ i 2xy This is (rei0)
2 

= r2 e2i& = r2 cos 20 + ir2 sin 20.

The polar pair rn cos n0 and rn sin n0 satisfy Laplace's equation for every n. The x-y pair 
succeeds because Uyy includes i2 

= -1, to cancel Uxx· We have two solutions for each n: 

Degree n Un
= Re (x + iy) n 

= rn cos n0 Sn
= Im(x + iy)n 

= rn sin n0. (7) 

All combinations of these solutions will also solve Laplace's equation. For ordinary 
differential equations (second order with y"), we had two solutions. All null solutions were 
combinations c1y1 + c2y2. By choosing c1 and c2 we matched the two initial 
conditions y(O) and y'(O). Now we have a partial differential equation with an infinite 
list of solutions, two of each degree. 
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By choosing the right coefficients an and bn for every n, including the constant a0, 

we can match any function u = u0 ( x, y) around the boundary : 

On the boundary 

Circular boundary 

uo(x, y) = ao + a1x + b1y + a2 (x2 - y2) + b2(2xy) + ..

uo(l, 0) = ao + a1 cos 0 + b1 sin 0 + a2 cos 20 + b2 sin 20 + ..

That last sum is a Fourier series. It enters when we solve Laplace's equation inside a circle. 
The boundary condition u = u0 is given on the circle r = l. For 1D problems the boundary 
was the two endpoints x = 0 and x = l. We only needed two solutions. 

The right choice of all the Fourier coefficients an and bn will come in Chapter 8, 
and it completes the solution to Laplace's equation inside a circle: 

.---------------------·-

00 

Solution to Urere + Uyy = 0 u = ao + L (an rn cos n0 + bn rn sin n0). (8) 
n=l 

Finite Differences and Finite Elements 

Laplace's equation is often made discrete. The derivatives Uxx and Uyy are replaced 
by finite differences. That produces a large matrix K2D, which is a two-dimensional 
analog of the tridiagonal -1, 2, -1 matrix K. For the square grid in Figure 7.5, there will 
be entries -1, 2, -1 in the x-direction and also in the y-direction. K2D has five entries : 
2 + 2 = 4 down its main diagonal and four entries of -1 on a typical inside row. 

Suppose the region is not square but curved (like a circle). Then finite differences 
get complicated. The nodes of a square grid don't fall on circles. The favorite approach 
changes to the finite element method, which can divide the region into triangles of 
arbitrary shapes. (A triangle can even have a curved edge to fit a boundary.) These 
finite elements are described in my textbook Computational Science and Engineering, 
with codes that use linear functions a + bx + cy inside each triangle of the mesh. 
The accuracy is studied in An Analysis of the Finite Element Method. 

Laplace's Difference Matrix K2D 

The approach that fits with this book is finite differences. I want to construct the symmetric 
matrix K2D with rows like -1, -1, 4, -1, -1 and show that it is positive definite. K2D 
comes from second differences in the x and y directions. Each meshpoint needs two indices 
i and j, to specify its row number and column number on the grid. Go across and up-down: 

82 u -Ui+1 · + 2Ui · - Ui-1 ·
- -- becomes ,J ,J ,J 

8x2 (.6.x) 2 

82u -Ui +1 + 2Ui · - Ui -1
- -- becomes ,J ,J ,J 

8y2 (.6.y) 2 

The square grid has .6.x = .6.y. Combine 2Ui,j with 2Ui,j· Then 4 goes on the diagonal of 
K2D. The difference equation says that each Uij is the average of its 4 neighbors: 

4Ui,j - ui+l,j - ui-1,j - ui,j+1 - ui,j-1 = o. (9) 
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If a neighbor of the i, j node falls on the boundary of the square grid, that boundary 
value of U will be known. Then that term moves to the right side of the difference equation. 
An entry of -1 disappears from K2D on boundary rows. 

If we number the nodes a row at a time, the Uxx term puts the 1D matrix K in each 
block row. The Uyy term connects three rows with -I and 21 and -J. 

-I

2I

-I

-I

-I

. ] = kron (I, K) + kron (K, I).

2I 

With N interior points in each row, this block matrix K2D is N2 by N2
. MATLAB's 

command kron(A, B) replaces each Aij by the block Aj B, so the size grows to N2
. 

Here is the matrix for a grid with 3 x 3 = 9 squares and 4 x 4 = 16 nodes. There are 
2 x 2 = 4 interior nodes. The other 16 - 4 = 12 nodes are around the square boundary,
where U is given by the boundary condition u = u0. For a large grid, N2 interior points will
far outnumber 4N + 4 boundary points. 

Laplace difference matrix 
The interior mesh is 2 by 2 

K2D-[ 

4 
-1

0 
-1

-1
4

-1
0

0 
-1

4
-1 -� l-1

. 

4

Those rows lost two -1 's because each interior gridpoint is next to two boundary points. 
Normally we see four -1 's in almost every row of K2D. 

Here is the solution to K2D U = 0 in the square when boundary values are O and 4 : 

Each bold value of U is 
the average of 4 neighbors 

0 

0 

4 4 

2 3 

1 2 

0 0 

4 

4 

The eigenvalues of this matrix K2D are >, = 2, 4, 4, 6. They add to 16, which is the trace:

the sum down the diagonal of K2D above. The eigenvectors are orthogonal: 

Eigenvectors of K2D (1, 1, 1, 1) and (1, 1, -1, -1), (1;-1, 1, -1) and (1, -1, -1, 1). 

Symmetry of K2D guaranteed orthogonal eigenvectors. Positive definiteness produced 
those positive eigenvalues 2, 4, 4, 6. 
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Eigenvalues of the Laplacian : Continuous and Discrete 

In one dimension, the eigenfunctions for -Uxx = Au are u = sin n-rrx with eigenvalue
.X = n2-rr2 . These sine functions are zero at the endpoints x = 0 and x = l. On a unit
square in two dimensions, the eigenfunctions of the Laplacian are just products of sines: 
u(x,y) = (sinn-rrx)(sinrn-rry)with eigenvalue.X = n2-rr2 +rn2-rr2 . Those functions
are zero on the whole boundary of the square, where x = 0 or x = l or y = 0 or y = l: 

- (::
2 

+ ::
2
) (sinmrx)(sinm7ry) = (n2-rr2 + rn2-rr2)(sinn7rx)(sinm7ry). (10)

The problem on a square allows separation of variables. Each of the eigenvectors is a
(function of x) times a (function of y). Two ID problems,just what we hope for. 

Equation (6) expressed -Uxx - Uyy as - div(grad u). This is AT A (A = gradient).
The test A � 0 is passed on non-square regions too, when the x, y variables don't separate.

Slope conditions (a derivative of u is zero instead of the function itself) allow the
constant eigenfunction u = l. Then A= 0 and the Laplacian becomes semidefinite.

Turn now to the matrix Laplacian K2D. In one dimension, the eigenvectors of K are
discrete sine vectors : Sample the continuous eigenfunction sin n7rx at N equally spaced
points. The spacing is .6..x = l/(N + 1) inside the interval from Oto 1. The eigenvalues
of Kare An = 2 - 2 cos(n7r.6..x ). We may hope and expect that the eigenvectors of K2D
will contain products of sines, and the eigenvalues will be sums of 1D eigenvalues A(K).

The N2 eigenvalues of K2D are positive. The x and y directions still separate.

n7r m7r Anm(K2D ) = An(K) + Am(K) = 4 - 2 cos -
N 

- 2 cos -
N 

> 0. (11)
+l +l 

Thus K2D for a square is symmetric positive definite. This formula for the eigenvalues
recovers A= 2, 4, 4, 6 when N = 2, because the cosines of i and 2; are½ and-½-

• REVIEW OF THE KEY IDEAS •

1. Laplace's equation is solved by the real and the imaginary part of every (x + iyt.

2. Those are u = r n cos n0 and s = r n sin n0. Their combinations are Fourier series.

3. The discrete equation is .6..;,U + .6..�U = 0. The matrix K2D is positive definite.

4. Eigenvectors are (sines in x) (sines in y) : -Uxx - Uyy = Au and (K2D) U = AU.
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Problem Set 7 .4 

1 What solution to Laplace's equation completes "degree 3" in the table of pairs of 
solutions? We have one solution u = x3 - 3xy2

, and we need another solution. 

2 What are the two solutions of degree 4, the real and imaginary parts of (x + iy)4 ? 
Check Uxx + Uyy = 0 for both solutions. 

3 What is the second x-derivative of ( x + i y) n ? What is the second y-derivative? 
Those cancel in Uxx + Uyy because i2 

= -1. 

4 For the solved 2 x 2 example inside a 4 x 4 square grid, write the four equations (9) 
at the four interior nodes. Move the known boundary values 0 and 4 to the right hand 
sides of the equations. You should see K2D on the left side multiplying the correct 
solution U = (Un, U12, U21, U22) = (1, 2, 2, 3). 

5 Suppose the boundary values on the 4 x 4 grid change to U = 0 on three sides and 
U = 8 on the fourth side. Find the four inside values so that each one is the average 
of its neighbors. 

6 (MATLAB) Find the inverse (K2D)-1 of the 4 by 4 matrix K2D displayed for the
square grid. 

7 Solve this Poisson finite difference equation (right side =/= 0) for the inside values 
U11 , U12, U21, U22. All boundary values like U10 and U13 are zero. The boundary 
has i or j equal to 0 or 3, the interior has i and j equal to 1 or 2 : 

4Uij - Ui-1,j - Ui+1,j - Ui,j -1 - Ui,j+i = 1 at four inside points. 

8 A 5 x 5 grid has a 3 by 3 interior grid: 9 unknown values U11 to U33 . Create the 
9 x 9 difference matrix K2D. 

9 Use eig(K2D) to find the nine eigenvalues of K2D in Problem 8. Those eigenvalues 
will be positive ! The matrix K2D is symmetric positive definite. 

10 If u(x) solves Uxx = 0 and v(y) solves Vyy = 0, verify that u(x)v(y) solves 
Laplace's equation. Why is this only a 4-dimensional space of solutions? Separation 
of variables does not give all solutions-only the solutions with separable boundary 
conditions. 



7.5. Networks and the Graph Laplacian 423 

7.5 Networks and the Graph Laplacian 

Start with a graph that has n nodes and m edges. Its m by n incidence matrix A was 
introduced in Section 5.6, with a row in the matrix for every edge in the graph. 
A single -1 and 1 in the row indicates which two nodes are connected by that edge. 
Now we take the step to L = AT A and K = AT CA. These are symmetric positive 
semidefinite matrices that describe the whole network. 

Those matrices Land K are the graph Laplacians. L is unweighted (with C = I)
and K is weighted by C. These are the fundamental matrices for flows in the networks.
They describe electrical networks and their applications go very much further. You see 
AT A and AT C A in descriptions of the brain and the Internet and our nervous system and 
the power grid. 

Social networks and political networks and intellectual networks also use L and K.

Graphs have simply become the most important model in discrete applied mathematics. 
This is not a standard topic in teaching linear algebra. But it is today an essential topic in 

applying linear algebra. It belongs in this book. 

Examples of A and AT 
A

We quickly review incidence matrices, by constructing A for the planar graph and the line 
graph in Figure 7 .6. You will see that every row of A adds to -1 + 1 = 0. Then the all-ones 
vector v = (l, ... , 1) leads to Av = 0. The columns of A are dependent, because their 
sum is the zero column. Av = 0 propagates to AT Av = 0 and AT CAv = 0, so AT CA
for this A will be positive semidefinite (but not invertible and not positive definite). 

(D 
(D Incidence matrix 

@ 

r

-

1 1 

1 1

2 
Anne = -1 1 

@ 
3 

-

1 

@ 3 @ ©

Figure 7.6: A planar graph and a line graph: n = 4 nodes and m = 5 or 3 edges. 

Anne is a 3 by 4 difference matrix. Then AT A below contains second differences. 
Notice that the first and last entries of AT A are 1 and not 2. The diagonal 1, 2, 2, 1 
counts the number of edges that meet at each node (the "degrees" of the four nodes). 

Av = difference of v' s 

AT A = line Laplacian 

1 
-1

0 
0 

-1
2

-1
0

0 
-1

2
-1 -n (1)
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For the planar graph, the incidence matrix A again computes differences Vend -Vstart 
on every edge. The Laplacian matrix L = AT A again has rows adding to zero. The 
diagonal of L shows 3, 3, 2, 2 edges into the four nodes. Everything in A and L can be 
copied directly from the graph! The missing pair of -1 entries in L = AT A is because 
no edge connects nodes 3 and 4 on the 5-edge graph. 

Incidence matrix 

Laplacian matrix 
A= 

1 =i j : � 1 
ATA = r-1 0 0 1 

0 -1 0 1 

3 
-1
-1
-1

-1
3

-1
-1

-1
-1

2
0

-1

1
-1

0
2

(2) 

Note If any arrows change direction on the edges of the graph, this changes A. But 
AT A does not change. The direction of arrows just multiplies A by a ± diagonal sign 
matrix S. Then (SA) T (SA) is the same as AT A because ST S = I. 

The eigenvalues of L = AT A always include ,\ = 0, from the all-ones eigenvector. 
The energy vT(AT A)v can also be written as (Av)T(Av). This just adds up the squares of 
all the entries of Av, which are differences across edges (not the missing edge from 3 to 4): 

We see again that the all-ones vector v = (l, 1, 1, 1) has zero energy. 
The Laplacian matrix L = AT A is not invertible! A system of equations AT Av = f

has no solution (or infinitely many). To reach an invertible matrix, we remove the last

column and row of AT A. This corresponds to "grounding a node" by setting the voltage at
that node to be zero: v4 = 0. It is like fixing one temperature at zero, when the equations 
only tell us about differences of temperature. 

When we know that v4 = 0, column 4 is removed from A. That removes column 4 
and also row 4 from AT A. This reduced 3 by 3 matrix is positive definite:

(AT A)reduced = [ _f
-1

-1
3

-1

-1 

l -
� 

= (Areducect?(Areduced) = (3 by 5) (5 by 3). (3)

The Weighted Laplacian K = ATC A

In many applications the edges come with positive weights c1, ... , Cm. Those weights can 
be conductances (through m resistors) or stiffnesses (of m springs). In electrical 
engineering, Ohm's Law connects current w to voltage difference e. In mechanical 
engineering, Hooke's Law connects spring force w to the stretching e. Those laws w = ce

in every edge give a positive diagonal matrix C in w = Ce = CAv. Them currents in 
w come from them voltage differences in Av. 

Kirchhoff's Current Law is AT w = 0. That matrix AT always enters the "balance
of currents" and the "balance of forces" between springs. With current sources, or forces 
applied from outside, the balance equation is AT w = f.
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When current sources enter the nodes, the Current Law AT w = f is "in equals out."

Then AT Ce = f and AT CAv = f. Thus K = AT CA is the conductance matrix for

the whole network. Here is ATC A for the line of resistors : 

AT 
W = f (Kirchhoff) r C1 

AT Ce = f (Ohm) (AT CA)line = - �1 

AT CAv = f (System) o 

-c1 

C1 + Cz 

-c2 

0

0 

- Cz 

Cz + C3 

-C3 

The rows of ATC A still add to zero. The matrix is still positive semidefinite. It becomes 
positive definite when row and column 4 are removed, which we must do to solve 
ATC Av= f. This is a fundamental equation of discrete applied mathematics. 

A network can also have voltage sources (like batteries) on the edges. Those go into a 
vector b with m components. From node to node the voltage drops are -Av (with a minus 
sign). But Ohm's Law applies to the voltage drops e across the resistors. By working with 
the matrix C and including b in the vector e = b - Av, Ohm's Law is simply w = Ce. 
The inputs to the network are f and b. 

The three equations for e, w, f use the matrices A, C, AT. Those become two 

equations by eliminating e = c- 1 w. We reach one equation by also eliminating w.

Drop 

Current 

Balance 

3 equations 

e b- Av
w Ce
f ATw

2 equations 1 equation 

I removed e by substituting e = c- 1 w into the first equation. The step from two equations
to one equation substituted w = C ( b - Av) into f = AT w. Almost all entries of A
and C will be zero. The weighted graph Laplacian is K = ATC A.

You see how the sources b and f produce the right side. They make the currents flow. 

A Framework for Applied Mathematics 

The least squares equation AT Av = ATb and the weighted least squares equation
ATCAv = ATCb are special cases with f = 0. My experience is that all the
symmetric steady state problems of applied mathematics fit into this ATC A framework. 

Ohm's Law -t C Current Law -t AT 

I have learned to watch for ATC A in every lecture about applied mathematics : it is 
there. Differential equations fit this framework too. Laplace's equation is AT Au = 0 when
Au is the gradient of u(x, y). A typical ATCA equation is -d/dx(cdu/dx) = f(x).

For matrices, those derivatives become differences. The graph analogy with Laplace's 
equation gave the name graph Laplacian to the matrix AT A. 
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Dynamic problems have time derivatives du/dt. This adds a new step to the A
T

CA 

framework. The equation du/dt = - A
T 

Au is a matrix analog of the heat equation
au/ at = a2 u/ ax2

. The next chapter will solve the heat equation using the eigenvalues
and eigenfunctions (sines and cosines) from y" = >-.y. The solutions are Fourier series.

Example: A Network of Resistors 

I will add resistors to the five edges of our four-node graph. The conductances
1 / R will be the numbers c1 to c5. The conductance matrix for the whole network is A

T
C A.

The incidence matrix A in equation (2) above is 5 by 4, and A
T

C A is 4 by 4.

Conductance 

matrix K with 

five edges 

l 
c, +c,+c, 

A
T

CA =
-C1 

- c2 

-C4 

-C1 

C1 + C3 + C5 

-C3 

-C5 

-C2 -C4 

l
- c3 -C5 

(5) 
C2 + C3 0

0 C4 + C5

Please compare this matrix to A
T 

A in equation (2), where all Ci = 1. The new matrix
starts with c1 + c2 + c4 because edges 1, 2, 4 touch node 1. Along that row of K, the entries
-c1, -c2, -c4 produce row sum= zero as we expect. Then AT

CA is singular, not invertible.
We must reduce the matrix to 3 by 3 by "grounding a node" and removing column 4
and row 4. The reduced matrix is symmetric positive definite.

Suppose the voltage v1 = V is fixed, as well as v4 = 0 at the grounded node. Current
will flow out of node 1 toward node 4 (with b = f = 0). The terms c1 V and c2 V
involving the known v1 = V move to the right hand side of A

T CAv = 0. There are 
only two unknown voltages v2 and v3, and Vis like a boundary value:

Reduced equations 

vi = V and V4 = 0 ] [ �� ] [ (6) 

When we solve for v2 and v3, we know all four voltages v and all five currents w = CAv.

Summary 

The matrix C changes an "ideal" A
T 

A problem into an "applied" A
T

CA problem. You
will see how this three-step framework appears all through applied mathematics.
Au is often a derivative of u, or a finite difference. Then CAu comes from Ohm's Law
or Hooke's Law. The material constants like conductance and stiffness go into C.

Finally A
T

C Av = f is a continuity equation or a balance equation. It represents
balance of forces, balance of inputs with outputs, balance of profits with losses. The
combined matrix K = A

T
C A is symmetric positive definite just like A

T 
A.

To find the forces or the flows inside the network, we solve for v and e and w. 
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The Adjacency Matrix 

The Laplacian matrices L = AT A and K = AT C A started with the incidence matrix A.

The diagonal of L has the degree of each node: the number of edges that touch the node. 
AT A also comes directly from the degree matrix D minus the adjacency matrix W : 

AT A = 
[ 
_f-1
-1

-1
3

-1
-1

-1
-1

2

0

(7) 

The degrees 3, 3, 2, 2 in D are the row sums in W. Then D - W has zero row sums. 
When L = AT A =  D - W multiplies (1, 1, 1, 1) the result will be (0, 0, 0, 0). 

Question The sum of the degrees is 10. How can this be predicted from the graph? 

Answer The graph has five edges. Each edge produces two 1 's in the adjacency matrix. 
There must be ten l's in W. The degrees in D must add to 10, to balance the l's in W. 

Since the trace of L is 3 + 3 + 2 + 2, the eigenvalues of L must also add to 10. 

Question What is the rule for W and D when there are weights c1, ... , Cm on the edges? 

Answer Each entry Wij = 1 comes from an edge between node i and node j. When 
this edge k has a weight Ck (the conductance along the edge), the entry Wij changes 
from 1 to ck. The weights produce AT CA in equation (5) and also in equation (8). 

�+cs]

-
[

; 

(8) 

Problems 1 - 5 will ask about a complete graph, when every pair of nodes is connected 
by an edge. All off-diagonal entries in the adjacency matrix W are 1. All the degrees 
in the diagonal D are n - 1. The Laplacians L and K have no zeros. Every question about 
L = AT A = D - W has a good answer for this graph with all possible edges. 

Here is a picture that summarizes this three-step vision of applied mathematics. 

Voltages V1, • • •  , Vn Current Law AT w = f 

AT C A is the conductance matrix 

Voltage drops e = b -Av -+- Currents w = Ce 
Ohm's Law 

e = b-Avf AT w =Ce 
f =ATw 

-
, 
-
A

-
T

_
C
_
A

_
v
_
=

_
A

_
T

_
C

_
b 

___ 
f
_ 

Figure 7.7: The AT CA framework for steady state problems in science and engineering. 
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Saddle-Point Matrix 

The final matrix is AT C A, after the edge currents w1, ... , Wm are eliminated. Before we
took that step, the voltages v and the currents w were the two unknown vectors. With
two equations we have a "saddle-point matrix" that contains c- 1 and A and AT : 

Saddle-point problem 

Currents and voltages (9) 

Block matrices of this form appear when there is a constraint like Kirchhoff's Current
Law AT w = f. "Nature minimizes heat loss in the network subject to that constraint."
The "KKT matrix" in (9) is symmetric but it is not at all positive definite. 

A small example will show a positive and also a negative eigenvalue : 

[ � � ] has eigenvalues 4 and -1. The pivots are 3 and -; .

Eigenvalues and pivots have the same signs ! Multiply the eigenvalues or the pivots to
reach the determinant -4. The zero on the diagonal rules out positive definiteness. 

The saddle-point matrix has m positive and n negative eigenvalues. The energy in ( m +

n )-dimensional space goes upward in m directions and downward in n directions. 
An important computational decision has voters on both sides. Is it better to eliminate

w and work with one matrix AT C A? Optimizers say no, finite element engineers say yes. 
Fluids calculations (with pressure dual to velocity) often look for the saddle point. 

Computational science and engineering is a highly active subject, a mix of software
and hardware and mathematics in solving AT C A equations with millions of unknowns. 

• REVIEW OF THE KEY IDEAS •

1. Row k of A ( m by n) tells the start node and the end node of edge kin the graph.

2. The Laplacian L = AT A has Lij = -1 when an edge connects nodes i and j.

3. The diagonal of L = D - W shows the degrees of the nodes. Each row adds to zero.

4. With weights ck on the edges, K = ATC A is the weighted graph Laplacian.

5. Three steps e = b - Av, w = Ce, f = ATw combine into ATC Av= AT Cb - f.

Problem Set 7 .5 

Problems 1 - 5 are about complete graphs. Every pair of nodes has an edge. 

1 With n = 5 nodes and all edges, find the diagonal entries of AT A (the degrees of
the nodes). All the off-diagonal entries of AT A are -1. Show the reduced matrix R
without row 5 and column 5. Node 5 is "grounded" and v5 = 0. 
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2 Show that the trace of AT A (sum down the diagonal = sum of eigenvalues) 
is n 2 

- n. What is the trace of the reduced ( and invertible) matrix R of size n - l ? 

3 For n = 4, write the 3 by 3 matrix R = ( Areduced) T ( Areduced). Show that 
RR- 1 = I when R- 1 has all entries¼ off the diagonal and¾ on the diagonal. 

4 For every n, the reduced matrix R of size n - l is invertible. Show that RR- 1 = I
when R- 1 has all entries 1/n off the diagonal and 2/n on the diagonal. 

