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You have conquered this course when you
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First order
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Second order
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Preface

Differential equations and linear algebra are the two crucial courses in undergraduate
mathematics. This new textbook develops those subjects separately and together.
Separate is normal—these ideas are truly important. This book presents the basic course
on differential equations, in full :

Chapter 1  First order equations

Chapter 2 Second order equations

Chapter 3  Graphical and numerical methods

Chapter4  Matrices and linear systems

Chapter 6  Eigenvalues and eigenvectors
I will write below about the highlights and the support for readers. Here I focus on the
option to include more linear algebra. Many colleges and universities want to move in
this direction, by connecting two essential subjects.

More than ever, the central place of linear algebra is recognized. Limiting a student to
the mechanics of matrix operations is over. Without planning it or foreseeing it, my lifework
has been the presentation of linear algebra in books and video lectures :

Introduction to Linear Algebra (Wellesley—Cambridge Press)

MIT OpenCourseWare (ocw.mit.edu, Mathematics 18.06 in 2000 and 2014).
Linear algebra courses keep growing because the need keeps growing. At the same time,
a rethinking of the MIT differential equations course 18.03 led to a new syllabus.
And independently, it led to this book.

The underlying reason is that time is short and precious. The curriculum for many
students is just about full. Still these two topics cannot be missed—and linear differential
equations go in parallel with linear matrix equations. The prerequisite is calculus, for a single
variable only—the key functions in these pages are inputs f(¢) and outputs y(¢).
For all linear equations, continuous and discrete, the complete solution has two parts :

One particular solution y, Ay, =

All null solutions y,, Ay, =

Those right hand sides add to b + 0 = b. The crucial point is that the left hand sides
add to A(yp + y»). When the inputs add, and the equation is linear, the outputs add.
The equality A(yp + yn) = b+ 0 tells us all solutions to Ay = b:

The complete solution to a linear equation is y = (one y,) + (all yy,).

v



Vi Preface

The same steps give the complete solution to dy/dt = f(t), for the same reason.
We know the answer from calculus—it is the form of the answer that is important here :

d . t
% = f(t) issolved by yp(t) = f f(x) dz
0
%- =0 is solved by y’n(t) =C (any COnStant)
dy

= = f(t) iscompletely solvedby  y(t) = yp(t) +C

For every differential equation dy/dt = Ay + f(t), our job is to find y, and y,:
one particular solution and all homogeneous solutions. @My deeper purpose is to
build confidence, so the solution can be understood and used.

Differential Equations

The whole point of learning calculus is to understand movement. An economy grows,
currents flow, the moon rises, messages travel, your hand moves. The action is fast or
slow depending on forces from inside and outside: competition, pressure, voltage, desire.
Calculus explains the meaning of dy/dt, but to stop without putting it into an equation
(a differential equation) is to miss the whole purpose.

That equation may describe growth (often exponential growth €t). It may describe os-
cillation and rotation (with sines and cosines). Very frequently the motion approaches an
equilibrium, where forces balance. That balance point is found by linear algebra, when the
rate of change dy/dt is zero.

The need is to explain what mathematics can do. I believe in looking partly outside
mathematics, to include what scientists and engineers and economists actually remember
and constantly use. My conclusion is that first place goes to linear equations. The essence
of calculus is to linearize around a present position, to find the direction and the speed
of movement.

Section 1.1 begins with the equations dy/dt = y and dy/dt = y?. Itis simply wonderful
that solving those two equations leads us here :

dy 1 1

—_—= =1 t 2 3 e = t

di Yy Y + +2 +6 + y=e

dy _ , _ 2 4 43 _

=Y y=1+t+t>+t34-.. y=1/1-1¢)

To meet the two most important series in mathematics, right at the start, that is pure
pleasure. No better practice is possible as the course begins.
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Important Choices of f(t)

Let me emphasize that a textbook must do more than solve random problems. We could
invent functions f(¢) forever, but that is not right. Much better to understand a small number
of highly important functions:

f(t) = sines and cosines (oscillating and rotating)
f(t) = exponentials (growing and decaying)
f@)= 1fort >0 (a switch is turned on)
f(t) = impulse (a sudden shock)

The solution y(¢) is the response to those inputs—frequency response, exponential
response, step response, impulse response. These particular functions and particular
solutions are the best—the easiest to find and by far the most useful. All other solutions
are built from these.

I know that an impulse (a delta function that acts in an instant) is new to most students.
This idea deserves to be here! You will see how neatly it works. The response is like the
inverse of a matrix—it gives a formula for all solutions. The book will be supplemented by
video lectures on many topics like this, because a visual explanation can be so effective.

Support for Readers

Readers should know all the support that comes with this book :

math.mit.edu/dela is the key website. The time has passed for printing solutions to
odd-numbered problems in the back of the book. The website can provide more detailed
solutions and serious help. This includes additional worked problems, and codes for nu-
merical experiments, and much more. Please make use of everything and contribute.

ocw.mit.edu has complete sets of video lectures on both subjects (OpenCourseWare
is also on YouTube). Many students know about the linear algebra lectures for 18.06 and
18.06 SC. I am so happy they are helpful. For differential equations, the 18.03 SC videos
and notes and exams are extremely useful.

The new videos will be about special topics—possibly even the Tumbling Box.

Linear Algebra

I must add more about linear algebra. My writing life has been an effort to present
this subject clearly. Not abstractly, not with a minimum of words, but in a way that is
helpful to the reader. It is such good fortune that the central ideas in matrix algebra
(a basis for a vector space, factorization of matrices, the properties of symmetric and
orthogonal matrices), are exactly the ideas that make this subject so useful. Chapter 5
emphasizes those ideas and Chapter 7 explains the applications of AT A.

Matrices are essential, not just optional. We are constantly acquiring and organizing
and presenting data—the format we use most is a matrix. The goal is to see the relation
between input and output. Often this relation is linear. In that case we can understand it.
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The idea of a vector space is so central. Take all combinations of two vectors or two
functions. I am always encouraging students to visualize that space—examples are really
the best. When you see all solutions to v; + vo + v3 = 0 and d2y/alt2 +y = 0, you
have the idea of a vector space. This opens up the big questions of linear independence and
basis and dimension—by example.

If f(t) comes in continuous time, our model is a differential equation. If the input comes
in discrete time steps, we use linear algebra. The model predicts the output y(t) this is
created by the input f(t). But some inputs are simply more important than others—they are
easier to understand and much more likely to appear. Those are the right equations to present
in this course.

Notes to Faculty (and All Readers)

One reason for publishing with Wellesley-Cambridge Press can be mentioned here.
I work hard to keep book costs reasonable for students. This was just as important for
Introduction to Linear Algebra. A comparison on Amazon shows that textbook prices
from big publishers are more than double. Wellesley-Cambridge books are distributed by
SIAM inside North America and Cambridge University Press outside, and from Wellesley,
with the same motive. Certainly quality comes first.

I hope you will see what this book offers. The first chapters are a normal textbook
on differential equations, for a new generation. The complete book is a year’s course
on differential equations and linear algebra, including Fourier and Laplace transforms—
plus PDE’s (Laplace equation, heat equation, wave equation) and the FFT and the SVD.

This is extremely useful mathematics! I cannot hope that you will read every word.
But why should the reader be asked to look elsewhere, when the applications can come
so naturally here ?

A special note goes to engineering faculty who look for support from mathematics. I
have the good fortune to teach hundreds of engineering students every year. My work with
finite elements and signal processing and computational science helped me to know what
students need—and to speak their language. I see texts that mention the impulse response
(for example) in one paragraph or not at all. But this is the fundamental solution from
which all particular solutions come. In the book it is computed in the time domain, starting
with e, and again with Laplace transforms. The website goes further.

I know from experience that every first edition needs help. I hope you will tell me what
should be explained more clearly. You are holding a book with a valuable goal—to become
a textbook for a world of students and readers in a new generation and a new time, with
limits and pressing demands on that time. The book won’t be perfect. I will be so grateful
if you contribute, in any way, to making it better.
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Outline of Chapter 1: First Order Equations

1.3 Solve dy/dt=ay Construct the exponential e?

1.4 Solve dy/dt= ay+ q(t) Four special ¢(t) and all ¢(t)

1.5 Solve dy/dt= ay+ e Growth and oscillation : s = a 4 iw
1.6 Solve dy/dt= a(t)y + q(t) Integrating factor = 1/growth factor
1.7 Solve dy/dt= ay — by? The equation for z = 1/y is linear

1.8 Solve dy/dt= g(t)/f(v) Separate [ f(y)dy from [ g(t) dt
t
The key formula in 1.4 gives the solution y(t) = e®*y(0) + [ e**~%)q(s)ds.
0
The website with solutions and codes and extra examples and videos is math.mit.edu/dela

Please contact diffeqla@gmail.com with questions and book orders and ideas.



Chapter 1

First Order Equations

1.1 Four Examples: Linear versus Nonlinear

A first order differential equation connects a function y(t) to its derivative dy/dt.
That rate of change in y is decided by y itself (and possibly also by the time ¢?).

Here are four examples. Example 1 is the most important differential equation of all.

dy dy dy
= =— 3) — =2t 4) —= =42
- Y ) Y ) =¥

dy
1 _ =
) @ =Y dt

Those examples illustrate three linear differential equations (1, 2, and 3) and a
nonlinear differential equation. The unknown function y(t) is squared in Example 4.
The derivative y or —y or 2ty is proportional to the function y in Examples 1, 2, 3.
The graph of dy/dt versus y becomes a parabola in Example 4, because of 3.

It is true that ¢ multiplies y in Example 3. That equation is still linear in y and dy/dt.
It has a variable coefficient 2t, changing with time. Examples 1 and 2 have constant
coefficient (the coefficients of y are 1 and —1).

Solutions to the Four Examples

We can write down a solution to each example. This will be one solution but it is not
the complete solution, because each equation has a family of solutions. Eventually there will
be a constant C' in the complete solution. This number C is decided by the
starting value of y at ¢ = 0, exactly as in ordinary integration. The integral of f(t) solves the
simplest differential equation of all, with y(0) = C':

d t
5) d_:l: = f(¢t) The complete solution is y(t) :/ f(s)ds+C .
0
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For now we just write one solution to Examples 1 — 4. They all start at y(0) = 1.

d
1 d_i =y issolvedby y(t) = et
d
2 d—zz{ = —y issolvedby y(t)= et
dy . 2
3 o= 2ty issolvedby y(t)=e
dy 5 . 1
4 E =y is solved by y(t) = m

Notice: The three linear equations are solved by exponential functions (powers of e).
The nonlinear equation 4 is solved by a different type of function; here it is 1/(1 — ).
Its derivative is dy/dt = 1/(1 — t)2, which agrees with y2.

Our special interest now is in linear equations with constant coefficients, like 1 and 2.
In fact dy/dt = y is the most important property of the great function y = e*. Calculus
had to create €', because a function from algebra (like y = ™) cannot equal its derivative
(the derivative of t™ is nt"~!). But a combination of all the powers t" can do it. That
good combination is e? in Section 1.3.

The final example extends 1 and 2, to allow any constant coefficient a :

d
6) d—?Z = ay issolvedby y = e (andalso y = Ce%).
If the constant growth rate a is positive, the solution increases. If a is negative, as in
dy/dt = —y with a = —1, the slope is negative and the solution e~* decays toward zero.
Figure 1.1 shows three exponentials, with dy/dt equal to y and 2y and —y.

0 t

1 t

Figure 1.1: Growth, faster growth, and decay. The solutions are et and €2t and e~ L.
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When a is larger than 1, the solution grows faster than et. That is natural. The neat thing
is that we still follow the exponential curve—but €% climbs that curve faster. You could see
the same result by rescaling the time axis. In Figure 1.1, the steepest curve
(for a = 2) is the same as the first carve—but the time axis is compressed by 2.

Calculus sees this factor of 2 from the chain rule for e?. It sees the factor 2¢ from
the chain rule for e*>. This exponent is ¢2, the factor 2¢ is its derivative :

iJu)_ u@ d
de =€

dt It (€*) = (e*) times 2 ¢ (etg) = (etg) times 21

dt

Problem Set 1.1: Complex Numbers

1 Draw the graph of y = e by hand, for —1 < ¢ < 1. What is its slope dy/dt at
t = 0?7 Add the straight line graph of y = et. Where do those two graphs cross ?

2 Draw the graph of y; = e2* on top of ¥ = 2ef. Which function is larger at t = 0?
Which function is largeratt = 17?

What is the slope of y = et at ¢ = 0 ? Find the slope dy/dt att = 1.
What “logarithm” do we use for the number ¢ (the exponent) when et = 4?

State the chain rule for the derivative dy/dt if y(t) = f(u(t)) (chain of f and u).

o O A~ W

The second derivative of e’ is again e!. So y = e’ solves d?y/dt* = y. A sec-
ond order differential equation should have another solution, different from y = Ce?.
What is that second solution ?

7 Show that the nonlinear example dy/dt = y? is solved by y = C/(1 — Ct)
for every constant C. The choice C = 1 gavey = 1/(1 — t), starting from y(0) = 1.

8 Why will the solution to dy/dt = y? grow faster than the solution to dy/dt = y
(if we start them both from y = 1 at ¢ = 0)? The first solution blows up at ¢t = 1.
The second solution e! grows exponentially fast but it never blows up.

9  Find a solution to dy/dt = —y? starting from y(0) = 1. Integrate dy/y? and —dt.
(Or work with 2 = 1/y. Then dz/dt = (dz/dy) (dy/dt) = (—1/y*)(-y?) = 1.
From dz/dt = 1 you will know 2(t) and y = 1/z.)

10  Which of these differential equations are linear (in y) ?
@y +siny=t () y' =t*@y—-t) (© y' +ey=t"

11 The product rule gives what derivative for ete = ? This function is constant. At ¢ = 0
this constant is 1. Then efe~¢ = 1 for all ¢.

12 dy/dt = y + 1is not solved by y = e + . Substitute that y to show it fails. We can’t
just add the solutions to y’ = y and y’ = 1. What number ¢ makes y = e’ + cinto a
correct solution ?
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1.2 The Calculus You Need

The prerequisite for differential equations is calculus. This may mean a year or more of
ideas and homework problems and rules for computing derivatives and integrals. Some of
those topics are essential, but others (as we all acknowledge) are not really of first impor-
tance. These pages have a positive purpose, to bring together essential facts of calculus.
This section is to read and refer to—it doesn’t end with a Problem Set.

I hope this outline may have value also at the end of a single-variable calculus course.
Textbooks could include a summary of the crucial ideas, but usually they don’t. Certainly
the reader will not agree with every choice made here, and the best outcome would be a more
perfect list. This one is a lot shorter than I expected.

At the end, a useful formula in differential equations is confirmed by the product rule,
the derivative of e*, and the Fundamental Theorem of Calculus.

1. Derivatives of key functions: 2" sinz cosz e Inczx

The derivatives of x,2%,2%,... come from first principles, as limits of Ay/Ax. The
derivatives of sinz and cosx focus on the limit of (sin Az)/Axz. Then comes the great
function e”. It solves the differential equation dy/dx = y starting from y(0) = 1.
This is the single most important fact needed from calculus : the knowledge of e*.

2. Rules for derivatives: Sum rule Productrule Quotientrule Chain rule

When we add, subtract, multiply, and divide the five original functions, these rules give the
derivatives. The sum rule is the quiet one, applied all the time to linear differential equations.
This equation is linear (a crucial property):

dy dz d B
E—ay—kf(t) and = =az+g(t) addto dt(y+z)—a(y+z)+(f+g).

With a = 0 that is a straightforward sum rule for the derivative of y 4+ z. We can always
add equations as shown, because a(t)y is linear in y. This confirms superposition of the
separate solutions y and z. Linear equations add and their solutions add.

The chain rule is the most prolific, in computing the derivatives of very remarkable func-
tions. The chain y = €® and x = sint produces y = esint (the composite of two
functions). The chain rule gives dy/dt by multiplying the derivatives dy/dx and dx /dt :

dy dy dz

Chain rule primr et cost = y cost.

; d
Then €% solves that differential equation d—gi = ay with varying growth rate a = cost.
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3. The Fundamental Theorem of Calculus

The derivative of the integral of f(x) is f (). The integral from 0 to z of the derivative
df /dz is f(z) — f(0). One operation inverts the other, when f(0) = 0. This is not so easy
to prove, because both the derivative and the integral involve a limit step Az — 0.

One way to go forward starts with numbers yg, y1,...,Yn. Their differences are like
derivatives. Adding up those differences is like integrating the derivative :

Sum of differences (y1 —yo)+(Y2z—v1)+ -+ +(Un—Yn—1) =Yn—u.__ (1)

Only y,, and —yq are left because all other numbers yi,y2,... come twice and cancel.
To make that equation look like calculus, multiply every term by Az/Ax = 1:

[y1—%  v2—m Yn — Yn-1

e Az =y, — Yo. 2
| Az + Az L Az i Sl S
Again, this is true for all numbers yo, y1,...,yn. Those can be heights of the graph of a
function y(x). The points o, . . . , T, can be equally spaced between = a and = b. Then

each ratio Ay/Ax is a slope between two points of the graph:

Ay  yr—yk—1 _distance up

= — = slope. 3
Az  zp —xp—1  distance across P 3)

This slope is exactly correct if the graph is a straight line between the points x;_; and zy.
If the graph is a curve, the approximate slope Ay/Az becomes exact as Az — 0.

The delicate part is the requirement nAx = b — a, to space the points evenly
from g = a to z, = b. Then n will increase as Ax decreases. Equation (2) remains
correct at every step, with yo = y(a) at the first point and y,, = y(b) at the last point.
As Az — 0 and n — oo, the slopes Ay/Ax approach the derivative dy/dz. At the
same time the sum approaches the integral of dy/dz. Equation (2) turns into equation (4) :

Fundamental 7 o d /e
Theorem /— dx = y(b) — y(a) —/ f(8)ds = f(z) &)
of Calculus J dx dz Ja

The limits of Ay/Axz in (3) and the sum in (2) produce dy/dz and its integral. Of course
this presentation of the Fundamental Theorem needs more careful attention. But equation
(1) holds a key idea: a sum of differences. This leads to an integral of derivatives.

4. The meaning of symbols and the operations of algebra

Mathematics is a language. The way to learn this language is to use it. So textbooks have
thousands of exercises, to practice reading and writing symbols like y(z) and y(z + Ax).
Here is a typical line of symbols :

®)

d t+ At) — y(t
Derivative of y d_zt/(t) = Alfismo y(t + AZ y( )
—

I am not very sure that this is clear. One function is 3, the other function is its derivative 3.
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Could the symbol y' be better than dy/dt ? Both are standard in this book. In calculus
we know y(t), in differential equations we don’t. The whole point of the differential equation
is to connect y and y'. From that connection we have to discover what they are.

A first example is ¢y’ = y. That equation forces the unknown function y to grow expo-
nentially: y(t) = Cet. At the end of this section I want to propose a more complicated
equation and its solution. But I could never find a more important example than e’.

5. Three waystouse dy/dx ~ Ay/Azx

On the graph of a function y(z), the exact slope is dy/dz and the approximate slope
(between nearby points) is Ay/Ax. If we know any two of the numbers dy/dx and
Ay and Az, then we have a good approximation to the third number. All three approxi-
mations are important, because dy/dzx is such a central idea in calculus.

(A) When we know Ax and dy/dx, we have Ay =~ (Ax)(dy/dx).

This is linear approximation. From a starting point zp, we move a distance Ax. That
produces a change Ay. The graph of y(z) can go up or down, and the best information
we have is the slope dy/dx at zy. (That number gives no way to account for bending of the
graph, which appears in the next derivative d?y/dxz?.)

Linear approximation is equivalent to following the tangent line —not the curve :

d d
Ay = Az i y(zo + Az) = y(xo) + A;r—-‘?’i(:;::g) (6)
dx dx

(B) Ayanddy/dx leadto Az =~ (Ay)/(dy/dx). This is Newton’s Method.

Newton’s Method is a way to solve y(x) = 0, starting at a point zo. We want y(x) to
drop from y(xzg) to zero at the new point z1. The desired change in y is Ay = 0 — y(zo).
What we don’t know is Az, which locates z1. The exact slope dy/dx will be close to
Ay/Awx, and that tells us a good Az :

Ay 1 — oy = ——Y(@0)
dy/dz dy/dz(xg)

Guess g, improve to z;. This is an excellent way to solve nonlinear equations y(x) = 0.

Newton’s Method Axr =~ @)

(C) Dividing Ay by Ax gives the approximation dy/dx ~ Ay/Awx.

That is the point of equation (5), but something important often escapes our attention.
Are x and x + Ax the best two places to compute y? Writing Ay = y(z + Az) — y(x)
doesn’t seem to offer other choices. If we notice that Az can be negative, this allows
x + Az to be on the left side of x (leading to a backward difference) . The best choice
is not forward or backward but centered around x : a half step each way.

dy Ay yz+ %Aw) —y(x — 1Ax)
Centered diff — N — = 2 8
entered difference o o ()
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Why is centering better? When y = Cz + D has a straight line graph, all ratios
Ay/Ax give the correct slope C. But the parabola y = z? has the simplest possible
bending, and only this centered difference gives the correct slope 2z (varying with z).

Exact slope Ay  (z+ 1Az)? — (z — LAx)? _ Az — (—zAz)
for parabolas — = -
b . Ax Az Az

y centering

=2x

The key step in scientific computing is improving first order accuracy (forward differences) to
second order accuracy (centered differences). For integrals, rectangle rules improve
to trapezoidal rules. This is a big step to good algorithms.

6. Taylor series: Predicting y(x) from all the derivatives at x = x¢

From the height yo and the slope y}, at zo, we can predict the height y(z) at nearby points.
But the tangent line in equation (6) assumes that y(x) has constant slope. That first order
prediction becomes a second order prediction (much more accurate) when we use
the second derivative y( at zo.

Tangent parabola using y y(zo + Az) ~ yo + (Az)y) + 2 (Az)2yf. (9
Adding this (Ax)? term moves us from constant slope to constant bending. For the
parabola y = 22, equation (9) is exact: (zo + Az)? = (23) + (Az)(2z0) + 1(Az)?(2).

Taylor added more terms—infinitely many. His formula gets all derivatives correct
at zo. The pattern is set by £(Az)?yg. The nt derivative y(™(z) contributes a new

term % (Am)”yén). The complete Taylor series includes all derivatives at the point z = xg :

1 n
Taylor series y(zo + Az) = yo + (Az)yy + -+ + F(Aac)” y(() ) 4 s
Stop at y’ for tangent line > (Az)"
" = ¥ — v (o) (10)
Stop at y”’ for parabola n=0 !

Those equal signs are not always right. There is no way we can stop y(z) from making a
sudden change after z moves away from zy. Taylor’s prediction of y(zo + Az) is exactly
correct for e* and sin z and cos x—good functions like those are “analytic” at all z.

Let me include here the two most important examples in all of mathematics. They are
solutions to dy/dz = y and dy/dz = y? — the most basic linear and nonlinear equations.

. . . I 21 3
Exponential series with (™) (0) = 1 y:e‘”:1+x+§z +;x +--- (11)

=l+z+z>+2°+ - (12

Geometric series  with y(™(0) =n! y= 1
—x

The center point is xg = 0. The series (11) gives e” for every x. The series (12) gives
1/(1—x) when z is between —1 and 1. Its derivative 1 + 2z + 3z% 4 --- is 1/(1 — x)%.
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For x = 2 that geometric series will certainly not produce 1/(1 — 2) = —1. Notice
that 1 + z + 22 + - - - becomes infinite at z = 1, exactly where 1/(1 — ) becomes 1/0.

The key point for e® is that its n™ derivative is 1 at z = 0. The n'™ derivative of
1/(1 — z)isn!atz = 0. This pattern starts with y,3’, y”, v’ equalto 1,1,2,6 at x = 0

y=(1-2)7"  y=01-27" ¢ =20-27° ¢"=601-2)""
Taylor’s formula combines the contributions of all derivatives at z = 0, to produce y(zx).

7. Application: An important differential equation

The linear differential equation ¥’ = ay + q(t) is a perfect multipurpose model. It
includes the growth rate a and the external source term ¢(t). We want the particular
solution that starts from y(0) = 0. Creating that solution uses the most essential idea

behind integration. Verifying that the solution is correct uses the basic rules for derivatives.
Many students in my graduate class had forgotten the derivative of the integral.
Here is the solution y(t) followed by its interpretation, with a = 1 for simplicity :

t

d

:g— =y +q(t) is solved by y(t) = /et_sq(s) ds. (13)
0

Key idea: At each time s between 0 and ¢, the input is a source of strength ¢(s). That input
grows or decays over the remaining time ¢t — s. The input g(s) is multiplied by e*—*
to give an output at time ¢. Then the total output y(t) is the integral of e!~5q(s).

We will reach y(t) in other ways. Section 1.4 uses an “integrating factor.” Section 1.6
explains “variation of parameters.” The key is to see where the formula comes from.
Inputs lead to outputs, the equation is linear, and the principle of superposition applies.
The total output is the sum (in this case, the integral) of all those outputs.

We will confirm formula (13) by computing dy/dt. First, e!™* equals e’ times e~.
Then et comes outside the integral of e~%q(s). Use the product rule on those two factors :

t
. dy . det —5 t d =%
Producing y + ¢ — = (E) je q(s)ds + (e) E/e q(s)ds.  (14)
0 0

The first term on the right side is exactly y(t). How to recognize that last term as ¢(t) ?

We don’t need to know the function ¢(t). What we do know (and need) is the Fun-
damental Theorem of Calculus. The derivative of the integral of e~tq(t) is e *q(t).
Then multiplying by e’ gives the hoped-for result q(t), because efe™* = 1. The linear
differential equation y’ = y + ¢q with y(0) = 0 is solved by the integral of e!~%q(s).
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1.3 The Exponentials e* and e?*

Here is the key message from this section : The solutions to dy/dt = ay arey(t) = Ce*’.

That free constant C matches the starting value y(0). Then y(t) = y(0)e®t.

I realize that you already know the function y = ef. It is the star of precalculus

and calculus. Now it becomes the key to linear differential equations. Here I focus on the
two most important properties of this function e’ :

1. The slope dy/dt equals the function y. As y grows, its graph gets steeper :
— et = ¢t (1)

2. y(t) = €' follows the addition rule for exponents:

et times e’ equals e't7T. )

How is this exponential function constructed? Only calculus can do it, because
somewhere we must have a “limit step.” Functions from ordinary algebra can get close
to ef, but they can’t reach it. If we choose those functions to come closer
and closer, then their limit is e?.

This is like using fractions to approach the extraordinary number 7. The fractions
can start with 3/1 and 31/10 and 314/100. The neat fraction 22/7 is close to 7. But
“taking the limit” can’t be avoided, because 7 itself is not a fraction.

Similarly e is not a fraction. On this book’s home page math.mit.edu/dela is an
article called Introducing e®. It describes four popular ways to construct this function.
The one chosen now is my favorite, because it is the most direct way.

dy

Construct y = e' so that priat (starting fromy = 1 att = 0)

To show how this construction works, here are ordinary polynomials y and dy/dt :

1
1. y:1+t+§t2 The derivative is dy/dt = 0+ 1+ ¢

1 1 o 1,
2. y=1+t+ Etz + gt:‘ The derivative is dy/dt =0+ 1+t + Et

You see that dy/dt does not fully agree with y. It always falls one term short of y.
We could get ¢2/6 into the derivative by including ¢4/24 in y. But now dy/dt will be
missing t4/24.

You can see that dy/dt won’t catch up to y. The way out is to have infinitely many terms :
Don’t stop. Then you get dy/dt = y.
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The limit step reaches an infinite series, adding new terms and never stopping. Every
term has the form t™ divided by n ! (n factorial). Its derivative is the previous term :

" i t'ﬂ.—l tn_l
The derivative of —_— = s = (3

... n ° m-1...0) ®w-1!

So if ¢"/n! is missing in dy/dt, we will capture it by including t"*'/(n + 1)! in y.

Of course dy/dt never completely catches up to y—until we allow an infinite series.
There is a term t™ /n | for every n. The term forn = 0is t°/0! = 1.

2 3 ¢t o "
Construction of e! y=et=14+t4+ —+ —4+—+:.-= — @
2 6 24 n=o0 n!

Taking the derivative of every term produces all the same terms. So dy/dt = y.
Notice : If you change every t to at, the derivative of y = e’ becomes a times e®* :
242 343 242
%<1+at+%+%+--->:a<1+at+%+'~>=aeat (5)

This construction of e! brings up two questions, to be discussed in the Chapter 1 Notes.
Does the infinite series add to a finite number (a different number for each choice of t) ?
Can we add the derivatives of each t"/n! and safely get the derivative of the sum e? ?
Fortunately both answers are yes. The terms get very small, very fast, as n increases.
The limiting step is n — oo, producing the exact e’.

When ¢t = 1, we can watch the terms get small. We must do this, because ¢ = 1 leads to
the all-important number e! which is e:

1 1 1
The series for eatt = 1 e:1+1+§+6+ﬁ+---z2.718

The first three terms add to 2.5. The first five terms almost reach 2.71. We never reach 2.72.
With enough terms you can barely pass 2.71828. It is certain that the total sum e is not a
fraction. It never appears in algebra, but it is the key number for calculus.

The Series for el is a Taylor Series

The infinite series (4) for e? is the same as the Taylor series. Section 1.2 went from the
tangent line 1 + ¢ to the tangent parabola 1 + ¢ + %tz. The next term will be %tB, because
that matches the third derivative "’ = 1 at t = 0. All derivatives are equal to 1 att = 0,
when we start from the basic equation 3’ = y. That equation gives ' = y' = y and
the next derivative gives iy = y" = ¢’ = v.

Conclusion: t"/n! has the correct n'™ derivative (which is 1) at the point t = 0.
All these terms go into the Taylor series. The result is exactly the exponential series (4).
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Multiplying Powers by Adding Exponents

We write 32 for 3 times 3. We write e? for e times e. The question is, does e = 2.718...
times e = 2.718... give the same answer as setting ¢ = 2 in the infinite series to get €% ?
The answer is again yes. I could say “fortunately yes” but that might suggest a
lucky accident. The amazing fact is that Property 1 (y’ = y is now confirmed) leads
automatically to Property 2. The exponential starts from y(0) = € = 1 at time ¢t = 0.

Property2. et times e equals et*7 so (el) (el) =e?
This is a differential equations course, so the proofs will use Property 1: dy/dt = vy.

First Proof. We can solve y’ = (a + b)y two ways, starting from y(0) = 1. We know that
y(t) = e(@+®)t Another solution is y(t) = e**e, as the product rule shows:

% (em‘-ebt) = (aeat) ebt +eat (bebf) = (a 4 b}eatebt_ G

This solution e?*e®® also starts at e2¢® = 1. It must be the same as the first solution e(¢ 1)t
The equation y’ = (a + b)y only has one solution. At ¢ = 1 this says that e@T? = e2¢?,

QED.

Second Proof.  Starting with y = 1 at ¢ = 0, the solution out to time ¢ is e!. The
solution to time ¢ + T is e**”. The question is, do we also get that answer in two steps ?

Starting fromy = 1 att = 0, we go to e’. Then start from et at time ¢ and continue ~ an
additional time T'. This would give e starting from y = 1, but here the starting  value is
el. So C = e* multiplies e'. Attime ¢ + T we have perfect agreement :

T

e’ times €T (which is C times e” ) agrees with one big step e'*7.

Negative Exponents

Remember the example dy/dt = —y with solution y = e~t. That exponent —t is negative.
The solution decays toward zero. The exponent rule efe’ = e**7T still holds for
negative exponents. In particular e times e tise! =t = € = 1:

1

1 1 1 1
N t. t _——= d - = = 1 —_ 1 _— = —_ — ...
egative exponents " e " an S =¢ i A + N

This number 1/e is about .36. The series always succeeds! The graph of y = e~¢

shows that e~ stays positive. It is very small for ¢ > 32. Your computer might use 32
bit arithmetic and ignore numbers that are this small.

Why does et grow so fast? The slope is y itself. So the slope increases when the
function increases. That steep slope makes y increase faster—and then the slope too.
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Interest Rates and Difference Equations

There is another approach to e and €%, which is not based on an infinite series. (At least,
not at the start.) It connects to interest on bank accounts. For e the rate is a = 1 = 100%.
For et the differential equation is dy/dt = ay and the interest rate is a.

The different approach is to construct et and e as the limit of compound interest.

N at\N
et = limit (1 + —) e = limit (1 + —> : 7
N — N N — N

The beauty of these formulas is that a bank does exactly what a computational scientist
does. They both start with the differential equation dy/dt = ay and the initial condition
y = latt = 0. Banks and scientists don’t have computers that give exact solutions, when
y(t) changes continuously with time. Both take finite time steps At instead of infinitesimal
steps dt. They reach time ¢ in IV steps of size At = t/IN. Their approximations are
Y1,Ys, ..., YN with Yy = 1. Compound interest produces a difference equation :

dy
dt

_Y% = Yn and Yﬂ--i—l — (]_ + a At)Yn (8)

=ay becomes
Each step multiplies the bank balance by 1 + aAt. The new balance is the old balance
Y, plus a AtY,, (the interest on Y,, in the time interval At). This is ordinary compound
interest that all banks offer, not continuous compounding as in dy/dt. The time step
can be At = 1 year or 1 month. The balance at t = 2 years = 24 months is Y5 or Y4 :

N\ 24
Yo=(14+a)?Yy  Yau= (1 + ]”_2) Yo = %Y. 9)

If the rate is a = 3 per cent per year = .03 per year, continuous compounding for 2 years
would produce the exponential factor %6 =~ 1.06184. Monthly compounding produces
(1.0025)%* ~ 1.06176. We only lose a little, when the differential equation 3’ = ay is
approximated by the difference equation in (8).

The computational scientist is usually not willing to accept this loss of accuracy in Y.
Equation (8) with a forward difference Y,y — Y, is called Euler’s method.
Its accuracy is not high and not hard to improve. It is the natural choice for a bank,
because a backward difference costs them even more than continuous compounding:

Yn - Yn—l 1
o nl gy, or Y= ———
At “ o =T alt

Y, connects backward to the earlier Y;,_;. Now each step divides by 1 — aAt. After N steps
of size At = t/N, we are again close to €. But with backward differences and a > 0, we
overshoot the differential equation and the bank pays a little too much :

Backward difference Y. 1. (10)

1

(1+ aAt)N is below et m

is above e®t.
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Complex Exponents

This isn’t the time and place to study complex numbers in detail. It will be the pages
about oscillations and e™? that cannot go forward without the imaginary number i.
Here we are solving dy/dt = ay, and all I want to do is to choose a = 3.

I can think of two ways to solve the complex equation dy/dt = iy. The fast way uses
derivatives of sine and cosine, which we know well :

Proposed solution y = cost + isint (11)
Compare dy/dt dy/dt = —sint + i cost
with the right side zy iy = i cost + i? sint

To check dy/dt = iy, compare the last two lines. Use the rule iZ = —1. (We had
to imagine this number, because no real number has 22 = —1.) Then —sint is the same
as isint. So y = cost + isint solves the equation dy/dt = iy. This solution starts
aty = 1 when ¢ = 0, because cos0 = 1 and sin0 = 0.

The slower approach to dy/dt = iy uses the infinite series. Since a = 1, the solution e
becomes e*t. Formally, the series for y = e*® certainly solves dy/dt = iy :

. ; . 1. 1.

Complex exponential  y = et =14 (it) + 5(zt)2 + 6(@1&)3 SR (12)
The derivative of each term is ¢ times the previous term. Since the series never stops, the
derivative dy/dt perfectly matches iy. And we are still starting at y = 1 when we substitute
t = 0. This infinite series e’ equals the first solution cost + i sin t.

Now use the rule i = —1. For (it)? I will write —¢2. And (it)® equals —it3. The
fourth power of i is i* = §2i? = (—1)2 = 1. That sequence 4, —1, —i, 1 repeats forever.

i=1° i?=i=-1 3 =4 = —g it=8=1

i ] t2 ) t3 t4 _t5 tﬁ ) t? tB
e"=1+ %t_lﬁ_zﬁjhl_la] + {1—.—1—.—3—4—1—. AT
This may be the first time a textbook has ever written out nine terms. You can see the
full repeat of 4, —1, —i, 1. That last coefficient dividesby 8! = 8-7-6-5-4-3-2-1
which is 40320.

The main point is that the solution ¥y = cost + ¢ sint in equation (11) must be the same
as this series solution e**. They both solve dy/dt = iy. They both start at y = 1 when ¢ = 0.
The equality between them is one of the greatest formulas in mathematics.

Euler’s Formula is e’ = cost + i sint. (13)

. : 1
Then ™ = cosm + i sinm = —1. And €™ = 1 + 427 + 5(2'277)2 + - mustaddto 1!
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I cannot resist comparing cost + isint with the series for e®*. The real part of that
series must be cost. The imaginary part (which multiplies ¢) must be sint. The even

powers 1, 2,4 .. give cosines. The odd powers ¢, t3, t°, ... are multiplied by ¢:
Cosine is even t 1 1t2 + ! t a + (14)
COS fr— — —_ R — — —_— e
2 24 6!
Sine is odd int t - ip + L 5 & + (15)
ine i sint = - = —t° = =
6 120 7!

These two pieces of the series for €™ are famous functions on their own, and now we see
their Taylor series . They are beautifully connected by Euler’s Formula.
The derivative of the sine series is the cosine series :
d 1

d 1
S sint=cost E(t—gt?’—km):l—étz-&---:cosine

The derivative of the cosine series is minus the sine series :

d 1 1
_lt2+_t4_...):_t+gt3... = — sine

£cost:—sint E( 5 51

All this important information came from allowing the exponent in e® to be imaginary.
And e times e~ ** is exactly cos® ¢ 4 sin®t = 1.

Matrix Exponents

One more thing, which you can safely ignore for now. The exponent in e** could become
a square matrix. Instead of solving dy/dt = ay by €%, we can solve the matrix equation
dy/dt = Ay by the matrix eAt. Start with the identity matrix I instead of the number 1.

1 1
et is a matrix eAt = T+ At + E(At)2 + E(At)3 NP (16)

The series has the usual form, with the matrix A instead of the number a. Here I stop,
because matrices come in Chapter 4 : Systems of Equations. When the matrix A is three by
three, the equation dy/dt = Ay represents three ordinary differential equations. Still first
order linear, still constant coefficients, solved by et in Section 6.4.

There is one big difference for matrices: eAteBPt = e(A+B)t js not true. For
numbers a and b this equation is correct. For matrices A and B something goes wrong
in equation (6). When you look closely, you see that b moved in front of e®.
But eA* B = Be“! is false for matrices.
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= REVIEW OF THE KEY IDEAS =

1. In the series for e, each term t™ /n!is the derivative of the next term.

2. Then the derivative of e is ef, and the exponent rule holds: e e? = et*+7.

3. Another approach to dy/dt = y is by finite differences (Y11 — Y,,)/At = Y,,.
Y11 =Y, + AtY,, is the same as compound interest. Then Y, is close to enAty).

4. y = e solves ¢y’ = ay, and a = i leads to e** = cost + isint (Euler’s Formula).

5. cost =1—12/2+--- andsint = t — t3/6 + - - - are the even and odd parts of €.

Problem Set 1.3

1 Set t = 2 in the infinite series for e2. The sum must be e times e, close to 7.39.
How many terms in the series to reach a sum of 7 ? How many terms to pass 7.3 ?

2 Starting from y(0) = 1, find the solution to dy/dt = y at time ¢ = 1. Starting from
that y(1), solve dy/dt = —y to time ¢ = 2. Draw a rough graph of y(t) from
t = 0tot = 2. What does this say about e~ ! times e ?

3 Start with y(0) = $5000. If this grows by dy/dt = .02y until ¢ = 5 and then jumps to
a = .04 per year until ¢ = 10, what is the account balance at ¢ = 10 ?

4 Change Problem 3 to start with $5000 growing at dy/dt = .04y for the first five years.
Then drop to a = .02 until ¢ = 10. What is now the balance at t = 10 ?

Problems 5-8 are about y = et and its infinite series.

5 Replace ¢ by at in the exponential series to find e :

1 1
e“t:1+at+i(at)2+~-~+m(at)”+---

Take the derivative of every term (keep five terms). Factor out a to show that
the derivative of et equals ae®®. At what time T does e®® reach 2?

6 Start from y’ = ay. Take the derivative of that equation. Take the n'" derivative.
Construct the Taylor series that matches all these derivatives at ¢ = 0, starting from
1+ at + 1(at). Confirm that this series for y(t) is the series for e* in Problem 5.

7 At what times ¢ do these events happen ?

@ e*=e (b) e*=¢e2 () e3t+2) = eotela

8 If you multiply the series for e%* in Problem 5 by itself you should get the series
for e22t, Multiply the first 3 terms by the same 3 terms to see the first 3 terms in e2%¢.
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(recommended) Find y(t) if dy/dt = ay and y(T') = 1 (instead of y(0) = 1).

(a) If dy/dt = (In2)y, explain why y(1) = 2y(0).
(b) If dy/dt = —(In2)y, how is y(1) related to y(0) ?

In a one-year investment of y(0) = $100, suppose the interest rate jumps from
6% to 10% after six months. Does the equivalent rate for a whole year equal 8%,
or more than 8%, or less than 8% ?

If you invest y(0) = $100 at 4% interest compounded continuously, then
dy/dt = .04y. Why do you have more than $104 at the end of the year ?

What linear differential equation dy/dt = a(t)y is satisfied by y(t) = e“°5t 2

If the interest rate is a = 0.1 per year in y' = ay, how many years does it take for
your investment to be multiplied by e ? How many years to be multiplied by e? ?

Write the first four terms in the series for y = et”. Check that dy/dt = 2ty.
t

Find the derivative of Y (¢) = (1 + —)™. If n is large, this dY/dt is close to Y !
n

Suppose the exponent in y = e“(®) is u(t) = integral of a(t). What equation
dy/dt = ____ y does this solve ? If u(0) = 0 what is the starting value y(0) ?

Challenge Problems

e¥/4® = 1 4+ d/dx + (d/dz)? + --- is a sum of higher and higher derivatives.
Applying this series to f(z) at z = 0 would give f + f' + 3 f” +--- atz = 0.
The Taylor series says : This is equal to f(x) at x =

(Computer or calculator, 2.xx is close enough) Find the time ¢t when e = 10.
The initial y(0) has increased by an order of magnitude—a factor of 10. The
exact statement of the answer is t = . At what time ¢ does e? reach 100 ?

The most important curve in probability is the bell-shaped graph of e=t'/2,

With a calculator or computer find this function at ¢t = —2,—-1,0,1,2. Sketch
the graph of e=t*/2 fromt = —coto t = 0. It never goes below zero.
Explain why y; = e(@+0+9)t is the same as y, = e ebtec. They both start at

y(0) = 1. They both solve what differential equation ?

For y' = y with a = 1, Euler’s first step chooses Y7 = (1 + At)Yy. Backward
Euler chooses Y; = Yy/(1 — At). Explain why 1 + At is smaller than the exact et
and 1/(1 — At) is larger than e®t. (Compare the series for 1/(1 — x) with e?.)

Note Section 3.5 presents an accurate Runge-Kutta method that captures three
more terms of e*®! than Euler. For dy/dt = ay here is the step to Y, ;:
a’At? i adAt3 i a*At* v

2 6 24 )"

Runge-Kuttafor y’'=ay Y, = <1 + aAt +
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1.4 Four Particular Solutions

The equation dy/dt = ay is solved by y(t) = ey(0). All the input is in that starting
value y(0). The solution grows exponentially when a > 0 and it decays when a < O.
This section allows new inputs q(t) after the starting time t = 0. That input ¢ is a
“source” when we add to y(t), and a “sink” when we subtract. If y(t) is the balance
in a bank account at time ¢, then ¢(¢) is the rate of new deposits and withdrawals.

The basic first order linear differential equation (1) is fundamental to this course.
We must and will solve this equation. Please pay attention to this section. In every way,
this Section 1.4 is important.

d
d_?: —ay+q(t)  starting from y(0) att = 0. )

Important I will separate the solution y(¢) into two parts. One part comes from the
starting value y(0). The other part comes from the source term ¢(¢). This separation is
a crucial step for all linear equations, and I take this chance to give names to the two parts.
The part y, = Ce® is what we already know. The part y,, from the source g(t) is new.

1 Homogeneous solution or null solution y,, (¢) with no source: ¢ = 0

This part y,(t) = Ce® solves the equation dy/dt = ay. The source term q is zero
(null). We are really solving ¥’ — ay = 0, an equation with zero on the right hand side.
That equation is homogeneous—we can multiply a solution by any constant to get
another solution cy(¢). This book will choose the simpler word null and the subscript n,
because this connects differential equations to linear algebra.

2 Particular solution y, (¢) with source g(t)

This part y,(t) comes from the source term ¢(t). The previous section had no source
and therefore no reason to mention y,(t). Now our whole task is to find a
particular solution y, (t), because the null solutions y,, (t) = Ce® are already set.

3 The complete solutionis y(t) = yn(t) + yp(t)

For linear equations—and only for linear equations—adding the two parts gives the complete
solution y = ¥, + ¥p. This is also called the “general solution.”

Null yh — ay, = 0 Yn can start from y(0)
Particular Y, — ayp = q(t) ypcanstartfromy =0
Yy=yn+yp ¥ — ay = gq(t) ymuststartfromy(0)

A nonlinear equation could include a quadratic term y2. In that case adding y,,? to y,>
would not give (y, + vp)?. The null equation y' — y?> = 0 would not be homogeneous,
and we can’t multiply y by a constant C'. This will happen for the “logistic equation” in
Section 1.7. You will see that y(0) enters the solution y(¢) in a more complicated way.

The back cover of this book shows one particular solution y, combining with all null
solutions y,,. This important picture is repeated for matrix equations and linear algebra.
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Particular Solutions and the Complete Solution

We can draw the complete solution to u + v = 6. These points (u, v) fill a straight line. We
can also draw all the null solutions to u + v = 0. They fill a parallel straight line, going
through the center point (0,0). Figure 1.2 shows how the null solutions combine with one
particular solution (3, 3) to give the line of complete solutions.

a?

\ complete line
null line

vn = (C,=C) one particular solution y, = (3, 3)

another particular solution y, = (6, 0)

o

ut+v==6

u4+v=0
Figure 1.2: By adding all the null solutions to one particular solution, you get every solution

(the complete line). You can start from any particular y,, that solves v +v = 6.

Starting from y, = (3,3), the complete solution has v = 3 + C and v = 3 — C.
This includes a null solution C' + (—C) = 0, plus the particular solution 3 + 3 = 6.

Null Up + v, = 0 C + (-C) =0
Particular up, + v, = 6 3 + 3 =
Complete v + v = 6 B3+C) + 83—-C) = 6

The null solution (C, —C') allows any constant C (like y(0)). The particular solution could
have any numbers u,, and v, that add to 6. We made a special choice v, = 3 and v, = 3.
In the equation iy’ — ay = ¢ we will often make the special choice y,(0) = 0.

There are many particular solutions! You could say that we chose a very particular
solution. In the differential equation we chose to start from y,(0) = 0. For the equation
u+ v = 6 we chose u = 3 and v = 3. We could equally well choose u = 6 and v = 0. This
particular solution is different, but we get the same complete solution line :

Yeomplete = (6 +¢,0 — ¢) is the same solution line as ycomplete = (3 +C,3 — C).

If cis 5, then C is 8. From all ¢’s and all C’s, you get the same line.

I want to repeat this pattern of null solution plus particular solution by showing
how it looks for an ordinary matrix equation Av = b (Chapter 4 explains matrices) :

Null solution Av,, = 0 Particular solution Av, =b Complete solution v = v,, + v,

Always the key is linearity : Av equals Av,, + Av,. Therefore Av =0+ b =b.
Often the only solution to Av,, = 0is v, = 0. Then a particular solution v, is also
the complete solution. This will happen when A is an “invertible matrix.”
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Inputs g(t) and Responses y(t)

For any input source ¢(t), equation (4) will solve dy/dt = ay + ¢(t). But when
mathematics is applied to science and engineering and our society, problems don’t
involve “any q(t).” Certain functions q(t) are the most important. Those functions are
constantly met in applied mathematics. Here is a short list of special inputs :
1. Constant source q(t) =q

)=H(t—-T)
)=46 (t —T)
)

2. Step functionat T' ¢(t
3. DeltafunctionatT q(t
4 (

Exponential q(t

This section will solve dy/dt = ay + q(t) for the four functions on that short list.
The next section adds one more source ¢(t). It is a combination of sine and cosine.
Or ¢(t) can be a complex exponential (which has one term and is usually easier):

5. Sinusoid q(t) = Acoswt + Bsinwt or Re™?

Solving Linear Equations by an Integrating Factor

The equation 3y’ = ay + ¢ is so important that I will solve it in different ways. The first way
uses an integrating factor M (¢). Put both y terms on the left. Keep g(t) on the right.

Problem Solve y’ — ay = gq(t) starting from any y(0)
Method  Multiply both sides by the integrating factor M (t) = e~ %t

We chose that factor e ~%¢ so that M times 3’ — ay is exactly the derivative of My :

d

dt(My) ()

d
Perfect derivative e (y — ay) agrees with a(e“”y)
When both sides of ¢y’ — ay = ¢ are multiplied by M = e~%¢, our equation is immediately
ready to be integrated. The right side is Mg, the left side is the derivative of My.

The integral of %(My) =Mgq is M(t)y(t) — M(0)y(0) :/M(s)q(s) ds (3)

Att = 0 we know that M (0) = €° = 1. Multiply both sides of equation (3) by e?
(which is 1/M) to see y(t) = yn + yYp. This solution comes many times in the book !
To give meaning to formula (4), I will apply it to the most important inputs g(t).

t

The key formula _at at —as
Solution to 3’ = ay + q(t) y(t) = e y(0) +e e q(s)ds. (4
o
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Constant Source q(t) = q

When ¢(t) is a constant, the integration for the particular solution in equation (4) is easy.

t
—as1s=1

/e_as qgds = {qe } — g(1 — e ).
—a s=0 a

0

Multiply by e to find y,(t). An important solution to an important equation.
Solution for constant source q y(t) = e y(0) + g(e‘” —1) (5)
a

Example 1 has a positive growth rate a > 0. The solution will increase when g > 0.
Example 2 will have a negative rate a < 0. In that case y(t) approaches a steady state.

Example 1  Solve dy/dt — 5y = 3 starting from y(0) = 2. Here a = 5 and ¢ = 3.
This fits perfectly with y' — ay = ¢. Equation (5) gives the solution y(t) :
Solution y(t) = yn + yp = 25 4 3(e% —1). Sett = 0 to check that y(0) = 2.
Looking at that solution, I have to admit that 4/ — 5y = 3 is not so obvious. This becomes
much clearer when the two parts (null + particular) are separated :

yn(t) = 2€° certainly has y/, — 5y, = 0 with y,(0) =2

Yp(t) = 2(e® — 1) has y) = 3. This agrees with 5y, + 3.

Example 2  Solve dy/dt = 3 — 6y starting from y(0) = 2.

Formula (5) still gives the answer, but this y(t) is decreasing because a = —6 is negative :
, 3 3 1
t) = 26—6t 4 e—Gt ) g _e—Gt =
y(t) e )= set o

When ¢t = 0, that solution starts at y(0) = 2. The solution decreases because of e~
As t — oo the solution approaches yo, = % This value —g/a at t = oo is a steady state.

aty=-2-1a ion % —3_6yb Y _ . Nothing move
Yy = a = 2 eequa 10n dt = Y cCcomes dt = U. [0) g oves.

Please notice that the steady state is 9o, = % for every initial value y(0). That is because the
null solution y,, = y(0)e~% approaches zero. It is the particular solution that balances the
source term ¢ = 3 with the decay term ay = —6y to approach Yoo = —q/a = 3/6.

Question 1f y(0) = L, whatis y(t)? Answer y(t) = % at all times. 6y balances 3.
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y(0) = 3/4
Yy =3—6y
stead
y(O) = 1/2 """"""""""""""""""""""""" state y
Every starting value leads to

y(0) =1/4 y=—q/a=(~3)/(-6)

y(0)=0

Figure 1.3: When a is negative, e approaches zero and y(t) approaches y. = —q/a.

Here is an important way to rewrite that basic equation 3y’ = ay + ¢ when a < 0.
The right hand side is the same as a(y + Z). But y + Z is exactly the distance ¥ — Yoo-
Rewrite y’ = ay + q as an easy equation Y/ = aY by introducing Y = y — yoo.

New unknown Y =y — y., New equation Y’ = aY Newstart Y (0) = y(0) — yoo

The solution to Y/ = aY is certainly Y (t) = Y (0)e®. This approaches Yo, = 0 when
a < 0. The original y = Y + y, still approaches y, which is —g/a: see Figure 1.3.

(¥ — Yo) ' = a(y — Yoo) hassolution y(t) — yoo = e**(y(0) — yoo) (6)

Section 1.6 will present physical examples with a < 0: Newton’s Law of Cooling,
the level of messenger RNA, the decaying concentration of a drug in the bloodstream.

Step Function

The unit step function or “Heaviside step function ” H (¢) jumps from 0 to 1 att = 0.
Figure 1.4 shows its graph. The effect of H(t) is like turning on a switch.

The second graph shows a shifted step function H(t — T') which jumps from 0 to 1
at time 7. This is the moment when ¢t — T = 0, so H jumps at that moment 7.

H(t) e — Hit-T)
jump from O to 1 jump at time T’
>t : >t

Figure 1.4: The unit step function is H (t). Its shift H(t — T') jumps to 1L att = T..
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When the step comes at ¢ = 0, the solution to y’ — ay = H (t) is the step response
That step response is easy to find because this equation is simply y’ — ay = 1.
The starting value is (0) = 0. Put ¢ = 1 into formula (5) :

1
Step response y(t) = — (e —1) @
a

The interesting case is a < 0. The solution starts at y(0) = 0. It grows to y(oco) = —1/a.
The system rises to that steady state after the switch is turned on. The graph of y(t) is
the bottom curve in Figure 1.3, except that y., is 1/6 because the step function has ¢ = 1.

The step response is the output y(t) when the step function is the input. We are depositing
at a constant rate ¢ = 1. But when a < 0, we are losing ay in real value because of inflation.
Then growth stops at y = —1/a, where the deposits just balance the loss.

Now turn on the switch at time T instead of time 0. The step function H(t — T') is
piecewise constant with two pieces : zero and one. If I multiply by any constant g, the source
q H(t — T') jumps from O to strength ¢ at time 7.

The left side of our differential equation is still 4’ — ay, no change. The integrating
factor M = e~ still makes that into a perfect derivative: M (y' — ay) equals (My)'.
The only change is on the right side, where the constant source doesn’t start acting
until the jump time 7". At that time, the step function source H (¢t — T') is turned on:

t
(e7%y) = e~ H(t—T) now gives e~ *y(t)— e y(0) = /e*‘” ds. (8)
T

The only change for ¢ > T is to start that integral at the turn-on time T':

y —asq 5=t 1
/6_‘” ds = [e } = —(e7 9T — e79), 9
J a

—a s=T

Multiply by e®* to get the particular solution y,(t) beyond time 7', and add y,, = e*'y(0).

1
Solution with unit step y(t) = e*'y(0) + - (e®=T) _1) for t > T. | (10)

As always, y(0) grows or decays with e in the null solution y,,. The step response is the
particular solution, as soon as the input begins. But nothing enters until time 7T'.

Example 3  Suppose the input turns on at time ¢ = 0 and turns off at ¢ = 7T'. Find y(t).

Solution  Theinputis H(t)—H(t—T).The outputis y(t) = < (et — e2*~1)) ¢t > T.
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Delta Function

Now we meet a remarkable function 0(¢). This “delta function” is everywhere zero, except
at the instant ¢ = 0. In that one moment it gives a unit input. Instead of a continuing
source spread out over time, 4(¢) is a point source completely concentrated at ¢ = 0.

For a point source shifted to §(¢t — 7T'), everything enters exactly at time 7.
There is no source before that time or after that time. The delta function is zero except
at one point. This “impulse ” is by no means an ordinary function.

Here is one way to think about §(¢). The delta function is the derivative of the unit step
function H(t). But H is constant and dH/dt is zero except at t = 0. Take
the integral of 6(t) = dH/dt from any negative number N to any positive number P.

P -
Integral of §(¢) is 1 /6(t)dt=/-dt—dt=H(P)—H(N)=1—0. (11)
N N

“The area under the graph of 6(¢) is 1. All that area is above the single point ¢ = 0.”
Those words are in quotes because area at a point is impossible for ordinary functions. §(t)
may seem new and strange (it is useful!). Look at dR/dt = H and dH/dt = .

H(t) = dR/dt o(t) = dH/dt
ramp ﬁt) =t step delta
t t t

0 (slopel) 0 (jumpl) 0 (areal)

Slope of the ramp jumps to 1. Slope of the step function is the delta function.
The value of §(0) is infinite. But that one word does not give full information.
The real way to understand delta functions is by their integrals.

/ 5(t)dt = 1 / 5(t) F(t) dt = F(0) / 5(t— T) F(t)dt = F(T)  (12)
—00 —00 —o00
Please visualize a tall thin box function—equal to 1/h between ¢ = 0 and t = h.

Now imagine h going to zero. The width h becomes zero and the height 1/h becomes
infinite. The area stays at 1. All integrals of 6(¢) F'(t) are concentrated at t = 0 : the “spike” .

Here is a quick way to solve y’ — ay = 46(t), and then we will do it more slowly. We
know that the derivative of a step function H (t) is the delta function §(¢). So the derivative
of the step response must be the impulse response :

d d d at _1 i
— (step) = delta — ( step ) = — <e eat = MP — (13)
dt dt \ response dt

a response
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The Impulse Response Solves y’ — ay = 4(t)

Start your bank account with one deposit. Start your heart with a sudden shock.
Hit a golf ball. Fire a bullet. Many motions start with an “impulse” and then the source
term is a delta function §(t).

The impulse response y(t) jumps immediately to y(0) = 1. You can see that by
integrating every term in dy/dt — ay = 6(t). Integrating 6(¢) from t = —h to h gives 1.
Integrating dy/dt gives y(h) — y(—h), which is y(h). The integral of ay becomes zero as
h — 0. That limit step when h — 0 leaves y(0) = 1.

After the jump to y(0) = 1, the impulse 6(t) is immediately zero. So we just have the
ordinary null solution to y’ = ay starting from y(0) = 1:

Impulse response y' —ay = 6(t) y(t) = e (14)

Notice the different responses to an impulse and a step function. The impulse deposits
everything at ¢ = 0. The step function goes on depositing forever. If a < 0 and inflation
reduces our wealth, the impulse response dies out to Yo, = 0. The step response increases
from 0 to Yoo = —1/a, where the deposits balance the loss from inflation.

I want to emphasize : 2! is the growth or decay factor G (t) for all inputs. When the
input is y(0), the output at time t is e**y(0). When the input is g(s) at time s,
the output later at ¢ is e“(t_s)q(s). The growth is only over the remaining time ¢ — s.
Our main formula (4) is adding up all the outputs that come from all the inputs.

Delayed Delta Function

The source g(t) = §(t — T') turns on at time 7. Then immediately it turns off. In that
one instant of time, the value of y jumps by 1. “We deposited $1 at that moment.”
The integral of dy/dt = 6(t — T') is 1. This is the change in y, before T" to after 7.

Coming up to time T, the solution is y(t) = e*y(0). At time T" we add 1. After
time 7, that input has the shorter period ¢t — T in which to grow. Multiply 1 by e*(*=7) .

Solutionfor g = 8(t —T) y(t) = yn(t) + yp(t) = e** y(0) + e*¢~=D | (15)

The solution y jumps by e®(T=7) = ¢0 = 1, when that second term appears at t = T..

Example 4 Solve the equation y’ — 5y = 3d(t — 4) starting from y(0) = 2.

The null solution to ¥’ — 5y = O starting at y(0) = 2 is yn(t) = 2e®t. This we know.
The particular solution is y,(t) = O up to t = 4. At that moment y jumps by 3, from 3.
Its growth factor is €>(*=4). Then y,,(t) = 3e3¢—%) after t = 4.

Complete solution with jump of 3 y,, + y, = 25 + 3e5¢t—"VH(t —4) (16)

The step function H (¢ — 4) combines y;,, = 0 before the jump and y, after the jump into
one formula. At t = 4 the solution jumps by 3. Then this 3 grows to 3e5(t=4),
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Remark 1  This solution makes me realize that the initial value y(0) is like having a delta
function at time ¢t = 0. The solution “jumps” to y(0). I don’t know if you agree with that.

Remark 2 ¢(t) = —6(t — T') would be negative (a sink instead of a source). A bank
account could be earning interest at the rate a, and suddenly you withdraw 1 at time 7T". The
balance y(T') had reached €27y (0), and it drops by 1. From time T onwards, the growth
factor e*(*~7) multiplies the new balance, and y(t) = e**y(0) — e(t=T),

Remark 3 (a little mysterious) We could think of an ordinary continuous input ¢(t) as
a lot of delta functions—a delta function of strength ¢(T') at every time T. Instead of
“a lot” I need to say “an integral”. Every continuous function ¢(¢) is an integral of delta
functions ¢(T") (¢t — T') atall T'. The integral picks out ¢(t) at the spike point.

Any g(t) = combination of delta functions = / q(T) 6(t —T)dT. (17)

Example 5 (¢ = 1) The integral of all impulses for T" > 0 is the step function H (t).

Then the integral of all impulse responses is the step response. The integral of €%t from
0 to tis (€2 — 1)/a. Derivative of step response = impulse response as in (13).

Exponential Input e€t

The source g(t) = e starts at time zero and continues forever. The particular solution
yp(t) is easy to find, because y, is a multiple Ye of this same exponential e°t.
That is the beauty of exponentials . These are the most important functions and the best to
work with. They allow growth or decay or oscillation from ¢ > 0 and ¢ < 0 and ¢ = iw.

Substitute y, = Ye° into y’ — ay = e cYet — qYect = ect

When we cancel e“* this leaves a simple formula for the number Y in Vet :

1 ect
and yp(t) =
c —

(18)

cY —aY =1 gives Y =

3
Example 6 Solve y’ — 5y = 3e*! starting from y(0) = 2. Now Y = e %

The null solution still involves e®. The particular solution is Y times et !

yp(t) = Yet! Yy, — 5yp = (4Y —5Y)e* = 3e*. ThenY = —3.
This particular solution —3e%® starts at —3. Since y(0) = 2, the other part starts at +5.

Complete solution  y(t) = 55t — 3e%t.
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The
The
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null solution grows at rate a = 5. One particular solution grows at rate c = 4.
equation i’ — ay = et is solved for ¢ # a but two final comments are needed.

. This particular solution y(t) = e“/(c — a) is not the “very particular” solution
that starts from y,(0) = 0. It is still perfectly good, except it starts at 1/(c — a).
So the complete solution starting at y(0) has to include the usual y(0)e** and
also a term to cancel 1/(c — a) at time zero:

at ct

cC—a cC—a

y’ Y= et Ycomplete — y(O) e —

(19)

There you see a null solution yy, (two terms) and our particular y,, (the last term).
Or the last two terms together are the very particular solution (e — e**) /(c — a).

. For ¢ = a we are in serious trouble. The formulas fail because we can’t divide by
¢ —a = 0. This problem 3y’ — ay = e®! is a type of resonance , when the exponent
¢ in the source happens to equal the exponent a in the natural growth from ¢y’ = ay.
The integral in our main formula (4) becomes f e~ e ds = f 1lds =1t.

Resonance c=a Yy — ay = e y = y(0)e + te?*  (20)

That extra growth factor ¢ is because y, resonates with y,. They both have e®'.

= REVIEW OF THE KEY IDEAS =

. Complete solution to a linear equation = null solution(s) + particular solution.

The integrating factor e~ ¢ multiplies ¥’ — ay = q(t) to give (e~ y)’ = e~ g(t).

Integrate and multiply by e : y(t) = yn + yp = €**y(0) + € [ e~2%q(s) ds.
. For y' — ay = q = constant, the particular solution with y,(0) = 0 is g(e®* — 1) /a.
. q(t) = H(t): the response to a unit step function is y, = (e** — 1)/a.
. g(t) = &(t) : the impulse response to a unit delta function is y, = e*.

. q(t) = e gives y, = (e — e)/(c — a). In case ¢ = a, change to y, = te?.
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Problem Set 1.4

1 All solutions to dy/dt = —y + 2 approach the steady state where dy/dt is zero and
Y = Yoo = ___. That constant y = y. is a particular solution .

Which y, = Ce™" combines with this steady state y, to start from y(0) = 47
This question chose Y, + Yn to be Yoo+ transient (decaying to zero).

2 For the same equation dy/dt = —y + 2, choose the null solution y,, that starts from
y(0) = 4. Find the particular solution y,, that starts from y(0) = 0.
This splitting chooses the two parts e'3(0) + integral of e(!=)q in equation (4).

3 The equation dy/dt = —2y + 8 has two natural splittings ys + yr = yn + yp:
1. Steady (ys = Yoo) + Transient (yr — 0). What are those parts if y(0) = 6 ?
2. (y§ = —2yn from yn(0) = 6) + (yp = —2yp + 8 starting from yp(0) = 0).

).

4 All null solutions to u — 2v = 0 have the form (u,v) = (¢,

One particular solution to u — 2v = 3 has the form (u,v) = (7, ).
)+ e(1, ).

But also every solution has the form (3, )+ C(1, ) for C = c+4.

Every solution to u — 2v = 3 has the form (7,

5 The equation dy/dt = 5 with y(0) = 2 is solved by y = . A natural split-
ting ¥ (t) = __ and y,(t) = __ comes from y, = e*'y(0) and y, = [ e2*~9)5ds.

ot
).

This small example has @ = 0 (so ay is absent) and ¢ = 0 (the source is ¢ = 5e
When a = ¢ we have “resonance.” A factor ¢ will appear in the solution y.

Starting with Problem 6, choose the very particular y,, that starts from y,,(0) = 0.
6 For these equations starting at (0) = 1, find y, (t) and y,,(t) and y(t) = yn + yp.

(a) v — 9y = 90 (b) ¥’ + 9y = 90
7 Find a linear differential equation that produces y,(t) = € and y,(t) = 5(e5t — 1).
8 Find a resonant equation (a = c) that produces y,(t) = e? and y,(t) = 3te*.
9  y’' =3y+e3 hasy, = e3y(0). Find the resonant y,, with y,(0) = 0.
Problems 10-13 are about ¥y’ — ay = constant source q.
10  Solve these linear equations in the form y = y,, + y, with y, = y(0)e®".

(a) vy — 4y = -8 (b) y +4y =38 Which one has a steady state ?
11 Find a formula for y(¢) with y(0) = 1 and draw its graph. What is g ?

@y +2y==6 () y' +2y=-6
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12 Write the equations in Problem 11 as Y/ = —2Y with Y = y — yoo. Whatis Y (0) ?

13 If a drip feeds ¢ = 0.3 grams per minute into your arm, and your body eliminates the
drug at the rate 6y grams per minute, what is the steady state concentration Yy, ? Then
in = out and Yy, is constant. Write a differential equation for Y = y — y.

Problems 14-18 are about y’ — ay = step function H(t — T') :

14 Why is yo the same fory’ +y = H(t —2) andy’ + y = H(t — 10)?

15  Draw the ramp function that solves y’ = H(t — T') with y(0) = 2.

16  Find y,(¢) and y,(t) as in equation (10), with step function inputs starting at T’ = 4.
(@) v — 5y =3H(t —4) Oy +y=TH({t—4) (Whatisys?)

17  Suppose the step function turns on at 7' = 4 and off at 77 = 6. Then ¢(t) =
H(t —4) — H(t — 6). Starting from y(0) = 0, solve ¢’ + 2y = ¢(t). What is yeo ?

18  Supposey’ = H(t — 1)+ H(t —2) + H(t — 3), starting at y(0) = 0. Find y(¢).
Problems 19-25 are about delta functions and solutions to y’ — ay = q d(t — T).

19 For all t > 0 find these integrals a(t),b(t), c(t) of point sources and graph b(t):

(a) 0/5(T —2)dT (b)O/ (6(T —2) — 6(T — 3))dT (C)o/ §(T — 2)6(T — 3)dT

20  Why are these answers reasonable ? (They are all correct.)

(a) / elo(t)dt =1 (b) / (6(t)dt =00 (c) / el'6(t — T)dT = €t

21 The solution to y' = 2y + §(t — 3) jumps up by 1 at t = 3. Before and after t = 3,
the delta function is zero and y grows like e?*. Draw the graph of y(t) when
(a) y(0) =0and(b) y(0) = 1. Write formulas for y(t) before and after ¢t = 3.

22 Solve these differential equations starting at y(0) = 2

@y —y=06(t—2) ® Y +y=056t—2). (Whatis yso ?)
23  Solve dy/dt = H(t — 1) + §(t — 1) starting from y(0) = 0: jump and ramp.
24  (My small favorite) What is the steady state yoo fory’ = —y +6(t — 1) + H(t — 3) ?

25  Which ¢ and y(0) in 3y’ — 3y = q(¢) produce the step solution y(t) = H(t — 1) ?
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Problems 26-31 are about exponential sources g(t) = Qe°* and resonance.

26

27

28

29
30

31

32

33

34

35

Solve these equations y’ — ay = Qe as in (19), starting from y(0) = 2:
(@ y —y = 8¢e* () v +y=8e3 (Whatis yoo ?)

When ¢ = 2.01 is very close to a = 2, solve ¢/ — 2y = e starting from y(0) = 1. By
hand or by computer, draw the graph of y(¢) : near resonance.

When ¢ = 2 is exactly equal to a = 2, solve y’ — 2y = e?! starting from y(0) = 1.
This is resonance as in equation (20). By hand or computer, draw the graph of y(t).

Solve y’ + 4y = 8e~4! + 20 starting from y(0) = 0. What is . ?

The solution to 3y’ —ay = et didn’t come from the main formula (4), but it could. Inte-
grate e~ %%e° in (4) to reach the very particular solution (e® — e®)/(c — a).

The easiest possible equation y' = 1 has resonance! The solution y = t shows the
factor . What number is the growth rate a and also the exponent c in the source ?

Suppose you know two solutions y; and ys to the equation y’ — a(t)y = q(¢t).

(a) Find a null solution to y’ — a(t)y = 0.
(b) Find all null solutions v,,. Find all particular solutions ¥,,.

Turn back to the first page of this Section 1.4. Without looking, can you write down a
solution to y’ — ay = q(t) for all four source functions q, H (t), §(t), et ?

Three of those sources in Problem 33 are actually the same, if you choose the right
values for g and ¢ and y(0). What are those values ?

What differential equations y’ = ay + q(t) would be solved by y;(t) and ya(t) ?
Jumps, ramps, corners—maybe harder than expected (math.mit.edu/dela/Pset1.4).

y1(t)
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1.5 Real and Complex Sinusoids

Section 1.4 ended with the equation 3’ — ay = €. A particular solution was easy to
produce, because we kept e“t. We simply chose the correct multiplier Y = 1/(c — a) in
yp(t) = Yet. This section changes the real number c to an imaginary number iw.
The multiplier is now Y = 1/(iw — a) . The solution formula Ye®* will stay exactly
the same, but we need complex numbers (with real part and imaginary part). The
payoff is that we can solve all real problems ' — ay = Acoswt + Bsinwt at once.

Many scientific and engineering applications are driven by sources g(t) that oscillate
like coswt and sinwt (sinusoids ). Pistons go up and down to drive a car, voltages go
up and down to drive current (alternating current). The input frequency is w, and the output
frequency is also w. The problem is to find the amplitude and the phase in the output
(the response to the input). The real solution will be y = M coswt + IN sin wt.

This y(t) will be a particular solution (steady solution). It is not the transient solution
yn(t) that decays to zero. We solve y' — ay = q(t) when the source q(t) is a sinusoid.
For this section and the next, applications come from biology and chemistry and medicine
and more. The number a is often a rate constant. It tells the speed of a chemical reaction.

Note that RLC circuits (resistor-inductor-capacitor) produce equations with second
derivatives. Those will go into Chapter 2, but RC and RL circuits (first order equations)
belong here. Our plan for this section is straightforward : Real then complex.

1 (Real) Solve dy/dt — ay = q(t) = A coswt + B sinwt.
This leads to two equations for the two coefficients M, N in y = M coswt + N sinwt.
2 (Complex) Solve dy/dt — ay = q(t) = Re*.

This leads to one easy equation for the coefficient in y = Ye™*. But that number Y is
complex, so we still have two real numbers to find (real and imaginary parts of Y).

3 (Akeyidea) Write the complex number 1/(iw — a) in its polar form G e—*<.

The positive number G is the gain . The angle « is the phase lag . Those have impor-
tant meanings and they are perfect to graph separately. In many problems (most problems)
G and « are more useful than the real and imaginary parts of 1/(iw — a).

So we need to explain and review complex numbers. They are worth knowing and
not difficult. The next page will solve the real problem 1 and the complex problem 2. We
can’t simplify the real problem by using cosines alone, because the term dy/dt in the equa-
tion would unavoidably involve sin wt.

The Review of the Key Ideas at the end organizes the important steps.

Real Sinusoids

We want a particular real solution y(¢) when the source ¢(t) oscillates with frequency w.

d
First order linear equation ;y —ay = Acoswt + Bsinwt. @))]
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The solution will have the same form y = M coswt + N sinwt as the source term. By
matching the cos wt terms and separately the sin wt terms, you get two equations for M and
N. Just subtract ay = aM coswt + aN sinwt from dy/dt = —wM sinwt + wN cos wt.

dy cos wt terms —aM+w N=A
- —ey=gq . 2
dt sin wt terms —wM—-—a N=B

Those two equations tell us M and N in the real solution y(t) = M coswt + N sinwt.
I will write down the solution to equation (2), and then describe two ways to find it.

Source q = Acoswt+ Bsinwt __aA—HuB N_wA—aB

Solution y = M cos wt + N sinwt T w2+4q? w24 a2 )

I would find N by eliminating M in equation (2). If you multiply the first equation by w
and the second equation by a, then subtraction removes M. The right side is wA — aB,
the left side is (w? + a?)N. Then N is correct in equation (3). Similarly we find M.

For two equations it is also practical to find M and N from the 2 by 2 inverse matrix :

-a w M| | A ves M| 1 -—a —w A

-—w —a N | | B give N |~ w2+a2 0 = B |-
The matrix on the left times its inverse on the right gives the identity matrix I in Chapter 4.
That denominator w? + a? of the inverse matrix appears in M and N, in the solution (3).

Complex Sinusoid elwt

Now we come to the very important input g(t) = R e**. That input is oscillating with
frequency w radians per second. The output y(t) will oscillate with the same frequency w.
This is true because a is constant in the differential equation. When y(t) = Ye™* includes
the same factor e™!, that factor cancels from every term in the equation:

q(t) = Re™*

- = ) 2o iw W
u(t) = Yy eiwt Y —ay = q becomes iwYet — qYeivt — Roivt @)

When we divide by e?, this leaves an easy algebra problem for the complex number Y :

Response Y (w) iwY —aY =R gives Y = and y = Ye™?t | (5)

w — a

The simplicity of the solution y = Y'e®** comes from one key fact : The derivative of ¢* is a
multiple of e*! (the multiplying factor is iw). This was not true for coswt.
Its derivative brings in sinwt. So we had to solve two real equations for M and N,
while (5) is one complex equation for Y.
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Complex Numbers : Rectangular and Polar

The complex number z = x + iy has real part x and imaginary part y. The basic ideas
are explained here ; more details are in Section 2.2. We plot all z in the complex plane
(the real-imaginary plane). Figure 1.5 shows the particular number z = 4 + 3¢ with
z =Rez = 4and y = Im 2 = 3. No problem with the rectangular form 4 + 31,
except that multiplying and dividing are not at all convenient in £ — y coordinates.

The first figure also shows the polar form of the same number z. The magnitude (or
modulus) is 7. The phase is the angle 6. From x and y we can find r and 6.

The magnitude is 7 = \/x% + y? = v/25 = 5. The angle 0 has tangent y/x = 3/4.

Imaginary e 2=2+1i=+/5¢e"
1 z =4+ 3i = 5e* V5 different 6
T ¢ from part (a)

|
— |
T =2 y=3=r sin 0 0
T tanf = 2 , V5 ‘
(2 . —i Z=2-i=5e ¥
s, complex conjugate Z

r=4=r7r cos 0

Figure 1.5: (a) z = 4 + 3i is a point in the complex plane. Its polar form is z = 5¢%.

The polar form is perfect for multiplication and division of complex numbers. To
multiply re?® times Re’®, add the angles and multiply » times R. To divide, subtract
the angles and divide r by R.

. . ) i0 ro
Multiply (r¢??)(Re’®) = rRe¥0+®)  Divide Igeeia-zﬁe“f’—a) 6)

The polar form is also perfect for squaring a complex number r¢* and for 1/re®

Square 2% = (re')(re?’) = r2e2®  Invert - = — = — e~ (7)
z ret? p

Let me compare that polar form of 1/z with 1/(z + iy). Multiply by (z —iy)/(z —iy) = 1.

1 1 1 a:—i,y_m—-iy 1 4—3 1

2 ztiy atiyr—iy x2 + y? 413 42+32 5

This number x — ¢y appears often. It is the complex conjugate Z of the number z = x + iy.
Notice that = + iy times x — iy is x? + y2. In other words z times Z is |z|2 = 2.
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eif T
2z =¢e"% = cosO + isin0 e 2ic :(eia)2
(,z'(éH'cr} )
r=1 ’ ere
sin @ l
cos -1 unit 1
circle
) 1
> _ -0 _ P
~_|_ —Z=e =5 =cosf — isin@

Figure 1.6: Points e? on the unit circle have 7 = 1. When e* multiplies e*, angles add.

The Unit Circle
Figure 1.6 shows the unit circle , where every radial distance is 7 = 1. Then we just add
the angles to multiply, or double the angles to square, or subtract the angles to divide:
. . . , . 1 .
On the circle (e¥)(e*) = ei0F) (e?9)(e ) =1 —5 = e ¥
e’L
e~ is the complex conjugate of €Y, the mirror image across the axis in Figure 1.6.

Example 1  Describe the paths of the numbers e®t and e** and e(*+%)t in the complex
plane (real s and real w). The time ¢ goes from 0 to co. Those paths start at 1.

Solution If s > 0, the number e goes from 1 out the real axis to infinity. If s < 0,
then ! goes from 1 in to zero. All real.

The path of €“* goes around the unit circle with constant speed. At time T' = 27/w
(and also 2T, 3T, ...) it comes back to e?™ = 1. The path goes clockwise if w < 0.

The path of e(**%)* spirals outward to infinity if s > 0. It spirals inward to zero
if s < 0. Attime T = 27/w it is a real number T, because the factor e = 2™ is 1.
The Gain G and the Phase Lag o

The complex number 1/(iw — a) multiplies the input ¢(t) = Re™* to give the output
y(t) = Ye™'. What is the magnitude of 1/(¢w — ) and what is its angle ? We need

its polar form 1/(iw — a) = Ge™**. Start with iw — a = re'™ and then invert:
. ; imaginary part w
iw—a=re* r = +vw? +a? and tana:&:——.
real part a

We want 1/(re’®). This will be Ge=**. The gainis G = 1/r = 1/vV/w? + a2:

Gain G 1 TR 1 . )
=-—e "= ———= e """ =Ge " 8
Vit @ i

Phase angle o iw—a T
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—e

- -
Wn 2wWn Wn 2w

Figure 1.7: Dimensionless gain G and phase angle ¢ as functions of frequency w.

The gain G(w) and the angle a(w) are often graphed. The graphs below are variations of
“Bode plots.” The amplitude response G(w) is especially important, and
you are very likely to see that gain G by itself—often including an extra factor |a|.

Note One common variation is to include the rate constant @ in the forcing term
q(t) = a Re™*'. We still think of Re™* as the input, then a gives g the right physical units.
That factor a will appear in the output. So the gain G = |output| / |input| will be increased by
that factor |a|. Then G = la|/vVw?+a? is 1 at the frequency w = 0.

Sinusoids R cos(wt — ¢)

The next page will show that any combination of coswt and sinwt is a shifted cosine. It has
frequency w and amplitude R and phase lag ¢. If you know w and R and ¢, it is no problem
to graph y(t) = R cos(wt — ¢). To go the other way, and read off those three numbers
from the graph, is much more interesting.

This mystery sinusoid came from lecture notes for MIT’s course 18.03. The website
mathlets.org has interactive experiments. The question here is: Find w, R, and ¢.
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The Sinusoidal Identity

We want to choose the magnitude R and the angle ¢ so that A cos wt + B sin wt
is the real part of Re*“t=%®). We can and will solve ¢/ — ay = Re*“t=%) quickly.
When we take the real part of all terms in this differential equation, the correct input
q(t) = Recos(wt — ¢) will appear on the right side and the correct output y(t) will
appear on the left side. The real equation will be solved in one step.

So we want this identity for the “sinusoidal” input ¢(t) :

Sinusoidal identity A cos wt + B sinwt = R cos(wt — ¢) 9)

The right side has the same period 27 /w as the left side—and only one term.
To find R and ¢, expand R cos(wt — ¢) into Rcoswtcos ¢ + R sin wtsin ¢. Then
match cosines to find A and match sines to find B :

B
A=Rcos¢ and B =R sin ¢ A% + B2 =R? and tan¢>=z. (10)

So we know R = /A2 + B? and ¢ = tan~!(B/A) in the sinusoidal identity. The beauty of
R and ¢ is that they match sinusoids to the polar form of complex numbers.

= A+iB = Re* polar form of A + iB
A B R = A? + B2 produces R and ¢ in the
2 tan ¢ = B/A sinusoidal identity (9)

For practice with this important formula, Problem 1 will develop a slightly different proof.

Example 2 Write g(t) = cos 3t + sin 3t as Rcos (3t — ¢) : the real part of Re?*(3—%),
Solution A = 1and B = 1 so that R = /2. The angle ¢ = Thastang = B/A = 1.
Then cos 3¢ + sin 3¢t = v/2 cos (3t — Z).

Example 3  Write the real part of €***/(1/3 + i) in the form A cos 5t + B sin 5t.

Solution /3 + i is 2¢'™/® (why?) Then e®/(v/3 + i) is 3€®*="/6) Its real part is
1 1 3 1
5 cos (51& = %) =3 (cos 5t cos % + sin 5t sing) = \/T_ cos 5t + 1 sin 5¢.

Real Solution y from Complex Solution y¢
The sinusoidal identity solves y’ — ay = A cos wt + B sin wt in three steps:
1. This equation is the real part of the complex equation 3.’ — ay, = Re*«!=%),
2. The complex solution is y. = Re'“t=9) /(iw — a) = R G e}@t=¢—),

3. The real part of that complex solution ¥, is the desired real solution y(t).
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Those three steps are 1 (real to complex) 2 (solve complex) 3 (complex to real).
This will succeed. The second step expresses 1/(iw — «) as Ge ™ to keep the polar form.
The third step produces y = M coswt + N sinwt directly as y = RG cos(wt — ¢ — ).

Example 4 Take those three steps real-complex-real to solve y’ — y = cos t — sin t.

We have to find R, ¢, GG, and « from the numbersa = 1,w = 1, A = 1,and B = —1.
Notice that RG = 1.

S B ™ 1 1
R:\/A2+B2:\/§ tan¢:—:—1 andqj:__ G = =
A 4 Vwl+aZ V2
The angle foriw —a =i —lisa = 37". Its tangent is —< = —1.

1. The sinusoidal identity is cost — sint = v/2 cos(t — ¢) = v/2 cos(t + 7/4).

X vESETY 1 1 L e
. = ere = — .
Ycomplex ] iw—a i—1 N €

. . T
3. Ycomplex = RG et(@t—a—9¢) = ei(t=7/2)  Then ypaq = cos (t - 5) = sint.

That example was chosen so that G = 1/+/2 cancelled R = v/2. If we keep all the
symbols R, ¢, G, o then the solution y., = RG cos (wt — ¢ — a) from Step 3 must
agree with the solution y = M coswt + N sinwt at the start of this section.

The key point in many applications is not necessarily the numbers in the formula for y(¢).
Very often the goal is to see from the formula how y(t) depends on parameters like @ and w in
the differential equation. The gain G = |output|/|input| is a convenient
and very important guide.

The truth is that the complex solution is better. The sinusoidal identity shows how
every combination Acos wt + Bsin wt is the real part Rcos(wt — ¢) of a complex
exponential Re*(“*~?)_ So we can convert real to complex and complex back to real.

In between, solve the complex form by using the frequency response 1/(iw — a).

Conclusion  When the input ¢(t) is Re™?, the output y(¢) multiplies by 1/(iw — a).
This multiplying factor is a complex number, and it changes with the frequency w.
We absolutely need to understand that number Y and graph its magnitude G and its phase.

= REVIEW OF THE KEY IDEAS =

[

. (Real) y' — ay= A coswt + B sinwt leads to Yreal = M coswt + N sinwt.

[\*}

. (Sinusoidal identity) A coswt + B sinwt equals R cos(wt — ¢) with R? = A% + B2.

w

. (Complex) y' — ay= Re*“t=%) Jeads to Ycomplex = Re¥«t=9) /(i — a).

F

. (Complex gain) 1/(iw — a) = Ge™** with G = 1/vw? + a2 and tana = —w/a.

9]

. (Real part of the complex solution) Ypeq] = Re(ycomplex) = RG cos(wt — a — ¢).
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Problem Set 1.5

Problems 1-6 are about the sinusoidal identity (9). It is stated again in Problem 1.

These steps lead again to the sinusoidal identity. This approach doesn’t start with
the usual formula cos (wt — ¢) = cos wt cos ¢ + sin wt sin ¢ from trigonometry.
The identity says :

If A+ iB = Re'® then A coswt + Bsinwt = R cos(wt — o).
Here are the four steps to find that real part of Re*(“*=%)_ Explain A — iB in Step 3.
R cos (wt — ¢) =Re [Re'“@~9)] =Re [e™!(Re™")] = (whatis Re™"*?)

= Re[(cos wt + i sin wt) (A —iB)] = A coswt + B sinwt.

To express sin 5t + cos 5t as R cos (wt — ¢), what are R and ¢ ?
To express 6 cos 2t + 8 sin 2t as R cos (2t — ¢), what are R and tan ¢ and ¢ ?
Integrate cos wt to find (sin wt)/w in this complex way.

(i) dypeq)/dt = coswt is the real part of dycomplex/dt = et,

(ii) Take the real part of the complex solution.

The sinusoidal identity for A = 0 and B = —1 says that — sinwt = R cos(wt — ¢).
Find R and ¢.

Why is the sinusoidal identity useless for the source g(t) = cos t + sin 2t ?

Write 2+3i as 7e’?, so that 575z = Le™*?. Then write y = ¢*’*/(2+3i) in polar form.
Then find the real and imaginary parts of y. And also find those real and imaginary

parts directly from (2 — 3i)e™!/(2 — 3i)(2 + 3i).

Write these functions A coswt + B sinwt in the form R cos(wt — ¢) : Right triangle
with sides A, B, R and angle ¢.

1) cos3t —sin3t 2) v/3cosmt — sin it 3) 3cos(t — @) +4sin(t — ¢)

Problems 9-15 solve real equations using the real formula (3) for M and V.

9

10
1
12

Solve dy/dt = 2y + 3 cost + 4sint after recognizing a and w. Null solutions Ce??.
Find a particular solution to dy/dt = —y — cos 2t.
What equation y’ — ay = A coswt + Bsinwt is solved by y = 3 cos 2t + 4sin 2t ?

The particular solution to y’ = y + cost in Section 1.4 is y, = €' [e™%cossds.
Look this up or integrate by parts, from s = 0 to t. Compare this y,, to formula (3).
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13 Find asolution y = M cos wt + N sin wt toy’ — 4y = cos 3t + sin 3t.
14  Find the solutionto y’ — ay = A cos wt + B sin wt starting from y(0) = 0.
15 If a = 0 show that M and N in equation (3) still solve ¥’ = A cos wt + B sin wt.

Problems 16-20 solve the complex equation y/ — ay = Re*(«t=9),

16  Write down complex solutions y, = Ye™* to these three equations :
@y’ —3y=>5e* () y'=Re@ 9 (¢ y'=2y-—e"
17  Find complex solutions z, = Z e™ to these complex equations :
(@) z' +4z = 8% ) 2/ +4iz=e8 () z'+4iz=¢"

18  Start with the real equation y "—ay = R cos (wt—¢). Change to the complex equation
2! —az = Re“*=%)_ Solve for z(t). Then take its real part y, = Re .

19  What is the initial value y,(0) of the particular solution y, from Problem 18?
If the desired initial value is y(0), how much of the null solution y, = Ce*
would you add to y, ?

20  Find the real solution to 3y’ —2y = cos wt starting from y(0) = 0, in three steps : Solve
the complex equation z/ — 2z = e™!, take y, = Rez, and add the null
solution y,, = Ce?* with the right C.

Problems 21-27 solve real equations by making them complex. First a note on a.

Example 4 was y' — y = cost — sint, with growth rate a = 1 and frequency w = 1.
The magnitude of iw — a is v/2 and the polar angle has tana = —w/a = —1. Notice:
Both o« = 3w /4 and o« = —7 /4 have that tangent ! How to choose the correct angle « ?

The complex number iw — a = i — 1 is in the second quadrant. Its angle is o = 37 /4.
We had to look at the actual number and not just the tangent of its angle.

21 Find r and « to write each iw — a as re*®. Then write 1/re® as Ge™**.

(@ Vv3i+1 (b)) V3i—1 (¢) i—+3

22 Use G and « from Problem 21 to solve (a)-(b)-(c). Then take the real part of each
equation and the real part of each solution.

@y +y=eV (b y-y=eVH (0 y' -VBy=e'
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23

24
25

26

27

Solve iy’ — y = cos wt + sin wt in three steps: real to complex, solve complex, take
real part. This is an important example.

(1) Find R and ¢ in the sinusoidal identity to write coswt + sin wt as the real part
of Re'(wt=9),

(2) Solve y/ —y = e by y = Ge e, Multiply by Re *® to solve
2! — z = Retwi=9),

(3) Take the real part y(t) = Re z(t). Check that y’ — y = cos wt + sin wt.

Solve y’ — /3y = cos t + sin ¢ by the same three steps with @ = v/3 and w = 1.

(Challenge) Solve vy’ — ay = A cos wt + B sin wt in two ways. First, find
R and ¢ on the right and G and « on the left. Show that the final real solution
RG cos (wt — ¢ — «) agrees with M cos wt + N sin wt in equation (2).

We don’t have resonance for yy’ — ay = Re’! when a and w # 0 are real. Why not ?
(Resonance appears when y,, = Ce® and y, = Y e share the exponenta = c.)

If you took the imaginary part y = Im z of the complex solutionto 2z’ —az = Re*(“!=%),
what equation would y(t) solve ? Answer first with ¢ = 0.

Problems 28-31 solve first order circuit equations: not RLC but RL and RC.

28
29

30

31

V coswt L R Veoswt R c
current I(t) q(t) = integral of I(t)

Solve LdI/dt 4+ RI(t) = V cos wt forthe current /(t) = I,,+ I, in the RL loop.

With L = 0 and w = 0, that equation is Ohm’s Law V' = IR for direct current.
The complex impedance Z = R + iwL replaces R when L # 0 and I(t) = [e*".

LdI/dt + RI(t) = (iwL + R)Ie** = Vet gives ZI=1V.

What is the magnitude |Z| = |R + iwL|? What is the phase angle in Z = |Z|e® ?
Is the current |[| larger or smaller because of L ?

d 1
Solve Rd—j + Eq(t) =V cos wt for the charge ¢(t) = ¢, + g in the RC loop.

Why is the complex impedance now Z = R + -1~ ? Find its magnitude |Z]|.
Note that mathematics prefers 2 = 1/—1, we are not conceding yetto 7 = +/—1!
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1.6 Models of Growth and Decay

This is an important section. It combines formulas with their applications. The formulas
solve the key linear equation y’ — a(t)y = q(t)—we are very close to the solution.
Now a can vary with ¢. The final step is to see the purpose of those formulas.

The point of this subject and this course is to understand change. Calculus is about
change. A differential equation is a model of change. It connects dy/dt to the current value
of y and to inputs/outputs that produce change. We see this as a math equation and solve it
by a formula. If we stop there, we miss the whole reason for differential equations.

I will select five models of growth or decay, and five equations to describe them.
Often the hardest part is to get the right equation. (Definitely harder than the right solution
formula.) This section presents both steps of applied mathematics :

1. From the model to the equation 2. From the equation to the solution.

Our plan is to take the second step (the easier step) first: Solve the equation. Find the
output y(t) from inputs a(t) and ¢(t) and y(0). Then come the models.

Here is the differential equation for y(t). We want a formula to solve it—and we want to
understand where that formula comes from. The solution y(¢) must use the three inputs a(t)
and ¢(t) and y(0), because they define the problem. Sometimes a(t) changes with time.
This possibility was not allowed in Sections 1.4 and 1.5.

d
Differential equation d_!t/ = a(t)y + q(t) | starting from y(0) att =0. (1)

Up to now, our models had limited options for those inputs (and a was constant) :

Growth rate a(t) The classic exponential y(t) = e! hada = 1
Source term q(t) Sections 1.4 and 1.5 had five particular inputs like et and e?*?t

Initial value y(0) The starting value for y(t) = et was y(0) = 1

The “initial value” y(0) is like a deposit to open a bank account. The source or sink g(t)
comes from saving or spending as time goes on. The solution y(t) is the balance in the
account at time ¢. I will reveal the final formula now, so you know where we are going.

t

Growth factor G (s, t) .

from time s to time ¢ y(t) = G(0,1) y(0) + / G(s,t) q(s) ds. @
0

Formula (2) has two parts. The first part y, = G(0,t)y(0) has ¢ = 0: no source.
The second part y, introduces the source ¢(t), which adds fresh growth G times ¢
(or subtracts when ¢(t) is negative). Go forward 2 pages to see the factor G(s,t).

vy = ( Null solution with ¢ = 0) + (Particular solution from the input q).
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Particular Solution from ¢g(t)

On this page a is constant.  The particular solution y,(t) is so important that
we will reach it in three ways. Of course those three approaches will be closely related—
but they are different enough and valuable enough to be presented separately :

1. Integrating factor 2. Variation of parameters 3. Combine all outputs.

1. The integrating factor M (t) = e~ was seen in Section 1.4. It solves M/ = —aM.
For constant growth rate a, multiplying the equation i/ — ay = q(t) by M = =%
turns the left side into an exact derivative of My :

d ! o ¢
E(e_“"y) = e~ "(y — ay) = e q(t). 3)

Then we integrate the left and right hand sides to find y = y,(¢) with y,(0) = 0:

t

t
eyt = [ ds ad g = [ g s @)
0 0

2. Variation of parameters starts with the solutions y, = Ce® to the null equation
y' — ay = 0. The new idea is to let C vary with time in the particular solution.
Substitute y = C(¢)e®" into the equation y’ — ay = ¢(t) to find C'e® = q(t):

(Ce*) —aCe® = C'e™ + aCe™ —aCe® = C'e™ = q(t). ®)

Then C’ = e~?%q(t). Integrate to find C and the solution formula we want :
t ¢
Ct) = /e"” q(s)ds y(t) = C(t)e = /e“(t's) q(s) ds. (6)
0 0

The integrating factor M changes the equation. Varying C(t) changes the solution.
C(t) will stay important for systems of n equations ; integrating factors lose out.

3. Each input g(s) grows to e2(*=2) g(s) in the time between s and t. Then the
solution y(t) comes from these inputs ¢(t) and growth factor G = ea(t=9),
Add up (integrate) all those outputs :

t

Growing time for g(s) ist — s Output y(t) = /ea(t_s) qg(s)ds. (7)
0

To me, this third approach captures the meaning of the formulas (4) = (6) = (7). I like to
think of each input ¢(s) growing by the factor G(s,t) = e*~=%) in the time ¢t — s.
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Changing Growth Rate a(t)

The next step is to let a(t) change in time. For example a(t) could be 1 + cost, varying
between 2 and 0. Certainly interest rates do change. The growth rate a of your bank
balance often slows down or speeds up. Then the growth factor G(0, t) is not just e®.

The null solution to y,, = a(t)y, shows this clearly—the growth from time 0 to time ¢ :

Integrate a from O to ¢
Take the exponential G(0,t) = e

O —

a(s)ds | 4. (t) = G(0,t) y(0). (8)

The key point is that dG/dt = a(t) G. First, the derivative of the integral of a(t)
is a(t)—by the Fundamental Theorem of Calculus. Second, the chain rule produces the
derivative of G, when that integral goes into the exponent. Here is dG/dt :
d /; i d dG
= (emtegral of a) _ (emtegral of a) - (integral of a) = (G)(a(t)) ()

When a is constant, that integral is just at. This leads to the usual growth G = %,
When a varies, the exponent is messier than at but the idea is the same : dG/dt = aG.
Our example is a(t) = 1 + cost. The integral of a(t) is t + sin¢. This is the exponent:

Growth factor G(0,t) = ettsint Null solution y,, (t) = etTsinty(0)

Now we tackle the particular solution that comes from the inputs ¢(¢) when they grow.

Again this y,(t) can come from an integrating factor or variation of parameters or
an integral of all outputs from all inputs.

~ [ a(s)d
1. Theintegrating factoris M (t) = 1/G(t) = e §o * Thishas M’ = —a(t)M.

Then the derivative of My is exactly Mg, when we use M’ = —aM.

Product rule

d
Chain rule a(My) =My'+M'y=M(@y' —a(t)y) = Mq(t). (10)

Integrate both sides of (My)’ = Mg starting from y,,(0) = 0. Then divide by M :

t

a(s)ds -7 (s)d
/e [0 ds an

0

o

M(t)yp(t) = / M(s)qs)ds  yplt) = e
0

When you multiply those exponentials, the exponents combine. The integral from O to ¢,
minus the integral from O to s, equals the integral from s to ¢. Each g(s) enters at s.
The exponential of the integral of a from s to t is the growth factor G (s, t):

t
[ a(T)dT y
Growth factor G(s,t) = e 3 Solution y,(t) =/G(s, t)g(s)ds (12)
0
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2. Variation of parameters . I will save this method to use in Chapter 2 for second
order equations (with ). Then all three methods get an equal chance—variation of
parameters can solve equations that go beyond y’ = a(t)y + q(t).

3. Integral of outputs (my own choice). The input ¢(s) enters at time s. It grows
or decays until time ¢t. The growth factor multiplying ¢ over that time is G(s,t).
Since a(t) changes, the growth factor needs the integral of a. The inputs are q(s),
the outputs are G (s, t) g(s), and the total output y,,(t) agrees with (12):

t
[a(T)dT
S

G(s,t) = e yp(t) = /G(s,t) q(s)ds (13)
0

When ¢ is a delta function at time s (an impulse), the response is y, = G(s, t) at time .

Example1 The growthrate a(t) = 2¢ puts the economy into serious inflation. The integral

t
of a(t) is [ 2TdT = t*> — s*. Then G is the growth from s to ¢ :
s

t
2

G(s,t) = et %" y' =2ty q(t) has y,(t) = /etQ_s q(s) ds.
0

Example 2 Here is an interesting case for investors. Suppose the interest rate a goes to
zero. What happens to the solution formula ? The first term y,, becomes y(0). This deposit
doesn’t grow or disappear, it stays fixed. The growth factor is G = 1 and we just add up all
the inputs (they didn’t grow) :
t
a=0 y’ = q(t) has the particular solution y,(t) = /q(s) ds.
0

The problem comes when we start with the formula to solve y’ = ay + q (constant q)

t
at __ 1
y(t) = ey(0) + /6“("s)qu = ey(0) + ¢= —
0

That looks bad at a = 0 because of dividing by a. But the factor e — 1 is also zero.
This is a case for I’Hopital’s Rule. Wonderful ! We can make sense of 0/0:
e —1 Derivative with respect to a t

limit = F——— = - =1
a—0 a Derivative with respect to a 1

The particular solution from y’ = ¢ reduces to ¢ times ¢. That is the total savings during
the time from O to ¢. With a = 0 it doesn’t grow. Like putting money under a mattress,
a = 0 means no risk and no gain. Then dy/dt = g has y(t) = y(0) + gt.

Now the solution formula can be applied to real problems.
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Models of Growth and Decay

The whole point of a differential equation is to give a mathematical model of a practical
problem. It is my duty to show you examples. This section will offer growth equations
(a > 0), decay equations (a < 0), and the balance equation that controls the temperature of
the Earth. That balance equation is not linear.

Please understand that a linear equation is only an approximation to reality. The
approximation can be very good over an important range of values. Newton’s Law F' = ma
is linear and we live by it every day. But Einstein showed that the mass m is not a constant,
it increases with the velocity. We don’t notice this until we are near the speed of light.

Similarly the stretch in a spring is proportional to the force—for a while. A really large
force will stretch the spring way out of shape. That takes us to nonlinear elasticity. Eventually
the spring breaks.

The same for analysis of a car crash. Linear at very slow speed, nonlinear at normal
speeds, total wreck at high speeds. A crash is a very difficult problem in computational
mechanics. So is the effect of dropping a cell phone. This has been studied in great detail.

Back to linear equations, starting with constant a and y(0) and gq.
Model 1 y(t) = money in a savings account

This is the example we already started. We have a formula for the answer, now we use it.
That formula is based on a continuous savings rate ¢(t) (deposits every instant, not every
month). It also has continuous interest ay (computed every instant, not every month or every
year). Continuous compounding does not bring instant riches. Just a little more income, by
computing interest day and night.

Suppose we get 3% interest. This number is a = .03, but what are the “units” of a? The
rate is 3% per year. There is a time dimension. If we change to months, the same rate is
now a = 5% = .0025 per month.

Units of a are To change from years to months, divide a by 12.

ime

You can see this in the equation dy/dt = ay. Both sides have y. So a on the right

agrees dimensionally with 1/t on the left. Frequency is also 1/time; iw — a is good!
The savings rate g has the same dimension as ay. The dimension of ¢ is money / time.

We see that in the words too: ¢ = 100 dollars per month.

Question: Does y(t) grow or decay? This depends on y(0) and a and q.

So far a and g have been positive; we were saving. If we spend money constantly,
then ¢ changes to negative. Interest is still entering because a is positive. Does ¢ win or
does a win? Do we spend all our deposit and drop to y = 0, or does the interest ay(t)
allow us to keep up the spending level g forever?

Answer: If we start with ay(0) + g > 0, then y(t) will grow even if ¢ < 0.

The reason is in the differential equation dy/dt = ay(t) + ¢. If the right side is positive at
time ¢ = 0, then y starts growing. So the right side stays positive, and y keeps growing.
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Common sense gives the same answer: If ay + ¢ > 0, the interest ay coming in stays
ahead of the spending going out.

A question for you. Suppose a < 0 but ¢ > 0. Your investment is going down at rate a.
You are adding new investments at rate g. Overall, does your account go up or down?

You won’t actually hit zero, because et stays positive forever, even if a < 0. You
approach the steady state yo, = —¢/a. In reality, the end of prosperity has come.

Now I will compare continuous compounding (expressed by a differential equation)
with ordinary compounding (a difference equation). The difference equation starts with the
same Yy = y(0). This changes to Y7 and then Y5 and Y3, taking a finite step each year.
When the time step At is one year, the interest rate is A per year and the saving rate is
Q dollars per year :

Y1 - Y,

d n
Y _ay+q  changesto A7 =AY, +Q (14)

dt

We don’t need calculus for difference equations. The derivative enters when the time
step At approaches zero. The model looks simpler if I multiply equation (14) by At :

One step,nton + 1 Y1 =1+ AAY)Y, +Q At (15)

At the end of year n, the bank adds interest AAtY,, to the balance Y;, you already have.
You also put in new savings (or you spend if @) < 0). The new year starts with Y, ;1.
In case AAt = at/N and Q = 0, we are back to Y;,11 = (1 + at/N)Y,,:

N
at
N steps from 0 to NV Yn = (1 — E) Yo — e%y(0) as N — ooc.

Model 2 Radioactive Decay

The next models will deal with decay. The growth rate a is negative. The solution y
is decreasing. Decay is an expected and natural result when a < 0. In fact the differential
equation is called stable when all solutions approach zero. In many applications this is highly
desired.

Exponential growth with ¢ > 0 may be good for bank accounts, but not for a drug in our
bloodstream. Here are examples where any starting amount y(0) decays exponentially:

A radioactive isotope like Carbon 14
Newton’s Law of Cooling
The concentration of a drug in our bloodstream

I will emphasize the half-life—the time for half of the Carbon 14 to decay, or half
of the drug to disappear. This is decided by the decay rate a < 0 in the equation y' = ay.

The half-life H is the opposite of the doubling time D, when a > 0 and e*? = 2.
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Half-life and Doubling Time

How long does it take for y(t) to be reduced to half of y(0) ? The equation y’ = ay has the
solution e*ty(0), and we know that a < 0.

. alE 1 1 —1n2
Half-life H e = = aH =In-=—-1In2 H =
2 2 a

That answer H is positive because a < 0. For Carbon 14 the half-life H is 5730 years.

It has just taken 150 hours on a Cray XTS5 supercomputer to find 8 eigenvalues of
a matrix of size 1 billion—to explain that long half-life. Other carbon isotopes have
H = 20 minutes. Going in reverse, H tells us the decay rate :

_ —In2

Decay rate a a= ~ 1.216 x 10~ per year.

The “quarter-life” would be 2H, twice as long as the half-life. The time to divide by e is

-1
Relaxation time T " =e 10368 ar=-1 T=—
a
Question.  Suppose we find a sample where 60 % of the Carbon 14 remains. How old
is the sample ? If the carbon came from a tree, its decay started at the
moment when the tree died.

Answer. The age T is the time when €27 = 0.6. At that time

—0.51
aT = In(0.6) = = 4200 years.

The doubling time D uses the same ideas but now the growthrateisa > 0:

In2
Doubling time el =2 aD =1n?2 D=——
a

At 5% interest (a = .05/year) the doubling time is less than 14 years. Not 20 years.
Model 3 Newton’s Law of Cooling

When you put water in a freezer, it cools down. So does a cup of hot coffee on a table.
The rate of cooling is proportional to the temperature difference.

dT
Newton’s Law i k(Tes — T) T = surrounding temperature

This is a linear constant coefficient equation. The solution approaches To,. Include that
constant on the left side, to make the equation and the solution clear :

d(T — Too)

% = k(Too — T) O SRRy G



1.6. Models of Growth and Decay 47

Question.  Suppose the starting temperature difference Ty — T is 80°. After 90 minutes
the difference 77 — T, has dropped to 20°. At what time will the difference be 10° ?
When will the temperature reach T, ?

Answer.  The starting difference 80° is divided by 4 in 90 minutes. To divide again by 2
takes 45 minutes from 20° to 10°. There you see a fundamental rule for exponentials :

If €%% =1/4 then €*™* = /1/4 =1/2. Itis not necessary to know k.
The temperature never reaches T, exactly. The exponential e~** never reaches 0 exactly.

Model 4 Drug Elimination

The concentration C(t) of a drug in the bloodstream drops at a rate proportional to C(t)
itself. Then dC/dt = —kC. The elimination constant £ > 0 is carefully measured, and
C(t) = e~ *C(0).

Suppose you want to maintain at least G' grams in your body. If you are taking the drug
every 8 hours, what dose should you take ?

t = 8 hours k = decay rate per hour Take e3*G' grams.

Model 5 Population growth

Certainly the world population is increasing. Its growth rate a is the birth rate minus the death
rate. A reasonable estimate for a right now is 1.3% a year, or a = .013/year
(the dimension of a is 1/time). A first model assumes this growth rate to be constant,
continuing forever: Now we ask for the doubling time, a number that is independent of
the starting value y(0) :

In 2
Doubling time D e*P =2 or D= % years = 53 years.

d
World population 5” =013y and y(t) = e13ty(0).

The “forever” part is unrealistic. After 1000 years, it produces e'3y(0). That number e13
is enormous. If we start today (so that ¢ = 0 is the year we are living in)
then eventually we will have about one atom each. Ridiculous. But it is quite possible
that the pure growth equation 3’ = ay does describe the real population for a short time.

Eventually the equation has to be corrected. We need a nonlinear term like —by?,
to model the effect of competition (y against y). As y gets large, y? gets much larger.
Then —by? subtracts from dy/dt and eventually competition stops growth.

This is the famous “logistic equation” dy/dt = ay — by?. Itis solved in Section 1.7.
Here I want to end with a problem of scientific importance—the changing temperature of the
Earth. The equations are nonlinear. The data is incomplete. There is no solution formula.
This is the reality of science.
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Energy Balance Equations

The Earth gets practically all its energy from the Sun. A lot of that energy goes back out
into space. This is radiation in and radiation out. The energy that doesn’t go back is
responsible for changing the Earth’s temperature 7T'.

This energy balance is crucial to our lives. It won’t permit life on Mercury (too hot), and
certainly not on Pluto (too cold). We are extremely fortunate to live on Earth. The form of
the temperature equation is completely typical of balance equations in applied mathematics :

Energy in minus energy out dT
N gy. &Y C— = Ein - Eout (16)
This raises the temperature T’ dt

There is a coefficient C' in every equation like this. Let me show you another balance equa-
tion, to emphasize how the problem can change but the form stays the same.

Flow into a bathtub minus flow out dH

A— = F, — F,, 17
This raises the water height H dt ' Sk

The tap controls the incoming flow Fj,. The drain controls the outgoing flow Fgy. The
volume of water changes according to dV/dt = F, — Foy. That volume change dV/dt
is a height change dH /dt multiplied by A = area of the water surface. Check units:

H = meters A = (meters)> V = (meters)® ¢ =seconds F = (meters)®/second

I include this bathtub example because it makes the balance clear :
1. Flow rate in minus flow rate out equals fill rate dV/dt.
2. Volume change dV/dt splits into (A) (dH/dt) = area times height change.

In a curved bathtub, the water area A changes with the height H. Then equation (17)
is nonlinear. Every scientist looks immediately at the balance equation: Can it be linear ?
Can its coefficients be constant? The true answer is no, the practical answer is often yes.
(Numerical methods are slowed by nonlinearity. Analytical methods are usually destroyed.)

Energy Balance for the Earth

The energy balance equation CT' = E;, — Fqoy is the start. Temperature is in Kelvin
(degrees Celsius are also used). The heat capacity C' is the energy needed to raise the
temperature by 1 degree (just as the area A was the volume of water that raises the height
of water by 1 meter). That heat capacity C' truly changes between ice and ocean and land.
Exactly as predicted, the starting simplification is C' = constant.
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On the right side of the equation, the energy Ej, is coming from the Sun. A serious
fraction « of the arriving energy bounces back and is never absorbed. This fraction « is the
albedo. It can vary from .80 for snow to .08 for ocean. On a global scale, we have to simplify
the albedo formula to a constant, and then improve it :

. N 60 if T <255 K
Constant o« = .30 forall T Piecewise linear o = { 20 if T>200K

The main point is that Ej = (1 — «) @, where () measures energy flow from the Sun
to a unit area of the Earth. Now we turn to Ey.

Radiation of energy is theoretically proportional to 7 (the Stefan-Boltzmann law). There
is an ideal constant o from quantum theory, but the Earth is not ideal. The “greenhouse
effect” of particles in the atmosphere reduces o by an emission factor close to

€ = .62. For a unit area, the radiation Egy is e o T* and the radiation Fj, is (1—-a)Q:
1 — i 1/4
Energy balance Eip, = Eou 1-a)Q =€c0T* = (ﬂ)
€

You understand that these are not fixed laws like Einstein’s e = mc?. Satellites measure
the actual radiation, sensors measure the actual temperature. That nonlinear T formula
is often replaced by a linear A + BT'. This gives the most basic model of a steady state.

Multiple Steady States

I will take one more step with that model—we are on the edge of real science. You know
that the albedo «a (the bounceback of solar energy) depends on the temperature 7. The
coefficients A and B and € also depend on 7. The temperature balance equation
CdT/dt = FEi, — Eoy and the steady equilibrium equation Fj, = FEqy are not linear.
From a nonlinear model, what can we learn ?

Point1 FEi,(T) = Eou(T) can easily have more than one solution 7.

Point 2  Those steady states when d7'/dt = 0 can be stable or unstable.
Point 3  You can see 77 and T3 (stable) and 7% (unstable) in this graph of Ej, and Eqy.

Why is T unstable? If T is just above T%, then Fi, > Fou. Therefore dT'/dt > 0
and the temperature climbs further away from 75. If 7" is just below 73, then Fi, < Eqy.
Therefore dT'/dt < 0 and T falls further below 7.

The next section 1.7 shows how to decide stability or instability for any equation
dT/dt = f(T) or dy/dt = f(y). Just as here, each steady state has f(T) = 0.
Stable steady states also have df /dT < 0 or df /dy < 0. Simple and important.



50 Chapter 1. First Order Equations

240 ra:,-n = 1000(0.5 + 0.2 % tanh (T — 265)/10))/3 y

220
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Figure 1.8: The analysis and the graph are from Mathematics and Climate by Hans Kaper
and Hans Engler (SIAM, 2013). Eiy — Eoy has slope < 0 at two stable steady states.

Problem Set 1.6

1 Solve the equation dy/dt = y + 1 up to time ¢, starting from y(0) = 4.

2 You have $1000 to invest at rate a = 1 = 100 %. Compare after one year the result
of depositing y(0) = 1000 immediately with ¢ = 0, or choosing y(0) = 0 and
q = 1000/year to deposit continually during the year. In both cases dy/dt = y + q.

3 If dy/dt = y — 1, when does your original deposit y(0) = % drop to zero?

dy

4 Solve =Y + t2 from y(0) = 1 with increasing source term t2.
dy ¢ . . :
5 Solve priat + € (resonance ¢ = ¢!) from y(0) = 1 with exponential source e*.
dy

6 Solve il t? from an initial deposit y(0) = 1. The spending q(t) = —t2 is
growing. When (if ever) does y(¢) drop to zero ?

d
7 Solve d_:Z = y — e’ from an initial deposit (0) = 1. This spending term —e? grows at
the same e? rate as the initial deposit. When (if ever) does y drop to zero ?
dy

8  Solve - Y- 2t from y(0) = 1. At what time T is y(T') = 0 ?
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9

10

1

12

Which solution (y or Y) is eventually larger if 4(0) = 0 and Y (0) =0 ?

dy dY
e — 2 — =2Y +t.
= y+2t or T +

Compare the linear equation y’ = y to the separable equation i’ = 32 starting from
y(0) = 1. Which solution y(t) must grow faster ? It grows so fast that it blows up to
y(T) = oo at what time T ?

Y’ = 2Y has a larger growth factor (because a = 2) than y' = y + q(t).
What source ¢(t) would be needed to keep y(¢) = Y (¢) for all time ?

Starting from y(0) = Y'(0) = 1, does y(t) or Y (¢) eventually become larger ?

dy

d
—y:2y+et E—Y—Fegt.

dt

Questions 13-18 are about the growth factor G (s, t) from time s to time ¢.

13

14

15

16

17

18

What is the factor G(s, s) in zero time ? Find G(s,00) if a = —1 and if a = 1.

Explain the important statement after equation (13): The growth factor G(s,t) is the
solution to y' = a(t)y + 6(t — s). The source §(t — s) deposits $1 at time s.

Now explain this meaning of G(s,t) when t is less than s. We go backwards in time.
Fort < s, G(s,t) is the value at time t that will grow to equal 1 at time s.

When ¢t = 0, G(s,0) is the “present value” of a promise to pay $1 at time s. If
the interest rate is a = 0.1 = 10% per year, what is the present value G(s,0) of
a million dollar inheritance promised in s = 10 years ?

(a) What is the growth factor G(s, t) for the equation y’ = (sin ¢)y + @ sin t ?
(b) What is the null solution y,, = G(0,t) toy’ = (sin t)y when y(0) =1 ?

i
(c) What is the particular solution y, = [ G(s,t) @ sin sds ?
0

(a) What is the growth factor G(s, t) for the equationy’ = y/(t + 1) + 10 ?
(b) What is the null solution y,, = G(0,¢) toy’ = y/(¢t + 1) with y(0) = 1 ?

t
(c) What is the particular solution y, = 10 [ G(s,t)ds ?
0

Why is G(t,s) = 1/G(s,t) ? Whyis G(s,t) = G(s,S)G(S,t) ?
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Problems 19-22 are about the “units” or ‘“dimensions” in differential equations.

19 (recommended) If dy/dt = ay + ge™?, with t in seconds and y in meters, what are
the units for a and g and w ?

20 The logistic equation dy/dt = ay — by? often measures the time ¢ in years (and y
counts people). What are the units of @ and b ?

21 Newton’s Law is md?y/dt? + ky = F. If the mass m is in grams, y is in meters,
and ¢ is in seconds, what are the units of the stiffness &£ and the force F' ?

22 Why is our favorite example 4y’ = y + 1 very unsatisfactory dimensionally ? Solve it
anyway starting from y(0) = —1 and from y(0) = 0.

23  The difference equation Y,, .1 = cY,, + Q,, produces Y1 = cYj + Q. Show that the
next step produces Y5 = Yy +cQq + Q1. After N steps, the solution formula for Y
is like the solution formula for y’ = ay + q(t). Exponentials of a change to powers of
¢, the null solution ety (0) becomes ¢V Yy. The particular solution

t
Yn=c"'Qo+ -+ Qo1 islike y(t) = /ea(t_s)Q(S)dS-
0

24  Suppose a fungus doubles in size every day, and it weighs a pound after 10 days.
If another fungus was twice as large at the start, would it weigh a pound in 5 days ?
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1.7 The Logistic Equation

This section presents one particular nonlinear differential equation—the logistic equation.
It is a model of growth slowed down by competition. In later chapters, one group y; will
compete against another group y,. Here the competition is inside one group. The growth
comes from ay as usual. The competition (y against 3y) comes from —by?.

= s H dy 2
Logistic equation / nonlinear E =ay — by nH

We will discuss the meaning of this equation, and its solution y(t).

One key idea comes right away : the steady state. Any time we have dy/dt = f(y), it
is important to know when f(y) is zero. Growth stops at that point because dy/dt is zero.
If the number Y solves f(Y) = 0, the constant function y(t) = Y solves the equation
dy/dt = f(y): both sides are zero. For the special starting value y(0) = Y, the solution
would stay at Y. It is a steady solution, not changing with time.

The logistic equation has two steady states with f(Y) = 0:

d
d—zt/:ay—by2:0 when aY =bY?2. Then Y = 0 or Y = a/b. )
That point a/b is where competition balances growth. It is the top of the “S-curve”
in Figure 1.9, where the curve goes flat. It is the end of growth. The solution y(¢) cannot
get past the value a/b. At the start of the S-curve, the other steady state Y = 0 is unstable.
The curve goes away fromY = 0 and roward Y = a/b.

In some applications, this number a/b is the carrying capacity (/) of the system.
If a/b = K then b = a/K. So the logistic equation can be written in terms of a and
K:
dy

2 a o Yy
— — = — 2 = 1 — |,
= by” = ay Y ay( K) 3)

Mathematically, we have done nothing interesting. But the number K may be easier to
work with than b. We might have an estimate like X = 12 billion people for the maximum
population that the world can deal with. Rewriting the equation doesn’t change the solution,
but it can help our understanding.

Solution of the Logistic Equation

What s y(t) ? The logistic equation is nonlinear because of %2, and most nonlinear equations
have no solution formula. (y = Ce® is extremely unlikely.) But the particular equation
dy/dt = ay — by? can be solved, and I want to present two ways to do it :
1 (by magic) The equation for z = 1/y happens to be linear: dz/dt = —az + b.
We can solve that equation and then we know y.
2 (by partial fractions) This systematic approach takes longer. In principle, partial
fractions can be used any time dy/dt is a ratio of polynomials in y.
You will appreciate method 1 (only two steps A and B) after you see method 2.
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1 . . dz  —ldy . 9. dy
(A) If z = ;, the chain rule gives i Fd_t Substitute ay — by~ for i
dz 1
E:?(—ayﬁ—bgﬁ):—%%—b:—az-l—b. 4)

(B) This is the linear equation z’ + az = b that was solved in the previous sections.
Change a to — a in the solution formula. Change y and g to z and b:
_ b de= +b
Solution 2(t) = e ¥2(0) — = (7 - 1) = de _*0 ©)
a a
The number d collects all the constants a, y(0), b in one place :

d b 1 a
o= z(0) — o and z(0) = 70) produce d = ;(0—) —b. 6)

Now turn equation (5) upside down to findy = 1/z:

Solution to the logistic equation y(t) = de+f+b )

This is a beautiful solution. Look at its value for large positive ¢ and large negative ¢ :

a
Approaching t = +0o e =0 and y(t) — =
Approaching t = —o0 e - oo and y(t) — 0

Far back in time, the population was near ¥ = 0. Far forward in time, the population
will approach Y = a/b. Those are the two steady states, the points where ay — by?
is zero and the curve becomes flat. Then dy/dt is zero and y never changes.

In between, the population y(t) is following an S-curve, climbing toward a/b. It is
symmetric around the halfway point y = a/2b. The world is near that point right now.

y=a/b

y=a/2b

i

halfway time

inflection point

Figure 1.9: The S-curve solves the logistic equation. The inflection point is halfway.
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Simplest Example of the S -curve

The best example has a = b = 1. The top of the S-curve is Y = a/b = 1. The bottom
is Y = 0. The halfway time is ¢t = 0, where y(0) = % Then the logistic equation and its
solution are as simple as possible :

d
1ot o y — y? has the solution y(t) =

1
di m starting from y(O) = 5 , (8)

That solution 1/(1 + e~ *) approaches 1 when ¢t — oo. It approaches 0 when ¢ — —oo.
Let me review the “z = 1/y method” to solve the logistic equation ' = y — y2.

dz —ldy —y+?
—_——=—— = —— = — 1'
at 2 dt Y2 e

Then z(t) = 14 Ce™*. Take C' = 1 to match y(0) = 5 and z(0) = 2. Now y = Tret
e

World Population and the Carrying Capacity K

What are the numbers a and b for human population ? Ecologists estimate the natural growth
rate at a = .029 per year. This is not the actual rate, because of b. About 1930, the world
population was near y = 3 billion. The ay term predicts a one-year increase of (.029) (3
billion) = 87 million. The actual growth was more like dy/dt = 60 million/year. In this
simple model, that difference of 27 million/year was caused by by? :
27 million/year = b (3billion)? leadsto b= 3 times 10~'?/year.

When we know b, we know the steady state y(oco) = K = a/b. At that point the loss by?
from competition balances the gain ay from growth:

.029

Estimated capacity K = % = 71012 ~ 9.7 billion people.

This number is low, and y is growing faster. The estimates I see now are closer to
y(oo) > 10 billion and y(2014) ~ 7.2 billion.

Our world is beyond the halfway point y = a/2b on the curve. That looks like an
inflection point (by symmetry of the graph), and the test d?y/dt?> = 0 confirms that it is.

The inflection point with y”/ = 0 is halfway up the curve in Figure 1.9

d (dy d 9 dy a
— =) = —=(ay —by*) = (e — 2by)—= =0 wh = — 9
7 (%) = o)) = (@~ 2) % =0 when y = 3 ©)
After this halfway point, the S-curve bends downward. The population y is still increasing,
but its growth rate dy/dt is decreasing. (Notice the difference.) The inflection point
separates “bending up” from “bending down” and the rate of growth is a maximum at
that point. You will understand that this simple model must be and has been improved.
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Partial Fractions

The logistic equation is nonlinear but it is separable . We can separate y from ¢ as follows :

d b d
L ay — by’ =a <y — —yz) leads to + = a dt. (10)
dt a Yy — Eyz

In this separated form, the problem is reduced to two ordinary integrations (y-integration on
the left side, ¢-integration on the right side). The integral of a dt on the right side is certainly
at + C. The left side can be looked up in a table of integrals or produced by software like
Mathematica or discovered by ourselves.

I will explain the idea of partial fractions that produces this integral. You may know it as
a “Technique of Integration” from first-year calculus (it is really just algebra).
The plan is to split the fraction in two pieces so the integration becomes easy :

1 A B
Partial fractions ———— separates into — + 5 (1)
<Y

y— 2y2 y  1-

I factored y — %yQ into y times 1 — gy I put those two denominators on the right side.
We need to know A and B. To compare with the left side, combine those two fractions:

A B A(l-4y)+B
Common denominator —+ — = ( “y)b Y (12)
y 1-gY v(1-2y)
The correct A and B must produce 1 in the numerator, to match the 1 in equation (11):
b b
A 1—5y +By=1 when A=1 and B = —. (13)
a
This completes the algebra of partial fractions, by finding A and B in equation (11):
. 1 1 1 b/a
Two fractions g = — =—+ — (14)
y—ovt yl-2y) ¥y 1-—,y

Integrate the Partial Fractions

With A = 1 and B = b/a, integrate the two partial fractions separately :

1dy / (b/a)dy ( b
—+ [ —————=Iny-In(1--y). (15)
/ y 1—(b/a)y a
This is the calculus part (the integration) in solving the logistic equation. After the
integration, use algebra to write the answer y(t) in a good form.
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Actually that good form of y(t) was already found by our first method. The magic
of z = 1/y produced a linear equation dz/dt = —az + b. Then returning to y = 1/z
put the crucial factor e~%* into the denominator of (7), and we repeat that solution here :

Solution in (7) y(t) = de——:‘_+_b with d = % —b. (16)

This same answer must come from the integral (15) that used partial fractions. The
integral has the form Iny — Inx, which is the same as In(y/z) (and z is 1 — (b/a)y).

0
%_ (17)

d
—yb—2:/adt gives In yb =at+C=at+1n
Y= 3y 1-2y 1—2y(0)

I chose the integration constant C' to make (17) correct at t = 0. Now take exponentials
of both sides:

y __ _at y(o)
l—gy_e 1—%y(0)' (18)

The final algebra part is to solve this equation for y. Let me move that into Problem 3. Then
we recover the good formula (16) that came so much faster fromy = 1/z.

Looking ahead, partial fractions will appear again in Section 2.7. They simplify the
Laplace transform so you can recognize the inverse transform. That section gives a formula
PF2 for the numbers A and B in the fractions—it is previewed here in Problem 14.

Again, we solved dy/dt = f(y) by separating [ dy/ f(y) from [ dt.

Autonomous Equations dy /dt = f(y)

The logistic equation is autonomous. This means that f depends only on y, and not on ¢ :
dy/dt = f(y). Alinear example is y’ = y. The big advantage of an autonomous equation
is that the solution curve can stay the same, when the starting value y(0) is changed. “We
just climb onto the curve at height y(0) and keep going.”

You saw how Figure 1.9 had the same S-curve for every y(0) between 0 and a/b.
The equation dy/dt = y has the same exponential curve y = et for every y(0) > 0.
Just mark the ¢ = 0 point wherever the height is y(0).

This means that time ¢ is not essential in the graphs. The graph of f(y) againsty is the
key. For the logistic equation, the parabola f (i) = ay — by? tells you everything (except the
time for each y).  y(¢) increases when this parabola f(y) is above the axis
(because dy/dt > 0 when f > 0). So I only drew one S-curve.

There is also a decreasing curve starting from y(0) > a/b. It approaches the steady
state Y = a /b from above. Another curve starts below Y = 0 and drops to —oco. The up-
going S-curve is sandwiched between two downgoing curves, because in Figure 1.10
the positive piece of ay — by? is sandwiched between two negative pieces.
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Stability of Steady States

The steady states of dy/dt = f(y) are solutions of f(Y) = 0. The differential equation
becomes 0 = 0 when y(t) = Y is constant (steady). Here is the stability question:

Starting close to Y, does y(t) approach Y (stable) or does it leave Y (unstable) ?

We had a formula for the S-curve. So we could answer this stability question. One Y is
stable (that is Y = a/b at the end). The steady state Y = 0 is unstable. It is important
(and not hard) to be able to decide stability without a formula for y(t).

Everything depends on the derivative df /dy at the steady value y = Y. That slope
of f(y) will be called c. Here is the test for stability, followed by a reason and examples.

Stableif ¢ < 0 The steady state Y is stableif df /dy < Oaty =Y.

Reason: Near the steady state, f(y) is close to c¢(y — Y). Then y’ = f(y) is close to
(y—Y) =c(y—Y). Theny — Y is like e, and y — Y when ¢ < 0 and e* — 0.

Let me explain in detail for any autonomous equation dy/dt = f(y). Suppose that
Y = 0 is a steady state. This means that f(0) = 0. Calculus gives the linear approximation
f(y) = cy, where c is the slope of the tangent line. That number is ¢ = df /dy at Y = 0. If
c is negative then y(¢) will move toward Y = 0 (stability):

For small y(0) > 0 dy/dt = f(y) = cy <0 y(t) decreases toward 0
For small y(0) < 0 dy/dt = f(y) = cy >0 y(t) increases toward 0

For any other steady state Y, calculus gives the linear approximation f(y) =~ c(y — Y).
Now that number is ¢ = df /dy, the slope of the tangent line aty = Y.

For y(0) just above Y dy/dt = f(y)
For y(0) justbelow Y dy/dt = f(y)

cly—Y) <0 y(t)decreasestowardY
cly—Y) >0 y(t) increases toward Y’

~
~
~
~

Example 1  (logistic) The derivative of ay — by? is df /dy = a — 2by.
At the steady state Y = 0, df /dyisa > 0: Y = O is unstable.
AtY = a/b, this derivative is a — 2b(a/b) = —a. Y = a/b is stable.
For dy/dt = ay — by? this stability line shows which way y(¢) moves from any y(0).

