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CHAPTER 1

INTRODUCTION TO THIS
BOOK

START THIS CHAPTER HAPPY



INTRODUCTION

FACT:

Linear algebra is
SUUUUPER
IMPORTANT!!

What is linear algebra and why learn it?

Linear algebra is the branch of mathematics concerned with vec-
tors and matrices, their linear combinations, and operations act-
ing upon them. Linear algebra has a long history in pure math-
ematics, in part because it provides a compact notation that is
powerful and general enough to be used in geometry, calculus, dif-
ferential equations, physics, economics, and many other areas.

But the importance and application of linear algebra is quickly
increasing in modern applications. Many areas of science, tech-
nology, finance, and medicine are moving towards large-scale data
collection and analysis. Data are often stored in matrices, and
operations on those data—ranging from statistics to filtering to
machine learning to computer graphics to compression—are typ-
ically implemented via linear algebra operations. Indeed, linear
algebra has arguably exceeded statistics and time series analysis
as the most important branch of mathematics in which to gain

proficiency for data-focused areas of science and industry.

Human civilization is moving towards increasing digitization, quan-
titative methods, and data. Therefore, knowledge of foundational

topics such as linear algebra are increasingly important. One may

(indeed: should) question the appropriateness and utility of the

trend towards "big data" and the over-reliance on algorithms to

make decisions for us, but it is inarguable that familiarity with

matrix analysis, statistics, and multivariate methods have become

crucial skills for any data-related job in academia and in indus-

try.

About this book

The purpose of this book is to teach you how to think about and
work with matrices, with an eye towards applications in machine

learning, multivariate statistics, time series, and image process-



ing. If you are interested in data science, quantitative biology,
statistics, or machine learning and artificial intelligence, then this
book is for you. If you don’t have a strong background in mathe-
matics, then don’t be concerned: You need only high-school math
and a bit of dedication to learn linear algebra from this book.

This book is written with the self-studying reader in mind. Many
people do not realize how important linear algebra is until after
university, or they do not meet the requirements of university-level
linear algebra courses (typically, calculus). Linear algebra text-
books are often used as a compendium to a lecture-based course
embedded in a traditional university math program, and there-
fore can be a challenge to use as an independent resource. I hope
that this book is a self-contained resource that works well inside

or outside of a formal course.

Many extant textbooks are theory-oriented, with a strong focus on
abstract concepts as opposed to practical implementations. You
might have encountered such books: They avoid showing numer-
ical examples in the interest of generalizations; important proofs
are left "as an exercise for the reader"; mathematical statements
are simply plopped onto the page without discussion of relevance,
importance, or application; and there is no mention of whether or

how operations can be implemented in computers.

I do not write these as criticisms—abstract linear algebra is a
beautiful topic, and infinite-dimensional vector spaces are great.
But for those interested in using linear algebra (and mathematics
more generally) as a tool for understanding data, statistics, deep
learning, etc., then abstract treatments of linear algebra may seem
like a frustrating waste of time. My goal here is to present ap-
plied linear algebra in an approachable and comprehensible way,
with little focus on abstract concepts that lack a clear link to

applications.

Ebook version The ebook version is identical to the physical
version of this book, in terms of the text, formulas, visualizations,
and code. However, the formatting is necesarily quite different.
The book was designed to be a physical book; and thus, margins,

1.2 ABOUT THIS BOOK
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fonts, text and figure placements, and code blocks are optimized

for pages, not for ereaders.

Therefore, I recommend getting the physical copy of the book if
you have the choice. If you get the ebook version, then please
accept my apologies for any ugly or annoying formatting issues.
If you have difficulties reading the code, please download it from
github.com /mikexcohen /LinAlgBook.

Equations This is a math book, so you won’t be surprised to see
equations. But math is more than just equations: In my view,
the purpose of math is to understand concepts; equations are one
way to present those concepts, but words, pictures, and code are
also important. Let me outline the balance:

1. Equations provide rigor and formalism, but they rarely pro-
vide intuition.

2. Descriptions, analogies, visualizations, and code provide in-
tuition but often lack sufficient rigor.

This balance guides my writing: Equations are pointless if they
lack descriptions and visualizations, but words and pictures with-

out equations can be incomplete or misinterpreted.

So yes, there is a respectable number of equations here. There are
three levels of hierarchy in the equations throughout this book.
Some equations are simple or reminders of previously discussed
equations; these are lowest on the totem pole are are presented
in-line with text like this: z(yz) = (zy)z.

More important equations are given on their own lines. The num-
ber in parentheses to the right will allow me to refer back to that
equation later in the text (the number left of the decimal point
is the chapter, and the number to the right is the equation num-
ber).

o = a(yz) = (ay) (L1)

And the most important equations—the ones you should really



make sure to understand and be comfortable using and reproducing—

are presented in their own box with a title:

Something important!

o = 2(yz) = (ay)z (1.2)

Algebraic and geometric perspectives on matrices Many con-
cepts in linear algebra can be formulated using both geometric
and algebraic (analytic) methods. This "dualism" promotes com-
prehension and I try to utilize it often. The geometric perspective
provides visual intuitions, although it is usually limited to 2D or
3D. The algebraic perspective facilitates rigorous proofs and com-
putational methods, and is easily extended to N-D. When working
on problems in R? or R3, I recommend sketching the problem on

paper or using a computer graphing program.

Just keep in mind that not every concept in linear algebra has
both a geometric and an algebraic concept. The dualism is useful
in many cases, but it’s not a fundamental fact that necessarily

applies to all linear algebra concepts.

Prerequisites

The obvious. Dare I write it? You need to be motivated to
learn linear algebra. Linear algebra isn’t so difficult, but it’s also
not so easy. An intention to learn applied linear algebra—and
a willingness to expend mental energy towards that goal—is the
single most important prerequisite. Everything below is minor in

comparison.

High-school math. You need to be comfortable with arithmetic
and basic algebra. Can you solve for z in 422 = 9? Then you
have enough algebra knowledge to continue. Other concepts in

geometry, trigonometry, and complex numbers (a b, ew) will be

1.3 PREREQUISITES
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introduced as the need arises.

Calculus. Simply put: none. I strongly object to calculus being
taught before linear algebra. No offense to calculus, of course;
it’s a rich, beautiful, and incredibly important subject. But lin-
ear algebra can be learned without any calculus, whereas many
topics in calculus involve some linear algebra. Furthermore, many
modern applications of linear algebra invoke no calculus concepts.
Hence, linear algebra should be taught assuming no calculus back-

ground.

Vectors, matrices and <insert fancy-sounding linear alge-
bra term here>. If this book is any good, then you don’t need
to know anything about linear algebra before reading it. That
said, some familiarity with matrices and matrix operations will
be beneficial.

Programming. Before computers, advanced concepts in mathe-
matics could be understood only by brilliant mathematicians with
great artistic skills and a talent for being able to visualize equa-
tions. Computers changed that. Now, a reasonably good math-
ematics student with some perseverance and moderate computer
skills can implement and visualize equations and other mathe-
matical concepts. The computer deals with the arithmetic and
low-level graphics, so you can worry about the concepts and in-

tuition.

This doesn’t mean you should forgo solving problems by hand; it
is only through laboriously solving lots and lots of problems on
paper that you will internalize a deep and flexible understanding
of linear algebra. However, only simple (often, integer) matrices
are feasible to work through by hand; computer simulations and
plotting will allow you to understand an equation visually, when
staring at a bunch of letters and Greek characters might give you
nothing but a sense of dread. So, if you really want to learn
modern, applied linear algebra, it’s helpful to have some coding
proficiency in a language that interacts with a visualization en-
gine.

I provide code for all concepts and problems in this book in both



MATLAB and Python. I find MATLAB to be more comfortable
for implementing linear algebra concepts. If you don’t have access
to MATLAB, you can use Octave, which is a free cross-platform
software that emulates nearly all MATLAB functionality. But the
popularity of Python is undeniable, and you should use whichever
program you (1) feel more comfortable using or (2) anticipate
working with in the future. Feel free to use any other coding
language you like, but it is your responsibility to translate the

code into your preferred language.

I have tried to keep the code as simple as possible, so you need
only minimal coding experience to understand it. On the other
hand, this is not an intro-coding book, and I assume some basic
coding familiarity. If you understand variables, for-loops, func-
tions, and basic plotting, then you know enough to work with the
book code.

To be clear: You do not need any coding to work through the
book. The code provides additional material that I believe will
help solidify the concepts as well as adapt to specific applications.
But you can successfully and completely learn from this book

without looking at a single line of code.

Practice, exercises and code challenges

Math is not a spectator sport. If you simply read this book with-
out solving any problems, then sure, you’ll learn something and
I hope you enjoy it. But to really understand linear algebra, you

need to solve problems.

Some math textbooks have a seemingly uncountable number of
exercises. My strategy here is to have a manageable number of
exercises, with the expectation that you can solve all of them.

There is a hierarchy of problems to solve in this book:

1.4 EXERCISES AND CODE CHALLENGES
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Practice problems are a few problems at the end of chapter
subsections. They are designed to be easy, the answers are given
immediately below the problems, and are simply a way for you
to confirm that you get the basic idea of that section. If you
can’t solve the practice problems, go back and re-read that sub-

section.

Exercises are found at the end of each chapter and focus on
drilling and practicing the important concepts. The answers (yes,
all of them; not just the odd-numbered) follow the exercises, and
in many cases you can also check your own answer by solving the
problem on a computer (using MATLAB or Python). Keep in
mind that these exercises are designed to be solved by hand, and

you will learn more by solving them by hand than by computer.

Code challenges are more involved, require some effort and cre-
ativity, and can only be solved on a computer. These are oppor-
tunities for you to explore concepts, visualizations, and parameter
spaces in ways that are difficult or impossible to do by hand. I
provide my solutions to all code challenges, but keep in mind that
there are many correct solutions; the point is for you to explore
and understand linear algebra using code, not to reproduce my
code.

If you are more interested in concepts than in computer imple-

mentation, feel free to skip the coding challenges.

Online and other resources

Although I have tried to write this book to be a self-contained one-
stop-shop for all of your linear algebra needs, it is naive to think
that everyone will find it to be the perfect resource that I intend
it to be. Everyone learns differently and everyone has a different

way of understanding and visualizing mathematical concepts.

If you struggle to understand something, don’t jump to the con-



clusion that you aren’t smart enough; a simpler possibility is that
the explanation I find intuitive is not the explanation that you find
intuitive. I try to give several explanations of the same concept,
in hopes that you'll find traction with at least one of them.

Therefore, you shouldn’t hesitate to search the Internet or other
textbooks if you need different or alternative explanations, or if

you want additional exercises to work through.

This book is based on an online course that I created. The book
and the course are similar but not entirely redundant. You don’t
need to enroll in the online course to follow along with this book
(or the other way around). I appreciate that some people prefer
to learn from online video lectures while others prefer to learn
from textbooks. I am trying to cater to both kinds of learners.

You can find a list of all my online courses at sincxpress.com.

1.5 ONLINE AND OTHER RESOURCES
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VECTORS

2 1 0 1 OZ

Figure 2.1: Scalars
as points on a line.
The scalar 1.5 is
demarcated.

Welcome to the second step of conquering linear algebra! (The
first step was investing in this book.) This and the next few
chapters lay the foundation upon which all subsequent chapters
(and, really, all of linear algebra) are built.

Scalars

We begin not with vectors but with scalars. You already know
everything you need to know about scalars, even if you don’t yet

recognize the term.

A "scalar" is just a single number, like 4 or -17.3 or 7. In other
areas of mathematics, these could be called constants. Don’t let
their simplicity fool you—scalars play multiple important roles in
linear algebra, and are central to concepts ranging from subspaces
to linear combinations to eigendecomposition.

Why are single numbers called "scalars"? It’s because single num-
bers "scale," or stretch, vectors and matrices without changing
their direction. This will become clear and intuitive later in this
chapter when you learn about the geometric interpretation of vec-

tors.

Scalars can be represented as a point on a number line that has
zero in the middle, negative numbers to the left, and positive
numbers to the right (Figure 2.1). But don’t confuse a point on
this number line with an arrow from zero to that number—that’s

a vector, not a scalar.

Notation In this book (as in most linear algebra texts), scalars
will be indicated using Greek lowercase letters such as A, «, or 7.
This helps disambiguate scalars from vectors and matrices.



Code Variables representing scalars in Python and MATLAB
are trivially easy to create. In fact, I'm only showing the code

here to introduce you to the formatting of code blocks.

Code block 2.1: Python

1 aScalar = 4

Code block 2.2: MATLAB

1 aScalar = 4;

Computers have different numeric variable types, and distinguish
between, for example, 4 and 4.0 (those are, respectively, an int
and a float). However, variable typing is not relevant now, so
you don’t need to worry about it. I mention it here only for the

experienced coders.

Practice problems Solve for \.

a) 22 =9 b) 5/A=7 c) m=¢e

e) .5\ = .25 f) 8A=0 g) \? =36
Answers

a) A=9/2 b) A=5/7 c) A=3lnrw

e) A\=25 f) A=0 g) \==6

d) 4\ +3)=—6
h) X = 5)\?

d) \=-9/2
h) A = 1 (for A #
0)

Vectors: geometry and algebra

Geometry A vector is a line, which is determined by a magni-
tude (length) and a direction. Lines can exist on a coordinate
system with any number of dimensions greater than zero (we deal
only with integer-dimensional spaces here; apologies to the fractal-
enthusiasts). The dimensionality of the vector is the dimension-
ality of the coordinate system. Figure 2.2 illustrates vectors in

two-dimensions (2D) and in 3D.

It is important to know that the definition of a vector does not
include its starting or ending locations. That is, the vector [1 -2]

2.2 VECTORS: GEOMETRY AND ALGEBRA
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& 5
s 1
= £ 0
l‘" o2 -
1 o .
]
-2 -5 : ~ 34,5
2 g ? . TR
X, dim, X, dim. Xy dim.

Figure 2.2: Vectors as lines with a direction and length. Left
plot depicts vector [2 3] and right plot depicts vector [2 3 5].
The arrow is the head of the vector.

simply means a line that goes one unit in the positive direction in
the first dimension, and two units in the negative direction in the
second dimension. This is the key difference between a vector and
a coordinate: For any coordinate system (think of the standard
Cartesian coordinate system), a given coordinate is a unique point
in space. A vector, however, is any line—anywhere—for which the
end point (also called the head of the vector) is a certain number
of units along each dimension away from the starting point (the

tail of the vector).

On the other hand, coordinates and vectors are coincident when
the vector starts at the origin (the [0,0] location on the graph).
A vector with its tail at the origin is said to be in its standard
position. This is illustrated in Figure 2.3: The coordinate [1 -
2] and the wvector [1 -2] are the same when the vector is in its
standard position. But the three thick lines shown in the figure

are all the same vector [1 -2].

For a variety of reasons, it’s convenient to show vectors in their
standard positions. Therefore, you may assume that vectors are

always drawn in standard position unless otherwise stated.



Code Vectors are easy to create and visualize in MATLAB and
in Python. The code draws the vector in its standard position.

Code block 2.3: Python

1 import numpy as np
2 import matplotlib.pyplot as plt
3 v = np.array([2,—1])
4 plt.plot ([0,v[0]],[0,v[1]])
5 plt.axis([—3,3,—3,3]);
Code block 2.4: MATLAB
1 v=[2 —1];
2 plot ([0,v(1)],[0,v(2)])
3 axis([—3,3,-3,3])

Note that Python requires you to load in libraries (here, numpy
and matplotlib.pyplot) each time you run a new session. If you've
already imported the library in your current session, you won’t

need to re-import it.

X5 dim.

X, dim.

Figure 2.3: The three coordinates (circles) are distinct, but the
three vectors (lines) are the same, because they have the same
magnitude and direction ([1 -2]). When the vector is in its
standard position (the black vector), the head of the vector [1
-2] overlaps with the coordinate [1 -2].

2.2 VECTORS: GEOMETRY AND ALGEBRA
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Figure 2.4: The
geometric per-
spective of the
vector in equation
2.1.

Algebra A vector is an ordered list of numbers. The number of
numbers in the vector is called the dimensionality of the vector.
Here are a few examples of 2D and 3D vectors.

1 2|, |4 1],[10000 0]

7 Ve o],[3 1 4],2 7 §]

The ordering of the numbers is important. For example, the fol-
lowing two vectors are not the same, even though they have the

same dimensionality and the same elements.
3 |1
Ik

Brackets Vectors are indicated using either square brackets or
parentheses. I think brackets are more elegant and less open to
misinterpretation, so I use them consistently. But you will occa-
sionally see parentheses used for vectors in other linear algebra

sources. For example the following two objects are the same:

2 5 5].(2 5 5)

Be careful, however: Not all enclosing brackets simply signify
vectors. The following two objects are different from the above.

In fact, they are not even vectors—more on this in a few pages!

|

The geometric perspective on vectors is really useful in 2D and

‘255

255H

tolerable in 3D, but the algebraic perspective allows us to extend
vectors into any dimensionality. Want to see a 6D vector alge-
braically? No problem: [3 4 6 1 -4 5]. Want to visualize that 6D
vector as a line in a 6D coordinate space? Yeah, good luck with
that.

Vectors are not limited to numbers; the elements can also be func-

tions. Consider the following vector function.

v = [cos(t) sin(t) ¢ (2.1)



(t is itself a vector of time points.) Vector functions are used in
multivariate calculus, physics, and differential geometry. How-
ever, in this book, vectors will comprise single numbers in each
element. If you want to work with the above vector for N dis-
crete time points, then you would use a 3x N matrix instead of a

vector-valued function.

Vector orientation Vectors can be "standing up" or "lying down."
An upright vector is called a column vector and a lying down vec-
tor is called a row vector. The dimensionality of a vector is simply
the number of elements, regardless of its orientation. Column vs.

row vectors are easy to distinguish visually:

7

3 0
Column vectors: , 191,

5 1

0

Row vectors: [1 4 —4 ﬁ},[o 1},{42 42]

IMPORTANT: By convention, always assume that vectors are
in column orientation, unless stated otherwise. Assuming that
all vectors are column-oriented reduces ambiguity about other
operations involving vectors. This is an arbitrary choice, but it’s

one that most people follows (not just in this book).

Sometimes, the orientation of a vector doesn’t matter (this is more
often the case in code), while other times it is hugely important

and completely changes the outcome of an equation.

Code The semicolon in MATLAB inside square brackets is used
for vertical concatenation (that is, to create a column vector).
In Python, lists and numpy arrays have no intrinsic orientation
(meaning they are neither row nor column vectors). In some cases
that doesn’t matter, while in other cases (for example, in more
advanced applications) it becomes as hassle. Additional square

brackets can be used to impose orientations.

2.2 VECTORS: GEOMETRY AND ALGEBRA
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Code block 2.5: Python
vl = [2,5,4,7]
v2 = np.array ([2,5,4,7])
v3 = np.array ([ [2],[5],[4],[7] ])
vd = np.array ([ [2,5,4,7] ])

NV

Code block 2.6: MATLAB
vl = [2 5 4 7];
2 v2 = [2; 5; 4; T];

Notation In written texts, vectors are indicated using lower-
case boldface letters, for example: vector v. When taking notes
on paper (strongly encouraged to maximize learning!), you should
draw a little arrow on top of the letter to indicate vectors, like
this: ¥

To indicate a particular element inside a vector, a subscript is
used with a non-bold-faced letter of the vector. For example, the
second element in the vector v = [4 0 2] is indicated vo = 0.

More generally, the i*" element is indicated as v;.

It’s important to see that the letter is not bold-faced when refer-
ring to a particular element. This is because subscripts can also
be used to indicate different vectors in a set of vectors. Thus, v;
is the i*" element in vector v, but v; is the i* vector is a series of
related vectors (vi, va, ..., v;). I know, it’s a bit confusing, but
unfortunately that’s common notation and you’ll have to get used
to it. I try to make it clear from context whether I'm referring to

vector element v; or vector v;.

Zeros vector There is an infinite number of possible vectors, be-
cause there is an infinite number of ways of combining an infinity

of numbers in a vector.

That said, there are some special vectors that you should know
about. The vector that contains zeros in all of its elements is

called the zeros vector. A vector that contains some zeros but



other non-zero elements is not the zeros vector; it’s just a regular
vector with some zeros in it. To earn the distinction of being a

"zeros vector," all elements must be equal to zero.

The zeros vector can also be indicated using a boldfaced zero: 0.
That can be confusing, though, because 0 also indicates the zeros
matrix. Hopefully, the correct interpretation will be clear from

the context.

The zeros vector has some interesting and sometimes weird prop-
erties. One weird property is that it doesn’t have a direction. I
don’t mean its direction is zero, I mean that its direction is un-
defined. That’s because the zeros vector is simply a point at the
origin of a graph. Without any magnitude, it doesn’t make sense

to ask which direction it points in.

Practice problems State the type and dimensionality of the following vectors (e.g., "four-
dimensional column vector"). For 2D vectors, additionally draw the vector starting from the

origin.
1
a) 2 b)[1 2 3 1] c) -1 d) [7 1/3]
3 T
1
Answers
a) 4D column b) 4D row c) 2D column d) 2D row

=

This gentle introduction to scalars and vectors seems
simple, but you may be surprised to learn that nearly
all of linear algebra is built up from scalars and vectors.
From humble beginnings, amazing things emerge. Just

Reflection

think of everything you can build with wood planks and
nails. (But don’t think of what I could build — I'm a

terrible carpenter.) |
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Reminder: Vectors
are columns unless
otherwise specified.

Transpose operation

Now you know some of the basics of vectors. Let’s start learning
what you can do with them. The mathy term for doing stuff with
vectors is operations that act upon vectors.

You can transform a column vector to a row vector by transposing
it. The transpose operation simply means to convert columns to
rows, and rows to columns. The values and ordering of the ele-
ments stay the same; only the orientation changes. The transpose
operation is indicated by a super-scripted * (some authors use an

italics 7 but I think it looks nicer in regular font). For example:

4
[4 3 O]Tz 3
0
4T
3| =[4 3 0
0

Double-transposing a vector leaves its orientation unchanged. It
may seem a bit silly to double-transpose a vector, but it turns out
to be a key property in several proofs that you will encounter in
later chapters.

As mentioned in the previous section, we assume that vectors are
columns. Row vectors are therefore indicated as a transposed

T is a row

column vector. Thus, v is a column vector while v
vector. On the other hand, column vectors written inside text

are often indicated as transposed row vectors, for example w =
T
12 3]



Code Transposing is easy both in MATLAB and in Python.

Code block 2.7: Python

1 vl = np.array ([ [2,5,4,7] ])
2 v2 =v1.T

Code block 2.8: MATLAB
vl =[2 5 4 7];
2 v2 = vl’;

Vector addition and subtraction

Geometry To add two vectors a and b, put the start ("tail") of
vector b at the end ("head") of vector a; the new vector that goes
from the tail of a to the head of b is vector a+b (Figure 2.5).

Vector addition is commutative, which means that a+b = b+ a.
This is easy to demonstrate: Get a pen and piece of paper, come
up with two 2D vectors, and follow the procedure above. Of
course, that’s just a demonstration, not a proof. The proof will
come with the algebraic interpretation.

There are two ways to think about subtracting two vectors. One
way is to multiply one of the vectors by -1 and then add them as
above (Figure 2.5, lower left). Multiplying a vector by -1 means
to multiply each vector element by -1 (vector [1 1] becomes vector
[-1 -1]). Geometrically, that flips the vector by 180°.

The second way to think about vector subtraction is to keep both
vectors in their standard position, and draw the line that goes
from the head of the subtracted vector (the one with the minus
sign) to the head of the other vector (the one without the minus
sign) (Figure 2.5, lower right). That resulting vector is the differ-
ence. It’s not in standard position, but that doesn’t matter.

You can see that the two subtraction methods give the same dif-

Remember that a
vector is defined by
length and direc-
tion; the vector can
start anywhere.
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ference vector. In fact, they are not really different methods;
just different ways of thinking about the same method. That will

become clear in the algebraic perspective below.

The vectors Addition: tail-to-head
2 2 /-=-dis*
0 A;a- 0
— 1
-2 —_y ] -2 —ty2
—y2 vi+v2
-2 0 2 -2 0 2
Subtraction: negative addition Subtraction: head-to-head
2 *‘“«7 2
0 0 L,
—/ ] —y ]
49 e\ D -2 i\ 2
v1-v2 v1-v2
-2 0 2 -2 0 2

Figure 2.5: Two vectors (top left) can be added (top right) and
subtracted (lower two plots).

Do you think that a — b = b — a? Let’s think about this in
terms of scalars. For example: 2 -5 = -3 but 5—-2 = 3. In
fact, the magnitudes of the results are the same, but the signs
are different. That’s because 2 —5 = —(5 — 2). Same story for
vectors: a—b = —(b—a). The resulting difference vectors are not
the same, but they are related to each other by having the same
magnitude but flipped directions. This should also be intuitive
from inspecting Figure 2.5: vo — vi would be the same line as
v1 — vg but with the arrow on the other side; essentially, you just
swap the tail with the head.

Algebra The algebraic interpretation of vector addition and sub-

traction is what you probably intuitively think it should be: element-



wise addition or subtraction of the two vectors. Some examples:

1 2]+ 3 4]
0 =)
12| * —4
1 9]
2| — | -8
3 7]

More formally:

[+ o

K

Vector addition and subtraction

c =atb = |a;+b; ast+bs

T
tbn | (2.2)

Important: Vector addition and subtraction are valid only when

the vectors have the same dimensionality.

~

a) [4 5 1 0]+[-4 -3 3 10]

o b+ L2
ARIRR

a) [0 2 4 10]

@]
~
——
=2 ©
—

yRER

[0
b) 1
1100
d) :ﬂ
f) 132]

2
—5
40

Practice problems Solve the following operations. For 2D vectors, draw both vectors starting
from the origin, and the vector sum (also starting from the origin).

|

=
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Vector-scalar multiplication

Geometry Scaling a vector means making it shorter or longer
without changing its angle (that is, without rotating it) (Figure
2.6).

The main source of confusion here is that scaling a vector by a
negative number means having it point "backwards." You might
think that this is a "different" direction, and arguably it is—the
vector is rotated by 180°. For now, let’s say that the result of
vector-scalar multiplication (the scaled vector) must form either
a 0° or a 180° angle with the original vector. There is a deeper
and more important explanation for this, which has to do with
an infinitely long line that the vector defines (a "1D subspace");
you’ll learn about this in Chapter 4.

Still, the important thing is that the scalar does not rotate the
vector off of its original orientation. In other words, vector direc-

tion is invariant to scalar multiplication.

A>1 0<Aa<l A<O

/7 |/

—

"= \V

Figure 2.6: Multiplying a scalar (\) by a vector (v) means to
stretch or shrink the vector without changing its angle. A > 1
means the resulting vector will be longer than the original, and
0 < A <1 means the resulting vector will be shorter. Note the
effect of a negative scalar (A < 0): The resulting scaled vector
points "the other way" but it still lies on the same imaginary
infinitely long line as the original vector.

Strange things can happen in mathematics when you multiply by
0. Vector-scalar multiplication is no different: Scaling a vector by
0 reduces it to a point at the origin. That point cannot be said
to have any angle, so it’s not really a sensible question whether
scaling a vector by 0 preserves or changes the angle.



Algebra Scalar-vector multiplication is achieved by multiplying
each element of the vector by the scalar. For scalar A and vector

v, a formal definition is:
Scalar-vector multiplication

T
A=A Ava . Avg] (2.3)

This definition holds for any number of dimensions and for any

scalar. Here is one example:

3[—1 30 2}=[—3 90 6

Because the scalar-vector multiplication is implemented as element-
wise multiplication, it obeys the commutative property. That is,
a scalar times a vector is the same thing as that vector times that
scalar: Av = vA. This fact becomes key to several proofs later in
the book.

Code Basic vector arithmetic (adding, subtracting, and scalar-

multiplying) is straightforward.

Code block 2.9: Python

import numpy as np

vl = np.array ([2,5,4,7])
v2 = np.array ([4,1,0,2])
v3 = 4xvl — 2x%v2

=W N =

Code block 2.10: MATLAB
1 vl=1[2 54 7];
2 v2 =104 10 2];
v3 = 4xv]l — 2xv2

2.5 VECTOR-SCALAR MULTIPLICATION
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Practice problems

Compute scalar-vector multiplication for the following pairs:

3 0
0 3.14
a) —2[4 3 0] b) (—9+2x5) |4 c) 0 3'14;” d) A ‘;’
3 —234987234 11
Answers
0 0
0
a) b) |4 5) 8 d) 13
[-8 -6 0] 3 0 L
r Vector-scalar multiplication is conceptually and compu- 7
o tationally simple, but do not underestimate its impor-
3
¥ | tance: Stretching a vector without rotating it is funda-
= | mental to many applications in linear algebra, including
& eigendecomposition. Sometimes, the simple things (in

mathematics and in life) are the most powerful.




Exercises

1. Simplify the following vectors by factoring out common scalars.
For example, [2 4] can be simplified to 2[1 2].

45
6 48
5 N 12 36
a) b) c) |18 d) |99
33 24 o) .
9 60 o

2. Draw the following vectors | | using the listed starting point

(-
a) [2 2] (0,0) b) [6 12| (1.-2)
o) [-1 0] (41) d) [v ¢ (0.0)
e) [1 2] (0,0) £) [1 2] (-30)
g) 1 2] (24) h) [-1 —2] (0,0)
i) [-3 0] (1,0) )[4 —2] (03/2)
k) [s 4] (1,1) ) [-8 —4] (84)

3. Label the following as column or row vectors, and state their

dimensionality. Your answer should be in the form, e.g., "three-

dimensional column vector."

5

a)[1 2 3 4 5 b)o

d)

sin(2)

eﬂ'

1/3

3

e) [20 4000

¢) [0 0]

80000 .1 0 o]

2.6 EXERCISES
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4. Perform vector-scalar multiplication on the following. For 2D
vectors, additionally draw the original and scalar-multiplied

vectors.
610000
a)3m b) 4 [12 ¢ c) 0 (1]
N
d)4[_§] e)\[a b ¢ d e] £) 7[00 00 0]

5. Add or subtract the following pairs of vectors. Draw the in-
dividual vectors and their sum (all starting from the origin),

and confirm that the algebraic and geometric interpretations

match.
o] [1] [ 6 2
b _

a) 1] * 0] ) _—2] [—6}

2] [1] 2] 2
d

©) 1] + 2 ) 3] + _31

2] [2] 1 1
- f

°) |7 13 ) 1 + 1]

4] [1] [—3 7]
+ h +

8) 2| ™ [o] ) _—5] [3_

. —5'+7 ,)'+'1'_ 3
—2| |7 . 2] 3] |-2
o] [-7 0 o] [3] [

k - - 1 -

I RN




Answers

5)

1. 2 4
1 1 2 y
a)3 b) 12 c) 63 d)9 |11

LI izl o )

4 8

3 b}
3

2. This one you should be able to do on your own. You just need
to plot the lines from their starting positions. The key here is
to appreciate the distinction between vectors and coordinates
(they overlap when vectors are in the standard position of

starting at the origin).

3. a) 5D row vector  b) 3D column vec- c¢) 2D row vector

tor

d) 3D column vec-  e) 6D row vector

tor

4. I'll let you handle the drawing; below are the algebraic solu-

tions.
0
3 0
2 M by [4 9] o |
0
_)\a_T
b Ab
d)[ 12] e) i; £) [0 00 0 0
Ae

2.7 ANSWERS
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5. These should be easy to solve if you passed elementary school
arithmetic. There is, however, a high probability of careless
mistakes (indeed, the further along in math you go, the more
likely you are to make arithmetic errors).

1 4
a) 1 b) n
- o
c) 5 d) 6
0] 2
e) o f) o
o |, b |
i) b
k) _2 1) _(2)




Code challenges

1. Create a 2D vector v, 10 scalars that are drawn at random
from a normal (Gaussian) distribution, and plot all 10 scalar-
vector multiplications on top of each other. What do you

notice?

2.8 CODE CHALLENGES
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Code solutions

1. You'll notice that all scaled versions of the vector form a line.
Note that the Python implementation requires specifying the

vector as a numpy array, not as a list.

Code block 2.11: Python

1 import numpy as np

2 import matplotlib.pyplot as plt
3 v =np.array ([1,2])

4 plt.plot ([0,v[0]],[0,v[1]])

5 for i in range(10):

6 s = np.random.randn ()

7 SV = sxV

8 plt . plot ([0,sv[0]],[0,sv[1]])
9 plt.grid(’on’)
10 plt.axis([—4,4,—4,4]);

Code block 2.12: MATLAB

1 v=1[]12];

2 plot ([0 v(1)],[0 v(2)])

3 hold on

4 for i=1:10

5 s = randn;

6 SV = S%V;

7 plot ([0 sv(1)],[0 sv(2)])
8 end

9 grid on, axis([—1 1 —1 1]x4)




CHAPTER 3
VECTOR MULTIPLICATIONS

START THIS CHAPTER HAPPY
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In this chapter, we continue our adventures through the land
of vectors. Warning: There are a few sections here that might
be challenging. Please don’t get discouraged—once you make it
through this chapter, you can be confident that you can make it
through the rest of the book.

There are four ways to multiply a pair of vectors. They are: dot
product, outer product, element-wise multiplication, and cross
product. The dot product is the most important and owns most
of the real estate in this chapter.

Vector dot product: Algebra

The dot product, also called the inner product or the scalar prod-
uct (not to be confused with the scalar-vector product), is one of
the most important operations in all of linear algebra. It
is the basic computational building-block from which many opera-
tions and algorithms are built, including convolution, correlation,
the Fourier transform, matrix multiplication, signal filtering, and

SO OIl.

The dot product is a single number that provides information
about the relationship between two vectors. This fact (two vectors
produce a scalar) is why it’s sometimes called the "scalar product."
The term "inner product" is used when the the two vectors are
continuous functions. I will use only the term dot product for

consistency.

Algebraically, to compute the dot product, you multiply the
corresponding elements of the two vectors, and then sum over
all the individual products. In the box on the next page, the
middle three terms show the various notations to indicate the dot
product, while the final term shows the algebraic definition.



The dot product

a=ab=(ab)=a'b=> ab; (3.1)
=1

An example:
123 4[5 6 7 8 =1x5+2x6+3x7+4x8
= 5412+ 21 + 32
— 70

I will mostly use the notation a™b for reasons that will become

clear after learning about matrix multiplication.

Why does the dot product require two vectors of equal dimen-
sionality? Try to compute the dot product between the following

two vectors:

=3x—-2+4x0+5%x14+0x8+2x777?

N O Ot e W

You cannot complete the operation because there is nothing to
multiply the final element in the left vector. Thus, the dot prod-
uct is defined only between two vectors that have the same di-

mensionality.

You can compute the dot product between a vector and itself.
Equation 3.2 shows that this works out to be the sum of squared

elements, and is denoted ||al|?. The term ||a|| is called the magnitude,

the length, or the norm of vector a. Thus, the dot product of
a vector with itself is called the magnitude-squared, the length-
squared, or the squared-norm, of the vector.

n
ala=|al®= Zazaz Za? (3.2)
i=1

If the vector is
mean-centered—
the average of all
vector elements is
subtracted from
each element—then
the dot product of
a vector with itself
is call variance in
statistics lingo.

ALGEBRA

3.1 VECTOR DOT PRODUCT:
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The associative

law is that paren-
theses can be
moved around, e.g.,
(z4y)+z = z+(y+2)
and z(yz) = (zy)z

I guess there’s a little voice in your head wondering whether it’s
called the length because it corresponds to the geometric length
of the vector. Your intuition is correct, as you will soon learn.
But first, we need to discuss some of the properties of the dot
product that can be derived algebraically.

Code There are several ways to compute the dot product in
Python and in MATLAB; here I will show one method.

Code block 3.1: Python
vl = np.array ([2,5,4,7])
2 v2 = np.array ([4,1,0,2])
dp = np.dot(vl,v2)

Code block 3.2: MATLAB
1 vi=1[2 54 7];
2 v2 =104 10 2];
3 dp = dot(vl,v2)

Dot product properties

Associative property The associative property of the dot prod-
uct can be interpreted in two ways. First is the associative prop-
erty of the vector dot product with a scalar. In fact, this is simply
the associative property of scalar-vector multiplication embedded
inside the dot product, so it’s really nothing new. I mention it
here because it is important for proofs later in the book

(™) = (uT)v = u" () = (V) (3.3)

But the second interpretation is what most people refer to when
discussing dot products. Let us consider three vectors and inves-
tigate what happens when we move the parentheses around. In
other words, is the following statement true?

ut(viw) = (utv)Tw (3.4)



The answer is No. To understand why, let’s start by assuming
that all three vectors have the same dimensionality. In that case,
each side of the equation is individually a valid mathematical op-
eration, but the two sides of the equation will differ from each
other. In fact, neither side is a dot product. The left-hand
side of Equation 3.4 becomes the vector-scalar product between
row vector u' and the scalar resulting from the dot product v w.
Thus, the left-hand side of the equation is a row vector. Similar
story for the right-hand side: It is the scalar-vector multiplica-

T

tion between the scalar u*v and the column vector w (don’t be

confused by transposing a scalar: 47 = 4).

Therefore, the two sides of the equation are not equal; they wouldn’t
even satisfy a "soft equality” of having the same elements but in

a different orientation.

Let’s see a quick example to make sure this is clear.

And it gets even worse, because if the three vectors have different
dimensionalities, then one or both sides of Equation 3.4 might
even be invalid. I’ll let you do the work to figure this one out, but
imagine what would happen if the dimensionalities of u, v, and

w, were, respectively, 3, 3, and 4.

The conclusion here is that the vector dot product does not obey
the associative property. (Just to make life confusing, matrix mul-
tiplication does obey the associative property, but at least you
don’t need to worry about that for several more chapters.)

3.2 DOT PRODUCT PROPERTIES
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The distributive
law is that scalars
distribute inside
parentheses, e.g.,
a(b+c) = ab+ac

Commutative property The commutative property holds for the
vector dot product. This means that you can swap the order of
the vectors that are being "dot producted" together (I'm not sure
if dot product can be used as a verb like that, but you know what
I mean), and the result is the same.

The dot product is commutative
a’b=b'a (3.7)

Commutivity holds because the dot product is implemented element-
wise, and each element-wise multiplication is simply the product
of two scalars. Scalar multiplication is commutative, and there-

fore the dot product is commutative.

n

Zaibl- = Zbiai (3.8)
i=1

i=1

Distributive property This one also holds for the dot product,
and it turns out to be really important for showing the link be-
tween the algebraic definition of the dot product with the geomet-
ric definition of the dot product, which you will learn below.

When looking at the equation below, keep in mind that the sum of
two vectors is simply another vector. (Needless to say, Equation
3.9 is valid only when all three vectors have the same dimension-
ality.)

The dot product is distributive
wi(u+v)=wiu+w'v (3.9)

The distributive property says that we can break up a dot product
into the sum of two dot products, by breaking up one of the
vectors into the sum of two vectors. Conversely, you can turn this
around: We can combine two dot products into one by summing
two vectors into one vector, as long as the two dot products share

a common vector (in this example, w).

Why is Equation 3.9 true? This has to do with how the dot prod-



uct is defined as the sum of element-wise multiplications. Com-
mon terms can be combined across sums, which brings us to the

following:

n n n
Z Wi(ui + Vi) = Z w;u; + Z W; Vi (3.10)
i=1 =1 i=1

Numerical examples always help build intuition. Let’s have a

look: o
1 1 2
u= , V= , W=
2 3] 3

+ ; ) =[2 3] m =19 (3.11)

+[2 3] H =8+11=19 (3.12)

whu+v) = {2 3} (

wliu+wlv = {2 3}

2

Equation 3.13 below shows an example of applying the distribu-
tive property to the dot product between a vector and itself, where
the vector is expressed as the sum of two vectors. You’ve already
learned that the dot product of a vector with itself is the magni-
tude squared; the equation below expands on this idea.

(u+v)T(u+v)=lu+v|? =uTu+2uTv+vlv
= [lul® + v]* +2u'v  (3.13)

Notice that combining u'v and vTu into 2u’v is valid because

of the commutivity property.

This result may seem like an uninteresting academic exercise, but
it’s not: KEquation 3.13 will allow us to link the algebraic and

geometric interpretations of the dot product.

Cauchy-Schwarz inequality The Cauchy-Schwarz inequality pro-
vides an upper bound for the dot product between two vectors.

In particular, the inequality is:

viwl < |v]w] (3.14)

3.2 DOT PRODUCT PROPERTIES
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In English, this inequality says that the magnitude (absolute
value) of the dot product between two vectors is no larger than
the product of the norms of the individual vectors. The expres-
sions will equal each other when one vector is a scaled version of
the other vector, that is, when v = \w.

The Cauchy-Schwarz inequality comes up often in linear algebra.
In this book, it is relevant for normalizing the quadratic form of
a matrix (Chapter 17), which in turn is part of the basis of the
principal components analysis (Chapter 19).

There are many proofs of this inequality; I'm going to show one
that relies on the geometric perspective of the dot product. So
put a mental pin in this inequality and we’ll come back to it in a

few pages.

Practice problems Compute the dot product between the following pairs of vectors.

2 [

|

S N IR I N Y i N

T T T T
0 =3 4 7/2 10 81 1
e) |1 —1 f) |1 1 g) | -3 3.5 h) [3] 3|1
2 0 3 3 6 —4 9 1
Answers
a) -10 b) -5 c) -1 d) o
e) -1 f) 26 g) 1/2 h) 31 = (814+3+9)/3

Vector dot product: Geometry

Geometrically, the dot product is the cosine of the angle between
the two vectors, times the lengths of the two vectors. That seems
very different from the algebraic definition, and it’s also not in-
tuitive that those are the same operation. In this section, we will
discover some properties and implications of the geometric for-
mula for the dot product; then, in the following section, you will
see that the geometric and algebraic formulae are simply different
ways of expressing the same concept.




Geometric definition of the dot product
a’b = |[a]||[b] cos(fus) (3.15)

Note that if both vectors have unit length (|a] = |b| = 1), then
Equation 3.15 reduces to the cosine of the angle between the two

vectors.

Equation 3.15 can be rewritten to give an expression for the angle

between two vectors.

alb
Oup) = — 2 3.16
cos(Ba) = ol (3.16)
alb )
Oup = cos ™1 | (3.17)
(HaHIIbII

One of the interesting features of Equation 3.17 is that it general-
izes the concept of an angle between two lines in 2D, to an angle

between two vectors in any higher-dimensional space.

The sign of the dot product between two vectors is determined
entirely by the angle between the two vectors. This is a powerful
relationship and it provides a geometric intuition for basically
every application of the dot product (and there are many, as you
will learn throughout this book and in your adventures in linear

algebra).

First, let’s understand why the sign of the dot product is deter-
mined exclusively by the angle between the two vectors. Equation
3.15 says that the dot product is the product of three quanti-
ties: two magnitudes and a cosine. Magnitudes are lengths, and
therefore cannot be negative (magnitudes can be zero for the ze-
ros vector, but let’s assume for now that we are working with
non-zero-magnitude vectors). The cosine of an angle can range
between -1 and +1. Thus, the first two terms (||a||||b||) are neces-
sarily non-negative, meaning the cosine of the angle between the
two vectors alone determines whether the dot product is positive
or negative. With that in mind, we can group dot products into
five categories according to the angle between the vectors (Figure
3.2) (in the list below, 6 is the angle between the two vectors and

« is the dot product):

In statistics, Equa-
tion 3.16 with suit-
able normalization
is called the Pear-
son correlation
coefficient. More

on
18!

this in Chapter

3.3 VECTOR DOT PRODUCT: GEOMETRY

Figure 3.1: Unit
circle. The x-axis

coordinate corre-
sponds to the co-

cine of +the anole
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Important: Vec-
tors are orthogonal
when they meet
at a 90° angle,
and orthogonal
vectors have a

dot product of 0.

1. 8 <90° — « > 0. The cosine of an acute angle is always
positive, so the dot product will be positive.

2.0 > 90° — « < 0. The cosine of an obtuse angle is
always negative, so the dot product will be negative.

3. 8 =90° — « = 0. The cosine of a right angle is zero, so
the dot product will be zero, regardless of the magnitudes
of the vectors. This is such an important case that it has
its own name: orthogonal. Commit to memory that if two
vectors meet at a right angle, their dot product is exactly
zero, and they are said to be orthogonal to each other. This
important concept is central to statistics, machine-learning,
eigendecomposition, SVD, the Fourier transform, and so on.
The symbol for perpendicularity is an upside-down "T." So
you can write that two vectors are orthogonal as w L v.

4. 0 = 0° — o = ||a]|||b]|- The cosine of 0 is 1, so the dot
product reduces to the product of the magnitudes of the two
vectors. The term for this situation is collinear (meaning
on the same line). This also means that the dot product of
a vector with itself is simply ||a]|?, which is the same result
obtained algebraically in Equation 3.2.

5. 6 = 180° — o = —||al|||b||- Basically the same situation
as above, but with a negative sign because cos(180°) = —1.
Still referred to as collinear.

"Acute" "Obtuse" "Orthogonal" "Collinear" "Collinear"
9<90° 9>90° 9=90° 9=0° 9=180°
a
b
cos(8)>0 cos(8)<0 cos(8)=0 cos(8)=1 cos(8)=-1

a>0 <0 a=0 a=|al|lb] a=-|a|lb]

Figure 3.2: Inferences that can be made about the sign of the
dot product («), based on the angle (0) between the two vec-
tors. Visualization is in 2D, but the terms and conclusions

extend to any number of dimensions.

Keep in mind that the magnitude of the dot product depends on
all three terms (the magnitudes of the two vectors and the cosine
of the angle); the discussion above pertains only to the sign of the

dot product as negative, zero, or positive.



Algebraic and geometric equivalence

Were you surprised that the algebraic and geometric equations for
the dot product looked so different? It’s hard to see that they’re
the same, but they really are, and that’s what we’re going to
discover now. The two expressions are printed again below for

convenience.

ah = 3" aib; = [all[b] cos(fan) (3.18)

=1

Proving the equivalence between the algebraic and geometric for-
mulations of the dot product requires knowing that the dot prod-
uct is distributive and commutative (equations 3.7 and 3.9) and
knowing a formula from geometry called the Law of Cosines. I'm
going to start by proving the Law of Cosines, and then you’ll see
how that is used to prove Equation 3.18.

The Law of Cosines is an extension of the Pythagorean theorem
(a? + b% = ¢?) (you can also think of the Pythagorean theorem as
a special case of the Law of Cosines). The Law of Cosines gives a
formula for the length of side ¢, given the lengths of sides a and
b and given the angle between a and b (Figure 3.3).

Now, if 6. = 90°, then we have a right-triangle and the Pythagorean
theorem applies. But how do we solve for ¢ without any right an-
gles? The trick here is to create some right angles. In particular,
we cut the triangle into two pieces, each of which is a right triangle
(Figure 3.4).

Now c¢ is the hypotenuse of right-triangle ai-bs-c. So now the
goal is to find a; and by. We’ll need to reach back to some high-
school memories, in particular the Soh-Cah-Toa rule that relates
the ratio of triangle sides to their angles. Let’s start by defining

a1 in terms of a and the angle between a and b:

3.4 ALGEBRA AND GEOMETRY

Figure 3.3: The
Law of Cosines.
The goal is to
find the length of
¢ given lengths a
and b, and the an-
gle between them.

Oab b, | b,

b

Figure 3.4: The
Law of Cosines,
part 2.
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sin(6gy) = % (3.19)

a1 = asin(fyp) (3.20)

We can solve for by in a similar way:

cos(Oqp) = b (3.21)
a
b1 = acos(fyp) (3.22)

Next we need to find an expression for bo. The trick here is to
express by in terms of quantities we already know.

b=bi + by (3.23)
by=b—b (3.24)
by =b— acos(fyp) (3.25)

At this point, we have created a right-triangle with side-lengths
defined in terms of the original values a and b, and that means
that we can apply the Pythagorean theorem on those quantities.
From there, we simply work through some algebra to arrive at the
Law of Cosines in Equation 3.30:



& =a? + b3 (3.26)
= (asin(0ap))* + (b — acos(fap))? (3.27)
= a?sin®(0gp) + b + a® cos?(04) — 2abcos(0y)  (3.28)
= a?(sin®(04p) + cos?(0ap)) + b* — 2abcos(Hp) (3.29)

= a® 4+ b* — 2abcos(fyp) (3.30)

Recall the trig identity that cos?(f) + sin?(#) = 1. Notice that
when 6,, = 90°, the third term in Equation 3.30 drops out and
we get the familiar Pythagorean theorem.

I realize this was a bit of a long tangent, but we need the Law
of Cosines to prove the equivalence between the algebraic and

geometric equations for the dot product.

Let’s get back on track. Instead of thinking about the lengths of
the triangles as a, b, and ¢, we can think about the edges of the
triangles as wvectors a, b, and ¢, and thus their lengths are ||a|l,
[b], and [[c].

Therefore, we can write Equation 3.30 as

a’+ b — 2ab cos(04p) = HaH2 + HbH2 —2||a||||b|| cos(0ap) (3.31)

Now that we’re thinking of these triangle sides as vectors, we can
re-write vector c as the subtraction of vectors a and b (see Figure
2.5): ¢ =a —b. And therefore,

lefl = lla = b

With that in mind, we can expand the definition of vector c using

the distributive property:
la—b||>=(a—b)'(a—b)=aTa—2a"b+b'b

= |lal|®>+ ||b||> —2a"b  (3.32)

3.4 ALGEBRA AND GEOMETRY
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We're almost done with the proof; we just need to do some sim-
plifications. Notice that we have discovered two different ways of
writing out the magnitude-squared of c. Let’s set those equal to
each other and do a bit of simplification.

la]l* + [[b]* = 2a™b = [[a]|* + |[b]|* — 2]la|[|b]| cos &

Notice that [|a|? and ||b||? appear on both sides of the equation, so
these simply cancel. Same goes for the factor of —2. That leaves
us with the remarkable conclusion of the equation we started with

in this section, re-printed here for your viewing pleasure.

a'b = ||a]|||b]|| cos § (3.15)

Whew! That was a really long proof! I'm pretty sure it’s the
longest one in the entire book. But it was important, because
we discovered that the algebraic and geometric definitions of the
dot product are merely different interpretations of the same op-

eration.

