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The Purpose of this Book

Linear algebra, more so than any other mathematical subject, can be approached in numerous ways.
Many textbooks present the subject in a very concrete and numerical manner, spending much of their
time solving systems of linear equations and having students perform laborious row reductions on
matrices. Many other books instead focus very heavily on linear transformations and other
basis-independent properties, almost to the point that their connection to matrices is considered an
inconvenient after-thought that students should avoid using at all costs.

This book is written from the perspective that both linear transformations and matrices are useful
objects in their own right, but it is the connection between the two that really unlocks the magic of
linear algebra. Sometimes when we want to know something about a linear transformation, the easiest
way to get an answer is to grab onto a basis and look at the corresponding matrix. Conversely, there
are many interesting families of matrices and matrix operations that seemingly have nothing to do with
linear transformations, yet can nonetheless illuminate how some basis-independent objects and
properties behave.

This book introduces many difficult-to-grasp objects such as vector spaces, dual spaces, and tensor
products. Because it is expected that this book will accompany one of the first courses where students
are exposed to such abstract concepts, we typically sandwich this abstractness between concrete
examples. That is, we first introduce or emphasize a standard, prototypical example of the object to be
introduced (e.g., Rn), then we discuss its abstract generalization (e.g., vector spaces), and finally we
explore other specific examples of that generalization (e.g., the vector space of polynomials and the
vector space of matrices).

This book also delves somewhat deeper into matrix decompositions than most others do. We of course
cover the singular value decomposition as well as several of its applications, but we also spend quite a
bit of time looking at the Jordan decomposition, Schur triangularization, and spectral decomposition,
and we compare and contrast them with each other to highlight when each one is appropriate to use.
Computationally-motivated decompositions like the QR and Cholesky decompositions are also
covered in some of this book’s many “Extra Topic” sections.

Continuation of Introduction to Linear and Matrix Algebra

This book is the second part of a two-book series, following the book Introduction to Linear and
Matrix Algebra [Joh20]. The reader is expected to be familiar with the basics of linear algebra covered
in that book (as well as other introductory linear algebra books): vectors in R

n, the dot product,
matrices and matrix multiplication, Gaussian elimination, the inverse, range, null space, rank, and
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determinant of a matrix, as well as eigenvalues and eigenvectors. These preliminary topics are briefly
reviewed in Appendix A.1.

Because these books aim to not overlap with each other and repeat content, we do not discuss some
topics that are instead explored in that book. In particular, diagonalization of a matrix via its eigen-
values and eigenvectors is discussed in the introductory book and not here. However, many extensions
and variations of diagonalization, such as the spectral decomposition (Section 2.1.2) and Jordan
decomposition (Section 2.4) are explored here.

Features of this Book

This book makes use of numerous features to make it as easy to read and understand as possible. Here
we highlight some of these features and discuss how to best make use of them.

Notes in the Margin

This text makes heavy use of notes in the margin, which are used to introduce some additional
terminology or provide reminders that would be distracting in the main text. They are most commonly
used to try to address potential points of confusion for the reader, so it is best not to skip them.

For example, if we want to clarify why a particular piece of notation is the way it is, we do so in the
margin so as to not derail the main discussion. Similarly, if we use some basic fact that students are
expected to be aware of (but have perhaps forgotten) from an introductory linear algebra course, the
margin will contain a brief reminder of why it’s true.

Exercises

Several exercises can be found at the end of every section in this book, and whenever possible there
are three types of them:

• There are computational exercises that ask the reader to implement some algorithm or make
use of the tools presented in that section to solve a numerical problem.

• There are true/false exercises that test the reader’s critical thinking skills and reading com-
prehension by asking them whether some statements are true or false.

• There are proof exercises that ask the reader to prove a general statement. These typically are
either routine proofs that follow straight from the definition (and thus were omitted from the
main text itself), or proofs that can be tackled via some technique that we saw in that section.

Roughly half of the exercises are marked with an asterisk (�), which means that they have a solution
provided in Appendix C. Exercises marked with two asterisks (��) are referenced in the main text and
are thus particularly important (and also have solutions in Appendix C).

To the Instructor and Independent Reader

This book is intended to accompany a second course in linear algebra, either at the advanced
undergraduate or graduate level. The only prerequisites that are expected of the reader are an intro-
ductory course in linear algebra (which is summarized in Appendix A.1) and some familiarity with
mathematical proofs. It will help the reader to have been exposed to complex numbers, though we do
little more than multiply and add them (their basics are reviewed in Appendix A.3).
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The material covered in Chapters 1 and 2 is mostly standard material in upper-year undergraduate
linear algebra courses. In particular, Chapter 1 focuses on abstract structures like vector spaces and
inner products, to show students that the tools developed in their previous linear algebra course can be
applied to a much wider variety of objects than just lists of numbers like vectors in R

n. Chapter 2 then
explores how we can use these new tools at our disposal to gain a much deeper understanding of
matrices.

Chapter 3 covers somewhat more advanced material—multilinearity and the tensor product—which is
aimed particularly at advanced undergraduate students (though we note that no knowledge of abstract
algebra is assumed). It could serve perhaps as content for part of a third course, or as an independent
study in linear algebra. Alternatively, that chapter is also quite aligned with the author’s research
interests as a quantum information theorist, and it could be used as supplemental reading for students
who are trying to learn the basics of the field.

Sectioning

The sectioning of the book is designed to make it as simple to teach from as possible. The author
spends approximately the following amount of time on each chunk of this book:

• Subsection: 1–1.5 hour lecture
• Section: 2 weeks (3–4 subsections per section)
• Chapter: 5–6 weeks (3–4 sections per chapter)
• Book: 12-week course (2 chapters, plus some extra sections)

Of course, this is just a rough guideline, as some sections are longer than others. Furthermore, some
instructors may choose to include material from Chapter 3, or from some of the numerous in-depth
“Extra Topic” sections. Alternatively, the additional topics covered in those sections can serve as
independent study topics for students.

Extra Topic Sections

Half of this book’s sections are called “Extra Topic” sections. The purpose of the book being arranged
in this way is that it provides a clear main path through the book (Sections 1.1–1.4, 2.1–2.4, and 3.1–
3.3) that can be supplemented by the Extra Topic sections at the reader’s/instructor’s discretion. It is
expected that many courses will not even make it to Chapter 3, and instead will opt to explore some
of the earlier Extra Topic sections instead.

We want to emphasize that the Extra Topic sections are not labeled as such because they are less
important than the main sections, but only because they are not prerequisites for any of the main
sections. For example, norms and isometries (Section 1.D) are used constantly throughout advanced
mathematics, but they are presented in an Extra Topic section since the other sections of this book do
not depend on them (and also because they lean quite a bit into “analysis territory”, whereas most
of the rest of the book stays firmly in “algebra territory”).

Similarly, the author expects that many instructors will include the section on the direct sum and
orthogonal complements (Section 1.B) as part of their course’s core material, but this can be done at
their discretion. The subsections on dual spaces and multilinear forms from Section 1.3.2 can be
omitted reasonably safely to make up some time if needed, as can the subsection on Gershgorin discs
(Section 2.2.2), without drastically affecting the book’s flow.

For a graph that depicts the various dependencies of the sections of this book on each other, see
Figure H.
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1. Vector Spaces

It is my experience that proofs involving matrices
can be shortened by 50% if one throws the
matrices out.

Emil Artin

Our first exposure to linear algebra is typically a very concrete thing—it consists
of some basic

Rn denotes the set of
vectors with n (real)

entries and Mm,n
denotes the set of

m×n matrices.

facts about Rn (a set made up of lists of real numbers, called
vectors) and Mm,n (a set made up of m× n arrays of real numbers, called
matrices). We can do numerous useful things in these sets, such as solve
systems of linear equations, multiply matrices together, and compute the rank,
determinant, and eigenvalues of a matrix.

When we look carefully at our procedures for doing these calculations,
as well as our proofs for why they work, we notice that most of them do not
actually require much more than the ability to add vectors together and multiply
them by scalars. However, there are many other mathematical settings where
addition and scalar multiplication work, and almost all of our linear algebraic
techniques work in these more general settings as well.

With this in mind, our goal right now is considerably different from what
it was in introductory linear algebra—we want to see exactly how far we can
push our techniques. Instead of defining objects and operations in terms of
explicit formulas and then investigating what properties they satisfy (as we
have done up until now), we now focus on the properties that those familiar
objects have and ask what other types of objects have those properties.

For example, in a typical introduction to linear algebra, the dot product of
two vectors v and w in Rn is defined by

v ·w = v1w1 + v2w2 + · · ·+ vnwn,

and then the “nice” properties that the dot product satisfies are investigated. For
example, students typically learn the facts that

v ·w = w ·v and v · (w+x) = (v ·w)+(v ·x) for all v,w,x ∈ Rn

almost immediately after being introduced to the dot product. In this chapter,
we flip this approach around and instead define an “inner product” to be any
function satisfying those same properties, and then show that everything we
learned about the dot product actually applies to every single inner product
(even though many inner products look, on the surface, quite different from the
dot product).

© Springer Nature Switzerland AG 2021
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2 Chapter 1. Vector Spaces

1.1 Vector Spaces and Subspaces

In order to use our linear algebraic tools with objects other than vectors in Rn,
we need a proper definition that tells us what types of objects we can consider in
a linear algebra setting. The following definition makes this precise and serves
as the foundation for this entire chapter. Although the definition looks like an
absolute beast, the intuition behind it is quite straightforward—the objects that
we work with should behave “like” vectors in Rn. That is, they should have the
same properties (like commutativity: v+w = w+v) that vectors in Rn have
with respect to vector addition and scalar multiplication.

More specifically, the following definition lists 10 properties that must be
satisfied in order for us to call something a “vector space” (like R3) or a “vector”
(like (1,3,−2) ∈ R3). These 10 properties can be thought of as the answers to
the question “what properties of vectors in Rn can we list without explicitly
referring to their entries?”

Definition 1.1.1
Vector Space

R is the set of real
numbers and C is

the set of complex
numbers (see

Appendix A.3).

Let F be a set of scalars (usually either R or C) and let V be a set with
two operations called addition and scalar multiplication. We write the
addition of v,w ∈ V as v+w, and the scalar multiplication of c ∈ F and v
as cv.
If the following ten conditions hold for all v,w,x∈ V and all c,d ∈ F, then
V is called a vector space and its elements are called vectors:

a) v+w ∈ V (closure under addition)
b) v+w = w+v (commutativity)
c) (v+w)+x = v+(w+x) (associativity)
d) There exists a “zero vector” 0 ∈ V such that v+0 = v.
e) There exists a vector −v such that v+(−v) = 0.
f)Notice that the first

five properties
concern addition,
while the last five

concern scalar
multiplication.

cv ∈ V (closure under scalar multiplication)
g) c(v+w) = cv+ cw (distributivity)
h) (c+d)v = cv+dv (distributivity)
i) c(dv) = (cd)v
j) 1v = v

Remark 1.1.1
Fields and

Sets of Scalars

Not much would be lost throughout this book if we were to replace the set
of scalars F from Definition 1.1.1 with “either R or C”. In fact, in many
cases it is even enough to just explicitly choose F = C, since oftentimes if
a property holds over C then it automatically holds over R simply because
R⊆ C.

It’s also useful to
know that every field
has a “0” and a “1”:

numbers such that
0a = 0 and 1a = a for

all a ∈ F.

However, F more generally can be any “field”, which is a set of objects
in which we can add, subtract, multiply, and divide according to the
usual laws of arithmetic (e.g., ab = ba and a(b + c) = ab + ac for all
a,b,c ∈ F)—see Appendix A.4. Just like we can keep Rn in mind as the
standard example of a vector space, we can keep R and C in mind as the
standard examples of a field.

We now look at several examples of sets that are and are not vector spaces,
to try to get used to this admittedly long and cumbersome definition. As our
first example, we show that Rn is indeed a vector space (which should not be
surprising—the definition of a vector space was designed specifically so as to



1.1 Vector Spaces and Subspaces 3

mimic Rn).

Example 1.1.1
Euclidean Space
is a Vector Space

Show that Rn is a vector space.

Solution:
We have to check the ten properties described by Definition 1.1.1. If

v,w,x ∈ Rn and c,d ∈ R then:
a) v+w ∈Rn (there is nothing to prove here—it follows directly from

the definition of vector addition in Rn).
b) We just repeatedly use commutativity of real number addition:

v j, w j, and x j denote
the j-th entries of v,

w, and x,
respectively.

v+w = (v1 +w1, . . . ,vn +wn) = (w1 + v1, . . . ,wn + vn) = w+v.

c) This property follows in a manner similar to property (b) by making
use of associativity of real number addition:

(v+w)+x = (v1 +w1, . . . ,vn +wn)+(x1, . . . ,xn)
= (v1 +w1 + x1, . . . ,vn +wn + xn)
= (v1, . . . ,vn)+(w1 + x1, . . . ,wn + xn) = v+(w+x).

d) The zero vector 0 = (0,0, . . . ,0) ∈ Rn clearly satisfies v+0 = v.
e) We simply choose −v = (−v1, . . . ,−vn), which indeed satisfies

v+(−v) = 0.
f) cv ∈ Rn (again, there is nothing to prove here—it follows straight

from the definition of scalar multiplication in Rn).
g) We just expand each of c(v + w) and cv + cw in terms of their

entries:

c(v+w) = c(v1 +w1, . . . ,vn +wn)
= (cv1 + cw1, . . . ,cvn + cwn) = cv+ cw.

h) Similarly to property (g), we just notice that for each 1≤ j ≤ n, the
j-th entry of (c+d)v is (c+d)v j = cv j +dv j, which is also the j-th
entry of cv+dv.

i) Just like properties (g) and (h), we just notice that for each 1≤ j≤ n,
the j-th entry of c(dv) is c(dv j) = (cd)v j, which is also the j-th
entry of (cd)v.

j) The fact that 1v = v is clear.

We should keep Rn in our mind as the prototypical example of a vector
space. We will soon prove theorems about vector spaces in general and see
plenty of exotic vector spaces, but it is absolutely fine to get our intuition about
how vector spaces work from Rn itself. In fact, we should do this every time we
define a new concept in this chapter—keep in mind what the standard example
of the new abstractly-defined object is, and use that standard example to build
up our intuition.

For all fields F, the set
Fn (of ordered

n-tuples of elements
of F) is also a vector

space.

It is also the case that Cn (the set of vectors/tuples with n complex en-
tries) is also a vector space, and the proof of this fact is almost identical to
the argument that we provided for Rn in Example 1.1.1. In fact, the set of all
infinite sequences of scalars (rather than finite tuples of scalars like we are
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used to) is also a vector space. That is, the sequence space
N is the set of natural

numbers. That is,
N = {1,2,3, . . .}.

FN def=
{
(x1,x2,x3, . . .) : x j ∈ F for all j ∈ N

}

is a vector space with the standard addition and scalar multiplication operations
(we leave the proof of this fact to Exercise 1.1.7).

To get a bit more comfortable with vector spaces, we now look at several
examples of vector spaces that, on the surface, look significantly different from
these spaces of tuples and sequences.

Example 1.1.2
The Set of Matrices
is a Vector Space

Show thatMm,n, the set of m×n matrices, is a vector space.

Solution:
We have to check the ten properties described by Definition 1.1.1. If

A,B,C ∈Mm,n and c,d ∈ F then:
a) A+B is also an m×n matrix (i.e., A+B ∈Mm,n).

b) For each 1≤ i≤ m and 1≤ j ≤ n, the (i, j)-entry of A+B is ai, j +
bi, j = bi, j + ai, j, which is also the (i, j)-entry of B + A. It follows
that A+B = B+A.

The “(i, j)-entry” of a
matrix is the scalar in

its i-th row and j-th
column. We denote

the (i, j)-entry of A
and B by ai, j and bi, j,

respectively, or
sometimes by [A]i, j

and [B]i, j.

c) The fact that (A + B) +C = A + (B +C) follows similarly from
looking at the (i, j)-entry of each of these matrices and using asso-
ciativity of addition in F.

d) The “zero vector” in this space is the zero matrix O (i.e., the m×n
matrix with every entry equal to 0), since A+O = A.

e) We define −A to be the matrix whose (i, j)-entry is −ai, j, so that
A+(−A) = O.

f) cA is also an m×n matrix (i.e., cA ∈Mm,n).

g) The (i, j)-entry of c(A+B) is c(ai, j +bi, j) = cai, j + cbi, j, which is
the (i, j)-entry of cA+ cB, so (A+B) = cA+ cB.

h) Similarly to property (g), the (i, j)-entry of (c+d)A is (c+d)ai, j =
cai, j +dai, j, which is also the (i, j)-entry of cA+dA. It follows that
(c+d)A = cA+dA.

i) Similarly to property (g), the (i, j)-entry of c(dA) is c(dai, j) =
(cd)ai, j, which is also the (i, j)-entry of (cd)A, so c(dA) = (cd)A.

j) The fact that 1A = A is clear.

If we wish to emphasize which field F the entries of the matrices inMm,n
come from, we denote it byMm,n(F). For example, if we say that A∈M2,3(R)
and B ∈M4,5(C) then we are saying that A is a 2×3 matrix with real entries
and B is a 4×5 matrix with complex entries. We use the briefer notationMm,n
if the choice of field is unimportant or clear from context, and we use the even
briefer notationMn when the matrices are square (i.e., m = n).

Since R⊂ C, real
entries are also

complex, so the
entries of B might be

real.

Typically, proving that a set is a vector space is not hard—all of the proper-
ties either follow directly from the relevant definitions or via a one-line proof.
However, it is still important to actually verify that all ten properties hold,
especially when we are first learning about vector spaces, as we will shortly
see some examples of sets that look somewhat like vector spaces but are not.
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Example 1.1.3
The Set of Functions

is a Vector Space

Show that the set of real-valued functions F def=
{

f : R→ R
}

is a vector
space.
Solution:

Once again, we have to check the ten properties described by Defini-
tion 1.1.1. To do this, we will repeatedly use the fact that two functions
are the same if and only if their outputs are always the same (i.e., f = g if
and only if f (x) = g(x) for all x ∈ R). With this observation in mind, we
note that if f ,g,h ∈ F and c,d ∈ R then:

a) f + g is the function defined by ( f + g)(x) = f (x) + g(x) for all
x ∈ R. In particular, f +g is also a function, so f +g ∈ F .

b) For all x ∈ R, we have

( f +g)(x) = f (x)+g(x) = g(x)+ f (x) = (g+ f )(x),

so f +g = g+ f .
All of these

properties of
functions are trivial.
The hardest part of
this example is not

the math, but rather
getting our heads

around the
unfortunate notation

that results from
using parentheses to

group function
addition and also to

denote inputs of
functions.

c) For all x ∈ R, we have
(
( f +g)+h

)
(x) =

(
f (x)+g(x)

)
+h(x)

= f (x)+
(
g(x)+h(x)

)
=
(

f +(g+h)
)
(x),

so ( f +g)+h = f +(g+h).
d) The “zero vector” in this space is the function 0 with the property

that 0(x) = 0 for all x ∈ R.
e) Given a function f , the function− f is simply defined by (− f )(x) =
− f (x) for all x ∈ R. Then

(
f +(− f )

)
(x) = f (x)+(− f )(x) = f (x)− f (x) = 0

for all x ∈ R, so f +(− f ) = 0.
f) c f is the function defined by (c f )(x) = c f (x) for all x ∈ R. In

particular, c f is also a function, so c f ∈ F .
g) For all x ∈ R, we have

(
c( f +g)

)
(x) = c

(
f (x)+g(x)

)
= c f (x)+ cg(x) = (c f + cg)(x),

so c( f +g) = c f + cg.
h) For all x ∈ R, we have

(
(c+d) f

)
(x) = (c+d) f (x) = c f (x)+d f (x) = (c f +d f )(x),

so (c+d) f = c f +d f .
i) For all x ∈ R, we have

(
c(d f )

)
(x) = c

(
d f (x)

)
= (cd) f (x) =

(
(cd) f

)
(x),

so c(d f ) = (cd) f .
j) For all x ∈ R, we have (1 f )(x) = 1 f (x) = f (x), so 1 f = f .

In the previous three examples, we did not explicitly specify what the
addition and scalar multiplication operations were upfront, since there was an
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obvious choice on each of these sets. However, it may not always be clear what
these operations should actually be, in which case they have to be explicitly
defined before we can start checking whether or not they turn the set into a
vector space.

In other words, vector spaces are a package deal with their addition and
scalar multiplication operations—a set might be a vector space when the op-
erations are defined in one way but not when they are defined another way.
Furthermore, the operations that we call addition and scalar multiplication
might look nothing like what we usually call “addition” or “multiplication”.
All that matters is that those operations satisfy the ten properties from Defini-
tion 1.1.1.

Example 1.1.4
A Vector Space

With Weird
Operations

Let V = {x ∈ R : x > 0} be the set of positive real numbers. Show that V
is a vector space when we define addition ⊕ on it via usual multiplication
of real numbers (i.e., x⊕ y = xy) and scalar multiplication � on it via
exponentiation (i.e., c�x = xc).

Solution:
OnceIn this example, we

use bold variables
like x when we think

of objects as vectors
in V , and we use

non-bold variables
like x when we think

of them just as
positive real

numbers.

again, we have to check the ten properties described by Defini-
tion 1.1.1. Well, if x,y,z ∈ V and c,d ∈ R then:

a) x⊕y = xy, which is still a positive number since x and y are both
positive, so x⊕y ∈ V .

b) x⊕y = xy = yx = y⊕x.
c) (x⊕y)⊕ z = (xy)z = x(yz) = x⊕ (y⊕ z).
d) The “zero vector” in this space is the number 1 (so we write 0 = 1),

since 0⊕x = 1x = x = x.
e) For each vector x ∈ V , we define −x = 1/x. This works because

x⊕ (−x) = x(1/x) = 1 = 0.
f) c�x = xc, which is still positive since x is positive, so c�x ∈ V .
g) c� (x+y) = (xy)c = xcyc = (c�x)⊕ (c�y).
h) (c+d)�x = xc+d = xcxd = (c�x)⊕ (d�x).
i) c� (d�x) = (xd)c = xcd = (cd)�x.
j) 1�x = x1 = x = x.

The previous examples illustrate that vectors, vector spaces, addition, and
scalar multiplication can all look quite different from the corresponding con-
cepts in Rn. As one last technicality, we note that whether or not a set is a
vector space depends on the field F that is being considered. The field can often,
but not always, be inferred from context.

Before presenting an example that demonstrates why the choice of field is
not always obvious, we establish some notation and remind the reader of some
terminology. The transpose of a matrix A ∈Mm,n is the matrix AT ∈Mn,m
whose (i, j)-entry is a j,i. That is, AT is obtained from A by reflecting its entries
across its main diagonal. For example, if

A =

[
1 2 3
4 5 6

]
then AT =




1 4
2 5
3 6


 .

Similarly, the conjugate transpose of A ∈ Mm,n(C) is the matrix
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A∗ ∈ Mn,m(C) whose (i, j)-entry is a j,i, where the horizontal line denotes
complex conjugation (i.e., a+ ib = a− ib). In other words, A∗ def= AT . For
example, ifComplex

conjugation is
reviewed in

Appendix A.3.2.
A =

[
1 3− i 2i

2+3i −i 0

]
then A∗ =




1 2−3i
3+ i i
−2i 0


 .

Finally, we say that a matrix A ∈Mn is symmetric if AT = A and that a
matrix B ∈Mn(C) is Hermitian if B∗ = B. For example, if

A =
[

1 2
2 3

]
, B =

[
2 1+3i

1−3i −4

]
, and C =

[
1 2
3 4

]
,

then A is symmetric (and Hermitian), B is Hermitian (but not symmetric), and
C is neither.

Example 1.1.5
Is the Set of

Hermitian Matrices
a Vector Space?

LetMH
n be the set of n×n Hermitian matrices. Show that if the field is

F = R thenMH
n is a vector space, but if F = C then it is not.

Solution:
Before presenting the solution, we clarify that the field F does not

specify what the entries of the Hermitian matrices are: in both cases (i.e.,
when F = R and when F = C), the entries of the matrices themselves can
be complex. The field F associated with a vector space just determines
what types of scalars are used in scalar multiplication.

To illustrate this point, we start by showing that if F = C thenMH
n is

not a vector space. For example, property (f) of vector spaces fails because

A =
[

0 1
1 0

]
∈MH

2 , but iA =
[

0 i
i 0

]
/∈MH

2 .

That is,MH
2 (and by similar reasoning,MH

n ) is not closed under multipli-
cation by complex scalars.

On the other hand, to see thatMH
n is a vector space when F = R, we

check the ten properties described by Definition 1.1.1. If A,B,C ∈MH
n

and c,d ∈ R then:
a) (A+B)∗ = A∗+B∗ = A+B, so A+B ∈MH

n .
d) The zero matrix O is Hermitian, so we choose it as the “zero vector”

inMH
n .

e) If A ∈MH
n then −A ∈MH

n too.
f) Since c is real, we have (cA)∗ = cA∗ = cA, so cA ∈MH

n (whereas
if c were complex then we would just have (cA)∗ = cA, which does
not necessarily equal cA, as we saw above).

All of the other properties of vector spaces follow immediately using
the same arguments that we used to show thatMm,n is a vector space in
Example 1.1.2.

In cases where we wish to clarify which field we are using for scalar
multiplication in a vector space V , we say that V is a vector space “over” that
field. For example, we say thatMH

n (the set of n×n Hermitian matrices) is a
vector space over R, but not a vector space over C. Alternatively, we refer to
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the field in question as the ground field of V (so the ground field ofMH
n , for

example, is R).
Despite the various vector spaces that we have seen looking so different on

the surface, not much changes when we do linear algebra in this more general
setting. To get a feeling for how we can prove things about vector spaces in
general, we now prove our very first theorem. We can think of this theorem as
answering the question of why we did not include some other properties like
“0v = 0” in the list of defining properties of vector spaces, even though we did
include “1v = v”. The reason is simply that listing these extra properties would
be redundant, as they follow from the ten properties that we did list.

Theorem 1.1.1
Zero Vector and

Additive Inverses via
Scalar Multiplication

Suppose V is a vector space and v ∈ V . Then
a) 0v = 0, and
b) (−1)v =−v.

Proof. To show that 0v = 0, we carefully use the various defining properties
of vector spaces from

Proving things about
vector spaces will

quickly become less
tedious than in this

theorem—as we
develop more tools,

we will find ourselves
referencing the

defining properties
(a)–(j) less and less.

Definition 1.1.1:

0v = 0v+0 (property (d))

= 0v+
(
0v+(−(0v))

)
(property (e))

= (0v+0v)+
(
− (0v)

)
(property (c))

= (0+0)v+
(
− (0v)

)
(property (h))

= 0v+
(
− (0v)

)
(0+0 = 0 in every field)

= 0. (property (e))

Now that we have 0v = 0 to work with, proving that (−1)v =−v is a bit
more straightforward:

0 = 0v (we just proved this)
= (1−1)v (1−1 = 0 in every field)
= 1v+(−1)v (property (h))
= v+(−1)v. (property (j))

It follows that (−1)v =−v, which completes the proof. �

From now on, we write vector subtraction in the usual way v−w that we
are used to. The above theorem ensures that there is no ambiguity when we
write subtraction in this way, since it does not matter if v−w is taken to mean
v+(−w) or v+(−1)w.

1.1.1 Subspaces

It is often useful to work with vector spaces that are contained within other
vector spaces. This situation comes up often enough that it gets its own name:

Definition 1.1.2
Subspace

If V is a vector space and S ⊆ V , then S is a subspace of V if S is itself
a vector space with the same addition, scalar multiplication, and ground
field as V .
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It turns out that checking whether or not something is a subspace is much
simpler than checking whether or not it is a vector space. We already saw this
somewhat in Example 1.1.5, where we only explicitly showed that four vector
space properties hold forMH

n instead of all ten. The reason we could do this is
thatMH

n is a subset ofMn(C), so it inherited many of the properties of vector
spaces “for free” from the fact that we already knew thatMn(C) is a vector
space.

It turns out that even checking four properties for subspaces is overkill—we
only have to check two:

Theorem 1.1.2
Determining if a Set

is a Subspace

Let V be a vector space over a field F and let S ⊆ V be non-empty. Then
S is a subspace of V if and only if the following two conditions hold:

a) If v,w ∈ S then v+w ∈ S , and (closure under addition)
b) if v ∈ S and c ∈ F then cv ∈ S . (closure under scalar mult.)

Proof. For the “only if” direction, properties (a) and (b) in this theorem are
properties (a) and (f) in Definition 1.1.1 of a vector space, so of course they
must hold if S is a subspace (since subspaces are vector spaces).

For the “if” direction, we have to show that all ten properties (a)–(j) in
Definition 1.1.1 of a vector space hold for S:

• Properties (a) and (f) hold by hypothesis.
• Properties (b), (c), (g), (h), (i), and (j) hold for all vectors in V , so they

certainly hold for all vectors in S too, since S ⊆ V .
• For property (d),Every subspace, just

like every vector
space, must contain

a zero vector.

we need to show that 0 ∈ S . If v ∈ S then we know that
0v ∈ S too since S is closed under scalar multiplication. However, we
know from Theorem 1.1.1(a) that 0v = 0, so we are done.

• For property (e), we need to show that if v ∈ S then −v ∈ S too. We
know that (−1)v ∈ S since S is closed under scalar multiplication, and
we know from Theorem 1.1.1(b) that (−1)v =−v, so we are done.

�

Example 1.1.6
The Set of Polynomials

is a Subspace

Let P p be the set of real-valued polynomials of degree at most p. Show
that P p a subspace of F , the vector space of all real-valued functions.

Solution:
We

The degree of a
polynomial is the

largest exponent to
which the variable is

raised, so a
polynomial of

degree at most p
looks like f (x) =

apxp + · · ·+a1x+a0,
where ap, . . ., a1,

a0 ∈R. The degree of
f is exactly p if ap 6= 0.
See Appendix A.2 for

an introduction to
polynomials.

just have to check the two properties described by Theorem 1.1.2.
Hopefully it is somewhat clear that adding two polynomials of degree at
most p results in another polynomial of degree at most p, and similarly
multiplying a polynomial of degree at most p by a scalar results in another
one, but we make this computation explicit.

Suppose f (x) = apxp + · · ·+a1x+a0 and g(x) = bpxp + · · ·+b1x+b0
are polynomials of degree at most p (i.e., f ,g ∈ P p) and c ∈ R is a scalar.
Then:

a) We compute

( f +g)(x) = (apxp + · · ·+a1x+a0)+(bpxp + · · ·+b1x+b0)
= (ap +bp)xp + · · ·+(a1 +b1)x+(a0 +b0),

which is also a polynomial of degree at most p, so f + g ∈ P p.
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b) Just like before, we compute

(c f )(x) = c(apxp + · · ·+a1x+a0)
= (cap)xp + · · ·+(ca1)x+(ca0),

which is also a polynomial of degree at most p, so c f ∈ P p.

Slightly more generally, the set P p(F) of polynomials with coefficients
from a field F is also a subspace of the vector space F(F) of functions from F
to itself, even when F 6= R. However, P p(F) has some subtle properties that
make it difficult to work with in general (see Exercise 1.2.34, for example), so
we only consider it in the case when F = R or F = C.

Similarly,Recall that a
function is called

“differentiable” if it
has a derivative.

the set of continuous functions C is also a subspace of F , as is the
set of differentiable functions D (see Exercise 1.1.10). Since every polynomial
is differentiable, and every differentiable function is continuous, it is even the
case that P p is a subspace of D, which is a subspace of C, which is a subspace
of F .

Example 1.1.7
The Set of Upper

Triangular Matrices
is a Subspace

Show that the set of n×n upper triangular matrices a subspace ofMn.

Solution:
Again, we have to check the two properties described by Theorem 1.1.2,

and it is again somewhat clear that both of these properties hold. For ex-
ample, if we add

Recall that a matrix
A is called upper

triangular if ai, j = 0
whenever i > j. For

example, a 2×2
upper triangular

matrix has the form

A =

[
a b
0 c

]
.

two matrices with zeros below the diagonal, their sum
will still have zeros below the diagonal.

We now formally prove that these properties hold. Suppose A,B ∈Mn
are upper triangular (i.e., ai, j = bi, j = 0 whenever i > j) and c ∈ F is a
scalar.

a) The (i, j)-entry of A + B is ai, j + bi, j = 0 + 0 = 0 whenever i > j,
and

b) the (i, j)-entry of cA is cai, j = 0c = 0 whenever i > j.
Since both properties are satisfied, we conclude that the set of n×n upper
triangular matrices is indeed a subspace ofMn.

Similar to the previous example, the setMS
n of n×n symmetric matrices

is also a subspace ofMn (see Exercise 1.1.8). It is worth noting, however, that
the setMH

n of n×n Hermitian matrices is not a subspace ofMn(C) unless we
regardMn(C) as a vector space over R instead of C (which is possible, but
quite non-standard).

Example 1.1.8
The Set of Non-

Invertible Matrices
is Not a Subspace

Show that the set of non-invertible 2×2 matrices is not a subspace ofM2.

Solution:

Similar examples can
be used to show

that, for all n≥ 1, the
set of non-invertible
n×n matrices is not
a subspace of Mn.

This set is not a subspace because it is not closed under addition. For
example, the following matrices are not invertible:

A =
[

1 0
0 0

]
, B =

[
0 0
0 1

]
.
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However, their sum is

A+B =
[

1 0
0 1

]
,

which is invertible. It follows that property (a) of Theorem 1.1.2 does not
hold, so this set is not a subspace ofM2.

Example 1.1.9
The Set of Integer-

Entry Vectors
is Not a Subspace

Show that Z3, the set of 3-entry vectors with integer entries, is not a
subspace of R3.

Solution:
This set is a subset of R3 and is closed under addition, but it is not a

subspace because it is not closed under scalar multiplication. Because we
are asking whether or not it is a subspace of R3, which uses R as its ground
field, we must use the same scalars here as well. However, if v ∈ Z3 and
c ∈ R then cv may not be in Z3. For example, if

v = (1,2,3) ∈ Z3 then
1
2

v = (1/2,1,3/2) /∈ Z3.

It follows that property (b) of Theorem 1.1.2 does not hold, so this set is
not a subspace of R3.

Example 1.1.10
The Set of Eventu-

ally-Zero Sequences
is a Subspace

Show that the set c00 ⊂ FN of sequences with only finitely many non-zero
entries is a subspace of the sequence space FN.

Solution:
Once again, we have to check properties (a) and (b) of Theorem 1.1.2.

That is, if v,w ∈ c00 have only finitely many non-zero entries and c ∈ F is
a scalar,In the notation c00,

the “c” refers to the
sequences

converging and the
“00” refers to how

they converge to 0
and eventually

equal 0.

then we have to show that (a) v+w and (b) cv each have finitely
many non-zero entries as well.

These properties are both straightforward to show—if v has m non-zero
entries and w has n non-zero entries then v+w has at most m+n non-zero
entries and cv has either m non-zero entries (if c 6= 0) or 0 non-zero entries
(if c = 0).

1.1.2 Spans, Linear Combinations, and Independence

We now start re-introducing various aspects of linear algebra that we have
already seen in an introductory course in the more concrete setting of subspaces
of Rn. All of these concepts (in particular, spans, linear combinations, and
linear (in)dependence for now) behave almost exactly the same in general
vector spaces as they do in Rn (and its subspaces), so our presentation of these
topics is quite brief.
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Definition 1.1.3
Linear Combina-

tions

Suppose V is a vector space over a field F. A linear combination of the
vectors v1,v2, . . . ,vk ∈ V is any vector of the form

c1v1 + c2v2 + · · ·+ ckvk,

whereIt is important that
the sum presented

here is finite.

c1,c2, . . . ,ck ∈ F.

For example, in the vector space P2 of polynomials with degree at most 2,
the polynomial p(x) = 3x2 + x−2 is a linear combination of the polynomials
x2, x, and 1 (and in fact every polynomial in P2 is a linear combination of x2, x,
and 1). We now start looking at some less straightforward examples.

Example 1.1.11
Linear Combina-

tions of Polynomials

Suppose f ,g,h ∈ P2 are given by the formulas

f (x) = x2−3x−4, g(x) = x2− x+2, and h(x) = 2x2−3x+1.

Determine whether or not f is a linear combination of g and h.

Solution:
We want to know whether or not there exist c1,c2 ∈ R such that

f (x) = c1g(x)+ c2h(x).

Writing this equation out more explicitly gives

x2−3x−4 = c1(x2− x+2)+ c2(2x2−3x+1)

= (c1 +2c2)x2 +(−c1−3c2)x+(2c1 + c2).

We now use the fact that two polynomials are equal if and only if their
coefficients are equal: we set the coefficients of x2 on both sides of the
equation equal to each other, the coefficients of x equal to each other, and
the constant terms equal to each other. This gives us the linear system

1 = c1 +2c2

−3 =−c1−3c2

−4 = 2c1 + c2.

This linear system can be solved using standard techniques (e.g., Gaussian
elimination) to find the unique solution c1 =−3,c2 = 2. It follows that f
is a linear combination of g and h: f (x) =−3g(x)+2h(x).

Example 1.1.12
Linear Combina-
tions of Matrices

Determine whether or not the identity matrix I ∈M2(C) is a linear com-
bination of the three matrices

The four matrices
I,X ,Y,Z ∈M2(C) are

sometimes called
the Pauli matrices.

X =
[

0 1
1 0

]
, Y =

[
0 −i
i 0

]
, and Z =

[
1 0
0 −1

]
.

Solution:
We want to know whether or not there exist c1,c2,c3 ∈ C such that

I = c1X + c2Y + c3Z. Writing this matrix equation out more explicitly
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gives
[

1 0
0 1

]
= c1

[
0 1
1 0

]
+ c2

[
0 −i
i 0

]
+ c3

[
1 0
0 −1

]

=
[

c3 c1− ic2

c1 + ic2 −c3

]
.

The (1,1)-entry of the above matrix equation tells us that c3 = 1, but
the (2,2)-entry tells us that c3 =−1, so this system of equations has no
solution. It follows that I is not a linear combination of X , Y , and Z.

Linear combinations are useful for the way that they combine both of the
vector space operations (vector addition and scalar multiplication)—instead of
phrasing linear algebraic phenomena in terms of those two operations, we can
often phrase them more elegantly in terms of linear combinations.

For example, we saw in Theorem 1.1.2 that a subspace is a subset of a
vector space that is closed under vector addition and scalar multiplication.
Equivalently, we can combine those two operations and just say that a subspace
is a subset of a vector space that is closed under linear combinations (see
Exercise 1.1.11). On the other hand, a subset B of a vector space that is not
closed under linear combinations is necessarily not a subspace.

However, it is often useful to consider the smallest subspace containing B.
We call this smallest subspace the span of B, and to construct it we just take all
linear combinations of members of B:

Definition 1.1.4
Span

Suppose V is a vector space and B⊆ V is a set of vectors. The span of B,
denoted by span(B), is the set of all (finite!) linear combinations of vectors
from B:

span(B) def=

{
k

∑
j=1

c jv j

∣∣∣ k ∈ N, c j ∈ F and v j ∈ B for all 1≤ j ≤ k

}
.

Furthermore, if span(B) = V then we say that V is spanned by B.

In Rn, for example, the span of a single vector is the line through the origin
in the direction of that vector, and the span of two non-parallel vectors is the
plane through the origin containing those vectors (see Figure 1.1).

Two or more vectors
can also span a line,
if they are all parallel.

Figure 1.1: The span of a set of vectors is the smallest subspace that contains
all of those vectors. In Rn, this smallest subspace is a line, plane, or hyperplane
containing all of the vectors in the set.

When we work in other vector spaces, we lose much of this geometric
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interpretation, but algebraically spans still work much like they do in Rn. For
example,We use span(1,x,x2)

as slight shorthand
for span({1,x,x2})—

we sometimes omit
the curly set braces.

span(1,x,x2) = P2 (the vector space of polynomials with degree at
most 2) since every polynomial f ∈ P2 can be written in the form f (x) =
c1 +c2x+c3x2 for some c1,c2,c3 ∈R. Indeed, this is exactly what it means for
a polynomial to have degree at most 2. More generally, span(1,x,x2, . . . ,xp) =
P p.

However, it is important to keep in mind that linear combinations are
always finite, even if B is not. To illustrate this point, consider the vector space
P = span(1,x,x2,x3, . . .), which is the set of all polynomials (of any degree).
If we recall from calculus that we can represent the function f (x) = ex in the
form

This is called a Taylor
series for ex (see
Appendix A.2.2).

ex =
∞

∑
n=0

xn

n!
= 1+ x+

x2

2
+

x3

6
+

x4

24
+ · · · ,

we

While all subspaces
of Rn are “closed”
(roughly speaking,
they contain their

edges / limits /
boundaries), this

example illustrates
the fact that some
vector spaces (like

P) are not.

might expect that ex ∈ P , since we have written ex as a sum of scalar
multiples of 1, x, x2, and so on. However, ex /∈ P since ex can only be written
as an infinite sum of polynomials, not a finite one (see Figure 1.2).

To make this idea of
a function being on

the “boundary” of P
precise, we need a

way of measuring
the distance

between
functions—we

describe how to do
this in Sections 1.3.4

and 1.D.

F (all real-valued functions)

P (polynomials)

P2 (quadratic functions)

P1 (linear functions)

P0 (constant functions)

f (x) = 3
2x−1

x2− x+3

2x85 +3x7− x2 +6

excos(x)

Figure 1.2: The vector spaces P0 ⊂P1 ⊂P2 ⊂ ·· · ⊂ P p ⊂ ·· · ⊂ P ⊂F are subspaces
of each other in the manner indicated. The vector space P of all polynomials is
interesting for the fact that it does not contain its boundary: functions like ex and
cos(x) can be approximated by polynomials and are thus on the boundary of P,
but are not polynomials themselves (i.e., they cannot be written as a finite linear
combination of 1,x,x2, . . .).

As we suggested earlier, our primary reason for being interested in the span
of a set of vectors is that it is always a subspace. We now state and prove this
fact rigorously.

Theorem 1.1.3
Spans are Subspaces

Let V be a vector space and let B⊆ V . Then span(B) is a subspace of V .

Proof. We need to check that the two closure properties described by Theo-
rem 1.1.2 are satisfied. We thus suppose that v,w ∈ span(B) and b ∈ F. Then
(by the definition of span(B)) there exist scalars c1,c2, . . . ,ck,d1,d2, . . . ,d` ∈ F
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and vectors v1,v2, . . . ,vk,w1,w2, . . . ,w` ∈ B such thatThe sets {v1, . . . ,vk}
and {w1, . . . ,w`}may

be disjoint or they
may overlap—it
does not matter.

v = c1v1 + c2v2 + · · ·+ ckvk and w = d1w1 +d2w2 + · · ·+d`w`.

To establish property (a) of Theorem 1.1.2, we note that

v+w = (c1v1 + c2v2 + · · ·+ ckvk)+(d1w1 +d2w2 + · · ·+d`w`),

which is a linear combination of v1,v2, . . . ,vk,w1,w2, . . . ,w`, so we conclude
that v+w ∈ span(B).

Similarly, to show that property (b) holds, we check that

bv = b(c1v1 + c2v2 + · · ·+ ckvk) = (bc1)v1 +(bc2)v2 + · · ·+(bck)vk,

which is a linear combination of v1,v2, . . . ,vk, so bv ∈ span(B). Since proper-
ties (a) and (b) are both satisfied, span(B) is a subspace of V . �

Just like subspaces and spans, linear dependence and independence in
general vector spaces are defined almost identically to how they are defined in
Rn. The biggest difference in this more general setting is that it is now useful
to consider linear independence of sets containing infinitely many vectors
(whereas any infinite subset of Rn is necessarily linearly dependent, so the
definition of linear independence in Rn typically bakes finiteness right in).

Definition 1.1.5
Linear Dependence
and Independence

Suppose V is a vector space over a field F and B ⊆ V . We say that B is
linearly dependent if there exist scalars c1, c2, . . ., ck ∈ F, at least one of
which is not zero, and vectors v1, v2, . . ., vk ∈ B such that

c1v1 + c2v2 + · · ·+ ckvk = 0.

IfNotice that we
choose finitely many

vectors v1, v2, . . ., vk
in this definition even

if B is infinite.

B is not linearly dependent then it is called linearly independent.

Linear dependence and independence work very similarly to how they
did in Rn. The rough intuition for them is that linearly dependent sets are
“redundant” in the sense that one of the vectors does not point in a “really
different” direction than the other vectors—it can be obtained from the others
via some linear combination. Geometrically, in Rn this corresponds to two or
more vectors lying on a common line, three or more vectors lying on a common
plane, and so on (see Figure 1.3).

Figure 1.3: A set of vectors is linearly independent if and only if each vector
contributes a new direction or dimension.

Furthermore, just as was the case with linear (in)dependence in Rn, we still
have all of the following properties that make working with linear (in)dependence
easier in certain special cases:
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• A set of two vectors B = {v,w} is linearly dependent if and only if v and
w are scalar multiples of each other.

• A finite set of vectors B = {v1,v2, . . . ,vk} is linearly independent if and
only if the equation

c1v1 + c2v2 + · · ·+ ckvk = 0

has a unique solution: c1 = c2 = · · ·= ck = 0.
• A (not necessarily finite) set B is linearly dependent if and only if there

exists a vector v ∈ B that can be written as a linear combination of the
other vectors from B.

Example 1.1.13
Linear Independence

of Polynomials

Is the set B = {2x2 +1,x2− x+1} linearly independent in P2?

Solution:
Since this set contains just two polynomials, it suffices to just check

whether or not they are scalar multiples of each other. Since they are not
scalar multiples of each other, B is linearly independent.

Example 1.1.14
Linear Independence

of Matrices

Determine whether or not the following set of matrices linearly indepen-
dent inM2(R):

B =
{[

1 1
1 1

]
,

[
1 −1
−1 1

]
,

[
−1 2
2 −1

]}
.

Solution:
Since this set is finite, we want to check whether the equation

c1

[
1 1
1 1

]
+ c2

[
1 −1
−1 1

]
+ c3

[
−1 2
2 −1

]
=
[

0 0
0 0

]

has a unique solution (which would necessarily be c1 = c2 = c3 = 0,
corresponding to linear independence) or infinitely many solutions (cor-
responding to linear dependence). We can solve for c1, c2, and c3 by
comparing entries of the matrices on the left- and right-hand sides above
to get the linear system

c1 + c2− c3 = 0
c1− c2 +2c3 = 0
c1− c2 +2c3 = 0
c1 + c2− c3 = 0.

Solving this linear system via our usual methods reveals that c3 is a
free variable (so there are infinitely many solutions) and c1 =−(1/2)c3,
c2 = (3/2)c3.

In general, to find an
explicit linear

combination that
demonstrates linear

dependence, we
can choose the free
variable(s) to be any

non-zero value(s)
that we like.

It follows that B is linearly dependent, and in particular,
choosing c3 = 2 gives c1 =−1 and c2 = 3, so

−
[

1 1
1 1

]
+3
[

1 −1
−1 1

]
+2
[
−1 2
2 −1

]
=
[

0 0
0 0

]
.
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Example 1.1.15
Linear Independence
of Many Polynomials

Is the set B = {1,x,x2, . . . ,xp} linearly independent in P p?

Solution:
Since this set is finite, we want to check whether the equation

c0 + c1x+ c2x2 + · · ·+ cpxp = 0 (1.1.1)

has a unique solution (linear independence)All we are doing
here is showing that

if f ∈P p satisfies
f (x) = 0 for all x then
all of its coefficients

equal 0. This likely
seems “obvious”, but

it is still good to pin
down why it is true.

or infinitely many solutions
(linear dependence). By plugging x = 0 into that equation, we see that
c0 = 0.

Taking the derivative of both sides of Equation (1.1.1) then reveals that

c1 +2c2x+3c3x2 + · · ·+ pcpxp−1 = 0,

and plugging x = 0 into this equation gives c1 = 0. By repeating this
procedure (i.e., taking the derivative and then plugging in x = 0) we
similarly see that c2 = c3 = · · ·= cp = 0, so B is linearly independent.

Example 1.1.16
Linear Independence

of an Infinite Set

Is the set B = {1,x,x2,x3, . . .} linearly independent in P?

Solution:
This example is a bit trickier than the previous one since the set

contains infinitely many polynomials (vectors), and we are not asking
whether or not there exist scalars c0,c1,c2, . . ., not all equal to zero, such
that

c0 + c1x+ c2x2 + c3x3 + · · ·= 0.

Instead, we are asking whether or not there exists some finite linear com-
bination of 1,x,x2,x3, . . . that adds to 0 (and does not have all coefficients
equal to 0).

Let p be the largest power of x in such a linear combination—we want
to know if there exists (not all zero)Recall that in Rn it

was not possible to
have a linearly

independent set
consisting of infinitely
many vectors (such

sets had at most n
vectors). This is one

way in which
general vector

spaces can differ
from Rn.

scalars c0,c1,c2, . . . ,cp such that

c0 + c1x+ c2x2 + · · ·+ cpxp = 0.

It follows from the exact same argument used in Example 1.1.15 that this
equation has unique solution c0 = c1 = c2 = · · ·= cp = 0, so B is a linearly
independent set.

The previous examples could all be solved more or less just by “plugging
and chugging”—we just set up the linear (in)dependence equation

c1v1 + c2v2 + · · ·+ ckvk = 0

and worked through the calculation to solve for c1,c2, . . . ,ck. We now present
some examples to show that, in some more exotic vector spaces like F , check-
ing linear independence is not always so straightforward, as there is no obvious
or systematic way to solve that linear (in)dependence equation.

Example 1.1.17
Linear Independence

of a Set of Functions

Is the set B = {cos(x),sin(x),sin2(x)} linearly independent in F?

Solution:
Since this set is finite, we want to determine whether or not there exist
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scalars c1,c2,c3 ∈ R (not all equal to 0) such that

c1 cos(x)+ c2 sin(x)+ c3 sin2(x) = 0.

Plugging in x = 0We could also plug
in other values of x to
get other equations

involving c1,c2,c3.

tells us that c1 = 0. Then plugging in x = π/2 tells
us that c2 + c3 = 0, and plugging in x = 3π/2 tells us that −c2 + c3 = 0.
Solving this system of equations involving c2 and c3 reveals that c2 = c3 =
0 as well, so B is a linearly independent set.

Example 1.1.18
Linear Dependence
of a Set of Functions

Is the set B = {sin2(x),cos2(x),cos(2x)} linearly independent in F?

Solution:
Since this set is finite, we want to determine whether or not there exist

scalars c1,c2,c3 ∈ R (not all equal to 0) such that

c1 sin2(x)+ c2 cos2(x)+ c3 cos(2x) = 0.

On the surface, this set looks linearly independent, and we could try
proving it by plugging in specific x values to get some equations involving
c1,c2,c3 (just like in Example 1.1.17). However, it turns out that this won’t
work—the resulting system of linear equations will not have a unique
solution, regardless of the x values we choose.

This identity follows
from the angle-sum
identity cos(θ +φ) =

cos(θ)cos(φ)−
sin(θ)sin(φ). In

particular, plug in
θ = x and φ = x.

To see why this is the case,
recall the trigonometric identity

cos(2x) = cos2(x)− sin2(x).

In particular, this tells us that if c1 = 1,c2 =−1 and c3 = 1, then

sin2(x)− cos2(x)+ cos(2x) = 0,

so B is linearly dependent.

We introduce a somewhat more systematic method of proving linear in-
dependence of a set of functions in F in Exercise 1.1.21. However, checking
linear (in)dependence in general can still be quite difficult.

1.1.3 Bases

In the final two examples of the previous subsection (i.e., Examples 1.1.17 and
1.1.18, which involve functions in F ), we had to fiddle around and “guess” an
approach that would work to show linear (in)dependence. In Example 1.1.17,
we stumbled upon a proof that the set is linearly independent by luckily picking
a bunch of x values that gave us aAnother method of

proving linear
independence in F

is explored in
Exercise 1.1.21.

linear system with a unique solution, and
in Example 1.1.18 we were only able to prove linear dependence because
we conveniently already knew a trigonometric identity that related the given
functions to each other.

The reason that determining linear (in)dependence in F is so much more
difficult than inP p orMm,n is that we do not have a nice basis forF that we can
work with, whereas we do for the other vector spaces that we have introduced
so far (Rn, polynomials, and matrices). In fact, we have been working with
those nice bases already without even realizing it, and without even knowing
what a basis is in vector spaces other than Rn.
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With this in mind, we now introduce bases of arbitrary vector spaces
and start discussing how they make vector spaces easier to work with. Not
surprisingly, they are defined in almost exactly the same way as they are for
subspaces of Rn.

Definition 1.1.6
Bases

A basis of a vector space V is a set of vectors in V that
a) spans V , and
b) is linearly independent.

The prototypical example of a basis is the set consisting of the standard
basis vectors e j = (0, . . . ,0,1,0, . . . ,0) ∈ Rn for 1 ≤ j ≤ n, where there is a
single 1 in the j-th position and 0s elsewhere.

For example, in R3

there are three
standard basis

vectors: e1 = (1,0,0),
e2 = (0,1,0), and

e3 = (0,0,1).
It is straightforward to show

that the set {e1,e2, . . . ,en} ⊂ Rn is a basis of Rn, and in fact it is called the
standard basis of Rn.

As an example of a basis of a vector space other than Rn, consider the
set B = {1,x,x2, . . . ,xp} ⊂ P p. We showed in Example 1.1.15 that this set is
linearly independent, and it spans P p since every polynomial f ∈ P p can be
written as a linear combination of the members of B:

f (x) = c0 + c1x+ c2x2 + · · ·+ cpxp.

It follows that B is a basis of P p, and in fact it is called the standard basis of
P p.

Similarly,Keep in mind that,
just like in Rn, bases

are very non-unique.
If a vector space has
one basis then it has

many different
bases.

there is also a standard basis ofMm,n. We define Ei, j ∈Mm,n to
be the matrix with a 1 in its (i, j)-entry and zeros elsewhere (these are called the
standard basis matrices). For example, inM2,2 the standard basis matrices
are

E1,1 =
[

1 0
0 0

]
, E1,2 =

[
0 1
0 0

]
, E2,1 =

[
0 0
1 0

]
, and E2,2 =

[
0 0
0 1

]
.

The set {E1,1,E1,2, . . . ,Em,n} is a basis (called the standard basis) ofMm,n.
This fact is hopefully believable enough, but it is proved explicitly in Exer-
cise 1.1.13).

Example 1.1.19
Strange Basis of

Matrices

Recall the matrices

X =
[

0 1
1 0

]
, Y =

[
0 −i
i 0

]
, and Z =

[
1 0
0 −1

]
,

which we introduced in Example 1.1.12. Is the set of matrices B =
{I,X ,Y,Z} a basis ofM2(C)?

Solution:
We start by checking whether or not span(B) =M2(C). That is, we

determine whether or not an arbitrary matrix A ∈M2(C) can be written
as a linear combination of the members of B:

c1

[
1 0
0 1

]
+ c2

[
0 1
1 0

]
+ c3

[
0 −i
i 0

]
+ c4

[
1 0
0 −1

]
=
[

a1,1 a1,2
a2,1 a2,2

]
.

By setting the entries of the matrices on the left- and right-hand-sides
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equal to each other, we arrive at the system of linear

Keep in mind that
a1,1, a1,2, a2,1, and a2,2
are constants in this

linear system,
whereas the

variables are c1, c2,
c3, and c4.

equations

c1 + c4 = a1,1, c2− ic3 = a1,2,

c2 + ic3 = a2,1, c1− c4 = a2,2.

It is straightforward to check that, no matter what A is, this linear
system has the unique solution

c1 =
1
2
(a1,1 +a2,2), c2 =

1
2
(a1,2 +a2,1),

c3 =
i
2
(a1,2−a2,1), c4 =

1
2
(a1,1−a2,2).

It follows that A is always a linear combination of the members of B, so
span(B) =M2(C). Similarly, since this linear combination is unique (and
in particular, it is unique when A = O is the zero matrix), we see that B is
linearly independent and thus a basis ofM2(C).

Example 1.1.20
Strange Basis of

Polynomials

Is the set of polynomials B = {1,x,2x2−1,4x3−3x} a basis of P3?

Solution:
We start by checking whether or not span(B) = P3. That is, we deter-

mine whether or not an arbitrary polynomial a0 +a1x+a2x2 +a3x3 ∈ P3

can be written as a linear combination of the members of B:

c0 + c1x+ c2(2x2−1)+ c3(4x3−3x) = a0 +a1x+a2x2 +a3x3.

By setting the coefficients of each power of x equal to each other (like we
did in Example 1.1.11), we arrive at the system of linear equations

c0− c2 = a0, c1−3c3 = a1,

2c2 = a2, 4c3 = a3.

It is straightforward to check that, no matter what a0, a1, a2, and a3
are, this linear system has the unique solution

c0 = a0 +
1
2

a2, c1 = a1 +
3
4

a3, c2 =
1
2

a2, c3 =
1
4

a3.

It follows that a0 +a1x+a2x2 +a3x3 is a linear combination of the mem-
bers of B regardless of the values of a0, a1, a2, and a3, so span(B) = P3.
Similarly, since the solution is unique (and in particular, it is unique when
a0 + a1x + a2x2 + a3x3 is the zero polynomial), we see that B is linearly
independent and thus a basis of P3.

Example 1.1.21
Bases of Even and
Odd Polynomials

Let PE and PO be the sets of even and odd polynomials, respectively:

PE def=
{

f ∈ P : f (−x) = f (x)
}

and PO def=
{

f ∈ P : f (−x) =− f (x)
}
.

Show that PE and PO are subspaces of P , and find bases of them.

Solution:
We show that PE is a subspace of P by checking the two closure
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properties from Theorem 1.1.2.
a) If f ,g ∈ PE then

( f +g)(−x) = f (−x)+g(−x) = f (x)+g(x) = ( f +g)(x),

so f +g ∈ PE too.
b) If f ∈ PE and c ∈ R then

(c f )(−x) = c f (−x) = c f (x) = (c f )(x),

so c f ∈ PE too.
To find a basis of PE, we first notice that {1,x2,x4, . . .} ⊂ PE. This set

is linearly independent since it is a subset of the linearly independent set
{1,x,x2,x3, . . .} from Example 1.1.16. To see that it spans PE, we notice
that if

f (x) = a0 +a1x+a2x2 +a3x3 + · · · ∈ PE

then f (x)+ f (−x) = 2 f (x), so

2 f (x) = f (x)+ f (−x)

= (a0 +a1x+a2x2 + · · ·)+(a0−a1x+a2x2−·· ·)
= 2(a0 +a2x2 +a4x4 + · · ·).

It follows that f (x) = a0 + a2x2 + a4x4 + · · · ∈ span(1,x2,x4, . . .), so the
set {1,x2,x4, . . .} spans PE and is thus a basis of it.

A similar argument shows that PO is a subspace of P with basis
{x,x3,x5, . . .}, but we leave the details to Exercise 1.1.14.

Just as was the case in Rn, the reason why we require a basis to span a vec-
tor space V is so that we can write every vector v ∈ V as a linear combination
of those basis vectors, and the reason why we require a basis to be linearly
independent is so that those linear combinations are unique. The following the-
orem pins this observation down, and it roughly says that linear independence
is the property needed to remove redundancies in linear combinations.

Theorem 1.1.4
Uniqueness of

Linear Combinations

Suppose B is a basis of a vector space V . For every v ∈ V , there is exactly
one way to write v as a linear combination of the vectors in B.

Proof. Since B spans V , we know that every v ∈ V can be written as a linear
combination of the vectors in B, so all we have to do is use linear independence
of B to show that this linear combination is unique.

Suppose
Conversely, if B is a

set with the property
that every vector

v ∈ V can be written
as a linear

combination of the
members of B in

exactly one way,
then B must be a

basis of V (see
Exercise 1.1.20).

that v could be written as a (finite) linear combination of vectors
from B in two ways:

v = c1v1 + c2v2 + · · ·+ ckvk and
v = d1w1 +d2w2 + · · ·+d`w`.

(1.1.2)

It might be the case that some of the vi vectors equal some of the w j vectors.
Let m be the number of such pairs of equal vectors in these linear combinations,
and order the vectors so that vi = wi when 1≤ i≤m, but vi 6= w j when i, j > m.
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Subtracting these linear combinations from each other then gives

0 = v−v = ((c1−d1)v1 + · · ·+(cm−dm)vm)
+(cm+1vm+1 + · · ·+ ckvk)− (dm+1wm+1 + · · ·+d`w`).

Since B is a basis, and thus linearly independent, this linear combination
tells us that c1− d1 = 0, . . ., cm− dm = 0, cm+1 = · · · = ck = 0, and dm+1 =
· · ·= d` = 0. It follows that the two linear combinations in Equation (1.1.2) are
in fact the same linear combination, which proves uniqueness. �

Most properties of bases of subspaces of Rn carry over to bases of arbitrary
vector spaces, as long as those bases are finite. However, we will see in the next
section that vector spaces with infinite bases (like P) can behave somewhat
strangely, and for some vector spaces (like F) it can be difficult to even say
whether or not they have a basis.

Exercises solutions to starred exercises on page 449

1.1.1 Determine which of the following sets are and are
not subspaces of the indicated vector space.

∗(a) The set {(x,y) ∈ R2 : x≥ 0,y≥ 0} in R2.
(b) The set MsS

n of skew-symmetric matrices (i.e., ma-
trices B satisfying BT =−B) in Mn.

∗(c) The set of invertible matrices in M3(C).
(d) The set of polynomials f satisfying f (4) = 0 in P3.
∗(e) The set of polynomials f satisfying f (2) = 2 in P4.

(f) The set of polynomials with even degree in P .
∗(g) The set of even functions (i.e., functions f satisfying

f (x) = f (−x) for all x ∈ R) in F .
(h) The set of functions

{ f ∈F : f ′(x)+ f (x) = 2}

in F (here f ′ denotes the derivative of f ).
∗(i) The set of functions

{ f ∈F : f ′′(x)−2 f (x) = 0}
in F (here f ′′ denotes the second derivative of f ).

(j) The set of functions

{ f ∈F : sin(x) f ′(x)+ ex f (x) = 0}
in F .

∗(k) The set of matrices with trace (i.e., sum of diagonal
entries) equal to 0.

1.1.2 Determine which of the following sets are and are
not linearly independent. If the set is linearly dependent,
explicitly write one of the vectors as a linear combination
of the other vectors.

∗(a)

{[
1 2
3 4

]}
⊂M2

(b) {1+ x,1+ x2,x2− x} ⊂P2

∗(c) {sin2(x),cos2(x),1} ⊂F
(d) {sin(x),cos(x),1} ⊂F
∗(e) {sin(x+1),sin(x),cos(x)} ⊂F

(f) {ex,e−x} ⊂F
∗∗(g) {ex,xex,x2ex} ⊂F

1.1.3 Determine which of the following sets are and are
not bases of the indicated vector space.

∗(a)

{[
1 0
0 1

]
,

[
1 1
0 1

]
,

[
1 0
1 1

]}
⊂M2

(b)

{[
1 0
0 1

]
,

[
1 1
0 1

]
,

[
1 0
1 1

]
,

[
1 1
1 1

]}
⊂M2

∗(c)

{[
1 0
0 1

]
,

[
1 1
0 1

]
,

[
1 0
1 1

]
,

[
1 1
1 0

]}
⊂M2

(d) {x+1,x−1} ⊂P1

∗(e) {x2 +1,x+1,x2− x} ⊂P2

(f) {x2 +1,x+1,x2− x+1} ⊂P2

∗(g) {1,x−1,(x−1)2,(x−1)3, . . .} ⊂P
(h) {ex,e−x} ⊂F

1.1.4 Determine which of the following statements are true
and which are false.

(a) The empty set is a vector space.
∗(b) Every vector space V 6= {0} contains a subspace W

such that W 6= V .
(c) If B and C are subsets of a vector space V with B⊆C

then span(B)⊆ span(C).
∗(d) If B and C are subsets of a vector space V with

span(B)⊆ span(C) then B⊆C.
(e) Linear combinations must contain only finite many

terms in the sum.
∗(f) If B is a subset of a vector space V then the span of

B is equal to the span of some finite subset of B.
(g) Bases must contain finitely many vectors.
∗(h) A set containing a single vector must be linearly

independent.

∗1.1.5 Suppose V is a vector space over a field F. Show
that if v ∈ V and c ∈ F then (−c)v =−(cv).

1.1.6 Consider the subset S = {(a+bi,a−bi) : a,b ∈ R}
of C2. Explain why S is a vector space over the field R, but
not over C.

∗∗1.1.7 Show that the sequence space FN is a vector space.
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∗∗1.1.8 Show that the set MS
n of n×n symmetric matrices

(i.e., matrices A satisfying AT = A) is a subspace of Mn.

1.1.9 Let Pn denote the set of n-variable polynomials, P p
n

denote the set of n-variable polynomials of degree at most p,
and HP p

n denote the set of n-variable homogeneous poly-
nomials (i.e., polynomials in which every term has the exact
same degree) of degree p, together with the 0 function. For
example,

x3y+ xy2 ∈P4
2 and x4y2z+ xy3z3 ∈HP7

3.

(a) Show that Pn is a vector space.
(b) Show that P p

n is a subspace of Pn.
(c) Show that HP p

n is a subspace of P p
n .

[Side note: We explore HP p
n extensively in Sec-

tion 3.B.]

∗∗1.1.10 Let C be the set of continuous real-valued func-
tions, and let D be the set of differentiable real-valued func-
tions.

(a) Briefly explain why C is a subspace of F .
(b) Briefly explain why D is a subspace of F .

∗∗1.1.11 Let V be a vector space over a field F and let
S ⊆ V be non-empty. Show that S is a subspace of V if and
only if it is closed under linear combinations:

c1v1 + c2v2 + · · ·+ ckvk ∈ S

for all c1,c2, . . . ,ck ∈ F and v1,v2, . . . ,vk ∈ S.

1.1.12 Recall the geometric series

1+ x+ x2 + x3 + · · ·= 1
1− x

whenever |x|< 1.

(a) Why does the above expression not imply that
1/(1− x) is a linear combination of 1, x, x2, . . .?

(b) Show that the set
{

1/(1−x),1,x,x2,x3, . . .
}

of func-
tions from (−1,1) to R is linearly independent.

∗∗1.1.13 Prove that the standard basis
{

E1,1,E1,2, . . . ,Em,n
}

is indeed a basis of Mm,n.

∗∗1.1.14 We showed in Example 1.1.21 that the set of even
polynomials PE is a subspace of P with {1,x2,x4, . . .} as a
basis.

(a) Show that the set of odd polynomials PO is also a
subspace of P .

(b) Show that {x,x3,x5, . . .} is a basis of PO.

1.1.15 We showed in Example 1.1.19 that the set of Pauli
matrices B = {I,X ,Y,Z} is a basis of M2(C). Show that it
is also a basis of MH

2 (the vector space of 2×2 Hermitian
matrices).

1.1.16 In FN, let e j = (0, . . . ,0,1,0, . . .) be the sequence
with a single 1 in the j-th entry, and all other terms equal to
0.

(a) Show that {e1,e2,e3, . . . ,} is a basis of the subspace
c00 from Example 1.1.10.

(b) Explain why {e1,e2,e3, . . . ,} is not a basis of FN.

∗1.1.17 Let S1 and S2 be subspaces of a vector space V .

(a) Show that S1 ∩S2 is also a subspace of V .
(b) Provide an example to show that S1 ∪S2 might not

be a subspace of V .

1.1.18 Let B and C be subsets of a vector space V .

(a) Show that span(B∩C)⊆ span(B)∩ span(C).
(b) Provide an example for which span(B ∩ C) =

span(B)∩ span(C) and another example for which
span(B∩C) ( span(B)∩ span(C).

∗∗1.1.19 Let S1 and S2 be subspaces of a vector space V .
The sum of S1 and S2 is defined by

S1 +S2
def= {v+w : v ∈ S1,w ∈ S2}.

(a) If V = R3, S1 is the x-axis, and S2 is the y-axis, what
is S1 +S2?

(b) If V = M2, MS
2 is the subspace of symmetric ma-

trices, and MsS
2 is the subspace of skew-symmetric

matrices (i.e., the matrices B satisfying BT = −B),
what is MS

2 +MsS
2 ?

(c) Show that S1 +S2 is always a subspace of V .

∗∗1.1.20 Show that the converse of Theorem 1.1.4 holds.
That is, show that if V is a vector space and B is a set with
the property that every vector v ∈ V can be written as a
linear combination of the members of B in exactly one way,
then B must be a basis of V .

∗∗1.1.21 In the space of functions F , proving linear depen-
dence or independence can be quite difficult. In this question,
we derive one method that can help us if the functions are
smooth enough (i.e., can be differentiated enough).

Given a set of n functions f1, f2, . . . , fn : R→R that are dif-
ferentiable at least n−1 times, we define the following n×n
matrix (note that each entry in this matrix is a function):

W (x) =




f1(x) f2(x) . . . fn(x)
f ′1(x) f ′2(x) . . . f ′n(x)

f ′′1 (x) f ′′2 (x) . . . f ′′n (x)

...
...

. . .
...

f (n−1)
1 (x) f (n−1)

2 (x) . . . f (n−1)
n (x)




.

The notation f (n−1)(x) above means the (n−1)-th deriva-
tive of f .

(a) Show that if f1, f2, . . . , fn are linearly dependent,
then det(W (x)) = 0 for all x ∈ R. [Hint: What can
you say about the columns of W (x)?] [Side note: The
determinant det(W (x)) is called the Wronskian of
f1, f2, . . . , fn.]

(b) Use the result of part (a) to show that the set
{x, ln(x),sin(x)} is linearly independent.

(c) Use the result of part (a) to show that the set
{1,x,x2, . . . ,xn} is linearly independent.

(d) This method cannot be used to prove linear de-
pendence! For example, show that the functions
f1(x) = x2 and f2(x) = x|x| are linearly independent,
but det(W (x)) = 0 for all x.
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∗∗1.1.22 Let a1,a2, . . . ,an be n distinct real numbers (i.e.,
ai 6= a j whenever i 6= j). Show that the set of functions
{ea1x,ea2x, . . . ,eanx} is linearly independent.

[Hint: Construct the Wronskian of this set of functions (see
Exercise 1.1.21) and notice that it is the determinant of a
Vandermonde matrix.]

1.2 Coordinates and Linear Transformations

We now start investigating what we can do with bases of vector spaces. It is
perhaps not surprising that we can do many of the same things that we do
with bases of subspaces of Rn, like define the dimension of arbitrary vector
spaces and construct coordinate vectors. However, bases really shine in this
more general setting because we can use them to turn any question about a
vector space V (as long as it has a finite basis) into one about Rn or Cn (or Fn,
where V is a vector space over the field F).

In other words, we spend this section showing that we can think of general
vector spaces (like polynomials or matrices) just as copies of Rn that have just
been written in a different way, and we can think of linear transformations on
these vector spaces just as matrices.

1.2.1 Dimension and Coordinate Vectors

Recall from Theorem 1.1.4 that every vector v in a vector space V can be
written as a linear combination of the vectors from a basis B in exactly one
way. We can interpret this fact as saying that the vectors in a basis each specify
a different direction, and the (unique) coefficients in the linear combination
specify how far v points in each of those directions.

For example, if B = {e1,e2} is the standard basis of R2 then when we write
v = c1e1 + c2e2,In other words,

v = (c1,c2).
the coefficient c1 tells us how far v points in the direction of

e1 (i.e., along the x-axis) and c2 tells us how far v points in the direction of e2
(i.e., along the y-axis). A similar interpretation works with other bases of R2

(see Figure 1.4) and with bases of other vector spaces.

Figure 1.4: When we write a vector as a linear combination of basis vectors, the
coefficients of that linear combination tell us how far it points in the direction of
those basis vectors.
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It is often easier to just keep track of and work with these coefficients c1, c2,
. . ., cn in a linear combination, rather than the original vector v itself. However,
there is one technicality that we have to deal with before we can do this: the
fact that bases are sets of vectors, and sets do not care about order. For example,
{e1,e2} and {e2,e1} are both the same standard basis of R2. However, we want
to be able to talk about things like the “first” vector in a basis and the “third”
coefficient in a linear combination. For this reason, we typically consider bases
to be ordered—even though they are written using the same notation as sets,
their order really is meant as written.

We abuse notation a
bit when using bases.

Order does not
matter in sets like

{e1,e2}, but it matters
if that set is a basis.

Definition 1.2.1
Coordinate Vectors

Suppose V is a vector space over a field F with a finite (ordered) basis
B = {v1,v2, . . . ,vn}, and v ∈ V . Then the unique scalars c1, c2, . . ., cn ∈ F
for which

v = c1v1 + c2v2 + · · ·+ cnvn

are called the coordinates of v with respect to B, and the vector

[v]B
def= (c1,c2, . . . ,cn)

is called the coordinate vector of v with respect to B.

It is worth noting that coordinate vectors in Rn (or Fn in general) with
respect to the standard basis are equal to those vectors themselves: if B =
{e1,e2, . . . ,en} then [v]B = v for all v ∈ Rn, since the first entry of v is the
coefficient of e1, the second entry of v is the coefficient of e2, and so on. We
can also construct coordinate vectors with respect to different bases and of
vectors from other vector spaces though.

For example, the coordinate vector of 3+2x+ x2 ∈ P2 with respect to the
basis B = {1,x,x2} is [3+2x+ x2]B = (3,2,1): we just place the coefficients
of the polynomial in a vector in R3, and this vector completely specifies the
polynomial. More generally, the coordinate vector of the polynomial a0 +a1x+
a2x2 + · · ·+apxp with respect to the standard basis B = {1,x,x2, . . . ,xp} is

[
a0 +a1x+a2x2 + · · ·+apxp]

B = (a0,a1,a2, . . . ,ap).

The key idea behind coordinate vectors is that they let us use bases to
treat every vector space with a finite basis just like we treat Fn (where F is
the ground field and n is the number of vectors in the basis). In particular,
coordinate vectors with respect to any basis B interact with vector addition and
scalar multiplication how we would expect them to (see Exercise 1.2.22):

[v+w]B = [v]B +[w]B and [cv]B = c[v]B for all v,w ∈ V ,c ∈ F.

It follows that we can answer pretty much any linear algebraic question
about vectors in an n-dimensional vector space V just by finding their coordinate
vectors and then answering the corresponding question in Fn (which we can do
via techniques from introductory linear algebra). For example, a set is linearly
independent if and only if the set consisting of their coordinate vectors is
linearly independent (see Exercise 1.2.23).

Example 1.2.1
Checking Linear

(In)Dependence via
Coordinate Vectors

Show that the following sets of vectors C are linearly independent in the
indicated vector space V:

a) V = R4, C = {(0,2,0,1),(0,−1,1,2),(3,−2,1,0)},



26 Chapter 1. Vector Spaces

b) V = P3, C = {2x+ x3, −x+ x2 +2x3, 3−2x+ x2}, and
c) V =M2, C =

{[
0 2
0 1

]
,

[
0 −1
1 2

]
,

[
3 −2
1 0

]}
.

Solutions:
a) Recall that C is linearly independent if and only if the linear system

c1(0,2,0,1)+ c2(0,−1,1,2)+ c3(3,−2,1,0) = (0,0,0,0)

has a unique solution. Explicitly, this linear system has the form

3c3 = 0
2c1− c2−2c3 = 0

c2 + c3 = 0
c1 +2c2 = 0

which can be solved viaNeed a refresher on
solving linear
systems? See

Appendix A.1.1.

Gaussian elimination to see that the unique
solution is c1 = c2 = c3 = 0, so C is indeed a linearly independent
set.

b) We could check linear independence directly via the methods of
Section 1.1.2, but we instead compute the coordinate vectors of the
members of C with respect to the standard basis B = {1,x,x2,x3}
of P3:

[2x+ x3]B = (0,2,0,1),

[−x+ x2 +2x3]B = (0,−1,1,2), and

[3−2x+ x2]B = (3,−2,1,0).

These coordinate vectors are exactly the vectors from part (a), which
we already showed are linearly independent in R4, so C is linearly
independent in P3 as well.

c) Again, we start by computing the coordinate vectors of the members
of C with respect to the standard basis B = {E1,1,E1,2,E2,1,E2,2} of
M2:

The notation here is
quite unfortunate.

The inner square
brackets indicate

that these are
matrices, while the

outer square
brackets denote the

coordinate vectors
of these matrices.

[[
0 2
0 1

]]

B

= (0,2,0,1),

[[
0 −1
1 2

]]

B

= (0,−1,1,2), and

[[
3 −2
1 0

]]

B

= (3,−2,1,0).

Again, these coordinate vectors are exactly the vectors from part (a),
which we already showed are linearly independent in R4, so C is
linearly independent inM2.

The above example highlights the fact that we can really think of R4, P3,
andM2 as “essentially the same” vector spaces, just dressed up and displayed
differently: we can work with the polynomial a0 + a1x + a2x2 + a3x3 in the
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same way that we work with the vector (a0,a1,a2,a3) ∈ R4, which we can
work with in the same way as the matrix

[
a0 a1
a2 a3

]
∈M2.

However, it is also often useful to represent vectors in bases other than the
standard basis, so we briefly present an example that illustrates how to do this.

Example 1.2.2
Coordinate Vectors

in Weird Bases

Find the coordinate vector of 2 + 7x + x2 ∈ P2 with respect to the basis
B = {x+ x2, 1+ x2, 1+ x}.
Solution:

We
We did not explicitly

prove that B is a
basis of P2 here—try
to convince yourself

that it is.

want to find scalars c1,c2,c3 ∈ R such that

2+7x+ x2 = c1(x+ x2)+ c2(1+ x2)+ c3(1+ x).

By matching up coefficients of powers of x on the left- and right-hand
sides above, we arrive at the following system of linear equations:

c2 + c3 = 2
c1 + c3 = 7
c1 + c2 = 1

ThisTo find c1,c2,c3, just
apply Gaussian

elimination like usual.

linear system has c1 = 3,c2 =−2,c3 = 4 as its unique solution, so
our desired coordinate vector is

[
2+7x+ x2]

B = (c1,c2,c3) = (3,−2,4).

By making use of coordinate vectors, we can leech many of our results
concerning bases of subspaces of Rn directly into this more general setting. For
example, the following theorem tells us that we can roughly think of a spanning
set as one that is “big” and a linearly independent set as one that is “small” (just
like we did when we worked with these concepts for subspaces of Rn), and bases
are exactly the sweet spot in the middle where these two properties meet.

Theorem 1.2.1
Linearly Independent

Sets Versus
Spanning Sets

Suppose n≥ 1 is an integer and V is a vector space with a basis B consisting
of n vectors.

a) Any set of more than n vectors in V must be linearly dependent, and
b) any set of fewer than n vectors cannot span V .

Proof. For property (a), suppose that a set C has m > n vectors, which we call
v1,v2, . . . ,vm. To see that C is necessarily linearly dependent, we must show
that there exist scalars c1, c2, . . ., cm, not all equal to zero, such that

c1v1 + c2v2 + · · ·+ cmvm = 0.

If we compute the coordinate vector of both sides of this equation with
respect to B then we see that it is equivalent to

c1[v1]B + c2[v2]B + · · ·+ cm[vm]B = 0,

which is a homogeneous system of n linear equations in m variables. Since
m > n, this is a “short and fat” linear system (i.e., its coefficient matrix has



28 Chapter 1. Vector Spaces

more columns than rows) and thus must have infinitely many solutions. In
particular, it has at least one non-zero solution, from which it follows that C is
linearly dependent.

Part (b) is proved in a similar way and thus left as Exercise 1.2.36. �

By recalling that a basis of a vector space V is a set that both spans V and
is linearly independent, we immediately get the following corollary:

Corollary 1.2.2
Uniqueness of

Size of Bases

Suppose n≥ 1 is an integer and V is a vector space with a basis consisting
of n vectors. Then every basis of V has exactly n vectors.

For example, we saw in Example 1.1.19 that the set
{[

1 0
0 1

]
,

[
0 1
1 0

]
,

[
0 −i
i 0

]
,

[
1 0
0 −1

]}

is a basis ofM2(C), which is consistent with Corollary 1.2.2 since the standard
basis {E1,1,E1,2,E2,1,E2,2} also contains exactly 4 matrices. In a sense, this
tells us thatM2(C) contains 4 “degrees of freedom” or requires 4 (complex)
numbers to describe each matrix that it contains. This quantity (the number of
vectors in any basis) gives a useful description of the “size” of the vector space
that we are working with, so we give it a name:

Definition 1.2.2
Dimension of a

Vector Space

A vector space V is called...
a) finite-dimensional if it has a finite basis. Its dimension, denoted

by dim(V), is the number of vectors in any of its bases.
b) infinite-dimensional if it does not have a finite basis, and we write

dim(V) = ∞.

For example, since Rn has {e1,e2, . . . ,en} as a basis, which has n vectors,
we see that dim(Rn) = n. Similarly, the standard basis {E1,1,E1,2, . . . ,Em,n} of
Mm,n contains mn vectors (matrices), so dim(Mm,n) = mn. We summarize the
dimensions of some of the other commonly-occurring vector spaces that we
have been investigating in Table 1.1.

Vector space V Standard basis dim(V)

Fn {e1,e2, . . . ,en} n
Mm,n {E1,1,E1,2, . . . ,Em,n} mn
P p {1,x,x2, . . . ,xp} p+1
P {1,x,x2, . . .} ∞

F – ∞

Table 1.1: The standard basis and dimension of some common vector spaces.

There is one specialWe refer to {0} as
the zero vector

space.

case that is worth special attention, and that is the
vector space V = {0}. The only basis of this vector space is the empty set
{}, not {0} as we might first guess, since any set containing 0 is necessarily
linearly dependent. Since the empty set contains no vectors, we conclude that
dim({0}) = 0.

If we already know the dimension of the vector space that we are working
with, it becomes much simpler to determine whether or not a given set is a
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basis of it. In particular, if a set contains the right number of vectors (i.e., its
size coincides with the dimension of the vector space) then we can show that it
is a basis just by showing that it is linearly independent or spanning—the other
property comes for free (see Exercise 1.2.27).

Remark 1.2.1
Existence of Bases?

Notice that we have not proved a theorem saying that all vector spaces
have bases (whereas this fact is true of subspaces of Rn and is typically
proved in this case in introductory linear algebra textbooks). The reason
for this omission is that constructing bases is much more complicated in
arbitrary (potentially infinite-dimensional) vector spaces.

While it is true that all finite-dimensional vector spaces have bases (in
fact, this is baked right into Definition 1.2.2(a)), it is much less clear what
a basis of (for example) the vector space F of real-valued functions would
look like. We could try sticking all of the “standard” functions that we
know of into a set like

{1,x,x2, . . . , |x|, ln(x2 +1),cos(x),sin(x),1/(3+2x2),e6x, . . .},

but there will always be lots of functions left over that are not linear
combinations of these familiar functions.

It turns out that the existence of bases depends on something called
the “axiom of choice”, which is a mathematical axiom that is independent
of the other set-theoretic underpinnings of modern mathematics.

Most (but not all!)
mathematicians

accept the axiom of
choice, and thus

would say that every
vector space has a
basis. However, the
axiom of choice is

non-constructive, so
we still cannot

actually write down
explicit examples of

bases in many
infinite-dimensional

vector spaces.

In other
words, we can neither prove that every vector space has a basis, nor can
we construct a vector space that does not have one.

From a practical point of view, this means that it is simply not possible
to write down a basis of many vector spaces likeF , even if they exist. Even
in the space C of continuous real-valued functions, any basis necessarily
contains some extremely hideous and pathological functions. Roughly
speaking, the reason for this is that any finite linear combination of “nice”
functions will still be “nice”, but there are many “not nice” continuous
functions out there.

For example, there are continuous functions that are nowhere differ-
entiable (i.e., they do not have a derivative anywhere). This means that
no matter how much we zoom in on the graph of the function, it never
starts looking like a straight line, but rather looks jagged at all zoom levels.
Every basis of C must contain strange functions like these, and an explicit
example is the Weierstrass function W definedAgain, keep in mind

that this does not
mean that W is a

linear combination
of cos(2x), cos(4x),

cos(8x), . . ., since this
sum has infinitely
many terms in it.

by

W (x) =
∞

∑
n=1

cos(2nx)
2n ,

whose graph is displayed on the next page:
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1.2.2 Change of Basis

When we change the basis B that we are working with, the resulting coordinate
vectors change as well. For instance, we showed in Example 1.2.2 that, with
respect to a certain basis B of P2, we have

[
2+7x+ x2]

B = (3,−2,4).

However, if C = {1,x,x2} is the standard basis of P2 then we have
[
2+7x+ x2]

C = (2,7,1).

In order to convert coordinate vectors between two bases B and C, we could
of course compute v from [v]B and then compute [v]C from v. However, there
is a “direct” way of doing this conversion that avoids the intermediate step of
computing v.

Definition 1.2.3
Change-of-Basis

Matrix

Suppose V is a vector space with bases B = {v1,v2, . . . ,vn} and C. The
change-of-basis matrix from B to C, denoted by PC←B, is the n×n matrix
whose columns are the coordinate vectors [v1]C, [v2]C, . . . , [vn]C:

PC←B
def=
[

[v1]C | [v2]C | · · · | [vn]C
]
.

It is worth emphasizing the fact that in the above definition, we place the
coordinate vectors [v1]C, [v2]C, . . ., [vn]C into the matrix PC←B as its columns,
not its rows. Nonetheless, when considering those vectors in isolation, we still
write them using round parentheses and in a single row, like [v2]C = (1,4,−3),
just as we have been doing up until this point. The reason for this is that vectors
(i.e., members of Fn) do not have a shape—they are just lists of numbers, and
we can arrange those lists however we like.

The change-of-basis matrix from B to C, as its name suggests, converts
coordinate vectors with respect to B into coordinate vectors with respect to C.
That is, we have the following theorem:

Theorem 1.2.3
Change-of-Basis

Matrices

Suppose B and C are bases of a finite-dimensional vector space V , and let
PC←B be the change-of-basis matrix from B to C. Then

a) PC←B[v]B = [v]C for all v ∈ V , and
b) PC←B is invertible and P−1

C←B = PB←C.
Furthermore, PC←B is the unique matrix with property (a).
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Proof. Let B = {v1,v2, . . . ,vn} so that we have names for the vectors in B.
For property (a), suppose v ∈ S and write v = c1v1 + c2v2 + · · ·+ cnvn, so

that [v]B = (c1,c2, . . . ,cn). We can then directly compute

PC←B[v]B =
[
[v1]C | · · · | [vn]C

]



c1

...
cn


 (definition of PC←B)

= c1[v1]C + · · ·+ cn[vn]C (block matrix multiplication)
= [c1v1 + · · ·+ cnvn]C (by Exercise 1.2.22)
= [v]C. (v = c1v1 + c2v2 + · · ·cnvn)

To see that property (b) holds, we just note that using property (a) twice tells
us that PB←CPC←B[v]B = [v]B for all v ∈ V , so PB←CPC←B = I, which implies
P−1

C←B = PB←C.
Finally, to see that PB←C the unique matrix satisfying property (a), suppose

P∈Mn is any matrix for which P[v]B = [v]C for all v∈ V . For every 1≤ j≤ n,
if v = v j then we see that [v]B = [v j]B = e j (the j-th standard basis vector in
Fn), so P[v]B = Pe j is the j-th column of P. On the other hand, it is also the
case that P[v]B = [v]C = [v j]C. The j-th column of P thus equals [v j]C for each
1≤ j ≤ n, so P = PC←B. �

The two properties described by the above theorem are illustrated in Fig-
ure 1.5: the bases B and C provide two different ways of making the vector
space V look like Fn, and the change-of-basis matrices PC←B and PB←C convert
these two different representations into each other.

One of the
advantages of using

change-of-basis
matrices, rather than

computing each
coordinate vector
directly, is that we

can re-use
change-of-basis

matrices to change
multiple vectors
between bases.

V

Fn Fn

PC←B

P
−1

C←B
= PB←C

[ · ]B[ · ]C

[v]C [v]B

v

Figure 1.5: A visualization of the relationship between vectors, their coordinate
vectors, and change-of-basis matrices. There are many different bases that let us
think of V as Fn, and change-of-basis matrices let us convert between them.

Example 1.2.3
Computing a Change-

of-Basis Matrix

Find the change-of-basis matrices PB←C and PC←B for the bases

B = {x+ x2, 1+ x2, 1+ x} and C = {1,x,x2}

of P2. Then find the coordinate vector of 2+7x+ x2 with respect to B.
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Solution:

To start, we find the coordinate vectors of the members of B with
respect to the basis C. Since C is the standard basis of P2, we can eyeball
these coordinate vectors:
[
x+ x2]

C = (0,1,1),
[
1+ x2]

C = (1,0,1), and [1+ x]C = (1,1,0).

These vectors are the columns of the change-of-basis matrix PC←B:

PC←B =




0 1 1
1 0 1
1 1 0


 .

The simplest method for finding PB←C from here is to compute the
inverse

This inverse can be
found by

row-reducing [ A | I ]
to [ I | A−1 ] (see
Appendix A.1.3).

of PC←B:

PB←C = P−1
C←B =

1
2



−1 1 1
1 −1 1
1 1 −1


 .

To then find [2+7x+ x2]B, we just multiply [2+7x+ x2]C (which is
easy to compute, since C is the standard basis) by PB←C:

[
2+7x+x2]

B = PB←C
[
2+7x+x2]

C =
1
2



−1 1 1
1 −1 1
1 1 −1






2
7
1


=




3
−2
4


 ,

which is the same answer that we found in Example 1.2.2.

The previous example wasGenerally,
converting vectors

into the standard
basis is much easier

than converting into
other bases.

not too difficult since C happened to be the
standard basis of P2, so we could compute PC←B just by “eyeballing” the
standard basis coefficients, and we could then compute PB←C just by taking
the inverse of PC←B. However, if C weren’t the standard basis, computing the
columns of PC←B would have been much more difficult—each column would
require us to solve a linear system.

A quicker and easier way to compute a change-of-basis matrix is to change
from the input basis B to the standard basis E (if one exists in the vector space
being considered), and then change from E to the output basis C, as described
by the following theorem:

Theorem 1.2.4
Computing Change-

of-Basis Matrices
(Method 1)

Let V be a finite-dimensional vector space with bases B, C, and E. Then

PC←B = PC←EPE←B.

Proof. We just use the properties of change-of-basis matrices that we know
from Theorem 1.2.3. If v ∈ V is any vector thenThink of the “E”s in

the middle of
PC←B = PC←E PE←B as

“canceling out”. The
notation was

designed specifically
so that this works.

(PC←EPE←B)[v]B = PC←E(PE←B[v]B) = PC←E [v]E = [v]C.

It then follows from uniqueness of change-of-basis matrices that PC←EPE←B =
PC←B. �
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To actually make use of the above theorem, we note that if E is chosen to be
the standard basis of V then PE←B can be computed by eyeballing coefficients,
and PC←E can be computed by first eyeballing the entries of PE←C and then
inverting (like in Example 1.2.3).

Example 1.2.4
Computing a Change-

of-Basis Matrix
Between Ugly Bases

Use Theorem 1.2.4 to find the change-of-basis matrix PC←B, where

B =
{[

1 0
0 1

]
,

[
0 1
1 0

]
,

[
0 −i
i 0

]
,

[
1 0
0 −1

]}
and

C =
{[

1 0
0 0

]
,

[
1 1
0 0

]
,

[
1 1
1 0

]
,

[
1 1
1 1

]}

areWe showed that the
set B is indeed a

basis of M2(C) in
Example 1.1.19. You

should try to
convince yourself

that C is also a basis.

bases ofM2(C). Then compute [v]C if [v]B = (1,2,3,4).

Solution:
To start, we compute the change-of-basis matrices from B and C into

the standard basis

E =
{[

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
,

which can be done by inspection:
Coordinate vectors

of matrices with
respect to the

standard matrix can
be obtained just by

writing the entries of
the matrices, in

order, row-by-row.

[[
1 0
0 1

]]

E

= (1,0,0,1),

[[
0 1
1 0

]]

E

= (0,1,1,0),

[[
0 −i
i 0

]]

E

= (0,−i, i,0), and

[[
1 0
0 −1

]]

E

= (1,0,0,−1).

We then get PE←B by placing these vectors into a matrix as its columns:

PE←B =




1 0 0 1
0 1 −i 0
0 1 i 0
1 0 0 −1


 .

A similar procedure can be used to compute PE←C, and then we find
PC←E by inverting:

PE←C =




1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1


 , so PC←E = P−1

E←C =




1 −1 0 0
0 1 −1 0
0 0 1 −1
0 0 0 1


 .
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To put this all together and compute PC←B, we multiply:

PC←B = PC←EPE←B =




1 −1 0 0
0 1 −1 0
0 0 1 −1
0 0 0 1







1 0 0 1
0 1 −i 0
0 1 i 0
1 0 0 −1




=




1 −1 i 1
0 0 −2i 0
−1 1 i 1
1 0 0 −1


 .

Finally, since we were asked for [v]C if [v]B = (1,2,3,4), we compute

[v]C = PC←B[v]B =




1 −1 i 1
0 0 −2i 0
−1 1 i 1
1 0 0 −1







1
2
3
4


=




3+3i
−6i

5+3i
−3


 .

The previous example perhaps seemed a bit long and involved. Indeed, to
make use of Theorem 1.2.4, we have to invert PE←C and then multiply two
matrices together. The following theorem tells us that we can reduce the amount
of work required slightly by instead row reducing a certain cleverly-chosen
matrix based on PE←B and PE←C. This takes about the same amount of time
as inverting PE←C, and lets us avoid the matrix multiplication step that comes
afterward.

Corollary 1.2.5
Computing Change-

of-Basis Matrices
(Method 2)

Let V be a finite-dimensional vector space with bases B, C, and E. Then
the reduced row echelon form of the augmented matrix

[ PE←C | PE←B ] is [ I | PC←B ].

To help remember this corollary, notice that [PE←C | PE←B] has C and B in
the same order as [I | PC←B], and we start with [PE←C | PE←B] because changing
into the standard basis E is easy.

Proof of Corollary 1.2.5. Recall that PE←C is invertible, so its reduced row
echelon form is I and thus the RREF of [ PE←C | PE←B ] has the form [ I | X ]
for some matrix X .

To see that X = PC←B (and thus complete the proof), recall that sequences of
elementary row operations correspond to multiplication on the left by invertible
matrices (see Appendix A.1.3), so there is an invertible matrix Q such that

Q[ PE←C | PE←B ] = [ I | X ].

On the other hand, block matrix multiplication shows that

Q[ PE←C | PE←B ] = [ QPE←C | QPE←B ].

Comparing the left blocks of these matrices shows that QPE←C = I, so
Q = P−1

E←C = PC←E . Comparing the right blocks of these matrices then shows
that X = QPE←B = PC←EPE←B = PC←B, as claimed. �
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Example 1.2.5
Computing a Change-

of-Basis Matrix via
Row Operations

Use Corollary 1.2.5 to find the change-of-basis matrix PC←B, where

B =
{[

1 0
0 1

]
,

[
0 1
1 0

]
,

[
0 −i
i 0

]
,

[
1 0
0 −1

]}
and

C =
{[

1 0
0 0

]
,

[
1 1
0 0

]
,

[
1 1
1 0

]
,

[
1 1
1 1

]}

are bases ofM2(C).

Solution:
Recall that we already computed PE←B and PE←C in Example 1.2.4:

PE←B =




1 0 0 1
0 1 −i 0
0 1 i 0
1 0 0 −1


 and PE←C =




1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1


 .

To compute PC←B, we place these matrices side-by-side in an aug-
mented matrix and then row reduce:

[ PE←C | PE←B ] =




1 1 1 1 1 0 0 1
0 1 1 1 0 1 −i 0
0 0 1 1 0 1 i 0
0 0 0 1 1 0 0 −1




R1−R2−−−−→




1 0 0 0 1 −1 i 1
0 1 1 1 0 1 −i 0
0 0 1 1 0 1 i 0
0 0 0 1 1 0 0 −1




R2−R3−−−−→




1 0 0 0 1 −1 i 1
0 1 0 0 0 0 −2i 0
0 0 1 1 0 1 i 0
0 0 0 1 1 0 0 −1




R3−R4−−−−→




1 0 0 0 1 −1 i 1
0 1 0 0 0 0 −2i 0
0 0 1 0 −1 1 i 1
0 0 0 1 1 0 0 −1




= [ I | PC←B ].

Since the left block is now the identity matrix I, it follows from Corol-
lary 1.2.5 that the right block is PC←B:

PC←B =




1 −1 i 1
0 0 −2i 0
−1 1 i 1
1 0 0 −1


 ,

which agrees with the answer that we found in Example 1.2.4.
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1.2.3 Linear Transformations

When working with vectors in Rn, we often think of matrices as functions
that move vectors around. That is, we fix a matrix A ∈Mm,n and consider the
function T : Rn→ Rm defined byWhenever we

multiply a matrix by
a vector, we

interpret that vector
as a column vector

so that the matrix
multiplication makes

sense.

T (v) = Av. When we do this, many of the
usual linear algebraic properties of the matrix A can be interpreted as properties
of the function T : the rank of A is the dimension of the range of T , the absolute
value of det(A) is a measure of how much T expands space, and so on.

Any function T that is constructed in this way inherits some nice properties
from matrix multiplication: T (v+w) = A(v+w) = Av+Aw = T (v)+T (w)
for all vectors v,w ∈ Rn, and similarly T (cv) = A(cv) = cAv = cT (v) for
all vectors v ∈ Rn and all scalars c ∈ R. We now explore functions between
arbitrary vectors spaces that have these same two properties.

Definition 1.2.4
Linear

Transformations

Let V andW be vector spaces over the same field F. A linear transforma-
tion is a function T : V →W that satisfies the following two properties:

a) T (v+w) = T (v)+T (w) for all v,w ∈ V , and
b) T (cv) = cT (v) for all v ∈ V and c ∈ F.

All of our old examples of linear transformations (i.e., matrices) acting on
V = Rn satisfy this definition, and our intuition concerning how they move
vectors around Rn still applies. However, there are linear transformations acting
on other vector spaces that perhaps seem a bit surprising at first, so we spend
some time looking at examples.

Example 1.2.6
The Transpose is a

Linear Transformation

Show that the matrix transpose is a linear transformation. That is, show
that the function T :Mm,n →Mn,m defined by T (A) = AT is a linear
transformation.

Solution:
We need to show that the two properties of Definition 1.2.4 hold. That

is, we need to show that (A + B)T = AT + BT and (cA)T = cAT for all
A,B∈Mm,n and c∈F. Both of these properties follow almost immediately
from the definition, so we do not dwell on them.

Example 1.2.7
The Trace is a

Linear Transformation

The trace is the function tr :Mn(F)→ F that adds up the diagonal entries
of a matrix:

tr(A) def= a1,1 +a2,2 + · · ·+an,n for all A ∈Mn(F).

Show that the trace is a linear transformation.

Solution:
We need to show that the two properties of Definition 1.2.4

The notation [A+B]i, j
means the (i, j)-entry

of A+B.

hold:
a) tr(A + B) = [A + B]1,1 + · · ·+[A + B]n,n = a1,1 + b1,1 + · · ·+ an,n +

bn,n = (a1,1 + · · ·+an,n)+(b1,1 + · · ·+bn,n) = tr(A)+ tr(B), and

b) tr(cA) = [cA]1,1 + · · ·+[cA]n,n = ca1,1 + · · ·+ can,n = ctr(A).
It follows that the trace is a linear transformation.
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Example 1.2.8
The Derivative is a

Linear Transformation

Show that the derivative is a linear transformation. That is, show that the
function D :D→F defined by D( f ) = f ′ is a linear transformation.

Solution:
We

Recall that D is the
vector space of

differentiable
real-valued

functions. Sorry for
using two different

“D”s in the same
sentence to mean

different things (curly
D is a vector space,

block D is the
derivative linear
transformation).

need to show that the two properties of Definition 1.2.4 hold. That
is, we need to show that ( f +g)′ = f ′+g′ and (c f )′ = c f ′ for all f ,g ∈D
and c ∈ R. Both of these properties are typically presented in introductory
calculus courses, so we do not prove them here.

There are also a couple of particularly commonly-occurring linear transfor-
mations that it is useful to give names to: the zero transformation O : V →W
is the one defined by O(v) = 0 for all v ∈ V , and the identity transformation
I : V → V is the one defined by I(v) = v for all v ∈ V . If we wish to clar-
ify which spaces the identity and zero transformations are acting on, we use
subscripts as in IV and OV,W .

On the other hand, it is perhaps helpful to see an example of a linear
algebraic function that is not a linear transformation.

Example 1.2.9
The Determinant is Not

a Linear Transformation

Show that the determinant, det :Mn(F)→ F, is not a linear transformation
when n≥ 2.

Solution:
To see that det is not a linear transformation, we need to show that at

least one of the two defining properties from Definition 1.2.4 do not hold.
Well, det(I) = 1, so

det(I + I) = det(2I) = 2n det(I) = 2n 6= 2 = det(I)+det(I),

so property (a) of that definition fails (property (b) also fails for a similar
reason).

We now do for linear transformations what we did for vectors in the previous
section: we give them coordinates so that we can explicitly write them down
using numbers from the ground field F. More specifically, just like every vector
in a finite-dimensional vector space can be associated with a vector in Fn, every
linear transformation between vector spaces can be associated with a matrix in
Mm,n(F):

Theorem 1.2.6
Standard Matrix of a

Linear Transformation

Let V andW be vector spaces with bases B and D, respectively, where
B = {v1,v2, . . . ,vn} andW is m-dimensional. A function T : V →W is a
linear transformation if and only if there exists a matrix [T ]D←B ∈Mm,n
for which

[T (v)]D = [T ]D←B[v]B for all v ∈ V .

Furthermore, the unique matrix [T ]D←B with this property is called the
standard matrix of T with respect to the bases B and D, and it is

[T ]D←B
def=
[
[T (v1)]D | [T (v2)]D | · · · | [T (vn)]D

]
.

In other words, this theorem tells us that instead of working with a vector
v ∈ V , applying the linear transformation T : V →W to it, and then converting
it into a coordinate vector with respect to the basis D, we can convert v to its
coordinate vector [v]B and then multiply by the matrix [T ]D←B (see Figure 1.6).
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Read this figure as
starting at the

top-right corner and
moving to the

bottom-left.

W V

Fm Fn

T

[T ]D←B

[ · ]D [ · ]B

T (v) v

[T (v)]D = [T ]D←B[v]B [v]B

Figure 1.6: A visualization of the relationship between linear transformations, their
standard matrices, and coordinate vectors. Just like T sends v to T (v), the standard
matrix [T ]D←B sends the coordinate vector of v to the coordinate vector of T (v).

Proof of Theorem 1.2.6. It is straightforward to show that a function that mul-
tiplies a coordinate vector by a matrix is a linear transformation, so we only
prove that for every linear transformation T : V →W , the matrix

[T ]D←B =
[
[T (v1)]D | [T (v2)]D | · · · | [T (vn)]D

]

satisfies [T ]D←B[v]B = [T (v)]D, and no other matrix has this property. To see
that [T ]D←B[v]B = [T (v)]D, suppose that [v]B = (c1,c2, . . . ,cn) (i.e., v = c1v1 +
c2v2 + · · ·+ cnvn) and do block matrix multiplication:

This proof is almost
identical to that of
Theorem 1.2.3. The

reason for this is that
change-of-basis

matrices are exactly
the standard

matrices of the
identity

transformation.

[T ]D←B[v]B =
[
[T (v1)]D | · · · | [T (vn)]D

]



c1
...

cn


 (definition of [T ]D←B)

= c1[T (v1)]D + · · ·+ cn[T (vn)]D (block matrix mult.)
= [c1T (v1)+ · · ·+ cnT (vn)]D (by Exercise 1.2.22)
= [T (c1v1 + · · ·+ cnvn)]D (linearity of T )
= [T (v)]D. (v = c1v1 + · · ·cnvn)

The proof of uniqueness of [T ]D←B is almost identical to the proof of
uniqueness of PC←B from Theorem 1.2.3, so we leave it to Exercise 1.2.35. �

For simplicity of notation, in the special case when V =W and B = D
we denote the standard matrix [T ]B←B simply by [T ]B. If V furthermore has a
standard basis E then we sometimes denote [T ]E simply by [T ].

Example 1.2.10
Standard Matrix of the

Transposition Map

Find the standard matrix [T ] of the transposition map T :M2→M2 with
respect to the standard basis E = {E1,1,E1,2,E2,1,E2,2}.
Solution:

We need to compute the coefficient vectors of ET
1,1, ET

1,2, ET
2,1, and ET

2,2,
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and place them (in that order) into the matrix [T ]:

[ET
1,1]E =

[[
1 0
0 0

]]

E

= (1,0,0,0), [ET
1,2]E =

[[
0 0
1 0

]]

E

= (0,0,1,0),

[ET
2,1]E =

[[
0 1
0 0

]]

E

= (0,1,0,0), [ET
2,2]E =

[[
0 0
0 1

]]

E

= (0,0,0,1).

It follows thatThe standard matrix
of T looks different

depending on which
bases B and D are

used (just like
coordinate vectors

look different
depending on the

basis B).

[T ] = [T ]E =
[

[ET
1,1]E

∣∣ [ET
1,2]E

∣∣ [ET
2,1]E

∣∣ [ET
2,2]E

]
=




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 .

We could be done at this point, but as a bit of a sanity check, it is
perhaps useful to verify that [T ]E [A]E = [AT ]E for all A ∈M2. To this end,
we notice that if

A =

[
a b
c d

]
then [A]E = (a,b,c,d),

soWe generalize this
example to higher

dimensions in
Exercise 1.2.12.

[T ]E [A]E =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1







a
b
c
d


=




a
c
b
d


=

[[
a c
b d

]]

E

=
[
AT ]

E ,

as desired.

Example 1.2.11
Standard Matrix of the

Derivative

Find the standard matrix [D]C←B of the derivative map D : P3→P2 with
respect to the standard bases B = {1,x,x2,x3} ⊂ P3 and C = {1,x,x2} ⊂
P2.

Solution:
We need to compute the coefficient vectors of D(1) = 0, D(x) = 1,

D(x2) = 2x, and D(x3) = 3x2, and place them (in that order) into the matrix
[D]C←B:

[0]C = (0,0,0), [1]C = (1,0,0), [2x]C = (0,2,0),
[
3x2]

C = (0,0,3).

It follows that

[D]C←B =
[

[0]C
∣∣ [1]C

∣∣ [2x]C
∣∣ [3x2]

C

]
=




0 1 0 0
0 0 2 0
0 0 0 3


 .

Once again, as a bit of a sanity check, it is perhaps useful to verify that
[D]C←B[ f ]B = [ f ′]C for all f ∈ P3. If f (x) = a0 +a1x+a2x2 +a3x3 then
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[ f ]B = (a0,a1,a2,a3), so

[D]C←B[ f ]B =




0 1 0 0
0 0 2 0
0 0 0 3







a0
a1
a2
a3


=




a1

2a2

3a3


=

[
a1 +2a2x+3a3x2]

C.

Since a1 +2a2x+3a3x2 = (a0 +a1x+a2x2 +a3x3)′ = f ′(x), we thus see
that we indeed have [D]C←B[ f ]B = [ f ′]C, as expected.

Keep in mind that if we change the input and/or output vector spaces of the
derivative map D, then its standard matrix can look quite a bit different (after
all, even just changing the bases used on these vector spaces can change the
standard matrix). For example, if we considered D as a linear transformation
from P3 to P3, instead of from P3 to P2 as in the previous example, then its
standard matrix would be 4×4 instead of 3×4 (it would have an extra zero
row at its bottom).

The next example illustrates this observation with the derivative map on a
slightly more exotic vector space.

Example 1.2.12
Standard Matrix of the

Derivative (Again)

Let B = {ex,xex,x2ex} be a basis of the vector space V = span(B). Find
the standard matrix [D]B of the derivative map D : V → V with respect to
B.

Solution:
We

Recall that spans are
always subspaces. B

was shown to be
linearly independent
in Exercise 1.1.2(g), so
it is indeed a basis of

V .

need to compute the coefficient vectors of D(ex) = ex, D(xex) =
ex + xex, and D(x2ex) = 2xex + x2ex, and place them (in that order) as
columns into the matrix [D]B:
[
ex]

B = (1,0,0),
[
ex + xex]

B = (1,1,0),
[
2xex + x2ex]

B = (0,2,1).

It follows that

[D]B =
[ [

ex]
B

∣∣ [ex + xex]
B

∣∣ [2xex + x2ex]
B

]
=




1 1 0
0 1 2
0 0 1


 .

It is often useful to consider the effect of applying two or more linear
transformations to a vector, one after another. Rather than thinking of these
linear transformations as separate objects that are applied in sequence, we can
combine their effect into a single new function that is called their composition.

More specifically, suppose V,W, and X are vector spaces and T : V →W
and S :W →X are linear transformations. We say that the composition of S
and T , denoted by S◦T , isLike most things in

this section, the
composition S◦T

should be read
right-to-left. The

input vector v goes
in on the right, then

T acts on it, and
then S acts on that.

the function defined by

(S◦T )(v) def= S(T (v)) for all v ∈ V .

That is, the composition S◦T of two linear transformations is the function that
we get if we apply T first and then S. In other words, while T sends V toW
and S sends W to X , the composition S ◦T skips the intermediate step and
sends V directly to X , as illustrated in Figure 1.7.

Importantly, S◦T is also a linear transformation, and its standard matrix can
be obtained simply by multiplying together the standard matrices of S and T .
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V W X

T S

S◦T

v T (v)
S(T (v)) =
(S◦T )(v)

Figure 1.7: The composition of S and T , denotes by S◦T , is the function that sends
v ∈ V to S(T (v)) ∈X .

In fact, this is the primary reason that matrix multiplication is defined in the
seemingly bizarre way that it is—we want it to capture the idea of applying
one matrix (linear transformation) after another to a vector.

Theorem 1.2.7
Composition of

Linear Transformations

Suppose V ,W , and X are finite-dimensional vector spaces with bases B,
C, and D, respectively. If T : V →W and S :W →X are linear transfor-
mations then S ◦T : V → X is a linear transformation, and its standard
matrix is

Notice that the
middle C subscripts

match, while the left
D subscripts and the
right B subscripts also

match.

[S◦T ]D←B = [S]D←C[T ]C←B.

Proof. Thanks to the uniqueness condition of Theorem 1.2.6, we just need
to show that [(S◦T )(v)]D = [S]D←C[T ]C←B[v]B for all v ∈ V . To this end, we
compute [(S ◦ T )(v)]D by using Theorem 1.2.6 applied to each of S and T
individually:

[(S◦T )(v)]D = [S(T (v))]D = [S]D←C[T (v)]C = [S]D←C[T ]C←B[v]B.

It follows that S ◦ T is a linear transformation, and its standard matrix is
[S]D←C[T ]C←B, as claimed. �

In the special case when the linear transformations that we are composing
are equal to each other, we denote their composition by T 2 def= T ◦ T . More
generally, we can define powers of a linear transformation T : V → V via

T k def= T ◦T ◦ · · · ◦T︸ ︷︷ ︸
k copies

.

Example 1.2.13
Iterated Derivatives

Use standard matrices to compute the fourth derivative of x2ex +2xex.

Solution:
We let B = {ex,xex,x2ex} and V = span(B) so that we can make use

of the standard matrix

[D]B =




1 1 0
0 1 2
0 0 1




of the derivative map D that we computed in Example 1.2.12. We know
from Theorem 1.2.7 that the standard matrix of D2 = D◦D (i.e., the linear
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map that takes the derivative twice) is

[
D2]

B = [D]2B =




1 1 0
0 1 2
0 0 1




2

=




1 2 2
0 1 4
0 0 1


 .

Similar reasoning tells us that the standard matrix of D4 = D◦D◦D◦D
(i.e., the linear map that takes the derivative four times) is

[
D4]

B =
[
D2]2

B =




1 2 2
0 1 4
0 0 1




2

=




1 4 12
0 1 8
0 0 1


 .

With this standard matrix in hand, one way to find the fourth derivative
of x2ex +2xex is to multiply its coordinate vector (0,2,1) by

[
D4
]

B:

[
(x2ex +2xex)′′′′

]
B =

[
D4]

B

[
x2ex +2xex]

B

=




1 4 12
0 1 8
0 0 1






0
2
1


=




20
10
1


 .

It follows that (x2ex +2xex)′′′′ = 20ex +10xex + x2ex.

Recall from earlier that we learned how to convert a coordinate vector from
the basis B to another one C by using a change-of-basis matrix PC←B.

The basis E here
does not have to be

the standard basis.
There just are not

enough letters in the
alphabet.

We now
learn how to do the same thing for linear transformations: there is a reasonably
direct method of converting a standard matrix with respect to bases B and D to
a standard matrix with respect to bases C and E.

Theorem 1.2.8
Change of Basis for

Linear Transformations

Suppose V is a finite-dimensional vector space with bases B and C,W is
a finite-dimensional vector space with bases D and E, and T : V →W is a
linear transformation. Then

[T ]E←B = PE←D[T ]D←CPC←B.

Proof. WeAs always, notice in
this theorem that

adjacent subscripts
always match (e.g.,

the two “D”s are
next to each other,

as are the two “C”s).

simply multiply the matrix PE←D[T ]D←CPC←B on the right by an
arbitrary coordinate vector [v]B, where v ∈ V . Well,

PE←D[T ]D←CPC←B[v]B = PE←D[T ]D←C[v]C (since PC←B[v]B = [v]C)
= PE←D[T (v)]D (by Theorem 1.2.6)
= [T (v)]E .

However, we know from Theorem 1.2.6 that [T ]E←B is the unique matrix for
which [T ]E←B[v]B = [T (v)]E for all v ∈ V , so it follows that
PE←D[T ]D←CPC←B = [T ]E←B, as claimed. �

A schematic that illustrates the statement of the above theorem is provided
by Figure 1.8. All it says is that there are two different (but equivalent) ways
of converting [v]B into [T (v)]E : we could multiply [v]B by [T ]E←B, or we
could convert [v]B into basis C, then multiply by [T ]D←C, and then convert
into basis E.



1.2 Coordinates and Linear Transformations 43

Again, read this
figure as starting at
the top-right corner
and moving to the

bottom-left.

W

T (v)

V

v

Fm

[T (v)]E

Fm

[T (v)]D

Fn

[v]C

Fn

[v]B

[ · ]E
[ · ]D [ · ]C

[ · ]B

T

PE←D [T ]D←C
PC←B

[T ]E←B = PE←D[T ]D←CPC←B

Figure 1.8: A visualization of the relationship between linear transformations, stan-
dard matrices, change-of-basis matrices, and coordinate vectors. In particular,
the bottom row illustrates Theorem 1.2.8, which says that we can construct [T ]E←B
from [T ]D←C by multiplying on the right and left by the appropriate change-of-basis
matrices. This image is basically just a combination of Figures 1.5 and 1.6.

Example 1.2.14
Representing the

Transpose in
Weird Bases

Compute the standard matrix [T ]C←B of the transpose map T :M2(C)→
M2(C), where

B =
{[

1 0
0 1

]
,

[
0 1
1 0

]
,

[
0 −i
i 0

]
,

[
1 0
0 −1

]}
and

C =
{[

1 0
0 0

]
,

[
1 1
0 0

]
,

[
1 1
1 0

]
,

[
1 1
1 1

]}

are bases ofM2(C).

Solution:
Recall that if E = {E1,1,E1,2,E2,1,E2,2} is the standard basis ofM2(C)

then we already computed PE←B and PC←E in Example 1.2.4:

PE←B =




1 0 0 1
0 1 −i 0
0 1 i 0
1 0 0 −1


 and PC←E =




1 −1 0 0
0 1 −1 0
0 0 1 −1
0 0 0 1


 ,

as well as [T ]E in Example 1.2.10:

[T ]E =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 .

Theorem 1.2.8 tells us that we can compute [T ]C←B just by multiplying
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these matrices together in the appropriate

We could also
compute [T ]C←B
directly from the

definition, but that is
a lot more work as it

requires the
computation of

numerous ugly
coordinate vectors.

order:

[T ]C←B = PC←E [T ]EPE←B

=




1 −1 0 0
0 1 −1 0
0 0 1 −1
0 0 0 1







1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1







1 0 0 1
0 1 −i 0
0 1 i 0
1 0 0 −1




=




1 −1 0 0
0 1 −1 0
0 0 1 −1
0 0 0 1







1 0 0 1
0 1 i 0
0 1 −i 0
1 0 0 −1




=




1 −1 −i 1
0 0 2i 0
−1 1 −i 1
1 0 0 −1


 .

1.2.4 Properties of Linear Transformations

Now that we know how to represent linear transformations as matrices, we
can introduce many properties of linear transformations that are analogous to
properties of their standard matrices. Because of the close relationship between
these two concepts, all of the techniques that we know for dealing with matrices
carry over immediately to this more general setting, as long as the underlying
vector spaces are finite-dimensional.

For example, we say that a linear transformation T : V →W is invertible
if there exists a linear transformation T−1 :W →V such that

T−1(T (v)) = v for all v ∈ V and

T (T−1(w)) = w for all w ∈W .

In other words, T−1 ◦T = IV and T ◦T−1 = IW . Our intuitive understanding
of the inverse of a linear transformation is identical to that of matrices (T−1

is the linear transformation that “undoes” what T “does”), and the following
theorem says that invertibility of T can in fact be determined from its standard
matrix exactly how we might hope:

Theorem 1.2.9
Invertibility of

Linear Transformations

Suppose V andW are finite-dimensional vector spaces with bases B and
D, respectively, and dim(V) = dim(W). Then a linear transformation
T : V → W is invertible if and only if its standard matrix [T ]D←B is
invertible, and [

T−1]
B←D =

(
[T ]D←B

)−1
.

Proof. We make use of the fact from Exercise 1.2.30 that the standard matrix
of the identity transformation is the identity matrix: [T ]B = I if and only if
T = IV .

For the “only if” direction, note that if T is invertible then we have

I = [IV ]B =
[
T−1 ◦T

]
B =

[
T−1]

B←D[T ]D←B.
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Since [T−1]B←D and [T ]D←B multiply to the identity matrix, it follows that they
are inverses of each other.

For the “if” direction,We show in
Exercise 1.2.21 that if

dim(V) 6= dim(W)
then T cannot

possibly be invertible.

suppose that [T ]D←B is invertible, with inverse matrix
A. Then there is some linear transformation S :W →V such that A = [S]B←D,
so for all v ∈ V we have

[v]B = A[T ]D←B[v]B = [S]D←B[T ]D←B[v]B = [(S◦T )(v)]B.

This implies [S ◦T ]B = I, so S ◦T = IV , and a similar argument shows that
T ◦S = IW . It follows that T is invertible, and its inverse is S. �

In a sense, the above theorem tells us that when considering the invertibil-
ity of linear transformations, we do not actually need to do anything new—
everything just carries over from the invertibility of matrices straightforwardly.
The important difference here is our perspective—we can now use everything
we know about invertible matrices in many other situations where we want
to invert an operation. The following example illustrates this observation by
inverting the derivative (i.e., integrating).

Example 1.2.15
Indefinite Integrals via

Standard Matrices

Use standard matrices to compute
∫

(3x2ex− xex) dx.

Solution:
WeThe “standard” way

to compute this
indefinite integral

directly would be to
use integration by

parts twice.

let B = {ex,xex,x2ex} and V = span(B) so that we can make use
of the standard matrix

[D]B =




1 1 0
0 1 2
0 0 1




of the derivative map D that we computed in Example 1.2.12. Since the
indefinite integral and derivative are inverse operations of one another
on V , D−1 is the integration linear transformation. It then follows from
Theorem 1.2.9 that the standard matrix of D−1

See Appendix A.1.3 if
you need a refresher
on how to compute

the inverse of a
matrix. Recall that
applying Gaussian

elimination to [ A | I ]
produces [ I | A−1 ].

is

[
D−1]

B = [D]−1
B =




1 −1 2
0 1 −2
0 0 1


 .

It follows that, to find the coefficient vector of the indefinite integral
of 3x2ex− xex, we compute

[
D−1]

B[3x2ex− xex]B =




1 −1 2
0 1 −2
0 0 1






0
−1
3


=




7
−7
3


 .

We thus conclude that
∫

(3x2ex− xex) dx = 7ex−7xex +3x2ex +C.

It is worth pointing out that the method of integration presented in Exam-
ple 1.2.15 does not work if the derivative map D is not invertible on the vector
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space in question. For example, if we tried to compute
∫

x3 dx

via this method, we could run into trouble since D : P3→P3 is not invertible:
direct computation reveals that its standard matrix is 4×4, but has rank 3. After
all, it has a 1-dimensional null space consisting of the coordinate vectors of
the constant functions, which are all mapped to 0. One way to get around this
problem is to use the pseudoinverse, which we introduce in Section 2.C.1.

Remark 1.2.2
Invertibility in

Infinite-Dimensional
Vector Spaces

Because we can think of linear transformations acting on finite-dimensional
vector spaces as matrices, almost any property or theorem involving matri-
ces can be carried over to this new setting without much trouble.

However, if the vector spaces involved are infinite-dimensional, then
many of the nice

A “one-sided
inverse” of a linear

transformation T is a
linear transformation

T−1 such that
T−1 ◦T = IV or

T ◦T−1 = IW (but not
necessarily both).

properties that matrices have can break down. For ex-
ample, a standard result of introductory linear algebra says that every
one-sided inverse of a matrix, and thus every one-sided inverse of a linear
transformation between finite-dimensional vector spaces, is necessarily a
two-sided inverse as well. However, this property does not hold in infinite-
dimensional vector spaces.

For example,

Recall that FN is the
vector space of

infinite sequences of
scalars from F.

if R : FN→ FN is the “right shift” map defined by

R(c1,c2,c3, . . .) = (0,c1,c2,c3, . . .),

then it is straightforward to verify that R is linear (see Exercise 1.2.32).
Furthermore, the “left shift” map L : FN→ FN defined by

L(c1,c2,c3, . . .) = (c2,c3,c4, . . .)

is a one-sided inverse of R, since L◦R = IFN . However, L is not a two-sided
inverse of R, since

(R◦L)(c1,c2,c3, . . .) = (0,c2,c3, . . .),

so R◦L 6= IFN .

We can also introduce many other properties and quantities associated with
linear transformations, such as their range, null space, rank, and eigenvalues.
In all of these cases, the definitions are almost identical to what they were for
matrices, and in the finite-dimensional case they can all be handled simply by
appealing to what we already know about matrices.

In particular, we now define the following concepts concerning a linear
transformation T : V →W :

• range(T ) def= {T (x) : x ∈ V},
• null(T ) def= {x ∈ V : T (x) = 0},

We show that
range(T ) is a

subspace of W and
null(T ) is a subspace
of V in Exercise 1.2.24. • rank(T ) def= dim(range(T )), and

• nullity(T ) def= dim(null(T )).
In all of these cases, we can compute these quantities by converting ev-

erything to standard matrices and coordinate vectors, doing our computations
on matrices using the techniques that we already know, and then converting
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back to linear transformations and vectors in V . We now illustrate this tech-
nique with some examples, but keep in mind that if V and/orW are infinite-
dimensional, then these concepts become quite a bit more delicate and are
beyond the scope of this book.

Example 1.2.16
Range and Null Space

of the Derivative

Determine the range, null space, rank, and nullity of the derivative map
D : P3→P3.

Solution:
We first compute these objects directly from the definitions.
• The range of D is the set of all polynomials of the form D(p), where

p ∈ P3. Since the derivative of a degree-3 polynomial has degree-2
(and conversely, every degree-2 polynomial is the derivative of some
degree-3 polynomial), we conclude that range(D) = P2.

• The null space of D is the set of all polynomials p for which D(p) =
0. Since D(p) = 0 if and only if p is constant, we conclude that
null(D) = P0 (the constant functions).

• The rank of D is the dimension of its range, which is dim(P2) = 3.
• The nullity of D is the dimension of its null space: dim(P0) = 1.
Alternatively, we could have arrived at these answers by working

with the standard matrix of D. Using an argument analogous to that of
Example 1.2.11, we see that the standard matrix of D with respect to the

In Example 1.2.11, D
was a linear

transformation into
P2 (instead of P3) so

its standard matrix
there was 3×4
instead of 4×4.

standard basis B = {1,x,x2,x3} is

[D]B =




0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0


 .

Straightforward computation then shows the following:
• range([D]B) = span

(
(1,0,0,0),(0,1,0,0),(0,0,1,0)

)
. These three

vectors are [1]B, [x]B, and [x2]B, so range(D) = span(1,x,x2) = P2,
as we saw earlier.

• null([D]B) = span
(
(1,0,0,0)

)
. Since (1,0,0,0) = [1]B, we con-

clude that null(D) = span(1) = P0, as we saw earlier.
• rank([D]B) = 3, so rank(D) = 3 as well.
• nullity([D]B) = 1, so nullity(D) = 1 as well.

In the above example, we were able to learn about the range, null space,
rank, and nullity of a linear transformation by considering the corresponding
properties of its standard matrix (with respect to any basis). These facts are
hopefully intuitive enough (after all, the entire reason we introduced standard
matrices is because they act on Fn in the same way that the linear transformation
acts on V), but they are proved explicitly in Exercise 1.2.25.

We can also define eigenvalues and eigenvectors of linear transformations in
almost the exact same way that is done for matrices. If V is a vector space over a
field F then a non-zero vector v∈V is an eigenvector of a linear transformation

If T : V →W with
V 6= W then T (v) and

λv live in different
vector spaces, so it

does not make
sense to talk about
them being equal.

T : V →V with corresponding eigenvalue λ ∈ F if T (v) = λv. We furthermore
say that the eigenspace corresponding to a particular eigenvalue is the set
consisting of all eigenvectors corresponding to that eigenvalue, together with 0.
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Just like the range and null space, eigenvalues and eigenvectors can be
computed either straight from the definition or via the corresponding properties
of a standard matrix.

Example 1.2.17
Eigenvalues and

Eigenvectors of the
Transpose

Compute the eigenvalues and corresponding eigenspaces of the transpose
map T :M2→M2.

Solution:
We compute the eigenvalues and eigenspaces of T by making use of its

standard matrix with respect to the standard basis E = {E1,1,E1,2,E2,1,E2,2}
that we computed in Example 1.2.10:

[T ] =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 .

Then the characteristic polynomial p[T ] of [T ]
Computing

determinants of 4×4
matrices is normally
not particularly fun,

but it’s doing so here
is not too bad since

[T ] has so many zero
entries.

is

p[T ](λ ) = det







1−λ 0 0 0
0 −λ 1 0
0 1 −λ 0
0 0 0 1−λ





= λ 2(1−λ )2− (1−λ )2

= (λ 2−1)(1−λ )2

= (λ −1)3(λ +1).

It follows that the eigenvalues of [T ] are 1, with algebraic multiplic-
ity 3, and −1, with algebraic multiplicity 1. We now find bases of its
eigenspaces.

λ = 1: This eigenspace equals the null space of

A−λ I = A− I =




0 0 0 0
0 −1 1 0
0 1 −1 0
0 0 0 0


 ,

which has B = {(1,0,0,0),(0,1,1,0),(0,0,0,1)} as a basis.
These three basis vectors are the coordinate vectors of the
matrices

[
1 0
0 0

]
,

[
0 1
1 0

]
, and

[
0 0
0 1

]
,

which thus make up a basis ofWhen we say
“symmetric” here,

we really mean
symmetric: AT = A.
We do not mean

“Hermitian”, even if
the underlying

field is C.

the λ = 1 eigenspace of T . This
makes sense since these matrices span the set MS

2 of sym-
metric 2× 2 matrices. In other words, we have just restated
the trivial fact that AT = A means that A is an eigenvector of
the transpose map with eigenvalue 1 (i.e., AT = λA with λ = 1).
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λ =−1: Similarly, this eigenspace equals the null space of

A−λ I = A+ I =




2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2


 ,

which has basis B = {(0,1,−1,0)}. This vector is the coordi-
nate vector of the matrix

[
0 1
−1 0

]
,

which thus makes up a basis of the λ = −1 eigenspace of
T . This makes sense since this matrix spans the set MsS

2 of
skew-symmetric 2× 2 matrices. Similar to before, we have
just restated the trivial fact that AT = −A means that A is an
eigenvector of the transpose map with eigenvalue−1 (i.e., AT =
λA with λ =−1).

The above example generalizes straightforwardly to higher dimensions:
for any integer n≥ 2, the transpose map T :Mn→Mn only has eigenvalues
±1, and the corresponding eigenspaces are exactly the spacesMS

n andMsS
n of

symmetric and skew-symmetric matrices, respectively (see Exercise 1.2.13).
Because we can talk about eigenvalues and eigenvectors of linear transfor-

mations via their standard matrices, all of our results based on diagonalization
Refer to

Appendix A.1.7 if you
need a refresher on

diagonalization.

automatically apply in this new setting with pretty much no extra work (as long
as everything is finite-dimensional). We can thus diagonalize linear transforma-
tions, take arbitrary (non-integer) powers of linear transformations, and even
apply strange functions like the exponential to linear transformations.

Example 1.2.18
Square Root of the

Transpose

Find a square root of the transpose map T :M2(C)→M2(C). That is,
find a linear transformation S :M2(C)→M2(C) with the property that
S2 = T .

Solution:
Since we already know how to solve problems like this for matrices,

we just do the corresponding matrix computation on the standardThroughout this
example,

E = {E1,1,E1,2,E2,1,E2,2}
is the standard basis

of M2.

matrix
[T ] rather than trying to solve it “directly” on T itself. That is, we find a
matrix square root of [T ] via diagonalization.

First, we diagonalize [T ]. We learned in Example 1.2.17 that [T ] has
eigenvalues 1 and −1, with corresponding eigenspace bases equal to

{(1,0,0,0),(0,1,1,0),(0,0,0,1)} and {(0,1,−1,0)},

respectively. It follows that one way to diagonalize [T ] as [T ] = PDP−1 is
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to
Recall that to

diagonalize a matrix,
we place the

eigenvalues along
the diagonal of D
and bases of the

corresponding
eigenspaces as

columns of P in the
same order.

choose

P =




1 0 0 0
0 1 0 1
0 1 0 −1
0 0 1 0


 , P−1 =

1
2




2 0 0 0
0 1 1 0
0 0 0 2
0 1 −1 0


 , and

D =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


 .

To find a square root of [T ], we just take a square root of each diagonal
entry in D and then multiply these matrices back together. It follows that
one square root

The 1/2 in front of this
diagonalization
comes from P−1.

of [T ] is given by

[T ]1/2 = PD1/2P−1

=
1
2




1 0 0 0
0 1 0 1
0 1 0 −1
0 0 1 0







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 i







2 0 0 0
0 1 1 0
0 0 0 2
0 1 −1 0




=
1
2




1 0 0 0
0 1 0 1
0 1 0 −1
0 0 1 0







2 0 0 0
0 1 1 0
0 0 0 2
0 i −i 0




=
1
2




2 0 0 0
0 1+ i 1− i 0
0 1− i 1+ i 0
0 0 0 2


 .

To unravel [T ]1/2 back into our desired linear transformation S, we
just look at how it acts on coordinate vectors:

1
2




2 0 0 0
0 1+ i 1− i 0
0 1− i 1+ i 0
0 0 0 2







a
b
c
d


=

1
2




2a
(1+ i)b+(1− i)c
(1− i)b+(1+ i)c

2d


 ,

so we conclude that the
To double-check our
work, it is perhaps a
good idea to apply

S to a matrix twice
and see that we

indeed end up with
the transpose of that

matrix.

linear transformation S : M2(C) →M2(C)
defined by

S

([
a b
c d

])
=

1
2

[
2a (1+ i)b+(1− i)c

(1− i)b+(1+ i)c 2d

]

is a square root of T .

As perhaps an even weirder application of this method, we can also take
non-integer powers of the derivative map. That is, we can talk about things like
the “half derivative” of a function (just like we regularly talk about the second



1.2 Coordinates and Linear Transformations 51

or third derivative of a function).

Example 1.2.19
How to Take Half

of a Derivative

Let B = {sin(x),cos(x)} and V = span(B). Find a square root D1/2 of
the derivative map D : V → V and use it to compute D1/2

(
sin(x)

)
and

D1/2
(

cos(x)
)
.

Solution:
Just like in the previous example, instead of working with D itself, we

work with its standard matrix,We think of D1/2 as
the “half derivative”,

just like D2 is the
second derivative.

which we can compute straightforwardly to
be

[D]B =
[

0 −1
1 0

]
.

While we could compute [D]1/2
B by diagonalizing [D]B (we do exactly this

in Exercise 1.2.18),
Recall that the

standard matrix of a
counter-clockwise

rotation by angle θ is
[

cos(θ) −sin(θ)
sin(θ) cos(θ)

]
.

Plugging in θ = π/2
gives exactly [D]B.

it is simpler to recognize [D]B as a counter-clockwise
rotation by π/2 radians:

x

y

[cos(x)]B
= e2

[sin(x)]B = e1

[D]B−−−→

x

y

[Dcos(x)]B

[Dsin(x)]B

It is then trivial to find a square root of [D]B: we just construct the
standard matrix of the linear transformation that rotates counter-clockwise
by π/4 radians:

[D]1/2
B =

[
cos(π/4) −sin(π/4)
sin(π/4) cos(π/4)

]
=

1√
2

[
1 −1
1 1

]
.

Unraveling this standard matrix back into the linear transformation D1/2

shows that

To double-check our
work, we could

apply D1/2 to sin(x)
twice and see that

we get cos(x).

the half derivatives of sin(x) and cos(x) are

D1/2(sin(x)
)

=
1√
2

(
sin(x)+ cos(x)

)
and

D1/2(cos(x)
)

=
1√
2

(
cos(x)− sin(x)

)
.

We return to diagonalization and the idea of applying strange functions like
the square root to matrices later, in Section 2.4.3.

Exercises solutions to starred exercises on page 452

1.2.1 Find the coordinate vector of the given vector v with
respect to the indicated basis B.

∗(a) v = 3x−2, B = {x+1,x−1} ⊂P1

(b) v = 2x2 +3, B = {x2 +1,x+1,x2− x+1} ⊂P2

∗(c) v =

[
1 2
3 4

]
, B = {E1,1,E2,2,E1,2,E2,1} ⊂M2

(d) v =

[
1 2
3 4

]
,
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B =

{[
0 1
1 1

]
,

[
1 0
1 1

]
,

[
1 1
0 1

]
,

[
1 1
1 0

]}

1.2.2 Find a basis of the indicated vector space V and then
determine its dimension.

(a) V = MS
2 (the set of 2×2 symmetric matrices)

∗∗(b) V = MS
n

(c) V = MsS
2 = {A ∈M2 : AT =−A}

(the set of 2×2 skew-symmetric matrices)
∗∗(d) V = MsS

n = {A ∈Mn : AT =−A}
(e) V = MH

2 (the set of 2×2 Hermitian matrices)
∗(f) V = MH

n
(g) V = { f ∈P2 : f (0) = 0}
∗(h) V = { f ∈P3 : f (3) = 0}

(i) V = { f ∈P4 : f (0) = f (1) = 0}
∗(j) V = { f ∈P3 : f (x)− x f ′(x) = 0}
(k) V = span{(0,1,1),(1,2,−1),(−1,−1,2)}
∗(l) V = span{ex,e2x,e3x}

1.2.3 Determine which of the following functions are and
are not linear transformations.

(a) The function T : Rn → Rn defined by
T (v1,v2, . . . ,vn) = (vn,vn−1, . . . ,v1).

∗(b) The function T : P p → P p defined by T ( f (x)) =
f (2x−1).

(c) Matrix inversion (i.e., the function Inv : Mn→Mn
defined by Inv(A) = A−1).

∗(d) One-sided matrix multiplication: given a fixed matrix
B ∈Mn, the function RB : Mn →Mn defined by
RB(A) = AB.

(e) Two-sided matrix conjugation: given a fixed matrix
B ∈Mm,n, the function TB : Mn→Mm defined by
TB(A) = BAB∗.

∗(f) Conjugate transposition (i.e., the function T :
Mn(C)→Mn(C) defined by T (A) = A∗).

(g) The function T : P2→P2 defined by T ( f ) = f (0)+
f (1)x+ f (2)x2.

1.2.4 Determine which of the following statements are
true and which are false.

∗(a) Every finite-dimensional vector space has a basis.
(b) The vector space M3,4 is 12-dimensional.
∗(c) The vector space P3 is 3-dimensional.
(d) If 4 vectors span a particular vector space V , then

every set of 6 vectors in V is linearly dependent.
∗(e) The zero vector space V = {0} has dimension 1.

(f) If V is a vector space and v1, . . . ,vn ∈V are such that
span(v1, . . . ,vn) = V , then {v1, . . . ,vn} is a basis of
V .

∗(g) The set {1,x,x2,x3, . . .} is a basis of C (the vector
space of continuous functions).

(h) For all A ∈Mn it is true that tr(A) = tr(AT ).
∗(i) The transposition map T : Mm,n→Mn,m is invert-

ible.
(j) The derivative map D : P5→P5 is invertible.

1.2.5 Find the change-of-basis matrix PC←B between the
given bases B and C of their span.

(a) B = {1+2x,2− x2,1+ x+2x2}, C = {1,x,x2}
∗(b) B = {1,x,x2}, C = {1+2x,2− x2,1+ x+2x2}

(c) B = {1− x,2+ x+ x2,1− x2},
C = {x+3x2,x,1− x+ x2}

∗(d) B =

{[
1 0
0 1

]
,

[
1 1
0 1

]
,

[
1 0
1 1

]
,

[
1 1
1 0

]}
,

C = {E1,1,E1,2,E2,1,E2,2}

(e) B =

{[
1 0
0 1

]
,

[
1 1
0 1

]
,

[
1 0
1 1

]
,

[
1 1
1 0

]}
,

C =

{[
1 0
0 1

]
,

[
0 1
1 0

]
,

[
0 −i
i 0

]
,

[
1 0
0 −1

]}

1.2.6 Find the standard matrix [T ]D←B of the linear trans-
formation T with respect to the given bases B and D.

(a) T : R3→R2, T (v) = (v1−v2 +2v3,2v1−3v2 +v3),
B and D are the standard bases of R3 and R2, respec-
tively.

∗(b) T : P2→P2, T ( f (x)) = f (3x+1),
B = D = {x2,x,1}.

(c) T : P2→P3, T ( f (x)) =
∫ x

1 f (t) dt,
B = {1,x,x2}, D = {1,x,x2,x3}.

∗(d) T : M2 →M2, T (X) = AX −XAT , B = D is the
standard basis of M2, and A =

[
1 2
3 4

]
.

1.2.7 The dimension of a vector space depends on its
ground field. What is the dimension of Cn as a vector space
over C? What is its dimension as a vector space over R?

∗∗1.2.8 Consider the symmetric matrices

Si,i = eieT
i for 1≤ i≤ n, and

Si, j = (ei + e j)(ei + e j)T for 1≤ i < j ≤ n.

Show that B = {Si, j : 1≤ i≤ j ≤ n} is a basis of MS
n .

[Side note: This basis is useful because every member of it
has rank 1.]

1.2.9 Let C = {1+ x,1+ x+ x2,x+ x2} be a basis of P2.
Find a basis B of P2 for which

PC←B =




1 1 2
1 2 1
2 1 1


 .

1.2.10 Use the method of Example 1.2.15 to compute the
given indefinite integral.

(a)
∫
(e−x +2xe−x) dx

∗(b)
∫

ex sin(2x) dx
(c)

∫
xsin(x) dx

1.2.11 Recall that we computed the standard matrix [T ] of
the transpose map on M2 in Example 1.2.10.

(a) Compute [T ]2. [Hint: Your answer should be a well-
known named matrix.]

(b) Explain how we could have gotten the answer to
part (a) without actually computing [T ].
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∗∗1.2.12 Show that the standard matrix of the transpose
map T : Mm,n→Mn,m with respect to the standard basis
E = {E1,1,E1,2, . . . ,Em,n} is the mn×mn block matrix that,
for all i and j, has E j,i in its (i, j)-block:

[T ] =




E1,1 E2,1 · · · Em,1

E1,2 E2,2 · · · Em,2

...
...

. . .
...

E1,n E2,n · · · Em,n




.

∗∗1.2.13 Suppose T : Mn →Mn is the transpose map.
Show that 1 and −1 are the only eigenvalues of T , and the
corresponding eigenspaces are the spaces MS

n and MsS
n of

symmetric and skew-symmetric matrices, respectively.

[Hint: It is probably easier to work directly with T rather
than using its standard matrix like in Example 1.2.17.]

1.2.14 Suppose T : M2,3 →M3,2 is the transpose map.
Explain why T does not have any eigenvalues or eigenvec-
tors even though its standard matrix does.

∗1.2.15 Let T : P2 → P2 be the linear transformation
defined by T ( f (x)) = f (x+1).

(a) Find the range and null space of T .
(b) Find all eigenvalues and corresponding eigenspaces

of T .
(c) Find a square root of T .

1.2.16 In Example 1.2.19, we came up with a formula for
the half derivatives D1/2(sin(x)) and D1/2(cos(x)). Gener-
alize this by coming up with a formula for Dr(sin(x)) and
Dr(cos(x)) where r ∈ R is arbitrary.

1.2.17 Let D : D→D be the derivative map.

(a) Find an eigenvector of D with corresponding eigen-
value λ = 1.

(b) Show that every real number λ ∈ R is an eigenvalue
of D. [Hint: You can tweak the eigenvector that you
found in part (a) slightly to change its eigenvalue.]

∗∗1.2.18 In Example 1.2.19, we computed a square root
of the matrix

[D]B =

[
0 −1
1 0

]

by considering how it acts on R2 geometrically. Now find
one of its square roots by diagonalizing it (over C).

1.2.19 Suppose V and W are vector spaces and let
B = {v1,v2, . . . ,vn} ⊂ V and C = {w1,w2, . . . ,wn} ⊂W
be sets of vectors.

(a) Show that if B is a basis of V then the function
T : V →W defined by

T (c1v1 + · · ·+ cnvn) = c1w1 + · · ·+ cnwn

is a linear transformation.
(b) Show that if C is also a basis of W then T is invert-

ible.
(c) This definition of T may not make sense if B is not a

basis of V—explain why.

1.2.20 Suppose V and W are vector spaces and T :
V →W is an invertible linear transformation. Let B =
{v1,v2, . . . ,vn} ⊆ V be a set of vectors.

(a) Show that if B is linearly independent then so is
T (B) = {T (v1),T (v2), . . . ,T (vn)}.

(b) Show that if B spans V then T (B) spans W .
(c) Show that if B is a basis of V then T (B) is a basis of

W .
(d) Provide an example to show that none of the results

of parts (a), (b), or (c) hold if T is not invertible.

∗∗1.2.21 Suppose V , W are vector spaces and T :V→W
is a linear transformation. Show that if T is invertible then
dim(V) = dim(W).

∗∗1.2.22 Let V be a finite-dimensional vector space over
a field F and suppose that B is a basis of V .

(a) Show that [v+w]B = [v]B +[w]B for all v,w ∈ V .
(b) Show that [cv]B = c[v]B for all v ∈ V and c ∈ F.
(c) Suppose v,w ∈ V . Show that [v]B = [w]B if and only

if v = w.

[Side note: This means that the function T : V→ Fn defined
by T (v) = [v]B is an invertible linear transformation.]

∗∗1.2.23 Let V be an n-dimensional vector space over a
field F and suppose that B is a basis of V .

(a) Show that a set {v1,v2, . . . ,vm} ⊂ V is linearly inde-
pendent if and only if

{
[v1]B, [v2]B, . . . , [vm]B

}
⊂ Fn

is linearly independent.
(b) Show that span(v1,v2, . . . ,vm) = V if and only if

span
(
[v1]B, [v2]B, . . . , [vm]B

)
= Fn.

(c) Show that a set {v1,v2, . . . ,vn} is a basis of V if and
only if

{
[v1]B, [v2]B, . . . , [vn]B

}
is a basis of Fn.

∗∗1.2.24 Suppose V and W are vector spaces and T :
V →W is a linear transformation.

(a) Show that range(T ) is a subspace of W .
(b) Show that null(T ) is a subspace of V .

∗∗1.2.25 Suppose V and W are finite-dimensional vector
spaces with bases B and D, respectively, and T : V →W is
a linear transformation.

(a) Show that

range(T ) =
{

w ∈W : [w]D ∈ range
(
[T ]D←B

)}
.

(b) Show that

null(T ) =
{

v ∈ V : [v]B ∈ null
(
[T ]D←B

)}
.

(c) Show that rank(T ) = rank
(
[T ]D←B

)
.

(d) Show that nullity(T ) = nullity
(
[T ]D←B

)
.

1.2.26 Suppose B is a subset of a finite-dimensional vector
space V .

(a) Show that if B is linearly independent then there is a
basis C of V with B⊆C ⊆ V .

(b) Show that if B spans V then there is a basis C of V
with C ⊆ B⊆ V .

∗∗1.2.27 Suppose B is a subset of a finite-dimensional
vector space V consisting of dim(V) vectors.
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(a) Show that B is a basis of V if and only if it is linearly
independent.

(b) Show that B is a basis of V if and only if it spans V .

∗∗1.2.28 Suppose V and W are vector spaces, and let
L(V ,W) be the set of linear transformations T : V →W .

(a) Show that L(V ,W) is a vector space.
(b) If dim(V) = n and dim(W) = m, what is

dim(L(V ,W))?

1.2.29 Let B and C be bases of a finite-dimensional vector
space V . Show that PC←B = I if and only if B = C.

∗∗1.2.30 Let B be a basis of an n-dimensional vector space
V and let T : V → V be a linear transformation. Show that
[T ]B = In if and only if T = IV .

∗∗1.2.31 Suppose that V is a vector space and W ⊆ V is
a subspace with dim(W) = dim(V).

(a) Show that if V is finite-dimensional then W = V .
(b) Provide an example to show that the conclusion of

part (a) does not necessarily hold if V is infinite-
dimensional.

∗∗1.2.32 Show that the “right shift” map R from Re-
mark 1.2.2 is indeed a linear transformation.

1.2.33 Show that the “right shift” map R from Re-
mark 1.2.2 has no eigenvalues or eigenvectors, regardless of
the field F.

[Side note: Recall that every square matrix over C has an
eigenvalue and eigenvector, so the same is true of every lin-
ear transformation acting on a finite-dimensional complex
vector space. This exercise shows that this claim no longer
holds in infinite dimensions.]

∗∗1.2.34 Let P p(F) denote the vector space of polyno-
mials of degree ≤ p acting on the field F (and with coeffi-
cients from F). We noted earlier that dim(P p(F)) = p+1
when F = R or F = C. Show that dim(P2(Z2)) = 2 (not 3),
where Z2 = {0,1} is the finite field with 2 elements (see
Appendix A.4).

∗∗1.2.35 Complete the proof of Theorem 1.2.6 by show-
ing that the standard matrix [T ]D←B is unique.

∗∗1.2.36 Prove part (b) of Theorem 1.2.1. That is, show
that if a vector space V has a basis B consisting of n vectors,
then any set C with fewer than n vectors cannot span V .

1.3 Isomorphisms and Linear Forms

Now that we are familiar with how most of the linear algebraic objects from
Rn (e.g., subspaces, linear independence, bases, linear transformations, and
eigenvalues) generalize to vector spaces in general, we take a bit of a detour to
discuss some ideas that it did not really make sense to talk about when Rn was
the only vector space in sight.

1.3.1 Isomorphisms

Recall that every finite-dimensional vector space V has a basis B, and we can
use that basis to represent a vector v ∈ V as a coordinate vector [v]B ∈ Fn,
where F is the ground field. We used this correspondence between V and
Fn to motivate the idea that these vector spaces are “the same” in the sense
that, in order to do a linear algebraic calculation in V , we can instead do the
corresponding calculation on coordinate vectors in Fn.

We now make this idea of vector spaces being “the same” a bit more precise
and clarify under exactly which conditions this “sameness” happens.

Definition 1.3.1
Isomorphisms

Suppose V andW are vector spaces over the same field. We say that V
andW are isomorphic, denoted by V ∼=W , if there exists an invertible
linear transformation T : V →W (called an isomorphism from V toW).

We can think of isomorphic vector spaces as having the same structure and
the same vectors as each other, but different labels on those vectors. This is
perhaps easiest to illustrate by considering the vector spacesM1,2 andM2,1
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of row and column vectors, respectively.The expression “the
map is not the

territory” seems
relevant here—we
typically only care

about the
underlying vectors,

not the form we use
to write them down.

Vectors (i.e., matrices) in these vector
spaces have the forms

[
a b

]
∈M1,2 and

[
a
b

]
∈M2,1.

The fact that we write the entries of vectors in M1,2 in a row whereas we
write those fromM2,1 in a column is often just as irrelevant as if we used a
different font when writing the entries of the vectors in one of these vector
spaces. Indeed, vector addition and scalar multiplication in these spaces are
both performed entrywise, so it does not matter how we arrange or order those
entries.

To formally see thatM1,2 andM2,1 are isomorphic, we just construct the
“obvious” isomorphism between them: the transpose map T :M1,2→M2,1
satisfies

T
([

a b
])

=
[

a
b

]
.

Furthermore, we already noted in Example 1.2.6 that the transpose is a linear
transformation, and it is clearly invertible (it is its own inverse, since transposing
twice gets us back to where we started), so it is indeed an isomorphism. The
same argument works to show that each of Fn,Mn,1, andM1,n are isomorphic.

Remark 1.3.1
Column Vectors

and Row Vectors

The fact that Fn,Mn,1, andM1,n are isomorphic justifies something that
is typically done right from the beginning in linear algebra—treating mem-
bers of Fn (vectors), members ofMn,1 (column vectors), and members of
M1,n (row vectors) as the same thing.

When we walk about isomorphisms and vector spaces being “the
same”, we only mean with respect to the 10 defining properties of vector
spaces (i.e., properties based on vector addition and scalar multiplication).
We canA “morphism” is a

function and the
prefix “iso” means

“identical”. The word
“isomorphism” thus

means a function
that keeps things

“the same”.

add column vectors in the exact same way that we add row vectors,
and similarly scalar multiplication works the exact same for those two
types of vectors. However, other operations like matrix multiplication may
behave differently on these two sets (e.g., if A ∈Mn then Ax makes sense
when x is a column vector, but not when it is a row vector).

As an even simpler example of an isomorphism, we have implicitly been
using one when we say things like vT w = v ·w for all v,w ∈ Rn. Indeed, the
quantity v ·w is a scalar in R, whereas vT w is actually a 1× 1 matrix (after
all, it is obtained by multiplying a 1×n matrix by an n×1 matrix), so it does
not quite make sense to say that they are “equal” to each other. However, the
spaces R and M1,1(R) are trivially isomorphic, so we typically sweep this
technicality under the rug.

Before proceeding, it is worthwhile to specifically point out some basic
properties of isomorphisms that follow almost immediately from facts that we
already know about (invertible) linear transformations in

We prove these two
properties in

Exercise 1.3.6.

general:

• If T : V →W is an isomorphism then so is T−1 :W →V .
• If T : V →W and S :W→X are isomorphisms then so is S◦T : V →X .

In particular, if V ∼=W andW ∼= X then V ∼= X .
For example, we essentially showed in Example 1.2.1 thatM2 ∼= R4 and

R4 ∼= P3, so it follows thatM2 ∼= P3 as well. The fact that these vector spaces
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are isomorphic can be demonstrated by noting that the functions T :M2→ R4

and S : R4→P3 defined by

T

([
a b
c d

])
= (a,b,c,d) and S(a,b,c,d) = a+bx+ cx2 +dx3

are clearly isomorphisms (i.e., invertible linear transformations).

Example 1.3.1
Isomorphism of a

Space of Functions

Show that the vector spaces V = span(ex,xex,x2ex) and R3 are isomorphic.

Solution:
The standard way to show that two spaces are isomorphic is to con-

struct an isomorphism between them. To this end, consider the linear
transformationOur method of

coming up with this
map T is very

naïve—just send a
basis of R3 to a basis
of V . This technique

works fairly generally
and is a good way
of coming up with

“obvious”
isomorphisms.

T : R3→V defined by

T (a,b,c) = aex +bxex + cx2ex.

It is straightforward to show that this function is a linear transforma-
tion, so we just need to convince ourselves that it is invertible. To this
end, we recall from Exercise 1.1.2(g) that B = {ex,xex,x2ex} is linearly
independent and thus a basis of V , so we can construct the standard matrix
[T ]B←E , where E = {e1,e2,e3} is the standard basis of R3:

[T ]B←E =
[ [

T (1,0,0)
]

B

∣∣ [T (0,1,0)
]

B

∣∣ [T (0,0,1)
]

B

]

=
[ [

ex]
B

∣∣ [xex]
B

∣∣ [x2ex]
B

]
=




1 0 0
0 1 0
0 0 1


 .

Since [T ]B←E is clearly invertible (the identity matrix is its own inverse),
T is invertible too and is thus an isomorphism.

Example 1.3.2
Polynomials are

Isomorphic to
Eventually-Zero

Sequences

Show that the vector space of polynomials P and the vector space of
eventually-zero sequences c00 from Example 1.1.10 are isomorphic.

Solution:
As always, our method of showing that these two spaces are isomorphic

is to explicitly construct an isomorphism between them. As with the
previous examples, there is an “obvious” choice of isomorphism T : P →
c00, and it is defined by

T (a0 +a1x+a2x2 + · · ·+apxp) = (a0,a1,a2, . . . ,ap,0,0, . . .).

It is straightforwardIf we worked with FN

here instead of c00,
this inverse would

not work since the
sum

a0 +a1x+a2x2 + · · ·
might have infinitely

many terms and thus
not be a polynomial.

to show that this function is a linear transformation,
so we just need to convince ourselves that it is invertible. To this end, we
just explicitly construct its inverse T−1 : c00→P:

T−1(a0,a1,a2,a3, . . .) = a0 +a1x+a2x2 +a3x3 + · · ·

At first glance, it might seem like the sum on the right is infinite
and thus not a polynomial, but recall that every sequence in c00 has only
finitely many non-zero entries, so there is indeed some final non-zero term
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apxp in the sum. Furthermore, it is straightforward to check that

(T−1 ◦T )(a0 +a1x+ · · ·+apxp) = a0 +a1x+ · · ·+apxp and

(T ◦T−1)(a0,a1,a2,a3, . . .) = (a0,a1,a2,a3, . . .)

for all a0 +a1x + · · ·+apxp ∈ P and all (a0,a1,a2,a3, . . .) ∈ c00, so T is
indeed invertible and thus an isomorphism.

As a generalization of Example 1.3.1 and many of the earlier observations that
we made, we now note that coordinate vectors let us immediately conclude that
every n-dimensional vector space over a field F is isomorphic to Fn.

Theorem 1.3.1
Isomorphisms of

Finite-Dimensional
Vector Spaces

Suppose V is an n-dimensional vector space over a field F. Then V ∼= Fn.

Proof. We just recall from Exercise 1.2.22 that if B is any basis of V then the
function T : V → Fn defined by T (v) = [v]B is an invertible linear transforma-
tion (i.e., an isomorphism). �

In particular, the above theorem tells us that any two vector spaces of the
same (finite) dimension over the same field are necessarily isomorphic, since
they are both isomorphic to Fn and thus to each other. The following corollary
states this observation precisely and also establishes its converse.

Corollary 1.3.2
Finite-Dimensional
Vector Spaces are

Isomorphic

Suppose V andW are vector spaces over the same field and V is finite-
dimensional. Then V ∼=W if and only if dim(V) = dim(W).

Proof. We already explained how Theorem 1.3.1 gives us the “if” direction, so
we now prove the “only if” direction. To this end, we just note that if V ∼=W
then there is an invertible linear transformation T : V →W , so Exercise 1.2.21
tells us that dim(V) = dim(W). �

Remark 1.3.2
Why Isomorphisms?

In a sense, we did not actually do anything new in this subsection—we
already knew about linear transformations and invertibility, so it seems
natural to wonder why we would bother adding the “isomorphism” layer
of terminology on top of it.

While it’sAn isomorphism
T : V → V (i.e., from a

vector space back
to itself ) is called an

automorphism.

true that there’s nothing really “mathematically” new about
isomorphisms, the important thing is the new perspective that it gives us.
It is very useful to be able to think of vector spaces as being the same as
each other, as it can provide us with new intuition or cut down the amount
of work that we have to do.

For example, instead of having to do a computation or think about
vector space properties in P3 orM2, we can do all of our work in R4,
which is likely a fair bit more intuitive. Similarly, we can always work with
whichever of c00 (the space of eventually-zero sequences) or P (the space
of polynomials) we prefer, since an answer to any linearIf it is necessary to

clarify which type of
isomorphism we are

talking about, we
call an isomorphism
in the linear algebra

sense a vector
space isomorphism.

algebraic question
in one of those spaces can be straightforwardly converted into an answer
to the corresponding question in the other space via the isomorphism that
we constructed in Example 1.3.2.

More generally, isomorphisms are used throughout all of mathemat-
ics, not just in linear algebra. In general, they are defined to be invertible
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maps that preserve whatever the relevant structures or operations are.
In our setting, the relevant operations are scalar multiplication and vector
addition, and those operations being preserved is exactly equivalent to the
invertible map being a linear transformation.

1.3.2 Linear Forms

One of the simplest types of linear transformations are those that send vec-
tors to scalars. For example, it is straightforward to check that the functions
f1, f2, . . . , fn : Rn→ R defined by

f1(v) = v1, f2(v) = v2, . . . , fn(v) = vn,

where v = (v1,v2, . . . ,vn), are linear transformations. We now give type of
linear transformation a name to make it easier to discuss.

Definition 1.3.2
Linear Forms

Suppose V is a vector space over a field F. Then a linear transformation
f : V → F is called a linear form.

Linear formsLinear forms are
sometimes instead

called linear
functionals.

can be thought of as giving us snapshots of vectors—knowing
the value of f (v) tells us what v looks like from one particular direction or
angle (just like having a photograph tells us what an object looks like from
one side), but not necessarily what it looks like as a whole. For example, the
linear transformations f1, f2, . . ., fn described above each give us one of v’s
coordinates (i.e., they tell us what v looks like in the direction of one of the
standard basis vectors), but tell us nothing about its other coordinates.

Alternatively, linear forms can be thought of as the building blocks that
make up more general linear transformations. For example, consider the linear
transformation T : R2→ R2 (which is not a linear form) defined by

T (x,y) = (x+2y,3x−4y) for all (x,y) ∈ R2.

If we define f (x,y) = x + 2y and g(x,y) = 3x− 4y then it is straightforward
to check that f and g are each linear forms, and T (x,y) = ( f (x,y),g(x,y)).
That is, T just outputs the value of two linear forms. Similarly, every linear
transformation into an n-dimensional vector space can be thought of as being
made up of n linear forms (one for each of the n output dimensions).

Example 1.3.3
(Half of)

the Dot Product
is a Linear Form

Suppose v ∈ Fn is a fixed vector. Show that the function fv : Fn → F
defined by

fv(w) = v1w1 + v2w2 + · · ·+ vnwn for all w ∈ Fn

is a linear form.

Solution:
This follows immediately from the more general fact that multiplica-

tion by a matrix is a linear transformation. Indeed, if we let A = v ∈M1,n
be v as a row vector, then fv(w) = Aw for all column vectors w.

In
Recall that the dot

product on Rn is
defined by

v ·w = v1w1 + · · ·+vnwn.

particular, if F = R then the previous example tells us that

fv(w) = v ·w for all w ∈ Rn
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is a linear form. This is actually the “standard” example of a linear form, and
the one that we should keep in mind as our intuition builder. We will see shortly
that every linear form on a finite-dimensional vector space can be written in this
way (in the exact same sense that every linear transformation can be written as
a matrix).

Example 1.3.4
The Trace is a

Linear Form

Show that the trace tr :Mn(F)→ F is a linear form.

Solution:
We already showed in Example 1.2.7 that the trace is a linear transfor-

mation. Since it outputs scalars, it is necessarily a linear form.

Example 1.3.5
Evaluation is a

Linear Form

Show that the function E2 : P3→ R defined by E2( f ) = f (2) is a linear
form.

Solution:
We just need to show

E2 is called the
evaluation map at

x = 2. More generally,
the function

Ex : P → R defined
by Ex( f ) = f (x) is also

a linear form,
regardless of the

value of x ∈ R.

that E2 is a linear transformation, since it is clear
that its output is (by definition) always a scalar. We thus check the two
properties of Definition 1.2.4:

a) E2( f +g) = ( f +g)(2) = f (2)+g(2) = E2( f )+E2(g).
b) E2(c f ) = (c f )(2) = c f (2) = cE2( f ).

The steps used in Example 1.3.5 might seem somewhat confusing at first,
since we are applying a function (E2) to functions ( f and g). It is very important
to be careful when working through this type of problem to make sure that the
correct type of object is being fed into each function (e.g., E2( f ) makes sense,
but E2(4) does not, since E2 takes a polynomial as its input).

Also, that example highlights our observation that linear forms give us one
linear “piece of information” about vectors. In this case, knowing the value of
E2( f ) = f (2) tells us a little bit about the polynomial (i.e., the vector) f . If we
also knew the value of three other linear forms on f ∈ P3 (e.g., f (1), f (3), and
f (4)), we could use polynomial interpolation to reconstruct f itself.

Example 1.3.6
Integration is a

Linear Form

Let C[a,b] be the vector space of continuous real-valued functions on the
interval [a,b]. Show that the function I : C[a,b]→ R defined by

I( f ) =
∫ b

a
f (x) dx

is a linearRecall that every
continuous function
is integrable, so this

linear form makes
sense.

form.

Solution:
We just need to show that I is a linear transformation, since it is (yet

again) clear that its output is always a scalar. We thus check the two
properties of Definition 1.2.4:

a) By properties of integrals that are typically covered in calculus
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courses, we know that for all f ,g ∈ C[a,b] we have

I( f +g) =
∫ b

a
( f +g)(x) dx

=
∫ b

a
f (x) dx+

∫ b

a
g(x) dx = I( f )+ I(g).

b) We similarly know that we can pull scalars in and out of integrals:

I(c f ) =
∫ b

a
(c f )(x) dx = c

∫ b

a
f (x) dx = cI( f )

for all f ∈ C[a,b] and c ∈ R.

We now pin down the claim that we made earlier that every linear form
on a finite-dimensional vector space looks like one half of the dot product. In
particular, to make this work we just do what we always do when we want to
make abstract vector space concepts more concrete—we represent vectors as
coordinate vectors with respect to some basis.

Theorem 1.3.3
The Form of

Linear Forms

Let B be a basis of a finite-dimensional vector space V over a field F, and
let f : V → F be a linear form. Then there exists a unique vector v ∈ V
such that

f (w) = [v]TB [w]B for all w ∈ V ,

where we are treating [v]B and [w]B as column vectors.

Proof. Since f is a linear transformation, Theorem 1.2.6 tells us that it has a
standard matrix—a matrix A such that f (w) = A[w]B for all w ∈ V . Since f
maps into F, which is 1-dimensional, the standard matrix A is 1× n, where
n = dim(V). It follows that A is a row vector, and since every vector in Fn is
the coordinate vector of some vector in V , we can find some v ∈ V such that
A = [v]TB , so that f (w) = [v]TB [w]B.

Uniqueness of v follows immediately from uniqueness of standard matrices
and of coordinate vectors. �

In the special case when F = R or F = C, it makes sense to talk about the
dot product of the coordinate vectors [v]B and [w]B, and the above theorem can
be rephrased as saying that there exists a unique vector v ∈ V such thatRecall that the dot

product on Cn is
defined by

v ·w = v1w1 + · · ·+vnwn.
f (w) = [v]B · [w]B for all w ∈ V .

The only thing to be slightly careful of here is that if F = C then [v]B · [w]B =
[v]∗B[w]B (not [v]B · [w]B = [v]TB [w]B), so we have to absorb a complex conjugate
into the vector v to make this reformulation work.

Example 1.3.7
The Evaluation Map

as a Dot Product

Let E2 : P3→ R be the evaluation map from Example 1.3.5, defined by
E2( f ) = f (2), and let E = {1,x,x2,x3} be the standard basis of P3. Find
a polynomial g ∈ P3 such that E2( f ) = [g]E · [ f ]E for all f ∈ P3.

Solution:
If we write f (x) = a+bx+ cx2 +dx3 (i.e., [ f ]E = (a,b,c,d)) then

This example just
illustrates how

Theorem 1.3.3 works
out for the linear

form E2. E2( f ) = f (2) = a+2b+4c+8d = (1,2,4,8) · (a,b,c,d).
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It follows that we want to choose g ∈P3 so that [g]E = (1,2,4,8). In other
words, we want g(y) = 1+2y+4y2 +8y3.

Slightly more generally, for all x∈R, the evaluation map Ex( f ) = f (x)
can be represented in this sense via the polynomial gx(y) = 1+xy+x2y2 +
x3y3 (see Exercise 1.3.21).

The Dual Space
Theorem 1.3.3 tells us that every linear form on V corresponds to a particular
vector in V , at least when V is finite-dimensional, so it seems like there is
an isomorphism lurking in the background here. We need to make one more
definition before we can discuss this isomorphism properly.

Definition 1.3.3
Dual of a

Vector Space

Let V be a vector space over a field F. Then the dual of V , denoted by V∗,
is the vector space consisting of all linear forms on V .

The fact that V∗ is indeed a vector space is established by Exercise 1.2.28(a),
and part (b) of that same exercise even tells us that dim(V∗) = dim(V) when
V is finite-dimensional, so V and V∗ are isomorphic by Corollary 1.3.2. In
fact, one simple isomorphism from V∗ to V is exactly the one that sends a
linear form f to its corresponding vector v from Theorem 1.3.3. However, this
isomorphism between V and V∗ is somewhat strange, as it depends on the
particular choice of basis that we make on V—if we change the basis B in
Theorem 1.3.3 then the vector v corresponding to a linear form f changes as
well.

The fact that the isomorphism between V and V∗ is basis-dependent sug-
gests that something somewhat unnatural is going on, as many (even finite-
dimensional) vector spaces do not have a “natural” or “standard” choice of
basis. However, if we go one step further and consider the double-dual space
V∗∗ consisting of linear forms acting on V∗ then things become a bit more
well-behaved,

Yes, it is pretty
awkward to think

about what the
members of V∗∗ are.
They are linear forms

acting on linear
forms (i.e., functions

of functions).

so we now briefly explore this double-dual space.
Using the exact same ideas as earlier, if V is finite-dimensional then we

still have dim(V∗∗) = dim(V∗) = dim(V), so all three of these vector spaces
are isomorphic. However, V and V∗∗ are isomorphic in a much more natural
way than V and V∗, since there is a basis-independent choice of isomorphism
between them. To see what it is, notice that for every vector v ∈ V we can
define a linear form φv ∈ V∗∗

This spot right here is
exactly as abstract

as this book gets. It’s
been a slow climb to

this point, and from
here on it’s downhill

back into more
concrete things.

by

φv( f ) = f (v) for all f ∈ V∗. (1.3.1)

Showing that φv is linear form does not require any clever insight—we just
have to check the two defining properties from Definition 1.2.4, and each of
these properties follows almost immediately from the relevant definitions. The
hard part of this verification is keeping the notation straight and making sure
that the correct type of object goes into and comes out of each function at every
step:

a) For all f ,g ∈ V∗ we have

φv( f +g) = ( f +g)(v) (definition of φv)
= f (v)+g(v) (definition of “+ ” in V∗)
= φv( f )+φv(g) (definition of φv)
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b) Similarly, for all c ∈ F and f ∈ V∗ we have

φv(c f ) = (c f )(v) = c
(

f (v)
)

= cφv( f ).

Example 1.3.8
The Double-Dual of

Polynomials

Show that for each φ ∈ (P3)∗∗ there exists f ∈ P3 such that

φ(Ex) = f (x) for all x ∈ R,

where Ex ∈ (P3)∗ is the evaluation map at x ∈ R (see Example 1.3.5).

Solution:
We know from Exercise 1.3.22 that B = {E1,E2,E3,E4} is a basis of

(P3)∗, so for every x ∈ R there exist scalars c1,x, . . . ,c4,x such that

Ex = c1,xE1 + c2,xE2 + c3,xE3 + c4,xE4.

We then expand the quantities

φ(Ex) = φ(c1,xE1 + c2,xE2 + c3,xE3 + c4,xE4)
= c1,xφ(E1)+ c2,xφ(E2)+ c3,xφ(E3)+ c4,xφ(E4)

and

f (x) = Ex( f ) =
(
c1,xE1 + c2,xE2 + c3,xE3 + c4,xE4

)
( f )

= c1,xE1( f )+ c2,xE2( f )+ c3,xE3( f )+ c4,xE4( f )
= c1,x f (1)+ c2,x f (2)+ c3,x f (3)+ c4,x f (4)

for all f ∈ P3 and x ∈ R.
If we choose fIn fact, f is uniquely

determined by φ .
so that f (1) = φ(E1), f (2) = φ(E2), f (3) = φ(E3),

and f (4) = φ(E4) (which can be done by polynomial interpolation) then
we find that φ(Ex) = f (x) for all x ∈ R, as desired.

The above example is suggestive of a natural isomorphism between V and
V∗∗: if V = P3 then every φ ∈ (P3)∗∗ looks the exact same as a polynomial
in P3; we just have to relabel the evaluation map Ex as x itself. The following
theorem pins down how this “natural” isomorphism between V and V∗∗ works
for other vector spaces.

Theorem 1.3.4
Canonical Double-

Dual Isomorphism

The function T : V →V∗∗ defined by T (v) = φv is an isomorphism, where
φv ∈ V∗∗ is as defined in Equation (1.3.1).

Proof. We must show that T is linear and invertible, and we again do not have
to be clever to do so. Rather, as long as we keep track of what space all of these
objects live in and parse the notation carefully, then linearity and invertibility
of T follow almost immediately from the relevant definitions.

Yes, T is a function
that sends vectors to

functions of
functions of vectors.

If you recall that V
itself might be a

vector space made
up of functions then

your head might
explode.

Before showing that T is linear, we first make a brief note on notation.
Since T maps into V∗∗, we know that T (v) is a function acting on V∗. We thus
use the (admittedly unfortunate) notation T (v)( f ) to refer to the scalar value
that results from applying the function T (v) to f ∈ V∗. Once this notational
nightmare is understood, the proof of linearity is straightforward:
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a) For all f ∈ V∗ we have

T (v+w)( f ) = φv+w( f ) (definition of T )
= f (v+w) (definition of φv+w)
= f (v)+ f (w) (linearity of each f ∈ V∗)
= φv( f )+φw( f ) (definition of φv and φw)
= T (v)( f )+T (w)( f ). (definition of T )

Since T (v+w)( f ) = (T (v)+T (w))( f ) for all f ∈ V∗, we conclude that
T (v+w) = T (v)+T (w).

b) Similarly,If dim(V) = ∞,
invertibility of T fails.

Even if V has a basis,
it is never the case

that any of V , V∗,
and V∗∗ are

isomorphic (V∗∗ is
“bigger” than V∗,
which is “bigger”

than V).

T (cv)( f ) = φcv( f ) = f (cv) = c f (v) = cφv( f ) = cT (v)( f )

for all f ∈ V∗, so T (cv) = cT (v) for all c ∈ F.
For invertibility, we claim that if B = {v1,v2, . . . ,vn} is linearly indepen-

dent then so is C = {T (v1),T (v2), . . . ,T (vn)} (this claim is pinned down in
Exercise 1.3.24). Since C contains n = dim(V) = dim(V∗∗) vectors, it must
be a basis of V∗∗ by Exercise 1.2.27(a). It follows that [T ]C←B = I, which is
invertible, so T is invertible as well. �

This double-dual space V∗∗ and its correspondence with V likely still seems
quite abstract, so it is useful to think about what it means when V = Fn, which
we typically think of as consisting of column vectors.The close

relationship between
V and V∗∗ is why we

use the term “dual
space” in the first

place—duality refers
to an operation or

concept that, when
applied a second

time, gets us back to
where we started.

Theorem 1.3.3 tells
us that each f ∈ (Fn)∗ corresponds to some row vector vT (in the sense that
f (w) = vT w for all w ∈ Fn). Theorem 1.3.4 says that if we go one step further,
then each φ ∈ (Fn)∗∗ corresponds to some column vector w ∈ Fn in the sense
that φ( f ) = f (w) = vT w for all f ∈ V∗ (i.e., for all vT ).

For this reason, it is convenient (and for the most part, acceptable) to think
of V as consisting of column vectors and V∗ as consisting of the corresponding
row vectors. In fact, this is exactly why we use the notation V∗ for the dual
space in the first place—it is completely analogous to taking the (conjugate)
transpose of the vector space V . The fact that V∗ is isomorphic to V , but in a
way that depends on the particular basis chosen, is analogous to the fact that if
v ∈ Fn is a column vector then v and vT have the same size (and entries) but
not shape, and the fact that V∗∗ is so naturally isomorphic to V is analogous to
the fact that (vT )T and v have the same size and shape (and are equal).

Remark 1.3.3
Linear Forms Versus

Vector Pairings

While V∗ is defined as a set of linear forms on V , this can be cumbersome
to think about once we start considering vector spaces like V∗∗ (and,
heaven forbid, V∗∗∗), as it is somewhat difficult to make sense of what a
function of a function (of a function...) “looks like”.

Instead, notice that if w ∈ V and f ∈ V∗ then the expression f (w) is
linear in each of w and f , so we can think of it just as combining members
of two vector spaces together in a linear way, rather than as members of
one vector space acting on the members of another. One way of making
this observation precise is via Theorem 1.3.3, which says that applying a
linear form f ∈ V∗ to w ∈ V is the same as taking the dot product of two
vectors [v]B and [w]B (at least in the finite-dimensional case).
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1.3.3 Bilinearity and Beyond

As suggested by Remark 1.3.3, we are often interested not just in applying
linear functions to vectors, but also in combining vectors from different vector
spaces together in a linear way. We now introduce a way of doing exactly this.

Definition 1.3.4
Bilinear Forms

Suppose V andW are vector spaces over the same field F. Then a function
f : V ×W → F is called a bilinear form if it satisfies the following
properties:

a) It is linear in its first argument:
i) f (v1 +v2,w) = f (v1,w)+ f (v2,w) and

ii) f (cv1,w) = c f (v1,w) for all c ∈ F, v1,v2 ∈ V , and w ∈W .
b) It is linearRecall that the

notation
f : V×W → F means

that f takes two
vectors as

input—one from V
and one from

W—and provides a
scalar from F as

output.

in its second argument:
i) f (v,w1 +w2) = f (v,w1)+ f (v,w2) and

ii) f (v,cw1) = c f (v,w1) for all c ∈ F, v ∈ V , and w1,w2 ∈W .

While the above definition might seem like a mouthful, it simply says that
f is a bilinear form exactly if it becomes a linear form when one of its inputs is
held constant. That is, for every fixed vector w ∈W the function gw : V → F
defined by gw(v) = f (v,w) is a linear form, and similarly for every fixed vector
v ∈ V the function hv :W → F defined by hv(w) = f (v,w) is a linear form.
Yet again, we look at some examples to try to get a feeling for what bilinear
forms look like.

Example 1.3.9
The Real Dot Product

is a Bilinear Form

Show that the function f : Rn×Rn→ R defined by

f (v,w) = v ·w for all v,w ∈ Rn

is a bilinear form.

Solution:
We could work through the four defining properties of bilinear forms,

but an easier way to solve this problem is to recall from Example 1.3.3 that
the dot product is a linear form if we keep the first vector v fixed, which
establishes property (b) in Definition 1.3.4.

Since v ·w = w ·v, it is also the case that the dot product is a linear form
if we keep the second vector fixed, which in turn establishes property (a)
in Definition 1.3.4. It follows that the dot product is indeed a bilinear form.

The real dotThe function
f (x,y) = xy is a

bilinear form but not
a linear

transformation.
Linear

transformations must
be linear “as a

whole”, whereas
bilinear forms just
need to be linear

with respect to each
variable

independently.

product is the prototypical example of a bilinear form, so keep
it in mind when working with bilinear forms abstractly to help make them seem
a bit more concrete. Perhaps even more simply, notice that multiplication (of
real numbers) is a bilinear form. That is, if we define a function f : R×R→R
simply via f (x,y) = xy, then f is a bilinear form. This of course makes sense
since multiplication of real numbers is just the one-dimensional dot product.

In order to simplify proofs that certain functions are bilinear forms, we
can check linearity in the first argument by showing that f (v1 + cv2,w) =
f (v1,w)+c f (v2,w) for all c ∈ F, v1,v2 ∈ V , and w ∈W , rather than checking
vector addition and scalar multiplication separately as in conditions (a)(i)
and (a)(ii) of Definition 1.3.4 (and we similarly check linearity in the second
argument).
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Example 1.3.10
The Dual Pairing

is a Bilinear Form

Let V be a vector space over a field F. Show that the function g : V∗×V →
F defined by

g( f ,v) = f (v) for all f ∈ V∗, v ∈ V

is a bilinear form.

Solution:
We just notice that g is linear in each of its input arguments individually.

For the first input argument, we have

g( f1 + c f2,v) = ( f1 + c f2)(v) = f1(v)+ c f2(v) = g( f1,v)+ cg( f2,v),

for all f1, f2 ∈ V∗, v ∈ V , and c ∈ F simply from the definition of addition
and scalar multiplication of functions. Similarly, for the second input
argument we have

g( f ,v1 + cv2) = f (v1 + cv2) = f (v1)+ c f (v2) = g( f ,v1)+ cg( f ,v2),

for all f ∈ V∗, v1,v2 ∈ V , and c ∈ F since each f ∈ V∗ is (by definition)
linear.

Example 1.3.11
Matrices are

Bilinear Forms

Let A ∈Mm,n(F) be a matrix. Show that the function f : Fm×Fn → F
defined by

f (v,w) = vT Aw for all v ∈ Fm, w ∈ Fn

is a bilinear form.