If y(0) is here, Y =0 If y(0) is here, Y=a/b If y(0) is here,

< < 1 =t | < —e
< Y ] - - ] < <

then y(t) goesto — oo then y(t) goes to a/b then y(t) goes to a/b

The steady states have to alternate between stable and unstable, because df /dy will
alternate between negative and positive. I am excluding the undecided cases when
f(Y) = 0 and also df/dy(Y) = 0. This is a borderline case for critical harvesting.
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The Harvesting Equation

Suppose the logistic equation also includes a constant harvesting rate —h. This will
reduce the growth rate dy/dt. Let me start with the logistic equation dy/dt = 4y — y2,
where the S-curve rises from Y = 0 to the other steady state Y = a/b = 4/1. If the new

harvesting term is —h = —3, the steady states change from 0 and 4 to 1 and 3:
dy .
i =4y — y“ — 3 hasnewsteadystates Y =1 and Y = 3. (19)

I found 1 and 3 by factoring 4Y — Y2 — 3 into —(Y — 1)(Y — 3). Those populations Y = 1
and Y = 3 are the points where the equation is dy/dt = 0. Theny = Y stays steady.

fy) = ay — by? fy) =4y —y*—h

——
- -
i,

o

Y =0 Y =a/b

Logistic slope <0 —54 Harvesting
Y is stable

Figure 1.10: Harvesting lowers the parabola f(y) = ay — by? — h. Steady Y’s disappear.

This figure shows the stability or instability of the steady states. Y = 0 in the logistic
graph and Y = 1 in the harvesting graph are unstable. At those points f(y) climbs from
negative to positive. Above Y, the graph shows dy/dt = f(y) as positive. So y(t) will
increase, and it moves away from Y.

Y = a/b in the logistic graph and Y = 3 in the harvesting graph are stable. Beyond
those points f(y) is negative. This is dy/dt. So y(t) decreases back toward Y. The graphs
are a little tricky to read, because they don’t show y(¢). They show the phase plane with
y’ = f(y) against y : Velocity versus position, not position versus time !

Looking again at the figure, h = 4 gives critical harvesting: One double stationary
point Y = 2. That curve shows dy/dt = f(y) as always negative, so y(t) will
decrease. If y(0) is greater than 2, then y(¢) must come back toward Y = 2. But this is
one-sided stability, because if y(0) is smaller then 2, then y(¢) will decrease and go
far away from 2.

The lowest curve has A = 5 and no steady states. At all points dy/dt = f(y) is
negative. All solutions y(t) are decreasing. If we can find a formula for y(¢), we can watch
this happen: y(t) — —oo. The logistic and harvesting equations are terrific nonlinear
examples, because we can actually find y(t).
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Solving the Harvesting Equation

We have three types of harvesting equations, with 2 or 1 or 0 steady states :
h <4 y'=4y—y?— hwill reduce to a logistic equation : underharvesting
h =4 y’ = —(y— 2)? has adouble steady state : critical harvesting
h > 4  y’ stays below zero and y(t) approaches —oo : overharvesting.

All these equations are autonomous, so they separate into dy/ f (y) = dt. Integrate 1/ f(y).
Smallh =3  Factor f(y)into —(y —1)(y —=3)  ThenY =landY = 3

Let me shift those steady states down to V' = 0 and V = 2, by shifting y(¢) to
v(t) = y(t) — 1. The equation for v(¢) is logistic, and its S-curve climbs from 0 to 2:

(14+v) =—(@)(w-2)is v/ =2v —v?2 (20)
When you add back the 1 to gety = 1 + v, its S-curve climbs from 1 to 3.
Critical h = 4 Factor f(y) =4y —y* —4 = —(y — 2)? Then Y = 2 and 2
The equation is y’ = —(y — 2)2. Shifting to v(t) = y(t) — 2 gives dv/dt = —v2.
Page 1 of this book had the equation dy/dt = + %2 (with time going the other way).

The solution looks so innocent :

() = v(0) goes gently to v = 0 as t — oo provided v(0) > 0
~ 1+tw(0) goessuddenly to v = —oo when 1 4 tv(0) = 0

This shows (one-sided) stability if (0) > 2 and v(0) > 0.
When harvesting is more than critical, the population dies out from every y(0).

Overharvesting h = 5 Write y' =4y — > —5 = —1— (y — 2)%. Always y’ < 0.

Now v = y — 2 simplifies the equation to v/ = —1 — v2. Integrate dv/(1 + v?) = —dt to
gettan tv = —t + C. If v(0) = 0 then C = 0. Now go back toy = v + 2::

d

d_lt) = —1—v? with v(0) = 0 gives v(t) = tan(—t). Then y(t) = 2 — tant.  (21)
When the tangent reaches 2, the population y = 0 is all gone. If the solution continues
to t = 7/2, then tant is infinite. The model loses meaning and y(7/2) = —oc.

Overall, I hope you see how a simple stability test tells so much abouty’ = f(y):

1 Find all solutions to f(y) =0 2 Ifdf/dy < 0aty =Y, that state is stable.
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= REVIEW OF THE KEY IDEAS =

1. The logistic equation dy/dt = ay — by? has steady states at Y = 0 and Y = a/b.

2. The S-curve y(t) = a/(de™** + b) approaches the carrying capacity y(co) = a/b.
. . . . b,
3. The equation for z = § is linear ! Or we can separate into dy/ | y — Ey = adt.

4. The stability test df /dy = a — 2by < 0 is passed at Y = a/b and failed at Y = 0.

5. This stability test applies to all equations ¥’ = f(y) including y' = ay — by? — h.

Problem Set 1.7

1 If y(0) = a/2b, the halfway point on the S-curve is at ¢ = 0. Show that d = b and

y(t) 2

— de—:t T T b1 Sketch the curve from y_ o, = 0 t0 Yoo, = ¢

g.

2 If the carrying capacity of the Earth is K = a/b = 14 billion people, what will be the
population at the inflection point ? What is dy/dt at that point ? The actual population
was 7.14 billion on January 1, 2014.

3 Equation (18) must give the same formula for the solution y(¢) as equation (16).
If the right side of (18) is called R, we can solve that equation for ¥ :

b b R
— l —_—— - — Yy = = —
Y R( ay) - (I.-{—Ra)y R — (1+ g)

Simplify that answer by algebra to recover equation (16) for y(¢).

4 Change the logistic equation to ' = y + y2. Now the nonlinear term is positive,
and cooperation of y with y promotes growth. Use z = 1/y to find and solve a
linear equation for z, starting from z(0) = y(0) = 1. Show that y(T") = co when
e~T = 1/2. Cooperation looks bad, the population will explode at t = T'.

5 The US population grew from 313,873,685 in 2012 to 316, 128,839 in 2014. If it
were following a logistic S-curve, what equations would give you a, b, d in the formula
(4) ? Is the logistic equation reasonable and how to account for immigration ?

6 The Bernoulli equation 3’ = ay — by™ has competition term by™. Introduce
z = y'~™ which matches the logistic case when n = 2. Follow equation (4) to
show that 2/ = (n — 1)(—az + b). Write z(t) as in (5)-(6). Then you have y(t).
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Problems 7-13 develop better pictures of the logistic and harvesting equations.

7  y' ' =y—y*issolvedby y(t) = 1/(de™* + 1). This is an S-curve when y(0) = 1/2
and d = 1. But show that y(t) is very different if y(0) > 1 or if y(0) < 0.

Ify(0) = 2thend =  — 1 = —3. Show that y(t) — 1 from above.
Ify(0) = —1thend = X — 1 = —2. At what time T is y(T') = —oc0?

8 (recommended) Show those 3 solutions to y’ = y — y? in one graph! They start
from y(0) = 1/2 and 2 and —1. The S-curve climbs from  to 1. Above that,
y(t) descends from 2 to 1. Below the S-curve, y(t) drops from —1 to —oc.

Can you see 3 regions in the picture ? Dropin curves above y = 1 and S-curves
sandwiched between 0 and 1 and dropoff curves below y = 0.

9 Graph f(y) = y — %2 to see the unstable steady state Y = 0 and the stable Y = 1.
Then graph f(y) = y — y? — 2/9 with harvesting h = 2/9. What are the steady states
Y1 and Y2 ? The 3 regions in Problem 8 now have Z-curves above y = 2/3, S-curve
sandwiched between 1/3 and 2/3, dropoff curves below y = 1/3.

10  What equation produces an S-curve climbing to yoo = K from y_o, = L?
1y =y—y?— 3 = —(y— 1)? shows critical harvesting with a double steady state
aty =Y = % The layer of S-curves shrinks to that single line. Sketch a dropin

curve that starts above y(0) = 1 and a dropoff curve that starts below y(0) = 1.

'S

12  Solve the equation y' = —(y — %)2 by substituting v = y — % and solving v/ = —v?.
13 With overharvesting, every curve y(t) drops to —oco. There are no steady states.
Solve Y — Y2 — h = 0 (quadratic formula) to find only complex roots if 4h > 1.

The solutions for h = 5 are y(t) = 4 — tan(t + C). Sketch that dropoff if
C = 0. Animal populations don’t normally collapse like this from overharvesting.

1 1
, B =
s

14  With two partial fractions, this is my preferred way to find A =

S—T

PF2 1 _ 1 1

W—rw—s) W-nr—9 w=s—1

Check that equation : The common denominator on the rightis (y — r)(y — s)(r — s).
The numerator should cancel the » — s when you combine the two fractions.

B
into two fractions + .
-y y—r y-—s

Separate

o1 and "

Note When y approaches r, the left side of PF2 has a blowup factor 1/(y — r).
The other factor 1/(y — s) correctly approaches A = 1/(r — s). So the right side
of PF2 needs the same blowup at y = r. The first term A/(y — r) fits the bill.
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15

16

17

18

19

20

21

22

23

The threshold equation is the logistic equation backward in time :

d d
_d_ZZ =ay — by® is the same as d—i = —ay + by*.

Now Y = 0 is the stable steady state. Y = a/b is the unstable state (why ?).
If y(0) is below the threshold a/b then y(t) — 0 and the species will die out.

Graph y(t) with y(0) < a/b (reverse S-curve). Then graph y(t) with y(0) > a/b.

(Cubic nonlinearity) The equation 3’ = y(1 — y)(2 — y) has three steady states :
Y = 0,1,2. By computing the derivative df /dy at y = 0, 1,2, decide whether
each of these states is stable or unstable.

Draw the stability line for this equation, to show y(t) leaving the unstable Y’s.
Sketch a graph that shows y(t) starting from y(0) =  and 2 and 3.
(a) Find the steady states of the Gompertz equation dy/dt = y(1 — Iny).
(b) Show that z = Iny satisfies the linear equation dz/dt = 1 — z.
(c) The solution z(t) = 1+ e~ *(2(0) — 1) gives what formula for y(¢) from y(0) ?

Decide stability or instability for the steady states of
(a) dy/dt =2(1-y)(1—e¥)  (b) dy/dt=(1-y*)(4-y°)

Stefan’s Law of Radiation is dy/dt = K (M* —y*). Itis unusual to see fourth powers.
Find all real steady states and their stability. Starting from y(0) = M /2, sketch a graph

of y(t).

dy/dt = ay — y® has how many steady states Y for a < 0 and then a > 07?
Graph those values Y (a) to see a pitchfork bifurcation—new steady states suddenly
appear as a passes zero. The graph of Y (a) looks like a pitchfork.

(Recommended) The equation dy/dt = sin y has infinitely many steady states.
What are they and which ones are stable ? Draw the stability line to show whether
y(t) increases or decreases when y(0) is between two of the steady states.

Change Problem 21 to dy/dt = (sin y)?2. The steady states are the same, but now the
derivative of f(y) = (sin y)? is zero at all those states (because sin y is zero). What
will the solution actually do if y(0) is between two steady states ?

(Research project) Find actual data on the US population in the years 1950, 1980,
and 2010. What values of a, b, d in the solution formula (7) will fit these values ? Is
the formula accurate at 2000, and what population does it predict for 2020 and 2100 ?

You could reset ¢ = 0 to the year 1950 and rescale time so that ¢t = 3 is 1980.
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24 Ifdy/dt = f(y), whatis the limit y(co) starting from each point y(0) ?

1
V\f@n \\ /\f(m
>Y 5 M k > Y

25 (a) Draw a function f(y) so that y(t) approaches y(oo) = 3 from every y(0).
(b) Draw f(y) so that y(co) = 4 if y(0) > 0 and y(c0) = —2if y(0) < 0.

26  Which exponents n in dy/dt = y™ produce blowup y(T)) = oo in a finite time ?
You could separate the equation into dy/y™ = dt and integrate from y(0) = 1.

27  Find the steady states of dy/dt = y? —y* and decide whether they are stable, unstable,
or one-sided stable. Draw a stability line to show the final value y(oo) from each initial
value y(0).

28  For an autonomous equation y’ = f(y), why is it impossible for y(t) to be increasing
at one time t; and decreasing at another time to ?

The website math.mit.edu/dela has more graph questions for autonomous y’ = f(y).

Notes on feedback The S-curve represents a good response from an elevator. The transient
response in the middle of the S is the fast movement between floors. The elevator slows
down as it approaches steady state (the floor it is going to). There is a feedback loop to tell
the elevator how far it is from its destination, and control its speed.

An open-loop system has no feedback. A simple toaster will keep going and burn your
toast. The end time is entirely controlled by the input setting. A closed-loop system feeds
back the difference between the state y(¢) and the desired steady state yo.. A toaster oven
can avoid burning by feeding back the temperature.

The logistic equation is nonlinear because of its feedback term —by?. This is so common
in other examples of movement and growth. Our brain controls arm movement and brings
it to a stop. Your car has thousands of computer chips and controllers that measure position
and speed, to slow down and stop before disaster.

I admit that I don’t use cruise control because the car might keep cruising—I am not too
sure it will stop. But it does have a feedback loop to keep the car below a set speed.
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1.8 Separable Equations and Exact Equations

This section presents two special types of first order nonlinear differential equations.
They are a bridge between y' = ay and the very general form y' = f(¢,y). These pages
explain how to solve the two types in between, by ordinary integration. Separable
equations are the simplest. For exact equations, see formulas (12) and (15).

Separable Exact
dy _ g(t) dy _sg(v.t) .. 98f 99
dt  f(y) dt f(y,t) ot oy

1. Separable Equations f(y)dy = g(t)dt

With f(y) on one side and g(t) on the other side, you see the meaning of separable.
The ordinary way to write this equation would be

d t
dy _ 9t starting from y(0) at time ¢ = 0. (1)

dt — f(y)
When dy/dt has this separable form, we combine f(y) with dy and g(¢) with dt. Those
functions f and ¢ need to be integrated. The integrals F'(y) and G(t) start at y = y(0)
andt=0:

F(y) = / £ () du G(t) = / o(z) da @
y(0) z=0

The dummy variables u and x were chosen because y and ¢ are needed in the upper limits
of integration. Every author faces this question, to select variables. To show that the
letters u and x don’t matter, I could change them to Y and T'.

After integrating f and g, we have implicitly solved the differential equation :

dy _ g(t)

Solution = —— integratesto F'(y) = G(t). 3)
&~ 1) (v) (?)
To get an explicit solution y = ... we have to solve this equation F'(y) = G(t) to find .
dy t . 1 2 2 Ly
Example 1 T S ydy = tdt. Integrate to find 3 (y(t)? —y(0)?) = §t .
Solve this implicit equation to find y(t) explicitly :

. —— dy t t
Solution t) = 0 2 t2. Then —& = —/—— = —.
y(t) = /y(0)2 + &= To0r e " b
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Example2 dy/dt = 2ty has g(t) = 2t dividedby f(y) =1/y.
Solution Separate 1/y from 2t and integrate to get F' = Iny — Iny(0) and G = #2:

y ¢
d

@:%dt leads to /—U:Iny—lny(O) and /2xdw=t2
u

Y
y(0) 0

In this example, F(y) = G(t) produces Iny = Iny(0) + ¢2. Take exponentials of both sides
to find the solution ¥ :

y ="Vt = y(0)e”. 4)
I always check the derivative dy/dt and the starting value y(0):
d 2 .

= (y(O) et ) =2t (y(O) etz) — 2ty y(0)et® = y(0) at t = 0. 5)

Example 3  Our favorite equation %% = ay + g is separable when a and ¢ are constant.
Move y + £ to the left side below dy. Keep adt on the right side. Then integrate
both sides, and you have solved this equation once more !
dy
y+

=adt gives In(y+ %) =at+C. 6)

Take exponentials to find y, and set t = 0 to find C:

Exponential growth y(t) + % = e and y(0)+ % =eC. (7
Substitute for € in the left equation, to get the answer we know:
q _ _at q — pat q at
y(t) + —=e y(0) + o and then y(t) = e**y(0) + E(e —1). €)

This answer was the key to Section 1.4. Here the formulas came faster (the first one
in that box looks attractive). But I like the old way: Follow each input as it grows.

Example 4 (Logistic equation )

t

y

Z—Z; = ay — by? / —y i“bu? = / dz )

y(0) £(0)
The right side is certainly G(t) = t — ¢(0). I am including ¢(0) to show how the system
allows any starting value for ¢ as well as y. We don’t know a perfect starting time for the
Earth’s population, so we pick a year like ¢(0) = 2000 and work from there. The key point
is that two integrals F'(y) and G(t) give the answer.
Section 1.7 computed those integrals and solved the logistic equation.
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2. Exact Equations f(y, t)dy = g(y, t)dt

A separable equation has dy/dt = ¢(t)/f(y). We wrote this as f(y)dy = g(t)dt. We
integrated the two sides separately to get F'(y) = G(t). This solved the equation.

Exact equations are not required to be separable. The functions f and g can depend
on both variables ¢ and y. The equation does not split into a pure y-integration and a pure
t-integration. We now have f(y,t) dy = g(y, t) dt. But it sometimes succeeds to integrate
the left side f(y,t) with respect to y, as if ¢ were a constant which it is not.

Step 1 Integrate f with respect to y /f(y, t) dy = F(y,t) + C(¢t). (10)

Normally, any constant C' can be added to an integral. The answer stays correct, because the
derivative of C is zero. Here, any function of t can be added to the integral,
because the y derivative of any C(¢) is zero. Now F'(y, t) + C(t) has more flexibility.

1o}
Step 2 (if possible) Choose C(t) so that E(F(y, t) +C(t)) = —g(y,t). (11)

If that choice of C(t) is possible, our original equation involving g and f is solved:

dy _g(y,t) .
Step 3 —= is solvedby F'(y,t) + C(t) = any constant. (12)
P i (o 1) y F(y,t) (t) y

Before I show when and why this works, here is an example of success.

. dy 2yt—1 S
Example 5 The equation — = ———— has g = 2yt — 1 and f = y* — t°.
dt  y2? —t2

1 F
Step 1 Integrate fdy = (y* — t?)dy to find F(y,t) = §y3 — yt%. Then %—t = —2ty.
Step 2  Solve equation (11) for C(t). For our particular f and g, this is possible :
ac . ac
—2ty + o ; —(2yt — 1) gives ' land C(t) =t.
Step 3 The original Zl% = % is solved by F(y,t) + C(t) = constant:

Solution from F + C 1 4 2 _ 1 3
Constant is set by y(0) 34~ yr = gy(O) ’

To check this answer, take its time derivative implicitly (which means: just do it).

d d
Implicit differentiation yzd—i - th—?Z oyt +1=0.

This is our equation dy/dt = (2yt — 1)/(y? — t?) as we hoped. Now to explain why.
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The Exactness Condition

When is Step 2 possible ? Sometimes there is C'(¢) to solve equation (11), but usually not.
To find the condition for exactness, take the y-derivative of both sides in Step 2:

a%% (F(y,t) +C(t) = 'a% (9(y,1))- (13)

0 0 0 3]
The order of En and 5; can always be reversed. Certainly 7 C(t) =0and En F=f.

o 0 o 0 9
. .00 _99 4 A .
The left side of (13) is By o1 F(y,t) 3t 9y (y,t) whichis 8tf(y,t) (14)

Comparing (14) with (13), Step 2 is only possible when our original differential equation
dy/dt = g/ f is exact:

o o
Exact diti el t) = —— g(u,1). 15
xactness condition o f(y,t) o9 g(y,t) (15)

When the equation is exact, Step 2 will produce C(t). The final question is about Step 3.
Why is F'(y,t) + C(t) = constant for the original differential equation dy/dt = g/f? To
see this, take the time derivative of F'(y,t) + C(t) using the (implicit) chain rule:

OF dy OF  9C _

— — + —=0. 16
ayat Tt Tar =0 S
oF oF 0
Step 1 produced — = f. Step 2 produced — + —C = —g. We have success:
dy ot ot

d
Equation (16) is fd—?i — g = 0. This is our original problem di—gz = %
¢

D of dg
Example 5 was exact because g = 2yt — 1 and f = y* — t* agree on Bt = i = —2t.
Y

Example 6 Steps 1, 2, 3 must be possible because this non-separable equation is exact :

dy t—y gyt of _ 0dg _

Step 1 Integrate [ fdy = [ (t +y)dytofind F = ty + $y°.

Step 2 Write out (%(F+ C)=—g=y—ttofind C(t) = —5t*

1 1
Step 3 The example is solved by F + C = ty + §y2 — 5152 = constant = £ y(0)2.
To check that solution, find the total time derivative of F' 4+ C by the chain rule:
dy dy t—

d
t£ +y+yg—t:0. This is = t+Z as desired.
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Final Note : Separable is Exact

Notice that a separable equation dy/dt = g(t)/f(y) is always exact :

(15) is satisfied % fly) = ——% g(t) becomes 0 = 0.

No problem with integrating | f( y)ly and [ g( t)it to find F( y)and G(t) = —C(t).

® REVIEW OF THE KEY IDEAS =

1. A separable equation fg fgt)) is solved by [ f( 9dy= [ g(t)dt+ any constant.

2. That solution gives y implicitly. Solve to find y explicitly as a function of ¢.

d o] 17}
3. Anexact equation d—i{ = f((y?:lg has i = —8—{ Then F'(y,t) + C(t) = constant.

F
4. The solution has F'( y¢) = [ f( y#)dy foreach ¢, and C(t) = / (%—t + g) dt.

5. The exactness condition in 3 removes y from that integral for C(¢) in 4.

Problem Set 1.8

1 Finally we can solve the example dy/dt = y? in Section 1.1 of this book.
fd
Start from y(0) = 1. Then / —32} = /dt. Notice the limits on y and ¢. Find y(¢).
)

2 Start the same equation dy/dt = y? from any value y(0). At what time ¢ does the
solution blow up ? For which starting values y(0) does it never blow up ?

3 Solve dy/dt = a( t}y as a separable equation starting from y(0) = 1, by choosing
f( y)=1/y. This equation gave the growth factor G(0, ¢) in Section 1.6.

4 Solve these separable equations starting from y(0) = 0:
dy dy
=17 b T
@=p=ty () —
dy 2 ( ?
5 Solve = = a(t)y® = g2 as a separable equation starting from y(0) = 1.

d
6 The equation . y + ¢ is not separable or exact. But it is linear and y =

dt
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10

11

12
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d
The equation d_zz — ¥ has the solution y = At for every constant A. Find this solution

by separating f = 1/y from g = 1/¢. Then integrate dy/y = dt/t. Where does the
constant A come from ?

d_y. _ct—ay
dt At +by
equation by finding a suitable function F'(y,t) + C(t).

For which number A is

an exact equation ? For this A, solve the

Find a function y(t) different from y = ¢ that has dy/dt = y?/t2.

These equations are separable after factoring the right hand sides :

dy dy
Solve — =¢e¥** and — =yt t+ 1.
olve It € an # yt+y+1t+

d d
These equations are linear and separable: Solve d—gz = (y + 4)cost and d_? = ye'.

Solve these three separable equations starting from y(0) = 1:

dy _
dt

3 dy

dy _ dy
@ - =-4y  ® ty © +t)d_t =4y

Test the exactness condition g /8y = —8f /0t and solve Problems 13-14.

13

14

15

16

17

dy  —3t% —2y? dy 14 ye®

a = b _—
@ dt Aty + 6y? ®) dt 2y + tety
dy 4t—vy dy 3t2 + 2y?
(@) =2 = — by =
dt t—6y dt 4ty + 6y
d : d
Show that C - is exact but the same equation - is not exact.
dt 2ty dt 2t

Solve both equations. (This problem suggests that many equations become exact
when multiplied by an integrating factor.)

Exactness is really the condition to solve two equations with the same function H (¢,y) :
0H 0H .. Of g
— =/ and — = —g(t,y) canbe solved if — = ——=.
By f(ty) v g(t,y) v 5 By

Take the ¢ derivative of 0H /Oy and the y derivative of 0H /0t to show that exactness

is necessary. It is also sufficient to guarantee that a solution H will exist.

d
The linear equation d—i’ = aty+qis not exact or separable. Multiply by the integrating

factor e~ J 2t 4t and solve the equation starting from y(0).
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Second order equations F(t,y,y’,y’’) = 0 involve the second derivative y’’.
This reduces to a first order equation for y’ (not y) in two important cases:

I. When y is missing in F, sety’ =vandy” = v’. Then F(t,v,v’) = 0.
dv _dvdy  dv

dv
IL. When ¢ is missing in F, set y” = —= dydt vd—y. Then F (y, v, v£> =0.

See the website for reduction of order when one solution y(t) is known.

18 (v is missing) Solve these differential equations for v = y’ with v(0) = 1. Then
solve for y with y(0) = 0.

@ y"+y'=0 (b) 2y”" -y’ =0.

19  Both y and ¢ are missing in y”/ = (y”’)?. Setv = y’ and go two ways:

I.  (ymissing) Solve Z—: = 02 for v(t) and then & _ v(t)

dt
with (0) = 0,y/(0) = 1.

d d
II. (¢ missing) Solve 02 = 2 for v(y) and then Ey = v(y)
with y(0) = 0, y'(0) = 1.

20 An autonomous equation ¥y’ = f(y) has no terms that contain ¢ (¢ is missing).

Explain why every autonomous equation is separable. A non-autonomous equation
could be separable or not. For a linear equation we usually say LTI (linear time-
invariant ) when it is autonomous: coefficients are constant, not varying with t.

21 my” + ky = 0 is a highly important LTI equation. Two solutions are coswt and
sinwt when w? = k/m. Solve differently by reducing to a first order equation for
y' = dy/dt = v withy” = v dv/dy as above :

d 1 1
mvd—v + ky = 0 integrates to §m’u2 + Elcy2 = constant £.
For a mass on a spring, kinetic energy %mv2 plus potential energy %ky2 is a con-
stant energy /. What is £ when y = coswt? What integral solves the separable
m(y’)? = 2F — ky? ? I would not solve the linear oscillation equation this way.

22 my” + ksiny = 0 is the nonlinear oscillation equation : not so simple. Reduce to a
first order equation as in Problem 21 :

dv . 1
mv— + ksiny = 0 integrates to §mv2 — kcosy = constant F.

With v = dy/dt what impossible integral is needed for this first order separable
equation? Actually that integral gives the period of a nonlinear pendulum—this
integral is extremely important and well studied even if impossible.
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= CHAPTER 1 NOTES =

The great function of calculus is el. How best to define this exponential function ?
Section 1.3 constructed y = e from its infinite series 1 + ¢ + %tz + %t?’ + - --. Euler would
approve ! Taking the derivative of each term brings back e!. This property dy/dt = y is the
most important tool we have—it is the foundation of our subject.

I like this approach to e for at least two reasons :

1. It is based on the derivatives of ¢ and t2 and t™ : well known.

2. The Chapter 3 Notes solve nonlinear equations in exactly the same way.

The limiting step required here is to add up an infinite series. We don’t expect a simple
answer like 1 + £ + 1 + £ + -+ = 2. But the numbers 1/n ! in e’ are (much smaller) than
these numbers 1/2".

This is really the key point, to see that the terms ¢™/n ! approach zero quickly.
The infinite series 1 4+t + t2/2 ++++ 4+ t™/n! + - - - converges for every t.

Proof. Each term t" /n ! multiplies the previous term t"~!/(n — 1) ! by t/n. At some point
n = N, that number ¢t/ N goes below % From this point on, we know that

tN tN+1 tN+2 tN 1 1
P is 1 th I = . N
NI TN T Ny T fsiessthan ;\r!(+2+4+ )

The right side is t" /N ! times 2. The left side is smaller. The first NV terms that come before
tV /N ! have no effect on convergence of the series (they just enter the final sum). So the
series for et always converges.

If ¢t is negative, use its absolute value |¢| and the proof still succeeds. The series for
the derivative of e! is the same as the series for e‘. So we know : This series is absolutely
convergent. We can safely say that y/ = y.

Four approaches to et Looking back at my own teaching and writing, I really missed the

importance of this big step in calculus. Just another function? Not at all. Textbooks offer
four main ways to construct y = e':

1. Add all the terms ¢ /n !. The derivative of each term is the previous "~ /(n — 1) !
2. Take the nth power of (1 + ¢/n) as in compound interest. Let n approach infinity.
3. The slope of b! is C times b¢. Choose e as the value of b that makes C = 1.

4. Integrate 1/y to construct ¢ = Iny. Invert this function to find y = €.

I believe that 3 and 4 are too tricky. Explicit constructions are the winners. You want to
say, “Here is the function.” In method 2 you are working with (1 + ¢/n)™: not too bad.
In 1 you see step by step and term by term that dy/dt = y.



Chapter 2

Second Order Equations

2.1 Second Derivatives in Science and Engineering

Second order equations involve the second derivative d?y/dt?. Often this is shortened to y",
and then the first derivative is y’. In physical problems, ¥’ can represent velocity v and the
second derivative y”” = a is acceleration : the rate dy’/dt that velocity is changing.

The most important equation in dynamics is Newton’s Second Law F' = ma.
Compare a second order equation to a first order equation, and allow them to be nonlinear :

Firstorder Y = f(¢t,y)  Second order y" = F(t,y,v') (1)

The second order equation needs two initial conditions, normally y(0) and y'(0)—
the initial velocity as well as the initial position. Then the equation tells us y”(0) and
the movement begins.

When you press the gas pedal, that produces acceleration. The brake pedal also brings
acceleration but it is negative (the velocity decreases). The steering wheel produces
acceleration too ! Steering changes the direction of velocity, not the speed.

Right now we stay with straight line motion and one—dimensional problems :

i ) it oo
i speeding u S Silowin own).
i peeding up T g

The graph of y(t) bends upwards for y” > 0 (the right word is convex). Then the
velocity 3’ (slope of the graph) is increasing. The graph bends downwards for 3" < 0
(concave). Figure 2.1 shows the graph of y = sin{, when the acceleration is a =
d*y/dt? = — sin t. The important equation y”/ = —y leads to sint and cos?.

Notice how the velocity dy/dt (slope of the graph) changes sign in between zeros of y.

73
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~ ~
~ . ~

S “~-y’ = cost
144

y'"" = —sint <>y is going down and bending up

Figure 2.1: y” > 0 means that velocity 3’ (or slope) increases. The curve bends upward.

The best examples of ' = 'ma come when the force F' is —ky, a constant k times
the “position” or “displacement” y(¢). This produces the oscillation equation.

d2
Fundamental equation of mechanics m?;y +ky=0 2)

Think of a mass hanging at the bottom of a spring (Figure 2.2). The top of the spring
is fixed, and the spring will stretch. Now stretch it a little more (move the mass downward
by y(0)) and let go. The spring pulls back on the mass. Hooke’s Law says that the force is
' = —ky, proportional to the stretching distance y. Hooke’s constant is k.

The mass will oscillate up and down. The oscillation goes on forever, because equation
(2) does not include any friction (damping term b dy/dt). The oscillation is a perfect cosine,

with y = cos wt and w = \/k/m, because the second derivative has to produce k/m to
match y” = —(k/m)y.

[k [k
Oscillation at frequency w = / — y = y(0) cos ( — t) . 3)
m m

At time ¢ = 0, this shows the extra stretching y(0). The derivative of coswt has a factor
w = y/k/m. The second derivative y” has the required w? = k/m, so my” = —ky.

The movement of one spring and one mass is especially simple. There is only one fre-
quency w. When we connect N masses by a line of springs there will be NV frequencies—then
Chapter 6 has to study the eigenvalues of N by N matrices.

d2y E y<0 y">0
m—— = —ky . .
dt2? m | spring pushes down

y¥Y[ m |y>0 y”’ <0 spring pullsup

Figure 2.2: Larger k = stiffer spring = faster w.  Larger m = heavier mass = slower w.
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Initial Velocity y/(0)

Second order equations have #wo initial conditions. The motion starts in an initial position
y(0), and its initial velocity is y’(0). We need both y(0) and y'(0) to determine the two
constants c¢; and cp in the complete solution to my” + ky = 0:

[ k [ k
“Simple harmonic motion” Y = €1 COS ( = t) + ¢2 sin ( = t) . @

Up to now the motion has started from rest (3'(0) = 0, no initial velocity). Then ¢; is
y(0) and ¢ is zero: only cosines. As soon as we allow an initial velocity, the sine solution
y = co sin wt must be included. But its coefficient c is not just y/(0).

dy y'(0)

At t=0, — =copw coswt matches 3'(0) when co =
dt w

The original solution y = y(0) cos wt matched y(0), with zero velocity at t = 0. The
new solution y = (¢'(0)/w) sin wt has the right initial velocity and it starts from zero. When
we combine those two solutions, y(t) matches both conditions y(0) and y(0) :

(%)

’(0 k
YO inwt with w = 1/ E. (6)
m

Unforced oscillation  y(t) = y(0) coswt +

With a trigonometric identity, I can combine those two terms (cosine and sine) into one.

Cosine with Phase Shift

We want to rewrite the solution (6) as y(t) = Rcos (wt — ). The amplitude of y(t)
will be the positive number R. The phase shift or lag in this solution will be the angle .
By using the right identity for the cosine of wt — a, we match both coswt and sin wt :

R cos(wt —a) = R cos wt cos a + R sin wt sin a. @)

This combination of cos wt and sin wt agrees with the solution (6) if

!
0
Rcosa=y(0) and R sina= % (8)
Squaring those equations and adding will produce R? :
Yy (0))*

Amplitude R R? = R?(cos® a + sin? a) = (y(0))? + (_w—> : ©)

The ratio of the equations (8) will produce the tangent of «:

R si (0

Phase lag o tan o = 28n e _ ¥ (0 (10)

Rcosa wy(0)

Problem 14 will discuss the angle o we should choose, since different angles can have the
same tangent. The tangent is the same if « is increased by 7 or any multiple of .

The pure cosine solution that started from y’(0) = 0 has no phase shift: a = 0.
Then the new form y(¢) = R cos (wt — «) is the same as the old form y(0) cos wt.
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Frequency w or f

If the time ¢ is measured in seconds, the frequency w is in radians per second.
Then wt is in radians—it is an angle and cos wt is its cosine. But not everyone thinks
naturally about radians. Complete cycles are easier to visualize. So frequency is also mea-
sured in cycles per second. A typical frequency in your home is f = 60 cycles per second.
One cycle per second is usually shortened to f = 1 Hertz. A complete cycle is 27 radians,
so f = 60 Hertz is the same frequency as w = 1207 radians per second.

The period is the time T for one complete cycle. Thus T = 1/ f. This is the only page
where f is a frequency—on all other pages f(t) is the driving function.

5 1 27
Frequency w=2nf Period T=-=—
f w
1 2T
w
y = A cos wt A
k k
= A cos /—t w=4/—= f=—
m m 2
t=20 t="1T time

Figure 2.3: Simple harmonic motion y = A cos wt : amplitude A and frequency w.

Harmonic Motion and Circular Motion

Harmonic motion is up and down (or side to side). When a point is in circular motion,
its projections on the  and y axes are in harmonic motion. Those motions are closely
related, which is why a piston going up and down can produce circular motion of a flywheel.
The harmonic motion “speeds up in the middle and slows down at the ends” while the
point moves with constant speed around the circle.

Figure 2.4: Steady motion around a circle produces cosine and sine motion along the axes.

e¥L
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Response Functions

I want to introduce some important words. The response is the output y(¢). Up to now
the only inputs were the initial values y(0) and y’(0). In this case y(t) would be the initial
value response (but I have never seen those words). When we only see a few cycles of the
motion, initial values make a big difference. In the long run, what counts is the response to a
forcing function like f = coswt.

Now w is the driving frequency on the right hand side, where the natural frequency
wn = \/k/m is decided by the left hand side: w comes from y,, w, comes from y,.

When the motion is driven by cos wt, a particular solution is y, = Y coswt:

Forced motion y, (1)

1
" _ _
at frequency w my" + ky = coswt  yp(t) = m—— wt. (11)

To find y,(t), I put Y coswt into my” + ky and the result was (k — mw?)Y coswt.
This matches the driving function coswt when Y = 1/(k — mw?).

The initial conditions are nowhere in equation (11). Those conditions contribute the null

solution ¥,,, which oscillates at the natural frequency w,, = /k/m. Then k = mw?.

If T replace k by mw?2 in the response y,(t), I see w? — w? in the denominator:

1
Response to cos wt t) = ———— coswt. 12
p Yp(?) m (w2 — o) (12)

Our equation my” + ky = coswt has no damping term. That will come in Section 2.3.
It will produce a phase shift «. Damping will also reduce the amplitude |Y (w)|. The
amplitude is all we are seeing here in Y (w) coswt :

1 1
Frequency response Y (w) = % > = (w2 2 (13)
— mMw m wn — W

The mass and spring, or the inductance and capacitance, decide the natural frequency w,.
The response to a driving term coswt (or €*“?) is multiplication by the frequency response
Y (w). The formula changes when w = w,—we will study resonance

With damping in Section 2.3, the frequency response Y (w) will be a complex num-
ber. We can’t escape complex arithmetic and we don’t want to. The magnitude |Y (w)|
will give the magnitude response (or amplitude response). The angle 6 in the complex
plane will decide the phase response (then @ = —@ because we measure the phase lag).

The response is Y (w)e™?! to f(t) = ™! and the response is g(t) to f(t) = 6&(t).
These show the frequency response Y from equation (13) and the impulse response g from
equation (15). Ye™* and g(t) are the two key solutions to my” + ky = f(t).
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Impulse Response = Fundamental Solution

The most important solution to a linear differential equation will be called g(t). In mathemat-
ics g is the fundamental solution. In engineering g is the impulse response. It is
a particular solution when the right side f(t) = d(t) is an impulse (a delta function).

The same g(t) solves mg” + kg = 0 when the initial velocity is g’(0) = 1/m.

Fundamental solution ~ mg’ + kg = §(¢) with zero initial conditions (14)

sin w,,t
Null solution also g(t) =

1
has g(0)=0 and g'(0) = —. (15)
mwp, s

To find that null solution, I just put its initial values 0 and 1/m into equation (6).
The cosine term disappeared because g(0) = 0.

I will show that those two problems give the same answer. Then this whole chapter will
show why g¢(t) is so important. For first order equations ¥y’ = ay + ¢ in Chapter 1,
the fundamental solution (impulse response, growth factor) was g(t) = e'. The first two
names were not used, but you saw how %' dominated that whole chapter.

I will first explain the response g(t) in physical language. We strike the mass and it starts
to move. All our force is acting at one instant of time : an impulse. A finite force within one
moment is impossible for an ordinary function, only possible for a delta function. Remember
that the integral of §(¢) jumps to 1 when we pass the point ¢t = 0.

If we integrate mg” = §(t), nothing happens before ¢ = 0. In that instant, the integral
jumps to 1. The integral of the left side mg” is mg’. Then mg’ = 1 instantly at ¢ = 0.
This gives g’(0) = 1/m. You see that computing with an impulse 6(¢) needs some faith.

The point of g(t) is that it solves the equation for any forcing function f(¢):

t
my’’ + ky = f(t) has the particular solution y(t) = [ g(t — s)f(s)ds. | (16)
0

That was the key formula of Chapter 1, when g(t — s) was e®(*~%) and the equation was first
order. Section 2.3 will find g(t) when the differential equation includes damping.
The coefficients in the equation will stay constant, to allow a neat formula for g(t).

You may feel uncertain about working with delta functions—a means to an end.
We will verify this final solution y(t) in three different ways :

1 Substitute y(¢) from (16) directly into the differential equation (Problem 21)
2 Solve for y(t) by variation of parameters (Section 2.6)

3 Solve again by using the Laplace transform Y (s) (Section 2.7).



2.1. Second Derivatives in Science and Engineering 79

= REVIEW OF THE KEY IDEAS =

1. my” + ky = 0: A mass on a spring oscillates at the natural frequency w,, = \/%
2. my"” + ky = coswt: This driving force produces y, = (coswt)/m (w2 —w?).
3. There is resonance when w, = w. The solution y, = ¢ sinwt includes a new factor ¢.
4. mg"+kg = 6(t) gives g(t) = (sin wpt)/mwyp = null solution with g’(0) = 1/m.
5. Fundamental solution g : Every driving function f gives y(t) = ft g(t—s)f(s)ds.

0

6. Frequency: w radians per second or f cycles per second (f Hertz). Period T'=1/f.

Problem Set 2.1

1 Find a cosine and a sine that solve d?y/dt> = —9y. This is a second order equation
so we expect two constants C and D (from integrating twice) :

Simple harmonic motion y(t) = C cos wt + D sin wt. Whatis w?
If the system starts from rest (this means dy/dt = 0 at t = 0), which constant C' or D
will be zero ?
2 In Problem 1, which C' and D will give the starting values y(0) = 0 and 3y'(0) = 1?

3 Draw Figure 2.3 to show simple harmonic motion y = A cos (wt — «) with phases
a=m7/3and o = —7/2.

4 Suppose the circle in Figure 2.4 has radius 3 and circular frequency f = 60 Hertz.
If the moving point starts at the angle —45°, find its z-coordinate A cos (wt — «). The
phase lag is & = 45°. When does the point first hit the « axis ?

5 If you drive at 60 miles per hour on a circular track with radius R = 3 miles, what is
the time 7" for one complete circuit ? Your circular frequencyis f =  and your
angular frequency is w = (with what units ?). The period is 7T'.

6 The total energy F in the oscillating spring-mass system is

T . . . . m (dy\® k 9
FE = Kkinetic energy in mass + potential energy in spring = 2\ + §y .

Compute £ wheny = C' cos wt + D sin wt. The energy is constant !
7 Another way to show that the total energy F is constant :

Multiply my” + ky = 0 by y’. Then integrate my’y” and kyy’.
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8

10

11

12

13

14

Chapter 2. Second Order Equations

A forced oscillation has another term in the equation and A cos wt in the solution:

d2
gg—kély:F cos wt has y=C cos2t+ D sin 2t + A cos wt.
(a) Substitute y into the equation to see how C' and D disappear (they give y,,). Find
the forced amplitude A in the particular solution y, = A cos wt.

(b) In case w = 2 (forcing frequency = natural frequency), what answer does your
formula give for A? The solution formula for y breaks down in this case.

Following Problem 8, write down the complete solution y,, + ¥, to the equation

d2
mﬁg + ky = F cos wt with w # w, = /k/m (no resonance).

The answer y has free constants C' and D to match y(0) and ' (0) (A is fixed by F).

Suppose Newton’s Law F' = ma has the force I in the same direction as a :

my” =+ky including y” =4y.
Find two possible choices of s in the exponential solutions y = e*¢. The solution is
not sinusoidal and s is real and the oscillations are gone. Now y is unstable.

Here is a fourth order equation: d*y/dt* = 16y. Find four values of s that give
exponential solutions y = e*!. You could expect four initial conditions on y:
y(0) is given along with what three other conditions ?

To find a particular solution to y” + 9y = e, T would look for a multiple
yp(t) = Ye of the forcing function. What is that number Y ? When does your
formula give Y = oo 7 (Resonance needs a new formula for Y.)

In a particular solution y = Ae™? to " + 9y = €™, what is the amplitude A ?
The formula blows up when the forcing frequency w = what natural frequency ?

Equation (10) says that the tangent of the phase angle is tana = y'(0)/wy(0).
First, check that tan « is dimensionless when y is in meters and time is in seconds.

Next, if that ratio is tana = 1, should you choose &« = 7/4 or & = 57w/47?
Answer :

Separately you want R cos a = y(0) and Rsina = y’(0) /w.
If those right hand sides are positive, choose the angle « between 0 and 7 /2.
If those right hand sides are negative, add 7 and choose o = 57/4.

Question: If y(0) > 0 and y'(0) < 0, does « fall between 7/2 and 7 or between
37/2 and 27 ? If you plot the vector from (0, 0) to (y(0),y’(0)/w), its angle is c.
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15

16

17

18

19
20

21

22

23

24

25

Find a point on the sine curve in Figure 2.1 where ¥y > 0 but v = y’ < 0 and also
a = y"” < 0. The curve is sloping down and bending down.

Find a point where y < 0 but 3’ > 0 and ” > 0. The point is below the z-axis but
the curve is sloping and bending

(a) Solve y” + 100y = O starting from y(0) = 1 and y’(0) = 10. (This is yn.)
(b) Solve " + 100y = coswt with y(0) = 0 and y’(0) = 0. (This can be y,.)

Find a particular solution y, = Rcos(wt — a) to y”’ + 100y = coswt — sinwt.

Simple harmonic motion also comes from a linear pendulum (like a grandfather
clock). At time ¢, the height is A cos wt. What is the frequency w if the pendulum
comes back to the start after 1 second ? The period does not depend on the amplitude
(a large clock or a small metronome or the movement in a watch can all have T = 1).

If the phase lag is «, what is the time lag in graphing cos(wt — «) ?

What is the response y(t) to a delayed impulse if my” + ky = §(t — T)?

t
(Good challenge) Show thaty = [ g(t — s)f(s)ds has my” + ky = f(t).
0

1 Whyisy' = Oftg’(t — ) f(s)ds + g(0)f(t) ? Notice the two t’s in y.

2 Using g(0) = 0, explain why y” = Oftg”(t —3s)f(s)ds +g'(0)f(¢).

3 Now use ¢/(0) = 1/m and mg” + kg = 0 to confirm my” + ky = f(¢).
With f = 1 (direct current has w = 0) verify that my” + ky = 1 for this y :

t

Step response y(t) = /
0

sinwp(t —s) 1 1
e %) 1 ds = yp + yn equals = — — t.
T $=Yp+yn equals = — —coswn

(Recommended) For the equation d?y/dt?> = 0 find the null solution. Then for
d%g/dt? = §(t) find the fundamental solution (start the null solution with g(0) = 0
and ¢/(0) = 1). For y” = f(t) find the particular solution using formula (16).

For the equation d?y/dt? = €™ find a particular solution y = Y (w)e®*. Then Y (w)
is the frequency response. Note the “resonance” when w = 0 with the null solution

Find a particular solution Ye™? to my” — ky = e**. The equation has —ky
instead of ky. What is the frequency response Y (w)? For which w is Y infinite ?
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2.2 Key Facts About Complex Numbers

The solutions to differential equations involve real numbers a and imaginary numbers tw.
They combine into complex numbers s = a + tw (real plus imaginary). Here are
three equations and their solutions:

dy Py d%y dy 5 o

Y- LY 4wy =0 LY e =0

at ~ Y @@ TV P By T ey

y = Ce® y = c et | c e—iwt g crela+iw)t o 02e(a—iw)t

Chapter 1 solved y' = ay. Section 2.1 solved " + w?y = 0. Section 2.3 will solve the last
equation Ay” 4+ By’ + Cy = 0. The balance between real and imaginary (between a and
iw) will come down to a competition between B2 and 4AC.

This course cannot go forward without complex numbers. You see their rectangular form
in s = a + iw (real part and imaginary part). What you must also see is their
polar form. It is e*!, more than s by itself, that demands to be seen in polar form :

eSt — ela +iw)t _ at jiwt

eat gives growth or decay etwt gives oscillation and rotation

The real part a is the rate of growth. The imaginary part w is the frequency of oscilla-
tion. The addition a + iw turns into the multiplication e%*e™? because of the rule for ex-
ponentials. We will surely see exponentials everywhere, because they solve all constant
coefficient equations: The solution to y' = sy is y = Ce*t. With a forcing function e*?,
a particular solution to y' — sy = €™ is y, = €™!/(iw — s): a complex function.

Euler’s formula e™* = cos wt + isinwt brings back two real functions (cosine and
sine). Real equations have real solutions. When the forcing function on the right side is
f = A coswt + B sin wt, a good particular solution is y, = M cos wt + N sin wt.

In this real world, the amplitudes v/ A2 + B2 and v/ M? + N2 are all-important.
The amplitude is what we see (in light) and hear (in sound) and feel (in vibration).

The null solutions y,, and the particular solution y,, need complex numbers. The form of
yn is Ce®t. The form of y, is Y e?. The complex gainis Y. Notice that the w in s = a + iw
is the natural frequency in the null solution y,,. The w in the right hand side e** is the
driving frequency in the particular solution y,,.

If Wygtural = Wdriving: We Will see “resonance” and we will need new formulas.

Here is the plan for this section.

1 Multiply complex numbers s; and sy (review).

2 Use the polar form s = re™ to find the powers s™ = 7™ (review).

3 Look especially at the equation s™ = 1. It has n roots, all on the unit circle.

4 Find the exponential €5t and watch it move in the complex plane.
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Complex Numbers : Rectangular and Polar

A complex number a + tw has a real part @ and an imaginary part w. Two complex numbers
are easy to add: real part a; + ag, imaginary part w; + ws. It is multiplication that looks
messy in equation (1). The good way is in equation (5).

Multiplication (@1 + twy) (ag + iws) = (@102 — wiwe) + i(aiws + agwy). (1)
Just multiply each part a; and iw; by each part as and two.

Important case s times s (a + iw) (a — iw) = a® + w? : Real number. (2)

5 = a — iw is the complex conjugate of s = a + iw. Equation (2) says that s5 = |s|?.

|s| = va? + w? is the absolute value or magnitude or modulus of s = a + iw.

Imaginary axis

s=a+iw ,g:re':g
s : ..
|s| w 1rsinf
a .
i Real axis
I ?'cos(il
i | _
25 = a — iw y T =re

Figure 2.5: (i) The rectangular form s = a +iw. (ii) The polar form s = re*® with absolute
value 7 = |s| = v/a2 + w?2. The complex conjugate of sis 5 = a — iw = re~%.

The polar form of s uses that distance r = |s| to the center point (0, 0). The real numbers
a and w (rectangular) are connected to 7 and € (polar) by

a=rcosf w=rsin@ s=a+iw=r(cosf+isinf)=re? | (3)

At that moment you see Euler’s Formula ¢ = cos@ + i sin 6. I could regard this as the
complex definition of the exponential. Or I can separate the infinite series for e into its real
part (the series for cos #) and imaginary part (the series for sin 6).

Euler’s Formula is used all the time, to express €%’ in terms of cos and sin 0. It is

useful to go the other way, and express the cosine and sine in terms of ¢* and e~ :
e 4 e—1i0 et _ —ib
Cosines from exponentials cosf) = T sin 6 = T “)
]

The sine comes from subtraction. Cancel cos 6 to get 27 sin 0. We need to divide by 2i.
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The Polar Form of s™ and 1/s

The polar form is perfect for multiplication and for powers s™. We just multiply absolute
values of s and s9, and add their angles. Multiply r172 and add 6y + 65.

Multiplication s;sg (r1 €®) (r2 €%2) = 711y ci(01 + 02) (5)
Powers of s = re®® s" = (r ew)n = pn (N0 (6)
If n = 2, we are multiplying re*® times re® to get r2e%%%. (9 is added to 0.) If n = —1, we

are dividing. The rectangular form of 1/(a + iw) matches the polar form of 1/(re®):

= le—i". 7

1 1 a—iw a— iw 1 11
atiw a+tiw a—iw a2+ w? ret® r e p

That magnitude is 7 = |a + iw| = Va2 + w?2. Equation (7) says that 1/s equals 5/|s|?.
In solving y’ — ay = €™*, what we meet is y = ¢! /(iw — a):

L _lea_geie

Gain G and Phase o w—a=re* - =
w—a r

I prefer this polar form. When s = re®, the absolute value of 1/s is 1/7. The angle is —6.

Examples The polar form of 1 + i is v/2¢™/4 : absolute value 7 = /I + 1 = /2.
The polar form of its conjugate 1 — 7 is v/2e~ ™/
The polar form of its reciprocal 1/(1 + i) is (1/4/2)e~"%/4.

Notice that we can add 2m to the angle §. That brings us around a circle and back to the
same point. Then % = ¢#(#+27) and ¢=17/4 = £Tmi/4,

The Unit Circle

The polar form brings out the importance of the unit circle in the complex plane. That circle
contains all complex numbers with absolute value 7 = |s| = 1. The numbers on the unit
circle are exactly s = €*® = cos  + i sin 6.

Since r = 1, every r™ is also 1. All powers like s? and s~! stay on the unit circle.
The angles in Figure 2.6 become 26 and —6. The nth power s™ has angle nf.

Here is a nice application of complex numbers to trigonometry. The “double angle”
formulas for cos 26 and sin 26 are not so easy to remember. The “triple angle” formulas for
cos 360 and sin 36 are even harder. But all these formulas come from one simple fact:

(ei0)n = ¢ind (cos 6 + i sin )™ = cosnf + i sin nd. 9)
If you take n = 2, you are squaring e = cos# + i sin 6 to get €29 :
(cosf + isin®)? = cos? 6 —sin® 6 + 2i cos 6 sin 6 = cos 20 + i sin 26. (10)

The real part cos?  — sin?@ is cos 20. The imaginary part 2 sin 6 cos § is sin 26.
For triple angles, multiply again by cos 6 + i sin 6 (in Problem 4).
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As2 =i
; 2 2
s:em/d‘:cos%+z smgz\/?_%—i\/?_
V=74 f=1=48
T =g 1l=¢im/4=3

Figure 2.6: The number s = ¢%? has s2 = €2/ and s~! = =%, all on the circle with 7 = 1.

Here 6 = 45° which is 7/4 radians. So 26 = 90° and s2 = i. Then s® = 1.

The Equation s = 1

There are two numbers with s2 = 1 (they are s = 1 and —1). There are four numbers with
s* =1 (they are 1 and —1 and 4 and —i). Those four numbers are equally spaced around the
unit circle. This is the pattern for every equation s™ = 1 : n numbers equally spaced around
the unit circle, starting with s = 1. The Fundamental Theorem of Algebra says that nth
degree equations have n (possibly complex) solutions. The equation s™ = 1 is no exception,
and all its roots are on the unit circle.

_ eQ'rnrz/n 27t _ 1.

8

47rz/n’“ —c

nrootsof s™ =1 s=e2m/" s=¢
These are the powers s, s2, .. ., s™ of the special complex number s = e2™*/"_ This number
s = e2™/8 s the first of the 8 solutions to s8 = 1, going around the circle in Figure 2.6.

Here is a remarkable fact about the solutions to s™ = 1. Those n numbers add to zero.
In Figure 2.6, you can see that s5 = —s and s = —s? and 5" = —s® and s® = —s*.
The roots pair off. Each pair adds to zero. So the 8 roots add to zero.

For n = 3 or 5 or 7, this pairing off will not work. The three solutions to s> = 1 are at
120° angles. (s and s2 are €2™%/3 and e*™*/3, at angles 120° and 240°. Then comes 360°.)

To show that those three numbers add to zero, I will factor s> — 1 =0
0=s>-1=(s—1)(s>+5+1) leadsto s2+s+1=0. (11)

The n numbers on the unit circle go into the Fourier matrix. They are the key to the
overwhelming success of the Fast Fourier Transform in Section 8.2.
wt ist

The Exponentials e and e

We use complex numbers to solve differential equations. For dy/dt = ay the solution
y = Ce® is real. But second order equations can bring oscillations e™* together with
growth/decay from e®t. Now v has sines and cosines, or complex exponentials.

y=c elatiw)t 4 o ola—iw)t o y = C1 e cos wt + Cy e* sin wt. (12)
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Our goal is to follow those pieces of the complete solution to Ay” + By' + Cy = 0
Where does the point e(*t*)t travel in the complex plane ? The next section connects
a and w to the numbers A, B, C and solves the differential equation.

The best way to track the path of e(*T%)? is to separate a from iw. The path of € is a
circle. The factor e turns the circle into a spiral.

Rule for exponentials ela+iw)t _ qat iwt (13)

This is the polar form! The factor e%! is the absolute value r. The angle wt is the phase
angle 6. As the time ¢ increases, we follow those two parts :

Absolute value  e? grows with ¢ ifa > 0 e® decaysifa < 0

Phase angle €™t goes around the unit circle when t increases by 27 /w

The real part a decides stability. This is just like Chapter 1. We will see that damping
produces a < 0 which is stability. In that case B > 0 in vy’ + By’ + Cy = 0.

This section is about the iw part of the exponent s. That produces the ! part of the
solution y = e, The pure oscillations in Section 2.1 came from my” + ky = 0 with
no damping. They had only this e?* part (along with e~**, which travels in the opposite
direction around the unit circle). The frequency is w = \/k/m.

Watch €% as it goes around the circle. If you follow its horizontal motion (its shadow
on the x axis) you will see coswt. If you follow its height on the y axis, you will see sin wt.
The circle is complete when wt = 2. So the period is T' = 27 /w.

ﬂ T = coswt /l /\ y = sinwt
‘w - \_/ ) \vtz“

Figure 2.7: y” + w?y = 0: One complex solution e*** produces two real solutions.

When we multiply e®? by e?, their product e®t gives a spiral. The spiral goes
in to the center if a is negative. The spiral goes outward a > 0. You are seeing the benefit of
complex numbers to merge oscillation and decay into one function. The real functions are
€% cos wt and €% sin wt. The complex function is et ¢! = 5t

Question What will be the time 7" and the crossing point X, when the spiral completes
one loop and returns to the positive x—axis ?

Answer The time T will be 27 /w, to complete each loop of the spiral. The crossing
point on the z—axis will be X = €T, At time 27, the crossing will be at X 2.
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10

11

Problem Set 2.2

Mark the numbers s; = 2 4+ ¢ and sy = 1 — 27 as points in the complex plane. (The
plane has a real axis and an imaginary axis.) Then mark the sum s; + s and the
difference s; — so.

Multiply s; = 2 + i times s3 = 1 — 2i. Check absolute values: [s1||sz| = |s152].

Find the real and imaginary parts of 1/(2 + 4). Multiply by (2 —4)/(2 — 4) :

1 2—1 2—1

2+i 2—i |2+d2

Triple angles ~ Multiply equation (10) by another ¢ = cos # + isin @ to find
formulas for cos 36 and sin 36.

Addition formulas Multiply e’ = cos § + i sin 6 times e’ = cos ¢ + isin ¢
to get e*(?+%)_ Its real part is cos (§ + ¢) = cos fcos ¢ — sin 0 sin ¢. What is its
imaginary part sin (6 + ¢) ?

Find the real part and the imaginary part of each cube root of 1. Show directly that the
three roots add to zero, as equation (11) predicts.

The three cube roots of 1 are z and 22 and 1, when z = €27/3  What are the three
cube roots of 8 and the three cube roots of ? (The angle for 7 is 90° or 7/2, so
the angle for one of its cube roots will be . The roots are spaced by 120°.)

(a) The number i is equal to e™/2. Then its ih power i? comes out equal to
a real number, using the fact that (e®)" = e'. What is that real number ¢* ?

(b) €™/? is also equal to e°™%/2.  Increasing the angle by 27 does not
change e*® — it comes around a full circle and back to 3. Then i’ has another
real value (e57%/2)" = ¢=57/2_ What are all the possible values of i’ ?

The numbers s = 3 4+ % and s = 3 — ¢ are complex conjugates. Find their sum
s+3 = — B and their product (s)(3) = C. Then show that s> + Bs+ C = 0 and also
52 + Bs + C = 0. Those numbers s and 5 are the two roots of the quadratic equation
2?4+ Bx+ C = 0.

The numbers s = a + iw and s = a — tw are complex conjugates. Find their sum
s+ 5 = —B and their product (s5)(5) = C. Then show that s? + Bs + C' = 0. The
two solutions of 22 + Bx + C = 0 are s and 5.

(a) Find the numbers (1 + 7)* and (1 + 4)3.

(b) Find the polar form re® of (1 4 iv/3)/(v/3 + ).
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The number z = ¢>7%/™ solves 2™ = 1. The number Z = ¢>™%/2" solves Z°" = 1.
How is z related to Z? (This plays a big part in the Fast Fourier Transform.)

(a) If you know €* and e~*?, how can you find sin 6?
(b) Find all angles # with e*® = —1, and all angles ¢ with e** = 3.
Locate all these points on one complex plane :

1
2+1

@ 2+i (b (2+i)? (0 @ |2+1|

Find the absolute values r = |z| of these four numbers. If 6 is the angle for 6 + 8,
what are the angles for these four numbers ?

1

(@ 6-8 (b)) (6-8i)% (c) ST

d 8 +6

What are the real and imaginary parts of @ T %7 and ¢ 1 9

(a) If |s| = 2 and |z| = 3, what are the absolute values of sz and s/z ?

(b) Find upper and lower bounds in L < |s + z| < U. When does |s +z| = U ?

(a) Where is the product (sin 6 + i cos 6)(cos 6 + i sin 6) in the complex plane ?
(b) Find the absolute value | S| and the polar angle ¢ for S = sin 8 + ¢ cos 6.

This is my favorite problem, because S combines cos # and sin 6 in a new way.
To find ¢, you could plot S or add angles in the multiplication of part (a).

Draw the spirals e(1 =)t and e(2 =20t Do those follow the same curves? Do
they go clockwise or anticlockwise ? When the first one reaches the negative x-axis,
what is the time 7" ? What point has the second one reached at that time ?

The solution to d?y/dt> = —y is y = cos t if the initial conditions are y(0) =
and y'(0) = _. The solution is y = sin ¢ when y(0) = and
y'(0) = . Write each of those solutions in the form c; e + c; e ™%, to see

that real solutions can come from complex c¢; and cs.

Suppose y(t) = e teit solves y” + By’ + Cy = 0. What are B and C'? If this
equation is solved by y = 3t what are B and C'?

From the multiplication etd ¢—iB _ ei(A - B), find the “subtraction formulas”
for cos (A — B) and sin (A — B).

(a) If r and R are the absolute values of s and S, show that r R is the absolute value
of sS. (Hint: Polar form!)

(b) If 5and S are the complex conjugates of s and .S, show that 55 is the complex
conjugate of sS. (Polar form !)
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Suppose a complex number s solves a real equation s + As?> + Bs + C = 0
(with A, B, C real). Why does the complex conjugate 5 also solve this equation ?
“Complex solutions to real equations come in conjugate pairs s and 5.

(a) If two complex numbers add to s + .S = 6 and multiply to sS = 10, what are
s and S ? (They are complex conjugates.)

(b) If two numbers add to s + S = 6 and multiply to sS = —16, what are s and
S ? (Now they are real.)

If two numbers s and S add to s + S = — B and multiply to sS = C, show that s and
S solve the quadratic equation s + Bs + C = 0.

Find three solutions to s> = —8i and plot the three points in the complex plane. What
is the sum of the three solutions ?

(a) For which complex numbers s = a + iw does e** approach 0 as ¢ — oo ?
Those numbers s fill which “half-plane” in the complex plane ?

(b) For which complex numbers s = a + iw does s™ approach 0 as n — o0 ?
Those numbers s fill which part of the complex plane? Not a half-plane!
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2.3 Constant Coefficients A, B, C

Section 2.1 presented the important equation my” + ky = 0. That is a special case of
this second order constant coefficient equation. We still need two initial conditions:

d? d
d_t?: + Bd—Z + Cy =0 | starting from y(0) and y'(0). (1)

The coefficients A, B, C' can be any constants. For pure oscillation, A was the mass m
and C' was the spring constant k, both positive. B > 0 introduces damping. In this
section the numbers A, B,C can be positive or negative or zero, so we may have
exponential growth or decay or (damped) oscillation. With zero on the right hand side of
equation (1), this section is finding null solutions y,, : unforced motion.

Our first job is to solve equation (1). When the coefficients are constant, we always
look for exponentials €®t. That number s can be positive (y will grow) or negative
(y decays) or pure imaginary (y oscillates). If s is a complex number a + iw, then its
real part a controls growth or decay. The imaginary part w controls oscillation.

We will see the solutions clearly, because A, B, C are constant. The right choice of
y(0) and y'(0) will produce the growth factor g(t) that multiplies all inputs to give y,.

The key step is to find the rate s in y = e®*. A second order equation normally has
two possible rates s1 and so. To find those numbers, substitute y = e®¢ into equation (1):

As2est + B sest + Cest = 0. 2)

The factor et can be divided out because it is never zero. This leaves an all-important
equation to determine s :

Characteristic equation As? + Bs+C =0. 3)

This is an ordinary quadratic equation for s. Every quadratic has two roots s; and ss.
They could be real, they could be complex, they could be equal. The two roots come from
the quadratic formula:

B+ VB2 —4AC .  —-B-+/BZ_4AC o
- 24 4= 24 >

Those roots add up to s; + so = —B/A. The roots multiply to give s1s2 = C/A.
The question of real roots or complex roots is highly important, and it has a direct answer :

Two values for s 31

Real roots B2 > 4AC Equalroots B2 = 4AC  Complex roots B? < 4AC

When B? — 4AC is positive, its square root is real. Then we have real roots s; > s.

When B? — 4AC = 0, its square root is zero and s; = so (borderline case : equal roots).

When B? — 4AC is negative, its square root is imaginary. The quadratic formula (4)

produces two complex numbers a + iw and a — iw with the same real part a = —B/2A.
Let me look at all three cases, starting with examples.



2.3. Constant Coefficients A, B, C 91

Two Real Roots, One Double Root, No Real Roots

A picture will show you how B? — 4AC decides real vs. complex. The three parabolas
in Figure 2.8 have C' = 0 and C' = 1 and C' = 2. By increasing C we lift the parabolas.
The critical value is C' = 1, when the middle parabola barely touches y = 0 at s = 1.
C =1 gives a double root and in this case B?> = 4AC = 4.

C
2* y=52—-2s+2; s=1=%1
no real roots y=s>—2s+1= (s—1)2 s=1,1
1
equal roots
s1=s=1 ) y:52—2s+0=s(s—2) s=0,2
51=0 N s2=2
real roots

Figure 2.8: Lowest curve: Two roots for C' = 0. Middle curve: Double root for C' = 1.
Highest curve misses the axis: No real roots for C = 2 — complex roots a + iw.

All three parabolas have A = 1 and B = —2 and B? = 4. The test that compares
B? to 4AC is comparing 4 to 4C. This shows again that C = 1 is at the critical
borderline B> = 4AC. Any value C' > 1 will lift the parabola above the y = 0 axis.
The roots of s> — 2s + C = 0 will be complex, and " — 2y’ + Cy = 0 will give damped
oscillation.

For C = 2 that equation becomes (s — 1)2 = —1. Thens —1 = iors — 1 = —i.
The two complex roots are s = 1 + ¢ and s = 1 — 7. The quadratic formula (4) agrees.

Real Roots s1 > s9
Example1 " + 3y’ + 2y = 0 with y = e5¢ Substitute A, B,C' = 1,3, 2 to find s.
As®> + Bs+C =5%+4+3s+2=0 factorsinto (s 4+ 1)(s 4+ 2) = 0. (5)

The roots are both negative: s3; = —1 and sa = —2. Those numbers come from the quadratic
formula (4) and they come faster from the factors in (5): The first factor s + 1 is
zero when s; = —1, and s + 2 = 0 when s; = —2. Damping — negative s — stability.
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The complete solution to our linear differential equation is any combination of the
two pure exponential solutions. These are null solutions (homogeneous solutions).

Null solutions Y(t) = c1e®t + c2e®** = c1e™t + cze™ (6)

The numbers ¢; and ¢, are chosen to make y(0) and y’(0) correct whent = 0
Sett =10 y(0) =c1 + c2 and y'(0) = —c1 — 2¢s. (7
Those two equations safely determine ¢; = 2y(0) + v'(0) and ¢z = —y(0) — y'(0):
Final solution y(t) = cie™t + cae™2t = y(0)(2e 7t — e7%) 4+ 4/ (0) (e~ — e~ %),

Example 2 Solve 3" — 3y’ + 2y = 0. The coefficient B has changed from 3 to —3.
Solution Substitute y = e*! as before. Negative damping gives positive s.

s2—-35+2=0 (s—1)(s—2)=0 s1 =2 and sp = 1.

The complete solution is now y(t) = ci1e2! + caet. Exponential growth = instability.

Equal Roots s1 = s9

The roots of As?> + Bs + C will be equal when B? = 4AC. When you factor the quadratic,
you see (s — s1)? times A. The factor s — s1 appears twice: 8 = s is now a double root.
Our et method has a problem when it finds one double root s = s1. After y = e®f,
what is a second solution to our second order equation ?
We will show that y = te®:? is also a solution when s, = s;.

Example 3 Solve 3" — 2y’ + y = 0. Those coefficients 1, —2, 1 have B? = 4AC.
Solution Substitute y = et as usual. The root s = 1 is repeated : two equal roots.

$2-25+1=0 (s—1)2=0 8§51 =1=3s3

With that root, y = e’ solves the equation : easy to check. A second solution is needed ! We
now confirm that y = te®t = te’ is also a solution of 4" — 2y’ +y =0:

y' = (tet) =te! + €t y" — 2y +y = (te* + 2e*) — 2(te’ +€*) + (te') =0

A double root of As*> + Bs + C =0 mustbes; = —B/2A.
Then y; = e®'t and also y; = te®:! solve Ay” + By’ + Cy = 0.

Proof With simple roots, the lowest parabola in Figure 2.8 cuts across Y = 0.
The middle parabola Y = (s — 1)? is tangent to the Y = 0 axis at the double root 1, 1.
“The graph touches twice at the same point s = s1.” The root is s1 = s; = —B/2A.



2.3. Constant Coefficients A, B, C 93

. dy
Height zero Y =As®+ Bs;+C =0 andalso — =2A4s;+B=0. (8)
Slope zero ds

To confirm that Ay” + By’ + Cuy is zero for y = te*t, look at y and 3y’ and y"' :

/
Yy = sitet 4 et = gy + ert

” / t
Y = s1y + 517t = s1(s1y + €51t) + s1e%1t = s2y + 25, €51t

Substituting y” and 3’ and y into Ay” + By’ + Cy, we get 0 + 0 from equation (8):
A(s?y 4 251e°') + B(s1y + €**) + Cy = (As? + Bs; + C)y + (24s; 4+ B)e®** = 0+0.

The quadratic formula agrees with s; = —B/2A = s3, because B? —4AC = 0.
The square root disappears, leaving — B/2 A for both solutions. Here is the simplest example
of a double root s; = s5 and a factor ¢ in the second solution.

Example 4 Solve y”/ = 0. The coefficients 1,0, 0 have B? = 4AC.

Solution Substitute y = e*! to find s%e** = 0 and s2 = 0. The double root is s = 0.
The usual solution y = et = €% = 1 does have 3"/ = 0. We need a second solution.

The rule y = te®t still applies when s = 0. That second solution is y = te% = t.
We know this already: y = 1 and y = t solve y"” = 0.

Higher Order Equations

Problem 18 will extend these ideas to n™ order equations (still constant coefficients!).
Substitute y = ! to get an n™ degree polynomial in s. Now there are n roots. If those
roots si, So,...,S, are all different, they give n independent solutions y = e°¢. But
if aroot s; is repeated two or three or m times, we need m different solutions for s = s :

Multiplicity m  The m solutions are y = e®1t, y =te®1t,... y=tm—lesit (9

A simple example would be the equation y”””/ = 0. Substituting y = e*! leads to s* = 0.
This equation has four zero roots (multiplicity m = 4). The four solutions predicted by
equation (9) are y = 1,¢,t2,#3. No surprise that those all satisfy the equation 3"’ = 0:

their fourth derivatives are zero.
Here is a fourth order equation that produces two real roots and two complex roots :

n”n

y" —y=0 y=e leadsto s* —1 =0 (10)

The four roots are s; = 1 and s, = —1 and s3 = ¢ and s4 = —t. Then the complete
solution to i = yis y = cie? + cae ™t + c3e® + cpe™ .
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Complex Roots s = a + iwand sg = a — 1w

The formula for the roots of a quadratic includes the square root of B2 — 4AC.
When that number is negative, the square root is imaginary. The example y” +y = 0
has A, B, C equal to 1,0, 1, so B2 —4AC = —4. The quadraticis As®> + Bs+C = s2 + 1.

The solutions to s?+1 = O are s = 5 and s = —i. The solutions to s +4 = 0 are s = 27
and s = —2i. The oscillations from 3 + 4y = 0 can be written in two ways :
B = 0: No damping y = c1?® + coe™?" = (O cos 2t + C sin 2t. (11)

The real part of s is zero when B = 0: pure oscillation.
Now bring in damping: vy’ 4+ y’ 4+ y = 0. For the solutions to s2 + s + 1 = 0,
go to the quadratic formula: A, B,C are 1,1,1 and B2 — 4AC is —3:

-1++v-3 1, V3 1 V3
s24+s+1=0 §1=————=—— 4+ —i S = —— — — 3.
e ' 2 2t 32 T T2 2
The two complex roots s; and s, have the same real part a = —1/2. Their imaginary parts

w and —w have opposite signs (as in /3/2 and —+/3/2). Those are the plus and
minus signs on the square root of B2 — 4AC. Assuming that A, B, C are real numbers,
the two roots of As? + Bs + C = 0 are complex conjugates. If I place s; and s, onto
the complex plane, they are symmetric mirror images across the real axis.

imaginary axis

§ = __;- + % +1W -‘/__
183 )2
( z) +\(%) 1 The roots are
- a + tw and @ — tw.
" T ICRAXS  Their product is
fro1 @rwl=0/A=1
w=1- 4}

The conjugate of s = a + iw is 3 = a — iw. The magnitude is |s| = Va2 + w2.

In the example with a = —1/2 and w = +/3/2, the magnitude is exactly |s| = 1.
This is because (—1/2)? + (v/3/2)? = 1. The circle in the picture has radius 1. The unit
circle is extremely important to recognize. @ The complex numbers on that circle
have the form s = cos 6 + i sin @, because (cosine)? + (sine)? = 1. The angle 6 is measured
from the positive real axis. In the figure this angle is 120° or 7/3.

The points on the unit circle are given by Euler’s Formula e*® = cos + isin 6.

We can switch between the complex form for y(¢) and its equivalent real form.
Complex y(t) = e*(c1e™" + cze™ ') Real y(t) = e*(C} coswt + Cy sinwt)

Euler’s formula for €™ and e~** shows that C; = ¢; + ¢5 and Cy = i¢q — ico.
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With those key facts about complex numbers a + iw, we come back to the example
52 + s+ 1 = 0 and the differential equation it comes from:

d*y dy . :
e + m— + e — eslt — e((l. + ?‘w)t — eSQt f— e(ﬂ. bz zw}t
di? dt Yy n Y2

This number e(@ + @)t is not on the unit circle. The real part a = —1/2 is responsible.

When a = 0, e** goes around the circle. When a < 0, (@)t spirals to zero : damped.
The magnitude of e* is 1, but e?* grows large or small depending on the sign of a :

Growth o > 0  Magnitude |e(otiw)t| = gat _,
Decay a < 0 Magnitude |e(atiw)t| = gat _, g

That real part is always a = —B/2A. Every equation Ay” + By’ + Cy = 0 will have
damping and decay if A and B are positive. Here is an example with B = —1:

Negative damping — growth y' —y' +y=0 s2—s54+1=0.

That changes a to +%. The roots a = iw are now coming from s> — s +1 = 0:

1 3 —
S1=a+ 1w = +§ + \/7—2 has magnitude |s;| = Va2 +w? =1.
This point s; is on the unit circle, because |s1| = 1. Its real part a is +3, so s; is on
the right side (not left side) of the imaginary axis. The angle in s; = €*’ changes to § =
60°. Now s1 and sy are on the right half of the unit circle (the unstable half: et grows).

1 s

“Anti-damping” B = —1  Growthrate a = -  Magnitude 6] = et =H?

In most physical problems we expect positive damping B > 0 and negative growth rate
a < 0. Then the differential equation is stable and its null solutions die out as ¢ — oo.

Overdamping versus Underdamping

This section emphasizes the difference between B? > 4AC and B? < 4AC. That is the
difference between real roots and complex roots. This is a difference you can see—with your
own eyes and not just with formulas. For damping coefficients B = 1,2,3
the solutions to y” 4+ By’ + y = 0 will approach zero in different ways (Figure 2.9).

At this time I want to vary the damping B instead of the stiffness C.
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y(0)4

overdamped

crtitically
damped

underdamped

Figure 2.9: y(t) goes directly to zero (overdamped) or it oscillates (underdamped).

The four damping possibilities match the four possibilities for roots of As? + Bs + C = 0.
This table brings the whole section together :

Overdamping B? > 4AC Real roots et and e®2t
Critical damping B? = 4AC Double root e*1t and tes1t
Underdamping B2 < 4AC Complex roots e*cos wt, e%tsin wt
No damping B =0 Imaginary roots cos wt and sin wt

Figure 2.9 shows how the graph crosses zero and comes back, for underdamping.
This is like a child’s swing that is settling to zero (so the child can get off the swing).
When B = 0 we have a = 0 and imaginary roots +iw and pure spring—mass oscillation.

Figure 2.10 shows four parabolas all with A = C' = 1. The damping coefficients are
B = 0,1,2,3. When B = 3 the damping is strong and s?> — 35 + 1 = 0 has real roots.
When B = 2 the damping is critical and s — 2s + 1 = 0 has a double root s = 1,1.
When B = 1 the damping is weak and the roots are complex. The solutions y = et coswt
and y = e® sinwt oscillate as the e?* term goes to zero. When B = 0 there is no decay.

%/

y=s824+0s+1 s=14i,—1

\\ \critica] y=s’+1s+1 s=(—11%+3i)/2
A\ B=2 s =32+28+1 s=—1,-1
82 —1 s1 |0
\\ y=s>+3s+1 s=(—-3+£5)/2
\overdamp
B>2/

Figure 2.10: As B increases, the lowest point on the parabola moves left and down.
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Fundamental Solution = Growth Factor = Impulse Response

One special choice of initial conditions is all-important: g(0) = 0 and g’(0) = 1/A.
The letter g instead of y picks out this fundamental solution. This is a null solution
with the jump start g/(0). It is also a particular solution to Ag” + Bg’ 4+ Cg = 4(t).
This fundamental solution from the delta function will lead us to all solutions.

Review : The roots of As? + Bs 4+ C = 0 are s; and s,. They give two solutions e
and e*?! to the null equation, if s; # so. We want the combination g = c;e°'? + cpe®2! that
matches ¢g(0) = 0 and g’(0) = 1/A. Choose the right c; and c5 :

g(0) = e+ =0 Multiply by s $9c1 4+ 82¢0 =0
g’(0)=s1c1 +82e2=1/A Then subtract (81 —s2)e1=1/A
Slt _ 632t | 1
The fundamental solution g(t) = ———— has ¢; = ————— = — ¢ (12)
. A(sy — s2) A(sy — 82)

No damping For the oscillation equation my” + ky = 0, the roots of ms? + k = 0 are
imaginary : s1 = i4/k/m = iw and s = —i/k/m = —iw. Then the fundamental solution
has a simple form with A = m:

eS1t _ Sl ot _o—iwt 94 ginwt  sinwt

g(t)=m(81_82): m2iw)  2imw  Aw e

This is exactly the impulse response from Section 2.1. Clearly g(0) = 0 and g/(0) = 1/A.
Underdamping Now s; = a + iw and s; = a — iw. There is decay froma = —B/2A
and oscillation from w. Soon we will write p for B/2A and wq for w.
elat+iw)t _ (a—iw)t sin wt sin wgt

t: = at—: _pt . 14
9(®) A2iw) © Taw % Awg o

Critical damping Now B? = 4AC and the roots are equal: s; = s = —B/2A.
The second solution to the differential equation (after e%1?) is g(t) = te®'’. Dividing by A,
this is exactly the solution that has g(0) = 0 and g’(0) = 1/A.

teSit  te—Bt/2A
a(t) = a1 A . (15)
Overdamping When B? > 4AC, the roots s; and sy are real. Formula (12) is best.

The real purpose of g(t) is to solve Ay” + By’ + Cy = f(t) with any right side f(¢).
This impulse response ¢ is the fundamental solution that gives all other solutions :

t

Solution for any f(t) yp(t) = /g(t — 8)f(s)ds (16)
0

The step response fo f(t) = 1 is y, = integral of g(t). This comes in Section 2.5.
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Delta Function and Impulse Response

In this section g(t) is a null solution with initial velocity g’(0) = 1/A. The same g(t) is a
particular solution in the next section, with initial velocity zero but driven by an impulse
f(t) = o(t). Only a delta function could make this possible: g(t) is yy, for one problem
and yp, for another problem.

The informal explanation is to integrate all terms in Ag” + Bg’ + Cg = §(t).
On the right side the integral is 1. The integration is over a very short interval 0 to A.
On the left side the integral of Ag” is Ag’(A), plus terms of order A going to 0.
To match 1 on the right side, the impulse response g(t) starts immediately with g’ = 1/A.

Example 5 The best exampleis g’/(t) = §(t) with ramp function g(t) = ¢.

The derivative of the ramp is a step function. You see the sudden jump to g/ = 1

The ramp g(t) = t agrees with formula (15) in this case with A = 1and B = C = 0.

The null equation g” = 0 starting from g(0) = 0 and g’(0) = 1 is solved by g( =
Everything is zero for t < 0. Then we see the ramp g(t) and the step g'(t) and g” =
This is the limiting case of equation (12) when B and C and s; and sg approach zero.

A personal note Thank you for accepting the slightly illegal input §(¢) and its response g(t).
I could have left those out of the book. But I couldn’t have lived with myself. They are truly
the key to theory and applications.

Shift Invariance from Constant Coefficients

For a constant coefficient equation, the growth from time s to time ¢ is exactly equal to
the growth from 0 to ¢ — s. The problem is shift invariant. We can start the time interval
anywhere we want. For all intervals of the same length, we will see the same growth
factor g(t — s). This is the growth of input

t
Inputs f(s) at times s Total output y(t) = /g(t — 8) f(s)ds. a7
0

This is exactly like the main formula y(t) = [e2(*=*)g(s)ds in Chapter 1. There the
growth factor was g(t) = e%!. The equation dy/ dt —ay = q( ) had constant a.

Shift invariance is lost if any of the coefficients A, B, C change with time. The growth
factor becomes ¢(s,t), depending on the specific start s and end t (not just on the
elapsed time t — s). In this harder case the solution is y(t) = [ g(s,t) f(s)ds.

For a first order equation, Section 1.6 found g(s,t). But second order equations
with time-varying coefficients are usually impossible to solve with familiar functions.
We often have no formula for g(s,t)—the response at time ¢ to an impulse at time s.
Shift invariance (constant coefficients) is the key to successful solution formulas.
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Better Formulas for s and s9

The solutions to As? + Bs + C = 0 are s; and s3. The formula for those two roots
involves B2 — 4AC. We have seen that B2 > 4AC is very different from B? < 4AC.
Overdamping leads to real roots, underdamping leads to complex roots and oscillations.
The formulas are so important that the whole world of science and engineering has tried
to make them simpler.

Here is the natural way to start. Assign letters to the ratios B/2A and C/A. We know
C/A as w2. This is k/m in mechanics. It gives the “natural frequency” with no damping.
For the ratio B /2A I will use the letter p. The main point is to simplify s; and s :

—B ++/BZ —4AC
81,82 = = —pt . p?—wi (18)

2A

A big improvement! Two symbols instead of three, which makes sense because we can
divide As? + Bs + C = 0 by A. By introducing p = B/2A we remove the 2 and the 4
in equation (18).

The comparison of B? to 4AC is now the comparison of p? to w2. When p? > w2,
the roots are real (overdamping). When p? — w? is negative, s; and sy will be complex.

We have oscillation at a damped frequency wg, lower than the natural frequency w.,, :

2 2

w3 = w2 —p? syands; = —p+ti/w2—p? = —pLiwg (19)

The Damping Ratio Z

The presentation could stop there. We see that the ratio of p to w,, is highly important. This
fact suggests one final step, that we take now: Z = p/w,, is the damping ratio Z. In
engineering this ratio is called zeta (the Greek letter is ). To make it easier to write, allow
me to use Z (capital zeta in Greek = capital Z in Roman.) Then we can replace p by Zw,,.

Now the formula s = —p =+ iwgy uses w, and Z :
Damping ratio Z = R 8= —Zwnp +iwvg = —Zw, + iw,v1 — Z%2 (20)
Wn

The damped w? is w2 — p? = w2(1 — Z?). Its square root wy is the damped frequency. The
null solutions are y,, (t) = e~4“t(c; cos wqt + ¢z sin wqt).

Underdamping is Z < 1, critical damping is Z = 1, and overdamping is Z > 1.
The key points become clear because this ratio Z is dimensionless :
p B/2A B b

Damping ratio Z = —

= - = . 21
wn  /C/A V4AC Vimk D
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If time is measured in minutes instead of seconds, the numbers A, B, C are changed by
602 and 60 and 1. The ratio of B to v/4AC is not changed: a factor of 60 for both.
This confirms that B2 — 4AC is a suitable quantity to appear in the quadratic formula,
because B? and 4AC have the same units.

One last point is a good approximation when Z is small. The square root of 1 — Z2 is
closeto 1 — %Z 2. This comes from calculus (linear approximation using the tangent line).
The good way to confirm it is to square both sides. Then Z*/4 is very small.

1
V1i—Z2x~1-— 522 becomes 1 — Z% ~1— 7% + %Z“. (22)

The good measure of damping is the ratio Z = B/y/4AC. This key dimensionless
number decides everything :

Z >1 B? > 4AC and real roots: Overdamping and no oscillation.
Z <1 B? < 4AC and complex roots : Underdamping and slow oscillation.
Z =1 B? =4AC and a double root —B/2A: critical damping.

Here is a curious fact. For very large B, the roots are approximately s; = —1/B and
ss = —B. That root s, gives fast decay. But the actual decay of y(t) is controlled by s1,
which approaches zero ! So increasing B actually slows down this dominant decay mode.

Note that many authors refer to s; and sz as poles. They are poles of the transfer function
Y(s) = 1/(As® + Bs + C), where Y becomes 1/0. We will come back to
transfer functions! Some authors emphasize time constants rather than exponents. The
exponential e P has time constant 7 = 1/p. In that time 7, e “P! decays by a factor e.

® REVIEW OF THE KEY IDEAS =

1. The equation Ay” + By’ + Cy = 0 is solved by y = e°! when As? + Bs + C = 0.
2. The roots s1, s, are real if B2 > 4AC, equal if B> = 4AC, complex if B? < 4AC.
3. Negative real roots give stability and overdamping: y(t) = c1€°t + cze®2* — 0.
4. Equalroots s = —B/2A when B2 = 4AC. Change the second solution to yo = t e%t.
5. Complex roots a + iw give underdamped oscillations: e®(Cy coswt + Cs sinwt).

6. The initial values g(0) = Oand g/(0) = 1/A give g(t) = (e — e*2*) /A(s1 — s2).
The same g(t) solves Ag” + Bg’ + Cg = §(t). This is the fundamental solution.

7. s1 and s3 become —p =+ iwq with p = B/2A and w? = w2 — p?. With damping ratio
Z = B/V4AC < 1, those complex s; and sg are —Zwy, & iwnpv1 — Z2.
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Problem Set 2.3

1 Substitute ¥ = et and solve the characteristic equation for s :
(@ 2y" +8y' +6y=0 (b)) y"" -2"+y=0.
2 Substitute 5 = et and solve the characteristic equation for s = a + iw:

@ y"+2y"'+5y=0 () y"+2y"+y=0

3 Which second order equation is solved by y = cie™? + coe™? Ory = ted?

4 Which second order equation has solutions y = c;e™2¢ cos 3t + cze™2¢ sin 3t ?
5 Which numbers B give (under) (critical) (over) damping in 4y” + By’ + 16y = 07?
6  If you want oscillation from my” + by’ + ky = 0, then b must stay below

Problems 7-16 are about the equation As? 4+ Bs + C = 0 and the roots sq, s3.

7  Theroots s; and sy satisfy s; + s = —2p = —B/2A and 5182 = w2 = C/A. Show
this two ways :

(a) Startfrom As?+ Bs+C = A(s— s1)(s— s2). Multiply to see s152 and s + s5.
(b) Start from s; = —p + iwy, S2 = —p — Wy

8 Find s and y at the bottom point of the graph of y = As? + Bs+ C. At that minimum
point § = Smin and ¥ = Ymin, the slope is dy/ds = 0.

9 The parabolas in Figure 2.10 show how the graph of y = As? + Bs + C is raised
by increasing B. Using Problem 8, show that the bottom point of the graph moves left
(change in Spyin) and down (change in ymin) when B is increased by AB.

10  (recommended) Draw a picture to show the paths of s; and s, when s? + Bs+1 = 0
and the damping increases from B = 0 to B = oo. At B = 0, the roots are on the
axis. As B increases, the roots travel on a circle (why ?). At B = 2, the
roots meet on the real axis. For B > 2 the roots separate to approach 0 and —ooc.
Why is their product s1so always equal to 17

11 (this too if possible) Draw the paths of s; and s when s2 4+ 2s+ k = 0 and the
stiffness increases from & = 0 to K = oco. When £ = 0, the roots are _ .
At k = 1, the roots meet at s = . For £ — oo the two roots travel up/down
ona in the complex plane. Why is their sum s1 + sz always equal to —2?

12 If a polynomial P(s) has a double root at s = s1, then (s — s1) is a double factor and
P(s) = (s — 51)?Q(s). Certainly P = 0 at s = s1. Show that also dP/ds = 0
at s = s7. Use the product rule to find dP/ds.

13 Show that ¥ = 2ay’ — (a? + w?)y leads to s = a =+ iw. Solve y” — 2y’ + 10y = 0.



102 Chapter 2. Second Order Equations

14

15

16

17

18

19

20

21

22

The undamped natural frequency is w,, = +/k/m. The two roots of ms? + k = 0 are
s = =+ iw, (pure imaginary). With p = b/2m, the roots of ms? + bs + k = 0 are
81,82 = —p = /p? — w2. The coefficient p = b/2m has the units of 1/time.

Solve s2 +0.1s+ 1 = 0 and s® + 10s + 1 = 0 with numbers correct to two decimals.

With large overdamping p >> w,, the square root +/p?—w2 is close to
p — w2/2p. Show that the roots of ms? + bs + k are s; ~ —w?2/2p = (small)
and s ~ —2p = —b/m (large).

With small underdamping p << wy,, the square root of p?> — w2 is approximately
iwn, — ip? /2wy, Square that to come close to p?> — w2. Then the frequency for small
underdamping is reduced to wg ~ w, — p? /2wy,

Here is an 8th order equation with eight choices for solutions y = et :

d®y 8

5 =Y becomes soe’t = 5t

eS" = e and s® =1 : Eightroots in Figure 2.6.

Find two solutions e*® that don’t oscillate (s is real). Find two solutions that only
oscillate (s is imaginary). Find two that spiral in to zero and two that spiral out.

d" d
4S5+ M Agy = 0leads 1o Aps™ 4+ -+ + Avs + Ag = 0.
The n roots s1,...,S, produce n solutions y(t) = st (if those roots are distinct).

Write down n equations for the constants ¢ to ¢, in y = c1e't + -+ + cpent by
matching the n initial conditions for y(0), y'(0), ..., D"~ 1y(0).

Find two solutions to d2°1%y /dt2°15 = dy /dt. Describe all solutions to 52015 = s.
The solution to y” = 1 starting from y(0) = y'(0) = 0is y(t) = t2/2. The

fundamental solution to g’/ = §(¢) is g(t) = t by Example 5. Does the integral
Jg(t—s)f(s)ds = [(t — s)ds from O to ¢ give the correct solution y = 2/2?

The solution to y”" + y = 1 starting from y(0) = y/(0) = 0isy = 1 — cost. The
solution to ¢” + g = §(t) is g(t) = sint by equation (13) withw = 1 and A =
1. Show that 1 — cost agrees with the integral [ g(t — s)f(s)ds = [sin(t — s)ds.

The step function H (t) = 1 for ¢ > 0 is the integral of the delta function. So the step
response 7 (t) is the integral of the impulse response. This fact must also come
from our basic solution formula:

t
Ar" + Br' +Cr =1 with 7(0) =7'(0) =0 has »(t) = /g(t —s)1ds

0

¢
Change ¢ — s to 7 and change ds to —dr to confirm that 7(t) = [ g(7)dr.
0

Section 2.5 will find two good formulas for the step response 7(t).
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2.4 Forced Oscillations and Exponential Response

The equation Ay” + By’ +Cy = 0 has no forcing term. Its right side is zero. This equation is
homogeneous. The null solution yp(t) = €51t 4+ cpe%2t is controlled by
the initial conditions y(0) and y’(0). If those are zero, the system never moves.
The equation Ay” + By’ + Cy = f(t) is forced or driven by that new term f(t).
Previously y = 0 was a possible solution. Now we can expect a particular solution yp.
This section is about driving forces f = e and ¢t and coswt and sinwt. For
f = €5, the next example will show you how to find Yp-

Exponential Driving Force

In this example, one particular solution yp(t) = Ye® is a multiple of the input et

All we have to do is find that number Y, by substituting into the differential equation.
Example 1  Solve y” + 5y’ + 6y = e*t. One particular solution will be y,, = Ye*t.

When Ye#! is substituted into the equation, all terms contain e*? :
y" + 5y + 6y = 16Ye* + 20Ye* + 6Y et = 4t (1)

The left side is 42 Ye*!. This matches the right side e** when Y = 1/42:
Particular y, 42Ye* = e gives 42Y =1 y,(t) = e*t/42 (2)

The complete solution has the form y = vy, + y,. There are two arbitrary constants
c1 and ¢z in the solution y,(¢) to the homogeneous equation (the null equation with
forcing term = zero). Look for the two exponents s; and sy that solve the quadratic
equation As? + Bs + C = 0. We know how to find the null solution ¥,,.

Substitute y = e°t into y”/ + 5y’ 4+ 6y = 0. Cancel e®t to find s2 + 55 + 6 = 0.

That quadratic factors into (s + 2)(s + 3). This is zero for s = —2 and s = —3.
Those roots of the “characteristic equation” are the exponents in the null solution y,(t).
This is the homogeneous solution = complementary solution = transient solution,
which decays to zero at ¢ = oo when there is damping.

Null solution Yn(t) = cre™2 + cpe 3¢,

The final step is to choose ¢; and c; so thaty = y, +y, = 112— e*t + y,, satisfies the initial

conditions. This will complete Example 1, by getting it right at t = 0.

1
Initial position y(0) = o + a+ e

4
Initial velocity 3'(0) = ol 2¢1 — 3co

Those two equations tell us the correct values ¢; and cg, when y(0) and y’(0) are given.
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Exponential Response Formula

We can turn that example into a formula for Y that almost always succeeds. Put y = Ye*!
into the equation. Each derivative multiplies y by 5. So Ay” + By’ + Cy will multiply
y = Ye®t by the number As? + Bs + C. Divide by that number to see Y :

1
Ay’ + By +Cy=e* issolvedby y=Ye't=_— — et (3
CAR e e 'Y = ie B c”

That fraction Y is called the transfer function. It ‘transfers’ the exponential input et
into the exponential output y, = Yet. The formula allows s to be an imaginary iw
or any complex number s = a + iw. Use the exponent s that is in the driving force f:

1

Ay B/C:i““'tldt t)=
y'+By +Cy=e eadsto  yy(t) A(iw)? 4+ B(iw) + C

ewt | (@

Example 2 y” + 3y’ = e has s = 4w = i. Substitute y = Ye'* and solve for Y :

. . . 1 :
:2 it . it it -2 g t
i“Ye*+iYe" =e¢ “+1)Y =1 t) = - e, 5
(1" +1) Yp(1) : Q)
Example 3 (important) Solve y’’ + y’ = cost. The cosine is the real part of e®*.
Warning: The solution will not have the form y = Y cost. The derivative —Y sint

would appear in the differential equation, with no other term to cancel it. The correct
solution involves both cost and sint. Damping from y’ delays the cosine.

Here y,(t) in Example 3 is the real part of y,(t) in Example 2. Please use this idea:
The real part of the input e*“* produces the real part of the output Y e?*~¢,

1 L L
Stepl Write Y = = L (1 Z)z 1 =

143 —-1+i\-1-1 2

B 1
Step 2 The real part of Ye' = ! (cost +isint) is yp = 5(— cost + sint).

The exponential response formulas are (3) and (4). The only time they fail is when the
denominator in the fraction is zero. The formula would then contain 1/0. That happens
when the exponent s in the driving term equals one of the exponents s; and s, in the null
solution y,, = c1e°'t + coe®2t. This is called resonance: s = s; or s = ss.

You see that we cannot allow y,, to be included among the null solutions y,,. If the right
side is f # O for y,, it cannot also be f = 0 as required by y,,. We will see that the correct
form for a resonant solution y,, includes an extra factor ¢ in Yte®.

A special effort goes into the oscillating case s = iw. Null solutions y, = e
depend only on A, B, C. That part comes from the roots of As? + Bs+C = 0. The new part
is the forced oscillation wyp(t), a particular solution that is driven by coswt.
It will be y,(t) = G cos(wt — ) with a phase shift o and a gain G in the amplitude.
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Equations of Order /N and Order 2

I would like to outline the work ahead, because this section is important. It started with a
specific example i/ + 5y’ +6y = e*'. Those numbers 1, 5, 6, 4 changed to letters A, B, C, s.
We solved the second order equation Ay” + By’ +Cy = e5t. The solution Y eS¢ introduced
the transfer function Y = 1/(As? + Bs + C).

Now we have two ways to go, both essential. One is to see the same formula y = Yest
for every constant coefficient equation. Y comes from the “exponential response formula”
because Yest is the response to the exponential f(t) = e5t. One formula covers almost all
equations (but resonance is special and Y has to change).

The other crucial step is to focus on second order equations driven by f
Yes, this is covered by the formula. But if we are serious, we won’t stop with Y (iw).
We truly need the rectangular and polar forms of that complex number :

— etwt

1

=M — iN = Ge™ @, 6
A(iw)? + B(iw) + C 2 X o

Y (iw) =

M, N, G, «a will be in equations (23) to (27). The solution driven by f = coswt becomes
y = M cos wt + N sin wt. Damped motion (B > 0) can be compared with undamped.
And the big applications in Section 2.5 need the better notation using 7 :

C i B
tI‘\Iatural “’721 _C Dafnpmg 7 — Damped wﬁ — W2(1 — Z2)
requency A  ratio V4AC  frequency 0
(7)

The damping ratio Z and those frequencies w,, and wy give meaning to the solution y(¢).

Complete Solution yp + yn

Let me summarize the case of undamped forced oscillation (driving force F coswt).
If B = 0, the complete solution to Ay” 4+ Cy = F coswt is one particular solution yj,

plus any null solution yy, at the natural frequency wy, = y/C/A. Notice the two w’s :

Particular solution (w) B F Sy ¢ —iwn t
Unforced solution (wn) Y= " A2" wh+ e + e 5

To repeat: Any time we have a linear equation Ly = f, the complete solution has the
formy = yp+Yyr. The particular solution solves Ly, = f. The null solution solves Ly, = 0.
Linearity of L guarantees that y = y,, + yy, solves Ly = f:

Complete solution y = yp + Yn If Ly, = f and Ly,, = O then Ly = f. 9)

This book emphasizes linear equations. You will see y,, + y, again, always with the rule of
linearity Ly = Ly, + Ly,. This applies to linear differential equations and matrix
equations. In differential equations, L is called a linear operator.
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N

d d
Linear operator Ly = Ay” + By’ +Cy or Ly = ANW]\Z// 4+t Ald_gt/ + Apy
For an operator L, the inputs y and the outputs Ly are functions.
Every solution to Ly = [ has the form y, + y,. Suppose we start with one

particular solution y,,. If y is any other solution, then L(y — yp,) = 0:

Yn = Y — yp is a null solution Ly,=Ly—Ly,=f—-f=0. (10)
Example 4  Suppose the linear equation is just Ly = x; — x5 = 1: one equation
in two unknowns z; and 3. The solutions are vectors y = (z1,22). The right side f = 1

is not zero. The bold line in Figure 2.11 is the graph of all solutions.

Yn

Y=Ypt Yn
Yp
0 Particular solution: Ly, = 1
Null solution line: Ly, = 0 Complete solution line: Ly = 1

.’I‘]—IQZO Z'I_II'QZ].

Figure 2.11: Complete solution = one particular solution + all null solutions.

Every point on that bold line is a particular solution to ;3 — 2 = 1. We marked only
one yp. Null solutions lie on a parallel line ©; — 2 = 0 through the center (0,0).

Example 5 Second order equations Ay” + By’ + Cy = e or ¢! have complete
solutions ¥y = y, + y,. The particular solution y, = Ye* is a multiple of e*’.
The null solutions are y,, = c;e%1? + coe2t. If s5 = 51, replace €52t by tes:t,

Example 6 The complete solution to the impressive equation 5y = 10 is y = 2. This
is our only choice for the particular solution, y, = 2. The null solutions solve 5y,, = 0,
and the only possibility is y, = 0. The one and only solution is y = y, + yn = 2 + 0.

That seems boring, when y,, = 0 is the only null solution. But this is what we want (and
usually get) for matrix equations. If A is an invertible matrix, the only solution to Ay = b is
y = yp, = A71b. Then the only null solution to Ay, = 01is y,, = 0.

Higher Order Equations

Up to this moment, third derivatives have not been seen. They don’t arise often in
physical problems. But exponential solutions Y e5 and Y e¢? still appear. The one essential
requirement is that the equation must have constant coefficients.
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Equati f order [NV A "y + + A dy + = f(¢t) (11
uation o1 oraer R — cee < —
q N AN 1 Aoy :

When f = 0, the best solutions of the null equation are still exponentials y,, = e,

Substitute ! into the equation to find N possible exponents s1, 82, . - - , SN
f=0andy, = e (AnsN + -+ Ays+ Ag) e = 0. (12)

The exponents s in y, are the N roots of that polynomial. So we (usually) have NV
independent solutions e®'t, ... 5Nt All their combinations are still solutions. If the
polynomial in (12) happens to have a double root at s, our two solutions are et and te®t.

Example 7  Solve the third order equation y’”’ + 2y" 4 ¢’ = €3t
Solution  To find the null solutions y,,, substitute 7, = e with right hand side zero:

s24+282+5=0 s(s*+2s+1)=0 s(s+1)2=0.

ot t t

The exponents are s = 0, —1, —1. The null solutions are c;e”* and ceoe™" and cste™
(the extra ¢ comes from the double root). A particular solution ¥, is Ye® (since 3 is not
one of the exponents 0 and —1 in y,,). Substitute Ye3! to find Y = 1/48:

27Y e +18Ye* +3Ye3 =¢* and 48Y =1 and y, = e3/48.
The transfer functionis Y (s) =1/(s® 4 2s2 + s). For e3¢ put s=3. Then Y =1/48.
Here is the plan for this section on constant coefficient equations with forced oscillations.
1 Find the exponential response y(t) = Y (s)e®! to the driving function f(t) =
2 Adjust that formula when Y (s) = oo because of resonance.
3 Solve the real equation Ay” + By’ + Cy = cos wt to see the effect of damping.

This is the key example for applications : ¥ is the real part of Y (s)e®* when s = iw.
The solution in equation (23)is y(t) = M coswt + N sinwt = G cos(wt — ).

Exponential Response Function = Transfer Function

This book concentrates on first and second order equations. When the coefficients are con-
stant and the right side is an exponential, we have solved three important problems:

t

First order Yy — ay=e°

yp = e/(c — a)

Oscillation my" + ky = et Yyp = €9/ (k — mw?)

Second order  Ay"+ By + Cy = eSt y, = et /(As? + Bs + C)
It is natural (natural to a mathematician) to try to solve all constant coefficient equations
of all orders by one formula. We can almost do it, but resonance gets in the way.
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Let me write D for each derivative d/dt. Then D? is d? /dt2. All our equations involve
powers of D, and equations of order N involve DV. Here N = 2.
Polynomial P(D) Ay” + By'+Cy=(AD?+ BD + C)y= P(D)y. (13)
The null solutions and the particular solution all come from this polynomial P(D).

Find N null solutions y, =e%*  As? + Bs+ C' =0 is exactly P(s) = 0 (14)

Find a particular y,=Y e P(D)y=e givesthe number Y =1/P(c)  (15)
The value Y of the transfer function gives the exponential response vy, = ect /P(c).

Please understand : In the null solutions, s has IV specific values si, ..., sy. Those are
the roots of the Nth degree characteristic equation P(s) = 0. In the particular solution
et/ P(c), the specific value s = c is the exponent in the right hand side f = e’

The exponents ¢ and s are completely allowed to be imaginary or complex.

eCt
P(c)

P(D)y = et Y=Yp+ Yn = +cief1t ...+ cneSNE | (16)

That fraction Y = 1/P(c) “transfers” the input f = e into the output y = Ye. You
often see it as 1/P(s) with the variable s. It is sometimes called the system function.
There is only one exception to this simple and beautiful exponential response formula.

The forcing exponent ¢ might be one of the exponents sj,...,sy in the null solution.
In this case P(c) is zero. We cannot divide by P(c) when it is zero.

Exception  If P(c) = 0 then y = e/ P(c) cannot solve P(D)y = e°*.

P(c) = 0 is the exceptional case of resonance. The formula e°®/P(c) has to change.

Resonance

We may be pushing a swing at its natural frequency. Then ¢ = iw, = iy/k/m. The
polynomial P(D) from my” + ky is mD? + k, and we have P(c) = 0 at this natural
frequency. Here is the exponential response formula adjusted for resonance.

t
Resonant response If P(c) =0 then y, = —— et a7

P'(c)

That extra factor ¢ enters the solution when P(c) = 0. We replace 1/P(c) by t/P’(c).
This succeeds unless there is “double resonance” and P’(c) is also zero. Then the formula
moves on to the second derivative of P, and y,(t) = t2et/P"(c).

The odds against double resonance are pretty high. The point is that the equation
P(D)y = e has a neat solution in terms of the polynomial P : usually y = e*/P(c).
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I can explain that resonant solution y = te®/P’(c) when P(c) = 0 and P’(c) # 0.
We have seen this happen in Section 1.5 for the first order equation 3’ — ay = e,
That equation has P(D) = D — a and P(c) = ¢ — a and resonance when ¢ = a :

GCt _ eat
y' —ay = e has the very particular solution Y, =
c—a
A h h derivative of top te®t
s ¢ approaches a approaches — =
= » Yop PP derivative of bottom 1

That is I’Hopital’s Rule! The only unusual thing is that we have ¢ in place of z, and
c-derivatives in place of x-derivatives. The very particular solution is the one starting from
Yop = 0 att = 0. The resonant solution te® fits our formula te/P’(c) because
c=aand P(c) =c—aand P'(c) = 1.

When the equation has order IV, the polynomial P has degree IN. Suppose the exponent
c is close to a—which is one of the exponents Sj,...,Sy in the null solution. Then
P(a) = 0 and e*! is a null solution and e/ P(c) is one particular solution :

) ect _ eat

To emphasize: c close to a is fine. But ¢ = a is not fine. Formula (16) changes at ¢ = a:

A very particular solution to P(D)y = e (18)

at

m. (19)

Resonance If c = a then I’Hopital’slimit in (16) is y,, =

Take the c-derivatives of e — ¢4 and P(c) — P(a) at ¢ = a, to get te**and P'(a).

Summary The transfer function is Y'(s) = 1/P(s). It has “poles” at the N roots of
P(s) = 0. Those are the exponents in the null solutions y,(t). The particular solution
yp = Ye°t has the same exponent c as the driving term f = e“’. The transfer function
Y (c) = 1/P(c) decides the amplitude of y,(¢). If ¢ is a pole of Y, we have resonance.

Example 8 The 4th degree equation D%y = d*y/dt* =1 has 4-way resonance.

What are the null solutions to ¥ = 07? By trying y = e** we get s* = 0. This has
all four roots at s = 0. Then one null solution is y = €%, which is y = 1. The other null
solutions have factors ¢, 2, t3 because of the four-way zero. Altogether:

The null solutions to 3’””/ = 0 have the form y,,(t) = c1 + cat + c3t? + c4t3.

Now find a particular solution to y"”” = e°*. For most exponents ¢ we get y, = e*/c*.
This is exactly e!/P(c). But ¢ = 0 gives quadruple resonance : c* = 0 has a 4-way root.
A quadruple I’Hopital rule gives the fourth derivative P"”’ and the very particular solution to
y"""" = 1 that you knew before taking this course and seeing this book :

$40t +4

" —=1=¢e% has c=a=0 and P = s* )= ——— = —.
y Yp(t) P (0) 24
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Real Second Order Equations with Damping

Now we focus on the key equation: second order. The left side is Ay” + By’ + Cy.
The transfer function is Y'(s) = 1/(As? + Bs + C). When the right side is f(t) = e?,
the exponent is s = iw. When A, B, C are nonzero, we won’t have resonance :

No resonance A(iw)? + B(iw) + C = (C — Aw?) +i(Bw) # 0.

We know that the response to f(t) = e™* is y,(t) = Y (iw)e™*. This is a perfect example,
except that those functions are not real.

In applications to real life (and this equation has many), we want f(¢) = coswt.
We must solve this problem. You will say, just solve for e®* and e~%*, and take half
of each solution. Even faster than that, solve for e*”* and take the real part of y,(t).
Or you could stay entirely real and look for a solution y(t) = M cos wt + N sin wt.

All those ideas will succeed. They all give the same answer (in different forms).
The best form has to bring out the most important number in the answer y(¢). That
number is the amplitude G of the forced oscillation. So first place goes to the
polar form y(t) = G cos(wt — a), because this shows the gain G.

The null solutions decay because the solutions s; and s3 to As? + Bs + C = 0 have
negative real parts —B/2A. The particular solution G cos(wt — «) does not decay, because
it is driven by a forcing function f = cos wt that never stops.

The next pages will find G and «. This is algebra put to good use. We are working with
letters A, B,C that represent physical quantities. In Section 2.5 they will be
mass-damping-stiffness or inductance-resistance-inverse capacitance. Those are not the
only possible examples! Biology and chemistry and management and the economics of
a whole country also see damped oscillations. I hope you will find those models.

Damped Oscillations in Rectangular Form

I will start with the rectangular form y(t) = M coswt + N sinwt. It is not as useful as
the polar form, but it is easier to compute. Substitute this y(¢) into the differential equation
Ay" + By’ 4+ Cy = cos wt. Match the cosine terms and the sine terms :

Cosines on both sides —Aw?’M + BuN+CM =1 (20)

Sines on the left side —Aw?N — BwuM +CN =0 21)

To solve for M, multiply equation (20) by C — Aw?. Then multiply equation (21) by
Bw and subtract from (20). The coefficient of N will be zero. So N is eliminated and
we have an equation for M alone. M is multiplied by the important number D :

C — Aw? times (20)

_ 2\2 2107 — _ _ 2
minus Bw times (21) [(C — Aw?)? + (Bw)*|M = DM =C - Aw*. (22)
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We divide by D to find M = (C — Aw?)/D. Then equation (21) tells us N = Bw/D.
And equation (27) will tell us that M2 + N2 = 1/D.

: . C — Aw? BwM B
Real solution yp. is Y w N = w I dad (23)
M cos wt+ N sin wt i p) C — Aw? D

Let me say right away: The complex number Y (iw) is just M — ¢IN. This calcula-
tion will connect real to complex and rectangular to polar. When I multiply and divide
by Y (—iw), you will see that the denominator of Y (iw) is D = (C — Aw?)? + (Bw)?:

1 (C— Aw?) —iBw (C — Aw?) —iBw

= s
(C — Aw?) + iBw X (C — Aw?) — iBw D @4

Y = M — iN is exactly what we want and need. The input f = cos wt is the real part
of ™, so the output y is the real part of Ye™?. That real part is the rectangular form
y = M coswt + N sinwt:

Re (Ye™?) = Re[(M — iN)(coswt + isinwt)] = M coswt + N sinwt (25)

Damped Oscillations in Polar Form

The solution we want is the real part of Y (iw)e®®. Equation (25) computed that solution
in its rectangular form. To compute y(¢) in polar form, the first step (almost the only step)
is to put Y (4w) in polar form. This number is the complex gain:

) N
Complex gain Y (iw) = M — iN = Ge*™ with G = and tan a = e (26)

1
vD
That amplitude G is simply called the “gain”. It is the most important quantity in all these
pages of calculations. The input cos wt had amplitude 1, the output y(¢) has amplitude G.
Of course that output is not y = Gcoswt! Damping produces a phase lag a. At
the same time damping reduces the amplitude of the output.

The undamped amplitude |Y| = 1/|C — Aw?|isreducedto G = 1/v'D:

——A22 B o\ 1/2 D 1/2 1
g=virrn= (L2 L BT (D)o o @)

I will collect all these beautiful (?) important (!) formulas after one example.

Example 9 Solve y” + y’ + 2y = cos t in rectangular form and also in polar form.

Solution The equationhas A =1, B =1,C = 2, and w = 1. We are finding a particular
solution. Let me use the formulas directly and then comment briefly. The numbers give
C—-—Aw?=1landBw=1,s0D=1%4+12=2.
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Therefore the solutionhas G = \/1/2and M = N = J andtanc = 1 and o = 7/4:

Rectangular y(t) = M cos wt + N sin wt = %(cos t + sin t)

Polar y(t) = Re (Ge™™@et) = G cos (wt — @) = % cos (t —%).

For this example we verify directly that polar = rectangular :

Geos (t— = ! ( t cos— +sint si W) ! cost +sint)
COSs —_ = —= | COST COS — smt¢ sin— ) = —(C 1mn 5
4 V2 4 4 2

The rectangular form has simpler numbers. But the polar form has the most important
number G = 1/v/2. That gain G is less than the undamped gain |Y| by a factor cos a.

1 1 1

Undamped |Y| = = AT =il Damped G = 7D = NG = cosa.

Undamped versus Damped

The undamped equation Ay” + Cy = coswt has B = 0 and Y = 1/(C — Aw?).
Compare that amplitude of y(t) = Y coswt from Section 2.1 with the harder problem
we just solved. The comparison lets you see how the damping contributes Bs = Biw in
the transfer function that multiplies the input e*!. Damping causes a phase lag a.
Damping also reduces the amplitude to G = Y cos . Here are the key formulas :

Undamped Damped
Equation Ay" + Cy = coswt Ay" + By’ + Cy = coswt
Solution y =Y coswt y = G cos(wt — )
Magnitud |Y|—; G = L =V
agnitude = 0= A =75 cos
N Bw
Phase lag Zero tana = U O A

When the driving function is F'coswt, the solutions include that extra factor F'.
When the driving function is sinwt, that is the same as cos (wt — %) So the solutions
have ¢ = 7/2 as an additional phase lag: y = G cos(wt — a — 7/2) = G sin(wt — ).

When the driving function is A coswt + Bsinwt, that equals R cos(wt — ¢). This is
the sinusoidal identity from Section 1.5. Then the solution is RG cos(wt — o — ¢).

This is the particular solution y,, that oscillates with the same frequency w as the input.

Let me show why the gain is reduced to G = Y cosa from its undamped value
Y| = 1/|C — Aw?|. We know from (27) that G = VM2 + N? = 1/V/D. And we
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know from (23) that Y M = 1/D:

Damped gain Y cosa = Y M == e
pece VMELNZ  1/VD

=G. (28)

Better Notation
A good plan is to divide my” + by’ + ky = kF(t) by the mass m, for several reasons :

b k k
y'+—y'+—y=—F(@). (29)
m m m

First, the coefficient of y” becomes 1. Second, replacing k/m by w2 gives it meaning.
Third, the input F has the same units as the output y. So now the gain G = |y|/|F]| is
dimensionless.  This happened because the original f(¢) with unsuitable units was
replaced by kF'(t)—which is now divided by m.

Most valuable of all is a new way to write the damping term b/m, which is B/A.
The key point is that b2 and mk have the same dimensions. From the equation,
my” and by’ and ky have the same dimensions. Then so do (by’)? and (my”)(ky). And
also (y')? and (y")(y)—they both contain 1/(time)?2. This leaves b? and mk.

This quantity Z = b/+v/4mk is highly useful. Overdamping is Z > 1. Underdamping
is Z < 1. The coefficient b/m in equation (29) has a better form 2Zwy, in (30).

b e L 2Zwy, y" +2Zw,y’ +wiy = w?F(t) (G0

m  VaAmkVm

Z is the damping ratio. The correct symbol is a Greek zeta (). But a capital zeta = Z
is so much easier to read and write. (The MATLAB command is also named zeta.)
Watch how this ratio of B to 4AC brings out the important parts of every formula.
If Z < 1, the natural frequency wy, is reduced to the damped frequency wq = wy, V1 — Z2.

Roots 51 and sz | s> + 2Zw,s + w,? = 0 gives s = —Zw, +waVZ2—1  (31)

2

Underdamping 7° = Zb—k <1 and 8 = —Zw, + iwy 32)
mk

Null solutions yn(t) = e~ Zwnt (€1 cos wqt + €3 sin wgt) (33)

The null solutions are not pure oscillations. They include the exponential e~ Zwnt

Their frequency changes to w,. The graph of y(t) oscillates as it approaches zero, and the
peak times when ¢y = ymax are spaced by 27 /wj.
The page after Problem Set 2.4 collects our solution formulas in one place.
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= REVIEW OF THE KEY IDEAS =
1. A particular solution to Ay” + By’ + Cy = et is et /(As? + Bs + O).

. This is a constant coefficient equation P(D)y = e* with solution y, = et/ P(c).

. Resonance occurs if e is a null solution of P(D)y = 0. This means that P(c) = 0.

s W N

. Resonance leads to an extra t : y,(t) = tet/P’(c) when P(c) = 0 and P’(c) # 0.

wn

. For second order equations with f = coswt the gain is G = 1/|P(iw)| = 1/v/D.
. The real solution is M coswt + N sinwt = G cos(wt — a) with tana = N/M.

. With damping ratio Z = B/v/4AC, the equation is y" + 2w, Zy' + w2y = W2 F(t).

L N A

. If Z < 1, the damped frequency is wg = w, V1 — Z2. Then s1, 89 are — Zw,, + iwg.

Problem Set 2.4

Problems 1-4 use the exponential response y, = eCt/ P(c) to solve P(D)y = et

1 Solve these constant coefficient equations with exponential driving force :
(a) y, + 3y, + Syp = € ®) 2y +4yp=€*  (c) Yy =€
2 These equations P(D)y = e“* use the symbol D for d/dt. Solve for y,,(t):
(@) (D% + 1)y,(t) = 10e=3 (b) (D? +2D + 1)y,(t) = et
(©) (D*+ D2+ L)yy(t) = e
3  Howcouldy, = e®/P(c) solve y” + y = e'e® and then y”" + y = e’ cost ?

4 (a) What are the roots s; to s3 and the null solutions to /" — y, =0?

(b) Find particular solutions to ¢/’ — y, = €' and to y;,"

iwt
b 5

—yp=¢e'—e
Problems 5-6 involve repeated roots s in y,, and resonance P(c) = 0 in y,,.

5 Which value of C' gives resonancein y”/ +Cy = ¢** ? Why do we never get resonance
iny” 4+ 5y’ +Cy = et ?

6 Suppose the third order equation P(D)y,, = 0 has solutions y = ¢; et 4 coe?t + czet.
What are the null solutions to the sixth order equation P(D)P(D)y, =0?
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7

10

11

12

13

14

15

16

Complete this table with equations for roots s; and s» and solutions y,, and y,, :

Undamped free oscillation my” +ky =0 Yn =
Undamped forced oscillation ~ my” + ky = e™! Yp =
Damped free motion my” +by’ +ky=0 Yn =
Damped forced motion my” + by’ +ky=e"  y,=

Complete the same table when the coefficients are 1 and 2Zw,, and w? with Z < 1.

Undamped and free y" + w2y =0 Yn =
Undamped and forced y" 4+ wly = et Yp= __
Underdamped and free y"+2Zwny' +wly=0 y,=__
Underdamped and forced v +2Zwpy’ +wily =€ Yp=___

What equations y”/ + By’ + Cy = f have these solutions ?

(a) y = c1 cos2t + cosin 2t + cos 3t

(b) y = cretcosdt + coe”tsin 4t + cos bt

(€) y=cre ! + cote™t 4 et
If y, = te 5 cosTt solves a second order equation Ay” + By’ + Cy = f,
what does that tell you about A, B, C, and f ?

(a) Find the steady oscillation y,(t) that solves y” + 4y’ + 3y = 5 cos wt.

(b) Find the amplitude A of y,(¢) and its phase lag c.

(c) Which frequency w gives maximum amplitude (maximum gain) ?

Solve y” + y = sinwt starting from 3(0) = 0 and y’(0) = 0. Find the limit of y(t)
as w approaches 1, and the problem approaches resonance.

Does critical damping and a double root s = 1iny” +2y’ +y = e° produce an extra
factor ¢ in the null solution y,, or in the particular y,, (proportional to e*) ? What is yy,
with constants ¢, co ? What is y,, = Yect?

If ¢ = iw in Problem 13, the solution y, toy” +2y’+y = e*is ____ . That fraction
Y is the transfer function at iw. What are the magnitude and phase in Y = Ge ™ ?
By rescaling both ¢ and y, we can reach A =C = 1. Then w, =1 and
B = 2Z. The model problemis y”’ + 2Zy’ + y = f(t).

What are the roots of s2 + 2Zs + 1 = 0? Find two roots for Z = 0, % 1, 2
and identify each type of damping. The natural frequency is now w,, = 1.

Find two solutions to " + 22y’ +y = 0 for every Z except Z = 1 and —1. Which
solution g(t) starts from g(0) = 0 and ¢’(0) = 1? What is different about Z = 1?
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17

18

19
20

21

Chapter 2. Second Order Equations

The equation my” + ky = coswyt is exactly at resonance. The driving frequency
on the right side equals the natural frequency w, = +/k/m on the left side.

Substitute y = Rtsin(y/k/mt) to find R. This resonant solution grows in time be-
cause of the factor ¢.

Comparing the equations Ay " + By’+Cy = f(t) and 4Az" + B2'+(C/4)z = f(t),
what is the difference in their solutions ?

Find the fundamental solution to the equation g” — 3¢’ + 2g = 46(¢).

(Challenge problem) Find the solution to y” + By’ + y = cos t that starts from
y(0) = 0 and y’(0) = 0. Then let the damping constant B approach zero, to reach the
resonant equation 3/ + y = cos t in Problem 17, with m = k = 1.

Show that your solution y(t) is approaching the resonant solution %t sin ¢.

Suppose you know three solutions y1, y2, y3 to y” + B(t)y' + C(t)y = f(t).
How could you find B(¢) and C'(t) and f(t) ?
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Solution Page Linear Constant Coefficient Equations
. dy d>y . dy
F t T = — S =
irst order =W + f(t) Second order A o) +B 7 +Cy = f(t)
dNy dy N
Nth order Ath—N SRk +A1E +A0y = (AND Spos +A0)y = P(D)y = f(t)

Null solutions y,, have f(t) = 0 Substitute y = St to find the N exponents s

d
First order Et(eSt) = aqeSt s =aand ynp = ce®
Second order As? + Bs+ C =0 yn = c1€51t + cges2t
Nth order P(s)=0 Yn = cle““t 44 CNES*""'

Exponential response to f(t) = e  Step response for c = 0  Look for y = Y et

d i ) ct
First order ~— — (Ye‘t) —aYe?t =t yp= hasY =
dt c—a c—a
ct
Second order Y (Ac? + Be+ C)eCt = ect S ——
( ) Y= 42 Betr C
ect teCt

Nth order Y P(c)et = ect Yp = when P(c) =0

Pl * P

Fundamental solution g(¢t) = Impulse response when f(t) = 4(t)

First order  g(t) = e starting from ¢(0) =1

eslt _ 68215
Second order ¢(t) = ———— starting from g(0) =0and ¢’(0) =1/A

A(Sl — 82)

sin wnpt _ Zw.tSin wqt

t) = —— = Wt 74’

Undamped  g¢(t) s underdamped ¢g(t) = e yy
Nthorder  g(t) = yn(t) g(0) =g’(0)=...=0,gN"1(0) = 1/Ay

Very particular solution for each driving function f(t) : zero initial conditions on yyp
t

Multiply input at every time s _ _
by the growth factor over t — s y(t) = [ g(t —s) f(s)ds

0
Undetermined coefficients Direct solution for special f(¢) in Section 2.6
Variation of parameters yp(t) comes from yn (t) in Section 2.6

Solution by Laplace transform  Transfer function = transform of ¢(¢) in Section 2.7
Solution by convolution y(t) = g(t) = f(t) in Section 8.6
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2.5 Electrical Networks and Mechanical Systems

Section 2.4 solved the equation Ay” + By’ + C'y = coswt. Now we want to understand the
meaning of A, B, C in real applications. This is the fundamental equation of engineering for
a one-unknown system, when the forcing function is a sinusoid. It is a perfect opportunity to
use the transfer function. This connects the input to the response.

For mechanical engineers the unknown y gives the position of one mass—oscillating
or rotating or vibrating. For electrical engineers the unknown y is the voltage V' (¢) or the
current I (¢) in a one-loop RLC circuit. Those letters R, L, C represent a resistor, an inductor,
and a capacitor. For a chemical engineer or a scientist or an economist the equation is a
model of .. ... I have to stop or this presentation will go out of control.

The great differential equations of applied mathematics are first order or second order.
The equations we understand best are linear with constant coefficients.

In later chapters the single unknown becomes a vector. Its coefficients become square
matrices in dy/dt = Ay and d?y/dt? = —Sy. We have a system of n equations
for voltages at nodes or currents along edges or positions of 7 masses. Linear algebra
will organize the equations and their solutions. Matrix differential equations give us the
right language to express applied mathematics.

Our goals are to find and solve the equations for y(¢) in real applications. These are
balance equations: balance of forces and balance of currents. Flow in equals flow out.

Spring-Mass-Dashpot Equation and Loop Equation

In mechanics, y and ' and y” are the position, the velocity, and the acceleration. The
numbers A, B, C represent the mass m, the damping b, and the stiffness k :

Newton’s Law F = ma my” + by’ + ky = applied force. )

The picture in Figure 2.12 shows the mass m attached to a spring and also a dashpot.
Those two are responsible for the forces —ky and —by’. The stretched spring pulls back
on the mass. By Hooke’s Law that force is —ky. The damping force comes from a dashpot
(old-fashioned word, key idea). You could visualize the mass moving in a heavy liquid
like oil. The friction force is —by’, proportional to velocity and in the opposite direction.

For an electrical network, it was Kirchhoff and not Newton who provided the balance
equations. Kirchhoff’s Voltage Law says that the sum of voltage drops around any
closed loop is zero. The current is /(t) and we start with one loop :

drl 1
Voltage law KVL : L = + RI + . [ I dt = applied voltage. 2)
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<

Figure 2.12: Three forces enter F' = my " : spring force ky, friction by’, driving force f.

The numbers L, R, C' are the inductance, the resistance, and the capacitance. (Unfortunately
we divide by the capacitance C'. In the end the equation has constant coefficients and regard-
less of the letters we solve it.) To produce a second order differential equation for I(¢), and
to remove the integration in equation (2), take the derivative of every term:

1
Loop equation for the current I(t) LI"” + RI' + e I=Fcoswt. (3)

That force F' coswt comes from a battery or a generator, when we close the switch. We will
be looking for a particular solution I, (¢). That solution is produced by the applied force.
We are not looking at initial conditions and y,, (¢). Those null solutions y,, are transient, with
f = 0. They die out exponentially fast.

—/0—- source f(t)

capacitance C  ___ inductance L

current I(t)
e

A, ——

resistance R

Figure 2.13: A one-loop RLC circuit with a source and a switch.
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The Mechanical-Electrical Analogy

Both applications produce second order equations Ay” + By’ + Cy = f(t). This means
we can solve both problems at once—not only mathematically but also physically. We can
predict the behavior of a mechanical system by testing an electrical analog, when simple
circuit elements are more convenient to work with. The basic idea is to match the three
numbers m, b, k with the numbers L, R, and 1/C.

Mechanical System Electrical System

Mass m «— Inductance L

Damping constant b «—> Resistance R

Spring constant k «—> Reciprocal capacitance 1/C
Natural frequency w2 = k/m < Natural frequency w2 = 1/LC

Before solving for the loop current I(t), let me outline three solution methods—our past
method, our present method, and our future method.

cos wt to et to Y (w)

Past method Section 2.4 solved Ay” + By’ + Cy = F coswt. The equation was real
and the solution was real. That solution had a sine-cosine form and also an amplitude-phase
form:

y(t) = M coswt + N sinwt = G cos(wt — ). 4)

The connections between inputs F' and outputs M, N came by substituting y(¢) into the
differential equation and matching terms. Then G?> = M? + N2 and M = G cosa.

Present method Instead of working with cos wt and sin wt, it is much cleaner to work with
a complex input Vet  Then the output (the current) is a multiple of Ve'!.
That multiple Y is a complex number. It tells us amplitudes and also phase shifts.

This is the right way to see the response of a one-loop RLC circuit. When the input

frequency is w, the output frequency is also w.
I dI 1 ) .
Equation L a + RI + C J Idt= applied voltage = Ve'? 5)

Vet __ input
iwL+ R+ 1/iwC - impedance

Solution  I(t) = (6)

We will study that complex impedance in detail.

Future method Once we see the advantages of a complex e, we won’t go back.
What we are really doing is fo change a differential equation for y in the time domain
into an algebraic equation for Y in the frequency domain :

Sety = Yeit Ay” + By + Cy = ™! becomes (i’w?A+iwB + C)Y = 1.
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Derivatives of y(t) become multiplications by iw. We are talking here about the most
important and useful simplification in applied mathematics. It requires constant coefficients
A, B, C. This allows us to factor out e*?.