Proof of Cauchy-Schwarz inequality 1 know you've been pa-
tiently waiting for this proof. As a brief reminder of what I wrote
on page 49: The magnitude of the dot product between two vec-
tors is less than or equal to the product of the norms of the two
vectors. The proof comes from taking the absolute value of Equa-
tion 3.18:

[ab| = [lall[[b]| cos(6a)| (3.33)
[ab| < [la||[b] (3.34)

The absolute value of the cosine of an angle is between 0 and
1, and therefore, when dropping that term, it is trivial that the
left-hand side cannot be larger than the right-hand side.

I also wrote that the equality holds when the two vectors form a
linearly dependent set. Two co-linear vectors meet at an angle of
0° or 180°, and the absolute value of the cosines of those angles
is 1.



There is a lot to say about the dot product. That’s T
no surprise—the dot product is one of the most funda-
mental computational building blocks in linear algebra,
statistics, and signal processing, out of which myriad al-
gorithms in math, signal processing, graphics, and other
calculations are built. A few examples to whet your ap-
petite for later chapters and real-world applications: In
statistics, the cosine of the angle between a pair of nor-
malized vectors is called the Pearson correlation coeffi-
cient; In the Fourier transform, the magnitude of the

Reflection

dot product between a signal and a sine wave is the
power of the signal at the frequency of the sine wave; In
pattern recognition and feature-identification, when the
dot product is computed between multiple templates and
an image, the template with the largest-magnitude dot

product identifies the pattern or feature most present in

the image. ]

Linear weighted combination

The term "linear weighted combination" comes up so often in lin-
ear algebra that it’s worth honoring it with its own section. You
might hear other related names for this same operation, such as
"linear mixture" or "weighted combination" (the "linear" part is
assumed). Sometimes, the term "coefficient" is used instead of

"weight."

Linear weighted combination simply means scalar-vector multi-
plication and addition: Take some set of vectors, multiply each
vector by any scalar, and add them to produce a single vector.

Linear weighted combination

W= AV]+ Aava + ... + A\, Vi, (3.35)

3.5 LINEAR WEIGHTED COMBINATION
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It is assumed that all vectors v; have the same dimensionality,
otherwise the addition is invalid. The A’s can be any real number,
including zero.

Technically, you could rewrite Equation 3.35 for subtracting vec-
tors, but because subtraction can be handled by setting the A; to
be negative, it’s easier to discuss linear weighted combinations in
terms of addition.

An example:

4 —4 1
)\1:1,)\2:2,)\3:—3, V1 = 5,V2— 0,V3— 3
1 —4 2

-7

w = )\1V1 + )\2V2 + )\3V3 =| -4

—-13

Code Linear weighted combinations are easy to implement, as
the code below demonstrates. In Python, the data type is im-
portant; test what happens when the vectors are lists instead
of numpy arrays. In Chapter 6, you will learn how to make

these computations more compact using matrix-vector multipli-

cation.
Code block 3.3: Python
1 import numpy as np
2 11 =1
3 12 =2
4 13 = -3
5 vl = np.array ([4,5,1])
6 v2 = np.array([—4,0,—4])
7 v3 = np.array ([1,3,2])
8 11xvl + 12%v2 + 13%v3




Code block 3.4: MATLAB

1 11 = 1;

2 12 = 2;

3 13 = —3;

4 v1=1[4 5 1];

5 v2 =[—4 0 —4];

6 v3 =1[1 3 2]’;

7 11xvl 4+ 12%xv2 + 13%v3

The outer product

The outer product is a way of combining two vectors to produce
a matrix. The outer product matrix has many applications in
advanced linear algebra topics, including eigendecomposition and
the singular value decomposition, image compression, and multi-
variate signal processing. In later chapters you will learn more
about the properties of the outer product, for example that it is
a rank-1 matrix. But for now, just focus on the mechanics of
creating an outer product matrix from two vectors.

But let’s start with a bit of notation. The outer product is indi-
cated using a notation is that initially confusingly similar to that
of the dot product. In the definitions below, v is an M-element

column vector and w is an N-element column vector.

Dot product : viw =1x1

Outer product : vw' = M x N

This notation indicates that the dot product (vIw) is a 1x1 array
(just a single number; a scalar) whereas the outer product (vw?)
is a matrix whose sizes are defined by the number of elements in

the vectors.

The vectors do not need to be the same size for the outer product,
unlike with the dot product. Indeed, the dot product expression

3.6 THE OUTER PRODUCT
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above is valid only when M = N, but the outer product is valid
even if M # N.

I realize that this notation may seem strange. 1 promise it will
make perfect sense when you learn about matrix multiplication.
Essentially, the dot product and outer product are special cases

of matrix multiplication.

Now let’s talk about how to create an outer product. There are
three perspectives for creating an outer product: The element per-
spective, the column perspective, and the row perspective. The
result is the same; they are just different ways of thinking about

the same operation.

Element perspective Each element ¢, j in the outer product ma-
trix is the scalar multiplication between the i*” element in the first
vector and the j* element in the second vector. This also leads

to the formula for computing the outer product.

The outer product
(VWT)i’j = VjWy (336)

Here is an example using letters instead of numbers, which helps
make the formula clear.

a ad ae af
b|[d e f]=|bd be bf
c cd ce cf

The element perspective lends itself well to a formula, but it’s not
always the best way to conceptualize the outer product.

Column perspective Each column in the outer product matrix
comes from repeating the left vector (v using the notation above)
but scaled by each element in the row vector on the right (w1). In
other words, each column in the outer product matrix is the result
of scalar-vector multiplication, where the vector is the column



vector (repeated) and the scalar comes from each element of the
row vector. Thus, the number of columns in the matrix equals the
number of elements in the row vector. Notice that in the example
below, each column of the outer product matrix is a scaled version

of the left column vector.

1 41 -1

2 8 2 -9
[41—1}:

3 12 3 -3

4 16 4 —4

Row perspective I'm sure you can already guess how this is
going to work: Form the outer product matrix one row at a time,
by repeating the row vector M times (for M elements in vector
w), each time scaling the vector by each element in the column
vector. In the example below, notice that each row in the outer
product matrix is a scaled version of the row vector.

4 4 8 12 16
1[1234]: 1 2 3 4
1 1 -2 -3 —4

If you look closely at the two examples above, you’ll notice that
when we swapped the order of the two vectors, the two outer
product matrices look the same but with the columns and rows
swapped. In fact, that’s not just a coincidence of this particular
example; that’s a general property of the outer product. It’s fairly
straightforward to prove that this is generally the case, but you
need to learn more about matrix multiplications before getting to
the proof. I'm trying to build excitement for you to stay motivated

to continue with this book. I hope it’s working!

Code The outer product, like the dot product, can be imple-
mented in several ways. Here are two of them. (Notice that
MATLAB row vector elements can be separated using a space
or a comma, but separating elements with a semicolon would
produce a column vector, in which case you wouldn’t need the

transpose.)

3.6 THE OUTER PRODUCT
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Code block 3.5: Python

= np.array ([2,5,4,7])
np.array ([4,1,0,2])
= np.outer (vl,v2)

Code block 3.6: MATLAB

vl
2 v2
3 op
1 vl
2 v2
op

= [2,5,4,7]7;
=[410 2]

= v1lx*xv2’;

Practice problems

Compute the outer product of the following pairs of vectors.

- T
T 1 0
~11 21" 4] 21" Lt 3| |1
ol w b o o2 @l
1] |3
7] lo
Answers
2 -3 8 12 L2 =3 g :15 ; 8
a)[Q 3 b){nw] S ! I O P
1 2 3
o 7 7 0

Element-wise (Hadamard) vector product

This is actually the way of multiplying two vectors that you might

have intuitively guessed before reading the past few sections.

Also called the Hadamard product, this operation involves multi-
plying each corresponding element in the two vectors. The result-
ing product vector therefore is the same size as the two multiplying
vectors. And thus, Hadamard multiplication is defined only for
two vectors that have the same number of elements.

There is no widely agreed-upon notation for Hadamard multipli-
cation, but a circle with a dot is fairly common:

c=a®Ob= [albl asbo anbn} (3.37)




An example:

3 2 6
6 —2|  |-12
ol “1 4| 7| 36
0 —4 0

Element-wise vector multiplication doesn’t have too many appli-
cations in abstract linear algebra. In fact, it’s arguably not really
a linear algebra operation—it’s more like a convenient and com-
pact way to organize a set of regular scalar multiplications. In
practical applications, that’s how it’s most often used: You might
have two sets of variables that need to be individually multiplied,
so you store them as vectors in MATLAB or Python, and then

implement Hadamard multiplication.

Code There are many parts of Python and MATLAB syntax

that are nearly identical. Matrix multiplication, however, is annoyingly—
and confusingly—different between the languages. Notice that
Python uses an asterisk (*) for element-wise multiplication whereas
MATLAB uses a dot-asterisk (.*). It’s a subtle but important dis-

tinction.

Code block 3.7: Python
vl = np.array ([2,5,4,7])
2 v2 = np.array ([4,1,0,2])
vd = vl x v2

Code block 3.8: MATLAB
1 vl =1[2,5,4,7];
2 v2 = [4,1,0,2];

vd = vl .x v2;

3.7 HADAMARD MULTIPLICATION
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Practice problems Compute the element-wise product between the following pairs of vec-

tors.
(1
a) 3| ®
|2
Answers
[—1
a) 3
| —4

-1 0 m 1.3 5
1 b) [0 ® [é€° c) |14 @[5]
—2 10] 2 3.2
o
b) (0 c) undefined!
0

Cross product

The cross product is defined only for two 3-element vectors, and
the result is another 3-element vector. It is commonly indicated

using a multiplication symbol (x).

The formula for computing the cross-product seems a bit bizarre:

a2b3 — a3b2
axb = a3b1 — a1b3 (3.38)
arbs — asby

The magnitude of the cross product has a geometry-based for-
mula, which is interesting to compare to the geometric formula
for the dot product (Equation 3.15).

laxb[ = [lal|[|b[| sin(bas) (3.39)

The cross product is used often in geometry, for example to create
a vector c that is orthogonal to the plane spanned by vectors a and
b. It is also used in vector and multivariate calculus to compute
surface integrals. However, the cross product is not really used
in data analysis, statistics, machine-learning, or signal-processing.
I’'m not going to discuss the cross-product again in this book; it
is included here in the interest of completeness.




Practice problems Compute the cross-product between the following pairs of vectors.

5 —2 1 2 1 0 1302 3
a) [3],] 1 b) [1], ]2 c) |of, |1 d) {1403] , M
4] |1 1] |2 o] |o
Answers
[ -7 [0] [0]
a) | -3 b) |0 c) d) undefined.
L 11 10] 1]
Unit vectors
It is often useful to have a vector with a length of one: ||v|| =1

(Figure 3.5). Unit vectors are convenient in many linear algebra
applications, particularly on computers (e.g., to avoid numerical
precision inaccuracies for vectors with very small magnitudes).
Unit vectors also allow for creating a special kind of matrix called

an orthogonal matrix.

Therefore, the goal of this section is to derive a formula for com-
puting a unit vector in the same direction as some other vector v
that is not necessarily a unit vector. The way to do this is to find

some scalar p that satisfies our criteria:

pv st |jpv] =1 (3.40)

How to choose u? Let’s start by thinking about how you would
create a "unit-norm number" (that is, find p such that p times a
number has an absolute value of 1). Let’s figure this out using

the number 3.
3| =1

w=1/3

Deriving the solution is simple: Divide both sides by the magni-
tude (that is, the absolute value) of the number (the reason for
the absolute value here is that we want p = 1/3 even if we start
with -3 instead of +3).

W

n
e
o
&
®)
=)
>
g
z.
=)

k

\\4

Figure 3.5: A unit

vector.

s.t. means "such
that" or "subject

tO“
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Now extend this concept to vectors: set u to be the reciprocal (the
inverse) of the magnitude of the vector. In terms of notation, a
unit vector is commonly given a hat to indicate that it has a
magnitude of one (v — V).

Creating a unit-length vector

1 1

—v=— v (3.41)
Il Y v

v =

The norm of the vector, ||v||, is a scalar, which means (1) divi-
sion is allowed (division by a full vector is not defined) and (2)
importantly, the direction of the vector does not change. Here is

a simple example:

<[} =l

This example also shows why the divisor is the magnitude (the
square root of sum of squared vector elements), and not the
squared magnitude vTv. It is also clear that the unit vector ¥

points in the same direction as v.

It is worth mentioning explicitly what you might have already
deduced: The unit vector is defined only for non-zero vectors.
This makes sense both algebraically (Equation 3.41 would involve
division by zero) and geometrically (a vector with no length has
no direction, hence, another vector in the same direction is not a

sensible construct).

Taking p = 1/||v|| allows for a quick proof that the unit vector
really does have unit length:
1

vl =1 (3.42)

vl =



Code Fortunately, both Python and MATLAB have built-in

functions for computing the norm of a vector.

Code block 3.9: Python

1 v =np.array ([2,5,4,7])
vMag = np.linalg .norm(v)
v_unit = v / vMag

w N

Code block 3.10: MATLAB
v=1_[2,5,4,7];
vMag = norm (v );
v_unit = v / vMag;

W NN =

Practice problems Compute a unit vector in the same direction as the following vectors.
Then confirm that the magnitude of the resulting vector is 1.

1

1 3 6 2

) |, 5 ) o L4 ) |

2

Answers

1
[ 3/5 3/5 Lol
2) 7 M b) [4/5] ©) [—4/5] d) 75 | 4
2

N o0 s b

3.9 UNIT VECTORS
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Exercises

1. Compute the dot product between the following pairs of vec-

tors.
o] [b [a] [e [a b]
) b 9 )
a) _a_ _0] ) _b_ [d‘| C) _c] [d_
- 1] [ 3 [10] [-1
a ! 3] e) 4], ]-3 £ (14|, ] 1
4 9y _3 ) )
- o] | 9 3] |6
i - [ 2i ] [3] -
1] [b 1 2
h) [4—i i
TR R = Y
L J 3 1 L
1] [—4] [ 2] [-1]
-2 3 -5 5
-3 4 0 0 2.47| |73
' k 1
Dyl T ) l—2.47}’[7r31
5 6 2 0
—6] |[—2] —8] |[—4]
[ 2] [ 0] - ar
3| |12 2|72 0] [a
m) , n) [-1|,| 1 0) ,
-3 |-8 . 0| |b
-9 _3
2| | 4] L L2
2. Assume that ||x|| = |ly|| = 1. Determine whether each of

the following equations is necessarily true, necessarily false, or
could be true depending on the elements in x and y.

a) (x—y)T(x—y) =201 -xTy) b)[l(x—3y)|*=3—x"y

T T

c) Xr¥ — o =0 d) lly+3x|* = §(1 +4xTy)
1,T,1,T 2

e) xTx+xTx—2yTy =xTy  f) 2’;5@;) T+ ||x||||§||||y||3 -

Yiyyly g
xTx



3. Compute the angle § between the following pairs of vectors.

See if you can do with without a calculator!

1
a) |2,
3

-2

10

b) |12/,

4

2.5
3 c)
1

-1 3
2|, 6
3 -9

4. Compute the outer product between the following pairs of vec-

tors. Implement problems a-c element-wise (the i, j*" element

in the product matrix is the product of the i** element in the

left vector and the j** element in the right vector); problems d-

f row-wise (each row in the product matrix is the right-vector

scaled by each element in the left vector); and problems g-i

column-wise (each column in the product matrix is the left-

vector scaled by each element in the right-vector).

d)

g)

1] [1
a) _2] [2

b) | 3

VI

T

1 c)

)

1] Jo]"
0f |1

0f |0

1] [a] B
1] |b

2| |c

2| |d]
al * 1
b 1
c 2
dl |2

5. Determine whether the following vectors are unit vectors.

1 2

Ly by |64

a) V3 ) 1
1

&
=}
S B Nt W

6. What is the magnitude of vector pv for the following p?

a)p=0

b) = v

c) p=1/|v|

d) p=1/|v|?

3.10 EXERCISES
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Answers

1. a)o
d) -9
g)a+b
j) 0
m)68
2. a) True

d) False

b) ac + bd
e) —9

h) 15 + 3
k)5

n) 0

b) True

e) Depends

c) Depends

f) True

3. These you can solve by inspecting the elements of the vectors,

without applying the dot product formula.

a)0=m/2(90° b)o=0

c) 6 = 7 (180°)

4. Of course, the answers are the same regardless of the perspec-

tive you use; the goal is to become comfortable with different

ways of thinking about the outer product.

12
¥

¢]

-

(e}
o O =

[10
20
30
40

o O O

20
40
60
80

30 40
60 80
90 120
120 160

b)

d)

f)

2a
2a

12 14 16
18 21 24
24 28 32

2b 2c¢ 2d
2b 2c¢ 2d



[24
12
18

Qo o9

a) Yes

28
14
21

QU O o

20
10
15

2a
2b
2c
2d

2a
2b
2c
2d

b) No

b) [[v|*

30
h
) 90
12

c) Yes

gl

)1
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Code challenges

1. Create a linear weighted combination of three vectors. You’ll

learn in later chapters that linear combinations are most effi-
ciently represented as matrix-vector multiplication, but we’ll
keep things simple for now. Create three 5-D vectors and a
fourth vector that contains the weights for each vector. Then
create the weighted sum of those vectors. Next, modify the
code to compute the weighted mixture of four 5-D vectors.
What is the relationship between the dimensionality of the to-
be-summed vectors, the number of vectors to sum, and the
dimensionality of the coefficients vector?

. Develop a method to use the dot product to compute the aver-

age of a set of numbers in a vector. (Hint: consider the vector

of all ones, sometimes written 1.)

. What if some numbers were more important than other num-

bers? Modify your answer to the previous question to devise
a method to use the dot product to compute a weighted mean
of a set of numbers.



Code solutions

1. Only the basic code solutions are presented here. Keep in mind
that these challenges are also about critical thinking, not just

writing a few lines of code.

Code block 3.11: Python

1 vl = np.array ([1,2,3,4,5])

2 v2 = np.array ([2,3,4,5,6])

3 v3 = np.array ([3,4,5,6,7])

4 w=[-1,3,-2]

5 result = vlsw[0] + v2xw[l] + v3*w][2]
Code block 3.12: MATLAB

1 vl = [1,2,3,4,5]:

2 v2 = [2,3,4,5,6];

3 v3 = [3,4,5,6,7];

4 w=[-13 —2];

5 result = vlsw(1l) + v2xw(2) + v3*w(3)

2. The trick is to compute the average of N numbers by summing
them together after multiplying by 1/N. Mathematically, you

would write this as leﬁ.

Code block 3.13: Python

1 v=1[7,4, -5 8, 3]
2 o = np.ones(len(v))
3 ave = np.dot(v,o0) / len(v)

Code block 3.14: MATLAB
1 v=1[74-583]"
2 o = ones(size(v));
3 ave = dot(v,o0) / length(v)

3.13 CODE SOLUTIONS
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3. We don’t know which numbers are more important than oth-
ers, so I will use randomized weights. In fact, the solution here
is simply the the dot product between the data vector and any
other vector that sums to one.

Code block 3.15: Python

1 v=1[7,4, =5 8, 3 ]
2 w = np.random.rand (len (v))
3 wAve = np.dot (v, w/sum(w))

Code block 3.16: MATLAB

1 v=1[7,4, =5 8, 3 ];
2 w = rand(size(v));
3 wAve = dot (v, w/sum(w))
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Figure 4.2:

Depicting a high-
dimensional space
on 2D paper.

Dimensions and fields in linear algebra

Dimension 1 provided a brief definition of the term "dimension"
in the previous chapter—the number of elements in a vector—
but given the importance of this concept for understanding vec-
tor/matrix subspaces, systems, and decompositions, it’s worth

expanding on the concept of dimension in more detail.

Algebraically, the dimensionality of a vector is simply the num-
ber of elements in the vector. The order is meaningful: In the
vector [ 3 1 5], the element in the second dimension is 1, and
the number 5 is in the third dimension (Figure 4.1). On the other
hand, there is no hierarchical relationship amongst the dimensions
— the first dimension isn’t intrinsically more important than the

second dimension.

Geometrically, the dimensionality of a vector is the number of
coordinate axes in which that vector exists. A 2D vector is a line
in a 2D space (think of the typical Cartesian XY plane); a 3D
vector is a line in a 3D space. Note that both a 2D vector and a
3D vector are both lines, but they exist in a different number of
dimensions. Higher dimensional spaces are often indicated in the
style of Figure 4.2.

As you learned in the previous chapter, the value of each vector
element tells you how far along that coordinate axis to travel. This
is easiest to conceptualize for vectors in their standard position,
because the endpoint of the vector is the same as the coordinate.
For example, the vector [ 1 3 ] in standard position is a line that
goes from the origin to the coordinate point (1,3). Hence: two

elements, two coordinate axes.

A major departure from the typical Cartesian axis you're famil-
iar with—and a beautiful feature of linear algebra—is that the
coordinate axes need not be orthogonal; that is, they need not
meet at right angles (Figure 4.3). Orthogonal axes have several
useful properties, but non-orthogonal axes also have many use-
ful properties, and are key to many applications, including data



compression. More on this in the section on Bases.

Figure 4.3: The familiar Cartesian plane (left) has orthogonal
coordinate axes. However, axes in linear algebra are not con-
strained to be orthogonal (right), and non-orthogonal axes can

be advantageous.

Fields The term "field" in mathematics might be new to you.
Perhaps you’ve seen these fancy capital letters like R, C, Q, or
Z. These letters (typeface blackboard bold and sometimes called
"hollow letters") refer to fields. A field in mathematics is a set
of numbers for which the basic arithmetic operations (addition,

subtraction, multiplication, division) are defined.

The R stands for real, as in, real numbers. In Chapter 9, we’ll
use the field C for complex numbers. There’s also the field QQ for
rational numbers (a rational number is not a number that makes

good decisions; it’s one that is defined by a ratio g).

In this book, we’ll use fields mainly to indicate dimensionality.
For example, R? is the set of all real two-dimensional vectors, and
R* means a 4-element vector of the form [a b ¢ d], where a,

b, ¢, and d are any real numbers.

Sometimes, the exact dimensionality doesn’t matter but the rel-
ative dimensionalities do. For example, if I told you that vector
w is in RM and v is in RN, then you would know that the dot
product w'v is defined only if M = N.

When taking notes by hand, fields are often written as R?, and
when typing on a computer, fields are often indicated as R2 or
R”6.

4.1 DIMENSIONS AND FIELDS
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Practice problems Identify the N in RY for the following vectors.
0
a) [1 -3 4 2 b) |0
3
c) [77 ee] d) 17
Answers
a) R* b) R?
c) R? d) R!

Vector spaces

An aziom is a A wector space refers to any set of objects for which addition
statement that = and scalar multiplication are defined. Addition and scalar multi-
is taken to be true | plication obey the following axioms; these should all be sensible

without requiring | .o yjrements based on your knowledge of arithmetic:

a formal proof.
Additive inverse: v+ (—v) =0
Associativity : (v+w)+u=v+ (w+u)
Commutativity: v+ w=w+ Vv
Additive identity : v+0=v
Multiplicative identity : vl = v
Distributivity : (o + B)(v+w) = av + aw + v + fw

Vector spaces make little appearance in this book outside this
section. Instead, vector subspaces are much more prominent. In
fact, I bring up vector spaces here only so they are not confused
with vector subspaces. Three letters can make a big difference, as
people struggling to finish their PhD can confirm.



Subspaces and ambient spaces

Vector subspaces are central to nearly all advanced concepts in,
and applications of, linear algebra. Fortunately, the concept of a
subspace is not so complicated, and it has geometric and algebraic
explanations that I hope will become intuitive after some exposure

and a few examples.

Geometry A subspace is the set of all points that you can reach
by stretching and combining a collection of vectors (that is, addi-
tion and scalar multiplication).

Let’s start with a simple example of the vector v=[-1 2]. In its
standard position, this is a line from the origin to the coordinate (-
1,2). This vector on its own is not a subspace. However, consider
the set of all possible vectors that can be obtained by Av for
the infinity of possible real-valued \’s, ranging from —oo to +oo:
That set describes an infinitely long line in the same direction
as v, and is depicted in Figure 4.4 (showing the entire subspace
would require an infinitely long page).

That gray dashed line is the set of all points that you can reach by
scaling and combining all vectors in our collection (in this case,
it’s a collection of one vector). That gray line extends infinitely
far in both directions, although the vector v is finite.

This is the important sense in which Av does not change the
"direction" of v, which was mentioned in a previous chapter.

So the subspace obtained from one vector is an infinitely long
line. What happens when you have two vectors? They each indi-
vidually have an associated infinitely long 1D subspace. But the
definition of a vector subspace allows us to combine these vectors.
And you learned in the previous chapter that adding two vectors
geometrically gives a third vector that can point in a different
direction compared to the two adding vectors.

SUBSPACES AND AMBIENT SPACES

Figure 4.4: A 1D
subspace (gray
dashed line) cre-
ated from a vector
(solid black line).
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So by scaling and adding two vectors, we can reach many points
that are not within the 1D subspaces defined by either vector
alone. Figure 4.5 shows an example of combining two vectors to
reach a point that could not be reached by either vector’s subspace

alone.

Figure 4.5: The linear combination of two vectors can reach
a point that is not within the 1D subspaces defined by either
vector alone.

In fact, the set of all points reachable by scaling and adding two
vectors (that is, the linear weighted combination of those two
vectors) creates a new 2D subspace, which is a plane that extends
infinitely far in all directions of that plane. Figure 4.6 shows how
this looks in 3D: The subspace created from two vectors is a plane.
Any point in the plane can be reached by some linear combination
of the two grey vectors.

\/

v

Figure 4.6: A 2D subspace in a 3D ambient space, created by
all possible weighted linear combinations of two vectors (gray
lines). The dashed border indicates that the plane extends to
oo in all directions.



Ambient dimensionality Figure 4.6 also shows the distinction
between a subspace and the ambient space in which that subspace
is embedded. In this case, the subspace is 2-dimensional, and it
is embedded in an ambient 3-dimensional space. The ambient di-
mensionality is the dimensionality of the vectors—the N in RN.

So, how many subspaces are possible within an ambient space?
The answer is infinity, for any ambient dimensionality more than
1.

But let me unpack that answer by working through the answer to
a slightly different question: How many subspace dimensionalities
are possible with an N-dimensional ambient space? That answer
is a finite number, and it turns out to be N+1. Let us count the

dimensionalities, using R? as a visualizable example.

The smallest possible subspace is the one defined by the zeros
vector [0 0 0]. This vector is at the origin of the ambient 3D
space, and any scalar A times this vector is still at the origin.
This is the only subspace that is a single point, and it is thus a

zero-dimensional subspace.

Next, we have 1-dimensional subspaces, which are defined as the
scalar multiples of any non-zeros vector. Basically, any line in 3D
can give rise to a 1D subspace that is embedded in the ambient
3 dimensions, as long as that line goes through the origin (any
subspace must contain the origin for the case A = 0). How many
such 1D subspaces are there? The answer is the number of unique
lines in 3D that pass through the origin, which is infinity: there is
an infinite number of lines in 3D that pass through the origin.

Now for the 2-dimensional subspaces. These are formed by taking
all linear combinations of two vectors—two lines—in 3D. These
vectors themselves don’t need to pass through the origin, but the
plane that is formed by combining all scaled versions of these
vectors must include the origin (Figure 4.7). It is also intuitive
that there is an infinite number of 2D planes in 3D ambient space

that pass through the origin.

But wait a minute—will any two vectors form a plane? No, the

Note that in linear
algebra we deal
only with linear
dimensions.

4.3 SUBSPACES AND AMBIENT SPACES
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vectors must be distinct from each other. This should make sense
intuitively: two vectors that lie on the same line cannot define a
unique plane. In a later section, I’ll define this concept as linear
independence and provide a formal explanation; for now, try to
use your visual intuition and high-school geometry knowledge to
understand that a unique plane can be defined only from two
vectors that are different from each other.

> | , 5
L_)/f /

-/

Figure 4.7: Left: five (grey lines) of the infinity of possible
1D subspaces embedded in an ambient 3D space. Right: two
of the infinity of possible 2D subspaces in the same ambient
space. Remember that all subspaces must pass through the

origin.

Finally, we have the 3D subspace defined by all linear combina-
tions of three vectors. As with the plane case, the three vectors
that span this 3D subspace must point in different directions from
each other, otherwise you could form only a plane or a line. How
many distinct 3D subspaces are possible in a 3D ambient space?
Exactly one: the entire ambient space. The subspace already
is the entire ambient space, so there is no way to get an extra,
unique, subspace. (Of course, there are different sets of vectors
that you could use to create this subspace; more on this in the
section on Bases!)

So there you have it: For an N-dimensional ambient space, there
are N+1 possible dimensions for subspaces (0 through N), and
an infinite number of possible subspaces, except for the one 0-
dimensional subspace and the one N-dimensional subspace.



The visualization gets a bit hairy after three dimensions.
In a 4D ambient space, there is an infinite number of
unique 3D subspaces. Each of those 3D subspaces is like
a cube that extends infinitely in all directions and yet is
somehow still only an infinitely thin slice of the 4D space.
I can make this work in my mind by thinking about time
as the 4th dimension: There is a single instant in time in
which an infinitely expansive space exists, but for all of
time before and after, that space doesn’t exist (and yes,

Reflection

I am aware that time had a beginning and might have an
end; it’s just a visualization trick, not a perfect analogy).
Now take a moment to try to visualize what an 18D
subspace embedded in an ambient R% "looks like." You

can understand why we need the algebraic perspective

to prevent overcrowding at psychiatric institutions...

Algebra Except for a bit of additional notation (possibly funny-
looking, if you are not used to proofs-based math texts), you'll
see that the algebraic definition is the same as the geometric def-
inition, but it might feel more rigorous because there are equa-

tions.

A subspace is the set of all points that can be created by all
possible linear combinations of vector-scalar multiplication for a
given set of vectors in RN and all scalars in R. Subspaces are
often indicated using italicized upper-case letters, for example:
the subspace V. That same notation is also used to indicate a
set of vectors. You’ll need to infer the correct reference from

context.

In words, a subspace is the set of all points that satisfies the

following conditions:

e Closed under addition and scalar multiplication.

e Contains the zeros vector 0.

The first condition means that for some vector v € V (a vector

v contained in vector subspace V'), multiplying v by any scalar \

"Closed" means
that what happens
in the subspace,
stays in the sub-
space.

4.3 SUBSPACES AND AMBIENT SPACES
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Read outloud:
"The subspace

V' is defined as
the set of all real-
valued scalar mul-
tiples of the row
vector [1 3 4]."

and/or adding any other scaled vector aw that is also contained
inside the vector subspace V produces a new vector that remains
in that same subspace.

In math terms, that first definition for a subspace translates to:

Algebraic definition of a subspace

VveweV, ViaeR, AZv+aweV (4.1)

Read outloud, this statement would be "for any vectors v and
w contained in the vector subspace V, and for any real-valued
scalars A and «, any linearly weighted combination of v and w
is still inside vector subspace V." Below is an example of a 1D
subspace V defined by all linear combinations of a row vector in
R3.

V={r[1 3 4], xR} (4.2)
Note that this example is not a line in R!; it is a 1D subspace

embedded in a 3D ambient space R3. Now consider the following
specific vectors.

3912 eV
-2 -6 -8] € v
135 ¢V

The first two vectors are contained in the subspace V. Alge-
braically that’s the case because you can find some A such that
A[134]=1[3912]; same for the second vector. Geometrically,
the first two vectors are collinear with the original vector [ 1 3
4 ]; they’re on the same infinitely long time, just scaled by some
factor.

That third vector, however, is not contained in the subspace V
because there is no possible A that can multiply the vector to pro-
duce [ 1 3 5]. Geometrically, that vector points in some direction
that is different from the subspace V.

Let’s consider another example: The set of all points in R? with
non-negative y-values. Is this a vector subspace? It contains the



point [0,0], which is a requirement. However, you can find some
point in the set (e.g., v=[2,3]) and some scalar A (e.g., -1) such
that Av is outside the set. Thus, this set is not closed under scalar
multiplication, and it is therefore not a subspace. In fact, this an

example of a subset.

Subsets

In linear algebra, subspace and subset are two entirely different
concepts, but they are easily confused because of the similarity
of the names. Subsets are actually not important for the linear
algebra topics covered in this book. But it is important to be able

to distinguish subsets from subspaces.

A subset, in contrast to a subspace, is a region in space that
can have boundaries instead of extending to infinity, and it need
not include the origin. Examples include a quadrant of the 2D
Cartesian plane, a collection of equally spaced points around some

center coordinate, and sphere in 3D. A few additional examples:

e The set of all points on the XY plane such that z > 0 and
y > 0.

e The set of all points such that 4 > 2 > 2 and y > 2°.

e The set of all points such that y = 4z, for x ranging from

—0o0 to +o0.

These are all valid subsets. The third example is also a subspace,
because the definition of that set is consistent with the defini-
tion of a subspace: an infinitely long line that passes through the

origin.

4.4 SUBSETS
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Practice problems Identify whether the following subsets are also subspaces.
If they are not subspaces, find a vector in the set and a scalar such that Av is outside the set.

a) All points in R? b) All points on the line y = 2z + .1
c) Points satisfying 2® + y* + 22 = 1 d) All points on the line y = 22+ 0
Answers
a) subspace and subset b) subset
c) subset (doesn’t contain the origin!) d) subspace and subset
Span

Geometry Span is a really similar concept as subspace, and they
are easy to confuse. A subspace is the region of ambient space
that can be reached by any linear combination of a set of vectors.
And then those vectors span that subspace. You can think about
the difference using grammar: a subspace is a noun and span is a
verb. A set of vectors spans, and the result of their spanning is a

subspace.

For example, the subspace defined as all of R? can be created by
the span of the vectors [0 1] and [1 0]. That is to say, all of R?
can be reached by some linear weighted combination of those two

vectors.

Another example: The vector [0 1] spans a 1D subspace that is
embedded inside R? (not R!! It’s in R? because the vector has
two elements). The vector [1 2] also spans a 1D subspace, but it’s
a different 1D subspace from that spanned by [0 1].

Algebra The span of a set of vectors is the set of all points
that can be obtained by any linear weighted combination of those

vectors (Equation 4.3).




Algebraic definition of span
span({vi,...,vp}) ={aavi+ ... + apvy, a € R} (4.3)

You will recognize the right-hand-side of this equation as the def-
inition of linear weighted combination, introduced in Equation
3.35.

Span comes up often in discussions of matrix spaces, least-squares
fitting, and eigendecomposition. In Chapter 8, for example, you
will learn that something called the "column space" of a matrix is
essentially the subspace spanned by the columns of that matrix.

In the span? A frequent question in linear algebra is whether
one vector is "in the span" of another vector or set of vectors. This
is just some fancy math-speak for asking whether you can create
some vector w by scalar-multiplying and adding vectors from set

S.

Thus, a vector w is in the span of the vector set S if w can be
exactly created by some linear combination of vectors in set S.
For example, consider the following two vectors w and v and set
S. The question at hand is whether either of these vectors is in
the span of S. The answers are given and justified below, but see
if you can work through the problem on your own before reading
further.

1 3 1 1
v= 12|, w= |2 S = 1,7
0 1 0 0

Let’s start with vector v. We have a positive answer here: v is in

the span of S. Written formally:

1 1
5
v € span(S) because |2| = 5 1 +
0 0

D=
N

Thus, v can be obtained by a weighted combination of vectors in
set S. The weightings (in this case, 5/6 and 1/6) might not be

4.5 SPAN
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immediately obvious just from looking at the vectors. In fact, it is
generally not trivial to find the correct weights just by visual in-
spection, unless you have a really nice linear algebra teacher who
gives you easy problems. There are algorithms for determining
whether a vector is in the span of some vector set, and, if so, for
finding the correct weights. Those algorithms are not too com-
plicated, but they rely on concepts that you haven’t yet learned
about (primarily: determinant and Gaussian elimination). So
we’ll come back to those algorithms later.

For now, it’s important to understand the concept that the span
of a set of vectors is the entire subspace that can be reached
by any linear combination of those vectors (often verbalized as
"this vector set spans that subspace"), and that we often want to
determine whether a given vector is contained in the span of that
set.

In contrast to the difficulty of finding whether v was in the span
of S, it should be obvious why w is not in the span of S: The
third element in w is nonzero, whereas all vectors in set S have
a third element of zero. There is no linear combination of zeros
that will produce a nonzero value, therefore w cannot possibly be
in the span of S.

There is a geometric interpretation of this example (Figure 4.8):
The span of S is a 2D plane embedded in a 3D ambient space;
vector v is a line in the plane, whereas vector w pops out of that
plane. We could also describe v as being coplanar to set S.

Figure 4.8: The span of set S is a 2D plane at z=0. Vector v
is in the span of that set, and thus lies in that plane. Vector

w is outside the span, which means it points out of the plane.

One thing to keep in mind about span: It doesn’t matter if the



vectors in the set are linear combinations of other vectors in that
same set. For example, the following set spans a 2D subspace
(a plane) embedded in ambient R*. There are five vectors, but
notice that the first three and the last two are collinear. Hence,

five vectors in total, but together they span a 2D subspace.

11 [-3] [10] [o 0
2| |-6| |20] |4 2
o’ ol o] (1] |5
1| |-3| |10 |0 0

How do I know that this set spans only a 2D subspace? Well, 1
know because I've already read the chapter on matrix rank and so
I know the algorithm for determining the subspace dimensionality.
As I wrote in the section on determining whether a vector is in
the span of a set, it is, in most cases, impossible to look at a set
of vectors and "see" the subspace dimensionality. You will learn
several algorithms for computing this, but for now, focus on the
concept that it is possible for a set to contain five 4D vectors that

together span a 2D subspace.

r Span makes me think of a robot holding a laser pointer
in a dark room, and each new vector in the set is a de-
gree of freedom of movement, like an extra joint in the
robot’s arm. With one vector the robot can shine the
light only in one fixed direction. With two vectors the
robot can swivel its arm and illuminate a plane. Three

Reflection

vectors means the robot can move its arm in all direc-
tions and can follow a mosquito around the room so I
can finally kill it. The analogy kindof breaks down in

higher dimensions. Maybe there are quantum curled-up

mosquitos and we need better robots to hunt them down.
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b) p =

0
1
c) m= .
3
Answers
a) both

Practice problems Determine whether each vector is in the span of the associated set.

a)v:[7r

-2 1
| W= . S= , 0
(e”) 1 0] |1
5 —1 0
y A= 5 T= 0 5 1
25 4 1
3
2
, X = 4 U= 1{, |1
0 0 1

b) p yes, q no c) Invalid dimensions

Some authors ab-
breviate linear
independence as
L.L; T will refrain
from this indul-
gence to avoid
overburdening you
with abbrevia-
tions to memorize.

A set of vectors is
independent if the
subspace dimen-
sionality equals the
number of vectors.

Linear independence

Linear independence (sometimes simplified to "independence"; for-
mally, linear algebra is concerned only with linear independence),
like many concepts introduced in these first three chapters, is
central to many theoretical and applied topics in linear algebra,
ranging from matrix rank to statistics to the singular value de-

composition.

One important thing to know about linear independence before
reading the rest of this section is that independence is a prop-
erty of a set of vectors. That is, a set of vectors can be linearly
independent or linearly dependent; it doesn’t make sense to ask
whether a single vector, or a vector within a set, is independent.
You will learn why this is the case over the next few pages.

Geometry A set of vectors is independent if the dimensionality
of the subspace spanned by that set of vectors is equal to the
number of vectors in that set. For example, a set with one vector
spans a line (assuming it is not the zeros vector) and is always an

independent set (1 vector, 1 dimension); a linearly independent




set of two vectors spans a plane (2 vectors, 2 dimensions); an
independent set with three vectors spans a 3D space (3 vectors, 3

dimensions).

But having two vectors in a set doesn’t necessarily endow that
set with linear independence. Consider the sets of vectors in
Figure 4.9; assume these are all 2D vectors. The left-hand set
(panel A) contains two vectors that are collinear; this set is lin-
early dependent because you can create one vector as a scaled
version of another vector. Now consider the middle set (panel B):
Again, two vectors, but they point in different directions; it is
not possible to create one vector as a scaled version of the other

vector.

A) B) C)

Figure 4.9: Geometric sets of vectors in R? illustrating
(in)dependence. The set in panel A is dependent because there
are two vectors but they span a 1D subspace. The set in panel
B is independent because the two vectors span a 2D subspace.
The set in panel C is dependent because three vectors cannot

span more than a 2D subspace in R2.

Finally, consider the right-hand set (panel C): This set of three
vectors in R? is linearly dependent, because any one of the vectors
can be obtained by a linear combination of the other two vectors.
In this example, the middle vector can be obtained by averag-
ing the other two vectors (that is, summing them and scalar-
multiplying by A = .5). But that’s not just a quirk of this ex-
ample. In fact, there is a theorem about independence that is

illustrated in Figure 4.9:

Any set of M > N vectors in RY is necessarily linearly depen-
dent.
Any set of M < N vectors in RN could be linearly independent.

The proof of this theorem involves creating a matrix out of the set
of vectors and then computing the rank of that matrix. That’s
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beyond the scope of this chapter, but I wanted to present this
theorem now anyway, because I think it is intuitive: For example,
three vectors that lie on the same plane (a 2D subspace) cannot
possibly create a cube (a 3D subspace).

Also notice the clause could be: M < N merely creates the op-
portunity for independence; it is up to the vectors themselves to
be independent or not. For example, imagine a set of 20 vectors
in R?® that all lie on the same line (that is, the same 1D subspace
embedded in ambient R?®). That set contains 20 vectors, but ge-
ometrically, they’'re occupying a 1D subspace, hence, that set is
linearly dependent.

With these examples in mind, we can return to our geometric
definition of independence: A set of vectors is independent if the
number of vectors in the set equals the dimensionality of the sub-
space spanned by that set. Another way to think about this is
that no vector in the set is in the span of the other vectors in that
set.

Algebra A set of vectors is dependent if at least one vector in
the set can be expressed as a linear weighted combination of the
other vectors in that set. Consider the following examples.

1 2
{Wl, WQ} = 2 5 4 . W9 = 2W1 (44)
3 6
0 —-27
{Vl,Vg, V3} = 2 s 5 5 1 . Vo = 7V1 - 9V3 (45)
) —37

Both examples show dependent sets. The way I've written the
equations on the right, it seems like wo and vy are the dependent
vectors while the other vectors are independent. But remember
from the beginning of this section that linear (in)dependence is a
property of a set of vectors, not of individual vectors. You could
just as easily isolate vi or vs on the left-hand side of Equation
4.5.



The important point is that it is possible to create any one vector
in the set as some linear weighted combination of the other vectors

in the same set.

On the other hand, it is possible to create subsets of those sets
that are linearly independent. For example, the sets {va,vs},
{v1,vs}, and {vi,va} are all independent sets.

The next two examples show independent sets.

{Wl,WQ}: 2 5 4

{vi,vo,v3} =

Tt N O
[a)
—

Try as hard as you can and for as long as you like; you will never
be able to define any one vector in each set using a linear weighted
combination of the other vectors in the same set. That’s easy to
see in the first set: When considering only the first two rows, then
w1 = 2wy. However, this weighted combination fails for the third
row. Mapping this back onto the geometric perspective, these
two vectors are two separate lines in R3; they point in similar

directions but are definitely not collinear.

The second set is more difficult to figure out by trial-and-error
guessing. This shows that even simple examples get out of hand
rather quickly. Determining whether a set of vectors is linearly
independent is really important in linear algebra, and we’re going
to need more rigorous methods that will scale to any size matrix.
For example, you can put those vectors into a matrix and compute
the rank of the matrix; if the rank is the same as the number of
vectors, then the set is independent, and if the rank is less than
the number of vectors, the set is dependent. This is called the
"augment-rank" algorithm, and you will learn more about it in

chapters 7 and 8.

The formal definition of linear dependence is related to deter-

mining whether a weighted combination of the vectors equals the
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zeros vector, where not all weights (A’s in the equation below) are
equal to zero.

Linear dependence
0=A\vi+Xove+ ...+ A\ vy, AER (46)

0 (sometimes written 0) indicates the zeros vector. Of course, if
all \’s are zero, then equation 4.6 is trivially true, so we require
that at least one A # 0. If equation 4.6 is not true for at least one
A # 0, then the set is linearly independent.

This may seem like a strange definition: Where does it come from
and why is the zeros vector so important? Some rearranging,
starting with subtracting A\;v; from both sides of the equation,
will reveal why this equation indicates dependence:

)\1V1 = )\QVQ + ...+ >\nVn

A An
vi=2vo+ o+ vy, AER, AL #£0 (4.7)
A A1

Because the \’s are scalars, then \,,/\; is also just some scalar. If
you like, you could replace all the fractional constants with some
other constant, e.g., 5, = A /A1

The point is that with a bit of re-arranging, equation 4.6 states
that one vector can be expressed as some linear weighted com-
bination of the other vectors in the set. Now you can see the
correspondence between the math equation and the English defi-
nition of linear dependence. You can also see another justification
for the claim that at least one A\ # 0.

Equation 4.6 also reveals an interesting property of linear depen-
dence: Any set of vectors that contains the zeros vector is guar-
anteed to be linearly dependent. Why is that the case?

Imagine that v; = 0, \; = 1000, and all other A\,=0. Then the
right-hand side of the equation equals the left-hand side of the
equation for at least one A # 0. Thus, any set of vectors that
contains the zeros vector is a dependent set.



Determining whether a set is linearly dependent or indepen-
dent Before learning about matrix-based algorithms for com-
puting whether a set is linear independent, you can apply a 4-step
procedure to determine the linear dependency of a set of vectors.
Note that this is a strategy for solving exercise problems or exam
problems by hand; this method does not scale up to larger ma-
trices, and it’s way too time-consuming to use in any real-world
applications. Nonetheless, this procedure is useful to understand

to help you internalize the concept of linear independence.

Step 1: Count the number of vectors (call that number M) in
the set and compare to N in RN. As mentioned earlier, if
M > N, then the set is necessarily dependent. If M < N

then you have to move on to step 2.

Step 2: Check for a vector of all zeros. Any set that contains the
zeros vector is a dependent set.

Step 3: If you've gotten this far, it means you need to start doing
some trial-and-error educated guesswork. Start by looking
for zeros in the entries of some vectors, with the knowledge
that zeros in some vectors in combination with non-zero
entries in corresponding dimensions in other vectors is a tip
towards independence (you cannot create something from
nothing, with the possible exception of the big bang).

Step 4: This is where the real educated guesswork comes in.
Start by creating one element as a weighted combination
of other vectors, and see whether that same weighted com-
bination will work for the other dimensions. Consider the

following set of vectors:

1 2 4
21,11, 1|5
3 3 8

Look across the first dimension (top row of vector elements)
and notice that 2 times the first vector plus 1 times the
second vector produces the first element in the third vec-
tor. That same set of weights is also true for the second di-
mension. However, it doesn’t work for the third dimension.
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That proves that the third vector cannot be expressed as
this linear combination of the first two. You have to repeat
this process (try to find weights of M-1 vector entries that
equal the M* vector entry) for each of M vectors. Eventu-
ally, you will determine that the set is linearly independent
or dependent.

Here is another, slightly different, way to think about step 4,
which brings back the formal definition of linear dependence, and
also will help prepare you for matrix concepts like null space,
inverse, and eigendecomposition: The goal is to come up with
a set of coefficients for each vector such that the weighted sum
of all vectors gives the zeros vector. For the first dimension, the
coefficients (-2, -1, 1) will produce a zero (—2x1+—1x2+1x4 = 0).
Those same coefficients will also work for the second dimension,
but they don’t work for the third dimension. This means either (1)
a different set of coefficients could work for all three dimensions,
or (2) the set is linearly independent.

Step 4 is really the limiting factor here. Again, by this point
in the book, your main concern should be with the concept and
definition of linear independence; scalable and rigorous methods
will be introduced in later chapters.



[ Consistent terminology is important in any branch of
knowledge, and confusing or redundant terminology can
hinder progress and create confusion. Unfortunately, the
term independence has different meanings in different ar-
eas of mathematics. In statistics, two variables are "in-
dependent" if the correlation coefficient between them
is zero. In linear algebra, that case would be called "or-
thogonal." What is called "independent" in linear algebra

would be called "correlated" in statistics. There is no

Reflection

easy solution to terminological confusions; you just have
to be flexible and make sure to clarify your terms when

talking to an audience from a different background. i

Practice problems Determine whether each set is linearly dependent or independent.

o] [1] [2 1 1] [2
a) { |o],[1], |2 b) { 1], [1], |2
0] 1] |2 2 1 1]
[0] [1] [-2 -
1 2
SRAUREORE d){[H }
1 2.000001
12| |6] L6 -
Answers
a) Dependent (1,0,0) b) Dependent (1,-3,1)
c) Dependent (-3, 2, 1) d) Independent

If the set is dependent, come up with a set of coefficients that illustrates their dependence.

Basis

A basis is the combination of span and independence: A set of
vectors {vi,va, ..., v, } forms a basis for some subspace of RN if it
(1) spans that subspace and (2) is an independent set of vectors.