5 Write the 6 by 3 matrix M = Areduced when n = 4. The equation M v = b is to 
be solved by least squares. The vector b is like scores in 6 games between 4 teams 
(team 4 always scores zero; it is grounded). Knowing the inverse of R = MT M,
what is the least squares ranking v1 for team 1 from solving MT Mv = MTb?

6 For the tree graph with 4 nodes, AT A is in equation (1). What is the 3 by 3 matrix 
R = (AT A )reduced? How do we know it is positive definite? 

7 (a) If you are given the matrix A, how could you reconstruct the graph?
(b) If you are given L = AT A, how could you reconstruct the graph (no arrows) ?
( c) If you are given K = AT C A, how could you reconstruct the weighted graph?

8 Find K = AT C A for a line of 3 resistors with conductances c1 = 1, c2 = 4, c3 = 9. 
Write Kreduced and show that this matrix is positive definite. 

9 A 3 by 3 square grid has n = 9 nodes and m = 12 edges. Number nodes by rows. 

(a) How many nonzeros among the 81 entries of L = AT A?

(b) Write down the 9 diagonal entries in the degree matrix D : they are not all 4.
(c) Why does the middle row of L = D - W have four -1 's ? Notice L = K2D !

10 Suppose all conductances in equation (5) are equal to c. Solve equation (6) for the 
voltages v2 and v3 and find the current I flowing out of node 1 (and into the ground 
at node 4). What is the "system conductance" I /V from node 1 to node 4 ? 
This overall conductance I /V should be larger than the individual conductances c. 

11 The multiplication AT A can be columns of AT times rows of A. For the tree with 
m = 3 edges and n = 4 nodes, each (column times row) is (4 x 1)(1 x 4) = 4 x 4. 
Write down those three column-times-row matrices and add to get L = AT A.

12 A graph with two separate 3-node trees is not connected. Write its 6 by 4 incidence 
matrix A. Find two solutions to Av = 0, not just one solution v = ( 1, 1, 1, 1, 1, 1). 
To reduce AT A we must ground two nodes and remove two rows and columns. 
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13 "Element matrices" from column times row appear in the finite element method.

Include the numbers c1, c2, c3 in the element matrices K 1, K 1, K 3. 

Ki = (row i of A)T (ci) (row i of A) T K = A CA = K1 + K2 + Ka. 

Write the element matrices that add to AT A in (1) for the 4-node line graph. 

assembly of the nonzero 
entries of K1 + K2 + K3 
from edges 1, 2, and 3 

14 An n by n grid has n2 nodes. How many edges in this graph? How many interior 
nodes ? How many nonzeros in A and in L = AT A ? There are no zeros in L - l ! 

15 When only e = c-
1 w is eliminated from the 3-step framework, equation (9) shows 

Saddle-point matrix 

Not positive definite 

Multiply the first block row by AT
C and subtract from the second block row: 

After block elimination 
[ C�1 

-A1CA ] [:] [ 1 _ !Tcb] · 
After m positive pivots from c- 1, why does this matrix have negative pivots?
The two-field problem for wand vis finding a saddle point, not a minimum. 

16 The least squares equation A
T Av = A

Tb comes from the projection equation 
AT e = 0 for the error e = b - Av. Write those two equations in the symmetric 
saddle point form of Problem 15 (with f = 0). 
In this case w = e because the weighting matrix is C == I.

17 Find the three eigenvalues and three pivots and the determinant of this saddle point 
matrix with C = I. One eigenvalue is negative because A has one column: 

m = 2,n = 1 
0 
1 
1 

-1

l 1
0
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• CHAPTER 7 NOTES • 

Polar Form of an Invertible Matrix: A = QS = (orthogonal) (positive definite). 

This is like reie for complex numbers (1 by 1 matrices). lei8 I = 1 is the orthogonal Q
and r > 0 is the positive definite S. The matrix factors come directly from the Singular 
Value Decomposition of A : 

A= UI;VT = (UVT ) (VI;VT ) = (orthogonal) times (positive definite). 

When A is invertible, so is I;_ Then o-1 to O"n are the (positive) eigenvalues of VI;VT . 
In physical language, every motion combines a rotation/reflection Q with a stretching S.

Transpose of A = d/ dx. It is not enough to say that "the transpose is -d/ dx." 
The boundary conditions on the functions f and g in Af = df / dx and AT g = -dg / dx 
are important parts of A and AT . In Section 7.3 and especially Problem 1, A comes 
with two conditions f(O) = 0 and f(l) = 0. Then AT 

= -d/dx has no conditions on 
g. What we want is (Af, g) = (f, AT g).

Integration by parts is like transposing the operator d/ dx. The integrated term
f g is safely zero when f(O) = f(l) = 0. The fixed-free operator d/dx with only one 
condition f(O) = 0 would transpose to the free-fixed operator -d/dx with the other 
condition g(l) = 0. Then the integrated term is again f g = 0 at both ends. In each case, 
boundary conditions on g make up for missing boundary conditions on f. 

Principal Component Analysis (PCA): Find the most significant (least random) data. 

Data often comes in rectangular matrices : A grade for each student in each course. 
Activity of each gene in each disease. Sales of each product in each store. Income in each 
age group in each city. An entry goes into each column and each row of the data matrix. 

By subtracting off the means, we study the variances : measures of useful information 
as opposed to randomness. The SVD of the data matrix A (showing the eigenvectors and 
eigenvalues of the correlation AT A) displays the principal component: the largest piece 
o-1 u1 v'f of the matrix. The orthogonal pieces O"iUiV[ are in order of importance. The 
largest a- is the most significant. From a large matrix of partly random data, PCA and the 
SVD extract its most significant information. 

Wikipedia lists many methods that are identical or closely related to PCA. The crucial 
singular vector v1 (which has AT Av1 = AmaxV1) is also the vector that maximizes 
the Rayleigh quotient (vT AT Av)fvT v. Computing the first few singular vectors does not 
require the whole SVD ! 
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Fourier and Laplace Transforms 

This book began with linear differential equations. It will end that way. Those are the equa­
tions we can understand and solve-especially when the coefficients are constant. 
Even the heat equation and wave equation (those are PDE's) have good solutions. 

These are extremely nice problems, no apologies for that. Almost every application 
starts with a linear response-current proportional to voltage, output proportional to input. 
For large voltages or large forces, the true law may become nonlinear. Even then, we 
often use a sequence of linear problems to deal with nonlinearity. The constant coefficient 
linear equation is the one we can solve. 

This chapter introduces Fourier transforms and Laplace transforms. They express ev­
ery input f(x) and f(t) and every output y(x) and y(t) as a combination of exponentials. 

For each exponential, the output multiplies the input by a constant that depends on 
the frequency: y(t) = Y(s)est or Y(w)eiwt _ That transfer function describes 

the system by its frequency response : the constants Y that multiply exponentials. 

We have used the complex gain 1/(iw - a) to invert y' - ay, along with transfer 
functions in Chapters 1 and 2. Now we see them for every time-invariant and shift-invariant 
partial differential equation-with coefficients that are constant in time and space. 

Naturally those ideas appear again for discrete problems with matrix equations. The 
matrices may be approximating derivatives (like the -i, 2, --1 second difference matrix). 
Or they come on their own from convolutions. Their eigenvectors will be discrete sines 
or cosines or complex exponentials. A combination of those eigenvectors is a discrete 
Fourier series (OFT). We find the coefficients in that combination by using the Fast Fourier 
Transform (FFT)- the most important algorithm in modern applied mathematics. 

A note about sines and cosines versus complex exponentials. For real problems we 
may like sines and cosines. But they aren't perfect. We keep cos O and we don't keep sin 0. 
We want one of the highest frequency vectors (1, -1, 1, -1, ... ) and (-1, 1, -1, 1, ... ) but 
not both. In the end (and almost always for the FFT) the complex exponentials win. 
After all, they are eigenfunctions of the derivative d/ dx. Transforms are based on 
combinations of those exponentials-and the derivative of eiwx is just iweiwx. 
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This page describes a specially nice function space. It is called "Hilbert space." 
The functions have dot products and lengths. There are angles between functions, 
so two functions can be orthogonal (perpendicular). The functions in Hilbert space are 
just like vectors. In fact they are vectors-but Hilbert space is infinite-dimensional. 

Here are parallels between real vectors f = (f 1, ... , f N) and real functions f ( x).
Physicists even separate< JI (bra) from lg > (ket). Not here! 

7r 

Inner product fTg = fig1 + · · · + !N9N < f,g > = J f(x)g(x)dx 

Length squared llfll2 = fT f = L lfil2 

Angle 0 

Orthogonality 

cos 0 = f
T

g/llfll llYII 

7r 

llfll2 =< f,f >= J lf(x)l 2 dx 

cos0 = < f,g > /11!1111911 
7r 

<f,g>= J J(x)g(x)dx=O 

A function is allowed into Hilbert space if it has a finite length: J lf(x)l 2 dx < oo. 
Thus f ( x) = 1 / x and f ( x) = J ( x) do not belong to Hilbert space. But a step function 
is good. And the function can even blow up at a point-just not too fast. For example 
f (x) = 1/lxl1 /4 belongs to Hilbert space and its length is I If I I = 21r1 /4 : 

7r 

f(O) is infinite but 11111
2 = J lx1-

112 dx = 4 lxl1 /2J: = 41r112
. 

-7r 

When lf(x)I = lf(-x)I, the integral from -1r to 1r is twice the integral from Oto 1r. 
There is always an adjustment for complex vectors and functions: 

-T - -

Inner product f g = f 1g1 + · · · + f N9N < f,g > = j f(x)g(x)dx

Orthogonality is still< f, g > = 0. The best examples are the complex exponentials: 

eikx and einx are orthogonal 

Those eikx are an orthogonal basis for Hilbert space. Instead of xyz axes, functions 
need infinitely many axes. Every f ( x) is a combination of the basis vectors eikx : 

7r eix _ e-ix e3ix _ e-3ix 

J 2 2 2 1 1 
f(x)= 1 + 

3 
+··· has lf(x)I =21r(l +1 +

32 +
32 +···).

This particular f ( x) happens to be a step function. To Hilbert, step functions are vectors. 
Then Fourier "transformed" f ( x) into the numbers (like 1 and ½) that multiply each eikx . 
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8.1 Fourier Series 

This section explains three Fourier series: sines, cosines, and exponentials eikx . 

Square waves (1 or 0 or -1) are great examples, with delta functions in the derivative. 
We look at a spike, a step function, and a ramp-and smoother functions too. 

Start with sinx. It has period 21r since sin(x + 21r) = sin x. It is an odd function since 
sin(-x) = -sinx, and it vanishes at x = 0 and x = 1r. Every function sin nx has those 
three properties, and Fourier looked at infinite combinations of the sines:

00 

Fourier sine series S(x) = b1 sinx + b2 sin 2x + b3 sin3x + · · · = L bn sin nx (1) 
n=l 

If the numbers bi,b2,b3, ... drop off quickly enough ( we are foreshadowing the 
importance of their decay rate) then the sum S ( x) will inherit all three properties: 

Periodic S(x + 21r) = S(x) Odd S(-x) = -S(x) S(O) = S(1r) = 0 

200 years ago, Fourier startled the mathematicians in France by suggesting that any odd
periodic function S(x) could be expressed as an infinite series of sines. This idea started 
an enormous development of Fourier series. Our first step is to find the number bk that
multiplies sin kx. The function S ( x) is "transformed" to a sequence of b's. 

Suppose S(x) = L bn sin nx. Multiply both sides by sin kx. Integrate from O to 1r :

l1r 

S(x)sinkxdx= l1r 

bi sinxsinkxdx+···+ l1r 

bk sinkx sinkxdx+··· (2) 

On the right side, all integrals are zero except the highlighted one with n = k. This 
property of "orthogonality" will dominate the whole chapter. For sines, integral = 0 is a 
fact of calculus : 

Sines are orthogonal l1r 

sin nx sin kx dx = 0 if n =/- k . 

Zero comes quickly if we integrate J cos mx dx = [ sinm
mx] � = 0 - 0 .  So we use this:

Product of sines sin nx sin kx = � cos(n - k)x - � cos(n + k)x .

Integrating cos ( n - k )x and cos ( n + k )x gives zero, proving orthogonality of the sines. 
The exception is when n = k. Then we are integrating (sin kx)2 = ½ - ½ cos 2kx: 

sin kx sin kx dx = -dx - - cos 2kx dx = � .11' 11'1 11'1 0 0 2 0 2 2 

The highlighted term in equation (2) is ( 71' /2)bk, Multiply both sides by 2/1r to find bk . 

(3) 

(4) 

(5)
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Sine coefficients 

S(-x) = -S(x) 21
7f 

11
7f 

bk=- S(x)sinkxdx=- S(x)sinkxdx. 
7r O 7r -7f 

Notice that S(x) sin kx is even (equal integrals from -1r to O and from Oto 1r). 
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(6) 

I will go immediately to the most important example of a Fourier sine series. 
S(x) is an odd square wave with SW(x) = 1 for O < x < 1r. It is drawn in 
Figure 8.1 as an odd function (with period 21r) that vanishes at x = 0 and x = 1r.

SW(x) = 1 

----------�, l----------------

-
0 j ------,t-

2
7r-f ' X 

Figure 8.1: The odd square wave with SW(x + 21r) = SW(x) = {1 or O or -1}. 

Example 1 Find the Fourier sine coefficients bk of the odd square wave SW ( x).

Solution Fork= 1, 2, ... use formula (6) with S(x) = 1 between O and 1r: 

bk=� r sinkxdx = �

[

-cos kx
]

71" 

= � {� Q � Q � Q .. ·} (7)1r }0 1r k
O 

1r 1' 2' 3' 4' 5' 6' 

The even-numbered coefficients b2k are all zero because cos 2k1r = cos O = 1. The odd­
numbered coefficients bk = 4/rrk decrease at the rate 1/k. We will see that same 1/k decay 
rate for all functions formed from smooth pieces and jumps. 

Put those coefficients 4/1rk and zero into the Fourier sine series for SW(x): 

Square wave Wx =- --+--+--+--+··· S ( ) 
4 

[ 

sin x sin 3x sin 5x sin 7 x 
] 1r 1 3 5 7 (8) 

Figure 8.2 graphs this sum after one term, then two terms, and then five terms. You can see 
the all-important Gibbs phenomenon appearing as these "partial sums" include more terms. 
Away from the jumps, we safely approach SW ( x) = 1 or -1. At x = 1r /2, the series gives 
a beautiful alternating formula for the number 1r 

The Gibbs phenomenon is the overshoot that moves closer and closer to the jumps. 
Its height approaches 1.18... and it does not decrease with more terms of the series. 
This overshoot is the one greatest obstacle to calculation of all discontinuous functions 
(like shock waves). We try hard to avoid Gibbs but sometimes we can't. 
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4 
(

sinx sin3x
) Solid curve ; -

1
- + -

3
- 5 terms: - -- + . .  · + --

4 
( 

sin x sin 9x
)

1r 1 9 
4 sinx 

Dashed ---
1r 1 

-7r 

Gibbs overshoot --+ " -
: 

- e- SW lr-_-� � -
X �-=:J � ? X 

Figure 8.2: The sums b1 sin x + · · · + bN sin N x overshoot the square wave near jumps.

Fourier Cosine Series 

The cosine series applies to even functions C(x) = C(-x). They are symmetric across 0 :

Cosine series C(x) = ao + a1 cosx + a2 cos 2x + · · · = a0 +Lan cos nx. (10)
n=l 

Every cosine has period 21r. Figure 8.3 shows two even functions, the repeating ramp
RR(x) and the up-down train UD(x) of delta functions. That sawtooth ramp RR is the
integral of the square wave. The delta functions in U D give the derivative of the square wave. 
(For sines, the integral and derivative are cosines.) RR and U D will be valuable examples, 
one smoother than SW, one less smooth. 

First we find formulas for the cosine coefficients a0 and ak. The constant term a0 is
the average value of the function C(x):

ao = average
1 17r 1 1

7r 

a0 = 
-

C(x) dx = -- C(x) dx.
7f O 27f -7r 

( 11) 

I just integrated every term in the cosine series (10) from 0 to 1r. On the right side, the
integral of a0 is a01r (divide both sides by 1r). All other integrals are zero :

11r 

cos nx dx = [ sin
n
nx

]: = 0 - 0 = 0. (12) 

In words, the constant function 1 is orthogonal to cos nx over the interval [0, 1r]. 
The other cosine coefficients ak come from the orthogonality of cosines. As with sines,

we multiply both sides of (10) by cos kx and integrate from Oto 1r:

11r 

C(x) cos kx dx = 11r 

ao cos kx dx+ 11r 

a1 cosx cos kx dx+ .. + 11r 

ak(cos kx) 2 dx+· 

You know what is coming. On the right side, only the highlighted term can be nonzero. For
k > 0, that bold nonzero term is ak'Tr /2. Multiply both sides by 2/1r to find ak:

Cosine coefficients
C(-x) = C(x)

2
1

7r 1
1

7r 

ak=- C(x)coskxdx=- C(x)coskxdx.
7f O 7f -7r 

(13)
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28(x) 28(x - 21r) 

Up-down UD(x) � �/ • X -�---�--�---�----x

0 1r 27f -7f O 1r 27f 

Repeating Ramp RR( x) 
Integral of Square Wave 

Derivative of Square Wave 

-28(x + 1r) -28(x - 1r)

Figure 8.3: The repeating ramp RR and the up-down U D (periodic spikes) are even. 
The slope of RR is -1 then 1 : odd square wave SW. The next derivative is U D : ± 28. 

Example 2 Find the cosine coefficients of the ramp RR(x) and the up-down U D(x).

Solution The simplest way is to start with the sine series for the square wave : 

4 

[

sin x sin 3x sin 5x sin 7x 

] 
SW(x) = - -- + -- + -- + -- + · · · = slope of RR

1r 1 3 5 7 

Take the derivative of every term to produce cosines in the up-down delta function: 

Up-down spikes 
4 

UD(x) = - [cosx + cos3x + cos5x + cos 7x + · · ·]. 
7f 

(14) 

Those coefficients don't decay at all. The terms in the series don't approach zero, so 
officially the series cannot converge. Nevertheless it is correct and important. At x = 0, 
the cosines are all 1 and their sum is +oo. At x = 1r, the cosines are all -1. Then 
their sum is -oo. (The downward spike is -28(x - 1r).) The true way to recognize o(x) 
is by the integral test J o(x)f(x) dx = f(O) and Example 3 will do this. 

For the repeating ramp, we integrate the square wave series for SW(x) and add a0. 

The average ramp height is a0 = 1r /2, halfway from O to 1r: 

• 1r 1r 

[

cos x cos 3x cos 5x cos 7x 

] 
Ramp series RR( x) =

2 
-

4 � + � + � + � + · · · (15) 

The constant of integration is a0. Those coefficients ak drop off like l/k2
• They could 

be computed directly from formula (13 )  using J x cos kx dx, and integration by parts (or 
an appeal to Mathematica or Maple). It was much easier to integrate every sine separately 
in SW ( x), which makes clear the crucial point: Each "degree of smoothness" in the 
function brings a faster decay rate of its Fourier coefficients ak and bk. 
Every integration divides those numbers by k.

No decay 
1/k decay 
1/k2 decay 
1/k4 decay 
rk decay with r < 1 

Delta functions (with spikes) 
Step functions (with jumps) 
Ramp functions (with corners) 
Spline functions (jumps in f "') 
Analytic functions like 1 / ( 2 - cos x) 
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The Fourier Series for a Delta Function 

Example 3 Find the (cosine) coefficients ofthedeltafunction 8(x), made 21r-periodic. 

Solution The spike in J(x) occurs at x = 0. All the integrals are 1, because the
cosine of O is 1. We divide by 21r for a0 and by 1r for the other cosine coefficients ak,

1 J7f 1 
Average a0 = - 6(x) dx = -

21r -7f 271' 
1 J7f 1 

Cosines ak = - 6(x) cos kx dx = -
7r -7f 7l' 

Then the series for the delta function has all cosines in equal amounts: No decay.

Delta function 
1 1 

<5 ( x) = - + - [ cos x + cos 2x + cos 3x + · · · ] . 
27!' 7l' 

(16) 

This series cannot truly converge (its terms don't approach zero). But we can graph the sum 
after cos 5x and after cos lOx. Figure 8.4 shows how these "partial sums" are doing their 
best to approach 6 ( x). They oscillate faster while going higher. 

There is a neat formula for the sum 6 N that stops at cos N x. Start by writing each term 
2 cos x as eix 

+ e-ix . We get a geometric progression from e- iNx up to eiNx . 

1 . . . . 1 sin(N + l )x
6N = _ [l + e'x + e-ix + ... + eiNx + e-iNx ] = _ 2 

. (l?) 
21r 21r sin ½x 

This is the function graphed in Figure 8.4. 

61o(x) height 21/21r 

height 1/21r 
height -1/271' 

7r 

Figure 8.4: The sums 6N(x) = (1 + 2 cosx + · · · + 2 cos N x)/21r try to approach 6(x). 
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Complete Series: Sines and Cosines 

Over the half-period [O, 1r], the sines are not orthogonal to all the cosines. In fact the
integral of sin x times 1 is not zero. So for functions F(x) that are not odd or even, we must
move to the complete series (sines plus cosines) on the full interval. Since our functions
are periodic, that "full interval" can be [-1r, 1r] or [O, 21r]. We have both a's and b's. 

00 00 

Complete Fourier series F ( x) = uo + L Un cos nx + L bn sin nx .
n=l 

On every "21r interval" the sines and cosines are orthogonal. We find the Fourier
coefficients ak and bk in the usual way: Multiply (18) by 1 and cos kx and sin kx. 
Then integrate both sides from -1r to 1r to get a0 and ak and bk. 

1 
f 7r 

1 
f 7r 

1 
f 7r 

u0 = - F(x) dx uk = - F(x) cos kx dx bk = - F(x) sin kx dx
21r -'Tr 7r -'Tr 7r -'Tr 

Orthogonality kills off infinitely many integrals and leaves only the one we want.
Another approach is to split F(x) = C(x) + S(x) into an even part and an odd part.

Then we can use the earlier cosine and sine formulas. The two parts are 

C(x) = Feven(x) = 
F(x) + F(-x)

2 
S( 

) _ F. ( ) 
_ F(x) - F(-x)

X - odd X - 2 (19)

The even part gives the a's and the odd part gives the b's. Test on a square pulse from
x = 0 to x = h-this one-sided thin box function is not odd or even. 

Example 4 
. . { 

1 / h for O < X < h Fmd the a's and b's 1f F(x) = tall box= 0 f h 2 or < x < 1r

Solution The integrals for a0 and ak and bk stop at x = h where F(x) drops to zero.
The coefficients decay like 1 / k because of the jump at x = 0 and the drop at x = h :

Coefficients of square pulse 
l 1h 1

u0 = - l/hdx = - = average
21r O 27T" 

l 1h sinkh 
Uk = -h 

coskxdx = ---

1r O 1rkh 
l 1h 1- coskh 

bk = -
h 

sin kx dx = -----.

7r O 1rkh 

Important As h approaches zero, the box gets thinner and taller. Its width is h and its
height is 1 / h and its area is 1. The box approaches a delta function ! And its Fourier
coefficients approach the coefficients of the delta function as h ---+ 0 : 

1
ao = -

21r 

sin kh 1 
ak = -k- approaches

7r h 7T" 
1 - cos kh

bk = 1r
kh 

approaches 0. (20)
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Energy in Function = Energy in Coefficients 

There is an extremely important equation (the energy identity) that comes from integrat­
ing (F(x))2. When we square the Fourier series of F(x), and integrate from -1r to 1r, 
all the "cross terms" drop out. The only nonzero integrals come from 12 and cos2 kx 
and sin2 kx. Those integrals give 21r and 1r and 1r, multiplied by a5 and a% and b%:

1T 

Energy , J (F(x))2dx = 21ra� + 1r(ai +bi+ a�+ b� + · · · ). (21) 

The energy in F ( x) equals the energy in the coefficients. The left side is like the length 
squared of a vector, except the vector is a function. The right side comes from an infinitely 
long vector of a's and b's. The lengths are equal, which says that the Fourier transform 
from function to vector is like an orthogonal matrix. Normalized by J2:;;: and fa, 
sines and cosines are an orthonormal basis in function space. 