Solution:
OnceIn this example (and

as always, unless
specified otherwise),

F refers to an
arbitrary field.

again, we just check the defining properties from Definition 1.3.4,
all of which follow straightforwardly from the corresponding properties
of matrix multiplication:

a) For all v1,v2 ∈ Fm, w ∈ Fn, and c ∈ F we have

f (v1 + cv2,w) = (v1 + cv2)T Aw

= vT
1 Aw+ cvT

2 Aw = f (v1,w)+ c f (v2,w).

b) Similarly, for all v ∈ Fm, w1,w2 ∈ Fn, and c ∈ F we have

f (v,w1 + cw2) = vT A(w1 + cw2)

= vT Aw1 + cvT Aw2 = f (v,w1)+ c f (v,w2).

In fact, if F = R and A = I then the bilinear form f in Example 1.3.11
simplifies to f (v,w) = vT w = v ·w, so we recover the fact that the real dot
product is bilinear. This example also provides us with a fairly quick way of
showing that certain functions are bilinear forms—if we can write them in
terms of a matrix in this way then bilinearity follows immediately.



66 Chapter 1. Vector Spaces

Example 1.3.12
A Numerical
Bilinear Form

Show that the function f : R2×R2→ R defined by

f (v,w) = 3v1w1−4v1w2 +5v2w1 + v2w2 for all v,w ∈ R2

is a bilinear form.

Solution:
We could check the defining properties from Definition 1.3.4, but an

easier way to show that f is bilinear is to notice that we can group its
coefficients into a matrix asNotice that the

coefficient of viw j
goes in the

(i, j)-entry of the
matrix. This always

happens.

follows:

f (v,w) =
[
v1 v2

]
[

3 −4
5 1

][
w1
w2

]
.

It follows that f is a bilinear form, since we showed in Example 1.3.11
that any function of this form is.

In fact, we now show that every bilinear form acting on finite-dimensional
vector spaces can be written in this way. Just like matrices can be used to
represent linear transformations, they can also be used to represent bilinear
forms.

Theorem 1.3.5
The Form of

Bilinear Forms

Let B and C be bases of m- and n-dimensional vector spaces V andW ,
respectively, over a field F, and let f : V ×W → F be a bilinear form.
There exists a unique matrix A ∈Mm,n(F) such that

f (v,w) = [v]TBA[w]C for all v ∈ V , w ∈W ,

where we are treating [v]B and [w]C as column vectors.

Proof. We just use the fact that bilinear forms are linear when we keep one
of their inputs constant, and we then leech off of the representation of linear
forms that we already know from Theorem 1.3.3.

Specifically, if we denote the vectors in the basis B by B = {v1,v2, . . . ,vm}
then [v j]B = e j for all 1≤ j≤m and Theorem 1.3.3 tells us that the linear form
g j :W → F defined by g j(w) = f (v j,w) can be written as g j(w) = aT

j [w]C
for some fixed (column) vector a j ∈ Fn. If we let A be the matrix with rows
aT

1 , . . .aT
m (i.e., AT =

[
a1 | · · · | am

]
)

Here we use the fact
that eT

j A equals the
j-th row of A (i.e., aT

j ).

then

f (v j,w) = g j(w) = aT
j [w]C

= eT
j A[w]C = [v j]TBA[w]C for all 1≤ j ≤ m, w ∈W .

To see that this same equation holds when we replace v j by an arbitrary
v ∈ V , we just use linearity in the first argument of f and the fact that every
v ∈ V can be written as a linear combination of the basis vectors from B (i.e.,
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v = c1v1 + · · ·+ cmvm for some c1, . . ., cm ∈ F):

f (v,w) = f

(
m

∑
j=1

c jv j,w

)

=
m

∑
j=1

c j f (v j,w) =
m

∑
j=1

c j[v j]TBA[w]C

=

(
m

∑
j=1

c je j

)T

A[w]C = [v]TBA[w]C

for all v ∈ V and w ∈W .

Finally, to see that A is unique we just note that if C = {w1,w2, . . . ,wn}
then f (vi,w j) = [vi]TBA[w j]C = eT

i Ae j = ai, j for all 1 ≤ i ≤ m and 1 ≤ j ≤ n,
so the entries of A are completely determined by f . �

As one particularly interesting example of how the above theorem works,
we recall that the determinant is multilinear in the columns of the matrix it
acts on, and thus in particular it can be interpreted as a bilinear form on 2×2
matrices. More specifically, if we define a function f : F2×F2→ F via

f (v,w) = det
([

v | w
])

then f is a bilinear form and thus can be represented by a 2×2 matrix.

Example 1.3.13
The 2 × 2 Determinant

as a Matrix

Find the matrix A ∈M2(F) with the property that

det
([

v | w
])

= vT Aw for all v,w ∈ F2.

Solution:
Recall that det

([
v | w

])
= v1w2− v2w1, while direct calculation

shows that

vT Aw = a1,1v1w1 +a1,2v1w2 +a2,1v2w1 +a2,2v2w2.

By simply comparing these two expressions, we see that the unique matrix
The fact that A is

skew-symmetric (i.e.,
AT =−A)

corresponds to the
fact that swapping

two columns of a
matrix multiplies its
determinant by −1
(i.e., det

([
v | w

])
=

−det
([

w | v
])

).

A that makes them equal to each other has entries a1,1 = 0, a1,2 = 1,
a2,1 =−1, and a2,2 = 0. That is,

det
([

v | w
])

= vT Aw if and only if A =
[

0 1
−1 0

]
.

Multilinear Forms
In light of Example 1.3.13, it might be tempting to think that the determinant
of a 3× 3 matrix can be represented via a single fixed 3× 3 matrix, but this
is not the case—the determinant of a 3×3 matrix is not a bilinear form, but
rather it is linear in the three columns of the input matrix. More generally, the
determinant of a p× p matrix is multilinear—linear in each of its p columns.
This generalization of bilinearity is captured by the following definition, which
requires that the function being considered is a linear form when all except for
one of its inputs are held constant.
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Definition 1.3.5
Multilinear Forms

Suppose V1,V2, . . . ,Vp are vector spaces over the same field F. A function
f : V1×V2×·· ·×Vp→ F is called a multilinear form if, for each 1≤
j≤ p and each v1 ∈V1,v2 ∈V2, . . ., vp ∈Vp, it is the case that the function
g : V j→ F definedA multilinear form

with p input
arguments is

sometimes called
p-linear.

by

g(v) = f (v1, . . . ,v j−1,v,v j+1, . . . ,vp) for all v ∈ V j

is a linear form.

When p = 1 or p = 2, this definition gives us exactly linear and bilin-
ear forms, respectively. Just like linear forms can be represented by vectors
(1-dimensional lists of numbers) and bilinear forms can be represented by
matrices (2-dimensional arrays of numbers), multilinear forms in general can
be represented by p-dimensional arrays of numbers.

This characterization of multilinearWe investigate
arrays and

multilinearity in much
more depth in

Chapter 3.

forms is provided by the upcoming
Theorem 1.3.6. To prepare ourselves for this theorem (since it looks quite ugly
at first, so it helps to be prepared), recall that the entries of vectors are indexed
by a single subscript (as in v j for the j-th entry of v) and the entries of matrices
are indexed by two subscripts (as in ai, j for the (i, j)-entry of A). Similarly, the
entries of a p-dimensional array are indexed by p subscripts (as in a j1, j2,..., jp

for the ( j1, j2, . . . , jp)-entry of the p-dimensional array A).
Just like a matrix can be thought of as made up of several column vectors,

a 3-dimensional array can be thought of as made up of several matrices (see
Figure 1.9), a 4-dimensional array can be thought of as made up of several
3-dimensional arrays, and so on (though this quickly becomes difficult to
visualize).

[
a1,1

,1
a1,2

,1
a1,3

,1

a2,1
,1

a2,2
,1

a2,3
,1

]

[
a1,1

,2
a1,2

,2
a1,3

,2

a2,1
,2

a2,2
,2

a2,3
,2

]

[
a1,1

,3
a1,2

,3
a1,3

,3

a2,1
,3

a2,2
,3

a2,3
,3

]

[
a1,1

,4
a1,2

,4
a1,3

,4

a2,1
,4

a2,2
,4

a2,3
,4

]

Figure 1.9: A visualization of a 3-dimensional array with 2 rows, 3 columns, and 4
“layers”. We use ai, j,k to denote the entry of this array in the i-th row, j-th column,
and k-th layer.

Theorem 1.3.6
The Form of

Multilinear Forms

Suppose V1, . . . ,Vp are finite-dimensional vector spaces over a field F and
f : V1×·· ·×Vp→ F is a multilinear form. For each 1≤ i≤ p and vi ∈ Vi,
let vi, j denote the j-th coordinate of vi with respect to some basis of Vi.
Then there exists a unique p-dimensional array (with entries {a j1,..., jp}),
called the standard array of f , such that

f (v1, . . . ,vp) = ∑
j1,..., jp

a j1,..., jpv1, j1 · · ·vp, jp for all v1 ∈ V1, . . . ,vp ∈ Vp.

Proof. We proceed just as we did in the proof of the characterization of bilinear
forms (Theorem 1.3.5), using induction on the number p of vector spaces.
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We already know from Theorems 1.3.3 and 1.3.5 that this result holds
when p = 1 or p = 2, which establishes the base case of the induction. For
the inductive step, suppose that the result is true for all (p−1)-linear forms
acting on V2×·· ·×Vp. If we let B = {w1,w2, . . . ,wm} be a basis of V1We use j1 here

instead of just j since
it will be convenient

later on.

then the
inductive hypothesis tells us that the (p−1)-linear forms g j1 :V2×·· ·×Vn→F
defined by

g j1(v2, . . . ,vp) = f (w j1 ,v2, . . . ,vp)

can be written
The scalar a j1 , j2 ,..., jp

here depends on j1
(not just j2, . . . , jn)

since each choice
of w j1 gives a

different
(p−1)-linear form g j1 .

as

f (w j1 ,v2, . . . ,vp) = g j1(v2, . . . ,vp) = ∑
j2,..., jp

a j1, j2,..., jpv2, j2 · · ·vp, jp

for some fixed family of scalars {a j1, j2,..., jp}.
If we write an arbitrary vector v1 ∈ V1 as a linear combination of the

basis vectors w1,w2, . . . ,wm (i.e., v1 = v1,1w1 +v1,2w2 + · · ·+v1,mwm), it then
follows from linearity of the first argument of f that

f (v1, . . . ,vp) = f

(
m

∑
j1=1

v1, j1w j1 ,v2, . . . ,vp

)
(v1 =

m

∑
j1=1

v1, j1w j1)

=
m

∑
j1=1

v1, j1 f (w j1 ,v2, . . . ,vp) (multilinearity of f )

=
m

∑
j1=1

v1, j1 ∑
j2,..., jp

a j1, j2,..., jpv2, j2 · · ·vp, jp (inductive hypothesis)

= ∑
j1,..., jp

a j1,..., jpv1, j1 · · ·vp, jp (group sums together)

for all v1 ∈ V1, . . . ,vp ∈ Vp, which completes the inductive step and shows that
the family of scalars {a j1,..., jp} exists.

To see that the scalars {a j1,..., jp} are unique, just note that if we choose v1
to be the j1-th member of the basis of V1, v2 to be the j2-th member of the
basis of V2, and so on, then we get

f (v1, . . . ,vp) = a j1,..., jp .

In particular, these scalars are completely determined by f . �

For example, the determinant of a 3× 3 matrix is a 3-linear (trilinear?)
form, so it can be represented by a single fixed 3×3×3 array (or equivalently,
a family of 33 = 27 scalars), just like the determinant of a 2× 2 matrix is a
bilinear form and thus can be represented by a 2×2 matrix (i.e., a family of
22 = 4 scalars). The following example makes this observation explicit.

Example 1.3.14
The 3 × 3 Determinant

as a 3 × 3 × 3 Array

Find the 3×3×3 array A with the property that

det
([

v | w | x
])

=
3

∑
i, j,k=1

ai, j,kviw jxk for all v,w,x ∈ F3.

Solution:
We recall the following explicit formula for the determinant of a 3×3

matrix:

det
([

v |w | x
])

= v1w2x3 +v2w3x1 +v3w1x2−v1w3x2−v2w1x3−v3w2x1.
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This is exactly the representation of the determinant that we want, and we
can read the coefficients of the array A from it directly:

a1,2,3 = a2,3,1 = a3,1,2 = 1 and a1,3,2 = a2,1,3 = a3,2,1 =−1,

and all other entries of A equal 0.

The standard array
of the p× p

determinant is
described fairly

explicitly by
Theorem A.1.4:

a j1 ,..., jp = 0 if any two
subscripts equal
each other, and

a j1 ,..., jp =
sgn( j1, . . . , jp)

otherwise, where sgn
is the sign of a

permutation.

We can visualize this 3-dimensional array
as follows, where the first subscript i indexes rows, the second subscript j
indexes columns, and the third subscript k indexes layers:

k =
1



0

0
0

0
0

1

0
−1

0




k =
2



0

0
−1

0
0

0

1
0

0




k =
3



0

1
0

−1
0

0

0
0

0




It is worth noting that the array that represents the 3× 3 determinant in
the above example is antisymmetric, which means that it is skew-symmetric
no matter how we “slice” it. For example, the three layers shown are each
skew-symmetric matrices, but the matrix consisting of each of their top rows
is also skew-symmetric, as is the matrix consisting of each of their central
columns, and so on. Remarkably, the array that corresponds to the determinant
is, up to scaling, the unique array with this property (see Exercise 1.3.27), just
like the matrix

A =
[

0 1
−1 0

]

is, up to scaling, the unique 2×2 skew-symmetric matrix.

1.3.4 Inner Products

The dot product on Rn let us do several important geometrically-motivated
things, like computing the lengths of vectors, the angles between them, and
determining whether or not they are orthogonal. We now generalize the dot
product to other vector spaces, which will let us carry out these same tasks in
this new more general setting.

To this end, we make use of bilinear forms, for which we have already seen
that the dot product serves as the prototypical example. However, bilinear forms
are actually too general, since they do not satisfy all of the “nice” properties that
the dot product satisfies. For example, bilinear forms do not typically mimic the
commutativity property of the dot product (i.e., v ·w = w ·v, but most bilinear
forms f have f (v,w) 6= f (w,v)), nor are they typically positive definite (i.e.,
v ·v≥ 0, but most bilinear forms do not have f (v,v)≥ 0).

We now investigate functions that satisfy these two additional properties,
with the caveat that the commutativity condition that we need looks slightly
different than might be naïvely expected:
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Definition 1.3.6
Inner Product

Suppose that F = R or F = C and that V is a vector space over F. Then an
inner product on V is a function 〈·, ·〉 : V×V → F such that the following
three properties hold for all c ∈ F and all v,w,x ∈ V :

a) 〈v,w〉= 〈w,v〉 (conjugate symmetry)
b) 〈v,w+ cx〉= 〈v,w〉+ c〈v,x〉The notation

〈·, ·〉 : V×V → F
means that 〈·, ·〉 is a

function that takes in
two vectors from V

and outputs a single
number from F.

(linearity)
c) 〈v,v〉 ≥ 0, with equality if and only if v = 0. (pos. definiteness)

If F = R then inner products are indeed bilinear forms, since property (b)
gives linearity in the second argument and then the symmetry condition (a)
guarantees that it is also linear in its first argument. However, if F = C then
they are instead sesquilinear forms—they“Sesquilinear”

means
“one-and-a-half

linear”.

are linear in their second argument,
but only conjugate linear in their first argument:

〈v+ cx,w〉= 〈w,v+ cx〉= 〈w,v〉+ c〈w,x〉= 〈v,w〉+ c〈x,w〉.

Remark 1.3.4
Why a Complex

Conjugate?

Perhaps the only “weird” property in the definition of an inner product is
the fact that we require 〈v,w〉= 〈w,v〉 rather than the seemingly simpler
〈v,w〉 = 〈w,v〉. The reason for this strange choice is that if F = C then
there does not actually exist any function satisfying 〈v,w〉= 〈w,v〉 as well
as properties (b) and (c)—if there did, then for all v 6= 0 we would have

0 < 〈iv, iv〉= i〈iv,v〉= i〈v, iv〉= i2〈v,v〉=−〈v,v〉< 0,

which makes no sense.
ItSome books instead

define inner
products to be linear
in their first argument

and conjugate
linear in the second.

is also worth noting that we restrict our attention to the fields R and
C when discussing inner products, since otherwise it is not at all clear what
the positive definiteness property 〈v,v〉 ≥ 0 even means. Many fields do
not have a natural ordering on them, so it does not make sense to discuss
whether or not their members are bigger than 0. In fact, there is also no
natural ordering on the field C, but that is okay because the conjugate
symmetry condition 〈v,v〉= 〈v,v〉 ensures that 〈v,v〉 is real.

To get a bit more comfortable with inner products, we now present several
examples of standard inner products in the various vector spaces that we have
been working with. As always though, keep the real dot product in mind as the
canonical example of an inner product around which we build our intuition.

Example 1.3.15
Complex Dot Product

Show that the function 〈·, ·〉 : Cn×Cn→ C defined by

〈v,w〉= v∗w =
n

∑
i=1

viwi for all v,w ∈ Cn

is an inner product on Cn.

Solution:

This inner product on
Cn is also called the

dot product.

We must check that the three properties described by Definition 1.3.6
hold. All of these properties follow very quickly from the corresponding
properties of matrix multiplication and conjugate transposition:

a) 〈v,w〉= v∗w = (w∗v)∗ = w∗v = 〈w,v〉
Keep in mind that

w∗v is a number, so
transposing it has no

effect, so
(w∗v)∗ = w∗v. b) 〈v,w+ cx〉= v∗(w+ cx) = v∗w+ cv∗x = 〈v,w〉+ c〈v,x〉
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c) 〈v,v〉 = v∗v = |v1|2 + · · ·+ |vn|2, which is non-negative, and it
equals 0 if and only if v = 0.

Just like in Rn, we often denote the inner product (i.e., the dot product)
from the above example by v ·w instead of 〈v,w〉.

Example 1.3.16
The Frobenius
Inner Product

Show that the function 〈·, ·〉 :Mm,n(F)×Mm,n(F)→ F defined by

〈A,B〉= tr(A∗B) for all A,B ∈Mm,n(F),

where F = R or F = C, is an inner product on
Recall that tr(A∗B) is

the trace of A∗B,
which is the sum of
its diagonal entries.

Mm,n(F).

Solution:
We could directly verify that the three properties described by Defini-

tion 1.3.6 hold, but

We call this inner
product on Mm,n(F)
the Frobenius inner

product. Some
books call it the
Hilbert–Schmidt

inner product.

it is perhaps more illuminating to compute

〈A,B〉= tr(A∗B) =
m

∑
i=1

n

∑
j=1

ai, jbi, j.

In other words, this inner product multiplies all of the entries of A by the
corresponding entries of B and adds them up, just like the dot product on
Fn. For example, if m = n = 2 then
〈[

a1,1 a1,2
a2,1 a2,2

]
,

[
b1,1 b1,2

b2,1 b2,2

]〉
= a1,1b1,1 +a2,1b2,1 +a1,2b1,2 +a2,2b2,2

= (a1,1,a1,2,a2,1,a2,2) · (b1,1,b1,2,b2,1,b2,2).

More generally, if E is the standard basis ofMm,n(F) then we have

〈A,B〉= [A]E · [B]E for all A,B ∈Mm,n(F).

In other words, this inner product is what we get if we forget about the
shape of A and B and just take their dot product as if they were vectors in
Fmn. The fact that this is an inner product now follows directly from the
fact that the dot product on Fn is an inner product.

Example 1.3.17
An Inner Product on

Continuous Functions

Let a < b be real numbers and let C[a,b] be the vector space of continuous
functions on the real interval [a,b]. Show that the function 〈·, ·〉 : C[a,b]×
C[a,b]→ R defined by

〈 f ,g〉=
∫ b

a
f (x)g(x) dx for all f ,g ∈ C[a,b]

is an inner product on C[a,b].

Solution:
We must check that the three properties described by Definition 1.3.6

hold. All of these properties follow quickly from the corresponding prop-
erties of definite integrals:
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a) We simply use commutativity of real number multiplication:Since all numbers
here are real, we do

not need to worry
about the complex

conjugate in
property (a).

〈 f ,g〉=
∫ b

a
f (x)g(x) dx =

∫ b

a
g(x) f (x) dx = 〈g, f 〉.

b) This follows from linearity of integrals:

〈 f ,g+ ch〉=
∫ b

a
f (x)

(
g(x)+ ch(x)

)
dx

=
∫ b

a
f (x)g(x) dx+ c

∫ b

a
f (x)h(x) dx

= 〈 f ,g〉+ c〈 f ,h〉.

c) We just recall that the integral of a positive function is positive:

〈 f , f 〉=
∫ b

a
f (x)2 dx≥ 0,

with equality if and only if f (x) = 0 for all x ∈ [a,b] (i.e., f is the
zero function).

We can make a bit more sense of the above inner product on C[a,b] if we
think of definite integrals as “continuous sums”. While the dot product v ·w on
Rn adds up all values of v jw j for 1≤ j ≤ n, this inner product 〈 f ,g〉 on C[a,b]
“adds up” all values of f (x)g(x) for a≤ x≤ b (and weighs them appropriately
so that the sum is finite).

All of the inner products that we have seen so far are called the standard
inner products on spaces that they act on. That is, the dot product is the standard
inner product on Rn or Cn, the Frobenius inner product is the standard inner
product onMm,n, and

〈 f ,g〉=
∫ b

a
f (x)g(x) dx

is the standard inner product on C[a,b]. We similarly use P[a,b] and P p[a,b]
to denote the spaces of polynomials (of degree at most p, respectively) acting
on the real interval [a,b], and we assume that the inner product acting on these
spaces is this standard one unless we indicate otherwise.

Inner products can also look quite a bit different from the standard ones
that we have seen so far, however. The following example illustrates how the
same vector space can have multiple different inner products, and at first glance
they might look quite different than the standard inner product.

Example 1.3.18
A Weird Inner

Product

Show that the function 〈·, ·〉 : R2×R2→ R defined by

〈v,w〉= v1w1 +2v1w2 +2v2w1 +5v2w2 for all v,w ∈ R2

is an inner product on R2.

Solution:
Properties (a) and (b) of Definition 1.3.6 follow fairly quickly from the

definition of this function, but proving property (c) is somewhat trickier.
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To this end, it is helpful to rewrite this function in theWe will show in
Theorem 1.4.3 that

we can always
rewrite inner

products in a similar
manner so as to

make their positive
definiteness

“obvious”.

form

〈v,w〉= (v1 +2v2)(w1 +2w2)+ v2w2.

It follows that

〈v,v〉= (v1 +2v2)2 + v2
2 ≥ 0,

with equality if and only if v1 +2v2 = v2 = 0, which happens if and only
if v1 = v2 = 0 (i.e., v = 0), as desired.

Recall that a vector space V is not just a set of vectors, but rather it also
includes a particular addition and scalar multiplication operation as part of it.
Similarly, if we have a particular inner product in mind then we typically group
it together with V and call it an inner product space. If there is a possibility
for confusion among different inner products (e.g., because there are multiple
different inner product spaces V andW being used simultaneously) then we
may write them using notation like 〈·, ·〉V or 〈·, ·〉W .

The Norm Induced by the Inner Product
Now that we have inner products to work with, we can define the length of
a vector in a manner that is completely analogous to how we did it with the
dot product in Rn. However, in this setting of general vector spaces, we are a
bit beyond the point of being able to draw a geometric picture of what length
means (for example, the “length” of a matrix does not quite make sense), so
we change terminology slightly and instead call this function a “norm”.

Definition 1.3.7
Norm Induced by
the Inner Product

Suppose that V is an inner product space. Then the norm induced by the
inner product is the function ‖ · ‖ : V → R defined by

‖v‖ def=
√
〈v,v〉 for all v ∈ V .

When V = Rn or V = CnWe use the notation
‖ · ‖ to refer to the

standard length on
Rn or Cn, but also to

refer to the norm
induced by

whichever inner
product we are

currently discussing.
If there is ever a

chance for
confusion, we use

subscripts to
distinguish different

norms.

and the inner product is just the usual dot product,
the norm induced by the inner product is just the usual length of a vector, given
by

‖v‖=
√

v ·v =
√
|v1|2 + |v2|2 + · · ·+ |vn|2.

However, if we change which inner product we are working with, then the
norm induced by the inner product changes as well. For example, the norm on
R2 induced by the weird inner product of Example 1.3.18 has the form

‖v‖∗ =
√
〈v,v〉=

√
(v1 +2v2)2 + v2

2,

which is different from the norm that we are used to (we use the notation ‖ · ‖∗
just to differentiate this norm from the standard length ‖ · ‖).

The norm induced by the standard (Frobenius) inner product onMm,n from
Example 1.3.16 is given by

‖A‖F =
√

tr(A∗A) =

√
m

∑
i=1

n

∑
j=1
|ai, j|2.

This

The Frobenius norm is
also sometimes

called the
Hilbert–Schmidt

norm and denoted
by ‖A‖HS.

norm on matrices is often called the Frobenius norm, and it is usually
written as ‖A‖F rather than just ‖A‖ to avoid confusion with another matrix
norm that we will see a bit later in this book.
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Similarly, the norm on C[a,b] induced by the inner product of Exam-
ple 1.3.17 has the form

‖ f‖=

√∫ b

a
f (x)2 dx.

Perhaps not surprisingly, the norm induced by an inner product satisfies the
same basic properties as the length of a vector in Rn. The next few theorems
are devoted to establishing these properties.

Theorem 1.3.7
Properties of the

Norm Induced
by the Inner Product

Suppose that V is an inner product space, v ∈ V is a vector, and c ∈ F is
a scalar. Then the following properties of the norm induced by the inner
product hold:

a) ‖cv‖= |c|‖v‖, and (absolute homogeneity)
b) ‖v‖ ≥ 0, with equality if and only if v = 0. (pos. definiteness)

Proof. Both of these properties follow fairly quickly from the definition. For
property (a), we compute

‖cv‖=
√
〈cv,cv〉=

√
c〈cv,v〉=

√
c〈v,cv〉

=
√

cc〈v,v〉=
√
|c|2‖v‖2 = |c|‖v‖.

Property (b) follows immediately from the property of inner products that says
that 〈v,v〉 ≥ 0, with equality if and only if v = 0. �

The above theorem tells us that it makes sense to break vectors into their
“length” and “direction”, just like we do with vectors in Rn. Specifically, we can
write every vector v ∈ V in the form v = ‖v‖u, where u ∈ V has ‖u‖= 1 (so
we call u a unit vector). In particular, if v 6= 0 then we can choose u = v/‖v‖,
which we think of as encoding the direction of v.

The two other main properties that vector length in Rn satisfies are the
Cauchy–Schwarz inequality and the triangle inequality. We now show that
these same properties hold for the norm induced by any inner product.

Theorem 1.3.8
Cauchy–Schwarz

Inequality for
Inner Products

If V is an inner product space then

|〈v,w〉| ≤ ‖v‖‖w‖ for all v,w ∈ V .

Furthermore, equality holds if and only if v and w are collinear (i.e., {v,w}
is a linearly dependent set).

Proof. We start by letting c,d ∈ F be arbitrary scalars and expanding the
quantity ‖cv+dw‖2 in terms of the inner product:

Re(z) is the real part
of z. That is, if z ∈ R

then Re(z) = z, and if
z = a+ ib ∈ C then

Re(z) = a.

0≤ ‖cv+dw‖2 (pos. definiteness)

=
〈
cv+dw,cv+dw

〉
(definition of ‖ · ‖)

= |c|2〈v,v〉+ cd〈v,w〉+ cd〈w,v〉+ |d|2〈w,w〉 (sesquilinearity)

= |c|2‖v‖2 +2Re
(
cd〈v,w〉

)
+ |d|2‖w‖2. (since z+ z = 2Re(z))
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If w = 0 then the Cauchy–Schwarz inequality holds trivially (it just says
0 ≤ 0), so we can assume that w 6= 0. We can thus choose c = ‖w‖ and d =
−〈w,v〉/‖w‖,To simplify, we use

the fact that

〈w,v〉〈v,w〉= 〈w,v〉〈w,v〉
= |〈w,v〉|2.

which tells us that

0≤ ‖v‖2‖w‖2−2Re
(
‖w‖〈w,v〉〈v,w〉/‖w‖

)
+ |〈w,v〉|2‖w‖2/‖w‖2.

= ‖v‖2‖w‖2−|〈w,v〉|2.

Rearranging and taking the square root of both sides gives us |〈v,w〉| ≤ ‖v‖‖w‖,
which is exactly the Cauchy–Schwarz inequality.

To see that equality holds if and only if {v,w} is a linearly dependent set,
suppose that |〈v,w〉|= ‖v‖‖w‖. We can then follow the above proof backward
to see that 0 = ‖cv+dw‖2, so cv+dw = 0 (where c = ‖w‖ 6= 0), so {v,w} is
linearly dependent. In the opposite direction, if {v,w} is linearly dependent
then either v = 0 (in which case equality clearly holds in the Cauchy–Schwarz
inequality since both sides equal 0) or w = cv for some c ∈ F. Then

|〈v,w〉|= |〈v,cv〉|= |c|‖v‖2 = ‖v‖‖cv‖= ‖v‖‖w‖,

which completes the proof. �

For example, if we apply the Cauchy–Schwarz inequality to the Frobenius
inner product onMm,n, it tells us that

∣∣tr(A∗B)
∣∣2 ≤ tr(A∗A)tr(B∗B) for all A,B ∈Mm,n,

and if we apply it to the standard inner product on C[a,b] then it says that

(∫ b

a
f (x)g(x) dx

)2

≤
(∫ b

a
f (x)2 dx

)(∫ b

a
g(x)2 dx

)
for all f ,g∈C[a,b].

These examples illustrate the utility of thinking abstractly about vector spaces.
These matrix and integral inequalities are tricky to prove directly from prop-
erties of the trace and integrals, but follow straightforwardly when we forget
about the fine details and only think about vector space properties.

Just as was the case in Rn, the triangle inequality now follows very quickly
from the Cauchy–Schwarz inequality.

Theorem 1.3.9
The Triangle Inequality
for the Norm Induced

by the Inner Product

If V is an inner product space then

‖v+w‖ ≤ ‖v‖+‖w‖ for all v,w ∈ V .

Furthermore, equality holds if and only if v and w point in the same
direction (i.e., v = 0 or w = cv for some 0≤ c ∈ R).

Proof. We start by expanding ‖v+w‖2 in terms of the inner product:

‖v+w‖2 = 〈v+w,v+w〉For any z = x+ iy ∈ C,

we have Re(z)≤ |z|
since Re(z) = x≤

√
x2 + y2 = |x+ iy|= |z|.

= 〈v,v〉+ 〈v,w〉+ 〈w,v〉+ 〈w,w〉 (sesquilinearity)
= ‖v‖2 +2Re(〈v,w〉)+‖w‖2 (since z+ z = 2Re(z))
≤ ‖v‖2 +2|〈v,w〉|+‖w‖2 (since Re(z)≤ |z|)
≤ ‖v‖2 +2‖v‖‖w‖+‖w‖2 (by Cauchy–Schwarz)
= (‖v‖+‖w‖)2.
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We can then take the square root of both sides of this inequality to see that
‖v+w‖ ≤ ‖v‖+‖w‖, as desired.

The above argument demonstrates that equality holds in the triangle in-
equality if and only if Re(〈v,w〉) = |〈v,w〉| = ‖v‖‖w‖. We know from the
Cauchy–Schwarz inequality that the second of these equalities holds if and
only if {v,w} is linearly dependent (i.e., v = 0 or w = cv for some c ∈ F). In
this case, the first equality holds if and only if v = 0 or Re(〈v,cv〉) = |〈v,cv〉|.
Well, Re(〈v,cv〉) = Re(c)‖v‖2 and |〈v,cv〉|= |c|‖v‖2, so we see that equality
holds in the triangle inequality if and only if Re(c) = |c| (i.e., 0≤ c ∈ R). �

It is worth noting that isomorphisms in general do not preserve inner prod-
ucts,The fact that inner

products cannot be
expressed in terms of
vector addition and
scalar multiplication

means that they
give us some extra

structure that vector
spaces alone do not

have.

since inner products cannot be derived from only scalar multiplication
and vector addition (which isomorphisms do preserve). For example, the iso-
morphism T : R2→ R2 defined by T (v) = (v1 +2v2,v2) has the property that

T (v) ·T (w) = (v1 +2v2,v2) · (w1 +2w2,w2)
= v1w1 +2v1w2 +2v2w1 +5v2w2.

In other words, T turns the usual dot product on R2 into the weird inner product
from Example 1.3.18.

However, even though isomorphisms do not preserve inner products, they
at least do always convert one inner product into another one. That is, if V
andW are vector spaces, 〈·, ·〉W is an inner product onW , and T : V →W
is an isomorphism, then we can define an inner product on V via 〈v1,v2〉V =
〈T (v1),T (v2)〉W (see Exercise 1.3.25).

Exercises solutions to starred exercises on page 454

1.3.1 Determine whether or not the given vector spaces V
and W are isomorphic.

∗(a) V = R6, W = M2,3(R)
(b) V = M2(C), W = M2(R)
∗(c) V = P8, W = M3(R)
(d) V = R, W is the vector space from Example 1.1.4
∗(e) V = P8, W = P

(f) V = {A ∈M2 : tr(A) = 0}, W = P2

1.3.2 Determine which of the following functions are and
are not linear forms.

∗(a) The function f : Rn→ R defined by f (v) = ‖v‖.
(b) The function f : Fn→ F defined by f (v) = v1.
∗(c) The function f : M2→M2 defined by

f

([
a b
c d

])
=
[

c a
d b

]
.

(d) The determinant of a matrix (i.e., the function det :
Mn→ F).

∗(e) The function g : P → R defined by g( f ) = f ′(3),
where f ′ is the derivative of f .

(f) The function g : C→R defined by g( f ) = cos( f (0)).

1.3.3 Determine which of the following functions are inner
products.

∗(a) On R2, the function

〈v,w〉= v1w1 + v1w2 + v2w2.

(b) On R2, the function

〈v,w〉= v1w1 + v1w2 + v2w1 + v2w2.

(c) On R2, the function

〈v,w〉= 3v1w1 + v1w2 + v2w1 +3v2w2.

∗(d) On Mn, the function 〈A,B〉= tr(A∗+B).
(e) On P2, the function

〈ax2 +bx+ c,dx2 + ex+ f 〉= ad +be+ c f .

∗(f) On C[−1,1], the function

〈 f ,g〉=
∫ 1

−1

f (x)g(x)√
1− x2

dx.

1.3.4 Determine which of the following statements are
true and which are false.

∗(a) If T : V →W is an isomorphism then so is T−1 :
W → V .

(b) Rn is isomorphic to Cn.
∗(c) Two vector spaces V and W over the same field are

isomorphic if and only if dim(V) = dim(W).
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(d) If w ∈ Rn then the function fw : Rn→ R defined by
fw(v) = v ·w for all v ∈ Rn is a linear form.

∗(e) If w ∈ Cn then the function fw : Cn→ C defined by
fw(v) = v ·w for all v ∈ Cn is a linear form.

(f) If A ∈Mn(R) is invertible then so is the bilinear
form f (v,w) = vT Aw.

∗(g) If Ex : P2 → R is the evaluation map defined by
Ex( f ) = f (x) then E1 +E2 = E3.

1.3.5 Show that if we regard Cn as a vector space over R
(instead of over C as usual) then it is isomorphic to R2n.

∗∗1.3.6 Suppose V , W , and X are vector spaces and
T : V →W and S : W →X are isomorphisms.

(a) Show that T−1 : W → V is an isomorphism.
(b) Show that S◦T : V →X is an isomorphism.

∗∗1.3.7 Show that for every linear form f : Mm,n(F)→
F, there exists a matrix A ∈Mm,n(F) such that f (X) =
tr(AT X) for all X ∈Mm,n(F).

∗∗1.3.8 Show that the result of Exercise 1.3.7 still holds if
we replace every instance of Mm,n(F) by MS

n(F) or every
instance of Mm,n(F) by MH

n (and set F = R in this latter
case).

∗∗1.3.9 Suppose V is an inner product space. Show that
〈v,0〉= 0 for all v ∈ V .

∗∗ 1.3.10 Suppose A ∈Mm,n(C). Show that ‖A‖F =
‖AT ‖F = ‖A∗‖F.

1.3.11 Suppose a < b are real numbers and f ∈ C[a,b].
Show that

(
1

b−a

∫ b

a
f (x) dx

)2

≤ 1
b−a

(∫ b

a
f (x)2 dx

)
.

[Side note: In words, this says that the square of the average
of a function is never larger than the average of its square.]

∗∗1.3.12 Let V be an inner product space and let ‖ · ‖
be the norm induced by V’s inner product. Show that if
v,w ∈ V are such that 〈v,w〉= 0 then

‖v+w‖2 = ‖v‖2 +‖w‖2.

[Side note: This is called the Pythagorean theorem for
inner products.]

∗∗1.3.13 Let V be an inner product space and let ‖ · ‖ be
the norm induced by V’s inner product. Show that

‖v+w‖2 +‖v−w‖2 = 2‖v‖2 +2‖w‖2

for all v,w ∈ V .

[Side note: This is called the parallelogram law, since it re-
lates the norms of the sides of a parallelogram to the norms
of its diagonals.]

∗∗1.3.14 Let V be an inner product space and let ‖ · ‖ be
the norm induced by V’s inner product.

(a) Show that if the ground field is R then

〈v,w〉= 1
4
(
‖v+w‖2−‖v−w‖2)

for all v,w ∈ V .
(b) Show that if the ground field is C then

〈v,w〉= 1
4

3

∑
k=0

1
ik
‖v+ ikw‖2

for all v,w ∈ V .

[Side note: This is called the polarization identity.]

1.3.15 Let V be an inner product space and let ‖ · ‖ be the
norm induced by V’s inner product.

(a) Show that if the ground field is R then

〈v,w〉= ‖v‖‖w‖
(

1− 1
2

∥∥∥∥
v
‖v‖ −

w
‖w‖

∥∥∥∥
2
)

for all v,w ∈ V .
[Side note: This representation of the inner product
implies the Cauchy–Schwarz inequality as an imme-
diate corollary.]

(b) Show that if the ground field is C then

〈v,w〉= ‖v‖‖w‖
(

1 − 1
2

∥∥∥∥
v
‖v‖ −

w
‖w‖

∥∥∥∥
2

+ i− i
2

∥∥∥∥
v
‖v‖ −

iw
‖w‖

∥∥∥∥
2
)

for all v,w ∈ V .

∗1.3.16 Suppose V is a vector space over a field F in which
1+1 6= 0, and f : V×V → F is a bilinear form.

(a) Show that f (v,w) = − f (w,v) for all v,w ∈ V (in
which case f is called skew-symmetric) if and only
if f (v,v) = 0 for all v ∈ V (in which case f is called
alternating).

(b) Explain what goes wrong in part (a) if 1 + 1 = 0
(e.g., if F = Z2 is the field of 2 elements described
in Appendix A.4).

1.3.17 Suppose V is a vector space over a field F and
f : V×V → F is a bilinear form.

(a) Show that f (v,w) = f (w,v) for all v,w ∈ V (in
which case f is called symmetric) if and only if the
matrix A∈Mn(F) from Theorem 1.3.5 is symmetric
(i.e., satisfies AT = A).

(b) Show that f (v,w) = − f (w,v) for all v,w ∈ V (in
which case f is called skew-symmetric) if and only
if the matrix A ∈Mn(F) from Theorem 1.3.5 is
skew-symmetric (i.e., satisfies AT =−A).

∗∗1.3.18 Suppose V and W are m- and n-dimensional
vector spaces over C, respectively, and let f : V×W → C
be a sesquilinear form (i.e., a function that is linear in its
second argument and conjugate linear in its first).

(a) Show that if B and C are bases of V and W , respec-
tively, then there exists a unique matrix A∈Mm,n(C)
such that

f (v,w) = [v]∗BA[w]C for all v ∈ V , w ∈W .
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(b) Suppose W = V and C = B. Show that f is conju-
gate symmetric (i.e., f (v,w) = f (w,v) for all v∈V
and w ∈W) if and only if the matrix A from part (a)
is Hermitian.

(c) Suppose W = V and C = B. Show that f is an inner
product if and only if the matrix A from part (a) is
Hermitian and satisfies v∗Av≥ 0 for all v ∈Cm with
equality if and only if v = 0.
[Side note: A matrix A with these properties is called
positive definite, and we explore such matrices in
Section 2.2.]

1.3.19 Suppose V is a vector space with basis B =
{v1, . . . ,vn}. Define linear functionals f1, . . ., fn ∈ V∗ by

fi(v j) =

{
1 if i = j,
0 otherwise.

Show that the set B∗ def= { f1, . . . , fn} is a basis of V∗.
[Side note: B∗ is called the dual basis of B.]

1.3.20 Let c00 be the vector space of eventually-zero real
sequences from Example 1.1.10. Show that c∗00

∼= RN.

[Side note: This example shows that the dual of an infinite-
dimensional vector space can be much larger than the origi-
nal vector space. For example, c00 has dimension equal to
the cardinality of N, but this exercise shows that c∗00 has
dimension at least as large as the cardinality of R. See also
Exercise 1.3.23.]

∗∗1.3.21 Let Ex : P p → R be the evaluation map de-
fined by Ex( f ) = f (x) (see Example 1.3.5) and let E =
{1,x,x2, . . . ,xp} be the standard basis of P p. Find a polyno-
mial gx ∈P p such that Ex( f ) = [gx]E · [ f ]E for all f ∈P p.

∗∗1.3.22 Let Ex : P p→ R be the evaluation map defined
by Ex( f ) = f (x). Show that if c0,c1, . . . ,cp ∈R are distinct
then {Ec0 ,Ec1 , . . . ,Ecp} is a basis of (P p)∗.

1.3.23 Let Ex : P → R be the evaluation map defined by
Ex( f ) = f (x). Show that the set

{
Ex : x ∈ R

}

is linearly independent.

∗∗ 1.3.24 Let T : V → V∗∗ be the canonical double-
dual isomorphism described by Theorem 1.3.4. Com-
plete the proof of that theorem by showing that if B =
{v1,v2, . . . ,vn} ⊆ V is linearly independent then so is
C = {T (v1),T (v2), . . . ,T (vn)} ⊆ V∗∗.

∗∗1.3.25 Suppose that V and W are vector spaces over a
field F, 〈·, ·〉W is an inner product on W , and T : V→W is
an isomorphism. Show that the function 〈·, ·〉V : V×V→ F
defined by 〈v1,v2〉V = 〈T (v1),T (v2)〉W is an inner prod-
uct on V .

1.3.26 Suppose V is a vector space over a field F,
f : V ×·· ·×V → F is a multilinear form, and T1, . . . ,Tn :
V → V are linear transformations. Show that the function
g : V×·· ·×V → F defined by

g(v1, . . . ,vn) = f (T1(v1), . . . ,Tn(vn))

is a multilinear form.

∗∗1.3.27 An array A is called antisymmetric if swap-
ping any two of its indices swaps the sign of its entries
(i.e., a j1 ,..., jk ,..., j` ,..., jp = −a j1 ,..., j` ,..., jk ,..., jp for all k 6= `).
Show that for each p ≥ 2 there is, up to scaling, only one
p× p×·· ·× p (p times) antisymmetric array.

[Side note: This array corresponds to the determinant in the
sense of Theorem 1.3.6.]

[Hint: Make use of permutations (see Appendix A.1.5) or
properties of the determinant.]

1.4 Orthogonality and Adjoints

Now that we know how to generalize the dot product from Rn to other vector
spaces (via inner products), it is worth revisiting the concept of orthogonality.
Recall that two vectors v,w ∈ Rn are orthogonal when v ·w = 0. We define
orthogonality in general inner product spaces completely analogously:

Definition 1.4.1
Orthogonality

Suppose V is an inner product space. Two vectors v,w ∈ V are called
orthogonal if 〈v,w〉= 0.

In Rn, we could think of “orthogonal” as a synonym for “perpendicular”,
since two vectors in Rn are orthogonal if and only if the angle between them is
π/2. However, in general inner product spaces this geometric picture makes
much less sense (for example, it does not quite make sense to say that the angle
between two polynomials is π/2). For this reason, it is perhaps better to think
of orthogonal vectors as ones that are “as linearly independent as possible” (see
Figure 1.10 for a geometric justification of this interpretation).
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Figure 1.10: Orthogonality can be thought of as a stronger version of linear inde-
pendence: not only do the vectors not point in the same direction, but in fact
they point as far away from each other as possible.

In order to better justify this interpretation of orthogonality, we first need a
notion of orthogonality for sets of vectors rather than just pairs of vectors. To
make this leap, we simply say that a set of vectors B is mutually orthogonal
if every two distinct vectors v 6= w ∈ B are orthogonal. For example, a set of
three vectors in R3 is mutually orthogonal if they all make right angles with
each other (like the coordinate axes).

The following result pins down our claim that mutual orthogonality is a
stronger property than linear independence.

Theorem 1.4.1
Mutual Orthogonality

Implies Linear
Independence

Suppose V is an inner product space. If B⊂ V is a mutually orthogonal
set of non-zero vectors then B is linearly independent.

Proof. We start by supposing that v1,v2, . . . ,vk ∈ B and c1,c2, . . . ,ck ∈ F
(where F is the ground field) are such that

c1v1 + c2v2 + · · ·+ ckvk = 0. (1.4.1)

Our goal is to show that c1 = c2 = · · · = ck = 0. To this end, we note that
〈v1,0〉= 0,The fact that

〈v1,0〉= 0 is hopefully
intuitive enough. If

not, it was proved in
Exercise 1.3.9.

but also

〈v1,0〉= 〈v1,c1v1 + c2v2 + · · ·+ ckvk〉 (by Equation (1.4.1))
= c1〈v1,v1〉+ c2〈v1,v2〉+ · · ·+ ck〈v1,vk〉 (linearity of the i.p.)
= c1〈v1,v1〉+0+ · · ·+0 (B is mutually orthogonal)

= c1‖v1‖2. (definition of norm)

Since all of the vectors in B are non-zero we know that ‖v1‖ 6= 0, so this implies
c1 = 0.

A similar computation involving 〈v2,0〉 shows that c2 = 0, and so on up to
〈vk,0〉 showing that ck = 0, so we conclude c1 = c2 = · · ·= ck = 0 and thus B
is linearly independent. �

Example 1.4.1
Checking Mutual
Orthogonality of

Polynomials

Show that the set B = {1,x,2x2−1} ⊂ P2[−1,1] is mutually orthogonal
with respect to the inner product

〈 f ,g〉=
∫ 1

−1

f (x)g(x)√
1− x2

dx.

Solution:

Recall that P2[−1,1]
is the vector space

of polynomials of
degree at most 2

acting on the
interval [−1,1].

We explicitly compute all 3 possible inner products between these
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3 polynomials, which requires some integration techniques that we may
have not used in a while:

All 3 of these
integrals can be

solved by making
the substitution

x = sin(u) and then
integrating with

respect to u.

〈1,x〉=
∫ 1

−1

x√
1− x2

dx =−
√

1− x2
∣∣∣
1

−1
= 0−0 = 0,

〈1,2x2−1〉=
∫ 1

−1

2x2−1√
1− x2

dx =−x
√

1− x2
∣∣∣
1

−1
= 0−0 = 0, and

〈x,2x2−1〉=
∫ 1

−1

2x3− x√
1− x2

dx =
−(2x2 +1)

3

√
1− x2

∣∣∣
1

−1
= 0−0 = 0.

Since each pair of these polynomials is orthogonal with respect to this
inner product, the set is mutually orthogonal.

When combined with Theorem 1.4.1, the above example shows that the set
{1,x,2x2−1} is linearly independent in P2[−1,1]. It is worth observing that a
set of vectors may be mutually orthogonal with respect to one inner product but
not another—all that is needed to show linear independence in this way is that
it is mutually orthogonal with respect to at least one inner product. Conversely,
for every linearly independent set there is some inner product with respect to
which it is mutually orthogonal, at least in the finite-dimensional case (see
Exercise 1.4.25).

1.4.1 Orthonormal Bases

One of the most useful things that we could do with linear independence was
introduce bases, which in turn let us give coordinates to vectors in arbitrary
finite-dimensional vector spaces. We now spend some time investigating bases
that are not just linearly independent, but are even mutually orthogonal and
scaled so that all vectors in the basis have the same length. We will see that this
additional structure makes these bases more well-behaved and much easier to
work with than others.

Definition 1.4.2
Orthonormal Bases

Suppose V is an inner product space with basis B⊂ V . We say that B is an
orthonormal basis of V if

a) 〈v,w〉= 0 for all v 6= w ∈ B, and (mutual orthogonality)
b) ‖v‖= 1 for all v ∈ B. (normalization)

Before proceeding with examples, we note that determining whether or not
a set is an orthonormal basis is, rather surprisingly, often easier than determining
whether or not it is a (potentially non-orthonormal) basis. The reason for this is
that checking mutual orthogonality (which just requires computing some inner
products) is typically easier than checking linear independence (which requires
solving a linear system), and the following theorem says that this is all that we
have to check as long as the set we are working with has the “right” size (i.e.,
as many vectors as the dimension of the vector space).
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Theorem 1.4.2
Determining if a Set is
an Orthonormal Basis

Suppose V is a finite-dimensional inner product space and B⊆ V is a mu-
tually orthogonal set consisting of unit vectors. Then B is an orthonormal
basis of V if and only if |B|= dim(V).

Proof. RecallThe notation |B|
means the number

of vectors in B.

that Theorem 1.4.1 tells us that if B is mutually orthogonal and
its members are unit vectors (and thus non-zero) then B is linearly independent.
We then make use of Exercise 1.2.27(a), which tells us that a set with dim(V)
vectors is a basis if and only if it is linearly independent. �

It is straightforward to check that the standard bases of each of Rn, Cn,
andMm,n are in fact orthonormal with respect to the standard inner products
on these spaces (i.e., the dot product on Rn and Cn and the Frobenius inner
product onMm,n). On the other hand, we have to be somewhat careful when
working with P p, since the standard basis {1,x,x2, . . . ,xp} is not orthonormal
with respect to any of its standard inner products like

〈 f ,g〉=
∫ 1

0
f (x)g(x) dx.

For example, performing the integration indicated above shows that 〈1,x〉=
(12)/2− (02)/2 = 1/2 6= 0, so the polynomials 1 and x are not orthogonal in
this inner product.

Example 1.4.2
An Orthonormal Basis

of Polynomials

Construct an orthonormal basis of P2[−1,1] with respect to the inner
product

〈 f ,g〉=
∫ 1

−1

f (x)g(x)√
1− x2

dx.

Solution:
We already showed that the set B = {1,x,2x2−1} is mutually orthogo-

nal with respect to this inner product in Example 1.4.1. To turn this set into
an orthonormal basis, we just normalize these polynomials (i.e., divide
them by their

Be careful here: we
might guess that

‖1‖= 1, but this is not
true. We have to go

through the
computation with

the indicated inner
product.

norms):

‖1‖=
√
〈1,1〉=

√∫ 1

−1

1√
1− x2

dx =
√

π,

‖x‖=
√
〈x,x〉=

√∫ 1

−1

x2
√

1− x2
dx =

√
π
2

, and

‖2x2−1‖=
√
〈2x2−1,2x2−1〉=

√∫ 1

−1

(2x2−1)2
√

1− x2
dx =

√
π
2

.

It follows that

These integrals can
be evaluated by

substituting x = sin(u). the set C =
{

1/
√

π,
√

2x/
√

π,
√

2(2x2− 1)/
√

π
}

is
a mutually orthogonal set of normalized vectors. Since C consists of
dim(P2) = 3 vectors, we know from Theorem 1.4.2 that it is an orthonor-
mal basis of P2[−1,1] (with respect to this inner product).
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Example 1.4.3
The Pauli Matrices

Form an
Orthonormal Basis

Show that the set

B =
{

1√
2

[
1 0
0 1

]
,

1√
2

[
0 1
1 0

]
,

1√
2

[
0 −i
i 0

]
,

1√
2

[
1 0
0 −1

]}

is an orthonormalThese are, up to the
scalar factor 1/

√
2,

the Pauli matrices
that we saw earlier

in Example 1.1.12.

basis ofM2(C) with the usual Frobenius inner product.

Solution:
Recall that the Frobenius inner product works just like the dot product

on Cn: 〈X ,Y 〉 is obtained by multiplying

X is the entrywise
complex conjugate

of X .

X and Y entrywise and adding
up the results. We thus can see that most of these matrices are indeed
orthogonal, since all of the terms being added up are 0. For example,
〈

1√
2

[
0 1
1 0

]
,

1√
2

[
1 0
0 −1

]〉
=

1
2
(
0 ·1+1 ·0+1 ·0+0 · (−1)

)

=
1
2
(
0+0+0+0

)
= 0.

For this reason, the only two other inner products that we explicitly
check are the ones where the zeros do not match up in this way:
〈

1√
2

[
1 0
0 1

]
,

1√
2

[
1 0
0 −1

]〉
=

1
2
(
1+0+0+(−1)

)
= 0, and

〈
1√
2

[
0 1
1 0

]
,

1√
2

[
0 −i
i 0

]〉
=

1
2
(
0+(−i)+ i+0

)
= 0.

Since every pair of these matrices is orthogonal, B is mutually orthogonal.
To see that these matrices are properly normalized, we just note that it

is straightforward to check that 〈X ,X〉= 1 for all four of these matrices
X ∈ B. It thus follows from Theorem 1.4.2 that, since B consists of 4
matrices and dim(M2(C)) = 4, B is an orthonormal basis ofM2(C).

We already learned in Section 1.3.1 that all finite-dimensional vector spaces
are isomorphic (i.e., “essentially the same”) as Fn. It thus seems natural to ask
the corresponding question about inner products—do all inner products on a
finite-dimensional inner product space V look like the usual dot product on Fn

on some basis? It turns out that the answer to this question is “yes”, and the
bases for which this happens are exactly orthonormal bases.

Theorem 1.4.3
All Inner Products
Look Like the Dot

Product

If B is an orthonormal basis of a finite-dimensional inner product space V
then

〈v,w〉= [v]B · [w]B for all v,w ∈ V .

Proof. Suppose B = {u1,u2, . . .un}. Since B is a basis of V , we can write v =
c1u1 + c2u2 + · · ·+ cnun and w = d1u1 + d2u2 + · · ·+ dnun. Using properties
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of inner products then reveals that

〈v,w〉=
〈

n

∑
i=1

ciui,
n

∑
j=1

d ju j

〉

=
n

∑
i, j=1

cid j〈ui,u j〉 (sesquilinearity)

=
n

∑
j=1

c jd j (B is an orthonormal basis)

= (c1,c2, . . . ,cn) · (d1,d2, . . . ,dn) (definition of dot product)
= [v]B · [w]B, (definition of coordinate vectors)

as

An even more
explicit

characterization of
inner products on

V = Rn and V = Cn is
presented in

Exercise 1.4.24.

desired. �

For example, we showed in Example 1.3.16 that if E is the standard basis
ofMm,n then the Frobenius inner product on matrices satisfies

〈A,B〉= [A]E · [B]E for all A,B ∈Mm,n.

Theorem 1.4.3 says that the same is true if we replace E by any orthonormal
basis ofMm,n. However, for some inner products it is not quite so obvious how
to find an orthonormal basis and thus represent it as a dot product.

Example 1.4.4
A Polynomial
Inner Product

as the Dot
Product

Find a basis B of P1[0,1] (with the standard inner product) with the
property that 〈 f ,g〉= [ f ]B · [g]B for all f ,g ∈ P1[0,1].

Solution:
First, we recall that the standard inner product on P1[0,1] is

〈 f ,g〉=
∫ 1

0
f (x)g(x) dx.

It might be tempting to think that we should choose the standard basis
B = {1,x}, but this does not work (for example, we noted earlier that
〈1,x〉= 1/2, but [1]B · [x]B = 0).

The problem with the standard basis is that it is not orthonormal in
this inner product, so Theorem 1.4.3 does not apply to it. To construct an
orthonormal basis of P1[0,1] in this inner product, we start by finding any
vector (function) h2 ∈ P1[0,1] that is orthogonal to

We could also
choose h1 to be any

other non-zero
vector, but h1(x) = 1

seems like it will
make the algebra

work out nicely.

h1(x) = 1. To do so,
we write h2(x) = ax+b for some scalars a,b ∈ R and solve 〈h1,h2〉= 0:

0 = 〈h1,h2〉= 〈1,ax+b〉=
∫ 1

0
(ax+b) dx =

(a
2

x2 +bx
)∣∣∣

1

0
=

a
2

+b.

We can solve this equation by choosing a = 2 and b =−1 so that h2(x) =
2x−1.

Finally, we just need to rescale h1 and h2 so that they have norm 1. We
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can compute their norms as

Be careful here: the
fact that ‖1‖= 1 is

not quite as obvious
as it seems, since ‖1‖

must be computed
via an integral (i.e.,
the inner product).

follows:

‖h1‖= ‖1‖=
√
〈1,1〉=

√∫ 1

0
1 dx = 1 and

‖h2‖= ‖2x−1‖=
√
〈2x−1,2x−1〉=

√∫ 1

0
(2x−1)2 dx = 1/

√
3.

It follows that B =
{

1,
√

3(2x− 1)
}

is an orthonormal basis of P1[0,1],
so Theorem 1.4.3 tells us that 〈 f ,g〉= [ f ]B · [g]B for all f ,g ∈ P1[0,1].

The following corollary shows that we can similarly think of the norm in-
duced by any inner product as “the same” as the usual vector length on Rn or Cn:

Corollary 1.4.4
The Norm Induced

by an Inner Product
Looks Like Vector

Length

If B is an orthonormal basis of a finite-dimensional inner product space V
then

‖v‖=
∥∥[v]B

∥∥ for all v ∈ V .

Proof of Theorem 1.2.6. Just choose w = v in Theorem 1.4.3.Be slightly careful
here—‖v‖ refers to
the norm induced

by the inner product
on V , whereas

∥∥[v]B
∥∥

refers to the length in
Rn or Cn.

Then

‖v‖=
√
〈v,v〉=

√
[v]B · [v]B =

∥∥[v]B
∥∥. �

In words, Corollary 1.4.4 says that the norm induced by an inner product
just measures how long a vector’s coordinate vector is when it is represented
in an orthonormal basis. To give a bit of geometric intuition to what this
means, consider the norm ‖ · ‖∗ on R2 induced by the weird inner product of
Example 1.3.18, which has the form

‖v‖∗ =
√
〈v,v〉=

√
(v1 +2v2)2 + v2

2.

We can think of this norm as measuring how long v is when it is represented in
the basis B = {(1,0),(−2,1)} instead of in the standard basis (see Figure 1.11).
The reason that this works is simply that B is an orthonormal basis with respect
to the weird inner product that induces thisB is not orthonormal

with respect to the
usual inner product

(the dot product) on
R2 though.

norm (we will see how this basis B
was constructed shortly, in Example 1.4.6).

Figure 1.11: The length of v = (1,2) is ‖v‖=
√

12 +22 =
√

5. On the other hand, ‖v‖∗
measures the length of v when it is represented in the basis B = {(1,0),(−2,1)}:
‖v‖∗ =

√
(1+4)2 +22 =

√
29 and

∥∥[v]B
∥∥=
√

52 +22 =
√

29.

We typically think of orthonormal bases are particularly “well-behaved”
bases for which everything works out a bit more simply than it does for general
bases. To give a bit of a sense of what we mean by this, we now present a result
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that shows that finding coordinate vectors with respect to orthonormal bases is
trivial. For example, recall that if B = {e1,e2, . . . ,en} is the standard basis of
Rn then, for each 1≤ j ≤ n, the j-th coordinate of a vector v ∈ Rn is simply
e j · v = v j. The following theorem says that coordinates in any orthonormal
basis can similarly be found simply by computing inner products (instead of
solving a linear system, like we have to do to find coordinate vectors with
respect to general bases).

Theorem 1.4.5
Coordinates

with Respect to
Orthonormal

Bases

If B = {u1,u2, . . . ,un} is an orthonormal basis of a finite-dimensional
inner product space V then

[v]B =
(
〈u1,v〉,〈u2,v〉, . . . ,〈un,v〉

)
for all v ∈ V .

Proof. We simply make use of Theorem 1.4.3 to represent the inner product as
the dot product of coordinate vectors. In particular, we recall that[u j]B = e j simply

because u j = 0u1 +
· · ·+1u j + · · ·+0un,

and sticking the
coefficients of that
linear combination
in a vector gives e j.

[u j]B = e j
for all 1≤ j ≤ n and then compute
(
〈u1,v〉,〈u2,v〉, . . . ,〈un,v〉

)
=
(
[u1]B · [v]B, [u2]B · [v]B, . . . , [un]B · [v]B

)

= (e1 · [v]B, e2 · [v]B, . . . , en · [v]B),

which equals [v]B since e1 · [v]B is the first entry of [v]B, e2 · [v]B is its second
entry, and so on. �

The above theorem can be interpreted as telling us that the inner product
between v ∈ V and a unit vector u ∈ V measures how far v points in the
direction of u (see Figure 1.12).

Figure 1.12: The coordinates of a vector v with respect to an orthonormal basis
are simply the inner products of v with the basis vectors. In other words, the inner
product of v with a unit vector tells us how far v extends in that direction.

Example 1.4.5
A Coordinate

Vector with
Respect to the

Pauli Basis

Compute [A]B (the coordinate vector of A ∈M2(C) with respect to B) if

B =
{

1√
2

[
1 0
0 1

]
,

1√
2

[
0 1
1 0

]
,

1√
2

[
0 −i
i 0

]
,

1√
2

[
1 0
0 −1

]}

and A =
[

5 2−3i
2+3i −3

]
.

Solution:
We already showed that B is an orthonormal basis ofM2(C) (with

respect to the Frobenius inner product) in Example 1.4.3, so we can
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compute [A]B via Theorem 1.4.5. In

Recall that the
Frobenius inner

product is
〈X ,Y 〉= tr(X∗Y ).

particular,

〈
1√
2

[
1 0
0 1

]
, A
〉

= tr

(
1√
2

[
5 2−3i

2+3i −3

])
=

2√
2

=
√

2,

〈
1√
2

[
0 1
1 0

]
, A
〉

= tr

(
1√
2

[
2+3i −3

5 2−3i

])
=

4√
2

= 2
√

2,

〈
1√
2

[
0 −i
i 0

]
, A
〉

= tr

(
1√
2

[
−2i+3 3i

5i 2i+3

])
=

6√
2

= 3
√

2,

〈
1√
2

[
1 0
0 −1

]
, A
〉

= tr

(
1√
2

[
5 2−3i

−2−3i 3

])
=

8√
2

= 4
√

2.

We thus conclude that [A]B =
√

2(1,2,3,4).

The fact that [A]B is
real follows from A

being Hermitian,
since B is not just a
basis of M2(C) but

also of the real
vector space MH

2 of
2×2 Hermitian

matrices.

We can verify our work
by simply checking that it is indeed the case that

A =

[
5 2−3i

2+3i −3

]
=
[

1 0
0 1

]
+2
[

0 1
1 0

]
+3
[

0 −i
i 0

]
+4
[

1 0
0 −1

]
.

Now that we have demonstrated how to determine whether or not a par-
ticular set is an orthonormal basis, and a little bit of what we can do with
orthonormal bases, we turn to the question of how to construct an orthonormal
basis. While this is reasonably intuitive in familiar inner product spaces like Rn

orMm,n (in both cases, we can just choose the standard basis), it becomes a
bit more delicate when working in weirder vector spaces or with stranger inner
products like the one on P2[−1,1] from Example 1.4.1:

〈 f ,g〉=
∫ 1

−1

f (x)g(x)√
1− x2

dx.

Fortunately, there is indeed a standard method of turning any basis of a finite-
dimensional vector space into an orthonormal one. Before stating the result in
full generality, we illustrate how it works in R2.

Indeed, suppose that we have a (not necessarily orthonormal) basis B =
{v1,v2} of R2 that we want to turn into an orthonormal basis C = {u1,u2}.
We start by simply defining u1 = v1/‖v1‖, which will be the first vector in our
orthonormal basis (after all, we want each vector in the basis to be normalized).
To construct the next member of the orthonormal basis, we define

w2 = v2− (u1 ·v2)u1, and then u2 = w2/‖w2‖,
where we recall that u1 · v2 measures how far v2 points in the direction u1.
In words, w2 is the same as v2, but with the portion of v2 that points in the
direction of u1 removed, leaving behind only the piece of it that is orthogonal
to u1. The division by its length is just done so that the resulting vector u2 has
length 1 (since we want an orthonormal basis, not just an orthogonal one). This
construction of u1 and u2 from v1 and v2 is illustrated in Figure 1.13.

In higher dimensions, we would then continue in this way, adjusting each
vector in the basis so that it is orthogonal to each of the previous vectors, and
then normalizing it. The following theorem makes this precise and tells us that
the result is indeed always an orthonormal basis, regardless of what vector
space and inner product is being used.
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Figure 1.13: An illustration of our method for turning any basis of R2 into an or-
thonormal basis of R2. The process works by (b) normalizing one of the vectors,
(c) moving the other vector so that they are orthogonal, and then (d) normalizing
the second vector. In higher dimensions, the process continues in the same way
by repositioning the vectors one at a time so that they are orthogonal to the rest,
and then normalizing.

Theorem 1.4.6
The Gram–Schmidt

Process

Suppose B = {v1,v2, . . . ,vn} is a linearly independent set in an inner
product space V . Define

If j = 1 then the
summation that

defines w j is empty
and thus equals 0, so

w1 = v1 and
u1 = v1/‖v1‖.

w j = v j−
j−1

∑
i=1
〈ui,v j〉ui and u j =

w j

‖w j‖
for all j = 1, . . . ,n.

Then C j = {u1,u2, . . . ,u j} is an orthonormal basis of span(v1,v2, . . . ,v j)
for each 1≤ j≤ n. In particular, if B is a basis of V then Cn is an orthonor-
mal basis of V .

We emphasize that even though the formulas involved in the Gram–Schmidt
process look ugly at first, each part of the formulas has a straightforward
purpose. We want w j to be orthogonal to ui for each 1≤ i < j, so that is why
we subtract off each 〈ui,v j〉ui. Similarly, we want each u j to be a unit vector,
which is why divide w j by its norm.

Proof of Theorem 1.4.6. We prove this result by induction on j. For the base
j = 1 case, we simply note that u1 is indeed a unit vector and span(u1) =
span(v1) since u1 and v1 are scalar multiples of each other.

For the inductive step, suppose that for some particular j we know that
{u1,u2, . . . ,u j} is a mutually orthogonal set of unit vectors and

span(u1,u2, . . . ,u j) = span(v1,v2, . . . ,v j). (1.4.2)

We know that v j+1 6∈ span(v1,v2, . . . ,v j), since B is linearly independent. It
follows that v j+1 6∈ span(u1,u2, . . . ,u j) as well, so the definition of u j+1 makes
sense (i.e., w j+1 = v j+1−∑

j
i=1〈ui,v j+1〉ui 6= 0, so we are not dividing by 0)

and is a unit vector.
To see that u j+1 is orthogonal to each of u1,u2, . . . ,u j, suppose that
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1≤ k ≤ j and compute

〈uk,u j+1〉=
〈

uk,
v j+1−∑

j
i=1〈ui,v j+1〉ui∥∥∥v j+1−∑
j
i=1〈ui,v j+1〉ui

∥∥∥

〉
(definition of u j+1)

=
〈uk,v j+1〉−∑

j
i=1〈ui,v j+1〉〈uk,ui〉∥∥∥v j+1−∑
j
i=1〈ui,v j+1〉ui

∥∥∥
(expand the inner product)

=
〈uk,v j+1〉−〈uk,v j+1〉∥∥∥v j+1−∑

j
i=1〈ui,v j+1〉ui

∥∥∥
(k ≤ j, so 〈uk,ui〉= 0)

= 0. (〈uk,v j+1〉−〈uk,v j+1〉= 0)

All that remains is to show that

span(u1,u2, . . . ,u j+1) = span(v1,v2, . . . ,v j+1).

By rearranging the definition of u j+1, we see that v j+1 ∈ span(u1,u2, . . . ,u j+1).
When we combine this fact with Equation (1.4.2), this implies

span(u1,u2, . . . ,u j+1)⊇ span(v1,v2, . . . ,v j+1).

The vi’s are linearly independent, so the span on the right has dimension j +1.
Similarly,

The fact that the
only

( j +1)-dimensional
subspace of a

( j +1)-dimensional
vector space is that
vector space itself is

hopefully intuitive
enough, but it was
proved explicitly in

Exercise 1.2.31.

the ui’s are linearly independent (they are mutually orthogonal, so
linear independence follows from Theorem 1.4.1), so the span on the left also
has dimension j +1, and thus the two spans must in fact be equal. �

Since finite-dimensional inner product spaces (by definition) have a basis
consisting of finitely many vectors, and Theorem 1.4.6 tells us how to convert
any such basis into one that is orthonormal, we now know that every finite-
dimensional inner product space has an orthonormal basis:

Corollary 1.4.7
Existence of

Orthonormal Bases

Every finite-dimensional inner product space has an orthonormal basis.

We now illustrate how to use the Gram–Schmidt process to find orthonormal
bases of various inner product spaces.

Example 1.4.6
Finding an

Orthonormal Basis
with Respect to

a Weird Inner
Product

Use the Gram–Schmidt process to construct an orthonormal basis of
R2 with respect to the weird inner product that we introduced back in
Example 1.3.18:

〈v,w〉= v1w1 +2v1w2 +2v2w1 +5v2w2.

Solution:
The starting point of the Gram–Schmidt process is a basis of the given

inner product space, so we start with the standard basisWe could also
choose any other
basis of R2 as our

starting point.

B = {e1,e2} of R2.
To turn this into an orthonormal (with respect to the weird inner product
above) basis, we define

u1 =
e1

‖e1‖
= e1, since ‖e1‖=

√
〈e1,e1〉=

√
1+0+0+0 = 1.



90 Chapter 1. Vector Spaces

Next, weBe careful when
computing things

like 〈u1,e2〉= 〈e1,e2〉.
It is tempting to think

that it equals
e1 · e2 = 0, but 〈u1,e2〉

refers to the weird
inner product, not

the dot product.

let

w2 = e2−〈u1,e2〉u1 = (0,1)− (0+2+0+0)(1,0) = (−2,1),

u2 = w2/‖w2‖= (−2,1), since ‖w2‖=
√

4−4−4+5 = 1.

It follows that C = {u1,u2}=
{
(1,0),(−2,1)

}
is an orthonormal basis

of R2 with respect to this weird inner product (in fact, this is exactly the
orthonormal basis that we saw back in Figure 1.11).

Example 1.4.7
Finding an

Orthonormal Basis
of a Plane

Find an orthonormal basis (with respect to the usual dot product) of the
plane S ⊂ R3 with equation x− y−2z = 0.

Solution:
We start by picking any basis of S . Since S is 2-dimensional, a basis

is made up of any two vectors in S that are not multiples of each other. By
inspection,v1 and v2 can be

found by choosing x
and y arbitrarily and

using the equation
x− y−2z = 0 to solve

for z.

v1 = (2,0,1) and v2 = (3,1,1) are vectors that work, so we
choose B = {v1,v2}.

To create an orthonormal basis from B, we apply the Gram–Schmidt
process—we define

u1 =
v1

‖v1‖
=

1√
5
(2,0,1)

and

w2 = v2− (u1 ·v2)u1 = (3,1,1)− 7
5 (2,0,1) =

1
5
(1,5,−2),

u2 =
w2

‖w2‖
=

1√
30

(1,5,−2).

It follows thatJust like other bases,
orthonormal bases

are very non-unique.
There are many

other orthonormal
bases of S.

C = {u1,u2}=
{

1√
5
(2,0,1), 1√

30
(1,5,−2)

}
is an orthonor-

mal basis of V , as displayed below:

v1

B= {v1,v2}
=
{
(2,0,1),(3,1,1)

}

v2

x
y

z

C = {u1,u2}
=
{

1√
5
(2,0,1), 1√

30
(1,5,−2)

}

u2

u1
x

y

z
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Example 1.4.8
Finding an

Orthonormal Basis
of Polynomials

Find an orthonormal basis of P2[0,1] with respect to the inner product

〈 f ,g〉=
∫ 1

0
f (x)g(x) dx.

Solution:
Once again, we apply the Gram–Schmidt process to the standardRecall that the

standard basis is not
orthonormal in this

inner product since,
for example,
〈1,x〉= 1/2.

basis
B = {1,x,x2} to create an orthonormal basis C = {h1,h2,h3}. To start, we
define h1(x) = 1/‖1‖= 1. The next member of the orthonormal basis is
computed

Notice that {h1,h2} is
exactly the

orthonormal basis of
P1[0,1] that we

constructed back in
Example 1.4.4. We

were doing the
Gram–Schmidt

process back there
without realizing it.

via

g2(x) = x−〈h1,x〉h1(x) = x−〈1,x〉1 = x−1/2,

h2(x) = g2(x)/‖g2‖= (x−1/2)
/
√∫ 1

0
(x−1/2)2 dx =

√
3(2x−1).

The last member of the orthonormal basis C is similarly computed via

g3(x) = x2−
〈
h1,x2〉h1(x)−

〈
h2,x2〉h2(x)

= x2−
〈
1,x2〉1−12

〈
x−1/2,x2〉(x−1/2)

= x2−1/3− (x−1/2) = x2− x+1/6, and

h3(x) = g3(x)/‖g3‖

= (x2− x+1/6)
/
√∫ 1

0
(x2− x+1/6)2 dx

=
√

5(6x2−6x+1).

It follows that C =
{

1,
√

3(2x−1),
√

5(6x2−6x+1)
}

is an orthonor-
mal basis of P2[0,1]. While this basis looks a fair bit uglier than the
standard basis {1,x,x2} algebraically, its members are more symmetric
about the midpoint x = 1/2 and more evenly distributed across the

However, we should
not expect to be

able to directly
“see” whether or not
a basis of P2[0,1] (or
any of its variants) is

orthonormal.

interval
[0,1] geometrically, as shown below:

B=
{
1,x,x2

}

1/4 1/2 3/4 1

1/4

1

1/2

3/4

1

x

x2

x

y

C = {h1,h2,h3}={
1,
√
3(2x−1),

√
5(6x2−6x+1)

}

1/4 1/2 3/4 1

-1

1

0

2

y= h1(x)

y= h2(x)
y= h3(x)

x

y
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1.4.2 Adjoint Transformations

There is one final operation that is used extensively in introductory linear
algebra that we have not yet generalized to vector spaces beyond Fn, and that is
the (conjugate) transpose of a matrix. We now fill in this gap by introducing the
adjoint of a linear transformation, which can be thought of as finally answering
the question of why the transpose is an important operation (after all, why
would we expect that swapping the rows and columns of a matrix should tell
us anything useful?).

Definition 1.4.3
Adjoint

Transformation

Suppose that V andW are inner product spaces and T : V →W is a linear
transformation. Then a linear transformation T ∗ :W → V is called the
adjoint of T if

〈T (v),w〉= 〈v,T ∗(w)〉 for all v ∈ V , w ∈W .

For example, it is straightforward (but slightly tedious and unenlightening,
so we leave it to Exercise 1.4.17) to show that real matrices A ∈Mm,n(R)
satisfy

(Av) ·w = v · (AT w) for all v ∈ Rn, w ∈ Rm,

so the transposed matrix AT is the adjoint of A. Similarly, for every complex
matrix A ∈Mm,n(C) we have

In fact, this finally
explains why the

conjugate transpose
is typically the “right”

version of the
transpose for

complex matrices.
(Av) ·w = v · (A∗w) for all v ∈ Cn, w ∈ Cm,

so the conjugate transpose matrix A∗ is the adjoint of A.The ground field
must be R or C in

order for inner
products, and thus

adjoints, to make
sense.

However, it also makes
sense to talk about the adjoint of linear transformations between more exotic
vector spaces, as we now demonstrate with the trace (which we recall from
Example 1.2.7 is the linear transformation tr :Mn(F)→ F that adds up the
diagonal entries of a matrix).

Example 1.4.9
The Adjoint

of the Trace

Show that the adjoint of the trace tr :Mn(F)→ F with respect to the
standard Frobenius inner product is given by

tr∗(c) = cI for all c ∈ F.

Solution:
Our goal is to show thatIn the equation

〈c, tr(A)〉= 〈cI,A〉, the
left inner product is

on F (i.e., it is the
1-dimensional dot

product
〈c, tr(A)〉= c tr(A)) and

the right inner
product is the

Frobenius inner
product on Mn(F).

〈c, tr(A)〉 = 〈cI,A〉 for all A ∈Mn(F) and
all c ∈ F. Recall that the Frobenius inner product is defined by 〈A,B〉=
tr(A∗B), so this condition is equivalent to

c tr(A) = tr
(
(cI)∗A

)
for all A ∈Mn(F), c ∈ F.

This equation holds simply by virtue of linearity of the trace:

tr
(
(cI)∗A

)
= tr

(
cI∗A

)
= c tr(IA) = c tr(A),

as desired.

The previous example is somewhat unsatisfying for two reasons. First, it
does not illustrate how to actually find the adjoint of a linear transformation, but
rather it only shows how to verify that two linear transformations are adjoints of
each other. How could have we found the adjoint tr∗(c) = cI if it were not given
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to us? Second, how do we know that there is not another linear transformation
that is also an adjoint of the trace? That is, how do we know that tr∗(c) = cI is
the adjoint of the trace rather than just an adjoint of it?

The following theorem answers both of these questions by showing that, in
finite dimensions, every linear transformation has exactly one adjoint, and it
can be computed by making use of orthonormal bases of the two vector spaces
V andW .

Theorem 1.4.8
Existence and
Uniqueness of

the Adjoint

Suppose that V andW are finite-dimensional inner product spaces with
orthonormal bases B and C, respectively. If T : V →W is a linear trans-
formation then there exists a unique adjoint transformation T ∗ :W →V ,
and its standard matrix satisfies

[
T ∗
]

B←C = [T ]∗C←B.

Proof. To prove uniqueness of T ∗, suppose that T ∗ exists, letIn infinite dimensions,
some linear

transformations fail
to have an adjoint
(see Remark 1.4.1).
However, if it exists

then it is still unique
(see Exercise 1.4.23).

v∈V and w∈W ,
and compute 〈T (v),w〉 in two different ways:

〈T (v),w〉= 〈v,T ∗(w)〉 (definition of T ∗)

= [v]B ·
[
T ∗(w)

]
B (Theorem 1.4.3)

= [v]B ·
([

T ∗
]

B←C[w]C) (definition of standard matrix)

= [v]∗B
[
T ∗
]

B←C[w]C. (definition of dot product)

Similarly,

〈T (v),w〉= [T (v)]C · [w]C (Theorem 1.4.3)

=
(
[T ]C←B[v]B) · [w]C (definition of standard matrix)

= [v]∗B[T ]∗C←B[w]C. (definition of dot product)

It follows that [v]∗B
[
T ∗
]

B←C[w]C = [v]∗B[T ]∗C←B[w]C for all [v]B ∈ Fn and all
[w]C ∈ Fm (where F is the ground field). If we choose v to be the i-th vector in
the basis B and w to be the j-th vector in C, then [v]B = ei and [w]C = e j, so

[v]∗B
[
T ∗
]

B←C[w]C = eT
i
[
T ∗
]

B←Ce j is the (i, j)-entry of
[
T ∗
]

B←C, and

[v]∗B[T ]∗C←B[w]C = eT
i [T ]∗C←Be j is the (i, j)-entry of [T ]∗C←B.

Since these quantities are equal for all i and j, it follows that
[
T ∗
]

B←C =
[T ]∗C←B. Uniqueness of T ∗ now follows immediately from uniqueness of stan-
dard matrices.

Existence of T ∗ follows from that fact that we can choose T ∗ to be the
linear transformation with standard matrix [T ]∗C←B and then follow the above
argument backward to verify that 〈T (v),w〉 = 〈v,T ∗(w)〉 for all v ∈ V and
w ∈W . �

It is worth emphasizing that the final claim of Theorem 1.4.8 does not
necessarily hold if B or C are not orthonormal. For example, the standard
matrix of the differentiation map D : P2 →P2 with respect to the standard
basis E = {1,x,x2} is

[D]E =




0 1 0
0 0 2
0 0 0


 .
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We thus might expect that if we equip P2 with the standard inner product

〈 f ,g〉=
∫ 1

0
f (x)g(x) dx

then we would have

[
D∗
]

E = [D]∗E =




0 0 0
1 0 0
0 2 0


 .

which would give D∗(ax2 +bx+c) = cx+2bx2. However, it is straightforward
to check that formula for D∗ is incorrect since, forThis formula for D∗ is

also incorrect even if
we use pretty much

any other natural
inner product on P2.

example,

〈1,D(x)〉=
∫ 1

0
D(x) dx =

∫ 1

0
1 dx = 1, but

〈D∗(1),x〉=
∫ 1

0
D∗(1)x dx =

∫ 1

0
x2 dx = 1/3.

To fix the above problem and find the actual adjoint of D, we must mimic
the above calculation with an orthonormal basis of P2 rather than the standard
basis E = {1,x,x2}.

Example 1.4.10
The Adjoint of
the Derivative

Compute the adjoint of the differentiation map D : P2[0,1]→ P2[0,1]
(with respect to the standard inner product).

Solution:
Fortunately, we already computed an orthonormal basis of P2[0,1]

back in Example 1.4.8, and it is C = {h1,h2,h3}, where

h1(x) = 1, h2(x) =
√

3(2x−1), and h3(x) =
√

5(6x2−6x+1).

To find the standard matrix of D with respect to this basis, we compute

D(h1(x)) = 0,

D(h2(x)) = 2
√

3 = 2
√

3h1(x), and

D(h3(x)) = 12
√

5x−6
√

5 = 2
√

15h2(x).

Then the standard matrices of D and D∗ are given by

[D]C =




0 2
√

3 0

0 0 2
√

15
0 0 0


 and

[
D∗
]

C =




0 0 0

2
√

3 0 0

0 2
√

15 0


 ,

so D∗ is the linear transformation with the property that D∗(h1) = 2
√

3h2,
D∗(h2) = 2

√
15h3, and D∗(h3) = 0.

This is a fine and dandy answer already, but it can perhaps be made a
bit more intuitive if we instead describe D∗ in terms of what it does to 1,
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x, and x2, rather than h1, h2, and h3.

These linear
combinations like

x = 1
2
√

3
h2(x)+ 1

2 h1(x)
can be found by

solving linear systems.

That is, we compute

D∗(1) = D∗(h1(x)) = 2
√

3h2(x) = 6(2x−1),

D∗(x) = D∗
(

1
2
√

3
h2(x)+ 1

2 h1(x)
)

=
√

5h3(x)+
√

3h2(x)

= 2(15x2−12x+1), and

D∗(x2) = D∗
(

1
6
√

5
h3(x)+ 1

2
√

3
h2(x)+ 1

3 h1(x)
)

=
√

5h3(x)+ 2√
3
h2(x)

= 6x2−2x−1.

Putting this all togetherI guess D∗ is just kind
of ugly no matter

which basis we
represent it in.

shows that

D∗(ax2 +bx+ c) = 6(a+5b)x2−2(a+12b−6c)x− (a−2b+6c).

Example 1.4.11
The Adjoint of
the Transpose

Show that the adjoint of the transposition map T :Mm,n→Mn,m, with
respect to the Frobenius inner product, is also the transposition map.

Solution:
Our goal is to show that 〈AT ,B〉 = 〈A,BT 〉 for all A ∈ Mm,n and

B ∈Mn,m. Recall that the Frobenius inner product is defined by 〈A,B〉=
tr(A∗B), so this is equivalent

Recall that A = (AT )∗

is the entrywise
complex conjugate

of A.

to

tr
(
AB
)

= tr
(
A∗BT ) for all A ∈Mm,n, B ∈Mn,m.

These two quantities can be shown to be equal by brute-force calcula-
tion of the traces and matrix multiplications in terms of the entries of A and
B, but a more elegant way is to use properties of the trace and transpose:

tr
(
AB
)

= tr
((

AB
)T ) (transpose does not change trace)

= tr
(
BT A∗

)
(transpose of a product)

= tr
(
A∗BT ). (cyclic commutativity of trace)

The situation presented in Example 1.4.11, where a linear transformation is
its own adjoint, is important enough that we give it a name:

Definition 1.4.4
Self-Adjoint

Transformations

If V is an inner product space then a linear transformation T : V → V is
called self-adjoint if T ∗ = T .

For example, a matrix inMn(R) is symmetric (i.e., A = AT ) if and only
if it is a self-adjoint linear transformation on Rn, and a matrix inMn(C) is
Hermitian (i.e., A = A∗) if and only if it is a self-adjoint linear transformation on
Cn. Slightly more generally, Theorem 1.4.8 tells us that a linear transformation
on a finite-dimensional inner product space V is self-adjoint if and only if its
standard matrix (with respect to some orthonormal basis of V) is symmetric or
Hermitian

Strictly speaking, the
transposition map on

Mm,n(F) is only
self-adjoint when

m = n, since
otherwise the input
and output vector

spaces are different.

(depending on whether the underlying field is R or C).
The fact that the transposition map on Mn is self-adjoint tells us that

its standard matrix (with respect to an orthonormal basis, like the standard
basis) is symmetric. In light of this, it is perhaps worthwhile looking back at
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Example 1.2.10, where we explicitly computed its standard matrix in the n = 2
case (which is indeed symmetric).

Remark 1.4.1
The Adjoint in

Infinite Dimensions

The reason that Theorem 1.4.8 specifies that the vector spaces must be
finite-dimensional is that some linear transformations acting on infinite-
dimensional vector spaces do not have an adjoint. To demonstrate this phe-
nomenon, consider the vector space c00 of all eventually-zero sequences
of real numbers (which we first introduced in Example 1.1.10), together
with inner

Since all of the
sequences here are

eventually zero, all of
the sums considered

here only have
finitely many

non-zero terms, so
we do not need to

worry about limits or
convergence.

product

〈
(v1,v2,v3, . . .),(w1,w2,w3, . . .)

〉
=

∞

∑
i=1

viwi.

Then consider the linear transformation T : c00→ c00 defined by

T
(
(v1,v2,v3, . . .)

)
=

(
∞

∑
i=1

vi,
∞

∑
i=2

vi,
∞

∑
i=3

vi, . . .

)
.

A straightforward calculation reveals that, if the adjoint T ∗ : c00→ c00
exists, it must have the form

T ∗(w1,w2,w3, . . .) =

(
1

∑
i=1

wi,
2

∑
i=1

wi,
3

∑
i=1

wi, . . .

)
.

However, this is not actually a linear transformation on c00 since, for
example, it would give

T ∗(1,0,0, . . .) = (1,1,1, . . .),

which is not in c00 since its entries are not eventually 0.

1.4.3 Unitary Matrices

Recall thatProperties of
invertible matrices

like this one are
summarized in
Theorem A.1.1.

invertible matrices are exactly the matrices whose columns form
a basis of Rn (or Fn more generally). Now that we understand orthonormal
bases and think of them as the “nicest” bases out there, it seems natural to ask
what additional properties invertible matrices have if their columns form an
orthonormal basis, rather than just any old basis. We now give a name to these
matrices.

Definition 1.4.5
Unitary Matrix

If F = R or F = C then a matrix U ∈Mn(F) is called a unitary matrix
if its columns form an orthonormal basis of Fn (with respect to the usual
dot product).

For example, the identity matrix is unitary since its columns are the standard
basis vectors e1,e2, . . . ,en, which form the standard basis of Fn, which is
orthonormal. As a slightly less trivial example, consider the matrix

U =
1√
2

[
1 −1
1 1

]
,
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which we can show is unitary simply by noting that
{
(1,1)/

√
2,(1,−1)/

√
2
}

(i.e., the set consisting of the columns of U) is an orthonormal basis of R2.
We can make geometric sense of unitary matricesFor a refresher on

how to think of
matrices

geometrically as
linear

transformations, see
Appendix A.1.2.

if we recall that the
columns of a matrix tell us where that matrix sends the standard basis vectors
e1,e2, . . . ,en. Thus, just like invertible matrices are those that send the unit
square grid to a parallelogram grid (without squishing it down to a smaller
dimension), unitary matrices are those that send the unit square grid to a
(potentially rotated or reflected) unit square grid, as in Figure 1.14.

We will show shortly,
in Examples 1.4.12
and 1.4.13, that all

rotation matrices
and all reflection

matrices are indeed
unitary.

x

y

e2

e1

P−−−−−→
invertible

Pe2

Pe1

x

y

x

y

e2

e1

U−−−−−→
unitary

Ue2
Ue1

x

y

Figure 1.14: A non-zero matrix P ∈M2 is invertible if and only if it sends the unit
square grid to a parallelogram grid (whereas it is non-invertible if and only if it
sends that grid to a line). A matrix U ∈M2 is unitary if and only if it sends the unit
square grid to a unit square grid that is potentially rotated and/or reflected, but
not skewed.

For this reason, we often think of unitary matrices as the most “rigid” or
“well-behaved” invertible matrices that exist—they preserve not just the dimen-
sion of Fn, but also its shape (but maybe not its orientation). The following
theorem provides several additional characterizations of unitary matrices that
can help us understand them in other ways and perhaps make them a bit more
intuitive.

Theorem 1.4.9
Characterization of

Unitary Matrices

Suppose F = R or F = C and U ∈Mn(F). The following are equivalent:
a) U is unitary,
b) U∗ is unitary,
c) UU∗ = I,
d) U∗U = I,
e) (Uv) · (Uw) = v ·w for all v,w ∈ Fn, and
f) ‖Uv‖= ‖v‖ forIn this theorem, ‖ · ‖

refers to the
standard length in
Fn. We discuss how

to generalize unitary
matrices to other

inner products,
norms, and vector

spaces in
Section 1.D.3.

all v ∈ Fn.

Before proving this result, it is worthwhile to think about what some of
its characterizations really mean. Conditions (c) and (d) tell us that unitary
matrices are not only invertible, but they are the matrices U for which their
inverse equals their adjoint (i.e., U−1 = U∗). Algebraically, this is extremely
convenient since it is trivial to compute the adjoint (i.e., conjugate transpose)
of a matrix, so it is thus trivial to compute the inverse of a unitary matrix.
The other properties of Theorem 1.4.9 can also be thought of as stronger
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versions of properties of invertible matrices, as summarized in Table 1.2.

Property of invertible P Property of unitary U

P−1 exists U−1 = U∗

‖Pv‖ 6= 0 whenever ‖v‖ 6= 0 ‖Uv‖= ‖v‖ for all v
columns of P are a basis columns of U are an orthonormal basis
vec. space automorphism on Fn inner prod. space automorphism on Fn

Table 1.2: A comparison of the properties of invertible matrices and the corre-
sponding stronger properties of unitary matrices. The final properties (that invertible
matrices are vector space automorphisms while unitary matrices are inner product
space automorphisms) means that invertible matrices preserve linear combina-
tions, whereas unitary matrices preserve linear combinations as well as the dot
product (property (e) of Theorem 1.4.9).

The final two properties of Theorem 1.4.9 provide us with another natural
geometric interpretation of unitary matrices. Condition (f) tells us that unitary
matrices are exactly those that preserve the length of every vector. Similarly,
since the dot product can be used to measure angles between vectors, condi-
tion (e) says that unitary matrices are exactly those that preserve the angle
between every pair of vectors, as in Figure 1.15.

x

y

v4

v3
v2

v1

U−−−−→
unitary

x

y

Uv4

Uv3

Uv2

Uv1

Figure 1.15: Unitary matrices are those that preserve the lengths of vectors as well
as the angles between them.

Proof of Theorem 1.4.9. WeTo prove this
theorem, we show

that the 6 properties
imply each other as

follows:

(a)
(b)

(c)
(d)

(e)

(f)

start by showing that conditions (a)–(d) are equiv-
alent to each other. The equivalence of conditions (c) and (d) follows from the
fact that, for square matrices, a one-sided inverse is necessarily a two-sided
inverse.

To see that (a) is equivalent to (d), we write U =
[

u1 | u2 | · · · | un
]

and
then use block matrix multiplication to multiply by U∗:

U∗U =




u∗1
u∗2
...

u∗n



[

u1 | u2 | · · · | un
]
=




u1 ·u1 u1 ·u2 · · · u1 ·un
u2 ·u1 u2 ·u2 · · · u2 ·un

...
...

. . .
...

un ·u1 un ·u2 · · · un ·un,


 .

This product equals I if and only if its diagonal entries equal 1 and its off-
diagonal entries equal 0. In other words, U∗U = I if and only if ui ·ui = 1 for
all i and ui ·u j = 0 whenever i 6= j. This says exactly that {u1,u2, . . . ,un} is a
set of mutually orthogonal normalized vectors. Since it consists of exactly n
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vectors, Theorem 1.4.2 tells us that this is equivalent to {u1,u2, . . . ,un} being
an orthonormal basis of Fn, which is exactly the definition of U being unitary.

The equivalence of (b) and (c) follows by applying the same argument as
in the previous paragraph to U∗ instead of U , so all that remains is to show
that conditions (d), (e), and (f) are equivalent. We prove these equivalences by
showing the chain of implications (d) =⇒ (f) =⇒ (e) =⇒ (d).

To see that (d) implies (f), suppose U∗U = I. Then for all v ∈ Fn we have

‖Uv‖2 = (Uv) · (Uv) = (U∗Uv) ·v = v ·v = ‖v‖2,

as desired.
For the implicationThe implication (f)

=⇒ (e) is the “tough
one” of this proof.

(f) =⇒ (e), note that if ‖Uv‖2 = ‖v‖2 for all v ∈ Fn

then (Uv) ·(Uv) = v ·v for all v∈ Fn. If x,y∈ Fn then this tells us (by choosing
v = x+y) that

(
U(x+y)

)
·
(
U(x+y)

)
= (x+y) · (x+y). Expanding this dot

product on both the left and right then
Here we use the fact

that (Ux) · (Uy)+
(Uy) · (Ux) = (Ux) ·

(Uy)+(Ux) · (Uy) =
2Re

(
(Ux) · (Uy)

)
.

gives

(Ux) · (Ux)+2Re
(
(Ux) · (Uy)

)
+(Uy) · (Uy) = x ·x+2Re(x ·y)+y ·y.

By then using the facts that (Ux) · (Ux) = x ·x and (Uy) · (Uy) = y ·y, we can
simplify the above equation to the form

Re
(
(Ux) · (Uy)

)
= Re(x ·y).

If F = R then this implies (Ux) · (Uy) = x · y for all x,y ∈ Fn, as desired. If
instead F = C then we can repeat the above argument with v = x+ iy to see
that

Im
(
(Ux) · (Uy)

)
= Im(x ·y),

so in this case we have (Ux) · (Uy) = x ·y for all x,y ∈ Fn too, establishing (e).
Finally, to see that (e) =⇒ (d), note that if we rearrange (Uv) ·(Uw) = v ·w

slightly, we get
(
(U∗U− I)v

)
·w = 0 for all v,w ∈ Fn.

If we choose w = (U∗U − I)v then this implies
∥∥(U∗U − I)v

∥∥2 = 0 for all
v ∈ Fn, so (U∗U− I)v = 0 for all v ∈ Fn. This in turn implies U∗U− I = O, so
U∗U = I, which completes the proof. �

Checking whether or not a matrix is unitary is now quite simple, since we
just have to check whether or not U∗U = I. For example, if we return to the

The fact that this
matrix is unitary

makes sense
geometrically if we

notice that
it rotates R2

counter-clockwise
by π/4 (45◦).

matrix

U =
1√
2

[
1 −1
1 1

]

from earlier, we can now check that it is unitary simply by computing

U∗U =
1
2

[
1 1
−1 1

][
1 −1
1 1

]
=
[

1 0
0 1

]
.

Since U∗U = I, Theorem 1.4.9 tells us that U is unitary. The following example
generalizes the above calculation.
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Example 1.4.12
Rotation Matrices

are Unitary

Recall from introductory linear algebra that the standard matrix of the
linear transformation Rθ : R2→ R2 that rotates R2 counter-clockwise by
an angle of θ is

[
Rθ ]=

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
.

Show that
[
Rθ ] is unitary.

Solution:
Since rotation matrices do not change the length of vectors, we know

that they must be unitary. To verify this a bit more directly we compute[
Rθ ]∗[Rθ ]:

[
Rθ ]∗[Rθ ]=

[
cos(θ) sin(θ)
−sin(θ) cos(θ)

][
cos(θ) −sin(θ)
sin(θ) cos(θ)

]

=

[
cos2(θ)+ sin2(θ) sin(θ)cos(θ)− cos(θ)sin(θ)

cos(θ)sin(θ)− sin(θ)cos(θ) sin2(θ)+ cos2(θ)

]

=
[

1 0
0 1

]
.

Since

Recall that
sin2(θ)+ cos2(θ) = 1

for all θ ∈ R.

[
Rθ ]∗[Rθ ]= I, we conclude that

[
Rθ ] is unitary.

Example 1.4.13
Reflection Matrices

are Unitary

Recall from introductory linear algebra that the standard matrix of the
linear transformation Fu : Rn→ Rn that reflects Rn through the line in the
direction of the unit vector u ∈ Rn is

[Fu] = 2uuT − I.

Show that [Fu] is unitary.

Solution:
Again, reflection matrices do not change the length of vectors, so we

know that they must be unitary. To see this a bit more directly, we compute
[Fu]∗[Fu]:

[Fu]∗[Fu] = (2uuT − I)∗(2uuT − I) = 4u(uT u)uT −4uuT + I

= 4uuT −4uuT + I = I,

where the third equality comes from the fact that u is a unit vector, so
uT u = ‖u‖2 = 1. Since [Fu]∗[Fu] = I, we conclude the [Fu] is unitary.

Again, the previous two examples provide exactly the intuition that we
should have for unitary matrices—they are the ones that rotate and/or reflect
Fn, but do not stretch, shrink, or otherwise distort it. They can be thought of as
very rigid linear transformations that leave the size and shape of Fn intact, but
possibly change its orientation.

Remark 1.4.2
Orthogonal

Matrices

Many sources refer to real unitary matrices as orthogonal matrices (but
still refer to complex unitary matrices as unitary). However,
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we dislike this terminology for numerous reasons:
a) The columns of orthogonal matrices (i.e., real unitary matrices) are

mutually orthonormal, not just mutually orthogonal.
b) Two orthogonal matrices (i.e., real unitary matrices) need not be

orthogonal to each other in any particular inner product onMn(R).
c) There just is no reason to use separate terminology depending on

whether the matrix is real or complex.
We thus do not use the term “orthogonal matrix” again in this book, and
we genuinely hope that it falls out of use.

1.4.4 Projections

As one final application of inner products and orthogonality, we now introduce
projections, which we roughly think of as linear transformations that squish
vectors down into some given subspace. For example, when discussing the
Gram–Schmidt process, we implicitly used the fact that if u ∈ V is a unit vector
then the linear transformation Pu : V → V defined by Pu(v) = 〈u,v〉u squishes
v down onto span(u), as in Figure 1.16. Indeed, Pu is a projection onto span(u).

(v1,0)

u

v

x

y

Pu−−→

(v1,0)

Pu(v)

x

y

〈u,v〉

Figure 1.16: Given a unit vector u, the linear transformation Pu(v) = 〈u,v〉u is a
projection onto the line in the direction of u.

Intuitively, projecting a vector onto a subspace is analogous to casting a
vector’s shadow onto a surface as in Figure 1.17, or looking at a 3D object from
one side (and thus seeing a 2D image of it, like when we look at objects on
computer screens). The simplest projections to work with mathematically are
those that project at a right angle (as in Figures 1.16 and 1.17(b))—these are
called orthogonal projections, whereas if they project at another angle (as in
Figure 1.17(a)) then they are called oblique projections.

The key observation that lets us get our hands on projections mathematically
is that a linear transformation P : V → V projects onto its range (i.e., it leaves
every vector in its range alone) if and only if P2 = P,Recall that P2 = P◦P. since P(v) ∈ range(P)
regardless of v ∈ V , so applying P again does not change it (see Figure 1.18(a)).

If we furthermore require that every vector is projected down at a right angle
(that is, it is projected orthogonally) then we need V to be an inner product
space and we want 〈P(v),v−P(v)〉 = 0 for all v ∈ V (see Figure 1.18(b)).
Remarkably, this property is equivalent to P being self-adjoint (i.e., P = P∗),
but proving

One of the greatest
joys that this author
gets is from glossing

over ugly details and
making the reader

work them out.

this fact is somewhat tedious, so we defer it to Exercises 1.4.29
and 2.1.23.

With all of this in mind, we are finally able to define (orthogonal) projec-
tions in general:
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When the sun is
directly above us in
the sky, our shadow

is our orthogonal
projection. At any

other time, our
shadow is just an

oblique projection.

Figure 1.17: A projection P can be thought of as a linear transformation that casts
the shadow of a vector onto a subspace from a far-off light source. Here, R3 is
projected onto the xy-plane.

Figure 1.18: A rank-2 projection P : R3→R3 projects onto a plane (its range). After it
projects once, projecting again has no additional effect, so P2 = P. An orthogonal
projection is one for which, as in (b), P(v) is always orthogonal to v−P(v).

Definition 1.4.6
Projections

Suppose that V is a vector space and P : V → V is a linear transformation.
a) If P2 = P then P is called a projection.
b) If V is an inner product space and P2 = P = P∗ then P is called an

orthogonal projection.
We furthermore say that P projects onto range(P).

Example 1.4.14
Determining if a

Matrix is a Projection

Determine which of the following matrices are projections. If they are
projections, determine whether or not they are orthogonal and describe the
subspace of Rn that they project onto.

a) P =
[

1 −1
1 1

]
b) Q =




1 0 0
0 1 1/2
0 0 0
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c) R =



5/6 1/6 −1/3
1/6 5/6 1/3
−1/3 1/3 1/3




Solutions:
a) This matrix is not a projection, since direct computation shows that

P2 =
[

0 −2
2 0

]
6=
[

1 −1
1 1

]
= P.

b) Again, we just check whether or not Q2 = Q:

Q2 =




1 0 0
0 1 1/2
0 0 0







1 0 0
0 1 1/2
0 0 0


=




1 0 0
0 1 1/2
0 0 0


= Q,

so Q
In fact, Q is exactly

the projection onto
the xy-plane that
was depicted in

Figure 1.17(a).

is a projection, but Q∗ 6= Q so it is not an orthogonal projec-
tion. Since its columns span the xy-plane, that is its range (i.e., the
subspace that it projects onto).

c) This matrix is a projection, since

R2 =


1

6




5 1 −2
1 5 2
−2 2 2







2

=
1

36




30 6 −12
6 30 12
−12 12 12


=

1
6




5 1 −2
1 5 2
−2 2 2


= R.

Furthermore,R is the projection
that was depicted in

Figure 1.18(b).

R is an orthogonal projection since R∗ = R. We
can compute range(R)= span{(2,0,−1),(0,2,1)} using techniques
from introductory linear algebra, which is the plane with equation
x− y+2z = 0.

AlthoughWe return to oblique
projections in
Section 1.B.2.

projections in general have their uses, we are primarily interested
in orthogonal projections, and will focus on them for the remainder of this
section. One of the nicest features of orthogonal projections is that they are
uniquely determined by the subspace that they project onto (i.e., there is only
one orthogonal projection for each subspace), and they can be computed in a
straightforward way from any orthonormal basis of that subspace, at least in
finite dimensions.

In order to get more comfortable with constructing and making use of or-
thogonal projections, we start by describing what they look like in the concrete
setting of matrices that project Fn down onto some subspace of it.
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Theorem 1.4.10
Construction of

Orthogonal
Projections

Suppose F = R or F = C and let S be an m-dimensional subspace of Fn.
Then there is a unique orthogonal projection P onto S , and it is given by

P = AA∗,

where A ∈Mn,m(F) is a matrix with any orthonormal basis of S as its
columns.

Proof. We start by showing that the matrixRecall that
(AB)∗ = B∗A∗.

Plugging in B = A∗

gives (AA∗)∗ = AA∗.

P = AA∗ is indeed an orthogonal
projection onto S. To verify this claim, we write A =

[
u1 | u2 | · · · | um

]
.

Then notice that P∗ = (AA∗)∗ = AA∗ = P

Our method of
computing A∗A here
is almost identical to

the one from the
proof of

Theorem 1.4.9. Recall
that {u1, . . . ,um}

is an orthonormal
basis of S.

and

P2 = (AA∗)(AA∗) = A(A∗A)A∗

= A




u1 ·u1 u1 ·u2 · · · u1 ·um
u2 ·u1 u2 ·u2 · · · u2 ·um

...
...

. . .
...

um ·u1 um ·u2 · · · um ·um


A∗

= AImA∗ = AA∗ = P.

It follows that P is an orthogonal projection. To see that range(P) = S, we
simply notice that range(P) = range(A∗A) = range(A) by Theorem A.1.2, and
range(A) is the span of its columns (by that same theorem), which is S (since
those columns were chosen specifically to be an orthonormal basis of S).

To see that P is unique, supposeUniqueness of P lets
us (in finite

dimensions) talk
about the

orthogonal
projection onto a

given subspace,
rather than just an

orthogonal
projection onto it.

that Q is another orthogonal projection
onto S. If {u1,u2, . . . ,um} is an orthonormal basis of S then we can extend it
to an orthonormal basis {u1,u2, . . . ,un} of all of Fn via Exercise 1.4.20. We
then claim that

Pu j = Qu j =

{
u j, if 1≤ j ≤ m
0, if m < j ≤ n

.

To see why this is the case, we notice that Pu j = Qu j = u j for 1 ≤ j ≤ m
because u j ∈ S and P,Q leave everything in S alone. The fact that Qu j = 0 for
j > m follows from the fact that Q2 = Q = Q∗, so

〈Qu j,Qu j〉= 〈Q∗Qu j,u j〉= 〈Q2u j,u j〉= 〈Qu j,u j〉.

Since u j is orthogonal to each of u1,u2, . . . ,um and thus everything in range(Q)=
S, we then have 〈Qu j,u j〉 = 0, so ‖Qu j‖2 = 〈Qu j,Qu j〉 = 0 too, and thus
Qu j = 0. The proof that Pu j = 0 when j > m is identical.

Since a matrix (linear transformation) is completely determined by how it
acts on a basis of Fn, the fact that Pu j = Qu j for all 1≤ j ≤ n implies P = Q,
so all orthogonal projections onto S are the same. �

In the special case when S is 1-dimensional (i.e., a line), the above result
simply says that P = uu∗, where u is a unit vector pointing in the direction
of that line. It follows that Pv = (uu∗)v = (u · v)u, which recovers the fact
that we noted earlier about functions of this form (well, functions of the form
P(v) = 〈u,v〉u) projecting down onto the line in the direction of u.
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More generally, if we expand out the product P = AA∗ using block matrix
multiplication, we see that if {u1,u2, . . . ,um} is an orthonormal basis of S

This is a special case
of the rank-one sum
decomposition from

Theorem A.1.3.

then

P =
[

u1 | u2 | · · · | um
]




u∗1
u∗2
...

u∗m


=

m

∑
j=1

u ju∗j .

Example 1.4.15
Finding an

Orthogonal Projection
Onto a Plane

Construct the orthogonal projection P onto the plane S ⊂R3 with equation
x− y−2z = 0.

Solution:
Recall from Example 1.4.7 that one orthonormal basis of S

Even though there
are lots of

orthonormal bases
of S, they all

produce the same
projection P.

is

C = {u1,u2}=
{

1√
5
(2,0,1), 1√

30
(1,5,−2)

}
.

It follows from Theorem 1.4.10 that the (unique!) orthogonal projection
onto S

It is worth comparing
P to the orthogonal
projection onto the

plane x− y+2z = 0
from

Example 1.4.14(c).

is

P = u1u∗1 +u2u∗2 =
1
5




2
0
1


[2 0 1

]
+

1
30




1
5
−2



[
1 5 −2

]

=
1
6




5 1 2
1 5 −2
2 −2 2


 .

One of the most useful features of orthogonal projections is that they do not
just project a vector v anywhere in their range, but rather they always project
down to the closest vector in their range, as illustrated in Figure 1.19. This
observation hopefully makes some intuitive sense, since the shortest path from
us to the ceiling above us is along a line pointing straight up (i.e., the shortest
path is orthogonal to the ceiling), but we make it precise in the following
theorem.

The distance
between two

vectors v and w is
‖v−w‖.

S
‖v−

w
2‖

v

P(v)

‖v−
w1

‖

w1

w2

‖
v−

P
(
v) ‖

x

y

z

Figure 1.19: The fastest way to get from a vector to a nearby plane is to go “straight
down” to it. In other words, the closest vector to v in a subspace S is P(v), where P
is the orthogonal projection of onto S. That is, ‖v−P(v)‖ ≤ ‖v−w‖ for all w ∈ S.
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Theorem 1.4.11
Orthogonal

Projections Find
the Closest Point

in a Subspace

Suppose P is an orthogonal projection onto a subspace S of an inner
product space V . Then

∥∥v−P(v)
∥∥≤ ‖v−w‖ for all v ∈ V , w ∈ S.

Furthermore, equality holds if and only if w = P(v).

Proof. We first notice that v−P(v) is orthogonal to every vector x ∈ S , since

〈v−P(v),x〉= 〈v−P(v),P(x)〉= 〈P∗(v−P(v)),x〉
= 〈P(v−P(v)),x〉= 〈P(v)−P(v),x〉= 0.

If we now let w ∈ S be arbitrary and choose x = P(v)−w (which is in
S since P(v) and w are), we see that v−P(v) is orthogonal to P(v)−w. It
follows that
∥∥v−w

∥∥2 =
∥∥(v−P(v))+(P(v)−w)

∥∥2 =
∥∥v−P(v)

∥∥2 +
∥∥P(v)−w

∥∥2
,

where the final equality follows from the Pythagorean theorem for inner prod-
ucts (Exercise 1.3.12). Since ‖P(v)−w‖2 ≥ 0, it follows immediately that
‖v−w‖≥ ‖v−P(v)‖. Furthermore, equality holds if and only if ‖P(v)−w‖=
0, which happens if and only if P(v) = w. �

Example 1.4.16
Finding the Closest

Vector in a Plane

Find the closest vector to v = (3,−2,2) in the plane S ⊂ R3 defined by
the equation x−4y+ z = 0.

Solution:
Theorem 1.4.11 tells us that the closest vector to v in S is Pv, where

P is the orthogonal projection onto S. To construct P, we first need an
orthonormal basis of S so that we can use Theorem 1.4.10. To find an
orthonormal basis of S, we proceed as we did in Example 1.4.7—we
apply the Gram–Schmidt process to any set consisting of two linearly
independent vectors in S , likeTo find these vectors

(1,0,−1) and (0,1,4),
choose x and y

arbitrarily and then
solve for z via

x−4y+ z = 0.

B = {(1,0,−1),(0,1,4)}.
Applying the Gram–Schmidt process to B gives the following orthonor-

mal basis C of S:

C =
{

1√
2
(1,0,−1), 1

3 (2,1,2)
}

.

Theorem 1.4.10 then tells us that the orthogonal projection onto S
Even though there
are lots of different
orthonormal bases

of S, they all
produce this same

orthogonal
projection P.

is

P = AA∗ =
1
18




17 4 −1
4 2 4
−1 4 17


 , where A =




1/
√

2 2/3
0 1/3

−1/
√

2 2/3


 .

It follows that the closest vector to v = (3,−2,2) in S is

Pv =
1

18




17 4 −1
4 2 4
−1 4 17






3
−2
2


=

1
18




41
16
23


 ,

which is illustrated on the next page:
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v= (3,−2,2)

Pv= (41,16,23)/18
x

Example 1.4.17
Almost Solving a

Linear System

Show that the linear system Ax = b is inconsistent, where

A =




1 2 3
4 5 6
7 8 9


 and b =




2
−1
0


 .

ThenRecall that
“inconsistent” means

“has no solutions”.

find the closest thing to a solution—that is, find a vector x ∈ R3 that
minimizes ‖Ax−b‖.
Solution:

To see that this linear system is inconsistent (i.e., has no solutions), we
just row reduce the augmented matrix [ A | b ]:




1 2 3 2
4 5 6 −1
7 8 9 0


 row reduce−−−−−−→




1 0 −1 0
0 1 2 0
0 0 0 1


 .

The bottom row of this row echelon form tells us that the original linear
system has no solutions, since it corresponds to the equation 0x1 +0x2 +
0x3 = 1.

The fact that this linear system is inconsistent means exactly that
b /∈ range(A), and to find that “closest thing” to a solution (i.e., to minimize
‖Ax−b‖), we just orthogonally project b onto range(A). We thus start by
constructing an orthonormal basis C of range(A):This orthonormal

basis can be found
by applying the
Gram–Schmidt

process to the first
two columns of A,

which span its range
(see Theorem A.1.2).

C =
{

1√
66

(1,4,7), 1√
11

(−3,−1,1)
}

.

The orthogonal projection onto range(A) is then

P = BB∗ =
1
6




5 2 −1
2 2 2
−1 2 5


 , where B =




1/
√

66 −3/
√

11

4/
√

66 −1/
√

11

7/
√

66 1/
√

11


 ,

which

We develop a more
direct method of
constructing the
projection onto

range(A) in
Exercise 1.4.30.

tells us (via Theorem 1.4.11) that the vector Ax that minimizes
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‖Ax−b‖ is

Ax = Pb =
1
6




5 2 −1
2 2 2
−1 2 5







2
−1
0


=

1
3




4
1
−2


 .

Unfortunately, this is not quite what we want—we have found Ax (i.e.,
the closest vector to b in range(A)), but we want to find x itself. Fortunately,
x can now be found by solving the linear system Ax = (4,1,−2)/3:




1 2 3 4/3
4 5 6 1/3
7 8 9 −2/3


 row reduce−−−−−−→




1 0 −1 −2
0 1 2 5/3
0 0 0 0


 .

It follows that x can be chosen to be any vector of the form x =
(−2,5/3,0)+ x3(1,−2,1), where x3 is a free variable. Choosing x3 = 0
gives x = (−2,5/3,0), for example.

The method of Example 1.4.17 for using projections to find the “closest
thing” to a solution of an unsolvable linear system is called linear least squares,
and it is extremely widely-used in statistics. If we want to fit a model to a set of
data points, we typically have far more data points (equations) than parameters
of the model (variables), so our model will typically not exactly match all of the
data. However, with linear least squares we can find the model that comes as
close as possible to matching the data. We return to this method and investigate
it in more depth and with some new machinery in Section 2.C.1.

While Theorem 1.4.10 only applies directly in the finite-dimensional case,
we can extend them somewhat to the case where only the subspace being
projected onto is finite-dimensional, but the source vector space V is potentially
infinite-dimensional. We have to be slightly more careful in this situation, since
it does not make sense to even talk about the standard matrix of the projection
when V is infinite-dimensional:

Theorem 1.4.12
Another

Construction of
Orthogonal
Projections

Suppose V is an inner product space and S ⊆ V is an n-dimensional
subspace with orthonormal basis {u1,u2, . . . ,un}. Then the linear trans-
formation P : V → V defined by

P(v) = 〈u1,v〉u1 + 〈u2,v〉u2 + · · ·+ 〈un,v〉un for all v ∈ V

is an orthogonalUniqueness of P in
this case is a bit

trickier, and requires
an additional

assumption like the
axiom of choice or V

being
finite-dimensional.

projection onto S .

Proof. To see that P2 = P, we just use linearity of the second entry of the inner
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product to see

It is worth comparing
this result to

Theorem 1.4.5—we
are just giving

coordinates to P(v)
with respect to
{u1,u2, . . . ,un}.

that

P
(
P(v)

)
=

n

∑
i=1
〈ui,P(v)〉ui (definition of P(v))

=
n

∑
i=1

〈
ui,

n

∑
j=1
〈u j,v〉u j

〉
ui (definition of P(v))

=
n

∑
i, j=1
〈u j,v〉〈ui,u j〉ui (linearity of the inner product)

=
n

∑
i=1
〈ui,v〉ui = P(v). ({u1, . . . ,un} is an orthonormal basis)

Similarly, to see that P∗ = P we use sesquilinearity of the inner product to
see

For the
second-to-last

equality here, recall
that inner products

are conjugate linear
in their first argument,

so 〈ui,v〉〈w,ui〉=〈
〈w,ui〉ui,v

〉
=〈

〈ui,w〉ui,v
〉
.

that

〈w,P(v)〉=
〈

w,
n

∑
i=1
〈ui,v〉ui

〉
=

n

∑
i=1
〈ui,v〉〈w,ui〉

=

〈
n

∑
i=1
〈ui,w〉ui,v

〉
= 〈P(w),v〉

for all v,w ∈ V . The fact that P∗ = P follows from the definition of adjoint
given in Definition 1.4.3. �

While Theorems 1.4.10 and 1.4.12 perhaps look quite different on the
surface, the latter simply reduces to the former when V = Fn. To see this,
simply notice that in this case Theorem 1.4.12 says

Keep in mind that
u∗j v is a scalar, so

there is no problem
commuting it past u j

in the final equality
here.

that

P(v) =
n

∑
j=1
〈u j,v〉u j =

n

∑
j=1

(
u∗jv
)
u j =

n

∑
j=1

u j
(
u∗jv
)

=

(
n

∑
j=1

u ju∗j

)
v,

which agrees with the formula from Theorem 1.4.10.

Example 1.4.18
Finding the Closest

Polynomial to a
Function

Find the degree-2 polynomial f with the property that the integral

∫ 1

−1

∣∣ex− f (x)
∣∣2 dx

is as small as possible.

Solution:
The important fact to identify here is that we are being asked to mini-

mize ‖ex− f (x)‖2 (which is equivalent to minimizing ‖ex− f (x)‖) as f
ranges over the subspace P2[−1,1] of C[−1,1]. By Theorem 1.4.11, our
goal is thus to construct P(ex), where P is the orthogonal projection from
C[−1,1] onto P2[−1,1], which is guaranteed to exist by Theorem 1.4.12
since P2[−1,1] is finite-dimensional. To construct P, we need an orthonor-
mal basis of P2[−1,1], and one such basis

This basis can be
found by applying
the Gram–Schmidt

process to the
standard basis

{1,x,x2}much like
we did in

Example 1.4.8.

is

C =
{

p1(x), p2(x), p3(x)
}

=
{

1√
2
,
√

3√
2
x,
√

5√
8
(3x2−1)

}
.

Next, we compute the inner product of ex with each of these basis
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polynomials:

〈
p1(x),ex〉= 1√

2

∫ 1

−1
ex dx = 1√

2

(
e− 1

e

)
≈ 1.6620,

〈
p2(x),ex〉=

√
3√
2

∫ 1

−1
xex dx =

√
6

e ≈ 0.9011, and

〈
p3(x),ex〉=

√
5√
8

∫ 1

−1
(3x2−1)ex dx =

√
5(e2−7)√

2e
≈ 0.2263.

Theorem 1.4.12 then tells us that

P(ex) =
〈

p1(x),ex〉p1(x)+
〈

p2(x),ex〉p2(x)+
〈

p3(x),ex〉p3(x)

= 1
2

(
e− 1

e

)
+ 3

e x+ 5(e2−7)
4e (3x2−1)

≈ 0.5367x2 +1.1036x+0.9963.

It is worth noting that the solution to the previous example is rather close
to the degree-2 Taylor polynomial for ex, which is x2/2 + x + 1.For a refresher on

Taylor polynomials,
see Appendix A.2.2.

The reason
that these polynomials are close to each other, but not exactly the same as each
other, is that the Taylor polynomial is the polynomial that best approximates
ex at x = 0, whereas the one that we constructed in the previous example
is the polynomial that best approximates ex on the whole interval [−1,1]
(see Figure 1.20). In fact, if we similarly use orthogonal projections to find
polynomials that approximate ex on the interval [−c,c] for some scalar c > 0,
those polynomials get closer and closer to the Taylor polynomial as c goes to 0
(see Exercise 1.4.32).

Figure 1.20: Orthogonal projections of ex and its Taylor polynomials each approx-
imate it well, but orthogonal projections provide a better approximation over
an entire interval ([−1,1] in this case) while Taylor polynomials provide a better
approximation at a specific point (x = 0 in this case).
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Remark 1.4.3
Projecting Onto

Infinite-Dimensional
Subspaces

When projecting onto infinite-dimensional subspaces, we must be much
more careful, as neither of Theorem 1.4.10 nor 1.4.12 apply in this sit-
uation. In fact, there are infinite-dimensional subspaces that cannot be
projected onto by any orthogonal projection.

For example, if there existed an orthogonal projection from C[−1,1]
onto P[−1,1], then Theorem 1.4.11 (which does hold even in the infinite-
dimensional case) would tell us that

∥∥ex−P(ex)
∥∥≤

∥∥ex− f (x)
∥∥

for all polynomials f ∈ P [−1,1]. However, this is impossible since we
can find polynomials f (x) that make the norm on the right as close to 0 as
we like. For example, if we define

Tp(x) =
p

∑
n=1

xn

n!

to be the degree-p Taylor polynomial for ex centered at 0,A proof that this limit
equals 0 is outside of

the scope of this
book, but is typically

covered in
differential calculus
courses. The idea is

simply that as the
degree of the Taylor

polynomial
increases, it

approximates ex

better and better.

then

lim
p→∞

∥∥ex−Tp(x)
∥∥2 = lim

p→∞

∫ 1

−1

∣∣ex−Tp(x)
∣∣2 dx = 0.

Since ‖ex−P(ex)‖ ≤ ‖ex−Tp(x)‖ for all p, this implies ‖ex−P(ex)‖= 0,
so ex = P(ex). However, this is impossible since ex /∈ P [−1,1], so the
orthogonal projection P does not actually exist.

We close this section with one final simple result that says that orthogonal
projections never increase the norm of a vector. While this hopefully seems
somewhat intuitive, it is important to keep in mind that it does not hold for
oblique projections. For example, if the sun is straight overhead then shadows
(i.e., projections) are shorter than the objects that cast them, but if the sun is
low in the sky then our shadow may be longer than we are tall.

Theorem 1.4.13
Orthogonal Projections

Never Increase
the Norm

Suppose V is an inner product space and let P : V → V be an orthogonal
projection onto some subspace of V . Then

‖P(v)‖ ≤ ‖v‖ for all v ∈ V .

Furthermore, equality holds if and only if P(v) = v (i.e., v ∈ range(P)).

Proof. We just move things around in the inner product and use the Cauchy–
Schwarz

Keep in mind that P
is an orthogonal

projection, so P∗ = P
and P2 = P here.

inequality:

‖P(v)‖2 = 〈P(v),P(v)〉= 〈(P∗ ◦P)(v),v〉
= 〈P2(v),v〉= 〈P(v),v〉 ≤ ‖P(v)‖‖v‖.

(1.4.3)

If ‖P(v)‖= 0 then the desired inequality is trivial, and if ‖P(v)‖ 6= 0 then we
can divide Inequality (1.4.3) through by it to see that ‖P(v)‖ ≤ ‖v‖, as desired.

To verify the claim about the equality condition, suppose v 6= 0 (otherwise
the statement is trivial) and note that equality holds in the Cauchy–Schwarz
inequality step of Inequality (1.4.3) if and only if P(v) is a multiple of v (i.e., v
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is an eigenvector of P). Since Exercise 1.4.31 tells us that all eigenvalues of P
are 0 or 1, we conclude that P(v)=v (if P(v)=0 then ‖P(v)‖=0 6= ‖v‖). �

We show a bit later, in Exercise 2.3.25, that the above result completely
characterizes orthogonal projections. That is, if a projection P : V → V is such
that ‖P(v)‖ ≤ ‖v‖ for all v ∈ V then P must be an orthogonal projection.

Exercises solutions to starred exercises on page 456

1.4.1 Determine which of the following sets are orthonor-
mal bases of their span in Rn (with respect to the dot prod-
uct).

∗(a) B = {(0,1,1)}
(b) B = {(1,1)/

√
2,(1,−1)/

√
2}

∗(c) B = {(1,1)/
√

2,(1,0),(1,2)/
√

5}
(d) B = {(1,0,2)/

√
5,(0,1,0),(2,0,−1)/

√
5}

∗(e) B = {(1,1,1,1)/2,(0,1,−1,0)/
√

2,
(1,0,0,−1)/

√
2}

(f) B = {(1,2,2,1)/
√

10,(1,0,0,−1)/
√

2,
(0,1,−1,0)/

√
2,(2,1,−1,−2)/

√
10}

1.4.2 Find an orthonormal basis (with respect to the stan-
dard inner product on the indicated inner product space) for
the span of the given set of vectors:

(a) {(0,3,4)} ⊆ R3

∗(b) {(3,4),(7,32)} ⊆ R2.
(c) {(1,0,1),(2,1,3)} ⊆ R3

∗(d) {sin(x),cos(x)} ⊆ C[−π,π].
(e) {1,x,x2} ⊆P [0,1].
∗(f) The following three matrices in M2:

[
1 1
1 1

]
,

[
1 0
0 1

]
, and

[
0 2
1 −1

]
.

1.4.3 For each of the following linear transformations T ,
find the adjoint T ∗:

∗(a) T : R2→ R3, defined by T (v) = (v1,v1 + v2,v2).
(b) T : Rn→ R, defined by T (v) = v1.
∗(c) T : R2 → R2, defined by T (v) = (v1 + v2,v1− v2),

where the inner product on R2 is 〈v,w〉 = v1w1−
v1w2− v2w1 +2v2w2.

(d) T : M2→M2, defined by

T

([
a b
c d

])
=

[
d −b
−c a

]
.

1.4.4 Construct the orthogonal projection onto the indi-
cated subspace of Rn.

∗(a) The x-axis in R2.
(b) The plane in R3 with equation x+2y+3z = 0.
∗(c) The range of the matrix A =




1 0 1
1 1 2
0 1 1




.

1.4.5 Determine which of the following statements are
true and which are false.

∗(a) If B and C are orthonormal bases of finite-
dimensional inner product spaces V and W , respec-
tively, and T : V →W is a linear transformation,
then

[T ∗]B←C = [T ]∗C←B.

(b) If A,B ∈Mn(C) are Hermitian matrices then so is
A+B.

∗(c) If A,B ∈Mn(R) are symmetric matrices then so is
AB.

(d) There exists a set of 6 mutually orthogonal non-zero
vectors in R4.

∗(e) If U,V ∈Mn are unitary matrices, then so is U +V .
(f) If U ∈Mn is a unitary matrix, then U−1 exists and

is also unitary.
∗(g) The identity transformation is an orthogonal projec-

tion.
(h) If P : V → V is a projection then so is IV −P.

1.4.6 Let D :P2[−1,1]→P2[−1,1] be the differentiation
map, and recall that P2[−1,1] is the vector space of poly-
nomials with degree at most 2 with respect to the standard
inner product

〈 f ,g〉=
∫ 1

−1
f (x)g(x)dx.

Compute D∗(2x+1).

1.4.7 Find a vector x∈R3 that minimizes ‖Ax−b‖, where

A =




1 1 1
1 −1 0
2 0 1


 and b =




1
1
1


 .

∗∗1.4.8 Suppose U,V ∈Mn are unitary matrices. Show
that UV is also unitary.

1.4.9 Show that if U ∈Mn is unitary then ‖U‖F =
√

n
(recall that ‖U‖F is the Frobenius norm of U).

∗1.4.10 Show that the eigenvalues of unitary matrices lie
on the unit circle in the complex plane. That is, show that
if U ∈Mn is a unitary matrix, and λ is an eigenvalue of U ,
then |λ |= 1.

∗∗1.4.11 Show that if U ∈Mn is a unitary matrix then
|det(U)|= 1.

∗∗1.4.12 Show that if U ∈Mn is unitary and upper trian-
gular then it must be diagonal and its diagonal entries must
have magnitude 1.

1.4.13 Let {u1,u2, . . . ,un} be any orthonormal basis of
Fn (where F = R or F = C). Show that

n

∑
j=1

u ju∗j = I.

1.4.14 Let A ∈Mn have mutually orthogonal (but not
necessarily normalized) columns.
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(a) Show that A∗A is a diagonal matrix.
(b) Give an example to show that AA∗ might not be a

diagonal matrix.

∗1.4.15 Let ω = e2πi/n (which is an n-th root of unity).
Show that the Fourier matrix F ∈Mn(C) defined by

F =
1√
n




1 1 1 · · · 1

1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2n−2

...
...

...
. . .

...

1 ωn−1 ω2n−2 · · · ω(n−1)(n−1)




.

is unitary.

[Side note: F is, up to scaling, a Vandermonde matrix.]

[Hint: Try to convince yourself that
n−1

∑
k=0

ωk = 0.]

1.4.16 Suppose that B and C are bases of a finite-
dimensional inner product space V .

(a) Show that if B and C are each orthonormal then
[v]B · [w]B = [v]C · [w]C .

(b) Provide an example that shows that if B and C are
not both orthonormal bases, then it might be the case
that [v]B · [w]B 6= [v]C · [w]C .

∗∗1.4.17 Suppose A ∈Mm,n(F) and B ∈Mn,m(F).

(a) Suppose F = R. Show that (Ax) ·y = x · (By) for all
x ∈ Rn and y ∈ Rm if and only if B = AT .

(b) Suppose F = C. Show that (Ax) ·y = x · (By) for all
x ∈ Cn and y ∈ Cm if and only if B = A∗.

[Side note: In other words, the adjoint of A is either AT or
A∗, depending on the ground field.]

∗∗1.4.18 Suppose F = R or F = C, E is the standard basis
of Fn, and B is any basis of Fn. Show that a change-of-basis
matrix PE←B is unitary if and only if B is an orthonormal
basis of Fn.

∗∗1.4.19 Suppose F = R or F = C and B,C ∈Mm,n(F).
Show that the following are equivalent:

a) B∗B = C∗C,
b) (Bv) · (Bw) = (Cv) · (Cw) for all v,w ∈ Fn, and
c) ‖Bv‖= ‖Cv‖ for all v ∈ Fn.

[Hint: If C = I then we get some of the characterizations of
unitary matrices from Theorem 1.4.9. Mimic that proof.]

∗∗1.4.20 Suppose B is a mutually orthogonal set of unit
vectors in a finite-dimensional inner product space V . Show
that there is an orthonormal basis C of V with B⊆C ⊆ V .

[Side note: The analogous result for non-orthonormal bases
was established in Exercise 1.2.26.]

1.4.21 Suppose V and W are inner product spaces and
T : V→W is a linear transformation with adjoint T ∗. Show
that (T ∗)∗ = T .

∗∗1.4.22 Suppose V and W are finite-dimensional inner
product spaces and T : V →W is a linear transformation
with adjoint T ∗. Show that rank(T ∗) = rank(T ).

∗∗1.4.23 Show that every linear transformation T : V →
W has at most one adjoint map, even when V and W are
infinite-dimensional. [Hint: Use Exercise 1.4.27.]

∗∗1.4.24 Suppose F = R or F = C and consider a function
〈·, ·〉 : Fn×Fn→ F.

(a) Show that 〈·, ·〉 is an inner product if and only if there
exists an invertible matrix P ∈Mn(F) such that

〈v,w〉= v∗(P∗P)w for all v,w,∈ Fn.

[Hint: Change a basis in Theorem 1.4.3.]
(b) Find a matrix P associated with the weird inner prod-

uct from Example 1.3.18. That is, for that inner prod-
uct find a matrix P ∈M2(R) such that

〈v,w〉= v∗(P∗P)w for all v,w,∈ R2.

(c) Explain why 〈·, ·〉 is not an inner product if the matrix
P from part (a) is not invertible.

∗∗1.4.25 Suppose V is a finite-dimensional vector space
and B ⊂ V is linearly independent. Show that there is an
inner product on V with respect to which B is orthonormal.

[Hint: Use the method of Exercise 1.4.24 to construct an
inner product.]

1.4.26 Find an inner product on R2 with respect to which
the set {(1,0),(1,1)} is an orthonormal basis.

∗∗1.4.27 Suppose V and W are inner product spaces and
T : V →W is a linear transformation. Show that

〈T (v),w〉= 0 for all v ∈ V and w ∈W .

if and only if T = O.

∗∗1.4.28 Suppose V is an inner product space and T :
V → V is a linear transformation.

(a) Suppose the ground field is C. Show that

〈T (v),v〉= 0 for all v ∈ V
if and only if T = O.
[Hint: Mimic part of the proof of Theorem 1.4.9.]

(b) Suppose the ground field is R. Show that

〈T (v),v〉= 0 for all v ∈ V
if and only if T ∗ =−T .

∗∗1.4.29 In this exercise, we show that if V is a finite-
dimensional inner product space over C and P : V → V is
a projection then P is orthogonal (i.e., 〈P(v),v−P(v)〉= 0
for all v ∈ V) if and only if it is self-adjoint (i.e., P = P∗).

(a) Show that if P is self-adjoint then it is orthogonal.
(b) Use Exercise 1.4.28 to show that if P is orthogonal

then it is self-adjoint.

[Side note: The result of this exercise is still true over R, but
it is more difficult to show—see Exercise 2.1.23.]

∗∗1.4.30 Suppose A ∈Mm,n has linearly independent
columns.
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(a) Show that A∗A is invertible.
(b) Show that P = A(A∗A)−1A∗ is the orthogonal projec-

tion onto range(A).

[Side note: This exercise generalizes Theorem 1.4.10 to the
case when the columns of A are just a basis of its range, but
not necessarily an orthonormal one.]

∗∗1.4.31 Show that if P ∈Mn is a projection then there
exists an invertible matrix Q ∈Mn such that

P = Q

[
Ir O
O O

]
Q−1,

where r = rank(P). In other words, every projection is diag-
onalizable and has all eigenvalues equal to 0 or 1.

[Hint: What eigen-properties do the vectors in the range and
null space of P have?]

[Side note: We prove a stronger decomposition for orthogo-
nal projections in Exercise 2.1.24.]

∗∗1.4.32 Let 0 < c ∈ R be a scalar.

(a) Suppose Pc : C[−c,c] → P2[−c,c] is an orthogo-
nal projection. Compute Pc(ex). [Hint: We worked
through the c = 1 case in Example 1.4.18.]

(b) Compute the polynomial limc→0+ Pc(ex) and notice
that it equals the degree-2 Taylor polynomial of ex at
x = 0. Provide a (not necessarily rigorous) explana-
tion for why we would expect these two polynomials
to coincide.

1.4.33 Much like we can use polynomials to approx-
imate functions via orthogonal projections, we can also
use trigonometric functions to approximate them. Doing so
gives us something called the function’s Fourier series.

(a) Show that, for each n≥ 1, the set

Bn = {1,sin(x),sin(2x), . . . ,sin(nx),

cos(x),cos(2x), . . . ,cos(nx)}

is mutually orthogonal in the usual inner product on
C[−π,π].

(b) Rescale the members of Bn so that they have norm
equal to 1.

(c) Orthogonally project the function f (x) = x onto
span(Bn).
[Side note: These are called the Fourier approxi-
mations of f , and letting n→ ∞ gives its Fourier
series.]

(d) Use computer software to plot the function f (x) = x
from part (c), as well as its projection onto span(B5),
on the interval [−π,π].

1.5 Summary and Review

In this chapter, we investigated how the various properties of vectors in Rn

and matrices inMm,n(R) from introductory linear algebra can be generalized
to many other settings by working with vector spaces instead of Rn, and
linear transformations between them instead ofMm,n(R). In particular, any
property or theorem about Rn that only depends on vector addition and scalar
multiplication (i.e., linear combinations) carries over straightforwardly with
essentially no changes to abstract vector spaces and the linear transformations
acting on them. Examples of such properties include:

• Subspaces, linear (in)dependence, and spanning sets.These concepts all
work over any field F.

• Coordinate vectors, change-of-basis matrices, and standard matrices.
• Invertibility, rank, range, nullity, and null space of linear transformations.
• Eigenvalues, eigenvectors, and diagonalization.
However, the dot product (and properties based on it, like the length of a

vector) cannot be described solely in terms of scalar multiplication and vector
addition, so we introduced inner products as their abstract generalization. With
inner products in hand, we were able to extend the following ideas from Rn to
more general inner product spaces:

• The length of a vector (the norm induced by the inner product).These concepts
require us to be

working over one of
the fields R or C.

• Orthogonality.
• The transpose of a matrix (the adjoint of a linear transformation).
• Orthogonal projections.
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Having inner products to work with also let us introduce orthonormal bases
and unitary matrices,We could have also

used inner products
to define angles in

general vector
spaces.

which can be thought of as the “best-behaved” bases and
invertible matrices that exist, respectively.

In the finite-dimensional case, none of the aforementioned topics change
much when going from Rn to abstract vector spaces, since every such vector
space is isomorphic to Rn (or Fn, if the vector space is over a field F). In partic-
ular, to check some purely linear-algebraic concept like linear independence
or invertibility, we can simply convert abstract vectors and linear transforma-
tions into vectors in Fn and matrices inMm,n(F), respectively, and check the
corresponding property there. To check some property that also depends on
an inner product like orthogonality or the length of a vector, we can similarly
convert everything into vectors in Fn and matrices inMm,n(F) as long as we
are careful to represent the vectors and matrices in orthonormal bases.

For this reason, not much is lost in (finite-dimensional) linear algebra if we
explicitly work with Fn instead of abstract vector spaces, and with matrices
instead of linear transformations. We will often switch back and forth between
these two perspectives, depending on which is more convenient for the topic
at hand. For example, we spend most of Chapter 2 working specifically with
matrices, though we will occasionally make a remark about what our results
say for linear transformations.

Exercises solutions to starred exercises on page 459

1.5.1 Determine which of the following statements are
true and which are false.

∗(a) If B,C ⊆ V satisfy span(B) = span(C) then B = C.
(b) If B,C ⊆ V satisfy B⊆C then span(B)⊆ span(C).
∗(c) If B and C are bases of finite-dimensional inner prod-

uct spaces V and W , respectively, and T : V →W
is an invertible linear transformation, then[

T−1]
B←C = [T ]−1

C←B.

(d) If B and C are bases of finite-dimensional inner prod-
uct spaces V and W , respectively, and T : V →W
is a linear transformation, then[

T ∗
]

B←C = [T ]∗C←B.

∗(e) If V is a vector space over C then every linear trans-
formation T : V → V has an eigenvalue.

(f) If U,V ∈Mn are unitary matrices, then so is UV .

∗∗1.5.2 Let S1 and S2 be finite-dimensional subspaces of
a vector space V . Recall from Exercise 1.1.19 that sum of
S1 and S2 is defined by

S1 +S2
def= {v+w : v ∈ S1,w ∈ S2},

which is also a subspace of V .

(a) Show that

dim(S1 +S2)= dim(S1)+dim(S2)−dim(S1∩S2).
(b) Show that dim(S1 ∩ S2) ≥ dim(S1) + dim(S2)−

dim(V).

1.5.3 Show that if f is a degree-3 polynomial then
{ f , f ′, f ′′, f ′′′} is a basis of P3 (where f ′ is the first deriva-
tive of f , and so on).

∗1.5.4 Let P p
2 denote the vector space of 2-variable poly-

nomials of degree at most p. For example,

x2y3−2x4y ∈P5
2 and 3x3y− x7 ∈P7

2 .

Construct a basis of P p
2 and compute dim(P p

2 ).

[Side note: We generalize this exercise to P p
n , the vector

space of n-variable polynomials of degree at most p, in
Exercise 3.B.4.]

1.5.5 Explain why the function

〈 f ,g〉=
∫ b

a
f (x)g(x) dx

is an inner product on each of P [a,b], P (and their
subspaces like P p[a,b] and P p), and C[a,b] (see Exam-
ple 1.3.17), but not on C.

∗1.5.6 Suppose A,B ∈Mm,n and consider the linear trans-
formation TA,B : Mn→Mm defined by

TA,B(X) = AXB∗.

Compute T ∗ (with respect to the standard Frobenius inner
product).

1.5.7 How many diagonal unitary matrices are there in
Mn(R)? Your answer should be a function of n.
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1.A Extra Topic: More About the Trace

Recall that the trace of a square matrix A ∈Mn is the sum of its diagonal
entries:

tr(A) = a1,1 +a2,2 + · · ·+an,n.

While we are already familiar with some nice features of the trace (such as the
fact that it is similarity-invariant,Recall that a

function f is
similarity-invariant if

f (A) = f (PAP−1) for
all invertible P.

and the fact that tr(A) also equals the sum of
the eigenvalues of A), it still seems somewhat arbitrary—why does adding up
the diagonal entries of a matrix tell us anything interesting?

In this section, we explore the trace in a bit more depth in an effort to
explain where it “comes from”, in the same sense that the determinant can
be thought of as the answer to the question of how to measure how much
a linear transformation expands or contracts space. In brief, the trace is the
“most natural” or “most useful” linear form onMn—it can be thought of as the
additive counterpart of the determinant, which in some sense is similarly the
“most natural” multiplicative function onMn.

1.A.1 Algebraic Characterizations of the Trace

Algebraically, what makes the trace interesting is the fact that tr(AB) = tr(BA)
for all A ∈Mm,n and B ∈Mn,m, since

tr(AB) =
m

∑
i=1

[AB]i,i =
m

∑
i=1

n

∑
j=1

ai, jb j,i

=
n

∑
j=1

m

∑
i=1

b j,iai, j =
n

∑
j=1

[BA] j, j = tr(BA).

Even though matrix multiplication itself is not commutative, this property lets
us treat it as if it were commutative in some situations. To illustrate what we
mean by this, we note that the following example can be solved very quickly
with the trace, but is quite difficult to solve otherwise.

Example 1.A.1
The Matrix AB−BA

Show that there do not exist matrices A,B ∈Mn such that AB−BA = I.

Solution:
To see why such matrices cannot exist,

The matrix AB−BA is
sometimes called

the commutator of A
and B, and is

denoted by
[A,B] def= AB−BA.

simply take the trace of both
sides of the equation:

tr(AB−BA) = tr(AB)− tr(BA) = tr(AB)− tr(AB) = 0,

but tr(I) = n. Since n 6= 0, no such matrices A and B can exist.

Remark 1.A.1
A Characterization of

Trace-Zero Matrices

The previous example can actually be extended into a theorem. Using the
exact same logic as in that example, we can see that the matrix equation
AB−BA = C can only ever have a solution when tr(C) = 0, since

tr(C) = tr(AB−BA) = tr(AB)− tr(BA) = tr(AB)− tr(AB) = 0.

Remarkably,This fact is proved in
[AM57].

the converse of this observation is also true—for any matrix
C with tr(C) = 0, there exist matrices A and B of the same size such that
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AB−BA = C. Proving this fact is quite technical and outside of the scope
of this book, but we prove a slightly weaker result in Exercise 1.A.6.

One of the most remarkable facts about the trace is that, not only does it
satisfy this commutativity property, but it is essentially the only linear form
that does so. In particular, the following theorem says that the only linear forms
for which f (AB) = f (BA) are the trace and its scalar multiples:

Theorem 1.A.1
Commutativity

Defines the Trace

Let f :Mn→ F be a linear form with the following properties:
a) f (AB) = f (BA) for all A,B ∈Mn, and
b) f (I) = n.

Then f (A) = tr(A) for all A ∈Mn.

Proof. Every matrix A ∈Mn(F) can be written as a linear combination of the
standard basis

Recall that Ei, j is the
matrix with a 1 as its

(i, j)-entry and
all other entries

equal to 0.

matrices:

A =
n

∑
i, j=1

ai, jEi, j.

Since f is linear, it follows that

f (A) = f

(
n

∑
i, j=1

ai, jEi, j

)
=

n

∑
i, j=1

ai, j f (Ei, j).

Our goal is thus to show that f (Ei, j) = 0 whenever i 6= j and f (Ei, j) = 1
whenever i = j, since that would imply

f (A) =
n

∑
i=1

ai,i = tr(A).

To this end, we first recall that since f is linear it must be the case that
f (O) = 0. Next, we notice that Ei, jE j, j = Ei, j but E j, jEi, j = O whenever i 6= j,
so property (a) of f given in the statement of the theorem implies

0 = f (O) = f
(
E j, jEi, j

)
= f
(
Ei, jE j, j

)
= f (Ei, j) whenever i 6= j,

which is one of the two facts that we wanted to show.
To similarly prove the other fact (i.e., f (E j, j) = 1 for all 1 ≤ j ≤ n), we

notice that E1, jE j,1 = E1,1, but E j,1E1, j = E j, j for all 1≤ j ≤ n, so

f (E j, j) = f
(
E j,1E1, j

)
= f
(
E1, jE j,1

)
= f (E1,1) for all 1≤ j ≤ n.

However, since I = E1,1 +E2,2 + · · ·+En,n, it then follows that

n = f (I) = f (E1,1 +E2,2 + · · ·+En,n)
= f (E1,1)+ f (E2,2)+ · · ·+ f (En,n) = n f (E1,1),

so f (E1,1) = 1, and similarly f (E j, j) = 1 for all 1≤ j ≤ n, which completes
the proof. �

There are also a few other ways of thinking of the trace as the unique
function with certain properties. For example, there are numerous functions of
matrices that are similarity-invariant (e.g., the rank, trace, and determinant),
but the following corollary says that the trace is (up to scaling) the only one
that is linear.



118 Chapter 1. Vector Spaces

Corollary 1.A.2
Similarity-

Invariance Defines
the Trace

Suppose F = R or F = C, and f :Mn(F)→ F is a linear form with the
following properties:

a) f (A) = f (PAP−1) for all A,P ∈Mn(F) with P invertible, and
b) f (I) = n.

Then f (A) = tr(A) for all A ∈Mn(F).

The idea behind this corollary is that if A or B is invertible, then AB is
similar to BA (see Exercise 1.A.5). It follows that if f is similarity-invariant
then f (AB) = f (BA) as long as at least one of A or B is invertible, which almost
tells us, via Theorem 1.A.1, that f must be the trace (up to scaling).

However, making the jump from f (AB) = f (BA) whenever at least one of
A or B invertible, to f (AB) = f (BA) for all A and B, is somewhat delicate. We
thus return to this corollary in Section 2.D.3 (in particular, see Theorem 2.D.4),
where we prove it via matrix analysis techniques. The idea is that, since every
matrix is arbitrarily close to an invertible matrix, if this property holds for all
invertible matrices then continuity of f tells us that it must in fact hold for
non-invertible matrices too.

As one final way of characterizing the trace, notice that if P ∈Mn is a
(not necessarily orthogonal) projection (i.e., P2 = P), then tr(P) = rank(P)
(see Exercise 1.A.4). In other words, tr(P) is the dimension of the subspace
projected onto by P. Our final result of this subsection says that this property
characterizes the trace—it is the only linear form with this property. In a sense,
this means that the trace can be thought of as a linearized version of the rank or
dimension-counting function.

Theorem 1.A.3
Rank of

Projections Defines
the Trace

Let f :Mn→ F be a linear form. The following are equivalent:
a) f (P) = rank(P) for all projections P ∈Mn.
b) f (A) = tr(A) for all A ∈Mn.

Proof. To see that (a) =⇒ (b), we proceed much like in the proof of The-
orem 1.A.1—our goal is to show that f (E j, j) = 1 and f (Ei, j) = 0 for all
1≤ i 6= j ≤ n.

The reasonIn fact, this shows
that if f is a linear

function for which
f (P) = 1 for all rank-1
projections P ∈Mn

then f = tr.

that f (E j, j) = 1 is simply that E j, j is a rank-1 projection for
each 1 ≤ j ≤ n. To see that f (Ei, j) = 0 when i 6= j, notice that E j, j + Ei, j
is also a rank-1 (oblique) projection, so f (E j, j + Ei, j) = 1. However, since
f (E j, j) = 1, linearity of f tells us that f (Ei, j) = 0. It follows that for every
matrix A ∈Mn(F) we have

f (A) = f

(
n

∑
i, j=1

ai, jEi, j

)
=

n

∑
i, j=1

ai, j f (Ei, j) =
n

∑
j=1

a j, j = tr(A),

as desired.
The fact that (b) =⇒ (a) is left to Exercise 1.A.4. �

If we have an inner product to work with (and are thus working over the
field F = R or F = C), we can ask whether or not the above theorem can be
strengthened to consider only orthogonal projections (i.e., projections P for
which P∗= P). It turns out that if F = C then this works—if f (P) = rank(P) for
all orthogonal projections P ∈Mn(C) then f (A) = tr(A) for all A ∈Mn(C).
However, this is not true if F = R (see Exercise 1.A.7).
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1.A.2 Geometric Interpretation of the Trace

Since the trace of a matrix is similarity-invariant, it should have some sort of
geometric interpretation that depends only on the underlying linear transforma-
tion (after all,We return to

similarity-invariance
and its geometric

interpretation in
Section 2.4.

similarity-invariance means exactly that it does not depend on
the basis that we use to represent that linear transformation). This is a bit more
difficult to see than it was for the rank or determinant, but one such geometric
interpretation is the best linear approximation of the determinant.

The above statement can be made more precise with derivatives. In particu-
lar, the following theorem says that if we start at the identity transformation
(i.e., the linear transformation that does nothing) and move slightly in the di-
rection of A, then space is expanded by an amount proportional to tr(A). More
specifically, the directional derivative of the determinant in the direction of A is
its trace:

Theorem 1.A.4
Directional

Derivative of
the Determinant

Suppose F = R or F = C, let A∈Mn(F), and define a function fA : F→ F
by fA(x) = det(I + xA). Then f ′A(0) = tr(A).

Before proving this theorem, it is perhaps useful to try to picture it. If
A ∈Mn has columns a1,a2, . . . ,an then the linear transformation I + xA adds
xa1,xa2, . . . ,xan to the side vectors of the unit square (or cube, or hypercube...).
The majority of the change in the determinant of I + xA thus comes from how
much xa1 points in the direction of e1 (i.e., xa1,1) plus the amount that xa2 points
in the direction of e2 (i.e., xa2,2), and so on (see Figure 1.21), which equals
xtr(A). In other words, tr(A) provides the first-order (or linear) approximation
for how det(I + xA) changes when x is small.

Figure 1.21: The determinant det(I +xA) can be split up into four pieces, as indicated
here at the bottom-right. The blue region has area approximately equal to 1,
the purple region has area proportional to x2, and the orange region has area
xa1,1 + xa2,2 = xtr(A). When x is close to 0, this orange region is much larger than the
purple region and thus determines the growth rate of det(I + xA).
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Proof of Theorem 1.A.4. Recall that the characteristic polynomial pA of A has
the form

pA(λ ) = det(A−λ I) = (−1)nλ n +(−1)n−1tr(A)λ n−1 + · · ·+det(A).

If we let λ =−1/x and then multiply this characteristic polynomial through
by xn, we see that

fA(x) = det(I + xA) = xn det(A+(1/x)I)
= xn pA(−1/x)

= xn ((1/x)n + tr(A)(1/x)n−1 + · · ·+det(A)
)

= 1+ xtr(A)+ · · ·+det(A)xn.

It follows thatRecall that the
derivative of xn is

nxn−1.
f ′A(x) = tr(A)+ · · ·+det(A)nxn−1,

where each of the terms hidden in the “· · ·” has at least one power of x in it. We
thus conclude that f ′A(0) = tr(A), as claimed. �

Exercises solutions to starred exercises on page 459

1.A.1 Determine which of the following statements are
true and which are false.

(a) If A,B ∈Mn then tr(A+B) = tr(A)+ tr(B).
∗(b) If A,B ∈Mn then tr(AB) = tr(A)tr(B).

(c) If A ∈Mn is invertible, then tr(A−1) = 1/tr(A).
∗(d) If A ∈Mn then tr(A) = tr(AT ).

(e) If A ∈Mn has k-dimensional range then tr(A) = k.

∗∗1.A.2 Suppose A,B ∈Mn are such that A is symmet-
ric (i.e, A = AT ) and B is skew-symmetric (i.e., B =−BT ).
Show that tr(AB) = 0.

1.A.3 Suppose A ∈Mm,n(C). Show that tr(A∗A)≥ 0.

[Side note: Matrices of the form A∗A are called positive
semidefinite, and we investigate them thoroughly in Sec-
tion 2.2.]

∗∗1.A.4 Show that if P ∈Mn then tr(P) = rank(P).

[Side note: This is the implication (b) =⇒ (a) of Theo-
rem 1.A.3.]

∗∗1.A.5 Suppose A,B ∈Mn.

(a) Show that if at least one of A or B is invertible then
AB and BA are similar.

(b) Provide an example to show that if A and B are not
invertible then AB and BA may not be similar.

∗∗1.A.6 Consider the two sets

Z =
{

C ∈Mn : tr(C) = 0
}

and

W = span
{

AB−BA : A,B ∈Mn
}
.

In this exercise, we show that W = Z . [Side note: Refer
back to Remark 1.A.1 for some context.]

(a) Show that W is a subspace of Z , which is a subspace
of Mn.

(b) Compute dim(Z).

(c) Show that W = Z . [Hint: Find sufficiently many
linearly independent matrices in W to show that its
dimension coincides with that of Z .]

∗∗1.A.7 Suppose F = R or F = C and let f : Mn(F)→ F
be a linear form with the property that f (P) = rank(P) for
all orthogonal projections P ∈Mn(F).

(a) Show that if F = C then f (A) = tr(A) for all A ∈
Mn(C).
[Hint: Take inspiration from the proof of Theo-
rem 1.A.3, but use some rank-2 projections too.]

(b) Provide an example to show that if F = R then it
is not necessarily the case that f (A) = tr(A) for all
A ∈Mn(R).

∗∗1.A.8 Suppose F = R or F = C and let A,B ∈Mn(F)
be such that A is invertible.

(a) Show that if fA,B(x) = det(A + xB) then f ′A,B(0) =
det(A)tr

(
A−1B

)
.

(b) Suppose that the entries of A depend in a differen-
tiable way on a parameter t ∈ F (so we denote it by
A(t) from now on). Explain why

d
dt

det
(
A(t)

)
= f ′A(t),dA/dt(0),

where dA/dt refers to the matrix that is obtained by
taking the derivative of each entry of A with respect
to t.
[Hint: Taylor’s theorem from Appendix A.2 might
help.]

(c) Show that

d
dt

det
(
A(t)

)
= det

(
A(t)

)
tr
(

A(t)−1 dA
dt

)
.

[Side note: This is called Jacobi’s formula, and
we generalize it to non-invertible matrices in The-
orem 2.D.6.]
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1.B Extra Topic: Direct Sum, Orthogonal Complement

It is often useful to break apart a large vector space into multiple subspaces
that do not intersect each other (except at the zero vector, where intersection
is unavoidable). For example, it is somewhat natural to think of R2 as being
made up of two copies of R, since every vector (x,y) ∈ R2 can be written in
the form (x,0)+(0,y), and the subspaces {(x,0) : x ∈ R} and {(0,y) : y ∈ R}
are each isomorphic to R in a natural way.

Similarly, we can think of R3 as being made up of either three copies of R,
or a copy of R2 and a copy of R, as illustrated in Figure 1.22. The direct sum
provides a way of making this idea precise, and we explore it thoroughly in
this section.

Figure 1.22: The direct sum lets us break down R3 (and other vector spaces) into
smaller subspaces that do not intersect each other except at the origin.

1.B.1 The Internal Direct Sum

We now pin down exactly what we mean by the afore-mentioned idea of
splitting up a vector space into two non-intersecting subspaces.

Definition 1.B.1
The Internal
Direct Sum

Let V be a vector space with subspaces S1 and S2. We say that V is the
(internal) direct sum of S1 and S2, denoted by V = S1⊕S2, if

a) span(S1∪S2) = V , and
b) S1∩S2 = {0}.

TheFor now, we just refer
to this as a direct

sum (without caring
about the “internal”

part of its name). We
will distinguish

between this and
another type of
direct sum later.

two defining properties of the direct sum mimic very closely the two
defining properties of bases (Definition 1.1.6). Just like bases must span the
entire vector space, so too must subspaces in a direct sum, and just like bases
must be “small enough” that they are linearly independent, subspaces in a direct
sum must be “small enough” that they only contain the zero vector in common.

It is also worth noting that the defining property (a) of the direct sum
is equivalent to saying that every vector v ∈ V can be written in the form
v = v1 + v2 for some v1 ∈ S1 and v2 ∈ S2. The reason for this is simply that
in any linear combination of vectors from S1 and S2, we can group the terms
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from S1 into v1 and the terms from S2 into v2. That is, if we writeIn other words, the
direct sum is a

special case of the
(not necessarily

direct) sum
V = S1 +S2 from

Exercise 1.1.19.

v =
(
c1x1 + c2x2 + · · ·+ ckxk

)
︸ ︷︷ ︸

call this v1

+
(
d1y1 +d2y2 + · · ·+dmym

)
︸ ︷︷ ︸

call this v2

, (1.B.1)

where x1, . . . ,xk ∈ S1, y1, . . . ,ym ∈ S2, and c1, . . . ,ck,d1, . . . ,dm ∈ F, then we
can just define v1 and v2 to be the parenthesized terms indicated above.

Example 1.B.1
Checking Whether or

Not Subspaces
Make a Direct Sum

Determine whether or not R3 = S1⊕S2, where S1 and S2 are the given
subspaces.

a) S1 is the x-axis and S2 is the y-axis.
b) S1 is xy-plane and S2 is the yz-plane.
c) S1 is the line through the origin in the direction of the vector (0,1,1)

and S2 is the xy-plane.

Solutions:
a) To determine whether or not V = S1⊕S2, we must check the two

defining properties of the direct sum from Definition 1.B.1.In part (a) of this
example, S1 and S2

are “too small”.

Indeed,
property (a) does not hold since span(S1∪S2) is just the xy-plane,
not all of R3, so R3 6= S1⊕S2:

x S1

y

S2

z

b) Again, we check the two defining properties of the direct sum.
Property (a) holds since every vector in R3 can be written as a linear
combination of vectorsIn part (b) of this

example, S1 and S2
are “too big”.

in the xy-plane and the yz-plane. However,
property (b) does not hold since S1∩S2 is the y-axis (not just {0}),

so R3 6= S1⊕S2.
x

z

S1

S2

y

c) To see that span(S1 ∪S2) = R3 we must show that we can write
every vector (x,y,z) ∈ R3 as a linear combination of vectors from
S1 and S2. One way to do this is to notice that

(x,y,z) = (0,z,z)+(x,y− z,0).
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Since (0,z,z) ∈ S1 and (x,y− z,0) ∈ S2, we have

(x,y,z) ∈ span(S1∪S2),

so span(S1∪S2) = R3.
To see that S1∩S2 = {0}, suppose (x,y,z)∈S1∩S2. Since (x,y,z)∈
S1, we know that x = 0 and y = z. Since (x,y,z) ∈ S2, we know that
z = 0. It follows that (x,y,z) = (0,0,0) = 0, so S1∩S2 = {0}, and

Notice that the line
S1 is not orthogonal
to the plane S2. The

intuition here is the
same as that of

linear
independence, not

of orthogonality.

thus R3 = S1⊕S2. x

y

z

S2

S1

The direct sum extends straightforwardly to three or more subspaces as well.
In general, we say that V is the (internal) direct sum of subspaces S1,S2, . . . ,Sk
if span(S1∪S2∪·· ·∪Sk) = V and

The notation with the
big “∪” union symbol
here is analogous to

big-Σ notation for
sums.

Si∩ span
(⋃

j 6=i

S j

)
= {0} for all 1≤ i≤ k. (1.B.2)

Indeed, Equation (1.B.2) looks somewhat complicated on the surface, but it
just says that each subspace Si (1≤ i≤ k) has no non-zero intersection with
(the span of) the rest of them. In this case we write either

V = S1⊕S2⊕·· ·⊕Sk or V =
k⊕

j=1

S j.

For example, if S1, S2, and S3 are the x-, y-, and z-axes in R3, then R3 =
S1⊕S2⊕S3. More generally, Rn can be written as the direct sum of its n
coordinate axes. Even more generally, given any basis {v1,v2, . . . ,vk} of a
finite-dimensional vector space V , it is the case

This claim is proved
in Exercise 1.B.4.

that

V = span(v1)⊕ span(v2)⊕·· ·⊕ span(vk).

We thus think of the direct sum as a higher-dimensional generalization of bases:
while bases break vector spaces down into 1-dimensional subspaces (i.e., the
lines in the direction of the basis vectors) that only intersect at the zero vector,
direct sums allow for subspaces of any dimension.

Given this close connection between bases and direct sums, it should not
be surprising that many of our theorems concerning bases from Section 1.2
generalize in a straightforward way to direct sums. Our first such result is
analogous to the fact that there is a unique way to write every vector in a vector
space as a linear combination of basis vectors (Theorem 1.1.4).
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Theorem 1.B.1
Uniqueness of Sums

in Direct Sums

Suppose that V is a vector space with subspaces S1,S2 ⊆ V satisfying
V = S1⊕S2. For every v ∈ V , there is exactly one way to write v in the
form

v = v1 +v2 with v1 ∈ S1 and v2 ∈ S2.

Proof. We already noted that v can be written in this form back in Equa-
tion (1.B.1). To see uniqueness, suppose that there exist v1,w1 ∈ S1 and
v2,w2 ∈ S2 such that

v = v1 +v2 = w1 +w2.

Subtracting v2 + w1 from the aboveRecall that S1 is a
subspace, so if
v1,w1 ∈ S1 then

v1−w1 ∈ S1 too (and
similarly for S2).

equation shows that v1−w1 = w2− v2.
Since v1−w1 ∈S1 and w2−v2 ∈S2, and S1∩S2 = {0}, this implies v1−w1 =
w2−v2 = 0, so v1 = w1 and v2 = w2, as desired. �

Similarly, we now show that if we combine bases of the subspaces S1 and
S2 then we get a basis of V = S1⊕S2. This hopefully makes some intuitive
sense—every vector in V can be represented uniquely as a sum of vectors in S1
and S2, and every vector in those subspaces can be represented uniquely as a
linear combination of their basis vectors.

Theorem 1.B.2
Bases of Direct Sums

Suppose that V is a vector space and S1,S2 ⊆ V are subspaces with bases
B and C, respectively. Then

a) span(B∪C) = V if and only if span(S1∪S2) = V , and
b) B∪C is linearly independentHere, B∪C refers to

the union of B and C
as a multiset, so that
if there is a common

vector in each of B
and C then we

immediately regard
B∪C as linearly

dependent.

if and only if S1∩S2 = {0}.
In particular, B∪C is a basis of V if and only if V = S1⊕S2.

Proof. For part (a), we note that if span(B∪C) = V then it must be the case
that span(S1∪S2) = V as well, since span(B∪C)⊂ span(S1∪S2). In the other
direction, if span(S1∪S2) = V then we can write every v∈ V in the form v = v1 +
v2, where v1 ∈ S1 and v2 ∈ S2. Since B andC are bases ofS1 andS2, respectively,
we can write v1 and v2 as linear combinations of vectors from those sets:

v = v1 +v2 =
(
c1x1 + c2x2 + · · ·+ ckxk

)
+
(
d1y1 +d2y2 + · · ·+dmym

)
,

where x1, x2, . . ., xk ∈ S1, y1, y2, . . ., ym ∈ S2, and c1, c2, . . ., ck, d1, d2, . . .,
dm ∈ F. We have thus written v as a linear combination of vectors from B∪C,
so span(B∪C) = V .

For part (b), suppose that S1∩S2 = {0} and consider some linear combi-
nation of vectors from B∪C that equals the zero vector:

(
c1x1 + c2x2 + · · ·+ ckxk

)
︸ ︷︷ ︸

call this v1

+
(
d1y1 +d2y2 + · · ·+dmym

)
︸ ︷︷ ︸

call this v2

= 0, (1.B.3)

where

As was the case with
proofs about bases,

these proofs are
largely uninspiring
definition-chasing

affairs. The theorems
themselves should

be somewhat
intuitive though.

the vectors and scalars come from the same spaces as they did in part (a).
Our goal is to show that c1 = c2 = · · · = ck = 0 and d1 = d2 = · · · = dm = 0,
which implies linear independence of B∪C.

To this end, notice that Equation (1.B.3) says that 0 = v1 + v2, where
v1 ∈ S1 and v2 ∈ S2. Since 0 = 0+0 is another way of writing 0 as a sum of
something from S1 and something from S2, Theorem 1.B.1 tells us that v1 = 0
and v2 = 0. It follows that

c1x1 + c2x2 + · · ·+ ckxk = 0 and d1y1 +d2y2 + · · ·+dmym = 0,



1.B Extra Topic: Direct Sum, Orthogonal Complement 125

so linear independence of B implies c1 = c2 = · · ·= ck = 0 and linear indepen-
dence of C similarly implies d1 = d2 = · · · = dm = 0. We thus conclude that
B∪C is linearly independent.

All that remains is to show that B∪C being linearly independent implies
S1∩S2 = {0}. This proof has gone on long enough already, so we leave this
final implication to Exercise 1.B.5. �

For example, the above theorem implies that if we take any basis of a vector
space V and partition that basis in any way, then the spans of those partitions
form a direct sum decomposition of V . For example, if B = {v1,v2,v3,v4} is a
basis of a (4-dimensional) vector space V then

V = span(v1)⊕ span(v2)⊕ span(v3)⊕ span(v4)
= span(v1∪v2)⊕ span(v3)⊕ span(v4)
= span(v1)⊕ span(v2∪v4)⊕ span(v3)
= span(v1∪v3∪v4)⊕ span(v2),

as well as many other possibilities.

Example 1.B.2
Even and Odd

Polynomials as a
Direct Sum

Let PE and PO be the subspaces of P consisting of the even and odd
polynomials, respectively:

PE = { f ∈ P : f (−x) = f (x)} and PO = { f ∈ P : f (−x) =− f (x)}.

Show that
We introduced PE

and PO in
Example 1.1.21.

P = PE⊕PO.

Solution:
We could directly show that span(PE∪PO) = P and PE∩PO = {0},

but perhaps an easier way is consider how the bases of these vector spaces
relate to each other. Recall from Example 1.1.21 that B = {1,x2,x4, . . .} is
a basis of PE and C = {x,x3,x5, . . .} is a basis of PO. Since

B∪C = {1,x,x2,x3, . . .}

is a basis of P , we conclude from Theorem 1.B.2 that P = PE⊕PO.

Another direct consequence of Theorem 1.B.2 is the (hopefully intuitive)
fact that we can only write a vector space as a direct sum of subspaces if the
dimensions of those subspaces sum up to the dimension of the original space.
Note that this agrees with our intuition from Example 1.B.1 that subspaces in a
direct sum must not be too big, but also must not be too small.

Corollary 1.B.3
Dimension of

(Internal) Direct
Sums

Suppose that V is a finite-dimensional vector space with subspaces
S1,S2 ⊆ V satisfying V = S1⊕S2. Then

dim(V) = dim(S1)+dim(S2).

Proof. We recall from Definition 1.2.2 that the dimension of a finite-dimensional
vector space is the number of vectors in any of its bases. If B and C are bases
of S1 andRecall that |B|

means the number
of vectors in B.

S2, respectively, then the fact that S1∩S2 = {0} implies B∩C = {},
since 0 cannot be a member of a basis. It follows that |B∪C|= |B|+ |C|, so

dim(V) = |B∪C|= |B|+ |C|= dim(S1)+dim(S2). �
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For example, we can now see straight away that the subspaces S1 and S2
from Examples 1.B.1(a) and (b) do not form a direct sum decomposition of R3

since in part (a) we have dim(S1)+dim(S2) = 1+1 = 2 6= 3, and in part (b)
we have dim(S1)+dim(S2) = 2+2 = 4 6= 3. It is perhaps worthwhile to work
through a somewhat more exotic example in a vector space other than Rn.

Example 1.B.3
The Cartesian

Decomposition
of Matrices

LetMS
n andMsS

n be the subspaces ofMn consisting of the symmetric
and skew-symmetric matrices, respectively. Show that

Mn =MS
n⊕MsS

n .

Also compute the dimensions of each of these vector spaces.

Solution:
To see

Recall that A ∈Mn is
symmetric if AT = A

and it is
skew-symmetric if

AT =−A.

that property (b) of Definition 1.B.1 holds, suppose that A∈Mn
is both symmetric and skew-symmetric. Then

This example only
works if the ground
field does not have

1+1 = 0 (like in Z2,
for example). Fields

with this property are
said to have

“characteristic 2”,
and they often
require special

attention.

A = AT =−A,

from which it follows that A = O, soMS
n ∩MsS

n = {O}.
For property (a), we have to show that every matrix A ∈Mn can be

written in the form A = B+C, where BT = B and CT =−C. We can check
via direct computation that

A =
1
2
(
A+AT )

︸ ︷︷ ︸
symmetric

+
1
2
(
A−AT )

︸ ︷︷ ︸
skew-symmetric

,

so we can choose B = (A+AT )/2 and C = (A−AT )/2 (and it is straight-
forward to check that BT = B and CT = −C). We thus conclude that
Mn =MS

n⊕MsS
n , as desired.

We computed the dimensions of these vector spaces in Exercise 1.2.2:

dim(MS
n) =

n(n+1)
2

, dim(MsS
n ) =

n(n−1)
2

, and dim(Mn) = n2.

Note that these quantities are in agreement with Corollary 1.B.3, since

dim(MS
n)+dim(MsS

n ) =
n(n+1)

2
+

n(n−1)
2

= n2 = dim(Mn).

Remark 1.B.1
The Complex

Cartesian
Decomposition

While the decomposition of Example 1.B.3 works fine for complex matri-
ces (as well as matrices over almost any other field), a slightly different
decomposition that makes use of the conjugate transpose is typically used
in that setting instead. Indeed, we can write every matrix A ∈Mn(C) as a
sum of a Hermitian and a skew-Hermitian matrix via

A =
1
2
(
A+A∗

)
︸ ︷︷ ︸

Hermitian

+
1
2
(
A−A∗

)
︸ ︷︷ ︸

skew-Hermitian

. (1.B.4)

It is thus tempting to writeMn(C) =MH
n ⊕MsH

n (where nowMH
n
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and MsH
n denote the sets of Hermitian and skew-Hermitian matrices,

respectively). However, this is only true if we are thinking ofMn(C) as
a 2n2-dimensional vector space over R (not as an n2-dimensional vector
space over C like usual). The reason for this is simply that MH

n and
MsH

n are not even subspaces ofMn(C) over the field C (refer back to
Example 1.1.5—theThe matrix (A+A∗)/2

is sometimes called
the real part or

Hermitian part of A
and denoted by

Re(A), and similarly
(A−A∗)/(2i) is called
its imaginary part or
skew-Hermitian part

and denoted by
Im(A). Then

A = Re(A)+ iIm(A).

point is that if A is Hermitian or skew-Hermitian then
so is cA when c ∈ R, but not necessarily when c ∈ C).

It is also worth noting that, in light of Theorem 1.B.1, Equation (1.B.4)
provides the unique way of writing a matrix as a sum of a Hermitian and
skew-Hermitian matrix. This is sometimes called the Cartesian decom-
position of A (as is the closely-related decomposition of Example 1.B.3),
and it is analogous to the fact that every complex number can be written
as a sum of a real number and imaginary number:

a+ ib

Re

Im

-1 1 2 3

-1

1

2

a

b

Indeed, Hermitian

We return to this idea
of “matrix versions”

of certain subsets of
complex numbers in

Figure 2.6.

matrices are often thought of as the “matrix version”
of real numbers, and skew-Hermitian matrices as the “matrix version” of
imaginary numbers.

Just like we can use dimensionality arguments to make it easier to de-
termine whether or not a set is a basis of a vector space (via Theorem 1.2.1
or Exercise 1.2.27), we can also use dimensionality of subspaces to help us
determine whether or not they form a direct sum decomposition of a vector
space. In particular, if subspaces have the right size, we only need to check one
of the two properties from Definition 1.B.1 that define the direct sum, not both.

Theorem 1.B.4
Using Dimension to

Check a Direct
Sum Decomposition

Suppose V is a finite-dimensional vector space with subspaces S1,S2 ⊆ V .
a) If dim(V) 6= dim(S1)+dim(S2) then V 6= S1⊕S2.
b) If dim(V) = dim(S1)+dim(S2) then the following are equivalent:

i) span(S1∪S2) = V ,
ii) S1∩S2 = {0}, and

iii) V = S1⊕S2.

Proof. Part (a) of the theorem follows immediately from Corollary 1.B.3, so
we focus our attention on part (b). Also, condition (iii) immediately implies
conditions (i) and (ii), since those two conditions define exactly what V =
S1⊕S2 means. We thus just need to show that condition (i) implies (iii) and
that (ii) also implies (iii).

To see that condition (i) implies condition (iii), we first note that if B and C



128 Chapter 1. Vector Spaces

are bases of S1 and S2, respectively, then

|B∪C| ≤ |B|+ |C|= dim(S1)+dim(S2) = dim(V).

However, equality must actually be attained since Theorem 1.B.2 tells us that
(since (i) holds) span(B∪C) = V . It then follows from Exercise 1.2.27 (since
B∪C spans V and has dim(V) vectors) that B∪C is a basis of V , so using
Theorem 1.B.2 again tells us that V = S1⊕S2.

The proof that condition (ii) implies condition (iii) is similar, and left as
Exercise 1.B.6. �

1.B.2 The Orthogonal Complement

Just like the direct sum can be thought of as a “subspace version” of bases,
there is also a “subspace version” of orthogonal bases. As is usually the case
when dealing with orthogonality, we need slightly more structure here than a
vector space itself provides—we need an inner product as well.

Definition 1.B.2
Orthogonal

Complement

Suppose V is an inner product space and B ⊆ V is a set of vectors. The
orthogonal complement of B, denoted by B⊥, is the subspace of V con-
sisting of the vectors that are orthogonal to everything in

B⊥ is read as “B
perp”, where “perp”

is short for
perpendicular.

B:

B⊥ def=
{

v ∈ V : 〈v,w〉= 0 for all w ∈ B
}
.

For example, two lines in R2 that are perpendicular to each other are orthog-
onal complements of each other, as are a plane and a line in R3 that intersect
at right angles (see Figure 1.23). The idea is that orthogonal complements
break an inner product space down into subspaces that only intersect at the zero
vector, much like (internal) direct sums do, but with the added restriction that
those subspaces must be orthogonal to each other.

Figure 1.23: Orthogonal complements in R2 and R3.

It is straightforward to show that B⊥ is always a subspace of V (even if B
is not), so we leave the proof of this fact to Exercise 1.B.10. Furthermore, if
S is a subspace of V then we will see shortly that (S⊥)⊥ = S, at least in the
finite-dimensional case, so orthogonal complement subspaces come in pairs.
For now, we look at some examples.
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Example 1.B.4
Orthogonal

Complements in
Euclidean Space

Describe the orthogonal complements of the following subsets of Rn.
a) The line in R2 through the origin and the vector (2,1).
b) The vector (1,−1,2) ∈ R3.

Solutions:
a) We

Actually, we want to
find all vectors v

orthogonal to every
multiple of (2,1).

However, v is
orthogonal to a

non-zero multiple of
(2,1) if and only if it is

orthogonal to (2,1)
itself.

want to determine which vectors are orthogonal to (2,1). Well,
if v = (v1,v2) then we can rearrange the equation

(v1,v2) · (2,1) = 2v1 + v2 = 0

to the form v2 =−2v1, or v = v1(1,−2). It follows that the orthog-
onal complement is the set of scalar multiples of (1,−2):

(2,1)

(1,−2)

y

x

b) We want to determine which vectors are orthogonal to (1,−1,2):
the vectors v = (v1,v2,v3) with v1− v2 + 2v3 = 0. This is a (quite
degenerate) linear system with solutions of the form

v = (v1,v2,v3) = v2(1,1,0)+ v3(−2,0,1),

where v2 and v3 are free variables. It follows that the orthogonal
complement is the plane in R3 with basis {(1,1,0),(−2,0,1)}:

y

(1,−1,2)

(2,2,0)

(−2,0,1)

x

z

We replaced the
basis vector (1,1,0)

with (2,2,0) just to
make this picture a

bit prettier. The
author is very

superficial.

Example 1.B.5
Orthogonal

Complements of
Matrices

Describe the orthogonal complement of the set inMn consisting of just
the identity matrix: B = {I}.
Solution:

Recall from Example 1.3.16 that the standard (Frobenius) inner prod-
uct onMn is 〈X ,Y 〉= tr(X∗Y ), so X ∈ B⊥ if and only if 〈X , I〉= tr(X∗) =
0. This is equivalent to simply requiring that tr(X) = 0.
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Example 1.B.6
Orthogonal

Complements of
Polynomials

Describe the orthogonal complement of the set B = {x,x3} ⊆ P3[−1,1].

Solution:
Our goal is to find all polynomials f (x) = ax3 +bx2 + cx+d with the

property that

〈 f (x),x〉=
∫ 1

−1
x f (x) dx = 0 and 〈 f (x),x3〉=

∫ 1

−1
x3 f (x) dx = 0.

Straightforward calculation shows that

〈 f (x),x〉=
∫ 1

−1

(
ax4 +bx3 + cx2 +dx

)
dx =

2a
5

+
2c
3

and

〈 f (x),x3〉=
∫ 1

−1

(
ax6 +bx5 + cx4 +dx3) dx =

2a
7

+
2c
5

.

Setting both

Similarly, it is the case
that the orthogonal
complement of the

set of even
polynomials is the set

of odd polynomials
(and vice-versa) in

P [−1,1] (see
Exercise 1.B.17).

of these quantities equal to 0 and then solving for a and c
gives a = c = 0, so f ∈ B⊥ if and only if f (x) = bx2 +d.

We now start pinning down the various details of orthogonal complements
that we have alluded to—that they behave like an orthogonal version of direct
sums, that they behave like a “subspace version” of orthonormal bases, and that
orthogonal complements come in pairs. The following theorem does most of the
heavy lifting in this direction, and it is completely analogous to Theorem 1.B.2
for (internal) direct sums.