Geometrically, a basis is like a ruler for a space. The basis vectors
tell you the fundamental units (length and direction) to measure

the space they describe. For example, the most common basis set
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These are
called the
"standard" ba-

sis vector sets.

is the familiar Cartesian axis basis vectors, which contains only
Os and 1s:

= =

This basis set is so widely used because of its simplicity: Each

w
[a)
—
(@)

basis vector has unit length and all vectors in the set are mutually
orthogonal (that is, the dot product of any vector with any other
vector is zero). These sets fulfill the definition of basis because
they (1) are linearly independent sets that (2) span R? or R3.

However, it is not necessary to span all of RN to be a basis. The
two examples below are basis sets for subspaces embedded in R?

and R3.
1

' 0
S pu— S p—
o o

Set S, is an independent set but does not cover all of R>—instead,
it spans a 1D subspace of R?, which is the line at Y=0. Set S is
a basis for a plane on the XY axes where Z=0.

Now consider the following sets of vectors; which of these forms a
basis for R? How about R??

3] [-=1] [13

M, = ol,] ol,] o
0 0 0

AT T

My = 11, 31|, |27
0 0 3

3] [-=1] [13]

Mz = ol,] ol,] o
0 0 1

The answers are that set M, is a basis for R? because there are
three vectors in R? that form a linearly independent set.

None of the sets is a basis of R? because all of these vectors live
in R3.



Set M is not a basis set, because the set is linearly dependent.
However, a set comprising any one of those vectors would be a
basis for a 1D subspace (a line) embedded in ambient 3D space,
which, for a Cartesian space, would be the line on the X-axis at
Y=7=0.

Set M3 is also not a basis set because one can define the first
or second vectors as a linear combination of the other vectors.
However, the third vector and either the first or second vector
would form a basis for a 2D subspace, which is a plane in R3.

Let’s consider the geometric consequence of different bases for the
same subspace. The graph in Figure 4.10 shows a point p; how
would you identify this point using the three basis sets below?

s{lLE o= {0LE o= (R

Identifying point p using different bases means to determine the
set of coefficients that multiply each basis vector to get from the
origin to p. Let’s start with basis set S. Actually, this is the
standard Cartesian basis set. Thus, pig (this is the notation to
indicate point p using basis set S) is simply [2,1].

For basis set 7', we have pir) = [2,-.5]. Why is this the correct
answer? Starting from the origin, draw a vector that is two times
the first vector in set T', and then add -.5 times the second vector
in set 1. That will get you from the origin to point p.

Now for set U. Ah, this is a trick. In fact, set U is not a basis set,
because it is not a linearly independent set. No set with the zeros
vector can be independent. For our exercise here, it is impossible
to reach point p using the vectors in set U, because span(U) is a
1D subspace that does not touch point p.

Why is it important that the set be linearly independent? You
might think that it should be sufficient for the set to span the
subspace, and any additional vectors are just there, you know,
for fun. But any given vector in the subspace spanned by a basis
should have a unique coordinate using that basis. For example,

ASIS

Figure 4.10: A
point on a graph
has different coor-
dinates depending
on the basis vec-
tors.
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Independent bases

ensure uniqueness.

consider the following set:

{HRERH)

This set is not a basis for R?, but let’s pretend for a moment that
it is. The vector that, in standard coordinates, is given by [-2 6]
can be obtained by scaling these "basis vectors" by (-6,4,0) or (0,-
2,6) or (-2,0,4), or an infinite number of other possibilities. That’s
confusing. Therefore, mathematicians decided that a vector must
have unique coordinates within some basis set, which happens
only when the set is linearly independent.

Infinite bases Although any given vector has unique coordinates
within a basis (assuming that basis spans the subspace the vector
lives in), the reverse is not the case: There is an infinite number of
bases that describe any subspace. You might have already guessed
that this is the case from the discussion around Figure 4.10. Here
is an example of a small and finite number of distinct bases for
R2. (In fact, any linearly independent set of two 2D vectors is a
basis for all of R2.)

Ul L)) Aol B AL

For example, using the first two sets, the Cartesian-basis coordi-
nate (3,4) would be obtained by scaling the basis vectors by [3,8]
and [-3,4], respectively.

Why have so many possible bases? Shouldn’t we be happy with
a small number of bases, for example the familiar Cartesian basis
sets?

The truth is that not all basis sets are created equal. Some bases
are better than others, and some problems are easier to solve in
certain bases and harder to solve in other bases. For example,
that third basis set above is valid, but would be a huge pain to
work with. In fact, finding optimal basis sets is one of the most
important problems in multivariate data science, in particular data

compression and components analyses.



Consider Figure 4.11: The dots correspond to data points, and
the black lines correspond to basis vectors. The basis set in the
left graph was obtained via principal components analysis (PCA)
whereas the basis set in the right graph was obtained via inde-
pendent components analysis (ICA). (You'll learn the math and
implementation of PCA in Chapter 19.) Thus, these two analyses
identified two different basis sets for R?; both bases are valid, but
which one describes the patterns in the data better?

PCA basis vectors ICA basis vectors

Figure 4.11: This example of 2D datasets (both graphs show
the same data) with different basis vectors (black lines) is an
example of the importance of choosing basis sets for charac-
terizing and understanding patterns in datasets.

In this section we are discussing only basis vectors. You
may have also heard about basis functions or basis im-
ages. The concept is the same—a basis is the set of the
minimum number of metrics needed to describe some-

thing. In the Fourier transform, for example, sine waves

Reflection

are basis functions, because all signals can be represented

using sine waves of different frequencies, phases, and am-

plitudes. ]
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Exercises

1. Determine whether each vector is in the span of sets S and
T, and if so, what coefficients could produce the given vectors
from the sets.

1 1 4
S = 11,10 T = o,
3 3 0
2 0 0 —10 -3
a) (2 b) | 4 c) [0 d) | -2 e) | 2
12 0 -3 -3

2. Determine whether the following vector is in the set spanned
by the bracketed vectors, in other words, whether u € § =

{V1,...; Vn}
5 1 1 4 1 1
a) 1[4 0[] b)[1].,¢ o], |1
- 3 12 3
[0 1] [-1
c) |1],4 (0],
3 3 2

3. Label the following sets as independent or dependent. For
dependent sets, determine whether it is possible to modify
only one element of one vector to change it to an independent
set.

2 1) ) 4L L)
A EH = I AU HE )
240o] b} S{HREH)




1] [1] 1] |8
g) {2, ]2 h){ (2], |16
3| |4 3| |24
1] [2] [3
i) <o, [1],]1
1 3

4. Determine the value of A that would make the following sets

of vectors dependent.

0 a
1 4.5 0 b
a)< 2], A b) < [A], |5
3 13.5 0 c
_O_ _d_
1 4 )
c) 21, |Al,|0],
3 5 8

5. The following sets of vectors are dependent sets. For each
set, determine the number of vectors to remove to create an
independent set with the most number of vectors.

1] o] [2] [o] [t
1 (3] |5 |6] |4 4l [4] [7] ] [1

aX |o|, 4], 14],]8],]4] p bX [3],[4],|1].]3],]2
ol (5] [5] [10] |5 of 13| 2| [1] |4
o] o] o] [o] [1]

6. Determine whether the following are descriptions of subspaces

and subsets, or only subsets.
a) The set of points y such that y = 2.
b) The set of points y such that y = 2z + .01.

c) The point at the origin in R®.
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d) The set of all points in R? with positive magnitude.

7. What is the dimensionality of the subspace spanned by the
following vector subspaces?

1] [7] 1] [2
ol |o 2l |4
a) , b) :
ol |0 6712
0] |o] 0] |6
1] [2] [1 6] [2] [4
c) . 0], d){ 9], [3],]6
1| |1 3l 1] |2

8. Remove one vector in the following sets to create a basis set
for a 2D subspace.

1] [1] [ 1 o] [3
a){ 2], ]2], 12 b){ 4], [-4], |12
3l 13| |2 3 51 |9

[ 3] 45] [-15

c) 21,1 =3 |, 1

13| |-19.5 6




Answers

1. a) Neither b) S: [4,0] c¢) Both [0,0]
d)T: [2,-3] e) S: [2,-3]
2. a)no b) yes ¢) no

3. Most dependent sets can be made independent with one value-
change if there are N < M vectors in RM.

a) Independent b) Independent c) Dependent, yes

d) Dependent, no  e) Dependent, yes  f) Dependent, no

g) Independent h) Dependent, yes i) Dependent, yes
4. a) =9 b) A =0or any- c¢) Any A
thing if
a=b=c=d=0

5. The answers below indicate the number of vectors that can be
removed. In these examples, there are different collections of

vectors that could produce linearly independent sets.

a) 2 b) 2

6. The strategy is to think about whether any point or vector p in
the subset would still be in the subset for any scalar-multiple

up, including p = 0.

a) Both. b) Subset only.
c) Both. d) Subset only.
7. a)lD b) 2D c) 3D d) 1D

8. a) Firstorsecond  b) First or third c) First or second
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Interpretations and uses of matrices

The goal of this chapter is to introduce you to matrices: what
they look like, how to refer to them, several important special

matrices, and basic matrix arithmetic.

In this book, we will work only with matrices that are rows x
columns, or matrices that you could print out and lay flat on a
table. The terminology can get a bit confusing here, because you
might think that these are 2D matrices. However, although they
would be in two physical dimensions when printed on a piece of
paper, the number of dimensions in which a matrix lives is more
open to interpretation compared to vector dimensionality (more
on this later). Matrices that would require a 3D printer (or, for
higher dimensions, a hyper-printer) occupy cubes or hypercubes
in physical space, and are called tensors. Tensors are useful for
storing data and for representing, for example, various physical
forces acting on an object. But they will not be further discussed
in this book.

Below are two example matrices. It’s sometimes useful to think of
a matrix as a set of column vectors standing next to each other,
or as a set of row vectors stacked on top of each other.
a0 2] |0
, |6 d
-4 5 0 0
c e
Matrices are ubiquitous in pure and applied mathematics because
they have many different purposes. To give you an idea of their

versatility, below is a non-exhaustive list of some uses of matri-

ces.

e Representing a linear transformation or mapping

o Storing partial derivatives of a multivariable system

e Representing a system of equations

o Storing data (e.g., features x observations)

e Representing regressors for statistical modeling

e Storing geometric transformations for computer graphics
o Storing kernels used in filtering or convolution



o Representing finance information from different sectors of
an economy or business

e Housing parameters for a model that predicts changes in the
spread of an infectious disease

Matrix terminology and notation

The first step of learning anything new is to become acquainted
with the terminology. When referring to an entire matrix, a bold-
face capital letter is used (matrix A), and when referring to indi-
vidual elements of a matrix, a lower-case letter with subscripts is
used (matrix A contains elements a; j). The matrix-related terms
that you need to know include row, column, element, block, diag-
onal, skew-diagonal, and off-diagonal. Several of these are illus-
trated in Figure 5.1.

A matrix can comprise smaller matrices, which leads to a useful
block-matrix notation (Figure 5.2). Block matrices are not fea-
tured in this book, but it’s good to know about the notation.

3000

_/D0O|_10400
A_1D_1130
1104

o-a oo vl

Figure 5.2: A "block matrix" is a matrix that comprises smaller
matrices. This can facilitate visual inspection and computa-
tions.

When referring to matrix sizes, and when referring to indices in a
matrix, it is assumed that you refer first to rows then to columns.
The number of rows is typically indicated as M while the number

NOTATION

SRS

%% %
% % %
%% ok %

Figure 5.1: Termi-
nology for several
key matrix compo-
nents.



MxN matrix

—N columns—

Figure 5.3: Nota-
tion for referring
to matrix sizes:
"Mr. Nice guy":
M rows, N
columns. I know,
it’s cheesey, but
that makes it
memorable.

MATRICES

of columns is typically indicated as N. This is, of course, an
arbitrary choice, but common convention curtails confusion.

A mnemonic for remembering this convention is MR NiCe guy,
for M Rows and N Columns (Figure 5.3). When multiple matri-
ces are shown, the sizes might be indicated by other letters like K
and L, or by subscripts like M1, My and N1, No.

Matrix dimensionalities

The dimensionality of matrices is more flexible and more versatile—
and therefore more confusing—compared to the dimensionality of
vectors. The dimensionality of a vector is simply the number
of elements in that vector. Matrices can have different interpre-
tations of dimensionality, depending on the application and the
information stored in the matrix. The possible dimensionalities

of an M x N matrix containing real-valued numbers include:

RMXN

RMN " if each matrix element is its own dimension (this is

the closest interpretation to the vector dimensionality defi-
nition).

o RM if the matrix is conceptualized as a series of column
vectors (each column contains M elements and is thus in
RM),

« RN if the matrix is conceptualized as a stack of row vectors.

In practice, the dimensionality of a given matrix is made on a
case-by-case basis, and is either explicitly stated or is inferred

from context.



The transpose operation

You learned about the transpose operation on vectors. Trans-
posing matrices is the same concept: swap rows for columns and

vice-versa.

The notation is also the same as for vectors: the transpose of A is
AT (also as mentioned previously, the T is sometimes italicized, so
AT = AT). Setting B to be the transpose of A (that is, B = AT
leads to the formal definition:

Transposing a vector or matrix
Bij=Aj; (5.1)

Notice that element (row, column) in matrix B corresponds to

element (column, row) in matrix A.
An important property of the transpose is that the transpose of a

transposed matrix is the original matrix. This property will have

a central role in many linear algebra proofs.

ATT = A (5.2)

Here is an example of a matrix transposed.
T 1
1 2 3
= |2
4 5 6
3

One easy-to-make mistake when taking the transpose is to change

4
5
6

the order of the rows and columns accidentally. Compare the

following result (not the transpose!) to above:

12 3"
l456]7é

S Ut
w N =

Code Transposing matrices is the same as transposing vectors.
The code below shows additional ways to transpose a matrix.

5.4 THE TRANSPOSE OPERATION
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Code block 5.1: Python

1 A = np.random.randn(2,5)
2 Atl = AT
3 At2 = np.transpose(A)

Code block 5.2: MATLAB
1 A= randn(2,5);
2 Atl = A7
At2 = transpose (A);

Practice problems Apply the transpose operator as indicated.

Answers

0 2
a) (1 0
0 3

= - TT
T -1 -3 1
T 16 6 0
-4 5 1
b) |6 10 -3 O
0 -3 22
L 0 5 5]
-1 -3 1
16 6 0
-4 5 1
b) |6 10 -3 c)
-5 -4 6
0 -3 22
0 5 5

Matrix zoology

There are many categories of special matrices that are given names
according to their properties, or sometimes according to the per-
son who discovered or characterized them.

Following is a non-exhaustive list and description of several special
matrices. It’s useful to have some familiarity with these kinds of
matrices now; throughout the book (and your adventures through
the wonderland of linear algebra and its applications) you’ll see
these matrices many times. For now, try to familiarize yourself
with these classes of matrices without worrying too much about
their applications or myriad special properties.




Square or rectangular Very simply: A square matrix is a matrix
that has the same number of rows as columns, thus an N x N
matrix or M x N if M = N.

A non-square matrix is called a rectangular matrix. You can see

a square and a rectangular matrix below.

0o 12 3 -5

01
,[-1 0 3 23 0

-1 0
-2 -3 0 0 0

Let me guess what you are thinking: "But Mike, a square is also a
rectangle!" Yes, dear reader, that’s technically true. However, for
ease of comprehension, it is assumed that a "rectangular matrix"
is one in which the number of rows does not equal the number of

columns, thus M # N. "Non-square' is also acceptable.

Rectangular matrices are also sometimes referred to as "fat" or
"wide" if they have more columns than rows, or as "skinny" or
"tall" if they have more rows than columns. Below you can see a

wide matrix (left) and a tall matrix (right).

1 2 3 4 5
6 7 8 9 10|’

1

© g ot W
CoO O = N

Symmetric A matrix is symmetric if it is "mirrored" across the
diagonal, meaning the upper-right of the matrix is a flipped ver-
sion of the lower-left of the matrix. Formally, matrix A is sym-

metric if it equals its transpose:
Definitions of a symmetric matrix
A=A" (5.3)

a5 = Aj4 (54)

Only square matrices can be symmetric, because if a matrix is size
M x N, its transpose is size N x M, and Equation 5.3 says that

People sometimes
refer to "square

symmetric matri-
ces." Technically,
this is redundant,

5.5 MATRIX ZOOLOGY



Figure 5.4: Sym-

metric matrices
can have a nice
visual repre-
sentation. The
grayscale of each
box  corresponds
to the numerical
value of the ma-
trix.

the matrix must equal its transpose. Thus, M = N is a necessary
(though not sufficient) condition for symmetry. For this reason,
vectors cannot be symmetric.

Here are a few examples of symmetric matrices.
a f
[a b] e
b b
b ¢ f
g

A matrix that is not symmetric is called non-symmetric or asym-

SN

e
b
h

P T
ICRPS IS
S N3

Q.

1

S TN o W

metric. All rectangular matrices, for example, are non-symmetric.

Symmetric matrices have lots of special properties, as you will
learn throughout this book. If matrices lived in a capitalist so-
ciety, symmetric matrices would be the beautiful, cultured, edu-
cated, generous, happy, successful, and wealthy upper-class that
get all the attention and special privileges.

Fortunately, hope is not lost for non-symmetric matrices. It is pos-
sible to create a symmetric matrix from a non-symmetric (even
rectangular!) matrix. Indeed, creating symmetric from non-
symmetric matrices is central to many statistics and machine
learning applications, such as least-squares and eigendecomposi-
tion. For example, you might have heard of a "covariance matrix";
this is simply a symmetric matrix created from a rectangular data
matrix. There are two ways to create a symmetric matrix from
a non-symmetric matrix, both of which will be discussed in the
next chapter.

Skew-symmetric A skew-symmetric matrix is a matrix where
the lower-triangle is the sign-flipped version of the upper-triangle.
Here are two examples of 3 x 3 skew-symmetric matrices.

0 1 2 0 -4 8
-1 0 3, 4 0 -5
-2 -3 0 -8 5 0

It is no accident that the diagonal elements are all zeros. The

diagonal must equal its negative, and the only number for which



that is true is 0 (0 = —0). Thus, all skew-symmetric matrices

have diagonals of all zeros.

More formally, a skew-symmetric matrix has the following matrix

and element definitions.
A=-AT (5.5)

a5 = —aj; (56)

Identity The identity matrix is the matrix equivalent of the num-
ber 1, in that any number x times 1 is . In the case of matrices,
any vector v times the identity matrix (indicated by I) is that
same vector v, and any matrix A times I is still A. In other
words:

vi=v

Al =A

You might initially think that the identity matrix would be a
matrix of all 1’s, however, it actually has 1’s only on the diagonal
and all 0’s on the off-diagonals. I is always a square matrix.

Subscripts are sometimes provided to indicate the size of the ma-
trix, as in the following examples. If there is no subscript, you
can assume that I is the appropriate size to make the equation

valid.

10
I, = R
S

o O =
S = O

0
0
1

The identity matrix has many important functions. It features
in many proofs, in the matrix inverse, and in eigendecomposition

and regularization.

The matrix indi-
cated by 1 has all
elements equal to
1; this is called a

"ones matrix."

5.5 MATRIX ZOOLOGY
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Although it is simply called "the identity matrix," a more accurate
term would be "the multiplicative identity matrix." That can be
contrasted with the additive identity matrix, which is the zeros

matrix.

Zeros The zeros matrix is a matrix of all zeros. That might
sound like a pretty boring matrix, but... well, it is. As you might
guess, any matrix times the zeros matrix is still the zeros matrix,
just like any number times 0 is 0 (let’s stick to finite numbers
to avoid headaches from thinking about what happens when you
multiply 0 by infinity).

The zeros matrix is indicated by 0. As with the matrix I, a
subscript is sometimes used when it’s necessary to indicate the
size of the matrix 0. This can be confusing, because the zeros
vector can also be indicated using 0. Hopefully the context will
clarify the correct interpretation.

0O o0 . 0

00 0
Oy = .

0 0 0

Zeros matrices can be square or rectangular, but in most cases
you can assume that the zeros matrix is square; rectangular ma-
trices are often used in code, for example when initializing data

matrices.

Analogous to how I is actually the multiplicative identity matriz,
0 is more accurately called the additive identity matriz. This is
because AI = A but A+I # A, and A+0 = A but A0 # A

Code Many special matrices can be created easily using dedi-
cated functions. Notice that zeros matrices in Python require two
numbers to specify the size (the number of rows and the number
of columns).

Code block 5.3: Python



I = np.eye(4)
2 O = np.ones(4)
3 Z = np.zeros((4,4))

Code block 5.4: MATLAB

I = eye(4);

2 O = ones(4)
3 Z = zeros (4

);

ATA Pronounced "A transpose A" and sometimes written "AtA,"
this is one of the most important matrix forms in all of applied lin-
ear algebra. Creating AT A involves matrix multiplication, which
is the topic of the next chapter. However, there are several key
properties of AT A that are worth listing here. Their true value
will become apparent as you progress through this book. Each of
the following claims will be discussed and proven in later chap-
ters; for now, simply marvel at the glorious existential goodness
of ATA:

o It is a square matrix, even if A is rectangular.

e It is symmetric, even if A isn’t.

o It is full-rank if A is full column-rank.

o It is invertible if A is full column-rank.

e It has the same row space as A.

e It has orthogonal eigenvectors.

o It is positive (semi)definite.

o It has non-negative, real-valued eigenvalues.

e It is called a "covariance matrix" if A is a data matrix.
o It often looks pretty (e.g., Figure 5.4).

All of these properties arise simply from multiplying a matrix by
its transpose. These same properties hold for AA™T as well, but

ATA looks nicer in print.

Diagonal A diagonal matrix has all zeros on the off-diagonals,
and only the diagonal elements (going from top-left to bottom-

5.5 MATRIX ZOOLOGY
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It’s OK if some
or all diagonal el-
ements are zero,
as long as all
off-diagonal ele-
ments are zero.

right) may contain non-zero elements. I is an example of a diag-

onal matrix, as are the following two matrices.

10077000
2
0 ¢ 0 0
0 2 0},
0 0 00
0 0 3
0 0 01

More formally, a diagonal matrix is defined as follows.

Qn, ifi=3j
0, ifi#j

If all diagonal elements are the same, then the matrix can be writ-
ten as a constant times the identity matrix, or AI. For example,

1
7 0:7 O:712
07 01

Diagonal matrices can be rectangular, as in the following exam-
ples.
70
2 0 0 0| |01
k 6 O(J’o 0
0 0

Diagonal matrices are useful because they simplify operations in-
cluding matrix multiplication and matrix powers (A"). Trans-
forming a matrix into a diagonal matrix is called diagonalization
and can be achieved via eigendecomposition or singular value de-

composition, as you will learn in later chapters.

The bold-faced D is often used to indicate a diagonal matrix.
However, there are also plenty of diagonal matrices that are not
labeled D. For example, A and ¥ are diagonal matrices used
in eigendecomposition and singular value decomposition, respec-

tively.

The opposite of a diagonal matrix is called a hollow matrix. A
hollow matrix has all zeros on the diagonal, while the off-diagonal
elements may be non-zero (they can also be zero, as long as the



diagonal elements are zero). Skew-symmetric matrices are hollow.
Hollow matrices appear in applications as distance matrices (every
node is zero distance away from itself), but I won’t discuss them
further in this book.

As shown in Figure 5.1, the diagonal of a matrix goes from the
top-left to the lower-right. The anti-diagonal goes from the top-
right to the lower left.

Code In both Python and MATLAB, the same function extracts
the diagonal elements of a matrix, and produces a diagonal matrix

given an input vector.

Code block 5.5: Python

D = np.diag([1,2,3,5])
2 R = np.random.randn (3,4)
d = np.diag(R)

Code block 5.6: MATLAB
1 D= diag([1,2,3,5]);
2 R = randn(3,4);
d = diag(R);

Augmented An augmented matrix is the result of concatenating

two or more matrices column-wise, as in this example:

1 4 2 7 2 1 4 2|7 2
31 9|uf7r 2(=13 1 9|7 2
4 2 0 71 4 2 0|7 1

Two matrices can be augmented only if they have the same num-
ber of rows; the number of columns need not match.

The vertical bar in the concatenated matrix indicates the break
between the two original matrices, and is sometimes omitted.
Augmented matrices are used in various applications including
solving systems of linear equations and computing the matrix in-

verse.

The symbol || is
sometimes used

to indicate con-
catenation, but it’s
also used for vec-
tor magnitude and

parallel lines.

5.5 MATRIX ZOOLOGY
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Code "Augmenting" is called concatenation in Python and MAT-
LAB. In Python, make sure to state the correct axis along which
to concatenate.

Code block 5.7: Python

A = np.random.randn (3,5)
B = np.random.randn (3,4)
AB = np.concatenate ((A,B),axis=1)

w NN =

Code block 5.8: MATLAB

1 A= randn(3,5);
2 = randn (3,4);
3 AB = [A B];

Triangular Triangular matrices are half-way between a diagonal
matrix and a full matrix. Triangular matrices come in two forms:
upper-triangular (meaning only the diagonal and elements above
it may contain non-zero elements) and lower-triangular (meaning
only the diagonal and elements below it may contain non-zero

elements). Here are two examples of triangular matrices.

0

S O =
S NN 0o
N N
S ot NN O
- o O O

1
3 0
16 0
2 1

Triangular matrices can be rectangular. Sometimes, the zeros
are omitted (either to save ink, because the author was too lazy
to type in the 0’s, or for visual aesthetics). Here are two more
examples of triangular matrices.

S W =
S N O
o O O
o O O
o O O
S NN
[\ EEGL SN

Triangular matrices appear in matrix decompositions including
QR decomposition, LU decomposition, and Cholesky decomposi-

tion.



Code MATLAB and Python have dedicated functions to extract
upper and lower triangular matrices. Tip: You can provide an
optional second input k to isolate the elements above or below
the k" diagonal.

Code block 5.9: Python

1 A = np.random.randn (5,5)
2 L =np.tril (A)
U = np.triu(A)

Code block 5.10: MATLAB

1 A = randn(5);
2 L=tril(A);
U = triu(A);

Dense and sparse A matrix in which most or all matrix elements
are non-zero is called a dense matrix (sometimes also called a
"full matrix"). This term is used only when it is necessary in
context, for example, when comparing a diagonal matrix with a
dense matrix. You wouldn’t normally call every matrix a "dense

matrix."

A sparse matrix is one that contains mostly zeros and a rela-
tively small number of non-zero elements. Sparse matrices are ex-
tremely computationally efficient, and therefore, a lot of modern
algorithms in numerical linear algebra emphasize sparse matri-
ces. Notice that the 10x 10 sparse matrix below can be efficiently
represented by listing the row and column indices that contain

5.5 MATRIX ZOOLOGY
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non-zero elements.

)
)
-~

O O O O O O o o o
S O O O O O o o O
S O O O O o o o O
S O O O O O o o o O
S O O O O o o o o o
O O O O O O w o o o
S O O O O O o o o o
S O O O O o o o o o
S O O O O o o o o o
O O O O o oo o o o

=

w

i

Orthogonal A matrix is called orthogonal if it satisfies the fol-
lowing two criteria.

1. All of its columns are pairwise orthogonal. That means that
the dot product between any two columns is exactly 0.

2. Each column ¢ has ||Q;|| = 1, in other words, each column is
unit magnitude. Remember that the magnitude of a vector
(in this case, the column of a matrix) is computed as the
dot product of that vector with itself.

The letter Q is often used to indicate an orthogonal matrix (though
not exclusively). The formal definition of an orthogonal matrix

is:
Definitions of an orthogonal matrix
1, ifi=jy

(Qi7Qj>:{0’ oy (5:8)

Recall that () is one of the dot-product notations. A more com-
pact way of writing Equation 5.8 using matrix multiplication is

Q'Q=1I (5.9)

You’'ll learn in the next chapter why this notation is equivalent,
but it’s worth already being exposed to it here, because it will set
you up to understand the relationship between the transpose and

the inverse of an orthogonal matrix.



Toeplitz Toeplitz and Hankel matrices (below) are closely re-
lated to each other. Both involve creating new rows of a matrix
as systematic rearangements of elements in previous rows. One of
the remarkable properties of Toeplitz and Hankel matrices is that
they can have rank r > 1 even if they are created from a rank

r = 1 vector.
In a Toeplitz matrix, all diagonals contain the same element. The Toeplitz

matrix below shows a Toeplitz matrix created from a vector. This
Toeplitz matrix is also symmetric.

[0 b ¢ d =

b
a
b
c

QL o o
SN2 0
Q@ oo

Notice that the main diagonal is the same as the first element of
the vector (a), the next off-diagonal is the second element of the Hankel

vector (b), and so on.

Hankel A Hankel matrix is kindof like a rotated Toeplitz ma-
trix. Compare the following matrix to the Toeplitz matrix above,

created from the same vector.

a b c d Figure 5.5: Visual-

b ¢ d 0 ization of Toeplitz

{CL b ¢ d] = and Hankel matri-
c d 00

ces created from a

d 0 0 0 vector with inte-

gers from 1 to 10.
A Hankel matrix can also "wrap around" to produce a full matrix,
like this:

QU O o
@ o <o
[Sal S T ST
o o9

Notice that the " column (and the i*" row) of the Hankel matrix
comes from starting the vector at the i** element and wrapping
around. You can also see how the anti-diagonals relate to the

vector.
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The algorithm to compute a Hankel matrix involves populating a
matrix Y from elements of a vector x:

Creating a Hankel matrix from a vector
Y =Xitj—1 (5.10)

Hankel matrices are used in time series convolution and in ad-
vanced signal-processing methods such as time-delay embedding.
Hankel matrices also look pretty (Figure 5.5) and have aestheti-
cally pleasing properties in eigendecomposition.

Code Creating Toeplitz matrices is intuitive; creating dense Han-
kel matrices looks a bit strange at first, but you need to specify
the final row of the matrix, or else it will have zeros like in the

first example above.

Code block 5.11: Python

from scipy.linalg import hankel , toeplitz
t = [1,2,3,4]

T = toeplitz (t)

H = hankel(t,r=[2,3,4,1])

=W N =

Code block 5.12: MATLAB

1 t = 1:4;
2 T = toeplitz(t);
H = hankel(t,t([end 1l:end—1]));

Matrix addition and subtraction

Now that you know some matrix terminology and some special
matrices, it is time to begin learning how to work with matrices.
The rest of this chapter focuses on the "easy' arithmetic opera-
tions on matrices, and the next few chapters will deal with more
advanced topics. We begin with basic matrix arithmetic.



Matrix addition is simple, and it works how you would think it
should work: Add or subtract each corresponding element in the
two matrices. For addition to be a valid operation, both matrices
must be the same size—M x N—and the resulting matrix will also
be M x N.

Writing out matrix addition looks like this: C = A 4+ B. Each
element in C is defined as

Ci,j = &ij T bij (5.11)

Below is one example.

125+—10—5_02 0
9 8 7 3 a w| |12 84a T+

Needless to say, matrix subtraction works exactly the same way,

except with a minus sign instead of a plus sign.

Like vector addition, matrix addition is commutative, meaning
that
C=A+B=B+A

This may seem trivial based on your elementary-school arithmetic
knowledge, but it is important to mention these properties explic-
itly, because, for example, matrix multiplication is not commuta-
tive. The commutivity of matrix addition is also a key step in a
proof about creating symmetric matrices, which you will see in a

few pages!

5.6 MATRIX ADDITION AND SUBTRACTION
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Practice problems Solve the following matrix arithmetic problems.

) 1 1 i
Al 3
Answers
5 4
2 [ 4

2 4 6
0 5 0 1 9 8
{43] b) |-4 6|+ |1 1 o |12 4l7 6
2 1 4 2 0
-3 0 1 0 5 4
5 6 7
0 6
b) [-3 7 c) Invalid operation!
-2 0

Scalar-matrix multiplication

Matrix multiplication is sufficiently varied and involved that it
requires its own chapter. However, scalar-matriz multiplication is

simple and intuitive.

Scalar-matrix multiplication means to multiply a matrix by a sin-
gle number. It works by multiplying each matrix element by that
scalar—exactly the same as scalar-vector multiplication:

5abﬁ§a5bia5béiab(5
c d|  |6c éd| |5 d§|  |e d

Notice that because scalar-matrix multiplication is implemented

(5.12)

element-wise, it is commutative. Each individual matrix element
is simply a number, and scalar multiplication obeys the commu-
tative law.

This means that you can move the scalar around, and the result is
unchanged. That feature turns out to be crucial for several proofs

and derivations. The following illustrates the idea.

AAB = A)\B = AB)




"'Shifting' a matrix

We can combine matrix addition with scalar-matrix multiplication
to apply a procedure called "shifting" a matrix. To "shift" a matrix
means to add to the matrix a multiple of the identity matrix.
Shifting is applied only to square matrices. The new, shifted,
matrix is often denoted as A; the tilde character on top indicates
that the matrix is similar to, but not the same as, the original

matrix A.

"Shifting" a matrix

A=A+, AcRMM )\cR (5.13)

Here is an example with real numbers.

1 30 1 00 1.1 3 0
1 3 0/+.110 1 0=]1 31 O
2 27 0 01 2 71

There are three properties of matrix shifting that can be seen from

this example:

1. Only the diagonal elements are affected; shifting does not
change the off-diagonal elements. This is obvious from Equa-
tion 5.13 because the identity matrix has all zeros on the
off-diagonal elements.

2. The first two rows of the example matrix are identical before
shifting, and different after shifting. Thus, shifting a matrix
can make matrices with redundant rows (or columns) dis-
tinct.

3. When X is close to zero, then A is really similar to A. In-
deed, when A = 0, then A = A. In practical applications,
is often selected to be as small as possible while large enough

to satisfy other constraints.

Shifting a matrix has important applications in statistics, machine
learning, deep learning, and other related fields. For example, a

5.8 "SHIFTING" A MATRIX
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procedure called "regularization" involves shifting matrices. Regu-
larization is a crucial operation for solving systems of equations or
fitting statistical models to low-rank data. When you learn about
matrix rank (chapter 7), you'll see that shifting will transform

any rank-deficient matrix into a full-rank matrix.

Code Shifting in code illustrates both scalar multiplication and
addition. Also note the potential for confusion that the variable 1
(lower-case letter "L") can look like the number 1 and the upper-
case letter "I."

Code block 5.13: Python

1 import numpy as np

2 1 = .01

3 I =np.eye(4)

4 A = np.random.randn (4 ,4)
5 As = A + 1xI

Code block 5.14: MATLAB

1 1= .01;

2 1 = eye(4);
3 A = randn(4);
4 As = A + 1x1;

Practice problems Shift the following matrices according to the specified \.

4 3 0 43 42 42
a) |2 1 0],x=1 b) 234 746 12 |, A=-1
1 4 0 0 33 1001
Answers
.5 3 0 42 42 42
a) [2 11 0 b) (234 745 12

d 4 1 0 33 1000




Diagonal and trace

The diagonal elements of a matrix can be extracted and placed
into a vector. This is used, for example, in statistics: the diago-
nal elements of a covariance matrix contain the variance of each

variable. The following defines the procedure.

Extracting the diagonal elements into a vector

v = diag(A)

v; = a4, ©={1,2,...,min(M,N)} (5.14)

Note that this formula does not require the matrix to be square.
Observe the following examples (diagonal elements highlighted).

5] 3 8 5 5]3 8 39 5
diag | |1 [0] 4| | = |0|, diag||1[0] 4 3 1|]|=]0|, diag
8 6 [2] 2 8 6[2]9 9 2

Trace The trace is an operation that produces a single number

® © w 0w |
v N oo [o]w

from a squre matrix. It is indicated as ¢r(A) and is defined as the

sum of all diagonal elements of a matrix:

Trace is the sum of diagonal elements
M
tT(A) = Z Qjq (515)
i=1

Notice that the off-diagonal elements do not contribute to the
trace; thus, two very different matrices (different sizes, different

off-diagonal elements) can have the same trace.

The trace operation has two applications in machine learning: It is
used to compute the Frobenius norm of a matrix (a measure of the
magnitude of a matrix) and it is used to measure the "distance"

between two matrices.

5.9 DIAGONAL AND TRACE



MATRICES

IMPORTANT The trace is defined only for square matrices.
This may seem strange, considering that the trace is the sum

of the diagonal elements and the diagonal exists for rectangular

matrices. The reason for this rule has to do with a property of

eigendecomposition: The trace of a matrix equals the sum of its

eigenvalues. Eigendecomposition is valid only on square matrices,

and so ancient and wise linear algebraticians decreed that only

square matrices can have a trace.

Code
119.

Extracting the diagonal from a matrix was shown on page

Code block 5.15: Python

1 import numpy as np

2 A = np.random.randn (4 ,4)

3 tr

= np.trace(A)

Code block 5.16: MATLAB

1 A= randn(4);

2 tr

= trace(A);

Practice problems

-3 8 0

a) | 0 -3 -6

-2 3 -3
Answers

a) —9

Compute the trace of the following matrices.

-3 -5 4 8 -8 9
p) | 1 -3 1 o |7 =3 5

6 -1 10 0 5 —5
b) 4 c) 0




Exercises

1. For the following matrix and vectors, solve the given arith-

metic problems, or state why they are not solvable.

3
2 5
u= (4|, v=
0
1
2
a) wul + A
d)vwT — A

1
0 -1 -2 -6 —6
W = ) , A= 1 -1 0 -2
-1 0 -1 —4
5
b) wul + AT c)uvl — A

e) vwl + AT

2. Perform the following matrix operations, when the operation

is valid.
A:243’ |2 1 37
0 1 3 6 -7 7
[0 —6 1 2
C=|-3 2| D=|3 4
-2 7 2 4
a) A +3B b)A+C c)C-D
d)D+C e) AT+D f) (A+B)T+2C

g) 3A+(BT+C)T

h) -4(AT+C)T+D

3. An NxN matrix has N? elements. For a symmetric matrix,

however, not all elements are unique. Create 2x2 and 3x3

symmetric matrices and count the number of total elements

and the number of possible unique elements. Then work out

a formula for the number of possible unique elements in such

a matrix.

4. Identify the following types of matrices from the list provided
in the section "A zoo of matrices." Note that some matrices

can be given multiple labels.

5.10 EXERCISES
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1 00 1 2 3 2 3
a)|0 1 0 b) |0 4 5 c) 4 5

0 0 2 0 0 6 5 6

a b 0 b 0 0 O
d)|-b d e)|-b 0 f) 32 0 0

—c —e —c —e 0 42 0

. To "decompose" a matrix means to represent a matrix us-

ing the sum or product of other matrices. Let’s consider an
additive decomposition, thus starting from some matrix A
and setting A = B + C. You can also use more matrices:
A =B + ... + N. Decompose the following matrices A. Are
your decompositions unique? (A decomposition is "unique" if
it has exactly one solution.)

AR

. Create a Hankel matrix from the vector

[123123

. Determine whether the following matrices are orthogonal.

100 12
a) [0 1 0 b)% -2 2 c) Iz
00 2 —2

. Consider two M x N matrices A and B. Is the sum of their

traces equal to the trace of their sum? That is, tr(A)+tr(B) =
tr(A + B)? Try for a few examples, then see if you can work
out a proof for this property.

s a4 4 1 25| [55 5
a) , b) |-5 0 5|,[4 3 4
3 -9’16 0

—9 4 3| (119



a d e i m n
c) |f b g|,lo k p
h 1 ¢ q r
9. Here’s another neat property of the trace: The trace of the

outer product is equal to the dot product: tr(vwT) = vTw.
Demonstrate this property using the following sets of vectors.

5 5 1] (5 al |e
-3| |6 b
a) |5 1 b) c) /
1 cl |g
1 5
4 dl |h

10. Perform the indicated matrix operations using the following
matrices and scalars. Determine the underlying principle re-

garding trace, matrix addition, and scalar multiplication.

A=l 3BT T e azs a=-3
2 -3 1 3 b d

a) tr(A) b) tr(B) c) tr(A + B)
d) tr(AC) e) A ir(C) f) X tr(aC)
g) a tr(\C) h) tr(aA + AB) i) (Aa) tr(A + B)

j) tr(0A + \B) k) A tr(A + B) 1) tr(A+ BT

5.10 EXERCISES
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3.

4.

5.

Answers

1 5 0
-2 -1
a) Size mismatch.  b) 0 c)
—4 4 0
4 18 1
d) Size mismatch.  e) Size mismatch.
(4 1 12 -1 -8
a) b) Invalid. c) |[-6 —6
18 —20 24
- —4 3
1 -4 3 2 [0 -6
d) |0 2 e) |7 5 f) |-3 —10
0 11 5 7 2 24
4 8 10
h) Invalid.
g) 0 —6 23] ) Invali
n(n+1)/2
a) square, diagonal, symmetric b) square, upper-triangular
c) symmetric d) square, skew-symmetric
ifa=d=f=0
e) square, skew-symmetric f) rectangular, diagonal
ife=f
The additive decomposition is definitely not unique; there is an

infinity of possible matrices that can sum to produce a given
A. One interesting solution is to create matrices of all zeros
and one non-zero element. For example:

A e O A R R R

The reason why this is an interesting decomposition is that

+

the four matrices are convenient basis matrices for the vector



space R??

1 2 3 1 2 3
6. 2 312 31
31231 2
1 2312 3
2 312 31
3 1 2 3 1 2]

7. a) No, the third column does not have magnitude = 1.
b) No, because columns are not orthogonal.

c) Yes, all identities matrices are orthogonal.

8. This property (sum of traces equals trace of sums) holds be-
cause of the element-wise definition of both trace and matrix
addition:

M M M
Doaii+ D bii = > (aii+big)
i=1 i=1 i=1
a) -2in both cases  b)2linbothcases c¢)a+b+c+j+
k 4+ 1 in both
cases
9. a)-6 b) 0 c) ae+bf +cg+
dh

10. The underlying principle here is the same as in question 8:
The trace is a linear operator, so you can scalar-multiply and

sum, and trace remains the same.

a) 2 b)-1 c) 1
d) 5a + 5d e) 5(a +d) £) 5(—3a — 3d)
g) —3(5a + 5d) h)-11 i) -15

i 5 k)5 1) 1
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Code challenges

1. The goal of this exercise is to create a matrix that contains

the dot products between all pairs of columns in two other
matrices. First, create two 4x2 matrices (that is, 4 rows, 2
columns) of random numbers. Then write a double-for loop
in which you compute the dot products between each column
of both matrices. The i, j element of the resulting matrix will
be the dot product between column 4 of the first matrix and

column j of the second matrix.

. Create a symmetric matrix by starting with a dense random

numbers matrix and applying three matrix operations: convert

to triangular, transpose, matrix addition.

. Create a diagonal matrix of size 4x8 without using the diag()

function. The diagonal elements should be 1,2,3,4. How much
of your code would you need to change to create an 8x4 diag-

onal matrix?



Code solutions

1. The purpose of this challenge is to get you thinking about the

mechanics of matrix multiplication.

Code block 5.17: Python

A = np.random.randn(4,2)
B = np.random.randn (4,2)
C = np.zeros ((2,2))
for coli in range(2):
for colj in range(2):
Cl[coli,colj]=np.dot(A[:, coli],B[:,colj])

S T e W N =

Code block 5.18: MATLAB
A = randn (4,2);
B = randn (4,2);
C = zeros (2);
for coli=1:2

for colj=1:2
C(coli,colj) = dot(A(:,coli),B(:,colj));
end

0 O U R W NN =

end

2. You just discovered one way to make a symmetric matrix!

Code block 5.19: Python

[

A = np.random.randn (4 ,4)
Al = np. tril (A)
3 S = Al + AlL.T

\]

Code block 5.20: MATLAB
A = randn (4);
Al = tril (A);
3 S = Al + Al’;

N =

5.13 CODE SOLUTIONS
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3. The point here is to appreciate that indexing the diagonal of
a matrix involves the 7,7 indices.

Code block 5.21: Python

1 D= np.zeros((4,8))
2 for d in range(min(D.shape)):
3 D[d,d] = d+1
Code block 5.22: MATLAB
1 D = zeros(4,8);
2 for d=1:min(size (D))
3 D(d,d) = d;
4 end




CHAPTER 6
MATRIX MULTIPLICATION

START THIS CHAPTER HAPPY
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Multiplying matrices is considerably more complicated than mul-
tiplying regular numbers. The normal rules you know about mul-
tiplication (e.g., axb = bxa) often don’t apply to matrices, and
there are extra rules you will need to learn. Furthermore, there
are several ways of multiplying matrices. And to make matters
more complicated, not all pairs of matrices can be multiplied. So,
take a deep breath, because this chapter is your first deep-dive
into linear algebral

"'Standard" matrix multiplication

For lack of a better term, this method will be called the "standard"
method. Unless otherwise explicitly stated, you can assume (in
this book and elsewhere) that two matrices next to each other
(like this: AB) indicates "standard" matrix multiplication.

Terminology The first thing to know about matrix multiplica-
tion is that it is not commutative, so AB # BA. There are
exceptions where this is the case (for example, AT = TA), but
those exceptions are rare. For this reason, even the terminology

of matrix multiplication is complicated.

The following five statements are ways to say the operation AB
out loud (e.g., when trying to show off to your math-inclined
friends and family):

"A times B'

"A left-multiplies B'
"A pre-multiplies B"
"B right-multiplies A"
"B post-multiplies A"



Validity Before learning how standard matrix multiplication works,

you need to learn when matrix multiplication s valid. The rule
for multiplication validity is simple and visual, and you need to
memorize this rule before learning the mechanics of multiplica-

tion.

If you write the matrix sizes underneath the matrices, then ma-
trix multiplication is valid only when the two "inner dimensions'
match, and the size of the resulting product matrix is given by
the "outer dimensions." By "inner" and "outer' I'm referring to

the spatial organization of the matrix sizes, as in Figure 6.1.

MxN< -NxK MK

Figure 6.1: Visualization of the rule for matrix multiplication
validity. Note the reference to "inner dimensions" (N) and

"outer dimensions" (M and K).

Consider the following matrices; are these multiplications valid?

AB BA C'A

5x2 2x7 2x7 5x2 5x7 5x2

The first pair (AB) is valid because the "inner" dimensions match
(both 2). The resulting product matrix will be of size 5x 7. The
second pair shows the lack of commutativity in matrix multitpli-
cation: The "inner" dimensions (7 and 5) do not match, and thus
the multiplication is not valid. The third pair is an interesting
case. You might be tempted to call this an invalid operation;
however, when transposing C, the rows and columns swap, and
so the "inner" dimensions become consistent (both 5). So this

"STANDARD"' MULTIPLICATION

6.1



MATRIX MULTIPLICATION

multiplication is valid.

Here’s something exciting: you are now armed with the knowledge
to understand the notation for the dot product and outer product.
In particular, you can now appreciate why the order of transposi-

T T)

tion (v'w or vw" ) determines whether the multiplication is the

dot product or the outer product (Figure 6.2).

VTW = 1x1
5x1 5x1

VW T
ox1  5x1 v w — EyE

Bl Sx1

Figure 6.2: For two adjacent column vectors, transposing the
first vs. the second vector is the difference between the dot

product vs. the outer product.

Practice problems For the following matrices, determine whether matrix multiplication is
valid, and, if so, the size of the product matrix.

A ceR>™ BeR¥™ CeR*™

a) AB b) AC c) AB” d) BCA™ e) BBTA
Answers
a) no b) 2x4 c) 2x3 d) 3x2 e) no

Code Unfortunately, matrix multiplication is confusingly differ-
ent between MATLAB and Python. Pay close attention to the
subtle but important differences (@ vs. *).

Code block 6.1: Python
1 Ml = np.random.randn(4,3)

2 M2 = np.random.randn (3,5)
3 C=Mla@M2




Code block 6.2: MATLAB
1 Ml = randn(4,3);
2 M2 = randn(3,5);
3 C =Ml x M2

It is now time to learn how to multiply matrices. There are
four ways to think about and implement matrix multiplication.
All four methods give the same result, but provide different per-
spectives on what matrix multiplication means. It’s useful to un-
derstand all of these perspectives, because they provide insights
into matrix computations in different contexts and for different
problems. It is unfortunate that many linear algebra textbooks
teach only the dot-product method (what I call the "element per-

spective").

(1) The "element perspective' FEach element ¢;; in AB = C
is the dot product between the i** row in A and the j** column in
B. The equation below shows how you would create the top-left

element in the product matrix.

] i N B

This makes it clear that element ¢; ; comes from the dot product

between row a; and column b;.

Here is another example; make sure you see how each element in
the product matrix is the dot product between the corresponding

row or the left matrix and column in the right matrix.

3 4 5 1 354+43 31+4.1 27 7
-1 2 [3 ] =|-15+23 —-1.14+21|=1|1 1
0 4 054+43 01+4.1 12 4

There is a hand gesture that you can apply to remember this
rule: extend your pointer fingers of both hands; simultaneously
move your left hand from left to right (across the row of the left
matrix) while moving your right hand down towards you (down
the column of the right matrix) (Figure 6.3).

For convenience, 1
will label all ma-
trices in the fol-
lowing examples as
AB =C.

"STANDARD"' MULTIPLICATION
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Figure 6.4: A sim-
ulacrum of build-
ing up a matrix
one layer at a time.
Each layer is the
same size as the
product yet pro-
vides only partial

information.

I -

Figure 6.3: Visual representation of the mechanism of comput-

ing each element of the matrix multiplication product as the
vector dot product between each row of the left matrix (from
left-to-right and each column of the right matrix (from top-to-
bottom).

Below you can see another visualization of matrix multiplication
from the element perspective. This visualization facilitates three
important features of matrix multiplication.

S a1-by ayby - ayby,

— ay — ‘ ‘ ‘ az-by  az-by az-by,
by by - by| =

B L

o The diagonal of the product matrix C contains dot products
between rows and columns of the same ordinal position (row
i in A and column ¢ in B).

e The lower-triangle of C contains dot products between later
rows in A and earlier columns in B (row ¢ in A and column
j in B, where i > j).

e The upper-triangle of C contains dot products between ear-
lier rows in A and later columns in B (row ¢ in A and

column j in B, where i < j).