Complex Exponentials ck eikx 

This is a small step and we have to take it. In place of separate formulas for a0 and ak

and bk , we will have one fonnula for all the complex coefficients ck. And the function 
F(x) might be complex (as in quantum mechanics). The Discrete Fourier Transform will 
be much simpler when we use N complex exponentials for a vector. 

We practice with the complex infinite series for a 21r-periodic function: 

00 

Complex Fourier series F(x) =co+ c1 e
ix + c_ 1 e-

ix + · · · = L Cnein:c (22)
n=-oo 

If every Cn = C-n , we can combine einx with e- inx into 2 cos nx. Then (22) is the
cosine series for an even function. If every Cn = -C-n , we use einx - e- inx 

= 2i sin nx. 
Then (22) is the sine series for an odd function and the e's are pure imaginary. 

To find ck, multiply (22) by e-ik:c (not eikx) and integrate from -,r to ,r:
1T 1T 1T 7r 

J F(x)e- ikx dx = J coe- ikx dx + J c1eixe- ikx dx + · · + J ckeik:ce-ik:cdx + · · 

-?T -?T -?T 

The complex exponentials are orthogonal. Every integral on the right side is zero,
except for the highlighted term (when n = k and eikxe- ikx 

= 1). The integral of 1 is 21r. 
That surviving term gives the formula for Ck: 

7r 

Fourier coefficients j F(x)e-ik:c dx = 21rck
-71" 

for k = 0, ±1, ... l (23) 

Notice that c0 = a0 is still the average of F(x). The orthogonality of einx and eikx is
checked by integrating einx times e- ikx. Remember to use that complex conjugate e- ikx. 
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Example 5 

Example 6 

Solution 

For a delta function, all integrals are 1 and every Ck is 1/27!'. Flat transform!

{ 1 fors_'.Sx_'.Ss+h Find Ck for the 27r-periodic shifted box F(x) = 0 elsewhere in [-7r, 7r] 
The integrals (23) have F = 1 from s to s + h:

1 1s +h . 1 [e- ikx ]
s +h . (l -

27r
ei-.
k

ikh) .Ck = - 1 . e-ikx dx = - --. - = e-•ks 27!' 
s 

27!' -ik 
8 

(24) 
Notice above all the simple effect of the shift bys. It "modulates" each Ck by e- iks_ 
The energy is unchanged, the integral of [F[2 just shifts, and [e- iks [ = 1. 

Shift F(x) to F(x - s) +------+ Multiply every ck by e-iks_ (25)
Example 7 A centered box has shift s = -h/2. It becomes balanced around x = 0.This even function equals 1 on the interval from -h/2 to h/2: 

h 
Centered by s = --

2 

1 - ikh 
ikh/2 - e Ck

= e 27l'ik 
1 sin(kh/2) 

27!' k/2 

Divide by h for a tall box. The ratio of sin(kh/2) to kh/2 is called the "sine" of kh/2. 
Tall box 

Fcentered 1 L
oo 

. (kh) ikx { ljh for - h/2 _'.S X _'.S h/2 
---- = - SlnC - e = 

h 27!' 2 0 elsewhere in[-7r,7r] 
-oo 

That division by h produces area = 1. Every coefficient approaches 
2
� as h -+ 0. 

The Fourier series for the tall thin box again approaches the Fourier series for r5 ( x). 

The Rules for Derivatives and Integrals 

The derivative of eikx is ikeikx . This great fact puts the Fourier functions eikx in firstplace for applications. They are eigenfunctions for d/dx (and the eigenvalues are>.= ik).Differential equations with constant coefficients are naturally solved by Fourier series. 

Multiply by ik The derivative of F(x) = L ckeikx is dF / dx = L ikckeikx 

The second derivative has coefficients (ik)2 ck = -k2
ck, High frequencies are growingstronger. And in the opposite direction (when we integrate), we divide by ik and highfrequencies get weaker. The solution becomes smoother. Please look at this example : 

Response 1/(k2 + 1) 
to frequency k 

eikx is solved by y(x) = -k=-2 -+-1 
This was a typical problem in Chapter 2. The transfer function is 1/(k2 

+ 1). There welearned : The forcing function eikx is exponential so the solution is exponential. 
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All we are doing now is superposition. Allow all the exponentials at once ! 

is solved by (26) 

1. Derivative rule dF / dx has Fourier coefficients ikck ( energy moves to high k).

2. Shift rule F(x - s) has Fourier coefficients e-iksck (no change in energy).

Application: Laplace's Equation in a Circle 

Our first application is to Laplace's equation Uxx + Uyy = 0 (Section 7.4). The idea is 
to construct u ( x, y) as an infinite series, choosing its coefficients to match u0 ( x, y)
along the boundary. The shape of the boundary is crucial, and we take a circle of radius 1. 

Begin with the solutions 1, rcos0, rsin0, r2 cos 20, r2 sin 20, ... to Laplace's 
equation. Combinations of these special solutions give all solutions in the circle: 

u(r, 0) = a0 + a1r cos 0 + b1r sin 0 + a2r2 cos 20 + b2 r2 sin 20 + · · · (27) 

It remains to choose the constants ak and bk to make u = u0 on the boundary. For a circle, 
0 and 0 + 27!' give the same point. This means that u0(0) is periodic : 

Set r = 1 uo(0) = ao + a1cos0 + b1sin0 + a2 cos20 + b2sin20 + · ·· (28) 

This is exactly the Fourier series for uo. The constants ak and bk must be the Fourier
coefficients of u0 (0). Thus Laplace's boundary value problem is completely solved, if 
an infinite series (27) is acceptable as the solution. 

Example 8 Point source u0 = '5(0). The boundary is held at u0 = 0, except for the 
source at x = 1, y = 0 (where 0 = 0). Find the temperature u(r, 0) inside the circle. 

Delta function uo ( 0) = � + .!_ ( cos 0 + cos 20 + cos 30 + · · · ) = � f>ine 

271' 71' 271' 
-(X) 

Inside the circle, each cos n0 is multiplied by rn to solve Laplace's equation: 

Inside the circle 
l 1 

u(r, 0) = - + -(rcos0 + r2 cos20 + r3 cos30 + · · ·)
271' 71' (29) 

Poisson managed to sum this infinite series! It involves a series of powers (rei0t.
His sum gives the response at every (r, 0) to the point source at r = 1, 0 = 0: 

Temperature inside circle 
1 1 - r2 

u(r 0) = ------, 
271' 1 + r2 - 2r cos 0 (30) 

At the center r = 0, this produces the average of u0 = '5(0) which is a0 = 1/271'. 
On the boundary r = 1, this gives u = 0 except u = oo at the point where cos O = 1. 
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Example 9 u0 ( 0) = 1 on the top half of the circle and u0 = -1 on the bottom half.

Solution The boundary values u0 are a square wave SW. We know its sine series : 

Square wave for u0 ( 0) 

Inside the circle, multiplying by r, r3
, r5

, ... gives fast decay of high frequencies: 

Rapid decay inside ( 0) 
4 

[ 
r sin 0 r3 sin 30 r5 sin 50 

] 
u r, = ; -1-

+ 
3

+ 
5 

+ .. ·

Laplace's equation has smooth solutions inside, even when u0(0) is not smooth. 

Problem Set 8.1 

(31)

(32) 

1 (a) To prove that cos nx is orthogonal to cos kx when k =/- n, use the formula
(cos nx) (cos kx) = ½ cos (n + k)x +½cos (n - k)x. Integrate from x = 0 to
x = 1T. What is J cos2 kx dx?

(b) From O to 1T, cos x is not orthogonal to sin x. The period has to be 21r :
7r 7r 21r 

Find / ( sin x) ( cos x) dx and / ( sin x) ( cos x) dx and / ( sin x) ( cos x) dx.
0 -K 0 

2 Suppose F(x) = x for O :::; x ::::; 1T. Draw graphs for -21r :::; x ::::; 21r to show
three extensions of F: a 21r-periodic even function and a 21r-periodic odd function 
and a 1r-periodic function. 

3 Find the Fourier series on -?T :::; x ::::; 1T for 

(a) Ji (x) = sin3 x, an odd function (sine series, only two terms)
(b) h(x) = I sin xi, an even function (cosine series)
(c) h(x) = x for -?T:::; x::::; 1T (sine series with jump at x = 1r)

4 Find the complex Fourier series e
x = I:; ck e

ikx on the interval -?T :::; x ::::; ?T. 

The even part of a function is ½U(x) + f(-x)), so that feven(x) = feven(-x). Find
the cosine series for !even and the sine series for !odd· Notice the jump at x = ?T. 

5 From the energy formula (21), the square wave sine coefficients satisfy 

1r(bi + b� + · · ·) = /� ISW(x)l 2 dx = 1-: 1 dx = 21r.

Substitute the numbers bk from equation (8) to find that 1r2 = 8(1 + ½ + 
2

1

5 
+ · · · ).

6 If a square pulse is centered at x = 0 to give
1T 

f(x) = 1 for !xi < 2
,

1T 
f(x) = 0 for 

2 < !xi < 1r,

draw its graph and find its Fourier coefficients ak and bk, 
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7 Plot the first three partial sums and the function x( 1r - x) :

8 
(

sinx sin 3x sin 5x 
) x(1r - x) = - -- + -- + -- + · · · 0 < x < 1r.

1r 1 27 125 

Why is 1/k3 the decay rate for this function? What is its second derivative?

8 Sketch the 21r-periodic half wave with f ( x) = sin x for O < x < 1r and f ( x) = 0
for -1r < x < 0. Find its Fourier series. 

9 Suppose G(x) has period 2L instead of 21r. Then G(x + 2L) = G(x). Integrals
go from -L to Lor from Oto 2L. The Fourier formulas change by a factor 1r / L: 

L 

The coefficients in G(x) = "E Ckeik-r,x/L are Ck = _!_ j G(x)e-ik-r,x/Ldx.
-= 2L 

-L

Derive this formula for Ck: Multiply the first equation for G(x) by __ and
integrate both sides. Why is the integral on the right side equal to 2LCk ? 

10 For Geven, use Problem 9 to find the cosine coefficient Ak from (Ck + C_k)/2:

= k1rx 
Geven(x) = I:; Ak cos -

o L 

L 

l 
J 

k1rx has Ak = L Geven(x) cos Ldx.
0 

Geven is ½(G(x) + G(-x)). Exception for Ao = Co: Divide by 2L instead of L.

1 
11 Problem 10 tells us that ak = - ( Ck + c_k) on the usual interval from O to 7r. 

Find a similar formula for bk from Ck and c_k · In the reverse direction, find the
complex coefficient Ck in F(x) = I:; Ckeikx from the real coefficients ak and bk. 

12 Find the solution to Laplace's equation with u0 = 0 on the boundary. Why is this the
imaginary part of 2(z - z2 /2 + z3 /3 · · ·) = 2 log(l + z)? Confirm that on the unit
circle z = eie, the imaginary part of 2 log( 1 + z) agrees with 0.

13 If the boundary condition for Laplace's equation is u0 = 1 for O < 0 < 1r and
u0 = 0 for -7r < 0 < 0, find the Fourier series solution u(r, 0) inside the unit circle.
What is u at the origin r = 0 ? 

14 With boundary values u0(0) = 1 + ½eie + ¼e2ie + · · · ,  what is the Fourier series
solution to Laplace's equation in the circle? Sum this geometric series. 

15 (a) Verify that the fraction in Poisson's formula (30) satisfies Laplace's equation.

(b) Find the response u(r, 0) to an impulse at x = 0, y = l (where 0 = � ).

16 With complex exponentials in F(x) = I:; Ckeikx , the energy identity (21) changes to
7r 

J IF(x)l 2 dx = 21r I:; ickj 2
. Derive this by integrating (I:; Ckeikx)(I:;cke-ikx).

-7' 
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17 A centered square wave has F(x) = 1 for !xi :':'.: 7f /2.

(a) Find its energy J IF(x)l2 dx by direct integration

(b) Compute its Fourier coefficients Ck as specific numbers

(c) Find the sum in the energy identity (Problem 16).

445 

18 F( x) = 1 + ( cos x) /2 + · · · + ( cos nx) /2n + · · · is analytic: infinitely smooth.

(a) If you take 10 derivatives, what is the Fourier series of d1° F / dx10 ?

(b) Does that series still converge quickly? Compare n 10 with 2n for n = 210 . 

19 If f(x) = 1 for lxl :':'.: 1r/2 and f(x) = 0 for 1r/2 < lxl < 7f, find its cosine
coefficients. Can you graph and compute the Gibbs overshoot at the jumps? 

20 Find all the coefficients ak and bk for F, I, and Don the interval -1r :':'.: x :':'.: 7f: 

F(x)=o(x-i) D(x) = ..!!:_o (x - !!:) . 
dx 2 

21 For the one-sided tall box function in Example 4, with F = l / h for O :':'.: x :':'.: h, 
what is its odd part ½ ( F( x) - F ( -x)) ? I am surprised that the Fourier coefficients
of this odd part disappear as h approaches zero and F ( x) approaches o ( x). 

22 Find the series F(x) = L ck e
ikx for F(x) = e

x on -1r :':'.: x :':'.: 7f. That function
e

x looks smooth, but there must be a hidden jump to get coefficients Ck proportional 
to 1 / k. Where is the jump? 

23 (a) (Old particular solution) Solve Ay" + By' + Cy = e
ikx

. 

(b) (New particular solution) Solve Ay" + By' + Cy = L ck e
ikx

. 
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8.2 The Fast Fourier Transform 

Fourier series apply to functions. But we compute with vectors. We need to replace the 
infinite sequence of coefficients Ck (or ak and bk) by a finite sequence c0, ci, ... , CN-l­

We want to preserve and use orthogonality, so the computations will be fast. For the 
Discrete Fourier Transform, you will see how the FFT makes the computations extra fast. 

This section describes two separate ideas. The DFT provides formulas for the e's. 
The FFT is an amazing algorithm to compute the e's by rearranging those formulas. 

Discrete Fourier Transform (DFT) 

The DFT chooses N orthogonal basis vectors e0 to eN--l for N-dimensional space. 
The vector ek comes from eikx , by sampling that function at N points spaced by 21r / N: 

Basis vector ek ( ikO ik21r/N ik41r/N ) _ (l k 2k ) 
. h _ i2-rr/N 

D. t ikx e , e , e , . . . - , w , w , . . . wit w - e . 
1scre e e 

The continuous Fourier series is I: Ckeikx. The discrete Fourier series is I: ck ek. That
sum is a multiplication f = Fe with the symmetric N by N Fourier matrix F. The basis 
vectors ek go into the columns of F. 

The matrix F containing powers of w is shown in detail in equation (4). 

Fourier matrix 
f=Fc 

eN-1 l [ Co l CN-1 

(1) 

Inverting f = Fe gives c = F-1 f. The continuous case produced e- ik
x in the Fourier

coefficient formula ck = J e- ikx f(x)dx/21r. The discrete case produces powers of
w = e-iZ1r/N in the inverse matrix. Those powers ofw are displayed in equation (3).

Inverse matrix 
C = F-I f (2) 

The constant vector eo = (1, 1, ... , 1) has I leo 112 
= 1 + 1 + · · · + 1 = N. Every basis vector 

has llekll2 
= N instead of J leikx l 2dx = 21r.

Please notice that F-1 produces the coefficients Ck from the vector f: the Fourier

transform. The Fourier matrix F reconstructs f from the e's (the inverse transform). 

The entries of F-1 are like e- ikx and the entries of F are like eikx. Thus F-1 
= F/N

contains powers of w = e-i21r/N, while F contains powers of w = ei21r/N. 
The MATLAB command c = fft(f) uses wand the inverse Fourier matrix F-1

. 

The opposite command f = ifft(c) adds up the N-term series Fe to reconstruct f in (1). 
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Example 1 The delta vector f = (l, 0, 0, ... ) is like a delta function b(x). The Fourier
coefficients of a delta function are all equal to Ck = 1/21r. The discrete coefficients of 
a delta vector are all equal to ck = l/N. The transform off is a constant vector. 

1 
w 

I r 1 
Fourier transform I p- 1 f

= e I 
1 1

1 N l vP 

1 

1
-N-1 

wv;<�-1) (3) 

Example 2 The shifted vector f = (0, 1, 0, ... ) is like a shifted delta function b(x - � ).
The shifted vector f picks out the next column (1, w, w2 , ... ) of F- 1 in equation (3).
The shifted delta function chooses the (same) values of ck= e- ikx at x = 21r /N. 

The only difference between those discrete and continuous e's is dividing by Nor 21r. 

Example 3 The constant vector e = ( 1, 1, ... ) / N transforms back to the delta vector! 

Fourier matrix Fe= f

1 
w 
w2 

1 
W

N-l 

w2(N-l) (4) 

That equation says that N - l basis vectors starting with (1, w, w2 , ... ) are orthogonal to the 
first vector (1, 1, ... , 1). The basis vectors ek in the columns of Fare orthogonal.

After a few words about the FFf, equation (7) will confirm this orthogonality. 

Fast Fourier Transform (FFT) 

The FFf is a brilliant rearrangement of those matrix-vector multiplications f = Fe and
e = F- 1 f. Normally, multiplying a vector by an N by N matrix takes N2 separate
multiplications. (Each entry in the square matrix is used once. There are N2 entries.) 
The FFf computes e and f with only ½ N log

2 
N separate multiplications. 

For size N = 1024 = 210 , the logarithm is 10. In this case N2 (a million steps) are 
reduced to 5N (five thousand steps). The transform is speeded up by a factor near 200, 
which is truly astonishing. 

In my opinion, the FFf is the most important algorithm in computational science. 
It has transformed whole industries. When your instruments measure the response to 
an input (like the pressure in an oil well), the DFf shows the response to each frequency. 
The FFf computes N numbers from N numbers, very fast. 

The Basis Vectors e k in the Fourier Matrix F 

A crucial point is that the basis vectors e0, ... , e N _ 1 are orthogonal. Those vectors are
complex, just as the functions eikx are complex. So their inner products "ef en require the
complex conjugate of one vector, just like J 

einx e- ikx dx.
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Here is a typical basis vector ek, followed by the Fourier matrix that contains 
eo, e1, ... , eN-1 in its columns: 

1 1 1 1 1 
e2rrik/N wk 1 w WN-l 

ek = e4rrik/N w2 k 
F= 1 w2 W2(N-l) 

(5) 

1 WN-l W(N-1) 2 

The number w is e2rri/N. We use the Greek letter'-'-' for its conjugate 'iii = e-21ri/N 
= w.

It is the properties of 1, w, w2 , . . •  that make the basis vectors ( columns of F) orthogonal. 
Our first step is to locate w and w in the complex plane. In fact we can locate all the 
powers of w up to wN 

= (e2rrifN ) N 
= e2rri 

= 1. For N °= 8, the powers of w produce 
8 points evenly spaced around the unit circle . Notice that w8 

= 1. 
For N = 4, the four powers will be i, i2 

= -1, i3 
= -i, and i4 

= 1. 

w2 
= i 

w3 2 .18 1 + i
w = e 

rri 
= --

v'2 

real axis s w4 
= -1 e-------+------w = 1 

w5 

w6 
= -i 

w7 
= w = 

_!:_ 
= e-2rri/8 

= w

w 

Figure 8.5: The eight powers of w = cos � 
+ i sin�. The polar form w = e2rri/S is best.

4 4 · 

Orthogonality of the Discrete Fourier Basis 

The key to good formulas for the Fourier coefficients ck is orthogonality. That property 
removes every term except term k, when we take a dot product with the basis vector ek 

f = coeo + · · · + CN-leN-l and er f = Ck er ek = N Ck. (6) 

Since e0 = (1, 1, 1, ... ) and e1 = (1, w, w2 , ... ), the crucial step is their zero dot product: 
1 + w + w2 

+ · · · = 0. The eight numbers around the circle in Figure 8.5 add to zero.

Here is the statement and proof that every pair of e's is orthogonal: 

If zN = 1 and z =I- 1, then the sum S = 1 + z + z2 + · · · + zN-l is zero. (7) 

Proof Multiply S times z. This gives Sz = z + z2 
+ z3 

+ · · · + zN . Since zN 
= 1, 

S times z has all the same terms as the original sum S. Then Sz = S. Therefore S = 0. 
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Every dot product eI en is exactly our sum S. The number z is wkwn. 

(l,wk,ufk, ... ?(1,wn,w2n, ... ) = 1 + z + z2 
+ · · · = S

449 

(8) 

The Nth power of z = wkwn is zN = (wN ) k (wN f = (1)(1). Therefore S = 0. 

Conclusion When we multiply FT times F, the diagonal entries are eI ek = N (because 
this is a sum of N ones). Off the diagonal we have k # n and eI en = 0. Therefore 
F

T 

F =NI.This confirms that the inverse of the Fourier matrix is p- 1 = �F
T 

Note l. Your eye sees right away that the 8 numbers around the circle add to zero.
Each number cancels its opposite number: 1 + w4 is zero, w + w5 is zero, w2 

+ w6 

is zero, w3 
+ w 7 is zero. But this proof won't work for N = 7 or 5 or 3. We can't pair off 

the points when N is odd. They still add to zero by equation (8). 

Note 2. A cool proof of orthogonality is to see the vectors e0, ... , eN-l as eigenvectors
of a symmetric matrix. Every symmetric matrix has orthogonal eigenvectors. Problem 14 
will choose a suitable matrix (it is a circulant matrix) and pursue this idea. 

Here are the components off= Fe and c = F- 1 f: Discrete Fourier Transform

N-l 

fi = eJc = L wikck 
1 1 N-1 

. 

ck = 

N
eif =

N
L wJkfi (9) I

j=O k=O 

The symmetry of transform and inverse transform is beautiful. We didn't see this so 
clearly for Fourier series, where c was a vector but f was a periodic function. The ele­
gant symmetry reappears when the transform is between function f ( x) and function c( k) : 

Fourier 

Integral 

Transform 

00 

c(k) = J f(x) e- ikx dx
-oo 

00 

f(x) = 2
� I c(k) eikx dk. (10)

-oo 

Everybody notices e- ikx and eikx _ Be sure to notice dx and dk. The functions f(x) and 
c(k) are defined for -oo < x < oo and -oo < k < oo. The transform connects f(x) in 
tlle space domain to c( k) in the frequency domain. f ( x) = b ( x) transforms to c( k) = 1. 
Section 8.6 will solve -y 11 

+ y = f(x) (no boundaries!) using this integral transform. 
Two more examples of the discrete transform are cos and sin.

Example 4 Sample cos x and sin x at 0, 1r /2, 1r, 31r /2 to get discrete vectors cos and sin.

Transform those vectors by F-1
. Invert tlleir transforms by F.

Discrete cosine and sine cos= (1,0,-1,0) and sin= (0,1,0,-1). 

I 



450 Chapter 8. Fourier and Laplace Transforms 

To transform x-space to k-space, we multiply f by p-l. For N = 4, this matrix contains 
powers of w = -i. We remember to divide by N = 4: 

r 
1 

1 1 p-l cos = 4 �

1 
-i
-1

i

1 
-1

1
-1

Multiplication by F transforms back to cos and sin. This is exactly consistent with the 
famous formulas of Euler: cosx = ½(eix + e- ix ) and sinx = --:/(eix - e-ix ). 

Let me also write exp for the samples (1, w, w2, w3) of eix at x = 0, 1r /2, 1r, 31r /2. 
Then we have Euler's great formulas for vectors: 

1 
exp = cos + i sin cos = 

2 
( exp + exp)

exp = cos - i sin 
-i 

sin = 

2
( exp - exp) 

One Step of the Fast Fourier Transform 

Multiplication by an N by N matrix takes N2 multiplications and additions. Since the 
Fourier matrix has no zero entries, you might think it is impossible to do better. But the 
entries w1 k are very special. The FFT idea is to factor Finto sparse matrices.