Theorem 1.B.5
Orthonormal Bases of

Orthogonal
Complements

Suppose V is a finite-dimensional inner product space and S ⊆ V is a
subspace. If B is an orthonormal basis of S and C is an orthonormal basis
of S⊥ then B∪C is an orthonormal basis of V .

Proof. First note that B and C are disjoint since the only vector that S and
S⊥ have in common is 0, since that is the only vector orthogonal to itself.
With that in mind, write B = {u1,u2, . . . ,um} and C = {v1,v2, . . . ,vn}, so
that B∪C = {u1,u2, . . . ,um,v1,v2, . . . ,vn}. To see that B∪C is a mutually
orthogonal set, notice that

〈ui,u j〉= 0 for all 1≤ i 6= j ≤ m, since B is an orthonormal basis,
〈vi,v j〉= 0 for all 1≤ i 6= j ≤ n, since C is an orthonormal basis, and

〈ui,v j〉= 0 for all 1≤ i≤ m,1≤ j ≤ n, since ui ∈ S and v j ∈ S⊥.

We thus just need to show that span(B∪C) = V . To this end, recall from
Exercise 1.4.20 that we can extend B∪C to an orthonormal basis of V : we can
find k ≥ 0 unit vectors w1,w2, . . .wk such that the set

{u1,u2, . . . ,um,v1,v2, . . . ,vn,w1,w2, . . .wk}

is an orthonormal basis of V . However, since this is an orthonormal basis, we
know that 〈wi,u j〉= 0 for all 1≤ i≤ k and 1≤ j ≤ m, so in fact wi ∈ S⊥ for
all i. This implies that {v1,v2, . . . ,vn,w1,w2, . . . ,wk} is a mutually orthogonal
subset of S⊥ consisting of n + k vectors. However, since dim(S⊥) = |C| =
n we conclude that the only possibility is that k = 0, so B∪C itself is a
basis of V . �
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The above theorem has a few immediate (but very useful) corollaries. For
example, we can now show that orthogonal complements really are a stronger
version of direct sums:

Theorem 1.B.6
Orthogonal

Complements are
Direct Sums

Suppose V is a finite-dimensional inner product space with subspaces
S1,S2 ⊆ V . The following are equivalent:

a) S2 = S⊥1 .
b) V = S1⊕S2 and 〈v,w〉= 0 for all v ∈ S1 and w ∈ S2.

Proof. If property (a) holds (i.e., S2 = S⊥1 ) then the fact that 〈v,w〉= 0In particular, this
theorem tells us that

if V is
finite-dimensional

then for every
subspace S ⊆ V we

have V = S⊕S⊥.

for all
v ∈ S1 and w ∈ S2 is clear, so we just need to show that V = S1⊕S2. Well,
Theorem 1.B.5 tells us that if B and C are orthonormal bases of S1 and S2,
respectively, then B∪C is an orthonormal basis of V . Theorem 1.B.2 then tells
us that V = S1⊕S2.

In the other direction, property (b) immediately implies S2 ⊆ S⊥1 , so we
just need to show the opposite inclusion. To that end, suppose w ∈ S⊥1 (i.e.,
〈v,w〉 = 0 for all v ∈ S1). Then, since w ∈ V = S1⊕S2, we can write w =
w1 +w2 for some w1 ∈ S1 and w2 ∈ S2. It follows that

0 = 〈v,w〉= 〈v,w1〉+ 〈v,w2〉= 〈v,w1〉

for all v ∈ S1, where the final equality follows from the fact that w2 ∈ S2 and
thus 〈v,w2〉= 0 by property (b). Choosing v = w1 then gives 〈w1,w1〉= 0, so
w1 = 0, so w = w2 ∈ S2, as desired. �

Example 1.B.7
The Orthogonal
Complement of

Symmetric Matrices

Suppose F = R or F = C and letMS
n andMsS

n be the subspaces ofMn(F)
consisting of the symmetric and skew-symmetric matrices, respectively.
Show that

(
MS

n
)⊥ =MsS

n .

Solution:
Recall from Example 1.B.3 thatMn =MS

n⊕MsS
n . Furthermore, we

can use basic properties of the trace to see that if A ∈MS
n and B ∈MsS

n
thenCompare this

orthogonality
property with
Exercise 1.A.2. 〈A,B〉= tr(A∗B) =−tr(ABT ) =−tr

(
(BA∗)T )

=−tr(BA∗) =−tr(A∗B) =−〈A,B〉,

so 〈A,B〉= 0. It then follows from Theorem 1.B.6 that
(
MS

n
)⊥ =MsS

n .

Theorem 1.B.6 tells us that for every subspace S of V , we have V = S⊕S⊥,
so everything that we already know about direct sums also applies to orthogonal
complements.Most of these

connections
between the

orthogonal
complement and
direct sum break

down in infinite
dimensions—see

Exercise 1.B.18.

For example:
• If V is a finite-dimensional inner product space with subspace S ⊆ V

and v ∈ V , then there exist unique vectors v1 ∈ S and v2 ∈ S⊥ such that
v = v1 +v2 (via Theorem 1.B.1).

• If V is a finite-dimensional inner product space with subspace S ⊆ V ,
then dim(S)+dim(S⊥) = dim(V) (via Corollary 1.B.3).

These results also tell us that if S is a subspace of a finite-dimensional inner
product space then (S⊥)⊥ = S . Slightly more generally, we have the following
fact:
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! If B is any subset (not necessarily a subspace) of a finite-
dimensional inner product space then (B⊥)⊥ = span(B).

This fact is proved in Exercise 1.B.14 and illustrated in Figure 1.24. Note in
particular that after taking the orthogonal complement of any set B once, further
orthogonal complements just bounce back and forth between B⊥ and span(B).

span(B) B
⊥

⊥

⊥

⊥
.
.
.

B

Figure 1.24: The orthogonal complement of B is B⊥, and the orthogonal com-
plement of B⊥ is span(B). After that point, taking the orthogonal complement of
span(B) results in B⊥ again, and vice-versa.

Example 1.B.8
(Orthogonal)

Projections and
Direct Sums

Suppose V is a vector space and P : V → V is a projection (i.e., P2 = P).
a) Show that V = range(P)⊕null(P).
b) Show that if P is an orthogonal projection (i.e., P∗ = P) then

range(P)⊥ = null(P).
If P is an orthogonal

projection then V
must actually be an

inner product space,
not just a vector

space.

Solutions:
a) The fact that range(P)∩null(P) = {0} is follows from noting that

if v ∈ range(P) then P(v) = v, and if v ∈ null(P) then P(v) = 0.
Comparing these two equations shows that v = 0.
To see that V = span(range(P)∪null(P)) (and thus V = range(P)⊕
null(P)), notice that every vector v ∈ V can be written in the form
v = P(v)+(v−P(v)). The first vector P(v) is in range(P) and the
second vector v−P(v) satisfies

P(v−P(v)) = P(v)−P2(v) = P(v)−P(v) = 0,

so it is in null(P). We have thus written v as a sum of vectors from
range(P) and null(P), so we are done.

b) We just observe that w ∈ range(P)⊥ is equivalent to several other
conditions:

w ∈ range(P)⊥ ⇐⇒ 〈P(v),w〉= 0 for all v ∈ V
⇐⇒ 〈v,P∗(w)〉= 0 for all v ∈ V
⇐⇒ 〈v,P(w)〉= 0 for all v ∈ V
⇐⇒ P(w) = 0
⇐⇒ w ∈ null(P).

It follows that range(P)⊥ = null(P), as desired.

The above example tells us that every projection breaks space down into two



1.B Extra Topic: Direct Sum, Orthogonal Complement 133

pieces—its range and null space, respectively—one of which is projects onto
and one of which it project along. Furthermore, the projection is orthogonal if
and only if these two component subspaces are orthogonal to each other (see
Figure 1.25).

Figure 1.25: An (a) oblique projection P1 and an (b) orthogonal projection P2
projecting along their null spaces onto their ranges.

In fact, just like orthogonal projections are completely determined by
their range (refer back to Theorem 1.4.10), oblique projections are uniquely
determined by their range and null space (see Exercise 1.B.7). For this reason,
just like we often talk about the orthogonal projection P onto a particular
subspace (range(P)), we similarly talk about the (not necessarily orthogonal)
projection P onto one subspace (range(P)) along another one (null(P)).

Orthogonality of the Fundamental Subspaces
The range and null space of a linear transformation acting on a finite-

dimensional inner product space, as well as the range and null space of its
adjoint, are sometimes collectively referred to as its fundamental subspaces.
We saw above that the direct sum and orthogonal complement play an important
role when dealing with the fundamental subspaces of projections. Somewhat
surprisingly, they actually play an important role in the fundamental subspaces
of every linear transformation.

For example, by using standard techniques from introductory linear algebra,
we can see that the matrix

A =




1 0 1 0 −1
1 1 0 0 1
−1 0 −1 1 4
2 1 1 −1 −3


 (1.B.5)

has the following sets as bases of its four fundamental subspaces:

Here, A∗ = AT since A
is real. subspaces of R4

{
range(A) :

{
(1,1,−1,2),(0,1,0,1),(0,0,1,−1)

}

null(A∗) :
{
(0,1,−1,−1)

}

subspaces of R5

{
range(A∗) :

{
(1,0,1,0,−1),(0,1,−1,0,2),(0,0,0,1,3)

}

null(A) :
{
(−1,1,1,0,0),(1,−2,0,−3,1)

}
.

There is a lot of structure that is suggested by these bases—the dimensions
of range(A) and null(A∗) add up to the dimension of the output space R4 that
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they live in, and similarly the dimensions of range(A∗) and null(A) add up
to the dimension of the input space R5 that they live in. Furthermore, it is
straightforward to check that the vector in this basis of null(A∗) is orthogonal
to each of the basis vectors for range(A), and the vectors in this basis for null(A)
are orthogonal to each of the basis vectors for range(A∗). All of these facts
can be explained by observing that the fundamental subspaces of any linear
transformation are in fact orthogonal complements of each other:

Theorem 1.B.7
Orthogonality of the

Fundamental
Subspaces

Suppose V and W are finite-dimensional inner product spaces and T :
V →W is a linear transformation. Then

a) range(T )⊥ = null(T ∗), and
b) null(T )⊥ = range(T ∗).

Proof. The proof of
To help remember
this theorem, note

that each equation
in it contains exactly
one T , one T ∗, one

range, one null
space, and one

orthogonal
complement.

this theorem is surprisingly straightforward. For part (a),
we just argue as we did in Example 1.B.8(b)—we observe that w ∈ range(T )⊥

is equivalent to several other conditions:

w ∈ range(T )⊥ ⇐⇒ 〈T (v),w〉= 0 for all v ∈ V
⇐⇒ 〈v,T ∗(w)〉= 0 for all v ∈ V
⇐⇒ T ∗(w) = 0
⇐⇒ w ∈ null(T ∗).

It follows that range(T )⊥ = null(T ∗), as desired. Part (b) of the theorem can
now be proved by making use of part (a), and is left to Exercise 1.B.15. �

The way to think of this theorem is as saying that, for every linear transfor-
mation T : V →W , we can decompose the input space V into an orthogonal
direct sum V = range(T ∗)⊕ null(T ) such that T acts like an invertible map
on one space (range(T ∗)) and acts like the zero map on the other (null(T )).
Similarly, we can decompose the output spaceW into an orthogonal direct sum
W = range(T )⊕null(T ∗) such that T maps all of V onto one space (range(T ))
and maps nothing into the other (null(T ∗)).Okay, T maps things

to 0 ∈ null(T ∗), but
that’s it! The rest of

null(T ∗) is untouched.

These relationships between the
four fundamental subspaces are illustrated in Figure 1.26.

For example, the matrix A from Equation (1.B.5) acts as a rank 3 linear
transformation that sends R5 to R4. This means that there is a 3-dimensional
subspace range(A∗) ⊆ R5 on which A just “shuffles things around” to an-
other 3-dimensional subspace range(A)⊆ R4. The orthogonal complement of
range(A∗) is null(A), which accounts for the other 2 dimensions of R5 that are
“squashed away”.We return to the

fundamental
subspaces in
Section 2.3.1.

If we recall from Exercise 1.4.22 that every linear transformation T acting
on a finite-dimensional inner product space has rank(T ) = rank(T ∗), we im-
mediately get the following corollary that tells us how large the fundamental
subspaces are compared to each other.

Corollary 1.B.8
Dimensions of the

Fundamental
Subspaces

Suppose V and W are finite-dimensional inner product spaces and T :
V →W is a linear transformation. Then

a) rank(T )+nullity(T ) = dim(V), and
b) rank(T )+nullity(T ∗) = dim(W).
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We make the idea
that T acts “like” an

invertible linear
transformation on

range(T ∗) precise in
Exercise 1.B.16.

V W
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e(T
∗ )

range(T )

nu
ll(

T
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T
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T (vr)

T (vn) = 0

T

T
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Figure 1.26: Given a linear transformation T : V →W, range(T ∗) and null(T ) are
orthogonal complements in V , while range(T ) and null(T ∗) are orthogonal comple-
ments in W. These particular orthogonal decompositions of V and W are useful
because T acts like the zero map on null(T ) (i.e., T (vn) = 0 for each vn ∈ null(T ))
and like an invertible linear transformation on range(T ∗) (i.e., for each w ∈ range(T )
there exists a unique vr ∈ range(T ∗) such that T (vr) = w).

1.B.3 The External Direct Sum

The internal direct sum that we saw in Section 1.B.1 works by first defining a
vector space and then “breaking it apart” into two subspaces. We can also flip
the direct sum around so as to start off with two vector spaces and then create
their “external” direct sum, which is a larger vector space that more or less
contains the original two vector spaces as subspaces. The following definition
makes this idea precise.

Definition 1.B.3
The External

Direct Sum

Let V andW be vector spaces over the same field F. Then the external
direct sum of V and W , denoted by V ⊕W , is the vector space with
vectors and operations defined as follows:

Vectors: ordered pairs (v,w), where v ∈ V and w ∈W .
Vector addition:In other words,

V⊕W is the
Cartesian product of
V and W , together
with the entry-wise

addition and scalar
multiplication

operations.

(v1,w1)+(v2,w2) = (v1 +v2,w1 +w2) for all v1,v2 ∈
V and w1,w2 ∈W .

Scalar mult.: c(v,w) = (cv,cw) for all c ∈ F, v ∈ V , and w ∈W .

It is hopefully believable that the external direct sum V ⊕W really is a
vector space, so we leave the proof of that claim to Exercise 1.B.19. For now,
we look at the canonical example that motivates the external direct sum.

Example 1.B.9
The Direct Sum

of Fn

Show that F⊕F2 (where “⊕” here means the external direct sum) is iso-
morphic to F3.
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Solution:
By definition, F⊕F2 consists of vectors of the form (x,(y,z)), where

x ∈ F and (y,z) ∈ F2 (together with the “obvious” vector addition and
scalar multiplication operations). It is straightforward to check that erasing
the inner set of parentheses is an isomorphism (i.e., the linear map T :
F⊕ F2 → F3 defined by T (x,(y,z)) = (x,y,z) is an isomorphism), so
F⊕F2 ∼= F3.

More generally, it should not be surprising that Fm⊕Fn ∼= Fm+n in a natural
way. Furthermore, this is exactly the point of the external direct sum—it lets us
build up large vector spaces out of small ones in much the same way that we
think of Fn as made up of many copies of F.

This is basically the same intuition that we had for the internal direct
sum, but in that case we started with Fm+n and broke it down into subspaces
that “looked like” (i.e.,We will show that the

internal and external
direct sums are

isomorphic shortly.

were isomorphic to) Fm and Fn. This difference in
perspective (i.e., whether we start with the large container vector space or
with the smaller component vector spaces) is the only appreciable difference
between the internal and external direct sums, which is why we use the same
notation for each of them.

Theorem 1.B.9
Bases of the

External Direct
Sum

Suppose V andW are vector spaces with bases B and C, respectively, and
define the following subsets of the external direct sum V ⊕W :

B′ =
{
(v,0) : v ∈ B

}
and C′ =

{
(0,w) : w ∈C

}
.

Then B′∪C′ is a basis of V ⊕W .

Proof. To see that span(B′∪C′) = V⊕W , suppose (x,y) ∈ V⊕W (i.e., x ∈ V
and y ∈W). Since B and C are bases of V andW , respectively, we can find v1,
v2, . . ., vk ∈ B, w1, w2, . . ., wm ∈C, and scalars c1, c2, . . ., ck and d1, d2, . . .,
dm such that

x =
k

∑
i=1

civi and y =
m

∑
j=1

d jw j.

It follows that

(x,y) = (x,0)+(0,y) =

(
k

∑
i=1

civi,0

)
+

(
0,

m

∑
j=1

d jw j

)

=
k

∑
i=1

ci(vi,0)+
m

∑
j=1

d j(0,w j),

which is a linear combination of vectors from B′∪C′.
The proof of linear independence is similar, so we leave it to

Exercise 1.B.20. �

In the finite-dimensional case, the above result immediately implies the
following corollary, which helps clarify why we refer to the external direct sum
as a “sum” in the first place.
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Corollary 1.B.10
Dimension of

(External) Direct
Sums

Suppose V andW are finite-dimensional vector spaces with external direct
sum V ⊕W . Then

dim(V ⊕W) = dim(V)+dim(W).

Proof. JustCompare this
corollary (and its

proof) to
Corollary 1.B.3.

observe that the sets B′ and C′ from Theorem 1.B.9 have empty
intersection (keep in mind that they cannot even have (0,0) in common, since
B and C are bases so 0 /∈ B,C), so

dim(V ⊕W) = |B′∪C′|= |B′|+ |C′|= |B|+ |C|= dim(V)+dim(W),

as claimed. �

We close this section by noting that, in practice, people often just talk about
the direct sum, without specifying whether they mean the internal or external
one (much like we use the same notation for each of them). The reason for this
is two-fold:

• First, it is always clear from context whether a direct sum is internal or
external. If the components in the direct sum were first defined and then
a larger vector space was constructed via their direct sum, it is external.
On the other hand, if a single vector space was first defined and then
it was broken down into two component subspaces, the direct sum is
internal.

• Second, the internal and external direct sums are isomorphic in a natural
way. If V andW are vector spaces with external direct sum V ⊕W , then
we cannot quite say that V ⊕W is the internal direct sum of V andW ,
since they are not even subspaces of V ⊕W . However, V ⊕W is the
internal direct sum of its subspaces

V ′ =
{
(v,0) : v ∈ V

}
and W ′ =

{
(0,w) : w ∈W

}
,

which are pretty clearly isomorphic to V andW , respectively (see Exer-
cise 1.B.21).

Exercises solutions to starred exercises on page 460

1.B.1 Find a basis for the orthogonal complement of each
of the following sets in the indicated inner product space.

∗(a) {(3,2)} ⊂ R2

(b) {(3,2),(1,2)} ⊂ R2

∗(c) {(0,0,0)} ⊂ R3

(d) {(1,1,1),(2,1,0)} ⊂ R3

∗(e) {(1,2,3),(1,1,1),(3,2,1)} ⊂ R3

(f) {(1,1,1,1),(1,2,3,1)} ⊂ R4

∗(g) MS
2 ⊂M2 (the set of symmetric 2×2 matrices)

(h) P1[−1,1]⊂P3[−1,1]

1.B.2 Compute a basis of each of the four fundamental
subspaces of the following matrices and verify that they
satisfy the orthogonality relations of Theorem 1.B.7.

∗(a)
[

1 2
3 6

]

∗(c)



1 2 3
4 5 7
7 8 9




(b)
[

2 1 3 1
4 −1 2 3

]

(d)



1 3 4 1
2 1 2 2
−1 2 2 −1
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1.B.3 Determine which of the following statements are
true and which are false.

(a) If S1,S2 ⊆ V are subspaces such that V = S1⊕S2
then V = S2⊕S1 too.

∗(b) If V is an inner product space then V⊥ = {0}.
(c) If A ∈Mm,n, v ∈ range(A), and w ∈ null(A) then

v ·w = 0.
∗(d) If A ∈Mm,n, v ∈ range(A), and w ∈ null(A∗) then

v ·w = 0.
(e) If a vector space V has subspaces S1,S2, . . . ,Sk satis-

fying span(S1∪S2∪·· ·∪Sk) =V and Si∩S j = {0}
for all i 6= j then V = S1⊕·· ·⊕Sk .

∗(f) The set
{(e1,e1),(e1,e2),(e1,e3),(e2,e1),(e2,e2),(e2,e3)}
is a basis of the external direct sum R2⊕R3.

(g) The external direct sum P2⊕P3 has dimension 6.

∗∗1.B.4 Suppose V is a finite-dimensional vector space
with basis {v1,v2, . . . ,vk}. Show that

V = span(v1)⊕ span(v2)⊕·· ·⊕ span(vk).

∗∗ 1.B.5 Suppose V is a vector space with subspaces
S1,S2 ⊆ V that have bases B and C, respectively. Show
that if B∪C (as a multiset) is linearly independent then
S1 ∩S2 = {0}.
[Side note: This completes the proof of Theorem 1.B.2.]

∗∗1.B.6 Complete the proof of Theorem 1.B.4 by show-
ing that condition (b)(ii) implies condition (b)(iii). That is,
show that if V is a finite-dimensional vector space with sub-
spaces S1,S2 ⊆ V such that dim(V) = dim(S1)+dim(S2)
and S1 ∩S2 = {0}, then V = S1⊕S2.

∗∗1.B.7 Suppose V is a finite-dimensional vector space
with subspaces S1,S2 ⊆ V . Show that there is at most one
projection P : V→V with range(P) = S1 and null(P) = S2.

[Side note: As long as S1⊕S2 = V , there is actually exactly
one such projection, by Exercise 1.B.8.]

∗∗1.B.8 Suppose A,B ∈Mm,n have linearly independent
columns and range(A)⊕ null(B∗) = Fm (where F = R or
F = C).

(a) Show that B∗A is invertible.
(b) Show that P = A(B∗A)−1B∗ is the projection onto

range(A) along null(B∗).

[Side note: Compare this exercise with Exercise 1.4.30,
which covered orthogonal projections.]

1.B.9 Let S be a subspace of a finite-dimensional inner
product space V . Show that if P is the orthogonal projection
onto S then I−P is the orthogonal projection onto S⊥.

∗∗1.B.10 Let B be a set of vectors in an inner product
space V . Show that B⊥ is a subspace of V .

1.B.11 Suppose that B and C are sets of vectors in an inner
product space V such that B⊆C. Show that C⊥ ⊆ B⊥.

1.B.12 Suppose V is a finite-dimensional inner prod-
uct space and S,W1,W2 ⊆ V are subspaces for which
V = S⊕W1 = S⊕W2.

(a) Show that if 〈v,w1〉 = 〈v,w2〉 = 0 for all v ∈ S,
w1 ∈W1 and w2 ∈W2 then W1 = W2.

(b) Provide an example to show that W1 may not equal
W2 if we do not have the orthogonality requirement
of part (a).

1.B.13 Show that if V is a finite-dimensional inner product
space and B⊆ V then B⊥ =

(
span(B)

)⊥.

∗∗1.B.14 Show that if V is a finite-dimensional inner prod-
uct space and B⊆ V then (B⊥)⊥ = span(B).

[Hint: Make use of Exercises 1.B.12 and 1.B.13.]

∗∗1.B.15 Prove part (b) of Theorem 1.B.7. That is, show
that if V and W are finite-dimensional inner product spaces
and T : V →W is a linear transformation then null(T )⊥ =
range(T ∗).

∗∗1.B.16 Suppose V and W are finite-dimensional in-
ner product spaces and T : V →W is a linear transforma-
tion. Show that the linear transformation S : range(T ∗)→
range(T ) defined by S(v) = T (v) is invertible.

[Side note: S is called the restriction of T to range(T ∗).]

∗∗1.B.17 Let PE[−1,1] and PO[−1,1] denote the sub-
spaces of even and odd polynomials, respectively, in
P [−1,1]. Show that (PE[−1,1])⊥ = PO[−1,1].

∗∗1.B.18 Let C[0,1] be the inner product space of continu-
ous functions on the real interval [0,1] and let S ⊂ C[0,1]
be the subspace

S =
{

f ∈ C[0,1] : f (0) = 0
}
.

(a) Show that S⊥ = {0}.
[Hint: If f ∈ S⊥, consider the function g∈ S defined
by g(x) = x f (x).]

(b) Show that (S⊥)⊥ 6= S.

[Side note: This result does not contradict Theorem 1.B.6
or Exercise 1.B.14 since C[0,1] is not finite-dimensional.]

∗∗1.B.19 Show that if V and W are vector spaces over the
same field then their external direct sum V⊕W is a vector
space.

∗∗1.B.20 Complete the proof of Theorem 1.B.9 by show-
ing that if B and C are bases of vector spaces V and W ,
respectively, then the set B′ ∪C′ (where B′ and C′ are as
defined in the statement of that theorem) is linearly indepen-
dent.

∗∗1.B.21 In this exercise, we pin down the details that
show that the internal and external direct sums are isomor-
phic. Let V and W be vector spaces over the same field.

(a) Show that the sets

V ′ = {(v,0) : v ∈ V} and W ′ = {(0,w) : w ∈W}
are subspaces of the external direct sum V⊕W .

(b) Show that V ′ ∼= V and W ′ ∼= W .
(c) Show that V⊕W = V ′⊕W ′, where the direct sum

on the left is external and the one on the right is
internal.
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1.C Extra Topic: The QR Decomposition

Many linear algebraic algorithms and procedures can be rephrased as a certain
way of decomposing a matrix into a product of simpler matrices. For example,
Gaussian elimination is the standard method that is used to solve systems of
linear equations, and it is essentially equivalent to a matrix decomposition that
the reader may be familiar with: the LU decomposition, which says that most
matrices A ∈Mm,n can be written in the form

A = LU,

where L∈Mm is lower triangular and U ∈Mm,n is upper triangular. The rough
idea is that L encodes the “forward elimination” portion of Gaussian elimination
that gets A into row echelon form,Some matrices do

not have an LU
decomposition, but

can be written in the
form A = PLU , where

P ∈Mm is a
permutation matrix

that encodes the
swap row operations

used in Gaussian
elimination.

U encodes the “backward substitution” step
that solves for the variables from row echelon form (for details, see [Joh20,
Section 2.D], for example).

In this section, we explore a matrix decomposition that is essentially equiv-
alent to the Gram–Schmidt process (Theorem 1.4.6) in a very similar sense.
Since the Gram–Schmidt process tells us how to convert any basis of Rn or
Cn into an orthonormal basis of the same space, the corresponding matrix
decomposition analogously provides us with a way of turning any invertible
matrix (i.e., a matrix with columns that form a basis of Rn or Cn) into a unitary
matrix (i.e., a matrix with columns that form an orthonormal basis of Rn or
Cn).

1.C.1 Statement and Examples

We now state the main theorem of this section, which says that every matrix
can be written as a product of a unitary matrix and an upper triangular matrix.
As indicated earlier, our proof of this fact, as well as our method of actually
computing this matrix decomposition, both come directly from the Gram–
Schmidt process.

Theorem 1.C.1
QR Decomposition

Suppose F = R or F = C, and A ∈Mm,n(F). There exists a unitary ma-
trix U ∈Mm(F) and an upper triangular matrix T ∈Mm,n(F) with non-
negative real entries on its diagonal such that

A = UT.

We call such a decomposition of A a QR decomposition.

Before proving this theorem, we clarify that an upper triangular matrix T is
one for which ti, j = 0 whenever i > j, even if T is not square. For example,




1 2 3
0 4 5
0 0 6


 ,




1 2
0 3
0 0


 , and




1 2 3 4
0 5 6 7
0 0 8 9




are all examples of upper triangular matrices.
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Proof of Theorem 1.C.1. We start by proving this result in the special case
when

In particular, this first
argument covers the

case when A is
square and

invertible (see
Theorem A.1.1).

m≥ n and A has linearly independent columns. We partition A as a block
matrix according to its columns, which we denote by v1, v2, . . ., vn ∈ Fm:

A =
[

v1 | v2 | · · · | vn
]
.

To see that A has a QR decomposition, we recall that the Gram–Schmidt pro-
cess (Theorem 1.4.6) tells us that there is a set of vectors {u1,u2, . . . ,un} with
the property that, for each 1≤ j ≤ n, {u1,u2, . . . ,u j} is an orthonormal basis
of span(v1,v2, . . . ,v j). Specifically, we can write v j as a linear combination

v j = t1, ju1 + t2, ju2 + · · ·+ t j, ju j,

where

This formula for ti, j
follows from

rearranging the
formula in

Theorem 1.4.6 so as
to solve for v j (and
choosing the inner
product to be the

dot product). It also
follows from

Theorem 1.4.5, which
tells us that

t j, j = u j ·v j too.

t j, j =

∥∥∥∥∥v j−
j−1

∑
i=1

(ui ·v j)ui

∥∥∥∥∥ and ti, j =

{
ui ·v j if i < j, and
0 if i > j.

We then extend {u1,u2, . . . ,un} to an orthonormal basis {u1,u2, . . . ,um}
of Fm and define U =

[
u1 | u2 | · · · | um

]
, noting that orthonormality of

its columns implies that U is unitary. We also define T ∈ Mm,n to be the
upper triangular matrix with ti, j as its (i, j)-entry for all 1 ≤ i ≤ m and 1 ≤
j ≤ n (noting that its diagonal entries t j, j are clearly real and non-negative, as
required). Block matrix multiplication then shows that the j-th column of UT
is

UT e j =
[

u1 | u2 | · · · | um
]




t1, j
...

t j, j

0
...
0




= t1, ju1 + t2, ju2 + · · ·+ t j, ju j = v j,

which is the j-th column of A, for all 1≤ j ≤ n. It follows that UT = A, which
completes the proof in the case when m ≥ n and A has linearly independent
columns.

If n > m then it is not possible for the columns of A to be linearly inde-
pendent. However, if we write A =

[
B | C

]
with B ∈Mm having linearly

independent columns then the previous argument shows that B has a QR de-
composition B = UT .In other words, B is

invertible.
We can then write

A = U
[

T |U∗C
]
,

which is a QR decomposition of A.
We defer the proof of the case when the leftmost min{m,n} columns of A

do not form a linearly independent set to Section 2.D.3 (see Theorem 2.D.5 in
particular). The rough idea is that we can approximate a QR decomposition of
any matrix A as well as we like via QR decompositions of nearby matrices that
have their leftmost min{m,n} columns being linearly independent. �

Before computing some explicit QR decompositions of matrices, we make
some brief observations about it:

The name “QR”
decomposition is

mostly just a
historical

artifact—when it
was first introduced,
the unitary matrix U
was called Q all the

upper triangular
matrix T was called

R (for “right
triangular”).
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• The proof above shows that if A ∈Mn is invertible then the diagonal
entries of T are in fact strictly positive, not just non-negative (since
v j 6= ∑

j−1
i=1 (ui ·v j)ui). However, if A is not invertible then some diagonal

entries of T will in fact equal 0.
• If A ∈Mn is invertible then its QR decomposition is unique (see Exer-

cise 1.C.5). However, uniqueness fails for non-invertible matrices.
• If A ∈Mm,n(R) then we can choose the matrices U and T in the QR

decomposition to be real as well.

Example 1.C.1
Computing a QR

Decomposition

Compute the QR decomposition of the matrix A = 


1 3 3
2 2 −2
−2 2 1




.

Solution:
As suggested by the proof of Theorem 1.C.1, we can find the QR

decomposition of A by applying the Gram–Schmidt process to the columns
v1, v2, and v3 of A to recursively construct mutually orthogonal vectors
w j = v j −∑

j−1
i=1 (ui · v j)ui and their normalizations u j = w j/‖w j‖ for

j = 1,2,3:

The
“lower-triangular”
inner products like
u2 ·v1 exist, but are

irrelevant for the
Gram–Schmidt

process and QR
decomposition. Also,
the “diagonal” inner

products come for
free since

u j ·v j = ‖w j‖, and we
already computed

this norm when
computing

u j = w j/‖w j‖.

j w j u j u j ·v1 u j ·v2 u j ·v3

1 (1,2,−2) (1,2,−2)/3 3 1 −1
2 (8,4,8)/3 (2,1,2)/3 – 4 2
3 (2,−2,−1) (2,−2,−1)/3 – – 3

It follows that A has QR decomposition A = UT , where

U =
[

u1 | u2 | u3
]
=

1
3




1 2 2
2 1 −2
−2 2 −1


 and

T =




u1 ·v1 u1 ·v2 u1 ·v3

0 u2 ·v2 u2 ·v3

0 0 u3 ·v3


=




3 1 −1
0 4 2
0 0 3


 .

Example 1.C.2
Computing a

Rectangular QR
Decomposition

Compute a QR decomposition of the matrix A =



3 0 1 2
−2 −1 −3 2
−6 −2 −2 5




.

Solution:
Since A has more columns than rows, its columns cannot possibly

form a linearly independent set. We thus just apply the Gram–Schmidt
process to its leftmost 3 columns v1, v2, and v3, while just computing dot
products with its 4th column v4 for later use:

We showed in the
proof of

Theorem 1.C.1 that
the 4th column of T

is U∗v4, whose entries
are exactly the dot

products in the final
column here: u j ·v4

for j = 1,2,3.

j w j u j u j ·v1 u j ·v2 u j ·v3 u j ·v4

1 (3,−2,−6) (3,−2,−6)/7 7 2 3 −4
2 (−6,−3,−2)/7 (−6,−3,−2)/7 – 1 1 −4
3 (4,−12,6)/7 (2,−6,3)/7 – – 2 1
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It follows that A has QR decomposition A = UT , where

U =
[

u1 | u2 | u3
]
=

1
7




3 −6 2
−2 −3 −6
−6 −2 3


 and

T =




u1 ·v1 u1 ·v2 u1 ·v3 u1 ·v4

0 u2 ·v2 u2 ·v3 u2 ·v4

0 0 u3 ·v3 u3 ·v4


=




7 2 3 −4
0 1 1 −4
0 0 2 1


 .

Example 1.C.3
Computing a

Tall/Thin QR
Decomposition

Compute a QR decomposition of the matrix A =



−1 −3 1
−2 2 −2
2 −2 0
4 0 −2




.

Solution:
Since A has more rows than columns, we can start by applying the

Gram–Schmidt process to its columns, but this will only get us the leftmost
3 columns of the unitary matrix U :

j w j u j u j ·v1 u j ·v2 u j ·v3

1 (−1,−2,2,4) (−1,−2,2,4)/5 5 −1 −1
2 (−16,8,−8,4)/5 (−4,2,−2,1)/5 – 4 −2
3 (−4,−8,−2,−4)/5 (−2,−4,−1,−2)/5 – – 2

To find its 4th column,We showed that
every mutually

orthogonal set of
unit vectors can be

extended to an
orthonormal basis in
Exercise 1.4.20. To do

so, just add vector
not in the span of

the current set,
apply

Gram–Schmidt, and
repeat.

we just extend its first 3 columns {u1,u2,u3} to an
orthonormal basis of R4. Up to sign, the unique unit vector u4 that works
as the 4th column of U is u4 = (2,−1,−4,2)/5, so it follows that A has
QR decomposition A = UT , where

U =
[

u1 | u2 | u3 | u4
]
=

1
5




−1 −4 −2 2
−2 2 −4 −1
2 −2 −1 −4
4 1 −2 2


 and

T =




u1 ·v1 u1 ·v2 u1 ·v3

0 u2 ·v2 u2 ·v3

0 0 u3 ·v3

0 0 0


=




5 −1 −1
0 4 −2
0 0 2
0 0 0


 .

Remark 1.C.1
Computing QR

Decompositions

The method of computing the QR decomposition that we presented here,
based on the Gram–Schmidt process, is typically not actually used in
practice. The reason for this is that the Gram–Schmidt process is numer-
ically unstable. If a set of vectors is “close” to linearly dependent then
changing those vectors even slightly can drastically change the resulting
orthonormal basis, and thus small errors in the entries of A can lead to a
wildly incorrect QR decomposition.

Numerically stable methods for computing the QR decomposition (and
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numerical methods for linear algebraic tasks in general) are outside of the
scope of this book, so the interested reader is directed to a book like [TB97]
for their treatment.

1.C.2 Consequences and Applications

One of the primary uses of the QR decomposition is as a method for solving
systems of linear equations more quickly than we otherwise could. To see how
this works, suppose we have already computed a QR decomposition A = UT
of the coefficient matrix of the linear system Ax = b. Then UT x = b, which is
a linear system that we can solve via the following two-step procedure:

• First, solve the linear system Uy = b for the vector y by setting y = U∗b.
• Next, solve the linear system T x = y for the vector x. This linear system

is straightforward to solve via backward elimination due to the triangular
shape of T .

Once we have obtained the vector x via this procedure, it is the case that

Ax = UT x = U(T x) = Uy = b,

so x is indeed a solution of the original linear system, as desired.

Example 1.C.4
Solving Linear

Systems via a QR
Decomposition

Use the QR decomposition to find all solutions of the linear system




3 0 1 2
−2 −1 −3 2
−6 −2 −2 5







w
x
y
z


=




1
0
4


 .

Solution:
We constructed the following QR decomposition A = UT of the coef-

ficient matrix A in Example 1.C.2:

U =
1
7




3 −6 2
−2 −3 −6
−6 −2 3


 and T =




7 2 3 −4
0 1 1 −4
0 0 2 1


 .

If b = (1,0,4) then setting y = U∗b gives

y =
1
7




3 −2 −6
−6 −3 −2
2 −6 3







1
0
4


=



−3
−2
2


 .
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Next, we solveSee Appendix A.1.1 if
you need a refresher

on linear systems.

the upper triangular system T x = y:



7 2 3 −4 −3
0 1 1 −4 −2
0 0 2 1 2


 R1/7

R3/2
−−−→




1 2/7 3/7 −4/7 −3/7
0 1 1 −4 −2
0 0 1 1/2 1




R1− 3
7 R3

R2−R3−−−−−→




1 2/7 0 −11/14 −6/7
0 1 0 −9/2 −3
0 0 1 1/2 1




R1− 2
7 R2−−−−−→




1 0 0 1/2 0
0 1 0 −9/2 −3
0 0 1 1/2 1


 .

It follows that z is a free variable, and w, x, and y are leading variables with
w =−z/2, x =−3+9z/2, and y = 1− z/2. It follows that the solutions
of this linear system (as well as the original linear system) are the vectors
of the form (w,x,y,z) = (0,−3,1,0)+ z(−1,9,−1,2)/2.

Remark 1.C.2
Multiple Methods for

Solving Repeated
Linear Systems

While solving a linear system via the QR decomposition is simpler than
solving it directly via Gaussian elimination, actually computing the QR
decomposition in the first place takes just as long as solving the linear
system directly. For this reason, the QR decomposition is typically only
used in this context to solve multiple linear systems, each of which has the
same coefficient matrix (which we can pre-compute a QR decomposition
of) but different right-hand-side vectors.

There are two other standard methods for solving repeated linear
systems of the form Ax j = b j ( j = 1,2,3, . . .) that it is worth comparing
to the QR decomposition:

• We could pre-compute A−1 and then set x j = A−1b j for each j. This
method has the advantage of being conceptually simple, but it is
slower and less numerically stable than the QR decomposition.If A ∈Mn then all

three of these
methods take O(n3)

operations to do the
pre-computation

and then O(n2)
operations to solve a

linear system,
compared to the

O(n3) operations
needed to solve a

linear system directly
via Gaussian

elimination.

• We could pre-compute an LU decomposition A = LU , where L
is lower triangular and U is upper triangular, and then solve the
pair of triangular linear systems Ly j = b j and Ux j = y j for each j.
This method is roughly twice as quick as the QR decomposition,
but its numerical stability lies somewhere between that of the QR
decomposition and the method based on A−1 described above.

Again, justification of the above claims is outside of the scope of this
book, so we direct the interested reader to a book on numerical linear
algebra like [TB97].

Once we have the QR decomposition of a (square) matrix, we can also use
it to quickly compute the absolute value of its determinant, since determinants
of unitary and triangular matrices are both easy to deal with.

Theorem 1.C.2
Determinant via

QR Decomposition

If A ∈Mn has QR decomposition A = UT with U ∈Mn unitary and
T ∈Mn upper triangular, then

|det(A)|= t1,1 · t2,2 · · · tn,n.
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Proof of Theorem 1.C.1. We just string together three facts about the determi-
nant that we already know:

• The determinant is multiplicative,We review these
properties of

determinants in
Appendix A.1.5.

so |det(A)|= |det(U)||det(T )|,
• U is unitary, so Exercise 1.4.11 tells us that |det(U)|= 1, and
• T is upper triangular, so |det(T )| = |t1,1 · t2,2 · · · tn,n| = t1,1 · t2,2 · · · tn,n,

with the final equality following from the fact that the diagonal entries of
T are non-negative. �

For example, we saw in Example 1.C.1 that the matrix

A =




1 3 3
2 2 −2
−2 2 1




has QR decomposition A = UT with

U =
1
3




1 2 2
2 1 −2
−2 2 −1


 and T =




3 1 −1
0 4 2
0 0 3


 .

It follows that |det(A)| is the product of the diagonal entries of T : |det(A)|=
3 ·4 ·3 = 36.In fact, det(A) = 36.

Exercises solutions to starred exercises on page 462

1.C.1 Compute the QR Decomposition of each of the
following matrices.

∗(a)
[

3 4
4 2

]

∗(c)



6 3
3 2
−6 −2




∗(e)



2 1 1 4
1 1 0 1
4 2 1 −2
2 2 2 2




(b)
[

15 −17 −1
8 −6 4

]

(d)



0 0 −1
4 −1 −2
−3 −3 −1




(f)


−11 4 −2 −1
10 −5 −3 0
−2 −2 −4 −2




1.C.2 Solve each of the following linear systems Ax = b
by making use of the provided QR decomposition A = UT :

∗(a) b =

[
1
2

]
, U =

1√
2

[
1 1
−1 1

]
, T =

[
2 1
0 3

]

(b) b =

[
3
−1

]
, U =

1
5

[
3 −4
4 3

]
, T =

[
2 3 1
0 1 −1

]

∗(c) b =




1
2
0


 , U =

1
7



−3 6 2
−2 −3 6
6 2 3




T =




3 −1 2
0 2 1
0 0 1




(d) b =




1
1
−2


 , U =

1
35



−15 30 10
18 −1 30
26 18 −15




T =




2 1 0 1
0 1 3 −2
0 0 2 2
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1.C.3 Determine which of the following statements are
true and which are false.

∗(a) Every matrix A∈Mm,n(R) has a QR decomposition
A = UT with U and T real.

(b) If A ∈Mn has QR decomposition A = UT then
det(A) = t1,1 · t2,2 · · · tn,n.

∗(c) If A ∈Mm,n has QR decomposition A = UT then
range(A) = range(T ).

(d) If A ∈Mn is invertible and has QR decomposition
A = UT then, for each 1≤ j≤ n, the span of the left-
most j columns of A equals the span of the leftmost
j columns of U .

1.C.4 Suppose that A ∈Mn is an upper triangular matrix.

(a) Show that A is invertible if and only if all of its diag-
onal entries are non-zero.

(b) Show that if A is invertible then A−1 is also upper
triangular. [Hint: First show that if b has its last k
entries equal to 0 (for some k) then the solution x to
Ax = b also has its last k entries equal to 0.]

(c) Show that if A is invertible then the diagonal entries
of A−1 are the reciprocals of the diagonal entries of
A, in the same order.

∗∗1.C.5 Show that if A ∈Mn is invertible then its QR
decomposition is unique.

[Hint: Exercise 1.4.12 might help.]

1.C.6 Suppose that A ∈M2 is the (non-invertible) matrix
with QR decomposition A = UT , where

U =
1
5

[
3 4
4 −3

]
and T =

[
0 0
0 1

]
.

Find another QR decomposition of A.

[Side note: Contrast this with the fact from Exercise 1.C.5
that QR decompositions of invertible matrices are unique.]

∗1.C.7 In this exercise, we investigate when the QR de-
composition of a rectangular matrix A ∈Mm,n is unique.

(a) Show that if n≥ m and the left m×m block of A is
invertible then its QR decomposition is unique.

(b) Provide an example that shows that if n < m then the
QR decomposition of A may not be unique, even if
its top n×n block is invertible.

1.C.8 Suppose A∈Mm,n. In this exercise, we demonstrate
the existence of several variants of the QR decomposition.

(a) Show that there exists a unitary matrix U and a lower
triangular matrix S such that A = US.
[Hint: What happens to a matrix’s QR decomposition
if we swap its rows and/or columns?]

(b) Show that there exists a unitary matrix U and an
upper triangular matrix T such that A = TU .

(c) Show that there exists a unitary matrix U and a lower
triangular matrix S such that A = SU .

1.D Extra Topic: Norms and Isometries

We now investigate how we can measure the length of vectors in arbitrary
vector spaces. We already know how to do this in Rn—the length of a vector
v ∈ Rn is

‖v‖=
√

v ·v =
√

v2
1 + v2

2 + · · ·+ v2
n.

Slightly more generally, we saw in Section 1.3.4 that we can use the norm
induced by the inner product to measure length in any inner product space:

‖v‖=
√
〈v,v〉.

However, it is sometimes preferable to use a measure of size that does not
rely on us first defining an underlying inner product. We refer to such functions
as norms, and we simply define them to be the functions that satisfy the usual
properties that the length on Rn or the norm induced by an inner product satisfy.

Definition 1.D.1
Norm of a Vector

Suppose that F = R or F = C and that V is a vector space over F. Then
a norm on V is a function ‖ · ‖ : V → R such that the following three
properties hold for all c ∈ F and all v,w ∈ V:

a) ‖cv‖= |c|‖v‖ (absolute homogeneity)
b) ‖v+w‖ ≤ ‖v‖+‖w‖ (triangle inequality)
c) ‖v‖ ≥ 0, with equality if and only if v = 0 (positive definiteness)
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The motivation for why each of the above defining properties should hold
for any reasonable measure of “length” or “size” is hopefully somewhat clear—
(a) if we multiply a vector by a scalar then its length scaled by the same amount,
(b) the shortest path between two points is the straight line connecting them,
and (c) we do not want lengths to be negative.

Every norm induced by an inner product is indeed a norm, as was estab-
lished by Theorems 1.3.7 (which established properties (a) and (c)) and 1.3.9
(which established property (b)). However, there are also many different norms
out there that are not induced by any inner product, both on Rn and on other
vector spaces. We now present several examples.

Example 1.D.1
The 1-Norm

(or “Taxicab” Norm)

The 1-norm on Cn is the function defined by

‖v‖1
def= |v1|+ |v2|+ · · ·+ |vn| for all v ∈ Cn.

Show that the 1-norm is indeed a norm.

Solution:
We have to check the three defining properties of norms

(Definition 1.D.1). If v,w ∈ Cn and c ∈ C then:

a) ‖cv‖1 = |cv1|+ · · ·+ |cvn|= |c|(|v1|+ · · ·+ |vn|) = |c|‖v‖1.
b) First, we note that |v+w| ≤ |v|+ |w| for all v,w ∈ C (this statement

is equivalent to the usual triangle inequality on R2). We then have

‖v+w‖1 = |v1 +w1|+ · · ·+ |vn +wn|
≤ (|v1|+ |w1|)+ · · ·+(|vn|+ |wn|)
= (|v1|+ · · ·+ |vn|)+(|w1|+ · · ·+ |wn|)
= ‖v‖1 +‖w‖1.

c) The fact that ‖v‖1 = |v1|+ · · ·+ |vn| ≥ 0 is clear. To see that ‖v‖1 = 0
if and only if v = 0, we similarly just notice that |v1|+ · · ·+ |vn|= 0
if and only if v1 = · · · = vn = 0 (indeed, if any v j were non-zero
then |v j|> 0, so |v1|+ · · ·+ |vn|> 0 too).

It is worth observing that the 1-norm measures the amount of distance
that must be traveled to go from a vector’s tail to its head when moving in
the direction of the standard basis vectors. For this reason, it is sometimes
called the taxicab norm: we imagine a square grid on R2 as the streets
along which a taxi can travel to get from the tail to the head of a vector v,
and this norm measures how far the taxi must drive, as illustrated below
for the vector v = (4,3):

x

y

‖v‖1 = 4+3= 7

v=
(4,

3)

‖v‖=
√
42+32 = 5
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In analogy with the 1-norm from the above example, we refer to the usual
vector length on Cn, defined by

‖v‖2
def=
√
|v1|2 + |v2|2 + · · ·+ |vn|2,

as the 2-norm in this section, in reference to the exponent that appears in the
terms being summed. We sometimes denote it by ‖ · ‖2 instead of ‖ · ‖ to avoid
confusion with the notation used for norms in general.

Example 1.D.2
The ∞-Norm

(or “Max” Norm)

The ∞-norm (or max norm) on Cn is the function defined by

‖v‖∞

def= max
1≤ j≤n

{
|v j|
}

for all v ∈ Cn.

Show that the ∞-norm is indeed a norm.

Solution:
Again, we have to check the three properties that define norms. If

v,w ∈ Cn and c ∈ C then:

a) ‖cv‖∞ = max1≤ j≤n
{
|cv j|

}
= |c|max1≤ j≤n

{
|v j|
}

= |c|‖v‖∞.
b) By again making use of the fact that |v + w| ≤ |v|+ |w| for all

v,w ∈ C, we see that

The second
inequality comes

from two
maximizations
allowing more

freedom (and thus a
higher maximum)

than one
maximization.

Equality holds if both
maximums are

attained at the
same subscript j.

‖v+w‖∞ = max
1≤ j≤n

{
|v j +w j|

}

≤ max
1≤ j≤n

{
|v j|+ |w j|

}

≤ max
1≤ j≤n

{
|v j|
}

+ max
1≤ j≤n

{
|w j|

}

= ‖v‖∞ +‖w‖∞.

c) The fact that ‖v‖∞ ≥ 0 is clear. Similarly, ‖v‖∞ = 0 if and only if
the largest entry of v equals zero, if and only if |v j|= 0 for all j, if
and only if v = 0.

One useful way of visualizing norms on Rn is to draw their unit ball—the
set of vectors v ∈Rn satisfying ‖v‖ ≤ 1. For the 2-norm, the unit ball is exactly
the circle (or sphere, or hypersphere...) with radius 1 centered at the origin,
together with its interior. For the ∞-norm, the unit ball is the set of vectors
with the property that |v j| ≤ 1 for all j, which is exactly the square (or cube, or
hypercube...) that circumscribes the unit circle. Similarly, the unit ball of the
1-norm is the diamond inscribed within that unit circle. These unit balls are
illustrated in R2 in Figure 1.27.

Even though there are lots of different norms that we can construct on any
vector space, in the finite-dimensional case it turns out that they cannot be “too”
different. What we mean by this is that there is at most a multiplicative constant
by which any two norms differ—a property called equivalence of norms.

Theorem 1.D.1
Equivalence of Norms

Let ‖ ·‖a and ‖ ·‖b be norms on a finite-dimensional vector space V . There
exist real scalars c,C > 0 such that

c‖v‖a ≤ ‖v‖b ≤C‖v‖a for all v ∈ V .

The

It does not matter
which of ‖ · ‖a or ‖ · ‖b
is in the middle in this

theorem. The given
inequality is

equivalent to
1
C
‖v‖b ≤ ‖v‖a ≤

1
c
‖v‖b.

proof of the above theorem is rather technical and involved, so we de-
fer it to Appendix B.1. However, for certain choices of norms it is straightforward
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x

y

‖ · ‖1

‖ · ‖2

‖ · ‖∞

Figure 1.27: The unit balls for the 1-, 2-, and ∞-norms on R2.

to explicitly find constants c and C that work. For example, we can directly
check that for any vector v ∈ Cn we have

‖v‖∞ = max
1≤ j≤n

{
|v j|
}
≤ |v1|+ |v2|+ · · ·+ |vn|= ‖v‖1,

where the inequality holds because there is some particular index i with |vi|=
max1≤ j≤n

{
|v j|
}

, and the sum on the right contains this |vi| plus other non-
negative terms.

To establish a bound between ‖v‖∞ and ‖v‖1 that goes in the other direction,
we similarly compute

The middle
inequality just says
that each |vi| is no

larger than the
largest |vi|.

‖v‖1 =
n

∑
i=1
|vi| ≤

n

∑
i=1

(
max

1≤ j≤n
|v j|
)

=
n

∑
i=1
‖v‖∞ = n‖v‖∞.

so ‖v‖1≤ n‖v‖∞ (i.e., in the notation of Theorem 1.D.1, if we have ‖·‖a = ‖·‖∞

and ‖ · ‖b = ‖ · ‖1, then we can choose c = 1 and C = n).
Geometrically, the fact that all norms on a finite-dimensional vector space

are equivalent just means that their unit balls can be stretched or shrunk to
contain each other, and the scalars c and C from Theorem 1.D.1 tell us what
factor they must be stretched by to do so. For example, the equivalence of the
1- and ∞-norms is illustrated in Figure 1.28.

However, it is worth observing that Theorem 1.D.1 does not hold in infinite-
dimensional vector spaces. That is, in infinite-dimensional vector spaces, we
can construct norms ‖ · ‖a and ‖ · ‖b with the property that the ratio ‖v‖b/‖v‖a
can be made as large as we like by suitably choosing v (see Exercise 1.D.26),
so there does not exist a constant C for which ‖v‖b ≤ C‖v‖a. We call such
norms inequivalent.

1.D.1 The p-Norms

We now investigate a family of norms that generalize the 1-, 2-, and ∞-norms
on Cn in a fairly straightforward way:
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Be careful—the unit
ball of the norm

2‖ · ‖∞ is half as large
as that of ‖ · ‖∞, not
twice as big. After

all, 2‖ · ‖∞ ≤ 1 if and
only if ‖ · ‖∞ ≤ 1/2.

Figure 1.28: An illustration in R2 of the fact that (a) ‖v‖∞ ≤ ‖v‖1 ≤ 2‖v‖∞ and
(b) 1

2 ‖v‖1 ≤ ‖v‖∞ ≤ ‖v‖1. In particular, one norm is lower bounded by another
one if and only if the unit ball of the former norm is contained within the unit ball
of the latter.

Definition 1.D.2
The p-Norm
of a Vector

If p≥ 1 is a real number, then the p-norm on Cn is defined by

‖v‖p
def=

(
n

∑
j=1
|v j|p

)1/p

for all v ∈ Cn.

It should be reasonably clear that if p = 1 then the p-norm is exactly the
“1-norm” from Example 1.D.1 (which explains why we referred to it as the
1-norm in the first place), and if p = 2 then it is the standard vector length.
Furthermore, it is also the case that

lim
p→∞
‖v‖p = max

1≤ j≤n

{
|v j|
}

for all v ∈ Cn,

which is exactly the ∞-norm of v (and thus explains why we called it the
∞-norm in the first place). To informally see why this limit holds, we just
notice that increasing the exponent p places more and more importance on the
largest component of v compared to the others (this is proved more precisely in
Exercise 1.D.8).

To verify that the p-norm is indeed a norm, we have to check the three
properties of norms from Definition 1.D.1. Properties (a) and (c) (absolute
homogeneity and positive definiteness) are straightforwardIt is commonly the

case that the
triangle inequality is
the difficult property

of a norm to verify,
while the other two

properties (absolute
homogeneity and

positive definiteness)
are much simpler.

enough:
a) If v ∈ Cn and c ∈ C then

‖cv‖p =
(
|cv1|p + · · ·+ |cvn|p)1/p = |c|

(
|v1|p + · · ·+ |vn|p)1/p = |c|‖v‖p.

c) The fact that ‖v‖p ≥ 0 is clear. To see that ‖v‖p = 0 if and only if v = 0,
we just notice that ‖v‖p = 0 if and only if |v1|p + · · ·+ |vn|p = 0, if and
only if v1 = · · ·= vn = 0, if and only if v = 0.

Proving that the triangle inequality holds for the p-norm is much more
involved, so we state it separately as a theorem. This inequality is impor-
tant enough and useful enough that it is given its own name—it is called
Minkowski’s inequality.
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Theorem 1.D.2
Minkowski’s

Inequality

If 1≤ p≤ ∞ then ‖v+w‖p ≤ ‖v‖p +‖w‖p for all v,w ∈ Cn.

Proof. First, consider the function f : [0,∞)→ R defined by f (x) = xp. Stan-
dard calculus techniques

To see that f is
convex, we notice

that its second
derivative is

f ′′(x) = p(p−1)xp−2,
which is

non-negative as
long as p≥ 1 and

x≥ 0 (see
Theorem A.5.2).

show that f is convex (sometimes called “concave up”
in introductory calculus courses) whenever x ≥ 0—any line connecting two
points on the graph of f lies above its graph (see Figure 1.29).

1 2

1

2

3

4

5

x
p
1

x
p
2

x1 x2

(1− t)x1 + tx2

(1− t)xp
1
+ tx

p
2
≥

(1− t)x1 + tx2

)p

f (x) = xp

x

y

Figure 1.29: The function f (x) = xp (pictured here with p = 2.3) is convex on the
interval [0,∞), so any line segment between two points on its graph lies above the
graph itself.

For an introduction
to convex functions,
see Appendix A.5.2.

Algebraically, this means that
(
(1− t)x1 + tx2

)p ≤ (1− t)xp
1 + txp

2 for all x1,x2 ≥ 0, 0≤ t ≤ 1. (1.D.1)

Now suppose v,w ∈ Cn are non-zero vectors (if either one of them is the zero
vector, Minkowski’s inequality is trivial). Then we can write v = ‖v‖px and
w = ‖w‖py, where x and y are scaled so that ‖x‖p = ‖y‖p = 1. Then for any
0≤ t ≤ 1, weWriting vectors as

scaled unit vectors is
a common

technique when
proving inequalities

involving norms.

have

∥∥(1− t)x+ ty
∥∥p

p =
n

∑
j=1
|(1− t)x j + ty j|p (definition of ‖ · ‖p)

≤
n

∑
j=1

(
(1− t)|x j|+ t|y j|

)p (triangle inequality on C)

≤
n

∑
j=1

(
(1− t)|x j|p + t|y j|p

)
(Equation (1.D.1))

= (1− t)‖x‖p
p + t‖y‖p

p (definition of ‖ · ‖p)

= 1. (‖x‖p = ‖y‖p = 1)

In particular, if we choose t = ‖w‖p/(‖v‖p + ‖w‖p) then 1 − t =
‖v‖p/(‖v‖p +‖w‖p), and the quantity above simplifies to

‖(1− t)x+ ty‖p
p =

∥∥‖v‖px+‖w‖py
∥∥p

p

(‖v‖p +‖w‖p)p =
‖v+w‖p

p

(‖v‖p +‖w‖p)p .
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Since this quantity is no larger than 1, multiplying through by (‖v‖p +‖w‖p)p

tells us that

‖v+w‖p
p ≤

(
‖v‖p +‖w‖p

)p
.

Taking the p-th root of both sides of this inequality gives us exactly Minkowski’s
inequality and thus completes the proof. �

Equivalence and Hölder’s Inequality
Now that we know that p-norms are indeed norms, it is instructive to try to draw
their unit balls, much like we did in Figure 1.27 for the 1-, 2-, and ∞-norms.
The following theorem shows that the p-norm can only decrease as p increases,
which will help us draw the unit balls shortly.

Theorem 1.D.3
Monotonicity of

p-Norms

If 1≤ p≤ q≤ ∞ then ‖v‖q ≤ ‖v‖p for all v ∈ Cn.

Proof. If v = 0 then this inequality is trivial, so suppose v 6= 0 and consider
the vector w = v/‖v‖q. Then ‖w‖q = 1, so |w j| ≤ 1 for all j. It follows that
|w j|p ≥ |w j|q for all j as well,Again, notice that

proving this theorem
was made easier by

first rescaling the
vector to have

length 1.

so

‖w‖p =

(
n

∑
j=1
|w j|p

)1/p

≥
(

n

∑
j=1
|w j|q

)1/p

= ‖w‖q/p
q = 1.

Since w = v/‖v‖q, this implies that ‖w‖p = ‖v‖p/‖v‖q ≥ 1, so ‖v‖p ≥ ‖v‖q,
as desired.

The argument above covers the case when both p and q are finite. The case
when q = ∞ is proved in Exercise 1.D.7. �

By recalling that larger norms have smaller unit balls, we can interpret
Theorem 1.D.3 as saying that the unit ball of the p-norm is contained within
the unit ballThe reason for the

unit ball inclusion is
that ‖v‖p ≤ 1 implies
‖v‖q ≤ ‖v‖p = 1 too.

Generally (even
beyond just p-norms),

larger norms have
smaller unit balls.

of the q-norm whenever 1≤ p≤ q≤ ∞. When we combine this
with the fact that we already know what the unit balls look like when p = 1, 2,
or ∞ (refer back to Figure 1.27), we get a pretty good idea of what they look
like for all values of p (see Figure 1.30). In particular, the sides of the unit ball
gradually “bulge out” as p increases from 1 to ∞.

p = 1 p = 1.2 p = 1.5 p = 2

p = 2 p = 3 p = 6 p = ∞

Figure 1.30: The unit ball of the p-norm on R2 for several values of 1≤ p≤ ∞.
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The inequalities of Theorem 1.D.3 can be thought of as one half of the
equivalence (refer back to Theorem 1.D.1) between the norms ‖ · ‖p and ‖ · ‖q.
The other inequality in this norm equivalence is trickier to pin down, so we
start by solving this problem just for the 1-, 2-, and ∞-norms.

Theorem 1.D.4
1-, 2-, and ∞-Norm

Inequalities

If v ∈ Cn then ‖v‖1 ≤
√

n‖v‖2 ≤ n‖v‖∞.

Proof of Theorem 1.C.1. For the left inequality, we start by defining two vec-
tors x,y ∈ Rn:

x = (1,1, . . . ,1) and y = (|v1|, |v2|, . . . , |vn|).

By the Cauchy–Schwarz inequality, we know that |x ·y| ≤ ‖x‖2‖y‖2. However,
plugging everything into the relevant definitions then shows that

|x ·y|=
n

∑
j=1

1 · |v j|= ‖v‖1,

and

‖x‖2 =

√
n

∑
j=1

12 =
√

n and ‖y‖2 =

√
n

∑
j=1
|v j|2 = ‖v‖2.

It follows that ‖v‖1 = |x ·y| ≤ ‖x‖2‖y‖2 =
√

n‖v‖2, as claimed.
To prove the second inequality, we notice

Again, the inequality
here follows simply

because each |vi| is
no larger than the

largest |vi|.

that

‖v‖2 =

√
n

∑
i=1
|vi|2 ≤

√
n

∑
i=1

(
max

1≤ j≤n
|v j|
)2

=

√
n

∑
i=1
‖v‖2

∞ =
√

n‖v‖∞. �

Before we can prove an analogous result for arbitrary p- and q-norms, we
first need one more technical helper theorem. Just like Minkowski’s inequality
(Theorem 1.D.2) generalizes the triangle inequality from the 2-norm to arbitrary
p-norms, the following theorem generalizes the Cauchy–Schwarz inequality
from the 2-norm to arbitrary p-norms.

Theorem 1.D.5
Hölder’s Inequality

Let 1≤ p,q≤ ∞ be such that 1/p+1/q = 1. Then

|v ·w| ≤ ‖v‖p‖w‖q for all v,w ∈ Cn.

Before proving this theorem, it is worth focusing a bit on the somewhat
strange relationship between p and q that it requires. First, notice that if p =
q = 2 then 1/p+1/q = 1, so this is how we get the Cauchy–Schwarz inequality
as a special case of Hölder’s inequality. On the other hand, if one of p or q
is smaller than 2 then the other one must be correspondingly larger than 2 in
order for 1/p+1/q = 1 to hold—as p decreases from 2 to 1, q increases from
2 to ∞ (see Figure 1.31).

We could explicitly solve for q in terms of p and get q = p/(p− 1), but
doing so makes the symmetry between p and q less clear (e.g., it is also the
case that p = q/(q− 1)), so we do not usually do so. It is also worth noting
that if p = ∞ or q = ∞ then we take the convention that 1/∞ = 0 in this setting,
so that if p = ∞ then q = 1 and if q = ∞ then p = 1.
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We call a pair of
numbers p and q

conjugate if
1/p+1/q = 1. We

also call the pairs
(p,q) = (1,∞) and

(p,q) = (∞,1)
conjugate.

(p,q) = (10/9,10)
(p,q) = (5/4,5)

(p,q) = (3/2,3)

C.–S. ineq.

p = q = 2

1 2 3 4 5 6 7 8 9 10

Figure 1.31: Some pairs of numbers (p,q) for which 1/p+1/q = 1 and thus Hölder’s
inequality (Theorem 1.D.5) applies to them.

Proof of Theorem 1.D.5. Before proving the desired inequality involving vec-
tors, we first prove the following inequality involving real numbers x,y≥ 0:

Inequality (1.D.2) is
called Young’s

inequality, and it
depends on the fact

that 1/p+1/q = 1. xy≤ xp

p
+

yq

q
. (1.D.2)

To see why this inequality holds, first notice that it is trivial if x = 0 or
y = 0, so we can assume from now on that x,y > 0. Consider the function
f : (0,∞)→ R defined by f (x) = ln(x). Standard calculus techniques

ln(x) refers to the
natural logarithm

(i.e., the base-e
logarithm) of x.

show
that f is concave (sometimes called “concave down” in introductory calculus
courses) whenever x > 0—any line connecting two points on the graph of f
lies below its graph (see Figure 1.32).

1 2 3 4 5

-2

-1

2

ln(x1)

ln(x2)

x1 x2

(1− t)x1 + tx2

(1− t) ln(x1)+ t ln(x2)

ln (1− t)x1 + tx2

)
≥

f (x) = ln(x)

x

y

Figure 1.32: The function f (x) = ln(x) is concave on the interval (0,∞), so any line
segment between two points on its graph lies below the graph itself.

To see that f is
concave, we notice

that its second
derivative is

f ′′(x) =−1/x2, which
is negative as long

as x > 0 (see
Theorem A.5.2).

Algebraically, this tells us that

ln
(
(1− t)x1 + tx2

)
≥ (1− t) ln(x1)+ t ln(x2) for all x1,x2 > 0, 0≤ t ≤ 1.

In particular, if we choose x1 = xp, x2 = yq, and t = 1/q then 1− t = 1−1/q =
1/p and the above inequality becomes

Recall that
ln(xp) = p ln(x), so

ln(xp)/p = ln(x).
ln
(

xp

p
+

yq

q

)
≥ ln(xp)

p
+

ln(yq)
q

= ln(x)+ ln(y) = ln(xy).

Exponentiating both sides of this inequality (i.e., raising e to the power of the
left- and right-hand-sides) then gives us exactly Inequality (1.D.2), which we
were trying to prove.

To now prove Hölder’s inequality, we first observe that it suffices to prove
the case when ‖v‖p = ‖w‖q = 1, since multiplying either v or w by a scalar
has no effect on whether or not the inequality

∣∣v ·w
∣∣≤ ‖v‖p‖w‖q holds (both

sides of it just get multiplied by that same scalar). To see that |v ·w| ≤ 1 in this
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case, and thus complete the proof, we compute

|v ·w|=
∣∣∣∣∣

n

∑
j=1

v jw j

∣∣∣∣∣≤
n

∑
j=1
|v jw j| (triangle inequality on C)

≤
n

∑
j=1

|v j|p
p

+
n

∑
j=1

|w j|q
q

(Inequality (1.D.2))

=
‖v‖p

p

p
+
‖w‖q

q

q
(definition of p−,q-norm)

=
1
p

+
1
q

(since ‖v‖p = ‖w‖q = 1)

= 1.

As one final note, we have only explicitly proved this theorem in the case when
both p and q are finite. The case when p = ∞ or q = ∞ is actually much simpler,
and thus left to Exercise 1.D.9. �

With Hölder’s inequality now at our disposal, we can finally find the multi-
plicative constants that can be used to bound different p-norms in terms of each
other (i.e., we can quantify the equivalence of the p-norms that was guaranteed
by Theorem 1.D.1).

Theorem 1.D.6
Equivalence of

p-Norms

If 1≤ p≤ q≤ ∞ then

‖v‖q ≤ ‖v‖p ≤ n1/p−1/q‖v‖q for all v ∈ Cn.

Proof. We already proved the left inequality in Theorem 1.D.3, so we just
need to prove the right inequality. To this end, consider the vectors x =
(|v1|p, |v2|p, . . . , |vn|p) and y = (1,1, . . . ,1) ∈ Cn and define p̃ = q/p and q̃ =
q/(q− p). It is straightforward to check that 1/p̃ + 1/q̃ = 1, so Hölder’s in-
equality then tells us that

We introduce p̃ and
q̃ and apply Hölder’s

inequality to them
instead of p and q
since it might not

even be the case
that 1/p+1/q = 1.

‖v‖p
p =

n

∑
j=1
|vi|p (definition of ‖v‖p)

= |x ·y| ≤ ‖x‖ p̃‖y‖q̃ (Hölder’s inequality)

=

(
n

∑
j=1

(
|v j|p

) p̃

)1/p̃( n

∑
j=1

1q̃

)1/q̃

(definition of ‖x‖p̃ and ‖y‖q̃)

=

(
n

∑
j=1
|v j|q

)p/q (
n(q−p)/q) (pp̃ = p(q/p) = q, etc.)

=
(
n(q−p)/q)‖v‖p

q . (definition of ‖v‖q)

Taking the p-th root of both sides of this inequality then shows us that

‖v‖p ≤ n(q−p)/(pq)‖v‖q = n1/p−1/q‖v‖q,

as desired. �

If p and q are some combination of 1, 2, or ∞ then the above result recovers
earlier inequalities like those of Theorem 1.D.4. For example, if (p,q) = (1,2)
then this theorem says that

‖v‖2 ≤ ‖v‖1 ≤ n1−1/2‖v‖2 =
√

n‖v‖2,
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which we already knew. Furthermore, we note that the constants (c = 1 and
C = n1/p−1/q) given in Theorem 1.D.6 are the best possible—for each inequal-
ity, there are particular choices of vectors v ∈ Cn that attain equality (see
Exercise 1.D.12).

The p-Norms for Functions
Before

C[a,b] denotes the
vector space of

continuous functions
on the interval [a,b].

we move onto investigating other properties of norms, it is worth noting
that the p-norms can also be defined for continuous functions in a manner
completely analogous to how we defined them on Cn above.

Definition 1.D.3
The p-Norm

of a Function

If p≥ 1 is a real number, then the p-norm on C[a,b] is defined by

‖ f‖p
def=
(∫ b

a
| f (x)|p dx

)1/p

for all f ∈ C[a,b].

Similarly, for the p = ∞ case we simply define ‖ f‖p to be the maximum
value that f attains on the interval [a,b]:

The Extreme Value
Theorem guarantees
that this maximum is

attained, since f is
continuous.

‖ f‖∞

def= max
a≤x≤b

{
| f (x)|

}
.

Defining norms on functions in this way perhaps seems a bit more natural if
we notice that we can think of a vector v ∈ Cn as a function from {1,2, . . . ,n}
to Cn (in particular, this function sends j to v j). Definition 1.D.3 can then be
thought of as simply extending the p-norms from functions on discrete sets of
numbers like {1,2, . . . ,n} to functions on continuous intervals like [a,b].

Example 1.D.3
Computing the p-Norm

of a Function

Compute the p-norms of the function f (x) = x+1 in C[0,1].

Solution:
For finite values of p, we just directly compute the value of the desired

integral:

We do not have to
take the absolute

value of f since
f (x)≥ 0 on the

interval [0,1].

‖x+1‖p =
(∫ 1

0
(x+1)p dx

)1/p

=


 (x+1)p+1

p+1

∣∣∣∣∣

1

x=0




1/p

=
(

2p+1−1
p+1

)1/p

.

For the p = ∞ case, we just notice that the maximum value of f (x) on
the interval [0,1] is

‖x+1‖∞ = max
0≤x≤1

{x+1}= 1+1 = 2.

It is worth noting that lim
x→∞
‖x+1‖p = 2 as well, as we might hope.

Furthermore,One property of
p-norms that does

not carryover is the
rightmost inequality

in Theorem 1.D.6.

most of the previous theorems that we saw concerning p-
norms carry through with minimal changes to this new setting too, simply by
replacing vectors by functions and sums by integrals. To illustrate this fact, we
now prove Minkowski’s inequality for the p-norm of a function. However, we
leave numerous other properties of the p-norm of a function to the exercises.
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Theorem 1.D.7
Minkowski’s Inequality

for Functions

If 1≤ p≤ ∞ then ‖ f +g‖p ≤ ‖ f‖p +‖g‖p for all f ,g ∈ C[a,b].

Proof. Just like in our original proof of Minkowski’s inequality, notice that the
function that sends x to xp is convex, so

(
(1− t)x1 + tx2

)p ≤ (1− t)xp
1 + txp

2 for all x1,x2 ≥ 0, 0≤ t ≤ 1.

Now suppose thatThis proof is almost
identical to the

proof of
Theorem 1.D.2, but

with sums replaced
by integrals, vectors

replaced by
functions, and
coordinates of
vectors (like x j)

replaced by
function values (like

f̂ (x)).

f ,g ∈ C[a,b] are non-zero functions (if either one of
them is the zero function, Minkowski’s inequality is trivial). Then we can write
f = ‖ f‖p f̂ and g = ‖g‖pĝ, where f̂ and ĝ are unit vectors in the p-norm (i.e.,
‖ f̂‖p = ‖ĝ‖p = 1). Then for every 0≤ t ≤ 1, we have

∥∥(1− t) f̂ + tĝ
∥∥p

p =
∫ b

a

∣∣(1− t) f̂ (x)+ tĝ(x)
∣∣p dx (definition of ‖ · ‖p)

≤
∫ b

a

(
(1− t)| f̂ (x)|+ t|ĝ(x)|

)p dx (triangle ineq. on C)

≤
∫ b

a

(
(1− t)| f̂ (x)|p + t|ĝ(x)|p

)
dx (since xp is convex)

= (1− t)‖ f̂‖p
p + t‖ĝ‖p

p (definition of ‖ · ‖p)

= 1. (‖ f̂‖p = ‖ĝ‖p = 1)

In particular,We apologize for
having norms within

norms here. Ugh.

if we choose t = ‖g‖p/(‖ f‖p + ‖g‖p) then 1 − t =
‖ f‖p/(‖ f‖p +‖g‖p), and the quantity above simplifies to

∥∥(1− t) f̂ + tĝ
∥∥p

p =

∥∥‖ f‖p f̂ +‖g‖pĝ
∥∥p

p

(‖ f‖p +‖g‖p)p =
‖ f +g‖p

p

(‖ f‖p +‖g‖p)p .

Since this quantity is no larger than 1, multiplying through by
(
‖ f‖p +‖g‖p

)p

tells us that

‖ f +g‖p
p ≤

(
‖ f‖p +‖g‖p

)p
.

Taking the p-th root of both sides of this inequality gives us exactly Minkowski’s
inequality. �

Minkowski’s inequalityWe prove Hölder’s
inequality for

functions in
Exercise 1.D.14.

establishes the triangle inequality of the p-norm
of a function, just like it did for the p-norm of vectors in Cn. The other two
defining properties of norms (absolute homogeneity and positive definiteness)
are much easier to prove, and are left as Exercise 1.D.13.

1.D.2 From Norms Back to Inner Products

We have now seen that there are many different norms out there, but the norms
induced by inner products serve a particularly important role and are a bit easier
to work with (for example, they satisfy the Cauchy–Schwarz inequality). It
thus seems natural to ask how we can determine whether or not a given norm is
induced by an inner product, and if so how we can recover that inner product.
For example, although the 1-norm on R2 is not induced by the standard inner
product (i.e., the dot product), it does not seem obvious whether or not it is
induced by some more exotic inner product.

To answer this question for the 1-norm, suppose for a moment that there
were an inner product 〈·, ·〉 on R2 that induces the 1-norm : ‖v‖1 = 〈v,v〉 for
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all v ∈ R2. By using the fact that ‖e1‖1 = ‖e2‖1 = 1 and ‖e1 + e2‖1 = 2, we
see that

4 = ‖e1 + e2‖2
1 = 〈e1 + e2,e1 + e2〉
= ‖e1‖2

1 +2Re(〈e1,e2〉)+‖e2‖2
1 = 2+2Re(〈e1,e2〉).

By rearranging

The upcoming
theorem tells us how
to turn a norm back

into an inner
product, so one way
of interpreting it is as

a converse of
Definition 1.3.7,

which gave us a
method of turning

an inner product into
a norm.

and simplifying, we thus see that Re(〈e1,e2〉)= 1, so |〈e1,e2〉|≥
1. However, the Cauchy–Schwarz inequality tells us that |〈e1,e2〉| ≤ 1 and in
fact |〈e1,e2〉|< 1 since e1 and e2 are not scalar multiples of each other. We have
thus arrived at a contradiction that shows that no such inner product exists—the
1-norm is not induced by any inner product.

The above argument was very specific to the 1-norm, however, and it is
not immediately clear whether or not a similar argument can be applied to
the ∞-norm, 7-norm, or other even more exotic norms. Before introducing a
theorem that solves this problem, we introduce one additional minor piece
of terminology and notation. We say that a vector space V , together with a
particular norm, is a normed vector space, and we denote the norm by ‖ · ‖V
rather than just ‖ · ‖ in order to avoid any potential confusion with other norms.

Theorem 1.D.8
Jordan–von Neumann

Theorem

Let V be a normed vector space. Then ‖·‖V is induced by an inner product
if and only if

2‖v‖2
V +2‖w‖2

V = ‖v+w‖2
V +‖v−w‖2

V for all v,w ∈ V .

Before proving this theorem, we note that the equation 2‖v‖2
V +2‖w‖2

V =
‖v + w‖2

V + ‖v−w‖2
V is sometimes called the parallelogram law, since it

relates the lengths of the sides of a parallelogram to the lengths of its diagonals,
as illustrated inThe parallelogram

law is a
generalization of the

Pythagorean
theorem, which is
what we get if we

apply the
parallelogram law to

rectangles.

Figure 1.33. In particular, it says that the sum of squares of
the side lengths of a parallelogram always equals the sum of squares of the
diagonal lengths of that parallelogram, as long as the way that we measure
“length” comes from an inner product.

w

v

v

w

x

y

v−w

v+w

x

y

‖v‖2

V +‖w‖2

V +‖v‖2

V +‖w‖2

V = ‖v+w‖2

V +‖v−w‖2

V

Figure 1.33: The Jordan–von Neumann theorem says that a norm is induced by
an inner product if and only if the sum of squares of norms of diagonals of a
parallelogram equals the sum of squares of norms of its sides (i.e., if and only if the
parallelogram law holds for that norm).

Proof of Theorem 1.D.8. To see the “only if” claim,

We originally proved
the ‘’only if”

direction back in
Exercise 1.3.13. we note that if ‖ · ‖V is
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induced by an inner product 〈·, ·〉 then some algebra shows that

‖v+w‖2
V +‖v−w‖2

V = 〈v+w,v+w〉+ 〈v−w,v−w〉
=
(
〈v,v〉+ 〈v,w〉+ 〈w,v〉+ 〈w,w〉

)

+
(
〈v,v〉−〈v,w〉−〈w,v〉+ 〈w,w〉

)

= 2〈v,v〉+2〈w,w〉
= 2‖v‖2

V +2‖w‖2
V .

The “if” direction of the proof is much more involved, and we only prove
the case when the underlying field is F = R (we leave the F = C case to
Exercise 1.D.16). To this end, suppose that the parallelogram law holds and
define the following function 〈·, ·〉 : V×V →R (which we will show is an inner

This formula for an
inner product in

terms of its induced
norm is sometimes

called the
polarization identity.

We first encountered
this identity back in

Exercise 1.3.14.

product):

〈v,w〉= 1
4
(
‖v+w‖2

V −‖v−w‖2
V
)
.

To see that this function really is an inner product, we have to check the
three defining properties of inner products from Definition 1.3.6. Property (a)
is straightforward, since

〈v,w〉= 1
4
(
‖v+w‖2

V −‖v−w‖2
V
)

=
1
4
(
‖w+v‖2

V −‖w−v‖2
V
)

= 〈w,v〉.

Similarly, property (c) follows fairly quickly from the definition, since

〈v,v〉= 1
4
(
‖v+v‖2

V −‖v−v‖2
V
)

=
1
4
‖2v‖2

V = ‖v‖2
V ,

which is
Properties (a)

and (c) do not
actually depend on

the parallelogram
law holding—that is

only required for
property (b).

non-negative and equals 0 if and only if v = 0. In fact, this furthermore
shows that the norm induced by this inner product is indeed ‖v‖V .

All that remains is to prove property (b) of inner products holds (i.e.,
〈v,w + cx〉 = 〈v,w〉+ c〈v,x〉 for all v,w,x ∈ V and all c ∈ R). This task is
significantly more involved than proving properties (a) and (c) was, so we split
it up into four steps:

i) First, we show that 〈v,w+x〉= 〈v,w〉+ 〈v,x〉 for all v,w,x ∈ V . To this
end we use the parallelogram law (i.e., the hypothesis of this theorem) to
see that

2‖v+x‖2
V +2‖w‖2

V = ‖v+w+x‖2
V +‖v−w+x‖2

V .

Rearranging slightly gives

‖v+w+x‖2
V = 2‖v+x‖2

V +2‖w‖2
V −‖v−w+x‖2

V .

By repeating this argument with the roles of w and x swapped, we
similarly see that

‖v+w+x‖2
V = 2‖v+w‖2

V +2‖x‖2
V −‖v+w−x‖2

V .

Averaging these two equations gives

‖v+w+x‖2
V = ‖w‖2

V +‖x‖2
V +‖v+w‖2

V +‖v+x‖2
V

− 1
2‖v−w+x‖2

V − 1
2‖v+w−x‖2

V .
(1.D.3)
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By repeating thisInner products
provide more

structure than just a
norm does, so this

theorem can be
thought of as telling

us exactly when that
extra structure is

present.

entire argument with w and x replaced by −w and −x,
respectively, we similarly see that

‖v−w−x‖2
V = ‖w‖2

V +‖x‖2
V +‖v−w‖2

V +‖v−x‖2
V

− 1
2‖v+w−x‖2

V − 1
2‖v−w+x‖2

V .
(1.D.4)

Finally, we can use Equations (1.D.3) and (1.D.4) to get what we want:

〈v,w+x〉= 1
4
(
‖v+w+x‖2

V −‖v−w−x‖2
V
)

=
1
4
(
‖v+w‖2

V +‖v+x‖2
V −‖v−w‖2

V −‖v−x‖2
V
)

=
1
4
(
‖v+w‖2

V −‖v−w‖2
V
)
+

1
4
(
‖v+x‖2

V −‖v−x‖2
V
)

= 〈v,w〉+ 〈v,x〉,

as desired. Furthermore, by replacing x by cx above, we see that 〈v,w+
cx〉= 〈v,w〉+ 〈v,cx〉 for all c ∈R. Thus, all that remains is to show that
〈v,cx〉= c〈v,x〉 for all c ∈ R, which is what the remaining three steps
of this proof are devoted to demonstrating.

ii) We now show that 〈v,cx〉= c〈v,x〉 for all integers c. If c > 0 is an integer,
then this fact follows from (i) and induction (for example, (i) tells us that
〈v,2x〉= 〈v,x+x〉= 〈v,x〉+ 〈v,x〉= 2〈v,x〉).
If c = 0 then this fact is trivial, since it just says that

〈v,0x〉= 1
4
(
‖v+0x‖2

V −‖v−0x‖2
V
)

=
1
4
(
‖v‖2

V −‖v‖2
V
)

= 0 = 0〈v,x〉.

If c =−1, then

〈v,−x〉= 1
4
(
‖v−x‖2

V −‖v+x‖2
V
)

=
−1
4
(
‖v+x‖2

V −‖v−x‖2
V
)

=−〈v,x〉.

Finally, if c <−1 is an integer, then the result follows by combining the
fact that it holds when c =−1 and when c is a positive integer.

iii) We now show that 〈v,cx〉= c〈v,x〉 for all rational c.We denote the set of
rational numbers

by Q.

If c is rational then
we can write it as c = p/q, where p and q are integers and q 6= 0. Then

q〈v,cx〉= q〈v, p(x/q)〉= qp〈v,x/q〉= p〈v,qx/q〉= p〈v,x〉,

where we used (ii) and the fact that p and q are integers in the second
and third equalities. Dividing the above equation through by q then gives
〈v,cx〉= (p/q)〈v,x〉= c〈v,x〉, as desired.

iv) Finally,Yes, this proof is still
going on.

to see that 〈v,cx〉= c〈v,x〉 for all c ∈R, we use the fact that, for
each fixed v,w ∈ V , the function f : R→ R defined by

f (c) =
1
c
〈v,cx〉= 1

4c

(
‖v+ cw‖2

V −‖v− cw‖2
V
)

is continuous (this follows from the fact that all norms are continuous
when restricted to a finite-dimensional subspace like span(v,w)—see
Section 2.D and Appendix B.1 for more discussion of this fact), and com-
positions and sums/differences of continuous functions are continuous).
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We expand on this
type of argument

considerably in
Section 2.D.

Well, we just showed in (iii) that f (c) = 〈v,w〉 for all c ∈ Q. When
combined with continuity of f , this means that f (c) = 〈v,w〉 for all
c ∈R. This type of fact is typically covered in analysis courses and texts,
but hopefully it is intuitive enough even if you have not taken such a
course—the rational numbers are dense in R, so if there were a real
number c with f (c) 6= 〈v,w〉 then the graph of f would have to “jump”
at c (see Figure 1.34) and thus f would not be continuous.

c

y

f (c) = 〈v,w〉
for all c ∈Q

f (c1) 6= 〈v,w〉

c1 /∈Q

Figure 1.34: If a continuous function f (c) is constant on the rationals, then it must
be constant on all of R—otherwise, it would have a discontinuity.

We have thus shown that 〈·, ·〉 is indeed an inner product, and that it induces
‖ · ‖V , so the proof is complete. �

Example 1.D.4
Which p-Norms

are Induced by an
Inner Product?

Determine which of the p-norms (1 ≤ p ≤ ∞) on Cn are induced by an
inner product.

Solution:
We already

If we are being super
technical, this

argument only works
when n≥ 2. The

p-norms are all the
same (and thus are

all induced by an
inner product) when

n = 1.

know that the 2-norm is induced by the standard inner
product (the dot product). To see that none of the other p-norms are
induced by an inner product, we can check that the parallelogram law does
not hold when v = e1 and w = e2:

2‖e1‖2
p +2‖e2‖2

p = 2+2 = 4 and

‖e1 + e2‖2
p +‖e1− e2‖2

p =

{
1+1 = 2 if p = ∞,

22/p +22/p = 21+2/p otherwise.

The parallelogram law thus does not hold whenever 4 6= 21+2/p (i.e.,
whenever p 6= 2). It follows from Theorem 1.D.8 that the p-norms are not
induced by any inner product when p 6= 2.

In fact, the only norms that we have investigated so far that are induced
by an inner product are the “obvious” ones: the 2-norm on Fn and C[a,b], the
Frobenius norm onMm,n(F), and the norms that we can construct from the
inner products described by Corollary 1.4.4.
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1.D.3 Isometries

Recall from Section 1.4.3 that if F = R or F = C then a unitary matrix U ∈
Mn(F) is one that preserves the usual 2-norm of all vectors: ‖Uv‖2 = ‖v‖2
for all v ∈ Fn. Unitary matrices are extraordinary for the fact that they have
so many different, but equivalent, characterizations (see Theorem 1.4.9). In
this section, we generalize this idea and look at what we can say about linear
transformations that preserve any particular norm, including ones that are not
induced by any inner product.

Definition 1.D.4
Isometries

Let V and W be normed vector spaces and let T : V →W be a linear
transformation. We say that T is an isometry if

‖T (v)‖W = ‖v‖V for all v ∈ V .

For example,In other words, a
unitary matrix is an

isometry of the
2-norm on Fn.

the linear transformation T : R2 → R3 (where we use the
usual 2-norm on R2 and R3) defined by T (v1,v2) = (v1,v2,0) is an isometry
since

‖T (v)‖2 =
√

v2
1 + v2

2 +02 =
√

v2
1 + v2

2 = ‖v‖2 for all v ∈ V .

Whether or not a linear transformation is an isometry depends heavily on the
norms that are being used on V andW , so they need to be specified unless they
are clear from context.

Example 1.D.5
An Isometry in the

2-Norm But Not
the 1-Norm

Consider the matrix U = 1√
2

[
1 −1
1 1

]
that acts on R2.

a) Show that U is an isometry of the 2-norm.
b) Show that U is not an isometry of the 1-norm.

Solutions:
a) It is straightforward to check that U is unitary and thus an isometry

of the 2-norm:

U∗U =
1
2

[
1 1
−1 1

][
1 −1
1 1

]
=

1
2

[
2 0
0 2

]
= I2.

b) We simply have to find any vector v ∈ R2 with the property that
‖Uv‖1 6= ‖v‖1. Well, v = e1 works, since

‖Ue1‖1 =
∥∥ 1√

2
(1,1)

∥∥
1 =
√

2 but ‖e1‖1 = 1.

Geometrically, part (a) makes sense because URecall that a rotation
matrix (by an angle

θ counter-clockwise)
is a matrix of the

form
[

cos(θ) −sin(θ)
sin(θ) cos(θ)

]
.

acts as a rotation
counter-clockwise by π/4:

U =

[
cos(π/4) −sin(π/4)
sin(π/4) cos(π/4)

]
,

and rotating vectors does not change their 2-norm (see Example 1.4.12).
However, rotating vectors can indeed change their 1-norm, as demonstrated
in part (b):
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U

π/4

1/
√
2

1
/ √

2

x

y

e1 = (1,0) ‖e1‖2 = 1
‖e1‖1 = 1

Ue1 = (1,1)/
√
2 ‖Ue1‖2 = 1

‖Ue1‖1 = 1√
2
+ 1√

2
=
√
2

In situations where we have an inner product to work with (like in part (a)
of the previous example), we can characterize isometries in much the same way
that we characterized unitary matrices back in Section 1.4.3. In fact, the proof
of the upcoming theorem is so similar to that of the equivalence of conditions
(d)–(f) in Theorem 1.4.9 that we defer it to Exercise 1.D.22.

Theorem 1.D.9
Characterization

of Isometries

Let V and W be inner product spaces and let T : V → W be a linear
transformation. Then the following are equivalent:

a) T is an isometry (with respect to the norms induced by the inner
products on V andW),

b) T ∗ ◦T = IV , and
c) 〈T (x),T (y)〉W = 〈x,y〉V for all x,y ∈ V .

If we take the standard matrix of both sides of part (b) of this theorem with
respect to an orthonormal basis B of V , then we see that T is an isometry if and
only if

The first equality here
follows from

Theorem 1.4.8 and
relies on B being an

orthonormal basis.

[T ]∗B[T ]B = [T ∗]B[T ]B = [T ∗ ◦T ]B = [IV ]B = I.

In the special case when V =W , this observation can be phrased as follows:

! If B is an orthonormal basis of an inner product space V , then
T : V → V is an isometry of the norm induced by the inner
product on V if and only if [T ]B is unitary.

On the other hand, if a norm is not induced by an inner product then it can
be quite a bit more difficult to get our hands on what its isometries are. The
following theorem provides the answer for the ∞-norm:

Theorem 1.D.10
Isometries of the

∞-Norm

Suppose F = R or F = C, and P ∈Mn(F). Then

‖Pv‖∞ = ‖v‖∞ for all v ∈ Fn

if and only if every row and column of P has a single non-zero entry, and
that entry has magnitude (i.e., absolute value) equal to 1.

Before proving this theorem,

Real matrices of this
type are sometimes

called signed
permutation

matrices.

it is worth illustrating exactly what it means.
When F = R, it says that isometries of the ∞-norm only have entries 1,−1, and
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0, and each row and column has exactly one non-zero entry. For example,

P =




0 −1 0
0 0 1
−1 0 0




is an isometry of the ∞-norm on R3, which is straightforward to verify directly:

‖Pv‖∞ = ‖(−v2,v3,−v1)‖∞ = max
{
|− v2|, |v3|, |− v1|

}

= max
{
|v1|, |v2|, |v3|

}
= ‖v‖∞ for all v ∈ R3.

When F = C, the idea is similar, except instead of just allowing non-zero
entries of ±1, the non-zero entries can lie anywhere on the unitComplex matrices of

this type are
sometimes called

complex
permutation

matrices.

circle in the
complex plane.

Proof of Theorem 1.D.10. The “if” direction is not too difficult to prove. We
just note that any P with the specified form just permutes the entries of v
and possibly multiplies them by a number with absolute value 1, and such an
operation leaves ‖v‖∞ = max j

{
|v j|
}

unchanged.
For the “only if” direction, we only prove the F = R case and leave the

F = C case to Exercise 1.D.25. Suppose P =
[

p1 | p2 | · · · | pn
]

is an isometry
of the ∞-norm. Then Pe j = p j for all j, so

max
1≤i≤n

{
|pi, j|

}
= ‖p j‖∞ = ‖Pe j‖∞ = ‖e j‖∞ = 1 for all 1≤ j ≤ n.

In particular, this implies that every column of P has at least one entry with
absolute value 1. Similarly, P(e j± ek) = p j±pk for all j,k, so

max
1≤i≤n

{
|pi, j± pi,k|

}
= ‖p j±pk‖∞ = ‖P(e j± ek)‖∞

= ‖e j± ek‖∞ = 1 for all 1≤ j 6= k ≤ n.

It follows that if |pi, j| = 1 then pi,k = 0 for all k 6= j (i.e., the rest of the i-th
row of P equals zero). Since each column p j contains an entry with |pi, j|= 1,
it follows that every row and column contains exactly one non-zero entry—the
one with absolute value 1.

It turns out that the
1-norm has the exact
same isometries (see

Exercise 1.D.24). In
fact, all p-norms

other than the
2-norm have these

same isometries
[CL92, LS94], but

proving this is
beyond the scope

of this book.

�

In particular, it is worth noting that the above theorem says that all isome-
tries of the ∞-norm are also isometries of the 2-norm, since P∗P = I for any
matrix of the form described by Theorem 1.D.10.

Exercises solutions to starred exercises on page 463

1.D.1 Determine which of the following functions ‖ · ‖ are
norms on the specified vector space V .

∗(a) V = R2, ‖v‖= |v1|+3|v2|.
(b) V = R2, ‖v‖= 2|v1|− |v2|.
∗(c) V = R2, ‖v‖=

∣∣v3
1 + v2

1v2 + v1v2
2 + v3

2

∣∣1/3.
(d) V = R2, ‖v‖ =

(
|v3

1 + 3v2
1v2 + 3v1v2

2 + v3
2| +

|v2|3
)1/3.

∗(e) V = P (the vector space of polynomials), ‖p‖ is the
degree of p (i.e., the highest power of x appearing in
p(x)).

(f) V = P [0,1],

‖p‖= max
0≤x≤1

{
|p(x)|

}
+ max

0≤x≤1

{
|p′(x)|

}
,

where p′ is the derivative of p.

1.D.2 Determine whether or not each of the following
norms ‖ · ‖ are induced by an inner product on the indicated
vector space V .

(a) V = R2, ‖v‖=
√

v2
1 +2v1v2 +3v2

2.

∗(b) V = C2, ‖v‖=
(
|v1|3 +3|v2|3

)1/3.
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(c) V = C[0,1], ‖ f‖= max
0≤x≤1

{
| f (x)|

}
.

1.D.3 Determine which of the following statements are
true and which are false.

∗(a) If ‖ · ‖ is a norm on a vector space V and 0 < c ∈ R
then c‖ · ‖ is also a norm on V .

(b) Every norm ‖ · ‖ on Mn(R) arises from some inner
product on Mn(R) via ‖A‖=

√
〈A,A〉.

∗(c) If S,T : V →W are isometries then so is S +T .
(d) If S,T : V→ V are isometries of the same norm then

so is S◦T .
∗(e) If T : V →W is an isometry then T−1 exists and is

also an isometry.

1.D.4 Which of the three defining properties of norms fails
if we define the p-norm on Fn as usual in Definition 1.D.2,
but with 0 < p < 1?

1.D.5 Show that norms are never linear transformations.
That is, show that if V is a non-zero vector space and
‖ · ‖ : V → R is a norm, then ‖ · ‖ is not a linear transforma-
tion.

∗∗1.D.6 Suppose V is a normed vector space and let
v,w ∈ V . Show that ‖v−w‖ ≥ ‖v‖−‖w‖. [Side note: This
is called the reverse triangle inequality.]

∗∗ 1.D.7 Suppose v ∈ Cn and 1 ≤ p ≤ ∞. Show that
‖v‖∞ ≤ ‖v‖p.

∗∗1.D.8 In this exercise, we show that

lim
p→∞
‖v‖p = ‖v‖∞ for all v ∈ Cn.

(a) Briefly explain why limp→∞ |v|p = 0 whenever v∈C
satisfies |v|< 1.

(b) Show that if v ∈ Cn is such that ‖v‖∞ = 1 then

lim
p→∞
‖v‖p = 1.

[Hint: Be slightly careful—there might be multiple
values of j for which |v j|= 1.]

(c) Use absolute homogeneity of the p-norms and the
∞-norm to show that

lim
p→∞
‖v‖p = ‖v‖∞ for all v ∈ Cn.

∗∗1.D.9 Prove the p = 1, q = ∞ case of Hölder’s inequality.
That is, show that

|v ·w| ≤ ‖v‖1‖w‖∞ for all v,w ∈ Cn.

∗∗1.D.10 In this exercise, we determine when equality
holds in Minkowski’s inequality (Theorem 1.D.2) on Cn.

(a) Show that if p > 1 or p = ∞ then ‖v + w‖p =
‖v‖p + ‖w‖p if and only if either w = 0 or v = cw
for some 0≤ c ∈ R.

(b) Show that if p = 1 then ‖v+w‖p = ‖v‖p +‖w‖p if
and only if there exist non-negative scalars {c j} ⊆R
such that, for each 1 ≤ j ≤ n, either w j = 0 or
v j = c jw j .

1.D.11 In this exercise, we determine when equality holds
in Hölder’s inequality (Theorem 1.D.5) on Cn.

(a) Show that if p,q > 1 are such that 1/p + 1/q then
|v ·w|= ‖v‖p‖w‖q if and only if either w = 0 or there
exists a scalar 0≤ c ∈ R such that |v j|p = c|w j|q for
all 1≤ j ≤ n.

(b) Show that if p = ∞ and q = 1 then |v ·w|= ‖v‖p‖w‖q
if and only if v = c(w1/|w1|,w2/|w2|, . . . ,wn/|wn|)
for some 0 ≤ c ∈ R (and if w j = 0 for some j then
v j can be chosen so that |v j| ≤ 1 arbitrarily).

∗∗1.D.12 In this exercise, we show that the bounds of
Theorem 1.D.6 are tight (i.e., the constants in it are as good
as possible). Suppose 1≤ p≤ q≤ ∞.

(a) Find a vector v ∈ Cn such that ‖v‖p = ‖v‖q.
(b) Find a vector v ∈ Cn such that

‖v‖p =
(

n
1
p−

1
q
)
‖v‖q.

∗∗1.D.13 Show that the p-norm of a function (see Defini-
tion 1.D.3) is indeed a norm.

∗∗1.D.14 Let 1 ≤ p,q ≤ ∞ be such that 1/p + 1/q = 1.
Show that
∫ b

a

∣∣ f (x)g(x)
∣∣ dx≤ ‖ f‖p‖g‖q for all f ,g ∈ C[a,b].

[Side note: This is Hölder’s inequality for functions.]

1.D.15 Show that the Jordan–von Neumann theorem (The-
orem 1.D.8) still holds if we replace the parallelogram law
by the inequality

2‖v‖2
V +2‖w‖2

V ≤ ‖v+w‖2
V +‖v−w‖2

V

for all v,w ∈ V . [Hint: Consider vectors of the form v =
x+y and w = x−y.]

∗∗1.D.16 Prove the “if” direction of the Jordan–von Neu-
mann theorem when the field is F = C. In particular, show
that if the parallelogram law holds on a complex normed
vector space V then the function defined by

〈v,w〉= 1
4

3

∑
k=0

1
ik
‖v+ ikw‖2

V

is an inner product on V .

[Hint: Show that 〈v, iw〉 = i〈v,w〉 and apply the theorem
from the real case to the real and imaginary parts of 〈v,w〉.]

1.D.17 Suppose A ∈Mm,n(C), and 1≤ p≤ ∞.

(a) Show that the following quantity ‖ · ‖p is a norm on
Mm,n(C):

‖A‖p
def= max

v∈Cn

{‖Av‖p

‖v‖p
: v 6= 0

}
.

[Side note: This is called the induced p-norm of A.
In the p = 2 case it is also called the operator norm
of A, and we explore it in Section 2.3.3.]

(b) Show that ‖Av‖p ≤ ‖A‖p‖v‖p for all v ∈ Cn.
(c) Show that ‖A∗‖q = ‖A‖p, where 1≤ q≤ ∞ is such

that 1/p+1/q = 1.
[Hint: Make use of Exercise 1.D.11.]

(d) Show that this norm is not induced by an inner prod-
uct, regardless of the value of p (as long as m,n≥ 2).
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1.D.18 Suppose A ∈Mm,n(C), and consider the induced
p-norms introduced in Exercise 1.D.17.

(a) Show that the induced 1-norm of A is its maximal
column sum:

‖A‖1 = max
1≤ j≤n

{
m

∑
i=1
|ai, j|

}
.

(b) Show that the induced ∞-norm of A is its maximal
row sum:

‖A‖∞ = max
1≤i≤m

{
n

∑
j=1
|ai, j|

}
.

1.D.19 Find all isometries of the norm on R2 defined by
‖v‖= max{|v1|,2|v2|}.

∗1.D.20 Suppose that V and W are finite-dimensional
normed vector spaces. Show that if T : V→W is an isome-
try then dim(V)≤ dim(W).

1.D.21 Suppose that V is a normed vector space and
T : V → V is an isometry.

(a) Show that if V is finite-dimensional then T−1 exists
and is an isometry.

(b) Provide an example that demonstrates that if V is
infinite-dimensional then T might not be invertible.

∗∗1.D.22 Prove Theorem 1.D.9.

1.D.23 Suppose U ∈Mm,n(C). Show that U is an isom-
etry of the 2-norm if and only if its columns are mutually
orthogonal and all have length 1.

[Side note: If m = n then this recovers the usual definition
of unitary matrices.]

∗∗1.D.24 Show that P ∈Mn(C) is an isometry of the 1-
norm if and only if every row and column of P has a single
non-zero entry, and that entry has absolute value 1.

[Hint: Try mimicking the proof of Theorem 1.D.10. It might
be helpful to use the result of Exercise 1.D.10(b).]

∗∗1.D.25 In the proof of Theorem 1.D.10, we only proved
the “only if” direction in the case when F = R. Explain what
changes/additions need to be made to the proof to handle
the F = C case.

∗∗1.D.26 Show that the 1-norm and the ∞-norm on P [0,1]
are inequivalent. That is, show that there do not exist real
scalars c,C > 0 such that

c‖p‖1 ≤ ‖p‖∞ ≤C‖p‖1 for all p ∈P [0,1].

[Hint: Consider the polynomials of the form pn(x) = xn for
some fixed n≥ 1.]

∗∗1.D.27 Suppose that ‖ · ‖a, ‖ · ‖b, and ‖ · ‖c are any
three norms on a vector space V for which ‖ · ‖a and ‖ · ‖b
are equivalent, and so are ‖ · ‖b and ‖ · ‖c. Show that ‖ · ‖a
and ‖ · ‖c are equivalent as well (in other words, show that
equivalence of norms is transitive).

∗∗1.D.28 Suppose F = R or F = C and let V be a finite-
dimensional vector space over F with basis B. Show that a
function ‖ · ‖V : V → F is a norm if and only if there exists
a norm ‖ · ‖Fn : Fn→ F such that

‖v‖V =
∥∥[v]B

∥∥
Fn for all v ∈ V .

In words, this means that every norm on a finite-dimensional
vector space looks like a norm on Fn (compare with Corol-
lary 1.4.4).
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We think basis-free, we write basis-free, but when
the chips are down we close the office door and
compute with matrices like fury.

Irving Kaplansky

Many of the most useful linear algebraic tools are those that involve breaking
matrices down into the product of two or more simpler matrices (or equivalently,
breaking linear transformations down into the composition of two or more
simpler linear transformations). The standard example of this technique from
introductory linear algebra is

We also explored the
QR decomposition

in Section 1.C1.C,
which says that

every matrix can be
written as a product

of a unitary matrix
and an upper

triangular matrix.

diagonalization, which says that it is often the
case that we can write a matrix A ∈Mn in the form A = PDP−1, where P is
invertible and D is diagonal.

More explicitly, some variant of the following theorem is typically proved
in introductory linear algebra courses:

Theorem 2.0.1
Characterization of

Diagonalizability

Suppose A ∈Mn(F). The following are equivalent:
a) A is diagonalizable over F.
b) There exists a basis of Fn consisting of eigenvectors of A.

Furthermore, in any diagonalization A = PDP−1, the eigenvalues of A
are the diagonal entries of D and the corresponding eigenvectors are the
columns of P in the same order.By “diagonalizable

over F”, we mean
that we can choose

D,P ∈Mn(F). One of the standard examples of why diagonalization is so useful is that we can
use it to compute large powers of matrices quickly. In particular, if A = PDP−1

is a diagonalization of A ∈Mn, then for every integer k ≥ 1 we have

Ak =
(
PD

P−1P = I︷ ︸︸ ︷
P−1)(PD

P−1P = I︷ ︸︸ ︷
P−1)(PD

···︷︸︸︷
P−1) · · ·

(
PDP−1)

︸ ︷︷ ︸
k times

= PDkP−1,

and DkAnother brief review
of diagonalization

is provided in
Appendix A.1.7.

is trivial to compute (for diagonal matrices, matrix multiplication is
the same as entrywise multiplication). It follows that after diagonalizing a
matrix, we can compute any power of it via just two matrix multiplications—
pre-multiplication of Dk by P, and post-multiplication of Dk by P−1. In a sense,
we have off-loaded the difficulty of computing matrix powers into the difficulty
of diagonalizing a matrix.
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If we think of the matrix A as a linear transformation acting on Fn then
diagonalizing A is equivalent to finding a basis B of Fn in which the standard
matrix of that linear transformation is diagonal. That is, if we define T : Fn→Fn

by T (v) = Av then Theorem 1.2.8Here we use the
fact that [T ]E = A.
For a refresher on
change-of-basis

matrices and
standard matrices,

refer back to
Section 1.2.2.

tells us that [T ]B = PB←EAPE←B, where E
is the standard basis of Fn. Since PB←E = P−1

E←B (by Theorem 1.2.3), a slight
rearrangement shows that A = PE←B[T ]BP−1

E←B, so A is diagonalizable if and
only if there is a basis B in which [T ]B is diagonal (see Figure 2.1).

x

y

v2 v1

A

x

y

Av2

Av1

Figure 2.1: The matrix A =

[
2 1
1 2

]
“looks diagonal” (i.e., just stretches space, but

does not skew or rotate it) when viewed in the basis B = {v1,v2}= {(1,1),(−1,1)}

We say that two matrices A,B∈Mn(F) are similar if there exists an invert-
ible matrix P∈Mn(F) such that A = PBP−1With this terminology

in hand, a matrix is
diagonalizable if

and only if it is similar
to a diagonal matrix.

(and we call such a transformation
of A into B a similarity transformation). The argument that we just provided
shows that two matrices are similar if and only if they represent the same linear
transformation on Fn, just represented in different bases. The main goal of this
chapter is to better understand similarity transformations (and thus change of
bases). More specifically, we investigate the following questions:

1) What if A is not diagonalizable—how “close” to diagonal can we make
D = P−1AP when P is invertible? That is, how close to diagonal can we
make A via a similarity transformation?

2) How simple can we make A if we multiply by something other than P
and P−1 on the left and right? For example, how simple can we make A
via a unitary similarity transformation—a similarity transformation
in which the invertible matrix P is unitary? Since a change-of-basis
matrix PE←B is unitary if and only if B is an orthonormal basis of Fn

(see Exercise 1.4.18), this is equivalent to asking how simple we can
make the standard matrix of a linear transformation if we represent it in
an orthonormal basis.

2.1 The Schur and Spectral Decompositions

We start this chapter by probing question (2) above—how simple can we can
make a matrix via a unitary similarity? That is, given a matrix A ∈Mn(C),
how simple can U∗AU be if U is a unitary matrix? Note that we need the field
here to be R or C so that it even makes sense to talk about unitary matrices,
and for now we restrict our attention to C since the answer in the real case will
follow as a corollary of the answer in the complex case.
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2.1.1 Schur Triangularization

We know that we cannot hope inRecall that an upper
triangular matrix is

one with zeros in
every position below

the main diagonal.

general to get a diagonal matrix via unitary
similarity, since not every matrix is even diagonalizable via any similarity.
However, the following theorem, which is the main workhorse for the rest
of this section, says that we can get partway there and always get an upper
triangular matrix.

Theorem 2.1.1
Schur

Triangularization

Suppose A ∈Mn(C). There exists a unitary matrix U ∈Mn(C) and an
upper triangular matrix T ∈Mn(C) such that

A = UTU∗.

Proof. We prove the result by induction on n (the size of A). For the base case,
we simply notice that the result is trivial if n = 1, since every 1×1 matrix is
upper triangular.

For the inductive step, suppose that every (n−1)× (n−1) matrix can be
upper triangularized (i.e., can be written in the form described by the theorem).
Since A is complex, the fundamental theorem of algebraThis step is why

we need to work
over C, not R. Not all

polynomials factor
over R, so not all real

matrices have real
eigenvalues.

(Theorem A.3.1) tells
us that its characteristic polynomial pA has a root, so A has an eigenvalue. If
we denote one of its corresponding eigenvectors by v ∈ Cn, then we recall that
eigenvectors are non-zero by definition, so we can scale it so that ‖v‖= 1.

We can then extend v

To extend v to an
orthonormal basis,

pick any vector
not in its span, apply
Gram–Schmidt, and

repeat.

to an orthonormal basis of Cn via Exercise 1.4.20.
In other words, we can find a unitary matrix V ∈Mn(C) with v as its first
column:

V =
[

v | V2
]
,

where V2 ∈Mn,n−1(C) satisfies V ∗2 v = 0 (since V is unitary so v is orthogonal
to every column of V2). Direct computation then shows that

The final step in this
computation follows

because Av = λv,
v∗v = ‖v‖2 = 1, and

V ∗2 v = 0.

V ∗AV =
[

v | V2
]∗A
[

v | V2
]
=
[

v∗

V ∗2

][
Av | AV2

]

=
[

v∗Av v∗AV2

λV ∗2 v V ∗2 AV2

]
=
[

λ v∗AV2

0 V ∗2 AV2

]
.

We now apply the inductive hypothesis—since V ∗2 AV2 is an (n−1)×(n−1)
matrix, there exists a unitary matrix U2 ∈Mn−1(C) and an upper triangular
T2 ∈Mn−1(C) such that V ∗2 AV2 = U2T2U∗2 . It follows that

V ∗AV =
[

λ v∗AV2

0 U2T2U∗2

]
=
[

1 0T

0 U2

][
λ v∗AV2

0 T2

][
1 0T

0 U∗2

]
.

By multiplying on the left by V and on the right by V ∗, we see that A = UTU∗,

Recall from
Exercise 1.4.8

that the product
of unitary matrices

is unitary.

where

U = V
[

1 0T

0 U2

]
and T =

[
λ v∗AV2

0 T2

]
.

Since U is unitary and T is upper triangular, this completes the inductive step
and the proof. �

In a Schur triangularization A = UTU∗, the diagonal entries of T are
necessarily the same as the eigenvalues of A. To see why this is the case, recall
that (a) A and T must have the same eigenvalues since they are similar, and



170 Chapter 2. Matrix Decompositions

(b) the eigenvalues of a triangular matrix are its diagonal entries. However,
the other pieces of Schur triangularization are highly non-unique—the unitary
matrix U and the entries in the strictly upper triangular portion of T can vary
wildly.

Example 2.1.1
Computing Schur
Triangularizations

Compute a Schur triangularization of the following matrices:

a) A =
[

1 2
5 4

]
b) B = 


1 2 2
2 1 2
3 −3 4




Solutions:
a) We construct the triangularization by mimicking the proof of Theo-

rem 2.1.1, so we start by constructing a unitary matrix whose first
column is an eigenvector of A. It is straightforward to show that its
eigenvaluesWe computed

these eigenvalues
and eigenvectors in

Example A.1.1. See
Appendix A.1.6 if you
need a refresher on

eigenvalues and
eigenvectors.

are −1 and 6, with corresponding eigenvectors (1,−1)
and (2,5), respectively.
If we (arbitrarily) choose the eigenvalue/eigenvector pair λ =−1
and v = (1,−1)/

√
2, then we can extend v to the orthonormal basis
{

1√
2
(1,−1), 1√

2
(1,1)

}

of C2 simply by inspection. Placing these vectors as columns into a
unitary matrix then gives us a Schur triangularization A = UTU∗ as
follows:

U =
1√
2

[
1 1
−1 1

]
and T = U∗AU =

[
−1 −3
0 6

]
.

b) Again, we mimic the proof of Theorem 2.1.1 and thus start by con-
structing a unitary matrix whose first column is an eigenvector of
B. Its eigenvalues are −1, 3, and 4, with corresponding eigenvec-
tors (−4,1,3), (1,1,0), and (2,2,1), respectively. WeIf we chose a

different eigen-
value/eigenvector
pair, we would still

get a valid Schur
triangularization

of B, but it would look
completely different

than the one we
compute here.

(arbitrarily)
choose the pair λ = 4,v = (2,2,1)/3, and then we compute an or-
thonormal basis of C3 that contains v (notice that we normalized v
so that this is possible).
To this end, we note that the unit vector w = (1,−1,0)/

√
2 is clearly

orthogonal to v, so we just need to find one more unit vector or-
thogonal to both v and w. We can either solve a linear system,or
use the Gram–Schmidt process, or use the cross product to find
x = (−1,−1,4)/

√
18, which does the job. It follows that the set

{v,w,x}=
{

1
3 (2,2,1), 1√

2
(1,−1,0), 1√

18
(−1,−1,4)

}

is an orthonormal basis of C3 containing v, and if we stick these
vectors as columns into a unitary matrix V1 then we have

V1 =




2/3 1/
√

2 −1/
√

18

2/3 −1/
√

2 −1/
√

18

1/3 0 4/
√

18


 , V ∗1 BV1 =




4
√

2 2
√

2
0 −1 0
0 4 3


 .
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We nowFor larger matrices,
we have to iterate

even more. For
example, to

compute a Schur
triangularization of a
4×4 matrix, we must

compute an
eigenvector of a

4×4 matrix, then a
3×3 matrix, and

then a 2×2 matrix.

iterate—we repeat this entire procedure with the bottom-
right 2×2 block of V ∗1 BV1. Well, the eigenvalues of

[
−1 0
4 3

]

are −1 and 3, with corresponding eigenvectors (1,−1) and (0,1),
respectively. The orthonormal basis

{
(1,−1)/

√
2,(1,1)/

√
2
}

con-
tains one of its eigenvectors, so we define V2 to be the unitary matrix
with these vectors as its columns. Then B has Schur triangularization
B = UTU∗

In these examples,
the eigenvectors

were simple
enough to extend to

orthonormal bases
by inspection. In

more complicated
situations, use the

Gram–Schmidt
process.

via

U = V1

[
1 0T

0 V2

]

=




2/3 1/
√

2 −1/
√

18

2/3 −1/
√

2 −1/
√

18

1/3 0 4/
√

18







1 0 0
0 1/

√
2 1/

√
2

0 −1/
√

2 1/
√

2




=
1
3




2 2 1
2 −1 −2
1 −2 2




and

T = U∗BU =
1
9




2 2 1
2 −1 −2
1 −2 2






1 2 2
2 1 2
3 −3 4






2 2 1
2 −1 −2
1 −2 2




=




4 −1 3
0 −1 −4
0 0 3


 .

As demonstrated by the previous example, computing a Schur triangular-
ization by hand is quite tedious. If A is n×n then constructing a Schur triangu-
larization requires us to find an eigenvalue and eigenvector of an n×n matrix,
extend it to an orthonormal basis, finding an eigenvector of an (n−1)× (n−1)
matrix, extend it it to an orthonormal basis, and so on down to a 2×2 matrix.

While there are somewhat faster numerical algorithms that can be used
to compute Schur triangularizations in practice, we do not present them here.
Rather, we are interested in Schur triangularizations for their theoretical prop-
erties and the fact that they will help us establish other, more practical, matrix
decompositions. In other words, we frequently make use of the fact that Schur
triangularizations exist, but we rarely need to actually compute them.

Remark 2.1.1
Schur

Triangularizations
are Complex

Schur triangularizations are one of the few things that really do require
us to work with complex matrices, as opposed to real matrices (or even
matrices over some more exotic field). The reason for this is that the first
step in finding a Schur triangularization is finding an eigenvector, and
some real matrices do not have any real eigenvectors. For example, the
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matrix

A =
[

1 −2
1 −1

]

has no real eigenvalues and thus no real Schur triangularization (since
the diagonal entries of its triangularization T necessarily have the same
eigenvalues as A). However, it does have a complex Schur triangularization:
A = UTU∗, where

U =
1√
6

[√
2(1+ i) 1+ i√

2 −2

]
and T =

1√
2

[
i
√

2 3− i

0 −i
√

2

]
.

While it is not quite as powerful as diagonalization, the beauty of Schur
triangularization is that it applies to every square matrix, which makes it an
extremelyRecall that the trace

of a matrix (denoted
by tr(·)) is the sum of

its diagonal entries.

useful tool when trying to prove theorems about (potentially non-
diagonalizable) matrices. For example, we can use it to provide a short and
simple proof of the following relationship between the determinant, trace, and
eigenvalues of a matrix (the reader may have already seen this theorem for diag-
onalizable matrices, or may have already proved it in general by painstakingly
analyzing coefficients of the characteristic polynomial).

Theorem 2.1.2
Determinant and

Trace in Terms
of Eigenvalues

Let A ∈Mn(C) have eigenvalues λ1,λ2, . . . ,λn (listed according to alge-
braic multiplicity). Then

det(A) = λ1λ2 · · ·λn and tr(A) = λ1 +λ2 + · · ·+λn.

Proof. Both formulas are proved by using Schur triangularization to write A =
UTU∗ with U unitary and T upper triangular, and recalling that the diagonal
entries of T are its eigenvalues, which (since T and A are similar) are also the
eigenvalues of A. In particular,

For a refresher
on properties of the
determinant like the

ones we use here,
see Appendix A.1.5.

det(A) = det(UTU∗) (Schur triangularization)
= det(U)det(T )det(U∗) (multiplicativity of determinant)
= det(UU∗)det(T ) (multiplicativity of determinant)
= det(T ) (det(UU∗) = det(I) = 1)
= λ1λ2 · · ·λn. (determinant of a triangular matrix)

The corresponding statement about the trace is proved analogously:

tr(A) = tr(UTU∗) (Schur triangularization)
= tr(U∗UT ) (cyclic commutativity of trace)
= tr(T ) (U∗U = I)
= λ1 +λ2 + · · ·+λn. (definition of trace) �

As one more immediate application of Schur triangularization, we prove an
important result called the Cayley–Hamilton theorem, which says that every
matrix satisfies its own characteristic polynomial.

Theorem 2.1.3
Cayley–Hamilton

Suppose A ∈Mn(C) has characteristic polynomial pA(λ ) = det(A−λ I).
Then pA(A) = O.
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Before proving this result, we clarify exactly what we mean by it. Since
the characteristic polynomial pA really is a polynomial, there are coefficients
c0,c1, . . . ,cn ∈ C such thatIn fact, an = (−1)n.

pA(λ ) = anλ
n + · · ·+a2λ

2 +a1λ +a0.

What we mean by pA(A) is that we plug A into this polynomial in the naïve
way—we just replace each power of λ by the corresponding power of A:

Recall that, for
every matrix

A ∈Mn, we have
A0 = I.

pA(A) = anAn + · · ·+a2A2 +a1A+a0I.

For example, if A =
[

1 2
3 4

]
then

pA(λ ) = det(A−λ I) = det

([
1−λ 2

3 4−λ

])
= (1−λ )(4−λ )−6

= λ
2−5λ −2,

so pA(A) = A2−5A−2I. The Cayley–Hamilton theorem says that this equals
the zero matrix, which we can verify directly:Be careful with the

constant term: −2
becomes −2I when

plugging a matrix
into the polynomial.

A2−5A−2I =

[
7 10
15 22

]
−5
[

1 2
3 4

]
−2
[

1 0
0 1

]
=
[

0 0
0 0

]
.

We now prove this theorem in full generality.

Proof of Theorem 2.1.3. Because we are working over C, the fundamental
theorem of algebra (Theorem A.3.1) says that the characteristic polynomial of
A has a root and can thus be factored:

pA(λ ) = (λ1−λ )(λ2−λ ) · · ·(λn−λ ), so
pA(A) = (λ1I−A)(λ2I−A) · · ·(λnI−A).

To simplify things, we use Schur triangularization to write A = UTU∗,
where U ∈Mn(C) is unitary and T ∈Mn(C) is upper triangular. Then by
factoring somewhat cleverly, we see that

pA(A) = (λ1I−UTU∗) · · ·(λnI−UTU∗) (plug in A = UTU∗)
= (λ1UU∗−UTU∗) · · ·(λnUU∗−UTU∗) (since I = UU∗)

=
(
U(λ1I−T )U∗

)
· · ·
(
U(λnI−T )U∗

)
(factor out U and U∗)

= U(λ1I−T ) · · ·(λnI−T )U∗ (since U∗U = I)
= U pA(T )U∗.

It follows that we just need to prove that pA(T ) = O.

This is a fairly
standard technique

that Schur
triangularization

gives us—it lets us just
prove certain

statements for
triangular matrices
without losing any

generality.

To this end, we assume for simplicity that the diagonal entries of T are in
the same order that we have been using for the eigenvalues of A (i.e., the first
diagonal entry of T is λ1, the second is λ2, and so on). Then for all 1≤ j ≤ n,
λ jI−T is an upper triangular matrix with diagonal entries λ1−λ j, λ2−λ j, . . .,
λn−λ j. That is,

We use asterisks (∗)
in the place of

matrix entries whose
values we do not

care about.

λ1I−T =




0 ∗ · · · ∗
0 λ1−λ2 · · · ∗
...

...
. . .

...
0 0 · · · λ1−λn




,
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and similarly for λ2I − T , . . ., λnI − T . We now claim that the leftmost k
columns of (λ1I−T )(λ2I−T ) · · ·(λkI−T ) consist entirely of zeros whenever
1≤ k≤ n, and thus pA(T ) = (λ1I−T )(λ2I−T ) · · ·(λnI−T ) = O. Proving this
claim is a straightforward (albeit rather ugly) matrix multiplication exercise,
which we solve via induction.

The base case k = 1 is straightforward,Another proof of
the Cayley–Hamilton
theorem is provided

in Section 2.D.4.

as we wrote down the matrix λ1I−T
above, and its leftmost column is indeed the zero vector. For the inductive step,
define Tk = (λ1I−T )(λ2I−T ) · · ·(λkI−T ) and suppose that the leftmost k
columns of Tk consist entirely of zeros. We know that each Tk is upper triangular
(since the product of upper triangular matrices is again upper triangular), so
some rather unpleasant block matrix multiplication shows that

Recall that Ok is the
k× k zero matrix. O

(without a subscript)
of whatever size

makes sense in that
portion of the block

matrix ((n− k)× k
in this case).

Tk+1 = Tk
(
λk+1I−T

)

=




Ok ∗

O

∗ ∗ · · · ∗
0 ∗ · · · ∗
...

...
. . .

...
0 0 · · · ∗







∗ ∗ ∗

O

0
0
...
0

∗ · · · ∗
λk+1−λk+2 · · · ∗

...
. . .

...
0 · · · λk+1−λn




=




Ok 0 ∗

O

0
0
...
0

∗ · · · ∗
∗ · · · ∗
...

. . .
...

0 · · · ∗




,

which has its leftmost k +1 columns equal to the zero vector. This completes
the inductive step and the proof. �

For example, because the characteristic polynomial of a 2×2 matrixMore generally, if
A ∈Mn(C) then the

constant coefficient
of pA is det(A) and its
coefficient of λ n−1 is

(−1)n−1tr(A).

A is
pA(λ ) = λ 2− tr(A)λ +det(A), in this case the Cayley–Hamilton theorem says
that every 2×2 matrix satisfies the equation A2 = tr(A)A−det(A)I, which can
be verified directly by giving names to the 4 entries of A and computing all of
the indicated quantities:

tr(A)A−det(A)I = (a+d)

[
a b
c d

]
− (ad−bc)

[
1 0
0 1

]

=

[
a2 +bc ab+bd

ac+ cd bc+d2

]
= A2.

One useful feature of the Cayley–Hamilton theorem is that if A ∈Mn(C)
then it lets us write every power of A as a linear combination of I,A,A2, . . . ,An−1.
In other words, it tells us that the powers of A are all contained within some
(at most) n-dimensional subspace of the n2-dimensional vector spaceMn(C).

Example 2.1.2
Matrix Powers via
Cayley–Hamilton

Suppose

A =
[

1 2
3 4

]
.

Use the Cayley–Hamilton theorem to come up with a formula for A4 as a
linear combination of A and I.
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Solution:
As noted earlier, the characteristic polynomial of A is pA(λ ) = λ 2−

5λ −2, so A2−5A−2I = O. Rearranging somewhat gives A2 = 5A+2I.
To get higher powers of A

Another way to solve
this would be to

square both sides of
the equation

A2 = 5A+2I,
which gives

A4 = 25A2 +20A+4I.
Substituting in

A2 = 5A+2I then
gives the answer.

as linear combinations of A and I, just multiply
this equation through by A:

A3 = 5A2 +2A = 5(5A+2I)+2A = 25A+10I +2A = 27A+10I, and

A4 = 27A2 +10A = 27(5A+2I)+10A = 135A+54I +10A

= 145A+54I.

Example 2.1.3
Matrix Inverses via

Cayley–Hamilton

Use the Cayley–Hamilton theorem to find the inverse of the matrix

A =
[

1 2
3 4

]
.

Solution:
AsAlternatively, first

check that det(A) 6= 0
so that we know A−1

exists, and then find
it by multiplying both

sides of A2−5A−
2I = O by A−1.

before, we know from the Cayley–Hamilton theorem that A2−
5A− 2I = O. If we solve this equation for I, we get I = (A2− 5A)/2.
Factoring this equation gives I = A(A−5I)/2, from which it follows that
A is invertible, with inverse

A−1 = (A−5I)/2 =
1
2

([
1 2
3 4

]
−
[

5 0
0 5

])
=

1
2

[
−4 2
3 −1

]
.

Example 2.1.4
Large Matrix

Powers via
Cayley–Hamilton

Suppose

A =




0 2 0
1 1 −1
−1 1 1


 .

Use the Cayley–Hamilton theorem to compute A314.

Solution:
The characteristic polynomial of A is

pA(λ ) = det(A−λ I) = (−λ )(1−λ )2 +2+0−λ −2(1−λ )−0

=−λ
3 +2λ

2.

The Cayley–Hamilton theorem then says that A3 = 2A2. Multiplying that
equation by A repeatedly gives us A4 = 2A3 = 4A2, A5 = 2A4 = 4A3 = 8A2,
and in general, An = 2n−2A2. It follows that

A314 = 2312A2 = 2312




2 2 −2
2 2 −2
0 0 0


= 2313




1 1 −1
1 1 −1
0 0 0


 .

It is maybe worth noting that the final example above is somewhat contrived,
since it only works out so cleanly due to the given matrix having a very simple
characteristic polynomial. For more complicated matrices, large powers are
typically still best computed via diagonalization.
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2.1.2 Normal Matrices and the Complex Spectral Decomposition

The reason that Schur triangularization is such a useful theoretical tool is
that it applies to every matrix inMn(C) (unlike diagonalization, for example,
which has the annoying restriction of only applying to matrices with a basis
of eigenvectors). However, upper triangular matrices can still be somewhat
challenging to work with, as evidenced by how technical the proof of the
Cayley–Hamilton theorem (Theorem 2.1.3) was. We thus now start looking at
when Schur triangularization actually results in a diagonal matrix, rather than
just an upper triangular one.

It turns out that the answer is related to a new class of matrices that we have
not yet encountered, so we start with a definition:

Definition 2.1.1
Normal Matrix

A matrix A ∈Mn(C) is called normal if A∗A = AA∗.

Many of the important families of matrices that we are already familiar with
are normal. For example, every Hermitian matrix is normal, since if A∗ = A
then A∗A = A2 = AA∗, and a similarRecall that

A ∈Mn(C) is
skew-Hermitian

if A∗ =−A.

argument shows that skew-Hermitian
matrices are normal as well. Similarly, every unitary matrix U is normal, since
U∗U = I = UU∗ in this case, but there are also normal matrices that are neither
Hermitian, nor skew-Hermitian, nor unitary.

Example 2.1.5
A Normal Matrix

Show that the matrix

A =




1 1 0
0 1 1
1 0 1




is normal but not Hermitian, skew-Hermitian, or unitary.

Solution:
To see that A is normal, we directly compute

A∗A =




1 0 1
1 1 0
0 1 1






1 1 0
0 1 1
1 0 1


=




2 1 1
1 2 1
1 1 2


= AA∗.

The fact that A is not unitary follows from the fact that A∗A (as computed
above) does not equal the identity matrix, and the fact that A is neither
Hermitian nor skew-Hermitian can be seen just by inspecting the entries
of the matrix.

Our primary interest in normal matrices comes from the following theorem,
which says that normal matrices are exactly those that can be diagonalized
by a unitary matrix. Equivalently, they are exactly the matrices whose Schur
triangularizations are actually diagonal.

Theorem 2.1.4
Spectral

Decomposition
(Complex Version)

Suppose A ∈Mn(C). Then there exists a unitary matrix U ∈Mn(C) and
diagonal matrix D ∈Mn(C) such that

A = UDU∗

if and only if A is normal (i.e., A∗A = AA∗).
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Proof. To see the “only if” direction, we just compute

A∗A = (UDU∗)∗(UDU∗) = UD∗U∗UDU∗ = UD∗DU∗, and
AA∗ = (UDU∗)(UDU∗)∗ = UDU∗UD∗U∗ = UDD∗U∗.

Since D and D∗ are diagonal, they commute, so UD∗DU∗ = UDD∗U∗. We
thus conclude that A∗A = AA∗, so A is normal.

For the “if” direction, use Schur triangularization to write A = UTU∗,
where U is unitary and T is upper triangular. Since A is normal, we know that
A∗A = AA∗. It follows that

UT T ∗U∗ = (UTU∗)(UTU∗)∗ = AA∗

= A∗A = (UTU∗)∗(UTU∗) = UT ∗TU∗.

Multiplying on the left by U∗ and on the right by U then shows that T ∗T = T T ∗

(i.e., T is also normal). Our goal now is to show that, since T is both upper
triangular and normal, it must in fact be diagonal.

To this end, we compute the diagonal entries of T ∗T and T T ∗, starting with
[T ∗T ]1,1 = [T T ∗]1,1.Recall that the

notation [T ∗T ]i, j
means the (i, j)-entry

of the matrix T ∗T .

It is perhaps useful to write out the matrices T and T ∗ to
highlight what this equality tells us:

[
T ∗T

]
1,1

=







t1,1 0 · · · 0

t1,2 t2,2 · · · 0

.

.

.
.
.
.

. . .
.
.
.

t1,n t2,n · · · tn,n







t1,1 t1,2 · · · t1,n
0 t2,2 · · · t2,n
.
.
.

.

.

.
. . .

.

.

.

0 0 · · · tn,n







1,1

= |t1,1|2,

and

[
T T ∗]

1,1
=







t1,1 t1,2 · · · t1,n
0 t2,2 · · · t2,n
.
.
.

.

.

.
. . .

.

.

.

0 0 · · · tn,n







t1,1 0 · · · 0

t1,2 t2,2 · · · 0

.

.

.
.
.
.

. . .
.
.
.

t1,n t2,n · · · tn,n







1,1

= |t1,1|2 + |t1,2|2 + · · ·+ |t1,n|2.

We thus see that [T ∗T ]1,1 = [T T ∗]1,1 implies |t1,1|2 = |t1,1|2 + |t1,2|2 + · · ·+
|t1,n|2, and since each term in that sum is non-negative it follows that |t1,2|2 =
· · ·= |t1,n|2 = 0. In other words, the only non-zero entry in the first row of T is
its (1,1)-entry.

We now repeat this argument with [T ∗T ]2,2 = [T T ∗]2,2. Again, direct com-
putation shows

More of the
entries of T and T ∗

equal zero this time
because we now

know that the
off-diagonal entries

of the first row of T
are all zero.

that

[
T ∗T

]
2,2

=







t1,1 0 · · · 0

0 t2,2 · · · 0

.

.

.
.
.
.

. . .
.
.
.

0 t2,n · · · tn,n







t1,1 0 · · · 0

0 t2,2 · · · t2,n
.
.
.

.

.

.
. . .

.

.

.

0 0 · · · tn,n







2,2

= |t2,2|2,
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and

[
T T ∗]

2,2
=







t1,1 0 · · · 0

0 t2,2 · · · t2,n
.
.
.

.

.

.
. . .

.

.

.

0 0 · · · tn,n







t1,1 0 · · · 0

0 t2,2 · · · 0

.

.

.
.
.
.

. . .
.
.
.

0 t2,n · · · tn,n







2,2

= |t2,2|2 + |t2,3|2 + · · ·+ |t2,n|2,

which implies |t2,2|2 = |t2,2|2 + |t2,3|2 + · · ·+ |t2,n|2. Since each term in this sum
is non-negative, it follows that |t2,3|2 = · · ·= |t2,n|2 = 0, so the only non-zero
entry in the second row of T is its (2,2)-entry.

By repeating this argument for [T ∗T ]k,k = [T T ∗]k,k for each 3≤ k ≤ n, we
similarly see that all of the off-diagonal entries in T equal 0, so T is diagonal.
We can thus simply choose D = T , and the proof is complete. �

The spectral decomposition is one of the most important theorems in all of
linear algebra, and it can be interpreted in at least three different ways, so it is
worth spending some time thinking about how to think about this theorem.

Interpretation 1. A matrix is normal if and only if its Schur triangularizations are actually
diagonalizations. To be completely clear, the following statements about
a matrix A ∈Mn(C) are all equivalent:
• A is normal.
• At least one Schur triangularization of A is diagonal.
• Every Schur triangularization of A is diagonal.

The equivalence of the final two points above might seem somewhat
strange given how non-unique Schur triangularizations are, but most of
that non-uniqueness comes from the strictly upper triangular portion of
the triangular matrix T in A = UTU∗. Setting all of the strictly upper
triangular entries of T to 0 gets rid of most of this non-uniqueness.

Interpretation 2. A matrix is normal if and only if it is diagonalizable (in the usual sense
of Theorem 2.0.1) via a unitary matrix. In particular, recall the columns
of the matrix P in a diagonalization A = PDP−1 necessarily form a basis
(of Cn) of eigenvectors of A. It follows that we can compute spectral
decompositions simply via the usual diagonalization procedure,

The “usual
diagonalization

procedure” is
illustrated in

Appendix A.1.7.
but

making sure to choose the eigenvectors to be an orthonormal basis of Cn.
This method is much quicker and easier to use than the method suggested
by Interpretation 1, since Schur triangularizations are awful to compute.

Example 2.1.6
A Small Spectral
Decomposition

Find a spectral decomposition of the matrix A =
[

1 2
2 1

]
.

Solution:
We start by finding its eigenvalues:

det(A−λ I) = det

([
1−λ 2

2 1−λ

])
= (1−λ )2−4 = λ

2−2λ −3.

Setting this polynomial equal to 0 and solving (either via factoring or the
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quadratic equation) gives λ =−1 and λ = 3 as the eigenvalues of A. To
find the corresponding eigenvectors, we solve the equations (A−λ I)v = 0
for each of λ =−1 and λ = 3.

λ =−1: The system of equations (A+ I)v = 0 can be solved as follows:
[

2 2 0
2 2 0

]
R2−R1−−−−→

[
2 2 0
0 0 0

]
1
2 R1−−→

[
1 1 0
0 0 0

]
.

It follows that v2 = −v1, so any vector of the form (v1,−v1)
(with v1 6= 0) is an eigenvector to which this eigenvalue cor-
responds.We could have also

chosen v1 =−1/
√

2
(or even something

like v1 = i/
√

2 if we
are feeling funky).

However, we want to choose it to have length 1,
since we want the eigenvectors to form an orthonormal basis
of Cn. We thus choose v1 = 1/

√
2 so that the eigenvector is

(1,−1)/
√

2.

λ = 3: The

This is just the usual
diagonalization
procedure, with

some minor care
being taken to

choose eigenvectors
to have length 1 (so

that the matrix we
place them in will be

unitary).

system of equations (A−3I)v = 0 can be solved as follows:
[
−2 2 0
2 −2 0

]
R2+R1−−−−→

[
−2 2 0
0 0 0

]

−1
2 R1−−−→

[
1 −1 0
0 0 0

]
.

We conclude that v2 = v1, so we choose (1,1)/
√

2 to be our
(unit length) eigenvector.

To construct a spectral decomposition of A, we then place the eigen-
values as the diagonal entries in a diagonal matrix D, and we place the
eigenvectors to which they correspond as columns (in the same order) in a
matrix U :

D =
[
−1 0
0 3

]
and U =

1√
2

[
1 1
−1 1

]
.

It is then straightforward to verify that U is indeed unitary, and A = UDU∗,
so we have found a spectral decomposition of A.

Interpretation 3. A matrix is normal if and only if it represents a linear transformation
that stretches (but does not rotate or skew) some orthonormal basis of
Cn (i.e., some unit square grid in Cn, as in Figure 2.1). The reason for
this is that if A = UDU∗ is a spectral decomposition then the (mutually
orthogonal) columns u1,u2, . . . ,un of U are eigenvectors of A:

To see that U∗u j = e j,
recall that Ue j = u j

and multiply on the
left by U∗.

Au j = UDU∗u j = UDe j = U(d je j) = d ju j for all 1≤ j ≤ n.

Equivalently, normal matrices are the linear transformations that look
diagonal in some orthonormal basis B of Cn (whereas diagonalizable
matrices are the linear transformations that look diagonal in some not-
necessarily-orthonormal basis).

In Example 2.1.6, we chose the eigenvectors so as to make the diagonalizing
matrix unitary, but the fact that they were orthogonal to each other came for
free as a consequence of A being normal. This always happens (for normal
matrices) with eigenvectors corresponding to different eigenvalues—a fact that
we now state formally as a corollary of the spectral decomposition.
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Corollary 2.1.5
Normal Matrices
have Orthogonal

Eigenspaces

Suppose A ∈Mn(C) is normal. If v,w ∈ Cn are eigenvectors of A corre-
sponding to different eigenvalues then v ·w = 0.

Proof. The idea is simply that in a spectral decomposition A = UDU∗, the
columns of U can be partitioned so as to span the eigenspaces of A, and since
those columns are mutually orthogonal, so are all vectors in the eigenspaces.

More precisely, suppose Av = λv and Aw = µw for some λ 6= µ (i.e., these
are the two different eigenvalues of A described by the theorem). By the spectral
decomposition (Theorem 2.1.4), we can write A = UDU∗, where U is a unitary
matrix and D is diagonal. Furthermore, we can permute the diagonal entries of
D (and the columns of U correspondingly) so as to group all of the occurrences
of λ and µ on the diagonal of D together:Here, k and ` are the

multiplicities of the
eigenvalues λ and µ

of A (i.e., they are
the dimensions of

the corresponding
eigenspaces).

D =




λ Ik O O
O µI` O
O O D2


 ,

where D2 is diagonal and does not contain either λ or µ as any of its di-
agonal entries. If we write U =

[
u1 | u2 | · · · | un

]
then {u1, . . . ,uk} and

{uk+1, . . . ,uk+`} are orthonormal bases of the eigenspaces of A corresponding
to the eigenvalues λ and µ , respectively. We can thus write v and w as linear
combinations of these vectors:Be slightly

careful—the spectral
decomposition only
says that there exists
an orthonormal basis

of Cn consisting of
eigenvectors (i.e.,
the columns of U),

not that every basis
of eigenvectors is

orthonormal.

v = c1u1 + · · ·+ ckuk and w = d1uk+1 + · · ·+d`uk+`.

We then simply compute

v ·w =

(
k

∑
i=1

ciui

)
·
(

`

∑
j=1

d juk+ j

)
=

k

∑
i=1

`

∑
j=1

cid j(ui ·uk+ j) = 0,

since U is unitary so its columns are mutually orthogonal. �

The above corollary tells us that, when constructing a spectral decomposi-
tion of a normal matrix, eigenvectors corresponding to different eigenvalues
will be orthogonal “for free”, so we just need to make sure to scale them to
have length 1. On the other hand, we have to be slightly careful when construct-
ing multiple eigenvectors corresponding to the same eigenvalue—we have to
choose them to be orthogonal to each other.

For diagonalizable
matrices, algebraic

and geometric
multiplicities coincide,

so here we just call
them both

“multiplicity”.

This is a non-issue when the eigen-
values of the matrix are distinct (and thus its eigenspaces are 1-dimensional),
but it requires some attention when some eigenvalues have multiplicity greater
than 1.

Example 2.1.7
A Larger Spectral

Decomposition

Find a spectral decomposition of the matrix A =



1 1 −1 −1
1 1 −1 −1
1 1 1 1
1 1 1 1




.

Solution:
It is straightforward to check that A∗A = AA∗, so this matrix is normal

and thus has a spectral decomposition. Its characteristic polynomial is
λ 2(λ 2−4λ +8),

No, this
characteristic

polynomial is not
fun to come up with.

Just compute
det(A−λ I) like usual

though.

so its eigenvalues are λ = 0, with algebraic multiplicity
2, and λ = 2±2i, each with algebraic multiplicity 1.

For the eigenvalues λ = 2± 2i, we find corresponding normalized
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eigenvectors to be v = (1± i,1± i,1∓ i,1∓ i)/(2
√

2), respectively. What
happens when λ = 0 is a bit more interesting,Recall that

eigenvalues and
eigenvectors of real

matrices come in
complex conjugate

pairs.

so we now explicitly demon-
strate the computation of those corresponding eigenvectors by solving the
equation (A−λ I)v = 0 when λ = 0:

λ = 0: The system of equations (A−0I)v = 0 can be solved as follows:

These row operations
are performed

sequentially (i.e.,
one after another),
not simultaneously.




1 1 −1 −1 0
1 1 −1 −1 0
1 1 1 1 0
1 1 1 1 0




R2−R1
R3−R1
R4−R1−−−−→




1 1 −1 −1 0
0 0 0 0 0
0 0 2 2 0
0 0 2 2 0




1
2 R3

R1+R3
R4−2R3
R2↔R3−−−−−→




1 1 0 0 0
0 0 1 1 0
0 0 0 0 0
0 0 0 0 0


 .

The first row of the RREF above tells us that the eigenvec-
tors v = (v1,v2,v3,v4) satisfy v1 = −v2, and its second row
tells us that v3 = −v4, so the eigenvectors of A correspond-
ing to the eigenvalue λ = 0 are exactly those of the form
v = v2(−1,1,0,0)+ v4(0,0,−1,1).
We want to choose two vectors of this form (since λ = 0 has
multiplicity 2), but we have to be slightly careful to choose
them so that not only are they normalized, but they are also
orthogonal to each other. In this case, there is an obvious choice:
(−1,1,0,0)/

√
2 and (0,0,−1,1)/

√
2 are orthogonal, so we

choose them.We could
have also chosen
(1,−1,0,0)/

√
2 and

(0,0,1,−1)/
√

2, or
(1,−1,1,−1)/2 and
(1,−1,−1,1)/2, but
not (1,−1,0,0)/

√
2

and (1,−1,1,−1)/2,
for example.

To construct a spectral decomposition of A, we then place the eigen-
values as the diagonal entries in a diagonal matrix D, and we place the
normalized and orthogonal eigenvectors to which they correspond as
columns (in the same order) in a matrix U :

D =




0 0 0 0
0 0 0 0
0 0 2+2i 0
0 0 0 2−2i


 , U =

1
2
√

2




−2 0 1+ i 1− i
2 0 1+ i 1− i
0 −2 1− i 1+ i
0 2 1− i 1+ i


 .

ToI’m glad that we did
not do this for a 5×5
matrix. Maybe we’ll

save that for the
exercises?

double-check our work, we could verify that U is indeed unitary, and
A = UDU∗, so we have indeed found a spectral decomposition of A.

In the previous example, we were able to find an orthonormal basis of the
2-dimensional eigenspace just by inspection. However, it might not always be
so easy—if we cannot just “see” an orthonormal basis of an eigenspace, then
we can construct one by applying the Gram–Schmidt process (Theorem 1.4.6)
to any basis of the space.

Now that we know that every normal matrix is diagonalizable, it’s worth
taking a moment to remind ourselves of the relationships between the various
families of matrices that we have introduced so far. See Figure 2.2 for a visual
representation of these relationships and a reminder of which matrix families
contain each other.
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The sizes of the sets
shown here are

slightly misleading.
For example, the set

of diagonalizable
matrices is “dense”

in Mn(C) (see
Section 2.D) and
thus quite large,

whereas the set of
normal matrices is

tiny.

Mn(C)

diagonalizable

normal

Her
mit

ian
skew-Hermitian

unitary

O
I

Figure 2.2: A visualization of the containments of several important families of
matrices within each other. For example, every unitary matrix is normal, every
normal matrix is diagonalizable, and the only matrix that is both Hermitian and
skew-Hermitian is the zero matrix O.

2.1.3 The Real Spectral Decomposition

Since the spectral decomposition applies to all (square) complex matrices, it
automatically applies to all real matrices in the sense that, if A ∈Mn(R) is
normal, then we can find a unitary U ∈Mn(C) and a diagonal D ∈Mn(C)
such that A = UDU∗. However, U and D might have complex entries, even if
A is real. For example, the eigenvalues of

A =
[

0 1
−1 0

]

are ±i,We saw another
example of a

real matrix with a
complex spectral
decomposition in

Example 2.1.7.

with corresponding eigenvectors (1,±i)/
√

2. It follows that a diagonal
matrix D and unitary matrix U providing a spectral decomposition of A are

D =
[

i 0
0 −i

]
and U =

1√
2

[
1 1
i −i

]
,

and furthermore there is no spectral decomposition of A that makes use of a
real D and real U .

This observation raises a natural question: which real matrices have a
real spectral decomposition (i.e., a spectral decomposition in which both the
diagonal matrix D and unitary matrix U are real)? Certainly any such matrix
must be symmetric since if A = UDUT forKeep in mind that

if U is real then
UT = U∗, so UDUT

really is a spectral
decomposition.

some diagonal D ∈Mn(R) and
unitary U ∈Mn(R) then

AT = (UDUT )T = (UT )T DTUT = UDUT = A.

Remarkably, the converse of the above observation is also true—every real
symmetric matrix has a spectral decomposition consisting of real matrices:
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Theorem 2.1.6
Spectral

Decomposition
(Real Version)

Suppose A ∈Mn(R). Then there exists a unitary matrix U ∈Mn(R) and
diagonal matrix D ∈Mn(R) such that

A = UDUT

if and only if A is symmetric (i.e., A = AT ).

Proof. We already proved the “only if” direction of the theorem, so we jump
straight to proving the “if” direction. To this end, recall that the complex
spectral decomposition (Theorem 2.1.4) says that we can find a complex unitary
matrix U ∈Mn(C) and diagonal matrix D ∈Mn(C) such that A = UDU∗,
and the columns of U are eigenvectors of A corresponding to the eigenvalues
along the diagonal of D.

To see that D must in fact be real, we observe that since A is real and
symmetric, we have

In fact, this argument
also shows that

every (potentially
complex) Hermitian
matrix has only real

eigenvalues.

λ‖v‖2 = λv∗v = v∗Av = v∗A∗v = (v∗Av)∗ = (λv∗v)∗ = λ‖v‖2,

which implies λ = λ (since every eigenvector v is, by definition, non-zero), so
λ is real.

To see that we can similarly choose U to be real, we must construct an
orthonormal basis of Rn consisting of eigenvectors of A. To do so, we first
recall from Corollary 2.1.5 that eigenvectors v and w of A corresponding to
different eigenvalues λ 6= µ , respectively, are necessarily orthogonal to each
other, since real symmetric matrices are normal.

It thus suffices to show that we can find a real orthonormal basis of each
eigenspace of A, and since we can use the Gram–Schmidt process (Theo-
rem 1.4.6) to find an orthonormal basis of any subspace, it suffices to just show
that each eigenspace of A is the span of a set of real vectors. The key observa-
tion that demonstrates this fact is that if a vector v ∈ Cn is in the eigenspace
of A corresponding to an eigenvalue λ then so is v, since

Recall that v is the
complex conjugate
of v (i.e., if v = x+ iy

for some x,y ∈ Rn

then v = x− iy). Also,
Re(v) = (v+v)/2 and

Im(v) = (v−v)/(2i)
are called the real

and imaginary parts
of v. Refer to

Appendix A.3 for
a refresher on

complex numbers.

taking the complex
conjugate of the equation Av = λv gives

Av = Av = λv = λv.

In particular, this implies that if {v1,v2, . . . ,vk} is any basis of the eigenspace,
then the set {Re(v1), Im(v1),Re(v2), Im(v2), . . . ,Re(vk), Im(vk)} has the same
span. Since each vector in this set is real, the proof is now complete. �

Another way of phrasing the real spectral decomposition is as saying that
if V is a real inner product space then a linear transformation T : V → V is
self-adjoint if and only if T looks diagonal in some orthonormal basis of V .
Geometrically, this means that T is self-adjoint if and only if it looks like a
rotation and/or reflection (i.e., a unitary matrix U), composed with a diagonal
scaling, composed with a rotation and/or reflection back (i.e., the inverse unitary
matrix U∗).The real spectral

decomposition can
also be proved

“directly”, without
making use of its
complex version.

See Exercise 2.1.20.

This gives us the exact same geometric interpretation of the real spectral
decomposition that we had for its complex counterpart—symmetric matrices
are exactly those that stretch (but do not rotate or skew) some orthonormal
basis. However, the important distinction here from the case of normal matrices
is that the eigenvalues and eigenvalues of symmetric matrices are real, so we
can really visualize this all happening in Rn rather than in Cn, as in Figure 2.3.
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x

y

u1 = (1,−1)/
√

2

u2 = (1,1)/
√

2 A =UDUT

x

y

Au1

=−u1

Au2

= 3u2

x

y

[u2]B = e2

[u1]B = e1

D

x

y

[Au2]B = De2

= 3e2

[Au1]B = De1

=−e1

Figure 2.3: The matrix A from Example 2.1.6 looks diagonal if we view it in the
orthonormal basis B =

{
(1,1)/

√
2,(1,−1)/

√
2
}

. There exists an orthonormal basis
with this property precisely because A is symmetric.

Recall that [v]B refers
to the coordinate

vector of v in
the basis B. That is,
[v]B = U∗v and U is

the change-of-basis
matrix from

the orthonormal
eigenbasis B to the

standard basis
E = {e1,e2}: U = PE←B.

In order to actually compute a real spectral decomposition of a symmetric
matrix, we just do what we always do—we find the eigenvalues and eigenvec-
tors of the matrix and use them to diagonalize it, taking the minor care necessary
to ensure that the eigenvectors are chosen to be real, mutually orthogonal, and
of length 1.

Example 2.1.8
A Real Spectral
Decomposition

Find a real spectral decomposition of the matrix A = 


1 2 2
2 1 2
2 2 1




.

Solution:
Since this matrix is symmetric, we know that it has a real spectral

decomposition. To compute it, we first find its eigenvalues:

det(A−λ I) = det







1−λ 2 2
2 1−λ 2
2 2 1−λ







= (1−λ )3 +8+8−4(1−λ )−4(1−λ )−4(1−λ )

= (1+λ )2(5−λ ).

Setting the above characteristic polynomial equal to 0 gives λ =−1 (with
multiplicity 2) or λ = 5 (with multiplicity 1). To find the corresponding
eigenvectors, we solve the linear systems (A−λ I)v = 0 for each of λ = 5
and λ =−1.
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λ = 5: The system of equations (A−5I)v = 0 can be solved as follows:



−4 2 2 0
2 −4 2 0
2 2 −4 0




R2+ 1
2 R1

R3+ 1
2 R1−−−−−→



−4 2 2 0
0 −3 3 0
0 3 −3 0




R3+R2−−−−→



−4 2 2 0
0 −3 3 0
0 0 0 0


 .

From here we can use back substitution to see that v1 = v2 =
v3, so any vector of the form (v1,v1,v1) (with v1 6= 0) is an
eigenvector to which this eigenvalue corresponds. However, we
want to choose it to have length 1, so we choose v1 = 1/

√
3, so

that the eigenvector isWe could have also
chosen v1 =−1 so

that the eigenvector
would be

(−1,−1,−1)/
√

3.

(1,1,1)/
√

3.

λ =−1: The system of equations (A+ I)v = 0 can be solved as follows:



2 2 2 0
2 2 2 0
2 2 2 0


 R2−R1

R3−R1−−−−→




2 2 2 0
0 0 0 0
0 0 0 0


 .

We conclude that v1 =−v2− v3, so the eigenvectors to which
this eigenvalue corresponds have the form v2(−1,1,0) +
v3(−1,0,1). Since this eigenspace has dimension 2, we have to
choose two eigenvectors, and we furthermore have to be careful
to choose them to form an orthonormal basis of their span (i.e.,
they must be orthogonal to each other, and we must scale them
each to have length 1).
One of the easiest pairs of orthogonal eigenvectors toAlternatively,

we could construct
an orthonormal basis

of this eigenspace
by applying

Gram–Schmidt to
{(−1,1,0),(−1,0,1)}.

“eyeball” is
{(−2,1,1),(0,1,−1)} (which correspond to choosing
(v2,v3) = (1,1) and (v2,v3) = (1,−1), respectively). After
normalizing these eigenvectors, we get

{
1√
6
(−2,1,1), 1√

2
(0,1,−1)

}

as the orthonormal basis of this eigenspace.

To construct a spectral decomposition of A, we then place the eigen-
values as the diagonal entries in a diagonal matrix D, and we place the
eigenvectors to which they correspond as columns (in the same order) in a
matrix U :Note that we pulled

a common factor of
1/
√

6 outside of U ,
which makes its

columns look slightly
different from what

we saw when
computing the

eigenvectors.

D =




5 0 0
0 −1 0
0 0 −1


 and U =

1√
6




√
2 −2 0√
2 1

√
3√

2 1 −
√

3


 .

To double-check our work, we could verify that U is indeed unitary, and
A = UDUT , so we have indeed found a real spectral decomposition of A.

Before moving on, it is worth having a brief look at Table 2.1, which sum-
marizes the relationship between the real and complex spectral decompositions,
and what they say about normal, Hermitian, and symmetric matrices.
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Matrices that are
complex symmetric
(i.e., A ∈Mn(C) and

AT = A) are not
necessarily normal
and thus may not

have a spectral
decomposition.

However, they
have a related

decomposition that
is presented in
Exercise 2.3.26.

Matrix A Decomp. A = UDU∗ Eigenvalues, eigenvectors

Normal
A∗A = AA∗

D ∈Mn(C)
U ∈Mn(C)

Eigenvalues: complex
Eigenvectors: complex

Hermitian
A∗ = A

D ∈Mn(R)
U ∈Mn(C)

Eigenvalues: real
Eigenvectors: complex

Real symmetric
AT = A

D ∈Mn(R)
U ∈Mn(R)

Eigenvalues: real
Eigenvectors: real

Table 2.1: A summary of which parts of the spectral decomposition are real and
complex for different types of matrices.

Exercises solutions to starred exercises on page 465

2.1.1 For each of the following matrices, say whether it is
(i) unitary, (ii) Hermitian, (iii) skew-Hermitian, (iv) normal.
It may have multiple properties or even none of the listed
properties.

∗ (a)
[

2 2
−2 2

]

∗ (c) 1√
5

[
1 2i
2i 1

]

∗ (e)
[

0 0
0 0

]

∗ (g)
[

0 −i
i 0

]

(b)
[

1 2
3 4

]

(d)
[

1 0
0 1

]

(f)
[

1 1+ i
1+ i 1

]

(h)
[

i 1
−1 2i

]

2.1.2 Determine which of the following matrices are nor-
mal.

∗ (a)
[

2 −1
1 3

]

∗ (c)
[

1 1
−1 1

]

∗ (e)



1 2 −3i
2 2 2
3i 2 4




∗ (g)



1 2 0
3 4 5
0 6 7




(b)
[

1 1 1
1 1 1

]

(d)



1 2 3
3 1 2
2 3 1




(f)



2+3i 0 0
0 7i 0
0 0 18




(h)



√
2
√

2 i
1 1 1
√

2 i 1




2.1.3 Compute a Schur triangularization of the following
matrices.

∗ (a)
[

6 −3
2 1

]
(b)

[
7 −5
−1 3

]

2.1.4 Find a spectral decomposition of each of the follow-
ing normal matrices.

∗ (a)
[

3 2
2 3

]

∗ (c)
[

0 −i
i 0

]

∗ (e)



1 1 0
0 1 1
1 0 1




(b)
[

1 1
−1 1

]

(d)



1 0 1
0 1 0
1 0 1




(f)



2i 0 0
0 1+ i −1+ i
0 −1+ i 1+ i




2.1.5 Determine which of the following statements are
true and which are false.

(a) If A = UTU∗ is a Schur triangularization of A then
the eigenvalues of A are along the diagonal of T .

∗ (b) If A,B ∈Mn(C) are normal then so is A+B.
(c) If A,B ∈Mn(C) are normal then so is AB.
∗ (d) The set of normal matrices is a subspace of Mn(C).

(e) If A,B ∈Mn(C) are similar and A is normal, then B
is normal too.

∗ (f) If A ∈Mn(R) is normal then there exists a uni-
tary matrix U ∈Mn(R) and a diagonal matrix D ∈
Mn(R) such that A = UDUT .

(g) If A = UTU∗ is a Schur triangularization of A then
A2 = UT 2U∗ is a Schur triangularization of A2.

∗ (h) If all of the eigenvalues of A ∈Mn(C) are real, it
must be Hermitian.

(i) If A ∈M3(C) has eigenvalues 1, 1, and 0 (counted
via algebraic multiplicity), then A3 = 2A2−A.

2.1.6 Suppose A ∈Mn(C). Show that there exists a uni-
tary matrix U ∈Mn(C) and a lower triangular matrix
L ∈Mn(C) such that

A = ULU∗.

∗2.1.7 Suppose A ∈M2(C). Use the Cayley–Hamilton
theorem to find an explicit formula for A−1 in terms of the
entries of A (assuming that A is invertible).
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2.1.8 Compute A2718 if A =



3
√

2 −3
√

2 0
√

2

−3 −
√

2 3




.

[Hint: The Cayley–Hamilton theorem might help.]

∗2.1.9 Suppose A =



4 0 0
3 1 −3
3 −3 1




.

(a) Use the Cayley–Hamilton theorem to write A−1 as a
linear combination of I,A, and A2.

(b) Write A−1 as a linear combination of A2,A3, and A4.

2.1.10 Suppose A ∈Mn has characteristic polynomial
pA(λ ) = det(A−λ I). Explain the problem with the follow-
ing one-line “proof” of the Cayley–Hamilton theorem:

pA(A) = det(A−AI) = det(O) = 0.

2.1.11 A matrix A ∈Mn(C) is called nilpotent if there
exists a positive integer k such that Ak = O.

(a) Show that A is nilpotent if and only if all of its eigen-
values equal 0.

(b) Show that if A is nilpotent then Ak = O for some
k ≤ n.

∗∗ 2.1.12 Suppose that A ∈ Mn(C) has eigenvalues
λ1,λ2, . . . ,λn (listed according to algebraic multiplicity).
Show that A is normal if and only if

‖A‖F =

√
n

∑
j=1
|λ j|2,

where ‖A‖F is the Frobenius norm of A.

∗∗2.1.13 Show that A ∈Mn(C) is normal if and only if
‖Av‖= ‖A∗v‖ for all v ∈ Cn.

[Hint: Make use of Exercise 1.4.19.]

∗∗2.1.14 Show that A ∈Mn(C) is normal if and only if
A∗ ∈ span

{
I,A,A2,A3, . . .

}
.

[Hint: Apply the spectral decomposition to A and think
about interpolating polynomials.]

2.1.15 Suppose A,B ∈Mn(C) are unitarily similar (i.e.,
there is a unitary U ∈Mn(C) such that B = UAU∗). Show
that if A is normal then so is B.

2.1.16 Suppose T ∈Mn(C) is upper triangular. Show that
T is diagonal if and only if it is normal.

[Hint: We actually showed this fact somewhere in this
section—just explain where.]

[Side note: This exercise generalizes Exercise 1.4.12.]

∗∗2.1.17 Suppose A ∈Mn(C) is normal.

(a) Show that A is Hermitian if and only if its eigenvalues
are real.

(b) Show that A is skew-Hermitian if and only if its
eigenvalues are imaginary.

(c) Show that A is unitary if and only if its eigenvalues
lie on the unit circle in the complex plane.

(d) Explain why the “if” direction of each of the above
statements fails if A is not normal.

2.1.18 Show that if A ∈Mn(C) is Hermitian, then eiA is
unitary.

[Side note: Recall that eiA is the matrix obtained via expo-
nentiating the diagonal part of iA’s diagonalization (which
in this case is a spectral decomposition).]

∗∗2.1.19 Suppose A ∈Mn.

(a) Show that if A is normal then the number of non-zero
eigenvalues of A (counting algebraic multiplicity)
equals rank(A).

(b) Provide an example to show that the result of part (a)
is not necessarily true if A is not normal.

∗∗2.1.20 In this exercise, we show how to prove the real
spectral decomposition (Theorem 2.1.6) “directly”, with-
out relying on the complex spectral decomposition (Theo-
rem 2.1.4). Suppose A ∈Mn(R) is symmetric.

(a) Show that all of the eigenvalues of A are real.
(b) Show that A has a real eigenvector.
(c) Complete the proof of the real spectral decomposi-

tion by mimicking the proof of Schur triangulariza-
tion (Theorem 2.1.1).

2.1.21 Suppose A ∈Mn(C) is skew-Hermitian (i.e.,
A∗ =−A).

(a) Show that I +A is invertible.
(b) Show that UA = (I +A)−1(I−A) is unitary.

[Side note: UA is called the Cayley transform of A.]
(c) Show that if A is real then det(UA) = 1.

2.1.22 Suppose U ∈Mn(C) is a skew-symmetric unitary
matrix (i.e., UT =−U and U∗U = I).

(a) Show that n must be even (i.e., show that no such
matrix exists when n is odd).

(b) Show that the eigenvalues of U are ±i, each with
multiplicity equal to n/2.

(c) Show that there is a unitary matrix V ∈Mn(C) such
that

U = V BV ∗, where Y =

[
0 1
−1 0

]
and

B =




Y O · · · O
O Y · · · O

...
...

. . .
...

O O · · · Y




.

[Hint: Find a complex spectral decomposition of Y .]

∗∗ 2.1.23 In this exercise, we finally show that if V
is a finite-dimensional inner product space over R and
P : V → V is a projection then P is orthogonal (i.e.,
〈P(v),v−P(v)〉 = 0 for all v ∈ V) if and only if it is self-
adjoint (i.e., P = P∗). Recall that we proved this when the
ground field is C in Exercise 1.4.29.

(a) Show that if P is self-adjoint then it is orthogonal.
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(b) Use Exercise 1.4.28 to show that if P is orthogonal
then the linear transformation T = P−P∗ ◦P satisfies
T ∗ =−T .

(c) Use part (b) to show that if P is orthogonal then it
is self-adjoint. [Hint: Represent T in an orthonormal
basis, take its trace, and use Exercise 2.1.12.]

2.1.24 Show that if P ∈Mn(C) is an orthogonal projec-
tion (i.e., P = P∗ = P2) then there exists a unitary matrix
U ∈Mn(C) such that

P = U

[
Ir O
O O

]
U∗,

where r = rank(P).

2.1.25 A circulant matrix is a matrix C ∈Mn(C) of the
form

C =




c0 c1 c2 · · · cn−1
cn−1 c0 c1 · · · cn−2
cn−2 cn−1 c0 · · · cn−3

...
...

...
. . .

...
c1 c2 c3 · · · c0




,

where c0,c1, . . . ,cn−1 are scalars. Show that C can be diago-
nalized by the Fourier matrix F from Exercise 1.4.15. That
is, show that F∗CF is diagonal.

[Hint: It suffices to show that the columns of F are eigen-
vectors of C.]

∗2.1.26 Suppose A,B ∈Mn(C) commute (i.e., AB = BA).
Show that there is a vector v ∈ Cn that is an eigenvector of
each of A and B.

[Hint: This is hard. Maybe just prove it in the case when A
has distinct eigenvalues, which is much easier. The general
case can be proved using techniques like those used in the
proof of Schur triangularization.]

2.1.27 Suppose A,B ∈Mn(C) commute (i.e., AB = BA).
Show that there is a common unitary matrix U ∈Mn(C)
that triangularizes them both:

A = UT1U∗ and B = UT2U∗

for some upper triangular T1,T2 ∈Mn(C).

[Hint: Use Exercise 2.1.26 and mimic the proof of Schur
triangularization.]

2.1.28 Suppose A,B ∈Mn(C) are normal. Show that A
and B commute (i.e., AB = BA) if and only if there is a
common unitary matrix U ∈Mn(C) that diagonalizes them
both:

A = UD1U∗ and B = UD2U∗

for some diagonal D1,D2 ∈Mn(C).

[Hint: Leech off of Exercise 2.1.27.]

[Side note: This result is still true if we replace “normal” by
“real symmetric” and C by R throughout the exercise.]

2.1.29 Suppose A,B ∈Mn(C) are diagonalizable. Show
that A and B commute (i.e., AB = BA) if and only if there is
a common invertible matrix P ∈Mn(C) that diagonalizes
them both:

A = PD1P−1 and B = PD2P−1

for some diagonal D1,D2 ∈Mn(C).

[Hint: When does a diagonal matrix D1 commute with an-
other matrix? Try proving the claim when the eigenvalues
of A are distinct first, since that case is much easier. For the
general case, induction might help you sidestep some of the
ugly details.]

2.2 Positive Semidefiniteness

We have now seen that normal matrices play a particularly important role in
linear algebra, especially when decomposing matrices. There is one particularly
important sub-family of normal matrices that we now focus our attention on
that play perhaps an even more important role.

Definition 2.2.1
Positive

(Semi)Definite
Matrices

Suppose A ∈Mn(F) is self-adjoint. Then A is called
a) positive semidefinite (PSD) if v∗Av≥ 0 for all v ∈ Fn, and
b) positive definite (PD) if v∗Av > 0 for all v 6= 0.

PositiveSince A is self-adjoint,
F = R or F = C

throughout this
section. Adjoints only
make sense in inner

product spaces.

(semi)definiteness is somewhat difficult to eyeball from the entries
of a matrix, and we should emphasize that it does not mean that the entries of
the matrix need to be positive. For example, if

A =
[

1 −1
−1 1

]
and B =

[
1 2
2 1

]
, (2.2.1)
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then A is positive semidefinite since

v∗Av =
[
v1 v2

][ 1 −1
−1 1

][
v1
v2

]

= |v1|2− v1v2− v2v1 + |v2|2 = |v1− v2|2 ≥ 0

for all v ∈ C2. On

A 1×1 matrix
(i.e., a scalar) is PSD

if and only if it is
non-negative. We
often think of PSD

matrices as the
“matrix version” of
the non-negative

real numbers.

the other hand, B is not positive semidefinite since if v =
(1,−1) then v∗Bv =−2.

While the defining property of positive definiteness seems quite strange at
first, it actually has a very natural geometric interpretation. If we recall that
v∗Av = v · (Av) and that the angle θ between v and Av can be computed in
terms of the dot product via

θ = arccos
(

v · (Av)
‖v‖‖Av‖

)
,

then we see that the positive definiteness property that v∗Av > 0 for all v simply
says that the angle between v and Av is always acute (i.e., 0≤ θ < π/2).

For positive
semidefinite

matrices, the angle
between v and Av is

always acute or
perpendicular (i.e.,

0≤ θ ≤ π/2).

We
can thus think of positive (semi)definite matrices as the Hermitian matrices
that do not rotate vectors “too much”. In particular, Av is always in the same
half-space as v, as depicted in Figure 2.4.

For another
geometric

interpretation
of positive

(semi)definiteness,
see Section 2.A.1.

x

y

e2

e1

v

A

x

y

Ae2

Ae1

Av

v

Figure 2.4: As a linear transformation, a positive definite matrix is one that keeps
vectors pointing “mostly” in the same direction. In particular, the angle θ between
v and Av never exceeds π/2, so Av is always in the same half-space as v. Positive
semidefiniteness allows for v and Av to be perpendicular (i.e., orthogonal), so Av
can be on the boundary of the half-space defined by v.

2.2.1 Characterizing Positive (Semi)Definite Matrices

The definition of positive semidefinite matrices that was provided in Defini-
tion 2.2.1 perhaps looks a bit odd at first glance, and showing that a matrix is
(or is not) positive semidefinite seems quite cumbersome so far. The following
theorem characterizes these matrices in several other equivalent ways, some
of which are a bit more illuminating and easier to work with. If we prefer, we
can think of any one of these other characterizations of PSD matrices as their
definition.
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Theorem 2.2.1
Characterization

of Positive
Semidefinite

Matrices

Suppose A ∈Mn(F) is self-adjoint. The following are equivalent:
a) A is positive semidefinite,
b) All of the eigenvalues of A are non-negative,

Recall that, since
A is Hermitian,

its eigenvalues are
all real.

c) There is a matrix B ∈Mn(F) such that A = B∗B, and
d) There is a diagonal matrix D ∈Mn(R) with non-negative diagonal

entries and a unitary matrix U ∈Mn(F) such that A = UDU∗.

Proof. We prove the theorem by showing that (a) =⇒ (b) =⇒ (d) =⇒ (c)
=⇒ (a).

To see that (a) =⇒ (b), let v be an eigenvector of A with corresponding
eigenvalue λ . Then Av = λv, and multiplying this equation on the left by v∗
shows that v∗Av = λv∗v = λ‖v‖2. Since A is positive semidefinite, we know
that v∗Av≥ 0, so it follows that λ ≥ 0 too.

To see that (b) =⇒ (d), we just apply the spectral decomposition theorem
(either the complex Theorem 2.1.4 or the real Theorem 2.1.6, as appropriate)
to A.

To see why (d) =⇒ (c), let
√

D be the diagonal matrix that is obtained by
taking the (non-negative) square root of the diagonal entries of D, and define
B =
√

DU∗. Then B∗B = (
√

DU∗)∗(
√

DU∗) = U
√

D
∗√

DU∗ = UDU∗ = A.
Another

characterization
of positive

semidefiniteness
is provided in

Exercise 2.2.25.

Finally, to see that (c) =⇒ (a), we let v ∈ Fn be any vector and we note
that

v∗Av = v∗B∗Bv = (Bv)∗(Bv) = ‖Bv‖2 ≥ 0.

It follows that A is positive semidefinite, so the proof is complete. �

Example 2.2.1
Demonstrating

Positive
Semidefiniteness

Explicitly show that all four properties of Theorem 2.2.1 hold for the
matrix

A =
[

1 −1
−1 1

]
.

Solution:
We already showed that v∗Av = |v1−v2|2 ≥ 0 for all v∈C2 at the start

of this section, which shows that A is PSD. We now verify that properties
(b)–(d) of Theorem 2.2.1 are all satisfied as well.

For property (b),In practice,
checking

non-negativity
of its eigenvalues
is the simplest of

these methods of
checking positive

semidefiniteness.

we can explicitly compute the eigenvalues of A:

det

([
1−λ −1
−1 1−λ

])
= (1−λ )2−1 = λ

2−2λ = λ (λ −2) = 0,

so the eigenvalues of A are 0 and 2, which are indeed non-negative.
For property (d), we want to find a unitary matrix U such that A =

UDU∗, where D has 2 and 0 (the eigenvalues of A) along its diagonal.
We know from the spectral decomposition that we can construct U by
placing the normalized eigenvectors of A into U as columns. Eigenvectors
corresponding to the eigenvalues 2 and 0 are v = (1,−1) and v = (1,1),
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respectively, soWe check
property (d) before
(c) so that we can
mimic the proof of

Theorem 2.2.1.
U =

1√
2

[
1 1
−1 1

]
and D =

[
2 0
0 0

]
.

It is then straightforward to verify that A = UDU∗, as desired.
For property (c), we let

B =
√

DU∗ =
1√
2

[√
2 0

0 0

][
1 −1
1 1

]
=
[

1 −1
0 0

]
.

Direct computation verifies that it is indeed the case that A = B∗B.

The characterization of positive semidefinite matrices provided by Theo-
rem 2.2.1 can be tweaked slightly into a characterization of positive definite
matrices by just making the relevant matrices invertible in each statement. In
particular, we get the following theorem, which just has one or two words
changed in each statement (we have italicized the words that changed from the
previous theorem to make them easier to compare).

Theorem 2.2.2
Characterization of

Positive Definite
Matrices

Suppose A ∈Mn(F) is self-adjoint. The following are equivalent:
a) A is positive definite,
b) All of the eigenvalues of A are strictly positive,
c) There is an invertible matrix B ∈Mn(F) such that A = B∗B, and
d) There is a diagonal matrix D ∈Mn(R) with strictly positive diago-

nal entries and a unitary matrix U ∈Mn(F) such that A = UDU∗.

The proof of the above theorem is almost identical to that of Theorem 2.2.1,
so we leave it to Exercise 2.2.23. Instead, we note that there are two additional
characterizations of positive definite matrices that we would like to present, but
we first need some “helper” theorems that make it a bit easier to work with positive
(semi)definite matrices. The first of these results tells us how we can manipulate
positive semidefinite matrices without destroying positive semidefiniteness.

Theorem 2.2.3
Modifying Positive

(Semi)Definite
Matrices

Suppose A,B ∈Mn are positive (semi)definite, P ∈Mn,m is any matrix,
and c > 0 is a real scalar. Then

a) A+B is positive (semi)definite,
b) cA is positive (semi)definite,
c) AT is positive (semi)definite, and
d) P∗AP is positive semidefinite. Furthermore, if A is positive definite

then P∗AP is positive definite if and only if rank(P) = m.

Proof. TheseWe return to this
problem of asking

what operations
transform PSD

matrices into PSD
matrices in

Section 3.A.

properties all follow fairly quickly from the definition of positive
semidefiniteness, so we leave the proof of (a), (b), and (c) to Exercise 2.2.24.

To show that property (d) holds, observe that for all v ∈ Fn we have

0≤ (Pv)∗A(Pv) = v∗(P∗AP)v,

so P∗AP is positive semidefinite as well. If A is positive definite then positive
definiteness of P∗AP is equivalent to the requirement that Pv 6= 0 whenever
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v 6= 0, which is equivalent in turn to null(P) = {0} (i.e., nullity(P) = 0). By the
rank-nullity theorem (see Theorem A.1.2), this is equivalent to rank(P) = m,
which completes the proof. �

As a bit of motivation for our next “helper” result, notice that the diagonal
entries of a positive semidefinite matrix A must be non-negative (or strictly
positive, if A is positive definite), since

Recall that e j is the
j-th standard basis

vector.
0≤ e∗jAe j = a j, j for all 1≤ j ≤ n.

The following theorem provides a natural generalization of this fact to block
matrices.

Theorem 2.2.4
Diagonal Blocks of
PSD Block Matrices

Suppose that the self-adjoint block matrix

A =




A1,1 A1,2 · · · A1,n

A∗1,2 A2,2 · · · A2,n

...
...

. . .
...

A∗1,n A∗2,n · · · An,n




is positive (semi)definite.The diagonal blocks
here must be square

for this block matrix
to make sense (e.g.,
A1,1 is square since it

has A1,2 to its right
and A∗1,2 below it).

Then the diagonal blocks A1,1, A2,2, . . ., An,n
must be positive (semi)definite.

Proof. We use property (d) of Theorem 2.2.3. In particular, consider the block
matrices

P1 =




I
O
...
O


 , P2 =




O
I
...
O


 , . . . , Pn =




O
O
...
I


 ,

where the sizes of the O and I blocks are such that the matrix multiplication APj
makes sense for all 1≤ j ≤ n. It is then straightforward to verify that P∗j APj =
A j, j for all 1≤ j≤ n, so A j, j must be positive semidefinite by Theorem 2.2.3(d).
Furthermore, each Pj has rank equal to its number of columns, so A j, j is positive
definite whenever A is. �

Example 2.2.2
Showing Matrices

are Not Positive
Semidefinite

Show that the following matrices are not positive semidefinite.

a)



3 2 1
2 4 2
1 2 −1




b)



3 −1 1 −1
−1 1 2 1
1 2 1 2
−1 1 2 3




Solutions:
a) This

Techniques like these
ones for showing

that a matrix is (not)
PSD are useful since

we often do not
want to compute

eigenvalues of 4×4
(or larger) matrices.

matrix is not positive semidefinite since its third diagonal
entry is −1, and positive semidefinite matrices cannot have negative
diagonal entries.

b) This matrix is not positive semidefinite since its central 2×2 diago-
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nal block is [
1 2
2 1

]
,

which is exactly the matrix B from Equation (2.2.1) that we showed
is not positive semidefinite earlier.