The first point above is relevant for understanding data covari-
ance matrices. The second and third points are important for
understanding several matrix decompositions, most importantly

QR decomposition and generalized eigendecomposition.

(2) The "layer perspective'" In contrast to the element perspec-
tive, in which each element is computed independently of each



other element, the layer perspective involves conceptualizing the
product matrix as a series of layers, or "sheets," that are summed
together. This is implemented by creating outer products from
the columns of A and the rows of B, and then summing those

outer products together.

Remember that the outer product is a matrix. Each outer product
is the same size as C, and can be thought of as a layer. By analogy,
imagine constructing an image by laying transparent sheets of
paper on top of each other, with each sheet containing a different

part of the image (Figure 6.4).

Below is an example using the same matrix as in the previous
section. Make sure you understand how the two outer product
matrices are formed from column a; and row bj;. You can also
use nearly the same hand gesture as with the element perspective
(Figure 6.3), but swap the motions of the left and right hands.

3 4 51 15 3 12 4 27 7
-1 2 l3 1] =|-5 —-1|+|6 2/=|1 1
0 4 0 0 12 4 12 4

Notice that in each of the "layer matrices," the columns form a
dependent set (the same can be said of the rows). However, the
sum of these singular matrices—the product matrix—has columns

that form a linearly independent set.

The layer perspective of matrix multiplication is closely related
to the spectral theorem of matrices, which says that any matrix
can be represented as a sum of rank-1 matrices. It’s like each
rank-1 matrix is a single color and the matrix is the rainbow.
This important and elegant idea is the basis for the singular value
decomposition, which you will learn about in Chapter 16.

(3) The "column perspective’" From the column perspective,
all matrices (the multiplying matrices and the product matrix) are
thought of as sets of column vectors. Then the product matrix is

created one column at a time.

Each of these lay-
ers is a rank-1 ma-
trix. Rank will be
discussed in more
detail in a separate
chapter, but for
now, you can think
of a rank-1 matrix
as containing only
a single column’s
worth of informa-
tion; all the other
columns are scaled

versions.
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The first column in the product matrix is a linear weighted com-
bination of all columns in the left matrix, where the weights are
defined by the elements in the first column of the right matrix.
The second column in the product matrix is again a weighted
combination of all columns in the left matrix, except that the
weights now come from the second column in the right matrix.
And so on for all N columns in the right matrix. Let’s start with

a simple example:

I

Let’s go through Equation 6.2 slowly. The first column of the

1
a
3

2
4

1
3

2

+ bl +d
¢ 4

1 (6.2)

product matrix is the sum of all columns in matrix A. But it’s not
just the columns added together—each column in A is weighted
according to the corresponding element from the first column of
matrix B. Then, the second column of matrix C is created by
again summing all of the columns in matrix A, except now each
column is weighted by a different element of column 2 from matrix
B. Equation 6.2 shows only two columns, but this procedure

would be repeated for however many columns are in matrix B.

Now for the same numerical example you’ve seen in the previous

two perspectives:

3 4 5 1 3 4 3 4 27T 7
-1 {3 J = 5 |—1[+3(2 1{-1{+1]2 =11 1
0 0 4 0 4 12 4

The column perspective of matrix multiplication is useful in statis-
tics, when the columns of the left matrix contain a set of regres-
sors (a simplified model of the data), and the right matrix con-
tains coefficients. The coefficients encode the importance of each
regressor, and the goal of statistical model-fitting is to find the
best coefficients such that the weighted combination of regressors
matches the data. More on this in Chapter 14!

(4) The "row perspective" You guessed it—it’s the same con-
cept as the column perspective but you build up the product ma-
trix one row at a time, and everything is done by taking weighted
combinations of rows. Thus: each row in the product matrix is the



weighted sum of all rows in the right matrix, where the weights
are given by the elements in each row of the left matrix. Let’s

begin with the simple example:

tfa o] +2]c d

[3 4] [Z dl i 3la b +4[c d "

The top row of the product matrix is created by summing to-
gether the two rows of the right matrix, but each row is weighted
according to the corresponding element of the top row of the left
matrix. Same story for the second row. And of course, this would

continue for however many rows are in the left matrix.

I won’t repeat the other example multiplication I’ve been showing
in previous pages; that’s for you to do on your own with pencil
and paper. (Hint: The result will be identical.)

The row perspective is useful, for example in principal compo-
nents analysis, where the rows of the right matrix contain data
(observations in rows and features in columns) and the rows of the
left matrix contain weights for combining the features. Then the

weighted sum of data creates the principal component scores.

Figure 6.5 (next page) visually summarizes the different perspec-

tives.

Practice problems Multiply the following pairs of matrices four times, using each of four

perspectives. Make sure you get the same result each time.

4 4 1 2 3 a b c
a)[i’?ﬂOl b) |4 5 6| |d e f
4 1 7 8 9| |lg h i

Answers
01 15 la+2d+3g 1b+2e+3h lc+2f+3i]
a) [4 5] b) |4a+5d+6g 4b+5e+6h 4c+5f+64

7a4+8d+9g9 T7b+8e+9h Tc+8f+9i]

3
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*@+x® KN+l
@+ O Kl + %1
0+:0 N+l

( a) The "element perspective"

b) The "layer perspective"

*@ Xkm| [*® wm]|
@ M| +(*@® *N
* % @ H [® wH

pi

c) The "column perspective"
X| [
[ ES : = *@+4@® FH+kll
@®+:0® m+m

7y

4

d) The "row perspective"
k(@ W + #0 m]
K @ W + @ M|

@ m + w@ m|

Figure 6.5: Visual representation of the four perspectives on matrix multiplica-

MATRIX MULTIPLICATION

tion.

Practice problems Perform the following matrix multiplications. Use whichever perspec-
tive you find most confusing (that’s the perspective you need to practice!).

2 1 2
3 4 0 1 1][3 2
a) {0 4 1] [4 0 0] b) [1 2} [0 1}
0 1 1

Answers
2) {22 -3 6] b) [3 3}
16 1 1 3 4

Multiplication and equations

You know from your high-school algebra course that you are al-
lowed to add and multiply terms to an equation, as long as you
apply that operation to both sides. For example, I can multiply



both sides of this equation by 7:
4+ x=>5y+3)
7(4+2x) =705y +3))
7(4+2z) = (5(y+3)7

Notice that the bottom two equations are the same: Because
scalars obey the commutative law, the 7 can go on the left or

the right of the parenthetic term.

However, because matrix multiplication is not commutative, you
need to be mindful to put the matrices on the same side of the

equation. For example, the following is OK:
B = \(C+ D)
AB =)A(C+D)
AB=A(C+D)A

The A can be moved around because it is a scalar, but A must
pre-multiply both sides (or post-multiply both sides, but it must
be consistent on the left- and right-hand sides of the equation).
In contrast to the above, the following progression of equations is
WRONG.

B = A\(C + D)
AB=)(C+D)A

In other words, if you pre-multiply on one side of an equation,
you must pre-multiply on the other side of the equation. Same
goes for post-multiplication. If there are rectangular matrices in
the equation, it is possible that pre- or post-multiplying isn’t even

valid.

Matrix sizes are
not stated, so as-
sume that the sizes
make the opera-
tions valid.

6.2 MULTIPLICATION AND EQNS.
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Code The non-commutivity of matrix multiplication is easy to
confirm in code. Compare matrices C1 and C2.

Code block 6.3: Python

1 A = np.random.randn(2,2)

2 B = np.random.randn (2,2)

3 Cl = AG@B

4 (C2 = B@A

Code block 6.4: MATLAB

1 A= randn(2,2);

2 B = randn(2,2);

3 Cl = AxB;

4 (2 = B#A;

Matrix multiplication with a diagonal matrix

There is a special property of multiplication when one matrix is
a diagonal matrix and the other is a dense matrix:

e Pre-multiplication by a diagonal matrix scales the rows of
the right matrix by the diagonal elements.

e Post-multiplication by a diagonal matrix scales the columns
of the left matrix by the diagonal elements.

Let’s see two examples of 3 x 3 matrices; notice how the diagonal
elements appear in the rows (pre-multiply) or the columns (post-
multiply). Also notice how the product matrix is the same as the
dense matrix, but either the columns or the rows are scaled by
each corresponding diagonal element of the diagonal matrix.



_1a 2a
4b 5b
Tc 8c
[1a 26
4a 5b
Ta 8b

3a
6b
9¢c

3¢
6¢
9¢

Of course, the mechanism of matrix multiplication is exactly the

same as what you learned in the previous section. But all the

zeros in the diagonal matrices allow us to simply things a bit.

It is worth remembering this property of diagonal matrix multi-

plication, because you will see applications of this in several sub-

sequent chapters, including systems of equations (Chapter 10),

diagonalization (Chapter 15), and singular-value decomposition

(Chapter 16). I tried to come up with an easy mnemonic for re-

membering this rule. It is, admittedly, not such a great mnemonic,

but you should take this as a challenge to come up with a better

one.

Order of matrices for modulating rows vs. columns

PRe-multiply to affect Rows

POst-multiply to affect cOlumns.

tween a and c, and between b and d.

2) 2 0] 1 1 b)
0 3/[1 1
Answers
a) 2 2 b) 20 15
3 3] 18 24

5 0] [4 3
0 6} [3 4} ©)

—_ =
L 1
—

2 0
0 3

d)

d)

Practice problems Perform the following matrix multiplications. Note the differences be-

sl

[20 18
|15 24

Multiplying two diagonal matrices

matrices is another diagonal matrix whose diagonal elements are

The product of two diagonal

6.3 MULTIPLICATION WITH DIAGONALS
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the products of the corresponding diagonal elements. That’s a
long sentence, but it’s a simple concept. Here’s an example:

a 0 0l[d oo ad 0 0
0 b 0[[0 e 0l=]0 b O (6.6)
00 c|l0o o0 ¥ 0 0 cf

Take a minute to work through the mechanics of matrix multipli-
cation to convince yourself that this is the correct answer. And
then you can just remember that multiplying two diagonal matri-
ces is easy—in fact, for two diagonal matrices, standard matrix
multiplication is the same as element-wise multiplication. That

becomes relevant when learning about eigendecomposition!

LIVE EVIL! (a.k.a. order of operations)

Let’s start with an example to highlight the problem that we need
a solution for. Implement the following matrix multiplication and
then transpose the result:

GARD -

I assume you got the matrix 2 j . Now let’s try it again, but

this time transpose each matrix individually before multiplying
them:
T T
2 4 0 1 _
1 2 11

Did you get the same matrix as above? Well, if you did the math
correctly, then you will have gotten E z}, which is the not the
same as the previous result. It’s not even the same result but
transposed. In fact, it is an entirely different matrix.

OK, now let’s try it one more time. But now, instead of applying
the transpose operation to each individual matrix, swap the order



of the matrices. Thus:

BN

And now you get the same result as the first multiplication:

4 2
6 3|

And this brings us to the main topic of this section: An oper-
ation applied to multiplied matrices gets applied to each matrix

individually but in reverse order.

It’s a weird rule, but that’s just how it works. "LIVE EVIL"
is a mnemonic that will help you remember this important rule.
Notice that LIVE spelled backwards is EVIL. It’s a palindrome.

The LIVE EVIL rule: Reverse matrix order

(A...B)T=BT.. AT (6.7)
Basically, an operation on multiplied matrices gets applied to each
matrix in reverse order. Here’s how it would look for four matri-

ces:
(ABCD)T = DTCTBTAT

The LIVE EVIL rule applies to other operations as well, such as

the matrix inverse. For example:
(ABC)! =cC'B!A!

LIVE EVIL is, admittedly, a strange and counter-intuitive rule.
But it is important, so let’s look at another example, which will
also highlight why this rule needs to be the case. In the equations
below, the top row implements matrix multiplication first, then
transposes the result; while the second row first transposes each

matrix in reverse order and then performs the matrix multiplica-

tion.
T - T - -
a blle f _ |ae+bg af +0bh _ |ae+bg ce+dg
c dl|lg h]) ~ |ece+dg cf+dh ~ |af +bh cf +dh
__e gl la ¢ __ae—l—bg ce+dg_
|f R [b d ~ |af +bh cf +dh

n.b.: LIVE EVIL
is not a recommen-
dation for how to
interact with soci-
ety. Please be nice,
considerate, and
generous.

6.4 LIVE EVIL
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For square matrices, ignoring the LIVE EVIL rule still gives a re-
sult (though incorrect). However, for rectangular matrices, multi-
plication would be impossible when ignoring the LIVE EVIL rule.
This is illustrated in Figure 6.6.

| |

T
T A T
B
N x M KxN

B —
A
||
M x N N x K

KxN NxM

Figure 6.6: Example of the LIVE EVIL law for transposing
matrix multiplication. Pay attention to the matrix sizes: Ig-
noring the LIVE EVIL rule and transposing without reversing
leads to an invalid expression (top), whereas the multiplication
remains valid when swapping matrix order (bottom).

Be careful with Equation 6.7—an operation may be valid on the
product of matrices but invalid on the individual matrices. This
comes up frequently in statistics and the singular value decomposi-
tion. For example, the expression (XTX)~! may be valid whereas

X~ 1X-T may be undefined. You’ll see examples of this situation

in later chapters. Fortunately, all matrices can be transposed,
so for now you can always apply the LIVE EVIL rule without

concern.

Practice problems Perform the following matrix multiplications. Compare with the prob-

lems and answers on page 148.

T

2 7 T T
{3 4 0] b) [3 2} {1 1}
0 4 1 0 1| |1 2

o s ]

N




Matrix-vector multiplication

Matrix-vector multiplication is the same thing as normal matrix-
matrix multiplication, where you think of the vector as an M x 1
or as a 1 x N matrix. The important feature of matrix-vector
multiplication—which is obvious when you think about it but is
worth mentioning explicitly—is that the result is always a vec-
tor. This is important because it provides the connection between
linear transformations and matrices: To apply a transform to a
vector, you convert that transform into a matrix, and then you

multiply the vector by that matrix. Here are two examples of
matrix-vector multiplication.

o[t -3

bTA =[5 2| E ﬂ =[45+12 52+23)=[24 16]

4-5+2-2
1-5+32

Three observations here:

1. bA is not defined (assuming b is a column vector)

2. If A is rectangular, then either bT A or Ab is undefined
(depending on the sizes, but they can’t both be valid)

3. Ab # bTA even when both are valid operations

There is an interesting exception to this third observation, which
is that if the matrix is symmetric, then pre-multiplying the vec-
tor is the same as post-multiplying the transpose of the vector.
(Technically, the results are not literally the same, because one
result is a column vector while the other is a row vector, but the

elements of those vectors are identical.)

Symmetric matrix times a vector

if A=A" then Ab= (bTA)T (6.8)

Let’s work through a proof of this claim. The proof works by
transposing Ab and doing a bit of algebra (including applying

6.5 MATRIX-VECTOR MULTIPLICATION
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the LIVE EVIL rule!) to simplify and re-arrange.

Notice that our (Ab)T =bTAT =pbTA
proof here in-

volved transpos- | The proof works because A = AT, If the matrix weren’t symmet-
e ric, then A # AT, in other words, A and AT would be different
and simplifying.

This strategy un- Matrices. And of course, b and bT are the same except for orien-

ing, expanding,

derlies many linear | tation.
algebra proofs.

Let’s look at an example.

ol L -

ﬂAzpeHZﬂ:hwwew+ﬂ

ad + be
bd + ce

Notice, as mentioned above, that the two results are not ¢dentical
vectors because one is a column and the other is a row. However,
they have identical elements in a different orientation.

Now watch what happens when matrix A is non-symmetric. In

the matrices below, assume b # f.

=[] -

MA:WeH“ﬂzpm¢ew+ﬂ

ad + be
fd+ ce

f c
Practice problems Perform the following matrix multiplications.
4
4 3 0 o 6
1 1 9 4 0 2 0 8 0] |1
a) 7 b)
0 3 0 1 0 3 0 5 0 1| (2
1 1 1 1
6
Answers
21
a) 16 b) 26
21 34
8




Creating symmetric matrices

In the previous chapter, I claimed that all hope is not lost for
non-symmetric matrices who aspire to the glorious status of their
symmetric conspecifics, upon whom so many luxuries of linear
algebra are bestowed. How can a non-symmetric matrix become

a symmetric matrix?

There are two methods: Additive and multiplicative. The addi-
tive method is not widely used in practical applications (to my
knowledge), but it is worth learning. The additive method to cre-
ate a symmetric matrix from a non-symmetric matrix is to add
the matrix to its transpose. This method is valid only for square

matrices.

c- %(AT +A) (6.9)

An example will illustrate why Equation 6.9 works. Notice that
the diagonal elements are doubled, which is why dividing by 2
is an appropriate normalization factor. (In the matrices below,
assume that b # d, ¢ # h, and f #i.)

a b ¢ a d h a+a b+d c+h
d e fl+|b e i|=|b+d e+e f+i (6.10)
h i j c f c+h f+i 547

This is just one example of a 3 x 3 matrix. What if this is some
quirk of this particular matrix? How do we know that this method
will always work? This is an important question, because there
are several special properties of 2x2 or 3x 3 matrices that do not

generalize to larger matrices.

The proof that Equation 6.9 will always produce a symmetric
matrix from a non-symmetric square matrix comes from the def-
inition of symmetric matrices (C = C™). Therefore, the proof
works by transposing both sides of Equation 6.9, doing a bit of
algebra to simplify, and seeing what happens (I'm omitting the

6.6 CREATING SYMMETRIC MATRICES
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The matrices are
summed, not mul-
tiplied, so the
LIVE EVIL rule
does not apply.

scalar division by 2 because that doesn’t affect symmetry).

C=AT+A
C'=(AT+A)"
CT :ATT—|—AT

CT=A+ AT

(6.11)
(6.12)
(6.13)

(6.14)

Because matrix addition is commutative, A+AT = AT+ A. The

right-hand side of Equation 6.14 is the same as the right-hand side

of Equation 6.11. And if the right-hand sides of the equations are

equal, then the left-hand sides must also be equal. This proves

that C = CT, which is the definition of a symmetric matrix. This

proof does not depend on the size of the matrix, which shows that

our example above was not a fluke.

Practice problems Create symmetric matrices from the following matrices using the ad-

ditive method.

1 11 1 _i’ g
a) [-5 -2 1 b)
-4 -8
-1 -5 2
| 6 —2
Answers
r_ 1
1 3 0 L
a) [3 -2 -2 b) ; .
0 -2 2
| 2 -4

I
N© =3

The multiplicative method This involves multiplying a matrix

by its transpose. In fact, this is the AT A matrix that you learned

about in the previous chapter.

I claimed in the previous chapter that ATA is guaranteed to be

symmetric (and therefore also square), even if A is non-symmetric—

and even if A is non-square. Now that you know about matrix
multiplication and about the LIVE EVIL rule, you are able to

prove these two important claims.

First we prove that AT A is a square matrix. Let’s say that A is




size M x N (assume M # N). First note that AA is not a valid
multiplication. Now consider that AT A means (MxN)x(NxM).
The "inner" dimensions (N) match, and the result will be M x M.

So there you go: we just proved that ATA is a square matrix.

Now let’s prove that ATA is symmetric. The proof follows the
same strategy that we applied for the additive method: transpose
ATA, do a bit of algebra, and see what happens.

(ATA)T = ATATT = ATA (6.15)

We transposed the matrix, applied the LIVE EVIL rule (and the
property that a double-transpose leaves the matrix unchanged),
and got back to the original matrix. A matrix that equals its

transpose is the definition of a symmetric matrix.

Are these two features unique to ATA? What about AAT —is
that also square and symmetric? The answer is Yes, but I want

you to get a piece of paper and prove it to yourself.

In practical applications, particularly in data analysis,
ATA appears as often as AAT. The correct form de-
pends on how the data are stored (e.g., observations x
features vs. features x observations), which usually de-

Reflection

pends on coding preferences or software format. In the
written medium, I prefer ATA because of the aesthetic

symmetry of having the T in the middle.

the multiplicative method (ATA and AAT).

18 0
0 49

a) 3 0 3 b) 1 6
0o 7 0 6 1
Answers
v 0 37 12
a) ATA = |0 49 0|, AAT = b)ATA—{ } T—{
9 o 0 12 37

Practice problems Create two symmetric matrices from each of the following matrices, using

N

6.6 CREATING SYMMETRIC MATRICES
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Multiplication of two symmetric matrices

If you multiply two symmetric matrices, will the product matrix
also be symmetric? Let’s try an example to find out:

bl

Is the result symmetric? On its face, it seems like it isn’t. How-

ad+be ae+bf

(6.16)
bd + ce be+ cf

ever, this equation reveals an interesting condition on the sym-
metry of the result of multiplying two 2 X 2 symmetric matrices:
If a = cand d = f (in other words, the matrix has a constant
diagonal), then the product of two symmetric matrices is itself
symmetric. Observe and be amazed!

I

Is this a general rule that applies to symmetric matrices of any

ad + be ae + bd

(6.17)
bd + ae be + ad

size? Let’s repeat with 3x3 matrices, using the constant-diagonal

idea.
a b clle f g ae+bf +cg af+be+ch ag+bh+ce
b a d||f e h|=|betaf+dg bf+ae+dh bg+ ah+ de
c d a|ll|lg h e ce+df +ag cf+de+ah cg+ dh+ae

A quick glance reveals the lack of symmetry. For example, com-
pare the element in position 2,1 with that in position 1,2. T won’t
write out the product of two 4x4 symmetric matrices (if you want
to try it, go for it), but you can take my word for it: the resulting

product matrix will not be symmetric.

The lesson here is that, in general, the product of two symmetric
matrices is not a symmetric matriz. There are exceptions to this
rule, like the 2 x 2 case with constant diagonals, or if one of the

matrices is the identity or zeros matrix.

Is this a surprising result? Refer back to the discussion at the end
of the "element perspective" of matrix multiplication (page 144)
concerning how the upper-triangle vs. the lower-triangle of the



product matrix is formed from earlier vs. later rows of the left
matrix. Different parts of the two multiplying matrices meet in
the lower triangle vs. the upper triangle of the product matrix.

You can also see that the product matrix is not symmetric by
trying to prove that it is symmetric (the proof fails, which is
called proof-by-contradition). Assume that A and B below are

both symmetric matrices.
(AB)T =BTAT =BA # AB (6.18)

To be sure, Equation 6.18 is a perfectly valid equation, and all
of the individual multiplications are valid. However, matrix mul-
tiplication is not commutative, which is why we had to put a #
sign at the end of the equation. Thus, we cannot assume that
AB = (AB)", therefore, the multiplication of two symmetric

matrices is, in general, not a symmetric matrix.

This may seem like a uselessly academic factoid, but
it leads to one of the biggest limitations of principal
components analysis, and one of the most important
advantages of generalized eigendecomposition, which is

Reflection

the computational backbone of many machine-learning

methods, most prominently linear classifiers and discrim-

inant analyses. i

Element-wise (Hadamard) multiplication

Before having had any exposure to matrix multiplication (in this
chapter or elsewhere), Hadamard multiplication is probably what
you would have answered if someone asked you to guess what it

means to multiply two matrices.

Hadamard multiplication involves multiplying each element of one
matrix by the corresponding element in the other matrix. You

6.8 HADAMARD MULTIPLICATION
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@ indicates
element-wise

division.

have already learned about Hadamard multiplication in Chapter
3; the concept and notation is the same for matrices as for vectors.
Thus:

C=A0B (6.19)
The formal definition of Hadamard multiplication is

Hadamard (element-wise) multiplication
Cij = Qij X bij (6.20)

You might have already guessed that Hadamard multiplication is
valid only for two matrices that are both M x N, and the product
matrix is also size M X N.

One example will suffice for understanding.
0 1 2 3 8 5 0 8 10
© = (6.21)
-1 6 3 4 1 =5 -4 6 —15

Because Hadamard multiplication is implemented element-wise, it
obeys the commutative law just like individual numbers (scalars).
That is,

AGB=B0oA

There is also element-wise division, which is the same principle
but for division. This operation is valid only when the divisor
matrix contains all non-zero elements.

012 38 5]_[0/3 18 2/5
-16 3] |41 —5| |[-1/4 6/1 —-3/5

One can debate whether Hadamard multiplication and division
are really matriz operations; arguably, they are simply scalar mul-
tiplication or division, implemented en masse using compact nota-
tion. Indeed, element-wise matrix multiplication in computer ap-
plications facilitates convenient and efficient coding (e.g., to avoid
using for-loops), as opposed to utilizing some special mathemati-
cal properties of Hadamard multiplication. That said, Hadamard
multiplication does have applications in linear algebra. For exam-
ple, it is key to one of the algorithms for computing the matrix

inverse.



Code Here is another case where matrix multiplication is con-
fusingly different between MATLAB and Python. In MATLAB,
A*B indicates standard matrix multiplication and A.*B indicates
Hadamard multiplication (note the dot-star). In Python, AGB
gives standard matrix multiplication and A*B gives Hadamard

multiplication.

Code block 6.5: Python
1 Ml = np.random.randn (4,3)
M2 = np.random.randn (4,3)
C =Ml x M2

W N

Code block 6.6: MATLAB
1 Ml = randn(4,3);
2 M2 = randn(4,3);
C =Ml .x M2

w

7~

Practice problems Hadamard-multiply the following pairs of matrices.

-4 -3 -9 —1 4 -3 —4 -5 -—16
a) |-5 =2 3[,[-3 —4 2 b) |-4 -1 21,
0 -7 7 3 2 5 7 1 5
Answers
4 —12 27
a) |15 8 6 b) Undefined!
0 -—-14 35

-3 6 —-10 O
-4 9 -6 4
1 2 -6 0

Frobenius dot product

The Frobenius dot product, also called the Frobenius inner prod-
uct, is an operation that produces a scalar (a single number) given
two matrices of the same size (M x N).

To compute the Frobenius dot product, you first wvectorize the
two matrices and then compute their dot product as you would

for regular vectors.

6.9 FROBENIUS DOT PRODUCT
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Vectorizing a matrix means concatenating all of the columns in a
matrix to produce a single column vector. It is a function that
maps a matrix in RM¥ to a vector in RMN.

Vectorizing a matrix
Vv = a;; ,such that

V=[a11,-s Gm,1, Q12> Gm2;- -5 Cmp)] (6.22)

Here is an example of a matrix and the result of vectorizing it.

(2 7])-

As with many other operations you’'ve learned about so far, there

o QU O o R

is some arbitrariness in vectorization: Why not concatenate across
the rows instead of down the columns? It could go either way, but

following a common convention facilitates comprehension.

Code Note that Python defaults to row-based vectorization, which
can be changed by specifying to use Fortran convention.

Code block 6.7: Python
1 A= np.array ([ [1,2,3],[4,5,6] ])
2 A.flatten (order="F")

Code block 6.8: MATLAB
1 A=1] 1,2,3; 4,5,6 ];
2 A(:)

Anyway, with that tangent out of the way, we can now compute
the Frobenius dot product. Here is an example:

(A B)p = 15 0 [4 -1 3]\ _,
TN =4 0 2] 2 6 7/,



Note the notation for the Frobenius dot product: (A, B)p

A curious yet useful way to compute the Frobenius dot product
between matrices A and B is by taking the trace of ATB. There-

fore, the Frobenius dot product can also be written as follows.

Frobenius dot product as the trace of ATB

(A,B)p =tr(ATB) (6.23)

I’'ve omitted the matrix sizes in this equation, but you can tell
from inspection that the operation is valid if both matrices are
size M x N, because the trace is defined only on square matrices.

The reason why Equation 6.23 is valid can be seen by working
through a few examples, which you will have the opportunity to

do in the exercises.

The Frobenius dot product has several uses in signal processing
and machine learning, for example as a measure of "distance," or

similarity, between two matrices.

The Frobenius inner product of a matrix with itself is the sum of
all squared elements, and is called the squared Frobenius norm or
squared Euclidean norm of the matrix. More on this in the next

section.

Code The code below shows the trace-transpose trick for com-

puting the Frobenius dot product.

Code block 6.9: Python

= np.random.randn (4,3)
np.random.randn (4,3)
= np. trace (A.T@B)

W N =
- 0
I

6.9 FROBENIUS DOT PRODUCT
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Code block 6.10: MATLAB

1 A= randn(4,3);
2 B = randn(4,3);
3 f = trace(A’xB);

Practice problems Compute the Frobenius dot product between the following pairs of

matrices.
4

a) 3
-5

Answers
a) —16

=1

T2 6 1 2] [4 —-11 1
= = b) [3 3 2]’[6 1 2]
-1 8

b) 40

Matrix norms

In section 3.9 you learned that the square root of the dot product
of a vector with itself is the magnitude or length of the vector,
which is also called the norm of the vector.

Annoyingly, the norm of a matrix is more complicated, just like
everything gets more complicated when you move from vectors
to matrices. Part of the complication with matrix norms is that
there are many of them! They all have some things in common,
for example, all matrix norms are a single number that some-
how corresponds to the "magnitude" of the matrix, but different
norms correspond to different interpretations of "magnitude." In
this section, you will learn a few of the common matrix norms,
and we’ll continue the discussion of matrix norms in Chapter 16
in the context of the singular value decomposition.

Let’s start with the Frobenius norm, because it’s fresh in your
mind from the previous section. The equation below is an alter-
native way to express the Frobenius norm.




Frobenius matrix norm

(6.24)

i zn:(amV

i=1j=1

A7 =

Now you know three ways to compute the Frobenius norm: (1) di-
rectly implementing Equation 6.24, (2) vectorizing the matrix and
computing the dot product with itself, (3) computing tr(ATA).

If we think of a matrix space as Euclidean, then the Frobenius
norm of the subtraction of two matrices provides a measure of
Euclidean distance between those matrices. The right-hand side of
the formula below should look familiar from computing Euclidean

distance between two points.
Euclidean distance between two matrices

|A - Bl = (6.25)

Of course, this formula is valid only for two matrices that have

the same size.

The Frobenius norm is also called the £2 norm (the £ character is
just a fancy-looking 1, or a lower-case cursive L). There is also an
£1 matrix norm. To compute the £1 norm, you sum the absolute
values of all individual elements in each column, then take the

largest maximum column sum.

There are many other matrix norms with varied formulas. Dif-
ferent applications use different norms to satisfy different crite-
ria or to minimize different features of the matrix. Rather than
overwhelm you with an exhaustive list, I will provide one general
formula for the matriz p-norm; you can see that for p = 2, the
following formula is equal to the Frobenius norm.

1/p

M N
1Al = { > lagl” (6.26)

i=1j=1

6.10 MATRIX NORMS
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Cauchy-Schwarz inequality In Chapter 3 you learned about the
Cauchy-Schwarz inequality (the magnitude of the dot product be-
tween two vectors is no larger than the product of the norms of the
two vectors). There is a comparable inequality for the Frobenius

norm of a matrix-vector multiplication:
[Av]] < [[A[[F|Iv] (6.27)

The proof for this inequality comes from integrating (1) the row
perspective of multiplication, (2) the Cauchy-Schwarz inequality
for the vector dot product introduced in Chapter 3, and (3) linear-
ity of the Frobenius norm across the rows (that is, the Frobenius
norm of a matrix equals the sum of the Frobenius norms of the
rows; this comes from the summation in Equation 6.24).

Let’s start by re-writing the norm of the matrix-vector multipli-
cation as the sum of vector norms coming from the dot products
of each row of A with v (m is the number of rows and a; is the
it" row of A).

m
|Av] = |a1TV\ + ...+ |a,TLV\ = Z |aiTv\ (6.28)
i=1

The dot-product Cauchy-Schwarz inequality allows us to write the

following.
m m
S fafvl < Y llagliv] (6.29)
i=1 =1

Finally, we re-sum the norms of the rows back to the norm of
the matrix. And that brings us back to our original conclusion in
Equation 6.27: The norm of a matrix-vector product is less than
or equal to the product of the Frobenius norms of the matrix and

the vector.

Code Different matrix norms can be obtained by specifiying dif-
ferent inputs into the norm functions. The code below shows

Frobenius norm.

Code block 6.11: Python

1 A = np.random.randn(4,3)
2 np.linalg.norm(A, "fro’)




Code block 6.12: MATLAB

1 A= randn(4,3);
2 norm (A, "fro’)

Practice problems Compute Euclidean distance between the following pairs of matrices

(note: compare with the exercises on page 166).

12 T2 6 1 2] [4 —11
a) | 3 2|,|-7 -8 b)[ ]{
3 3 -2’6
=5 = -1 8
Answers
a) /322~ 17.94 b) V162 ~ 12.73

What about matrix division?

All this fuss about matrix multiplications... what about division?
You did learn about element-wise matrix division in section 6.8,
but that’s not really matriz division; that’s a compact notation
for describing lots of scalar divisions. When you hear "matrix
division" you're probably thinking about something like this:

A

B

This would be the equivalent of a scalar division like % Well,
that doesn’t exist for matrices; it is not possible to divide one
matrix by another. However, there is a conceptually comparable
operation, and it is based on the idea of re-writing scalar division
like this: 5
—1
3= 2x3

The matrix version of this is AB™!. The matrix B! is called
the matriz inverse. It is such an important topic that it merits
its own chapter (Chapter 12). For now, I'll leave you with two
important facts about the matrix inverse.

1. The matrix inverse is the matrix such that AA™1 =1
2. Not all matrices have an inverse. A matrix has a full inverse

only if it is square and full-rank.

6.11 WHAT ABOUT MATRIX DIVISION?



MATRIX MULTIPLICATION

Exercises

1. Determine whether each of the following operations is valid,

and, if so, the size of the resulting matrix.

AeR?», Be

a) CB
¢) (CB)T

e) ABCB

g) CTBATAC

i) AAT

k) BBATABBCC
m)(A + ACCTB)TA
0) C+BATABC

q) A©® (ABC)

R3><3’ C c R
b) C'B
d) CTBC
f) ABC
h) BTBCCTA
j) ATA
1) (cBBTcchHT
n) C + CATABC
p)B+3B+ATA - cC?

r) A® ABC(BC)T

2. Compute the following matrix multiplications. Each problem

should be completed twice using the two indicated perspectives

of matrix multiplication (#1: element, #2: layer, #3: column,

#4: row).
a) #1,2: ; [1)
c) #3,4: :191
e) #2,3: i ?)

I
I

[

b) #2.4: -3 2 [1 o}

-2 3]0 2
] a4 |F o0 0
L 2_ L
(@ 0] [2 3]
f) #1.3:
) # b 0] 4 1]




' 10 4] [-2 -3 -1
g) #2,3: g 31 li ﬂ h)#1,2: [0 1 1| |-1 —9
L 3300 1 5
_a()l a b ¢
i) #23: |0 b 0| |1 2 3
10 ¢lloo1

3. Compute the following matrix-vector products, if the opera-

tion is valid.

- - AT - -
9 9 21" [2 2 1] [2
a) 0 b) 0 c)
0 3|3 3] [0 3] 2 3|3
T 0 1 0] [a 1 0 1] [5
21" 2 1
d)][] e) [0 0 1| [b] f —4 ol |2
3l |2 3
L 1 0 of |e 1 0 1|1
- - 1T
1 01 3] 1 3 2
g) 2] |0 —4 0| h) 6 1 5
1 01 21 13 5 0

4. Consider square matrices A and B, with nonzero values at
all elements. What assumptions on symmetry would make
the following equalities hold (note: the operations might also
be impossible under any assumptions)? Provide a proof or

example for each.

a) AB = ATBT b) AB = (AB)T
c) AB = AB" d)AB=A"TB
e) AB=BTA f) AB = (BA)T

5. In section 6.7 you learned that the product of two symmetric
matrices is generally not symmetric. That was for standard
multiplication; is the Hadamard product of two symmetric ma-

trices symmetric? Work through your reasoning first, then test

6.12 EXERCISES
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your hypothesis on the following matrix pair.

2 5 7 a d f
5 3 6|,|d b e
7 6 4 f e ¢

6. For the following pairs of matrices, vectorize and compute the
vector dot product, then compute the Frobenius inner product
as tr(ATB).

[ 1 2 [ 1
a)ab’ b)o 5’ 0
c d]’|3 4 7 2] |13 14
[ 4 -5 8 4-5 8 i
a b a b
c)| 1-1 2|, 1-1 2| 4d) ;
dl "la b
—2 24| |2 2 -4 .
i 11 7] [1 0
ey |4 O, | Y £) |2 2 6/,]0 1
c d|’ e d ’
- 3 3 5| |11

7. Implement the indicated multiplications for the following ma-

trices.
3 0 0 2
A=10 2 of, B=10
0 0 -1 0
a) AB b) AC
e) CB f) BCA

o ot O

c) BC

g) ACB

w O O

Q

1
N O N
[NCRNTSQEE
W o= w

d) CA

h) ABC



Answers

a) no

c) no

e) no

g) yes: 4x4

i) yes: 2x2

k) no

m)yes: 3x3

o) yes: 3x4

q) no

a) 0 5
2 17
(a b

a | ¢
2¢ 2d

) 2a+4b 3a+b

S 0

9 _
b

a) _9] ) |
b

e) f)
a

-3
b
) 2
(10
e) s
=
h) | -1
-9
4 9]
6
-8

b) yes:
d) yes:
f) yes:
h) no
J) yes:
1) no
n) no
p) yes:

r) yes:

—-36 6

g) invalid

4x3

4x4

2x4

3%x3

3x3

2x3

f)

(73 8.5
131 2.5

2a 3a
2b 3b

a® ab ac+1

2%  3b
a b 2c
d) [10 11]

h) [27 22 21

6.13 ANSWERS
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4. a) Both matrices symmetric. ~ b) A = B, both symmetric.
Or A =B"
c) B=BT d)A=AT

e) No general rule f) Both symmetric.

5. Yes, because the multiplication is done element-wise.

6. a)a+2b+3c+4d  b)63 c) 135

d) a’+b?+ca+bd  e) a®+b*+c2+d>  f) undefined

7 (6 0 0 6 3 9
a)| 0 10 0 b)| 0 8 2
0 0 -3 2 —2 _3
(4 2 6] [ 6 2 —3
c)| 0 20 5 d| o s -1
6 6 9 6 4 —3
(4 5 9] (12 4 —¢
e) | 0 20 3 f) | 0 40 —5
4 10 9 18 12 -9
[ 12 15 971 [ 12 6 18
g) 0 40 6 h) 0 40 10
4 —10 -9 6 -6 -9




Code challenges

1. Implement matrix multiplication between a 2x4 matrix and a

4x3 matrix, using the "layer perspective" in a for-loop. Confirm
that you get the same result as when you compute matrix
multiplication using @ (Python) or ¥ (MATLAB).

. Generate a 4 x 4 diagonal matrix and a 4 x4 dense matrix
of random numbers. Compute both standard and Hadamard
multiplication between them. You already know that the re-
sulting product matrices are not the same, but what about the

diagonals of those two product matrices?

. Consider C; = (AT 4+ A)/2 and Cy = ATA for some square
nonsymmetric matrix A. C; and Cs are both symmetric and
both formed from the same matrix, yet in general C; # Cs.
Interestingly, if A is a diagonal matrix with all non-negative
values, then C; = C;/ %, Show this in code using random

numbers, and then explain why you get this result.

. Let’s explore the Cauchy-Schwarz inequality. Generate a ran-
dom matrix A and a random vector v, compute the norms of
both sides of the inequality 6.27 (page 168), and show that the
right-hand side is larger than the left-hand side.

6.14 CODE CHALLENGES
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Code solutions

1. Note: Showing equivalence between the two results is done by
subtracting the matrices to get the zeros matrix (mathemati-
cally, this is x = x = x — x = 0). However, due to precision
and rounding errors, the results might be very small numbers
such as 1e-16 (10719). You can consider numbers smaller than
around le-15 to be equal to zero.

Code block 6.13: Python

A = np.random.randn(2,4)
B = np.random.randn (4,3)
Cl = np.zeros((2,3))
for i in range(4):
Cl 4= np.outer (A[:,i],B[i,:])

N O Ot WwW N

Cl — A@B

Code block 6.14: MATLAB
A = randn(2,4);
B = randn (4,3);
Cl = zeros(2,3);
for i=1:4
Cl =0C1+ A(:,1)*xB(i,:);

end

Cl — AxB

N O O s W N




2. The diagonals of the two product matrices are the same.

S T W N =

Code block 6.15: Python

D = np.diag(np.arange (1,5))
A = np.random.randn (4,4)

Cl = DA

C2 = D@A

print (np.diag(C1))
print (np. diag (C2))

Code block 6.16: MATLAB
D = diag(1:4);
A = randn (4);
Cl = D.xA;
C2 = DxA;
[diag (C1) diag(C2)]

3.C, = C;/ ? sounds like an amazing and quirky property of

matrix multiplication, but it’s actually trivial because A is

diagonal. The reason it works is the same reason that z = /22

for x > 0.

Code block 6.17: Python
1 A = np.diag(np.random.rand (3))
2 Cl = (A.T+A)/2
3 C2 = A.T@A
4 Cl-np.sqrt (C2)

N

Code block 6.18: MATLAB
A = diag(rand(3,1));
Cl = (A+A)/2;
C2 = A'xA;
Cl—sqrt (C2)

6.15 CODE SOLUTIONS
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4. The challenge isn’t so challenging, but it’s good excuse to gain
experience coding with norms. My strategy for the inequality
is to show that the right-hand side minus the left-hand side is
positive. You can run the code multiples times to test different

random numbers.

Code block 6.19: Python

1 import numpy as np
2 m=5
3 A = np.random.randn(m,m)
4 v = np.random.randn (m)
5 LHS = np.linalg .norm(AQv)
6 RHS = np.linalg .norm(A,ord="fro’) x
7 np.linalg .norm(v)
8 RHS-LHS
Code block 6.20: MATLAB
m = 5;
A = randn(m);
v = randn(m,1);

LHS = norm(Axv);
RHS = norm (A, "fro ' )xnorm(v);
RHS-LHS

S T e W N =
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CHAPTER 7
MATRIX RANK
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Six things to know about matrix rank

The rank of a matrix is a single number associated with that
matrix, and is relevant for nearly all applications of linear algebra.
Before learning about how to compute the rank, or even the formal
definition of rank, it’s useful to be exposed to a few key facts
about matrix rank. In fact, you won’t learn the formal methods
to compute rank until the next few chapters; here we focus on the

concept and interpretations of rank.

1. The rank of the matrix is indicated by the letter r or by
rank(A), and is a non-negative integer. A matrix cannot
have a rank of -2 or 4.7. A rank of 0 is possible, but most
matrices have a rank > 0. If fact, only the zeros matrix can
have a rank = 0.

N is the set of
natural numbers,

ak.a. the counting 2. The maximum possible rank of an M x N matrix is the

numbers. There is smaller of M or N. That is,

some debate about

whether 0 is in the reN,st. 0<r<min{M,N} (7.1)
set of natural num-

bers; it’s a philo- 3. Rank is a property of the entire matrix; it doesn’t make

sophical issue that sense to talk about the rank of the columns of the matrix,

some people choose .
not to worry about. or the rank of the rows of the matrix. In the next chap-
ter, you will learn about matrix spaces; it also doesn’t make

sense to talk about the rank of the null space of the matrix.

4. The figure below shows terminology for full-rank matrices,

depending on their sizes.

[ ] rank(A) =M = "Full rank"

’ ‘ rank(A) = N = "Full column rank”
T___rank(A) = M = "Full row rank”

Figure 7.1: Terminology for rank of matrices (boxes on left
indicate matrix shapes).

If a matrix rank is less than the smaller of M or N, then
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it is variously called "reduced rank," "rank-deficient," "de-
generate," "low-rank," or "singular." If you are the kind of
person who copes with life’s challenges by insulting others,
then you might also apply the epithets "dummy" or "loser"

matrix.

. The rank indicates the number of dimensions of information

contained in the matrix. This is not the same as the total
number of columns or rows in the matrix. For example, the
following matrix has 3 columns and 2 rows, but a rank of 1;
notice that the columns form a linearly dependent set (as do
the rows), and thus that any one column is a scalar multiple

of any other column (same for the rows).

1 3 4
3 9 12

. There are several definitions of rank that you will learn

throughout this book, and several algorithms for comput-
ing the rank. However, the key definition to keep in mind
is that the rank of a matrix is the largest number of
columns that can form a linearly independent set.
This is exactly the same as the largest number of rows
that can form a linearly independent set.

Why all the fuss about rank? Why are full-rank matrices
so important? There are some operations in linear alge-
bra that are valid only for full-rank matrices (the matrix
inverse being the most important). Other operations
are valid on reduced-rank matrices (for example, eigen-
decomposition) but having full rank endows some ad-
ditional properties. Furthermore, many computer algo-
rithms return more reliable results when using full-rank
compared to reduced-rank matrices. Indeed, one of the
main goals of regularization in statistics and machine-
learning is to increase numerical stability by ensuring
that data matrices are full rank. So yeah, matrix rank

is a big deal.

7.2 INTERPRETATIONS OF MATRIX RANK
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Interpretations of matrix rank

Algebraic interpretation As mentioned in point 6 above, if you
think of a matrix as comprising a set of vectors, then the rank of
the matrix corresponds to the largest number of vectors that can
form a linearly independent set. Remember that a set of vectors
is linearly independent if no vector can be expressed as a linear
combination of the other vectors.

The phrasing that seems correct here would be "the number of
linearly independent columns" in the matrix, but of course you
know that linear independence is a property of a set of vectors,

not individual vectors within a set.

Below are a few matrices and their ranks. Although I haven’t yet
taught you any algorithms for computing rank, try to understand
why each matrix has its associated rank based on the description

above.
1 1 3 1 3.1 1 3 2 1 1 1 0 00
2(, 12 6,12 61,16 6 1], |1 1 1|, 10 0 O
4 4 12 4 12 4 2 0 1 1 1 0 0 0
r=1 r=1 r=2 r=3 r=1 r=0

Geometric interpretation Rank is the dimensionality of the sub-
space spanned by the columns (or the rows) of the matrix. This
is not necessarily the same as the ambient dimensionality of the
space containing the matrix. For example, consider the following
vector (which we can also think of as a 3x 1 matrix):

v=1[1 0 1]T

This object lives in R3, although it spans only a 1D subspace (a
line). The rank of this matrix is therefore 1. In fact, all vectors
have a rank of 1, except for the zeros vector, which has a rank of
0.

Let’s reinterpret vector v: Instead of being a line in R3, let’s
consider it a row vector containing three elements in R! (three



points on the real number line). In this case, either of the non-
zero elements can obtained by scaling the other. Again, this leads

us to the conclusion that the rank is 1.

Here is another example:

1 1 —4

2 -1 2
Let’s start by thinking about the matrix as comprising three col-
umn vectors in R2. There are three vectors in ambient dimen-

sionality of 2, so this set of vectors spans all of R?, which is a 2D
plane (Figure 7.2, left panel). Thus, the rank is 2.

Now let’s think about that matrix as comprising two row vectors
in R3. Those two vectors are distinct, meaning they span a 2D
plane embedded in ambient 3D space (Figure 7.2, right panel).
Thus, the rank is 2.

4
10
3
2 5.
1
N O
>0
-1 -5
2 10
-3 5 S |
\\\x - - -2
-4 o ) "(6/
4 2 0 2 4 gt
X X b 2 y

Figure 7.2: Geometrically, the rank of a matrix is the dimen-
sionality of the subspaces spanned by either the columns (left)
or the rows (right).

The point is that regardless of the perspective you take (a ma-
trix as comprising columns or rows), the dimensionality of the
subspace spanned by those vectors—and thus, the rank of the
matrix—is the same. You can see in the example above that
those subspaces might be very different (more on this in the next

chapter!) but their dimensionalities are the same.

7.3 COMPUTING MATRIX RANK
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Computing matrix rank

Computing the matrix rank is, in modern applications, not triv-
ial. In fact, beyond small matrices, computers cannot actually
compute the rank of a matrix; they can only estimate the rank to

a reasonable degree of certainty.

Nonetheless, computing the rank of small (and, if your linear al-
gebra instructor is nice, integer-containing) matrices is not so dif-
ficult. There are several methods to compute the rank of a ma-
trix. These methods all tap into the same underlying features
of a matrix, but some methods are easier than others in some

situations.

Below is a list of three methods to compute the rank of a matrix.
At this point in the book, you can implement the first method;
the other two methods rely on matrix operations that you will
learn about in later chapters.

1. Count the largest number of columns (or rows) that can
form a linearly independent set. This involves a bit of trial-
and-error and a bit of educated guessing. You can follow the
same tips for determining linear independence in Chapter 4
(page 95).

2. Count the number of pivots in the echelon or row-reduced
echelon form of the matrix (Chapter 10).

3. Count the number of nonzero singular values from a singular

value decomposition of the matrix (Chapter 16).

Code Except for your linear algebra exams, you will never com-
pute matrix rank by hand. Fortunately, both Python and MAT-
LAB have functions that return matrix rank.

Code block 7.1: Python

1 import numpy as np
2 A = np.random.randn (3,6)
3 r = np.linalg.matrix_rank(A)




Code block 7.2: MATLAB

1 A= randn(3,6);
2 r = rank(A)

Practice problems Compute the rank of the following matrices based on visual inspection.

1 9 1 2 1 4 2 —4 10
a) b) c) |5 —220 d |2 3 -4
2 —4 2 1
5 52 4 2 0
Answers
a)r=1 b) r=2 c) r=2 d) r=2

N

Rank and scalar multiplication

T’ll keep this brief: Scalar multiplication has no effect on the rank
of a matrix, with one exception when the scalar is 0 (because this

produces the zeros matrix, which has a rank of 0).

The reason why scalar multiplication has no effect is that the
scalar simply stretches the information already present in the ma-
trix; it does not transform, rotate, mix, unmix, change, combine,

or create any new information.

Algebraically, scaling has no effect on rank because linear inde-
pendence does not change if all vectors in the set are multiplied

by the same scalar (of course, with the exception of 0).