The transfer function Y (s) takes two more steps from derivatives to algebra. First,
it changes e’ to et. That exponent s can be pure imaginary (s = iw). It can also be
any complex number (s = a + iw). We recover the freedom of Chapter 1, to allow
growth or decay from a > 0 or a < 0. We are interested in all s and not just the
special s; and s; that came from solving As? + Bs + C = 0.

The exponentials €51 and e%2! went into the transient solution y,(¢). Now we are
working with the long-time solution y,(t) coming from an applied force Fe®t.

The second contribution of the transfer function is to give a name to the all-important
multiplier in the system. It multiplies the input to give the output.

1
T A2+ Bs+C’

Derivatives and integrals become multiplications and divisions (by s). One more name is
needed. Y (s) is the Laplace transform of the impulse response g(¢).

The transfer function is Y (s) The output is Y (s) times e**.

Input f = 6(¢t) Output y = g(t) = impulse response Transform Y (s)
Input f = step Output y = r(t) = step response Transform Y (s)/s

The step function is the integral of the impulse d(¢). The step response is the integral
of the impulse response g(t). For their Laplace transforms, integration becomes division
by s. Calculus in the time domain becomes algebra in the frequency domain.

The rules for the transforms of dy/dt and [y(t)dt, and also a table
of inverse Laplace transforms to recover y(t¢) from Y (s), will come in Section 2.7.

Complex Impedance

The present method uses Ve™? for the alternating current input. The output divides that
input by the impedance Z. This is like Ohm’s Law I = E/R, but the resistance R
changes to the impedance Z for this RLC loop:

Vet Vel input

iwL 4R + ViwC ~ " Z  impedance’ )

Current I(t) =

The complex impedance Z depends on w. The real part of Z is the resistance R.
The imaginary part of Z is the “reactance” wL — 1/wC. From those rectangular coordi-
nates Re Z and Im Z, we know the polar form | Z|e® of this complex number :

Magnitude |Z| =+/R?+ (wL —1/wC)? (8)
ImZ wL-1/wC
Phase angle tana = ReZ — 7 ©9)
B Veiwt 1%

— 7 i(wt—a) 10
7 iZ] ¢ (10)

Loop current I(t)
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The phase angle « tells us the time lag of the current behind the voltage.

Remember that R is the damping constant, like the coefficient B in Ay + By’ + Cly.
In the language of Section 2.4, we have forced damped motion. The damping keeps us
away from exact resonance with the natural frequency of free undamped motion—which
has wL = 1/wC and w = 1/VLC. The magnitude |Z| is smallest and V/|Z|
is largest at that natural frequency. We tune a radio to this w to get a loud clear signal.

Example 1 Suppose the RLC circuit has resistance R = 10 ohms and inductance L = 0.1
henry and capacitance C' = 10~* farad. The units of R and wL and 1/wC must agree. Since
frequency w is measured in inverse seconds, all three units can be given in terms of V =
volts and A = amps (for current) and seconds:

R OmQ =V/A =1 volt per amp
L Henry H =1V -sec/A =1 volt-second per amp
C Farad ¥ = A-sec/V =1 amp-second per volt

Example 2  Find the impedance Z, its magnitude |Z|, and the phase angle « for an RLC

loop when the frequency is w = 60 cycles/second = 60 Hz = 1207 radians/second.
. . . . 1 ;
The impedance of this loop is Z =R+ (wL — E’) = |Z]e ",
The magnitude of the impedance is Z] =...

The phase angle producing time delay is o« = ...

Example 3 To tune a radio to a station with frequency w, what should be the
capacitance C' (which you adjust) ? Suppose R and L are fixed and known.

Solution The goal of tuning is to achieve wL = 1/wC. Then the imaginary part of Z
is zero: inductance cancels capacitance. Tuning achieves Z = R, that real part R is fixed.

1 1 1
L = —_— 2 = — C = —
wremwe YT Ic Lu?
Example 4  Suppose the network contains two RLC branches in parallel. Find the
total impedance Z;5 from the impedances Z; and Z, of the two separate branches.

i

1 1 1 Z1+ Zs

——— _+_:7
g Z Ziz 21 23 Z1Zs

YAV )
1k I I, = —=2 Vet
1f1 ifz 12 1+ I Tt 7 €

I + Iy
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Loop Equations Versus Node Equations : KVL or KCL

Equation (2) expressed Kirchhoff’s Voltage Law. The sum of voltage drops around a
closed loop is zero. In principle, we could find a set of independent loops in any larger
electrical network. Then the Voltage Law will give an equation like (2) around each of
the independent loops. Those loop currents determine the currents on all the edges of the
network and the voltages at all the nodes.

Most codes to solve problems on large networks do not use the voltage law! The
preferred approach is Kirchhoff’s Current Law : The net current into each node is zero.
The balance equations of KCL say that “current in = current out” at every node.

Let me illustrate nodal analysis using the network in Figure 2.14. The unknowns
are the voltages V; and V5. The currents are easy to find once those voltages are known.

M\ 5

Ry

Vi Wi
Current Jeit CD Ry é I
source
0

Figure 2.14: Four currents in and out of Node 1. Node 2 : Current in, current out.

0 0

A problem of this size can be solved symbolically or numerically :

Symbolically Work in the s-domain and find the transfer function. Since R; is in
parallel with L, and Rs is in series with C, we can find the currents on all the
edges in terms of V; and V5. Here is Kirchhoff’s Current Law at those nodes :

w W -1 Vo =W
I I TR i £ d
Rl * Ls + RQ an RQ

+sCVa =0 (11)

Numerically  Assign values to R;, L, R, C and w. Compute V; and V5 from
current balance at the nodes. Compute the currents from V; /Ry and V5 /i Lw.

For a larger network, the algebra in the s-domain (iw domain) becomes humanly impos-
sible. A symbolic package could go further but in the end (and for nonlinear networks) the
numerical approach will win. Widely known codes developed from the original SPICE code
created at UC Berkeley. The SPICE codes use nodal analysis instead of loop analysis, for
realistic networks.

Computational mechanics faced the same choice between nodal analysis and loop
analysis. It reached the same conclusion. A complicated structure is broken up into
finite elements—small pieces in which linear or quadratic approximation is adequate.
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The choice is between displacements at nodes or stresses inside the elements, as the pri-
mary unknowns. The finite element community has made the same decision as the circuit
simulation community : Work with displacements (and work with voltages) at the nodes.

A network produces a large system of equations—linear equations with simple RLC
elements and nonlinear equations for circuit elements like transistors. The nodes connected
by the edges form a graph. To organize the equations, you need the basic concepts of graph
theory in Section 5.5:

An incidence matrix A tells which pairs of nodes are connected by which edges.

A conductivity matrix C' expresses the physical properties along each edge.

Then the overall conductance matrix is K = ATCA. The system we solve, for linear
problems in circuit simulation and in structural mechanics, has the matrix form Ky = f.

Chapter 4 will explain matrices and Section 5.5 will focus on the incidence matrix A
of a graph. Those are necessary preparations for Kirchhoff’s Current Law at all the nodes.
Then Sections 7.4 and 7.5 create the stiffness matrix K (for mechanics) and the graph
Laplacian matrix (for networks) : basic ideas in applied mathematics.

Step Response

This book has emphasized the two fundamental problems for differential equations.
One is the response to a delta function. The other is the response to a step function.
For second order equations the impulse response g(t) was computed in Section 2.3.
This is our chance to find the step response, and we have to take it.

The two responses are closely related because the two inputs are related. The delta
function is the derivative of the step function H (t). The step function is the integral of the
delta function. For constant coefficient equations, we can integrate every term. The integral
of the impulse response g(t) is the step response r(t).

Impulse response g(t) Ag" + Bg' +Cg =Cé(t) (12)

Step response r(t) Ar" +Br'+Cr =CH(t) (13)

We are following the “better notation” convention that includes the coefficient C' on the
right hand side. Its purpose is to give the output ¢ or g or r the same units as the forcing
term. Then the gain G = |output/input| is dimensionless. For the step function with
input H(t) = 1, the steady state of the step response will be r(co) = 1.

I see two ways to compute that step response. One is to integrate the impulse response.
The other is to solve equation (13) directly. The particular solution is r,(t) = 1. The
null solution is a combination of e®'? and e®2?, using the two roots of As?+Bs+C =0.
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To be safe, it seems reasonable to find 7(¢) both ways.

C es1t _ esot
A s1—sp
Method 2 Solve Ar” + Br' +Cr = C with 7(0) =r'(0) = 0. (15)

Method 1 Integrate the impulse response g(t) = (14)

Computing the Step Response

Method 2 is the normal way to solve differential equations. Substitute e°¢ to find s;
Null solutions e5t As? + Bs + C = 0 has roots s; and ss.
The complete solution to Ar” + Br’ + Cr = C is particular + null :
r(t) = 14 c1e®tt + coe®?t. (16)

The step response starts from r(0) = 0 and r/(0) = 0. A switch is turned on at t = 0,
and the solution rises to 7(00) = 1. The conditions at ¢ = 0 determine ¢; and c5 :

r(0)=1+c1+c2=0 -r"(U) =181 +c2582 = 0. a7

Those coefficients are ¢; = s2/(s1 — s2) and ca = —s1/(s1 — s2). Then we know 7(¢) :

t

Step response (1) =1+ (s2€°1" — 51€%%) . (18)

81 — 82

The same answer must come from integrating g(¢) in equation (14) from 0 to ¢.
Remember that the roots of any quadratic multiply to give s1s2 = C/A.

(19)

y J-"']t = 1 .32t s 1
Step response = integral of g(t) () = 8182 [E’ e } ‘

81 — 89 S1 S92

The coefficient of €51 is the same s3/(s; — s2) as in (18). Similarly for the coefficient of
e%2t. The constant term equals 1, so (18) and (19) are the same :

8182 1 1 S182 81 — 82
—_———t—=— | — | = 1.
§1 — 8o S1 59 81 — S2 S§182

Better Notation

Our formula for the step response r(t) can’t stop with equation (18). Those roots s; and s
will depend on the physical parameters A, B, C. In mechanics these numbers are m, b, k.
For a one-loop network the numbers are L, R, 1/C. We need to express 7(t) with numbers
we know, instead of s; and s».
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Remember that combinations of A, B, C' are especially useful. The simplest choices are
p=B/2Aand w?:

B C C
/" 5y U ” 2 ’ 2, — (y2 .
ri 4 e+ 5= becomes r” 4 2pr’ +wir = wy (20)

The same exponents s; and s, are now roots of s2 + 2ps + w? = 0. Suppose p < wy, :

Null solutions €%t 51,82 = —p+ /p? — w2 = —p + iwgq. 21

Substituting for s; and s in equation (18) gives a beautiful expression for r(t) :

Step response  r(t) =1 — “n o—pt sin(wgt + ¢). (22)
Wda

That angle ¢ is in the right triangle that connects w;, to p and wy :

w
. wq 2 2 2 . wd D
wi;+p°=w; sing=-— cosdp=—
Wn wn,

p

Now we check that 7(0) = 0 and r/(0) = 0—then formula (22) must be correct :
Wn . / Wn, .
r(0)=1—- —sing=0 r'(0) = —(psing —wqycos¢p) =0.
wq wq

That final solution (22) combines e P! sinwqyt and e Pt coswgt. This null solution is a
combination of e** and e®2! with s = —p & 4wy, as required. The particular solution is
r(co) = 1. We see this steady state appear when the transients decay to zero with e %,
The step response rises to 1.

The number p = B/2A can be replaced by w,, times the damping ratio, if preferred.

Practical Resonance : Minimum D, Maximum Gain

The gain is 1/ VD. If D is small then the gain is large. That is how you tune a radio,
by choosing the frequency w5 that minimizes D and maximizes G. Then you can hear
the signal. It is not perfect resonance—the gain does not become infinite—but it is
resonance in practice.

Practical resonance Minimize D = (C — Aw2)2 + (Bw)?

Derivative of D is zero —4Aw(C — Aw?) + 2B%w = 0.

When you cancel w and solve 2B? = 4A(C — Aw?), that gives the frequency wyes with
largest gain. When B = 0 this is the natural frequency w,, with infinite gain: Aw2 = C.
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For 272 < 1 there is practical resonance when 2B% = 4A(C — Aw?) at wyes :

e S C( B2
2AC

Largest gain w2, = o TR 1- —) =w2(1—-222).

® REVIEW OF THE KEY IDEAS =

1. L,R,Cin LI" + RI' + %I = e™? are the inductance, resistance, capacitance.
2. For networks, node equations replace that loop equation: KCL instead of KVL.
3. The response to a step function rises from 7(0) = 0 to a steady value 7(0c0) = 1.

4. Practical resonance (the maximum gain) is at the frequency wyes = wy, m .

Importantnote We computed the step response 7(t) in the time domain. Using the Laplace
transform in Section 2.7, this computation can be moved to the s-domain. The
transform of a unit step is 1/s. Derivatives in t become multiplications by s :

C
The state equation Ar”’+ Br’+Cr = C transforms to (As>+Bs+C)R(s) = —.
s

The problem is to find the inverse Laplace transform r () of this function R(s). There are
excellent control engineering textbooks that leave this as an exercise in partial fractions.
The time domain (state space) solution in this section reached r(t) successfully.

Problem Set 2.5

1 (Resistors in parallel) Two parallel resistors R; and Ry connect a node at voltage V'
to a node at voltage zero. The currents are V// Ry and V/R,. What is the total current
I between the nodes ? Writing R;2 for the ratio V/I, what is R in terms of R; and
Ry?

2 (Inductor and capacitor in parallel) Those elements connect a node at voltage Ve to
a node at voltage zero (grounded node). The currents are (V/iwL)e™! and
V(iwC)e™t. The total current Ie™* between the nodes is their sum. Writing
Z15 for the ratio Vet /Ie™?, what is Z;5 in terms of iwL and iwC ?

3 The impedance of an RLC loopis Z = iwL + R + 1/iwC. This impedance Z is real
when w = . This impedance is pure imaginary when ___ . This impedance

is zero when

4 What is the impedance Z of an RLC loop when R = L = C' = 1? Draw a graph that
shows the magnitude | Z| as a function of w.
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Why does an LC loop with no resistor produce a 90° phase shift between current
and voltage ? Current goes around the loop from a battery of voltage V' in the loop.

The mechanical equivalent of zero resistance is zero damping: my” + ky = coswt.
Find ¢; and Y starting from y(0) = 0 and y'(0) = 0 with w? = k/m.

y(t) = ¢1 coswyt + Y coswt.
That answer can be written in two equivalent ways :

—w)t t
y = Y (coswt — coswy,t) = 2Y sin (n 5 w) sin (n ; w) :

Suppose the driving frequency w is close to w, in Problem 6. A fast oscillation
sin[(w, + w)t/2] is multiplying a very slow oscillation 2Y sin[(w, — w)t/2].
By hand or by computer, draw the graph of y = (sint)(sin9¢) from 0 to 2.

You should see a fast sine curve inside a slow sine curve. This is a beat.

What m, b, k, F' equation for a mass-dashpot-spring-force corresponds to Kirchhoff’s

Voltage Law around a loop ? What force balance equation on a mass corresponds to
Kirchhoff’s Current Law ?

If you only know the natural frequency w, and the damping coefficient b for one
mass and one spring, why is that not enough to find the damped frequency wgy ?
If you know all of m, b, k whatis wgy ?

Varying the number a in a first order equation 4’ — ay = 1 changes the speed of the
response. Varying B and C in a second order equation y” + By’ + Cy = 1 changes
the form of the response. Explain the difference.

Find the step response 7(t) = y, + y for this overdamped system :
r" +25r +7r=1 with 7(0) =0 and 7'(0) = 0.

Find the step response 7(t) = y, + v, for this critically damped system. The double
root s = —1 produces what form for the null solution ?

r” +2r'+r=1 with r(0) =0 and r'(0) = 0.

Find the step response r(t) for this underdamped system using equation (22):
" +r'+r=1 with 7(0) =0 and r’(0) = 0.

Find the step response () for this undamped system and compare with (22):

r” +r =1 with (0) =0 and 7'(0) = 0.

For b < 4mk (underdamping), what parameter decides the speed at which the step
response 7(t) rises to r(co) = 1? Show that the peak time is ' = 7/wy when
r(t) reaches its maximum before settling back to r = 1. At peak time 7/(T") = 0.
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16

17
18

19

20
21

22

If the voltage source V (¢) in an RLC loop is a unit step function, what resistance R
will produce an overshoot to r,x = 1.2 if C' = 10=% Farads and L = 1 Henry?
(Problem 15 found the peak time 7" when 7(T") = Tmax)-

Sketch two graphs of r(t) for p; < ps. Sketch two graphs as w, increases.
What values of m, b, k will give the step response 7(t) = 1 — v/2e~tsin(t + )7

What happens to the p — wy — w, right triangle as the damping ratio w,, /p increases
to 1 (critical damping) ? At that point the damped frequency w, becomes . The
step response becomes (t) =

The roots s1, sz = —p =+ iwg are poles of the transfer function 1/(As?+ Bs+C)

Show directly that the product of the roots s; = —p + iwg and sy = —p — iwy is
5182 = w?. The sum of the roots is —2p. The quadratic equation with those roots
is s2 + 2ps + w2 = 0.

) Imaginary axis
b iwd

» Real axis

) Circle of radius w,,
— tWwqg

Suppose p is increased while w;, is held constant. How do the roots s; and sy move ?

Suppose the mass m is increased while the coefficients b and k are unchanged. What
happens to the roots s; and sg ?

Ramp response How could you find y(¢) when F' = ¢ is a ramp function ?
y” + 2py’ + w2y = w2t starting from y(0) =0 and y'(0) = 0.

A particular solution (straight line) is y, = . The null solution still has the
form y,, = . Find the coefficients ¢; and ¢y in the null solution from the two
conditions at ¢t = 0.

This ramp response y(t) can also be seen as the integral of
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2.6 Solutions to Second Order Equations

Up to now, all forcing terms f(¢) for second order equations have been et or coswt.
How can you find a particular solution when f(t) is not a sinusoid or exponential ? This
section gives one answer for constant coefficients A, B, C' and then a general answer V P :

UC If f(t) is a polynomial in ¢, then y,(t) is also a polynomial in ¢.

VP Suppose we know the null solutions y,, =c1y1 (t) + cay2(t). Then
a particular solution has the form y, = c1(t)y1(t) + c2(t)y2(t).

Those methods are called “undetermined coefficients” and “variation of parameters”.

The special method is simple to execute (you will like it). When f(t) is a quadratic,
then one solution is also a quadratic: y,(t) = at® + bt + c. Those numbers a, b, c are the
undetermined coefficients. The differential equation will determine them. This succeeds
for any constant coefficient differential equation—always limited to special f(t).

That method UC can be pushed further. If f(¢) is a polynomial times an exponential,
then y,(t) has the same form. The highest power of t allowed in y, is the same as in f.
Those polynomials normally have the same degree.

Only in the case of resonance must we allow an extra factor ¢ in the solution. This is like
the exponential response to f(t) = e in Section 2.4. That presented a perfect example of
an undetermined coefficient Y in y,(t) = Ye®t. The coefficient Y = 1/(As? + Bs + C)
was determined by the equation. This is Y = 1/P(s) for all equations P(D)y = e®.
With resonance we move to y, = te**/P'(s).

Variation of parameters is a more powerful method. It applies to all f(¢). It even
applies when the equation A(t)y” + B(t)y’ + C(t)y = f(t) has variable coefficients. But
it starts with a big assumption : We have to know the null solutions y; (¢) and y2(¢).

The method will succeed completely when the coefficients A, B, C are constant. This
important case gives formula (17). Variation of parameters also succeeded in Chapter 1,
for first order equations y’ — a(t)y = ¢(t). In that case we could solve the null equation
y' = a(t)y. For second order equations with variable coefficients, like Airy’s equation
y"" = ty, the null equation is a difficult obstacle.

I guess we have to realize that not all problems lead to simple formulas.

The Method of Undetermined Coefficients

This direct approach finds a particular solution y,, when the forcing term f(¢) has a
special form. I can explain the method of undetermined coefficients by four examples.

Example 1y’ + y = t2 has a solution of the form y = at? + bt + c.

The reason for this choice of y is that ¢’ and ¢ will have a similar form. They will also be
combinations of ¢? and ¢ and 1. All the terms in y" + vy = t? will have this special form.
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Choose the numbers a, b, ¢ to satisfy that equation :
Yy’ +y = (at®’ + bt +c)" + (at? + bt + c) = t2. (1)
Key idea: We can separately match the coefficients of ¢? and ¢ and 1 in equation (1) :
) a=1 (t) b=0 (1) 2a4+¢=0 2)
Then ¢ = —2a = —2 and the answer is y = at® + ¢ = t2 — 2. This solves y” +y = t2.

Example 2  Find the complete solution to y”/ + 4y’ + 3y = e~ + ¢.

Answer First find the null solution to y,,” + 4y,," + 3y, = 0, by substituting y,, = €%t :

(s> +45+3)e* =0 leadsto s®>+4s+3=(s+1)(s+3)=0.

The roots are s; = —1 and sp = —3. The null solutions are 1, = c;e~? 4 cpe 3%
Now find one particular solution. With f = e~! + ¢, the usual form with undetermined
coefficients would be y, = ae™* + bt + ¢ (notice c in the polynomial). But e~! is a

null solution. Therefore the assumed form for y needs an extra factor ¢ multiplying e~¢.

Substitute y = ate~*+ bt+ c into the differential equation, so ' = ae™t — ate ™t +b:
Y +4y + 3y = (—2ae " +ate™") + 4(ae”t —ate™t +b) + 3(ate t + bt +¢) = et +¢.

The coefficients of te~¢ are a — 4a + 3a = 0. No problem with this te~* term. We must
balance the coefficients of e ¢ and ¢ and 1:

Find a, b, c —2a+4a=1 3b=1 4b+3c=0
Then a = % and b = % and ¢ = —% produce the particular y, = %te*t + %t = %.
The null solution is cie™* + coe™3!. The complete solution is always y = y, + yn.

The method only applies to very special forcing functions, but when it succeeds it is as
fast and simple as possible. Let me list special inputs f(¢) and the form of a solution
y(t) when the differential equation Ay’ + By + Cy = f(t) has constant coefficients.

1. f(t) = polynomial in ¢ y(t) = polynomial in ¢ (same degree)
2. f(t) = Acoswt+ Bsinwt y(t) = M coswt + N sinwt

3. f(t) = exponential e** y(t) =Ye*

4. f(t) = product t2e®t y(t) = (at? + bt + c) et

t2e%t is included in 4 by multiplying possibilities 1 and 3. The good form for y(t)
multiplies the solutions to 1 and 3. The coefficients M, N, Y, a, b, c are “undetermined”
until you substitute y(¢) into the differential equation. That equation determines a, b, c.

Note to professors It seems to me that a polynomial times et” shares the key property.
Its derivatives have the same form. But their polynomial degree goes up. Not good.
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Example 3  Find a particular solutionto y”” +y = ¢ eSt = polynomial times est.

The good form to assume for y(t) is (at + b)et. Please notice that be®' is included.
Even though f doesn’t have e by itself, that will appear in the derivatives of te®t.
To be sure we capture every derivative, at + b must include that constant b.

I need to find the second derivative of the undetermined y(t) = (at + b) e®t.

"'=s(at +b) et +aet Y’ =s*(at +b) e’ 4 2ase.

Substitute y and y” into the equation y” + y = t e** and match terms to find a and b:

Coefficient of ¢ et as> +a = 1
Coefficient of et bs®> + 2as +b = 0
—2as —2s

Those two equations produce a and b

= 3)

T 1+s? TT1+s2 T+

Now y(t) = (at + b) et is a particular solution of y" +y = t et
Possible difficulty of the method Suppose s = i or —i in the forcing term f = t 5t

Those exponents s = i and s = —i have 1+ s? = 0. Our answer in (3) for a and b is dividing
by zero. The result is useless. What went wrong ?

Explanation If s = 4, the assumed form y = (at + b)e® includes a solution be't
of y” +y = 0. We have accidentally included a null solution y,, = be®. There is no
hope of determining b. That coefficient is truly undetermined and it stays that way.

We are seeing a problem of resonance, when the hoped-for y,, is already a part of y,,. The
result in Section 2.4 was that resonant solutions have and need an extra factor t. The same
is true here. When s = 7 or s = —i, the good form to assume is y, = t(at + b) e*'.

When you substitute this y, into y”’ + y = te*, the coefficients a and b will be
properly determined. If s = 4, could you verify thata = —1/4 and b = ¢/4?

Example 4 Let me apply “undetermined coefficients” to an equation you already know :
Ay" + By’ + Cy = cos wt. 4)

Solution by undetermined coefficients Look for y(t) = M cos wt + N sinwt. Those
coefficients M and NNV are also in equation (21) of Section 2.4.

C — Aw? Bw
_— N:—
D D

Is this perfect? Not quite. In case the denominator is D = 0, the method will fail. That
is exactly the case of resonance, when Aw? = C and B = 0. The coefficients M and
N become 0/0. The equation becomes A (y” + w?y) = coswt. The particular y,, cannot
be M coswt + N sin wt because coswt and sinwt are null solutions y.,.
They have y”’ + w? y = 0. The same w is on both sides of the equation.

M= D = (C — Aw?)? + B%2.

Resonant solutions In case D = 0, the particular solution again has an extra factor ¢.

Then put y, = Mtcoswt + Ntsinwt into equation (4) to find M = 0 and N = 1/2.
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Summary of the Method of Undetermined Coefficients

When the forcing term f(t) is a polynomial or a sinusoid or an exponential, look for a
particular solution y,(t) of the same form. Derivatives of polynomials are polynomials,
derivatives of sinusoids are sinusoids, derivatives of exponentials are exponentials. Then
all terms in Ay” + By’ + Cy = f will share the same form.

When f(t) = sum of exponentials, look for y(¢) = sum of exponentials. When f is a
polynomial times a sinusoid or an exponential, y(¢) has the same form. When a sinusoid or
an exponential in f happens to be a null solution (resonance), include an extra ¢ in y,.

Question What form would you assume for y(t) when f(t) = 4e* + 5 cos 2t +t ?

Answer Look for y(t) = Ye! + M cos 2t + N sin 2t + at + b. The coefficients in
the differential equation need to be constants. Then Ay”, By’, Cy and f all look like .

Variation of Parameters

Now we want to allow any forcing function f(¢). The equation might even have variable
coefficients. If we know the null solutions, the method called “variation of parameters”
can find a particular solution.

Suppose the null solution with f = 0 is y,(t) = c191(t) + c2y2(t). We know y; and 5.
For a particular solution when f(t) # 0, allow c¢1 and co to vary with time:

Variation of parameters yp(t) = c1(t)y1(t) + c2(t)y2(t) (5)

This idea applies to any second order linear differential equation like
d*y dy
— + B(t)—=+C(t)y = f(t). 6
5+ B{t)= +C(t)y = (1 ©)
Substituting y,(t) from (5) gives a first equation for ¢;” and c’. Those are the parameters
varying with ¢. To recognize a convenient second equation for ¢;’ and co’, compute the
derivative of y,, by the product rule :

yp' = (a(t)in’ + ca(t)y’) + (ar' ()1 + 2’ (t)y2)- (7
A good choice is to require that the second sum be zero :
Second equation for c¢;’, co’ ci’ (t)ya(t) + c2’(t)y=2(t) = 0. ®
Now the second sum in (7) drops out and we compute y,,” (product rule again) :
Y = (1" + ca(t)y2") + (a1’ )" + 2’ (t)y2'). ©)

Put y,, v/, yp” from (5), (7), (9) into the differential equation to get a wonderful
result :

First equation for c;’,co’ c'(D)yr’(t) + e’ (H)y2'(t) = f(1). (10)
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That became simple because the null solutions y; and y9 satisfy y” + B(t)y’ + C(t)y = 0.

We now have two equations (8) and (10) for two unknowns c;’(t) and co’(t). At each
time ¢, the four coefficients P, ), R, S in the two equations are the numbers y; (t), y2(t),
y1'(t), y2'(t). Solve those two equations, first using P, Q, R, S':

r_ _Qf
~ PS—QR

Pci' +Qcy' =0
Rey' + SCQ’ = f

/ Pf

leadto ¢ =
PS - QR

and co (11)
When you multiply those fractions by P and @, they cancel. When you multiply the fractions
by R and S and add, the result is the second equation Rc;’ + Sco’ = f(t).

Linear equations come at the beginning of linear algebra in Chapter 4. Here we have a
separate problem for each time ¢, and the solution (11) becomes (12) when P, Q, R, S are
y1(t), ya(t), va'(t), y2'(t). I will write W for PS — QR:

QRN OV Q)

' =—5 40

W(t) = yay2’ —y2yd’  (12)

This denominator W (t) is the Wronskian of the two null solutions y; () and y2(t).
It was introduced in Section 2.1, and the independence of y;(t) and yo(t) guarantees that
W (t) # 0. The divisions by W (t) in (12) are safe. The varying parameters c; (¢) and
c2(t) are the integrals of ¢,/ (t) and c2’(t) in (12).

We have found a particular solution c1y; + coy2 to the differential equation (6):

If y; and y; are independent null solutions to y’ + B(t)y’ + C(t)y = 0, then a
particular solution y,,(t) with right side f(¢) is c1(¢)y1 (t) + c2(t)y2(t) :

::i&:;i:t::sf Yp(t) = —y1(2) / % dt + y2(t) f % dt. (13)

Example 5 Variation of parameters: Find a particular solution for y"’ + y = t.

The right side f(t) = ¢ is not a sinusoid. No problem to find the independent solutions
y1(t) = cost and y2(¢) = sint to the null equation " + y = 0. The Wronskian is 1:

W(t) = y1y2’ — yoy1’ = cos®t +sin®t = 1 (never zero as predicted).

The particular solution y,(t) = c1(t) cost + c2(t) sint needs integrals of ¢’ and ¢’ :

—sint)tdt t)tdt
cl(t):/(—s.ui—).—:tcost—sint CZ(t):/%Ztsint-i—cost.

Variation of parameters has found a particular solution c;y; + coy2, and it simplifies:
yp = (t cost —sin t) cost+ (¢t sin t + cos t) sint =t. (14)

Apologies ! We could have seen by ourselves that y = ¢ solves y” +vy = t. And the method
of undetermined coefficients would find y = ¢ much faster: no integrations.
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Example 6 Solve y” + y = §(t) by variation of parameters. The null solutions cost
and sint still give W (t) = 1. The delta function f goes into the integrals for ¢; and cs:

:/(Slnt)l—é(t)dt:sln():_o CQI/M:COSOZI

Then y,(t) = (1)y2(t) = sin t. With f = §(¢), this is the fundamental solution g(t)
(the impulse response). Then sin ¢ is also the solution to ¢/ +y = 0 that starts from y(0) = 0
and y’(0) = 1. We will find this growth factor again in (17) with s; = —s5 = 1.

Constant Coefficients and the Solution Formula

The one time we are sure to know the null solutions y; and ¥y, is when the differential
equation has constant coefficients. Substituting y = et into Ay” + By’ + Cy = 0 leads
to As? + Bs + C = 0. The roots are s; and s3. The null solutions are e*'* and ezt
Notice that we are free to assume that A = 1. (If not, divide the equation by A.)

Variation of parameters gives the solution (13). All we need is the Wronskian W (¢),
and for these null solutions it is beautiful :

W(t) =y’ — youn | = (€%)(52¢") — (e*2*)(51€™*) = (82 — 81)e®rte®t. (15)

Immediately we know that W (¢) # 0 unless s; = so. With equal roots we expect to need
the special null solution ¢ = tes'. Even in that case the Wronskian looks terrific :

W(t) = (e%)(te®)’ — (te®t)(e*t)' = (e°t)(ste® + et) — (te)(se) = e2%¢.  (16)

When you substitute y; and y» and W into (13), that “V P formula” produces yp, (t).

Unequal roots s; 7 s2. The first integral has yo/W = e7%1t/(sy — s1). The second
integral has y; /W = e7%2¢ /(s3 — s1). Put those into (13):

s1t sat

t
Particular solution _ —e —5:T
Constant coefficients yp(t) = So — 81 / c AT)aT +

t
/ e~ 2T f(T)dT

82 — 81

To me, a growth factor g(¢ — T') is multiplying the inputs f (7). The integrals just sum up
the outputs. Here is the same formula for y,,(¢) written so it uses g(¢) :

t
eslt Sat

Growth factor ¢(t) = € 7°"  Solution Yp(t) =/g(t —T)f(r)dr (17)
81 — 82
0

That might be the nicest formula in the book. Probably I am writing those words because
I didn’t see this formula coming. Section 2.3 discovered the same response g(t) !
Forgive me for that personal note. I will go on to the other case, with s; = ss.
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Equal roots s; = s; = s with W = €25t The first integral in (13) still has y; = e! and
now yo /W = te~t. The second integral has yo = te** and y; /W = e~ t:

t t
Particular solution s 3 -
Null solutions e®?, tyeI;t yp(t) = —€ ‘ /Te ST#(T)dT + te*! / e STf(T)dT.
0

0

This also has a perfect form when you identify the factor g(¢ — T") that is multiplying f:

t
Growth factor g(t) = teSt Solution y,(t) = /g(t —T)f(T)dT (18)
0

Formulas that good never happen by accident, g(¢t) must mean something important :
The growth factor g(t) is the impulse response:  y,(t) is g(t) when f(t) is d(t).

Let me close Section 2.6 on that high note. Then Section 2.7 will take the Laplace
transform of the growth factors g(t) to get the transfer function Y (s) :

eslt = eSQt 1 1 -Y
Th = i = - '
e transform of g(t) — 18 (s—s1)(s—s2) s2+Bs+C (s)
1 1

(s—51)2 24+ Bs+C

The transform of g(t) = te51t is when 81 = s».

Y (s) comes from B and C. The solution y(t) comes from g(t) = “Green’s function.”
The last pages of the book will see the integral of g(¢t — T') f (T') as a convolution.

m REVIEW OF THE KEY IDEAS =

1. Undetermined coefficients in y, apply when f(¢) has only e, coswt, sinwt, ™.
. Set y, = exponential/sinusoid/polynomial. Find coefficients a, b, ... to match f(t).
. Variation of parameters: c¢; and c; vary with ¢ in y, = c1(¢) y1(t) + c2(t) ya(t).

. Two equations for ¢;’ and ¢y’ lead to ¢; and ¢z = integrals of —yo f/W and y; f/W.

n & W BN

. For constant coefficients ¢; and c, those are integrals of e 5% f(t) and e~ 52" f(t).

6. Then y, = [g(t — s)f(s)ds when g(t) = response to the impulse f = §(¢).
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Problem Set 2.6
Find a particular solution by inspection (or the method of undetermined coefficients)
1 @ y"+y=4 b)) y"+y' =4 © y"=4
2 @y"+y' +y=e b)) y'+y +y=e
3 (@) y" —y=cost b)) y"+y=cos2t (¢) y'+y=t+e
4 For these f(t), predict the form of y(¢) with undetermined coefficients :

(@) f(t)=t> (b) f(t)=rcos?2t () f(t)=tcost
5 Predict the form for y(¢) when the right hand side is

(@ f(t)=e (b) f(t)=te (c) f(t)=c¢€'cost
6 For f(t) = et when is the prediction for y(t) different from Yet ?

Use the method of undetermined coefficients to find a solution y(t).

7 (@ y” +9y = e* b)) y” +9y=te*
8 (a) y//+y/:t+1 (b) y//+y,:t2+1
9 (@) y” + 3y =cos t (b) y”"+3y=tcost

10 @y"+y' +y=t2 b y"+y' +y=1

11 @@ y" +y' +y=cost (b) y"+y +y=tsint

Problems 12-14 involve resonance. Multiply the usual form of y,, by ¢.

12 (@) y"+y=ce" (b) y”"+y=cost

13 (@y" -4y +3y=¢ (b) y" -4y +3y=¢€*

14 (@) y —y=c¢t b) y' —y=tet () y' —y=c¢etcost

15  Fory” + 4y = e® sin t (exponential times sinusoidal) we have two choices :

1 (Real) Substitute y, = Me' cos t + Ne' sint: determine M and N
2 (Complex) Solve z” 4 4z = e(119t, Then y is the imaginary part of z.

Use both methods to find the same y(t)—which do you prefer ?
16 (a) Which values of ¢ give resonance for y” + 3y’ — 4y = tet ?

(b) What form would you substitute for y(t) if there is no resonance ?

(c) What form would you use when ¢ produces resonance ?
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17  This is the rule for equations P(D)y = et with resonance P(c) = 0:

If P(c) = 0 and P’(c) # 0, look for a solution y, = Cte® (m = 1)
If c is a root of multiplicity m, then y,, has the form

18 (a) Tosolve d*y/dt* — y = t3e5¢, what form do you expect for y(t) ?

(b) If the right side becomes t3 cos 5t, which 8 coefficients are to be determined ?

19  Fory’ —ay = f(t), the method of undetermined coefficients is looking for all f(¢) so
that the usual formula y, = e [ e=2¢ f (s)ds is easy to integrate. Find these integrals
for the “nice functions” f = e, f = "%, and f = t:

[e_“se“sds [e‘“sei“‘gtis [e_““’sds

Problems 20-27 develop the method of variation of parameters.

20 Find two solutions 31, y2 to y” + 3y’ 4+ 2y = 0. Use those in formula (13) to solve
@ y"+3y' +2y=€et (b)) y"+3y' +2y=e"t

21 Find two solutions to y” + 4y’ = 0 and use variation of parameters for
(@) y" +4y’ = e b)) y"+4y =e

22  Find an equation y” + By’ + Cy = 0 that is solved by y; = €' and yo = te’.
If the right side is f(¢) = 1, what solution comes from the V' P formula (13) ?

23 y” — 5y’ +6y = 0is solved by y; = € and y» = €%, because s = 2 and
s = 3 come from s — 55 + 6 = 0. Now solve y”" — 5y’ 4 6y = 12 in two ways:

1. Undetermined coefficients (or inspection) 2. Variation of parameters using (13)
The answers are different. Are the initial conditions different ?

24  What are the initial conditions y(0) and y’(0) for the solution (13) coming from
variation of parameters, starting from any y; and y2 ?

25 The equation y” = 0 is solved by y; = 1 and y, = t. Use variation of parameters to
solve y” =t and alsoy” = t.

26  Solve y,” 4 y, = 1 for the step response using variation of parameters, starting from
the null solutions y; = cos t and y = sin t.

27  Solve ys” + 3ys’ + 2ys = 1 for the step response starting from the null solutions
y1 =e tand y, = e 2",

28 Solve Ay” + Cy = coswt when Aw? = C (the case of resonance). Example 4
suggests to substitute y = Mt coswt + Ntsinwt. Find M and N.

29 Put g(¢t) into the great formulas (17)-(18) to see the equations above them.
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2.7 Laplace Transforms Y (s) and F'(s)

If you think about the functions that have dominated this book, the list is not very long.
They are the right hand sides of linear differential equations and also the solutions y(¢):

1. Exponentials e

2. Sinusoids cos wt and sin wt

3. Polynomials starting with 1 and ¢ and ¢2
4. Step functions H(t — T')

5. Delta functions 6(¢t — T')

6. Productsof 1to5

Why are these functions special ? I believe this is an important question.
The answer that strikes me first is something I had not thought about:

The derivatives and integrals of these functions are also on the list (almost).

That was true from the very start of Chapter 1. Example 1 on page 1 was y = e?. Its
fundamental property is dy/d¢t = y. The derivative leaves it unchanged, which puts it on the
list. And the product of two exponentials is another exponential. In fact exponentials could
be a short list by themselves.

Cosines and sines were written separately, but those are combinations of ™t and e t,
They just move us to complex numbers. The constant polynomial is €% = 1. Integrals and
derivatives of polynomials are polynomials. The product rule for derivatives (and the reverse
rule which is integration by parts) keep the list self-contained : no new functions.

There is one flaw but it is easily fixed. The delta function §(¢) is the derivative of the
step function H(t), but we need all derivatives and integrals. Include them on the list!
Solving dy/dt = step function gives y(t) = ramp function. This is zero for ¢ < 0, and
y(t) = t fort > 0. Its graph has a corner and its slope has a jump. The integral of that
linear ramp is a parabolic ramp. The next integral leads toward a cubic spline. The
derivative of a delta function is a very singular object (see Problem 25).

In the end, all these ideal functions can go on the list which is now complete.

The Algebra of Differential Equations

With those special functions, solving a constant coefficient linear differential equation is
not so difficult. It reduces to an algebra problem. The null solution y,, is a combination
of exponentials (possibly times powers of ¢). The particular solution y, has a known
form like Ye*!—the differential equation will decide the undetermined coefficient Y.
For functions 1 to 6, the integrals using variation of parameters are already on the list.
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The Laplace transform gives a systematic way to do the algebra. Functions of t
become functions of s. Instead of derivatives dy/dt, we have multiplications sY (s). Then
differential equations in ¢ become algebra equations in s. Start with these examples :

Left side y(t) > Y (s)|vy'(t)—>sY(s) and y"(t) — s2Y (s) when y(0)=1y'(0)=0

Right side f(t) > F(s)| f =e*—=F =1/(s — a) andimpulse f =4(t)—>F = 1.

Solving a differential equation by using the Laplace transform involves three steps :
1 Transform every term 2 Solve for Y(s) 3 Find y(t) whose transform is Y (s).

You will see how initial values for y(0) and y’(0) go into the s-equation for Y (s). And
most important, you will see how the zeros of the polynomial s> + Bs + C become
“poles” of Y'(s). Those exponents s; and sz give us the null solution y,(¢). Dividing
by that polynomial gives the transfer function 1/(s? + Bs + C). Now we see all of this as a
natural part of the Laplace transform.

Example 1  Start from y(0) = 0 and y’(0) = 0. With those initial conditions, the
transform of y/ is sY and the transform of 3" is s?Y. We can transform a whole equation :

1

—a

Step1l y" — 4y’ 4+ 3y = e transformsto (s2 —4s+ 3) Y(s) =
s

1 1
Step 2 The transform of y(t) is Y (s) = ==

(s2—4s+3)(s—a) (s—3)(s—1)(s—a)
Step 3 The inverse Laplace transform of Y (s) is y(t) = C1e3* + Cze* + Ge®t.

C; and C come from matching the initial conditions y(0) = 0 and y’(0) = 0. The gain
G = 1/(a® — 4a + 3) is the transfer function at s = a. The inverse transform of Y (s) is
computed in equations (12) and (14). Step 2 revealed the poles of Y (s) :

1
(s—3)(s—1)(s—a)

Those three numbers are the all-important exponents in y(t) = Cie® + Cae’ + Ge.
Now they are seen as the poles 3, 1, a where Y (s) becomes infinite.

haspolesat s =3 and s =1 and s = a.

Example 2 Change from f = e to f = §(t) = impulse. Keep y(0) = y’(0) = 0.
Step1 y” + By’ + Cy = §(t) transformsto (s2 + Bs+ C) Y (s) = 1.

1
Step 2 The transform of y(t) is Y (s) = ——————— = transfer function.
s2 4+ Bs+ C
sit eszt
Step 3  The inverse transform is y(¢) = g(t) = ————— = impulse response.

81 — 8o
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Those roots 51, 53 of s2 + Bs + C = (s — s1)(s — s2) give poles in Y (s) and exponentials
in y(t). You have to be impressed by how quickly steps 1-2-3 led to this central fact.

When f = §(t), the transform of the impulse response g is the transfer function Y.

The Laplace Transform

Our first Table of Transforms will include the most essential functions and no more. A
more complete presentation of this transform will be saved for the last sections of the book.
We will define Y'(s) here, but the shift rule for transforms will be developed there. All
step functions H (t — T) are left for Chapter 8, except for one comment below.

Especially we point to the final Section 8.6 on “convolutions”. These are the inverse
transforms of products Y (s) = F(s)G(s). Convolution is exactly what we need when
f(t) is not a simple function like e** and F'(s) is not a simple function like 1/(s — a).

To create the Table of Transforms we start with the integral that defines F'(s) :

The Laplace transform of f(t) is F(s) = /_f(t) e Stat. (1)
0

The first function to transform is certainly f(t) = €. Then F'(s) = 1/(s — a) as expected :

® (a—s)tt=° 1
F(s) = /e‘“e—sf dt = [e ] =0-— - )
t=0

a—s a—s s—a’

That integral would be infinite if @ > s. Itis typical of Laplace transforms to require s > a.
Then the factor e~*! in the integral brings us safely to zero at t = co. The following rule
is natural for all functions f(¢), when you look at the integral (1) fromt = 0tot = co:

By definition f(¢) = 0 forall ¢ < 0. Functions don’t start until ¢ = 0.

Then the step function H (¢) and the constant function f = 1 have the same transform !

oo
1
The transform of f(t) =1 is F(s) = /16_St dt = —. 3
s
0

This is the transform of e®* when the exponent a goes to 0 and 1/(s — a) goes to 1/s.

Transform of the Derivative

Now comes the most important rule—the whole basis for solving differential equations.
If the transform of () is Y (s), what is the transform of the derivative dy/dt ?

Derivative Rule The transform of dy/dt is sY (s) — y(0).
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The derivative rule shows how the initial conditions enter the transformed problem—
not as separate side conditions, but directly into the equation for Y (s). The proof uses
integration by parts. The integral of dy/dt is y(t) and the derivative of e~ 5% is —se™5t:

% e Stdt = -/y(t)(—se‘“)dt + [y’
0
f
ek — sY(s) - y(0) @

Again s must be large enough—or more exactly, the real part of s must be large enough—
to assure that y(¢)e =5 drops to zero at t = co.

We can immediately solve the model problem of Chapter 1: A first order linear
equation. The solution steps 1, 2, 3 produce Y (s) with poles (blowup values for s) at
the two key exponents s = a and s = c:

d
Example 3 Solve d—:lt/ — ay = e starting from any y(0).

1
Step 1 Transform the equationto sY'(s) — y(0) —aY(s) = - 5)
s—c
Step2 (s —a)Y(s) =y(0)+ 1 gives Y (s) = y(0) - : ’ (6)
s—c s—a (s—a)(s—c)
. y(0) . . _ at
Step 3 The inverse transform of —— is the null solution y, (t) = y(0)e™". (7
1 ct _ eat
The inverse transform of ——————— is the very particular solution ———. @
(s—a)(s—0) c—a

I have to say, this is beautiful. The effort we made in Chapter 1 has been reduced to its
bare minimum. All that is left is the derivative rule, the transform of exponentials, and “par-
tial fractions.” Those partial fractions were the algebra from Step 2 to Step 3:
separating 1/(s — a)(s — ¢) with two poles a and c into two fractions with one pole each.

1 1 1
2 G oG-0 G-ou-9 C-aG-9 ®

PF2 was used in Example 2 to find the impulse response. In that case a and c were s;
and so. Partial fractions were also used in Example 1, with f = € and three poles 3, 1 a.
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Partial Fractions

Example 1 reached Y(s) = 1/(s + 3)(s + 1)(s — a). We didn’t immediately know
its inverse transform y(¢). But finding y(t) becomes simple when Y (s) is separated into
three terms with one pole each. Those three pieces are the Partial Fractions in PF3 :

1 1 1 1

= + +

(s—3)(s—1)(s—a) (s—3)(3-1)(3—a) (1-3)(s—1)(1—a) (a—3)(a—1)(s—a)

Usually I would show you where this PF3 formula comes from. In this case I would rather

show you that it is correct. Above all, you must see the main point : The three separate terms
with one pole each lead immediately to the three parts Cy e3t and Ce? and Ye®t.

Officially, correctness can be proved by multiplying PF3 by (s — 3)(s — 1)(s — a).

(s=1)(s—a) (s —3)(s—a) (s=3)(s—1)
G-1)(3-a) T (1-3)(1-a) T @-3)a-1)’ o

=

At s = 3, the last two terms disappear and we have 1 = 1 (as desired). At s = 1,
the second term equals 1. At s = a, the third term equals 1. Thus (10) is an equation
of the form 1 = As? 4+ Bs + C, and the equation is correct at three values s = 3,1, a.
Therefore the equation must be always correct, and PF3 is shown to be true.

Remark The theory of partial fractions usually computes C; and C' and Y so that

1 G Cy Y 9
(s—3)(s—1)(s—a)_s—3+s—1+s—a. g

The idea is to put the right side over a common denominator, which is on the left side.
Matching the coefficients of s? and s and 1 gives three equations for C; and C3 and Y.
My shortcut was to go directly to the answers C7, Cz, G that you see in PF3:

1 1 1
Ci=—"— Cy=—-"——— Y=—"——. 12
YT (3-1)(3-a) 2T (1-3)(1-a) (@a—3)(a—1) (12)
I think it is easier to remember this pattern than to solve for a new C; and C3 and Y,
every time you change the poles 3 and 1 and a. To repeat, from the three partial
fractions in PF3 we read off the coefficients C,C5,Y in equation (12).

Very Particular Solution

Look at what we have in those three parts. The last part Ye® is a particular solution—
the one that comes from the transfer function and the exponential response formula.
The equation was y” — 4y’ + 3y = €%, and the response to €4 is

1 at 1 at

_ at __ _
Bl =Y = e T e e )
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That is old news. This is not the very particular solution, it doesn’t start at y(0) = 0 and
y'(0) = 0. The solution with that particular start is the one from the Laplace transform:

The very particular solution is all of y,,(t) = C1e3® + Caet + Ye. (14)

Remember, any null solution y,, can be added to one particular y,. That gives another y,,.
The very particular solution y,,, starts from rest.

The complete solution adjusts the free constants c¢; and cz (note the small ¢) to match
any starting values y(0) and y'(0) :

Ycomplete = €1 e + coe! + Ye. (15)

You could solve for ¢; and ¢ as usual, by setting ¢ = 0 in y and y’. Then you are working
in the time domain. Or you could use y(0) and ¢'(0) in finding Y'(s), when you trans-
form the equation in the first place. Let me show you that way, compared to the usual way.

Including y(0) and 3/ (0) in the Transform

We know that the transform of 3’ is sY'(s) — y(0). To find the transform of y”, use that
first derivative rule twice. This brings in (0) along with y(0).

transform of y”/ = s(transform of ) — 3/(0)
= s(sY(s) — y(0)) — ¥/'(0)
= 35%2Y (s) — sy(0) — y'(0). (16)
Now we can solve the equation y” — 4y’ + 3y = e entirely by Laplace transform:

Step 1 Transformto (s2Y (s) — sy(0) —y’(0)) — 4(sY (s) — y(0)) + 3Y(s) = ﬁ

Step 2 Rewrite as (52 — 4s + 3)Y (s) = (s —4)y(0) + ¢/ (0) + 1/(s — a).

Solve forY(s) :  Y(s) = = _33)21(2 ig s - (s2 — 4s +1 3)(s—a)

a7)

Step 3 Invert both pieces of Y(s) to find yn(t) + yp(t).

This looks more painful to me! The last part of Y(s) is fine—that is what we already
worked with to find y,. Its inverse transform is the very particular solution in (14). The
first part of Y (s) involves y(0) and y’(0). We have to do partial fractions again : not good.

The denominator s> — 4s + 3 has two factors (s — 3)(s — 1) and not three factors.
But I would prefer to find ¢; and cg in the complete solution (15), by setting ¢ = 0
and solving these two equations :

a+ec+ Y=y0)

18
301+02+aY:y’(0) (18)

When y(0) and y'(0) are zero, that’s when ¢; and c2 and y equal C; and Cy and y,p.
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Transforms at Resonance

The reader will remember that when two exponents come together, and two solutions
become one solution like e?!, another solution is born. It is like atomic fission or fusion.
The new solution has the form te®t. We want to find its Laplace transform.

Equal exponents can happen in two different ways for y” + By’ + Cy = f(t).

1 (Null solution) Two roots s; and sz of the characteristic polynomial become equal.
2 (Particular solution) The exponent in f = e® equals s; or s in the null solution.

In a truly extreme case we might have s; = so = a, three equal exponents. Then the
null solution is ¢;e® + cyte®t, and a particular solution is Gt2e®!.

We are seeing these possibilities in the “time domain” and we can see them in the
“frequency domain”. Double roots in the ¢t-domain become double poles in Y (s).

1
The Laplace transform of te®! is ﬁ with a double pole. (19)
S —a

A nice proof starts with a simple pole in the transform. The transform of e is 1/(s — a).
Now take derivatives of both sides with respect to a :

1 1 1
/eatC—Stdf — /te‘“e_“dt S " 5
s—a da \s—a (s —a)
0 0

If we take another a-derivative, the transform of t2e%! is seen as 2(s — a)™2 with a
triple pole. The simplest example of this extreme case would be the equation y” = 2.

y"" = 2 has exponents 0 and 0iny,(t) = ¢; + cot and a = 0in y,(t) = t2e% = ¢2.
The initial conditions give ¢; = y(0) and ¢ = y’(0). The solution is easy to check :
y = y(0) + ty’(0) + t* solves y"' =2. (20)
To find this solution by Laplace transform, start by transforming y" and 2 :

s%Y (s) — y(0)s — 4/ (0) = % gives Y(s) = y(0) + y'(0) 52 . (21)

The inverse transforms of 1/s and 1/s? are 1 and ¢. The inverse transform of 2/s3 is ¢2.
So the inverse transform of Y (s) is the correct y = y(0) + ty’(0) + 2 in (20).
Those are really €% and te" and t2e% : three zero exponents, a truly extreme case.

The inverse of equation (19) tells us the fundamental solution g(¢) when the transfer
function 1/(s? + Bs + C) has a double pole and s?> + Bs + C = O has s; = s3:

Ifs>+ Bs+ C = (s — 51)2 then the fundamental solution is g(t) = teS1t,
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The Transforms of cos wt and sin wt

In all of this section on Laplace transforms, there is no requirement that o must be real. That
exponent can be iw or —iw or any complex number a + iw. From the identity cos wt =
$(e™ + e~™*), and from the linearity of the formula for F'(s) = [ f(t)e~*'dt, we can
combine the known transforms of €™ and e~ :

. 1 1 1 s
The transform of f(t) = cos wtis F(s) = 3 <s — + P iw) ~ i (22)
1, ‘
The twin identity sin wt = 57(6“‘” — e~ ™% also comes from Euler’s formula.
i
. 1 1 1
The transform of f(t) = sin wtis F(s) = % <s SR O iw) =2 —th' (23)

Those transforms appear in the fundamental example of a mass hanging from a spring :

Stepl my” +ky = cos wt transforms to m(s?Y (s) —sy(0) =1 (0)) +kY (s) = T
s2+w

The transform Y (s) is multiplied by ms? + k. The transfer function is 1/(ms? + k).

The transfer function multiplies the input to give the output. The input is on the
right hand side, the output is the solution. Both of those are now in transform space !

1 , s

We are ready for Step 3, but it doesn’t look so easy. It requires the inverse transform of this
Y (s). Our simple mass-spring problem has led us to a fourth degree denominator (ms? +
k)(s® + w?). We need partial fractions to separate Y (s) into two pieces with

second degree denominators. That algebra is not so bad, and it can be left for Problem
26.

The result is that y(¢) has a term in cos wt and another term in cos w,t. The driv-
ing frequency is w, the natural frequency w,, = +/k/m comes from the zeros of ms? + k.
The frequencies in the solution y(t) are the poles +iw and +iw,, in its transform Y (s).

That bold statement is really the important message from a Laplace transform. We
engineer the system or the network by moving those poles. Often we keep them well
separated to avoid instability. And we add damping to push the zeros of ms? + bs + k
(poles of Y'(s)) off the imaginary axis and into the stable left halfplane where Re s < 0.

)| 1,tt? e teot t2eot cos wt, sin wt RTNT

a [ sy 1ol 5 i | 1 2 s w Y, sY — y(0),
F(S) v s s ) s 2 %

8 52 s3|s—a (s—a)? (s—a)d s?+w? 824 w2 s?Y —sy(0)—y'(0)
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Complex Roots a + iw

Finally we come to the most typical case for physical systems. It has damping, and it has
oscillation. The roots of s> + 2s + 5 are complex. Their real parts are a = —2/2 = —1.
Their imaginary parts ++/ B? —4AC/2 are +iw = ++/—-16/2 = +2i. We are in
the underdamped case and the solutions to y” + 2y" + by = 0 can be written two ways :
—14 20)t

Yy = cle( + 026(—1 =20t o y= e_t(Cl cos 2t + Cosi n 2t). (25)

What does this problem look like in the s-domain, after a Laplace transform ?
y' +2y +5y =0 transformsto (s® +2s+5)Y(s) — (s +2)y(0) —y'(0) = 0. (26)

That quadratic s + 2s + 5 will go into the denominator of Y (s), as always. This part of
Y (s) is the transfer function 1/(s? + 2s + 5). The numerator is (s + 2)y(0) + y'(0)
from the initial conditions. The right hand side of our null equation (26) is zero and the
transfer function is connecting the inputs y(0) and y’(0) to the solution :

s +2)y(0) +'(0)

2
$24+25+5 @7

The transform of y(¢t) is Y (s) = (

This is the point where partial fractions can enter, if we choose. We can separate
52 4+ 2s + 5 into its linear factors (s — s1)(s — s2). I suggest not to do it. Those roots
s; and sy are complex numbers, and it is easier to stay with one real quadratic.

We are close to the transforms of cos wt and si nwt, already in the Table above. The
new factor is e = ¢~* from the real part, and it gives decay.

s—a %
(s —a)? + w2 e (s—a)2+w

e cos wt and e® sin wt transform to 5+ (28)

For (27), the key is to separate s2 + 2s + 5 into (s + 1)2 + 4. From this we recognize
a = —1 and w = 2 as expected. Then the inverse transform combines e~! cos 2t and
e~tsi n2t. The numerator in (27) is linear, call it H s+ K. To fit perfectly with the numerator
s —ain (28), we can split any Hs + K into H(s —a) + (K + Ha):

Hs+ K
The inverse transform of st is He* cos wt+ (K + Ha)

cat si nwt
(s —a)? + w?

(29)

For higher order equations, and for equations with exponential driving functions f(¢),
the transform Y'(s) involves polynomials of higher degree. In principle, partial fractions
can reduce to degree 1 and degree 2. Those produce the real poles and complex poles
of Y (s)—the real and complex exponentials e in y(¢). I would certainly turn first to the
method of undetermined coefficients in Section 2.6.

The best contribution of Laplace transforms is to focus attention on transfer functions
like 1/(As? + Bs + C) and their poles.
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= REVIEW OF THE KEY IDEAS =

s—a

-

The Laplace transform of f(t) is F(s) = [ f(t)e™*tdt. f = e — F = -1,
0

Ay" + By’ + Cy transforms to (As? + Bs + C) Y (s) — (As + B)y(0) — Ay'(0).

Step 1 transforms the equation, Step 2 solves for Y (s), Step 3 inverts Y (s) to y(t).

. The exponents in the solutions y,, (t) and y,(t) are the poles in Y'(s).

I

. Partial fractions can simplify Y (s) using PF2 and PF3, to help invert to y(t).

Problem Set 2.7

Take the Laplace transform of each term in these equations and solve for Y (s),
with y(0) = 0 and /(0) = 1. Find the roots s; and s — the poles of Y (s):

Undamped y' 4+ 0y + 16y =0
Underdamped y' + 2y + 16y =0
Critically damped Yy’ + 8y + 16y =0
Overdamped y” +10y" + 16y = 0

For the overdamped case use PF2 to write Y (s) = A/(s — s1) + B/(s — s2).
Invert the four transforms Y'(s) in Problem 1 to find y(t).

(a) Find the Laplace transform Y (s) from the equation 3y’ = e with y(0) = A.

(b) Use PF2 to break Y (s) into two fractions Cy /(s — a) + C2/s.

(c) Invert Y (s) to find y(t) and check that ¢’ = €' and y(0) = A.

(a) Find the transform Y (s) when y” = e with y(0) = A and y/(0) = B.

(b) Split Y(s) into C1 /(s — a) + Ca/(s — a)? + C3/s.

(c) Invert Y(s) to find y(t). Check y” = e** and y(0) = A and y'(0) = B.

Transform these differential equations to find Y'(s) :

(@ y”" —y = 1withy(0) =4 and y/'(0) =
(b) ¥y + y = cos wt with y(0) = ¢/(0) =
(©) ¥y’ 4+ y = cost with y(0) = ¢'(0) = 0. What changed forw =17

Find the Laplace transforms F}, Fy, F5 of these functions f1, fa, f3:

filt) =e® —eb  fo(t) =e +e ™  f3(t) =tcost
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7 For any real or complex a, the transform of f = te® is . By writing
cos wt as (et + e~ /2, transform g(t) = tcos wt and h(t) = te’cos wt.
(Notice that the transform of h is new.)

8 Invert the transforms F1, Fs, F3 using PF2 and PF3 to discover f1, fa, f3:

1 S 1
)= oG- 28) = GG ob) 39) = 5
9 Step 1 transforms these equations and initial conditions. Step 2 solves for Y'(s).

Step 3 inverts to find y(¢) :

(a ¢y —ay=twithy(0)=0
(b) ¥y +a?y=1withy(0) =1and 3 (0) =2
(©  y"+3y +2y=1withy(0) = 4 and 3'(0) = 5.

What particular solution y, to (c) comes from using “undetermined coefficients” ?
Questions 10-16 are about partial fractions.
10  Show that PF2 in equation (9) is correct. Multiply both sides by (s — a)(s — b) :

(%) = +

(a) What do those two fractions in (*) equal at the points s = a¢and s = b?
(b) The equation (*) is correct at those two points a and b. It is the equation of
a straight . So why is it correct for every s ?

11 Here is the PF2 formula with numerators. Formula (*) had K = 1and H = 0:

) Hs+K Ha+K Hb+ K
PE2 (s—a)(s—b) (s—a)(a—>b) + (b—a)(s—b)

To show that PF2’ is correct, multiply both sides by (s — a)(s — b). You are left
with the equation of a straight . Check your equation at s = a and at s = b.
Now it must be correct for all s, and PF2’ is proved.

12  Break these functions into two partial fractions using PF2 and PF2’ :

1 s Hs+ K
s2 -4 ®) 52 -4 © 2 _55+6

(2)
13  Find the integrals of (a)(b)(c) in Problem 12 by integrating each partial fraction. The
integrals of C'/(s — a) and D/(s — b) are logarithms.
14  Extend PF3 to PF3’ in the same way that PF2 extended to PF2’ :

Ty Gs’+Hs+ K Ga*+Ha+K +z+z
(s—a)(s=b)(s—c) (s—a)a—b)a—c) ? 7
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15

16

The linear polynomial (s —b)/(a — b) equals 1 at s = a and 0 at s = b. Write down a
quadratic polynomial that equals 1 at s =aandOats =band s = c.

What is the number C' so that C(s — b)(s — ¢)(s — d) equals 1 at s = a?

Note A complete theory of partial fractions must allow double roots (when b = a). The
formula can be discovered from I’Hoépital’s Rule (in PF3 for example) when
b approaches a. Multiple roots lose the beauty of PF3 and PF3’—we are happy
to stay with simple roots a, b, c.

Questions 17-21 involve the transform F'(s) = 1 of the delta function f(t) = d(¢).

17

18

19

20

21

oo
Find F(s) from its definition [ f(¢)e™5!dt when f(t) = 6(t —T'), T > 0.
0

Transform y” — 2y’ + y = §(t). The impulse response y(t) transforms into Y (s) =
transfer function. The double root s; = s2 = 1 gives a double pole and a new y(t).

Find the inverse transforms y(t) of these transfer functions Y'(s) :

) e © s

s—a s2 —qa? 52 —q?

(a)

Solve y” 4+ y = &(t) by Laplace transform, with y(0) = y’(0) = 0. If you found
y(t) = sint as I did, this involves a serious mystery : That sine solves y"' +y = 0,
and it doesn’t have y'(0) = 0. Where does 6(t) come from? In other words, what is
the derivative of y’ = cos t if all functions are zero for t < 0 ?

Ify = sint, explain why y”” = —sint + §(t). Remember that y = 0 for ¢ < 0.

Problem (20) connects to a remarkable fact. The same impulse response y = ¢(t)
solves both of these equations: An impulse at ¢ = 0 makes the velocity y’(0)
jump by 1. Both equations start from y(0) = 0.

y" + By’ + Cy = 6&(t) withy’(0) =0 y"” + By’ + Cy = 0 with y'(0) = 1.

(Similar mystery) These two problems give the same Y (s) = s/(s? + 1) and the same
impulse response y(t) = g(t) = cos t. How can this be ?

y' = —sint with y(0) =1 y = —sint + &(¢) with “y(0) = 0”

Problems 22-24 involve the Laplace transform of the integral of y(t).

22

If f(t) transforms to F'(s), what is the transform of the integral h(t) = [ f(T)dT?

o o

Answer by transforming the equation dh/dt = f(t) with h(0) = 0.
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23

24

25

26

27

t
Transform and solve the integro-differential equation v/ + [ydt = 1, y(0) = 0.
0

¢
A mystery like Problem 20: y = cos ¢ seems to solve ¥’ + [ydt = 0,y(0) = 1.
0

¢
Transform and solve the amazing equation dy/dt + [ ydt = 6(t).
0

t1)

The derivative of the delta function is not easy to imagine—it is called a “doublet
because it jumps up to 400 and back down to —oo. Find the Laplace transform of the
doublet dd/dt from the rule for the transform of a derivative.

A doubletd’(t) is known by its integral : [ §'(¢)F(t)dt = — [ 6(¢)F'(t)dt = —F’(0).

(Challenge) What function y(t) has the transform Y (s) = 1/(s? + w?)(s? + a?)?
First use partial fractions to find H and K :

H K

= +
2+ w?  s?2+a?

Y(s)

Why is the Laplace transform of a unit step function H(t) the same as the Laplace
transform of a constant function f(t) = 17?
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Chapter 3

Graphical and Numerical Methods

The world of differential equations is large (very large). This page aims to see what is already
done and what remains to do.

Chapters 1 and 2 concentrated on equations we can solve. Compared to digging for
coal or drilling for oil, this was the equivalent of picking up gold. Solutions were wait-
ing for us. Looking back honestly, we just wrote them down (not so easy in Chapter 2).

Above all I am thinking of e®* in Chapter 1 and e®® in Chapter 2 and e**z coming
in Chapter 6 (with eigenvalues and eigenvectors). When the equation is linear, and
its coefficients are constant, then its solutions are exponentials.

Chapter 1 First order equations (linear or separable or exact or special)

Chapter 2 Second order equations Ay " + By’ + Cy = f(t)

Chapter 6  First order systems y’ = Ay + f(t) with matrices A and vectors y.

Chapter 3 will be different. Instead of f(t) we have f(¢,y). Most nonlinear problems
don’t allow a formula for y(¢). “A solution exists but it has no formula.” This is the
hard reality of differential equations y’ = f(¢,y). The equations are important but they

don’t have exponential answers. This chapter pictures the solution, computes the solution,
and decides if the solution is stable.

Section 3.1 Pictures for nonlinear equations y’ = f(¢,y) : Stability decided by 0 f/dy.
Section 3.2 Pictures for linear second order equations and 2 by 2 systems : Stable or not.
Section 3.3 Test for stability at critical points by linearizing systems of equations.
Section 3.4 Euler methods (safe but slow) for computing approximations to .
Section 3.5 Fast and accurate computations, by methods more efficient than Euler.
Science and engineering and finance constantly use Runge-Kutta.
After this chapter, the book will move into high dimensions: the world of linear algebra.
One particle and one resistor and one spring and one of anything : that was only a start. The

reality is a network of connections: a brain, a living body, a modern machine, a web of
processors. Every network leads to a matrix. You will learn how to read a matrix.

In my opinion, linear algebra is pure gold.

153
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3.1 Nonlinear Equations vy’ = f(t,vy)

This section aims to get a picture of y(t), not a formula. The pictures will be graphs in
the ¢ — y plane (¢ across and y(t) up). The differential equation is dy/dt = f(t,y)
and everything depends on that function f. I can start with a linear equation y’ = 2y.

The solutions to y’ = 2y are y(¢) = Ce?!. For every number C this gives a solution
curve from ¢ = —oo to t = oo. Those curves cover every point in the ¢ — y plane.
This is the “solution picture” we want for nonlinear equations y' = f(t, ).

That solution y = Ce?’ has a graph. The plane is filled with those graphs. Every point
t, y has one of those curves going through it (choose the right C'). A different equation
y’ = sinty won’t have a formula. Its picture starts with just this one fact :

dy/dt = sinty The solution curve through the point ¢, y has the slope sin ty.

From that point picture we have to build a curve picture. This section tries to connect
small arrows at points into solution curves through those points. The arrow at the point
t,y has the right slope f(¢,y). Connecting with other arrows is the hard part.

I will separate this section into facts about y(¢) and pictures of y(t).

Facts About y(t)

The facts will be answers to these questions, and the Chapter 3 Notes add more :

1. Starting from y(0) at t = 0, does dy/dt = f(t,y) have a solution ?

2. Could there be two or more solutions that start from the same y(0) ?

Question 1 is about existence of y(t). Is there a solution curve through t=0, y=y(0) ?
Question 2 is about unigueness of y(t). Could two solution curves go through one point ?
When f(t,y) is reasonable, we expect exactly one curve through every point ¢,y :
existence and also uniqueness. Which functions are reasonable ? Here are answers :
1. A solution exists if f(¢,y) is a continuous function for ¢ near 0 and y near y(0).
2. There can’t be two solutions with the same y(0) when 0 f /0y is also continuous.
The word “continuous” has a precise technical meaning. Let me be imprecise and

nontechnical. Continuity at a point rules out jumps and infinities in a small neighborhood
of that point. The particular function f = y/t is certainly ruled out at points where t = 0

d
d_lt/ = % with y(0) = 0 has infinitely many solutions y = C't.

The particular function f = t/y is also ruled out when y(0) = 0 (no division by 0):

% = b with y(0) = 0 has two solutions y(t) =t and y(t) = —t.
)
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In those examples, y/t and t/y are starting from 0/0. Solutions do exist (that fact
wasn’t guaranteed). Solutions are not unique (no surprise). We ask more from f(t,y).

There is one important point that we emphasize here, because it could easily be missed.

o
Continuity of f and 6_f at all points does not guarantee that solutions reach t = oo.
Y

Yes, there will be a solution starting from y(0). That solution will be unique. But y(t) could
blow up at some finite time ¢. The first nonlinear equation in the book (Section 1.1) was an
example of early explosion:
d
Blow-upatt =1 The solution to le{- =y? with y(0) = 1is y(t) = 1i—%
That function f = y? is certainly continuous. Its derivative 8 f /0y = 2y is also continuous.

But the derivative 2y grows when the solution grows. To be sure there is no explosion at a
finite time ¢, we ask for an upper bound L on the continuous function 9 f /9y :

o
If ‘ B_f ' < L for all ¢t and y there is a unique solution through y(0) reaching all ¢.
Yy

For a linear differential equation y’ = a(t)y + q(t), the derivative d f /Oy of the right hand
side is just a(t). Then if |a(t)| < L and g(¢) is continuous for all time, solution curves go
from ¢ = —oo to t = co. Chapter 1 found a formula for y(¢) in this linear case.

I will end with one final nonlinear fact. The condition |0 f/Jy| < L is pushed to its limit
when 8f /0y = L exactly. Then y’ = Ly + q(t). A comparison with this linear equation
gives information about the nonlinear equation, when |0 f/dy| < L:

If y' = f(t,y) and 2’ = f(t,2), then [y(t) — =(t)] < ePly(0) — 2(0)). (1)

If y(t) and z(t) start very close, they stay close. This is the opposite of what you see on
the cover of this book. The cover shows a famous example of chaos: solutions go wild.
A slight change in y(0) will send the solution on a completely different (and distant) path.
We now know that Pluto’s orbit is chaotic : very very unpredictable. The equations allow it,
because they don’t have |0f/0y| < L. Pluto is not a planet.

Pictures of the Solution

Example1 dy/dt=2—y Solutiony(t) =2+ Ce™? y(oc0) =2

The perfect picture of y’ = 2 — y would show a small arrow at every point ¢,y. The

arrow would have slope s = 2 — y. Along the all-important “steady state line” y = 2,

this slope would be zero. The arrows are flat (s = 0) along that line: a constant solution.
Above that steady line, the slope 2—7y is negative. The vectors have components dt across

and dy = (2 — y)dt down. We don’t have space for an arrow at every point,

but Figure 3.1 gives the idea. MATLAB calls the field of arrows a “quiver”.
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Figure 3.1: (a) Arrows with slopes f(¢,y) show the direction of the solution curves y(t).
(b) Along an isocline f(t,y) = s, all arrows have the same slope s. Here s = 2 — .

Notice that all arrows point toward the line y = 2. That steady state solution is stable.
The formula y(t) = 2 + Ce™* confirms that the solutions approach y = 2.

First key idea: The solution curves y(t) = 2 + Ce~! are tangent to the arrows.
Tangent means: The curves have the same slope s = 2 — y as the arrows! The curves
solve the equation, the equation specifies the slopes, the arrows have correct slopes.

Second key idea: Put your arrows along isoclines. An isocline (meaning “same slope”)
is a curve f(t,y) = constant. This idea makes the arrows much easier to draw. All the
isoclines 2 — y = s are horizontal lines for this equation ' = 2 — 3. When the differential
equation is dy/dt = f(t,y), each choice of slope s produces an isocline f(t,y) = s.

In our example, those isoclines 2—y = s are flat because f(t,y) = 2—1y does not depend
on t (autonomous equation). I start the picture by drawing a few isoclines.
I always draw the isocline f(t,y) = 0 (here 2 — y = 0 is the steady state line y = 2).
For this equation, that “nullcline” or “zerocline” with s = 0 is also a solution curve.
The arrows have slope zero when y = 2, so they point along the flat line.

How to understand these pictures ? The arrows are pointing along the solution curves.
The curves cross over isoclines. But they don’t cross over the zero isocline y = 2.

All arrows are pointing toward the line y = 2. Those arrows will eventually take us
across every other isocline. The pictures say that the solution curves y(t) are asymptotic to
that line 3y = 2. For this equation dy/dt = 2 — y we know the solutions y = 2 + Ce™¢.

Figure 3.2: Solution curves (tangent to arrows) go through isoclines: y’ = 2 — y.
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dy . . . 1
Example 2 i y—1y Solutions y(t) = 1T Cot y(t) = 1or —oo

The slope of every small arrow is y — y. In the range 0 < y < 1, y will be larger
than y2. The arrows have positive slope y — y? in this range (small slope near y = 0,
small slope near y = 1, all up and to the right). The other two ranges are above y = 1
and below y = 0. There the slopes y — y? are negative—arrows go down and right.
The solution curves are steep when vy is large, because 3% >> y.

Figure 3.3 shows the isoclines f(¢,y) = y — y? = s = constant. Again f does not de-
pend on ¢ ! The equation is autonomous, the isoclines are flat lines. There are two zeroclines
y=1 and y =0 (where dy/dt = 0 and y is constant). Those arrows have
zero slope and the graph of y(¢) runs along each zerocline : a steady state.

The question is about all the other solution curves: What do they do? We happen to
have a formula for y(t), but the point is that we don’t need it. Figure 3.3 shows the three
possibilities for the solution curves to the logistic equation y’ = y — y?:

1. Curves above y = 1 go from +oo down toward the line y = 1 (dropin curves)
2. Curves between y = 0 and y = 1 go up toward thatliney =1 (S-curves)

3. Curves below y = 0 go down (fast) toward y = —oo  (dropoff curves).

The solution curves go across all isoclines except the two zeroclines where y — y? = 0.
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Figure 3.3: The arrows form a “direction field”. Isoclines y — y? = s attract or repel.

You see the S-curves between 0 and 1. The arrows are flat as they leave y = 0, steepest
aty = %, flat again as they approach y = 1. The dropoff curves are below y = 0.
Those arrows get very steep and the curves never reach ¢t = oo: y = 1/(1 — e7t) gives
1/0 = minus infinity when ¢ = 0. That dropoff curve never gets out of the third quadrant.
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Important Solution curves have a special feature for autonomous equations iy’ = f(y).
Suppose the curve y(t) is shifted right or left to the curve Y (t) = y(¢ + C). Then Y ()
solves the same equation Y/ = f(Y )—both sides are just shifted in the same way.

Conclusion: The solution curves for autonomous equations y’ = f(y) just shift along
with no change in shape. You can also see this by integrating dy/ f (y) = dt (separable equa-
tion). The right side integrates to ¢ + C. We get all solutions by allowing all C.

In the logistic example, all S-curves and dropin curves and dropoff curves come from
shifting one S-curve and one dropin curve and one dropoff curve.

Solution Curves Don’t Meet

Is there a solution curve through every point (¢, ¥)? Could two solution curves meet at
that point? Could a solution curve suddenly end at a point? These “picture questions”
are already answered by the facts.

At the start of this section, the functions f and 0f /0y were required to be continuous
near t = 0, y = y(0). Then there is a unique solution to y’ = f(¢,y) with that start. In
the picture this means : There is exactly one solution curve going through the point. The
curve doesn’t stop. By requiring f and 0 f /0y to be continuous at and near all points, we
guarantee one non-stopping solution curve through every point.

Example 3 will fail! The solution curves for dy/dt = —t/y are half-circles and not
whole circles. They start and stop and meet on the line y = 0 (where f = —t/y is not
continuous). Exactly one semicircular curve passes through every point with ¢y # 0.

Example 3 dy/dt = —t/y is separable. Then ydy = —tdt leads to y% + t2 = C.

Start again with pictures. The isocline f(t,y) = —t/y = s is the line y = (—1/s)t.
All those isoclines go through (0,0) which is a very singular point. In this example the
direction arrows with slope s are perpendicular to the isoclines with slope dy/dt = —1/s.

The isoclines are rays out from (0,0). The arrow directions are perpendicular to
those rays and tangent to the solution curves. The curves are half-circles y? + t2 = C.
(There is another half-circle on the opposite side of the axis. So two solutions start from
y = 0 at time —7 and go forward to y = 0 at time 7'.) The solution curves stop at y = 0,
where the function f = —t/y loses its continuity and the solution loses its life.

Figure 3.4: For y’ = —t/y the isoclines are rays. The solution curves are half-circles.
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Example 4 vy’ =1 -+t — y is linear but not separable. The isoclines trap the solution.

Trapping between isoclines is a neat part of the picture. It is based on the arrows.
All arrows go one way across an isocline, so all solution curves go that way. Solutions
that cross the isocline can’t cross back. The zero isocline f(¢,y) = 1 +¢ — y = 0 in Fig-
ure 3.5 is the line y = ¢ + 1. Along that isocline the arrows have slope 0. The solution curves
must cross from above to below.

The central isocline 1 + ¢ — y = 1 in Figure 3.5 is the 45° line y = ¢. This solves
the differential equation! The arrow directions are exactly along the line: slope s = 1.
Other solution curves could never touch this one.

The picture shows solution curves in a “lobster trap” between the lines: the curves
can’t escape. They are trapped between the line y = ¢ and every isocline 1 +¢t —y = s
above or below it. The trap gets tighter and tighter as s increases from 0 to 1, and the iso-
cline gets closer to y = t. Conclusion from the picture : The solution y(¢) must approach
t.

This is a linear equation 4’ + y = 1 + t. The null solutions to ¥y’ +y = 0 are Ce™?.
The forcing term 1 + ¢ is a polynomial. A particular solution comes by substituting
yp(t) = at + b into the equation and solving for those undetermined coefficients a and b:

(at+b) =1+t—(at+b) a=1andb=0 y=y,+y,=Ce t+t (2

The solution curves y = C'e™ ! + t do approach the line y = ¢ asymptotically as ¢ — oo.

Figure 3.5: The solution curves for y’ = 1 + ¢t — y get trapped between the 45° isoclines.

= REVIEW OF THE KEY IDEAS =

1. The direction field for 4’ = f(¢,y) has an arrow with slope f at each point ¢, 3.
Along the isocline f(t,y) = s, all arrows have the same slope s.
The solution curves y(t) are tangent to the arrows. One way through isoclines !

Fact: When f and 0f /Oy are continuous, the curves cover the plane and don’t meet.

s W R

. The solution curves for autonomous y’ = f(y) shift left-right to Y (¢) = y(t — T)).
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Problem Set 3.1

(a) Why do two isoclines f(¢,y) = s1 and f(¢,y) = so never meet ?
(b) Along the isocline f(¢,y) = s, what is the slope of all the arrows ?

(c) Then all solution curves go only one way across an

(a) Are isoclines f(t,y) = s1 and f(t,y) = s2 always parallel ? Always straight ?
(b) An isocline f(t,y) = s is a solution curve when its slope equals

(c) The zerocline f(t,y) = 0 is a solution curve only when vy is : slope 0.

If y1(0) < y2(0), what continuity of f(¢,y) assures that y;(t) < yo(t) for all ¢?

The equation dy/dt = t/y is completely safe if y(0) # 0. Write the equation as
ydy = tdt and find its unique solution starting from y(0) = —1. The solution curves
are hyperbolas—can you draw two on the same graph ?

The equation dy/dt = y/t has many solutions y = C't in case y(0) = 0. It has
no solution if y(0) # 0. When you look at all solution curves y = C', which points
in the ¢, y plane have no curve passing through ?

For y' = ty draw the isoclines ty = 1 and ty = 2 (those will be hyperbolas).
On each isocline draw four arrows (they have slopes 1 and 2). Sketch pieces of solution
curves that fit your picture between the isoclines.

The solutions to y’ = y are y = Ce'. Changing C gives a higher or lower curve. But
y' = vy is autonomous, its solution curves should be shifting right and left!

Draw y = 2e! and y = —2¢’ to show that they really are right-left shifts of y = et
and y = — e’. The shifted solutions to y’ = y are e!t€ and — e!*+C.

For y’ = 1 — 2 the flat lines y = constant are isoclines 1 — y?> = s. Draw the
linesy = 0andy = 1 and y = —1. On each line draw arrows with slope 1 — 2.
The picture saysthaty = _ andy = __ are steady state solutions. From
the arrows on y = 0, guess a shape for the solution curve y = (e! —e~*)/(e! +e71).

The parabola y = t2/4 and the line y = 0 are both solution curves for y’ = /|yl|.
Those curves meet at the point ¢ = 0, y = 0. What continuity requirement is failed
by f(y) = +/|y|, to allow more than one solution through that point ?

Suppose ¥y = 0 up to time T is followed by the curve y = (t — T)2/4. Does this
solve y’ = /|y|? Draw this y(¢) going through flat isoclines /|y| = 1 and 2.

The equation y’ = y? — t is often a favorite in MIT’s course 18.03: not too easy.
Why do solutions y(t) rise to their maximum on y?> = t and then descend ?

Construct f(t,y) with two isoclines so solution curves go up through the higher
isocline and other solution curves go down through the lower isocline. True or false :
Some solution curve will stay between those isoclines: A continental divide.
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3.2 Sources, Sinks, Saddles, and Spirals

The pictures in this section show solutions to Ay” + By’ + Cy = 0. These are linear
equations with constant coefficients A, B, and C. The graphs show solutions y on the
horizontal axis and their slopes y' = dy/dt on the vertical axis. These pairs (y(t),y'(t))
depend on time, but time is not in the pictures. The paths show where the solution goes,
but they don’t show when.

Each specific solution starts at a particular point (y(0),3’(0)) given by the initial
conditions. The point moves along its path as the time ¢ moves forward from ¢ = 0.
We know that the solutions to Ay” + By’ + Cy = 0 depend on the two solutions to
As? + Bs + C = 0 (an ordinary quadratic equation for s). When we find the roots s;
and sq, we have found all possible solutions :

a1t

y=c1e® + e’y =188 4 e80! (1)

The numbers s; and s tell us which picture we are in. Then the numbers ¢; and ¢, tell us
which path we are on.

Since s; and s determine the picture for each equation, it is essential to see the six
possibilities. We write all six here in one place, to compare them. Later they will appear in
six different places, one with each figure. The first three have real solutions s; and s3. The
last three have complex pairs s = a =+ iw.

Sources Sinks Saddles Spiral out Spiral in Center
§1 >8>0 51 <82<0 8s95<0<s; a=Res>0 a=Res<0 a=Res=0

In addition to those six, there will be limiting cases s = 0 and s; = s (as in resonance).
Stability This word is important for differential equations. Do solutions decay to zero?
The solutions are controlled by e*** and e®?! (and in Chapter 6 by e*! and e’2?).
We can identify the two pictures (out of six) that are displaying full stability : the sinks.

A center s = +iw is at the edge of stability (e’ is neither decaying or growing).

2. Sinks are stable 51 <s2<0 Then y(t) — 0
5. Spiral sinks are stable Res; =Res; <0  Then y(t) —» 0

Special note. May I mention here that the same six pictures also apply to a system of
two first order equations. Instead of y and y’, the equations have unknowns y; and ys.
Instead of the constant coefficients A, B, C, the equations will have a 2 by 2 matrix.
Instead of the roots s; and sg, that matrix will have eigenvalues A\; and A;. Those
eigenvalues are the roots of an equation A\%2 + BA + C = 0, just like s; and ss.

We will see the same six possibilities for the A’s, and the same six pictures. The
eigenvalues of the 2 by 2 matrix give the growth rates or decay rates, in place of s; and s;.

[ z;: J B [ z Zl} [ z; J has solutions [igg J — [ Z; ]em_
At

The eigenvalue is A and the eigenvector is v = (v1, v2). The solution is y(t) = ve™.
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The First Three Pictures

We are starting with the case of real roots s; and ss. In the equation Ay” + By’ + Cy = 0,
this means that B2 > 4AC. Then B is relatively large. The square root in the quadratic
formula produces a real number B2 — 4AC. If A, B,C have the same sign, we have
overdamping and negative roots and stability. The solutions decay to (0,0) : a sink.

If A and C have opposite sign to B as in " — 3y’ + 2y = 0, we have negative damping
and positive roots s, s2. The solutions grow (this is instability : a source at (0, 0)).

Suppose A and C' have different signs, as in ¥’/ — 3y’ — 2y = 0. Then s; and s, also
have different signs and the picture shows a saddle. The moving point (y(t),%’(t)) can
start in toward (0,0) before it turns out to infinity. The positive s gives et — .
Second example for a saddle: y" — 4y = 0 leads to s> — 4 = (s — 2)(s +2) = 0.
The roots s; = 2 and s; = —2 have opposite signs. Solutions c¢;e?* + coe™2! grow
unless ¢c; = 0. Only that one line with ¢; = 0 has arrows inward.

In every case with B2 > 4AC, the roots are real. The solutions y(t) have growing
exponentials or decaying exponentials. We don’t see sines and cosines and oscillation.

The first figure shows growth: 0 < so < s7. Since e®1? grows faster than €%, the larger
number s; will dominate. The solution path for (y,y’) will approach the straight line of
slope s1. That is because the ratio of 3y’ = c;s1e%!t to y = c;e®!? is exactly s;.

If the initial condition is on the “s; line” then the solution (y,%’) stays on that line:
co = 0. If the initial condition is exactly on the “sy line” then the solution stays on that
secondary line: ¢; = 0. You can see that if ¢; # 0, the c;e®'? part takes over as t — 0.

AL
Reverse all / / \\\R
the arrows in j,,,/_j ) “-~=:_

the left figure. — \ ——
Paths go in — lf/ il
toward (0, 0) - \ \\ |//
\
SN A
0< s3< s 51 <s82<0 s2 <0< s
Source : Unstable Sink : Stable Saddle : Unstable

Figure 3.6: Real roots s; and s2. The paths of the point (y(¢),y’(t)) lead out when roots
are positive and lead in when roots are negative. With sy < 0 < s7, the sy-line leads in
but all other paths eventually go out near the s;-line: The picture shows a saddle point.
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Example for a source: y" — 3y’ + 2y = 0leadsto s —3s+2 = (s —2)(s — 1) = 0.
The roots 1 and 2 are positive. The solutions grow and e2* dominates.

Example for a sink: y" + 3y’ + 2y = Oleadsto s> +3s+2 = (s +2)(s+ 1) = 0.
The roots —2 and —1 are negative. The solutions decay and e~ dominates.

The Second Three Pictures

We move to the case of complex roots s; and s,. In the equation Ay” + By’ + Cy = 0,
this means that B2 < 4AC. Then A and C have the same signs and B is relatively small
(underdamping). The square root in the quadratic formula (2) is an imaginary number.
The exponents s1 and sq are now a complex pair a + iw :

Complex roots of B /B2 —4AC , 5
A+ Bs+C=0 VT A g oFw @
The path of (y,%’) spirals around the center. Because of €%, the spiral goes out
if @ > 0: spiral source. Solutions spiral in if @ < 0: spiral sink. The frequency w
controls how fast the solutions oscillate and how quickly the spirals go around (0, 0).

In case a = —B/2A is zero (no damping), we have a center at (0, 0). The only terms
left in y are e™* and e~**, in other words coswt and sinwt. Those paths are ellipses in
the last part of Figure 3.7. The solutions y(¢) are periodic, because increasing ¢ by 27 /w
will not change cos wt and sin wt. That circling time 27 /w is the period.

Reverse all

the arrows in

the left figure. Q | )

Paths go in . //
T /

toward (0, 0).

a=Res>0 a=Res <0 a=Res=0
Spiral source : Unstable Spiral sink : Stable Center : Neutrally stable

Figure 3.7: Complex roots s1 and s3. The paths go once around (0,0) when ¢ increases
by 27/w. The paths spiral in when A and B have the same signs and a = —B/2A is
negative. They spiral out when a is positive. If B = 0 (no damping) and 4AC' > 0,
we have a center. The simplest center is y = sin t,4’ = cos t (circle) from y” +y = 0.
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First Order Equations for y and yo

On the first page of this section, a “Special Note” mentioned another application of the same
pictures. Instead of graphing the path of (y(¢),%’(t)) for one second order equation, we

could follow the path of (y;1(t),y2(t)) for two first order equations. The two equations
look like this:

dt = ay; + by
First order system y’ = Ay dy1/ 1 2 s

dy2/dt = cy1 + dy2

The starting values y; (0) and y»(0) are given. The point (y;, y2) will move along a path
in one of the six figures, depending on the numbers a, b, ¢, d.

Looking ahead, those four numbers will go into a 2 by 2 matrix A. Equation (3) will be-
come dy/dt = Ay. The symbol y in boldface stands for the vector y = (y1,y2).
And most important for the six figures, the exponents s1 and sy in the solution y(t)
will be the eigenvalues A1 and A of the matrix A.

Companion Matrices

Here is the connection between a second order equation and two first order equations. All
equations on this page are linear and all coefficients are constant. I just want you to see the
special “companion matrix” that appears in the first order equations ¢y’ = Ay.

Notice that y is printed in boldface type because it is a vector. It has two components y;
and y (those are in lightface type). The first y; is the same as the unknown y in the second
order equation. The second component ys is the velocity dy/dt :

=Y

Us = o y” + 4y’ + 3y =0 becomes y2’' + 4y + 3y1 =0. 4)

On the right you see one of the first order equations connecting y; and y2. We need
a second equation (two equations for two unknowns). It is hiding at the far left! There
you see that Y1/ = yo. In the original second order problem this is the trivial statement
y = y'. In the vector form ¢y’ = Ay it gives the first equation in our system.

The first row of our matrix is 0 1. When y and 3’ become y; and ys»,
= 0 1 Y1
"4+4y +3y=0 b i 2o 5
y + y + ?J ccomes y2, — _3y1 _4y2 _3 _4 y2 ( )

That first row 0 1 makes this a 2 by 2 companion matrix. It is the companion to the
second order equation. The key point is that the first order and second order
problems have the same “characteristic equation” because they are the same problem.

The equation s% + 45 +3 = 0 gives the exponents s; = —3 and s, = —1

The equation A2 +4X\+3 =0 gives the eigenvalues A\; = —3 and Xy = —1
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The problems are the same, the exponents —3 and —1 are the same, the figures will be
the same. Those figures show a sink because —3 and —1 are real and both negative.
Solutions approach (0, 0). These equations are stable.

The companion matrix for y” + By’ + Cy =0is A = [ _g —Bl }

Row 1 of y’/ = Ay is y{ = yo. Row 2is y4 = —Cy; — Byz. When you replace 32 by 4,
this means that y;’ + By{ + Cy1 = 0: correct.

Stability for 2 by 2 Matrices

I can explain when a 2 by 2 system y’ = Ay is stable. This requires that all solutions
y(t) = (y1(t),y=2(t)) approach zero as t — co. When the matrix A is a companion matrix,
this 2 by 2 system comes from one second order equation "' + By’ + Cy = 0. In that case
we know that stability depends on the roots of s> + Bs + C' = (0. Companion matrices are
stable when B > 0and C > 0.

From the quadratic formula, the roots have s; + s, = —B and 5159 = C.
If 51 and s9 are negative, this means that B > 0 and C' > 0.
If s1 = a+iwand s = a — iw and a < 0, this again means B > 0 and C' > 0

Those complex roots add to s; + s; = 2a. Negative a (stability) means positive B, since
51 + 83 = —B. Those roots multiply to 152 = a? +w?. This means that C'is positive, since
s189 = C.

For companion matrices, stability is decided by B > 0 and C' > 0. What is the stability
test for any 2 by 2 matrix ? This is the key question, and Chapter 6 will answer it properly.
We will find the equation for the eigenvalues of any matrix (Section 6.1). We will test
those eigenvalues for stability (Section 6.4). Eigenvalues and eigenvectors are a major topic,
the most important link between differential equations and linear algebra. Fortunately, the
eigenvalues of 2 by 2 matrices are especially simple.

The eigenvalues of the matrix A = [ z Z ] have A2 — TA+ D = 0.

The number 7" is a + d. The number D is ad — be.

Companion matrices have a = 0 and b = 1 and ¢ = —C and d = — B. Then the characteris-
tic equation A> — TA + D = 0 is exactly s2 + Bs + C = 0.

Companion matrices have [ _CO —B} ] T=a+d=—-B and D=ad—bc=C.

The stability test B > 0 and C > 0 is turning into the stability test ' < 0 and D > 0.

This is the test for any 2 by 2 matrix. Stability requires 7" < 0 and D > 0. Let me give
four examples and then collect together the main facts about stability.
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A = L_g :13 is unstable because T' = 0 + 3 is positive
[0 1]. . .

Ay = 9 _a| 18 unstable because D = —(1)(2) is negative
o0 1] .

Az = _9 _3| 18 stable  because T' = —3 and D = +2
-1 1] . . .

Ay = 1 1|8 stable  because T' = —1 — 1 is negative

and D =1+ 1 is positive

The eigenvalues always come from A —T'A+ D = 0. For that last matrix Ay, this eigenvalue
equation is A2 4+ 2\ + 2 = 0. The eigenvalues are \;, = —144 and
Ao = —1 — 1. They add to T" = —2 and they multiply to D = +2. This is a spiral
sink and it is stable.

Stability for
2 by 2 matrices

T=a +d <0
D=ad —bc>0

X
I
[ o—
o 2
Q o

] is stable if

The six pictures for (y,4’) become six pictures for (y1,y2). The first three pictures have
real eigenvalues from 72 > 4D. The second three pictures have complex eigenvalues from
T? < 4D. This corresponds perfectly to the tests fory” + By’ + Cy = 0 and its companion
matrix :

Real eigenvalues T2 > 4D B2 > 4C Overdamping
Complex eigenvalues T2 <4D B2 <4C  Underdamping

That gives one picture of eigenvalues \: Real or complex. The second picture is different:
Stable or unstable. Both of those splittings are decided by 7" and D (or —B and C').

1. Source T>0,D>0, T? > 4D Ustable

2. Sink T <0, D>0, T?>4D Stable

3. Saddle D <0 and T2 >4D Unstable

4. Spiralsource 7 >0, D >0, T? < 4D Unstable

5.  Spiral Sink T <0, D>0, T? < 4D Stable

6. Center T=0,D>0, T? <4D Neutral
That neutrally stable center has eigenvalues \; = iw and Ay = —iw and undamped oscilla-
tion.

Section 3.3 will use this information to decide the stability of nonlinear equations.
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Eigenvectors of Companion Matrices

Eigenvalues of A come with eigenvectors. If we stay a little longer with a companion
matrix, we can see its eigenvectors. Chapter 6 will develop these ideas for any matrix,
and we need more linear algebra to understand them properly. But our vectors (y1,y2)
come from (y,y’) in a differential equation, and that connection makes the eigenvectors
of a companion matrix especially simple.

The fundamental idea for constant coefficient linear equations is always the same:
Look for exponential solutions. For a second order equation those solutions are
y = e*t. For a system of two first order equations those solutions are y = wve*'. The
vector v = (v1, v2) is the eigenvector that goes with the eigenvalue .

At

/
. . =a b
. intothe equations 7L~ Y1 + o

Yy = cy1 + dys

Y1 = v1€
Y2 = Vg€

Substitute and factor out e*.

Because et is the same for both 31 and s, it will appear in every term. When all factors e**

are removed, we will see the equations for v; and vy. That vector v = (v1, vy) will satisfy
the eigenvector equation Av = Av. This is the key to Chapter 6.

Here I only look at eigenvectors for companion matrices, because v has a specially nice
form. The equations are y; = y- and y5 = —Cy1 — Bys.

At At At
. =vie Aviet = vge
Substitute V! ! x Then ! 2

Y2 = Vg€ )\Uge)‘t = —O’U1€>‘t — nge’\t.

Cancel every e, The first equation becomes A\v; = vy. This is our answer :

k

> =

Eigenvectors of companion matrices are multiples of the vector v = [

= REVIEW OF THE KEY IDEAS =

1. If B2 #4AC +# 0, six pictures show the paths of (y,y’) for Ay” + By’ + Cy = 0.
2. Real solutions to As? + Bs + C = 0 lead to sources and sinks and saddles at (0, 0).

3. Complex roots s = a =+ iw give spirals around (0, 0) (or closed loops if a = 0).

’
. vy | 0 11y N
4. Roots s become eigenvalues A for [y’] = [ _c _ B] {y’ ] . Same six pictures.
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Problem Set 3.2

Draw Figure 3.6 for a sink (the missing middle figure) with y = cje™2¢ + cpe™t.
Which term dominates as ¢ — oo ? The paths approach the dominating line as they
go in toward zero. The slopes of the lines are —2 and —1 (the numbers s; and s3).

Draw Figure 3.7 for a spiral sink (the missing middle figure) with roots s = —1 + 3.
The solutions are y = Cie~fcost + Cae~'sint. They approach zero because
of the factor e~t. They spiral around the origin because of cost and sin .

Which path does the solution take in Figure 3.6 if y = ' + /29 Draw the
curve (y(t), y’(t)) more carefully starting at ¢ = 0 where (y,y’) = (2, 1.5).

Which path does the solution take around the saddle in Figure 3.6 if y = et/2 4+ =t ?
Draw the curve more carefully starting at ¢ = 0 where (y,y') = (2, —3).

Redraw the first part of Figure 3.6 when the roots are equal: s; = sy = 1 and
y = c1et + catel. There is no sy-line. Sketch the path for y = et + tet.

The solution y = €%t — 4e! gives a source (Figure 3.6), with ¢/ = 2e2t — 4et. Starting
att = 0 with (y,y’) = (=3, —2), where is (y,y’) when e! = 1.1 and e! = .25 and
et =27

The solution y = e'(cost + sint) has y’ = 2e’ cost. This spirals out because of e’.
Plot the points (y,y’) att = 0and t = 7/2 and t = m, and try to connect them with a
spiral. Note that e™/2 ~ 4.8 and ™ ~ 23.

The roots s; and s; are +2¢ when the differential equation is . Starting from
y(0) = 1 and y’(0) = 0, draw the path of (y(¢),y’(t)) around the center. Mark the
points when t = /2, 7, 3w /2, 2m. Does the path go clockwise ?

The equation y” + By’ +y = 0leads to s + Bs + 1 = 0. For B = -3, -2, -1, 0,
1, 2, 3 decide which of the six figures is involved. For B = —2 and 2, why do we not
have a perfect match with the source and sink figures ?

For y” + 3’ + Cy = 0 with damping B = 1, the characteristic equation will be
52 + s+ C = 0. Which C gives the changeover from a sink (overdamping) to a spiral
sink (underdamping) ? Which figure has C' < 0?

Problems 11-18 are about dy /dt = Ay with companion matrices [ _ CO, _ ]; ] 5

The eigenvalue equation is A2 + BA + C = 0. Which values of B and C give
complex eigenvalues ? Which values of B and C give A\; = Ao ?
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13
14

15

16

17

18

19

20

Find A; and A\s if B = 8 and C' = 7. Which eigenvalue is more important as ¢ — 0o ?
Is this a sink or a saddle?

Why do the eigenvalues have \; + A\ = —B? Whyis \j A, = C?

Which second order equations did these matrices come from ?

A = [ (1] (1] J (saddle) Ay = [ _(1) (1) :l (center)

The equation y” = 4y produces a saddle point at (0,0). Find s; > 0 and s, < 0

in the solution y = cie®1? 4 cye®2t. If ¢y ¢z # 0, this solution will be (large) (small) as
t — oo and also as t — —o0.

The only way to go toward the saddle (y,y’) = (0,0) ast — ocois ¢; = 0.

If B = 5 and C' = 6 the eigenvalues are A\; = 3 and Ay = 2. The vectors v = (1, 3)
and v = (1,2) are eigenvectors of the matrix A: Multiply Av to get 3v and 2v.

In Problem 16, write the two solutions y = vert to the equations y’' = Ay.

Write the complete solution as a combination of those two solutions.

The eigenvectors of a companion matrix have the form v = (1, A). Multiply by A
to show that Av = \v gives one trivial equation and the characteristic equation A2 +
BA+C =0.

0 1 1| _ A\ 1 s A=A
-C -B AT A —C—BXx =)\?
. . . 3 1
Find the eigenvalues and eigenvectors of A = { 1 3 J .

An equation is stable and all its solutions y = c;e®t + cpe®2t go to y(c0) = 0
exactly when

(s1 <0orsz <0) (s1 <0and sy <0) (Re s1 <0 and Re sy < 0)7

If Ay” + By’ + Cy = D is stable, what is y(co) ?
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3.3 Linearization and Stability in 2D and 3D

The logistic equation yy’ = i — 12 has two steady states Y = 0 and Y = 1. Those are critical
points, where the function f(y) = y — y? is zero. Along the lines Y = 0 and Y = 1 the
equation y' = f(y) becomes 0 = 0. We have those two steady solutions, and their stability
or instability is important. Do nearby solutions approach Y or not ?
The stability test requires df /dy < 0 at Y. This is the slope of the tangent to f(y):
df
fw-V =i+ (L) -1 -0+ aw-1), m
The linearization of y’ = f(y) at the critical point y = Y comes from f ~ A(y — Y).
Replace f by this linear part and include the constant Y on the left side too:

Linearized equation near a critical point Y’ y-Y) =A@y-Y). (@

The solution y — Y = CeAt grows if A > 0 (instability). The solution decays if A < 0.
The logistic equation has f(y) = y — y? with derivative A = 1 — 2y. At the steady state
Y = 0 this shows instability (A = +1). The other critical point Y = 1 is stable (A = —1).

The stability line or phase line in Section 1.7 showed Y = 1 as the attractor:
y(t) N — o Y=0 yt) 1 Y =1 y(t)N 1
. i < }—> sz 5 <
left arrows: y — y* < 0 y—y>>0 left arrows: y — % < 0

The arrows in Section 3.1 had slopes f(¢,y). Stability is decided by the slope df /dy.

Note The most basic example is 4y’ = y. The only steady state solution is Y = 0. That
must be unstable, because f = y has A = df /dy = 1. All other solutions y(¢) = Ce* travel
far away from Y = 0, even when C = y(0) is close to zero.

Opposite case: y' = 6 — y is stable (A = —1). Solutions approach Y = y., = 6.

Solution Curves in the yz Plane

Those paragraphs were review for one unknown y(t). Section 3.2 had two unknowns y and
2 in two linear first order equations (or y and ' in a linear second order equation).
Move now to nonlinear. The equations will be autonomous, the same at all times ¢ :

d d
d_ltl = f(y,z) and d—: =g(y,z) starting from y(0) and 2(0).  (3)

A critical point Y, Z solves f(Y,Z) = 0 and g(Y, Z) = 0. It is a steady solution: constant
y =Y and constant z = Z.
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Critical point f(Y,Z)=0 and g(Y,Z) =0 4)

For every critical point Y, Z we must decide : stable or unstable or neutral ?

To graph the solutions, there is a problem with y and z and ¢. Three variables won’t fit
into a 2D picture. Our solution curves for autonomous equations will omit ¢. The curves
y(t), z(t) show the paths of solutions in the y, z plane but not the times along those paths.

Those pictures do not show the time t, as the solution moves. Different equations
dy/dt = cf(y,z) and dz/dt = cg(y, z) will produce the same picture for all ¢ # 0.
That constant ¢ just rescales the time and the speed along the same path y(ct),z(ct).
Time and speed are not shown by the pictures.

Each steady state y(¢) = Y, z(¢) = Z will be one point in the picture! The stability
question is whether paths near that point (those are nearby solutions) go in toward Y, Z
or away from Y, Z or around Y, Z : stable or unstable or neutrally stable.

That stability question is answered by the eigenvalues of a 2 by 2 matrix A.

Solutions Near a Critical Point

Here is the key to this section. Very close to a critical point where f(Y, Z) = 0 and
g(Y, Z) = 0, solution curves have the same six possibilities that we already know :

Stable Sink Unstable  Source
Spiral sink Spiral source
Neutral Center Saddle point

The pictures for linear equations were in Section 3.2. They came from six possibilities
for the roots of As?2 + Bs + C = 0, and from six types of 2 by 2 matrices A :

Linear equations y' = ay + bz Yy
Constant coefficients z'=cy + dz z

Those model problems in 2D have the critical point Y = 0, Z = 0. That is the point where
fly,z) = ay +bz = 0and g(y,z) = cy + dz = 0. There is one critical point (0, 0) at the
center of each picture in Section 3.2. Now we are saying that nonlinear equations look like
linear equations when you look near each critical point.

This is the 2D equivalent of one equation (y — Y)’ = A(y — Y). That number A
was df /dy. Now we have two unknowns y and z, and two functions f(y, z) and g(y, 2).
There are four partial derivatives of f and g, and they go into the 2 by 2 matrix A :

First derivative matrix A of/0y Of/0=z )
“Jacobian matrix” ~ | 89/0y Bq/0=
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Linearization of a Nonlinear Equation

For one equation, linearization was based on the tangent line. The beginning of the Taylor
series around Y is f(Y') + (df /dy)(y — Y). Critical points have f(Y) = 0, removing the
constant term. Two variables y and z lead to the same idea, but now it is a tangent plane :

foa~ 12+ () w-n+ (&) -2

0 0 =
o2 ~902) + () w-1) + (32) - 2)
A critical point has f(Y, Z) = g(Y, Z) = 0. The four linear terms take over :
(z—2)" | 7| 89/0y 08g/0z 2—Z | z2—7Z |

There stands the linearized equation. It is centered and linearized around the special point
(Y, Z). If we reset by shifting (Y, Z) to (0,0), equation (8) is one of our model problems :

HEIHERIHE

Example 1 Linearize y’ = sin(ay + bz) and z’ = sin(cy +dz) atY =0, Z = 0.

Solution  Check first: f = sin(ay + bz) and g = sin(cy + dz) are zero at (Y, Z) = (0, 0).
This is a critical point. The first derivatives of f and g at that point go into A.

0f /0y = acos(ay + bz) = acos0 = a when (y, z) = (0,0)

The other three partial derivatives give b and ¢ and d. They enter the matrix A :

/ 0 /
y' = sin(ay + bz) . . y'=ay+bz [ a b Y
P linearizes to e I E (10)

That example just moved the simple linearization sin « ~ « into two variables.

r_

Example 2 (Predator-Prey) Linearize Z ' Zz : Y2 at all critical points.
Meaning of these predator-prey equations The prey vy is like rabbits, the predator
z is like foxes. On their own with no foxes, the rabbits grow by nibbling grass: y’ = .
On their own with no rabbits, the foxes don’t eat well and z/ = —z. Then the
multiplication yz accounts for the interactions between y rabbits and z foxes. Those
interactions end up in more foxes and fewer rabbits.

This example has simplified coefficients 1 and —1 multiplying ¥ and z and yz.
The predator-prey model is a great example and we will develop it further.
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Linearize Predator—Prey at Critical Points

Set f =Y —-YZ =0andalsog = YZ — Z = 0. Solve for all critical points Y, Z.

Y-YZ=Y1-2)=0 and YZ-Z=(Y-1)Z=0.

The critical points Y, Z are 0,0 and 1, 1. Track their stability using the matrix A.

. | of/oy ofjo= | |1—-2Z =Y | |1 0
02 GG A_[ag/ay 0g/0z | Z Y—-1| |0 -1/
This is a saddle point: unstable. Starting near 0,0 the rabbit population y(t) will grow.
The eigenvalues are 1 (for the rabbits) and —1 (for the foxes) fromy’ = y and z/ = —z.
An all-fox population would decay (this is the only path in to the saddle point).

1-Z -Y 0 -1
wrz=11 a=[137 ][0 1.
This matrix has imaginary eigenvalues A\; = ¢ and A\ = —z2. Their real parts are zero.
The stability is neutral. The critical point Y = 1, Z = 1 is a center. A solution that

starts near that point will go around 1, 1 and return where it started :

Extra rabbits — Foxes increase — Rabbits decrease — Foxes decrease — Extra rabbits

We can see without eigenvalues that the solution to the linearized equations makes a
perfect circle around (1, 1). The matrix A has —1 in row 1 and +1 in row 2.

—1 =rcost
—1 =rsint

(y_l))’ - (Z_lg is solved by Z (11)

=+-1

The actual nonlinear solution y(t¢), z(¢) won’t make a perfect circle. Usually we can’t
find its exact path, but in this case we can. The y — z equation is separable and solvable:

dy dy/dt f  y(l-2) . y—1 1—=z

@y _ 4 _ / t t dy = dz. 12

Az dzjdt g =) separates into » 1] 2 z (12)
Integration of 1 and 1/y and 1/z gives y — lny =Inz — z + C. That constant is
C = 2 wheny = z = 1 (critical). These solution curves are drawn in Figure 3.8 for

C =2.1,2.2,2.3,2.4. They are nearly circular near C' = 2. That is linearization !

As C' increases, y and z move further away from 1 and the circles are lost. But the
nonlinear solution is still periodic. The rabbit-fox population comes back to its starting
point and goes around again. Populations can be close to cyclic.

Equation (12) took time out of the picture. A numerical solution (Euler or Runge-Kutta)
puts time back. This famous model came from Lotka and Volterra in 1925.
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C=21
foxes z
~-C =24
z=19
saddle
pomt ¥ o .  rabbits y

Figure 3.8: Solution paths y + z — Iny — In z = C around the critical point: a center.

Predator—Prey - Logistic Equation

When Example 2 has no foxes (z = 0), the rabbit equation is y’ = y. There is no control of
rabbits and y = Ce!. When we add a logistic term like —qy? (rabbits eventually competing
with rabbits for available lettuce) this makes the equations more realistic.

We also allow different coefficients p, r, s, ¢t (not all 1 or —1) in the other terms :

First critical point (Y, Z) = (0, 0)
Second point (Y, Z) = (p/q,0)
Third s = wY and p = qY + rZ

Rabbits y’' =y (p — qy — r2)
Foxes 2’/ =2z (—s+ wy)

At those critical points, ' and z’ are zero. The solutions are steady states y =Y, z = Z.

Near those points we linearize the equation to decide stability. The derivatives of
f(y,2) and g(y, z) are in control, because f = g = 0 at the critical points:

First derivatives | 0f/0y 0f/0z p—2qy—rz —TY p 0
Jacobianat 0,0 | dg/0y 8g/0z | wz —s+wy| |0 —s|
(0,0) is a saddle point: unstable. Small populations have y’ ~ py and z’ ~ —sz.
Rabbits increase and foxes decrease. One eigenvalue p is positive, the other eigenvalue
—s is negative. Near this (0,0) point, the competition terms —qy? and —ryz and wyz
are higher order. Those terms disappear in the linearization.

The second critical point has Y = p/q and Z = 0. This point is a sink or a saddle :

Linearization y—Y /—A y—Y with A= | ¢ —rp/q
around (p/q,0) |z2—-Z2 | ~|z-Z | 0 —s+uwp/q
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If s > wp/q, that last entry is negative. So is —¢, and we have a sink : two negative eigen-
values.
If s < wp/q, that last entry is positive. In this case we have a saddle.

The third critical point (Y, Z) is different. At this point p = qY +rZ and s = wY.
This leaves only three simple terms in the first derivative matrix above:

Linearization y—Y ! _ y—Y ; | =q¥ =r¥
around (Y, Z) [z—Z} _A{z—Z e A= wz 0
The new term —gy? in the rabbit equation has produced —qY = —gs/w in the matrix A.

This is a negative number, it stabilizes the equation. It pulls both of the eigenvalues
(previously imaginary) to negative real parts. Neutral stability changes to full stability.

2 by 2 matrices are special (with only two eigenvalues A; and A2). I can reveal the two
facts that produce those two eigenvalues of A: Add the \’s and multiply the \’s.

Sum A1 + A2 equals the sum T of diagonal entries T=—qY
Product A1z equals the determinant D of the matrix D=rYwZ
Our matrix has A1 + A2 < 0 and A\;A\; > 0. This suggests two negative eigenvalues

A1 and Aq (a sink). It also allows A\; = a + iband Ao = a — ib (a < 0, a spiral sink).
Our conclusion is : The third critical point Y, Z is stable.

Final Tests for Stability : Trace and Determinant

We can bring this whole section together. It started with finding the critical points Y, Z and
linearizing the differential equations. Now we can give simple tests on the 2 by 2
linearized matrix A. We don’t need to compute the eigenvalues before testing them—
because the matrix immediately tells us their sum A; + Ao and their product A;\s.
That sum and product (the trace and determinant of A) are all we need.

Step 1  Find all critical points (steady states) of y’ = f(y,z) and 2z’ = g(y, 2)
by solving f(Y,Z) =0and g(Y, Z) = 0.
Step 2 At each critical point find the matrix A from derivatives of f and g
_|a b | | 0f/0y Of/0z :
A—[c d:l—[ag/c')y 89/0z at the point Y, Z
Step 3 Decide stability from the trace T' = a + d and determinant D = ad — bc

Unstable T >0 or D <0 orboth
Neutral T=0and D>0
Stable T<0and D>0

If T2 > 4D > 0, the stable critical point is a sink: real eigenvalues less than zero.
If T? < 4D, the stable critical point is a spiral sink : complex eigenvalues with Re A < 0.
Section 6.4 will explain these rules and draw the stable region 7" < 0, D > 0.
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The solution curves y(t), z(t) are paths in the yz plane. Near each critical point Y, Z,
the paths are close to one of the six possibilities in Section 3.2. Source, sink, or saddle
for real eigenvalues ; Spiral source, spiral sink, or center for complex eigenvalues.

A Special 3 by 3 System : A Tumbling Box

You understand that 3 by 3 systems will be more complicated. The pictures don’t stay in
a plane. There are 9 partial derivatives of f, g, h with respect to z, y, z. The matrix A
with those entries is 3 by 3. Its three eigenvalues decide stability (7" and D are not enough).

But we live in three dimensions. The most ordinary motions will follow a space curve
and not a plane curve. We can imagine the whole of three-dimensional space filled with
those curves—that picture is hard to draw. Still there are important special motions that
we can understand (and even test for ourselves). Here is a beautiful example.

Throw a closed box up in the air. Throw a cell phone. Throw this book.
Those all have unequal sides s; < s < s3. Gravity will bring the book or the box back
down, but that is not the interesting part. The key is how it turns in space.

There are three special ways to throw the box. It can rotate around the short side s;.
It can rotate around the longest side s3. The box can try to rotate around its middle side s,.
Those three motions will be critical points. Your throwing experiment will quickly find that
two of the rotations are stable and one is unstable. In this book on differential equations,
we want to understand why. Please put a rubber band around the book.

Since the up and down motion from gravity is not important, we will remove it.
Keep the origin (0,0, 0) at the center of the box. The box turns around that center point.
At every moment in time, a 3D rotation is around an axis. If the box tumbles around
in the air, that rotation axis is changing with time.

After writing about boxes I thought of another important example. Throw a football.
If you throw it the right way, spinning around its long axis, it flies smoothly. Any
quarterback does that automatically. But if your arm is hit while throwing, the ball wobbles.
A football has one long axis and two equal short axes, 51 = s2 < S3.

One more: A well-thrown frisbee spins around its short axis (very short). Its long axes
go out to the edges of the frisbee, so s; < s2 = s3. A bad throw will make it tumble.

Tumbling indicates an unstable critical point for the equations of motion.

Equations of Motion : Simplest Form

For a box of the right shape, Euler found these three equations. The unknowns z,y, z give
the angular momentum around axes 1, 2, 3 (short, medium, long).

f(x,y,2) dx/dt= yz Critical points X,Y, Zhave f =g=h =0
g(z,y,2) dy/dt=—2xz There are 6 critical points on a sphere
h(xz,y,z) dz/dt= =y (X,Y,Z) = (#£1,0,0) (0,£1,0) (0,0,41)
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Multiply the three equations by z, v, z and add them together, to see the sphere :

dx dy dz
— ty—+z— =xyz—22yz + Y2 =0 z? 2 4+ 22 = constant.
xdt+ydt+zdt ) Y Y +y°+
The point z,y, z travels on a sphere. There are six critical points X, Y, Z (steady rota-
tions). The question is, which steady states are stable ? Try the experiment. Toss up a book.

Linearize at Each Critical Point

When you take 9 partial derivatives of f = yz and ¢ = —2zz and h = xy, you get the 3
by 3 Jacobian matrix J. Its first row 0 z y contains the partial derivatives of f = yz.
At each critical point, substitute X, Y, Z into J to see the matrix A in the linearized equa-
tions. The six critical points (X,Y, Z) are (+1,0,0) and (0, £1,0) and (0,0, £1).

0 =z y 0 0 0 0 0 1 0 10
J=| -2z 0 -2z +A=|0 0 -2 0 0 0 -2 0 0
y x 0 0 1 0 1 00 0 0 0

That middle matrix A with two ones gives instability around the point (0, 1,0). Start the
linearized equations from the nearby point (¢, 1, ¢).

z! 0 0 1 x ! ==z T = cet
y =10 0 0 Yy is y'= Then y=1 (13)
2z’ 100 z z' ==z z = cet

Those solutions with ef are leaving the critical point. You are seeing the eigenvalue A = 1.
The other eigenvalues are 0 and —1: a saddle point. When you try to spin a box around
its middle axis, the wobble quickly gets worse. [t is humanly impossible to spin the box
perfectly because that axis is unstable.

The other two axes are neutrally stable. Their matrices A have —2 and +1. Their
eigenvalues are v/24 and —/24 and 0. Around the short axis (1,0,0), the essential part
of Ais 2 by 2. We see sines and cosines (not ! and instability) :

x’ 00 © o 0 z= 1
y ' |=]10 0 -2 y | =| —2z |. Then y=+2ccos(v21t)
z! 0 1 0 z Y z= ¢ sin(v2t)

The turning axis (z,y, z) travels in an ellipse around (1,0,0). This indicates a center.
Let me go back to the nonlinear equations to see that elliptical cylinder y? + 222 = C.

Multiply z’=yz,y' = —2zz,2' =2y by 0,y,2z. Addtoget yy’ + 22z’ = 0.

The derivative of y? + 222 is zero. Every path z(t), y(t), z(t) is an ellipse on the sphere.
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Alar Toomre’s Picture of the Solutions

At this point we know a lot about every solution to z’ = yz and y’ = —2zz and 2’ = zy.

Stays on a sphere 2?2 +1y? + 22=C; Multiply the equations by z, ¥, z.
Stays on an elliptical cylinder 222 +y? = C, Multiply by 2z,y,0 and add.
Stays on an elliptical cylinder 32 + 222 = Cs; Multiply by 0,9,2z and add.
Stays on a hyperbolic cylinder z% — 22 = (C; Multiply by z,0,—z and add.

Professor Alar Toomre made the tumbling box famous among MIT students. The year when I
went to his 18.03 lecture, he tossed up a book several times (in all three ways).
The book turned or tumbled around its short and middle and long axes: stable, unstable,
and stable. Actually the stability is only neutral, and wobbles don’t grow or disappear.

Maybe you can see those ellipses around two critical points : cylinders intersect a sphere.
The website will show one of those cylinders going around (1,0, 0) : a neutrally stable case.
It is harder to visualize the hyperbolas 22 — 22 = C; around the unstable point (0, 1,0).

This figure shows the value of seeing a solution—not just its formula. With good fortune
a video of this experiment will go onto the book’s website math.mit.edu/dela.

Figure 3.9: Toomre’s picture of solution paths x(t), y(t), z(¢) from Euler’s three equations.

I will end this example with a square box : two equal axes. The symmetry of a football
also produces two equal axes. The Earth itself is flatter near the North Pole and South Pole,
and symmetric around that short axis. Fortunately for us this case is neutrally stable.

The Earth’s wobble doesn’t go away, at the same time it doesn’t get worse. The spin axis
passes about five meters from the North Pole.
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Flattened sphere dz/dt= 0 Critical points (£1,0,0) at Poles
Square book dy/dt = —xz Critical plane (0, y, z)
Two equal axes dz/dt = zy (the plane of the Equator)

The partial derivatives of —zz and zy are quick to compute at (X, Y, Z) = (1,0,0):
0 0 O
A=1]10 0 -1 has eigenvalues A =4 and A= —+4¢ and A =10
01 0

The path of z,y, z is a circle around the North Pole (for the nonlinear equations too).
The Earth wobbles as it spins, but it stays stable. Not like a tumbling box.

Epidemics and the SIR Model

An epidemic can spread until a serious fraction of the population gets sick—or the epidemic
can die out early. Unstable or stable: always the important question. Suppose it is a flu
epidemic on a closed campus (with no flu shots). The population divides into three groups :

S = Susceptible  (may catch the flu)
I = Infected (sick with the flu)
R = Recovered (after having the flu)

The equations for S(t), I(¢), R(t) will involve an infection constant /3 and a recovery con-
stant . The infection rate is 551, proportional to the susceptible fraction .S times the in-
fected (and infectious) fraction I. The recovery rate is simply «/. This simple model has
been improved in many ways—STR is now a highly developed technique. Epidemiology
has major importance, and we want to present this small model :

dS/dt = —BSI = f(S,I)
dI/dt = BSI — ol = g(S,I)
dR/dt = ol

We work with fractions of the total population, so S + I + R = 1. Adding the equations
confirms that S 4+ I + R is constant (their derivatives add to zero). It is enough to study
S and I. We are ignoring births and deaths—our system is closed and the epidemic is fast.

The important critical point is S = 1,1 = 0. The population is well, but everyone
is susceptible. Flu is coming. Is that critical point stable if a few people get sick ?

o7/05 offor] [ -1 —BS 1 [0 B o

The eigenvalues of that matrix are 0 and 8 — a. We certainly need 8 < « for stability.
“Sick must get well faster than well get sick.” The other eigenvalue A\ = 0 needs a closer
analysis, and the model itself requires improvement.
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A neutral eigenvalue like A = 0 can be pushed either way by nonlinear terms. One way
to establish nonlinear stability is to solve the equations—after removing t :

dI  dI/dt  (BS—1)I 1 . - g
ds —dS/dt  —BSI 1+/BS gives I =-S5+ 3 +C.

The moving point travels along the curve I + S — (In S)/8 = I(0) + S(0) — (In.S(0))/5.

An important fact about epidemics is the serious difficulty of estimating o and 3. Their
ratio Ry = 3/« controls the spread of disease: The epidemic dies out if Ry < 1. One
comment about estimating 5: When the epidemic is over, you could compare [ + S —
(InS)/B att = 0 and ¢t = co. Much more is in the books by Brauer and Castillo-Chavez,
especially Mathematical Models in Population Biology and Epidemiology.

The Law of Mass Action

When two chemical species react, the law of mass action decides the rate :

dy 8 = concentration of S
dt e = concentration of

This is like predator-prey and epidemics (multiply one population times the other, s times e).
Then y is the concentration of SE. When F is an enzyme, there is also a reverse reaction
SE — S + F and a forward reaction SE — P + E. For a chemist, the desired product is
P. For us, there are three mass action laws with rates k1, k_1, ko :

d ds de il
d_? = kyse — k_1y — kay at —kyse+k.1y dt i b ki ke dj

Life depends on enzymes: Very low concentrations e(0) << s(0) and very fast reactions.
Without E, blood would take years to clot. Steaks would take decades to digest. This
math course might take a century to learn. The enzyme is the catalyst (like platinum in a
catalytic converter).

After the fast reaction that uses E, the slower reactions bring the enzyme back. Beauti-
fully, separating the two time scales leads to a separable equation for y :

d
Michaelis-Menten equation o S
dt y+ K

(14)

Maini and Baker have shown how matching fast time to slow time leads to (14).

This is just one example of the nonlinear differential equations of biology. Mathematics
can reveal the main features of the solution. For a detailed picture we turn to accurate nu-
merical methods—and those come in the next section.
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Continuous Chaos and Discrete Chaos

This section about stability will now end with extreme instability : Chaos. For this we need
three differential equations (or two difference equations). Chaotic problems are a recent dis-
covery, but now we know they are everywhere : Chaos is more common than stable equations
and even more common than ordinary instability.

This is a deep subject, but you can see its remarkable features from simple experiments.
Here are suggestions for one equation, then two, then the big one (Lorenz):

1.

. Stability at Y, Z requires S0 + = < 0and =—=— >

Newton’s method on page 6 finds square roots by solving f(z) = z2 — ¢ = 0.
Compute z1, then z2, then x3, ... Then x,, approaches ++/c.
B fzn) 2 —c 1 c
TSI T ) T Tar, 2\ T )
But if ¢ = —1, these real z’s cannot approach the imaginary square roots x = =+i.

The x,, will move around wildly when 1 = 3 (zn, — z;'). Try 100 steps from
o = V3and 2o = 2.

. The Hénon map approaches a ‘“‘strange attractor” in the zy plane :

Stretching and folding z,.1 = 1+ y, — 1.422 and v, = 0.3z,

Try four steps, starting from many different z¢, yo between —1 and 1.

. The Lorenz equations arise in trying to predict atmospheric convection and weather :

z' =aly — ) y' =xz(b—2)—y 2l =zy—cz

Lorenz himself chose a = 10, b = 28, ¢ = 8/3. The system becomes chaotic. The so-
lutions are extremely sensitive to changes in the starting values. Harvey Mudd College
has an ODE Architect Library that includes Lorenz and suggests great experiments.
Try it!

= REVIEW OF THE KEY IDEAS =

. The critical points of y' = f(y, 2),2’ = g(y, z) solve f(Y, Z) = g(Y, Z) = 0. Steady

state y(t) =Y, 2(t) = Z.

. Near that steady state, f(y,z) ~ (0f/0y)(y —Y) + (0f/0z)(z — Z). Similarly

9(y, z) is “linearized” at Y, Z. These derivatives of f and ¢ go in a 2 x 2 matrix A.

. The equations (y,2)" = (f,g) are stable at Y, Z when the linearized equations

(y—Y,2—Z) = A(y — Y,z — Z) are stable. Then \; and A, have real parts < 0.

of dg of 0g af dg .
5, By 0z G @ This means that

the eigenvalues have A\; + Ao = a +d < 0and A\ A2 = ad — bc > 0.
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5. Boxes and books tumble unstably around their middle axes. Footballs are neutral.

6. Epidemics and kinetics are nonlinear when species 1 multiplies species 2:y' = kyz.

Problem Set 3.3

If y’ = 2y + 3z + 4y? + 522 and 2’ = 62 + Tyz, how do you know that Y = 0,
Z = 0 is a critical point ? What is the 2 by 2 matrix A for linearization around
(0,0) ? This steady state is certainly unstable because

In Problem 1, change 2y and 6z to —2y and —6z. What is now the matrix A for
linearization around (0, 0) ? How do you know this steady state is stable ?

The system vy’ = f(y,2) = 1 —y?> — z, 2z’ = g(y,z) = —52 has a critical point
atY =1, Z = 0. Find the matrix A of partial derivatives of f and g at that point:
stable or unstable ?

This linearization is wrong but the zero derivatives are correct. What is missing ?
Y =0, Z = 0is not a critical point of y’ = cos (ay + bz), z’ = cos (cy + dz).

y" | [ —asin0 —bsin0 y| |00 Yy
2" | 7| —csin0 —dsin0 2| 100 z |
Find the linearized matrix A at every critical point. Is that point stable ?

I'=1-—yz = 3 — 2
@ Y, . ® Y, -

2/ =y—2° 2i=y+z2
Can you create two equations y’ = f(y, z) and 2’ = g(y, z) with four critical points :
(I,1)and (1,—1) and (—1,1) and (—1,-1) ?
I don’t think all four points could be stable ? This would be like a surface with
four minimum points and no maximum.
The second order nonlinear equation for a damped pendulumis y” + y’ + siny = 0.
Write z for the damping term v, so the equation is 2/ + z + siny = 0.
Show that Y = 0, Z = 0 is a stable critical point at the bottom of the pendulum.
Show that Y = 7, Z = 0 is an unstable critical point at the top of the pendulum.

Those pendulum equations y’ = z and z’ = — siny — z have infinitely many critical
points ! What are two more and are they stable ?

The Liénard equation y” + p(y)y’ + q(y) = 0 gives the first order system y’ = z and
Za= . What are the equations for a critical point ? When is it stable ?