We are now in a position to introduce the two additional characterizations
of positive definite matrices that we are actually interested in, and that we
introduced the above “helper” theorems for. It is worth noting that both of
these upcoming characterizations really are specific to positive definite ma-
trices. While they can be extended to positive semidefinite matrices, they are
significantly easier to use and interpret in the definite (i.e., invertible) case.

The first of these results says that positive definite matrices exactly charac-
terize inner products on Fn:

Theorem 2.2.5
Positive Definite
Matrices Make
Inner Products

A function 〈·, ·〉 : Fn×Fn→ F is an inner product if and only if there exists
a positive definite matrix A ∈Mn(F) such that

〈v,w〉= v∗Aw for all v,w ∈ Fn.

Proof. WeIf you need a
refresher on inner

products, refer back
to Section 1.4.

start by showing that if 〈·, ·〉 is an inner product then such a positive
definite matrix A must exist. To this end, recall from Theorem 1.4.3 that there
exists a basis B of Fn such that

〈v,w〉= [v]B · [w]B for all v,w ∈ Fn.

Well, let PB←E be the change-of-basis matrix from the standard basis E to B.
Then [v]B = PB←Ev and [w]B = PB←Ew, so

〈v,w〉= [v]B · [w]B = (PB←Ev) · (PB←Ew) = v∗(P∗B←EPB←E)w

for all v,w ∈ Fn. Since change-of-basis matrices are invertible, it follows from
Theorem 2.2.2(c) that A = P∗B←EPB←E is positive definite, which is what we
wanted.

In the other direction, we must show that every function 〈·, ·〉 of the form
〈v,w〉= v∗Aw is necessarily an inner product when A is positive definite. We
thus have to show that all three defining properties of inner products from
Definition 1.3.6 hold.

For property (a), we note that A = A∗, so
Here we used the
fact that if c ∈ C is

a scalar, then c = c∗.
If F = R then

these complex
conjugations just

vanish.

〈w,v〉= w∗Av = (w∗Av)∗ = v∗A∗w = v∗Aw = 〈v,w〉 for all v,w ∈ Fn.

For property (b), we check that

〈v,w+ cx〉= v∗A(w+ cx) = v∗Aw+ c(v∗Ax) = 〈v,w〉+ c〈v,x〉
for all v,w,x ∈ Fn and all c ∈ F.

Finally,Notice that
we called inner

products “positive
definite” way

back when we first
introduced them
in Definition 1.3.6.

for property (c) we note that A is positive definite, so

〈v,v〉= v∗Av≥ 0 for all v ∈ Fn,

with equality if and only if v = 0. It follows that 〈·, ·〉 is indeed an inner product,
which completes the proof. �
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Example 2.2.3
A Weird Inner

Product (Again)

Show that the function 〈·, ·〉 : R2×R2→ R defined by

〈v,w〉= v1w1 +2v1w2 +2v2w1 +5v2w2 for all v,w ∈ R2

is an inner product on R2.

Solution:
We already showed this function is an inner product back in Exam-

ple 1.3.18 in a rather brute-force manner. Now that we understand inner
products better, we can be much more slick—we just notice that we can
rewrite this function in the formTo construct this

matrix A, just notice
that multiplying
out vT Aw gives

∑i, j ai, jviw j, so we just
let ai, j be the

coefficient of viw j.

〈v,w〉= vT Aw, where A =

[
1 2
2 5

]
.

It is straightforward to check that A is positive definite (its eigenvalues are
3±2

√
2 > 0, for example), so Theorem 2.2.5 tells us that this function is

an inner product.

There is one final characterization of positive definite matrices that we now
present. This theorem is useful because it gives us another way of checking
positive definiteness that is sometimes easier than computing eigenvalues.

Theorem 2.2.6
Sylvester’s

Criterion

Suppose A ∈Mn is self-adjoint. Then A is positive definite if and only if,
for all 1≤ k ≤ n, the determinant of the top-left k× k block of A is strictly
positive.

Before proving this theorem, it is perhaps useful to present an example that
demonstrates exactly what it says and how to use it.

Example 2.2.4
Applying

Sylvester’s
Criterion

Use Sylvester’s criterion to show that the following matrix is positive
definite:

A =




2 −1 i
−1 2 1
−i 1 2


 .

Solution:
We have to check that the top-left 1×1, 2×2, and 3×3 blocks of A

all have positive determinants:For 2×2 matrices,
recall that

det

([
a b
c d

])

= ad−bc.

For larger matrices,
we can use

Theorem A.1.4 (or
many other

methods) to
compute

determinants.

det
([

2
])

= 2 > 0

det
([

2 −1
−1 2

])
= 4−1 = 3 > 0, and

det






2 −1 i
−1 2 1
−i 1 2




= 8+ i− i−2−2−2 = 2 > 0.

It follows from Sylvester’s criterion that A is positive definite.

Proof of Sylvester’s criterion. For the “only if” direction of the proof, recall
from Theorem 2.2.4 that if A is positive definite then so is the top-left k× k
block of A, which we will call Ak for the remainder of this proof. Since Ak is
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positive definite, its eigenvalues are positive, so det(Ak) (i.e., the product of
those eigenvalues) is positive too, as desired.

The “if” direction is somewhat trickier to pin down, and we prove it by
induction on n (the size of A). For the base case, if n = 1 then it is clear that
det(A) > 0 implies that A is positive definite since the determinant of a scalar
just equals that scalar itself.

For the inductive step, assume that the theorem holds for (n−1)× (n−1)
matrices. To see that it must then hold for n× n matrices, notice that if A ∈
Mn(F) is as in the statement of the theorem and det(Ak) > 0 for all 1≤ k ≤ n,
then det(A) > 0 and (by the inductive hypothesis) An−1 is positive definite.
Let λi and λ j be any two eigenvalues of A with corresponding orthogonal
eigenvectors v and x, respectively.

We can choose v
and x to be

orthogonal by
the spectral

decomposition.
Then define x = wnv− vnw and notice that

x 6= 0 (since {v,w} is linearly independent), but xn = wnvn− vnwn = 0. Since
xn = 0 and An−1 is positive definite, it follows that

We have to be
careful if vn = wn = 0,

since then x = 0. In
this case, we instead

define x = v to fix
up the proof.

0 < x∗Ax
= (wnv− vnw)∗A(wnv− vnw)
= |wn|2v∗Av−wnvnw∗Av− vnwnv∗Aw+ |vn|w∗Aw
= λi|wn|2v∗v−λiwnvnw∗v−λ jvnwnv∗w+λ j|vn|2w∗w
= λi|wn|2‖v‖2−0−0+λ j|vn|2‖w‖2.Recall that v and w

are orthogonal, so
v∗w = v ·w = 0. It is thus not possible that both λi ≤ 0 and λ j ≤ 0. Since λi and λ j were

arbitrary eigenvalues of A, it follows that A must have at most one non-positive
eigenvalue. However, if it had exactly one non-positive eigenvalue then it would
be the case that det(A) = λ1λ2 · · ·λn ≤ 0, which we know is not the case. It
follows that all of A’s eigenvalues are strictly positive, so A is positive definite
by Theorem 2.2.2, which completes the proof. �

It might be tempting to think that Theorem 2.2.6 can be extended to positive
semidefinite matrices by just requiring that the determinant of each square top-
left block of A is non-negative, rather than strictly positive. However, this does
not work, as demonstrated by the matrix

A =
[

0 0
0 −1

]
.

For this matrix, the top-left block clearly has determinant 0, and straightfor-
ward computation shows that det(A) = 0 as well. However, A is not positive
semidefinite, since it has −1 as an eigenvalue.

The following theorem shows that there is indeed some hope though, and
Sylvester’s criterion does apply to 2× 2 matrices as long as we add in the
requirement that the bottom-right entry is non-negative as well.

Theorem 2.2.7
Positive

(Semi)Definiteness
for 2×2 Matrices

Suppose A ∈M2 is self-adjoint.
a) A is positive semidefinite if and only if a1,1,a2,2,det(A)≥ 0, and
b) A is positive definite if and only if a1,1 > 0 and det(A) > 0.

Proof. Claim (b) is exactly Sylvester’s criterion (Theorem 2.2.6) for 2× 2
matrices, so we only need to prove (a).

For the “only if” direction, the fact that a1,1,a2,2 ≥ 0 whenever A is positive
semidefinite follows simply from the fact that PSD matrices have non-negative
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diagonal entries (Theorem 2.2.4). The fact that det(A) ≥ 0 follows from the
fact that A has non-negative eigenvalues, and det(A) is the product of them.

For the “if” direction, recall that the characteristic polynomial of A is

pA(λ ) = det(A−λ I) = λ
2− tr(A)λ +det(A).

It follows from the quadratic formula that the eigenvalues of A are

λ =
1
2

(
tr(A)±

√
tr(A)2−4det(A)

)
.

ToThis proof shows that
we can replace
the inequalities

a1,1,a2,2 ≥ 0 in the
statement of this

theorem with the
single inequality

tr(A)≥ 0.

see that these eigenvalues are non-negative (and thus A is positive semidef-
inite), we just observe that if det(A) ≥ 0 then tr(A)2− 4det(A) < tr(A)2, so
tr(A)−

√
tr(A)2−4det(A)≥ 0. �

For example, if we apply this theorem to the matrices

A =
[

1 −1
−1 1

]
and B =

[
1 2
2 1

]

from Equation (2.2.1), we see immediately that A is positive semidefinite (but
not positive definite) because det(A) = 1− 1 = 0 ≥ 0, but B is not positive
semidefinite because det(B) = 1−4 =−3 < 0.

Remark 2.2.1
Sylvester’s Criterion

for Positive
SemiDefinite

Matrices

To extend Sylvester’s criterion (Theorem 2.2.6) to positive semidefinite
matrices, we first need a bit of extra terminology. A principal minor of a
square matrix A ∈Mn is the determinant of a submatrix of A that is ob-
tained by deleting some (or none) of its rows as well as the corresponding
columns. For example, the principal minors of a 2×2 Hermitian matrix

A =

[
a b

b d

]

are
Notice that these

three principal
minors are exactly
the quantities that

determined positive
semidefiniteness in

Theorem 2.2.7(a).

det
([

a
])

= a, det
([

d
])

= d, and det

([
a b

b d

])
= ad−|b|2,

and the principal minors of a 3×3 Hermitian matrix

B =




a b c

b d e
c e f




are
For example,
[

a c
c f

]

is obtained by
deleting the second
row and column of B.

a, d, f , det(B) itself, as well as

det

([
a b

b d

])
= ad−|b|2, det

([
a c
c f

])
= a f −|c|2, and

det

([
d e
e f

])
= d f −|e|2.

The correct generalization of Sylvester’s criterion to positive semidef-
inite matrices is that a matrix is positive semidefinite if and only if all
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of its principal minors are non-negative (whereas in the positive defi-
nite version of Sylvester’s criterion we only needed to check the principal
minors coming from the top-left corners of the matrix).

2.2.2 Diagonal Dominance and Gershgorin Discs

Intuitively, Theorem 2.2.7 tells us that a 2×2 matrix is positive (semi)definite
exactly when its diagonal entries are sufficiently large compared to its off-
diagonal entries. After all, if we expand out the inequality det(A)≥ 0 explicitly
in terms of the entries of A, we see that it is equivalent to

a1,1a2,2 ≥ a1,2a2,1.

This same intuition is well-founded even for larger matrices. However, to
clarify exactly what we mean, we first need the following result that helps
us bound the eigenvalues of a matrix based on simple information about its
entries.

Theorem 2.2.8
Gershgorin

Disc Theorem

Suppose A ∈Mn and define the following objects for each 1≤ i≤ n:
• ri = ∑

j 6=i
|ai, j| (the sum of off-diagonal entries of the i-th row of A),

• D(ai,i,ri) is the closed disc in the complex plane
A closed disc is just a

filled circle.

centered at ai,i
with radius ri (we call this disc the i-th Gershgorin disc of A).

Then every eigenvalue of A is located in at least one of the D(ai,i,ri).

This theorem can be thought of as an approximation theorem. For a diagonal
matrix we have ri = 0 for all 1≤ i≤ n, so its Gershgorin discs have radius 0
and thus its eigenvalues are exactly its diagonal entries, which we knew already
(in fact, the same is true of triangular matrices). However, if we were to change
the off-diagonal entries of that matrix then the radii of its Gershgorin discs
would increase, allowing its eigenvalues to wiggle around a bit.

Before proving this result, we illustrate it with an example.

Example 2.2.5
Gershgorin Discs

Draw the Gershgorin discs for the following matrix, and show that its
eigenvalues are contained in these discs:

A =
[
−1 2
−i 1+ i

]
.

Solution:
The Gershgorin discs are D(−1,2) and D(1+ i,1).The radius of the

second disc is 1
because |− i|= 1.

Direct calculation
shows that the eigenvalues of A are 1 and −1+ i, which are indeed con-
tained within these discs:
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In this subsection,
we focus on the
F = C case since

Gershgorin discs live
naturally in the

complex plane.
These same results

apply if F = R simply
because real
matrices are

complex.

D(−1,2) D(1+ i,1)

Re

Im

1 = 1

2 =−1+ i

Proof of Theorem 2.2.8. Let λ be an eigenvalue of A corresponding to an
eigenvector v. Since v 6= 0, we can scale it so that its largest entry is vi = 1 and
all other entries are no larger than 1 (i.e., |v j| ≤ 1 for all j 6= i).In the notation of

Section 1.D, we
scale v so that

‖v‖∞ = 1.

By looking at
the i-th entry of the vector Av = λv, we see that

∑
j

ai, jv j = λvi = λ . (since vi = 1)

Now noticeIn fact, this proof
shows that each

eigenvalue lies in the
Gershgorin disc

corresponding to the
largest entry of its

corresponding
eigenvectors.

that the sum on the left can be split up into the form

∑
j

ai, jv j = ∑
j 6=i

ai, jv j +ai,i. (again, since vi = 1)

By combining and slightly rearranging the two equations above, we get

λ −ai,i = ∑
j 6=i

ai, jv j.

Finally, taking the absolute value of both sides of this equation then shows that

We used the fact
that |wz|= |w||z| for

all w,z ∈ C here. | −ai,i|=
∣∣∣∣

j 6=i

ai, jv j

∣∣∣∣≤
j 6=i

|ai, j||v j| ≤
j 6=i

|ai, j|= ri,

triangle inequality

since |v j| ≤ 1 for all j 6= i

which means exactly that λ ∈ D(ai,i,ri). �

In order to improve the bounds provided by the Gershgorin disc theorem,
recall that A and AT have the same eigenvalues, which immediately implies
that the eigenvalues of A also lie within the discs corresponding to the columns
of A (instead of its rows). More specifically, if we define ci = ∑ j 6=i |a j,i| (the
sum of the off-diagonal entries of the i-th column of A) then it is also true that
each eigenvalue of A is contained in at least one of the discs D(ai,i,ci).

Example 2.2.6
Gershgorin Discs

via Columns

Draw the Gershgorin discs based on the columns of the matrix from
Example 2.2.5, and show that its eigenvalues are contained in those discs.

Solution:
The Gershgorin discs based on the columns of this matrix are D(−1,1)

and D(1+ i,2), do indeed contain the eigenvalues 1 and −1+ i:
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row discs

column discs

Re

Im

1 = 1

2 =−1+ i

Remark 2.2.2
Counting

Eigenvalues in
Gershgorin Discs

Be careful when using the Gershgorin disc theorem. Since every complex
matrix has exactly n eigenvalues (counting multiplicities) and n Gershgorin
discs, it is tempting to conclude that each disc must contain an eigenvalue,
but this is not necessarily true. For example, consider the matrix

A =
[

1 2
−1 −1

]
,

which has Gershgorin discs D(1,2) and D(−1,1). However, its eigenval-
ues are ±i, both of which are contained in D(1,2) and neither of which
are contained in D(−1,1):

D(1,2)

D(−1,1)

Re

Im

1 = i

2 =−i

However, in the case when the GershgorinProofs of the
statements in this

remark are above
our pay grade, so
we leave them to
more specialized
books like (HJ12)

discs do not overlap, we
can indeed conclude that each disc must contain exactly one eigenvalue.
Slightly more generally, if we partition the Gershgorin discs into disjoint
sets, then each set must contain exactly as many eigenvalues as Gershgorin
discs. For example, the matrix

B =




4 −1 −1
1 −1 1
1 0 5
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has Gershgorin discs D(4,2), D(−1,2), and D(5,1). Since D(4,2) and
D(5,1) overlap, but D(−1,2) is disjoint from them, we know that one of
B’s eigenvalues must be contained in D(−1,2), and the other two must be
contained in D(4,2)∪D(5,1). Indeed, the eigenvalues of B are approxi-
mately λ1 ≈−0.8345 and λ2,3 ≈ 4.4172±0.9274i:

D(−1,2) D(4,2)

D(5,1)
Re

Im

1 ≈−0.8345

2 ≈ 4.4172+0.9274i

3 ≈ 4.4172−0.9274i

In fact, we could have even further bounded λ1 to the real interval
[−2,0] by using the Gershgorin discs based on B’s columns (one of these
discs is D(−1,1)) and recalling that the eigenvalues of real matrices come
in complex conjugate pairs.

Our primary purpose for introducing Gershgorin discs is that they will help
us show that some matrices are positive (semi)definite shortly. First, we need
to introduce one additional family of matrices:

Definition 2.2.2
Diagonally
Dominant
Matrices

A matrix A ∈Mn is called

a) diagonally dominant if |ai,i| ≥∑
j 6=i
|ai, j| for all 1≤ i≤ n, and

b) strictly diagonally dominant if |ai,i|> ∑
j 6=i
|ai, j| for all 1≤ i≤ n.

To illustrate the relationship between diagonally dominant matrices, Gersh-
gorin discs, and positive semidefiniteness, consider the diagonally dominant
Hermitian matrix

A =




2 0 i
0 7 1
−i 1 5


 . (2.2.2)

This matrix has Gershgorin discs D(2,1), D(7,1), and D(5,2). Furthermore,
since A is Hermitian we know that its eigenvalues are real and are thus contained
in the real interval [1,8] (see Figure 2.5). In particular, this implies that its
eigenvalues are strictly positive, so A is positive definite. This same type of
argument works in general, and leads immediately to the following theorem:

Theorem 2.2.9
Diagonal

Dominance
Implies PSD

Suppose A ∈Mn is self-adjoint with non-negative diagonal entries.
a) If A is diagonally dominant then it is positive semidefinite.
b) If A is strictly diagonally dominant then it is positive definite.

Proof. By the Gershgorin disc theorem, we know that the eigenvalues of A
are contained in its Gershgorin discs in the complex plane. Since the diag-
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The eigenvalues
of this matrix
are actually

approximately
1.6806, 4.8767, and

7.4427.

D(2,1)

D(5,2)

D(7,1)

Re

Im

1 2 3 4 5 6 7 8

-2

-1

1

2

Figure 2.5: The Gershgorin discs of the Hermitian matrix from Equation (2.2.2) all lie
in the right half of the complex plane, so it is positive definite.

onal entries of A are real and non-negative, the centers of these Gershgorin
discs are located on the right half of the real axis.This is a one-way

theorem: diagonally
dominant matrices

are PSD, but PSD
matrices may not be
diagonally dominant
(see the matrix from

Example 2.2.3, for
example).

Furthermore, since A is diago-
nally dominant, the radii of these discs are smaller than the coordinates of their
centers, so they do not cross the imaginary axis. It follows that every eigenvalue
of A is non-negative (or strictly positive if A is strictly diagonally dominant),
so A is positive semidefinite by Theorem 2.2.1 (or positive definite by Theo-
rem 2.2.2). �

2.2.3 Unitary Freedom of PSD Decompositions

We saw in Theorem 2.2.1 that we can write every positive semidefinite matrix
A ∈Mn in the form A = B∗B, where B ∈Mn. However, this matrix B is not
unique, since if U ∈Mn is any unitary matrix and we define C = UB then
C∗C = (UB)∗(UB) = B∗U∗UB = B∗B = A as well. The following theorem
says (among other things) that all such decompositions of A are related to each
other in a similar way:

Theorem 2.2.10
Unitary Freedom

of PSD
Decompositions

Suppose B,C ∈Mm,n(F). The following are equivalent:
a) There exists a unitary matrix U ∈Mm(F) such that C = UB,
b) B∗B = C∗C,
c) (Bv) · (Bw) = (Cv) · (Cw) for all v,w ∈ Fn, and
d) ‖Bv‖= ‖Cv‖ for all v ∈ Fn.

Proof. We showedIf C = I then
this theorem gives

many of the
characterizations of

unitary matrices that
we saw back in

Theorem 1.4.9.

above directly above the statement of the theorem that (a)
implies (b), and we demonstrated the equivalence of conditions (b), (c), and (d)
in Exercise 1.4.19. We thus only need to show that the conditions (b), (c), and
(d) together imply condition (a).

To this end, note that since B∗B is positive semidefinite, it has a set of
eigenvectors {v1, . . . ,vn} (with corresponding eigenvalues λ1, . . . ,λn, respec-
tively) that form an orthonormal basis of Fn. By Exercise 2.1.19, we know that
r = rank(B∗B) of these eigenvalues are non-zero, which we arrange so that
λ1, . . . ,λr are the non-zero ones. We now prove some simple facts about these
eigenvalues and eigenvectors:

i) r ≤ m, since rank(XY ) ≤ min{rank(X), rank(Y )} in general, so r =
rank(B∗B)≤ rank(B)≤min{m,n}.
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ii) Bv1, . . . ,Bvr are non-zero and Bvr+1 = · · ·= Bvn = 0. These facts follow
from noticing that, for each 1≤ j ≤ n, we have

Recall that v j is an
eigenvector, and

eigenvectors are (by
definition) non-zero.

‖Bv j‖2 = (Bv j) · (Bv j) = v∗j(B
∗Bv j) = v∗j(λ jv j) = λ j‖v j‖2,

which equals zero if and only if λ j = 0.
iii) The set {Bv1, . . . ,Bvr} is mutually orthogonal, since if i 6= j then

(Bvi) · (Bv j) = v∗i (B
∗Bv j) = v∗i (λ jv j) = λ jv∗i v j = 0.

It follows that if we define vectors wi = Bvi/‖Bvi‖ for 1 ≤ i ≤ r then
the set {w1, . . . ,wr} is a mutually orthogonal set of unit vectors. We then
know fromTo extend

{w1, . . . ,wr} to an
orthonormal basis,

add any vector z not
in its span, then apply

the Gram–Schmidt
process, and repeat.

Exercise 1.4.20 that we can extend this set to an orthonormal basis
{w1, . . . ,wm} of Fm. By repeating this same argument with C in place of B,
we similarly can construct an orthonormal basis {x1, . . . ,xm} of Fm with the
property that xi = Cvi/‖Cvi‖ for 1≤ i≤ r.

Before we reach the home stretch of the proof, we need to establish one
more property of this set of vectors:

iv) B∗w j = C∗x j = 0 whenever j ≥ r + 1. To see why this property holds,
recall that w j is orthogonal to each of Bv1, . . . ,Bvn. Since {v1, . . . ,vn} is
a basis of Fn, it follows that w j is orthogonal to everything in range(B).

In the notation
of Section 1.B.2,

w j ∈ range(B)⊥ and
thus w j ∈ null(B∗)

(compare with
Theorem 1.B.7).

That is, (B∗w j) ·v = w j · (Bv) = 0 for all v ∈ Fn, so B∗w j = 0. The fact
that C∗x j = 0 is proved similarly.

With all of these preliminary properties out of the way, we now define the
unitary matrices

U1 =
[

w1 | · · · | wm
]

and U2 =
[

x1 | · · · | xm
]
.

It then follows that

B∗U1 =
[

B∗w1 | · · · | B∗wm
]

=
[

B∗Bv1

‖Bv1‖
∣∣∣ · · ·

∣∣∣ B∗Bvr

‖Bvr‖
∣∣∣ 0
∣∣∣ · · ·

∣∣∣ 0
]

(property (iv) above)

=
[

C∗Cv1

‖Cv1‖
∣∣∣ · · ·

∣∣∣ C∗Cvr

‖Cvr‖
∣∣∣ 0
∣∣∣ · · ·

∣∣∣ 0
]

(properties (b) and (d))

=
[

C∗x1 | · · · | C∗xm
]

(property (iv) again)
= C∗U2.

By multiplying the equation B∗U1 = C∗U2 on the right by U∗2 and then taking
the conjugate transpose of both sides, we see that C = (U2U∗1 )B. Since U2U∗1
is unitary, we are done. �

Recall from Theorem 1.4.9 that unitary matrices preserve the norm (induced
by the usual dot product) and angles between vectors.Now is a good time

to have a look back
at Figure 1.15.

The equivalence of
conditions (a) and (b) in the above theorem can be thought of as the converse—
if two sets of vectors have the same norm and pairwise angles as each other,
then there must be a unitary matrix that transforms one set into the other. That
is, if {v1, . . . ,vn} ⊆ Fm and {w1, . . . ,wn} ⊆ Fm are such that ‖v j‖ = ‖w j‖
and vi ·v j = wi ·w j for all i, j then there exists a unitary matrix U ∈Mm(F)
such that w j = Uv j for all j. After all, if B =

[
v1 | v2 | · · · | vn

]
and C =[

w1 | w2 | · · · | wn
]

then B∗B = C∗C if and only if these norms and dot
products agree.
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Theorem 2.2.10 also raises the question of how simple we can make the
matrix B in a positive semidefinite decomposition A = B∗B. The following
theorem provides one possible answer: we can choose B so that it is also
positive semidefinite.

Theorem 2.2.11
Principal Square
Root of a Matrix

Suppose A∈Mn(F) is positive semidefinite. There exists a unique positive
semidefinite matrix P ∈Mn(F), called the principal square root of A,
such that A = P2.

Proof. To see that such a matrix P exists, we use the standard method of
applying functions to diagonalizable matrices. Specifically, we use the spec-
tral decomposition to write A = UDU∗, where U ∈ Mn(F) is unitary and
D ∈Mn(R) is diagonal with non-negative real numbers (the eigenvalues of A)
as its diagonal entries. If we then define P = U

√
DU∗, where

√
D is the diag-

onal matrix that contains the non-negative square roots of the entries of D, then

P2 = (U
√

DU∗)(U
√

DU∗) = U
√

D
2
U∗ = UDU∗ = A,

as desired.
To see that P is unique, suppose that Q∈Mn(F) is another positive semidef-

inite matrix for which Q2 = A. We can use the spectral decomposition to write
Q =V FV ∗, where V ∈Mn(F) is unitary and F ∈Mn(R) is diagonal with non-
negative real numbers as its diagonal entries. Since V F2V ∗ = Q2 = A = UDU∗,
we conclude that the eigenvalues of Q2 equal those of A, and thus the diagonal
entries of F2 equal those of D.

Since we are free in the spectral decomposition to order the eigenvalues
along the diagonals of F and D however we like, we can assume without loss
of generality that F =

√
D.Be careful—it is

tempting to try to
show that V = U ,

but this is not true
in general. For

example, if D = I
then U and V can

be anything.

It then follows from the fact that P2 = A = Q2

that V DV ∗ = UDU∗, so WD = DW , where W = U∗V . Our goal now is to
show that this implies V

√
DV ∗ = U

√
DU∗ (i.e., Q = P), which is equivalent

to W
√

D =
√

DW .
To this end, suppose that P has k distinct eigenvalues (i.e.,

√
D has k distinct

diagonal entries), which we denote by λ1, λ2, . . ., λk, and denote the multiplic-
ity of each λ j by m j. We can then write

√
D in block diagonal form as follows,

Again, the spectral
decomposition
lets us order the

diagonal entries of D
(and thus of

√
D)

however we like.

where we have grouped repeated eigenvalues (if any) so as to be next to each
other (i.e., in the same block):

√
D =




λ1Im1 O · · · O
O λ2Im2 · · · O
...

...
. . .

...
O O · · · λkImk




.

If we partition W as a block matrix via blocks of the same size and shape,
i.e.,

W =




W1,1 W1,2 · · · W1,k

W2,1 W2,2 · · · W2,k

...
...

. . .
...

Wk,1 Wk,2 · · · Wk,k




,

then block matrix multiplication shows that the equation WD = DW is equiv-
alent to λ 2

i Wi, j = λ 2
j Wi, j for all 1≤ i 6= j ≤ k. Since λ 2

i 6= λ 2
j when i 6= j, this
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implies that Wi, j = O when i 6= j, so W is block diagonal. It then follows that

W
√

D =




λ1W1,1 O · · · O
O λ2W2,2 · · · O
...

...
. . .

...
O O · · · λkWk,k




=
√

DW

as well, which completes the proof. �

The principal square root P of a matrix A is typically denoted by P =
√

A,
and it is directly analogous to the principal square root of a non-negative real
number (indeed, for 1×1 matrices they are the exact same thing). This provides
yet another reason why we typically think of positive semidefinite matrices as
the “matrix version” of non-negative real numbers.

Example 2.2.7
Computing a

Principal Square
Root

Compute the principal square root of the matrix A =
[

8 6
6 17

]
.

Solution:
We just compute a spectral decomposition of B and take the principal

square root of the diagonal entries of its diagonal part. The eigenvalues of A
are 5 and 20, and they have corresponding eigenvectors (2,−1) and (1,2),
respectively. It follows that A has spectral decomposition A = UDU∗,
where

U =
1√
5

[
2 1
−1 2

]
and D =

[
5 0
0 20

]
.

The principal square root of A is thus

There are also three
other square roots

of A (obtained
by taking some

negative square
roots in D), but the

principal square root
is the only one of
them that is PSD.

√
A = U

√
DU∗ =

1
5

[
2 1
−1 2

][√
5 0

0
√

20

][
2 −1
1 2

]
=

1√
5

[
6 2
2 9

]
.

By combining our previous two theorems, we get a new matrix decompo-
sition, which answers the question of how simple we can make a matrix by
multiplying it on the left by a unitary matrix—we can always make it positive
semidefinite.

Theorem 2.2.12
Polar

Decomposition

Suppose A ∈Mn(F). There exists a unitary matrix U ∈Mn(F) and a
positive semidefinite matrix P ∈Mn(F) such that

A = UP.

Furthermore,

This is sometimes
called the right

polar decomposition
of A. A left polar

decomposition is
A = QV , where Q is

PSD and V is
unitary. These two

decompositions
coincide (i.e., Q = P

and V = U) if and
only if A is normal.

P is unique and is given by P =
√

A∗A, and U is unique if A
is invertible.

Proof. Since A∗A is positive semidefinite, we know from Theorem 2.2.11 that
we can define P =

√
A∗A so that A∗A = P2 = P∗P and P is positive semidefinite.

We then know from Theorem 2.2.10 that there exists a unitary matrix U ∈
Mn(F) such that A = UP.

To see uniqueness of P, suppose A = U1P1 = U2P2, where U1,U2 ∈Mn(F)
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are unitary and P1,P2 ∈Mn(F) are positive semidefinite. Then

A∗A = (U1P1)∗(U1P1) = P1U∗1 U1P1 = P2
1 and

A∗A = (U2P2)∗(U2P2) = P2U∗2 U2P2 = P2
2 .

Since P2
1 = P2

2 is positive semidefinite, is has a unique principal square root, so
P1 = P2.

If A is invertible then uniqueness of U follows from the fact that we can
rearrange the decomposition A = UP to the form U∗ = PA−1, so U = (PA−1)∗.

�

The matrix

Similarly, the
matrices

√
A∗A

and
√

AA∗ might be
called the left and

right absolute values
of A, respectively,

and they are equal if
and only if A is

normal.

√
A∗A in the polar decomposition can be thought of as the

“matrix version” of the absolute value of a complex number |z|=
√

zz. In fact,
this matrix is sometimes even denoted by |A|=

√
A∗A. In a sense, this matrix

provides a “regularization” of A that preserves many of its properties (such as
rank and Frobenius norm—see Exercise 2.2.22), but also adds the desirable
positive semidefiniteness property.

Example 2.2.8
Computing a Polar

Decomposition

Compute the polar decomposition of the matrix A =
[

2 −1
2 4

]
.

Solution:
In order to find the polar decomposition A = UP, our first priority is

to compute A∗A and then set P =
√

A∗A:

A∗A =
[

2 2
−1 4

][
2 −1
2 4

]
=

[
8 6
6 17

]
,

which we computed the principal square root of in Example 2.2.7:

P =
√

A∗A =
1√
5

[
6 2
2 9

]
.

Next, as suggested by the proof of Theorem 2.2.12, we can find U by
setting U = (PA−1)∗,

The 10 in the
denominator here

comes from A−1.

since this rearranges to exactly A = UP:

U =

(
1

10
√

5

[
6 2
2 9

][
4 1
−2 2

])∗
=

1√
5

[
2 −1
1 2

]
.

The polar decomposition is directly analogous to the fact that every complex
number z ∈C can be written in the form z = reiθ , where r = |z| is non-negative
and eiθ lies on the unit circle in the complex plane. Indeed, we have already
been thinking about positive semidefinite matrices as analogous to non-negative
real numbers, and it similarly makes sense to think of unitary matrices as anal-
ogous to numbers on the complex unit circle (indeed, this is exactly what
they are in the 1×1 case).Have a look at

Appendix A.3.3 if
you need a refresher
on the polar form of
a complex number.

After all, multiplication by eiθ rotates numbers in
the complex plane but does not change their absolute value, just like unitary
matrices rotate and/or reflect vectors but do not change their length.

In fact, just like we think of PSD matrices as analogous to non-negative
real numbers and unitary matrices as analogous to numbers on the complex
unit circle, there are many other sets of matrices that it is useful to think of as
analogous to subsets of the complex plane. For example, we think of the sets
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of Hermitian and skew-Hermitian matrices as analogous to the sets of real and
imaginary numbers, respectively (see Figure 2.6). There are several ways in
which these analogies can be justified:

Thinking about
sets of matrices

geometrically (even
though it is a very
high-dimensional

space that we
cannot really picture

properly) is a very
useful technique for

building intuition.

real numbers ∼
Hermitian matricesreal numbers ≥ 0 ∼

positive semidefinite matrices

imaginary numbers ∼ skew-Hermitian matrices

unit circle ∼ unitary matrices

0 ∼ O 1 ∼ I

Figure 2.6: Several sets of normal matrices visualized on the complex plane as the
sets of complex numbers to which they are analogous.

• Each of these sets of matrices have eigenvalues living in the corre-
sponding set of complex numbers. For example, the eigenvalues of
skew-Hermitian matrices are imaginary.

• Furthermore, the converse of the above point is true as long as we assume
that the matrix is normal (see Exercise 2.1.17). For example, a normal
matrix with all eigenvalues imaginary must be skew-Hermitian.

• We can write every matrix in the form A = UP, where U is unitary and P
is PSD, just like we can write every complex number in the form z = reiθ ,
where eiθ is on the unit circle and r is non-negative and real.

• We can write every matrix in the form A = H +K, where H is Hermitian
and K is skew-Hermitian (see Remark 1.B.1), just like we can write
every complex number in the form z = h + k, where h is real and k is
imaginary.

• The only positive semidefinite unitary matrix is I (see Exercise 2.2.7),
just like the only positive real number on the unit circle is 1.

• The only matrix that is both Hermitian and skew-Hermitian is O, just
like the only complex number that is both real and imaginary is 0.

Remark 2.2.3
Unitary

Multiplication
and PSD

Decompositions

Given a positive semidefinite matrix A ∈Mn, there are actually multiple
different ways to simplify the matrix B in the PSD decomposition A = B∗B,
and which one is best to use depends on what we want to do with it.

We showed in Theorem 2.2.11 that we can choose B to be positive
semidefinite, and this led naturally to the polar decomposition of a matrix.
However, there is another matrix decomposition (the Cholesky decompo-
sition of Section 2.B.2) that says we can instead make B upper triangular
with non-negative real numbers on the diagonal. This similarly leads to
the QR decomposition of Section 1.C. The relationships between these
four matrix decompositions are summarized here:
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Decomposition of B Decomposition of A = B∗B

polar decomposition: B = UP principal square root: A = P2

P is positive semidefinite

QR decomposition: B = UT Cholesky decomposition: A = T ∗T
T is upper triangular with non-negative real numbers on the diagonal

Exercises solutions to starred exercises on page 467

2.2.1 Which of the following matrices are positive semidef-
inite? Positive definite?

∗ (a)
[

1 0
0 1

]

∗ (c)
[

1 0 0
0 1 0

]

∗ (e)



1 0 i
0 1 0
i 0 1




∗ (g)



3 1 1
1 3 1
1 1 3




(b)
[

4 −2i
2i 1

]

(d)



0 0 1
0 1 0
1 0 0




(f)



1 1 1
1 2 1
1 1 2




(h)



1 1 1 0
1 2 1 1
1 1 2 i
0 1 −i 2




2.2.2 Compute the Gershgorin (row) discs of each of the
following matrices.

∗ (a)
[

1 2
3 −1

]

∗ (c)



1 0 0
0 2 0
0 0 3




∗ (e)



1 2 i
−1 3 2
i −2 1




(b)
[

2 −2
−i 3

]

(d)



0 0 1
0 3 0
2 0 0




(f)



−1 1 1 0
0 1 1 i
0 1 0 0
1 0 −1 i




2.2.3 Compute the principal square root of each of the
following positive semidefinite matrices.

∗ (a)
[

1 −1
−1 1

]

∗ (c)



1 0 0
0 2 0
0 0 3




∗ (e)



1 1 0
1 2 1
0 1 1




(b)
[

2 3
3 5

]

(d)



2 1 1
1 2 1
1 1 2




(f)



2 2 0 0
2 2 0 0

0 0 1
√

3

0 0
√

3 4




2.2.4 Compute a polar decomposition of each of the fol-
lowing matrices.

∗ (a)
[

1 −1
−1 1

]

(c)


−1 0 0
0 1+ i 0
0 0 2i




(b)
[

1 0
3 2

]

∗ (d)



0 −1 0
−1 1 1
2 3 1




2.2.5 Determine which of the following statements are
true and which are false.

∗ (a) If every entry of a matrix is real and non-negative
then it is positive semidefinite.

(b) The zero matrix O ∈Mn is positive semidefinite.
∗ (c) The identity matrix I ∈Mn is positive definite.

(d) If A,B ∈Mn are positive semidefinite matrices, then
so is A+B.

∗ (e) If A,B ∈Mn are positive semidefinite matrices, then
so is AB.

(f) If A ∈Mn is a positive semidefinite matrix, then so
is A2.

∗ (g) Each Gershgorin disc of a matrix contains at least
one of its eigenvalues.

(h) The identity matrix is its own principal square root.
∗ (i) The only matrix A ∈Mn such that A2 = I is A = I.

(j) Every matrix A ∈Mn has a unique polar decompo-
sition.

2.2.6 For each of the following matrices, determine which
values of x ∈ R result in the matrix being positive semidefi-
nite.

∗ (a)
[

1 0
0 x

]

∗ (c)



1 x 0
x 1 x
0 x 0




(b)
[

1 x
x 9

]

(d)



1 x 0
x 1 x
0 x 1




∗∗2.2.7 Show that the only matrix that is both positive
semidefinite and unitary is the identity matrix.

2.2.8 Show that if a matrix is positive definite then it is
invertible, and its inverse is also positive definite.

2.2.9 Suppose A ∈Mn is self-adjoint. Show that there
exists a scalar c ∈ R such that A+ cI is positive definite.
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2.2.10 Let J ∈Mn be the n× n matrix with all entries
equal to 1. Show that J is positive semidefinite.

∗∗2.2.11 Show that if A∈Mn is positive semidefinite and
a j, j = 0 for some 1≤ j≤ n then the entire j-th row and j-th
column of A must consist of zeros.

[Hint: What is v∗Av if v has just two non-zero entries?]

2.2.12 Show that every (not necessarily Hermitian) strictly
diagonally dominant matrix is invertible.

∗∗2.2.13 Show that the block diagonal matrix

A =




A1 O · · · O
O A2 · · · O

...
...

. . .
...

O O · · · An




is positive (semi)definite if and only if each of A1,A2, . . . ,An
are positive (semi)definite.

∗∗2.2.14 Show that A ∈Mn is normal if and only if there
exists a unitary matrix U ∈Mn such that A∗ = UA.

2.2.15 A matrix A ∈Mn(R) with non-negative entries
is called row stochastic if its rows each add up to 1 (i.e.,
ai,1 + ai,2 + · · ·+ ai,n = 1 for each 1 ≤ i ≤ n). Show that
each eigenvalue λ of a row stochastic matrix has |λ | ≤ 1.

∗∗2.2.16 Suppose F = R or F = C, and A ∈Mn(F).

(a) Show that A is self-adjoint if and only if there exist
positive semidefinite matrices P,N ∈Mn(F) such
that A = P−N. [Hint: Apply the spectral decompo-
sition to A.]

(b) Show that if F = C then A can be written as a linear
combination of 4 or fewer positive semidefinite ma-
trices, even if it is not Hermitian. [Hint: Have a look
at Remark 1.B.1.]

(c) Explain why the result of part (b) does not hold if
F = R.

2.2.17 Suppose A ∈Mn is self-adjoint with p strictly pos-
itive eigenvalues. Show that the largest integer r with the
property that P∗AP is positive definite for some P ∈Mn,r
is r = p.

2.2.18 Suppose B ∈Mn. Show that tr
(√

B∗B
)
≥ |tr(B)|.

[Side note: In other words, out of all possible PSD decom-
positions of a PSD matrix, its principal square root is the
one with the largest trace.]

∗∗2.2.19 Suppose that A,B,C ∈Mn are positive semidef-
inite.

(a) Show that tr(A)≥ 0.
(b) Show that tr(AB)≥ 0. [Hint: Decompose A and B.]
(c) Provide an example to show that it is not necessarily

the case that tr(ABC)≥ 0. [Hint: Finding an example
by hand might be tricky. If you have trouble, try writ-
ing a computer program that searches for an example
by generating A, B, and C randomly.]

∗∗2.2.20 Suppose that A ∈Mn is self-adjoint.

(a) Show that A is positive semidefinite if and only if
tr(AB)≥ 0 for all positive semidefinite B ∈Mn.
[Side note: This provides a converse to the statement
of Exercise 2.2.19(b).]

(b) Show that A positive definite if and only if tr(AB) > 0
for all positive semidefinite O 6= B ∈Mn.

∗∗2.2.21 Suppose that A ∈Mn is self-adjoint.

(a) Show that if there exists a scalar c ∈ R such that
tr(AB)≥ c for all positive semidefinite B ∈Mn then
A is positive semidefinite and c≤ 0.

(b) Show that if there exists a scalar c ∈ R such that
tr(AB) > c for all positive definite B ∈Mn then A is
positive semidefinite and c≤ 0.

∗∗2.2.22 Let |A| =
√

A∗A be the absolute value of the
matrix A∈Mn(F) that was discussed after Theorem 2.2.12.

(a) Show that rank(|A|) = rank(A).
(b) Show that

∥∥|A|
∥∥

F = ‖A‖F.
(c) Show that

∥∥|A|v
∥∥= ‖Av‖ for all v ∈ Fn.

∗∗2.2.23 Prove Theorem 2.2.2.

[Hint: Mimic the proof of Theorem 2.2.1 and just make
minor changes where necessary.]

∗∗2.2.24 Recall Theorem 2.2.3, which described some
ways in which we can combine PSD matrices to create new
PSD matrices.

(a) Prove part (a) of the theorem.
(b) Prove part (b) of the theorem.
(c) Prove part (c) of the theorem.

∗∗2.2.25 Suppose A ∈Mn(F) is self-adjoint.

(a) Show that A is positive semidefinite if and only if
there exists a set of vectors {v1,v2, . . . ,vn} ⊂ Fn

such that

ai, j = vi ·v j for all 1≤ i, j ≤ n.

[Side note: A is sometimes called the Gram matrix
of {v1,v2, . . . ,vn}.]

(b) Show that A is positive definite if and only if the set
of vectors from part (a) is linearly independent.
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2.2.26 Suppose that A,B ∈Mn are positive definite.

(a) Show that all eigenvalues of AB are real and positive.
[Hint: Multiply AB on the left by

√
A
−1

and on the
right by

√
A.]

(b) Part (a) does not imply that AB is positive definite.
Why not?

2.2.27 Let A,B ∈Mn be positive definite matrices.

(a) Show that det(I +B)≥ 1+det(B).
(b) Show that det(A + B) ≥ det(A) + det(B). [Hint:

det(A+B) = det(A)det(I +
√

A
−1

B
√

A
−1

).]

[Side note: The stronger inequality

(det(A+B))1/n ≥ (det(A))1/n +(det(B))1/n

is also true for positive definite matrices (and is called
Minkowski’s determinant theorem), but proving it is
quite difficult.]

∗∗2.2.28 In this exercise, we show that if A ∈Mn(C) is
written in terms of its columns as A =

[
a1 | a2 | · · · | an

]
,

then ∣∣det(A)
∣∣≤ ‖a1‖‖a2‖· · ·‖an‖.

[Side note: This is called Hadamard’s inequality.]

(a) Explain why it suffices to prove this inequality in
the case when ‖a j‖= 1 for all 1≤ j ≤ n. Make this
assumption throughout the rest of this question.

(b) Show that det(A∗A) ≤ 1. [Hint: Use the AM–GM
inequality (Theorem A.5.3).]

(c) Conclude that |det(A)| ≤ 1 as well, thus completing
the proof.

(d) Explain under which conditions equality is attained
in Hadamard’s inequality.

2.3 The Singular Value Decomposition

We are finally in a position to present what is possibly the most important
theorem in all of linear algebra: the singular value decomposition (SVD). On
its surface, it can be thought of as a generalization of the spectral decomposition
that applies to all matrices, rather than just normal matrices.Some of these

applications of the
SVD are deferred to

Section 2.C.

However, we will
also see that we can use this decomposition to do several unexpected things
like compute the size of a matrix (in a way that typically makes more sense
than the Frobenius norm), provide a new geometric interpretation of linear
transformations, solve optimization problems, and construct an “almost inverse”
for matrices that do not have an inverse.

Furthermore, many of the results from introductory linear algebra as well
as earlier in this book can be seen as trivial consequences of the singular value
decomposition. The spectral decomposition (Theorems 2.1.2 and 2.1.6), polar
decomposition (Theorem 2.2.12), orthogonality of the fundamental subspaces
(Theorem 1.B.7), and many more results can all be re-derived in a line or two
from the SVD. In a sense, if we know the singular value decomposition then
we know linear algebra.

Theorem 2.3.1
Singular Value

Decomposition
(SVD)

Suppose F = R or F = C, and A ∈Mm,n(F). There exist unitary matrices
U ∈Mm(F) and V ∈Mn(F), and a diagonal matrix Σ ∈Mm,n(R) with
non-negative entries, such that

A = UΣV ∗.

Furthermore,Note that Σ might
not be square. When

we say that it is a
“diagonal matrix”,

we just mean that its
(i, j)-entry is 0

whenever i 6= j.

in any such decomposition,
• the diagonal entries of Σ (called the singular values of A) are the

non-negative square roots of the eigenvalues of A∗A (or equivalently,
of AA∗),

• the columns of U (called the left singular vectors of A) are eigen-
vectors of AA∗, and

• the columns of V (called the right singular vectors of A) are eigen-
vectors of A∗A.



210 Chapter 2. Matrix Decompositions

Before proving the singular value decomposition, it’s worth comparing the
ways in which it is “better” and “worse” than the other matrix decompositions
that we already know:

• Better:If m 6= n then A∗A and
AA∗ have different
sizes, but they still

have essentially the
same eigenvalues—

whichever one is
larger just has some
extra 0 eigenvalues.
The same is actually
true of AB and BA for

any A and B (see
Exercise 2.B.11).

It applies to every single matrix (even rectangular ones). Every
other matrix decomposition we have seen so far had at least some re-
strictions (e.g., diagonalization only applies to matrices with a basis of
eigenvectors, the spectral decomposition only applies to normal matrices,
and Schur triangularization only applies to square matrices).

• Better: The matrix Σ in the middle of the SVD is diagonal (and even
has real non-negative entries). Schur triangularization only results in an
upper triangular middle piece, and even diagonalization and the spectral
decomposition do not guarantee an entrywise non-negative matrix.

• Worse: It requires two unitary matrices U and V , whereas all of our
previous decompositions only required one unitary matrix or invertible
matrix.

Proof of the singular value decomposition. To see that singular value decom-
positions exists, suppose that m ≥ n and construct a spectral decomposition
of the positive semidefinite matrix A∗A = V DV ∗ (if m < n then we instead
use the matrix AA∗, but otherwise the proof is almost identical). Since A∗A is
positive semidefinite, its eigenvalues (i.e., the diagonal entries of D) are real
and non-negative, so we can define Σ ∈Mm,n by [Σ] j, j =

√
d j, jIn other words, Σ is

the principal square
root of D, but with
extra zero rows so

that it has the same
size as A.

for all j, and
[Σ]i, j = 0 if i 6= j.

It follows that

A∗A = V DV ∗ = V Σ
∗
ΣV ∗ =

(
ΣV ∗

)∗(
ΣV ∗

)
,

so the equivalence of conditions (a) and (b) in Theorem 2.2.10 tells us that
there exists a unitary matrix U ∈Mm(F) such that A = U(ΣV ∗), which is a
singular value decomposition of A.

To check the “furthermore” claims we just note that if A = UΣV ∗ with U
and V unitary and Σ diagonal then it must be the case that

We must write Σ∗Σ
here (instead of Σ2)

because Σ might not
be square.

A∗A = (UΣV ∗)∗(UΣV ∗) = V (Σ∗Σ)V ∗,

which is a diagonalization of A∗A. Since the only way to diagonalize a matrix is
via its eigenvalues and eigenvectors (refer back to Theorem 2.0.1, for example),
it follows that the columns of V are eigenvectors of A∗A and the diagonal
entries of Σ∗Σ (i.e., the squares of the diagonal entries of Σ) are the eigenvalues
of A∗A. The statements about eigenvalues and eigenvectors of AA∗ are proved
in a similar manner. �

We typically denote singular values (i.e., the diagonal entries of Σ) by
σ1,σ2, . . . ,σmin{m,n}, and we order them so that σ1≥σ2≥ . . .≥σmin{m,n}. Note
that exactly rank(A) of A’s singular values are non-zero, since rank(UΣV ∗) =
rank(Σ), and the rank

For a refresher on
these facts about

the rank of a matrix,
see Exercise 2.1.19

and Theorem A.1.2,
for example.

of a diagonal matrix is the number of non-zero diagonal
entries. We often denote the rank of A simply by r, so we have σ1 ≥ ·· · ≥ σr > 0
and σr+1 = · · ·= σmin{m,n} = 0.

Example 2.3.1
Computing

Singular
Values

Compute the singular values of the matrix A =
[

3 2
−2 0

]
.

Solution:
The singular values are the square roots of the eigenvalues of A∗A.
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Direct calculation shows that

A∗A =

[
13 6
6 4

]
,

which has characteristic polynomial

pA∗A(λ ) = det(A∗A−λ I) = det

([
13−λ 6

6 4−λ

])

= (13−λ )(4−λ )−36 = λ
2−17λ +16 = (λ −1)(λ −16).

We thus conclude that the eigenvalues of A∗A are λ1 = 16 and λ2 = 1, so
the singular values of A are σ1 =

√
16 = 4 and σ2 =

√
1 = 1.

To compute a matrix’s singular value decomposition (not just its singular
values), we could construct spectral decompositions of each of A∗A (for the
right singular vectors) and AA∗ (for the left singular vectors). However, there is
a simpler way of obtaining the left singular vectors that lets us avoid computing
a second spectral decomposition. In particular, if we have already computed
a spectral decomposition A∗A = V (Σ∗Σ)V ∗, where V =

[
v1 | v2 | · · · | vn

]

and Σ has non-zero diagonal entries σ1, σ2, . . ., σr, then we can compute the
remaining U =

[
u1 | u2 | · · · | um

]
piece of A’s singular value decomposition

by noting that A = UΣV ∗ implies
[

Av1 | Av2 | · · · | Avn
]
= AV = UΣ =

[
σ1u1 | · · · | σrur | 0 | · · · | 0

]
.

It follows that the first r = rank(A) columns of U can beThe final m− r
columns of U do not

really matter—they
just need to “fill out”
U to make it unitary

(i.e., they must have
length 1 and be

mutually orthogonal).

obtained via

u j =
1
σ j

Av j for all 1≤ j ≤ r, (2.3.1)

and the remaining m− r columns can be obtained by extending {ui}r
i=1 to

an orthonormal basis of Fm (via the Gram–Schmidt process, for example).

Example 2.3.2
Computing a

Singular Value
Decomposition

Compute a singular value decomposition of the matrix A = 


1 2 3
−1 0 1
3 2 1




.

Solution:
As discussed earlier, our first step is to find the “V ” and “Σ” pieces of

A’s singular value decomposition, which we do by constructing a spectral
decomposition of A∗A and taking the square roots of its eigenvalues. Well,
direct calculation shows

This is a good time
to remind yourself

of how to calculate
eigenvalues and
eigenvectors, in
case you have

gotten rusty. We do
not go through all of

the details here.

that

A∗A =




11 8 5
8 8 8
5 8 11


 ,

which has characteristic polynomial

pA∗A(λ ) = det(A∗A−λ I) =−λ
3 +30λ

2−144λ =−λ (λ −6)(λ −24).

It follows that the eigenvalues of A∗A are λ1 = 24, λ2 = 6, and λ3 = 0,



212 Chapter 2. Matrix Decompositions

so the singular values of A are σ1 =
√

24 = 2
√

6, σ2 =
√

6, andIn particular, A has
rank 2 since 2 of its
singular values are

non-zero.

σ3 = 0.
The normalized eigenvectors corresponding to these eigenvalues are

v1 =
1√
3




1
1
1


 , v2 =

1√
2



−1
0
1


 , and v3 =

1√
6



−1
2
−1


 ,

respectively. We then place these eigenvectors into the matrix V as columns
(in the same order as the corresponding eigenvalues/singular values) and
obtain

We just pulled a
1/
√

6 factor out of V
to avoid having to

write fractional
entries—simplifying

in another way (e.g.,
explicitly writing its

top-left entry as
1/
√

3) is fine too.

Σ =




2
√

6 0 0

0
√

6 0
0 0 0


 and V =

1√
6




√
2 −

√
3 −1√

2 0 2√
2
√

3 −1


 .

Since 2 of the singular values are non-zero, we know that rank(A) = 2.
We thus compute the first 2 columns of U via

u1 =
1

σ1
Av1 =

1
2
√

6




1 2 3
−1 0 1
3 2 1




 1√

3




1
1
1




=

1√
2




1
0
1


 ,

u2 =
1

σ2
Av2 =

1√
6




1 2 3
−1 0 1
3 2 1




 1√

2



−1
0
1




=

1√
3




1
1
−1


 .

The third column of U can be found by extending {u1,u2} to an orthonor-
mal basis of R3, which just means that we need to find a unit vector
orthogonal to each of u1 and u2. We could do this by solving a linear
system, using the Gram–Schmidt process, or via the cross product. Any of
these methods quickly lead us to the vector

Alternatively,
u3 = (−1,2,1)/

√
6

would be fine too. u3 = (1,−2,−1)/
√

6, so the
singular value decomposition A = UΣV ∗ is completed by choosing

Again, we just pulled
a 1/
√

6 factor out of
U to avoid fractions.

U =
1√
6




√
3
√

2 1

0
√

2 −2√
3 −

√
2 −1


 .

Before delving into what makes the singular value decomposition so useful,
it is worth noting that if A ∈Mm,n(F) has singular value decomposition A =
UΣV ∗ then AT and A∗ have singular value decompositions

We use V to mean
the entrywise

complex conjugate
of V . That is,

V = (V ∗)T .

AT = V Σ
TUT and A∗ = V Σ

∗U∗.

In particular, Σ, ΣT , and Σ∗ all have the same diagonal entries, so A, AT , and
A∗ all have the same singular values.

2.3.1 Geometric Interpretation and the Fundamental Subspaces

By recalling that unitary matrices correspond exactly to the linear transforma-
tions that rotate and/or reflect vectors in Fn, but do not change their length,
we see that the singular value decomposition has a very simple geometric
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interpretation. Specifically, it says that every matrix A = UΣV ∗ ∈Mm,n(F)
acts as a linear transformation from Fn to Fm in the following way:
• First, it rotates and/or reflects Fn (i.e., V ∗ acts on Fn).
• Then it stretches and/or shrinks Fn along the standard axes (i.e., the

diagonal matrix Σ acts on Fn) and then embeds it in Fm (i.e., either adds
m−n extra dimensions if m > n or ignores n−m of the dimensions if
m < n).

• Finally, it rotates and/or reflects Fm (i.e., U acts on Fm).
This geometric interpretation is illustrated in the m = n = 2 case in Fig-

ure 2.7. In particular, it is worth keeping track not only of how the linear
transformation changes a unit square grid on R2 into a parallelogram grid, but
also how it transforms the unit circle into an ellipse. Furthermore, the two radii
of the ellipse are exactly the singular values

In fact, the product
of a matrix’s singular

values equals the
absolute value of its

determinant (see
Exercise 2.3.7).

σ1 and σ2 of the matrix, so we
see that singular values provide another way of measuring how much a linear
transformation expands space (much like eigenvalues and the determinant).

x

y

e1

e2

V ∗
x

y

V ∗
e1

V ∗
e2

V ∗

x

y

V ∗
e1

V ∗
e2

2
1

U x

y

Ae1

Ae2
1

2

U

Figure 2.7: The singular value decomposition says that every linear transforma-
tion (i.e., multiplication by a matrix A) can be thought of as a rotation/reflection
V ∗, followed by a scaling along the standard axes Σ, followed by another rota-
tion/reflection U .

This picture also extends naturally to higher dimensions. For example,
a linear transformation acting on R3 sends the unit sphere to an ellipsoid
whose radii are the 3 singular values of the standard matrix of that linear
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transformation. For example, we saw in Example 2.3.2 that the matrix

A =




1 2 3
−1 0 1
3 2 1




has singular values 2
√

6,
√

6, and 0, so we expect that A acts as a linear trans-
formation that sends the unit sphere to an ellipsoid with radii 2

√
6,
√

6, and 0.
Since the third radius is 0, it is actually 2D ellipse living inside of R3—one of
the dimensions is “squashed” by A, as illustrated in Figure 2.8.

x

y

A

x
y

Figure 2.8: Every linear transformation on R3 sends the unit sphere to a (possibly
degenerate) ellipsoid. The linear transformation displayed here is the one with the
standard matrix A from Example 2.3.2.

The fact that the unit sphere is turned into a 2D ellipse by this matrix
corresponds to the fact that it has rank 2, so its range is 2-dimensional. In fact,
the first two left singular vectors (which point in the directions of the major and
minor axes of the ellipse) form an orthonormal basis of the range. Similarly, the
third right singular vector, v3 has the property that Av3 = UΣV ∗v3 = UΣe3 =
σ3Ue3 = 0, since σ3 = 0. It follows that v3 is in the null space of A.

This same type of argument works in general and leads to the following the-
orem, which shows that the singular value decomposition provides orthonormal
bases for each of the four fundamental subspaces of a matrix:

Theorem 2.3.2
Bases of the

Fundamental
Subspaces

Let A ∈Mm,n be a matrix with rank(A) = r and singular value decompo-
sition A = UΣV ∗, where

U =
[

u1 | u2 | · · · | um
]

and V =
[

v1 | v2 | · · · | vn
]
.

Then
a) {u1,u2, . . . ,ur} is an orthonormal basis of range(A),
b) {ur+1,ur+2, . . . ,um} is an orthonormal basis of null(A∗),
c) {v1,v2, . . . ,vr} is an orthonormal basis of range(A∗), and
d) {vr+1,vr+2, . . . ,vn} is an orthonormal basis of null(A).

Proof. First notice that we have

Av j = UΣV ∗v j = UΣe j = σ jUe j = σ ju j for all 1≤ j ≤ r.
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Dividing both sides by σ j then shows that u1,u2, . . . ,ur are all in the range
of A. Since range(A) is (by definition) r-dimensional, and {u1,u2, . . . ,ur} is a
set of r mutually orthogonal unit vectors, it must be an orthonormal basis of
range(A).

Similarly, σ j = 0 whenever j ≥ r +1, so

Av j = UΣV ∗v j = UΣe j = 0 for all j ≥ r +1.

It follows that vr+1,vr+2, . . . ,vn are all in the null space of A. Since the rank-
nullity theorem (Theorem A.1.2(e)) tells us that null(A) has dimension n− r,
and {vr+1,vr+2, . . . ,vn} is a set of n− r mutually orthogonal unit vectors, it
must be an orthonormal basis of null(A).

The corresponding facts about range(A∗) and null(A∗) follow by applying
these same arguments to A∗ instead of A. �

Note that this theorem tells us immediately that everything in range(A) is
orthogonal to everything in null(A∗), simply because the members of the set
{u1,u2, . . . ,ur} are all orthogonal to the members of {ur+1,ur+2, . . . ,um}.

Look back at
Figure 1.26 for
a geometric

interpretation of
these facts.

A
similar argument shows that everything in null(A) is orthogonal to everything
range(A∗). In the terminology of Section 1.B.2, Theorem 2.3.2 shows that these
fundamental subspaces are orthogonal complements of each other (i.e., this
provides another proof of Theorem 1.B.7).

Example 2.3.3
Computing Bases

of the Fundamental
Subspaces via SVD

Compute a singular value decomposition of the matrix

A =




1 1 1 −1
0 1 1 0
−1 1 1 1


 ,

and use it to construct bases of the four fundamental subspaces of A.

Solution:
To compute the SVD of A, we could start by computing A∗A as in the

previous example, but we can also construct an SVD from AA∗ instead.
Since A∗A is a 4×4In general, it

is a good idea to
compute the SVD of
A from whichever of
A∗A or AA∗ is smaller.

matrix and AA∗ is a 3×3 matrix, working with AA∗

will likely be easier, so that is what we do.
Direct calculation shows that

AA∗ =




4 2 0
2 2 2
0 2 4


 ,

which has eigenvalues λ1 = 6, λ2 = 4, and λ3 = 0, so the singular values
of A are σ1 =

√
6, σ2 =

√
4 = 2, and σ3 = 0. The normalized eigenvectors

corresponding to these eigenvalues are

u1 =
1√
3




1
1
1


 , u2 =

1√
2



−1
0
1


 , and u3 =

1√
6



−1
2
−1


 ,

respectively. We then place these eigenvectors into the matrix U as
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columns and obtain

We put these
as columns into

U instead of V
because we worked

with AA∗ instead of
A∗A. Remember that
U must be 3×3 and

V must be 4×4.

Σ =




√
6 0 0 0

0 2 0 0
0 0 0 0


 and U =

1√
6




√
2 −

√
3 −1√

2 0 2√
2
√

3 −1


 .

Since 2 of the singular values are non-zero, we know that rank(A) = 2.
We thus compute the first 2 columns of V via

Here, since we
are working with AA∗

instead of A∗A, we
just swap the roles of
U and V , and A and

A∗, in Equation
(2.3.1).

v1 =
1

σ1
A∗u1 =

1√
6




1 0 −1
1 1 1
1 1 1
−1 0 1





 1√

3




1
1
1




=

1√
2




0
1
1
0


 ,

v2 =
1

σ2
A∗u2 =

1
2




1 0 −1
1 1 1
1 1 1
−1 0 1





 1√

2



−1
0
1




=

1√
2




−1
0
0
1


 .

The third and fourth columns of V can be found by extending {v1,v2}
to an orthonormal basis of R4. We could do this via the Gram–Schmidt
process, but in this case it is simple enough to “eyeball” vectors that work:
we can choose v3 = (0,1,−1,0)/

√
2 and v4 = (1,0,0,1)/

√
2. It follows

that this singular value decomposition A = UΣV ∗ can be completed by
choosing

V =
1√
2




0 −1 0 1
1 0 1 0
1 0 −1 0
0 1 0 1


 .

We can then construct orthonormal bases of the four fundamental
subspaces directly from Theorem 2.3.2 (recall that the rank of A is r = 2):

• range(A): {u1,u2}=
{
(1,1,1)/

√
3,(−1,0,1)/

√
2
}

,

• null(A∗): {u3}=
{
(−1,2,−1)/

√
6
}

,

• range(A∗): {v1,v2}=
{
(0,1,1,0)/

√
2,(−1,0,0,1)/

√
2
}

, and

• null(A): {v3,v4}=
{
(0,1,−1,0)/

√
2,(1,0,0,1)/

√
2
}

.

Remark 2.3.1
A Geometric
Interpretation
of the Adjoint

Up until now, the transpose of a matrix (and more generally, the adjoint of
a linear transformation) has been one of the few linear algebraic concepts
that we have not interpreted geometrically. The singular value decomposi-
tion lets us finally fill this gap.

Notice that if A has singular value decomposition A = UΣV ∗ then A∗

and A−1 (if it exists) have singular value decompositionsKeep in mind that A∗

exists even if A is not
square, in which
case Σ∗ has the
same diagonal

entries as Σ, but a
different shape.

A∗ = V Σ
∗U∗ and A−1 = V Σ

−1U∗,

where Σ−1 is the diagonal matrix with 1/σ1, . . ., 1/σn on its diagonal.
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In particular, each of A∗ and A−1 act by undoing the rotations that A
applies in the opposite order—they first apply U∗, which is the inverse of
the unitary (rotation) U , then they apply a stretch, and then they apply V ,
which is the inverse of the unitary (rotation) V ∗. The difference between
A∗ and A−1 is that A−1 also undoes the “stretch” Σ that A applies, whereas
A∗ simply stretches by the same amount.

We can thus think of A∗ as rotating in the opposite direction as A,
but stretching by the same amount (whereas A−1 rotates in the opposite
direction as A and stretches by a reciprocal amount):

A might be more
complicated than
this (it might send

the unit circle to an
ellipse rather than to

a circle), but it is a
bit easier to visualize

the relationships
between these

pictures when it
sends circles to

circles.

x

y

e2

e1

x

y

e2

e1

∗−
1

x

y

−1
e2 −1

e1

x

y

∗
e2 ∗

e1

2.3.2 Relationship with Other Matrix Decompositions

The singular value decomposition also reduces to and clarifies several other
matrix decompositions that we have seen, when we consider special cases of it.
For example, recall from Theorem A.1.3 that if A ∈Mm,n(F) has rank(A) = r
then we can find vectors {u j}r

j=1 ⊂ Fm and {v j}r
j=1 ⊂ Fn so that

This theorem is
stated in

Appendix A.1.4 just in
the F = R case, but it
is true over any field.

A =
r

∑
j=1

u jvT
j .

Furthermore, rank(A) is the fewest number of terms possible in any such sum,
and we can choose the sets {u j}r

j=1 and {v j}r
j=1 to be linearly independent.

One way of rephrasing the singular value decomposition is as saying that,
if F = R or F = C, then we can in fact choose the sets of vectors {u j}r

j=1 and
{v j}r

j=1 to be mutually orthogonal (not just linearly independent):
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Theorem 2.3.3
Orthogonal

Rank-One Sum
Decomposition

Suppose F = R or F = C, and A ∈Mm,n(F) has rank(A) = r. There exist
orthonormal sets of vectors {u j}r

j=1 ⊂ Fm and {v j}r
j=1 ⊂ Fn such that

A =
r

∑
j=1

σ ju jv∗j ,

where σ1 ≥ σ2 ≥ ·· · ≥ σr > 0 are the non-zero singular values of A.

Proof. For simplicity, we again assume that m≤ n throughout this proof, since
nothing substantial changes if m > n. Use the singular value decomposition to
write A = UΣV ∗, where U and V are unitary and Σ is diagonal, and then write
U and V in terms of their columns:

U =
[

u1 | u2 | · · · | um
]

and V =
[

v1 | v2 | · · · | vn
]
.

Then performing block matrix multiplication reveals thatFurthermore,
it follows from

Theorem 2.3.2 that
{u j}r

j=1 and {v j}r
j=1

are orthonormal
bases of range(A)

and range(A∗),
respectively.

A = UΣV ∗

=
[

u1 | u2 | · · · | um
]




σ1 0 · · · 0 0 · · · 0
0 σ2 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · σm 0 · · · 0







v∗1
v∗2
...

v∗n




=
[

σ1u1 | σ2u2 | · · · | σmum | 0 | · · · | 0
]




v∗1
v∗2
...

v∗n




=
m

∑
j=1

σ ju jv∗j .

By recalling that σ j = 0 whenever j > r, we see that this is exactly what we
wanted. �

In fact, not only does the orthogonal rank-one sum decomposition follow
from the singular value decomposition, but they are actually equivalent—we
can essentially just follow the above proof backward to retrieve the singular
value decomposition from the orthogonal rank-one sum decomposition. For
this reason, this decomposition is sometimes just referred to as the singular
value decomposition itself.

Example 2.3.4
Computing an

Orthogonal
Rank-One Sum
Decomposition

Compute an orthogonal rank-one sum decomposition of the matrix

A =




1 1 1 −1
0 1 1 0
−1 1 1 1


 .

Solution:
This is the same matrix from Example 2.3.3, which has singular value
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decomposition

U =
1√
6




√
2 −

√
3 −1√

2 0 2√
2
√

3 −1


 , Σ =




√
6 0 0 0

0 2 0 0
0 0 0 0


 and

V =
1√
2




0 −1 0 1
1 0 1 0
1 0 −1 0
0 1 0 1


 .

Its orthogonal rank-one sum decomposition can be computed by adding
up the outer products of the columns of U and V , scaled by the diagonal
entries ofThe term “outer

product” means a
product of a column

vector and a row
vector, like uv∗ (in

contrast
with an “inner

product” like u∗v).

Σ:

A = σ1u1v∗1 +σ2u2v∗2 =




1
1
1


[0 1 1 0

]
+



−1
0
1


[−1 0 0 1

]
.

If A ∈Mn is positive semidefinite then the singular value decomposition
coincides exactly with the spectral decomposition. Indeed, the spectral decom-
position says that we can write A =UDU∗ with U unitary and D diagonal (with
non-negative diagonal entries, thanks to A being positive semidefinite). This is
also a singular value decomposition of A, with the added structure of having
the two unitary matrices U and V being equal to each other. This immediately
tells us the following important fact:

! If A ∈Mn is positive semidefinite then its singular values equal
its eigenvalues.

Slightly more generally, there is also a close relationship between the
singular value decomposition of a normal matrix and its spectral decomposition
(and thus the singular values of a normal matrix and its eigenvalues):

Theorem 2.3.4
Singular Values of

Normal Matrices

If A ∈Mn is a normal matrix then its singular values are the absolute
values of its eigenvalues.

Proof. Since A is normal, we can use the spectral decomposition to write
A = UDU∗, where U is unitary and D is diagonal (with the

Alternatively, we
could prove this

theorem by recalling
that the singular

values of A are the
square roots of A∗A.

If A is normal then
A = UDU∗, so

A∗A = UD∗DU∗,
which has

eigenvalues
λ jλ j = |λ j|2.

not-necessarily-
positive eigenvalues of A on its diagonal). If we write each λ j in its polar form
λ j = |λ j|eiθ j then

D =




1 0 · · · 0

0 2 · · · 0

.

.

.
.
.
.

. . .
.
.
.

0 0 · · · n


=




| 1| 0 · · · 0

0 | 2| · · · 0

.

.

.
.
.
.

. . .
.
.
.

0 0 · · · |λn|







eiθ1 0 · · · 0

0 eiθ2 · · · 0

.

.

.
.
.
.

. . .
.
.
.

0 0 · · · eiθn


 ,

call this Σ call this Θ
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so that A = UDU∗ = UΣΘU∗ = UΣ(UΘ∗)∗. Since U and Θ are both unitary,
so is UΘ∗, so this is a singular value decomposition of A. It follows that the
diagonal entries of Σ (i.e., |λ1|, |λ2|, . . . , |λn|) are the singular values of A. �

To see that the above theorem does not hold for non-normal matrices,
consider the matrix

A =
[

1 1
0 1

]
,

which has both eigenvalues equal to 1 (it is upper triangular, so its eigenvalues
are its diagonal entries). However, its singular values are (

√
5±1)/2. In fact,

the conclusion of Theorem 2.3.4 does not hold for any non-normal matrix (see
Exercise 2.3.20).

Finally, we note that the singular value decomposition is also “essentially
equivalent” to the polar decomposition:

! If A ∈MnKeep in mind that
this argument only

works when A is
square, but the SVD
is more general and

also applies to
rectangular matrices.

has singular value decomposition A = UΣV ∗ then
A = (UV ∗)(V ΣV ∗) is a polar decomposition of A.

The reason that the above fact holds is simply that UV ∗ is unitary whenever
U and V are, and V ΣV ∗ is positive semidefinite. This argument also works in
reverse—if we start with a polar decomposition A = UP and apply the spectral
decomposition to P = V ΣV ∗, we get A = (UV )ΣV ∗ which is a singular value
decomposition of A.

2.3.3 The Operator Norm

One of the primary uses of singular values is that they provide us with ways of
measuring “how big” a matrix is. We have already seen two ways of doing this:

• TheSee Appendix A.1.5
for a refresher

on this geometric
interpretation of the

determinant.

absolute value of the determinant of a matrix measures how much it
expands space when acting as a linear transformation. That is, it is the
area (or volume, or hypervolume, depending on the dimension) of the
output of the unit square, cube, or hypercube after it is acted upon by the
matrix.

• The Frobenius norm, which is simply the norm induced by the inner
product inMm,n.

In fact, both of the above quantities come directly from singular values—we
will see in Exercise 2.3.7 that if A ∈Mn has singular values σ1, σ2, . . ., σn
then |det(A)| = σ1σ2 · · ·σn, and we will see in Theorem 2.3.7 that ‖A‖2

F =
σ2

1 +σ2
2 + · · ·+σ2

n .
However, the Frobenius norm is in some ways a very silly matrix norm. It

is really “just” a vector norm—it only cares about the vector space structure of
Mm,n, not the fact that we can multiply matrices. There is thus no geometric
interpretation of the Frobenius norm in terms of how the matrix acts as a linear
transformation. For example, we can rearrange the entries of a matrix freely
without changing its Frobenius norm, but doing so completely changes how
it acts geometrically. In practice, the Frobenius norm is often just used for
computational convenience—it is often not the “right” norm to work with, but
it is so dirt easy to compute that we let it slide.

We now introduce another norm (i.e., way of measuring the “size” of a
matrix) that really tells us something fundamental about how that matrix acts
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as a linear transformation. Specifically, it tells us the largest factor by which a
matrix can stretch a vector. Also, as suggested earlier, we will see that this norm
can also be phrased in terms of singular values (it simply equals the largest of
them).

Definition 2.3.1
Operator Norm

Suppose F = R or F = C, and A ∈Mm,n(F). The operator norm of A,
denoted by ‖A‖, is any of the following (equivalent) quantities:

As its name suggests,
the operator norm

really is a norm in the
sense of Section 1.D
(see Exercise 2.3.16).

‖A‖ def= max
v∈Fn

{‖Av‖
‖v‖ : v 6= 0

}

= max
v∈Fn

{
‖Av‖ : ‖v‖ ≤ 1

}

= max
v∈Fn

{
‖Av‖ : ‖v‖= 1

}
.

The fact that the three maximizations above really are equivalent to each
other follows simply from rescaling the vectors v that are being maximized
over. In particular, v is a vector that maximizes ‖Av‖/‖v‖ (i.e., the first maxi-
mization) if and only if v/‖v‖ is a unit vector that maximizes ‖Av‖ (i.e., the
second and third maximizations). The operator norm is typically considered
the “default” matrix norm, so if we use the notation ‖A‖ without any subscripts
or other indicators, we typically mean the operator norm (just like ‖v‖ for a
vector v ∈ Fn typically refers to the norm induced by the dot product if no other
context is provided).

Remark 2.3.2
Induced Matrix

Norms

In the definition of the operator norm (Definition 2.3.1), the norm used on
vectors in Fn is the usual norm induced by the dot product:

‖v‖=
√

v ·v =
√
|v1|2 + |v2|2 + · · ·+ |vn|2.

However,Most of the results
from later in this

section break down
if we use a weird

norm on the input
and output vector

space. For example,
induced matrix

norms are often very
difficult to compute,

but the operator
norm is easy to

compute.

it is also possible to define matrix norms (or more generally,
norms of linear transformations between any two normed vector spaces—
see Section 1.D) based on any norms on the input and output spaces. That
is, given any normed vector spaces V andW , we define the induced norm
of a linear transformation T : V →W by

‖T‖ def= max
v∈V

{
‖T (v)‖W : ‖v‖V = 1

}
,

and the geometric interpretation of this norm is similar to that of the
operator norm—‖T‖ measures how much T can stretch a vector, when
“stretch” is measured in whatever norms we chose for V andW .

Notice that a matrix cannot stretch any vector by more than a multiplicative
factor of its operator norm. That is, if A ∈Mm,n and B ∈Mn,p then ‖Aw‖ ≤
‖A‖‖w‖Be careful: in

expressions like
‖A‖‖w‖, the first norm
is the operator norm
(of a matrix) and the

second norm is the
norm (of a vector)

induced by the dot
product.

and ‖Bv‖ ≤ ‖B‖‖v‖ for all v ∈ Fp and w ∈ Fn. It follows that

‖(AB)v‖= ‖A(Bv)‖ ≤ ‖A‖‖Bv‖ ≤ ‖A‖‖B‖‖v‖ for all v ∈ Fp.

Dividing both sides by ‖v‖ shows that ‖(AB)v‖/‖v‖ ≤ ‖A‖‖B‖ for all v 6= 0,
so ‖AB‖ ≤ ‖A‖‖B‖. We thus say that the operator norm is submultiplicative.
It turns out that the Frobenius norm is also submultiplicative, and we state these
two results together as a theorem.
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Theorem 2.3.5
Submultiplicativity

Let A ∈Mm,n and B ∈Mn,p. Then

‖AB‖ ≤ ‖A‖‖B‖ and ‖AB‖F ≤ ‖A‖F‖B‖F.

Proof. We already proved submultiplicativity for the operator norm, and we
leave submultiplicativity of the Frobenius norm to Exercise 2.3.12. �

Unlike the Frobenius norm, it is not completely obvious how to actually
compute the operator norm. It turns out that singular values save us here,
and to see why, recall that every matrix sends the unit circle (or sphere, or
hypersphere...) to an ellipse (or ellipsoid, or hyperellipsoid...). The operator
norm asks for the norm of the longest vector on that ellipse, as illustrated in
Figure 2.9. By comparing this visualization with the one from Figure 2.7, it
should seem believable that the operator norm of a matrix just equals its largest
singular value.

x

y

v

e2

e1

A

‖A‖= ‖Av‖

x

y

Ae1

Ae2

Figure 2.9: A visual representation of the operator norm. Matrices (linear transforma-
tions) transform the unit circle into an ellipse. The operator norm is the distance of the
farthest point on that ellipse from the origin (i.e., the length of its semi-major axis).

To prove this relationship between the operator norm and singular values
algebraically, we first need the following helper theorem that shows that mul-
tiplying a matrix on the left or right by a unitary matrix does not change its
operator norm. For this reason, we say that the operator norm is unitarily
invariant, and it turns out that the Frobenius norm also has this property:

Theorem 2.3.6
Unitary Invariance

Let A ∈Mm,n and suppose U ∈Mm and V ∈Mn are unitary matrices.
Then

‖UAV‖= ‖A‖ and ‖UAV‖F = ‖A‖F.

Proof. For the operator norm, we start by showing that every unitary matrix
U ∈Mm has ‖U‖= 1.The fact that ‖U‖= 1

whenever U is
unitary is useful.

Remember it!

To this end, just recall from Theorem 1.4.9 that ‖Uv‖=
‖v‖ for all v ∈ Fm, so ‖Uv‖/‖v‖= 1 for all v 6= 0, which implies ‖U‖= 1.

We then know from submultiplicativity of the operator norm that

‖UAV‖ ≤ ‖U‖‖AV‖ ≤ ‖U‖‖A‖‖V‖= ‖A‖.

However, by cleverly using the fact that U∗U = I and VV ∗ = I, we can also
deduce the opposite inequality:

‖A‖= ‖(U∗U)A(VV ∗)‖= ‖U∗(UAV )V ∗‖ ≤ ‖U∗‖‖UAV‖‖V ∗‖= ‖UAV‖.
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We thus conclude that ‖A‖= ‖UAV‖, as desired.
Unitary invariance for the Frobenius norm is somewhat more straight-

forward—we can directly compute

‖UAV‖2
F = tr

(
(UAV )∗(UAV )

)
(definition of ‖ · ‖F)

= tr(V ∗A∗U∗UAV ) (expand parentheses)
= tr(V ∗A∗AV ) (U is unitary)
= tr(VV ∗A∗A) (cyclic commutativity)

= tr(A∗A) = ‖A‖2
F. (V is unitary) �

By combining unitary invariance with the singular value decomposition,
we almost immediately confirm our observation that the operator norm should
equal the matrix’s largest singular value, and we also get a new formula for the
Frobenius norm:

Theorem 2.3.7
Matrix Norms in

Terms of Singular
Values

Suppose A ∈Mm,n has rank r and singular values σ1 ≥ σ2 ≥ ·· · ≥ σr > 0.
Then

‖A‖= σ1 and ‖A‖F =

√
r

∑
j=1

σ2
j .

Proof. If we write A in its singular value decomposition A = UΣV ∗, then
unitary invariance tells us that ‖A‖ = ‖Σ‖ and ‖A‖F = ‖Σ‖F. The fact that

‖Σ‖F =
√

∑
r
j=1 σ2

j then follows immediately from the fact that σ1,σ2, . . . ,σr

are the non-zero entries of Σ.
To see that ‖Σ‖= σ1, first note that direct matrix multiplication shows that

Recall that
e1 = (1,0, . . . ,0). ‖Σe1‖= ‖(σ1,0, . . . ,0)‖= σ1,

so ‖Σ‖ ≥ σ1. For the opposite inequality, note that for every v ∈ Fn we have

‖ v‖= ‖( 1v1, . . . , rvr,0, . . . ,0)‖=
√

r

i=1

2

i |vi|2 ≤
√

2

1

r

i=1

|vi|2 ≤ 1‖v‖.

since 1 ≥ 2 ≥ ·· · ≥ r

By dividing both sides of this inequality by ‖v‖, we see that ‖Σv‖/‖v‖ ≤ σ1
whenever v 6= 0, so ‖Σ‖ ≤ σ1. Since we already proved the opposite inequality,
we conclude that ‖Σ‖= σ1, which completes the proof. �

Example 2.3.5
Computing

Matrix Norms

Compute the operator and Frobenius norms of A = 


1 2 3
−1 0 1
3 2 1




.

Solution:
We saw in Example 2.3.2 that this matrix has non-zero singular values

σ1 = 2
√

6 and σ2 =
√

6. By Theorem 2.3.7, it follows that

‖A‖= σ1 = 2
√

6 and

‖A‖F =
√

σ2
1 +σ2

2 =
√

(2
√

6)2 +(
√

6)2 =
√

24+6 =
√

30.
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It is worth pointing out, however, that if we had not already pre-
computed the singular values of A, it would be quicker and easier to
compute its Frobenius norm directly from the definition:

‖A‖F =

√√√√
3

∑
i, j=1
|ai, j|2

=
√
|1|2 + |2|2 + |3|2 + |−1|2 + |0|2 + |1|2 + |3|2 + |2|2 + |1|2

=
√

30.

The characterization of the operator and Frobenius norms in terms of
singular values are very useful for the fact that they provide us with several
immediate corollaries that are not obvious from their definitions. For example,
if A ∈Mm,n then ‖A‖= ‖AT‖= ‖A∗‖ since singular values are unchanged by
taking the (conjugate) transpose of a matrix (and similarly,In fact, this property

of the Frobenius
norm was proved

back in
Exercise 1.3.10.

‖A‖F = ‖AT‖F =
‖A∗‖F, but this can also be proved directly from the definition of the Frobenius
norm).

The following property is slightly less obvious, and provides us with one
important condition under which equality is obtained in the submultiplicativity
inequality ‖AB‖ ≤ ‖A‖‖B‖:

Corollary 2.3.8
The C∗-Property of

the Operator Norm

If A ∈Mm,n then ‖A∗A‖= ‖A‖2.

Proof. Start by writing A in its singular value decomposition A =UΣV ∗, where
Σ has largest diagonal entry σ1 (the largest singular value of A). Then

‖A∗A‖= ‖(UΣV ∗)∗(UΣV ∗)‖= ‖V Σ
∗U∗UΣV ∗‖= ‖V Σ

∗
ΣV ∗‖= ‖Σ∗Σ‖,

with the final equality following from unitary invariance of the operator norm
(Theorem 2.3.6).

Since

We use
Theorem 2.3.7 twice

here at the end:
once to see that

‖Σ∗Σ‖= σ2
1 and once

to see that σ1 = ‖A‖.

Σ∗Σ is a diagonal matrix with largest entry σ2
1 , it follows that

‖Σ∗Σ‖= σ2
1 = ‖A‖2, which completes the proof. �

We close this section by noting that there are actually many matrix norms
out there (just like we saw that there are many vector norms in Section 1.D), and
many of the most useful ones come from singular values just like the operator
and Frobenius norms. We explore another particularly important matrix norm
of this type in Exercises 2.3.17–2.3.19.

Exercises solutions to starred exercises on page 470

2.3.1 Compute a singular value decomposition of each of
the following matrices.

∗ (a)
[
−1 3
3 −1

]

∗ (c)



0 2
1 1
−2 0




∗ (e)



2 2 −2
−4 −1 4
−4 2 4




(b)
[

1 1 −1
−1 1 1

]

(d)



1 1 −1
0 1 1
1 0 1




(f)



1 1 1 1
2 2 −2 −2
3 −3 3 −3




2.3.2 Compute the operator norm of each of the matrices
from Exercise 2.3.1.

2.3.3 Compute orthonormal bases of the four fundamental
subspaces of each of the matrices from Exercise 2.3.1.
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2.3.4 Determine which of the following statements are
true and which are false.

∗ (a) If λ is an eigenvalue of A ∈Mn(C) then |λ | is a
singular value of A.

(b) If σ is a singular value of A ∈Mn(C) then σ2 is a
singular value of A2.

∗ (c) If σ is a singular value of A ∈Mm,n(C) then σ2 is
a singular value of A∗A.

(d) If A ∈Mm,n(C) then ‖A∗A‖= ‖A‖2.
∗ (e) If A ∈Mm,n(C) then ‖A∗A‖F = ‖A‖2

F.
(f) If A ∈Mn(C) is a diagonal matrix then its singular

values are its diagonal entries.
∗ (g) If A ∈Mn(C) has singular value decomposition

A = UDV ∗ then A2 = UD2V ∗.
(h) If U ∈Mn is unitary then ‖U‖= 1.
∗ (i) Every matrix has the same singular values as its trans-

pose.

∗∗2.3.5 Show that A ∈Mn is unitary if and only if all of
its singular values equal 1.

∗∗2.3.6 Suppose F = R or F = C, and A ∈Mn(F). Show
that rank(A) = r if and only if there exists a unitary matrix
U ∈Mn(F) and an invertible matrix Q ∈Mn(F) such that

A = U

[
Ir O
O O

]
Q.

∗∗2.3.7 Suppose A ∈Mn has singular values σ1,σ2, . . . ,
σn. Show that

|det(A)|= σ1σ2 · · ·σn.

2.3.8 Show that if λ is an eigenvalue of A ∈Mn then
|λ | ≤ ‖A‖.

2.3.9 Show that if A ∈Mm,n then

‖A‖ ≤ ‖A‖F ≤
√

rank(A)‖A‖.

∗2.3.10 Let A ∈Mn be an invertible matrix. Show that
‖A−1‖ ≥ 1/‖A‖, and give an example where equality does
not hold.

2.3.11 Suppose a,b ∈ R and

A =

[
a −b
b a

]
.

Show that ‖A‖=
√

a2 +b2.

[Side note: Recall from Remark A.3.2 that this matrix rep-
resents the complex number a + bi. This exercise shows
that the operator norm gives exactly the magnitude of that
complex number.]

∗∗2.3.12 Let A ∈Mm,n and B ∈Mn,p.

(a) Show that ‖AB‖F ≤ ‖A‖‖B‖F.
[Hint: Apply the singular value decomposition to A.]

(b) Use part (a) to show that ‖AB‖F ≤ ‖A‖F‖B‖F.

∗2.3.13 Suppose A ∈Mm,n. Show that

‖A‖= max
v∈Fm ,w∈Fn

{
|v∗Aw| : ‖v‖= ‖w‖= 1

}
.

2.3.14 Let A ∈Mm,n have singular values σ1 ≥ σ2 ≥
·· · ≥ 0. Show that the block matrix

[
O A
A∗ O

]

has eigenvalues ±σ1,±σ2, . . ., together with |m−n| extra 0
eigenvalues.

∗∗2.3.15 Suppose A ∈Mm,n and c ∈ R is a scalar. Show
that the block matrix

[
cIm A
A∗ cIn

]

is positive semidefinite if and only if ‖A‖ ≤ c.

∗∗2.3.16 Show that the operator norm (Definition 2.3.1)
is in fact a norm (i.e., satisfies the three properties of Defini-
tion 1.D.1).

∗∗2.3.17 The trace norm of a matrix A ∈Mm,n is the
sum of its singular values σ1, σ2, . . ., σr:

‖A‖tr
def= σ1 +σ2 + · · ·+σr.

(a) Show that

‖A‖tr = max
B∈Mm,n

{
|〈A,B〉| : ‖B‖ ≤ 1

}
.

[Side note: For this reason, the trace norm and op-
erator norm are sometimes said to be dual to each
other.]
[Hint: To show the “≥” inequality, cleverly pick B
based on A’s SVD. To show the (harder) “≤” inequal-
ity, maybe also use Exercise 2.3.13.]

(b) Use part (a) to show that the trace norm is in fact a
norm in the sense of Definition 1.D.1. That is, show
that the trace norm satisfies the three properties of
that definition.

2.3.18 Compute the trace norm (see Exercise 2.3.17) of
each of the matrices from Exercise 2.3.1.

∗∗2.3.19 Show that the trace norm from Exercise 2.3.17
is unitarily-invariant. That is, show that if A ∈Mm,n, and
U ∈Mm and V ∈Mn are unitary matrices, then ‖UAV‖tr =
‖A‖tr.

∗∗2.3.20 Prove the converse of Theorem 2.3.4. That is,
suppose that A ∈Mn(C) has eigenvalues λ1, . . ., λn with
|λ1| ≥ · · · ≥ |λn| and singular values σ1 ≥ ·· · ≥ σn. Show
that if A is not normal then σ j 6= |λ j| for some 1≤ j ≤ n.

2.3.21 In this exercise, we show that every square matrix
is a linear combination of two unitary matrices. Suppose
A ∈Mn(C) has singular value decomposition A = UΣV ∗.

(a) Show that if ‖A‖ ≤ 1 then I−Σ2 is positive semidef-
inite.

(b) Show that if ‖A‖ ≤ 1 then U
(
Σ± i
√

I−Σ2
)
V ∗ are

both unitary matrices.
(c) Use part (b) to show that A can be written as a linear

combination of two unitary matrices (regardless of
the value of ‖A‖).
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2.3.22 Suppose that the 2×2 block matrix
[

A B
B∗ C

]

is positive semidefinite. Show that range(B)⊆ range(A).

[Hint: Show instead that null(A)⊆ null(B∗).]

2.3.23 Use the Jordan–von Neumann theorem (Theo-
rem 1.D.8) to determine whether or not the operator norm
is induced by some inner product on Mm,n.

2.3.24 Suppose A ∈Mm,n has singular values σ1, σ2,
. . ., σp (where p = min{m,n}) and QR decomposition (see
Section 1.C) A = UT with U ∈Mm unitary and T ∈Mm,n
upper triangular. Show that the product of the singular val-
ues of A equals the product of the diagonal entries of T :

σ1 ·σ2 · · ·σp = t1,1 · t2,2 · · · tp,p.

∗∗2.3.25 Suppose P ∈Mn(C) is a non-zero projection
(i.e., P2 = P).

(a) Show that ‖P‖ ≥ 1.
(b) Show that if P∗ = P (i.e., P is an orthogonal projec-

tion) then ‖P‖= 1.
(c) Show that if ‖P‖= 1 then P∗ = P.

[Hint: Schur triangularize P.]
[Side note: This can be seen as the converse of Theo-
rem 1.4.13.]

∗∗2.3.26 A matrix A ∈Mn(C) is called complex sym-
metric if AT = A. For example,

A =

[
1 i
i 2− i

]

is complex symmetric. In this exercise, we show that the sin-
gular value decomposition of these matrices can be chosen
to have a special form.

(a) Provide an example to show that a complex symmet-
ric matrix may not be normal and thus may not have
a spectral decomposition.

(b) Suppose A ∈Mn(C) is complex symmetric. Show
that there exists a unitary matrix V ∈Mn(C) such
that, if we define B = V T AV , then B is complex sym-
metric and B∗B is real.
[Hint: Apply the spectral decomposition to A∗A.]

(c) Let B be as in part (b) and define BR = (B + B∗)/2
and BI = (B−B∗)/(2i). Show that BR and BI are
real, symmetric, and commute.
[Hint: B = BR + iBI and B∗B is real.]
[Side note: Here we are using the Cartesian decom-
position of B introduced in Remark 1.B.1.]

(d) Let B be as in part (b). Show that there is a unitary
matrix W ∈Mn(R) such that W T BW is diagonal.
[Hint: Use Exercise 2.1.28—which matrices have we
found that commute?]

(e) Use the unitary matrices V and W from parts (b)
and (d) of this exercise to conclude that there exists
a unitary matrix U ∈Mn(C) and a diagonal matrix
D ∈Mn(R) with non-negative entries such that

A = UDUT .

[Side note: This is called the Takagi factorization of
A. Be somewhat careful—the entries on the diagonal
of D are the singular values of A, not its eigenvalues.]

2.4 The Jordan Decomposition

All of the decompositions that we have introduced so far in this chapter—Schur
triangularization (Theorem 2.1.1), the spectral decomposition (Theorems 2.1.4
and 2.1.6), the polar decomposition (Theorem 2.2.12), and the singular value
decomposition (Theorem 2.3.1)—have focused on how much simpler we can
make a matrix by either multiplying it by a unitary or applying a unitary
similarity transformation to it.

We now switch gears a bit and return to the setting of diagonalization,
where we allow for arbitrary (not necessarily unitary) similarity transfor-
mations,Recall that

diagonalization itself
was characterized in

Theorem 2.0.1. See
also Appendix A.1.7

if you need a
refresher.

and we investigate how “close” to diagonal we can make a non-
diagonalizable matrix. Solving this problem and coming up with a way to
“almost-diagonalize” arbitrary matrices is important for at least two reasons:

• A linear transformation can be represented by its standard matrix, but by
changing the basis that we are working in, the entries of that standard
matrix can change considerably. The decomposition in this section tells
us how to answer the question of whether or not two matrices represent
the same linear transformation in different bases.
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• The decomposition that we see in this section will provide us with a
method of applying functions like ex and sin(x) to matrices, rather than
just to numbers. Some readers may have already learned how to apply
functions to diagonalizable matrices, but going beyond diagonalizable
matrices requires some extra mathematical machinery.

To get us started toward the decomposition that solves these problems, we
first need a definition that suggests the “almost diagonal” form that we will be
transforming matrices into.

Definition 2.4.1
Jordan Blocks

Given a scalar λ ∈ C and an integer k ≥ 1, the Jordan block of order k
corresponding to λ is the matrix Jk(λ ) ∈Mk(C) of the

We say that Jk(λ )
has λ along its
diagonal and

1 along its
“superdiagonal”.

form

Jk(λ ) =




λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
0 0 λ · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · λ 1
0 0 0 · · · 0 λ




.

For example, the following matrices are all Jordan blocks:

[
7
]
,

[
4 1
0 4

]
, and



−2 1 0
0 −2 1
0 0 −2


 ,

but the following matrices are not:

[
4 0
0 4

]
,

[
2 1
0 3

]
, and




3 1 0
0 3 0
0 0 3


 .

The main result of this section says that every matrix is similar to one that is
block diagonal, and whose diagonal blocks are Jordan blocks:

Theorem 2.4.1
Jordan

Decomposition

If A ∈ Mn(C) then there exists an invertible matrix P ∈ Mn(C) and
Jordan blocks Jk1(λ1),Jk2(λ2), . . . ,Jkm(λm) such that

A = P




Jk1(λ1) O · · · O
O Jk2(λ2) · · · O
...

...
. . .

...
O O · · · Jkm(λm)




P−1.

Furthermore,

We will see shortly
that the numbers

λ1,λ2, . . . ,λm are
necessarily the

eigenvalues of A
listed according

to geometric
multiplicity. Also,

we must have
k1 + · · ·+ km = n.

this block diagonal matrix is called the Jordan canonical
form of A, and it is unique up to re-ordering the diagonal blocks.

For example, the following matrices are in Jordan canonical form:



4 0 0 0
0 2 1 0
0 0 2 1
0 0 0 2


 ,




2 1 0 0
0 2 0 0
0 0 4 0
0 0 0 5


 , and




3 1 0 0
0 3 0 0
0 0 3 1
0 0 0 3


 .
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Note in particular that there is no need for the eigenvalues corresponding to
different Jordan blocks to be distinct (e.g., the third matrix above has two
Jordan blocks, both of which are 2×2 and correspond to λ = 3). However, the
following matrices are not in Jordan canonical form:




2 1 0 0
0 3 0 0
0 0 3 0
0 0 0 3


 ,




2 0 0 0
1 2 0 0
0 0 1 0
0 0 0 1


 , and




3 0 1 0
0 3 0 0
0 0 3 0
0 0 0 2


 .

Diagonal matrices are all in Jordan canonical form, and their Jordan blocks
all have sizes 1×1, so the Jordan decomposition really is a generalization of
diagonalization. We now start introducing the tools needed to prove that every
matrix has such a decomposition, to show that it is unique, and to actually
compute it.

2.4.1 Uniqueness and Similarity

Before demonstrating how to compute the entire Jordan decomposition of a
matrix A ∈Mn(C), we investigate the computation of its Jordan canonical
form. That is, we start by showing how to compute the matrix J, but not P,
in the Jordan decomposition A = PJP−1, assuming that it exists. As a natural
by-product of this method, we will see that a matrix’s Jordan canonical form is
indeed unique, as stated by Theorem 2.4.1.

Since eigenvalues are unchanged by similarity transformations, and the
eigenvalues of triangular matrices are their diagonal entries, we know that if
the Jordan canonical form of A is

J =




Jk1(λ1) O · · · O
O Jk2(λ2) · · · O
...

...
. . .

...
O O · · · Jkm(λm)




then the diagonal entries λ1, λ2, . . ., λm of J must be the eigenvalues of A.
It is not obvious how to compute the orders k1, k2, . . ., km of the Jordan
blocks corresponding to these eigenvalues, so we first introduce a new “helper”
quantity that will get us most of the way there.

Definition 2.4.2
Geometric

Multiplicity of
Order k

Suppose λ is an eigenvalue of A ∈Mn and k ≥ 0 is an integer. We say
that the geometric multiplicity of order k of λ is the quantity

γk = nullity
(
(A−λ I)k).

If k = 0 then (A−λ I)k = I, which has nullity 0, so γ0 = 0 for every eigen-
value of every matrix. More interestingly, if k = 1 then this definition agrees
with the definition of geometric multiplicity that we are already familiar with
(i.e., γ1 is simply the usual geometric multiplicity of the eigenvalue λ ). Further-
more, the chain of inclusions

null(A−λ I)⊆ null
(
(A−λ I)2)⊆ null

(
(A−λ I)3)⊆ ·· ·
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shows that the geometric multiplicities satisfy γ1 ≤ γ2 ≤ γ3 ≤ . . .. Before pre-
senting a theorem that tells us explicitly how to use the geometric multiplicities
to compute the orders of the Jordan blocks in a matrix’s Jordan canonical form,
we present an example that is a bit suggestive of the connection between these
quantities.

Example 2.4.1
Geometric

Multiplicities of a
Matrix in Jordan
Canonical Form

Compute the geometric multiplicities of each of the eigenvalues of

A =




2 1 0 0 0
0 2 1 0 0
0 0 2 0 0
0 0 0 2 1
0 0 0 0 2




.

Solution:
Since A is triangular (in fact, it is in Jordan canonical form), we see

immediately that its only eigenvalue is 2 with algebraic multiplicity 5. We
then computeWe partition A as a

block matrix in this
way just to better

highlight what
happens to its

Jordan blocks when
computing the

powers (A−2I)k.

A−2I =




0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0




, (A−2I)2 =




0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




,

and (A− 2I)k = O whenever k ≥ 3. The geometric multiplicities of the
eigenvalue 2 of A are the nullities of these matrices, which are γ1 = 2,
γ2 = 4, and γk = 5 whenever k ≥ 3.

In the above example, each Jordan block contributed one dimension to
null(A−2I), each Jordan block of order at least 2 contributed one extra dimen-
sion to null

(
(A−2I)2

)
, and the Jordan block of order 3 contributed one extra

dimension to null
(
(A−2I)3

)
. The following theorem says that this relationship

between geometric multiplicities and Jordan blocks holds in general, and we
can thus use geometric multiplicities to determine how many Jordan blocks of
each size a matrix’s Jordan canonical form has.

Theorem 2.4.2
Jordan Canonical

Form from
Geometric

Multiplicities

Suppose A∈Mn(C) has eigenvalue λ with order-k geometric multiplicity
γk. Then for each k ≥ 1, every Jordan canonical form of A has

a) γk− γk−1 Jordan blocks J j(λ ) of order j ≥ k, and
b) 2γk− γk+1− γk−1 Jordan blocks Jk(λ ) of order exactly k.

Before proving this theorem, we note that properties (a) and (b) are ac-
tually equivalent to each other—each one can be derived from the other via
straightforward algebraic manipulations. We just present them both because
property (a) is a bit simpler to work with, but property (b) is what we actually
want.

Proof of Theorem 2.4.2. Suppose A has Jordan decomposition A = PJP−1.
Since γk = nullity

(
(PJP−1−λ I)k

)
= nullity

(
(J−λ I)k

)
for all k ≥ 0, we as-

sume without loss of generality that A = J.
Since J is block diagonal, so is (J−λ I)k for each k≥ 0. Furthermore, since
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the nullity of a block diagonal matrix is just the sum of the nullities of its
diagonal blocks, it suffices to prove the follow two claims:

• nullity
(
(J j(µ)−λ I)k

)
= 0 whenever λ 6= µ . To see why this is the case,

simply notice that J j(µ)−λ I has diagonal entries (and thus eigenvalues,
since it is upper triangular) λ − µ 6= 0. It follows that J j(µ)− λ I is
invertible whenever λ 6= µ , so it and its powers all have full rank (and
thus nullity 0).

• nullity
(
(J j(λ )−λ I)k

)
= k whenever 0≤ k ≤ j. To see why this is the

case, notice that

That is,
J j(λ )−λ I = J j(0). In
Exercise 2.4.17, we
call this matrix N1.

J j(λ )−λ I =




0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1
0 0 0 · · · 0 0




,

which is a simple enough matrix that we can compute the nullities of its
powers fairly directly (this computation is left to Exercise 2.4.17).

Indeed, if we let mk (1 ≤ k ≤ n) denote the number of occurrences of
the Jordan block Jk(λ ) along the diagonal of J, the above two claims tell us
that γ1 = m1 + m2 + m3 + · · ·+ mn, γ2 = m1 + 2m2 + 2m3 + · · ·+ 2mn, γ3 =
m1 +2m2 +3m3 + · · ·+3mn, and in general

γk =
k

∑
j=1

jm j +
n

∑
j=k+1

km j.

Subtracting these formulas from each other gives γk−γk−1 = ∑
n
j=k m j, which is

exactly statement (a) of the theorem. Statement (b) of the theorem then follows
from subtracting the formula in statement (a) from a shifted version of itself:

2γk− γk+1− γk−1 = (γk− γk−1)− (γk+1− γk)

=
n

∑
j=k

m j−
n

∑
j=k+1

m j = mk.
�

The above theorem has the following immediate corollaries that can some-
times be used to reduce the amount of work needed to construct a matrix’s
Jordan canonical form:

• The geometric multiplicity γ1 of the eigenvalue λ counts the number of
Jordan blocks corresponding to λ .

• If γk = γk+1 for a particular value of k then γk = γk+1 = γk+2 = · · · .
Furthermore, if we make use of the fact that the sum of the orders of the Jordan
blocks corresponding to a particular eigenvalue λ must equal its algebraic
multiplicity (i.e., the number of times that λ appears along the diagonal of the
Jordan canonical form), we get a bound on how many geometric multiplicities
we have to compute in order to construct a Jordan canonical form:

! If λ

Furthermore,
A ∈Mn(C) is

diagonalizable if
and only if, for each

of its eigenvalues,
the multiplicities

satisfy
γ1 = γ2 = · · ·= µ.

is an eigenvalue of a matrix with algebraic multiplicity µ

and geometric multiplicities γ1, γ2, γ3, . . ., then γk ≤ µ for each
k ≥ 1. Furthermore, γk = µ whenever k ≥ µ .
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As one final corollary of the above theorem, we are now able to show
that Jordan canonical forms are indeed unique (up to re-ordering their Jordan
blocks), assuming that they exist in the first place:

Proof of uniqueness in Theorem 2.4.1. Theorem 2.4.2 tells us exactly what
the Jordan blocks in any Jordan canonical form of a matrix A ∈Mn(C) must
be. �

Example 2.4.2
Our First Jordan
Canonical Form

Compute the Jordan canonical form of A =



−6 0 −2 1
0 −3 −2 1
3 0 1 1
−3 0 2 2




.

Solution:
The eigenvalues of this matrix are (listed according to algebraic multi-

plicity) 3, −3, −3, and −3. Since λ = 3 has algebraic multiplicity 1, we
know that J1(3) = [3] is one of the Jordan blocks in the Jordan canonical
form J of A. Similarly, since λ =−3 has algebraic multiplicity 3, we know
that the orders of the Jordan blocks for λ =−3 must sum to 3. That is, the
Jordan canonical form of A must be one of



3 0 0 0
0 −3 1 0
0 0 −3 1
0 0 0 −3


 ,




3 0 0 0
0 −3 0 0
0 0 −3 1
0 0 0 −3


 ,




3 0 0 0
0 −3 0 0
0 0 −3 0
0 0 0 −3


 .

ToWe could also
compute γ2 = 2 and

γk = 3 whenever
k ≥ 3, so that A has

2γ1− γ2− γ0 = 0
copies of J1(−3),

2γ2− γ3− γ1 = 0
copies of J2(−3),

and 2γ3− γ4− γ2 = 1
copy of J3(−3) as

Jordan blocks.

determine which of these canonical forms is correct, we simply
note that λ = −3 has geometric multiplicity γ1 = 1 (its corresponding
eigenvectors are all scalar multiples of (0,1,0,0)), so it must have just one
corresponding Jordan block. That is, the Jordan canonical form J of A is

J =




3 0 0 0
0 −3 1 0
0 0 −3 1
0 0 0 −3


 .

Example 2.4.3
A Hideous Jordan

Canonical Form

Compute the Jordan canonical form of

A =




1 −1 −1 0 0 1 −1 0
1 2 1 0 0 −1 1 −1
2 1 2 0 1 −1 0 0
1 1 1 1 1 −1 0 −1
−2 0 0 0 0 0 1 1
1 1 1 0 0 0 1 0
−2 −1 −1 0 −1 1 1 1
0 −1 −1 0 0 1 −1 1




.

Solution:
The

The important
take-away from this

example is how to
construct the Jordan
canonical form from

the geometric
multiplicities. Don’t

worry about the
details of computing

those multiplicities.

only eigenvalue of A is λ = 1, which has algebraic multiplicity
µ = 8. The geometric multiplicities of this eigenvalue can be computed
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via standard techniques, but we omit the details here due to the size
of this matrix. In particular, the geometric multiplicity of λ = 1 is γ1 = 4,
and we furthermore have

γ2 = nullity
(
(A− I)2)

= nullity







0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 −1 −1 0 0 1 −1 0
0 1 1 0 0 −1 1 0
0 0 0 0 0 0 0 0
0 −1 −1 0 0 1 −1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0







= 7,

and (A− I)3 = O so γk = 8 whenever k ≥ 3. It follows that the Jordan
canonical form J of A has

• 2γ1− γ2− γ0 = 8−7−0 = 1 Jordan block J1(1) of order 1,
• 2γ2− γ3− γ1 = 14−8−4 = 2 Jordan blocks J2(1) of order 2,
• 2γ3− γ4− γ2 = 16−8−7 = 1 Jordan block J3(1) of order 3, and
• 2γk− γk+1− γk−1 = 16−8−8 = 0 Jordan blocks Jk(1) of order k

when k ≥ 4.
In other words, the Jordan canonical form J of A is

We use dots (·) to
denote some of the

zero entries, for
ease of visualization.

J =




1 1 0 · · · · ·
0 1 1 · · · · ·
0 0 1 · · · · ·
· · · 1 1 · · ·
· · · 0 1 · · ·
· · · · · 1 1 ·
· · · · · 0 1 ·
· · · · · · · 1




.

A Return to Similarity
Recall that two matrices A,B ∈Mn(C) are called similar if there exists an
invertible matrix P ∈Mn(C) such that A = PBP−1. Two matrices are similar if
and only if there is a common linear transformation T between n-dimensional
vector spaces such that A and B are both standard matrices of T (with respect to
different bases). Many tools from introductory linear algebra can help determine
whether or not two matrices are similar in certain special cases (e.g., if two
matrices are similar then they have the same characteristic polynomial, and thus
the same eigenvalues, trace, and determinant), but a complete characterization
of similarity relies on the Jordan canonical form:
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Theorem 2.4.3
Similarity

via the Jordan
Decomposition

Suppose A,B ∈Mn(C). The following are equivalent:
a) A and B are similar,
b) the Jordan canonical forms of A and B have the same Jordan blocks,

and
c) A and B have the same eigenvalues, and those eigenvalues have the

same order-k geometric multiplicities for each k.

Proof. The equivalence of conditions (b) and (c) follows immediately from
Theorem 2.4.2, which tells us that we can determine the orders of a matrix’s
Jordan blocks from its geometric multiplicities, and vice-versa. We thus just
focus on demonstrating that conditions (a) and (b) are equivalent.

To see that (a) implies (b), suppose A and B are similar so that we can write
A = QBQ−1 for some invertible Q. If B = PJP−1 is a Jordan decomposition
of B (i.e., the Jordan canonical form of B is J) then A = Q(PJP−1)Q−1 =
(QP)J(QP)−1 is a Jordan decomposition of A with the same Jordan canonical
form J.

For the reverse implication,
If A = PJP−1

is a Jordan
decomposition,

we can permute the
columns of P to put

the diagonal blocks
of J in any order

we like.

suppose that A and B have identical Jordan
canonical forms. That is, we can find invertible P and Q such that the Jordan
decompositions of A and B are A = PJP−1 and B = QJQ−1, where J is their
(shared) Jordan canonical form. Rearranging these equations gives J = P−1AP
and J = Q−1BQ, so P−1AP = Q−1BQ. Rearranging one more time then gives
A = P(Q−1BQ)P−1 = (PQ−1)B(PQ−1)−1, so A and B are similar. �

Example 2.4.4
Checking Similarity

Determine whether or not the following matrices are similar:

A =




1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1


 and B =




1 0 0 0
0 1 1 0
0 0 1 1
0 0 0 1


 .

Solution:
TheseThis example is tricky

if we do not use
Theorem 2.4.3, since

A and B have the
same rank and

characteristic
polynomial.

matrices are already in Jordan canonical form. In particular, the
Jordan blocks of A are

[
1 1
0 1

]
and

[
1 1
0 1

]
,

whereas the Jordan blocks of B are

[
1
]

and




1 1 0
0 1 1
0 0 1


 .

Since they have different Jordan blocks, A and B are not similar.
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Example 2.4.5
Checking Similarity

(Again)

Determine whether or not the following matrices are similar:

A =




−6 0 −2 1
0 −3 −2 1
3 0 1 1
−3 0 2 2


 and B =




−3 0 3 0
−2 2 −5 2
2 1 −4 −2
−2 2 1 −1


 .

Solution:
We already saw in Example 2.4.2 that A has Jordan canonical form

J =




3 0 0 0
0 −3 1 0
0 0 −3 1
0 0 0 −3


 .

It follows that, to see whether or not A and B are similar, we need to check
whether or not B has the same Jordan canonical form J.

To this end, we note that B also has eigenvalues (listed according to
algebraic multiplicity) 3,−3,−3, and−3. Since λ = 3 has algebraic multi-
plicity 1, we know that J1(3) = [3] is one of the Jordan blocks in the Jordan
canonical form B. Similarly, since λ = −3 has algebraic multiplicity 3,
we know that the orders of the Jordan blocks for λ =−3 sum to 3.

It is straightforward to show that the eigenvalue λ =−3 has geometric
multiplicity γ1 = 1 (its corresponding eigenvectors are all scalar multiples
of (1,0,0,1)), so it must have just one corresponding Jordan block. That
is, the Jordan canonical form of B is indeed the matrix J above, so A and
B are similar.

Example 2.4.6
Checking Similarity

(Yet Again)

Determine whether or not the following matrices are similar:

A =




1 2 3 4
2 1 0 3
3 0 1 2
4 3 2 1


 and B =




1 0 0 4
0 2 3 0
0 3 2 0
4 0 0 1


 .

Solution:
These matrices do note even have the same trace (tr(A) = 4, but tr(B) =

6), so they cannot possibly be similar. We could have also computed their
Jordan canonical forms to show that they are not similar, but it saves
a lot of work to do the easier checks based on the trace, determinant,
eigenvalues, and rank first!

2.4.2 Existence and Computation

The goal of this subsection is to develop a method of computing a matrix’s
Jordan decomposition A = PJP−1, rather than just its Jordan canonical form J.
One useful by-product of this method will be that it works for every complex
matrix and thus (finally) proves that every matrix does indeed have a Jordan
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decomposition—a fact that we have been taking for granted up until now.
In order to get an idea of how we might compute a matrix’s Jordan decom-

position (or even just convince ourselves that it exists), suppose for a moment
that the Jordan canonical form of a matrix A ∈Mk(C) has just a single Jordan
block. That is, suppose we could write A = PJk(λ )P−1 for some invertible
P ∈Mk(C) and some scalar λ ∈ C (necessarily equal to the one and only
eigenvalue of A). Our usual block matrix multiplication techniques show that if
v( j) is the j-th column of P

Recall that Pe j = v( j),
and multiplying both

sides on the left by
P−1 shows that

P−1v( j) = e j.

then

Av(1) = PJk(λ )P−1v(1) = P




λ 1 · · · 0
0 λ · · · 0
...

...
. . .

...
0 0 · · · λ




e1 = λPe1 = λv(1),

and

We use superscripts
for v( j) here since we
will use subscripts for

something else
shortly.

Av( j) = PJk(λ )P−1v( j) = P




λ 1 · · · 0
0 λ · · · 0
...

...
. . .

...
0 0 · · · λ




e j = P(λe j + e j−1)

= λv( j) +v( j−1)

for all 2≤ j ≤ k.
Phrased slightly differently, v(1) is an eigenvector of A with eigenvalue λ ,

(i.e., (A−λ I)v(1) = 0) and v(2),v(3), . . . ,v(k) are vectors that form a “chain”
with the property that

(A−λ I)v(k) = v(k−1), (A−λ I)v(k−1) = v(k−2), · · · (A−λ I)v(2) = v(1).

It is perhaps useful to picture this relationship between the vectors slightly
more diagrammatically:

v(k) A−λ I−−−→ v(k−1) A−λ I−−−→ ·· · A−λ I−−−→ v(2) A−λ I−−−→ v(1) A−λ I−−−→ 0.

We thus guess that vectors that form a “chain” leading down to an eigenvec-
tor are the key to constructing a matrix’s Jordan decomposition, which leads
naturally to the following definition:

Definition 2.4.3
Jordan Chains

Suppose A ∈Mn(C) is a matrix with eigenvalue λ and corresponding
eigenvector v. A sequence of non-zero vectors v(1),v(2), . . . ,v(k) is called
a Jordan chain of order k corresponding to v if v(1) = v and

(A−λ I)v( j) = v( j−1) for all 2≤ j ≤ k.

By mimicking the block matrix multiplication techniques that we performed
above, we arrive immediately at the following theorem:
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Theorem 2.4.4
Multiplication by a

Single Jordan
Chain

Suppose v(1),v(2), . . . ,v(k) is a Jordan chain corresponding to an eigenvalue
λ of A ∈Mn(C). If we define

P =
[

v(1) | v(2) | · · · | v(k) ] ∈Mn,k(C)

then AP = PJk(λ ).

Proof. Just use block matrix multiplication to compute

AP =
[

Av(1) | Av(2) | · · · | Av(k) ]

=
[

λv(1) | v(1) +λv(2) | · · · | v(k−1) +λv(k) ]

and
If n = k and the

members of the
Jordan chain form a
linearly independent

set then P is
invertible and this

theorem tells us that
A = PJk(λ )P−1, which

is a Jordan
decomposition.

PJk(λ ) =
[

v(1) | v(2) | · · · | v(k) ]




λ 1 · · · 0
0 λ · · · 0
...

...
. . .

...
0 0 · · · λ




=
[

λv(1) | v(1) +λv(2) | · · · | v(k−1) +λv(k) ],
so AP = PJk(λ ). �

With the above theorem in mind, our goal is now to demonstrate how to
construct Jordan chains, which we will then place as columns into the matrix P
in a Jordan decomposition A = PJP−1.

One Jordan Block per Eigenvalue
Since the details of JordanIn other words, we

are first considering
the case when each

eigenvalue has
geometric

multiplicity γ1 = 1.

chains and the Jordan decomposition simplify
considerably in the case when there is just one Jordan block (and thus just one
Jordan chain) corresponding to each of the matrix’s eigenvalues, that is the
situation that we explore first. In this case, we can find a matrix’s Jordan chains
just by finding an eigenvector corresponding to each of its eigenvalues, and
then solving some additional linear systems to find the other members of the
Jordan chains.

Example 2.4.7
Computing

Jordan Chains
and the Jordan
Decomposition

Find the Jordan chains of the matrix

A =




5 1 −1
1 3 −1
2 0 2


 ,

and use them to construct its Jordan decomposition.

Solution:
The eigenvalues of this matrix are (listed according to their alge-

braic multiplicity) 2, 4, and 4. An eigenvector corresponding to λ = 2 is
v1 = (0,1,1), and an eigenvector corresponding to λ = 4 is v2 = (1,0,1).
However, the eigenspace corresponding to the eigenvalue λ = 4 is just
1-dimensional (i.e., its geometric multiplicity is γ1 = 1), so it is not possi-
ble to find a linearly independent set of two eigenvectors corresponding to
λ = 4.

At this point,
we know that the
Jordan canonical
form of A must be



2 0 0
0 4 1
0 0 4


 .
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Instead, we must find a Jordan chain
{

v(1)
2 ,v(2)

2

}
with the property that

(A−4I)v(2)
2 = v(1)

2 and (A−4I)v(1)
2 = 0.

We choose v(1)
2 = v2 = (1,0,1) to be the eigenvector corresponding to

λ = 4 that we already found, and we can then find v(2)
2 by solving the

linear system (A−4I)v(2)
2 = v(1)

2 for v(2)
2 :




1 1 −1 1
1 −1 −1 0
2 0 −2 1


 row reduce−−−−−−→




1 0 −1 1/2
0 1 0 1/2
0 0 0 0


 .

It follows that the third entry of v(2)
2 is free, while its other two entries are

not. If we choose the third entry to be 0 then we get v(2)
2 = (1/2,1/2,0)

as one possible solution.

Now that we have a set of 3 vectors
{

v1,v
(1)
2 ,v(2)

2

}
, we can place them

as columns in a 3×3 matrix, and that matrix should bring A into its Jordan
canonical form:

P =
[

v1 | v(1)
2 | v

(2)
2

]
=




0 1 1/2
1 0 1/2
1 1 0


 .

Straightforward calculation then reveals
Keep in mind

that P−1AP = J is
equivalent to

A = PJP−1, which is
why the order of P

and P−1 is reversed
from that of

Theorem 2.4.1.

that

P−1AP =



−1/2 1/2 1/2
1/2 −1/2 1/2
1 1 −1







5 1 −1
1 3 −1
2 0 2







0 1 1/2
1 0 1/2
1 1 0




=




2 0 0
0 4 1
0 0 4


 ,

which is indeed in Jordan canonical form.

The procedure carried out in the above example works as long as each
eigenspace is 1-dimensional—to find the Jordan decomposition of a matrix A,
we just find an eigenvector for each eigenvalue and then extend it to a Jordan
chain so as to fill up the columns of a square matrix P. Doing so results in P
being invertible (a fact which is not obvious, but we will prove shortly) and
P−1AP being the Jordan canonical form of A. The following example illustrates
this procedure again with a longer Jordan chain.

Example 2.4.8
Finding Longer
Jordan Chains

Find the Jordan chains of the matrix

A =




−6 0 −2 1
0 −3 −2 1
3 0 1 1
−3 0 2 2


 ,

and use them to construct its Jordan decomposition.
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Solution:
We noted in Example 2.4.2 that this matrix has eigenvalues 3 (with al-

gebraic multiplicity 1) and−3 (with algebraic multiplicity 3 and geometric
multiplicity 1). An eigenvector corresponding to λ = 3 is v1 = (0,0,1,2),
and an eigenvector corresponding to λ =−3 is v2 = (0,1,0,0).

To construct a Jordan decomposition of A, we do what we did in the
previous example: we find a Jordan chain

{
v(1)

2 ,v(2)
2 ,v(3)

2

}
corresponding

to λ = −3. We choose v(1)
2 = v2 = (0,1,0,0) to be the eigenvector that

we already computed, and then we find v(2)
2 by solving the linear system

(A+3I)v(2)
2 = v(1)

2 for v(2)
2 :




−3 0 −2 1 0
0 0 −2 1 1
3 0 4 1 0
−3 0 2 5 0


 row reduce−−−−−−→




1 0 0 0 1/3
0 0 1 0 −1/3
0 0 0 1 1/3
0 0 0 0 0


 .

It follows that the second entry of v(2)
2 is free, while its other entries are

not. If we choose the second entry to be 0 then we get v(2)
2 = (1/3,0,

−1/3,1/3) as one possible solution.
We still need one more vector to complete this Jordan chain, so we

just repeat this procedure: we solve the linear system (A+3I)v(3)
2 = v(2)

2

for

The same sequence
of row operations

can be used to find
v(3)

2 as was used

to find v(2)
2 . This

happens in general,
since the only

difference between
these linear systems

is the right-hand side.

v(3)
2 :




−3 0 −2 1 1/3
0 0 −2 1 0
3 0 4 1 −1/3
−3 0 2 5 1/3


 row reduce−−−−−−→




1 0 0 0 −1/9
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0


 .

Similar to before, the second entry of v(3)
2 is free, while its other en-

tries are not. If we choose the second entry to be 0, then

Be careful—we
might be tempted to

normalize v(3)
2 to

v(3)
2 = (1,0,0,0), but

we cannot do this!
We can choose the

free variable (the
second entry of v(3)

2
in this case), but not

the overall scaling
in Jordan chains.

we get v(3)
2 =

(−1/9,0,0,0) as one possible solution.

Now that we have a set of 4 vectors
{

v1,v
(1)
2 ,v(2)

2 ,v(3)
2

}
, we can place

them as columns in a 4×4 matrix P =
[

v1 | v(1)
2 | v

(2)
2 | v

(3)
2

]
, and that

matrix should bring A into its Jordan canonical form:

P =




0 0 1/3 −1/9
0 1 0 0
1 0 −1/3 0
2 0 1/3 0


 and P−1 =




0 0 1/3 1/3
0 1 0 0
0 0 −2 1
−9 0 −6 3


 .

Straightforward calculation then shows that

P−1AP =




3 0 0 0
0 −3 1 0
0 0 −3 1
0 0 0 −3


 ,

which is indeed the Jordan canonical form of A.
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Multiple Jordan Blocks per Eigenvalue
Unfortunately, the method described above for constructing the Jordan de-
composition of a matrix only works if all of its eigenvalues have geometric
multiplicity equal to 1. To illustrate how this method can fail in more compli-
cated situations, we try to use this method to construct a Jordan decomposition
of the matrix

A =



−2 −1 1
3 2 −1
−6 −2 3


 .

The only eigenvalue of this matrix is λ = 1, and one basis of the correspond-
ing eigenspace isIn particular, λ = 1

has geometric
multiplicity γ1 = 2.

{v1,v2} where v1 = (1,−3,0) and v2 = (1,0,3). However,
if we try to extend either of these eigenvectors v1 or v2 to a Jordan chain of
order larger than 1 then we quickly get stuck: the linear systems (A− I)w = v1
and (A− I)w = v2 each have no solutions.

There are indeed Jordan chains of degree 2 corresponding to λ = 1, but the
eigenvectors that they correspond to are non-trivial linear combinations of v1
and v2, not v1 or v2 themselves. Furthermore, it is not immediately obvious how
we could find which eigenvectors (i.e., linear combinations) can be extended.
For this reason, we now introduce another method of constructing Jordan chains
that avoids problems like this one.

Example 2.4.9
Jordan Chains

with a Repeated
Eigenvalue

Compute a Jordan decomposition of the matrix A =


−2 −1 1
3 2 −1
−6 −2 3




.

Solution:
As we noted earlier, the only eigenvalue of this matrix is λ = 1, with

geometric multiplicity 2 and {v1,v2} (where v1 = (1,−3,0) and v2 =
(1,0,3)) forming a basis of the corresponding eigenspace.

In order to extend some eigenvector w(1)
1 of A to a degree-2 Jordan

chain, we would like to find a vector w(2)
1 with the property that (A− I)w(2)

1
is an eigenvector of A corresponding to λ = 1. That is, we want

(A− I)w(2)
1 6= 0 but (A− I)

(
(A− I)w(2)

1

)
= (A− I)2w(2)

1 = 0.

Direct computation shows that (A−I)2 = O, so null
(
(A−I)2

)
= C3, so we

can just pick w(2)
1 to be any vector that is not in null(A− I): we arbitrarily

choose w(2)
1 = (1,0,0) to give us the Jordan chain w(1)

1 ,w(2)
1 , whereNotice that

w(1)
1 =−v1−2v2 really

is an eigenvector of
A corresponding

to λ = 1.

w(2)
1 = (1,0,0) and w(1)

1 = (A− I)w(2)
1 = (−3,3,−6).

To complete the Jordan decomposition of A, we now just pick any
other eigenvector w2 with the property that {w(1)

1 ,w(2)
1 ,w2} is linearly

independent—we can choose w2 = v2 = (1,0,3),We could
have chosen

w2 = v1 = (1,−3,0)
too, or any number

of other choices.

for example. Then A
has Jordan decomposition A = PJP−1, where

J =




1 1 0
0 1 0
0 0 1


 and P =

[
w(1)

1 | w
(2)
1 | w2

]
=



−3 1 1
3 0 0
−6 0 3


 .
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The above example suggests that instead of constructing a matrix’s Jordan
decomposition from the “bottom up” (i.e., starting with the eigenvectors, which
are at the “bottom” of a Jordan chain, and working our way “up” the chain by
solving linear systems, as we did earlier), we should instead compute it from
the “top down” (i.e., starting with vectors at the “top” of a Jordan chain and
then multiplying them by (A−λ I) to work our way “down” the chain).

Indeed, this “top down” approach works in general—a fact that we now
start proving. To this end, note that if v(1),v(2), . . . ,v(k) is a Jordan chain of A
corresponding to the eigenvalue λ , then multiplying their defining equation
(i.e., (A−λ I)v( j) = v( j−1) for all 2≤ j ≤ k and (A−λ I)v(1) = 0) on the left
by powers of A−λ I shows that

For any sets X and Y ,
X\Y is the set of all
members of X that

are not in Y .

v( j) ∈ null
(
(A−λ jI) j) \ null

(
(A−λ jI) j−1) for all 1≤ j ≤ k.

Indeed, these subspaces null
(
(A−λ jI) j

)
(for 1≤ j ≤ k) play a key role in the

construction of the Jordan decomposition—after all, their dimensions are the
geometric multiplicities from Definition 2.4.2, which we showed determine
the sizes of A’s Jordan blocks in Theorem 2.4.2. These spaces are called the
generalized eigenspaces of A corresponding to λ (and their members are
called the generalized eigenvectors of A corresponding to λ ). Notice that if
j = 1 then they are just standard eigenspace and eigenvectors, respectively.

Our first main result that helps us toward a proof of the Jordan decomposi-
tion is the fact that bases of the generalized eigenspaces of a matrix can always
be “stitched together” to form a basis of the entire space Cn.

Theorem 2.4.5
Generalized
Eigenbases

Suppose A∈Mn(C) has distinct eigenvalues λ1, λ2, . . ., λm with algebraic
multiplicities µ1, µ2, . . ., µm, respectively, and

B j is a basis of null
(
(A−λ jI)µ j

)
for each 1≤ j ≤ m.

Then B1∪B2∪·· ·∪Bm is a basis of Cn.

Proof. We can use Schur triangularization to write A = UTU∗, where U ∈
Mn(C) is unitary and T ∈Mn(C) is upper triangular, and we can choose T
so that its diagonal entries (i.e., the eigenvalues of A) are arranged so that any
repeated entries are next to each other. That is, T can be chosen to have the
form

Asterisks (∗) denote
blocks whose entries

are potentially
non-zero, but

irrelevant (i.e., not
important enough
to give names to).

T =




T1 ∗ · · · ∗
O T2 · · · ∗
...

...
. . .

...
O O · · · Tm




,

where each Tj (1 ≤ j ≤ m) is upper triangular and has every diagonal entry
equal to λ j.

Our next goal is to show that if we are allowed to make use of arbitrary
similarity transformations (rather than just unitary similarity transformations,
as in Schur triangularization) then T can be chosen to be even simpler still. To
this end, we make the following claim:

Claim: If two matrices A ∈Md1(C) and C ∈Md2(C) do not have any eigenval-
ues in common then, for all B∈Md1,d2(C), the following block matrices
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are similar:This claim fails
if A and C share

eigenvalues (if it
didn’t, it would imply
that all matrices are

diagonalizable).

[
A B
O C

]
and

[
A O
O C

]
.

We prove this claim as Theorem B.2.1 in Appendix B.2, as it is slightly
technical and the proof of this theorem is already long enough without it.

By making use of this claim repeatedly, we see that each of the following
matrices are similar to each other:



T1 ∗ ∗ · · · ∗
O T2 ∗ · · · ∗
O O T3 · · · ∗
...

...
...

. . .
...

O O O · · · Tm




,




T1 O O · · · O
O T2 ∗ · · · ∗
O O T3 · · · ∗
...

...
...

. . .
...

O O O · · · Tm




,




T1 O O · · · O
O T2 O · · · O
O O T3 · · · ∗
...

...
...

. . .
...

O O O · · · Tm




, . . . ,




T1 O O · · · O
O T2 O · · · O
O O T3 · · · O
...

...
...

. . .
...

O O O · · · Tm




.

It follows that T , and thus A, is similar to the block-diagonal matrix at the
bottom-right. That is, there exists an invertible matrix P ∈Mn(C) such that

A = P




T1 O · · · O
O T2 · · · O
...

...
. . .

...
O O · · · Tm




P−1.

With this decomposition of A in hand, it is now straightforward to verify
that

(A−λ1I)µ1 = P




(T1−λ1I)µ1 O · · · O
O (T2−λ1I)µ1 · · · O
...

...
. . .

...
O O · · · (Tm−λ1I)µ1




P−1

= P




O O · · · O
O (T2−λ1I)µ1 · · · O
...

...
. . .

...
O O · · · (Tm−λ1I)µ1




P−1,

with the second equality following from the fact that T1− λ1I is an upper
triangular µ1×µ1 matrix with all diagonal entries equal to 0, so (T1−λ1I)µ1 =
O by Exercise 2.4.16. Similarly, for each 2 ≤ j ≤ m the matrix (Tj−λ1I)µ1

has non-zero diagonal entries and is thus invertible, so we see that the first µ1
columns of P form a basis of null

(
(A−λ1I)µ1

)
. A similar argument shows that

the next µ2 columns of P form a basis of null
(
(A−λ2I)µ2

)
, and so on.

We have thus proved that, for each 1 ≤ j ≤ m, there exists a basis C j of
null
(
(A−λ jI)µ j

)
such that C1 ∪C2 ∪ ·· · ∪Cm

In this theorem and
proof, unions like

C1 ∪·· ·∪Cm are
meant as multisets,

so that if there were
any vector in

multiple C j’s then
their union would

necessarily be
linearly dependent. is a basis of Cn (in particular,
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we can choose C1 to consist of the first µ1 columns of P, C2 to consist of its
next µ2 columns, and so on). To see that the same result holds no matter which
basis B j of null

(
(A−λ jI)µ j

)
is chosen, simply note that since B j and C j are

bases of the same space, we must have span(B j) = span(C j). It follows that

span(B1∪B2∪·· ·∪Bm) = span(C1∪C2∪·· ·∪Cm) = Cn.

Since we also have the |B j| = |C j| for all 1 ≤ j ≤ m, it must be the case that
|B1 ∪B2 ∪ ·· · ∪Bm| = |C1 ∪C2 ∪ ·· · ∪Cm| = n, which implies that B1 ∪B2 ∪
·· ·∪Bm is indeed a basis of Cn. �

Remark 2.4.1
The Jordan

Decomposition
and Direct Sums

Another way of phrasing Theorem 2.4.5 is as saying that, for every matrix
A ∈Mn(C), we can write Cn as a direct sum (see Section 1.B) of its
generalized eigenspaces:

Cn =
m⊕

j=1

null
(
(A−λ jI)µ j

)
.

Furthermore, A is diagonalizable if and only if we can replace each gener-
alized eigenspace by its non-generalized counterpart:

Cn =
m⊕

j=1

null(A−λ jI).

We are now in a position to rigorously prove that every matrix has a Jordan
decomposition. We emphasize that it really is worth reading through this proof
(even if we did not do so for the proof of Theorem 2.4.5), since it describes
an explicit procedure for actually constructing the Jordan decomposition in
general.

Proof of existence in Theorem 2.4.1. Suppose λ is an eigenvalue of A with
algebraic multiplicity µ . We start by showing that we can construct a basis B of
null
(
(A−λ I)µ

)
that is made up of Jordan chains. We do this via the following

iterative procedure that works by starting at the “tops” of the longest Jordan
chains and working its way “down”:

Step 1. Set k = µ and Bµ+1 = {} (the empty set).
Step 2. Set Ck = Bk+1 and then add any vector from

null
(
(A−λ I)k) \ span

(
Ck ∪null

(
(A−λ I)k−1))

to Ck.

In words, Bk+1 is the
piece of the basis B

that contains Jordan
chains of order at

least k +1, and the
vectors that we add
to Ck are the “tops”

of the Jordan chains
of order exactly k.

Continue adding vectors to Ck in this way until no longer possible,
so that

null
(
(A−λ I)k)⊆ span

(
Ck ∪null

(
(A−λ I)k−1)). (2.4.1)

Notice that Ck is necessarily linearly independent since Bk+1 is linearly
independent, and each vector that we added to Ck was specifically chosen
to not be in the span of its other members.

Step 3. Construct all Jordan chains that have “tops” at the members of Ck\Bk+1.
That is, if we denote the members of Ck\Bk+1 by v(k)

1 , v(k)
2 , . . ., then for

each 1≤ i≤ |Ck\Bk+1| we set

v( j−1)
i = (A−λ I)v( j)

i for j = k,k−1, . . . ,2.
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Then define Bk = Bk+1∪
{

v( j)
i : 1≤ i≤ |Ck\Bk+1|, 1≤ j≤ k

}
. We claim

that Bk is linearly independent, but pinning down this claim is quite
technical, so we leave the details to Theorem B.2.2 in Appendix B.2.

Step 4. If k = 1 then stop. Otherwise, decrease k by 1 and then return to Step 2.
After performing the above procedure, we set B = B1 (which also equals

C1, since Step 3 does nothing in the k = 1 case). We note that B consists of
Jordan chains of A corresponding to the eigenvalue λ by construction, and
Step 3 tells us that B is linearly independent. Furthermore, the inclusion (2.4.1)
from Step 2 tells us that span(C1)⊇ null(A−λ I). Repeating this argument for
C2, and using the fact that C2 ⊆C1, shows that

span(C1) = span(C2∪C1)⊇ span
(
C2∪null(A−λ I)

)
⊇ null

(
(A−λ I)2).

Carrying on in this way for C3, C4, . . ., Cµ shows that span(B) = span(C1)⊇
null
(
(A−λ I)µ

)
. Since B is contained within null

(
(A−λ I)µ

)
, we conclude

that B must be a basis of it, as desired.
Since we now know how to construct a basis of each generalized eigenspace

null
(
(A−λ I)µ

)
consisting of Jordan chains of A, Theorem 2.4.5 tells us that

we can construct a basis of all of Cn consisting of Jordan chains of A. If there
are m Jordan chains in such a basis and the j-th Jordan chain has order k j and
corresponding eigenvalue λ j for all 1≤ j ≤ m, then placing the members of
that j-th Jordan chain as columns into a matrix Pj ∈Mn,k j(C) in the manner
suggested by Theorem 2.4.4 tells us that APj = PjJk j(λ j). We can then construct
a (necessarily invertible) matrix

P =
[

P1 | P2 | · · · | Pm
]
∈Mn(C).

Our usual block matrix multiplication techniques show that

AP =
[

AP1 | AP2 | · · · | APm
]

(block matrix mult.)

=
[

P1Jk1(λ1) | P2Jk2(λ2) | · · · | PmJkm(λm)
]

(Theorem 2.4.4)

= P




Jk1(λ1) · · · O
...

. . .
...

O · · · Jkm(λm)


 . (block matrix mult.)

Multiplying on the right by P−1 gives a Jordan decomposition of A. �

It is worth noting that the vectors that we add to the set Ck in Step 2 of the
above proof are the “tops” of the Jordan chains of order exactly k. Since each
Jordan chain corresponds to one Jordan block in the Jordan canonical form,
Theorem 2.4.2 tells us that we must add |Ck\Bk+1| = 2γk− γk+1− γk−1 such
vectors for all k ≥ 1, where γk is the corresponding geometric multiplicity of
order k.

While this procedure for constructing the Jordan decomposition likely
seems quite involved, we emphasize that things “usually” are simple enough
that we can just use our previous worked examples as a guide. For now though,
we work through a rather large example so as to illustrate the full algorithm in
a bit more generality.
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Example 2.4.10
A Hideous Jordan

Decomposition

Construct a Jordan decomposition of the 8×8 matrix from Example 2.4.3.

Solution:
As we noted in Example 2.4.3, the only eigenvalue of A is λ = 1,

which has algebraic multiplicity µ = 8 and geometric multiplicities γ1 = 4,
γ2 = 7, and γk = 8 whenever k ≥ 3. In the language of the proof of Theo-
rem 2.4.1, Step 1 thus tells us to set k = 8 and B9 = {}.

In Step 2, nothing happens when k = 8 since we add |C8\B9|= 2γ8−
γ9− γ7 = 16−8−8 = 0 vectors. It follows that nothing happens in Step 3
as well, so B8 = C8 = B9 = {}. A similar argument shows that Bk =
Bk+1 = {} for all k≥ 4, so we proceed directly to the k = 3 case of Step 2.

k = 3: In Step 2,Just try to follow
along with the steps

of the algorithm
presented here,

without wor-
rying about the nasty
calculations needed

to compute any
particular vectors or
matrices we present.

we start by setting C3 = B4 = {}, and then we need
to add 2γ3− γ4− γ2 = 16−8−7 = 1 vector from

null
(
(A−λ I)3) \ null

(
(A−λ I)2)= C8 \ null

(
(A−λ I)2)

to C3. One vector that works is (0,0,−1,0,0,−1,1,0), so we
choose C3 to be the set containing this single vector, which we
call v(3)

1 .

In Step 3, we just extend v(3)
1 to a Jordan chain by computing

v(2)
1 = (A− I)v(3)

1 = (−1,1,0,0,1,1,0,−1) and

v(1)
1 = (A− I)v(2)

1 = (0,0,−1,1,0,−1,0,0),

and then we let B3 be the set containing these three vectors.
k = 2:In practice, large

computations like
this one are done

by computers.

In Step 2, we start by setting C2 = B3, and then we need to
add any 2γ2− γ3− γ1 = 14−8−4 = 2 vectors from null

(
(A−

λ I)2
)
\ null(A− λ I) to C2 while preserving linear indepen-

dence. Two vectors that work are

v(2)
2 = (0,0,0,−1,1,0,0,1) and

v(2)
3 = (−1,0,1,1,0,0,−1,0),

so we add these vectors to C2, which now contains 5 vectors
total.
In Step 3, we just extend v(2)

2 and v(2)
3 to Jordan chains by

multiplying by A− I:

v(1)
2 = (A− I)v(2)

2 = (0,−1,1,0,0,0,0,0) and

v(1)
3 = (A− I)v(2)

3 = (0,−1,−1,0,1,−1,1,0),

and let B2 = C2∪
{

v(1)
2 ,v(1)

3

}
be the set containing all 7 vectors

discussed so far.
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k = 1:Recall that γ0 = 0
always.

In Step 2, we start by setting C1 = B2, and then we need to add
any 2γ1− γ2− γ0 = 8−7−0 = 1 vector from null(A− I) to C1
while preserving linear independence. One vector that works is

v(1)
4 = (0,1,0,0,−1,0,−1,0),

so we add this vector to C1, which now contains 8 vectors total
(so we are done and can set B1 = C1).

To complete the Jordan decomposition of A, we simply place all of
these Jordan chains as columns into a matrix P:

P =
[

v(1)
1 | v

(2)
1 | v

(3)
1

∣∣ v(1)
2 | v

(2)
2

∣∣ v(1)
3 | v

(2)
3

∣∣ v(1)
4

]

=




0 −1 0 0 0 0 −1 0
0 1 0 −1 0 −1 0 1
−1 0 −1 1 0 −1 1 0
1 0 0 0 −1 0 1 0
0 1 0 0 1 1 0 −1
−1 1 −1 0 0 −1 0 0
0 0 1 0 0 1 −1 −1
0 −1 0 0 1 0 0 0




.

It is straightforward (but arduous) to verify that A = PJP−1, where J is
the Jordan canonical form of A that we computed in Example 2.4.3.

2.4.3 Matrix Functions

One of the most useful applications of the Jordan decomposition is that it
provides us with a method of applying functions to arbitrary matrices. We of
course could apply functions to matrices entrywise, but doing so is a bit silly
and does not agree with how we compute matrix powers or polynomials of
matrices.

In order to apply functions to matrices “properly”, we exploit the fact that
many functions equal their Taylor series (functions with this property are called
analytic). For example, recall that

See Appendix A.2.2
for a refresher on

Taylor series. ex = 1+ x+
x2

2!
+

x3

3!
+

x4

4!
+ · · ·=

∞

∑
j=0

x j

j!
for all x ∈ C.

Since this definition of ex only depends on addition, scalar multiplication, and
powers of x, and all of these operations are well-behaved when applied to
matrices, it seems reasonable to analogously define eA, the exponential of a
matrix, via

eA =
∞

∑
j=0

1
j!

A j for all A ∈Mn(C),

as long as this sum

When we talk about
a sum of matrices

converging, we just
mean that every
entry in that sum

converges. converges.
More generally, we define the “matrix version” of an analytic function as

follows:



246 Chapter 2. Matrix Decompositions

Definition 2.4.4
Matrix Functions

Suppose A ∈Mn(C) and f : C→ C is analytic on an open disc centered
at some scalar a ∈ C. Then

f (A) def=
∞

∑
j=0

f ( j)(a)
j!

(A−aI) j,

as long as the sum on the right converges.

The above

An “open” disc is a
filled-in circle that

does not include its
boundary. We need
it to be open so that
things like derivatives

make sense
everywhere in it.

definition implicitly makes the (very not obvious) claim that the
matrix that the sum on the right converges to does not depend on which value
a ∈C is chosen. That is, the value of a ∈C might affect whether or not the sum
on the right converges, but not what it converges to. If k = 1 (so A ∈M1(C) is
a scalar, which we relabel as A = x ∈ C) then this fact follows from the sum
in Definition 2.4.4 being the usual Taylor series of f centered at a, which we
know converges to f (x) (if it converges at all) since f is analytic. However, if
k≥ 2 then it is not so obvious that this sum is so well-behaved, nor is it obvious
how we could possibly compute what it converges to.

The next two theorems solve these problems—they tell us when the sum
in Definition 2.4.4 converges, that the scalar a ∈ C has no effect on what it
converges to (though it may affect whether or not it converges in the first place),
and that we can use the Jordan decomposition of A to compute f (A). We start
by showing how to compute f (A) in the special case when A is a Jordan block.

Theorem 2.4.6
Functions of

Jordan Blocks

Suppose Jk(λ ) ∈Mk(C) is a Jordan block and f : C→ C is analytic on
some open set containing λ . Then

The notation f ( j)(λ )
means the j-th
derivative of f

evaluated at λ .
f
(
Jk(λ )

)
=




f (λ ) f ′(λ )
1!

f ′′(λ )
2! · · · f (k−2)(λ )

(k−2)!
f (k−1)(λ )
(k−1)!

0 f (λ ) f ′(λ )
1! · · · f (k−3)(λ )

(k−3)!
f (k−2)(λ )
(k−2)!

0 0 f (λ ) · · · f (k−4)(λ )
(k−4)!

f (k−3)(λ )
(k−3)!

...
...

...
. . .

...
...

0 0 0 · · · f (λ ) f ′(λ )
1!

0 0 0 · · · 0 f (λ )




.

Proof. For each 1 ≤ n < k, let Nn ∈Mk(C) denote the matrix with ones on
its n-th superdiagonal and zeros elsewhere (i.e., [Nn]i, j = 1 if j− i = n and
[Nn]i, j = 0 otherwise).Recall that [Nn]i, j

refers to the
(i, j)-entry of Nn.

Then Jk(λ ) = λ I +N1, and we show in Exercise 2.4.17
that these matrices satisfy Nn

1 = Nn for all 1≤ n < k, and Nn
1 = O when n≥ k.

We now prove the statement of this theorem when we choose to center the
Taylor series from Definition 2.4.4 at a = λ . That is, we write f as a Taylor
series centered at λ , so that

f (x) =
∞

∑
n=0

f (n)(λ )
n!

(x−λ )n, so f
(
Jk(λ )

)
=

∞

∑
n=0

f (n)(λ )
n!

(Jk(λ )−λ I)n.

By making use of the fact that Jk(λ )− λ I = N1, together with our earlier



2.4 The Jordan Decomposition 247

observation about powers of N1, we see that

This sum becomes
finite because

Nn
1 = O when n≥ k.

f
(
Jk(λ )

)
=

∞

∑
n=0

f (n)(λ )
n!

Nn
1 =

k−1

∑
n=0

f (n)(λ )
n!

Nn,

which is exactly the formula given in the statement of the theorem.
To complete this proof, we must show that Definition 2.4.4 is actually well-

defined (i.e., no matter which value a in the open set on which f is analytic we
center the Taylor series of f at, the formula provided by this theorem still holds).
This extra argument is very similar to the one we just went through, but with
some extra ugly details, so we defer it to Appendix B.2 (see Theorem B.2.3 in
particular). �

Theorem 2.4.7
Matrix Functions

via the Jordan
Decomposition

Suppose A ∈Mn(C) has Jordan decomposition as in Theorem 2.4.1, and
f : C→ C is analytic on some open disc containing all of the eigenvalues
of A. Then

f (A) = P




f
(
Jk1(λ1)

)
O · · · O

O f
(
Jk2(λ2)

)
· · · O

...
...

. . .
...

O O · · · f
(
Jkm(λm)

)




P−1.

Proof. We just exploit the fact that matrix powers, and thus Taylor series,
behave very well with block diagonal matrices and the Jordan decomposition.
For any a in the open disc on which f is analytic, we have

In the second
equality, we use the

fact that
(PJP−1) j = PJ jP−1 for

all j.

f (A) =
∞

∑
j=0

f ( j)(a)
j!

(A−aI) j

= P




∞

∑
j=0

f ( j)(a)
j!




(
Jk1(λ1)−aI

) j · · · O
...

. . .
...

O · · ·
(
Jkm(λm)−aI

) j





P−1

= P




f
(
Jk1(λ1)

)
· · · O

...
. . .

...

O · · · f
(
Jkm(λm)

)


P−1,

as claimed. �

By combining the previous two theorems, we can explicitly apply any
analytic function f to any matrix by first constructing that matrix’s Jordan
decomposition, applying f to each of the Jordan blocks in its Jordan canonical
form via the formula of Theorem 2.4.6, and then stitching those computations
together via Theorem 2.4.7.

Example 2.4.11
A Matrix

Exponential via
the Jordan

Decomposition

Compute eA if A =



5 1 −1
1 3 −1
2 0 2




.
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Solution:
We computed the following Jordan decomposition A = PJP−1 of this

matrix in Example 2.4.7:

P =
1
2




0 2 1
2 0 1
2 2 0


 , J =




2 0 0
0 4 1
0 0 4


 , P−1 =

1
2



−1 1 1
1 −1 1
2 2 −2


 .

Applying the function f (x) = ex to the two Jordan blocks in J via the
formula of Theorem 2.4.6 gives

Here we use the fact
that f ′(x) = ex too.

f (2) = e2 and f
([

4 1
0 4

])
=

[
f (4) f ′(4)

0 f (4)

]
=

[
e4 e4

0 e4

]
.

Stitching everything together via Theorem 2.4.7 then tells us that

f (A) = eA =
1
4




0 2 1
2 0 1
2 2 0






e2 0 0
0 e4 e4

0 0 e4





−1 1 1
1 −1 1
2 2 −2




=
1
2




4e4 2e4 −2e4

e4− e2 e4 + e2 e2− e4

3e4− e2 e2 + e4 e2− e4


 .

When we define matrix functions in this way, they interact with matrix
multiplication how we would expect them to. For example, the principal square
root function f (x) =

√
x is analytic everywhere except on the set of non-positive

real numbers, so Theorems 2.4.6 and 2.4.7 tell us how to compute the principal
square root

√
A of any matrix A ∈Mn(C) whose eigenvalues can be placed

in an open disc avoiding that strip in the complex plane. As we would hope,
this matrix satisfies (

√
A)2 = A, and if A is positive definite then this method

produces exactly the positive definite principal square root
√

A described by
Theorem 2.2.11.

Example 2.4.12
The Principal

Square Root of a
Non-Positive
Semidefinite

Matrix

Compute
√

A if A = 


3 2 3
1 2 −3
−1 −1 4




.

Solution:
We can use the techniques of this section to see that A has Jordan

decomposition A = PJP−1, where

Try computing
a Jordan

decomposition
of A on your own.

P =



−2 −1 2
2 1 −1
0 −1 1


 , J =




1 0 0
0 4 1
0 0 4


 , P−1 =

1
2




0 1 1
2 2 −2
2 2 0


 .

To apply the function f (x) =
√

x to the two Jordan blocks in J via the
formula of Theorem 2.4.6, we note that f ′(x) = 1

2
√

x , so that

f (1) = 1 and f
([

4 1
0 4

])
=

[
f (4) f ′(4)

0 f (4)

]
=

[
2 1/4
0 2

]
.
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Stitching everything together via Theorem 2.4.7 then tells us that

Double-check on
your own that

(
√

A)2 = A. f (A) =
√

A =
1
2



−2 −1 2
2 1 −1
0 −1 1






1 0 0
0 2 1/4
0 0 2






0 1 1
2 2 −2
2 2 0




=
1
4




7 3 4
1 5 −4
−1 −1 8


 .

Remark 2.4.2
Is Analyticity

Needed?

If a function f is not analytic on any disc containing a certain scalar λ ∈C
then the results of this section say nothing about how to compute f (A) for
matrices with λ as an eigenvalue. Indeed, it may be the case that there
is no sensible way to even define f (A) for these matrices, as the sum
in Definition 2.4.4 may not converge. For example, if f (x) =

√
x is the

principal square root function, then f is not analytic at x = 0 (despite being
defined there), so it is not obvious how to compute (or even define)

√
A if

A has 0 as an eigenvalue.
We can sometimes get around this problem by just applying the for-

mulas of Theorems 2.4.6 and 2.4.7 anyway, as long as the quantities used
in those formulas all exist. For example, we could say that if

A =
[

2i 0
0 0

]
then

√
A =

[√
2i 0

0
√

0

]
=
[

1+ i 0
0 0

]
,

even though A has 0 as an eigenvalue. On the other hand, this method says
that

We are again using
the fact that if
f (x) =

√
x then

f ′(x) = 1/(2
√

x) here.

B =
[

0 1
0 0

]
then

√
B =

[√
0 1/(2

√
0)

0
√

0

]
,

which makes no sense (notice the division by 0 in the top-right corner
of
√

B, corresponding to the fact that the square root function is not
differentiable at 0). Indeed, this matrix B does not have a square root
at all, nor does any matrix with a Jordan block of size 2× 2 or larger
corresponding to the eigenvalue 0.

Similarly, Definition 2.4.4 does not tell us what
√

C means if

C =
[

i 0
0 −i

]
,

even though the principal square root function f =
√

x is analytic on open
discs containing the eigenvalues i and −i. The problem here is that there
is no common disc D containing i and −i on which f is analytic, since any
such disc must contain 0 as well. In practice, we just ignore this problem
and apply the formulas of Theorems 2.4.6 and 2.4.7 anyway to get

√
C =

[√
i 0

0
√
−i

]
=

1√
2

[
1+ i 0

0 1− i

]
.
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Example 2.4.13
Geometric Series

for Matrices

Compute I +A+A2 +A3 + · · · if

A =
1
2




3 4 0
0 1 −2
1 2 −1


 .

Solution:
We can use the techniques of this section to see that A has Jordan

decomposition A = PJP−1, where

P =




2 2 0
−1 0 1
0 1 0


 , J =




1/2 1 0
0 1/2 1
0 0 1/2


 , P−1 =

1
2




1 0 −2
0 0 2
1 2 −2


 .

We then recall that

1+ x+ x2 + x3 + · · ·= 1
1− x

whenever |x|< 1,

so we can compute I + A + A2 + A3 + · · ·Before doing this
computation, it was
not even clear that

the sum
I +A+A2 +A3 + · · ·

converges.

by applying Theorems 2.4.6
and 2.4.7 to the function f (x) = 1/(1− x), which is analytic on the open
disc D = {x∈C : |x|< 1} containing the eigenvalue 1/2 of A. In particular,
f ′(x) = 1/(1− x)2 and f ′′(x) = 2/(1− x)3, so we have

f (A) = I +A+A2 +A3 + · · ·

= P




f (1/2) f ′(1/2) 1
2 f ′′(1/2)

0 f (1/2) f ′(1/2)
0 0 f (1/2)


P−1

=
1
2




2 2 0
−1 0 1
0 1 0






2 4 8
0 2 4
0 0 2






1 0 −2
0 0 2
1 2 −2


=




14 24 −16
−4 −6 4
2 4 −2


 .

We close this section by noting that if A is diagonalizable then each of its
Jordan blocks is 1×1, so Theorems 2.4.6 and 2.4.7 tell us that we can compute
matrix functions in the manner that we already knew from introductory linear
algebra:

Corollary 2.4.8
Functions of

Diagonalizable
Matrices

If A ∈Mn(C) is diagonalizable via A = PDP−1, and f : C→ C is an-
alytic on some open disc containing the eigenvalues of D, then f (A) =
P f (D)P−1, where f (D) is obtained by applying f to each diagonal entry
of D.

In particular, since the spectral decomposition (Theorem 2.1.4) is a special
case of diagonalization, we see that if A ∈Mn(C) is normal with spectral
decomposition A = UDU∗, then f (A) = U f (D)U∗.
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Exercises solutions to starred exercises on page 472

2.4.1 Compute the Jordan canonical form of each of the
following matrices.

∗ (a)
[

3 −2
2 −1

]

∗ (c)
[

0 −1
4 4

]

∗ (e)



1 −1 2
−1 −1 4
−1 −2 5




∗ (g)



5 2 −2
−1 2 1
1 1 2




(b)
[

4 2
−3 −1

]

(d)
[
−1 1
−2 1

]

(f)



3 0 0
1 3 −1
1 0 2




(h)



1 2 0
−1 5 2
1 −1 3




2.4.2 Compute a Jordan decomposition of each of the
matrices from Exercise 2.4.1.

2.4.3 Determine whether or not the given matrices are
similar.

∗ (a)
[

2 1
−4 6

]
and

[
3 −1
−5 7

]

(b)
[

1 −2
2 −3

]
and

[
0 1
−1 −2

]

∗ (c)



1 2 0
0 1 −1
0 −1 1




and



2 1 1
0 1 0
2 0 0




(d)



2 1 −1
−2 −1 2
−1 −1 2




and



2 1 3
−1 0 −4
0 0 1




∗ (e)



2 −1 1
0 −1 0
−1 −5 4




and



1 −2 2
1 6 1
−1 −7 −2




(f)



1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1




and



1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1




2.4.4 Compute the indicated matrix.

∗ (a)
√

A, where A =

[
2 0
1 2

]
.

(b) eA, where A =

[
1 −1
1 −1

]
.

(c) sin(A), where A =
1
3

[
2 −1
4 −2

]
.

(d) cos(A), where A =
1
3

[
2 −1
4 −2

]
.

∗ (e) eA, where A =




1 −2 −1
0 3 1
0 −4 −1


 .

(f)
√

A, where A =




1 −2 −1
0 3 1
0 −4 −1


 .

2.4.5 Determine which of the following statements are
true and which are false.

∗ (a) Every matrix A ∈Mn(C) can be diagonalized.
(b) Every matrix A ∈Mn(C) has a Jordan decomposi-

tion.
∗ (c) If A = P1J1P−1

1 and A = P2J2P−1
2 are two Jordan

decompositions of the same matrix A then J1 = J2.
(d) Two matrices A,B ∈Mn(C) are similar if and only

if there is a Jordan canonical form J such that
A = PJP−1 and B = QJQ−1.

∗ (e) Two diagonalizable matrices A,B ∈Mn(C) are sim-
ilar if and only if they have the same eigenvalues
(counting with algebraic multiplicity).

(f) There exist matrices A,B ∈Mn(C) such that A is
diagonalizable, B is not diagonalizable, and A and B
are similar.

∗ (g) The series eA = ∑
∞
j=0 A j/ j! converges for all A ∈

Mn(C).

2.4.6 Suppose A ∈M4(C) has all four of its eigenvalues
equal to 2. What are its possible Jordan canonical forms (do
not list Jordan canonical forms that have the same Jordan
blocks as each other in a different order)?

2.4.7 Compute the eigenvalues of sin(A), where

A =




3 −1 −1
0 4 0
−1 −1 3


 .

∗2.4.8 Find bases C and D of R2, and a linear transforma-
tion T : R2→ R2, such that A = [T ]C and B = [T ]D, where

A =

[
1 2
5 4

]
and B =

[
13 7
−14 −8

]
.

2.4.9 Let A ∈Mn(C).

(a) Show that if A is Hermitian then eA is positive defi-
nite.

(b) Show that if A is skew-Hermitian then eA is unitary.

2.4.10 Show that det(eA) = etr(A) for all A ∈Mn(C).

∗2.4.11 Show that eA is invertible for all A ∈Mn(C).

2.4.12 Suppose A,B ∈Mn(C).

(a) Show that if AB = BA then eA+B = eAeB.
[Hint: It is probably easier to use the definition of
eA+B rather than the Jordan decomposition. You may
use the fact that you can rearrange infinite sums aris-
ing from analytic functions just like finite sums.]

(b) Provide an example to show that if eA+B may not
equal eAeB if AB 6= BA.

2.4.13 Show that a matrix A ∈Mn(C) is invertible if
and only if it can be written in the form A = UeX , where
U ∈Mn(C) is unitary and X ∈Mn(C) is Hermitian.

∗∗2.4.14 Show that sin2(A) + cos2(A) = I for all A ∈
Mn(C).
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2.4.15 Show that every matrix A ∈Mn(C) can be written
in the form A = D + N, where D ∈Mn(C) is diagonaliz-
able, N ∈Mn(C) is nilpotent (i.e., Nk = O for some integer
k ≥ 1), and DN = ND.

[Side note: This is called the Jordan–Chevalley decompo-
sition of A.]

∗∗2.4.16 Suppose A∈Mn is strictly upper triangular (i.e.,
it is upper triangular with diagonal entries equal to 0).

(a) Show that, for each 1≤ k ≤ n, the first k superdiag-
onals of Ak consist entirely of zeros. That is, show
that

[
Ak]

i, j = 0 whenever j− i < k.

(b) Show that An = O.

∗∗2.4.17 For each 1≤ j < k, let Nn ∈Mk denote the ma-
trix with ones on its n-th superdiagonal and zeros elsewhere
(i.e., [Nn]i, j = 1 if j− i = n and [Nn]i, j = 0 otherwise).

(a) Show that Nn
1 = Nn for all 1 ≤ n < k, and Nn

1 = O
when n≥ k.

(b) Show that nullity(Nn) = min{k,n}.

2.5 Summary and Review

In this chapter, we learned about several new matrix decompositions, and how
they fit in with and generalize the matrix decompositions that we already knew
about, like diagonalization. For example, we learned about a generalization of
diagonalization that applies to all matrices, called the Jordan decomposition
(Theorem 2.4.1), and we learned about a special case of diagonalization called
the spectral decomposition (Theorems 2.1.4 and 2.1.6) that applies to normal
or symmetric matrices (depending on whether the field is C or R, respectively).
See Figure 2.10 for a reminder of which decompositions from this chapter are
special cases of each other.

Schur

triangularization

(Theorem 2.1.1)

Jordan decomposition

(Theorem 2.4.1)

Diagonalization

(Theorem 2.0.1)

Spectral decomposition

(Theorems 2.1.4 and 2.1.6)

Singular value

decomposition

(Theorem 2.3.1)

Figure 2.10: Some matrix decompositions from this chapter. The decompositions
in the top row apply to any square complex matrix (and the singular value de-
composition even applies to rectangular matrices). Black lines between two
decompositions indicate that the lower decomposition is a special case of the
one above it that applies to a smaller set of matrices.

One common way of thinking about some matrix decompositions is as
providing us with a canonical form for matrices that is (a) unique, and (b)
captures all of the “important” information about that matrix (where the exact
meaning of “important” depends on what we want to do with the matrix or
what it represents). For example,

• If we are thinking of A ∈ Mm,n as representing a linear system, the
relevant canonical form is its reduced row echelon form (RREF), which
is unique and contains all information about the solutions of that linear
system.

• If we are thinking of A ∈Mn as representing a linear transformation
and are only interested in basis-independent

We call a property
of a matrix A “basis

independent” if a
change of basis

does not affect it
(i.e., A and PAP−1

share that property
for all invertible P).

properties of it (e.g., its
rank), the relevant canonical form is its Jordan decomposition, which is
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unique and contains all basis-independent information about that linear
transformation.

These canonical forms can also be thought of as answering the question of
how simple a matrix can be made upon multiplying it on the left and/or right by
invertible matrices, and they are summarized in Table 2.2 for easy reference.

All three of the forms
reached by these

decompositions are
canonical. For

example, every
matrix can be put
into one, and only

one, RREF by
multiplying it on the
left by an invertible

matrix.

Type Decomposition Name and notes

One-sided A = PR
• P is invertible
• R is the RREF of A

See Appendix A.1.3.

Two-sided A = PDQ
• P,Q are invertible

• D =

[
Irank(A) O

O O

]
From Exercise 2.3.6. Either
P or Q (but not both) can be
chosen to be unitary.

Similarity A = PJP−1

• P is invertible
• J is Jordan form

Jordan decomposition—see
Section 2.4. J is block diag-
onal and each block has con-
stant diagonal and superdiag-
onal equal to 1.

Table 2.2: A summary of the matrix decompositions that answer the question of
how simple a matrix can be made upon multiplying it by an invertible matrix on
the left and/or right. These decompositions are all canonical and apply to every
matrix (with the understanding that the matrix must be square for similarity to make
sense).

We can similarly ask how simple we can make a matrix upon multiplying it
on the left and/or right by unitary matrices, but it turns out that the answers to
this question are not so straightforward. For example, Schur triangularization
(Theorem 2.1.1) tells us that by applying a unitary similarity to a matrix
A ∈ Mn(C), we can make it upper triangular (i.e., we can find a unitary
matrix U ∈Mn(C) such that A = UTU∗ for some upper triangular matrix
T ∈Mn(C)). However, this upper triangular form is not canonical, since most
matrices have numerous different Schur triangularizations that look nothing
like one another.

Since Schur
triangularization is
not canonical, we

cannot use it to
answer the question

of, given two
matrices

A,B ∈Mn(C),
whether or not there
exists a unitary matrix
U ∈Mn(C) such that

A = UBU∗.

A related phenomenon happens when we consider one-sided multiplication
by a unitary matrix. There are two decompositions that give completely dif-
ferent answers for what type of matrix can be reached in this way—the polar
decomposition (Theorem 2.2.12) says that every matrix can be made positive
semidefinite, whereas the QR decomposition (Theorem 1.C.1) says that every
matrix can be made upper triangular. Furthermore, both of these forms are “not
quite canonical”—they are unique as long as the original matrix is invertible,
but they are not unique otherwise.

Of the decompositions that consider multiplication by unitary matrices, only
the singular value decomposition (Theorem 2.3.1) is canonical. We summarize
these observations in Table 2.3 for easy reference.

We also learned about the special role that the set of normal matrices, as well
as its subsets of unitary, Hermitian, skew-Hermitian, and positive semidefinite
matrices play in the realm of matrix decompositions. For example, the spectral
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Of these
decompositions,

only the SVD is
canonical.

Type Decomposition Name and notes

One-sided A = UT
• U is unitary
• T is triangular

QR decomposition—see Section 1.C
and note that T can be chosen to have
non-negative diagonal entries.

One-sided A = UP
• U is unitary
• P is PSD

Polar decomposition—see Theo-
rem 2.2.12. P is positive definite if and
only if A is invertible.

Two-sided A = UΣV
• U,V are unitary
• Σ is diagonal

Singular value decomposition (SVD)—
see Section 2.3. The diagonal entries of
Σ can be chosen to be non-negative and
in non-increasing order.

Unitary
similarity

A = UTU∗
• U is unitary
• T is triangular

Schur triangularization—see Sec-
tion 2.1.1. The spectral decomposition
(Theorem 2.1.4) is a special case.

Table 2.3: A summary of the matrix decompositions that answer the question of
how simple a matrix can be made upon multiplying it by unitary matrices on
the left and/or right. These decompositions all apply to every matrix A (with the
understanding that A must be square for unitary similarity to make sense).

decomposition tells us that normal matrices are exactly the matrices that can
not only be diagonalized, but can be diagonalized via a unitary matrix (rather
than just an invertible matrix).

While we have already given characterization theorems for unitary matrices
(Theorem 1.4.9) and positive semidefinite matrices (Theorem 2.2.1) that pro-
vide numerous different equivalent conditions that could be used to define them,
we have not yet done so for normal matrices. For ease of reference, we provide
such a characterization here, though we note that most of these properties were
already proved earlier in various exercises.

Theorem 2.5.1
Characterization of

Normal Matrices

Suppose A ∈Mn(C) has eigenvalues λ1, . . . ,λn. The following are equiv-
alent:

a) A is normal,
b) A = UDU∗ for some unitary U ∈Mn(C) and diagonal D ∈Mn(C),
c) there is an orthonormal basis of Cn consisting of eigenvectors of A,
d) ‖A‖2

F = |λ1|2 + · · ·+ |λn|2,
e) the singular values of A are |λ1|, . . . , |λn|,
f) (Av) · (Aw) = (A∗v) · (A∗w) for all v,w ∈ Cn,Compare

statements (g) and
(h) of this theorem

to the
characterizations of

unitary matrices
given in

Theorem 1.4.9.

and
g) ‖Av‖= ‖A∗v‖ for all v ∈ Cn.

Proof. We have already discussed the equivalence of (a), (b), and (c) exten-
sively, as (b) and (c) are just different statements of the spectral decomposition.
The equivalence of (a) and (d) was proved in Exercise 2.1.12, the fact that (a)
implies (e) was proved in Theorem 2.3.4 and its converse in Exercise 2.3.20.
Finally, the fact that (a), (f), and (g) are equivalent follows from taking B = A∗

in Exercise 1.4.19. �

It is worth noting, however, that there are even more equivalent charac-
terizations of normality, though they are somewhat less important than those
discussed above. See Exercises 2.1.14, 2.2.14, and 2.5.4, for example.
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Exercises solutions to starred exercises on page 473

2.5.1 For each of the following matrices, say which of
the following matrix decompositions can be applied to it:
(i) diagonalization (i.e., A = PDP−1 with P invertible and
D diagonal), (ii) Schur triangularization, (iii) spectral de-
composition, (iv) singular value decomposition, and/or (v)
Jordan decomposition.

∗ (a)
[

1 1
−1 1

]

∗ (c)
[

1 0
1 1

]

∗ (e)
[

1 0
1 1.0001

]

∗ (g)
[

0 0
0 0

]

(b)
[

0 −i
i 0

]

(d)
[

1 2
3 4

]

(f)
[

1 2 3
4 5 6

]

(h) The 75 × 75 matrix
with every entry equal
to 1.

2.5.2 Determine which of the following statements are
true and which are false.

∗ (a) Any two eigenvectors that come from different
eigenspaces of a normal matrix must be orthogonal.

(b) Any two distinct eigenvectors of a Hermitian matrix
must be orthogonal.

∗ (c) If A ∈Mn has polar decomposition A = UP then P
is the principal square root of A∗A.

2.5.3 Suppose A ∈Mn(C) is normal and B ∈Mn(C)
commutes with A (i.e., AB = BA).

(a) Show that A∗ and B commute as well. [Hint: Com-
pute ‖A∗B−BA∗‖2

F .] [Side note: This result is called
Fuglede’s theorem.]

(b) Show that if B is also normal then so is AB.

∗∗2.5.4 Suppose A ∈Mn(C) has eigenvalues λ1, . . . ,λk
(listed according to geometric multiplicity) with correspond-
ing eigenvectors v1, . . . ,vk , respectively, that form a linearly
independent set.

Show that A is normal if and only if A∗ has eigenvalues
λ1, . . . ,λk with corresponding eigenvectors v1, . . . ,vk, re-
spectively.

[Hint: One direction is much harder than the other. For
the difficult direction, be careful not to assume that k = n
without actually proving it—Schur triangularization might
help.]

2.5.5 Two Hermitian matrices A,B ∈MH
n are called

∗-congruent if there exists an invertible matrix S ∈Mn(C)
such that A = SBS∗.

(a) Show that for every Hermitian matrix A ∈MH
n there

exist non-negative integers p and n such that A is
∗-congruent to




Ip O O
O −In O
O O O


 .

[Hint: This follows quickly from a decomposition
that we learned about in this chapter.]

(b) Show that every Hermitian matrix is ∗-congruent to
exactly one matrix of the form described by part (a)
(i.e., p and n are determined by A).
[Hint: Exercise 2.2.17 might help here.]
[Side note: This shows that the form described by
part (a) is a canonical form for ∗-congruence, a fact
that is called Sylvester’s law of inertia.]

2.5.6 Suppose A,B ∈Mn(C) are diagonalizable and A
has distinct eigenvalues.

(a) Show that A and B commute if and only if B ∈
span

{
I,A,A2,A3, . . .

}
. [Hint: Use Exercise 2.1.29

and think about interpolating polynomials.]
(b) Provide an example to show that if A does not have

distinct eigenvalues then it may be the case that A and
B commute even though B 6∈ span

{
I,A,A2,A3, . . .

}
.

∗2.5.7 Suppose that A ∈Mn is a positive definite matrix
for which each entry is either 0 or 1. In this exercise, we
show that the only such matrix is A = I.

(a) Show that tr(A)≤ n.
(b) Show det(A)≥ 1.

[Hint: First show that det(A) is an integer.]
(c) Show that det(A)≤ 1.

[Hint: Use the AM–GM inequality (Theorem A.5.3)
with the eigenvalues of A.]

(d) Use parts (a), (b), and (c) to show that every eigen-
value of A equals 1 and thus A = I.

2.A Extra Topic: Quadratic Forms and Conic Sections

One of the most useful applications of the real spectral decomposition is a
characterization of quadratic forms, which can be thought of as aRefer back to

Section 1.3.2 if you
need a refresher on

linear or bilinear
forms.

generalization
of quadratic functions of one input variable (e.g., q(x) = 3x2 + 2x− 7) to
multiple variables, in the same way that linear forms generalize linear functions
from one input variable to multiple variables.
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Definition 2.A.1
Quadratic Forms

Suppose V is a vector space over R. Then a function q : V → R is called a
quadratic form if there exists a bilinear form f : V ×V → R such that

q(v) = f (v,v) for all v ∈ V .

For example, the function q : R2→ R defined by q(x,y) = 3x2 +2xy+5y2

is a quadratic form, since if we let v = (x,y) and

A =

[
3 1
1 5

]
then q(v) = vT Av.

That is, q looks like the “piece” of the bilinear form f (v,w) = vT Aw that we
get if we plug v into both inputs.

The degree of a
term is the sum of
the exponents of

variables being
multiplied together

(e.g., x2 and xy each
have degree 2).

More generally, every polynomial q : Rn→R
in which every term has degree exactly equal to 2 is a quadratic form, since
this same procedure can be carried out by simply placing the coefficients of the
squared terms along the diagonal of the matrix A and half of the coefficients of
the cross terms in the corresponding off-diagonal entries.

Example 2.A.1
Writing a Degree-2

Polynomial
as a Matrix

Suppose q : R3→ R is the function defined by

q(x,y,z) = 2x2−2xy+3y2 +2xz+3z2.

Find a symmetric matrix A ∈M3(R) such that if v = (x,y,z) then q has
the form q(v) = vT Av, and thus show that q is a quadratic form.
Solution:

Direct computation shows that if A ∈M3(R) is symmetric then

vT Av = a1,1x2 +2a1,2xy+2a1,3xz+a2,2y2 +2a2,3yz+a3,3z2.

Simply matching up this form with the coefficients of q shows that we can
choose

The fact that the
(2,3)-entry of A

equals 0 is a result of
the fact that q has

no “yz” term.

A =




2 −1 1
−1 3 0
1 0 3


 so that q(v) = vT Av.

It follows that q is a quadratic form, since q(v) = f (v,v), where f (v,w) =
vT Aw is a bilinear form.

In fact, the converse holds as well—not only are polynomials with degree-2
terms quadratic forms, but every quadratic form on Rn can be written as a
polynomial with degree-2 terms. We now state and prove this observation.

Theorem 2.A.1
Characterization

of Quadratic Forms

Suppose q : Rn→ R is a function. The following are equivalent:
a) q is a quadratic form,
b) q is an n-variable polynomial in which every term has degree 2,
c) there is a matrix A ∈Mn(R) such that q(v) = vT Av, and
d) there is a symmetric matrix A ∈MS

n(R) such that q(v) = vT Av.
Furthermore, the vector space of quadratic forms is isomorphic to the
vector spaceMS

n of symmetric matrices.

Proof. We have already discussed why conditions (b) and (d) are equiva-
lent, and the equivalence of (c) and (a) follows immediately from applying
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Theorem 1.3.5 to the bilinear form f associated with q (i.e., the bilinear form
with the property that q(v) = f (v,v) for all v ∈ Rn). Furthermore, the fact that
(d) implies (c) is trivial, so the only remaining implication to prove is that (c)
implies (d).

To this end, simply notice that if q(v) = vT Av for all v ∈ Rn then
vT Av is a scalar and
thus equals its own

transpose.
vT (A+AT )v = vT Av+vT AT v = q(v)+(vT Av)T = q(v)+vT Av = 2q(v).

We can thus replace A by the symmetric matrix (A+AT )/2 without changing
the quadratic form q.

For the “furthermore” claim, suppose A ∈MS
n is symmetric and define a

linear transformation T by T (A) = q, where q(v) = vT Av. The equivalence of
conditions (a) and (d) shows that q is a quadratic form, and every quadratic
form is in the range of T . To see that T is invertible (and thus an isomorphism),
we just need to show that T (A) = 0 implies A = O. In other words, we need
to show that if q(v) = vT Av = 0 for all v ∈ Rn then A = O. This fact follows
immediately from Exercise 1.4.28(b), so we are done. �

Since the above theoremRecall from
Example 1.B.3 that

the matrix (A+AT )/2
from the above

proof is the
symmetric part of A.

tells us that every quadratic form can be written
in terms of a symmetric matrix, we can use any tools that we know of for
manipulating symmetric matrices to help us better understand quadratic forms.
For example, the quadratic form q(x,y) = (3/2)x2 +xy+(3/2)y2 can be written
in the form q(v) = vT Av, where

v =
[

x
y

]
and A =

1
2

[
3 1
1 3

]
.

Since AWe investigate
higher-degree

generalizations of
linear and quadratic

forms in Section 3.B.

has real spectral decomposition A = UDUT with

U =
1√
2

[
1 1
1 −1

]
and D =

[
2 0
0 1

]
,

we can multiply out q(v) = vT Av = (UT v)D(UT v) to see that

q(v) =
1
2
[
x+ y, x− y

][2 0
0 1

][
x+ y
x− y

]
= (x+ y)2 +

1
2
(x− y)2. (2.A.1)

In other words, the real spectral decomposition tells us how to write q as a
sum (or, if some of the eigenvalues of A are negative, difference) of squares.
We now state this observation explicitly.