I don’t think this rule needs an equation, but in the interest of
practicing my IMTEX skills:

rank(aA) = rank(A), a#0 (7.2)

Code There isn’t any new code in this section, but I decided
to add these code blocks to increase your familiarity with matrix

7.4 RANK AND SCALAR MULTIPLICATION
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rank. You should confirm that the ranks of the random matrix

and the scalar-multiplied matrix are the same.

Code block 7.3: Python

1 s = np.random.randn ()
2 M = np.random.randn (3,5)
3 rl = np.linalg.matrix_rank (M)
4 r2 = np.linalg.matrix rank (s=M)
5 print(rl,r2)
Code block 7.4: MATLAB
1 s = randn;
2 M= randn(3,5);
3 rl = rank(M);
4 r2 = rank(s*M);
5 disp([rl r2])

Rank of added matrices

If you know the ranks of matrices A and B, do you automatically
know the rank of A +B? The short answer is No, you don’t.
However, knowing the ranks of the individual matrices will put
an upper bound on the rank of A + B. Here’s the rule:

rank(A + B) < rank(A) 4 rank(B) (7.3)

I remember this rule is by thinking about adding together the
simplest possible rank-1 matrices to create a rank-2 matrix:

100 0 00 100
00 O0+]0 1 0=1]01020
000 0 00 0 00

On the other hand, adding two rank-1 matrices does not guarantee

a rank-2 matrix:

1 00 -1 0 0 0 00
0 00|+ 0O O =1]0200
0 0O 0 00 0 00



With that in mind, here are some more examples. The ranks of the
individual matrices are given in small subscripted numbers (n.b.
non-standard notation used only in this chapter for convenience),
but the ranks of the summed matrices are missing. You should
compute them on your own, then check in the footnote! for the

answers.
[1 2 3] [0 3 5] 1 5 8
3 4 +11 0 4| = 4 (7.4)
5 9 3 30 8 12 1
L 13 L 43 L
[1 2 0] [0 0 5] 1 2 5]
ol +lo 0 4| = 4 (7.5)
590, (001 [591
11 1] [0 0 0] 1 1 1]
2 22 +10 0 0] =[2 2 2 (7.6)
33 0 00 0 3 3 0
L 412 L 40 L i
1 -4 2 1 4 0 0 0 2
4 2 —1| +| 4 =2 0| =0 0 -1 (7.7)
9 4 -3, |-9 -4 0, |00 -3

The rule shown in Equation 7.3 applies to matrix subtraction
as well, because subtraction is the same thing as addition and
multiplying the matrix by -1, and scalar multiplication doesn’t
change the rank of a matrix (see Equation 7.2).

Multiple constraints There are multiple constraints on the rank
of a matrix. For example, "Thing 2" to know about matrix rank
was that the largest possible rank is the smaller of M or N (Equa-
tion 7.1). These constraints cannot be broken.

For example, imagine two 3 x 4 matrices, each with rank 3. The
sum of those matrices cannot possibly have a rank of 6 (Equation
7.3), because 6 is greater than the matrix sizes. Thus, the largest
possible rank of the summed matrix is 3 (the rank could be smaller

than 3, depending on the values in the matrices).

Top to bottom: 3, 3, 2, 1

7.5 RANK OF ADDED MATRICES
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Practice problems Determine the maximum possible rank of the following expressions,
based on the following information (assume matrix sizes match for valid addition):
rank(A) =4, rank(B) =11, rank(C) = 14.

a) A+B b) (A +B) +0C c) C-3A d) 0((C+A)+4A)
Answers
a) 15 b) 15 c) 18 d) o

Rank of multiplied matrices

As with summed matrices, you cannot know the exact rank of a
matrix C = AB only by knowing the individual ranks of A and
B. But also as with summed matrices, there is a rule for knowing
the maximum possible rank of the product matrix.

rank(AB) < min{rank(A),rank(B)} (7.8)

In other words, the smallest rank of the individual matrices is
the largest possible rank of the product matrix. Below are a few
examples, and then T’ll explain why this rule makes sense. These
are the same pairs of matrices as in the previous section, so it’s
interesting to compare the results. (As in the previous section,
ranks are listed in the subscripts, and the ranks of the products




are listed in the footnote?.)

1 23] [o3 5 (11 12 13
34 1| |1 04 =|7 12 31 (7.9)
5 9 1],|3 3 0f, [12 18 61
1 2 0] [0 0 5] 0 0 13
340/ (004 =00 31 (7.10)
59 0/,00 0 1] |00 6
[ 1 To ool Jooo
2 22 looo =000 (7.11)
33 0/,/0 00/, [000

1 -4 2 1 4 0] 35 —4 0

4 2 -1 4 -2 0| =| 13 —-16 0| (7.12)

9 4 -3|.|-9 -4 0, |52 400

How to understand this rule? You can think about it in terms
of the column space of the matrix C = AB. "Column space' is a
concept you’ll learn more about in the next chapter, but basically
it’s the subspace spanned by the columns of a matrix. Think of
the j** column of C as being the matrix-vector product of matrix
A and the j** column in B:

Abj = Cj (713)

This means that each column of C is a linear combination of
columns of A with the weights defined by the corresponding col-
umn in B. In other words, each column of C is in the subspace

spanned by the columns of A.

One definition of rank is the dimensionality of the column space of
a matrix. And because the column space of C is fully within the
column space of A, the dimensionality of C’s column space cannot
be larger than that of A. C’s column space could be smaller,
depending on the numbers in B, but the rank of A provides an

upper boundary.

The same argument can be made for matrix B by considering C

to be built up row-wise instead of column-wise.

2Top to bottom: 3, 1, 0, 2

7.6 RANK OF MULTIPLIED MATRICES
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r The rules in the past two sections will prepare you for
the next two sections, which have major implications for
applied linear algebra, primarily statistics and machine-
learning. Moreover, the more comfortable you are with

Reflection

matrix rank, the more intuitive advanced linear algebra

L concepts will be. i

~

Practice problems Determine the maximum possible rank of the following expressions,
based on the following information (assume valid matrix sizes):

rank(A) =4,

a) AB

Answers
a) 4

rank(B) =11, rank(C) = 14.

b) (AB)C c) 3CA d) (C+A)A

b) 4 c) 4 d) 4

Rank of A, AT, ATA, and AAT

The key take-home message from this section is that these four
matrices—A, AT, ATA, and AAT —all have exactly the same

rank.

You already know that A and AT have the same rank because
of property 3 in the first section of this chapter: the rank is a
property of the matrix; it does not reflect the columns or the
rows separately. Thus, transposing a matrix does not affect its

rank.

Proving that ATA and AA" have the same rank as that of A
takes a little more work. I'm going to present two explanations
here. Unfortunately, both of these explanations rely on some con-
cepts that I will introduce later in the book. So if you find these
explanations confusing, then please ear-mark this page and come
back to it later. I know it’s a bit uncomfortable to rely on con-
cepts before learning about them, but it often happens in math



(and in life in general) that a purely monotonic progression is
impossible.

Proof 1: The rank-nullity theorem The first proof relies on a
discussion of matrix null spaces, which you will learn more about
in the next chapter. Briefly, the null space of a matrix is the set
of all vectors y such that Ay = 0 (excluding the trivial case of
y = 0). The proof involves showing that ATA and A have the
same null space dimensionality, which means that they must have
the same rank. We start by proving that A and ATA have the
same null space.

Ay =0 (7.14)
ATAy = A0 (7.15)
ATAy =0 (7.16)

Equations 7.14 and 7.16 show that any vector in the null space
of A is also in the null space of ATA. This proves that the null
space of ATA is a subset of the null space of A. That’s half of
the proof, because we also need to show that any vector in the
null space of ATA is also in the null space of A.

ATAy =0 (7.17)
yTATAy =yT0 (7.18)
(Ay)"(Ay) =0 (7.19)
|Ay[l =0 (7.20)

Equations 7.17 and 7.20 together show that any vector in the null
space of ATA is also in the null space of A.

Now we’ve proven that ATA and A have the same null spaces.
Why does that matter? You will learn in the next chapter that
the row space (the set of all possible weighted combinations of
the rows) and the null space together span all of RN, and so if the
null spaces are the same, then the row spaces must have the same
dimensionality (this is called the rank-nullity theorem). And the

7.7 Rank oF A, AT, ATA, anp AAT
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rank of a matrix is the dimensionality of the row space, hence,
the ranks of ATA and A are the same.

Proving this for AA™T follows the same proof as above, except you
start from yTA = 0 instead. I encourage you to reproduce the
proof with a pen and some paper.

Proof 2: The singular value decomposition This explanation
relies on another definition of rank, which is the number of non-
zero singular values. Briefly, the singular value decomposition
(SVD) involves representing a matrix as the product of three other
matrices: A = UXVT. ¥ is a diagonal matrix that contains the
singular values. The SVD of ATA is

ATA =(uzvhHTuzv? (7.21)
=vzuTuxv? (7.22)
=vxivT (7.23)

U is an orthogonal matrix, so UTU =1. Don’t worry if these
equations seem mysterious—that’s the whole point of Chapter
16! The important point for now is that the rank of a matrix
is the number of non-zero diagonal elements in X, and that is
exactly the same as the number of non-zero diagonal elements in
2. Thus, A and ATA have the same rank.

Let’s see an example. The following page shows a 2 x 3 rank-1
matrix, and then that matrix transposed and multiplied by its
transpose. You can confirm via visual inspection that the ranks
of all these matrices are 1.



A= rank(A) =1

AT=13 9 rank(AT) =1

[10 30 40
ATA =130 90 120 rank(ATA) =1
40 120 160

26 78
78 234

AAT = rank(AAT) =1

Rank of random matrices

n

A "random matrix" is a matrix that contains elements drawn at
random. The elements of random matrices can come from various
distributions, such as normal (Gaussian), uniform, Poisson, etc.
Random matrices have some interesting properties, and there are

entire theories built around random matrices.

The interesting property of random matrices that is most relevant
for this book—and for using computers to explore concepts in
linear algebra—is that they are basically always full rank. Almost
any time you populate a matrix with random numbers, you can
assume that that matrix will have its maximum possible rank

(there are some exceptions described below).

Why is this the case? When you generate random numbers on

computers—particularly floating-point precision random numbers—

it is simply mindbogglingly unlikely that linear dependencies in
the columns will just happen to arise. Here is an example of a
4 x 4 matrix of random numbers I generated in MATLAB using

the function randn:

7.8 RANK OF RANDOM MATRICES
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0.74441379927393025450754 748817417 1.51531409041400306758617944069556  0.42176561501130205300569286919199 1.25512664219240425822476936446037
—0.726467752184: 83001716819126  —0.34072242399389618405791679833783  0.386616: 0400040890344826
K 70513017764548  0.46106281417989597448681138303073  —0.15846403504882577983892133488553 3 221808487
—0.18966220087431615026751785535453  0.44733585004922499228641186164168  0.69627165982078986772307871433441  —1.47756257 26033843483310:

Apologies for making the font so small. The point isn’t for you
to read the actual numbers; the point is for you to appreciate
that the probability of linear dependencies leading to a reduced-
rank matrix is infinitesimal. Thus, whenever you create random
matrices on computers, you can assume that their rank is their
maximum possible rank.

On the other hand, matrices are not guaranteed to be full-rank
simply by virtue of having randomly drawn numbers. Reduced-
rank random matrices occur when the numbers are drawn from a
restricted range. For example, the following matrix was generated
by random numbers drawn from the population {0,1} and has a
rank of 2.

o

_= =0 O

= o O O
— o
= o O

[en}

Thus, matrices populated with floating-point random numbers
have maximum possible rank. This is useful because it allows you
to create matrices with arbitrary rank, which in turn will unlock
many opportunities for exploring linear algebra in code. Code
challenge 1 will guide you through the process.

Full-rank matrices via “shifting”

Full-rank square matrices are absolutely fabulous to work with.
But many matrices used in practical applications are rank-deficient.
So what’s a data-scientist to do?

One solution is to transform a rank-deficient matrix into a full-
rank matrix through "shifting," which you learned about in sec-
tion 5.8. As a quick reminder: shifting a matrix means to add



a multiple of the identity matrix (A + AI = A), which adds a
small quantity to the diagonal elements without changing the off-
diagonal elements.

In statistics and machine learning, one of the main reasons to
shift a matrix is to transform a reduced-rank matrix into a full-
rank matrix. Remarkably, this feat can be accomplished while
making only tiny (and usually practically insignificant) changes

to the information contained in the matrix.

To show how this is possible, I'll start with an extreme example
that shows how shifting a matrix can transform it into a full-rank
matrix. What is the value of A in the equation below?

000 100 100
00 0+xl01o0/l=1]010 (7.24)
000 00 1 00 1

I’'m sure you calculated that A = 1, and shifting trivially moved
the matrix rank from 0 to 3. On the other hand, usually the goal
of shifting a matrix is to change the information contained in the
matrix as little as possible, and I've clearly violated that principle
here.

Let’s go for a less extreme example:

1 3 —19 10 0] [ror 3 -—19

5 —7 59| +.01|0 1 o= 5 —699 59

5 2 -24 00 1 -5 2 —23.99
(7.25)

The ranks of these matrices are, respectively, 2, 3, and 3. And
unlike with example 7.24, the matrices A and A are really close
to each other: All the off-diagonal elements are identical, and the
diagonal elements differ by a mere .01, which, for this matrix, cor-
responds to a change of less than 1% on the diagonal elements.

One final (again, somewhat extreme) example:

1 3 —19 100 1001 3 —19
5 —7 59| +10%|0 1 0| =] 5 993 59| (7.26)
-5 2 -2 001 -5 2 976

7.9 BOOSTING RANK BY "SHIFTING'
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Again, the ranks are 2, 3, and 3. But let’s think about what we’ve
done: By setting A to be large relative to the values in A, we’ve
pushed the matrix to be close to a scaled version of the identity
matrix (in fact, we could even say that that matrix is 103I plus
some flotsam and jetsam).

This leads to an interesting observation about matrix "shifting":
When A is close to 0, A is close to A, and as A gets large (relative

to the values in matrix A), A moves towards AL

In the context of statistics and machine learning, "shifting" is
also called regularization or matriz smoothing. It is an important
procedure for multivariate analyses such as principal components
analysis and generalized eigendecomposition (which are the math-
ematical backbones of data compression and linear discriminant

analyses).

An important question—and an area of ongoing research and test-
ing in data science—is determining the optimal A for a given ma-
trix and a given application. I'll introduce one method, called

"shrinkage regularization," in chapter 19.

Difficulties in computing rank in practice

I’d like to give you some sense of why it is difficult to compute
the rank of large matrices, from both an algebraic and geometric

interpretation.

I wrote above that one way to compute the rank of a matrix is
to count the number of non-zero singular values. You haven’t yet
learned about singular values, but it is sufficient for now to know
that an M x N matrix has min{M, N} singular values.

Computers suffer from rounding errors that lead to uncertainties
in distinguishing very small numbers from true zero. Oftentimes,
numbers smaller than around 10~!° are considered to be zero plus



computer rounding error (the exact exponent depends on your

computer’s precision).

So let’s say the computer estimates a singular value to be 3 x
10~15; is this a true non-zero singular value that happens to be
really small, or is this actually zero but with rounding error?
Your computer software (MATLAB or Python) will define some
threshold for considering a small singular value equal to zero.
But that threshold is arbitrary, and a rounding error could be
randomly on either side of that boundary. Therefore, rounding
error plus an arbitrary threshold can influence the reported rank of
the matrix. We’ll come back to this issue—including a discussion
of how that threshold is set—in Chapter 16.

Code The standard computer algorithm for computing rank is
to count the number of singular values above a threshold. The
purpose of this code block is for you to inspect the source code
for computing rank. Even if you don’t understand each line of
the code, you should be able to see the following operations: (1)
compute the SVD of the matrix, (2) define a "tolerance" (the
threshold for identifying a number as being significantly nonzero),
(3) count the number of singular values above this tolerance.

Code block 7.5: Python

1 ??np.linalg.matrix_rank

Code block 7.6: MATLAB

1 edit rank

Geometry Now let’s think about difficulties in computing rank
geometrically. Imagine you have a 3 x 3 matrix that represents
some data you collected from a satellite. The columns are in R?,
and let’s imagine that you know for a fact that the three vectors
all lie on a 2D plane. So you know for a fact, based on the design
of the satellite’s sensors, that the rank of the data matrix must
be 2.

7.10 RANK DIFFICULTIES
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But the sensors on the satellite are not perfect, and there is a
tiny, tiny bit of noise that corrupts the signal. So in fact, if you
would look at the subspace spanned by the columns of the matrix
at "eye level," you would expect to see the vectors perfectly lying
in a plane. Instead, however, you see the vectors pointing ever-
so-slightly above or below that plane (Figure 7.3).

Your computer would tell you that the rank of this data matrix is
3, which you know is actually due to sensor noise. So you might
want your rank-estimating-algorithm to ignore some small amount
of noise, based on what you know about the data contained in the

matrix.

* % %
* % %
* % %

Figure 7.3: A 3x3 matrix representing a 2D plane in R? may be
counted as a rank-3 matrix in the presence of a small amount
of noise. The diagrams at right illustrate three arrows on the
plane (dotted line), from the perspective of looking directly
across the surface of that plane.

Rank and span

In Chapter 4, you learned that an important question in linear
algebra is whether a vector is in the span of another set of vectors.
(Recall that a vector v is in the span of a set of vectors S if v can
be written as a weighted combination of the vectors in S.)

I wrote that there are several algorithms that can answer that
question, but that you hadn’t yet learned the necessary concepts.
We can now re-interpret this problem in the context of matrices



and rank.

There is an entire section about this procedure in the next chap-
ter (section 8.3), including a deeper explanation and diagrams.
However, I believe that you are now knowledgeable enough to be
introduced to the augment-rank algorithm. If you're struggling
with understanding why the following procedure tells us whether
a vector is in the span of a set of vectors, then don’t worry—it
means you have something to look forward to in the next chap-

ter!

Put the vectors from set .S into a matrix S.
Compute the rank of S. Call that rank ry.

Augment S by v, thus creating Sy, = S v
Compute the rank of Sy. Call that rank rs.
If ro > rq, then v is not in the span of S.

PRl

If ro = 71, then v s in the span of S.
If r9 < ry, then check your math or code for a mistake :(

Repetition facili-
tates comprehen-
sion, especially
when knowledge
increases between
each repetition.

7.11 RANK AND SPAN
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Exercises

1. Compute the rank of the following matrices based on visual

inspection.
1 2 2 1 2 2 210 3 5
a) |2 4 4 b) 2 4 4 c)|1 2 0 d)|o 8 3
4 8 8 4 8 9 0 0 3 0 23

2. Compute the rank of the result of the following operations.
2 4 2 -
A— 3 . B- 2 -1 3
0 1 3 6 -7 7
a) A b)B c)A+B d) AAT

e) ATA f) ABT g) (ABT)T  h)2AAT

3. For the following matrices, what value of A would give each

matrix rank m — 17

1 3 0 0
a) ll )\] b) lo )\] c) d)|0

)
N NN
NN >

4. Determine the maximum possible rank of the following oper-

ations.
AcR>», BeR*, CeR*> DecR*

a) A b) B c) C d)D
e) C'B f) CTC g) AD h) CD

i) B+B j) C+D k) BATAC 1)BATAC{D



Answers

a)r=1

a)A=3

b)r=2

b) 2

£) 2

b)A#£0

b) 3
£) 3

Jj) 3

c)r=3

g) 2

c) A#2

g) 2

k) 2

d)r=3

d) 2

h) 2

d)A=0

d)3
h) invalid!

1) 3

7.13 ANSWERS
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Code challenges

1. The goal of this code challenge is to create random matri-

ces with any arbitrary rank (though still limited by the con-
straints presented in this chapter). In particular, combine
standard matrix multiplication (previous chapter) with the
rule about rank and matrix multiplication (Equation 7.8) to
create reduced-rank matrices comprising random numbers (hint:
think about the "inner dimensions" of matrix multiplication).

. The goal of this code challenge is to explore the tolerance level

of your computer for computing the rank of matrices with tiny
values. Start by creating the 5 x5 zeros matrix and confirm
that its rank is 0. Then add a 5 x5 random numbers matrix
scaled by machine-epsilon, which is the computer’s estimate of
its numerical precision due to round-off errors. Now the rank
of that summed matrix will be 5. Finally, keep scaling down
the machine-epsilon until the rank of the summed matrix is 0.
You can also compute the Frobenius norm to get a sense of
the magnitude of the values in the matrix.



Code solutions

1. When multiplying two random matrices that are (M x N) x
(N x K) where M > N and K > N, then the product M x K
matrix will have rank-/N. The code below shows how to create

a rank-2 random matrix. I encourage you to generalize this

code so that the parameters M, N, and k are soft-coded.

Code block 7.7: Python

A = np.random.randn(9,2)

B = np.random.randn(2,16)
C = A@B
Code block 7.8: MATLAB
A = randn(9,2);
B = randn(2,16);
C = AxB;

)

2. On the laptop that I'm using while writing this exercise, I got

rank-5 matrices down to scaling factors of around 1

S T W N -

S O W N~

0—307

Code block 7.9: Python

Z = np.zeros ((5,5))

N = np.random.randn (5,5)

ZN = 7Z + Nsnp. finfo (float ).epsxle—307
print (np.linalg . matrix rank(Z))

print (np.linalg . matrix_rank (ZN))
print (np.linalg .norm(ZN, ’fro "))

Code block 7.10: MATLAB

Z = zeros (5);

N = randn (5)*eps*1le—307;
ZIN = 7Z + N;

rank (Z)

rank (ZN)

norm (ZN, "fro ’)

7.15 CODE SOLUTIONS
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Column space
is also some-
times called the
range or the im-
age of a matrix.

"Matrix spaces" are the same concept as vector subspaces, but
are defined by different features of a matrix instead of a set of
vectors. This chapter ties together concepts of vector subspaces,
basis, linear independence, and span.

Remarkably, this entire chapter can be summarized as trying to
answer the following two questions about matrix-vector multipli-
cation and a vector b # 0:

Ax=Db? (8.1)

Ay =07 (8.2)

In other words, the questions are: (8.1) Is there a weighted com-
bination of columns of A that produces vector b with the weights
given by vector x? And (8.2) Is there a weighted combination
of columns of A that produces the zeros vector with the weights
given by vector y (for y # 0)7

As you work through this chapter, try to think about how each
concept fits into these questions. At the end of the chapter, T will
provide a philosophical discussion of the meaning of these two

questions.

Column space of a matrix

"Column space" sounds like a fancy and exotic term, but in fact,
you already know what a column space is: The column space of
a matrix is the subspace spanned by all columns of that matrix.
In other words, think of a matrix as a set of column vectors, and
the subspace spanned by that set of vectors as the column space
of the matrix.

The column space is indicated using the notation C'(A). Here is
a formal definition.



Column space of a matrix

C(A) = {ﬂlal + ..0Bnan, B E R} (83)

C(A) = span(ay, ..., an) (8.4)

The two equations above show two different, and equally accept-

able, ways to express the same concept.

The main difference between a subspace spanned by a set of vec-
tors vs. the column space of a matrix is conceptual: a set of
vectors is a collection of separate objects, whereas a matrix is
one unit; it can be convenient to talk about particular groups of
elements in a matrix as if they were column vectors. But the ma-
trix elements that form columns always are also part of rows, and
they are also individual elements. That fluid level of reorganiza-

tion isn’t possible with sets.

The column space of an MxN matrix is in RM. Don’t be confused
and think that the column space is in RN because there are N
columns; each of those N columns has M elements, hence, C(A) €
RM . If the rank of the matrix is » = M, then the column space
spans all of RM; if the rank is 7 < M, then the column space is

an r-dimensional subspace of RM.

Also relevant here is the distinction between basis and span. The
columns of a matrix span a subspace, but they may or may not
be a basis for that subspace. Remember that a set of vectors is a
basis for a subspace only if that set is linearly independent.

Consider the two matrices below; their column spaces are iden-
tical, but the columns of the left matrix form a basis for that

subspace, whereas the columns of the right matrix do not.

O© N = W
S N o ot ©
O N = g W
S = 0o Ot ©
S N o Ot ©

Let’s try a few examples. For each of the matrices below, deter-

8.1 COLUMN SPACE OF A MATRIX
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If the matrix is full
column rank, then
the column space
spans all of RM

mine (1) the dimensionality of the ambient space in which the
column space is embedded, (2) the dimensionality of the column
space, and (3) whether the columns form a basis for the column

space.

(1 5 -3 4]

1 2 4 2 6 -2 4
12 3 5

0 4 4 08 13 921 3 7 —1 4

B=1{41 9|, C= , =4 8 0 4
0 0 34 55

6 0 12 5 9 1 4
00 0 89

11 3 6 10 2 4

7 11 3 4]

The column spaces of matrices B, C, and D live in ambient di-
mensionalities, respectively, of 5, 4, and 7 (an alternative phrasing
is that C(B) € R?, C(C) € R*, C(D) € R); this is determined
simply by counting the number of elements in the columns, which
is M.

The dimensionalities of the column spaces is a bit more work to
compute, because it involves determining the largest number of
columns that can form a linearly independent set of vectors, which
is the same thing as the rank of the matrix. Some trial-and-error
guesswork plus a bit of arithmetic, should lead you to the answers
of 2, 4, and 2.

Once you know the dimensionality of the column space, determin-
ing whether the columns form a basis for the column space is easy:
The columns form a basis for the column space if the subspace
dimensionality is the same as the number of columns. Thus, the
answers for the three matrices are No, Yes, and No. It is possible
to use the columns to create basis sets for the column spaces. For
example, the first two columns of matrix B can be used as a basis
set for C(B).

As a quick reminder, there is an infinite number of basis vectors
for the column space of a matrix; the columns themselves are
an easy-to-compute basis, but they are not necessarily the best
basis; in fact, one of the goals of the singular value decomposition
is to provide an orthogonal basis set for the column space of the

matrix.



The column space of A and AAT

Interestingly, A and AA" have the same column space. Let’s
first confirm that the dimension of their ambient spaces are the
same: Matrix A is size M x N, so C(A) € RM. Matrix AAT is
size (MxN)x(NxM) = MxM, and therefore is also € RM. This
doesn’t prove that their column spaces are the same, but it is a
prerequisite. (For example, it should now be obvious that A and
ATA cannot possibly have the same column space if M # N).

Now let’s see why the column spaces must be equal. Recall from
section 6.1 that the "column perspective" of matrix multiplica-
tion states that multiplication is a linear weighted combination
of the columns of the left matrix, where the weights come from
the columns in the right matrix. Thus, AA"T is simply a linear
weighted combination of the columns of A, which means it is in
the span of the column space of A.

Let’s see this in an example. I'm going to write out the multipli-
cation AAT using the column perspective.

0]y 4 s 0 10 ol [10 0
=|0|3|+0 | 7| 3[3[+7|7| 5[3]+3
[1073}
5 3 5| |3 5

Notice that each column in AAT is simply a linear weighted com-
bination of the columns of A. This is an important observation
because linear combinations of vectors in some subspace always
stay in that subspace (indeed, that is the definition of subspace!).
This shows that the column space of AAT is a subset of the col-
umn space of A.

Next we rely on the fact that AAT and A have the same rank (see
rank-nullity theorem, page 191), which means the dimensionalities
of their column spaces are the same. If the column space of AA™
is a subset of the column space of AAT and those two subspaces
have the same dimensionality, then they must be equal.

8.2 COLUMN SPACE: A AND AAT
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There is another explanation of why AAT and A have the same
subspace, which relies on the singular value decomposition. More
on this in chapter 16!

On the other hand, A and AAT generally do not have exactly
the same columns. So, the columns of those two matrices span
the same subspace, but can have different basis sets.

Determining whether v € C(A)

This section is a deeper discussion of the algorithm presented in
section 7.11. As a reminder, one of the important questions in
linear algebra is whether a certain vector is in the column space

of a matrix.

Let’s start with an example. Consider the following matrix and

vectors.

First, notice that the column space of A is a 2D plane embedded
in R3. This is the case because the two columns form a linearly
independent set (it is not possible to obtain one column by a
scaled version of the other).

Now onto the question at hand: Is vector v in the column space
of matrix A? Formally, this is written as v € C(A) or v ¢ C(A).
This is not a trivial question: We’re asking whether a vector in
3D happens to lie on an infinitely thin plane.

For vector v, the answer is Yes, v € C(A), because it can be
expressed as a linear combination of the columns in matrix A. A
bit of guesswork will lead to you to coefficients of (1,2) for the



columns to produce the vector v:

2 1 4
1|4| +2 4] = |12 (8.5)
0 0 0

One of the beautiful features of linear algebra is that it allows
expressing a large number of equations in a compact form. We can
do that here by putting the column coefficients (1,2) into a vector,
and then re-writing equation 8.5 as a matrix-vector multiplication
of the form Ax = v:

2 1 4

1
4 4 L] =112 = Ax=v (8.6)
0 0 0

Whenever you see a matrix equation, the first thing you should do
is confirm that the matrix sizes allow for a valid equation. Here
we have matrix sizes (3x2)x (2x1) = (3x1). That works.

Now let’s consider vector w. It should take only a moment’s in-
spection to see that w cannot be expressed as a linear combination
of columns in A, because w3z = 1 cannot be created from linear
combinations of 0, therefore w ¢ C(A).

The "augment-rank' algorithm to determine whether v € C(A)
I’ve mentioned this algorithm twice in previous chapters; the novel
part here is the application to determining whether a vector is in

the column space of a matrix.

Start by creating a matrix B = ALlv (that is, augment the matrix
with the vector). Then compute the ranks of these two matrices
(B and A). There are two possible outcomes: (1) the ranks are
the same, which means that v € C(A); or (2) the rank of B is
one higher than the rank of A, which means that v ¢ C'(A).

Why is this the case? You can think about it geometrically: If v is
in the column space of A, then the vector is sitting somewhere in

the subspace, hence, no new geometric directions are obtained by

We could also write
Ax #w, ¥xeRY

DETERMINING WHETHER v € C(A)

59
00

Figure 8.1: The
dashed gray line
represents C'(M) €
R2. Then v € C(M)
and w ¢ C(M)
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including vector v. In contrast, if v is outside the column space,
then it points off in some other geometric dimension that is not
spanned by the column space; hence, B has one extra geometric
dimension not contained in A, and thus the rank is one higher.
This is depicted in Figure 8.1.

You can also think about it algebraically: If v can be obtained by
a linear weighted combination of columns in A, then augmenting
A by v is necessarily creating a linearly dependent set, thus the
rank cannot possible increase.

A corollary of this method is that if A is full rank square matrix
(that is, rank=M), then v is necessarily in the column space,
because it is not possible to have a subspace with more than M
dimensions in RM.

This algorithm only tells you whether a vector is in the column
of a matrix. It doesn’t reveal how to combine the columns of
the matrix to express that vector. For that, you can apply a
procedure called Gaussian elimination, which is a major topic of
Chapter 10. In the practice problems below, you can use a bit of
trial-and-error and educated guessing to find the coefficients.

Practice problems Determine whether the following vectors are in the column space of
the accompanying matrices, and, if so, the coefficients on the columns to reproduce the vector.

Answers
a) yes. (2,1) b) yes. (2,-2,3) c) no.

=




Row space of a matrix

The row space of a matrix, indicated by R(A), is the same concept
as the column space, except it refers to the subspace spanned by
the rows. This means it is also the same thing as the column
space of the matrix transpose, in other words, R(A) = C(AT).
Therefore, there isn’t really anything new in this section compared

to section 8.1.

The primary difference is the way that you ask the question whether
a given vector is in the row space of the matrix. In particular, this
changes how you multiply the matrix and the vector: Instead of
matrix-vector multiplication as with the column space (Ax = v),
you have to put the row vector on the left side of the matrix, like
this: xTA =vT . Now the weighting vector x, sometimes also
called the coefficients vector, is a row vector on the left, meaning
that we are taking weighted combinations of rows of A instead of

columns.

An example: The row space of the matrix {1 20 —3} is a line
in R*. This is quite a different conceptualization from the column
space of that matrix, which is all of Rl. (Though notice that the

dimensionalities are the same.)

You can apply a slightly modified version of the augment-rank
algorithm to determine whether a vector is in the row space of
a matrix: Place the vector as a new row in the matrix and then

compute the rank of that row-augmented matrix.

Note that for a square full-rank matrix, C(A) = R(A) = RN,

8.4 ROW SPACE OF A MATRIX
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Practice problems Determine whether the following vectors are in the row space of the

accompanying matrices, and, if so, the coefficients on the rows to reproduce the vector.

Answers

a) no.

T T

1 1
} b [1]
1

S N O

11
11 c) 2| ,
0 0 0

w = O

1
0
3

b) yes. (.5,.5,0) c) wrong sizes!

The null space is
also sometimes
called the kernel
of the matrix.

Row spaces of A and ATA

Simply put, A and ATA have the same row spaces (R(A) =
R(ATA)). The arguments, explanations, and implications are
exactly the same as with the column spaces discussed in section
8.2.

One new concept I will add here is that the fact that R(A) =
R(ATA) can be an example of dimensionality reduction: both of
those matrices have the same row space, but ATA might be a
smaller matrix (that is, it might have fewer numbers), and there-

fore be computationally easier to work with.

Null space of a matrix

You might be wondering what "null" refers to—you know what
columns and rows are, but what is the "null" of a matrix? The null
space of a matrix is like the basement of a cheesy horror movie:
Not every house has a basement, but if there is one, anyone who
goes into it won’t come out. Likewise, not all matrices have a null
space, but if a matrix has a null space and a vector goes into it,

that vector can never return.




More formally, the null space of a matrix is indicated as N(A)
and is defined as the subspace containing all of the vectors that

satisfy the following equation:
Ay =0 (8.7)

This means that there is a linear combination of the columns in
matrix A that produces a column vector of zeros, and the elements

of vector y specify those weightings.
When can Equation 8.7 be satisfied? Let us count the ways:

1. When y = 0. This is the trivial case, and we ignore trivial
cases in linear algebra.

2. When not all elements in y are zero, and the specific num-
bers in y and A align in just the right way that the matrix-
vector product is the zeros vector. This is the non-trivial

case, and our primary concern here.

Let’s see an example to make this more concrete. See if you can
come up with a vector (that is, find x and y) that satisfies the

420 6

Did you come up with the vector [-2 1]7? That satisfies the
equation and therefore is in the null space of that matrix (thus:
y € N(A)).

equation.

But that’s not the only vector that satisfies that equation—perhaps
your solution was [2 -1]T or [-1 .5]T or [-2000 1000]T. T'm sure you
see where this is going: There is an infinite number of vectors in
the null space of this matrix, and all of those vectors are scaled

versions of each other. In other words:

N R

As mentioned earlier, the zeros vector also satisfies the equation,

but that’s a trivial solution and we ignore it.

8.6 NULL SPACE OF A MATRIX
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Here is the complete definition of the null space of a matrix:
Null space of a matrix

NA)={\y|Ay =0, MeR}-{y=0} (8.10)

(Aside on math notation: The | indicates "such that" and the

minus sign excludes 0 from the set.)

Now let’s try another example:

Eﬂm:m (s.11)

Can you find a (non-trivial) vector in the null space? The answer
is No, you cannot. There is no way to combine the columns to
produce the zeros vector. It is colloquially said that this matrix
"has no null space," although a more appropriate phrasing would
be that the null space of this matrix is the empty set (again, the

trivial zeros vector is ignored):

1 2
“([4) -0 o1

Did you notice anything about the two matrices in equations 8.8
and 8.117 Perhaps you noticed that the matrix in 8.8 was singular
(rank=1) while the matrix in 8.11 was full rank (rank=2). This
is no coincidence—full-rank square matrices and full-column-rank
matrices necessarily have an empty null space, whereas reduced-
rank and reduced-column-rank matrices necessarily have a non-

empty null space. You’ll learn more about why this is in a few

pages.

The previous examples used square matrices; below are two exam-
ples of rectangular matrices so you can see that null space is not
just for squares. The hard work of finding the vector y is already
done, so pay attention to the sizes: the null space is all about
linear weighted combinations of the N columns, which are in RM,
and the vector that contains the weightings for the columns is



y € RN, corresponding to the dimensionality of the row space.
2 0

i1 :

There is a deterministic relationship between the rank of a matrix,

1111
2 2 2 2

e
Il

1
o O
| E—

— = = =
o o O

1

its size, and the dimensionality of the four matrix spaces. We will

return to this in section &8.10.

7

[ 1 2 3 1 2 3
4 0
A |, b) [3 1 4 c) [3 1 5
4 4 8 4 4 8
1 0
Answers
o 1
a) . b) 1 c) Empty null
- —1 space

Practice problems Find a vector in the null space of each matrix, if there is one.

N
-3 7 15
%

d) | 3
~1

one, or both vectors are in the null space of the matrix.

1
11
a [2 1,7, |72 b)ggg 2 o |°
b 1 b _1 b b 4
4 0 0 0 1 0 0
0
Answers
a) Neither b) Both

Practice problems For each combination of matrix and vectors, determine whether neither,

AR — N

c) Wrong sizes!

Left-null space There is a complementary space to the null
space, called the left-null space, which is the same concept but
with a row vector on the left of the matrix instead of a column
vector on the right of the matrix. The resulting zeros vector is

also a row vector. It looks like this:
y'A=0" (8.13)

The left-null space can be thought of as the "regular" null space of
the matrix transpose. This becomes apparent when transposing

The "regular" null
space is formally
the "right null

arara " i1+ +hico

8.6 NULL SPACE OF A MATRIX
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This result is not
terribly surprising,
but it is relevant
for finding null
space basis vec-
tors via the SVD.

both sides of Equation 8.13.
(yTA)T — OTT
ATy =0 (8.14)

Considering the left-null space as the (right) null space of the ma-
trix transpose is analogous to how R(A) = C(AT). This also
means that the two null spaces are equal when the matrix is sym-

metric:

N(A)=N(AT), ifA=AT (8.15)

Let’s think about the dimensionality of the left-null space. It
should be intuitive that it will mirror the null space. TI’ll start
by showing the left-null spaces of the two rectangular matrices
used above, and then discuss the rule. Notice that the null-space
vector is now on the left of the matrix.

= [0 o (8.16)

— e e
N NN

Y e IS TV (8.17)
-2 1

Here’s the rule: For an M x N matrix, the row space is in ambient
RN and the left-null space is in ambient RM. Again, this is sensible
because the left-null space provides a weighting of all the rows to
produce the zeros row vector. There are M rows and so a null
space vector must have M elements.

Look closely at Equation 8.16: Is that vector the only vector in the
left-null space? I’'m not referring to scaled version of that vector;
I mean that there are more vectors in the left-null space that are
separate from the one I printed. How many more (non-trivial)
vectors can you identify?



Practice problems Find a vector in the left-null space of each matrix, if there is one. Notice
that these matrices appeared in the practice problems on page 217; are the answers the same?

1 0
40 1 2 3 1 2 3 e 5
a)20 b) |3 1 4 c) [3 1 5 d)[3715]

4 4 8 4 4 8

1 0

Answers
a) [1 0 -1 1] b) [-8 —4 5] c) Empty left d) Empty left
null space null space

Code Python and MATLAB will return basis vectors for the null
space of a matrix (if it has one). How do they solve this seem-
ingly magical feat? They use the singular value decomposition!
However, you’ll have to wait several more chapters to understand
why the SVD reveals bases for the null space.

Code block 8.1: Python

import numpy as np
from scipy.linalg import null_space
A = np.random.randn(3,4)

= W N =

null__space(A)

Code block 8.2: MATLAB
1 A= randn(3,4);
null (A)

\V)

Geometric interpretation of the null space

Now that you know the horror-movie analogy (the evil basement
from which no unsuspecting visitors return) and the algebraic
definition (Ay = 0), this is a good time to learn the geometric

perspective of the null space.

Recall that a matrix times a vector produces another vector. We’ll

8.7 GEOMETRY OF THE NULL SPACE
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stick to R? here so that everything can be easily visualized. Con-
sider the following matrix and vectors.

w3 e[ o

Matrix M is singular and has a non-empty, 1-dimensional, null

space. u is not in the matrix’s null space, and y is in the null
space (please do the matrix-vector multiplications in your head
to confirm).

You can think of matrix M as a transformation matrix that warps
vector y into vector My. Figure 8.2 shows what that looks like.

Figure 8.2: Depiction of vec-
Mu tors y € N(M) and u ¢ N(M).
The vectors on their own are
not remarkable; however, when

multiplied by the matrix, y be-

My comes the zeros vector (dot at

the origin), whereas u is some

other (non-zeros) vector.

Figure 8.2 shows that when you multiply a vector in the null
space by that matrix, the resulting "vector" is just a point at the
origin. And that’s basically the end of the line for this matrix-
vector product My—it cannot do anything else but sit in the
origin. Just like the basement of a horror movie: Once you go
in, you never come out. There is no escape. There is no possible
other matrix A such that AMy # 0. In other words, the matrix
entered its null space and became a singularity at the origin; no
other matrix can bring it back from the abyss.

On the other hand, because matrix multiplication is not commu-
tative, AMy # MAy. Try this yourself: Come up with a matrix
A and prove to yourself that M Ay # 0. This will work for nearly
any matrix as long as A is not the identity or the zeros matri-
ces. Just pick four random integers and it will almost certainly

work.

And this brings me to the final point I want to make in this
section: There is nothing special about vector y, and there is



nothing special about matrix M. Instead, what is special is their
combination, that y € N(M). MAy # 0 because y is not in the
null space of matrix A, and vector Ay is not in the null space of
matrix M (it could be if A is the identity matrix, the zeros matrix,
or has y as an eigenvector, but that is galactically unlikely when

populating A with random integers).

N

Practice problems For the following matrices, find a basis for the column space and a basis
for the left-null space. Then draw those two basis vectors on the same Cartesian plot (one plot

per matrix). Do you notice anything about the plots?
1 2 -3 1
a) b)
2 4 6 —2

Answers In both cases, the column space and the left-null space are orthogonal to each other.
You can easily confirm that in these examples by computing the dot products between the basis
vectors. That’s not just some quirky effect of these specific matrices; that’s a general principle,
and you will soon learn the reason why. (You can repeat this exercise for the row space and the

null space and arrive at the same conclusion.)

Orthogonal subspaces, orthogonal complements

The four subspaces of a matrix—the column space, row space,
null space, and left-null space—come in two pairs of orthogonal
complements. Before explaining what that means and why it’s
important, I need to take a brief aside and explain the concepts

of orthogonal subspaces and orthogonal complements.

You already know what it means for two lines to be orthogonal
to each other (dot product of zero; meet at a right angle); what
does it mean for two subspaces to be orthogonal? Let me start
by mentioning something that’s pretty obvious when you think
about it: If a pair of vectors is orthogonal, then any scalar-vector

multiplication will also be orthogonal.
viw = ovliw, o XeR (8.18)

The reason why Equation 8.18 is obvious is that if viw = 0 then

any scalar times 0 is still 0.

8.8 ORTHOGONAL SUBSPACES
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Now let’s take this one step further: Imagine that two vectors
vy and vg are each orthogonal to w. They don’t have to be
orthogonal to each other. Here’s an example:

<

[a—y

Il
N = =

<

N

Il
DD NN

Il

—_

Take a moment to confirm that vi and ve are each individually
orthogonal to w, and that they are not orthogonal to each other.

Now we can combine this concept with Equation 8.18 to write a

new equation:
(a1v1 + agva) L fw (8.19)

This equation says that any linear combination of vi and va is
orthogonal to any scaled version of w.

Each side of Equation 8.19 is consistent with the definition of
a vector subspace (Equation 4.1, page 84). Thus, we have just
extended the notion of orthogonality from vectors to subspaces
(hence: V' L W). The interpretation is that any linear combina~
tion of vectors in subspace V is orthogonal to any linear combi-

nation of vectors in subspace W.

In this example, V is a 2D subspace and W is a 1D subspace, and
they are both embedded in ambient R?. Two subspaces can be
orthogonal only if they are in the same ambient dimensionality,
because orthogonality is defined by dot products, and dot prod-
ucts are defined only for vectors with the same dimensionality.

Here is the formal definition of orthogonal subspaces:

Orthogonal subspaces

Subspaces S and M are orthogonal subspaces if

VwveSandvVwe M, viw (8.20)



Read aloud, this definition is "For any vector v in subspace S,
and for any vector w in subspace W, vector v is orthogonal to

vector w.

Can you think of a geometric example of two orthogonal sub-
spaces? You might initially think about two planes in R? inter-

secting in a perpendicular line, like Figure 8.3.

The

line of intersection between these two planes is a vector that is

But alas, no, these planes are not orthogonal subspaces.

contained in both subspaces. And a vector that appears is both
subspaces is clearly not orthogonal to itself. Of course, there can
be many vectors in one plane that are orthogonal to many vectors
in the other plane, but for the two subspaces to be orthogonal,

every possible vector needs to be orthogonal.

In fact, in R3 it is impossible for two planes to be orthogonal sub-
spaces: They are 2D objects, and two 2D objects cannot possibly
be orthogonal in a 3D space. A plane and a line, however, can
be orthogonal complements if the line is orthogonal to the plane.
The simplest example of this is the plane defined by the XY axis,

and a line on the Z axis (Figure 8.4).

Orthogonal complements This leads us to orthogonal comple-
ments. The idea of orthogonal complements is that any ambient
space RN can be decomposed into two subspaces W and V such
that W UV spans all of RN and W L V. In other words, the
entire ambient space is carved into subspaces that are mutually
orthogonal and that meet only at the origin (all subspaces meet

at the origin).

"Mutually orthogonal" means that a vector cannot be in both
subspaces. Thus, any vector in RN that is not in W must be in
V, and if it’s in V then it must be orthogonal to any vector in

w.

L’// /

oy

Two
2D subspaces in R?

Figure 8.3:

cannot be orthogo-
nal subspaces.

Figure 8.4:
1D subspace cam
be an orthogonE
complement to @
2D subspace in R
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Don’t confuse
complement with
compliment! (Al-
though both are
things you should
do for your signifi-
cant other.)

52

G



n
=
2
o
wn
o
&
<
=
Note: 0 € RY,
T
b ¢ a a a
b ¢c| =1b b b
b ¢ c ¢ c

Figure 8.5: The
columns of A are
the rows of AT,

Orthogonalities of the matrix spaces

Now that you know what orthogonal subspaces and orthogonal
complements are, let’s get back to the task at hand, which is
discussing how the four subspaces of a matrix are paired into two
orthogonal complements.

Orthogonality of the column space and the left-null space A
vector is orthogonal to the column space of a matrix if the follow-
ing equation is satisfied:

y L C(A) (8.21)

What does it mean for vector y to be orthogonal to the column
space of A7 It means that y is orthogonal to each column indi-
vidually, and therefore that y is orthogonal to all possible linear

combinations of the columns.

We can re-write this statement as the following matrix-vector
equation:

Aty =0 (8.22)

Remarkably, we've just re-derived Equation 8.13 (see also Equa-
tion 8.14), which was the definition of the left-null space. That’s
pretty neat, because we started from the question of a vector that
is orthogonal to the column space, and we ended up re-discovering
the left-null space.

What is the justification for transposing the matrix? Because the
columns of A are the rows of AT (Figure 8.5), the multiplication
ATy involves the dot product between vector y and each column
of A. The question at hand here is whether we can find a vector
y that has a dot product of zero with each column in A.

The orthogonality of the column space and left-null space is a
big deal, because we’re talking about entire subspaces, not just
individual vectors. A vector is a mere finite object, but subspaces
are infinite expanses. Thus, the column space and the left-null



space are orthogonal complements, and so together they must fill

up the entire ambient space of RM.
C(A)UN(AT) & RM (8.23)

Let me explain that again so it’s clear: For any given M x N
matrix, every vector in RM is either in the column space or in
the left-null space. No vector can be in both (because they are
orthogonal subspaces) except for the trivial zeros vector. There-
fore, the column space and the left-null space together span all of
RM.

Analogously, if someone asks you if you want ice cream with sprin-
kles, ice cream without sprinkles, or no ice cream, then those
mutually exclusive options literally account for every imaginable

thing in the universe.

One implication of Equation 8.23 is that if the column space of the
matrix spans all of RM, then the left-null space must be empty,
because only the zeros vector can be orthogonal to an entire am-

bient space.

A visual example This is all quite theoretical; a visualizable
example should help internalize the concept. Below are two ma-
trices; Please take a moment to find bases for the column and
left-null spaces of each matrix, then graph those vectors and com-
pute the dot product between them. Then look at the next page

to see my solution. No cheating!

OK, perhaps not

a perfect analogy,
but the point is
that I like sprinkles
without ice cream.

8.9 MATRIX SPACE ORTHOGONALITIES
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I chose the following as bases:

The easiest way to choose a basis for the column space is to take
the first 7 columns, where 7 is the rank of the matrix (make sure
that those columns form a linearly independent set). Of course,
this isn’t necessarily the best basis set; it’s just the easiest for

small matrices.

Figure 8.6 shows these vectors, with black lines for the column
space basis vectors and gray lines for the left-null space basis

vectors.

Matrix D has an empty null space, which I've depicted as a dot
at the origin of the graph. It’s visually apparent that the column
spaces are orthogonal to their respective left-null spaces.

Matrix B Matrix D
C(B) ‘ / c(D)
|

Figure 8.6: Basis vectors for the column and null spaces of
matrices B and D.

The orthogonality of C(A) and N(AT) will lead us to an impor-
tant discovery about matrix subspace dimensionalities. That’s
the main topic of the next section. But first, I want to discuss
the other pair of complementary matrix spaces, which are the row

space and the null space.



Orthogonality of the row space and the null space There isn’t
a lot to say here that isn’t written above. Just swap "column'

with "row" and "left-null space" with "null space." I will briefly
walk through the reasoning as above but using slightly different

notation, for variety.

The idea is to find a vector that is orthogonal to all rows in A, in
other words, y L R(A).