10  Are these matrices stable or neutrally stable or unstable (source or saddle) ?

HA R R R -
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1"

12

13

Suppose a predator x eats a prey y that eats a smaller prey 2 :

de/dt = —x + xy Find all critical points X, Y, Z
dy/dt = —zy + y +yz Find A at each critical point
dz/dt = —yz + 2z (9 partial derivatives)

The damping in y¥” + (y’)®> + y = 0 depends on the velocity y’ = z. Then
2" + 2% + y = 0 completes the system. Damping makes this nonlinear system
stable—is the linearized system stable ?

Determine the stability of the critical points (0,0) and (2, 1):

y'=—y+4z+yz ®) y'=—y?+4z

@) 2/ =~y — 224 2yz 2! =y —22*

Problems 14-17 are about Euler’s equations for a tumbling box.

14

15

16

17

The correct coefficients involve the moments of inertia I, Io, I3 around the axes.
The unknowns z, y, z give the angular momentum around the three principal axes :

dz/dt = ayz with  a=(1/I3—1/L)
dy/dt = bxz with b= (1/I; — 1/I3)
dz/dt = cxy with  c¢=(1/l—1/1}).

Multiply those equations by z, %, z and add. This proves that 2 + 32 + 22 is .

Find the 3 by 3 first derivative matrix from those three right hand sides f, g, h.
What is the matrix A in the 6 linearizations at the same 6 critical points ?

You almost always catch an unstable tumbling book at a moment when it is flat.
That tells us: The point x(t), y(t), z(t) spends most of its time (near) (far from)
the critical point (0, 1,0). This brings the travel time ¢ into the picture.

In reality what happens when you

(a) throw a baseball with no spin (a knuckleball) ?
(b) hit a tennis ball with overspin ?

(c) hit a golf ball left of center ?

(d) shoot a basketball with underspin (a free throw) ?
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3.4 The Basic Euler Methods

For most differential equations, solutions are numerical. We solve model equations to
understand what to expect in more complicated problems. Then the numbers we need—
close to exact but never perfect—come from finite time steps At.

This section will show you the key ideas. The approximations will be simple and clear,
but not highly accurate. The next section comes closer to the reality of modern codes.
The Runge-Kutta method is still frequently used, with refinements that those two creators
certainly did not anticipate. The cycle of predicting at ¢t + At, correcting att + At, and
adjusting the stepsize At for the next step is now highly developed.

Local accuracy comes from small steps, but speed comes from larger steps. The right bal-
ance depends on the particular equation and the user’s need for accuracy. Always
there is a requirement of stability—because small errors are unavoidable. But after the
numerical errors enter the calculation, they must not grow faster than the solution itself.

Euler’s First Step y1 = yg + At fj

The equation to solve is dy/dt = f(t,y). The initial value y(0) is given—this will be our
starting yo. A difference equation will go forward to y;. That is our approximation to the
exact solution at t; = At (the end of the first time step and the start of the next step).
By going forward in steps of size At;, Ato, ... we compute values y;, yo, ... that are close
to the exact solution.

We know two facts at t = 0. The value of y is yo and the slope dy/dt at that point
is given by f in the equation. That slope is called fo. It is the right side f(¢,y) when
y = yo and t = 0. With value yo and slope fy, we know the tangent line y = yo + tfo
to the curve y(t). So we can take a step At along that tangent line—not too large a step
or we will wander too far from the exact curve y(t).

Step At along tangent line Y1 = Yo + At fo (1)
Figure 3.10 shows y; for the model equation y’ = 2y. Atyo = 1 the slope is fo = 2

(since f(y) = 2y). We follow that tangent line as far as y; = 1 + 2At¢t.

y= e2dt

on the solution curve

Y1 = 1+ 2dt
on the tangent line
Yo =1
0 dt t

Figure 3.10: The tangent line y = yg + t fo starts at yo. Euler stops at y; = yo + Atfo.
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Euler’s Method y,, 1 = yn + Atfn

On the graph, we are following pieces of tangent lines. This is the same as approximating
the derivative dy/dt (which changes during a time step) by the forward difference Ay /At
(which is held constant during a time step) :

d -
a—i{ = f(t,y) becomes %ﬁo. ()
There is a new tangent line for the second time step. That step starts at y; (which we just
computed). The slope at that point in time is f1 = f(At,y1). We are using the differential
equation y’ = f(t,y) to tell us the slopes fo, f1, fa, . . . at the start of every time step :

A —_
nth time step A—g = f(tn,yn) lis Euler’s method % =N 3)

The model equation dy/dt = 2y has the exact solution y(t) = e?*. Euler’s method
Yn+1 = Yn + At fy, will multiply y,, at every step by the number 1 + 2At¢:

Yn+1 = Un + At(2y,) = (1 + 2A0)y, leads to Yn = (1 4+ 2A8)"ye. (4)

We have seen powers of (1 + 1) and (1 + 2) in Section 1.3 from compound interest.
The current balance was y,, and the interest at rate a was aAty,,. Then the new balance was
Ynt+1 = (1 + aAt)y,. This is exactly Euler’s method to solve dy/dt = ay, and our example
has a = 2.

Approximating e?* Un = (1 + 241" = (e2AH)" = g2nAL, 5)

The errors y, — y grow as n increases. But the errors at each step also shrink as At — 0.
If we hold n At fixed at some value T, then we are taking n steps to reach that time 7.
As n increases and At decreases, the steps are smaller—the tangent lines stay closer.
Then Euler’s y,, approaches the exact y(T') = €27

Euler’s Error

The error E,, is y(n At) — y,. This is the exact solution minus the computed solution y,
at time n At. It comes from accumulating small errors at every time step—the tangent
lines move away from the true graph of y(t).

First, estimate those small errors at the n separate time steps. How far is a tangent line
from a curve, after a step At ? The answer comes from calculus.

Local error

i
== 4 —_ 2 7” P
Taylor series y(t + At) = y(t) + Aty'(t) + 5 (At)2y” (t) + (6)

When we keep two terms and omit the third term, the error is < (At)? |y”|max.
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ya = (1+ 2 new At)%

) ne\; At old .&t =4 (new At) )
Figure 3.11: Euler’s method converges to y(T") as n — oo, with n steps of size At = T'/n.

The Mean Value Theorem would establish that bound of order (At)2. This is the error
in one step—a tangent line moving away from the curve. We will take n steps to reach
the time n At = T'. If all goes well, the 1-step error C'(At)? grows in n steps to CT At.

The error at time T after n steps is |y(T) — y,| < Cn(At)?2 = CTAt. (7)

Conclusion: Euler’s method is first-order accurate. The error is proportional to At.
If we take 2n steps of size At/2, and do twice as much work, that will divide the error
by 2 (approximately). This is really minimum accuracy.

The Runge-Kutta method has error proportional to (At)%. Then reducing At to At/2 im-
proves the error by a factor near 16. We will be matching many more terms in the

Taylor series, where Euler only matched the first derivative. In the example vy’ = 2y, we
know that y(T") = €T :

2T\" c
First-order accuracy 1+2AH)" = (1 + 7) ~ T with error - (8)

This table shows the slow improvement as m increases, compared to the superfast
improvement from keeping more terms in the Taylor series :

n (1 + %)" from Euler Taylor series for e
1 2.0000000 2.0000000
2 2.2500000 2.5000000
3 2.3703704 2.6666667
4 2.4414062 2.7083333
5 2.4883200 2.7166667
6 2.5216264 2.7180556
7 2.5464997 2.7182540
8 2.5657845 2.7182788
9 2.5811748 2.7182815

10 2.5937425 2.7182818



3.4. The Basic Euler Methods 187

Stability

We jumped over an important point when we converted n local errors of size (At)?
to one global error of size At. The local errors occur in each step. The global error
at T is the composite of n local errors. We assumed that local errors at early times
would not grow much before the final time 7'.

Think of the local error as a small bank deposit every day. The global error at the end of
a year (I'" = 365 At) includes 365 small errors. Those small deposits should grow during
the year (they earn interest too). The constant C' in equation (8) allows for this growth.

What if the equation is dy/dt = —100y ? This shows decay, not growth. The solu-
tion starting at y(0) = 1is y(T') = e~190T very small. But does Euler’s method show the
same fast decay in the approximate solution, when the equation has f, = —100y,, ?

Ynt+1 = Yn + Atfr, = (1 — 100 At)y, yn = (1 — 100 At)"y, )

If 100At¢ is small, then 1 — 100A¢ is less than 1 and its powers decay as they should.
But we will have 100At = 3 when At = 0.03. That step seems small but it is not.
The number 1 — 100A¢ will be —2. Equation (9) shows that every step multiplies by —2.
The powers of —2 grow exponentially !

yn =1,—2,4,-8,... yn = (1 —100At)"yo = (—2)"yo is exponentially unstable.

Conclusion : Stability for y’ = —100y requires |1 — 100A¢| < 1. We need At < 2/100.

In a way this limit on At is acceptable. Euler is missing the %(100At)2 term in the
Taylor series for e~1%%. We would want 100At < 1 just for reasonable accuracy. The
stability requirement 100At¢ < 2 is not a heavy burden. But read further.

Stiff Equations

Imagine an equation with solutions e~* and e~ '%%, Then e~* will dominate, because

it has much slower decay than e~19%, We have decay rates s = —1 and s = —100:
y” +101y’ +100y =0 with  s*+ 1015+ 100 = (s + 1)(s + 100).  (10)

This is certainly overdamped. The roots s = —1 and s = —100 are real. Euler’s method
needs to follow e~t accurately, because that is the important solution. But stability still
requires At < 2/100.

The unimportant solution e~1%% is getting in the way. It reduces At and therefore adds
more work (many steps), beyond the ordinary demand of first order accuracy. A problem
like equation (10) is called stiff : stability can be too expensive for ordinary Euler.

We can see this second order problem as two first order equations. Introduce 3’ as a
second unknown. As in Section 3.1, a “companion matrix” multiplies the vector (y, y'):

. d 0 1
" ’ _ e _ Y
y" +101y" + 100y = 0 is the same as 7 [ " ] [ 100 —101 } [ " J . (1D

The eigenvalues of the matrix are the same roots —1 and —100. That is a stiff problem :
slow decay together with fast decay.
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Euler’s method for this matrix equation is just like Euler for y’ = Ay:
Ynt+1 — YUn
At
Every step multiplies by I + AAt. That matrix has eigenvalues 1 — At and 1 — 100A¢.
Normally 1 — At is more important and larger. But if 100At is greater than 2, then the
second number 1 — 100A¢ is below —1. Its powers will show extreme instability.
The cure for stiff systems is to switch to an implicit method.

= Ay, of Y, =T+ AAt)y,. (12)

Backward Euler = Implicit Euler

The idea of implicit methods is to use backward differences. Go back from y, 41 and
tn+1 and fj 41, instead of going forward from y,, and ¢,, and f,,.

yf_|_1 — Yn
At

Backward Euler = fn+1 = .f(tn+11y.f+1)- (13)

The example y’ v —100y will divide by 1 + 100At instead of multiplying by 1 — 100A¢:

Ynt1 — Y i
% =—100y7,, is (1+100At)yE | = yn.

That division happens at every time step. After n steps this method remains very stable :

1 n
“Implicit Euler” yf = (m> Yo is decreasing correctly.

For this linear equation, division is no more expensive than multiplication. Implicit is
the way to go. But we pay a much higher price for implicit when the problem is nonlinear.
Instead of substituting the known y,, to find f,, = f(n At,y,) in ordinary “explicit” Euler,
we now have to solve a nonlinear equation to find the unknown y2 1-

Each step must solve for yf—H ?J:'?+1 — Atf(tns1, ny) = UYn. (14)

If the forcing function f is complicated, even an approximate solution for y2 1 will be
expensive. You see the struggle that is constantly presented : Implicit methods are more
stable but much slower. For y’ = Ay, the matrix to invertisin (I — At A)yZ, | = y,,.

Difference Equations vs Differential Equations

Compare a™ with €2 : powers and exponentials. The powers come from a difference equa-
tion Y;,;1 = aY,. The exponentials come from a differential equation 3y’ = ay. Stability
means that those solutions approach zero. For ordinary numbers (this includes complex
numbers) the test on a is easy.

a™ — 0 when |a| < 1 e — 0 when Rea < 0.

When we have a matrix A, the same tests are applied to the eigenvalues :

A™ — 0 whenall |A\| <1 et — 0 whenall Re )\; < 0.
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® REVIEW OF THE KEY IDEAS =

1. Euler’s method is (yn+1 — Yn)/At = fr, O Ynt1 = Yn + AL f(n At,yn).

2. That step to y,, 11 follows the tangent line at y,,, not the curve y(t). Error ~ (At)?2.

3. After n steps to time T' = n At, the error is proportional to At : First order accuracy.
4. Stability requires y,, to grow no faster than the exact y(t) : Often a size limit on At.

5. Backward Euler is yZ,, — y, = Atf(yZ,,). Harder to find y2,; but more stable.

Problem Set 3.4

1 Apply Euler’s method yn4+1 = yn + At fn to find y; and y2 with At = % :

@y’ =y Oy =y () y =2y (all with y(0) = yo = 1)

2 For the equations in Problem 1, find y; and y2 with the step size reduced to At = %.
Now the value y, is an approximation to the exact y(¢) at what time ¢?
Then ¥ in this question corresponds to which y,, in Problem 1 ?

3 (a) For dy/dt = y starting from yo = 1, what is Euler’s y,, when At = 17
(b) Is it larger or smaller than the true solution y = e’ at time t = n ?

(c) What is Euler’s y2, when At = £ ? This is closer to the true y(n) = e”.

4 For dy/dt = —y starting from yo = 1, what is Euler’s approximation y,, after n steps
of size At ? Find all the y,,’s when At = 1. Find all the y,,’s when At = 2. Those
time steps are foo large for this equation.

5 The true solution to y’ = y? starting from y(0) = 1is y(t) = 1/(1 — t). This
explodes at t = 1. Take 3 steps of Euler’s method with At = % and take 4 steps
with At = %. Are you seeing any sign of explosion ?

6 The true solution to dy/dt = —2ty with y(0) = 1 is the bell-shaped curve y = et It
decays quickly to zero.  Show that step n + 1 of Euler’s method gives
Ynt1 = (1 — 2nAt?)y,. Do the y,’s decay toward zero? Do they stay there ?

7 The equations y’ = —y and z’ = —102 are uncoupled. If we use Euler’s method for
both equations with the same At between -% and 2, show that y,, — 0 but |z,| — co.

The method is failing on the solution z = e~19¢ that should decay fastest.

8 What values y; and y2 come from backward Euler for dy/dt = —y starting from
Yo = 1?2 Show that y? < 1 and y2 < 1 even if At is very large. We have absolute

stability : no limit on the size of At.
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The logistic equation y’ = y — 2 has an S-curve solution in Section 1.7 that
approaches y(oo) = 1. This is a steady state because y’ = 0 when y = 1.

Write Euler’s approximation 4, +1 = to this logistic equation, with stepsize
At. Show that this has the same steady state : y,, 11 equals y,, if y, = 1.

The important question in Problem 9 is whether the steady state y, = 1 is stable
or unstable. Subtract 1 from both sides of Euler’s Y, +1 = yn + At(yn — 32):

Ynt+1 — 1 = yn + At(yn — y'?z) —1=(yn — 1)(1 — Atyn).

Each step multiplies the distance from 1 by (1 — Aty,,). Near the steady yoo = 1,
1 — Aty, has size |1 — At|. For which At is this smaller than 1 to give stability ?

Apply backward Euler y2, |, = y,, + AtfB | =y, + At [yf_H — (yfﬂ)z} to the
logistic equation " = f(y) = y — y*>. Whatis yf if yo = 5 and At = 3?

You have to solve a quadratic equation to find yZ. T am finding two answers for y©.
A computer code might choose the answer closer to yg.

For the bell-shaped curve equation y’ = —2ty, show that backward Euler divides
Yn by 1+ 2n(At)? to find y2, ;. Asn — oo, what is the main difference from
forward Euler in Problem 6 ?

The equation y’ = \/|y| has many solutions starting from y(0) = 0. One solution
stays at y(t) = 0, another solution is y = t?/4. (Then y’ = t/2 agrees with ,/y.)
Other solutions can stay at y = 0 up to ¢ = 7', and then switch to the parabola
y = (t — T)?/4. As soon as y leaves the bad point y = 0, where f(y) = y'/?
has infinite slope, the equation has only one solution.

Backward Euler y; — Aty/|y1| = yo = 0 gives two correct values y? = 0 and
yP = (At)2. What are the three possible values of y2 ?

Every finite difference person will think of averaging forward and backward Euler :
C Eul idal = =A ! ! so
entered Euler / Trapezoida Ypi1 — Yn = At E'fn + ofnt1 )
For y’ = —y the key questions are accuracy and stability. Start with y(0) = 1.

11 1— At/2
C C 2 C
-y =A4At|—-yo— = ves = :
Y1 — Yo ( 5 %0 2y1> gl Y1 1+ At/2 Yo
Stability Show that |1 — At/2| < |1 + At/2| for all At. No stability limit on At.

Accuracy For yo = 1 compare the exact y; = e~ 2t = 1 — At + %Atz — .-
withy{ = (1 — 3A8) /(1 — A = (1 — A8)(1 — AL+ LA2 — ...

An extra power of At is correct: Second order accuracy. A good method.

The website has codes for Euler and Backward Euler and Centered Euler. Those
methods are slow and steady with first order and second order accuracy. The test problems
give comparisons with faster methods like Runge-Kutta.
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3.5 Higher Accuracy with Runge-Kutta

The section on basic Euler methods contained two messages. First, those methods are
simple to understand (they follow a tangent line). Second, those methods are too simple
to give good or even adequate accuracy. This section brings major improvements. The
fourth order Runge-Kutta method is the basis for oded4S, the workhorse among all of
MATLAB’s codes for solving y’ = f(t,y).

Notice that this equation—linear or more likely nonlinear—involves first derivatives y’
and no higher derivatives. In case the original equation is y” = F(t,y,y’), introduce
y’ = yo as a new equation together with the original y5 = F(¢,y,y2). The unknowns
y1 = y and Yo = y' go into a vector y. The right hand sides 3 and F go into a vector f.

y‘i — fl(t._ylg--wyﬂ)

n equations for Y
n unknown y’s Yo = F(t,y1,y2)

In the middle is a system of two equations coming from y” = F'. On the right is a system
of n equations for the vector y of n unknowns. The n equations y’ = f(¢, y) start from n
initial conditions y;(0), .. ., ¥ (0), and f is a vector of n right hand sides.

We are ready for more accurate approximationsto y’ = f(t,y) andy’ = f(¢,y).

Improved Euler = Simplified Runge-Kutta

Euler’s first order method is 7 11 = Yn + Atfy. Let me describe an improvement to sec-
ond order accuracy, which means an error of size (At)2. This uses the Runge-Kutta idea :
Substitute Euler’s 3~ 1 once more into f. Use that output to get a better v 11t

s
Improved Euler ¥Yn41 —Yn 1 1 -
Simplified RK ~— aAp = gJ Gmitn) + 2 (tn+1,yn+1)— M

Let me show you the improvement for y’ = ay. In this case f(t,y) is ay. You can see y¥ as
a prediction of the next value y, 1 and yS as a correction :

1 1
yf =y, +aAty, goesinto yS =y, + 2@ Aty, + 2@ At(yn +a Atyy,). (2)
When that last term is multiplied out, we see the correct (At)? term included in 7 41t

1
Linear case y’ = ay ny =yn+alAtyn + §a2(At)2yn. 3)

We are following the tangent parabola starting at y,,. The parabola stays much closer to the
true y(t) curve than the tangent line. This improvement means a (At)? error at each step.
With stability, those errors produce a (At)? overall error after n = T'/ At steps.

The exact y(t + At) is e***y(t). Equation (3) has three correct terms of e~t. Euler
uses the slope y’ = f(t,y) only at the start of the time step, but the improvement y°
in equation (1) averages the slope at the start and the end of the step.

alAt
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Simplified Adams Method

Here is another way to achieve second order accuracy. Save and reuse the computed
value y,_1 at the previous time ¢ — At. With the right coefficients 3/2 and —1/2,
and essentially no extra work, we can again capture the term %(At)Qy " that Euler missed.

Adams-Bashforth A 3 1
Multistep method Yntr = Ynt 2Atf(t"’y”) QAtf(t"_l’ynfl)' @

All we do is to save each computed value of f,, for one more step. That number becomes the
frn—1 term in (4). The right hand side of (4) gives the correct y’ and y” terms :

3 1 3 1 1
Yn+ 5 Ay, — S Ay, yn+§Atyé—§At(yé—Aty,i’) =yn + Aty + E(At)zyé'

Each extra step back to yp_2, Yn—3, ... can increase the accuracy by 1. Those multi-step
methods compete with Runge-Kutta and eventually they win. But fourth order is still mostly
on the R-K side. One reason is that Adams needs a special effort to compute y_; before the
first step can begin. Runge-Kutta starts cold.

Runge-Kutta easily changes At from one step to the next. On the other hand, its four
evaluations of f(¢,y) could be expensive. Stiff systems need backward differences.

Fourth Order Runge-Kutta

The famous version of Runge-Kutta uses four evaluations of the right side. It starts at time
t, with solution yffK . It reaches time ¢, 11 = t, + At with approximate solution y,}ffl.
On the way, Runge-Kutta stops twice for k2 and k3 att, 12 = tn + %At.

At each step ki = f(tn,yn)/2

from t,, to t,, 41 k2 = f(tng1/2,yn + At ky)/2
compute ks = f(tny1j2,yn + At k2)/2
kl, k2, k3, k4 k4 = f(tn_H, Yn + 2At k3)/2

A combination of those four k’s gives fourth-order accuracy for yffl :

yf_f_{l — Yn 1
Runge-Kutta step = = g(kl + 2k + 2ks + k4) 5)

That short line is one of the most important formulas in this book. Among highly accu-
rate methods, Runge-Kutta is especially easy to code and run—probably the easiest there is.
Before each step, we decide on At. For the model problem i’ = y the R-K combination pro-
duces five correct terms in the series for e*t. You can see evaluations of f inside evaluations
of f, starting with k1 = f,,/2 = y/2:

ko= (y+5ry) ko=s(y+or (y+50y)) kams(y+at(y+Si(y+ 2
2—2?)‘ 2!1 3—2'9 2 Y 2.9’ 4—29 Y 2y 2?)‘

Problem 1 will simplify k; + 2ke + 2ks + k4. The new y,4; at the end of the step is
Ynt1=1+ At +--- + %(At)‘l)yn. All terms correct for e2* and 4™ order accuracy.
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The Stability of Runge-Kutta

To determine the limit of stability, apply the method to y’ = —y. The true solution y =
e 'y(0) will decrease. But if At is too large, the approximations y,, will increase in size.
The first example of possible instability was Euler’s method :

Euler instability for At > 2y, | = (1 — At)y, has |1 — At >1

When we apply the same test to Runge-Kutta, instability enters for At > 2.78:

1

27 + 181—11>1
6 24 8 i

1
RK instability for At > 3 1-3+ 59 =
The full infinite series would give the small number e~3. But these five terms give
a multiplier 11/8 that is larger than 1. If we take this over-large step n times, the
Runge-Kutta approximation y, = (11/8)™ will be enormous and completely wrong.
The more exact stability limit is a At < 2.78 for y’ = ay.

Example 1  Apply all three methods to dy/dt = y. The true solution y = et reaches

y=e=2.71828...attimet = 1. Try At = 0.2 and 0.1.

At = 0.2 yF yS yBRE At =0.1 yF yS yRK
t=20 1 1 1 t=20 1 1 1
1 1.10  1.1050  1.1051708
t=.2 1.20  1.220  1.221400 2 1.21  1.2210  1.2214026
3 1.33  1.3492  1.3498585
t=4 1.44 1.488 1.491818 A4 1.46  1.4909  1.4918242
.5 1.61  1.6474  1.6487206
t=.6 1.73 1.816  1.822106 .6 1.77  1.8204  1.8221180
7 1.95 2.0116 2.0137516
t=.8 2.07 2215  2.225521 .8 2.14  2.2228  2.2255396
9 2.36  2.4562  2.4596014

t=1 249 2703  2.718251 1.0 2.59  2.7141  2.7182797

The error in y° is divided by 4 (from .015 to .004 at t = 1) when At is cut in half.
This indicates second order accuracy for simplified Runge-Kutta, as the theory predicted.
The work is only doubled.

ode 45 and ODEPACK and More

Runge-Kutta is accurate and easy to code. The final value y,,+; can be made even better.
With six evalutions of f (not four) we can also compute a value Y, .1 that has fifth order
accuracy. By comparing with yffl we get an estimate of the error, which indicates whether
alarger At is possible or a smaller At is necessary. This is the heart of Matlab’s ode 45 code.
A good solver for stiff systems is ode 15s.

ODEPACK and SUNDIALS are open collections of Fortran 77 codes from Livermore
Laboratory. Those emphasize Adams methods (backward differences for stiff problems).
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Mathematica has DSolve for solution formulas and NDSolve for numerical solutions.
Wolfram Alpha is remakable for the very wide range of problems it solves. SciPy and SymPy
and Scilab are also free and high quality. See the web !

L I

= REVIEW OF THE KEY IDEAS =

. Higher order equations like y” + y’ +y = F(t,y,y’) reduce to y' = f(t,y).

Most finite difference methods prefer this first order system with y = (y,y’).

yE 't1 = Yn + At f,, improves to second order accuracy by also using f(t,+1, yE 1)

. Fourth order Runge-Kutta uses that substitution into f (¢, y) four times in each step.

. The Runge-Kutta error is divided by almost 24 = 16 when At is divided by 2.

Stability for 5’/ = ay requires aAt? > —2 and aAt® > —2 and aAtRE > —2.78.
Otherwise disaster for a < 0: the approximations Y,, will start to grow.

Problem Set 3.5

Runge-Kutta can only be appreciated by using it. A simple code is on math.mit.edu/dela.
Professional codes are ode 45 (in MATLAB) and ODEPACK and many more.

1

For y’ = y with y(0) = 1, show that simplified Runge-Kutta and full Runge-Kutta
give these approximations ; to the exact y(At) = e®t:

y$ =1+ At+ %(At)z yre =1+ At+ %(/-\t)2 + %(At)3 + 513(3*)"‘

With At = 0.1 compute those numbers y; and yf¥ and subtract from the exact
y = e®t. The errors should be close to (At)?/6 and (At)®/120.

Those values y; and yf*X have errors of order (At)3 and (At)®. Errors of this size at

every time step will produce total errors of size and at time 7', from IV
steps of size At = T'/n.

Those estimates of total error are correct provided errors don’t grow (stability).

dy/dt = f(t) with y(0) = 0 is solved by integration when f does not involve y.
From time ¢ = 0 to At, simplified Runge-Kutta approximates the integral of f(t):

N o f(At)
e 0
Yy = At <éf(0) + %f(At)) is close to y(At) = /f(t)dt

0 0 At



3.5. Higher Accuracy with Runge-Kutta 195
Suppose the graph of f(t) is a straight line as shown. Then the region is a trapezoid.
Check that its area is exactly y7. Second order means exact for linear f.

5 Suppose again that f does not involve y, so dy/dt = f(t) with y(0) = 0. Then full
Runge-Kutta from ¢ = 0 to At approximates the integral of f(t) by yft¥ :

YK = At (c1 £(0) + cof (At/2) + csf(AL)) . Find ¢, c2, c3.

At
This approximation to [ f(t) dt is called Simpson’s Rule. It has 4™ order accuracy.
0

6 Reduce these second order equations to first order systems y’ = f(t,y) for the vector
y = (y,y’). Write the two components of y# (Euler) and y7.

@ y"+yy'+y* =1 (b) my” +by’ + ky = cost
7 When my” + by’ + ky = cos t in Problem 6 is reduced to a vector equation y’ =
Ay + £ find y¥ and y7 from the initial vector y,,.
8  Fory’ = —yandyy = 1 the exact solution y = e~" is approximated at time At by 2
or 3 or 5 terms :

v =1-At ¢f = I—At—f—%(At)z yiE = 1—At+%(At)z—é(m)%%(mf‘

(a) With At = 1 compare those three numbers to the exact e~'. What error F ?

(b) With At = 1/2 compare those three numbers to e~1/2 15 the error near E/ /167

9 For y' = ay, simplified Runge-Kutta gives y5,; = (1 + aAt + 1(aAt)?)ys,.
This multiplier of y,, reaches 1 — 2 4+ 2 = 1 when aAt = —2: the stability limit.

(Computer experiment) For N = 1,2,...,10 discover the stability limit L = Ly
when the series for e~ L is cut off after N + 1 terms:

1 1 1
1-L+-L>—2L%+ ...+ —L"|=1.
Tkl N

We know L = 2 for N =1 and N = 2. Runge-Kutta has L = 2.78 for N = 4.
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® CHAPTER 3 NOTES =

Proof that y’ = f(t, y) has a solution Functions yo, Y1, Y2, - . . approach y(t)
Section 3.1 stated a fact: dy/dt = f(t,y) has one solution starting from y(0), when f
is a good function: Assume f and df /dy are continuous at all points. Since we have no
formula for y (and we don’t expect one), how can we know that a solution exists ?
One good answer constructs y; from yo = y(0), then y, from y;, then y3 from yo, ...

dyn i
Equation —yd—;l = f(t,yn(t))  Solution yni; =1yo+ / f(s,yn(s))ds  (6)
0

Let me practice with y’ = y and y(0) = 1. The solution is e’. Take three steps to ys :
yvo =0 yi=uo Ys = U1 Y3 = Y2

2 2 3

y0 =1 m=14t p=l+t+o yp=li+tt+o+ o
The same construction of e’ was in Section 1.3. Now we go much further, to solve nonlinear

equations iy’ = f(t,y). The key idea is to compare y,,+1 — Y, With the previous ¥, — Yp_1.
Subtract equation (6) for y,, from equation (6) for y,, 41 :

Ynt1(t) = yn(t) :/O [£(s,yn(s)) = f(5,Yn—1(s))] ds. (7

When |8f/dy| < L, the difference | f(yn) — f(yn—1)| is not larger than Liyn, — yn_1l.

t
lyz —y1| < / Lly1 —yolds < Lt[yr — yo|max
Ot t ) L2t2
‘y?r - y2‘ < / L‘yQ _yl‘ds < / L t\lh - yolmax = '2—|y1 - y0|max
0 0

We are seeing Lt and L?t?/2 and next will be L33 /6. Those numbers L"t™/n ! approach
zero quickly because of n! If n is large and NV is larger, then

Lntn

lyn = Unl < lyny —yn-al +lyN—1 = yn—2] - lynsr — yn| S C—

This is what we need to know : the differences yn (t) — y» (t) approach zero. Cauchy showed
that the numbers y., (t) must approach a limit y(t). (Of course y,, 11 will approach the same
limit.) That limiting function y(¢) will be our desired solution :

t

Ynt1(t) = yo + /Of(s,yn(s))ds — y(t) =yo + /Of(s,y(s))ds. Theny’ = f(t,y).



Chapter 4

Linear Equations and Inverse
Matrices

4.1 Two Pictures of Linear Equations

The central problem of linear algebra is to solve a system of equations. Those equations are
linear, which means that the unknowns are only multiplied by numbers—we never see 2 or
x times y. Our first linear system is deceptively small, only “2 by 2.” But you will see how
far it leads :

Two equations x — 2y
Two unknowns 2r + y =

|
~

(1)

We begin a row at a time. The first equation * — 2y = 1 produces a straight line in the
zy plane. The point z = 1, y = 0 is on the line because it solves that equation. The
point z = 3, y = 1 is also on the line because 3 — 2 = 1. For x = 101 we find y = 50.

The slope of this line in Figure 4.1 is %, because y increases by 1 when z changes
by 2. But slopes are important in calculus and this is linear algebra !

YA

Figure 4.1: Row picture : The point (3, 1) where the two lines meet is the solution.

197
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The second line in this “row picture” comes from the second equation 2z + y = 7. You
can’t miss the intersection point where the two lines meet. The point x = 3,y = 1 lies on
both lines. It solves both equations at once. This is the solution to our two equations.

ROWS  The row picture shows two lines meeting at a single point (the solution).

Turn now to the column picture. I want to recognize the same linear system as a
“vector equation.” Instead of numbers we need to see vectors. If you separate the original
system into its columns instead of its rows, you get a vector equation :

; _ 5

Combination equals b T { :lz } +y [ I } = { ; ] =ihy 2)
This has two column vectors on the left side. The problem is to find the combination of
those vectors that equals the vector on the right. We are multiplying the first column by
2 and the second column by ¥, and adding vectors. With the right choices * = 3 and
y = 1 (the same numbers as before), this produces 3(column 1) + 1(column 2) = b.

COLUMNS  The column picture combines the column vectors on the left side
of the equations to produce the vector b on the right side.

6 =3 (column 1) 3
H

multiply by 3

column 2
2T B] column 1

]

—+
-2-1 0 1 2 3

Figure 4.2: Column picture : A combination 3 (column 1) + 1 (column 2) gives the vector b.

Figure 4.2 is the “column picture” of two equations in two unknowns. The left side
shows the two separate columns, and column 1 is multiplied by 3. This multiplication by a
scalar (a number) is one of the two basic operations in linear algebra :

Scalar multiplication 3 { é ] = [ é } .
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If the components of a vector v are v; and vy, then cv has components cv; and cvs.
The other basic operation is vector addition. We add the first components and the second
components separately. 3 — 2 and 6 + 1 give the vector sum (1, 7) as desired :

.. 3 -2 _ |1
Vector addition [G}ﬁ-[ ]}—[?}.

The right side of Figure 4.2 shows this addition. The sum along the diagonal is the vector
b = (1, 7) on the right side of the linear equations.

To repeat: The left side of the vector equation is a linear combination of the columns.
The problem is to find the right coefficients z = 3 and y = 1. We are combining scalar mul-
tiplication and vector addition into one step. That combination step is crucially important,
because it contains both of the basic operations on vectors : multiply and add.

Linear combination 3 1 + g e R
of the 2 columns 2 A ST B

Of course the solution z = 3,y = 1 is the same as in the row picture. I don’t know
which picture you prefer! Two intersecting lines are more familiar at first. You may like
the row picture better, but only for a day. My own preference is to combine column vectors.
It is a lot easier to see a combination of four vectors in four-dimensional space, than to
visualize how four “planes” might possibly meet at a point. (Even one three-dimensional
plane in four-dimensional space is hard enough. . .)

The coefficient matrix on the left side of equation (1) is the 2 by 2 matrix A:

. . 1 -2
Coefficient matrix A= [ 9 1 ] .
This is very typical of linear algebra, to look at a matrix by rows and also by columns.
Its rows give the row picture and its columns give the column picture. Same numbers,
different pictures, same equations. We write those equations as a matrix problem Av = b:

Matrix multiplies vector [ é _? } { ’ } = [ JT } .

The row picture deals with the two rows of A. The column picture combines the columns.
The numbers z = 3 and y = 1 go into the solution vector v. Here is matrix-vector multipli-
cation, matrix A times vector v. Please look at this multiplication Av !

Dot products with rows b 1 -2 :
Combination of columns - 2 1
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Linear Combinations of Vectors

Before I go to three dimensions, let me show you the most important operation on vectors.

We can see a vector like v = (3,1) as a pair of numbers, or as a point in the plane, or
as an arrow that starts from (0, 0). The arrow ends at the point (3, 1) in Figure 4.3.

153 O
column vector 3 arrow to (3,1)

Figure 4.3: The vector v is given by two numbers or a point or an arrow from (0, 0).

A first step is to multiply that vector by any number c. If ¢ = 2 then the vector is doubled
to 2v. If ¢ = —1 then it changes direction to —v. Always the “scalar” ¢ multiplies each

separate component (here 3 and 1) of the vector v. The arrow doubles the length to show 2v
and it reverses direction to show —v:

2v

we[3] -3 = e

column vectors arrows to (6,2) and (—3,—1)

Figure 4.4: Multiply the vector v = (3, 1) by scalars ¢ = 2 and —1 to get cv = (3¢, ¢).
If we have another vector w = (—1,1), we can add it to v. Vector addition v + w

can use numbers (the normal way) or it can use the arrows (to visualize v + w). The
arrows in Figure 4.5 go head to tail : At the end of v, place the start of w.

Figure 4.5: The sum of v = (3,1) and w = (—1,1) is v + w = (2, 2). This is also w + v.

Allow me to say, adding v + w and multiplying cv will soon be second nature. In
themselves they are not impressive. What really counts is when you do both at once.
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Multiply cv and also dw, then add to get the linear combination cv + dw.

Linear combination 2v + 3w 2 { ? ] +3[ _i } = { 2 ] 3

This is the basic operation of linear algebra ! If you have two 5-dimensional vectors like
v = (1,1,1,1,2) and w = (3,0,0,1,0), you can multiply v by 2 and w by 1. You
can combine to get 2v + w = (5,2,2,3,4). Every combination cv + dw is a vector in
the big 5-dimensional space R®.

I admit that there is no picture to show these vectors in R°. Somehow I imagine arrows
going to v and w. If you think of all the vectors cv, they form a line in R°. The line
goes in both directions from (0,0,0,0,0) because ¢ can be positive or negative or zero.

Similarly there is a line of all vectors dw. The hard but all-important part is to imagine
all the combinations cv + dw. Add all vectors on one line to all vectors on the other line,
and what do you get? It is a “2-dimensional plane” inside the big 5-dimensional space.
I don’t lose sleep trying to visualize that plane. (There is no problem in working with the
five numbers.) For linear combinations in high dimensions, algebra wins.

Dot Product of v and w

The other important operation on vectors is a kind of multiplication. This is not ordinary
multiplication and we don’t write vw. The output from v and w will be one number and it
is called the dot product v - w.

DEFINITION The dot product of v = (v1,v3) and w = (w3, w2) is the number v - w :
VW = viwy + vawa. 4)

The dot productof v = (3,1) andw = (—=1,1)isv - w = (3)(—1) + (1)(1) = —2.

Example 1  The column vectors (1,2) and (—2, 1) have a zero dot product:

Dot product is zero : i WEY B 8 R 949-0
Perpendicular vectors 2 o) X g

In mathematics, zero is always a special number. For dot products, it means that these two
vectors are perpendicular. The angle between them is 90°.

The clearest example of two perpendicular vectors is ¢ = (1,0) along the x axis and
7 = (0,1) up the y axis. Again the dot productis ¢ - j = 04+ 0 = 0. Those vectors z and j
form a right angle. They are the columns of the 2 by 2 identity matrix /.

The dot product of v = (3,1) and w = (1,2) is 5. Soon v - w will reveal the angle
between v and w (not 90°). Please check that w - v is also 5.
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Multiplying a Matrix A and a Vector v

Linear equations have the form Av = b. The right side b is a column vector. On the left side,
the coefficient matrix A multiplies the unknown column vector v (we don’t use a “dot” for
Av).  The all-important fact is that Awv is computed by dot products in the
row picture, and Av is a combination of the columns in the column picture.

I put those words “combination of the columns” in boldface, because this is an essential
idea that is sometimes missed. One definition is usually enough in linear algebra, but Av has
two definitions—the rows and the columns produce the same output vector Av.

The rules stay the same if A has n columns aq,...,a,. Then v has n components.
The vector Aw is still a combination of the columns, Av = via; + veas + - -+ + vpay.
The numbers in v multiply the columns in A. Let me start with n = 2.

(row 1)+ v

By rows Av = [ (row 2) - v

] By columns Awv = vy (column 1) + vo(column 2).

Example 2 In equation (3) I wrote “dot products with rows” and “combination of
columns.” Now you know what those mean. They are the two ways to look at Av :

Dot products with rows [ avy + by } % [ a } 43 [ b } )
= U . 12 J

Combination of columns cv +duvg

You might naturally ask, which way to find Av? My own answer is this: I compute by
rows and I visualize (and understand) by columns. Combinations of columns are truly funda-
mental. But to calculate the answer Awv, I have to find one component at a time.
Those components of Av are the dot products with the rows of A.

2 3 v1 | | 2v1+ 3w . 2 o 3
4 5| |w |7 4450 [T 4|25 |"

Singular Matrices and Parallel Lines

The row picture and column picture can fail—and they will fail together. For a 2 by 2 matrix,
the row picture fails when the lines from row 1 and row 2 are parallel. The lines don’t meet
and Av = b has no solution :

.

= 2 3 201 —3v2 =6 Parallel lines
o 4y, — 6vg =0 no solution

S

The row picture shows the problem and so does the algebra: 2 times equation 1 produces
4v; — 6vg = 12. But equation 2 requires 4v; — 6vy = 0. Notice that this line goes
through the center point (0, 0) because the right side is zero.
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How does the column picture fail? Columns 1 and 2 point in the same direction.
When the rows are “dependent”, the columns are also dependent. All combinations of
the columns (2,4) and (3, 6) lie in the same direction. Since the right side b = (6,0) is
not on that line, b is not a combination of those two column vectors of A. Figure 4.6 (a)
shows that there is no solution to the equation.

0l

5T 5T
) line of columns line of columns
4T |4
34
b not on line b is on line
2 4

1/ el [

W
N
w4
(@)

Figure 4.6: Column pictures (a) No solution (b) Infinity of solutions

Example 3 Same matrix A, now b = (6, 12), infinitely many solutions to Av = b

A= 2 3 2v; — 3vg = 6
T4 6 4v; — 6vp = 12 " ¢

In the row picture, the two lines are the same. All points on that line solve both equations.
Two times equation 1 gives equation 2. Those close lines are one line.

In the column picture above, the right side b = (6, 12) falls right onto the line of the
columns. Later we will say: b is in the column space of A. There are infinitely many ways
to produce (6, 12) as a combination of the columns. They come from infinitely many ways
to produce b = (0,0) (choose any c). Add one way to produce b = (6,12) = 3(2,4).

[S]=se[2]vae[ 2] [8]=s[2]+o[ 3] @

The vector v, = (3c,2c) is a null solution and v, = (3,0) is a particular solution.
Avy, equals zero and Av, equals b. Then A(v, + v,,) = b. Together, v, and v,, give the
complete solution, all the ways to produce b = (6,12) from the columns of A:

Complete solution to Av = b Ycomplete = Vp + v, = [ 3 ] + [ 3§ ] . @)
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Equations and Pictures in Three Dimensions

In three dimensions, a linear equation like x +y+ 2z = 6 produces a plane. The plane would
go through (0,0,0) if the right side were 0. In this case the “6” moves us to a
parallel plane that misses the center point (0, 0, 0).

A second linear equation will produce another plane. Normally the two planes meet in
a line. Then a third plane (from a third equation) normally cuts through that line at a point.
That point will lie on all three planes, so it solves all three equations.

This is the row picture, three planes in three—dimensional space. They meet at the
solution. One big problem is that this row picture is hard to draw. Three planes are too
many to see clearly how they meet (maybe Picasso could do it).

The column picture of Av = b is easier. It starts with three column vectors in three-
dimensional space. We want to combine those columns of A to produce the vector
v1(column 1) + va(column 2) + vs(column 3) = b. Normally there is one way to do
it. That gives the solution (v7, ve, v3) — which is also the meeting point in the row picture.

I want to give an example of success (one solution) and an example of failure (no solu-
tion). Both examples are simple, but they really go deeply into linear algebra.

Example 4 Invertible matrix A, one solution v for any right side b.

1 0 0 U1 1
Av=2> is —1 1 0 g = 3 (8)
0 -1 1 U3 5

This matrix is lower triangular. It has zeros above the main diagonal. Lower triangular
systems are quickly solved by forward substitution, top to bottom. The top equation gives
v1, then move down. First v; = 1. Then —v; + vy = 3 gives vy = 4. Then —vy + v3 = 5
gives vg = 9.

Figure 4.7 shows the three columns a;, a2, as. When you combine them with 1,4,9
you produce b = (1,3,5). In reverse, v = (1,4,9) must be the solution to Av = b.

o

asz =

1 0
a; = -1 as = 1
0 1 1

Figure 4.7: Independent columns a4, az, ag not in a plane. Dependent columns ¢, c2, €3
are three vectors all in the same plane.
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Example 5 Singular matrix: no solution to Cv = b or infinitely many solutions
(depending on b).
wy — wg = b1 1 0 -1 un 1 0 1
—wi + woe = by -1 1 0 we | = |3 or [0] or 21. (9
—Wsa + wg = b3 0 -1 1 ws 5 0 -3

This matrix C'is a “circulant.” The diagonals are constants, all 1’s or all 0’s or all —1’s. The
diagonals circle around so each diagonal has three equal entries. Circulant matrices will be
perfect for the Fast Fourier Transform (FFT) in Chapter 8.

To see if Cw = b has a solution, add those three equationsto get 0 = by + by + bs.

Left side (w1 — w3)+ (w1 + w2) + (—wz + w3 ) =0. (10)

Cw = b cannot have a solution unless 0 = by + by + bs. The components of b = (1, 3,5)
do not add to zero, so Cw = (1, 3, 5) has no solution.

Figure 4.7 shows the problem. The three columns of C lie in a plane. All combina-
tions C'w of those columns will lie in that same plane. If the right side vector b is not
in the plane, then Cw = b cannot be solved. The vector b = (1,3,5) is off the plane,
because the equation of the plane requires b; + by + b3 = 0.

Of course Cw = (0,0,0) always has the zero solution w = (0,0,0). But when the
columns of C' are in a plane (as here), there are additional nonzero solutions to Cw = 0.
Those three equations are w; = ws and wy; = wy and wy = ws. The null solutions
are w,, = (¢, ¢, ¢). When all three components are equal, we have Cw,, = 0.

The vector b = (1,2, —3) is also in the plane of the columns, because it does have
b1 + bz + b3 = 0. In this good case there must be a particular solution to Cw, = b.
There are many particular solutions w),, since any solution can be a particular solution.
I will choose the particular w,, = (1, 3,0) that ends in w3 = 0

" } (1) —(1] ; 1 The complete solution is
w, = | — =
» 0 -1 1 0 _3 Weomplete = Wp T ANy Wn

Summary These two matrices A and C, with third columns ag and c3, allow me to
mention two key words of linear algebra: independence and dependence. This book will
develop those ideas much further. I am happy if you see them early in the two examples :

ai,as,as are independent A is invertible ~ Av = b has one solution v

c1, ca, c3 are dependent C is singular Cw = 0 has many solutions w,,

Eventually we will have n column vectors in n-dimensional space. The matrix will be
n by n. The key question is whether Av = 0 has only the zero solution. Then the columns
don’tlie in any “hyperplane.” When columns are independent, the matrix is invertible.
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Problem Set 4.1

Problems 1-8 are about the row and column pictures of Av = b.

1

With A = I (the identity matrix) draw the planes in the row picture. Three sides of a
box meet at the solution v = (z,y, z) = (2,3,4):

le +0y+0z=2 1 0 0 4] 2
Oz + 1y +0z=3 or 01 0 y | =13
0z+0y+1z=4 0 0 1 z 4

Draw the four vectors in the column picture. Two times column 1 plus three times
column 2 plus four times column 3 equals the right side b.

If the equations in Problem 1 are multiplied by 2, 3, 4 they become DV = B:

204+ 0y+0z= 4 2 00 T 4
0z4+3y+4+0z= 9 or DV=|0 3 O yl=1] 9| =8B
Oz + 0y + 4z = 16 0 0 4 z 16

Why is the row picture the same? Is the solution V' the same as v? What is changed
in the column picture—the columns or the right combination to give B?

If equation 1 is added to equation 2, which of these are changed: the planes in the row
picture, the vectors in the column picture, the coefficient matrix, the solution? The
new equations in Problem 1 wouldbe x =2,z +y = 5, 2 = 4.

Find a point with z = 2 on the intersection line of the planes x + y + 3z = 6 and
x — y + z = 4. Find the point with z = 0. Find a third point halfway between.

The first of these equations plus the second equals the third:

r+ y+ z2=2
T+2y+ z=3
2z 4+ 3y + 2z =5.

The first two planes meet along a line. The third plane contains that line, because
if x,y, z satisfy the first two equations then they also . The equations have
infinitely many solutions (the whole line L). Find three solutions on L.

Move the third plane in Problem 5 to a parallel plane 2z + 3y + 2z = 9. Now the three
equations have no solution—why not? The first two planes meet along the line L, but
the third plane doesn’t that line.

In Problem 5 the columns are (1,1,2) and (1,2,3) and (1, 1,2). This is a “singular
case” because the third column is . Find two combinations of the columns that
give b = (2, 3,5). This is only possible for b = (4,6, ¢) if ¢ =
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8 Normally 4 “planes” in 4-dimensional space meet at a . Normally 4
vectors in 4-dimensional space can combine to produce b. What combination
of (1,0,0,0), (1,1,0,0), (1,1,1,0), (1,1,1,1) produces b = (3,3,3,2)?

Problems 9-14 are about multiplying matrices and vectors.

9 Compute each Ax by dot products of the rows with the column vector:

@ | -2 3 1 2 (b)
R 3 01 2 1 1
001 2 2

10  Compute each Az in Problem 9 as a combination of the columns:

1 2 4
9(a)becomes Ax=2|-2|+2| 3 |+3]| 1 | =
—4 1 2

How many separate multiplications for Az, when the matrix is “3 by 3”?

11 Find the two components of Az by rows or by columns:
3
2 3|4 d 3 6 2 and 1 2 4 1
5 1) (2] ™ |6 12]|-1 2 0 1],

12 Multiply A times « to find three components of Ax:

0 01 x 21 3 1 2 1 1
01 0 Y and 1 2 3 1 and 1 2 [ 1 } .
1 00 z 3 3 6 -1 3 3
13 (a) A matrix with m rows and n columns multiplies a vector with compo-
nents to produce a vector with components.

(b) The planes from the m equations Az = b are in -dimensional space. The
combination of the columns of A is in -dimensional space.

14 Write 2z + 3y + z + 5t = 8 as a matrix A (how many rows?) multiplying the column
vector ¢ = (x,y, z,t) to produce b. The solutions « fill a plane or “hyperplane”
in 4-dimensional space. The plane is 3-dimensional with no 4D volume.

Problems 15-22 ask for matrices that act in special ways on vectors.

15 (a) Whatis the 2 by 2 identity matrix? I times [ | equals [J].

(b) What is the 2 by 2 exchange matrix? P times [;] equals [,{]
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16 (a) What 2 by 2 matrix R rotates every vector by 90° ? R times [?] is [ o ]

—X

(b) What 2 by 2 matrix R? rotates every vector by 180° ?

17  Find the matrix P that multiplies (z,y, z) to give (y, z,z). Find the matrix @ that
multiplies (y, z, ) to bring back (z,y, z).

18  What 2 by 2 matrix F subtracts the first component from the second component ?
What 3 by 3 matrix does the same ?

E[}}:{g} and Elbs|=]2
7 7 7

19 What 3 by 3 matrix E multiplies (z,y, z) to give (z,y, 2 + ) ? What matrix £~}
multiplies (z,y, z) to give (z,y,z — ) ? If you multiply (3,4,5) by E and then
multiply by E~1, the two results are ( ) and (

20 What 2 by 2 matrix P, projects the vector (z,y) onto the x axis to produce (z,0) ?
What matrix P, projects onto the y axis to produce (0,y) ? If you multiply (5,7)
by P; and then multiply by P», you get ( ) and ( ).

21 What 2 by 2 matrix R rotates every vector through 45° ? The vector (1,0) goes
to (v/2/2,v/2/2). The vector (0,1) goes to (—v/2/2,+/2/2). Those determine the
matrix. Draw these particular vectors in the 2y plane and find R.

22 Write the dot product of (1,4,5) and (z,y, z) as a matrix multiplication Av. The
matrix A has one row. The solutions to Av = 0 lie on a perpendicular to the
vector . The columns of A are only in -dimensional space.

23 In MATLAB notation, write the commands that define this matrix A and the column
vectors v and b. What command would test whether or not Av = b ?

1 2 5 1
=lsi] o e[2] el
24 If you multiply the 4 by 4 all-ones matrix A = ones(4) and the column v = ones(4,1),

what is Axv ? (Computer not needed.) If you multiply B = eye(4) + ones(4) times
w = zeros(4,1) + 2x«ones(4,1), what is Bxw ?

Questions 25-27 review the row and column pictures in 2, 3, and 4 dimensions.

25 Draw the row and column pictures for the equations z — 2y = 0, x + y = 6.

26  For two linear equations in three unknowns z, y, z, the row picture will show (2 or 3)
(lines or planes) in (2 or 3)-dimensional space. The column picture is in (2 or 3)-
dimensional space. The solutions normally lieona

27  For four linear equations in two unknowns z and y, the row picture shows four
The column picture is in -dimensional space. The equations have no solution
unless the vector on the right side is a combination of
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28

29

30

31

32

Challenge Problems

Invent a 3 by 3 magic matrix M3 with entries 1,2,...,9. All rows and columns
and diagonals add to 15. The first row could be 8,3,4. What is M3 times (1,1,1) ?
What is My times (1, 1,1, 1) if a 4 by 4 magic matrix has entries 1,...,16 ?

Suppose u and v are the first two columns of a 3 by 3 matrix A. Which third columns
w would make this matrix singular ? Describe a typical column picture of Av = b in
that singular case, and a typical row picture (for a random b).

Multiplying by A is a “linear transformation”. Those important words mean:

If w is a combination of v and v, then Aw is the same combination of Aw and Awv.
It is this “linearity” Aw = cAu + dAwv that gives us the name linear algebra.

Ifu= [ é ] and v = [ (1) ] then Au and Av are the columns of A.

Combine w = cu + dv. If w = [ 2 J how is Aw connected to Au and Av ?

7
A 9by9 Sudoku matrix S has the numbers 1,...,9 in every row and column, and
in every 3 by 3 block. For the all-ones vector v = (1,..., 1), whatis Sv ?

A better question is: Which row exchanges will produce another Sudoku matrix ?
Also, which exchanges of block rows give another Sudoku matrix ?

Section 4.5 will look at all possible permutations (reorderings) of the rows. I see
6 orders for the first 3 rows, all giving Sudoku matrices. Also 6 permutations of the
next 3 rows, and of the last 3 rows. And 6 block permutations of the block rows ?

Suppose the second row of A is some number c times the first row :

a b
s [ ca cb ] '
Then if a # 0, the second column of A is what number d times the first column ?

A square matrix with dependent rows will also have dependent columns. This is
a crucial fact coming soon.
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4.2 Solving Linear Equations by Elimination

This section explains a systematic way to solve linear equations—the best way we know.
The method is called “elimination”, and you can see it in this 2 by 2 example. Before
elimination, x and y appear in both equations. After elimination, the first unknown x has
disappeared from the second equation 5y = 5.

r—2y =1 (multiply equation1 by 2) After -

20 + y=T  (subtract to eliminate 2x ) GO =95

The new equation 5y = 5 instantly gives y = 1. Substituting y = 1 back into the first
equation leaves  — 2 = 1. Therefore z = 3 and the solution (z,y) = (3, 1) is complete.

Elimination produces an upper triangular system—this is the goal. The nonzero co-
efficients 1, —2,5 form a triangle. That system is solved from the bottom upwards, first
y = 1 and then = = 3. This quick process is called back substitution. It is used for upper
triangular systems of any size, after elimination produces a triangle.

Important point: The original equations have the same solution z = 3 and y = 1. Before
and after elimination, the lines meet at the same point (3, 1). Every step worked with both
sides of correct equations.

The step that eliminated « from equation 2 is the fundamental operation in this chapter.
We use it so often that we look at it closely :

To eliminate 2x : Subtract a multiple of equation 1 from equation 2.

Two times z — 2y = 1 gives 2z — 4y = 2. When this is subtracted from 2z +y = 7,
the right side becomes 7 — 2 = 5. The main point is that 2z cancels 2z. The system
becomes triangular.

Ask yourself how that multiplier £ = 2 was found. The first equation contains 1z. So the
first pivot was 1 (the coefficient of z). The second equation contains 2z, so the multiplier
was 2. Then subtraction 22 — 22 produced the zero and the triangle.

You will see the multiplier rule if I change the first equation to 3z — 6y = 3.
(Same straight line but the first pivot becomes 3.) The correct multiplier is now ¢ = %
To find that multiplier, divide the coefficient “2” to be eliminated by the pivot “3”:

8z —6y=3  Multiply equation 1 by 2 3z — 6y =3
2c+y =7 Subtract from equation 2 5y = 5.
The final system is triangular and the last equation still gives y = 1. Back substitution

produces 3z — 6 = 3 and 3z = 9 and x = 3. We changed the numbers but not the lines
or the solution. Divide by the pivot to find that multiplier £ = % :

Pivot = first nonzero in the row that does the elimination
Multiplier = (entry to eliminate) divided by (pivot)
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The new second equation starts with the second pivot, which is 5. We would use it to
eliminate y from the third equation if there were one. To solve n equations we want n
pivots. The pivots are on the diagonal of the triangle after elimination.

You could have solved those equations for z and y without reading this book. It is an
extremely humble problem, but we stay with it a little longer. Even for a 2 by 2 system,
elimination might break down. By understanding the possible breakdown (when we can’t
find a full set of pivots), you will understand the whole process of elimination.

Breakdown of Elimination

Normally, elimination produces the pivots that take us to the solution. But failure is possible.
At some point, the method might ask us to divide by zero. We can’t do it. The process has to
stop. There might be a way to adjust and continue—or failure may be unavoidable.

Example 1 fails with no solution to Oy = 5. Example 2 fails with foo many solutions to
Oy = 0. Example 3 succeeds by exchanging the equations.

Example 1  Permanent failure with no solution. Elimination makes this clear :

xr—2y=1  Subtract 2 times z—2y=1
2z —4y =7  eqn. 1 fromeqn. 2 0y = 5.

There is no solution to 0y = 5. This system has no second pivot. (Zero is never allowed as a
pivot!) If there is no solution, elimination discovers that fact by reaching an
impossible equation like Oy = 5.

The row picture of failure shows parallel lines—which never meet. The column picture
shows the two columns (1,2) and (—2, —4) in the same direction. All combinations of the
columns lie along a line. But the column from the right side is in a different direction (1, 7).
No combination of the columns can produce this right side—therefore no solution.

When we change the right side from (1,7) to (1,2), failure shows as a whole line of
solution points. Instead of no solution, Example 2 changes to infinitely many solutions.

Example 2  Failure with infinitely many solutions. Change b = (1,7) to (1,2).

x—2y=1  Subtract 2 times x—2y=1 Too few pivots
2z —4y =2  eqn. 1 fromeqn. 2 0y =0 Too many solutions

Every y satisfies Oy = 0. There is really only one equation x — 2y = 1. The unknown y is
“free”. After y is freely chosen, z is determined as x = 1 + 2y. I prefer to see a particular
solution v, = (1,0) and a line of null solutions v, = c(2,1)inv = v, + vy,

T 1
Complete solution l: :l = {
Y 0

2
+c l:lJ = particular v, + null v,,. (D)

In the row picture, the parallel lines have become the same line. Every point (z,y) on that
line satisfies both equations.
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In the column picture, b = (1, 2) is now the same as column 1. So we can choose z = 1
and y = 0. We can also choose x = 0 and y = —%; column 2 times —% equals b. Every
(z,y) that solves the row problem also solves the column problem.

Failure For n equations we do not get n pivots. The rows combine into a zero row.

Success We do get n pivots. But we may have to exchange the . equations.

Elimination can go wrong in a third way—but this time it can be fixed. Suppose the first
pivot position contains zero. We refuse to allow zero as a pivot. When the first equation has
no term involving , we can exchange it with an equation below :

Example 3  Temporary failure (zero in pivot ). A row exchange produces two pivolts

Oz +2y=4 Exchange the 3z—-2y=5
3r—2y=5 two equations 2y =4.

The new system is already triangular. This small example is ready for back substitution. The
last equation gives y = 2, and then the first equation gives x = 3. The row picture is normal
(two intersecting lines). The column picture is also normal (column vectors not in the same
direction). The pivots 3 and 2 are normal—but a row exchange was required.

Examples 1 and 2 are singular—there is no second pivot. Example 3 is nonsingular—
there is a full set of pivots and exactly one solution. Singular equations have no solution or
infinitely many solutions. Pivots must be nonzero because we have to divide by them.

Three Equations in Three Unknowns

To understand Gaussian elimination, you have to go beyond 2 by 2 systems. Three by three
is enough to see the pattern. For now the matrices are square—an equal number of rows
and columns. Here is a 3 by 3 system, specially constructed so that all steps lead to whole
numbers and not fractions :

2r +4y — 22 =2
dx+9y —32z=38 (2)
—2x—-3y+T72=10

What are the steps ? The first pivot is the boldface 2 (upper left). Below that pivot we want
to eliminate the 4. The first multiplier is the ratio 4/2 = 2. Multiply the pivot equation by
£21 = 2 and subtract. Subtraction removes the 4z from the second equation :

Step 1 Subtract 2 times equation 1 from equation 2. This leaves y + z = 4.

We also eliminate —2x from equation 3, still using the first pivot. The quick way is to add
equation 1 to equation 3. Then 2x cancels —2x. We do exactly that, but the rule in this book
is to subtract rather than add. The systematic pattern has multiplier /3, = —2/2 = —1.
Subtracting —1 times an equation is the same as adding :

Step 2 Subtract —1 times equation 1 from equation 3. This leaves y + 5z = 12.
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The two new equations involve only y and z. The second pivot (in boldface) is 1 :

. ly+1z=4
x is eliminated ly+ 5z =12
We have reached a 2 by 2 system. The final step eliminates y to make it 1 by 1:

Step 3 Subtract equation 2pew from 3pew. The multiplieris 1/1 = 1. Then 4z = 8.

The original Av = b has been converted into an upper triangular Uv = c:

2+ 4y — 22 =2 Av=0»> 2c +4y —22=2
dr+9y —32=28 has become ly+1z=4 3)
—2r—3y+7z2=10 Uv=c 4z = 8.

The goal is achieved—forward elimination is complete from A to U. The pivots are
2,1,4 on the diagonal of U. The pivots 1 and 4 were hidden in the original system.
Elimination brought them out. Uv = c is ready for back substitution, which is quick :

(42 =8 gives 2=2) (y+2z=4 gives y=2) (equation 1 gives x = —1)

The solution is (z,y,z) = (—1,2,2). The row picture has three planes from the three
equations. All the planes go through this solution. This picture is not easy to draw (it is
totally impossible for larger systems).

The column picture shows a combination Av of column vectors producing the right side
b. The coefficients in that combination are —1, 2, 2 (the solution) :

2 4 -2 2
Av=(-1)| 4|+2| 9|+2|-3]| equals | 8| =b. (4)
-2 -3 7 10

The numbers z, y, z multiply columns 1, 2, 3 in Av = b and also in the triangular Uv = c.

For a 4 by 4 problem, or an n by n problem, elimination proceeds the same way.
Here is the whole idea, column by column from A to U, when elimination succeeds.

Column 1. Use the first equation to create zeros below the first pivot.
Column 2. Use the new equation 2 to create zeros below the second pivot.

Columns 3 to n. Keep going to find all n pivots and the triangular U.

xT T
* )

After column 2 we have We want U =

cocoasg
ooy 8
8 8 8 8
8 8 8 8
8 8 8
8 8 8 8

The result of forward elimination is an upper triangular system. The matrix will be
nonsingular (= invertible) if and only if there is a full set of n pivots (never zero!).
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Here is a final example to show the original Av = b, the triangular system Uv = ¢, and
the solution v = (z, y, z) from back substitution :

T+ y+ z2=6 T+y+2=6 T 3 Back
r+2y+22=9  Forward y+2=3 yl =12 Back
x+2y+32z=10 Forward z=1 z 1

All multipliers are 1. All pivots are 1. All planes meet at the solution v = (3,2,1).
The columns of A combine with coefficients 3, 2, 1 to give b = (6,9, 10):

I. & #l 3 1 1 1 6
Av=| 1 2 2 2| =311 ]|4+2|2 |41 2| = 9
1. 23 1 2 3 10

The numbers 6,9, 10 are dot products. The first number 6 is the dot product of the
firstrow (1,1,1) withw = (3,2,1).

Question What coefficient of z in equation 3 would make the system singular ?
Answer The third pivot would drop from 1 to 0 if the original 3z dropped to 2z. Then the
planes in the row picture have no point in common.

There is no solution to the new Av = b. The three columns in the column picture
would lie in the same plane, and b = (6,9, 10) is not in that plane. So b will not be a
combination of the columns, if the third column becomes (1,2,2). In this example
column 3 becomes the same as column 2—useless, we need “independent” columns !

Question What coefficient of y in equation 2 would become 0 in the first elimination step ?
Would the system become singular or not ?

Answer Change equation 2 to z + y + 2z = 7 (for example). The coefficient of y
is now 1. Subtracting equation 1 leaves Oy + z = 3. Now we can exchange equations
2 and 3. This system is nonsingular. No problem except equations in the wrong order.

= REVIEW OF THE KEY IDEAS =

1. A linear system Av = b becomes upper triangular (Uv = ¢) by elimination.

2. We subtract ¢;; times equation j from equation 4, to make the (¢, j) entry zero.

3. The multiplier is £;; = 5 1L t[())isl)ltnillllnf;?vly O

. Pivots can not be zero !
4. A zero in the pivot position can be exchanged if there is a nonzero below it.
5. Back substitution solves the upper triangular system (bottom to top).

6. When breakdown is permanent, the system has no solution or infinitely many.
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Problem Set 4.2

Problems 1-10 are about elimination on 2 by 2 systems.

1

What multiple ¢35, of equation 1 should be subtracted from equation 2 ?

204+ 3y =1
10z + 9y = 11.

After this step, solve the triangular system by back substitution, y before x. Verify that
x times (2, 10) plus y times (3,9) equals (1,11). If the right side changes to (4, 44),
what is the new solution ?

If you find solutions v and w to Av = b and Aw = ¢, what is the solution u to
Au = b+ ¢? What is the solution U to AU = 3b + 4¢? (We saw superposi-
tion for linear differential equations, it works in the same way for all linear equations.)

What multiple of equation 1 should be subtracted from equation 2 ?

2z —4y =6
—x+ 5y =0.

After this elimination step, solve the triangular system. If the right side changes to
(—6,0), what is the new solution ?

What multiple ¢ of equation 1 should be subtracted from equation 2 to remove cx ?

ax+by=f
cx+dy =g.

The first pivot is a (assumed nonzero). Elimination produces what formula for the
second pivot ? The second pivot is missing when ad = bc: that is the singular case.

Choose a right side which gives no solution and another right side which gives
infinitely many solutions. What are two of those solutions ?

3z + 2y =10
6x + 4y =

Singular system

Choose a coefficient b that makes this system singular. Then choose a right side g that
makes it solvable. Find two solutions in that singular case.

2z + by = 16
4x 4+ 8y = g.
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7

10

11

For which a does elimination break down (1) permanently or (2) temporarily ?

ax + 3y = -3
4x 4+ 6y = 6.

Solve for x and y after fixing the temporary breakdown by a row exchange.

For which three numbers k does elimination break down? Which is fixed by a row
exchange ? In these three cases, is the number of solutions 0 or 1 or co ?

kx+3y= 6
3z + ky = —6.

What test on b; and by decides whether these two equations allow a solution ? How
many solutions will they have ? Draw the column picture for b = (1,2) and (1, 0).

3z — 2y = b1
6x — 4y = bs.
In the zy plane, draw the lines x +y = 5 and = + 2y = 6 and the equation y =

that comes from elimination. The line 5z — 4y = ¢ will go through the solution of
these equationsifc =

(Recommended) A system of linear equations can’t have exactly two solutions. If
(z,y) and (X,Y") are two solutions to Av = b, what is another solution ?

Problems 12-20 study elimination on 3 by 3 systems (and possible failure).

12

13

14

Reduce this system to upper triangular form by two row operations:

20+3y+2 =38
Eliminate z — dx+Ty + 5z = 20
Eliminate y — —2y+22=0.

Circle the pivots. Solve by back substitution for z, y, .
Apply elimination (circle the pivots) and back substitution to solve
2z — 3y =5}

4 —dy+ z2=7
2z — y—3z=>5.

List the three row operations : Subtract times row from row

Which number d forces a row exchange ? What is the triangular system (not singular)
for that d ? Which d makes this system singular (no third pivot) ?
2c4+5y+2=0
dr+dy+z2=2
y—z=23.
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15

16

17

18

19

20

21

22

23

Which number b leads later to a row exchange ? Which b leads to a singular problem
that row exchanges cannot fix ? In that singular case find a nonzero solution z, y, 2.

x+ by =0
z—2y—2=0
y+z=0.

(a) Construct a 3 by 3 system that needs two row exchanges to reach a triangular
form.

(b) Constructa 3 by 3 system that needs a row exchange for pivot 2, but breaks down
for pivot 3.

If rows 1 and 2 are the same, how far can you get with elimination (allowing row
exchange) ? If columns 1 and 2 are the same, which pivot is missing ?

Equal 2z - y+2=0 2c+2y+2=0 Equal
rows 2z—y+z=0 4dr +4y+2z=0 columns
dr+y+z=2 6x + 6y + 2z = 2.

Construct a 3 by 3 example that has 9 different coefficients on the left side, but
rows 2 and 3 become zero in elimination. How many solutions to your system with
b = (1,10, 100) and how many with b = (0,0, 0) ?

Which number g makes this system singular and which right side ¢ gives it infinitely
many solutions ? Find the solution that has z = 1.
x+4y—2z=1
r+T7y—62==6
3y+qgz=t.
Three planes can fail to have an intersection point, even if no planes are parallel.

The system is singular if row 3 is a combination of the first two rows. Find a third
equation that can’t be solved together withz +y + 2z =0andx — 2y — 2z = 1.

Find the pivots and the solution for both systems (Av = b and Sw = b):

2z + y =0 2z -y =0
T+2y+ =z =0 —x+2y— =z =0
y+22+ t=0 — y+2z— t=0
z+2t=5 — z4+2t=05.

If you extend Problem 21 following the 1,2,1 pattern or the —1,2,—1 pattern,
what is the fifth pivot ? What is the nth pivot ? .S is my favorite matrix.

If elimination leads to z 4+ y = 1 and 2y = 3, find three possible original problems.
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24

25

26

27

28

29

30

31

For which two numbers a will elimination fail on A = [a ﬂ b4

For which three numbers a will elimination fail to give three pivots ?

a

3
A= 4| is singular for three values of a.
a

ISIERSI \V]

[0
a

Look for a matrix that has row sums 4 and 8, and column sums 2 and s :

Matrix — | ¢ b a+b=4 a+c=2
X d c+d=8 bt+d=s
The four equations are solvable only if s = . Then find two different matri-

ces that have the correct row and column sums. Extra credit: Write down the 4 by 4
system Av = (4,8,2,s) with v = (a,b, ¢,d) and make A triangular by elimination.

Elimination in the usual order gives what matrix U and what solution (z,v, 2) to
this “lower triangular” system ? We are really solving by forward substitution :

3z =3
6x + 2y =38
9z — 2y +2=09.

Create a MATLAB command A(2, : ) = ... for the new row 2, to subtract 3 times
row 1 from the existing row 2 if the matrix A is already known.

If the last corner entry of A is A(5,5) = 11 and the last pivot of A is
U(5,5) = 4, what differententry A(5,5) would have made A singular ?

Challenge Problems

Suppose elimination takes A to U without row exchanges. Then row i of U is a
combination of which rows of A? If Av =0,isUv =0?If Av =b,isUv =b?

Start with 100 equations Av = 0 for 100 unknowns v = (v1,...,v100). Suppose
elimination reduces the 100th equation to 0 = 0, so the system is “singular”.

(a) Elimination takes linear combinations of the rows. So this singular system has
the singular property : Some linear combination of the 100 rows is

(b) Singular systems Av = 0 have infinitely many solutions. This means that some
linear combination of the 100 columns is

(c) Inventa 100 by 100 singular matrix with no zero entries.

(d) For your matrix, describe in words the row picture and the column picture of
Av = 0. Not necessary to draw 100-dimensional space.
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4.3 Matrix Multiplication

We know how to multiply A times a column vector v. Now we want to multiply A times a
matrix B (matrix-matrix multiplication ). The rule is exactly what we would hope for:

Multiply A times each column of B to get a column of AB

The entry in row 4, column j of AB is (row z of A)-(column j of B)

If B has only one column (call it v), this is the same matrix-vector multiplication as before.
When B has n columns, so has AB. The rule for matrix sizes makes dot products possible.

Rule The number of columns in A must match the number of rows in B.

Figure 4.8 shows a typical (row 7) - (column j) in the matrix multiplication AB.

-* * b1 * ok *-

* *

bgj
i1 Qi ais o |x x (AB)y x % %
* o *
* *

bs;

Ais4by 5 Bis 5 by 6 ABis4by6

Figure 4.8: Here i = 2 and j = 3. Then (AB)23 is (row 2 of A) - (column 3 of B).

Let me say right away that normally AB is entirely different from BA. Those have
different shapes unless A and B are square and the same size. But even the top left corner
of B A has nothing to do with the top left corner of AB (and then BA # AB).

Top left (row 1 of B)-(column1lof A) # (row 1 of A)-(column 1 of B).

Example 1 Here A has two columns and B has two rows. We can multiply AB.

a b 1 0 1 a b a+bd
A2 x2B2x3=(4B)2x3 [c d] [0 1 1]:[(; d c+d]'
Column 3 of B is (1,1). Then column 3 of AB is A times (1,1).
Example 2 Here B is the 3 by 3 identity matrix (very special, always written B = I).

B = Identity matrix I L LU Ly
gy mal o 12 2 01 0]|=|122
= when sizes are rig 1 2 3 0 0 1 1 2 3

The first column of that answer is A times the first column (1, 0, 0) of B = I. This just
reproduces the first column of A. Each column of A is unchanged in AI.

Now put the identity matrix first, as in /B. Multiplication gives /B = B for every B
(including B = A). We have here an unusual case, when the order Al gives the same answer
as T A. If A is any square matrix and [ has the same size, then AT = I A = A.
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Example 3  Another special matrix is the inverse of A. That matrix B is written A~!:

1 1 1 2 -1 0 1 0 0
A times A7 lis I 1 2 2 -1 2 -1 |=]010
1 2 3 0 -1 1 0 0 1

The dot product of a row of A with a column of A=! is 1 or 0. A~! times A is also I.
To find that matrix A~!, I had to look ahead to Section 4.4—this is a long calculation.
We avoid computing A~! wherever possible, and so does any good linear algebra code.

The key fact about matrix multiplication is that (AB)C = A (BC). @)

To multiply three matrices A, B, C' you must keep them in order. But you can choose to
multiply AB first or BC first. Parentheses can be moved, and parentheses can be removed.

Example 4 Suppose A and C are 3 by 1 matrices ( those are column vectors ). Suppose B
is 1 by 3 (a row vector ). Compute and compare (AB)C' and A(BC).

Solution BC'is (1 x 3) times (3 x 1) = 1 x 1. One number d from one dot product :

aq C1 (I]d
A times BC as [b1 b2 b3] | €2 = | aod |. 2)
as c3 azd

On the other hand, AB is (3 x 1) times (1 x 3) = 3 x 3. This AB is a full-size matrix !

a1 (&1 alb] a1b2 a1b3 C1
AB times C ao [b1 b b3] co | = | agby agby asgbs co | . 3)
as c3 asb; aszba azbz | | c3

If you multiply that first row of AB times C, you will see a;d. Multiplying the other rows
by C' gives aod and azd. (AB)C in equation (3) equals A(BC) in equation (2).

The Laws for Matrix Operations

May I put on record six laws that matrices do obey, while emphasizing an equation they
don’t obey ? The matrices can be square or rectangular, and the laws involving A + B are all
simple and all obeyed. Here are three addition laws :

A+ B =B+ A (commutative law)
c(A+ B) =cA+cB (distributive law)
A+ (B+C) =(A+B)+C  (associative law).

Three more laws hold for multiplication, but AB = BA is not one of them:
AB # BA (the commutative “law” is usually broken)

A(B+C)=AB+ AC (distributive law from the left)
(A+ B)C = AC + BC (distributive law from the right)

A(BC) = (AB)C (associative law for ABC) (parentheses not needed).
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When A and B are not square, AB is a different size from B A. These matrices can’t be
equal—even if both multiplications are allowed. For square matrices, almost any example
shows that AB is different from BA :

an=[1 ][0 o] =10 3] » ma= [ o] [V o]0 5]

It is true that AT = I A. All square matrices commute with I and also with ¢/. Only these

matrices ¢/ commute with all other matrices.
The law A(B + C) = AB + AC is proved a column at a time. Start with A(b + ¢) =
Ab + Ac for the first column. That is the key to everything—l/inearity. Say no more.

Powers of Matrices

Look at the special case when A = B = C = square matrix. Then (A times A2) is equal
to (A? times A). The product in either order is A®. The matrix powers AP follow the same
rules as numbers :

AP = AAA--- A (pfactors)  (AP)(AY) = APT  (AP)7 = APa,

Those are the ordinary laws for exponents. A% times A* is A7 (seven factors). A3 to
the fourth power is A'2? (twelve A’s). When p and q are zero or negative these rules still
hold, provided A has a “—1 power”—which is the inverse matrix A~'. Then A° = I is the
identity matrix (no factors).

For a number, ¢~ ! is 1 /a. For a matrix, the inverse is written A~L. (Itis never I /A.
But backslash A\ is allowed in MATLAB.) Every number has an inverse except a = 0.
To decide when A has an inverse is a central problem in linear algebra. This section is
like a Bill of Rights for matrices, to say when A and B can be multiplied and how.

Elimination Matrices

We now combine two ideas—elimination and matrices. The goal is to express all the steps
of elimination in the clearest possible way. You will see how to subtract a multiple ¢;; times
row j from row ¢—using a matrix F.

The column vector b is multiplied by the elimination matrix F :

1 0 0 by by
Subtract 20, from b, Eb=| -2 1 0 b | = | b2 —2by |. &)
0 0 1 b b3

Whatever we do to one side of Av = b, we do to the other side. Elimination is multiplying
both sides by E. On the left side, we see row operations.

1 0 0 row 1 row 1
FA= -2 1 0 row?2 [ = | row2 — 2rowl | . 5)
0 0 1 row 3 row 3
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E A will be our matrix after the first elimination step. The multiplier 2 was chosen to
produce 0 in the 2, 1 position (row 2, column 1). This matrix E should be named Es;
because it eliminates the original entry as; to leave zero.

The next step of elimination comes from a matrix E3; (producing zero in place of az;).
Then F3s produces zero in row 3, column 2, using a multiplier /35. Altogether, the three
steps from A to the upper triangular U come from three elimination matrices :

Elimination by matrices A becomes FE3zFE31F21 A =1U (upper triangular).

We do the same operations on the right side. F32 F'31 Fl21 b becomes the new right side vector
c. Then back substitution solves Uv = c.

Example 5 Choose the multiplier 57 = ¢/a to produce zero in Uz;, using E = Eb21:

EA:[—cl/a ?Hg Z]:[g d—-(i/a)b]:U' ©

Undo this elimination by adding ¢/a times row 1 of U to row 2 of U :

E_lU:{c}a 2][3 d—(i/a)bi]:[: Z]:A'

Thus U = EA and A = E~1U. Often we write this as A = LU.

Four Ways to Multiply AB

I will end this section by writing down four different ways to compute AB. All four ways
give the same answer. In the end we are doing the same calculations, but we are seeing those
steps in different orders.

1. (Rows of A) times (columns of B)  (dot products)

2. A times (columns of B) (matrix-vector multiplications)

3. (Rows of A) times B (vector-matrix multiplications )

4. (Columns of A) times (rows of B)  (add up n column-times-row matrices)
Let me look at the 1, 1 entry in the top corner of AB. The usual way is a dot product:

(rowlof A) - (columnlof B) = (AB)11 = anibiy +aizbar + -+ - +anbnr (7
Orders 2 and 3 give that same dot product in AB. Here is order 4, columns times rows :

all a11b11

(column1 of A)(row1 of B) = | a1 | [ bun b1z -] = . - (8)

The next column-times-row matrix is (column 2 of A)(row 2 of B). That starts with
a12b21 in the top left corner. We get a;;b;1 when column j of A multiplies row j of B.
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Adding these simple matrices will produce the correct dot product (the sum of a1;b;1) in the
top left corner—and in every entry of AB.

When A and B are n by n matrices, so is AB. It contains n? dot products. So it needs
n3 separate multiplications. For matrices of order n = 100 this is a million multiplications.
No problem, that may only take one second (on the computer).

When A is an m by n matrix and B is n by p, the product AB is m by p. It contains
mp dot products. So it needs mnp separate multiplications.

Matrices of order n = 10, 000 need a trillion (102) multiplications. Codes avoid mul-
tiplying full matrices whenever possible. And they watch especially for sparse matrices,
when many of the entries (almost all) are zero. The codes don’t waste time multiplying by
Zero.

Problem Set 4.3

Problems 1-16 are about the laws of matrix multiplication .

1 Ais3by 5, Bisbby 3, Cis5by 1, and D is 3 by 1. All entries are 1. Which of these
matrix operations are allowed, and what are the results ?

BA AB ABD DBA A(B+C).
2 What rows or columns or matrices do you multiply to find

(a) the third column of AB ?

(b) the first row of AB?

(c) the entry in row 3, column 4 of AB?
(d) the entry inrow 1, column 1 of CDE ?

3 Add AB to AC and compare with A(B + C):

1 5 0 2 3 1
A:[2 3] and B:[0 1] and C:[O OJ'

4 In Problem 3, multiply A times BC'. Then multiply AB times C.

5  Compute A2 and A3. Make a prediction for A® and A" :

1 b 2 2
A—{O 1} and A_[O 0].

6 Show that (A + B)? is different from A2 + 2AB + B?, when

1 2 1 0
A_[O OJ and B—[S OJ'

Write down the correct rule for (A + B)(A + B) = A% + + B2
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7

10

1

12
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True or false. Give a specific example when false :

(a) If columns 1 and 3 of B are the same, so are columns 1 and 3 of AB.
(b) If rows 1 and 3 of B are the same, so are rows 1 and 3 of AB.

(¢c) Ifrows 1 and 3 of A are the same, so are rows 1 and 3 of ABC.

(d) (AB)? = A2B2

How is each row of DA and F A related to the rows of A, when

3 0 101 _la b,
D:[O 5} and E[O 1] and A—[C d]'

How is each column of AD and AF related to the columns of A ?

Row 1 of A is added to row 2. This gives F A below. Then column 1 of E'A is added
to column 2 to produce (EA)F'. Notice E and F in boldface.

1 0 a b a b
EA:[I 1}[0 d}:[a—kc b—|—d]

P P BRI |

Do those steps in the opposite order, first multiply AF' and then E(AF). Compare
with (EA)F. What law is obeyed by matrix multiplication ?

Row 1 of A is added to row 2 to produce FA. Then F' adds row 2 of E'A to row 1.
Now F' is on the left, for row operations. The resultis F(EA):

11 a b 2a+c 2b+d
F(EA)_{O 1]{&—1—(; b+d}_{ a+ec b-{—d]'

Do those steps in the opposite order: first add row 2 to row 1 by F'A, then add row 1
of F'A to row 2. What law is or is not obeyed by matrix multiplication ?
(3 by 3 matrices) Choose the only B so that for every matrix A

(a) BA=4A

(b) BA = 4B (tricky)

(¢) BA hasrows 1 and 3 of A reversed and row 2 unchanged

(d) All rows of BA are the same as row 1 of A.

Suppose AB = BA and AC' = C'A for these two particular matrices B and C':

a b . 1 0 0 1
A_[c d] commutes with B—[O 0} and C_{() 0].

Prove that a = d and b = ¢ = 0. Then A is a multiple of I. The only matrices that
commute with B and C and all other 2 by 2 matrices are A = multiple of /.



4.3. Matrix Multiplication 225

13

14

15

16

Which of the following matrices are guaranteed to equal (A — B)?: A% — B2,
(B—A)?, A> —2AB + B2, A(A— B)— B(A— B), A2 — AB — BA + B??
True or false :

(a) If A? is defined then A is necessarily square.

(b) If AB and BA are defined then A and B are square.

(c) If AB and BA are defined then AB and B A are square.
(d) If AB= Bthen A=1.

If A is m by n, how many separate multiplications are involved when

(a) A multiplies a vector & with n components ?
(b) A multiplies an n by p matrix B ?

(c) A multiplies itself to produce A% ? Here m = n and A is square.

For A= [3Z3] and B = [} 3 4], compute these answers and nothing more :

(a) column?2 of AB (b) row?2of AB (c) row 2 of A?
(d) row 2 of A3.

Problems 17-19 use a;; for the entry in row 2, column j of A.

17

18

19

Write down the 3 by 3 matrix A whose entries are
(a) a;; = minimum of  and j (b) ay = (-1)"* (c) ai;=1i/j.

What words would you use to describe each of these classes of matrices? Give a
3 by 3 example in each class. Which matrix belongs to all four classes ?

(@) a;; =0if¢ #j (b) a;; =0ifi<y (© ai =a;
(d) ai; = ay;.

The entries of A are a;;. Assuming that zeros don’t appear, what is
(a) the first pivot?
(b) the multiplier ¢3; of row 1 to be subtracted from row 3 ?

(c) the new entry that replaces aso after that subtraction ?

(d) the second pivot?

Problems 20-24 involve powers of A.

20

Compute A2, A3, A* and also Av, A%v, A3v, A%v for

0200 "
{0 0 2 |
A=10900 2| 2 v=) ]

000 0 t
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21 Find all the powers A%, A%, .. .and AB, (AB)?,. .. for

I 1 0
A:[.5 '5] and B:[O _1},

22 By trial and error find real nonzero 2 by 2 matrices such that

A’=—-1 BC=0  DE=—ED (notallowing DE = 0).

23 (a) Find a nonzero matrix A for which A2 = 0.

(b) Find a matrix that has A% # 0 but 43 = 0.

24 By experiment with n = 2 and n = 3 predict A” for these matrices :

Alz[g ;] and AQZ[} }} and A;j:]:g g}

Problems 25-31 use column-row multiplication and block multiplication.

25  Multiply A times I using columns of A (3 by 3) times rows of I.

26  Multiply AB using columns times rows :

10 1
AB=|2 4 [‘:’gﬂz 2 ([330]+____ =___
| 2

27  Show that the product of two upper triangular matrices is always upper triangular:

T T T T x T
AB=1|0 z =x 0 z =z |=10
0 0 =z 0 0 =z 0 0 «x

Proof using dot products (Row-times-column)  (Row 2 of A)-(column 1 of B) = 0.
Which other dot products give zeros ?

Proof using full matrices (Column-times-row) Draw x’s and 0’s in (column 2 of A)
times (row 2 of B). Also show (column 3 of A) times (row 3 of B).

28 If Ais2by 3 withrows 1, 1, 1 and 2, 2, 2, and B is 3 by 4 with columns 1, 1, 1 and 2,
2,2 and 3, 3, 3 and 4, 4, 4, use each of the four multiplication rules to find AB :
(1) Rows of A times columns of B.  Inner products (each entry in AB)
(2) Matrix A times columns of B. Columns of AB
(3) Rows of A times the matrix B.  Rows of AB
(4) Columns of A times rows of B.  Outer products (3 matrices add to AB)
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29

30

31

32

33

34

35

Which matrices E»; and E3; produce zeros in the (2, 1) and (3, 1) positions of Fy; A
and E31 A?

2 1 0

A= -2 0 1

8 5 3

Find the single matrix £/ = Ej3; Fo; that produces both zeros at once. Multiply E'A.

Block multiplication produces zeros below the pivot in one big step :

1 0 a b a b .
EA_{—c/a I][c D]_[O D_cl/a}wuhvectorso,b,c.

In Problem 29, what are ¢ and D and what is the block D — ¢ Ya?

With i? = —1, the product of (A + iB) and (z + iy) is Az + iBx + iAy — By. Use
blocks to separate the real part without 7 from the imaginary part that multiplies 7 :

A -B x | | Ax— By | real part
? ? y | ? imaginary part

(Very important) Suppose you solve Av = b for three special right sides b

1 0 0
Avi = | 0 and Awvy = | 1 and Avy=| 0
0 0 1

If the three solutions v, v, v3 are the columns of a matrix X, what is A times X ?

If the three solutions in Question 32 are v; = (1,1,1) and v = (0,1,1) and
vs = (0,0, 1), solve Av = b when b = (3,5, 8). Challenge problem: What is A ?

Practical question Suppose A is m by n, B is n by p, and C' is p by q. Then
the multiplication count for (AB)C' is mnp + mpq. The same answer comes from
A times BC, now with mng + npq separate multiplications. Notice npq for BC.

(a) If Ais2by 4, Bis4 by 7, and C' is 7 by 10, do you prefer (AB)C or A(BC)?
(b) With N-component vectors, would you choose (uTv)w? or uT (vwT)?
(c) Divide by mnpq to show that (AB)C is faster whenn=! + ¢! <m~! +p~ 1L

Unexpected fact A friend in England looked at powers of a 2 x 2 matrix:

12 o | 7 10 3 | 37 54 4 | A B

A_[S 4] A _[15 22] a “[81 118] A= C D
He noticed that the ratios 2/3 and 10/15 and 54 /81 are all the same. This is true for
all powers. It doesn’t work for an n x n matrix, unless A is tridiagonal. One neat proof

is to look at the equal (1, 1) entries of A” A and AA™. Can you use that idea to show
that B/C = 2/3 in this example ?
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4.4 Inverse Matrices

Suppose A is a square matrix. We look for an “inverse matrix” A~! of the same size, so
that A~ times A equals I. Whatever A does, A~! undoes. Their product is the identity
matrix—which leaves all vectors unchanged, so A~! Av = v. But A~ might not exist.

What a matrix mostly does is to multiply a vector v. Multiplying Av = b by A~}
gives A=Y Av = A7'b. This is v = A~'b. The product A~!A is like multiplying by a
number and then dividing by that number. A number has an inverse if it is not zero—matrices
are more complicated and more interesting. The matrix A~ is called “A inverse.”

DEFINITION The matrix A is invertible if there exists a matrix A~ such that

AlA=] and AAV =1, (1)

Not all matrices have inverses. This is the first question we ask about a square matrix :
Is A invertible? We don’t mean that we immediately calculate A~!. In most problems
we never compute it! Here are six “notes” about A~1.

Note 1 A™' exists if and only if elimination produces n pivots (row exchanges
are allowed). Elimination solves Av = b without explicitly using the matrix A~!.

Note 2 The matrix A cannot have two different inverses. Suppose BA = I and also
AC = I. Then B = C, according to this “proof by parentheses” :

B(AC) =(BA)C gives BI=IC or B=C. (2)

This shows that a left-inverse B (multiplying from the left) and a right-inverse C' (multiplying
A from the right to give AC' = I) must be the same matrix.

Note 3  If A is invertible, the one and only solutionto Av = biswv = A 1b:
Multiply Av=b by A™'. Then v=A'4v=A"'b.

Note 4  (Important) Suppose there is a nonzero vector v such that Av = 0. Then
A cannot have an inverse. No matrix can bring 0 back to v.

If A is invertible, then Av = 0 can only have the zero solution v = A~10 = 0.

Note 5 A 2 by 2 matrix is invertible if and only if ad — bc is not zero:

2 by 2 Inverse {a b}_l_ 1 [ d —b]‘ 3)

Divide by ad — bc c d T ad—bc| —c a

This number ad — bc is the determinant of A. A matrix is invertible if its determinant is
not zero. A~! always involves a division by the determinant of A.
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Note 6 A diagonal matrix has an inverse provided no diagonal entries are zero :

d] ]-/dl
If A= then A™'= 3
d‘n. l/d'ﬂ-

Example 1  The 2 by 2 matrix A = [} 2] is not invertible. It fails the test in Note 5,
because ad — bc equals 2 — 2 = 0. It fails the test in Note 3, because Av = 0 when
v = (2, —1). It fails to have two pivots as required by Note 1.

Elimination turns the second row of this matrix A into a zero row.

The Inverse of a Product AB

For two nonzero numbers a and b, the sum a + b might or might not be invertible. The
numbers @ = 3 and b = —3 have inverses % and —%. Their sum a + b = 0 has no inverse.
But the product ab = —9 does have an inverse, which is 3 times —3.

For two matrices A and B, the situation is similar. It is hard to say much about the
invertibility of A + B. But the product AB has an inverse, if and only if the two factors
A and B are separately invertible (and the same size). The important point is that A~* and
B~! come in reverse order :

If A and B are invertible then so is AB. The inverse of a product AB is

(AB)~' = B-1A-1, @)

To see why the order is reversed, multiply AB times B~'A~!. Inside thatis BB~! = I:
Inverseof AB  (AB)(B™'A ') =AIA™'=AA' =1.

We moved parentheses to multiply BB~! first. Similarly B~*A~! times AB equals I.
This illustrates a basic rule of mathematics: Inverses come in reverse order. It is also
common sense : If you put on socks and then shoes, the first to be taken off are the

The same reverse order applies to three or more matrices :

Reverseorder (ABC)'=C"'B'A-1. (5)

Example 2 Inverse of an elimination matrix. If E subtracts 5 times row 1 from row 2,
then E~! adds 5 times row 1 to row 2

1 00
gf‘}l:ﬁ:ts 0| and E7'= |5 1 0
1 0 0 1
Multiply EE~! to get the identity matrix I. Also multiply E~1E to get I. We are adding
and subtracting the same 5 times row 1. Whether we add and then subtract (this is EE 1)
or subtract and then add (this is E_lE), we are back at the start.
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For square matrices, an inverse on one side is automatically an inverse on the other side.

If AB = I then automatically BA = I for square matrices. In that case B is A~!. This is
extremely useful to know but we are not ready to prove it.

Example 3  Suppose I subtracts 4 times row 2 from row 3, and F'~! adds it back:

1 0 0 1 0 0
F=]10 1 0| and F'=|0 1 0
0 —4 1 0 4 1

Now multiply F' by the matrix E in Example 2 to find F'E. Also multiply E~! times F~1
to find (F'E)~!. Notice the required order (FE)~! = E~1F~! for the inverses.

1 0 0 1 0 0
Right ord
e FE=| =5 1 0| a4 g 'p'=| 51 0 (4
Good inverse
20 —4 1 0 4 1

The result is beautiful and correct. The product F'E' contains “20” but its inverse doesn’t.
FE subtracts 5 times row 1 from row 2. Then F' subtracts 4 times the new row 2 (changed
by row 1) from row 3. In this order F'E, row 3 feels an effect from row 1.

In the order E~'F~1, that effect does not happen. First F~! adds 4 times row 2 to row 3.
After that, E~! adds 5 times row 1 to row 2. There is no 20, because row 3 doesn’t change
again. In this order E=1F =1, row 3 feels no effect from row 1.

E—'F~1is quick. The multipliers 5, 4 fall into place below the diagonal of 1’s.

Calculating A—1 by Gauss-Jordan Elimination

I hinted that A~! might not be explicitly needed. The equation Av = b is solved by
v = A~'b. But it is not necessary or efficient to compute A~! and multiply it times b.
Elimination goes directly to v. Elimination is also the way to find A~!, as we now show.

The Gauss-Jordan idea is to solve AA~! = I. Find each column of A1,

A multiplies the first column of A~ (call that v1) to give the first column of I (call
that e;). This is our equation Av; = e; = (1,0,0). There will be two more equations.
Each of the columns v, vo, v3 of A7 is multiplied by A to produce a column of [ :

3 columns of A1 AA™ = A[vy vy v3]=[e1 e2 e3] =1L )

To invert a 3 by 3 matrix A, we have to solve three systems of equations: Av; = e; and
Avy = es = (0,1,0) and Avz = e3 = (0,0,1). Gauss-Jordan finds A~! this way.
The Gauss-Jordan method computes A~! by solving all n equations together.
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4.4, Inverse Matrices

Usually the “augmented matrix” [A b] has one extra column b. Now we have three right
sides (the columns of ). So the augmented matrix is the block matrix [ A I].

-

2 -1 e 1 0
[A €e; €3 63]= —1 2 -1 0 1 0

Start Gauss-Jordanon [ A T |

(2 -1 0 1 0 O
-0 % -1 % 1 o0 (3 row 1 +row 2)
0 -1 2 0 0 1]
{2 -1 0 1 0 0]
-0 2 -1 L 1 o0
Lo o 3% % 2 1] (2 row 2 + row 3)

We are halfway to A~!. The matrix in the first three columns is U (upper triangular).
The pivots 2, %, % are on its diagonal. Gauss would finish by back substitution. Jordan’s
idea is to continue with elimination! He goes all the way to the identity matrix.

Rows are subtracted from rows above, to produce zeros above the pivots :

7 b 2 -1 0 1 0 07
ero above 3 s 3 3
o 5 o0 T 3 % 3
< third pivot ) - 0 8 o d g z; (3 row 3+ row 2)
3 3 3 J
Zero above o 0 o0 8 1 1 )
second pivot - 2 2 (2 row 2 +row 1)
o 3 o 3 3 3
2 a4 2 1
4 1 2
o o0 3 3 3§ 1]

The last Gauss-Jordan step is to divide each row by its pivot. The new pivots are 1.
We have reached I in the first half of the matrix, because A is invertible.
The three columns of A~ are in the second half of [I A™']:

(divide by 2) 1 0 o 3 % 1%
(divide by 2) 0 1 o 2 1 3 |=[a = x]=[I A7']
(divide by 3) roau B2

Starting from the 3 by 6 matrix [A I], we ended with [I A~']. Here is the whole
Gauss-Jordan process on one line for any invertible matrix A :

Gauss-Jordan Multiply [A I] by A~' foget [I A71)

The elimination steps create the inverse matrix while changing A to I. For large matrices,
we probably don’t want A~! at all. But for small matrices, it can be very worthwhile to know
the inverse. We add three observations about this particular A~ because it is an important
example. We introduce the words symmetric, tridiagonal, and determinant :



232 Chapter 4. Linear Equations and Inverse Matrices

1. A is symmetric across its main diagonal. Sois A~!.

2. A is tridiagonal (only three nonzero diagonals). But A~! is a full matrix with
no zeros. That is another reason we don’t often compute inverse matrices. The
inverse of a sparse matrix is generally a full matrix.

3. The product of pivots is 2(3)(3) = 4. This number 4 is the determinant of A.

1
A~ involves division by the determinant A7l = v

=R W

2
4 2|. 8)
2 3

This is why an invertible matrix cannot have a zero determinant.

Example 4 Find A~! by Gauss-Jordan elimination starting from A = [% 3]. There are
two row operations and then a division to put 1’s in the pivots :

2 3 1 0 2 23 1 0 .. _

[A 1]2[4 0 J—)[O 1 —2 1] (thlSls[U L 1])
2 0 7 -3 R Ay . =

— [0 1 —9 1] — [O 1 _% i (th1s1s[I A 1])

That A~ involves division by the determinant ad — bc = 2 -7 — 3 - 4 = 2. The matrix
A must be invertible, or elimination cannot reduce it to I (in the left half of [1 A~!]).

Gauss-Jordan shows why A~ is expensive. We must solve n equations for its 7 columns.
To solve Av = b without A~1, we deal with one column b to find one column v.

In defense of A~1, we want to say that its cost is not n times the cost of one system.
Surprisingly, the cost for n columns is only multiplied by 3. This saving is because the n
equations Av; = e; all involve the same matrix A. Working with the right sides is relatively
cheap, because elimination only has to be done once on A.

The complete A~! needs n2 elimination steps, where one equation needs n3/3.

Singular versus Invertible

We come back to the central question. Which matrices have inverses? The start of this
section proposed the pivot test: A~ exists exactly when A has a full set of n pivots.
(Row exchanges are allowed.) Now we can prove that by Gauss-Jordan elimination :

1. With n pivots, elimination solves all the equations Av; = e;. The columns v; go into
A~!. Then AA~! = I and A1 is at least a right-inverse.

2. Elimination is really a sequence of multiplications by E’s and P’s and D~1 :

Left-inverse of A (D'...E...P...E)A=1. 9)
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D~! divides by the pivots. The matrices E produce zeros below and above the pivots.
Permutations P will exchange rows if needed. The product matrix in equation (9) is
a left-inverse. With n pivots we have reached A=1A = I.

The right-inverse equals the left-inverse. That was Note 2 at the start of in this section.
So a square matrix with a full set of pivots will always have a two-sided inverse.

Reasoning in reverse will now show that A must have n pivots if AC = I. (Then we
deduce that C is also a left-inverse and C A = I.) Here is one route to those conclusions:

1. If A doesn’t have n pivots, elimination will lead to a zero row.
2. Those elimination steps are taken by an invertible M. So a row of M A is zero.

3. If AC = I had been possible, then M AC' = M. The zero row of M A, times C, gives
a zero row of M itself.

4. An invertible matrix M can’t have a zero row! So A must have n pivots if AC' = I.
That argument took four steps, but the outcome is short and important.

Elimination gives a complete test for invertibility of a square matrix. A~ exists (and
Gauss-Jordan finds it) exactly when A has n pivots. The argument above shows more :

If AC=1 then CA=1 and C=A"!

Example 5 Here L is lower triangular with 1’s on the diagonal. Then L~! is too.
A triangular matrix is invertible if and only if no diagonal entries are zero.

Here L has 1’s so L™! also has 1’s. Use the Gauss-Jordan method to construct L1,
Start by subtracting multiples of pivot rows from rows below. Normally this gets us
halfway to the inverse, but for L it gets us all the way. L~! appears on the right when
I appears on the left. Notice how L~! contains 11, from 3 times 5 minus 4.

1 00 1 00
Gowwlortn, |53 5 0 0] qn
: |45 100 1
(1.0 0 1 0 0 (3 times row 1 from row 2)
-0 10 -3 10 (4 times row 1 from row 3)
-0 51 -4 01 (then 5 times row 2 from row 3)
(1 0 0 1 00
~|l0 10 -3 1 0]|=[I L]
(001 11 =5 1

L goes to I by a product of elimination matrices E3;F31F>;. So that product is Its
The 11 in L~! does not come into L, to spoil 3,4, 5 in the good order E5' E3' Ex' = L.
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= REVIEW OF THE KEY IDEAS =

1. The inverse matrix gives AA™! = Iand A=1A = I.

2. Aisinvertible if and only if it has n pivots (row exchanges allowed).

3. If Av = 0 for a nonzero vector v, then A has no inverse.

4. The inverse of AB is the reverse product B~!A~!. And (ABC)~! = C~-!B-1AL.

5. The Gauss-Jordan method solves AA~! = I to find the n columns of A~1. The
augmented matrix [ A I ] is row-reducedto [I A~'].

Problem Set 4.4

Find the inverses of A, B, C' (directly or from the 2 by 2 formula):

03 20 34
and B = and C = "
4 0 4 2 b T

For these “permutation matrices” find P~! by trial and error (with 1’s and 0’s) :

A=

00 1 01 0
P=|01 0| and P= |00 1
10 0 10 0

Solve for the first column (z, y) and second column (¢, z) of A~ :

ool )=o) = () [ =11

Show that [é g] is not invertible by trying to solve AA~! = T for column 1 of A~ !:

sl

Find an upper triangular U (not diagonal) with U? = I which gives U = U~ 1.

1 For a different A, could column 1 of A1
0 be possible to find but not column 2?

(a) If Aisinvertible and AB = AC, prove quickly that B = C.
(b) If A = H ﬂ, find two different matrices such that AB = AC.
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10

11

12

13

14

15

16

17

18

(Important) If A has row 1 + row 2 = row 3, show that A is not invertible :

(a) Explain why Av = (1,0, 0) cannot have a solution.
(b) Which right sides (b1, b2, b3) might allow a solution to Av = b?

(c) What happens to row 3 in elimination?
If A has column 1 + column 2 = column 3, show that A is not invertible :

(a) Find a nonzero solution « to Az = 0. The matrix is 3 by 3.

(b) Elimination keeps column 1 + column 2 = column 3. Why is no third pivot ?

Suppose A is invertible and you exchange its first two rows to reach B. Is the new
matrix B invertible and how would you find B~! from A~1?

Find the inverses (in any legal way) of

00 O 32 00

00 30 43 00
A= and B =

04 00 00 65

50 0 00 76

(a) Find invertible matrices A and B such that A + B is not invertible.
(b) Find singular matrices A and B such that A + B is invertible.

If the product C' = AB is invertible (A and B are square), then A itself is invertible.
Find a formula for A~ that involves C~! and B.

If the product M = ABC of three square matrices is invertible, then B is invertible.
(So are A and C.) Find a formula for B~ ! that involves M ~! and A and C.

If you add row 1 of A to row 2 to get B, how do you find B~! from A=1?

10
11

Notice the order. The inverse of B = A s

Prove that a matrix with a column of zeros cannot have an inverse.

d —b

Multiply [EC‘ g] times [_ . a]. What is the inverse of each matrix if ad # bc?

(a) What 3 by 3 matrix £ has the same effect as these three steps? Subtract row 1
from row 2, subtract row 1 from row 3, then subtract row 2 from row 3.

(b) What single matrix L has the same effect as these three reverse steps? Add row
2 to row 3, add row 1 to row 3, then add row 1 to row 2.

If B is the inverse of A2, show that AB is the inverse of A.
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19  (Recommended) A is a 4 by 4 matrix with 1’s on the diagonal and —a, —b, —c on the
diagonal above. Find A~! for this bidiagonal matrix.

20  Find the numbers a and b that give the inverse of 5 * eye(4) — ones(4,4) :

-1

4 -1 -1 -1 a b b b

[5I—ones] " = e = bra bb
-1 -1 4 -1 b b a b

-1 -1 -1 4 b b b oa

What are a and b in the inverse of 6 *eye(5) — ones(5,5) ? In MATLAB, I = eye.
21  Sixteen 2 by 2 matrices contain only 1’s and 0’s. How many of them are invertible?

Questions 22-28 are about the Gauss-Jordan method for calculating A~1.

22  Change I into A~! as you reduce A to I (by row operations):

WH S ER RN Y

23  Follow the 3 by 3 text example of Gauss-Jordan but with all plus signs in A.
Eliminate above and below the pivots to reduce [A T]to[I A™1]:

2
[4 I]=|1
0

N

01 0
10 1
200

—= o O

24  Use Gauss-Jordan elimination on [U ] to find the upper triangular U ! :

1 a b 1 0 0
vutl=1 01 ¢|l|xy o 23| =101 0
00 1 00 1

25 Find A~! and B~} (if they exist) by eliminationon [A []and [B I]:

21 1 2 -1 -1
A=112 1 and B=1|-1 2 -1
11 2 -1 -1 2

26  What three matrices E9; and F1o and D~! reduce A = B z} to the identity
matrix? Multiply D~ E;,F5; to find A~ 1.
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27

28

29

30

31

32

33

34

Invert these matrices A by the Gauss-Jordan method starting with [A []:

10 0 11 1
A=121 3 and A=|12 2
00 1 12 3

Exchange rows and continue with Gauss-Jordan to find A=!:

-5

True or false (with a counterexample if false and a reason if true):

(a) A 4 by 4 matrix with a row of zeros is not invertible.
(b) Every matrix with 1’s down the main diagonal is invertible.

(c) If A is invertible then A~! and A? are invertible.

For which three numbers c is this matrix not invertible, and why not?

2 ¢ ¢
A=]le ¢ cf.
8 7 ¢l

Prove that A is invertible if a # 0 and a # b (find the pivots or A™1):

a b b
A=|a a b
(l (i (1

This matrix has a remarkable inverse. Find A~! by elimination on [ A I]. Extend to
a 5 by 5 “alternating matrix” and guess its inverse; then multiply to confirm.

1 -1 1 —1 1

0o 1 -1 1
Invert A = and solve Av =

0 0 1 -1 1

0 0 0 1 1

(Puzzle) Could a 4 by 4 matrix A be invertible if every row contains the numbers
0,1, 2,3 in some order? What if every row of B contains 0, 1,2, —3 in some order?

Find and check the inverses (assuming they exist) of these block matrices :

I 0 A0 0 I
c I C D

I D
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4.5 Symmetric Matrices and Orthogonal Matrices

This section introduces the transpose of a matrix. Start with any m by n matrix A. Then
the rows of A become the columns of AT (called “A transpose”). The columns of A are the
rows of AT. The m by n matrix is flipped across its main diagonal. Then AT is n by m.

1 0
Transpose A= |1 26 then AT=1]2 0
0 0 5 6 5

The entry in row %, column j of AT comes from row j, column i of A. So (AT)ij = Aj;.

The transpose of a lower triangular matrix is upper triangular. Two key rules :

Products AB  The transpose of AB is (AB)T = BTAT e))

Inverses A=Y The transpose of A~! is (A~1)T = (AT)™ " (2)

Notice especially how BT AT comes in reverse order. For inverses, this reverse order is quick
to check: B~'A~! times AB produces B~'(A~1A)B = I. For transposes, rules (1) and
(2) are tested and explained in the problem set. We want to move to the essential matrices of
this section because they are the most important matrices in mathematics:

Symmetric matrices AT equals A. Then A is square and a;; = aj;.

Orthogonal matrices AT equals A~ Then A is square and ATA = I.
Here is a symmetric example S and also an orthogonal example @ :

Symmetric S = [‘11 g] Orthogonal Q — [ cosf —sinf ]

sinf  cosd
Symmetry of S is easy to see: 4 = 4. For orthogonality I will check that QTQ = I:

Columns are orthogonal cosf sinf | |cos§ —sinf| |1 O 3)
Columns are unit vectors —sinf cos6f | | sinf cosf| |0 1|

Those words at the left tell you the key facts about the columns g; and g5 :

T T T 1 0
o=t [H][w w]=[dn Gnl-[ ) e
— [q% b 39, 934, 01 @

Off the diagonal you see g g, = 0 and g4 q; = 0. The columns are orthogonal vectors.
On the diagonal qurql =1 and q;rq2 = 1. The @’s are unit column vectors : length 1.
Symmetric matrices will have the special letter S and orthogonal matrices will be Q.
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Symmetric Matrices S = ATA

The full glory of symmetric matrices comes with their eigenvalues A and eigenvectors x.
Those strange words, half German and half English, are at the heart of Chapter 6. You
will see the key equation Ax = Az (this puts Az in the same direction as x). Let me
write here only two facts that show why symmetric matrices are special :

Sx = Ax Symmetric matrices have real eigenvalues A\ and orthogonal eigenvectors .

Those facts will be crucial in solving symmetric systems y’ = Sy and vy’ + Sy = 0.

It is equally important to know where symmetric matrices come from. One part of applied
mathematics and engineering mathematics is solving equations. We have solved Av = b
and we will soon solve dy/dt = Ay. Solving is one half of our subject, the other half is
discovering the equations in the first place.

Start with a physical or biological or economic problem. Model it by equations.
Solving ' = ma and e = mc? may take thought, but we give first place to Newton and
Einstein for discovering those equations.

To repeat: Where do symmetric matrices come from ? In my experience, you start with
a matrix A. Often this matrix is rectangular (m by n). Its transpose is also rectangular
(AT is n by m). Sooner or later, you are almost sure to see the matrix AT A. At that moment
you have a square symmetric n by n matrix :

S = AT A is always symmetric. Its transpose is ST =(ATA)T=ATATT=§8. (5)

This matrix ATA is automatically square, because (n by m) times (m by n) is (n by n).

00 4| Y9 =]12 16

113]10 {1112J
3 4

Example 1 ATA = [

The number 12 comes twice in ATA. Tt is (row 1 of AT) - (column 2 of A) and also
(row 2 of AT) - (column 1 of A). The numbers 11 and 16 on the diagonal are dot products
of a column with itself. So they give the length squared of the columns. These diagonal
entries of AT A cannot be negative.

Comment. Since A is 3 by 2, the system Av = b has three equations but only
two unknowns v; and vg. Almost surely there will be no solution. But if those numbers
b1, bz, b3 came from careful and expensive measurements, we cannot say “no solution”
and stop. We want to find the “best solution” or “closest solution” to Av = b.

In practice we usually choose the vector ¥ that makes Av as close as possible to b.
The error vector € = b — A% is as short as possible. We are minimizing ||e||> = eTe,
the squared length of the error. The best vector v is the least squares solution.

In Section 7.1, minimizing the error is a calculus problem and also a linear algebra
problem. Both approaches lead to the equation AT A% = ATb. The best ¥ involves AT A.
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Difference Matrices

I want to show you larger examples of AT A that are truly important. Start with a backward
difference matrix A. It can have n + 1 rows and n columns. Here n = 3:

1 U1
Difference matrix _|1=1 1 | v2 —wm
Differences of v's A= -1 1 Ay= U3 — Ug ©)

—1 — V3

That vector Av in linear algebra corresponds to the derivative dv/dz in calculus.
You see backward differences Av = [v(z) — v(z — Az)]|/Az in calculus. This is
before the stepsize Ax approaches zero and Av/Ax approaches dv/dz.

More often you see forward differences [v(z + Az) — v(z) | / Az, where the small Az
goes forward from z. Those appear in linear algebra when we transpose the matrix A.
But first differences are “anti-symmetric” and AT will be minus a forward difference.
So the vector ATw corresponds to the derivative —dw/dz :

1 -1 wy — wa
3 by 4 matrix T .. |
Differences of w's 4% = 1 1 Atw= |wy—wz| (7
1 -1 -
i 3 wy

Now comes the symmetric matrix S = ATA. It will be 3 by 3. Since A and AT are
“first differences” with 1 and —1, AT A will be a second difference matrix with —1, 2, —1:

2 -1 0 2v1 — w9
Second differences S = | —1 2 -1 Sv=|—-v +2v — 13 (8)
0 -1 2 — v+ 2v3

The main diagonal of S has 2’s, because each column of A produces 12 + (—1)? = 2.
The subdiagonal and superdiagonal of S have —1’s, because this is the dot product of a
column of A with the next column.

Let me admit quietly that S is my favorite matrix. You are seeing the 3 by 3 version,
what I really like is n by n. Chapter 7 makes the link with calculus, where the first derivative
of the first derivative is the second derivative :

d? _ _ 2
Swv corresponds to — d—:; e o) (2253))2 +y(z— Az) = %

9)

All of Chapter 2 was about second order equations involving 3”. Newton’s Law F' = ma
puts second derivatives (the acceleration a) at the heart of physics. When springs
oscillate, and when current goes through a network, this matrix S = AT A will appear.

The truth is that we need to know everything about S—its pivots, its determinant,
its inverse, its eigenvalues, its eigenvectors. We will.
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The matrix L = AAT is almost as important. Please recognize that L is also symmetric,
but L is different from S. When A has n columns and n + 1 rows, S = AT A is n by n.
But L = AAT is square of size n + 1. Wekeepn = 3andn + 1 = 4:

JiE]
Second differences in L A AT _ -1 2 -1
New boundary conditions DS CES S -1 2 -1 ()

Sl 1

This matrix has no inverse! Can you see a vector w that has Lw = 07 It is the vector
of all ones, w = (1,1,1,1). Each row of L adds to zero and that will produce Lw = 0.

Permutation Matrices

A quick way to produce orthogonal matrices is to use the columns of the identity matrix.
In any order, the columns of [ are orthonormal. The new order is called a “permutation”
of the original order. So the new matrix is called a permutation matrix.

Important: We could put the rows of I into the new order. That also produces a permu-
tation matrix. If this row exchange matrix is P, then the column exchange matrix is PT.
You can see the transpose in this 3 by 3 example starting from I :

. 0 1 0 . 0 0 1
R pofo 01| Cmmn oo an
i 1 0 0 E 0 1 0

When P multiplies a vector v, it puts the components of v in the new order y, z, z.
Then PT puts them back in the original order z, v, 2 :

T ) Y T
Pl o |'=| 2 and PT| z | = 1y
z : ; z

These are orthogonal matrices, so P! is the same as PT. Then PTP = PPT = I.

We can complete the list of all 3 by 3 permutation matrices (including the identity ma-
trix itself, which exchanges nothing: the identity permutation). The other permutations
exchange two rows or two columns of /. There are P and PT in (11), and four more.

1 01 0 00 1 10 0
1= 1 yPo=1]1 0 0|,P3=|0 1 0|, P;3=]0 0 1
1 0 0 1 1 0 0 01 0

Altogether 6 permutation matrices when n = 3. And n! permutation matrices of size n.
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The effect of Py is to exchange (permute) rows 1 and 2, when we multiply Pj3 A or Pyob.

row 1 of A row 2 of A by b2
P12 row2of A| = [row1lof A P]Q bg = bl
row 3 of A row 3 of A by bs

This is exactly what we do in elimination, when a zero appears in the first pivot position.
If a;1 = 0 and a9, # 0, P;2 exchanges rows to produce a nonzero pivot.

Elimination by matrices Eliminate by E;;, exchange rows by Pjy.

The elimination matrix E;; subtracts a multiple /;; of row j from a lower row i > j.
Before that, a permutation matrix P;; may put row k into row j, to produce a better number
(a larger number) in the pivot position.

We must use Pj;, to get a nonzero pivot. We may use Pji to get a larger pivot. The
LAPACK code (open source) chooses the largest available number as the pivot. The
jth pivot (in column j) will be the largest number in row j or below. LAPACK is the foun-
dation for the linear algebra part of many important software systems, including MATLAB.

Orthogonal Matrices

When A has orthogonal columns, the symmetric matrix AT A is diagonal. The off-diagonal
entries are dot products of different columns of A, so they are all zero.

When the columns of A are unit vectors (length 1), all diagonal entries of AT A are 1.
Those entries are (row i of AT) « (column i of A) = length squared = 1. Dot products
of columns with themselves are on the main diagonal of AT A.

The best case is orthonormal columns. Those are orthogonal unit vectors, both
properties at the same time. In this case we write q for the vectors and () for the matrix :

h 100
Orthogonal qlq, =0 . a
o T, Q=1 - ||&---a.|=]0 1 0. @2
Unit vectors g, q; =1 4x 0 B 1

When @ is square, I call it an orthogonal matrix. (The name “orthonormal matrix”
might have been better.) I still use the letter () when the matrix is rectangular, with
m > n. But a rectangular Q7 is only a left—inverse of Q :

(m=n) QTQ=QQ"=1 (m>n) Q'Q=1Ibu QQT#1I. (13

QTQ = I is a very powerful property. When we multiply any vector by @, its length
will not change :

Same length ||Qv|| = ||v|| for every vector v. (14)

The proof comes directly from ||Qu||? = (Qv)T(Qv) = vTQTQv. The matrix QTQ is
the identity. So we are left with vTv = ||v]|%.
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The fact that lengths don’t change makes orthogonal matrices very safe to compute with.
Nothing blows up, nothing becomes too small (no overflow and no underflow).
The basic computation in linear algebra is the solution of a linear system, and for
(square) orthogonal matrices this is incredibly easy :

O~ =0* The solutionof Qu =b is v = QTb. (15)

To solve the equations, we just transpose the matrix. The greatest example is the Fourier
matrix, which breaks up a signal b into separate pure frequencies. The vector b in the time
domain is transformed to v in the frequency domain. The “energy” can be measured in either
domain, because ||b||? is equal to ||v||>—as we saw above.

The Fourier matrix F' is exceptional because multiplications by F and F~! are
extremely fast. They break up into diagonal matrices and permutation matrices. This is
the insight behind the Fast Fourier Transform. (The FFT is in Section 8.2.)

The equation Qv = b has a clear geometrical meaning when @ is 2 by 2. Qv is ex-
pressing that vector b as a combination of the columns of Q). Those columns q,, q give the
perpendicular axes in Figure 4.9. We are finding the component of b in each direction.

Those two components are v; = q, - band v2 = gz - b. Solving Qu = bby v = QTb
is just a change from z, y axes to q;, g2 axes.

Yy
q2

| ____ b
U2q9 |
v1q,

: - T

Figure 4.9: Every b = (2, ) splits into b = v,q; + v2q,. And ||b||? = 2% + y? = v? + v3.

Both Symmetric and Orthogonal

Symmetric matrices are the best, they are everywhere in applied mathematics. Orthogonal
matrices are a strong second, starting with rotation matrices and the Fourier matrix. Most
symmetric matrices are not orthogonal and most orthogonal matrices are not symmetric.
It is natural to wonder when and if we can have both properties at once.

Exchange and reflection and “Hadamard” matrices are symmetric and orthogonal:

-1 1 1 1

0 1 | —cosf sin@ 1 1 -1 1 1
P_[l {]] R_{ sin 6 cosHJ H_§ 1 1 -1 1] (1)

1 1 1 -1

Notice that the columns of H are unit vectors: 1((—1)% + 1% 4+ 12 + 12) = 1. Nobody
knows which dimensions allow n orthogonal vectors of 1’s and —1’s (not odd dimensions !).
Wikipedia describes this unsolved problem on its “Hadamard matrix” page.
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To find more symmetric orthogonal matrices, and eventually all of them, we can use
an important fact about orthogonal matrices :

If Q. and ), are orthogonal, so is their product Q = Q1Q2.

The test is always to check QTQ = I. Here this is (Q1Q2)T(Q1Q2) = QTQTQ1Q2.
In the middle is QT Q; = I. Then the outside has Q3 Q5 = I.

Conclusion : We can multiply orthogonal matrices and stay orthogonal.
Problem: We can’t always multiply symmetric matrices and stay symmetric.

Here is one approach that succeeds with both properties. Start with any diagonal matrix
D of 1’s followed by —1’s:

Symmetric and orthogonal D =diag(1,...,1,—-1,...,—1). 17

Multiply D on the left side by any orthogonal @ and on the right side by QT. That
“symmetric multiplication” keeps the matrix Q DQ' symmetric :

Symmetric and orthogonal (QDQTT = QTTDTQT = QDQT. (18)

This product of orthogonal matrices is also orthogonal. When you meet eigenvalues in
Chapter 6, you will see that all symmetric orthogonal matrices have this form QDQ™T.
Possibly that small fact is appearing for the first time in a textbook.

Factoring a Matrix

That was for fun, this is more important. “A symmetric matrix S is like a real number r.”
“An orthogonal matrix @ is like a complex number e* with absolute value 1.” Every
complex number can be written in polar form re*?, and what we hope for is true :

Every square matrix A can be written in polar form A = SQ.

A = SQ is equivalent to the Singular Value Decomposition (this is explained in
Section 7.2). The SVD is the last and most remarkable step in the Fundamental Theorem
of Linear Algebra. The polar form is in the Chapter 7 Notes.

= REVIEW OF THE KEY IDEAS =

1. The transpose has AiTj = Aj;. Then (AB)T = BT AT and Av - w equals v - ATw.
Symmetric matrices have ST = S. Orthogonal matrices have QT = Q1.
AT A is always a symmetric matrix. Key examples are second difference matrices.

The columns of () are orthogonal vectors of length 1. Then ||Qz|| = ||z|| for all .

moos W e

. The n! permutation matrices P reorder the rows of I (n by n), and PT = P~1,
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Problem Set 4.5

Questions 1-9 are about transposes AT and symmetric matrices S = ST.

1 Find AT and A~! and (A=1)T and (AT)~! for

1 0 1 ¢
A:[g 3] and also A_[c 0].

2 (a) Find 2 by 2 symmetric matrices A and B so that AB is not symmetric.

(b) With AT = A and BT = B, show that AB = BA ensures that AB will now
be symmetric. The product is symmetric only when A commutes with B.

3 (a) The matrix ((AB)~1)T comes from (A~1)T and (B~!)T. In what order?
(b) If U is upper triangular then (U~1)7 is triangular.

4 Show that A2 = 0 is possible but AT A = 0 is not possible (unless A = zero matrix).

5 Every square matrix A has a symmetric part and an antisymmetric part :
: : : A+ AT A— AT
A = symmetric + antisymmetric = 9 + 5 :

Transpose the antisymmetric part to get minus that part. Split these in two parts :

1 4 8
A:{? g] A=|0 2 6
0 0 3
6 The transpose of a block matrix M = [é g} is MT = . Test an example

to be sure. Under what conditions on A, B, C, D is the block matrix symmetric?
7 True or false:

(a) The block matrix [g ‘8] is automatically symmetric.
(b) If A and B are symmetric then their product AB is symmetric.
(c) If A is not symmetric then A~! is not symmetric.

(d) When A, B, C are symmetric, the transpose of ABC' is CBA.

8 (a) How many entries of S can be chosen independently, if S = ST is 5 by 5?

(b) How many entries can be chosen if A is skew-symmetric? (AT = —A).

9 Transpose the equation A~! A = I. The result shows that the inverse of AT is
If S is symmetric, how does this show that S~ is also symmetric ?
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Questions 10-14 are about permutation matrices.

10  Why are there n! permutation matrices of size n ? They give n! ordersof 1,...,n.

11 If P, and P, are permutation matrices, so is P} P. This still has the rows of I in some
order. Give examples with P1P2 —’,é P2P1 and P3P4 = P4P3.

12 There are 12 “even” permutations of (1,2, 3,4), with an even number of exchanges.
Two of them are (1,2,3,4) with no exchanges and (4, 3,2, 1) with two exchanges.
List the other ten. Instead of writing each 4 by 4 matrix, just order the numbers.

13 If P has 1’s on the antidiagonal from (1,n) to (n, 1), describe PAP. Is P even?

14 (a) Find a 3 by 3 permutation matrix with P3 =1 (butnot P = I).
(b) Find a 4 by 4 permutation with P4 # I.

Questions 15-18 are about first differences A and second differences AT A and AAT.

15  Write down the 5 by 4 backward difference matrix A.

(a) Compute the symmetric second difference matrices S = AT A and L = AAT.
(b) Show that S is invertible by finding S~!. Show that L is singular.

16  In Problem 15, find the pivots of S and L (4 by 4 and 5 by 5). The pivots of .S in
equation (8) are 2,3/2,4/3. The pivots of L in equation (10) are 1, 1, 1, 0 (fail).

17  (Computer problem) Create the 9 by 10 backward difference matrix A. Multiply to
find S = ATA and L = AAT. If you have linear algebra software, ask for the
determinants det(.S) and det(L).

Challenge : By experiment find det(S) when S = AT A is n by n.

18  (Infinite computer problem) Imagine that the second difference matrix S is infinitely
large. The diagonals of 2’s and —1’s go from minus infinity to plus infinity:

Infinite tridiagonal matrix SE= ! _? ﬁ; =1

(a) Multiply S times the infinite all-ones vectorv = (...,1,1,1,1,...)
(b) Multiply S times the infinite linear vectorw = (...,0,1,2,3,...)
(c) Multiply S times the infinite squares vectoru = (...,0,1,4,9,...).

(d) Multiply S times the infinite cubes vector ¢ = (...,0,1,8,27,...).

The answers correspond to second derivatives (with minus sign) of 1 and z2 and .
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Questions 19-28 are about matrices with QTQ = I. If () is square, then it is an
orthogonal matrix and QT = Q! and QQT = 1I.

19  Complete these matrices to be orthogonal matrices :

. 11
(@) Q—{l/Q 1/2} ® Q=3| 2 © @=}|;
2 1 -1

20 (a) Suppose () is an orthogonal matrix. Why is Q~! = QT also an orthogonal
matrix ?

(b) From QTQ = I, the columns of () are orthogonal unit vectors (orthonormal
vectors). Why are the rows of () (square matrix) also orthonormal vectors ?

21 (a) Which vectors can be the first column of an orthogonal matrix ?
() f QTQ, = I and Q7 Q2 = I, is it true that (Q1Q2)T(Q1Q2) = I ? Assume
that the matrix shapes allow the multiplication Q1 Q).
22  [If wis a unit column vector (length 1, uTu = 1), show why H = I — 2uuT is

(a) a symmetric matrix: H = H™ (b) an orthogonal matrix: HTH = I.

23 If u = (cos#,sinf), what are the four entries in H = I — 2uu®? Show that
Hu = —u and Hv = v for v = (—sinf,cosf). This H is a reflection matrix :
the v-line is a mirror and the u-line is reflected across that mirror.

24  Suppose the matrix () is orthogonal and also upper triangular. What can () look like ?
Must it be diagonal ?

25 (a) Toconstruct a 3 by 3 orthogonal matrix () whose first column is in the direction
w, what first column q; = cw would you choose ?

(b) The next column g, can be any unit vector perpendicular to q;. To find g,
choose a solution v = (vy, v, v3) to the two equations g1 v = 0 and g4 v = 0.
Why is there always a nonzero solution v ?

26 Why is every solution v to Av = 0 orthogonal to every row of A ?

27  Suppose QTQ = I but ) is not square. The matrix P = QQ7 is not I. But show that
P is symmetric and P? = P. This is a projection matrix.

28 A 5 by 4 matrix Q can have QTQ = I but it cannot possibly have QQT = 1.
Explain in words why the four equations QTv = 0 must have a nonzero solution v.
Then v is not the same as QQ ™ v and I is not the same as QQ™.
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Chapter 4. Linear Equations and Inverse Matrices
Challenge Problems

29  Can you find a rotation matrix @ so that QDQT is a permutation ?
cosf —sinf| |1 cosf sinf als 01
sinf  cos@ —1| | —sinf cosf equ 1 0}
30  Split an orthogonal matrix (QTQ = QQT = I) into two rectangular submatrices :

T T,
Q=1[Q@1 Q2] and QTQ=[812;81 g;g;]

(a) What are those four blocks in QTQ =1 ?

) QQT = Q:1QT + Q2QF = I is column times row multiplication. Insert

the diagonal matrix D = [é _(}] and do the same multiplication for QDQ™.

Note: The description of all symmetric orthogonal matrices S in (18) becomes
S =QDQT = Q1QT — Q2Q7F. This is exactly the reflection matrix I — 2Q2Q1 .

31  The real reason that the transpose “flips A across its main diagonal” is to obey
this dot product law: (Av) - w = v+ (ATw). That rule (Av)Tw = vT(ATw)
becomes integration by parts in calculus, where A = d/dx and AT = —d/dz.

(a) For 2 by 2 matrices, write out both sides (4 terms) and compare :

a bl |v wy | . U1 a c| |w
([¢ & [a])- (o] wemme [2]- (5 2} [2])
(b) The rule (AB)T = BT AT comes slowly but directly from part (a):
(AB)v - w= A(Bv) - w=Bv - ATw=v - BT (ATw) =v - (BTAT)w

Steps 1 and 4 are the law. Steps 2 and 3 are the dot product law.