If you prefer to think of the summation formulas I:, w1 k c
k 

and I:, w1 k f 1 , each sum 
has N terms and a vector needs N sums. In summation language, the FFT idea is to rewrite 
and regroup the sums to have many fewer terms. I will try to use both languages. 

The key idea is to connect FN with the half-size Fourier matrix FN;2. Assume that 
N is a power of 2 (say N = 1024). We will connect Fi024 to two copies of A12. When 
N = 4, we connect F4 to two F2 's : 

1
i 
i2 
i3 

1 
i2 
i4 
i6 

1 

l 

i3 
i6 
ig 

and 

On the left is F4 , with no zeros. On the right is a matrix that is half zero. The work is cut 
in half. But wait, those matrices are not the same. The block matrix with F2 's is only one 
piece of the factorization of F4• The other pieces also have many zeros: 

1 

Key idea 
1 

-1
1 

1 
i2 

1
1 

(11) 

The permutation matrix on the right puts c0 and c2 (evens) ahead of c1 and c3 (odds). 
The middle matrix performs separate half-size transforms on those evens and odds. 
The matrix at the left combines the two half-size outputs, and it produces the correct 
full-size output f = F4c. You could multiply those three matrices to see F4 . 
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The same idea applies when N = 1024 and M = ½N = 512. The number w is
e21ri/io24. It is at the angle 0 = 21r /1024 on the unit circle. The Fourier matrix Fi024 

is full of powers of w. The first stage of the FFT is the great factorization discovered by
Cooley and Tukey (and foreshadowed in 1805 by Gauss) : 

FFT (Step 1) ] [ even-odd ]
Fs12 permutation (12)

fs12 is the identity matrix. D512 is the diagonal matrix with entries (1, w, ... , w511 ) using
w1024. The two copies of F512 are what we expected. They use the 512th root of unity,
which is nothing but w512 = ( w1024 )2. The even-odd permutation matrix separates the
. · · I 

( ) d II 
( ) mcommg vector c mto c = co, c2, ... , c1022 an c = c1, c3, ... , c1023 . 

Here are the algebra formulas which express this neat FFT factorization of FN:

(FFT) Set M = ½N. The components off = FNc are combinations of the half­
size transforms / 1 

= FMc' and / 11 
= FMc". Equation (13) shows If'+ DJ" and

If 1 - D f II with numbers ( w N )J on the main diagonal of D : 

First half 

Second half 

J;+(wN )Jf;', j=O, ... ,M-1 

J;-(wN )JJ;', j=O, ... ,M-1 
(13)

Thus each FFT step has three parts: split c into c' and c", transform them separately by
FM into f I and f 11 , and reconstruct f from equation (13). N must be even! 

The algebra of (13) is a splitting into even numbers 2k and odd 2k + 1, with w = WN:
N-1 M-1 M-1 

Even/Odd iJ = L wJk ck = L w2Jkc2k + L wj(2k+l)c2k+1 with M = �. (14)
0 0 0 

The even e's go into c' = (c0,c2, ... ) and the odd e's go into c11 = (c1,c3, ... ). Then
come the transforms FM c I and FM c 11 • The key is w'f,. = w M. This gives w';J k = w�. 

Rewrite (15)

For j 2". M, the minus sign in (13) comes from factoring out (wN ) M = -1.
MATLAB easily separates even e's from odd e's. Then two half-size inverse transforms

use ifft. The last step produces f from the half-size f' and f 11 • 

Problem 2 shows that F and F- 1 have the same rows, in different orders.

FFT Step 

fromN toN/2
in MATLAB 

f 1 = ifft (c(O: 2: N -2)) * N/2; % evens
f" = ifft (c(l: 2: N -1)) * N/2; % odds 
D = w /'(O: N/2 -1) ';%diagonal of matrix D
f = [f I + D . * f II 

; f I - D . * f "]; 
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The flow graph shows c' and c" going through the half-size F2. Those steps are called 
"butterflies," from their shape. Then the outputs f I andf11 are combined (multiplying f 11 

by 1, i and also by -1, -i) to produce f = F4c. The indices 0, 1, 2, 3 are in binary. 

00 Co Jo 00 

Flow c' 1 
Graph 10 C2 

- •Ji 01 
,. 

C to f i 

N=4 01 C1 
-1 h 10

M=2 c" 
' 

11 C3 - - - �h 11-1 -i 

Figure 8.6: Flow graph from c to f for the Fast Fourier Transform with N = 4. 

This reduction from FN to two FM's almost cuts the work in half-you see the zeros in 
the matrix factorization (12). That reduction is good but not great. The full idea of the FFT 
is much more powerful. It saves much more time than 50%. 

The Full FFT by Recursion 

If you have read this far, you may have guessed what comes next. We reduced FN to 
FN;2. Keep going to FN;4. The two copies of Fs12 lead to four copies of F256. Then 
256 leads to 128. That is recursion. It is a basic principle of many fast algorithms. 
Here is the second stage with F = F256 and D = diag (1, W512, ... , ( W512) 255) :  

D 
-D

I 
I l [

F 

l [ pick 0, 4, 8, .. · 1 
F 

pick 2, 6, 10, ... 
D F pick 1, 5, 9,... .

-D F pick 3, 7, 11, ... 

Before the FFT was invented, the operation count was N2 
= (1024) 2. This is about a 

million multiplications. I am not saying that they take a long time. The cost becomes large 
when we have many transforms to do-which is typical. Then the saving is also large: 

1 
The final count for size N = 2L is reduced from N2 to - NL .

2 

Here is the reasoning behind 

½

NL. There are L levels, going from N = 2L down to 
N = 1. Each level has ½ N multiplications from diagonal matrices D, to reassemble the
half-size outputs. This yields the final count 

½

NL, which is ½ N log2 N.
Exactly the same idea gives a fast inverse transform. The matrix F;/ contains pow­

ers of the conjugate w. We just replace w by w in the diagonal matrix D, and in formula (13). 
The fastest FFT will be adapted to the processor and cache capacity of each computer. 
For free software that automatically adjusts, we highly recommend the website fftw.org. 
This gives the "fastest Fourier transform in the west." 
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• REVIEW OF THE KEY IDEAS •

453 

1. Multiplying coefficients c by the Fourier matrix F adds the series Jj = L wjk ck ,

2. The inverse matrix p-1 
= F / N computes the coefficients ck = L wjk Jj / N.

3. The FFT splits those sums in half: f terms with powers of w2
. Then recombine.

4. By recursion the FFf has log2 
N steps with diagonal matrices : N log2N operations.

5. The columns ek = (1, wk , w2k , ... ) are orthogonal, when w = e27ri/N and wN 
= 1.

Problem Set 8.2 

1 Multiply the three matrices in equation (11) and compare with F. In which six 
entries do you need to know that i2 

= -1? This is (w4)2 
= w2. If M = N/2, 

why is (wN)M 
= -1? 

2 Why is row i of F the same as row N - i of F (numbered from Oto N - l)? 

3 From Problem 2, find the 4 by 4 permutation matrix P so that F = PF. Check that 
P2 

= 1 so that P = p-1. Then from FF= 41 show that F2 
= 4P.

It is amazing that F4 
= 16P2 

= 161. Four transforms of any c bring back 16 c. 
For all N, F2 /N is a permutation matrix P and F4 

= N2 I.

4 Invert the three factors in equation (11) to find a fast factorization of p- 1
. 

5 F is symmetric. Transpose equation ( 11) to find a new Fast Fourier Transform. 

6 All entries in the factorization of F6 involve powers of w = sixth root of 1: 

Write down these factors with 1, w, w2 in D and powers of w2 in F3• Multiply! 

7 Put the vector c = (1, 0, 1, 0) through the three steps of the FFf to find y = Fe. Do 
the same for c = (0, 1, 0, 1). 

8 Compute y = F8c by the three FFf steps for c = (1, 0, 1, 0, 1, 0, 1, 0). Repeat the 
computation for c = (0, 1, 0, 1, 0, 1, 0, 1). 

9 If w = e27ri/64 then w2 and vw are among the __ and __ roots of 1.

10 Fis a symmetric matrix. Its eigenvalues aren't real. How is this possible ? 



454 Chapter 8. Fourier and Laplace Transforms 

The three great symmetric tridiagonal matrices of' applied mathematics are K, B, C. 
The eigenvectors of K, B, and Care discrete sines, cosines, and exponentials. The eigen­
vector matrices give the DST, DCT, and DFT - discrete transforms for signal processing. 
Notice that diagonals of the circulant matrix C loop around to the far corners. 

K 

C 

2 
-1

2 
-1

-1

-1
2

-1
2

-1
B= 

-1

-1

-1

-1
2 -1

-1

Ku= KNN = 2 

Bu= BNN = 1 

C1N =CN1 = -1 

11 The eigenvectors of KN and BN are the discrete sines s1, ... , SN and the discrete 
cosines c0, ... , CN-l· Notice the eigenvector c0 = (1, 1, ... , 1). Here are sk and 
ck-these vectors are samples of sin kx and cos kx from 0 to 1r. 

( . -rrk . 2-rrk . N-rrk ) ( -rrk 3-rrk (2N -1)-rrk)sm N + 1 
, sm N + 1 

, ... , sm N + 1
and cos 2N, cos 2N , ... , cos 2N 

For 2 by 2 matrices K2 and B2, verify that s1, s2 and c0, c1 are eigenvectors. 

12 Show that C3 has eigenvalues .X = 0, 3, 3 with eigenvectors e0 = (1, 1, 1), 
e1 = (1, w, w2 ), e2 = (1, w2 , w4 ). You may prefer the real eigenvectors (1, 1, 1) 

and (1, 0, -1) and (1, -2, 1). 

13 Multiply to see the eigenvectors ek and eigenvalues Ak of C N. Simplify to Ak = 

2 - 2 cos(2-rrk/ N). Explain why CN is only semidefinite. It is not positive definite. 

[ 

2 
-1Cek = 

-1

-1
2

-1
-1

2
-1

14 The eigenvectors ek of C are automatically perpendicular because C is a __ 
matrix. (To tell the truth, C has repeated eigenvalues as in Problem 12. There was 
a plane of eigenvectors for .X = 3 and we chose orthogonal e 1 and e2 in that plane.) 

15 Write the 2 eigenvalues for K2 and the 3 eigenvalues for B3• Always KN and BN+I 
have the same N eigenvalues, with the extra eigenvalue __ for B N +I. (This is 
because K = AT A and B = AAT.) 
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8.3 The Heat Equation 

The first partial differential equation in this book was Uxx + Uyy = 0 (Laplace's equation). 
This describes a steady state-time is not involved. There is no growth or oscillation or 
decay. The problem includes boundary conditions on u(x, y), but not initial conditions. 
This is like a matrix equation Au = b (where b comes from boundary conditions). 

Now we move to the heat equation Ut = Uxx· Time is very much involved. We think 
of u as the temperature along a bar at time t. We are given the initial temperature u(0, x) 
at time t = 0 and at each position x. Then heat begins to flow (from positions with higher 
temperature to neighbors at lower temperature). This is like a matrix equation u' = Au 
with an initial condition u(0). Au is now the second derivative Uxx· 

We have a PDE and not an ODE, a partial and not an ordinary differential equation, 
because the temperature u is a function of both x and t.

Example 1 (Infinite bar) Suppose the bar goes from x = -oo to x = oo. At time 
t = 0, the temperature is u = -1 on the left side x < 0 and u = 1 on the right side x > 0. 
Heat will flow from the right side to the left side. The temperature along the left half 
will go up from u = -1. The right half will go down from u = 1. Solved in Example 6. 

Example 2 (Finite bar) Suppose the bar goes from x = 0 to x = 1. The initial 
condition u(0, x) = 1 tells us the (constant) temperature along the bar at time t = 0. We 
also need boundary conditions like u(t, 0) = 0 and u(t, 1) = 0 at the ends of the bar. 
Then the ends stay at zero temperature for all time t > 0. 

Heat will flow out the ends. Imagine a bar in a freezer, with the sides coated. Heat 
escapes only at x = 0 and x = 1. We solve the heat equation to find the temperature 
u(t, x) at every position O < x < 1 and every time t > 0. 

Heat equation 
au 

at 

a
2
u 

with u(0, x) = 1 and u(t, 0) = u(t, 1) = 0. 
ax2

(1) 

A good form for the solution is a Fourier series. It is natural to choose a sine series, since 
every basis function sin brx is zero at x = 0 and x = I -exactly what the boundary 
conditions require : zero temperature at the ends of the bar. 

The initial value u ( 0, x) and the differential equation Ut = Uxx will have to tell us the 
coefficients b1 ( t), b2 ( t), ... in the Fourier sine series. Heat escapes and bk ( t) -t 0. 

Solution plan The equation Ut = Uxx looks different from du/dt = Au, but it's not. 
The solution still combines the eigenvectors. The pieces for the ODE were ce>.tx. The pieces 
for the PDE are be>.t sin brx. 

1. Eigenvectors of A change to eigenfunctions of the second derivative : ( sin brx) 11 
=

-k21r2 sin k1rx. 

2. u(0) = c1x1 + c2x2 + · · · changes to u(0, x) = bi sin 1rx + b2 sin 21rx + · · · (with
infinitely many b's)

3. The solution (7) adds up bke>.k t sin k1rx. It is an infinite Fourier series.

Infinity could make the problem difficult, but the sin k1rx are orthogonal. Problem solved. 
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Solution by Fourier Series

Everything comes from choosing the right form for the solution u( t, x). Here it is: 

00 

Sine series u( t, x) = b1 (t) sin 1rx + b2 (t) sin 21rx + · · · = 2::>k(t) sin k'lTX. (2) 
k=l 

This form shows separation of variables. Functions bk(t) depending on t multiply 
functions sin k7rx depending on x. When we substitute that product bk( t) sin k1rx 
into the heat equation, we get a differential equation for each of the coefficients bk 

:
t 

(bk sink1rx) = :;
2 

(bk sink1rx) gives 8Jt sink?rx = -k21r 2bk sink1rx. (3) 

Then bk' = -k2
7r

2 bk. Solving this equation will produce every bk(t) from bk(0): 

Decay comes from e>-t 

Final step: The starting values bk(0) are decided by the initial condition u(0, x) = 1: 

Att = 0 

00 

u(0,x) = L)k(O)sink?rx = 1 for0 < x < l. 
k=l 

(4) 

(5) 

This is an ordinary Fourier series question : What are the coefficients of a square wave 
SW(x)? Sines are odd functions, sin (-x) = - sinx. The series in (5) must add to -l 
for x between -l and 0. So the square wave jumps from -1 to 1. It is negative on half of
the interval and positive on the other half: 

The even coefficients b2 , b4, ... are all zero. The odd coefficients are bk = 4/1rk. Those 
b's were computed in Section 8.1, as the first example of a Fourier series. Now these 
numbers are giving the coefficients bk(0) at t = 0. Then the equation bk' = -k21r 2bk 
tells us the coefficients e-k

2

'1l"

2
t bk (O) at all future times t > 0: 

Solution u( t, x) = f e-k2

1r

2

t bk(0) sin k1rx = � ( e-7l"2tsin 'lTX + · · ·) (7) 
k=l 

This completes the solution of the heat equation. The heat drops off quickly ! Those are 
powerful exponentials e-1r

2
t and e-91r

2
t. The bar will feel extremely cold when t = 1. 

Note The correct heat equation should be Ut = cu"'"' with a diffusion constant c. 
Otherwise the equation is dimensionally wrong. The units of c are ( distance )2 / time, 
in order to balance Ut with Uxx· Then c is large for metals-heat flows easily-compared 
to its value for water or air. The factor c enters the eigenvalues -ck21r 2 . 
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The heat equation is also the diffusion equation. A smokestack is almost a point source 
(a delta function). The smoke spreads out (diffuses into the air). This would involve two 
space dimensions x and y, or even x, y, z. The PDE could become Ut = c(u"'"' + Uyy), 

Summary We had a boundary value problem in x, and an initial value problem in t: 

1. The basis functions Sk = sin k7rx depend on x. They solve Uxx = >..u.

2. The coefficients bk depend on t. They solve b' = >..b with b(O) coming from u(O).

The basis functions Sk(x) satisfy the boundary conditions. 
Their coefficients bk ( t) satisfy the initial conditions: 

Sepa ration at t = 0 

The PDE for u(t, x) gives an ODE for each coefficient bk(t). Here are three more bars. 

(8) 

Example 3 (Insulated bar) No heat escapes from the ends of the bar. The boundary 
conditions change to ou/ox = 0 at those ends. The basis functions change to cosines. 
The series (8) becomes a Fourier cosine series. 

Initial condition u(O, x) 

Equation for the ak dak / dt 

I:ak(O) cosbrx 

-k2n2ak fork= 0
, 
1
, 
2
, 
...

Notice that k = 0 is included. The first basis function is cos 01rx = 1. Its coefficient 
is controlled by da0 /dt = 0. Thus k = 0 contributes a constant a0 to the solution u(t, x). 
The temperature approaches this constant everywhere along the bar, since a1, a2, a3, • • .  all 
die out exponentially fast. 

Example 4 (Circular bar) Now sines and cosines are both included. The basis functions 
can also be complex exponentials eikx . Again u goes to a constant steady state c0 : 

00 

u(t, x) = L c
k(t)eiktrx and (9) 

-oo 

When you have a separated form for the pieces of u, your problem is nearly solved. 

Example 5 (Infinite bar) This problem leads to something new and important. There are 
no boundaries. All exponentials eikx (not just whole numbers k) are needed. By 
combining the solutions for -oo < k < oo we can solve the heat equation starting from 
a delta function 8(x). This "heat kernel" is the key to chemical engineering. By a totally 
unexpected development it is also central to mathematical finance. The prices of stock 
options are modelled by the Black-Scholes partial differential equation. 

To solve for each separate eikx , look for the right multiplier eiwt : 

u = eiwteikx solves Ut = u"'"' when iw = ( ik ) 2
• (10) 

Then iwt = ( ik ) 2t = -k2t. The solution u( t, x) has a separated form, with these pieces: 

u(t,x) = e-k
2 teikx solvestheheatequation. It starts from u(O,x) =ikx _ (11)
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The Heat Kernel U ( t, x) 

The delta function o ( x) contains all exponentials eikx in equal amounts. By superposition, 
the solution U to the heat equation starting from o(x) will contain the solutions e-k

2
teikx 

in equal amounts. Integrate e-k
2

t eikx over all k to find the heat kernel U. 

The solution with U(O, x) = 8(x) (12) 

-oo 

Computing this integral is possible, but unexpected. No simple function of k has the 
derivative e-k

2

t, or close. The neat way is to start with 8U/8x. The derivative of eikx
brings the extra factor ik. Then integration by parts connects dU / dx to U : 

-oo -00 

Now dU /U equals -x dx/2t. Integration gives -x2 /4t and then U = ccx
2 

/
4t.

The total heat Ju dx starts at Jo ( x) dx = 1. To stay at 1, we choose c = 1 / v141rt'.
Then we have the "fundamental solution" for a point source. 

Heat kernel Ut = Umre with U(O, x) = 8(x) 
1 2/ 

U=--e-x 4t
v'47rt 

(14) 

Example 6 On an infinite bar, the heat kernel (14) solves Ut = Uxx starting from o(x) 
at t = 0. Now solve Example 1, which started from u = - l for negative x and u = l for
positive x. Then solve for any initial function u(O, x). 

Here is the key idea for Example 1. The derivative of the jump from -1 to 1 at x = 0
is du/dx = 28(x). The solution starting from 2o(x) has du/dx = 2U, which cancels v'4
in (14). Then integrate 2U to undo the derivative and solve Example 1 for u: 

u = Error function 

Integral of 2U 

X 

u(t, x) = � j e-x
2 

;
4t dX.

0 

(15) 

For x > 0 this solution is positive. For x < 0 it is negative (the integral in (15) goes 
backward). At x = 0 the solution stays at zero, which we expect by symmetry. I wrote
the words "error function" because this important integral has been computed and tabulated 
to high accuracy (no simple function has the derivative e-x ). We just change the variable 
of integration from X to Y = X / J4t, to see the standard error function:

(16) 

The integral is a cumulative probability for a normal distribution (this is the area under a 
bell-shaped curve). Statisticians need these integrals erf ( x) all the time. At x = oo we have 
the total probability = total area under the curve = 1.
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Finally, we can solve Ut = Uxx from any starting function u(0, x ). The key is to realize
that every function of x is an integral of shifted delta functions 8 ( x - a) :

00 

Every function uo(x) has / uo(a) S(x - a) da = u0(x). (17) 

-oo 

By superposition, the solution to Ut = Uxx must be an integral of shifted heat kernels.
00 

Temperature at time t u(t, x) = -

1
- J uo(a)e-(x-a) 2 

/4t da. 
V4rrt 

(18) 

-oo 

I have used the crucial fact that when the point source shifts by a to become S ( x - a),
the solution also shifts by a. So I just shifted the heat kernel U, by changing x to x - a.
The heat equation on the whole line -oo < x < oo is linear shift-invariant.

The solution (18) is reduced to one infinite integral-still not simple. And for a more
realistic finite bar, with boundary conditions at x = 0 and x = l, we have to think again.
There will also be changes when the diffusion coefficient c in Ut = (cux)x is changing
with x or t or u. This thinking probably leads us to finite differences.

Separation of Variables 

The basis functions sin k1rx are eigenfunctions. The same is true for cos brx and eik7rX . 

Let me show this by substituting u = B(t) A(x) into the equation Ut = Uxx· Right away
Ut gives B' and u"'"' gives A". The separated variables are connected by Ut = Uxx : 

B '(t) A(x) = B(t) A "(x) leads to 
A"(x) B'(t) 

A(x) 
= 

B(t) 
= constant (19) 

Why a constant? Because A"/ A depends only on x and B' / B depends only on t. They
are equal, so neither one can move. Call that constant ->. : 

A" 
A = ->. gives A= sin v,\ x and cos v,\ x

B' 

B 
= ->. gives B = e->-.t (20)

The products BA = e->-.t sin v,\ x and BA = e->-.t cos,/).. x solve the heat equation
for any number >.. But the boundary condition u(t, 0) = 0 eliminates the cosines.
Then u = 0 at x = l requires sin,/).. = 0 and >. = k2

7r
2

. Separation of variables has
recovered the correct basis functions sin k7rx as eigenfunctions for A" = ->.A.

Example 7 (Smokestack problem) We backed away from the heat equation in 2 + 1
dimensions. The solution to Ut = u"'"' + U

yy 
involves three variables t, x, y. Put a

smokestack at the center point x = y = 0, and suppose there is no wind. Then nothing
depends on the direction angle 0. Smoke will diffuse out from the center. The concentration
depends only on the radial distance r, and we solve the radially symmetric heat equation.
Our final solution is u(t, r).
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The heat equation is not quite Ut Urr because r = constant is curved (a circle). 
The correct radial equation is perfect for separation of variables u = B ( t) A ( r). 

au 82u l au 1 
-;::;--= ,::. 

2 
+ -ll leads to B'(t) A(r) = B(t) (A"+ -A'). (21) 

ut ur r ur r 

Again B' / B =constant= -,\ and B = e->.t as before. But instead of A" /A= -,\, we 
have Bessel's equation for the radial eigenfunction A ( r) 

Basis functions A ( r) d
2 A 

+ ! 
dA = ->-A has a variable coefficient !

dr2 r dr r 
(22) 

The solutions are among the special functions that have been studied for centuries. They 
are not complex exponentials because the coefficient 1/r is not constant. Bessel replaces

Fourier. This book can't go all the way to solve Bessel's equation, but see Section 6.5. 
A heat equation with symmetry led Bessel to new eigenfunctions. 

• REVIEW OF THE KEY IDEAS •

1. The heat equation Ut = Uxx is solved by e-k2

-;r

2

t sin brx for every k = 1, 2, ...