Corollary 2.A.2
Diagonalization of

Quadratic Forms

Suppose q : Rn → R is a quadratic form. Then there exist scalars
λ1, . . . ,λn ∈ R and an orthonormal basis {u1,u2, . . . ,un} of Rn such that

q(v) = λ1(u1 ·v)2 +λ2(u2 ·v)2 + · · ·+λn(un ·v)2 for all v ∈ Rn.

Proof. We know from Theorem 2.A.1 that there exists a symmetric matrix A ∈
Mn(R) such that q(v) = vT Av for some all v ∈ Rn. Applying the real spectral
decomposition (Theorem 2.1.6) to A gives us a unitary matrix U ∈Mn(R) and
a diagonal matrix D∈Mn(R) such that A = UDUT , so q(v) = (UT v)D(UT v),
as before.
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If we write U =
[

u1 | u2 | · · · | un
]

and let λ1, λ2, . . ., λn denote the
eigenvalues of A, listed in the order in which they appear on the diagonal of D,
then

Here we use the
fact that uT

j v = u j ·v
for all 1≤ j ≤ n.

q(v) = (UT v)D(UT v)

=
[
u1 ·v, u2 ·v, · · · , un ·v

]




λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn







u1 ·v
u2 ·v

...
un ·v




= λ1(u1 ·v)2 +λ2(u2 ·v)2 + · · ·+λn(un ·v)2

for all v ∈ Rn, as claimed. �

The real magic of the above theorem thus comes from the fact that, not
only does it let us write any quadratic form as a sum or difference of squares,
but it lets us do so through an orthonormal change of variables. To see what
we mean by this, recall from Theorem 1.4.5 that if B = {u1,u2, . . . ,un} is
an orthonormal basis then [v]B =

(
u1 ·v,u2 ·v, . . . ,un ·v

)
. In other words, the

above theorem says that every quadratic form really just looks like a function
of the formJust like

diagonalization of a
matrix gets rid of its

off-diagonal entries,
diagonalization of a
quadratic form gets
rid of its cross terms.

f (x1,x2, . . . ,xn) = λ1x2
1 +λ2x2

2 + · · ·+λnx2
n, (2.A.2)

but rotated and/or reflected. We now investigate what effect different types of
eigenvalues λ1, λ2, . . ., λn, have on the graph of these functions.

2.A.1 Definiteness, Ellipsoids, and Paraboloids

In the case when a all eigenvalues of a symmetric matrix have the same sign
(i.e., either all positive or all negative), the associated quadratic form becomes
much easier to analyze.

Positive Eigenvalues
If the symmetric matrix A ∈MS

n(R) corresponding to a quadratic form q(v) =
vT Av is positive semidefinite then, by definition, we must have q(v) ≥ 0 for
all v. For this reason, we say in this case that q itself is positive semidefinite
(PSD), and we say that it is furthermore positive definite (PD) if q(v) > 0
whenever v 6= 0.

All of our results about positive semidefinite matrices carry over straight-
forwardly to the setting of PSD quadratic forms. In particular, the following
fact follows immediately from Theorem 2.2.1:

Recall that
the scalars in

Corollary 2.A.2 are
the eigenvalues of A.

! A quadratic form q : Rn → R is positive semidefinite if and
only if each of the scalars in Corollary 2.A.2 are non-negative.
It is positive definite if and only if those scalars are all strictly
positive.

If q is positive definite then has it ellipses (or ellipsoids, or hyperellipsoids,
depending on the dimension) as its level sets.

A level set of q is the
set of solutions to

q(v) = c, where c is a
given scalar. They

are horizontal slices
of q’s graph.

The principal radii of the level
set q(v) = 1 are equal to 1/

√
λ1, 1/

√
λ2, . . ., 1/

√
λn, where λ1, λ2, . . ., λn are
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the eigenvalues of its associated matrix A, and the orthonormal eigenvectors
{u1,u2, . . . ,un} described by Corollary 2.A.2 specify the directions of their cor-
responding principal axes. Furthermore, in this case when the level sets of q are
ellipses, its graph must be a paraboloid (which looks like an infinitely-deep bowl).

For example, the level sets of q(x,y) = x2 + y2 are circles, the level sets
of q(x,y) = x2 +2y2 are ellipses that are squished by a factor of 1/

√
2 in the

y-direction, and the level sets of h(x,y,z) = x2 +2y2 +3z2 are ellipsoids in R3

that are squished by factors of 1/
√

2 and 1/
√

3 in the directions of the y- and
z-axes, respectively. We now work through an example that is rotated and thus
cannot be “eyeballed” so easily.

Example 2.A.2
A Positive Definite

Quadratic Form

Plot the level sets of the quadratic form q(x,y) = (3/2)x2 + xy+(3/2)y2

and then graph it.
Solution:

We already diagonalized this quadratic form back in Equation (2.A.1).
In particular, if we let v = (x,y) then

q(v) = 2(u1 ·v)2 +(u2 ·v)2, where u1 = (1,1)/
√

2, u2 = (1,−1)/
√

2.

It follows that the level sets of q are ellipses rotated so that their principal
axes point in the directions of u1 = (1,1)/

√
2 and u2 = (1,−1)/

√
2, and

the level set q(v) = 1 has corresponding principal radii equal to 1/
√

2 and
1, respectively. These level sets, as well as the resulting graph of q, are
displayed below:

The level sets are
shown on the left.

The graph is shown
on the right.

x

y

= 2

= 3
1/
√

2 = 1

1/
√

1 = 1/
√

2

= 1 y x

= 1

= q(x,y)

x

y

= 2

= 3
1/
√

2 = 1

1/
√

1 = 1/
√

2

= 1 y x

= 1

= q(x,y)

If a quadratic form acts on R3 instead of R2 then its level sets are ellipsoids
(rather than ellipses), and its graph is a “hyperparaboloid” living in R4 that is a
bit difficult to visualize. For example, applying the spectral decomposition to
the quadratic form

q(x,y,z) = 3x2 +4y2−2xz+3z2

reveals that if we write v = (x,y,z) then

q(v) = 4(u1 ·v)2 +4(u2 ·v)2 +2(u3 ·v)2, where

u1 = (1,0,−1)/
√

2, u2 = (0,1,0), and u3 = (1,0,1)/
√

2.

It follows that the level sets of q are ellipsoids with principal axes pointing in
the directions of u1, u2, and u3. Furthermore, the corresponding principal radii
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for the level set q(v) = 1 are 1/2, 1/2, and 1/
√

2, respectively, as displayed in
Figure 2.11(a).

Negative Eigenvalues
If allA symmetric matrix

with all-negative
eigenvalues is called

negative definite.

of the eigenvalues of a symmetric matrix are strictly negative then
the level sets of the associated quadratic form are still ellipses (or ellipsoids,
or hyperellipsoids), but its graph is instead a (hyper)paraboloid that opens
down (not up). These observations follow simply from noticing that if q has
negative eigenvalues then −q (which has the same level sets as q) has positive
eigenvalues and is thus positive definite.

Some Zero Eigenvalues
If a quadratic

The shapes that
arise in this section

are the conic
sections and their

higher-dimensional
counterparts.

form is just positive semidefinite (i.e., one or more of the eigen-
values of the associated symmetric matrix equal zero) then its level sets are
degenerate—they look like lower-dimensional ellipsoids that are stretched into
higher-dimensional space. For example, the quadratic form

q(x,y,z) = 3x2 +2xy+3y2

does not actually depend on z at all, so its level sets extend arbitrarily far in the
z direction, as in Figure 2.11(b).

These elliptical
cylinders can be

thought of as
ellipsoids with one of
their radii equal to ∞.

y x

q(x,y, ) = 1

y x

q(x,y, ) = 1
q(x,y, ) = 2

Figure 2.11: Level sets of positive (semi)definite quadratic forms are (hy-
per)ellipsoids.

Indeed, we can write q in the matrix form

q(v) = vT Av, where A =




3 1 0
1 3 0
0 0 0


 ,

which has eigenvalues 4, 2, and 0. Everything on the z-axis is an eigenvector
corresponding to the 0 eigenvalue, which explains why nothing interesting
happens in that direction.

Example 2.A.3
A Positive

Semidefinite
Quadratic Form

Plot the level sets of the quadratic form q(x,y) = x2−2xy+ y2 and then
graph it.

Solution:
This quadratic form is simple enough that we can simply eyeball a
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diagonalization of it:

q(x,y) = x2−2xy+ y2 = (x− y)2.

The fact that we just need one term in a sum-of-squares decomposition of
q tells us right away that the associated symmetric matrix A has at most
one non-zero eigenvalue. We can verify this explicitly by noting that if
v = (x,y) then

q(v) = vT Av, where A =
[

1 −1
−1 1

]
,

which has eigenvalues 2 and 0. The level sets of q are thus degenerate
ellipses (which are just pairs of lines, since “ellipses” in R1 are just pairs
of points). Furthermore, the graph of this quadratic form is degenerate
paraboloid (i.e., a parabolic sheet), as shown below:

We can think of
these level sets (i.e.,

pairs of parallel lines)
as ellipses with one

of their principal radii
equal to ∞.

x

y

1/
√

1 = 1/
√

2

1/
√

2 ≈

= 0

= 1,2,3,4

y

x
= 4

= 3

= 2

= 1

= 0

= q(x,y)

2.A.2 Indefiniteness and Hyperboloids

If the symmetric matrixIf a quadratic form
or symmetric matrix

is neither positive
semidefinite nor

negative
semidefinite, we say

that it is indefinite.

associated with a quadratic form has both positive and
negative eigenvalues then its graph looks like a “saddle”—there are directions
on in along which it opens up (i.e., the directions of its eigenvectors correspond-
ing to positive eigenvalues), and other directions along which it opens down
(i.e., the directions of its eigenvectors corresponding to negative eigenvalues).
The level sets of such a shape are hyperbolas (or hyperboloids, depending on
the dimension).

Example 2.A.4
An Indefinite

Quadratic Form

Plot the level sets of the quadratic form q(x,y) = xy and then graph it.

Solution:
Applying the spectral decomposition to the symmetric matrix associ-

ated with q reveals that it has eigenvalues λ1 = 1/2 and λ2 =−1/2, with
corresponding eigenvectors (1,1) and (1,−1), respectively. It follows that
q can be diagonalized as

q(x,y) =
1
4
(x+ y)2− 1

4
(x− y)2.

Since there are terms being both added and subtracted, we conclude that
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the level sets of q are hyperbolas and its graph is a saddle, as shown below:

The z = 0 level set is
exactly the x- and

y-axes, which
separate the other

two families of
hyperbolic level sets.

x

y

= 1,2,3,4

=−1,−2,−3,−4

1/
√
| 2|=

√
2

1/
√

1 =
√

2
y

= xy

= 1

x

As suggested by the image in the above example, if λ1 is a positive eigen-
value of the symmetric matrix associated with a quadratic form q : R2→ R
then 1/

√
λ1 measures the distance from the origin to the closest point on the

hyperbola q(x,y) = 1, and the eigenvectors to which λ1 corresponds specify the
direction between the origin and that closest point. The eigenvectors to which
the other (necessarily negative) eigenvalue λ2 corresponds similarly specifies
the “open” direction of this hyperbola. Furthermore, if we look at the hyperbola
q(x,y) =−1 then the roles of λ1 and λ2 swap.

In higher
There is also one

other possibility: if
one eigenvalue is

positive, one is
negative, and one

equals zero, then the
level sets look like

“hyperbolic
sheets”—2D
hyperbolas

stretched along a
third dimension.

dimensions, the level sets are similarly hyperboloids (i.e., shapes
whose 2D cross-sections are ellipses and/or hyperbolas), and a similar in-
terpretation of the eigenvalues and eigenvectors holds. In particular, for the
hyperboloid level set q(v) = 1, the positive eigenvalues specify the radii of its
elliptical cross-sections, and the eigenvectors corresponding to the negative
eigenvalues specify directions along which the hyperboloid is “open” (and
these interpretations switch for the level set q(v) =−1).

For example, if q : R3→ R is the quadratic form

q(x,y,z) = x2 + y2− z2

then the level set q(x,y,z) = 1 is a hyperboloid that looks like the circle x2 +
y2 = 1 in the xy-plane, the hyperbola x2 − z2 = 1 in the xz-plane, and the
hyperbola y2− z2 = 1 in the yz-plane. It is thus open along the z-axis and has
radius 1 along the x- and y-axes (see Figure 2.12(a)). A similar analysis of
the level set q(x,y,z) =−1 reveals that it is open along the x- and y-axes and
thus is not even connected (the xy-plane separates its two halves), as shown in
Figure 2.12(c). For this reason, we call this set a “hyperboloid of two sheets”
(whereas we call the level set q(x,y,z) = 1 a “hyperboloid of one sheet”).

Exercises solutions to starred exercises on page 474

2.A.1 Classify each of the following quadratic forms as
positive (semi)definite, negative (semi)definite, or indefinite.

∗ (a) q(x,y) = x2 +3y2

(b) q(x,y) = 3y2−2x2

∗ (c) q(x,y) = x2 +4xy+3y2

(d) q(x,y) = x2 +4xy+4y2

∗ (e) q(x,y) = x2 +4xy+5y2

(f) q(x,y) = 2xy−2x2− y2

∗ (g) q(x,y,z) = 3x2− xz+ z2
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y

x

q(x,y, ) = 1

y

x

q(x,y, ) = 0

y

x

q(x,y, ) =−1

Figure 2.12: The quadratic form q(x,y,z) = x2 + y2− z2 is indefinite, so its level sets
are hyperboloids. The one exception is the level set q(x,y,z) = 0, which is a double
cone that serves as a boundary between the two types of hyperboloids that exist
(one-sheeted and two-sheeted).

(h) q(x,y,z) = 3x2 +3y2 +3z2−2xy−2xz−2yz
∗ (i) q(x,y,z) = x2 +2y2 +2z2−2xy+2xz−4yz

(j) q(w,x,y,z) = w2 +2x2− y2−2xy+ xz−2wx+ yz

2.A.2 Determine what type of object the graph of the
given equation in R2 is (e.g., ellipse, hyperbola, two lines,
or maybe even nothing at all).

∗ (a) x2 +2y2 = 1
∗ (c) x2 +2xy+2y2 = 1
∗ (e) 2x2 +4xy+ y2 = 3
∗ (g) 2x2 +4xy+ y2 =−1

(b) x2−2y2 =−4
(d) x2 +2xy+2y2 =−2
(f) 2x2 +4xy+ y2 = 0
(h) 2x2 + xy+3y2 = 0

2.A.3 Determine what type of object the graph of the given
equation in R3 is (e.g., ellipsoid, hyperboloid of one sheet,
hyperboloid of two sheets, two touching cones, or maybe
even nothing at all).

∗ (a) x2 +3y2 +2z2 = 2
(b) x2 +3y2 +2z2 =−3
∗ (c) 2x2 +2xy−2xz+2yz = 1

(d) 2x2 +2xy−2xz+2yz =−2

∗ (e) x2 + y2 +2z2−2xz−2yz = 3
(f) x2 + y2 +4z2−2xy−4xz = 2
∗ (g) 3x2 + y2 +2z2−2xy−2xz− yz = 1

(h) 2x2 + y2 +4z2−2xy−4xz = 0

2.A.4 Determine which of the following statements are
true and which are false.

∗ (a) Quadratic forms are bilinear forms.
(b) The sum of two quadratic forms is a quadratic form.
∗ (c) A quadratic form q(v) = vT Av is positive semidefi-

nite if and only if A is positive semidefinite.
(d) The graph of a non-zero quadratic form q : R2→ R

is either an ellipse, a hyperbola, or two lines.
∗ (e) The function f : R→ R defined by f (x) = x2 is a

quadratic form.

2.A.5 Determine which values of a ∈ R make the follow-
ing quadratic form positive definite:

q(x,y,z) = x2 + y2 + z2−a(xy+ xz+ yz).

2.B Extra Topic: Schur Complements and Cholesky

One common technique for making large matrices easier to work with is to
break them up into 2×2 block matrices and then try to use properties of the
smaller blocks to determine corresponding properties of the large matrix. For
example, solving a large linear system Qx = b directly might be quite time-
consuming, but we can make it smaller and easier to solve by writing Q as a
2×2 block matrix, and similarly writing x and b as “block vectors”, as follows:

Q =

[
A B
C D

]
, x =

[
x1
x2

]
, and b =

[
b1

b2

]
.
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Then Qx = b can be written in either of the equivalent forms
[

A B
C D

][
x1
x2

]
=

[
b1

b2

]
⇐⇒ Ax1 +Bx2 = b1

Cx1 +Dx2 = b2.

If A is invertible then one way to solve this linear system is to subtract CA−1

times the first equation from the second equation,
This procedure is

sometimes called
“block Gaussian

elimination”, and it
really can be

thought of as a
block matrix version

of the Gaussian
elimination

algorithm that we
already know.

which puts it into the form

Ax1 +Bx2 = b1

(D−CA−1B)x2 = b2−CA−1b1.

This version of the linear system perhaps looks uglier at first glance, but it
has the useful property of being block upper triangular: we can solve it by
first solving for x2 in the smaller linear system (D−CA−1B)x2 = b2−CA−1b1
and then solving for x1 in the (also smaller) linear system Ax1 +Bx2 = b1. By
using this technique, we can solve a 2n×2n linear system Qx = b entirely via
matrices that are n×n.

This type of reasoning can also be applied directly to the block matrix Q
(rather than the corresponding linear system), and doing so leads fairly quickly
to the following very useful block matrix decomposition:

Theorem 2.B.1
2×2 Block Matrix

LDU Decomposition

Suppose A ∈Mn is invertible. Then
[

A B
C D

]
=

[
I O

CA−1 I

][
A O

O D−CA−1B

][
I A−1B
O I

]
.

Proof. WeWe do not require
A and D to have the

same size in this
theorem (and thus B

and C need not
be square).

simply multiply together the block matrices on the right:
[

I O

CA−1 I

][
A O

O D−CA−1B

][
I A−1B
O I

]

=

[
I O

CA−1 I

][
A A(A−1B)
O D−CA−1B

]

=

[
A B

(CA−1)A (CA−1B)+(D−CA−1B)

]
=

[
A B
C D

]
,

as claimed. �

We will use the above decomposition throughout this section to come up
with formulas for things like det(Q) and Q−1, or find a way to determine
positive semidefiniteness of Q, based only on corresponding properties of its
blocks A, B, C, and D.

2.B.1 The Schur Complement

The beauty of Theorem 2.B.1 is that it lets us write almost any 2× 2 block
matrix as a product of triangular matrices with ones on their diagonals and a
block-diagonal matrix. We can thus determine many properties of Q just from
the corresponding properties of those diagonal blocks. Since it will be appearing
repeatedly, we now give a name to the ugly diagonal block D−CA−1B.
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Definition 2.B.1
Schur

Complement

If A ∈Mn is invertible then the Schur complement of A in the 2× 2
block matrix [

A B
C D

]

is D−CA−1B.

Example 2.B.1
Computing a

Schur
Complement

Partition the following matrix Q as a 2×2 block matrix of 2×2 matrices
and compute the Schur complement of the top-left block in Q:

Q =




2 1 1 0
1 2 1 1
1 1 2 1
0 1 1 2


 .

Solution:To help remember
the formula for the

Schur complement,
keep in mind that

CA−1B is always
defined as long as
the block matrix Q

makes sense,
whereas the

incorrect BA−1C will
not be if B and C are

not square.

The 2×2 blocks of this matrix are

A =
[

2 1
1 2

]
, B =

[
1 0
1 1

]
, C =

[
1 1
0 1

]
, and D =

[
2 1
1 2

]
.

Since A is invertible (its determinant is 3), the Schur complement of A in
Q is defined and it and equals

D−CA−1B =
[

2 1
1 2

]
− 1

3

[
1 1
0 1

][
2 −1
−1 2

][
1 0
1 1

]
=

1
3

[
4 2
2 4

]
.

To illustrate what we can do with the Schur complement and the block
matrix decomposition of Theorem 2.B.1, we now present formulas for the
determinant and inverse of a 2×2 block matrix.

Theorem 2.B.2
Determinant of a
2×2 Block Matrix

Suppose A ∈Mn is invertible and S = D−CA−1B is the Schur comple-
ment of A in the 2×2 block matrix

Q =

[
A B
C D

]
.

Then

Notice that if the
blocks are all 1×1
then this theorem
says det(Q) = a(d−

c(1/a)b) = ad−bc,
which is the formula
we already know for

2×2 matrices.

det(Q) = det(A)det(S).

Proof. We just take the determinant of both sides of the block matrix decom-
position of Theorem 2.B.1:
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det

([
A B
C D

])
= det

([
I O

CA−1 I

][
A O
O S

][
I A−1B
O I

])

= det

([
I O

CA−1 I

])
det

([
A O
O S

])
det

([
I A−1B
O I

])

= 1 ·det

([
A O
O S

])
·1

= det(A)det(S).

Note

Recall that
det(XY ) = det(X)det(Y )

and that the
determinant of a

triangular matrix is
the product of its
diagonal entries.

that in the final step we used the fact that the determinant of a block diago-
nal matrix equals the product of the determinants of its blocks (this fact is often
covered in introductory linear algebra texts—see the end of Appendix A.1.5).

�

In particular,

If A is not invertible
then these block

matrix formulas do
not work. For one

way to sometimes
get around this

problem, see
Exercise 2.B.8.

notice that det(Q) = 0 if and only if det(S) = 0 (since we are
assuming that A is invertible, so we know that det(A) 6= 0). By recalling that a
matrix has determinant 0 if and only if it is not invertible, this tells us that Q is
invertible if and only if its Schur complement is invertible. This fact is re-stated
in the following theorem, along with an explicit formula for its inverse.

Theorem 2.B.3
Inverse of a 2×2

Block Matrix

Suppose A ∈Mn is invertible and S = D−CA−1B is the Schur comple-
ment of A in the 2×2 block matrix

Q =

[
A B
C D

]
.

Then Q is invertible if and only if S is invertible, and its inverse is

Q−1 =

[
I −A−1B
O I

][
A−1 O

O S−1

][
I O

−CA−1 I

]
.

Proof. We just take the inverse of both sides of the block matrix decomposition
of Theorem 2.B.1:

Recall that
(XY Z)−1 = Z−1Y−1X−1.

[
A B
C D

]−1

=

([
I O

CA−1 I

][
A O
O S

][
I A−1B
O I

])−1

=

[
I A−1B
O I

]−1[
A O
O S

]−1[
I O

CA−1 I

]−1

=

[
I −A−1B
O I

][
A−1 O

O S−1

][
I O

−CA−1 I

]
.

Note that

If the blocks are all
1×1 then the

formula provided by
this theorem

simplifies to the
familiar formula

Q−1 =
1

det(Q)

[
d −b
−c a

]

that we already
know for 2×2

matrices.

in the final step we used the fact that the inverse of a block diagonal
matrix is just the matrix with inverted diagonal blocks and the fact that for any
matrix X we have [

I X
O I

]−1

=
[

I −X
O I

]
. �



2.B Extra Topic: Schur Complements and Cholesky 267

If we wanted to, we could explicitly multiply out the formula provided by
Theorem 2.B.3 to see that

[
A B
C D

]−1

=

[
A−1 +A−1BS−1CA−1 −A−1BS−1

−S−1CA−1 S−1

]
.

However, this formula seems rather ugly and cumbersome, so we typically
prefer the factored form provided by the theorem.

The previous theorems are useful because they let us compute properties
of large matrices just by computing the corresponding properties of matrices
that are half as large. The following example highlights the power of this
technique—we will be able to compute the determinant of a 4×4 matrix just
by doing some computations with some 2×2 matrices (a much easier task).

Example 2.B.2
Using the Schur

Complement

Use the Schur complement to compute the determinant of the following
matrix:

Q =




2 1 1 0
1 2 1 1
1 1 2 1
0 1 1 2


 .

Solution:
We recall the top-left A block and the Schur complement S of A in Q

from Example 2.B.1:

A =
[

2 1
1 2

]
and S =

1
3

[
4 2
2 4

]
.

Since det(A) = 3 and det(S) = 4/3, it follows that

det(Q) = det(A)det(S) = 3 · (4/3) = 4.

Finally, as an application of the Schur complement that is a bit more
relevant to our immediate interests in this chapter, we now show that its positive
(semi)definiteness completely determines positive (semi)definiteness of the full
block matrix as well.

Theorem 2.B.4
Positive

(Semi)definiteness
of 2×2 Block

Matrices

Suppose A ∈Mn is invertible and S = C−B∗A−1B is the Schur comple-
ment of A in the self-adjoint 2×2 block matrix

Q =

[
A B
B∗ C

]
.

Then Q is positive (semi)definite if and only if A and S are positive
(semi)definite.

Proof. We notice that in this case, the decomposition of Theorem 2.B.1 simpli-
fies slightly to Q = P∗DP, where

P =

[
I A−1B
O I

]
and D =

[
A O
O S

]
.
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It follows from Exercise 2.2.13 that D is positive (semi)definite if and only if
A and S both are. It also follows from Theorem 2.2.3(d) that if D is positive
(semi)definite then so is Q.

On the other hand, we know that P is invertible since all of its eigenvalues
equal 1 (and in particular are thus all non-zero), so we can rearrange the above
decomposition of Q into the form

(P−1)∗Q(P−1) = D.

By the same logic as above, if Q is positive (semi)definite then so is D, which
is equivalent to A and S being positive (semi)definite. �

For example, if we return to the matrix Q from Example 2.B.2, it is straight-
forward to check that both A and S are positive definite (via Theorem 2.2.7, for
example), so Q is positive definite too.

2.B.2 The Cholesky Decomposition

Recall that one of the central questions that we asked in Section 2.2.3 was
how “simple” we can make the matrix B ∈Mm,n in a positive semidefinite
decomposition of a matrix A = B∗B∈Mn. One possible answer to this question
was provided by the principal square root (Theorem 2.2.11), which says that
we can always choose B to be positive semidefinite (as long as m = n so that
positive semidefiniteness is a concept that makes sense). We now make use of
Schur complements to show that, alternatively, we can always make B upper
triangular:

Theorem 2.B.5
Cholesky

Decomposition

Suppose F = R or F = C, and A ∈Mn(F) is positive semidefinite with
m = rank(A). There exists a unique matrix T ∈Mm,n in row echelon form
with real strictly positive leading entries such that

A = T ∗T.

BeforeA “leading entry”
is the first non-zero

entry in a row.

proving this theorem, we recall that T being in row echelon form
implies that it is upper triangular, but is actually a slightly stronger requirement
than just upper triangularity. For example, the matrices

[
0 1
0 0

]
and

[
0 1
0 1

]

are both upper triangular, but only the one on the left is in row echelon form.
We also note that the choice of m = rank(A) in this theorem is optimal in some
sense:

• If m < rank(A)If A is positive definite
then T is square,
upper triangular,
and its diagonal

entries are strictly
positive.

then no such decomposition of A is possible (even if
we ignore the upper triangular requirement) since if T ∈ Mm,n then
rank(A) = rank(T ∗T ) = rank(T )≤ m.

• If m > rank(A) then decompositions of this type exist (for example, we
can just pad the matrix T from the m = rank(A) case with extra rows of
zeros at the bottom), but they are no longer unique—see Remark 2.B.1.

Proof of Theorem 2.B.5. We prove the result by induction on n (the size of A).
For the base case, the result is clearly true if n = 1 since we can choose
T = [

√
a], which is an upper triangular 1× 1 matrix with a non-negative
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diagonal entry. For the inductive step, suppose that every (n− 1)× (n− 1)
positive semidefinite matrix has a Cholesky decomposition—we want to show
that if A ∈Mn is positive semidefinite then it has one too. We split into two
cases:
Case 1:Case 1 can only

happen if A is
positive semidefinite

but not positive
definite.

a1,1 = 0. We know from Exercise 2.2.11 that the entire first row and
column of A must equal 0, so we can write A as the block matrix

A =

[
0 0T

0 A2,2

]
,

where A2,2 ∈Mn−1 is positive semidefinite and has rank(A2,2) = rank(A). By
the inductive hypothesis, A2,2 has a Cholesky decomposition A2,2 = T ∗T , so

A =

[
0 0T

0 A2,2

]
=
[

0 | T
]∗[ 0 | T

]

is a Cholesky decomposition of A.
Case 2: a1,1 6= 0. We can write A as the block matrix

A =

[
a1,1 a∗2,1

a2,1 A2,2

]
,

where A2,2 ∈Mn−1 and a2,1 ∈ Fn−1 is a column vector. By applying Theo-
rem 2.B.1, weThe Schur

complement exists
because a1,1 6= 0

in this case, so a1,1
is invertible.

see that if S = A2,2−a2,1a∗2,1/a1,1 is the Schur complement of
a1,1 in A then we can decompose A in the form

A =

[
1 0T

a2,1/a1,1 I

][
a1,1 0T

0 S

][
1 a∗2,1/a1,1

0 I

]
.

Since A is positive semidefinite, it follows that S is positive semidefinite too,
so it has a Cholesky decomposition S = T ∗T by the inductive hypothesis.
Furthermore, since a1,1 6= 0 we conclude that rank(A) = rank(S)+1, and we
see that

A =

[
1 0T

a2,1/a1,1 I

][√a1,1
√a1,1 0T

0 T ∗T

][
1 a∗2,1/a1,1

0 I

]

=

[√a1,1 a∗2,1/
√a1,1

0 T

]∗[√a1,1 a∗2,1/
√a1,1

0 T

]
,

is a Cholesky decomposition of A. This completes the inductive step and the
proof of the fact that every matrix has a Cholesky decomposition. We leave the
proof of uniqueness to Exercise 2.B.12. �

It is worth noting thatThis argument can
be reversed (to

derive the QR
decomposition from

the Cholesky
decomposition) via

Theorem 2.2.10.

the Cholesky decomposition is essentially equivalent
to the QR decomposition of Section 1.C, which said that every matrix B∈Mm,n
can be written in the form B = UT , where U ∈Mm is unitary and T ∈Mm,n
is upper triangular with non-negative real entries on its diagonal. Indeed, if A is
positive semidefinite then we can use the QR decomposition to write

A = B∗B = (UT )∗(UT ) = T ∗U∗UT = T ∗T,

which is basically a Cholesky decomposition of A.
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Example 2.B.3
Finding a Cholesky

Decomposition

Find the Cholesky decomposition of the matrix A = 


4 −2 2
−2 2 −2
2 −2 3




.

Solution:
To construct A’s Cholesky decomposition, we mimic the proof of

Theorem 2.B.5. We start by writing A as a block matrix with 1×1 top-left
block:

A =

[
a1,1 a∗2,1

a2,1 A2,2

]
, where a1,1 = 4, a2,1 =

[
−2
2

]
, A2,2 =

[
2 −2
−2 3

]
.

The Schur complement of a1,1 in A is then

S = A2,2−a2,1a∗2,1/a1,1

=
[

2 −2
−2 3

]
− 1

4

[
−2
2

][
−2 2

]
=
[

1 −1
−1 2

]
.

It follows from the proof of Theorem 2.B.5 that the Cholesky decomposi-
tion of AAt this point, we

have done one step
of the induction in

the proof that A has
a Cholesky

decomposition. The
next step is to apply

the same procedure
to S, and so on.

is

A =

[√a1,1 a∗2,1/
√a1,1

0 T

]∗[√a1,1 a∗2,1/
√a1,1

0 T

]

=




2 −1 1
0
0

T




∗


2 −1 1
0
0

T


 ,

(2.B.1)

where S = T ∗T is a Cholesky decomposition of S.
This is a step in the right direction—we now know the top row of the

triangular matrix in the Cholesky decomposition of A. To proceed from
here, we perform the same procedure on the Schur complement S—we
write S as a block matrix with 1×1 top-left block:If A was even larger,

we would just repeat
this procedure. Each
iteration finds us one

more row in its
Cholesky

decomposition.

S =

[
s1,1 s∗2,1

s2,1 S2,2

]
, where s1,1 = 1, s2,1 =

[
−1
]
, S2,2 =

[
2
]
.

The Schur complement of s1,1 in S is then

S2,2− s2,1s∗2,1/s1,1 = 2− (−1)2 = 1.

It follows from the proof of Theorem 2.B.5 that a Cholesky decomposition
ofThe term

√
S2,2 here

comes from the fact
that S2,2 =

√
S2,2
√

S2,2
is a Cholesky

decomposition of
the 1×1 matrix S2,2.

S is

S =

[√s1,1 s∗2,1/
√s1,1

0
√

S2,2

]∗[√s1,1 s∗2,1/
√s1,1

0
√

S2,2

]
=
[

1 −1
0 1

]∗ [
1 −1
0 1

]
.
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If we plug this decomposition of S into Equation (2.B.1), we get the
following Cholesky decomposition of A:

A =




2 −1 1
0 1 −1
0 0 1



∗


2 −1 1
0 1 −1
0 0 1


 .

Remark 2.B.1
(Non-)Uniqueness

of the Cholesky
Decomposition

It is worth emphasizing that decompositions of the form A = T ∗T are no
longer necessarily unique if we only require that T be upper triangular
(rather than in row echelon form) or if m > rank(A). One reason for this is
that, in Case 1 of the proof of Theorem 2.B.5, the matrix

[
0 | T

]
may be

upper triangular even if T is not. Furthermore, instead of writing

A =

[
0 0T

0 A2,2

]
=
[

0 | T1
]∗[ 0 | T1

]

where A2,2 = T ∗1 T1 is a Cholesky decomposition of A2,2, we could instead
write [

0 0T

0 A2,2

]
=

[
0 x∗

0 T2

]∗[
0 x∗

0 T2

]
,

where A2,2 = xx∗+T ∗2 T2. We could thus just choose x∈Fn−1 small enough
so that A2,2−xx∗ is positive semidefinite and thus has a Cholesky decom-
position A2,2−xx∗ = T ∗2 T2.

For example,The Cholesky
decomposition is a
special case of the
LU decomposition

A = LU . If A is positive
semidefinite, we can

choose L = U∗.

it is straightforward to verify that if

A =




0 0 0
0 2 3
0 3 5




then A = T ∗1 T1 = T ∗2 T2 = T ∗3 T3, where

T1 =

[
0
√

2 3/
√

2

0 0 1/
√

2

]
, T2 =

[
0 1 1
0 1 2

]
, T3 =




0
√

2 3/
√

2

0 0 1/
√

2
0 0 0


 .

However, only the decomposition involving T1 is a valid Cholesky de-
composition, since T2 is not in row echelon form (despite being upper
triangular) and T3 has 3 = m > rank(A) = 2 rows.

Exercises solutions to starred exercises on page 474

2.B.1 Use the Schur complement to help you solve the
following linear system by only ever doing computations
with 2×2 matrices:

2w+ x+ y+ z =−3
w− x+2y− z = 3
−w+ x+2y+ z = 1
3w + y+2z = 2
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2.B.2 Compute the Schur complement of the top-left 2×2
block in each of the following matrices, and use it to com-
pute the determinant of the given matrix and determine
whether or not it is positive (semi)definite.

∗ (a)



2 1 1 0
1 3 1 1
1 1 2 0
0 1 0 1




(b)



3 2 0 −1
2 2 1 0
0 1 2 0
−1 0 0 3




2.B.3 Determine which of the following statements are
true and which are false.

∗ (a) The Schur complement of the top-left 2×2 block of
a 5×5 matrix is a 3×3 matrix.

(b) If a matrix is positive definite then so are the Schur
complements of any of its top-left blocks.

∗ (c) Every matrix has a Cholesky decomposition.

∗2.B.4 Find infinitely many different decompositions of
the matrix

A =




0 0 0
0 1 1
0 1 2




of the form A = T ∗T , where T ∈M3 is upper triangular.

2.B.5 Suppose X ∈Mm,n and c ∈ R is a scalar. Use the
Schur complement to show that the block matrix

[
cIm X
X∗ cIn

]

is positive semidefinite if and only if ‖X‖ ≤ c.

[Side note: You were asked to prove this directly in Exer-
cise 2.3.15.]

2.B.6 This exercise shows that it is not possible to deter-
mine the eigenvalues of a 2× 2 block matrix from its A
block and its Schur complement. Let

Q =

[
1 2
2 1

]
and R =

[
1 3
3 6

]
.

(a) Compute the Schur complement of the top-left 1×1
block in each of Q and R.
[Side note: They are the same.]

(b) Compute the eigenvalues of each of Q and R.
[Side note: They are different.]

∗2.B.7 Suppose A ∈Mn is invertible and S = D−CA−1B
is the Schur complement of A in the 2×2 block matrix

Q =

[
A B
C D

]
.

Show that rank(Q) = rank(A)+ rank(S).

∗∗2.B.8 Consider the 2×2 block matrix

Q =

[
A B
C D

]
.

In this exercise, we show how to come up with block matrix
formulas for Q if the D ∈Mn block is invertible (rather
than the A block).

Suppose that D is invertible and let S = A−BD−1C (S is
called the Schur complement of D in Q).

(a) Show how to write

Q = U

[
S O
O D

]
L,

where U is an upper triangular block matrix with
ones on its diagonal and L is a lower triangular block
matrix with ones on its diagonal.

(b) Show that det(Q) = det(D)det(S).
(c) Show that Q is invertible if and only if S is invertible,

and find a formula for its inverse.
(d) Show that Q is positive (semi)definite if and only if

S is positive (semi)definite.

2.B.9 Suppose A ∈Mm,n and B ∈Mn,m. Show that

det(Im +AB) = det(In +BA).

[Side note: This is called Sylvester’s determinant iden-
tity.]

[Hint: Compute the determinant of the block matrix

Q =

[
Im −A
B In

]

using both Schur complements (see Exercise 2.B.8).]

2.B.10 Suppose A ∈Mm,n and B ∈Mn,m.

(a) Use the result of Exercise 2.B.9 to show that Im +AB
is invertible if and only if In +BA is invertible.

(b) Find a formula for (Im +AB)−1 in terms of A, B, and
(In + BA)−1. [Hint: Try using Schur complements
just like in Exercise 2.B.9.]

∗∗2.B.11 Suppose A ∈Mm,n, B ∈Mn,m, and m≥ n. Use
the result of Exercise 2.B.9 to show that the characteristic
polynomials of AB and BA satisfy

pAB(λ ) = (−λ )m−n pBA(λ ).

[Side note: In other words, AB and BA have the same eigen-
values, counting algebraic multiplicity, but with AB having
m−n extra zero eigenvalues.]

∗∗2.B.12 Show that the Cholesky decomposition described
by Theorem 2.B.5 is unique.

[Hint: Follow along with the given proof of that theorem
and show inductively that if Cholesky decompositions in
Mn−1 are unique then they are also unique in Mn.]
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2.C Extra Topic: Applications of the SVD

In this section, we explore two particularly useful and interesting applications
of the singular value decomposition (Theorem 2.3.1).

2.C.1 The Pseudoinverse and Least Squares

Recall that if a matrix A ∈Mn is invertible then the linear system Ax = b has
unique solution x = A−1b. However, that linear system might have a solution
even if A is not invertible (or even square). For example, the linear system




1 2 3
−1 0 1
3 2 1






x
y
z


=




6
0
6


 (2.C.1)

has infinitely many solutions, like (x,y,z) = (1,1,1) and (x,y,z) = (2,−1,2),
even though its coefficient matrix has rank 2 (which we showed in Exam-
ple 2.3.2) and is thus not invertible.

With this example in mind, it seems natural to ask whether or not there
exists a matrix A† with the property that we can find a solution to the linear
system Ax = b (when it exists, but even if A is not invertible) by setting x = A†b.

Definition 2.C.1
Pseudoinverse

of a Matrix

Suppose F = R or F = C, and A ∈Mm,n(F) has orthogonal rank-one sum
decomposition

A =
r

∑
j=1

σ ju jv∗j .

ThenThe orthogonal
rank-one sum

decomposition was
introduced in

Theorem 2.3.3.

the pseudoinverse of A, denoted by A† ∈Mn,m, is the matrix

A† def=
r

∑
j=1

1
σ j

v ju∗j .

Equivalently, if A has singular value decomposition A = UΣV ∗ then its
pseudoinverse is the matrix A† = V Σ†U∗, where Σ† ∈Mn,m is the diagonal
matrix whose non-zero entries are the reciprocals of the non-zero entries of Σ

(and its zero entries are unchanged). It is straightforward to see that (A†)† = A
for all A ∈Mm,n. Furthermore, if A is square and all of its singular values are
non-zeroBe careful: some

other books
(particularly physics

books) use A† to
mean the conjugate

transpose of A
instead of its

pseudoinverse.

(i.e., it is invertible) then Σ† = Σ−1, so

A†A = V Σ
†U∗UΣV ∗ = V Σ

†
ΣV ∗ = VV ∗ = I.

That is, we have proved that the pseudoinverse really does generalize the
inverse:

! If A ∈Mn is invertible then A† = A−1.

The advantage of the pseudoinverse over the regular inverse is that every
matrix has one. Before we can properly explore the pseudoinverse and see what
we can do with it though,

Recall that singular
values are unique,

but singular vectors
are not.

we have to prove that it is well-defined. That is, we
have to show that no matter which orthogonal rank-one sum decomposition
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(i.e., no matter which singular value decomposition) of A ∈Mm,n we use,
the formula provided by Definition 2.C.1 results in the same matrix A†. The
following theorem provides us with a first step in this direction.

Theorem 2.C.1
The Pseudoinverse
and Fundamental

Subspaces

Suppose A ∈Mm,n has pseudoinverse A†. Then
a) AA† is the orthogonal projection onto range(A),
b) I−AA† is the orthogonal projection onto null(A∗) = null(A†),
c) A†A is the orthogonal projection onto range(A∗) = range(A†), and
d) I−A†A is the orthogonal projection onto null(A).

Proof. We start by writing A in its orthogonal rank-one sum decomposition

A =
r

∑
j=1

σ ju jv∗j , so A† =
r

∑
j=1

1
σ j

v ju∗j .

To see why part (a) of the theorem is true, we multiply A by A†

The third equality
here is the tricky

one—the double
sum collapses into a
single sum because
all of the terms with

i 6= j equal 0.

to get

AA† =

(
r

∑
i=1

σiuiv∗i

)(
r

∑
j=1

1
σ j

v ju∗j

)

=
r

∑
i, j=1

σi

σ j
ui(v∗i v j)u∗j (product of two sums is a double sum)

=
r

∑
j=1

σ j

σ j
u ju∗j (v∗i v j = 1 if i = j, v∗i v j = 0 otherwise)

=
r

∑
j=1

u ju∗j . (σ j/σ j = 1)

The fact that this is the orthogonal projection onto range(A) follows from
the fact that {u1,u2, . . . ,ur} forms an orthonormal basis of range(A) (Theo-
rem 2.3.2(a)), together with Theorem 1.4.10.

The fact that A†A is the orthogonal projection onto range(A∗) follows from
computing A†A = ∑

r
j=1 v jv∗j in a manner similar to above, and then recalling

from Theorem 2.3.2(c) that {v1,v2, . . . ,vr} forms an orthonormal basis of
range(A∗). On the other hand, the fact that A†A is the orthogonal projection
onto range(A†) (and thus range(A∗) = range(A†)) follows from swapping the
roles of A and A† (and using the fact that (A†)† = A) in part (a).

The proof of parts (b) and (d) of the theorem are all almost identical, so we
leave them to Exercise 2.C.7. �

We now show the converse of the above theorem—the pseudoinverse A† is
the only matrix with the property that A†A and AA† are the claimed orthogonal
projections. In particular, this shows that the pseudoinverse is well-defined and
does not depend on which orthogonal rank-one sum decomposition of A was
used to construct it—each one of them results in a matrix with the properties of
Theorem 2.C.1, and there is only one such matrix.

Theorem 2.C.2
Well-Definedness

of the
Pseudoinverse

If A ∈Mm,n and B ∈Mn,m are such that AB is the orthogonal projec-
tion onto range(A) and BA is the orthogonal projection onto range(B) =
range(A∗) then B = A†.



2.C Extra Topic: Applications of the SVD 275

Proof. We know from Theorem 2.C.1 that AA† is the orthogonal projection
onto range(A), we know from Theorem 1.4.10 that orthogonal projections are
uniquely determined by their range, so AB = AA†. A similar argument (making
use of the fact that range(A†) = range(A∗) = range(B)) shows that BA = A†A.

Since projections leave everything in their range unchanged, we conclude
that (BA)Bx = Bx for all x ∈ Fn, so BAB = B, and a similar argument shows
that A†AA† = A†. Putting these facts together shows that

B = BAB = (BA)B = (A†A)B = A†(AB) = A†(AA†) = A†AA† = A†. �

Example 2.C.1
Computing a

Pseudoinverse

Compute the pseudoinverse of the matrix A = 


1 2 3
−1 0 1
3 2 1




.

Solution:
We already saw in Example 2.3.2 that the singular value decomposition

of this matrix is A = UΣV ∗, where

U =
1√
6




√
3
√

2 1

0
√

2 −2√
3 −

√
2 −1


 , V =

1√
6




√
2 −

√
3 −1√

2 0 2√
2
√

3 −1


 ,

Σ =




2
√

6 0 0

0
√

6 0
0 0 0


 .

It follows thatThe pseudoinverse
is sometimes called
the Moore–Penrose
pseudoinverse of A. A† = V Σ

†U∗

=
1
6




√
2 −

√
3 −1√

2 0 2√
2
√

3 −1







1/(2
√

6) 0 0

0 1/
√

6 0
0 0 0







√
3 0

√
3√

2
√

2 −
√

2
1 −2 −1




=
1

12



−1 −2 3
1 0 1
3 2 −1


 .

Example 2.C.2
Computing

a Rectangular
Pseudoinverse

Compute the pseudoinverse of the matrix A = 


1 1 1 −1
0 1 1 0
−1 1 1 1




.

Solution:
This is the same matrix from Example 2.3.3, which has singular value
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decomposition A = UΣV ∗, where

U =
1√
6




√
2 −

√
3 −1√

2 0 2√
2
√

3 −1


 , Σ =




√
6 0 0 0

0 2 0 0
0 0 0 0


 and

V =
1√
2




0 −1 0 1
1 0 1 0
1 0 −1 0
0 1 0 1


 .

It follows that

Verify this matrix
multiplication on

your own. It builds
character.

A† = V Σ
†U∗

=
1√
12




0 −1 0 1
1 0 1 0
1 0 −1 0
0 1 0 1







1/
√

6 0 0
0 1/2 0
0 0 0
0 0 0







√
2
√

2
√

2

−
√

3 0
√

3
−1 2 −1




=
1

12




3 0 −3
2 2 2
2 2 2
−3 0 3


 .

Solving Linear Systems
Now that we know how to construct the pseudoinverse of a matrix, we return to
the linear system Ax = b from Equation (2.C.1). If we (very naïvely for now)
try to use the pseudoinverse to solve this linear system by setting x = A†b, then
we

We computed this
pseudoinverse A† in

Example 2.C.1.

get

x = A†




6
0
6


=

1
12



−1 −2 3
1 0 1
3 2 −1







6
0
6


=




1
1
1


 .

This is indeed a solution of the original linear system, as we might hope. The
following theorem shows that this is always the case—if a linear system has a
solution, then the pseudoinverse finds one. Furthermore, if there are multiple
solutions to the linear system, it finds the “best” one:

Theorem 2.C.3
Pseudoinverses

Solve Linear
Systems

Suppose F = R or F = C, and A ∈Mm,n(F) and b ∈ Fm are such that the
linear system Ax = b has at least one solution. Then x = A†b is a solution,
and furthermore if y ∈ Fn is any other solution then ‖A†b‖< ‖y‖.

Proof. The linear system Ax = b has a solution if and only if b ∈ range(A). To
see that x = A†b is a solution in this case, we simply notice that

Ax = A(A†b) = (AA†)b = b,

since AA† is the orthogonal projection onto range(A), by Theorem 2.C.1(a).
To see that ‖A†b‖ ≤ ‖y‖ for all solutions y of the linear system (i.e., all y

such that Ay = b), we note that

A†b = A†(Ay) = (A†A)y.
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Since A†A is an orthogonal projection, it follows from the fact that orthogonal
projections cannot increase the norm of a vector (Theorem 1.4.11) that ‖A†b‖=
‖(A†A)y‖ ≤ ‖y‖, and furthermore equality holds if and only if
(A†A)y = y (i.e., if and only if y = A†b). �

To get a rough idea for why it’s desirable to find the solution with smallest
norm, as in the previous theorem, we again return to the linear system




1 2 3
−1 0 1
3 2 1






x
y
z


=




6
0
6




that we originally introduced in Equation (2.C.1). The solution set of this linear
system consists of the vectors of the form (0,3,0)+ z(1,−2,1), where z is a
free variable. This set contains some vectors that are hideous (e.g., choosing
z = 341 gives the solution (x,y,z) = (341,−679,341)), but it also contains
some vectors that are not so hideous (e.g., choosing z = 1 gives the solution
(x,y,z) = (1,1,1), which is the solution found by the pseudoinverse). The
guarantee that the pseudoinverse finds the smallest-norm solution means that
we do not have to worry about it returning “large and ugly” solutions like
(341,−679,341). Geometrically, it means that it finds the solution closest to
the origin (see Figure 2.13).

x
y

(1,1,1)
(1,−2,1)

(0,3,0)

Figure 2.13: Every point on the line (0,3,0) + z(1,−2,1) is a solution of the linear
system from Equation (2.C.1). The pseudoinverse finds the solution (x,y,z) = (1,1,1),
which is the point on that line closest to the origin.

Not only does the pseudoinverse
Think of Ax−b as the
error in our solution x:

it is the difference
between what Ax

actually is and what
we want it to be (b).

find the “best” solution when a solution
exists, it even find the “best” non-solution when no solution exists. To make
sense of this statement, we again think in terms of norms and distances—if
no solution to a linear system Ax = b exists, then it seems reasonable that the
“next best thing” to a solution would be the vector that makes Ax as close to b as
possible. In other words, we want to find the vector x that minimizes ‖Ax−b‖.
The following theorem shows that choosing x = A†b also solves this problem:

Theorem 2.C.4
Linear Least

Squares

Suppose F = R or F = C, and A ∈Mm,n(F) and b ∈ Fm. If x = A†b then

‖Ax−b‖ ≤ ‖Ay−b‖ for all y ∈ Fn.

Proof. We know from Theorem 1.4.11 that the closest point to b in range(A) is
Pb, where P is the orthogonal projection onto range(A).

Here, Ay is just an
arbitrary element

of range(A). Well,
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Theorem 2.C.1(a) tells us that P = AA†, so

‖Ax−b‖= ‖(AA†)b−b‖ ≤ ‖Ay−b‖ for all y ∈ Fn,

as desired. �

This method of finding the closest thing to a solution of a linear system is
called linear least squares, and it is particularly useful when trying to fit data
to a model, such as finding a line (or plane, or curve) of best fit for a set of data.
For example, suppose we have many data points (x1,y1),(x2,y2), . . . ,(xn,yn),
and we want to find the line that best describes the relationship between x and
y as in Figure 2.14.

x

y

-3 -2 -1 0 1 2 3

1

2

Figure 2.14: The line of best fit for a set of points is the line that minimizes the sum of
squares of vertical displacements of the points from the line (highlighted here in
orange).

To find this line, we consider the “ideal” scenario—we try (and typically
fail) to find a line that passes exactly through all n data points by setting up the
corresponding linear

Keep in mind that
x1, . . . ,xn and y1, . . . ,yn
are given to us—the

variables that we
are trying to solve for

in this linear system
are m and b.

system:

y1 = mx1 +b

y2 = mx2 +b
...

yn = mxn +b.

Since this linear system has n equations, but only 2 variables (m and b), we
do not expect to find an exact solution, but we can find the closest thing to a
solution by using the pseudoinverse, as in the following example.

Example 2.C.3
Finding a Line

of Best Fit

Find the line of best fit for the points (−2,0),(−1,1),(0,0),(1,2), and
(2,2).

Solution:
To find the line of best fit, we set up the system of linear equations that

we would like to solve. Ideally, we would like to find a line y = mx + b
that goes through all 5 data points. That is, we want to find m and b such
that

0 =−2m+b, 1 =−1m+b, 0 = 0m+b,

2 = 1m+b, 2 = 2m+b.

It’s not difficult to see that this linear system has no solution, but we
can find the closest thing to a solution (i.e., the line of best fit) by using the
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pseudoinverse. Specifically, we write the linear system in matrix form as

Ax = b where A =




−2 1
−1 1
0 1
1 1
2 1




, x =
[

m
b

]
, and b =




0
1
0
2
2




.

Well, the pseudoinverse ofTry computing
this pseudoinverse

yourself: the singular
values of A are

√
10

and
√

5.

A is

A† =
1
10

[
−2 −1 0 1 2
2 2 2 2 2

]
,

so the coefficients of the line of best fit are given by

x =
[

m
b

]
= A†b =

1
10

[
−2 −1 0 1 2
2 2 2 2 2

]




0
1
0
2
2




=

[
1/2

1

]
.

In other words, the line of best fit is y = x/2+1, as shown below:

x

y

-3 -2 -1 0 1 2 3

1

2

(−2,0)

(−1,1)

(0,0)

(1,2)

(2,2)

This exact same method also works for finding the “plane of best fit”
for data points (x1,y1,z1),(x2,y2,z2), . . . ,(xn,yn,zn), and so on for higher-
dimensional data as well (see Exercise 2.C.5). We can even do things like
find quadratics of best fit, exponentials of best fit, or other weird functions of
best fit (see Exercise 2.C.6).

By putting together all of the results of this section, we see that the pseu-
doinverse gives the “best solution” to a system of linear equations Ax = b in
all cases:

• If the system has a unique solution, it is x = A†b.
• If the system has infinitely many solutions, then x = A†b is the smallest

solution—it minimizes ‖x‖.
• If the system has no solutions, then x = A†b is the closest thing to a

solution—it minimizes ‖Ax−b‖.

2.C.2 Low-Rank Approximation

As one final application of the singular value decomposition, we consider the
problem of approximating a matrix by another matrix with small rank. One of
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the primary reasons why we would do this is that it allows us to compress the
data that is represented by a matrix, since a full (real) n×n matrix requires us
to store n2 real numbers, but a rank-k matrix only requires us to store 2kn+ k
real numbers. To see this, note that we can store a low-rank matrix via its
orthogonal rank-one sum decomposition

A =
k

∑
j=1

σ ju jv∗j ,

which consists of 2k vectors with n entries each, as well as k singular values.
In fact, it suffices to
store just 2kn− k real
numbers and k signs
(which each require

only a single bit),
since each u j and v j

has norm 1.

Since 2kn+k is much smaller than n2 when k is small, it is much less resource-
intensive to store low-rank matrices than general matrices. This observation is
useful in practice—instead of storing the exact matrix A that contains our data
of interest, we can sometimes find a nearby matrix with small rank and store
that instead.

To actually find a nearby low-rank matrix, we use the following theorem,
which says that the singular value decomposition tells us what to do. Specifi-
cally, the closest rank-k matrix to a given matrix A is the one that is obtained
by replacing all except for the k largest singular values of A by 0.

Theorem 2.C.5
Eckart–Young–

Mirsky

Suppose F = R or F = C, and A ∈Mm,n(F) has singular values σ1 ≥
σ2 ≥ ·· · ≥ σr > 0. If 1 ≤ k ≤ r and A has orthogonal rank-one sum
decomposition

A =
r

∑
j=1

σ ju jv∗j , then we define Ak =
k

∑
j=1

σ ju jv∗j .

ThenIn particular, notice
that rank(Ak) = k,

so Ak is the closest
rank-k matrix to A.

‖A−Ak‖ ≤ ‖A−B‖ for all B ∈Mm,n(F) with rank(B) = k.

The Eckart–Young–Mirsky theorem says that the best way to approximate a
high-rank matrix by a low-rank one is to discard the pieces of its singular value
decomposition corresponding to its smallest singular values. In other words, the
singular value decomposition organizes a matrix into its “most important” and
“least important” pieces—the largest singular values (and their corresponding
singular vectors) describe the broad strokes of the matrix, while the smallest
singular values (and their corresponding singular vectors) just fill in its fine
details.

Proof of Theorem 2.C.5. Pick any matrix B ∈Mm,n with rank(B) = k, which
necessarily has (n− k)-dimensional null space by the rank-nullity theorem
(Theorem A.1.2(e)). Also, consider the vector space Vk+1 = span{v1,v2, . . . ,
vk+1}, which is (k +1)-dimensional. Since (n− k)+(k +1) = n+1, we know
from Exercise 1.5.2(b) that null(B)∩Vk+1 is at least 1-dimensional, so there
exists a unit vector w ∈ null(B)∩Vk+1. Then we have

‖A−B‖ ≥ ‖(A−B)w‖ (since ‖w‖= 1)
= ‖Aw‖ (since w ∈ null(B))

=

∥∥∥∥∥

(
r

∑
j=1

σ ju jv∗j

)
w

∥∥∥∥∥ (orthogonal rank-one sum decomp. of A)

=

∥∥∥∥∥
k+1

∑
j=1

σ j(v∗jw)u j

∥∥∥∥∥ . (w ∈ Vk+1, so v∗jw = 0 when j > k +1)
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At this point, we note that Theorem 1.4.5 tells us that (v∗1w, . . . ,v∗k+1w) is the
coefficient vector of w in the basis {v1,v2, . . . ,vk+1} of Vk+1. This then implies,
via Corollary 1.4.4, that ‖w‖2 = ∑

k+1
j=1 |v∗jw|2, and similarly that

∥∥∥∥∥
k+1

∑
j=1

σ j(v∗jw)u j

∥∥∥∥∥

2

=
k+1

∑
j=1

σ
2
j |v∗jw|2.

With this observation in hand, we now continue the chain of inequalities from
above:

‖A−B‖ ≥

√√√√
k+1

∑
j=1

σ2
j |v∗jw|2 (since {u1, . . . ,uk+1} is an orthonormal set)

≥ σk+1

√√√√
k+1

∑
j=1
|v∗jw|2 (since σ j ≥ σk+1)

= σk+1 (since
k+1

∑
j=1
|v∗jw|2 = ‖w‖2 = 1)

= ‖A−Ak‖, (since A−Ak =
r

∑
j=k+1

σ ju jv∗j )

as desired. �

Example 2.C.4
Closest Rank-1
Approximation

Find the closest rank-1 approximation to

A =




1 2 3
−1 0 1
3 2 1


 .

That is, find the matrix B with rank(B) = 1 that minimizes ‖A−B‖.
Solution:

Recall from Example 2.3.2 that the singular value decomposition of
this matrix is A = UΣV ∗, where

U =
1√
6




√
3
√

2 1

0
√

2 −2√
3 −

√
2 −1


 , V =

1√
6




√
2 −

√
3 −1√

2 0 2√
2
√

3 −1


 ,

Σ =




2
√

6 0 0

0
√

6 0
0 0 0


 .

To get the closest rank-1 approximation of A, we simply replace all except
for the largest singular value by 0, and then multiply the singular value
decomposition back together. This procedure gives us the following closest
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rank-1 matrix

As always,
multiplying matrices

like these together
is super fun.

B:

B = U




2
√

6 0 0
0 0 0
0 0 0


V ∗

=
1
6




√
3
√

2 1

0
√

2 −2√
3 −

√
2 −1







2
√

6 0 0
0 0 0
0 0 0







√
2
√

2
√

2

−
√

3 0
√

3
−1 2 −1




=




2 2 2
0 0 0
2 2 2


 .

We can use this method to compress pretty much any information that we
can represent with a matrix, but it works best when there is some correlation
between the entries in the rows and columns of the matrix (e.g., this method
does not help much if we just place inherently 1-dimensional data like a text file
into a matrix of some arbitrary shape). For example, we can use it to compress
black-and-white images by representing the brightness of each pixel in the
image by a number, arranging those numbers in a matrix of the same size and
shape as the image, and then applying the Eckart–Young–Mirsky theorem to
that matrix.

Similarly, we can compress color images by using the fact that every color
can be obtained from mixing red, green, and blue, so we can use three matrices:
one for each of those primary colors. Figure 2.15 shows the result of applying
a rank-k approximation of this type to an image for k = 1,5,20, and 100.

Remark 2.C.1
Low-Rank

Approximation in
other Matrix Norms

It seems natural to ask how low-rank matrix approximation changes if we
use a matrix norm other than the operator norm. It turns out that, for a wide
variety of matrix norms (including the Frobenius norm), nothing changes
at all. For example, one rank-k matrix B that minimizes ‖A−B‖F is exactly
the same as the one that minimizes ‖A−B‖. That is, the closest rank-k
approximation does not change at all, even if we measure “closeness” in
this very different way.

More generally,This fact about
unitarily-invariant

norms is beyond the
scope of this

book—see (Mir60)
for a proof.

low-rank approximation works the same way for every
matrix norm that is unitarily-invariant (i.e., if Theorem 2.3.6 holds for a
particular matrix norm, then so does the Eckart–Young–Mirsky theorem).
For example, Exercise 2.3.19 shows that something called the “trace norm”
is unitarily-invariant, so the Eckart–Young–Mirsky theorem still works if
we replace the operator norm with it.

Exercises solutions to starred exercises on page 475

2.C.1 For each of the following linear systems Ax = b,
determine whether or not it has a solution. If it does, find the
smallest one (i.e., find the solution x that minimizes ‖x‖). If
it doesn’t, find the closest thing to a solution (i.e., find the
vector x that minimizes ‖Ax−b‖).
∗ (a) A =

[
1 2
3 6

]
, b =

[
2
1

]

(b) A =
[

1 2
3 6

]
, b =

[
1
3

]

∗ (c) A =
[

1 2 3
2 3 4

]
, b =

[
2
−1

]
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The rank-1
approximation is

interesting because
we can actually see

that it has rank 1:
every row and

column is a multiple
of every other row

and column, which
is what creates the

banding effect in
the image.

The rank-100
approximation is

almost
indistinguishable
from the original

image.

Figure 2.15: A picture of the author’s cats that has been compressed via the
Eckart–Young–Mirsky theorem. The images are (a) uncompressed, (b) use a rank-1
approximation, as well as a (c) rank-5, (d) rank-20, and a (e) rank-100 approximation.
The original image is 500×700 with full rank 500.
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(d) A =



1 1 1
1 0 1
0 1 0



, b =




1
1
1




2.C.2 Find the line of best fit (in the sense of Exam-
ple 2.C.3) for the following collections of data points.

[Side note: Exercise 2.C.10 provides a way of solving this
problem that avoids computing the pseudoinverse.]

∗ (a) (1,1),(2,4).
(b) (−1,4),(0,1),(1,−1).
∗ (c) (1,−1),(3,2),(4,7).

(d) (−1,3),(0,1),(1,−1),(2,2).

2.C.3 Find the best rank-k approximations of each of the
following matrices for the given value of k.

∗ (a) A =
[

3 1
1 3

]
, k = 1.

(b) A =
[

1 −2 3
3 2 1

]
, k = 1.

∗ (c) A =



1 0 2
0 1 1
−2 −1 1




, k = 1.

(d) A =



1 0 2
0 1 1
−2 −1 1




, k = 2.

2.C.4 Determine which of the following statements are
true and which are false.

∗ (a) I† = I.
(b) The function T : M3(R) →M3(R) defined by

T (A) = A† (the pseudoinverse of A) is a linear trans-
formation.

∗ (c) For all A ∈M4(C), it is the case that range(A†) =
range(A).

(d) If A ∈Mm,n(R) and b ∈ Rm are such that the linear
system Ax = b has a solution then there is a unique
solution vector x ∈ Rn that minimizes ‖x‖.

∗ (e) For every A∈Mm,n(R) and b∈Rm there is a unique
vector x ∈ Rn that minimizes ‖Ax−b‖.

∗∗2.C.5 Find the plane z = ax+by+ c of best fit for the
following 4 data points (x,y,z):

(0,−1,−1),(0,0,1),(0,1,3),(2,0,3).

∗∗ 2.C.6 Find the curve of the form y = c1 sin(x) +
c2 cos(x) that best fits the following 3 data points (x,y):

(0,−1),(π/2,1),(π,0).

∗∗2.C.7 Prove parts (b) and (d) of Theorem 2.C.1.

2.C.8 Suppose F = R or F = C, and A ∈Mm,n(F),
B ∈Mn,p(F), and C ∈Mp,r(F). Explain how to compute
ABC if we know AB, B, and BC, but not necessarily A or C
themselves.

[Hint: This would be trivial if B were square and invertible.]

∗2.C.9 In this exercise, we derive explicit formulas for the
pseudoinverse in some special cases.

(a) Show that if A ∈Mm,n has linearly independent
columns then A† = (A∗A)−1A∗.

(b) Show that if A∈Mm,n has linearly independent rows
then A† = A∗(AA∗)−1.

[Side note: A∗A and AA∗ are indeed invertible in these cases.
See Exercise 1.4.30, for example.]

2.C.10 Show that if x1, x2, . . ., xn are not all the same then
the line of best fit y = mx+b for the points (x1,y1), (x2,y2),
. . ., (xn,yn) is the unique solution of the linear system

A∗Ax = A∗b,

where

A =




x1 1
x2 1

...
...

xn 1




, b =




y1
y2

...
yn




, and x =
[

m
b

]
.

[Hint: Use Exercise 2.C.9.]

2.D Extra Topic: Continuity and Matrix Analysis

Much of introductory linear algebra is devoted to defining and investigating
classes of matrices that are easier to work with than general matrices. For
example, invertible matrices are easier to work with than typical matrices
since we can do algebra with them like we are used to (e.g., if A is invertible
then we can solve the matrix equation AX = B via X = A−1B). Similarly,
diagonalizable matrices are easier to work with than typical matrices since we
can easily compute powers and analytic functions of them.

The pseudoinverse
of Section 2.C.1 and

the Jordan
decomposition of

Section 2.4 can also
help us cope with

the fact that some
matrices are not

invertible or
diagonalizable.

This section explores some techniques that can be used to treat all matrices
as if they were invertible and/or diagonalizable, even though they aren’t. The
rough idea is to exploit the fact that every matrix is extremely close to one that
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is invertible and diagonalizable, and many linear algebraic properties do not
change much if we change the entries of a matrix by just a tiny bit.

2.D.1 Dense Sets of Matrices

One particularly useful technique from mathematical analysis is to take ad-
vantage of the fact that every continuous function f : R→ R is completely
determined by how it acts on the rational numbers (in fact, we made use of
this technique when we proved Theorem 1.D.8). For example, if we know that
f (x) = sin(x) whenever x ∈QRecall that Q

denotes the set of
rational numbers

(i.e., numbers that
can be written as a

ratio p/q of two
integers).

and we furthermore know that f is continuous,
then it must be the case that f (x) = sin(x) for all x ∈ R (see Figure 2.16).

Intuitively, this follows because f being continuous means that f (x̃) must
be close to f (x) whenever x̃ ∈ R is close to x ∈Q, and we can always find an
x ∈Q that is as close to x̃ as we like. Roughly speaking, Q has no “holes” of
width greater than 0 along the real number line, so defining how f behaves on
Q leaves no “wiggle room” for what its values outside of Q can be.

x

y

f (x) = sin(x)
for all x ∈Q

f (x̃) = sin(x̃)

x̃ /∈Q

Figure 2.16: If f (x) = sin(x) for all x ∈Q and f is continuous, then it must be the case
that f (x) = sin(x) for all x ∈ R.

Remark 2.D.1
Defining

Exponential
Functions

This idea of extending a function from Q to all of R via continuity is
actually how some common functions are defined. For example, what does
the expression 2x even mean if x is irrational? We build up to the answer
to this question one step at a time:

• If x is a positive integer then 2x = 2 ·2 · · ·2 (x times). If x is a negative
integer then 2x = 1/2−x. If x = 0 then 2x = 1.

• If x is rational, so we can write x = p/q for some integers p,q
(q 6= 0), then 2x = 2p/q = q

√
2p.

• If x is irrational,Recall that
“irrational” just

means “not rational”.
Some well-known
irrational numbers

include
√

2, π, and e.

we define 2x by requiring that the function f (x) = 2x

be continuous. That is, we set

2x = lim
r→x

r is rational

2r.

For example, a number like 2π is defined as the limit of the sequence of
numbers 23, 23.1, 23.14, 23.141, . . ., where we take better and better decimal
approximations of π (which are rational) in the exponent.

The property of Q that is required to make this sort of argument work is
the fact that it is dense in R: every x ∈ R can be written as a limit of rational
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numbers. We now define the analogous property for sets of matrices.

Definition 2.D.1
Dense Set of

Matrices

Suppose F = R or F = C. A set of matrices B ⊆ Mm,n(F) is called
dense inMm,n(F) if, for every matrix A ∈Mm,n(F), there exist matrices
A1,A2, . . . ∈ B such that

lim
k→∞

Ak = A.

Before proceeding, we clarifyRecall that [Ak]i, j is
the (i, j)-entry of Ak.

that limits of matrices are simply meant
entrywise: lim

k→∞
Ak = A means that lim

k→∞
[Ak]i, j = [A]i, j for all i and j. We illustrate

with an example.

Example 2.D.1
Limits of Matrices

Let Ak = 1
k

[
k 2k−1

2k−1 4k +1

]
and B =

[
2 1
4 2

]
. Compute lim

k→∞

(
A−1

k B
)
.

Solution:
We start by computing

Recall that the
inverse of a 2×2

matrix is
[

a b
c d

]−1

=

1
ad−bc

[
d −b
−c a

]
.

A−1
k =

k
5k−1

[
4k +1 1−2k
1−2k k

]
.

In particular, it is worth noting that lim
k→∞

A−1
k does not exist (the entries of

A−1
k get larger and larger as k increases), which should not be surprising

since

lim
k→∞

Ak = lim
k→∞

(
1
k

[
k 2k−1

2k−1 4k +1

])
=
[

1 2
2 4

]

is not invertible. However, if we multiply on the right by B then

A−1
k B =

k
5k−1

[
4k +1 1−2k
1−2k k

][
2 1
4 2

]
=

k
5k−1

[
6 3
2 1

]
,

so

lim
k→∞

(
A−1

k B
)

= lim
k→∞

(
k

5k−1

[
6 3
2 1

])
=

1
5

[
6 3
2 1

]
.

Intuitively, a set B⊆Mm,n(F) is dense if every matrix is arbitrarily close to
a member of B. As suggested earlier, we are already very familiar with two very
useful dense sets of matrices: the sets of invertible and diagonalizable matrices.
In both cases, the rough reason why these sets are dense is that changing the
entries of a matrix just slightly changes its eigenvalues just slightly, and we can
make this change so as to have its eigenvalues avoid 0 (and thus be invertible)
and avoid repetitions (and thus be diagonalizable). We now make these ideas
precise.

Theorem 2.D.1
Invertible Matrices

are Dense

Suppose F = R or F = C. The set of invertible matrices is dense inMn(F).

Proof. Suppose A ∈Mn(F) and then define, for each integer k ≥ 1, the matrix
Ak = A+ 1

k I. It is clear that
lim
k→∞

Ak = A,
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and we claim that Ak is invertible whenever k is sufficiently large.
To see why this claim holds,The idea here is that

we can wiggle the
zero eigenvalues of

A away from zero
without wiggling any

of the others
into zero.

recall that if A has eigenvalues λ1, . . ., λn
then Ak has eigenvalues λ1 + 1/k, . . ., λn + 1/k. Well, if k > 1/|λ j| for each
non-zero eigenvalue λ j of A, then we can show that all of the eigenvalues of Ak
are non-zero by considering two cases:

• If λ j = 0 then λ j +1/k = 1/k 6= 0, and
• if λ j 6= 0 then |λ j +1/k| ≥ |λ j|−1/k > 0, so λ j +1/k 6= 0.

It follows that each eigenvalue of Ak is non-zero, and thus Ak is invertible,
whenever k is sufficiently large. �

For example, the matrix

A =




1 1 2
2 3 5
−1 0 −1




is not invertible, since it has 0 as an eigenvalue (as well as two other eigenval-
ues equal to (3±

√
13)/2, which are approximately 3.30278 and −0.30278).

However, the matrix
In fact, this Ak is
invertible when

k = 1,2,3 too, since
none of the

eigenvalues of A
equal −1, −1/2, or
−1/3. However, we

just need invertibility
when k is large.

Ak = A+
1
k

I =




1+1/k 1 2
2 3+1/k 5
−1 0 −1+1/k




is invertible whenever k ≥ 4 since adding a number in the interval (0,1/4] =
(0,0.25] to each of the eigenvalues of A ensures that none of them equal 0.

Theorem 2.D.2
Diagonalizable

Matrices are Dense

Suppose F = R or F = C. The set of diagonalizable matrices is dense in
Mn(F).

Proof. Suppose A ∈Mn(F), which we Schur triangularize as A = UTU∗. We
then let D be the diagonal matrix with diagonal entries 1, 2, . . ., n (in that order)
and define, for each integer k ≥ 1, the matrix Ak = A+ 1

kUDU∗. It is clear that

lim
k→∞

Ak = A,

and we claim that Ak has distinct eigenvalues, and is thus diagonalizable,
whenever k is sufficiently large.

To see why this claim holds, recall that the eigenvalues λ1, λ2, . . ., λn of
A are the diagonal entries of T (which we assume are arranged in that order).
Similarly, the eigenvalues of

Ak = UTU∗+
1
k

UDU∗ = U
(
T +

1
k

D
)
U∗

are the diagonal entries of T + 1
k D, which are λ1 +1/k, λ2 +2/k, . . ., λn +n/k.

Well, if k > (n−1)/|λi−λ j| for each distinct pair of eigenvalues λi 6= λ j, then
we can show that the eigenvalues of Ak are distinct as follows:

• If λi = λ j (but i 6= j) then λi + i/k 6= λ j + j/k, and



288 Chapter 2. Matrix Decompositions

• if λi 6= λ j then
∣∣(λi + i/k)− (λ j + j/k)

∣∣=
∣∣(λi−λ j)+(i/k− j/k)

∣∣
≥ |λi−λ j|− |i− j|/k

≥ |λi−λ j|− (n−1)/k > 0.

It follows that the eigenvalues of Ak are distinct, and it is thus diagonalizable,
whenever k is sufficiently large. �

Remark 2.D.2
Limits in Normed

Vector Spaces

Limits can actually be defined in any normed vector space—we have just
restricted attention toMm,n since that is the space where these concepts
are particularly useful for us, and the details simplify in this case since
matrices have entries that we can latch onto.

In general, as long as a vector space V is finite-dimensional, we can
define limits in V by first fixing a basis B of V and then saying that

lim
k→∞

vk = v whenever lim
k→∞

[vk]B = [v]B,

where the limit on the right is just meant entrywise. It turns out that this
notion of limit does not depend on which basis B of V we choose (i.e., for
any two bases B and C of V , it is the case that lim

k→∞
[vk]B = [v]B if and only

if lim
k→∞

[vk]C = [v]C).

If V is infinite-dimensional then this approach does not work, since
we may not be able to construct a basis of V in the first place, so we may
not have any notion of “entrywise” limits to work with. We can get around
this problem by picking some norm on V (see Section 1.D) and saying that

lim
k→∞

vk = v whenever lim
k→∞
‖vk−v‖= 0.

In the finite-dimensional case, this definition of limits based on norms turns
out to be equivalent to the earlier one based on coordinate vectors, and
furthermore it does not matter which norm we use on V (a fact that follows
from all norms on finite-dimensional vector spaces being equivalent to
each other—see Theorem 1.D.1).

On the other hand, in infinite-dimensional vector spaces, it is no longer
necessarily the case that all norms are equivalent (see Exercise 1.D.26), so
it is also no longer the case that limits are independent of the norm being
used. For example, consider the 1-norm and ∞-norm on P[0,1] (the space
of real-valued polynomials on the interval [0,1]):

We introduced
these norms back

in Section 1.D.1.
‖ f‖1 =

∫ 1

0
| f (x)| dx and ‖ f‖∞ = max

0≤x≤1
| f (x)|.

We claim that the sequence of polynomials { fk}∞
k=1 ⊂ P [0,1] defined by

fk(x) = xk for all k ≥ 1 converges to the zero function in the 1-norm, but
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does not in the ∞-norm. To see why this is the case, we note that

‖ fk−0‖1 =
∫ 1

0
|xk| dx =

xk+1

k +1

∣∣∣∣
1

x=0
=

1
k +1

and

‖ fk−0‖∞ = max
x∈[0,1]

|xk|= 1k = 1 for all k ≥ 1.

IfA sequence of
functions { fk}∞

k=1
converging in the

∞-norm means
that the maximum

difference between
fk(x) and the limit

function f (x) goes to
0. That is, these

functions converge
pointwise, which is
probably the most

intuitive notion of
convergence for

functions.

we take limits of these quantities, we see that

lim
k→∞
‖ fk−0‖1 = lim

k→∞

1
k +1

= 0, so lim
k→∞

fk = 0, but

lim
k→∞
‖ fk−0‖∞ = lim

k→∞
1 = 1 6= 0, so lim

k→∞
fk 6= 0.

Geometrically, all this is saying is that the area under the graphs of the
polynomials fk(x) = xk on the interval [0,1] decreases toward zero, yet the
maximum values of these polynomials on that interval does not similarly
converge toward zero (it is fixed at 1):

f1(x) = x

x2

x3

.
.
.

x20

lim
k→

‖xk‖ = 1

lim
k→

‖xk‖1 = 0

x

y

1

4

1

2

3

4
1

1

4

1

2

3

4

2.D.2 Continuity of Matrix Functions

Just as with functions on R, the idea behind continuity of functions acting on
Mm,n is that we should be able to make two outputs of the function as close
together as we like simply by making their inputs sufficiently close together.
We can make this idea precise via limits:

Definition 2.D.2
Continuous

Functions

Suppose F = R or F = C. We say that a function f :Mm,n(F)→Mr,s(F)
is continuous if it is the case that

lim
k→∞

f (Ak) = f (A) whenever lim
k→∞

Ak = A.

Phrased slightly differently, a function f :Mm,n(F)→Mr,s(F) is continu-
ous if we can pull limits in or out of it:

f
(

lim
k→∞

Ak

)
= lim

k→∞
f (Ak)

whenever the limit on the left exists.
Many of the functions of matrices that we have learned about are continuous.
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Some important examples (which we do not rigorously prove, since we are
desperately trying to avoid epsilons and deltas) include

Linear transformations: Roughly speaking, continuity of linear transformations follows from
combining two facts: (i) if f is a linear transformation then the entries of
f (A) are linear combinations of the entries of A, and (ii) if each entry of
Ak is close to the corresponding entry of A, then any linear combination
of the entries of Ak is close to the corresponding linear combination of
the entries of A.

Matrix multiplication: The fact that the function f (A) = BAC (where B and C are fixed matrices)
is continuous follows from it being a linear transformation.

The trace: Again, the trace is a linear transformation and is thus continuous.
Polynomials: Matrix polynomials like f (A) = A2−3A+2I, and also polynomials of a

matrix’s entries like g(A) = a3
1,1a1,2−a2

2,1a2
2,2, are all continuous.

The determinant: Continuity of the determinant follows from the fact that Theorem A.1.4
shows that it is a polynomial in the matrix’s entries.

Coefficients of char. poly.: If A has characteristic polynomial pA(λ ) = (−1)nλ n +an−1λ n−1 + · · ·+
a1λ +a0 then the functions fk(A) = ak are continuous for all 0≤ k < n.
Continuity of these coefficients follows from the fact that they are all
polynomials in the entries of A, since pA(λ ) = det(A−λ I).

Singular values: For all 1≤ k ≤min{m,n} the function fk(A) = σk that outputs the k-th
largest singular value of A is continuous. This fact follows from the
singular values of A being the square roots of the (necessarily non-
negative) eigenvalues of A∗A, and the function A 7→ A∗A is continuous,
as are the coefficients of characteristic polynomials and the non-negative
square root of a non-negative real number.

Analytic functions: The Jordan decomposition and the formula of Theorem 2.4.6 can be used
to show that if f : C→ C is analytic on all of C then the corresponding
matrix function f :Mn(C)→Mn(C) is continuous. For example, the
functions eA, sin(A), and cos(A) are continuous.

We also note that the sum, difference, and composition of any continuous
functions are again continuous. With all of these examples taken care of, we
now state the theorem that is the main reason that we have introduced dense
sets of matrices and continuity of matrix functions in the first place.

Theorem 2.D.3
Continuity Plus

Density

Suppose F = R or F = C, B ⊆Mm,n(F) is dense inMm,n(F), and f ,g :
Mm,n(F)→Mr,s(F) are continuous. If f (A) = g(A) whenever A∈ B then
f (A) = g(A) for all A ∈Mm,n(F).

Proof. Since B is dense inMm,n(F), for any A∈Mm,n(F) we can find matrices
A1,A2, . . . ∈ B such that lim

k→∞
Ak = A. Then

f (A) = lim
k→∞

f (Ak) = lim
k→∞

g(Ak) = g(A),

with the middle equality following from the fact that Ak ∈ B so f (Ak) = g(Ak).
�

For example, the above theorem tells us that if f :Mn(C)→ C is a contin-
uous function for which f (A) = det(A) whenever A is invertible, then f must
in fact be the determinant function, and that if g :Mn(C)→Mn(C) is a con-
tinuous function for which g(A) = A2−2A+3I whenever A is diagonalizable,
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then g(A) = A2−2A+3I for all A ∈Mn(C). The remainder of this section is
devoted to exploring somewhat more exotic applications of this theorem.

2.D.3 Working with Non-Invertible Matrices

We now start illustrating the utility of the concepts introduced in the previous
subsections by showing how they can help us extend results from the set of
invertible matrices to the set of all matrices. These methods are useful because
it is often much easier to prove that some nice property holds for invertible
matrices, and then use continuity and density arguments to extend the result to
all matrices, than it is to prove that it holds for all matrices directly.

Similarity-Invariance and the Trace
We stated back in Corollary 1.A.2 that the trace is the unique (up to scaling)
linear form on matrices that is similarity invariant. We now use continuity to
finally prove this result, which we re-state here for ease of reference.

Theorem 2.D.4
Similarity-Invariance

Defines the Trace

Suppose F = R or F = C, and f :Mn(F)→ F is a linear form with the
following properties:

a) f (A) = f (PAP−1) for all A,P ∈Mn(F) with P invertible, and
b) f (I) = n.

Then f (A) = tr(A) for all A ∈Mn(F).

Proof. We start by noticing that if A isWe originally proved
that AB is similar to
BA (when A or B is
invertible) back in

Exercise 1.A.5.

invertible then AB and BA are similar,
since

AB = A(BA)A−1.

In particular, this tells us that f (AB) = f
(
A(BA)A−1

)
= f (BA) whenever A

is invertible. If we could show that f (AB) = f (BA) for all A and B then we
would be done, since Theorem 1.A.1 would then tell us that f (A) = tr(A) for
all A ∈Mn.

However, this final claim follows immediately from continuity of f and
density of the set of invertible matrices. In particular, if we fix any matrix
B ∈Mn and define fB(A) = f (AB) and gB(A) = f (BA) then we just showed
that fB(A) = gB(A) for all invertible A∈Mn and all (not necessarily invertible)
B ∈Mn. Since fB and gB are continuous, it follows from Theorem 2.D.3 that
fB(A) = gB(A) (so f (AB) = f (BA)) for all A,B ∈Mn, which completes the
proof. �

If the reader is uncomfortable with the introduction of the function fB and
gB at the end of the above proof, it can instead be finished a bit more directly by
making use of some of the ideas from the proof of Theorem 2.D.1. In particular,
for any (potentially non-invertible) matrix A∈Mn and integer k > 1, we define
Ak = A+ 1

k I and note that limk→∞ Ak = A and Ak is invertible when k is large.
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We then compute

f (AB) = f
(

lim
k→∞

AkB
)

(since lim
k→∞

Ak = A)

= lim
k→∞

f (AkB) (since f is linear, thus continuous)

= lim
k→∞

f (BAk) (since Ak is invertible when k is large)

= f
(

lim
k→∞

BAk

)
(since f is linear, thus continuous)

= f (BA), (since lim
k→∞

Ak = A)

as desired.

Finishing the QR Decomposition
We now use continuity and density arguments to complete the proof that every
matrix A ∈ Mm,n has a QR decomposition, which we originally stated as
Theorem 1.C.1 and only proved in the special case when its leftmost min{m,n}
columns form a linearly independent set. We re-state this theorem here for ease
of reference.

Theorem 2.D.5
QR Decomposition

(Again)

Suppose F = R or F = C, and A ∈Mm,n(F). There exists a unitary ma-
trix U ∈Mm(F) and an upper triangular matrix T ∈Mm,n(F) with non-
negative real entries on its diagonal such that

A = UT.

In addition to the techniques that we have already presented in this section,
the proof of this theorem also relies on a standard result from analysis called
the Bolzano–Weierstrass theorem, which says that every sequence in a closed
and bounded subset of a finite-dimensional vector space over R or C has a
convergent subsequence. For our purposes, we note that the set of unitary
matrices is a closed and bounded subset ofMn, so any sequence of unitary
matrices has a convergent subsequence.

Proof of Theorem 2.D.5. We assume that n ≥ m and simply note that a com-
pletely analogous argument works if n < m. We write A = [ B | C ] where
B ∈Mm and define Ak = [ B+ 1

k I |C ] for each integer k ≥ 1. Since B+ 1
k I is

invertible (i.e., its columns are linearly independent) whenever k is sufficiently
large, the proof of Theorem 1.C.1 tells us that Ak has a QR decomposition
Ak = UkTk whenever k is sufficiently large. We now use limit arguments to
show that A itself also has such a decomposition.

Since the set of unitary matrices is closed and bounded, the Bolzano–
Weierstrass theorem tells us that there is a sequence k1 < k2 < k3 < · · · with
the property that U = lim j→∞ Uk j exists and is unitary.Recall that limits

are taken entrywise,
and the limit of the 0

entries in the lower
triangular portion of

each Tk j is just 0.

Similarly, if lim j→∞ Tk j

exists then it must be upper triangular since each Tk j is upper triangular. To see
that this limit does exist, we compute

lim
j→∞

Tk j = lim
j→∞

U∗k j
Ak j =

(
lim
j→∞

Uk j

)∗(
lim
j→∞

Ak j

)
= U∗

(
lim
k→∞

Ak

)
= U∗A.

It follows that A = UT , where T = lim j→∞ Tk j is upper triangular, which
completes the proof. �
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If the reader does not like having to make use of the Bolzano–Weierstrass
theorem as we did above, another proof of the QR decomposition is outlined in
Exercise 2.D.7.

From the Inverse to the Adjugate
One final method of extending a property of matrices from those that are
invertible to those that perhaps are not is to make use of something called the
“adjugate” of a matrix:

Definition 2.D.3
The Adjugate

Suppose that F = R or F = C and A ∈Mn(F) has characteristic polyno-
mial

pA(λ ) = det(A−λ I) = (−1)n
λ

n +an−1λ
n−1 + · · ·+a1λ +a0.

Then the adjugate of A, denoted by adj(A), is the matrix

adj(A) =−
(
(−1)nAn−1 +an−1An−2 + · · ·+a2A+a1I

)
.

While the above definition likely seems completely bizarre at first glance,
it is motivated by the following two properties:

• The function adj :Mn →Mn is continuous, since matrix multiplica-
tion, addition, and the coefficients of characteristic polynomials are all
continuous, and

• The adjugateThe adjugate is
sometimes defined

in terms of the
cofactors of A

instead (see (Joh20,
Section 3.A), for

example). These two
definitions are

equivalent.

satisfies A−1 = adj(A)/det(A) whenever A ∈Mn is in-
vertible. To verify this claim, first recall that the constant term of the
characteristic polynomial is a0 = pA(0) = det(A−0I) = det(A). Using
the Cayley–Hamilton theorem (Theorem 2.1.3) then tells us that

pA(A) = (−1)nAn +an−1An−1 + · · ·+a1A+det(A)I = O,

and multiplying this equation by A−1 (if it exists) shows that

(−1)nAn−1 +an−1An−2 + · · ·+a1I +det(A)A−1 = O.

Rearranging slightly shows exactly that det(A)A−1 = adj(A), as claimed.
It follows that if we have a formula or property of matrices that involves

A−1, we can often extend it to an analogous formula that holds for all square
matrices by simply making the substitution A−1 = adj(A)/det(A) and invoking
continuity. We illustrate this method with an example.

Theorem 2.D.6
Jacobi’s Formula

Suppose that F = R or F = C and A(t)∈Mn(F) is a matrix whose entries
depend in a continuously differentiable way on a parameter t ∈ F. If we let
dA/dt denote the matrix that is obtained by taking the derivative of each
entry of A with respect to t, then

d
dt

det
(
A(t)

)
= tr

(
adj
(
A(t)

)dA
dt

)
.

Proof. We proved in Exercise 1.A.8 that if A(t) is invertible then

d
dt

det
(
A(t)

)
= det

(
A(t)

)
tr
(

A(t)−1 dA
dt

)
.



294 Chapter 2. Matrix Decompositions

If we make the substitution A(t)−1 = adj
(
A(t)

)
/det

(
A(t)

)
in the above formula

then we see that
d
dt

det
(
A(t)

)
= tr

(
adj
(
A(t)

)dA
dt

)

whenever A(t) is invertible. Since the set of invertible matrices is dense in
Mn(F) and this function is continuous, we conclude that it must in fact hold
for all A(t) (invertible or not). �

2.D.4 Working with Non-Diagonalizable Matrices

We can also apply continuity and density arguments to the set of diagonalizable
matrices in much the same way that we applied them to the set of invertible
matrices in the previous subsection. We can often use Schur triangularization
(Theorem 2.1.1) or the Jordan decomposition (Theorem 2.4.1) to achieve the
same end result as the methods of this section, but it is nonetheless desirable
to avoid those decompositions when possible (after all, diagonal matrices are
much simpler to work with than triangular ones).

We start by illustrating how these techniques can simplify arguments in-
volving matrix functions.

Theorem 2.D.7
Trigonometric

Identities
for Matrices

For all A ∈Mn(C) it is the case that sin2(A)+ cos2(A) = I.

Proof. Recall that sin2(x)+ cos2(x) = 1 for all x ∈ C. It follows that if A is
diagonalizable via A = PDP−1, where D has diagonal entries λ1, λ2, . . ., λn,
then

We proved
this theorem

via the Jordan
decomposition in

Exercise 2.4.14.

sin2(A)+ cos2(A) = P




sin2(λ1) 0 · · · 0

0 sin2(λ2) · · · 0
...

...
. . .

...

0 0 · · · sin2(λn)




P−1

+P




cos2(λ1) 0 · · · 0

0 cos2(λ2) · · · 0
...

...
. . .

...

0 0 · · · cos2(λn)




P−1

= PP−1 = I.

Since f (x) = sin2(x)+cos2(x) is analytic on C and thus continuous onMn(C),
it follows from Theorem 2.D.3 that sin2(A)+ cos2(A) = I for all (not necessar-
ily diagonalizable) A ∈Mn(C). �

As another example to illustrate the utility of this technique, we now
provide an alternate proof of the Cayley–Hamilton theorem (Theorem 2.1.3)
that avoids the technical argument that we originally used to prove it via Schur
triangularization (which also has a messy, technical proof).
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Theorem 2.D.8
Cayley–Hamilton

(Again)

Suppose A ∈Mn(C) has characteristic polynomial pA(λ ) = det(A−λ I).
Then pA(A) = O.

Proof. Since A is complex, the fundamental theorem of algebra (Theo-
rem A.3.1) tells us that the characteristic polynomial of A has a root and
can thus be factored as

pA(λ ) = (λ1−λ )(λ2−λ ) · · ·(λn−λ ),

where λ1, λ2, . . ., λn are the eigenvalues of A, listed according to algebraic
multiplicity. Our goal is thus to show that (λ1I−A)(λ2I−A) · · ·(λnI−A) = O.

To see why this is the case, notice that if A is diagonalizable via A = PDP−1

then

(λ1I−PDP−1) · · ·(λnI−PDP−1) = P(λ1I−D) · · ·(λnI−D)P−1,

and it is clear that (λ1I−D)(λ2I−D) · · ·(λnI−D) = O, since D is diagonal
with diagonal entries λ1, λ2, . . ., λn. It follows that pA(A) = O whenever A is
diagonalizable.

To see that this same conclusion must hold even when A is not diagonal-
izable, simply notice that the function f (A) = pA(A) is continuous (since the
coefficients in the characteristic polynomial are continuous) and then apply
Theorem 2.D.3 to it. �

Exercises solutions to starred exercises on page 475

2.D.1 Compute lim
k→∞

Ak if A = 1
10

[
9 2
1 8

]
.

2.D.2 Determine which of the following statements are
true and which are false.

∗ (a) The Frobenius norm of a matrix is continuous.
(b) The function T : Mm,n→Mn,m defined by T (A) =

A† (the pseudoinverse of A—see Section 2.C.1) is
continuous.

∗∗2.D.3 Show that if A1,A2, . . . ∈Mm,n are matrices with
rank(Ak)≤ r for all k then

rank
(

lim
k→∞

Ak

)
≤ r

too, as long as this limit exists.

[Side note: For this reason, the rank of a matrix is said to be
a lower semicontinuous function.]

2.D.4 Show that adj(AB) = adj(B)adj(A) for all A,B ∈
Mn.

[Hint: This is easy to prove if A and B are invertible.]

∗ 2.D.5 Show that every positive semidefinite matrix
A ∈Mn can be written as a limit of positive definite matri-
ces.

[Side note: In other words, the set of positive definite matri-
ces is dense in the set of positive semidefinite matrices.]

2.D.6 Suppose that A,B ∈Mn are positive semidefinite.
Show that all eigenvalues of AB are real and non-negative.

[Hint: We proved this fact for positive definite matrices back
in Exercise 2.2.26.]

∗∗2.D.7 Provide an alternate proof of the QR decomposi-
tion (Theorem 2.D.5) by combining the Cholesky decompo-
sition (Theorem 2.B.5) and Theorem 2.2.10.



3. Tensors and Multilinearity

Do not think about what tensors are, but rather
what the whole construction of a tensor product
space can do for you.

Keith Conrad

Up until now, all of our explorations in linear algebra have focused on vec-
tors, matrices, and linear transformations—all of our matrix decompositions,
change of basis techniques, algorithms for solving linear systems or construct-
ing orthonormal bases, and so on have had the purpose of deepening our
understanding of these objects. We now introduce a common generalization
of all of these objects, called “tensors”, and investigate which of our tools and
techniques do and do not still work in this new setting.

For example, just like we can think of vectors (that is, the type of vectors
that live in Fn) as 1-dimensional lists of numbers and matrices as 2-dimensional
arrays of numbers, we can think of tensors as any-dimensional arrays of
numbers. Perhaps more usefully though, recall that we can think of vectors
geometrically as arrows in space, and matrices as linear transformations that
move those arrows around. We can similarly think of tensors as functions that
move vectors, matrices, or even other more general tensors themselves around
in a linear way. In fact, they can even move multiple vectors, matrices, or tensors
around (much like bilinear forms and multilinear forms did in Section 1.3.3).

In a sense, this chapter is where we really push linear algebra to its ultimate
limit, and see just how far our techniques can extend. Tensors provide a common
generalization of almost every single linear algebraic object that we have seen—
not only are vectors, matrices, linear transformations, linear forms, and bilinear
forms examples of tensors, but so are more exotic operations like the cross
product, the determinant, and even matrix multiplication itself.

3.1 The Kronecker Product

Before diving into the full power of tensors, we start by considering a new
operation on Fn andMm,n(F) that contains much of their essence. After all,
tensors themselves are quite abstract and will take some time to get our heads
around, so it will be useful to have this very concrete motivating operation in
our minds when we are introduced to them.

© Springer Nature Switzerland AG 2021
N. Johnston, Advanced Linear and Matrix Algebra,
https://doi.org/10.1007/978-3-030-52815-7_3
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3.1.1 Definition and Basic Properties

The Kronecker product can be thought of simply as a way of multiplying
matrices together (regardless of their sizes) so as to get much larger matrices.

Definition 3.1.1
Kronecker Product

The Kronecker product of matrices A∈Mm,n and B∈Mp,q is the block
matrix

Recall that ai, j is the
(i, j)-entry of A.

A⊗B def=




a1,1B a1,2B · · · a1,nB
a2,1B a2,2B · · · a2,nB

...
...

. . .
...

am,1B am,2B · · · am,nB



∈Mmp,nq.

In particular, notice that A⊗B is defined no matter what the sizes of A and
B are (i.e., we do not need to make sure that the sizes of A and B are compatible
with each other like we do with standard matrix multiplication). As a result of
this, we can also apply the Kronecker product to vectors simply by thinking of
them as 1×n or m×1 matrices. For this reason, we similarly say that if v ∈ Fm

and w ∈ Fn then the Kronecker product of v and w is

v⊗w def= (v1w,v2w, . . . ,vmw)
= (v1w1, . . . ,v1wn, v2w1, . . . ,v2wn, . . . , vmw1, . . . ,vmwn).

We now compute a few Kronecker products to make ourselves more com-
fortable with these ideas.

Example 3.1.1
Numerical Examples

of the Kronecker
Product

Suppose A =
[

1 2
3 4

]
, B =

[
2 1
0 1

]
, v =

[
1
2

]
, and w =

[
3
4

]
. Compute:

a) A⊗B,
b) B⊗A, and
c) v⊗w.

Solutions:

a)As always, the bars
that we use to

partition these block
matrices are just

provided for ease of
visualization—they

have no
mathematical

meaning.

A⊗B =

[
B 2B
3B 4B

]
=




2 1 4 2
0 1 0 2
6 3 8 4
0 3 0 4




.

b) B⊗A =

[
2A A
O A

]
=




2 4 1 2
6 8 3 4
0 0 1 2
0 0 3 4




.

c) v⊗w =

[
w
2w

]
=




3
4
6
8




.

The above

We will see in
Theorem 3.1.8 that,
even though A⊗B

and B⊗A are
typically not equal,
they share many of

the same properties.

example shows that the Kronecker product is not commutative
in general: A⊗B might not equal B⊗A. However, it does have most of the
other “standard” properties that we would expect a matrix product to have, and
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in particular it interacts with matrix addition and scalar multiplication exactly
how we would hope that it does:

Theorem 3.1.1
Vector Space

Properties of the
Kronecker Product

Suppose A,B, and C are matrices with sizes such that the operations below
make sense, and let c ∈ F be a scalar. Then

a) (A⊗B)⊗C = A⊗ (B⊗C) (associativity)
b) A⊗ (B+C) = A⊗B+A⊗C (left distributivity)
c) (A+B)⊗C = A⊗C +B⊗C (right distributivity)
d) (cA)⊗B = A⊗ (cB) = c(A⊗B)

Proof. The proofs of all of these statements are quite similar to each other, so
we only explicitly prove part (b)—the remaining parts of the theorem are left
to Exercise 3.1.20.

To this end, we just fiddle around with block matrices a bit:

A⊗ (B+C) =




a1,1(B+C) a1,2(B+C) · · · a1,n(B+C)
a2,1(B+C) a2,2(B+C) · · · a2,n(B+C)

...
...

. . .
...

am,1(B+C) am,2(B+C) · · · am,n(B+C)




=




a1,1B a1,2B · · · a1,nB
a2,1B a2,2B · · · a2,nB

...
...

. . .
...

am,1B am,2B · · · am,nB




+




a1,1C a1,2C · · · a1,nC
a2,1C a2,2C · · · a2,nC

...
...

. . .
...

am,1C am,2C · · · am,nC




= A⊗B+A⊗C,

as desired. �

In particular, associativity of the Kronecker product (i.e., property (a) of the
above theorem) tells us that we can unambiguously define Kronecker powers

Associativity of the
Kronecker product

also tells us that
expressions like

A⊗B⊗C make sense.

of matrices by taking the Kronecker product of a matrix with itself repeatedly,
without having to worry about the exact order in which we perform those
products. That is, for any integer p≥ 1 we can define

A⊗p def= A⊗A⊗·· ·⊗A︸ ︷︷ ︸
p copies

.

Kronecker powers increase in size extremely quickly, since increasing the
power by 1 multiplies the number of rows and columns in the result by the
number of rows and columns in A, respectively.

Example 3.1.2
Numerical Examples

of Kronecker
Powers

Suppose H =
[

1 1
1 −1

]
and I =

[
1 0
0 1

]
. Compute:

a) I⊗2,
b) H⊗2, and
c) H⊗3.
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Solutions:

a) I⊗2 = I⊗ I =

[
I O
O I

]
=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




.

b) H⊗2 = H⊗H =

[
H H
H −H

]
=




1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1




.

c)We could also
compute

H⊗3 = (H⊗2)⊗H. We
would get the same

answer.

H⊗3 = H⊗ (H⊗2) =

[
H⊗2 H⊗2

H⊗2 −H⊗2

]

=




1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1




.

Remark 3.1.1
Hadamard Matrices

Notice that the matrices H, H⊗2, and H⊗3 from Example 3.1.2 all have the
following two properties: their entries are all ±1, and their columns are
mutually orthogonal. Matrices with these properties are called Hadamard
matrices, and the Kronecker product gives one method of constructing
them: H⊗k is a Hadamard matrix for all k ≥ 1.

One of the longest-standing unsolved questions in linear algebra asks
which values of n are such that there exists an n× n Hadamard matrix.
The above argument shows that they exist whenever n = 2k for some k≥ 1
(since H⊗k is a 2k×2k matrix), but it is expected that they exist whenever
n is a multiple of 4. For example, hereEntire books have

been written about
Hadamard matrices
and the various ways
of constructing them

[Aga85, Hor06].

is a 12×12 Hadamard matrix that
cannot be constructed via the Kronecker product:



1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
1 1 −1 1 −1 −1 −1 1 1 1 −1 1
1 1 1 −1 1 −1 −1 −1 1 1 1 −1
1 −1 1 1 −1 1 −1 −1 −1 1 1 1
1 1 −1 1 1 −1 1 −1 −1 −1 1 1
1 1 1 −1 1 1 −1 1 −1 −1 −1 1
1 1 1 1 −1 1 1 −1 1 −1 −1 −1
1 −1 1 1 1 −1 1 1 −1 1 −1 −1
1 −1 −1 1 1 1 −1 1 1 −1 1 −1
1 −1 −1 −1 1 1 1 −1 1 1 −1 1
1 1 −1 −1 −1 1 1 1 −1 1 1 −1
1 −1 1 −1 −1 −1 1 1 1 −1 1 1




.

Numerous different methods of constructing Hadamard matrices are now



3.1 The Kronecker Product 301

known, and currently the smallest n for which it is not known if there
exists a Hadamard matrix is n = 668.

Notice that, in part (a) of the above example, the Kronecker product of two
identity matrices was simply a larger identity matrix—this happens in general,

We look at some
other sets of

matrices that are
preserved by the

Kronecker product
shortly, in

Theorem 3.1.4.

regardless of the sizes of the identity matrices in the product. Similarly, the
Kronecker product of two diagonal matrices is always diagonal.

The Kronecker product also plays well with usual matrix multiplication and
other operations like the transpose and inverse. We summarize these additional
properties here:

Theorem 3.1.2
Algebraic Properties of
the Kronecker Product

Suppose A, B, C, and D are matrices with sizes such that the operations
below make sense. Then

a) (A⊗B)(C⊗D) = (AC)⊗ (BD),
b) (A⊗B)−1 = A−1⊗B−1, if either side of this expression exists
c) (A⊗B)T = AT ⊗BT , and
d) (A⊗B)∗ = A∗⊗B∗ if the matrices are complex.

Proof. The proofs of all of these statements are quite similar to each other
and follow directly from the definitions of the relevant operations, so we
only explicitly prove part (a)—the remaining parts of the theorem are left to
Exercise 3.1.21.

To see why part (a) of the theorem holds, we compute (A⊗B)(C⊗D) via
block matrix

So that these matrix
multiplications

actually make sense,
we are assuming

that A ∈Mm,n and
C ∈Mn,p.

multiplication:

This calculation looks
ugly, but really it’s
just applying the

definition of matrix
multiplication
multiple times.

(A⊗B)(C⊗D) =




a1,1B a1,2B · · · a1,nB
a2,1B a2,2B · · · a2,nB

...
...

. . .
...

am,1B am,2B · · · am,nB







c1,1D c1,2D · · · c1,pD
c2,1D c2,2D · · · c2,pD

...
...

. . .
...

cn,1D cn,2D · · · cn,pD




=




∑
n
j=1 a1, jc j,1BD ∑

n
j=1 a1, jc j,2BD · · · ∑

n
j=1 a1, jc j,pBD

∑
n
j=1 a2, jc j,1BD ∑

n
j=1 a2, jc j,2BD · · · ∑

n
j=1 a2, jc j,pBD

...
...

. . .
...

∑
n
j=1 am, jc j,1BD ∑

n
j=1 am, jc j,2BD · · · ∑

n
j=1 am, jc j,pBD




=




∑
n
j=1 a1, jc j,1 ∑

n
j=1 a1, jc j,2 · · · ∑

n
j=1 a1, jc j,p

∑
n
j=1 a2, jc j,1 ∑

n
j=1 a2, jc j,2 · · · ∑

n
j=1 a2, jc j,p

...
...

. . .
...

∑
n
j=1 am, jc j,1 ∑

n
j=1 am, jc j,2 · · · ∑

n
j=1 am, jc j,p



⊗ (BD)

= (AC)⊗ (BD),

as desired. �

It is worth noting that Theorems 3.1.1 and 3.1.2 still work if we replace
all of the matrices by vectors, since we can think of those vectors as 1×n or
m×1 matrices. Doing this in parts (a) and (d) of the above theorem shows us
that if v,w ∈ Fn and x,y ∈ Fm are (column) vectors, then

(v⊗x) · (w⊗y) = (v⊗x)∗(w⊗y) = (v∗w)(x∗y) = (v ·w)(x ·y).
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In other words, the dot product of two Kronecker products is just the product
of the individual dot products. In particular, this means that v⊗x is orthogonal
to w⊗y if and only if v is orthogonal to w or x is orthogonal to y (or both).

Properties Preserved by the Kronecker Product
Because the Kronecker product and Kronecker powers can create such large
matrices so quickly, it is important to understand how properties of A⊗B
relate to the corresponding properties of A and B themselves. For example, the
following theorem shows that we can compute the eigenvalues, determinant,
and trace of A⊗B directly from A and B themselves.

Theorem 3.1.3
Eigenvalues, Trace,

and Determinant of the
Kronecker Product

Suppose A ∈Mm and B ∈Mn.
a) If λ and µ are eigenvalues of A and B, respectively, with correspond-

ing eigenvectors v and w, then λ µ is an eigenvalue of A⊗B with
corresponding eigenvector v⊗w,

b) tr(A⊗B) = tr(A)tr(B), and
c) det(A⊗B) =

(
det(A)

)n(det(B)
)m.

Proof. Part (a) of the theorem follows almost immediately from the fact that
the Kronecker product plays well with matrix multiplication and scalar multi-
plication (i.e., Theorems 3.1.1 and 3.1.2):

(A⊗B)(v⊗w) = (Av)⊗ (Bw) = (λv)⊗ (µw) = λ µ(v⊗w),

so v⊗w is an eigenvector of A⊗B corresponding to eigenvalue λ µ , as claimed.
Part (b) followsNote in particular

that parts (b)
and (c) of this

theorem imply that
tr(A⊗B) = tr(B⊗A)

and
det(A⊗B) = det(B⊗A).

directly from the definition of the Kronecker product:

tr(A⊗B) = tr







a1,1B a1,2B · · · a1,nB
a2,1B a2,2B · · · a2,nB

...
...

. . .
...

am,1B am,2B · · · am,nB







= a1,1tr(B)+a2,2tr(B)+ · · ·+an,ntr(B) = tr(A)tr(B).

Finally, for part (c) we note that

det(A⊗B) = det
(
(A⊗ In)(Im⊗B)

)
= det(A⊗ In)det(Im⊗B).

SinceWe will see another
way to prove this

determinant equality
(as long as F = R or

F = C) in
Exercise 3.1.9.

Im⊗B is block diagonal, its determinant just equals the product of the
determinants of its diagonal blocks:

det(Im⊗B) = det







B O · · · O
O B · · · O
...

...
. . .

...
O O · · · B







=
(

det(B)
)m

.

A similar argument shows that det(A⊗ In) = det(A)n, so we get det(A⊗B) =
det(A)n det(B)m, as claimed. �

The Kronecker product also preserves several useful families of matrices.
For example, it follows straightforwardly from the definition of the Kronecker
product that if A ∈Mm and B ∈Mn are both upper triangular, then so is A⊗B.
We summarize some observations of this type in the following theorem:
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Theorem 3.1.4
Matrix Properties
Preserved by the

Kronecker Product

Suppose A ∈Mm and B ∈Mn.
a) If A and B are upper (lower) triangular, so is A⊗B,
b) If A and B are diagonal, so is A⊗B,
c) If A and B are normal, so is A⊗B,
d) If A and B are unitary, so is A⊗B,
e) If A and B are symmetric or Hermitian, so is A⊗B, and
f) If A and B are positive (semi)definite, so is A⊗B.

We leave the proof of the above theorem to Exercise 3.1.22, as none of it is
very difficult or enlightening—the claims can each be proved in a line or two
simply by invoking properties of the Kronecker product that we saw earlier.

In particular, because the matrix properties described by Theorem 3.1.4 are
exactly the ones used in most of the matrix decompositions we have seen, it
follows that the Kronecker product interacts with most matrix decompositions
just the way we would hope for it to. For example, if A ∈Mm(C) and B ∈
Mn(C) have Schur triangularizations

A = U1T1U∗1 and B = U2T2U∗2

(where U1 and U2 are unitary, and T1 and T2 are upper triangular), then to
find a Schur triangularization of A⊗B we can simply compute the Kronecker
products U1⊗U2 and T1⊗T2, since

A⊗B = (U1T1U∗1 )⊗ (U2T2U∗2 ) = (U1⊗U2)(T1⊗T2)(U1⊗U2)∗.

An analogous argument shows that the Kronecker product also preserves di-
agonalizations of matrices (in the sense of Theorem 2.0.1), as well as spectral
decompositions, QR decompositions, singular value decompositions, and polar
decompositions.

Because these decompositions behave so well under the Kronecker prod-
uct, we can use them to get our hands on any matrix properties that can be
inferred from these decompositions. For example, by looking at how the Kro-
necker product interacts with the singular value decomposition, we arrive at
the following theorem:

Theorem 3.1.5
Kronecker Product

of Singular Value
Decompositions

Suppose A ∈Mm,n and B ∈Mp,q.
a) If σ and τ are singular values of A and B, respectively, then στ is a

singular value of A⊗B,
b) rank(A⊗B) = rank(A)rank(B),
c) range(A⊗B) = span

{
v⊗w : v ∈ range(A),w ∈ range(B)

}
,

d) null(A⊗B) = span
{

v⊗w : v ∈ null(A),w ∈ null(B)
}

, and
e) ‖A⊗B‖= ‖A‖‖B‖ and ‖A⊗B‖F = ‖A‖F‖B‖F.

Again, all of these properties follow fairly quickly from the relevant def-
initions and the fact that if A and B have singular value decompositions
A = U1Σ1V ∗1 and B = U2Σ2V ∗2 , then

A⊗B = (U1Σ1V ∗1 )⊗ (U2Σ2V ∗2 ) = (U1⊗U2)(Σ1⊗Σ2)(V1⊗V2)∗

is a singular value decomposition of A⊗B. We thus leave the proof of the
above theorem to Exercise 3.1.23.
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The one notable matrix decomposition that does not behave quite so cleanly
under the Kronecker product is the Jordan decomposition. In particular, if
J1 ∈Mm(C) and J2 ∈Mn(C) are two matrices in Jordan canonical form then
J1⊗ J2 may not be in Jordan canonical form. For example, if

J1 = J2 =
[

1 1
0 1

]
then J1⊗ J2 =




1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1


 ,

which is not in Jordan canonical form.

Bases and Linear Combinations of Kronecker Products
The KroneckerThe fact that some

vectors cannot be
written in the form

v⊗w is exactly why
we needed the

“span” in
conditions (c)

and (d) of
Theorem 3.1.5.

product of vectors in Fm and Fn can only be used to construct
a tiny portion of all vectors in Fmn (and similarly, most matrices inMmp,nq
cannot be written in the form A⊗B). For example, there do not exist vectors
v,w ∈ C2 such that v⊗w = (1,0,0,1), since that would imply v1w = (1,0)
and v2w = (0,1), but (1,0) and (0,1) are not scalar multiples of each other.

However, it is the case that every vector in Fmn can be written as a linear
combination of vectors of the form v⊗w with v ∈ Fm and w ∈ Fn. In fact, if B
and C are bases of Fm and Fn, respectively, then the set

B⊗C def= {v⊗w : v ∈ B, w ∈C}

is a basis of Fmn (see Exercise 3.1.17, and note that a similar statement holds
for matrices inMmp,nq being written as a linear combination of matrices of
the form A⊗B). In the special case when B and C are the standard bases of
Fm and Fn, respectively, B⊗C is also the standard basis of Fmn. Furthermore,
ordering the basis vectors ei⊗ e j by placing their subscripts in lexicographical
order produces exactly the “usual” ordering of the standard basis vectors of
Fmn. For example, if m = 2 and n = 3 then

In other words, if we
“count” in the

subscripts of ei⊗ e j,
but with each digit

starting at 1 instead
of 0, we get the

usual ordering of
these basis vectors.

e1⊗ e1 = (1,0)⊗ (1,0,0) = (1,0,0,0,0,0),
e1⊗ e2 = (1,0)⊗ (0,1,0) = (0,1,0,0,0,0),
e1⊗ e3 = (1,0)⊗ (0,0,1) = (0,0,1,0,0,0),
e2⊗ e1 = (0,1)⊗ (1,0,0) = (0,0,0,1,0,0),
e2⊗ e2 = (0,1)⊗ (0,1,0) = (0,0,0,0,1,0),
e2⊗ e3 = (0,1)⊗ (0,0,1) = (0,0,0,0,0,1).

In fact, this same observation works when taking the Kronecker product of 3 or
more standard basis vectors as well.

When working with vectors that are (linear combinations of) Kronecker
products of other vectors, we typically want to know what the dimensions of
the different factors of the Kronecker product are. For example, if we say that
v⊗w ∈ F6, we might wonder whether v and w live in 2- and 3-dimensional
spaces, respectively, or 3- and 2-dimensional spaces. To alleviate this issue,
we use the notation Fm⊗Fn to mean Fmn, but built out of Kronecker products
of vectors from Fm and Fn, in that order (and we similarly use the notation
Mm,n⊗Mp,q for Mmp,nq). When working with the Kronecker product of
many vectors, we often use the shorthand notation

(Fn)⊗p def= Fn⊗Fn⊗·· ·⊗Fn
︸ ︷︷ ︸

p copies

.
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Furthermore,We will clarify what
the word “tensor”

means in the
coming sections.

we say that any vector v = v1⊗v2⊗·· ·⊗vp ∈ (Fn)⊗p that
can be written as a Kronecker product (rather than as a linear combination of
Kronecker products) is an elementary tensor.

3.1.2 Vectorization and the Swap Matrix

We now note that the space Fm⊗Fn is “essentially the same” asMm,n(F). To
clarify what we mean by this, we recall that we can represent matrices inMm,n
via their coordinate vectors with respect to a given basis. In particular, if we use
the standard basisRecall that Ei, j has a

1 in its (i, j)-entry and
zeros elsewhere.

E = {E1,1,E1,2, . . . ,Em,n}, then this coordinate vector has a
very special form—it just contains the entries of the matrix, read row-by-row.
This leads to the following definition:

Definition 3.1.2
Vectorization

Suppose A ∈Mm,n. The vectorization of A, denoted by vec(A), is the
vector in Fmn that is obtained by reading the entries of A row-by-row.

We typically think of vectorization as the “most natural” isomorphism from
Mm,n(F) to Fmn—we do not do anything “fancy” to transform the matrix into
a vector, but rather we just read it as we see it. In the other direction, we define
the matricization of a vector v ∈ Fmn, denoted by mat(v), to be the matrix
whose vectorization if v (i.e., the linear transformation mat : Fmn→Mm,n is
defined by mat = vec−1). In other words, matricization is the operation that
places the entries of a vector row-by-row into a matrix. For example, in the
m = n = 2 case we haveSome other books

define vectorization
as reading the

entries of the matrix
column-by-column

instead of
row-by-row, but that

convention makes
some of the

upcoming formulas
a bit uglier.

vec
([

a b
c d

])
=




a
b
c
d


 and mat







a
b
c
d





=

[
a b
c d

]
.

While vectorization is easy to work with when given an explicit matrix, in
this “read a matrix row-by-row” form it is a bit difficult to prove things about
it and work with it abstractly. The following theorem provides an alternate
characterization of vectorization that is often more convenient.

Theorem 3.1.6
Vectorization and the

Kronecker Product

If v ∈ Fm and w ∈ Fn are column vectors then vec
(
vwT

)
= v⊗w.

Proof. One way to see why this holds is to compute vwT via block matrix
multiplication as

Yes, we really want
wT (not w∗) in this
theorem, even if

F = C. The reason is
that vectorization is

linear (like
transposition), not
conjugate linear.

follows:

vwT =




v1wT

v2wT

...
vmwT




.

Since vec(vwT ) places the entries of vwT into a vector one row at a time, we
see that its first n entries are the same as those of v1wT (which are the same as
those of v1w), its next n entries are the same as those of v2w, and so on. But
this is exactly the definition of v⊗w, so we are done. �
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The above theorem could be flipped around to (equivalently) say that
mat(v⊗w) = vwT . From this characterization of the Kronecker product, it
is perhaps clearer why not every vector in Fm⊗Fn is an elementary tensor
v⊗w: those vectors correspond via matricization to the rank-1 matrices vwT ∈
Mm,n(F), and not every matrix has rank 1.

VectorizationLook back at
Section 1.2.1 if you

need a refresher on
how to represent

linear
transformations as

matrices.

is useful because it lets us think about matrices as vectors,
and linear transformations acting on matrices as (larger) matrices themselves.
This is nothing new—we can think of a linear transformation on any finite-
dimensional vector space in terms of its standard matrix. However, in this
particular case the exact details of the computation are carried out by vectoriza-
tion and the Kronecker product, which makes them much simpler to actually
work with in practice.

Theorem 3.1.7
Vectorization of

a Product

Suppose A ∈Mp,m and B ∈Mr,n. Then

vec
(
AXBT )= (A⊗B)vec(X) for all X ∈Mm,n.

In other words, this
Recall that when

working with
standard matrices
with respect to the

standard basis E, we
use the shorthand

[T ] = [T ]E .

theorem tells us about the standard matrix of the
linear transformation TA,B :Mm,n→Mp,r defined by TA,B(X) = AXBT , where
A ∈Mp,m and B ∈Mr,n are fixed. In particular, it says that the standard matrix
of TA,B (with respect to the standard basis E = {E1,1,E1,2, . . . ,Em,n}) is simply
[TA,B] = A⊗B.

Proof of Theorem 3.1.7 We start by showing that if X = Ei, j for some i, j then
vec
(
AEi, jBT

)
= (A⊗B)vec(Ei, j). To see this, note that Ei, j = eieT

j , so using
Theorem 3.1.6 twice tells us that

vec
(
AEi, jBT )= vec

(
AeieT

j BT )= vec
(
(Aei)(Be j)T )= (Aei)⊗ (Be j)

= (A⊗B)(ei⊗ e j) = (A⊗B)vec
(
eieT

j
)

= (A⊗B)vec(Ei, j).

If we then use the fact that we can write as X = ∑i, j xi, jEi, j, the result follows
from the fact that vectorization is

This proof technique
is quite common

when we want to
show that a linear

transformation acts
in a certain way: we
show that it acts that
way on a basis, and
then use linearity to

show that it must do
the same thing on

the entire vector
space.

linear:

vec
(
AXBT )= vec

(
A
(
∑
i, j

xi, jEi, j

)
BT

)
= ∑

i, j
xi, jvec

(
AEi, jBT )

= ∑
i, j

xi, j(A⊗B)vec(Ei, j) = (A⊗B)vec

(
∑
i, j

xi, jEi, j

)

= (A⊗B)vec(X),

as desired. �

The above theorem is nothing revolutionary, but it is useful because it
provides an explicit and concrete way of solving many problems that we have
(at least implicitly) encountered before. For example, suppose we had a fixed
matrix A ∈Mn and we wanted to find all matrices X ∈Mn that commute with
it. One way to do this would be to multiply out AX and XA, set entries of those
matrices equal to each other, and solve the resulting linear system. To make
the details of this linear system more explicit, however, we can notice that
AX = XA if and only if AX −XA = O, which (by taking the vectorization of
both sides of the equation and applying Theorem 3.1.7) is equivalent to

(A⊗ I− I⊗AT )vec(X) = 0.
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This is a linear system that we can solve “directly”, as we now illustrate with
an example.

Example 3.1.3
Finding Matrices

that Commute

Find all matrices X ∈M2 that commute with A =
[

1 1
0 0

]
.

Solution:
As noted above, one way to tackle this problem is to solve the linear

system (A⊗ I− I⊗AT )vec(X) = 0. The coefficient matrix of this linear
system is

A⊗ I− I⊗AT =




1 0 1 0
0 1 0 1
0 0 0 0
0 0 0 0


−




1 0 0 0
1 0 0 0
0 0 1 0
0 0 1 0


=




0 0 1 0
−1 1 0 1
0 0 −1 0
0 0 −1 0


.

To solve the corresponding linear system, we apply Gaussian elimination
to it:




0 0 1 0 0
−1 1 0 1 0
0 0 −1 0 0
0 0 −1 0 0


 row reduce−−−−−−→




1 −1 0 −1 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0


 .

From here we can see that, if we label the entries of vec(X) as vec(X) =
(x1,x2,x3,x4), then x3 = 0 and −x1 + x2 + x4 = 0, so x1 = x2 + x4 (x2 and
x4 are free). It follows that vec(X) = (x2 + x4,x2,0,x4), so the matrices X
that commute with A are exactly the ones of the form

X = mat
(
(x2 + x4,x2,0,x4)

)
=
[

x2 + x4 x2

0 x4

]
,

where x2,x4 ∈ F are arbitrary.

As another application of Theorem 3.1.7, we now start building towards
an explanation of exactly what the relationship between A⊗B and B⊗A is. In
particular, we will show that there is a specific matrix W with the property that
A⊗B = W (B⊗A)W T :

Definition 3.1.3
Swap Matrix

Given positive integers m and n, the swap matrix Wm,n ∈Mmn is the
matrix defined in any of the three following (equivalent) ways:

a) Wm,n = [T ], the standard matrix of the transposition map T :
Mm,n→Mn,m with respect to the standard basis E,

b) Wm,n(ei⊗ e j) = e j⊗ ei for all 1≤ i≤ m,1≤ j ≤ n, andThe entries of Wm,n
are all just 0 or 1, and
this result works over

any field F. If F = R or
F = C then Wm,n is

unitary.

c) Wm,n =



E1,1 E2,1 · · · Em,1

E1,2 E2,2 · · · Em,2

...
...

. . .
...

E1,n E2,n · · · Em,n




.

If the dimensions m and n are clear from context or irrelevant, we denote
this matrix simply by W .
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For example, we already showed in Example 1.2.10 that the standard matrix
of the transpose map T :M2→M2 is

[T ] =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 ,

so this is the swapWe use W (instead of
S) to denote the

swap matrix
because the letter

“S” is going to
become

overloaded later in
this section. We can

think of “W” as
standing for “sWap”.

matrix W2,2. We can check that it satisfies definition (b)
by directly computing each of W2,2(e1⊗ e1), W2,2(e1⊗ e2), W2,2(e2⊗ e1), and
W2,2(e2⊗ e2). Similarly, it also satisfies definition (c) since we can write it as
the block matrix

W2,2 =

[
E1,1 E2,1

E1,2 E2,2

]
=




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 .

To see that these three definitions agree in general (i.e., when m and n do
not necessarily both equal 2), we first compute

[T ] =
[
[ET

1,1]E | [ET
1,2]E | · · · | [ET

m,n]E
]

(definition of [T ])

=
[

vec(E1,1) | vec(E2,1) | · · · | vec(En,m)
]

(definition of vec)

=
[

vec(e1eT
1 ) | vec(e2eT

1 ) | · · · | vec(eneT
m)
]

(Ei, j = eieT
j for all i, j)

=
[

e1⊗ e1 | e2⊗ e1 | · · · | en⊗ em
]
. (Theorem 3.1.6)

The equivalenceSome books call the
swap matrix the

commutation matrix
and denote it by

Km,n.

of definitions (a) and (b) of the swap matrix follows fairly
quickly now, since multiplying a matrix by ei⊗ e j just results in one of the
columns of that matrix, and in this case we will have [T ](ei⊗ e j) = e j⊗ ei.
Similarly, the equivalence of definitions (a) and (c) follows just by explicitly
writing out what the columns of the block matrix (c) are: they are exactly
e1⊗e1, e2⊗e1, . . ., en⊗em, which we just showed are also the columns of [T ].

Example 3.1.4
Constructing

Swap Matrices

Construct the swap matrix Wm,n ∈Mmn when
a) m = 2 and n = 3, and when
b) m = n = 3.

Solutions:
a) We could use any of the three defining characterizations of the

swap matrix to construct it, but the easiest one to use

Note that swap
matrices are always
square, even if m 6= n.

is likely
characterization (c):

W2,3 =




E1,1 E2,1

E1,2 E2,2

E1,3 E2,3


=




1 · · · · ·
· · · 1 · ·
· 1 · · · ·
· · · · 1 ·
· · 1 · · ·
· · · · · 1




.



3.1 The Kronecker Product 309

b) Again,Here we use dots (·)
instead of zeros for

ease of visualization.

we use characterization (c) to construct this swap matrix:

W3,3 =




E1,1 E2,1 E3,1

E1,2 E2,2 E3,2

E1,3 E2,3 E3,3


=




1 · · · · · · · ·
· · · 1 · · · · ·
· · · · · · 1 · ·
· 1 · · · · · · ·
· · · · 1 · · · ·
· · · · · · · 1 ·
· · 1 · · · · · ·
· · · · · 1 · · ·
· · · · · · · · 1




The swap

Matrices (like the
swap matrix) with a
single 1 in each row

and column, and
zeros elsewhere, are
called permutation
matrices. Compare

this with signed or
complex

permutation
matrices from

Theorem 1.D.10.

matrix Wm,n has some very nice properties, which we prove in
Exercise 3.1.18. In particular, every row and column has a single non-zero
entry (equal to 1), if F = R or F = C then it is unitary, and if m = n then it is
symmetric. If the dimensions m and n are clear from context or irrelevant, we
just denote this matrix by W for simplicity.

The name “swap matrix” comes from the fact that it swaps the two factors
in any Kronecker product: W (v⊗w) = w⊗ v for all v ∈ Fm and w ∈ Fn. To
see this, just write each of v and w as linear combinations of the standard basis
vectors (v = ∑i viei and w = ∑ j w je j) and then use characterization (b) of swap
matrices:

W (v⊗w) = W

((
∑

i
viei

)
⊗
(
∑

j
w je j

))
= ∑

i, j
viw jW (ei⊗ e j)

= ∑
i, j

viw je j⊗ ei =
(
∑

j
w je j

)
⊗
(
∑

i
viei

)
= w⊗v.

More generally, the following theorem shows that swap matrices also solve
exactly the problem that we introduced them to solve—they can be used to
transform A⊗B into B⊗A:

Theorem 3.1.8
Almost-Commutativity

of the Kronecker
Product

Suppose A ∈Mm,n and B ∈Mp,q. Then B⊗A = Wm,p(A⊗B)W T
n,q.

Proof. Notice that if we write A and B in terms of their columns as A =[
a1 | a2 | · · · | an

]
and B =

[
b1 | b2 | · · · | bq

]
, respectively, then

Alternatively, we
could use

Theorem A.1.3 here
to write A and B as a

sum of rank-1
matrices.

A =
n

∑
i=1

aieT
i and B =

q

∑
j=1

b jeT
j .
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Then we can use the fact that W (a⊗b) = b⊗a to see that

Throughout this
theorem, Wm,p and

Wn,q are swap
matrices.

Wm,p(A⊗B)W T
n,q = Wm,p

(( n

∑
i=1

aieT
i

)
⊗
( q

∑
j=1

b jeT
j

))
W T

n,q

=
n

∑
i=1

q

∑
j=1

Wm,p(ai⊗b j)(ei⊗ e j)TW T
n,q

=
n

∑
i=1

q

∑
j=1

(b j⊗ai)(e j⊗ ei)T

=

(( q

∑
j=1

b jeT
j

)
⊗
( n

∑
i=1

aieT
i

))

= B⊗A,

which completes the proof. �

In the special case when m = n and p = q (i.e., A and B are each square), we
have Wn,q = Wm,p, and since these matrices are real and unitary we furthermore
have W T

n,q = W−1
m,p, which establishes the following corollary:

Corollary 3.1.9
Unitary Similarity

of Kronecker Products

Suppose F = R or F = C, and A ∈Mm(F) and B ∈Mn(F). Then A⊗B
and B⊗A are unitarily similar.

In particular, this corollary tells us that if A and B are square, then A⊗B and
B⊗A share all similarity-invariant properties, like their rank, trace, determinant,
eigenvalues, and characteristic polynomial (though this claim is not true in
general if A and B are not square, even if A⊗B is—see Exercise 3.1.4).

Example 3.1.5
Swapping a

Kronecker Product

Suppose A,B ∈M2 satisfy A⊗B =



2 1 4 2
0 1 0 2
6 3 8 4
0 3 0 4




. Compute B⊗A.

Solution:
We know from Theorem 3.1.8 that B⊗A = W (A⊗B)W T , where

W =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




is the swap matrix. We thus just need to perform the indicated matrix
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multiplications:

B⊗A = W (A⊗B)W T

=




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1







2 1 4 2
0 1 0 2
6 3 8 4
0 3 0 4







1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




=




2 4 1 2
6 8 3 4
0 0 1 2
0 0 3 4


 .

Note that this agrees with Example 3.1.1, where we computed each of
A⊗B and B⊗A explicitly.

3.1.3 The Symmetric and Antisymmetric Subspaces

In the previous section, we introduced the swap matrix W ∈Mn2 as the (unique)
matrix with the property that W (v⊗w) = w⊗ v for all v,w ∈ Fn. However,
since we can take the Kronecker product of three or more vectors as well, we
can similarly discuss matrices that permute any combination of Kronecker
product factors. For example, there is a unique matrix W231 ∈Mn3 with the
property that

Recall from
Theorem 3.1.1(a) that

(v⊗w)⊗x =
v⊗ (w⊗x), so it is

okay to omit
parentheses in
expressions like

v⊗w⊗x.

W231(v⊗w⊗x) = w⊗x⊗v for all v,w,x ∈ Fn, (3.1.1)

and it can be constructed explicitly by requiring that W231(ei ⊗ e j ⊗ ek) =
e j ⊗ ek ⊗ ei for all 1 ≤ i, j,k ≤ n. For example, in the n = 2 case the swap
matrix W231 has the form

As always, the gray
bars in this block

matrix has no
mathematical

meaning—they are
just there to help us

visualize the three
different Kronecker

factors that W231 acts
on.

W231 =




1 · · ·
· · · ·
· 1 · ·
· · · ·

· · · ·
1 · · ·
· · · ·
· 1 · ·

· · 1 ·
· · · ·
· · · 1
· · · ·

· · · ·
· · 1 ·
· · · ·
· · · 1




.

More generally, we can consider swap matrices acting on the Kronecker
product of any number p of vectors. If we fix a permutation σ : {1,2, . . . , p}→
{1,2, . . . , p} (i.e., a function for which σ(i) = σ( j) if and only if i = j), then
we define Wσ ∈Mnp to be the (unique) matrix with the property that

These swap matrices
can also be defined

if v1, v2, . . ., vp have
different

dimensionalities, but
for the sake of

simplicity we only
consider the case
when they are all

n-dimensional here.

Wσ (v1⊗v2⊗·· ·⊗vp) = vσ(1)⊗vσ(2)⊗·· ·⊗vσ(p)

for all v1,v2, . . . ,vp ∈ Fn. From this definition is should be clear that if σ and
τ are any two permutations then WσWτ = Wσ◦τ .

We typically denote permutations by their one-line notation, which means
we list them simply by a string of digits such that, for each 1 ≤ j ≤ p, the
j-th digit tells us the value of σ( j). For example, the one-line notation 231
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corresponds to the permutation σ : {1,2,3} → {1,2,3} for which σ(1) = 2,
σ(2) = 3, and σ(3) = 1, and thus W231 is exactly the swap matrix described
by Equation (3.1.1).

In general, there are p! permutations acting on {1,2, . . . , p}, and we denote
the set consisting of all of these permutations by Sp (this set is typically called
the symmetric group).Recall that

p! = p(p−1) · · ·3 ·2 ·1.
There are thus exactly p! swap matrices that permute

the Kronecker factors of vectors like v1⊗v2⊗·· ·⊗vp as well. In the p = 2,
in which case there are p! = 2 such swap matrices: the matrix that we called
“the” swap matrix back in Section 3.1.2, which corresponds to the permutation
σ = 21, and the identity matrix, which corresponds to the identity permutation
σ = 12.Some background

material on
permutations is

provided in
Appendix A.1.5.

In the p > 2 case, these more general swap matrices retain some of the
nice properties of “the” swap matrix from the p = 2 case, but lose others. In
particular, they are still permutation matrices and thus unitary, but they are no
longer symmetric in general (after all, even W231 is not symmetric).

The Symmetric Subspace
We now introduce one particularly important subspace that arises somewhat
naturally from the Kronecker product—the subspace of vectors that remain
unchanged when their Kronecker factors are permuted.

Definition 3.1.4
The Symmetric

Subspace

Suppose n, p ≥ 1 are integers. The symmetric subspace S p
n is the sub-

space of (Fn)⊗p consisting of vectors that are unchanged by swap matrices:

S p
n

def=
{

v ∈ (Fn)⊗p : Wσ v = v for all σ ∈ Sp
}
.

In the p = 2 case, the symmetric subspace is actually quite familiar. Since
the swap matrix W is the standard matrix of the transpose map, we see that the
equation Wv = v is equivalent to mat(v)T = mat(v). That is, the symmetric
subspace S2

n is isomorphic to the set of n× n symmetric matrices MS
n via

matricization.
We can thus think of the symmetric subspace S p

n as a natural generalization
of the set MS

n of symmetric matrices. We remind ourselves of some of the
properties ofMS

n here, as well as the corresponding properties of S2
n that they

imply:

There are many
other bases of MS

n
too, but the one

shown here is
particularly simple.

Properties ofMS
n

basis: {E j, j : 1≤ j ≤ n}∪{Ei, j +E j,i : 1≤ i < j ≤ n}
dimension:

(
n+1

2

)
=

n(n+1)
2

Properties of S2
n

basis: {e j⊗ e j : 1≤ j ≤ n}∪{ei⊗ e j + e j⊗ ei : 1≤ i < j ≤ n}
dimension:

(
n+1

2

)
=

n(n+1)
2

For example, the members of S2
2 are the vectors of the form (a,b,b,c), which

are isomorphic via matricization to the 2×2 (symmetric) matrices of the form
[

a b
b c

]
.

The following theorem generalizes these properties to higher values of p.
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Theorem 3.1.10
Properties of the

Symmetric Subspace

The symmetric subspace S p
n ⊆ (Fn)⊗p has the following properties:

a) One projection onto S p
n is given by

1
p! ∑

σ∈Sp

Wσ ,

b) dim(S p
n ) =

(
n+ p−1

p

)
, and

c) the following set is a basis of S p
n :

{
∑

σ∈Sp

Wσ (e j1 ⊗ e j2 ⊗·· ·⊗ e jp) : 1≤ j1 ≤ j2 ≤ ·· · ≤ jp ≤ n

}
.

Furthermore, if F = R or F = CWhen we say
“orthogonal” here,

we mean with
respect to the usual

dot product on
(Fn)⊗p.

then the projection in part (a) and the
basis in part (c) are each orthogonal.

Proof. We begin by proving property (a). Define P = ∑σ∈Sp Wσ /p! to be the
proposed projection onto S p

n . It is straightforward to check that P2 = P = PT ,
so P is an (orthogonal, if F = R or F = C) projection onto some subspace of
(Fn)⊗p—we leave the proof of those statements to Exercise 3.1.15.

It thus now suffices to show that range(P) = S p
n . To this end, first notice

that for all τ ∈ Sp we have
The fact that

composing all
permutations by τ

gives the set of all
permutations follows
from the fact that Sp
is a group (i.e., every

permutation is
invertible). To write a

particular
permutation ρ ∈ Sp

as ρ = τ ◦σ , just
choose σ = τ−1 ◦ρ.

Wτ P =
1
p! ∑

σ∈Sp

WτWσ =
1
p! ∑

σ∈Sp

Wτ◦σ = P,

with the final equality following from the fact that every permutation in Sp
can be written in the form τ ◦σ for some σ ∈ Sp. It follows that everything in
range(P) is unchanged by Wτ (for all τ ∈ Sp), so range(P)⊆ S p

n .
To prove the opposite inclusion, we just notice that if v ∈ S p

n then

Pv =
1
p! ∑

σ∈Sp

Wσ v =
1
p! ∑

σ∈Sp

v = v,

so v ∈ range(P) and thus S p
n ⊆ range(P). Since we already proved the opposite

inclusion, it follows that range(P) =S p
n , so P is a projection onto S p

n as claimed.
To prove property (c) (we will prove property (b) shortly), we first notice

that the columns of the projection P from part (a) have the form

P(e j1 ⊗ e j2 ⊗·· ·⊗ e jp) =
1
p! ∑

σ∈Sp

Wσ (e j1 ⊗ e j2 ⊗·· ·⊗ e jp),

where 1≤ j1, j2, . . . , jp≤ n. To turn this set of vectors into a basis of range(P)=
S p

n , we omit the columns that are equal to each other by only considering the
columns for which 1 ≤ j1 ≤ j2 ≤ ·· · ≤ jp ≤ n. If F = R or F = C (so we
have an inner product to work with) then these remaining vectors are mutually
orthogonal and thus form an orthogonal basis of range(P), and otherwise they
are linearly independent (and thus form a basis of range(P)) since the coordi-
nates of their non-zero entries in the standard basis form disjoint subsets of
{1,2, . . . ,np}. If we multiply these vectors each by p! then they form the basis
described in the statement of the theorem.



314 Chapter 3. Tensors and Multilinearity

To demonstrate property (b), we simply notice that the basis from part (c) of
the theorem contains as many vectors as there are multisetsA multiset is just a set

in which repetition is
allowed, like

{1,2,2,3}. Order
does not matter in

multisets (just like
regular sets).

{ j1, j2, . . . , jp} ⊆
{1,2, . . . ,n}. A standard combinatorics result says that there are exactly

(
n+ p−1

p

)
=

(n− p+1)!
p!(n−1)!

such multisets (see Remark 3.1.2), which completes the proof. �

Remark 3.1.2
Counting Multisets

We now illustrate why there are exactly
(

n+ p−1
p

)
=

(n− p+1)!
p!(n−1)!

p-element multisets with entries chosen from an n-element set (a fact that
we made use of at the end of the proof of Theorem 3.1.10). We represent
each multiset graphically via “stars and bars”, where p stars represent the
members of a multiset and n−1 bars separate the values of those stars.

For example, in the n = 5, p = 6 case, the multisets {1,2,3,3,5,5} and
{1,1,1,2,4,4} would be represented by the stars and bars arrangementsIt is okay for bars to

be located at the
start or end, and it is
also okay for multiple

bars to appear
consecutively.

F |F |FF | |FF and FFF |F | |FF |,

respectively.
Notice that there are a total of n+ p−1 positions in such an arrange-

ment of stars and bars (p positions for the stars and n−1 positions for the
bars), and each arrangement is completely determined by the positions
that we choose for the p stars. It follows that there are

(n+p−1
p

)
such con-

figurations of stars and bars, and thus exactly that many multisets of size
p chosen from a set of size n, as claimed.

The orthogonal basis vectors from part (c) of Theorem 3.1.10 do not form
an orthonormal basis because they are not properly normalized. For example,
in the n = 2, p = 3 case, we have dim(S3

2 ) =
(4

3

)
= 4 and the basis of S3

2
described by the theorem consists of the following 4 vectors:

This tells us that, in
the n = 2, p = 3 case,

S3
2 consists of the

vectors of the form
(a,b,b,c,b,c,c,d).

Basis Vector Tuple (j1, j2, j3)

6e1⊗ e1⊗ e1 (1,1,1)
2
(
e1⊗ e1⊗ e2 + e1⊗ e2⊗ e1 + e2⊗ e1⊗ e1

)
(1,1,2)

2
(
e1⊗ e2⊗ e2 + e2⊗ e1⊗ e2 + e2⊗ e2⊗ e1

)
(1,2,2)

6e2⊗ e2⊗ e2 (2,2,2)

In order to turn this basis into an orthonormal one, we must divide each
vector in it by

√
p!m1!m2! · · · mn!, where m j denotes the multiplicity of j

in the corresponding tuple ( j1, j2, . . . , jn). For example, for the basis vector
2
(
e1⊗e1⊗e2 +e1⊗e2⊗e1 +e2⊗e1⊗e1

)
corresponding to the tuple (1,1,2)

above, we have m1 = 2 and m2 = 1, so we divide that vector by
√

p!m1!m2! =√
3!2!1! = 2

√
3 to normalize it:
1√
3

(
e1⊗ e1⊗ e2 + e1⊗ e2⊗ e1 + e2⊗ e1⊗ e1

)
.

We close our discussion of the symmetric subspace by showing that it could
be defined in another (equivalent) way—as the span of Kronecker powers of
vectors in Fn (as long as F = R or F = C).
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Theorem 3.1.11
Tensor-Power Basis

of the Symmetric
Subspace

Suppose F = R or F = C. The symmetric subspace S p
n ⊆ (Fn)⊗p is the

span of Kronecker powers of vectors:

S p
n = span

{
v⊗p : v ∈ Fn}.

However,

Recall that
v⊗p = v⊗·· ·⊗v,

where there are p
copies of v on the

right-hand side.

a proof of this theorem requires some technicalities that we have
not yet developed, so we defer it to Section 3.B.1. Furthermore, we need to
be careful to keep in mind that this theorem does not hold over some other
fields—see Exercise 3.1.13.

For now, we just note that in the p = 2 case it says (via the usual isomor-
phism between S2

n andMS
n) that every symmetric matrix can be written as

linear combination of rank-1 symmetric matrices. This fact is not completely
obvious, as the most natural basis ofMS

n contains rank-2 matrices. For exam-
ple, in the n = 3 case the “typical” basis ofMS

3 consists of the following 6
matrices:



1 0 0
0 0 0
0 0 0


 ,




0 0 0
0 1 0
0 0 0


 ,




0 0 0
0 0 0
0 0 1


 ,




0 1 0
1 0 0
0 0 0


 ,




0 0 1
0 0 0
1 0 0


 ,




0 0 0
0 0 1
0 1 0




︸ ︷︷ ︸
each has rank 2

In order to turn this basis into one consisting only of rank-1 symmetric matrices,
we need to make it slightly uglier so that the non-zero entries of the basis
matrices overlap somewhat:Refer back to

Exercise 1.2.8 to see
a generalization of

this basis to larger
values of n.




1 0 0
0 0 0
0 0 0


 ,




0 0 0
0 1 0
0 0 0


 ,




0 0 0
0 0 0
0 0 1


 ,




1 1 0
1 1 0
0 0 0


 ,




1 0 1
0 0 0
1 0 1


 ,




0 0 0
0 1 1
0 1 1




Remark 3.1.3
The Spectral

Decomposition in the
Symmetric Subspace

Another way to see that symmetric matrices can be written as a linear
combination of symmetric rank-1 matrices is to make use of the real
spectral decomposition (Theorem 2.1.6, if F = R) or the Takagi factoriza-
tion (Exercise 2.3.26, if F = C). In particular, if F = R and A ∈MS

n has
{u1,u2, . . . ,un} as an orthonormal basis of eigenvectors with correspond-
ing eigenvalues λ1, λ2, . . ., λn, then

A =
n

∑
j=1

λ ju juT
j

is one way of writing A in the desired form. If we trace things back through
the isomorphism between S2

n andMS
n then this shows in the p = 2 case

that we can write every vector v ∈ S2
n in the form

v =
n

∑
j=1

λ ju j⊗u j,

and a similar argument works when F = C if we use the Takagi factoriza-
tion instead.

When F = C, a
symmetric (not

Hermitian!) matrix
might not be normal,

so the complex
spectral

decomposition
might not apply to it,

which is why we
must use the Takagi

factorization.

Notice that what we have shown here is stronger than the statement
of Theorem 3.1.11 (in the p = 2 case), which does not require the set
{u1,u2, . . . ,un} to be orthogonal. Indeed, when p≥ 3, this stronger claim
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is no longer true—not only do we lose orthogonality, but we even lose lin-
ear independence in general! For example, we will show in Example 3.3.4
that the vector v = (0,1,1,0,1,0,0,0) ∈ S3

2 cannot be written in the form

v = λ1v1⊗v1⊗v1 +λ2v2⊗v2⊗v2

for any choice of λ1,λ2 ∈ R, and v1,v2 ∈ R2. Instead, at least 3 terms are
needed in such a sum, and since each v j is 2-dimensional, they cannot be
chosen to be linearly independent.

The Antisymmetric Subspace
Just like the symmetric subspace can be thought of as a natural generalization
of the set of symmetric matrices, there is also a natural generalization of the set
of skew-symmetric matrices to higher Kronecker powers.

Definition 3.1.5
The Antisymmetric

Subspace

Suppose n, p ≥ 1 are integers. The antisymmetric subspace Ap
n is the

following subspace of (Fn)⊗p:

Ap
n

def=
{

v ∈ (Fn)⊗p : Wσ v = sgn(σ)v for all σ ∈ Sp
}
.

AsRecall that the sign
sgn(σ) of a

permutation σ is the
number of

transpositions
needed to generate

it (see
Appendix A.1.5).

suggested above, in the p = 2 case the antisymmetric subspace is
isomorphic to the setMsS

n of skew-symmetric matrices via matricization, since
Wv =−v if and only if mat(v)T =−mat(v). With this in mind, we now remind
ourselves of some of the properties ofMsS

n here, as well as the corresponding
properties of A2

n that they imply:

Properties ofMsS
n

basis: {Ei, j−E j,i : 1≤ i < j ≤ n}
dim.:

(
n
2

)
=

n(n−1)
2

∣∣∣∣∣

Properties of A2
n

{ei⊗ e j− e j⊗ ei : 1≤ i < j ≤ n}(
n
2

)
=

n(n−1)
2

For example, the members ofA2
2 are the vectors of the form (0,a,−a,0), which

are isomorphic via matricization to the 2×2 (skew-symmetric) matrices of the
form [

0 a
−a 0

]
.

The following theorem generalizes these properties to higher values of p.
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Theorem 3.1.12
Properties of the

Antisymmetric
Subspace

The antisymmetric subspace Ap
n ⊆ (Fn)⊗p has the following properties:

a) One projection onto Ap
n is given by

1
p! ∑

σ∈Sp

sgn(σ)Wσ ,

b) dim(Ap
n) =

(
n
p

)
, and

c) the following set is a basis of Ap
n :

{
∑

σ∈Sp

sgn(σ)Wσ (e j1 ⊗·· ·⊗ e jp) : 1≤ j1 < · · ·< jp ≤ n

}
.

Furthermore, if F = R or F = C then the projection in part (a) and the
basis in part (c) are each orthogonal.

We leave the proof of this theorem to Exercise 3.1.24, as it is almost
identical to that of Theorem 3.1.10, except the details work out more cleanly
here. For example, to normalize the basis vectors in part (c) of this theorem
to make an orthonormal basis of Ap

n , we just need to divide each of them by√
p! (whereas the normalization factor was somewhat more complicated for

the orthogonal basis of the symmetric subspace).
To get a bit of a feel for what the antisymmetric subspace looks like when

p > 2, we consider the p = 3, n = 4 case, where the basis described by the
above theorem consists of the following

(4
3

)
= 4 vectors:

Basis Vector Tuple (j1, j2, j3)

e1⊗ e2⊗ e3 + e2⊗ e3⊗ e1 + e3⊗ e1⊗ e2 (1,2,3)
− e1⊗ e3⊗ e2− e2⊗ e1⊗ e3− e3⊗ e2⊗ e1

e1⊗ e2⊗ e4 + e2⊗ e4⊗ e1 + e4⊗ e1⊗ e2 (1,2,4)
− e1⊗ e4⊗ e2− e2⊗ e1⊗ e4− e4⊗ e2⊗ e1

e1⊗ e3⊗ e4 + e3⊗ e4⊗ e1 + e4⊗ e1⊗ e3 (1,3,4)
− e1⊗ e4⊗ e3− e3⊗ e1⊗ e4− e4⊗ e3⊗ e1

e2⊗ e3⊗ e4 + e3⊗ e4⊗ e2 + e4⊗ e2⊗ e3 (2,3,4)
− e2⊗ e4⊗ e3− e3⊗ e2⊗ e4− e4⊗ e3⊗ e2

The symmetric and antisymmetric subspaces are always orthogonal to each
other (as long as F = R or F = C) in the sense that if v ∈ S p

n and w ∈ Ap
n

then v ·w = 0 (see Exercise 3.1.14).Direct sums and
orthogonal

complements were
covered in
Section 1.B.

Furthermore, if p = 2 then in fact they are
orthogonal complements of each other:

(S2
n )⊥ =A2

n, or equivalently their direct sum is S2
n ⊕A2

n = Fn⊗Fn,

which can be verified just by observing that their dimensions satisfy
(n+1

2

)
+(n

2

)
= n2. In fact, this direct sum decomposition of Fn ⊗ Fn is completely

analogous (isomorphic?) to the fact that Mn =MS
n ⊕MsS

n . However, this
property fails when p > 2, in which case there are vectors in (Fn)⊗p that are
orthogonal to everything in each of S p

n and Ap
n .

There are certain values of p and n that it is worth focusing a bit of attention
on. If p > n then Ap

n is the zero vector space,Recall that the zero
vector space is {0}.

which can be verified simply by
observing that

(n
p

)
= 0 in this case. If p = n thenAn

n is
(n

n

)
= 1-dimensional, so
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up to scaling there is only one vector in the antisymmetric subspace, and it is

∑
σ∈Sn

sgn(σ)Wσ (e1⊗ e2⊗·· ·⊗ en) = ∑
σ∈Sn

sgn(σ)eσ(1)⊗ eσ(2)⊗·· ·⊗ eσ(n).

For example, the unique (up to scaling) vectors in A2
2 and A3

3 are

e1⊗ e2− e2⊗ e1 and e1⊗ e2⊗ e3 + e2⊗ e3⊗ e1 + e3⊗ e1⊗ e2

− e1⊗ e3⊗ e2− e2⊗ e1⊗ e3− e3⊗ e2⊗ e1,

respectively.
It is worth comparing these antisymmetric vectors to the formula for the

determinant of a matrix, which for matrices A ∈M2 and B ∈M3 have the
forms

det(A) =a1,1a2,2−a1,2a2,1, and
det(B) =b1,1b2,2b3,3 +b1,2b2,3b3,1 +b1,3b2,1b3,2

−b1,1b2,3b3,2−b1,2b2,1b3,3−b1,3b2,2b3,1,

respectively, and which has the following form in general for matrices C ∈Mn:This formula is stated
as Theorem A.1.4 in

Appendix A.1.5. det(C) = ∑
σ∈Sn

sgn(σ)c1,σ(1)c2,σ(2) · · ·cn,σ(n).

The fact that the antisymmetric vector inAn
n looks so much like the formula for

the determinant of an n×n matrix is no coincidence—we will see in Section 3.2
(Example 3.2.9 in particular) that there is a well-defined sense in which the
determinant “is” this unique antisymmetric vector.

Exercises solutions to starred exercises on page 476

3.1.1 Compute A⊗B for the following pairs of matrices:

∗(a) A =
[

1 2
3 0

]
, B =

[
−1 2
0 −3

]

(b) A =
[

3 1 2
2 0 1

]
, B =

[
2 −1
−1 3

]

∗(c) A =



1
2
3




, B =
[
2 −3 1

]

3.1.2 Use the method of Example 3.1.3 to find all matrices
that commute with the given matrix.

∗(a)
[

1 0
0 0

]

∗(c)
[

1 0
0 1

]

(b)
[

0 1
0 0

]

(d)
[

1 2
−2 1

]

3.1.3 Determine which of the following statements are
true and which are false.

∗(a) If A is 3×4 and B is 4×3 then A⊗B is 12×12.
(b) If A,B ∈Mn are symmetric then so is A⊗B.
∗(c) If A,B ∈Mn are skew-symmetric then so is A⊗B.
(d) If A ∈Mm,1 and B ∈M1,n then A⊗B = B⊗A.

∗∗3.1.4 Construct an example to show that if A ∈M2,3
and B ∈M3,2 then it might be the case that tr(A⊗B) 6=
tr(B⊗A). Why does this not contradict Theorem 3.1.3 or
Corollary 3.1.9?

3.1.5 Suppose H ∈Mn is a matrix with every entry equal
to 1 or −1.

(a) Show that |det(H)| ≤ nn/2.
[Hint: Make use of Exercise 2.2.28.]

(b) Show that Hadamard matrices (see Remark 3.1.1)
are exactly the ones for which equality is attained in
part (a).

∗3.1.6 Suppose A ∈Mm,n(C) and B ∈Mp,q(C), and A†

denotes the pseudoinverse of A (introduced in Section 2.C.1).
Show that (A⊗B)† = A†⊗B†.

3.1.7 Suppose that λ is an eigenvalue of A ∈Mm(C)
and µ is an eigenvalue of B ∈Mn(C) with corresponding
eigenvectors v and w, respectively.

(a) Show that λ + µ is an eigenvalue of A⊗ In + Im⊗B
by finding a corresponding eigenvector.
[Side note: This matrix A⊗ In + Im⊗B is sometimes
called the Kronecker sum of A and B.]
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(b) Show that every eigenvalue of A⊗ In + Im⊗B is the
sum of an eigenvalue of A and an eigenvalue of B.

∗∗3.1.8 A Sylvester equation is a matrix equation of the
form

AX +XB = C,

where A ∈Mm(C), B ∈Mn(C), and C ∈Mm,n(C) are
given, and the goal is to solve for X ∈Mn,m(C).

(a) Show that the equation AX + XB = C is equivalent
to (A⊗ I + I⊗BT )vec(X) = vec(C).

(b) Show that a Sylvester equation has a unique solu-
tion if and only if A and −B do not share a common
eigenvalue. [Hint: Make use of part (a) and the result
of Exercise 3.1.7.]

∗∗3.1.9 Let A ∈Mm(C) and B ∈Mn(C).

(a) Show that every eigenvalue of A⊗B is of the form
λ µ for some eigenvalues λ of A and µ of B.
[Side note: This exercise is sort of the converse of
Theorem 3.1.3(a).]

(b) Use part (a) to show that det(A ⊗ B) =
det(A)n det(B)m.

3.1.10 Suppose F = R or F = C.

(a) Construct the orthogonal projection onto S3
2 . That is,

write this projection down as an 8×8 matrix.
(b) Construct the orthogonal projection onto A2

3.

∗∗3.1.11 Suppose x ∈ Fm⊗Fn.

(a) Show that there exist linearly independent sets
{v j} ⊂ Fm and {w j} ⊂ Fn such that

x =
min{m,n}

∑
j=1

v j⊗w j.

(b) Show that if F = R or F = C then the sets {v j} and
{w j} from part (a) can be chosen to be mutually or-
thogonal.
[Side note: This is sometimes called the Schmidt
decomposition of x.]

3.1.12 Compute a Schmidt decomposition (see Exer-
cise 3.1.11) of x = (2,1,0,0,1,−2) ∈ R2⊗R3.

∗∗3.1.13 Show that Theorem 3.1.11 does not hold when
F = Z2 is the field with 2 elements (see Appendix A.4) and
n = 2, p = 3.

∗∗3.1.14 Suppose F = R or F = C. Show that if v ∈ S p
n

and w ∈Ap
n then v ·w = 0.

∗∗3.1.15 In this exercise, we complete the proof of Theo-
rem 3.1.10. Let P = ∑σ∈Sp Wσ /p!.

(a) Show that PT = P.
(b) Show that P2 = P.

∗∗3.1.16 Show that if {w1,w2, . . . ,wk} ⊆ Fn is linearly
independent and {v1,v2, . . . ,vk} ⊆ Fm is any set then the
equation

k

∑
j=1

v j⊗w j = 0

implies v1 = v2 = · · ·= vk = 0.

∗∗3.1.17 Show that if B and C are bases of Fm and Fn,
respectively, then the set

B⊗C = {v⊗w : v ∈ B,w ∈C}
is a basis of Fmn.

[Hint: Use Exercises 1.2.27(a) and 3.1.16.]

∗∗3.1.18 Show that the swap matrix Wm,n has the following
properties:

(a) Each row and column of Wm,n has exactly one non-
zero entry, equal to 1.

(b) If F = R or F = C then Wm,n is unitary.
(c) If m = n then Wm,n is symmetric.

3.1.19 Show that 1 and −1 are the only eigenvalues of the
swap matrix Wn,n, and the corresponding eigenspaces are
S2

n and A2
n, respectively.

∗∗3.1.20 Recall Theorem 3.1.1, which established some
of the basic properties of the Kronecker product.

(a) Prove part (a) of the theorem.
(b) Prove part (c) of the theorem.
(c) Prove part (d) of the theorem.

∗∗3.1.21 Recall Theorem 3.1.2, which established some
of the ways that the Kronecker product interacts with other
matrix operations.

(a) Prove part (b) of the theorem.
(b) Prove part (c) of the theorem.
(c) Prove part (d) of the theorem.

∗∗3.1.22 Prove Theorem 3.1.4.

∗∗3.1.23 Prove Theorem 3.1.5.

∗∗3.1.24 Prove Theorem 3.1.12.

3.1.25 Let 1 ≤ p ≤ ∞ and let ‖ · ‖p denote the p-norm
from Section 1.D.1. Show that ‖v⊗w‖p = ‖v‖p‖w‖p for
all v ∈ Cm, w ∈ Cn.

∗∗3.1.26 Let 1 ≤ p,q ≤ ∞ be such that 1/p + 1/q = 1.
We now provide an alternate proof of Hölder’s inequality
(Theorem 1.D.5), which says that

∣∣v ·w
∣∣≤ ‖v‖p‖w‖q for all v,w ∈ Cn.

(a) Explain why it suffices to prove this inequality in the
case when ‖v‖p = ‖w‖q = 1. Make this assumption
throughout the rest of this exercise.

(b) Show that, for each 1≤ j ≤ n, either

|v jw j| ≤ |v j|p or |v jw j| ≤ |w j|q.
(c) Show that

∣∣v ·w
∣∣≤ ‖v‖p

p +‖w‖q
q = 2.

(d) This is not quite what we wanted (we wanted to show
that

∣∣v ·w
∣∣≤ 1, not 2). To fix this problem, let k ≥ 1

be an integer and replace v and w in part (c) by v⊗k

and w⊗k , respectively. What happens as k gets large?
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3.2 Multilinear Transformations

When we first encountered matrix multiplication, it seemed like a strange
and arbitrary operation, but it was defined specifically so as to capture how
composition of linear transformations affects standard matrices. Similarly, we
have now introduced the Kronecker product of matrices, and it perhaps seems
like a strange operation to focus so much attention on. However, there is a very
natural reason for introducing and exploring it—it lets us represent multilinear
transformations, which are functions that act on multiple vectors, each in a
linear way. We now explore this more general class of transformations and how
they are related to the Kronecker product.

3.2.1 Definition and Basic Examples

Recall from Section 1.2.3 that a linear transformation is a function that sends
vectors from one vector space to another in a linear way, and from Section 1.3.3
that a multilinear form is a function that sends a collection of vectors to a scalar
in a manner that treats each input vector linearly. Multilinear transformations
provide the natural generalization of both of these concepts—they can be
thought of as the sweet spot in between linear transformations and multilinear
forms where we have lots of input spaces and potentially have a non-trivial
output space as well.

Definition 3.2.1
Multilinear

Transformations

Suppose V1,V2, . . . ,Vp and W are vector spaces over the same field. A
multilinear transformation is a function T : V1×V2× ·· · ×Vp →W
with the property that, if we fix 1≤ j ≤ p and any p−1 vectors vi ∈ Vi
(1≤ i 6= j ≤ p), then the function S : V j→W defined by

S(v) = T (v1, . . . ,v j−1,v,v j+1, . . . ,vp) for all v ∈ V j

is a linear transformation.

The above definition is a bit of a mouthful, but the idea is simply that a
multilinear transformation is a function that looks like a linear transformation
on each of its inputs individually. When there are just p = 2 input spaces
we refer to these functions as bilinear transformations, and we note that
bilinear forms (refer back to Section 1.3.3) are the special case that arises
when the output space isW = F. Similarly, we sometimes call a multilinear
transformation with p input spaces a p-linear transformation (much like we
sometimes called multilinear forms p-linear forms).

Example 3.2.1
The Cross Product

is a Bilinear
Transformation

Consider the function C : R3×R3→ R3 defined by C(v,w) = v×w for
all v,w ∈ R3, where v×w is the cross product of v and w:

v×w = (v2w3− v3w2, v3w1− v1w3, v1w2− v2w1).

Show that C is a bilinear transformation.
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Solution:
The following facts about the cross product are equivalent to C being

bilinear:
• (v+w)×x = v×x+w×x,
• v× (w+x) = v×w+v×x, and
• (cv)×w = v× (cw) = c(v×w) for all v,w,x ∈ R3 and c ∈ R.

These properties are all straightforward to prove directly from the defini-
tion of the cross product,We proved these

properties in
Section 1.A of

[Joh20].

so we just prove the first one here:

(v+w)×x =
(
(v2 +w2)x3− (v3 +w3)x2, (v3 +w3)x1− (v1 +w1)x3,

(v1 +w1)x2− (v2 +w2)x1
)

= (v2x3− v3x2, v3x1− v1x3, v1x2− v2x1)
+(w2x3−w3x2, w3x1−w1x3, w1x2−w2x1)

= v×x+w×x,

as claimed.

In fact, the cross product being bilinear is exactly why we think of it as a
“product” or “multiplication” in the first place—bilinearity (and more generally,
multilinearity) corresponds to the “multiplication” distributing over vector
addition. We already made note of this fact back in Section 1.3.3—the usual
multiplication operation on R is bilinear, as is the dot product on Rn. We now
present some more examples that all have a similar interpretation.

• Matrix multiplication is a bilinear transformation. That is, if we define
the function T× :Mm,n×Mn,p →Mm,p that multiplies two matrices
together via

T×(A,B) = AB for all A ∈Mm,n, B ∈Mn,p,

then T× is bilinear. To verify this claim, we just have to recall that matrix
multiplication is both left- and right-distributive, so for any matrices A,
B, and C of appropriate size and any scalar c, we have

T×(A+ cB,C) = (A+ cB)C = AC + cBC = T×(A,C)+ cT×(B,C) and
T×(A,B+ cC) = A(B+ cC) = AB+ cAC = T×(A,B)+ cT×(A,C).

• The Kronecker product is bilinear. That is, the function T⊗ :Mm,n×
Mp,q→Mmp,nq that is defined by T⊗(A,B) = A⊗B, is a bilinear trans-
formation. This fact follows immediately from Theorem 3.1.1(b–d).

All of these “multiplications” also become multilinear transformations
if we extend them to three or more inputs in the natural way. For example,
the function T× defined on triples of matrices via T×(A,B,C) = ABC is a
multilinear (trilinear?) transformation.

It is often useful to categorize multilinear transformations into groups based
on how many input and output vector spaces they have. With this in mind, we
say that a multilinear transformation T : V1×V2×·· ·×Vp→W is of type
(p,0) ifW = F is the ground field, and we say that it is of type (p,1) otherwise.
That is, the first number in a multilinear transformation’s type tells us how
many input vector spaces it has, and its second number similarly tells us how
many output vector spaces it has (withW = F being interpreted as 0 output



322 Chapter 3. Tensors and Multilinearity

spaces, since the output space is trivial). The sum of these two numbers (i.e.,
either p or p+1, depending on whetherW = F or not) is called its order.

For example, matrix multiplication (between two matrices) is a multilinear
transformation of type (2,1) and order 2+1 = 3, and the dot product has type
(2,0) and order 2+0 = 2. We will see shortly that the order of a multilinear
transformation tells us the dimensionality of an array of numbers that should
be used to represent that transformation (just like vectors can be represented
via a 1D list of numbers and linear transformations can be represented via a 2D
array of numbers/a matrix). For now though, we spend some time clarifying
what types of multilinear transformations correspond to which sets of linear
algebraic objects that we are already familiar with:

• Transformations of type (1,1) are functions T : V →W that act linearly
on V . In other words, they are exactly linear transformations, which we
already know and love. Furthermore, the order of a linear transformation
is 1+1 = 2, which corresponds to the fact that we can represent them
via matrices, which are 2D arrays of numbers.

• Transformations of type (1,0) are linear transformations f : V → F,
As a slightly more

trivial special case,
scalars can be

thought of as
multilinear

transformations of
type (0,0).

which are linear forms. The order of a linear form is 1 + 0 = 1, which
corresponds to the fact that we can represent them via vectors (via
Theorem 1.3.3), which are 1D arrays of numbers. In particular, recall
that we think of these as row vectors.

• Transformations of type (2,0) are bilinear forms T : V1×V2→ F, which
have order 2 + 0 = 2. The order once again corresponds to the fact
(Theorem 1.3.5) that they can be represented naturally by matrices (2D
arrays of numbers).

• Slightly more generally, transformations of type (p,0) are multilinear
forms T : V1× ·· ·×Vp → F. The fact that they have order p + 0 = p
corresponds to the fact that we can represent them via Theorem 1.3.6 as
p-dimensional arrays of scalars.

• Transformations of type (0,1) are linear transformations T : F→W ,
which are determined completely by the value of T (1). In particular, for
every such linear transformation T , there exists a vector w∈W such that
T (c) = cw for all c ∈ F. The fact that the order of these transformations
is 0+1 = 1 corresponds to the fact that we can represent them via the
vector w (i.e., a 1D array of numbers) in this way, though this time we
think of it as a column vector.

We summarize the above special cases, as well the earlier examples of bilin-
ear transformations like matrix multiplication, in Figure 3.1 for easy reference.

Remark 3.2.1
Tensors

Multilinear transformations can be generalized even further to something
called tensors, but doing so requires some technicalities that we enjoy
avoiding. While multilinear transformations allow multilinearity (rather
than just linearity) on their input, sometimes it is useful to allow their
output to behave in a multilinear (rather than just linear) way as well. The
simplest way to make this happen is to make use of dual spaces.Recall from

Definition 1.3.3 that
W∗

j is the dual space
of W j, which consists

of all linear forms
acting on W j. Dual

spaces were
explored back in

Section 1.3.2.

Specifically, if V1,V2, . . . ,Vp andW1,W2, . . . ,Wq are vector spaces
over a field F, then a tensor of type (p,q) is a multilinear form

f : V1×V2×·· ·×Vp×W∗1 ×W∗2 ×·· ·×W∗q → F.

Furthermore, its order is the quantity p+q. The idea is that attachingW∗j
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We do not give any
explicit examples of

type-(0,0), (0,1), or
(1,1) transformations

here (i.e., scalars,
column vectors,

or linear
transformations)

since you are
hopefully familiar

enough with these
objects by now that

you can come up
with some yourself.

Type-(p,0)
(p-linear forms)

Type-(p,1)

Type-(2,0)
(bilinear forms)
(matrices)

Type-(1,0)
(linear forms)
(row vectors)

Type-(0,0)
(scalars)

Type-(0,1)
(column vectors)

Type-(1,1)
(linear transforms.)
(matrices)

Type-(2,1)
(bilinear transforms.)

dot product

trace

determinant

matrix

multiplication

cross

product

Kronecker

product

Figure 3.1: A summary of the various multilinear transformations, and their types,
that we have encountered so far.

as an input vector space sort of mimics havingW j itself as an output vector
space, for the exact same reason that the double-dualW∗∗j is so naturally
isomorphic toW j. In particular, if q = 1 then we can consider a tensor
f : V1×V2× ·· · ×Vp×W∗ → F as “the same thing” as a multilinear
transformation

We do not make use
of any tensors of

type (p,q) with q≥ 2,
which is why we

focus on multilinear
transformations.

T : V1×V2×·· ·×Vp→W .

3.2.2 Arrays

We saw back in Theorem 1.3.6 that we can represent multilinear forms (i.e.,
type-(p,0) multilinear transformations) on finite-dimensional vector spaces as
multi-dimensional arrays of scalars, much like we represent linear transforma-
tions as matrices. We now show that we can similarly do this for multilinear
transformations of type (p,1). This fact should not be too surprising—the idea
is simply that each multilinear transformation is determined completely by how
it acts on basis vectors in each of the input arguments.
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Theorem 3.2.1
Multilinear

Transformations
as Arrays

Suppose V1, . . . ,Vp andW are finite-dimensional vector spaces over the
same field and T : V1× ·· · ×Vp →W is a multilinear transformation.
Let v1, j, . . ., vp, j denote the j-th coordinate of v1 ∈ V1, . . ., vp ∈ Vp with
respect to some bases of V1, . . ., Vp, respectively, and let {w1,w2, . . .} be
a basis ofW . Then there exists a unique family of scalars {ai; j1,..., jp} such
that

T (v1, . . . ,vp) = ∑
i, j1,..., jp

ai; j1,..., jpv1, j1 · · ·vp, jp wi

for all v1 ∈ V1, . . ., vp ∈ Vp.

Proof. In the p = 1 case, this theorem simply says that, once we fix bases of
V and W , we can represent every linear transformation T : V →W via its
standard matrix, whose (i, j)-entry we denote here by ai; j. This is a fact that we
already know to be true from Theorem 1.2.6. We now prove this more general
result for multilinear transformations via induction on p, and note that linear
transformations provide the p = 1 base case.

For the inductive step, we proceed exactly as we did in the proof of The-
orem 1.3.6. Suppose that the result is true for all (p− 1)-linear transforma-
tions acting on V2×·· ·×Vp. If we let B = {x1,x2, . . . ,xm} be a basis of V1

We use j1 here
instead of just j since
it will be convenient

later on.

then the inductive hypothesis tells us that the (p−1)-linear transformations
S j1 : V2×·· ·×Vp→W defined by

S j1(v2, . . . ,vp) = T (x j1 ,v2, . . . ,vp)

can be written
The scalar ai; j1 , j2 ,..., jp
here depends on j1

(not just i, j2, . . . , jp)
since each choice

of x j1 gives a
different

(p−1)-linear
transformation S j1 .

as

T (x j1 ,v2, . . . ,vp) = S j1(v2, . . . ,vp) = ∑
i, j2,..., jp

ai; j1, j2,..., jpv2, j2 · · ·vp, jpwi

for some fixed family of scalars {ai; j1, j2,..., jp}. If we write an arbitrary vector
v1 ∈ V1 as a linear combination of the basis vectors x1,x2, . . . ,xm (i.e., v1 =
v1,1x1 + v1,2x2 + · · ·+ v1,mxm), it then follows via linearity that

T (v1,v2, . . . ,vp)

= T

(
m

∑
j1=1

v1, j1x j1 ,v2, . . . ,vp

)
(v1 =

m

∑
j1=1

v1, j1x j1 )

=
m

∑
j1=1

v1, j1T (x j1 ,v2, . . . ,vp) (multilinearity of T )

=
m

∑
j1=1

v1, j1 ∑
i, j2,..., jp

ai; j1, j2,..., jpv2, j2 · · ·vp, jpwi (inductive hypothesis)

= ∑
i, j1,..., jp

a j1,..., jpv1, j1 · · ·vp, jp wi (group sums together)

for all v1 ∈ V1, v2 ∈ V2, . . ., vp ∈ Vp, which completes the inductive step and
shows that the family of scalars {ai; j1,..., jp} exists.

To see that the scalars {ai; j1,..., jp} are unique, just note that if we choose
v1 to be the j1-th member of the basis of V1, v2 to be the j2-th member of the
basis of V2, and so on, then we get

T (v1, . . . ,vp) = ∑
i

ai; j1,..., jpwi.
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Since the coefficients of T (v1, . . . ,vp) in the basis {w1,w2, . . .} are unique, it
follows that the scalars {ai; j1,..., jp}i are as well. �

The above theorem generalizes numerous theorems for representing (multi)-
linear objects that we have seen in the past. In the case of type-(1,1) transfor-
mations, it gives us exactly the fact (Theorem 1.2.6) that every linear trans-
formation can be represented by a matrix (with the (i, j)-entry denoted by ai; j
instead of ai, j this time). It also generalizes Theorem 1.3.6,This result also

generalizes
Theorem 1.3.5 for

bilinear forms, since
that was a special

case of
Theorem 1.3.6 for
multilinear forms.

which told us that
every multilinear form (i.e., type-(p,0) transformation) can be represented by
an array {a j1, j2,..., jp}.

Just as was the case when representing linear transformations via standard
matrices, the “point” of the above theorem is that, once we know the values of
the scalars {ai; j1,..., jp}, we can compute the value of the multilinear transfor-
mation T on any tuple of input vectors just by writing each of those vectors in
terms of the given basis and then using multilinearity. It is perhaps most natural
to arrange those scalars in a multi-dimensional array (with one dimension
for each subscript), which we call the standard array of the transformation,
just as we are used to arranging the scalars {ai; j} into a 2D matrix for linear
transformations. However, the details are somewhat uglier here since it is not
so easy to write these multi-dimensional arrays on two-dimensional paper or
computer screens.

Since the order of a multilinear transformation tells us how many subscripts
are needed to specify the scalars ai; j1,..., jp , it also tells us the dimensionality of
the standard array of the multilinear transformation. For example, this is why
both linear transformations (which have type (1,1) and order 1+1 = 2) and
bilinear forms (which have type (2,0) and order 2+0 = 2) can be represented
by 2-dimensional matrices. The size of an array is an indication of how many
rows it has in each of its dimensions. For example, an array {ai; j1, j2} for which
1≤ i≤ 2, 1≤ j1 ≤ 3, and 1≤ j2 ≤ 4 has size 2×3×4.

We already saw one example of an order 3 multilinear transformation (in
particular, the determinant of a 3× 3 matrix, which has type (3,0)) repre-
sented as a 3D array back in Example 1.3.14. We now present two more such
examples, but this time for bilinear transformations (i.e., order-3 multilinear
transformations of type (2,1)).

Example 3.2.2
The Cross Product

as a 3D Array

Let C : R3×R3 → R3 be the cross product (defined in Example 3.2.1).
Construct the standard array of C with respect to the standard basis of R3.

Solution:
Since C is an order-3 tensor, its standard array is 3-dimensional and

specifically of size 3× 3× 3. To compute the scalars {ai; j1, j2}, we do
exactly the same thing that we do to compute the standard matrix of a
linear transformation: plug the basis vectors of the input spaces into C
and write the results in terms of the basis vectors of the output space. For
example, direct calculation shows that

C(e1,e2) = e1× e2 = (1,0,0)× (0,1,0) = (0,0,1) = e3,
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and the other 8 cross products can be similarly computed to be
Some of these

computations can
be sped up by

recalling that
v×v = 0 and

v×w =−(w×v) for
all v,w ∈ R3.

C(e1,e1) = 0 C(e1,e2) = e3 C(e1,e3) =−e2

C(e2,e1) =−e3 C(e2,e2) = 0 C(e2,e3) = e1

C(e3,e1) = e2 C(e3,e2) =−e1 C(e3,e3) = 0.

It follows that the scalars {ai; j1, j2} are given by

a3;1,2 = 1 a2;1,3 =−1
a3;2,1 =−1 a1;2,3 = 1
a2;3,1 = 1 a1;3,2 =−1,

and ai; j1, j2 = 0Recall that the first
subscript in ai; j1 , j2

corresponds to the
output of the

transformation and
the next two

subscripts
correspond to the

inputs.

otherwise. We can arrange these scalars into a 3D array,
which we display below with i indexing the rows, j1 indexing the columns,
and j2 indexing the “layers” as indicated:

j2=
1



0

0
0

0
0

1

0
−1

0




j2=
2



0

0
−1

0
0

0

1
0

0




j2=
3



0

1
0

−1
0

0

0
0

0




It is worthIf you ever used a
mnemonic like

det






e1 e2 e3
v1 v2 v3
w1 w2 w3






to compute v×w,
this is why it works.

noting that the standard array of the cross product that we
computed in the above example is exactly the same as the standard array of the
determinant (of a 3×3 matrix) that we constructed back in Example 1.3.14. In
a sense, the determinant and cross product are the exact same thing, just written
in a different way. They are both order-3 multilinear transformations, but the
determinant onM3 is of type (3,0) whereas the cross product is of type (2,1),
which explains why they have such similar properties (e.g., they can both be
used to find the area of parallelograms in R2 and volume of parallelepipeds in
R3).

Example 3.2.3
Matrix Multiplication

as a 3D Array

Construct the standard array of the matrix multiplication map T× :M2×
M2→M2 with respect to the standard basis ofM2.