We can express this by writing that the dot product between each
row of the matrix (indicated as a,, below) and the vector y is 0.

ajy =0
agy:()
any =0

And then we simply collect all of these individual equations into
one compact matrix equation, which is, of course, the definition
of the null space.

Ay =0

As with the column and left-null spaces, the row space and null
space are orthogonal complements that together span all of RN:
C(ATYUN(A) & RY (8.24)

Any vector in RN is either in the row space or in the null space.
The only vector that can be in both spaces is the N-element zeros

vector.

Dimensionalities of matrix spaces

The dimensionalities of the column space, the row space, and the

two null spaces are all interconnected.

8.10 DIMENSIONALITIES OF MATRIX SPACES
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First, I want to reiterate that "dimension" is not the same thing
as "rank." The rank is a property of a matrix, and it’s the same
regardless of whether you are thinking about rows, columns, or
null spaces. The ambient dimensionality differs between rows and

columns for non-square matrices.

On the other hand, the dimensionality of the subspaces spanned
by the column space and the row space is the same, and those
equal the rank of the matrix. An example of this dissociation is
the following 3 x 3, rank-2 matrix. To its right are the rank and
dimensionalities (dim() indicates the dimensionality) of two of its

subspaces.
A € RS
10 3
A=lo 4 5 rank(A) =2
B dim(N(A)) =1
2 06 ,
dim(C(A)) =2

The null space contains one basis vector, which means it has di-
mensionality of one, while the column and row spaces each has
dimensionalities of 2 (notice that row 3 is a multiple of row 1).
The rank of the matrix is also 2.

You can see in this example that the dimensionality of the column
space plus the dimensionality of the left-null space adds up to the
ambient dimensionality R>.

Two more examples and then I'll present the rules: If the column
space is 2D and embedded in R?, then the column space already
covers the entire ambient space, which means there’s nothing for
the left-null space to capture; the left-null space must therefore
be the empty set. Here’s a matrix to illustrate this point; note
that the left-null is empty, because there is no way to combine
the rows of the matrix (or, the columns of the matrix transpose)

s

Final example: The 2 x 2 zeros matrix has columns in ambient

to get a vector of zeros.

R2, but the column space is empty; it contains nothing but a
point at the origin. It is 0-dimensional. Therefore, its orthogonal



complement must fill up the entirety of R?. This tells us that
the left-null space must be 2-dimensional. What is a basis set for
that left-null space? Literally any independent set of vectors can
be a basis set. A common choice in this situation is the identity
matrix, but that’s because it’s convenient, not because it’s the

only basis set.

The story is the same for the row space and the null space, so I
will just re-state it briefly: The row space lives in ambient RN but
can span a lower-dimensional subspace depending on the elements
in the matrix. The orthogonal complement—the null space—fills
up whatever directions in RN are not already spanned by the row
space. If the matrix is full-row rank, then the row space already

spans all of RN and therefore the null space must be empty.

The formulas Here you go:

C(A)UN(AT) R(A)UN(A)

(. > (. >

RVM RVN

And with numbered equations in a grey box:

Subspace dimensionalities

dim(C(A)) + dim(N(AT)) = M (8.25)

dim(R(A)) + dim(N(A)) =N (8.26)

One more relevant formula: The rank of the matrix is the dimen-
sionality of the column space, which is the same as the dimen-

sionality of the row space:

rank(A) = dim(C(A)) = dim(R(A)) (8.27)

8.10 DIMENSIONALITIES OF MATRIX SPACES
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Practice problems Determine the dimensionalities of the four subspaces in the following

matrices.

2 3 4
1 1 2 2 3 3
a) 1000 )1t 45 5 6 6
1 2 3
Answers The four numbers below are the dimensionalities of the column space, left-null
space, row space, and null space. You can confirm that the sum of the first two numbers
corresponds to the number of rows, and the sum of the second two numbers corresponds to the

number of columns.

a) 2,1,2,1 b) 2,0,2,4 c) 12,11

More on Ax =b and Ay =0

These two equations are simple yet profound. It is no understate-
ment to write that most people learn linear algebra because they
want to know how to solve these equations. You might not realize
that this is what you want to solve, but most of applied linear
algebra boils down to solving one of these two equations.

Let’s start with Ax = b. In this category of problems, you know a
priori the matrix A and the vector b, and the goal of the analysis
is to find the vector x. Basically all linear models in statistics and

machine learning can be expressed using this form.

The letters might look different, though. For example, in statis-
tics, the common form is X3 =y, where X is called the "design
matrix," B is called the "regression coefficients," and y is called
the "observed data." You will learn more about those terms and
what they mean in Chapter 14. But you can see that the general

form is the same.
There are two questions that you ask with an Ax = b problem:
1. Does it have a solution? You already know the answer

to that question: The equation has an exact solution when
b is in the column space of A. In that case, the coefficients




in vector x tell you the weightings of the columns in A in
order to produce vector b. If vector b is not in the column
space of matrix A, then that leads to the second question:

2. What is the closest approximation to an exact solu-
tion? This changes the equation to Ax = b, where x and
b are selected such that (1) b is in the column space of A
and x are the coefficients, and (2) b is as close as possi-
ble to the original b. This is obtained through the "least
squares solution," which is the backbone of statistics, model
fitting, machine learning, and many other areas of applied

mathematics.

Now I'd like to tell you more about Ay = 0. It may seem strange
that someone would be so interested in finding the null space of
a matrix, considering that the null space is the "black hole of no
return." In practice, people are not interested in this matrix A per
se; instead, they are interested in a shifted version of this matrix,
expressed as (A — A\I)y = 0.

The solution to this equation (vector y) is called an eigenvector of
the matrix, and X is its associated eigenvalue. Eigenvectors reveal
directions in the matrix that have special properties, such as ro-
bustness to geometric transformations or maximizing covariance
in a dataset. In different contexts, the solution to Ay = 0 is called
Principal Components Analysis, generalized eigendecomposition,
singular value decomposition, Fisher linear discriminant analy-
sis, Rayleigh quotient, and many other names. These analyses
play central roles in machine-learning applications and multivari-

ate signal processing.

I hope this helps put things in perspective. It’s not the case that
every problem in linear algebra boils down to one of these two
equations. But as you proceed in your adventures through the
jungle of linear algebra, please keep these two equations in mind;
the terminology may differ across fields, but the core concepts are
the same.

=0

8.11 MORE ON Ax = b AND Ay
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Exercises

1. For each matrix-vector pair, determine whether the vector is

in the column space of the matrix, and if so, the coefficients

that map the vector into that column space.

g)

a)

o = O

2
: b
_3_ )
-
: d
_O_ )
2
f
, M )
1] [3
0|, 6 h)
0| |4

-1 5 2 0
-7 9 8|,10
-1 4 =« 0

2. Same as the previous exercise but for the row space.

a)

r
[\)

] "

R

6

T
- 1
1 01
, | —2
2 20
- 3

3. For each matrix-set pair, determine whether the vector set can

form a basis for the column space of the matrix.

9 |

10
2 0

R R IR RH)



4. Determine whether the following matrices have a null space.
If so, provide basis vector(s) for that null space.

10 10 L3 315
?) [2 0] b)[z 2] °) é; d)[zx 10

5. Fill in the blanks (dim=dimensionality) for matrix A € R?>3
a) dim(C(A)) =0, dim(N(AT)) =
b) dim(C(A)) =1, dim(N(AT)) =
c) dim(C(A)) =2, dim(N(AT)) =
d) dim(C(A)) =3, dim(N(AT)) =
e) dim(N(A)) =0, dim(R(A)) =
f) dim(N(A)) = 1, dim(R(A)) =

g) dim(N(A)) = 2, dim(R(A)) =

h) dim(N(A)) =3, dim(R(A)) =

|

8.12 EXERCISES
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Answers

2
a) [3} b) not in column space
c¢) not in column space d) not in column space
. 3
e) sizes don’t match f) 5
4 0
g) |6 h) [0
3 0

o[ of]

- 4T
3
c) Not in the row space d) ]

a) No. Any column space basis must be a single vector that
is a multiple of [1 2]T.

b) Yes: C(M) = R?, so any independent set of two vectors
can be a basis.

c) Yes
d) Yes

e) Yes for the same reason as (b).

a) [O] b) No null space



¢) No null space d) | -4
1/5

a) 2

b) 1

c)0

d) Trick question; dim(C(A)) cannot be greater than 2.
e) Trick question; dim(N(A)) must be >0.

f) 2

g) !

h) 0

8.13 ANSWERS
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Code challenges

1. Create two 4 x4 random numbers matrices, each with rank=3

(consult the code challenge from Chapter 7 for how to do this).
Call those matrices A and B. Then find a vector in the null space
of A (vector n). Finally, show that BAn is the zeros vector while
ABn is not.

. The goal of this code challenge is to confirm the subspace

dimensionalities expressed on page 229. Create a 16x11 matrix
with rank=9. Then identify bases for the left- and right-null
spaces and determine their dimensionalities. Confirm that the
dimensionality of the left-null space plus the dimensionality
of the column space is 16 (the ambient dimensionality of the
column space), and that the dimensionality of the null space
plus the dimensionality of the row space is 11 (the ambient
dimensionality of the row space).



Code solutions

1. The goal here is to see that once you’ve entered the null space

of a matrix (An), you can never come back; and that matrix

b rotates n such that Bn is no longer in the null space of A.

Code block 8.3: Python

1 import numpy as np
2 from scipy.linalg import null_space
3 A = np.random.randn (4,3)@np.random.randn (3,4)
4 B = np.random.randn(4,3)@np.random.randn(3,4)
5 n = null space(A)
6 print (BQAQn)
7 print (AQBGn)
Code block 8.4: MATLAB
1 A = randn(4,3)*randn(3,4);
2 B = randn(4,3)xrandn (3 ,4);
3 n = null(A);
4 BxAxn
5 AxBxn

2. Recall that the dimensionality of the row space equals that of

the column space, which equals the rank of the matrix.

Code block 8.5: Python

N O O s W N

A = np.random.randn (16,9) @

np.random.randn(9,11)

rn = null space(A)

In = null_space(A.T)

r = np.linalg.matrix_rank (A)
print (rn.shape[l]+1)

print (In.shape[l]+71)

8.15 CODE SOLUTIONS
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S O W N

Code block 8.6: MATLAB

A = randn(16,9)*randn (9,11);
rn = null (A);
In = null(A’);
r = rank(A);
size(rn,2)
size (1n,2)

A
A

+r
+r
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Fun fact: Gauss
and many other
people despised
the term "imagi-
nary," instead ar-
guing that "lateral"
would be better. I
(and many others)
whole-heartedly
agree, but unfor-
tunately "imagi-
nary" remains stan-
dard terminology.

Complex numbers are used in theoretical and applied mathemat-
ics, for example in signal processing (e.g., the Fourier transform).
Complex numbers play a small but important role in linear alge-
bra, and you’ll need to be at least a little bit comfortable working
with complex numbers, for example when learning about eigen-
decomposition. The goal of this chapter is to introduce you to
complex numbers and how certain linear algebra operations are

adapted to matrices containing complex numbers.

If you are comfortable with the interpretation, graphing, and
arithmetic of complex numbers, feel free to skim through the next
several pages; section 9.5 is where we return to linear algebra.

Complex numbers and C

You’ve probably heard this story before: A long, long time ago,
mathematicians scratched their heads about how to solve equa-
tions like 22 +1 = 0. The answer, of course, is * = ++/—1, but
this is not a sensible answer (or so the elders thought) because
no number times itself can give a negative number. Confused and
concerned, they adopted the symbol i = v/—1 and called it "imag-
inary" because it was the best term their imaginations could come
up with.

The imaginary operator was, for a long time, just a quirky excep-
tion. It was Karl Friederich Gauss (yes, that Gauss) who had the
brilliant insight that the imaginary operator was not merely an ex-
ceptional case study in solving one kind of equation, but instead,
that the imaginary unit was the basis of an entirely different di-
mension of numbers. These numbers were termed "complex" and
had both a "real" part and an "imaginary" part. Thus was born

the complex plane as well as the field of complex numbers, C.

Gauss was interested in complex numbers because he was devel-
oping what is now known as the Fundamental Theory of Algebra.
The FTA, as it is sometimes abbreviated, states that an n' order



algebraic equation has exactly n roots. That is, an equation of

the form:
aox’ + ezt + ...+ apz” =0 (9.1)

has exactly n solutions for x (remember that 2 = 1). The thing
is that these solutions might be complex-valued. This important
result is the reason why you can get complex-valued eigenvalues
from real-valued matrices. More on this in Chapter 15. For now,

let’s review complex numbers.

What are complex numbers?

You learned in school that numbers exist on a line, with zero in
the middle, negative numbers on the left, and positive numbers

on the right, like in Figure 9.1
< | | | | | |

I I
-2 0 +2

Figure 9.1: The real numbers, all lined up.

The idea of complex numbers is to extend this framework from a
one-dimensional line to a two-dimensional plane. So now there are
two axes for numbers, and each complex number is a coordinate
in that plane. The horizontal axis is called the real azis (often
abbreviated Re) and the vertical axis is called the imaginary axis
(often abbreviated Im).

Don’t lose sleep over what complex numbers really mean, whether
imaginary numbers have any physical interpretation, or whether
intelligent life elsewhere in the universe would also come up with
imaginary numbers (I think the answer is Yes, and I hope they call
them 'lateral numbers"). It doesn’t matter. What does matter
is that complex numbers are useful from a practical perspective,
and they simplify many operations in both theoretical and applied

mathematics.

9.2 WHAT ARE COMPLEX NUMBERS?

Figure 9.2: The
complex numbers,
all planed up.
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Complex numbers are referred to using the real and imaginary
axis coordinates, just like how you would refer to XY coordinates
on a Cartesian axis. Figure 9.3 shows a few examples of com-
plex numbers as geometric coordinates and their corresponding
labels.

Im
(1,2)
— —
Re
.. 1
(-1,-i) 1 °
(3,-2§)

Figure 9.3: Example complex numbers on the complex plane.
A few remarks about indicating complex numbers in writing:

1. Complex numbers are always written using the real part
first.

2. In between the two components could be a space, a comma,
or a plus or minus sign. You might also see square brackets,
parentheses, or nothing around the numbers. Variations
include [a bi], (a,bi), [a+bi], a bi.

3. z is the go-to letter to indicate a complex number: z =
a+ib. After that, w is the next-best-thing.

4. You can position the i before or after the imaginary compo-
nent: [a bi] or [a ¢b].

5. Most people use ¢ to indicate the imaginary operator. En-
gineers tend to use j because they use ¢ for electrical cur-
rent. On the other hand, engineers write handwritten notes
in ALL CAPS and start counting at 0, so let’s not be too
quick to adapt all engineering practices.

6. To avoid embarrassment at math parties, be careful to dis-
tinguish the following terms:

e Complex number: A number that contains two parts,

real and imaginary, like in the notational varieties above.

e Imaginary number: A complex number with no real




part: [04ib] = ib.
o Imaginary operator: The symbol (i or j) that repre-
sents the square root of minus one (v/—1), without any

other numbers attached to it.
e Imaginary component: This is the real number that

multiplies the imaginary operator. In the number a+:b,
the imaginary component is b, not ¢b! Geometrically,
this corresponds to the distance on the y-axis on a com-

plex plane.

The reason why complex numbers are so useful is that they pack
a lot of information into a compact representation. For the real
number line, a number has only two pieces of information: its
distance away from the zero and its sign (left or right of zero).
A complex number contains more information: the real part; the
imaginary part; the distance of the complex number to the origin;
and the angle of the line from the origin to the complex number,

relative to the positive real axis.

Complex vectors and complex matrices In some sense, com-
plex matrices are really easy: They are just regular matrices ex-
cept that the elements are drawn from C instead of R, which in
practice means that at least one matrix element has a non-zero
imaginary part. (Technically, the number 4i0 € C, but for prac-
tical purposes, we can say that there should be some non-zero

imaginary components.) Below are a few examples.

1
6 —i2 2 143 2—7i —4+1i T—4i 1+
34+44|" (34|’ 4 74 2i 4 |’ 1+i 242

7

There is a minor abuse of notation in the matrices above: the
number 1 is actually 1 + 0i; likewise, the number 4i is really the
number 0 + 4¢. But I and most other people omit the 0-valued

components for visibility.

Complex vectors and matrices are confusing at first—many stu-
dents mistakenly think that the left-most column wvector above is

9.2 WHAT ARE COMPLEX NUMBERS?
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a 2x 2 matriz, and that the right-most 2 x2 matrix is a 2 x4 ma-
trix. If ever you see ¢ in a vector or matrix, be especially careful
to inspect and correctly interpret the matrix.

Code There are several ways to create complex numbers in Python
and MATLAB. The complex operator in Python is 1j (or any
other number and j). MATLAB accepts 1i and 1j. Be mindful
that Python is more stringent about data types than is MATLAB.
For example, try running the code below without the second input
into the np.zeros() function.

Code block 9.1: Python

z = np.complex (3,4)
2 7Z = np.zeros (2,dtype=complex)
3 Z[0] = 3+4]

Code block 9.2: MATLAB

z = complex (3 ,4);
2 7Z = zeros(2,1);
3 Z(1) = 3+41i;

The complex conjugate

The conjugate of a complex number is simply that number with
the sign of the imaginary part flipped. It is indicated using an
overbar (z) or using a superscripted asterisk (z*). The equation
below shows that the polar form of a complex number has the
exponential multiplied by -1. If you are not familiar with polar
notation, then don’t worry about it—I include it here in the inter-
est of completeness but it is not used in the rest of the chapter.

a+bi = a-bi (9.2)

w
Il
wl
Il

rei® = re=" (9.3)

i
Il



Be mindful that the complex conjugate means to flip the sign
of the imaginary component, not set it to be negative. Thus, if
the imaginary component is already negative, then its conjugate
would have a positive imaginary component: a — bi = a + bi.

Figure 9.4 depicts the geometric interpretation of the complex
conjugate, which is to reflect the complex number across the real

axis.

Complex conjugate pairs A complex conjugate pair is a complex
number and its conjugate, together forever, just like penguins.
Here are a few examples; note that the magnitudes of the real
and imaginary parts are the same; the only difference is the sign

of the imaginary part.

4+ 26, 4— 2

2,z
w, W ="72— 323, 72+ 32¢

u,u=a+bi, a —b

Complex conjugate pairs are featured in the "Complex conjugate
root theorem," which states that if a polynomial with real-valued
coefficients has at least one complex-valued root, then it has 2N

complex roots that come in conjugate pairs. For example:
2 +9=0 x=+3i, —3i

This should also be familiar from the quadratic equation: When

b? < 4ac then the roots come in conjugate pairs.

Code The complex conjugate is easy to implement. I'm using
the opportunity to show you an additional way to create complex

matrices.

Im

L 24

Figure 9.4: A com-
plex number ([1
2i] and its complex
conjugate ([1 -2%]).

9.3 THE COMPLEX CONJUGATE

The quadratic
equation: x =

—b++/b2—4ac
2a
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Code block 9.3: Python

1 r = np.random.randint(—3,4,size=3)
2 i = np.random.randint(—3,4,size=3)
3 Z = r+ixlj
4 print(Z)
5 print(Z.conj())
Code block 9.4: MATLAB
1 r = randi([—3,3],1,3);
2 i =randi([—-3,3],1,3);
3 7Z = r+ixlj
4 conj(Z)

Practice problems Take the complex conjugate of the following numbers.

a) 3+4i

Answers
a) 3—4i

b) —6(—5 — i) c) j d) 17

b) —6(=5 + 1) c) —J d) 17

Reflection

Complex conjugate pairs are used in many areas of ap-
plied mathematics. For example, the most efficient way
to compute a power spectrum from the Fourier trans-
form is to multiply the complex-valued spectrum by its
complex conjugate. More germane to this book: A ma-
trix with entirely real-valued entries can have complex-
valued eigenvalues; and when there are complex-valued

eigenvalues, they always come in conjugate pairs.




Arithmetic with complex numbers

In this section, the scalars z and w refer to complex numbers,
such that:

z=a+1ib

w=c+id

Addition and subtraction Adding two complex numbers works
the way you would think it should:

z4+w=a+ib+c+id

= (a+c) + i(b+d)

In other words, sum the real parts, then sum the imaginary parts
and attach the i. The only potential source of error here is mis-

placing the parentheses (ib + d).

Subtraction works exactly the same way; just be careful that you
are replacing the correct plus signs with a minus signs. Pay at-

tention to the pluses and minuses here:

z—w=a+1ib— (c+id)

= (a-c) + i(b-d)

Multiplication Multiplication of complex numbers, unfortunately,
does not work the way you might initially expect. You might have
expected (hoped) that you would separately multiply the two real
parts and the two imaginary parts, and then put them together.
Instead, you have to incorporate the cross-terms. Fortunately,
though, the multiplication does follow algebraic rules you already

know for expanding grouped terms.

zw = (a+1ib)(c+ id) (9.4)
= ac +iad + ibc + i*hd (9.5)

= ac-bd + i(ad+bc) (9.6)

9.4 COMPLEX ARITHMETIC
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Notice that i2bd = —bd.

An interesting thing happens when you multiply a complex num-
ber by its conjugate. Observe:

2%z = (a+bi)(a-bi)
= a? — (bi)? — abi + abi

=a +b? (9.7)

In addition to being practical, this is an important result, and
equation 9.7 is used throughout complex linear algebra and signal
processing. In the next section, you’ll see how this property is

related to the dot product with complex vectors.

Division Division is even weirder. There is a trick for doing

Arulein | djyvision with complex numbers. I have no idea who invented it,
mathematics:

but I suspect it was Gauss. That trick is to multiply both the

when in doubt,

eredit Gauss.  Dumerator and the denominator by the complex conjugate of the

denominator.

z a+ib

w c+id
_ (c —id)(a+ib)
(c —id)(c+id)
_ (c—id)(a+ib)
B 2 + d?

(ca+db) + i(cb-da)
24 d?

Notice that the denominator becomes real-valued, which makes
the fraction easier to work with. In the interest of learning-by-
repetition, here is the concept again in compact form:

(9.8)

|

z
w



Why does the denominator have to be real-valued? 1
honestly have no idea. But all my math teachers and
everyone who writes about math in books and on the
Internet says that we should avoid having complex num-

bers in the denominator of a fraction. I don’t condone

Reflection

conformity and I think it’s important to question the
status-quo, but on the other hand, you gotta pick your
battles. This one isn’t worth fighting.

Practice problems For the following two complex numbers, implement the indicated arith-

metic operations.
z=3+4+61, w=-2-5¢

a) 2z 4+ wz b) w(z + z) c) 5z + 6w d) 5z + 6w e) %
Answers
a) 30 — 15i b) —12 — 30 ) 3 d) 3+ 60i e) (1+12i)L

The Hermitian and complex dot products

The Hermitian transpose, often called simply the Hermitian, is
a fancy term for a conjugate-and-transpose operation. It is in-
dicated with a superscripted H instead of a T (VH)
you will also see the Hermitian indicated with a superscripted as-

. Sometimes

terisk (v*) but this notation can lead to confusion because it can
also indicate the conjugate (without transpose) of a vector. To
be on the safe side, I will use an overbar on top of a vector (¥)
to indicate the conjugate of the elements in the vector without
transposing that vector. Below is an example of a vector and its

Hermitian.

2
4 +15
1
2—-19

H
[2 4—i5 1 249 =

9.5 COMPLEX DOT PRODUCT
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Figure 9.5: The
vector [0 i] has
length=1, which
the dot product
formula must
produce.
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Notice that nothing happened to the real-valued elements (first
and third entries). For this reason, the Hermitian and "regular”
transpose are identical operations for real-valued matrices.

Dot product with complex vectors The dot product with com-
plex vectors is exactly the same as as the dot product with real-

valued vectors: element-wise multiply and sum.

However, in nearly all cases, the "regular" dot product is replaced
with the Hermitian dot product, which simply means to imple-

Hw instead of zTw.

ment the dot product as z
Why are complex vectors conjugated when computing the dot
product? The answer will be obvious from a geometric perspec-
tive: Recall that the dot product of a vector with itself is the
squared length of the line represented by that vector. Consider
what happens when we compute the length of a complex vector
that we know has length=1 (Figure 9.5):

vliv=02%+42 =1

o Vi =02 + (=i)(—i) =-1
v H viv =02 4+ (—)(i) =1
VI =024+ (i)(—i) =1

Clearly, the third and fourth options provide accurate results.
This example also shows that it doesn’t matter which vector is

H

conjugated, although the third option (v"v) is generally preferred

for typographical reasons.

Code The MATLAB dot() function always implements the Her-
mitian dot product, because conjugating real-valued numbers has

no effect. In Python, however, you need to use vdot() instead of
dot().

Code block 9.5: Python

1 import numpy as np



2 v = [0,1]
3 print(np.dot(v,v))
4 print (np.vdot(v,v))

Code block 9.6: MATLAB

—_

v =10 1i];
dot (v,v)

\V)

7~

1 )
7 = 31 , W = 1—1 )
4 -2 0
zHz
a) z''(z+w) b) whw c) 2z+w0Oz
Answers
2+4
a) 27— 2 b) —10 c) |3+9
8 —4i

Practice problems For the following vectors, implement the specified operations.

Special complex matrices

Special complex matrices sometimes have different names from
their real-valued counterparts. Below are two such matrices that

you may encounter.

Hermitian matrices A Hermitian matrix is the complex-valued
equivalent of something between a symmetric matrix (A = A™)

and a skew-symmetric matrix (A = —A™).

A Hermitian matrix is defined as A = AH. Thus, the magnitudes
of the real and imaginary parts are the same, but the signs of the

imaginary parts are swapped. Below is an example; Please take a

9.6 SPECIAL COMPLEX MATRICES
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moment and mentally confirm that AT = A.

2 3-2 242
342 5 8 (9.9)
2-2 8 9

Notice that the diagonal elements must be real-valued, because
only real-valued numbers are equal to their complex conjugate
(a+0i = a—07). Notice also that Hermitian matrices may contain

numbers with non-zero-valued imaginary parts.

Unitary matrix For real-valued matrices, an "orthogonal matrix"
is one for which its transpose is its inverse; thus, multiplying the
matrix by its transpose gives the identity matrix (QQY = I).
Another way to phrase this is that each column in an orthogonal
matrix is orthogonal with each other column, and that each col-
umn has unit magnitude. You’ll learn more about these special

matrices in Chapter 13.

A complex-valued matrix that has such properties is called a uni-
tary matrix. Here is the typical example that is used to illustrate
a unitary matrix:

1447 1—1

1
21— 1434

You will have the opportunity to confirm that this matrix is indeed

unitary in the code challenges.

There is a lot more that could be said about complex matrices
in linear algebra. However, the topics introduced in this chapter
cover what you will need to know for most linear algebra applica-
tions, including everything you need to know for the rest of this
book.



Exercises

1. Implement the specified operations using the following vari-

ables.
4 3
w=2+5;, z=-—i, d=|2+2i|, R=|-2
—43 4 11
a) wd b) d?wd c) Rd d) R"Rd
e) wz f) wz* g) wdR h) wd"R

9.7 EXERCISES
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Answers

. 8 + 20i
a) | —64 14i
20 — 8i

160 + 16i
d) | 114 + 30i
26 — 26i

g) Wrong sizes!

24 + 8i
b) 80 + 200i c) | -si

18 — 2i
e) 5 —2i f) —5+2i

h) [ —44+64i 12+88i —40 + 16i |



Code challenges

1. On page 252 I showed an example of a unitary matrix. Confirm
that this is unitary by showing that UHU = I. Also confirm
that UTU # 1.

2. In Chapter 6 you learned two methods (additive and multi-
plicative) to create a symmetric matrix from a non-symmetric
matrix. What happens when you apply those methods to com-
plex matrices? To find out, generate a 3x3 matrix of complex
random numbers. Then apply those two methods to gener-
ate two new matrices, and test whether those matrices are (1)

symmetric, (2) Hermitian, or (3) neither.

9.9 CODE CHALLENGES
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Code solutions

1. Both Python and MATLAB allow you to implement Hermi-
tian and regular transpose operations. Be careful that you are
implementing the correct version! Notice that the method .H

in Python requires converting the matrix into a matrix object.

Code block 9.7: Python
1 U= .5%xnp.array ([ [1+1j,1—1j],[1—1j,1+1j] ])
print (UGQnp. matrix (U).H)
vau.T

W N

Code block 9.8: MATLAB
1 U= .5%[14+1i 1-1i; 1-1i 1+41i];
U’ «U
transpose (U)xU

W N

2. Both methods for creating symmetric matrices (A + AT and
ATA) work for complex matrices, except that the resulting
matrices are Hermitian, not symmetric. As mentioned earlier,
be mindful that you are taking the Hermitian transpose, not
the "regular" transpose. Python does not have a built-in func-
tion to test whether a matrix is Hermitian, but subtracting

two equal matrices will produce the zeros matrix.

Code block 9.9: Python

print (Al-A1.H)
print (A2—A2.H)

1 r = np.random.randn (3,3)
2 i = np.random.randn(3,3)
3 A = np.matrix( r+ixlj )
4 Al = AHA.H

5 A2 = AQA.H

6

7




U = W N =

Code block 9.10: MATLAB

= complex (randn(3,3),randn (3,3));

Al = A+A7;

A2 = AxA7;

ishermitian (Al) % issymmetric (Al)
ishermitian (A2)

is

false!

9.10 CODE SOLUTIONS
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CHAPTER 10
SYSTEMS OF EQUATIONS

START THIS CHAPTER HAPPY
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One of the many great things about linear algebra—which I've
written in previous chapters but is particularly germane to this
chapter—is that it can provide compact notation for large collec-
tions of mathematical expressions, equations, variables, data, and

SO OI1l.

In this chapter you will learn how to represent systems of equa-
tions using matrices and vectors, and how to solve those systems
using linear algebra operations. This knowledge will be central
to a range of applications including matrix rank, the inverse, and

least-squares statistical model fitting.

What is an equation? It is a statement of equality, typically with

one or more unknown. For example:
20 =6

To be sure, this single equation does not need matrices and vec-
tors. In fact, using matrices to solve one equation simply creates
gratuitous confusion. On the other hand, consider the following
system of equations.

20 +3y—bHz= 8
—2y+2z= -3
or —4z =3

You can imagine an even larger system, with more variables and
more equations. It turns out that this system can be represented
compactly using the form Ax = b. And this isn’t just about
saving space and ink—converting a system of many equations
into one matrix equation leads to new and efficient ways of solving
those equations. Are you excited to learn? Let’s begin.

Algebra and geometry of equations

Algebraic equations have an associated picture. The number of
variables (unknowns) in the equation determines the number of



dimensions in the corresponding graph. For example, the equa-

tion
2r+3 =11 (10.1)

has the solution z = 4, which can be visualized as a point on the

number line:

: : : : @o—
4 -2 0 2 4

Figure 10.1: A graph of the solution to Equation 10.1.

Here is an equation with two variables:
20=x+14 (10.2)

And I'm sure you know that the geometric translation of this
equation is a line in a 2D space. You probably also know that any

point on this line is a valid solution to the equation.

/

4 2 2 4

Figure 10.2: A graph of the solution to Equation 10.2.

An equation with 3 variables has an associated 3D graph, and so

on.

So far, we been talking about individual equations. What do
systems of equations look like? Consider the following system of

two equations and two variables.

{ y=/242 } (10.3)

y=-—-c+4

10.1 ALGEBRA AND GEOMETRY OF EQNS.
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If one 2-variable equation is a line, then a system of two 2-variable

equations is two lines. Figure 10.3 shows the picture.

Figure 10.3: A graph of the solution to the system of equations
10.3.

Now things are starting to get interesting. The point on the graph
where the two lines intersect is the solution to both equations. In
this case, that point is (z,y) = (4/3,8/3). Try this yourself by
plugging those values into both equations in system 10.3. You can
also try points that are on one line but not the other; you will find
that those pairs of numbers will solve only one of the equations.
Try, for example, (0,4) and (-4,0).

When learning about equations in high school, you learned that
any arithmetic operation performed on one side of the equation
must be done to the other. For example, in the equation x = 4,
you may multiply both sides by 8 (8 xz = 8 x4), but it is not
allowed to multiply only one side by 8.

With a system of equations, you still have the same rule, although
you don’t have to apply the same operation to all equations in
the system. But having a system of equations allows you to do
something more: You may add and subtract entire equations from
each other (this is analogous to multiplying the left-hand side by
"8" and the right-hand side by "4x2"). Let’s try this with Equation
10.3. I will transform the first equation to be itself minus the

{ Oy = 3z/2 — 2 } (10.4)

y=-—-c+4

second equation:



Next, I will replace the second equation by itself plus two times
the original first equation:
Oy =3x/2—2
y=3a/ (10.5)
3y =0x + 8
At a superficial glance, system 10.5 looks really different from
system 10.3. What does the graph of this "new" system look like?

Let’s see:

NOW A

Figure 10.4: A graph of the solution to the system of equations
10.5. Compare with Figure 10.3.

The amazing thing here is that the solution stays the same, even
though the lines are different. The same can be said of the al-
gebraic equations (10.3 and 10.5): They look different, but the
solution to the system remains the same before and after we sub-

tracted equations from each other.

So the conclusion here is that you can take a system of equa-
tions, scalar multiply individual equations, and add and subtract
equations from each other, to your heart’s delight. The individ-
ual equations—and the lines representing those equations—will
change, but the point of intersection will remain exactly the same
(of course, this statement breaks down if you scalar-multiply by

0, so let’s exclude this trivial annoyance).

Now let me explain why this concept is powerful. Consider the
system of equations 10.6. Take a moment to try to find the so-
lution to this system (that is, the (z,y) pair that satisfies both
equations); try it based on visual inspection without writing any-
thing down and without adding or subtracting the equations from

10.1 ALGEBRA AND GEOMETRY OF EQNS.
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each other.

204+ 3y= 8 (10.6)
-2z +2y = -3 '

Did you get it? It’s actually pretty difficult to solve in your head.
Now I will add the first equation to the second; try again to solve
the system without writing anything down.

2043y =8 (10.7)
5y =75 '

Suddenly, this new second equation is much easier to solve. You
see immediately that y = 1, and then you can plug that into the
first equation to get = 5/2 = 2.5. Thus, the solution is now
easier to calculate because the second equation decouples y from
x. This is the principle of row reduction and Gaussian elimination,
which you will learn about later in this chapter.

Do all systems have a common algebraic solution and unique ge-
ometric crossing? No, definitely not. A system of equations will
have (1) one intersecting point like in the examples above, (2) no
points in common, or (3) an infinite number of points in common.
We'll get to this discussion later on in this chapter. First you need
to learn how to convert a system of equations into a matrix-vector

equation.

Matrices representing systems of equations

Converting a system of equations into a matrix equation is straight-
forward, and requires understanding the three components that
together define a system of equations:

1. Variables: These are the unknowns that you want to solve
for. They are typically labeled z, y, ..., or x1, o, ...

2. Coefficients: These are the numbers that multiply the vari-
ables. There is one coefficient per variable. If the variable
is sitting by itself, then the coefficient is 1; if the variable is
not present, then the coefficient is 0.



3. Constants: These are the numbers that do not multiply
variables. Every equation has one constant (which might be
0).

Sometimes, these components are easy to spot. For example, in

the equation

20 +3y—4z="5 (10.8)

The variables are (z,y, z), the corresponding coefficients are (2, 3, —4),

and the constant is 5. In other equations, you might need to do

a bit of arithmetic to separate the components:
2 +3y)—2—-5=1 (10.9)

The variables are still (x,y, z), the coefficients are (2,6, —1), and

the constant is 6.

Components to matrices Once you've identified the compo-

nents of a system, you put those components into matrices:

1. The coefficients go into the coefficients matrix, with columns
corresponding to variables and with rows corresponding to
equations.

2. The variables go into a column vector that right-multiplies
the coefficients matrix. Importantly, the order of variables
in this vector must match the order of variables in the
columns of the matrix.

3. The coefficients matrix and variables vector are on the left-
hand side of the equation. The constants go into a column
vector on the right-hand side of the equation, with the num-
ber of elements in the vector corresponding to the number of
equations. Of course, the n*" element in the constants vec-
tor must correspond to the nt" equation in the coefficients

matrix.

For an example, let’s work with the following system of equa-

tions:

2 — 5y =
x+ 3y — 5z 8 (10.10)
—2y+2z+2=-1

10.2 FROM SYSTEMS TO MATRICES
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Life pro tip:
Vietnamese co-
conut coffee is
really delicious.

Observe how this system is translated into matrices and vectors.
In particular, observe how the coefficients, variables, and con-
stants are organized:

y :[ 81 (10.11)

Be mindful that one or more variables might be missing from an
equation, in which case you must put zeros in the correct locations
of the coefficients matrix. Also note that all numbers unattached

to variables are combined into one constant.

Take a minute to work through the matrix-vector multiplication
to convince yourself that Equation 10.11 is an accurate represen-
tation of the system of equations in 10.10.

You can see that converting a system of equations into a matrix
equation is not terribly difficult. But it does require vigilance,
because a simple mistake here can have dire consequences later

on. For example, consider the following system:

20+ 3y — 52z =8 (10.12)
or = 2 '

If you are converting this system into matrices while simulta-
neously Facebooking, savoring Vietnamese coconut coffee, and
watching reruns of Rick and Morty, you might end up with the

following matrix:

2 3 -5
00 5

This is wrong because the second equation is actually now imple-
mented as 5z = 2 whereas the original equation was bx = 2. When
there is potential for confusion, re-write the set of equations with
all the variables vertically aligned, using 0’s where appropriate:

224+ 3y — 5z =38 N 2+ 3y — 5z =28
S5z = 2 ox + 0y + 0z =2



Practice problems (1 of 2)

form.

2) 2z +3y+ 752 = 8
—2y+2z = -3
s—t = 6
ut+tov = 1
c)
t+u = 0
2v+ 3t = 10
Answers
) 2 3 7|7 [ 8
o —2 2| (Y 7|3
- Z
[1 —1 0 o] [s
0 0 1 1 t
C) =
0 1 1 O u
0 3 0 2] [v

10

Convert the following systems of equations into their matrix

x—z/2 =1/3
9 {5y ee 2 o)

3y + 62

d) {a:—!—y =

T—y =

Practice problems (2 of 2) Convert the following matrix-vector products into their "long-

form" equations (i.e., the opposite of the previous exercises).

a)

Answers

(1 0o 2
0 1 1

I

fu—
[\ e
S
—

=13

@+ 3 0o &

a) Not a valid equation!

o) {7q+7w—|—8e—|—87‘+6t+7y =

1g+9e+1r+2¢

1 3
d) 2 4
3 4
14 2
j =
b
[ -
s+ 3t
d) 2s + 4t
3s + 4t

4s + 2t

IR

N O = Ot

10.2 FROM SYSTEMS TO MATRICES
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Sometimes, the biggest challenge in data analysis and
modeling is figuring out how to represent a problem us-
ing equations; the rest is usually just a matter of alge-
bra and number-crunching. Indeed, the translation from
real-world problem to matrix equation is rarely trivial

and sometimes impossible. In this case, representing a

Reflection

system of equations as matrix-vector multiplication leads
to the compact and simplified notation: Ax = b. And
this form leads to an equally compact solution via the
least-squares algorithm, which is a major topic of Chap-
L ter 14. .

Row reduction, echelon form, and pivots

Row reduction may initially seem like a tangent from represent-
ing and solving systems of equations, however, it provides the
computational backbone of solving systems of equations.

Row reduction involves modifying rows of a matrix while leaving
many key properties of the matrix intact. It is based on the
principle that you learned about in section 10.1: in a system of
equations, individual equations can be scalar-multiplied, added,
and subtracted. Thus, row reduction involves linearly combining
the rows of a matrix, with the goal of transforming a matrix into

a form that facilitates subsequent inspection and analyses.

"Transforming the matrix to facilitate analyses" basically means
increasing the number of zeros in the matrix. Zeros are great in
matrices: the more zeros a matrix has, the easier and faster it
is to work with. Thus, think of row reduction as a method to
re-organize the information in a matrix in a way that increases

the number of zero-valued entries.

So how does row reduction work? It’s exactly the same procedure
we applied in Equation 10.6 (page 264): Replace rows in the ma-



trix with linear combinations of other rows in the same matrix.

Let’s start with an example.

Consider the matrix defined by the coefficients in the equation sys-
tem 10.6 (the constants vector is omitted for now; after learning
the mechanism of row reduction, you’ll learn how to incorporate
the right-hand side of the equations). Notice that by adding the
first row to the second row, we get a zero in the (2,1) position.

[2 5| The arrow with

2 3
[—2 2] M 0 5 (10.13) R1 + Rs indicates
the operation that

These two matrices are not the same, but they are related to each | was performed, in

other by a simple linear operation that could be undone if we | this case, adding

keep track of which rows were added to which other rows. That row 1o ow 2.
linear operation increased the number of zeros in the matrix from
none to one, and so is consistent with our goal. In this case,
the linear transformation converted the original matrix into an
upper-triangular matrix, which, in the parlance of row reduction,

is called the echelon form of the matrix.

Echelon form One of the main goals of row reduction is to con-
vert a dense matrix into its echelon form. A matrix is in its echelon | gometimes also
form when the following two criteria are satisfied: called
row echelon form.
1. The first non-zero number in each row is to the right of the
first non-zero numbers in the rows above.
2. Rows of all zeros are below rows with at least one non-zero

element.

The matrices below are all in echelon form:

4 1
2 4 5 4 30 250001
013,002,0020,00
0 09 0 00 0009

0 0

Notice how each of these matrices conforms to the two criteria:
the first non-zero term in each row is to the right of the first
non-zero term in the rows above, and rows of all zeros are on the

bottom.

10.3 ROwW REDUCTION
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Obviously, most matrices are not already in their echelon form.
This is where row reduction comes in: Apply row reduction to a
matrix until it reaches echelon form. (Some matrices need to have
rows swapped; we’ll deal with this situation later.)

Let’s try an example with a 3 x 3 matrix. The goal is to find the
multiples of some rows to add to other rows in order to obtain the
echelon form of the matrix. It’s often easiest to start by clearing
out the bottom row using multiples of the top row(s).

1 2 2 1 2 2 1 2 2
1 3 0 1 3 o|BEtEl o 5 2
2 4 —3| 2Bl g o0 7 0 0 —7

As with many operations in linear algebra (and math in general),
the procedure is easy to implement in small examples with care-
fully chosen integer numbers. Computers can take care of the
arithmetic for harder problems, but it’s important that you un-
derstand the procedure.

One of the nice features of the echelon form is that linear de-
pendencies in the columns and rows reveal themselves. In the
example above, you can immediately see that the third column
cannot be formed from a linear combination of the first two. It is
similarly straightforward to use the presence of zeros to convince
yourself that the first row cannot be created by combinations of
the other two rows (for example, nothing times zero can produce
the 1 in the top-left element). So, this matrix comprises a set of
linearly independent columns (and rows), which means this is a
rank-3 (full-rank) matrix.

Watch what happens to the echelon form when there are linear

dependencies.
1 2 2 1 2 2 1 2 2
1 3 0 1 3 ol BB o 5 2
2 4 4| ZBHEBRs g 0 0 0 0 0

When the columns (or rows) of a matrix form a linearly dependent
set, the echelon form of the matrix has at least one row of zeros.

In fact, this is one way to compute the rank of a matrix: Trans-
form it to its echelon form, and count the number of rows that



contain at least one non-zero number. That count is the rank of
the matrix. I'll have more to say about the relationship between
rank and row reduction in a later section, but this statement (rank
is the number of non-zeros rows in the echelon form) is the main

idea.

Practice problems Convert the following matrices into their echelon form.

Lo 2 (1 2 [2 2
b
a) [2 X 1:| ) |0 1 c) |4 0
2 1] 13
Answers
Lo 2 1 2] 2
b 1
a) [O X _3] ) |0 c) |0
0 0] 0

A few tips for row reduction Row reduction is admittedly kindof
a weird procedure when you first start doing it. But after you solve
several problems, it will start to feel more natural. Here are a few
tips that might help you avoid difficult arithmetic. These are not
steps that you always implement; these are strategies to keep in

mind that might make things easier.

1) Divide an entire row by a scalar to make the left-most non-zero

number equal 1.

36 9|51 2 3
11 1 11 1
21 1 2 1 1

2) Multiply a row by a scalar to facilitate eliminating elements.

6 9 3 6 9

1 1 1

3
11 1
1 1 o Zff3hs 1 _3 _3

3) Multiply a row by a scalar to get rid of difficult fractions.

36 9 2 36 9 2
11 2 4 112 4
0 0 2/3 17/6| % (0 0 4 17

10.3 ROwW REDUCTION
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This is no longer
the identity ma-
trix, so I'll call it
R for reduction.

Keeping track of row reduction Although the matrices change
during row reduction, those changes are reversible if you keep
track of them. Let’s continue working with the 2 x 2 matrix from

e

It’s trivial that IA = A. But what would happen if we change

a few pages ago:

the identity matrix just a bit? Let’s see:

RA:ll OH 2 3]:[ 2 3]
0 2 |-2 2 —4 4
What we’ve done here is keep row 1 the same and double row
2. But how do we linearly combine rows? Well, if changing the
diagonal elements affects only the corresponding row, then we
need to change the off-diagonal elements to combine rows. To

replace row-2 with row-1 plus row-2, you put a 1 in the (2,1)
position of the R matrix:

w2 -E

More generally, to multiply the i*" row by ¢ and add it to the
4% row, you enter o into the (i, j) entry of the identity matrix to

form an R matrix.

Each n'" step of row reduction has its own R,, matrix, each one to
the left of A and any previously applied R matrices. Depending
on why you are implementing row reduction, you might not need
to keep track of the transformation matrices, but it is important
to understand that every echelon matrix E is related to its original
form A through a series of transformation matrices:

E =RyRy_1..R1A (10.14)

This also shows how row reduction does not actually entail losing
information in the matrix, or even fundamentally changing the
information in the matrix. Instead, we are merely applying a
sequence of linear transformations to reorganize the information
in the matrix. (That said, row reduction without storing the
R matrices does involve information-loss; whether that matters
depends on the goal of row-reduction. More on this point later.)



Exchanging rows in a matrix In the examples of row reduction
thus far, the matrices "just so happened" to be constructed such
that each row had nonzero elements to the right of nonzero el-
ements in higher rows (criteria #1 of an echelon form matrix).
This is not guaranteed to happen, and sometimes rows need to be
exchanged. Row exchanges have implications for several matrix

properties.

Exchanging rows of a matrix is a linear transformation—sometimes
called a permutation because we are permuting the row order—
which means it can be expressed as a matrix multiplication. The
way to accomplish it is by first manipulating the identity matrix
with how you want the rows to be exchanged (let’s call this ma-
trix P for permutation), then left-multiplying the to-be-permuted
matrix by P.

For example, if you want to exchange the first and second rows of a
3x3 matrix, create matrix P, which is the identity matrix with the
first two rows exchanged, then left-multiply by this permutation

matrix.

010|123 45 6
PA=|1 0 0|[|4 5 6/=[1 2 3 (10.15)
00 1|7 8 9 7 8 9

Important: This is a good illustration of how matrix multiplica-
tion is non-commutative. Watch what happens when the same

permutation matrix right-multiplies A.

1 23/fo10 2 1 3
AP=14 5 6| |1 0 0|=1|5 4 6 (10.16)
78 9/]0 0 1 8 79

Thus: left-multiply for row exchanges, right-multiply for column-
exchanges (this is also why the R’s are on the left). To help you
remember this, I'm going to recycle a mnemonic I introduced in
the chapter on matrix multiplications (box 6.3, page 151):

10.3 ROwW REDUCTION
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Order of matrices for transforming rows vs.

columns

PRe-multiply to transform Rows

POst-multiply to transform cOlumns.

If you are confused about why PA and AP are so different, you
might consider reviewing section 6.1 on thinking about matrix

multiplication as linear combinations of rows vs. columns.

Now we can add to our general formula for transforming a matrix

to its echelon form (Equation 10.14) to include row exchanges.
E=R,R,_1..R1PA (10.17)

(You might need additional permutation matrices, in which case

they would be called Pq, P2, and so on.)

The permutation matrix is the mechanism to keep track of the
transformations you apply to the matrix. As I wrote above, in
many cases, you don’t need to keep track of these transformation
matrices; you can simply swap rows as needed.

Let’s see an example of reducing a matrix to its echelon form that

requires a row swap.

2 1 4 21 4 2 1
4 29 4 2 9| Bl o 1
8§ 5 3| 2t g 1 9 01 -9

Notice that the right-most matrix is not in its echelon form, be-
cause the leading non-zero term in the third row is to the left of
the leading non-zero term in the second row. Swapping the sec-
ond and third rows will set things right, and we’ll have our proper
echelon form.

Row swapping has implications for the sign of the determinant,
which is a number associated with a square matrix that is zero
for all singular square matrices and non-zero for full-rank matri-

ces. You’ll learn more about determinants in the next chapter,



including the effect of row swaps. I mention it here to create a
space in your brain for this information to be slotted in. To quell
suspense: Each row swap flips the sign of the determinant but

does not change its magnitude.

Pivots In mechanics, a pivot is a point around which something
rotates or moves. The pivot is an important part of a moving
system; think of the fulcrum of a see-saw. Pivots in a matrix are
similarly important, because they reveal several key properties of

a matrix.

After putting the matrix into echelon form, the pivots are the left-
most non-zero elements in each row. Not every row has a pivot,
and not every column has a pivot. A zero cannot be a pivot even
if it’s in a position that could be a pivot. That’s because pivots
are used as a denominator in row-reduction, and terrible things
happen when you divide by zero. In the following matrix, the

gray boxes highlight the pivots.

[a] b
0
0
0

('b

0
0

=]
O O« o

o= ~
o x> -

The pivots of a matrix are generally not visible before transform-
ing to echelon form. That is to say, you cannot determine the piv-
ots of a matrix without first converting it into its echelon form.