2. A combination of those solutions matches the initial u(0, x) to its Fourier sine series.

3. With Ux = 0 at x = 0 and 1, use cosines. With an infinite bar, use all e-k
2

teikx _

4. The heat kernel U = e-x
2

/
4t /J4irt solves Ut = Uxx starting from Uo = o(x).

5. Separation into B(t)A(x) shows that A(x) is an eigenfunction of the "x part" Uxx ·

Problem Set 8.3 

1 Solve the heat equation Ut = cuxx on an infinite bar with coefficient c, starting from 
u = eikx at t = 0. As in (10) the solution has the product form u = eiwteikx.
With c in the equation, find w for each k.

2 Solve the same equation Ut = CUxx starting from the point source u = o(x) =
J eikx 

dk/21r at t = 0. By superposition, you integrate over all k the solutions u 
in Problem 1. The result is the heat kernel as in equation (14) but adjusted for c. 

3 To solve Ut = cuxx for a bar between x = 0 and x = 1, the basis functions are 
still sin k1rx (with u = 0 at the ends). What are the eigenvalues Ak that go into the 
solution I: bk (0) e->.k t sin brx? 

4 Following Problem 3, solve Ut = cuxx when the initial temperature is uo = 1 for 
¼ ::; x ::; ¾ (and u0 = 0 on the first and last quarters of the bar). The problem is to 
find the coefficients bk (0) for that initial temperature. 



8.3. The Heat Equation 461 

5 Solve the heat equation Ut = Uxx from a point source u(x, 0) = o(x) with free 
boundary conditions u'(1r,t) = u'(-1r,t) = 0. Use the infinite cosine series 
o ( x) = (1 + 2 cos x + 2 cos 2x + · · · ) /21r multiplied by time decay factors bk ( t).

6 (Bar from x = 0 to x = oo) Solve Ut = Uxx on the positive half of an infinite bar, 
starting from the shifted delta function u0 = o(x - a) at a point x = a > 0. Here 
is a way to use the full-bar heat kernel U in (14), and still keep u = 0 at x = 0. 

Imagine a negative point source at x = -a. Solve the heat equation on the fully 
infinite bar, including both sources in u0 = o(x - a) - o(x + a) at t = 0. Your 
solution (a difference of heat kernels) will stay zero at the boundary x = 0 (Why?).

Then it must be the correct solution on the half-bar, since it started correctly. 

7 Check that the basis functions Bk= sin (k+½) 1rx are orthogonal over 0::; x::; 1. 
Find a formula for the coefficient B4 in the Fourier series F(x) = L Bksk, 
(Multiply by s4(x) and integrate, to isolate B4.) 

8 The basis functions sin ( k + ½ )1rx are for fixed-free boundaries ( u = 0 at x = 0 
and u' = 0 at x = l). What are the basis functions for free-fixed boundaries

(u' = 0 at x = 0 and u = 0 at x = l)? 

9 Suppose Ut = Uxx - u with boundary condition u = 0 at x = 0 and x = l.
Find the new numbers Ak in the general solution u = L bk (0) e->.kt sin k1rx.
(Previously Ak = -k21r2

, now there is a new term in>.. because of -u.)

10 Explain each step in equation (13). Solve dU/dx = -xU/2t to reach U = e-x
2

/
4t_

How do the known infinite integrals J e-x
2 

dx = fa and Ju dx = l lead to the 
factor 1 / y14nt ? 

11 (Shift invariance) What is the solution to Ut = Uxx starting from 6 ( x - a) at t = 0 ? 

12 What are basis functions A(x, y) for heat flow in a square plate, when u = 0 along 
the four sides x = 0, x = l, y = 0, y = l ? The heat equation is Ut = Uxx + 
U

yy
· Find eigenfunctions for Axx + A

yy 
= >..A that satisfy the boundary conditions. 

The first eigenfunction is A11 = ( sin 1rx) ( sin 1ry). Find the eigenvalues >... 

13 Substitute U = e-x
2 

/
4t / v'47rt to show that this heat kernel solves Ut = Uxx · 
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Notes on a heat bath (This is the opposite problem to a hot bar in a freezer.) 
The bar is initially at U = 0. It is placed into a heat bath at the fixed temperature U B = 1. 
The boundary conditions are no longer zero and the bar will get hot. 

The difference V = U - U B has zero boundary values, and its initial values are 
V = -l. Now the eigenfunction method (separation of variables) solves for V. The
series in (7) is multiplied by -1 to account for V(x,0) = -1. Adding back UB solves 
the heat bath problem: U = U B + V = l - u(x, t).

Here U B = 1 is the steady state solution at t = oo, and V is the transient solution. 
The transient starts at V = -l and decays quickly to V = 0. 
Heat bath at one end This problem is different in another way too. The fixed 
"Dirichlet" boundary condition is replaced by the free "Neumann" condition on the slope: 
u 1 (1, t) = 0. Only the left end is in the heat bath. Heat flows down the metal bar and out 
at the far end, now located at x = l. How does the solution change for fixed-free? 

Again U B = 1 is a steady state. The boundary conditions apply to V = l - U B: 

Fixed-free 

eigenfunctions 
A(x) = sin (k + ½) nx.

Those new eigenfunctions (adjusted to A'(l) = 0) give a new product form Bk(t) Ak (x):

Fixed-free solution V(x, t) = L Bk(0) e-(k+½J
2

1r

2

t sin (k + ½)nx. 
odd k 

All frequencies shift by ½ and multiply by 71", because A 11 = ->-A has a free end at 
x = l. The crucial question is : Does orthogonality still hold for these new eigenfunc­
tions sin ( k + ½) 1rx? The answer to Problem 7 is yes because A 11 = ->-A is symmetric. 

Notes on stochastic equations and models for stock prices with Brownian motion. 
A "stochastic differential equation" has a random term on the right hand side. Instead of a 
smooth forcing term q(t), or even a delta function J(t), the models for stock prices include 
Brownian motion dW. The idea is subtle and important, and I will just write it down. A
random step has dW = Z Vdt. Here Z has a normal Gaussian distribution with mean zero 
and variance CT2 

= 1. But a new Z is chosen randomly at every instant.
The step size .JKi produces a random walk W(t) with wild oscillations. You could see 

a discrete random walk from W(t + 6.t) = W(t) + z.J;s:i, and then let 6.t approach zero. 
The true random walk is nowhere continuous.

A steady return S ( t) on an investment has S 1 = aS. The growth is S ( t) = eat S ( 0) 
exactly as in Chapter 1. But stock prices also respond to a stochastic part CT dW, where 
the number CT measures the volatility of the market. This mixes ups and downs from 
Brownian motion CT dW with steady growth (drift) from dS = aS dt: 

dS 
"Diffusion" and "drift" 

S 
= CT dW + a dt.

Then the basic model for the value of a call option leads to the Black-Scholes equation. 
The solution comes by a change of variables to reach the heat equation. When they are 
buying and selling options, traders would have that solution available at all times. 
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8.4 The Wave Equation 

Heat travels with infinite speed. Waves travel with finite speed. Start both of them from a 
point source uo(x) = J(x). Compare the solutions at time t: 

Heat equation Ut = u"'"' 

Wave equation Utt = c2u"'"' 

u(t x) = -

1
- e-x

2

/
4t is a smoothfunction' v47rt 

u(t, x) = ½J(x - ct) + ½J(x + ct) has spikes

We are starting from a big bang u = J(x) at x = 0. At a later time t, the bang reaches 
the two points x = ct and x = -ct. That represents travel to the right and to the left 
with velocities dx/dt = c and -c. The speed of sound in air is c = 342 meters/second. 

Notice another difference from the heat equation. After the bang passes point x = c 
at time t = 1, silence returns: J(x - ct) = 0 when ct > x. For the heat equation, 
temperatures like e-x

2 

/
4t never return to zero. A wavefront passes by and we hear it only 

once. There is no echo or our ears would be full of sound. 
In reality the heat equation is often mixed in with the wave equation. The sound diffuses 

as it travels. Then we do hear noise forever, but not much : the intensity decays fast. 

The One-Way Wave Equation 

We begin with a problem that will be particularly clear. It is first order in time (t 2: 0) 
and first order in space ( -oo < x < oo ). The velocity is still c: 

au au 
with u = uo(x) One-way wave -=c- at t = 0. (1) 

at ax 

One solution is u = ex+ct _ Its time derivative &u/&t brings a factor c. The same will be 
true for sin(x+ct) and cos(x+ct) and any function of x+ct. The right function is u0(x+ct) 
because this gives the correct start u0 ( x) at time t = 0 : 

I Solution to Ut = cu"' u(t, x) = u0(x + ct). (2) 

Suppose u0(x) is a step function (a wall of water). We have u0(x) = 0 for negative x and 
u0(x) = 1 for positive x. Then the dam breaks. A wall of water moves to the left with 
velocity c. At time t, the water reaches the point x = -ct where x + ct = 0. 

Wall at x = -ct 
u = Uo ( x + c t) = 0 for x + ct < 0
u = Uo ( x + c t) = 1 for x + ct > 0 (3) 

The line x +c t = 0 is called a "characteristic." The signal travels ( with signal speed c) along 
that line in space-time, to tell about the jump from u = 0 to u = 1. 

For any initial function u0 ( x), the solution u = u0 ( x + ct) is a shift of the graph. 
It is a one-way wave, no change in shape. The waves from Utt = c2uxx go both ways. 
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Waves in Space 

Now we solve the wave equation 82u/8t2 
= c2 82u/8x2

. The three-dimensional form
would be Utt = c2 ( Uxx + U

yy 
+ Uzz). This is the equation satisfied by light as it travels

in empty space: a vacuum. The speed of light c is about 300 million meters per second
(186,000 miles/second). This is the fastest possible speed in Einstein's relativity theory.

The atmosphere slows down light. Positioning by GPS uses the speed c and the travel
time to find the distance from satellite to receiver. (It includes many other extremely small
effects.) In fact GPS is the only everyday technology I know that requires both special
relativity and general relativity. Amazing that your cell phone can include GPS.

The wave equation is second order in time because of [J2u/8t2
. We are given the

initial velocity v0 ( x) as well as the initial position u0 ( x).

At t = 0 and all x u = u0 (x) and 8u/8t = v0 (x). (4) 

Look for functions that have Utt equal to c2uxx · Now ex+ct and ex-ct will both
succeed. Two time derivatives produce a factor c twice (or a factor -c twice, both cases
give c2 ). All functions f (x + ct) and all functions g(x - ct) satisfy the wave equation.
The wave equation is linear, so we can combine those solutions.

Complete solution to Utt = c2u"'"'

Two functions f (x + ct) and g(x - ct) are exactly what we need to match two conditions
uo and vo at t = 0 :

Position 

Velocity 

uo(x) f(x) + g(x) 

vo(x) = cf '(x) - cg'(x)

X 

and then � j vo dx = f(x) - g(x).

0 

Add those equations to find 2f(x). Subtract those equations to find 2g(x). Divide by 2:

X 

1 1 
J f(x) = 2

uo(x) + 
2c 

vo dx 

0 

X 

1 1 
J g(x) = 

2
uo(x) - 2c 

vo dx 

0 

(6) 

Then d' Alembert's solution u to the wave equation has a wave traveling to the left with
shape f and a wave traveling to the right with shape g :

x+ct
uo(x + ct) + uo(x - ct) 1 ju = f(x +ct)+ g(x - ct)=-'------'-----'-----'-+ - vo(x) dx 

2 2c 
x-ct

(7)
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Example 1 Start from rest (velocity v0 0) with a sine wave uo ( x) sinwx. That 
wave splits into two waves : 

uo(x + ct) + uo(x - ct) 1 1 
u(t, x) =

2 
= 

2 
sin(wx +cwt)+ 

2 
sin(wx - cwt). (8) 

The trigonometry formula sin A + sin B = 2 sin A!B cos A:/ produces a short answer:

u ( t, x) = ( sin wx) ( cos cwt) Two traveling waves produce one standing wave.

You sometimes see standing waves in the ocean. Not what a surfer wants to find. 

+--- later start later ---+ 

t = 1r/w 

Figure 8.7: Always two traveling waves. Sometimes their sum is a standing wave. 

The Wave Equation from x = 0 to x = l 

Now we leave infinite space-time. The waves we know best are on a finite Earth. 
They may come from a violin string, fixed at both ends. They could also be water waves 
(even a tsunami). They may be electromagnetic waves: light or X-rays or TV signals. 
Or they may be sound waves that our ears convert into words. All these waves are bringing 
information to our brains, and they are essential to life as we know it. 

Start with a violin string of length 1. The velocity c depends on the tension in the string. 
The ends at x = 0 and 1 are assumed to remain fixed : 

Boundary conditions at the ends u(t, 0) = 0 and u(t, 1) = 0. (9) 

If we pluck the string with our finger at time t = 0, we give a vertical displacement u0 and 
a vertical velocity v0 (this might be zero): 

Initial conditions at the start 
au 

u(0, x) = uo(x) and at (0, x) = vo(x). (10) 

If we remove our finger after time zero, waves move along the string. They are reflected 
back at the ends of the string. The sound is not a single beautiful note (it is a mixture 
of waves with many frequencies). Still a composer can include this plucking sound in a 
symphony and a guitarist uses it all the time. 
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The usual sound from violins comes from a continuous source-which is the bow.
Now we are solving Utt = u,,,,,, + f ( t, x). When the violinist puts a finger on the string,
that changes the length and it changes the frequencies. Instead of waves of length 1 we
will have waves of length L and higher notes. 

With several strings the violinist or cellist or guitarist is producing several waves of
different frequencies to form chords. Let me stay with one string of length 1. 

Separation of Variables 

We will use the most important method of solving partial differential equations by hand.
The wave equation Utt = c2uxx has two variables t and x. The simplest solutions are

functions of x multiplied by functions oft. 

If u = X(x)T(t) then Utt = c2uxx is X(x)T"(t) = c2 X 11(x)T(t). (11)

T II and X II are ordinary second derivatives. We can divide equation ( 11) by c2 XT: 

Separation of variables 
T" X" 
-- = -- =-w

2

c2T X 
(12)

The function T 11 /T depends only on t. The function X 11 
/ X depends only on x. So both

functions are constant and they are equal. By writing -w2 for the constant, the two separated
equations have the right form: 

X 11 
= -w2X

T 11 
= -w

2c2T
X = Acoswx + Bsinwx
T = C cos wet+ D sin wet

(13)
(14)

Key question : Which frequencies w are allowed ? The boundary values at x = 0 and x = l
decide this perfectly. We want sines and not cosines, in order to have X(0) 0.
We want frequencies that are multiples of 1r in order to have X(l) = Bsinw = 0.
This gives very specific frequencies w = 1r, 21r, 31r, ... and no others. 

The base frequency of the violin string is 1r and the harmonics are multiples w = mr.
If we touch the string and reduce its length to L, we want sinwL = 0. Then the permitted
frequencies increase tow = n1r / L. The notes go up the scale, separated by an octave. 

Those frequencies w also go into the time function T(t). The initial condition is T' = 0
if the initial velocity is v0 = 0. Only the cosine survives in the time direction: 

X = Bsinn1rx T = C cos n1rct u = XT = b(sin n1rx)(cos n1rct). (15)

With length L, the natural frequencies in time are w = n1rc/ L. The wavelengths in space
are 2L/n. The displacement of the string is a combination of solutions X(x)T(t): 

oo 
( 

n1rx
) ( 

n1rct
) u(t, x) = L bn sin -- cos -- .

n=l L L 
(16)

You see immediately that Utt = c2 uxx for every one of those terms, and any combination.
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Final question: What are the numbers bn ? Those are decided by the remaining condition: 

Initial condition 
n1rx 

u(O, x) = u0 (x) = L bn sin 
L

. 
n=l 

(17) 

This is a Fourier sine series ! The formula for bk comes from multiplying both sides by
sin k1rx/ Land integrating from Oto L along the string. Only one term n = k survives:

L L 

J uo(x)sink1rxdx = J bk(sinknx)2dx = ½bk .
0 0 

(18) 

Inserting each bk into (16) completes the solution of the wave equation on 0 � x � L.

Example 2 Suppose the length is L = 3 and the initial displacement is a hat function : 

1 
Uo ( X) = X for 0 :::; X :::; 1 and Uo ( X) = 2 ( 3 - X) for 1 :::; X :::; 3.

The integrals in (18) lead in Mathematica to bk = 3/2k2n2
. The decay rate is 1/k2 for

this function u0 ( x) with a corner. The slope drops from 1 to -½ at x = l. The infinite 
series ( 16) will converge at every point in space-time to the correct solution u( t, x). 

Notice also that every piece of u splits into f + g, by the formula for sin A cos B: 

. n1rx n1rct . n1r(x + ct) . n1r(x - ct) 
smLcos£=2sm 2L +2sm 2L =f(x+ct)+g(x-ct).

We get two wave functions as always, specially chosen to fit the string length L. If the 
initial velocity v0 is not zero, then the solution u( t, x) also contains sine functions oft. 

Our functions X ( x) = sin n1rx / L are actually eigenfunctions of the string:

Ax = Ax becomes X 11 = -w2 X The matrix A changes to a second derivative. 

Again linear algebra and differential equations go hand in hand. For linear equations. 

• REVIEW OF THE KEY IDEAS •

1. The one-way wave equation Ut = cux is solved by u(t, x) = uo(x + ct).
2. The two-way equation Utt = c2uxx allows two waves f (x + ct) and g(x - ct).
3. At t = 0, the d' Alembert solution (7) matches uo ( x) and vo ( x) on the whole line.

4. The Fourier solution (16) chooses bk so that u(O, x) = u0(x) for 0:::; x:::; L.
5. Separation of variables into u=X(x)T(t) gives X 11 = -w2 X and T 11 

= -w2 c2T. 

6. Zero boundary conditions give w = n1r /Land eigenfunctions X ( x) = sin n1rx / L.
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Problem Set 8.4 

Problems 1-4 are about the one-way wave equation fJu / 8t = cou / ox. 

1 Suppose u(0, x) = sin 2x. What is the solution to Ut = cux? At which times 
t1 , t2 , . . .  will the solution return to the initial condition sin 2x? 

2 Suppose u0(x) = J(x), a big bang at the origin of the one-dimensional universe. 
At time t the bang is heard at the point x = __ . For Utt = c2uxx the bang 
will reach the two points x = __ and x = __ at time t. 

3 (a) Integrate both sides of Ut = cux from x = -oo to oo to prove that the total
mass M = Ju dx is constant: dM / dt = 0.

(b) Multiply by u and integrate both sides of UUt = cuux to prove that E = J u2 dx
is constant.

4 Is the wave u( t, x) = u0 ( x + ct) traveling left or right if c > 0? To solve Ut = cux 

on the halfline 0 :S x :S oo, why is a boundary condition u(t, 0) = 0 not wanted? 
With c < 0 and waves in the opposite direction, that condition is appropriate. 

Problems 5 - 9 are about the one-dimensional wave equation 82 u / 8t2 
= c2 82 u / 8x2

• 

5 A "box of water" has u0 ( x) = 1 for -1 :S x :S 1. Starting with zero velocity v0 ( x), 
the wave equation Utt = c2 uxx is solved by u(t, x) = ½uo(x +ct)+ ½uo(x - ct). 
Graph this solution for small t = ½c and large t = 3c. 

6 Under a flat ocean with u0(x) = 1, an earthquake produces v0(x) = J(x). A one­
dimensional tsunami starts moving with speed c. What is the solution (7) at time t ? 

7 Separation of variables gives u(t,x) = (sinnx)(sinnct) and three other similar 
solutions to Utt = c2uxx · What are those three? Which complex functions eikxeiwt 

solve the wave equation? 

8 The 3D wave equation Utt = Uxx + U
yy 

+ Uzz becomes 1D when u has spherical 
symmetry: u depends only on r and t.

r = -J x2 
+ y2 

+ z2 and 
82u 82u 2 au
-=-+--8t2 8r2 r 8r · 

(a) Multiply by r to find (ru)tt = (ru)rr ! Then ru is a function of r + t and r - t.

(b) Describe the solution ru = J(r - t - 1). This spherical sound wave has the
radius r = at t = 8. 

9 The wave equation along a bar with density p and stiffness k is (put)t = (kua:)a: . 

What is the velocity c in Utt = c2 uxx? What is 1.u in u = sin(1rx/L)coswt? 
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10 The small vibrations of a beam satisfy the fourth order equation Utt -c2uxxxx · 
Look for solutions u = X(x)T(t) and find separate equations for the functions X 
and T. Then find four solutions X(x) when T(t) = cos wt. 

11 If that beam is clamped (u = 0 and 8u/8x = 0 at both ends x = 0 and x = L), 
show that the frequencies w in Problem 10 must have ( cos w L) ( cosh w L) = 1. 

Problems 12-16 solve the wave equation with boundary conditions at x = 0 and x = L.

12 A string plucked halfway along has u0 ( x) = 6 ( x - ½) and v0 ( x) = 0. Find the 
Fourier coefficients bk from equation (18). Write the first three terms of the Fourier 
series solution in (16). 

13 Suppose the string starts with zero velocity v0 ( x) from a hat function : u0 ( x) = 2x / L 
for x < L/2 and u0(x) = 2(L - x)/ L for x > L/2. Find the Fourier coefficients bk 
from (18) and the first two nonzero terms of u(t, x) in (16). 

14 Suppose the string starts with zero velocity v0 (x) from a box function: u0 (x) = 1 
for x < L/2. Find all the bk in the solution u = "I:,bksin(mrx/L)cos(mrct/L). 

15 The boundary condition at a free end x =L is 8u/8x = 0 instead of u = 0. 

Solve X" + w2 X = 0 to find X(x) and all allowable w's with this new condition. 

Then solve T" + w2c2T = 0 to complete the solution u = I:, an X(x) T(t). 

16 What is the solution u(t, x) on a string of length L = 2 if u(0, x) = J(x - 1)? 
The end x = 0 is fixed by u(t, 0) = 0 and the end x = 2 is free: 8u/8x(t, 0) = 0. 
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8.5 The Laplace Transform 

When it succeeds, the Laplace transform can tum a linear differential equation into an
algebra problem. Laplace transforms are applied to initial value problems ( t > 0). 
Fourier transforms are for boundary value problems. Laplace has e-st instead of eikx . 

When does this transform method succeed ? I see two desirable situations : 

1. The linear equation should have constant coefficients, as in Ay" + By' + Cy = f ( t). 

2. The driving function f (t) should have a "convenient" transform.

Our list of good functions includes f ( t) = eat and its transform F ( s) = 1 / ( s - a).
Then the differential equation will tell us the transform Y ( s) of the solution. The final step 
is to discover which function y(t) has this transform Y(s). Using our list of transforms 
and especially the rules for finding new transforms, this becomes a problem in algebra: 
Invert the transform Y(s) to find the solution y(t). These pages complete Section 2.6. 

Particular solutions are easy with f ( t) = eat . The method of undetermined coefficients 
taught us to look for Y

p 
( t) = Y eat . The Laplace transform is not strictly needed when 

f ( t) = eat or tn or sin wt or cos wt. But for driving functions that tum on and off, 
and functions that jump or explode (step functions and delta functions and worse), 
the algebra becomes more systematic and better organized by the Laplace transform. 

Examples 1, 2, 3 with real, imaginary, and complex poles show you the key ideas. 

The Transform F ( s)

Start with a function J(t) defined fort 2". 0. Multiply by e-st and integrate from t = 0 to 
t = oo. The result is the Laplace transform F( s) and it depends on the exponents: 

00 

Laplace transform £ [f(t)] = F(s) = J f(t) e-st dt. (1) 
t=O 

The number s can be real or complex. The one key requirement on s is that the infi­
nite integral in ( 1) must give a finite answer. Here are examples needing s > 0 and s > a. 

f(t) = 1

f(t) = eat 

00 

F(s) = J e-st dt = 

0 

00 

F(s) = J eat e-st dt

0 

[e�:
t·

i
t=oo 

. t=O 

[e(a-s)t
]

00 

a - s 
0 

1 

s 
(2) 

1 
(3)

s-a 

The integral of e-st is finite whens is positive. More than that, it is finite when the real part
of s is positive. A factor e-iwt from the imaginary part iw has absolute value 1. Laplace 
transforms are defined when the real part of s exceeds some value s0. Here so = a. 
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Important All functions in this section have f(t) = 0 fort < 0. They start at t = 0. 