Solution:
Since T× is an order-3 tensor, its corresponding array is 3-dimensional

and specifically of size 4× 4× 4. To compute the scalars {ai; j1, j2}, we
again plug the basis vectors (matrices) of the input spaces into T× and
write the results in terms of the basis vectors of the output space. Rather
than compute all 16 of the required matrix products explicitly, we simply
recall that

T×(Ek,a,Eb,`) = Ek,aEb,` =

{
Ek,`, if a = b or
O, otherwise.
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We thus have
For example,

a1;2,3 = 1 because
E1,2 (the 2nd basis
vector) times E2,1

(the 3rd basis vector)
equals E1,1 (the 1st

basis vector).

a1;1,1 = 1 a1;2,3 = 1 a2;1,2 = 1 a2;2,4 = 1
a3;3,1 = 1 a3;4,3 = 1 a4;3,2 = 1 a4;4,4 = 1,

and ai; j1, j2 = 0 otherwise. We can arrange these scalars into a 3D array,
which we display below with i indexing the rows, j1 indexing the columns,
and j2 indexing the “layers” as indicated:

j2=
1




1
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0




j2=
2




0
0

0
0

1
0

0
0

0
0

0
0

0
0

1
0




j2=
3




0
1

0
0

0
0

0
0

0
0

0
1

0
0

0
0




j2=
4




0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
1




It is worth noting that there is no “standard”Even though there is
no standard order

which which
dimensions

correspond to the
subscripts j1, . . ., jk,

we always use i
(which

corresponded to the
single output vector
space) to index the

rows of the standard
array.

order for which of the
three subscripts should represent the rows, columns, and layers of a 3D
array, and swapping the roles of the subscripts can cause the array to look
quite different. For example, if we use i to index the rows, j2 to index the
columns, and j1 to index the layers, then this array instead looks like

j1=
1




1
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0




j1=
2




0
0

1
0

0
0

0
1

0
0

0
0

0
0

0
0




j1=
3




0
0

0
0

0
0

0
0

1
0

0
0

0
1

0
0




j1=
4




0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
1




Arrays as Block Matrices
When the order of a multilinear transformation is 4 or greater,

One of the author’s
greatest failings is his

inability to draw 4D
objects on 2D paper.

it becomes ex-
tremely difficult to effectively visualize its (4- or higher-dimensional) standard
array. To get around this problem, we can instead write an array {ai; j1,..., jp}
as a block matrix. To illustrate how this procedure works, suppose for now
that p = 2, so the array has the form {ai; j1, j2}. We can represent this array as a
block matrix by letting i index the rows, j1 index the block columns, and j2
index the columns within the blocks. For example, we could write a 3×2×4
array {ai; j1, j2} as a matrix with 3 rows, 2 block columns, and 4 columns

Reading the
subscripts in this

matrix from
left-to-right,

top-to-bottom, is like
counting: the final

digit increases to its
maximum value (4 in

this case) and then
“rolls over” to
increase the

next-to-last digit by 1,
and so on.

in
each block:

A =




a1;1,1 a1;1,2 a1;1,3 a1;1,4 a1;2,1 a1;2,2 a1;2,3 a1;2,4
a2;1,1 a2;1,2 a2;1,3 a2;1,4 a2;2,1 a2;2,2 a2;2,3 a2;2,4
a3;1,1 a3;1,2 a3;1,3 a3;1,4 a3;2,1 a3;2,2 a3;2,3 a3;2,4


 .
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As a more concrete example, we can write the array corresponding to the
matrix multiplication tensor T× :M2×M2→M2 from Example 3.2.3 as the
following 4×1 block matrix of 4×4 matrices:




1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1


 .

More generally, if k > 2 (i.e., there are more than two “ j” subscripts), we
can iterate this procedure to create a block matrix that has blocks within blocks.
We call this the standard block matrix of the corresponding multilinear trans-
formation. For example, we could write a 3×2×2×2 array {ai; j1, j2, j3} as a
block matrix with 3 rows and 2 block columns, each of which contain 2 block
columns containing 2 columns, as follows:



a1;1,1,1 a1;1,1,2 a1;1,2,1 a1;1,2,2
a2;1,1,1 a2;1,1,2 a2;1,2,1 a2;1,2,2
a3;1,1,1 a3;1,1,2 a3;1,2,1 a3;1,2,2

a1;2,1,1 a1;2,1,2 a1;2,2,1 a1;2,2,2
a2;2,1,1 a2;2,1,2 a2;2,2,1 a2;2,2,2
a3;2,1,1 a3;2,1,2 a3;2,2,1 a3;2,2,2




In particular, notice that if we arrange an array into a block matrix in this
way, the index j1 indicates the “most significant” block column, j2 indicates the
next most significant block column, and so on. This is completely analogous
to how the digits of a number are arranged left-to-right from most significant
to least significant (e.g., in the number 524, the digit “5” indicates the largest
piece (hundreds), “2” indicates the next largest piece (tens), and “4” indicates
the smallest piece (ones)).

Example 3.2.4
The Standard

Block Matrix of the
Cross Product

Let C : R3×R3 → R3 be the cross product (defined in Example 3.2.1).
Construct the standard block matrix of C with respect to the standard basis
of R3.

Solution:
We already computed the standard array of C in Example 3.2.2, so we

just have to arrange the 27 scalars from that array into its 3×9 standard
block matrix as follows:For example, the

leftmost “−1” here
comes from the fact
that, in the standard

array A of C,
a2;1,3 =−1 (the

subscripts say row 2,
block column 1,

column 3.

A =




0 0 0 0 0 1 0 −1 0
0 0 −1 0 0 0 1 0 0
0 1 0 −1 0 0 0 0 0


 .

As one particular case that requires some special attention, consider what
the standard block matrix of a bilinear form f : V1×V2→ F looks like. Since
bilinear forms are multilinear forms of order 2, we could arrange the entries
of their standard arrays into a matrix of size dim(V1)×dim(V2), just as we did
back in Theorem 1.3.5. However, if we follow the method described above for
turning a standard array into a standard block matrix, we notice that we instead
get a 1×dim(V1) block matrix (i.e., row vector) whose entries are themselves
1×dim(V2) row vectors. For example, the standard block matrix {a1; j1, j2} of
a bilinear form acting on two 3-dimensional vector spaces would have the form
[

a1;1,1 a1;1,2 a1;1,3 a1;2,1 a1;2,2 a1;2,3 a1;3,1 a1;3,2 a1;3,3
]
.
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Example 3.2.5
The Standard

Block Matrix of the
Dot Product

Construct the standard block matrix of the dot product on R4 with respect
to the standard basis.

Solution:
Recall from Example 1.3.9 that the dot product is a bilinear form that

thus a multilinear transformation of type (2,0). To compute the entries
of its standard block matrix, we compute its value when all 16 possible
combinations of standard vectors are plugged into it:

e j1 · e j2 =

{
1, if j1 = j2 or
0, otherwise.

It follows that

a1;1,1 = 1 a1;2,2 = 1 a1;3,3 = 1 a1;4,4 = 1,

and a1; j1, j2 = 0 otherwise. If we let j1 index which block column an entry
is placed in and j2 index which column within that block it is placed in,
we arrive at the following standard block matrix:

A =
[

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
]
.

Notice that the standard block matrix of the dot product that we constructed
in the previous example is simply the identity matrix, read row-by-row. This is
not a coincidence—it follows from the fact that the matrix representation of the
dot product (in the sense of Theorem 1.3.5) is the identity matrix. We now state
this observation slightly more generally and more prominently:

! If f : V1×V2→ F is a bilinear form acting on finite-dimensional
vector spaces then its standard block matrix is the vectorization
of its matrix representation from Theorem 1.3.5, as a row vector.

Remark 3.2.2
Same Order but

Different Type

One of the advantages of the standard block matrix over a standard array is
that its shape tells us its type (rather than just its order). For example, we
saw in Examples 3.2.2 and 1.3.14 that the cross product and the determinant
have the same standard arrays. However, their standard block matrices are
different—they are matrices of size 3×9 and 1×27, respectively.

This distinction can be thought of as telling us that the cross product
and determinant of a 3×3 matrix are the same object (e.g., anything that
can be done with the determinant of a 3×3 matrix can be done with the
cross product, and vice-versa), but the way that they act on other objects
is different (the cross product takes in 2 vectors and outputs 1 vector,
whereas the determinant takes in 3 vectors and outputs a scalar).

Similarly, while
matrices represent
both bilinear forms

and linear
transformations, the
way that they act in
those two settings is
different (since their

types are different
but their orders

are not.

We can similarly construct standard block matrices of tensors (see
Remark 3.2.1), and the only additional wrinkle is that they can have
block rows too (not just block columns). For example, the standard arrays
of bilinear forms f : V1×V2 → F of type (2,0), linear transformations
T : V →W and type-(0,2) tensors f :W∗1 ×W∗2 → F have the following
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forms, respectively, if all vectors spaces involved are 3-dimensional:
[

a1;1,1 a1;1,2 a1;1,3 a1;2,1 a1;2,2 a1;2,3 a1;3,1 a1;3,2 a1;3,3
]
,




a1;1 a1;2 a1;3
a2;1 a2;2 a2;3
a3;1 a3;2 a3;3


 , and




a1,1;1
a1,2;1
a1,3;1
a2,1;1
a2,2;1
a2,3;1
a3,1;1
a3,2;1
a3,3;1




.

In general, just like there are two possible shapes for tensors of order 1
(row vectors and column vectors), there are three possible shapes for
tensors of order 2 (corresponding to types (2,0), (1,1), and (0,2)) and
p+1 possible shapes for tensors of order p. Each of these different types
corresponds to a different shape of the standard block matrix and a different
way in which the tensor acts on vectors.

Just like the action of a linear transformation on a vector can be represented
via multiplication by that transformation’s standard matrix,

Refer back to
Theorem 1.2.6 for a
precise statement

about how a linear
transformations
relate to matrix

multiplication.

so too can the
action of a multilinear transformation on multiple vectors. However, we need
one additional piece of machinery to make this statement actually work (after
all, what does it even mean to multiply a matrix by multiple vectors?), and that
machinery is the Kronecker product.

Theorem 3.2.2
Standard Block Matrix

of a Multilinear
Transformation

Suppose V1, . . ., Vp andW are finite-dimensional vector spaces with bases
B1, . . ., Bp and D, respectively, and T : V1×·· ·×Vp→W is a multilinear
transformation. If A is the standard block matrix of T with respect to those
bases, then
[
T (v1, . . . ,vp)

]
D = A

(
[v1]B1⊗·· ·⊗ [vp]Bp

)
for all v1 ∈V1, . . . ,vp ∈Vp.

BeforeWe could use
notation like

[T ]D←B1 ,...,Bp to
denote the standard

block matrix of T
with respect to the

bases B1, . . ., Bp and
D. That seems like a

bit much, though.

proving this result, we look at some examples to clarify exactly what
it is saying. Just as with linear transformations, the main idea here is that we
can now represent arbitrary multilinear transformations (on finite-dimensional
vector spaces) via explicit matrix calculations. Even more amazingly though,
this theorem tells us that the Kronecker product turns multilinear things (the
transformation T ) into linear things (multiplication by the matrix A). In a
sense, the Kronecker product can be used to absorb all of the multilinearity of
multilinear transformations, turning them into linear transformations (which
are much easier to work with).

Example 3.2.6
The Cross Product via

the Kronecker Product

Verify Theorem 3.2.2 for the cross product C : R3×R3→R3 with respect
to the standard basis of R3.

Solution:
Our goal is simply to show that if A is the standard block matrix of the

cross product then C(v,w) = A(v⊗w) for all v,w ∈ R3. If we recall this
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standard block matrix from Example 3.2.4 then we can simply compute

In this setting, we
interpret v⊗w as a
column vector, just
like we do for v in a
matrix equation like

Av = b. A(v⊗w) =




0 0 0 0 0 1 0 −1 0
0 0 −1 0 0 0 1 0 0
0 1 0 −1 0 0 0 0 0







v1w1
v1w2
v1w3
v2w1
v2w2
v2w3
v3w1
v3w2
v3w3




=




v2w3− v3w2
v3w1− v1w3
v1w2− v2w1


 ,

which is indeed exactly the cross product C(v,w), as expected.

Example 3.2.7
The Dot Product via

the Kronecker Product

Verify Theorem 3.2.2 for the dot product on R4 with respect to the standard
basis.

Solution:
Our goal is to show that if A is the standard block matrix of the dot

product (which we computed in Example 3.2.5) then v ·w = A(v⊗w) for
all v,w ∈ R4. If we recall that this standard block matrix is

For space reasons,
we do not explicitly

list the product
A(v⊗w)—it is a 1×16
matrix times a 16×1

matrix. The four
terms in the dot

product correspond
to the four “1”s in A.

A =
[

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
]
,

then we see that

A(v⊗w) = v1w1 + v2w2 + v3w3 + v4w4,

which is indeed the dot product v ·w.

Example 3.2.8
Matrix Multiplication

via the Kronecker
Product

Verify Theorem 3.2.2 for matrix multiplication onM2 with respect to the
standard basis.

Solution:
Once again, our goal is to show that if E = {E1,1,E1,2,E2,1,E2,2} is

the standard basis ofM2 and

A =




1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1




is the standard block matrix of matrix multiplication onM2, then [BC]E =
A
(
[B]E ⊗ [C]E

)
for all B,C ∈M2. To this end, we first recall that if bi, j

and ci, j denote the (i, j)-entries of B and C (as usual), respectively, then

[B]E =




b1,1

b1,2

b2,1

b2,2


 and [C]E =




c1,1
c1,2
c2,1
c2,2


 .
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Directly computing the Kronecker product and matrix multiplication then
shows that

A
(
[B]E ⊗ [C]E

)
=




b1,1c1,1 +b1,2c2,1

b1,1c1,2 +b1,2c2,2

b2,1c1,1 +b2,2c2,1

b2,1c1,2 +b2,2c2,2


 ,

On the other hand, it is similarly straightforward to compute

BC =

[
b1,1c1,1 +b1,2c2,1 b1,1c1,2 +b1,2c2,2

b2,1c1,1 +b2,2c2,1 b2,1c1,2 +b2,2c2,2

]
,

so [BC]E = A
(
[B]E ⊗ [C]E

)
, as expected.

Example 3.2.9
The Standard

Block Matrix of the
Determinant is the

Antisymmetric
Kronecker Product

Construct the standard block matrix of the determinant (as a multilinear
form from Fn×·· ·×Fn to F) with respect to the standard basis of Fn.

Solution:
Recall that if A,B∈Mn and B is obtained from A by interchanging two

of its columns, then det(B) =−det(A). As a multilinear form acting on the
columns of a matrix, this means that the determinant is antisymmetric:

det(v1, . . . ,v j1 , . . . ,v j2 , . . . ,vn) =−det(v1, . . . ,v j2 , . . . ,v j1 , . . . ,vn)

for all v1, . . . ,vn and 1≤ j1 6= j2 ≤ n. By applying Theorem 3.2.2 to both
sides of this equation, we see that if A is the standard block matrix of the
determinant (which is 1×nn and can thus be thought of as a row vector)
then

A
(
v1⊗·· ·⊗v j1 ⊗·· ·⊗v j2 ⊗·· ·⊗vn

)

=−A
(
v1⊗·· ·⊗v j2 ⊗·· ·⊗v j1 ⊗·· ·⊗vn

)
.

Now we notice that, since interchanging two Kronecker factors multi-
plies this result by −1, it is in fact the case that permuting the Kronecker
factors according to a permutation σ ∈ SnRecall that Sn is the

symmetric group,
which consists of all

permutations acting
on {1,2, . . . ,n}.

multiplies the result by sgn(σ).
Furthermore, we use the fact that the elementary tensors v1⊗·· ·⊗vn span
all of (Fn)⊗n, so we have

Av = sgn(σ)
(
A(Wσ v)

)
=
(
sgn(σ)W T

σ AT )T v

for all σ ∈ Sn and v ∈ (Fn)⊗n. By using the fact that W T
σ = Wσ−1 , we then

see that AT = sgn(σ)Wσ−1AT for all σ ∈ Sn, which exactly means that A
lives in the antisymmetric subspace of (Fn)⊗n: A ∈ An,n.

We now recall from Section 3.1.3 that An,n is 1-dimensional, and in
particular A must have the form

A = c ∑
σ∈Sn

sgn(σ)eσ(1)⊗ eσ(2)⊗·· ·⊗ eσ(n)
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forThis example also
shows that the

determinant is the
only function with

the following three
properties:

multilinearity,
antisymmetry, and

det(I) = 1.

some c ∈ F. Furthermore, since det(I) = 1, we see that AT (e1⊗·· ·⊗
en) = 1, which tells us that c = 1. We have thus shown that the standard
block matrix of the determinant is

A = ∑
σ∈Sn

sgn(σ)eσ(1)⊗ eσ(2)⊗·· ·⊗ eσ(n),

as a row vector.

Proof of Theorem 3.2.2. There actually is not much that needs to be done
to prove this theorem—all of the necessary bits and pieces just fit together
via naïve (but messy) direct computation. For ease of notation, we let v1, j,
. . ., vp, j denote the j-th entry of [v1]B1 , . . ., [vp]Bp , respectively, just like in
Theorem 3.2.1.

On the one hand, using the definition of the Kronecker product tells us that,
for each integer i, the i-th entry of A

(
[v1]B1 ⊗·· ·⊗ [vp]Bp

)
is

The notation here is
a bit unfortunate. [·]B

refers to a
coordinate vector

and [·]i refers to the
i-th entry of a vector.

[
A
(
[v1]B1 ⊗·· ·⊗ [vp]Bp

)]
i
= ∑

j1, j2,..., jp

ai; j1, j2,..., jp

︸ ︷︷ ︸
sum across i-th row of A

v1, j1v2, j2 · · ·vp, jp︸ ︷︷ ︸
entries of

[v1]B1⊗···⊗[vp]Bp

.

On the other hand, this is exactly what Theorem 3.2.1 tells us that the i-th entry
of
[
T (v1, . . . ,vp)

]
D is (in the notation of that theorem, this was the coefficient

of wi, the i-th basis vector in D), which is all we needed to observe to complete
the proof. �

3.2.3 Properties of Multilinear Transformations

Most of the usual properties of linear transformations that we are familiar with
can be extended to multilinear transformations, but the details almost always
become significantly uglier and more difficult to work with. We now discuss
how to do this for some of the most basic properties like the operator norm,
null space, range, and rank.

Operator Norm
The operator norm of a linear transformation T : V → W between finite-
dimensional inner product spaces isA similar definition

works if V and W are
infinite-dimensional,

but we must replace
“max” with “sup”, and
even then the value

of the supremum
might be ∞.

‖T‖= max
v∈V

{
‖T (v)‖ : ‖v‖= 1

}
,

where ‖v‖ refers to the norm of v induced by the inner product on V , and
‖T (v)‖ refers to the norm of T (v) induced by the inner product onW . In the
special case when V =W = Fn, this is just the operator norm of a matrix from
Section 2.3.3.

To extend this idea to multilinear transformations, we just optimize over
unit vectors in each input argument. That is, if T : V1×V2×·· ·×Vp→W is
a multilinear transformation between finite-dimensional inner product spaces,
then we define its operator norm as follows:

‖T‖ def= max
v j∈V j
1≤ j≤p

{
‖T (v1,v2, . . . ,vp)‖ : ‖v1‖= ‖v2‖= · · ·= ‖vp‖= 1

}
.
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While the operator norm of a linear transformation can be computed quickly
via the singular value decomposition (refer back to Theorem 2.3.7), no quick
or easy method of computing the operator norm of a multilinear transformation
is known. However, we can carry out the computation for certain special
multilinear transformations if we are willing to work hard enough.

Example 3.2.10
The Operator Norm

of the Cross Product

Let C : R3×R3 → R3 be the cross product (defined in Example 3.2.1).
Compute ‖C‖.

Solution:
One of the basic properties of the cross product is that the norm

(induced by the dot product) of its output satisfies
This formula is

proved in [Joh20,
Section 1.A], for

example.

‖C(v,w)‖= ‖v‖‖w‖sin(θ) for all v,w ∈ R3,

where θ is the angle between v and w. Since |sin(θ)| ≤ 1, this implies
‖C(v,w)‖ ≤ ‖v‖‖w‖. If we normalize v and w to be unit vectors then we
get ‖C(v,w)‖ ≤ 1, with equality if and only if v and w are orthogonal. It
follows that ‖C‖= 1.

Example 3.2.11
The Operator Norm
of the Determinant

Suppose F = R or F = C, and det : Fn×·· ·×Fn→ F is the determinant.
Compute ‖det‖.

Solution:
Recall from Exercise 2.2.28 (Hadamard’s inequality) that

∣∣det(v1,v2, . . . ,vn)
∣∣≤ ‖v1‖‖v2‖· · ·‖vn‖ for all v1,v2, . . . ,vn ∈ Fn.

If we normalize each v1,v2, . . . ,vn to have norm 1 then this inequality
becomes |det(v1,v2, . . . ,vn)| ≤ 1. Furthermore, equality is sometimes
attained (e.g., when {v1,v2, . . . ,vn} is an orthonormal basis of Fn), so we
conclude that ‖det‖= 1.

It is perhaps worth noting that if a multilinear transformation acts on
finite-dimensional inner product spaces, then Theorem 3.2.2 tells us that we
can express its operator norm in terms of its standard block matrix A (with
respect to orthonormal bases of all of the vector spaces). In particular, if we let
d j = dim(V j) for all 1≤ j ≤ k, then

‖T‖= max
v j∈Fd j

1≤ j≤p

{
‖A(v1⊗v2⊗·· ·⊗vp)‖ : ‖v1‖= ‖v2‖= · · ·= ‖vp‖= 1}.

While this quantity is difficult to compute in general, there is an easy-to-
compute upper bound of it: if we just optimize ‖Av‖ over all unit vectors
in Fd1 ⊗·· ·⊗Fdp (instead of just over elementary tensors, as above), we get
exactly the “usual” operator norm of A. In other words, we have shown the
following:

! If T : V1×·· ·×Vp→W is a multilinear

Be careful: ‖T‖ is the
multilinear operator
norm (which is hard
to compute), while
‖A‖ is the operator

norm of a matrix
(which is easy to

compute).

transformation with
standard block matrix A then ‖T‖ ≤ ‖A‖.

For example, it is straightforward to verify that the standard block matrix A
of the cross product C (see Example 3.2.4) has all three of its non-zero singular
values equal to

√
2, so ‖C‖ ≤ ‖A‖=

√
2. Similarly, the standard block matrix
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B of the determinant det : Fn×·· ·×Fn→ F (see Example 3.2.9) is just a row
vector with n! non-zero entries all equal to ±1, so ‖det‖ ≤ ‖B‖ =

√
n!. Of

course, both of these bounds agree with (but are weaker than) the facts from
Examples 3.2.10 and 3.2.11 that ‖C‖= 1 and ‖det‖= 1.

Range and Kernel
In Section 1.2.4, we introduced the range and null space of a linear transforma-
tion T : V →W to be the following subspaces ofW and V , respectively:

range(T ) =
{

T (x) : x ∈ V
}

and null(T ) =
{

x ∈ V : T (x) = 0
}
.

The natural generalizations of these sets to a multilinear transformation T :
V1×V2×·· ·×Vp→W are called its range and kernel, respectively, and they
are defined by

range(T ) def=
{

T (v1,v2, . . . ,vp) : v1 ∈ V1,v2 ∈ V2, . . . ,vp ∈ Vp
}

and

ker(T ) def=
{
(v1,v2, . . . ,vp) ∈ V1×V2×·· ·×Vp : T (v1,v2, . . . ,vp) = 0

}
.

In other words, the range of a multilinear transformation contains all of
the possible outputs of that transformation, just as was the case for linear
transformations, and its kernel consists of all inputs that result in an output of 0,
just as was the case for the null space of linear transformations. The reason for
changing terminology from “null space” to “kernel” in this multilinear setting
is that these sets are no longer subspaces if p≥ 2. We illustrate this fact with
an example.

Example 3.2.12
The Range of the

Kronecker Product

Describe the range of the bilinear transformation T⊗ : R2×R2→ R4 that
computes the Kronecker product of two vectors, and show that it is not a
subspace of R4.

Solution:
The range of T⊗ is the set of all vectors of the form T⊗(v,w) = v⊗w,

which are the elementary tensors in R2⊗R2 ∼= R4. We noted near the end
of Section 3.1.1 that R2⊗R2 is spanned by elementary tensors, but not
every vector in this space is an elementary tensor.

For example,Recall from
Theorem 3.1.6 that if

v is an elementary
tensor then

rank(mat(v)) = 1.

(1,0)⊗(1,0)= (1,0,0,0) and (0,1)⊗(0,1)= (0,0,0,1)
are both in range(T⊗), but (1,0,0,0)+(0,0,0,1) = (1,0,0,1) is not (after
all, its matricization is the identity matrix I2, which does not have rank 1),
so range(T⊗) is not a subspace of R4.

To even talk about whether or not ker(T ) is a subspace, we need to clarify
what it could be a subspace of. The members of ker(T ) come from the set
V1×V2×·· ·×Vp, but this set is not a vector space (so it does not make sense
for it to have subspaces). We can turn it into a vector space by defining a vector
addition and scalar multiplication on it—one way of doing this gives us the
external direct sum from Section 1.B. However, ker(T ) fails to be a subspace
under pretty much any reasonable choice of vector operations.

Example 3.2.13
Kernel of the
Determinant

Describe the kernel of the determinant det : Fn×·· ·×Fn→ F.

Solution:
Recall that the determinant of a matrix equals 0 if and only if that

matrix is not invertible. Also recall that a matrix is not invertible if and
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only if its columns form a linearly dependent set. By combining these two
facts, we see that det(v1,v2, . . . ,vn) = 0 if and only if {v1,v2, . . . ,vn} is
linearly dependent. In other words,

ker(det) =
{
(v1,v2, . . . ,vn) ∈ Fn×·· ·×Fn :

{v1,v2, . . . ,vn} is linearly dependent
}
.

To get our hands on range(T ) and ker(T ) in general, we can make use
of the standard block matrix A of T , just like we did for the operator norm.
Specifically, making use of Theorem 3.2.2 immediately gives us the following
result:

Theorem 3.2.3
Range and Kernel

in Terms of Standard
Block Matrices

Suppose V1, . . . ,Vp andW are finite-dimensional vector spaces with bases
B1, . . . ,Bp and D, respectively, and T : V1×·· ·×Vp→W is a multilinear
transformation. If A is the standard block matrix of T with respect to these
bases, then
range(T ) =

{
w ∈W : [w]D = A

(
[v1]B1 ⊗·· ·⊗ [vp]Bp

)

for some v1 ∈ V1, . . . ,vp ∈ Vp
}
, and

ker(T ) =
{
(v1, . . . ,vp) ∈ V1×·· ·×Vp : A

(
[v1]B1 ⊗·· ·⊗ [vp]Bp

)
= 0
}
.

That is, the range and kernel of a multilinear transformation consist of the
elementary tensors in the range and null space of its standard block matrix,
respectively (up to fixing bases of the vector spaces so that this statement
actually makes sense). This fact is quite analogous to our earlier observation that
the operator norm of a multilinear transformation T is obtained by maximizing
‖Av‖ over elementary tensors v = v1⊗·· ·⊗vp.

Example 3.2.14
Kernel of the

Cross Product

Compute the kernel of the cross product C : R3×R3→ R3 directly, and
also via Theorem 3.2.3.

Solution:
To compute the kernel directly, recall that ‖C(v,w)‖= ‖v‖‖w‖|sin(θ)|,

where θ is the angle between v and w (we already used this formula in
Example 3.2.10). It follows that C(v,w) = 0 if and only if v = 0, w = 0,
or sin(θ) = 0. That is, ker(C) consists of all pairs (v,w) for which v and
w lie on a common line.

In other words, ker(C)
consists of sets {v,w}

that are linearly
dependent

(compare with
Example 3.2.13).

To instead arrive at this result via Theorem 3.2.3, we first recall that C
has standard block matrix

A =




0 0 0 0 0 1 0 −1 0
0 0 −1 0 0 0 1 0 0
0 1 0 −1 0 0 0 0 0


 .

Standard techniques from introductory linear algebra show that the null
space of A is the symmetric subspace: null(A) = S2

3 . The kernel of C thus
consists of the elementary tensors in S2

3 (once appropriately re-interpreted
just as pairs of vectors, rather than as elementary tensors).

We know from Theorem 3.1.11 that these elementary tensors are ex-
actly the ones of the form c(v⊗ v) for some v ∈ R3. Since c(v⊗ v) =
(cv)⊗v = v⊗ (cv), it follows that ker(C) consists of all pairs (v,w) for
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which v is a multiple of w or w is a multiple of v (i.e., v and w lie on a
common line).

Rank
Recall that the rank of a linear transformation is the dimension of its range.
Since the range of a multilinear transformation is not necessarily a subspace,
we cannot use this same definition in this more general setting. Instead, we
treat the rank-one sum decomposition (Theorem A.1.3) as the definition of the
rank of a matrix, and we then generalize it to linear transformations and then
multilinear transformations.

Once we do this, we see that one way of expressing the rank of a linear
transformation T : V →W is as the minimal integer r such that there exist linear
forms f1, f2, . . . , fr : V → F and vectors w1, . . . ,wr ∈W with the property that

Notice that
Equation (3.2.1)
implies that the

range of T is
contained within the
span of w1, . . . ,wr, so

rank(T )≤ r.

T (v) =
r

∑
j=1

f j(v)w j for all v ∈ V . (3.2.1)

Indeed, this way of defining the rank of T makes sense if we recall that,
in the case when V = Fn andW = Fm, each f j looks like a row vector: there
exist vectors x1, . . . ,xr ∈ Fn such that f j(v) = xT

j v for all 1 ≤ j ≤ r. In this
case, Equation (3.2.1) says that

T (v) =
r

∑
j=1

(xT
j v)w j =

r

∑
j=1

(
w jxT

j
)
v for all v ∈ Fn,

which simply means that the standard matrix of T is ∑
r
j=1 w jxT

j . In other words,
Equation (3.2.1) just extends the idea of a rank-one sum decomposition from
matrices to linear transformations.

To generalize Equation (3.2.1) to multilinear transformations, we just intro-
duce additional linear forms—one for each of the input vector spaces.

Definition 3.2.2
The Rank of a

Multilinear
Transformation

Suppose V1, . . . ,Vp andW are vector spaces and T : V1×·· ·×Vp→W
is a multilinear transformation. The rank of T , denoted by rank(T ), is
the minimal integer r such that there exist linear forms f (i)

1 , f (i)
2 , . . . , f (i)

r :
Vi→ F (1≤ i≤ p) and vectors w1, . . . ,wr ∈W with the property that

T (v1, . . . ,vp) =
r

∑
j=1

f (1)
j (v1) · · · f (p)

j (vp)w j for all v1 ∈ V1, . . . ,vp ∈ Vp.

Just like the previous properties of multilinear transformations that we
looked at (the operator norm, range, and kernel), the rank of a multilinear
transformation is extremely difficult to compute in general. In fact, the rank is
so difficult to compute that we do not even know the rank of many of the most
basic multilinear transformations that we have been working with, like matrix
multiplication and the determinant.

Example 3.2.15
The Rank of
2×2 Matrix

Multiplication

Show that if T× :M2×M2 →M2 is the bilinear transformation that
multiplies two 2×2 matrices, then rank(T×)≤ 8.

Solution:
Our goal is to construct a sum of the form described by Definition 3.2.2

for T× that consists of no more than 8 terms. Fortunately, one such sum
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is very easy to construct—we just write down the definition of matrix
multiplication.

More explicitly, recall that the top-left entry in the product T×(A,B) =
AB is a1,1b1,1 +a1,2b2,1, so 2 of the 8 terms in the sum that defines AB are
a1,1b1,1E1,1 and a1,2b2,1E1,1. The other entries of AB similarly contribute
2 terms each to the sum, for a total of 8 terms in the sum. Even more
explicitly, if we define

f (1)
1 (A) = a1,1 f (1)

2 (A) = a1,2 f (1)
3 (A) = a1,1 f (1)

4 (A) = a1,2

f (1)
5 (A) = a2,1 f (1)

6 (A) = a2,2 f (1)
7 (A) = a2,1 f (1)

8 (A) = a2,2

f (2)
1 (B) = b1,1 f (2)

2 (B) = b2,1 f (2)
3 (B) = b1,2 f (2)

4 (B) = b2,2

f (2)
5 (B) = b1,1 f (2)

6 (B) = b2,1 f (2)
7 (B) = b1,2 f (2)

8 (B) = b2,2

w1 = E1,1 w2 = E1,1 w3 = E1,2 w4 = E1,2

w5 = E2,1 w6 = E2,1 w7 = E2,2 w8 = E2,2,

then it is straightforward (but tedious) to check thatA similar argument
shows that matrix
multiplication T× :

Mm,n×Mn,p→Mm,p
has rank(T×)≤ mnp.

T×(A,B) = AB =
8

∑
j=1

f (1)
j (A) f (2)

j (B)w j for all A,B ∈M2.

After all, this sum can be written more explicitly as
AB = (a1,1b1,1 +a1,2b2,1)E1,1 +(a1,1b1,2 +a1,2b2,2)E1,2

+(a2,1b1,1 +a2,2b2,1)E2,1 +(a2,1b1,2 +a2,2b2,2)E2,2.

One of the reasons that the rank of a multilinear transformation is so difficult
to compute is that we do not have a method of reliably detecting whether or
not a sum of the type described by Definition 3.2.2 is optimal.

For example, it seems reasonable to expect that the matrix multiplication
transformation T× :M2×M2→M2 has rank(T×) = 8 (i.e., we might expect
that the rank-one sum decomposition from Example 3.2.15 is optimal). Rather
surprisingly, however, this is not the case—the following decomposition of T×
as T×(A,B) = AB = ∑

7
j=1 f (1)

j (A) f (2)
j (B)w j shows that rank(T×)≤ 7:

It turns out that, for
2×2 matrix

multiplication,
rank(T×) = 7, but this

is not obvious. That is,
it is hard to show that

there is no sum of
the type described

by Definition 3.2.2
consisting of only 6

terms.

f (1)
1 (A) = a1,1 f (1)

2 (A) = a2,2 f (1)
3 (A) = a1,2−a2,2

f (1)
4 (A) = a2,1 +a2,2 f (1)

5 (A) = a1,1 +a1,2 f (1)
6 (A) = a2,1−a1,1

f (1)
7 (A) = a1,1 +a2,2

f (2)
1 (B) = b1,2−b2,2 f (2)

2 (B) = b2,1−b1,1 f (2)
3 (B) = b2,1 +b2,2

f (2)
4 (B) = b1,1 f (2)

5 (B) = b2,2 f (2)
6 (B) = b1,1 +b1,2

f (2)
7 (B) = b1,1 +b2,2

w1 = E1,2 +E2,2 w2 = E1,1 +E2,1 w3 = E1,1

w4 = E2,1−E2,2 w5 = E1,2−E1,1 w6 = E2,2

w7 = E1,1 +E2,2.

(†)
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The process of verifying that this decomposition works is just straightfor-
ward (but tedious) algebra. However, actually discovering this decomposition
in the first place is much more difficult, and beyond the scope of this book.

Remark 3.2.3
Algorithms for
Faster Matrix

Multiplication

When multiplying two 2× 2 matrices A and B together, we typically
perform 8 scalar multiplications:

AB =
[

a1,1 a1,2
a2,1 a2,2

][
b1,1 b1,2

b2,1 b2,2

]

=

[
a1,1b1,1 +a1,2b2,1 a1,1b1,2 +a1,2b2,2

a2,1b1,1 +a2,2b2,1 a2,1b1,2 +a2,2b2,2

]
.

However, it is possible to compute this same product a bit more efficiently—
only 7 scalar multiplications are required if we first compute the 7 matrices

This method of
computing AB
requires more

additions, but that is
OK—the number of

additions grows
much more slowly

than the number of
multiplications when
we apply it to larger

matrices.

M1 = a1,1(b1,2−b2,2) M2 = a2,2(b2,1−b1,1)
M3 = (a1,2−a2,2)(b2,1 +b2,2) M4 = (a2,1 +a2,2)b1,1

M5 = (a1,1 +a1,2)b2,2 M6 = (a2,1−a1,1)(b1,1 +b1,2)
M7 = (a1,1 +a2,2)(b1,1 +b2,2).

It is straightforward to check that if w1, . . . ,w7 are as in the decomposi-
tion (†), then

AB =
7

∑
j=1

M j⊗w j =
[

M2 +M3−M5 +M7 M1 +M5

M2 +M4 M1−M4 +M6 +M7

]
.

By iteratingTo apply Strassen’s
algorithm to

matrices of size that
is not a power of 2,

just pad it with rows
and columns of

zeros as necessary.

this procedure, we can compute the product of large
matrices much more quickly than we can via the definition of matrix
multiplication. For example, computing the product of two 4×4 matrices
directly from the definition of matrix multiplication requires 64 scalar
multiplications. However, if we partition those matrices as 2× 2 block
matrices and multiply them via the clever method above, we just need
to perform 7 multiplications of 2× 2 matrices, each of which can be
implemented via 7 scalar multiplications in the same way, for a total of
72 = 49 scalar multiplications.

This

The expressions like
“O(n3)” here are

examples of big-O
notation. For

example, “O(n3)
operations” means
“no more than Cn3

operations, for some
scalar C”.

faster method of matrix multiplication is called Strassen’s al-
gorithm, and it requires only O(nlog2(7))≈ O(n2.8074) scalar operations,
versus the standard matrix multiplication algorithm’s O(n3) scalar opera-
tions. The fact that we can multiply two 2×2 matrices together via just 7
scalar multiplications (i.e., the fact that Strassen’s algorithm exists) follows
immediately from the 7-term rank sum decomposition (†) for the 2× 2
matrix multiplication transformation. After all, the matrices M j (1≤ j≤ 7)
are simply the products f1, j(A) f2, j(B).

Similarly,

Even the rank of the
3×3 matrix

multiplication
transformation is

currently
unknown—all we

know is that it is
between 19 and 23,

inclusive. See [Sto10]
and references

therein for details.

finding clever rank sum decompositions of larger matrix
multiplication transformations leads to even faster algorithms for ma-
trix multiplication, and these techniques have been used to construct an
algorithm that multiplies two n× n matrices in O(n2.3729) scalar opera-
tions. One of the most important open questions in all of linear algebra
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asks whether or not, for every ε > 0, there exists such an algorithm that
requires only O(n2+ε) scalar operations.

The rank of a multilinear transformation can also be expressed in terms
of its standard block matrix. By identifying the linear forms { fi, j} with row
vectors in the usual way and making use of Theorem 3.2.2, we get the following
theorem:

Theorem 3.2.4
Rank via Standard

Block Matrices

Suppose V1, . . . ,Vp andW are d1-, . . ., dp-, and dW -dimensional vector
spaces, respectively, T : V1×·· ·×Vp→W is a multilinear transformation,
and A is the standard block matrix of T . Then the smallest integer r for
which there exist sets of vectors {w j}r

j=1 ⊂ FdW and
{

v(1)
j

}r
j=1 ⊂ Fd1 ,

. . .,
{

v(p)
j

}r
j=1 ⊂ Fdp with

A =
r

∑
j=1

w j
(
v(1)

j ⊗v(2)
j ⊗·· ·⊗v(p)

j

)T

is exactly r = rank(T ).The sets of vectors in
this theorem cannot

be chosen to be
linearly independent

in general, in
contrast with

Theorem A.1.3
(where they could).

If we recall from Theorem A.1.3 that rank(A) (where now we are just
thinking of A as a matrix—not as anything to do with multilinearity) equals the
smallest integer r for which we can write

A =
r

∑
j=1

w jvT
j ,

we see learn immediately the important fact that the rank of a multilinear trans-
formation is bounded from below by the rank of its standard block matrix (after
all, every rank-one sum decomposition of the form described by Theorem 3.2.4
is also of the form described by Theorem A.1.3, but not vice-versa):

! If T : V1×·· ·×Vp→W is a multilinear transformation with
standard block matrix A then rank(T )≥ rank(A).

For example, it is straightforward to check that if C : R3×R3→ R3 is the
cross product, with standard block matrix A ∈M3,9 as in Example 3.2.4, then
rank(C)≥ rank(A) = 3 (in fact, rank(C) = 5, but this is difficult to show—see
Exercise 3.2.13). Similarly, if T× :M2×M2→M2 is the matrix multiplica-
tion transformation with standard matrix A ∈M4,16 from Example 3.2.8, then
rank(T×)≥ rank(A) = 4 (recall that rank(T×) actually equals 7).

Exercises solutions to starred exercises on page 478

3.2.1 Determine which of the following functions are and
are not multilinear transformations.

∗(a) The function T : R2×R2→R2 defined by T (v,w) =
(v1 + v2,w1−w2).

(b) The function T : R2×R2→R2 defined by T (v,w) =
(v1w2 + v2w1,v1w1−2v2w2).

∗(c) The function T : Rn × Rn → Rn2
defined by

T (v,w) = v⊗w.
(d) The function T : Mn ×Mn →Mn defined by

T (A,B) = A+B.
∗(e) Given a fixed matrix X ∈Mn, the function TX :

Mn→Mn defined by TX (A,B) = AXBT .
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(f) The function per : Fn×·· ·×Fn→ F (with n copies
of Fn) defined by

per
(
v(1),v(2), . . . ,v(n))= ∑

σ∈Sn

v(1)
σ(1)v

(2)
σ(2) · · ·v

(n)
σ(n).

[Side note: This function is called the permanent,
and its formula is similar to that of the determinant,
but with the signs of permutations ignored.]

3.2.2 Compute the standard block matrix (with respect
to the standard bases of the given spaces) of each of the
following multilinear transformations:

(a) The function T : R2×R2→R2 defined by T (v,w) =
(2v1w1− v2w2,v1w1 +2v2w1 +3v2w2).

∗(b) The function T : R3×R2→R3 defined by T (v,w) =
(v2w1 +2v1w2 +3v3w1,v1w1 +v2w2 +v3w1,v3w2−
v1w1).

∗(c) The Kronecker product T⊗ : R2 ×R2 → R4 (i.e.,
the bilinear transformation defined by T⊗(v,w) =
v⊗w).

(d) Given a fixed matrix X ∈M2, the function TX :
M2×R2→ R2 defined by TX (A,v) = AXv.

3.2.3 Determine which of the following statements are
true and which are false.

∗(a) The dot product D : Rn×Rn → R is a multilinear
transformation of type (n,n,1).

(b) The multilinear transformation from Exer-
cise 3.2.2(b) has type (2,1).

∗(c) The standard block matrix of the matrix multiplica-
tion transformation T× : Mm,n×Mn,p→Mm,p has
size mn2 p×mp.

(d) The standard block matrix of the Kronecker product
T⊗ : Rm×Rn → Rmn (i.e., the bilinear transforma-
tion defined by T⊗(v,w) = v⊗w) is the mn×mn
identity matrix.

3.2.4 Suppose T : V1 × ·· · ×Vp →W is a multilinear
transformation. Show that if there exists an index j for
which v j = 0 then T (v1, . . . ,vp) = 0.

3.2.5 Suppose T× : Mm,n×Mn,p→Mm,p is the bilinear
transformation that multiplies two matrices. Compute ‖T×‖.
[Hint: Keep in mind that the norm induced by the inner
product on Mm,n is the Frobenius norm. What inequalities
do we know involving that norm?]

3.2.6 Show that the operator norm of a multilinear trans-
formation is in fact a norm (i.e., satisfies the three properties
of Definition 1.D.1).

3.2.7 Show that the range of a multilinear form f : V1×
·· ·×Vp→F is always a subspace of F (i.e., range( f ) = {0}
or range( f ) = F).

[Side note: Recall that this is not true of multilinear trans-
formations.]

∗3.2.8 Describe the range of the cross product (i.e., the
bilinear transformation C : R3 × R3 → R3 from Exam-
ple 3.2.1).

∗3.2.9 Suppose T : V1×·· ·×Vp →W is a multilinear
transformation. Show that if its standard array has k non-
zero entries then rank(T )≤ k.

∗3.2.10 Suppose T× : Mm,n×Mn,p→Mm,p is the bilin-
ear transformation that multiplies two matrices. Show that
mp≤ rank(T×)≤ mnp.

∗3.2.11 We motivated many properties of multilinear trans-
formations so as to generalize properties of linear transfor-
mations. In this exercise, we show that they also generalize
properties of bilinear forms.

Suppose V and W are finite-dimensional vector spaces over
a field F, f : V ×W → F is a bilinear form, and A is the
matrix associated with f via Theorem 1.3.5.

(a) Show that rank( f ) = rank(A).
(b) Show that if F = R or F = C, and we choose the

bases B and C in Theorem 1.3.5 to be orthonormal,
then ‖ f‖= ‖A‖.

3.2.12 Let D : Rn×Rn→ R be the dot product.

(a) Show that ‖D‖= 1.
(b) Show that rank(D) = n.

∗∗3.2.13 Let C : R3×R3→ R3 be the cross product.

(a) Construct the “naïve” rank sum decomposition that
shows that rank(C)≤ 6.
[Hint: Mimic Example 3.2.15.]

(b) Show that C(v,w) = ∑
5
j=1 f1, j(v) f2, j(w)x j for all

v,w ∈ R3, and thus rank(C)≤ 5, where

f1,1(v) = v1 f1,2(v) = v1 + v3

f1,3(v) =−v2 f1,4(v) = v2 + v3

f1,5(v) = v2− v1

f2,1(w) = w2 +w3 f2,2(w) =−w2

f2,3(w) = w1 +w3 f2,4(w) = w1

f2,5(w) = w3

x1 = e1 + e3 x2 = e1

x3 = e2 + e3 x4 = e2

x5 = e1 + e2 + e3.

[Side note: It is actually the case that rank(C) = 5,
but this is quite difficult to show.]

3.2.14 Use the rank sum decomposition from Exam-
ple 3.2.13(b) to come up with a formula for the cross product
C : R3×R3→ R3 that involves only 5 real number multi-
plications, rather than 6.

[Hint: Mimic Remark 3.2.3.]

∗3.2.15 Let det : Rn×·· ·×Rn→ R be the determinant.

(a) Suppose n = 2. Compute rank(det).
(b) Suppose n = 3. What is rank(det)? You do not need

to rigorously justify your answer—it is given away
in one of the other exercises in this section.

[Side note: rank(det) is not known in general. For example,
if n = 5 then the best bounds we know are 17≤ rank(det)≤
20.]
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3.2.16 Provide an example to show that in the rank sum
decomposition of Theorem 3.2.4, if r = rank(T ) then the
sets of vectors {w j}r

j=1 ⊂ FdW and {v1, j}r
j=1 ⊂ Fd1 , . . .,

{vk, j}r
j=1 ⊂ Fdk cannot necessarily be chosen to be linearly

independent (in contrast with Theorem A.1.3, where they
could).

[Hint: Consider one of the multilinear transformations
whose rank we mentioned in this section.]

3.3 The Tensor Product

We now introduce an operation, called the tensor product, that combines two
vector spaces into a new vector space. This operation can be thought of as a
generalization of the Kronecker product that not only lets us multiply together
vectors (from Fn) and matrices of different sizes, but also allows us to multiply
together vectors from any vector spaces. For example, we can take the tensor
product of a polynomial from P3 with a matrix fromM2,7 while retaining a
vector space structure. Perhaps more usefully though, it provides us with a
systematic way of treating multilinear transformations as linear transformations,
without having to explicitly construct a standard block matrix representation as
in Theorem 3.2.2.

3.3.1 Motivation and Definition

Recall that we defined vector spaces in Section 1.1 so as to generalize Fn

to other settings in which we can apply our linear algebraic techniques. We
similarly would like to define the tensor product of two vectors spaces to
behave “like” the Kronecker product does on Fn orMm,n. More specifically, if
V andW are vector spaces over the same field F, then we would like to define
their tensor product V ⊗W to consist of vectors that we denote by v⊗w and
their linear combinations, so that the following properties hold for all v,x ∈ V ,
w,y ∈W , and c ∈ F:

• v⊗ (w+y) = (v⊗w)+(v⊗y)
• (v+x)⊗w = (v⊗w)+(x⊗w), and
• (cv)⊗w = v⊗ (cw) = c(v⊗w).

(3.3.1)

In other words, we would like the tensor product to be bilinear. Indeed,
if we return to the Kronecker product on Fn orMm,n, then these are exactly
the properties from Theorem 3.1.1

Theorem 3.1.1 also
had the associativity

property
(v⊗w)⊗x = v⊗(w⊗x).

We will see shortly
that associativity

comes “for free”, so
we do not worry

about it right now.

that describe how it interacts with vector
addition and scalar multiplication—it does so in a bilinear way.

However, this definition of V⊗W is insufficient, as there are typically many
ways of constructing a vector space in a bilinear way out of two vector spaces
V and W , and they may look quite different from each other. For example,
if V =W = R2 then each of the following vector spaces X and operations
⊗ : R2×R2→X satisfy the three bilinearity properties (3.3.1):

1) X = R4, with v⊗w = (v1w1,v1w2,v2w1,v2w2). This is just the usual
Kronecker product.

2) X = R3, with v⊗w = (v1w1,v1w2,v2w2). This can be thought of as the
orthogonal projection of the usual Kronecker product down onto R3 by
omitting its third coordinate.
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3) X = R2,In cases (2)–(5) here,
“⊗” does not refer to

the Kronecker
product, but rather
to new operations

that we are defining
so as to mimic its

properties.

with v⊗w = (v1w1 + v2w2,v1w2− v2w1). This is a projected
and rotated version of the Kronecker product—it is obtained by multi-
plying the Kronecker product by the matrix

[
1 0 0 1
0 1 −1 0

]
.

4) X = R, with v⊗w = v ·w for all v,w ∈ R2.
5) The zero subspace X = {0} with v⊗w = 0 for all v,w ∈ R2.
Notice that X = R4 with the Kronecker product is the largest of the above

vector spaces, and all of the others can be thought of as projections of the
Kronecker product down onto a smaller space. In fact, it really is the largest
example possible—it is not possible to construct a 5-dimensional vector space
via two copies of R2 in a bilinear way, since every vector must be a linear
combination of e1⊗ e1, e1⊗ e2, e2⊗ e1, and e2⊗ e2, no matter how we define
the bilinear “⊗” operation.

The above examples suggest that the extra property that we need to add in
order to make tensor products unique is the fact that they are as large as possible
while still satisfying the bilinearity properties (3.3.1). We call this feature the
universal property of the tensor product, and the following definition pins all
of these ideas down. In particular, property (d) is this universal property.

Definition 3.3.1
Tensor Product

Suppose V andW are vector spaces over a field F. Their tensor product
is the (unique up to isomorphism) vector space V ⊗W , also over the field
F, with vectors and operations satisfying the following properties:

a) For every pair of vectors v ∈ V and w ∈W , there is an associated
vector (called an elementary tensor) v⊗w ∈ V ⊗W , and every
vector in V ⊗W can be written as a linear combination of these
elementary tensors.

b) Vector

Unique “up to
isomorphism” means

that all vector
spaces satisfying

these properties are
isomorphic to each

other.

addition satisfies

v⊗ (w+y) = (v⊗w)+(v⊗y) and
(v+x)⊗w = (v⊗w)+(x⊗w) for all v,x ∈ V , w,y ∈W .

c) Scalar multiplication satisfies

c(v⊗w) = (cv)⊗w = v⊗ (cw) for all c ∈ F, v ∈ V , w ∈W .

d) ForProperty (d) is the
universal property

that forces V⊗W to
be as large as

possible.

every vector space X over F and every bilinear transformation
T : V×W→X , there exists a linear transformation S : V⊗W→X
such that

T (v,w) = S(v⊗w) for all v ∈ V and w ∈W .

The way to think about property (d) above (the universal property) is that
it forces V ⊗W to be so large that we can squash it down (via the linear
transformation S) onto any other vector space X that is similarly constructed
from V andW in a bilinear way. In this sense, the tensor product can be thought
of as “containing” (up to isomorphism) every bilinear combination of vectors
from V andW .

To make the tensor product seem more concrete, it is good to keep the
Kronecker product in the back of our minds as the motivating example. For
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example, Fm⊗Fn = Fmn andMm,n⊗Mp,q =Mmp,nq containThroughout this
entire section, every
time we encounter a

new theorem, ask
yourself what it
means for the

Kronecker product
of vectors or

matrices.

all vectors of
the form v⊗w and all matrices of the form A⊗B, respectively, as well as their
linear combinations (this is property (a) of the above definition). Properties (b)
and (c) of the above definition are then just chosen to be analogous to the
properties that we proved for the Kronecker product in Theorem 3.1.1, and
property (d) gets us all linear combinations of Kronecker products (rather than
just some subspace of them). In fact, Theorem 3.2.2 is essentially equivalent
to property (d) in this case: the standard matrix of S equals the standard block
matrix of T .

We now work through another example to try to start building up some
intuition for how the tensor product works more generally.

Example 3.3.1
The Tensor Product

of Polynomials

Show that P ⊗P = P2, the space of polynomials in two variables, if we
define the elementary tensors f ⊗g by ( f ⊗g)(x,y) = f (x)g(y).

Solution:
We just need to show that P2 satisfies all four properties of Defini-

tion 3.3.1 if we define f ⊗g in the indicated way:
a) If h ∈ P2 is any 2-variable polynomial then we can write it in the

form

h(x,y) =
∞

∑
j,k=1

a j,kx jyk

whereFor example, if
f (x) = 2x2−4 and

g(x) = x3 + x−1 then
( f ⊗g)(x,y) =

f (x)g(y) =
(2x2−4)(y3 + y−1).

there are only finitely many non-zero terms in the sum. Since
each term x jyk is an elementary tensor (it is x j ⊗ yk), it follows
that every h ∈ P2 is a linear combination of elementary tensors, as
desired.

b), c) These properties follow almost immediately from bilinearity of
usual multiplication: if f ,g,h ∈ P and c ∈ R then

(
f ⊗ (g+ ch)

)
(x,y) = f (x)

(
g(y)+ ch(y)

)

= f (x)g(y)+ c f (x)h(y)
= ( f ⊗g)(x,y)+ c( f ⊗h)(x,y)

for all x,y ∈ R, so f ⊗ (g+ ch) = ( f ⊗g)+ c( f ⊗h). The fact that
( f + cg)⊗h = ( f ⊗h)+ c(g⊗h) can be proved similarly.

d) GivenThis example relies
on the fact that

every function in P2
can be written as a

finite sum of
polynomials of the

form f (x)g(y).
Analogous

statements in other
function spaces fail
(see Exercise 3.3.6).

any vector space X and bilinear form T :P×P →X , we just
define S(x jyk) = T (x j,yk) for all integers j,k ≥ 0 and then extend
via linearity (i.e., we are defining how S acts on a basis of P2 and
then using linearity to determine how it acts on other members of
P2).

Once we move away from the spaces Fn,Mm,n, and P , there are quite a few
details that need to be explained in order for Definition 3.3.1 to make sense. In
fact, that definition appears at first glance to be almost completely content-free.
It does not give us an explicit definition of either the vector addition or scalar
multiplication operations in V ⊗W , nor has it even told us what its vectors
“look like”—we denote some of them by v⊗w, but so what? It is also not clear
that it exists or that it is unique up to isomorphism.



3.3 The Tensor Product 345

3.3.2 Existence and Uniqueness

We now start clearing up the aforementioned issues with the tensor product—
we show that it exists, that it is unique up to isomorphism, and we discuss how
to actually construct it.

Uniqueness
We first show that the tensor product (if it exists) is unique up to isomorphism.
Fortunately, this property follows almost immediately from the universal prop-
erty of the tensor product.

Suppose there are two vector spaces Y and Z satisfying the four defining
properties from Definition 3.3.1, so we are thinking of each of them as the
tensor product V ⊗W .Our goal here is to

show that Y and Z
are isomorphic (i.e.,
there is an invertible

linear transformation
from one to the

other).

In order to distinguish these two tensor products, we
denote them by Y = V ⊗YW and Z = V ⊗ZW , respectively, and similarly
for the vectors in these spaces (for example, v⊗Y w refers to the elementary
tensor in Y obtained from v and w).

Since ⊗Z : V ×W →Z is a bilinear transformation, the universal property
(property (d) of Definition 3.3.1, with X = Z and T =⊗Z) for Y = V ⊗YW
tells us that there exists a linear transformation SY→Z : V⊗YW→Z such that

SY→Z(v⊗Y w) = v⊗Z w for all v ∈ V , w ∈W .

A similar argument via the universal property of Z = V⊗ZW shows that there
exists a linearIn fact, the linear

transformation S in
Definition 3.3.1(d) is
necessarily unique
(see Exercise 3.3.4).

transformation SZ→Y : V ⊗ZW →Y such that

SZ→Y(v⊗Z w) = v⊗Y w for all v ∈ V , w ∈W .

Since every vector in Y or Z is a linear combination of elementary tensors
v⊗Y w or v⊗Z w, respectively, we conclude that SY→Z = S−1

Z→Y is an invert-
ible linear transformation from Y to Z . It follows that Y and Z are isomorphic,
as desired.

Existence and Bases
Showing that the tensor product space V ⊗W actually exists in general (i.e.,
there is a vector space whose vector addition and scalar multiplication opera-
tions satisfy the required properties) requires some abstract algebra machinery
that we have not developed here. For this reason, we just show how to construct
V ⊗W in the special case when V andW each have a basis, which is true at
least in the case when V andW are each finite-dimensional.

Look back at
Remark 1.2.1 for a

discussion of which
vector spaces have

bases.

In particular, the
following theorem tells us that we can construct a basis of V⊗W in exactly the
same way we did when working with the Kronecker product—simply tensor
together bases of V andW .

Theorem 3.3.1
Bases of Tensor

Products

Suppose V and W are vector spaces over the same field with bases B
and C, respectively. Then their tensor product V ⊗W exists and has the
following set as a basis:

B⊗C def=
{

e⊗ f | e ∈ B, f ∈C
}
.

Proof. We start with the trickiest part of this proof to get our heads around—we
simply define B⊗C to be a linearly independent set and V ⊗W to be its span.
That is, we are not defining V ⊗W via Definition 3.3.1, but rather we are
defining it as the span of a collection of vectors, and then we will show that
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it has all of the properties of Definition 3.3.1 (thus establishing that a vector
space with those properties really does exist). Before proceeding, we make
some points of clarification:

• Throughout this proof, we are just thinking of “e⊗ f”If you are
uncomfortable with

defining V⊗W to be
a vector space

made up of abstract
symbols, look ahead

to Remark 3.3.1,
which might clear

things up a bit.

as a symbol that
means nothing more than “the ordered pair of vectors e and f”.

• Similarly, we do not yet know that V ⊗W really is the tensor product
of V andW , but rather we are just thinking of it as the vector space that
has B⊗C as a basis:

V ⊗W =

{
∑
i, j

cid j(ei⊗ f j) : bi,c j ∈ F, ei ∈ B, f j ∈C for all i, j

}
,

where the sum is finite.
For each v = ∑i ciei ∈ V and w = ∑ j d jf j ∈ W (where ci,d j ∈ F, ei ∈ B,

and f j ∈C for all i and j) we then similarly define

This definition of v⊗w
implicitly relies on

uniqueness of linear
combinations when

representing v and w
with respect to the

bases B and C,
respectively

(Theorem 1.1.4).

v⊗w = ∑
i, j

cid j(ei⊗ f j). (3.3.2)

Our goal is now to show that when we define V ⊗W and v⊗w in this way,
each of the properties (a)–(d) of Definition 3.3.1 holds.

Property (a) holds trivially since we have defined v⊗w∈ V⊗W in general,
and we constructed V ⊗W so that it is spanned by vectors of the form e⊗ f,
where e ∈ B and f ∈C, so it is certainly spanned by vectors of the form v⊗w,
where v ∈ V and w ∈W .

To see why properties (b) and (c) hold, suppose v = ∑i ciei ∈ V , w =
∑ j d jf j ∈W , and y = ∑ j b jf j ∈W . Then

v⊗ (w+y) = v⊗
(

∑
j

d jf j +∑
j

b jf j

)
(expand w and y)

= v⊗
(

∑
j
(d j +b j)f j

)
(distributivity inW)

= ∑
i, j

ci(d j +b j)(ei⊗ f j) (use Equation (3.3.2))

= ∑
i, j

cid j(ei⊗ f j)+∑
i, j

cib j(ei⊗ f j) (distributivity in V ⊗W)

= (v⊗w)+(v⊗y), (Equation (3.3.2) again)

and a similar argument shows that

v⊗ (cw) = v⊗
(

c∑
j

d jf j

)
= v⊗

(
∑

j
(cd j)f j

)

= ∑
i, j

ci(cd j)(ei⊗ f j) = c∑
i, j

cid j(ei⊗ f j) = c(v⊗w).

The proofs that (v+x)⊗w = (v⊗w)+(x⊗w) and (cw)⊗w = c(v⊗w) are
almost identical to the ones presented above, and are thus omitted.

Finally, for property (d) we simply define S : V ⊗W → X by setting
S(e⊗ f) = T (e, f) for each e ∈ B and f ∈C, and extending via linearity (recall
that every linear transformation is determined completely by how it acts on a
basis of the input space). �
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Since the dimension of a vector space is defined to equal the number of
vectors in any of its bases, we immediately get the following corollary that tells
us that the dimension of the tensor product of two finite-dimensional vector
spaces is just the product of their individual dimensions.

Corollary 3.3.2
Dimensionality of

Tensor Products

Suppose V andW are finite-dimensional vector spaces. Then

dim(V ⊗W) = dim(V)dim(W).

Remark 3.3.1
The Direct Sum and

Tensor Product

The tensor product is actually quite analogous to the external direct sum
from Section 1.B.3. Just like the direct sum V ⊕W can be thought of
as a way of constructing a new vector space by “adding” two vector
spaces V andW , the tensor product V ⊗W can be thought of as a way of
constructing a new vector space by “multiplying” V andW .

More specifically, both of these vector spaces V ⊕W and V ⊗W are
constructed out of ordered pairs of vectors from V and W , along with
a specification of how to add those ordered pairs and multiply them by
scalars. In V ⊕W we denoted those ordered pairs by (v,w), whereas in
V ⊗W we denote those ordered pairs by v⊗w. The biggest difference
between these two constructions is that these ordered pairs are the only
members of V ⊕W , whereas some members of V ⊗W are just linear
combinations of these ordered pairs.

This analogy between the direct sum and tensor product is even more
explicit if we look at what they do to bases B and C of V andW , respec-
tively: a basis of V ⊕W is the disjoint union B∪C, whereas a basis of
V ⊗W is the Cartesian product B×C (up to relabeling the members of
these sets appropriately). For example, if V = R2 andW = R3 have bases
B = {v1,v2} and C = {v3,v4,v5}, respectively, then R2⊕R3 ∼= R5 has
basisIn this basis of

R2⊕R3, each
subscript from B and

C appears exactly
once. In the basis of

R2⊗R3, each
ordered pair of

subscripts from B
and C appears

exactly once.

{(v1,0),(v2,0),(0,v3),(0,v4),(0,v5)},
which is just the disjoint union of B and C, but with each vector turned into
an ordered pair so that this statement makes sense. Similarly, R2⊗R3∼= R6

has basis

{v1⊗v3,v1⊗v4,v1⊗v5,v2⊗v3,v2⊗v4,v2⊗v5},

which is just the Cartesian product of B and C, but with each ordered pair
written as an elementary tensor so that this statement makes sense.

Even after working through the proof of Theorem 3.3.1, tensor products
still likely feel very abstract—how do we actually construct them? The reason
that they feel this way is that they are only defined up to isomorphism, so it’s
somewhat impossible to say what they look like. We could say that Fm⊗Fn =
Fmn and that v⊗w is just the Kronecker product of v ∈ Fm and w ∈ Fn, but
we could just as well say that Fm⊗Fn =Mm,n(F) and that v⊗w = vwT

is the outer product of v and w. After all, these spaces are isomorphic via
vectorization/matricization, so they look the same when we just describe what
linear algebraic properties they satisfy.

For this reason, when we construct “the” tensor product of two vector
spaces, we have some freedom in how we represent it. In the following
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example, we pick one particularly natural representation of the tensor product,
but we emphasize that it is not the only one possible.

Example 3.3.2
The Tensor Product

of Matrices and
Polynomials

Describe the vector spaceM2(R)⊗P2 and its elementary tensors.

Solution:
If we take inspiration from the Kronecker product, which places a copy

of one vector space on each basis vector (i.e., entry) of the other vector
space, it seems natural to guess that we can representM2⊗P2 as the
vector space of 2×2 matrices whose entries are polynomials of degree at
most 2.Recall that P2 is the

space of
polynomials of

degree at most 2.

That is, we guess that

M2⊗P2 =

{[
f1,1(x) f1,2(x)
f2,1(x) f2,2(x)

] ∣∣∣ fi, j ∈ P2 for 1≤ i, j ≤ 2

}
.

The elementary tensors inM2⊗P2 are those that can be written in the
form A f (x) for some A ∈M2 and f ∈ P2 (i.e., the elementary tensors are
the ones for which the polynomials fi, j are all multiples of each other).

Alternatively, by grouping the coefficients of each fi, j, we could think
of the members ofM2⊗P2 as degree-2 polynomials from R toM2:

M2⊗P2 =
{

f : R→M2
∣∣ f (x) = Ax2 +Bx+C for some A,B,C ∈M2

}
.

When viewed in this way, the elementary tensors inM2⊗P2 are again
those of the form A f (x) for some A ∈M2 and f ∈ P2 (i.e., the ones for
which A, B, and C are all multiples of each other).

To verify that this set really is the tensor productM2⊗P2, we could
proceed as we did in Example 3.3.1 and check the four defining properties
of Definition 3.3.1. All four of these properties are straightforward and
somewhat unenlightening to check, so we leave them to Exercise 3.3.5.

Higher-Order Tensor Products
Just as was the case with the Kronecker product, one of the main purposes
of the tensor product is that it lets us turn bilinear transformations into linear
ones. This is made explicit by the universal property (property (d) of Defini-
tion 3.3.1)—if we have some bilinear transformation T : V ×W →X that we
wish to know more about, we can instead construct the tensor product space
V ⊗W and investigate the linear transformation S : V ⊗W →X defined by
S(v⊗w) = T (v,w).

Slightly more generally, we can also consider the tensor product of three or
more vector spaces, and doing so lets us represent multilinear transformations
as linear transformations acting on the tensor product space. We now pin down
the details needed to show that this is indeed the case.

Theorem 3.3.3
Associativity of the

Tensor Product

If V ,W , and X are vector spaces over the same field then

(V ⊗W)⊗X ∼= V ⊗ (W⊗X ).

Proof. For each x ∈ X ,Recall that “∼=”
means “is

isomorphic to”.

define a bilinear map Tx : V ×W → V ⊗ (W⊗X )
by Tx(v,w) = v⊗ (w⊗ x). Since Tx is bilinear, the universal property of the
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tensor product (i.e., property (d) of Definition 3.3.1) says that there exists a
linear transformation Sx : V ⊗W → V ⊗ (W⊗X ) that acts via Sx(v⊗w) =
Tx(v,w) = v⊗ (w⊗x).

Next, define a bilinear map T̃ : (V⊗W)×X →V⊗(W⊗X ) via T̃ (u,x) =
Sx(u) for all u ∈ V ⊗W and x ∈ X . By using the universal property again, we
see that there exists a linear transformation S̃ : (V ⊗W)⊗X →V⊗ (W⊗X )
that acts via S̃(u⊗x) = T̃ (u,x) = Sx(u). If u = v⊗w then this says that

S̃
(
(v⊗w)⊗x

)
= Sx(v⊗w) = v⊗ (w⊗x).

This argument can also be reversed to find a linear transformation that sends
v⊗ (w⊗x) to (v⊗w)⊗x, so S̃ is invertible and thus an isomorphism. �

Now that we know that the tensor product is associative, we can unambigu-
ously refer to the tensor product of 3 vector spaces V ,W , and X as V⊗W⊗X ,
since it does not matter whether we take this to mean (V ⊗W)⊗X or V ⊗
(W⊗X ). The same is true when we tensor together 4 or more vector spaces,
and in this setting we say that an elementary tensor in V1⊗V2⊗·· ·⊗Vp is a
vector of the form v1⊗v2⊗·· ·⊗vp, where v j ∈ V j for each 1≤ j ≤ p.

It is similarly the case that the tensor product is commutative in the sense
that V ⊗W ∼= W ⊗V (see Exercise 3.3.10).Keep in mind that

V⊗W ∼= W⊗V does
not mean that

v⊗w = w⊗v for all
v ∈ V , w ∈W . Rather,

it just means that
there is an

isomorphism that
sends each v⊗w to

w⊗v.

For example, if V = Fm and
W = Fn then the swap operator Wm,n of Definition 3.1.3 is an isomorphism from
V ⊗W = Fm⊗Fn toW⊗V = Fn⊗Fm. More generally, higher-order tensor
product spaces V1⊗V2⊗·· ·⊗Vp are also isomorphic to the tensor product of
the same spaces in any other order. That is, if σ : {1,2, . . . , p}→ {1,2, . . . , p}
is a permutation then

V1⊗V2⊗·· ·⊗Vp ∼= Vσ(1)⊗Vσ(2)⊗·· ·⊗Vσ(p).

Again, if each of these vector spaces is Fn (and thus the tensor product is the
Kronecker product) then the swap matrix Wσ introduced in Section 3.1.3 is the
standard isomorphism between these spaces.

We motivated the tensor product as a generalization of the Kronecker
product that applies to any vector spaces (as opposed to just Fn and/orMm,n).
We now note that if we fix bases of the vector spaces that we are working
with then the tensor product really does look like the Kronecker product of
coordinate vectors, as we would hope:

Theorem 3.3.4
Kronecker Product of

Coordinate Vectors

Suppose V1, V2, . . ., Vp are finite-dimensional vector spaces over the same
field with bases B1, B2, . . ., Bp, respectively. Then

B1⊗B2⊗·· ·⊗Bp
def=
{

b(1)⊗b(2)⊗·· ·⊗b(p) | b( j) ∈ B j for all 1≤ j≤ p
}

is a basis of V1⊗V2⊗·· ·⊗Vp, and if we order it lexicographically then
In the concluding

line of this theorem,
the “⊗” on the left is

the tensor product
and the “⊗” on the

right is the Kronecker
product.

[
v1⊗v2⊗·· ·⊗vp

]
B1⊗B2⊗···⊗Bp

= [v1]B1 ⊗ [v2]B2 ⊗·· ·⊗ [vp]Bp

for all v1 ∈ V1, v2 ∈ V2, . . ., vp ∈ Vp.

In the above theorem, when we say that we are ordering the basis B1⊗
B2⊗·· ·⊗Bp lexicographically, we mean that we order it so as to “count” its
basis vectors in the most natural way, much like we did for bases of Kronecker
product spaces in Section 3.1 and for standard block matrices of multilinear
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transformations in Section 3.2.2. For example, if B1 = {v1,v2} and B2 =
{w1,w2,w3} then we order B1⊗B2 as

B1⊗B2 = {v1⊗w1,v1⊗w2,v1⊗w3,v2⊗w1,v2⊗w2,v2⊗w3}.

Proof of Theorem 3.3.4. To see that B1⊗B2⊗·· ·⊗Bp is a basis of V1⊗V2⊗
·· ·⊗Vp, we note that repeated application of Corollary 3.3.2 tells us that

dim(V1⊗V2⊗·· ·⊗Vp) = dim(V1)dim(V2) · · ·dim(Vp),

which is exactly the number of vectors in B1⊗B2⊗ ·· · ⊗Bp. It is straight-
forward to see that every elementary tensor is in span(B1⊗B2⊗·· ·⊗Bp), so
V1⊗V2⊗ ·· · ⊗Vp = span(B1⊗B2⊗ ·· · ⊗Bp), and thus Exercise 1.2.27(b)
tells us that B1⊗B2⊗·· ·⊗Bp is indeed a basis of V1⊗V2⊗·· ·⊗Vp.

The fact that
[
v1⊗v2⊗·· ·⊗vp

]
B1⊗B2⊗···⊗Bp

= [v1]B1⊗ [v2]B2⊗·· ·⊗ [vp]Bp

follows just by matching up all of the relevant definitions: if we write B j ={
b( j)

1 ,b( j)
2 , . . . ,b( j)

k j

}
and v j = ∑

k j
i=1 c( j)

i b( j)
i (so that [v j]B j =

(
c( j)

1 ,c( j)
2 , . . . ,c( j)

k j

)
)

for each 1≤ j ≤ p, thenThis proof is the
epitome of

“straightforward but
hideous”. Nothing
that we are doing

here is clever—it is all
just definition

chasing, but it is ugly
because there are
so many objects to

keep track of.

v1⊗v2⊗·· ·⊗vp =

(
k1

∑
i=1

c(1)
i b(1)

i

)
⊗
(

k2

∑
i=1

c(2)
i b(2)

i

)
⊗·· ·⊗

(
kp

∑
i=1

c(p)
i b(p)

i

)

= ∑
i1,i2,...,ip

c(1)
i1

c(2)
i2
· · ·c(p)

ip

(
b(1)

i1
⊗b(2)

i2
⊗·· ·⊗b(p)

ip

)
.

Since the vectors
{

b(1)
i1
⊗b(2)

i2
⊗·· ·⊗b(p)

ip

}
on the right are the members of B1⊗

B2⊗·· ·⊗Bp and the scalars
{

c(1)
i1

c(2)
i2
· · ·c(p)

ip

}
are the entries of the Kronecker

product [v1]B1 ⊗ [v2]B2 ⊗·· ·⊗ [vp]Bp , in the same order, the result follows. �

It might sometimes be convenient to instead arrange the entries of the coor-
dinate vector

[
v1⊗v2⊗·· ·⊗vp

]
B1⊗B2⊗···⊗Bp

into a p-dimensional dim(V1)×
dim(V2)×·· ·×dim(Vp) array, rather than a long dim(V1)dim(V2) · · ·dim(Vp)-
entry vector as we did here. What the most convenient representation of
v1⊗ v2⊗ ·· · ⊗ vp is depends heavily on context—what the tensor product
represents and what we are trying to do with it.

3.3.3 Tensor Rank

Although not every vector in a tensor product space V1 ⊗V2 ⊗ ·· · ⊗ Vp is
an elementary tensor, every vector can (by definition) be written as a linear
combination of elementary tensors. It seems natural to ask how many terms
are required in such a linear combination, and we give this minimal number of
terms a name:
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Definition 3.3.2
Tensor Rank

Suppose V1,V2, . . . ,Vp are finite-dimensional vector spaces over the same
field and v ∈ V1⊗V2⊗·· ·⊗Vp. The tensor rank (or simply the rank) of
v, denoted by rank(v), is the minimal integer r such that v can be written
as a sum of r elementary tensors:

v =
r

∑
i=1

v(1)
i ⊗v(2)

i ⊗·· ·⊗v(p)
i ,

where v( j)
i ∈ V j for each 1≤ i≤ r and 1≤ j ≤ p.

The tensor rank generalizes the rank of a matrix in the following sense: if
p = 2 and V1 = Fm and V2 = Fn, then Fm⊗Fn ∼=Mm,n(F), and the tensor rank
in this space really is just the usual matrix rank. After all, when we represent
Fm⊗Fn in this way, its elementary tensors are the matrices v⊗w = vwT , and
we know from Theorem A.1.3 that the rank of a matrix is the fewest number of
these (rank-1) matrices that are needed to sum to it.

In fact, a similar argument shows that when all of the spaces are finite-
dimensional, the tensor rank is equivalent to the rank of a multilinear transfor-
mation. After all, we showed in Theorem 3.2.4 that the rank of a multilinear
transformation T is the least integer r such that its standard block matrix A can
be written in the form

A =
r

∑
j=1

w j
(
v(1)

j ⊗v(2)
j ⊗·· ·⊗v(p)

j

)T
.

Well, the vectors in the above sum are exactly the elementary tensors if we
represent Fd1 ⊗Fd2 ⊗·· ·⊗Fdp ⊗FdW asMdW ,d1d2···dp(F) in the natural way.

Flattenings and Bounds
Since the rank of a multilinear transformation is difficult to compute, so is
tensor rank. However, there are a few bounds that we can use to help narrow
it down somewhat. The simplest of these bounds comes from just forgetting
about part of the tensor product structure of V1⊗V2⊗·· ·⊗Vp. That is, if we
let {S1,S2, . . . ,Sk} be any partition of {1,2, . . . , p} (i.e., S1, S2, . . ., Sk are sets
such that S1 ∪ S2 ∪ ·· · ∪ Sk = {1,2, . . . , p} and Si ∩ S j = {} whenever i 6= j)
then

The notation
⊗

i∈S j

Vi

means the tensor
product of each Vi

where i ∈ S j. It is
analogous to big-Σ

notation for sums.

V1⊗V2⊗·· ·⊗Vp ∼=
(
⊗

i∈S1

Vi

)
⊗
(
⊗

i∈S2

Vi

)
⊗·· ·⊗

(
⊗

i∈Sk

Vi

)
.

To be clear, we are thinking of the vector space on the right as a tensor product
of just k vector spaces—its elementary tensors are the ones of the form v1⊗
v2⊗·· ·⊗vk, where v j ∈

⊗
i∈S j
Vi for each 1≤ j ≤ k.

Perhaps the most natural isomorphism between these two spaces comes
from recalling that we can write each v ∈ V1 ⊗V2 ⊗ ·· · ⊗ Vp as a sum of
elementary tensors

v =
r

∑
j=1

v(1)
j ⊗v(2)

j ⊗·· ·⊗v(p)
j ,

and if we simply regroup the those products we get the following vector
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ṽ ∈
(⊗

i∈S1
Vi
)
⊗
(⊗

i∈S2
Vi
)
⊗·· ·⊗

(⊗
i∈Sk
Vi
)
:

ṽ =
r

∑
j=1

(
⊗

i∈S1

v(i)
j

)
⊗
(
⊗

i∈S2

v(i)
j

)
⊗·· ·⊗

(
⊗

i∈Sk

v(i)
j

)
.

We call ṽ a flattening of v, and we note that the rank of ṽ never exceeds the
rank of v, simply because the procedure that we used to construct ṽ from v
turns a sum of r elementary tensors into another sum of r elementary tensors.
We state this observation as the following theorem:

Theorem 3.3.5
Tensor Rank of

Flattenings

Suppose V1,V2, . . . ,Vp are finite-dimensional vector spaces over the same
field and v ∈ V1⊗V2⊗·· ·⊗Vp. If ṽ is a flattening of v then

rank(v)≥ rank(ṽ).

We emphasizeFlattenings are most
useful when k = 2, as

we can then easily
compute their rank
by thinking of them

as matrices.

that the opposite inequality does not holds in general, since
the coarser tensor product structure of some of the elementary tensors in(⊗

i∈S1
Vi
)
⊗
(⊗

i∈S2
Vi
)
⊗·· ·⊗

(⊗
i∈Sk
Vi
)

do not correspond to elementary
tensors in V1⊗V2⊗ ·· · ⊗ Vp, since the former space is a “coarser” tensor
product of just k ≤ p spaces.

For example, if v ∈ Fd1 ⊗Fd2 ⊗Fd3 ⊗Fd4 then we obtain flattenings of
v by just grouping some of these tensor product factors together. There are
many ways to do this, so these flattenings of v may live in many different
spaces, some of which are listed below along with the partition {S1,S2, . . . ,Sk}
of {1,2,3,4} that they correspond to:

Partition {S1,S2, . . . ,Sk} Flattened Space
S1 = {1,2},S2 = {3},S3 = {4} Fd1d2 ⊗Fd3 ⊗Fd4

S1 = {1,3},S2 = {2},S3 = {4} Fd1d3 ⊗Fd2 ⊗Fd4

S1 = {1,2},S2 = {3,4} Fd1d2 ⊗Fd3d4

S1 = {1,2,3},S2 = {4} Fd1d2d3 ⊗Fd4

In fact, if we flatten the space Fd1 ⊗ Fd2 ⊗ ·· · ⊗ Fdp ⊗ FdW by choos-
ing S1 = {p + 1} and S2 = {1,2, . . . , p} then we see that the tensor rank
of v ∈ Fd1 ⊗Fd2 ⊗ ·· · ⊗Fdp ⊗FdW is lower-bounded by the tensor rank of
its flattening ṽ ∈ FdW ⊗Fd1d2···dp , which equals the usual (matrix) rank of
mat(ṽ) ∈MdW ,d1d2···dp(F). We have thus recovered exactly our observation
from the end of Section 3.2.3 that if T is a multilinear transformation with
standard block matrix A then rank(T ) ≥ rank(A); we can think of standard
block matrices as flattenings of arrays.

However, flattenings are somewhat more general than standard block ma-
trices, as we are free to partition the tensor factors in any way we like, and
some choices of partition may give better lower bounds than others. As long as
we form the partition via k = 2 subsets though, we can interpret the resulting
flattening just as a matrix and compute its rank using standard linear algebra
machinery, thus obtaining an easily-computed lower bound on tensor rank.

Example 3.3.3
Computing Tensor

Rank Bounds via
Flattenings

Show that the following vector v ∈ (C2)⊗4 has tensor rank 4:

v = e1⊗ e1⊗ e1⊗ e1 + e1⊗ e2⊗ e1⊗ e2 +
e2⊗ e1⊗ e2⊗ e1 + e2⊗ e2⊗ e2⊗ e2.
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Solution:
It is clear that rank(v) ≤ 4, since v was provided to us as a sum of

4 elementary tensors. To compute lower bounds of rank(v), we could
use any of its many flattenings. For example, if we choose the partition
(C2)⊗4 ∼= C2⊗C8 then we get the following flattening ṽ of v:

In the final line here,
the first factor of

terms like e1⊗ e6 lives
in C2 while the

second lives in C8.

ṽ = e1⊗ (e1⊗ e1⊗ e1)+ e1⊗ (e2⊗ e1⊗ e2)+
e2⊗ (e1⊗ e2⊗ e1)+ e2⊗ (e2⊗ e2⊗ e2)

= e1⊗ e1 + e1⊗ e6 + e2⊗ e3 + e2⊗ e8,

To compute rank(ṽ), we note that its matricization is
As another way to

see that rank(ṽ) = 2,
we can rearrange ṽ
as ṽ = e1⊗ (e1 + e6)+

e2⊗ (e3 + e8).

mat(ṽ) = e1eT
1 + e1eT

6 + e2eT
3 + e2eT

8 =
[

1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1

]
,

so rank(ṽ) = rank(mat(ṽ)) = 2 and thus rank(v)≥ 2.
To get a better lower bound, we just try another flattening of v: we

instead choose the partition (C2)⊗4 ∼= C4⊗C4 so that we get the following
flattening v′ of v:

v′ = (e1⊗ e1)⊗ (e1⊗ e1)+(e1⊗ e2)⊗ (e1⊗ e2)+
(e2⊗ e1)⊗ (e2⊗ e1)+(e2⊗ e2)⊗ (e2⊗ e2)

= e1⊗ e1 + e2⊗ e2 + e3⊗ e3 + e4⊗ e4.

To compute rank(v′), we note that its matricization is

mat(v′) = e1eT
1 + e2eT

2 + e3eT
3 + e4eT

4 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 ,

so rank(v′) = rank(mat(v′)) = 4 and thus rank(v)≥ 4, as desired.

There are many situations where none of a vector’s flattenings have rank
equal to the vector itself, so it may be the case that none of the lower bounds
obtained in this way are tight. We thus introduce one more way of bounding
tensor rank that is sometimes a bit stronger than these bounds based on flatten-
ings. The rough idea behind this bound is that if f ∈ V∗1 is a linear form then
the linear transformation f ⊗ I⊗·· ·⊗ I : V1⊗V2⊗·· ·⊗Vp→V2⊗·· ·⊗Vp
defined by

We only specified
how f ⊗ I⊗·· ·⊗ I

acts on elementary
tensors here. How it

acts on the rest of
space is determined

via linearity.

( f ⊗ I⊗·· ·⊗ I)(v1⊗v2⊗·· ·⊗vp) = f (v1)(v2⊗·· ·⊗vp)

sends elementary tensors to elementary tensors, and can thus be used to help us
investigate tensor rank. We note that the universal property of the tensor product
(Definition 3.3.1(d)) tells us that this function f ⊗ I⊗·· ·⊗ I actually exists and
is well-defined: existence of f ⊗ I⊗·· ·⊗ I follows from first constructing a
multilinear transformation g : V1×V2×·· ·×Vp→V2⊗·· ·⊗Vp that acts via
g(v1,v2, . . . ,vp) = f (v1)(v2⊗·· ·⊗vp) and then using the universal property
to see that there exists a function f ⊗ I⊗·· ·⊗ I satisfying ( f ⊗ I⊗·· ·⊗ I)(v1⊗
v2⊗·· ·⊗vp) = g(v1,v2, . . . ,vp)).
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Theorem 3.3.6
Another Lower Bound

on Tensor Rank

Suppose V1,V2, . . . ,Vp are finite-dimensional vector spaces over the same
field and v ∈ V1⊗V2⊗·· ·⊗Vp. Define

Sv =
{
( f ⊗ I⊗·· ·⊗ I)(v) | f ∈ V∗1

}
,

which is a subspace of V2⊗·· ·⊗Vp. If there does not exist a basis of Sv
consisting entirely of elementary tensors then rank(v) > dim(Sv).

Proof. We prove the contrapositive of the statement of the theorem. Let r =
rank(v) so that we canThis theorem also

works if we instead
apply a linear form

f ∈ V∗k to the k-th
tensor factor for any

1≤ k ≤ p (we just
state it in the k = 1

case here for
simplicity).

write v as a sum of r elementary tensors:

v =
r

∑
j=1

v(1)
j ⊗v(2)

j ⊗·· ·⊗v(p)
j .

Since

( f ⊗ I⊗·· ·⊗ I)(v) =
r

∑
j=1

f
(
v(1)

j

)(
v(2)

j ⊗·· ·⊗v(p)
j

)
,

for all f ∈ V∗1 , it follows that the set B =
{

v(2)
j ⊗·· ·⊗v(p)

j : 1≤ j≤ r
}

satisfies
span(B) ⊇ Sv. If r ≤ dim(Sv) then we must actually have r = dim(Sv) and
span(B) = Sv, as that is the only way for an r-dimensional vector space to
be contained in a vector space of dimension at most r. It then follows from
Exercise 1.2.27(b) that B is a basis of Sv consisting entirely of elementary
tensors. �

In the p = 2 case, the above theorem says nothing at all, since the elementary
tensors in Sv ⊆ V2 are simply all of the members of Sv, and there is of course a
basis of Sv within Sv. However, when p≥ 3, the above theorem can sometimes
be used to prove bounds on tensor rank that are better than any bound possible
via flattenings.

For example, all non-trivial flattenings of a vector v ∈ (C2)⊗3 live in either
C2⊗C4, so flattenings can never provide a better lower bound than rank(v)≥ 2
in this case. However, the following example shows that some vectors in (C2)⊗3

have tensor rank 3.

Example 3.3.4
Tensor Rank Can

Exceed Local
Dimension

Show that the following vector v ∈ (C2)⊗3 has tensor rank 3:

v = e1⊗ e1⊗ e2 + e1⊗ e2⊗ e1 + e2⊗ e1⊗ e1.

Solution:
It is clear that rank(v) ≤ 3, since v was provided to us as a sum of

3 elementary tensors. On the other hand, to see that rank(v) ≥ 3, we
construct the subspace Sv ⊆ C2⊗C2 described by Theorem 3.3.6:Here we have

associated the linear
form f with a row

vector wT (via
Theorem 1.3.3) and

defined a = wT e2
and b = wT e1 for

simplicity of notation.

Sv =
{
(wT e1)(e1⊗ e2 + e2⊗ e1)+(wT e2)(e1⊗ e1) | w ∈ C2}

=
{
(a,b,b,0) | a,b ∈ C

}
.

It is clear that dim(Sv) = 2. Furthermore, we can see that the only
elementary tensors in Sv are those of the form (a,0,0,0), since the matri-
cization of (a,b,b,0) is [

a b
b 0

]
,
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which has rank 2 whenever b 6= 0. It follows that Sv does not have a
basis consisting of elementary tensors, so Theorem 3.3.6 tells us that
rank(v) > dim(Sv) = 2, so rank(v) = 3.

Tensor Rank is a Nightmare
We close this section by demonstrating two ways in which tensor rank is
less well-behaved than usual matrix rank (besides just being more difficult to
compute), even when we just restrict to the space Fd1⊗·· ·⊗Fdp when F = R or
F = C. The first of these unfortunate aspects of tensor rank is that some vectors
can be approximated arbitrarily well by vectors with strictly smaller rank.

For example, if we define

vk = k(e1 + e2/k)⊗ (e1 + e2/k)⊗ (e1 + e2/k)− ke1⊗ e1⊗ e1

= e1⊗ e1⊗ e2 + e1⊗ e2⊗ e1 + e2⊗ e1⊗ e1

+
1
k

(
e2⊗ e2⊗ e1 + e2⊗ e1⊗ e2 + e1⊗ e2⊗ e2

)

+
1
k2

(
e2⊗ e2⊗ e2

)

then it is straightforward to see that rank(vk) = 2 for all k. However,

lim
k→∞

vk = e1⊗ e1⊗ e2 + e1⊗ e2⊗ e1 + e2⊗ e1⊗ e1

is the vector with tensor rank 3 from Example 3.3.4. To deal with issues like this,
we define the border rank of a vector v ∈ Fd1 ⊗·· ·⊗Fdp to be the smallest
integer r such that v can be written as a limit of vectors with tensor rank no
larger than r. We just showed that the vector from Example 3.3.4 hasIn fact, its border

rank is exactly 2. See
Exercise 3.3.12.

border
rank ≤ 2, despite having tensor rank 3.

Nothing like this happens when p = 2 (i.e., when we can think of tensor
rank in Fd1 ⊗Fd2 as the usual rank of a matrix inMd1,d2(F)): if A1,A2, . . . ∈
Md1,d2(F) each have rank(Ak)≤ r then

In other words, the
rank of a matrix can

“jump down” in a
limit, but it cannot
“jump up”. When
p≥ 3, tensor rank

can jump either up
or down in limits.

rank
(

lim
k→∞

Ak

)
≤ r

too (as long as this limit exists). This fact can be verified using the techniques
of Section 2.D—recall that the singular values of a matrix are continuous in its
entries, so if each Ak has at most r non-zero singular values then the same must
be true of their limit (in fact, this was exactly Exercise 2.D.3).

The other unfortunate aspect to tensor rank is that it is field-dependent. For
example, if we let e+ = e1 + e2 ∈ R2 and e− = e1− e2 ∈ R2 then the vector

v = e+⊗ e+⊗ e1− e1⊗ e1⊗ e−− e2⊗ e2⊗ e+ ∈ (R2)⊗3 (3.3.3)

has tensor rank 3 (see Exercise 3.3.2). However, direct calculation shows that if
we instead interpret v as a member of (C2)⊗3 then it has tensor rank 2 thanks
to the decomposition

The tensor rank over
C is always a lower

bound of the tensor
rank over R, since

every real tensor sum
decomposition is

also a complex one
(but not vice-versa). v =

1
2
(
w⊗w⊗w+w⊗w⊗w

)
, where w = (i,−1).

Situations like this do not arise for the rank of a matrix (and thus the tensor
rank when p = 2), since the singular value decomposition tells us that the
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singular values (and thus the rank) of a real matrix do not depend on whether
we consider it as a member ofMm,n(R) orMm,n(C). Another way to see that
matrix rank does not suffer from this problem is to just notice that allowing
complex arithmetic in Gaussian elimination does not increase the number of
zero rows that we can obtain in a row echelon form of a real matrix.

Remark 3.3.2
We Are Out

of Our Depth

Tensors are one of the most ubiquitous and actively-researched areas in
all of science right now. We have provided a brief introduction to the
topic and its basic motivation, but there are entire textbooks devoted to
exploring properties of tensors and what can be done with them, and we
cannot possibly do the subject justice here. See [KB09] and [Lan12], for
example, for a more thorough treatment.

Exercises solutions to starred exercises on page 479

3.3.1 Compute the tensor rank of each of the following
vectors.

∗(a) e1⊗ e1 + e2⊗ e2 ∈ C2⊗C2

(b) e1⊗ e1⊗ e1 + e2⊗ e2⊗ e2 ∈ (C2)⊗3

∗(c) e1⊗ e1⊗ e1 + e2⊗ e2⊗ e2 + e3⊗ e3⊗ e3 ∈ (C3)⊗3

∗∗3.3.2 Show that the vector v ∈ (R2)⊗3 from Equa-
tion (3.3.3) has tensor rank 3.

[Hint: Mimic Example 3.3.4. Where does this argument
break down if we use complex numbers instead of real num-
bers?]

3.3.3 Determine which of the following statements are
true and which are false.

∗(a) C⊗C∼= C.
(b) If we think of C as a 2-dimensional vector space over

R (e.g., with basis {1, i}) then C⊗C∼= C.
∗(c) If v ∈ Fm⊗Fn then rank(v)≤min{m,n}.
(d) If v ∈ Fm⊗Fn⊗Fp then rank(v)≤min{m,n, p}.
∗(e) The tensor rank of v ∈ Rd1 ⊗Rd2 ⊗ ·· · ⊗Rdp is

at least as large as its tensor rank as a member of
Cd1 ⊗Cd2 ⊗·· ·⊗Cdp .

∗∗3.3.4 Show that the linear transformation S : V⊗W →
X from Definition 3.3.1(d) is necessarily unique.

∗∗3.3.5 Verify the claim of Example 3.3.2 that we can
represent M2⊗P2 as the set of functions f : F→M2 of
the form f (x) = Ax2 +Bx+C for some A,B,C ∈M2, with
elementary tensors defined by (A⊗ f )(x) = A f (x). That is,
verify that the four defining properties of Definition 3.3.1
hold for this particular representation of M2⊗P2.

∗∗3.3.6 Show that if C is the vector space of 1-variable
continuous functions then C ⊗ C is not the space of 2-
variable continuous functions with elementary tensors of
the form f (x)g(y) (in contrast with Example 3.3.1).

[Hint: Consider the function f (x,y) = exy and use Exer-
cise 1.1.22.]

3.3.7 Suppose that V1, . . ., Vp, and W1, . . ., Wp are vector
spaces over the same field, and Tj : V j →W j is an isomor-
phism for each 1≤ j≤ p. Let T1⊗·· ·⊗Tp :V1⊗·· ·⊗Vp→
W1 ⊗ ·· · ⊗Wp be the linear transformation defined on
elementary tensors by (T1 ⊗ ·· · ⊗ Tp)(v1 ⊗ ·· · ⊗ vp) =
T1(v1)⊗·· ·⊗Tp(vp). Show that

rank
(
(T1⊗·· ·⊗Tp)(v)

)
= rank(v)

for all v ∈ V1⊗·· ·⊗Vp.

3.3.8 In this exercise, we generalize some of the obser-
vations that we made about the vector from Example 3.3.4.
Suppose {x1,x2}, {y1,y2}, and {z1,z2} are bases of C2 and
let

v = x1⊗y1⊗ z2 +x1⊗y2⊗ z1 +x2⊗y1⊗ z1 ∈ (C2)⊗3.

(a) Show that v has tensor rank 3.
(b) Show that v has border rank 2.

3.3.9 Show that the 3-variable polynomial f (x,y,z) =
x + y + z cannot be written in the form f (x,y,z) =
p1(x)q1(y)r1(z)+ p2(x)q2(y)r2(z) for any single-variable
polynomials p1, p2, q1, q2, r1, r2.

[Hint: You can prove this directly, but it might be easier to
leech off of some vector that we showed has tensor rank 3.]

∗∗3.3.10 Show that if V and W are vector spaces over the
same field then V⊗W ∼= W⊗V .

3.3.11 Show that if V , W , and X are vector spaces over
the same field then the tensor product distributes over the
external direct sum (see Section 1.B.3) in the sense that

(V⊕W)⊗X ∼= (V⊗X )⊕ (V⊗W)

∗∗3.3.12 Suppose F = R or F = C. Show that if a non-
zero vector v ∈ Fd1 ⊗ ·· · ⊗Fdp has border rank 1 then it
also has tensor rank 1.

[Hint: The Bolzano–Weierstrass theorem from analysis
might help.]
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3.4 Summary and Review

In this chapter, we introduced multilinear transformations, which are functions
that act on tuples of vectors in such a way that, if we keep all except for one
of the vectors in that tuple constant, then it looks like a linear transformation.
Multilinear transformations are an extremely wide class of functions that gen-
eralize and contain as special cases many objects that we have seen earlier in
linear algebra:

• Linear transformations are multilinear transformations with just one
input space;

• Multilinear formsWe introduced
multilinear forms

back in Section 1.3.2.

(and thus bilinear forms) are multilinear transformation
for which the output vector space is just F; and

• Most “multiplications”, including the dot product, cross product, matrix
multiplication, and the Kronecker product, are bilinear transformations
(i.e., multilinear transformations with 2 input spaces).

We also presented a new way of multiplying two vectors (in Fn) or matrices
called the Kronecker product. While this product has many useful properties,
the “point” of it is that it lets us represent multilinear transformations via
matrices in much the same way that we represent linear transformations via
matrices. In particular, Theorem 3.2.2 tells us that if T : V1×·· ·×Vp→W is
a multilinear transformation acting on finite-dimensional vector spaces with
bases B1, . . ., Bp, and D,That is, B1, . . ., Bp are

bases of V1, . . ., Vp,
respectively, and D is

a basis of W .

respectively, then there exists a matrix A (called the
standard block matrix of T ) such that
[
T (v1, . . . ,vp)

]
D = A

(
[v1]B1 ⊗·· ·⊗ [vp]Bp

)
for all v1 ∈ V1, . . . ,vp ∈ Vp.

In particular, if p = 1 (i.e., T is just a linear transformation) then this theo-
rem reduces to the usual statement that linear transformations have standard
matrices.

Finally, we finished this chapter by introducing the tensor product, which
generalizes the Kronecker product to arbitrary vector spaces. It can roughly
be thought of as a way of “multiplying” two vector spaces together, much like
we think of the external direct sum from Section 1.B.3 as a way of “adding”
two vector spaces together. Just like the Kronecker product lets us represent
multilinear transformations via matrices (once we have chosen bases of the
given vector spaces), the tensor product lets us represent multilinear transfor-
mations via linear transformations on the tensor product space. In particular, if
T : V1×·· ·×Vp→W is a multilinear transformation then there exists a linear
transformation S : V1⊗·· ·⊗Vp→W such that

This is the “universal
property” (d) from

Definition 3.3.1.
T (v1, . . . ,vp) = S(v1⊗·· ·⊗vp) for all v1 ∈ V1, . . . ,vp ∈ Vp.

The advantage of the tensor product in this regard is that we do not have to
choose bases of the vector spaces. In particular, this means that we can even
apply this technique to infinite-dimensional vector spaces.
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Exercises solutions to starred exercises on page 481

3.4.1 Determine which of the following statements are
true and which are false.

∗(a) If A,B ∈Mn(C) are normal then so is A⊗B.
(b) If A ∈Mm,n, B ∈Mn,m then tr(A⊗B) = tr(B⊗A).
∗(c) If A,B ∈Mn then det(A⊗B) = det(B⊗A).
(d) The cross product is a multilinear transformation

with type (2,1).
∗(e) If v,w ∈ R7 then v⊗w = w⊗v.

(f) If V and W are vector spaces over the same field
then V⊗W ∼= W⊗V .

∗(g) The tensor rank of v ∈ Rd1 ⊗Rd2 ⊗·· ·⊗Rdp equals
its tensor rank as a member of Cd1 ⊗Cd2 ⊗·· ·⊗Cdp .

∗3.4.2 Let Wn,n ∈Mn2 be the swap matrix. Find a formula
(depending on n) for det(Wn,n).

3.4.3 Let V and W be finite-dimensional inner product
spaces.

(a) Show that there is an inner product 〈·, ·〉V⊗W on
V⊗W that satisfies

〈v1⊗w1,v2⊗w2〉V⊗W = 〈v1,v2〉V 〈w1,w2〉W
for all v1,v2 ∈ V and w1,w2 ∈W .

(b) Construct an example to show that not all inner prod-
ucts on V⊗W arise from inner products on V and
W in the manner described by part (a), even in the
simple case when V = W = R2.

3.A Extra Topic: Matrix-Valued Linear Maps

We now provide a more thorough treatment of linear transformations that act
on the vector space of matrices. In a sense, there is nothing special about these
linear transformations—we know from way back in Section 1.2 that we can
represent them by their standard matrix and do all of our usual linear algebra
trickery on them. However, many of their interesting properties are most easily
unearthed by investigating how they interact with the Kronecker product, so it
makes sense to revisit them now.

3.A.1 Representations

We start by precisely defining the types linear transformations that we are now
going to focus our attention on.

Definition 3.A.1
Matrix-Valued

Linear Map

A matrix-valued linear map is a linear transformation

Φ :Mm,n→Mp,q.

Since matrix-valued linear maps are linear transformations, we can rep-
resent them by their standard matrices. However, there are also several other
ways of representing them that are often much more useful, so it is worthwhile
to make the details explicit and see how these different representations relate to
each other.

The Standard Matrix
We startMatrix-valued linear

maps are sometimes
called

superoperators,
since they can be

thought of as
operators (functions)
acting on operators

(matrices).

by considering the most basic representation that a matrix-valued linear
map Φ :Mm,n→Mp,q (or any linear transformation) can have—its standard
matrix. In particular, we focus on its standard matrix with respect to the standard
basis E ofMm,n andMp,q, which we recall is denoted simply by [Φ].

If we recall from Theorem 1.2.6 that the standard matrix [Φ] is constructed
so that its columns are [Φ(Ei, j)]E (1≤ i≤ m, 1≤ j ≤ n) and that [Φ(Ei, j)]E =
vec(Φ(Ei, j)), we immediately arrive at the following formula for the standard
matrix of Φ:

[Φ] =
[

vec(Φ(E1,1)) | vec(Φ(E1,2)) | · · · | vec(Φ(Em,n))
]
.
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If we are interested in standard linear-algebraic properties of Φ like its
eigenvalues, rank, invertibility, or finding a matrix square root of it, this standard
matrix is likely the simplest tool to make use of, since it satisfies vec(Φ(X)) =
[Φ]vec(X) for all X ∈Mm,n. For example, we showed back in Example 1.2.10
that the standard matrix of the transposition map T :M2→M2 isMore generally, the

standard matrix of
the transposition

map
T : Mm,n→Mn,m is

the swap matrix (this
is what property (a)

of Definition 3.1.3
says).

[T ] =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 .

We then used this standard matrix in Example 1.2.17 to find the eigenvalues and
eigenvectors of T , and we used it in Example 1.2.18 to find a square root of it.

Example 3.A.1
The Reduction Map

Construct the standard matrix of the linear map ΦR :Mn→Mn (called
the reduction map) defined by ΦR(X) = tr(X)I−X .

Solution:
We first compute

ΦR(Ei, j) = tr(Ei, j)I−Ei, j =

{
I−E j, j if i = j,
−Ei, j otherwise.

If we define e+
def= vec(I) =

n

∑
i=1

ei⊗ ei then

vec
(
ΦR(Ei, j)

)
=

{
e+− e j⊗ e j if i = j,
−ei⊗ e j otherwise.

It follows that the standard matrix of ΦR is
[
ΦR
]
=
[

vec(ΦR(E1,1)) | vec(ΦR(E1,2)) | · · · | vec(ΦR(En,n))
]

=
[

e+− e1⊗ e1 | − e1⊗ e2 | · · · | e+− en⊗ en
]

= e+eT
+− I.

For example, in the n = 3 case this standard matrix has the form

As usual, we use dots
(·) to denote entries

equal to 0.
[
ΦR
]
=




· · · · 1 · · · 1
· −1 · · · · · · ·
· · −1 · · · · · ·
· · · −1 · · · · ·
1 · · · · · · · 1
· · · · · −1 · · ·
· · · · · · −1 · ·
· · · · · · · −1 ·
1 · · · 1 · · · ·




.

From the standard matrix of a matrix-valued linear map Φ, it is straight-
forward to deduce many of its properties. For example, since e+eT

+ has rank 1
and

For example, the
(unique up to scalar

multiplication)
eigenvector of ΦR

with eigenvalue n−1
is I: ΦR(I) = nI− I =

(n−1)I.
‖e+‖=

∥∥∥∥∥
n

∑
i=1

ei⊗ ei

∥∥∥∥∥=
√

n,
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we conclude that if ΦR is the reduction map from Example 3.A.1, then
[
ΦR
]
=

e+eT
+− I (and thus ΦR itself) has one eigenvalue equal to n−1 and the other

n−1 eigenvalues (counted according to multiplicity) equal to −1.

The Choi Matrix
There is another matrix representation of a matrix-valued linear map Φ that has
some properties that often make it easier to work with than the standard matrix.
The idea here is that Φ :Mm,n→Mp,q (like every linear transformation) is
completely determined by how it acts on a basis of the input space, so it is
completely determined by the mn matrices Φ(E1,1), Φ(E1,2), . . ., Φ(Em,n), and
it is often convenient to arrange these matrices into a single large block matrix.

Definition 3.A.2
Choi Matrix

The Choi matrix of a matrix-valued linear map Φ :Mm,n→Mp,q is the
mp×nq matrix

CΦ

def=
m

∑
i=1

n

∑
j=1

Φ(Ei, j)⊗Ei, j.

We can think of the Choi matrix as a p×q block matrix whose blocks are
m×n. When partitioned in this way, the (i, j)-entry of each block is determined
by the corresponding entry of Φ(Ei, j). For example, if Φ :M3→M3 is such
that

We use asterisks (∗)
here to denote

entries whose values
we do not care

about right now. Φ(E1,1) =




a b c
d e f
g h i


 , then CΦ =




a ∗ ∗ b ∗ ∗ c ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
d ∗ ∗ e ∗ ∗ f ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
g ∗ ∗ h ∗ ∗ i ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗




.

Equivalently, Theorem 3.1.8 tells us that CΦ is just the swapped version of the
block matrix whose (i, j)-block equals Φ(Ei, j):

Notice that Ei, j⊗A is
a block matrix with A

in its (i, j)-block,
whereas A⊗Ei, j is a

block matrix with the
entries of A in the

(i, j)-entries of each
block.

CΦ = Wm,p

(
m

∑
i=1

n

∑
j=1

Ei, j⊗Φ(Ei, j)

)
W T

n,q

= Wm,p




Φ(E1,1) Φ(E1,2) · · · Φ(E1,n)
Φ(E2,1) Φ(E2,2) · · · Φ(E2,n)

...
...

. . .
...

Φ(Em,1) Φ(Em,2) · · · Φ(Em,n)




W T
n,q.

Example 3.A.2
The Choi Matrix of

the Reduction Map

Construct the Choi matrix of the linear map ΦR :Mn→Mn defined by
ΦR(X) = tr(X)I−X (i.e., the reduction map from Example 3.A.1).
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Solution:
As we noted in Example 3.A.1,

ΦR(Ei, j) = tr(Ei, j)I−Ei, j =

{
I−E j, j if i = j,
−Ei, j otherwise.

It follows that the Choi matrix of ΦR isThe fact that
CΦR =−[ΦR] in this

case is just a
coincidence, but
the fact that CΦR

and [ΦR] have the
same entries as

each other in
different positions is

not (see
Theorem 3.A.3).

CΦR = W3,3




Φ(E1,1) Φ(E1,2) · · · Φ(E1,n)
Φ(E2,1) Φ(E2,2) · · · Φ(E2,n)

...
...

. . .
...

Φ(Em,1) Φ(Em,2) · · · Φ(Em,n)




W T
3,3

= W3,3




I−E1,1 −E1,2 · · · −E1,n

−E2,1 I−E2,2 · · · −E2,n

...
...

. . .
...

−Em,1 −Em,2 · · · I−Em,n




W T
3,3

= W3,3
(
I− e+eT

+
)
W T

3,3 = I− e+eT
+,

where e+ =
n

∑
i=1

ei⊗ ei as before.

We

Definition 3.1.3(c)
tells us that the Choi

matrix of the
transpose is the

swap matrix (just like
its standard matrix).

emphasize that the Choi matrix CΦ of a linear map Φ does not act
as a linear transformation in the same way that Φ does. That is, it is not the
case that vec(Φ(X)) = CΦvec(X); the Choi matrix CΦ behaves as a linear
transformation very differently than Φ does. However, CΦ does make it easier
to identify some important properties of Φ. For example, we say that Φ :Mn→
Mm is transpose-preserving if Φ(XT ) = Φ(X)T for all X ∈Mn—a property
that is encoded very naturally in CΦ:

Theorem 3.A.1
Transpose-Preserving

Linear Maps

A linear map Φ :Mn→Mm is transpose-preserving if and only if CΦ is
symmetric.

Proof. Since Φ is linear, its behavior is determined entirely by how it acts on
the standard basis matrices. In particular, it is transpose-preserving if and only
if Φ(ET

i, j) = Φ(Ei, j)T for all 1≤ i, j ≤ n. On the other hand, CΦ is symmetric
if and only if

In the final equality
here, we just swap

the names of i and j.

n

∑
i, j=1

Φ(Ei, j)⊗Ei, j =

(
n

∑
i, j=1

Φ(Ei, j)⊗Ei, j

)T

=
n

∑
i, j=1

Φ(Ei, j)T ⊗E j,i =
n

∑
i, j=1

Φ(E j,i)T ⊗Ei, j.

Since ET
i, j = E j,i, these two conditions are equivalent to each other. �

For example, the reduction map from Example 3.A.2 is transpose-preserving—
a fact that can be verified in a straightforward manner from its definition or by
noticing that its Choi matrix is symmetric.
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In the case when the ground field is F = C and we focus on the conjugate
transpose (i.e., adjoint), things work out even more cleanly. We say that Φ :
Mn →Mm is adjoint preserving if Φ(X∗) = Φ(X)∗ for all X ∈Mn, and
we say that it is Hermiticity-preserving if Φ(X) is Hermitian whenever X ∈
Mn(C) is Hermitian. The following result says that these two families of maps
coincide with each other when F = C and can each be easily identified from
their Choi matrices.

Theorem 3.A.2
Hermiticity-Preserving

Linear Maps

Suppose Φ :Mn(C)→Mm(C) is a linear map. The following are equiv-
alent:

a) Φ is Hermiticity-preserving,
b) Φ is adjoint-preserving, and
c) CΦ is Hermitian.

Proof. The equivalence of properties (b) and (c) follows from the same argu-
ment as in the proof of Theorem 3.A.1, just with a complex conjugation thrown
on top of the transposes. We thus focus on the equivalence of properties (a)
and (b).

To see that (b) implies (a) we notice that if Φ is adjoint-preserving and
X is Hermitian then Φ(X)∗ = Φ(X∗) = Φ(X), so Φ(X) is Hermitian too. For
the converse, notice that we can write every matrix X ∈Mn(C) as a linear
combination of Hermitian matrices:

It is worth comparing
this with the

Cartesian
decomposition of

Remark 1.B.1.

X =
1
2

(X +X∗)︸ ︷︷ ︸
Hermitian

+
1
2i

(iX− iX∗)︸ ︷︷ ︸
Hermitian

.

It follows that if Φ is Hermiticity-preserving then Φ(X +X∗) and Φ(iX−
iX∗) are each Hermitian, so

Φ(X)∗ = Φ

(
1
2
(X +X∗)+

1
2i

(iX− iX∗)
)∗

=
(

1
2

Φ(X +X∗)+
1
2i

Φ(iX− iX∗)
)∗

=
1
2

Φ(X +X∗)− 1
2i

Φ(iX− iX∗)

= Φ

(
1
2
(X +X∗)− 1

2i
(iX− iX∗)

)

= Φ
(
X∗
)

for all X ∈Mn(C), so Φ is adjoint-preserving too. �

It is worthJust like standard
matrices, Choi

matrices are
isomorphic to

matrix-valued linear
maps (i.e., the linear

transformation that
sends Φ to CΦ is

invertible).

emphasizing that the equivalence of conditions (a) and (b) in
the above result really is specific to the field C. While it is possible to define
a matrix-valued linear map on Mn(F) (regardless of F) to be symmetry-
preserving if Φ(X) is symmetric whenever X is symmetric, such a map may
not be transpose-preserving (see Exercise 3.A.12). The reason for this difference
in behavior is that the set of symmetric matricesMS

n is a subspace ofMn, so
specifying how a matrix-valued linear map acts on symmetric matrices does
not specify how it acts on all ofMn. In contrast, the set of Hermitian matrices
MH

n spans all ofMn(C), so Hermiticity-preservation of Φ restricts how it acts
on all ofMn(C).
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It turns out that symmetry-preserving maps do not actually come up in
practice much, nor do they have many nice mathematical properties, so we
instead focus on yet another closely-related family of maps, called bisym-
metric maps. These are the matrix-valued linear maps Φ with the property
thatHere, T denotes the

transpose map.
Φ = T ◦Φ = Φ ◦ T (whereas transpose-preserving maps just require

T ◦Φ = Φ◦T ). The output of such a map is always symmetric, and it only de-
pends on the symmetric part of the input, so we can think of a bisymmetric map
Φ as sendingMS

n toMS
m (much like we can think of Hermiticity-preserving

maps as sendingMH
n toMH

m).
These different families of maps that can be thought of as preserving the

transpose and/or symmetry in slightly different ways, and are summarized in
Table 3.1 for ease of reference.

Γ refers to the partial
transpose, which we
introduce in Section

3.A.2.

Transpose-Preserving Bisymmetric

Characterizations: Φ◦T = T ◦Φ Φ = Φ◦T = T ◦Φ

CΦ = CT
Φ

CΦ = CT
Φ

= Γ(CΦ)

Table 3.1: A comparison of transpose-preserving maps and bisymmetric maps.
The characterizations in terms of Choi matrices come from Theorem 3.A.1 and
Exercise 3.A.14.

Operator-Sum Representations
The third and final representation of matrix-valued linear maps that we will use
is one that is a bit more “direct”—it does not aim to represent Φ :Mm,n→Mp,q
as a matrix, but rather provides a formula to clarify how Φ acts on matrices.

Definition 3.A.3
Operator-Sum

Representation

An operator-sum representation of a linear map Φ :Mm,n→Mp,q is a
formula of the form

Φ(X) = ∑
i

AiXBT
i for all X ∈Mm,n,

whereIf the input and
output spaces are
square (i.e., m = n

and p = q) then the
Ai and Bi matrices

have the same size.

{Ai} ⊆Mp,m and {Bi} ⊆Mq,n are fixed families of matrices.

It is perhaps not immediately obvious that every matrix-valued linear map
even has an operator-sum representation, so before delving into any examples,
we present a theorem that tells us how to convert a standard matrix or Choi
matrix into an operator-sum representation (and vice-versa).

Theorem 3.A.3
Converting Between

Representations

Suppose Φ :Mm,n→Mp,q is a matrix-valued linear map. The following
are equivalent:

a) [Φ] = ∑
i

Ai⊗Bi.

b) CΦ = ∑
i

vec(Ai)vec(Bi)T .

c) Φ(X) = ∑
i

AiXBT
i for all X ∈Mm,n.

Proof. The equivalence of the representations (a) and (c) follows immediately
from Theorem 3.1.7, which tells us that

vec

(
∑

i
AiXBT

i

)
=

(
∑

i
Ai⊗Bi

)
vec(X)
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for all X ∈Mm,n.Here we use the fact
that standard

matrices are unique.

Since it is similarly the case that vec
(
Φ(X)

)
= [Φ]vec(X)

for all X ∈Mm,n, we conclude that Φ(X) = ∑i AiXBT
i for all X ∈Mm,n if and

only if [Φ] = ∑i Ai⊗Bi.
To see that an operator-sum representation (c) corresponds to a Choi matrix

of the form (b), we first write each Ai and Bi in terms of their columns: Ai =[
ai,1 | ai,2 | · · · | ai,m

]
and Bi =

[
bi,1 | bi,2 | · · · | bi,n

]
, so that vec(Ai) =

∑
m
j=1 ai, j⊗ e j and vec(Bi) = ∑

n
j=1 bi, j⊗ e j. Then

CΦ =
m

∑
j=1

n

∑
k=1

Φ(E j,k)⊗E j,k

= ∑
i

m

∑
j=1

n

∑
k=1

(
AiE j,kBT

i
)
⊗E j,k

= ∑
i

m

∑
j=1

n

∑
k=1

ai, jbT
i,k⊗ e jeT

k

= ∑
i

(
m

∑
j=1

ai, j⊗ e j

)(
n

∑
k=1

bi,k⊗ ek

)T

= ∑
i

vec(Ai)vec(Bi)T ,

as claimed. Furthermore, each of these steps can be reversed to see that (b)
implies (c) as well. �

In particular, part (b) of this theorem tells us that we can convert any
rank-one sum decomposition of the Choi matrix of Φ into an operator-sum
representation. Since every matrix has a rank-one sum decomposition, every
matrix-valued linear map has an operator-sum representation as well. In fact,
by leeching directly off of the many things that we know about rank-one sum
decompositions, we immediately arrive at the following corollary:

Corollary 3.A.4
The Size of Operator-

Sum Decompositions

Every matrix-valued linear map Φ :Mm,n(F)→Mp,q(F) has an operator-
sum representation of the form

Φ(X) =
rank(CΦ)

∑
i=1

AiXBT
i for all X ∈Mm,n

withIn particular,
rank(CΦ)≤

min{mp,nq} is the
minimum number of

terms in any
operator-sum

representation of Φ.
This quantity is

sometimes called
the Choi rank of Φ.

both sets {Ai} and {Bi} linearly independent. Furthermore, if F =
R or F = C then the sets {Ai} and {Bi} can be chosen to be mutually
orthogonal with respect to the Frobenius inner product.

Proof. This result for an arbitrary field F follows immediately from the fact
(see Theorem A.1.3) that CΦ has a rank-one sum decomposition of the form

CΦ =
rank(CΦ)

∑
i=1

viwT
i ,

where {vi}r
i=1 ⊂ Fmp and {wi}r

i=1 ⊂ Fnq are linearly independent sets of col-
umn vectors. Theorem 3.A.3 then gives us the desired operator-sum repre-
sentation of Φ(X) by choosing Ai = mat(vi) and Bi = mat(wi) for all i. To
see that the orthogonality claim holds when F = R or F = C, we instead use
the orthogonal rank-one sum decomposition provided by the singular value
decomposition (Theorem 2.3.3). �
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Example 3.A.3
Operator-Sum

Representation of the
Transpose Map

Construct an operator-sum representation of the transposition map T :
Mm,n→Mn,m.

Solution:
Recall that the Choi matrix of T is the swap matrix, which satisfies

CT (ei⊗ e j) = e j⊗ ei for all 1≤ i≤ m, 1≤ j ≤ n. It follows that CT has
the rank-one sum decomposition

This rank-one sum
decomposition is just

another way of
saying that the

column of CT
corresponding to the
basis vector ei⊗ e j is

e j⊗ ei.

CT =
m

∑
i=1

n

∑
j=1

(e j⊗ ei)(ei⊗ e j)T .

Since ei⊗e j = vec(Ei, j), it follows from Theorem 3.A.3 that one operator-
sum representation of T is

XT = T (X) =
m

∑
i=1

n

∑
j=1

E j,iXET
i, j =

m

∑
i=1

n

∑
j=1

E j,iXE j,i for all X ∈Mm,n.

We close this subsection by briefly noting how the various representations
of the adjoint of a matrix-valued linear mapAdjoints were

introduced in
Section 1.4.2.

Φ :Mm,n→Mp,q (i.e., the linear
map Φ∗ :Mp,q→Mm,n defined by 〈Φ(A),B〉= 〈A,Φ∗(B)〉 for all A ∈Mm,n
and B∈Mp,q, where the inner product is the standard Frobenius inner product)
are related to the corresponding representations of the original map.

Corollary 3.A.5
The Adjoint of a

Matrix-Valued
Linear Map

Suppose F = R or F = C. The adjoint of a linear map Φ :Mm,n(F)→
Mp,q(F) has the following representations:

a)
[
Φ
∗]= [Φ]∗.

b) CΦ∗ = Wp,mCΦW T
q,n.

c) If Φ(X) = ∑
i

AiXBT
i then Φ

∗(Y ) = ∑
i

A∗i Y Bi.

Proof. Property (a)The overline on CΦ in
this theorem just
means complex

conjugation (which
has no effect if

F = R).

is just the special case of Theorem 1.4.8 that arises when
working with the standard bases ofMm,n(F) andMp,q(F), which are orthonor-
mal. Property (c) then follows almost immediately from Theorem 3.A.3: if
Φ(X) = ∑i AiXBT

i then

[
Φ
∗]= [Φ]∗ =

(
∑

i
Ai⊗Bi

)∗
= ∑

i
A∗i ⊗B∗i ,

so Φ∗(Y ) = ∑i A∗i Y (B∗i )
T = ∑i A∗i Y Bi, as claimed.

Property (b) follows similarly by noticing that if CΦ = ∑i vec(Ai)vec(Bi)T

then

CΦ∗ = ∑
i

vec(A∗i )vec(B∗i )
T = ∑

i
Wp,mvec(Ai)vec(Bi)

T
W T

q,n = Wp,mCΦW T
q,n,

which completes the proof. �

In particular, if Φ maps between square matrix spaces (i.e., m = n and p = q)
then part (b) of the above corollary tells us that CΦ and CΦ∗ are unitarily similar,
so equalities involving similarity-invariant quantities like det(CΦ∗) = det(CΦ)
follow almost immediately.
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3.A.2 The Kronecker Product of Matrix-Valued Maps

So far, we have defined the Kronecker product on vectors (i.e., members of
Fn) and linear transformations on Fn (i.e., members ofMm,n(F)). There is a
natural way to ramp this definition up to matrix-valued linear maps acting on
Mm,n(F) as well:

Definition 3.A.4
Kronecker Product of
Matrix-Valued Linear

Maps

Suppose Φ and Ψ are matrix-valued linear maps acting on Mm,n and
Mp,q, respectively. Then Φ⊗Ψ is the matrix-valued linear map defined
by

(Φ⊗Ψ)(A⊗B) = Φ(A)⊗Ψ(B) for all A ∈Mm,n, B ∈Mp,q.

To apply this map Φ⊗Ψ to a matrix C ∈Mmp,nq that is not of the form
A⊗B, we just use linearity and the fact that every such matrix can be written
in the form

To see that C can be
written in the form,
we can either use
Theorem 3.A.3 or

recall that
{Ei, j⊗Ek,`} is a basis

of Mmp,nq.

C = ∑
i

Ai⊗Bi, so (Φ⊗Ψ)(C) = ∑
i

Φ(Ai)⊗Ψ(Bi).

It is then perhaps not completely clear why this linear map Φ⊗Ψ is well-
defined—we can write C as a sum of Kronecker products in numerous ways,
and why should different decompositions give the same value of (Φ⊗Ψ)(C)?
It turns out that this is not actually a problem, which can be seen either by
using the universal property of the tensor product (Definition 3.3.1(d)) or by
considering how Φ⊗Ψ acts on standard basis matrices (see Exercise 3.A.16).
In fact, this is completely analogous to the fact that the matrix A⊗B is the
unique one for which (A⊗B)(v⊗w) = (Av)⊗ (Bw) for all (column) vectors
v and w.

In the special case when Φ = Im,n is the identity map onMm,n (which we
denote by Im if m = n or simply I if the dimensions are clear from context or
unimportant), the map I⊗Ψ just acts independently on each block of a p×q
block matrix:

(I⊗Ψ)







A1,1 A1,2 · · · A1,s

A2,1 A2,2 · · · A2,s

...
...

. . .
...

Ap,1 Ap,2 · · · Ap,q







=




Ψ(A1,1) Ψ(A1,2) · · · Ψ(A1,s)
Ψ(A2,1) Ψ(A2,2) · · · Ψ(A2,s)

...
...

. . .
...

Ψ(Ap,1) Ψ(Ap,2) · · · Ψ(Ap,q)




.

The map Φ⊗ I is perhaps a bit more difficult to think of in terms of block
matrices, but it works by having Φ act independently on the matrix made up
the (1,1)-entries of each block, the matrix made up of the (1,2)-entries of each
block, and so on.

Two particularly important maps of this type are the partial transpose
maps T ⊗ I and I⊗T , which act on block matrices by either transposing the
block structure or transposing the blocks themselves, respectively (where as
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the usual “full” transpose T transposes both):

(T ⊗ I)







A1,1 A1,2 · · · A1,q

A2,1 A2,2 · · · A2,q

...
...

. . .
...

Ap,1 Ap,2 · · · Ap,q







=




A1,1 A2,1 · · · Ap,1

A1,2 A2,2 · · · Ap,2

...
...

. . .
...

A1,q A2,q · · · Ap,q




and

(I⊗T )







A1,1 A1,2 · · · A1,q

A2,1 A2,2 · · · A2,q

...
...

. . .
...

Ap,1 Ap,2 · · · Ap,q







=




AT
1,1 AT

1,2 · · · AT
1,q

AT
2,1 AT

2,2 · · · AT
2,q

...
...

. . .
...

AT
p,1 AT

p,2 · · · AT
p,q




.

For brevity, we often denote these maps by Γ
def= T⊗I and Γ

def= I⊗T ,The notations Γand
Γ were chosen to

each look like half of
a T .

respectively,
and we think of each of them as one “half” of the transpose of a block matrix—
after all, Γ◦Γ = T .

We can similarly define the partial trace maps as follows:

tr1
def= tr⊗ In :Mmn→Mn and tr2

def= Im⊗ tr :Mmn→Mm.

Explicitly, these maps act on block matrices via

Alternatively, we
could denote the

partial transposes by
T1 = T ⊗ I and

T2 = I⊗T , just like we
use tr1 and tr2 to

denote the partial
traces. However, we

find the Γand Γ

notation too cute to
pass up.

tr1







A1,1 A1,2 · · · A1,m

A2,1 A2,2 · · · A2,m

...
...

. . .
...

Am,1 Am,2 · · · Am,m







= A1,1 +A2,2 + · · ·+Am,m, and

tr2







A1,1 A1,2 · · · A1,m

A2,1 A2,2 · · · A2,m

...
...

. . .
...

Am,1 Am,2 · · · Am,m







=




tr(A1,1) tr(A1,2) · · · tr(A1,m)
tr(A2,1) tr(A2,2) · · · tr(A2,m)

...
...

. . .
...

tr(Am,1) tr(Am,2) · · · tr(Am,m)




.

Example 3.A.4
Partial Transposes,
Traces, and Maps

Compute each of the following matrices if A =



1 2 0 −1
2 −1 3 2
−3 2 2 1
1 0 2 3




.

a) Γ(A),
b) tr1(A), and
c) (I⊗Φ)(A), where Φ(X)= tr(X)I−X is the map from Example 3.A.1.

Solutions:
a) To compute Γ(A) = (I⊗T )(A), we just transpose each block of A:

Γ(A) =




1 2 0 3
2 −1 −1 2
−3 1 2 2
2 0 1 3


 .



368 Chapter 3. Tensors and Multilinearity

b) tr1(A) is just the sum of the diagonal blocks of A:

tr1(A) =
[

1 2
2 −1

]
+
[

2 1
2 3

]
=
[

3 3
4 2

]
.

c) We just apply the map Φ to each block of A independently:

(I⊗Φ)(A) =




Φ

([
1 2
2 −1

])
Φ

([
0 −1
3 2

])

Φ

([
−3 2
1 0

])
Φ

([
2 1
2 3

])




=




−1 −2 2 1
−2 1 −3 0
0 −2 3 −1
−1 −3 −2 2


 .

Finally, it is worthwhile to notice that if e+
def= vec(I) = ∑

i
ei⊗ ei,This special vector e+

was originally
introduced in

Example 3.A.1.

then

e+eT
+ =

(
∑

i
ei⊗ ei

)(
∑

j
e j⊗ e j

)T

= ∑
i, j

(eieT
j )⊗ (eieT

j ) = ∑
i, j

Ei, j⊗Ei, j.

In particular, this means that the Choi matrix of a matrix-valued linear map
Φ can be constructed by applying Φ to one half of this special rank-1 matrix
e+eT

+:
(Φ⊗ I)(e+eT

+) = ∑
i, j

Φ(Ei, j)⊗Ei, j = CΦ.

3.A.3 Positive and Completely Positive Maps

One of the most interesting things that we can do with a matrix-valued linear
map Φ that we cannot do with an arbitrary linear transformation is ask what
sorts of matrix properties it preserves. For example, we saw in Theorem 3.A.2
that Φ :Mn(C)→Mm(C) is Hermiticity-preserving (i.e., Φ(X) is Hermitian
whenever X is Hermitian) if and only if CΦ is Hermitian.

The problem of characterizing which matrix-valued linear maps preserve a
given matrix property is called a linear preserver problem,Isometries (see

Section 1.D.3) are
linear preservers that

preserve a norm.
See Exercise 3.A.5 for

an example.

and the transpose
map T :Mm,n →Mn,m plays a particularly important role in this setting.
After all, it is straightforward to verify that AT and A have the same rank
and determinant as each other, as well as the same eigenvalues and the same
singular values. Furthermore, AT is normal, unitary, Hermitian, and/or positive
semidefinite if and only if A itself has the same property, so we say that the
transpose map is rank-preserving, eigenvalue-preserving, normality-preserving,
and so on.

On the other hand, determining which maps other than the transpose (if
any) preserve these matrix properties is often quite difficult.

Remark 3.A.1
Linear Preserver

Problems

Many standard linear preserver problems have answers that are very similar
to each other. For example, the linear maps Φ :Mn→Mn that preserve
the determinant (i.e., the maps Φ that satisfy det(Φ(X)) = det(X) for all
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X ∈Mn) are exactly those of the form
It is straightforward to
see that every map

of this form preserves
the determinant; the
hard part is showing

that there are no
other determinant-

preserving linear
maps.

Φ(X) = AXB for all X ∈Mn, or

Φ(X) = AXT B for all X ∈Mn,
(‡)

where A,B ∈Mn have det(AB) = 1. Various other types of linear pre-
servers have the same general form, but with different restrictions placed
on A and B:

• Rank-preserving maps have the form (‡) with A and B invertible.
• Singular value preservers have the form (‡) with A and B unitary.
• Eigenvalue preservers have the form (‡) with B = A−1.

Proving these results is outside of the scope of this book (see survey papers
like [LT92, LP01] instead), but it is good to be familiar with them so that
we see just how special the transpose map is in this setting.

The linear preserver problem that we are most interested in is preservation
of positive semidefiniteness.

Definition 3.A.5
Positive Maps

Suppose F = R or F = C. An adjoint-preserving linear map Φ :Mn(F)→
Mm(F) is called positive if Φ(X) is positive semidefinite whenever X is
positive semidefinite.

We note that if F = C then we can omit adjoint-preservation from the above
definition, sinceThis is analogous to

the definition of PSD
matrices

(Definition 2.2.1). We
don’t need A to be
self-adjoint for the

property v∗Av≥ 0 to
make sense—we

add it in so that PSD
matrices have nice

properties.

any map that sends positive semidefinite matrices to positive
semidefinite matrices is necessarily adjoint-reserving (see Exercise 3.A.13).
However, if F = R then the adjoint- (i.e., transpose)-preservation property is
required to make this family of maps have “nice” properties (e.g., we want the
Choi matrix of every positive map to be self-adjoint).

Since the transposition map preserves eigenvalues, it necessarily preserves
positive semidefiniteness as well, so it is positive (and it is possibly the most
important example of such a map). The following example presents another
positive linear map.

Example 3.A.5
The Reduction Map

is Positive

Show that the linear map ΦR :Mn→Mn defined by ΦR(X) = tr(X)I−X
(i.e., the reduction map from Example 3.A.1) is positive.

Solution:
Just notice that if the eigenvalues of X are λ1, . . ., λn then the eigenval-

ues of ΦR(X) = tr(X)I−X are tr(X)−λn, . . ., tr(X)−λ1. Since tr(X) =
λ1 + · · ·+ λn, it follows that the eigenvalues of ΦR(X) are non-negative
(since they are each the sum of n− 1 of the eigenvalues of X), so it is
positive semidefinite whenever X is positive semidefinite. It follows that
ΦR is positive.

We of course would like to be able to characterize positive maps in some
way (e.g., via some easily-testable condition on their Choi matrix or operator-
sum representations), but doing so is extremely difficult. Since we are ill-
equipped to make any substantial progress on this problem at this point, we first
introduce another notation of positivity of a matrix-valued linear map that has
somewhat simpler mathematical properties, which will help us in turn better
understand positive maps.
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Definition 3.A.6
k-Positive and

Completely Positive
Maps

A matrix-valued linear map Φ :Mn→Mm is called
a) k-positive if Φ⊗ Ik is positive, and
b) completely positive (CP) if Φ is k-positive for all k ≥ 1.

In particular,It is worth noting that
Φ⊗ Ik is positive if

and only if Ik⊗Φ is
positive.

1-positive linear maps are exactly the positive maps them-
selves, and if a map is (k +1)-positive then it is necessarily k-positive as well
(see Exercise 3.A.18). We now look at some examples of linear maps that are
and are not k-positive.

Example 3.A.6
The Transposition

Map is Not 2-Positive

Show that the transposition map T :Mn→Mn (n≥ 2) is not 2-positive.

Solution:
To see that the map T ⊗ I2 is not positive, lets consider how it acts in

the n = 2 case on e+eT
+, which is positive semidefinite:

(T ⊗ I2)
(
e+eT

+
)

= (T ⊗ I2)







1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1





=




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 .

TheRecall that the
transposition map is

1-positive.

matrix on the right has eigenvalues 1 (with multiplicity 3) and −1
(with multiplicity 1), so it is not positive semidefinite. It follows that T ⊗ I2
is not positive, so T :M2→M2 is not 2-positive.

To see that T is not 2-positive when n > 2, we can just embed this
same example into higher dimensions by padding the input matrix e+eT

+
with extra rows and columns of zeros.

One useful technique that sometimes makes working with positive maps
simpler is the observation that a linear map Φ :Mn→Mm is positive if and
only if Φ(vv∗) is positive semidefinite for all v ∈ Fn. The reason for this is
the spectral decomposition,The spectral

decomposition is
either of

Theorems 2.1.4 (if
F = C) or 2.1.6 (if

F = R).

which says that every positive semidefinite matrix
X ∈Mn can be written in the form

X =
n

∑
j=1

v jv∗j for some {v j} ⊂ Fn.

In particular, if Φ(vv∗) is PSD for all v ∈ Fn then Φ(X) = ∑ j Φ(v jv∗j) is PSD
whenever X is PSD, so Φ is positive.

The following example makes use of this technique to show that the set of
k-positive linear maps is not just contained within the set of (k +1)-positive
maps, but in fact this inclusion is strict as long as 1≤ k < n.

Example 3.A.7
A k-Positive
Linear Map

Suppose k ≥ 1 is an integer and consider the linear map Φ :Mn→Mn
defined by Φ(X) = ktr(X)I−X .

a) Show that Φ is k-positive, and
b) show that if k < n then Φ is not (k +1)-positive.

Solutions:
a) As

When k = 1, this is
exactly the

reduction map that
we already showed

is positive in
Example 3.A.5.

Part (b) here shows
that it is not 2-positive.

noted earlier, it suffices to just show that (Φ⊗ Ik)(vv∗) is positive
semidefinite for all v ∈ Fn⊗Fk. We can use the Schmidt decompo-
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sition (Exercise 3.1.11) to write

v =
k

∑
i=1

wi⊗xi,

where {wi} ⊂ Fn and {xi} ⊂ Fk are mutually orthogonal sets (and
by absorbing a scalar from wi to xi, we can furthermore assume
that ‖wi‖ = 1 for all i). Then we just observe that we can write
(Φ⊗ Ik)(vv∗) as a sum of positive semidefinite matrices in the
following way:

Verifying the second
equality here is ugly,
but routine—we do

not need to be
clever.

Since ‖wi‖= 1, the
term I−wiw∗i is

positive semidefinite.

(Φ⊗ Ik)(vv∗) =
k

∑
i, j=1

(
k(w∗jwi)I−wiw∗j

)
⊗xix∗j

=
k

∑
i=1

k

∑
j=i+1

(
wi⊗xi−w j⊗x j

)(
wi⊗xi−w j⊗x j

)∗

+ k
k

∑
i=1

(I−wiw∗i )⊗xix∗i .

b) To see that Φ is not (k + 1)-positive (when k < n), we consider
how Φ⊗ Ik+1 acts on the positive semidefinite matrix e+e∗+, where
e+ = ∑

k+1
i=1 ei⊗ ei ∈ Fn⊗Fk+1. It is straightforward to check that

(Φ⊗ Ik+1)(e+e∗+) = k(In⊗ Ik+1)− e+e∗+,

which has −1 as an eigenvalue (with corresponding eigenvector e+)
and is thus not positive semidefinite. It follows that Φ⊗ Ik+1 is not
positive, so Φ is not (k +1)-positive.

The above example raises a natural question—if the sets of k-positive linear
maps are strict subsets of each other when 1≤ k ≤ n, what about when k > n?
For example, is there a matrix-valued linear map that is n-positive but not (n+1)-
positive? The following theorem shows that no, this is not possible—any map
that is n-positive is actually necessarily completely positive (i.e., k-positive for
all k≥ 1). Furthermore, there is a simple characterization of these maps in terms
of either their Choi matrices and operator-sum representations.

Theorem 3.A.6
Characterization of
Completely Positive

Maps

Suppose Φ :Mn(F)→Mm(F) is a linear map. The following are equiva-
lent:

a) Φ is completely positive.
b) Φ is min{m,n}-positive.
c) CΦ is positive semidefinite.
d) There exist matrices {Ai} ⊂Mm,n(F) such that Φ(X) = ∑

i
AiXA∗i .

Proof. WeThis result is
sometimes called

Choi’s theorem.

prove this theorem via the cycle of implications (a) =⇒ (b) =⇒
(c) =⇒ (d) =⇒ (a). The fact that (a) =⇒ (b) is immediate from the relevant
definitions, so we start by showing that (b) =⇒ (c).

To this end, first notice that if n ≤ m then Φ being n-positive tells us
that (Φ⊗ In)(e+e∗+)

Recall that

e+ =
n

∑
i=1

ei⊗ ei. is positive semidefinite. However, we noted earlier that
(Φ⊗ In)(e+e∗+) = CΦ, so CΦ is positive semidefinite. On the other hand, if
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n > m then Φ being m-positive tells us that (Φ⊗ Im)(X) is positive semidefinite
whenever X ∈Mn⊗Mm is positive semidefinite. It follows that

Here we are using
the fact that

v∗Av = tr(Avv∗).
e∗+(Φ⊗ Im)(X)e+ ≥ 0, so tr

(
X(Φ∗⊗ Im)(e+e∗+)

)
≥ 0

for all positive semidefinite X . By Exercise 2.2.20, it follows that (Φ∗ ⊗
Im)(e+e∗+) = CΦ∗ is positive semidefinite, so Corollary 3.A.5 tells us that
CΦ = Wm,nCΦ∗W ∗m,n is positive semidefinite too.

The fact that (c) =⇒ (d) follows from using the spectral decomposition to
write CΦ = ∑i viv∗i . Theorem 3.A.3 tells us that if we define Ai = mat(vi) then
Φ has the operator-sum representation Φ(X) = ∑i AiXA∗i , as desired.

To see that (d) =⇒ (a) and complete the proof, we notice that if k ≥ 1 and
X ∈Mn⊗Mk is positive semidefinite, then so is

∑
i
(Ai⊗ Ik)X(Ai⊗ Ik)∗ = (Φ⊗ Ik)(X).

It follows that Φ is k-positive for all k, so it is completely positive. �

The equivalence of properties (a) and (c) in the above theorem is rather
extraordinary. It is trivially the case that (a) implies (c), since if Φ is completely
positive then Φ⊗ In is positive, so (Φ⊗ In)(e+e∗+) =CΦ is positive semidefinite.
However, the converse says that in order to conclude that (Φ⊗Ik)(X) is positive
semidefinite for all k≥ 1 and all positive semidefinite X ∈Mn⊗Mk, it suffices
to just check what happens when k = n and X = e+e∗+. In this sense, the matrix
e+e∗+ is extremely special and can roughly be thought of as the “least positive
semidefinite” PSD matrix—if a map of the form Φ⊗ Ik ever creates a non-PSD
output from a PSD input, it does so at e+e∗+.

With completely positive maps taken care of, we now return to the prob-
lem of trying to characterize (not-necessarily-completely) positive maps. It is
straightforward to show that the composition of positive maps is again positive,
as is their sum. It follows that if a linear map Φ :Mn→Mm can be written in
the form

Again, T is the
transposition map

here.
Φ = Ψ1 +T ◦Ψ2 for some CP maps Ψ1,Ψ2 :Mn→Mm, (3.A.1)

then it is positive. We say that any linear map Φ of this form is decompos-
able. It is straightforward to see that every CP map is decomposable, and the
above argument shows that every decomposable map is positive. The following
example shows that the reduction map ΦR, which we showed is positive in
Example 3.A.5, is also decomposable.

Example 3.A.8
The Reduction Map

is Decomposable

Show that the linear map Ψ :Mn→Mn defined by Ψ(X) = tr(X)I−XT

is completely positive.

Solution:
We just compute the Choi matrix of Ψ. Since the Choi matrix of the

map X 7→ tr(X)I is I⊗ I and the Choi matrixThis map Ψ is
sometimes called

the Werner–Holevo
map.

of the transpose map T is
the swap matrix Wn,n, we conclude that CΨ = I⊗ I−Wn,n. Since Wn,n is
Hermitian and unitary, its eigenvalues all equal 1 and−1, so CΨ is positive
semidefinite. Theorem 3.A.6 then implies that Ψ is completely positive.

In particular, notice that if ΦR(X) = tr(X)I−X is the reduction map
from Example 3.A.5 then ΦR = T ◦Ψ has the form (3.A.1) and is thus
decomposable.
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In fact, every positive map Φ :Mn →Mm that we have seen so far is
decomposable, so it seems natural to ask whether or not there are positive maps
that are not. Remarkably, it turns out that the answer to this question depends
on the dimensions m and n. We start by showing that the answer is “no” when
m,n≥ 3—there are ugly positive linear maps out there that cannot be written
in the form (3.A.1).

Theorem 3.A.7
A Non-Decomposable

Positive Linear Map

Show that the linear map ΦC :M3→M3 defined by

ΦC(X) =




x1,1 + x3,3 −x1,2 −x1,3

−x2,1 x2,2 + x1,1 −x2,3

−x3,1 −x3,2 x3,3 + x2,2




is positive but not decomposable.The linear map ΦC is
typically called the

Choi map.
It is worth noting that the map described by this theorem is quite similar to

the reduction map ΦR of Example 3.A.1—the diagonal entries of its output are
just shuffled up a bit (e.g., the top-left entry is x1,1 + x3,3 instead of x2,2 + x3,3).

Proof of Theorem 3.A.7. We have to prove two distinct claims: we have to
show that ΦC is positive and we have to show that it cannot be written in the
form (3.A.1).

To see that ΦC is positive, recall that it suffices to show that

ΦC(vv∗) =



|v1|2 + |v3|2 −v1v2 −v1v3

−v1v2 |v2|2 + |v1|2 −v2v3

−v1v3 −v2v3 |v3|2 + |v2|2




is positive semidefinite for all v ∈ F3. To this end, recall that we can prove that
this matrix is positive semidefinite by checking that all of its principal minors
are nonnegative (see Remark 2.2.1).A principal minor of

a square matrix A is
the determinant of a

square submatrix
that is obtained by
deleting some rows

and the same
columns of A.

There are three 1×1 principal minors of ΦC(vv∗):

|v1|2 + |v3|2, |v2|2 + |v1|2, and |v3|2 + |v2|2,

which are clearly all nonnegative. Similarly, one of the three 2×2 principal
minors of ΦC(vv∗) is

det

([
|v1|2 + |v3|2 −v1v2

−v1v2 |v2|2 + |v1|2

])
= (|v1|2 + |v3|2)(|v2|2 + |v1|2)−|v1|2|v2|2

= |v1|4 + |v1|2|v3|2 + |v2|2|v3|2
≥ 0.

The calculation for the other two 2×2 principal minors is almost identical, so
we move right on to the one and only 3×3 principal minor of ΦC(vv∗):

det
(
ΦC(vv∗)

)
= (|v1|2 + |v3|2)(|v2|2 + |v1|2)(|v3|2 + |v2|2)−2|v1|2|v2|2|v3|2

− (|v1|2 + |v3|2)|v2|2|v3|2− (|v2|2 + |v1|2)|v1|2|v3|2

− (|v3|2 + |v2|2)|v1|2|v2|2

= |v1|2|v3|4 + |v2|2|v1|4 + |v3|2|v2|4−3|v1|2|v2|2|v3|2.
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In order to show that this quantity is nonnegative, we recall that the AM–
GM inequalityThe AM–GM

inequality is
introduced in

Appendix A.5.2.

(Theorem A.5.3) tells us that if x,y,z≥ 0 then (x+ y+ z)/3≥
3
√

xyz. Choosing x = |v1|2|v3|4, y = |v2|2|v1|4 and z = |v3|2|v2|4 gives

|v1|2|v3|4 + |v2|2|v1|4 + |v3|2|v2|4
3

≥ 3
√
|v1|6|v2|6|v3|6 = |v1|2|v2|2|v3|2,

which is exactly what we wanted. It follows that ΦC is positive, as claimed.
To see that ΦC cannot be written in the form ΦC = Ψ1 +T ◦Ψ2 with Ψ1

and Ψ2 completely positive, we first note that constructing the Choi matrix of
both sides of this equation shows thats it is equivalent to show that we cannot
write CΦC = X +Y ΓRecall that Y Γrefers

to (T ⊗ I)(Y ); the first
partial transpose

of Y .

with both X and Y positive semidefinite. Suppose for the
sake of establishing a contradiction that CΦC can be written in this form. A
straightforward computation shows that the Choi matrix of ΦC is

Here, X and Y are
the Choi matrices of

Ψ1 and Ψ2,
respectively.

CΦC =




1 · · · −1 · · · −1
· · · · · · · · ·
· · 1 · · · · · ·
· · · 1 · · · · ·
−1 · · · 1 · · · −1
· · · · · · · · ·
· · · · · · · · ·
· · · · · · · 1 ·
−1 · · · −1 · · · 1




.

Since
[
CΦC

]
2,2 = 0 and X and Y are positive semidefinite, it is necessarily

the case that y2,2 = 0. The fact that
[
CΦC

]
6,6 =

[
CΦC

]
7,7 = 0 similarly implies

y6,6 = y7,7 = 0. If a diagonal entry of a PSD matrix equals 0 then its entire row
and column must equal 0 by Exercise 2.2.11, so we conclude in particular that

y2,4 = y4,2 = y3,7 = y7,3 = y6,8 = y8,6 = 0.

The reasonIt is also worth noting
that this linear map

ΦC is not
2-positive—see

Exercise 3.A.4.

that we focused on these entries of Y is that, under partial transposi-
tion, they are the entries that are moved to the locations of the “−1” entries of
CΦC above. That is,

−1 =
[
CΦC

]
1,5 = x1,5 +

[
Y Γ
]

1,5 = x1,5 + y4,2 = x1,5,

and a similar argument shows that x1,9 = x5,1 = x5,9 = x9,1 = x9,5 =−1 as well.
Positive semidefiniteness of Y also tells us that y1,1,y5,5,y9,9 ≥ 0, which

(since
[
CΦC

]
1,1 =

[
CΦC

]
5,5 =

[
CΦC

]
9,9 = 1) implies x1,1,x5,5,x9,9≤ 1. We have

now learned enough about X to see that it is not positive semidefinite: it is
straightforward to check that

Recall that
e+ = ∑

3
i=1 ei⊗ ei =

(1,0,0,0,1,0,0,0,1).
eT
+Xe+ = x1,1 + x5,5 + x9,9−6≤ 3−6 =−3,

so X is not positive semidefinite. This is a contradiction that completes the
proof. �

On the other hand, if the dimensions m and n are both sufficiently small,
then a somewhat deep result (which we now state without proof) says that every
positive map is indeed decomposable.
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Theorem 3.A.8
Positive Maps in

Small Dimensions

Suppose Φ :Mn →Mm is a linear map and that mn ≤ 6. Then Φ is
positive if and only if it is decomposable.

With all of the results of this section taken care of, it is worthwhile at this
point to remind ourselves of the relationships between the various types of
positivity of linear maps that we have now seen. A visual summary of these
relationships is provided in Figure 3.2.

In certain
dimensions, the

relationship of the
decomposable set

with the others
“collapses”. For

example,
Theorem 3.A.8 says

that if n = 2 then the
decomposable set

equals the entire
positive set. Also, if

n = 3 then every
2-positive map is
decomposable

[YYT16].

positive linear maps Φ :Mn →Mn

2-positive

(n−1)-positive

decomposable

n-positive = completely positive

trace

Werner–Holevo (Example 3.A.8)

Choi map (Theorem 3.A.7)

(n−1)tr(X)I−X

2tr(X)I−X (Example 3.A.7)

tr(X)I−X

Figure 3.2: A schematic that depicts the relationships between the sets of positive,
k-positive, completely positive, and decomposable linear maps, as well the lo-
cations of the various positive linear maps that we have seen so far within these
sets.

Remark 3.A.2
The Set of Positive

Linear Maps

The proof of Theorem 3.A.8 is quite technical—it was originally proved in
the m = n = 2 case in [Stø63] (though there are now some slightly simpler
proofs of this case available [MO15]) and in the {m,n}= {2,3} case in
[Wor76]. If n = 2 and m≥ 4 then there are positive linear maps that are not
decomposable (see Exercise 3.A.22), just like we showed in the m,n≥ 3
case in Theorem 3.A.7.

In higher dimensions, the structure of the set of positive linear maps is
not understood very well, and constructing “strange” positive linear maps
like the one from Theorem 3.A.7 is an active research area. The fact that
this set is so much simpler when mn≤ 6 can be thought of roughly as a
statement that there just is not enough room in those small dimensions for
the “true nature” of the set of positive maps to become apparent.

Exercises solutions to starred exercises on page 481

3.A.1 Determine which of the following statements are
true and which are false.

∗(a) If A ∈Mm,n(C) then the linear map Φ : Mn(C)→
Mm(C) defined by Φ(X) = AXA∗ is positive.

(b) If Φ : Mn(C)→Mm(C) is Hermiticity-preserving
then Φ∗ = Φ.

∗(c) If Φ,Ψ : Mn →Mm are positive linear maps then
so is Φ+Ψ.
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∗∗3.A.2 Let Ψ : M3 →M3 be the (completely posi-
tive) Werner–Holevo map Ψ(X) = tr(X)I−XT from Ex-
ample 3.A.8. Find matrices {Ai} ⊂M3 such that Ψ(X) =
∑i AiXA∗i for all X ∈M3.

3.A.3 Suppose p ∈ R. Show that the linear map Ψp :
Mn →Mn defined by Ψp(X) = tr(X)I + pXT is com-
pletely positive if and only if −1≤ p≤ 1.

[Side note: If p =−1 then this is the Werner–Holevo map
from Example 3.A.8.]

∗∗3.A.4 Show that the Choi map ΦC from Theorem 3.A.7
is not 2-positive.

[Hint: Let x = (e1 + e2)⊗ e1 + e3⊗ e2 ∈ F3⊗F2. What is
(ΦC⊗ I2)(xx∗)?]

∗∗ 3.A.5 Show that a matrix-valued linear map Φ :
Mm,n → Mm,n preserves the Frobenius norm (i.e.,
‖Φ(X)‖F = ‖X‖F for all X ∈Mm,n) if and only if [Φ] is
unitary.

[Side note: In the language of Section 1.D.3, we would say
that such a map Φ is an isometry of the Frobenius norm.]

3.A.6 Show that every adjoint-preserving linear map
Φ : Mn →Mm can be written in the form Φ = Ψ1−Ψ2,
where Ψ1,Ψ2 : Mn→Mm are completely positive.

∗3.A.7 Show that if Φ : Mn →Mm is positive then
so is Φ∗.

∗3.A.8 A matrix-valued linear map Φ : Mn →Mm is
called unital if Φ(In) = Im. Show that the following are
equivalent:

i) Φ is unital,
ii) tr2(CΦ) = Im, and

iii) if Φ(X) = ∑ j A jXBT
j then ∑ j A jBT

j = Im.

3.A.9 A matrix-valued linear map Φ : Mn →Mm is
called trace-preserving if tr(Φ(X)) = tr(X) for all X ∈
Mn. Show that the following are equivalent:

i) Φ is trace-preserving,
ii) tr1(CΦ) = In, and

iii) if Φ(X) = ∑ j A jXBT
j then ∑ j BT

j A j = In.

[Hint: This can be proved directly, or it can be proved by
noting that Φ is trace-preserving if and only if Φ∗ is unital
and then invoking Exercise 3.A.8.]

3.A.10 Suppose Φ,Ψ : Mn→Mn are linear maps.

(a) Show that CΨ◦Φ = (Ψ⊗ I)(CΦ).
(b) Show that CΦ◦Ψ∗ = (I⊗Ψ)(CΦ), where Ψ is the lin-

ear map defined by Ψ(X) = Ψ(X) for all X ∈Mn.

3.A.11 Suppose Φ : Mn →Mm is a linear map. Show
that Φ is completely positive if and only if T ◦Φ ◦ T is
completely positive.

∗∗ 3.A.12 A linear map Φ : Mn → Mm is called
symmetry-preserving if Φ(X) is symmetric whenever X
is symmetric.

(a) Show that every transpose-preserving linear map is
symmetry-preserving.

(b) Provide an example to show that a map can
be symmetry-preserving without being transpose-
preserving.

∗∗3.A.13 Recall from Definition 3.A.5 that we required
positive linear maps to be adjoint-preserving.

(a) Show that if F = C then adjoint-preservation comes
for free. That is, show that if Φ(X) is positive
semidefinite whenever X is positive semidefinite,
then Φ is adjoint-preserving.

(b) Show that if F = R then adjoint-preservation does
not come for free. That is, find a matrix-valued lin-
ear map Φ with the property that Φ(X) is positive
semidefinite whenever X is positive semidefinite, but
Φ is not adjoint-preserving.

∗∗ 3.A.14 Show that a matrix-valued linear map Φ is
bisymmetric if and only if CΦ = CT

Φ
= Γ(CΦ).

∗∗3.A.15 Show that Φ :Mn(R)→Mm(R) is both bisym-
metric and decomposable if and only if there exists a
completely positive map Ψ : Mn(R)→Mm(R) such that
Φ = Ψ+T ◦Ψ.

∗∗3.A.16 Show that the linear map Φ⊗Ψ from Defini-
tion 3.A.4 is well-defined. That is, show that it is uniquely
determined by Φ and Ψ, and that the value of (Φ⊗Ψ)(C)
does not depend on the particular way in which we write

C = ∑
i

Ai⊗Bi.

3.A.17 Suppose F = R or F = C, and let f : Mn(F)→ F
be a linear form, which we can think of as a matrix-valued
linear map by noting that F∼= M1(F) in the obvious way.
Show that the following are equivalent:

i) f is positive,
ii) f is completely positive, and

iii) there exists a positive semidefinite matrix A ∈
Mn(F) such that f (X) = tr(AX) for all X ∈Mn(F).

∗∗3.A.18 Show that if a linear map Φ : Mn →Mm is
(k + 1)-positive for some integer k ≥ 1 then it is also k-
positive.

∗∗3.A.19 Suppose a linear map Φ : Mn →Mm is such
that Φ(X) is positive definite whenever X is positive defi-
nite. Use the techniques from Section 2.D to show that Φ is
positive.
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3.A.20 Suppose U ∈Mn(C) is a skew-symmetric uni-
tary matrix (i.e., UT = −U and U∗U = I). Show that
the map ΦU : Mn(C) →Mn(C) defined by ΦU (X) =
tr(X)I−X−UXTU∗ is positive.

[Hint: Show that x · (Ux) = 0 for all x ∈Cn. Exercise 2.1.22
might help, but is not necessary.]

[Side note: ΦU is called a Breuer–Hall map, and it is worth
comparing it to the (also positive) reduction map of Ex-
ample 3.A.1. While the reduction map is decomposable,
Breuer–Hall maps are not.]

3.A.21 Consider the linear map Φ : M2→M4 defined
by

Φ(X) = tr(X)I4−




0 0 x1,2 tr(X)/2
0 0 x2,1 x1,2

x2,1 x1,2 0 0

tr(X)/2 x2,1 0 0




.

(a) Show that Φ is positive.
[Hint: Show that Φ(X) is diagonally dominant.]
[Side note: In fact, Φ is decomposable—see Exer-
cise 3.C.15.]

(b) Construct CΦ.

(c) Show that Φ is not completely positive.

∗∗3.A.22 Consider the linear map Φ :M2→M4 defined
by

Φ

([
a b
c d

])
=




4a−2b−2c+3d 2b−2a 0 0
2c−2a 2a b 0

0 c 2d −2b−d
0 0 −2c−d 4a+2d


 .

(a) Show that if X is positive definite then the determi-
nant of the top-left 1×1, 2×2, and 3×3 blocks of
Φ(X) are strictly positive.

(b) Show that if X is positive definite then det(Φ(X)) > 0
as well.
[Hint: This is hard. Try factoring this determinant as
det(X)p(X), where p is a polynomial in the entries
of X . Computer software might help.]

(c) Use Sylvester’s Criterion (Theorem 2.2.6) and Exer-
cise 3.A.19 to show that Φ is positive.
[Side note: However, Φ is not decomposable—see
Exercise 3.C.17.]

3.B Extra Topic: Homogeneous Polynomials

RecallIt might be a good
idea to refer to

Appendix A.2.1 for
some basic facts

about multivariable
polynomials before
reading this section.

from Section 1.3.2 that if F = R or F = C then every linear form
f : Fn→ F can be represented in the form f (x) = v ·x, where v ∈ Fn is a fixed
vector. If we just expand that expression out via the definition of the dot product,
we see that it is equivalent to the statement that every linear form f : Fn→ F
can be represented as a multivariable polynomial in which each term has degree
equal to exactly 1. That is, there exist scalars a1, a2, . . ., an ∈ F such that

f (x1,x2, . . . ,xn) = a1x1 +a2x2 + · · ·+anxn =
n

∑
j=1

a jx j.

Similarly, we saw in Section 2.A (Theorem 2.A.1 in particular) that every
quadratic form f : Rn → R can be written as a multivariable polynomial in
which each term has degree

The degree of a term
(like ai, jxix j) is the

sum of the
exponents of its

variables. For
example, 7x2yz3 has
degree 2+1+3 = 6.

equal to exactly 2—there exist scalars ai, j ∈ R for
1≤ i≤ j ≤ n such that

f (x1,x2, . . . ,xn) =
n

∑
i=1

n

∑
j=i

ai, jxix j. (3.B.1)

We then used our various linear algebraic tools like the real spectral decom-
position (Theorem 2.1.6) to learn more about the structure of these quadratic
forms. Furthermore, analogous results hold for quadratic forms f : Cn→ C,
and they can be proved simply by instead making use of the complex spectral
decomposition (Theorem 2.1.4).

In general, a polynomial for which every term has the exact same degree
is called a homogeneous polynomial.

Every multivariable
polynomial can be
written as a sum of

homogeneous
polynomials (e.g., a

degree-2 polynomial
is a sum of a

quadratic form,
linear form, and a

scalar).

Linear and quadratic forms constitute
the degree-1 and degree-2 homogeneous polynomials, respectively, and in this
section we investigate their higher-degree brethren. In particular, we will see
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that homogeneous polynomials in general are intimately connected with tensors
and the Kronecker product, so we can use the tools that we developed in this
chapter to better understand these polynomials, and conversely we can use
these polynomials to better understand the Kronecker product.

We denote the vector space of degree-p homogeneous polynomials in n
variables by HP p

n (or HP p
n(F), if we wish to emphasize which field F these

polynomials are acting on and have coefficients from).
The “H” in HP p

n
stands for

“homogeneous”.
That is,

Degree-3 and
degree-4

homogeneous
polynomials are

called cubic forms
and quartic forms,

respectively.

HP p
n =

{
f : Fn→ F

∣∣∣ f (x1,x2, . . . ,xn) = ∑
k1+k2+···+kn=p

ak1,k2,...,knxk1
1 xk2

2 · · ·xkn
n

for some scalars {ak1,k2,...,kn} ⊂ F
}

.

For example,HP1
n is the space of n-variable linear forms,HP2

n is the space of
n-variable quadratic forms, andHP3

2 consists of all 2-variable polynomials in
which every term has degree equal to exactly 3, and thus have the form

a3,0x3
1 +a2,1x2

1x2 +a1,2x1x2
2 +a0,3x1x3

2

for some a3,0,a2,1,a1,2,a0,3 ∈ F.
When working with homogeneous polynomials of degree higher than 2, it

seems natural to ask which properties of low-degree polynomials carry over.
We focus in particular on two problems that ask us how we can decompose
these polynomials into powers of simpler ones.

3.B.1 Powers of Linear Forms

Recall from Corollary 2.A.2 that one way of interpreting the spectral decom-
position of a real symmetric matrix is as saying that every quadratic form
f : Rn→ R can be written as a linear combination of squares of linear forms:

f (x1,x2, . . . ,xn) =
n

∑
i=1

λi(ci,1x1 + ci,2x2 + · · ·+ ci,nxn)2.

In particular, λ1, λ2, . . ., λn are the eigenvalues of the symmetric matrix A that
represents f (in the sense of Equation (3.B.1)), and (ci,1,ci,2, . . . ,ci,p) is a unit
eigenvector corresponding to λi.

A natural question then is whether or not a similar technique can be applied
to homogeneous polynomials of higher degree (and to polynomials with com-
plex coefficients). That is, we would like to know whether or not it is possible
to write every degree-p homogeneous polynomial as a linear combination of
p-th powers of linear forms. The following theorem shows that the answer is
yes, this is possible.

Theorem 3.B.1
Powers of

Linear Forms

Suppose F = R or F = C, and f ∈HP p
n(F). There exists an integer r and

scalars λi ∈ F and ci, j ∈ F for 1≤ i≤ r, 1≤ j ≤ n such that

f (x1,x2, . . . ,xn) =
r

∑
i=1

λi(ci,1x1 + ci,2x2 + · · ·+ ci,nxn)p.
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Proof. InBy the spectral
decomposition, if

p = 2 then we can
choose r = n in this

theorem. In general,
we can choose r =
dim

(
HP p

n
)

=
(n+p−1

p

)

(we will see how this
dimension is

computed shortly).

order to help us prove this result, we first define an inner product
〈·, ·〉 :HP p

n×HP p
n→F by setting 〈 f ,g〉 equal to a certain weighted dot product

of the vectors of coefficients of f ,g ∈HP p
n . Specifically, if

f (x1,x2, . . . ,xn) = ∑
k1+k2+···+kn=p

ak1,k2,...,knxk1
1 xk2

2 · · ·xkn
n and

g(x1,x2, . . . ,xn) = ∑
k1+k2+···+kn=p

bk1,k2,...,knxk1
1 xk2

2 · · ·xkn
n ,

then we define

〈 f ,g〉= ∑
k1+···+kn=p

ak1,k2,...,knbk1,k2,...,kn( p
k1,k2,...,kn

) , (3.B.2)

where
( p

k1,k2,...,kn

)
= p!

k1!k2! ···kn! is a multinomial coefficient. We show that this
function is an inner product in Exercise 3.B.11.

Multinomial
coefficients and the
multinomial theorem
(Theorem A.2.2) are

introduced in
Appendix A.2.1.

Importantly, notice that if g is the p-th power of a linear form (i.e., there
are scalars c1,c2, . . . ,cn ∈ F such that g(x1,x2, . . . ,xn) = (c1x1 + c2x2 + · · ·+
cnxn)p) then we can use the multinomial theorem (Theorem A.2.2) to see that

g(x1,x2, . . . ,xn) = ∑
k1+k2+···+kn=p

((
p

k1,k2, . . . ,kn

)
ck1

1 ck2
2 · · ·ckn

n

)
xk1

1 xk2
2 · · ·xkn

n ,

so straightforward computation then shows us that

〈 f ,g〉=
( p

k1,k2,...,kn

)
ak1,k2,...,knck1

1 ck2
2 · · ·ckn

n( p
k1,k2,...,kn

) = ak1,k2,...,knck1
1 ck2

2 · · ·ckn
n

= f (c1,c2, . . . ,cn).

(3.B.3)

With these details out of the way, we can now prove the theorem relatively
straightforwardly. Another way of stating the theorem is as saying that

HP p
n = span

{
g : Fn→ F

∣∣ g(x1,x2, . . . ,xn) = (c1x1 + c2x2 + · · ·+ cnxn)p

for some c1,c2, . . . ,cn ∈ F
}

.

Our goal is thus to show that this span is not a proper subspace ofHP p
n .

Suppose for the sake of establishing a contradiction that this span were a
proper subspace of HP p

n . Then there would exist a non-zero homogeneous
polynomial f ∈HP p

nFor example, we
could choose f to

be any non-zero
vector in the

orthogonal
complement (see

Section 1.B.2) of the
span of the g’s.

orthogonal to each p-th power of a linear form:

〈 f ,g〉= 0 whenever g(x1,x2, . . . ,xn) = (c1x1 + c2x2 + · · ·+ cnxn)p.

Equation (3.B.3) then tells us that f (c1,c2, . . . ,cn) = 0 for all c1,c2, . . . ,cn ∈ F,
which implies f is the zero polynomial, which is the desired contradiction. �

In the case when p is odd, the linear combination of powers described by
Theorem 3.B.1 really is just a sum of powers, since we can absorb any scalar
(positive or negative) inside the linear forms. For example, every cubic form
f : Fn→ F can be written in the form

f (x1,x2, . . . ,xn) =
r

∑
i=1

(ci,1x1 + ci,2x2 + · · ·+ ci,nxn)3.

In fact, if F = C then this can be done regardless of whether p is even or odd.
However, if p is even and F = R then the best we can do is absorb the absolute
value of scalars λi into the powers of linear forms (i.e., we can assume without
loss of generality that λi =±1 for each 1≤ i≤ m).
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Example 3.B.1
Decomposing a

Cubic Form

Write the cubic form f : R2→ R defined by

f (x,y) = 4x3 +12xy2−6y3

as a sum of cubes of linear forms.

Solution:
Unfortunately, the proof of Theorem 3.B.1 is non-constructive, so even

though we know that such a sum-of-cubes way of writing f exists, we
have not yet seen how to find one. The trick is to simply construct a basis
ofHP3

2 consisting of powers of linear forms, and then represent f in that
basis.

We do not have a general method or formula for constructing such a
basis, but one method that works in practice is to just choose powers of
randomly-chosen linear forms until we have the right number of them to
form a basis. For example, since HP3

2 is 4-dimensional, we know that
any such basis must consist of 4 polynomials, and it is straightforward to
verify that the set

This basis is arbitrary.
Many other similar

sets like
{

x3,(x−
y)3,(x+2y)3,(x−3y)3}

are also bases.
{

x3,y3,(x+ y)3,(x− y)3}

is one such basis.
Now our goal is to simply to represent f in this basis—we want to find

c1,c2,c3,c4 such thatThe final line here just
comes from

expanding the terms
(x+ y)3 and (x− y)3

via the binomial
theorem

(Theorem A.2.1) and
then grouping
coefficients by

which monomial (x3,
x2y, xy2, or y3) they

multiply.

f (x,y) = 4x3 +12xy2−6y3

= c1x3 + c2y3 + c3(x+ y)3 + c4(x− y)3

= (c1 + c3 + c4)x3 +(3c3−3c4)x2y+

(3c3 +3c4)xy2 +(c2 + c3− c4)y3.

Matching up coefficients of these polynomials gives us the four linear
equations

c1 + c3 + c4 = 4, 3c3−3c4 = 0,

3c3 +3c4 = 12, and c2 + c3− c4 =−6.

This linear system has (c1,c2,c3,c4) = (1,−6,2,2) as its unique solution,
which gives us the decomposition

f (x,y) = x3−6y3 +2(x+ y)3 +2(x− y)3.

To turn this linear combination of cubes into a sum of cubes, we just
absorb constants inside of the cubed terms:

f (x,y) = x3 +
(
− 3√6y

)3 +
( 3√2(x+ y)

)3 +
( 3√2(x− y)

)3
.

The key observation that connects homogeneous polynomials with the other
topics of this chapter is that HP p

n is isomorphic to the symmetric subspace
S p

n ⊂ (Fn)⊗p that we explored in Section 3.1.3. To see why this is the case,
recall that one basis of S p

n consists of the vectors of the form
{

∑
σ∈Sp

Wσ (e j1 ⊗ e j2 ⊗·· ·⊗ e jp) : 1≤ j1 ≤ j2 ≤ ·· · ≤ jp ≤ n

}
.
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In particular, each vector in this basis is determined by how many of the
subscripts j1, j2, . . ., jp are equal to each of 1, 2, . . ., n. If we let k1, k2, . . ., kn
denote the multiplicity of the subscripts 1, 2, . . ., n in this manner then we can
associate the vector

∑
σ∈Sp

Wσ (e j1 ⊗ e j2 ⊗·· ·⊗ e jp)

with the tuple (k1,k2, . . . ,kn).
That is, the linear transformationThe fact that these

spaces are
isomorphic tells us
that dim

(
HP p

n
)

=
dim

(
S p

n
)

=
(n+p−1

p

)
.

T : S p
n →HP p

n defined by

T

(
∑

σ∈Sp

Wσ (e j1 ⊗ e j2 ⊗·· ·⊗ e jp)

)
= xk1

1 xk2
2 · · ·xkn

n ,

where k1, k2, . . ., kn count the number of occurrences of the subscripts 1, 2, . . .,
n (respectively) in the multiset { j1, j2, . . . , jp}, is an isomorphism. We have
thus proved the following observation:

! HP p
n is isomorphic to the symmetric subspace S p

n ⊂ (Fn)⊗p.

The particular isomorphism that we constructed here perhaps seems ugly at
first, but it really just associates the members of the “usual” basis of S p

n with
the monomials from HP p

n in the simplest way possible. For example, if we
return to the n = 2, p = 3 case, we get the following pairing of basis vectors
for these two spaces:

Compare this table
with the one on

page 314.

Basis Vector in S3
2 Basis Vector inHP3

2

6e1⊗ e1⊗ e1 x3
1

2
(
e1⊗ e1⊗ e2 + e1⊗ e2⊗ e1 + e2⊗ e1⊗ e1

)
x2

1x2
2
(
e1⊗ e2⊗ e2 + e2⊗ e1⊗ e2 + e2⊗ e2⊗ e1

)
x1x2

2
6e2⊗ e2⊗ e2 x3

2

If we trace the statement of Theorem 3.B.1 through this isomorphism, we
learn that every w ∈ S p

n can be written in the form

w =
r

∑
i=1

λiv⊗p
i

for some λ1,λ2, . . . ,λr ∈ F and v1,v2, . . . ,vr ∈ Fn. In other words, we have
finally proved Theorem 3.1.11.

Example 3.B.2
Finding a Symmetric

Kronecker
Decomposition

Write the vector w = (2,3,3,1,3,1,1,3,3,1,1,3,1,3,3,2)∈S4
2 as a linear

combination of vectors of the form v⊗4.

Solution:
We can solve this problem by mimicking what we did in Exam-

ple 3.B.1. We start by constructing a basis of S4
2 consisting of vectors of

the form v⊗4. We do not have an explicit method of carrying out this task,
but in practice we can just pick random vectors of the form v⊗4 until we
have enough of them to form a basis (so we need dim

(
S4

2
)

= 5 of them).
One such basis is

Again, there is
nothing special

about this basis. Pick
random tensor

powers of 5 distinct
vectors and there’s a

good chance we
will get a basis.

{
(1,0)⊗4,(0,1)⊗4,(1,1)⊗4,(1,2)⊗4,(2,1)⊗4

}
.
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Now our goal is to simply to represent w in this basis—we want to
find c1,c2,c3,c4,c5 such that

w = c1(1,0)⊗4 + c2(0,1)⊗4 + c3(1,1)⊗4 + c4(1,2)⊗4 + c5(2,1)⊗4.

If we explicitly write out what all of these vectors are (they have 16
entries each!), we get a linear system consisting of 16 equations and 5
variables. However, many of those equations are identical to each other,
and after discarding those duplicates we arrive at the following linear
system consisting of just 5 equations:

c1 + c3 + c4 +16c5 = 2
c2 + c3 +16c4 + c5 = 2

c3 + 2c4 + 8c5 = 3
c3 + 4c4 + 4c5 = 1
c3 + 8c4 + 2c5 = 3

This linear system has (c1,c2,c3,c4,c5) = (−8,−8,−7,1,1) as its unique
solution, which gives us the decomposition

w = (1,2)⊗4 +(2,1)⊗4−7(1,1)⊗4−8(1,0)⊗4−8(0,1)⊗4.

Remark 3.B.1
Symmetric

Tensor Rank

Recall from Section 3.3.3 that the tensor rank of w ∈ (Fn)⊗p (denoted by
rank(w)) is the least integer r such that we can write

w =
r

∑
i=1

v(1)
i ⊗v(2)

i ⊗·· ·⊗v(p)
i ,

where v( j)
i ∈ Fn for each 1≤ i≤ r and 1≤ j ≤ p.

Now that we know that Theorem 3.1.11 holds, we could similarly
define (as long as F = R or F = C) the symmetric tensor rank of any
w ∈ S p

n (denoted by rankS(w)) to be the least integer r such that we can
writeIf F = C then we can

omit the λi scalars
here since we can

absorb p√
λi into vi. If

F = R then we can
similarly assume that

λi =±1 for all i.

w =
r

∑
i=1

λiv⊗p
i ,

where λi ∈ F and vi ∈ Fn for each 1≤ i≤ r.
Perhaps not surprisingly, only a few basic facts are known about the

symmetric tensor rank:
• When p = 2, the symmetric tensor rank just equals the usual rank:

rank(w) = rankS(w) for all w∈S2
n . This is yet another consequence

of the spectral decomposition (see Exercise 3.B.6).
• In general, rank(w) ≤ rankS(w) for all w ∈ S p

n . This fact follows
directly from the definitions of these two quantities—when comput-
ing the symmetric rank, we minimize over a strictly smaller set of
sums than for the non-symmetric rank.

• There are cases when rank(w) < rankS(w), even just when p = 3,
but they are not easy to construct or explain [Shi18].



3.B Extra Topic: Homogeneous Polynomials 383

• Since dim
(
S p

n
)

=
(n+p−1

p

)
, we have rankS(w) ≤

(n+p−1
p

)
for all

w ∈ S p
n .

3.B.2 Positive Semidefiniteness and Sums of Squares

Recall that if F = C, or F = R and p is odd, then Theorem 3.B.1 says that
every homogeneous polynomial f ∈HP p

n can be written as a sum (not just as
a linear combination) of powers of linear forms, since we can absorb scalars
inside those powers. However, in the case when F = R and p is even, this is
not always possible, since any such polynomial necessarily always produces
non-negative output:

f (x1,x2, . . . ,xn) =
r

∑
i=1

(ci,1x1 + ci,2x2 + · · ·+ ci,nxn)p ≥ 0 for all x1,x2, . . . ,xn.

We investigate polynomials of this type in this section, so we start by giving
them a name:

Definition 3.B.1
Positive Semidefinite

Polynomials

We say that a real-valued polynomial f is positive semidefinite (PSD) if
f (x1,x2, . . . ,xn)≥ 0 for all x1,x2, . . . ,xn ∈ R.

In particular, we are interested in the converse to the observation that we
made above—if a homogeneous polynomial is positive semidefinite, can we
write it as a sum of even powers of linear forms? This question is certainly too
restrictive, since we cannot even write the (clearly PSD) polynomial f (x,y) =
x2y2 in such a manner (see Exercise 3.B.5). We thus ask the following slightly
weaker question about sums of squares of polynomials, rather than sums of
even powers of linear forms:

? For which values of n and p can the PSD polynomials in
HP p

n(R) be written as a sum of squares of polynomials?

We already know (again, as a corollary of the spectral decomposition) that this
is possible when p = 2. The main result of this section shows that it is also
possible when n = 2 (i.e., when there are only two variables).

The main technique that goes into proving this upcoming theorem is a
trick called dehomogenization, which is a process for turning a homogeneous
polynomial in n variables into a (not necessarily homogeneous) polynomial in
n−1 variables while preserving many of its important properties (like positive
semidefiniteness). For a polynomial

If you prefer, you
can instead divide

through by xp
j for any

1≤ j ≤ n of your
choosing.

f ∈HP p
n acting on variables x1,x2, . . . ,xn,

this procedure works by dividing f through by xp
n and then relabeling the ratios

x1/xn, x2/xn, . . ., xn−1/xn as the variables. We illustrate with an example.

Example 3.B.3
Dehomogenizing

a Quartic

Dehomogenize the quartic polynomial f ∈HP4
3 defined by

f (x1,x2,x3) = x4
1 +2x3

1x2 +3x2
1x2

3 +4x1x2
2x3 +5x4

3.
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Solution:
If we divide f through by x4

3, we get

f (x1,x2,x3)
x4

3
=

x4
1

x4
3

+2
x3

1x2

x4
3

+3
x2

1

x2
3

+4
x1x2

2

x3
3

+5,

which is not a polynomial in x1, x2, and x3, but is a polynomial in the
variables x = x1/x3 and y = x2/x3. That is, the dehomogenization of f is
the two-variable (non-homogeneous) polynomial g defined by

The terms in the
dehomogenization

do not necessarily all
have the same

degree. However,
they do all have

degree no larger
than that of the

original
homogeneous

polynomial.

g(x,y) = x4 +2x3y+3x2 +4xy2 +5.

It should be reasonably clear that a polynomial is positive semidefinite if
and only if its dehomogenization is positive semidefinite, since dividing by a
positive term like xp

n when p is even does not affect positive semidefiniteness.
We now make use of this technique to answer our central question about PSD
homogeneous polynomials in the 2-variable case.

Theorem 3.B.2
Two-Variable PSD

Homogeneous
Polynomials

Suppose f ∈HP p
2(R). Then f is positive semidefinite if and only if it can

be written as a sum of squares of polynomials.

Proof. The “if” direction is trivial (even for polynomials of more than 2 vari-
ables), so we only show the “only if” direction. Also, thanks to dehomogeniza-
tion, it suffices to just prove that every PSD (not necessarily homogeneous)
polynomial in a single variable can be written as a sum of squares.