Code There are no dedicated functions in Python or in MAT-
LAB to apply row reduction to obtain the echelon form of a ma-
trix. This is because the echelon form of a matrix is non-unique,
meaning you can obtain many distinct E matrices for any given
A matrix (of course, the R and P matrices will differ for different
E matrices). You’ll learn more about the non-uniqueness of the

echelon form in a few pages.

However, there is a way to obtain an echelon form of a matrix—
and the corresponding R and P matrices—through a procedure

10.3 ROwW REDUCTION



SYSTEMS OF EQUATIONS

called LU decomposition. "LU" stands for lower-upper, and is
a decomposition that represents a matrix as the product of two
triangular matrices. There are several algorithms of LU decom-
position, one of which is conceptually similar to Gaussian elimi-
nation. I won’t go into a lengthy discussion of LU decomposition
here, but the idea in the context of the echelon form of a matrix
is the following:

LU =PA (10.18)
E=U (10.19)
RoRy 1..R; =L7! (10.20)

Code block 10.1: Python

1 from scipy.linalg import lu
2 P,L,U=1u(A)

Code block 10.2: MATLAB
1 [L,U,P] = lu(A);

co N =
o O N
=W N

Answers Echelon form is shown; pivots are highlighted.

(2] 0
E—l— b) [0 [1] 15 c)
0[-8] -8 00 0

Practice problems Use row reduction to transform the matrix into its echelon form, and
then identify the pivots.

3 21

4 2 0 1 s o 7
2 b) [1 1 2 c)

0 31 3 963

11 1

1

IOOOOJ
= o[F]w
[\]

=

Pivot-counting and rank The rank of a matrix is the number of
pivots in the echelon form of that matrix. Let’s think about why
this is the case.

During row reduction, any row that can be created using a linear
weighted combination of other rows in the matrix will turn into a



row of zeros. We could phrase this another way: If row reduction
produces a zeros row, then it means that some linear combina-
tion of row vectors equals the zeros vector. This is literally the
definition of linear dependence (Equation 4.6, page 94).

But this only proves that row reduction can distinguish a reduced-
rank matrix from a full-rank matrix. How do we know that the
number of pivots equals the rank of the matrix?

One way to think about this is using the theorem presented in
Chapter 8, that the rank of a matrix is the dimensionality of the
row space. Row reduction makes the dimensionality of the row
space crystal clear, because all rows that can be formed by other
rows are zeroed out. Any remaining rows necessarily form a lin-
early independent set, and the rank of a matrix is the largest num-
ber of rows that can form a linearly independent set. Each non-
zeros row in the echelon form contains exactly one pivot; hence,
the number of pivots in a matrix equals the number of non-zeros
rows in the echelon form of the matrix, which equals the dimen-
sionality of the row space (and thus also the dimensionality of the

column space), which equals the rank.

For this same reason, row reduction reveals a basis set for the row
space: You simply take all the non-zeros rows.

So the echelon form "cleans up' the matrix to reveal the dimen-
sionality of the row space and therefore the rank of the ma-
trix. And the "cleaning" process happens by moving information
around in the matrix to increase the number of zero-valued ele-

ments.
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Practice problems Use row reduction to compute the rank of the following matrices by

counting pivots.

3 3 5
0 0 0 O
—4 4 0 2 4 6
a) |0 0 0 O b) 5 1 B 0)532
0 0 0 O 6 2 1

. o[ 5 2 s
a) Easy: no pivots! b) P =3 c) |: :| ,r =2
o 00 0 [7] 13

Non-uniqueness of the echelon form Did you always get the
eract same echelon matrices that I got in all the exercises above?
You might have, but you might also have gotten some slightly
different results.

The echelon form of a matrix is non-unique. This means that a
given matrix can have multiple—equally valid—associated echelon-
form matrices. That’s because of row-swapping and row-scalar
multiplications. Take any echelon matrix, pick a row at random,
and multiply that randomly selected row by some random scalar.
There is literally no end to the possible matrices you can create
this way, and they will all be the echelon form of the original

matrix (assuming no arithmetic mistakes).

On the other hand, some features of the infinite number of echelon
form matrices for a given matrix are constant. In particular, the
number of pivots will always be the same (although the numerical
values of the pivots may differ), as will the number of zeros rows
(this is obvious, because the number of zeros rows is M —r, where
M is the number of rows and r is the rank).




Gaussian elimination

Gaussian elimination is an application of row reduction to solving
a system of equations. Let us return to the system presented in
Equation 10.6, which I’ll reproduce here:

2043y = 8 (10.6)
—2z 42y = -3 '

We discovered that it’s difficult to solve this system because of
the multiple x and y terms. So far in this chapter, you learned
how to convert this system into a matrix equation, and then you
learned how to apply row reduction to transform a matrix into its

echelon form.

Now we’re going to extend this procedure by a little bit. In par-
ticular, we will do the following;:

1. Augment the coefficients matrix by the constants vector.
2. Row-reduce to echelon form.
3. Apply back-substitution to solve the system.
Step 1 produces the following matrix:
2 3
-2 2

When implementing row reduction, make sure to apply the row

_z 1 (10.21)

operations to the entire row, not just the numbers from the coef-
ficients matrix. Step 2 will produce the following matrix:

2 3
0 5

Before moving on to step 3, I'm going to simplify this matrix by

i ] (10.22)

replacing row 2 with itself divided by 5.
2 3
0 1

Now we'’re ready for step 3. What is "back substitution"? This

1

X ] (10.23)

means mapping the matrix-vector equation back into a "long-
form" system of equations, and then solving the system from the

10.4 GAUSSIAN ELIMINATION
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bottom row to the top row.

9 _
{ T+3y =8 } (10.24)
y=1

Take a moment to compare system 10.24 to matrix 10.23, and
make sure you see how they map onto each other.

Now the solution to this system is easy to compute, and you
can understand where the name "back-substitution" comes from:
Starting from the bottom row and moving upwards, substitute
variables in each equation until you’ve solved for all the variables.
In this case, we already see that y = 1, and substituting that into
the first equation leads to x = 5/2.

As I mentioned in the outset of this chapter, row manipulations
change the equations and the corresponding graphs, but the solu-
tion stays the same. Therefore, it’s a good idea to substitute the
solution we discovered here back into the original system (Equa-
tion 10.6) to confirm that the solution solves the system. This is
an important test, because if the solution from Gaussian elimina-
tion does not work for the original system, then you’ve made a
mistake somewhere, either in row reduction or in the arithmetic

during back-substitution.

Are you impressed by Gaussian elimination? Perhaps you are now
thinking that this is the pinnacle of using linear algebra to solve
systems of equations, and it couldn’t possibly get better than this.
WEell, prepare to be proven wrong!



Practice problems Perform Gaussian elimination to solve the following systems of equations.

3y +x+ 2z =36.5

2z =32 =-8 2% + 6y — 22 = —29

a)  y+4z+3zx=25 b)
b= —2 y+2z=18
14z — z = —24
Answers

r=2 r=-—.5
a) Jy=3 b) { y=1

z=4 z=17

I Before the Internet age, communication among scientists
was slow, difficult, and limited. Geographical distances
and language barriers exacerbated the problem. I'm not
a math historian, but I did read up a bit about the his-
tory of the term "Gaussian elimination." Apparently, the
method was known to Chinese mathematicians even be-
fore Christ was born. Gauss himself did not discover the

method, but improved it, along with better notation,

Reflection

from Newton (who might have discovered it indepen-
dently of the Chinese). The attribution to Gauss was
made in the 20" century, 100 years after his death. He

could neither correct the record nor inappropriately take

L credit. J

Row-reduced echelon form

Often abbreviated RREF, this is row reduction taken to the ex-
treme. The goal here is to continue with row reduction after
converting a matrix to its echelon form, until it becomes a matrix
where all pivots have a value of 1, and each pivot is the only non-
zero element in its column. Here is the procedure to get a matrix

into its row-reduced echelon form.

1. Transform a matrix into its echelon form as described ear-

10.5 ROW-REDUCED ECHELON FORM
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Linear dependen-
cies in the columns
produce zeros
row(s) and piv-
otless column(s).
A wide matrix
with independent
rows becomes 1
augmented by

A tahPSERE RS
linearly indepen-
dent columns has
I on top and ze-
ros underneath.

A full-rank square
matrix trans-

forms into I.

lier.
2. For each row that contains a pivot:

a) Divide that row by its pivot, which converts the pivot
into the number 1.

b) Apply row-reduction but work upwards instead of down-
wards. That is, use row-reduction to produce zeros in
the elements above the pivot. Continue "upwards row-
reduction" until the pivot is the only non-zero element

in its column.

It is often useful to apply step 2 from the bottom row of the
matrix to the top. Thus, to obtain the echelon form of the matrix,
you work from the top row down to the bottom; and to obtain
the RREF, you work from the bottom row (or the last row with
pivots if there are rows of zeros) back up to the top.

Below are a few examples of matrices and their row-reduced ech-
elon forms; notice that all pivots have a value of one and that the
pivot is the only non-zero entry in its column.

1 3 1o -1
4 5 6/ =101 2
789 00 0
5210 4 1o 0 34 —.03
4156 3[=|0[1]0 —86 1967
2 190 4 0 0[1] 2 233
1 2] [1]o
62:>0
4 7 00
17/ |00
1 23] [1o o
4 1 2[=10[1]o0
6 4 2 |0 0[1]

At this point, you might be concerned that transforming a matrix
into its RREF is non-unique, meaning that many different ma-
trices will become the same row-reduced echelon matrix. That’s
true: although each matrix has a unique RREF (that is, there



is exactly one RREF associated with a matrix), many different
matrices can lead to the same RREF. For example, all square
full-rank matrices have the identity matrix as their RREF.

However, you already know how to keep track of the progression
from the original matrix to its RREF: Put each step of row re-
duction and row swaps into transformation matrices, as described
earlier in this chapter. On the other hand, the usual goal of RREF
is to solve a system of equations, and that solution is the same
for the original matrix, the echelon form, and the RREF. Thus,
in practice, you will probably not need to worry about saving the

intermediate transformation matrices.

Code Computing the RREF of a matrix is easy. In Python, you
must first convert the matrix (which is likely to be stored as a

numpy array) into a sympy matrix.

Code block 10.3: Python

import numpy as np
import sympy as sym

A = np.random.randn(2,4)
sym. Matrix (A). rref ()

I I R

Code block 10.4: MATLAB
1 A= randn(2,4);
rref (A)

\)

7

Practice problems Reduce these matrices to their RREF.

4 0 2
4 8 4 3 8 1 7 13
a) |0 1 8 0 L c) | 5
2 7 0 8 2
3 0 8
Answers
1
1 0 0 -3 0(1)8 1
ay |o 10 2 b) c) | 0
0 0 1
0 0 1 —1/4 0
0 0 O

—= w

o = O

— N

- O O

S = O

= W

10.5 ROW-REDUCED ECHELON FORM
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Gauss-Jordan elimination

Gauss-Jordan elimination is like a super-charged version of Gaus-
sian elimination. It’s basically the same procedure that was de-
scribed on page 279, except you modify step 2: Instead of row-
reducing the coefficients-constants augmented matrix to its eche-
lon form, you row-reduce the matrix to its RREF. The idea is that
the row reduction takes a bit longer, but the back-substitution
becomes much easier. I will continue with the example show pre-

viously. We arrived at the following matrix:

2 3
01

Now let’s continue with upwards row reduction to get all pivots

f ] (10.25)

equal to 1 and the only non-zero elements in their columns:

2 3
01

Now we map the right-most matrix above back onto their equa-

x=>5/2
{ y=1 }

OK, so now it’s time for back-substitution... except you don’t

8]—>_3R2+R1 [2 0

5128571 0
1 0 1

5/2
1 0 1

1

tions:

need to do any back-substitution! All the work is done for you;

you simply read off the solutions right from the equations.

Practice problems Implement Gauss-Jordan elimination to solve the following systems of
equations.

dr—6y+3z=1

3z + 10y = 62 3z + 10y = 11.5

a) {ac++3y 11} b){m—:_?,y 13} c) { bz+2y+ax=38
—x = —x =-1.

& v Jy+x—42=0

Answers

z=4 z=5/2 o
a) {y_5} b) {y—2/5} c)z=y=z=1




Math has many life-lessons if you look at it in the right
way. The wisdom in this chapter is the following: Try
to solve a problem (system of equations) with no prepa-
ration or organization, and you will spend a lot of time
with little to show except stress and frustration. Do
some preparation and organization (Gaussian elimina-
tion) and you can solve the problem with a bit of dedica-
tion and patience. And if you spend a lot of time prepar-

Reflection

ing and strategizing before even starting to solve the
problem (Gauss-Jordan elimination), the solution may
simply reveal itself with little additional work. You’ll be

left with a deep sense of satisfaction and you will have

earned your Mojito on the beach.

Possibilities for solutions

All of the example systems shown so far in this chapter have had
a unique solution. But this is not always the case. In fact, there

are three possibilities:

1. The system has no solutions.
2. The system has exactly one unique solution.
3. The system has an infinite number of solutions.

This might be more intuitive to understand geometrically. Figure
10.5 shows how the three possibilities would look (this is for a
system with two equations and two variables, but this generalizes

to higher dimensions).
Let’s consider each possibility in turn.
No solution (Figure 10.5A) Geometrically, the lines for the dif-

ferent equations never touch. In 2D that means that lines are

parallel; in higher dimensions there are other possibilities, but

10.7 POSSIBILITIES FOR SOLUTIONS
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A B )

Figure 10.5: The three possibilities of solutions to systems of
equations.

still the lines do not have a common meeting point. Here is an
example of a system without a solution:

{ ziigii } (10.26)

It’s clear from the equations that there is no common solution. Of
course, each equation on its own can be solved, but the system of
equations is inconsistent. Here’s what the coefficients-constants
matrix and its RREF look like:

1 -2 0

[O 0 11

-5 1|2
-5 14

Do you spot the problem? Let’s map the RREF back onto a
system of equations:

{ y_Q‘Zi? } (10.27)

1

)

Notwithstanding some silly "proofs" that require division by zero
we generally do not accept the conclusion that 0 = 1. Therefore,
this system is inconsistent; it has no solution.

Unique solution (Figure 10.5B) This is the case for the exam-
ples we’ve worked through earlier in this chapter. The system has
exactly one solution and you can use Gaussian elimination to find
it.

!For example: https://www.pleacher.com/mp/mhumor/onezero2.html



Infinite solutions (Figure 10.5C) Geometrically, this means that
the two equations are collinear; they are in the same subspace.

Here’s a system that would produce Figure 10.5C:

{ y=a/2+2 } (10.28)
2=x+4

Notice that the second equation is the first multiplied by 2. And
here is that system’s corresponding matrix and RREF, and below

that, the mapping back into a system of equations:
-5 1|2 1 -2 —4
-1 2|4 0 0 0

{ y-20=1} (10.29)

Yeah, it’s not really a "system" anymore, unless you want to in-

clude an extra equation that reads 0 + 0 = 0.

So what is the solution to this equation? There are many. Pick
whatever you want for « and then solve for y. Or pick whatever

you want for y and solve for x.

An important aspect of life is balancing priorities, which
is basically like trying to find a solution that satisfies
multiple equations. As you now know, a system of equa-
tions has (1) zero solutions, (2) exactly one solution, or
(3) an infinite number of equally good solutions. So if
life is all about balancing equations, then it seems that

Reflection

one of these three possibilities is correct:
1. Life has no purpose.
2. Life has exactly one purpose.

3. Life has an infinite number of equally good purposes.

10.7 POSSIBILITIES FOR SOLUTIONS
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Matrix spaces after row reduction

In Chapter 8 you learned about matrix spaces and subspaces, and
in this chapter you learned about how to reorganize the contents
of a matrix by linear combinations of rows. Row-reduction has
implications for the span of matrix subspaces, which you will learn

in this section.

To quell suspense, the main take-home message here is that row
reduction does not affect the row space of the matrix, but it can
drastically affect the column space of the matrix; on the other
hand, the dimensionalities of the matrix subspaces do not change.
Now let’s work through this methodically.

Let’s talk about rank first. You already know that rank is a
property of the matriz, not of the rows or the columns. The
rank doesn’t change before vs. after row-reduction. In fact, row-
reduction makes the rank easier to compute (count the pivots).

Next let’s think about the row space. That doesn’t change after
row reduction. To understand why, think about the definition of a
subspace and the process of row reduction: A subspace is defined
as all possible linear combinations of a set of vectors. That means
that you can take any constant times any vector in the subspace,
add that to any other constant times any other vector in the
subspace, and the resulting vector will still be in the subspace.

Now think about the process of row reduction: you take some
constant times one row and add it to another row. That is entirely
consistent with the algebraic definition of a subspace. So you can
do row-reduction to your heart’s delight and you will never leave
the initial subspace.

The only characteristic of the row space that could change is the
basis vectors: If you take the rows of the matrix (possibly sub-
selecting to get a linearly independent set) as a basis for the row
space, then row reduction will change the basis vectors. But those
are just different vectors that span the same space; the subspace



spanned by the rows is unchanged before, during, and after row

reduction.

Now let’s talk about the column space. The column space actually
can change during row reduction. Let me first clarify that the
dimensionality of the column space does not change with row
reduction. The dimensionality will stay the same because the
dimensionality of the row space, and the rank of the matrix, are

unaffected by row reduction.

But what can change is the actual subspace that is spanned by
the columns. This can happen when the column space occupies
a lower-dimensional subspace of the ambient space in which the
columns live. The reason is that row reduction involves changing
entire rows at a time; individual elements of a column will change
while other elements in the same column stay the same. I believe
that one clear example will suffice for understanding. Below you
can see a matrix and its RREF.

M

1 2 1
3 7, rref(M)= |0 (10.30)
9 1 0

o = O

The two columns form a linearly independent set in both matrices
(clearly seen in both, though easier to see in the RREF), so we
can take the columns as bases for the column spaces. In both ma-
trices, the column space is a 2D plane embedded in a 3D ambient

space.

But are they the same plane, i.e., the same subspace? Not at all!
They intersect at the origin, and they have a line in common (that
is, there is a 1D subspace in both 2D subspaces), but otherwise
they are very different from each other—before RREF it was a
tilted plane and after RREF it’s the XY plane at Z=0 (Figure
10.6).

On the other hand, keep in mind that row reduction is not nec-
essarily guaranteed to change the column space. Consider the

following matrix and its RREF:
10
0 1

5

Anyway, the rows
tend to be a poor
choice for basis
vectors. You will
understand why
when you learn
about the SVD.

10.8 MATRIX SPACES, ROW REDUCTION
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0.5+

-0.54

-1

Figure 10.6: A graph of the column spaces before and after
RREF for matrix M (Equation 10.30). Column vectors are
drawn on top of the planes (unit-normalized for visualization).

It’s a full-rank matrix and its RREF is the identity matrix. The
column space spans all of R? both before and after row reduction.
Now this situation is analogous to the row space: The elements
in the columns are different but the subspaces spanned by those
columns are exactly the same.

Again, the take-home messages in this section are that row re-
duction (1) does not affect the rank or the dimensionalities of the
matrix subspaces, (2) does not change the row space, and (3) can
(but does not necessarily) change the column space.



Exercises

. Reduce the following matrices to their echelon form. Highlight

the pivots.
2 0 -1 -1 2 1 3 -1
1 -2 -2 5 -5 —6 -5 3
a) b)
-3 5 —4 -1 -3 -4 -3 2
0 -3 -1 -3 -1 -2 -1 1

. Given the following matrix sizes and ranks, determine the

number of zeros rows in the row-reduced echelon form.

a) R?3 r =2 b) R¥ 1 =2 c) R r=17
d)R™ r=3 e) R"2 r =2 f) R>7 r =2
g) R r =0 h) R, r =4

. Use row reduction to determine whether the following systems
have zero, one, or an infinite number of solutions. You don’t

need to solve the system.

dr —3y+3z=4 dr—3y+3z=4 dr —3y+3z=4
aR sx+y+z=7 s bR bxt+y+z=7 pc) brty+z=7
r4+4y—2z2=1 r+4y—22=3 20 +4y —2z=1

. Solve the following systems of equations, by converting the
equations in a matrix equation and then apply Gaussian elim-

ination and back-substitution (or Gauss-Jordan elimination).

z4+y—z=12
—2y+ 10z — 2z =12
9z —y+22=24
4o + 3y + 22 = 22

20 +4y — 6z = —15
a) y—4z=-8 b)
z+62=10

10.9 EXERCISES
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Answers

-2 -2 2 1 -1
2) 0 3 b |° 11
0 0 0 0[2] 1
0 0 0 0 00 O
a)0 b)1 c) 0 d)4
e)b £) 0 g)6 h)0
a) No solutions b) oo solutions ¢) One solution
a)r=1y=-2,2=3/2 b)z=2y=2,2=4



Coding challenges

1. How do you think I came up with the sample systems of equa-

tions in this chapter? Is it because I'm a super-duper-math-
genius? Unfortunately, that’s definitely not the case. But I
am a decent coder. And in this code challenge, you will learn
the age-old secret of creating your own systems of equations.
Below is an explanation of the procedure; your task is to write
code to implement it. To start with, use three equations and

three variables (z, y, and z).

1. Create a vector that contains the values of the variables,
which is actually the numbers that you want to solve for
in the equations. For example, if you pick x = 3 and
y = —4, then the vector of solutions is x = [3 —4].

2. Make up the expressions with random coefficients—but
don’t worry about the solution (the constants). For ex-
ample, 2z — 3z.

3. Create the coefficients matrix like what you learned in
section 10.2. Let’s call this matrix A.

4. Compute the constants as Ax.

And voila! You now have all the pieces of a system of equa-
tions. If you want to create systems that have zero, one, or
infinite solutions, you will need to make some minor adjust-
ments to the above procedure (e.g., by changing a coefficient

after already solving for the constants).

. The margin notes in section 10.5 described patterns in the
RREF of a matrix that depend on the size of the matrix. The
idea is that every RREF is essentially the identity matrix, pos-
sibly with some additional rows of zeros or columns of non-zero
numbers. Write code to explore these possibilities. In partic-
ular, create random numbers matrices that are (1) square, (2)
wide, or (3) tall; and then compute and examine the RREF of

those matrices.

10.11 CODING CHALLENGES
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Code solutions

1. Hint: You can actually skip from step 1 directly to step 3;
step 2 is useful if you plan on writing out the full equations.
To create a system with no solutions, start by creating a sys-
tem with one solution, and then manually change one of the
numbers. To create a system with infinite solutions, start by
creating a system with one solution, and remove at least one
equation from the system.

Code block 10.5: Python

1 import numpy as np
2 A= np.array([[Q,O,—B],[3,1,4],[1,0,—1]])
3 x = [2,3,4]
4 b = AGx
Code block 10.6: MATLAB
1 A=]120 -3;,314; 10 —1J;
2 x=1[2 3 4]’;
3 b = Axx;

2. The code below shows an example of a wide matrix (3x6).

Code block 10.7: Python

import numpy as np
import sympy as sym

A = np.random.randn (3,6)
sym. Matrix (A).rref ()[0]

[

Code block 10.8: MATLAB
1 rref(randn(3,6))




CHAPTER 11
MATRIX DETERMINANT

START THIS CHAPTER HAPPY
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Four things to know about determinants

Thing 1: only for square matrices The determinant is defined
only for square matrices. Any time you hear or read the word
"determinant," you can immediately start thinking about square
(M x M) matrices. Therefore, all of the matrices in this chapter

are square.

Thing 2: a matrix has one determinant The determinant is
a scalar that contains information about the matrix. The deter-
minant is unique in the sense that a matrix has exactly one de-
terminant (of course, many different matrices can have the same
numerical value as their determinant, but it is not possible for
one matrix to have multiple distinct determinants). You might
already be thinking about other numbers that characterize a ma-
trix, like rank or dimensionality. The determinant is not the same
thing as the rank, although it is related to the rank, which is the

next thing to know.

Thing 3: zero for singular matrices The determinant is zero for
a non-invertible matrix—a matrix with rank » < M. You can also
say that a matrix with linear dependencies in the columns or in
the rows has a determinant of zero. In fact, when you learn about
computing the inverse in the next chapter, you’ll learn that you
should compute the determinant of a matrix before even starting
to compute the inverse.

Thing 4: notation The determinant is indicated using single-
vertical lines around the matrix letter, by printing the contents
of the matrix with vertical lines instead of square brackets, or by
using det(A). Single vertical lines are used to disambiguate the
determinant (|A|) from the magnitude or norm (||A||). The Greek
character A is also commonly used to indicate the determinant.



Thus:

det(A) = |A] =

~N b~
co Ot N

There are several applications of the determinant. The two ap-
plications used in this book are computing the inverse (and de-
termining whether a matrix has an inverse) (Chapter 12), and
uncovering the eigenvalues of a matrix (Chapter 15). A third ap-
plication is in geometry: If a matrix contains the vertices of a
polygon, then the absolute value of the determinant measures the
volume of that polygon. I won’t discuss this application here.

The determinant is really difficult to compute for large matrices
("large" is a subjective term, but for calculating the determinant,
I’d consider anything larger than 4 x4 to be large). In fact, com-
puters are unable to compute the determinant reliably for large
matrices. You’ll see this yourself in the code challenges for this

chapter.

However, there are handy short-cuts for computing the determi-
nant of 2x2 and 3 x3 matrices. Therefore, I will introduce these
short-cuts first, and then present the "full" determinant formula

thereafter.

Determinant of a 2 X2 matrix

The determinant of a 2x2 matrix equals the product of the diag-
onal minus the product of the off-diagonal.

Equation for the determinant of a 2x2 matrix.

([ )-

a b
c d

‘ = ad — bc (11.1)

Don’t be seduced
by the simplicity of
this equation—this
short-cut works
only for 2x2 matri-
ces.

11.2 DETERMINANT OF A 2 X2 MATRIX



DETERMINANT

Here are a few examples with real numbers.

1
2 xi—2x0=1 (11.2)
0 1
5 —3
—5x2— (—3x—4) = —2 11.3
‘_4 2‘ ( ) (11.3)
1 2
=1x4-2x2=0 (11.4)
2 4

Notice that the first two matrices have a rank of 2 (and, thus, the
columns form a linearly independent set), while the third matrix
has a rank of 1. And that the determinant was non-zero for the
first two matrices and zero for the third matrix.

That is no coincidence: Every reduced-rank matrix has a deter-
minant of zero. Indeed, one definition of a singular matrix is a
matrix with a determinant of zero. Thus, ad = bc for every sin-

gular 2 x 2 matrix.

To understand why a 2 x 2 matrix must have A = 0, consider a
matrix of letters with one column a scalar multiple of the other,

i.e., linear dependence in the columns:

a Aa
c Ac
And now we compute the determinant of this matrix:

A = ach — alc (11.5)

=0

Thus, the determinant of a 2x 2 matrix with linear dependencies
in the columns is necessarily 0. Take a moment to re-do this
example but setting the linear dependency in the rows instead of

the columns.



Practice problems Determine whether the following determinants are correct, and, if not,

compute the true determinant.

1 4 1

a 0 =1 b 2 4= o |1 9=_3

2 1 1 1 6 1

1 9 1 5 1 5
=0 f =15 - _8

°) ‘0 0‘ ) ‘3 15’ g) ’3 0)

Answers

a) Correct b) Correct c) No, A = —53
e) Correct f) No, A=0 g) No, A =-15

d) No, A =3
h) Correct

Determinant and transpose The determinant is robust to the
transpose operation. In other words, det(A) = det(A"). This is
because the determinant is a property of the matriz, not of the

rows or the columns. This is easy to prove:

b
¢ = ad —be (11.6)
d
@Y —ad— b (11.7)
b d

Notice that the difference between the matrix and its transpose is
simply the swapping of ¢ and d. Scalar multiplication is commu-
tative, and thus the determinant is unaffected by the transpose.

This proof is valid only for 2 x 2 matrices because Equation 11.1
is a short-cut for 2 x 2 matrices. However, this property does
generalize to any sized square matrix. We will revisit this concept

when learning about 3 x 3 matrices.

The characteristic polynomial

An interpretation of Equation 11.1 is that we transform a matrix
into an equation with the matrix elements on one side of the
equation, and the determinant on the other side. Let me write

11.3 THE CHARACTERISTIC POLYNOMIAL
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that explicitly, using A to indicate the determinant:

ab—cd=A (11.8)

This is interesting because it means that we can solve for a par-

ticular matrix element if we know the determinant. Let’s see an

example:
2 7
4 )\:4 = 22-28=4 = 2X\=32 = A=16

So we start with the knowledge that the matrix determinant is 4
and then we can solve for a unique matrix element A that makes
the equation true. Let’s try another example:

‘A 1

=1 = MN-3=1 = XMN=4 = N\=42
3 A

Notice how the equation worked out: There were two As on the di-
agonal, which produced a second-order polynomial equation, and
thus there were two solutions. So in this case, there is no single
A that satisfies our determinant equation; instead, there are two
equally acceptable solutions. That’s no surprise: The Fundamen-
tal Theorem of Algebra tells us that an nt” order polynomial has
exactly n roots (though they might be complex-valued).

Now I want to push this idea one step further. Instead of having
only A on the diagonal of the matrix, let’s have both a real number
and an unknown. I'm also assuming that the matrix below is

singular, which means I know that its determinant is zero.

1-A 3
3 1—-A

‘:0 = (1-X)*-9=0 (11.9)
= M-21-8=0
= (A+2)(A—-4)=0
= A=-24

There are two possible values of A, which means there are two
distinct matrices that solve this equation. Those two matrices



are shown below (obtained by plugging in \). It should take only
a quick glance to confirm that both matrices have A = 0 (which is

the same thing as saying that both matrices are reduced-rank).

A=-2 = 33
3 3

A4 = |33
3 -3

Does subtracting a constant from the diagonal of a square matrix
sound familiar? In fact, what we did in this example is shift the
matriz by —AL. Therefore, we could rewrite Equation 11.9 as

aet [y 3] ) o (11.10)
31

Now I will replace that specific matrix with a letter so that it
generalizes to any square matrix of any size. That gives us the

characteristic polynomial of the matrix.

The characteristic polynomial of a matrix.

det (A — \I) (11.11)

The characteristic polynomial is a big deal. For one thing, it al-
lows us to represent a matrix in terms of a polynomial expression,

and polynomials have a lot of great properties in mathematics.

But more importantly for our purposes in this book, when the
characteristic polynomial is set to zero (that is, when we assume
the determinant of the shifted matrix is 0), the A’s—the roots of
the polynomial—are the eigenvalues of the matrix. Pretty neat,
eh? More on this in Chapter 15. For now, we’re going to continue

our explorations of determinants of larger matrices.

11.3 THE CHARACTERISTIC POLYNOMIAL
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Practice problems Which value(s) of A would make the following matrices singular (that
is, have a determinant of zero)?

1 2 0 14 41 0 1
2) {4 ,\} b) L 4] ) [1 )J ) [3/\ 1]
6 2 A4 A 18 5—X —1/3
°) {5 3)} 2 L A] g) [1/2 /\] b) [3 5/\]
Answers
a) =8 b) A =0 c) A=1/4 d) \=-7
e) A=5/9 £) A=42 g) A=3 h) A =64

Determinant of a 3 x3 matrix

There is also a short-cut to determine the determinant of a 3 x 3
matrix, which involves adding the products of the right-going
diagonals and subtracting the products of the left-going diago-

nals.

It’s easiest to understand visually. There are two ways to think
about the procedure, one that "wraps around" the matrix and one
that augments the matrix with the first two columns (Figure 11.1).
Of course, these aren’t really different methods, just different ways
of interpreting the same procedure. Whichever picture you find

easier to remember is the one you should focus on.

I hope you find the pictures intuitive and memorable. Trying to
memorize the algebraic equation is a terrible idea, but it’s printed

below for completeness.

Determinant of 3 x3 matrix.

b ¢
e fl=uaei+bfg+cdh—ceg—bdi—afh (11.12)
h

Q@ Q. 9
~.




A) The "augmented"” visualization

ab C‘ abc ab C'
de f’f:ff e f de fl
g h-ijgrhyi g<hijg.h
aei + bfg+cdh  -ceg-hbdi-afh

B) The "wrap-around" visualization

abec abec
de f def
g hi g hi

aei+bfg+cdh  -ceg-bdi-afh

Figure 11.1: Two visualizations of the short-cut for computing

the determinant of a 3x3 matrix.

Let’s see a few examples with numbers.

1
2 =143+321+4522-541-323-122=38—44=—4
1

N s W
W N Ot

03 -9
-6 0 1] =00143184+960-9084+361—-010 = 24+18 = 42
8§ 0 1

=1474+3234+527-543-327-127=116—-116 =0

W NN =
B TS JU
~N DN Ot

The third example has a determinant of zero, which means the ma-
trix is singular (reduced-rank). It’s singular because the columns
(or rows) form a dependent set. Can you guess by visual inspec-
tion how the columns are linearly related to each other? It might

be easier to see from looking at the rows.

Let’s now demonstrate that the determinant of a 3 x 3 reduced-

rank matrix must be 0. Like with the example of the 2x2 matrix,

11.4 3x3 MATRIX DETERMINANT
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we’ll accomplish this by creating a matrix with letters such that
one column is a multiple of another column.

a b la
d e M
g h Ag

The determinant, after some algebraic handiwork, is found to be
zero (parentheses added for visual clarity).

A = ae)g + bAdg + Aadh — Aaeg — bdAg — aAdh (11.13)
= (Aaeg — Aaeg) + (Abdg — Abdg) + (Aadh — Aadh)
=0

It is worth taking a few moments to go through this demonstration

assuming a linear dependency in the rows.

Practice problems Determine whether the following determinants are correct.

1 1 2 1 1 2 1 2 4
a) |2 2 1|=-2 b) 4 3 0/=-3 c) 1 2 3/ =-3 d)
4 3 0 2 2 1 2 1 0 =2 3
-4 5 —6|=
7 -8 9
Answers
a) No, A =-3 b) No, A =+3 c) Correct d) No, A=0

Practice problems Which value(s) of A would make the following matrices singular?

0 1 1 1 0 -3
a) [0 4 7 b) |[-4 —-11 1
0 3 A 3 X 0
1 1 1] 1-x 0 4
c) |2 2 3 d | -4 3-x 4
13 A 4] | 0 0 5-—2\
Answers
a) any A b) A=9
c) A=3 d) A=1,3,5

Determinant and transpose We can now show that the deter-

minant of a 3x3 matrix is the same before and after transposing.




It takes slightly longer to prove than for the 2x2 case, but is still
worth the effort. The ordering of the terms is different, but the
individual products are the same, as are their signs.

a b c

e fl=aei+bfg+cdh —ceg—bdi—afh (11.14)

a d g
b e h|=aei+ dhc+ gbf —gec— dbi —ahf (11.15)
c 1

Full procedure to compute the determi-

nant

It turns out that the aforediscussed tricks for computing the de-
terminants of 2x2 and 3x3 matrices are simplifications of the full
procedure to compute the determinant of any sized matrix. In
this section you will learn that full procedure. It gets really com-
plicated really quickly, so I will illustrate it using a 4 x4 matrix,
and then you’ll see how this simplifies to the smaller matrices.

In general, the procedure is to multiply the i*" element of the
first row of the matrix by the determinant of the 3 x 3 submatrix
created by excluding the i*" row and i*" column. That gives four
numbers. You then add the 1% and 37%, and subtract the 2"¢ and
4t Figure 11.2 shows the operation.

abcd ax b x cX xd
efgh|_ fgh e g h e f h e fg
ijk LT ikl ok TG 0] gk
mn o p nop m o p mn p mn o

Figure 11.2: The procedure for computing the determinant of
a 4x4 matrix. Note the alternating plus and minus signs.

Thus, computing the determinant of a 4 x4 matrix actually re-

quires computing four 3 x 3 determinants. Interestingly, you can

11.5 THE FULL PROCEDURE
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Note: There are
some fancy lin-
ear algebra terms
here like minors
matriz and co-
factors that will
be introduced in
the next chapter.

modify this procedure to go column-wise rather than row-wise.
That is, multiply each element of the first column by the deter-
minant of the submatrix created by excluding that element’s row.
Alternatively: Transpose the matrix and apply the procedure il-

lustrated in Figure 11.2.

Now let’s see what happens when we apply this same procedure
to a 3x3 matrix (Figure 11.3).

abc a x b x X C
de f| = e f d f+de
g hi h i g [ g h

= a(ei-fh) - b(di-fg) + c(dh-eg)
= aei-afh - (bdi-dfg) + cdh-ceg
= aei+ bfg+ cdh - ceg - bdi - afth

Figure 11.3: The procedure for computing the determinant of
a 3 x3 matrix. Note the alternating plus and minus signs.
And notice that the end result is the same as the shortcut in
Equation 11.12.

Now it’s your turn: apply the full procedure to a 2x2 matrix. (The
determinant of a scalar is simply that scalar, thus, det(—4) = —4.)
You will arrive at the familiar ad — bc.

The full procedure scales up to any sized matrix. But that means
that computing the determinant of a 5 x5 matrix requires com-
puting 5 determinants of 4x4 submatrices, and each of those sub-
matrices must be broken down into 3x 3 submatrices. Honestly, I
could live 1000 years and die happy without ever computing the
determinant of a 5 x5 matrix by hand.



Practice problems Compute the determinant of the following matrices (lots of zeros in these

matrices... you’re welcome).

0 -1 2 0 0 0 -3 3 0
a) 1 2 0 5 b) () 0 0 -1 ) 1
0 3 —4 0 0 0 —4 0 0
1 0 2 0 -1 -1 =3 2 1
Answers
a) -10 b) 72 c) 0

-1 0 0
2 0 5
3 0 0
0 0 0

Determinant of a triangular matrix

Here’s the key take-home of this section: The determinant of a tri-

angular matriz is equal to the product of its diagonal elements.

There are three kinds of triangular matrices: upper-triangular,
lower-triangular, and diagonal. Thus, computing the determinant

of even a large triangular matrix is pretty easy.

In fact, for some matrices, it’s easier to apply row reduction to get
the matrix into its echelon form and then compute the determi-
nant as the product of the diagonal. HOWEVER, be aware that
row exchanges and row-scalar-multiplication affect the determi-

nant, as you will learn in subsequent sections.

Why is this shortcut true? Let’s start by proving it for upper-
triangular 2 x 2 matrices:

@b d b0 = ad (11.16)
0 d

You can now prove this for lower-triangular and diagonal matri-

ces.

The proof for 3 x 3 matrices is comparable but involves slightly
more algebra. The expression below draws from Equation 11.12

Useful tip for ex-

ams!
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but sets the lower-triangular elements to zero.

a b c
e f|=aei+bf0+ c00—ce0—b0i —af0=aei (11.17)

1

Again, I will leave it to you to adapt Equation 11.17 to lower-
triangular and diagonal matrices. You will discover that the re-
sult is the same: The determinant equals the product of the di-
agonals.

Finally, let’s inspect the 4 x 4 case. Figure 11.4 is a modified
version of Figure 11.2 withe=i=f=m=n=0=0.

abcd ax b x c X x d
0 fghi_ fgh 0 gh 0 f h 0fg
OO0k I |~ Ok I|™ |0 k 1 00 I = |00 k
000p 00 p 0 0p 00 p 000

Figure 11.4: The full determinant formula with an upper-

triangular 4 x4 matrix.

The remarkable result here is that three of the four submatrices
are singular (notice the columns of zeros). The only non-singular
matrix is the first, which itself is a diagonal matrix, and which
multiplies the first diagonal element of the original matrix. In
other words, after following this rather complicated formula, the
determinant of the matrix simplifies to A = afkp.

In mathematics, proofs don’t necessarily lead to intuition. The
reason why the determinant equals the product of the diago-
nals for any triangular matrix is this: All-but-one of the indi-
vidual terms in the determinant formula have at least one ele-
ment from the upper-triangle and at least one element from the
lower-triangle. The one exception is the term defined by the main
diagonal.

Code Computing the determinant is simple in Python and in
MATLAB. However, the determinant is a numerically unstable
computation for large matrices, which will be demonstrated in
the code challenges.



Code block 11.1: Python

1 import numpy as np
2 A = np.random.randn(3,3)
3 np.linalg.det(A)

Code block 11.2: MATLAB

A = randn (3,3);
det (A)

N

Determinant and row reduction

The procedures involved in row reduction (swapping rows, adding
multiples of rows to other rows, and multiplying a row by a con-
stant) have implications for the determinant of the matrix. Let’s

explore each of these three operations in turn.

Row swapping Curiously enough, swapping the rows of a matrix
flips the sign of the determinant, without affecting the magnitude
of the determinant. Let’s start with a simple example of the

identity matrix with and without rows swapped:

(1) =1x1-0x0=1

1
=0x0—-1x1=-1
0
Now let’s try with a full matrix comprising letters.

b
=ad — cb
d

=cb—da = —(ab — cd)

As sure as the sun

DETERMINANT AND ROW REDUCTION

rises, the determi-

nant of the identity p~

—

matrix of any size T

is 1.
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With a 2 x2 matrix, there is only one possible way to swap rows.
Let’s try this again with the 3 x 3 identity matrix. We can see
what happens with multiple row swaps.

01 0/=111+0000+0000-0-1-0-0-0-1 -1-0-0 =1

1 0 0/=001+100+01.0-000-1-1.1-0-0-0= -1

]
]
—

=000+111+000-001-1.00-0-10=1

Thus, each row swap reverses the sign of the determinant. Two
row swaps therefore "double-reverses" the sign. More generally,
an odd number of row swaps effectively multiplies the sign of
the determinant by —1, whereas an even number of row swaps
preserves the sign of the determinant.

One more example with a matrix of letters.

e fl=aei+bfg+cdh —ceg—bdi—afh (11.18)

b c|=0bdi+ceg+afh—bfg— aei — cdh (11.19)

= —(aei +bfg+ cdh — ceg — bdi — afh)

e f
i|=cdh+aei+bfg—afh— ceg— bdi (11.20)



Adding multiples of rows Adding a multiple of one row to an-
other is the most common operation in row reduction. Let’s see
what happens when we replace row 1 by row 1 plus row 2 (spoiler
alert: the determinant is unchanged):

a+c b+d
c d

’:(a—i—c)d—(b—i-d)c

= ad + cd — (be + dc)

= ad — bc (11.21)

Let’s try this again with a 3x3 matrix to make sure our conclusion

isn’t based on a quirk of the 2x2 case:

a+g b+h c+i
d e f
g h )

=(a+g)ei+ (b+h)fg+ (c+i)dh — (c+i)eg— (b+ h)di — (a + g)fh
=aei+ get +bfg+ hfg+ cdh + idh — ceg — ieg — bdi — hdi —afh — gfh

=aei+bfg+ cdh — ceg — bdi — afh (11.22)

It’s not immediately visually obvious that the "extra" terms will
cancel, but notice that there are identical terms with opposite
signs and with letters in a different order (for example: +gei and
—ieg). Canceling those terms will bring us back to the familiar
determinant formula. It’s as we never added any rows in the first

place.

Now you know that the determinant is unaffected by adding rows
to each other. Why does this happen? In Equation 11.21, the
copy of row 2 embedded in row 1 adds, and then subtracts, the
added elements (+cd and —dc). Same story for Equation 11.22:
The "extra terms" come from the products of the right-going di-
agonals with the added elements (gei, hfg, idh) (consult back to
Figure 11.1 on page 303), and then those same "extra terms" are
subtracted off from the left-going diagonals (ieg, hdi, gfh).

The previous paragraph will provide an answer to the next ques-
tion: What about adding multiples of one row to another? In the

11.7 DETERMINANT AND ROW REDUCTION
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two examples above, I only showed a row being added to another
row, but row reduction often involves scalar-multiplying rows and
adding them. It turns out that scalar multiplying does not change
our conclusion: combining rows has no effect on the determinant.
The reason is that the multiple is simply a different constant that
gets added and then subtracted to the determinant formula.

Let’s think through this using example 11.22. Instead of adding
row 3 to row 1, let’s add 4 times row 3 to row 1. The first row of
the new matrix then becomes [ (a+4g) (b+4h) (c+4i) |. Well, 4¢g
is still just a constant, so we might as well give it a new variable
name ¢’'. Thus, the first element becomes (a + ¢'). Same for the
other two elements of the first row: (b+ h’) and (¢ +i'). Then
the opposite-signed terms in Equation 11.22 are, for example, ¢'ei
and —ieg’. Those still cancel out.

Finally, we can address subtracting rows: Subtracting rows is the
same thing as adding rows with one row scalar-multiplied by —1.
For this reason, subtracting rows has the same impact on the
determinant as adding rows: None whatsoever.

Row-scalar multiplication What happens to the determinant
when you multiply an entire row by a scalar? Notice the dif-
ference from the discussion above: Here we are concerned with
multiplying only one row by a scalar; we are not combining mul-

tiple rows by addition or subtraction.

The answer is that multiplying a row by some scalar 3 scales the
determinant by (3. Let’s see an example in our favorite lettered
2 X 2 matrix.

fa  Bb
c d

| = fad — Bbc = B(ad — be) (11.23)

How does this generalize to scaling rows by different values? Let’s
find out:

Ba Bb

e = Bayd — Bbyc = By(ad — be) (11.24)




In other words, any scalar that multiplies an entire row, scales the

determinant by the same amount.

This scales up to any sized matrix, which is easy to confirm in the

3 x 3 case:

a b ¢
d e fl=aeCi+bf(g+ cdCh—ceCg—bd(i—afCh
Cg Ch i

= ((aei+bfg+ cdh — ceg — bdi —afh) (11.25)

The reason why this happens is that each term in the determi-
nant formula contains exactly one element from each row in the
matrix. Therefore, multiplying an entire row by a scalar means
that every term in the formula contains that scalar, and it can

thus be factored out.

Summary Following is the high-level summary of this section;
it’s really easy to memorize, but of course you needed the previous

pages to explain why these are true.

Row swap — A=-A
Add rows — A=A
Scale row by 8 — A=Af

Determinant & matrix-scalar multiplica-
tion
The previous section might have led you to wonder what happens

to the determinant of a scalar-multiplication over the entire ma-
trix. That is, what is the relationship between |A| and |3A|?

One way to think about this is that matrix-scalar multiplication is

the same thing as row-scalar multiplication, repeated for all rows

11.8 A AND SCALAR MULTIPLICATION
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and using the same scalar. So if multiplying one row by a scalar
B scales the determinant by 3, then multiplying two rows by
scales the determinant by 33 = (2. Generalizing this to all M
rows of a matrix leads to the following formula:

det(BA) = fMdet(A), A e RMM (11.26)

It is also insightful to think about this from an element perspective

of matrix-scalar multiplication.

Ba  Bb
Be Bd

B

a b
c d

’ = BaBd — BbBec = f*(ad — bc)  (11.27)

You can see that each term in the determinant formula brings 2,
which can be factored out. Let’s see how this looks for a 3 x 3

matrix.

a b ¢ Ba Bb Bc
pld e f|=|Bd Be Bf
g h i |Bg Bh pi

= B3aei + B3bfg + B3edh — B3ceg — B3bdi — Bafh

= B*(aei +bfg+ cdh — ceg — bdi — afh)  (11.28)

You can consider how this works for the 4x4 case (refer to Figure
11.2): The determinant of each submatrix has a scalar of 33,
which then multiplies 8 times the element in the first row, leading
to B2

Generalizing this to higher dimensions leads back to Equation
11.26.

Determinant in theory and in practice

As mentioned at the outset of this chapter, the determinant has
several applications. Two of the most important applications—
and the primary applications in this book—are computing the



matrix inverse, and discovering the eigenvalues. Clearly, the de-
terminant has an important role in linear algebra.

On the other hand, the determinant is difficult to compute for
"large" matrices, due to numerical instabilities. Numerical insta-
bilities in computers result from multiplying or dividing by very
very small numbers, or very very large numbers. This is particu-
larly problematic when the matrices have a high condition number
(a concept you will learn about in Chapter 16 on the singular value

decomposition), are close to singular, or are singular.

You will have the opportunity to examine this yourself in the
code challenges at the end of this chapter. The main point is
that the determinant is an important concept to understand for
the theory of linear algebra, but you should avoid computing or
using it directly when implementing linear algebra concepts on

computers.

11.9 THEORY VS PRACTICE



DETERMINANT

Exercises

1. Compute the determinant of the following matrices.

d)

g)

J)

m)

a)

a a
b c
(50 7
71
100 /599
V599 6
1 1 0
-5 4
2 0 -9
0 1 2
1 —78 17
0 2 3

b)

k)

n)

(5 2

110 4

9 \/e—7/314

0 8

(13 34

5 13

0 2 3
1 —78 17

0o 1 2
1 -2 3
4 5 —6
7 -8 9

)

)

)

o

5 10
2 4

2 6
-4 11

—

0 0
0 13 34
0 5 13

1 —-78 17
0 2 3
0 1 2

o 1 2 0
-4 0 3 1
3 -3 0 O
6 0 -2 -2

2. Apply row-reduction to obtain the echelon form of these ma-

trices, and then compute the determinant as the product of

the diagonal. Keep track of row-swaps and row-scalar multi-

plications.
2
a) 3
4 5
1 3 —2
c)|3 5 6
2 4 3

b)

d) |3

3. Does having a zero in the main diagonal necessarily give a

matrix A = 0?7 The correct answer is "it depends"; now you

need to figure out what it depends on, and why that is. Then

create an example matrix with all zeros on the diagonal but
with A # 0.



Answers

a) a(c — b)
d)1

g) 1

j) 107

m) 1

b) 0
e) 16
h) -1
k) —1

n)0

c) 0
£) 2
i) -1
) +1

0) —24

2. These answers show the echelon form and the determinant of

the original matrix. Notice that the determinant of the original

matrix is not necessarily the same thing as the the product of

the diagonals of the echelon form of the matrix (depending on

row manipulations).