So the constant function f (t) = l is actually the unit step function. It jumps from Oto 1 
at t = 0. Its derivative is the delta function o(t); this includes the spike at t = 0. In 
this way, the initial value problem y' + y = l ignores all t < 0 and starts from y(0). 

You will see that the Laplace transform of that equation is s Y ( s) - y( 0) + Y ( s) = 1 / s. 
Then algebra gives Y(s) and the inverse Laplace transform gives y(t). 

The second example f = eat includes the first example f = l, which has a = 0. 
Then 1/(s - a) becomes 1/s. We need Res > a to drive eate-st to zero at t = oo.

There are decreasing functions like f (t) = e-t
2 

that allow every complex number s. 
There are also rapidly increasing functions like f (t) = et

2 

that allow nos at all. 
For a delta function located at t = T 2':: 0, the integral picks out the transform e-sT:

f(t) = 8(t - T) F(s) = J o(t -T) e-st dt = e-sT_

0 

(4) 

To complete this group of examples (the all-star functions), a simple trick gives the 
transforms of cos wt and sin wt. Write Euler's formula eiwt 

= cos wt + i sin wt. Take the 
Laplace transform of every term : 

Linearity £, [eiwt] = ,l [cos wt] + i £ [sin wt] 

The left side is 1 / ( s - iw). Multiply by ( s + iw) / ( s + iw) to see real and imaginary parts: 

l s + iw

s - iw s + iw 

s+iw 

s2 +w2 

s w 
£ [coswt] = --- and£ [sinwt] = ---

s2 + w2 s2 + w2 
(5) 

Exponents in f(t) are Poles in F(s) 

Let me pause one minute, before using Laplace transforms to solve differential equations. 
We can already see the key connection between a function f ( t) and its transform F ( s). 
Look at this Table of Transforms: 

f(t) 1 eat 8(t - T) cos wt sin wt tn ect 

F(s) 
1 1 

e-sT s w n! - --

s s-a s2 +w2 s2 +w2 (s - c)n+l 

Here is the important message. If f(t) includes eat then F(s) has a "pole" at s = a.
A pole is an isolated point a, real or complex, where the function F(s) blows up. Some 
integer power (s - a)m will cancel the pole and leave an "analytic" function (s - a)m F(s ). 
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An example shows this match up of exponents in f ( t) to poles in the transform F ( s) : 
f(t) =eat+ eat+ eiwt 

+ e- iwt 
+ tect has exponents 0, a, iw, -iw, c 

1 1 2s 1 somethingF(s)=-+--+-----+-­
s s-a (s- iw)(s+iw) (s-c)2 s(s - a)(s - iw)(s + iw)(s - c) 2 · 

The first term 1/ s has exponent O in f (t) and blowup at the pole s = 0. The last term1/(s -c)2 has exponent c and double blowup (double pole) at s = c. In the middle,2 cos wt contains two exponents iw and -iw, so the transform F( s) has those two poles. 
At the very end you see all the pieces of F ( s) tangled together in one big fraction.This is how F(s) comes to us from a differential equation. Normally we must factor thedenominator to see five separate poles at s = 0, a, iw, -iw, c. Then F(s) splits into itssimple pieces (called partial fractions). The inverse Laplace transform of each piece of 

F(s) gives a piece of f(t). PF2 and PF3 in Section 2.6 allowed two or three pieces. 
An engineer moves poles by changing the design. Then the exponents move. The systembecomes more stable if their real parts become more negative. A quick accurate picture ofstability comes from the poles of F ( s). If all those poles are in the left half of the complexplane, where Re s < 0, the function will decay to zero (asymptotic stability). 
The new function in this example is tect . We remember that the extra factor t appearsin the solution y(t) when the exponent c is repeated (c is a double root of the polynomial 

s2 - 2cs + c2 that comes from y" -2cy' + c2y). The double root becomes a double polein the transform, when ( s -c) 2 shows up in the denominator of F ( s). Here is the required step, to confirm thatthetransformof f(t) = tect is F(s) = 1/(s - c)2. 

00 

The derivative of F(s) = j f(t)e-stdt 
0 

00 

is dF = j-tf (t)e-stdt.
ds 

0 

Rule: If the function f(t) transforms to F(s), then tf(t) transforms to -dF/ds. 
When this rule is applied to f ( t) = ect with F ( s) = 1 / ( s -c), we learn that tect transforms to dF/ds = 1/(s -c)2 • 

This rule extends directly to higher powers of t in tn f (t). Each time you multiply by t,take the derivative of F(s ). Remember to multiply by -1: 
d

2
F 

t2 f(t) --+ (-1) 2
-ds2 

t2ect
--+ 

__ _ d2 ( 1 )
ds2 

S - C 

d -1 
ds (s -c)2 

2 

(s - c) 3 

Continuing this way, the transform of tnect is n !/(s -c)n+l. This was the last entry in ourTable of Transforms. In the special case c = 0, the transform of tn 
is n! / sn+i . 

Now we can work with any real poles c or imaginary poles iw in F(s). Example 3will allow complex poles c + iw. This solves all equations Ay" +By'+ Cy= 0. 
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Transforms of Derivatives 

Differential equations involve dy/dt. We must connect the transform £[dy/dt] to £[y].
This step was especially easy for Fourier transforms-just multiply by ik. For Laplace
transforms we expect to multiply Y(s) bys to get £[dy/dt], but another term appears.

The reason this happens is that Laplace completely ignores t < 0. The integral starts
at t = 0 and the number y(0) is important. A good thing that y(0) enters the Laplace
transform, because we certainly expect it to enter the solution to a differential equation.

It is integration by parts that connects £ [ dy / dt] to £ [y]. Two minus signs cancel :

00 00 

,C [ ::] = / �� e-stdt = J y(t)(se-st)dt + [y(t)e-st]: = s £ [y] - y(O). (6) 

0 0 

This is the key fact that turns a differential equation for y(t) into an algebra problem for
Y(s). If we repeat this step (apply it now to dy/dt), you will see the transform of the
second derivative. Use equations (6) and (7) to transform differential equations. 

[
d2y] 

[
dy

] 
dy dy 

£ - = s£ - - -(0) = s2£ [y] - sy(O) - -(0).
dt2 dt dt dt (7)

Let me use this rule right away to solve three differential equations. The first has real poles.
The second has imaginary poles. The third has complex poles s = -1 ± i. 

Example 1 Solve y' - y = 2e-t starting from y(0) = 1.

Solution Take the Laplace transform of both sides. We know£ [2e-t] = 2/(s + 1):

s£ [y] - y(0) -£ [y] = £ [2e-t] is the same as (s - l)Y(s) = 1 + 
8

�
1

. 

Then algebra gives Y ( s) and we split into "partial fractions" to recognize y( t).

1 2 1 
(

1 1
) 

2 1 Y(s) = s - 1 
+ (s - l)(s + 1) = 

s - 1 
+ s - 1 

-
s + 1 

= 
s - 1 

-
s + 1

The inverse transform ofY(s) is y(t) = 2et - e-t

I always check that y(0) = 2 - 1 = 1 and y'(t) = 2et 
+ e-t agrees with y + 2e-t . 

And don't forget our usual method. A particular solution is Y
v 

= -e-t. It has the same form
as the driving function f(t) = e-t _ The null solution is Yn = Get. 

From Chapter 2 y(0) = 1 gives C = 2

Maybe the earlier method is simpler for this example? The next examples give practice
with second order equations. The complex poles of Y(s) give oscillations eiwt in y(t). 
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Example 2 Solve the equation y" + y = ½ sin 2 t starting from rest: y ( 0) = y' ( 0) = 0. 
The transform of y" is s2Y ( s) from (7): 

1 1 
s2 Y(s) + Y(s) = 

82 + 2 2 
and then Y(s) =

(s2 + l)(s2 + 4) 

Partial fractions will rewrite that transform Y ( s) as 

1 
Y(s) =

-(s..,.....2 _+ _l_)(--,s2_ +_4_)
1 ( s2 

+ 4) - ( s2 
+ 1 )  

3 (s2 + l)(s2 + 4) 
1/3 1/3 

s2 + 1 s2 +4 

We recognize those fractions as transforms of sine functions with w = l and w = 2 : 

Solution y(t) = ½ sin t - ½ sin 2t has initial values y(0) = 0 and y'(0) = 0. 

The transform of sin 2t is 2/(s2 + 4), which explains why 1/3 becomes 1/6. 
In Chapter 2 we would have found yp(t) and Yn(t) to reach the same y(t): 

Y = Yv + Yn = -¼ sin 2t + c1 cost + c2 sin t.

(8) 

Then c1 = 0 because y(0) = 0, and c2 = ½ because y'(0) = 0. Both ways are good. 
s- 1

Example 3 y" + 2y' + 2y = 0 with y(0) = y'(0) = 1 has Y(s) = ----

s2 + 2s + 2 
Then the roots of s2 + 2s + 2 are the complex poles s = -1 ± i. 

This Y ( s) is not yet in our table. But we know the complex solutions eC-l+i)t and 
eC-l-i)t_ Their real and imaginary parts are e-t cost and e-t sin t. The combination that 
has y(0) = y'(0) = 1 is y = e-t cost+ 2e-t sin t. This must be the function y(t) that 
transforms to Y ( s). 

The real and imaginary parts of ecteiwt transform to the real and imaginary 
parts of 1 / ( s - c - iw). Those two new transforms solve Example 3 when c = -1 
and w = l. We can now solve every equation Ay 11 + By 1 + Cy = 0. 

ect cos wt transforms to 
(s - c) 2 + w2 

s-c 

ect sin wt transforms to 
(s - c) 2 + w2 

w 

Shifts and Step Functions and Cutoffs 

Suppose the driving function f(t) in a differential equation turns on at time T. Or suppose 
it turns off. Or it jumps to a different function. All these jumps in f (t) are realistic in 
practical problems, and they are automatically handled by the Laplace transform. 

Essentially, we need the transform of a step function. The basic example is a unit step 
that jumps from f = 0 fort < T to f = l fort � T. The transform is an easy integral: 

f ( t) i--1 _ __.___ __ 

t=O t=T J 
[-e_-

8

st] 00T 
F(s) = e-8tdt =

T 
s 

(9)
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A step function at T transforming to e-sT /s is an example of a new rule.

The step at T is a time shift of the step at t = 0. Multiply the transform by e-sT.

The original J(t) has the transform F(s). The shifted function is zero until t = T, and
then it is f (t -T). For the example of a unit step, the shifted step is zero fort < T. 

Here is the proof of the transform rule for the shifted function: multiply by e-sT.
00 00 

f (t) shifts to f (t - T) 

F(s) becomes e-sT F(s) 
J J(t-T)e-stdt= J f(T)e-s(r+T)dT=e-sTF(s).
T 0 

The first integral has T ::; t < oo. The second integral has 0 ::; T < oo. The new variable
T = t - T shifts the lower limit on the integral back to T = 0, and it produces the
all-important factor e-sT_ We end with two examples that need this shift rule. 

Example 4 (Unit step function) Solve y' -ay = H ( t -T) = { � ! � � } . 
The transform of every term ( with y ( 0) = 1) will give the transform Y ( s) of the solution :

e-sT 1 e-sT 
sY(s)-1-a Y(s) = - Y(s) = -- +--- (10)

s s - a (s - a)s 

The inverse transform of 1 / ( s - a) is eat . Split the other fraction into two parts :

1 1 ( 1 1) . 1 
( ) = - -- - - has mverse transform - ( eat - 1).
s-a s a s-a s a 

The factor e-sT in (10) will shift that function in (11). The final solution is

Jump in y 1 

Comer in y y(t) � { 
e

at 

1 
e

at
+

_ ( e
a(t-T) _ 1)

a

fort::; T

fort� T

(11)

(12)

The first part y = eat has y' = ay as required. This meets the second part correctly at
t = T (no jump in y). Then the second part of y( t) continues with y' = ay + 1 : 

Check y' = aeat + ea(t-T) = a eat + -ea(t-T) - - + - = ay + 1.[ 
1 1 1

] a a a 
Question Could we have solved this problem without Laplace transforms? Certainly
y = eat solves the first part starting from y( 0) = 1. This is Yn since f = 0, and it reaches
eaT at time T. Starting from there, we need to add on a particular solution Yp · This Yp 

will match the driving function f = 1 that begins to act at t = T : 

yp' -ayp = 1 starting from Yp (T) = 0.

Eventually, and somehow, we would find the particular solution Yp = (ea(t-T) -1) /a .
Combined with Yn = eat, the complete solution Yn + Yp agrees with equation (12). 
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Example 5 Suppose the driving function f ( t) = 1 turns off instead of on at time T : 
, {1 t$.T Solve y - ay = 0 t > T with y(O) = 1. 

Solution Instead of the previous H (t - T ) , this new driving function is 1 - H (t - T ) . The step function drops from 1 to 0. We still take the Laplace transform of every term in the differential equation : 
s Y (s) - 1 - a Y (s) = transform of [1 - H (t - T)] 

s s 

Solve this equation for Y ( s) and begin to recognize the inverse transform: 
1 1 Y (s) = -s ---a

+ -
(s---a)-s

e-sT 1 ( ) has the new term ( ) compared to ( 10). 
s - as s - as 

The inverse transform of this new term is ( eat - 1) / a, according to ( 11). Since the last term in Y (s) now has a minus sign, the final solution has two pieces meeting at t = T: 
{ eat

+ ¼ (eat - 1) fort$_ T y(t) = eat
+ ¼ (eat - 1) - ¼(ea(t-T) - 1) fort 2 T.

That first part for t $_ T would be our standard Yn + Y
p

, starting from y(O) = 1. The second part matches the first part at t = T (no jump in y). That second part simplifies to 
eat _ ea(t-T) y(t) =eat

+ ----- and we verify that y' = ay. 
a 

Rules for the Laplace Transform 

Part of this section is about specific functions f ( t). We made a Table of Transforms F ( s). The other part of the section is about rules. (This is like calculus. You learn the derivatives of tn and sin t and cos t and et. Then you learn the product rule and quotient rule and chain rule.) We need a Table of Rules for the Laplace transform, when we know that F(s) and G( s) are the transforms off ( t) and g( t). 
Addition Rule 

Shifting Rule 

Derivative of f 

The transform of f ( t) + g ( t) is F ( s) + G ( s) 
The transform of f(t -T) is e-sT F(s)
The transform of df/dtis sF(s) - f(O)

Derivative of F The transform of t f ( t) is -dF / ds

Convolution Rule Section 8.6 will transform f (t)g(t) and invert F(s )G(s) 
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Problem Set 8.5 

1 When the driving function is f ( t) = 8 ( t), the solution starting from rest is the 
impulse response. The impulse is 8(t), the response is y(t). Transform this equation
to find the transfer function Y ( s). Invert to find the impulse response y( t). 

y" + y = 8(t) with y(O) = 0 and y'(O) = 0

2 (Important) Find the first derivative and second derivative off (t) = sin t fort 2'. 0.
Watch for a jump at t = 0 which produces a spike (delta function) in the derivative. 

3 Find the Laplace transform of the unit box function b( t) = { 1 for 0 � t < 1} 
H ( t) -H ( t -1). The unit step function is H ( t) in honor of Oliver Heaviside.

4 If the Fourier transform of J(t) is defined by J(k) = J J(t)e- iktdt and J(t) = 0 

fort < 0, what is the connection between J( k) and the Laplace transform F(s)? 

5 What is the Laplace transform R( s) of the standard ramp function r ( t) = t ? 
For t < 0 all functions are zero. The derivative of r( t) is the unit step H ( t). 
Then multiplying R( s) by s gives __ . 

6 Find the Laplace transform F ( s) of each f ( t), and the poles of F ( s): 

(a) f = 1 + t (b) f = tcos wt (c) f = cos(wt -0)

(d) f = cos2t (e) f = e-2t cost (f) f = te-tsinwt

7 Find the Laplace transform s of f ( t) = next integer above t and f ( t) = t 8 ( t). 

8 Inverse Laplace Transform: Find the function f (t) from its transform F(s): 

1 s + 1 1 
(a) 

s-2 1ri
(b) 

s 2+1
(c) 

(s-l)(s-2) 

(d) 1/(s 2+2s+lO) (e) e- 8/(s-a) (f) 2s

9 Solve y" + y = 0 from y(O) and y'(O) by expressing Y(s) as a combination of
s / ( s 2 + 1) and 1 / ( s 2 + 1). Find the inverse transform y( t) from the table. 

10 Solvey" +3y 1 +2y = 8startingfromy(0) = 0 andy'(0) = 1 by Laplace transform.
Find the poles and partial fractions for Y ( s) and invert to find y( t).

11 Solve these initial-value problems by Laplace transform : 

(a) y' + y=eiwt,y(0)=8 (b) y 11 -y=et, y(O)=O, y'(O)=O
(c) y' +y=e-t,y(0)=2 (d) y" +y=6t, y(O)=O, y'(O)=O
(e) y' -iwy=8(t), y(O) =0 (f) my"+ cy' +ky=O, y(O)= 1, y'(O) =0

12 The transform of eAt is (sf -A)- 1
. Compute that matrix (the transfer function)

when A = [1 1; 1 1]. Compare the poles of the transform to the eigenvalues of A.
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13 If dy/dt decays exponentially, show that sY(s)-+ y(0) ass-+ oo. 

14 Transform Bessel's time-varying equation ty" + y 1 
+ ty = 0 using £[ty] = -dY/ds

to find a first-order equation for Y. By separating variables or by substituting 
Y ( s)= C / Vl + s2 , find the Laplace transform of the Bessel function y = J0. 

15 Find the Laplace transform of a single arch off ( t) = sin 1rt.

16 Your acceleration v 1 = c( v* - v) depends on the velocity v* of the car ahead: 

(a) Find the ratio of Laplace transforms V* (s) /V( s ).
(b) If that car has v* = t find your velocity v(t) starting from v(0) = 0.

17 A line of cars has v� = c[vn-l (t - T) - vn(t - T)] with v0(t) = cos wt in front. 

(a) Find the growth factor A= 1/(1 + iweiwT /c) in oscillation Vn = Aneiwt _
(b) Show that IAI < 1 and the amplitudes are safely decreasing if cT < ½-
(c) If cT > ½ show that IAI > 1 (dangerous) for small w. (Use sin0 < 0.)

Human reaction time is T :::: 1 sec and human aggressiveness is c = 0.4/sec.
Danger is pretty close. Probably drivers adjust to be barely safe. 

18 For f ( t) = o ( t), the transform F ( s) = 1 is the limit of transforms of tall thin box 
functions b( t). The boxes have width E -+ 0 and height 1 / E and area 1. 

. . { 1/ E for 0 < t < E 

} Inside mtegrals, b(t) = 0 h 
-. approaches o(t).ot erw1se 

Find the transform B(s ), depending on E. Compute the limit of B(s) as E -+ 0. 

19 The transform 1 / s of the unit step function H ( t) comes from the limit of the trans­
forms of short steep ramp functions r E ( t). These ramps have slope 1 / E : 

L
rE =l E oo 

rE = 
t
/E Compute RE(s) = J � e-stdt + J e-stdt. Let E -+ 0. 

---- --+---• t O E 
0 E 

20 In Problems 18 and 19, show that the derivative of the ramp function rE(t) is the
box function b( t). The "generalized derivative" of a step is the __ function. 

21 What is the Laplace transform of y 111 ( t) when you are given Y ( s) and
y(0), y'(0), y"(0)? 

22 The Pontryagin maximum principle says that the optimal control is "bang-bang"­
it only takes on the extreme values permitted by the constraints. To go from rest at x =
0 to rest at x l in minimum time, use maximum acceleration A and 
deceleration - B. At what time t do you change from the accelerator to the brake ? 
(This is the fastest driving between two red lights.) 
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8.6 Convolution {Fourier and Laplace) 

This section is about multiplication. Convolution is a different way to multiply functions. 
It is also a way to multiply vectors. The rule for vectors may look new, but actually you 
learned it in third grade. Let me start with ordinary multiplication of numbers, and build up 
to convolution of vectors and convolution of functions. 

When 112 is multiplied by 2 1 3, watch how we collect nine small multiplications: 

1 1 2 a b C 

2 1 3 2 1 3 

3 3 6 3a 3b 3c 

1 1 2 a b C 

2 2 4 2a 2b 2c 

2 3 8 5 6 • • • • • 

We don't think about this pattern-it is so familiar. In our minds we are just multiplying 
112 by 213 in small steps. The new idea is to think of (1, 1, 2) as a vector and (2, 1, 3) as 
another vector. The convolution of those vectors is the vector (2, 3, 8, 5, 6). 

I need a new symbol * for the convolution of two vectors c and d : 

Convolution of vectors c * d = (co, c1, ... ) * (do, di, ... )= (codo, cod1 + c1do, ... ) 

That line ends with an important hint about c * d, if we can see it. First, every Ci mul­
tiplies every dj . (Those are the nine small multiplications.) Then the nine products are 
collected in a special way. We put c0d1 with c1d0. The next component of c * d will be 
cod2 + c1d1 + c2do. 

In the third grade multiplication, we are collecting together all the products Cidj that 
go in the 100s column. Those were 300 + 100 + 400. To express this with algebra, the 
nth component of c * d will be c0dn + c1dn-l + · · · + cndo. These are all the products 
cidj with i + j = n.

Convolution c * d = d * c (c * d)n = L Cidj = L Cidn-i·
i+j=n i 

(1) 

The summation symbol allows the vectors to be infinitely long. The key point 
is that small multiplications cidj go together when i + j = n, which is the same as 
j = n - i. Let me show that rule again, this time for 2 + x + 3x2 times 1 + x + 2x2

. 

We are collecting all the pieces that multiply each power xn. 

1 + X + 2x2 

2 + X + 3x2 

3x2 
+ 3x3 

+ 6x4 

x + x2 
+ 2x3 

2 + 2x + 4x2 

2 + 3 x + 8 x2 
+ 5 x3 

+ 6 x4 

When we multiply polynomials, 

we take the convolution of 

the vectors of coefficients. 

(2, 1, 3) * (1, 1, 2) = (2, 3, 8, 5, 6) 

I 
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We will connect convolution of coefficients to multiplication of Fourier series. First, 
allow me to show one more example that collects the small multiplications CidJ in the same 
"convolution way." That example is a matrix-vector multiplication Cd. The matrix C has 
the numbers c0, 

c1, 
... along its diagonals and C times dis exactly the convolution c * d.

Cd= c * d I co 

Constant diagonals 
ci

Toeplitz matrix c2 

Shift invariant I (2) 

These "convolution matrices" are the key to signal processing. In that highly active world, 
the matrix C is afilter. The way to understand this filter is through its frequency response 
co + c1 e-i0 + c2e-2i0.

We are ready to connect convolution with Fourier series and Laplace transforms. 

Multiplying f ( x) g ( x) is Convolution of Coefficients 

Convolution answers a question that we unavoidably ask. When I: ckeikx multiplies 
L dzeiZx (call those functions f(x) and g(x)), what are the Fourier coefficients of the
function h(x) = f(x)g(x)? The answer is certainly not ckdk. We have to multiply every 
coefficient Ck times every coefficient dz. All those small multiplications ckdl produce the 
coefficients of (I: ckeikx) (I: dz eiZx). The logic of the convolution rnle has two steps: 

2. The einx term in f(x)g(x) contains every product ckdz in which l = n - k.

The nth Fourier coefficient of (I:ckeikx) (I:dzeiZx ) is the nth component of c * d: 

Multiply functions f, g 

Convolve coefficients c, d

Example 1 The "identity vector" in convolution is 8 = ( ... , 0, 0, 1, 0, 0, ... ). Then 
8 * d = d for every vector d. The "identity function" is i(x) = 1. Then i(x)g(x) = g(x) 
for every function g. The Fourier coefficients of i(x) = 1 are exactly 8. 