To this end, we induct on the degree p of the polynomial f . In the p = 2
base case, we can complete the square in order to write f in its vertex form

f (x) = a(x−h)2 + k,

where a > 0 and the vertex of the graph of f is located at the point (h,k) (see
Figure 3.3(a)). Since f (x) ≥ 0 for all x we know that f (h) = k ≥ 0, so this
vertex form is really a sum of squares decomposition of f .

x

y

-1 1 2 3 4 5

y= 1
3
(x−2)2+1

(2,1) x

y

-1 1 2 3

y= 1
3
(x+1)(x−2)2

x= 2
(order 2)

x=−1
(order 1)

Figure 3.3: Illustrations of some basic facts about real-valued polynomials of a
single variable.

For the inductive step, suppose f has even degree p ( f can clearly not be
positive semidefinite if p is odd). Let k ≥ 0 be the minimal value of f (which
exists, since p is even) and let h be a root of the polynomial f (x)− k. Since
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f (x)− k ≥ 0 for all x, the multiplicity of h as a root of f (x)− k must be even
(see Figure 3.3(b)). We can thus write

f (x) = (x−h)2qg(x)+ k

for some integer q≥ 1 and some polynomial g. Since k≥ 0 and g(x) = ( f (x)−
k)/(x−h)2q ≥ 0 is a PSD polynomial of degree p−2q < p, it follows from the
inductive hypothesis that g can be written as a sum of squares of polynomials,
so f can as well. �

It is also known [Hil88] that every PSD polynomial in HP4
3(R) can be

written as a sum of squares of polynomials, though the proof is rather technical
and outside of the scope of this book. Remarkably, this is the last case where
such a property holds—for all other values of n and p, there exist PSD polyno-
mials that cannot be written as a sum of squares of polynomials. The following
example presents such a polynomial inHP6

3(R).

Example 3.B.4
A Weird PSD

Polynomial of
Degree 6

Consider the real polynomial f (x,y,z) = x2y4 + y2z4 + z2x4−3x2y2z2.
a) Show that f is positive semidefinite.
b) Show that f cannot be written as a sum of squares of polynomials.

Solutions:
a) If we apply the AM–GM inequality (Theorem A.5.3) to the quanti-

ties x2y4, y2z4, and z2x4, we learn that

x2y4 + y2z4 + z2x4

3
≥ 3
√

(x2y4)(y2z4)(z2x4) = x2y2z2.

Multiplying this inequality through by 3 and rearranging gives us
exactly the inequality f (x,y,z)≥ 0.

b) If f could be written as a sum of squares of polynomials, then it
would have the form

The terms being
squared and

summed here are
just general cubics.

Recall that
dim

(
HP3

3
)

= 10, so
there are 10

monomials in such a
cubic.

f (x,y,z) =
r

∑
i=1

(
aixy2 +biyz2 + cizx2 +dix2y+ eiy2z

+giz2x+hix3 + jiy3 + kiz3 + `ixyz
)2

for some scalars ai,bi, . . . , `i ∈ R. By matching up terms of f with
terms in this hypothetical sum-of-squares representation of f , we
can learn about their coefficients.
For example, since the coefficient of x6 in f is 0, whereas the
coefficient of x6 in this sum-of-squares representation is ∑

r
i=1 h2

i ,
we learn that hi = 0 for all 1≤ i≤ r. A similar argument with the
coefficients of y6 and z6 then shows that ji = ki = 0 for all 1≤ i≤ r
as well.
The coefficient of x4y2 then similarly tells us that

0 =
r

∑
i=1

d2
i , so di = 0 for all 1≤ i≤ r,

and the same argument with the coefficients of y4z2 and z4x2 tells
us that ei = gi = 0 for all 1≤ i≤ r as well.
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At this point, our hypothetical sum-of-squares representation of f
has been simplified down to the form

f (x,y,z) =
r

∑
i=1

(
aixy2 +biyz2 + cizx2 + `ixyz

)2
.

Comparing the coefficient of x2y2z2 in f to this decomposition of
f then tells us that −3 = 0, which is (finally!) a contradiction that
shows that no such sum-of-squares decomposition of f is possible
in the first place.

Similar examples show that there are PSD polynomials that cannot be
written as a sum of squares of polynomials in HP p

n(R) whenever n ≥ 3 and
p≥ 6 is even. An example that demonstrates the existence of such polynomials
inHP4

4(R) (and thusHP p
n(R) whenever n≥ 4 and p≥ 4 is even) is provided in

Exercise 3.B.7. Finally, a summary of these various results about the connection
between positive semidefiniteness and the ability to write a polynomial as a
sum of squares of polynomials is provided by Table 3.2.

n (number of variables)

p (degree) 1 2 3 4 5

2 X (spectral decomp.)
4 X[Hil88] 7 (Exer. 3.B.7)
6 7 (Exam. 3.B.4)
8
10
12

X
(t

riv
ia

l)

X
(T

hm
.3

.B
.2

)

Table 3.2: A summary of which values of n and p lead to a real n-variable degree-p
PSD homogeneous polynomial necessarily being expressible as a sum of squares
of polynomials.

Remark 3.B.2
Sums of Squares of
Rational Functions

Remarkably, even though some positive semidefinite polynomials cannot
be written as a sum of squares of polynomials, they can all be written as a
sum of squares of rational functions [Art27]. For example, we showed in
Example 3.B.4 that the PSD homogeneous polynomial

f (x,y,z) = x2y4 + y2z4 + z2x4−3x2y2z2

cannot be written as a sum of squares of polynomials. However, if we
define

g(x,y,z) = x3z− xzy2 and h(x,y,z) = x2(y2− z2)

then we can write f in the following form that makes it “obvious” that it
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is positive semidefinite:

f (x,y,z) =
g(x,y,z)2 +g(y,z,x)2 +g(z,x,y)2

x2 + y2 + z2

+
h(x,y,z)2 +h(y,z,x)2 +h(z,x,y)2

2(x2 + y2 + z2)
.

This is not quite a sum of squares of rational functions, but it can be turned
into one straightforwardly (see Exercise 3.B.8).

3.B.3 Biquadratic Forms

Recall from Section 2.A that one way of constructing a quadratic form is
to plug the same vector into both input slots of a bilinear form. That is, if
f : Rn×Rn→ R is a bilinear form then the function q : Rn→ R defined by
q(x) = f (x,x) is a quadratic form (and the scalars that represent q are exactly
the entries of the symmetric matrix A that represents f ). The following facts
follow via a similar argument:

• If f : Rn×Rn×Rn→R is a trilinear form then the function q : Rn→R
defined by q(x) = f (x,x,x) is a cubic form.

• If f : Rn×Rn×Rn×Rn→ R is a 4-linear (quadrilinear?) form then the
function q : Rn→ R defined by q(x) = f (x,x,x,x) is a quartic form.

• If f : (Rn)×p→R(Rn)×p means the
Cartesian product of

p copies of Rn with
itself.

is a p-linear form then the function q : Rn→R defined
by q(x) = f (x,x, . . . ,x) is a degree-p homogeneous polynomial.

We now focus on what happens in the p = 4 case if we go halfway between
quadrilinear and quartic forms: we consider functions q : Rm×Rn→ R of the
form q(x,y) = f (x,y,x,y), where f : Rm×Rn×Rm×Rn → R is a quadri-
linear form. We call such functions biquadratic forms, and it is reasonably
straightforward to show that they can all be written in the following form (see
Exercise 3.B.9):

Definition 3.B.2
Biquadratic Forms

A biquadratic form is a degree-4 homogeneous polynomial q : Rm×
Rn→ R for which there exist scalars {ai, j;k,`} such that

q(x,y) =
m

∑
1=i≤ j

n

∑
1=k≤`

ai, j;k,`xix jyky`.

Analogously to how the set of bilinear forms is isomorphic to the set of
matrices, quadratic forms are isomorphic to the set of symmetric matrices,
and PSD quadratic forms are isomorphic to the set of positive semidefinite
matrices, we can also represent quadrilinear and biquadratic forms in terms
of matrix-valued linear maps in a natural way. In particular, notice that every
linear map Φ :Mn(R)→Mm(R) can be thought of as a quadrilinear form
f : Rm×Rn×Rm×Rn→ R just by defining

f (v,w,x,y) = vT
Φ
(
wyT )x.

Indeed, it is straightforward to show that Φ is linear if and only if f is
quadrilinear, and that this relationship between f and Φ is actually an iso-
morphism. It follows that biquadratic forms similarly can be written in the
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form
q(x,y) = f (x,y,x,y) = xT

Φ
(
yyT )x.

The following theorem pins down what properties of Φ lead to various desirable
properties of the associated biquadratic form q.

Theorem 3.B.3
Biquadratic Forms
as Matrix-Valued

Linear Maps

A function q : Rm×Rn→R is a biquadratic form if and only if there exists
a bisymmetric linear map Φ :Mn(R)→Mm(R) (i.e., a map satisfying
Φ = T ◦Φ = Φ ◦T ) such that q(x,y) = xT Φ

(
yyT
)
x for all x ∈ Rm and

y ∈ Rn. Properties of Φ correspond to properties of q as follows:
a) Φ is positive if and only if q is positive semidefinite.
b) Φ is decomposable if and only if q can be written as a sum of squares

of bilinear forms.
Furthermore, thisBisymmetric maps

were introduced in
Section 3.A.1.

Decomposable
maps are ones that

can be written in the
form Φ = Ψ1 +T ◦Ψ2
for some CP Ψ1,Ψ2.

relationship between q and Φ is an isomorphism.

Proof. We already argued why q is a biquadratic form if and only if we can
write q(x,y) = xT Φ

(
yyT
)
x for some linear map Φ. To see why we can choose

Φ to be bisymmetric, we just notice that if we define

Ψ =
1
4
(
Φ+(T ◦Φ)+(Φ◦T )+(T ◦Φ◦T )

)

then Ψ is bisymmetric and q(x,y) = xT Ψ
(
yyT
)
x for all x ∈ Rm and y ∈ Rn as

well.
To see that this association between biquadratic forms q and bisymmetric

linear maps Φ is an isomorphism, we just notice that the dimensions of these
two vector spaces match up. It is evident from Definition 3.B.2 that the space
of biquadratic forms has dimension

(m+1
2

)(n+1
2

)
= mn(m+1)(n+1)/4, since

each biquadratic form is determined by that many scalars {ai, j;k,`}. On the
other hand, recall from Exercise 3.A.14 that Φ is bisymmetric if and only
if CΦ = CT

Φ
= Γ(CΦ). It follows that the set of bisymmetric maps also has

dimension
(m+1

2

)(n+1
2

)
= mn(m + 1)(n + 1)/4, since every bisymmetric Φ

depends only on the
(m+1

2

)
= m(m+1)/2 entries in the upper-triangular portion

of each of the
(n+1

2

)
= n(n+1)/2 blocks in the upper-triangular portion of CΦ.

To see why property (a) holds, we note that q is positive semidefinite if and
only if

q(x,y) = xT
Φ
(
yyT )x≥ 0 for all x ∈ Rm, y ∈ Rn.

Positive semidefiniteness of q is thus equivalent to Φ
(
yyT
)

being positive
semidefinite for all y ∈ Rn, which in turn is equivalent to Φ being positive
(since the real spectral decomposition tells us that every positive semidefinite
X ∈Mn(R) can be written as a sum of terms of the form yyT ).

To demonstrate property (b), we note that if Φ is decomposable then we can
write it in the form Φ = Ψ1 + T ◦Ψ2 for some completely positive maps Ψ1
and Ψ2 with operator-sum representations Ψ1(X) = ∑i AiXAT

i and Ψ2(X) =
∑i BiXBT

i . Then

q(x,y) = xT
Ψ1
(
yyT )x+xT (

Ψ2(yyT )
)T x

= ∑
i

xT (AiyyT AT
i
)
x+∑

i
xT (BiyyT BT

i
)T x

= ∑
i
(xT Aiy)2 +∑

i
(xT Biy)2,
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which is a sum of squares of the bilinear forms gi(x,y) = xT Aiy and hi(x,y) =
xT Biy.

Conversely, if q can be written as a sum of squares of bilinear forms
gi : Rm×Rn→ R then we know from Theorem 1.3.5 that we can find matrices
{Ai} such that gi(x,y) = xT Aiy. It follows that

q(x,y) = ∑
i
(xT Aiy)2 = ∑

i
xT (AiyyT AT

i
)
x = xT

Ψ
(
yyT )x,

where Ψ is the (completely positive) map with operator-sum representation
Ψ(X) = ∑i AiXAT

i . However, this map Ψ may not be bisymmetric. To see how
we can represent q by a bisymmetric map (at the expense of weakening com-
plete positivity to just decomposability), we introduce the decomposable map
Φ = (Ψ + T ◦Ψ)/2. It is straightforward to check that q(x,y) = xT Φ

(
yyT
)
x

for all x ∈ Rm and y ∈ Rn as well, and the fact that it is bisymmetric follows
from Exercise 3.A.15. �

It is worth noting that many of the implications of the above theorem still
work even if the linear map Φ is not bisymmetric. For example, if Φ :Mn(R)→
Mm(R) is a positive linear map and we define q(x,y) = xT Φ

(
yyT
)
x then the

proof given above shows that q must be positive semidefinite.This is analogous to
the fact that a
quadratic form

q(x) = xT Ax being
PSD does not imply A

is PSD unless we
choose A to be

symmetric.

However, the
converse is not necessarily true unless Φ is bisymmetric—q might be positive
semidefinite even if Φ is not positive (it might not even send symmetric matrices
to symmetric matrices). Similarly, the proof of Theorem 3.B.3 shows that a
biquadratic form can be written as a sum of squares if and only if it can be
represented by a completely positive map, which is sometimes easier to work
with than a decomposable bisymmetric map.

For ease of reference, we summarize the various ways that quadratic forms,
biquadratic forms, and various other closely-related families of homogeneous
polynomials are isomorphic to important sets of matrices and matrix-valued
linear maps in Table 3.3.

The top half of this
table has one fewer

row than the bottom
half since a

quadratic form is
PSD if and only if it is
a sum of squares of

linear forms.

Polynomial Matrix(-Valued Map)

bilinear form matrix
quadratic form symmetric matrix
PSD quadratic form PSD matrix

quadrilinear form matrix-valued linear map
biquadratic form bisymmetric matrix-valued map
PSD biquadratic form positive bisymmetric linear map
sum of squares of bilin. forms decomposable bisymmetric map

Table 3.3: A summary of various isomorphisms that relate certain families of ho-
mogeneous polynomials to certain families of matrices and matrix-valued linear
maps.

Example 3.B.5
A Biquadratic Form

as a Sum of Squares

Write the biquadratic form q : R3×R3→ R defined by

q(x,y) = x2
1(y

2
2 + y2

3)+ x2
2(y

2
3 + y2

1)+ x2
3(y

2
1 + y2

2)
−2x1x2y1y2−2x2x3y2y3−2x3x1y3y1

as a sum of squares of bilinear forms.
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Solution:
It is straightforward to show that q(x,y) = xT Φ

(
yyT
)
x, where Ψ :

M3→M3 is the (completely positive) Werner–Holevo mapWe were lucky here
that we could

“eyeball” a CP map
Ψ for which

q(x,y) = xT Ψ(yyT )x. In
general, finding a
suitable map Ψ to

show that q is a sum
of squares can be

done via
semidefinite

programming (see
Exercise 3.C.18).

defined by
Ψ(X) = tr(X)I−XT (see Example 3.A.8). It follows that if we can find
an operator-sum representation Ψ(X) = ∑i AiXAT

i then we will get a sum-
of-squares representation q(x,y) = ∑i(xT Aiy)2 as an immediate corollary.

To construct such an operator-sum representation, we mimic the proof
of Theorem 3.A.6: we construct CΨ and then let the Ai’s be the matri-
cizations of its scaled eigenvectors. We recall from Example 3.A.8 that
CΨ = I−W3,3, and applying the spectral decomposition to this matrix
shows that CΨ = ∑

3
i=1 vivT

i , where

v1 = (0,1,0,−1,0,0,0,0,0),
v2 = (0,0,1,0,0,0,−1,0,0), and
v3 = (0,0,0,0,0,1,0,−1,0).

It follows that Ψ(X) = ∑
3
i=1 AiXAT

i , where

We already
constructed this

operator-sum
representation back

in Exercise 3.A.2.

A1 =




0 1 0
−1 0 0
0 0 0


 , A2 =




0 0 1
0 0 0
−1 0 0


 , and A3 =




0 0 0
0 0 1
0 −1 0


 .

This then gives us the sum-of-squares representation

q(x,y) =
3

∑
i=1

(
xT Aiy

)2

= (x1y2− x2y1)2 +(x1y3− x3y1)2 +(x2y3− x3y2)2.

In light of examples like Example 3.B.4 and Exercise 3.B.7, it is perhaps
not surprising that there are PSD biquadratic forms that cannot be written as
a sum of squares of polynomials. What is interesting though is that this fact
is so closely-related to the fact that there are positive linear maps that are not
decomposable (i.e., that cannot be written in the form Φ = Ψ1 + T ◦Ψ2 for
some completely positive maps Ψ1,Ψ2)—a fact that we demonstrated back in
Theorem 3.A.7.

Example 3.B.6
A PSD Biquadratic
Form That is Not a

Sum of Squares

Consider the biquadratic form q : R3×R3→ R defined by

q(x,y) = x2
1(y

2
1 + y2

2)+ x2
2(y

2
2 + y2

3)+ x2
3(y

2
3 + y2

1)
−2x1x2y1y2−2x2x3y2y3−2x3x1y3y1.

a) Show that q is positive semidefinite.
b) Show that q cannot be written as a sum of squares of bilinear forms.Compare this

biquadratic form
with the one from

Example 3.B.5.
Solutions:

a) We could prove that q is positive semidefinite directly in a manner
analogous to that used in Example 3.B.4, but we instead make use of
the relationship with matrix-valued linear maps that was described
by Theorem 3.B.3. Specifically, we notice that if ΦC :M3→M3
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is the Choi map described by Theorem 3.A.7,This biquadratic form
(as well as the Choi

map from
Theorem 3.A.7) was
introduced by Choi

[Cho75].

then

yT
ΦC
(
xxT )y = x2

1(y
2
1 + y2

2)+ x2
2(y

2
2 + y2

3)+ x2
3(y

2
3 + y2

1)
−2x1x2y1y2−2x2x3y2y3−2x3x1y3y1 = q(x,y).

However, ΦC is not bisymmetric, so we instead consider the bisym-
metric map

Ψ =
1
2
(
ΦC +T ◦ΦC

)
,

which also has the property that q(x,y) = yT Ψ
(
xxT
)
y. Since ΦC is

positive, so is Ψ, so we know from Theorem 3.B.3 that q is positive
semidefinite.We show that q is

PSD “directly” in
Exercise 3.B.10. b) On the other hand, even though we know that ΦC is not decompos-

able, this does not directly imply that the map Ψ from part (a) is not
decomposable, so we cannot directly use Theorem 3.B.3 to see that
q cannot be written as a sum of squares of bilinear forms. We thus
prove this property of q directly.
If q could be written as a sum of squares of bilinear forms, then it
would have the form

q(x,y) =
r

∑
i=1

(
aix1y1 +bix1y2 + cix1y3 +dix2y1 + eix2y2 + fix2y3

+hix3y1 + jix3y2 + kix3y3
)2

for some families of scalars {ai},{bi}, . . . ,{ki} ∈ R and some in-
teger r. By matching up terms of q with terms in this hypothetical
sum-of-squares representation of q, we can learn about their coeffi-
cients.
For example, since the coefficient of x2

1y2
3 in q is 0, whereas the

coefficient of x2
1y2

3 in this sum-of-squares representation is ∑
r
i=1 c2

i ,
we learn that ci = 0 for all 1≤ i≤ r. A similar argument with the
coefficients of x2

2y2
1 and x2

3y2
2 then shows that di = ji = 0 for all

1 ≤ i ≤ r as well. It follows that our hypothetical sum-of-squares
representation of q actually has the somewhat simpler form

q(x,y) =
r

∑
i=1

(
aix1y1 +bix1y2 + eix2y2 + fix2y3 +hix3y1 + kix3y3

)2
.

Comparing the coefficients of x2
1y2

1, x2
2y2

2, and x1x2y1y2 in q to this
decomposition of q then tells us that

r

∑
i=1

a2
i = 1,

r

∑
i=1

e2
i = 1, and

r

∑
i=1

aiei =−1.

The equality condition of the Cauchy–Schwarz

Specifically, we are
applying the

Cauchy–Schwarz
inequality to the

vectors a = (a1, . . . ,ar)
and e = (e1, . . . ,er) in

Rr. It says that
|a · e|= ‖a‖‖e‖ if and

only if a and e are
multiples of each

other.

inequality (Theo-
rem 1.3.8) then tells us that ei = −ai for all 1 ≤ i ≤ r. A similar
argument with the coefficients of x2

1y2
1, x2

3y2
3, and x1x3y1y3 shows that

ki = −ai for all i, and the coefficients of x2
2y2

2, x2
3y2

3, and x2x3y2y3
tell us that ki = −ei for all i. In particular, we have shown that
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ki =−ai, but also that ki =−ei =−(−ai) = ai for all 1≤ i≤ r. It
follows that ai = 0 for all 1≤ i≤ r, which contradicts the fact that
∑

r
i=1 a2

i = 1 and shows that no such sum-of-squares decomposition
of q is possible in the first place.

On the other hand, recall from Theorem 3.A.8 that all positive maps Φ :
Mn→Mm are decomposable when (m,n) = (2,2), (m,n) = (2,3), or (m,n) =
(3,2). It follows immediately that all biquadratic forms q : Rm×Rn→ R can
be written as a sum of squares of bilinear forms, under the same restrictions on
m and n. We close this section by noting the following strengthening of this
result: PSD biquadratic forms can be written as a sum of squares of bilinear
forms as long as one of m or n equals 2.

Theorem 3.B.4
PSD Biquadratic Forms

of Few Variables

Suppose q : Rm×Rn→ R is a biquadratic form and min{m,n}= 2. Then
q can be written as a sum of squares of bilinear forms if and only if it is
positive semidefinite.

In particular, this result tells us via the isomorphism between biquadratic
forms and bisymmetric maps that if Φ :Mn(R)→Mm(R) is bisymmetric with
min{m,n}= 2 then Φ being positive is equivalent to it being decomposable.

This fact is not true
when (m,n) = (2,4) if

Φ is not
bisymmetric—see

Exercise 3.C.17. We do not prove this theorem, however, as it is quite technical—the interested
reader is directed to [Cal73].

Exercises solutions to starred exercises on page 482

3.B.1 Write each of the following homogeneous polyno-
mials as a linear combination of powers of linear forms, in
the sense of Theorem 3.B.1.

∗(a) 3x2 +3y2−2xy
(b) 2x2 +2y2−3z2−4xy+6xz+6yz
∗(c) 2x3−9x2y+3xy2− y3

(d) 7x3 +3x2y+15xy2

∗(e) x2y+ y2z+ z2x
(f) 6xyz− x3− y3− z3

∗(g) 2x4−8x3y−12x2y2−32xy3−10y4

(h) x2y2

3.B.2 Write each of the following vectors from the sym-
metric subspace S p

n as a linear combination of vectors of
the form v⊗p.

∗(a) (2,3,3,5) ∈ S2
2

(b) (1,3,−1,3,−3,3,−1,3,1) ∈ S2
3

∗(c) (1,−2,−2,0,−2,0,0,−1) ∈ S3
2

(d) (2,0,0,4,0,4,4,6,0,4,4,6,4,6,6,8) ∈ S4
2

3.B.3 Determine which of the following statements are
true and which are false.

∗(a) If g is a dehomogenization of a homogeneous poly-
nomial f then the degree of g equals that of f .

(b) If f ∈HP p
n (R) is non-zero and positive semidefinite

then p must be even.

∗(c) Every positive semidefinite polynomial in HP6
2(R)

can be written as a sum of squares of polynomials.
(d) Every positive semidefinite polynomial in HP6

3(R)
can be written as a sum of squares of polynomials.

∗(e) Every positive semidefinite polynomial in HP2
8(R)

can be written as a sum of squares of polynomials.

3.B.4 Compute the dimension of P p
n , the vector space of

(non-homogeneous) polynomials of degree at most p in n
variables.

∗∗3.B.5 Show that the polynomial f (x,y) = x2y2 cannot
be written as a sum of 4-th powers of linear forms.

∗∗3.B.6 We claimed in Remark 3.B.1 that the symmetric
tensor rank of a vector w ∈ S2

n equals its usual tensor rank:
rank(w) = rankS(w).

a) Prove this claim if the ground field is R.
[Hint: Use the real spectral decomposition.]

b) Prove this claim if the ground field is C.
[Hint: Use the Takagi factorization of Exer-
cise 2.3.26.]
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∗∗3.B.7 In this exercise, we show that the polynomial
f ∈HP4

4 defined by

f (w,x,y,z) = w4 + x2y2 + y2z2 + z2x2−4wxyz

is positive semidefinite, but cannot be written as a sum of
squares of polynomials (much like we did for a polynomial
in HP6

3 in Example 3.B.4).

a) Show that f is positive semidefinite.
b) Show that f cannot be written as a sum of squares of

polynomials.

∗∗3.B.8 Write the polynomial from Remark 3.B.2 as a
sum of squares of rational functions.

[Hint: Multiply and divide the “obvious” PSD decomposi-
tion of f by another copy of x2 + y2 + z2.]

∗∗3.B.9 Show that a function q : Rm×Rn → R has the
form described by Definition 3.B.2 if and only if there is a
quadrilinear form f : Rm×Rn×Rm×Rn→ R such that

q(x,y) = f (x,y,x,y) for all x ∈ Rm, y ∈ Rn.

∗∗3.B.10 Solve Example 3.B.6(a) “directly”. That is, show
that the biquadratic form q : R3×R3→ R defined by

q(x,y) = y2
1(x

2
1 + x2

3)+ y2
2(x

2
2 + x2

1)+ y2
3(x

2
3 + x2

2)

−2x1x2y1y2−2x2x3y2y3−2x3x1y3y1

is positive semidefinite without appealing to Theorem 3.B.3
or the Choi map from Theorem 3.A.7.

[Hint: This is hard. One approach is to fix 5 of the 6 variables
and use the quadratic formula on the other one.]

∗∗ 3.B.11 Show that the function defined in Equa-
tion (3.B.2) really is an inner product.

3.B.12 Let v ∈ (C2)⊗3 be the vector that we showed has
tensor rank 3 in Example 3.3.4. Show that it also has sym-
metric tensor rank 3.

[Hint: The decompositions that we provided of the vector
from Equation (3.3.3) might help.]

3.C Extra Topic: Semidefinite Programming

One of the most useful tools in advanced linear algebra is an optimization
method called semidefinite programming, which is a generalization of lin-
ear programming. Much like linear programming deals with maximizing or
minimizing a linear function over a set of inequality constraints, semidefinite
programming allows us to maximize or minimize a linear function over a set of
positive semidefinite constraints.

Before getting into the details of what semidefinite programs look like or
what we can do with them, we briefly introduce one piece of new notation
that we use extensively throughout this section. Given Hermitian matrices
A,B ∈MH

n , we say that A � B (or equivalently, B � A) if A−B is positive
semidefinite (in which case we could also write A−B� O).We can similarly

write A� B, B≺ A, or
A−B� O if A−B is

positive definite.

For example, if

A =
[

1 1− i
1+ i 3

]
and B =

[
0 1
1 2

]

then A� B, since

A−B =
[

1 −i
i 1

]
,

which is positive semidefinite (its eigenvalues are 2 and 0).
This ordering of HermitianWe prove these

basic properties of
the Loewner partial

order in
Exercise 3.C.1.

matrices is called the Loewner partial order,
and it shares many of the same properties as the usual ordering on R (in fact,
for 1× 1 Hermitian matrices it is the usual ordering on R). For example, if
A,B,C ∈MH

n then:
Reflexive: it is the case that A� A,

Antisymmetric: if A� B and B� A then A = B, and
Transitive: if A� B and B�C then A�C.

In fact, these three properties are exactly the defining properties of a partial
order—a function on a set (not necessarily a set of matrices) that behaves like
we would expect something that we call an “ordering” to.
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However, there is one important propertyTwo matrices
A,B ∈MH

n for which
A 6� B and B 6� A are

called
non-comparable,

and their existence is
why this is called a
“partial” order (as

opposed to a “total”
order like the one on

R).

that the ordering on R has that is
missing from the Loewner partial order: If a,b ∈ R then it is necessarily the
case that either a≥ b or b≥ a (or both), but the analogous statement about the
Loewner partial order onMH

n does not hold. For example, if

A =
[

1 0
0 0

]
and B =

[
0 0
0 1

]

then each of A−B and B−A have −1 as an eigenvalue, so A 6� B and B 6� A.

3.C.1 The Form of a Semidefinite Program

The idea behind semidefinite programming is to construct a matrix–valued
version of linear programming. We thus start by recalling that a linear program
in an optimization program that can be put into the following form, where
A∈Mm,n(R), b∈Rm, and c∈Rn are fixed, x∈Rn is a vector of variables that
is being optimized over, and inequalities between vectors are meant entrywise:

Refer to any number
of other books, like
[Chv83] or [Joh20],

for a refresher on
linear programming. maximize: c ·x

subject to: Ax≤ b
x≥ 0

(3.C.1)

Recall (from Figure 2.6, for example) that we can think of Hermitian
matrices and positive semidefinite matrices as the “matrix versions” of real
numbers and non-negative real numbers, and the standard inner product on
MH

n is the Frobenius inner product 〈C,X〉 = tr(CX)

Since we are
working with

Hermitian matrices
(i.e., C,X ∈MH

n ), we
do not need the

conjugate transpose
in the Frobenius inner

product tr(C∗X).

(just like the standard
inner product on Rn is the dot product 〈c,x〉= c ·x). Since we now similarly
think of the Loewner partial order as the “matrix version” of the ordering of
real numbers, the following definition hopefully seems like a somewhat natural
generalization of linear programs—it just involves replacing every operation
that is specific to R or Rn with its “natural” matrix-valued generalization.

Definition 3.C.1
Semidefinite Program

(Primal Standard Form)

Suppose Φ :MH
n →MH

m is a linear transformation, and B ∈MH
m and C ∈

MH
n are Hermitian matrices. The semidefinite program (SDP) associated

with Φ, B, and C is the following optimization problem over the matrix
variable X ∈MH

n :

Recall from
Section 3.A that a

linear transformation
Φ : MH

n →MH
m is

called Hermiticity-
preserving.

maximize: tr(CX)
subject to: Φ(X)� B

X � O
(3.C.2)

Furthermore, this is called the primal standard form of the semidefinite
program.

Before jumping into specific examples of semidefinite programs, it is worth
emphasizing that they really do generalize linear programs. In particular, we can
write the linear program (3.C.1) in the form of the semidefinite program (3.C.2)
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by defining B = diag(b), C = diag(c), and Φ :MH
n →MH

m by
Semidefinite

programs over real
symmetric matrices

in MS
n are fine

too—for example,
we could just add

the linear constraint
X = XT to a

complex-valued SDP
to make it

real-valued.

Φ(X) =




n

∑
j=1

a1, jx j, j 0 · · · 0

0
n

∑
j=1

a2, jx j, j · · · 0

...
...

. . .
...

0 0 · · ·
n

∑
j=1

am, jx j, j




.

A routine calculation then shows that the semidefinite program (3.C.2) is
equivalent to the original linear program (3.C.1)—we have just stretched each
vector in the original linear program out along the diagonal of a matrix and used
the fact that a diagonal matrix is PSD if and only if its entries are non-negative.

Basic Manipulations into Primal Standard Form
Just as was the case with linear programs, the primal standard form of the
semidefinite program (3.C.2) is not quite as restrictive as it appears at first
glance. For example, we can allow for multiple constraints simply by making
use of block matrices and matrix-valued linear maps that act on block matrices,
as we now demonstrate.

Example 3.C.1
Turning Multiple

Semidefinite
Constraints Into One

Suppose C ∈MH
n . Write the following optimization problem as a semidef-

inite program in primal standard form:

maximize: tr(CX)
subject to: tr(X) = 3

X � I
X � O

Solution:In fact, if n≥ 3 then
this semidefinite

program computes
the sum of the 3

largest eigenvalues
of C—see

Exercise 3.C.12.

We first split the constraint tr(X) = 3 into the pair of “≤” constraints
tr(X)≤ 3 and −tr(X)≤−3, just like we would if we were trying to write
a linear program in primal standard form. We can now rewrite the three
inequality constraints tr(X) ≤ 3, −tr(X) ≤ −3, and X � I as the single
matrix constraint Φ(X)� B (and thus put the SDP into primal standard
form) if we define

Φ(X) =




X 0 0
0T tr(X) 0
0T 0 −tr(X)


 and B =




I 0 0
0T 3 0
0T 0 −3


 .

More generally, multiple positive semidefinite constraints can be merged
into a single positive semidefinite constraint simply by placing matrices along
the diagonal blocks of a larger matrix—this works because a block diagonal
matrix is positive semidefinite if and only if each of its diagonal blocks is
positive semidefinite if (see Exercise 2.2.13).

We make use of much of the same terminology when discussing semidefi-
nite programs as we do for linear programs. The objective function of an SDP
is the function being maximized or minimized (i.e., tr(CX) if it is written in
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standard form) and its optimal value is the maximal or minimal value that the
objective function can attain subject to the constraints (i.e., it is the “solution” of
the semidefinite program).

One wrinkle that
occurs for SDPs that

did not occur for
linear programs is

that the maximum or
minimum in a

semidefinite
program might not

be attained (i.e., by
“maximum” we

really mean
“supremum” and by
“minimum” we really

mean
“infimum”)—see

Example 3.C.6.

A feasible point is a matrix X ∈MH
n that satisfies

all of the constraints of the SDP (i.e., Φ(X)� B and X � O), and the feasible
region is the set consisting of all feasible points.

In addition to turning multiple constraints and matrices into a single block-
diagonal matrix and constraint, as in the previous example, we can also use
techniques similar to those that are used for linear programs to transform a
wide variety of optimization problems into the standard form of semidefinite
programs. For example:

• We can turn a minimization problem into a maximization problem by
multiplying the objective function by −1 and then multiplying the result-
ing optimal value by −1, as illustrated in Figure 3.4.

• We can turn an “=” constraint into a pair of “�” and “�” constraints
(since the Loewner partial order is antisymmetric).All of these

modifications are
completely

analogous to how
we can manipulate

inequalities and
equalities involving

real numbers.

• We can turn a “�” constraint into a “�” constraint by multiplying it by
−1 and flipping the direction of the inequality (see Exercise 3.C.1(e)).

• We can turn an unconstrained (i.e., not necessarily PSD) matrix variable
X into a pair of PSD matrix variables by setting X = X+−X− where
X+,X− � O (see Exercise 2.2.16).

−tr(CX) tr(CX)

0-5 -4 -3 -2 -1 1 2 3 4 5

Figure 3.4: Minimizing tr(CX) is essentially the same as maximizing −tr(CX); the final
answers just differ by a minus sign.

Example 3.C.2
Writing a Semidefinite

Program in Primal
Standard Form

Suppose C,D∈MH
n and Φ,Ψ :MH

n →MH
n are linear. Write the following

semidefinite program (in the variables X ,Y ∈MH
n ) in primal standard

form:

minimize: tr(CX)+ tr(DY )
subject to: X + Ψ(Y ) = I

Φ(X)+ Y � O
X � O

Solution:
Since Y is unconstrained, we replace it by the pair of PSD variables

Y + and Y− via Y = Y +−Y− and Y +,Y− � O. Making this change puts
the SDP into the form

Here we used the
fact that

Ψ(Y +−Y−) =
Ψ(Y +)−Ψ(Y−), since

Ψ is linear.

minimize: tr(CX)+ tr(DY +)− tr(DY−)
subject to: X + Ψ(Y +)− Ψ(Y−) = I

Φ(X)+ Y + − Y− � O
X , Y +, Y− � O

Next, we change the minimization into a maximization by multiplying
the objective function by −1 and also placing a minus sign in front of the
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entire SDP. We also change the equality constraint X +Ψ(Y +)−Ψ(Y−) =
I into the pair of inequality constraints X + Ψ(Y +)−Ψ(Y−) � I and
X + Ψ(Y +)−Ψ(Y−) � I, and then convert both of the “�” constraints
into “�” constraints by multiplying them through by −1. After making
these changes, the SDP has the form

Converting an SDP
into primal standard
form perhaps makes

it look uglier, but is
useful for theoretical

reasons.

−maximize: −tr(CX)− tr(DY +)+ tr(DY−)
subject to: X + Ψ(Y +)− Ψ(Y−)� I

− X − Ψ(Y +)+ Ψ(Y−)� −I
− Φ(X)− Y + + Y− � O

X , Y +, Y− � O

At this point, the SDP is essentially in primal standard form—all that
remains is to collect the various pieces of it into block diagonal matrices.
In particular, the version of this SDP in primal standard form optimizes
over a positive semidefinite matrix variable X̃ ∈MH

3n, which we partition
as a block matrix as follows:

We use asterisks (∗)
to denote entries

whose values we do
not care about (they

might be non-zero,
but they are so

unimportant that
they do not deserve

names).

X̃ =




X ∗ ∗
∗ Y + ∗
∗ ∗ Y−


 .

We also define B̃,C̃ ∈MH
3n and Φ̃ :MH

3n→MH
3n as follows:

We use dots (·) to
denote entries equal

to 0.

B̃ =




I · ·
· −I ·
· · O


 , C̃ =



−C · ·
· −D ·
· · D


 , and

Φ̃
(
X̃
)

=




X +Ψ(Y +−Y−) · ·
· −X−Ψ(Y +−Y−) ·
· · −Φ(X)−Y + +Y−




After making this final substitution, the original linear program can be
written in primal standard form as follows:

−maximize: tr
(
C̃X̃
)

subject to: Φ̃
(
X̃
)
� B̃

X̃ � O

Some Less Obvious Conversions of SDPs
None of the transformations of optimization problems into SDPs in primal
standard form that we have seen so far are particularly surprising—they pretty
much just amount to techniques that are carried over from linear program-
ming, together with some facts about block diagonal matrices and a lot of
bookkeeping. However, one of the most remarkable things about semidefinite
programming is that it can be used to compute quantities that at first glance do
not even seem linear.

For example, recall the operator norm of a matrix A ∈Mm,n(F) (where
F = R or F = C), which is defined by

We investigated the
operator norm back

in Section 2.3.3. ‖A‖= max
v∈Fn

{
‖Av‖ : ‖v‖= 1

}
.
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As written, this quantity does not appear to be amenable to semidefinite pro-
gramming, since the quantity ‖Av‖ that is being maximized is not linear in v.
However, recall from Exercise 2.3.15 that if x ∈ R is a scalar then ‖A‖ ≤ x if
and only if [

xIm A
A∗ xIn

]
� O.

This leads immediately to the following semidefinite program for computing
the operator norm of A:

minimize: x
subject to:

[
xIm A
A∗ xIn

]
� O

x ≥ 0

(3.C.3)

To truly convince ourselves that this is a semidefinite program, we could
write it in the primal standard form of Definition 3.C.1 by defining B ∈MH

m+n,
C ∈MH

1 ,The set MH
1 consists

of the 1×1 Hermitian
matrices. That is, it

equals R, the set of
real numbers.

and Φ :MH
1 →MH

m+n by

B =

[
O A
A∗ O

]
, C =−1, and Φ(x) =

[
−xIm O

O −xIn

]
.

However, writing the SDP explicitly in standard form like this is perhaps not
terribly useful—once an optimization problem has been written in a form
involving a linear objective function and only linear entrywise and positive
semidefinite constraints, the fact that it is an SDP (i.e., can be converted into
primal standard form) is usually clear.

While computing the operator norm of a matrix via semidefinite program-
ming is not really a wise choice (it is much quicker to just compute it via the
fact that ‖A‖ equals the largest singular value of A), this same technique lets us
use the operator norm in the objective function or in the constraints of SDPs.
For example, if A ∈Mn then the optimization problem

In words, this SDP
finds the closest (in

the sense of the
operator norm) PSD
matrix to A that has
the same diagonal

entries as A.

minimize: ‖Y −A‖
subject to: y j, j = a j, j for all 1≤ j ≤ n

Y � O
(3.C.4)

is a semidefinite program, since it can be written in the form

minimize: x
subject to:

[
xIm Y −A

Y −A∗ xIn

]
� O

y j, j = a j, j for all 1≤ j ≤ n
x, Y � 0,

which in turn could be written in the primal standard form of Definition 3.C.1
if desired.

However, we have to be slightly more careful here than with our earlier
manipulations of SDPs—the fact that the optimization problem (3.C.4) is a
semidefinite program relies crucially on the fact that we are minimizing the
norm in the objective function. The analogous maximization problem is not
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a semidefinite program, since it would involve a maximization over Y and a
minimization over x—it would look something like

In the outer
maximization here,
we maximize over

the variable Y , and
in the inner

minimization, we
minimize over the

variable x (for each
particular choice of

fixed Y ).

maximize:





minimize: x
subject to:

[
xIm Y −A

Y −A∗ xIn

]
� O

x ≥ 0
subject to: y j, j = a j, j for all 1≤ j ≤ n

Y � O.

Optimization problems like this, which combine both maximizations and mini-
mizations, typically cannot be represented as semidefinite programs. Instead,
in an SDP we must maximize or minimize over all variables.

Remark 3.C.1
Semidefinite Programs

and Convexity

One way to think about the fact that we can use semidefinite programming
to minimize the operator norm, but not maximize it, is via the fact that it is
convex:
∥∥(1− t)A+ tB

∥∥≤ (1− t)‖A‖+ t‖B‖ for all A,B ∈Mm,n, 0≤ t ≤ 1.

Generally speaking,For an introduction
to convex functions,
see Appendix A.5.2.

We can think of
minimizing a convex

function just like
rolling a marble

down the side of a
bowl—the marble

never does anything
clever, but it finds

the global minimum
every time anyway.

convex functions are easy to minimize since their
graphs “open up”. It follows that any local minimum that they have is nec-
essarily a global minimum, so we can minimize them simply by following
any path on the graph that leads down, as illustrated below:

x

y

y= f (x)

y x

z
z= f (x,y)

However, finding the maximum of a convex function might be hard,
since there can be multiple different local maxima (for example, if we stand
at the bottom of the parabola above on the left and can only see nearby,
it is not clear if we should walk left or walk right to reach the highest
point in the plotted domain). For a similar reason,

Some standard
examples of

concave functions
include f (x) =

√
x

and g(x) = log(x).

concave functions (i.e.,
functions f for which − f is convex) are easy to maximize, since their
graphs “open down”.

Similarly, a constraint like ‖X‖ ≤ 2 in a semidefinite program is OK,
since the operator norm is convex and the upper bound of 2 just chops off
the irrelevant top portion of its graph (i.e., it does not interfere with con-
vexity, connectedness of the feasible region, or where its global minimum
is located). However, constraints like ‖X‖ ≥ 2 involving lower bounds
on convex functions are not allowed in semidefinite programs, since the
resulting feasible region might be extremely difficult to search over—it
could have holes and many different local minima.

There are similar semidefinite programs for computing, maximizing, mini-
mizing, and bounding many other linear algebraic quantities of interest, such
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as the Frobenius norm (well, its square anyway—see Exercise 3.C.9), the trace
norm (see Exercise 2.3.17 and the upcoming Example 3.C.5), or the maxi-
mum or minimum eigenvalue (see Exercise 3.C.3). However, we must also be
slightly careful about where we place these quantities in a semidefinite program.

Every norm is convex,
but not every norm
can be computed

via semidefinite
programming.

Norms are all convex, so they can be placed in a “minimize” objective function
or on the smaller half of a “≤” constraint, while the minimum eigenvalue is
concave and thus can be placed in a “maximize” objective function or on the
larger half of a “≥” constraint. The possible placements of these quantities are
summarized in Table 3.4.

We use λmax(X) and
λmin(X) to refer to
the maximal and

minimal eigenvalues
of X , respectively (in

order to use these
functions, X must be
Hermitian so that its

eigenvalues are
real).

Function Convexity Objective func. Constraint type

‖X‖ convex min. “≤”
‖X‖2

F convex min. “≤”
‖X‖tr convex min. “≤”

λmax(X) convex min. “≤”
λmin(X) concave max. “≥”

Table 3.4: A summary of the convexity/concavity of some functions of a matrix
variable X , as well as what type of objective function they can be placed in and
what type of constraint they can be placed on the left-hand-side of.

For example, the two optimization problems (where A ∈MH
n is fixed and

X ∈MH
n is the matrix variable)

minimize: λmax(X)
subject to: ‖A−X‖F ≤ 2

X � O

∣∣∣∣∣
maximize: λmin(A−X)
subject to: λmax(X)+‖X‖tr ≤ 1

X � O

are both semidefinite programs, whereas neither of the following two optimiza-
tion problems are:

The left problem is
not an SDP due to
the norm equality

constraint and the
right problem is not

an SDP due to
maximizing λmax.

minimize: tr(X)
subject to: ‖A−X‖tr = 1

X � O

∣∣∣∣∣
maximize: λmax(A−X)
subject to: X � A

X � O.

We also note that Table 3.4 is not remotely exhaustive. Many other linear
algebraic quantities, particularly those involving eigenvalues, singular val-
ues, and/or norms, can be incorporated into semidefinite programs—see Exer-
cises 3.C.10 and 3.C.13.

3.C.2 Geometric Interpretation and Solving

Semidefinite programs have a natural geometric interpretation that is com-
pletely analogous to that of linear programs. Recall that the feasible region of a
linear program is a convex polyhedron—a convex shape with flat sides—and
optimizing the objective function can be thought of as moving a line (or plane,
or hyperplane, ...) in one direction as far as possible while still intersecting the
feasible region. Furthermore, the optimal value of a linear program is always
attained at a corner of the feasible region, as indicated in Figure 3.5.

For semidefinite programs, all that changes is that the feasible region might
no longer be a polyhedron. Instead of having flat sides, the edges of the feasible
region might “bow out” (though it must still be convex)—we call these shapes
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z=−3

y− x≤ 1

x+ y≤ 3

y− x≤ 1

x

y

1 2 3 4

1

2

3

-1

-1

x+ y≤ 3

x

y

x+2y= 11

x+2y= 9

x+2y= 7

x+2y= 5

(x,y) = (1,2)

x+2y= 3

x+2y= 1x+2y=−1x+2y=−3

1 2 3 4

1

2

3

-1

-1

Figure 3.5: The feasible region of the linear program that asks us to maximize x+2y
subject to the constraints x+y≤ 3, y−x≤ 1, and x,y≥ 0. Its optimal value is 5, which
is attained at (x,y) = (1,2).

spectrahedra, and their boundaries are defined by polynomial equations (in
much the same way that the sides of polyhedra are defined by linear equations).

Since the objective function tr(CX) of a semidefinite program is linear, we
can still think of optimizing it as moving a line (or plane, or hyperplane, ...)
in one direction as far as possible while still intersecting the feasible region.
However, because of its bowed out sides, the optimal value might no longer be
attained at a corner of the feasible region.In fact, the feasible

region of an SDP
might not even have

any corners—it
could be a filled

circle or sphere, for
example.

For example, consider the following
semidefinite program in the variables x,y ∈ R:

maximize: x
subject to:

[
x+1 y

y 1

]
,

[
x y−1

y−1 3− x

]
� O

y ≥ 0.

(3.C.5)

The feasible region of this SDP is displayed in Figure 3.6, and its optimal value
is x = 3, which is attained on one of the curved boundaries of the feasible
region (not at one of its corners).

Sylvester’s criterion
(Theorem 2.2.6) can

turn any positive
semidefinite

constraint into a
family of polynomial

constraints in the
matrix’s entries. For

example,
Theorem 2.2.7 says

that
[

x+1 y
y 1

]
� O

if and only if
x+1≥ y2.

x+1≥ y2

x(3− x)≥ (y−1)2

x

y

1 2 3 4

1

2

3

-1

-1

x

y

x=−1 x= 1 x= 3

(x,y) = (3,1)

1 2 3 4

1

2

3

-1

-1

Figure 3.6: The feasible region of the semidefinite program (3.C.5). Its optimal value
is 3, which is attained at (x,y) = (3,1). Notably, this point is not a corner of the
feasible region.
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This geometric wrinkle that semidefinite programs have over linear pro-
grams has important implications when it comes to solving them. Recall that
the standard method of solving a linear program is to use the simplex method,
which works by jumping from corner to adjacent corner of the feasible region
so as to increase the objective

If the coefficients in
a linear program are
rational then so is its

optimal value. This
statement is not true

of semidefinite
programs.

function by as much as possible at each step.
This method relies crucially on the fact that the optimal value of the linear
program occurs at a corner of the feasible region, so it does not generalize
straightforwardly to semidefinite programs.

While the simplex method for linear programs always terminates in a finite
number of steps and can produce an exact description of its optimal value, no
such algorithm for semidefinite programs is known. There are efficient methods
for numerically approximating the optimal value of an SDP to any desired
accuracy, but these algorithms are not really practical to run by hand—they
are instead implemented by various computer software packages,

The CVX package
[CVX12] for MATLAB

and the CVXPY
package [DCAB18]

for Python can be
used to solve
semidefinite

programs, for
example (both

packages are free).

and we do
not explore these methods here. There are entire books devoted to semidefinite
programming (and convex optimization in general), so the interested reader
is directed to [BV09] for a more thorough treatment. We are interested in
semidefinite programming primarily for its duality theory, which often lets us
find the optimal solution of an SDP analytically.

3.C.3 Duality

Just as was the case for linear programs, semidefinite programs have a robust
duality theory. However, since we do not have simple methods for explicitly
solving semidefinite programs by hand like we do for linear programs, we will
find that duality plays an even more important role in this setting.

Definition 3.C.2
Dual of a

Semidefinite Program

Suppose B ∈MH
m, C ∈MH

n , Φ :MH
n →MH

m is linear, and X ∈MH
n and

Y ∈MH
m are matrix variables. The dual of a semidefinite program

The dual of the dual
of an SDP is itself.

maximize: tr(CX)
subject to: Φ(X)� B

X � O

is the semidefinite program

Four things “flip”
when constructing a

dual problem:
“maximize”

becomes “minimize”,
Φ turns into Φ∗, the

“�” constraint
becomes “�”, and B

and C switch spots.

minimize: tr(BY )
subject to: Φ∗(Y )� C

Y � O

The original semidefinite program in Definition 3.C.2 is called the pri-
mal problem, and the two of them together are called a primal/dual pair.
Although constructing the dual of a semidefinite program is a rather routine
and mechanical affair, keep in mind that the above definition only applies once
the SDP is written in primal standard form (fortunately, we already know how
to convert any SDP into that form). Also, even though we can construct the
adjoint Φ∗ of any linear map Φ :MH

n →MH
m via Corollary 3.A.5, it is often

quicker and easier to just “eyeball” a formula for the adjoint and then check
that it is correct.
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Example 3.C.3
Constructing the

Dual of an SDP

Construct the dual of the semidefinite program (3.C.3) that computes the
operator norm of a matrix A ∈Mm,n.

Solution:
Our first step is to write this SDP in primal standard form, which we

recall can be done by defining

B =

[
O A
A∗ O

]
, C =−1, and Φ(x) =

[
−xIm O

O −xIn

]
.

The adjoint of Φ is a linear map fromMH
m+n toMH

1 , and it must satisfy
Again, we use
asterisks (∗) to

denote entries that
are irrelevant for our

purposes.

tr
(

xΦ
∗
([

Y ∗
∗ Z

]))
= tr

(
Φ(x)

[
Y ∗
∗ Z

])

= tr

([
−xIm O

O −xIn

][
Y ∗
∗ Z

])
=−xtr(Y )− xtr(Z)

for all Y ∈MH
m and Z ∈MH

n . We can see from inspection that one map
(and thus the map) Φ∗ that works is given by the formulaRecall from

Theorem 1.4.8 that
adjoints are unique.

Φ
∗
([

Y ∗
∗ Z

])
=−tr(Y )− tr(Z).

It follows that the dual of the original semidefinite program has the
following form:The minus sign in

front of this
minimization comes

from the fact that
we had to convert

the original SDP from
a minimization to a

maximization in
order to put it into

primal standard form
(this is also why

C =−1 instead of
C = 1).

−minimize: tr

([
O A
A∗ O

][
Y X
X∗ Z

])

subject to:
[

Y X
X∗ Z

]
� O

− tr(Y )− tr(Z) ≥ −1

After simplifying things somewhat, this dual problem can be written in
the somewhat prettier (but equivalent) form

maximize: Re
(
tr(AX∗)

)

subject to:
[

Y −X
−X∗ Z

]
� O

tr(Y )+ tr(Z) ≤ 2

Just as is the case with linear programs, the dual of a semidefinite program
is remarkable for the fact that it can provide us with upper bounds on the
optimal value of the primal problem (and the primal problem similarly provides
lower bounds to the optimal value of the dual problem):

Theorem 3.C.1
Weak Duality

If X ∈MH
n is a feasible point of a semidefinite program in primal standard

form, and Y ∈MH
m is a feasible point of its dual problem, then tr(CX)≤

tr(BY ).
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Proof. Since Y and B−Φ(X) are both positive semidefinite, we know from
Exercise 2.2.19 that

Recall that
tr
(
Φ(X)Y

)
=

tr
(
XΦ∗(Y )

)
simply

because we are
working in the

Frobenius inner
product and Φ∗ is
(by definition) the
adjoint of Φ in this

inner product.

0≤ tr
(
(B−Φ(X))Y

)
= tr(BY )− tr

(
Φ(X)Y

)
= tr(BY )− tr

(
XΦ
∗(Y )

)
.

It follows that tr(BY )≥ tr
(
XΦ∗(Y )

)
. Then using the fact that X and Φ∗(Y )−C

are both positive semidefinite, a similar argument shows that

0≤ tr
(
X(Φ∗(Y )−C)

)
= tr

(
XΦ
∗(Y ))− tr(XC),

so tr
(
XΦ∗(Y ))≥ tr(XC). Stringing these two inequalities together shows that

tr(BY )≥ tr
(
XΦ
∗(Y )

)
≥ tr(XC) = tr(CX),

as desired. �

Weak duality not only provides us with a way of establishing upper bounds
on the optimal value of our semidefinite program, but it often also lets us easily
determine when we have found its optimal value. In particular, if we can find
feasible points of the primal and dual problems that give the same value when
plugged into their respective objective functions, they must be optimal, since
they cannot possibly be increased or decreased past each other (see Figure 3.7).

primal (maximize)

tr(CX)
dual (minimize)
tr(BY )

0-2 -1 1 2 3 4 5 6 7 8

Figure 3.7: Weak duality says that the objective function of the primal (maxi-
mization) problem cannot be increased past the objective function of the dual
(minimization) problem.

The following example illustrates how we can use this feature of weak
duality to solve semidefinite programs, at least in the case when they are simple
enough that we can spot what we think the solution should be. That is, weak
duality can help us verify that a conjectured optimal solution really is optimal.

Example 3.C.4
Solving an SDP via

Weak Duality

Use weak duality to solve the following SDP in the variable X ∈MH
3 :

maximize: tr






0 1 1
1 0 1
1 1 0


X




subject to: O � X � I

Solution:
The objective function of this semidefinite program just adds up the

off-diagonal entries of X ,Actually, the
objective function

adds up the real
parts of the

off-diagonal entries
of X .

and the constraint O � X � I says that every
eigenvalue of X is between 0 and 1 (see Exercise 3.C.3). Roughly speaking,
we thus want to find a PSD matrix X with small diagonal entries and large
off-diagonal entries. One matrix that seems to work fairly well is

X =
1
3




1 1 1
1 1 1
1 1 1


 ,
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which has eigenvalues 1, 0, and 0 (and is thus feasible), and produces a
value of 2 in the objective function.

To show that this choice of X is optimal, we construct the dual of this
SDP, which has the formThe map Φ in this

SDP is the identity, so
Φ∗ is the identity as

well. minimize: tr(Y )
subject to:

Y �




0 1 1
1 0 1
1 1 0




Y � O

Since the matrix on the right-hand-side of the constraint in this dual SDP
has eigenvalues 2, −1, and −1, we can find a positive semidefinite matrix
Y satisfying that constraint simply by increasing the negative eigenvalues
to 0 (while keeping the corresponding eigenvectors the same). That is, if
we have the spectral decompositionIn other words, we

choose Y to be the
positive semidefinite

part of



0 1 1
1 0 1
1 1 0


 ,

in the sense of
Exercise 2.2.16.

Explicitly,

Y =
2
3




1 1 1
1 1 1
1 1 1


 .




0 1 1
1 0 1
1 1 0


= U




2 0 0
0 −1 0
0 0 −1


U∗

then we choose

Y = U




2 0 0
0 0 0
0 0 0


U∗,

which has tr(Y ) = 2.
Since we have now found feasible points of both the primal and dual

problems that attain the same objective value of 2, we know that this must
in fact be the optimal value of both problems.

As suggested by the previous example, weak duality is useful for the fact
that it can often be used to solve a semidefinite program without actually
performing any optimization at all, as long as the solution is simple enough
that we can eyeball feasible points of each of the primal and dual problems that
attain the same value. We now illustrate how this procedure can be used to give
us new characterizations of linear algebraic objects.

Example 3.C.5
Using Weak Duality to

Understand an SDP
for the Trace Norm

Suppose A ∈Mm,n. Use weak duality to show that the following semidefi-
nite program in the variables X ∈MH

m and Y ∈MH
n computes ‖A‖tr (the

trace norm of A, which was introduced in Exercise 2.3.17):

minimize: (tr(X)+ tr(Y ))/2
subject to:

[
X A
A∗ Y

]
� O

X , Y � O

Solution:
To start, we append rows or columns consisting entirely of zeros to A

so as to make it square. Doing so does not affect ‖A‖tr or any substantial
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details of this SDP, but makes its analysis a bit cleaner.
To show that the optimal value of this SDP is bounded above by ‖A‖tr,

we just need to find a feasible point that attains this quantity in the objective
function. To this end, let A = UΣV ∗ be a singular value decomposition of
A. We then define X = UΣU∗ and Y = V ΣV ∗. Then

tr(X) = ‖UΣU∗‖tr = ‖Σ‖tr = ‖A‖tr, and
tr(Y ) = ‖V ΣV ∗‖tr = ‖Σ‖tr = ‖A‖tr,

so (tr(X)+ tr(Y ))/2 = ‖A‖tr and thus X and Y produce the desired value
in the objective function. Furthermore, X and Y are feasible since they are
positive semidefinite and so is

If A (and thus Σ) is
not square then

either U
√

Σ or V
√

Σ
∗

needs to be
padded with some

zero columns for this
decomposition to

make sense.

[
X A
A∗ Y

]
=

[
UΣU∗ UΣV ∗

V Σ∗U∗ V ΣV ∗

]
=

[
U
√

Σ

V
√

Σ
∗

][
U
√

Σ

V
√

Σ
∗

]∗
,

where
√

Σ is the entrywise square root of Σ.
To prove the opposite inequality (i.e., to show that this SDP is bounded

below by ‖A‖tr), we first need to construct its dual. To this end, we first
explicitly list the components of its primal standard form (3.C.2):

Here, C is negative
because the given

SDP is a minimization
problem, so we have

to multiply the
objective function

by −1 to turn it into a
maximization

problem (i.e., to put
it into primal

standard form).

B =

[
O A
A∗ O

]
, C =

−1
2

[
Im O
O In

]
, and Φ

([
X ∗
∗ Y

])
=

[
−X O
O −Y

]
.

It is straightforward to show that Φ∗ = Φ, so the dual SDP (after simplify-
ing a bit) has the form

maximize: Re
(
tr(AZ)

)

subject to:
[

X Z
Z∗ Y

]
� O

X , Y � I

Next, we find a feasible point of this SDP that attains the desired value
of ‖A‖tr in the objective function. If A has the singular value decomposition
A = UΣV ∗ then the matrixRecall that the fact

that Φ = Φ∗ means
that it is called

self-adjoint.
[

X Z
Z∗ Y

]
=

[
I VU∗

UV ∗ I

]

is a feasible point of the dual SDP, since X = I � I, Y = I � I, and the
fact that VU∗ is unitary tells us that ‖VU∗‖= 1 (by Exercise 2.3.5), so the
given block matrix is positive semidefinite (by Exercise 2.3.15). Then

Re
(
tr(AZ)

)
= Re

(
tr(UΣV ∗VU∗)

)
= Re

(
tr(Σ)

)
= tr(Σ) = ‖A‖tr,

which shows that ‖A‖tr is a lower bound on the value of this SDP. Since
we have now proved both bounds, we are done.
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Remark 3.C.2
Numerics Combined
with Duality Make a

Powerful Combination

The previous examples of solving SDPs via duality might seem somewhat
“cooked up” at first, especially since in Example 3.C.5 we were told what
the optimal value is, and we just had to verify it. In practice, we are
typically not told the optimal value of the SDP that we are working with
ahead of time. However, this is actually not a huge restriction, since we
can use computer software to numerically solve the SDP and then use that
solution to help us eyeball the analytic (non-numerical) solution.

To illustrate what we mean by this, consider the following semidefinite
program that maximizes over symmetric matrices X ∈MS

2 :

maximize: x1,1− x2,2
subject to: x1,1− x1,2 = 1/2

tr(X)≤ 1
X � O

It might be difficult to see what the optimal value of this SDP is, but
we can get a helpful nudge by using computer software to solve it and
find that the optimal value is approximately 0.7071, which is attained at a
matrix

X ≈
[

0.8536 0.3536
0.3536 0.1464

]
.

The optimal value looks like it is probably 1/
√

2 = 0.7071 . . ., and to
prove it we just need to find feasible matrices that attain this value in the
objective functions of the primal and dual problems.

The matrix X that works in the primal problem must haveAnother way to
guess the entries of
X would be to plug

the decimal
approximations of its
entries into a tool like
the Inverse Symbolic

Calculator [BBP95].

x1,1 +x2,2 ≤
1 (and the numerics above suggest that equality holds) and x1,1− x2,2 =
1/
√

2. Solving this 2×2 linear system gives x1,1 = (2+
√

2)/4 and x2,2 =
(2−
√

2)/4, and the constraint x1,1− x1,2 = 1/2 then tells us that x1,2 =√
2/4. We thus guess that the maximum value is obtained at the matrix

X =
1
4

[
2+
√

2
√

2√
2 2−

√
2

]
,

which indeed satisfies all of the constraints and produces an objective
value of 1/

√
2, so this is a lower bound on the desired optimal value.

To see that we cannot do any better (i.e., to show that 1/
√

2 is also an
upper bound), we construct the dual problem, which has the formYou are encouraged

to work through the
details of

constructing this
dual program

yourself.

minimize: y1 + y2/2
subject to:

[
y1 + y2 −y2/2
−y2/2 y1

]
�
[

1 0
0 −1

]

y1 ≥ 0

Similar to before, we can solve this SDP numerically to find that its optimal
value is also approximately 0.7071, and is attained when

y1 ≈ 0.2071 and y2 ≈ 1.000.
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We can turn this into an exact answer by guessing y2 = 1, which forces
y1 = (

√
2−1)/2 (since we want y1 + y2/2 = 1/

√
2). It is then a routine

calculation to verify that this (y1,y2) pair satisfies all of the constraints in
the dual problem and gives an objective value of 1/

√
2, so this is indeed

the optimal value of the SDP.

In the previous two examples, we saw that not only did the dual problem
serve as an upper bound on the primal problem, but rather we were able to
find particular feasible points of each problem that resulted in their objective
functions taking on the same value, thus proving optimality. The following
theorem shows that this phenomenon occurs with a great deal of generality—
there are simple-to-check conditions that guarantee that there must be feasible
points in each of the primal and dual problems that attain the optimal value in
their objective functions.

Before stating what these conditions are, we need one more piece of ter-
minology: we say that an SDP in primal standard form (3.C.2) is feasible if
there exists a matrix X ∈MH

n satisfying all of its constraints (i.e., X � O and
Φ(X)� B), and we say that it is strictly feasible if X can be chosen to make
both of those inequalities strict (i.e., X � O and Φ(X) ≺ B).

Recall that X � O
means that X is

positive definite (i.e.,
PSD and invertible)

and Φ(X)≺ B means
that B−Φ(X) is

positive definite.
Feasibility and

strict feasibility for problems written in the dual form of Definition 3.C.2 are
defined analogously. Geometrically, strict feasibility of an SDP means that its
feasible region has an interior—it is not a degenerate lower-dimensional shape
that consists only of boundaries and edges.

Theorem 3.C.2
Strong Duality

Suppose that both problems in a primal/dual pair of SDPs are feasible, and
at least one of them is strictly feasible. Then the optimal values of those
SDPs coincide. Furthermore,

a) if the primal problemThe conditions in this
theorem are

sometimes called
the Slater conditions

for strong duality.
There are other

(somewhat more
technical)

conditions that
guarantee that a

primal/dual pair
share their optimal

value as well.

is strictly feasible then the optimal value is
attained in the dual problem, and

b) if the dual problem is strictly feasible then the optimal value is
attained in the primal problem.

Since the proof of this result relies on some facts about convex sets that
we have not explicitly introduced in the main body of this text, we leave it
to Appendix B.3. However, it is worth presenting some examples to illustrate
what the various parts of the theorem mean and why they are important. To
start, it is worthwhile to demonstrate what we mean when we say that strict
feasibility implies that the optimal value is “attained” by the other problem in a
primal/dual pair.

Example 3.C.6
An SDP That

Does Not Attain
Its Optimal Value

Show that no feasible point of the following SDP attains its optimal value:

minimize: x
subject to:

[
x 1
1 y

]
� O

x, y ≥ 0.

Furthermore, explain why this phenomenon does not contradict strong
duality (Theorem 3.C.2).
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Solution:
Recall from Theorem 2.2.7Be careful: even if

the strong duality
conditions of

Theorem 3.C.2 hold
(i.e., the primal/dual

SDPs are strictly
feasible) and the

optimal value is
attained, that does

not mean that it is
attained at a strictly

feasible point.

that the matrix in this SDP is positive
semidefinite if and only if xy ≥ 1. In particular, this means that (x,y) =
(x,1/x) is a feasible point of this SDP for all x > 0, so certainly the optimal
value of this SDP cannot be bigger than 0. However, no feasible point has
x = 0, since we would then have xy = 0 6≥ 1. It follows that the optimal
value of this SDP is 0, but no feasible point attains that value—they just
get arbitrarily close to it.

The fact that the optimal value of this SDP is not attained does not
contradict Theorem 3.C.2 since the dual of this SDP must not be strictly
feasible. To verify this claim, we compute the dual SDP to have the
following form (after simplifying somewhat):

maximize: Re(z)
subject to:

O�
[

x −z
−z y

]
�
[

2 0
0 0

]

TheRecall from
Theorem 2.2.4 that

positive definite
matrices have strictly

positive diagonal
entries.

constraint in the above SDP forces y = 0, so there is no positive
definite matrix that satisfies it (i.e., this dual SDP is not strictly feasible).

There are also conditions other than those of Theorem 3.C.2 that can be
used to guarantee that the optimal value of an SDP is attained or its dual
has the same optimal value. For example, the Extreme Value Theorem from
real analysis says that every continuous function on a closed and bounded
set necessarily attains it maximum and minimum values. Since the objective
function of every SDP is linear (and thus continuous), and the feasible set of
every SDP is closed, we obtain the following criterion:

! If the feasible region of an SDP is non-empty and bounded, its
optimal value is attained.

On the other hand, notice that the feasible region of the SDP from Exam-
ple 3.C.6 is unbounded, since we can make x and y as large as we like in it (see
Figure 3.8).

xy≥ 1

x

y

1 2 3 4

1

2

3

-1

-1

x

x= 2 x= 4x= 0

1 2 3 4

1

2

3

-1

-1

Figure 3.8: The feasible region of the semidefinite program from Example 3.C.6.
The fact that the optimal value of this SDP is not attained corresponds to the fact
that its feasible region gets arbitrarily close to the line x = 0 but does not contain
any point on it.

In the previous example, even though the dual SDP was not strictly feasible,
the primal SDP was, so the optimal values of both problems were still forced
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to equal each other by Theorem 3.C.2 (despite the optimal value not actually
being attained in the primal problem). We now present an example that shows
that it is also possible for neither SDP to be strictly feasible, and thus for their
optimal values to differ.

Example 3.C.7
A Primal/Dual SDP
Pair with Unequal

Optimal Values

Show that the following primal/dual SDPs, which optimize over the vari-
ables X ∈MS

3 in the primal and y,z ∈R in the dual, have different optimal
values:

Primal
maximize: −x2,2
subject to: 2x1,3 + x2,2 = 1

x3,3 = 0
X � O

∣∣∣∣∣

Dual
minimize: y
subject to:




0 0 y
0 y+1 0
y 0 z


� O

Furthermore,

Verify on your own
that these problems
are indeed duals of

each other. explain why this phenomenon does not contradict strong
duality (Theorem 3.C.2).

Solution:
In the primal problem, the fact that x3,3 = 0 and X �O forces x1,3 = 0

as well. The first constraint then says that x2,2 = 1, so the optimal value of
the primal problem is −1.

In the dual problem, the fact that the top-left entry of the 3×3 PSD
matrix equals 0 forces y = 0,Recall from

Exercise 2.2.11 that if
a diagonal entry of
a PSD matrix equals
0 then so does that

entire row and
column.

so the optimal value of this dual problem
equals 0.

Since these two optimal values are not equal to each other, we know
from Theorem 3.C.2 that neither problem is strictly feasible. Indeed, the
primal problem is not strictly feasible since the constraint x3,3 = 0 ensures
that the entries in the final row and column of X all equal 0 (so X cannot
be invertible), and the dual problem is similarly not strictly feasible since
the 3×3 PSD matrix must have every entry in its first row and column
equal to 0.

In spite of semidefinite programs like those presented in the previous two
examples, most real-world SDPs (i.e., ones that are not extremely “cooked up”)
are strictly feasible and we can thus make use of strong duality.Recall that strong

duality holds (i.e.,
the optimal values

are attained and
equal in a

primal/dual pair) for
every linear

program.

That is, for
most SDPs it is the case that Figure 3.7 is somewhat misleading—it is not just
the case that the primal and dual programs bound each other, but rather they
bound each other “tightly” in the sense that their optimal values coincide (see
Figure 3.9).

primal (maximize)
tr(CX)

dual (minimize)
tr(BY )

0-2 -1 1 2 3 4 5 6 7 8

Figure 3.9: Strong duality says that, for many semidefinite programs, the objective
function of the primal (maximization) problem can be increased to the exact
same value that the objective function of the dual (minimization) problem can be
decreased to.

Furthermore, showing that strict feasibility holds for an SDP is usually
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quite straightforward. For example, to see that the SDP from Example 3.C.5 is
strictly feasible, we just need to observe that we can choose X and Y to each be
suitably large multiples of the identity matrix.

Example 3.C.8
Using Strong Duality

to Solve an SDP

Show that the following semidefinite program in the variables Y ∈MH
m,

Z ∈MH
n , and X ∈Mm,n(C) computes the operator norm of the matrix

A ∈Mm,n(C):

maximize: Re
(
tr(AX∗)

)

subject to:
[

Y −X
−X∗ Z

]
� O

tr(Y )+ tr(Z) ≤ 2

Solution:
Recall from Example 3.C.3 that this is the dual of the SDP (3.C.3) that

computes ‖A‖. It follows that the optimal value of this SDP is certainly
bounded above by ‖A‖, so there are two ways we could proceed:

• we could find a feasible point of this SDP that attains the conjectured
optimal value ‖A‖, and then note that the true optimal value must
be ‖A‖ by weak duality, orWe find a feasible

point attaining this
optimal value in

Exercise 3.C.8.
• we could show that the primal SDP (3.C.3) is strictly feasible, so

this dual SDP must attain its optimal value, which is the same as the
optimal value ‖A‖ of the primal SDP by strong duality.

We opt for the latter method—we show that the primal SDP (3.C.3) is
strictly feasible. To this end, we just note that if x is really, really large (in
particular, larger than ‖A‖) then x > 0 andWhen proving strong

duality, it is often
useful to just let the

variables be very big.
Try not to get hung

up on how big is big
enough to make

everything positive
definite, as long as it
is clear that there is

a big enough
choice that works.

[
xIm A
A∗ xIn

]
� O,

so the primal SDP (3.C.3) is strictly feasible and strong duality holds.
We do not need to, but we can also show that the dual SDP that we

started with is strictly feasible by choosing

Y = Im/m, Z = In/n, and X = O.

Remark 3.C.3
Unbounded and

Feasibility SDPs

Just like linear programs, semidefinite programs can be infeasible (i.e.,
have an empty feasible region) or unbounded (i.e., have an objective
function that can be made arbitrarily large). If a maximization problem is
unbounded then we say that its optimal value is ∞, and if it is infeasible
then we say that its optimal value is−∞ (and of course these two quantities
are swapped for minimization problems).

Weak duality immediately tells us that if an SDP is unbounded then
its dual must be infeasible, which leads to the following possible infeasi-
ble/unbounded/solvable (i.e., finite optimal value) pairings that primal and
dual problems can share:

The corresponding
table for linear

programs is identical,
except with a blank

in the
“infeasible/solvable”
cells. There exists an

infeasible SDP with
solvable dual (see

Exercise 3.C.4), but
no such pair of LPs

exists.
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Primal problem
Infeasible Solvable Unbounded

D
ua

l Infeasible X X X
Solvable X X ·

Unbounded X · ·

Allowing optimal values of ±∞ like this is particularly useful when
considering feasibility SDPs—semidefinite programs in which we are
only interested in whether or not a feasible point exists. For example,
suppose we wanted to know whether or not there was a way to fill in the
missing entries in the matrix

These entries can
indeed be filled in to

make this matrix
PSD—see

Exercise 3.C.7.




3 ∗ ∗ −2 ∗
∗ 3 ∗ −2 ∗
∗ ∗ 3 ∗ ∗
−2 −2 ∗ 3 −2
∗ ∗ ∗ −2 3




so as to make it positive semidefinite. This isn’t really an optimization
problem per se, but we can nonetheless write it as the following SDP:

maximize: 0
subject to: x j, j = 3 for all 1≤ j ≤ 5

xi, j =−2 for {i, j}= {1,4},{2,4},{4,5}
X � O

If such a PSD matrix exists, this SDP has optimal value 0, otherwise it is
infeasible and thus has optimal value −∞.

Exercises solutions to starred exercises on page 483

∗∗3.C.1 We now prove some of the basic properties of the
Loewner partial order. Suppose A,B,C ∈MH

n .

(a) Show that A� A.
(b) Show that if A� B and B� A then A = B.
(c) Show that if A� B and B�C then A�C.
(d) Show that if A� B then A+C � B+C.
(e) Show that A� B if and only if −A�−B.
(f) Show that A � B implies PAP∗ � PBP∗ for all

P ∈Mm,n(C).

3.C.2 Determine which of the following statements are
true and which are false.

∗(a) Every linear program is a semidefinite program.
(b) Every semidefinite program is a linear program.
∗(c) If A and B are Hermitian matrices for which A� B

then tr(A)≥ tr(B).
(d) If an SDP is unbounded then its dual must be infeasi-

ble.
∗(e) If an SDP is infeasible then its dual must be un-

bounded.

∗∗3.C.3 Suppose A ∈MH
n and c ∈ R. Let λmax(A) and

λmin(A) denote the maximal and minimal eigenvalue, re-
spectively, of A.

(a) Show that A� cI if and only if λmax(A)≤ c.
(b) Use part (a) to construct a semidefinite program that

computes λmax(A).
(c) Construct a semidefinite program that computes

λmin(A).

∗∗ 3.C.4 In this problem, we show that there are pri-
mal/dual pairs of semidefinite programs in which one prob-
lem is infeasible and the other is solvable. Consider the
following SDP involving the variables x,y ∈ R:

maximize: 0
subject to:

[
x+ y 0

0 x

]
�
[

0 1
1 0

]

x+ y≤ 0
x≥ 0

(a) Show that this SDP is infeasible.
(b) Construct the dual of this semidefinite program and

show that it is feasible and has an optimal value of 0.
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∗∗3.C.5 Suppose A,B ∈MH
n are positive semidefinite

and A� B.

(a) Provide an example to show that it is not necessarily
the case that A2 � B2.

(b) Show that, in spite of part (a), it is the case that
tr(A2)≥ tr(B2).
[Hint: Factor a difference of squares.]

3.C.6 Suppose A,B ∈MH
n are positive semidefinite and

A� B.

(a) Show that if A is positive definite then
√

A�
√

B.
[Hint: Use the fact that

√
B
√

A
−1

and
A−1/4

√
BA−1/4 are similar to each other, where

A−1/4 =
√√

A
−1

.]
(b) Use the techniques from Section 2.D.3 to show that√

A�
√

B even when A is just positive semidefinite.
You may use the fact that the principal square root
function is continuous on the set of positive semidef-
inite matrices.

∗∗3.C.7 Use computer software to solve the SDP from
Remark 3.C.3 and thus fill in the missing entries in the
matrix 



3 ∗ ∗ −2 ∗
∗ 3 ∗ −2 ∗
∗ ∗ 3 ∗ ∗
−2 −2 ∗ 3 −2
∗ ∗ ∗ −2 3




so as to make it positive semidefinite.

∗∗3.C.8 Find a feasible point of the semidefinite program
from Example 3.C.8 that attains its optimal value ‖A‖.

∗∗ 3.C.9 Let A ∈Mm,n(C). Show that the following
semidefinite program in the variable X ∈MH

n computes
‖A‖2

F:

minimize: tr(X)
subject to:

[
Im A
A∗ X

]
� O

X � O

[Hint: Either use duality and mimic Example 3.C.5, or use
the Schur complement from Section 2.B.1.]

3.C.10 Let A ∈Mm,n(C). Show that the following
semidefinite program in the variables X ,Y ∈MH

n computes
σ4

1 + · · ·+ σ4
r , where σ1, . . ., σr are the non-zero singular

values of A:

minimize: tr(Y )
subject to:

[
Im A
A∗ X

]
,

[
In X
X Y

]
� O

X , Y � O

[Hint: Solve Exercise 3.C.9 first, which computes σ2
1 + · · ·+

σ2
r , and maybe make use of Exercise 3.C.5.]

[Side note: A similar method can be used to construct
semidefinite programs that compute σ

p
1 + · · ·+σ

p
r whenever

p is an integer power of 2.]

[Side note: The quantity
(
σ

p
1 + · · ·+σ

p
r
)1/p is sometimes

called the Schatten p-norm of A.]

3.C.11 Let A ∈MH
n be positive semidefinite. Show

that the following semidefinite program in the variable
X ∈Mn(C) computes tr

(√
A
)

(i.e., the sum of the square
roots of the eigenvalues of A):

maximize: Re
(
tr(X)

)

subject to:
[

I X
X∗ A

]
� O

[Hint: Use duality or Exercises 2.2.18 and 3.C.6.]

∗∗3.C.12 Let C ∈MH
n and let k be a positive integer such

that 1≤ k≤ n. Consider the following semidefinite program
in the variable X ∈MH

n :

maximize: tr(CX)
subject to: tr(X) = k

X � I
X � O

(a) Construct the dual of this semidefinite program.
(b) Show that the optimal value of this semidefinite pro-

gram is the sum of the k largest eigenvalues of C.
[Hint: Try to “eyeball” optimal solutions for the pri-
mal and dual problems.]

3.C.13 Let A ∈Mm,n(C). Construct a semidefinite pro-
gram for computing the sum of the k largest singular values
of A.

[Side note: This sum is called the Ky Fan k-norm of A.]

[Hint: The results of Exercises 2.3.14 and 3.C.12 may be
helpful.]

∗∗3.C.14 Recall that a linear map Φ : Mn →Mm is
called decomposable if there exist completely positive lin-
ear maps Ψ1,Ψ2 : Mn→Mm such that Φ = Ψ1 +T ◦Ψ2,
where T is the transpose map.

Construct a semidefinite program that determines whether
or not a given matrix-valued linear map Φ is decomposable.

∗∗3.C.15 Use computer software and the semidefinite pro-
gram from Exercise 3.C.14 to show that the map Φ : M2→
M4 from Exercise 3.A.21 is decomposable.

3.C.16 Use computer software and the semidefinite pro-
gram from Exercise 3.C.14 to show that the Choi map Φ

from Theorem 3.A.7 is not decomposable.

[Side note: We already demonstrated this claim “directly”
in the proof of that theorem.]
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∗∗3.C.17 Use computer software and the semidefinite pro-
gram from Exercise 3.C.14 to show that the map Φ : M2→
M4 from Exercise 3.A.22 is not decomposable.

[Side note: This map Φ is positive, so it serves as an example
to show that Theorem 3.A.8 does not hold when mn = 8.]

∗∗3.C.18 Recall from Section 3.B.3 that a biquadratic
form is a function q : Rm × Rn → R that can be writ-
ten in the form q(x,y) = xT Φ(yyT )x for some linear map
Φ : Mn(R)→Mm(R).

Construct a semidefinite program that determines whether
or not q can be written as a sum of squares of bilinear forms.

[Hint: Instead of checking q(x,y) = xT Φ(yyT )x for all x
and y, it suffices to choose finitely many vectors {xi} and
{y j} so that the sets {xixT

i } and {y jyT
j } span the set of

symmetric matrices.]



A. Mathematical Preliminaries

In this appendix, we present some of the miscellaneous bits of mathematical
knowledge that are not topics of advanced linear algebra themselves, but are
nevertheless useful and might be missing from the reader’s toolbox. We also
review some basic linear algebra from an introductory course that the reader
may have forgotten.

A.1 Review of Introductory Linear Algebra

Here we review some of the basics of linear algebra that we expect the reader to
be familiar with throughout the main text. We present some of the key results of
introductory linear algebra, but we do not present any proofs or much context.
For a more thorough presentation of these results and concepts, the reader is
directed to an introductory linear algebra textbook like [Joh20].

A.1.1 Systems of Linear Equations

One of the first objects typically explored in introductory linear algebra is a
system of linear equations (or a linear system for short), which is a collection
of 1 or more linear equations (i.e., equations in which variables can only be
added to each other and/or multiplied by scalars) in the same variables, like

y+3z = 3
2x+ y− z = 1
x+ y+ z = 2.

(A.1.1)

Linear systems can have zero, one, or infinitely many solutions, and one
particularly useful method of finding these solutions (if they exist) starts by
placing the coefficients of the linear system into a rectangular array called a
matrix. For example, the matrix associated with the linear system (A.1.1) isThe rows of a matrix

represent the
equations in the

linear system, and its
columns represent

the variables as well
as the coefficients
on the right-hand

side.




0 1 3 3
2 1 −1 1
1 1 1 2


 . (A.1.2)

We then use a method called Gaussian elimination or row reduction,
which works by using one of the three following elementary row operations
to simplify this matrix as much as possible:

Multiplication. Multiplying row j by a non-zero scalar c ∈ R, which we denote by cR j.
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Swap. Swapping rows i and j, which we denote by Ri↔ R j.
Addition. Replacing row i by (row i)+ c(row j), which we denote by Ri + cR j.

In particular, we can use these three elementary row operations to put any
matrix into reduced row echelon form (RREF), which means that it has the
following three properties:

• all rows consisting entirely of zeros are below the non-zero rows,Any matrix that has
the first two of these

three properties is
said to be in

(not-necessarily-
reduced) row
echelon form.

• in each non-zero row, the first non-zero entry (called the leading entry)
is to the left of any leading entries below it, and

• each leading entry equals 1 and is the only non-zero entry in its column.
For example, we can put the matrix (A.1.2) into reduced row echelon form

via the following sequence of elementary row operations:

Every matrix can be
converted into one,

and only one,
reduced row

echelon form.
However, there may

be many different
sequences of row

operations that get
there.




0 1 3 3
2 1 −1 1
1 1 1 2


 R1↔R3−−−−→




1 1 1 2
2 1 −1 1
0 1 3 3


 R2−2R1−−−−→




1 1 1 2
0 −1 −3 −3
0 1 3 3




−R2−−→




1 1 1 2
0 1 3 3
0 1 3 3


 R1−R2

R3−R2−−−−−→




1 0 −2 −1
0 1 3 3
0 0 0 0


 .

One of the useful features of reduced row echelon form is that the solutions
of the corresponding linear system can be read off from it directly. For example,
if we interpret the reduced row echelon form above as a linear system, the
bottom row simply says 0x+0y+0z = 0 (so we ignore it), the second row says
that y+3z = 3, and the top row says that x−2z =−1. If we just move the “z”
term in each of these equations over to the other side, we see that every solution
of this linear system has x = 2z− 1 and y = 3− 3z, where z is arbitrary (we
thus call z a free variable and x and y leading variables).

A.1.2 Matrices as Linear Transformations

One of the central features of linear algebra is that there is a one-to-one corre-
spondence between matrices and linear transformations. That is, every m×n
matrix A ∈Mm,n can be thought of as a function that sends x ∈ RnIn fact, vectors and

matrices do not
even need to have

real entries. Their
entries can come

from any “field” (see
the upcoming
Appendix A.4).

to the
vector Ax ∈ Rm. Conversely, every linear transformation T : Rn → Rm (i.e.,
function with the property that T (x+ cy) = T (x)+ cT (y) for all x,y ∈ Rn and
c ∈ R) can be represented by a matrix—there is a unique matrix A ∈Mm,n
with the property that Ax = T (x) for all x ∈ Rn. We thus think of matrices and
linear transformations as the “same thing”.

Linear transformations are special for the fact that they are determined
completely by how they act on the standard basis vectors

A linear
transformation is also

completely
determined by how
it acts on any other

basis of Rn.

e1,e2, . . . ,en, which
are the vectors with all entries equal to 0, except for a single entry equal to 1 in
the location indicated by the subscript (e.g., in R3 there are three standard basis
vectors: e1 = (1,0,0), e2 = (0,1,0), and e3 = (0,0,1)). In particular, Ae1, Ae2,
. . ., Aen are exactly the n columns of A, and those n vectors form the sides of
the parallelogram/ parallelepiped/hyperparallelepiped that the unit square/cube/
hypercube is mapped to by A (see Figure A.1).

In particular, linear transformations act “uniformly” in the sense that they
send a unit square/cube/hypercube grid to a parallelogram/parallelepiped/
hyperparallelepiped grid without distorting any particular region of space more
than other regions of space.
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Squares are
mapped to

parallelograms in R2,
cubes are mapped

to parallelepipeds in
R3, and so on.

x

y

v

e2

e1

A−−→

x

y

Av

Ae2

Ae1

Figure A.1: A matrix A ∈M2 acts as a linear transformation on R2 that transforms a
square grid with sides e1 and e2 into a grid made up of parallelograms with sides Ae1
and Ae2 (i.e., the columns of A). Importantly, A preserves which cell of the grid each
vector is in (in this case, v is in the 2nd square to the right, 3rd up, and Av is similarly
in the 2nd parallelogram in the direction of Ae1 and 3rd in the direction of Ae2.

A.1.3 The Inverse of a Matrix

The inverse of a square matrix A ∈ Mn is a matrix A−1 ∈ Mn for which
AA−1 = A−1A = I (the identity matrix).In the n = 1 case, the

inverse of a 1×1
matrix (i.e., scalar) a

is just 1/a.

The inverse of a matrix is unique when
it exists, but not all matrices have inverses (even in the n = 1 case, the scalar 0
does not have an inverse). The inverse of a matrix can be computed by using
Gaussian elimination to row-reduce the block matrix [ A | I ] into its reduced
row echelon form [ I | A−1 ]. Furthermore, if the reduced row echelon form of
[ A | I ] has anything other than I in the left block, then A is not invertible.

A one-sided inverse of a matrix is automatically two-sidedWe show in
Remark 1.2.2 that

one-sided inverses
are not necessarily

two-sided in the
infinite-dimensional

case.

(that is, if either
of the equations AB = I or BA = I holds then the other necessarily holds as
well—we can deduce that B = A−1 based on just one of the two defining
equations). We can get some intuition for why this fact is true by thinking
geometrically—if AB = I then, as linear transformations, A simply undoes
whatever B does to Rn, and it perhaps seems believable that B similarly undoes
whatever A does (see Figure A.2).

v

x

y

A−−→

Av

x

y

A−1−−−→
A−1Av= v

x

y

Figure A.2: As a linear transformation, A−1 undoes what A does to vectors in Rn.
That is, A−1Av = v for all v ∈ Rn (and AA−1v = v too).

Row reducing a matrix is equivalent to multiplication on the left by an
invertible matrix in the sense that B ∈Mm,n can be obtained from A ∈Mm,n
via a sequence of elementary row operations if and only if there is an invertible
matrix P ∈ Mm such that B = PA. The fact that every matrix can be row-
reduced to a (unique) matrix in reduced row echelon form is thus equivalent to
the following fact:

! For every A ∈Mm,n, there exists an invertible P ∈Mm such
that A = PR, where R ∈Mm,n is the RREF of A.
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It is also useful to be familiar with the numerous different ways in which
invertible matrices can be characterized:

Theorem A.1.1
The Invertible

Matrix Theorem

Suppose A ∈Mn. The following are equivalent:
a) A is invertible.
b) AT is invertible.
c) The reduced row echelon form of A is I.
d) The linear system Ax = b has a solution for all b ∈ Rn.
e) The linear system Ax = b has a unique solution for all b ∈ Rn.
f) The linear system Ax = 0 has a unique solution (x = 0).
g) The columns of A are linearly independent.
h) The columns of A span Rn.
i) The columns of A form a basis of Rn.
j) The rows of A are linearly independent.The final four

characterizations
here concern rank,
determinants, and

eigenvalues, which
are the subjects of

the next three
subsections.

k) The rows of A span Rn.
l) The rows of A form a basis of Rn.

m) rank(A) = n (i.e., range(A) = Rn).
n) nullity(A) = 0 (i.e., null(A) = {0}).
o) det(A) 6= 0.
p) All eigenvalues of A are non-zero.

A.1.4 Range, Rank, Null Space, and Nullity

The range of a matrix A∈Mm,n is the subspace of Rm consisting of all possible
output vectors of A (when we think of it as a linear transformation), and its
null space is the subspace of Rn consisting of all vectors that are sent to the
zero vector:

range(A) def= {Av : v ∈ Rn} and null(A) def= {v ∈ Rn : Av = 0}.

The rank and nullity of A are the dimensions of its range and null space,
respectively. The following theorem summarizes many of the important proper-
ties of the range, null space, rank, and nullity that are typically encountered in
introductory linear algebra courses.

Theorem A.1.2
Properties of Range,

Rank, Null Space
and Nullity

Suppose A ∈Mm,n has columns v1,v2, . . . ,vn. Then:
a) range(A) = span(v1,v2, . . . ,vn).
b) range(AA∗) = range(A).
c) null(A∗A) = null(A).
d) rank(AA∗) = rank(A∗A) = rank(A∗) = rank(A).
e) rank(A)+nullity(A) = n.Property (e) is

sometimes called
the “rank-nullity

theorem”.

f) If B ∈Mn,p then range(AB)⊆ range(A).
g) If B ∈Mm,n then rank(A+B)≤ rank(A)+ rank(B).
h) If B ∈Mn,p then rank(AB)≤min{rank(A), rank(B)}.
i) If B ∈Mn,p has rank(B) = n then rank(AB) = rank(A).
j) rank(A) equals that number of non-zero rows in any row echelon

form of A.

We saw in Theorem A.1.1 that square matrices with maximal rank are
exactly the ones that are invertible. Intuitively, we can think of the rank of
a matrix as a rough measure of “how close to invertible” it is, so matrices
with small rank are in some sense the “least invertible” matrices out there. Of
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particular interest are matrices with rank 1, which are exactly the ones that can
be written in the form vwT , where v and w are non-zero column vectors. More
generally, a rank-r matrix can be written as a sum of r matrices of this form,
but not fewer:

Theorem A.1.3
Rank-One Sum
Decomposition

Suppose A ∈Mm,n. Then the smallest integer r for which there exist sets
of vectors {v j}r

j=1 ⊂ Rm and {w j}r
j=1 ⊂ Rn with

A =
r

∑
j=1

v jwT
j

is exactly r = rank(A).

This theorem works
just fine if we replace

R by an arbitrary
field F (see

Appendix A.4).

Furthermore, the sets {v j}r
j=1 and {w j}r

j=1 can be
chosen to be linearly independent.

A.1.5 Determinants and Permutations

The determinant of a matrix A ∈Mn, which we denote by det(A), is the area
(or volume, or hypervolume, depending on the dimension n)Actually, the

determinant of a
matrix can also be

negative—this
happens if A flips the
orientation of space

(i.e., reflects Rn

through some
(n−1)-dimensional

hyperplane).

of the output of
the unit square/cube/hypercube after it is acted upon by A (see Figure A.3). In
other words, it measures how much A expands space when acting as a linear
transformation—it is the ratio

volume of output region
volume of input region

.

x

y

e2

e1

A−−→

Ae1

Ae2

x

y

Figure A.3: A 2×2 matrix A stretches the unit square (with sides e1 and e2) into a
parallelogram with sides Ae1 and Ae2 (the columns of A). The determinant of A is
the area of this parallelogram.

This geometric interpretation of the determinant leads immediately to the
fact that it is multiplicative—stretching space by the product of two matrices
(i.e., the composition of two linear transformations) has the same effect as
stretching by the first one and then stretching by the second one:

Similarly, det(I) = 1
since the identity

matrix does not
stretch or squish

space at all.

! If A,B ∈Mn then det(AB) = det(A)det(B).

There are several methods for actually computing the determinant of a
matrix, but for our purposes the most useful method requires some brief
background knowledge of permutations. A permutation is a function σ :
{1,2, . . . ,n}→ {1,2, . . . ,n} with the property that σ(i) 6= σ( j) whenever i 6= j
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(i.e., σ can be thought of as shuffling around the integers 1,2, . . . ,n). A trans-
position is a permutation with two distinct values i, j such that σ(i) = j and
σ( j) = i, and σ(k) = k for all k 6= i, j (i.e., σ swaps two integers and leaves the
rest alone).Sn is often called the

symmetric group.
We denote the set of all permutations acting on {1,2, . . . ,n} by Sn.

Every permutation can be written as a composition of transpositions. We
define the sign of a permutation σ to be the quantity

sgn(σ) def= (−1)k, if σ can be written as a composition of k transpositions.

Importantly, even though every permutation can be written as a composition of
transpositions in numerous different ways, the number of transpositions used
always has the same parity (i.e., it is either always even or always odd), so the
sign of a permutation is well-defined.

With these details out of the way, we can now present a formula for com-
puting the determinant. Note that we state this formula as a theorem, but many
sources actually use it as the definition of the determinant:

Theorem A.1.4
Determinants via

Permutations

Suppose A ∈Mn. Then det(A) = ∑
σ∈Sn

sgn(σ)aσ(1),1aσ(2),2 · · ·aσ(n),n.

This theorem is typically not used for actual calculations in practice, as
much faster methods of computing the determinant are known. However, this
formula is useful for the fact that we can use it to quickly derive several
useful properties of the determinant. For example, swapping two columns of a
matrix has the effect of swapping the sign of each permutation in the sum in
Theorem A.1.4, which leads to the following fact:

! If B ∈Mn is obtained from A ∈Mn by swappingWe can replace
columns with rows in

both of these facts,
since det(AT ) = det(A)

for all A ∈Mn.

two of its
columns then det(B) =−det(A).

Similarly, the determinant is multilinear in the columns of the matrix it acts
on: it acts linearly on each column individually, as long as all other columns are
fixed. That is, much like we can “split up” linear transformations over vector
addition and scalar multiplication, we can similarly split up the determinant
over vector addition and scalar multiplication in a single column of a matrix:These properties of

the determinant
can be derived

from its geometric
interpretation as well,

but it’s somewhat
messy to do so.

! For all matrices A = [ a1 | · · · | an ] ∈Mn, all v,w ∈ Rn, and
all scalars c ∈ R, it is the case that

det
(
[ a1 | · · · | v+ cw | · · · | an ]

)

= det
(
[ a1 | · · · | v | · · · | an ]

)
+ c ·det

(
[ a1 | · · · | w | · · · | an ]

)
.

Finally, if A∈Mn is upper triangular then the only permutation σ for which
aσ(1),1aσ(2),2 · · ·aσ(n),n 6= 0 is the identity permutation (i.e., the permutation for
which σ( j) = j for all 1≤ j ≤ n), since every other permutation results in at
least one factor in the product aσ(1),1aσ(2),2 · · ·aσ(n),n coming from the strictly
lower triangular portion of A. This observation gives us the following simple
formula for the determinant of an upper triangular matrix:

This same result holds
for lower triangular

matrices as well.
! If A ∈Mn is upper triangular then det(A) = a1,1 ·a2,2 · · ·an,n.

A similar argument shows the slightly more general fact that if A is block

upper triangular with diagonal blocks A1, A2, . . ., Ak then det(A) =
k

∏
j=1

det(A j).
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A.1.6 Eigenvalues and Eigenvectors

If A∈Mn, v 6= 0 is a vector, λ is a scalar, and Av = λv,If we allowed v = 0
as an eigenvector

then every scalar λ

would be an
eigenvalue

corresponding to it.

then we say that v is an
eigenvector of A with corresponding eigenvalue λ . Geometrically, this means
that A stretches v by a factor of λ , but does not rotate it at all (see Figure A.4).
The set of all eigenvectors corresponding to a particular eigenvalue (together
with the zero vector) is always a subspace of Rn, which we call the eigenspace
corresponding to that eigenvalue. The dimension of an eigenspace is called the
geometric multiplicity of the corresponding eigenvalue.

This matrix does
change the

direction of any
vector that is not on
one of the two lines

displayed here. x

y

v2 = (1,1)v1 = (−1,1) A=

[
1 2

2 1

]

−−−−−−−−→
x

y

Av2 = 3v2

Av1 =−v1

Figure A.4: Matrices do not change the line on which any of their eigenvectors lie,
but rather just scale them by the corresponding eigenvalue. The matrix displayed
here has eigenvectors v1 = (−1,1) and v2 = (1,1) with corresponding eigenvalues
−1 and 3, respectively.

The standard method of computing a matrix’s eigenvalues is to construct
its characteristic polynomial pA(λ ) = det(A−λ I). This function pA really
is a polynomial in λ by virtue of the permutation formula for the determinant
(i.e., Theorem A.1.4). Furthermore, the degree of pA is n (the size of A), so
it has at most n real roots and exactly n complex roots counting multiplicity
(see the upcoming Theorem A.3.1). These roots are the eigenvalues of A, and
the eigenvectors v that they correspond to can be found by solving the linear
system (A−λ I)v = 0 for each eigenvalue λ .

Example A.1.1
Computing the

Eigenvalues and
Eigenvectors of a

Matrix

Compute all of the eigenvalues and corresponding eigenvectors of the
matrix A =

[
1 2
5 4

]
.

Solution:
To find the eigenvalues of A, we first compute

For a 2×2 matrix, the
determinant is simply

det

([
a b
c d

])
= ad−bc.

the characteristic poly-
nomial pA(λ ) = det(A−λ I):

pA(λ ) = det(A−λ I) = det

([
1−λ 2

5 4−λ

])

= (1−λ )(4−λ )−10 = λ
2−5λ −6.

Setting this determinant equal to 0 then gives

λ
2−5λ −6 = 0 ⇐⇒ (λ +1)(λ −6) = 0

⇐⇒ λ =−1 or λ = 6,
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so the eigenvalues of A are λ =−1 and λ = 6. To find the eigenvectors
corresponding to these eigenvalues, we solve the linear systems (A+ I)v =
0 and (A−6I)v = 0, respectively:

λ =−1: In this case, we want to solve the linear system (A−λ I)v =
(A+ I)v = 0, which we can write explicitly as follows:

2v1 +2v2 = 0
5v1 +5v2 = 0

.

To solve this linear system, we use Gaussian elimination as
usual:

[
2 2 0
5 5 0

]
R2− 5

2 R1−−−−−→

[
2 2 0
0 0 0

]
.

It follows that v2 is a free variable and v1 is a leading variable with
v1 =−v2. The eigenvectors corresponding to the eigenvalue λ =−1
are thus the non-zero vectors of the form v = (−v2,v2) = v2(−1,1).

λ = 6: Similarly, we now want to solve the linear system (A−
λ I)v = (A−6I)v = 0, which we can do as follows:

[
−5 2 0
5 −2 0

]
R2+R1−−−−→

[
−5 2 0
0 0 0

]
.

It follows thatBy multiplying (2/5,1)
by 5, we could also

say that the
eigenvectors here

are the multiples of
(2,5), which is a
slightly cleaner

answer.

v2 is a free variable and v1 is a leading variable
with v1 = 2v2/5. The eigenvectors corresponding to the eigenvalue
λ = 6 are thus the non-zero vectors of the form v = (2v2/5,v2) =
v2(2/5,1).

The multiplicity of an eigenvalue λ as a root of the characteristic polynomial
is called its algebraic multiplicity, and the sum of all algebraic multiplicities
of eigenvalues of an n× n matrix is no greater than n (and it exactly equals
n if we consider complex eigenvalues). The following remarkable (and non-
obvious) fact guarantees that the sum of geometric multiplicities is similarly
no larger than n:

! The geometric multiplicity of an eigenvalue is never larger than
its algebraic multiplicity.

A.1.7 Diagonalization

One of the primary reasons that eigenvalues and eigenvectors are of interest
is that they let us diagonalize a matrix. That is, they give us a way of de-
composing a matrix A ∈Mn into the form A = PDP−1, where P is invertible
and D is diagonal. If the entries of P and D can be chosen to be real, we say
that A is diagonalizable over R. However, some real matrices A can only be
diagonalized if we allow P and D to have complex entries (see the upcoming
discussion of complex numbers in Appendix A.3). In that case, we say that A
is diagonalizable over C (but not over R).
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Theorem A.1.5
Characterization of

Diagonalizability

Suppose A ∈Mn. The following are equivalent:
a) A is diagonalizable over R (or C).
b) There exists a basis of Rn (or Cn) consisting of eigenvectors of A.
c) The sum of geometric multiplicities of the real (or complex) eigen-

values of A is n.
Furthermore, in any diagonalization A = PDP−1, the eigenvalues of A
are the diagonal entries of D and the corresponding eigenvectors are the
columns of P in the same order.

To get a feeling for why diagonalizations are useful, notice that computing
a large power of a matrix directly is quite cumbersome, as matrix multiplication
itself is an onerous process, and repeating it numerous times only makes it
worse. However, once we have diagonalized a matrix we can compute an
arbitrary power of it via just two matrix multiplications, since

Ak =
(
PD

P−1P = I︷ ︸︸ ︷
P−1)(PD

P−1P = I︷ ︸︸ ︷
P−1)(PD

···︷︸︸︷
P−1) · · ·

(
PDP−1)

︸ ︷︷ ︸
ktimes

= PDkP−1,

and Dk is trivial to compute (for diagonal matrices, matrix multiplication is the
same as entrywise multiplication).

Example A.1.2
Diagonalizing

a Matrix

Diagonalize the matrix A =
[

1 2
5 4

]
and then compute A314.

Solution:
We showed in Example A.1.1 that this matrix has eigenvalues λ1 =−1

and λ2 = 6 corresponding to the eigenvectors v1 = (−1,1) and v2 =
(2,5),We could have also

chosen v2 = (2/5,1),
but our choice here

is prettier. Which
multiple of each
eigenvector we

choose does not
matter.

respectively. Following the suggestion of Theorem A.1.5, we stick
these eigenvalues along the diagonal of a diagonal matrix D, and the
corresponding eigenvectors as columns into a matrix P in the same order:

D =

[
λ1 0
0 λ2

]
=

[
−1 0
0 6

]
and P =

[
v1 | v2

]
=

[
−1 2
1 5

]
.

It is straightforward to check that P is invertible, so Theorem A.1.5 tells
us that A is diagonalized by this D and P.

To compute A314, we first compute P−1 to beThe inverse of a 2×2
matrix is simply
[

a b
c d

]−1

=

1
det(A)

[
d −b
−c a

]
.

P−1 =
1
7

[
−5 2
1 1

]
.

We can then compute powers of A via powers of the diagonal matrix D in
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this diagonalization:

Since 314 is even,
(−1)314 = 1.

A314 = PD314P−1 =
1
7

[
−1 2
1 5

][
(−1)314 0

0 6314

][
−5 2
1 1

]

=
1
7

[
5+2 ·6314 −2+2 ·6314

−5+5 ·6314 2+5 ·6314

]
.

We close this section with a reminder of a useful connection between
diagonalizability of a matrix and the multiplicities of its eigenvalues:

! If a matrix is diagonalizable then, for each of its eigenvalues,
the algebraic and geometric multiplicities coincide.

A.2 Polynomials and Beyond

A (single-variable) polynomial is a function f : R→ R of the form

f (x) = apxp +ap−1xp−1 + · · ·+a2x2 +a1x+a0,

where a0,a1,a2, . . . ,ap−1,ap ∈ R areIt’s also OK to
consider polynomials

f : C→ C with
coefficients in C, or

even polynomials
f : F→ F, where F is

any field (see
Appendix A.4).

constants (called the coefficients of f ).
The highest power of x appearing in the polynomial is called its degree (so, for
example, the polynomial f above has degree p).

More generally, a multivariate polynomial is a function f : Rn→ R that
can be written as a linear combination of products of powers of the n input
variables. That is, there exist scalars {a j1,..., jn}, only finitely many of which are
non-zero, such that

f (x1, . . . ,xn) = ∑
j1,..., jn

a j1,..., jnx j1
1 · · ·x jn

n for all x1, . . . ,xn ∈ R.

The degree of a multivariate polynomial is the largest sum j1 + · · ·+ jn of
exponents in any of its terms. For example, the polynomials

f (x,y) = 3x2y−2y2 + xy+ x−3 and g(x,y,z) = 4x3yz4 +2xyz2−4y

have degrees equal to 2+1 = 3 and 3+1+4 = 8, respectively.

A.2.1 Monomials, Binomials and Multinomials

Two of the simplest types of polynomials are monomials, which consist of just
a single term (like 3x2 or −4x2y3z), and binomials, which consist of two terms
added together (like 3x2 +4x or 2xy2−7x3y).In other words, a

binomial is a sum of
two monomials.

If we take a power of a binomial
like (x+ y)p then it is often useful to know what the coefficient of each term in
the resulting polynomial is once everything is expanded out. For example, it is
straightforward to check that

(x+ y)2 = x2 +2xy+ y2 and

(x+ y)3 = x3 +3x2y+3xy2 + y3.
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More generally, we can notice that when we compute

(x+ y)p = (x+ y)(x+ y) · · ·(x+ y)︸ ︷︷ ︸
p times

by repeatedly applying distributivity of multiplication over addition, we get 2p

terms in total—we can imagine constructing these terms by choosing either
x or y in each copy of (x + y), so we can make a choice between 2 objects p
times.

However, when we expand (x + y)p in this way, many of the resulting
terms are duplicates of each other due to commutativity of multiplication. For
example, x2y = xyx = yx2. To count the number of times that each term is
repeated, we notice that for each integer 0≤ k ≤ p, the number of times that
xp−kyk is repeated equals the number of ways that we can choose y from k of
the p factors of the form (x+ y) (and thus x from the other p− k factors). This
quantity is denoted by

(p
k

)
and is given by the formula

p! is called “p
factorial”.

(
p
k

)
=

p!
k!(p− k)!

, where p! = p · (p−1) · · ·3 ·2 ·1.

This quantity
(p

k

)
is called a binomial coefficient (due to this connection

with binomials) and is read as “p choose k”. The following theorem states our
observations about powers of binomials and binomial coefficients a bit more
formally.

Theorem A.2.1
Binomial Theorem

Suppose p≥ 0 is an integer and x,y ∈ R. Then

(x+ y)p =
p

∑
k=0

(
p
k

)
xp−kyk.

Example A.2.1
Using the

Binomial Theorem

Expand the polynomial (x+2y)4.

Solution:
We start by computing the binomial coefficients that we will need:

Binomial coefficients
are symmetric:(p

k

)
=
( p

p−k

)
.

(
4
0

)
= 1,

(
4
1

)
= 4,

(
4
2

)
= 6,

(
4
3

)
= 4,

(
4
4

)
= 1.

Now that we have these quantities, we can just plug them into the binomial
theorem (but we are careful to replace y in the theorem with 2y):

As a strange edge
case, we note that

0! = 1. (x+2y)4 =
4

∑
k=0

(
4
k

)
x4−k(2y)k

= x4(2y)0 +4x3(2y)1 +6x2(2y)2 +4x1(2y)3 + x0(2y)4

= x4 +8x3y+24x2y2 +32xy3 +16y4.

More generally, we can use a similar technique to come up with an explicit
formula for the coefficients of powers of any polynomials—not just binomials.
In particular, when expanding out an expression like

(x1 + x2 + · · ·+ xn)p = (x1 + x2 + · · ·+ xn) · · ·(x1 + x2 + · · ·+ xn)︸ ︷︷ ︸
p times

,
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we find that the number of times that a particular term xk1
1 xk2

2 · · ·xkn
n occurs

equals the number of ways that we can choose x1Each of the p factors
must have some x j

chosen from it, so
k1 + k2 + · · ·+ kn = p.

from the p factors a total of
k1 times, x2 from the p factors a total of k2 times, and so on. This quantity is
called a multinomial coefficient, and it is given by

(
p

k1,k2, . . . ,kn

)
=

p!
k1!k2! · · · kn!

.

These observations lead to the following generalization of the binomial
theorem to multinomials (i.e., polynomials in general).

Theorem A.2.2
Multinomial Theorem

Suppose p≥ 0 and n≥ 1 are integers and x1,x2, . . . ,xn ∈ R. Then

(x1 + x2 + · · ·+ xn)p = ∑
k1+···+kn=p

(
p

k1,k2, . . . ,kn

)
xk1

1 xk2
2 · · ·xkn

n .

Example A.2.2
Using the

Multinomial Theorem

Expand the polynomial (x+2y+3z)3.

Solution:
We start by computing the multinomial coefficients that we will need:
(

3
1,1,1

)
= 6,

(
3

3,0,0

)
=
(

3
0,3,0

)
=
(

3
0,0,3

)
= 1, and

(
3

0,1,2

)
=
(

3
1,0,2

)
=
(

3
1,2,0

)

=
(

3
0,2,1

)
=
(

3
2,0,1

)
=
(

3
2,1,0

)
= 3.

Now that we have these quantities, we can just plug them into the multino-
mial theorem (but we replace y in the theorem with 2y and z withExpanding out

(x1 + · · ·+ xn)p results
in
(n+p−1

p

)
terms in

general (this fact
can be proved using

the method of
Remark 3.1.2). In this

example we have
n = p = 3, so we get(5

3

)
= 10 terms.

3z):

(x+2y+3z)3 = ∑
k+`+m=3

(
3

k, `,m

)
xk(2y)`(3z)m

= 6x1(2y)1(3z)1

+ x3(2y)0(3z)0 + x0(2y)3(3z)0 + x0(2y)0(3z)3

+3x0(2y)1(3z)2 +3x1(2y)0(3z)2 +3x1(2y)2(3z)0

+3x0(2y)2(3z)1 +3x2(2y)0(3z)1 +3x2(2y)1(3z)0

= 36xyz+ x3 +8y3 +27z3

+54yz2 +27xz2 +12xy2 +36y2z+9x2z+6x2y.

A.2.2 Taylor Polynomials and Taylor Series

Since we know so much about polynomials, it is often easier to approximate a
function via a polynomial and then analyze that polynomial than it is to directly
analyze the function that we are actually interested in. The degree-p polynomial
Tp : R→R that best approximates a function f : R→R near some value x = a
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is called its degree-p Taylor polynomial, and it has the formWe sometimes say
that these Taylor
polynomials are

centered at a. Tp(x) =
p

∑
n=0

f (n)(a)
n!

(x−a)n

= f (a)+ f ′(a)(x−a)+
f ′′(a)

2
(x−a)2 + · · ·+ f (p)(a)

p!
(x−a)p,

as

Be somewhat
careful with the n = 0

term: (x−a)0 = 1 for
all x.

long as f has p derivatives (i.e., f (p) exists).
For example, the lowest-degree polynomials that best approximate f (x) =

sin(x) near x = 0 are

T1(x) = T2(x) = x,

T3(x) = T4(x) = x− x3

3!
,

T5(x) = T6(x) = x− x3

3!
+

x5

5!
, and

T7(x) = T8(x) = x− x3

3!
+

x5

5!
− x7

7!
,

which are graphed in Figure A.5. In particular, notice that T1 is simply the
tangent line at the point (0,0), and T3, T5, and T7 provide better and better
approximations of f (x) = sin(x).

In general, the
graph of T0 is a

horizontal line going
through (a, f (a)) and
the graph of T1 is the

tangent line going
through (a, f (a)).

y= T1(x)

y= T3(x)

y= T5(x)

y= T7(x)

y= sin(x)
x

y

-6 -5 -4 -3 -2 -1 1 2 3 4 5 6

Figure A.5: The graphs of the first few Taylor polynomials of f (x) = sin(x). As the
degree of the Taylor polynomial increases, the approximation gets better.

To get a rough feeling for why Taylor polynomials provide the best approxi-
mation of a function near a point, notice that the first p derivatives of Tp(x) and
of f (x) agree with each other at x = a, so the local behavior of these functions
is very similar. The following theorem pins this idea down more precisely and
says that the difference between f (x) and Tp(x) behaves like (x−a)p+1, which
is smaller than any degree-p polynomial when x is sufficiently close to a:

Theorem A.2.3
Taylor’s Theorem

Suppose f : R→R is a (p+1)-times differentiable function. For all x and
a, there is a number c between x and a such that

f (x)−Tp(x) =
f (p+1)(c)
(p+1)!

(x−a)p+1.

A Taylor series is what we get if we consider the limit of the Taylor
polynomials as p goes to infinity. The above theorem tells us that, as long as
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f (p+1)(x) does not get too large near x = a, this limit converges to f (x) near
x = a, so we have

f (x) = lim
p→∞

Tp(x) =
∞

∑
n=0

f (n)(a)
n!

(x−a)n

= f (a)+ f ′(a)(x−a)+
f ′′(a)

2
(x−a)2 +

f ′′′(a)
3!

(x−a)3 + · · ·

For example, ex, cos(x), and sin(x) have the following Taylor series representa-
tions, which converge for all x ∈ R:

ex =
∞

∑
n=0

xn

n!
= 1+ x+

x2

2
+

x3

3!
+

x4

4!
+

x5

5!
+ · · · ,

cos(x) =
∞

∑
n=0

(−1)nx2n

(2n)!
= 1− x2

2
+

x4

4!
− x6

6!
+

x8

8!
−·· · , and

sin(x) =
∞

∑
n=0

(−1)nx2n+1

(2n+1)!
= x− x3

3!
+

x5

5!
− x7

7!
+

x9

9!
−·· ·

A.3 Complex Numbers

Many tasks in advanced linear algebra are based on the concept of eigenvalues
and eigenvectors, and thus require us to be able to find roots of polynomials
(after all, the eigenvalues of a matrix are exactly the roots of its characteris-
tic polynomial). Because many polynomials do not have real roots, much of
linear algebra works out much more cleanly if we instead work with “com-
plex” numbers—a more general type of number with the property that every
polynomial has complex roots (see the upcoming Theorem A.3.1).

To construct the complex numbers, we start by letting i be an object with
the property that i2 = −1. It is clear that i cannot be a real number, but we
nonetheless think of it like a number anyway, as we will see that we can
manipulate it much like we manipulate real numbers. We call any real scalar
multiple of i like 2i or −(7/3)i an imaginary number,The term

“imaginary” number
is absolutely awful.

These numbers are
no more

make-believe than
real numbers

are—they are both
purely mathematical

constructions and
they are both useful.

and they obey the
same laws of arithmetic that we might expect them to (e.g., 2i + 3i = 5i and
(3i)2 = 32i2 =−9).

We then let C, the set of complex numbers, be the set

C def=
{

a+bi : a,b ∈ R
}

in which addition and multiplication work exactly as they do for real numbers,
as long as we keep in mind that i2 =−1. We call a the real part of a+bi, and
it is sometimes convenient to denote it by Re(a+bi) = a. We similarly call b
its imaginary part and denote it by Im(a+bi) = b.

Remark A.3.1
Yes, We Can

Do That

It might seem extremely strange at first that we can just define a new
number i and start doing arithmetic with it. However, this is perfectly fine,
and we do this type of thing all the time—one of the beautiful things about
mathematics is that we can define whatever we like. However, for that
definition to actually be useful, it should mesh well with other definitions
and objects that we use.

Complex numbers are useful because they let us do certain things that
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we cannot do in the real numbers (such as find roots of all polynomials),
and furthermore they do not break any of the usual laws of arithmetic.
That is, we still have all of the properties like ab = ba, a+b = b+a, and
a(b+ c) = ab+ac for all a,b,c ∈ C that we would expect “numbers” to
have. That is, C is a “field” (just like R)—see Appendix A.4.

By way of contrast, suppose that we tried to do something similar to
add a new number that lets us divide by zero. If we let ε be a number with
the property that ε×0 = 1 (i.e., we are thinking of ε as 1/0 much like we
think of i as

√
−1), then we have

1 = ε×0 = ε× (0+0) = (ε×0)+(ε×0) = 1+1 = 2.

We thus cannot work with such a number without breaking at least one of
the usual laws of arithmetic.

As mentioned earlier, some polynomials like p(x) = x2− 2x + 2 do not
have real roots. However, one of the most remarkable theorems concerning
polynomials says that every polynomial, as long as it is not a constant function,
has complex roots.

For example,
p(x) = x2−2x+2 has

roots 1± i.

Theorem A.3.1
Fundamental Theorem

of Algebra

Every non-constant polynomial has at least one complex root.

Equivalently, the fundamental theorem of algebra tells us that every poly-
nomial can be factored as a product of linear terms, as long as we allow the
roots/factors to be complex numbers. That is, every degree-n polynomial p can
be written in the form

p(x) = a(x− r1)(x− r2) · · ·(x− rn),

where a is the coefficient of xn in p and r1, r2, . . ., rn are the (potentially
complex, and not necessarily distinct) roots of p.

The proof of this theorem is outside the scope of this book, so we direct the
interested reader to a book like [FR97] for various proofs and a discussion of
the types of techniques needed to establish it.

A.3.1 Basic Arithmetic and Geometry

For the most part, arithmetic involving complex numbers works simply how we
might expect it to. For example, to add two complex numbers together we just
add up their real and imaginary parts: (a+bi)+(c+di) = (a+ c)+(b+d)i,
which is hopefully not surprising (it is completely analogous to how we can
group and add real numbers and vectors). For example,

(3+7i)+(2−4i) = (3+2)+(7−4)i = 5+3i.

Similarly, to multiply two complex numbers together we just distribute
parentheses like we do when we multiply real numbers together, and we make
use of the fact that i2 =−1:Here we are making

use of the fact that
multiplication

distributes over
addition.

(a+bi)(c+di) = ac+bci+adi+bdi2 = (ac−bd)+(ad +bc)i.
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For example,

(3+7i)(4+2i) = (12−14)+(6+28)i =−2+34i.

Much like we think of R as a line, we can think of C as a plane, called the
complex plane. The set of real numbers takes the place of the x-axis (which we
call the real axis) and the set of imaginary numbers takes the place of the y-axis
(which we called the imaginary axis), so that the number a+bi has coordinates
(a,b) on that plane, as in Figure A.6.

a+bi
−2+2i

3− i

4+3i

−1− i
Re

Im

a

b

Figure A.6: The complex plane is a representation of the set C of complex numbers.

We can thus think of C much like we think of R2 (i.e., we think of the
complex number a+bi ∈ C as the vector (a,b) ∈ R2), but with a multiplica-
tion operation that we do not have on R2. With this in mind, we define the
magnitude of a complex number a+bi to be the quantity

The magnitude of a
real number is simply

its absolute value:
|a|=

√
a2.

|a+bi| def=
√

a2 +b2,

which is simply the length of the associated vector (a,b) (i.e., it is the distance
between a+bi and the origin in the complex plane).

A.3.2 The Complex Conjugate

One particularly important operation on complex numbers that does not have
any natural analog on the set of real numbers is complex conjugation, which
negates the imaginary part of a complex number and leaves its real part alone.
We denote this operation by putting a horizontal bar over the complex number
it is being applied to so that, for example,

3+4i = 3−4i, 5−2i = 5+2i, 3i =−3i, and 7 = 7.

Geometrically, complex conjugation corresponds to reflecting a number in the
complex plane through the real axis, as in Figure A.7.

Notice that applying
the complex

conjugate twice
simply undoes it:

a+bi = a−bi = a+bi.
After all, reflecting a

number or vector
twice returns it to

where it started.

Algebraically, complex conjugation is useful since many other common
operations involving complex numbers can be expressed in terms of it. For
example:

• The magnitude of a complex number z = a+bi can be written in terms
of the product of z with its complex conjugate: |z|2 = zz, since

zz = (a+bi)(a+bi) = (a+bi)(a−bi)

= a2 +b2 = |a+bi|2 = |z|2.
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a+bi

a+bi= a−bi

Re

Im

a

b

Figure A.7: Complex conjugation reflects a complex number through the real axis.

• The previous point tells us that we can multiply any complex number
by another one (its complex conjugate) to get a real number. We can
make use of this trick to come up with a method of dividing by complex
numbers:

In the first step here,
we just cleverly

multiply by 1 so as to
make the

denominator real.

a+bi
c+di

=
(

a+bi
c+di

)(
c−di
c−di

)

=
(ac+bd)+(bc−ad)i

c2 +d2 =
(

ac+bd
c2 +d2

)
+
(

bc−ad
c2 +d2

)
i.

• The real and imaginary parts of a complex number z = a + bi can be
computed via

Re(z) =
z+ z

2
and Im(z) =

z− z
2i

,

since

z+ z
2

=
(a+bi)+(a−bi)

2
=

2a
2

= a = Re(z) and

z− z
2i

=
(a+bi)− (a−bi)

2i
=

2bi
2i

= b = Im(z).

A.3.3 Euler’s Formula and Polar Form

Since we can think of complex numbers as points in the complex plane, we
can specify them via their length and direction rather than via their real and
imaginary parts. In particular, we can write every complex number in the form
z = |z|u, where |z| is the magnitude of z and u is a number on the unit circle in
the complex plane.

By recalling that every point on the unit circle in R2 has coordinates of
the form (cos(θ),sin(θ)) for some θ ∈ [0,2π),The notation

θ ∈ [0,2π) means
that θ is between 0

(inclusive) and 2π

(non-inclusive).

we see that every point on the
unit circle in the complex plane can be written in the form cos(θ)+ isin(θ), as
illustrated in Figure A.8.

It follows that we can write every complex number in the form z =
|z|(cos(θ) + isin(θ)). However, we can simplify this expression somewhat
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It is worth noting that
|cos(θ)+ isin(θ)|2 =
cos2(θ)+ sin2(θ) = 1,

so these numbers
really are on the unit

circle.

θ Re

Im

cos(θ)+ isin(θ)

cos(θ )

sin(θ )

Figure A.8: Every number on the unit circle in the complex plane can be written in
the form cos(θ)+ isin(θ) for some θ ∈ [0,2π).

by using the following Taylor series that we saw in Appendix A.2.2:

ex = 1+ x+
x2

2
+

x3

3!
+

x4

4!
+

x5

5!
+ · · · ,

cos(x) = 1 − x2

2!
+

x4

4!
−·· · , and

sin(x) = x − x3

3!
+

x5

5!
· · · .

In particular, if we plug x = iθ into the Taylor series for ex, then we see thatJust like these Taylor
series converge for
all x ∈ R, they also

converge for all x ∈C. eiθ = 1+ iθ − θ 2

2
− i

θ 3

3!
+

θ 4

4!
+ i

θ 5

5!
−·· ·

=
(

1− θ 2

2
+

θ 4

4!
−·· ·

)
+ i
(

θ − θ 3

3!
+

θ 5

5!
+ · · ·

)
,

which equals cos(θ)+ isin(θ). We have thus proved the remarkable fact, called
Euler’s formula, thatIn other words,

Re(eiθ ) = cos(θ) and
Im(eiθ ) = sin(θ). eiθ = cos(θ)+ isin(θ) for all θ ∈ [0,2π).

By making use of Euler’s formula, we see that we can write every complex
number z ∈ C in the form z = reiθ , where r is the magnitude of z (i.e., r = |z|)
and θ is the angle that z makes with the positive real axis (see Figure A.9). This
is called the polar form of z, and we can convert back and forth between the
polar form z = reiθ and its Cartesian form z = a+bi via the formulas

In the formula for θ ,
sign(b) =±1,

depending on
whether b is positive
or negative. If b < 0

then we get
−π < θ < 0, which
we can put in the

interval [0,2π) by
adding 2π to it.

a = r cos(θ) r =
√

a2 +b2

b = r sin(θ) θ = sign(b)arccos
(

a√
a2 +b2

)
.

There is no simple way to “directly” add two complex numbers that are
in polar form, but multiplication is quite straightforward: (r1eiθ1)(r2eiθ2) =
(r1r2)ei(θ1+θ2). We can thus think of complex numbers as stretched rotations—
multiplying by reiθ stretches numbers in the complex plane by a factor of r and
rotates them counter-clockwise by an angle of θ .

Because the polar form of complex numbers works so well with multipli-
cation, we can use it to easily compute powers and roots. Indeed, repeatedly
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a+bi = re
iθ

e
iθ

θ

r

Re

Im

a

b

Figure A.9: Every complex number can be written in Cartesian form a+bi and also
in polar form reiθ .

multiplying a complex number in polar form by itself gives (reiθ )n = rneinθ for
all positive integers n≥ 1. We thus see that every non-zero complex number
has at least n distinct n-th roots (and in fact, exactly n distinct n-th roots). In
particular, the n roots of z = reiθ are

You should try to
convince yourself
that raising any of
these numbers to

the n-th power results
in reiθ . Use the fact

that e2πi = e0i = 1.
r1/neiθ/n, r1/nei(θ+2π)/n, r1/nei(θ+4π)/n, . . . , r1/nei(θ+2(n−1)π)/n.

Example A.3.1
Computing

Complex Roots

Compute all 3 cube roots of the complex number z = i.

Solution:
We start by writing z in its polar form z = eπi/2, from which we see

that its 3 cube roots are

eπi/6, e5πi/6, and e9πi/6.

We can convert these three cube roots into Cartesian coordinates if we
want to, though this is perhaps not necessary:

eπi/6 = (
√

3+ i)/2, e5πi/6 = (−
√

3+ i)/2, and e9πi/6 =−i.

Geometrically, the cube root eπi/6 = (
√

3 + i)/2 of i lies on the unit
circle and has an angle one-third as large as that of i, and the other two
cube roots are evenly spaced around the unit circle:

π /6 Re

Im

-2 2

eπ i/2 = i

eπi/6 = (
√
3+ i)/2e5πi/6 = (−

√
3+ i)/2

e9πi/6 =−i

Among the n distinct n-th roots of a complex number z = reiθ ,

This definition of
principal roots

requires us to make
sure that θ ∈ [0,2π).

we call
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r1/neiθ/n its principal n-th root, which we denote by z1/n. The principal root
of a complex number is the one with the smallest angle so that, for example, if
z is a positive real number (i.e., θ = 0) then its principal roots are positive real
numbers as well. Similarly, the principal square root of a complex number is the
one in the upper half of the complex plane (for example, the principal square
root of −1 is i, not −i), and we showed in Example A.3.1 that the principal
cube root of z = eπi/2 = i is z1/3 = eπi/6 = (

√
3+ i)/2.

Remark A.3.2
Complex Numbers

as 2×2 Matrices

Complex numbers can actually be represented by real matrices. If we
define the 2×2 matrix

J =
[

0 −1
1 0

]
,

then it is straightforward to verify that J2 =−I (recall that we think of the
identity matrix I as the “matrix version” of the number 1). It follows that
addition and multiplication of the matrices of the form

aI +bJ =

[
a −b
b a

]

work exactly the same as they do for complex numbers. We can thus think
of the complex number a + bi as “the same thing” as the 2× 2 matrix
aI +bJ.

In the language of
Section 1.3.1, the set

of 2×2 matrices of
this special form is
“isomorphic” to C.
However, they are
not just isomorphic

as vector spaces,
but even as fields

(i.e., the field
operations of

Definition A.4.1 are
preserved).

This representation of complex numbers perhaps makes it clearer why
they act like rotations when multiplying by them: we can rewrite aI +bJ
as

aI +bJ =

[
a −b
b a

]
=
√

a2 +b2

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
,

where we recognize
√

a2 +b2 as the magnitude of the complex number
a + bi, and the matrix on the right as the one that rotates R2 counter-
clockwise by an angle of θ (here, θ is chosen so that cos(θ) = a/

√
a2 +b2

and sin(θ) = b/
√

a2 +b2).

A.4 Fields

Introductory linear algebra is usually carried out via vectors and matrices made
up of real numbers. However, most of its results and methods carry over just
fine if we instead make use of complex numbers, for example (in fact, much of
linear algebra works out better when using complex numbers rather than real
numbers).

This raises the question of what sets of “numbers” we can make use of in
linear algebra. In fact, it even raises the question of what a “number” is in the
first place. We saw in Remark A.3.2 that we can think of complex numbers
as certain special 2×2 matrices, so it seems natural to wonder why we think
of them as “numbers” even though we do not think of general matrices in the
same way.

The upcoming
definition generalizes
R in much the same

way that
Definition 1.1.1

generalizes Rn.

This appendix answers these questions. We say that a field is a set in which
addition and multiplication behave in the same way that they do in the set of
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real or complex numbers, so it is reasonable to think of it as being made up of
“numbers” or “scalars”.

Definition A.4.1
Field

Let F be a set with two operations called addition and multiplication.
We write the addition of a ∈ F and b ∈ F as a+b, and the multiplication
of a and b as ab.
If the following conditions hold for all a,b,c ∈ F then F is called a field:

a) a+b ∈ F (closure under addition)
b) a+b = b+a (commutativity of addition)
c) (a+b)+ c = a+(b+ c) (associativity of addition)
d) There is a zero element 0 ∈ F such that 0+a = a.
e) There is an additive inverse −a ∈ F such that a+(−a) = 0.
f)Notice that the first

five properties
concern addition,

the next five
properties concern
multiplication, and

the final property
combines them.

ab ∈ F (closure under multiplication)
g) ab = ba (commutativity of multiplication)
h) (ab)c = a(bc) (associativity of multiplication)
i) There is a unit element 1 ∈ F such that 1a = a.
j) If a 6= 0, there is a multiplicative inverse 1/a ∈ F such that

a(1/a) = 1.
k) a(b+ c) = (ab)+(bc) (distributivity)

The sets R and C of real and complex numbers are of course fields (we
defined fields specifically so as to mimic R and C, after all). Similarly, it is
straightforward to show that the set Q of rational numbers—real numbers of
the form p/q where p and q 6= 0 are integers—is a field. After all, if a = p1/q1
and b = p2/q2 are rational then so are a + b = (p1q2 + p2q1)/(q1q2) and
ab = (p1 p2)/(q1q2), and all other field properties follow immediately from the
corresponding facts about real numbers.

This is analogous to
how we only need
to prove closure to

show that a
subspace is a vector

space
(Theorem 1.1.2)—all
other properties are

inherited from the
parent structure.

Another less obvious example of a field is the set Z2 of numbers with arith-
metic modulo 2. That is, Z2 is simply the set {0,1}, but with the understanding
that addition and multiplication of these numbers work as follows:

0+0 = 0 0+1 = 1 1+0 = 1 1+1 = 0, and
0×0 = 0 0×1 = 0 1×0 = 0 1×1 = 1.

In other words, these operations work just as they normally do, with the
exception that 1 + 1 = 0 instead of 1 + 1 = 2 (since there is no “2” in Z2).
Phrased differently, we can think of this as a simplified form of arithmetic that
only keeps track of whether or not a number is even or odd (with 0 for even
and 1 for odd). All field properties are straightforward to show for Z2, as long
as we understand that −1 = 1.

More generally, if p is a prime number then the set Zp = {0,1,2, . . . , p−1}
with arithmetic modulo p is a field. For example, addition and multiplication in
Z5 = {0,1,2,3,4} work as follows:

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

× 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1
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Again, all of the field properties of Zp are straightforward to show, with the
exception of property (j)—the existence of multiplicative inverses. The standard
way to prove this property is to use a theorem called Bézout’s identity, which
says that, for all 0≤ a < p,

Property (j) is why we
need p to be prime.

For example, Z4 is
not a field since 2
does not have a

multiplicative inverse.

we can find integers x and y such that ax+ py = 1.
We can rearrange this equation to get ax = 1− py, so that we can choose
1/a = x. For example, in Z5 we have 1/1 = 1, 1/2 = 3, 1/3 = 2, and 1/4 = 4
(with 1/2 = 3, for example, corresponding to the fact that the integer equation
2x+5y = 1 can be solved when x = 3).

A.5 Convexity

In linear algebra, the sets of vectors that arise most frequently are subspaces
(which are closed under linear combinations) and the functions that arise most
frequently are linear transformations (which preserve linear combinations). In
this appendix, we briefly discuss the concept of convexity, which is a slight
weakening of these linearity properties that can be thought of as requiring the
set or graph of the function to “not bend inward” rather than “be flat”.

A.5.1 Convex Sets

Roughly speaking,By a “real vector
space” we mean a

vector space over R.

a convex subset S of a real vector space V is one for which
every line segment between two points in S is also in S. The following definition
pins down this idea algebraically:

Definition A.5.1
Convex Set

Suppose V is a real vector space. A subset S⊆ V is called convex if

(1− t)v+ tw ∈ S whenever v,w ∈ S and 0≤ t ≤ 1.

ToIf we required
cv+dw ∈ S for all

c,d ∈ R then S would
be a subspace. The

restriction that the
coefficients are

non-negative and
add up to 1 makes

convex sets more
general.

convince ourselves that this definition captures the geometric idea
involving line segments between two points, we observe that if t = 0 then
(1− t)v + tw = v, if t = 1 then (1− t)v + tw = w, and as t increases from 0
to 1 the quantity (1− t)v+ tw travels along the line segment from v to w (see
Figure A.10).

v

w

t = 0 1

3 2

3
t = 1

v

w

Figure A.10: A set is convex (a) if all line segments between two points in that set
are contained within it, and it is non-convex (b) otherwise.

Another way of thinking about convex sets is as ones with no holes or sides
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that bend inward—their sides can be flat or bend outward only. Some standard
examples of convex sets include

• Any interval in R.
• Any subspace of a real vector space.
• Any quadrant in R2 or orthant in Rn.
• The set of positive (semi)definite matrices inMH

n

Recall that even
though the entries of

Hermitian matrices
can be complex,

MH
n is a real vector

space (see
Example 1.1.5).

(see Section 2.2).
The following theorem pins down a very intuitive, yet extremely powerful,

idea—if two convex sets are disjoint (i.e., do not contain any vectors in com-
mon) then we must be able to fit a line/plane/hyperplane (i.e., a flat surface that
cuts V into two halves) between them.

The way that we formalize this idea is based on linear forms (see Sec-
tion 1.3), which are linear transformations from V to R. We also make use of
open sets, which are sets of vectors that do not include any of their boundary
points (standard examples include any subinterval of R that does not include
its endpoints, and the set of positive definite matrices inMH

n ).

Theorem A.5.1
Separating

Hyperplane
Theorem

Suppose V is a finite-dimensional real vector space and S,T ⊆ V are
disjoint convex subsets of V , and T is open. Then there is a linear form
f : V → R and a scalar c ∈ R such that

f (y) > c≥ f (x) for all x ∈ S and y ∈ T.

In particular, the line/plane/hyperplane that separates the convex sets S
and T in this theorem is {v ∈ V : f (v) = c}.If c = 0 then this

separating
hyperplane is a

subspace of V (it is
null( f )). Otherwise, it

is a “shifted”
subspace (which are

typically called
affine spaces).

This separating hyperplane may
intersect the boundary of S and/or T , but because T is open we know that it
does not intersect T itself, which guarantees the strict inequality f (w) > c (see
Figure A.11).

f (v) = c+1

f (v) = c

f (v) = c−1

S

T

f (v) = c

S

T

Figure A.11: The separating hyperplane theorem (Theorem A.5.1) tells us (a) that
we can squeeze a hyperplane between any two disjoint convex sets. This is (b) not
necessarily possible if one of the sets is non-convex.

While the separating hyperplane theorem itself perhaps looks a bit abstract,
it can be made more concrete by choosing a particular vector space V and
thinking about how we can represent linear forms acting on V . For example,
if V = Rn then Theorem 1.3.3 tells us that for every linear form f : Rn→ R
there exists a vector v ∈Rn such that f (x) = v ·x for all x ∈Rn. It follows that,
in this setting, if S and T are convex and T is open then there exists a vector
v ∈ Rn and a scalar c ∈ R such that

In fact, v is exactly
the unique (up to

scaling) vector that
is orthogonal to the

separating
hyperplane. v ·y > c≥ v ·x for all x ∈ S and y ∈ T.
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Similarly, we know from Exercise 1.3.7 that for every linear form f :Mn→
R, there exists a matrix A ∈Mn such that f (X) = tr(AX) for all X ∈Mn. The
separating hyperplane theorem then tells us (under the usual hypotheses on S
and T ) that

tr(AY ) > c≥ tr(AX) for all X ∈ S and Y ∈ T.

A.5.2 Convex Functions

Convex functions generalize linear forms in much the same way that convex
sets generalize subspaces—they weaken the linearity (i.e., “flat”) condition in
favor of a convexity (i.e., “bend out”) condition.

Definition A.5.2
Convex Function

Suppose V is a real vector space and S⊆ V is a convex set. We say that a
function f : S→ R is convex if

f
(
(1− t)v+ tw

)
≤ (1− t) f (v)+ t f (w) whenever v,w ∈ S

and 0≤ t ≤ 1.

In the case when V = S = R, the above definition can be interpreted very
naturally in terms of the function’s graph: f is convex if and only if every line
segment between two points on its graph lies above the graph itself. Equiva-
lently, f is convex if and only if the region above its graph is a convex set (see
Figure A.12).

The region above a
function’s graph is

called its epigraph.

1 2 3 4

1

3

4

y = f (x)

x

y

(1− t)x1 + tx2

(1− t) f (x1)+ t f (x2)

≥ f (1− t)x1 + tx2

)

1 2 3 4

1

2

3

4

y = f (x)

x

y

Figure A.12: A function is convex if and only if (a) every line segment between two
points on its graph lies above its graph, if and only if (b) the region above its graph
is convex.

Some standard examples of convex functions include:
• The function f (x) = ex on R.
• Given any real p≥ 1, the function f (x) = xp on [0,∞).
• Any linear form on a real vector space.
• Any norm (see Section 1.D) on a real vector space, since the triangle

inequality and absolute homogeneity tell us that

‖(1− t)v+ tw‖ ≤ ‖(1− t)v‖+‖tw‖= (1− t)‖v‖+ t‖w‖.
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If f is a convex function then− f is called a concave function.Some introductory
calculus courses

refer to convex and
concave functions

as concave up and
concave down,

respectively.

Geometrically,
a concave function is one whose graph bends the opposite way of a convex
function—a line segment between two points on its graph is always below
the graph, and the region below its graph is a convex set (see Figure A.13).
Examples of concave functions include

• Given any real b > 1, the base-b logarithm f (x) = logb(x) on (0,∞).
• Given any real 0 < p≤ 1, the function f (x) = xp on [0,∞). For example,

if p = 1/2 then we see that f (x) =
√

x is concave.
• Any linear form on a real vector space. In fact, linear forms are exactly

the functions that are both convex and concave.

Figure A.13: A function is concave if and only if every line segment between two
points on its graph lies below its graph, if and only if the region below its graph is
convex.

The following theorem provides what is probably the simplest method of
checking whether or not a function of one real variable is convex, concave, or
neither.

Theorem A.5.2
Convexity of Twice-

Differentiable Functions

Suppose f : (a,b)→ R is twice differentiable and f ′′ is continuous. Then:
a) f is convex if and only if f ′′(x)≥ 0 for all x ∈ (a,b), and
b) f is concave if and only if f ′′(x)≤ 0 for all x ∈ (a,b).

For example, we can see that the function f (x) = x4 is convex on R since
f ′′(x) = 12x2 ≥ 0, whereas the natural logarithm g(x) = ln(x) is concave on
(0,∞) since g′′(x) =−1/x2 ≤ 0.Similarly, a function is

strictly convex if
f
(
(1− t)v+ tw

)
<

(1− t) f (v)+ t f (w)
whenever v 6= w and
0 < t < 1. Notice the

strict inequalities.

In fact, the second derivative of g(x) = ln(x)
is strictly negative, which tells us that any line between two points on its graph
is strictly below its graph—it only touches the graph at the endpoints of the
line segment. We call such a function strictly concave.

One of the most useful applications of the fact that the logarithm is (strictly)
concave is the following inequality that relates the arithmetic and geometric
means of a set of n real numbers:

Theorem A.5.3
Arithmetic Mean–
Geometric Mean

(AM–GM) Inequality

If x1, x2, . . ., xn ≥ 0 are real numbers then

n
√

x1x2 · · ·xn ≤
x1 + x2 + · · ·+ xn

n
.

Furthermore, equality holds if and only if x1 = x2 = · · ·= xn.

When n = 2, the AM–GM inequality just says that if x,y ≥ 0 then
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√
xy≤ (x+ y)/2, which can be proved “directly” by multiplying out the paren-

thesized term in the inequality (
√

x−√y)2 ≥ 0. To see why it holds when
n≥ 3, we use concavity of the natural logarithm:This argument only

works if each x j is
strictly positive, but

that’s okay because
the AM–GM

inequality is trivial if
x j = 0 for some

1≤ j ≤ n.

ln
(

x1 + x2 + · · ·+ xn

n

)
≥ 1

n

n

∑
j=1

ln(x j) =
n

∑
j=1

ln(x1/n
j ) = ln

(
n
√

x1x2 · · ·xn
)
.

Exponentiating both sides (i.e., raising e to the power of both sides of this
inequality) gives exactly the AM–GM inequality. The equality condition of the
AM–GM inequality follows from the fact that the logarithm is strictly convex.
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In this appendix, we prove some of the technical results that we made use of
throughout the main body of the textbook, but whose proofs are messy enough
(or unenlightening enough, or simply not “linear algebra-y” enough) that they
are hidden away here.

B.1 Equivalence of Norms

We mentioned near the start of Section 1.D that all norms on a finite-dimensional
vector space are equivalent to each other. That is, the statement of Theo-
rem 1.D.1 told us that, given any two norms ‖ · ‖a and ‖ · ‖b on V , there exist
real scalars c,C > 0 such that

c‖v‖a ≤ ‖v‖b ≤C‖v‖a for all v ∈ V .

We now prove this theorem.

Proof of Theorem 1.D.1. We first note that Exercise 1.D.28 tells us that it
suffices to prove this theorem in Fn (where F = R or F = C). Furthermore,
transitivity of equivalence of norms (Exercise 1.D.27) tells us that it suffices
just to show that every norm on Fn is equivalent to the usual vector length
(2-norm)The 2-norm is

‖v‖=
√
|v1|2 + · · ·+ |vn|2.

‖ · ‖, so the remainder of the proof is devoted to showing why this is
the case. In particular, we will show that any norm ‖ · ‖a is equivalent to the
usual 2-norm ‖ · ‖.

To see that there is a constant C > 0 such that ‖v‖a ≤C‖v‖ for all v ∈ Fn,
we notice that

Recall that e1, . . ., en
denote the standard

basis vectors in Fn.
‖v‖a = ‖v1e1 + · · ·+ vnen‖a (v in standard basis)

≤ |v1|‖e1‖a + · · ·+ |vn|‖en‖a (triangle ineq. for ‖ · ‖a)

≤
√
|v1|2 + · · ·+ |vn|2

√
‖e1‖2

a + · · ·+‖en‖2
a (Cauchy−Schwarz ineq.)

= ‖v‖
√
‖e1‖2

a + · · ·+‖en‖2
a . (formula for ‖v‖)

We can thus chooseThis might look like a
weird choice for C,

but all that matters is
that it does not
depend on the

choice of v.

C =
√
‖e1‖2

a + · · ·+‖en‖2
a .
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To see that there is similarly a constant c > 0 such that c‖v‖ ≤ ‖v‖a for
all v ∈ V , we need to put together three key observations. First, observe that it
suffices to show that c≤ ‖v‖a whenever v is such that ‖v‖= 1, since otherwise
we can just scale v so that this is the case and both sides of the desired inequality
scale appropriately.

Second, we notice that the function ‖ · ‖a is continuous on Fn, since the
inequality ‖v‖a ≤C‖v‖ tells us that if a limk→∞ vk = v thenSome details about

limits and continuity
can be found in

Section 2.D.2. lim
k→∞
‖vk−v‖= 0

=⇒ lim
k→∞
‖vk−v‖a = 0 ( lim

k→∞
‖vk−v‖a ≤C lim

k→∞
‖vk−v‖= 0)

=⇒ lim
k→∞
‖vk‖a = ‖v‖a. (reverse triangle ineq.: Exercise 1.D.6)

Third, we define

Sn =
{

v ∈ Fn : ‖v‖= 1
}
⊂ Fn,

which we can think of as the unit circle (or sphere, or hypersphere, depending
on n), as illustrated in Figure B.14, and we notice that this set is closed and
bounded.A closed and

bounded subset of
Fn is typically called

compact.

x

y

1

S
2

y

z

x

S
3

Figure B.14: The set Sn ⊂ Fn of unit vectors can be thought of as the unit circle, or
sphere, or hypersphere, depending on the dimension.

To put all of this together, we recall that the Extreme Value Theorem from
analysis

Continuous functions
also attain their

maximum value on
a closed and

bounded set, but we
only need the

minimum value.

says that every continuous function on a closed and bounded subset of
Fn attains its minimum value on that set (i.e., it does not just approach some
minimum value). It follows that the norm ‖ ·‖a attains a minimum value (which
we call c) on Sn, and since each vector in Sn is non-zero we know that c > 0.
We thus conclude that c ≤ ‖v‖a whenever v ∈ Sn, which is exactly what we
wanted to show. �

B.2 Details of the Jordan Decomposition

We presented the Jordan decomposition of a matrix in Section 2.4 and presented
most of the results needed to demonstrate how to actually construct it, but we
glossed over some of the details that guaranteed that our method of construction
always works. We now fill in those details.
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The first result that we present here demonstrates the claim that we made
in the middle of the proof of Theorem 2.4.5.

Theorem B.2.1
Similarity of Block

Triangular Matrices

If two matrices A ∈Mm(C) and C ∈Mn(C) do not have any eigenvalues
in common then, for all B ∈Mm,n(C), the following block matrices are
similar: [

A B
O C

]
and

[
A O
O C

]
.

Proof. Notice thatThe m and n in the
statement of this

theorem are not the
same as in

Theorem 2.4.5. In the
proof of that

theorem, they were
called d1 and d2,

respectively (which
are just any positive

integers).

if X ∈Mm,n(C) and

P =
[

I X
O I

]
then P−1 =

[
I −X
O I

]
,

and

P−1

[
A O
O C

]
P =

[
I −X
O I

][
A O
O C

][
I X
O I

]
=

[
A AX −XC
O C

]
.

It thus suffices to show that there exists a matrix X ∈Mm,n(C) such that
AX −XC = B.We provide another

proof that such an X
exists in Exercise 3.1.8.

Since B ∈Mm,n(C) is arbitrary, this is equivalent to showing
that the linear transformation T :Mm,n(C)→Mm,n(C) defined by T (X) =
AX−XC is invertible, which we do by showing that T (X) = O implies X = O.

To this end, suppose that T (X) = O, so AX = XC. Simply using associativ-
ity of matrix multiplication then shows that this implies

A2X = A(AX) = A(XC) = (AX)C = (XC)C = XC2, so
A3X = A(A2X) = A(XC2) = (AX)C2 = (XC)C2 = XC3,

and so on so that AkX = XCk for all k ≥ 1. Taking linear combinations of
these equations then shows that p(A)X = X p(C) for any polynomial, so if
we choose p = pA to be the characteristic polynomial of A then we see that
pA(A)X = X pA(C). Since the Cayley–Hamilton theorem (Theorem 2.1.3) tells
us that pA(A) = O, it follows that X pA(C) = O. Our next goal is to show that
pA(C) is invertible, which will complete the proof since we can then multiply
the equation X pA(C) = O on the right by pA(C)−1 to get X = O.

Well, if we denote the eigenvalues of A (listed according to algebraic
multiplicity) by λ1, λ2, . . ., λm, then

pA(C) = (C−λ1I)(C−λ2I) · · ·(C−λmI).

Notice that, for each 1≤ j ≤ m, the factor C−λ jI is invertible since λ j is not
an eigenvalue of C. It follows that their product pA(C) is invertible as well, as
desired. �

The next result that we present fills in a gap in the proof of Theorem 2.4.5
(the Jordan decomposition) itself. In our method of constructing this decompo-
sition, we needed a certain set that we built to be linearly independent. We now
verify that it is.

Theorem B.2.2
Linear Independence

of Jordan Chains

The set Bk from the proof of Theorem 2.4.1 is linearly independent.
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Proof. Throughout this proof, we use the same notation as in the proof of
Theorem 2.4.1, but before proving anything specific about Bk, we prove the
following claim:

Claim: If

Note that
span(S1∪S2) =S1 +S2
is the sum of S1 and

S2, which was
introduced in
Exercise 1.1.19.

S1,S2 are subspaces of Cn and x ∈ Cn is a vector for which x /∈
span(S1∪S2), then span({x}∪S1)∩ span(S2) = span(S1)∩ span(S2).
To see why this holds, notice that if {y1, . . . ,ys} and {z1, . . . ,zt} are
bases of S1 and S2, respectively, then we can write every member of
span({x}∪S1)∩ span(S2) in the form

bx+
s

∑
i=1

ciyi =
t

∑
i=1

dizi.

Moving the ciyi terms over to the right-hand side shows that bx ∈
span(S1∪S2). Since x /∈ span(S1∪S2), this implies b = 0, so this mem-
ber of span({x}∪S1)∩ span(S2) is in fact in span(S1)∩ span(S2).

With that out of the way, we now inductively prove that Bk is linearly
independent, assuming that Bk+1 is linearly independent (with the base case
of Bµ = {} trivially being linearly independent). Recall that Ck is constructed
specifically to be linearly independent. For convenience, we start by giving
names to the members of Ck:

Bk+1 = {v1,v2, . . . ,vp} and Ck\Bk+1 = {w1,w2, . . . ,wq}.

Now suppose that some linear combination of the members of Bk equals
zero:

p

∑
i=1

civi +
q

∑
i=1

k−1

∑
j=0

di, j(A−λ I) jwi = 0. (B.2.1)

Our goal is to show that this implies ci = di, j = 0 for all i and j. To this
end, notice that if we multiply the linear combination (B.2.1) on the left by
(A−λ I)k−1 then we get

0 = (A−λ I)k−1

(
p

∑
i=1

civi

)
+

q

∑
i=1

k−1

∑
j=0

di, j(A−λ I) j+k−1wi

= (A−λ I)k−1

(
p

∑
i=1

civi +
q

∑
i=1

di,0wi

)
,

(B.2.2)

where the second equality comes from the fact that (A− λ I) j+k−1wi = 0
whenever j ≥ 1, since Ck\Bk+1 ⊆ null

(
(A−λ I)k

)
⊆ null

(
(A−λ I) j+k−1

)
.

In other words, we have shown that ∑
p
i=1 civi + ∑

q
i=1 di,0wi ∈ null

(
(A−

λ I)k−1
)
, which we claim implies di,0 = 0 for all 1 ≤ i ≤ q. To see why this

is the case, we repeatedly use the Claim from the start of this proof with x
ranging over the members of Ck\Bk+1 (i.e., the vectors that we added one
at a time in Step 2 of the proof of Theorem 2.4.1), S1 = span(Bk+1), and
S2 = null

(
(A−λ I)k−1

)
to see that

span(Ck)∩null
(
(A−λ I)k−1)= span(Bk+1)∩null

(
(A−λ I)k−1)

⊆ span(Bk+1).
(B.2.3)

It follows that ∑
p
i=1 civi +∑

q
i=1 di,0wi ∈ span(Bk+1). Since Ck is linearly inde-

pendent, this then tells us that di,0 = 0 for all i.
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We now repeat the above argument, but instead of multiplying the linear
combination (B.2.1) on the left by (A−λ I)k−1, we multiply it on the left by
smaller powers of A−λ I. For example, if we multiply on the left by (A−λ I)k−2

then we get

0 = (A−λ I)k−2

(
p

∑
i=1

civi +
q

∑
i=1

di,0wi

)
+(A−λ I)k−1

(
q

∑
i=1

di,1wi

)

= (A−λ I)k−2

(
p

∑
i=1

civi

)
+(A−λ I)k−1

(
q

∑
i=1

di,1wi

)
,

where the first equality comes from the fact that (A−λ I) j+k−2wi = 0 whenever
j ≥ 2, and the second equality following from the fact that we already showed
that di,0 = 0 for all 1≤ i≤ q.

In other words, we have shown that ∑
p
i=1 civi + (A− λ I)∑

q
i=1 di,1wi ∈

null
(
(A−λ I)k−2

)
. If we notice that null

(
(A−λ I)k−2

)
⊆ null

(
(A−λ I)k−1

)

then it follows that ∑
p
i=1 civi + ∑

q
i=1 di,1wi ∈ null

(
(A−λ I)k−1

)
, so repeating

the same argument from earlier shows that di,1 = 0 for all 1≤ i≤ q.
Repeating this argument shows that di, j = 0 for all i and j, so the linear

combination (B.2.1) simply says that ∑
p
i=1 civi = 0. Since Bk+1 is linearly

independent, this immediately implies ci = 0 for all 1≤ i≤ p, which finally
shows that Bk is linearly independent as well. �

The final proof of this subsection shows that the way we defined analytic
functions of matrices (Definition 2.4.4) is actually well-defined. That is, we
now show that this definition leads to the formula of Theorem 2.4.6 regardless
of which value a we choose to center the Taylor series at, whereas we originally
just proved that theorem in the case when a = λ . Note that in the statement
of this theorem and its proof, we let Nn ∈ Mk(C) denote the matrix with
ones on its n-th superdiagonal and zeros elsewhere, just as in the proof of
Theorem 2.4.6.

Theorem B.2.3
Functions of

Jordan Blocks

Suppose Jk(λ ) ∈Mk(C) is a Jordan block and f : C→ C is analytic on
some open set D containing λ . Then for all a ∈ D we have

∞

∑
n=0

f (n)(a)
n!

(
Jk(λ )−aI

)n =
k−1

∑
j=0

f ( j)(λ )
j!

N j.

Proof. SinceThe left-hand side of
the concluding line

of this theorem is just
f
(
Jk(λ )

)
, and the

right-hand side is just
the large matrix

formula given by
Theorem 2.4.6.

Jk(λ ) = λ I +N1, we can rewrite the sum on the left as

∞

∑
n=0

f (n)(a)
n!

(
λ I +N1−aI

)n =
∞

∑
n=0

f (n)(a)
n!

(
(λ −a)I +N1

)n
.

Using the binomial theorem (Theorem A.2.1) then shows that this sum equals

∞

∑
n=0

f (n)(a)
n!

(
k

∑
j=0

(
n
j

)
(λ −a)n− jN j

)
.

Swapping the order of these sums and using the fact that
(n

j

)
= n!/((n− j)! j!)

then puts it into the form
We can swap the

order of summation
here because the

sum over n con-
verges

for each j.

k

∑
j=0

1
j!

(
∞

∑
n=0

f (n)(a)
(n− j)!

(λ −a)n− j

)
N j. (B.2.4)
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Since f is analytic we know that f (λ ) = ∑
∞
n=0

f (n)(a)
n! (λ − a)n. Further-

more, f ( j) must also be analytic, and replacing f by f ( j) in this Taylor series

shows that f ( j)(λ ) = ∑
∞
n=0

f (n)(a)
(n− j)! (λ −a)n− j. Substituting this expression into

Equation (B.2.4) shows that
Keep in mind that
Nk = O, so we can

discard the last term
in this sum.

k

∑
j=0

1
j!

(
∞

∑
n=0

f (n)(a)
(n− j)!

(λ −a)n− j

)
N j =

k

∑
j=0

f ( j)(λ )
j!

N j,

which completes the proof. �

B.3 Strong Duality for Semidefinite Programs

When discussing the duality properties of semidefinite programs in Section 3.C.3,
one of the main results that we presented gave some conditions under which
strong duality holds (this was Theorem 3.C.2). We now prove this theorem
by making use of the properties of convex sets that were outlined in Ap-
pendix A.5.1.

Throughout this section, we use the same notation and terminology as in
Section 3.C.3. In particular, A�B means that A−B is positive semidefinite, A�
B means that A−B is positive definite, and a primal/dual pair of semidefinite
programs is a pair of optimization problems of the following form, where
B ∈MH

m, C ∈MH
n , and Φ :MH

n →MH
m is linear:

X ∈MH
n and Y ∈MH

m
are matrix variables.

Primal
maximize: tr(CX)
subject to: Φ(X)� B

X � O

∣∣∣∣∣

Dual
minimize: tr(BY )
subject to: Φ∗(Y )� C

Y � O

We start by proving a helper theorem that does most of the heavy lifting
for strong duality. We note that we use the closely-related Exercises 2.2.20
and 2.2.21 in this proof, which tell us that A � O if and only if tr(AB) ≥ 0
whenever B � O, as well as some other closely-related variants of this fact
involving positive definite matrices.

Theorem B.3.1
Farkas Lemma

Suppose B ∈MH
m and Φ :MH

n →MH
m is linear. The following are equiv-

alent:
a) There does not exist O� X ∈MH

n such that Φ(X)≺ B.
b) There exists a non-zero O � Y ∈MH

m such that Φ∗(Y ) � O and
tr(BY )≤ 0.

Proof. To see that (b) implies (a), suppose that Y is as described in (b). Then if
a matrix X as described in (a) did exist, we would have

In particular, the first
and second

inequalities here use
Exercise 2.2.20.

0 < tr
(
(B−Φ(X))Y

)
(since Y 6= O,Y � O,B−Φ(X)� O)

= tr(BY )− tr
(
XΦ
∗(Y )

)
(linearity of trace, definition of adjoint)

≤ 0, (since X � O,Φ∗(Y )� O, tr(BY )≤ 0)

which is impossible, so such an X does not exist.
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For the opposite implication, we notice that if (a) holds then the set

S = {B−Φ(X) : X ∈MH
n is positive semidefinite}

is disjoint from the set T of positive definite matrices in MH
m. Since T is

open and both of these sets are convex, the separating hyperplane theorem
(Theorem A.5.1) tells us that there is a linear form f :MH

m→ R and a scalar
c ∈ R such that

f (Z) > c≥ f
(
B−Φ(X)

)

for all O� X ∈MH
n and all O≺ Z ∈MH

m. We know from Exercise 1.3.8 that
there exists a matrix Y ∈MH

m such that f (A) = tr(AY ) for all A ∈MH
m, so the

above string of inequalities can be written in the form

tr(ZY ) > c≥ tr
(
(B−Φ(X))Y

)
(separating hyperplane)

= tr(BY )− tr
(
XΦ
∗(Y )

)
(linearity of trace, definition of adjoint)

for all O� X ∈MH
n and all O≺ Z ∈MH

m.
It follows that Y 6= O (otherwise we would have 0 > c≥ 0, which is impos-

sible). We also know from Exercise 2.2.21(b) that the inequality tr(ZY ) > c for
all Z � O implies Y � O, and furthermore that we can choose c = 0. It follows
that 0 = c≥ tr(BY )− tr

(
XΦ∗(Y )

)
, so tr

(
XΦ∗(Y )

)
≥ tr(BY ) for all X �O. Us-

ing Exercise 2.2.21(a) then shows that Φ∗(Y )� O and that tr(BY )≤ 0, which
completes the proof. �

With the Farkas Lemma under our belt, we can now prove the main result
of this section, which we originally stated as Theorem 3.C.2, but we re-state
here for ease of reference.

Theorem B.3.2
Strong Duality

for Semidefinite
Programs

Suppose that both problems in a primal/dual pair of SDPs are feasible, and
at least one of them is strictly feasible. Then the optimal values of those
SDPs coincide. Furthermore,

a) if the primal problem is strictly feasible then the optimal value is
attained in the dual problem, and

b) if the dual problem is strictly feasible then the optimal value is
attained in the primal problem.

Proof. We just prove part (a) of the theorem, since part (b) then follows from
swapping the roles of the primal and dual problems.

Let α be the optimal value of the primal problem (which is not necessarily
attained). If we define Φ̃ :MH

n →MH
m+1 and B ∈MH

m+1 by

Φ̃(X) =

[
−tr(CX) 0

0 Φ(X)

]
and B̃ =

[
−α 0
0 B

]
,

then there does not exist O� X ∈MH
n such that Φ̃(X)≺ B̃ (since otherwise we

would have Φ(X)≺ B and tr(CX) > α , which would mean that the objective
function of the primal problem can be made larger than its optimal value α).
Applying Theorem B.3.1 to B̃ and Φ̃ then tells us that there exists a non-zero
O� Ỹ ∈MH

m+1 such that Φ̃∗(Ỹ )� O and tr(B̃Ỹ )≤ 0. If we write
We use asterisks (∗)

to denote entries of
Ỹ that are irrelevant

to us.

Ỹ =
[

y ∗
∗ Y

]
then Φ̃

∗(Ỹ ) = Φ
∗(Y )− yC.
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The inequality tr(B̃Ỹ )≤ 0 then tells us that tr(BY )≤ yα , and the constraint
Φ̃∗(Ỹ ) � O tells us that Φ∗(Y ) � yC.

Keep in mind that
Ỹ � O implies Y � O

and y≥ 0.

If y 6= 0 then it follows that Y/y is
a feasible point of the dual problem that produces a value in the objective
function no larger than α (and thus necessarily equal to α , by weak duality),
which is exactly what we wanted to find. All that remains is to show that y 6= 0,
so that we know that Y/y exists.

To pin down this final detail, we notice that if y = 0 then Φ∗(Y ) = Φ̃∗(Ỹ )�
O and tr(BY ) = tr(B̃Ỹ ) ≤ 0.If y = 0, we know that

Y 6= O since Ỹ 6= O.
Applying Theorem B.3.1 (to B and Φ this time)

shows that the primal problem is not strictly feasible, which is a contradiction
that completes the proof. �



C. Selected Exercise Solutions

Section 1.1: Vector Spaces and Subspaces

1.1.1 (a) Not a subspace. For example, if c = −1 and
v = (1,1) then cv = (−1,−1) is not in the set.

(c) Not a subspace. For example, I and −I are both
invertible, but I +(−I) = O, which is not invert-
ible.

(e) Not a subspace. For example, f (x) = x is in the
set, but 2 f is not since 2 f (2) = 4 6= 2.

(g) Is a subspace. If f and g are even functions
and c ∈ R then f +g and c f are even functions
too, since ( f + g)(x) = f (x)+ g(x) = f (−x)+
g(−x) = ( f + g)(−x) and (c f )(x) = c f (x) =
c f (−x) = (c f )(−x).

(i) Is a subspace. If f and g are functions in this
set, then ( f + g)′′(x)−2( f + g)(x) = ( f ′′(x)−
2 f (x))+(g′′(x)−2g(x)) = 0+0 = 0. Similarly,
if c ∈ R then (c f )′′(x)−2(c f )(x) = c( f ′′(x)−
2 f (x)) = c0 = 0.

(k) Is a subspace. If A and B both have trace
0 then tr(cA) = ctr(A) = 0 and tr(A + B) =
tr(A)+ tr(B) = 0 as well.

1.1.2 (a) Linearly independent, because every set con-
taining exactly one non-zero vector is linearly
independent (if there is only one vector v then
the only way for c1v = 0 to hold is if c1 = 0).

(c) Linearly dependent, since sin2(x)+cos2(x)=1.
(e) Linearly dependent, since the angle-sum

trigonometric identities tell us that

sin(x+1) = cos(1)sin(x)+ sin(1)cos(x).

We have thus written sin(x+1) as a linear com-
bination of sin(x) and cos(x) (since cos(1) and
sin(1) are just scalars).

(g) Linearly independent. To see this, consider the
equation

c1ex + c2xex + c3x2ex = 0.

This equation has to be true no matter what
value of x we plug in. Plugging in x = 0 tells
us that c1 = 0. Plugging in x = 1 (and us-
ing c1 = 0) tells us that c2e + c3e = 0, so
c2 + c3 = 0. Plugging in x = 2 (and using
c1 = 0) tells us that 2c2e2 + 4c3e2 = 0, so
c2 + 2c3 = 0. This is a system of two linear
equations in two unknowns, and it is straight-
forward to check that its only solution is
c2 = c3 = 0. Since we already showed that
c1 = 0 too, the functions are linearly indepen-
dent.

1.1.3 (a) Not a basis, since it does not span all of M2.
For example,
[

1 0
0 0

]
/∈ span

([
1 0
0 1

]
,

[
1 1
0 1

]
,

[
1 0
1 1

])
,

since any linear combination of the three matri-
ces on the right has both diagonal entries equal
to each other.

(c) Is a basis. To see this, we note that

c1

[
1 0
0 1

]
+ c2

[
1 1
0 1

]

+ c3

[
1 0
1 1

]
+ c4

[
1 1
1 0

]

=
[

c1 + c2 + c3 + c4 c2 + c4

c3 + c4 c1 + c2 + c3

]
.

To make this equal to a given matrix
[

a b
c d

]
,

we solve the linear system to get the unique
solution c1 = 2a−b− c−d, c2 =−a+b+d,
c3 = −a + c + d, c4 = a− d. This shows that
this set of matrices spans all of M2. Fur-
thermore, since this same linear system has
a unique solution when a = b = c = d = 0, we
see that this set is linearly independent, so it is
a basis.

(e) Not a basis, since the set is linearly dependent.
For example,

x2− x = (x2 +1)− (x+1).

(g) Is a basis. We can use the same technique
as in Example 1.1.15 to see that this set is
linearly independent. Specifically, we want
to know if there exist (not all zero) scalars
c0,c1,c2, . . . ,cn such that

c0 +c1(x−1)+c2(x−1)2 + · · ·+cn(x−1)n = 0.

Plugging in x = 1 shows that c0 = 0, and then
taking derivatives and plugging in x = 1 shows
that c1 = c2 = · · ·= cn = 0 as well, so the set
is linearly independent. The fact that this set
spans P follows either from the fact that we
can build a Taylor series for polynomials cen-
tered at x = 1, or from the fact that in a linear
combination of the form

c0 + c1(x−1)+ c2(x−1)2 + · · ·+ cn(x−1)n
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we can first choose cn to give us whatever coef-
ficient of xn we want, then choose cn−1 to give
us whatever coefficient of xn−1 we want, and
so on.

1.1.4 (b) True. Since V must contain a zero vector 0, we
can just define W = {0}.

(d) False. For example, let V = R2 and let B =
{(1,0)},C = {(2,0)}.

(f) False. For example, if V = P and B =
{1,x,x2, . . .} then span(B) = P , but there is
no finite subset of B whose span is all of P .

(h) False. The set {0} is linearly dependent (but
every other single-vector set is indeed linearly
independent).

1.1.5 Property (i) of vector spaces tells us that (−c)v =
(−1)(cv), and Theorem 1.1.1(b) tells us that
(−1)(cv) =−(cv).

1.1.7 All 10 of the defining properties from Definition 1.1.1
are completely straightforward and follow imme-
diately from the corresponding properties of F. For
example v+w = w+v (property (b)) for all v,w∈ FN

because v j +w j = w j + v j for all j ∈ N.

1.1.8 If A,B ∈MS
n and c ∈ F then (A+B)T = AT +BT =

A + B, so A + B ∈MS
n and (cA)T = cAT = cA, so

cA ∈MS
n .

1.1.10 (a) C is a subspace of F because if f ,g are con-
tinuous and c ∈ R then f + g and c f are also
continuous (both of these facts are typically
proved in calculus courses).

(b) D is a subspace of F because if f ,g are differ-
entiable and c ∈ R then f +g and c f are also
differentiable. In particular, ( f +g)′ = f ′+g′

and (c f )′ = c f ′ (both of these facts are typi-
cally proved in calculus courses).

1.1.11 If S is closed under linear combinations then cv ∈ S
and v + w ∈ S whenever c ∈ F and v,w ∈ S simply
because cv and v+w are both linear combinations of
members of S, so S is a subspace of V .
Conversely, if S is a subspace of V and v1, . . . ,vk ∈ S
then c jv j ∈ S for each 1 ≤ j ≤ k. Then repeat-
edly using closure under vector addition gives
c1v1 +c2v2 ∈ S , so (c1v1 +c2v2)+c3v3 ∈ S , and so
on to c1v1 + c2v2 + · · ·+ ckvk ∈ S.

1.1.13 The fact that {E1,1,E1,2, . . . ,Em,n} spans Mm,n is
clear: every matrix A ∈Mm,n can be written in the
form

A =
m

∑
i=1

n

∑
j=1

ai, jEi, j.

Linear independence of {E1,1,E1,2, . . . ,Em,n} follows
from the fact that if

m

∑
i=1

n

∑
j=1

ci, jEi, j = O

then 


c1,1 c1,2 · · · c1,n
c2,1 c2,2 · · · c2,n

...
...

. . .
...

cm,1 cm,2 · · · cm,n




= O,

so ci, j = 0 for all i, j.

1.1.14 (a) We check the two closure properties from
Theorem 1.1.2: if f ,g ∈ PO then ( f +
g)(−x) = f (−x) + g(−x) = − f (x)− g(x) =
−( f + g)(x), so f + g ∈ PO too, and if c ∈ R
then (c f )(−x) = c f (−x) = −c f (x), so c f ∈
PO too.

(b) We first notice that {x,x3,x5, . . .} ⊂ PO. This
set is linearly independent since it is a subset
of the linearly independent set {1,x,x2,x3, . . .}
from Example 1.1.16. To see that it spans PO,
we notice that if

f (x) = a0 +a1x+a2x2 +a3x3 + · · · ∈ PO

then f (x)− f (−x) = 2 f (x), so

2 f (x) = f (x)− f (−x)

= (a0 +a1x+a2x2 +a3x3 + · · ·)
− (a0−a1x+a2x2−a3x3 + · · ·)

= 2(a1x+a3x3 +a5x5 + · · ·).
It follows that f (x) = a1x+a3x3 +a5x5 + · · · ∈
span(x,x3,x5, . . .), so {x,x3,x5, . . .} is indeed
a basis of PO.

1.1.17 (a) We have to show that the following two proper-
ties hold for S1∩S2: (a) if v,w ∈ S1∩S2 then
v+w ∈ S1∩S2 as well, and (b) if v ∈ S1∩S2
and c ∈ F then cv ∈ S1 ∩S2.
For property (a), we note that v+w∈S1 (since
S1 is a subspace) and v+w ∈ S2 (since S2 is
a subspace). It follows that v+w ∈ S1 ∩S2 as
well.
Property (b) is similar: we note that cv ∈ S1
(since S1 is a subspace) and cv ∈ S2 (since S2
is a subspace). It follows that cv ∈ S1 ∩S2 as
well.

(b) If V = R2 and S1 = {(x,0) : x ∈ R}, S2 =
{(0,y) : y∈R} then S1∪S2 is the set of points
with at least one of their coordinates equal to 0.
It is not a subspace since (1,0),(0,1)∈S1∪S2
but (1,0)+(0,1) = (1,1) 6∈ S1 ∪S2.

1.1.19 (a) S1 + S2 consists of all vectors of the form
(x,0,0) + (0,y,0) = (x,y,0), which is the xy-
plane.

(b) We claim that MS
2 +MsS

2 is all of M2. To
verify this claim, we need to show that we can
write every 2×2 matrix as a sum of a symmet-
ric and a skew-symmetric matrix. This can be
done as follows:[

a b

c d

]
=

1
2

[
2a b+ c

b+ c 2d

]
+

1
2

[
0 b− c

c−b 0

]

[Note: We discuss a generalization of this fact
in Example 1.B.3 and Remark 1.B.1.]

(c) We check that the two properties of Theo-
rem 1.1.2 are satisfied by S1 +S2. For prop-
erty (a), notice that if v,w∈ S1 +S2 then there
exist v1,w1 ∈ S1 and v2,w2 ∈ S2 such that
v = v1 +v2 and w = w1 +w2. Then

v+w = (v1 +v2)+(w1 +w2)

= (v1 +w1)+(v2 +w2) ∈ S1 +S2.

Similarly, if c ∈ F then

cv = c(v1 +v2) = cv1 + cv2 ∈ S1 +S2,

since cv1 ∈ S1 and cv2 ∈ C2.
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1.1.20 If every vector in V can be written as a linear combina-
tion of the members of B, then B spans V by definition,
so we only need to show linear independence of B. To
this end, suppose that v ∈ V can be written as a linear
combination of the members of B in exactly one way:

v = c1v1 + c2v2 + · · ·+ ckvk

for some v1,v2, . . . ,vk ∈ B. If B were linearly depen-
dent, then there must be a non-zero linear combination
of the form

0 = d1w1 +d2w2 + · · ·+dmwm

for some w1,w2, . . . ,wm ∈ B. By adding these two
linear combinations, we see that

v = c1v1 + · · ·+ ckvk +d1w1 + · · ·+dmwm.

Since not all of the d j’s are zero, this is a different
linear combination that gives v, which contradicts
uniqueness. We thus conclude that B must in fact be
linearly independent.

1.1.21 (a) Since f1, f2, . . . , fn are linearly dependent, it
follows that there exist scalars c1,c2, . . . ,cn
such that

c1 f1(x)+ c2 f2(x)+ · · ·+ cn fn(x) = 0

for all x ∈R. Taking the derivative of this equa-
tion gives

c1 f ′1(x)+ c2 f ′2(x)+ · · ·+ cn f ′n(x) = 0,

taking the derivative again gives

c1 f ′′1 (x)+ c2 f ′′2 (x)+ · · ·+ cn f ′′n (x) = 0,

and so on. We thus see that

c1




f1(x)
f ′1(x)

f ′′1 (x)

...

f (n−1)
1 (x)




+ · · ·+ cn




fn(x)
f ′n(x)

f ′′n (x)

...

f (n−1)
n (x)




=




0
0
0

...
0




for all x ∈ R as well. This is equivalent to say-
ing that the columns of W (x) are linearly de-
pendent for all x, which is equivalent to W (x)
not being invertible for all x, which is equiva-
lent to det(W (x)) = 0 for all x.

(b) It is straightforward to compute W (x):

W (x) =




x ln(x) sin(x)
1 1/x cos(x)

0 −1/x2 −sin(x)


 .

Then

det(W (x)) = (−sin(x))+0− sin(x)/x2

+ cos(x)/x+ ln(x)sin(x)−0

= sin(x)(ln(x)−1−1/x2)+ cos(x)/x.

To prove linear independence, we just need to
find a particular value of x such that the above
expression is non-zero. Almost any choice of
x works: one possibility is x = π , which gives
det(W (x)) =−1/π .

(c) Notice that the k-th derivative of xk is the scalar
function k!, and every higher-order derivative
of xk is 0. It follows that W (x) is an upper
triangular matrix with 1,1!,2!,3!, . . . on its di-
agonal, so det(W (x)) = 1 ·1! ·2! · · ·n! 6= 0.

(d) We start by showing that det(W (x)) = 0 for all
x. First, we note that f ′2(x) = 2|x| for all x. To
see this, split it into three cases: If x > 0 then
f2(x) = x2, which has derivative 2x = 2|x|. If
x < 0 then f2(x) =−x2, which has derivative
−2x = 2|x|. If x = 0 then we have to use the
limit definition of a derivative

f ′2(0) = lim
h→0

f2(h)− f2(0)
h

= lim
h→0

h|h|−0
h

= lim
h→0
|h|= 0,

which also equals 2|x| (since x = 0). With that
out of the way, we can compute

det(W (x)) = det

([
x2 x|x|
2x 2|x|

])

= 2x2|x|−2x2|x|= 0

for all x ∈ R, as desired.
Now we will show that f1 and f2 are linearly
independent. To see this, suppose there exist
constants c1,c2 such that

c1x2 + c2x|x|= 0

for all x. Plugging in x = 1 gives the equation
c1 + c2 = 0, while plugging in x = −1 gives
the equation c1− c2 = 0. It is straightforward
to solve this system of two equations to get
c1 = c2 = 0, which implies that x2 and x|x| are
linearly independent.

1.1.22 The Wronskian of {ea1x,ea2x, . . . ,eanx} (see Exer-
cise 1.1.21) is

det







ea1x ea2x . . . eanx

a1ea1x a2ea2x . . . aneanx

a2
1ea1x a2

2ea2x . . . a2
neanx

...
...

. . .
...

an−1
1 ea1x an−1

2 ea2x . . . an−1
n eanx







=

ea1xea2x · · ·eanx det







1 1 . . . 1
a1 a2 . . . an

a2
1 a2

2 . . . a2
n

...
...

. . .
...

an−1
1 an−1

2 . . . an−1
n







,

with the equality coming from using multilinearity of
the determinant to pull ea1x out of the first column of
the matrix, ea2x out of the second column, and so on.
Since the matrix on the right is the transpose of a Van-
dermonde matrix, we know that it is invertible and thus
has non-zero determinant. Since ea1xea2x · · ·eanx 6= 0
as well, we conclude that the Wronskian is non-zero,
so this set of functions is linearly independent.
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Section 1.2: Coordinates and Linear Transformations

1.2.1 (a) [v]B = (1,5)/2 (c) [v]B = (1,4,2,3)

1.2.2 (b) One basis is {Ei,i : 1 ≤ i ≤ n}∪ {Ei, j + E j,i :
1 ≤ i < j ≤ n}. This set contains n + n(n−
1)/2 = n(n + 1)/2 matrices, so that is the di-
mension of V .

(d) One basis is {Ei, j−E j,i : 1≤ i < j ≤ n}. This
set contains n(n−1)/2 matrices, so that is the
dimension of V .