32 How is a matrix S = ST decided by its entries on and above the diagonal ?
How is @ with orthonormal columns decided by its entries below the diagonal ?
Together this matches the number of entries in an 7 by n matrix. So it is reasonable
that every matrix can be factored into A = SQ (like re*).
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® CHAPTER 4 NOTES =

Important Question Where do the rules for matrix-matrix multiplication AB come from ?
Answer From matrix-vector multiplication Av. The matrix AB is defined so that

AB times v equals A times Bw. Then AB times C' equals A times BC.

Key idea: Choose the special vector v = (1,0,...,0). Then AB times this v is the first
column of AB. And Bw is the first column of B. So column 1 of AB equals A times column
1 of B. This was the AB rule from the start. Every other column of AB goes the same way,
by moving the “1” in v.

Thus (AB)v = A(Bwv). Withseveral v’s in a matrix C, this becomes (AB)C = A(BC).

Elimination factors A into LU = (lower triangular) times (upper triangular).

The MATLAB command [L, U] = lu(A) will output L and U, unless there are row
exchanges. L and U are a complete record of elimination on the left side of Av = b.
The solution v comes from the right side b by solving the two triangular systems :

From b to c Le—=b From c to v =
Forward substitution - Back substitution _

Then v is the correct solution: Av = LUv = Le = b. The forward substitution is what
happened to b as elimination went forwardon [A b].

Second difference matrices have beautiful inverses and LU factors if the first diagonal entry
is 1 instead of 2. Here is the 3 by 3 tridiagonal matrix 7" and its inverse:

1 -1 0 3 2 1
Tii=1 T=| -1 2 -1 T=l=12 2 ]
0 -1 2 1 1 1

One approach is Gauss-Jordan elimination on [T I]. That seems too mechanical.
I would rather write 7" using first differences L and U. The inverses are sum matrices
U=land L1

1 1 -1 0 1 1 1 1
T=|-1 1 1 -1 T-1 = 1
0 -1 1 1 1 1 1 1
difference difference sum sum

Question. (4 by 4) What are the pivots of 7' ? What is its 4 by 4 inverse ?
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Chapter 5

Vector Spaces and Subspaces

5.1 The Column Space of a Matrix

To a newcomer, matrix calculations involve a lot of numbers. To you, they involve vectors.
The columns of Av and AB are linear combinations of n vectors—the columns of A. This
chapter moves from numbers and vectors to a third level of understanding (the highest level).
Instead of individual columns, we look at ‘“spaces” of vectors.  Without seeing
vector spaces and their subspaces, you haven’t understood everything about Av = b.

Since this chapter goes a little deeper, it may seem a little harder. That is natural. We are
looking inside the calculations, to find the mathematics. The author’s job is to make it clear.
Section 5.5 will present the “Fundamental Theorem of Linear Algebra.”

We begin with the most important vector spaces. They are denoted by R, R?, R3, R?,
.. .. Each space R" consists of a whole collection of vectors. R® contains all column vectors
with five components. This is called “5-dimensional space.”

DEFINITION The space R"™ consists of all column vectors v with n components.

The components of v are real numbers, which is the reason for the letter R. When the
n components are complex numbers, v lies in the space C™.

The vector space R? is represented by the usual zy plane. Each vector v in R? has two
components. The word “space” asks us to think of all those vectors—the whole plane. Each
vector gives the = and y coordinates of a point in the plane: v = (z, y).

Similarly the vectors in R? correspond to points (z,, z) in three-dimensional space.
The one-dimensional space R! is a line (like the z axis). As before, we print vectors as a
column between brackets, or along a line using commas and parentheses :

[ﬂ isinR2, (1,1,0,1,1)isin R, EJ_FZ} is in C2.

The great thing about linear algebra is that it deals easily with five-dimensional space.
We don’t draw the vectors, we just need the five numbers (or n numbers).

251
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To multiply v by 7, multiply every component by 7. Here 7 is a “scalar.” To add vectors
in R®, add them a component at a time : five additions. The two essential vector operations
go on inside the vector space, and they produce linear combinations :

We can add any vectors in R", and we can multiply any vector v by any scalar c.

“Inside the vector space” means that the result stays in the space : This is crucial.

If v is in R* with components 1, 0,0, 1, then 2v is the vector in R* with components
2,0,0,2. (In this case 2 is the scalar.) A whole series of properties can be verified in R".
The commutative law is v + w = w + v; the distributive law is c(v + w) = cv + cw.
Every vector space has a unique “zero vector” satisfying O + v = v. Those are three of the
eight conditions listed in the Chapter 5 Notes.

These eight conditions are required of every vector space. There are vectors other than
column vectors, and there are vector spaces other than R™. All vector spaces have to obey
the eight reasonable rules.

A real vector space is a set of “vectors” together with rules for vector addition and
multiplication by real numbers. The addition and the multiplication must produce vectors
that are in the space. And the eight conditions must be satisfied (which is usually no
problem). You need to see three vector spaces other than R™ :

M The vector space of all real 2 by 2 matrices.
Y The vector space of all solutions y(t) to Ay” + By’ + Cy = 0.
Z The vector space that consists only of a zero vector.

In M the “vectors” are really matrices. In Y the vectors are functions of ¢, like y = e*t.
In Z the only addition is 0 + 0 = 0. In each space we can add: matrices to matrices,
functions to functions, zero vector to zero vector. We can multiply a matrix by 4 or
a function by 4 or the zero vector by 4. The result is still in M or Y or Z.

The space R* is four-dimensional, and so is the space M of 2 by 2 matrices. Vectors
in those spaces are determined by four numbers. The solution space Y is two-dimensional,
because second order differential equations have two independent solutions. Section 5.4 will
pin down those key words, independence of vectors and dimension of a space.

The space Z is zero-dimensional (by any reasonable definition of dimension). It is the
smallest possible vector space. We hesitate to call it R?, which means no components—you
might think there was no vector. The vector space Z contains exactly one vector.
No space can do without that zero vector. Each space has its own zero vector—the
zero matrix, the zero function, the vector (0,0,0) in R3.

Subspaces

At different times, we will ask you to think of matrices and functions as vectors. But at all
times, the vectors that we need most are ordinary column vectors. They are vectors with
n components—but maybe not all of the vectors with n components. There are important
vector spaces inside R™. Those are subspaces of R™.
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[“ ‘ﬂ = typical vector in M
C d

Figure 5.1: “4-dimensional” matrix space M. 3 subspaces of R3 : plane P, line L, point Z.

Start with the usual three-dimensional space R3. Choose a plane through the origin
(0,0,0). That plane is a vector space in its own right. If we add two vectors in the plane,
their sum is in the plane. If we multiply an in-plane vector by 2 or —5, it is still in the plane.
A plane in three-dimensional space is not R? (even if it looks like R?). The vectors have
three components and they belong to R3. The plane P is a vector space inside R>.

This illustrates one of the most fundamental ideas in linear algebra. The plane going
through (0, 0, 0) is a subspace of the full vector space R3.

DEFINITION A subspace of a vector space is a set of vectors (including 0) that satisfies
two requirements: If v and w are vectors in the subspace and c is any scalar, then

(i) v+ wisin the subspace and (ii) cw is in the subspace.

In other words, the set of vectors is “closed” under addition v + w and multiplication cv
(and dw). Those operations leave us in the subspace. We can also subtract, because —w is
in the subspace and its sum with v is v — w. In short, all linear combinations cv + dw stay
in the subspace.

First fact : Every subspace contains the zero vector. The plane in R? has to go through
(0,0, 0). We mention this separately, for extra emphasis, but it follows directly from rule (ii).
Choose ¢ = 0, and the rule requires Ov to be in the subspace.

Planes that don’t contain the origin fail those tests. When v is on such a plane, —v and Ov
are not on the plane. A plane that misses the origin is not a subspace.

Lines through the origin are also subspaces. When we multiply by 5, or add two vectors
on the line, we stay on the line. But the line must go through (0, 0, 0).

Another subspace is all of R3. The whole space is a subspace (of itself). That is a fourth
subspace in the figure. Here is a list of all the possible subspaces of R?:

(L) Any line through (0,0, 0) (R3) The whole space
(P) Any plane through (0, 0,0) (Z) The single vector (0,0, 0)
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If we try to keep only part of a plane or line, the requirements for a subspace don’t hold.
Look at these examples in R2.

Example 1  Keep only the vectors (x,y) whose components are positive or zero (this is
a quarter-plane). The vector (2, 3) is included but (—2,—3) is not. So rule (ii) is violated
when we try to multiply by ¢ = —1. The quarter-plane is not a subspace.

Example 2 Include also the vectors whose components are both negative. Now we have
two quarter-planes. Requirement (ii) is satisfied; we can multiply by any c. But rule (i) now
fails. The sum of v = (2,3) and w = (—3,—2) is (—1,1), which is outside the quarter-
planes. Two quarter-planes don’t make a subspace.

Rules (i) and (ii) involve vector addition v + w and multiplication by scalars like ¢
and d. The rules can be combined into a single requirement—the rule for subspaces :

A subspace containing v and w must contain all linear combinations cv + dw.

Example 3 Inside the vector space M of all 2 by 2 matrices, here are two subspaces :

(U) All upper triangular matrices [ g Z ] (D) All diagonal matrices { g s ] .
Add any two matrices in U, and the sum is in U. Add diagonal matrices, and the sum is
diagonal. In this case D is also a subspace of U ! The zero matrix alone is also a subspace,
when a, b, and d all equal zero.

For a smaller subspace of diagonal matrices, we could require a = d. The matrices are
multiples of the identity matrix I. These al form a “line of matrices” in M and U and D.

Is the matrix I a subspace by itself ? Certainly not. Only the zero matrix is. Your mind
will invent more subspaces of 2 by 2 matrices—write them down for Problem 6.

The Column Space of A

The most important subspaces are tied directly to a matrix A. We are trying to solve
Av = b. If A is not invertible, the system is solvable for some b and not solvable for
other b. We want to describe the good right sides b—the vectors that can be written as A
times v. Those b's form the “column space” of A.

Remember that Av is a combination of the columns of A. To get every possible b, we
use every possible v. Start with the columns of A, and take all their linear combinations.
This produces the column space of A. It contains not just the n columns of A'!

DEFINITION The column space consists of all combinations of the columns.

The combinations are all possible vectors Av. They fill the column space C(A).

This column space is crucial to the whole book, and here is why. To solve Av = bis to
express b as a combination of the columns. The right side b has to be in the column space
produced by A on the left side. If b is notin C'(A), Av = b has no solution.
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The system Av = b is solvable if and only if b is in the column space of A.

When b is in the column space, it is a combination of the columns. The coefficients in that
combination give us a solution v to the system Av = b.

Suppose A is an m by n matrix. Its columns have m components (not n). So the
columns belong to R™. The column space of A is a subspace of R™ (not R™). The set
of all column combinations Az satisfies rules (i) and (ii) for a subspace: When we add
linear combinations or multiply by scalars, we still produce combinations of the columns.
The word “subspace” is always justified by taking all linear combinations.

Here is a 3 by 2 matrix A, whose column space is a subspace of R3. The column space
of A is a plane in Figure 5.2.

10
A=1(4 3
2 3
1 0
b=uv |4| +v2 |3
2 3
1
I

Plane = C(A) = all vectors Av

Figure 5.2: The column space C(A) is a plane containing the two columns of A.
Awv = bis solvable when b is on that plane. Then b is a combination of the columns.

We drew one particular b (a combination of the columns). This b = Aw lies on the plane.
The plane has zero thickness, so most right sides b in R? are not in the column space.
For most b there is no solution to our 3 equations in 2 unknowns.

Of course (0,0, 0) is in the column space. The plane passes through the origin. There is
certainly a solution to Av = 0. That solution, always available,isv =

To repeat, the attainable right sides b are exactly the vectors in the column space. One
possibility is the first column itself—take v; = 1 and v2 = 0. Another combination is the
second column—take v; = 0 and v = 1. The new level of understanding is to see all
combinations—the whole subspace is generated by those two columns.

Notation The column space of A is denoted by C'(A). Start with the columns and take all
their linear combinations. We might get the whole R™ or only a small subspace.
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Important Instead of columns in R™, we could start with any set of vectors in a vector
space V. To get a subspace SS of V, we take all combinations of the vectors in that set :

S = setofvectors sin V (S is probably not a subspace)
SS = all combinations of vectors in S (SS is a subspace)
SS= all¢ysy +---+enysy = thesubspace of V “spanned” by S

When S is the set of columns, SS is the column space. When there is only one nonzero
vector v in S, the subspace SS is the line through v. Always SS is the smallest subspace
containing S. This is a fundamental way to create subspaces and we will come back to it.

The subspace SS is the ‘span” of S, containing all combinations of vectors in S.

Example 4 Describe the column spaces (they are subspaces of R?) for these matrices :

1 0 1 2 1 2 3
I_[O 1} and A—[Q 4} and B—{O 0 4}.

Solution The column space of I is the whole space R?. Every vector is a combination of
the columns of 1. In vector space language, C(I) equals R?.

The column space of A is only a line. The second column (2,4) is a multiple of the first
column (1, 2). Those vectors are different, but our eye is on vector spaces. The column space
contains (1, 2) and (2,4) and all other vectors (¢, 2¢) along that line. The equation Av = b
is only solvable when b is on the line.

For the third matrix (with three columns) the column space C(B) is all of R®. Every b
is attainable. The vector b = (5,4) is column 2 plus column 3, so v can be (0,1, 1). The
same vector (5,4) is also 2(column 1) + column 3, so another possible v is (2,0, 1). This
matrix has the same column space as I—any b is allowed. But now v has extra components
and Av = b has more solutions—more combinations that give b.

The next section creates the nullspace N(A), to describe all the solutions of Av = 0.
This section created the column space C(A), to describe all the attainable right sides b.

= REVIEW OF THE KEY IDEAS =

1. R"™ contains all column vectors with n real components.
. M (2 by 2 matrices) and Y (functions) and Z (zero vector alone) are vector spaces.

. A subspace containing v and w must contain all their combinations cv + dw.

B W N

The combinations of the columns of A form the column space C(A). Then the column
space is “spanned” by the columns.

5. Av = b has a solution exactly when b is in the column space of A.
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= WORKED EXAMPLES =

5.1 A We are given three different vectors by, bo, bs. Construct a matrix so that the
equations Av = b; and Av = b, are solvable, but Av = bs is not solvable. How can you
decide if this is possible ? How could you construct A ?

Solution  We want to have b; and b, in the column space of A. Then Av = b; and
Av = by will be solvable. The quickest way is to make by and bs the two columns of A.
Then the solutions are v = (1,0) and v = (0, 1).

Also, we don’t want Av = b3 to be solvable. So don’t make the column space any
larger! Keeping only the columns b; and bs, the question is: Do we already have bz ?

Is Av = [ b1 by } [ Z; } = b3 solvable ? Is b3 a combination of b; and by ?

If the answer is no, we have the desired matrix A. If bs is a combination of b; and b»,
then it is not possible to construct A. The column space C(A) will have to contain bs.

5.1 B Describe a subspace S of each vector space V, and then a subspace SS of S.

V3 = all combinations of (1,1,0,0) and (1,1,1,0) and (1,1,1,1)
Vs, = all vectors v perpendicularto u = (1,2,1), sou-v =0
V, = all solutions y(x) to the equation d*y/dz* = 0

Describe each V two ways: (1) All combinations of .. .. (2) All solutions of ....

Solution V3 starts with three vectors. A subspace S comes from all combinations of the
first two vectors (1,1,0,0) and (1,1,1,0). A subspace SS of S comes from all multiples
(¢, ¢,0,0) of the first vector. So many possibilities.

A subspace S of V3 is the line through (1, —1,1). This line is perpendicular to wu.
The zero vector z = (0,0, 0) is in S. The smallest subspace SS is Z.

V4 contains all cubic polynomials y = a + bz + cz? + dz?, with d*y/dz* = 0. The
quadratic polynomials (without an x2 term) give a subspace S. The linear polynomials
are one choice of SS. The constants y = a could be SSS.

In all three parts we could take S = V itself, and SS = the zero subspace Z.

Each V can be described as all combinations of . ... and as all solutions of . . ..:

V3 = all combinations of the 3 vectors V3 = all solutions of v; — v = 0.
V, = all combinations of (1,0, —1) and (1,—1,1) V5 = all solutionsof u-v = 0.
V4 = all combinations of 1, z, 22, 23 V4 = all solutions to d*y/dz* = 0.
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Problem Set 5.1

Questions 1-10 are about the ‘“subspace requirements”: v + w and cv (and then all
linear combinations cv + dw) stay in the subspace.

1 One requirement can be met while the other fails. Show this by finding

(a) A set of vectors in R? for which v + w stays in the set but %v may be outside.
(b) A set of vectors in R? (other than two quarter-planes) for which every cv stays
in the set but v + w may be outside.

2 Which of the following subsets of R? are actually subspaces ?

(a) The plane of vectors (b1, bo, bg) with by = bo.

(b) The plane of vectors with b; = 1.

(c) The vectors with b1babs = 0.

(d) All linear combinations of v = (1,4,0) and w = (2,2, 2).
(e) All vectors that satisfy by + by + b3 = 0.

(f) All vectors with by < by < b3.

3 Describe the smallest subspace of the matrix space IM that contains

10 01 1 1 10 1 0
() [0 U}a“d[o 0} ®) [0 0] e [0 0}““‘{0 1}'
4 Let P be the plane in R?® with equation z + y — 2z == 4. The origin (0,0, 0) is not in
P! Find two vectors in P and check that their sum is not in P.

5 Let Py be the plane through (0, 0,0) parallel to the previous plane P. What is the
equation for P ? Find two vectors in P and check that their sum is in Py.

6 The subspaces of R? are planes, lines, R? itself, or Z containing only (0, 0, 0).

(a) Describe the three types of subspaces of RZ.
(b) Describe all subspaces of D, the space of 2 by 2 diagonal matrices.

7 (a) The intersection of two planes through (0, 0, 0) is probably a but it could
be a .Itcan’tbe Z!

(b) The intersection of a plane through (0,0,0) with a line through (0,0,0) is
probably a but it could be a .

(c) If S and T are subspaces of R, prove that their intersection S N T is a
subspace of R®. Here S N T consists of the vectors that lie in both subspaces.
Check the requirements on v + w and cv.

8 Suppose P is a plane through (0, 0,0) and L is a line through (0,0, 0). The smallest
vector space P + L containing both P and L is either or
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9 (a) Show that the set of invertible matrices in M is not a subspace.

(b) Show that the set of singular matrices in M is not a subspace.
10  True or false (check addition in each case by an example):

(a) The symmetric matrices in M (with AT = A) form a subspace.
(b) The skew-symmetric matrices in M (with AT = — A) form a subspace.

(c) The unsymmetric matrices in M (with AT # A) form a subspace.
Questions 11-19 are about column spaces C(A) and the equation Av = b.

11 Describe the column spaces (lines or planes) of these particular matrices :

1 2 1 0 1 0
A=10 0 B= |02 C=1]20
0 0 0 0 0 0

12  For which right sides (find a condition on by, ba, b3) are these systems solvable ?

1 4 2 (354 bl 1 4 o b]
@ | 2 8 4| |w]|=|b (b) 2 L}l} = | by
] =4 =9 |5 bs -1 —4 2 bs

13  Adding row 1 of A to row 2 produces B. Adding column 1 to column 2 produces C'.
Which matrices have the same column space ? Which have the same row space ?

1 3 1 3 1 4
A=y a] ma m=|g 5| weco=|, 4]

14 For which vectors (b1, ba, b3) do these systems have a solution ?

1 1 1 N b[ 1 1 1 Hi| b]
0 1 T = 52 and 0 1 1 ZIa = bz
0 0 .’II;_;_ 53 0 0 0 _.’I.‘;j bg
[1 1 1 z by ]
and 0 0 1 ) =| b
L 0 0 1 T3 bg |

15  (Recommended) If we add an extra column b to a matrix A, then the column space gets
larger unless Give an example where the column space gets larger
and an example where it doesn’t. Why is Av = b solvable exactly when the
column space doesn’t get larger ? Then it is the same for A and [A b].

16  The columns of AB are combinations of the columns of A. This means: The
column space of AB is contained in (possibly equal to) the column space of A.
Give an example where the column spaces of A and AB are not equal.
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Suppose Av = b and Aw = b* are both solvable. Then Az = b + b” is solvable.
What is 2 ? This translates into: If b and b* are in the column space C(A), then
b+ b*isalso in C(A).

If Ais any 5 by 5 invertible matrix, then its column spaceis . Why?
True or false (with a counterexample if false) :

(a) The vectors b that are not in the column space C(A) form a subspace.
(b) If C(A) contains only the zero vector, then A is the zero matrix.

(c) The column space of 24 equals the column space of A.

(d) The column space of A — I equals the column space of A (test this).

Construct a 3 by 3 matrix whose column space contains (1, 1,0) and (1,0, 1) but not
(1,1,1). Construct a 3 by 3 matrix whose column space is only a line.

If the 9 by 12 system Av = b is solvable for every b, then C(A) mustbe
Challenge Problems

Suppose S and T are two subspaces of a vector space V. The sum S + T contains all
sums s + t of a vector s in S and a vector ¢ in T. Then S + T is a vector space.

If S and T are lines in R™, what is the difference between S + T and S U T'?
That union contains all vectors from S and all vectors from T. Explain this state-
ment: The spanof SUT is S + T.

If S is the column space of A and T is C(B), then S 4+ T is the column space of
what matrix M ? The columns of A and B and M are all in R™. (I don’t think
A + B is always a correct M .)

Show that the matrices A and [A AB] (this has extra columns) have the same
column space. But find a square matrix with C(A?) smaller than C(A).

An n by n matrix has C(A) = R™ exactly when A is an matrix.
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5.2 The Nullspace of A : Solving Av =0

This section is about the subspace containing all solutions to Av = 0. The m by n matrix A
can be square or rectangular. One immediate solution is v = 0. For invertible matrices this is
the only solution. For other matrices, not invertible, there are nonzero solutions to Av = 0.
Each solution v belongs to the nullspace of N (A).

Elimination will find all solutions and identify this very important subspace.

The nullspace of A consists of all solutions to Av = 0. These vectors v are in R".

Check that the solution vectors form a subspace. Suppose v and w are in the nullspace,
so that Av = 0 and Aw = 0. The rules of matrix multiplication give A(v + w) = 0 + 0.
The rules also give A(cv) = 0. The right sides are still zero. Therefore v + w and cv are
also in the nullspace N (A). Since we can add and multiply without leaving the nullspace, it
is a subspace.

The solution vectors v have n components. They are vectors in R", so the nullspace
N (A) is a subspace of R™. The column space C'(A) is a subspace of R™.

If the right side b is not zero, the solutions of Av = b do not form a subspace. The
vector v = 0 is only a solution if b = 0. When the set of solutions does not include v = 0,
it cannot be a subspace. Section 5.3 will show how the solutions to Av = b (if there are any
solutions) are shifted away from the origin by one particular solution v,.

Example 1 =z + 2y + 3z = 0 comes from the 1 by 3 matrix A = [1 2 3].
This equation Av = 0 produces a plane through the origin (0,0,0). The plane is a
subspace of R3, and it is the nullspace of A.

The solutions to x + 2y + 3z = 6 also form a plane, but not a subspace.

Example 2 Describe the nullspace of A = { :1)) (23 ] This matrix is singular !

Solution Apply elimination to the linear equations Av = 0:
v1 + 20 =0 . v+ 20, =0
3v; 4+ 6vy =0 0=0

There is really only one equation. The second equation is the first equation multiplied
by 3. In the row picture, the line v; + 2v; = 0 is the same as the line 3v; 4 6vy = 0.
That line is the nullspace IN (A). It contains all solutions v = (vq, v2).

To describe this line of solutions, here is an efficient way. Choose one point on the line
(one “special solution”). Then all points on the line are multiples of this one. We choose the
second component to be v = 1 (a special choice). From the equation v; + 2vy = 0, the first
component must be v; = —2. The special solution s is (—2,1):

Special

1 2 . . -2
ottt The nullspace of A = [3 6] contains all multiples of s = [ 1] .
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This is the best way to describe the nullspace, by computing special solutions to Av = 0.
The nullspace consists of all combinations of the special solutions.

The plane x + 2y + 3z = 0 in Example 1 had rwo special solutions :

T -2 -3
[1 2 3} y | = 0 has the special solutions s; = 1 and s; = 0
z 0 1

Those vectors s; and s lie on the plane = + 2y + 3z = 0, which is the nullspace of
A= [ 12 3 ] All vectors on the plane are combinations of s; and s».

Notice what is special about s; and s2. They have ones and zeros in the last two
components. Those components are “free” and we choose them specially as 1 and 0.
Then the first components —2 and —3 are determined by the equation Av = 0.

The first column of A = [ 1 2 3] contains the pivot, so the first component v; is not
free. The free components correspond to columns without pivots. This description of special
solutions will be completed after one more example.

The special choice (one or zero) is only for the free variables in the special solutions.

Example 3  Describe the nullspaces IV (A), N (B), N (C) of these three matrices :

1 2
12 A 3 8 B [t 22 4
A‘[3 8} B_{m]_ 2 4 C’[AM]’[:’)SG 16]'
6 16

Solution  The equation Av = 0 has only the zero solution v = 0. The nullspace is Z.
It contains only the single point v = 0 in R?. This comes from elimination :

1 2 v 0 . 1 2 U 0 v =0
s d]ln]=[o e Lo 2] ] [o] = [525 ]
A is invertible. There are no special solutions. All columns of this A have pivots.

The rectangular matrix B has the same nullspace Z. The first two equations in Bv = 0
again require v = 0. The last two equations would also force v = 0. When we add
extra equations, the nullspace certainly cannot become larger. The extra rows impose more
conditions on the vectors v in the nullspace.

The rectangular matrix C' is different. It has extra columns instead of extra rows. The

solution vector v has four components. Elimination will produce pivots in the first two
columns of C, but the last two columns are “free”. They don’t have pivots

2 pivot columns 12 2 4 |12 2 4
2 free columns C'[s 8 6 16} . U‘[o 2 0 4]
Tr Tt

pivot columns  free columns

For the free variables v3 and v4, we make special choices of ones and zeros. First vg = 1,
vy = 0 and second v3 = 0, v4 = 1. Then the pivot variables v; and v, are determined.
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Solve Uv = 0 to get two special solutions in the nullspace of C' (and U).

2 0 + pivot
Special solutions 0 —2 < variables
s1 and so ] <+ free

0 1 < variables

One more comment to anticipate what is coming soon. Elimination will not stop at the
upper triangular U | We can continue to make this matrix simpler, in two ways :

1. Produce zeros above the pivots. Eliminate upward.

2. Produce ones in the pivots. Divide the whole row by its pivot.

Those steps don’t change the zero vector on the right side of the equation. The nullspace
stays the same. This nullspace becomes easiest to see when we reach the reduced row
echelon form R. It has I in the pivot columns, when row 2 is divided by 2

Reduced U — 1 2 2 4 b R= 1 0 2 0
form R “lo0o 2 0 4 ceomes = lo10 2|
T

Now the pivot columns contain 1

I subtracted row 2 of U from row 1, and then multiplied row 2 by % The original two
equations have simplified to 1 + 223 = 0 and z2 + 224 = 0.

The first special solution is still s; = (—2,0, 1,0). All special solutions are unchanged.
Special solutions are much easier to find from the reduced system Rv = 0.

Before moving to m by n matrices A and their nullspaces IN (A) and special solutions,
allow me to repeat one comment. For many matrices, the only solution to Av = 0is v =
0. Their nullspaces IN(A) = Z contain only that zero vector. The only combination of
the columns that produces b = O is then the “zero combination” or “trivial combination”.
The solution is trivial (just v = 0) but the idea is not trivial.

This case of a zero nullspace Z is of the greatest importance. It says that the columns
of A are independent. No combination of columns gives the zero vector (except the zero
combination). All columns have pivots, and no columns are free. You will see this idea of
independence again . . .

Solving Av = 0 by Elimination

This is important. A is rectangular and we still use elimination. We solve m equations
in n unknowns. After A is simplified to U or to R, we read off the solution (or solutions).
Remember the two stages (forward and back) in solving Av = 0:
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1. Elimination takes A to a triangular U (or its reduced form R).
2. Back substitution in Uv = 0 or Rv = 0 produces v.

You will notice a difference in back substitution, when A and U have fewer than n pivots.
We are allowing all matrices in this chapter, not just the nice ones (which are square matrices
with inverses).

Pivots are still nonzero. The columns below the pivots are still zero. But it might
happen that a column has no pivot. That free column doesn’t stop the calculation. Go on
to the next column. The first example is a 3 by 4 matrix with two pivots:

11 2 3
Elimination on A=12 2 8 10
3 3 10 13
Certainly a1; = 1 is the first pivot. Clear out the 2 and 3 below that pivot:

(subtract 2 x row 1)

11 2
A— 1|10 0 4
00 4 (subtract 3 x row 1)

QNI

The second column has a zero in the pivot position. We look below the zero for a nonzero
entry, ready to do a row exchange. The entry below that position is also zero. Elimination
can do nothing with the second column. This signals trouble, which we expect anyway for a
rectangular matrix. There is no reason to quit, and we go on to the third column.

The second pivot is 4 (but it is in the third column). Subtracting row 2 from row 3
clears out that third column below the pivot. The pivot columns are 1 and 3 :

1 1 2 3 Only two pivots
TriangularU U=|0 0 4 4 The last equation
0 0 0 O became 0 = 0

The fourth column also has a zero in the pivot position—but nothing can be done. There is no
row below it to exchange, and forward elimination is complete. The matrix has three rows,
four columns, and only two pivots. The third equation in Av = 0 is the sum of the first two.
It is automatically satisfied (0 = 0) when the first two equations are satisfied. Elimination
reveals the inner truth about Av = 0. Soon we push on from U to R.

Now comes back substitution, to find all solutions to Uv = 0. With four unknowns and
only two pivots, there are many solutions. The question is how to write them all down. A
good method is to separate the pivot variables from the free variables.

P The pivot variables are v; and v3. = Columns 1 and 3 contain pivots.

F  The free variables are v2 and v4. = Columns 2 and 4 have no pivots.
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The free variables v and v4 can be given any values whatsoever. Then back substitution finds
the pivot variables v; and v3. (In Chapter 2 no variables were free. When A is invertible, all
variables are pivot variables.) The simplest choices for the free variables are ones and zeros.
Those choices give the special solutions.

Special solutions to v, + vo + 2v3 + 3vg = 0 and 4vz + 4vy =0
e Setvy = 1land vy = 0. By back substitution v3 = 0. Thenv; = — 1.

e Setvy =0and vy = 1. By back substitution v3 = — 1.Thenv; = — 1.

These special solutions solve Uv = 0 and therefore Av = 0. They are in the nullspace. The
good thing is that every solution is a combination of the special solutions.

-1 =1 —Ug — Uy
Complete solution 1 . %] Vg
to Av=0 & 2 0 T -1 5 Sy, : 1)
0 1 : Vg
special special complete

Please look again at that answer. It is the main goal of this section. The vector s; =
(= 1,1,0,0) is the special solution when v, = 1 and vy = 0. The second special solu-
tion has vo = 0 and v4 = 1. All solutions are linear combinations of s, and s;. The
special solutions are in the nullspace IN (A), and their combinations fill the whole nullspace.

There is a special solution for each free variable. If no variables are free—this means all
n columns have pivots—then the only solution to Uv = 0 and Av = 0 is the trivial solution
v = 0. With no free variables, the nullspace is Z.

Example 4  Find the nullspace of U = [é g SJ .
The second column of U has no pivot. So vy is free. The special solution has v3 = 1. Back
substitution into 9vs = 0 gives v3 = 0. Then v; + 5v2 = 0 or v; = — 5. The solutions to

Uwv = 0 are multiples of one special solution s; :

—5 The nullspace of U is a line in R3.
pi=e] 1 It contains multiples of the special solution s; = (— 5,1, 0).
0 One variable is free.

The matrix R has zeros above and below the pivots, and ones in the pivots.
By continuing elimination on U, the 7 is removed and the pivot changes from 9 to 1. The
final result will be the reduced row echelon form R :

1 5 7
U:[O 0 9]reducestoR—[
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Echelon Matrices

Forward elimination goes from A to U. It acts by row operations, including row exchanges.
It goes on to the next column when no pivot is available in the current column. The m by n
“staircase” U is an echelon matrix.

Here is a 4 by 7 echelon matrix with the three pivots p highlighted in boldface :

p T r T xr T T Three pivot variables V1, V2, Vg
U= 0 p z 2z 2 o = Four free variables V3, Vg, U5, V7
|0 0 0 0 0 p =z Four special solutions in N (U)
00 00 0 0 O R willhave p = 1 and bold z = 0

Question What are the column space and the nullspace for this matrix ?

Answer The columns have four components so they lie in R*. (Not in R®!) The fourth
component of every column is zero. The column space C(U) consists of all vectors of the
form (by,ba,bs,0). For those vectors we can solve Uv = b by back substitution. These
vectors b are all possible combinations of the seven columns.

The nullspace N (U) is a subspace of R”. The solutions to Uv = 0 are all the combi-
nations of the four special solutions—one for each free variable :

1. Columns 3,4, 5, 7 have no pivots. The free variables are vz, v4, v5, V7.
2. Set one free variable to 1 and set the other free variables to zero.

3. Solve Uv = 0 for the pivot variables vy, v2, vg to get a special solution.

The nonzero rows of an echelon matrix go down in a staircase pattern. The pivots are the
first nonzero entries in those rows. There is a column of zeros below every pivot.

The Counting Theorem

Counting the pivots leads to an extremely important theorem. Suppose A has more columns
than rows. With n > m there is at least one free variable. The system Av = 0 has at least
one special solution. This solution is not zero !

Suppose Av = 0 has more unknowns than equations (. > m, more columns than rows).
Then there are nonzero solutions in N (A). There must be free columns, without pivots.

A short wide matrix (n > m) always has nonzero vectors in its nullspace. There must be at
least n — m free variables, since the number of pivots cannot exceed m. (The matrix only
has m rows, and a row never has two pivots.) Of course a row might have no pivot—which
means an extra free variable. But here is the point: When there is a free variable, it can be
set to 1. Then the equation Av = 0 has a nonzero solution.
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To repeat: There are at most m pivots. With n > m, the system Av = 0 has a nonzero
solution. Actually there are infinitely many solutions, since any multiple cv is also a solution.
The nullspace contains at least a line of solutions. With two free variables, there will be two
special solutions and the nullspace will be even larger.

The nullspace is a subspace. Its “dimension” is the number of special solutions.
This central idea—the dimension of a subspace—is defined and explained in this chapter.

Dimension of C(A) = rank of matrix = number of pivot columns
Dimension of N(A) = nullity of matrix = number of free columns.
Counting Theorem with n columns Rank r plus nullity n — r equals n.

The Reduced Row Echelon Matrix R

From an echelon matrix U we go one more step. Continue with a 3 by 4 example :

11 2 3
U=|0 0 4 4
0 0 0O

We can divide the second row by 4. Then both pivots equal 1. We can subtract 2 times this
new row [0 01 1] from the row above. The reduced row echelon matrix R has zeros
above the pivots as well as below :

1 1 0 1 .
i row. R=rref(A)=1 0 0 1 1 i r vy
echelon matrix 000 0 contain I

R has 1’s as pivots. Zeros above pivots come from upward elimination.

Important If A is invertible, its reduced row echelon form is the identity matrix R = I.
This is the ultimate in row reduction. Of course the nullspace is then Z.
The zeros in R make it easy to find the special solutions (the same as before) :

1. Set vy = 1 and vg4 = 0. Solve Rv = 0. Then v; = —1 and v3 = 0.
Those numbers —1 and 0O are sitting in column 2 of R (with plus signs).

2. Setvo = 0and vgy = 1. Solve Rv = 0. Thenv; = —1 and vz = —1.
Those numbers —1 and —1 are sitting in column 4 (with plus signs).

By reversing signs we can read off the special solutions directly from R. The nullspace
N(A) = N(U) = N(R) contains all combinations of the special solutions :

il =l
v =V (1) toa| | = (complete solution of Av = 0).
0 1

The next section of the book moves firmly from U to the row reduced form R. The
MATLAB command [ R, pivcol | = rref(A) produces R and a list of the pivot columns.
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= REVIEW OF THE KEY IDEAS =

1. The nullspace IN (A) is a subspace of R". It contains all solutions to Av = 0.

2. Elimination produces an echelon matrix U, and then a row reduced R (pivots = 1).

3. Every free column of U or R leads to a special solution. The free variable equals 1
and the other free variables equal 0. Back substitution solves Av = 0.

4. The complete solution to Av = 0 is a combination of the special solutions.
5. A has at least one free column and one special solution if n > m: IN(A) is not Z.

6. The count of pivot columns and free columns is 7 + (n — 1) = n.

® WORKED EXAMPLES =

3.2 A Create a 3 by 4 matrix R whose special solutions to Rv = 0 are s; and s :

-3 -2
1 0 pivot columns 1 and 3
8 = and 89 = .
0 —6 free variables v, and vy
0 1

Describe all matrices A with this nullspace N (A) = combinations of s; and ss.

Solution  The reduced matrix R has pivots = 1 in columns 1 and 3. There is no third
pivot, so the third row of R is all zeros. The free columns 2 and 4 will be combinations of
the pivot columns:

1 3 0 2
R=]10 01 6 has Rs; =0 and Rsy=0.
00 0 0

The entries 3,2, 6 in R are the negatives of —3, —2, —6 in the special solutions !

R is only one matrix (one possible A) with the required nullspace. We could do any
elementary operations on R—exchange rows, multiply a row by any ¢ # 0, subtract any
multiple of one row from another. R can be multiplied (on the left) by any invertible
matrix, without changing its nullspace.

Every 3 by 4 matrix has at least one special solution. These matrices have two.
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3.2B  Find the special solutions and the complete solutions to Av = 0 and Asv = 0:
3 6 3 6 3 6
A:[12] AQ_[AA]:[1212}'
Which are the pivot columns ? Which are the free variables ? What is R in each case ?

Solution Awv = 0 has one special solution s = (—2,1). The line of all c¢s is the
complete solution. The first column of A is its pivot column, and v is the free variable :

36 12 121 2
A:[1 2]_”%:[0 o} |4 A]_’Rﬁz{oooo}

Notice that Ry has only one pivot column (the first column). All the variables v, vs, v4
are free. There are three special solutions to A2 v = 0 (and also Ry v = 0):

s1=(-2,1,0,0) s=(-1,0,1,0) s3=(—2,0,0,1) Complete v=c181 + c282 + c383.
With r pivots, A has n — r free variables and Av = 0 has n — r special solutions.

Problem Set 5.2

Questions 1-4 and 5-8 are about the matrices in Problems 1 and 5.

1 Reduce these matrices to their ordinary echelon forms U :
1 2 2 46 2 4 2
A=|11 2 3 6 9 B=|0 4 4
0 01 2 3 0 8 8

Which are the free variables and which are the pivot variables ?

2 For the matrices in Problem 1, find a special solution for each free variable. (Set the
free variable to 1. Set the other free variables to zero.)

3 By combining the special solutions in Problem 2, describe every solution to Av = 0
and Bv = 0. The nullspace contains only v = 0 when there are no

4 By further row operations on each U in Problem 1, find the reduced echelon form R.
True or false : The nullspace of R equals the nullspace of U.

5 By row operations reduce this new A and B to triangular echelon form U. Write down
a2 by 2 lower triangular L such that B = LU.

-1 3 5 -1 3
A_[—26 10] B_[—Qﬁ

-1 T
—_
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For the same A and B, find the special solutions to Av =0 and Bv=0. For an m by
n matrix, the number of pivot variables plus the number of free variablesis

In Problem 5, describe the nullspaces of A and B in two ways. Give the equations for
the plane or the line, and give all vectors v that satisfy those equations as combinations
of the special solutions.

Reduce the echelon forms U in Problem 5 to R. For each R draw a box around the
identity matrix that is in the pivot rows and pivot columns.

Questions 9-17 are about free variables and pivot variables.

9

10

1

12

13

14

15

True or false (with reason if true or example to show it is false) :

(a) A square matrix has no free variables.
(b) An invertible matrix has no free variables.
(c) An m by n matrix has no more than n pivot variables.

(d) Anm by n matrix has no more than m pivot variables.
Construct 3 by 3 matrices A to satisfy these requirements (if possible) :

(a) A has no zero entriesbut U = I.
(b) A has no zero entries but R = 1.
(¢c) A has no zero entries but R = U.
(d A=U =2R.
Put as many 1’s as possible in a 4 by 7 echelon matrix U whose pivot columns are
(@ 2,4,5
() 1,3,6,7
(c) 4 and 6.

Put as many 1’s as possible in a 4 by 8 reduced echelon matrix R so that the free
columns are

(a) 2,4,5,6
®) 1,3,6,7,8.

Suppose column 4 of a 3 by 5 matrix is all zero. Then vy is certainly a
The special solution for this variable is the vectors =

variable.

Suppose the first and last columns of a 3 by 5 matrix are the same (not zero). Then
is a free variable. Find the special solution for this variable.

Suppose an m by n matrix has r pivots. The number of special solutions is .
The nullspace contains only v = 0 when 7 = . The column space is all of R™
when r =
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16  The nullspace of a 5 by 5 matrix contains only v = 0 when the matrix has
pivots. The column space is R® when there are pivots. Explain why.

17  The equation z — 3y — z = 0 determines a plane in R®. What is the matrix A in
this equation ? Which are the free variables? The special solutions are (3,1,0) and

18 (Recommended) The plane z — 3y — z = 12 is parallel to the plane x — 3y — 2 = 0
in Problem 17. One particular point on this plane is (12,0, 0). All points on the plane
have the form (fill in the first components)

x
y [=|0|+y| 1 |+2|0
z 0 0 1

19  Prove that U and A = LU have the same nullspace when L is invertible :

If Uv =0 then LUv=0. If LUv =0, howdo youknow Uv =07

20  Suppose column 1 + column 3 + column 5 = O in a 4 by 5 matrix with four pivots.
Which column is sure to have no pivot (and which variable is free)? What is the
special solution ? What is the nullspace ?

Questions 21-28 ask for matrices (if possible) with specific properties.

21 Construct a matrix whose nullspace consists of all combinations of (2,2,1,0) and
(3,1,0,1).

22 Construct a matrix whose nullspace consists of all multiples of (4, 3,2, 1).

23  Construct a matrix whose column space contains (1, 1, 5) and (0, 3, 1) and whose nullspace
contains (1,1, 2).

24  Construct a matrix whose column space contains (1, 1,0) and (0, 1, 1) and whose nullspace
contains (1,0,1) and (0,0, 1).

25  Construct a matrix whose column space contains (1,1, 1) and whose nullspace is the
line of multiples of (1,1,1,1).

26  Construct a 2 by 2 matrix whose nullspace equals its column space. This is possible.
27  Why does no 3 by 3 matrix have a nullspace that equals its column space ?

28 (Important) If AB = 0 then the column space of B is contained in the of A.
Give an example of A and B.

29  The reduced form R of a 3 by 3 matrix with randomly chosen entries is almost sure to
be __ . What reduced form R is virtually certain if the random A is 4 by 3 ?
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30

31

32

33

34

35

36

37

Show by example that these three statements are generally false :

(a) Aand AT have the same nullspace.
(b) A and AT have the same free variables.
(c) If R is the reduced form of A then RT is the reduced form of AT.

If the nullspace of A consists of all multiples of v = (2,1,0,1), how many pivots
appear in U ? Whatis R ?

If the special solutions to Rv = 0 are in the columns of these NV, go backward to find
the nonzero rows of the reduced matrices R :

2 3 0
N=]120 and N= |0 and N = (empty 3 by 1).
0 1 1

(a) What are the five 2 by 2 reduced echelon matrices R whose entries are all 0’s and
1’s?

(b) What are the eight 1 by 3 matrices containing only 0’s and 1’s ? Are all eight of
them reduced echelon matrices R ?

Explain why A and — A always have the same reduced echelon form R.
Challenge Problems

If A is 4 by 4 and invertible, describe all vectors in the nullspace of the 4 by 8 matrix
B=[A A].

How is the nullspace IN (C') related to the spaces N (A) and N (B), if C = [ 4 } ?

B
Kirchhoff’s Law says that current in = current out at every node. This network has
six currents yi,...,Ys (the arrows show the positive direction, each y; could be

positive or negative). Find the four equations Ay = 0 for Kirchhoff’s Law at the
four nodes. Reduce to Uy = 0. Find three special solutions in the nullspace of A.

1 > .2
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5.3 The Complete Solutionto Av = b

To solve Av = b by elimination, include b as a new column next to the n columns of A. This
“augmented matrix” is [ A b]. When the steps of elimination operate on A (the left side
of the equations), they also operate on the right side b. So we always keep correct equations,
and they become simple to solve.

There are still r pivot columns and n — r free columns in A. Each free column still
gives a special solution to Av = 0. The new question is to find a particular solution vy
with Av, = b. That solution will exist unless elimination leads to an impossible equation
(a zero row on the left side, a nonzero number on the right side). Then back substitution
finds v,,. Every solution to Av = b has the form v, 4 v,,.

In the process of elimination, we discover the rank of A. This is the number of pivots.
The rank is also the number of nonzero rows after elimination. We start with m equations
Av = 0, but the true number of equations is the rank r. We don’t want to count repeated
rows, or rows that are combinations of previous rows, or zero rows. You will soon see that
7 counts the number of independent rows. And the great fact, still to prove and explain,
is that the rank 7 also counts the number of independent columns :

number of pivots = number of independent rows = number of independent columns.

This is part of the Fundamental Theorem of Linear Algebra in Section 5.5.
An example of Av = b will make the possibilities clear.

1302;’1 1 has the 13021
00 1 4 1)2 =16 augmented 0 01 4 6[=[A4Db]
1316@3 7 T 1 316 7

4

The augmented matrix is just [A b]. When we apply the usual elimination steps to A
and b, all the equations stay correct. Those steps produce R and d.

In this example we subtract row 1 from row 3 and then subtract row 2 from row 3.
This produces a row of zeros in R, and it changes b to a new right side d = (1,6,0):

(%1

130 2], 1 has the 1 302 1
0 0 1 4[| 2=16 augmented |0 0 1 4 6| =[R d].
oooov3 0 — 00 00O

4

That very last zero is crucial. The third equation has become 0 = 0, and we are safe.
The equations can be solved. In the original matrix A, the first row plus the second row
equals the third row. If the equations are consistent, this must be true on the right side
of the equations also ! The all-important property on the right side was 1 + 6 = 7.

Here are the same augmented matrices for any vector b = (by, ba, b3) :

1 30 2 b 1 30 2 b
[Ab]=]0 01 4 by|—|0 0 1 4 b =[R d]
1 3 1 6 by 00 00 byg—b—by
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Now we get 0 = 0 in the third equation provided bs — b; — by = 0. This is by + by = bs.
The example satisfied this requirement with 1 + 6 = 7. You see how elimination on [A b]
brings out the test on b for Av = b to be solvable.

One Particular Solution

For an easy solution vy, choose the free variables to be vo = v4 = 0. Then the two
nonzero equations give the two pivot variables v; = 1 and vz = 6. Our particular solution
to Av = b (and also Rv = d) is v, = (1,0,6,0). This particular solution is my favorite :
free variables are zero, pivot variables come from d. The method always works.
For Rv = d to have a solution, zero rows in R must also be zero in d.
When I is in the pivot rows and columns of R, the pivot variables are in d:

_ (1; Pivot variables 1, 6
0

Rv, =d Free variables 0, 0

SO+

3 0 2 é
0 1 4 6
0 0 O 0

Notice how we choose the free variables (as zero) and solve for the pivot variables. After
the row reduction to R, those steps are quick. When the free variables are zero, the pivot
variables for v, are already seen in the right side vector d.

Vparticular The particular solution v, solves Av, =b

Unullspace The n. — r special solutions solve Av, = 0.

That particular solution to Av = b and Rv = d is (1,0,6,0). The two special (null)
solutions to Rv = 0 come from the two free columns of R, by reversing signs of 3, 2, and 4.
Please notice the form I use for the complete solution v, + v, to Av = b:

Complete solution é _? _3
one v, V=Upt U, = 6 + v2 0 + vy 4
many v, 0 0 )

Question  Suppose A is a square invertible matrix, m = n = r. What are v, and v, ?
Answer If A1 exists, the particular solution is the one and only solution v = A~'b.
There are no special solutions or free variables. R = I has no zero rows. The only vector
in the nullspace is v,, = 0. The complete solution is v = v, + v, = A~'b+ 0.

This was the situation in Chapter 4. We didn’t mention the nullspace in that chapter.
N (A) contained only the zero vector. Reduction goes from [ A b] to [I A‘lb]. The
original Av = b is reduced all the way to v = A~1b which is d. This is a special case
here, but square invertible matrices are the ones we see most often in practice. So they got
their own chapter at the start of linear algebra.
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For small examples we can reduce [A b] to [R d ] For a large matrix,
MATLAB does it better. One particular solution (not necessarily ours) is A\b from the
backslash command. Here is an example with full column rank. Both columns have pivots.

Example 1 Find the condition on (by, bz, b3) for Av = b to be solvable, if

1 1 by
A= 1 2| and b= | by
-2 =3 b3

This condition puts b in the column space of A. Find the complete v = v, + v,,.

Solution Use the augmented matrix, with its extra column b. Subtract row 1 of [A b]
from row 2, and add 2 times row 1 to row 3 to reach [R d} :

1 1 b 1 1 b 1 0 2bp—by
1 2 bg —> 0 1 bg — bl & 0 1 bg = bl
-2 =3 b3 0 —1 bs+2h 0 0 bg+by+ by

The last equation is 0 = 0 provided b3 + by + by = 0. This is the condition that puts
b in the column space; then Av = b will be solvable. The rows of A add to the zero row.
So for consistency (these are equations!) the entries of b must also add to zero. This example
has no free variables since n — r = 2 — 2. Therefore no special solutions. The rank is r = n
so the only null solution is v,, = 0. The unique particular solution to Av = band Rv = d
is at the top of the augmented column d :

. - _ 2b1 — b2 0
Only one solution v_vp+vn_[b2—b1 ]+[0],

If b3 + b1 + bo is not zero, there is no solution to Av = b (v, doesn’t exist).

This example is typical of an extremely important case: A has full column rank.
Every column has a pivot. The rank is 7 = n. The matrix is tall and thin (m > n).
Elimination puts [ at the top, when A is reduced to R with rank 7 :

I J B { n by n identity matrix J 0

0 m — n rows of zeros

There are no free columns or free variables. The nullspace is Z.
We will collect together the different ways of recognizing this type of matrix.

Full column rank R = {

Every matrix A with full column rank (r = n) has all these properties :

1. All columns of A are pivot columns. They are independent.
There are no free variables or special solutions.

Only the zero vector v = 0 solves Av = 0 and is in the nullspace IV (4).

> w DN

If Av = b has a solution (it might not) then it has only one solution.
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In the essential language of the next section, A has independent columns if r = n.
Av = 0 only happens when v = 0. Eventually we will add one more fact to the list:
The square matrix AT A is invertible when the columns are independent.

In Example 1 the nullspace of A (and R) has shrunk to the zero vector. The solution to
Av = b is unique (if it exists). There will be m — n (here 3 — 2) zero rows in R. There are
m — n conditions on b to have 0 = 0 in those rows. Then b is in the column space.

With full column rank, Av = b has one solution or no solution: m > n is overdetermined.

The Complete Solution

The other extreme case is full row rank. Now Av = b has one or infinitely many solutions.
In this case A must be short and wide (m < mn). A matrix has full row rank if r = m
(“independent rows”). Every row has a pivot, and here is an example.

Example 2 There are n = 3 unknowns but only m = 2 equations:

T+ y+z=3

Full row rank T+ —z=4

(rank 7 =m = 2)

These are two planes in zyz space. The planes are not parallel so they intersect in a line.
This line of solutions is exactly what elimination will find. The particular solution will
be one point on the line. Adding the nullspace vectors v,, will move us along the line.
Then v = v, + v, gives the whole line of solutions.

We find v, and v,, by elimination on [A b]. Subtract row 1 from row 2 and then
subtract row 2 from row 1:

11 1 3 11 1 3 1 0 3 2
[1 2 —1 4}**{0 1 -2 1]_’[0 1) 1}=[R et
The particular solution has free variable v3 = 0. The special solution has v3 = 1:

Uparticular comes directly from d on the right side : v, = (2, 1,0)
s comes from the third column (free column) of R: s = (—3,2,1)

It is wise to check that v, and s satisfy the original equations Av, = band As = 0:

2+1 = 3 -3+2+1 = 0
2+2 = 4 -3+4-1 = 0

The nullspace solution v,, is any multiple of s. It moves along the line of solutions,
starting at Vparticular- Please notice again how to write the answer :

2 -3
Complete solution v=v+Up=|1|+4+vs| 2
0 1
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Line of solutions to Av = b

Line of solutions to Av = 0

Figure 5.3: Complete solution = one particular solution + all nullspace solutions.

The line of solutions is drawn in Figure 5.3. Any point on the line could have been chosen
as the particular solution; we chose the point with v3 = 0.

The particular solution is not multiplied by an arbitrary constant! The special solution
is, and you understand why.

Now we summarize this short wide case of full row rank. If m < n the equations Av = b
are underdetermined (they have many solutions if they have one).

Every matrix A with full row rank (r = m) | has all these properties :

1. All m rows have pivots, and R has no zero rows.
Awv = b has a solution for every right side b.

The column space is the whole space R™.

Eall

There are n — 7 = n — m special solutions in the nullspace of A.

In this case with m pivots, the rows are “linearly independent.” We are more than ready
for the idea of linear independence, as soon as we summarize the four possibilities—
which depend on the rank. Notice how r, m, n are the critical numbers.

The four possibilities for linear equations depend on the rank r.

r=m and r=n Square and invertible Av = b has 1 solution
r=m and 7r<n Short and wide Av =b has oo solutions
r<m and 7r=mn Tall and thin Av =b has0or 1 solution
r<m and 7r<n Not full rank Av =b has 0 or oo solutions

The reduced R will fall in the same category as the matrix A. They have the same rank.
In case the pivot columns happen to come first, we can display these four possibilities for

R. For Rv = d and Av = b to be solvable, d must end in m — r zeros.
I I F
Four types R=[I] [I F| [OJ [0 0 }
Their ranks r=m=mn r=m<n r=n<m r<m,r<n

Cases 1 and 2 have full row rank = m. Cases 1 and 3 have full column rank r = n.
Case 4 is the most general in theory and it is the least common in practice.
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= REVIEW OF THE KEY IDEAS =

1. The rank 7 is the number of pivots. The reduced matrix R has m — r zero rows.
. Av = bis solvable if and only if the last m — r equations in Rv = d are 0 = 0.
. One particular solution v, has all free variables equal to zero.

. The r pivot variables are determined after the n — r free variables are chosen.

. Full column rank 7 = n means no free variables : one solution or no solution.

A v A W BN

. Full row rank » = m means one solution if m = n or infinitely many if m < n.

= WORKED EXAMPLES =

5.3 A This question connects elimination (pivot columns and back substitution) to
column space-nullspace-rank-solvability (the full picture). A is 3 by 4 with rank 2:

v, + 2v9 + 3v3 + Hvg = by
Av=0>b is 2wvi +4vs + 8vz + 12v4 = by
3’01 + 6’02 + 7’03 + 13’04 = b3

. Reduce [A b]to[U c],sothat Av = b becomes a triangular system Uv = c.
. Find the condition on by, bz, b3 for Av = b to have a solution.

. Describe the column space of A. Which plane in R? is the column space ?

. Describe the nullspace of A. What are the special solutions in R* ?

. Find a particular solution to Av = (0,6, —6) and then the complete solution.

N AW N =

Solution

1. The multipliers in elimination are 2 and 3 and —1. They take [A b]into [U ¢].

123 5 by 12 3 5|by 1 2 3 5|by
24812ba (=00 2 2|bz—-2by|—>|0 0 2 2|bz—2by
36713 bg 00 -2 —2| bg—3b; 0 0 0 O0|bg+bz—>5b;

The last equation shows the solvability condition bg + b — 5b; = 0. Then 0 = 0.
First description: The column space is the plane containing all combinations of the
pivot columns (1,2,3) and (3,8,7). Those columns are in A, not in U or R.
Second description : The column space contains all vectors with b + by — 5b; = 0.
That makes Av = b solvable. All columns of A pass this test bs + by — 5by = 0. This
is the equation for the plane in the first description of the column space.

4. The special solutions have free variables vo = 1,v4 = 0 and then vo = 0,v4 = 1:
s1 =(—2,1,0,0) and s = (—2,0,—1, 1). The nullspace contains all ¢; 81 + c2Ss.

w
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5. One particular solution vy, has free variables = zero. Back substitute in Uv = c:

Particular solution to Av, = b= ( §, —6) _g
This vector b satisfies b3z + by — 5b; =0 = 3
The complete solution is v = v, + v,,. 0

5.3 B  Find the complete solution v = v, + v,, by forward elimination on [A b]:

12 1 0 4
2 4 4 8|2 |=]2
48 6 8| 10
vy
Find numbers y1,y2,ys so that yj (row 1) + ya (row 2) + ys (row 3) = zero row.

Check that b = (4, 2, 10) satisfies the condition y1b1 + y2b2 + ysbs = 0. Why is this
the condition for the equations to be solvable and b to be in the column space?

Solution  Forward eliminationon [A b] produces a zerorow in [U ¢]. The third equation
becomes 0 = 0. The equations are consistent (and solvable because 0 = 0):

[==l=r N

1 21 0 4 1 210
— |00 2 8 -6|—|[00 2 8 —
0 0 2 8 -6 00 00

Columns 1 and 3 contain pivots. The variables v2 and vy are free. If v = v4 = 0 we can
solve (back substitution) for the particular solution v, = (7,0, — 3 0). The 7 and —3 appear
again if elimination continues all the way to the row reduced [R d] :

1 21 0 4 1 21 0 4 1 2 0 -4 7

00 28 ~6| —>|0O014-3|—|0O0T1 4 -3

0 0 0 0 O 0O 0 0 0 o0 00 0 0 O
For the nullspace part v,, with b = 0, set the free variables v2,v4to 1,0 and also 0,1 :

Special solutions s1=(—2, 10, Oand s2=(4, 0, —4) 1

Then the complete solution to Av = b (and Rv = d) is veomplete = Up + €181 + C252.

The rows of A produced the zero row from 2(row 1) 4 (row 2) — (row 3) = (0, 0,0, 0).
Thus y = (2,1, — 1). The same combination for b = (4, 2, 10) gives 2(4) + (2) — (10) = 0.
Combinations that give y™ A = zero must also give yTb = zero. Otherwise no solution.

Later we will say this in different words: y = (2,1, — 1), is in the nullspace of A™T.
Then y will be perpendicular to every b in the column space of A. I am looking ahead...
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Problem Set 5.3

(Recommended) Execute the six steps of Worked Example 3.4 A to describe the
column space and nullspace of A and the complete solution to Av = b:

2 4 6 4 b1 4
A=12 5 7 6 b=|b | =] 3
2 3 5 2 b3 5

Carry out the same six steps for this matrix A with rank one. You will find two
conditions on by, b, b for Av = b to be solvable. Together these two conditions
put b into the space.

17 [2 1 3] 2 1 3 by 10
A= |3 =6 3 9 b=]b | =] 30
2 4 2 6 b3 20

Questions 3-15 are about the solution of Av = b. Follow the steps in the text to vp
and vp. Start from the augmented matrix [ A b].

3

Write the complete solution as v, plus any multiple of s in the nullspace :

r+3y+3z2=1
2c+6y+92=5
-z —3y+3z=>5.

Find the complete solution (also called the general solution) to

1 3 1 2 = 1
2 6 4 8 Y1=13
00 2 4 f 1

Under what condition on by, ba, bs is this system solvable ? Include b as a fourth
column in elimination. Find all solutions when that condition holds :

r+2y—2z=10
2 + 5y — 4z = by
4x + 9y — 8z = b3.

What conditions on by, by, b3, by make each system solvable ? Find v in that case :

1 3 by 1 2 3 by
2 4 {vl]_ b 2 4 6 z‘ | b
2 5 Vg - b:; 2 5 7 ’02 - 3)3
3 09 bs 3 9 12 . by



5.3. The Complete Solution to Av = b 281

7 Show by elimination that (b, bz, bs) is in the column space if bs — 2bs + 4b; = 0.

1 3
A=13 8
2 4

fan B ST

What combination 1 (row 1) + ya(row 2) + ys(row 3) gives the zero row ?

8 Which vectors (b, be, bs) are in the column space of A? Which combinations of the
rows of A give zero ?

(a) A=

00 W

2 11
6 by A=|1 2
2 2 4

O b=
[, B LI

9 In Worked Example 5.3 A, combine the pivot columns of A with the numbers
—9 and 3 in the particular solution v,. What is that linear combination and why ?

10  Construct a 2 by 3 system Av = b with particular solution v, = (2,4,0) and
null (homogeneous) solution v,, = any multiple of (1,1, 1).

11 Why can’ta 1 by 3 system have v, = (2,4, 0) and v,, = any multiple of (1,1,1)?
12 (a) If Av = b has two solutions v; and v», find two solutions to Av = 0.

(b) Then find another solution to Av = b.
13 Explain why these are all false :

(a) The complete solution is any linear combination of v, and v,,.
(b) A system Av = b has at most one particular solution.

(c) The solution v, with all free variables zero is the shortest solution (minimum
length ||v]|). Find a 2 by 2 counterexample.

(d) If A is invertible there is no solution v,, in the nullspace.

14 Suppose column 5 has no pivot. Then vsisa _ variable. The zero vector (is)
(is not) the only solution to Av = 0. If Av = b has a solution, then it has
solutions.

15  Suppose row 3 has no pivot. Then that row is . The equation Rv = d is only
solvable provided . The equation Av = b (is) (is not) (might not be) solvable.

Questions 16-21 are about matrices of “full rank” »r = morr = n.

16  The largest possible rank of a 3 by 5 matrix is . Then there is a pivot in
every of U and R. The solution to Av = b (always exists) (is unique).
The column space of A is . An exampleis A =
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The largest possible rank of a 6 by 4 matrix is . Then there is a pivot in
every of U and R. The solution to Av = b (always exists) (is unique).
The nullspace of A is . An example is A =

Find by elimination the rank of A and also the rank of AT :

1 4 0 10 1
A= 2 11 5 and A= |1 1 2 | (rankdependson g).
~1 2 10 11 ¢

Find the rank of A and also of AT A and also of AAT :
20
A:[ié?} and A=|1 1
1. 2

Reduce A to its echelon form U. Then find a triangular L so that A = LU.

O =

10 0
A:[ggég} and A= 2 2 3
0 6 4

[}

Find the complete solution in the form v, + v, to these full rank systems :

c+y+z=4

=4 b
@ z+y+z ®) z—y+z=4.

If Av = b has infinitely many solutions, why is it impossible for Av = B (new
right side) to have only one solution ? Could Av = B have no solution ?
Choose the number g so that (if possible) the ranks are (a) 1, (b) 2, (c) 3:

A=| -3 -2 -1 and B:[BIS].
: g 2 g

Give examples of matrices A for which the number of solutions to Av = b is

(a) Oor 1, depending on b
(b) oo, regardless of b
(c) 0 or oo, depending on b

(d) 1, regardless of b.
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25

Write down all known relations between r and m and n if Av = b has

(a) no solution for some b
(b) infinitely many solutions for every b
(c) exactly one solution for some b, no solution for other b

(d) exactly one solution for every b.

Questions 26-33 are about Gauss-Jordan elimination (upwards as well as downwards)
and the reduced echelon matrix R.

26

27

28

29

30

Continue elimination from U to R. Divide rows by pivots so the new pivots are all 1.
Then produce zeros above those pivots to reach R :

O Wk
O =

2 4 4 2
U=|10 3 6 and U= |0
0 0 0 0

Suppose U is square with n pivots (an invertible matrix). Explain why R = I.

Apply Gauss-Jordan elimination to Uv = 0 and Uv = c¢. Reach Rv = 0 and

Rv=d:
5
8 |-

1230 12
[UO]—[ 040J and [Uc]—[oo
Solve Rv = O to find v, (its free variable is vy = 1). Solve Rv = d to find v,
(its free variable is v = 0).

=W

Apply Gauss-Jordan elimination to reduce to Rv = 0 and Rv = d:

3 0 6 0 3 0 6 9
U ofl=1020 20 and U e|=]00 2 4
00 0O 00 0 5

Solve Uv = 0 or Rv = O to find v, (free variable = 1). What are the solutions to
Rv=d?

Reduce to Uv = ¢ (Gaussian elimination) and then Rv = d (Gauss-Jordan) :

(25|

1 0 2 3 2
Av=|1 3 2 0 33:5:5
2 0 4 9 = 10
V4

Find a particular solution v, and all homogeneous (null) solutions v,.
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31  Find matrices A and B with the given property or explain why you can’t:
1

(a) The only solutionof Av = | 2 | isv= [ (1) }
3
0 1
(b) The only solution of Bv = { 1 ] isv=| 2
3

32 Reduce [A b|to[R d] and find the complete solution to Av = b:

and b= andthen b=

ol o B
Lol S S
cr Sy Lo =
ot S =
[ T e W Y

33  The complete solution to Av = [ ; } isv = [ (1) ] +c [ (1) } Find A.

Challenge Problems

34  Suppose you know that the 3 by 4 matrix A has the vector s = (2,3, 1,0) as the only
special solution to Av = 0.

(a) What is the rank of A and the complete solution to Av = 0?
(b) What is the exact row reduced echelon form R of A ? Good question.
(c) How do you know that Av = b can be solved for all b ?

35 If you have this information about the solutions to Av = b for a specific b, what does
that tell you about the shape of A (m and n)? And possibly about = and b.

There is exactly one solution.

All solutions to Av = b have the form v = [%] + c[ 1 ]

[+ [8]

36 Suppose Av = b and Cv = b have the same (complete) solutions for every b.
Isittrue that A = C'?

. There are no solutions.

. All solutions to Av = b have the form v = [

oM

O

. There are infinitely many solutions.
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5.4 Independence, Basis and Dimension

This important section is about the true size of a subspace. There are n columns in an m by
n matrix. But the true “dimension” of the column space is not necessarily n. The dimension
is measured by counting independent columns—and we have to say what that means. We
will see that the true dimension of the column space is the rank 7.

The idea of independence applies to any vectors w1, . .., u, in any vector space. Most
of this section concentrates on the subspaces that we know and use—especially the column
space and the nullspace of A. In the last part we also study “vectors” that are not column
vectors. They can be matrices, or solutions to differential equations. They can be linearly
independent (or dependent). First come the key examples using column vectors.

The goal is to understand a basis : independent vectors that “span the space”.

Any basis Each vector in the space is a unique combination of the basis vectors.

We are at the heart of our subject, and we cannot go on without a basis. The four essential
ideas in this section (with first hints at their meaning) are :

1. Independent vectors (no extra vectors)

2. Spanning a space (their combinations produce the whole space)

3. Basis for a space (independent and spanning : not too many or too few)
4. Dimension of a space (the number of vectors in each and every basis)

Bases for Important Spaces

Here are three examples to show you what a basis looks like (before the definition).
A basis is a set of vectors that perfectly describes all vectors in the space. Take all
combinations of the basis vectors to get every vector in the space.

1. Basis for the column space of A

A natural choice is the 7 pivot columns. Their combinations yield all columns.

2. Basis for the nullspace of A

A natural choice is the set of n — r special solutions to Av = 0.

3. Basis for the space of null solutions to Ay" + By’ + Cy =0

A natural choice is the pair of solutions y; = e°1* and y, = e%2¢. These exponents
s1 and sg satisfy As? + Bs+C =0, so y1 and yo solve the differential equation.

If s is a double root of the quadratic, then yo = te®t can be the second member
of the basis. (Always two y’s for a linear second order equation.) All other solutions
are combinations of y; and y2. Then y; and y, span the solution space.
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The dimension of a space is easy. Just count the number of basis vectors :

Column space Nullspace Solution space
Dimension r Dimensionn — r Dimension 2

Those bases were natural choices. They are not at all the only bases. A space has many
different bases. The column space of this matrix A is the whole space RZ.

13 7 1. Pivot columns 1 and 2
A= [ 9 5 9 } Bases for C(A) 2. Columns 1 and 3, or columns 2 and 3
3. Any independent v and w in R?

The vectors (1, 0) and (0, 1) are a perfectly good basis for the column space of this A.

Linear Independence

Our first definition of independence is not so conventional, but you are ready for it.

DEFINITION The columns of A are linearly independent when the only solution to
Av =0isv = 0. No combination Av of the columns is the zero vector, except v = 0.

The columns are independent when the nullspace IN(A) contains only the zero vector.
Let me illustrate linear independence (and dependence) with three vectors in R® :

1. If three vectors are not in the same plane, they are independent. No combination of
U1, U2, us in Figure 5.4 gives zero except the combination O u; + 0 ug + 0 us.

2. If three vectors w1, we, w3 are in the same plane, they are dependent.

This idea of independence applies to 7 vectors in 12-dimensional space. If they are the
columns of A, and independent, the nullspace only contains v = 0. None of the vectors is a
combination of the other six vectors.

Now we express the same idea in different words. The following definition of indepen-
dence will apply to any sequence of vectors in any vector space. When the vectors are the
columns of A, the two definitions say exactly the same thing.

u
In a plane
Not in 0
a plane U2 f{\ > w3
/
us wo T /W

Figure 5.4: Independent vectors uy, ug, us. Only Ou; + Oug 4 Oug gives the vector 0.
Dependent vectors w1, wo, w3. The combination w; — wy + w3 is (0,0, 0).
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DEFINITION The sequence of vectors w1, ..., U, is linearly independent if the only
combination that gives the zero vector is Ou; + Oug + - - - + Ouy,.

T1u; + 22U + -+ z,u, = 0 only happens when all z’s are zero. (D)

If a combination gives 0, when the 2’s are not all zero, the vectors are dependent.

Correct language: “The sequence of vectors is linearly independent.” Acceptable
shortcut : “The vectors are independent.” Not acceptable : “The matrix is independent.”

A sequence of vectors is either dependent or independent. They can be combined to give
the zero vector (with nonzero 2’s) or they can’t. So the key question is : Which combinations
of the vectors give zero? We begin with some small examples in R? :

(a) The vectors (1,0) and (1,0.00001) are independent.

(b) The vectors (1,1) and (—1, —1) on the same line through (0, 0) are dependent.
(c) The vectors (1,1) and (0, 0) are dependent because of the zero vector.

(d) In R2, any three vectors (a, b) and (c, d) and (e, f) are dependent.

The columns of A are dependent exactly when there is a nonzero vector in the nullspace.

If one of the w’s is the zero vector, independence has no chance. Why not?

Three vectors in R? cannot be independent! The matrix A with those three columns
must have a free variable and then a special solution As = 0. The nullspace is larger than
Z. For three vectors in R3, we put them in a matrix and try to solve Av = 0.

Example 1 The columns of this A are dependent. The nonzero vector v has Av = 0.

1 0 3 -3 1 0 3 0
Av=1]2 1 5 1 is =32 ]|4+1(1|+1)5]=]0
1 0 3 1 1 0 3 0

The rank is only r» = 2. Independent columns produce full column rank r = n.
In that matrix the rows are also dependent. Row 1 minus row 3 is the zero row. For a
square matrix, we will show that dependent columns imply dependent rows.

Question How to find that solution to Av = 0? The systematic way is elimination.

1 0 3 1 0 3
A= 2 1 5 | reducesstoR=|0 1 -1
1 0 3 0 O 0

The solution v = (—3, 1, 1) was exactly the special solution. It shows how the free column
(column 3) is a combination of the pivot columns. That kills independence !

The columns of A are independent when the rank is = n:

Full&olumn sl . n pivots and no free variables. Only v = 0 is in the nullspace.
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Dependent columns if n > m. Suppose seven columns have five components each
(m = 5is less than n = 7). Then the columns must be dependent. Any seven vectors
from R® are dependent. The rank of A cannot be larger than 5. There cannot be more than
five pivots in five rows. Av = 0 has at least 7 — 5 = 2 free variables, so it has nonzero
solutions—which means that the columns are dependent.

Any set of n vectors in R™ must be linearly dependent if n > m.

This type of matrix has more columns than rows—it is short and wide. The columns are
certainly dependent if n > m, because Av = 0 has a nonzero solution. Elimination will
reveal the r pivot columns. Those r pivot columns are independent.

Note Another way to describe linear dependence is this: “One vector is a combination of
the other vectors.” That sounds clear. Why don’t we say this? Our definition was longer:
“Some combination gives the zero vector, other than the trivial combination with every
v = 0.” Our definition doesn’t pick out one particular vector as guilty.

All columns of A are treated the same. We look at Av = 0, and it has a nonzero
solution or it hasn’t. In the end that is better than asking if the last column (or the first, or
a column in the middle) is a combination of the others.

Spanning a Subspace

The first subspace in this book was the column space. Starting with columns ay, . .., a,, the
subspace was filled out by including all their v combinations via; + --- + Upan.
The column space consists of all combinations Av of the columns. We now introduce the
single word “span” to describe this : The column space is spanned by the columns.

DEFINITION A set of vectors spans a space if their linear combinations fill the space.

The columns of a matrix span its column space. They might be dependent.

Example2 wu; = [ (1) ] and ug = [ (1) ] span the full two-dimensional space R?.

0

Example 3 u; = { (1) :I,’U/QZ { 1

], U3 = [ if, ] also span the full space R?.
1 -1 .. o9
Example 4 w; = 1 and wy = 1 only span a line in R”. So does w; alone.

Think of two vectors coming out from (0, 0, 0) in 3-dimensional space. Generally they
span a plane. Your mind fills in that plane by taking linear combinations. Mathematically
you know other possibilities : two vectors could span a line, three vectors could span all of
R3, or they could span only a plane or a line or Z.
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It is possible that three vectors span only a line in R®, or ten vectors span only a plane.

They are certainly not independent !
The columns span the column space. Here is a new subspace—spanned by the rows.

The combinations of the rows produce the “row space”.

DEFINITION The row space of a matrix is the subspace of R" spanned by the rows.
The row space of A is C(A7T). It is the column space of A™T.

The rows of an m by n matrix have n components. They are vectors in R”—or they
would be if they were written as column vectors. There is a quick way to fix that:
Transpose the matrix. Instead of the rows of A, look at the columns of AT. Same numbers,
but now in the column space of A™. This row space C(AT) is a subspace of R™.

Example 5 The column space of A is a plane. The row space is all of R%,

1 2 3

1 4
e i
A= 2 '57 and A _[4 7 5

3

The row space is spanned by the three rows of A (which are columns of AT). The columns
are in R"" spanning the column space. Same numbers, different vectors, different spaces.

J.Herem*3andn*2.

A Basis for a Vector Space

Two vectors can’t span all of R2, even if they are independent. Four vectors can’t be
independent, even if they span R3. We want enough independent vectors to span the
space (and not more). A “basis” is just right.

DEFINITION A basis for a vector space is a sequence of vectors with two properties :

The basis vectors are linearly independent and they span the space.

This combination of properties is fundamental to linear algebra. Every vector w in the space
is a combination of the basis vectors, because they span the space. More than that, the com-
bination that produces w is unique, because the basis vectors uy, .. ., u, are independent:

There is one and only one way to write u as a combination of the basis vectors.

Reason: Suppose u = aju; +- - -+a,u, and also u = byu; +- - -+ b,u,. By subtraction
(ay — by)uy + -+ + (an — bp)u, is the zero vector. From the independence of the u’s,
each a; — b; = 0. Hence a; = b;, and there are not two ways to produce u.
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Example 6 The columns of the identity matrix I are the “standard basis” for R™.

The basis vectors ¢ = [ (1) ] and j = [ (1) ] are independent. They span R?.

Everybody thinks of this basis first. The vector 7 goes across and j goes straight up.
The columns of the 3 by 3 identity matrix are the standard basis 4, 7, k for R>.

Now we find many other bases (infinitely many). The basis is not unique !

Example 7  (Important) The columns of every invertible n by n matrix give a basis for R™ :

Invertible matrix 1 0 0 Singular matrix 1 0 1
Independentcolumns A= | 1 1 0 Dependentcolumns B=| 1 1 2
Column space is R3 1L 4 1 Column space # R3 1 1 2

The only solution to Av = 0is v = A~'0 = 0. The columns are independent. They span
the whole space R"—because every vector b is a combination of the columns. Av = b can

always be solved by v = A~'b. Do you see how everything comes together for invertible
matrices? Here it is in one sentence :

The vectors vy, . . ., v, are a basis for R" exactly when they are the columns of an
n by n invertible matrix. The vector space R™ has infinitely many different bases.

When the columns are dependent, we keep only the pivot columns—the first two columns
of B above, with its two pivots. They are independent and they span the column space.

The pivot columns of A are a basis for its column space. The pivot rows are a basis
for the row space. The pivot rows of the reduced R are also a basis for the row space.

Example 8 This matrix is not invertible. Its columns are not a basis for anything !

One pivot column 12 4 |12
One pivot row (r = 1) A_[i} 6}reducestoR_[0 0]’

Column 1 of A is the pivot column. That column alone is a basis for its column space.
Column 1 of R is not a basis for the column space of A. That column (1,0) in R does
not even belong to the column space of A. Elimination changes column spaces. (But the
dimension remains the same : here dimension = 1.)

The row space of A is the same as the row space of R. It contains (2, 4) and (1, 2) and all
other multiples of those vectors. As always, there are infinitely many bases to choose from.
One natural choice is to pick the nonzero rows of R (rows with a pivot). So this matrix A
with rank one has only one vector in the basis :

Basis for the column space : [ g ] . Basis for the row space : [ ; ] .
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Example 9 Find bases for the column and row spaces of this rank two matrix :

(V%]

=

oo =
Lo B e B
o B
O =

Columns 1 and 3 are the pivot columns. They are a basis for the column space (of R!).
The vectors in that column space all have the form b = (z,y,0). This space is the
“zy plane” inside the full zyz space. That plane is not R?, it is a subspace of R3.
Columns 2 and 3 are also a basis for the same column space. Which pairs of columns of R
are not a basis for its column space?

The row space of R is a subspace of R*. The simplest basis for that row space is the
two nonzero rows of R. The third row (the zero vector) is in the row space too. But it is
not in a basis for the row space. The basis vectors must be independent.

Question Given five vectors in R”, how do you find a basis for the space they span?

First answer Make them the rows of A, and eliminate to find the nonzero rows of .

Second answer Put the five vectors into the columns of A. Eliminate to find the pivot
columns (of A not R). Could another basis have more vectors, or fewer? This question
has a good answer: No! All bases for a vector space contain the same number of vectors.

Dimension of a Vector Space

The number of vectors, in any and every basis, is the “dimension” of the space.

We have to prove what was stated above. There are many choices for the basis vectors, but
the number of basis vectors doesn’t change.

Ifuy,...,u, and wy,...,w, are both bases for the same vector space, then m = n.

Proof Suppose that there are more w’s than u’s. From n > m we want to reach a con-
tradiction. The w’s are a basis, so w; must be a combination of the w’s. If w; equals
a11U1 + - - - + Gm1Um, this is the first column of a matrix multiplication U A :
Eachwisa an G1n
combination W, Wo ... Wy | = [WUy ... Uy : : = [JA.
9

of the u’s am1 Gmn
We don’t know each number a;;, but we know the shape of A (it is m by n). The second
vector ws is also a combination of the u’s. The coefficients in that combination fill the
second column of A. The key is that A has a row for every w and a column for every w.
A is a short wide matrix, since n > m. So Av = 0 has a nonzero solution.

Av = 0 gives UAv = 0 which is Wov = 0. A combination of the w’s gives zero
Then the w’s could not be a basis—our assumption n > m is not possible for two bases.
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If m > n we exchange the ©’s and w’s and repeat the same steps. The only way to avoid
a contradiction is to have m = n. This completes the proof that m = n.

The number of basis vectors depends on the space—not on a particular basis. The number
is the same for every basis, and it counts the “degrees of freedom” in the space. The dimen-
sion of the space R™ is m. We now introduce the important word dimension
for other vector spaces too.

DEFINITION The dimension of a space is the number of vectors in every basis.

This matches our intuition. The line throughw = (1, 5, 2) has dimension one. It is a subspace
with this one vector w in its basis. Perpendicular to that line is the plane
x + 5y + 2z = 0. This plane has dimension 2. To prove it, we find a basis (—5,1,0)
and (—2,0,1). The dimension is 2 because the basis contains two vectors.

The plane is the nullspace of the matrix A = [1 5 2 ], which has two free variables.
Our basis vectors (—5, 1,0) and (-2, 0, 1) are the “special solutions” to Av = 0. The n —r
special solutions give a basis for the nullspace, so the dimension of N (A) isn — r.

Note about the language of linear algebra We never say “the rank of a space” or “the
dimension of a basis” or “the basis of a matrix”. Those terms have no meaning. It is the
dimension of the column space that equals the rank of the matrix.

Bases for Matrix Spaces and Function Spaces

The words “independence” and “basis” and “dimension” are not at all restricted to column
vectors. We can ask whether three matrices A, Aa, A3 are independent. When they are in
the space of all 3 by 4 matrices, some combination might give the zero matrix. We can also
ask the dimension of the full 3 by 4 matrix space. (Itis 12.)

In differential equations, d%y/dz? = y has a space of solutions. One basis is y = e® and
y = e~ *. Counting the basis functions gives the dimension 2 for the space of all solutions.
(The dimension is 2 because of the second derivative.)

Matrix spaces and function spaces may look a little strange after R™. But in some way,
you haven’t got the ideas of basis and dimension straight until you can apply them to “vec-
tors” other than column vectors.

Example 10  Find a basis for the space of 3 by 3 symmetric matrices.

The basis vectors will be matrices ! We need enough to span the space (then every A =
AT is a combination). The matrices must be independent (combinations don’t give the zero
matrix). Here is one basis for the symmetric matrices (many other bases).
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You could write every A = AT as a combination of those six matrices. What coefficients
would produce 1, 4, 5 and 4, 2, 8 and 5, 8, 9 in the rows? There is only one way to do
this. The six matrices are independent. The dimension of symmetric matrix space (3 by 3
matrices) is 6.

To push this further, think about the space of all n by n matrices. One possible basis uses
matrices that have only a single nonzero entry (that entry is 1). There are n? positions for
that 1, so there are n? basis matrices :

The dimension of the whole n by n matrix space is n?.

The dimension of the subspace of upper triangular matrices is %nz + %n

The dimension of the subspace of diagonal matrices is n.

The dimension of the subspace of symmetric matrices is n? + In (why?).
Function spaces The equations d?y/dt?> = 0 and d?y/dt> = —y and d*y/dt? = y

involve the second derivative. In calculus we solve to find the functions y(t) :

=0  issolved by any linear functiony = ct + d

" = —y is solved by any combination y = csint + d cost

"no__ . 3 . — t —t
=y is solved by any combination y = ce’ + de™".

e

That solution space for "/ = —y has two basis functions: sin ¢ and cost. The space for
y” = 0 has ¢ and 1. It is the “nullspace” of the second derivative ! The dimension is 2 in
each case (these are second-order equations). We are finding the null solutions y,,.

The solutions of 3" = 2 don’t form a subspace—the right side b = 2 is not zero. A
particular solution is y = t2. The complete solution is y = y,, + yn, = t* + ct + d.

That complete solution is one particular solution plus any function in the nullspace. A
linear differential equation is like a linear matrix equation Av = b. But we solve it by
calculus instead of linear algebra.

We end here with the space Z that contains only the zero vector. The dimension of this
space is zero. The empty set (containing no vectors) is a basis for Z. We can never allow the
zero vector into a basis, because then linear independence is lost.

= REVIEW OF THE KEY IDEAS =

1. The columns of A are independent if v = 0 is the only solution to Av = 0.

2. The vectors u1,. .., u, span a space if their combinations fill that space. Spanning
vectors can be dependent or independent.

3. A basis consists of linearly independent vectors that span the space. Every vector
in the space is a unique combination of the basis vectors.
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4. All bases for a space have the same number of vectors. This number of vectors in a
basis is the dimension of the space.

5. The pivot columns are one basis for the column space. The dimension is the rank 7.

6. The n — r special solutions will be seen as a basis for the nullspace.

= WORKED EXAMPLES =

5.4 A Start with the vectors u; = (1,2,0) and uz = (2,3,0). (a) Are they linearly
independent? (b) Are they a basis for any space? (c¢) What space V do they span?
(d) What is the dimension of V? (e) Which matrices A have V as their column space?
(f) Which matrices have V as their nullspace?

Solution
(a) u; and w, are independent—the only combination to give 0 is Ou; + Ous.
(b) Yes, they are a basis for the space they span.
(¢) That space V contains all vectors (z,y,0). It is the 2y plane in R3.
(d) The dimension of V is 2 since the basis contains two vectors.

(e) This V is the column space of any 3 by n matrix A of rank 2, if row 3 is all zero.
In particular A could just have columns u; and us.

(f) This V is the nullspace of any m by 3 matrix B of rank 1, if every row has the form
(0,0, c¢). In particular take B = [0 0 1]. Then Bu; = 0 and Bus = 0.

5.4 B (Important example) Suppose ui,...,u, is a basis for R™ and the n by n
matrix A is invertible. Show that Awq, ..., Au., is also a basis for R™.

Solution  In matrix language: Put the basis vectors uq,...,u, in the columns of an
invertible(!) matrix U. Then Awu,, ..., Au, are the columns of AU. Since A and U are
invertible, so is AU and its columns give a basis.

In vector language: Suppose c;Au; + -+ + c,Au, = 0. This is Av = 0 with
v =ciu; + - + cuu,. Multiply by A™! to reach v = 0. Linear independence of the u’s
forces all ¢; = 0. This shows that the Aw’s are independent.

To show that the Au’s span R", solve ¢; Auq + - - - + ¢, Au,, = b. This is the same as
crut + -+ + chun, = A7'b. Since the u’s are a basis, this must be solvable for all b.
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Problem Set 5.4

Questions 1-10 are about linear independence and linear dependence.

1 Show that w1, ue, u3 are independent but w;, u2, us, w4 are dependent:
1 1 1 2
uy = 0 Uy = 1 Uz = 1 Uy = 3
0 0 1 4

Solve ciu; + cous + c3us + cquy = 0 or Ac = 0. The u’s go in the columns of A.

2 (Recommended) Find the largest possible number of independent vectors among
1 1 0 0 0

G -1 o ' i 0 _ 1 _ 1 o 0

1= 0 2= 4 3= g | W= [ | = 0| %= 1

0 0 -1 0 -1 -1

3 Prove thatif a = 0ord = 0 or f = 0 (3 cases), the columns of U are dependent :

c

e

f

4 If a,d, f in Question 3 are all nonzero, show that the only solution to Uv = 0 is
v = 0. Then the upper triangular U has independent columns.

5 Decide the dependence or independence of

(a) the vectors (1,3,2) and (2,1, 3) and (3,2, 1)
(b) the vectors (1,—3,2) and (2,1,—3) and (—3,2,1).

6 Choose three independent columns of U and A. Then make two other choices.
2 3 41 2 3 41
0 6 70 06 70
U=lo oo 9| @™ 4=1¢9 909
00 0 0 4 6 8 2
7 If w,, w2, w3 are independent vectors, show that the differences v; = ws — w3 and
vy = w; — w3 and v3 = w; — ws are dependent. Find a combination of the v’s that
gives zero. Which singular matrix gives [ v, vy v3 ] = [w; wy w3 | A?
8 If wi, w2, ws are independent vectors, show that the sums v; = wsy + w3 and

vy = w1 + ws and vs = w; + wy are independent. (Write c1v1 + cov2 + c3v3 =0
in terms of the w’s. Find and solve equations for the ¢’s, to show they are zero.)
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9

10

Suppose w1, ug, U3, Uy are vectors in R3.

(a) These four vectors are dependent because

(b) The two vectors ©; and uy will be dependent if

(c) The vectors uq and (0, 0,0) are dependent because

Find two independent vectors on the plane z + 2y — 3z —t = 0 in R*. Then find three
independent vectors. Why not four? This plane is the nullspace of what matrix?

Questions 11-14 are about the space spanned by a set of vectors. Take all linear com-
binations of the vectors, to find the space they span.

1

12

13

14

Describe the subspace of R (is it a line or plane or R3?) spanned by

(a) the two vectors (1,1,—1) and (—1,—1,1)

(b) the three vectors (0,1,1) and (1,1,0) and (0, 0, 0)

(c) all vectors in R? with whole number components

(d) all vectors with positive components.
The vector b is in the subspace spanned by the columns of A when _ has a
solution. The vector c is in the row space of A when _ has a solution.
True or false : If the zero vector is in the row space, the rows are dependent.

Find the dimensions of these 4 spaces. Which two of the spaces are the same?

(a) column space of A (b) column space of U (c) row space of A (d) row space
of U:

11 0 1

A=1]1 3 1 and U= 0

3 1 -1 0

SN =

0
1
0
v + w and v — w are combinations of v and w. Write v and w as combinations of

v + w and v — w. The two pairs of vectors the same space. When are they a
basis for the same space?

Questions 15-25 are about the requirements for a basis.

15

16

If vy,...,v, are linearly independent, the space they span has dimension
These vectors are a for that space. If the vectors are the columns of an m by n
matrix, then m is than n. If m = n, that matrix is

Suppose v1, va, . . ., Vg are six vectors in R%.

(a) Those vectors (do) (do not) (might not) span R
(b) Those vectors (are) (are not) (might be) linearly independent.

(c) Any four of those vectors (are) (are not) (might be) a basis for R*.
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17

18

19

20

21

22

23

24

. Then

O =
- O
O =
— O
o =

Find three different bases for the column space of U =

find two different bases for the row space of U.
Find a basis for each of these subspaces of R*:

(a) All vectors whose components are equal.

(b) All vectors whose components add to zero.

(c) All vectors that are perpendicular to (1,1,0,0) and (1,0, 1,1).
(d) The column space and the nullspace of I (4 by 4).

The columns of A are n vectors from R™. If they are linearly independent, what
is the rank of A? If they span R™, what is the rank? If they are a basis for R™,
what then? Looking ahead : The rank r counts the number of columns.

Find a basis for the plane z — 2y 4+ 3z = 0 in R®. Find a basis for the intersection
of that plane with the zy plane. Then find a basis for all vectors perpendicular to the
plane.

Suppose the columns of a 5 by 5 matrix A are a basis for R5.

(a) The equation Av = 0 has only the solution v = 0 because _____

(b) If bis in R® then Av = b is solvable because the basis vectors RS.
Conclusion: A is invertible. Its rank is 5. Its rows are also a basis for R?.
Suppose S is a 5-dimensional subspace of RE. True or false (example if false) :

(a) Every basis for S can be extended to a basis for R® by adding one more vector.

(b) Every basis for R can be reduced to a basis for S by removing one vector.

U comes from A by subtracting row 1 from row 3 :
1 3 2 1 3 2
A=10 11 and U=|[0 1 1
1 3 2 0 00
Find bases for the two column spaces. Find bases for the two row spaces. Find bases
for the two nullspaces. Which spaces stay fixed in elimination?

True or false (give a good reason) :

(a) If the columns of a matrix are dependent, so are the rows.
(b) The column space of a 2 by 2 matrix is the same as its row space.
(c) The column space of a 2 by 2 matrix has the same dimension as its row space.

(d) The columns of a matrix are a basis for the column space.
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25  For which numbers ¢ and d do these matrices have rank 2 ?

Questions 26-28 are about spaces where the “vectors’ are matrices.

26  Find a basis (and the dimension) for these subspaces of 3 by 3 matrices :
(a) All diagonal matrices.
(b) All skew-symmetric matrices (AT = —A).

27  Construct six linearly independent 3 by 3 echelon matrices Uy, . . ., Us. What space of
3 by 3 matrices do they span?

28 Find a basis for the space of all 2 by 3 matrices whose columns add to zero.
Find a basis for the subspace whose rows also add to zero.

Questions 29-32 are about spaces where the “vectors’ are functions.
29 (a) Find all functions that satisfy % =0.
(b) Choose a particular function that satisfies % S3%

(c) Find all functions that satisfy g—% =3.

30  The cosine space F3 contains all combinations y(x) = A cosx + B cos 2z + C cos 3x.
Find a basis for the subspace S with y(0) = 0. What is the dimension of S ?

31  Find a basis for the space of functions that satisfy
@ &-2y=0 (b L=y

32  Suppose y1,¥2,ys are three different functions of . The space they span could
have dimension 1, 2, or 3. Give an example of y1, y2, y3 to show each possibility.

33  Find a basis for the space S of vectors (a, b, ¢,d) with a + ¢ + d = 0 and also for the
space T with a + b = 0 and ¢ = 2d. What is the dimension of the intersection S N T?

34  Which of the following are bases for R3?
(@ (1,2,0)and (0,1, — )
(b) (1a1a_1),(2a374) ( ) (071’_1)
(C) (1a272)7(717271) (0 8 0)
(d) (17272)a(_17271> (O 8 6)

35  Suppose A is 5 by 4 with rank 4. Show that Av = b has no solution when the 5 by 5
matrix [ A b] is invertible. Show that Av = b is solvable when [ A b] is singular.

36 (a) Find a basis for all solutions to d*y/dz* = y(z).
(b) Find a particular solution to d*y/dz* = y(z) + 1. Find the complete solution.
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37

38

39

40

Challenge Problems

Write the 3 by 3 identity matrix as a combination of the other five permutation
matrices ! Then show that those five matrices are linearly independent. (Assume a
combination gives ¢; P, + - - - + ¢5Ps = zero matrix, and prove that each ¢; = 0.)

Intersections and sums have dim(V) + dim(W) = dim(V N'W) 4 dim(V + W).
Start with a basis w1, . . ., u, for the intersection V. N W. Extend with vy, ..., v, to
a basis for V, and separately with w, ..., w; to a basis for W. Prove that the u’s,
v’s and w’s together are independent. The dimensions have (r + s) + (r + t) =
(r) + (r + s + t) as desired.

Inside R™, suppose dimension (V) + dimension (W) > n. Why is some nonzero
vector in both V and W? Start with bases v1,...,vp and wy, ..., we, p+ g > n.

Suppose A is 10 by 10 and A% = 0 (zero matrix): A times each column of A is 0.
This means that the column space of A is contained in the . If A has rank r,
those subspaces have dimension 7 < 10 — 7. So the rank of A is r < 5, if A2 = 0.




300 Chapter 5. Vector Spaces and Subspaces

5.5 The Four Fundamental Subspaces

The figure on this page is the big picture of linear algebra. The Four Fundamental
Subspaces are in position: Two orthogonal subspaces in R™ and two in R™. For any b
in the column space, the complete solution to Av = b has one particular solution v,, in the
row space, plus any v,, in the nullspace.

column

Figure 5.5: The Four Fundamental Subspaces. The complete solution v, + v, to Av = b.

The main theorem in this chapter connects rank and dimension. The rank of a matrix
is the number of pivots. The dimension of a subspace is the number of vectors in a basis.
We count pivots or we count basis vectors. The rank of A reveals the dimensions of
all four fundamental subspaces. Here are the subspaces, including the new one.

Two subspaces come directly from A, and the other two come from A7 :

Four Fundamental Subspaces Dimensions
1. The row space C (A7) Subspace of R™. r
2. The column space C(A)  Subspace of R™. r
3. The nullspace N (A) Subspace of R"™. n—r

4. The left nullspace N(AT) Subspace of R™. This is our new space. ~m — r

In this book the column space and nullspace came first. We know C(A) and N (A) pretty
well. Now the other two subspaces come forward. The row space contains all combinations
of the rows. This is the column space of A™.
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For the left nullspace we solve ATy = 0—that system is n by m. This is the nullspace
N (AT). The vectors y go on the left side of A when we transpose to get y* A = 0. The
matrices A and AT are usually different. So are their column spaces and their nullspaces.
But those spaces are connected in an absolutely beautiful way.

Part 1 of the Fundamental Theorem finds the dimensions of the four subspaces. One
fact stands out: The row space and column space have the same dimension r. This is
the rank of the matrix. The other important fact involves the two nullspaces:

N(A) and N (A7) have dimensions n — r and m — r, to make up the full n and m.

Part 2 of the Fundamental Theorem will describe how the four subspaces fit together
(two in R™ and two in R™). That completes the “right way” to understand every Av = b.
Stay with it—you are doing real mathematics.

The Four Subspaces for R

Suppose A is reduced to its row echelon form R. For that special form, the four subspaces
are easy to identify. We will find a basis for each subspace and check its dimension. Then
we watch how the subspaces change (two of them don’t change) as we look back at A.
The main point will be that the four dimensions are the same for A and R.

As a specific 3 by 5 example, look at the four subspaces for this echelon matrix R:

m=3 13 5 0 7 pivot rows 1 and 2
n=>5 0 0 0 1 2
r=2 0 00 0D pivot columns 1 and 4

The rank of this matrix R is r = 2 (two pivots). Take the four subspaces in order.
1. The row space of R has dimension 2, matching the rank.

Reason: The first two rows are a basis. The row space contains combinations of all three
rows, but the third row (the zero row) adds nothing new. So rows 1 and 2 span the row space.
C(R").

The pivot rows 1 and 2 are independent. That is obvious for this example, and it is always
true. If we look only at the pivot columns, we see the r by r identity matrix.
There is no way to combine its rows to give the zero row (except by the combination with all
coefficients zero). So the r pivot rows are a basis for the row space.

The dimension of the row space is the rank r. The nonzero rows of R form a basis.

2. The column space of R also has dimension = 2, matching the rank.

Reason: The pivot columns 1 and 4 form a basis for C(R). They are independent because
they start with the » by r identity matrix. No combination of those pivot columns can give
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the zero column (except the combination with all coefficients zero). And they also span
the column space. Every other (free) column is a combination of the pivot columns.

The combinations we need are revealed by the three special solutions :

Column 2 is 3 times column 1. The special solution is (—3, 1,0, 0, 0).
Column 3 is 5 times column 1. The special solution is (—5,0,1,0,0,).

Column 5 is 7 (column 1) + 2 (column 4). That solutionis (—7,0,0,—2,1).
The pivot columns are independent, and they span C(R), so they are a basis for C(R).
The dimension of the column space is the rank r. The pivot columns form a basis.
3. The nullspace has dimension n — » = 5 — 2. There are n — r = 3 free variables.

V2, U3, Vs are free (no pivots in those columns). They yield the three special solutions s,
83, 85 to Rv = 0. Set a free variable to 1, and solve for the pivot variables v, and vy.

-3 -5 -7
1 0 0 Rv = 0 has the
so=| 0 83 = 1 85 = 0 complete solution
0 0 —2 UV = V289 + U383 + U585
0 0 1

There is a special solution for each free variable. With n variables and 7 pivot variables, that
leaves n — 7 free variables and special solutions. N (R) has dimension n — 7.

The nullspace has dimension n — r. The special solutions form a basis.

The special solutions are independent, because they contain the identity matrix in
rows 2, 3, 5. All solutions are combinations of special solutions, v = v382 + v3S3 + VsS85,
because this puts vy, v3 and vs in the correct positions. Then the pivot variables vy
and v, are totally determined by the equations Rv = 0.

4. The nullspace of RT (the left nullspace of R) has dimension m — r = 3 — 2.

Reason: The equation Ry = 0 looks for combinations of the columns of R™ (the rows of
R) that produce zero. You see why y; and y» must be zero, and ys is free.

vi[1, 3, 5, 0, 7]
+y2 [0, 0, 0, 1, 2]
+y3 [07 07 07 0? 0] (1)
Left nullspace [0 0 y3]R=1[0, 0, 0, 0, 0]

b
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pivot C(A)
rows dim r

row space
all ATy

pivot
columns

column space
all Av

The big picture

special

solutions
nullspace

Av =0

- left nullspace
ATy =0
N(AT)

dimension m — r

N(A)
dimension n — r

last rows
of E: EA=R

Figure 5.6: Bases and dimensions of the Four Fundamental Subspaces.

In all cases R ends with m — r zero rows. Every combination of these m — r rows
gives zero. These are the only combinations of the rows of R that give zero, because the
r pivot rows are linearly independent. The left nullspace of R contains all these solutions
Yy = (07"',0’yT+17-~'7ym) tORTy =0.

If Ais m by n of rank v, its left nullspace has dimension m — .

This subspace came fourth, and it completes the picture of linear algebra.

In R™ the row space and nullspace have dimensions r and n. — r (adding to n).
In R™ the column space and left nullspace have dimensions r and m — r (total m).

So far this is proved for echelon matrices R. Figure 5.6 shows the same for A.

The Four Subspaces for A

We have a job still to do. The subspace dimensions for A are the same as for R.
The job is to explain why. A is now any matrix that reduces to R = rref(A).

1
This A reduces to R A=10
1

W o w
T O ot

Notice C(A) # C(R) (2)

[
Nell (G N |

An elimination matrix takes A to R. The big picture (Figure 5.6) applies to both.
The invertible matrix £ is the product of the elementary matrices that reduce A to R:

AtoRandback FEA=R and A=E 'R (3)
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1 A has the same row space as R. Same dimension r and same basis.

Reason: Every row of A is a combination of the rows of R. Also every row of R is a
combination of the rows of A. Elimination changes rows, but not row spaces.

Since A has the same row space as R, we can choose the first 7 rows of R as a basis.
The first r rows of A could be dependent. The good r rows of A end up as pivot rows.

2 The column space of A has dimension r. The r pivot columns of A are a basis.
The number of independent columns equals the number of independent rows.

Wrong reason: “A and R have the same column space.” This is false. The columns of R
often end in zeros. The columns of A don’t often end in zeros. The column spaces can be
different ! But their dimensions are the same—both equal to r.

Right reason: The same combinations of the columns are zero (or nonzero) for A and R.
Say that another way: Av = 0 exactly when Rv = 0. Pivot columns are independent.

We have just given one proof of the first great theorem of linear algebra: Row rank equals
column rank. This was easy for R, and the ranks are the same for A. The Chapter 5 Notes
propose three direct proofs not using R.

3 A has the same nullspace as R. Same dimension n — r and same basis.

Reason: The elimination steps don’t change the solutions. The special solutions are a
basis for this nullspace (as we always knew). There are n — r free variables, so the
dimension of the nullspace is n — r. Notice that 7 + (n — r) equals n:

(dimension of column space) + (dimension of nullspace) = dimension of R".

That beautiful fact is the Counting Theorem. Now apply it also to A™T.
4 The left nullspace of A (the nullspace of AT) has dimension m — 7.

Reason: AT is just as good a matrix as A. When we know the dimensions for every A,
we also know them for AT, Its column space was proved to have dimension . Since AT
is n by m, the “whole space” is now R™. The counting rule for A was r + (n — r) = n.
The counting rule for AT is 7 + (m — ) = m. We have all details of the main theorem:

Fundamental Theorem of Linear Algebra, Part 1

The column space and row space both have dimension r.

The nullspaces have dimensions n — r and m — .

By concentrating on spaces of vectors, not on individual numbers or vectors, we get these
clean rules. You will soon take them for granted. But for an 11 by 17 matrix with 187
nonzero entries, I don’t think most people would see why these facts are true:

dimension of C(A) = dimension of C(AT) = rank of A

Two key facts dimension of C'(A) + dimension of N (A) = 17.
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Example1 A=[1 2 3] has m=1 and n =3 andrank r = 1.

The row space is a line in R3. The nullspace is the plane Av = z + 2y + 3z = 0.
This plane has dimension 2 (which is 3 — 1). The dimensions add to 1 + 2 = 3.

The columns of this 1 by 3 matrix are in R*. The column space is all of R!. The left
nullspace contains only the zero vector. The only solution to ATy = 0is y = 0, no other
multiple of [1 2 3] gives the zero row. Thus N (A™) is Z, the zero space with dimension
0 (which is m — r). In R™ the dimensions addto 1 + 0 = 1.

1 2 3

Example 2 A:[2 1 6

} has m =2 and n =3 andrank r = 1.

The row space is the same line through (1,2, 3). The nullspace must be the same plane
x + 2y + 3z = 0. The dimensions of those two spaces stilladdton: 1+ 2 = 3.

All columns are multiples of the first column (1,2). Twice the first row minus the sec-
ond row is the zero row. Therefore ATy = 0 has the solution y = (2, —1). The column
space and left nullspace are perpendicular lines in R?. Dimensions addtom: 1+ 1 = 2.

Column space = line through B] Left nullspace = line through [_ﬂ 5

If A has three equal rows, its rank is . What are two of the y’s in its left nullspace?

The y’s in the left nullspace combine with the rows to give the zero row.

Matrices of Rank One

Those examples had rank » = 1—and rank one matrices are special. We can describe them
all. You will see again that dimension of row space = dimension of column space. When

r = 1, every row is a multiple of the same row rT:
1 2 3 1
2 4 6 .
— T _ _ _ T
A=cr® A=| 5 o g is e=| _3 times [1 2 3] =7".
0 0 O 0

A column times a row (4 by 1 times 1 by 3) produces a matrix (4 by 3). All rows are
multiples of the row »T = (1,2,3). All columns are multiples of the first column
¢ = (1,2,-3,0). The row space is a line in R™, and the column space is a line in R™.

T — column times row.

Every rank one matrix has the special form A = cr
All columns are multiples of c. All rows are multiples of rT. The nullspace is the
plane perpendicular to . (Av = 0 means that ¢c(rTv) = 0 and then rTv = 0.) This
perpendicularity of the subspaces will become Part 2 of the Fundamental Theorem.
A column vector ¢ times a row vector ! is often called an outer product.
The inner product 7' ¢ is a number, the outer product cr ™ is a matrix.
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Perpendicular Subspaces

Look at the equation Av = 0. This says that v is in the nullspace of A. It also says that

v is perpendicular to every row of A. The first row multiplies v to give the first zero
inAv=0:

row 1 0 1 1 1 1 0
Av = e v|=]- 3 1 0 -3 =10
row 1m 0 0o 2 3 2 0

The vector v = (1, —3,2) in the nullspace is perpendicular to the first row (1, 1,1). Their
dot product is 1 — 3 + 2 = 0. That vector v is also perpendicular to the rows (3,1, 0) and
(0,2,3)—Dbecause of the zeros on the right hand side. The dot product of every row and
every v is zero.

Every v in the nullspace is perpendicular to the whole row space. It is perpendicular

to each row and it is perpendicular to all combinations of rows. We have found new words
to describe the nullspace of A :

N (A) contains all vectors v that a perpendicular to the row space of A.

These two fundamental subspaces IN(A) and R(A™) now have a position in space. They
are “orthogonal subspaces” like the xy plane and the z axis in R3. Tilt that picture and
you still have orthogonal subspaces. Their dimensions 2 and 1 still add to 3 : the dimension
of the whole space. For any matrix, the r-dimensional row space is perpendicular to the
(n — r)-dimensional nullspace. If that matrix is AT instead of A, we have subspaces of R™.

(In R™)  All solutions to Av = 0 are perpendicular to all rows of A.
(In R™) All solutions to ATy = 0 are perpendicular to all columns of A.

If A is square and invertible, the two nullspaces are just Z : only the zero vector. The row
and column spaces are the whole space. These are the extreme in perpendicular subspaces :
everything and nothing. No, not nothing, the zero vector is perpendicular to everything.

Let me draw the big picture using this new insight of perpendicular subspaces.
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This perpendicularity is Part 2 of the Fundamental Theorem of Linear Algebra. We use
a new symbol S+ (called S perp) for all vectors that are orthogonal to the subspace S.

Fundamental Theorem, Part 2 : N(A) = C(AT)* and N(AT) =C(A)*.

We know we have all perpendicular vectors (not just some of them, like 2 lines in space).
The dimensions 7 and n — r add to the full dimension n. For a line and plane in R3:
(Line in space)® = (Plane in space) and 1 + 2 = 3.

Here is Problem 37 in the problem set : Explain why (S+)L = S.

= REVIEW OF THE KEY IDEAS =

1. The r pivot rows of R are a basis for the row spaces of R and A (same space).

2. The r pivot columns of A (not R) are a basis for its column space C'(A).

3. The n — r special solutions are a basis for the nullspaces of A and R (same space).
4. The last m — r rows of I are a basis for the left nullspace of R.

5. The last m — r rows of I are a basis for the left nullspace of A, if FA = R.

6. R(AT) is perpendicular to N (A). And C(A) is perpendicular to N (AT).

= WORKED EXAMPLES =

5.5 A  Find bases and dimensions for all four fundamental subspaces if you know that

0 1 30 5
0 0 01 6|=E'R
1 0000

S = O

1

A= 2

5

By changing only one number in R, change the dimensions of all four subspaces.

Solution  This matrix has pivots in columns 1 and 3. Its rank is r = 2.

Row space Basis (1, 3,0,5) and (0,0, 1,6) from R. Dimension 2.
Column space Basis (1,2, 5) and (0, 1,0) from E~! (and A). Dimension 2.
Nullspace Basis (—3,1,0,0) and (—5,0, —6, 1) from R. Dimension 2.
Nullspace of AT  Basis (-5, 0, 1) from row 3 of E. Dimension 3 — 2 = 1.
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We need to comment on that left nullspace N (AT). EA = R says that the last row of E
combines the three rows of A into the zero row of R. So that last row of E is a basis vector
for the left nullspace. If R had two zero rows, then the last two rows of E would be a basis.
(Just like elimination, yTA = 0T combines rows of A to give zero rows in R.)

To change all these dimensions we need to change the rank r. The way to do that is to
change the zero row of R. The best entry to change is R34 in the corner.

5.5 B How can you put four 1’s into a 5 by 6 matrix of zeros, so that its row space
has dimension 1? Describe all the ways to make its column space have dimension 1.
Describe all the ways to make the dimension of its nullspace IN(A) as small as possible.
How would you make the sum of the dimensions of all four subspaces small ?

Solution  The rankis 1 if the four 1’s go into the same row, or into the same column. They
can also go into two rows and two columns (so a;; = a5 = aj = aj; = 1).
Since the column space and row space always have the same dimension, this answers the
first two questions: The smallest dimension is 1.

The nullspace has its smallest possible dimension 6 — 4 = 2 when the rank is r = 4.
To achieve rank 4, the 1’s must go into four different rows and columns.

You can’t do anything about the sum 7 + (n — ) +7 + (m — ) = n + m. It will be
6 + 5 = 11 no matter how the 1’s are placed. The sum is 11 even if there aren’t any 1’s...

If all the other entries of A are 2’s instead of 0’s, how do these answers change ?

Problem Set 5.5

1 (a) If a 7 by 9 matrix has rank 5, what are the dimensions of the four subspaces ?
What is the sum of all four dimensions?

(b) If a 3 by 4 matrix has rank 3, what are its column space and left nullspace?

2 Find bases and dimensions for the four subspaces associated with A and B:
1 2 4 1 2 4
A—l248] and B_li258]“

3 Find a basis for each of the four subspaces associated with A:

01 2 3 4 1 00 01 2 3 4

A=]101 2 4 6|=(110 0 00 1 2

0 00 1 2 0 11 00000

4 Construct a matrix with the required property or explain why this is impossible:

.17 [o :
(a) Column space contains [ 1 ], [tﬂ,row space contains 3], [2].

(b) Column space has basis [;i,]’ nullspace has basis [iﬂ .
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10

11

12

13

(c) Dimension of nullspace = 1 4 dimension of left nullspace.
(d) Left nullspace contains [:13], row space contains [?]

(e) Row space = column space, nullspace # left nullspace.

If V is the subspace spanned by (1,1,1) and (2,1,0), find a matrix A that has
V as its row space. Find a matrix B that has V' as its nullspace.

Without elimination, find dimensions and bases for the four subspaces for

03 3 3 1
A=[0 0 0 O and B=| 4
01 01 5

Suppose the 3 by 3 matrix A is invertible. Write down bases for the four subspaces for
A, and also for the 3 by 6 matrix B=[A A].

What are the dimensions of the four subspaces for A, B, and C, if I is the 3 by 3
identity matrix and O is the 3 by 2 zero matrix?

I I
A=[I 0] and B:[OT OT] and C=[0].

Which subspaces are the same for these matrices of different sizes?

(a)[A]and[ﬁ] (b) {j]and{ﬁ ﬁ].

Prove that all three of those matrices have the same rank r.

If the entries of a 3 by 3 matrix are chosen randomly between O and 1, what are the
most likely dimensions of the four subspaces ? What if the matrix is 3 by 5?

(Important) A is an m by n matrix of rank r. Suppose there are right sides b for which
Awv = b has no solution.

(a) What are all inequalities (< or <) that must be true between m, n, and r?

(b) How do you know that ATy = 0 has solutions other than y = 0?

Construct a matrix with (1,0, 1) and (1, 2, 0) as a basis for its row space and its column
space. Why can’t this be a basis for the row space and nullspace?

True or false (with a reason or a counterexample):

(a) If m = n then the row space of A equals the column space.
(b) The matrices A and — A share the same four subspaces.

(c) If A and B share the same four subspaces then A is a multiple of B.
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14  Without computing A, find bases for its four fundamental subspaces:

A=

NelNarR
oo~ O

0
0
1

OO -

2 3 4

1 2 3

01 2

15  If you exchange the first two rows of A, which of the four subspaces stay the same ?
If v = (1,2, 3,4) is in the left nullspace of A, write down a vector in the left nullspace
of the new matrix.

16  Explain why v = (1,0, —1) cannot be a row of A and also in the nullspace.

17 Describe the four subspaces of R? associated with

A= and [+ A=

oo o
o O
o = O
o Bl B ]
S = -
—_— O

18  (Left nullspace) Add the extra column b and reduce A to echelon form:

1 2 3 b 1 2 3] by
[A b] = 4 5 6 b — 0 -3 -6 bg e 4b1
7 8 9 b3 0 0 0 by—2bs+ by

A combination of the rows of A has produced the zero row. What combination is it?
(Look at by — 2by + by on the right side.) Which vectors are in the nullspace of AT
and which vectors are in the nullspace of A?

19 Following the method of Problem 18, reduce A to echelon form and look at the zero
‘rows. The b column tells which combinations you have taken of the rows:

1 2 b ;351
@ | 3 4 b (b) °
4 6 1 2 4 by

> 93 2 5 by

From the b column after elimination, read off m — r basis vectors in the left nullspace.
Those y’s are combinations of rows that give zero rows.

20 (a) Find the solutions to Av = 0. Check that v is are perpendicular to the rows:

0

0
A= 0
1

o b =
e ™

2 1
0 3 | =ER.
0 0

=9

1
0

(b) How many independent solutions to ATy = 0? Why is y™ the last row of E~1?
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21

22

23

24

25

26

27

28

Suppose A is the sum of two matrices of rank one: A = uvT + wzT.

(a) Which vectors span the column space of A?

(b) Which vectors span the row space of A?

(c) Therankislessthan2if _ orif

(d) Compute A and its rank if w = z = (1,0,0) and v = w = (0,0, 1).

Construct A = uv™ + wzT whose column space has basis (1,2,4),(2,2,1) and
whose row space has basis (1,0), (1, 1). Write A as (3 by 2) times (2 by 2).

Without multiplying matrices, find bases for the row and column spaces of A:

1 2
a-|as|[3 03],
27

How do you know from these shapes that A = (3 by 2) (2 by 3) cannot be invertible ?

(Important) ATy = d is solvable when d is in which of the four subspaces? The
solution y is unique when the contains only the zero vector.

True or false (with a reason or a counterexample):

(a) A and AT have the same number of pivots.
(b) A and AT have the same left nullspace.
(c) If the row space equals the column space then AT = A.
(d) If AT = — A then the row space of A equals the column space of A.
(Rank of AB < ranks of A and B) If AB = C, the rows of C are combinations

of the rows of . So the rank of C is not greater than the rank of . Since
BT AT = C7, the rank of C is also not greater than the rank of

If a, b, c are given with a # 0, how would you choose d so that [Lc] 3] has rank 17
Find a basis for the row space and nullspace. Show they are perpendicular!

Find the ranks of the 8 by 8 checkerboard matrix B and the chess matrix C"

1 01 0 1 1 0 r n b g kK b n r

01 0 1 0 1 01 p p p p p p p p
B=|1 1 01 01 0 and C = four zero rows

: . p p P p P PP D

n b q k b n r

O .

01 01 01 1

<3

The numbers r,n, b, q, k, p are all different. Find bases for the row space and the
left nullspace of B and C. Challenge problem: Find a basis for the nullspace of C.
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Can tic-tac-toe be completed (5 ones and 4 zeros in A) so that rank (A) = 2 but neither
side passed up a winning move ?

Problems 30-33 are about perpendicularity of the fundamental subspaces (two per-
pendicular pairs.)

30

31
32

33

34

35

36

37

38

The floor and a wall of your room are not perpendicular subspaces in R®. Why not?
I am extending the floor and wall to be planes in R®.

Explain why every y in N (AT) is perpendicular to every column of A.

Suppose P is the plane of vectors R* satisfying v; + v + v3 + v4 = 0. Find a basis
for P, Find a matrix A with N (A4) = P.

Why can’t A have (1,4, 5) in its row space and (4, 5, 1) in its nullspace ?
Challenge Problems

If A = uvT is a 2 by 2 matrix of rank 1, redraw Figure 5.6 to show clearly the
Four Fundamental Subspaces in terms of u and v. If another matrix B produces those
same four subspaces, what is the exact relation of B to A?

M is the 9-dimensional space of 3 by 3 matrices. Multiply every matrix X by A:

1 0 -1 1 0
A= -1 1 0O |. Notice:A| 1 | =120
0 -1 1 1 0

(a) Which matrices X lead to AX = zero matrix?

(b) Which matrices have the form AX for some matrix X ?

(a) finds the “nullspace” of that operation AX and (b) finds the “column space”. What
are the dimensions of those two subspaces of M? Why do the dimensions add to
(n—7r)+r=9?

Suppose the m by n matrices A and B lead to the same four subspaces. If both
matrices are already in row reduced echelon form, prove that F' must equal G:

48] s[4 %)

For any subspace S of R", why is (.S'l)l = §? “If S* contains all vectors perpen-
dicular to S, then S contains all vectors perpendicular to S L » Dimensions add to n.

If AT Av = 0 then Av = 0. Reason : This Aw is in the nullspace of AT. Every Aw is
in the column space of A (why ?). Those spaces are perpendicular, and only Av = 0
can be perpendicular to itself. So AT A has the same nullspace as A.
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5.6 Graphs and Networks

Over the years I have seen one model so often, and I found it so basic and useful, that I
always put it first. The model consists of nodes connected by edges. This is called a graph.

Graphs of the usual kind display functions f(x). Graphs of this node-edge kind lead to
matrices. This section is about the incidence matrix of a graph—which tells how the n nodes
are connected by the m edges. Normally m > n, there are more edges than nodes.

Every entry of an incidence matrix is 0 or 1 or —1. This continues to hold during elim-
ination. All pivots and multipliers are 1. Then the echelon matrix R after elimination
also contains 0,1, —1. So do the special solutions! All four subspaces have basis vectors
with these exceptionally simple components. The matrices are not concocted for a textbook,
they come from a model that is absolutely essential in pure and applied mathematics.

For these incidence matrices, the four fundamental subspaces have meaning and impor-
tance. Up to now, I have created small matrix examples to show the column space and
nullspace. I was claiming that all four subspaces need to be understood, but you wouldn’t
know their importance from such small examples. Now comes the chance to learn about the
most valuable models in discrete mathematics—graphs and their matrices.

Graphs and Incidence Matrices

Figure 5.7 displays a graph with m = 6 edges and n = 4 nodes. Its incidence matrix
will be 6 by 4. This matrix A tells which nodes are connected by which edges. The
entries —1 and +1 also tell the direction of each arrow. The first row —1,1,0,0 of A
(the incidence matrix) shows that the first edge goes from node 1 to node 2.

node

OJOJOXO)

-1 1 0 O 1
-1 0 1 O 2

A= 0-1 1 0 3 edge

-1 0 0 1 4
0 -1 0 1 5
0 0-1 1 6

Figure 5.7: Complete graph with m = 6 edges and n = 4 nodes. Edge 1 gives row 1.

Row numbers in A are edge numbers on the graph. Column numbers are node numbers.
This particular graph is complete—every pair of nodes is connected by an edge. You can
write down A immediately by looking at the graph. The graph and the matrix have the same
information.

If edge 6 is removed from the graph, row 6 is removed from the matrix. The constant
vector (1,1,1,1) is still in the nullspace of A. Our goal is to understand all four of the
fundamental subspaces coming from A.
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The Nullspace and Row Space

For the nullspace we solve Av = 0. By writing down those m equations we see that
A is a difference matrix :

B S ) Vg — U1
]S A e =0 U1 V3 — U1
44 0 -1 1 0 V2 . V3 — V2
e S I A v3 | | va-u M
0 -1 0 1 Vg Vg4 — V2
L 0 0 -1 1 ] i Vg4 — V3 |

The numbers v1, v2, v3, v4 can represent voltages at the nodes. Then Av gives the voltage
differences across the six edges. It is these differences that make currents flow.

The nullspace contains the solutions to Av = 0. All six voltage differences are zero.
This means: All four voltages are equal. Every v in the nullspace is a constant vector
v = (¢, ¢, ¢, c). The nullspace of A is a line in R™. Its dimensionisn —r = 1, so r = 3.

Counting Theorem r 4+ (n —r) = 3+ 1 = 4 = count of columns.

We can raise or lower all voltages by the same ¢, without changing the voltage
differences. There is an “arbitrary constant” in v. For functions, we can raise or lower
f(x) by any constant amount C, without changing its derivative.

Calculus adds an arbitrary constant “4C” to indefinite integrals. Graph theory adds
(¢c,c,e,¢) to the voltages. Linear algebra adds any vector v, in the nullspace to one
particular solution of Av = b.

The row space of A is also a subspace of R*. Every row adds to zero, because —1
cancels +1 in each row. Then every combination of the rows also adds to zero. This is just
saying that v = (¢, ¢, ¢, ¢) in the nullspace is orthogonal to every vector in the row space.

For any connected graph with n nodes, the situation is the same. The vectors v =
(c,...,c) fill the nullspace in R™. All rows are orthogonal to v ; their components add to
zero. The row space C(A™) has dimension n — 1. This is the rank of A.

The Column Space and Left Nullspace

The column space contains all combinations of the four columns. We expect three inde-
pendent columns, since the rank is 7 = n — 1 = 3. The first three columns are independent
(so are any three). But the four columns add to the zero vector, which says again that

(1,1,1,1) is in the nullspace. How can we tell if a particular vector b is in the column
space of an incidence matrix ?

First answer Apply elimination to Av = b. On the left side, some combinations of rows
will give zero rows. Then the same combination of b’s on the right side must be zero !
Here is the first combination that elimination will discover:

Row 1 — Row 2 + Row 3 = Zero row. The right side b needs b; — ba + b3 =0.  (2)
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Since A has m = 6 rows and its rank is r = 3, elimination leads to 6 — 3 zero rows
in the reduced matrix R. There will be three tests for the vector b to lie in the column space.
Elimination will lead to three conditions on b for Av = b to be solvable.

I want to find those conditions in a better way. The graph has three small loops.

Second answer using loops Awv contains differences in v’s. If we add differences
around a closed loop in the graph, the cancellation leaves zero. Around the big triangle
formed by edges 1,3, —2 (the arrow goes backward on edge 2) the differences cancel out:

Around a loop (va —v1) + (v3 —v2) — (v3 —v1) = 0.

The components of Av add to zero around every loop. When b is in the column space
of A, then Av = b. The vector b must obey the voltage law :

KVL  Kirchhoff’s Voltage Law (on a typical loop) by + by — by = 0.

By testing all the loops, we decide whether b is in the column space. Av = b can be
solved exactly when the components of b satisfy all the same dependencies as the rows of A.
Then KVL is satisfied, elimination leads to O = 0, and Av = b is consistent.

Question 1 can see four loops in the graph, three small and one large. We are only expecting
three tests, not four, for b to be in C'(A). What is the explanation ?

Answer Those four loops are not independent. If you combine the small loops in
Figure 5.8, you get the large loop. So the tests from the small loops combine to give the
test from the large loop. We only have to test KVL on the small loops.

We have described the column space of A in two ways. First, C(A) contains all com-
binations of the columns (and 7 — 1 columns are enough , the nth column is dependent).
Second, C(A) contains all vectors b that satisfy the Voltage Law. Around every loop the
components of b add to zero. We will now see that this is requiring b to be orthogonal
to every vector y in the nullspace of AT. C(A) is orthogonal to the left nullspace N (AT).

Voltage laws

Loop A by —bys+bs =0
Loop B by —bg —ba =0
Loop C' bg+bg—bs =0

Bigloop A+ B+ C: by —ba+b3=0

Figure 5.8: Loops reveal the column space of A and the nullspace of AT and the tests on b.
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N (AT) contains all solutions to ATy = 0. Its dimension is m — r = 6 — 3: three y’s.

Y1
1 -1 0 -1 0 0 Yo
1 0 -1 0 -1 0 Y3
0 1 1 0 0 -1 ya |
0 0 0 1 1 il Ys
Ys

3)

o O oo

The true number of equations is » = 3 and not n = 4. Reason : The four equations add to
0 = 0. The fourth equation follows automatically from the first three.

What do the equations mean? The first equation says that —y; — y2 — y4 = 0.
The net flow into node 1 is zero. The fourth equation says that y4 + y5 + y¢ = 0.
Flow into the node minus flow out is zero. These equations are famous and fundamental :

Kirchhoff’s Current Law ATy =0 Flow in equals flow out at each node.

This law deserves first place among the equations of applied mathematics. It expresses
“conservation” and “continuity” and “balance.” Nothing is lost, nothing is gained. When
currents or forces are balanced, the equation to solve is ATy = 0. Notice the beautiful
fact that the matrix in this balance equation is the transpose of the incidence matrix A.

What are the actual solutions to ATy = 0? The currents must balance themselves.
The easiest way is to flow around a loop. If a unit of current goes around the big triangle
(forward on edge 1, forward on 3, backward on 2), the vectoris y = (1, —1,1,0,0,0). This
satisfies ATy = 0. Every loop current is a solution to Kirchhoff’s Current Law.

Around the loop, flow in equals flow out at every node. The smaller loop A goes forward
on edge 1, forward on 5, back on 4. Then y = (1,0,0,—1,1,0) will have ATy = 0.
Each loop in the graph gives a vector y in N (AT).

We expect three independent y’s, since 6 — 3 = 3. The three small loops in the graph
are independent. The big triangle seems to give a fourth y, but it is the sum of flows around
the small loops. The small loops A, B, C give a basis y;, ys, y3 for the nullspace of AT.

1 0 0 1

Solutions to ATy = 0 0 0 -1 -1

Big loop _ 0 1 0] _ 1

from three NtV tys=| [T o T 1|7 o

small loops 1 -1 0 0
| 0 ] 1 | =1 |] | 0 |

A B C A+B+C
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Summary The m by n incidence matrix A comes from a connected graph with n nodes
and m edges. The row space and column space have dimension 7 = n — 1 = rank of A.
The nullspaces of A and AT have dimension 1 andm —r =m —n+1:

1 The constant vectors (¢, ¢, . . ., ¢) make up the nullspace N (A).
2 There are 7 = n — 1 independent rows, from n — 1 edges with no loops (a tree).
3 Voltage law gives C(A) : The components of Av add to zero around every loop.

4 Currentlaw ATy = 0: N(AT) from currents on m — r independent loops.

For every graph in a plane, linear algebra yields Euler’s formula :

(number of nodes) — (number of edges) + (number of small loops) = 1.

Thisis (n) — (m) 4+ (m —n 4+ 1) = 1. The graph in our example has 4 — 6 + 3 = 1.
A single triangle has (3 nodes) — (3 edges) + (1 loop). On a 10-node tree with 9 edges
and no loops, Euler’s countis 10 — 9 + 0 = 1. All planar graphs lead to the answer 1.

Trees

A tree is a graph with no loops. Figure 5.9 shows two trees with n = 4 nodes. These
graphs (and all our graphs) are connected : Between every two nodes there is a path of edges,
so the graph doesn’t break into separate pieces. The tree must have m = n — 1 edges,
to connect all n nodes. The rank of the incidence matrix is also 7 = n — 1. Then the
number of loops in a tree is confirmed as m — r = 0 (no loops).

-1 1 0 0
Ai=(-1 0 1 0 1 Tree 2
0-1 0 1

@ Tree 1 @ @ 3 ®
Figure 5.9: Two trees with n = 4 nodes and m = 3 edges. The rank of A; is r = m.
The incidence matrix A of a tree has independent rows. In fact the three rows of A; are

three independent rows 1, 2, 5 of the previous 6 by 4 matrix (for the complete graph).
That original graph contains 16 different trees.
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The Adjacency Matrix and the Graph Laplacian

The adjacency matrix W is square. With n nodes in the graph, this matrix is n by n. If there
is an edge from node 4 to node j, then W;; = 1. If no edge, then W;; = 0. Since our edges
go both ways, W is symmetric. The diagonal entries are zero.

All information about the graph is in the adjacency matrix W, except the numbering and
arrow directions of the edges.

There are m 1’s above the diagonal of W, and also below. Section 7.5 will study the
graph Laplacian matrix ATA (A is the incidence matrix) and find this formula:

Graph Laplacian ATA = D — W = (degree matrix)— (adjacency matrix).

The diagonal matrix D tells the “degree” of every node. This is the number of edges that
go in or out of that node. Here are W and AT A for the complete graph with six edges.