You see how convolution in frequency space (k - space) leads to multiplication

in function space (x - space). This is the central idea of the convolution rnle. 

Example 2 The autocorrelation of a vector c is the convolution c * c '. That vector 
c' is the reverse of c. The components of c I are the Fourier coefficients C-k of f ( x). So 
autocorrelation c * c' gives the Fourier coefficients of the product f ( x) f ( x) = If ( x) 1 2 

: 

ff = (1 + eix) (1 + e-ix) = 1 e-ix + 2 + 1 eix c * c 1 = (0, 1, 1) * (1, 1, 0) = (1, 2, 1). 

The autocorrelation of the box vector (0,1,1) is the hat vector (1,2,1). Box* box= hat. 
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Convolution of Functions 

The reverse question is equally important and has to be answered. If f(x) and g(x) have 
Fourier coefficients ck and dk, what function has the Fourier coefficients ckdk? We are 
multiplying vectors in k-space. Then we have convolution f * g of functions in x-space ! 

271' 271' 

Periodic Convolution (f * g)(x)= J f(y)g(x - y)dy= J g(y)f(x -y)dy. (4) 
0 0 

Vector convolution is (c * d)n = I:, cidn-i· The key is i + (n - i) = n. Convolu­
tion of functions has an integral instead of a sum (of course). Above all we notice that 
y + (x - y) = x. The pattern stays exactly the same when the functions are not periodic 
and the integrals go from -oo to oo: 

00 00 

Infinite Convolution (f * g)(x) = j f(y)g(x - y) dy = j g(y)f(x - y) dy. (5)

-oo -oo 

For the Laplace transform, all functions are zero fort < 0. Change x and y tot and T. 

One-sided 
Laplace 

t 

(f * g)(t) = J f(T)g(t - T) dT because

0 

f(T) = OforT < 0 
g(t - T) = 0 for T > t 

Solving Differential Equations by Convolution 

I want to apply convolution to the main problem of this book-the solution of equations 
like y' - ay = f(t) and y" + y = f(x). Those are easy problems and we know the 
answers. Simplicity is good, it keeps the main point clear. Convolution will offer us a 
new way to write the solutions y( t) from Laplace and y( x) from Fourier. 

I will recall the old ways to solve the same equations. The next page has a summary 
of the outstanding examples in this book-linear equations with constant coefficients. 

Example 3 Solve the equation y' - ay = f (t) by convolution, starting from y(O) = 0. 

Solution Take the Laplace transform of both sides, and divide to find Y ( s): 

sY(s) - aY(s) = F(s) gives Y(s) = 
F(s) 

= G(s) F(s). (6) 
s-a

The transform F( s) of the driving function is multiplied by the "transfer function" G( s ). 
In this problem G(s) = 1/(s - a). Then y(t) is the inverse transform ofY(s) = G(s)F(s). 

The key is convolution. Multiplication in s - space becomes convolution in t - space. 

This rule gives the solution y = g * f from Y = GF. Then we prove the rule. 
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The inverse transform of the transfer function G ( s) is the impulse response g ( t). 
For the equation y ' - ay = f(t), the transfer function is G(s) = 1/(s - a) and its inverse 
transform is g ( t) = eat . Then the multiplication Y ( s) = G ( s) F ( s) becomes a convolution 
of the impulse response eat with the driving function f ( t) : 

Solution by 
convolution 

I 

·-

t 

y(t) = g(t) * f (t) = J ea (t-T) f (T)dT (7) 

T=0 

Please recognize this solution. We are integrating e-at f(t) for the fourth time! The central 
problem of Chapter 1 was y' - ay = f(t) (or q(t)). There we proposed three methods. 

1. The integrating factor e-at multiplies y' -ay = f (t). Integrate (e-at

y)' =e-at f.

2. Variation of parameters in the null solution Yn = Ceat gives yp (t) = C(t) eat .

3. Every input f (T) is multiplied by its growth factor ea (t-T). Combine the outputs.

4. (New) The solution y(t) is the convolution of j(t) with the impulse response eat.

The impulse response is g(t) = g * IS, when the input is the impulse j(t) = /S(t).
The forced response is y = g * f, when the force is f ( t). Always the convolution of 
the driving force f(t) with the Green's function g(t) produces the output y(t). 

Confession I used Green's name partly because the letter g appeared so conveniently. 
My deeper reason is to express a central idea that connects differential equations and 
matrix equations-the two themes of this book. Convolution with the impulse response 

(the Green's function) is just like multiplication by the inverse matrix A- 1. 

Here is the message that comes from AA - l = I. The vector g 
1 

in column j of A- 1 is
the response to the delta vector 61 = (·, 0, 1, 0, ·) in column j of the identity matrix. 

Ag1 = 61 
in linear algebra g' - ag = 6 ( t) in differential equations 

I hope you find this helpful. The Green's function g(t - T) gives the response at time t 
to a unit impulse at time T. The total response at tis the integral of impulses j(T) times 
responses g(t - T). Compare with the solution v = A- 1 b to a matrix equation Av= b.

The inverse matrix A -l gives the response at position i to a unit impulse at position j.

The solution v = A- 1 
b is the sum over all j of impulses b1 times those responses. 

For shift-invariant equations, the response at t to an impulse at T depends only on the 
elapsed time t - T. For shift-invariant matrices, the responses (A- 1 )ij depend only
on i - j. The differential equation has constant coefficients. The Toeplitz matrix has 
constant diagonals. Here A is a difference matrix and A- 1 is a sum matrix.

(8)
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Example 4 (Fourier) Solve the equation -y" + y = f(x) for -oo < x < oo. 

Solution This is a boundary value problem, with y = 0 at the endpoints x = -oo and 
x = oo. Take the Fourier transform of every term, so the two derivatives in y" 
become multiplications by ik : 

-y" + y = f(x) - (ik)2f) + f) = }(k) fj(k) = 
k!�\ = g(k) f(k). (9)

In k-space, the transform }(k) is multiplied by g(k) = 1/(k2 
+ 1). In x-space, the 

right side f(x) is convolved with the Green's function g(x). That Green's function g(x) 
is the solution when the right side f(x) is a delta function o(x). 

To complete the solution we need g(x). The transform approach would invert 
g(k) = 1/(k2 

+ 1). The direct approach is to solve -g" + g = o(x). Remember that 
o ( x) = 0 for x > 0 and x < 0 :

x > 0 -g" + g = 0 gives g = c1e
x 

+ c2e-x Then g(oo) = 0 requires c1 = 0 
x < 0 -g" + g = 0 gives g = C1 ex 

+ C2e-x Then g( -oo) = 0 requires C2 = 0 

The action is all at x = 0. There is no jump in the function g(x), so that C1 = c2. 

The minus sign in -g" + g = o(x) produces a drop of 1 in the slope g'(x) at x = 0. 
Comparing the slopes -c2e-x and C1e

x at x = 0 gives C1 + c2 = 1. The coefficients are 
C1 = c2 = ½ and the Green's function g( x) is found: 

{ ½e-"' for x > 0 
g(x) = 

!e"' for x < 0 
2 

00 

and convolution gives y(x) = j f(X)g(x - X) dX.

-oo 

Compare with this second order equation in time, when Fourier changes to Laplace. 
Now we have initial values at t = 0 instead of boundary values at x = ±oo. 

Example 5 Solve the equation y" + y = f(t) starting from y(O) = y'(O) = 0. 

Solution Take the Laplace transform of both sides, and divide by s2 + 1 to find Y ( s) : 

s2Y(s) + Y(s) = F(s) gives Y(s) = F(s)
= F(s)G(s). (10) 

s
2 + 1

The transfer function is G(s) = 1/(s2 + 1). That is the Laplace transform of the 
impulse response (the growth factor) g(t) = sin t. (Problem 8.5.2 confirms that (sin t) 11 

does surprisingly produce o(t). The slope is zero fort < 0, and (sin t) 1 jumps to cos 0 = 1 
at t = 0.) Multiplication F(s)G(s) corresponds to convolution f * g: 

t 

Laplace convolution y(t) = f (t) * g(t) = j f (T) sin (t - T) dT. (11) 
0 

This solves Example 5 quickly-the crucial step is to be able to invert G(s) to find g(t). 
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Proof of the Convolution Rule 

We need to prove that the Laplace transform of f(t) * g(t) is F(s)G(s). Convolution 

becomes multiplication. Similarly the Fourier transform of f(x) * g(x) is J(k)g(k). 
An integral over T produces f * g, and then an integral over t gives its transform. 

The key is to reverse the order in that double integral. Integrate first with respect to t. 

It was safe to extend the integration to T = oo, since g(t - T) = 0 for T > t. Also safe 
to insert esT and e- sT; their product is 1. The inner integral on the right is exactly the 
Laplace transform G(s), when t - Tis replaced by T: 

= = = 

J g(t -T)e- s(t-T)dt = J g(T)e- sr dT = J g(T)e- sr dT = G(s). (12) 

t=O r=-T r=O 

Since the inner integral is G ( s), the double integral is F ( s) G ( s) as desired : 

= 

J G(s )f (T) e- sT dT = F(s) G(s ). The convolution rule is proved. 

T=O 

The same rule holds for Fourier transforms, except the integrals have -oo < x < oo 
and -oo < k < oo. With those limits we don't have or need the one-sided condition 
that g(t) = 0 for t < 0. The steps are the same and we reach the same conclusion. 

The Fourier transform of f(x) * g(x) is J(k) g(k). 

Point-Spread Functions and Deconvolution 

I must not leave the impression that convolution is only useful in solving differential equa­
tions. The truth is, we solved those equations earlier. Our solutions now have the neat form 
y = f * g, but they were already found without convolutions. A better application is a 
telescope looking at the night sky, or a CT-scanner looking inside you. 

A telescope produces a blurred image. When the actual star is a point source, we don't 
see that delta function. The image of '5(x, y) is a point-spread function g(x, y): the 
response to an impulse, the spreading of a point. With diffraction you see an "Airy disk" 
at the center. The radius of this disk gives the limit of resolution for a telescope. 

When the star is shifted, the image is shifted. The source J(x - xo, y - Yo) produces 
the image g(x - xO, y - yO). It is bright at the location xo, Yo of the star, and g gets dark
quickly away from that point. The image of the whole sky is an integral of blurred points. 

The true brightness of the night sky is given by a function f(x, y). The image we

see is the convolution c = f * g. But if we do know the blurring function g(x, y), 
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deconvolution will bring back f(x, y) from f * g. In transform space, the scanner 
multiplies by G and the post-processor divides by G. Here is deconvolution: 

e = f * g transforms to C = FG. The inverse transform of F =
G 

gives f. 

The manufacturer knows the point-spread function g and its Fourier transform G. The 
telescope or the CT-scanner comes equipped with a code for deconvolution. Transform the 
blurred output c to C, divide by G, and invert F = C/G to find the true source function f. 

Note that two-dimensional functions f(x, y) have two-dimensional transforms f(k, l).
The Fourier basis functions of x and y are ei k

xeily with two frequencies k and l. 

Cyclic Convolution and the DFT 

The Discrete Fourier Transform connects e = (co, ... , CN-1) to f =
(Jo, ... , fN-i),

The Fourier matrix gives Fe = f. Computations are fast, because all the vectors 
are N-dimensional and the FFT is available. A convolution rule will lead directly to 
fast multiplication and fast algorithms. This is convolution in practice. 

The rule has to change from e * d = (1, 1, 2) * (2, 1, 3) = (2, 3, 8, 5, 6). When 
the inputs e and d have N components, their cyclic convolution also has N components. 
The new symbol in (l, 1, 2) ® (2, 1, 3) = (7, 9, 8) indicates "cyclic" by a circle in ®· 

The key is that w3 
= 1. Cyclic convolution folds 5w3 

+ 6w4 back into 5 + 6w. 

(1 + lw + 2w2)(2 + lw + 3w2 ) = 2 + 3w + 8w2 
+ 5w3 

+ 6w4 
= 7 + 9w + 8w2 . 

In the same way, (0, 1, 0) ® (0, 0, 1) = (1, 0, 0) because w times w2 equals w3 
= 1. 

I will use this example to test the cyclic convolution rule. 

Cyclic convolution rule for the N-point transform 

The kth component of F(e ® d) is (Fe)k times (Fd)k- That word "times" means: 
Multiply l,w,w2 from Fe and l,w2 ,w4 from Fd to get l,w3,w6

, which is 1,1,1. 

The convolution e ® d has N2 small multiplications. Component by component 
multiplication of two vectors only needs N. So the convolution rule gives 
a fast way to multiply two very long N-digit numbers (as in the prime factors that 
banks use for security). When you multiply the numbers, you are convolving those digits. 

Transform the numbers to f and g. Multiply transforms by fk9k· Transform back. 
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When the cost of these three discrete transforms is included, the FFT saves the day : 

Go to k-space, multiply, go back N2 multiplications are reduced to N + 3N log N. 
In MATLAB, component-by-component multiplication is indicated by f. * g (point-star). 

F(c ® d) = (Fc).*(Fd) ifft (c ® d) = N * ifft (c).*ifft (d) (13) 

Note that the fft command transforms f to c using w = e- 21ri/N and the matrix F. 
The ifft command inverts that transform using w = e21ri/N and the Fourier matrix F. 
The factor N appears in equation (13) because FF= NI. 

Circulant Matrices 

Multiplication by an infinite constant-diagonal matrix gives an infinite convolution. When 
row n of C00 multiplies d, this adds up the small multiplications cidj with i + j = n : 

Infinite 

convolution 

• • • 

• 

I ; I = C*d. (14) 

Similarly, cyclic convolution comes from an N by N matrix. The matrix is called a 
"circulant" because every diagonal wraps around (based on wN 

= 1). All diagonals have 
N equal entries. The diagonal with c1 is highlighted for N = 4 : 

Cyclic convolution 

Circulant matrix 
(15) 

Notice how the top row produces coda + c3d1 + c2d2 + c1d3. Those subscripts O + 0 
and 3 + 1 and 2 + 2 are all zero when N = 4. In this cyclic world, 2 and 2 add to 0. 
That comes from w2 w2 = w4 = w0

. 

Circulant matrices are remarkable. If you multiply circulants B and C you get another 
circulant. That product BC gives convolution with the vector b ® c. The amazing 
part is the eigenvalues from the DFT and eigenvectors from the Fourier matrix : 

The eigenvalues of Care the components of the discrete transform Fe 
The eigenvectors of every Care the columns of F (also the columns of F and F- 1) 

We can verify two eigenvalues .\ = c0 + c1 + c2 and c0 + c1 w + c2w2 for this circulant: 

(16) 

The equation FC = AF is the cyclic convolution rule F(c ® d) = (Fc).*(Fd). 



8.6. Convolution (Fourier and Laplace) 487 

The End of the Book 

The book is ending on a high note. Constant coefficient problems have taken a big step from 
Ay" +By'+ Cy = 0. Now we have transforms (Fourier and Laplace) and convolutions. 
The discrete problems bring constant diagonal matrices. Cyclic problems bring circulants. 
Time to stop ! 

I should really say, stop and look back. The book has emphasized linear problems, be­
cause these are the equations we can understand. It is true that life is not linear. If the input is 
multiplied by 10, the output might be multiplied by 8 or 12 and not 10. 
But in most real problems, the input is multiplied or divided by less than 1. 1. 
Then a linear model replaces a curve by its tangent lines (this is the key to calculus). 
To understand applied mathematics, we need differential equations and linear algebra. 

• REVIEW OF THE KEY IDEAS •

1. Convolution (1, 2, 3) * ( 4, 5, 6) is the multiplication 123 x 456 without carrying.

2. ('f�ckeikx )(I:;d1 eilx) has (c * d)n = I:;ckdn-k as the coefficient of einx _ 

Multiply functions tt convolve coefficients as in (1 + 2x + 3x2)(4 + 5x + 6x2 ). 

3. Differential equations transform to Y(s) = F(s)G(s). Then y(t) = f(t) * g(t) =
driving force* impulse response. The impulse response g(t) is the Green's function.

4. Shift invariance: Constant coefficient equations and constant diagonal matrices.

5. Circulants Cd give cyclic convolution c ® d. Multiply components (Fc).*(Fd).

Problem Set 8.6 

1 Find the convolution v * w and also the cyclic convolution v ® w : 

(a) v = (l, 2) and w = (2, 1) (b) v = (1,2,3) andw = (4,5,6). 

2 Compute the convolution (1, 3, 1) * (2, 2, 3) = (a, b, c, d, e). To check your answer, 
add a+ b + c + d + e. That total should be 35 since 1 + 3 + 1 = 5 and 2 + 2 + 3 = 7 
and 5 x 7 = 35. 

3 Multiply 1 + 3x + x2 times 2 + 2x + 3x2 to find a + bx + cx2 
+ dx3 

+ ex4
• 

Your multiplication was the same as the convolution (1, 3, 1) * (2, 2, 3) in Problem 2. 
When x = l, your multiplication shows why 1 + 3 + 1 = 5 times 2 + 2 + 3 = 7 
agrees with a + b + c + d + e = 35. 

4 (Deconvolution) Which vector v would you convolve with w 

v * w = (0, 1, 2, 3, 0)? Which v gives v ® w = (3, 1, 2)? 
(1, 2, 3) to get 
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5 (a) For the periodic functions f(x) = 4 and g(x) = 2cosx, show that f * g is
zero (the zero function)! 

(b) In frequency space (k-space) you are multiplying the Fourier coefficients of
4 and 2 cos x. Those coefficients are co = 4 and d1 = d_ 1 = 1.
Therefore every product ckdk is __ .

6 For periodic functions f = L ckeikx and g = L dkeikx , the Fourier coefficients of 
f * g are 21rckdk, Test this factor 21r when f(x) = 1 and g(x) = 1 by computing 
f * g from its definition (4). 

21r 

7 Show by integration that the periodic convolution J cos x cos( t - x )dx is 1r cost. 
0 

In k-space you are squaring Fourier coefficients c1 = c_ 1 = ½ to get ¼ and ¼ ; 
these are the coefficients of ½ cost. The 21r in Problem 6 makes 1r cost correct. 

8 Explain why f * g is the same as g * f (periodic or infinite convolution). 

9 What 3 by 3 circulant matrix C produces cyclic convolution with the vector 
c = (1, 2, 3)? Then Cd equals c ® d for every vector d. Compute c ® d for 
d = (0, 1, 0). 

10 What 2 by 2 circulant matrix C produces cyclic convolution with c = (1, 1)? 
Show in four ways that this C is not invertible. Deconvolution is impossible. 

(1) Find the determinant of C. (2) Find the eigenvalues of C.
(3) Find d so that Cd= c ®dis zero. (4) Fe has a zero component.

11 (a) Change b(x) * 8(x - 1) to a multiplication b d. Transform the box function
� 1 

b(x) = {1 for 0 � x � 1} to b(k) = J e- ikxdx. The shifted delta transforms to 
0 

d(k) = J 8(x - l)e- ikxdx. 

(b) Show that your result b d is the transform of a shifted box function. Then
convolution with 8 ( x -1) shifts the box.

12 Take the Laplace transform of these equations to find the transfer function G ( s) : 

(a) Ay" +By'+ Cy= J(t) (b) y 1 
- 5y = J(t) (c) 2y(t) -y(t-1) = J(t) 

13 Take the Laplace transform of y1111 
= 8 ( t) to find Y ( s). From the Transform Table 

in Section 8.5 find y(t). You will see y"' = 1 and y"" = 0. But y(t) = 0 for 
negative t, so your y"' is actually a unit step function and your y"" is actually J(t). 

14 Solve these equations by Laplace transform to find Y ( s). Invert that transform 
with the Table in Section 8.5 to recognize y(t). 

(a) y' -6y = e-t, y(0) = 2 (b) y" + 9y = 1, y(0) = y'(0) = 0.
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15 Find the Laplace transform of the shifted step H(t- 3) that jumps from Oto 1 at t = 3. 
Solve y' - ay = H(t - 3) with y(O) = 0 by finding the Laplace transform Y(s) and 
then its inverse transform y(t): one part fort < 3, second part fort ;:::: 3. 

16 Solve y' = 1 with y(O) = 4-a trivial question. Then solve this problem the slow 
way by finding Y ( s) and inverting that transform. 

17 The solution y(t) is the convolution of the input f(t) with what function g(t)? 

(a) y' - ay = j(t) with y(O) = 3 (b) y' - ( integral of y) = f(t).

18 For y' - ay = f (t) with y(O) = 3, we could replace that initial value by adding 
3'5(t) to the forcing function j(t). Explain that sentence. 

19 What is J(t) * J(t)? What is J(t - 1) * J(t - 2)? What is J(t - 1) times J(t - 2)? 

20 By Laplace transform, solve y 1 = y with y(O) = 1 to find a very familiar y(t). 

21 By Fourier transform as in (9), solve -y" + y = box function b(x) on O :::; x :::; 1. 

22 There is a big difference in the solutions toy"+ By'+ Cy = f(x), between the 
cases B2 < 4C and B2 

> 4C. Solve y" + y = '5 and y" - y = '5 with y(±oo) = 0. 

23 (Review) Why do the constant f (t) = 1 and the unit step H(t) have the same 
Laplace transform 1 / s ? Answer : Because the transform does not notice 



MATRIX FACTORIZATIONS 

1. 

2. 

A = LU = ( lower trian�ular L ) ( upper triangular U )l's on the diagonal pivots on the diagonal 

Requirements: No row exchanges as Gaussian elimination reduces A to U.

A = LDU = ( lower triangular L ) ( pivot matrix ) ( upper triangular U )l's on the diagonal D is diagonal l's on the diagonal 

Requirements: No row exchanges. The pivots in Dare divided out to leave l's on the
diagonal of U. If A is symmetric then U is L T and A 

= L D LT . 

3. PA= LU (permutation matrix P to avoid zeros in the pivot positions).

Requirements: A is invertible. Then P, L, U are invertible. P does all of the
row exchanges in advance, to allow normal LU. Alternative: A= L1PiU1. 

4. EA= R (m by m invertible E) (any matrix A)= rref(A ).

Requirements: None! The reduced row echelon form R has r pivot rows and pivot
columns. The only nonzero in a pivot column is the unit pivot. The last m - r rows
of E are a basis for the left nullspace of A; they multiply A to give zero rows in R.
The first r columns of E-1 are a basis for the column space of A.

5. S = CT C = (lower triangular) (upper triangular) with vJ5 on both diagonals

Requirements: Sis symmetric and positive definite (all n pivots in D are positive).
This Choleskyfactorization C = chol(S) has CT= Lvi5, so CT C = LDL T . 

6. A= QR= (orthonormal columns in Q) (upper triangular R).

Requirements: A has independent columns. Those are orthogonalized in Q by the
Gram-Schmidt or Householder process. If A is square then Q- 1 

= QT
. 

7. A= VA v-
1 

= (eigenvectors in V) (eigenvalues in A) (left eigenvectors in v-1 ). 

Requirements: A must have n linearly independent eigenvectors.

8. S = QAQT 
= (orthogonal matrix Q) (real eigenvalue matrix A) (QT is Q-1 ).

Requirements: Sis real and symmetric. This is the Spectral Theorem.
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9. A= M J M- 1 
= (generalized eigenvectors in M) (Jordan blocks in J) (M-1 ).

10. 

Requirements: A is any square matrix. This Jordan form J has a block for each
independent eigenvector of A. Every block has only one eigenvalue. 

A = U:EVT = ( o�hogonal ) ( m x n singular _valu_e matrix ) ( ort�ogonal ) .
U1smxn o-1, ... ,o-r on 1ts drngonal V1snxn 

Requirements: None. This singular value decomposition (SVD) has the eigenvectors
of AAT in U and eigenvectors of AT A in V; O"i = J.\i(AT A)= J.\i(AAT ). 

ll. A+ = V:E+uT = (orthogonal) ( n/ 
x m pseu

/
doinver

d
�e of �

al) (orthogonal).
n x n l o-1, ... , 1 O"r on rngon m x m 

Requirements: None. The pseudoinverse A+ has A+ A = projection onto row space
of A and AA+ 

= projection onto column space. The shortest least-squares solution
to Ax= b is x = A+ b. This solves AT Ax= A T b. When A is invertible : A+=A- 1

. 