(f) One basis is {E j, j : 1≤ j ≤ n}∪{E j,k +Ek, j :
1 ≤ k < j ≤ n}∪{iE j,k − iEk, j : 1 ≤ j < k ≤
n}. This set contains n + n(n− 1)/2 + n(n−
1)/2 = n2 matrices, so that is the dimension of
V .

(h) One basis is {(x− 3),(x− 3)2,(x− 3)3}, so
dim(V) = 3.

(j) To find a basis, we plug an arbitrary polyno-
mial f (x) = a0 + a1x + a2x2 + a3x3 into the
equation that defines the vector space. If we do
this, we get

(a0 +a1x+a2x2 +a3x3)

− (a1x+2a2x2 +3a3x3) = 0,

so matching up powers of x shows that a0 = 0,
−a2 = 0, and −2a3 = 0. It follows that the
only polynomials in P3 satisfying the indicated
equation are those of the form a1x, so a basis
is {x} and V is 1-dimensional.

(l) V is 3-dimensional, since a basis is
{ex,e2x,e3x} itself. It spans V by definition,
so we just need to show that it is a linearly
independent set. This can be done by plug-
ging in 3 particular x values in the equation
c1ex + c2e2x + c3e3x and then showing that the
only solution is c1 = c2 = c3 = 0, but we just
note that it follows immediately from Exer-
cise 1.1.22.

1.2.3 (b) Is a linear transformation, since T (c f (x)) =
c f (2x− 1) = cT ( f (x)) and T ( f (x)+ g(x)) =
f (2x−1)+g(2x−1) = T ( f (x))+T (g(x)).

(d) Is a linear transformation, since RB(A+C) =
(A + C)B = AB + CB = RB(A) + RB(C) and
RB(cA) = (cA)B = c(AB) = cRB(A).

(f) Not a linear transformation. For example,
T (iA) = (iA)∗ =−iA 6= iA = iT (A).

1.2.4 (a) True. In fact, this is part of the definition of a
vector space being finite-dimensional.

(c) False. P3 is 4-dimensional (in general, P p is
(p+1)-dimensional).

(e) False. Its only basis is {}, which has 0 vectors,
so dim(V) = 0.

(g) False. It is a basis of P (the vector space of
polynomials).

(i) True. In fact, it is its own inverse since
(AT )T = A for all A ∈Mm,n.

1.2.5 (b) PC←B =
1
9



−1 5 −2
4 −2 −1
2 −1 4




(d) PC←B =




1 1 1 1
0 1 0 1
0 0 1 1
1 1 1 0




1.2.6 (b) Since

T (ax2 +bx+ c) = a(3x+1)2 +b(3x+1)+ c

= 9ax2 +(6a+3b)x+(a+b+ c),

we conclude that

[T ]D←B =




9 0 0
6 3 0
1 1 1


 .

(d) We return to this problem much later, in Theo-
rem 3.1.7. For now, we can solve it directly to
get

[T ]D←B =




0 −2 2 0
−3 −3 0 2
3 0 3 −2
0 3 −3 0


 .

1.2.8 We start by showing that this set is linearly indepen-
dent. To see why this is the case, consider the matrix
equation

n

∑
i=1

n

∑
j=i

ci, jSi, j = O.

The top row of the matrix on the left equals
(∑n

j=1 c1, j,c1,2,c1,3, . . . ,c1,n), so we conclude that
c1,2 = c1,3 = · · ·= c1,n = 0 and thus c1,1 = 0 as well.
A similar argument with the second row, third row,
and so on then shows that ci, j = 0 for all i and j, so B
is linearly independent.
We could use a similar argument to show that B spans
MS

n , but instead we just recall from Exercise 1.2.2
that dim(MS

n) = n(n + 1)/2, which is exactly the
number of matrices in B. It follows from the upcom-
ing Exercise 1.2.27(a) that B is a basis of MS

n .

1.2.10 (b) Let B = {ex sin(2x),ex cos(2x)} be a basis of
the vector space V = span(B) and let D : V →
V be the derivative map. We start by computing
[D]B:

D(ex sin(2x)) = ex sin(2x)+2ex cos(2x),

D(ex cos(2x)) = ex cos(2x)−2ex sin(2x).

It follows that

[D]B =

[
1 −2
2 1

]
.

The inverse of this matrix is

[D−1]B =
1
5

[
1 2
−2 1

]
.

Since the coordinate vector of ex sin(2x) is
(1,0), we then know that the coordinate vector
of
∫

ex sin(2x) dx is

1
5

[
1 2
−2 1

][
1
0

]
=

1
5

[
1
−2

]
.

It follows that
∫

ex sin(2x) dx = ex sin(2x)/5−
2ex cos(2x)/5+C.
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1.2.12 We prove this in the upcoming Definition 3.1.3, and
the text immediately following it.

1.2.13 If AT = λA then a j,i = λai, j for all i, j, so ai, j =
λ (λai, j) = λ 2ai, j for all i, j. If A 6= O then this im-
plies λ =±1. The fact that the eigenspaces are MS

n
and MsS

n follows directly from the defining properties
AT = A and AT =−A of these spaces.

1.2.15 (a) range(T ) = P2, null(T ) = {0}.
(b) The only eigenvalue of T is λ = 1, and the

corresponding eigenspace is P0 (the constant
functions).

(c) One square root is the transformation S : P2→
P2 given by S( f (x)) = f (x+1/2).

1.2.18 [D]B can be (complex) diagonalized as [D]B = PDP−1

via

P =

[
1 1
−i i

]
, D =

[
i 0
0 −i

]
.

It follows that

[D]1/2
B = PD1/2P−1

=
1√
2

P

[
1+ i 0

0 1− i

]
P−1

=
1√
2

[
1 −1
1 1

]
,

which is the same square root we found in Exam-
ple 1.2.19.

1.2.21 It then follows from Exercise 1.2.20(c) that
if {v1,v2, . . . ,vn} is a basis of V then
{T (v1),T (v2), . . . ,T (vn)} is a basis of W , so
dim(W ) = n = dim(V).

1.2.22 (a) Write B={v1,v2, . . .,vn} and give names to the
entries of [v]B and [w]B: [v]B = (c1,c2, . . . ,cn)
and [w]B = (d1,d2, . . . ,dn), so that

v = c1v1 + c2v2 + · · ·+ cnvn

w = d1v1 +d2v2 + · · ·+dnvn.

By adding these equations we see that

v+w = (c1 +d1)v1 + · · ·+(cn +dn)vn,

which means that [v+w]B=(c1+d1,c2+d2, . . . ,
cn+dn), which is the same as [v]B+[w]B.

(b) Using the same notation as in part (a), we have

cv = (cc1)v1 +(cc2)v2 + · · ·+(ccn)vn,

which means that [cv]B = (cc1,cc2, . . . ,cck),
which is the same as c[v]B.

(c) It is clear that if v = w then [v]B = [w]B. For
the converse, we note that parts (a) and (b)
tell us that if [v]B = [w]B then [v−w]B = 0, so
v−w = 0v1 + · · ·+0vn = 0, so v = w.

1.2.23 (a) By Exercise 1.2.22, we know that

c1v1 + c2v2 + · · ·+ cmvm = 0
if and only if

c1[v1]B + c2[v2]B + · · ·+ cm[vm]B
= [c1v1 + c2v2 + · · ·+ cmvm]B = [0]B = 0.

In particular, this means that {v1,v2, . . . ,vm} is
linearly independent if and only if c1 = c2 =
· · ·= cm = 0 is the unique solution to these equa-
tions, if and only if

{
[v1]B, [v2]B, . . . , [vm]B

}
⊂

Fn is linearly independent.

(b) Suppose v∈V . Then Exercise 1.2.22 tells us that

c1v1 + c2v2 + · · ·+ cmvm = v

if and only if

c1[v1]B + c2[v2]B + · · ·+ cm[vm]B
= [c1v1 + c2v2 + · · ·+ cmvm]B = [v]B.

In particular, we can find c1,c2, . . . ,cm to
solve the first equation if and only if we
can find c1,c2, . . . ,cm to solve the second
equation, so v ∈ span(v1,v2, . . . ,vm) if and
only if [v]B ∈ span

(
[v1]B, [v2]B, . . . , [vm]B

)
and

thus span(v1,v2, . . . ,vm) = V if and only if
span

(
[v1]B, [v2]B, . . . , [vm]B

)
= Fn.

(c) This follows immediately from combining
parts (a) and (b).

1.2.24 (a) If v,w ∈ range(T ) and c ∈ F then there ex-
ist x,y ∈ V such that T (x) = v and T (y) =
w. Then T (x + cy) = v + cw, so v + cw ∈
range(T ) too, so range(T ) is a subspace of w.

(b) If v,w ∈ null(T ) and c ∈ F then T (v+ cw) =
T (v) + cT (w) = 0 + c0 = 0, so v + cw ∈
null(T ) too, so null(T ) is a subspace of V .

1.2.25 (a) Wejustnotethatw∈ range(T ) ifandonlyifthere
exists v ∈ V such that T (v) = w, if and only if
there exists [v]B such that [T ]D←B[v]B = [w]D,
if and only if [w]D ∈ range([T ]D←B).

(b) Similar to part (a), v ∈ null(T ) if and only if
T (v) = 0, if and only if [T ]D←B[v]B = [0]B = 0,
if and only if [v]B ∈ null([T ]D←B).

(c) Using methods like in part (a), we can
show that if w1, . . . ,wn is a basis of
range(T ) then [w1]D, . . . , [wn]D is a ba-
sis of range([T ]D←B), so rank(T ) =
dim(range(T )) = dim(range([T ]D←B)) =
rank([T ]D←B).

(d) Using methods like in part (b), we can
show that if v1, . . . ,vn is a basis of
null(T ) then [v1]B, . . . , [vn]B is a basis of
null([T ]D←B), so nullity(T ) = dim(null(T )) =
dim(null([T ]D←B)) = nullity([T ]D←B).

1.2.27 (a) The “only if” implication is trivial since a ba-
sis of V must, by definition, be linearly in-
dependent. Conversely, we note from Exer-
cise 1.2.26(a) that, since B is linearly indepen-
dent, we can add 0 or more vectors to B to
create a basis of V . However, B already has
dim(V) vectors, so the only possibility is that
B becomes a basis when we add 0 vectors to
it—i.e., B itself is already a basis of V .

(b) Again, the “only if” implication is trivial since
a basis of V must span V . Conversely, Exer-
cise 1.2.26(b) tells us that we can remove 0
or more vectors from B to create a basis of V .
However, we know that all bases of V contain
dim(V) vectors, and B already contains exactly
this many vectors, so the only possibility is that
B becomes a basis when we remove 0 vectors
from it—i.e., B itself is already a basis of V .
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1.2.28 (a) All 10 vector space properties from Defini-
tion 1.1.1 are straightforward, so we do not
show them all here. Property (a) just says that
the sum of two linear transformations is again
a linear transformation, for example.

(b) dim(L(V ,W)) = mn, which can be seen by
noting that if {v1, . . . ,vn} and {w1, . . . ,wm}
are bases of V and W , respectively, then the
mn linear transformations defined by

Ti, j(vk) =

{
wi if j = k,
0 otherwise

form a basis of L(V ,W). In fact, the standard
matrices of these linear transformations make
up the standard basis of Mm,n: [Ti, j]D←B = Ei, j
for all i, j.

1.2.30 [T ]B = In if and only if the j-th column of [T ]B equals
e j for each j. If we write B = {v1,v2, . . . ,vn} then
we see that [T ]B = In if and only if [T (v j)]B = e j for
all j, which is equivalent to T (v j) = v j for all j (i.e.,
T = IV ).

1.2.31 (a) If B is a basis of W then by Exercise 1.2.26
that we can extend B to a basis C ⊇ B of V .
However, since dim(V) = dim(W) we know
that B and C have the same number of vectors,
so B = C, so V = W .

(b) Let V = c00 from Example 1.1.10 and let W
be the subspace of V with the property that
the first entry of every member of w equals 0.
Then dim(V) = dim(W) = ∞ but V 6= W .

1.2.32 We check the two properties of Definition 1.2.4:
(a) R

(
(v1,v2, . . .) + (w1,w2, . . .)

)
= R(v1 + w1,v2 +

w2, . . .) = (0,v1 + w1,v2 + w2, . . .) = (0,v1,v2, . . .)+
(0,w1,w2, . . .) = R(v1,v2, . . .) + R(w1,w2, . . .),
and (b) R

(
c(v1,v2, . . .)

)
= R(cv1,cv2, . . .) =

(0,cv1,cv2, . . .) = c(0,v1,v2, . . .) = cR(v1,v2, . . .).

1.2.34 It is clear that dim(P2(Z2))≤ 3 since {1,x,x2} spans
P2(Z2) (just like it did in the real case). However, it
is not linearly independent since the two polynomials
f (x) = x and f (x) = x2 are the same on Z2 (i.e., they
provide the same output for all inputs). The set {1,x}
is indeed a basis of P2(Z2), so its dimension is 2.

1.2.35 Suppose P ∈Mm,n is any matrix such that P[v]B =
[T (v)]D for all v ∈ V . For every 1 ≤ j ≤ n, if v = v j
then we see that [v]B = e j (the j-th standard basis
vector in Rn), so P[v]B = Pe j is the j-th column
of P. On the other hand, it is also the case that
P[v]B = [T (v)]D = [T (v j)]D. It follows that the j-
th column of P is [T (v j)]D for each 1 ≤ j ≤ n, so
P = [T ]D←B, which shows uniqueness of [T ]D←B.

1.2.36 Suppose that a set C has m < n vectors, which we call
v1,v2, . . . ,vm. To see that C does not span V , we want
to show that there exists x ∈ V such that the equation
c1v1 + · · ·+ cmvm = x does not have a solution. This
equation is equivalent to

c1[v1]B + · · ·+ cm[vm]B = [x]B,

which is a system of n linear equations in m variables.
Since m < n, this is a “tall and skinny” linear system,
so applying Gaussian elimination to the augmented
matrix form [ A | [x]B ] of this linear system results in
a row echelon form [ R | [y]B ] where R has at least
one zero row at the bottom. If x is chosen so that the
bottom entry of [y]B is non-zero then this linear system
has no solution, as desired.

Section 1.3: Isomorphisms and Linear Forms

1.3.1 (a) Isomorphic, since they are finite-dimensional
with the same dimension (6).

(c) Isomorphic, since they both have dimension 9.
(e) Not isomorphic, since V is finite-dimensional

but W is infinite-dimensional.

1.3.2 (a) Not a linear form. For example, f (e1) =
f (−e1) = 1, but f (e1−e1) = T (0) = 0 6= 2 =
f (e1)+ f (−e1).

(c) Not a linear form, since it does not output
scalars. It is a linear transformation, however.

(e) Is a linear form, since g( f1 + f2) = ( f1 +
f2)′(3) = f ′1(3) + f ′2(3) = g( f1) + g( f2) by
linearity of the derivative, and similarly
g(c f ) = cg( f ).

1.3.3 (a) Not an inner product, since it is not conju-
gate symmetric. For example, 〈e1,e2〉= 1 but
〈e2,e1〉= 0.

(d) Not an inner product, since it is not even linear
in its second argument. For example, 〈I, I〉 =
tr(I + I) = 2n, but 〈I,2I〉= 3n 6= 2〈I, I〉.

(f) Is an inner product. All three properties can
be proved in a manner analogous to Exam-
ple 1.3.17.

1.3.4 (a) True. This property of isomorphisms was stated
explicitly in the text, and is proved in Exer-
cise 1.3.6.

(c) False. This statement is only true if V and W
are finite-dimensional.

(e) False. It is conjugate linear, not linear.
(g) False. For example, if f (x) = x2 then

E1( f ) = 12 = 1 and E2( f ) = 22 = 4, but
E3( f ) = 32 = 9, so E1( f )+E2( f ) 6= E3( f ).

1.3.6 (a) This follows immediately from things that we
learned in Section 1.2.4. Linearity of T−1 is
baked right into the definition of its existence,
and it is invertible since T is its inverse.
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(b) S ◦ T is linear (even when S and T are any
not necessarily invertible linear transforma-
tions) since (S◦T )(v+cw) = S(T (v+cw)) =
S(T (v) + cT (w)) = S(T (v)) + cS(T (w)) =
(S◦T )(v)+c(S◦T )(w). Furthermore, S◦T is
invertible since T−1 ◦S−1 is its inverse.

1.3.7 If we use the standard basis of Mm,n(F), then we
know from Theorem 1.3.3 that there are scalars
{ai, j} such that f (X) = ∑i, j ai, jxi, j . If we let A be
the matrix with (i, j)-entry equal to ai, j , we get
tr(AX) = ∑i, j ai, jxi, j as well.

1.3.8 Just repeat the argument of Exercise 1.3.7 with the
bases of MS

n(F) and MH
n that we presented in the

solution to Exercise 1.2.2.

1.3.9 Just recall that inner products are linear in their second
entry, so 〈v,0〉= 〈v,0v〉= 0〈v,v〉= 0.

1.3.10 Recall that

‖A‖F =

√
m

∑
i=1

n

∑
j=1
|ai, j|2

which is clearly unchanged if we reorder the entries
of A (i.e., ‖A‖F = ‖AT ‖F) and is also unchanged if we
take the complex conjugate of some or all entries (so
‖A∗‖F = ‖AT ‖F).

1.3.12 The result follows from expanding out the norm
in terms of the inner product: ‖v + w‖2 = 〈v +
w,v + w〉 = 〈v,v〉 + 〈v,w〉 + 〈w,v〉 + 〈w,w〉 =
‖v‖2 +0+0+‖w‖2.

1.3.13 We just compute

‖v+w‖2 +‖v−w‖2

= 〈v+w,v+w〉+ 〈v−w,v−w〉
=
(
〈v,v〉+ 〈v,w〉+ 〈w,v〉+ 〈w,w〉

)

+
(
〈v,v〉−〈v,w〉−〈w,v〉+ 〈w,w〉

)

= 2〈v,v〉+2〈w,w〉
= 2‖v‖2 +2‖w‖2.

1.3.14 (a) Expanding the norm in terms of the inner prod-
uct gives

‖v+w‖2−‖v−w‖2

= 〈v+w,v+w〉−〈v−w,v−w〉
= 〈v,v〉+2〈v,w〉+ 〈w,w〉
−〈v,v〉+2〈v,w〉−〈w,w〉,

= 4〈v,w〉,
from which the desired equality follows.

(b) This follows via the same method as in part (a).
All that changes is that the algebra is uglier,
and we have to be careful to not forget the com-
plex conjugate in the property 〈w,v〉= 〈v,w〉.

1.3.16 (a) If f is alternating then for all v,w ∈ V we
have 0 = f (v+w,v+w) = f (v,v)+ f (v,w)+
f (w,v) + f (w,w) = f (v,w) + f (w,v), so
f (v,w) = − f (w,v), which means that f is
skew-symmetric. Conversely, if f is skew-
symmetric then choosing v = w tells us that
f (v,v) =− f (v,v), so f (v,v) = 0 for all v∈V ,
so f is alternating.

(b) It is still true that alternating implies skew-
symmetric, but the converse fails because
f (v,v) =− f (v,v) no longer implies f (v,v) =
0 (since 1+1 = 0 implies−1 = 1 in this field).

1.3.18 (a) We could prove this directly by mimicking the
proof of Theorem 1.3.5, replacing the trans-
poses by conjugate transposes. Instead, we
prove it by denoting the vectors in the basis
B by B = {v1, . . . ,vm} and defining a new bi-
linear function g : V×W → C by

g(v j,w) = f (v j,w) for all v j ∈ B, w ∈W
and extending to all v ∈ V via linearity. That
is, if v = c1v1 + · · · + cmvm (i.e., [v]B =
(v1, . . . ,vm)) then

g(v,w) = g(c1v1 + · · ·+ cmvm,w)

= c1g(v1,w)+ · · ·+ cmg(vm,wm)

= c1 f (v1,w)+ · · ·+ cm f (vm,wm)

= f (c1v1 + · · ·+ cmvm,w).

Then Theorem 1.3.5 tells us that we can write
g in the form

g(v,w) = [v]TB A[w]C.

When combined with the definition of g above,
we see that

f (v,w) = g(c1v1 + · · ·+ cmvm,w)

= ([v]B)T A[w]C = [v]∗BA[w]C,

as desired.
(b) If A = A∗ (i.e., A is Hermitian) then

f (v,w) = [v]∗BA[w]B = [v]∗BA∗[w]B

= ([w]∗BA[v]B)∗ = f (w,v),

with the final equality following from the fact
that [w]∗BA[v]B = f (w,v) is a scalar and thus
equal to its own transpose.
In the other direction, if f (v,w) = f (w,v) for
all v and w then in particular this holds if
[v]B = ei and [w]B = e j , so

ai, j = e∗i Ae j = [v]∗BA[w]B = f (v,w)

= f (w,v) = ([w]∗BA[v]B)∗ = (e∗j Aei)∗ = a j,i.

Since this equality holds for all i and j, we
conclude that A is Hermitian.

(c) Part (b) showed the equivalence of A being
Hermitian and f being conjugate symmetric,
so we just need to show that positive definite-
ness of f (i.e., f (v,v) ≥ 0 with equality if
and only if f = 0) is equivalent to v∗Av ≥ 0
with equality if and only if v = 0. This equiva-
lence follows immediately from recalling that
f (v,v) = [v]∗BA[v]B.

1.3.21 gx(y) = 1+ xy+ x2y2 + · · ·+ xpyp.

1.3.22 We note that dim((P p)∗) = dim(P p) = p+1, which
is the size of the proposed basis, so we just need to
show that it is linearly independent. To this end, we
note that if

d0Ec0 +d1Ec1 + · · ·+dpEcp = 0

then

d0 f (c0)+d1 f (c1)+ · · ·+dp f (cp) = 0
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for all f ∈P p. However, if we choose f to be the non-
zero polynomial with roots at each of c1, . . ., cp (but
not c0, since f has degree p and thus at most p roots)
then this tells us that d0 f (c0) = 0, so d0 = 0. A similar
argument with polynomials having roots at all except
for one of the c j’s shows that d0 = d1 = · · ·= dp = 0,
which gives linear independence.

1.3.24 Suppose that

c1T (v1) · · ·+ cnT (vn) = 0.

By linearity of T , this implies T (c1v1 + · · ·+ cnvn) =
0, so φc1v1+···+cnvn = 0, which implies

φc1v1+···+cnvn ( f ) = f (c1v1 + · · ·+ cnvn)

= c1 f (v1)+ · · ·+ cn f (vn) = 0

for all f ∈ V∗. Since B is linearly independent, we
can choose f so that f (v1) = 1 and f (v2) = · · · =
f (vn) = 0, which implies c1 = 0. A similar argu-
ment (involving different choices of f ) shows that
c2 = · · ·= cn = 0 as well, so C is linearly independent.

1.3.25 We just check the three defining proper-
ties of inner products, each of which fol-
lows from the corresponding properties of
the inner product on W . (a) 〈v1,v2〉V =
〈T (v1),T (v2)〉W = 〈T (v2),T (v1)〉W = 〈v2,v1〉V .
(b) 〈v1,v2 + cv3〉V = 〈T (v1),T (v2 + cv3)〉W =
〈T (v1),T (v2) + cT (v3)〉W = 〈T (v1),T (v2)〉W +
c〈T (v1,T (v3)〉W = 〈v1,v2〉V + c〈v1,v3〉V . (c)
〈v1,v1〉V = 〈T (v1),T (v1)〉W ≥ 0, with equality if
and only if T (v1) = 0, which happens if and only
if v1 = 0. As a side note, the equality condition of
property (c) is the only place where we used the fact
that T is an isomorphism (i.e., invertible).

1.3.27 If jk = j` then the condition a j1 ,..., jk ,..., j` ,..., jp =
−a j1 ,..., j` ,..., jk ,..., jp tells us that a j1 ,..., jk ,..., j` ,..., jp = 0
whenever two or more of the subscripts are equal
to each other. If all of the subscripts are dis-
tinct from each other (i.e., there is a permutation
σ : {1,2, . . . , p} → {1,2, . . . , p} such that σ(k) = jk
for all 1 ≤ k ≤ p) then we see that aσ(1),...,σ(p) =
sgn(σ)a1,2,...,p, where sgn(σ) is the sign of σ (see
Appendix A.1.5). It follows that A is completely de-
termined by the value of a1,2,...,p, so it is unique up to
scaling.

Section 1.4: Orthogonality and Adjoints

1.4.1 (a) Not an orthonormal basis, since (0,1,1) does
not have length 1.

(c) Not an orthonormal basis, since B contains 3
vectors living in a 2-dimensional subspace, and
thus it is necessarily linearly dependent. Alter-
natively, we could check that the vectors are
not mutually orthogonal.

(e) Is an orthonormal basis, since all three vectors
have length 1 and they are mutually orthogo-
nal:

(1,1,1,1) · (0,1,−1,0) = 0

(1,1,1,1) · (1,0,0,−1) = 0

(0,1,−1,0) · (1,0,0,−1) = 0.

(We ignored some scalars since they do not
affect whether or not the dot product equals 0.)

1.4.2 (b) The standard basis {(1,0),(0,1)} works (the
Gram–Schmidt process could also be used, but
the resulting basis will be hideous).

(d) If we start with the basis {sin(x),cos(x)} and
perform the Gram–Schmidt process, we get the
basis { 1√

π
sin(x), 1√

π
cos(x)}. (In other words,

we can check that sin and cos are already or-
thogonal in this inner product, and we just need
to normalize them to have length 1.)

(f) We refer to the three matrices as A1, A2, and
A3, respectively, and then we divide A1 by its
Frobenius norm to get B1:

B1 =
1√

12 +12 +12 +12
A1 =

1
2

[
1 1
1 1

]
.

Then

B2 = A2−〈B1,A2〉B1

=

[
1 0
0 1

]
− 1

2

[
1 1
1 1

]
=

1
2

[
1 −1
−1 1

]
.

Since B2 already has Frobenius norm 1, we do
not need to normalize it. Similarly,

B3 = A3−〈B1,A3〉B1−〈B2,A3〉B2

=

[
0 2
1 −1

]
− 1

2

[
1 1
1 1

]
− (−2)

1
2

[
1 −1
−1 1

]

=
1
2

[
1 1
−1 −1

]
.

Again, since B3 already has Frobenius norm
1, we do not need to normalize it. We thus
conclude that {B1,B2,B3} is an orthonormal
basis of span({A1,A2,A3}).

1.4.3 (a) T ∗(w) = (w1 +w2,w2 +w3).
(c) T ∗(w) = (2w1−w2,2w1−w2). Note that this

can be found by constructing an orthonormal
basis of R2 with respect to this weird inner
product, but it is likely easier to just construct
T ∗ directly via its definition.

1.4.4 (a)

[
1 0
0 0

]

(c)
1
3




2 1 −1
1 2 1
−1 1 2
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1.4.5 (a) True. This follows from Theorem 1.4.8.
(c) False. If A = AT and B = BT then (AB)T =

BT AT = BA, which in general does not equal
AB. For an explicit counter-example, you can
choose

A =

[
1 0
0 −1

]
, B =

[
0 1
1 0

]
.

(e) False. For example, U = V = I are unitary, but
U +V = 2I is not.

(g) True. On any inner product space V , IV satis-
fies I2

V = IV and I∗V = IV .

1.4.8 If U and V are unitary then (UV )∗(UV ) =
V ∗U∗UV = V ∗V = I, so UV is also unitary.

1.4.10 If λ is an eigenvalue of U corresponding to an eigen-
vector v then Uv = λv. Unitary matrices preserve
length, so ‖v‖ = ‖Uv‖ = ‖λv‖ = |λ |‖v‖. Dividing
both sides of this equation by ‖v‖ (which is OK since
eigenvectors are non-zero) gives 1 = |λ |.

1.4.11 Since U∗U = I, we have 1 = det(I) = det(U∗U) =
det(U∗)det(U) = det(U)det(U) = |det(U)|2. Taking
the square root of both sides of this equation gives
|det(U)|= 1.

1.4.12 We know from Exercise 1.4.10 that the eigenvalues
(diagonal entries) of U must all have magnitude 1.
Since the columns of U each have norm 1, it follows
that the off-diagonal entries of U must each be 0.

1.4.15 Direct computation shows that the (i, j)-entry of F∗F
equals 1

n ∑
n−1
k=0 ω( j−i)k. If i = j (i.e., j− i = 0) then

ω( j−i)k = 1, so the (i, i)-entry of F∗F equals 1. If
i 6= j then ω( j−i)k 6= 1 is an n-th root of unity, so we
claim that this sum equals 0 (and thus F∗F = I, so F
is unitary).
To see why ∑

n−1
k=0 ω( j−i)k = 0 when i 6= j, we use a

standard formula for summing a geometric series:

n−1

∑
k=0

ω
( j−i)k =

1−ω( j−i)n

1−ω j−i = 0,

with the final equality following from the fact that
ω( j−i)n = 1.

1.4.17 (a) For the “if” direction we note that (Ax) · y =
(Ax)T y = xT AT y and x ·(AT y) = xT AT y, which
are the same. For the “only if” direction, we can
either let x and y range over all standard basis
vectors to see that the (i, j)-entry of A equals
the ( j, i)-entry of B, or use the “if” direction
together with uniqueness of the adjoint (Theo-
rem 1.4.8).

(b) Almost identical to part (a), but just recall that
the complex dot product has a complex con-
jugate in it, so (Ax) · y = (Ax)∗y = x∗A∗y and
x ·(A∗y) = x∗A∗y, which are equal to each other.

1.4.18 This follows directly from the fact that if
B {v1, . . . ,vn} then [v j]E = v j for all 1 ≤ j ≤ n,
so PE←B =

[
v1 | v2 | · · · | vn

]
, which is unitary if

and only if its columns (i.e., the members of B) form
an orthonormal basis of Fn.

1.4.19 We mimic the proof of Theorem 1.4.9. To see that (a)
implies (c), suppose B∗B = C∗C. Then for all v ∈ Fn

we have

‖Bv‖=
√

(Bv) · (Bv) =
√

v∗B∗Bv

=
√

v∗C∗Cv =
√

(Cv) · (Cv) = ‖Cv‖.

For the implication (c) =⇒ (b), note that if ‖Bv‖2 =
‖Cv‖2 for all v ∈ Fn then (Bv) · (Bv) = (Cv) · (Cv).
If x,y ∈ Fn then this tells us (by choosing v = x+y)
that

(
B(x+y)

)
·
(
B(x+y)

)
=
(
C(x+y)

)
·
(
C(x+y)

)
.

Expanding this dot product on both the left and right
then gives

(Bx) · (Bx)+2Re
(
(Bx) · (By)

)
+(By) · (By)

= (Cx) · (Cx)+2Re
(
(Cx) · (Cy)

)
+(Cy) · (Cy).

By then using the facts that (Bx) · (Bx) = (Cx) · (Cx)
and (By) · (By) = (Cy) · (Cy), we can simplify the
above equation to the form

Re
(
(Bx) · (By)

)
= Re

(
(Cx) · (Cy)

)
.

If F = R then this implies (Bx) · (By) = (Cx) · (Cy) for
all x,y∈Fn, as desired. If instead F=C then we can
repeat the above argument with v = x+ iy to see that

Im
(
(Bx) · (By)

)
= Im

(
(Cx) · (Cy)

)
,

so in this case we have (Bx) · (By) = (Cx) · (Cy) for
all x,y ∈ Fn too, establishing (b).
Finally, to see that (b) =⇒ (a), note that if we rear-
range (Bv) · (Bw) = (Cv) · (Cw) slightly, we get

(
(B∗B−C∗C)v

)
·w = 0 for all v,w ∈ Fn.

If we choose w=(B∗B − C∗C)v then this implies∥∥(B∗B − C∗C)v
∥∥2=0 for all v ∈ Fn, so (B∗B −

C∗C)v = 0 for all v∈Fn. This in turn implies
B∗B−C∗C=O, so B∗B = C∗C, which completes the
proof.

1.4.20 Since B is mutually orthogonal and thus linearly in-
dependent, Exercise 1.2.26(a) tells us that there is
a (not necessarily orthonormal) basis D of V such
that B ⊆ D. Applying the Gram–Schmidt process
to this bases D results in an orthonormal basis C
of V that also contains B (since the vectors from B
are already mutually orthogonal and normalized, the
Gram–Schmidt process does not affect them).

1.4.22 Pick orthonormal bases B and C of V and W ,
respectively, so that rank(T ) = rank([T ]C←B) =
rank([T ]∗C←B) = rank([T ∗]B←C) = rank(T ∗). In the
second equality, we used the fact that rank(A∗) =
rank(A) for all matrices A, which is typically proved
in introduced linear algebra courses.

1.4.23 If R and S are two adjoints of T , then

〈v,R(w)〉= 〈T (v),w〉= 〈v,S(w)〉 for all v,w.

Rearranging slightly gives

〈v,(R−S)(w)〉 for all v ∈ V ,w ∈W .

Exercise 1.4.27 then shows that R−S = O, so R = S,
as desired.

1.4.24 (a) If v,w ∈ Fn, E is the standard basis of Fn, and B
is any basis of Fn, then

PB←E v = [v]B and PB←E w = [w]B.
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By plugging this fact into Theorem 1.4.3, we see
that 〈·, ·〉 is an inner product if and only if it has
the form

〈v,w〉= [v]B · [w]B
= (PB←E v) · (PB←E w)

= v∗(P∗B←E PB←E )w.

Recalling that change-of-basis matrices are in-
vertible and every invertible matrix is a change-
of-basis matrix completes the proof.

(b) The matrix

P =

[
1 2
0 1

]

works.
(c) If P is not invertible then it may be the case

that 〈v,v〉 = 0 even if v 6= 0, which violates
the third defining property of inner products.
In particular, it will be the case that 〈v,v〉 = 0
whenever v ∈ null(P).

1.4.25 If B = {v1, . . . ,vn} then set Q =
[

v1 | · · · | vn
]
∈Mn,

which is invertible since B is linearly independent.
Then set P = Q−1, so that the function

〈v,w〉= v∗(P∗P)w

(which is an inner product by Exercise 1.4.24) satisfies

〈vi,v j〉= v∗i (P
∗P)v j = e∗i e j =

{
1 if i = j
0 if i 6= j,

with the second-to-last equality following from the
fact that Qe j = v j , so Pv j = Q−1v j = e j for all j.

1.4.27 The “if” direction is trivial. For the “only if” di-
rection, choose w = T (v) to see that ‖T (v)‖2 =
〈T (v),T (v)〉= 0 for all v∈V . It follows that T (v) = 0
for all v ∈ V , so T = O.

1.4.28 (a) The “if” direction is trivial. For the “only
if” direction, choose v = x + y to see that
〈T (x)+T (y),x+y〉= 0 for all x,y ∈ V , which
can be expanded and simplified to 〈T (x),y〉+
〈T (y),x〉= 0, which can in turn be rearranged
to 〈T (x),y〉+ 〈T ∗(x),y〉 = 0 for all x,y ∈ V .
If we perform the same calculation with v =
x + iy instead, then we similarly learn that
i〈T (x),y〉− i〈T ∗(x),y〉= 0, which can be mul-
tiplied by −i to get 〈T (x),y〉− 〈T ∗(x),y〉 = 0
for all x,y ∈ V .
Adding the equations 〈T (x),y〉+〈T ∗(x),y〉= 0
and 〈T (x),y〉−〈T ∗(x),y〉= 0 together reveals
that 〈T (x),y〉 = 0 for all x,y ∈ V , so Exer-
cise 1.4.27 tells us that T = O.

(b) For the “if” direction, notice that if T ∗ = −T
then 〈T (v),v〉 = 〈v,T ∗(v)〉 = 〈v,−T (v)〉 =
−〈v,T (v)〉 = −〈T (v),v〉, so 〈T (v),v〉 = 0 for
all v.
For the “only if” direction, choose x = v + y
as in part (a) to see that 〈(T + T ∗)(x),y〉 =
〈T (x),y〉+ 〈T ∗(x),y〉 = 0 for all x,y ∈ V . Ex-
ercise 1.4.27 then tells us that T + T ∗ = O, so
T ∗ =−T .

1.4.29 (a) If P = P∗ then

〈P(v),v−P(v)〉= 〈P2(v),v−P(v)〉
= 〈P(v),P∗(v−P(v))〉
= 〈P(v),P(v−P(v))〉
= 〈P(v),P(v)−P(v)〉= 0,

so P is orthogonal.
(b) If P is orthogonal (i.e., 〈P(v),v− P(v)〉 = 0

for all v ∈ V) then 〈(P− P∗ ◦ P)(v),v〉 = 0
for all v ∈ V , so Exercise 1.4.28 tells us that
P−P∗ ◦P = O, so P = P∗ ◦P. Since P∗ ◦P is
self-adjoint, it follows that P is as well.

1.4.30 (a) If the columns of A are linearly independent
then rank(A) = n, and we know in general
that rank(A∗A) = rank(A), so rank(A∗A) = n
as well. Since A∗A is an n×n matrix, this tells
us that it is invertible.

(b) We first show that P is an orthogonal projec-
tion:

P2 = A(A∗A)−1(A∗A)(A∗A)−1A∗

= A(A∗A)−1A∗ = P,

and

P∗ =
(
A(A∗A)−1A∗

)∗ = A(A∗A)−1A∗ = P.

By uniqueness of orthogonal projections, we
thus just need to show that range(P) =
range(A). The key fact that lets us prove this is
the general fact that range(AB)⊆ range(A) for
all matrices A and B.
The fact that range(A) ⊆ range(P) follows
from noting that PA = A(A∗A)−1(A∗A) = A,
so range(A) = range(PA) ⊆ range(P). Con-
versely, P = A

(
(A∗A)−1A∗) immediately

implies range(P) ⊆ range(A) (by choosing
B = (A∗A)−1A∗ in the fact we mentioned ear-
lier), so we are done.

1.4.31 If v ∈ range(P) then Pv = v (so v is an eigenvector
with eigenvalue 1), and if v∈ null(P) then Pv = 0 (so v
is an eigenvector with eigenvalue 0). It follows that the
geometric multiplicity of the eigenvalue 1 is at least
rank(P) = dim(range(P)), and the multiplicity of the
eigenvalue 0 is at least nullity(P) = dim(null(P)).
Since rank(P)+ nullity(P) = n and the sum of mul-
tiplicities of eigenvalues of P cannot exceed n, we
conclude that actually the multiplicities of the eigen-
values equal rank(P) and nullity(P), respectively. It
then follows immediately from Theorem A.1.5 that P
is diagonalizable and has the claimed form.

1.4.32 (a) Applying the Gram–Schmidt process to the stan-
dard basis {1,x,x2} of P2[−c,c] produces the
orthonormal basis

C =
{

1√
2c

,
√

3√
2c3 x,

√
5√

8c5 (3x2− c2)
}

.
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Constructing Pc(ex) via this basis (as we did
in Example 1.4.18) gives the following poly-
nomial (we use sinh(c) = (ec − e−c)/2 and
cosh(c) = (ec +e−c)/2 to simplify things a bit):

Pc(ex) =
15
2c5

(
(c2 +3)sinh(c)−3ccosh(c)

)
x2

− 3
c3

(
sinh(c)− ccosh(c)

)
x

− 3
2c3

(
(c2 +5)sinh(c)−5ccosh(c)

)
.

(b) Standard techniques from calculus like
L’Hôpital’s rule show that as c → 0, the co-
efficients of x2, x, and 1 in Pc(ex) above go to
1/2, 1, and 1, respectively, so

lim
c→0+

Pc(ex) = 1
2 x2 + x+1,

which we recognize as the degree-2 Taylor
polynomial of ex at x = 0. This makes intuitive
sense since Pc(ex) is the best approximation of
ex on the interval [−c,c], whereas the Taylor
polynomial is its best approximation at x = 0.

Section 1.5: Summary and Review

1.5.1 (a) False. This is not even true if B and C are bases
of V (vector spaces have many bases).

(c) True. This follows from Theorem 1.2.9.
(e) False. This is true if V is finite-dimensional,

but we showed in Exercise 1.2.33 that the
“right shift” transformation on CN has no eigen-
values or eigenvectors.

1.5.2 (a) If {v1, . . . ,vk} is a basis of S1 ∩S2 then we
can extend it to bases {v1, . . . ,vk,w1, . . . ,wm}
and {v1, . . . ,vk,x1, . . . ,xn} of S1 and
S2, respectively, via Exercise 1.2.26. It
is then straightforward to check that
{v1, . . . ,vk,w1, . . . ,wm,x1, . . . ,xn} is a basis
of S1 + S2, so dim(S1 + S2) = k + m + n,
and dim(S1) + dim(S2) − dim(S1 ∩ S2) =
(k +m)+(k +n)− k = k +m+n too.

(b) Since dim(S1 + S2) ≤ dim(V), rearrang-
ing part (a) shows that dim(S1 ∩ S2) =
dim(S1) + dim(S2) − dim(S1 + S2) ≥
dim(S1)+dim(S2)−dim(V).

1.5.4 One basis is {x`yk : `,k≥ 0, `+k≤ p}. To count the
members of this basis, we note that for each choice of
` there are p+1−` possible choices of k, so there are
(p+1)+ p+(p−1)+ · · ·+2+1 = (p+1)(p+2)/2
vectors in this basis, so dim(P p

2 ) = (p+1)(p+2)/2.

1.5.6 We can solve this directly from the definition of
T ∗: 〈T (X),Y 〉 = 〈AXB∗,Y 〉 = tr

(
(AXB∗)∗Y

)
=

tr(BX∗A∗Y ) = tr(X∗A∗Y B) = 〈X ,A∗Y B〉 =
〈X ,T ∗(Y )〉 for all X ∈Mn and Y ∈Mm. It fol-
lows that T ∗(Y ) = A∗Y B.

Section 1.A: Extra Topic: More About the Trace

1.A.1 (b) False. For example, if A = B = I ∈M2 then
tr(AB) = 2 but tr(A)tr(B) = 4.

(d) True. A and AT have the same diagonal entries.

1.A.2 We just repeatedly use properties of the trace:
tr(AB) = −tr(AT BT ) = −tr((BA)T ) = −tr(BA) =
−tr(AB), so tr(AB) = 0. Note that this argument
only works if F is a field in which 1+1 6= 0.

1.A.4 Recall from Exercise 1.4.31 that we can write

P = Q

[
Ir O
O O

]
Q−1,

where r = rank(P). Since the trace is similarity-
invariant, it follows that tr(P) = tr(Ir) = r = rank(P).

1.A.5 (a) If A is invertible then choosing P = A−1 shows
that

P(AB)P−1 = A−1ABA = BA,

so AB and BA are similar. A similar argument
works if B is invertible.

(b) If

A =

[
1 0
0 0

]
and B =

[
0 1
0 0

]

then

AB =

[
0 1
0 0

]
and BA =

[
0 0
0 0

]
,

which are not similar since they do not have
the same rank (rank(A) = 1 and rank(B) = 0).

1.A.6 (a) If W ∈W then W = ∑i ci(AiBi−BiAi), which
has tr(W ) = ∑i ci(tr(AiBi)− tr(BiAi)) = 0 by
commutativity of the trace, so W ∈ Z , which
implies W ⊆Z . The fact that W is a subspace
follows from the fact that every span is a sub-
space, and the fact that Z is a subspace follows
from the fact that it is the null space of a linear
transformation (the trace).

(b) We claim that dim(Z) = n2 − 1. One way
to see this is to notice that rank(tr) = 1
(since its output is just 1-dimensional), so the
rank-nullity theorem tells us that nullity(tr) =
dim(null(tr)) = dim(Z) = n2−1.
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(c) If we let A = E j, j+1 and B = E j+1, j (with 1≤
j < n), then we get AB−BA = E j, j+1E j+1, j−
E j+1, jE j, j+1 = E j, j − E j+1, j+1. Similarly, if
A = Ei,k and B = Ek, j (with i 6= j) then we get
AB−BA = Ei,kEk, j−Ek, jEi,k = Ei, j . It follows
that W contains each of the n2−1 matrices in
the following set:

{E j, j−E j+1, j+1}∪{Ei, j : i 6= j}.
Furthermore, it is straightforward to show that
this set is linearly independent, so dim(W)≥
n2 − 1. Since W ⊆ Z and dim(Z) = n2 − 1,
it follows that dim(W) = n2 − 1 as well, so
W = Z .

1.A.7 (a) We note that f (E j, j) = 1 for all 1 ≤ j ≤ n since
E j, j is a rank-1 orthogonal projection. To see
that f (E j,k) = 0 whenever 1 ≤ j 6= k ≤ n (and
thus show that f is the trace), we notice that
E j, j +E j,k +Ek, j +Ek,k is a rank-2 orthogonal pro-
jection, so applying f to it gives a value of 2. Lin-
earity of f then says that f (E j,k) + f (Ek, j) = 0
whenever j 6= k. A similar argument shows that
E j, j + iE j,k − iEk, j + Ek,k is a rank-2 orthogonal
projection, so linearity of f says that f (E j,k)−
f (Ek, j) = 0 whenever j 6= k. Putting these two
facts together shows that f (E j,k) = f (Ek, j) = 0,
which completes the proof.

(b) Consider the linear form f : M2(R)→ R defined
by

f

([
a b
c d

])
= a+b− c+d.

This linear form f coincides with the trace on all
symmetric matrices (and thus all orthogonal pro-
jections P ∈M2(R)), but not on all A ∈M2(R).

1.A.8 (a) First use the fact that I = AA−1 and multiplica-
tivity of the determinant to write

fA,B(x)= det(A+xB)= det(A)det
(
I+x(A−1B)

)
.

It then follows from Theorem 1.A.4 that
f ′A,B(0) = det(A)tr

(
A−1B

)
.

(b) The definition of the derivative says that

d
dt

det
(
A(t)

)
= lim

h→0

det
(
A(t +h)

)
−det

(
A(t)

)

h
.

Using Taylor’s theorem (Theorem A.2.3) tells
us that

A(t +h) = A(t)+h
dA
dt

+hP(h),

where P(h) is a matrix whose entries depend on
h in a way so that lim

h→0
P(h) = O. Substituting

this expression for A(t +h) into the earlier ex-
pression for the derivative of det

(
A(t)

)
shows

that

d
dt

det
(
A(t)

)

= lim
h→0

det
(
A(t)+h dA

dt +hP(h)
)
−det

(
A(t)

)

h

= lim
h→0

det
(
A(t)+h dA

dt

)
−det

(
A(t)

)

h
= f ′A(t),dA/dt(0),

where the second-to-last equality follows from
the fact that adding hP(h) inside the determi-
nant, which is a polynomial in the entries of
its argument, just adds lots of terms that have
h[P(h)]i, j as a factor for various values of i and
j. Since lim

h→0
h[P(h)]i, j/h = 0 for all i and j,

these terms make no contribution to the value
of the limit.

(c) This follows immediately from choosing
B = dA/dt in part (a) and then using the result
that we proved in part (b).

Section 1.B: Extra Topic: Direct Sum, Orthogonal Complement

1.B.1 (a) The orthogonal complement is the line go-
ing through the origin that is perpendicular to
(3,2). It thus has {(−2,3)} as a basis.

(c) Everything is orthogonal to the zero vector,
so the orthogonal complement is all of R3.
One possible basis is just the standard basis
{e1,e2,e3}.

(e) Be careful: all three of the vectors in this
set lie on a common plane, so their orthog-
onal complement is 1-dimensional. The or-
thogonal complement can be found by solving
the linear system v · (1,2,3) = 0,v · (1,1,1) =
0,v · (3,2,1) = 0, which has infinitely many
solutions of the form v = v3(1,−2,1), so
{(1,−2,1)} is a basis.

(g) We showed in Example 1.B.7 that
(
MS

n
)⊥ =

MsS
n . When n = 2, there is (up to scaling) only

one skew-symmetric matrix, so one basis of
this space is

{[
0 1
−1 0

]}
.

1.B.2 In all parts of this solution, we refer to the given
matrix as A, and the sets that we list are bases of the
indicated subspaces.
(a) range(A): {(1,3)}

null(A∗): {(3,−1)}
range(A∗): {(1,2)}
null(A): {(−2,1)}
The fact that range(A)⊥ = null(A∗) and
null(A)⊥ = range(A∗) can be verified by noting
that the dimensions of each of the subspace pairs
add up to the correct dimension (2 here) and that
all vectors in one basis are orthogonal to all vec-
tors in the other basis (e.g., (1,3) · (3,−1) = 0).

(c) range(A): {(1,4,7),(2,5,8)}
null(A∗): {(1,−2,1)}
range(A∗): {(1,0,−1),(0,1,2)}
null(A): {(1,−2,1)}

1.B.3 (b) True. This just says that the only vector in V
that is orthogonal to everything in V is 0.
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(d) True. We know from Theorem 1.B.7 that the
range of A and the null space of A∗ are orthog-
onal complements of each other.

(f) False. R2 ⊕R3 has dimension 5, so it can-
not have a basis consisting of 6 vectors.
Instead, the standard basis of R2 ⊕ R3 is
{(e1,0),(e2,0),(0,e1),(0,e2),(0,e3)}.

1.B.4 We need to show that span(span(v1), . . . ,span(vk))=
V and

span(vi)∩ span
(⋃

j 6=i

v j

)
= {0}

for all 1 ≤ i ≤ k. The first property fol-
lows immediately from the fact that {v1, . . . ,vk}
is a basis of V so span(v1, . . . ,vk) = V , so
span(span(v1), . . . ,span(vk)) = V too.
To see the other property, suppose w ∈ span(vi)∩
span

(⋃
j 6=i v j

)
for some 1≤ i≤ k. Then there exist

scalars c1, c2, . . ., ck such that w = civi = ∑ j 6=i c jv j ,
which (since {v1,v2, . . . ,vk} is a basis and thus lin-
early independent) implies c1 = c2 = · · · = ck = 0,
so w = 0.

1.B.5 If v ∈ S1 ∩ S2 when we can write v = c1v1 +
· · · + ckvk and v = d1w1 + · · · + dmwm for
some v1, . . . ,vk ∈ B, w1, . . . ,wm ∈ C, and scalars
c1, . . . ,ck,d1, . . . ,dm. By subtracting these two equa-
tions for v from each other, we see that

c1v1 + · · ·+ ckvk−d1w1−·· ·−dmwm = 0,

which (since B∪C is linearly independent) implies
c1 = · · ·= ck = 0 and d1 = · · ·= dm = 0, so v = 0.

1.B.6 It suffices to show that span(S1 ∪ S2) = V . To
this end, recall that Theorem 1.B.2 says that if B
and C are bases of S1 and S2, respectively, then
(since (ii) holds) B∪C is linearly independent. Since
|B∪C|= dim(V), Exercise 1.2.27 implies that B∪C
is a basis of V , so using Theorem 1.B.2 again tells
us that V = S1⊕S2.

1.B.7 Notice that if P is any projection with range(P) = S1
and null(P) =S2, then we know from Example 1.B.8
that V = S1⊕S2. If B and C are bases of S1 and S2,
respectively, then Theorem 1.B.2 tells us that B∪C
is a basis of V and thus P is completely determined
by how it acts on the members of B and C. However,
P being a projection tells us exactly how it behaves
on those two sets: Pv = v for all v ∈ B and Pw = 0
for all w ∈C, so P is completely determined.

1.B.8 (a) Since range(A)⊕null(B∗) = Fm, we know that
if B∗Av = 0 then Av = 0 (since Av ∈ range(A)
so the only way Av can be in null(B∗) too is
if Av = 0). Since A has linearly independent
columns, this further implies v = 0, so the lin-
ear system B∗Av = 0 in fact has a unique solu-
tion. Since B∗A is square, it must be invertible.

(b) We first show that P is a projection:

P2 = A(B∗A)−1(B∗A)(B∗A)−1B∗

= A(B∗A)−1B∗ = P.

By uniqueness of projections (Exercise 1.B.7),
we now just need to show that range(P) =
range(A) and null(P) = null(B∗). These facts
both follow quickly from the facts that
range(AC)⊆ range(A) and null(A)⊆ null(CA)
for all matrices A and C.
More specifically, these facts immediately tell
us that range(P) ⊆ range(A) and null(B∗) ⊆
null(P). To see the opposite inclusions, no-
tice that PA = A so range(A)⊆ range(P), and
B∗P = B∗ so null(P)⊆ null(B∗).

1.B.10 To see that the orthogonal complement is indeed
a subspace, we need to check that it is non-empty
(which it is, since it contains 0) and verify that the
two properties of Theorem 1.1.2 hold. For prop-
erty (a), suppose v1,v2 ∈ B⊥. Then for all w ∈ B we
have 〈v1 + v2,w〉 = 〈v1,w〉+ 〈v2,w〉 = 0 + 0 = 0,
so v1 + v2 ∈ B⊥. For property (b), suppose v ∈ B⊥

and c ∈ F. Then for all w ∈ B we have 〈cv,w〉 =
c〈v,w〉= c0 = 0, so cv ∈ B⊥.

1.B.14 Since B⊥ =
(
span(B)

)⊥ (by Exercise 1.B.13), it
suffices to prove that (S⊥)⊥ = S when S is a
subspace of V . To see this, just recall from The-
orem 1.B.6 that S ⊕S⊥ = V . However, it is also
the case that (S⊥)⊥⊕S⊥ = V , so S = (S⊥)⊥ by
Exercise 1.B.12.

1.B.15 We already know from part (a) that range(T )⊥ =
null(T ∗) for all T . If we replace T by T ∗ throughout
that equation, we see that range(T ∗)⊥ = null(T ).
Taking the orthogonal complement of both sides
(and using the fact that (S⊥)⊥ = S for all sub-
spaces S, thanks to Exercise 1.B.14) we then see
range(T ∗) = null(T )⊥, as desired.

1.B.16 Since rank(T ) = rank(T ∗) (i.e., dim(range(T )) =
dim(range(T ∗)), we just need to show that v = 0 is
the only solution to S(v) = 0. To this end, notice
that if v ∈ range(T ∗) is such that S(v) = 0 then v ∈
null(T ) too. However, since range(T ∗) = null(T )⊥,
we know that the only such v is v = 0, which is
exactly what we wanted to show.

1.B.17 Unfortunately, we cannot quite use Theorem 1.B.6,
since that result only applies to finite-dimensional
inner product spaces, but we can use the same idea.
First notice that 〈 f ,g〉 =

∫ 1
−1 f (x)g(x) dx = 0 for

all f ∈ PE[−1,1] and g ∈ PO[−1,1]. This follows
immediately from the fact that if f is even and g is
odd then f g is odd and thus has integral (across any
interval that is symmetric through the origin) equal
to 0. It follows that (PE[−1,1])⊥ ⊇ PO[−1,1]. To
see that equality holds, suppose g ∈ (PE[−1,1])⊥

and write g = gE + gO, where gE ∈ PE[−1,1] and
gO ∈PO[−1,1] (which we know we can do thanks to
Example 1.B.2). If 〈 f ,g〉 = 0 for all f ∈ PE[−1,1]
then 〈 f ,gE〉 = 〈 f ,gO〉 = 0, so 〈 f ,gE〉 = 0 (since
〈 f ,gO〉 = 0 when f is even and gO is odd), which
implies (by choosing f = gE) that gE = 0, so
g ∈PO[−1,1].
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1.B.18 (a) Suppose f ∈ S⊥ so that 〈 f ,g〉 = 0 for all
g ∈ S. Notice that the function g(x) = x f (x)
satisfies g(0) = 0, so g ∈ S, so 0 = 〈 f ,g〉 =∫ 1

0 x( f (x))2 dx. Since x( f (x))2 is continuous
and non-negative on the interval [0,1], the only
way this integral can equal 0 is if x( f (x))2 = 0
for all x, so (by continuity of f ) f (x) = 0 for
all 0≤ x≤ 1 (i.e., f = 0).

(b) It follows from part (a) that (S⊥)⊥ = {0}⊥ =
C[0,1] 6= S.

1.B.19 Most of the 10 properties from Definition 1.1.1
follow straightforwardly from the corresponding
properties of V and W , so we just note that the zero
vector in V⊕W is (0,0), and−(v,w) = (−v,w) for
all v ∈ V and w ∈W .

1.B.20 Suppose

k

∑
i=1

ci(vi,0)+
m

∑
j=1

d j(0,w j) = (0,0)

for some {(vi,0)} ⊆ B′ (i.e., {vi} ⊆ B), {(0,w j)} ⊆
C′ (i.e., {w j} ⊆C), and scalars c1, . . . ,ck , d1, . . . ,dm.
This implies c1v1 + · · ·+ ckvk = 0, which (since B
is linearly independent) implies c1 = · · · = ck = 0.
A similar argument via linear independence of C
shows that d1 = · · ·= dm = 0, which implies B′ ∪C′

is linearly independent as well.

1.B.21 (a) If (v1,0),(v2,0) ∈ V ′ (i.e., v1,v2 ∈ V) and
c is a scalar then (v1,0) + c(v2,0) = (v1 +
cv2,0) ∈ V ′ as well, since v1 + cv2 ∈ V . It fol-
lows that V ′ is a subspace of V ⊕W , and a
similar argument works for W ′.

(b) The function T : V → V ′ defined by T (v) =
(v,0) is clearly an isomorphism.

(c) We need to show that V ′ ∩W ′ = {(0,0)} and
span(V ′,W ′) = V⊕W . For the first property,
suppose (v,w) ∈ V ′ ∩W ′. Then w = 0 (since
(v,w) ∈ V ′) and v = 0 (since (v,w) ∈W ′), so
(v,w) = (0,0), as desired. For the second prop-
erty, just notice that every (v,w) ∈ V⊕W can
be written in the form (v,w) = (v,0)+(0,w),
where (v,0) ∈ V ′ and (0,w) ∈W ′.

Section 1.C: Extra Topic: The QR Decomposition

1.C.1 (a) This matrix has QR decomposition UT , where

U =
1
5

[
3 4
4 −3

]
and T =

[
5 4
0 2

]
.

(c) This QR decomposition is not unique, so yours
may differ:

U =
1
3




2 1 −2
1 2 2
−2 2 −1


 and T =




9 4
0 1
0 0


 .

(e) U =
1
5




2 −1 2 4
1 2 −4 2
4 −2 −1 −2
2 4 2 −1


 and

T =




5 3 2 1
0 1 1 2
0 0 1 2
0 0 0 4


.

1.C.2 (a) x =(−1,1)/
√

2. (c) x =(−2,−1,2).

1.C.3 (a) True. This follows immediately from Theo-
rem 1.C.1.

(c) False. Almost any matrix’s QR decomposition
provides a counter-example. See the matrix
from Exercise 1.C.6, for example.

1.C.5 Suppose A = U1T1 = U2T2 are two QR decompo-
sitions of A. We then define X = U∗1 U2 = T1T−1

2
and note that since T1 and T−1

2 are upper triangular
with positive real diagonal entries, so is X (see Exer-
cise 1.C.4). On the other hand, X is both unitary and
upper triangular, so Exercise 1.4.12 tells us that it
is diagonal and its diagonal entries have magnitude
equal to 1. The only positive real number with mag-
nitude 1 is 1 itself, so X = I, which implies U1 = U2
and T1 = T2.

1.C.7 (a) If we write A = [ B |C ] has QR decomposition
A = U [ T | D ] where B and T are m×m, B
is invertible, and T is upper triangular, then
B = UT . Since B is invertible, we know from
Exercise 1.C.5 that this is its unique QR de-
composition, so the U and T in the QR decom-
position of A are unique. To see that D is also
unique, we just observe that D = U∗C.

(b) We gave one QR decomposition for a par-
ticular 3× 2 matrix in the solution to Exer-
cise 1.C.1(c), and another one can be obtained
simply by negating the final column of U :

U =
1
3




2 1 2
1 2 −2
−2 2 1


 and T =




9 4
0 1
0 0


 .
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Section 1.D: Extra Topic: Norms and Isometries

1.D.1 (a) Is a norm. This is the 1-norm of Pv, where P
is the diagonal matrix with 1 and 3 on its diag-
onal. In general, ‖Pv‖p is a norm whenever P
is invertible (and it is in this case).

(c) Not a norm. For example, if v = (1,−1) then

‖v‖=
∣∣v3

1 + v2
1v2 + v1v2

2 + v3
2
∣∣1/3

= |1−1+1−1|1/3 = 0.

Since v 6= 0, it follows that ‖ · ‖ is not a norm.
(e) Not a norm. For example, if p(x) = x then
‖p‖= 1 and ‖2p‖= 1 6= 2.

1.D.2 (b) No, not induced by an inner product. For ex-
ample,

2‖e1‖2 +2‖e2‖2 = 1+32/3, but

‖e1 + e2‖2 +‖e1− e2‖2 = 42/3 +42/3.

Since these numbers are not equal, the paral-
lelogram law does not hold, so the norm is not
induced by an inner product.

1.D.3 (a) True. All three of the defining properties of
norms are straightforward to prove. For exam-
ple, the triangle inequality for c‖ · ‖ follows
from the triangle inequality for ‖ · ‖:

c‖v+w‖ ≤ c
(
‖v‖+‖w‖

)
= c‖v‖+ c‖w‖.

(c) False. This is not even true for unitary matrices
(e.g., I + I is not a unitary matrix/isometry).

(e) False. For example, if V and W have different
dimensions then T cannot be invertible. How-
ever, we show in Exercise 1.D.21 that this state-
ment is true if V = W is finite-dimensional.

1.D.6 The triangle inequality tells us that ‖x+y‖ ≤ ‖x‖+
‖y‖ for all x,y ∈ V . If we choose x = v−w and
y = w, then this says that

‖(v−w)+w‖ ≤ ‖v−w‖+‖w‖.
After simplifying and rearranging, this becomes
‖v‖−‖w‖ ≤ ‖v−w‖, as desired.

1.D.7 First, choose an index k such that ‖v‖∞ = |vk|. Then

‖v‖p = p
√
|v1|p + · · ·+ |vn|p

≥ p
√
|vk|p = |vk|= ‖v‖∞.

1.D.8 (a) If |v| < 1 then multiplying |v| by itself de-
creases it. By multiplying it by itself more and
more, we can make it decrease to as close to 0
as we like.
[Note: To make this more rigorous, you can
note that for every sufficiently small ε > 0,
you can choose p≥ log(ε)/ log(|v|), which is
≥ 1 when 0 < ε ≤ |v|, so that |v|p ≤ ε .]

(b) If ‖v‖∞ = 1 then we know from Exercise 1.D.7
that ‖v‖p ≥ 1. Furthermore, |v j| ≤ 1 for each
1≤ j≤ n, so |v j|p ≤ 1forall p≥ 1aswell.Then

‖v‖p = p
√
|v1|p + · · ·+ |vn|p

≤ p√1+ · · ·+1≤ p
√

n.

Since limp→∞
p
√

n = 1, the squeeze theorem for
limits tells us that limp→∞ ‖v‖p = 1 too.

(c) We already know that the desired claim holds
whenever ‖v‖∞ = 1, so for other vectors we
just note that

lim
p→∞
‖cv‖p = |c| lim

p→∞
‖v‖p = |c|‖v‖∞ = ‖cv‖∞.

1.D.9 This inequality can be proved “directly”:

|v ·w|=
∣∣∣∣∣

n

∑
j=1

v jw j

∣∣∣∣∣

≤
n

∑
j=1
|v j||w j| ≤

n

∑
j=1
|v j|‖w‖∞ = ‖v‖1‖w‖∞,

where the final inequality follows from the fact that
|w j| ≤ ‖w‖∞ for all j (straight from the definition of
that norm).

1.D.10 (a) For the “if” direction, just notice that ‖cw+w‖p =
‖(c+1)w‖p = (c+1)‖w‖p = ‖cw‖p +‖w‖p.For
the “only if” direction, we refer back to the proof
of Minkowski’s inequality (Theorem 1.D.2). There
were only two places in that proof where an inequal-
ity was introduced: once when using the triangle
inequality on C and once when using convexity of
the function f (x) = xp.
From equality in the triangle inequality we see
that, for each 1≤ j ≤ n, we have (using the nota-
tion established in that proof) y j = 0 or x j = c jy j
for some 0 < c j ∈R. Furthermore, since f (x) = xp

is strictly convex whenever p > 1, we conclude
that the only way the corresponding inequality can
be equality is if |x j|= |y j| for all 1≤ j ≤ n. Since
‖x‖p = ‖y‖p = 1, this implies x = y, so v and w
are non-negative multiples of x = y and thus of
each other.

(b) The “if” direction is straightforward, so we fo-
cus on the “only if” direction. If ‖v + w‖1 =
‖v‖1 +‖w‖1 then

∑
j
|v j +w j|= ∑

j

(
|v j|+ |w j|

)
.

Since |v j + w j| ≤ |v j|+ |w j| for all j, the above
equality implies |v j + w j| = |v j|+ |w j| for all j.
This equation holds if and only if v j and w j lie on
the same closed ray starting at the origin in the
complex plane (i.e., either w j = 0 or v j = c jw j
for some 0 < c j ∈ R).

1.D.12 (a) If v = e1 is the first standard basis vector then
‖v‖p = ‖v‖q = 1.

(b) If v = (1,1, . . . ,1) then ‖v‖p = n1/p and
‖v‖q = n1/q, so

‖v‖p =
(

n
1
p−

1
q
)
‖v‖q,

as desired.

1.D.13 We already proved the triangle inequality for this
norm as Theorem 1.D.7, so we just need to show the
remaining two defining properties of norms. First,

‖c f‖p =
(∫ b

a
|c f (x)|p dx

)1/p

=
(
|c|p

∫ b

a
| f (x)|p dx

)1/p

= |c|
(∫ b

a
| f (x)|p dx

)1/p

= |c|‖ f‖p.
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Second, ‖ f‖p ≥ 0 for all f ∈ C[a,b] because inte-
grating a non-negative function gives a non-negative
answer. Furthermore, ‖ f‖p = 0 implies f is the zero
function since otherwise f (x) > 0 for some x ∈ [a,b]
and thus f (x) > 0 on some subinterval of [a,b] by
continuity of f , so the integral and thus ‖ f‖p would
both have to be strictly positive as well.

1.D.14 We just mimic the proof of Hölder’s inequality
for vectors in Cn. Without loss of generality, we
just need to prove the theorem in the case when
‖ f‖p = ‖g‖q = 1. By Young’s inequality, we know
that

| f (x)g(x)| ≤ | f (x)|
p

p
+
|g(x)|q

q
for all x ∈ [a,b]. Integrating then gives
∫ b

a
| f (x)g(x)| dx≤

∫ b

a

| f (x)|p
p

dx+
∫ b

a

|g(x)|q
q

dx

=
‖ f‖p

p

p
+
‖g‖q

q

q
=

1
p

+
1
q

= 1,

as desired.

1.D.16 First, we compute

〈v,v〉= 1
4

3

∑
k=0

1
ik
‖v+ ikv‖2

V = ‖v‖2
V ,

which is clearly non-negative with equality if and
only if v = 0. Similarly,

〈v,w〉= 1
4

3

∑
k=0

1
ik
‖v+ ikw‖2

V

=
1
4

3

∑
k=0

1
ik
‖ikv+w‖2

V

=
1
4

3

∑
k=0

ik‖w+ ikv‖2
V = 〈w,v〉.

All that remains is to show that 〈v,w+cx〉= 〈v,w〉+
c〈v,x〉 for all v,w,x ∈ V and all c ∈ C. The fact that
〈v,w + x〉 = 〈v,w〉+ 〈v,x〉 for all v,w,x ∈ V can
be proved in a manner identical to that given in the
proof of Theorem 1.D.8, so we just need to show
that 〈v,cw〉= c〈v,w〉 for all v,w ∈ V and c ∈ C. As
suggested by the hint, we first notice that

〈v, iw〉= 1
4

3

∑
k=0

1
ik
‖v+ ik+1w‖2

V

=
1
4

3

∑
k=0

1
ik−1 ‖v+ iw‖2

V

= i
1
4

3

∑
k=0

1
ik
‖v+ iw‖2

V = i〈v,w〉.

When we combine this observation with the fact that
this inner product reduces to exactly the one from
the proof of Theorem 1.D.8 when v and w are real,
we see that 〈v,cw〉 = c〈v,w〉 simply by splitting
everything into their real and imaginary parts.

1.D.20 If dim(V) > dim(W) and {v1, . . . ,vn} is a basis of
V , then {T (v1), . . . ,T (vn)} is necessarily linearly
dependent (since it contains more than dim(W) vec-
tors). There thus exist scalars c1, . . . ,cn, not all equal
to 0, such that

T (c1v1 + · · ·+ cnvn) = c1T (v1)+ · · ·+ cnT (vn)

= 0.

In particular, this means that there is a non-zero vec-
tor (which has non-zero norm) c1v1 + · · ·+cnvn ∈ V
that gets sent to the zero vector (which has norm 0),
so T is not an isometry.

1.D.22 We prove this theorem by showing the chain of im-
plications (b) =⇒ (a) =⇒ (c) =⇒ (b), and mimic
the proof of Theorem 1.4.9.
To see that (b) implies (a), suppose T ∗ ◦T = IV . Then
for all v ∈ V we have

‖T (v)‖2
W = 〈T (v),T (v)〉= 〈v,(T ∗ ◦T )(v)〉

= 〈v,v〉= ‖v‖2
V ,

so T is an isometry.
For (a) =⇒ (c), note that if T is an isometry then
‖T (v)‖2

W = ‖v‖2
V for all v ∈ V , so expanding these

quantities in terms of the inner product (like we did
above) shows that

〈T (v),T (v)〉= 〈v,v〉 for all v ∈ V .

Well, if x,y ∈ V then this tells us (by choosing
v = x+y) that

〈T (x+y),T (x+y)〉= 〈x+y,x+y〉.

Expanding the inner product on both sides of the
above equation then gives

〈T (x),T (x)〉+2Re
(
〈T (x),T (y)〉

)
+ 〈T (y),T (y)〉

= 〈x,x〉+2Re
(
〈x,y〉

)
+ 〈y,y〉.

By then using the fact that 〈T (x),T (x)〉= 〈x,x〉 and
〈T (y),T (y)〉 = 〈y,y〉, we can simplify the above
equation to the form

Re
(
〈T (x),T (y)〉

)
= Re

(
〈x,y〉

)
.

If V is a vector space over R, then this implies
〈T (x),T (y)〉 = 〈x,y〉 for all x,y ∈ V . If instead V
is a vector space over C then we can repeat the above
argument with v = x+ iy to see that

Im
(
〈T (x),T (y)〉

)
= Im

(
〈x,y〉

)
,

so in this case we have 〈T (x),T (y)〉= 〈x,y〉 for all
x,y ∈ V too, establishing (c).
Finally, to see that (c) =⇒ (b), note that if we rear-
range the equation 〈T (x),T (y)〉= 〈x,y〉 slightly, we
get

〈x,(T ∗ ◦T − IV )(y)〉= 0 for all x,y ∈ V .

Well, if we choose x = (T ∗ ◦ T − IV )(y) then this
implies

‖(T ∗ ◦T − IV )(y)‖2
V = 0 for all y ∈ V .

This implies (T ∗◦T−IV )(y) = 0, so (T ∗◦T )(y) = y
for all y ∈ V , which means exactly that T ∗ ◦T = IV ,
thus completing the proof.

1.D.24 For the “if” direction, we note (as was noted in the
proof of Theorem 1.D.10) that any P with the speci-
fied form just permutes the entries of v and possibly
multiplies them by a number with absolute value
1, and such an operation leaves ‖v‖1 = ∑ j |v j| un-
changed.
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For the “only if” direction, suppose P =[
p1 | p2 | · · · | pn

]
is an isometry of the 1-norm.

Then Pe j = p j for all j, so

‖p j‖1 = ‖Pe j‖1 = ‖e j‖1 = 1 for all 1≤ j ≤ n.

Similarly, P(e j + ek) = p j +pk for all j,k, so

‖p j +pk‖1 = ‖P(e j + ek)‖1 = ‖e j + ek‖1 = 2

for all j and k. We know from the triangle inequal-
ity (or equivalently from Exercise 1.D.10(b)) that
the above equality can only hold if there exist non-
negative real constants ci, j,k ≥ 0 such that, for each
i, j,k, it is the case that either pi, j = ci, j,k pi,k or
pi,k = 0.
However, we can repeat this argument with the fact
that P(e j− ek) = p j−pk for all j,k to see that

‖p j−pk‖1 = ‖P(e j− ek)‖1 = ‖e j− ek‖1 = 2

for all j and k as well. Then by using Exer-
cise 1.D.10(b) again, we see that there exist non-
negative real constants di, j,k ≥ 0 such that, for each
i, j,k, it is the case that either pi, j = −di, j,k pi,k or
pi,k = 0.
Since each ci, j,k and di, j,k is non-negative, it follows
that if pi,k 6= 0 then pi, j = 0 for all j 6= k. In other
words, each row of P contains at most one non-zero
entry (and each row must indeed contain at least
one non-zero entry since P is invertible by Exer-
cise 1.D.21).
Every row thus has exactly one non-zero entry. By
using (again) the fact that isometries must be invert-
ible, it follows that each of the non-zero entries must
occur in a distinct column (otherwise there would
be a zero column). The fact that each non-zero entry
has absolute value 1 follows from simply noting that
P must preserve the 1-norm of each standard basis
vector e j .

1.D.25 Instead of just noting that max
1≤i≤n

{
|pi, j ± pi,k|

}
= 1

for all 1 ≤ j,k ≤ n, we need to observe that
max1≤i≤n

{
|pi, j + zpi,k|

}
= 1 whenever z ∈ C is

such that |z|= 1. The rest of the proof follows with
no extra changes needed.

1.D.26 Notice that if pn(x) = xn then

‖pn‖1 =
∫ 1

0
xn dx =

1
n+1

and

‖pn‖∞ = max
0≤x≤1

{
xn}= 1.

In particular, this means that there does not exist a
constant C > 0 such that 1 = ‖pn‖∞ ≤ C‖pn‖1 =
C/(n + 1) for all n ≥ 1, since we would need
C ≥ n+1 for all n≥ 1.

1.D.27 Since ‖ · ‖a and ‖ · ‖b are equivalent, there exist
scalars c,C > 0 such that

c‖v‖a ≤ ‖v‖b ≤C‖v‖a for all v ∈ V .

Similarly, equivalence of ‖ · ‖b and ‖ · ‖c tells us that
there exist scalars d,D > 0 such that

d‖v‖b ≤ ‖v‖c ≤ D‖v‖b for all v ∈ V .

Basic algebraic manipulations of these inequalities
show that

cd‖v‖a ≤ ‖v‖c ≤CD‖v‖a for all v ∈ V ,

so ‖ · ‖a and ‖ · ‖c are equivalent too.

1.D.28 Both directions of this claim follow just from notic-
ing that all three defining properties of ‖ · ‖V follow
immediately from the three corresponding properties
of ‖ · ‖Fn (e.g., if we know that ‖ · ‖Fn is a norm then
we can argue that ‖v‖= 0 implies

∥∥[v]B
∥∥

Fn = 0, so
[v]B = 0, so v = 0).
More generally, we recall that the function that sends
a vector v ∈ V to its coordinate vector [v]B ∈ Fn is
an isomorphism. It is straightforward to check that
if T : V →W is an isomorphism then the function
defined by ‖v‖ = ‖T (v)‖W is a norm on V (com-
pare with the analogous statement for inner products
given in Exercise 1.3.25).

Section 2.1: The Schur and Spectral Decompositions

2.1.1 (a) Normal.
(c) Unitary and normal.
(e) Hermitian, skew-Hermitian, and normal.
(g) Unitary, Hermitian, and normal.

2.1.2 (a) Not normal, since

A∗A =

[
5 1
1 10

]
6=
[

5 −1
−1 10

]
= AA∗.

(c) Is normal, since

A∗A =

[
2 0
0 2

]
= AA∗.

(e) Is normal (all Hermitian matrices are).
(g) Not normal.

2.1.3 (a) The eigenvalues of this matrix are 3 and
4, with corresponding eigenvectors (1,1)/

√
2

and (3,2)/
√

13, respectively (only one eigen-
value/eigenvector pair is needed). If we choose
to Schur triangularize via λ = 3 then we get

U =
1√
2

[
1 1
1 −1

]
and T =

[
3 5
0 4

]
,

whereas if we Schur triangularize via λ = 4
then we get

U =
1√
13

[
3 2
2 −3

]
and T =

[
4 5
0 3

]
.

These are both valid Schur triangularizations
of A (and there are others too).



466 Appendix C. Selected Exercise Solutions

2.1.4 In all parts of this question, we call the given matrix
A.

(a) A = UDU∗, where

D =

[
5 0
0 1

]
and U =

1√
2

[
1 1
1 −1

]
.

(c) A = UDU∗, where

D =

[
1 0
0 −1

]
and U =

1√
2

[
1 −1
i i

]
.

(e) A = UDU∗, where

D =
1
2




1+
√

3i 0 0

0 1−
√

3i 0
0 0 4


 and

U =
1

2
√

3




2 2 −2

−1+
√

3i −1−
√

3i −2

−1−
√

3i −1+
√

3i −2


 .

2.1.5 (b) False. For example, the matrices

A =

[
1 0
0 0

]
and B =

[
0 1
−1 0

]

are normal, but A+B is not.
(d) False. This was shown in part (b) above.
(f) False. By the real spectral decomposition, we

know that such a decomposition of A is pos-
sible if and only if A is symmetric. There are
(real) normal matrices that are not symmetric
(and they require a complex D and/or U).

(h) False. For a counter-example, just pick any
(non-diagonal) upper triangular matrix with
real diagonal entries. However, this becomes
true if you add in the restriction that A is nor-
mal and has real eigenvalues.

2.1.7 Recall that pA(λ ) = λ 2 − tr(A)λ + det(A). By the
Cayley–Hamilton theorem, it follows that

pA(A) = A2− tr(A)A+det(A)I = O.

Multiplying this equation through by A−1 shows that
det(A)A−1 = tr(A)I−A, which we can rearrange as

A−1 =
1

det(A)

[
d −b
−c a

]
.

The reader may have seen this formula when learning
introductory linear algebra.

2.1.9 (a) The characteristic polynomial of A is pA(λ ) =
λ 3−3λ 2 +4, so the Cayley–Hamilton theorem
tells us that A3− 3A2 + 4I = O. Moving I to
one side and then factoring A out of the other
side then gives I = A( 3

4 A− 1
4 A2). It follows

that A−1 = 3
4 A− 1

4 A2.
(b) From part (a) we know that A3−3A2 +4I = O.

Multiplying through by A gives A4 − 3A3 +
4A = O, which can be solved for A to get
A = 1

4 (3A3 −A4). Plugging this into the for-
mula A−1 = 3

4 A− 1
4 A2 gives us what we want:

A−1 = 9
16 A3− 3

4 A4− 1
4 A2.

2.1.12 If A has Schur triangularization A = UTU∗, then
cyclic commutativity of the trace shows that ‖A‖F =
‖T‖F. Since the diagonal entries of T are the eigen-
values of A, we have

‖T‖F =

√
n

∑
j=1
|λ j|2 + ∑

i< j
|ti, j|2.

It follows that

‖A‖F =

√
n

∑
j=1
|λ j|2

if and only if T can actually be chosen to be diagonal,
which we know from the spectral decomposition
happens if and only if A is normal.

2.1.13 Just apply Exercise 1.4.19 with B = A and C = A∗. In
particular, the equivalence of conditions (a) and (c)
gives us what we want.

2.1.14 If A∗ ∈ span
{

I,A,A2,A3, . . .
}

then A∗ commutes
with A (and thus A is normal) since A commutes
with each of its powers.
On the other hand, if A is normal then it has a spec-
tral decomposition A = UDU∗, and A∗ = UDU∗.
Then let p be the interpolating polynomial with the
property that p(λ j) = λ j for all 1≤ j ≤ n (some of
the eigenvalues of A might be repeated, but that is
OK because the eigenvalues of A∗ are then repeated
as well, so we do not run into a problem with trying
to set p(λ j) to equal two different values). Then
p(A) = A∗, so A∗ ∈ span

{
I,A,A2,A3, . . .

}
. In partic-

ular, this tells us that if A has k distinct eigenvalues
then A∗ ∈ span

{
I,A,A2,A3, . . . ,Ak−1}.

2.1.17 In all cases, we write A in a spectral decomposition
A = UDU∗.

(a) A is Hermitian if and only if A∗ = (UDU∗)∗ =
UD∗U∗ equals A = UDU∗. Multiplying on the
left by U∗ and the right by U shows that this
happens if and only if D∗ = D, if and only if
the entries of D (i.e., the eigenvalues of A) are
all real.

(b) The same as part (a), but noting that D∗ =−D
if and only if its entries (i.e., the eigenvalues of
A) are all imaginary.

(c) A is unitary if and only if I = A∗A =
(UDU∗)∗(UDU∗) = UD∗DU∗. Multiplying
on the left by U∗ and the right by U shows
that A is unitary if and only if D∗D = I, which
(since D is diagonal) is equivalent to |d j, j|2 = 1
for all 1≤ j ≤ n.

(d) If A is not normal then we can let it be triangu-
lar (but not diagonal) with whatever eigenval-
ues (i.e., eigenvalues) we like. Such a matrix
is not normal (see Exercise 2.1.16) and thus is
not Hermitian, skew-Hermitian, or unitary.

2.1.19 (a) Use the spectral decomposition to write A =
UDU∗, where D is diagonal with the eigenval-
ues of A along its diagonal. If we recall that
rank is similarity-invariant then we see that
rank(A) = rank(D), and the rank of a diagonal
matrix equals the number of non-zero entries
that it has (i.e., the rank(D) equals the number
of non-zero eigenvalues of A).
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(b) Any non-zero upper triangular matrix with
all diagonal entries (i.e., eigenvalues) equal
to 0 works. They have non-zero rank, but no
non-zero eigenvalues.

2.1.20 (a) We already proved this in the proof of Theo-
rem 2.1.6. Since A is real and symmetric, we
have

λ‖v‖2 = λv∗v = v∗Av = v∗A∗v

= (v∗Av)∗ = (λv∗v)∗ = λ‖v‖2,

which implies λ = λ (since every eigenvector v
is, by definition, non-zero), so λ is real.

(b) Let λ be a (necessarily real) eigenvalue of A with
corresponding eigenvector v ∈ Cn. Then

Av = Av = λv = λv,

so v is also an eigenvector corresponding to λ .
Since linear combinations of eigenvectors (corre-
sponding to the same eigenvalue) are still eigen-
vectors, we conclude that Re(v) = (v+v)/2 is a
real eigenvector of A corresponding to the eigen-
value λ .

(c) We proceed by induction on n (the size of A) and
note that the n = 1 base case is trivial since every
1×1 real symmetric matrix is real diagonal. For
the inductive step, let λ be a real eigenvalue of
A with corresponding real eigenvector v ∈ Rn.
By using the Gram–Schmidt process we can find
a unitary matrix V ∈Mn(R) with v as its first
column:

V =
[

v | V2
]
,

where V2 ∈Mn,n−1(R) satisfies V T
2 v = 0 (since

V is unitary, v is orthogonal to every column of
V2). Then direct computation shows that

V T AV =
[

v | V2
]T A

[
v | V2

]

=
[

vT

V T
2

][
Av | AV2

]
=
[

vT Av vT AV2
λV T

2 v V T
2 AV2

]

=
[

λ 0T

0 V T
2 AV2

]
.

We now apply the inductive hypothesis—since
V T

2 AV2 is an (n−1)× (n−1) symmetric matrix,
there exists a unitary matrix U2 ∈Mn−1(R) and
a diagonal D2 ∈Mn−1(R) such that V T

2 AV2 =
U2D2UT

2 . It follows that

V T AV =
[

λ 0T

0 U2D2UT
2

]

=
[

1 0T

0 U2

][
λ 0T

0 D2

][
1 0T

0 UT
2

]
.

By multiplying on the left by V and on the right
by V T , we see that A = UDUT , where

U =V
[

1 0T

0 U2

]
and D =

[
λ 0T

0 D2

]
.

Since U is unitary and D is diagonal, this com-
pletes the inductive step and the proof.

2.1.23 (a) See solution to Exercise 1.4.29(a).
(b) Orthogonality of P tells us that 〈P(v),v−

P(v)〉 = 0, so 〈T (v),v〉 = 0 for all v ∈ V . Ex-
ercise 1.4.28 then tells us that T ∗ =−T .

(c) If B is an orthonormal basis of V then [T ]TB =
−[T ]B, so tr([T ]B) = tr([T ]TB ) = −tr([T ]B). It
follows that tr([P]B− [P]TB [P]B) = tr([T ]B) = 0,
so tr([P]B) = tr([P]TB [P]B) = ‖[P]TB [P]B‖2

F.
Since tr([P]B) equals the sum of the eigen-
values of [P]B, all of which are 0 or 1, it
follows from Exercise 2.1.12 that [P]B is nor-
mal and thus has a spectral decomposition
[P]B =UDU∗. The fact that [P]TB = [P]∗B = [P]B
and thus P∗ = P follows from again recalling
that the diagonal entries of D are all 0 or 1 (and
thus real).

2.1.26 If A has distinct eigenvalues, we can just notice that
if v is an eigenvector of A (i.e., Av = λv for some λ )
then ABv = BAv = λBv, so Bv is also an eigenvector
of A corresponding to the same eigenvalue. However,
the eigenvalues of A being distinct means that its
eigenspaces are 1-dimensional, so Bv must in fact be
a multiple of v: Bv = µv for some scalar µ , which
means exactly that v is an eigenvector of B as well.
If the eigenvalues of A are not distinct, we instead
proceed by induction on n (the size of the matrices).
The base case n = 1 is trivial, and for the inductive
step we suppose that the result holds for matrices of
size (n−1)×(n−1) and smaller. Let {v1, . . . ,vk} be
an orthonormal basis of any one of the eigenspaces S
of A. If we let V1 =

[
v1 | · · · | vk

]
then we can extend

V1 to a unitary matrix V =
[

V1 | V2
]
. Furthermore,

Bv j ∈ S for all 1 ≤ j ≤ k, by the same argument
used in the previous paragraph, and straightforward
calculation shows that

V ∗AV =
[

V ∗1 AV1 V ∗1 AV2
O V ∗2 AV2

]
and

V ∗BV =
[

V ∗1 BV1 V ∗1 BV2
O V ∗2 BV2

]
.

Since the columns of V1 form an orthonormal basis
of an eigenspace of A, we have V ∗1 AV1 = λ Ik , where
λ is the corresponding eigenvalue, so V ∗1 AV1 and
V ∗1 BV1 commute. By the inductive hypothesis, V ∗1 AV1
and V ∗1 BV1 share a common eigenvector x ∈ Ck , and
it follows that V1x is a common eigenvector of each
of A and B.

Section 2.2: Positive Semidefiniteness

2.2.1 (a) Positive definite, since its eigenvalues equal 1.
(c) Not positive semidefinite, since it is not even

square.
(e) Not positive semidefinite, since it is not even

Hermitian.

(g) Positive definite, since it is strictly diagonally
dominant.

2.2.2 (a) D(1,2) and D(−1,3).
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(c) D(1,0), D(2,0), and D(3,0). Note that these
discs are really just points located at 1, 2, and 3
in the complex plane, so the eigenvalues of this
matrix must be 1, 2, and 3 (which we could see
directly since it is diagonal).

(e) D(1,3), D(3,3), and another (redundant) copy
of D(1,3).

2.2.3 (a) 1√
2

[
1 −1
−1 1

]

(c)



1 0 0

0
√

2 0

0 0
√

3




(e)
1

2
√

3




1+
√

3 2 1−
√

3
2 4 2

1−
√

3 2 1+
√

3




2.2.4 (a) This matrix is positive semidefinite so we can
just set U = I and choose P to be itself.

(d) Since this matrix is invertible, its polar decom-
position is unique:

U =
1
3




1 −2 2
−2 1 2
2 2 1


 , P =




2 1 0
1 3 1
0 1 1


 .

2.2.5 (a) False. The matrix B from Equation (2.2.1) is a
counter-example.

(c) True. The identity matrix is Hermitian and has
all eigenvalues equal to 1.

(e) False. For example, let

A =

[
2 1
1 1/2

]
and B =

[
1/2 1

1 2

]
,

which are both positive semidefinite. Then

AB =

[
2 4
1 2

]
,

which is not even Hermitian, so it cannot be
positive semidefinite.

(g) False. A counter-example to this claim was
provided in Remark 2.2.2.

(i) False. I has many non-PSD square roots (e.g.,
any diagonal matrix with ±1) entries on its
diagonal.

2.2.6 (a) x ≥ 0, since a diagonal matrix is PSD if and
only if its diagonal entries are non-negative.

(c) x = 0. The matrix (which we will call A) is
clearly PSD if x = 0, and if x 6= 0 then we note
from Exercise 2.2.11 that if A is PSD and has
a diagonal entry equal to 0 then every entry in
that row and column must equal 0 too.
More explicitly, we can see that A is not
PSD by letting v = (0,−1,v3) and computing
v∗Av = 1−2v3x, which is negative as long as
we choose v3 large enough.

2.2.7 If A is PSD then we can write A = UDU∗, where U
is unitary and D is diagonal with non-negative real
diagonal entries. However, since A is also unitary,
its eigenvalues (i.e., the diagonal entries of D) must
lie on the unit circle in the complex plane. The only
non-negative real number on the unit circle is 1, so
D = I, so A = UDU∗ = UU∗ = I.

2.2.11 First note that a j,i = ai, j since PSD matrices are
Hermitian, so it suffices to show that ai, j = 0 for all
i. To this end, let v ∈ Fn be a vector with v j = −1
and all entries except for vi and v j equal to 0. Then
v∗Av = a j, j − 2Re(viai, j). If it were the case that
ai, j 6= 0, then we could choose vi to be a sufficiently
large multiple of ai, j so that v∗Av < 0. Since this
contradicts positive semidefiniteness of A, we con-
clude that ai, j = 0.

2.2.13 The “only if” direction follows immediately from
Theorem 2.2.4. For the “if” direction, note that for
any vector v (of suitable size that we partition in the
same way as A) we have

v∗Av =
[
v∗1 · · · v∗n

]



A1 · · · O

...
. . .

...
O · · · An







v1

...
vn




= v∗1A1v1 + · · ·+v∗nAnvn.

Since A1,A2, . . . ,An are positive (semi)definite it
follows that each term in this sum is non-negative
(or strictly positive, as appropriate), so the sum is as
well, so A is positive (semi)definite.

2.2.14 This follows immediately from Theorem 2.2.10,
which says that A∗A = B∗B if and only if there exists
a unitary matrix U such that B = UA. If we choose
B = A∗ then we see that A∗A = AA∗ (i.e., A is normal)
if and only if A∗ = UA.

2.2.16 (a) For the “if” direction just note that any real
linear combination of PSD (self-adjoint) ma-
trices is self-adjoint. For the “only” direction,
note that if A = UDU∗ is a spectral decompo-
sition of A then we can define P = UD+U∗

and N =−UD−U∗, where D+ and D− are the
diagonal matrices containing the strictly pos-
itive and negative entries of D, respectively.
Then P and N are each positive semidefinite
and P− N = UD+U∗ + UD−U∗ = U(D+ +
D−)U∗ = UDU∗ = A.
[Side note: The P and N constructed in this way
are called the positive semidefinite part and
negative semidefinite part of A, respectively.]

(b) We know from Remark 1.B.1 that we can write
A as a linear combination of the two Hermitian
matrices A+A∗ and iA− iA∗:

A =
1
2
(A+A∗)+

1
2i

(iA− iA∗).

Applying the result of part (a) to these 2 Hermi-
tian matrices writes A as a linear combination
of 4 positive semidefinite matrices.

(c) If F = R then every PSD matrix is symmetric,
and the set of symmetric matrices is a vector
space. It follows that there is no way to write a
non-symmetric matrix as a (real) linear combi-
nation of (real) PSD matrices.

2.2.19 (a) Since A is PSD, we know that a j, j = e∗j Ae j ≥ 0
for all 1≤ j≤ n. Adding up these non-negative
diagonal entries shows that tr(A)≥ 0.
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(b) Write A = D∗D and B = E∗E (which we
can do since A and B are PSD). Then
cyclic commutativity of the trace shows
that tr(AB) = tr(D∗DE∗E) = tr(ED∗DE∗) =
tr((DE∗)∗(DE∗)). Since (DE∗)∗(DE∗) is
PSD, it follows from part (a) that this quan-
tity is non-negative.

(c) One example that works is

A =

[
1 1
1 1

]
, B =

[
1 −2
−2 4

]
,

C =

[
4 −2
−2 1

]
.

It is straightforward to verify that each of
A, B, and C are positive semidefinite, but
tr(ABC) =−4.

2.2.20 (a) The “only if” direction is exactly Exer-
cise 2.2.19(b). For the “if” direction, note that
if A is not positive semidefinite then it has a
strictly negative eigenvalue λ < 0 with a cor-
responding eigenvector v. If we let B = vv∗
then tr(AB) = tr(Avv∗) = v∗Av = v∗(λv) =
λ‖v‖2 < 0.

(b) In light of part (a), we just need to show
that if A is positive semidefinite but not pos-
itive definite, then there is a PSD B such
that tr(AB) = 0. To this end, we just let v
be an eigenvector of A corresponding to the
eigenvalue 0 of A and set B = vv∗. Then
tr(AB) = tr(Avv∗) = v∗Av = v∗(0v) = 0.

2.2.21 (a) The fact that c≤ 0 follows simply from choos-
ing B = O. If A were not positive semidefinite
then it has a strictly negative eigenvalue λ < 0
with a corresponding eigenvector v. If we let
x≥ 0 be a real number and B = I + xvv∗ then

tr(AB) = tr
(
A(I + xvv∗)

)
= tr(A)+ xλ‖v‖2,

which can be made arbitrarily large and neg-
ative (in particular, more negative than c) by
choosing x sufficiently large.

(b) To see that c ≤ 0, choose B = εI so that
tr(AB) = εtr(A), which tends to 0+ as ε→ 0+.
Positive semidefiniteness of A then follows via
the same argument as in the proof of part (a)
(notice that the matrix B = I + xvv∗ from that
proof is positive definite).

2.2.22 (a) Recall from Theorem A.1.2 that rank(A∗A) =
rank(A). Furthermore, if A∗A has spectral de-
composition A∗A = UDU∗ then rank(A∗A)
equals the number of non-zero diagonal en-
tries of D, which equals the number of non-
zero diagonal entries of

√
D, which equals

rank(|A|) = rank(
√

A∗A).
(b) Just recall that ‖A‖F =

√
tr(A∗A), so

∥∥|A|
∥∥

F =√
tr(|A|2) =

√
tr(A∗A) too.

(c) We compute
∥∥|A|v

∥∥2 = (|A|v) · (|A|v) =
v∗|A|2v = v∗A∗Av = (Av) · (Av) = ‖Av‖2 for
all v ∈ Fn.

2.2.23 To see that (a) =⇒ (b), let v be an eigenvector of
A with corresponding eigenvalue λ . Then Av = λv,
and multiplying this equation on the left by v∗ shows
that v∗Av = λv∗v = λ‖v‖2. Since A is positive defi-
nite, we know that v∗Av > 0, so it follows that λ > 0
too.
To see that (b) =⇒ (d), we just apply the spectral
decomposition theorem (either the complex Theo-
rem 2.1.4 or the real Theorem 2.1.6, as appropriate)
to A.
To see why (d) =⇒ (c), let

√
D be the diagonal

matrix that is obtained by taking the (strictly posi-
tive) square root of the diagonal entries of D, and
define B =

√
DU∗. Then B is invertible since it is

the product of two invertible matrices, and B∗B =
(
√

DU∗)∗(
√

DU∗) = U
√

D
∗√

DU∗ = UDU∗ = A.
Finally, to see that (c) =⇒ (a), we let v ∈ Fn be any
non-zero and we note that

v∗Av = v∗B∗Bv = (Bv)∗(Bv) = ‖Bv‖2 > 0,

with the final inequality being strict because B is
invertible so Bv 6= 0 whenever v 6= 0.

2.2.24 In all parts of this question, we prove the statement
for positive definiteness. For semidefiniteness, just
make the inequalities not strict.

(a) If A and B are self-adjoint then so is A + B, and
if v∗Av > 0 and v∗Bv > 0 for all v∈Fn then
v∗(A+B)v=v∗Av+v∗Bv>0 for all v ∈ Fn too.

(b) If A is self-adjoint then so is cA (recall c is real),
and v∗(cA)v = c(v∗Av) > 0 for all v ∈ Fn when-
ever c > 0 and A is positive definite.

(c) (AT )∗ = (A∗)T , so AT is self-adjoint whenever
A is, and AT always has the same eigenvalues as
A, so if A is positive definite (i.e., has positive
eigenvalues) then so is AT .

2.2.25 (a) We use characterization (c) of positive semidef-
initeness from Theorem 2.2.1. If we let
{v1,v2, . . . ,vn} be the columns of B (i.e., B =
[ v1 | v2 | · · · | vn ]) then we have

B∗B =




v∗1
v∗2
...

v∗n


 [ v1 | v2 | · · · | vn ]

=




v∗1v1 v∗1v2 · · · v∗1vn

v∗2v1 v∗2v2 · · · v∗2vn

...
...

. . .
...

v∗nv1 v∗nv2 · · · v∗nvn




.

In particular, it follows that A = B∗B (i.e., A
is positive semidefinite) if and only if ai, j =
v∗i v j = vi ·v j for all 1≤ i, j ≤ n.

(b) The set {v1,v2, . . . ,vn} is linearly indepen-
dent if and only if the matrix B from our
proof of part (a) is invertible, if and only if
rank(B∗B) = rank(B) = n, if and only if B∗B
is invertible, if and only if B∗B is positive
definite.

2.2.28 (a) This follows from multilinearity of the deter-
minant: multiplying one of the columns of a
matrix multiplies its determinant by the same
amount.
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(b) Since A∗A is positive semidefinite, its eigenval-
ues λ1,λ2, . . . ,λn are non-negative, so we can
apply the AM–GM inequality to them to get

det(A∗A) = λ1λ2 · · ·λn ≤
(

1
n

n

∑
j=1

λ j

)n

=
(

1
n

tr(A∗A)
)n

=
(

1
n
‖A‖2

F

)n

=

(
1
n

n

∑
j=1
‖a j‖2

)n

= 1n = 1.

(c) We just recall that the determinant is mul-
tiplicative, so det(A∗A) = det(A∗)det(A) =
|det(A)|2, so |det(A)|2 ≤ 1, so |det(A)| ≤ 1.

(d) Equality is attained if and only if the columns
of A form a mutually orthogonal set. The
reason for this is that equality is attained
in the AM–GM inequality if and only if
λ1 = λ2 = . . . = λn, which happens if and
only if A∗A is the identity matrix, so A must
be unitary in part (b) above. However, the
argument in part (b) relied on having already
scaled A so that its columns have length 1—
after “un-scaling” the columns, we see that any
matrix with orthogonal columns also attains
equality.

Section 2.3: The Singular Value Decomposition

2.3.1 In all parts of this solution, we refer to the given
matrix as A and its SVD as A = UΣV ∗.

(a) U =
1√
2

[
1 1
−1 1

]
, Σ =

[
4 0
0 2

]
, V =

1√
2

[
−1 1
1 1

]

(c) U =
1√
6




√
2

√
3 −1

√
2 0 2

−
√

2
√

3 1


, Σ =




√
6 0

0 2
0 0


,

V =
1√
2

[
1 −1
1 1

]

(e) U =
1
3




1 2 2
−2 −1 2
−2 2 −1


, Σ =




6
√

2 0 0
0 3 0
0 0 0


,

V =
1√
2




1 0 1

0
√

2 0
−1 0 1




2.3.2 (a) 4 (c)
√

6 (e) 6
√

2

2.3.3 (a) range(A): {(1,0),(0,1)},
null(A∗): {},
range(A∗): {(1,0),(0,1)}, and
null(A): {}.

(c) range(A): {(1,1,−1)/
√

3,(1,0,1)/
√

2},
null(A∗): {(−1,2,1)/

√
6},

range(A∗): {(1,0),(0,1)}, and
null(A): {}.

(e) range(A): {(1,−2,−2)/3,(2,−1,2)/3},
null(A∗): {(2,2,−1)/3},
range(A∗): {(1,0,−1)/

√
2,(0,1,0)}, and

null(A): {(1,0,1)/
√

2}.

2.3.4 (a) False. This statement is true if A is normal by
Theorem 2.3.4, but is false in general.

(c) True. We can write A = UΣV ∗, so A∗A =
V Σ∗ΣV ∗, whose singular values are the diago-
nal entries of Σ∗Σ, which are the squares of the
singular values of A.

(e) False. For example, if A = I then ‖A∗A‖F =√
n, but ‖A‖2

F = n.

(g) False. All we can say in general is that A2 =
UDV ∗UDV ∗. This does not simply any further,
since we cannot cancel out the V ∗U in the mid-
dle.

(i) True. If A has SVD A = UΣV ∗ then AT =
V ΣTUT is also an SVD, and Σ and ΣT have
the same diagonal entries.

2.3.5 Use the singular value decomposition to write
A = UΣV ∗. If each singular value is 1 then Σ = I,
so A = UV ∗ is unitary. Conversely, there were a
singular value σ unequal to 1 then there would be
a corresponding normalized left- and right-singular
vectors u and v, respectively, for which Av = σu, so
‖Av‖= ‖σu‖= |σ |‖u‖= σ 6= 1 = ‖v‖, so A is not
unitary by Theorem 1.4.9.

2.3.6 For the “only if” direction, notice that A has singular
value decomposition

A = U

[
D O
O O

]
V ∗,

where D is an r× r diagonal matrix with non-zero
diagonal entries (so in particular, D is invertible).
Then

A = U

[
Ir O
O O

]
Q, where Q =

[
D O
O I

]
V ∗

is invertible. For the “if” direction, just use the fact
that rank(Ir) = r and multiplying one the left or right
by an invertible matrix does not change rank.

2.3.7 If A = UΣV ∗ is a singular value decom-
position then |det(A)| = |det(UΣV ∗)| =
|det(U)det(Σ)det(V ∗)| = |det(Σ)| = σ1σ2 · · ·σn,
where the second-to-last equality follows from the
fact that if U is unitary then |det(U)|= 1 (see Exer-
cise 1.4.11).

2.3.10 Submultiplicativity of the operator norm tells us that
‖I‖= ‖AA−1‖ ≤ ‖A‖‖A−1‖, so dividing through by
‖A‖ gives ‖A−1‖ ≥ 1/‖A‖. To see that equality does
not always hold, consider

A =

[
1 0
0 2

]
,

which has ‖A‖= 2 and ‖A−1‖= 1.
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2.3.12 (a) If A = UΣV ∗ is an SVD (with the diag-
onal entries of Σ being σ1 ≥ σ2 ≥ ·· · )
then ‖AB‖2

F = tr((UΣV ∗B)∗(UΣV ∗B)) =
tr(B∗V Σ∗ΣV ∗B) = tr(Σ∗ΣV ∗BB∗V ) ≤
σ2

1 tr(V ∗BB∗V ) = σ2
1 tr(BB∗) = σ2

1 ‖B‖2
F =

‖A‖2‖B‖2
F, where the inequality in the middle

comes from the fact that multiplying V ∗BB∗V
on the left by Σ∗Σ multiplies its j-th diagonal
entry by σ2

j , which is no larger than σ2
1 .

(b) This follows from part (a) and the fact that
‖A‖= σ1 ≤

√
σ2

1 + · · ·+σ2
min{m,n} = ‖A‖F.

2.3.13 The Cauchy–Schwarz inequality tells us that if ‖v‖=
1 then |v∗Aw| ≤ ‖v‖‖Aw‖ = ‖Aw‖. Furthermore,
equality is attained when v is parallel to Aw. It fol-
lows that the given maximization over v and w is
equal to

max
w∈Fn

{
‖Aw‖ : ‖w‖= 1

}

which (by definition) equals ‖A‖.

2.3.15 If v ∈ Cm and w ∈ Cn are unit vectors then

[
v∗ w∗

][cIm A
A∗ cIn

][
v
w

]

= c(‖v‖2 +‖w‖2)+2Re(v∗Aw).

This quantity is always non-negative (i.e., the
block matrix is positive semidefinite) if and only if
Re(v∗Aw) ≤ 1, which is equivalent to |v∗Aw| ≤ 1
(since we can multiply w by some eiθ so that
Re(v∗Aw) = |v∗Aw|), which is equivalent to ‖A‖≤ 1
by Exercise 2.3.13.

2.3.16 All three properties follow quickly from the defini-
tion of ‖A‖ and the corresponding properties of the
norm on Fn. Property (a):

‖cA‖= max
v∈Fn

{
‖cAv‖ : ‖v‖ ≤ 1

}

= max
v∈Fn

{
|c|‖Av‖ : ‖v‖ ≤ 1

}

= |c|max
v∈Fn

{
‖Av‖ : ‖v‖ ≤ 1

}
= |c|‖A‖.

Property (b):

‖A+B‖= max
v∈Fn

{
‖(A+B)v‖ : ‖v‖ ≤ 1

}

= max
v∈Fn

{
‖Av+Bv‖ : ‖v‖ ≤ 1

}

≤max
v∈Fn

{
‖Av‖+‖Bv‖ : ‖v‖ ≤ 1

}

≤max
v∈Fn

{
‖Av‖ : ‖v‖ ≤ 1

}

+max
v∈Fn

{
‖Av‖ : ‖v‖ ≤ 1

}

= ‖A‖+‖B‖,

where the final inequality comes from the fact that
there is more freedom in two separate maximiza-
tions than there is in a single maximization. For
property (c), the fact that ‖A‖ ≥ 0 follows simply
from the fact that it involves maximizing a bunch
of non-negative quantities, and ‖A‖= 0 if and only
if A = O since ‖A‖ = 0 implies ‖Av‖ = 0 for all v,
which implies A = O.

2.3.17 (a) Suppose A has SVD A = UΣV ∗. If we let B =
UV ∗ then B is unitary and thus has ‖UV ∗‖ = 1
(by Exercise 2.3.5, for example), so the given
maximization is at least as large as 〈A,B〉 =
tr(V ΣU∗UV ∗) = tr(Σ) = ‖A‖tr.
To show the opposite inequality, note that
if B is any matrix for which ‖B‖ ≤ 1
then |〈A,B〉| = |〈UΣV ∗,B〉| = |〈Σ,U∗BV 〉| =∣∣∑ j σ j[U∗BV ] j, j

∣∣≤ ∑ j σ j|u∗j Bv j| ≤ ∑ j σ j‖B‖ ≤
∑ j σ j = ‖A‖tr, where we referred to the j-th
columns of U and V as u j and v j , respectively, and
we used Exercise 2.3.13 to see that |u∗j Bv j| ≤ ‖B‖.

(b) Property (a) follows quickly from the fact that if
A = UΣV ∗ is a singular value decomposition then
so is cA = U(cΣ)V ∗. Property (c) follows from
the fact that singular values are non-negative, and
if all singular values equal 0 then the matrix they
come from is UOV ∗ = O. Finally, for property (b)
we use part (a) above:

‖A+B‖= max
C∈Mm,n

{
|〈A+B,C〉| : ‖C‖ ≤ 1

}

≤ max
C∈Mm,n

{
|〈A,C〉| : ‖C‖ ≤ 1

}

+ max
C∈Mm,n

{
|〈B,C〉| : ‖C‖ ≤ 1

}

= ‖A‖+‖B‖.
2.3.19 Just notice that A and UAV have the same singu-

lar values since if A = U2ΣV ∗2 is a singular value
decomposition then so is UAV = UU2ΣV ∗2 V =
(UU2)Σ(V ∗V2)∗.

2.3.20 Recall from Exercise 2.1.12 that A is normal if and
only if

‖A‖F =

√
n

∑
j=1
|λ j|2.

Since

‖A‖F =

√
n

∑
j=1

σ2
j

by definition, we conclude that if A is not normal
then these two sums do not coincide, so at least one
of the terms in the sum must not coincide: σ j 6= |λ j
for some 1≤ j ≤ n.

2.3.25 (a) Since P 6= O, there exists some non-zero vector v
in its range. Then Pv = v, so ‖Pv‖/‖v‖ = 1, so
‖P‖ ≥ 1.

(b) We know from Theorem 1.4.13 that ‖Pv‖ ≤ ‖v‖
for all v, so ‖P‖≤ 1. When combined with part (a),
this means that ‖P‖= 1.

(c) We know from Exercise 1.4.31 that every eigen-
value of P equals 0 or 1, so it has a Schur triangu-
larization P = UTU∗, where

T =

[
A B
O I +C

]
,

where A and C are strictly upper triangular (i.e., we
are just saying that the diagonal entries of T are all
0 in the top-left block and all 1 in the bottom-right
block). If u j is the j-th column of U then ‖u j‖= 1
and ‖Pu j‖= ‖UTU∗u j‖= ‖UT e j‖, which is the
norm of the j-th column of T . Since ‖P‖ = 1, it
follows that the j-th column of T cannot have
norm bigger than 1, which implies B = O and
C = O.
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To see that A = O (and thus complete the proof),
note that P2 = P implies T 2 = T , which in turn
implies A2 = A, so Ak = A for all k ≥ 1. However,
the diagonal of A consists entirely of zeros, so
the first diagonal above the main diagonal in A2

consists of zeros, the diagonal above that one
in A3 consists of zeros, and so on. Since these
powers of A all equal A itself, we conclude that
A = O.

2.3.26 (a) One simple example is

A =

[
0 1+ i

1+ i 1

]
,

which has

A∗A−AA∗ =

[
0 −2i
2i 0

]
,

so A is complex symmetric but not normal.
(b) Since A∗A is positive semidefinite, its spectral

decomposition has the form A∗A = V DV ∗ for
some real diagonal D and unitary V . Then

B∗B = (V T AV )∗(V T AV ) = V ∗A∗AV = D,

so B is real (and diagonal and entrywise non-
negative, but we do not need those properties).
Furthermore, B is complex symmetric (for all
unitary matrices V ) since

BT = (V T AV )T = V T ATV = V T AV = B.

(c) To see that BR is real we note that symme-
try of B ensures that the (i, j)-entry of BR is
(bi, j +bi, j))/2 = Re(bi, j) (a similar calculation
shows that the (i, j)-entry of BI is Im(bi, j)).
Since BR and BI are clearly Hermitian, they
must be symmetric. To see that they commute,
we compute

B∗B = (BR + iBI)∗(BR + iBI)

= B2
R +B2

I + i(BRBI−BIBR).

Since B∗B, BR, and BI are all real, this implies
BRBI−BIBR = O, so BR and BI commute.

(d) Since BR and BI are real symmetric and com-
mute, we know by (the “Side note” underneath
of) Exercise 2.1.28 that there exists a unitary
matrix W ∈Mn(R) such that each of W T BRW
and W T BIW are diagonal. Since B = BR + iBI,
we conclude that

W T BW = W T (BR + iBI)W

= (W T BRW )+(W T BIW )

is diagonal too.
(e) By part (d), we know that if U = VW then

UT AU = W T (V T AV )W = W T BW

is diagonal. It does not necessarily have non-
negative (or even real) entries on its diagonal,
but this can be fixed by multiplying U on
the right by a suitable diagonal unitary matrix,
which can be used to adjust the complex phases
of the diagonal matrix as we like.

Section 2.4: The Jordan Decomposition

2.4.1 (a)
[

1 1
0 1

]

(e)



1 0 0
0 2 1
0 0 2




(c)
[

2 1
0 2

]

(g)



3 0 0
0 3 1
0 0 3




2.4.2 We already computed the matrix J in the Jordan de-
composition A = PJP−1 in Exercise 2.4.1, so here
we just present a matrix P that completes the decom-
position. Note that this matrix is not unique, so your
answer may differ.

(a)
[

2 2
2 1

]

(e)



0 1 1
2 1 2
1 1 2




(c)
[

1 0
−2 −1

]

(g)



1 −2 −1
1 1 0
2 −1 0




2.4.3 (a) Not similar, since their traces are not the same
(8 and 10).

(c) Not similar, since their determinants are not
the same (0 and −2).

(e) Similar, since they both have


−1 0 0
0 3 1
0 0 3




as their Jordan canonical form.

2.4.4 (a) [ √2 0
√

2/4
√

2

] (e)



e −2e −e
0 3e e
0 −4e −e




2.4.5 (a) False. Any matrix with a Jordan block of size
2× 2 or larger (i.e., almost any matrix from
this section) serves as a counter-example.

(c) False. The Jordan canonical forms J1 and J2
are only unique up to re-ordering of their Jor-
dan blocks (so we can shift the diagonal blocks
of J1 around to get J2).

(e) True. If A and B are diagonalizable then their
Jordan canonical forms are diagonal and so
Theorem 2.4.3 tells us they are similar if those
1×1 Jordan blocks (i.e., their eigenvalues) co-
incide.
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(g) True. Since the function f (x) = ex is analytic
on all of C, Theorems 2.4.6 and 2.4.7 tell
us that this sum converges for all A (and fur-
thermore we can compute it via the Jordan
decomposition).

2.4.8 We can choose C to be the standard basis of R2

and T (v) = Av. Then it is straightforward to check
that [T ]C = A. All that is left to do is find a basis
D such that [T ]D = B. To do so, we find a Jordan
decomposition of A and B, which are actually diag-
onalizations in this case. In particular, if we define

P1 =

[
1 2
−1 5

]
and P2 =

[
1 1
−1 −2

]
then

P−1
1 AP1 =

[
−1 0
0 6

]
= P−1

2 BP2.

Rearranging gives P2P−1
1 AP1P−1

2 = B. In other
words, P1P−1

2 is the change-of-basis matrix from D
to C. Since C is the standard basis, the columns of
P1P−1

2 are the basis vectors of D. Now we can just
compute:

P1P−1
2 =

[
3 1
11 6

]
, so D =

{[
3

11

]
,

[
1
6

]}
.

2.4.11 Since etr(A) 6= 0, this follows immediately from Exer-
cise 2.4.10.

2.4.14 Since sin2(x)+ cos2(x) = 1 for all x ∈ C, the func-
tion f (x) = sin2(x)+ cos2(x) is certainly analytic (it
is constant). Furthermore, f ′(x) = 0 for all x ∈ C
and more generally f (k)(x) = 0 for all x ∈ C and in-
tegers k ≥ 1. It follows from Theorem 2.4.6 that
f
(
Jk(λ )

)
= I for all Jordan blocks Jk(λ ), and

Theorem 2.4.7 then tells us that f (A) = I for all
A ∈Mn(C).

2.4.16 (a) This follows directly from the definition of ma-
trix multiplication:

[
A2]

i, j =
k

∑
`=1

ai,`a`, j,

which equals 0 unless `≥ i+1 and j≥ `+1≥
i+2. A similar argument via induction shows
that

[
Ak]

i, j = 0 unless j ≥ i+ k.
(b) This is just the k = n case of part (a)—An only

has n superdiagonals, and since they are all 0
we know that An = O.

2.4.17 (a) This follows directly from the definition of ma-
trix multiplication:

[
N2

1
]

i, j =
k

∑
`=1

[N1]i,`[N1]`, j,

which equals 1 if ` = i + 1 and j = ` + 1 =
i + 2, and equals 0 otherwise. In other words,
N2

1 = N2, and a similar argument via induction
shows that Nn

1 = Nn whenever 1≤ n < k. The
fact that Nk

1 = O follows from Exercise 2.4.16.
(b) Simply notice that Nn has k − n of the

standard basis vectors as its columns so
its rank is max{k − n,0}, so its nullity is
k−max{k−n,0}= min{k,n}.

Section 2.5: Summary and Review

2.5.1 (a) All five decompositions apply to this matrix.
(c) Schur triangularization, singular value decom-

position, and Jordan decomposition (it does not
have a linearly independent set of eigenvectors,
so we cannot diagonalize or apply the spectral
decomposition).

(e) Diagonalization, Schur triangularization, sin-
gular value decomposition, and Jordan decom-
position (it is not normal, so we cannot apply
the spectral decomposition).

(g) All five decompositions apply to this matrix.

2.5.2 (a) True. This is the statement of Corollary 2.1.5.
(c) True. This fact was stated as part of Theo-

rem 2.2.12.

2.5.4 For the “only if” direction, use the spectral decompo-
sition to write A = UDU∗ so A∗ = UD∗U∗ = UDU∗.
It follows that A and A∗ have the same eigenspaces
and the corresponding eigenvalues are just complex
conjugates of each other, as claimed.

For the “if” direction, note that we can use Schur
triangularization to write A = UTU∗, where the left-
most column of U is v and we denote the other
columns of U by u2, . . ., un. Then Av = t1,1v (i.e., the
eigenvalue of A corresponding to v is t1,1), but A∗v =
(UT ∗U)v = UT ∗e1 = t1,1v + t1,2u2 + · · ·+ t1,nun.
The only way that this equals t1,1v is if t1,2 = · · ·=
t1,n = 0, so the only non-zero entry in the first row of
T is its (1,1)-entry.
It follows that the second column of U must also
be an eigenvector of A, and then we can repeat the
same argument as in the previous paragraph to show
that the only non-zero entry in the second row of
T is its (2,2)-entry. Repeating in this way shows
that k = n and T is diagonal, so A =UTU∗ is normal.

2.5.7 (a) tr(A) is the sum of the diagonal entries of A,
each of which is 0 or 1, so tr(A)≤ 1+1+ · · ·+
1 = n.

(b) The fact that det(A) is an integer follows from
formulas like Theorem A.1.4 and the fact that
each entry of A is an integer. Since det(A) > 0
(by positive definiteness of A), it follows that
det(A)≥ 1.
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(c) The AM–GM inequality tells us that
n
√

det(A) = n√
λ1 · · ·λn ≤ (λ1 + · · ·+ λn)/n =

tr(A)/n. Since tr(A) ≤ n by part (a), we con-
clude that det(A)≤ 1.

(d) Parts (b) and (c) tell us that det(A) = 1, so
equality holds in the AM–GM inequality in
part (c). By the equality condition of the AM–
GM inequality, we conclude that λ1 = . . . = λn,
so they all equal 1 and thus A has spectral
decomposition A = UDU∗ with D = I, so
A = UIU∗ = UU∗ = I.

Section 2.A: Extra Topic: Quadratic Forms and Conic Sections

2.A.1 (a) Positive definite.
(c) Indefinite.
(e) Positive definite.
(g) Positive semidefinite.
(i) Positive semidefinite.

2.A.2 (a) Ellipse.
(c) Ellipse.
(e) Hyperbola.
(g) Hyperbola.

2.A.3 (a) Ellipsoid.
(c) Hyperboloid of one sheet.
(e) Elliptical cylinder.

(g) Ellipsoid.

2.A.4 (a) False. Quadratic forms arise from bilinear
forms in the sense that if f (v,w) is a bilin-
ear form then q(v) = f (v,v) is a quadratic
form, but they are not the same thing. For exam-
ple, bilinear forms act on two vectors, whereas
quadratic forms act on just one.

(c) True. We stated this fact near the start of Sec-
tion 2.A.1.

(e) True. This is the quadratic form associated
with the 1×1 matrix A = [1].

Section 2.B: Extra Topic: Schur Complements and Cholesky

2.B.2 (a) The Schur complement is

S =
1
5

[
7 −1
−1 3

]
,

which has det(S) = 4/5 and is positive definite.
It follows that the original matrix has deter-
minant det(A)det(S) = 5(4/5) = 4 and is also
positive definite (since its top-left block is).

2.B.3 (a) True. More generally, the Schur complement of
the top-left n×n block of an (m+n)× (m+n)
matrix is an m×m matrix.

(c) False. Only positive semidefinite matrices have
a Cholesky decomposition.

2.B.4 There are many possibilities—we can choose the
(1,2)- and (1,3)-entries of the upper triangular ma-
trix to be anything sufficiently small that we want,
and then adjust the (2,2)- and (2,3)-entries accord-
ingly (as suggested by Remark 2.B.1). For example,
if 0≤ a≤ 1 is a real number and we define

T =




0
√

a
√

a

0
√

1−a
√

1−a
0 0 1




then

T ∗T =




0 0 0
0 1 1
0 1 2


 .

2.B.7 This follows immediately from Theorem 2.B.1 and
the following facts: the upper and lower triangular
matrices in that theorem are invertible due to having
all diagonal entries equal to 1, rank(XY ) = rank(X)
whenever Y is invertible, and the rank of a block di-
agonal matrix is the sum of the ranks of its diagonal
blocks.

2.B.8 (a) The following matrices work:

U =

[
I BD−1

O I

]
, L =

[
I O

D−1C I

]
.

(b) The argument is the exact same as in The-
orem 2.B.2: det(U) = det(L) = 1, so det(Q)
equals the determinant of the middle block di-
agonal matrix, which equals det(D)det(S).

(c) Q is invertible if and only if det(Q) 6= 0, if and
only if det(S) 6= 0, if and only if S is invertible.
The inverse of Q can be computed using the
same method of Theorem 2.B.3 to be
[

I O

−D−1C I

][
S−1 O

O D−1

][
I −BD−1

O I

]
.

(d) The proof is almost identical to the one pro-
vided for Theorem 2.B.4.
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2.B.11 We need to transform det(AB−λ Im) into a form that
lets us use Sylvester’s determinant identity (Exer-
cise 2.B.9). Well,

det(AB−λ Im) = (−1)m det(λ Im−AB)

= (−λ )m det(Im +(−A/λ )B)

= (−λ )m det(In +B(−A/λ ))

= ((−λ )m/λ
n)det(λ In−BA)

= (−λ )m−n det(BA−λ In),

which is what we wanted to show.

2.B.12 In the 1× 1 case, it is clear that if A = [a] then the
Cholesky decomposition A = [

√
a]∗[
√

a] is unique.
For the inductive step, we assume that the Cholesky
decompositions of (n− 1)× (n− 1) matrices are
unique. If a1,1 = 0 (i.e., Case 1 of the proof of Theo-
rem 2.B.5) then solving

A =

[
0 0T

0 A2,2

]
=
[

x | B
]∗[ x | B

]

for x and B reveals that ‖x‖2 = x∗x = 0, so x = 0, so
the only way for this to be a Cholesky decomposition
of A is if B = T , where A2,2 = T ∗T is a Cholesky de-
composition of A2,2 (which is unique by the inductive
hypothesis).
On the other hand, if a1,1 6= 0 (i.e., Case 1 of the
proof of Theorem 2.B.5) then the Schur complement
S has unique Cholesky decomposition S = T ∗T , so
we know that the Cholesky decomposition of A must
be of the form

A =

[√a1,1 x∗

0 T

]∗[√a1,1 x∗

0 T

]
=

[
a1,1 a∗2,1

a2,1 A2,2

]
,

where x ∈ Fn−1 is some unknown column vector.
Just performing the matrix multiplication reveals
that it must be the case that x = a2,1/

√a1,1, so the
Cholesky decomposition of A is unique in this case
well.

Section 2.C: Extra Topic: Applications of the SVD

2.C.1 In all cases, we simply compute x = A†b.
(a) No solution, closest is x = (1,2)/10.
(c) Infinitely many solutions, with the smallest

being x = (−5,−1,3).

2.C.2 (a) y = 3x−2 (c) y = (5/2)x−4

2.C.3 (a)
[

2 2
2 2

]
(c)

1
5




4 2 0
2 1 0
−10 −5 0




2.C.4 (a) True. More generally, the pseudoinverse of a
diagonal matrix is obtained by taking the recip-
rocals of its non-zero diagonal entries.

(c) False. Theorem 2.C.1 shows that range(A†) =
range(A∗), which typically does not equal
range(A).

(e) False. The pseudoinverse finds one such vector,
but there may be many of them. For example,
if the linear system Ax = b has infinitely many
solutions then there are infinitely many vectors
that minimize ‖Ax−b‖ (i.e., make it equal to
0).

2.C.5 We plug the 4 given data points into the equation
z = ax + by + c to get 4 linear equations in the 3
variables a, b, and c. This linear system has no
solution, but we can compute the least squares so-
lution x = A†b = (1,2,1), so the plane of best fit is
z = x+2y+1.

2.C.6 We plug the 3 given data points into the equation
y = c1 sin(x) + c2 cos(x) to get 3 linear equations
in the 2 variables c1 and c2. This linear system has
no solution, but we can compute the least squares
solution x = A†b = (1,−1/2), so the curve of best
fit is y = sin(x)− cos(x)/2.

2.C.7 These parts can both be proved directly in a manner
analogous to the proofs of parts (a) and (c) given in
the text. However, a quicker way is to notice that
part (d) follows from part (c), since Exercise 1.B.9
tells us that I − A†A is the orthogonal projection
onto range(A∗)⊥, which equals null(A) by Theo-
rem 1.B.7.
Part (b) follows from part (a) via a similar argument:
I−AA† is the orthogonal projection onto range(A)⊥,
which equals null(A∗) by Theorem 1.B.7. The fact
that it is also the orthogonal projection onto null(A†)
follows from swapping the roles of A and A† (and
using the fact that (A†)† = A) in part (d).

2.C.9 (a) If A has linearly independent columns then
rank(A) = n, so A has n non-zero singular
values. It follows that if A = UΣV ∗ is a sin-
gular value decomposition then (A∗A)−1A∗ =
(V Σ∗ΣV ∗)−1V Σ∗U∗ =V (Σ∗Σ)−1V ∗V Σ∗U∗ =
V (Σ∗Σ)−1Σ∗U∗. We now note that Σ∗Σ is in-
deed invertible, since it is an n× n diagonal
matrix with n non-zero diagonal entries. Fur-
thermore, (Σ∗Σ)−1Σ∗ = Σ† since the inverse of
a diagonal matrix is the diagonal matrix with
the reciprocal diagonal entries. It follows that
(A∗A)−1A∗ = V Σ†U∗ = A†, as claimed.

(b) Almost identical to part (a), but noting instead
that rank(A) = m so ΣΣ∗ is an m×m invertible
diagonal matrix.
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Section 2.D: Extra Topic: Continuity and Matrix Analysis

2.D.2 (a) True. ‖A‖F =
√

tr(A∗A) is continuous since it
can be written as a composition of three con-
tinuous functions (the square root, the trace,
and multiplication by A∗).

2.D.3 This follows from continuity of singular values. If
f (A) = σr+1 is the (r +1)-th largest singular value
of A then f is continuous and f (Ak) = 0 for all k. It
follows that f

(
limk→∞ Ak

)
= limk→∞ f (Ak) = 0 too,

so rank
(

limk→∞ Ak
)
≤ r.

2.D.5 Just notice that if A is positive semidefinite then
Ak = A+ 1

k I is positive definite for all integers k≥ 1,
and lim

k→∞
Ak = A.

2.D.7 For any A ∈Mm,n, A∗A is positive semidefinite with
m≥ rank(A) = rank(A∗A), so the Cholesky decom-
position (Theorem 2.B.5) tells us that there exists an
upper triangular matrix T ∈Mm,n with non-negative
real diagonal entries such that A∗A = T ∗T . Applying
Theorem 2.2.10 then tells us that there exists a uni-
tary matrix U ∈Mm such that A = UT , as desired.

Section 3.1: The Kronecker Product

3.1.1 (a)



−1 2 −2 4
0 −3 0 −6
−3 6 0 0
0 −9 0 0




(c)



2 −3 1
4 −6 2
6 −9 3




3.1.2 (a)
[

a 0
0 b

]
(c)

[
a b
c d

]

3.1.3 (a) True. In general, if A is m× n and B is p× q
then A⊗B is mp×nq.

(c) False. If AT = −A and BT = −B then
(A⊗B)T = AT ⊗BT = (−A)⊗ (−B) = A⊗B.
That is, A ⊗ B is symmetric, not skew-
symmetric.

3.1.4 Most randomly-chosen matrices serve as counter-
examples here. For example, if

A =

[
1 0 0
0 0 0

]
and B =




0 0
0 1
0 0




then tr(A⊗B) = 1 and tr(B⊗A) = 0. This does not
contradict Theorem 3.1.3 or Corollary 3.1.9 since
those results require A and B to be square.

3.1.6 If A = U1Σ1V ∗1 and B = U2Σ2V ∗2 are singular
value decompositions then A† = V1Σ

†
1U∗1 and B† =

V2Σ
†
2U∗2 . Then

A†⊗B† = (V1Σ
†
1U∗1 )⊗ (V2Σ

†
2U∗2 )

= (V1⊗V2)(Σ
†
1⊗Σ

†
2)(U1⊗U2)∗

= (V1⊗V2)(Σ1⊗Σ2)†(U1⊗U2)∗ = (A⊗B)†,

where the second-to-last equality comes from recall-
ing that the pseudoinverse of a diagonal matrix is
just obtained by taking the reciprocal of its non-zero
entries (and leaving its zero entries alone).

3.1.8 (a) This follows immediately from taking the vec-
torization of both sides of the equation AX +
XB = C and using Theorem 3.1.7.

(b) We know from Exercise 3.1.7 that the eigen-
values of A⊗ I + I⊗BT are the sums of the
eigenvalues of A and BT (which has the same
eigenvalues as B). It follows that the equation
AX +XB = C has a unique solution if and only
if A⊗ I + I⊗BT is invertible (i.e., has no 0
eigenvalues), if and only if A and −B do not
have any eigenvalues in common.

3.1.9 (a) If A = U1T1U∗1 and B = U2T2U∗2 are Schur tri-
angularizations then so is

A⊗B = (U1⊗U2)(T1⊗T2)(U1⊗U2)∗.

It is straightforward to check that the diagonal
entries of T1⊗T2 are exactly the products of
the diagonal entries of T1 and T2, so the eigen-
values of A⊗B are exactly the products of the
eigenvalues of A and B.

(b) We know from part (a) that if A has eigenval-
ues λ1, . . ., λm and B has eigenvalues µ1,
. . ., µn then A ⊗ B has eigenvalues λ1µ1,
. . ., λmµn. Since det(A) = λ1 · · ·λm and
det(B) = µ1 · · ·µn, we then have det(A⊗B) =
(λ1µ1) · · ·(λmµn) = λ n

1 · · ·λ n
mµm

1 · · ·µm
n =

det(A)n det(B)m.

3.1.11 (a) Just apply Theorem 3.1.6 to the rank-one sum
decomposition of mat(x) (i.e., Theorem A.1.3).

(b) Instead apply Theorem 3.1.6 to the orthogo-
nal rank-one sum decomposition (i.e., Theo-
rem 2.3.3).

3.1.13 We just notice that Z2
2 contains only 3 non-

zero vectors: (1,0), (0,1), and (1,1), so ten-
sor powers of these vectors cannot possibly
span a space that is larger than 3-dimensional,
but S3

2 is 4-dimensional. Explicitly, the vector
(0,0,0,1,0,1,1,0) ∈ S3

2 cannot be written in the
form c1(1,0)⊗3 + c2(0,1)⊗3 + c3(1,1)⊗3.

3.1.14 If σ ∈ Sp is any permutation with sgn(σ) = −1
then W

σ−1 v = v and Wσ w = −w. It follows that
v ·w = v ·(−Wσ w) =−(W ∗σ v) ·w =−(W

σ−1 v) ·w =
−(v ·w), where the second-to-last equality uses the
fact that Wσ is unitary so W ∗σ = W−1

σ = W
σ−1 . It

follows that v ·w = 0.
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3.1.15 (a) Just notice that PT = ∑σ∈Sp W T
σ /p! =

∑σ∈Sp W
σ−1 /p! = ∑σ∈Sp Wσ /p! = P, with the

second equality following from the fact that
Wσ is unitary so W T

σ = W−1
σ = W

σ−1 , and the
third equality coming from the fact that chang-
ing the order in which we sum over Sp does
not change the sum itself.

(b) We compute

P2 =
(

∑
σ∈Sp

Wσ /p!
)(

∑
τ∈Sp

Wτ/p!
)

= ∑
σ ,τ∈Sp

Wσ◦τ/(p!)2

= ∑
σ∈Sp

p!Wσ /(p!)2 = P,

with the third equality following from the fact
that summing Wσ◦τ over all σ and all τ in Sp
just sums each Wσ a total of |Sp| = p! times
(once for each value of τ ∈ Sp).

3.1.16 By looking at the blocks in the equation ∑
k
j=1 v j⊗

w j = 0, we see that ∑
k
j=1[v j]iw j = 0 for all 1≤ i≤m.

By linear independence, this implies [v j]i = 0 for
each i and j, so v j = 0 for each j.

3.1.17 Since B⊗C consists of mn vectors, it suffices via
Exercise 1.2.27(a) to show that it is linearly inde-
pendent. To this end, write B = {v1, . . . ,vm} and
C = {w1, . . . ,wn} and suppose

m

∑
i=1

n

∑
j=1

ci, jvi⊗w j =
n

∑
j=1

(
m

∑
i=1

ci, jvi

)
⊗w j = 0.

We then know from Exercise 3.1.16 that (since C
is linearly independent) ∑

m
i=1 ci, jvi = 0 for each

1≤ j ≤ n. By linear independence of B, this implies
ci, j = 0 for each i and j, so B⊗C is linearly indepen-
dent too.

3.1.18 (a) This follows almost immediately from Defini-
tion 3.1.3(b), which tells us that the columns
of Wm,n are (in some order) {e j⊗ ei}i, j , which
are the standard basis vectors in Fmn. In other
words, Wm,n is obtained from the identity ma-
trix by permuting its columns in some way.

(b) Since the columns of Wm,n are standard basis
vectors, the dot products of its columns with
each other equal 1 (the dot product of a column
with itself) or 0 (the dot product of a column
with another column). This means exactly that
W ∗m,nWm,n = I, so Wm,n is unitary.

(c) This follows immediately from Defini-
tion 3.1.3(c) and the fact that E∗i, j = E j,i.

3.1.20 (a) The (i, j)-block of A⊗B is ai, jB, so the (k, `)-
block within the (i, j)-block of (A⊗B)⊗C is
ai, jbk,`C. On the other hand, the (k, `)-block of
B⊗C is bk,`C, so the (k, `)-block within the
(i, j)-block of A⊗ (B⊗C) is ai, jbk,`C.

(b) The (i, j)-block of (A+B)⊗C is (ai, j +bi, j)C,
which equals the (i, j)-block of A⊗C +B⊗C,
which is ai, jC +bi, jC.

(c) The (i, j)-block of these matrices equal
(cai, j)B, ai, j(cB), c(ai, jB), respectively, which
are all equal.

3.1.21 (a) If A−1 and B−1 exist then we just use Theo-
rem 3.1.2(a) to see that (A⊗B)(A−1⊗B−1) =
(AA−1)⊗ (BB−1) = I⊗ I = I, so (A⊗B)−1 =
A−1⊗B−1. If (A⊗B)−1 exists then we can use
Theorem 3.1.3(a) to see that A and B have no
zero eigenvalues (otherwise A⊗B would too),
so A−1 and B−1 exist.

(b) The ( j, i)-block of (A⊗B)T is the (i, j)-block
of A⊗BT , which equals ai, jBT , which is also
the ( j, i)-block of AT ⊗BT .

(c) Just apply part (b) above (part (c) of the the-
orem) to the complex conjugated matrices A
and B.

3.1.22 (a) If A and B are upper triangular then the (i, j)-
block of A⊗B is ai, jB. If i > j then this entire
block equals O since A is upper triangular. If
i = j then this block is upper triangular since
B is. If A and B are lower triangular then just
apply this result to AT and BT .

(b) Use part (a) and the fact that diagonal matrices
are both upper lower triangular.

(c) If A and B are normal then (A⊗ B)∗(A⊗
B) = (A∗A)⊗ (B∗B) = (AA∗)⊗ (BB∗) = (A⊗
B)(A⊗B)∗.

(d) If A∗A = B∗B = I then (A⊗ B)∗(A⊗ B) =
(A∗A)⊗ (B∗B) = I⊗ I = I.

(e) If AT = A and BT = B then (A⊗B)T = AT ⊗
BT = A⊗B. Similarly, if A∗ = A and B∗ = B
then (A⊗B)∗ = A∗⊗B∗ = A⊗B.

(f) If the eigenvalues of A and B are non-negative
then so are the eigenvalues of A⊗B, by Theo-
rem 3.1.3.

3.1.23 In all parts of this exercise, we use the fact that if
A = U1Σ1V ∗1 and B = U2Σ2V ∗2 are singular value
decompositions then so is A⊗B = (U1⊗U2)(Σ1⊗
Σ2)(V1⊗V2)∗.

(a) If σ is a diagonal entry of Σ1 and τ is a diagonal
entry of Σ2 then στ is a diagonal entry of Σ1⊗Σ2.

(b) rank(A⊗B) equals the number of non-zero en-
tries of Σ1⊗Σ2, which equals the product of the
number of non-zero entries of Σ1 and Σ2 (i.e.,
rank(A)rank(B)).

(c) If Av ∈ range(A) and Bw ∈ range(B) then (Av)⊗
(Bw) = (A⊗ B)(v⊗w) ∈ range(A⊗ B). Since
range(A⊗B) is a subspace, this shows that “⊇”
inclusion. For the opposite inclusion, recall from
Theorem 2.3.2 that range(A⊗B) is spanned by the
rank(A⊗B) columns of U1⊗U2 that correspond
to non-zero diagonal entries of Σ1⊗Σ2, which are
all of the form u1⊗u2 for some u1range(A) and
u2 ∈ range(B).

(d) Similar to part (c) (i.e., part (d) of the Theorem),
but using columns of V1⊗V2 instead of U1⊗U2.

(e) ‖A⊗B‖ = ‖A‖‖B‖ since we know from part (a)
of this theorem that the largest singular value of
A⊗B is the product of the largest singular values
of A and B. To see that ‖A⊗B‖F = ‖A‖F‖B‖F, just
note that ‖A⊗ B‖F =

√
tr((A⊗B)∗(A⊗B)) =√

tr((A∗A)⊗ (B∗B)) =
√

tr(A∗A)
√

tr(B∗B) =
‖A‖F‖B‖F.
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3.1.24 For property (a), let P = ∑σ∈Sp sgn(σ)Wσ /p! and
note that P2 = P = PT via an argument almost identi-
cal to that of Exercise 3.1.15. It thus suffices to show
that range(P) = Ap

n . To this end, notice that for all
τ ∈ Sp we have

sgn(τ)Wτ P =
1
p! ∑

σ∈Sp

sgn(τ)sgn(σ)WτWσ

=
1
p! ∑

σ∈Sp

sgn(τ ◦σ)Wτ◦σ = P.

It follows that everything in range(P) is unchanged
by sgn(τ)Wτ (for all τ ∈ Sp), so range(P)⊆Ap

n . To
prove the opposite inclusion, we just notice that if
v ∈Ap

n then

Pv =
1
p! ∑

σ∈Sp

sgn(σ)Wσ v =
1
p! ∑

σ∈Sp

v = v,

so v ∈ range(P) and thus Ap
n ⊆ range(P), so P is a

projection onto Ap
n as claimed.

To prove property (c), we first notice that the columns
of the projection P from part (a) have the form

P(e j1 ⊗ e j2 ⊗·· ·⊗ e jp ) =

1
p! ∑

σ∈Sp

sgn(σ)Wσ (e j1 ⊗ e j2 ⊗·· ·⊗ e jp ),

where 1 ≤ j1, j2, . . . , jp ≤ n. To turn this set of
vectors into a basis of range(P) = Ap

n , we omit
the columns that are equal to each other or equal
to 0 by only considering the columns for which
1 ≤ j1 < j2 < · · · < jp ≤ n. If F = R or F = C (so
we have an inner product to work with) then these
remaining vectors are mutually orthogonal and thus
form an orthogonal basis of range(P), and otherwise
they are linearly independent (and thus form a basis
of range(P)) since the coordinates of their non-zero
entries in the standard basis form disjoint subsets of
{1,2, . . . ,np}. If we multiply these vectors each by
p! then they form the basis described in the statement
of the theorem.
To demonstrate property (b), we simply notice that
the basis from part (c) of the theorem contains as
many vectors as there are sets of p distinct numbers
{ j1, j2, . . . , jp} ⊆ {1,2, . . . ,n}, which equals

(n
p

)
.

3.1.26 (a) We can scale v and w freely, since if we replace
v and w by cv and dw (where c,d > 0) then
the inequality becomes

cd
∣∣v ·w

∣∣=
∣∣(cv) · (dw)

∣∣
≤ ‖cv‖p‖dw‖q = cd‖v‖p‖w‖q,

which is equivalent to the original inequal-
ity that we want to prove. We thus choose
c = 1/‖v‖p and d = 1/‖w‖q.

(b) We simply notice that we can rearrange the
condition 1/p + 1/q = 1 to the form 1/(q−
1) = p− 1. Then dividing the left inequality
above by |v j| shows that it is equivalent to
|w j| ≤ |v j|p−1, whereas dividing the right in-
equality by |w j| and then raising it to the power
1/(q−1) = p−1 shows that it is equivalent to
|v j|p−1 ≤ |w j|. It is thus clear that at least one
of these two inequalities must hold (they sim-
ply point in opposite directions of each other),
as claimed.
As a minor technicality, we should note that
the above argument only works if p,q > 1 and
each v j,w j 6= 0. If p = 1 then |v jw j| ≤ |v j|p
(since ‖w‖q = 1 so |w j| ≤ 1). If q = 1 then
|v jw j| ≤ |w j|q. If v j = 0 or w j = 0 then both
inequalities hold trivially.

(c) Part (b) implies that |v jw j| ≤ |v j|p + |w j|q for
each 1≤ j ≤ n, so

∣∣v ·w
∣∣=
∣∣∣∣∣

n

∑
j=1

v jw j

∣∣∣∣∣≤
n

∑
j=1
|v jw j|

≤
n

∑
j=1
|v j|p +

n

∑
j=1
|w j|q

= ‖v‖p
p +‖w‖q

q = 2.

(d) Notice that the inequality above does not de-
pend on the dimension n at all. It follows that
if we pick a positive integer k, replacing v and
w by v⊗k and w⊗k respectively shows that

2≥
∣∣v⊗k ·w⊗k∣∣=

∣∣v ·w
∣∣k,

with the final equality coming from Exer-
cise 3.1.25. Taking the k-th root of this in-
equality shows us that

∣∣v ·w
∣∣ ≤ k√2 for all

integers k ≥ 1. Since lim
k→∞

k√2 = 1, it follows

that
∣∣v ·w

∣∣≤ 1, which completes the proof.

Section 3.2: Multilinear Transformations

3.2.1 (a) This is not a multilinear transformation since,
for example, if w = (1,0) then the function
S(v) = T (v,w) = (v1 + v2,1) is not a linear
transformation (e.g., it does not satisfy S(0) =
0).

(c) Yes, this is a multilinear transformation (we
mentioned that the Kronecker product is bilin-
ear in the main text).

(e) Yes, this is a multilinear transformation.

3.2.2 (b)



0 2 1 0 3 0
1 0 0 1 1 0
−1 0 0 0 0 1




(c)



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




3.2.3 (a) False. The type of a multilinear transforma-
tion does not say the dimensions of the vector
spaces, but rather how many of them there are.
D has type (2,0).
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(c) False. In the standard block matrix, the rows
index the output space and the columns in-
dex the different input spaces, so it has size
mp×mn2 p.

3.2.8 range(C) = R3. To see why this is the case, recall
that C(v,w) is always orthogonal to each of v and w.
It follows that if we are given x ∈ R3 and we want to
find v and w so that C(v,w) = x, we can just choose
v and w to span the plane orthogonal to x and then
rescale v and w appropriately.

3.2.9 If the standard array has k non-zero entries then
so does the standard block matrix A. We can thus
write A as a sum of k terms of the form eieT

j , where
ei ∈ FdW and e j ∈ Fd1 ⊗ ·· · ⊗ Fdp are standard
basis vectors. Since each standard basis vector in
Fd1 ⊗ ·· · ⊗Fdp is an elementary tensor, it follows
from Theorem 3.2.4 that rank(T )≤ k.

3.2.10 The bound rank(T×)≤mnp comes from the standard
formula for matrix multiplication in the exact same
way as in Example 3.2.15 (equivalently, the standard
array of T× has exactly mnp non-zero entries, so
Exercise 3.2.9 gives this bound).
The bound rank(T×) ≥ mp comes from noting that
the standard block matrix A of T× (with respect to
the standard basis) is an mp×mn2 p matrix with full
rank mp (it is straightforward to check that there are
standard block matrices that multiply to Ei, j for each
i, j). It follows that rank(T×)≥ rank(A) = mp.

3.2.11 (a) By definition, rank( f ) is the least r such
that we can write f (v,w) = ∑

r
j=1 f j(v)g j(w)

for some linear forms { f j} and {g j}. If
we represent each of these linear forms as
row vectors via f j(v) = xT

j [v]B and g j(w) =
yT

j [w]C then we can write this sum in the
form f (v,w) = [v]TB

(
∑

r
j=1 x jyT

j
)
[w]C . Since

f (v,w) = [v]TB A[w]C , Theorem A.1.3 tells us
that r = rank(A) as well.

(b) By definition, ‖ f‖ = max
{
| f (v,w)| : ‖v‖ =

‖w‖= 1
}

. If we represent f via Theorem 1.3.5
and use the fact that ‖v‖ = ‖[v]B‖ whenever
B is an orthonormal basis, we see that ‖ f‖ =
max

{
[v]TB A[w]C : ‖[v]B‖ = ‖[w]C‖ = 1

}
. It

follows from Exercise 2.3.13 that this quantity
equals ‖A‖.

3.2.13 (a) One such decomposition is C(v,w) =
∑

6
j=1 f1, j(v) f2, j(w)x j , where

f1,1(v) = v2 f1,2(v) = v3

f1,3(v) = v3 f1,4(v) = v1

f1,5(v) = v1 f1,6(v) = v2

f2,1(w) = w3 f2,2(w) = w2

f2,3(w) = w1 f2,4(w) = w3

f2,5(w) = w2 f2,6(w) = w1

x1 = e1 x2 =−e1

x3 = e2 x4 =−e2

x5 = e3 x6 =−e3.

(b) We just perform the computation directly:
5

∑
j=1

f1, j(v) f2, j(w)x j

= v1(w2 +w3)(e1 + e3)− (v1 + v3)w2e1

− v2(w1 +w3)(e2 + e3)

+(v2 + v3)w1e2 +(v2− v1)w3(e1 + e2 + e3)

=
(
v1(w2 +w3)− (v1 + v3)w2 +(v2− v1)w3

)
e1

+
(
− v2(w1 +w3)+(v2 + v3)w1 +(v2− v1)w3

)
e2

+
(
v1(w2 +w3)− v2(w1 +w3)+(v2− v1)w3

)
e3

= (v2w3− v3w2)e1 +(v3w1− v1w3)e2

+(v1w2− v2w1)e3 = C(v,w).

3.2.16 Recall from Exercise 3.2.13 that if C : R3×R3→R3

is the cross product then rank(C) = 5. An optimal
rank sum decomposition of the standard block matrix
of C thus makes use of sets consisting of 5 vectors in
R3, which cannot possibly be linearly independent.
A similar argument works with the matrix multiplica-
tion transformation T× : M2×M2 →M2, which
has rank 7 and vectors living in a 4-dimensional
space.

Section 3.3: The Tensor Product

3.3.1 (a) Just recall that when p = 2 we have rank(v) =
rank(mat(v)) for all v. If v = e1 ⊗ e1 + e2 ⊗
e2 then mat(v) = I, which has rank 2, so
rank(v) = 2.

(c) This vector clearly has rank at most 3, and it
has rank at least 3 (and thus exactly 3) since it
has e1⊗ e1 + e2⊗ e5⊗ e3⊗ e9 as a flattening,
which has rank-3 matricization.

3.3.2 Equation (3.3.3) itself shows that rank(v)≤ 3, so we
just need to prove the other inequality. If we mimic
Example 3.3.4, we find that the set Sv from Theo-
rem 3.3.6 has the form

Sv =
{
(a,b,b,−a) | a,b ∈ R

}
.

It is clear that dim(Sv) = 2, and we can see that the
only elementary tensor in Sv is (0,0,0,0), since the
matricization of (a,b,b,−a) is

[
a b
b −a

]
,
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which has determinant −a2 − b2 and thus rank 2
whenever (a,b) 6= (0,0). It follows that Sv does not
have a basis consisting of elementary tensors, so The-
orem 3.3.6 tells us that rank(v) > dim(Sv) = 2, so
rank(v) = 3.
This argument breaks down if we work over the com-
plex numbers since the above matrix can be made
rank 1 by choosing a = 1, b = i, for example, and Sv
is spanned by the elementary tensors (1, i, i,−1) and
(1,−i,−i,−1).

3.3.3 (a) True. This is simply a consequence of
C being 1-dimensional, so dim(C ⊗ C) =
dim(C)dim(C) = 1. Since all vector spaces of
the same (finite) dimension over the same field
are isomorphic, we conclude that C⊗C∼= C.

(c) True. This follows from the fact that rank(v) =
rank(mat(v)), where mat(v) ∈Mm,n(F).

(e) True. This follows from every real tensor rank
decomposition being a complex one, since
R⊆ C.

3.3.4 If there were two such linear transformations
S1,S2 : V ⊗W → X then we would have (S1 −
S2)(v⊗w) = 0 for all v ∈ V and w ∈W . Since
V⊗W is spanned by elementary tensors, it follows
that (S1−S2)(x) = 0 for all x ∈ V⊗W , so S1−S2
is the zero linear transformation and S1 = S2.

3.3.5 For property (a), we just note that it is straightfor-
ward to see that every function of the form f (x) =
Ax2 +Bx+C can be written as a linear combination
of elementary tensors—Ax2, Bx, and C are them-
selves elementary tensors. For (b) and (c), we com-
pute
(
(A+ cB)⊗ f

)
(x) = (A+ cB) f (x)

= A f (x)+ cB f (x)

= (A⊗ f )(x)+ c(B⊗ f )(x)

for all x, so (A + cB)⊗ f = (A⊗ f )+ c(B⊗ f ) for
all A,B ∈M2, f ∈ P2, and c ∈ F. The fact that
A⊗ ( f +cg) = (A⊗ f )+c(A⊗g) is similar. For (d),
we just define S(A) = T (A,1), S(Ax) = T (A,x), and
S(Ax2) = T (A,x2) for all A ∈M2 and extend via
linearity.

3.3.6 Suppose that we could write f (x,y) = exy as a
sum of elementary tensors: exy = f1(x)g1(y)+ · · ·+
fk(x)gk(y) for some f1,g1, . . . , fk,gk ∈ C. Choosing
y = 1,2, . . . ,k,k+1 then gives us the system of equa-
tions

ex = f1(x)g1(1)+ · · ·+ fk(x)gk(1)

e2x = f1(x)g1(2)+ · · ·+ fk(x)gk(2)

...

ekx = f1(x)g1(k)+ · · ·+ fk(x)gk(k)

e(k+1)x = f1(x)g1(k +1)+ · · ·+ fk(x)gk(k +1).

We know from Exercise 1.1.22 that the set of func-
tions {ex,e2x, . . . ,ekx,e(k+1)x} is linearly indepen-
dent. However, this contradicts the above linear
system, which says that {ex,e2x, . . . ,ekx,e(k+1)x} is
contained within the (k-dimensional) span of the
functions f1, . . . , fk .

3.3.10 Let T : V ×W →W ⊗V be the bilinear transfor-
mation defined by T (v,w) = w⊗ v. By the univer-
sal property, there exists a linear transformation
S : V ⊗W → W ⊗ V with S(v⊗w) = w⊗ v. A
similar argument shows that there exists a linear
transformation that sends w⊗ v to v⊗w. Since
elementary tensors span the entire tensor product
space, it follows that S is invertible and thus an
isomorphism.

3.3.12 Suppose

v = lim
k→∞

(
v(1)

k ⊗v(2)
k ⊗·· ·⊗v(p)

k

)
,

where we absorb scalars among these Kronecker fac-
tors so that ‖v( j)

k ‖ = 1 for all k and all j ≥ 2. The
length of a vector (i.e., its norm induced by the dot
product) is continuous in its entries, so

‖v‖= lim
k→∞

∥∥∥v(1)
k ⊗v(2)

k ⊗·· ·⊗v(p)
k

∥∥∥= lim
k→∞

∥∥∥v(1)
k

∥∥∥ .

In particular, this implies that the vectors {v( j)
k } have

bounded norm, so the Bolzano–Weierstrass theorem
tells us that there is a sequence k1,k2,k3, . . . with the
property that

lim
`→∞

v(1)
k`

exists. We can then find a subsequence
k`1 ,k`2 ,k`3 , . . . of that with the property that

lim
m→∞

v(2)
k`m

exist too. Continuing in this way gives us a subse-
quence with the property that

lim
k→∞

v( j)
k

exists for each 1≤ j≤ p (note that we have relabeled
this subsequence just in terms of a single subscript k
for simplicity). It follows that

v = lim
k→∞

(
v(1)

k ⊗v(2)
k ⊗·· ·⊗v(p)

k

)
=

(
lim
k→∞

v(1)
k

)
⊗
(

lim
k→∞

v(2)
k

)
⊗·· ·⊗

(
lim
k→∞

v(p)
k

)
,

since all of these limits exist (after all, the Kronecker
product is made up of entrywise products of vector
entries and is thus continuous in those entries). The
decomposition on the right shows that v has tensor
rank 1.
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Section 3.4: Summary and Review

3.4.1 (a) True. This was part of Theorem 3.1.4.
(c) True. This follows from Theorem 3.1.3, for

example.
(e) False. The Kronecker (and tensor) product is

not commutative.
(g) False. We gave an example at the end of Sec-

tion 3.3.3 with real tensor rank 3 but complex
tensor rank 2.

3.4.2 We need to perform n(n− 1)/2 column swaps to
obtain Wn,n from I (one for each column ei ⊗ e j

with i < j), so det(Wn,n) = (−1)n(n−1)/2. Equiva-
lently, det(Wn,n) = −1 if n ≡ 2 or 3 (mod 4), and
det(Wn,n) = 1 otherwise.

Section 3.A: Extra Topic: Matrix-Valued Linear Maps

3.A.1 (a) True. In fact, we know from Theorem 3.A.6
that it is completely positive.

(c) True. If X is positive semidefinite then
so are Φ(X) and Ψ(X), so (Φ + Ψ)(X) =
Φ(X)+Ψ(X) is as well.

3.A.2 We mimic the proof of Theorem 3.A.6: we construct
CΨ and then let the Ai’s be the matricizations of its
scaled eigenvectors. We recall from Example 3.A.8
that CΨ = I−W3,3, and applying the spectral decom-
position to this matrix shows that CΨ = ∑

3
i=1 vivT

i ,
where

v1 = (0,1,0,−1,0,0,0,0,0),

v2 = (0,0,1,0,0,0,−1,0,0), and

v3 = (0,0,0,0,0,1,0,−1,0).

It follows that Ψ(X) = ∑
3
i=1 AiXAT

i , where Ai =
mat(vi) for all i, so

A1 =




0 1 0
−1 0 0
0 0 0


 , A2 =




0 0 1
0 0 0
−1 0 0


 , and

A3 =




0 0 0
0 0 1
0 −1 0


 .

3.A.4 Direct computation shows that (ΦC⊗I2)(xx∗) equals



2 0 −1 0 0 −1
0 0 0 0 0 0
−1 0 1 0 0 −1
0 0 0 1 0 0
0 0 0 0 1 0
−1 0 −1 0 0 1




,

which is not positive semidefinite (it has 1−
√

3 ≈
−0.7321 as an eigenvalue), so ΦC is not 2-positive.

3.A.5 Recall that ‖X‖F = ‖vec(X)‖ for all matrices
X , so ‖Φ(X)‖F = ‖X‖F for all X if and only if
‖[Φ]vec(X)‖ = ‖vec(X)‖ for all vec(X). It follows
from Theorem 1.4.9 that this is equivalent to [Φ]
being unitary.

3.A.7 By Exercise 2.2.20, Φ is positive if and only if
tr(Φ(X)Y )≥ 0 for all positive semidefinite X and Y .
Using the definition of the adjoint Φ∗ shows that this
is equivalent to tr(XΦ∗(Y )) ≥ 0 for all PSD X and
Y , which (also via Exercise 2.2.20) is equivalent to
Φ∗ being positive.

3.A.8 If CΦ = ∑i, j Φ(Ei, j) ⊗ Ei, j then tr2(CΦ) =
∑i, j Φ(Ei, j)⊗ tr(Ei, j) = ∑i Φ(Ei,i) = Φ(I), which
demonstrates the equivalence of (i) and (ii). The
equivalence of (i) and (iii) just follows from choos-
ing X = I in (iii).

3.A.12 (a) If Φ is transpose-preserving and X is symmet-
ric then Φ(X)T = Φ(XT ) = Φ(X).

(b) For example, consider the linear map Φ :
M2→M2 defined by

Φ

([
a b
c d

])
=

[
a b

(b+ c)/2 d

]
.

If the input is symmetric (i.e., b = c) then so
is the output, but Φ(E1,2) 6= Φ(E2,1)T , so Φ is
not transpose-preserving.

3.A.13 (a) Recall from Exercise 2.2.16 that every self-
adjoint A ∈Mn can be written as a linear
combination of two PSD matrices: A = P−N.
Then Φ(A) = Φ(P)−Φ(N), and since P and
N are PSD, so are Φ(P) and Φ(N), so Φ(A)
is also self-adjoint (this argument works even
if F = R). If F = C then this means that Φ is
Hermiticity-preserving, so it follows from The-
orem 3.A.2 that Φ is also adjoint-preserving.

(b) The same map from the solution to Exer-
cise 3.A.12(b) works here. It sends PSD ma-
trices to PSD matrices (in fact, it acts as the
identity map on all symmetric matrices), but is
not transpose-preserving.

3.A.14 We know from Theorem 3.A.1 that T ◦Φ = Φ ◦T
(i.e., Φ is transpose-preserving) if and only if CΦ =
CT

Φ
. The additional requirement that Φ = Φ ◦ T

tells us (in light of Exercise 3.A.10) that CΦ =
(I⊗T )(CΦ) = Γ(CΦ).
As a side note, observe this condition is also equiva-
lent to CΦ = CT

Φ
= Γ(CΦ), since Γ(CΦ) = Γ(CT

Φ
) =

Γ(CΦ).

3.A.15 If Φ is bisymmetric and decomposable then Φ =
T ◦Φ = Φ ◦T = Ψ1 + T ◦Ψ2 for some completely
positive Ψ1,Ψ2. Then

2Φ = Φ+(T ◦Φ)

= (Ψ1 +Ψ2)+T ◦ (Ψ1 +Ψ2),
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so we can choose Ψ = (Ψ1 +Ψ2)/2. Conversely, if
Φ = Ψ+T ◦Ψ for some completely positive Ψ then
Φ is clearly decomposable, and it is bisymmetric
because

T ◦Φ = T ◦ (Ψ+T ◦Ψ) = T ◦Ψ+Ψ = Φ,

and

Φ◦T = (Ψ+T ◦Ψ)◦T = Ψ◦T +T ◦Ψ◦T

= T ◦ (T ◦Ψ◦T )+(T ◦Ψ◦T ) = T ◦Ψ+Ψ

= Φ,

where we used the fact that T ◦Ψ◦T = Ψ thanks to
Ψ being real and CP (and thus transpose-preserving).

3.A.16 Recall that {Ei, j ⊗Ek,`} is a basis of Mmp,nq, and
Φ⊗Ψ must satisfy

(Φ⊗Ψ)(Ei, j⊗Ek,`) = Φ(Ei, j)⊗Ψ(Ek,`)

for all i, j, k, and `. Since linear maps are determined
by how they act on a basis, this shows that Φ⊗Ψ, if
it exists, is unique. Well-definedness (i.e., existence
of Φ⊗Ψ) comes from reversing this argument—
if we define Φ ⊗ Ψ by (Φ ⊗ Ψ)(Ei, j ⊗ Ek,`) =
Φ(Ei, j)⊗Ψ(Ek,`) then linearity shows that Φ⊗Ψ

also satisfies (Φ⊗Ψ)(A⊗B) = Φ(A)⊗Ψ(B) for all
A and B.

3.A.18 If X ∈Mn⊗Mk is positive semidefinite then we
can construct a PSD matrix X̃ ∈Mn⊗Mk+1 sim-
ply by padding it with n rows and columns of zeros
without affecting positive semidefiniteness. Then
(Φ⊗ Ik)(X) = (Φ⊗ Ik+1)(X̃) is positive semidefinite
by (k +1)-positivity of Φ, and since X was arbitrary
this shows that Φ is k-positive.

3.A.19 We need to show that Φ(X) is positive semidefinite
whenever X is positive semidefinite. To this end,
notice that every PSD matrix X can be written as
a limit of positive definite matrices X1,X2,X3, . . .:
X = limk→∞ Xk , where Xk = X + I/k. Linearity (and
thus continuity) of Φ then tells us that

Φ(X) = Φ

(
lim
k→∞

Xk

)
= lim

k→∞
Φ(Xk),

which is positive semidefinite since each Φ(Xk) is
positive definite (recall that the coefficients of charac-
teristic polynomials are continuous, so the roots of a
characteristic polynomial cannot jump from positive
to negative in a limit).

3.A.22 (a) If X is Hermitian (so c = b and a and d are
real) then the determinants of the top-left 1×1,
2×2, and 3×3 blocks of Φ(X) are

4a−4Re(b)+3d, 4a2−4|b|2 +6ad, and

8a2d +12ad2−4a|b|2 +4Re(b)|b|2−11d|b|2,
respectively. If X is positive definite then
|Re(b)| ≤ |b|<

√
ad≤ (a+d)/2, which easily

shows that the 1×1 and 2×2 determinants are
positive. For the 3× 3 determinant, after we
use |b|2 < ad three times and Re(b) >−

√
ad

once, we see that

8a2d +12ad2−4a|b|2 +4Re(b)|b|2−11d|b|2

> 4a2d +ad2−4(ad)3/2.

This quantity is non-negative since the inequal-
ity 4a2d + ad2 ≥ 4(ad)3/2 is equivalent to
(4a2d + ad2)2 ≥ 16a3d3, which is equivalent
to a2d2(d−4a)2 ≥ 0.

(b) After simplifying and factoring as suggested
by this hint, we find

det(Φ(X)) = 2det(X)p(X), where

p(X) = 16a2 +30ad +9d2

−8aRe(b)−12Re(b)d−8|b|2.

If we use the facts that |b|2 < ad and Re(b) <
(a+d)/2 then we see that

p(X) > 12a2 +12ad +3d2 > 0,

so det(Φ(X)) > 0 as well.
(c) Sylvester’s Criterion tells us that Φ(X) is pos-

itive definite whenever X is positive definite.
Exercise 3.A.19 then says that Φ is positive.

Section 3.B: Extra Topic: Homogeneous Polynomials

3.B.1 (a) Since this is a quadratic form, we can represent
it via a symmetric matrix

3x2 +3y2−2xy =
[
x y

]
[

3 −1
−1 3

][
x
y

]

and then apply the spectral decomposition to
this matrix to get the sum-of-squares form
(x+ y)2 +2(x− y)2.

(c) We mimic Example 3.B.1: we try to write
2x3−9x2y+3xy2− y3 = c1x3 + c2y3 + c3(x+
y)3 + c4(x− y)3 and solve for c1, c2, c3, c4
to get the decomposition x3 +2y3− (x+ y)3 +
2(x− y)3.

(e) We again mimic Example 3.B.1, but this time
we are working in a 10-dimensional space
so we use the basis {x3,y3,z3,(x + y)3,(x−
y)3,(y+z)3,(y−z)3,(z+x)3,(z−x)3,(x+y+
z)3}. Solving the resulting linear system gives
the decomposition 6(x2y + y2z + z2x) = (x +
y)3−(x−y)3 +(y+z)3−(y−z)3 +(z+x)3−
(z− x)3−2x3−2y3−2z3.

(g) This time we use the basis {x4,y4,(x +
y)4,(x − y)4,(x + 2y)4}. Solving the result-
ing linear system gives the decomposition
x4 +(x+ y)4 +(x− y)4− (x+2y)4 +4y4.

3.B.2 (a) One possibility is (2,3,3,5) = (1,1)⊗2 +
(1,2)⊗2.
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(c) (1,0)⊗3 +(0,1)⊗3− (1,1)⊗3 +(1,−1)⊗3

3.B.3 (a) False. The degree of g might be strictly less
than that of f . For example, if f (x1,x2) =
x1x2 + x2

2 then dividing through by x2
2 gives

the dehomogenization g(x) = x+1.
(c) True. This follows from Theorem 3.B.2.
(e) True. This follows from the real spectral de-

composition (see Corollary 2.A.2).

3.B.5 We just observe that in any 4th power of a linear form

(ax+by)4,

if the coefficient of the x4 and y4 terms equal 0 then
a = b = 0 as well, so no quartic form without x4 or
y4 terms can be written as a sum of 4th powers of
linear forms.

3.B.6 For both parts of this question, we just need to show
that rankS(w)≤ rank(w), since the other inequality
is trivial.

(a) w ∈ S2
n if and only if mat(w) is a symmetric

matrix. Applying the real spectral decomposi-
tion shows that

mat(w) =
r

∑
i=1

λivivT
i ,

where r = rank(mat(w)) = rank(w). It follows
that w = ∑

r
i=1 λivi ⊗ vi, so rankS(w) ≤ r =

rank(w).
(b) The Takagi factorization (Exercise 2.3.26) says

that we can write mat(w) = UDUT , where
U is unitary and D is diagonal (with the sin-
gular values of mat(w) on its diagonal). If
r = rank(mat(w)) = rank(w) and the first r
columns of U are v1, . . ., vr , then

mat(w) =
r

∑
i=1

di,ivivT
i ,

so w = ∑
r
i=1 di,ivi ⊗ vi, which tells us that

rankS(w)≤ r = rank(w), as desired.

3.B.7 (a) Apply the AM–GM inequality to the 4 quanti-
ties w4, x2y2, y2z2, and z2x2.

(b) If we could write f as a sum of squares of
quadratic forms, those quadratic forms must
contain no x2, y2, or z2 terms (or else f would
have an x4, y4, or z4 term, respectively). It then
follows that they also have no wx, wy, or wz
terms (or else f would have an a w2x2, w2y2,
or w2z2 term, respectively) and thus no way to
create the cross term −4wxyz in f , which is a
contradiction.

3.B.8 Recall from Remark 3.B.2 that

f (x,y,z) =
g(x,y,z)2 +g(y,z,x)2 +g(z,x,y)2

x2 + y2 + z2

+
h(x,y,z)2 +h(y,z,x)2 +h(z,x,y)2

2(x2 + y2 + z2)
.

If we multiply and divide the right-hand side by
x2 + y2 + z2 and then multiply out the numerators,
we get f (x,y,z) as a sum of 18 squares of rational
functions. For example, the first three terms in this
sum of squares are of the form

(x2 + y2 + z2)g(x,y,z)2

(x2 + y2 + z2)2 =
(

xg(x,y,z)
x2 + y2 + z2

)2

+
(

yg(x,y,z)
x2 + y2 + z2

)2

+
(

zg(x,y,z)
x2 + y2 + z2

)2

.

3.B.9 Recall from Theorem 1.3.6 that we can write every
quadrilinear form f in the form

f (x,y,z,w) = ∑
i, j,k,`

bi, j,k,`xiz jykw`.

If we plug z = x and w = y into this equation then
we see that

f (x,y,x,y) = ∑
i, j,k,`

bi, j,k,`xix jyky`.

If we define ai, j;k,` = (bi, j,k,` + b j,i,k,` + bi, j,`,k +
b j,i,`,k)/4 then we get

f (x,y,x,y) = ∑
i≤ j,k≤`

ai, j;k,`xix jyky` = q(x,y),

and the converse is similar.

3.B.10 We think of q(x,y) as a (quadratic) polynomial in
y3, keeping x1,x2,x3,y1, and y2 fixed. That is, we
write q(x,y) = ay2

3 + by3 + c, where a, b, and c are
complicated expressions that depend on x1,x2,x3,y1,
and y2:

a = x2
2 + x2

3,

b =−2x1x3y1−2x2x3y2, and

c = x2
1y2

1 + x2
1y2

2 + x2
2y2

2 + x2
3y2

1−2x1x2y1y2.

If a = 0 then x2 = x3 = 0, so q(x,y) = x2
1(y

2
1 +y2

2)≥
0, as desired, so we assume from now on that a > 0.
Our goal is to show that q has at most one real root,
since that implies it is never negative.
To this end, we note that after performing a laborious
calculation to expand out the discriminant b2−4ac
of q, we get the following sum of squares decompo-
sition:

b2−4ac =−4(abx−b2y)2

−4(aby− c2x)2−4(acy−bcx)2.

It follows that b2− 4ac ≤ 0, so q has at most one
real root and is thus positive semidefinite.

3.B.11 We check the 3 defining properties of Defini-
tion 1.3.6. Properties (a) and (b) are both immediate,
and property (c) comes from computing

〈 f , f 〉= ∑
k1+···+kn=p

|ak1 ,k2 ,...,kn |2( p
k1 ,k2 ,...,kn

) ,

which is clearly non-negative and equals zero if and
only if ak1 ,k2 ,...,kn = 0 for all k1, k2, . . ., kn (i.e., if
and only if f = 0).
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Section 3.C: Extra Topic: Semidefinite Programming

3.C.1 (a) This is equivalent to A−A = O being positive
semidefinite, which is clear.

(b) If A−B and B−A = −(A−B) are both posi-
tive semidefinite then all eigenvalues of A−B
must be ≥ 0 and ≤ 0, so they must all equal
0. Since A−B is Hermitian, this implies that
it equals O (by the spectral decomposition, for
example), so A = B.

(c) If A−B and B−C are both PSD then so is
(A−B)+(B−C) = A−C.

(d) If A−B is PSD then so is (A+C)− (B+C) =
A−B.

(e) This is equivalent to the (obviously true) state-
ment that A−B is PSD if and only if −B+A
is PSD.

(f) If A− B is PSD then so is P(A− B)P∗ =
PAP∗−PBP∗, by Theorem 2.2.3(d).

3.C.2 (a) True. We showed how to represent a linear pro-
gram as a semidefinite program at the start of
this section.

(c) True. If A−B is PSD then tr(A−B) ≥ 0, so
tr(A)≥ tr(B).

(e) False. This is not even true for linear programs.

3.C.3 (a) Suppose A has spectral decomposition A =
UDU∗. Then A� cI if and only if cI−A� O,
if and only if U(cI−D)U∗ � O, if and only if
cI−D� O, if and only if c≥ λmax(A).

(b) There are many possibilities, including the fol-
lowing (where c ∈ R is the variable):

minimize: c
subject to: cI � A

(c) By an argument like that from part (a), A� cI
if and only if λmin(A) ≥ c. It follows that the
following SDP has optimal value λmin(A):

maximize: c
subject to: cI � A

3.C.4 (a) The constraints of this SDP force
[
−x− y 1

1 −x

]
� O,

which is not possible since −x ≤ 0 and PSD
matrices cannot have negative diagonal entries
(furthermore, we showed in Exercise 2.2.11
that if a diagonal entry of a PSD matrix equals
0 then so does every entry in that row and col-
umn, which rules out the x = 0 case).

(b) The dual SDP has the following form (where
X ∈MH

3 is a matrix variable):

minimize: 2Re(x1,2)
subject to: x1,1 + x2,2 + x3,3 ≥ 0

x1,1 + x3,3 = 0
X � O

This SDP is feasible with optimal value 0
since the feasible points are exactly the matri-
ces X with x2,2 ≥ 0 and all other entries equal
to 0.

3.C.5 (a) One possibility is

A =

[
2 0
0 3

]
and B =

[
1 −1
−1 2

]
.

Then A and B are both positive semidefinite, and
so is

A−B =

[
1 1
1 1

]
.

However,

A2−B2 =

[
2 3
3 4

]
,

which is not positive semidefinite (it has determi-
nant −1).

(c) Notice that both A−B and A + B are positive
semidefinite (the former by assumption, the lat-
ter since A and B are positive semidefinite). By
Exercise 2.2.19, it follows that

tr
(
(A−B)(A+B)

)
≥ 0.

Expanding out this trace then shows that

0≤ tr(A2)− tr(BA)+ tr(AB)− tr(B2).

Since tr(AB) = tr(BA), it follows that tr(A2)−
tr(B2)≥ 0, so tr(A2)≥ tr(B2), as desired.

3.C.7 One matrix that works is


3 2 1 −2 1
2 3 −1 −2 1
1 −1 3 1 −1
−2 −2 1 3 −2
1 1 −1 −2 3




.

3.C.8 If A has orthogonal rank-one sum decomposi-
tion A = ∑

r
j=1 σ ju jv∗j then we choose X = u1v∗1,

Y = u1u∗1, and Z = v1v∗1. It is straightforward to
then check that tr(Y ) = tr(Z) = 1, Re(tr(AX∗)) =
Re(tr(σ1(v∗1v1)(u∗1u1))) = σ1 = ‖A‖, and

[
Y −X
−X∗ Z

]
=

[
u1u∗1 −u1v∗1
−v1u∗1 v1v∗1

]

=
[

u1

−v1

][
u1

−v1

]∗
� O.

3.C.9 We could use duality and mimic Example 3.C.5, but
instead we recall from Theorem 2.B.4 that[

I A
A∗ X

]
� O

if and only if X −A∗A � O. It follows that, for any
feasible X , we have tr(X)≥ tr(A∗A) = ‖A‖2

F, which
shows that the optimal value of the semidefinite pro-
gram is at least as large as ‖A‖2

F.
To show that there exists a feasible X that attains the
bound of ‖A‖2

F, let A = UΣV ∗ be a singular value
decomposition of A. Then we define X = V Σ∗ΣV ∗,
which has tr(X) = tr(V Σ∗ΣV ∗) = tr(Σ∗Σ) = ‖A‖2

F.
Furthermore, X is feasible since it is positive semidef-
inite and so is[

I A
A∗ X

]
=

[
I UΣV ∗

V Σ∗U∗ V Σ∗ΣV ∗

]

=

[
U

V Σ∗

][
U

V Σ∗

]∗
.
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3.C.12 (a) The dual of this SDP can be written in the fol-
lowing form, where Y ∈MH

n and z ∈ R are
variables:

minimize: tr(Y )+ kz
subject to: Y + zI �C

Y � O

(b) If X is the orthogonal projection onto the
span of the eigenspaces corresponding to the
k largest eigenvalues of C then X is a feasible
point of the primal problem of this SDP and
tr(CX) is the sum of those k largest eigenvalues,
as claimed. On the other hand, if C has spectral
decomposition C = ∑

n
j=1 λ jv jv∗j then we can

choose z = λk+1 (where λ1 ≥ ·· · ≥ λn are the
eigenvalues of C) and Y = ∑

k
j=1(λ j − z)v jv∗j .

It is straightforward to check that Y � O and
Y + zI � C, so Y is feasible. Furthermore,
tr(Y ) + kz = ∑

k
j=1 λ j − kz + kz = ∑

k
j=1 λ j , as

desired.

3.C.14 If Φ = Ψ1 +T ◦Ψ2 then CΦ = CΨ1 + Γ(CΨ2 ), so Φ

is decomposable if and only if there exist PSD ma-
trices X and Y such that CΦ = X + Γ(Y ). It follows
that the optimal value of the following SDP is 0 if
Φ is decomposable, and it is −∞ otherwise (this is a
feasibility SDP—see Remark 3.C.3):

maximize: 0
subject to: X + Γ(Y ) = CΦ

X ,Y � O

3.C.15 We can write Φ = Ψ1 + T ◦Ψ2, where 2CΨ1 and
2CΨ2 are the (PSD) matrices



3 0 0 0 0 −2 −1 0
0 1 0 0 0 0 0 −1
0 0 2 0 0 0 0 −2
0 0 0 2 −2 0 0 0
0 0 0 −2 2 0 0 0
−2 0 0 0 0 2 0 0
−1 0 0 0 0 0 1 0
0 −1 −2 0 0 0 0 3




and



1 0 0 0 0 0 −1 0
0 3 0 0 −2 0 0 −1
0 0 2 0 0 −2 0 0
0 0 0 2 0 0 −2 0
0 −2 0 0 2 0 0 0
0 0 −2 0 0 2 0 0
−1 0 0 −2 0 0 3 0
0 −1 0 0 0 0 0 1




respectively.

3.C.17 (a) The Choi matrix of Φ is



4 −2 −2 2 0 0 0 0
−2 3 0 0 0 0 0 0
−2 0 2 0 0 1 0 0
2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −2
0 0 1 0 0 2 0 −1
0 0 0 0 0 0 4 0
0 0 0 0 −2 −1 0 2




Using the same dual SDP from the solution
to Exercise 3.C.16, we find that the matrix Z
given by



2 0 0 −28 0 0 0 0
0 16 0 0 0 0 0 0
0 0 49 0 0 −49 0 0
−28 0 0 392 0 0 0 0

0 0 0 0 392 0 0 28
0 0 −49 0 0 49 0 0
0 0 0 0 0 0 16 0
0 0 0 0 28 0 0 2




is feasible and has tr(CΦZ) = −2. Scaling Z
up by an arbitrary positive scalar shows that
the optimal value of this SDP is −∞ and thus
the primal problem is infeasible and so Φ is
not decomposable.

3.C.18 Recall from Theorem 3.B.3 that q is a sum of squares
of bilinear forms if and only if we can choose Φ

to be decomposable and bisymmetric. Let {xixT
i }

and {y jyT
j } be the rank-1 bases of MS

m and MS
n ,

respectively, described by Exercise 1.2.8.
It follows that the following SDP determines whether
or not q is a sum of squares, since it determines
whether or not there is a decomposable bisymmetric
map Φ that represents q:

maximize: 0
subject to: xT

i Φ(y jyT
j )xi = q(xi,y j) for all i, j

Φ = T ◦Φ

Φ = Φ◦T
Φ = Ψ1 +T ◦Ψ2

CΨ1 ,CΨ2 � O

[Side note: We can actually choose Ψ1 = Ψ2 to make
this SDP slightly simpler, thanks to Exercise 3.A.15.]
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