01 11 3 -1 -1 -1

. {1011 . T, |1 3 -1 -1
Adjacency W = 110 1 Graph Laplacian A A = | 1 -1 3 _1
11 10 -1 -1 -1 3

Every row of ATA adds to zero. The degree 3 on the diagonal cancels the —1’s off
the diagonal. The vector (1,1, 1, 1) in the nullspace of A is also in the nullspace of AT A.

Challenge Reconstruct a graph with arrows from A and a graph without arrows from W.

1 0 0 -1 01 0 1
0 -1 1 0 . 1010
A=10 0 -1 1 " 010 1
1 -1 0 0 1 010

® REVIEW OF THE KEY IDEAS =

1. The n nodes and m edges of a graph give n columns and m rows in A.

2. Each row of the incidence matrix A has —1 and 1 (start and end of that edge).

3. Voltage Law for C(A) : The components of Av add to zero around any loop.

4. Current Law for N(AT): ATy = (flow in) minus (flow out) = zero at every node.
5. Rank of A = n — 1. Then ATy = 0 for the currents y around m — n + 1 small loops.

6. The adjacency matrix W and the graph Laplacian AT A are symmetric n by n.
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Problem Set 5.6

Problems 1-7 and 8-13 are about the incidence matrices for these two graphs.

® Q) - @

edge 1 edge 2 2 3 4

Y

©) edge 3 ® ® = @

1 Write down the 3 by 3 incidence matrix A for the triangle graph. The first row has
—1 in column 1 and 41 in column 2. What vectors (v1, ve, v3) are in its nullspace ?
How do you know that (1,0, 0) is not in its row space ?

2 Write down AT for the triangle graph. Find a vector ¥ in its nullspace. The compo-
nents of y are currents on the edges—how much current is going around the triangle ?

3 By elimination on A find the echelon matrix R. What tree corresponds to the two
nonzero rows of R ?

—v1+vy =b
Av=b —vr +v3 = by
—vg +v3 = bs.
4 Choose a vector (b1, by, bs) for which Av = b can be solved, and another vector b that

allows no solution. What are the dot products y*b fory = (1,—1,1) ?

5 Choose a vector (f1, fa, f3) for which ATy = f can be solved, and a vector f
that allows no solution. How are those f’s related to v = (1,1,1)? The equation
ATy = f is Kirchhoff’s law.

6 Multiply matrices to find ATA. Choose a vector f for which ATAv = f can be
solved, and solve for v. Put those voltages v and currents y = — Av onto the triangle
graph. The vector f represents “current sources.”

7 Multiply AT A (still for the first graph) and find its nullspace—it should be the same
as IN(A). Which vectors f are in its column space ?

8 Write down the 5 by 4 incidence matrix A for the square graph with two loops.
Find one solution to Av = 0 and two solutions to ATy = 0. The rank is

9 Find two requirements on the b’s for the five differences v — v1,v3 — v1,v3 — V2,
Vg — V2, v4 — U3 to equal by, by, b3, by, bs. You have found Kirchhoff’s Law

around the two in the graph.
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By elimination, reduce A to U. The three nonzero rows give the incidence matrix
for what graph ? You found one tree in the square graph—find the other seven trees.

Multiply AT A and explain how its entries come from columns of A (and the graph).
(a) The diagonal of the Laplacian matrix AT A counts edges into each node (the
degree). Why is this the dot product of a column with itself ?
(b) The off-diagonals —1 or O tell which nodes ¢ and j are connected. Why is —1

or 0 the dot product of column ¢ with another column 5 ?

Find the rank and the nullspace of AT A. Why does AT Av = f have a solution only
if fi+fot+fa+fs=07?

Write down the 4 by 4 adjacency matrix W for the square graph. Its entries 1 or 0
count paths of length 1 between nodes (those are just edges).

Important. Compute W2 and check that its entries count the paths of length 2
between nodes. Why does (W ?2);; = degree of node i ? Those paths go out and back.

A connected graph with 7 nodes and 7 edges has how many loops ?

For the graph with 4 nodes, 6 edges, and 3 loops, add a new node. If you connect it
to one old node, Euler’s formula becomes ( ) —( )+ ( ) = 1. If you connect it
to two old nodes, Euler’s formulabecomes () —( )+ ( )=1.

Suppose A is a 12 by 9 incidence matrix from a connected (but unknown) graph.

(a) How many columns of A are independent ?

(b) What condition on f makes it possible to solve ATy = f?

(c) The diagonal entries of AT A give the number of edges into each node. What is
the sum of those diagonal entries ?

Why does a complete graph with n = 6 nodes have m = 15 edges? A tree that
connects 6 nodes has only edges and loops.

How do you know that any n — 1 columns of the incidence matrix A are independent ?
If they were dependent, the nullspace would contain a vector with a zero component.
But the nullspace of A actually contains

(a) Find the Laplacian AT A for a complete graph with n nodes.

(b) If the edge from node 1 to node 3 is removed, what is the change in AT A ?

Suppose batteries of strength by, . . ., b, are inserted into the m edges. Then the volt-
age differences across edges become Av —b. Unit resistances give currents Av —b and
Kirchhoff’s Current Law is AT(Av — b) = 0. Solve this system for the

square graph above when b = (1,1,...,1).
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= CHAPTER 5 NOTES =

Vectors are not necessarily column vectors. In the definition of a vector space,
addition « + y and scalar multiplication cx must obey the following eight rules:

Hzty=y+=zx

Qz+y+z)=(x+y)+=z

(3) There is a unique “zero vector” such that  + 0 = x for all ©

(4) For each « there is a unique vector —z such that  + (—x) = 0
(5) 1times x equals x

(6) (cic2)x = c1(ca)

() clz+y) =cx+cy

(8) (e1 4+ c2)x = 1 + ca.
Here are practice questions to bring out the meaning of those eight rules.

1. Suppose (z1,22) + (y1,y2) is defined to be (z1 + y2,22 + y1). With the usual
multiplication cxz = (cx1, cz2), which of the eight conditions are not satisfied ?

2. Suppose the multiplication cx is defined to produce (cx1,0) instead of (cz1,cz2).
With the usual addition in R2, are the eight conditions satisfied ?

3. (a) Which rules are broken if we keep only the positive numbers z > 0 in R!?
Every c must be allowed. The half-line is not a subspace.

(b) The positive numbers with  + y and cx redefined to equal the usual zy and x°
do satisfy the eight rules. Testrule 7 whenc = 3,z = 2,y = 1. (Thenxz+y = 2
and cx = 8.) Which number acts as the “zero vector” ?
4. The matrix A = [3 “2] is a “vector” in the space M of all 2 by 2 matrices. Write
down the zero vector in this space, the vector %A, and the vector —A. What matrices
are in the smallest subspace containing A ?

5. The functions f(z) = 22 and g(x) = 5z are “vectors in function space.” Which
rule is broken if multiplying f(x) by c gives f(cz) instead of ¢ f(z) ? Keep the usual
addition f(x) + g(x).

6. If the sum of the “vectors” f(z) and g(x) is defined to be the function f(g(x)),
then the “zero vector” is g(z) = x. Keep the usual scalar multiplication c¢f(z) and
find two rules that are broken.
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Row rank equals column rank: The first big theorem

The dimension of the row space C(AT) equals the dimension of the column space C(A).
Here I can outline four proofs (the fourth is neat). Proofs 2, 3, 4 do not use elimination.

Proof 1 Reduce A to R without changing the dimensions of the row and column spaces.
The row space actually stays the same. The column space changes, going from A to R,
but its dimension stays the same. The theorem is clear for R:

rnonzerorows in R <> r = dimension of row space
r pivotcolumnsin R <> r = dimension of column space

Proof 2  (G. Mackiw, Mathematics Magazine 68 1996). Suppose x1, ..., &, is a basis
for the row space of A. The next paragraph will show that Az, ..., Az, are independent
vectors in the column space. Then dim (row space) = r» < dim (column space). The same
reasoning applies to AT, reversing that inequality. So the two dimensions must be equal.

Suppose c1Axy + -+ ¢ Az, = Al + -+ ) = Av = 0.

Then v is in the nullspace of A and also in the row space (it is a combination of the x’s).

So v is orthogonal to itself and v = 0. All the ¢’s must be zero since the x’s are a basis.
This shows that c;Ax; + -+ + ¢, Az, = 0 requires that all ¢; = 0. Therefore

Axy, ..., Az, are independent vectors in the column space: dimension of C(A) > r.

Proof 3 If A has r independent rows and s independent columns, we can move those rows
to the top of A and those columns to the left. They meet in an r by s submatrix B :

A B C | rrows B C v| [0
| D E D FE o |0
Suppose s > 7. Since Bv = 0 has r equations in s unknowns, it has a solution v # 0.

The upper part of the matrix has Bv + C0 = 0 as shown. The lower rows of A are
combinations of the upper rows, so they also have Dv + EO0 = 0. But now a combination

of the first s independent columns [ g ] of A, with coefficients from v, is producing zero.
Conclusion: s > r cannot happen. Thinking similarly for AT, 7 > s cannot happen.

Proof 4 Suppose r column vectors wuq, ..., u, are a basis for the column space C(A).
Then each column of A is a combination of w’s. Column 1 of A is wiiwy + - - - + w1y,
with some coefficients w. The whole matrix A equals UW = (m by r)(r by n).

w1 ... Win
A= |u; ... u, =UW.

Wrr .. Wen

Now look differently at A = UW. Each row of A is a combination of the r rows of W'!
Therefore the row space of A has dimension < 7.

This proves that (dimension of row space) < (dimension of column space) for any A.
Apply this reasoning to AT, and the two dimensions must be equal.

To my way of thinking, that is a really cool proof.
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The Transpose and Row Space of d/dt

This book is constantly emphasizing the parallels between linear differential equations and
matrix equations. In both cases we have null solutions and particular solutions. The
nullspace for a differential equation Dy = 0 contains the null solutions y,, :

Matrices A Av, =0 Derivatives D Dyp, =y." + By, + Cy, =0

The nullspace of this D has dimension 2. This is the reason that y needs two initial
conditions. We look for solutions 3, = e° and usually we find e®! and e®2t.
These functions are a basis for the nullspace. In case s3 = s1, the second function is te®?.
All is completely parallel to matrix equations, until we ask this question:

What is the “row space” of D when a differential operator has no rows ?

I want to propose two answers to this question. They come from faithfully imitating the
Fundamental Theorem of Linear Algebra. That theorem applies to D, because D is linear.

Answer 1 The row space of D contains all functions y,-(¢) orthogonal to e*!* and e®2?,

Answer 2 The row space of D contains all outputs y,(t) = DTq(t) from inputs q(¢).
This looks good, but when are functions “orthogonal” ? What is the “transpose” of D ?

o0

Dot product of functions
Inner product of y,, and vy, (n (), yr () = / yn(H)yr (H)dt.
— 00

Do you see this as reasonable ? For vectors, we add the products v;w;. For functions, we
integrate y,y,. If the vectors or functions are complex, we add v;w; or integrate ¥, yr.
Then (v, v) and (y,, y,) give the squared lengths ||v||? for vectors and |y, ||? for functions.

The inner product tells us the correct meaning of the transpose. For matrices, AT is
the matrix that obeys the inner product law (Av, w) = (v, ATw). For differential equations,

(Df.9)= [ (7" +Bf + gt = [ £0(a" - By + )it = (5,Dg).
—c0 —o00
Integration by parts gave [ f'g = — [ fg’. Two integrations gave [ f"g = [ fg”
with a plus sign (from two minus signs). Formally, that equation tells us D™ :
d? d r d? d d . .
D= pre) + BE +C leadsto D~ = i BE +C (a is antlsymmetrlc>

Now the row space of all DTq(t) makes sense even when D has no rows. Can we just
verify that any row space function D" q(t) is orthogonal to any nullspace function y, (t) ?

(yn(t), DTq(t)) = (Dyn(®), (1)) = / (0) q(t) dt = 0.

Shakespeare said it best at the end of Hamlet : The rest is silence.
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Chapter 6

Eigenvalues and Eigenvectors

6.1 Introduction to Eigenvalues

Eigenvalues are the key to a system of n differential equations : dy/dt = ay becomes
dy/dt = Ay. Now A is a matrix and y is a vector (y;(¢),...,yn(t)). The vector
y changes with time. Here is a system of two equations with its 2 by 2 matrix A:

y1' =4y + 4
RIS P | ) PR
y2' = 3y1 + 2y Y2 3 2 Y2
How to solve this coupled system, y’ = Ay with y; and y» in both equations? The

good way is to find solutions that “uncouple” the problem. We want y; and y2 to grow
or decay in exactly the same way (with the same e*):

yi(t) = eMa A (e At |
Look for ®) Atp, In vector notation this is y(t) = eMz )
Y2 =e€ ; :

That vector ¢ = (a, b) is called an eigenvector. The growth rate A is an eigenvalue. This
section will show how to find  and A. Here I will jump to  and A for the matrix in (1).

First eigenvector © = [ Z } = [ i ] and first eigenvalue A = 5 in y = %'z
m=e* oy =be=dynt p
as
Y2 = eSt y21 — 565t — 3y1 + 2y2
Second eigenvector x = [ Z ] = [ _:1)) } and second eigenvalue A = 1 in y = e'x
Thisy = eMzisa y = e has yi' = e =dy+ y
second solution Yy = —3et Yo' = —3et = 3y; + 2y

325
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Those two x’s and A’s combine with any ¢, co to give the complete solutionto y’ = Ay :
5t t 1 1
Complete solution y(t) = c; [Z‘“] + c2 {_3 Zt] = ;e [1] + cpet [_3] .3

This is exactly what we hope to achieve for other equations y’ = Ay with constant A.
The solutions we want have the special form y(t) = eMa. Substitute that solution
into y' = Ay, to see the equation Az = Ax for an eigenvalue )\ and its eigenvector « :

%(e”m) = A(eMz) is AeMx = AeMx.  Divide both sides by e*'.

Eigenvalue and eigenvector of A Az = \x @

Those eigenvalues (5 and 1 for this A) are a new way to see into the heart of a matrix.
This chapter enters a different part of linear algebra, based on Az = Ax. The last page of
Chapter 6 has eigenvalue-eigenvector information about many different matrices.

Finding Eigenvalues from det(A — AI) =0

Almost all vectors change direction, when they are multiplied by A. Certain very
exceptional vectors x are in the same direction as Ax. Those are the “eigenvectors.”
The vector Az (in the same direction as ) is a number A times the original x.

The eigenvalue A tells whether the eigenvector x is stretched or shrunk or reversed
or left unchanged—when it is multiplied by A. We may find A = 2 or % or —1 or 1.
The eigenvalue A could be zero! Ax = Oz puts this eigenvector « in the nullspace of A.

If A is the identity matrix, every vector has Ax = x. All vectors are eigenvectors of I.

Most 2 by 2 matrices have two eigenvector directions and two eigenvalues A; and As.

To find the eigenvalues, write the equation Az = Az in the good form (A — Az = 0.
If (A— M)x = 0, then A — AI is a singular matrix. Its determinant must be zero.

The determinant of A — N\ = {a;)\ dE/\] is (a—A)(d—A)—bc=0.

Our goal is to shift A by the right amount AJ, so that (A — AI)xz = 0 has a solution.
Then z is the eigenvector, A is the eigenvalue, and A — A is not invertible. So we look
for numbers A that make det(A — AI) = 0. I will start with the matrix A in equation (1).

Example1 For A = [ g é }, subtract \ from the diagonal and find the determinant:

4— ) 1

det(A—)\I):det[ 3 9_1\

]:)\2~6>\+5=(>\—5)(A—1)- ©)

I factored the quadratic, to see the two eigenvalues A\; = 5 and A2 = 1. The matrices
A — 5T and A — I are singular. We have found the \’s from det (A — AI) = 0.
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For each of the eigenvalues 5 and 1, we now find an eigenvector  :

(A-shz=0 is [_é—:la] {‘”}:{8} e m_[ﬂ

3] o[

Those were the vectors (a,b) in our special solutions y = e*ax. Both components of y

have the growth rate ), so the differential equation was easily solved: y = e*x.

(A-1z =0 s [g H {m]

Two eigenvectors gave two solutions. Combinations c;y,; + cay, give all solutions.

Example 2 Find the eigenvalues and eigenvectors of the Markov matrix A = [ g ? ] .

o [8-x 3 ] . 3,,1_ i
det(A—)\I)—det 9 ?_A:]r-/\“5/\'l'§—-—(/\—1)(.x‘—‘-§)-

I factored the quadratic into A — 1 times A — %, to see the two eigenvalues A = 1 and %

The eigenvectors x; and x5 are in the nullspaces of A — I and A — %I ]

(A—I)xy =0 is Ax; =z1  The first eigenvector is z1 = (.6,.4)

(A—1I)zy; =0 is Azo =z Thesecond eigenvectoris z2 = (1,—1)

2 7|4
1 8 .3 1 55
332:[ } and A$2|: Jl }:[
-1 2 .7 |-1 -5

If 2, is multiplied again by A, we still get ;. Every power of A will give A"z, = ;.
Multiplying x5 by A gave %932, and if we multiply again we get (%)2 times xs.

.6 8 3| |.6
T = [ 4] and Az, = [ J [ j' =z (Ax = x meansthat \; = 1)

(this is § @2 s0 A2 = 3).

When A is squared, the eigenvectors x stay the same. A’z = A(Ax) = A(Azx) = \2z.

Notice \?. This pattern keeps going, because the eigenvectors stay in their own directions.
They never get mixed. The eigenvectors of A0 are the same x; and x. The eigenvalues
of A0 are 1'%° = 1 and (§)'°° = very small number.

We mention that this particular A is a Markov matrix. Its entries are positive and
every column adds to 1. Those facts guarantee that the largest eigenvalue must be A = 1.
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6 A%z = (1)%x
A=1 ’Aml—ml_l4] =1 / 1 e
>4 : e
'< N2 = .25<
2
\ A A2$2=(-5)2m2={ 22]
)\—5\1‘12!2:)\2.’82—1:_;}
N\ n= 8 3 Az = dx
\ 1 I A Az = \"x

Figure 6.1: The eigenvectors keep their directions. A2 has eigenvalues 12 and (.5)2.

The eigenvector Az = @; is the steady state—which all columns of A will approach.

Giant Markov matrices are the key to Google’s search algorithm. It ranks web pages.
Linear algebra has made Google one of the most valuable companies in the world.

Powers of a Matrix

When the eigenvalues of A are known, we immediately know the eigenvalues of all
powers A* and shifts A + cI and all functions of A. Each eigenvector of A is also an
eigenvector of A¥ and A=! and A + cI :

If Az =Mz then A*z = Nz and A7 'z = %:c and (A+cl)z=A+c)z. (6)

Start again with A%z, which is A times Az = Axz. Then A)z is the same as AAx for any
number A, and AAx is \?x. We have proved that A2z = \2z.

For higher powers A*z, continue multiplying Az = Az by A. Step by step you reach
Akx = Mrfx. For the eigenvalues of A~!, first multiply by A~! and then divide by \:

1 1
Eigenvalues of A~ are = Az =Xz z=)M'z Alz= e (7

We are assuming that A~! exists ! If A is invertible then X will never be zero.
Invertible matrices have all A = 0. Singular matrices have the eigenvalue \ = 0.

The shift from A to A + cI just adds c to every eigenvalue (don’t change x) :
Shift of A If Az =Xz then (A+cl)z=Azx+cx=\+c)z. (8)
As long as we keep the same eigenvector x, we can allow any function of A:

Functionsof A (A2 +24+5Nx =\ +2\+5)x e’z =ez. )
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I slippedin e = T + A+ %A2 + --- to show that infinite series produce matrices too.

Let me show you the powers of the Markov matrix A in Example 2. That starting matrix
is unrecognizable after a few steps.

8 .3 .70 45 650  .525
207 30 .55 390 .475

A A2 A3 4100

.6000 .6000
4000 .4000

(10)

A9 was found by using A = 1 and its eigenvector [.6, .4], not by multiplying 100 matrices.
The eigenvalues of A are 1 and % so the eigenvalues of A% are 1 and ( %)100. That last
number is extremely small, and we can’t see it in the first 30 digits of A1%°.

How could you multiply A% times another vector like v = (.8,.2)? This is not an
eigenvector, but v is a combination of eigenvectors. This is a key idea, to express any vector
v by using the eigenvectors.

Separate into eigenvectors 3 .6 2
v =1+ (2)T2 v [.2 4l T2 an

Each eigenvector is multiplied by its eigenvalue, when we multiply the vector by A.

After 99 steps, @1 is unchanged and x5 is multiplied by (3)%:
.8 1 very
A% , is A%(x; + .222) =x; + (.2}(§)ng2 =5 + | small
’ vector

This is the first column of A%, because v = (.8,.2) is the first column of A. The number
we originally wrote as .6000 was not exact. We left out (.2)(%)99 which wouldn’t show up
for 30 decimal places.

The eigenvector &1 = (.6, .4) is a “steady state” that doesn’t change (because A; = 1).
The eigenvector x4 is a “decaying mode” that virtually disappears (because Az = 1/2).
The higher the power of A, the more closely its columns approach the steady state.

Bad News About ABand A + B

Normally the eigenvalues of A and B (separately) do not tell us the eigenvalues of AB.
We also don’t know about A + B. When A and B have different eigenvectors,
our reasoning fails. The good results for A? are wrong for AB and A + B, when AB is
different from B A. The eigenvalues won’t come from A and B separately :

0 1 0 0 10 0 0 0 1
a=lo o] =t o] am=lo o] masfoh] avo- Vo]
All the eigenvalues of A and B are zero. But AB has an eigenvalue A = 1, and A + B
has eigenvalues 1 and —1. But one rule holds: AB and B A have the same eigenvalues.
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Determinants

The determinant is a single number with amazing properties. It is zero when the matrix has
no inverse. That leads to the eigenvalue equation det(A — AI) = 0. When A is invertible,
the determinant of A~! is 1/(det A). Every entry in A~! is a ratio of two determinants.

I want to summarize the algebra, leaving the details for my companion textbook
Introduction to Linear Algebra. The difficulty with det(A — AI) = 0 is that an n by n
determinant involves n ! terms. For n = 5 this is 120 terms——generally impossible to use.

For n = 3 there are six terms, three with plus signs and three with minus. Each of
those six terms includes one number from every row and every column :

Determinant from n! = 6 terms

4 5 Three plus signs, three minus signs
+MG)9)  +@2)6)(7) +(B3)(4)(8)
B —3)E)T)  —(1)(6)(8) —(2)(4)(9)

That shows how to find the six terms. For this particular matrix the total must be det A = 0,
because the matrix happens to be singular: row 1 + row 3 equals 2(row 2).
Let me start with five useful properties of determinants, for all square matrices.

1. Subtracting a multiple of one row from another row leaves det A unchanged.
2. The determinant reverses sign when two rows are exchanged.

3. If A is triangular then det A = product of diagonal entries.

4. The determinant of AB equals (det A) times (det B).

5. The determinant of AT equals the determinant of A.

By combining 1, 2, 3 you will see how the determinant comes from elimination:
The determinant equals =+ (product of the pivots). (12)

Property 1  says that A and U have the same determinant, unless rows are exchanged.
Property 2  says that an odd number of exchanges would leave det A = —detU.
Property 3 says that det U is the product of the pivots on its main diagonal.

When elimination takes A to U, we find det A = + (product of the pivots). This is how
all numerical software (like MATLAB or Python or Julia ) would compute det A.

Plus and minus signs play a big part in determinants. Half of the n! terms have plus
signs, and half come with minus signs. For n = 3, one row exchange puts 3 — 5 — 7
orl —6—8or2—4—9 on the main diagonal. A minus sign from one row exchange.



6.1. Introduction to Eigenvalues 331

Two row exchanges (an even number) take you back to (2) (6) (7) and (3) (4) (8). This indi-
cates how the 24 terms would go for n = 4, twelve terms with plus and twelve with minus.

Even permutation matrices have det P = 1 and odd permutations have det P = —1.
Inverse of A If det A # 0, you can solve Av = b and find A~! using determinants :

det B; det By ’ det B,
— Vo = 500G i
detA 2 detA " detA

Cramer’s Rule V1 (13)

The matrix B; replaces the jth column of A by the vector b. Cramer’s Rule is expensive !

To find the columns of A~1, we solve AA~! = I. That is the Gauss-Jordan idea: For
each column b in I, solve Av = b to find a column v of A~ L.

In this special case, when b is a column of I, the numbers det B; in Cramer’s Rule are
called cofactors. They reduce to determinants of size n — 1, because b has so many zeros.
Every entry of A~! is a cofactor of A divided by the determinant of A.

I will close with three examples, to introduce the “trace” of a matrix and to show
that real matrices can have imaginary (or complex) eigenvalues and eigenvectors.

21
Example 3 Find the eigenvalues and eigenvectors of S = [ 1 2J .

Solution  You can see that x = (1,1) will be in the same direction as Sx = (3,3).
Then x is an eigenvector of S with A = 3. We want the matrix S — A to be singular.

2—-A 1

=22 -4\ +3=0.
1 2—)\] +

S = det (S — AI) = det
1 2

Notice that 3 is the determinant of S (without A). And 4 is the sum 2 + 2 down the central
diagonal of S. The diagonal sum 4 is the “trace” of A. It equals A\; + A2 = 3 + 1.

Now factor A2 — 4\ + 3 into (A — 3)(A — 1). The matrix S — M/ is singular (zero
determinant) for A = 3 and A = 1. Each eigenvalue has an eigenvector :

A o=3 (S—3I)a:1:[—} _H “J:[g}
de=1 (S—Da2 =“ ” [_H=[8}

The eigenvalues 3 and 1 are real. The eigenvectors (1,1) and (1,—1) are orthogonal.
Those properties always come together for symmetric matrices (Section 6.5).

Here is an antisymmetric matrix with AT = —A. Tt rotates all real vectors by § = 90°.
Real vectors can’t be eigenvectors of a rotation matrix because it changes their direction.
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Example 4 This real matrix has imaginary eigenvalues ¢, —¢ and complex eigenvectors :

_|0 =1} _ T -2 =1] |2 B
A_[l 0]— A det(A )\I)—det[ 1 _/\_—/\ +1=0.

That determinant A? + 1 is zero for A\ = i and —i. The eigenvectors are (1, —i) and (1, i):

0 -1 1 _[i] =5 1 0 —1][1]_[-i]_ .[1
10| =) T[] T ]~ 1 0] i) 7| 1) T
Somehow those complex vectors x; and x2 don’t get rotated (I don’t really know how).

Multiplying the eigenvalues (i)(—%) gives det A = 1. Adding the eigenvalues gives
(7) + (—%) = 0. This equals the sum 0 + 0 down the diagonal of A.

Product of eigenvalues = determinant Sum of eigenvalues = ““trace” (14)

Those are true statements for all square matrices. The trace is the sum a1, + -+ + an,
down the main diagonal of A. This sum and product are is especially valuable for 2 by 2
matrices, when the determinant A\; \s = ad — bc and the trace A\; + 2 = a + d completely
determine A\; and Ay. Look now at rotation of a plane through any angle 6.

Example 5 Rotation comes from an orthogonal matrix ). Then A\; = e and Ay = e~ ;

Q= cosf) —sinf A1 =cosf +isinf A1 + Ao = 2cosf = trace
" |sinf cosf Ay =cosf —isinf A1 A2 = 1 = determinant

I multiplied (A\;)(\z) to get cos?# + sin®f = 1. In polar form e¥ times e~* is 1.
The eigenvectors of @ are (1, —3) and (1, 4) for all rotation angles 6.

Before ending this section, I need to tell you the truth. It is not easy to find eigenvalues
and eigenvectors of large matrices. The equation det(A — X\I) = 0 is more or less limited
to 2 by 2 and 3 by 3. For larger matrices, we can gradually make them triangular without
changing the eigenvalues. For triangular matrices the eigenvalues are on the diagonal.
A good code to compute A and @ is free in LAPACK. The MATLAB command is eig (A).

= REVIEW OF THE KEY IDEAS =

. Az = Az says that eigenvectors x keep the same direction when multiplied by A.

. Az = Az also says that det(A — AI) = 0. This equation determines n eigenvalues.
. The eigenvalues of A% and A~! are A2 and A\~!, with the same eigenvectors as A.

. Singular matrices have A = 0. Triangular matrices have \’s on their diagonal.

. The sum down the main diagonal of A (the trace) is the sum of the eigenvalues.

S 1 A W N -

. The determinant is the product of the A’s. It is also + (product of the pivots).
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Problem Set 6.1

1 Example 2 has powers of this Markov matrix A:
1.8 3 o |70 45 o |6 .6
A= [.2 .7} and A" = [.30 .55} and A% = [.4 .4}'

(a) A haseigenvalues 1 and % Find the eigenvalues of A? and A.
(b) What are the eigenvectors of A% ? One eigenvector is in the nullspace.

(c) Check the determinant of A% and A*°. Compare with (det A)2 and (det A)>°.

2 Find the eigenvalues and the eigenvectors of these two matrices :
1 4 2 4
A= [2 3} and A+ = [2 4}.
A + I has the eigenvectors as A. Its eigenvalues are by 1.
3 Compute the eigenvalues and eigenvectors of A and also A~ :
|10 2 | -1/201
A_[l 1] and A _{ 1/2 OJ.
A~! has the eigenvectors as A. When A has eigenvalues A\, and Ao, its inverse
has eigenvalues . Check that \; + Ay =traceof A =0+ 1.
4 Compute the eigenvalues and eigenvectors of A and A?:
-1 3 s | 7T =3
A_{QOJ andA—[_2 GJ'
A2 has the same as A. When A has eigenvalues A1 and Ao, the eigenvalues of
A? are . In this example, why is A2 + \3 = 13?

5 Find the eigenvalues of A and B (easy for triangular matrices) and A + B :

30 1 1 4 1
A:[1 1} and B:[O 3J and A+B:[1 4J.

Eigenvalues of A + B (are equal to) (might not be equal to) eigenvalues of A plus
eigenvalues of B.
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10

1

12

13

Find the eigenvalues of A and B and AB and BA :

1 0 |12 |12 13 2
A_[l 1} and B—{O 1] and AB—[1 3] and BA—[1 1}

(a) Are the eigenvalues of AB equal to eigenvalues of A times eigenvalues of B ?

(b) Are the eigenvalues of AB equal to the eigenvalues of BA ? Yes !

Elimination produces a triangular matrix U. The eigenvalues of U are on its diago-
nal (why ?). They are not the eigenvalues of A. Give a 2 by 2 example of A and U.

(a) If you know that x is an eigenvector, the way to find A is to
(b) If you know that X is an eigenvalue, the way to find x is to

What do you do to the equation Az = Az, in order to prove (a), (b), and (c) ?

(a) A2 is an eigenvalue of A2, as in Problem 4.
(b) A~!is aneigenvalue of A~1, as in Problem 3.

(¢) A+ 1lis an eigenvalue of A + I, as in Problem 2.

Find the eigenvalues and eigenvectors for both of these Markov matrices A and A*°.
Explain from those answers why A% is close to A :

a=a) me =305 05

A 3 by 3 matrix B has eigenvalues 0, 1, 2. This information allows you to find :

(a) therank of B (b) the eigenvalues of B?  (c) the eigenvalues of (B2 + I)~1.

Find three eigenvectors for this matrix P. Projection matrices only have A =1 and 0.
Eigenvectors are in or orthogonal to the subspace that P projects onto.

Projection matrix P2 = P = PT IR

= I

4 0
8 0
0 1
If two eigenvectors = and y share the same repeated eigenvalue A, so do all their

combinations cx + dy. Find an eigenvector of P with no zero components.

From the unit vector v = (&,%,3,3) construct the rank one projection matrix
P = uu". This matrix has P2 = P because uTu = 1.

(a) Explain why Pu= (uuT)u equals u. Then u is an eigenvector with A=1.

(b) If v is perpendicular to u show that Pv = 0. Then A = 0.

(c) Find three independenteigenvectors of P all with eigenvalue A = 0.
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14

15

16

17

18

19

20

21

22

23

Solve det(Q — AI') = 0 by the quadratic formula to reach A = cos € £ isinf:

cosf —sinf

sin 0 cos 9] rotates the zy plane by the angle 6. No real A’s.

o

Find the eigenvectors of @ by solving (Q — AI)x = 0. Use i = —1.

Find three 2 by 2 matrices that have Ay = Ay = 0. The trace is zero and the
determinant is zero. A might not be the zero matrix but check that A? is all zeros.

This matrix is singular with rank one. Find three \’s and three eigenvectors :

1 21 2
Rank one A=|[2|[212]=|4 2 4
1 2 12

When a + b=c + d show that (1, 1) is an eigenvector and find both eigenvalues :

5 1 a b
Use the trace to find Ao A_[2 4] A_[c d]'

If Ahas A\; = 4 and Ay = 5 then det(A — AI) = (A —4)(A —5) = A2 — 9\ + 20.
Find three matrices that have trace a + d = 9 and determinant 20, so A\ = 4 and 5.

Suppose Au = Ou and Av = 3v and Aw = 5w. The eigenvalues are 0, 3, 5.

(a) Give a basis for the nullspace of A and a basis for the column space.
(b) Find a particular solution to Az = v + w. Find all solutions.

(¢) Az =w has no solution. If it did then would be in the column space.

Choose the last row of A to produce (a) eigenvalues 4 and 7 (b) any A; and As.

Companion matrix A= [2 i:' .
The eigenvalues of A equal the eigenvalues of AT. This is because det(A — \I)
equals det(AT — AI). That is true because . Show by an example that the
eigenvectors of A and AT are not the same.

Construct any 3 by 3 Markov matrix M : positive entries down each column add to 1.
Show that MT(1,1,1) = (1,1,1). By Problem 21, A = 1 is also an eigenvalue
of M. Challenge: A 3 by 3 singular Markov matrix with trace % has what \’s ?

Suppose A and B have the same eigenvalues \p, . . ., A, with the same independent
eigenvectors &,. . .,&,. Then A = B. Reason: Any vector v is a combination
c1x1 + -+ + cpTyn. Whatis Av? Whatis Bv ?
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24

25

26

27

28

29

30

The block B has eigenvalues 1,2 and C has eigenvalues 3,4 and D has eigenval-
ues 5, 7. Find the eigenvalues of the 4 by 4 matrix A :

01 3 0

A B C| |-2 3 0 4

|0 D] 0 0 6 1

0 01 6

Find the rank and the four eigenvalues of A and C':

1 1 1 1 1 01 0
1 1 1 1 01 01
A=l 11 1] ™ P=11 010
1 1 1 1 01 0 1

Subtract [ from the previous A. Find the eigenvalues of B and —B':

01 11 0 -1 -1 -1
1 0 1 1 -1 0 -1 -1
B=A-I=1y 1 ¢ | @ =B=1 1 ¢ 2
11 10 -1 -1 -1 0
(Review) Find the eigenvalues of A, B, and C':
1 2 3 0 0 1 2 2 2
A=1(0 4 5 and B=|0 2 0 and C=1|2 2 2
0 0 6 3 00 2 2 2
Every permutation matrix leaves @ = (1,1,. . .,1) unchanged. Then A = 1. Find

two more \’s (possibly complex) for these permutations, from det(P — AI) = 0:
010 0 01
P=1|0 01 and P=|0 1 0
1 0 0 1 0 0

The determinant of A equals the product Ay \; - - - \,. Start with the polynomial
det(A — M) separated into its n factors (always possible). Then set A = 0

det(A—X) =M = ANA2=A)--(A\y =) so detA=
The sum of the diagonal entries (the trace) equals the sum of the eigenvalues:
A= {a Z} has det(A — M) =\? — (¢ +d)\ 4+ ad — bc = 0.

The quadratic formula gives the eigenvalues A = (a+d++/ )/2 and A =
Theirsumis _ . If Ahas Ay = 3and A\; = 4thendet(A —AI) =
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6.2 Diagonalizing a Matrix

When x is an eigenvector, multiplication by A is just multiplication by a number A:
Ax = Az. All the difficulties of matrices are swept away. Instead of an interconnected
system, we can follow the eigenvectors separately. It is like having a diagonal matrix, with
no off-diagonal interconnections. The 100th power of a diagonal matrix is easy.

The point of this section is very direct. The matrix A turns into a diagonal matrix A
when we use the eigenvectors properly. This is the matrix form of our key idea. We start
right off with that one essential computation.

Diagonalization Suppose the n by n matrix A has n linearly independent eigenvectors
x1,...,&,. Put them into the columns of an eigenvector matrix V. Then V=LAV is the
eigenvalue matrix A, and A is diagonal :

A1
V1AV = A = . (M
An

Eigenvector matrix V'
Eigenvalue matrix A

The matrix A is “diagonalized.” We use capital lambda for the eigenvalue matrix, because
of the small \’s (the eigenvalues) on its diagonal.

Proof Multiply A times its eigenvectors, which are the columns of V. The first column of
AV is Ax;. Thatis A\;x;. Each column of V' is multiplied by its eigenvalue ), :

A times V AV =A | ce rn = A'lm'l e /\nmn

-

The trick is to split this matrix AV into V' times A :

A
V times A )\1.’31 /\na:ﬂ. = T Tp =VA.
An

Keep those matrices in the right order! Then A; multiplies the first column x;, as shown.
The diagonalization is complete, and we can write AV = V A in two good ways :

AV =VA is VAV =A or A=VAV-L )

The matrix V" has an inverse, because its columns (the eigenvectors of A) were assumed
to be linearly independent. Without n independent eigenvectors, we can’t diagonalize.

A and A have the same eigenvalues \q,...,\,. The eigenvectors are different. The
job of the original eigenvectors x1, . .., x, was to diagonalize A. Those eigenvectors in V'
produce A = VAV ™!, You will soon see the simplicity and importance and meaning of
the k th power A = VAFV 1,
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Sections 6.2 and 6.3 solve first order difference and differential equations.

6.2 Ukt1 = Aug up = AFug = cl)\’f:cl + -+ cn)\fbwn

6.3 | dy/dt = Ay y(t) = et'y(0) = creMimy + -+ + caetian.

The idea is the same for both problems: 7 independent eigenvectors give a basis.
We can write ug and y(0) as combinations of eigenvectors. Then we follow each eigen-
vector as k increases and ¢ increases: A*x is \*x and eAtzx is eMx.

Some matrices don’t have n independent eigenvectors (because of repeated \’s).
Then AFug and e*y(0) are still correct, but they lead to kA* @ and te**z : not so good.

Example 1 Here A is triangular so the A’s are on its diagonal: A = 1 and A = 6.
: . 1 =1 1 5 1 1 1 0
Eigenvectorsin V' [ 0 1 ] [ 0 6 } [ 01 ] = [ 0 6 ]
v-1 A Vv A

In other words A = VAV ™!, Then watch A2 = VAV~-'VAV~!. When you remove
V~1V =1, this becomes A% = VA2V ~1. The same eigenvectors for A and A arein'V.
The squared eigenvalues are in 2.

The k th power will be A¥ = VA¥V =1, And A* just contains 1* and 6* :

k
k 1 5] [1 1]]1 1 -1]_[1 6F-1
Powers 4 {06_01 6 |[o 1|70 6 |
With k = 1 we get A. With k = 0 we get A° = I (eigenvalues \° = 1). With k = —1
we get the inverse A~1. You can see how A2 = [1 35; 0 36] fits the formula when k = 2.

Here are four remarks before we use A again.

Remark 1 When the eigenvalues Ay, . . ., A, are all different, the eigenvectors x1,. . ., x,
are independent. Any matrix that has no repeated eigenvalues can be diagonalized.

Remark 2 We can multiply eigenvectors by any nonzero constants. Ax = \x will remain
true. In Example 1, we can divide the eigenvector (1,1) by v/2 to produce a unit vector.

Remark 3 The eigenvectorsin V' come in the same order as the eigenvalues in A. To reverse
the order 1, 6 in A, put the eigenvector (1, 1) before (1,0) in V' :

New order 6, 1 0 1 1 5 111 |6 0 A
New order in V' 1 -1 0 6 1 o) [0 1|
To diagonalize A we must use an eigenvector matrix. From V~'AV = A we know that

AV = VA. Suppose the first column of V' is . Then the first columns of AV and V' A are
Az and A\ . For those to be equal,  must be an eigenvector.
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Remark 4 (Warning for repeated eigenvalues) Some matrices have too few
eigenvectors (less than n). Those matrices cannot be diagonalized. Here are examples :

Not diagonalizable 1 -1 and B — 0 1
Only 1 eigenvector I I T | 10 0|

Their eigenvalues happen to be 0 and 0. The problem is the repetition of \.

Only one line _ 1 -1 |0 |1
of eigenvectors Az =0z means [1 —1:] [m] - {OJ and @=c [1]

There is no second eigenvector, so the unusual matrix A cannot be diagonalized.

Those matrices are the best examples to test any statement about eigenvectors. In many
true-false questions, non-diagonalizable matrices lead to false.

Remember that there is no connection between invertibility and diagonalizability :

— Invertibility is concerned with the eigenvalues (A = 0 or A # 0).
— Diagonalizability needs n independent eigenvectors.

Each eigenvalue has at least one eigenvector! A — A is singular. If (A — M)z = 0
leads you to = 0, ) is not an eigenvalue. Look for a mistake in solving det(A — AI) = 0.

Eigenvectors for . different \’s are independent. Then V1AV = A will succeed.
Eigenvectors for repeated )\’s could be dependent. V' might not be invertible.

Example 2 Powers of A The Markov matrix A in the last section had \; = 1 and
X2 = .5. Here is A = VAV ~! with those eigenvalues in the matrix A :

EREEIE

The eigenvectors (.6, .4) and (1, —1) are in the columns of V. They are also the eigenvectors
of A%. Watch how A? has the same V, and the eigenvalue matrix of A% is A% :

Same V for A2 A? EWAV VAV = VAV 3)
Just keep going, and you see why the high powers A approach a “steady state”:

b _yaky—1_ | 6 1][1F 0 11
Powersof A A" =VA®V —['4 -1][0 (5)* 4 -6 |

As k gets larger, (.5)F gets smaller. In the limit it disappears completely. That limit is A% :
6 1 1 ol[1 1 6 .6
H H oo _—
Limit k = oo A_[A —1”0 0]».4 —.6]_[.4 .4]' @

The limit has the steady state eigenvector x; in both columns.

Question = When does A* — zero matrix ? Answer All |\ < 1.
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Fibonacci Numbers

We present a famous example, where eigenvalues tell how fast the Fibonacci numbers grow.
Every new Fibonacci number is the sum of the two previous F'’s :

The sequence 0,1,1,2,3,5,8,13,... comes from Fryo = Fryq + Fy.

These numbers turn up in a fantastic variety of applications. Plants a grow in spirals, and a
pear tree has 8 growths for every 3 turns. The champion is a sunflower that had 233 seeds in
144 loops. Those are the Fibonacci numbers F3 and Fj2. Our problem is more basic.

Problem : Find the Fibonacci number Fioo. The slow way is to apply the rule
Fyyo = Fyx4+1 + Fj one step at a time. By adding Fg = 8 to F7 = 13 we reach Fg = 21.
Eventually we come to Fgo. Linear algebra gives a better way.

The key is to begin with a matrix equation ui41 = Awug. That is a one-step rule for
vectors, while Fibonacci gave a two-step rule for scalars. We match those rules by putting
two Fibonacci numbers into a vector uy. Then you will see the matrix A.

_ | Fr+ Fiyo = Fep1+Fy |11
uk—[ Fi . The rule R 1S Upy1 = 10 Ur.  (5)

Every step multiplies by A = [1 §]. After 100 steps we reach w9 = A1®0uy:

_ (1 _ |1 _ |2 _ |3 _ | Fio
Uy = ol uy = 11 Uz = 1l Uz = 9l o U100 = Floo |-

This problem is just right for eigenvalues. To find them, subtract A/ from A :

1

1-A
A—)\I{ o

} leadsto det(A— X)) =X — X —1.

The equation A> — A\ — 1 = 0 is solved by the quadratic formula ( b+ Vb2 — 4ac )/2a

Eigenvalues A = ~ 1.618 and Ag = - ~ —.618.

1++5 1-v5
2 2

These eigenvalues lead to eigenvectors ; = ()\1, 1) and 3 = (A2,1). Step 2 finds the
combination of those eigenvectors that gives ug = (1,0):

R (e RS =

Step 3 multiplies the eigenvectors 1 and x2 by (A1)'°? and (A\2)!%0:

1000 100
A0 times ug U0 = Wl ) L @)
Al — Az
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We want Fjop = second component of w109. The second components of x; and x2 are 1.
The difference between (1 + 1/5)/2 and (1 — v/5)/21is Ay — Ao = /5. We have Fiqp :

100 100
(%) _ <1 _2\/5> ] ~ 3.54 - 10, ®)

1

Figo = 7
Is this a whole number? Yes. The fractions and square roots must disappear, because
Fibonacci’s rule Fyio = Fjy1 + Fj stays with integers. The second term in (8) is less
than %, so it must move the first term to the nearest whole number :

. . PLESSY. 1 (1+v5\"

kth Fibonacci number = ~1—"2 — pearest integer to — ( + \/_> ,
AL — A NG 2

The ratio of Fg to F5 is 8/5 = 1.6. The ratio Fyg1/Fi90 must be very close to the
limiting ratio (1 + v/5)/2. The Greeks called this number the “golden mean”.
For some reason a rectangle with sides 1.618 and 1 looks especially graceful.

©))

Matrix Powers Ak

Fibonacci’s example is a typical difference equation ux+1 = Auy. Each step multiplies
by A. The solution is u; = AFug. We want to make clear how diagonalizing the matrix
gives a quick way to compute A* and find uy, in three steps.

The eigenvector matrix V produces A = VAV ~1. This is perfectly suited to computing
powers, because every time V ~1 multiplies V we get I :

Powersof A  Afug = (VAV L) (VAV Dy = VAV 1y,

I will split VAV 1wy into three steps. Equation (10) puts those steps together in uy.

1. Write ug as a combination ¢;x1 + - - - + ¢, &, of the eigenvectors. Thenc =V~ luy.
2. Multiply each number ¢; by (A;)¥. Now we have A*V ~1uy.

3. | Add up the pieces ¢;()\;)*z; to find the solution uy = Afug.  This is VAV~ 1.
ur = Afug = c;(A1)*z1 + -+ - + cn(An)*zn. (10)

In matrix language A*ug equals (VAV ~1)*ug. The 3 steps are V times A* times V ™.

I am taking time with the three steps to compute A*wu, because you will see exactly the
same steps for differential equations and e*. The equation will be dy/dt = Ay.
Please compare equation (10) for A*¥ug with this solution ety(0) from Section 6.3.

Solve dy/dt = Ay y(t) = e“”y{{]) = creMtey + -+ cpe’tey,. (11)

Those parallel equations (10) and (11) show the point of eigenvalues and eigenvectors.
They split the solutions into 72 simple pieces. By following each eigenvector separately—this
is the result of diagonalizing the matrix—we have n scalar equations.
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The growth factor A\* in (10) is like e*t in (11).
Summary I will display the matrices in those steps. Here is ug = Vc:

8]
This says that

Step 1 =
€p Uo *1 Tn Uy =1y + - + Ty

(12)

C‘H

The coefficients in Step 1 are ¢ = V ~!ug. Then Step 2 multiplies by A*. Then Step 3
adds up all the ¢;(\;)*x; to get the product of V and A* and V ~luyg:

(A1)*F e
Akun = Vﬁk.v_lug = Ty ... Ty . (13)
(An)* Cn
This result is exactly uy, = c1(A\1)fx1 + -+ + cn(An)*@p. Tt solves w1 = Auy.

Example 3  Start from ug = (1,0). Compute A¥ug when V and A contain these eigen-
vectors and eigenvalues :
1
—1 5

This matrix A is like Fibonacci except the rule is changed to Fjyio = Fiy1 + 2F}.
The new numbers 0, 1, 1,3, . .. grow faster because A\ = 2 is larger than (1 + /5)/2.

1 2 2
A:{l U} has A =2 and mlz{l}, Am=-=1 and =z =

Example 3 in three steps Find up = ¢1@1 + oo and uy, = ¢;(\)*x;1 + ca( X))o

1 112 1 1 1
Step 1 “02[0}25[1]+§[1] S0 a=c=3
Step 2 Multiply the two eigenvectors by (A1)* = 2F and (\2)* = (—1)*
. . 1,027 1, [ 1
Step 3 Combine the pieces into uy = 3—2 Nk 5(—1) Rk

Behind these examples lies the fundamental idea : Follow each eigenvector.

Nondiagonalizable Matrices (Optional)

Suppose A is an eigenvalue of A. We discover that fact in two ways :
1. Eigenvectors (geometric) There are nonzero solutions to Ax = Ax.

2. Eigenvalues (algebraic) The determinant of A — AI is zero.
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The number A may be a simple eigenvalue or a multiple eigenvalue, and we want to know
its multiplicity. Most eigenvalues have multiplicity M = 1 (simple eigenvalues). Then there
is a single line of eigenvectors, and det(A — AI) does not have a double factor.

For exceptional matrices, an eigenvalue can be repeated. Then there are two different
ways to count its multiplicity. Always GM < AM for each eigenvalue.

1. (Geometric Multiplicity = GM) Count the independent eigenvectors for .
This is the dimension of the nullspace of A — AI.

2.  (Algebraic Multiplicity = AM)  Count the repetitions of the same A among
the eigenvalues. Look at the n roots of det(A — AI) = 0.

If Ahas A = 4,4,4, that eigenvalue has AM = 3 (triple root) and GM = 1 or 2 or 3.
The following matrix A is the standard example of trouble. Its eigenvalue A = 0 is

repeated. It is a double eigenvalue (AM = 2) with only one eigenvector (GM = 1).

-2 1 ‘ s A=0,0but
0 =A%

1 eigenvector

AM = 2 0 1
GM=1 A—I:O 0

} has det(A — AI) = ‘

There “should” be two eigenvectors, because A> = 0 has a double root. The double factor
A? makes AM = 2. But there is only one eigenvector x = (1,0). This shortage of
eigenvectors when GM is below AM means that A is not diagonalizable.

These three matrices have A = 5, 5. Traces are 10, determinants are 25. They only have
one eigenvector :

5 1 6 -1 7 2
A_[O5J and A_[l 4:| and A:[_2 SJ.

Those all have det(A — A\I) = (A — 5)2. The algebraic multiplicity is AM = 2. But each

A — 5] has rank r = 1. The geometric multiplicity is GM = 1. There is only one line of
eigenvectors for A = 5, and these matrices are not diagonalizable.

= REVIEW OF THE KEY IDEAS =

1. If A has n independent eigenvectors &1, . . ., &, they go into the columns of V.

A is diagonalized by V/ VAV =A and A=VAV~L

2. The powers of A are A¥ = VA*¥V =1, The eigenvectorsin V are unchanged.

3. The eigenvalues of A* are (A1), ..., (\,)" in the matrix A*.
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4. The solution to wg,; = Auy starting from wg is ur = A*ug = VARV " lug:

ur = c1(A1)*®1 + - +en(An)F ., | provided wo =cizy + - + o

That shows Steps 1, 2,3 (c’s from V ~1ug, powers A* from A*, and 2’s from V).

= WORKED EXAMPLES =

6.2 A Find the inverse and the eigenvalues and the determinant of A :

4 -1 -1 -1
-1 4 -1 -1
-1 -1 4 -1
S IRl 4

A =5=xeye(4) —ones(4) =

Describe an eigenvector matrix V that gives V1AV = A.

Solution  What are the eigenvalues of the all-ones matrix ones(4) ? Its rank is certainly 1,
so three eigenvalues are A = 0,0,0. Its trace is 4, so the other eigenvalue is A = 4.
Subtract the all-ones matrix from 57 to get our matrix A = 5/ — ones(4) :

Subtract the eigenvalues 4, 0, 0, 0 from 5, 5, 5, 5. The eigenvalues of A are 1,5, 5, 5.

The \'s add to 16. So does 4 + 4 + 4 + 4 from diag (A). Multiply \’s: det A = 125.

The eigenvector for A = 1 is @ = (1,1, 1, 1). The other eigenvectors are perpendicular
to « (since A is symmetric). The nicest eigenvector matrix V' is the symmetric orthogonal
Hadamard matrix. Multiply by 1/2 to have unit vectors in its columns.

1 1 1

1
1 _ _
Orthonormal eigenvectors V = (Q = 3 i ! ! !
1

_ AT _ -1
1 -1 -1 |~ Q =07
-1 -1 1
The eigenvalues of A~! are 1, ¢, %, . The eigenvectors are the same as for A. This

inverse matrix A=! = QA~'Q ! is surprisingly neat :

ATl =

* (eye(4) + ones(4)) =

ot =
— = =N
— =N
—_

DN = = =

1

To check that AA~! = I, use (ones) (ones) = 4 (ones). Question: Can you find A3 ?
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Problem Set 6.2

Questions 1-7 are about the eigenvalue and eigenvector matrices A and V.

1 (a) Factor these two matrices into A = VAV ~!:

1 2 |
A:[O3J and A_[gg}'

(b) FA=VAV-"then A3 = ( )( )( )and A='=( )( )( ).

2 If A has \; = 2 with eigenvector ©1 = [§] and Ay = 5 with @ = [}],
use VAV 1 to find A. No other matrix has the same \’s and x’s.

3 Suppose A = VAV ~!. What is the eigenvalue matrix for A + 27 ? What is the
eigenvector matrix ? Check that A+ 27 = ( )( )( )7L

4 True or false : If the columns of V' (eigenvectors of A) are linearly independent, then
(a) A is invertible (b) A is diagonalizable
(c) V isinvertible (d) V is diagonalizable.

5 If the eigenvectors of A are the columns of /, then A is a matrix. If the eigen-
vector matrix V is triangular, then V ~! is triangular. Prove that A is also triangular.

6 Describe all matrices V' that diagonalize this matrix A (find all eigenvectors) :
A= [ Ly ] .
Then describe all matrices that diagonalize A~*.
7 Write down the most general matrix that has eigenvectors [} ] and [_}].
Questions 8-10 are about Fibonacci and Gibonacci numbers.
8 Diagonalize the Fibonacci matrix by completing V! :
R IS I
1 0| |1 1 0 A '

Do the multiplication VA*V~![] to find its second component. This is the kth
Fibonacci number Fj, = (/\’1c - /\’2“)/()\1 — )\2).

9 Suppose G2 is the average of the two previous numbers Gx+1 and Gy :
Grtz = 2Grp1 + 3Gk s Gry2 | _ A Gry1 ‘
Gr+1 = Git1 Gr+1 Gk

(a) Find A and its eigenvalues and eigenvectors.
(b) Find the limit as n — oo of the matrices A” = VAV 1.
(c) If Go = 0 and G; = 1 show that the Gibonacci numbers approach %
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10  Prove that every third Fibonacci numberin 0,1,1,2,3, ... is even.
Questions 11-14 are about diagonalizability.
11 True or false : If the eigenvalues of A are 2, 2, 5 then the matrix is certainly
(a) invertible (b) diagonalizable (c) not diagonalizable.
12 True or false : If the only eigenvectors of A are multiples of (1,4) then A has
(a) noinverse  (b) arepeated eigenvalue  (c) no diagonalization VAV !,
13  Complete these matrices so that det A = 25. Then check that A = 5 is repeated—
the trace is 10 so the determinant of A — AI is (A — 5)2. Find an eigenvector with

Ax = bzx. These matrices will not be diagonalizable because there is no second line
of eigenvectors.

14 The matrix A = [ 3] is not diagonalizable because the rank of A — 3Iis ___
Change one entry to make A diagonalizable. Which entries could you change ?

Questions 15-19 are about powers of matrices.

15  AF = VAFV~! approaches the zero matrix as k — oc if and only if every ) has
absolute value less than . Which of these matrices has A* — 0?

6 9 6 9
Al_[.4 .1] - A2—[.1 .6]'

16  (Recommended) Find A and V to diagonalize A; in Problem 15. What is the limit
of A¥ as k — o0 ? What is the limit of VA*V =12 In the columns of this limiting
matrix you seethe

17  Find A and V to diagonalize A5 in Problem 15. What is (A3)'%u for these ug ?

UO:[?:l and uoz[_?} and uo-[g]

18  Diagonalize A and compute VA¥V = to prove this formula for A* :

[ 2 =1 k_1[ 143 1-3*
A{—l 2} has A_§[1—3k 1435 |-
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19

20

21

22

23

24

25

26

27

Diagonalize B and compute V A*1V/~! to prove this formula for B :

51 k[ 5% 5k —4F
B_[O4:| has B—[O 4k i

Suppose A = VAV ~!. Take determinants to prove det A = det A = Ajdg -+ \p.
This quick proof only works when A can be

Show that trace VT' = trace 7'V, by adding the diagonal entries of VT and T'V :

_|a b g r
V—[C d] and T_[s(.}’

Choose T'as AV 1. Then VAV ~! has the same trace as AV ™'V = A. The trace
of A equals the trace of A, which is certainly the sum of the eigenvalues.

AB — BA = I is impossible since the left side has trace = _. But find an
elimination matrix so that A = E and B = ET give

-1 0

AB—BA:[ 0 1

] which has trace zero.

If A = VAV ™!, diagonalize the block matrix B = [4 ,$]. Find its eigenvalue and
eigenvector (block) matrices.

Consider all 4 by 4 matrices A that are diagonalized by the same fixed eigenvector
matrix V. Show that the A’s form a subspace (cA and A; + As have this same V).
What is this subspace when V' = I ? What is its dimension ?

Suppose A% = A. On the left side A multiplies each column of A. Which of our four
subspaces contains eigenvectors with A = 1 ? Which subspace contains eigenvectors
with A = 0 ? From the dimensions of those subspaces, A has a full set of independent
eigenvectors. So every matrix with A2 = A can be diagonalized.

(Recommended) Suppose Az = Azx. If A = 0 then « is in the nullspace. If A # 0
then x is in the column space. Those spaces have dimensions (n — r) + r = n. So
why doesn’t every square matrix have n linearly independent eigenvectors ?

The eigenvalues of A are 1 and 9, and the eigenvalues of B are —1 and 9::

5 4 4 5
a=[32] w os=[13]

Find a matrix square root of A from R = VVAVL. Why is there no real matrix
square root of B ?
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28

29

30

31

32

33

34

35
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The powers AF approach zero if all |\;] < 1 and they blow up if any |\;| > 1.
Peter Lax gives these striking examples in his book Linear Algebra:

S HH RS N S
”A1024H > 10700 BlO24 =1 01024 = _C ||D1024” < 10—78

Find the eigenvalues A\ = ¢*® of B and C to show B* = I and C°® = —1.

If A and B have the same \’s with the same full set of independent eigenvectors,
their factorizations into are the same. So A = B.

Suppose the same V' diagonalizes both A and B. They have the same eigenvectors
inA=VA;V~land B= VAV~ Prove that AB = BA.

(a) If A = [31%] then the determinant of A — AI is (A — a)(X — d). Check the
“Cayley-Hamilton Theorem” that (A — al)(A — dI) = zero matrix.

(b) Test the Cayley-Hamilton Theorem on Fibonacci’s A = [13]. The theorem

predicts that A2 — A — I = 0, since the polynomial det(A — AI) is A2 — A — 1.

Substitute A = VAV ™! into the product (4 — M\ I)(A — XoI)--- (A — X\, 1) and
explain why this produces the zero matrix. We are substituting the matrix A for the
number A in the polynomial p(A) = det(A — AI). The Cayley-Hamilton Theorem
says that this product is always p(A) = zero matrix, even if A is not diagonalizable.

Challenge Problems

The nth power of rotation through 6 is rotation through nf :

A" = cos@ —sinf |" [ cosnf —sinnf
| sin®  cosf T | sinnd  cosnd |-

Prove that neat formula by diagonalizing A = VAV ~!. The eigenvectors (columns
of V) are (1,4) and (4, 1). You need to know Euler’s formula e* = cos 6 + isin 6.

The transpose of A = VAV ™1 is AT = (V-1)TAVT. The eigenvectors in ATy =
Ay are the columns of that matrix (V ~1)™. They are often called left eigenvectors.

How do you multiply three matrices VAV ~* to find this formula for A ?

Sum of rank-1 matrices A =VAV ™! = axiyl + - + \zay,.

The inverse of A = eye(n) + ones(n) is A~! = eye(n) + C * ones(n). Multiply
AA~" to find that number C (depending on n).
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6.3 Linear Systems y' = Ay

This section is about first order systems of linear differential equations. The key words are
systems and linear. A system allows n equations for n unknown functions y; (¢), . .., yn(t).
A linear system multiplies that unknown vector y(¢) by a matrix A. Then a first order
linear system can include a source term g(t), or not:

d d
Without source d—?: = Ay(t) With source d—?: = Ay(t) + q(t)

Without a source term, the only input is y(0) at the start. With g(¢) included, there is
also a continuing input q(t)dt between times ¢ and ¢ + dt. Forward from time ¢, this in-
put grows or decays along with the y(t) that just arrived from the past. That is important.

The transient solution vy, (¢) starts from y(0), when g(t) = 0. The output coming
from the source q(t) is one particular solution y,(t). Linearity allows superposition !
The complete solution with source included is y(t) = y;,(t) + y,(¢) as always.

The serious work of this section is to find y,,(t), the null solution to yn — Ay, = 0.
Then Section 6.4 accounts for the source term q(t) and finds a particular solution.

We want to use the eigenvalues and eigenvectors of A. We don’t want those to change
with time. So we kept our equation linear time-invariant, with a constant matrix A. For-
tunately, many important systems have A = constant in the first place. The system is not
changing, it is only the state of the system that changes : constant A, evolving state y(t).

We will express y(t) as a combination of eigenvectors of A. Section 6.4 uses e’

Solution by Eigenvectors and Eigenvalues

Suppose the n by n matrix A has n independent eigenvectors. This is automatic if A
has n different eigenvalues A\. Then the eigenvectors «1,...,x, are a basis in which we
can express any starting vector y(O) :

Initial condition y(0) = c1@1 + - - - + cp@y, for some numbers cy,...,c,. (1)
Computing the ¢’s is Step 1 in the solution, after finding the A’s and x’s.

Step 2 solves the equation y’ = Ay using y = e x. Start from any eigenvector

d
If Az =MAx then y(t) =e*z solves d—:‘: = Ay. (2)
This solution y = e*'x separates the time-dependent e** from the constant vector a :

(;—?: = Ay becomes %(e“a:) = deMz = A(eMz). 3)

Step 3 is the final solution step. Add the n separate solutions from the n eigenvectors.

Superposition y(t) = cre*tzy + - - - + cpetriz,. 4)

At ¢t = 0 this matches y(0) in equation (1). That was Step 1, where we chose the ¢’s.
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-2 1

Example 1  Find all solutions to y’ = [ 1 _2

] y. Which solution has y(0) = [g] ?

Solution First we find A = —1 and — 3. Their eigenvectors i; and 2 go into V :

det [ —21— A 1 ] =A244X+3 factorsinto (A +1)(A+3)

7 -2l (] =[5

Az = —1x -2 1] [1] _[-1
Awg =-3 T 1 -2 1 - -1
Step1 Solve y(0) = Ve. Then y(0) is a mixture 4z + 22 of the eigenvectors:

et 2[5 s )[4 (5222

Step 2 finds the separate solutions ce*z given by 4e~‘z; and 2e 3'x,. Now add:

|1 _ 1 4e”t 4 273
Step 3 y(t):4et[1}+2e 3t[~1:l:[4e_t—2e_3t]' (5)

For a larger matrix the computations are harder. The idea doesn’t change.

Now I want to show a matrix with complex eigenvalues and eigenvectors. This will
lead us to complex numbers in y(t). But A is real and y(0) is real, so y(¢) must be real !
Euler’s formula e* = cost + i sint will get us back to real numbers.

-2 1

-1 -2

Example 2 Find all solutions to ¢y’ = [ 5

] y. Which solution has y(0) = [6} ?

Solution Again we find the eigenvalues and eigenvectors, now complex :

—2-A 1
det(A—AXI)=0 det[ 1 —9_

] =AZ 4+ 4X + 5 (no real factors)
We use the quadratic formula to solve A? + 4\ + 5 = 0. The eigenvectors are x = (1, ).

—— 5 _ 2 _ _ ;
A=—2414 N TAEVEAE) _ AxA

Ae=—2—1 2 2

R [ H T R B | R EC
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To solve y’ = Ay, Step 1 expresses y(0) = (6,2) as a combination of those eigenvectors :

2(0) = Ve = cxay + exa [SJZ(:;-@“]H?,H)[ _t]

Step 2 finds the solutions c;e*tx; and coe??'xs.  Step 3 combines them into y(t):

N (=244 1 N (—2—i 1
Solution y(t) = cieMtay +cpe?tay = (3—i)el 720! { ; } + (3+1)e(~20t [ _; ] .
As expected, this looks complex. As promised, it must be real. Factoring out e ~2¢ leaves

6cost+2sint
2cost—6sint

(3= )(cos ¢ +i sin ¢) H +(3+4)(cos £ —i sin ¢) [_1] - [ } ©)

Put back the factor e~2 to find the (real) y(¢). It would be wise to check y/ = Ay:

o2t [6 cos t + 2 sin t} o

2cost—6sint

The factor et from the real part of A\ means decay. The cost and sint factors from the
imaginary part mean oscillation. The oscillation frequency in cost = coswt isw = 1.

Note The —2’s on the diagonal of A (which is exactly —2I) are responsible for the
real parts —2 of the \’s. They give the decay factor e~2!. Without the —2’s we would
only have sines and cosines, which converts into circular motion in the y; — y, plane.
That is a very important example to see by itself.

Example 3 Pure circular motion and pure imaginary eigenvalues

!/
y’z[yl]z[ 0 1J[y1]=[_y2J sends ¥y around a circle.

Ys -1 0 ][ v v1
Discussion The equations are yi = y2 and y5 = —y;. One solution is y; = sint and
y2 = cost. A second solution is y; = cost and y2 = —sint. We need two solutions to

match two required values y;(0) and y2(0). Those solutions would come in the usual way
from the eigenvalues A = +7 and the eigenvectors.

Figure 6.2a shows the solution to Example 2 spiralling in to zero (because of e~2%).
Figure 6.2b shows the solution to Example 3 staying on the circle (because of sine and
cosine). These are good examples to see the “phase plane” with axes y; and y; ' = y».

_(1] (1)J is a rotation by 90°. At every instant,

y' is at a 90° angle with y. That keeps y moving in a circle. Its length is constant:

Without the —2’s, the matrix A = [

Constant length d .
Circularorbit 25 YL T ¥8) = 2191 + 200 = 2012 — 20051 = 0. ®)
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Y2

Spiral

Circle Ryl
y(t) i {

yi+yi =40 Y +y3 =40

0 1
-1 0
Figure 6.2: (a) The solution (7) including e~2¢. (b) The solution (6) without e~2¢.

Conservative Motion

Travel around a circle is an example of conservative motion for n = 2. The length of y
does not change. “Energy is conserved.” For n = 3 this would become travel on a sphere.
For n > 3 the vector y would move with constant length around a hypersphere.

Which linear differential equations produce this conservative motion ? We are asking for
the squared length ||y||? = yTy to stay constant. So its derivative is zero:

d - dy\"* d
=(Ty) = (d—?) y+y" d—f = (Ay) "y +y" (Ay) =y (AT + Ay =0. (9

The first step was the product rule. Then dy/dt was replaced by Ay. Conclusion :

|ly||*> is constant when A is antisymmetric: AT + A =0 and AT = —A. (10)
The simplest example is A = _? é . Then y goes around the circle in Figure 6.2b.

The initial vector y(0) decides the size of the circle: ||y(¢)|| = |ly(0)|| for all time.
When A is antisymmetric, its eigenvalues are pure imaginary. This comes in Section 6.5.

Stable Motion

Motion around a circle is only “neutral” stability. For a truly stable linear system, the
solution y(¢) always goes to zero. It is the spiral in Figure 6.2a that shows stability:

A= [ :% _é ] has eigenvalues A = —2 + 4. This A is a stable matrix.

The key is in the eigenvalues of A, which give the simple solutions y = e*x. When
A is diagonalizable (n independent eigenvectors), every solution is a combination of
eMtxy, ... eMtx,. So we only have to ask when those simple solutions approach zero :

Stability e*x — 0 when the real part of )\ is negative: Re) < 0.
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The real parts —2 give the exponential decay factor e~2! in the solution 3. That
factor produces the inward spiral in Figure 6.2 a and the stability of the equation ¢y’ = Ay.
The imaginary parts of A = —2 + i give oscillations : sines and cosines that stay bounded.

Test for Stability When n = 2

For a 2 by 2 matrix, the trace and determinant tell us both eigenvalues. So the trace and
determinant must decide stability. A real matrix A has two possibilities R and C:

R Real eigenvalues A; and A
C Complex conjugate pair \; = s+ iw and Ay = s — iw

Adding the eigenvalues gives the trace of A. Multiplying the eigenvalues gives the deter-
minant of A. We check the two possibilities R and C, to see when Re (\) < 0.

R If A\; <0and Ay <0, then trace = A\; + A2 < 0 and determinant = \; Ay > 0
C Ifs<0in\=s+iw, then trace =2s <0 and determinant = s? + w? > 0

Both cases give the same stability requirement : Negative trace and positive determinant.

t = d 0
Z } is stable = exactly when dl;:ce _ Z;__ be i 0 (11)

o e

It was the quadratic formula that led us to the possibilities R and C, real or complex.
Remember the equation det (A — AI) = 0 for the eigenvalues:

det [a;/\ d_b)\} = A2~ (a+d) XA+ (ad — bc) = A? — (trace) X + (det) = 0.

The quadratic formula for the two eigenvalues includes an all-important square root :

Real or complex A A= {trace + +/(trace)? — 4(det)] . (12)

1
2

The roots are real (case R) when (trace)? > 4 (det). The roots are complex (case C) when
(trace)? < 4 (det). The line between R and C is the parabola in the stability picture:

(Trace)? = 4 (det) [ _(1) _? ] is stable [ (1) % ] is unstable

Stable matrices only fill one quadrant of the trace-determinant plane: trace < 0, det > 0.
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Stability determinant D > 0 Examples
picture e
[ g . :1,) stable
\ bothRe A < 0 | bothRe\ > 0 1 17
stable unstable P [ 3 3 unstable
5 ’ 0 4]
R < C C / R [ 5 g unstable
both A <0 o p ~  bothA>0 .
stable \ ..,\43 a&d Tr}_ i&/ unstable [ 2 _; neutral
= 3 trace T' e

det < O means A1 < 0 and A\ > 0 : unstable

Second Order Equation to First Order System

Chapter 2 of this book studied the second order equation y”’ + By’ + Cy = 0. Often
this is oscillation with underdamping. The solutions y = e(*1%)* and (=)t come from
the quadratic equation s2 + Bs + C = 0, when we search for solutions y = e*’.
If B? is larger than 4C, then the roots are real and the solutions are e* and e®2t.
In that overdamped case, the oscillations are gone.

I want to show you exactly the same solutions in the language of y' = Ay. Instead of
one equation with y”” we will reach two equations with ¥y’ = (y;’,y2’). You have seen

the key idea before: The original y and y' become y; and ys. Then the matrix A is a
companion matrix.

4 '
" ’ L 1 0 1 L
y"+ By +Cy=0 [Mz{;ﬂ]:{_c —BH;’]:Ay‘ (13)

It is important to see why the roots s; and so are also the eigenvalues A\; and As.
The reason is, these are still the roots of the same equation 24+ Bs+ C = 0. Only
the letter s is changed to \.

—A 1
det(A-—/\I)zdet[ _C _B_2\

}:A2+BA+C:0. (14)

This was foreshadowed when we drew the six solution paths in Section 3.2 : Sources, Sinks,
Spirals, and Saddles. Those pictures were in the y, ¢’ plane (the phase plane). Now the
same pictures are in the y;, yo plane. I specially want to show you again the trace and
determinant of A and the whole new-old understanding of stability.

0 1 _
[ _C _B } has trace = —B and determinant = C.

First the test for real roots of s2 + Bs + C = 0 and for real eigenvalues of A:

R Real roots and real eigenvalues B% > 4C  (trace)? > 4(det)
C Complex roots and eigenvalues A = a £+ iw B2 < 4C (trace)? < 4(det)

In the picture, the dashed parabola T? = 4D separates real from complex : R from C.
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More than that, the highlighted quadrant displays the three possibilities for damping.
These are all stable: B > 0 and C' > 0.

Underdamping Complex roots B2 < 4AC above the parabola

Critical damping Equal roots B? = 4AC on the parabola

Overdamping Real roots B2 > 4AC below the parabola
The undamped case B = 0 is on the vertical axis: eigenvalues +iw with w? = C.

Everything comes together for 2 by 2 companion matrices. The eigenvectors are attractive
too:

1 1 ; , g 1
Ilz[/\]:| :z:gz[)\?] agree with {;’}:[/\Z“}:{/\] at t=0. (15)

The same method applies to systems with 7 oscillators. B and C' become matrices. The
vectors y and ¢’ have n components and the joint vector z = (y,y’) has 2n components.
The network leads to n second order equations for y, or 2n first order equations for z :

" / _ ’r_ y' . 0 I Yy | _
y' +By +Cy=0 Z—[y//]_[_c _B][y,]—Az. (16)

Eigenvectors give the null solutions y,,. Real problems come with forcing terms ¢ = Fe®t.

Here I make just one point about repeated roots and repeated eigenvalues:
If A\; = A there is no second eigenvector of the companion matrix A. That matrix
can’t be diagonalized and the eigenvector method fails. The next section will succeed with
et even without a full set of eigenvectors.

Higher Order Equations Give First Order Systems

A third order (or higher order) equation reduces to first order in the same way. Introduce
derivatives of y as new unknowns. This is easy to see for a single third order equation
with constant coefficients :

y/// + By// + Cyl + Dy — O (17)

The idea is to create a vector unknown z = (y,y’,y”). The first component y satisfies a
very simple equation: its derivative is the second component y’. Then the matrix below
has 0,1,0 in its first row. Similarly the derivative of 4’ is y”. The second row of the
companion matrix is 0,0, 1. The third row contains the original differential equation (17):

/

y 0 1 0 Y
Zn—t A Y = 0 0 1 y . (18)
yu -D —-C -B y//

Companion matrices have 1’s on their superdiagonal. We want to know their eigenvalues.
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Eigenvalues of the Companion Matrix = Roots of the Polynomial

Start with the eigenvalues of the 2 by 2 companion matrix :

det (A — AI) = det [ RET

— )2 —
N _B_)\}_)\ +BA+C =0. (19)

Compare that with substituting y = e** in the single equation 4"’ + By’ + Cy = 0:
N2eM 4+ BaeM + CeM gives A2+ BA+C =0. (20)

The equations are the same. The \’s in special solutions y = e are the same as the
eigenvalues in special solutions z = e*x. This is our main point and it is true again for
3 by 3. The eigenvalue equation det (A — AI) = 0 is exactly the polynomial equation
from substituting y = e* in 3" + By 4+ Cy' + Dy = 0:
—A 1 0
det 0 - 1 =-(N+BN+CX+D)=0. (1)
-D -C —-B-2)\

The eigenvectors of this companion matrix have the special form z = (1, )?).
Fourth order equations become 2’ = Az with z = (y,v’, 3", y"""). 4 by 4 companion matrix,
eigenvalues from A* + BA3 + CA2 + DA+ E = 0.

Example4 (\—2)2=)2—-4\+4=0 comesfrom y"” —4y +4y=0:

Companion matrix A

- 0 1 2
Repeated root A\ = 2,2 A_[ ] det(A— X)) =X —4)+ 4.

—4 4

A = 2 must have one eigenvector, and it is € = (1,2). There is no second eigenvector.
The first order system z’ = Az and the second order equation y’ — 4y’ + 4y = 0 are
in (the same) trouble. The only pure exponential solution is y = e2t.

The way out for y is the solution te?!. It needs that new form (including ¢).
The way out for z is a “generalized eigenvector” but we are not going there.

= REVIEW OF THE KEY IDEAS =

1. The system y’ = Ay is linear with constant coefficients, starting from y(0).
2. Its solution is usually a combination of exponentials e* times eigenvectors - :

n independent eigenvectors y(t) = aeMte + -+ cpetie,.

The constants ¢y, . . ., ¢, are determined by y(0) = cy@; + -+ - + cp@y,. Thisis Ve!
. y(t) approaches zero (stability) if every A has negative real part: Re A < 0.

. 2by 2 systems are stable if traceT' = a + d < 0 anddet D = ad — bc > 0.

S v AW

. y” + By’ + Cy = 0 leads to a companion matrix with trace = — B and det = C.



6.3. Linear Systems y’ = Ay 357

Problem Set 6.3

1 Find all solutions y = cieMtx; + cpe*?izy to y = [ g é } y. Which solution

starts from y(0) = c1@1 + cox2 = (2,2) ?

2 Find two solutions of the form y = eMx toy’ = { 310 J Y.

2 4
3 If a # d, find the eigenvalues and eigenvectors and the complete solution to y’ = Ay.
This equation is stable when a and d are
;| a b

4  Ifa # —b, find the solutions e 'z, and e*?'zqtoy’ = Ay:

A= [ Z ZJ Why is y’ = Ay not stable ?

5 Find the eigenvalues A\;, A2, As and the eigenvectors a1, 2, x3 of A. Write
y(0) = (0,1,0) as a combination c;x; + caxs + csxs = Ve and solve y' = Ay.
What is the limit of y(¢) as t — oo (the steady state) ? Steady states come from A = 0.

-1 1 0
A= 1 -2 1
0 1 -1
6 The simplest 2 by 2 matrix without two independent eigenvectors has A = 0,0:

! 01 1
[g;] :Ay=[0 0][5;:' has a first solution {g;]:e(’t[o].

Find a second solution to these equations y;’ = y» and y2’ = 0. That second solution
starts with ¢ times the first solution to give y; = t. What is yo ?

Note A complete discussion of y’ = Ay for all cases of repeated \’s would involve
the Jordan form of A: too technical. Section 6.4 shows that a triangular form is
sufficient, as Problems 6 and 8 confirm. We can solve for y- and then y; .

A

7 Find two \’s and ’s so that y = e*x solves

dy [4 3
}Tt—[o 1}3"

What combination y = c;e bz, + coe*?tz, starts from y(0) = (5,-2)?
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8

9

10

11

12

13

14

Chapter 6. Eigenvalues and Eigenvectors
Solve Problem 7 for y = (y, z) by back substitution, z before y :
dz dy
Solve il from z(0) = —2. Then solve i 4y + 3z from y(0) = 5.

The solution for y will be a combination of e*! and e’. The \’s are 4 and 1.

(a) If every column of A adds to zero, why is A = 0 an eigenvalue ?

(b) With negative diagonal and positive off-diagonal adding to zero, y’/ = Ay
will be a “continuous” Markov equation. Find the eigenvalues and eigenvectors,
and the steady state ast — c0:

dy -2 3 . 4 .
— = - ?
Solve o { 9 _3] y with y(0) [1} . Whatis y(oc0) 7

A door is opened between rooms that hold v(0) = 30 people and w(0) = 10 people.
The movement between rooms is proportional to the difference v — w:

dv d dw

— =w- — =v—w

g - w—v an m
Show that the total v + w is constant (40 people). Find the matrix in dy/dt = Ay
and its eigenvalues and eigenvectors. What are v and w att = 1 and ¢ = 00?

Reverse the diffusion of people in Problem 10 to dz/dt = —Az:
dv dw

v L and il
The total v + w still remains constant. How are the A’s changed now that A is changed
to —A? But show that v(t) grows to infinity from v(0) = 30.

A has real eigenvalues but B has complex eigenvalues:

A:[({ (11] B:H _H (a and b are real)

Find the stability conditions on a and b so that all solutions of dy/dt = Ay
and dz/dt = Bz approach zero as t — 0.

Suppose P is the projection matrix onto the 45° line y = x in R?. Its eigenvalues are
1 and 0 with eigenvectors (1,1) and (1, —1). If dy/dt = —Py (notice minus sign)
can you find the limit of y(¢) at t = oo starting from y(0) = (3,1)?

The rabbit population shows fast growth (from 67) but loss to wolves (from —2w).
The wolf population always grows in this model (—w? would control wolves):

d d

d—::6r—2w and d—f:?r-l—w.
Find the eigenvalues and eigenvectors. If »(0) = w(0) = 30 what are the populations
at time t? After a long time, what is the ratio of rabbits to wolves?
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15 (a) Write (4,0) as a combination ¢1&1 + coxs of these two eigenvectors of A:

B B H I R R W] |

(b) The solution to dy/dt = Ay starting from (4,0) is cretxy + coeHay.
Substitute €'’ = cost + isint and e~ = cost — isint to find y(t).

Questions 16-19 reduce second-order equations to first-order systems for (y, y’).

16  Find A to change the scalar equation y” = 5y’ + 4y into a vector equation for

y=(yy") I ,
s-(7)-[ [5)em
At

What are the eigenvalues of A? Find them also by substituting y = e*' into
y" =5y + 4y.

17 Substitute y = e into ¢y’ = 6y’ — 9y to show that A = 3 is a repeated root.

This is trouble; we need a second solution after 3. The matrix equation is

il =[5 o] 0]

Show that this matrix has A = 3, 3 and only one line of eigenvectors. Trouble here too.
Show that the second solution to ¢/ = 6y’ — 9y is y = te>t.

18 (a) Write down two familiar functions that solve the equation d?y/dt?> = —9y.
Which one starts with y(0) = 3 and 3/(0) = 0?

(b) This second-order equation y’/ = —9y produces a vector equation y’ = Ay:

Sl VA H R B IR

Find y(t) by using the eigenvalues and eigenvectors of A: y(0) = (3,0).

19  If c is not an eigenvalue of A, substitute y = e'v and find a particular solution to
dy/dt = Ay — etb. How does it break down when c is an eigenvalue of A ?

20 A particular solution to dy/dt = Ay —bisy, = A~'b, if A is invertible. The
usual solutions to dy/dt = Ay give y,,. Find the complete solution y = y,, + y,,:

dy dy [1 0 4
(a)g—y—él (b) E—L 1]?1—[6}

21  Find a matrix A to illustrate each of the unstable regions in the stability picture :

(@) A\ <O0and )Xy >0 (b) Ay >0and Xy >0 (c) A =a*ibwitha > 0.
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22

23

24

25

26

27

28

Which of these matrices are stable ? Then Re A\ < 0, trace < 0, and det > 0.
-2 -3 -1 =2 -1 2
Al_{-4 —5} A2:[—3 -6J A3:{—3 —6]'

For an n by n matrix with trace (A) = T and det(A) = D, find the trace and
determinant of —A. Why is z’ = — Az unstable whenever y’ = Ay is stable ?

(a) For areal 3 by 3 matrix with stable eigenvalues (Re A < 0), show that trace < 0
and det < 0. Either three real negative \ or else Ao = A; and A3 is real.

(b) The trace and determinant of a 3 by 3 matrix do not determine all three
eigenvalues ! Show that A is unstable even with trace < 0 and determinant < 0:

1 2 3
A=|0 1 4
0 0 -5
You might think that 4y’ = — A%y would always be stable because you are squaring

the eigenvalues of A. But why is that equation unstable for A = |: _? (1) ] ?

Find the three eigenvalues of A and the three roots of 53 — s? + s — 1 = 0 (including
s = 1). The equation y"’ — y” + y’ — y = 0 becomes

/

Y 0 1 0 Y
y' =0 01 y' or z' = Az.
" 1 _1 1 "

Each eigenvalue )\ has an eigenvector = = (1, A, A?).

Find the two eigenvalues of A and the double root of s2 4+ 65+ 9 = 0:

/
" / _ Yy _ 101 Yy ’r _
y" 4+ 6y’ + 9y = 0 becomes [y’] —[9 Gjl[y/] or z' = Az.

The repeated eigenvalue gives only one solution z = e*z. Find a second solution z
from the second solution 3y = te*t.

Explain why a 3 by 3 companion matrix has eigenvectors * = (1, A%).

First Way: 1f the first component is z; = 1, the first row of Ax = Az gives the
second component xo = ___ . Then the second row of Ax = Ax gives the third
component 73 = 2.

Second Way: y' = Ay starts with 5y = 32 and y5 = y3. y = ez solves
those equations. At t = 0 the equations become Azr; = z2 and



6.3. Linear Systems y’ = Ay 361

29

30

31

32

Find A to change the scalar equation 3" = 5y’ — 4y into a vector equation for

z=(y,9): . !
a=lvl=l 7]

What are the eigenvalues of the companion matrix A? Find them also by substituting
y = eMinto y” = 5y — 4y.
(a) Write down two familiar functions that solve the equation d?y/dt> = —9y.
Which one starts with y(0) = 3and y'(0) =07?

(b) This second-order equation 3’/ = —9y produces a vector equation z’ = Az:

SIS ERER| R

Find z(t) by using the eigenvalues and eigenvectors of A: z(0) = (3,0).
(a) Change the third order equation 3"’ — 2y"" — ' + 2y = 0 to a first order system
z' = Az for the unknown z = (y,%’,%”). The companion matrix A is 3 by 3.
(b) Substitute y = e** and also find det (A — AI). Those lead to the same \’s.
(c) Onerootis A = 1. Find the other roots and these complete solutions:

Y= c1eMt + coe??t 4 pze?t z = CreMtzy + Chre*?txy + Cae™dtas.

These companion matrices have A = 2,1 and A = 4, 1. Find their eigenvectors:

0 1 0 1 . .
= = '
A [ _9 3 J and B { _4 5 J Notice trace and determinant !
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6.4 The Exponential of a Matrix

This section expresses the solution to a system dy/dt = Ay in a different way. Instead
of combining eigenvector solutions et z, the new form uses the matrix exponential eAt:

Solution to 3y’ = Ay y(t) = eAty({]) (0]

This matrix eAt matches e®t when n = 1: the scalar case. For matrices, we can still

write the exponential as an infinite series. In one way this is better than depending on
eigenvectors—but maybe not in practice :

Advantage We don’t need n independent eigenvectors for eAt.
Disadvantage  An infinite series is usually not so practical.

The new way produces one short symbol et for the “solution matrix.” Still we
often compute in the old way with eigenvectors. This is like a linear system Av = b,
where A1 is the solution matrix but we compute v by elimination.

For large matrices, y’ = Ay uses completely different ways — often finite differences.

The Exponential Series

The most direct way to define the matrix eAl is by an infinite series of powers of A:

1 o0
Matrix exponential eAt — 1+ At + Q(At)2 + e = Z(At)"/n! )

n=0

This series always converges, like the scalar case et in Chapter 1. eAt is the great
function of matrix calculus. The quickly growing factors n! still assure convergence.
The two key properties of €% continue to hold when a becomes a matrix A :

1. The derivative of eAt is AeAt 2 (eAt) (eAT) — AR+ T)

Property 1 says that y(t) = eAty(O) has derivative y' = Ay. And y(t) starts correctly

from y(0) at ¢ = 0, since ¢A0 = I from equation (2). So eAty(O) solves y' = Ay.
Suppose we set T' = —t in Property 2. Thent 4+ T =0 :

At —At

The inverse of e eWeAT — O — T when T is —¢. 3)

et has properties 1 and 2 even if A cannot be diagonalized. When A does have n
independent eigenvectors, the same eigenvector matrix V' diagonalizes A and eAt. The
next page shows that eAl = VeAtV—1. this is the good way to find eAt.
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Assume A has n independent eigenvectors, so it is diagonalizable. Substitute A = VAV !
into the series for e/, Whenever VAV ~'V AV ~! appears, take out V-1V = I.

Use the series eAt =T+ VAV %+ J(VAVR)(VAV L) + -
Factor out Vand V! =V[I+At+ (A2 +--- ]V )
Diagonalize eA? eAt = VeAty -1

The numbers it are on the diagonal of €. Multiply Ve MV ~1y(0) to see y(t).

Second Proof et has the same eigenvectors x as A. The eigenvalues of eAl are Xt

1
A"z = \"z leadsto etz = (1 + M+ 5(/\1‘.)2 + - ) x =eMa. (5)
So the same eigenvector matrix V' diagonalizes both A and et The eigenvalue matrix for

et is diag (eM?, ... eMnt). This is exactly eAl. Again eAt = VeAty—1,

The eigenvalues of the inverse matrix e~ At are e~ This is 1/e* as expected.

Example 1  The rotation matrix A = [ _(1) éJ has eigenvalues A\; = i and \o = —i:
At A1 |1 1] [e* 0 111 —i| _[ cost sint
S VG {z —i] {0 e 2|1 4|  |-—sint cost|’ ©

This produces et without adding up an infinite series. We could also begin the series :

10 0 t 1[-2 0 1fo —¢ 1—-22 t— 343
v i e I e A
0 1 —t 0 21 0 —t 6|t 0 —t+ gt 1—3t
The cosine series starts with 1 — %tz. The sine series starts with ¢ — ét3. The full series for

eAt gives the full series for cos ¢ and sint : very exceptional.

Example 1 continued What is the solution to dy/dt = Ay with y(0) = (1,0)?

Answer ~ We know that y(t) = (y1,y2) is eAty(O), and equation (6) gives et :
Y1 = y2 y1(t) cost sint 1 cost

' = P = s . (7)
y2' = —y1 ya(t) sint cost 0 sint

Right! The derivative of cost is —sint. The derivative of y, = —sint is —cost.

The equations y’ = Ay are satisfied. When t = 0, we start correctly at y(0) = (1,0).

This solution is important in physics and engineering. The point y(¢) is on the unit circle
y? + y2 = cos’t 4 sin®t = 1. It goes around the circle with constant speed.
The second derivative (acceleration) is y” = (—sint, —cost) because A> = —I. This
vector ' points in to the center (0, 0). We have a planet going in a circle around the sun.
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Example 2  Suppose A is triangular but we can’t diagonalize it (only one eigenvector):

11 U vy =y + e
"= Ay = 1 8
Y v {01][%] ¥ =0 + uo ®)

A has no invertible eigenvector matrix V. How to find y(t) without two eigenvectors ?

Solution  Since A is triangular, back substitution will solve y’ = Ay. Begin by solving
the last equation y2" = ys. Then solve for y; :

ya(t) = €'y2(0)  Then y1' = y1 +y2 = y1 + €'y2(0)
That equation for y; has a source term q(t) = e'y2(0). Chapter 1 found the solution y; (¢):

t

t
i 0)+ [ 0als)ds = un(0) + ¢'a(0) [ ds = e (0) + tetua(0). 9)
0 0

At last we have a reason for the extra factor t. The natural growth rate of y; is also
the growth rate of y,. This leads to “resonance” in y1’ = y; + y2, and the growth of te'
is extra fast. We saw resonance with te®! in Chapter 2. Now we are seeing the ¢ in At

yi(t) et tet } _

I

ty1(0 tetys(0
e‘n(0) + etyz( ) means that eAt =
e*y2(0)

Example 2 (using e4?)  For this triangular matrix A, we can also add the series for eAt .

yg(t) . 0 et (10)

I

eAt =T+ At + %(At)2 + %(At)*” Sk

10 t ot 1] 2¢2 1[4 33

_[0 1]+[0 t]+§[0 2 ]+6{0 13 ]* (in
et tet . g le

_[0 ot ] because te' =1+t +§~t STEEE

All the powers of a triangular matrix are triangular. So the diagonal entries of A give the
diagonal entries of et Those are the eigenvalues of ¢4 and here they are both e’.

Source Terminy’ = Ay + q

We can solve 5y’ = ay + g for a single equation (1 by 1). Now allow a matrix A :

at 1 d
€ q New d—?; =Ay+gq (12)

Change o to A ! For constant g, that is the only change in the formula for y :

Old  y(t) = e**y(0) +

y =Ay+q is solved by y(t) = eAty(O) + (eAt —I)A™q. (13)
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The derivative of y produces Ay, except for the constant A~!q with derivative = zero.
But this term A~ !q disappears safely in Ay + q, because —AA~1q+ q = 0.
Chapter 1 was built on the growth factor e®® in the integral for y,. Now it is e* !

At —s) from time s to time t.

t—s)

Principle  Each input q(s) has growth factor e
For constant A, the growth (or decay) over time ¢ — s is just multiplication by eAl

¢
y' = Ay +q(t) issolvedby y(t) = eAty(0) + [eAlt=5)g(s)ds. (14)
0

Similar Matrices A and B
To end this section, I will solve y’ = Ay in one more way. Same result, new approach.

Change of variables. Write y = V z to change from y(t) to the new variable z (t).

d d d
d_gtl = Ay  becomes Vd_j = AVz whichis d—i =V 1AVz. (15)
The matrix A has changed to B = V~! AV Then the solution for z involves eBt.
B=V~-1AV z' = Bz produces z(t) = eBtz(0) (16)

Changing back to y = V z, that solution becomes y(t) = VeBtz(0) = VeBtV_ly(O).
The exponentialof A =VBV ™' is et = yeBty—1 (17)

Special case : When V is the eigenvector matrix, B is the eigenvalue matrix A.

Here is my point. Equation (17) is true for any invertible matrix V. Choosing the
eigenvector matrix of A makes B diagonal; in fact B = V~!AV = A. This is the
outstanding choice for V, to produce B = A when A has n independent eigenvectors.
But any invertible V is now allowed, and we have a name for B : similar matrix.

Every matrix B = V"1AV s “similar”’ to A. They have the same eigenvalues.

I can quickly prove that eigenvalues stay unchanged. Eigenvectors changetou = V 1z

If Ax =Xz then V 'Ax =\V 'z whichis V !AVu =Bu=\Mu. (18)

By allowing all invertible V, we have a whole family of matrices B = V~'AV. All are
similar to A, all have the same eigenvalues as A, only the eigenvectors change with V.

In case A cannot be diagonalized, a good choice of V' makes B upper triangular.
V' is not easy to compute, but it greatly simplifies the problem. Example 2 showed how
z(t) comes from back substitution in 2z’ = Bz. Then y(t) = Vz(t) solves y' = Ay
without n independent eigenvectors of A.
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Fundamental Matrices (Optional Topic)

A linear system dy/dt = A(t)y is completely solved when you have n independent
solutions y, (t) to y,,(¢). Put those solutions into the columns of an n by n matrix M (t):

Fundamental matrix M(t):[yl(t)...yn(t)] has %:AM(t). (19)

Every column of dM/dt has dy/dt = Ay. All columns together give dM /dt = AM.
“Linear independence” means that M is invertible. The determinant of M is not zero.
This determinant W (t) is called the “Wronskian” of the n solutions in the columns of M :

W (t) = Wronskian of y4(t),...,y,(t) = Determinant of M (¢). (20)

The beautiful fact is this: If the Wronskian starts from W #£ 0 at time ¢ = 0, then
W (t) # 0 for all ¢. Independence at the start means independence forever. A combination
y(t) = a1y, (t) + -+ + cry,(t) can only be zero at time ¢ if it started from y(0) = 0.
Solutions to y’ = Ay don’t hit zero! So W (t) = 0 requires W(0) = 0, as in this neat
formula discussed in the Chapter 6 Notes (exponentials are never zero).

d

d—vr = (trace A(t))W andthen W(t) = eJ trace A(t) dt W (0). (21)
What are M (t) and W (t) for a second order equation y” + B(t)y’' + C(t)y = 0?7 We
know how to convert this to a first order system y’ = A(t)y. The vector unknown is
y = (y,y’) and A(t) is a companion matrix containing —B(t) and —C(t). The two
independent solutions in the columns of M (t) are (y1,v1’) and (y2,y2'):

Matrix M () = L?jl , ;’2 ,] Wronskian W (t) = det M = y1y2’ —yorn’.  (22)
1 2

Again W (t) # 0 is the test for y; and y2 to be independent. The test is passed for all ¢

if W(0) # 0. In the mysterious formula (21), the trace of A(t) is —B(t).

You will naturally ask : What is this fundamental matrix M (¢) ? Why are we only see-
ing it now ? One answer is that you already know the growth factor G from Chapter 1:
M = G(0,t) = exp ([ a(t)dt). For systems, you also know M = e“’. That is the perfect
answer when A is constant. e“l? is the best possible M () because it starts from M (0) = I.

It is often hard to find M (¢) when the matrix A depends on ¢ (then nothing is easy).
We know that y’ = A(t)y has n independent solutions y(¢). But in most cases we don’t
know what those solutions are. The point of fundamental matrices is that the solution y(t)
comes directly from M (t), when and if we know M :

y(t) = M(t)M(0)~y(0) forany M(t) (23)

Let me say a little more about constant A and varying A(t), and then stop.
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Constant A with n independent eigenvectorsin V' We know 7 solutions y = e*x:

eAlt Aot

Put those y’s into M (t) = [eM'@; e’'ay ... erle,] = velt,
How does this differ from et ? You can see everything at ¢ = 0, when this M (t) is V.

If you want the fundamental matrix that equals I at ¢t =0, just multiply by M (0)"1=V"1:
When A = VAV ™!, the best fundamental matrix is M = VeV =1 which is e4t.

Time-varying A(t) with time-varying eigenvectors The equation y’ = A(t)y is more

difficult. The next page shows how the expected solution formula fails. The chain rule

goes wrong. Finding even one solution y,(¢) is a big challenge. The optimistic point

is that if we can find y,(t), then “variation of parameters” will lead us to y, = C(t)y;.
Let me focus on a famous equation that has been studied by great mathematicians:

d’y  dy
B 1° : 2 2 _ .2 =0. 2
essel’s equation T s +z Ir + ( p?)y=0 (24)

The solutions are Bessel functions of order p. When the order is p = %, these solutions
y1 and yo are quite special (the variable ¢ is usually changed to z).

2 2
y1(z) = ‘/Esin z and yo(z) = \/ 7z €8 % 8° . {zi/ zzl}

Those are independent solutions and the Wronskian W = y;y4 — y2y{ is never zero.

The most important Bessel functions have p = 0, 1,2, ... and whole books are written
about these functions. They are not simple ! The first and most famous Bessel function is
y = Jo(z), with order p = 0:

2 4 6

T T T

Jo(fL‘) =1——=

9% + W — m + .- resembles a damped cosine.

The second solution Yj, independent of Jp, blows up at z = 0. When you divide Bessel’s
equation (24) by x2, so as to start the equation with "/, you see that its coefficients are
singular: 1/z and 1 — p?/z? also blow up at z = 0: A singular point.

Failure of a Formula

A single equation dy/dt = a(t)y has a neat solution y = e’ ()y(0). We choose P(t) as the
integral of a(t). By the chain rule, dy/dt has the desired factor a(t) = dP/dt. I am very
sorry to say that y = e”()y(0) fails for matrices A(t) and systems y’ = A(t)y.

There is no doubt that the derivative of the integral of time-varying A(t) is A(t).
Even for matrices, this part is true :

Fundamental Theorem of Calculus

&~

t
dP
/ A)ds =0 =A@ ©9)
0
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When A is a constant matrix, that integral is P = At and its derivative is A. Then
the derivative of el is Ae“Xf. This whole section is built on that true statement. We hope
that the same chain rule will give the answer when A(t) is varying and not constant :

t

The derivative of G = exp / A(s)ds | “should be” A(t)G. Not always! (26)
0

When the matrix A(t) is changing with time, the chain rule in (26) can let us down.
This leaves no simple formula for y(¢). How can things go wrong ?

The difficulty is that e? times e® may not be the same as e+ 5. Problem 7 gives an
example of A and B. Those matrices do not satisfy AB = B A and this destroys the rule for
exponents. It is true that ee? = eA+5 when AB = BA, but not here.

Let me use those matrices in Problem 7 to construct a two-part example :

y' =By fort<l1 andthen y'=Ay for t>1 (27)

Our time-varying matrix A(t) jumps from B to A at ¢ = 1. The integral of A(t) is P(t):
t

P(t) = /A(s) ds =Bt (for t<1) and A(t-—1)+ B (for t > 1). (28)
0

But the exponential of P(t) does not solve our differential equation (27) at ¢t = 2:
2
P(2) = /A(s) ds=A+ B iscorrectbut y(2) = e *tPy(0) iswrong.
0

The correct answer is y(2) = e“ePy(0). First B then A. The solution is eZ'y(0)
up to time ¢ = 1, when B changes to A. After t = 1 the solution is eA(*=DeBy(0).

The chain rule in (26) is wrong, because e“eP is different from eAt?B

® REVIEW OF THE KEY IDEAS =

1. The exponential of At is et = I + At + (A + F(ALP +- -

2. The solution to 4’ = Ay is y(t) = eAAty(0). Thisis VeV =1y (0) if V! exists.

3. That solution is the same as ¢;e*tzy + - - - + cpe’iz, with e = V~1y(0).

4. The solution to 4’ = Ay + g (constant source) is y(t) = eAty(0) + (et — I)A~1q.
5. All similar matrices B = VAV ~! (with any V) have the same eigenvalues as A.

6. If A(t) is time-varying, easy formulas for the fundamental matrix M (¢) will fail.
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= WORKED EXAMPLE =

Show that y(t) = eAty(0) is exactly c;e*tzy + - -+ + cpeta, if y(0) = Ve.
6]
Step1  Write y(0) = cy@y + -+ + ep@y. Thisis | @ -+ @, : | =Ve.

Cn

Step 2  Starting from an eigenvector x, the solution is y = ce* .

Step3  Add those n solutions to get VelMe = VeV 1y (0) = eAty(0).

Here are those steps for a triangular matrix A. Suppose y(0) = (5,3). First A and V':

1 1 1 1
A:{U 2] has /\lzlandmlz[o} /\2:2andmg:{l}

s wo=[5]-a[3 o 1]} 1][3] v

Step 2 The separate solutions ce**a from eigenvectors are 2etx; and 3e?'x,.
Step3 The final y(¢) = eAy(0) = VeAV~1y(0) is the sum 2e‘@; + 3ezs.

01 0 1
. At . .
Challenge Find e“* for the companion matrices { _C 0 ] and { _C _B J

Their eigenvectors in VeV 1 are always (1, ).

Problem Set 6.4

1 If Ax = Az, find an eigenvalue and an eigenvector of eAt and also of —e A,

2 (a) From the infinite series eAt — [+ At + ... show that its derivative is Ae’.

(b) The series for e ends quickly if A = [ 8 (1) ] because A% = { 8 8 }

Find e and take its derivative (which should agree with AeAt).

3 For A = [ (1) ; J with eigenvectors in V = [ (1) 1 },compute Al — ety -1

4 Why is e (A +30)t equal to eAt multiplied by e3t?
5  Whyise4  not the inverse of e 2 What is the correct inverse of e4 ?

1 ¢ e clet —1)
6 Compute A™ = [ 00 J . Add the series to find et = { 0 ] J
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10

11

12

13

14

15

16

17

Find e“ and e by using Problem 6 for ¢ = 4 and ¢ = —4. Multiply to show that
the matrices ee? and eBe” and e4A*Pare all different.

1 4 1 —4 2
a<[3 4] e[l t] aese|?

Multiply the first terms I + A + 3 A? of e by the first terms I + B + 1 B2 of €.
Do you get the correct first three terms of eA*5 ? Conclusion: eA*P is not always
equal to (e!)(e?). The exponent rule only applies when AB = BA.

o O
-

Write A = [§ 3] in the form VAV ~!. Find e“? from VeAty 1,

Starting from (0) the solution at time ¢ is edty(0). Go an additional time ¢
to reach et ¢4ty (0). Conclusion: et times e equals

Diagonalize A by V' and confirm this formula for eAt by using Velty-1.

2t 3t _ 2t
A:{g é} eAt:[g ‘égf 2 >] At t=0 this matrixis .

(a) Find A2 and A3 and A™ for A = [ (1) i ] with repeated eigenvalues A = 1, 1.

(b) Add the infinite series to find eAt, (The Vet =1 method won’t work.)

(a) Solve y' = Ay as a combination of eigenvectors of this matrix A :

y:[(l) Hy with y(0>:{‘;’]

(b) Write the equations as ¥}, = y, and y5 = y;. Find an equation for y with y
eliminated. Solve for y; (t) and compare with part (a).

Similar matrices A and B = V1AV have the same eigenvalues if V is invertible.
Second proof ~ det(V7'AV — XI) = (det V') (det (A — \I)) (det V).
Why is this equation true ? Then both sides are zero when det (A — AI) = 0.

If B is similar to A, the growth rates for 2’ = Bz are the same as for y' = Ay.
That equation converts to the equation for z when B = V~'AV and z =

If Az = Az # 0, what is an eigenvalue and eigenvector of (eAt -NA"1?

The matrix B = [ ~5] has B2 = 0. Find eBt from a (short) infinite series.

Check that the derivative of B is BeBt.
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18

19

20

21

Starting from y(0) = 0, solve ¥y’ = Ay + g as a combination of the eigenvectors.
Suppose the source is ¢ = q1x1 + - - - + grx,. Solve for one eigenvector at a time,
using the solution y(¢) = (e** — 1)g/a to the scalar equation y’ = ay + q.

Then y(t) = (eAt — I)A~'q is a combination of eigenvectors when all \; # 0.

Solve for y(t) as a combination of the eigenvectors ; = (1,0) and zy = (1,1):
y,:::fiy +_q yi — 1 1 yl 4_ 4 “d[h yl(o) ::0
Ya 0 2 )] 3 y2(0) =0
, 2 3 . . 8 ,
Solvey’ = Ay = 9 1 |Yin three steps. First find the \’s and x’s.

(1) Write »0) = (3, 1) as a combination c; &1 + cax2

At Aot

(2) Multiply c; and ¢ by e** and e

(3) Add the solutions cie*tx; + cpe?tas.

Write five terms of the infinite series for e“Xt. Take the  derivative of each term. Show
that you have four terms of Ae“4. Conclusion: eAty(O) solves dy/dt = Ay.

Problems 22-25 are about time-varying systems y’ = A(t)y. Success then failure.

22

23

24

25

Suppose the constant matrix C' has Cxz = A, and p(t) is the integral of a(t).
Substitute y = )z to show that dy/dt = a(t)Cy. Eigenvectors still solve
this special time-varying system: constant matrix C' multiplied by the scalar a(t).

Continuing Problem 22, show from the series for M(t) = eP()C that dM /dt =
a(t)CM. Then M is the fundamental matrix for the special system y’ = a(t)Cy.

If a(t) = 1 then its integral is p(¢) = ¢ and we recover M = e“".

. 1 2t . t 2 . .

The integral of A = [ 0 0 J is P = [ 0 0 ] The exponential of P is

P et tlet—1)
0 1

of eP® is P'eP(®) = AeP®). Compute the derivative of e©’®) and compare with

the wrong answer Ae”’(®). (One reason this feels wrong: Writing the chain rule as

(d/dt)e? = ePdP/dt would give ef’ A instead of A ef’. That is wrong too.)

. From the chain rule we might hope that the derivative

Find the solution to y’ = A(t)y in Problem 24 by solving for y and then y; :

Solve [jz;%] = [(1) %t} [Z;] starting from B’;Eg”

Certainly y2(t) stays at y2(0). Find y;(¢) by “undetermined coefficients” A, B,C':
yi = y1 + 2ty2(0) issolved by y; =y, + yn = At + B + Ceé'.

Choose A, B, C' to satisfy the equation and match the initial condition y; (0).

The wrong answer in Problem 24 included the incorrect factor tet in e”(*).
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6.5 Second Order Systems and Symmetric Matrices

This section solves a differential equation that is crucial in engineering and physics :

&y

Oscillation equation
s at?

+ Sy =0. (N

Since this is second order in time, we need two vectors as initial conditions at ¢ = 0 :

d
Starting position and starting velocity  y(0) and v(0) = d—:,:(O) are given.
If y has n components, we have n second order equations and 2n initial conditions.
This is the right number to find y(t). Allow me to say this early: The oscillation
equation (1) is the most basic form of the Fundamental Equation of Engineering.

The more general equation includes a damping term B dy/dt and a forcing term

F cosQt. Those give damped forced oscillations, where equation (1) is about “free”

oscillations. For one mass and one equation, Chapter 2 took that step to damping and forcing.

Now we have n masses and n equations and three n by n matrices M, B, K.

. d’y | dy

Fundamental Equation M ) o4 BE + Ky = F cos . 2)

The mass matrix is M, the stiffness matrix is K. Those are the pieces we always see and

always need. When the damping matrix B and the forcing vector F' are removed, that takes
us to the heart of the fundamental equation : free oscillations.

Mass and stiffness matrices My”" + Ky=0 . 3)

The matrix S in equation (1) is M "' K. Its symmetric form is M ~'/2KM~'/2, In many
applications the mass matrix M is diagonal.

If we look for eigenvector solutions y = e*!x, the differential equation produces
Kx = w?Max. This “generalized” eigenvalue problem has an extra matrix M,
but it is not more difficult than Sz = Ax. The MATLAB command is eig(K, M). An
essential point is that the eigenvalues are still real and positive, when both M and K are
positive definite. Positive eigenvalues and positive energy are the key to Chapter 7.

When the forcing term is a constant F', the damping brings us to a steady state y ..
Then the time dependence is gone; those derivatives dy/dt and d?y/dt? are zero.
The external force F is balanced by the internal force K yoo. The system is in equilibrium:

Steady state equation Kyso = F = constant. 4)

The central problem of computational mechanics is to create the stiffness matrix K and
force vector F'. Then the computer solves My” + Ky = 0 and Ky, = F. For large
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problems, the finite element method is now the favorite way to take those steps.
This is a sensational achievement by the collective efforts of thousands of engineers. !

Solution by Eigenvalues

We want to solve y” + Sy = 0. This is a linear system with constant coefficients. Our
solution method will be the same as for y’ = Ay. We use the eigenvectors and eigenvalues
of S to find special solutions, and we combine those to find the complete solution.

Each eigenvector of S leads to two special solutions to y” + Sy = 0:

Two solutions If Sz = Ax then y(t) = (coswt)z and y(t) = (sinwt)x. (5)
The “frequency” w is v/A. Substitute y = (coswt)a into the differential equation :
A =w? and Sz = Wiz Yy’ + Sy = —w?(coswt)x + S(coswt)x = 0. (6)

When coswt is factored out, we see the requirement on . It must be an eigenvector of S.
We expect n eigenvectors (normal modes of oscillation). The eigenvectors don’t interact.
That is their beauty, each one goes its own way. And each eigenvector gives us two solutions
from (coswt)x and (sin wt)x, so we have 2n special solutions.

A combination of those 2n solutions will match the 2n initial conditions (n positions and
n velocities at t = 0). This determines the 2n constants A; and B; in the complete solution
toy” +Sy=0:

Complete solution y(t) = Y (Ai cos VAt + B; sin vV t) x;. @)
i=1

Since sin0 = 0, it is the A; that match the vector y(0) of initial positions. It is the
B; that match the vector v(0) = y’(0) of initial velocities.

Example 1 Two masses are connected by three identical springs in Figure 6.3.
Find the stiffness matrix S and its positive eigenvalues \; = w? and Ay = w2. If the
system starts from rest, with the top spring unstretched (y1(0) = 0) and the lower

mass moved down (y2(0) = 2), find the positions y = (y1,y2) at all later times:

d?y ) 0 [0
ijLSy—O with y(0) = [ 9 ] and y'(0) = e

y(t) has eigenvectors &1, 2 times cosine and sine. Four conditions for Ay, Az, By, Bs.
Solution ~ Construct the matrix S that expresses Newton’s Law my” + Sy = 0. The
acceleration is ", and the force is —Sy.

I'The finite element method is a key part of my textbook on Computational Science and Engineering.
The foundations of the method and the reasons for its success are developed in An Analysis of the Finite
Element Method (also published by Wellesley-Cambridge Press).
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What force F' is acting on the upper mass ? The stretched top spring is pulling that mass
up. The force is proportional to the stretch y;. This is Hooke’s Law F' = —ky;.

The middle spring is connected to both masses. It is stretched a distance y2 — y;.
(No stretching if y2 = v, the spring would just be shifted up or down.) The difference
Y2 — y1 produces spring forces k(y2 — y1), pulling mass 1 down and mass 2 up.

The bottom spring with fixed end is stretched by 0 — 2, so the force is —kysa.

F = ma at the upper mass —kyy + k(yo — y1) = my]’

F = ma at the lower mass —k(y2 —y1) — ky2 = myd’

These equations —Sy = my” or my” + Sy = 0 have a symmetric matrix S. Take

k=m=1:
d? 2 -1 0
" Y1 n
Sy=— = .
vy dtQ[yz]+[—1 2] yz} {0} ©
The modeling part is complete, now for the solution part. The eigenvalues of that
matrix are Ay = 1 and A2 = 3. The trace is 1 + 3 = 4, the determinant is (1)(3) = 3.
The first eigenvector ;1 = (1,1) has the springs moving in the same direction in
Figure 6.3. The second eigenvector &z = (1,—1) has the springs moving oppositely,

with higher frequency because w3 = Ay = 3.
Formula (7) for y(¢) becomes a combination of eigenvectors times cosines :

Solution [ gigg } = Ay (cos V1) [ : ]JrA2 (cosv/3t) [ 5 } )

I removed B sint and B, sin v/3t because the example started from rest (zero velocity).
At time ¢ = 0, cosines give position y(0) and sines give velocity v(0).

— =

¥
. 1 1
springs At t =0 Ty = 1 To = -1
my
1 1
push or pull g %

Mo

% y2(0) =2 ! 1
on the masses Fg E/
7 77 E ;7 7

Figure 6.3: The masses oscillate up and down, y(t) combines (cost) x; and (cos \/§t) 5.
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The final step is to find A; and A from the initial position y(0) = (0, 2) :

1

Initial condition A; [1

}—FAQ[_H = {g] gives A; =1and A; = —1.

Final answer : y; (t) = (cost — cos v/3t) and y2(t) = (cos t + cos v/3t). The two masses
oscillate forever. The solution part was easier than the modeling part. This is very typical.

Symmetric Matrices
Example 1 led to a symmetric matrix S. Many many examples lead to symmetric matrices.

Perhaps this is an extension of Newton’s third law, that every action produces an equal and
opposite reaction. We really must focus on the special properties of symmetric matrices,
because those properties are so useful and the matrices appear so often.

Eigenvalues and eigenvectors—this is the information we need from the matrix.
For every class of matrices, we ask about A and . Are the eigenvalues real? Are they
positive, so we can take square roots in A = w? ? Are there n independent eigenvectors ?
Are the x’s orthogonal ? The example with A\; = 1 and A\ = 3 was perfect in all respects :

S = 2 -1 is symmetric positive definite Positive real A = 1 and 3
Tl-1 2 ¥ P Orthogonal x = (1,1), (1, —1)

Real eigenvalues All the eigenvalues of a real symmetric matrix are real.

Proof Suppose that Sz = Az. Until we know otherwise, A might be a complex number
and & might be a complex vector. If that did happen, the rules for complex conjugates would
give ST = AZ. The key idea is to look at ' S :

S is symmetric and real Z' Sz =7"'5Tx = (52)" . (10)

The left side is TX Ax. The right side is Z Az. One side has )\, the other side has \.

They multiply_ETm which is not zero—it is the squared length |z1]? + -+ + |2,]?.
Therefore A = \. _
When A\ = a + @b equals A = a — b, we know that b = 0 and A is real.

Then the vector x in the nullspace of the real matrix S — A can also be kept real.

Orthogonal eigenvectors If Sz = Mz and Sy = Aoy and A\; # Ao. ThenxTy = 0.

Proof Take the dot product of the first equation with ¢ and the second equation with x :
Use ST =5 (Sz)Ty =aTSy is MxTy =l zTy. (11)

Since A\; # Aq, this proves that Ty = 0. The eigenvectors are perpendicular.

Remember: The main goal of eigenvectors is to diagonalize a matrix, A = VAV L.
Here the matrix is S and its eigenvectors are orthogonal. We can certainly make them unit
vectors, so 2Tz = 1 and a:Ty = 0. The matrix V' with the eigenvectors in its columns
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has become an orthogonal matrix: VTV = I. The right letter for this orthogonal matrix
V is Q. The eigenvector matrix V in VAV ! can be orthogonal: QTQ = I.

Spectral theorem/Principal axis theorem S =QAQ™! = QAQT T2

In algebra, the eigenvectors are orthogonal. In geometry, the principal axes of an ellipse
are orthogonal. If the ellipse equation is 222 — 2xy + 2y? = 1, this corresponds to the
example matrix S. Its principal axes (1,1) and (1,—1) (eigenvectors) are at +45° and
—45° from the = axis. The ellipse is turned by +45° from horizontal and vertical axes.

With repeated eigenvalues, S = QAQT is still correct. Every symmetric S has a full
set of n independent eigenvectors (Chapter 6 Notes) even if eigenvalues are repeated.
To summarize, QAQ™" is a perfect description of symmetric matrices S. Every S has
those factors and every matrix of this form is sure to be symmetric: (QAQT)T equals

QTTATQT which is QAQT. If we multiply columns of @ times rows of AQT, we see
S in a new way (a sum of rank one matrices):

Matrices Azx T Mzt
with rank 1 S=|xzy -+ @ : = Almlmrf + - 4 Anwnmz. (13)
addto S Anr

This is the great factorization S = QAQT, in terms of eigenvalues and eigenvectors.

Example 2 The eigenvectors (1,1) and (—1,1) with A = 16 and 4 give unit eigenvectors

x, = (1,1)/v2and 3 = (—1,1)/v/2:

10 —6 T 1 1 ~1 16 1 11
=[5 0] @=L " dala]
Those eigenvectors still point in the 45° direction and the 135° direction (90° apart). They
are the same as in Example 1, because this new S is 6 times the original S, minus 21.
Then the new eigenvalues 16 and 4 of S must be 6 times the original 3 and 1, minus 2.
The eigenvectors in () are the principal axes of an ellipse 10x2 — 12zy + 10y? = 1.

If I change —6 and —6 off the diagonal to 6¢ and —6:, the determinant is still 64.

The trace is still 20 and the eigenvalues are still 16 and 4 (real!). For complex matrices,
we want a symmetric real part and an antisymmetric imaginary part. Let me explain why.

Complex Matrices

Important: The squared length is Z 2 and not =72 when = has complex components.
We want |z1|2 + -+ + |z,|? because this is a positive number or zero. We don’t want
x? 4+ --- + 12 because that could be any complex number, and we are looking for
||z||? = length squared > 0. When a component of x is a + bi, we want a® + b? and
not (a + bi)2. The length squared of x = (1,4) is ||z||* = 12+ 1% = 2 and not 12 +i% = 0.
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This changes all inner products (dot products) from =Ty to Z'y. Complex vectors
x and y are perpendicular when 'y = 0. This complex inner product forces us to
replace the usual transpose by the conjugate transpose (A)T = A*, when A is complex :

A7 is Aji Then Az -y = (Az)Ty ==" ZTy =z A%y. (14)

MATLAB automatically takes the conjugate transpose to give A*, when you type @’ or A’.

To keep the row space of A perpendicular to the nullspace, we must use C(A*) for
the row space. This is the column space of A*, not just the column space of AT. Replace
every ¢ by —i. And an important name: the complex version of a symmetric matrix
AT = Ais a “Hermitian matrix” A* = A.

Hermitian matrix A;; = Kﬁ Then Az -y =x-A*y becomes Ax-y=x-Ay.

Example 3 This 2 by 2 complex matrix is Hermitian (notice ¢ and —z):

3 i .
A_[_i3]_A

The determinant is 8 (real). The trace is 6 (the main diagonal of a Hermitian matrix is real).
The eigenvalues of this matrix are 2 and 4 (both real !).

Hermitian matrices A = A™ have real eigenvalues and perpendicular eigenvectors.

The eigenvectors of A are 1 = (1,¢) and @2 = (1, —4). They are perpendicular:
Tty = 12 + (—i)2 = 0. Divide by v/2 to make them unit vectors. Then they are the
columns of a complex orthogonal matrix ). The right meaning of “complex orthogonal”
is Q* = Q~1, and the right name when @ is complex is unitary :

Unitary matrix Q*Q = 1 The columns of () are perpendicular unit vectors.

The great factorization A = QAQ™ of real symmetric matrices becomes A = QAQ*.

Orthogonal Matrices and Unitary Matrices

We have seen the big theorem: If S is symmetric or Hermitian, its eigenvector matrix
is orthogonal or unitary. The real case is S = QAQT = ST and the complex case is
S = QAQ* = S*. The eigenvaluesin A are real.

What if our matrix is anti-symmetric or anti-Hermitian ? Then AT = —Aor A* = — A.
The matrix A could even be i times S. (In that case A* will be —¢ times S* which is
exactly —iS = —A.) Multiplying by i changes Hermitian to anti-Hermitian. The real
eigenvalues A of S change to the imaginary eigenvalues ¢\ of A. The eigenvectors do
not change : still orthogonal, still going into Q.

Anti-Hermitian matrices have imaginary eigenvalues and orthogonal eigenvectors.

01__T _Oi__* g
_1 OJ— A andA—[i OJ— A XN = %1

Our standard examples are A = {



378 Chapter 6. Eigenvalues and Eigenvectors

Finally, what if our matrix is orthogonal or unitary? Then QTQ = I or Q*Q = I.
The eigenvalues of () are complex numbers A = e® on the unit circle.

If Q*Q = I then all eigenvalues of ) have magnitude |\| = 1.

The proof starts with Qx = Ax. The conjugate transpose is *Q* :_X:c*. Multiply the
left hand sides using Q*@Q = I, and multiply the right hand sides using A\ = |\|?:

z*Q*Qx = M\x*\x isthesameas z*x = [A\*x*x. Then |\|> =1and |\ = 1.

The eigenvectors of (), like the eigenvectors of S and A, can be chosen orthogonal.
These are the essential facts about the best matrices. The eigenvalues of S and A and @ are
on the real axis, the imaginary axis, and the unit circle in the complex plane.

In the eigenvalue-eigenvector world, a triangular matrix is not really one of the best.
Its eigenvalues are easy (on the main diagonal). But its eigenvectors are not orthogonal.
It may even fail to be diagonalizable. Matrices without n eigenvectors are the worst.

Symmetric and Orthogonal

At the end of Chapter 4, we looked at symmetric matrices that are also orthogonal : AT = A
and AT = A1, Every diagonal matrix D of 1’s and —1’s has both properties. Then
every A = QDQT also has both properties. Symmetry is clear, and a product of
orthogonal matrices Q and D and Q7 is sure to stay orthogonal.

The question we could not answer was: Does QDQT give all possible examples?
The answer is yes, and now we can see why A has this form—based on eigenvalues.

When A is symmetric, its eigenvalues are real. When A is orthogonal, its eigenvalues
have |A\| = 1. The only possibilities for both are A = 1 and A = —1. The eigenvalue
matrix A = D is a diagonal matrix of 1’s and —1’s. Then the great fact about symmetric
matrices (the Spectral Theorem) guarantees that A has the form QAQT which is QDQT.

® REVIEW OF THE KEY IDEAS =

1. A real symmetric matrix S has real eigenvalues and perpendicular eigenvectors.
2. Diagonalization S = VAV ~! becomes S = QAQT with an orthogonal matrix Q.

3. A complex matrix is Hermitian if gT = S (often written S* = S): real X’s.

4. Every Hermitian matrix is S = QA@T = QAQ*. Dot products are « - y = x*y.

5. All three matrices S and A = S = —A* and @ have orthogonal eigenvectors.

6. Symmetric matrices in y” + Sy = 0 and My" + Ky = 0 give oscillation.
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-t

Problem Set 6.5

Problems 1-14 are about eigenvalues. Then come differential equations.

Which of A, B, C have two real \’s ? Which have two independent eigenvectors ?
7 —11 7 -11 7T —11
A_[-ll 7] B_[ll 7} C_[O 7]
Show that A has real eigenvalues if & > 0 and nonreal eigenvalues if b < 0:

0 b 19
A—|:1 0] and A—[l 1].

Find the eigenvalues and the unit eigenvectors of the symmetric matrices

2 2 2 1 0 2
(aS=1]12 0 0 and b)) S=|0 -1 -2
2 0 0 2 =2 0

Find an orthogonal matrix ) that diagonalizes S = [ _z ? ] . What is A?

Show that this A (symmetric but complex) has only one line of eigenvectors:

A= { f _é } is not even diagonalizable. Its eigenvalues are 0 and 0.

AT = Ais not so special for complex matrices. The good property is a'= A

Find all orthogonal matrices from all x;,x9 to diagonalize S = [lg }2]
. . . 10 .
(a) Find a symmetric matrix S = b1 that has a negative eigenvalue.

(b) How do you know that S must have a negative pivot?

(c) How do you know that S can’t have two negative eigenvalues?

If A% = 0 then the eigenvalues of A must be . Give an example with A # 0.
But if A is symmetric, diagonalize it to prove that the matrix is A = 0.

If A = a + ib is an eigenvalue of a real matrix A, then its conjugate X =a—ibisalso
an eigenvalue. (If Az = Az then also AT = Ax.) Prove that every real 3 by 3 matrix
has at least one real eigenvalue.



380 Chapter 6. Eigenvalues and Eigenvectors

10

11

12

13

14

15

16

Here is a quick “proof™ that the eigenvalues of all real matrices are real:

T Ax

False proof Ax =) x gives z'Ax =)Xz'z so \= —7— isreal.
xzTx

Find the flaw in this reasoning—a hidden assumption that is not justified. You could
test those steps on the 90° rotation matrix [0 —1; 1 0] with A =iand x = (4,1).

Write A and B in the form \jz;z] + Aozoxa of the spectral theorem QAQT :
3 1 9 12
SIS [ 1 3 } B [ 12 16 } (keep [|z1]| = [|@2|| = 1).
What number b in [% 8] makes A = QAQT possible? What number makes A =
VAV~ impossible? What number makes A~ impossible?

This A is nearly symmetric. But its eigenvectors are far from orthogonal:

A=l 1077 has cigenvect ! d [7]
=0 1410-15 as eigenvectors 0 an .

What is the dot product of the two unit eigenvectors ? A small angle !

(Recommended) This matrix M is skew-symmetric and also orthogonal. Then all its
eigenvalues are pure imaginary and they also have |\| = 1. They can only be i or —i.
Find all four eigenvalues from the trace of M:

0 1 1 1

1 -1 0 -1 can only have eigenvalues i or — 4
— l n ’
V3| -1 1 0 -1

il 1 0

M =

The complete solution to equation (8) for two oscillating springs (Figure 6.3) is

y(t) = (Aicost + By sint) [ i ] + (Ag cos V3t + By sin V/3t) [ 711 ] _

Find the numbers A, Ay, By, By if y(0) = (3,5) and 4'(0) = (2,0).

If the springs in Figure 6.3 have different constants k1, ko, k3 then y”’ + Sy = 0 is

Upper mass g + kyy; — ka(y2 — y1) =0 . [ ki+ka —ko ]
Lower mass  y} + ka(y2 — y1) + k3y2 =0 —ky ka2 +ks

For k1 = 1,ky = 4,k3 = 1 find the eigenvalues A = w? of S and the complete
sine/cosine solution y(t) in equation (7).
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17

18

19

20

21

22
23

24

Suppose the third spring is removed (k3 = 0 and nothing is below mass 2). With
ki = 3,k2 = 2 in Problem 16, find S and its real eigenvalues and orthogonal
eigenvectors. What is the sine/cosine solution y(¢) if y(0) = (1, 2) gives the cosines
and y'(0) = (2, —1) gives the sines ?

Suppose the top spring is also removed (k; = 0 and also k3 = 0). S is singular!
Find its eigenvalues and eigenvectors. If y(0) = (1,—1) and 3’ = (0,0) find y(¢).
If y(0) changes from (1, —1) to (1, 1) what is y(¢) ?

The matrix in this question is skew-symmetric (AT = —A). Energy is conserved.
0 c —b yi = cy2 — bys
dy _ 0 /I _
- —C aly or Yo = ays — cy1
b —a 0 ya = by1 — ays.
The derivative of [[y(t)]|? = v? + y3 + v3 is 2y1y] + 2y2u5 + 2y305.
Substitute ¥}, 5, Y5 to get zero. The energy ||y (¢)||? stays equal to ||y (0)||?.
When A = —AT is skew-symmerric, e/t is orthogonal. Prove (et)T = e=At

from the series et = I + At + %A2t2 N

The mass matrix M can have masses m; = 1 and my = 2. Show that the eigenvalues
for K& = A\Mx are A\ = 2 + /2, starting from det(K — A\M) = 0:

2
2

10

= . .
0 2 4] are positive definite.

=g 5] e r=|

Find the two eigenvectors &} and 2. Show that ] x5 # 0 but x] Mxs = 0.
What difference equation would you use to solve y”/ = —Sy ?

The second order equation y” + Sy = 0 reduces to a first order system y;’ = y,
and yo' = —Sy,. If Sz = w?x show that the companion matrix A = [0 [ ; —S 0]
has eigenvalues iw and —iw with eigenvectors (x, iwz) and (x, —iwz).

Find the eigenvalues A\ and eigenfunctions y(z) for the differential equation
y” = Ay with y(0) = y(r) = 0. There are infinitely many !
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Table of Eigenvalues and Eigenvectors

How are the properties of a matrix reflected in its eigenvalues and eigenvectors?
This question is fundamental throughout Chapter 6. A table that organizes the key facts may
be helpful. Here are the special properties of the eigenvalues ); and the eigenvectors x;.

Symmetric: ST = S
Orthogonal: QT = Q!
Skew-symmetric: AT = —A
Complex Hermitian: S'=s
Positive Definite: TSz > 0

Markov: m;; > 0,> 7" my; =1

Similar: B = V1AV
Projection: P = P? = PT
Plane Rotation: cos6,sin 6
Reflection: 1 — 2uu™
Rank One: uv™

Inverse: A1

Shift: A + ¢l

Function: any f(A)

Stable Powers: A” — 0
Stable Exponential: et — 0

Tridiagonal: diagonals —1,2,—1

real \’s

all (A =1
imaginary \’s
real \’s

allA >0
>\max =1
AB) = A(A)
A=1;0
e ande
A=-1;1,.,1
A=vTu; 0,..,0
1/A(A)

AMA) +c
fA1), -, f(An)
all A\l <1

allRe A <0

—1i6

G T km
A =2 2cos 5

orthogonal z7z; = 0
orthogonal Z; z; = 0
orthogonal T;F:cj =0
orthogonal Z; z; = 0
orthogonal since ST = S
steady state > 0
z(B) =V~ 1lz(A)
column space; nullspace
x = (1,4) and (1, —7)

u; whole plane ut

u; whole plane v
keep eigenvectors of A
keep eigenvectors of A
keep eigenvectors of A
any eigenvectors
any eigenvectors

km
n+1? n+1?