12. A= QH = (orthogonal matrix Q) (symmetric positive definite matrix H).

Requirements: A is invertible. This polar decomposition has H2 
= AT A. The

factor H is semidefinite if A is singular. The reverse polar decomposition A = K Q

has K2 = AAT. Both have Q = UVT from the SVD.

13. A= u Au- 1 = (unitary U) (eigenvalue matrix A) cu-1 which is uH = UT).
Requirements: A is normal: AH A= AAH. Its orthonormal (and possibly complex)
eigenvectors are the columns of U. Complex .\'s unless A= AH : Hermitian case. 

14. A= UTu- 1 = (unitary U) (triangular T with .\'s on diagonal) (U-1 = UH).
Requirements: Schur triangularization of any square A. There is a matrix U with
orthonormal columns that makes u-1 AU triangular: 

] [ even-odd ] . 
F 

. = one step of the (recursive) FFT.
n/2 permutat10n 

Requirements: Fn = Fourier matrix with entries wjk where wn = l: Fn F n = nl.

D has 1, w, ... , wn/2 
-

1 on its diagonal. For n = 2P the Fast Fourier Transform

will compute Fnx with only ½n£ = ½n log2 n multiplications from .e stages of D's. 



Properties of Determinants 

1 The determinant of the n by n identity matrix is 1. 

2 The determinant changes sign when two rows are exchanged (sign reversal): 

3 The determinant is a linear Junction of each row separately (all other rows stay fixed). 

multiply row 1 by any number t

, add row 1 of A to row 1 of A'

Pay special attention to rules 1-3. They completely determine the number det A. 

4 If two rows of A are equal, then det A= 0.

5 Subtracting a multiple of one row from another row leaves det A unchanged. 

£ times row 1 

from row 2 

6 A matrix with a row of zeros has det A = 0.

7 If A is triangular then det A = a11 a22 • • • ann = product of diagonal entries. 

8 If A is singular then det A = 0. If A is invertible then det A =I= 0.

Proof Elimination goes from A to U. If A is singular then U has a zero row. The rules give 

det A = det U = 0. If A is invertible then U has the pivots along its diagonal. The product 

of nonzero pivots (using rule 7) gives a nonzero determinant: 

Multiply pivots 

9 The determinant of AB is det A times det B: IABI = IAI IBI. 

A times A-
1 AA- 1 

= I so 

10 The transpose AT has the same determinant as A. 
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accuracy, 184,185,190,191 

Adams method, 192, 193 

add exponents, 9 

addition formula, 87 

adjacency matrix, 318, 320, 427 

Airy's equation, 130 

albedo, 49 
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amplitude response, 34, 77 
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back substitution, 213, 264 
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bad news, 329 

balance equation, 48, 118, 316, 424 
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Black-Scholes, 457 

block matrix, 231,237,420 

block multiplication, 226, 227 
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catalyst, 180 

Cayley-Hamilton theorem, 348 

cell phone, 44, 176 

center, 161, 163, 174 

centered difference, 6, 190 

chain rule, 3, 4, 368, 371 

change of variables, 365 

chaos, 155,181 

characteristic equation, 90, 103, 108, 164 

chebfun, 405 

chemical engineering, 457 

chess matrix, 311 

Cholesky factorization, 403 

circulant matrix, 205,449,486,488 

circular motion, 76, 351 

closed-loop, 64 
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closest line, 387, 393 

coefficient matrix, 199 

cofactor, 331 

column picture, 198, 206 

column rank, 275, 322 

column space, 254, 259, 278 

column-times-row, 222, 226, 429 

combination of columns, 199, 202 

combination of eigenvectors, 329, 349, 

356,371,374 

commute, 221,224 

companion matrix, 164, 165,167,335, 

354-356, 360, 369

competition, 53, 174 

complete graph, 427, 428 

complete solution, 1, 17, 18, 105, 106, 

203,211,265,274,276 

complex conjugate, 32, 87, 94, 379 

complex eigenvalues, 166 

complex exponential, 13, 432 

complex Fourier series, 440 

complex gain, 111 

complex impedance, 120 

complex matrix, 376 

complex numbers, 31-33, 82-89 

complex roots, 90, 163 

complex solution, 36, 38, 39, 89 

complex vector, 433 

compound interest, 12, 185 

computational mechanics, 372 

computational science, 419,447 

concentration, 47, 180 

condition number, 401 

conductance matrix, 124, 385,425,426 

conjugate transpose, 377 

constant coefficients, 1, 98, 117, 432, 

470,487 

constant diagonals, 482, 486, 487 

constant source, 20 

continuous, 154, 358 

continuous interest, 44 

convergence, 10,196 

convex, 73 

convolution, 117, 136, 4 79-489 

Convolution Rule, 476,480,484,485 

Cooley-Tukey, 451 

cooling (Newton's Law), 46 

cosine series, 436 

Counting Theorem, 267,304,314 

Cramer's Rule, 331 

critical damping, 96, 100, 115 

critical point, 170, 171, 182 

cubic spline, 139 

CurrentLaw, 123,317,318 

cyclic convolution, 485-487 

D 

d' Alembert, 464,467 

damped frequency, 99, 105, 113 

damped gain, 113 

damping, 96, 112, 118, 122 

damping ratio, 99, 113, 114 

dashpot, 118 

data, 401,431 

decay rate, 46,437,444,456,467 

deconvolution, 485, 487 

degree matrix, 318,427,429 

delta function, 23, 28, 78, 97, 98, 407, 

438,439,442,458,471 

delta vector, 415,447,482 

dependent, 288 

dependent columns, 209 

derivative rule, 141,441,476 

determinant, 175, 228, 232, 326, 330, 

332,336,347,353,402,492 

DFT, 432, 446, 449, 454, 485 

diagonal matrix, 229, 398 

diagonalizable, 363, 382 
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difference equation, 45, 52, 184,188,338 

difference matrix, 240, 314, 405, 423 

differential equation, 1, 40, 349 

diffusion, 358, 456, 457 

diagonalization, 337, 400 

dimension, 44, 52,267,285, 291-293, 

304,322 

dimensionless, 34, 99, 113, 124 

direction field, 157 

Discrete Cosine Transform (DCT), 454 

Discrete Fourier Transform, (see DFT) 
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discrete sines, 405, 432, 454 

displacements, 124 

distributive law, 220 

divergence, 417 

dot product, 201, 214, 248, 377 

double angle, 84 

double pole, 145,472 

double root, 91, 92, 101 

doublet, 151 

doubling time, 46, 4 7 

driving function, 77, 112,476 

dropoff curve, 57, 62, 157 

E 

echelon matrix, 263, 266, 267 

edge, 313,423 

eigenfunction, 408,421,455,459,467 

eigenvalue, 164, 325, 326, 382 

eigenvalue matrix, 337 

eigenvector, 167,325,326,382 

eigenvector matrix, 337, 363 

Einstein, 464 

elapsed time, 98 

elimination, 210, 212, 334 

elimination matrix, 224, 229, 303 

empty set, 293 

energy,396,397,409,411,424,443 

energy balance, 48 

energy identity, 440, 444 

enzyme, 180 

epidemic, 179, 180 

equal roots, 90, 92, 100 

equilibrium, 417 

error, 185, 186, 191, 193 

error function, 458 

error vector, 386, 394 

Euler, 317 

Euler equations, 176, 183 

Euler's Formula, 13, 82, 83, 450 

Euler's method, 185, 186, 189, 384 

even permutation, 246 

exact equations, 65 

existence, 154, 196 

exponential, 2, 7, 10, 25,131,362,369 

exponential response, 104, 108, 117 

F 

factorization, 382, 490 

farad, 122 

Fast Fourier Transform, (see FFT) 

feedback, 64 

FFT,88,432,446,447,450,451 

fftw, 452 

Fibonacci, 340,345,405 

filter, 480 

finite elements, 124,373,419,430 

finite speed, 463 

first order, 164 

flow graph, 452 

football, 176, 178 

force balance, 426 

forced oscillation, 80, 105, 110 

forward differences, 240 
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Four Fundamental Subspaces, 300, 303 

Fourier coefficients, 435-437, 440 

Fourier cosine series, 457 

Fourier Integral Transform, 449 

Fourier matrix, 85, 243, 446-448, 450 

Fourier series, 419,436,439,443,455 

Fourier sine series, 410,434,467 

fourth order, 80, 93, 469 

foxes, 172, 174 

free column, 262 

free variable, 262, 266, 269, 270, 274 

free-free boundary conditions, 412 

frequency,31, 76,79,373,466 

frequency domain, 120, 145,449,480 

frequency response, 36, 77, 432 

frisbee, 176 

full rank, 275-277, 281, 287, 385 

function space, 293, 298, 433, 440, 480 

fundamental matrix, 366, 371, 384 

fundamental solution, 78, 81, 97, 117, 458 

Fundamental Theorem, 5, 8, 42, 244, 

304,307,400 

G 

gain, 30, 33, 84, 104, 111 

Gauss-Jordan, 230-232, 236,283,331 
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general solution, 280 
generalized eigenvalues, 372 
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Gibbs phenomenon, 435, 436 
gold, 153 

Gompertz equation, 63 
Google, 328 
GPS, 464 
gradient, 417, 421 
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graph Laplacian, 316, 318, 423 
Green's function, 136,482,483 
greenhouse effect, 49 
grid,416,419,429 
ground a node, 424, 426 
growth factor, 24, 40-42, 51, 97,135,482 
growth rate, 2, 40, 364 

H 

Henon map, 181 
Hadamard matrix, 243,344 
half-life, 46 
harmonic motion, 75, 76, 79 
harvesting, 59, 60, 62 
hat function, 467 
heat equation, 410,455,456 
heat kernel, 457,458,460 
Heaviside, 21, 477 
Henry, 122 
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Hertz, 76 
higher order, 93,102,105,107,117,355 
Hilbert space, 433 
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Hooke's Law, 74, 374, 424 
hyperplane, 207 

identity matrix, 201,219 
image, 484 
imaginary eigenvalues, 331, 351 
impedance, 39, 120, 121, 127 
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impulse, 23, 78 
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impulse response, 23, 24, 78, 97, 102, 
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independence,204 
independent columns, 273, 276, 290, 

322,385,391 
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independent rows, 273 
inductance, 119 
infection rate, 179 
infinite series, 10, 13, 329, 369, 434, 455 
inflection point, 54, 55 
initial conditions, 2, 40, 73, 349, 457 
initial values, 470, 483 
inner product, 226, 323,377,409,433 
instability, 193 
integrating factor, 19, 26, 41,482 
integration by parts, 248,323,409,413,431 
interest rate, 12, 43, 485 
intersection, 201, 258, 299 
inverse matrix, 31, 228, 231, 482 
inverse transform, 140,446,473,477 
invertible, 205, 213, 228, 290 
isocline, 156, 159, 160 

J 

Jacobian matrix, 171, 177 
Jordan form, 357, 382, 383 
Julia, 330 
jump, 21,474, 475 

K 

key formula, 8, 19, 78, 112, 117, 135,482 
kinetic energy, 79 
Kirchhoff's Current Law, 316,424 
Kirchhoff's Laws, 123, 272 
Kirchhoff's Voltage Law, 315 
KKT matrix, 428 
kron (A, B), 420 

L 

l'Hopital's Rule, 43, 109 
LAPACK, 242, 332 
Laplace convolution, 481, 483 
Laplace equation, 416,417 
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Laplace transform, 121, 141-151, 470-478 

Laplace's equation, 418,442,443 
Laplacian matrix, 318,320,424 

law of mass action, 180 

least squares, 385-387 

left eigenvectors, 348 
left nullspace, 300, 302 
left-inverse, 228, 232, 242 

length, 242 

Lienard, 182 

linear combination, 199, 201, 254, 288 

linear equation, 4, 17, 105, 134, 177, 349 

linear shift-invariant, 459 

linear time-invariant (LTI), 71, 349 

linear transformation, 209 

linearity, 221,471 

linearization, 172-179 

linearly independent, 277, 287, 289 

lobster trap, 159 
logistic equation, 47, 53, 62, 157, 190 

loop, 315-317 

loop equation, 119, 123, 127 

Lorenz equation, ix, 154, 181 
Lotka-Volterra, 173 

M 

magic matrix, 209 

magnitude, 112 

magnitude response, 34, 77 
Markov matrix, 327, 329, 333, 382 

mass action, 180 

mass matrix, 372, 381 

Mathematica, 194,467 

mathematical finance, 457 
MATLAB, 191,332,372,447,451,486 

The single heading "Matrix" indexes 

the active life of linear algebra. 

Matrix 

-1, 2, -1, 246,415,454
adjacency, 318
antisymmetric, 352, 376

augmented, 230, 271, 278

circulant, 486, 488

companion, 164, 355, 360 

complex, 376 

difference, 240,314,405,422, 

echelon, 266 

eigenvalue, 337 

eigenvector, 337, 363 

elimination, 224, 229, 303 

exponential, 14, 362, 368 

factorizations, 382, 490 

Fourier, 85,243,446,447, 450 

fundamental, 366 

Hadamard, 243,344 

Hermitian, 377 

identity, 201, 219 

incidence, 124,313,314,317,423 

inverse, 228, 231 

invertible, 204,213,231,290 

Jacobian, 171, 177 

KKT,428 

Laplacian, 318,320,424 

Markov, 327,333 

orthogonal, 238, 247, 376 

permutation, 241, 246,299,450 

positive definite, 372, 385, 396 

projection 238, 242, 247, 334, 376, 
378,382,390,394 

rank one, 305, 382, 404 

rectangular, 385 

reflection, 247 

rotation, 331 

saddle-point, 428, 430 

second difference, 414 

semidefinite, 398,412,413 

similar, 365, 370, 383 

singular, 202, 326, 328, 492 

skew-symmetric, 382 

sparse, 223 

stable, 352 

stiffness, 124, 372, 385 

symmetric, 238, 375, 409 

Toeplitz, 480, 482 

tridiagonal, 382, 454 

unitary, 377 
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matrix multiplication, 219-223, 249 

mean, 392, 395 

mechanics, 74 

mesh, 420 

Michaelis-Menten, 180 

minimum, 404 

model problem, 40, 115, 374, 423 

modulus, 32, 83 

multiplication, 202,219,479 

multiplicity, 93, 343 

multiplier, 210, 214, 225 

multistep method, 192 

N 

natural frequency, 77, 99,102,466 

network, 313-323, 416,425,426 

neutral stability, 166, 339, 352 

Newton's Law, 46, 73, 239, 370 

Newton's method, 6, 181 

nodal analysis, 123 

node, 313, 423 

nondiagonalizable, 339, 342, 346, 383 

nonlinear equation, 1, 53, 172 

nonlinear oscillation, 71 

norm, 400,401 

normal distribution, 458 

normal equations, 387, 389 

normal modes, 373 

Nth order equation, 107, 117 

null solution, 17, 18, 78, 92, 103, 106, 

113,203 

nullity, 267 

nullspace, 261 

number of solutions, 282 

0 

ODE45, 191,193 

off-diagonal ratios, 227 

Ohm's Law, 39, 122,424,425, 427 

one-way wave, 463,468 

open-loop, 64 

operation count, 452 

optimal control, 478 

order of accuracy, 186, 190, 192 

orthogonal basis, 399,433,447,448 

orthogonal eigenvectors, 239, 375 

orthogonal functions, 323, 405, 434 

orthogonal matrix, 238, 242, 376, 381 

orthogonal subspace, 306 

orthonormal basis, 398, 400, 440 

orthonormal columns, 242, 397 

oscillation, 74, 75 

oscillation equation, 372 

overdamping, 96, 100, 102 

overshoot (Gibbs), 435, 436 

p 

PF2,62, 142,149,472 

PF3, 143, 149,472 

parabolas, 91, 96 

parallel, 122, 127 

partial differential equation, (see PDE) 

partial fractions, 56, 62, 142-149, 474 

partial sums, 438 
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particular solution, 17, 18, 41, 106, 203, 

274,276,278 

PDE, 416,455,466 

peak time, 113, 128 

pendulum, 71, 81, 182 

period,76, 163,444 

periodic, 173 

permutation matrix, 241, 246,299,450 

perpendicular, 201, 243,389,433,434 

perpendicular eigenvectors, 383 

perpendicular subspaces, 312 

phase angle, 32, 80 

phase lag,30,33,75,81, 112 

phase line, 170 

phase plane, 59,351 

phase response, 77 

pictures, 153, 162 

pivot, 210, 212, 225,233,402 

pivot column, 262, 264, 290, 294 

pivot variable, 264, 270 

plane, 201,207,258 

Pluto, 155 

point source, 23,457,458 

point-spread function, 484 

Poisson's equation, 417 

polar angle, 38, 83 
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polar form, 30, 32, 84, 110, 112, 121, 

244,418,431,448 

poles, 100, 129, 140, 471-473 

polynomial, 131 

Pontryagin, 478 

population, 47, 55, 61, 63 

positive definite, 372, 385, 396, 403-411 

positive definite matrix, 372, 382, 396 

positive semidefinite, 412,413 

potential energy, 79 

powers, 221,328,341 

practical resonance, 126 

predator-prey, 172,174,180 

prediction-correction, 191 

present value, 51 

principal axis, 376 

Principal Component Analysis, 401, 431 

probability, 458 

product integral, 384 

product of pivots, 330, 492 

product rule, 8 

projection, 387, 389-391, 394 

projection matrix, 247,334,382,389,394 

pulse, 392, 393 

Python, 330 

Q 

quadratic formula, 90 

quiver, 155 

R 

rabbits, 172, 174 

radians, 76 

radioactive decay, 45 

ramp function, 23, 98,407,408,477 

ramp response, 129 

rank,267,273,277,301 

rank of AB, 311 

rank one matrix, 305, 382, 401 

rank theorem, 322 

Rayleigh quotient, 431 

reactance, 121 

real eigenvalues, 166, 239, 375 

real roots, 90, 162 

real solution, 31, 111 

rectangular form, 110, 111 

rectangular matrix, 385 

recursion, 452, 453 

red lights, 478 

reflection matrix, 247, 382 

relativity, 464 

relaxation time, 46 
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repeated eigenvalues, 338, 339, 355, 383 

repeated roots, 90, 92, 101, 355 

repeating ramp, 436 

resistance, 119,426 

resonance,26,27,29, 79,82, 108,109, 

114,116,132,137,364 

response, 77 

reverse order, 229, 238, 248 

right triangle, 129, 386 

right-inverse, 228, 232, 233 

RLC loop, 39, 118, 119, 122 

roots, 101, 108, 129 

roots of zN 
= l, 448 

rotation matrix, 331 

row exchange, 212, 216, 242 

row picture, 198,199,214 

row space, 289, 323 

rref (A), 263, 265, 267, 268, 284 

Runge-Kutta, 16, 191-193 

s 

S-curve,54,64, 157

saddle, 162,169,173,177,402,428

saddle-point matrix, 428, 430

SciPy, 194

second difference, 240, 246, 410,414,415

semidefinite, 398,412

separable, 56, 65

separation of variables, 421,422, 456,

459,460,466 

shift, 441 

shift invariance, 98, 459, 480, 482, 487 

shift rule for transform, 475 

sign reversal, 492 

similar matrix, 365, 370, 383 

Simpson's Rule, 195 

sines and cosines, 439 

singular matrix, 202, 205, 218,326,492 
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singular value, 398, 400, 405 

Singular Value Decomposition, (see SVD) 

singular vector, 385 

sink, 17, 162 

sinusoid, 19, 30, 34 

sinusoidal identity, 35, 37, 112 

SIR model, 179 

six pictures, 162, 171 

skew-symmetric, 381 

smoothness, 437 

solution curve, 154 

Solution Page, 117 

solvable, 255, 257, 277, 311 

source, 17, 19,40, 162 
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sparse matrices, 223 

special inputs, 131, 139 

special solution, 261, 265, 302 

spectral theorem, 376, 383 

speed of light, 464 

spike,23,407,437,438 

spiral, 33, 86, 88, 95, 161 
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spring, 74, 119 

square root, 397 

square wave, 435,437,443,456 

stability, 49, 58-60, 187, 188 

stability limit, 190, 195 
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stability test, 165-170, 175,188,339,353 

stable, 161, 169,352,472 

standing wave, 465 
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statistics, 401,458 

steady state, 21, 49, 53, 58, 155, 328, 357 

Stefan-Boltzmann Law, 49, 63 
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stiff equation, 187 
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stiffness matrix, 124, 372, 385 
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straight line, 386 

subspace,251-254,256,258,296 
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SVD, 244, 398, 382, 385, 399-405, 431 
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symmetric matrix, 238, 239, 292, 375, 409 
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Table of Eigenvalues, 382 

Table of Rules, 4 76 

Table of Transforms, 146, 4 71 

tangent, 75, 80, 156 

tangent line, 6, 184 

tangent parabola, 7, 191 

Taylor series, 7, 10, 14, 16, 185 

temperature, 46, 442, 455, 459 
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three steps, 341, 349, 369 

time constant, 100 

time domain, 120, 127 

time lag, 81 

time-varying, 367,371,384 

Toeplitz matrix, 480, 482 

Toornre, 178 

trace, 175,331,332,336,347,353,384 

transfer function, 104-, 121,432,477,481 

transient, 27, 103 

tree, 317 

triangular matrix, 213, 238,293,490,492 

tridiagonal matrix, 232, 246,382,410,454 

tumbling box, 176, 178, 183 
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underdamping, 96, 100, 102, 117 

undetermined coefficients, 117, 130-137 

uniqueness, 154, 289 

unit circle, 33, 84, 85, 94, 448 

unit vector, 334 
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unitary matrix, 377 
units, 44, 52, 456 
unstable, 49, 53, 166 
upper triangular, 210, 213 
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variable coefficient, 1, 42, 130 
variance,392,395,401,431 
variation of parameters, 41, 43, 130, 

133-135, 138,482
vector, 164,199,200,251,252 
vector space, 251,252,298,321 
very particular, 26, 27, 117, 144 
violin, 465,469 
Voltage Law, 123,317,318 
voltage source, 425 

w 

wave equation, 463-466, 469 
weighted Laplacian, 424 
weighted least squares, 390, 392 
Wikipedia, 243, 431 
Wolfram Alpha, 194 
Wronskian, 134, 135, 366, 384 

z 

zerocline, 157 
zeta, 99, 113 
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A= LU, 414,490 

A= QR,490 

A= QS,431 

A = U�VT, 382, 398, 401 

A=VAV- 1,337,341 
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AT A, 239,276,312,385,395,417,423 

ATCA, 392,404,416,425,427 

A*= A
T

, 413 

K2D, 419,420 

K = ATCA, 410,423,424 

P(D), 108,117

Q, 238 

S = LDLT,403 

S = QAQT, 376 

s.J..., 301 

C(A) and N(A), 255, 261 

Rn and en, 251 



LINEAR ALGEBRA IN A NUTSHELL 

(( The matrix A is n by n )) 

Nonsingular 

A is invertible 

The columns are independent 

The rows are independent 

The determinant is not zero 

Ax= 0 has one solution x = 0 

Ax =b has one solution x=A-
1
b

A has n (nonzero) pivots 

A has full rank r = n 

The reduced row echelon form is R = I

The column space is all of Rn 

The row space is all of Rn 

All eigenvalues are nonzero 

A
T 

A is symmetric positive definite 

A has n (positive) singular values 

Singular 

A is not invertible 

The columns are dependent 

The rows are dependent 

The determinant is zero 

Ax= 0 has infinitely many solutions 

Ax= b has no solution or infinitely many 

A has r < n pivots 

A has rank r < n 

R has at least one zero row 

The column space has dimension r < n 

The row space has dimension r < n 

Zero is an eigenvalue of A

A
T 

A is only semidefinite 

A has r < n singular values 
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