Ty = (sin— sin 257 )

Factorizations Based on Eigenvalues (Singular Values in X))

Diagonalizable: A = VAV !
Symmetric: S = QAQT
Jordan form: J = V1AV
SVD forany A: A =UXV"

diagonal of A has \;
diagonal of A (real \;)
diagonal of J is A

rank(A) = rank(X)

eigenvectors in V'

orthonormal eigenvectors in )
each block gives ¢ = (0, .., 1, ..,0)
eigenvectors of ATA, AAT in V,U
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® CHAPTER 6 NOTES =

A symmetric matrix S has perpendicular eigenvectors. Suppose Sx = Mz and
Sy = Aoy and A\; # Aq. Subtract A\; I from both equations :

(S = Alf):l! =0 and (S = A]I)y = (/\2 s A])y

This puts « in the nullspace and y in the column space of S — A;I. That matrix is real
symmetric, so its column space is also its row space. Then « in the nullspace is sure to be
perpendicular to ¥ in the row space. A new proof that z Ty = 0.

Several proofs that S has a full set of n independent (and orthogonal) eigenvectors—
even in the case of repeated eigenvalues—are on the course website for linear algebra:
web.mit.edu/18.06 (Proofs of the Spectral Theorem).

Similar Matrices and the Jordan Form

For every A, we want to choose V so that V~' AV is as nearly diagonal as possible. When
A has a full set of n eigenvectors, they go into the columns of V. Then the matrix V1AV
is diagonal, period. This matrix A is the Jordan form of A—when A can be diagonalized.
But if eigenvectors are missing, A can’t be reached.

Suppose A has s independent eigenvectors. Then it is similar to a matrix with s blocks.
Each block has the eigenvalue )\ on the diagonal with 1’s just above it. This block accounts
for one eigenvector. When there are n eigenvectors and n blocks, J is A.

The Jordan form J has an off-diagonal 1 for each missing eigenvector (and the 1’s are next
to the eigenvalues). This is the big theorem about matrix similarity. In every family of
similar matrices, we are picking one outstanding member called J. It is nearly diagonal
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(or if possible completely diagonal). We can solve dz/dt = Jz by back substitution.
Then we have solved dy/dt = Ay withy = V z.

Jordan’s Theorem is proved in my textbook Linear Algebra and lIts Applications.
The reasoning is rather intricate and the Jordan form is not at all popular in computations.
A slight change in A will separate the repeated eigenvalues and bring a diagonal A.

Time-varying systems y’ = A(t)y : Wrong formula and correct formula for y(t)
Section 6.4 recognized that linear systems are more difficult when the matrix depends on ¢.
The formula y(t) = exp([ A(t)dt)y(0) is not correct. The underlying reason is that A5
(the wrong matrix) is generally different from e“e? (the correct matrix at ¢t = 2, when the
system jumps from y’ = By toy’ = Ay att = 1.) Go forward in time : €? and then e*.

It is not usual for a basic textbook to attempt a correct formula. But this is a chance to
emphasize that Euler’s difference equation goes forward in the right order. It steps from Y,
at time nAt to Y 41 at time (n + 1)At, using the current matrix A at time nAt.

Euler’s method AY /At=AY or Y,t1 = E,Y, with E, = I + AtA(nAt).
When we reach Y y, we have multiplied Yo by N matrices Ey to E'n_ in the right order :
Yn=En_1En_2...E1EyY.

Basic theory says that Euler’s Y y approaches the correct y(t), when At = t/N and
N — oco. That product of E’s approaches the correct replacement for e*. When A is a
constant matrix, not changing with time, all E’s are the same and we reach e from E™V :

A\
Constant matrix A e = limit of (I + AtA)Y = limit of (I + Nt> .

This came from compound interest in Section 1.3, when A was a number (1 by 1 matrix).
The limit of Eny_1En_o...E1Ey is called a product integral. —An ordinary
“sum integral” [ A(t)dt is the limit of a sum of N terms AtA (each term going to zero).
Now we are multiplying N terms I + AtA (each term going to I). Term by term,
I + AtA is close to e2*4. But matrices don’t always commute, and exp [ A(t)dt is
wrong. Matrix products Ex_; ... Ey Ey approach a product integral and the correct y(t).

Product integral M/ (t) = limitof Ex_1En_o... E1Ey. Theny(t) = M (t)y(0).
One final good note. The determinant W (t) of the matrix M (t) has a nice formula.

This succeeds because numbers det A (but not matrices A) can be multiplied in any order.
Here is the beautiful fact that gives the equation for the Wronskian determinant W (t) :

aw :
If % = AM then - = (trace (A))W. Therefore W () = eJ e (AW)dtyy (),

This is equation (21) in Section 6.4. We see again that the Wronskian W (¢) is never zero,
because exponentials are never zero. For y” + B(t)y’ + C(t)y = 0, the companion matrix
has trace —B(t). The Wronskian is W (t) = e~/ B®17(0) as Abel discovered.
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Applied Mathematics and AT A

A chapter title that includes the symbols AT A is not usual. Most textbooks deal with A
and its eigenvalues, and stop. When the original problem involves a rectangular matrix,
as so many problems do, the steps to reach a square matrix are omitted. In reality,
rectangular matrices are everywhere—they connect current and voltage, displacement
and force, position and momentum, prices and income, pairs of unknowns.

It is true that the eventual equation contains a square matrix (very often symmetric).
We start from A and we reach AT A. Those two matrices have the same nullspace. We want
AT A to be invertible so we can solve the problem. Then A must have independent columns
(no nullspace except the zero vector) as we now assume: A must be “tall and thin” with
m > n and full column rank 7 = n.

S = AT A has positive eigenvalues. It is a positive definite symmetric matrix. Its
eigenvectors lead us to the Singular Value Decomposition of A. The SVD in Section 7.2
is the best way to discover what is important, when a large matrix is filled with data.
The singular vectors are like eigenvectors for a square matrix, with the extra guarantee of
orthogonality.

The chapter starts with m equations in n unknowns—too many equations, too few
unknowns, and no solution to Av = b. This is a major application of linear algebra
(and geometry and calculus). A sensor or a scanner or a counter makes thousands of
measurements. Often we are overwhelmed with data. If it lies close to a straight line,
that line v; + vet or C' 4+ Dt has only n = 2 parameters. Those are the two numbers
we want, coming from m = 1000 or 1000000 measurements.

Our first applications, are least squares and weighted least squares. The 2 by 2 matrix
AT A or ATCA will appear (C contains the weights). This is the symmetric matrix S of
Section 6.5 and Section 7.1, and the stiffness matrix K of Section 7.4, and the conductance
matrix of Section 7.5, and the second derivative AT A = —d?/dz? in 7.3. (A minus sign is
included, because if A = d/dx is the first derivative then —d/dz is its transpose.)

“Symmetric positive definite”—those are three important words in linear algebra.
And they are key ideas in applied mathematics, to be presented in this chapter.

385
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7.1 Least Squares and Projections

Start with Av = b. The matrix A has n independent columns; its rank is n. But A has m
rows, and m is greater than n. We have m measurements in b, and we want to choose
n < m parameters v that fit those measurements. An exact fit Av = b is generally
impossible. We look for the closest fit to the data—the best solution v.

The error vector e = b — A tells how close we are to solving Av = b. The errors in
the m equations are ey, . . ., e,,. Make the sum of squares as small as possible.

Least squares solution © Minimize ||e||? =e?+---+e2, = ||b— Av||%.

This is our goal, to reduce e. If Av = b has a solution (and possibly it could), then
the best ¥ is certainly that solution vector v. In this case the error is e = 0, certainly
a minimum. But normally there is no exact solution to the m equations Av = b. The
column space of A is only an n-dimensional subspace of R™. Almost all vectors b are
outside that subspace—they are not combinations of the columns of A. We reduce the error
E = ||e||? as far as possible, but we cannot reach zero error.

Example 1  Find the straight line b = C' 4+ Dt that goes through 4 points: b = 1,9,9,21
att = 0,1, 3,4. Those are four equations for C' and D, and they have no solution. The four
crosses in Figure 7.1 are not on a straight line :

C+0D =1 1 0 1

Av = b has C+1D =9 1 1 C 9

no solution C+3D =9 = 1 3 { D ] - 9 M
C+4D =21 1 4 21

C = 1 solves the first equation, then D = 8 solves the second equation. Then the other
equations fail by a lot. We want a better balance, where no equation is exact but the total
squared error E = €% + €3 + €2 + €2 from all four equations is as small as possible.

The best C and D are 2 and 4. The best v is v = (2,4). The best line is 2 + 4¢.
At the four measurement times ¢ = 0,1,3,4, this best line has heights 2,6, 14, 18.
In other words, A% is p = (2,6, 14, 18) which is as close as possible to b = (1,9,9, 21).

For that vector p = (2, 6,14, 18), the four bullets in Figure 7.1 fall on the line 2 + 4¢.
How do we find that best solution ¥ = (C, D) = (2,4) ? It has the smallest error E

E=el+es+es+ef =(1-C—0D)?+(9—C—1D)?+(9—-C—3D)*+(21-C—4D)>.

We can use pure linear algebra to find C' = 2 and D = 4, or pure calculus. To use calculus,
set two partial derivatives to zero : 9E/0C = 0 and OE /0D = 0. Solve for C and D.
Linear algebra gives the right triangle in Figure 7.1. The vector b is split into p + e.
The heights p lie on a line and the errors e are as small as possible. I will use calculus first,
and then the linear algebra that I prefe—because it produces a right triangle p + e = b.
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best line —b—p
2+ 4t
projection
- 9 of b onto
511 -1 columns
' 0

Figure 7.1: Two pictures ! The best line has eTe =1+ 9 + 25+ 9 = 44 = ||b — p||.

Let me give away the answer immediately (the equation for C' and D). Then you can
compute the best solution ¥ and the projection p = Av and the error e = b — Av.
The best least squares estimate © = (C, D) solves the “normal equations” using the
square symmetric invertible matrix AT A :

Normal equations to find © ATAD = ATb. (2)

In short, multiply the unsolvable equations Av = b by AT to get AT Av = ATb.

Example 1 (completed) The normal equations AT A% = ATb are

3)

e
e
=W O

After multiplication this matrix AT A is square and symmetric and positive definite :

_ 4 8 C 40 , C 2
AT AT = ATh [8 26Jl§]:[120] gives [5}2{1} (4)

Att = 0,1, 3,4 this best line 2 + 4¢ in Figure 7.1 has heights p = 2,6, 14, 18. The min-
imum error b — p is e = (—1,3,—5,3). The picture on the right is the “linear algebra
way” to see least squares. We project b to p in the column space of A (you see how p
is perpendicular to the error vector €). Then Av = p has the best possible right side p.

The solution @ = (C', D) = (2,4) is the least squares choice of C and D.
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Normal equations using calculus  The two equations are IE/0C = 0 and OE /0D = 0.

The first column shows the four terms €3 + e3 + e3 + €3 that add to E. Next to them
are the derivatives that add to 0F/9C and OE /OD. Notice how the chain rule brings factors
0,1, 3,4 in the third column for OE/0D.

Add (C+0D —1)? 2(C+0D —-1) 2(C' + 0D —1)(0)
each E_(C+t1D-92 OE _ 2(C+1D-9) 8E _2(C+1D-9)(1)
R (C+3D-9)2 @8C 2(C+3D-9) ap 2(C+3D-9)(3)

(C + 4D — 21)2 2(C +4D — 21) 2(C +4D —21)(4)

No problem to divide all derivatives by 2, when 0E/0C = 0 and 0E/0D = 0. The last
two columns are added by matrix multiplication (notice the numbers 0, 1, 3,4 in 0E/9D).

C+0D - 1
1{8E/80}_{1111} C+1D - 9 _[0} )
21 0E/0D |~ [0 1 3 4||C+3D— 9| |0

C+4D - 21

The 2 by 4 matrix is AT. The 4 by 1 vector is A% — b. Calculus has found AT Av = ATb.

Example 2  Suppose we have two equations for one unknown v. Thusn = 1 butm = 2
(probably there is no solution). One unknown means only one column in A :

o 9 a o b1 20=1
Av=>b is [ - } v= [ by } For example =8 " (6)

The matrix A is 2 by 1. The squared erroris E = €3 + €% = (1 — 2v)? + (8 — 3v)2.

Sum of squares E(v) = (b1 — a1v)? + (b — agv)?.

The graph of E(v) is a parabola. Its bottom point is at the least squares solution . The
minimum error occurs when dE/dv = 0 :

Equation for v % = 2ay (a1Y — b1) + 2a2 (a2v — by) = 0. (7)

Cancel the 2’s, so (a? + a3)0 = (aib; + agbs). The left side has a? + a3 = ATA.
The right side is a1b, + asb, = ATb. Calculus has again found AT A = ATb:

—~ b . a’b ai1by + azb
[a1 a2] [Zj o=[a1 ay] [bj produces v = Ty = laé—kai 2. ®
1 +a;

The numerical example has a = (2,3) and b = (1,8) and ¥ = aTb/aTa = 26/13 = 2.
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Example 3  The special case a; = a2 = 1 has two measurements v = b; and v = bs
of the same quantity (like pulse rate or blood pressure). The matrix has AT = [1 1].
To minimize (v — b;)? + (v — ba)?, the best ¥ is just the average measurement :

If ay=az=1 then ATA=2 and ATb=0b;+by and ¥ = (b + b)/2.

The linear algebra picture in Figure 7.2 shows the projection of b onto the line through a.
The projection is p, the angle is 90°, and the other side of the right triangle is e = b — p.
The normal equations are saying that e is perpendicular to the line through a.

Least Squares by Linear Algebra
Here is the linear algebra approach to AT A5 = ATb. It takes one wonderful line :
e = b — A% is perpendicular to the column space of A. So e is in the nullspace of AT.

Then ATb = AT A®. That fourth subspace N (A7) is exactly what least squares needs : e
is perpendicular to the whole column space of A and not justto p = Av = A(ATA)~1ATb.

Figure 7.2 shows the projection p as an m by m matrix P multiplying b. To project any
vector onto the column space of A, multiply by the projection matrix P.

aa™
Projection matrix gives p = Pb P=—— or P=A(ATA)71AT. 1 (9)
aTa

The first form of P gives the projection on the line through a. Here A has only one
column and ATA = aTa. We can divide by that number, but for n > 1 the right notation
is (AT A)~!. The second form gives P in all cases, provided only that AT A is invertible:

Two key properties of projection matrices PT=P and P2=P. (10)

The projection of p is p itself (because p = Pb is already in the column space). Then
two projections give the same result as one projection : P(Pb) = Pband P? = P.

. aTh —
p=Ab=a—— p=Av = A(ATA)"1ATh
a'a

Figure 7.2: The projection p is the nearest point to b in the column space of A.
Left (n = 1) : column space = line through a. Right (n = 2): Column space = plane.
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Let me review the four essential equations of (unweighted) least squares :

1. Av=%b m equations, n unknowns, probably no solution
2. ATAT = A"b normal equations, 5 = (ATA)"1ATb = best v
3. p=Av=A(ATA)"1ATb projection p of b onto the column space of A
4

P=A(ATA)~1AT projection matrix P produces p = Pb for any b

10 6
Example4d IfA= |1 1 |andb= | 0 | find ¥ and p and the matrix P.
1 2 0

Solution Compute the square matrix AT A and also the vector ATb :

10 6
v, 1011 3 3 11 1 _[6
AA_{012} 1; _[3 5] and [012} 8 _{0}‘

Now solve the normal equations AT A% = ATb to find ¥ :

3 3 [ oy 6 . . ™ 5
i) [R]=10] eeo=[R]=[5] @

The combination p = A% is the projection of b onto the column space of A :

1 0 5 1
p=5|1]| =3 |1 = 2|. Theerroris e = b—p= | —-2]|. (12)
: —1 1

Two checks on the calculation. First, the error e = (1,—2,1) is perpendicular to both
columns (1,1, 1) and (0, 1, 2). Second, the projection matrix P times b = (6, 0, 0) correctly
gives p = (5,2, —1). That solves the problem for one particular b.

To find p = Pb for every b, compute P = A(ATA)~1 AT. The determinant of AT A is
15 — 9 = 6; then (AT A)~! is easy. Multiply A times (AT A)~! times AT to reach P:

I |
1 _

(ATA) ! = - 5 Bl amapr=1| 22 2. (13)
6 -3 3 6| 1 5 &

We must have P2 = P, because a second projection doesn’t change the first projection.

Warning The matrix P = A(ATA)7?AT is deceptive. You might try to split (ATA)~?
into A~! times (AT)~!. If you make that mistake, and substitute it into P, you will find
P = AA71(AT)"1 AT, Apparently everything cancels. This looks like P = I, the identity
matrix. The next two lines explain why this is wrong.
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The matrix A is rectangular. It has no inverse matrix. We cannot split (AT A)~! into
A~" times (AT) ! because there is no A~! in the first place.

In our experience, a problem that involves a rectangular matrix almost always leads to
AT A. When A has independent columns, AT A is invertible. This fact is so crucial that we
state it clearly and give a proof.

AT A is invertible if and only if A has linearly independent columns.

Proof AT A is a square matrix (n by n). For every matrix A, we will now show that
AT A has the same nullspace as A. When A has independent columns, its nullspace contains
only the zero vector. Then AT A, with this same nullspace, is invertible.

Let A be any matrix. If z is in its nullspace, then Az = 0. Multiplying by AT gives
AT Az = 0. So z is also in the nullspace of AT A.

Now start with the nullspace of ATA. From ATAz = 0 we must prove Az = 0.
We can’t multiply by (AT)~?!, which generally doesn’t exist. Just multiply by =T :

(@T)ATAz =0 or (Az)T(Az)=0 or |Az|*=0.

This says : If AT Az = 0 then Az has length zero. Therefore Az = 0.
Every vector  in one nullspace is in the other nullspace. If AT A has dependent columns,
so has A. If AT A has independent columns, so has A. This is the good case :

When A has independent columns, AT A is square, symmetric, and invertible.

To repeat for emphasis : AT A is (n by m) times (m by n). Then AT A is square (n by n).
It is symmetric, because its transpose is (AT A)T = AT(AT)T which equals ATA. We just
proved that AT A is invertible—provided A has independent columns. Watch the difference
between dependent columns and independent columns :

AT A ATA AT A ATA
[110] e _{24} {197 |13 _[24]
220] 190 b {221} 01 t9

dependent  singular independent invertible

Very brief summary To find the projection p = v1a1 + - - - + U, @y, solve ATAD = ATb.
This gives ©. The projection is Av and the erroris e = b — p = b — Av. The projection
matrix P = A(AT A)~! AT multiplies b to give the projection p = Pb.

This matrix satisfies P? = P. The distance from b to the subspace is ||e||.
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Weighted Least Squares

There is normally error in the measurements b. That produces error in the output v.
Some measurements b; may be more reliable than others (from less accurate sensors).
We should give heavier weight to those reliable b;.

We assume that the expected error in each b; is zero. Then negative errors balance
positive errors in the long run, and the mean error is zero. The expected squared error
in the measurement b; (the “mean squared error”) is its variance ;2 :

Mean m; = Ele;] =0 Variance ¢;2 = expected squared error E[e?] (14)

We should give equation ¢ more weight when o; is small. Then b; is more reliable.

Statistically, the right weight is w; = 1/0;. We multiply Av = b by the diagonal matrix
W with those weights ws, ..., w,,. Then solve W Av = Wb by ordinary least squares,
using W A and Wb instead of A and b :

Weighted least squares (W A)T(WA)v=(WA)TWbis ATCAv=ATCb. (15)

C = WTW goes between AT and A, to produce the weighted matrix K = ATCA.

Example 5 Your pulse rate v is measured twice. Using unweighted least squares
(w1 = wy = 1), the best estimate is ¥ = % (b1 + b2). Example 3 finds that least square
solution v to two equations v = b; and v = bs. But if you were more nervous the first
time, then o is larger than o5. The first measurement b; has a larger variance than b,.

We should weight the two measurements by w; = 1/0; and we = 1/03:

wv = wiby ~_ wiby + waby

With weights =
& wav = waby wi + w3

(16)

When w; = we = 1, that answer ¥ reduces to the unweighted estimate %(bl + ba).

The weighted K = ATCA has the same good properties as the unweighted ATA:
square, symmetric, and invertible when A has independent columns (as in the example).
Then all eigenvalues of AT A and ATC A have X > 0: positive definite matrices !

= REVIEW OF THE KEY IDEAS =

1. The least squares solution ¥ minimizes E = ||b — Av||2. Then AT A7 = ATb.
. To fit m points by a line C' + Dt, Aism by 2 and ¥ = (6’, ﬁ) gives the best line.
. The projection of b on the column space of A is p = Av = Pb: closest point to b.

. The error is e = b — p. The projection matrix is P = A(ATA)"1 AT with P2 = P.

N A W N

. Weighted least squares has ATC A% = ATCb. Good weights c; are 1/variance of b;.
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10

11

12

Problem Set 7.1

Suppose your pulse is measured at b = 70 beats per minute, then b = 120, then
bs = 80. The least squares solution to three equations v = by,v = by, v = bg with
AT =[1 1 1]isv = (ATA)"1ATb = . Use calculus and projections :

(a) Minimize F = (v — 70)? + (v — 120)2 + (v — 80)?2 by solving dE /dv = 0.
(b) Project b = (70,120,80) onto @ = (1,1,1) to find v = aTb/a"a.

Suppose Av = b has m equations a;v = b; in one unknown v. For the sum of squares
E = (a1v—b1)?>+ -+ (amv — by)?, find the minimizing ¥ by calculus. Then form
AT A5 = ATb with one column in A, and reach the same 7.

With b = (4,1,0, 1) at the points z = (0, 1, 2, 3) set up and solve the normal equation
for the coefficients v = (C, D) in the nearest line C+ Dz. Start with the four equations
Av = b that would be solvable if the points fell on a line.

In Problem 3, find the projection p = Awv. Check that those four values lie on the line
C + Dz. Compute the error e = b — p and verify that ATe = 0.

(Problem 3 by calculus) Write down E = ||b — Av||? as a sum of four squares : the
last one is (1 — C' — 3D)2. Find the derivative equations 0E/9C = 0FE /0D = 0.
Divide by 2 to obtain AT A% = ATb.

For the closest parabola C'+ Dt + Et? to the same four points, write down 4 unsolvable
equations Av = b for v = (C, D, E). Set up the normal equations for . If you fit the
best cubic C' + Dt + Et? + F't3 to those four points (thought experiment), what is the
error vector e ?

Write down three equations for the line b = C + Dt to go through b = 7 at
t = —-1,b="Tatt = 1,and b = 21 att = 2. Find the least squares solution
v = (C, D) and draw the closest line.

Find the projection p = Aw in Problem 7. This gives the three heights of the closest
line. Show that the error vector is e = (2, —6,4).

Suppose the measurements at ¢ = —1,1,2 are the errors 2, —6,4 in Problem 8.
Compute v and the closest line to these new measurements. Explain the answer:
b = (2,-6,4) is perpendicular to so the projectionis p = 0.

Suppose the measurements at t = —1,1,2 are b = (5,13,17). Compute v and the

closest line e. The error is e = 0 because this b is
Find the best line C + Dt to fitb = 4,2, —1,0,0 at times t = —2,—1,0,1, 2.

Find the plane that gives the best fit to the 4 values b = (0,1, 3,4) at the corners
(1,0) and (0,1) and (—1,0) and (0, —1) of a square. At those 4 points, the equations
C + Dz + Ey = bare Av = b with 3 unknowns v = (C, D, E).



394 Chapter 7. Applied Mathematics and AT A

13 Withb = 0,8,8,20att = 0,1, 3,4 set up and solve the normal equations AT Av =
ATb. For the best straight line C' + Dt, find its four heights p; and four errors e;.
What is the minimum value £ = e? + €2 + €2 + €3 ?

14  (By calculus) Write down E = ||b — Av]||? as a sum of four squares—the last one
is (C' + 4D — 20). Find the derivative equations 9E/0C = 0 and OE /0D = 0.
Divide by 2 to obtain the normal equations AT A = ATb.

15 Which of the four subspaces contains the error vector e ? Which contains p ? Which
contains v ?

16  Find the height C of the best horizontal line to fit b = (0,8,8,20). An exact fit
would solve the four unsolvable equations C' = 0,C' = 8,C = 8,C = 20. Find
the 4 by 1 matrix A in these equations and solve AT A% = ATb.

17  Write down three equations for the line b = C + Dt to go through b = 7 at
t = —-1,b ="Tatt = 1,and b = 21 at t = 2. Find the least squares solution
v = (C, D) and draw the closest line.

18  Find the projection p = Av in Problem 17. This gives the three heights of the closest
line. Show that the error vector is e = (2, —6,4). Why is Pe = 0 ?

19  Suppose the measurementsatt = —1, 1, 2 are the errors 2, —6, 4 in Problem 18. Com-
pute ¥ and the closest line to these new measurements. Explain the answer:
b = (2,—6,4) is perpendicular to so the projectionis p = O.

20  Suppose the measurements at ¢ = —1,1,2 are b = (5,13,17). Compute v and the
closest line and e. The error is e = 0 because this b is _ ?

Questions 21-26 ask for projections onto lines. Also errors e = b — p and matrices P.

21  Project the vector b onto the line through a. Check that e is perpendicular to a :

1 1 1 —1
(@) b=1| 2| and a=| 1 (b)) b=|3 | and a=| -3
3 1 1 -1

22  Draw the projection of b onto a and also compute it from p = va :

(a)b:{zionsg]anda:[(l)} (b) =[i}anda:[_i}

23 In Problem 22 find the projection matrix P = aa™/aTa onto each vector a. Verify
in both cases that P? = P. Multiply Pb in each case to find the projection p.

24  Construct the projection matrices P, and P, onto the lines through the a’s in
Problem 22. Is it true that (P, + P»)%2 = P, + P ? This would be true if P, P, = 0.

25 Compute the projection matrices aa™/aTa onto the lines through a; = (—1,2,2)
and ay = (2,2, —1). Multiply those two matrices P; P, and explain the answer.
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26  Continuing Problem 25, find the projection matrix P; onto as = (2,—1,2). Verify
that P, + P, + P3 = I. The basis a1, a3, as is orthogonal !

27  Project the vector b = (1, 1) onto the lines through a; = (1,0) and ax = (1,2).
Draw the projections p; and p, and add p; + p,. The projections do not add to b
because the a’s are not orthogonal.

28  (Quick and recommended) Suppose A is the 4 by 4 identity matrix with its last column
removed. A is 4 by 3. Project b = (1,2, 3, 4) onto the column space of A. What shape
is the projection matrix P and what is P?

29 If A is doubled, then P = 24(4ATA)~12AT. This is the same as A(ATA)~1AT,
The column space of 2A is the same as . Is ¥ the same for A and 2A?

30 What linear combination of (1,2, —1) and (1,0, 1) is closest to b = (2,1,1)?

31 (Important)If P? = P show that (I — P)? = I — P. When P projects onto the column
space of A, I — P projects onto which fundamental subspace ?

32 If P is the 3 by 3 projection matrix onto the line through (1,1,1), then I — P is the
projection matrix onto

33  Multiply the matrix P = A(ATA)~!AT by itself. Cancel to prove that P2 = P.
Explain why P(Pb) always equals Pb: The vector Pb is in the column space so its
projection is

34 If A is square and invertible, the warning against splitting (AT A)~! does not apply.
Then AA=Y(AT)=1AT = I is true. When A is invertible, why is P = [ ande = 0 ?

35  An important fact about AT A is this: If ATAx = 0 then Ax = 0. New proof :
The vector Az is in the nullspace of . Az is always in the column space of
. To be in both of those perpendicular spaces, Az must be zero.

Notes on mean and variance and test grades
If all grades on a test are 90, the mean is m = 90 and the variance is 0> = 0. Suppose
the expected grades are g1,...,gn. Then 02 comes from squaring distances to the mean :
“ o —-_m 2 e + —m 2
g1+ N+9N Variance o2 — (91 )2+ X (gn )

After every test my class wants to know m and o. My expectations are usually way off.

Mean m =

36  Show that o2 also equals (g% + - - - + g% ) — m?.

37 If you flip a fair coin NV times (1 for heads, O for tails) what is the expected number
m of heads ? What is the variance o2 ?
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7.2 Positive Definite Matrices and the SVD

This chapter about applications of AT A depends on two important ideas in linear algebra.
These ideas have big parts to play, we focus on them now.

1. Positive definite symmetric matrices (both AT A and ATC A are positive definite)
2. Singular Value Decomposition (A = UXVT gives perfect bases for the 4 subspaces)

Those are orthogonal matrices U and V in the SVD. Their columns are orthonormal
eigenvectors of AAT and ATA. The entries in the diagonal matrix ¥ are the square
roots of the eigenvalues. The matrices AAT and A" A have the same nonzero eigenvalues.

Section 6.5 showed that the eigenvectors of these symmetric matrices are orthogonal.
I will show now that the eigenvalues of AT A are positive, if A has independent columns.

Start with AT Az = A&. Then T AT Az = \zTx. Therefore \ = ||Az||?/||x||*> > 0

I separated T AT Az into (Az)T (Az) = ||Az||>. We don’t have A = 0 because AT A is
invertible (since A has independent columns). The eigenvalues must be positive.

Those are the key steps to understanding positive definite matrices. They give us three
tests on S—three ways to recognize when a symmetric matrix S is positive definite :

Positive 1.  All the eigenvalues of .S are positive.
definite 2. The “energy” xSz is positive for all nonzero vectors .
symmetric 3. S has the form S = AT A with independent columns in A.

There is also a test on the pivots (all > 0) and a test on n determinants (all > 0).

Example 1  Are these matrices positive definite ? When their eigenvalues are positive,
construct matrices A with S = AT A and find the positive energy T Sz.

40 5 4 4 5
@ S:[o 1} (b) 52[4 5] © 52[5 4}

Solution The answers are yes, yes, and no. The eigenvalues of those matrices S are

(a) 4 and1: positive (b) 9and1: positive (¢) 9and —1: not positive.

A quicker test than eigenvalues uses two determinants : the 1 by 1 determinant S7; and
the 2 by 2 determinant of S. Example (b) has S;; = 5 and det S = 25 — 16 = 9 (pass).
Example (c) has S1; = 4 butdet S = 16 — 25 = —9 (fail the test).
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Positive energy is equivalent to positive eigenvalues, when S is symmetric. Let me test
the energy T Sz in all three examples. Two examples pass and the third fails :

_ - -
[x1 2] 3 (1) J 2 =422+ 23>0 Positive energy when « # 0
(5 4 [ z; ] ) . .
[1 2] i 5 - = 57 + 8z122 + 523 Positive energy when x # 0
L L 2 -
(4 5[ o1 ] 9 2
(1 22 5 4 - | = 4z3 + 10z 22 + 425 Energy —2 when « = (1,—1)
2

Positive energy is a fundamental property. This is the best definition of positive definiteness.

When the eigenvalues are positive, there will be many matrices A that give ATA = S.
One choice of A is symmetric and positive definite! Then AT A is A2, and this choice
A =+/Sisatrue square root of S. The successful examples (a) and (b) have § = A2 :

S I e VR F T 1

We know that all symmetric matrices have the form S = VAVT with orthonormal
eigenvectors in V. The diagonal matrix A has a square root VA, when all eigenvalues are
positive. In this case A = V'S = VVAVT is the symmetric positive definite square root :

ATA =VSV5E = (VVAVT)(VVAVT) = VVAVAVT = S because VTV = 1.
Starting from this unique square root v/S, other choices of A come easily. Multiply v/S

by any matrix @ that has orthonormal columns (so that QTQ = I). Then QV/S is another
choice for A (not a symmetric choice). In fact all choices come this way :

ATA=(QVS)T (QVS) =V5QTQVS = . (1)

I will choose a particular ) in Example 1, to get particular choices of A.

0
1

[0 -17[2 0] _[o0 -1 O
,4_[1 on] _[2 0] has S_AA_[O
5

4

IR TR o]

_é J to multiply v/S. Then A = QV/S.

|
|

Example 1 (continued) Choose ) = [

— O

[S2 QSN
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Positive Semidefinite Matrices

Positive semidefinite matrices include positive definite matrices, and more. Eigenvalues of
S can be zero. Columns of A can be dependent. The energy T Sx can be zero—but not
negative. This gives new equivalent conditions on a (possibly singular) matrix S = ST,

1’ All eigenvalues of S satisfy A > 0 (semidefinite allows zero eigenvalues).
2/ The energy is nonnegative for every ¢ : Sz > 0 (zero energy is allowed).
3’ S has the form ATA (every A is allowed; its columns can be dependent).

Example 2 The first two matrices are singular and positive semidefinite—but not the third :

0 0 4 4 4 4
) S:[O 1] ) 52[44] ) sz[ i _4].

The eigenvalues are 1,0 and 8,0 and —8, 0. The energies =1 Sz are 73 and 4(x; + 72)? and
—4(xy — x2)?. So the third matrix is actually negative semidefinite.

Singular Value Decomposition

Now we start with A, square or rectangular. Applications also start this way—the matrix
comes from the model. The SVD splits any matrix into orthogonal U times diagonal 3 times

orthogonal V', Those orthogonal factors will give orthogonal bases for the four
fundamental subspaces associated with A.

Let me describe the goal for any m by n matrix, and then how to achieve that goal.
Find orthonormal bases vi,...,v, for R" and ui,...,u,, for R™ so that

Avy =oqu1 | ... Av, = opU, Av,yp1 =0 @ Av, =0 B

The rank of A is r. Those requirements in (4) are expressed by a multiplication AV = UX.
The r nonzero singular values 01 > 09 > ... > o, > 0 are on the diagonal of ¥ :

a 0

AV=UE Alvi...0 ... | =% ... ur ... um A3)
or

0 0

The last n — r vectors in V' are a basis for the nullspace of A. The last m — r vectors in U
are a basis for the nullspace of A™. The diagonal matrix X is m by n, with r nonzeros.
Remember that V~! = VT, because the columns v1, . . . , vy, are orthonormal in R™ :

Singular Value Decomposition AV =UYX | becomes A=UxXVT . (@)
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The SVD has orthogonal matrices U and V, containing eigenvectors of AA" and A" A.

Comment. A square matrix is diagonalized by its eigenvectors : Axz; = \x; is like
Av; = o,u;. Buteven if A has n eigenvectors, they may not be orthogonal. We need two
bases—an input basis of v’s in R™ and an output basis of u’s in R”. With two bases, any
m by n matrix can be diagonalized. The beauty of those bases is that they can be chosen
orthonormal. Then UTU =T and VTV = I.

The v’s are eigenvectors of the symmetric matrix S = ATA. We can guarantee their
orthogonality, so that v;rv,' = 0 for j # 4. That matrix .S is positive semidefinite, so its
eigenvalues are o7 > 0. The key to the SVD is that Av; is orthogonal to Av; :

ORI
Orthogonal u’s (Av;)T(Av;) = v (AT Av;) = v} (0jv;) = { gi i£ j ;Z (5)

This says that the vectors u; = Av;/o; are orthonormal for ¢ = 1,...,r. They are a basis
for the column space of A. And the u’s are eigenvectors of the symmetric matrix AAT,
which is usually different from S = AT A (but the eigenvalues 0, . . ., o2 are the same).

Example 3  Find the input and output eigenvectors v and u for the rectangular matrix A :

[ 22 0]_, vyt
A_[_l 3 0]_Uzv,

Solution ~ Compute S = AT A and its unit eigenvectors v;, v, v3. The eigenvalues o2

are 8,2, 0 so the positive singular values are ; = v/8 and oy = v/2:

5 3 0 . V2 1 V2 0
ATA=1|(3 5 0 has '0125 V2, ‘U-}3=§ V21, w3=10
00 0 0 0 1

The outputs u; = Aw;/o; and us = Awvs /0y are also orthonormal, with o1 = \/§ and
o9 = v/2. Those vectors u and wuy are in the column space of A :

w — 2 20fv._ |1 and B 220 (fv2_|0
1=l -1 10/& |0 =11 0|2 1]
Then U = I and the Singular Value Decomposition for this 2 by 3 matrix is USVT :

SIS EE R
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The Fundamental Theorem of Linear Algebra

I think of the SVD as the final step in the Fundamental Theorem. First come the dimensions
of the four subspaces in Figure 7.3. Then come the orthogonality of those pairs of subspaces.
Now come the orthonormal bases of v’s and u’s that diagonalize A :

SVD Av; = oju; for j<r ATu; = ojv; for j<r
Av; =0 for j >r ATu; =0 for j >r

Multiplying Av; = oju; by AT and dividing by o; gives that equation ATu; = o;v;.

dim r dim r

column
space
of A

Av) = o1y a1U

Up41
nullspace

nullspace

of A
dimn —r

Figure 7.3: Orthonormal bases of v’s and u’s that diagonalize A : m by n with rank r.

The “norm” of A is its largest singular value : ||A|| = o1. This measures the largest
possible ratio of ||Av|| to ||v||. That ratio of lengths is a maximum when v = v; and
Av = oju,. This singular value ¢ is a much better measure for the size of a matrix than
the largest eigenvalue. An extreme case can have zero eigenvalues and just one eigenvector
(1,1) for A. But AT A can still be large : if v = (1, —1) then Awv is 200 times larger.

A= [ 100 —100

100 —100 } has Amax = 0. But omax = normof A =200. (6)



7.2. Positive Definite Matrices and the SVD 401

The Condition Number

A valuable property of A = UX VT is that it puts the pieces of A in order of importance.
Multiplying a column w; times a row o;v] produces one piece of the matrix. There will be
r nonzero pieces from 7 nonzero ¢’s, when A has rank r. The pieces add up to A, when we
multiply columns of U times rows of VT :

The pieces 0103 .
— — T i )
haverank1 4= | %1 - W S ui(o1v]) +- - +ur(orv, ). (7)

The first piece gives the norm of A which is 0. The last piece gives the norm of A~!, which
is 1/0,, when A is invertible. The condition number is o, times 1/0,, :

Condition number of A  c(A) = ||A]] ||[47}Y| = ?. (8)

n

This number ¢(A) is the key to numerical stability in solving Av = b. When A is an
orthogonal matrix, the symmetric S = AT A is the identity matrix. So all singular values of
an orthogonal matrix are 0 = 1. At the other extreme, a singular matrix has o, = 0.
In that case ¢ = co. Orthogonal matrices have the best condition number ¢ = 1.

Data Matrices : Application of the SVD

“Big data” is the linear algebra problem of this century (and we won’t solve it here).
Sensors and scanners and imaging devices produce enormous volumes of information.
Making decisive sense of that data is the problem for a world of analysts (mathematicians
and statisticians of a new type). Most often the data comes in the form of a matrix.

The usual approach is by PCA—Principal Component Analysis. That is essentially the
SVD. The first piece oju, 'vrlF holds the most information (in statistics this piece has
the greatest variance). It tells us the most. The Chapter 7 Notes include references.

® REVIEW OF THE KEY IDEAS =

1. Positive definite symmetric matrices have positive eigenvalues and pivots and energy.
. S = AT A s positive definite if and only if A has independent columns.

. 2TAT Az = (Az)" (Az) is zero when Az = 0. AT A can be positive semidefinite.

. The SVD is a factorization A = ULVT = (orthogonal) (diagonal) (orthogonal).

. The columns of V and U are eigenvectors of AT A and AAT (singular vectors of A).

. Those orthonormal bases achieve Av; = o;u; and A is diagonalized.

N A s WN

. The largest piece of A = oyu v] + - - - + opu, v} gives the norm ||A|| = 0.
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Problem Set 7.2

For a 2 by 2 matrix, suppose the 1 by 1 and 2 by 2 determinants a and ac — b? are
positive. Then ¢ > b?/a is also positive.

(i) A1 and A3 have the same sign because their product A\; A2 equals

(i) That sign is positive because A\; + Ay equals
Conclusion: The tests a > 0, ac — b? > 0 guarantee positive eigenvalues A1, Ay.

Which of Sy, So, S3, S4 has two positive eigenvalues? Use a and ac — b2, don’t
compute the \’s. Find an x with TS x <0, confirming that A; fails the test.

. _[5 6 -1 2] o _[1 10 110
51"[6 7] 52_[—2 —5] 5“_{10 100] S‘*‘_[lo 101}'

For which numbers b and c are these matrices positive definite ?
1 b 2 4 c b
Sl U0 I v B P

What is the energy ¢ = ax? + 2bxy + cy? = xTSx for each of these matrices ?
Complete the square to write g as a sum of squares di( )2 +da( )2.

1 2 1 3
S:[Q 9] and S;L’» 9.1'

TSz = 2z,75 certainly has a saddle point and not a minimum at (0,0). What
symmetric matrix S produces this energy ? What are its eigenvalues ?

Test to see if AT A is positive definite in each case :

1 1
1 2 1 1 2
A= {0 3] and A= ; ? and A= [1 9 1] .

Which 3 by 3 symmetric matrices S and T" produce these quadratic energies ?
xSz = 2(2? + 23 + 23 — 2122 — z2w3). Why is S positive definite?
xTTae = 2(22 + 23 + 23 — z122 — 2123 — 2273).  Why is T semidefinite ?

Compute the three upper left determinants of S to establish positive definiteness.
(The first is 2.) Verify that their ratios give the second and third pivots.

2 2 0
Pivots = ratios of determinants S=1|2 5 3

0 3 8
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9

10

1

12

13

14

15

16

For what numbers ¢ and d are S and T positive definite? Test the 3 determinants :

c 1 2 3
S= |1 & 4 and T=12 d 4
1 1 ¢ 3 4 5

If S is positive definite then S™! is positive definite. Best proof: The eigenvalues

of S~1 are positive because . Second proof (only for 2 by 2):
3 1 1 c —b .
The entries of S™* = pass the determinant tests
ac—b? [-b a

If S and T are positive definite, their sum S + T is positive definite. Pivots and
eigenvalues are not convenient for S + 7'. Better to prove 2 (S + T')x > 0.

A positive definite matrix cannot have a zero (or even worse, a negative number)
on its diagonal. Show that this matrix fails to have TSz > 0:

4 1 1 X1
[m To xg] 1 0 2| [x2| isnotpositive when (z1,z2,z3)=( , ., ).
1 2 5 T3

A diagonal entry a;; of a symmetric matrix cannot be smaller than all the \’s. If it
were, then A — a;;1 would have eigenvalues and would be positive definite.
But A —a;;l hasa on the main diagonal.

Show that if all A > 0 then ¥ Sx > 0. We must do this for every nonzero z,
not just the eigenvectors. So write  as a combination of the eigenvectors and
explain why all “cross terms” are x}x; = 0. Then T Sz is

(1 +- “-I—C.n:]!?n)T(clAliL'l 4t CpAnZn) = cfA.w?'w; 4 -+cf,z\n:c1‘a:n > 0.

Give a quick reason why each of these statements is true:

(a) Every positive definite matrix is invertible.

(b) The only positive definite projection matrix is P = I.

(c) A diagonal matrix with positive diagonal entries is positive definite.

(d) A symmetric matrix with a positive determinant might not be positive definite !
With positive pivots in D, the factorization S = LDLT becomes LvV/DvVDLT.

(Square roots of the pivots give D = v/ D+v/D.) Then A = VDL yields the
Cholesky factorization S = AT A which is “symmetrized L U™ :

4 8
8 25

31
0 2 } find A = chol(S).

From A= [ } find S. From S = [
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. o __|cos@ —sinf| |2 0|| cosf siné
17  Without multiplying S = [sine cos 0] |:0 5} [_ sinf  cos 9} , find
(a) the determinant of S (b) the eigenvalues of S
(c) the eigenvectors of S (d) a reason why .S is symmetric positive definite.

18 For Fi(z,y) = 1a* + 2%y + y? and Fy(z,y) = 2® 4+ zy — = find the second
derivative matrices H; and H> :

0°F/0x?  0%F/0x0y

Test for minimum H =
OF/Oyox  0°F/0y?

is positive definite
H, is positive definite so F} is concave up (= convex). Find the minimum point of F}
and the saddle point of F (look only where first derivatives are zero).

19  The graph of z = 22 + 2 is a bowl opening upward. The graph of 2 = 22 — ¢? is
a saddle. The graph of z = —2% — y? is a bowl opening downward. What is a test on

a,b, c for 2 = ax? + 2bxy + cy? to have a saddle point at (0,0) ?

20 Which values of ¢ give a bowl and which ¢ give a saddle point for the graph of
z = 4x? + 122y + cy? ? Describe this graph at the borderline value of c.

21 When S and T are symmetric positive definite, ST might not even be symmetric.
But its eigenvalues are still positive. Start from STx = Ax and take dot products
with T'z. Then prove A > 0.

22  Suppose C is positive definite (so yTCy > 0 whenever y # 0) and A has indepen-
dent columns (so Az # 0 whenever  # 0). Apply the energy test to T ATC Az

to show that ATC A is positive definite : the crucial matrix in engineering.

23  Find the eigenvalues and unit eigenvectors v, v of AT A. Then find u; = Av; Jo1:

1 2 T,_ [10 20 T | 5 15
A;[?) 6} and A A—[20 40} and AA [15 45}.

Verify that u; is a unit eigenvector of AAT. Complete the matrices U, %, V.

1 2 o T
SVD [36]=[u1 U2]|:10j|[’61 U2i|.
24  Write down orthonormal bases for the four fundamental subspaces of this A.

25 (a) Why is the trace of AT A equal to the sum of all a?j ?

(b) For every rank-one matrix, why is 02 = sum of all afj ?
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26

27

28

29

30
31

32

kk

Find the eigenvalues and unit eigenvectors of ATA and AAT. Keep each Av = ou:

Fibonacci matrix A= [ i é ]

Construct the singular value decomposition and verify that A equals USVT.
Compute AT A and AAT and their eigenvalues and unit eigenvectors for V and U.

: 110
Rectangular matrix A= [ 01 1 ] .

Check AV = UX (this will decide =+ signs in U). X has the same shape as A.

Construct the matrix with rank one that has Av = 12u for v = %(1, 1,1,1) and
uw = £(2,2,1). Its only singular valueis oy = .

Suppose A is invertible (with o7 > o2 > 0). Change A by as small a matrix as
possible to produce a singular matrix Ag. Hint: U and V' do not change.

g1 T
From A= [ U U ] o [ v V3 ] find the nearest Ay.
2

The SVD for A + I doesn’tuse ¥ + I. Why is 0(A + I) not just o(A) + 17?

Multiply AT Av = o2v by A. Put in parentheses to show that Av is an eigenvector
of AAT. We divide by its length || Av|| = o to get the unit eigenvector u.

My favorite example of the SVD is when Av(z) = dv/dz, with the endpoint con-
ditions v(0) = 0 and v(1) = 0. We are looking for orthogonal functions v(x)
so that their derivatives Av = dv/dx are also orthogonal. The perfect choice is
v1 = sin7x and v, = sin 27z and v, = sin k7wx. Then each uy is a cosine.

The derivative of vy is Av; = wcosmxz = mu;. The singular values are 07 = 7
and o, = km. Orthogonality of the sines (and orthogonality of the cosines) is the
foundation for Fourier series.

You may object to AV = UX. The derivative A = d/dx is not a matrix!| The
orthogonal factor V' has functions sin k7z in its columns, not vectors. The matrix U
has cosine functions cos k7z. Since when is this allowed ? One answer is to refer you
to the chebfun package on the web. This extends linear algebra to matrices whose
columns are functions—not vectors.

Another answer is to replace d/dz by a first difference matrix A. Its shape will be
N + 1by N. A has 1’s down the diagonal and —1’s on the diagonal below. Then
AV = UZX has discrete sines in V" and discrete cosines in U. For N = 2 those will be
sines and cosines of 30° and 60° in v; and u;.

Can you construct the difference matrix A (3 by 2) and AT A (2 by 2) ? The discrete
sines are v, = (v/3/2,v/3/2) and vy = (v/3/2, —v/3/2). Test that Av; is orthogonal
to Av,. What are the singular values o7 and o3 in % ?
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7.3 Boundary Conditions Replace Initial Conditions

This section is about steady-state problems, not initial-value problems. The time variable ¢
is replaced by the space variable z. Instead of two initial conditions at ¢ = 0, we have one
boundary condition at * = 0 and another boundary condition at v = 1.

Here is the simplest two-point boundary value problem for y(x). Start with f(x) = 1.

d3%y

Two boundary conditions  — Pk f(x) with y(0) =0 and y(1) =0.| (1)

2

One particular solution y,(x) will come from integrating f(z) twice. If f(z) = 1 then
two integrations give 22 /2, and the minus sign in (1) leads to y, = —z2/2.

The null solutions y,,(x) solve the equation with zero force: —y,. = 0. The second
derivative is zero for any linear function y,, = Cz + D. These are the null solutions.

We can use those two constants C' and D to satisfy the two boundary conditions on the
complete solution y(z) = yp + yn = —x%/2+ Cx + D.

1
y(0) =0and y(1) =0 Setz=0andz =1 D:Oandfi—f—C’—ﬁ—D:O

The boundary conditions give D = 0 and C' = % Then the solution is y = Yp + Yn'*

Solution
to—y”’ =1

0 1

The graph of the parabola starts at y = 0 and returns (fixed ends). The slope 3’ = % —zxis
decreasing. The second derivative is ¥/ = —1 and the parabola is bending down.

T

This boundary-value problem describes a bar that has its top and
bottom both fixed. The weight of the bar stretches it downward.
At point x down the bar, the displacement is y(x). So this fixed-
fixed bar has y(0) = 0 and y(1) = 0. The force of gravity can
be f(x) = 1. The bar stretches in the top half where dy/dx > 0.
The bottom half is compressed because dy /dx < 0. Halfway down
at r = % is the largest displacement (top of the parabola). That
halfway point has ymax = 3(z — 22) = 3.

I think of this elastic bar as one long spring. If we pulled it down
in the middle, it would start to oscillate. That is not our problem
now. Our bar is not moving—the oscillation is all damped out. The
stretching comes from the bar’s own weight.
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A Delta Function

This is my chance to introduce again the mysterious but extremely useful function
f(x) = 6(xz — a). This delta function is zero except at « = a. The bar is now so
light that we can ignore its weight. All the force on the bar is at one point x = a. At
that point a unit weight is stretching the bar above £ = a and compressing the bar below.

Here is an informal definition of the delta function (the symbol oo doesn’t carry
enough information by itself). The good definition is based on integrating the function
across the point © = a. The integral is 1.

0 z#a Jo(x—a)dz =1

Delta function  d(x —a) = {OO r=a Jé(x —a) F(z)dx = F(a)

The graph of 6(x — a) has an infinite spike at z = a. That spike is at z = a = 0 for
the standard delta function d(z). The function is zero away from the spike and infinite
at that one point. The area under this one-point spike is 1.

This tells us that §(z) cannot be a true function. It is somehow a limit of box functions
By (z) that have height N over short intervals of width 1/N. The area of each box is 1 :

0 |z|>1/2N /BN(»”C) = boxarea =1

Box functions By (z) =
N |z[ <1/2N /BN(.’L')F(.CL') dx approaches F'(0)

Mathematically, §(x) and its shifts §(z — a) are not functions. Physically, they represent
action that is concentrated at a single point. In reality that action is probably over a very
short interval, like the box functions, but the width of that interval is of no importance.
What matters is the total impulse when a bat hits a ball, or the total force when a weight
hangs on a bar.

The shifted delta function §(z — a) is the derivative of the step function H(z — a).
The step function jumps from O to 1 at z = a. Then § must integrate to 1.

Response to a Delta Function is a Ramp Function

How to solve the differential equation —y” = d(z — a)? One integration of the delta
function gives a step function. A second integration gives a ramp function or corner
function. The solution y(z) must be linear (straight line graph) to the left of z = a,
because d%y/dz?> = 0. And y(z) is also linear to the right of z = a: constant slope.

The slope of y(x) drops by 1 at the point x = a. To see why —1 is the jump in slope
(there is no jump in y !), integrate 4/ across the point z = a to get the change —1 in 3/’ :

dy

"n_—_g§ _ /”d=—
Yy (x —a) y'dzx [dm

right of a
J =/—5(m—a)da:=—1 (2)

left of a
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The solution y(z) starts with a fixed slope s. At z = a it changes to slope s — 1
(the slope drops by 1). At the point z = 1, the bottom of the bar is fixed at y(1) = 0.

The constant upward slope s over a distance a and the downward slope s — 1 over the
remaining distance 1 — a must bring the function y(z) to zero:

sa+(s—1)(1—a)=0 gives sa+s—sa—1+a=0. Then s=1—a. (3)

The graph of y = sx goes up to sa = (1 — a)a. Then y(z) goes back down to zero.

Ymax = l1-a slope dy /dx
TFa
—a

Figure 7.4: —y" = 6(x — a) is solved by a ramp function that has a corner at z = a.
At that corner point the slope 3’ (which is a step function) drops by 1. Then y” = — .

How is the elastic bar stretched and compressed by this point load at z = a = %?
The top third of the bar is stretched, the lower two thirds are compressed. The point x = a
shows the highest point on the graph of y(z) and the greatest displacement. That downward
displacement is y(a) = a(1 — a) = 2.
Uniform stretching above the point load. Uniform compression below the point load.

Eigenvalues and Eigenfunctions

For a square matrix, the eigenvector equation is Az = Ax. For the second derivative (with
a minus sign) and for a boundary condition at both endpoints, the eigenvector = becomes
an eigenfunction y(x) :

.dz d2y
Eigenvalues of — e ~m = Ay withy(0) =0 and y(1) =0. (4)

We can find these eigenfunctions y(z). The solutions to the second order equation
y" + Ay = 0 are sines and cosines when A > 0. The boundary conditions choose sines :

y(x) = A cos (vVAz) + B sin (v/X ) before applying the boundary conditions
y(0) =0 requires A =0 y = siny/A =0 at z = 1 requires VA = nx

The eigenfunction is y () = sin nmz. The eigenvalueis A = n?n2forn = 1,2,3,...
Then —y” = Ay. We have infinitely many y and ), not surprising since S = —d?/dz? is not
a matrix. It is an “ operator” and it acts on functions y(z).
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The Second Derivative —d? / dz? is Symmetric Positive Definite

The derivatives Ay = dy/dx and Sy = —d?y/dx? are linear operators. The first derivative
A is antisymmetric. The second derivative S is symmetric. S is also positive definite,
because of that minus sign. Its eigenvalues A = n?m? are all positive.

We will use the symbols AT and S™, even though A and S are not matrices. To give
meaning to AT = —A4 and ST = S, we need the inner product (f,g) of two functions:

1
Inner product of f and g (f(z),g(x)) = /f(m) g(z) dex. (&)
0

This is the continuous form of the dot product u - v = uTwv of two vectors. For u - v
we multiply the components u; and v;, and add. For functions we multiply the values
of f(z) and g(z), and then integrate as in (5).

A matrix is symmetric if Su- v equals u - Sv for all vectors. Then (Su)Tv = uT (STv)
agrees with uT (Sv). An operator is symmetric if (Sf, g) equals (£, Sg) for all functions that
satisfy the boundary conditions. Use two integrations by parts to shift the second derivative
operator S from f onto g:

Integration 1 1 ! 2
daf df dg d°g
0 0

I

twice 0 (L G

The integrated terms [g df /dz]} and [f dg/dz]} in the two integrations by parts are zero
because f = g = 0 at both endpoints.

The left side and right side of (6) are the inner products (S f, g) and (f, Sg). Moving .S
from f onto g always produces ST. Here we have S = ST and symmetry is confirmed.
Thus the second derivative S = —d?/dx? is symmetric positive definite (this is why we

included the minus sign). Section 7.2 gave two other tests, in addition to positive eigenvalues.
One test is positive energy, and that test is also passed. Choose g = f :

L 1 9
Positive energy f*Sf (Sf,f)= /—% f(z)dx :/<Zz—f> dr>0. (7)
0 0

Zero energy requires df /dz = 0. Then the boundary conditions ensures f(z) = 0.

The third test for a positive definite S looks for A so that S = AT A. Here A is the first
derivative (Af = df /dx). The boundary conditions are still f(0) = 0 and f(1) = 0.
Problem 1 will show that ATg is —dg/dx, with a minus sign from one integration by
parts. Altogether S = —d?/dz? = (—d/dz)(d/dx) = AT A.
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Solving the Heat Equation

Differential equations in time give a chance to use all the eigenfunctions sin (nwz).
An outstanding example is the heat equation du/0t = 8%2u/0x? = —Su. The
eigenvalues of —S are —n?72, and the negative definite —S leads to decay in time and
not growth. Temperatures die out exponentially when there is no fire. Here are the

two steps (developed much further in Section 8.3) to solve the heat equation u; = u,, :

1. Write the initial function «(0, ) as a combination of the eigenfunctions sin n7z :

Fourier sine series ustart = by sinwx + by sin 27 + -+ - + by, sinnmx + - - - 8)
2. With A\ = —n?72, every eigenfunction decays. Superposition gives u at time ¢ :
2 2 >
— . = . 2_.2 .
u(t,z) = bre™™ *sinwx + bpe 4" sin27x 4+ - = ane_" ™tsinnmwxz (9)
1

This is the famous Fourier series solution to the heat equation. Section 8.1 will show
how to compute the Fourier coefficients b, b, . . . (a simple formula even when there
are infinitely many b’s). You see how the solution is exactly analogous to
y(t) = cie ™ txzy + cae 2ty That solves an ODE, the heat equation is a PDE.

Second Difference Matrix K

These pages will take a crucial first step in scientific computing. This is where differential
equations meet matrix equations. The continuous problem (here continuous in z, previ-
ously in t) becomes discrete. Chapter 3 took that step for initial value problems, starting
with Euler’s forward difference y(¢t + At) — y(t). Now we have problems —y" = f(z)
with second derivatives. So we use second differences y(x + Ax) — 2y(z) + y(x — Ax).

The second derivative is the derivative of dy/dx. The second difference is the
difference of Ay/Ax. For first differences we have choices—forward or backward or
centered differences. To approximate the second derivative Sy = —y” there is one
outstanding centered choice. This uses the tridiagonal second difference matrix K :

d’y _ KY , Y,
dz?  (Ax)? -1 2 -1 Y
KY = T . (10)
—1 2 —1from : v —1 ]
o | 2
Y1 +2Y;,-Y,; Yy
The numbers Y; to Yy are approximations to the true values y(Az),...,y(NAz)

in the continuous problem. The boundary conditions y(0) = 0 and y(1) = 0 become
Yy = 0 and Yy41 = 0. The step Az has length 1/(N + 1). The matrix K correctly
takes Yy and Yy to be zero, by working only with Y; to Y.
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The Matrix K is Positive Definite

We know that the operator S = —d?/dz? is positive definite. All of its eigenvectors
sin nmz have positive eigenvalues A = n?72. So we hope that the matrix K is also
positive definite. That is true—and most unusually for a matrix of any large size NV,
we can find every eigenvector and eigenvalue of K.

The eigenvectors are the key. It doesn’t happen often that sampling the continuous
eigenfunctions at N points produces the discrete eigenvectors. This is the most important

example in all of applied mathematics, of this unprecedented sampling for y = sinnnz:

The N eigenvectors of K are y,, = (sinnrAz,sin2nrAz, ... sin NnrAz). (11)

(12)

The N eigenvalues of K are the positive numbers A\, = 2 — 2cos N1

The 2 in every eigenvalue A comes from the 2’s along the diagonal of K (that diagonal
is 2I). The cosine in A and in the equation Ky, = \,y,, are checked in Problem 12.
All eigenvalues are positive because the cosines are below 1. Then K is positive definite.

It is natural to try the other positive definite tests too (we don’t have to do this,
A > 0 is enough). With a rectangular first difference matrix A, we have K = AT A:

1 -1 hi 1 2 —1
ATA =K I 1 1| = -1 2 -1 (13)
1 =] _1 -1 2

The three columns of that matrix A are certainly independent. Therefore AT A is a positive
definite matrix, now proved twice.

Notice that AT is minus the usual forward difference matrix. A is plus a backward
difference matrix. That sign change reflects the continuous case (for derivatives) where
the “transpose” of d/dx is —d/dx. For every vector f, the energy f* K f is the same as
FTATAS = (AF)T(Af) > 0:

1 df \ 2 N+1
The energy / <£> dx becomes fTKf=(Af)T(Af)= Z (fa—fn-1)*>>0.
0 n=1

The test of positive energy fTK f is passed, and K is again proved to be positive definite.

Boundary Conditions on the Slope

The fixed-fixed boundary conditions are y(0) = 0 and y(1) = 0. One or both of those
conditions can change to a slope condition on y' = dy/dz. If the left condition changes
to y'(0) = 0, the top of our elastic bar is free instead of fixed. This is like a tall
building; * = 0 is up in the air (free) and x = 1 is down at the ground (fixed).
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A fixed-free hanging bar combines y(0) = 0 at the top with y’(1) = 0 at the bottom.
Its matrix is still positive definite. But a free-free bar has no supports: semidefinite !

d?y

d d
Free-free Sy = f - —5 = (@) with d_i(o) =0 and d—Z(U =0. (14)
You will see that this problem generally has no solution. One eigenvalue is now A = 0.
d2
Free-free Sy = \y — ﬁ = Ay(z) with % =0atz=0 and z=1. (15)

The fixed-fixed problem had eigenfunctions y(z) = sin nmx and eigenvalues A = n?72. This
free-free problem will have y(x) = cos nmz and again A = n?72. Those cosines start and
end with zero slope. Also very important: The free-free problem has an extra eigenfunction
y = cos Oz (which is the constant functiony = 1). Andthen A = 0:

d?y o
Constant y and zero A y =1 solves — Tz Ay with eigenvalue A =0

i

Conclusion: The free-free problem (14) is only positive semidefinite. The eigenvalues
include A = 0. The problem is singular and for most loads f(z) there is no solution.

Example with f(x) = © Show that —y” = z has no solution with y'(0) = ¢'(1) = 0.

Solution Integrate both sides of —y” = x from x = 0 to x = 1. The right side gives
[xdz = . The left side gives — [4” dz = 3/(0) — ¢/(1). But the boundary conditions
make this zero and there can be no solution to 0 = 5. An operator with a zero eigenvalue is
not invertible.

~—

D=

Free-free Difference Matrix B

This problem —y” = f(x) with free-free conditions y'(0) = ¢'(1) = 0 leads to a singular
matrix (not invertible). This is still a second difference matrix, to approximate the second

derivative. But row I and row N of the matrix are changed by the free-free boundary
conditions :

Free-free matrix B 1 -1
Change Kyn= 2to Byy =1 B=| ' _f _; _4 | is notinvertible.
Change Knyn= 2 to Bynv =1 -1 1

The slope dy/dz is approximated by a first difference in row 1 and row N. All other rows
still contain the second difference —1,2, —1. The usual 1, —2, 1 has signs reversed because
the differential equation has —d?y/dz?.

How to see that B is not invertible ? MATLAB would find pivots 1,1,...,1,0 from
elimination. The zero in the last pivot position means failure. We can see this failure directly
by solving By = 0. This is the fast way to show that a matrix is singular.

To show that B is not invertible, find the constant solution to By = zero vector.
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1 -1 1 0
y = constant vector -1 2 -1 1 0
By = = 16
B = singular matrix J ! 2 -1 1 0 o,
-1 1 1 0

If B! existed, we could multiply By = 0 by B! to find y = 0. But this ¥ is not zero.

B is positive semidefinite but it is not positive definite. We can still write the matrix
B as AT A, but in this free-free case the columns of A will not be independent.

1 -1 1
1 -1
-1 2 -1 -1 1
o AT - —
B=A7A -1 2 -1|% -1 1 ! 1—1
-1 2 -1

With only 3 rows, the 4 columns of A must be dependent. They add up to a zero column.

= REVIEW OF THE KEY IDEAS =
1. Two initial conditions for y(0) and y’(0) can change to two boundary conditions.

2. The fixed-fixed problem —y” = Ay with y(0) = 0 and (1) = 0 has A = n?72.

3. The second difference matrix K has A\, = 2 — 2 cos %7 > 0. Positive definite.
4. Eigenfunctions and eigenvectors are sines, from fixed-fixed boundary conditions.
5. The free-free problem with 3/(0) = 3/(1) = 0 has y = cosines. This allows A = 0.

6. The free-free matrix B has A = 0 with the eigenvector y = (1,...,1). Semidefinite.

Problem Set 7.3

Transpose the derivative with integration by parts: (dy/dz,q) = —(y,dg/dz).

Ay is dy/dz with boundary conditions y(0) = 0 and y(1) = 0. Why is [y/gdz
equal to — [ yg’dz ? Then AT (which is normally written as A*) is ATg = —dg/dz
with no boundary conditions on g. AT Ay is —y” with y(0) = 0 and y(1) = 0.
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Problems 2-6 have boundary conditions at *t = 0 and = 1: no initial conditions.

2 Solve this boundary value problem in two steps. Find the complete solution y, + yn
with two constants in y,,, and find those constants from the boundary conditions :

Solve —y” = 1222 with y(0) = 0 and y(1) = 0 and y, = —z*.
3 Solve the same equation —y” = 1222 with y(0) = 0 and y'(1) = 0 (zero slope).

4  Solve the same equation —y” = 12x2 with y’(0) = 0 and y(1) = 0. Then try for
both slopes y'(0) = 0and y’(1) = 0: this has no solution y = —z* + Az + B.

5  Solve —y” = 6z with y(0) = 2 and y(1) = 4. Boundary values need not be zero.
6 Solve —y” = e® with y(0) = 5 and y(1) = 0, starting from y = yp, + Yn.

Problems 7-11 are about the LU factors and the inverses of second difference matrices.

7 The matrix T with Ty, = 1 factors perfectly into LU = AT A (all its pivots are 1).

1 -1 1 1 -1
-1 2 -1 -1 1 1 -1
U -1 2 1| -1 1 1 -1 | =LV
-1 2 -1 1 1

Each elimination step adds the pivot row to the next row (and L subtracts to recover
T from U). The inverses of those difference matrices L and U are sum matrices.
Then the inverse of T'= LU is U 'L~}

11 11 1
1 11 1 1
-1 _ _gr-lr-1
= 1 1 1 11 ST
1 11 11

Compute T~ ! for N = 4 (as shown) and for any N.

8 The matrix equation 7Y = (0, 1,0, 0) = delta vector is like the differential equation
—y" = 8(z — a) with a = 2A x = 2. The boundary conditions are ¢'(0) = 0 and
y(1) = 0. Solve for y(z) and graph it from 0 to 1. Also graph Y = second column of
T~ at the points z = %, %, %, %. The two graphs are ramp functions.

9 The matrix B has By; = 1 (like 77, = 1) and also By = 1 (Where Ty v = 2). Why
does B have the same pivots 1, 1, ... as T, except for zero in the last pivot position ?
The early pivots don’t know By = 1.

Then B is not invertible: —y” = §(z — a) has no solution with 3'(0) = y'(1) = 0.
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10

1

12

13

14

15

When you compute K ~!, multiply by det K = N + 1 to get nice numbers :

Column 2 of 5K ~! solves the equation Kv = 53 when the delta vector is § =
We know from K K —! = [ that K times each column of K ~1 is a delta vector.

4 3 2 1

5K~1 = 3 6 4 2 graph of
246 3 column 2
1 2 3 4

K comes with two boundary conditions. T only has y(1) = 0. B has no boundary
conditions on y. Verify that K = ATA. Then remove the first row of A to get
T = AT A;. Then remove the last row to get dependent rows: B = Af Ay.

1
-1 1
-1 1
-1

The backward first difference A = gives K = AT A.

Multiply K3 by its eigenvector y,, = (sinnwh,sin2n7h,sin3nnh) to verify that
the eigenvalues A1, A2, A3 are A, = 2 — 2cos % in Ky,, = A,y,,. This uses the

trigonometric identity sin(A + B) + sin(A — B) = 2sin A cos B.

Those eigenvalues of K3 are 2 — V2 and 2 and 2 + /2. Those add to 6, which is
the trace of K3. Multiply those eigenvalues to get the determinant of K.

The slope of a ramp function is a step function. The slope of a step function is a delta
function. Suppose the ramp function is r(z) = —z forz < 0and r(z) = z forz > 0
(so 7(x) = |z|). Find dr/dz and d*r/dx?.

Find the second differences y,,+1 — 2yn + Yyn—1 of these infinitely long vectors y :

Constant (...,1,1,1,1,1,...)
Linear (...,—1,0,1,2,3,...)
Quadratic  (...,1,0,1,4,9,...)

Cubic (...,—-1,0,1,8,27,...)
Ramp (...,0,0,0,1,2,...)
Exponential (...,e ™ €0 e 2w ).

It is amazing how closely those second differences follow second derivatives for
y(z) = 1,z,22, 2%, max(z,0), and e*®. From ™% we also get coswz and sin wz.
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7.4 Laplace’s Equation and AT A

Section 7.3 solved the differential equation —d?y/dz?> = §(x — a). Boundary values
were given at * = 0 and * = 1 (our examples began with y = 0 at both endpoints).
The solutions y(x) went linearly up from zero and linearly back to zero. These boundary
value problems correspond to a steady state—with no dependence on time.

Those are “l-dimensional Laplace equations”—certainly the simplest of their kind.
This section is more ambitious, in three important ways :

1 We will solve the 2-dimensional Laplace equation—our first PDE. The list of solu-
tions is infinite, and they are particularly beautiful. Amazingly the imaginary number
1 = /—1 enters this real problem.

9%u i 9%u
dz2  9y?

Laplace’s partial differential equation =0 ()

2 The discrete form of (1) is a matrix equation for a vector U. That vector has
components Uy, ..., U, at the n nodes of a graph. The graph could be a line in 1D
or a grid in 2D, or any network of nodes connected by m edges (Figure 7.5).

y A
line grid
m=3 m = 24 > network n=4 m==6

Figure 7.5: A 1D line graph, a 2D grid, and a complete graph: 7 nodes and m edges.

The natural discrete analog of Laplace’s equation (1) is a “5-point scheme” on a grid:

A2U N AJU  ond difference across grid 0 @)
(Az)2 ~ (Ay)2  +2nddifference down grid

For these equations we are given boundary values of v and U. Instead of an interval
like 0 < z < 1, there is a region in the plane: wu is given along its boundary. U is
given at the 12 boundary points of the 4 by 4 grid. Equation (2) holds at each inside point.

3 The continuous and discrete Laplace equations are good examples of AT Au.
AT A is symmetric with eigenvalues A > 0. And one more matrix will produce ATC A
in Section 7.5. In engineering, C' contains the physical properties of the material : stiffness
and conductivity and permeability. You will be seeing the structure of applied mathematics.
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Laplace’s Equation is ATAw =0

This is our first partial differential equation. It represents equilibrium, not change.
Laplace’s equation for u(z,y) —— — — =0 3)

I have included minus signs to make the left side into AT Au. In one dimension, A
was d/dx and AT was —d/dx. Now we have two space variables = and y, and two partial
derivatives 8/0x and /9y will go into A. Then —8/0z and —9/dy go into AT.

The vector Au has two components Ou/0x and Ou/0y. This is the “gradient vector.
We are into the 2D world of multivariable calculus and partial derivatives :

Gradient of u Au = grad u(z,y) = [ g;gz J = [ gz;gz J . 4

1)

I will skip double integrals and the Divergence Theorem (which is the 2D form of the
Fundamental Theorem of Calculus). Since A is 2 by 1, you can guess that AT is 1 by 2:

9 9 ] { wy (2, y) }__ A WU 5)

. T —_— 1 = — I~ o
Divergence A~ w=—div w [ ox Oy wa (z,y) Oz oy

Then AT Au is (minus) the divergence of the gradient of u(x,y). This is the Laplacian:

Ou
0 0 Ox 0%u  d%u
T = — di ATAu= |- — —— = =
At Au div grad u u [ E 8y} 5y 522 o (6)
y

You recognize AT Au = 0 as Laplace’s equation. With zero on the right hand side, the
minus sign can be included or not. We usually give Poisson’s name when the equation has a
nonzero source (or a sink) f(x,y) on the right hand side :

Uga + Uyy = f(x,y) is Poisson’s equation.

The subscripts in uz; and u,, indicate second partial derivatives: Uz, = 82u/ Ox? and
Uy, = 0?u/0y* . In this notation, u; indicates Ju/9t. Previously that was v/, in the
ordinary differential equations of earlier chapters. PDEs bring these new notations.

Example 1 u = zy solves Laplace’s equation ugz; + uy, = 0. And u, = 22 + y?
solves Poisson’s equation u;; + uy, = 4 with a constant source. The complete solution
for Poisson is this particular solution z? + 2 plus any null solution for Laplace.
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Solutions to Laplace’s Equation

We want a complete set of solutions to e + Uyy = 0. The list will be infinitely long.
Combinations of those solutions will also be solutions. Laplace’s equation is linear, so
superposition is allowed. Four solutions are easy to find: v = 1,z,y,zy.
For those four, uz, and u, are both zero. To find further solutions, we need u,, to
cancel uyy.

Start with v = z?, which has u,; = 2. Then uy,, = —2 is achieved by —y?.
The combination u = 22 — y? solves Laplace’s equation. This solution has “degree 2”
because if 2 and y are multiplied by C, then u is multiplied by C2. The same was true
of u = xy, also degree 2 because (Cx)(Cy) is C? times zy.

The real question starts with 2. Can this be completed to a solution of degree 37
From u = z2 we will have u,, = 6z. To cancel 6z, we need a piece that has u,, = —6z.
That piece is —3zy?. The combination v = 2® — 3zy? has degree 3 and goes into our list.

The hope is to find two solutions of every degree. Here is the list so far. I will write each
pair of solutions in polar coordinates too, starting with u = = rcos 6.

degree 1 T Y rcosf rsin 6
degree 2 x2 — 92 2y 2 cos 260 72 sin 26
degree 3 x3 — 3zy? ?? 3 cos 30 73 sin 36

On the polar coordinate list, the pattern is clear. The pairs of solutions to Laplace’s equation
are *™ cos n6 and »™ sin n6. Those will be solutions also forn = 4,5, ...

The first list (pairs of z,y polynomials) also has a remarkable pattern. Those are the
real and imaginary parts of (z 4 iy)™. Degree n = 2 shows the two parts clearly :

(z +iy)%isx? — y? +i2zy Thisis (rew)2 = r2e?"% — 12 cos 20 + ir? sin 26.

The polar pair ™ cos nf and 7™ sin nf satisfy Laplace’s equation for every n. The z-y pair
succeeds because uy, includes i? = —1, to cancel u,,. We have two solutions for each n:

Degreen u,=Re(z +iy)” =r"cosnbd s,=Im(z + iy)” = r"sinnb. (7)

All combinations of these solutions will also solve Laplace’s equation. For ordinary
differential equations (second order with '), we had two solutions. All null solutions were
combinations c;y; + cay2. By choosing ¢; and c; we matched the two initial
conditions y(0) and y’(0). Now we have a partial differential equation with an infinite
list of solutions, two of each degree.
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By choosing the right coefficients a,, and b, for every n, including the constant ag,
we can match any function u = ug(z, y) around the boundary :

On the boundary uo(z,y) = ap + a1 + bry + az(z? — y?) + ba(2zy) + -
Circular boundary  wuo(1,0) = ag + a; cosf + by sin6 + a2 cos 26 + bs sin 26 + -

That last sum is a Fourier series. It enters when we solve Laplace’s equation inside a circle.
The boundary condition u = wg is given on the circle » = 1. For 1D problems the boundary
was the two endpoints x = 0 and x = 1. We only needed two solutions.

The right choice of all the Fourier coefficients a,, and b, will come in Chapter 8,
and it completes the solution to Laplace’s equation inside a circle :

oo
Solution to Uge + Uyy =0 u =ao+ > (anr™cosnb + b, r"sinnh). = (8)
n=1

Finite Differences and Finite Elements

Laplace’s equation is often made discrete. The derivatives u;; and u,, are replaced
by finite differences. That produces a large matrix K2D, which is a two-dimensional
analog of the tridiagonal —1,2, —1 matrix K. For the square grid in Figure 7.5, there will
be entries —1,2, —1 in the z-direction and also in the y-direction. K2D has five entries:
2 4 2 = 4 down its main diagonal and four entries of —1 on a typical inside row.

Suppose the region is not square but curved (like a circle). Then finite differences
get complicated. The nodes of a square grid don’t fall on circles. The favorite approach
changes to the finite element method, which can divide the region into triangles of
arbitrary shapes. (A triangle can even have a curved edge to fit a boundary.) These
finite elements are described in my textbook Computational Science and Engineering,
with codes that use linear functions a + bz + cy inside each triangle of the mesh.
The accuracy is studied in An Analysis of the Finite Element Method.

Laplace’s Difference Matrix K2D

The approach that fits with this book is finite differences. I want to construct the symmetric
matrix K2D with rows like —1,—1,4, —1, —1 and show that it is positive definite. K 2D
comes from second differences in the = and y directions. Each meshpoint needs two indices
1 and 7, to specify its row number and column number on the grid. Go across and up-down:
8%u -U; i+ 2U; s — U1 5 0%u U, ; 2U;  —U; 5
— —— becomes Ly + o =k — becomes g1 J =t
ox? (Az) oy? (Ay)
The square grid has Az = Ay. Combine 2U; ; with 2U; ;. Then 4 goes on the diagonal of
K2D. The difference equation says that each U is the average of its 4 neighbors :

A:,U + A:U =) 4Ui,j = Ui+1’j - Ui—l,j — U',',’j+1 - Ui,j—-l =0. (9)
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If a neighbor of the 7, j node falls on the boundary of the square grid, that boundary
value of U will be known. Then that term moves to the right side of the difference equation.
An entry of —1 disappears from K 2D on boundary rows.

If we number the nodes a row at a time, the u,, term puts the 1D matrix K in each
block row. The w,, term connects three rows with —I and 27 and —1I.

K o —I
K2D — K g | =F E’; I = kron (1K) + kron (K, ).
K I 2I

With N interior points in each row, this block matrix K2D is N? by N2. MATLAB’s
command kron(A, B) replaces each A;; by the block A;; B, so the size grows to N2,

Here is the matrix for a grid with 3 x 3 = 9 squares and 4 x 4 = 16 nodes. There are
2 x 2 = 4 interior nodes. The other 16 — 4 = 12 nodes are around the square boundary,
where U is given by the boundary condition u = wug. For a large grid, N2 interior points will
far outnumber 4V + 4 boundary points.

4 -1 0 -1
Laplace difference matrix K= |~ 1 4 -1 0
The interior mesh is 2 by 2 o 0 -1 4 -1

Sl 0 -1 4

Those rows lost two —1’s because each interior gridpoint is next to two boundary points.
Normally we see four —1’s in almost every row of K 2D.
Here is the solution to K2D U = 0 in the square when boundary values are 0 and 4 :

4 4
0 ¢ 2 4
Each bold value of U is
the average of 4 neighbors 0 4
1 2
0 0

The eigenvalues of this matrix K 2D are A = 2,4, 4, 6. They add to 16, which is the trace :

the sum down the diagonal of K2D above. The eigenvectors are orthogonal:
Eigenvectors of K2D (1,1,1,1) and (1,1,—-1,-1),(1,—-1,1,—1) and (1,—-1,—1,1).

Symmetry of K2D guaranteed orthogonal eigenvectors. Positive definiteness produced
those positive eigenvalues 2, 4, 4, 6.



7.4. Laplace’s Equation and AT A 421

Eigenvalues of the Laplacian : Continuous and Discrete

In one dimension, the eigenfunctions for —u,, = Au are v = sinnmwax with eigenvalue
X = n272. These sine functions are zero at the endpoints z = 0 and z = 1. On a unit
square in two dimensions, the eigenfunctions of the Laplacian are just products of sines:
u(z,y) = (sinnmwz)( sinmmy) with eigenvalue A = n272 + m2n2. Those functions
are zero on the whole boundary of the square, where z = 0orz =lory=0ory = 1:

82 2 . . _ 2 2 2 2 . .
_ (3x2 + @> (sinnwz)(sinmry) = (n?w? + m?7?)(sin nrz)(sinmzy). | (10)

The problem on a square allows separation of variables. Each of the eigenvectors is a
(function of z) times a (function of y). Two 1D problems, just what we hope for.
Equation (6) expressed —uz; — Uyy as — div(grad ). This is AT A (A = gradient).
The test A > 0 is passed on non-square regions too, when the x, y variables don’t separate.
Slope conditions (a derivative of w is zero instead of the function itself) allow the
constant eigenfunction v = 1. Then A = 0 and the Laplacian becomes semidefinite.

Turn now to the matrix Laplacian K2D. In one dimension, the eigenvectors of K are
discrete sine vectors: Sample the continuous eigenfunction sinnzwz at N equally spaced
points. The spacing is Az = 1/(N + 1) inside the interval from 0 to 1. The eigenvalues
of K are \,, = 2 — 2 cos(nmAx). We may hope and expect that the eigenvectors of K2D
will contain products of sines, and the eigenvalues will be sums of 1D eigenvalues A(K).

The N? eigenvalues of K2D are positive. The x and y directions still separate.

— 2 cos > 0. (11)

nm mm
N+1 N+1

Anm (K2D) = Ay (K) 4+ A (K) =4 — 2 cos

Thus K2D for a square is symmetric positive definite. This formula for the eigenvalues
recovers A = 2,4,4,6 when N = 2, because the cosines of % and F are £ and —3.

® REVIEW OF THE KEY IDEAS =
1. Laplace’s equation is solved by the real and the imaginary part of every (z + iy)".
2. Those are u = r™ cos B and s = r™ sin n6. Their combinations are Fourier series.
3. The discrete equation is A2U + A2U = 0. The matrix K 2D is positive definite.

4. Eigenvectors are (sines in x) (sines in y) : —uzz — Uyy = Au and (K2D)U = AU.



422

10

Chapter 7. Applied Mathematics and AT A

Problem Set 7.4

What solution to Laplace’s equation completes “degree 3” in the table of pairs of
solutions ? We have one solution v = 2% — 3xy2, and we need another solution.

What are the two solutions of degree 4, the real and imaginary parts of (x + iy)* ?
Check uzz + uyy = 0 for both solutions.

What is the second x-derivative of (z + iy)™? What is the second y-derivative ?
Those cancel in ug; + u,, because i2=-1.

For the solved 2 x 2 example inside a 4 x 4 square grid, write the four equations (9)
at the four interior nodes. Move the known boundary values 0 and 4 to the right hand
sides of the equations. You should see K2D on the left side multiplying the correct
solution U = (Uy1, U1z, U1, U2e) = (1,2,2,3).

Suppose the boundary values on the 4 x 4 grid change to U = 0 on three sides and
U = 8 on the fourth side. Find the four inside values so that each one is the average
of its neighbors.

(MATLAB) Find the inverse (K2D)~! of the 4 by 4 matrix K2D displayed for the
square grid.

Solve this Poisson finite difference equation (right side # 0) for the inside values

U11,Ui2,Usz1,Uszs. All boundary values like Uyg and U;s are zero. The boundary
has ¢ or j equal to O or 3, the interior has ¢ and j equal to 1 or 2:

4Uij = Ui—1,j = Uigy1,; — Ui j—1 — U; j41 = 1 at four inside points.

A 5 x 5 grid has a 3 by 3 interior grid: 9 unknown values U;; to Uss. Create the
9 x 9 difference matrix K 2D.

Use eig(K2D) to find the nine eigenvalues of K2D in Problem 8. Those eigenvalues
will be positive ! The matrix K 2D is symmetric positive definite.

If u(z) solves uz; = 0 and v(y) solves vy, = 0, verify that u(z)v(y) solves
Laplace’s equation. Why is this only a 4-dimensional space of solutions ? Separation
of variables does not give all solutions—only the solutions with separable boundary
conditions.
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7.5 Networks and the Graph Laplacian

Start with a graph that has n nodes and m edges. Its m by n incidence matrix A was
introduced in Section 5.6, with a row in the matrix for every edge in the graph.
A single —1 and 1 in the row indicates which two nodes are connected by that edge.
Now we take the step to L = ATA and K = ATCA. These are symmetric positive
semidefinite matrices that describe the whole network.

Those matrices L and K are the graph Laplacians. L is unweighted (with C = 1)
and K is weighted by C. These are the fundamental matrices for flows in the networks.
They describe electrical networks and their applications go very much further. You see
AT A and ATC A in descriptions of the brain and the Internet and our nervous system and
the power grid.

Social networks and political networks and intellectual networks also use L and K.
Graphs have simply become the most important model in discrete applied mathematics.

This is not a standard topic in teaching linear algebra. But it is today an essential topic in
applying linear algebra. It belongs in this book.

Examples of A and AT A

We quickly review incidence matrices, by constructing A for the planar graph and the line
graph in Figure 7.6. You will see that every row of A addsto —1 + 1 = 0. Then the all-ones
vector v = (1,...,1) leads to Av = 0. The columns of A are dependent, because their
sum is the zero column. Av = O propagates to AT Av = 0 and ATCAv = 0, s0o ATCA
for this A will be positive semidefinite (but not invertible and not positive definite).

@ i Incidence matrix
@ -1 1
(©)

2 Aline = -1 1

@

Figure 7.6: A planar graph and a line graph: n = 4 nodes and m = 5 or 3 edges.

Ajine is a 3 by 4 difference matrix. Then AT A below contains second differences.
Notice that the first and last entries of ATA are 1 and not 2. The diagonal 1, 2, 2, 1
counts the number of edges that meet at each node (the “degrees” of the four nodes).

i 1 -1 0 0
2 — U1

1 T, | —1 2 -1 0
Av= | v3 — s A'A= 0 -1 2 _1

Ya.— Y8 0 0 -1 1

Av = difference of v’s (1)

AT A = line Laplacian
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For the planar graph, the incidence matrix A again computes differences Vena —Vstart
on every edge. The Laplacian matrix L = ATA again has rows adding to zero. The
diagonal of L shows 3,3, 2,2 edges into the four nodes. Everything in A and L can be
copied directly from the graph! The missing pair of —1 entries in L = AT A is because
no edge connects nodes 3 and 4 on the 5-edge graph.

_i [1) (1) 8 <P [ [ |
Incidence matrix - -1 3 -1 -1
A= 0 -1 1 0| ATA= )
Laplacian matrix _ -1 -1 2 0
L 001 -1 -1 0 2
0 -1 0 1

Note If any arrows change direction on the edges of the graph, this changes A. But
AT A does not change. The direction of arrows just multiplies A by a + diagonal sign
matrix S. Then (SA)T(SA) is the same as AT A because STS = I.

The eigenvalues of L = AT A always include A = 0, from the all-ones eigenvector.
The energy v™ (AT A)v can also be written as (Av)T (Av). This just adds up the squares of
all the entries of Av, which are differences across edges (not the missing edge from 3 to 4):

Energy = (v2 — v1)° + (v3 — v1)* + (v3 — v2) + (va — v1)® + (va — v2)°.

We see again that the all-ones vector v = (1,1, 1, 1) has zero energy.

The Laplacian matrix L = AT A is not invertible! A system of equations AT Av = f
has no solution (or infinitely many). To reach an invertible matrix, we remove the last
column and row of AT A. This corresponds to “grounding a node” by setting the voltage at
that node to be zero: vq4 = 0. It is like fixing one temperature at zero, when the equations
only tell us about differences of temperature.

When we know that v4 = 0, column 4 is removed from A. That removes column 4
and also row 4 from AT A. This reduced 3 by 3 matrix is positive definite :

3 -1 -1

(ATA)reduced = ] 3 -1 = (Areduced)T(Areduced) = (3 by 5) (5 by 3) (3)
-1 -1 2

The Weighted Laplacian K = ATca

In many applications the edges come with positive weights ¢1, ..., cn,. Those weights can

be conductances (through m resistors) or stiffnesses (of m springs). In electrical
engineering, Ohm’s Law connects current w to voltage difference e. In mechanical
engineering, Hooke’s Law connects spring force w to the stretching e. Those laws w = ce
in every edge give a positive diagonal matrix C' in w = Ce = C' Av. The m currents in
w come from the m voltage differences in Av.

Kirchhoff’s Current Law is ATw = 0. That matrix AT always enters the “balance
of currents” and the “balance of forces” between springs. With current sources, or forces
applied from outside, the balance equation is ATw = f.
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When current sources enter the nodes, the Current Law ATw = f is “in equals out.’
Then ATCe = f and ATCAv = f. Thus K = ATCA is the conductance matrix for
the whole network. Here is ATC A for the line of resistors :

ATw = f (Kirchhoff) al —a 0 0

ATCe =f (Ohm)  (ATCA)e= | ¢ cl_tf IGA 35 - @
" B :

ATCAv = f (SYStem) 0 0 —C3 C3

The rows of ATC A still add to zero. The matrix is still positive semidefinite. It becomes
positive definite when row and column 4 are removed, which we must do to solve
ATCAv = f. This is a fundamental equation of discrete applied mathematics.

A network can also have voltage sources (like batteries) on the edges. Those go into a
vector b with m components. From node to node the voltage drops are —Awv (with a minus
sign). But Ohm’s Law applies to the voltage drops e across the resistors. By working with
the matrix C' and including b in the vector e = b — Av, Ohm’s Law is simply w = Ce.
The inputs to the network are f and b.

The three equations for e, w, f use the matrices A,C, AT. Those become two
equations by eliminating e = C~1w. We reach one equation by also eliminating w.

3 equations 2 equations 1 equation

I(;:l‘:'l:ent fuig;Av ¢t Allw _[*%
B AT 0 v| |f

J ATCAv = ATCb — §
Balance f = ATw

I removed e by substituting e = C~!aw into the first equation. The step from two equations
to one equation substituted w = C(b — Av) into f = ATw. Almost all entries of A
and C will be zero. The weighted graph Laplacian is K = ATC A.

You see how the sources b and f produce the right side. They make the currents flow.

A Framework for Applied Mathematics

The least squares equation ATAv = ATb and the weighted least squares equation
ATCAv = ATCb are special cases with f = 0. My experience is that all the
symmetric steady state problems of applied mathematics fit into this ATC' A framework.

Voltage Law — A Ohm’s Law — C Current Law — AT

I have learned to watch for ATC'A in every lecture about applied mathematics: it is
there. Differential equations fit this framework too. Laplace’s equation is AT Au = 0 when
Auw is the gradient of u(x,y). A typical ATCA equation is —d/dz(cdu/dz) = f(z).

For matrices, those derivatives become differences. The graph analogy with Laplace’s
equation gave the name graph Laplacian to the matrix AT A.
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Dynamic problems have time derivatives du/dt. This adds a new step to the ATC A
framework. The equation du/dt = —ATAu is a matrix analog of the heat equation
Ou/0t = 0?u/0x%. The next chapter will solve the heat equation using the eigenvalues
and eigenfunctions (sines and cosines) from 3" = Ay. The solutions are Fourier series.

Example: A Network of Resistors

I will add resistors to the five edges of our four-node graph. The conductances
1/ R will be the numbers ¢; to ¢s. The conductance matrix for the whole network is ATCA.
The incidence matrix A in equation (2) above is 5 by 4, and ATC A is 4 by 4.

Conductance c1+cetcy (5 —c —cy

matrix K with ATCA = —a SRR G — o (5)
—C2 —C3 co +c3 0

five edges = e 0 -

Please compare this matrix to AT A in equation (2), where all ¢; = 1. The new matrix

starts with ¢; + co + ¢4 because edges 1, 2, 4 touch node 1. Along that row of K, the entries
—c1, —Cg, —cy produce row sum = zero as we expect. Then ATCAis singular, not invertible.
We must reduce the matrix to 3 by 3 by “grounding a node” and removing column 4
and row 4. The reduced matrix is symmetric positive definite.

Suppose the voltage v; = V is fixed, as well as v4 = 0 at the grounded node. Current
will flow out of node 1 toward node 4 (with b = f = 0). The terms 1V and coV
involving the known vi = V move to the right hand side of ATCAv = 0. There are
only two unknown voltages vy and v3, and V is like a boundary value :

(6)

Reduced equations cL+ec3+cs  —cs va | | eV
vi=Vandvys =0 —c3 c2+c3 v3 | [ eV |

When we solve for v; and v3, we know all four voltages v and all five currents w = C' Av.
Summary

The matrix C' changes an “ideal” AT A problem into an “applied” ATC'A problem. You
will see how this three-step framework appears all through applied mathematics.
Au is often a derivative of u, or a finite difference. Then C' Au comes from Ohm’s Law
or Hooke’s Law. The material constants like conductance and stiffness go into C.

Finally ATCAv = f is a continuity equation or a balance equation. It represents
balance of forces, balance of inputs with outputs, balance of profits with losses. The
combined matrix K = ATC A is symmetric positive definite just like AT A.

To find the forces or the flows inside the network, we solve for v and e and w.
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The Adjacency Matrix

The Laplacian matrices L = ATA and K = ATCA started with the incidence matrix A.
The diagonal of L has the degree of each node: the number of edges that touch the node.
AT A also comes directly from the degree matrix D minus the adjacency matrix W :

3 —1 -1 =j 3 01 1 1
T, | -1 38 -1 1| _ 3 1011
AA=1 1 1 2 o~ 2 1100 ™

-1 -1 0 2 2 1100

The degrees 3,3,2,2 in D are the row sums in W. Then D — W has zero row sums.
When L = ATA = D — W multiplies (1, 1,1, 1) the result will be (0,0, 0, 0).

Question The sum of the degrees is 10. How can this be predicted from the graph?

Answer  The graph has five edges. Each edge produces two 1’s in the adjacency matrix.
There must be ten 1’s in W. The degrees in D must add to 10, to balance the 1’s in W.

Since the trace of L is 3 + 3 4+ 2 + 2, the eigenvalues of L must also add to 10.
Question What is the rule for W and D when there are weights c;, . . ., ¢, on the edges?

Answer  Each entry W;; = 1 comes from an edge between node 7 and node j. When
this edge k has a weight ¢, (the conductance along the edge), the entry W;; changes
from 1 to ci. The weights produce ATC A in equation (5) and also in equation (8).

3 1+ Ca+ca 0 e e ¢4
A'CA=K . cc 0 e3 ¢s
D-W= = . @8
with weights . co c3 0 0 (8)
c4 +cs cg ¢ 0 0

Problems 1 — 5 will ask about a complete graph, when every pair of nodes is connected
by an edge. All off-diagonal entries in the adjacency matrix W are 1. All the degrees
in the diagonal D are n — 1. The Laplacians L and K have no zeros. Every question about
L = AT A = D — W has a good answer for this graph with all possible edges.

Here is a picture that summarizes this three-step vision of applied mathematics.

Voltages vi, ..., vy Current Law ATw = f
e =b— Av
T _
A I AT(C A is the conductance matrix 1 A ? ; igw

C
Voltage dropse = b — Av —» Currents w = Ce ATCAv = ATCb— f
Ohm’s Law

Figure 7.7: The ATC A framework for steady state problems in science and engineering.
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Saddle-Point Matrix

The final matrix is ATC A, after the edge currents wy, . . ., w,, are eliminated. Before we
took that step, the voltages v and the currents w were the two unknown vectors. With
two equations we have a “saddle-point matrix” that contains C~! and A and AT :

Saddle-point problem { ot A } { w ] - [ b } ©)

Currents and voltages AT 0 v 5 i

Block matrices of this form appear when there is a constraint like Kirchhoff’s Current
Law ATw = f. “Nature minimizes heat loss in the network subject to that constraint.”
The “KKT matrix” in (9) is symmetric but it is not at all positive definite.

A small example will show a positive and also a negative eigenvalue :

4
[ g 3 } has eigenvalues 4 and —1. The pivots are 3 and —3

Eigenvalues and pivots have the same signs! Multiply the eigenvalues or the pivots to
reach the determinant —4. The zero on the diagonal rules out positive definiteness.

The saddle-point matrix has m positive and n negative eigenvalues. The energy in (m +
n)-dimensional space goes upward in m directions and downward in n directions.

An important computational decision has voters on both sides. Is it better to eliminate
w and work with one matrix ATC A ? Optimizers say no, finite element engineers say yes.
Fluids calculations (with pressure dual to velocity) often look for the saddle point.

Computational science and engineering is a highly active subject, a mix of software
and hardware and mathematics in solving AT C A equations with millions of unknowns.

= REVIEW OF THE KEY IDEAS =

1. Row k of A ('m by n) tells the start node and the end node of edge k in the graph.

2. The Laplacian L = AT A has L;; = —1 when an edge connects nodes i and j.

3. The diagonal of L = D — W shows the degrees of the nodes. Each row adds to zero.
4. With weights ¢, on the edges, K = ATC A is the weighted graph Laplacian.

5. Three steps e = b — Av, w = Ce, f = ATw combine into ATCAv = ATCb — f.

Problem Set 7.5

Problems 1 — 5 are about complete graphs. Every pair of nodes has an edge.

1 With n = 5 nodes and all edges, find the diagonal entries of AT A (the degrees of
the nodes). All the off-diagonal entries of AT A are —1. Show the reduced matrix R
without row 5 and column 5. Node 5 is “grounded” and vs = 0.
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2

10

11

12

Show that the trace of ATA (sum down the diagonal = sum of eigenvalues)
is n? — n. What is the trace of the reduced (and invertible) matrix R of size n — 1?

For n = 4, write the 3 by 3 matrix R = (Arequced)” (Areduced): Show that
RR~! = I when R~! has all entries i off the diagonal and % on the diagonal.

For every n, the reduced matrix R of size n — 1 is invertible. Show that RR'=1T
when R~! has all entries 1/n off the diagonal and 2/n on the diagonal.

Write the 6 by 3 matrix M = A;equced When n = 4. The equation Mv = b is to
be solved by least squares. The vector b is like scores in 6 games between 4 teams
(team 4 always scores zero; it is grounded). Knowing the inverse of R = M7TM,
what is the least squares ranking v, for team 1 from solving M TMv = M Th?

For the tree graph with 4 nodes, AT A is in equation (1). What is the 3 by 3 matrix
R = (AT A)educed? How do we know it is positive definite?
(a) If you are given the matrix A, how could you reconstruct the graph?
(b) If you are given L = AT A, how could you reconstruct the graph (no arrows) ?
(c) If you are given K = AT(C A, how could you reconstruct the weighted graph?

Find K = ATC A for a line of 3 resistors with conductances ¢; = 1, ¢co = 4, ¢5 = 9.
Write K equced and show that this matrix is positive definite.

A 3 by 3 square grid has n = 9 nodes and = 12 edges. Number nodes by rows.

(a) How many nonzeros among the 81 entries of L = AT A?
(b) Write down the 9 diagonal entries in the degree matrix D : they are not all 4.
(c) Why does the middle row of L = D — W have four —1’s ? Notice L = K2D!

Suppose all conductances in equation (5) are equal to c. Solve equation (6) for the
voltages vo and v3 and find the current I flowing out of node 1 (and into the ground
at node 4). What is the “system conductance” I /V from node 1 to node 4 ?

This overall conductance I/V should be larger than the individual conductances c.

The multiplication AT A can be columns of AT times rows of A. For the tree with
m = 3 edges and n = 4 nodes, each (column times row) is (4 x 1)(1 x 4) = 4 x 4.
Write down those three column-times-row matrices and add to get L = ATA.

A graph with two separate 3-node trees is not connected. Write its 6 by 4 incidence
matrix A. Find two solutions to Av = 0, not just one solution v = (1,1,1,1,1,1).
To reduce AT A we must ground two nodes and remove two rows and columns.



430

13

14

15

16

17

Chapter 7. Applied Mathematics and AT A

“Element matrices” from column times row appear in the finite element method.
Include the numbers ¢y, c2, c3 in the element matrices K1, K1, K3.

K; = (rowiof A)T (¢;) (rowiof A) K =ATCA=K,;+ Ks+ Ks.

Write the element matrices that add to AT A in (1) for the 4-node line graph.

assembly of the nonzero
:1 = entries of K7 + Ko + K3
[ K } from edges 1,2, and 3

An n by n grid has n? nodes. How many edges in this graph? How many interior
nodes ? How many nonzeros in A and in L = AT A ? There are no zeros in L1 !

When only e = C~!w is eliminated from the 3-step framework, equation (9) shows

Saddle-point matrix c1 A w] [b
Not positive definite AT 0 v || f|°

Multiply the first block row by ATC and subtract from the second block row :

S c-! A w | b
After block elimination [ 0  —ATCA ] [ v ] = [ f— ATCb ] .

After m positive pivots from C~!, why does this matrix have negative pivots?
The two-field problem for w and v is finding a saddle point, not a minimum.

The least squares equation ATAv = ATb comes from the projection equation
ATe = 0 for the error e = b — Av. Write those two equations in the symmetric
saddle point form of Problem 15 (with f = 0).

In this case w = e because the weighting matrix is C' = I.

Find the three eigenvalues and three pivots and the determinant of this saddle point
matrix with C' = I. One eigenvalue is negative because A has one column:

g 1 0 -1
m=2n=1 [CAF g]: 0 1 1
: -1 1 0
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® CHAPTER 7 NOTES =

Polar Form of an Invertible Matrix: A = QS = (orthogonal) (positive definite).
This is like 7e* for complex numbers (1 by 1 matrices). |ei9| = 1 is the orthogonal @
and r > 0 is the positive definite S. The matrix factors come directly from the Singular
Value Decomposition of A :

A=UsVT = (UVT) (VZVT) = (orthogonal) times (positive definite).

When A is invertible, so is ©. Then o, to o, are the (positive) eigenvalues of VXV,
In physical language, every motion combines a rotation/reflection ¢) with a stretching S.

Transpose of A = d/dxz. It is not enough to say that “the transpose is —d/dz.”
The boundary conditions on the functions f and g in Af = df/dz and ATg = —dg/dx
are important parts of A and AT. In Section 7.3 and especially Problem 1, A comes
with two conditions f(0) = 0 and f(1) = 0. Then AT = —d/dz has no conditions on
g. What we want is (Af, g) = (f, AT g).

Integration by parts is like transposing the operator d/dx. The integrated term
fg is safely zero when f(0) = f(1) = 0. The fixed-free operator d/dx with only one
condition f(0) = 0 would transpose to the free-fixed operator —d/dx with the other
condition g(1) = 0. Then the integrated term is again fg = 0 at both ends. In each case,
boundary conditions on g make up for missing boundary conditions on f.

Principal Component Analysis (PCA): Find the most significant (least random) data.

Data often comes in rectangular matrices: A grade for each student in each course.
Activity of each gene in each disease. Sales of each product in each store. Income in each
age group in each city. An entry goes into each column and each row of the data matrix.

By subtracting off the means, we study the variances: measures of useful information
as opposed to randomness. The SVD of the data matrix A (showing the eigenvectors and
eigenvalues of the correlation AT A) displays the principal component : the largest piece
o1 'vlT of the matrix. The orthogonal pieces oiuiv? are in order of importance. The
largest o is the most significant. From a large matrix of partly random data, PCA and the
SVD extract its most significant information.

Wikipedia lists many methods that are identical or closely related to PCA. The crucial
singular vector v; (which has ATAv, = Apnv1) is also the vector that maximizes
the Rayleigh quotient (vTATA'U)/ vTv. Computing the first few singular vectors does not
require the whole SVD !
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Fourier and Laplace Transforms

This book began with linear differential equations. It will end that way. Those are the equa-
tions we can understand and solve—especially when the coefficients are constant.
Even the heat equation and wave equation (those are PDE’s) have good solutions.

These are extremely nice problems, no apologies for that. Almost every application
starts with a linear response—current proportional to voltage, output proportional to input.
For large voltages or large forces, the true law may become nonlinear. Even then, we
often use a sequence of linear problems to deal with nonlinearity. The constant coefficient
linear equation is the one we can solve.

This chapter introduces Fourier transforms and Laplace transforms. They express ev-
ery input f(x) and f(t) and every output y(z) and y(t) as a combination of exponentials.
For each exponential, the output multiplies the input by a constant that depends on
the frequency: y(t) = Y(s)e®® or Y(w)e™!. That transfer function describes
the system by its frequency response : the constants Y that multiply exponentials.

We have used the complex gain 1/(iw — a) to invert ¢y’ — ay, along with transfer
functions in Chapters 1 and 2. Now we see them for every time-invariant and shift-invariant
partial differential equation—with coefficients that are constant in time and space.

Naturally those ideas appear again for discrete problems with matrix equations. The
matrices may be approximating derivatives (like the —1,2, —1 second difference matrix).
Or they come on their own from convolutions. Their eigenvectors will be discrete sines
or cosines or complex exponentials. A combination of those eigenvectors is a discrete
Fourier series (DFT). We find the coefficients in that combination by using the Fast Fourier
Transform (FFT)— the most important algorithm in modern applied mathematics.

A note about sines and cosines versus complex exponentials. For real problems we
may like sines and cosines. But they aren’t perfect. We keep cos 0 and we don’t keep sin 0.
We want one of the highest frequency vectors (1,—1,1,—1,...) and (—1,1,—1,1,...) but
not both. In the end (and almost always for the FFT) the complex exponentials win.
After all, they are eigenfunctions of the derivative d/dx. Transforms are based on
combinations of those exponentials—and the derivative of €“? is just iwe*?.

432
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This page describes a specially nice function space. It is called “Hilbert space.”
The functions have dot products and lengths. There are angles between functions,
so two functions can be orthogonal (perpendicular). The functions in Hilbert space are
just like vectors. In fact they are vectors—but Hilbert space is infinite-dimensional.

Here are parallels between real vectors f = (fi,..., fny) and real functions f(z).
Physicists even separate < f| (bra) from |g > (ket). Not here!

Inner product ffg=figi+  +fngy < frg> = [ f(z)g(x)dz

Length squared ||f|2 = f"f = |f:? NFI12=<ff>= }r |f(x)|?dx
Angle 6 cos 0= f"g/||fllllgll cosO =< f,g>/lIfllgll
Orthogonality f g =0 <f,g>= ]r f(z)g(x)dz =0

A function is allowed into Hilbert space if it has a finite length: [|f(z)*dz < oo.
Thus f(z) = 1/« and f(xz) = &(x) do not belong to Hilbert space. But a step function
is good. And the function can even blow up at a point—just not too fast. For example
f(z) = 1/|z|*/* belongs to Hilbert space and its length is || f|| = 271/ :

us

£(0) is infinite but || f||* = / lz| 7Y 2dx = 4 |x|1/2]0 = 472,

—T

When |f(2)| = | f(—2)]|, the integral from —7 to 7 is twice the integral from O to 7.

There is always an adjustment for complex vectors and functions :

—T = — s
Inner product f g=fig1+ -+ fvgy < fog> = /f(ﬂ’i)g(fl’ﬁ)dcc

Orthogonality is still < f,g > = 0. The best examples are the complex exponentials :

m

1 . . i(n—k)z
eikm and e*™® are Orthogonal /e—zkmezn:r:dw -

=0
n—=k

-

-7

Those e*** are an orthogonal basis for Hilbert space. Instead of zyz axes, functions
need infinitely many axes. Every f(z) is a combination of the basis vectors e®®:

eim _ e—i:v 63137 _ 6—313: s s 1
flz) = 1 + 3 +--- has /lf m(1°+1 +32+ +eee).

This particular f(z) happens to be a step function. To Hilbert, step functions are vectors.
Then Fourier “transformed” f(x) into the numbers (like 1 and %) that multiply each e®*®.
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8.1 Fourier Series

This section explains three Fourier series: sines, cosines, and exponentials etkz,
Square waves (1 or 0 or —1) are great examples, with delta functions in the derivative.
We look at a spike, a step function, and a ramp—and smoother functions too.

Start with sin z. It has period 27 since sin(z + 27) = sinz. It is an odd function since
sin(—z) = —sinx, and it vanishes at z = 0 and = 7. Every function sin nz has those
three properties, and Fourier looked at infinite combinations of the sines:

oo
Fourier sine series  S(z) = by sinz + bysin2z + bysin3z + -+ =» _bpsinna (1)

n=1

If the numbers by,bs,bs,... drop off quickly enough (we are foreshadowing the
importance of their decay rate) then the sum S(z) will inherit all three properties:

Periodic S(z + 27) = S(x) 0dd S(—z)=—-S(=x) S(0)=S(r)=0

200 years ago, Fourier startled the mathematicians in France by suggesting that any odd
periodic function S(x) could be expressed as an infinite series of sines. This idea started
an enormous development of Fourier series. Our first step is to find the number by that
multiplies sin kz. The function S(x) is “transformed” to a sequence of b’s.

Suppose S(x) = _ by, sin nx. Multiply both sides by sin kx. Integrate from 0 to 7 :
/ S(a:)sink:a:da::/ blsinxsinkxdm+-~-+/ by sinkx sinkxzdx +--- (2)
0 0 0

On the right side, all integrals are zero except the highlighted one with n = k. This
property of “orthogonality” will dominate the whole chapter. For sines, integral = 0 is a
fact of calculus:

T
Sines are orthogonal / sinnr sinkzxdr=0 if n#k. 3)
0

Zero comes quickly if we integrate [ cosmz dz = [S“‘%]g = 0 — 0. So we use this:

1 1
Product of sines sinnz sinkx = 5 cos(n —k)r — —cos(n+k)x. (4)

Integrating cos (n — k)z and cos (n + k)z gives zero, proving orthogonality of the sines.

The exception is when n = k. Then we are integrating (sin kz)? = £ — 3 cos 2kz:

g ™ ™™ T
/ sin kx sin kx dx :/ —dx —/ —cos2kxdr = —. )
0 0 2 0 2 2

The highlighted term in equation (2) is (7 /2)bg. Multiply both sides by 2/ to find by.



8.1. Fourier Series 435
Sine coefficients 2 (" . 1 [7 .
STy i) br = ;/0 S(z)sinkx dr = —7;/_” S(z) sin kx dx. (6)

Notice that S(z) sin kx is even (equal integrals from —7 to 0 and from 0 to 7).
I will go immediately to the most important example of a Fourier sine series.

S(z) is an odd square wave with SW(z) = 1 for 0 < z < w. It is drawn in
Figure 8.1 as an odd function (with period 27) that vanishes at x = O and x = 7.
SW(z) =1
—m 0 ™ 27r‘ o

Figure 8.1: The odd square wave with SW(z + 27) = SW(z) = {1 or0 or —1}.

Example 1  Find the Fourier sine coefficients by of the odd square wave SW (z).

Solution Fork =1,2,... use formula (6) with S(z) = 1 between 0 and 7:

n 2 [— T 2 2 2
bk=-2-/ sinkxdx:—{ﬂ] :3{_, 97— .- 9} (7)
0 s

T k 0 s

The even-numbered coefficients by are all zero because cos2km = cos0 = 1. The odd-
numbered coefficients by = 4/7k decrease at the rate 1/k. We will see that same 1/k decay
rate for all functions formed from smooth pieces and jumps.

Put those coefficients 4/7k and zero into the Fourier sine series for SW (z):

sinx sindx sinbr sinTx

1+3+5+7 ®

4
Square wave SW(z) = —
™

Figure 8.2 graphs this sum after one term, then two terms, and then five terms. You can see
the all-important Gibbs phenomenon appearing as these “partial sums” include more terms.
Away from the jumps, we safely approach SW(z) = 1 or —1. At = /2, the series gives
a beautiful alternating formula for the number 7 :

: + that 4 A + . + 9
S ioies S0 al ) i— i —_—— — P :

7 1 3 &6 7

The Gibbs phenomenon is the overshoot that moves closer and closer to the jumps.
Its height approaches 1.18... and it does not decrease with more terms of the series.
This overshoot is the one greatest obstacle to calculation of all discontinuous functions
(like shock waves). We try hard to avoid Gibbs but sometimes we can’t.
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. 4 (sinx sindzx 4 (sinx sin 9z
Solid curve — + 5 terms: — RS
s 1 ) s 1 9
Dashed 4sinz N Gibbs overshoot — AaaaA g1 — 1
™ /4 N
-7 K. ” s T —=— f %
N 3

oS

Figure 8.2: The sums by sinx + - - - + by sin Nz overshoot the square wave near jumps.

Fourier Cosine Series

The cosine series applies to even functions C(x) = C(—x). They are symmetric across 0 :

o0
Cosine series C(z) = ag + ajcosxz +azcos2z+ --- =ap + Z ancosne. (10)

n=1

Every cosine has period 27. Figure 8.3 shows two even functions, the repeating ramp
RR(x) and the up-down train U D(z) of delta functions. That sawtooth ramp RR is the
integral of the square wave. The delta functions in U D give the derivative of the square wave.
(For sines, the integral and derivative are cosines.) RR and U D will be valuable examples,
one smoother than ST, one less smooth.

First we find formulas for the cosine coefficients aqg and ax. The constant term aq is
the average value of the function C(x) :

1 [" 1 /7
ag = average ap = —/ C(x)dz = ——/ C(z)dz. (11)
0

us 27 J_n

I just integrated every term in the cosine series (10) from O to 7. On the right side, the
integral of ag is agm (divide both sides by 7). All other integrals are zero :

g sinnz]™
cosnrdr = =0-0=0. (12)
0 no o

In words, the constant function 1 is orthogonal to cos nz over the interval [0, .
The other cosine coefficients ax come from the orthogonality of cosines. As with sines,
we multiply both sides of (10) by cos kx and integrate from 0 to 7:

™ s s us
/ C(x) cos kx dx :/ ag cos kx dx+/ ay cos x cos kx dx+~+/ ak(cos kx)? dz+--
0 0 0 0

You know what is coming. On the right side, only the highlighted term can be nonzero. For
k > 0, that bold nonzero term is a7 /2. Multiply both sides by 2/ to find ay, :

Cosine coefficients 2 [T IR
C(~z) = C(z) ar = ;/0 C(x) coskx dr = - ‘/_W C(xz)coskxdx. (13)
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24(z) 20(x — 2m)
Up-dowq UD(x)

_vﬂ- 0 T 2T —] 0 ™ 21
Derivative of | Square Wave

Repeating Ramp RR(x)
Integral of Square Wave —20(x + ) —2(z —m)

Figure 8.3: The repeating ramp RR and the up-down UD (periodic spikes) are even.
The slope of RR is —1 then 1: odd square wave STW. The next derivative is UD : & 2.

Example 2  Find the cosine coefficients of the ramp RR(z) and the up-down U D(x).
Solution The simplest way is to start with the sine series for the square wave :

4 |si in 3 in 5 in7
SW(:c):; snllx_’_snlg:c_i_su;:c_‘_sm?a:_’__“ T

Take the derivative of every term to produce cosines in the up-down delta function:

4
Up-down spikes UD(xz) = — [cosx + cos 3z + cosbx + cosTx + - - - |. (14)
T

Those coefficients don’t decay at all. The terms in the series don’t approach zero, so
officially the series cannot converge. Nevertheless it is correct and important. At z = 0,
the cosines are all 1 and their sum is +0o. At x = m, the cosines are all —1. Then
their sum is —oo. (The downward spike is —25(z — 7).) The true way to recognize d(x)
is by the integral test [ 6(z) f(z) dz = f(0) and Example 3 will do this.

For the repeating ramp, we integrate the square wave series for SW(z) and add ao.
The average ramp height is ag = /2, halfway from 0 to 7 :

m |cosx cos3x cosbx cosTx

1|1z T T 72 (15)

Ramp series RR(z) = g —

The constant of integration is ag. Those coefficients ay, drop off like 1/k*. They could
be computed directly from formula (13) using [ z coskz dz, and integration by parts (or
an appeal to Mathematica or Maple). It was much easier to integrate every sine separately
in SW(z), which makes clear the crucial point: Each “degree of smoothness” in the
function brings a faster decay rate of its Fourier coefficients a, and by.
Every integration divides those numbers by k.

No decay Delta functions (with spikes)
1/k decay Step functions (with jumps)
1/k? decay Ramp functions (with corners)
1/k* decay Spline functions (jumps in ")

r* decay with r < 1 Analytic functions like 1/(2 — cos z)
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The Fourier Series for a Delta Function
Example 3  Find the (cosine) coefficients of the delta function § (x), made 27-periodic.

Solution  The spike in §(z) occurs at x = 0. All the integrals are 1, because the
cosine of 0 is 1. We divide by 27 for ag and by 7 for the other cosine coefficients a.

us s

1 1 1
Average ag = — d0(x)dr = —  Cosines a = — 0(x)coskrdr = —
2T J_» 27 T J—n Iy

Then the series for the delta function has all cosines in equal amounts: No decay.
, 1 1
Delta function d(x) = e 4+ —[cosx + cos2x 4+ cos3x + ---]. (16)
T T

This series cannot truly converge (its terms don’t approach zero). But we can graph the sum
after cos oz and after cos 10z. Figure 8.4 shows how these “partial sums” are doing their
best to approach §(x). They oscillate faster while going higher.

There is a neat formula for the sum & that stops at cos Nz. Start by writing each term
2cosx as €' + e~ We get a geometric progression from e ~*V® up to eV =,

1 ) ) ) . 1 sin(V 4+ )z
SN == [L4+e"+e ™ .. 4 elNF 47N :_(_—12). 17)
2w 2T sin 5

This is the function graphed in Figure 8.4.

d10(x) A height 21 /27

ds(x) |~ height 11 /27

height 1/27
= height —1/2m

Figure 8.4: The sums oy (z) = (1 +2cosx + - - - + 2 cos Nz) /2w try to approach §(x).
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Complete Series: Sines and Cosines

Over the half-period [0, 7], the sines are not orthogonal to all the cosines. In fact the
integral of sin « times 1 is not zero. So for functions F'(z) that are not odd or even, we must
move to the complete series (sines plus cosines) on the full interval. Since our functions
are periodic, that “full interval” can be [—, 7] or [0, 27r]. We have both a’s and b’s.

(o] (o]
Complete Fourier series F(z) = ag + Z A, COSNT + Z b, sinnx. (18)

n=1 n=1

On every “2m interval” the sines and cosines are orthogonal. We find the Fourier
coefficients ax and by in the usual way: Multiply (18) by 1 and cos kx and sin kx.
Then integrate both sides from — to 7 to get ag and ax and by.

1 s
F(z)coskx dx bk:;/ F(z)sin kx dx

T

™

1 ™

ap=—
21 J_

F(z)dz ak:%/

-7

Orthogonality kills off infinitely many integrals and leaves only the one we want.
Another approach is to split F'(z) = C(x) + S(z) into an even part and an odd part.
Then we can use the earlier cosine and sine formulas. The two parts are

F(z)+ F(—x)
2

F(@) = F(=z)

S(x) = Foad(z) = 5

C(z) = Feven(x) = (19)
The even part gives the a’s and the odd part gives the b’s. Test on a square pulse from

x = 0 to x = h—this one-sided thin box function is not odd or even.

1/h forO<z<h

Example 4 Find the a’s and b’s if F'(x) = tall box = { 0 for h <z < o

Solution  The integrals for ag and ax and by stop at z = h where F'(x) drops to zero.
The coefficients decay like 1/k because of the jump at = 0 and the drop at = h:

1 1
Coefficients of square pulse ag = — 1/hdx = — = average
2m /o 2w
1k sin kh 1 b 1 —coskh
akz—/ coskxrdr = bk:—/ sinkxde = ——.
mh Jo wkh mh Jg wkh

Important As h approaches zero, the box gets thinner and taller. Its width is h and its
height is 1/h and its area is 1. The box approaches a delta function! And its Fourier
coefficients approach the coefficients of the delta functionas A — 0:

1 in kh 1 1-— kh
ag = g ar = Sl:k 5 approaches p b = % approaches 0. (20)
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Energy in Function = Energy in Coefficients

There is an extremely important equation (the energy identity) that comes from integrat-
ing (F(z))2. When we square the Fourier series of F'(x), and integrate from —7 to m,
all the “cross terms” drop out. The only nonzero integrals come from 12 and cos? kx
and sin? kz. Those integrals give 27 and 7 and 7, multiplied by a3 and a} and b7 :

T

Energy [ (F(x))?dz = 2ma2 + w(a2 4+ b2+ a2+ b2 +---). (21

-

The energy in F'(z) equals the energy in the coefficients. The left side is like the length
squared of a vector, except the vector is a function. The right side comes from an infinitely
long vector of a’s and b’s. The lengths are equal, which says that the Fourier transform
from function to vector is like an orthogonal matrix. Normalized by v/27 and VT,
sines and cosines are an orthonormal basis in function space.

Complex Exponentials cke'““'3

This is a small step and we have to take it. In place of separate formulas for ap and aj
and by, we will have one formula for all the complex coefficients c;. And the function
F(z) might be complex (as in quantum mechanics). The Discrete Fourier Transform will
be much simpler when we use N complex exponentials for a vector.

We practice with the complex infinite series for a 2m-periodic function:

o0
Complex Fourier series ['(z) = co +c1e™ +c_1e” "+ = > cpei™®  (22)

n=-—oo

If every ¢, = c_,, we can combine €™® with e"*** into 2 cosnz. Then (22) is the
cosine series for an even function. If every ¢,, = —c_,, we use e'™* — e™*"* = 2isinnz.
Then (22) is the sine series for an odd function and the ¢’s are pure imaginary.

To find cg, multiply (22) by e ~%*® (not ¢'**) and integrate from — to 7:

us m m ™
/ F(z)e~*edr = / coe”*2dg + / c1ee”*dy + .. +/ creTe" Ry 4 ..
—T —T —T —T

The complex exponentials are orthogonal. Every integral on the right side is zero,
except for the highlighted term (when n = k and e**e~** = 1). The integral of 1 is 27.
That surviving term gives the formula for cx:

™
Fourier coefficients / F(z)e *®dx = 2m¢,,  for k=0,%1,...1 (23)
—TC

Notice that ¢y = ag is still the average of F'(z). The orthogonality of ¢?** and < is
checked by integrating e times e ~***. Remember to use that complex conjugate e~ **<,
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Example 5 For a delta function, all integrals are 1 and every cy is 1/2x. Flat transform !

1 fors<z<s+h

Example 6 Find ¢y for the 27-periodic shifted box F'( x)= { 0 elsewhere in [—, ]

Solution The integrals (23) have F' = 1 fromsto s+ h:

1 [sth , 1 [e—ikz]sth . 1 — e—ikh
= 1. _”“Ud S —e—ths [~ ) 24
*=or ), © o ®Tao [ —ik L € ik 24

—iks

Notice above all the simple effect of the shift by s. It “modulates” each cy by e
The energy is unchanged, the integral of |F|? just shifts, and [e~%%| = 1.

Shift F(x) to F(x —s) <— Multiplyevery cp by e %2 (25)

Example 7 A centered box has shift s = —h/2. It becomes balanced around z = 0.
This even function equals 1 on the interval from —h/2 to h/2:

1—et*h 1 sin(kh/2)

— eikh/2 -
2mik 2r k/2

h
Centered by s = = Ck

Divide by h for a tall box. The ratio of sin( kh/2Yo kh/2 is called the “sinc” of kh /2.

Fcen ere: ]- d . 9 =
Sicenteres Zsmc <k_2h) ezkz:{ 1/h for —h/2 <z < h/2

Tall box h = o 0 elsewhere in [—, 7]

That division by h produces area = 1. Every coefficient approaches 2% as h — 0.

The Fourier series for the tall thin box again approaches the Fourier series for 6(z).

The Rules for Derivatives and Integrals

The derivative of e*** is ike*®. This great fact puts the Fourier functions e*** in first
place for applications. They are eigenfunctions for d/dx (and the eigenvalues are A = ik).
Differential equations with constant coefficients are naturally solved by Fourier series.

Multiply by ¢k The derivative of F'(z) = Z cre*® is dF /dx = Z ikcret*®

The second derivative has coefficients ( ik¥c, = —kZ2c. High frequencies are growing
stronger. And in the opposite direction (when we integrate), we divide by ¢k and high
frequencies get weaker. The solution becomes smoother. Please look at this example :

Response 1/(k* + 1) d*y _ ikx _ eth®
to frequency k g +y=e is solved by y(z) = ET+_1

This was a typical problem in Chapter 2. The transfer function is 1/( # + 1). There we
learned : The forcing function e*** is exponential so the solution is exponential.
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All we are doing now is superposition. Allow all the exponentials at once !

& o . otk
— ﬁ +y= Z cre’™ issolvedby y(x) = Z 7’:’;9‘ G (26)
1. Derivative rule dF'/dx has Fourier coefficients ikc;, (energy moves to high k).

2. Shift rule F(x — s) has Fourier coefficients e ~**%c;, (no change in energy).

Application: Laplace’s Equation in a Circle

Our first application is to Laplace’s equation g, + uyy = 0 (Section 7.4). The idea is
to construct u(x,y) as an infinite series, choosing its coefficients to match ug(z,y)
along the boundary. The shape of the boundary is crucial, and we take a circle of radius 1.

Begin with the solutions 1, rcosf, rsiné, r?cos26, r?sin2, ... to Laplace’s
equation. Combinations of these special solutions give all solutions in the circle:

u(r,0) = ap + a7 cos @ + byrsin O + azr? cos 20 + bar?sin20 + ... (27)

It remains to choose the constants ay and by to make u = wug on the boundary. For a circle,
0 and 0 + 27 give the same point. This means that u(#) is periodic :

Setr =1 uo(0) = ap + a1 cos® + by sin € + as cos 20 + by sin20 + - - (28)

This is exactly the Fourier series for ug. The constants ax and by must be the Fourier
coefficients of uo(f). Thus Laplace’s boundary value problem is completely solved, if
an infinite series (27) is acceptable as the solution.

Example 8 Point source ug = (). The boundary is held at ug = 0, except for the
source at x = 1, y = 0 (where § = 0). Find the temperature u(r,#) inside the circle.

. 1 1 1 <,
Delta function  v,(0) = o + —(cosf + cos20 +cos30 +---) = o E :e né
™ ™ m

Inside the circle, each cosnf is multiplied by " to solve Laplace’s equation:

1 1
Inside the circle  u(r,0) = o + =(rcos® + 1% cos 20 + r° cos 30 + - - -) (29)
™ s
Poisson managed to sum this infinite series! It involves a series of powers (re*)™.
His sum gives the response at every (r, #) to the point source atr = 1, 6 = 0:

1 1—72

Temperature inside circle ur,) = ——M—
P (r, ) 211+ 12 — 2rcosf

(30)

At the center 7 = 0, this produces the average of ug = §(6) which is ag = 1/27.
On the boundary r = 1, this gives u = 0 except u = oo at the point where cos 0 = 1.
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Example 9 u((0) = 1 on the top half of the circle and uo = —1 on the bottom half.

Solution  The boundary values ug are a square wave SW. We know its sine series:

(1)

Square wave for ug(6)  STV/(6) = - [Sllfg + B I, ]
m

Inside the circle, multiplying by 7, 3, 75, . . . gives fast decay of high frequencies :

4 in6 3 sin 36 5gin 56
[rsm 73 sin | 7°sin +] (32)

Rapid decay inside u(r,0) = = + 3 | .

Laplace’s equation has smooth solutions inside, even when u(#) is not smooth.

Problem Set 8.1

1 (a) To prove that cos nz is orthogonal to cos kx when k # n, use the formula

(cosnz) (coskz) = % cos (n+ k)x + 3 cos (n — k)a. Integrate from z = 0 to
z = m. Whatis [ cos® kx dz ?

(b) From 0 to 7, cos x is not orthogonal to sin x. The period has to be 27 :

T T 2

Find/ (sinz) (cosz)dx and / (sinz) (cosz) dx and / (sinz) (cos ) dz.

0 -7 0
2 Suppose F(z) = z for 0 < z < . Draw graphs for —27 < z < 27 to show
three extensions of F': a 2m-periodic even function and a 27-periodic odd function
and a 7-periodic function.

3 Find the Fourier series on —7 < z < 7 for

(@) fi(z) = sin® z, an odd function (sine series, only two terms)
(b) f2(z) = |sinz|, an even function (cosine series)

(¢) fs(z) =z for —m < x < 7 (sine series with jump at x = )

4 Find the complex Fourier series e® = Ecke“” on the interval —7 < z < 7.
The even part of a function is 3(f(z) + f(—x)), so that feyen() = feven(—). Find
the cosine series for feyen and the sine series for foqq. Notice the jump at © = .

5 From the energy formula (21), the square wave sine coefficients satisfy

w4+ = [ sW@Pd= [ 1a=on

-7 -
Substitute the numbers by, from equation (8) to find that 72 = 8(1 + § + 5= + - - ).
6 If a square pulse is centered at z = 0 to give

flz)=1 for |z| < g, f(z)=0 for g <l|z| <m,

draw its graph and find its Fourier coefficients a, and by.
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7

10

11

12

13

14

15

16

Plot the first three partial sums and the function z(7 — ) :

8 <Sin Tz sin3z  sinbx

plm—z) =\ 27 125

+~-->.O<x<7r.
T

Why is 1/k? the decay rate for this function? What is its second derivative?

Sketch the 27-periodic half wave with f(z) = sinz for 0 < z < 7 and f(z) = 0
for —m < z < 0. Find its Fourier series.

Suppose G(z) has period 2L instead of 27. Then G(x + 2L) = G(z). Integrals
go from —L to L or from 0 to 2L. The Fourier formulas change by a factor 7/ L :

i
= : 1 )
The coefficients in G(z) = 3. Cre®* /L are C, = 3L /G(x)e_lk”/de.
= J

Derive this formula for C: Multiply the first equation for G(z) by and
integrate both sides. Why is the integral on the right side equal to 2LC}, ?

For Geven, use Problem 9 to find the cosine coefficient Ay, from (Cy, + C_x)/2:

L
Geven(z) = ) A cos e /Geven(a?) cos Zm—xdac.
0 L L. I
0

Geven is 3(G(z) + G(—x)). Exception for Ag = C; : Divide by 2L instead of L.

1
Problem 10 tells us that a, = —(cx + c—k) on the usual interval from 0 to 7.
Find a similar formula for b, from ¢ and c_g. In the reverse direction, find the
complex coefficient ¢ in F(x) = 3" cxe*® from the real coefficients ay, and by.

Find the solution to Laplace’s equation with ug = 6 on the boundary. Why is this the
imaginary part of 2(z — 22/2 4+ 23/3---) = 2log(1 + z)? Confirm that on the unit
circle z = €%, the imaginary part of 2log(1 + z) agrees with 6.

If the boundary condition for Laplace’s equation is ug = 1 for 0 < 6§ < 7 and

uo = 0 for —m < 6 < 0, find the Fourier series solution u(r, ) inside the unit circle.
What is u at the originr = 07?

With boundary values uo(6) = 1 + e’ + e + ..., what is the Fourier series
solution to Laplace’s equation in the circle? Sum this geometric series.

(a) Verify that the fraction in Poisson’s formula (30) satisfies Laplace’s equation.

(b) Find the response u(r, #) to an impulse at = 0,y = 1 (where § = 7).

With complex exponentials in F'(x) = 3 cxe*®, the energy identity (21) changes to
[ |F(z)?dz = 27)_ |ck|®. Derive this by integrating (3 cxe™*®) (3" cre==).
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17

18

19

20

21

22

23

A centered square wave has F'(z) = 1 for |z] < 7/2.

(a) Find its energy [ |F(z)|? dz by direct integration
(b) Compute its Fourier coefficients cj, as specific numbers

(c) Find the sum in the energy identity (Problem 16).

F(z) =1+ (cosz)/2+ -+ (cosnz)/2™ + - - - is analytic : infinitely smooth.

(a) If you take 10 derivatives, what is the Fourier series of d'°F'/dz'0?

(b) Does that series still converge quickly ? Compare n'° with 2" for n = 219,

coefficients. Can you graph and compute the Gibbs overshoot at the jumps ?

If f(z) = 1 for |x| < n/2 and f(z) = 0 for /2 < |z| < =, find its cosine

Find all the coefficients a; and by, for F, I, and D on the interval —7 < z < 7:

F(a:)zé(x—g) r(a:)zf:(s(.-n—%)dx D(x):%(i(a:—g).

For the one-sided tall box function in Example 4, with F' = 1/h for 0 < z < h,
what is its odd part §(F(z) — F(—x)) ? T am surprised that the Fourier coefficients
of this odd part disappear as h approaches zero and F'(x) approaches §(x).

Find the series F'(z) = Y_ cxe?*® for F(z) = e on —1 < z < . That function
e” looks smooth, but there must be a hidden jump to get coefficients c¢; proportional
to 1/k. Where is the jump ?

(a) (Old particularsolution) Solve Ay” 4+ By’ + Cy = e'*=.

(b) (New particular solution) Solve Ay” + By’ + Cy = Y cpe'*=.
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8.2 The Fast Fourier Transform

Fourier series apply to functions. But we compute with vectors. We need to replace the
infinite sequence of coefficients cx (or ax and bx) by a finite sequence cg,c1,...,cNn—1.
We want to preserve and use orthogonality, so the computations will be fast. For the
Discrete Fourier Transform, you will see how the FFT makes the computations extra fast.

This section describes two separate ideas. The DFT provides formulas for the c’s.
The FFT is an amazing algorithm to compute the c’s by rearranging those formulas.

Discrete Fourier Transform (DFT)

The DFT chooses N orthogonal basis vectors ey to ey_; for N-dimensional space.
The vector ey, comes from e***, by sampling that function at N points spaced by 27/N :

Basis vector ey, (0, gik2m/N giktn/N Y _ (1 wF w2k
) ) yrec) T 9

. g w=F .. ) withw = e?27/N,
Discrete e+ ' yers)

The continuous Fourier series is 3 cxe?*®. The discrete Fourier series is Y cxex. That
sum is a multiplication f = F'c with the symmetric N by N Fourier matrix F'. The basis
vectors ey, go into the columns of F'.

The matrix F' containing powers of w is shown in detail in equation (4).

| l co
Fourier matrix

f:Fc f:(‘.DED—{—(_:lel_i_.“: eg - en-_1 ‘ (1)
| | CN-1

Inverting f = Fc gives ¢ = F~1f. The continuous case produced e~*? in the Fourier
coefficient formula ¢, = [e~*®f(z)dz/2r. The discrete case produces powers of

W = e~"/N in the inverse matrix. Those powers of W are displayed in equation (3).
— By e fo
Inverse matrix 1 : 2 1 —r
c=F'f C=N : . =5F I ()
— E}_l cE fva

The constant vector eg = (1,1,...,1) has||eg||? = 1+1+4---+1 = N. Every basis vector
has ||ex||? = N instead of [ |e**®|2dx = 2.

Please notice that F—! produces the coefficients ¢, from the vector f: the Fourier
transform. The Fourier matrix F' reconstructs f from the ¢’s (the inverse transform).
The entries of F'~! are like e~*** and the entries of F' are like e***. Thus F~! = F/N
contains powers of @ = e~*"/N  while F contains powers of w = e*2™/N,

The MATLAB command ¢ = fft(f) uses w and the inverse Fourier matrix F'~1.
The opposite command f = ifft(c) adds up the N-term series F'c to reconstruct f in (1).
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Example 1  The delta vector f = (1,0,0,...) is like a delta function §(z). The Fourier
coefficients of a delta function are all equal to ¢, = 1/27. The discrete coefficients of
a delta vector are all equal to ¢, = 1/N. The transform of f is a constant vector.

1 1 . 1 1 1
1|1 w - - wV! 0 1|4
. -1 f— = —
Fourier transform F~'f =c N1 ow .. - 0 vl 3)

Example 2 The shifted vector f = (0,1,0,...) is like a shifted delta function §(z — 2Z).
The shifted vector f picks out the next column (1,w,w?,...) of F~! in equation (3).
The shifted delta function chooses the (same) values of ¢, = e =% at x = 27 /N.

The only difference between those discrete and continuous c’s is dividing by N or 2.

Example 3 The constant vector ¢ = (1,1,...)/N transforms back to the delta vector!

1 1 .. 1 1 1
1 i s N-1 1
Fourier matrix Fc = f 1 ;:)2 o wlg(N—l) N } = g )

That equation says that N — 1 basis vectors starting with (1, w, w?, . . .) are orthogonal to the
first vector (1,1, ..., 1). The basis vectors ey, in the columns of F are orthogonal.
After a few words about the FFT, equation (7) will confirm this orthogonality.

Fast Fourier Transform (FFT)

The FFT is a brilliant rearrangement of those matrix-vector multiplications f = F'c and
c = F~1f. Normally, multiplying a vector by an N by N matrix takes N? separate
multiplications. (Each entry in the square matrix is used once. There are N? entries.)
The FFT computes ¢ and f with only %N log, N separate multiplications.

For size N = 1024 = 219, the logarithm is 10. In this case N? (a million steps) are
reduced to 5N (five thousand steps). The transform is speeded up by a factor near 200,
which is truly astonishing.

In my opinion, the FFT is the most important algorithm in computational science.
It has transformed whole industries. When your instruments measure the response to
an input (like the pressure in an oil well), the DFT shows the response to each frequency.
The FFT computes N numbers from /N numbers, very fast.

The Basis Vectors e L in the Fourier Matrix F'

A crucial point is that the basis vectors ey, ..., en—_; are orthogonal. Those vectors are
complex, just as the functions e*** are complex. So their inner products €; e,, require the
complex conjugate of one vector, just like f ein® g=ikz gy
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Here is a typical basis vector e;, followed by the Fourier matrix that contains
€p,€e1,...,en_1 inits columns:

1 1 1 1 1
2mik/N wk 1 w wV-1
e, = e47‘rik/N — w2k: F= 1 ’LU2 wQ(N—l) (5)
1 w1 . . pN-D?
The number w is e2™*/N . We use the Greek letter w for its conjugate W = e 27/N =

It is the properties of 1, w, w?, ... that make the basis vectors (columns of F') orthogonal.

Our first step is to locate w and w in the complex plane. In fact we can locate all the
powers of w up to wN = (e2™/N)N = 2™ = 1. For N = 8, the powers of w produce
8 points evenly spaced around the unit circle . Notice that w® = 1.

For N = 4, the four powers will be 4, i2 = —1, 4> = —i, and i* = 1.

real | axis

Figure 8.5: The eight powers of w = cos % + 4 sin % The polar form w = e2™4/8 is best.

Orthogonality of the Discrete Fourier Basis

The key to good formulas for the Fourier coefficients c is orthogonality. That property
removes every term except term k, when we take a dot product with the basis vector e :

f=coeg+---+cnv_1en_1 and E;ff = Cg EE er = Ncy. (6)

Since eg = (1,1,1,...) and e; = (1, w,w?,...), the crucial step is their zero dot product:
1+ w + w? 4 --- = 0. The eight numbers around the circle in Figure 8.5 add to zero.
Here is the statement and proof that every pair of e’s is orthogonal :

If 2N =1 andz # 1,thenthesum S =14 2 + 2% + ... 4+ 2V-1 iszero. (7)

Proof. Multiply S times z. This gives Sz = z + 22 4+ 2% + --- + zV. Since 2V = 1,
S times z has all the same terms as the original sum S. Then Sz = S. Therefore S = 0.
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Every dot product Egen is exactly our sum S. The number z is W*w™.
1, @%@, )T (1w, w™,. ) )=14+2+4224+--. =8 ©))

The N'th power of z = W*w™ is 2V = (EN)k (wN)"™ = (1)(1). Therefore S = 0.

Conclusion When we multiply ' times F, the diagonal entries are €; e, = N (because
this is a sum of N ones). Off the diagonal we have £ # n and 'é;fen = 0. Therefore

FTF = NI. This confirms that the inverse of the Fourier matrix is F—! = %F .

Note 1. Your eye sees right away that the 8 numbers around the circle add to zero.
Each number cancels its opposite number: 1 + w? is zero, w + w® is zero, w? + w®
is zero, w® + w” is zero. But this proof won’t work for N = 7 or 5 or 3. We can’t pair off
the points when N is odd. They still add to zero by equation (8).

Note 2. A cool proof of orthogonality is to see the vectors e, ...,ex_1 as eigenvectors
of a symmetric matrix. Every symmetric matrix has orthogonal eigenvectors. Problem 14
will choose a suitable matrix (it is a circulant matrix) and pursue this idea.

Here are the components of f = Fc and ¢ = F~! f : Discrete Fourier Transform

N-1 N—
iy j —jk
flesice Z wikey, ck = —ek = Z w” f; 9)
k=0

=0

The symmetry of transform and inverse transform is beautiful. We didn’t see this so
clearly for Fourier series, where ¢ was a vector but f was a periodic function. The ele-

gant symmetry reappears when the transform is between function f(x) and function c(k) :

Fourier o0

Integral c(k) = /f Ye~*Tdr  f(x) = ——/ c(k) e** dk. (10)

Transform i

Everybody notices e ~**% and e?**. Be sure to notice dz and dk. The functions f(x) and

c(k) are defined for —co < & < 0o and —0o < k < oco. The transform connects f(z) in

the space domain to c(k) in the frequency domain. f(z) = é(z) transforms to c¢(k) = 1.

Section 8.6 will solve —y” + y = f(z) (no boundaries !) using this integral transform.
Two more examples of the discrete transform are cos and sin.

Example 4 Sample cos z and sin z at 0, w/2, 7, 37/2 to get discrete vectors cos and sin.
Transform those vectors by F'~!. Invert their transforms by F.

Discrete cosine and sine cos = (1,0,—1,0) and sin = (0,1,0,—1).
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To transform z-space to k-space, we multiply f by F'~1. For N = 4, this matrix contains

powers of w = —i. We remember to divide by N = 4:
1 1 1 1 1 0 0
_ 111 —i -1 i 0 1/2 ) —i/2
1 - _ 1 s
F~* cos =711 21 1 41 1= 0 F~" sin = 0
1 i =1 —i 0 1/2 i/2

Multiplication by F' transforms back to cos and sin. This is exactly consistent with the
famous formulas of Euler: cosz = %(e“’ +e7*®) and sinz = (e —e™*%).

Let me also write exp for the samples (1, w,w?,w3) of € at x = 0,7/2,m,3m/2.
Then we have Euler’s great formulas for vectors :

1
exp = cos + i sin cos = 5( exp + exp)

€Xp = cos — isin sin = %Z( exp — exp)

One Step of the Fast Fourier Transform

Multiplication by an N by N matrix takes N2 multiplications and additions. Since the
Fourier matrix has no zero entries, you might think it is impossible to do better. But the
entries w’* are very special. The FFT idea is to factor F' into sparse matrices.

If you prefer to think of the summation formulas > w/*cy and > @’ f;, each sum
has N terms and a vector needs [V sums. In summation language, the FFT idea is to rewrite
and regroup the sums to have many fewer terms. I will try to use both languages.

The key idea is to connect Fy with the half-size Fourier matrix F/,. Assume that

N is a power of 2 (say N = 1024). We will connect Fyg24 to two copies of F512. When
N = 4, we connect Fj totwo F5’s:

1111 11
1 i 2 3 oo 1 42
Fa=1q poge ge | ond {0 |~ 1
1 i if 49 1 2

On the left is F}y, with no zeros. On the right is a matrix that is half zero. The work is cut
in half. But wait, those matrices are not the same. The block matrix with F3’s is only one
piece of the factorization of F}. The other pieces also have many zeros :

1 1 11 1
1 i 1 2 1

1 -1 11 1 ' (D)
1 —i 1 42 1

Keyidea F; =

The permutation matrix on the right puts ¢p and co (evens) ahead of ¢; and c3 (odds).
The middle matrix performs separate half-size transforms on those evens and odds.
The matrix at the left combines the two half-size outputs, and it produces the correct
full-size output f = Fjc. You could multiply those three matrices to see F.
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The same idea applies when N = 1024 and M = %N = 512. The number w is
e2™i/1024 Tt is at the angle # = 27/1024 on the unit circle. The Fourier matrix Fjo24
is full of powers of w. The first stage of the FFT is the great factorization discovered by
Cooley and Tukey (and foreshadowed in 1805 by Gauss) :

| Isi2 D512 Fs12 even-odd
rer (Step 1) Fio24 = [ Is12 —Dsia ] [ Fs1o :| l: permutation :I (12)
I51 is the identity matrix. Ds12 is the diagonal matrix with entries (1, w, ..., w®!!) using

w1024. The two copies of Fy1o are what we expected. They use the 512th root of unity,
which is nothing but ws;2 = (w1024)%. The even-odd permutation matrix separates the
incoming vector ¢ into ¢’ = (cg, ¢z, ..., c1022) and ¢” = (c1,¢3, .. ., C1023).

Here are the algebra formulas which express this neat FFT factorization of Fly:

(FFT) Set M = —%N . The components of f = Fyc are combinations of the half-
size transforms f' = Fye’ and f” = Fare”. Equation (13) shows If' + Df” and
If’' — Df” with numbers (wy)? on the main diagonal of D :

First half f; = Ffi+@n)iff, j=0,...,M-1

/ e (13)
Second half Fisme = fj—(wn)'f;, 7=0,...,M -1

Thus each FFT step has three parts: split ¢ into ¢’ and ¢”, transform them separately by
Fyrinto £ and f£”, and reconstruct f from equation (13). N must be even!

The algebra of (13) is a splitting into even numbers 2k and odd 2k + 1, with w = wyy :

N-1 M-1 M-1
Even/Odd f; = 3 wie = 3 wben + 3 w ey wih M = . (14)
0 0 0

The even c’s go into ¢’ = (cg,ca,...) and the odd ¢’s go into ¢” = (c1,c3,...). Then

come the transforms Fysc’ and Fyse”. The key is w3, = wyy. This gives wifk = wih.
o . . Lon
Rewrite fi=> wiek + (wny Y witel = f/ + (wn)'f; . (15)
For j > M, the minus sign in (13) comes from factoring out (wN)M = —1.

MATLAB easily separates even c’s from odd c’s. Then two half-size inverse transforms
use ifft. The last step produces f from the half-size f’ and f".
Problem 2 shows that F' and F'~! have the same rows, in different orders.

fl=ifit (c(0:2: N —2))* N/2;% evens

FET Step F"=ifft (c(1:2: N — 1)) % N/2; % odds
SRR 2 D =w.N0: N/2—1)";% diagonal of matrix D
in MATLAB = W. 5 y /0 diagonal of matrix

F=f"+Doxf"; f' = D.xf");
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The flow graph shows ¢’ and ¢” going through the half-size F5. Those steps are called
“butterflies,” from their shape. Then the outputs £’ and f” are combined (multiplying f"
by 1,4 and also by —1, —i) to produce f = Fyc. The indices 0, 1, 2, 3 are in binary.

00 00
Flow
Graph 10 01
cto f
N =14 01 10
M =2

11 11

Figure 8.6: Flow graph from c to f for the Fast Fourier Transform with N = 4.

This reduction from Fly to two F;’s almost cuts the work in half—you see the zeros in
the matrix factorization (12). That reduction is good but not great. The full idea of the FFT
is much more powerful. It saves much more time than 50%.

The Full FFT by Recursion

If you have read this far, you may have guessed what comes next. We reduced Fiy to
Fn/o. Keep going to Fpy4. The two copies of Fyio lead to four copies of Fas6. Then
256 leads to 128. That is recursion. It is a basic principle of many fast algorithms.

Here is the second stage with F' = Fys6 and D = diag (1, ws12, . . ., (ws12)?°°):
I 0 I D F pick 0,4,8,..
Bz |1 -p F pick 2,6,10,.
0 F - I D F pick 1,5,9,..
W3 I —-D F pick 3,7,11,.

Before the FFT was invented, the operation count was N2 = (1024)2. This is about a
million multiplications. I am not saying that they take a long time. The cost becomes large
when we have many transforms to do—which is typical. Then the saving is also large:

1
The final count for size N = 2% is reduced from N2 to EN L.

Here is the reasoning behind %N L. There are L levels, going from N = 2% down to
N = 1. Each level has %N multiplications from diagonal matrices D, to reassemble the
half-size outputs. This yields the final count £ N L, which is 3N log, N.

Exactly the same idea gives a fast inverse transform. The matrix FIQI contains pow-
ers of the conjugate w. We just replace w by w in the diagonal matrix D, and in formula (13).
The fastest FFT will be adapted to the processor and cache capacity of each computer.
For free software that automatically adjusts, we highly recommend the website fftw.org.
This gives the “fastest Fourier transform in the west.”
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10

1 I RV R

® REVIEW OF THE KEY IDEAS =

Multiplying coefficients ¢ by the Fourier matrix F' adds the series f; = > w/*c.

. The inverse matrix F~! = F'//N computes the coefficients ¢, = > w’* f;/N.

The FFT splits those sums in half: % terms with powers of w?. Then recombine.

By recursion the FFT has log, N steps with diagonal matrices: N logs /N operations.

. The columns ej, = (1,w"*, w?*,...) are orthogonal, when w = €*™*/¥ and vV = 1.

Problem Set 8.2

Multiply the three matrices in equation (11) and compare with F'. In which six
entries do you need to know that i2 = —1? This is (w4)? = wo. If M = N/2,
why is (wy )M = —1?

Why is row i of F the same as row N — i of F (numbered from 0 to N — 1)?

From Problem 2, find the 4 by 4 permutation matrix P so that ' = PF. Check that
P? = [ sothat P = P~!. Then from F'F = 41 show that F'? = 4P.

It is amazing that F'* = 16 P? = 161. Four transforms of any c bring back 16 c.
For all N, F?/N is a permutation matrix P and F4 = N21I.

Invert the three factors in equation (11) to find a fast factorization of F' 1.
F is symmetric. Transpose equation (11) to find a new Fast Fourier Transform.

All entries in the factorization of F involve powers of w = sixth root of 1:

eli 107 sl 7 )

Write down these factors with 1, w, w? in D and powers of w? in F3. Multiply!

Put the vector ¢ = (1,0, 1, 0) through the three steps of the FFT to find y = F'e. Do
the same for ¢ = (0, 1,0, 1).

Compute y = Fgc by the three FFT steps for ¢ = (1,0,1,0,1,0,1,0). Repeat the
computation for ¢ = (0,1,0,1,0,1,0,1).

If w = ?7%/64 then w? and /w are among the and roots of 1.

F'is a symmetric matrix. Its eigenvalues aren’t real. How is this possible ?
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The three great symmetric tridiagonal matrices of applied mathematics are K, B, C.
The eigenvectors of K, B, and C are discrete sines, cosines, and exponentials. The eigen-
vector matrices give the DST, DCT, and DFT — discrete transforms for signal processing.
Notice that diagonals of the circulant matrix C' loop around to the far corners.

2 -1 1 -1
K - -1 2 -1 B -1 2 -1
-1 2 -1 1
2 -1 - =1 Kin=Knynv=2
c =| " 2 '1_ _ Bii=Byy=1
-1 - -1 2 Cin =Cn1=-1
11 The eigenvectors of Ky and By are the discrete sines si, ..., Sy and the discrete
cosines ¢y, ..., cy_1. Notice the eigenvector ¢g = (1,1,...,1). Here are sy and

c—these vectors are samples of sin kx and cos kx from O to 7.

and (o 7T_k‘ ﬂ (2N -1)7k
CSQN,COS 2N,...,cos 5N

For 2 by 2 matrices K> and By, verify that s;, s2 and ¢y, ¢ are eigenvectors.

. wk . 2k . N7k
1nN+1, 1nN_+_1,...,s1nN_|_1

12  Show that C3 has eigenvalues A = 0,3,3 with eigenvectors e = (1,1,1),
e = (1L,w,w?), ea = (1,w?,w*). You may prefer the real eigenvectors (1,1, 1)
and (1,0, —1) and (1, —-2,1).

13 Multiply to see the eigenvectors ej and eigenvalues Ay of Cy. Simplify to A\ =
2 — 2 cos(2mk/N). Explain why Cy is only semidefinite. It is not positive definite.

2 -1 o] 1 1
-1 2 -1 u}k . i wk
Cer = -1 2 -1 |w* =(@2-v*-w™") w2k
il -1 2| | wWN-Dk wN=1)k

14  The eigenvectors e of C' are automatically perpendicular because C' is a
matrix. (To tell the truth, C has repeated eigenvalues as in Problem 12. There was
a plane of eigenvectors for A = 3 and we chose orthogonal e; and e in that plane.)

15 Write the 2 eigenvalues for Ko and the 3 eigenvalues for Bs. Always K and By 41
have the same N eigenvalues, with the extra eigenvalue for By 1. (This is
because K = ATAand B = AAT))
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8.3 The Heat Equation

The first partial differential equation in this book was uz, + 4y, = 0 (Laplace’s equation).
This describes a steady state—time is not involved. There is no growth or oscillation or
decay. The problem includes boundary conditions on u(z,y), but not initial conditions.
This is like a matrix equation Au = b (where b comes from boundary conditions).

Now we move to the heat equation ©; = wz,. Time is very much involved. We think
of u as the temperature along a bar at time ¢. We are given the initial temperature (0, x)
at time ¢ = 0 and at each position x. Then heat begins to flow (from positions with higher
temperature to neighbors at lower temperature). This is like a matrix equation u’ = Awu
with an initial condition u(0). Au is now the second derivative u..

We have a PDE and not an ODE, a partial and not an ordinary differential equation,
because the temperature w is a function of both z and ¢.

Example 1 (Infinite bar) Suppose the bar goes from £ = —oo to z = oco. At time
t = 0, the temperature is u = —1 on the left side x < 0 and v = 1 on the right side z > 0.
Heat will flow from the right side to the left side. The temperature along the left half
will go up from v = —1. The right half will go down from v = 1. Solved in Example 6.

Example 2 (Finite bar) Suppose the bar goes from z = 0 to x = 1. The initial
condition u(0,z) = 1 tells us the (constant) temperature along the bar at time ¢ = 0. We
also need boundary conditions like u(¢,0) = 0 and u(¢t,1) = 0 at the ends of the bar.
Then the ends stay at zero temperature for all time ¢ > 0.

Heat will flow out the ends. Imagine a bar in a freezer, with the sides coated. Heat
escapes only at x = 0 and z = 1. We solve the heat equation to find the temperature
u(t, z) at every position 0 < z < 1 and every time ¢ > 0.

. ou  O%u
Heat equation — = —— with u(0,z) =1 and u(¢,0) = u(t, 1) =0. (1)
ot Ox2

A good form for the solution is a Fourier series. It is natural to choose a sine series, since
every basis function sinknz is zero at ¢ = 0 and x = l—exactly what the boundary
conditions require : zero temperature at the ends of the bar.

The initial value (0, z) and the differential equation u; = wu,, will have to tell us the
coefficients by (t), b2(t), . . . in the Fourier sine series. Heat escapes and b (t) — 0.

Solution plan The equation u; = uz, looks different from du/dt = Au, but it’s not.
The solution still combines the eigenvectors. The pieces for the ODE were ce**x. The pieces
for the PDE are be sin krrz.

1. Eigenvectors of A change to eigenfunctions of the second derivative : (sin krz)” =
—k%n?sinknz.

2. u(0) = c;x1 + cowa + - -+ changes to u(0,z) = by sinwx + by sin 2rx + - -+ (with
infinitely many b’s)

3. The solution (7) adds up bye*** sin kmz. It is an infinite Fourier series.

Infinity could make the problem difficult, but the sin k7x are orthogonal. Problem solved.
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Solution by Fourier Series

Everything comes from choosing the right form for the solution u(¢, ). Here it is:

oo
Sine series u(t,z) = by (t) sinwx + b (t) sin 27z + - - - = Z be(t)sinkwx. (2)
k=1

This form shows separation of variables. Functions b (t) depending on ¢ multiply
functions sinkmwx depending on z. When we substitute that product bg(t)sin kmz
into the heat equation, we get a differential equation for each of the coefficients by, :

0 2 ob
&(bk sinkmzx) = 322 — (bg sinkmz) gives 8_: sinkmz = —k*m2by sinkmz.  (3)
Then by’ = —k272by. Solving this equation will produce every b (t) from by (0) :
Decay comes from e br(t) = e~ %" ™"tp, (0). 4)

Final step : The starting values by (0) are decided by the initial condition u(0,z) = 1:

oo
Att=0  u(0,7) =) be(0)sinkrz =1 for0 <z <1. 5)
k=1

This is an ordinary Fourier series question: What are the coefficients of a square wave
SW (x)? Sines are odd functions, sin (—z) = —sinx. The series in (5) must add to —1
for x between —1 and 0. So the square wave jumps from —1 to 1. It is negative on half of
the interval and positive on the other half':

SW(.@):{HI for —1<;r.<0} _ E(smmf:_i_sm?mx“l_“_). ©)

1 for O<e<l T 1 3
The even coefficients by, by, . .. are all zero. The odd coefficients are by, = 4/7k. Those
b’s were computed in Section 8.1, as the first example of a Fourier series. Now these
numbers are giving the coefficients by (0) at ¢t = 0. Then the equation by’ = —k2n2by

tells us the coefficients e =%" ™ty (0) at all future times ¢ > 0:

oo Ll
Solution Z e Kt bi(0) sinkmz = — (e_""ztsin T+ - ) @)
= T

This completes the solution of the heat equation. The heat drops off quickly! Those are
powerful exponentials e~™t and e~°7"t. The bar will feel extremely cold when ¢ = 1.

Note  The correct heat equation should be u; = cugz, with a diffusion constant c.
Otherwise the equation is dimensionally wrong. The units of ¢ are (distance)?/time,
in order to balance u; with uz,. Then c is large for metals—heat flows easily—compared
to its value for water or air. The factor ¢ enters the eigenvalues —ck?72.
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The heat equation is also the diffusion equation. A smokestack is almost a point source
(a delta function). The smoke spreads out (diffuses into the air). This would involve two
space dimensions z and y, or even &, y, z. The PDE could become u; = c(Ugz + Uyy).

Summary We had a boundary value problem in x, and an initial value problem in t :

1. The basis functions Sy = sin kwz depend on x. They solve u,, = Au.

2. The coefficients b; depend on t. They solve b’ = Ab with b(0) coming from u(0).

The basis functions S (z) satisfy the boundary conditions.
Their coefficients by (t) satisfy the initial conditions :

Separationatt = 0 u(0,z) = Z b (0) Sk(x) (8)
The PDE for u(t, z) gives an ODE for each coefficient by (t). Here are three more bars.

Example 3 (Insulated bar) No heat escapes from the ends of the bar. The boundary
conditions change to du/0x = 0 at those ends. The basis functions change to cosines.
The series (8) becomes a Fourier cosine series.

Initial condition u(0,z) = > ax(0)cosknz

Equation for the ay ~ day/dt = —k*r2ayfork=0,1,2,...
Notice that & = 0 is included. The first basis function is cosOrz = 1. Its coefficient
is controlled by dag/dt = 0. Thus &k = 0 contributes a constant ag to the solution u(t, ).

The temperature approaches this constant everywhere along the bar, since ay, ag, as, . . . all
die out exponentially fast.

Example 4 (Circular bar) Now sines and cosines are both included. The basis functions
can also be complex exponentials e?**. Again u goes to a constant steady state cg :

ult;a) = 3 ()™ and Tk = o, ©

When you have a separated form for the pieces of u, your problem is nearly solved.

Example 5 (/nfinite bar) This problem leads to something new and important. There are
no boundaries. All exponentials e?** (not just whole numbers k) are needed. By
combining the solutions for —co < k < 0o we can solve the heat equation starting from
a delta function §(x). This “heat kernel” is the key to chemical engineering. By a totally
unexpected development it is also central to mathematical finance. The prices of stock
options are modelled by the Black-Scholes partial differential equation.

To solve for each separate €%, look for the right multiplier e** :

u = e'“tetk® solves u; = ugz, when iw = (ik)2. (10)
Then iwt = (ik)?t = —k?t. The solution u(t, ) has a separated form, with these pieces :

u(t,z) = e~*'te*® solves the heat equation. It starts from u(0,z) = ¢***. (11)
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The Heat Kernel U (¢, «)

The delta function J(x) contains all exponentials e?** in equal amounts. By superposition,
the solution U to the heat equation starting from 6(z) will contain the solutions e=Fteike
in equal amounts. Integrate e~**teike gver all k to find the heat kernel U.
o0
The solution with U (0,2) = 8(x) is U(t,z) = z—lﬂ f e Fteike i, (12)
—00
Computing this integral is possible, but unexpected. No simple function of k has the

derivative e‘k2t, or close. The neat way is to start with OU/Oz. The derivative of etk
brings the extra factor ik. Then integration by parts connects dU /dx to U :

oo

dU 1 k24 . ik 1 2 i xU
— = "Rt ) (1) dk = — Y (ze*®)dk = ——. (13
B O N8 RS d =gy P ) el
— 0o — 00
Now dU/U equals —z dz/2t. Integration gives —z%/4t and then U = ce~= /4t

The total heat [udz starts at [d(z)dz = 1. To stay at 1, we choose ¢ = 1/v/4nt.
Then we have the “fundamental solution” for a point source.

1
Heat kernel U; = U,, with U(0,z) = (z) Uzme_mz/‘“ (14)

Example 6 On an infinite bar, the heat kernel (14) solves u; = u, starting from d(z)
att = 0. Now solve Example 1, which started from © = —1 for negative z and u = 1 for
positive z. Then solve for any initial function u(0, z).

Here is the key idea for Example 1. The derivative of the jump from —1to l atxz = 0
is du/dz = 28(x). The solution starting from 26(z) has du/dx = 2U, which cancels v/4
in (14). Then integrate 2U to undo the derivative and solve Example 1 for u :

u = Error function 1 r X2 /4t
tz)= — [ e X /X, 15
Integral of 2U ult, ) Vvt ‘/e (1)
0

For z > 0 this solution is positive. For x < 0 it is negative (the integral in (15) goes
backward). At x = 0 the solution stays at zero, which we expect by symmetry. I wrote
the words “error function” because this important integral has been computed and tabulated
to high accuracy (no simple function has the derivative e‘xz). We just change the variable
of integration from X to Y = X/ V/4t, to see the standard error function

€T F/\/a
1 _ X2/t 2 / _y2 ( A )
u=—1_e¢e dX = — e dY =erf| — . 16
' \/:n'tO/ VT ) Vit S

The integral is a cumulative probability for a normal distribution (this is the area under a
bell-shaped curve). Statisticians need these integrals erf (x) all the time. At z = oo we have
the total probability = total area under the curve = 1.



8.3. The Heat Equation 459

Finally, we can solve u; = u,, from any starting function u(0, ). The key is to realize
that every function of z is an integral of shifted delta functions §(x — a):

Every function ug(z) has / up(a) 0(z — a) da = ug(x). (17)

—00

By superposition, the solution to u; = u;, must be an integral of shifted heat kernels.

o0

1 2
Temperature at time t  u(t,z) = —— ug(a)e=(x—a)"/4t dq, (18)
VAart

— 00

I have used the crucial fact that when the point source shifts by a to become é(z — a),
the solution also shifts by a. So I just shifted the heat kernel U, by changing = to z — a.
The heat equation on the whole line —0o < z < oo is linear shift-invariant.

The solution (18) is reduced to one infinite integral—still not simple. And for a more
realistic finite bar, with boundary conditions at z = 0 and z = 1, we have to think again.
There will also be changes when the diffusion coefficient ¢ in u; = (cu,), is changing
with z or t or u. This thinking probably leads us to finite differences.

Separation of Variables

The basis functions sin k7 are eigenfunctions. The same is true for cos k7 and e**™*,
Let me show this by substituting u = B(t) A(z) into the equation u; = u,,. Right away
us gives B’ and u,, gives A”. The separated variables are connected by u; = Uy :

B'(t) A(z) = B(t) A”(z) leadsto " = ®) = constant (19)

Why a constant? Because A”/A depends only on x and B’/B depends only on t. They
are equal, so neither one can move. Call that constant —\:

A// B/

= —Agives A = sinVAz and cos VAz —\gives B = e~
The products BA = e * sinv/ Az and BA = e~** cos vV Az solve the heat equation
for any number X. But the boundary condition u(¢,0) = O eliminates the cosines.
Then u = 0 at x = 1 requires sin VA = 0and A = k%72 Separation of variables has
recovered the correct basis functions sin k7 as eigenfunctions for A” = —\A.

(20)

Example 7 (Smokestack problem) We backed away from the heat equation in 2 + 1
dimensions. The solution to %u; = Ugze + Uy, involves three variables ¢, x, y. Put a
smokestack at the center point z = y = 0, and suppose there is no wind. Then nothing
depends on the direction angle 6. Smoke will diffuse out from the center. The concentration
depends only on the radial distance r, and we solve the radially symmetric heat equation.
Our final solution is u(t, 7).
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The heat equation is not quite u; = wu,, because r = constant is curved (a circle).
The correct radial equation is perfect for separation of variables u = B(t) A(r).

ou O*u  10u 1

==+ -Z" leadsto B’ = y'0Y

Erimlew + ~ gy leadsto (t) A(r) = B(t) (A" + TA) (21)
Again B’/B = constant = —) and B = e~** as before. But instead of A”/A = — )\, we
have Bessel’s equation for the radial eigenfunction A(r):

24 14

Basis functions A (r) it —

= —AA has a variable coefficient 1 (22)
r

The solutions are among the special functions that have been studied for centuries. They
are not complex exponentials because the coefficient 1/r is not constant. Bessel replaces
Fourier. This book can’t go all the way to solve Bessel’s equation, but see Section 6.5.
A heat equation with symmetry led Bessel to new eigenfunctions.

® REVIEW OF THE KEY IDEAS =

1. The heat equation u; = u, is solved by e~**7*t gin kr for every k =1,2,...

2. A combination of those solutions matches the initial (0, z) to its Fourier sine series.
3. Withu, = 0 atz = 0 and 1, use cosines. With an infinite bar, use all e’kzte“”.

4. The heat kernel U = e‘zQ/‘“/\/Zﬁ solves U = U,, starting from Uy = 6(z).

5. Separation into B(t) A(z) shows that A(z) is an eigenfunction of the “z part” u;.

Problem Set 8.3

1 Solve the heat equation u; = cu,, on an infinite bar with coefficient c, starting from
u = €% att = 0. Asin (10) the solution has the product form u = ewtethe

With ¢ in the equation, find w for each k.

2 Solve the same equation u; = cug, starting from the point source u = §(z) =
f e’*® dk/2m at t = 0. By superposition, you integrate over all k the solutions u
in Problem 1. The result is the heat kernel as in equation (14) but adjusted for c.

3 To solve u;y = cuy, for a bar between x = 0 and x = 1, the basis functions are
still sin k7ma (with u = 0 at the ends). What are the eigenvalues )\ that go into the
solution 3" by, (0) e~ *** sin kra ?

4 Following Problem 3, solve u; = cuz; when the initial temperature is ug = 1 for
i <z< % (and ug = 0 on the first and last quarters of the bar). The problem is to
find the coefficients by (0) for that initial temperature.
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5

10

11
12

13

Solve the heat equation u; = uz, from a point source u(z,0) = d(x) with free
boundary conditions u’(m,t) = u’(—m,t) = 0. Use the infinite cosine series
0(z) = (14 2cosz + 2cos2x + - - - )/2m multiplied by time decay factors b (t).

(Bar from z = 0 to x = 00) Solve u; = uy; on the positive half of an infinite bar,
starting from the shifted delta function ug = d(z — a) at a point z = a > 0. Here
is a way to use the full-bar heat kernel U in (14), and still keep u = 0 at z = 0.

Imagine a negative point source at z = —a. Solve the heat equation on the fully
infinite bar, including both sources in ug = d(x — a) — é(x + a) at t = 0. Your
solution (a difference of heat kernels) will stay zero at the boundary x = 0 (Why ?).
Then it must be the correct solution on the half-bar, since it started correctly.

Check that the basis functions s = sin (k+%) mx are orthogonal over 0 <z < 1.
Find a formula for the coefficient B4 in the Fourier series F(z) = > Bysk.
(Multiply by s4(z) and integrate, to isolate By.)

The basis functions sin (k + %)wx are for fixed-free boundaries (u = O atz = 0
and v/ = 0 at x = 1). What are the basis functions for free-fixed boundaries
(w'=0atz=0andu=0atx =1)?

Suppose Uty = Uz, — w with boundary condition v = Oatz = 0 and z = 1.
Find the new numbers )y in the general solution u = 3 b;(0)e "+ sin knz.
(Previously Ay = —k?72, now there is a new term in \ because of —u.)

Explain each step in equation (13). Solve dU/dxz = —zU/2t to reach U = e~ /4,
How do the known infinite integrals [ e=*"dz = /7 and Judz = 1 lead to the
factor 1/v/4mt ?

(Shift invariance) What is the solution to u; = u,, starting from d(x — a) att=07?

What are basis functions A(z,y) for heat flow in a square plate, when v = 0 along
the four sides x = 0,z = 1,y = 0,y = 1 ? The heat equation is u; = Uz, +
uyy. Find eigenfunctions for A;, 4+ A,, = AA that satisfy the boundary conditions.

The first eigenfunctionis A;; = (sin7z)(sin 7y). Find the eigenvalues .

Substitute U = e—=°/4 /V4 7t to show that this heat kernel solves Uy = Ugy.
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Notes on a heat bath (This is the opposite problem to a hot bar in a freezer.)
The bar is initially at U = 0. It is placed into a heat bath at the fixed temperature Ug = 1.
The boundary conditions are no longer zero and the bar will get hot.

The difference V. = U — Up has zero boundary values, and its initial values are
V = —1. Now the eigenfunction method (separation of variables) solves for V. The
series in (7) is multiplied by —1 to account for V(z,0) = —1. Adding back Ug solves

the heat bath problem: U = Ug + V = 1 — u(z, t).

Here Up = 1 is the steady state solution at t = oo, and V is the transient solution.
The transient starts at V' = —1 and decays quickly to V' = 0.
Heat bath at one end This problem is different in another way too. The fixed
“Dirichlet” boundary condition is replaced by the free “Neumann” condition on the slope :
u’(1,t) = 0. Only the left end is in the heat bath. Heat flows down the metal bar and out
at the far end, now located at x = 1. How does the solution change for fixed-free?

Again Up = 1 is a steady state. The boundary conditions applyto V =1 — Ug:

Fixed-free _ Fin o 1
eigenfunctions V(0)=0and V'(1) =0 leadto A(x) =sin (k+ 3)rz.

Those new eigenfunctions (adjusted to A’(1) = 0) give a new product form By (t) Ax () :

Fixed-free solution V(z,t) = Z By (0) e~ 27t gin (k + ).

odd k
All frequencies shift by £ and multiply by 7, because A” = —AA has a free end at
x = 1. The crucial question is: Does orthogonality still hold for these new eigenfunc-
tions sin (k: + %) mx? The answer to Problem 7 is yes because A” = —\A is symmetric.

Notes on stochastic equations and models for stock prices with Brownian motion.

A “stochastic differential equation” has a random term on the right hand side. Instead of a
smooth forcing term ¢(t), or even a delta function 6(t), the models for stock prices include
Brownian motion dW. The idea is subtle and important, and I will just write it down. A
random step has AW = Z+/dt. Here Z has a normal Gaussian distribution with mean zero
and variance 02 = 1. But a new Z is chosen randomly at every instant.

The step size v/At produces a random walk W (t) with wild oscillations. You could see
a discrete random walk from W (¢ + At) = W (t) + Z+/At, and then let At approach zero.
The true random walk is nowhere continuous.

A steady return S(t) on an investment has S’ = aS. The growth is S(t) = €**5(0)
exactly as in Chapter 1. But stock prices also respond to a stochastic part o dW, where
the number o measures the volatility of the market. This mixes ups and downs from
Brownian motion o dWW with steady growth (drift) from dS = aS dt :

as
“Diffusion” and ““drift” < = dW +adt.
Then the basic model for the value of a call option leads to the Black-Scholes equation.
The solution comes by a change of variables to reach the heat equation. When they are
buying and selling options, traders would have that solution available at all times.
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8.4 The Wave Equation

Heat travels with infinite speed. Waves travel with finite speed. Start both of them from a
point source ug(x) = d(z). Compare the solutions at time ¢ :

Heat equation u; = Uz u(t,x) = \/iﬁ e~=/4t is a smooth function
Wave equation uit = c2ug, u(t,x) = 36(z — ct) + 36(x + ct) has spikes

We are starting from a big bang u = §(z) at z = 0. At a later time ¢, the bang reaches
the two points * = ct and x = —ct. That represents travel to the right and to the left
with velocities dz/dt = ¢ and —c. The speed of sound in air is ¢ = 342 meters/second.

Notice another difference from the heat equation. After the bang passes point x = ¢
at time ¢t = 1, silence returns: 6(x — ct) = 0 when ¢t > z. For the heat equation,
temperatures like e~="/4 never return to zero. A wavefront passes by and we hear it only
once. There is no echo or our ears would be full of sound.

In reality the heat equation is often mixed in with the wave equation. The sound diffuses
as it travels. Then we do hear noise forever, but not much : the intensity decays fast.

The One-Way Wave Equation

We begin with a problem that will be particularly clear. It is first order in time (¢ > 0)
and first order in space (—oo < & < 00). The velocity is still c:

ou ou
=c— with u =ug(x) at t=0. (1)

One-way wave —
ne-way wavi 5 .

One solution is u = €%, Its time derivative du/dt brings a factor c. The same will be
true for sin(z+ct) and cos(z+ct) and any function of x+ct. The right function is ug(z+ ct)
because this gives the correct start ug(x) at time ¢ = 0

Solution to u; = cu, u(t, ) = uo(x + ct). 2)

Suppose ug(x) is a step function (a wall of water). We have ug(x) = 0 for negative x and
uo(z) = 1 for positive x. Then the dam breaks. A wall of water moves to the left with
velocity c. At time ¢, the water reaches the point z = —ct where x + ct = 0.

u=uo(r+ct)=0 for z+ct<0

u=ug(x+ct)=1 for z+ct>0 )

Wallat z = —ct
The line z+ ct = 0 is called a “characteristic.” The signal travels (with signal speed c) along
that line in space-time, to tell about the jump fromuz = 0tou = 1.
For any initial function ug(z), the solution u = wuo(x + ct) is a shift of the graph.
It is a one-way wave, no change in shape. The waves from u;; = gy go both ways.
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Waves in Space

Now we solve the wave equation 8%u/89t? = c? 8%u/O8z?. The three-dimensional form
would be uyy = c®(ugy + Uyy + uz). This is the equation satisfied by light as it travels
in empty space: a vacuum. The speed of light c is about 300 million meters per second
(186, 000 miles/second). This is the fastest possible speed in Einstein’s relativity theory.

The atmosphere slows down light. Positioning by GPS uses the speed ¢ and the travel
time to find the distance from satellite to receiver. (It includes many other extremely small
effects.) In fact GPS is the only everyday technology I know that requires both special
relativity and general relativity. Amazing that your cell phone can include GPS.

The wave equation is second order in time because of 8%u/0t2. We are given the
initial velocity vo(x) as well as the initial position ug(x).

Att =0andall = u = ug(z) and Ou/0t = vo(x). 4)

Look for functions that have u; equal to c?ug,. Now e®*<' and e®~¢* will both
succeed. Two time derivatives produce a factor ¢ twice (or a factor —c twice, both cases
give c2). All functions f(x + ct) and all functions g(x — ct) satisfy the wave equation.
The wave equation is linear, so we can combine those solutions.

Complete solution to usy = c?ugy u(t,z) = f(z+ct) + g(x —ct) (5)

Two functions f(z + ct) and g(z — ct) are exactly what we need to match two conditions
ug and vg att = 0:

T

1
Cf,(fl') _ Cg,(;z;) and then E b/’UO dr = f(m) — g(x)

Position u(z) = flz) + g(=
Velocity vo ()

Add those equations to find 2f(x). Subtract those equations to find 2g(z). Divide by 2:

f@) = yunle) + - [wds  g) = @) - 5 oot ©
0 0

Then d’Alembert’s solution u to the wave equation has a wave traveling to the left with
shape f and a wave traveling to the right with shape ¢ :

u=flz+ct)+g(x—ct)= uo(z + ct) + uo(z = cf) + 1 / vo(x) dz 7

2 2c
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Example 1  Start from rest (velocity vg = 0) with a sine wave ug(z) = sinwz. That
wave splits into two waves :

t —ct 1 1
u(t,x) = uo(z + ct) ;—uo(x ct) =5 sin(wz + cwt) + 3 sin(wz — cwt).  (8)

The trigonometry formula sin A + sin B = 2sin A%Q cos Ag—B produces a short answer :

u(t, ) = (sinwx)(cos cwt) Two traveling waves produce one standing wave.

You sometimes see standing waves in the ocean. Not what a surfer wants to find.

+ later start later — /\_/\-/\

t=m/w

Figure 8.7: Always two traveling waves. Sometimes their sum is a standing wave.

The Wave Equation fromxz = 0toxz =1

Now we leave infinite space-time. The waves we know best are on a finite Earth.
They may come from a violin string, fixed at both ends. They could also be water waves
(even a tsunami). They may be electromagnetic waves: light or X-rays or TV signals.
Or they may be sound waves that our ears convert into words. All these waves are bringing
information to our brains, and they are essential to life as we know it.

Start with a violin string of length 1. The velocity c depends on the tension in the string.
The ends at = 0 and 1 are assumed to remain fixed:

Boundary conditions at the ends u(t,0) =0and u(t,1) = 0. )

If we pluck the string with our finger at time ¢ = 0, we give a vertical displacement u( and
a vertical velocity vy (this might be zero):

Ou

81,‘(0’:0) = vp(z). (10)

Initial conditions at the start u(0,2) = uo(x) and
If we remove our finger after time zero, waves move along the string. They are reflected
back at the ends of the string. The sound is not a single beautiful note (it is a mixture
of waves with many frequencies). Still a composer can include this plucking sound in a
symphony and a guitarist uses it all the time.
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The usual sound from violins comes from a continuous source—which is the bow.
Now we are solving ©¢ = gz + f(t, ). When the violinist puts a finger on the string,
that changes the length and it changes the frequencies. Instead of waves of length 1 we
will have waves of length L and higher notes.

With several strings the violinist or cellist or guitarist is producing several waves of
different frequencies to form chords. Let me stay with one string of length 1.

Separation of Variables

We will use the most important method of solving partial differential equations by hand.
The wave equation uy = c%uy, has two variables t and z. The simplest solutions are
functions of = multiplied by functions of ¢.

If u= X(x)T(t) then wuy = c*uz, is X(x)T"(t) =2 X" (x)T(t). (11)

T" and X" are ordinary second derivatives. We can divide equation (11) by c2XT:

11 n X n

) i .2
Separation of variables 2T X - w*. (12)

The function 7" /T depends only on ¢. The function X /X depends only on x. So both
functions are constant and they are equal. By writing —w? for the constant, the two separated
equations have the right form:

X" =_w?X X = Acoswz + Bsinwz (13)

T" = —w2e2T T = C coswct + Dsinwct (14)
Key question: Which frequencies w are allowed ? The boundary valuesat z = 0 and z =
decide this perfectly. We want sines and not cosines, in order to have X (0) =

We want frequencies that are multiples of 7 in order to have X(1) = Bsinw =
This gives very specific frequencies w = 7, 27, 3, . . . and no others.

1
0.
0.

The base frequency of the violin string is 7 and the harmonics are multiples w = n.
If we touch the string and reduce its length to L, we want sinwL = 0. Then the permitted
frequencies increase to w = m /L. The notes go up the scale, separated by an octave.

Those frequencies w also go into the time function 7'(¢). The initial conditionis T/ = 0
if the initial velocity is vg = 0. Only the cosine survives in the time direction:

X = Bsinnnz T = C cosnmct u = XT = b(sinnnz)(cosnwct). (15)

With length L, the natural frequencies in time are w = nwc/L. The wavelengths in space
are 2L /n. The displacement of the string is a combination of solutions X (2)7'(¢) :

T nmwct
) <cos > . (16)
L

You see immediately that vy = c?ug, for every one of those terms, and any combination.

o n
u(t,x) = 21 bn (sin
n=
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Final question: What are the numbers by, 7 Those are decided by the remaining condition:

> nmwx
Initial condition u(0,x) = up(z) = br, sin —. (17)
n=1 L
This is a Fourier sine series! The formula for b; comes from multiplying both sides by
sin kwz/ L and integrating from O to L along the string. Only one term n = k survives:

L L
L
/uo(x) sin kmx doe = /bk(sin krz)ide = Ebk' (18)
0 0
Inserting each by, into (16) completes the solution of the wave equationon 0 < z < L.

Example 2  Suppose the length is L = 3 and the initial displacement is a hat function :

1
ug(z) =z for 0 <z <1 and uo(x)=§(3—a:) for 1 <z <3.

The integrals in (18) lead in Mathematica to by, = 3/2k*n?. The decay rate is 1/k? for
this function u(z) with a corner. The slope drops from 1 to —% at z = 1. The infinite
series (16) will converge at every point in space-time to the correct solution u(¢, x).

Notice also that every piece of u splits into f + g, by the formula for sin A cos B:

nre nmet . nm(x + ct) nmw(z — ct)

SinTcosT = 2sin oL
We get two wave functions as always, specially chosen to fit the string length L. If the

initial velocity vy is not zero, then the solution (¢, z) also contains sine functions of ¢.

+ 2sin = f(xz + ct) + g(z — ct).

Our functions X (x) = sinnma /L are actually eigenfunctions of the string :
Az = Ax becomes X/ = —w?X  The matrix A changes to a second derivative.

Again linear algebra and differential equations go hand in hand. For linear equations.

® REVIEW OF THE KEY IDEAS =

. The one-way wave equation u; = cu, is solved by u(t, z) = ug(z + ct).

. The two-way equation us; = c?u,, allows two waves f(z + ct) and g(z — ct).

. Att = 0, the d’Alembert solution (7) matches uo(z) and vo(x) on the whole line.
. The Fourier solution (16) chooses by, so that (0, z) = ug(z) for0 <z < L.

Separation of variables into u= X (z)T(t) gives X ”/ = —w2 X and T = —w?2c?T.

= Y T R TR TR

. Zero boundary conditions give w = n7/L and eigenfunctions X (z) = sinnwz /L.
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Problem Set 8.4

Problems 1 -4 are about the one-way wave equation u /9t = cdu/dx.

1 Suppose u(0,z) = sin2z. What is the solution to us = cuz? At which times
t1, to, ... will the solution return to the initial condition sin 2x ?

2 Suppose ug(z) = &(x), a big bang at the origin of the one-dimensional universe.

At time ¢t the bang is heard at the point z = . For uy = Uz, the bang
will reach the two points z = andz = ___ attimet.
3 (a) Integrate both sides of u; = cu, from £ = —o0 to 0o to prove that the total

mass M = [udz is constant: dM/dt = 0.

(b) Multiply by u and integrate both sides of uu; = cuu, to prove that E = [ u? dz
is constant.

4 Is the wave u(t,z) = ug(x + ct) traveling left or right if ¢ > 0? To solve u; = cu,
on the halfline 0 < z < co, why is a boundary condition u(t,0) = 0 not wanted ?
With ¢ < 0 and waves in the opposite direction, that condition is appropriate.

Problems 5 -9 are about the one-dimensional wave equation 8%u/9t? = c28%u/9z>.

5 A “box of water” has ug(z) = 1 for —1 < x < 1. Starting with zero velocity vo(z),
the wave equation us; = c*ug, is solved by u(t,z) = fuo(z + ct) + suo(z — ct).
Graph this solution for small ¢t = %c and large t = 3c.

6 Under a flat ocean with ug(x) =1, an earthquake produces vg(z) =4d(x). A one-
dimensional tsunami starts moving with speed c. What is the solution (7) at time ¢ ?

7 Separation of variables gives u(t,z) = (sinnz)(sinnct) and three other similar
solutions to uy = c*ug,. What are those three ? Which complex functions etkz giwt
solve the wave equation ?

8 The 3D wave equation Uyt = Uge + Uyy + U, becomes 1D when u has spherical
symmetry : u depends only on 7 and ¢.

YT TG 0%u 0%u 2 Ou
r=/a?+y2 + 22 and —
\/ ot? or? r or

(a) Mulriply by r to find (ru)y = (ru) ! Then ru is a function of r + ¢ and r — ¢.

(b) Describe the solution ru = §(r — ¢t — 1). This spherical sound wave has the
radius r = att = 8.

9  The wave equation along a bar with density p and stiffness & is (put): = (ktg) 2.

What is the velocity ¢ in uy = c?uz,? What is w in u = sin(wrz/L) coswt ?
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10  The small vibrations of a beam satisfy the fourth order equation uy; = —c*Ugzza.
Look for solutions v = X (z)7T(t) and find separate equations for the functions X
and T Then find four solutions X (z) when T'(t) = coswt.

11 If that beam is clamped (v = 0 and du/dz = 0 at both ends z = 0 and z = L),
show that the frequencies w in Problem 10 must have (coswL)(coshwL) = 1.

Problems 12 — 16 solve the wave equation with boundary conditionsat z = Oand x = L.

12 A string plucked halfway along has ug(z) = 6(z — %) and vo(z) = 0. Find the

Fourier coefficients by from equation (18). Write the first three terms of the Fourier
series solution in (16).

13 Suppose the string starts with zero velocity vg(z) from a hat function: ug(z) = 2z /L
forx < L/2 and ug(z) = 2(L — z)/L for x > L/2. Find the Fourier coefficients by,
from (18) and the first two nonzero terms of u(¢, z) in (16).

14  Suppose the string starts with zero velocity vo(x) from a box function: ug(z) = 1
for x < L/2. Find all the by, in the solution u = Y by sin(nnz/L) cos(nmct/L).

15  The boundary condition at a free end x = L is Ou/dz = 0 instead of u = 0.
Solve X” + w?X = 0to find X (z) and all allowable w’s with this new condition.
Then solve 7" + w?c2T = 0 to complete the solution u = 5 a, X (x) T'(t).

16  What is the solution u(¢,x) on a string of length L = 2 if u(0,z) = 6(z

(z —1)?
The end = 0 is fixed by u(¢,0) = 0 and the end z = 2 is free: Ju/dz(t,0) =

0.
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8.5 The Laplace Transform

When it succeeds, the Laplace transform can turn a linear differential equation into an
algebra problem. Laplace transforms are applied to initial value problems (¢ > 0).
Fourier transforms are for boundary value problems. Laplace has e~ instead of e***.

When does this transform method succeed ? I see two desirable situations :
1. The linear equation should have constant coefficients, as in Ay” + By’ + Cy = f(t).
2. The driving function f(¢) should have a “convenient” transform.

Our list of good functions includes f(t) = e®* and its transform F'(s) = 1/(s — a).
Then the differential equation will tell us the transform Y (s) of the solution. The final step
is to discover which function y(¢) has this transform Y (s). Using our list of transforms
and especially the rules for finding new transforms, this becomes a problem in algebra:
Invert the transform Y (8) to find the solution y(t). These pages complete Section 2.6.

Particular solutions are easy with f(t) = e?'. The method of undetermined coefficients
taught us to look for y,(t) = Ye®. The Laplace transform is not strictly needed when
f(t) = e or t"™ or sinwt or coswt. But for driving functions that turn on and off,
and functions that jump or explode (step functions and delta functions and worse),
the algebra becomes more systematic and better organized by the Laplace transform.

Examples 1, 2, 3 with real, imaginary, and complex poles show you the key ideas.

The Transform F(s)

Start with a function f(t) defined for ¢ > 0. Multiply by ¢! and integrate from ¢ = 0 to
t = oo. The result is the Laplace transform F'(s) and it depends on the exponent s :

Laplace transform L[f(t)] = F(s) = / F(t) e ** dt. (@)
t=0

The number s can be real or complex. The one key requirement on s is that the infi-
nite integral in (1) must give a finite answer. Here are examples needing s > 0 and s > a.

o0 st t=00
f®) =1  F(s)= /e"“ dt = [?—t-] . )
0 —S Jt=0 s
i (a—s)t >
) =e  Flo)= [etertay = ek R 3)
la-s], s—a

0

The integral of e~ is finite when s is positive. More than that, it is finite when the real part
of s is positive. A factor e~*“* from the imaginary part iw has absolute value 1. Laplace
transforms are defined when the real part of s exceeds some value sg. Here so = a.
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Important All functions in this section have f(¢) = 0for ¢t < 0. They startat¢ = 0.

So the constant function f(¢) = 1 is actually the unit step function. It jumps from 0 to 1
at t = 0. Its derivative is the delta function J(¢); this includes the spike at t = 0. In
this way, the initial value problem ¢’ + y = 1 ignores all ¢ < 0 and starts from y(0).

You will see that the Laplace transform of that equation is sY'(s) — y(0) + Y'(s) = 1/s.
Then algebra gives Y'(s) and the inverse Laplace transform gives y(t).

The second example f = e includes the first example f = 1, which has a = 0.

Then 1/(s — a) becomes 1/s. We need Res > a to drive e**e5¢ to zero at t = oo.
There are decreasing functions like f(t) = e~ that allow every complex number s.

There are also rapidly increasing functions like f(t) = et” that allow no s at all.

For a delta function located at t = T' > 0, the integral picks out the transform e =57 :
o0
f)=6(t—T) F(s)= /6(t ~T)e *dt =e°T. 4)
0

To complete this group of examples (the all-star functions), a simple trick gives the
transforms of coswt and sinwt. Write Euler’s formula e*“* = coswt + isinwt. Take the
Laplace transform of every term:

Linearity L [e™Y] = £ [coswt] + 4 £ [sin wt]
The left side is 1/(s — iw). Multiply by (s + iw)/(s + iw) to see real and imaginary parts :

il s+ 1w S+ 1w S
, — = ——— Lfcoswt] = —-
s—iw s+iw  s$2+w 52 + w?

and £ [sinwt] = 37::—“72 (5)

Exponents in f(t) are Poles in F(s)

Let me pause one minute, before using Laplace transforms to solve differential equations.
We can already see the key connection between a function f(t) and its transform F'(s).
Look at this Table of Transforms :

f@ | 1 et 6(t—T) | coswt sin wt t" ect
1 1 s w n!
F - —sT
(s) s s—a| © s24+w? | s24w?| (s—c)nt!

Here is the important message. If f(t) includes e®! then F(s) has a “pole” at s = a.
A pole is an isolated point a, real or complex, where the function F'(s) blows up. Some
integer power (s — a)™ will cancel the pole and leave an “analytic” function (s — a)™F'(s).
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An example shows this matchup of exponents in f(¢) to poles in the transform F'(s) :

F(t) =e% + et 4 et + e~ 4 te°t has exponents 0, a, iw, —iw, ¢

1 2s N 1 B something
s—a (s—iw)(s+iw) (s—c)? s(s—a)(s—iw)(s+iw)(s—c)?

F(s)==+

The first term 1/s has exponent 0 in f(¢) and blowup at the pole s = 0. The last term
1/(s — ¢)? has exponent c and double blowup (double pole) at s = c. In the middle,
2 coswt contains two exponents iw and —iw, so the transform F'(s) has those two poles.

At the very end you see all the pieces of F'(s) tangled together in one big fraction.
This is how F'(s) comes to us from a differential equation. Normally we must factor the
denominator to see five separate poles at s = 0, a,iw, —iw,c. Then F(s) splits into its
simple pieces (called partial fractions). The inverse Laplace transform of each piece of
F(s) gives a piece of f(t). PF2 and PF3 in Section 2.6 allowed two or three pieces.

An engineer moves poles by changing the design. Then the exponents move. The system
becomes more stable if their real parts become more negative. A quick accurate picture of
stability comes from the poles of F'(s). If all those poles are in the left half of the complex
plane, where Re s < 0, the function will decay to zero (asymptotic stability).

The new function in this example is te°t. We remember that the extra factor ¢ appears
in the solution y(t) when the exponent c is repeated (c is a double root of the polynomial
52 — 2cs + ¢ that comes from y” — 2cy’ + c?y). The double root becomes a double pole
in the transform, when (s — c)? shows up in the denominator of F'(s). Here is the required
step, to confirm that the transform of f(t) = tet is F(s) = 1/(s — c)2.

oo oo
dF
The derivative of F(s) = / Ftyetdr 1s S = / _tf(tye="tat,
0 0

Rule: If the function f(t) transforms to F(s), then tf(t) transforms to —dF'/ds.
When this rule is applied to f(t) = e* with F'(s) = 1/(s — c), we learn that te transforms
todF/ds =1/(s — c)2.

This rule extends directly to higher powers of ¢ in t" f(¢). Each time you multiply by ¢,
take the derivative of F'(s). Remember to multiply by —1:

d*F d? 1 d -1 2
2 N 2 2 ct N —_ ) =e— =
AL 1) sz ' ° ds? <s = c> ds(s—c)*  (s—c)®

Continuing this way, the transform of t"e* is n!/(s — c¢)"**. This was the last entry in our
Table of Transforms. In the special case ¢ = 0, the transform of t™ is n!/ sl

Now we can work with any real poles ¢ or imaginary poles iw in F'(s). Example 3
will allow complex poles ¢ + iw. This solves all equations Ay” + By’ + Cy = 0.
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Transforms of Derivatives

Differential equations involve dy/d¢t. We must connect the transform £[dy/dt] to L[y].
This step was especially easy for Fourier transforms—just multiply by ¢k. For Laplace
transforms we expect to multiply Y (s) by s to get L[dy/dt], but another term appears.

The reason this happens is that Laplace completely ignores ¢ < 0. The integral starts
at t = 0 and the number y(0) is important. A good thing that y(0) enters the Laplace
transform, because we certainly expect it to enter the solution to a differential equation.

It is integration by parts that connects £ [dy/dt] to £ [y]. Two minus signs cancel :

z Ood —st i —st —st100
L[d_zr:Jzo/d—?e dtzo/y(t)(se )t + [y(t)e"] " = s £ [y] —y(0). (6)

This is the key fact that turns a differential equation for y(¢) into an algebra problem for
Y (s). If we repeat this step (apply it now to dy/dt), you will see the transform of the
second derivative. Use equations (6) and (7) to transform differential equations.

d2

Let me use this rule right away to solve three differential equations. The first has real poles.
The second has imaginary poles. The third has complex poles s = —1 =+ 4.

Example 1  Solve y’ — y = 2e~* starting from y(0) = 1.
Solution  Take the Laplace transform of both sides. We know £ [2e™¢] = 2/(s + 1):

sL[y] —y(0) — L[y] = L [2e7"] isthesameas (s —1)Y(s) =1+ E%I'

Then algebra gives Y (s) and we split into “partial fractions™ to recognize y(t).

Y(o)m ke 2 _1 (1 1\ 2 1
Ts—1 (s—=1D(s+1) s-—1 s—1 s+1) s—1 s+1

The inverse transform of Y (s) is y(t) = 2e* — et

I always check that y(0) = 2 — 1 = 1 and ¢/(t) = 2e’ + et agrees with y + 2.
And don’t forget our usual method. A particular solution is y, = —e™*. It has the same form
as the driving function f(¢) = e~*. The null solution is y,, = Ce’.

From Chapter2 y=1y,+y,=—e t+Ce® y(0)=1 gives C =2

Maybe the earlier method is simpler for this example? The next examples give practice
with second order equations. The complex poles of Y (s) give oscillations €™ in y(t).
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Example 2  Solve the equation y” + y = 1 sin2¢ starting from rest: y(0) = y'(0) = 0.
The transform of y” is s?Y (s) from (7):

1

sY(s)+Y(s) = (s2+1)(s2 +4)

m and then Y(S):

Partial fractions will rewrite that transform Y'(s) as

B 1 _1(s*+4)-(s*+1)  1/3  1/3
YO =@ D@ 0 3 @iD@id o+l wia O

We recognize those fractions as transforms of sine functions with w = 1 and w = 2::

Solution y(t) = % sint — % sin 2¢ has initial values y(0) = 0 and y’(0) = 0.

The transform of sin 2t is 2/(s? + 4), which explains why 1/3 becomes 1/6.
In Chapter 2 we would have found y,(t) and y,(t) to reach the same y(t) :

Y=Yp tYn= —é sin 2t + ¢; cost + ¢y sint.

Then ¢; = 0 because y(0) = 0, and c; = £ because y'(0) = 0. Both ways are good.
s—1

Example 3 "4+ 29" +2y =0 with y(0) = y’(0) = lhasY(s) = ———M.
P y y' +2y y(0) = y'(0) (s) 5 12512

Then the roots of s? + 2s + 2 are the complex poles s = —1 =+ i.

This Y (s) is not yet in our table. But we know the complex solutions e(~1+9* and
e(=1=9t_ Their real and imaginary parts are e~ cos ¢t and et sin ¢t. The combination that
has y(0) = y’(0) = lisy = et cost + 2e~tsin ¢t. This must be the function y(¢) that
transforms to Y'(s).

The real and imaginary parts of e’e’! transform to the real and imaginary
parts of 1/(s — ¢ — iw). Those two new transforms solve Example 3 when ¢ = —1
and w = 1. We can now solve every equation Ay” + By’ + Cy = 0.

s—c¢ w
e cos wt transformsto —— e sin wt transformsto —— .
(s —¢)? + w? (s —¢)? + w?

Shifts and Step Functions and Cutoffs

Suppose the driving function f(¢) in a differential equation turns on at time 7. Or suppose
it turns off. Or it jumps to a different function. All these jumps in f(t) are realistic in
practical problems, and they are automatically handled by the Laplace transform.
Essentially, we need the transform of a step function. The basic example is a unit step
that jumps from f = 0fort < T to f = 1 fort > T'. The transform is an easy integral :

o0

—-st‘IOO e-—sT

s) = st _ |—€ i
£t Fa)= [ e a= | =5 ©)

I
t=0 t=T

T
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A step function at T' transforming to e~*7 /s is an example of a new rule.
The step at T is a time shift of the step at £ = 0. Multiply the transform by e —*7.

The original f(t) has the transform F'(s). The shifted function is zero until ¢ = T, and
then itis f(¢ — T"). For the example of a unit step, the shifted step is zero for t < T

Here is the proof of the transform rule for the shifted function : multiply by e~*7.

f(t) shifts to f(t — T)

- Stdt = —s(r47T) 4 _ o—sT
F(s) becomes e *T F(s) q/f(t T)e*dt O/f(T)e dr = e *1 F(s).

The first integral has 7" < ¢ < oco. The second integral has 0 < 7 < oo. The new variable
7 = t — T shifts the lower limit on the integral back to 7 = 0, and it produces the
all-important factor e ~*7. We end with two examples that need this shift rule.

Example 4 (Unit step function) Solvey’ —ay=H(t—T) = { (1] i ; ; }
The transform of every term (with y(0) = 1) will give the transform Y (s) of the solution :
—sT 1 e—sT
sY(s)—1—aY(s) = < Y (s) = + (10)

s—a (s—a)s

The inverse transform of 1/(s — a) is e®t. Split the other fraction into two parts :

1 1 1 1 1
— = ( = —) has inverse transform — (e®* — 1). (11)
(s—a)s al\s—a s a

The factor e~*T in (10) will shift that function in (11). The final solution is

t
Jump in ! e fort <T

Corner in y y(t) = e + 1 (e“(t—T) —1) fort>T (12)
a

The first part y = €% has ¢y’ = ay as required. This meets the second part correctly at
t = T (no jump in y). Then the second part of y(t) continues with ¢y’ = ay + 1:

1 1 1

Check 3y =ae® +e*tT) =g et + Zea®T) _ Z 4 _| —qy+1.

a a a
Question Could we have solved this problem without Laplace transforms? Certainly
y = et solves the first part starting from y(0) = 1. This is yy, since f = 0, and it reaches
e?T at time T. Starting from there, we need to add on a particular solution Yp- This y,
will match the driving function f = 1 that beginsto actatt =T':

yp' — ayp = 1 starting from y,(T) = 0.

Eventually, and somehow, we would find the particular solution y, = (e*(=7) — 1) /a.
Combined with y,, = e**, the complete solution y,, + y,, agrees with equation (12).
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Example 5 Suppose the driving function f(¢) = 1 turns off instead of on at time 7":

<
Solve y’—ay:{ (1) i;; with y(0) = 1.

Solution Instead of the previous H (¢ — T), this new driving functionis 1 — H(t — T').

The step function drops from 1 to 0. We still take the Laplace transform of every term
in the differential equation:

1 =8l
sY(s)—1—aY(s) = transformof [1 - H(t—-T) = — — E
S s
Solve this equation for Y'(s) and begin to recognize the inverse transform :
1 1 e=*T 1
Y(s) = + = has the new term ———— compared to (10).
s—a (s—a)s (s—a)s (s —a)s

The inverse transform of this new term is (e®* — 1)/a, according to (11). Since the last term
in Y(s) now has a minus sign, the final solution has two pieces meeting at ¢t = T":

eat +
y(t) = { ot
e” +

That first part for ¢ < T would be our standard y,, + y,, starting from y(0) = 1. The
second part matches the first part at t = T" (no jump in y). That second part simplifies to

(
(

et 1) fort <T
e —1) — L(ealt=T) —1) fort > T.

Q| 9|~

et _ ea(t—T)

y(t) = e* + — and we verify that 3" = ay.

Rules for the Laplace Transform

Part of this section is about specific functions f(¢). We made a Table of Transforms F(s).
The other part of the section is about rules. (This is like calculus. You learn the derivatives
of t" and sint and cost and e!. Then you learn the product rule and quotient rule and
chain rule.) We need a Table of Rules for the Laplace transform, when we know that
F(s) and G(s) are the transforms of f(¢) and g(t).

Addition Rule The transform of f(t) + g(t)is F(s) + G(s)
Shifting Rule The transform of f(t — T') is e T F(s)
Derivative of f The transform of df /dt is sF(s) — f(0)
Derivative of F' The transform of tf(t) is —dF/ds
Convolution Rule  Section 8.6 will transform f(¢)g(t) and invert F(s)G(s)
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10

1

12

Problem Set 8.5

When the driving function is f(¢) = 4(¢), the solution starting from rest is the
impulse response. The impulse is §(¢), the response is y(t). Transform this equation
to find the transfer function Y (s). Invert to find the impulse response y/(¢).

y" 4y = 6(t) with y(0) = 0 and ¢/ (0) = 0

(Important) Find the first derivative and second derivative of f(¢) = sint for ¢ > 0.
Watch for a jump at ¢ = 0 which produces a spike (delta function) in the derivative.

Find the Laplace transform of the unit box function b(t) = {1 for 0 < ¢t < 1} =
H(t) — H(t — 1). The unit step function is H (¢) in honor of Oliver Heaviside.

If the Fourier transform of f(t) is defined I by Flk = [ f(t)e~**tdt and f(t) =
for t < 0, what is the connection between f (k) and the Laplace transform F'(s) ?

What is the Laplace transform R(s) of the standard ramp function r(t) = ¢?
For t < 0 all functions are zero. The derivative of r(t) is the unit step H ().
Then multiplying R(s) by s gives

Find the Laplace transform F'(s) of each f(¢), and the poles of F'(s):
(a f=1+t () f=tcoswt (¢c) f=cos(wt—0)
(d f=cos?’t (&) f=ecost (f) f=te tsinwt
Find the Laplace transform s of f(¢) = next integer above ¢ and f(t) = ¢t d(t).

Inverse Laplace Transform: Find the function f(¢) from its transform F'(s) :
1 s+1 1
Dy S N—
@ s —2mi ®) s2+4+1 © (s—1)(s—2)

d 1/(s®>+2s+10) (¢) e °/(s—a) (B 2s

Solve y” + y = 0 from y(0) and y’(0) by expressing Y (s) as a combination of
s/(s®+ 1) and 1/(s% + 1). Find the inverse transform y(¢) from the table.

Solve y” + 3y’ + 2y = § starting from y(0) = 0 and y’(0) = 1 by Laplace transform.
Find the poles and partial fractions for Y (s) and invert to find y(¢).

Solve these initial-value problems by Laplace transform:

(@) y' +y=e*t y(0)=8 (b) y" —y=et, y(0)=0, y'(0)=
© y' +y=ety0)=2 (d y”+y=6t, y(0)=0, y'(0)=
@ y'—iwy=4(t),y(0)=0 (O my"+cy’ +ky=0, y(0)=1 y’(O):O

The transform of e is (sI — A)~!. Compute that matrix (the transfer function)
when A = [1 1; 1 1]. Compare the poles of the transform to the eigenvalues of A.
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13
14

15
16

17

18

19

20

21

22

Chapter 8. Fourier and Laplace Transforms

If dy/dt decays exponentially, show that sY (s) — y(0) as s — oc.

Transform Bessel’s time-varying equation ty” + vy’ + ty = 0 using £[ty] = —dY/ds
to find a first-order equation for Y. By separating variables or by substituting
Y (s) = C'/v/1 + s, find the Laplace transform of the Bessel function y = Jj.

Find the Laplace transform of a single arch of f(t) = sin 7t.
Your acceleration v/ = c(v* — v) depends on the velocity v* of the car ahead :

(a) Find the ratio of Laplace transforms V*(s)/V (s).
(b) If that car has v* = t find your velocity v(t) starting from v(0) = 0.

A line of cars has v, = c[vp_1(t — T') — vp(t — T')] with vo(t) = coswt in front.

(a) Find the growth factor A = 1/(1 + iwe™7 /c) in oscillation v,, = A™e™".
(b) Show that |A| < 1 and the amplitudes are safely decreasing if ¢T" < %

(c) If T > % show that |A| > 1 (dangerous) for small w. (Use sinf < 6.)
Human reaction time is 7' > 1sec and human aggressiveness is ¢ = 0.4/sec.
Danger is pretty close. Probably drivers adjust to be barely safe.

For f(t) = 4(t), the transform F'(s) = 1 is the limit of transforms of tall thin box
functions b(t). The boxes have width € — 0 and height 1/¢ and area 1.

<
Inside integrals, b(t) = { lfe for0<t<e

0 otherwise } approaches 6(t).

Find the transform B(s), depending on e. Compute the limit of B(s) as € — 0.

The transform 1/s of the unit step function H(t) comes from the limit of the trans-
forms of short steep ramp functions r¢(t). These ramps have slope 1/¢:

Te = 1 € " e}
Te :%— Compute Re(s) = / = e Stdt + /e‘“dt. Let e — 0.
€
+ 4 0

+ >+ €

0 €

In Problems 18 and 19, show that the derivative of the ramp function 7¢(t) is the
box function b(t). The “generalized derivative” of a step is the function.

What is the Laplace transform of y’’(t) when you are given Y(s) and
y(0),°(0),"(0)?

The Pontryagin maximum principle says that the optimal control is “bang-bang”—
it only takes on the extreme values permitted by the constraints. To go fromrestat x =
0 to rest at + = 1 in minimum time, use maximum acceleration A and
deceleration — B. At what time ¢ do you change from the accelerator to the brake ?
(This is the fastest driving between two red lights.)
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8.6 Convolution (Fourier and Laplace)

This section is about multiplication. Convolution is a different way to multiply functions.
It is also a way to multiply vectors. The rule for vectors may look new, but actually you
learned it in third grade. Let me start with ordinary multiplication of numbers, and build up
to convolution of vectors and convolution of functions.

When 112 is multiplied by 2 1 3, watch how we collect nine small multiplications :

1 1 2 a b c
2 1 3 2 1 3
3 3 6 3a 3b 3c
1 1 2 a b ¢
2 92 4 2a 2b 2c
2 3 8 5 6 o o e o o

We don’t think about this pattern—it is so familiar. In our minds we are just multiplying
112 by 213 in small steps. The new idea is to think of (1,1, 2) as a vector and (2, 1, 3) as
another vector. The convolution of those vectors is the vector (2,3, 8,5, 6).

I need a new symbol * for the convolution of two vectors c and d :

Convolution of vectors c*d = (co,c1,...) * (do,d1,...) = (codo, cod1 + c1dp,...)

That line ends with an important hint about ¢ * d, if we can see it. First, every ¢; mul-
tiplies every d;. (Those are the nine small multiplications.) Then the nine products are
collected in a special way. We put cod; with c;dg. The next component of ¢ * d will be
codz + c1dy + cado.

In the third grade multiplication, we are collecting together all the products c;d; that
go in the 100s column. Those were 300 + 100 + 400. To express this with algebra, the
nt* component of ¢ * d will be cod,, + c1dp_1 + - - - + cndp. These are all the products
cid; withi 4 j = n.

Convolutioncxd=dxc  (cxd),= Y  cidj=) cidni (1)
itj=n i

The summation symbol allows the vectors to be infinitely long. The key point
is that small multiplications c;d; go together when ¢ + j = n, which is the same as
j = n — i. Let me show that rule again, this time for 2 + = + 3z2 times 1 + x + 2z2.
We are collecting all the pieces that multiply each power ™.

1+ z + 222
2+ z 4+ 322 When we multiply polynomials,

322+ 323 4+ 622 we take the convolution of
r+ x*+24° the vectors of coefficients.
242z + 422

2+3z +8z2+523 + 62° (2,1,3) % (1,1,2) = (2, 3,8,5,6)
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We will connect convolution of coefficients to multiplication of Fourier series. First,
allow me to show one more example that collects the small multiplications c;d; in the same
“convolution way.” That example is a matrix-vector multiplication C'd. The matrix C' has

the numbers cg, c1, . . . along its diagonals and C' times d is exactly the convolution c * d.
Co co dyo
Cd=cxd
C1 Cp d() C1 d{} + Co d]

Constant diagonals

Toeplitz matrix C2 21 ﬁ“ jl - (2 jﬂ i {’tl Gél +czdo )
Shift invariant 2 2 20 06
[&5) Co Gr.g

These “convolution matrices” are the key to signal processing. In that highly active world,
the matrix C is a filter. The way to understand this filter is through its frequency response
co + cre” % 4 cpe—29,

We are ready to connect convolution with Fourier series and Laplace transforms.

Multiplying f(x)g(x) is Convolution of Coefficients

Convolution answers a question that we unavoidably ask. When 3 c,e?*® multiplies
S de'® (call those functions f(x) and g(z)), what are the Fourier coefficients of the
function h(xz) = f(x)g(z)? The answer is certainly not cxdi. We have to multiply every
coefficient c; times every coefficient d;. All those small multiplications cxd; produce the
coefficients of (3~ c,e™*®)(3" d;e''®). The logic of the convolution rule has two steps :

1. cre*® times dje'® equals crpdie’™® when k + 1 = n.
2. The €** term in f(z)g(z) contains every product cid; in whichl = n — k.

The nth Fourier coefficient of (3" cye?®) (3" djei'®) is the nth component of ¢ « d :

Coefficient of fg = (cxd)n = »  cxdn_k. (3)

k=—00

Multiply functions f, g
Convolve coefficients ¢, d

Example 1  The “identity vector” in convolution is § = (...,0,0,1,0,0,...). Then
d * d = d for every vector d. The “identity function” is i(x) = 1. Then i(z)g(z) = g(x)
for every function g. The Fourier coefficients of ¢(z) = 1 are exactly 6.

You see how convolution in frequency space (k - space) leads to multiplication
in function space (x - space). This is the central idea of the convolution rule.

Example 2 The autocorrelation of a vector c is the convolution ¢ * ¢’. That vector

c’ is the reverse of c. The components of ¢’ are the Fourier coefficients €_, of f(z). So
autocorrelation ¢ * ¢’ gives the Fourier coefficients of the product f(z)f(z) = |f(z)|?:

ff=0+e")1+e @) =1e ™ +24+1e® cxec’=(0,1,1)*(1,1,0) = (1,2,1).

The autocorrelation of the box vector (0,1,1) is the hat vector (1,2,1). Box * box = hat.



8.6. Convolution (Fourier and Laplace) 481

Convolution of Functions

The reverse question is equally important and has to be answered. If f(z) and g(x) have
Fourier coefficients ¢; and di, what function has the Fourier coefficients c,dy ? We are
multiplying vectors in k-space. Then we have convolution f * g of functions in z-space !

27 27
Periodic Convolution (f * g)(z) :/ fW)g(z —y)dy :/g(y)f(m —y)dy. 4
0 0

Vector convolution is (¢ * d), = > c¢idn—;. The key is ¢ + (n — ¢) = n. Convolu-
tion of functions has an integral instead of a sum (of course). Above all we notice that
y + (& — y) = x. The pattern stays exactly the same when the functions are not periodic
and the integrals go from —oo to co:

Infinite Convolution (f * g)(z) = / Fwglx —y)dy = / 9(y)f(x —y)dy. 3)
—oo
For the Laplace transform, all functions are zero for ¢ < 0. Change = and y to ¢t and 7.

One-sided
Laplace

t
(f * g)(t) = /f(T)g(t —T)dT because 5((32 ;)Ozfo(; ?;r<TO> ,
0

Solving Differential Equations by Convolution

I want to apply convolution to the main problem of this book—the solution of equations
like ¥’ — ay = f(¢t) and y’ +y = f(z). Those are easy problems and we know the
answers. Simplicity is good, it keeps the main point clear. Convolution will offer us a
new way to write the solutions y(t) from Laplace and y(x) from Fourier.

I will recall the old ways to solve the same equations. The next page has a summary
of the outstanding examples in this book—linear equations with constant coefficients.

Example 3  Solve the equation ¥’ — ay = f(t) by convolution, starting from y(0) = 0.

Solution Take the Laplace transform of both sides, and divide to find Y (s):

sY(s) —aY(s) = F(s) gives Y(s)= ;F—Eg—l = G(8) F(s). ©6)

The transform F(s) of the driving function is multiplied by the “transfer function” G(s).
In this problem G(s) = 1/(s — a). Then y(t) is the inverse transform of Y'(s) = G(s)F(s).

The key is convolution. Multiplication in s - space becomes convolution in ¢ - space.
This rule gives the solution y = g * f from Y = GF. Then we prove the rule.
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The inverse transform of the transfer function G(s) is the impulse response g(t).
For the equation y’ — ay = f(¢t), the transfer function is G(s) = 1/(s — a) and its inverse
transform is g(t) = e®t. Then the multiplication Y (s) = G(s)F(s) becomes a convolution
of the impulse response e®* with the driving function f(t):

Solution by _ B
convolution y(t) = g(t) x f(t) =

T

=T #(T)dT @)

I~

0

Please recognize this solution. We are integrating e =%t f(t) for the fourth time ! The central
problem of Chapter 1 was y' — ay = f(t) (or q(t)). There we proposed three methods.

1. The integrating factor e ~%¢ multiplies ¢’ —ay = f(t). Integrate (e~ %y) =e %t f.
2. Variation of parameters in the null solution y, = Ce® gives y,(t) = C(t) e®.

3. Every input f(7T') is multiplied by its growth factor e2(*=T) _ Combine the outputs.

4. (New) The solution y(t) is the convolution of f(t) with the impulse response e*.

The impulse response is g(t) = g * §, when the input is the impulse f(t) = (t).
The forced response is y = ¢ * f, when the force is f(t). Always the convolution of
the driving force f(t) with the Green’s function g(¢) produces the output y(t).

Confession 1 used Green’s name partly because the letter g appeared so conveniently.
My deeper reason is to express a central idea that connects differential equations and
matrix equations—the two themes of this book. Convolution with the impulse response
(the Green’s function) is just like multiplication by the inverse matrix A~1.

Here is the message that comes from AA~! = I. The vector g; in column j of A7 lis
the response to the delta vector 4, = (+,0, 1,0, -) in column j of the identity matrix.

Ag; = 8; inlinear algebra g’ — ag = 6(t) in differential equations

I hope you find this helpful. The Green’s function g(t — T") gives the response at time ¢
to a unit impulse at time 7". The total response at ¢ is the integral of impulses f(7") times
responses g(t — T'). Compare with the solution v = A~!b to a matrix equation Av = b.

The inverse matrix A~! gives the response at position 4 to a unit impulse at position j.
The solution v = A~'b is the sum over all j of impulses b; times those responses.

For shift-invariant equations, the response at ¢ to an impulse at 7' depends only on the
elapsed time ¢ — T. For shift-invariant matrices, the responses (A~!);; depend only
on ¢ — j. The differential equation has constant coefficients. The Toeplitz matrix has
constant diagonals. Here A is a difference matrix and A~! is a sum matrix.

1 U1 b1 1 Ibl
Av =] -1 1 vz | = bz v = Aﬁlb =11 1 bg = (8)
0 -1 1 U3 53 1 1 1 b;g
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Example 4 (Fourier) Solve the equation —y” +y = f(z) for —oco < x < c0.

Solution  This is a boundary value problem, with y = 0 at the endpoints z = —oo and
x = oo. Take the Fourier transform of every term, so the two derivatives in y”
become multiplications by ik :
" _ c71\2 A ~ 7 ~ _ f(k) A £

—y'+y=Ff(x) -Gk G+9=7k) 9k = 1 g(k) f(k).
In k-space, the transform f(k) is multiplied by g(k) = 1/(k® + 1). In z-space, the
right side f(x) is convolved with the Green’s function g(z). That Green’s function g(x)
is the solution when the right side f(x) is a delta function 6(x).

To complete the solution we need g(x). The transform approach would invert
g(k) = 1/(k? + 1). The direct approach is to solve —g” + g = &(x). Remember that
d(z) =0forxz >0andz < 0:

x>0 —¢"+g=0 gives g =c1€* + ce™® Then g(oo) = 0 requires ¢; = 0
x<0 —¢g"+g=0 gives g =Cre* + Coe™*  Then g(—o0) = 0 requires C; =0

The action is all at z = 0. There is no jump in the function g(z), so that C; = cs.
The minus sign in —g” + g = J(z) produces a drop of 1 in the slope ¢'(z) at z = 0.
Comparing the slopes —cge™* and Che® at x = 0 gives C; + ¢ = 1. The coefficients are
C1 = ¢z = % and the Green’s function g(z) is found:

g(z) = {

Compare with this second order equation in time, when Fourier changes to Laplace.
Now we have initial values at ¢ = 0 instead of boundary values at x = +o0.

oo

and convolution gives y(z) = / f(X)g(z— X)dX.

—00

e ™™ for >0

e® for <0

N|= W=

Example 5 Solve the equation y” + y = f(t) starting from y(0) = ¢’(0) = 0.
Solution  Take the Laplace transform of both sides, and divide by s? + 1 to find Y (s) :

F(s)

SV (s) +Y () = F(s) gives Y(s) = 7=

= F(s)G(s). (10)

The transfer function is G(s) = 1/(s?> + 1). That is the Laplace transform of the
impulse response (the growth factor) g(t) = sint. (Problem 8.5.2 confirms that (sint)”
does surprisingly produce 6(¢). The slope is zero for t < 0, and (sint)’ jumps to cos0 = 1
at ¢ = 0.) Multiplication F'(s)G(s) corresponds to convolution f g :

¢
Laplace convolution  y(t) = f(t) x g(t) = /f(T) sin(t — T') dT. (11)
0

This solves Example 5 quickly—the crucial step is to be able to invert G(s) to find g(t).
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Proof of the Convolution Rule

We need to prove that the Laplace transform of f(¢) x g(t) is F(s)G(s). Convolution

o~

becomes multiplication. Similarly the Fourier transform of f(z) % g(x) is f(k)g(k).

An integral over T produces f * g, and then an integral over ¢ gives its transform.
The key is to reverse the order in that double integral. Integrate first with respect to t.

/ /ﬂT)g(t—T)dT e'ﬂd*Zf fg(f—T)e_s“_T)dt f(T)e=*TdT.
t=0 T=0 T=0 t—0

It was safe to extend the integration to T' = oo, since g(t — T') = 0 for T' > ¢. Also safe

to insert €7 and e~*T; their product is 1. The inner integral on the right is exactly the

Laplace transform G(s), when ¢t — T is replaced by 7 :

/ g(t — T)e=t=Dgs — / g(r)e=""dr = / g(r)edr = G(s).  (12)
t=0 T==T 7=0

Since the inner integral is G(s), the double integral is F'(s) G(s) as desired :
/ G(s)f(T)e *TdT = F(s) G(s). The convolution rule is proved.
T=0

The same rule holds for Fourier transforms, except the integrals have —co < & < oo
and —oo < k < oo. With those limits we don’t have or need the one-sided condition
that g(t) = 0 for t < 0. The steps are the same and we reach the same conclusion.

~

The Fourier transform of f(x) * g(z) is f(k)g(k).

Point-Spread Functions and Deconvolution

I must not leave the impression that convolution is only useful in solving differential equa-
tions. The truth is, we solved those equations earlier. Our solutions now have the neat form
y = f * g, but they were already found without convolutions. A better application is a
telescope looking at the night sky, or a CT-scanner looking inside you.

A telescope produces a blurred image. When the actual star is a point source, we don’t
see that delta function. The image of §(x, y) is a point-spread function g(x,y): the
response to an impulse, the spreading of a point. With diffraction you see an “Airy disk”
at the center. The radius of this disk gives the limit of resolution for a telescope.

When the star is shifted, the image is shifted. The source §(z — xo,y — yo) produces
the image g(x — xo,y — yo). It is bright at the location xg, yo of the star, and g gets dark
quickly away from that point. The image of the whole sky is an integral of blurred points.

The true brightness of the night sky is given by a function f(z,y). The image we
see is the convolution ¢ = f * g. But if we do know the blurring function g(z,y),
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deconvolution will bring back f(x,y) from f % g. In transform space, the scanner
multiplies by G and the post-processor divides by G.  Here is deconvolution:

(64
c = f*g transformsto C = F'G. The inverse transformof F = c gives f.

The manufacturer knows the point-spread function g and its Fourier transform G. The
telescope or the CT-scanner comes equipped with a code for deconvolution. Transform the
blurred output ¢ to C, divide by G, and invert F' = C'/G to find the true source function f.

—~

Note that two-dimensional functions f(z,y) have two-dimensional transforms f(k,1).
The Fourier basis functions of x and y are e**®ei¥ with two frequencies k and .

Cyclic Convolution and the DFT

The Discrete Fourier Transform connects ¢ = (cg,...,cy-1) to f = (fo,-.-, fn—1)-
The Fourier matrix gives F'c = f. Computations are fast, because all the vectors
are N-dimensional and the FFT is available. A convolution rule will lead directly to
fast multiplication and fast algorithms. This is convolution in practice.

The rule has to change from ¢ x d = (1,1,2) * (2,1,3) = (2,3,8,5,6). When
the inputs ¢ and d have N components, their cyclic convolution also has N components.
The new symbol in (1,1,2) ® (2,1,3) = (7,9,8) indicates “cyclic” by a circle in ®.

The key is that w® = 1. Cyclic convolution folds 5w? + 6w* back into 5 + 6w.

(1 + 1w+ 2w?)(2 + 1w + 3w?) = 2 + 3w + 8w? + 5w + 6w? = 7 + 9w + 8w?.

In the same way, (0,1,0) ® (0,0,1) = (1,0,0) because w times w? equals w® = 1.
I will use this example to test the cyclic convolution rule.
Cyclic convolution rule for the /V-point transform

The kth componentof F(c ® d) is (Fe¢)y times (Fd),. That word “times” means :
Multiply 1,w,w? from Fec and 1,w?,w* from Fd to get 1,w3, w8, which is 1,1, 1.

11 1 0 1 0 1 1 1
F=|1w w? Fll]| =] w times F [0 | = | w? s Fl0]l =11
1 w? w? 0 w? 1 w? 0 1

The convolution ¢ ® d has N? small multiplications. Component by component
multiplication of two vectors only needs N. So the convolution rule gives
a fast way to multiply two very long NN-digit numbers (as in the prime factors that
banks use for security). When you multiply the numbers, you are convolving those digits.

Transform the numbers to f and g. Multiply transforms by fxgx. Transform back.
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When the cost of these three discrete transforms is included, the FFT saves the day:

Go to k-space, multiply, go back N2 multiplications are reducedto N + 3N log N.
In MATLAB, component-by-component multiplication is indicated by f. * g (point-star).

Flc®d) = (Fec).x(Fd) ifft (¢ ® d) = N = ifft (¢).*ifft (d) (13)
Note that the fft command transforms f to c using @ = e~ 2"*/" and the matrix F.
The ifft command inverts that transform using w = €2"*/" and the Fourier matrix F.

The factor N appears in equation (13) because FF = N1.

Circulant Matrices

Multiplication by an infinite constant-diagonal matrix gives an infinite convolution. When
row n of C, multiplies d, this adds up the small multiplications c;d; withi 4 j =n:

[ ] [ ] ° () 'Y
i Cop C-— Cu ] d
Infinite Cood = CO ¢ 1 c ; c a’o =cx*xd (14)
convolution s 1 to -1 -2 lh | = .
C2 O Co -1 do
» C2 C1 Cg ®

Similarly, cyclic convolution comes from an /N by N matrix. The matrix is called a
“circulant” because every diagonal wraps around (based on w™ = 1). All diagonals have
N equal entries. The diagonal with c; is highlighted for N =4:

g €3 Ca €1 dy
Cyclic convolution ¢y ¢p c¢3 ¢ d
¥ ! Cd= | @ @& @ Ll —cod. (15
Circulant matrix ¢ €1 ¢y C3 do
c3 Ca €1 Cp d3

Notice how the top row produces cody + c3dy + cada + c1ds. Those subscripts 0 + 0
and 3 + 1 and 2 + 2 are all zero when N = 4. In this cyclic world, 2 and 2 add to 0.
That comes from w?w? = w* = w°.

Circulant matrices are remarkable. If you multiply circulants B and C' you get another
circulant. That product BC' gives convolution with the vector b ® c¢. The amazing

part is the eigenvalues from the DFT and eigenvectors from the Fourier matrix :

The eigenvalues of C' are the components of the discrete transform F'c
The eigenvectors of every C are the columns of F' (also the columns of F' and F -

We can verify two eigenvalues A = ¢y + ¢1 + cg and ¢g + cyw + cow? for this circulant :

Cyp C2 Cy 1 1 Cyg C2 O 1 1
c1 e ||l =211 er co 2|l Wl =M w?). (16)
ca €1 Cg 1 1 Cz €1 Cy w w

The equation F'C' = AF' is the cyclic convolutionrule F(¢ ® d) = (F¢).x(Fd).
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The End of the Book

The book is ending on a high note. Constant coefficient problems have taken a big step from
Ay"” + By’ + Cy = 0. Now we have transforms (Fourier and Laplace) and convolutions.
The discrete problems bring constant diagonal matrices. Cyclic problems bring circulants.
Time to stop !

I should really say, stop and look back. The book has emphasized linear problems, be-
cause these are the equations we can understand. It is true that life is not linear. If the input is
multiplied by 10, the output might be multiplied by 8 or 12 and not 10.
But in most real problems, the input is multiplied or divided by less than 1.1.
Then a linear model replaces a curve by its tangent lines (this is the key to calculus).
To understand applied mathematics, we need differential equations and linear algebra.

® REVIEW OF THE KEY IDEAS =

1. Convolution (1,2,3) * (4,5,6) is the multiplication 123 x 456 without carrying.

2. (O cke™*®) (> die™®) has (c * d), = . crdn_r as the coefficient of e
Multiply functions <> convolve coefficients as in (1 + 2z + 322)(4 + 5z + 622).

3. Differential equations transform to Y (s) = F(s)G(s). Then y(t) = f(t) * g(t) =
driving force * impulse response. The impulse response g(t) is the Green’s function.

4. Shift invariance : Constant coefficient equations and constant diagonal matrices.

5. Circulants Cd give cyclic convolution ¢ ® d. Multiply components (F'c).x(Fd).

Problem Set 8.6

1 Find the convolution v * w and also the cyclic convolution v ® w :
(a v=(1,2)and w = (2,1) (b) v=(1,2,3) and w = (4,5, 6).

2 Compute the convolution (1,3,1) * (2,2,3) = (a,b,c,d, e). To check your answer,
add a + b+ c+d + e. That total should be 35 since 1+3+1=05 and 2+2+3=7
and 5 x 7 = 35.

3 Multiply 1 + 3z + x? times 2 + 2z + 322 to find a + bz + cz? + dz® + ext.
Your multiplication was the same as the convolution (1, 3,1) * (2,2, 3) in Problem 2.
When x = 1, your multiplication shows why 1 +3+1 =5 times2+2+4+3 =7
agrees with a + b+ c+d +e = 35.

4 (Deconvolution) Which vector v would you convolve with w = (1,2,3) to get
vxw = (0,1,2,3,0)? Which v givesv ® w = (3,1,2)?
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10

1

12

13

14

(a) For the periodic functions f(z) = 4 and g(xz) = 2cosz, show that f % g is
zero (the zero function) !

(b) In frequency space (k-space) you are multiplying the Fourier coefficients of
4 and 2cosxz. Those coefficients are cg = 4 and di = d_; = 1.
Therefore every product cxdy is

For periodic functions f = 3" c,e?*® and g = 3" dje**®, the Fourier coefficients of
f * g are 27 ¢y dy. Test this factor 27 when f(z) = 1 and g(z) = 1 by computing
f * g from its definition (4).

2m

Show by integration that the periodic convolution | cosz cos(t — z)dz is 7 cost.
0

In k-space you are squaring Fourier coefficients c; = c_; = 1 to get { and %;

these are the coefficients of %cos t. The 27 in Problem 6 makes 7 cost correct.
Explain why f * g is the same as g * f (periodic or infinite convolution).

What 3 by 3 circulant matrix C' produces cyclic convolution with the vector

¢ = (1,2,3)? Then Cd equals ¢ ® d for every vector d. Compute ¢ ® d for
d=(0,1,0).
What 2 by 2 circulant matrix C' produces cyclic convolution with ¢ = (1,1)?
Show in four ways that this C' is not invertible. Deconvolution is impossible.

(1) Find the determinant of C. (2) Find the eigenvalues of C.

(3) Finddsothat Cd = c® dis zero. (4) F'chas a zero component.
(a) Change b(z) * §(x — 1) to a multiplication b d. Transform the box function
b(z) = {1 for0 <z <1} to b(k) = [ e~**®dz. The shifted delta transforms to
0
d(k) = [ 6(z — 1)e~*2dz.

(b) Show that your result b d is the transform of a shifted box function. Then
convolution with §(z — 1) shifts the box.

Take the Laplace transform of these equations to find the transfer function G(s):
(@ Ay"+By'+Cy=4(t) () y'—5y=0(t) (o) 2y(t)—y(t—1)=6(t)

Take the Laplace transform of ¥ = §(¢) to find Y'(s). From the Transform Table
in Section 8.5 find y(t). You will see ¥ = 1 and vy = 0. But y(t) = 0 for
negative ¢, so your y’’ is actually a unit step function and your y"” is actually §(t).

Solve these equations by Laplace transform to find Y'(s). Invert that transform
with the Table in Section 8.5 to recognize y(t).

@y —6y=ety0)=2 () y”"+9y=1,9(0)=y'(0)=0.
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15

16

17

18

19
20
21

22

23

Find the Laplace transform of the shifted step H (¢ — 3) that jumps from Qto 1 att = 3.
Solve y’ — ay = H(t — 3) with (0) = 0 by finding the Laplace transform Y (s) and
then its inverse transform y(¢) : one part for ¢ < 3, second part for ¢ > 3.

Solve y’ = 1 with y(0) = 4—a trivial question. Then solve this problem the slow
way by finding Y (s) and inverting that transform.

The solution y(t) is the convolution of the input f(¢) with what function g(t) ?
(@) y' —ay = f(t) withy(0) =3  (b) y’' — (integral of y) = f(¢).

For y’ — ay = f(t) with y(0) = 3, we could replace that initial value by adding
34(t) to the forcing function f(t). Explain that sentence.

Whatis §(¢) * 6(¢t) ? Whatis 6(t — 1) x 5(¢t — 2)? Whatis 6(¢t — 1) times §(t — 2)?
By Laplace transform, solve y’ = y with y(0) = 1 to find a very familiar y(t).

By Fourier transform as in (9), solve —y” + y = box function b(z)on0 < z < 1.

There is a big difference in the solutions to y” + By’ + Cy = f(z), between the
cases B? < 4C and B? > 4C. Solve y” + y = d and y” — y = § with y(+o00) = 0.

(Review) Why do the constant f(t) = 1 and the unit step H(¢) have the same
Laplace transform 1/s? Answer: Because the transform does not notice



MATRIX FACTORIZATIONS

. A=LU = lower triangular L upper triangular U
T ~ \_ I’s on the diagonal pivots on the diagonal

Requirements: No row exchanges as Gaussian elimination reduces A to U.
2. A= LDU = l?wer trlangular L plYOt matnx < u})per trlangular U
1’s on the diagonal D is diagonal . I’s on the diagonal
Requirements: No row exchanges. The pivots in D are divided out to leave 1’s on the
diagonal of U. If A is symmetric then U is LT and A = LDLT.

3. PA = LU (permutation matrix P to avoid zeros in the pivot positions).
Requirements: A is invertible. Then P, L,U are invertible. P does all of the
row exchanges in advance, to allow normal LU. Alternative: A = L, P,U;.

4. EA = R (m by m invertible F') (any matrix A) =rref(A).

Requirements: None ! The reduced row echelon form R has r pivot rows and pivot
columns. The only nonzero in a pivot column is the unit pivot. The last m — r rows
of E are a basis for the left nullspace of A; they multiply A to give zero rows in R.
The first 7 columns of E~! are a basis for the column space of A.

5. S = CTC = (lower triangular) (upper triangular) with /D on both diagonals
Requirements: S is symmetric and positive definite (all n pivots in D are positive).
This Cholesky factorization C' = chol(S) has CT = Lv/D, so CTC = LDLT.

6. A = QR = (orthonormal columns in @) (upper triangular R).

Requirements: A has independent columns. Those are orthogonalized in @) by the
Gram-Schmidt or Householder process. If A is square then Q1 = Q™.
7. A= VAV~ = (eigenvectors in V) (eigenvalues in A) (left eigenvectors in V ~1).

Requirements: A must have n linearly independent eigenvectors.

8. S =QAQT = (orthogonal matrix Q) (real eigenvalue matrix A) (QT is Q~1).

Requirements: S is real and symmetric. This is the Spectral Theorem.

490
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9.

10.

11.

12.

13.

14.

15.

A = MJM ™! = (generalized eigenvectors in M) (Jordan blocks in J) (M ~1).

Requirements: A is any square matrix. This Jordan form J has a block for each
independent eigenvector of A. Every block has only one eigenvalue.

orthogonal > < m X n singular value matrix ) ( orthogonal )

_ T _
S SHERAL _(Uismxn 01,...,0, onits diagonal Visnxn

Requirements: None. This singular value decomposition (SVD) has the eigenvectors
of AAT in U and eigenvectors of ATAin V;0; = \//\i(ATA) = VAi(AAT).

orthogonal n x m pseudoinverse of ¥ orthogonal
nxmn 1/o01,...,1/0, on diagonal mxm )

AT =VZStUT = (

Requirements: None. The pseudoinverse A™ has AT A = projection onto row space
of A and AA™ = projection onto column space. The shortest least-squares solution
to Az =bis Z = A*b. This solves AT AZ = ATb. When A is invertible: AT=A"1.

A = QH = (orthogonal matrix Q) (symmetric positive definite matrix H).

Requirements: A is invertible. This polar decomposition has H> = AT A. The
factor H is semidefinite if A is singular. The reverse polar decomposition A = KQ
has K2 = AAT. Both have Q = UV from the SVD.

A =UAU" = (unitary U) (eigenvalue matrix A) (U~" whichis UH = T ).
Requirements: A is normal: A"A = AA™. Its orthonormal (and possibly complex)
eigenvectors are the columns of U. Complex \’s unless A = AH: Hermitian case.

A =UTU™? = (unitary U) (triangular T with \’s on diagonal) (U1 = U™).
Requirements: Schur triangularization of any square A. There is a matrix U with

orthonormal columns that makes U ~! AU triangular:

_ I D||Fny even-odd | .
F, = { 7 D} [ Fn/z] [permu tation:| = one step of the (recursive) FFT.

Requirements: F;, = Fourier matrix with entries w* where w™ = 1: F,F,, = nl.
D has 1,w,...,w™?~ 1 on its diagonal. For n = 2¢ the Fast Fourier Transform
will compute F;, with only %né = %n log, n multiplications from ¢ stages of D’s.



Properties of Determinants

1 The determinant of the n by n identity matrix is 1.
The determinant changes sign when two rows are exchanged (sign reversal):

The determinant is a linear function of each row separately (all other rows stay fixed).

: ta tb| . la b
multiply row 1 by any number ¢ = d’ = 5 dl
add row 1 of A to row 1 of A’ kil (L Y L
¢ d c d c d

Pay special attention to rules 1-3. They completely determine the number det A.
If two rows of A are equal, then det A = 0.
Subtracting a multiple of one row from another row leaves det A unchanged.

£ times row 1
from row 2

a bois|iis
c—¥fa d—4¥¢b|

a b
¢ dl

6 A matrix with a row of zeros has det A = 0.
7 If Aistriangular then det A = aj1a22 -+ - an, = product of diagonal entries.
8 If Aissingular then det A = 0. If A is invertible then det A # 0.

Proof Elimination goes from A to U. If A is singular then U has a zero row. The rules give
det A = det U = 0. If A is invertible then U has the pivots along its diagonal. The product
of nonzero pivots (using rule 7) gives a nonzero determinant:

Multiply pivots det A = +=det U = =+ (product of the pivots).
9 The determinant of AB is det A times det B: |AB| = |A| | B|.
Atimes A~ AA"1=7 so (detA)(detA™')=detl=1.
10 The transpose AT has the same determinant as A.
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absolute stability, 189

absolute value, 83, 86
acceleration, 73, 478

accuracy, 184, 185, 190, 191
Adams method, 192, 193

add exponents, 9

addition formula, 87

adjacency matrix, 318, 320, 427
Airy’s equation, 130

albedo, 49

amplitude, 75, 82, 111

amplitude response, 34, 77
antisymmetric, 245, 323, 352, 409
applied mathematics, 316, 423, 487
arrows, 156, 318

associative law, 220

attractor, 170, 181

augmented matrix, 231, 259, 273, 280
autocorrelation, 480

autonomous, 57,71, 157, 158, 160
average, 436, 440

back substitution, 213, 264
backslash, 221

backward difference, 6, 12, 246, 415
backward Euler, 188, 189

bad news, 329

balance equation, 48, 118, 316, 424
balance of forces, 118

bank, 12, 40, 485

bar, 406, 408, 412, 455, 457

basis, 285, 289, 291, 296, 338, 446, 447

beam, 469

beat, 128

bell-shaped curve, 16, 190, 458
Bernoulli equation, 61

Bessel function, 367, 460, 478

better notation, 113, 124, 125

big picture, 300, 303, 306, 400
Black-Scholes, 457

block matrix, 231, 237, 420

block multiplication, 226, 227

boundary conditions, 406, 411, 431, 457
boundary value problem, 406, 457, 470
box, 176

box function, 407, 439, 445, 469, 478, 488
Brauer, 180

c

capacitance, 119

carbon, 46

carrying capacity, 53, 55, 61
Castillo-Chavez, 180

catalyst, 180

Cayley-Hamilton theorem, 348

cell phone, 44, 176

center, 161, 163, 174

centered difference, 6, 190

chain rule, 3, 4, 368, 371

change of variables, 365

chaos, 155, 181

characteristic equation, 90, 103, 108, 164
chebfun, 405

chemical engineering, 457

chess matrix, 311

Cholesky factorization, 403
circulant matrix, 205, 449, 486, 488
circular motion, 76, 351
closed-loop, 64
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closest line, 387, 393

coefficient matrix, 199

cofactor, 331

column picture, 198, 206

column rank, 275, 322

column space, 254, 259, 278

column-times-row, 222, 226, 429

combination of columns, 199, 202

combination of eigenvectors, 329, 349,
356,371, 374

commute, 221, 224

companion matrix, 164, 165, 167, 335,
354-356, 360, 369

competition, 53, 174

complete graph, 427, 428

complete solution, 1, 17, 18, 105, 106,
203, 211, 265, 274, 276

complex conjugate, 32, 87, 94, 379

complex eigenvalues, 166

complex exponential, 13, 432

complex Fourier series, 440

complex gain, 111

complex impedance, 120

complex matrix, 376

complex numbers, 31-33, 82-89

complex roots, 90, 163

complex solution, 36, 38, 39, 89

complex vector, 433

compound interest, 12, 185

computational mechanics, 372

computational science, 419, 447

concentration, 47, 180

condition number, 401

conductance matrix, 124, 385, 425, 426

conjugate transpose, 377

constant coefficients, 1,98, 117, 432,
470, 487

constant diagonals, 482, 486, 487

constant source, 20

continuous, 154, 358

continuous interest, 44

convergence, 10, 196

convex, 73

convolution, 117, 136, 479-489
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Convolution Rule, 476, 480, 484, 485
Cooley-Tukey, 451

cooling (Newton’s Law), 46
cosine series, 436

Counting Theorem, 267, 304, 314
Cramer’s Rule, 331

critical damping, 96, 100, 115
critical point, 170, 171, 182
cubic spline, 139

Current Law, 123, 317, 318
cyclic convolution, 485-487

D

d’Alembert, 464, 467

damped frequency, 99, 105, 113

damped gain, 113

damping, 96, 112, 118, 122

damping ratio, 99, 113, 114

dashpot, 118

data, 401, 431

decay rate, 46, 437, 444, 456, 467

deconvolution, 485, 487

degree matrix, 318, 427, 429

delta function, 23, 28, 78, 97, 98, 407,
438,439, 442,458,471

delta vector, 415, 447, 482

dependent, 288

dependent columns, 209

derivative rule, 141, 441, 476

determinant, 175, 228, 232, 326, 330,
332, 336, 347, 353, 402, 492

DFT, 432, 446, 449, 454, 485

diagonal matrix, 229, 398

diagonalizable, 363, 382

difference equation, 45, 52, 184, 188, 338

difference matrix, 240, 314, 405, 423

differential equation, 1, 40, 349

diffusion, 358, 456, 457

diagonalization, 337, 400

dimension, 44, 52, 267, 285, 291-293,
304, 322

dimensionless, 34,99, 113, 124

direction field, 157

Discrete Cosine Transform (DCT), 454

Discrete Fourier Transform, (see DFT)
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discrete sines, 405, 432, 454
displacements, 124
distributive law, 220
divergence, 417

dot product, 201, 214, 248, 377
double angle, 84

double pole, 145, 472

double root, 91, 92, 101
doublet, 151

doubling time, 46, 47

driving function, 77, 112, 476
dropoff curve, 57, 62, 157

E

echelon matrix, 263, 266, 267

edge, 313,423

eigenfunction, 408, 421, 455, 459, 467
eigenvalue, 164, 325, 326, 382
eigenvalue matrix, 337

eigenvector, 167, 325, 326, 382
eigenvector matrix, 337, 363
Einstein, 464

elapsed time, 98

elimination, 210, 212, 334
elimination matrix, 224, 229, 303
empty set, 293

energy, 396, 397, 409, 411, 424, 443
energy balance, 48

energy identity, 440, 444

enzyme, 180

epidemic, 179, 180

equal roots, 90, 92, 100
equilibrium, 417

error, 185, 186, 191, 193

error function, 458

error vector, 386, 394

Euler, 317

Euler equations, 176, 183

Euler’s Formula, 13, 82, 83, 450
Euler’s method, 185, 186, 189, 384
even permutation, 246

exact equations, 65

existence, 154, 196

exponential, 2, 7, 10, 25, 131, 362, 369
exponential response, 104, 108, 117
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F

factorization, 382, 490

farad, 122

Fast Fourier Transform, (see FFT)
feedback, 64

FFT, 88, 432, 446, 447, 450, 451
fftw, 452

Fibonacci, 340, 345, 405

filter, 480

finite elements, 124, 373, 419, 430
finite speed, 463

first order, 164

flow graph, 452

football, 176, 178

force balance, 426

forced oscillation, 80, 105, 110
forward differences, 240

Four Fundamental Subspaces, 300, 303
Fourier coefficients, 435-437, 440
Fourier cosine series, 457

Fourier Integral Transform, 449
Fourier matrix, 85, 243, 446-448, 450
Fourier series, 419, 436, 439, 443, 455
Fourier sine series, 410, 434, 467
fourth order, 80, 93, 469

foxes, 172, 174

free column, 262

free variable, 262, 266, 269, 270, 274
free-free boundary conditions, 412
frequency, 31, 76, 79, 373, 466
frequency domain, 120, 145, 449, 480
frequency response, 36, 77, 432
frisbee, 176

full rank, 275-277, 281, 287, 385
function space, 293, 298, 433, 440, 480
fundamental matrix, 366, 371, 384

fundamental solution, 78, 81, 97, 117, 458

Fundamental Theorem, 5, 8, 42, 244,
304, 307, 400

G

gain, 30, 33, 84, 104, 111
Gauss-Jordan, 230-232, 236, 283, 331
gene, 431
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general solution, 280

generalized eigenvalues, 372
geometric series, 7

Gibbs phenomenon, 435, 436

gold, 153

Gompertz equation, 63

Google, 328

GPS, 464

gradient, 417, 421

graph, 313,317, 318, 320, 416, 423
graph Laplacian, 316, 318,423
Green’s function, 136, 482, 483
greenhouse effect, 49

grid, 416, 419, 429

ground a node, 424, 426

growth factor, 24, 40-42, 51, 97, 135, 482
growth rate, 2, 40, 364

H

Hénon map, 181

Hadamard matrix, 243, 344
half-life, 46

harmonic motion, 75, 76, 79
harvesting, 59, 60, 62

hat function, 467

heat equation, 410, 455, 456
heat kernel, 457, 458, 460
Heaviside, 21, 477

Henry, 122

Hermitian matrix, 377
Hertz, 76

higher order, 93, 102, 105, 107, 117, 355
Hilbert space, 433
homogeneous, 17, 103
Hooke’s Law, 74, 374, 424
hyperplane, 207

identity matrix, 201, 219
image, 484

imaginary eigenvalues, 331, 351
impedance, 39, 120, 121, 127
implicit, 67, 188

impulse, 23, 78

Index

impulse response, 23, 24, 78, 97, 102,
117,121, 136, 140, 150, 482

incidence matrix, 124, 313, 317, 320, 423

independence, 204

independent columns, 273, 276, 290,
322, 385, 391

independent eigenvectors, 362

independent rows, 273

inductance, 119

infection rate, 179

infinite series, 10, 13, 329, 369, 434, 455

inflection point, 54, 55

initial conditions, 2, 40, 73, 349, 457

initial values, 470, 483

inner product, 226, 323, 377, 409, 433

instability, 193

integrating factor, 19, 26, 41, 482

integration by parts, 248, 323, 409, 413, 431

interest rate, 12, 43, 485

intersection, 201, 258, 299

inverse matrix, 31, 228, 231, 482

inverse transform, 140, 446, 473, 477

invertible, 205, 213, 228, 290

isocline, 156, 159, 160

J

Jacobian matrix, 171, 177
Jordan form, 357, 382, 383
Julia, 330

jump, 21, 474, 475

K

key formula, 8, 19, 78, 112, 117, 135, 482
kinetic energy, 79

Kirchhoff’s Current Law, 316, 424
Kirchhoff’s Laws, 123, 272

Kirchhoff’s Voltage Law, 315

KKT matrix, 428

kron (A4, B), 420

L

I’Hopital’s Rule, 43, 109
LAPACK, 242, 332

Laplace convolution, 481, 483
Laplace equation, 416, 417



Index

Laplace transform, 121, 141-151, 470-478
Laplace’s equation, 418, 442, 443
Laplacian matrix, 318, 320, 424

law of mass action, 180

least squares, 385-387

left eigenvectors, 348

left nullspace, 300, 302

left-inverse, 228, 232, 242

length, 242

Liénard, 182

linear combination, 199, 201, 254, 288
linear equation, 4, 17, 105, 134, 177, 349
linear shift-invariant, 459

linear time-invariant (LTT), 71, 349
linear transformation, 209

linearity, 221, 471

linearization, 172-179

linearly independent, 277, 287, 289
lobster trap, 159

logistic equation, 47, 53, 62, 157, 190
loop, 315-317

loop equation, 119, 123, 127

Lorenz equation, ix, 154, 181
Lotka-Volterra, 173

magic matrix, 209

magnitude, 112

magnitude response, 34, 77

Markov matrix, 327, 329, 333, 382
mass action, 180

mass matrix, 372, 381

Mathematica, 194, 467

mathematical finance, 457

MATLAB, 191, 332, 372,447, 451, 486

The single heading “Matrix” indexes
the active life of linear algebra.

Matrix

—1,2,—1, 246,415, 454
adjacency, 318
antisymmetric, 352, 376
augmented, 230, 271, 278
circulant, 486, 488
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companion, 164, 355, 360

complex, 376

difference, 240, 314, 405, 422,

echelon, 266

eigenvalue, 337

eigenvector, 337, 363

elimination, 224, 229, 303

exponential, 14, 362, 368

factorizations, 382, 490

Fourier, 85, 243, 446, 447, 450

fundamental, 366

Hadamard, 243, 344

Hermitian, 377

identity, 201, 219

incidence, 124, 313, 314, 317, 423

inverse, 228, 231

invertible, 204, 213, 231, 290

Jacobian, 171, 177

KKT, 428

Laplacian, 318, 320, 424

Markov, 327, 333

orthogonal, 238, 247, 376

permutation, 241, 246, 299, 450

positive definite, 372, 385, 396

projection 238, 242, 247, 334, 376,
378, 382, 390, 394

rank one, 305, 382, 404

rectangular, 385

reflection, 247

rotation, 331

saddle-point, 428, 430

second difference, 414

semidefinite, 398, 412, 413

similar, 365, 370, 383

singular, 202, 326, 328, 492

skew-symmetric, 382

sparse, 223

stable, 352

stiffness, 124, 372, 385

symmetric, 238, 375, 409

Toeplitz, 480, 482

tridiagonal, 382, 454

unitary, 377
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matrix multiplication, 219-223, 249
mean, 392, 395

mechanics, 74

mesh, 420

Michaelis-Menten, 180
minimum, 404

model problem, 40, 115, 374, 423
modulus, 32, 83

multiplication, 202, 219, 479
multiplicity, 93, 343

multiplier, 210, 214, 225
multistep method, 192

N

natural frequency, 77, 99, 102, 466

network, 313-323, 416, 425, 426

neutral stability, 166, 339, 352

Newton’s Law, 46, 73, 239, 370

Newton’s method, 6, 181

nodal analysis, 123

node, 313, 423

nondiagonalizable, 339, 342, 346, 383

nonlinear equation, 1, 53, 172

nonlinear oscillation, 71

norm, 400, 401

normal distribution, 458

normal equations, 387, 389

normal modes, 373

Nth order equation, 107, 117

null solution, 17, 18, 78, 92, 103, 106,
113,203

nullity, 267

nullspace, 261

number of solutions, 282

(0]

ODE 45, 191, 193

off-diagonal ratios, 227

Ohm’s Law, 39, 122, 424, 425, 427
one-way wave, 463, 468

open-loop, 64

operation count, 452

optimal control, 478

order of accuracy, 186, 190, 192
orthogonal basis, 399, 433, 447, 448

Index

orthogonal eigenvectors, 239, 375
orthogonal functions, 323, 405, 434
orthogonal matrix, 238, 242, 376, 381
orthogonal subspace, 306
orthonormal basis, 398, 400, 440
orthonormal columns, 242, 397
oscillation, 74, 75

oscillation equation, 372
overdamping, 96, 100, 102

overshoot (Gibbs), 435, 436

P

PF2, 62, 142, 149, 472

PF3, 143, 149,472

parabolas, 91, 96

parallel, 122, 127

partial differential equation, (see PDE)

partial fractions, 56, 62, 142-149, 474

partial sums, 438

particular solution, 17, 18, 41, 106, 203,
274,276,278

PDE, 416, 455, 466

peak time, 113, 128

pendulum, 71, 81, 182

period, 76, 163, 444

periodic, 173

permutation matrix, 241, 246, 299, 450

perpendicular, 201, 243, 389, 433, 434

perpendicular eigenvectors, 383

perpendicular subspaces, 312

phase angle, 32, 80

phase lag, 30, 33,75, 81, 112

phase line, 170

phase plane, 59, 351

phase response, 77

pictures, 153, 162

pivot, 210, 212, 225, 233, 402

pivot column, 262, 264, 290, 294

pivot variable, 264, 270

plane, 201, 207, 258

Pluto, 155

point source, 23, 457, 458

point-spread function, 484

Poisson’s equation, 417

polar angle, 38, 83
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polar form, 30, 32, 84, 110, 112, 121,
244,418, 431, 448

poles, 100, 129, 140, 471-473

polynomial, 131

Pontryagin, 478

population, 47, 55, 61, 63

positive definite, 372, 385, 396, 403-411

positive definite matrix, 372, 382, 396

positive semidefinite, 412, 413

potential energy, 79

powers, 221, 328, 341

practical resonance, 126

predator-prey, 172, 174, 180

prediction-correction, 191

present value, 51

principal axis, 376

Principal Component Analysis, 401, 431

probability, 458

product integral, 384

product of pivots, 330, 492

product rule, 8

projection, 387, 389-391, 394

projection matrix, 247, 334, 382, 389, 394

pulse, 392, 393

Python, 330

Q

quadratic formula, 90
quiver, 155

R

rabbits, 172, 174

radians, 76

radioactive decay, 45

ramp function, 23, 98, 407, 408, 477
ramp response, 129

rank, 267, 273, 277, 301

rank of AB, 311

rank one matrix, 305, 382, 401
rank theorem, 322

Rayleigh quotient, 431
reactance, 121

real eigenvalues, 166, 239, 375
real roots, 90, 162

real solution, 31, 111
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rectangular form, 110, 111

rectangular matrix, 385

recursion, 452, 453

red lights, 478

reflection matrix, 247, 382

relativity, 464

relaxation time, 46

repeated eigenvalues, 338, 339, 355, 383

repeated roots, 90, 92, 101, 355

repeating ramp, 436

resistance, 119, 426

resonance, 26, 27, 29, 79, 82, 108, 109,
114,116, 132, 137, 364

response, 77

reverse order, 229, 238, 248

right triangle, 129, 386

right-inverse, 228, 232, 233

RLC loop, 39, 118, 119, 122

roots, 101, 108, 129

roots of 2V =1, 448

rotation matrix, 331

row exchange, 212, 216, 242

row picture, 198, 199, 214

row space, 289, 323

rref (A), 263, 265, 267, 268, 284

Runge-Kutta, 16, 191-193

S

S-curve, 54, 64, 157

saddle, 162, 169, 173, 177, 402, 428

saddle-point matrix, 428, 430

SciPy, 194

second difference, 240, 246, 410, 414, 415

semidefinite, 398, 412

separable, 56, 65

separation of variables, 421, 422, 456,
459, 460, 466

shift, 441

shift invariance, 98, 459, 480, 482, 487

shift rule for transform, 475

sign reversal, 492

similar matrix, 365, 370, 383

Simpson’s Rule, 195

sines and cosines, 439

singular matrix, 202, 205, 218, 326, 492
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singular value, 398, 400, 405

Singular Value Decomposition, (see SVD)
singular vector, 385

sink, 17, 162

sinusoid, 19, 30, 34

sinusoidal identity, 35, 37, 112

SIR model, 179

six pictures, 162, 171

skew-symmetric, 381

smoothness, 437

solution curve, 154

Solution Page, 117

solvable, 255, 257,277, 311

source, 17, 19, 40, 162

span, 256, 260, 285, 288, 296

sparse matrices, 223

special inputs, 131, 139

special solution, 261, 265, 302

spectral theorem, 376, 383

speed of light, 464

spike, 23, 407, 437, 438

spiral, 33, 86, 88, 95, 161

spiral sink, 163

spring, 74, 119

square root, 397

square wave, 435, 437, 443, 456
stability, 49, 58-60, 187, 188

stability limit, 190, 195

stability line, 58, 170

stability test, 165-170, 175, 188, 339, 353
stable, 161, 169, 352, 472

standing wave, 465

starting value (initial condition), 2, 9
state space, 127

statistics, 401, 458

steady state, 21, 49, 53, 58, 155, 328, 357
Stefan-Boltzmann Law, 49, 63

step function, 21, 23, 474, 475, 478, 489
step response, 22, 81,97, 102, 124-128
stepsize, 184

stiff equation, 187

stiff system, 193

stiffness, 118, 468

stiffness matrix, 124, 372, 385

Index

stock prices, 457

straight line, 386

subspace, 251-254, 256, 258, 296
Sudoku matrix, 209

sum of spaces, 260

sum of squares, 386, 388
superposition, 8, 349, 460

SVD, 244,398, 382, 385, 399-405, 431
switch, 22

symmetric and orthogonal, 244, 378
symmetric matrix, 238, 239, 292, 375, 409
symmetry, 468

system, 164, 197, 325

T

Table of Eigenvalues, 382

Table of Rules, 476

Table of Transforms, 146, 471

tangent, 75, 80, 156

tangent line, 6, 184

tangent parabola, 7, 191

Taylor series, 7, 10, 14, 16, 185
temperature, 46, 442, 455, 459

test grades, 395

three steps, 341, 349, 369

time constant, 100

time domain, 120, 127

time lag, 81

time-varying, 367, 371, 384

Toeplitz matrix, 480, 482

Toomre, 178

trace, 175, 331, 332, 336, 347, 353, 384
transfer function, 104, 121, 432, 477, 481
transient, 27, 103

tree, 317

triangular matrix, 213, 238, 293, 490, 492
tridiagonal matrix, 232, 246, 382, 410, 454
tumbling box, 176, 178, 183

)

underdamping, 96, 100, 102, 117
undetermined coefficients, 117, 130-137
uniqueness, 154, 289

unit circle, 33, 84, 85, 94, 448

unit vector, 334
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unitary matrix, 377

units, 44, 52, 456
unstable, 49, 53, 166
upper triangular, 210, 213

'

variable coefficient, 1, 42, 130

variance, 392, 395, 401, 431

variation of parameters, 41, 43, 130,
133-135, 138, 482

vector, 164, 199, 200, 251, 252

vector space, 251, 252, 298, 321

very particular, 26, 27, 117, 144

violin, 465, 469

Voltage Law, 123,317, 318

voltage source, 425

w

wave equation, 463-466, 469
weighted Laplacian, 424
weighted least squares, 390, 392
Wikipedia, 243, 431

Wolfram Alpha, 194

Wronskian, 134, 135, 366, 384

z

zerocline, 157
zeta, 99, 113
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Index of Symbols

A= LU, 414, 490

A= QR, 490

A=Q8, 431

A=UxVT, 382,398,401
A=VAV~1 337,341

AT A, 239,276, 312, 385, 395, 417, 423
ATCA, 392, 404, 416, 425, 427
A*=A", 413

K?2D, 419, 420

K = ATCA, 410, 423, 424
P(D), 108, 117

Q, 238

S = LDLT, 403

S =QAQT, 376

S+, 307

C(A) and N(A), 255,261

R"™ and C™, 251



LINEAR ALGEBRA IN A NUTSHELL
((The matrix A is n by n))

Nonsingular

A is invertible

The columns are independent

The rows are independent

The determinant is not zero

Ax =0 has one solution =0

Az =b has one solution x=A"'b
A has n (nonzero) pivots

A has full rank 7=n

The reduced row echelon formis R=1

The column space is all of R™

The row space is all of R

All eigenvalues are nonzero

AT A is symmetric positive definite
A has n (positive) singular values

Singular

A is not invertible

The columns are dependent

The rows are dependent

The determinant is zero

Ax =0 has infinitely many solutions
Ax =b has no solution or infinitely many
A has r < n pivots

Ahasrankr < n

R has at least one zero row

The column space has dimensionr < n
The row space has dimension 7 < n
Zero is an eigenvalue of A

AT A is only semidefinite

A has r < n singular values
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