2
a) 3 JA = =2
0 -1
1 3 —2
c) |0 —2 —6|,A=-4
0 0 1

d)

1
b
) 0

3l A=s

-5
2 -1

—4 8|,A=0
0 0

. The determinant of a matrix is zero if at least one diagonal ele-

ment is zero only if the matrix is triangular (upper-triangular,

lower-triangular, or diagonal). This is because the determinant

of a triangular matrix is equal to the product of the diagonal

elements. Here is an example of a matrix with a diagonal of

zeros and A = 4:

N = O

= o O
S O =

11.11 ANSWERS
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Code challenges

1. Write code that illustrates Equation 11.26. Your code should
generate a 4 x4 matrix comprising integers between 0 and 10,
then generate a random integer 3 between -10 and -1, and then
print out the left- and right-hand sides of Equation 11.26.

2. We will now demonstrate the numerical instabilities of the
determinant. Implement the following in code:

1. Create a matrix of normally distributed random numbers.

2. Ensure that the matrix is reduced-rank.

3. Compute the absolute value of the determinant (we are
interested in whether the determinant deviates from zero;
the sign doesn’t matter).

Run these three steps in a double for-loop: One over matrix
sizes ranging from 3 x 3 to 30 x 30, and a second that repeats
the three steps 100 times. This is equivalent to repeating a

scientific experiment multiple times.

Finally, make a plot of the average determinant as a function
of the matrix size. In theory, all of these determinants should
be zero! The figure below shows my result. I show the y-axis
in log-scale because the determinants grow exponentially.

Log determinant

5 10 15 20 25 30
Matrix size

Figure 11.5: Average determinant magnitudes of singular ma-

trices of different sizes.



Code solutions

1. Note that upper bounds in Python are usually (though not
always) specified as exclusive, meaning that an upper bound
parameter of "11" will produce random numbers up to 10.

Code block 11.3: Python

1 import numpy as np

2 A = np.random.randint (0,11,(4,4))

3 b = np.random.randint(—10,1)

4 print (np.linalg.det(bxA),

5 bxx4xnp.linalg .det (A))
Code block 11.4: MATLAB

1 A= randi([0 10],4);

2 b = randi([—-10 —1],1);

3 [det(bxA) b 4xdet (A)]

11.13 CODE SOLUTIONS
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2. One easy way to create a singular matrix is to set column 1

equal to column 2.

© 00 g O O W N

e e e
S T W N = O

© 00 N O U = W N

e g g
L W N = O

Code block 11.5: Python

import numpy as np
import matplotlib.pyplot as plt

ns = np.arange (3,31)
iters = 100
dets = np.zeros ((len(ns),iters))

for ni in range(len(ns)):
for i in range(iters):
A = np.random.randn(ns[ni],ns[ni])#stepl
Af[:,0] = A[:,1] # step 2
dets[ni,i]=np.abs(np.linalg.det(A))#st3

plt.plot (ns,np.log(np.mean(dets,axis=1)))
plt.xlabel (’Matrix size’)
plt.ylabel (’Log determinant’);

Code block 11.6: MATLAB

ns = 3:30;
iters = 100;
dets = zeros(length(ns),iters);
for ni=1:length (ns)
for i=1l:iters
A = randn(ns(ni)); % step 1
A(:,1) = A(:,2); % step 2
dets(ni,i) = abs(det(A)); % step 3
end
end
plot (ns,log (mean(dets ,2)), 's—")

xlabel (’Matrix size’)

ylabel (’Log determinant’)
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As usual, I will begin this chapter with some general conceptual
introductions, and then we’ll get into the details.

Concepts and applications

In section 6.11 I wrote that matrix division per se doesn’t exist,
however, there is a conceptually similar operation, which involves
multiplying a matrix by its inverse. By way of introduction to the
matrix inverse, I'm going to start with the "scalar inverse." Solve
for x in this equation.

3z=1 (12.1)

Obviously, z = 1/3. How did you solve this equation? I guess you
divided both sides of the equation by 3. But let me write this in
a slightly different way:

3z =1
3713z =371
lz =371
et
3

I realize that this is a gratuitously excessive number of steps to
write out explicitly, but it does illustrate a point: To separate
the 3 from the x, we multiplied by 37!, which we might call the
"inverse of 3." And of course, we had to do this to both sides of
the equation. Thus, 3x3~! = 1. A number times its inverse is 1.

The number 1 is special because it is the multiplicative identity.

What about the following equation; can you solve for x here?
Ox =1

Nope, you cannot solve for x here, because you cannot compute
0/0. There is no number that can multiply 0 to give 1. The lesson
here is that not all numbers have inverses.



OK, now let’s talk about the matriz inverse. The matrix inverse is
a matrix that multiplies another matrix such that the product is
the identity matrix. The identity matrix is important because it
is the matrix analog of the number 1—the multiplicative identity
(AI = A). Here it is in math notation:

A7TA =1 (12.2)

Now let me show you an example of using the matrix inverse. In
the equations below, imagine that A and b are known and x is

the vector of unknowns that we want to solve for.

Ax=b (12.3)
A7'Ax=A"1b (12.4)
Ix=A"'b (12.5)
x=A"'b (12.6)

IMPORTANT: Because matrix multiplication is non-commutative
(that is, AB # BA), you need to be mindful to multiply both
sides of the equation by the matrix inverse on the same side. For

example, the following equation is invalid:
A 'Ax=bA"! (12.7)

This equation is WRONG because the inverse pre-multiplies on
the left-hand side of the equation but post-multiplies on the right-
hand side of the equation. As it turns out, post-multiplying by
AL

AxA™l' =bA~! (12.8)

is invalid for this equation, because both Ax and b are column
vectors. Thus, the sizes do not permit matrix post-multiplication.

Inverting the inverse Because the inverse is unique (you’ll learn
the proof of this claim later), it can be undone. Thus, the inverse

of an inverse is the original matrix. That is:

(A Ht=A (12.9)

This was already
mentioned in sec-
tion 6.2 but it’s
important enough
to repeat.

12.1 CONCEPTS AND APPLICATIONS
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Transpose and inverse Equation 12.9 is reminiscent of double-
transposing a matrix (ATT = A). Although the transpose and
inverse are completely different operations, they do have a special
relationship: The transpose of the inverse equals the inverse of
the transpose.

(A")T = (AT)" 1 = AT (12.10)

Actually, what I wrote above ("transpose and inverse are com-
pletely different") is true only for most matrices. There is a special
kind of matrix, called an orthogonal matrix, for which the inverse
equals the transpose. More about this in the next chapter!

Conditions for invertibility You saw above that not all num-
bers have an inverse. Not all matrices have inverses either. In
fact, many (or perhaps most) matrices that you will work with in
practical applications are not invertible. Remember that square
matrices without an inverse are variously called singular, reduced-

rank, or rank-deficient.

A matrix has a full inverse matrix if the following criteria are

met:

1. Tt is square
2. It is full-rank

So the full matrix inverse exists only for square matrices. What
does a "full" matrix inverse mean? It means you can put the
inverse on either side of the matrix and still get the identity ma-

trix:
AATT=ATA =1 (12.11)

Thus, the full matrix inverse is one of the few exceptions to matrix

multiplication commutivity.

Some rectangular matrices have a "one-sided" inverse, if certain
conditions are met. One-sided inverses are non-commutative, for
example AA™! = I but A=A # I. For this reason, the "full



inverse" is also sometimes called the "two-sided inverse." You’ll
learn about one-sided inverses starting on page 340; until then,

please assume that all matrices are square.

Remember to LIVE EVIL As a quick reminder:
(ABC)'=c'B'A! (12.12)

However, this is not as simple as it sounds: It is possible for
the matrix product (ABC) to be invertible while the individual

matrices are not invertible.

Uniqueness of the matrix inverse Every inverse is unique, mean-
ing that if a matrix has an inverse, it has exactly one inverse. I'll
show two proofs for this claim; both proofs rely on the same as-
sumptions, and both work by contradiction. The assumptions

are:

1. Matrix A is invertible.
2. B is an inverse of A.
3. Cis also an inverse of A, distinct from B (thus, B # C).

Assumptions 2 and 3 can be written out mathematically:
AB =1 (12.13)
AC=1 (12.14)
Next I'm going to pre-multiply both equations by A~!:
AT'AB=A"T = B=A"! (12.15)
AT'AC=A"T = C=A"! (12.16)

From the equations to the right of the arrow, we must conclude
that B = C. However, our assumption was that B # C. The
conclusion was inconsistent with the assumption, therefore the
assumption is wrong. This proves that all inverses of a given

matrix are equal.

12.1 CONCEPTS AND APPLICATIONS
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The second proof is shorter; notice that each subsequent expres-
sion is based on adding or removing the identity matrix, expressed
as the matrix times its inverse:

C=CI=CAB=IB=B (12.17)

Again, the conclusion is that any two matrices that claim to be
the inverse of the same matrix must be equal to each other.

Inverse of a symmetric matrix The inverse of a symmetric ma-
trix is itself symmetric. That is, if A = AT then A=t = A~T,

To prove this claim, we start from two assumptions: That the
matrix A is symmetric, and that it has an inverse. The strategy
here is to transpose the inverse equation and then do a bit of
algebra. Here’s math tip: Write down the first equation, close the
book, and see if you can discover the proof on your own.

A7IA=1 (12.18)
(A7tA)T =17 (12.19)
ATA T =1 (12.20)
AA T =1 (12.21)
AA T =AA? (12.22)

In the previous page, we proved that if a matrix has an inverse,
it has one unique inverse. Therefore, Equation 12.22 brings us to
our final conclusion that if the matrix is symmetric, its inverse is

also symmetric.

Avoid the inverse when possible! The last thing I want to dis-
cuss before teaching you how to compute the matrix inverse is that
the matrix inverse is great in theory. When doing abstract paper-
and-pencil work, you can invert matrices as much as you want,
regardless of their size and content (assuming they are square and
full-rank). But in practice, computing the inverse of a matrix on
a computer is difficult and can be wrought with numerical inac-

curacies and rounding errors.



Thus, in practical computer applications of linear algebra, you
should avoid using the explicit inverse unless it is absolutely nec-

essary.

Computer scientists have worked hard over the past several decades
to develop algorithms to solve problems that—on paper—require
the inverse, without actually computing the inverse. The details of
those algorithms are beyond the scope of this book. Fortunately,
they are implemented in low-level libraries called by MATLAB,
Python, C, and other numerical processing languages. This is
good news, because it allows you to focus on understanding the
conceptual aspects of the inverse, while letting your computer deal

with the number-crunching.

Computing the matrix inverse There are several algorithms to
compute the matrix inverse. In this book, you will learn three:
MCA (minors, cofactors, adjugate), row-reduction, and SVD. You
will learn about the first two algorithms in this chapter, and you’ll
learn about the SVD method in Chapter 16. But there are conve-
nient short-cuts for computing the inverses of a diagonal matrix

and a 2 x 2 matrix, and that’s where we’ll start.

Matrix inverse of a diagonal matrix

Diagonal matrices have an extremely easy-to-compute inverse:
Simply invert each diagonal element and ignore the off-diagonal

12.2 INVERSE OF A DIAGONAL MATRIX
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Zeros.

[a 0 0
A=10 b 0 (12.23)
0 0 c
[1/a 0 0
A'=10 1/b 0 (12.24)
0 0 1/c
_a/a 0 0
AAT'=ATTA=|0 /b 0 (12.25)
0 0 ¢/e

This example is for a 3 x 3 matrix for visualization, but the prin-
ciple holds for any number of dimensions.

This inverse procedure also shows one reason why singular ma-
trices are not invertible: A singular diagonal matrix has at least
one diagonal element equal to zero. If you try to apply the above
short-cut, you’ll end up with an element of 0/0.

The universe would be a lovely place—and linear algebra would
be a much easier subject—if all matrix inverses were as easy and
intuitive to compute as the short-cut for diagonal matrices (invert
each matrix element). However, it takes only one example to show
that this doesn’t work when there is a single off-diagonal non-zero
element. We start with an almost-diagonal matrix A, and another

matrix A that is obtained by reciprocating each non-zero matrix

element.
3 0 2 1/3 0 1/2
A=1{0 1/2 0|, A=]0 2 0
0 0 4 0 0 1/4
1 0 2
AA = 1 (12.26)
00 1
1 0 8/3
AA=1|0 1 0 (12.27)
00 1




You can see that A is definitely not the inverse of A, because

their product is not the identity matrix.

Before learning the full formula for computing the matrix inverse,
let’s spend some time learning another short-cut for the inverse

that works on 2 x 2 matrices.

Matrix inverse for a 2 x 2 matrix

The famous shortcut for computing the inverse of a 2 x 2 matrix

has four steps:

1. Compute the determinant and check whether A = 0.
2. Swap the diagonal elements.

3. Multiply the off-diagonal elements by -1.

4. Divide all matrix elements by A.

The reason why you start the procedure by computing the de-
terminant is that the matrix has no inverse if the determinant is
zero. Thus, if step 1 gives an answer of zero, then you don’t need
to apply the remaining steps. You’ll see an example of this soon,

but let’s start with an invertible matrix.

HEI | P R

Multiplying the right-most and left-most matrices above will prove
that one is the inverse of the other. As I wrote earlier, a square
invertible matrix has a full inverse, meaning the order of multi-

plication doesn’t matter.

1 2l [-3 2] [1 0]
2 3] 2 -1 0 1

3 2] [1 2] 1 0
2 —1||2 3] [0 1

Here is the general formula for the 2 x2 inverse.

12.3 INVERSE OF A 2 X2 MATRIX



MATRIX INVERSE

Formula for the inverse of a 2x2 matrix
a b 1 d —b
= 12.2
L d] ad — be [—c a] ( 9

Now watch what happens when we try to invert a rank-1 matrix.

sl

You can stop the computation as soon as you see that the de-

terminant, which goes into the denominator, is zero. This is one
explanation for why a singular matrix (with A = 0) has no in-

verse.

Below are two more examples of matrices and their inverses, and

a check that the multiplication of the two yields I.

3 1] 1] 1 -1 s 1l[ 1 -1] [1 o
2 1| 1|-2 3 2 1/ |-2 3| |01
it’s easier to leave

the determinant as 92 7 -1 I L 1-8 —=7] |2 7 10
a scalar, ra.t}}er 3 _g = 37 3 9 = = 3 ol |5 _g = 01
than to divide
each element.

Hint: Sometimes

Practice problems Compute the inverse (if it exists) of the following matrices.
a) 1 4 b) 2 1/2 o) 2 1/2 d) =9 3
4 4 3 1/3 3 3/4 -9 -8
Answers
=l 1 _ 1/3 —1/2 . -8 -3
a) 3 |: | 1/4] b) 6/—}5[ 0 5 } c) No inverse. d) & |: . 9]

The MCA algorithm

The short-cut for a 2 x 2 matrix above is actually just a special
case of the MCA algorithm. This full procedure for computing
the matrix inverse is not really difficult, but it is rather time-
consuming. There are three steps.



Compute the minors matriz, a matrix of determinants

of submatrices.

C: Compute the cofactors matriz, the Hadamard mul-
tiplication of the minors matrix with an alternating
grid of +1 and —1.

A: Compute the adjugate matriz, the transpose of the

cofactors matrix, divided by the determinant.

(OK, it’s technically 4 steps if you consider dividing by the deter-
minant its own full step. But MCA sounds better than MCAD.)

Let’s go through each of these steps in more detail.

Minors matrix The minors matrix is a matrix in which each
element m; ; of the matrix is the determinant of the matrix ex-
cluding the i*" row and the j column. Thus, for each element in
the matrix, cross out that row and that column, and compute the
determinant of the remaining matrix. That determinant goes into
the matrix element under consideration. It’s easier to understand

visually (Figure 12.1).

A= OO0 m1,1 =

0 0 O] i ]
A =0 (@) m1,2 =

100 0 i ]

00R _ ]
A=00 My; =

_ | A

Figure 12.1:

determinant

Each element m;; of the minors matrix is the
of the submatrix formed from excluding row ¢
and column j from the original matrix.

The matrices on the following page illustrate creating a minors

The MCA algo-
rithm bears no ex-
plicit connection to
the late-and-great
Adam Yauch.

This should sound
familiar from the
formula for com-
puting the deter-
minant of a 4 x4
matrix.

12.4 THE MCA ALGORITHM
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matrix M from a 3 x 3 matrix A. Pick a few elements of the
minors matrix to confirm that you can reproduce those values
from the determinants of submatrices in matrix A.



21 1 [ 2 |
A=10 4 2 5 mi1 = (12.29)
13 2
S
myo = (12.30)
[ 2 —9 _4]
M=|-1 3 5 (12.31)
2 4 8

The minors matrix is the most time-consuming part of the MCA
algorithm. It’s also the most tedious. Don’t rush through it.

Practice problems Compute the minors matrix of the following matrices.

1 9 1 2 3 3 4 1

a) [3 4} b) |4 5 6 c) o 2 3
7 8 9 5 4 1

Answers
1 2 1 —1 —

4 3 0 15

a) 5 1 b) 3|2 4 2 c) 0 -2
1 2 1 10 9

—10

|

Cofactors matrix The cofactors matrix is the Hadamard prod-
uct of the minors matrix with a matrix of alternating signs. Let’s
call that matrix G for grid: The matrix is a grid of +1s and
—1s, starting with +1 for the upper-left element. Below are a few
examples of G matrices. They look like checkerboards (or chess-
boards, depending on your level of board game sophistication)
(Figure 12.2).

12.4 Tug MCA ALGORITHM



The formula that defines each element of the G matrix is
gij = —1"" (12.32)

where i and j refer, respectively, to row and column index. Try out
a few examples to see how this formula produces the alternating

grids above. For example, the (1,1) position is —1'*! = 1 while
the (1,2) position is —1'72 = —1. That said, I think it’s easier to
remember what the matrix looks like rather than memorizing the

formula.

Figure 12.2: Sim-
ple and elegant. Finally, the cofactors matrix: C = G ® M. Using the example
Linear algebra is

st matrix from the previous page,
truly inspiring.

2 2 -4
C=|1 3 -5
-2 -4 8

Be mindful of the signs: The sign of each cofactors matrix element
depends both on the sign of the determinant, and on the sign of
the G matrix. That is, of course, obvious from your elementary
school arithmetic, but most mistakes in higher mathematics are

arithmetic...
&
m -
= Practice problems Compute the cofactors matrix of the following matrices.
>
Z _
= 1 9 1 2 3 3 4 1
E a)|:34} b) [4 5 6 o |o 2 3
5
3 789 |5 4 1
=
Answers
A 1 -2 1 [-10 15 -10
a) { 5 1] b) 3|-2 4 -2 c) 0 -2 8
1 -2 1 10 -9 6

Adjugate matrix At this point, all the hard work is behind you.
The adjugate matrix is simply the transpose of the cofactors ma-
trix, scalar-multiplied by the inverse of the determinant of the
matrix (note: it’s the determinant of the original matrix, not the
minors or cofactors matrices). Again, if the determinant is zero,

then this step will fail because of the division by zero.



Assuming the determinant is not zero, the adjugate matrix is the

inverse of the original matrix.

Let’s continue working with the matrix in the examples above.

22
A—1:5 2 3 —4
-4 -5 8

And now let’s test that this matrix really is the inverse of our
original matrix:

Here is another

2 1 1 2 -1 =2 2 00

1 1 example of how
0 4 2 5 —2 3 4| = 5 020 it’s often easier
1 3 2 —4 5 8 0 0 2 to leave scalars

outside the matrix,
rather than dealing

Now that you know the full MCA formula, we can apply this to | With fractions.
a 2x2 matrix. You can see that the "short-cut" in the previous

section is just a simplification of this procedure.

4 o]
Original matrix : 5
. . 2 3]
Minors matrix : 4
. 2 -3
Cofactors matrix : 5 4

11 2 -2
Adjugate matrix : 3 [ ]

12.4 Tug MCA ALGORITHM
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Practice problems Compute the adjugate matrices of the following matrices (in case you
haven’t noticed: you’ve already computed the minors and cofactors matrices above).

L 9 1 2 3 3 41
a) [3 4} b) |4 5 6 c) |0 2 3
78 9 5 4 1
Answers
4 o 1 -2 1 -10 0 -10
a) — [_3 J b) =2 |-2 4 -2 c) 55| 15 -2 -9
1 -2 1 10 8 6

Practice problems Apply the MCA algorithm to the following matrices to derive their

inverses, when they exist.

11 2 2 4 1 -5 4
a) L 4} b) | 4 2 5 c) | -1 —-15 6
1 2 1 2 0 3
Answers
4 1 -8 (§ 2
a) 3 {_1 J b) 10 1 -2 6 c) No inverse!
6 —2 -4

Code The code challenges at the end of this chapter will provide
the opportunity to implement the MCA algorithm in code. Below
you can see how easy it is to call the inverse functions in Python
and MATLAB.

Code block 12.1: Python

import numpy as np

A = np.random.randn (3,3)
Ai = np.linalg.inv (A)
A@Ai

=W N =

Code block 12.2: MATLAB
A = randn(3,3);
2 Ai = inv(A);
3 AxAi




Inverse via row reduction

This is a conceptually very different method for obtaining the in-
verse of a square matrix, but the result will be the same as the
MCA method. The idea is to augment the matrix with the iden-
tity matrix and then perform row reduction to get the matrix into
its RREF form. This will lead to one of two possible outcomes:

e Row reduction transforms the original matrix to the identity
matrix, in which case the augmented matrix is the inverse
(Equation 12.33).

e Row reduction does not produce the identity matrix, in
which case the matrix is singular and therefore has no in-

verse.

Row reduction method of computing the inverse

rref([A 1)) = 1] A71] (12.33)
Let’s start with an example:
1 2] [1 2
=
[3 41 |3 4

R2+R1 1 0

10 1 2] 10
0 1| Bt g 9|3 1

2 1My o] =2 1
-3 1 0 1]3/2 -1/2

0 -2

You can confirm that the augmented part of the final matrix is
the same as the inverse we computing from the MCA algorithm

in the practice problems in the previous section.
We know that a singular matrix has no inverse. Let’s see what

happens when we apply the row-reduction method to a rank-1

matrix.

10
-3 1

12l _[12]10 1 2
3 6 3 6(0 1| 2BtR 1

12.5 INVERSE VIA ROW REDUCTION
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That’s the end of the line. We cannot row reduce anymore, and
yet we have not gotten the identity matrix on the left. This system
is inconsistent, and ergo, this matrix has no inverse.

Practice problems Use row reduction to compute the inverse of the following matrices, or
to discover that the matrix is singular. Then multiply each matrix by its inverse to make sure
you've gotten the correct result.

[—4 7 1 0 2
a) | b) 2 1
3 -8
i 1 0 1
(1 0 2 (1 0 2 5
o 200 1 o 2001
045 0 0 4 5 0
5 8 2 -—17 0 3 4 0
Answers
-1 0 2
-8 -7
a) 111{3 4] b) | 0 1/2 —1/2
1 0 —1
-1 5 —6 8
c) No inverse. d) 14 0 0 56 —70

0 —42 56
3 -1 18 —24

N

Code The code below shows the row-reduction method, and
then compares that to the inverse function.

Code block 12.3: Python

import numpy as np

import sympy as sym

A = np.random.randn (3,3)

Acat = np.concatenate ((A,np.eye(3,3)),axis=1)
Ar = sym.Matrix (Acat).rref ()[0]

Ar = Ar[:,3:]
Ai = np.linalg.inv (A)
Ar—Ai

0 N O U = W N




Code block 12.4: MATLAB

1 A = randn(3);

2 Ar = rref ([A eye(3)]);
3 Ar = Ar(:,4:end);

4 Ai = inv(A);

5 Ar—Ai

Why does it work? Equation 12.33 almost seems like magic.
(In fairness, much of mathematics seems like magic before you
become familiar with it... and a lot of it continues to seem like
magic even after years of experience.) In fact, the reason why
this method works is fairly straightforward, and involves thinking

about Equation 12.33 in terms of solving a system of equations.

In Chapter 10, you learned that you can solve the equation Ax =
b by performing Gauss-Jordan elimination on the augmented ma-
trix [A|b]. If there is a solution—that is, if b is in the column
space of A—then row reduction produces the augmented matrix
[I]x].

Here we follow the same reasoning, but the vector b is expanded
to the matrix I. That is, we want to solve AX = 1, where X is
the inverse of A. It might be easier to think about this in terms
of columns of the identity matrix. I’ll use e; to indicate the it"
column of the identity matrix. And I'll use a 3 x 3 matrix in the
interest of concreteness, but the procedure is valid for a matrix of

any size.

Axi= 0| = rref((Aler]) = [I|x1] (12.34)

Axo = |1| = rref([Ale]) = [I|xa] (12.35)

Axz = |0 = rref(([Ales]) = [I]|x3] (12.36)

12.5 INVERSE VIA ROW REDUCTION
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Each equation individually finds x;, which is the vector that rep-
resents the weighting of the columns in A in order to obtain the
vector e;, which is one column of the identity matrix. As long as
the column space of A spans all of RM, there is guaranteed to be
a solution to each of the systems of equations. And C'(A) spans

the entire ambient space when A is full-rank.

Thus, when breaking the problem down into individual column
vectors, there is nothing new compared to what you learned in
Chapter 10. The only addition here is to collect all of these sep-
arate steps together into one matrix equation: AX = 1.

The matrix inverse is a funny thing. Conceptually, it’s
one of the most important matrix operations in linear al-
gebra and its applications. And yet, computer programs
go to great lengths to avoid explicitly computing it un-
less absolutely necessary. So why, you might wonder,
should I suffer through learning how to compute it when

Reflection

I can type inv on a computer? For the same reason that
you need to learn how to compute 3+4 without a calcu-
lator: You will never really learn math unless you can

do it without a computer. Frustrating but true.

The left inverse for tall matrices

I wrote on page 324 that only square matrices can have a full
inverse. That’s true, but it applies only to a full, a.k.a. two-sided,
inverse. Rectangular matrices can have a one-sided inverse. The
goal of this section is to derive the one-sided left inverse, explain
how to interpret it, and define the conditions for a rectangular

matrix to have a left inverse.

Let’s start with a tall matrix, so dimensions M > N. We'll call
this matrix T for tall. Although this matrix is not invertible,

we can, with a bit of creativity, come up with another matrix



(actually, the product of several matrices) that will left-multiply T
to produce the identity matrix. The key insight to get us started
is that TTT is a square matrix. In fact, TTT is invertible if
rank(T) = N (more on this condition later). If TTT is invertible,

then it has an inverse.
(TTD)"HTTT) =1 (12.37)

If this expression looks strange, then just imagine rewriting it

as:
c=T1'T

clc=1 (12.38)

Here’s the thing about Equation 12.37: The first set of parentheses
is necessary because we are inverting the product of two matrices
(neither of those matrices is individually invertible!). However,
the second set of parentheses is not necessary; they’re there just
for aesthetic balance. By removing the unnecessary parentheses
and re-grouping, some magic happens: the product of three ma-

trices that can left-multiply T to produce the identity matrix.

The left inverse
(TTT)'Tt T =1 (12.39)
—_———
Left inverse
Here is another way to look at it:
T—L — (TTT)—ITT
T'T =1
where TV indicates the left inverse. (This is non-standard nota-
tion, used here only to facilitate comprehension.)
Why is this called a "one-sided" inverse? Let’s see what happens
when we put the left inverse on the right side of the matrix:
T(TTT) 1T £1

The left-hand side of this equation is actually valid, in the sense
that all the sizes match to make the multiplications work. But

Yes, I realize that
there is an absurd
number of "T"s in
these equations.

12.6 LEFT INVERSE
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the result will not be the identity matrix. You’ll see numerical
examples later. The point is that this is a left inverse.

Conditions for validity Now let’s think about the conditions for
the left inverse to be valid. Looking back to Equation 12.38,
matrix C (which is actually TTT) is invertible if it is full rank,
meaning rank(C) = N. When is TTT a full-rank matrix? Recall
from section 7.7 that a matrix times its transpose has the same
rank as the matrix on its own. Thus, TTT is full-rank if T has a
rank of N, meaning it is full column-rank.

And this leads us to the two conditions for a matrix to have a left

inverse:

1. It is tall (more rows than columns, M > N).
2. It is full column rank (rank=N).

Enough talk. Let’s see an example.

1 2
T=|1 3 (12.40)
1 4
3 9
TIT = (12.41)
9 29
129 —9
(TTT) =2 (12.42)
6|-9 3
111 2 -7
Tt = (TTT)!1T = = 12.43
(T"T) 6l 23 0 3 ( )
1[6 0
TtT = (12.44)
60 6
~1
T =| 2 2 2 (12.45)
-1 2 5

Equation 12.44 shows that the pre-multiplying by the left inverse
produces the identity matrix. In contrast, Equation 12.45 shows



that post-multiplying by the left inverse definitely does not pro-
duce the identity matrix. This example also highlights that it is
often useful to leave the determinant as a scalar outside the matrix
to avoid dealing with difficult fractions during matrix multiplica-

tions.

Practice problems Compute the left inverse of the following matrices.

30 11 1 2
a) |0 2 b) |1 2 c) [1 2
0 4 2 3 12

Answers Matrices below are (TTT) 'TT
10/3 0 0} c) No left inverse!

5 -4 1
a)llo[o 1 2 ]

b)é[—s 3 0

The right inverse for wide matrices

You can probably guess where we’re going in this section: wide
matrices (that is, more columns than rows) do not have a left
inverse. However, they can have a right inverse. I encourage you
to try to discover the right inverse, as well as the conditions for
a matrix to have a right inverse, on your own before continuing
to read the rest of this section. To make things easier for you, I'll
leave the rest of this page blank...

12.7 RIGHT INVERSE
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Did you figure it out? The reasoning is the same as for the left
inverse. The key difference is that you post-multiply by the trans-
posed matrix instead of pre-multiplying by it. Let’s call this ma-
trix W for wide.

Briefly: We start from WW7 and then right-multiply by (WWT)-1,
That leads us to the following;:

The right inverse

W Wiwwh)-1 =1 (12.46)
N——

Right inverse

Again, if you find the multitude of matrices confusing, then you
can substitute the three-matrix product for another matrix:

wh=wTwiw)-!

WWHR =1

The conditions for a matrix to have a right inverse are:

1. It is wide (more columns than rows, M < N).
2. It is full row rank (rank=»M).

As with the left-inverse, putting the right inverse on the left of
matrix W is a valid matrix multiplication, but will not produce
the identity matrix.



And finally, an example with numbers.

1 4
W = 0 (12.47)
2 -3 1
1
wwt = |17 6 (12.48)
6 14
1 [14 —6
wwh-t=__ 12.49
( ) 202 [_6 17] ( )
L2 8
W‘R:WT(WWT)‘IZE 18 —51 (12.50)
50 -7
X [ 58 -84 36
W‘RW:@ -84 153 21 (12.51)
36 21 193
1 202 o0
WWHR= 12.52
202 | 0 202] ( )

Practice problems Compute the right inverse of the following matrices.

a) 3 0 0 b) 1 0 3 ) 1 3 2
0 2 4 -2 0 4 2 6 4
Answers Matrices below are WT(WTW) ™!
10/3 0 4 -3
a) ;| 0 1 b) 50 0 c) No right inverse!
0 2 2 1

Code The code below shows the left inverse for a tall matrix; it’s
your job to modify the code to produce the right-inverse for a wide
matrix! (Note: In practice, it’s better to compute the one-sided
inverses via the Moore-Penrose pseudoinverse algorithm, but it’s

good practice to translate the formulas directly into code.)

12.7 RIGHT INVERSE
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Code block 12.5: Python

import numpy as np

A = np.random.randn(5,3)

Al = np.linalg.inv (A.TQA)QA.T
AlQA

NV

Code block 12.6: MATLAB
1 A= randn(5,3);
2 Al = inv (A’*xA)xA’;
AlxA

The pseudoinverse, part 1

This section is called "part 1" because I'm going to introduce you
to the pseudoinverse here, but I'm not going to teach you how to
compute it until section 16.12. That’s not because I'm mean, and
it’s not because I'm testing your patience (which is, by the way, a
virtue). Instead, it’s because the algorithm to compute the Moore-
Penrose pseudoinverse will seem incomprehensibly complicated if
I present it here, whereas it will be intuitive and almost obvious
in Chapter 16 after learning about the SVD.

The pseudoinverse is used when a matrix does not have a full
inverse, for example if the matrix is square but rank-deficient.
As I mentioned in the beginning of this chapter, a rank-deficient
matrix does not have a true inverse. However, all matrices have
a pseudoinverse, which is a matrix that will transform the rank-
deficient matrix to something close-to-but-not-quite the identity

matrix.

There are several algorithms to compute a pseudoinverse, but the
most commonly used method is called the Moore-Penrose pseu-
doinverse. The original author names are often dropped, there-
fore, when you read or hear the term "pseudoinverse," it’s safe to
assume that it’s the MP pseudoinverse.



Below is a list of important concepts about the pseudoinverse.
This list contains claims that are justified and proven in Chapter
16.

1. It is indicated using a "dagger," asterisk, or plus sign in the
superscript: AT, A* or AT,

2. The pseudoinverse multiplies the original matrix to approx-
imate the identity matrix: AAT ~ I.

3. There are several ways to create a matrix pseudoinverse,
which means that a singular matrix can have several pseu-
doinverses (unlike the true inverse, which is unique). How-
ever, the MP pseudoinverse is unique, meaning that every
matrix has exactly one MP pseudoinverse. The uniqueness
of the MP pseudoinverse contributes to its popularity.

4. The pseudoinverse is sided, thus AAT # ATA. However,
the pseudoinverse has the neat property that AATA = A
(for square matrices).

5. For a full-rank matrix, the pseudoinverse is the same as the
full inverse, that is, At = A~1.

6. For a tall full column-rank matrix, the pseudoinverse equals
the one-sided left inverse. Same story for a wide full row-

rank matrix and the right inverse.

Here is an example of a non-invertible square matrix, its pseu-

doinverse, and the products of those matrices.

1 2 1 8 —7 1
A:131,AT:é—6 6 0
2 5 2 8 —7 1
101 2 -1 1
ATA:%OQO, AAT:% -1 21
101 1 1 2

You can see several properties of the pseudoinverse in this exam-
ple, including that AAT # ATA and that neither of these pro-
duces the identity matrix, although they both produce a matrix
is that is sorta-kinda close to the identity.

12.8 THE PSEUDOINVERSE, PART 1
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Code The MP pseudoinverse is so important in applied linear
algebra that numerical software developers have made it super-
easy to implement. Notice that the matrix below is singular.

Code block 12.7: Python

1 import numpy as np
2 A = np.random.randn (3,3)
3 A[l,:] =A[0,:]
4 Api = np.linalg.pinv(A)
5 Api@A
Code block 12.8: MATLAB
1 A= randn(3,3);
2 A(2,:) =A(1,:);
3 Api = pinv(A);
4 ApixA




Exercises

1. Compute the inverse of the following matrices (when possi-
ble). For problems with a *, additionally compute AA™! and

A7TA.
10 4 0 1 2
a) b) c) *
0 1 0 -2 2 1
3 2 4 —4] 1 0 9]
d) e) * f) |0 1 2
6 4 1 6
- 0 2 1
2 1 0 2 1 0] [2 0 0
g)x[1 2 0 h) (1 2 0 i) 40
0 01 7 6 0 00 3
2 10 6
a b 3 1 -1 0 4 0
j k 1
L P )_Ob] 203
010 4
Hint: Law of Expo-
2. The inverse of the inverse is the original matrix. Is that nents:
A7'A"! or (A=1)7!'? Think of an answer and then confirm ™ ="

1 2
it empirically using the matrix [1 3] . (™)™ =™

3. Use the row-reduction method to compute the inverse of the

following matrices.

(0 b 107
b

Dl g )_—24]

1 2 3 1 2 3

c) |1 3 4 d)[1 3 4

125 2 5 7

12.9 EXERCISES
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4. For the following matrices and vectors, compute and use A !
to solve for x in A,,;x = b,,.

- _— 1 3 4 9 0 1
A= LAy = lLAs=10 0 4|As=1|3 1 0
2 2 1 0 6 1
1 8
b—4b 6b—3b—3
1_1a2__373_ 4 —
8 1

a)Ajx=b; Db)A;x=bs c)Ayx=b; d)Asx=Dhby

e) A3X = b3 f) A3X = b4 g) A4X = b2 h) A4X = b4



Answers

1 1 0
I
H

4

) 2 l? 4]
2 -1

0 0

1/2 0

i) |0 1/4
0 0
E

/4 0
b)[o —1/2]

d) No inverse!

3.0 0
f)s(0 -1 2
0 2 -1

h) No inverse!

a

] d —b
-]) adl—bc [—C ‘|

-16 6 -8 16
- 44 24 —32 -98
D4 12 -2 4
~11 —6 8 11

2. The correct expression for the inverse of the inverse is (A=) L.

A~TA~! would mean to matrix-multiply the inverse by itself,

which is a valid mathematical operation but is not relevant

here.

3. Matrices below are the inverses (the augmented side of the

matrix).

1
a) ad—bc [

d

—C

—b
a

|

4 -7
i 7
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d) Not invertible!

4. The strategy here is to compute the inverses of the four A

matrices, then implement matrix-vector multiplication. Below

are the inverses, and below that, the solutions to x.

Al L] 2
! —18 |-5
L8 12
Al = ol 8 7T 4
0 4 0

a) 18 [~ 19]T
¢) 12[11 —5]T
e) 16103 —45 12}T

g) Invalid operation!

A—lzi 2 3
2 12 [—2 3|’

. 1 6 —1

A7l=—| =
i =g | 3 9 3
18 —54 9

b) 18 [-24 33]T
d)12[3 —21]T
£) 16[-37 39 12}T

h)27[25 6 —9}T



Code challenges

1. Your task here is "simple": Implement the MCA algorithm

to compute the matrix inverse. Consult the description in
section 12.4. Test your algorithm by computing the inverse of
random matrices and compare against the Python/MATLAB

inv functions.

. I wrote earlier that the algorithm underlying the MP pseudoin-
verse is only understandable after learning about the SVD. But
that needn’t stop us from exploring the pseudoinverse with
code! The goal of this challenge is to illustrate that the pseu-
doinverse is the same as (1) the "real" inverse for a full-rank
square matrix, and (2) the left inverse for a tall full-column-

rank matrix.

Reminder: Demon-
strations in code
help build insight
but are no substi-
tute for a formal
proof.

12.11 CODE CHALLENGES



MATRIX INVERSE

Code solutions

1. This one might have been challenging, particularly if you are

not an experienced coder.

Code block 12.9: Python

1 import numpy as np

2

3

4 m=4

5 A = np.random.randn(m,m)
6 M= np.zeros((m,m))

7 G = np.zeros ((m,m))

8

9

10 for i in range(m):

11 for j in range(m):

12

13

14 rows = [True|sm

15 rows[i] = False

16

17 cols = [True]*m

18 cols[j] = False

19

20 M[i,j]=np.linalg.det (A[rows,:][:
21

22

23 Gli,j] = (=1)*x(i+j)
24

25

26 C=M x G

27

28

29 Ainv = C.T / np.linalg.det(A)
30 Ainvl = np.linalg.inv(A)
31 AinvI-Ainv

, cols])
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Code block 12.10: MATLAB

% create matrix
m = 4;
A = randn(m);
[M,G] = deal( zeros(m) );
% compute matrices
for i=1m
for j=1m
%% select rows/cols
rows = true(1l,m);
rows (i) = false;
cols = true(1l,m);
cols(j) = false;
% compute M
M(i,j) = det( A(rows,cols) );
% compute G
G(i,j) = (=1)7(i+j);
end
end
% compute C

C=M .x G;
% compute A

Ainv = C’/det (A);
Ainvl = inv(A);

AinvI—Ainv % compare against inv ()

12.12 CODE SOLUTIONS
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Code block 12.11: Python

import numpy as np

# square matrix

A = np.random.randn(5,5)
Ai = np.linalg.inv (A)

Api = np.linalg.pinv(A)

Ai — Api # test equivalence

# tall matrix
T = np.random.randn (5,3)

Tl = np.linalg.inv(T.TQT)QT.T # left inv

Tpi = np.linalg.pinv(T) # pinv
Tl — Tpi # test equivalance

Code block 12.12: MATLAB

% square matrix
A = randn(5);
Ai = inv(A);

Api = pinv(A);

Ai — Api % test equivalence

% tall matrix

T = randn(5,3);

Tl = inv(T’+«T)*T’; % left inv
Tpi = pinv(T); % pinv

Tl — Tpi % test equivalance
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There is some
"overloading" (us-
ing the same no-
tation for different
meanings) in this
figure—the let-
ter b refers in one
case to the point
b and in another
case to the vec-
tor b, which goes
from the origin to
b. A bit of ambi-
guity can facili-
tate compactness.

The goal of this chapter is to introduce a framework for project-
ing one space onto another space (for example, projecting a point
onto a line). This framework forms the basis for orthogonaliza-
tion and for an algorithm called linear least-squares, which is the
primary method for estimating parameters and fitting models to
data, and is therefore one of the most important algorithms in ap-
plied mathematics, including control engineering, statistics, and
machine learning. Along the way, we’ll also re-discover the left

inverse.

Projections in R?

We are going to discover a formula for projecting a point onto a
line. From there, we can generalize the formula to projecting one
space onto another space. Don’t worry, it’s easier than you might
think.

We start with a vector a, a point b not on a, and a scalar 8 such
that Sa is as close to b as possible without leaving a. Figure 13.1
shows the situation. (Because we are working with standard-
position vectors, it is possible to equate coordinate points with

vectors.)

Figure 13.1: We need a formula to obtain the scalar g such
that point fa is as close as possible to point b without leaving
vector a.

The question is: Where do we place § so that the point fa is as
close as possible to point b7 You might have an intuition that g



should be placed such that the line from [Fa to b is at a right angle
to a. That’s the right intuition (yes, that’s a pun).

One way to think about this is to imagine that the line from Sa
to b is one side of a right triangle. Then the line from b to a is the
hypotenuse of that triangle. Any hypotenuse is longer than the
adjacent side, and so the shortest hypotenuse (i.e., the shortest
distance from b to a) is the adjacent side.

We need an expression for the line from point b to point Sa. We
can express this line as the subtraction of vector b (the vector
from the origin to point b) and wvector [Sa (the scaled version of
vector a). Thus, the expression for the line is (b — fa).

Let’s recap: We have established that the closest projection of b
onto a involves the line that meets a at a right angle, and we have
an expression for that line. Now our goal is to figure out the value
of 5. The geometric approach already provided the key insight,
we just need to translate that into algebra. In particular, vectors
(b—Ba) and a are orthogonal, meaning they are perpendicular:

(b—pa) La (13.1)

And that in turns means that the dot product between them is
zero. Thus, we can rewrite Equation 13.1 as

(b—pBa)ta=0 (13.2)

And that is the key insight that geometry provides us. From here,
solving for 8 just involves a bit of algebra. It’s a beautiful and
important derivation, so I'll put all of it into a math box.

Orthogonal projection of a point onto a line
at(b—pa)=0 (13.3)
a'b—ga’a=0

BaTa =aTb

a’b
/6 _

=22 13.4
“Ta (13.4)

13.1 PROJECTIONS IN R?
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In the fraction, one
a in the denomina-
tor doesn’t cancel
the multiplying

a, because the
vector in the de-
nominator is part
of a dot product.

Note that dividing both sides of the equation by aTa is valid

because it is a scalar quantity.

The technical term for this procedure is projection: We are pro-
jecting b onto the subspace defined by vector a. This is commonly
written as proja(b).

(As an aside: It’s tricky to remember whether projecting b onto
a is written as proj,(b) or projy(a). A memory trick here is that
the Subspace goes in the Subscript. You’ve seen now several
of these weird little mnemonics in this book, and there will be
more. I hope they help you learn, or at least make you smile.)

Note that Equation 13.4 gives the scalar value 3, not the actual
point represented by the open circle in Figure 13.1. To calculate
that vector Ba, simply replace 5 with its definition:

Projection of a point onto a line

proj,(b) = ——a (13.5)

Let’s work through an example with real numbers. We’ll use the

following vector and point.

a= [_ﬂ . b=(3,-1)

If you draw these two objects on a 2D plane, you’ll see that this
example is different from that presented in Figure 13.1: The point
is "behind" the line, so it will project negatively onto the vector.

Let’s see how this works out algebraically.

] L

—2 —6+1 -2 -2
projal?) 2] [—2 [—1] 4+1 —1] [—1]
Notice that 8 = —1. Thus, we are projecting "backwards" onto

the vector (Figure 13.2). This makes sense when we think of a as

being a basis vector for a 1D subspace that is embedded in R2.



Figure 13.2: Example of projecting a point onto a line. The

intersection fa is coordinate (2,1).

7

Practice problems Draw the following lines (a) and points (b). Draw the approximate
location of the orthogonal projection of b onto a. Then compute the exact proj.(b) and compare

with your guess.

—.5 0
a)a:{ 2],1):(.5,2) b)a:[Q],b:(O,l)
2 1
c)az{o},bzm,—l) d)a=[2],b=<271>
Answers Answers below are the 3; proja(b) is Ba.
a) 3.75/4.25 b) 5
¢) 0 d) 4/5

~

Reflection

Mapping over magnitude: Meditating on Equation 13.4
will reveal that it is a mapping between two vectors,
scaled by the squared length of the "target" vector. It’s
useful to understand this intuition (mapping over magni-
tude), because many computations in linear algebra and
its applications (e.g., correlation, convolution, normal-

ization) involve some kind of mapping divided by some

kind of magnitude or norm.

13.2 PROJECTIONS IN RN
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Note the zeros
vector here in-
stead of the scalar
0 used above.

Projections in RN

Now you know how to project a point onto a line, which is a 1D
subspace. We're now going to extend this to projecting a point
onto an N-D subspace.

We begin simply by replacing vector a (which is, by definition,
a 1D subspace) to matriz A, the columns of which form a sub-
space with some dimensionality between 1 and the matrix rank
(excluding the case of a zero-dimensional subspace from the zeros
matrix; that would be boring).

Point b is still the same: We can conceptualize it as a coordinate
in space, but we represent it using vector b, which is in RM,
corresponding to the ambient dimensionality of the column space
of A.

Because A has multiple columns, we also need to replace scalar
B with a wvector. I'll call that vector x.

ATb-Ax)=0 (13.6)
ATb — ATAx =0
ATAx =ATb (13.7)

Hmm... are we stuck here? When we restricted ourselves to a

1D subspace, a was a vector and therefore aT

a was a scalar, so
we could divide both sides of the equation by that dot product.
But now we have ATA, and as you know, there is no matrix
division. Can you guess the solution that allows us to solve for
x? The secret is revealed on the next page; see if you can derive

a solution to our conundrum before looking ahead!



I'm sure you guessed it: Left-multiply by (ATA)™!.
(ATA)"'ATAx = (ATA)'ATDb

x=(ATA)'ATD (13.8)

I hope you see that we "accidentally" re-discovered the formula
for the left inverse in Equation 13.8. This never ceases to amaze
me: We started off with a completely different goal that seems
to have nothing whatsoever to do with computing an inverse of a
tall matrix, and yet we arrived at the left inverse as the way to
project a point onto the column space of A.

Indeed, one way of thinking about the one-sided inverse is that it
projects a rectangular matrix onto the (square) identity matrix.

You can see that this equation involves inverting a matrix, which
should immediately raise the question in your mind: What is the
condition for this equation to be valid? The condition, of course,
is that ATA is square and full-rank. And you know from the
previous chapter that this is the case if A is already square and
full-rank, or if it is tall and full column-rank.

It is insightful to think back to the geometric perspective: we
are trying to project a point (also represented as the end-point
of a vector in its standard position) b onto the column space of
matrix A. If b is in the column space of A, then x indicates the
combinations of columns in A that produce b. Figure 13.3 shows
a visualization of this idea for a 2D column space embedded in
3D ambient space (in other words, the matrix A has three rows
and rank=2).

What happens if b is already inside the column space of A? Ge-
ometrically, it means that ||b — Ax|| = 0, and consequently, that
b = Ax. Plugging this into Equation 13.6 also makes sense alge-
braically.

We can also consider what happens when A is a square full-rank
matrix: This guarantees that b is already in its column space,
because the column space of A spans all of RM. In that case,

13.2 PROJECTIONS IN RN



Figure 13.3: Visualization of projecting point b onto the 2D
column subspace of A (grey patch). Assume that b is not in
the column space of A, and vector (b — Ax), represented as
the dotted line, is orthogonal to the column space. Thus, Ax
is the vector inside the column space of A that minimizes the

distance to b.

Equation 13.8 simplifies a bit:
x = (ATA)'ATD

x=ATATATH

PROJECTIONS

x=A"1b (13.9)
Practice problems Solve for x using Equation 13.8.
L2 oD -2 2] [z1 12
a) |3 = |-35 DN R
o s : ’
1 o] [ 2 1 3 4
o) lo 1] | =]1 d)zﬁ{“]:s
o o] Y |12 3 9] Y |n
Answers
T T
a) [-25 4] b) [7 13]
c) [2 l]T d) Doesn’t work! (AT A is singular)
o Figures 13.2 and 13.3 provide the geometric intu-
3
kS ition underlying the least-squares formula, which is the
L.% mathematical backbone of many analyses in statistics,
é machine-learning, and Al. Stay tuned...




Code You can implement Equation 13.8 based on what you
learned in the previous chapter. But that equation is so important
and is used so often that numerical processing software packages
have short-cuts for solving it. The Python code uses the numpy

function 1stsq, which stands for least-squares.

Code block 13.1: Python

1 import numpy as np
2 A= [[1,2],[3,1],[1,1]]
3 b=1[5.5,-3.5,1.5]
4 np.linalg.lstsq(A,b)[0]

Code block 13.2: MATLAB
1 A=11 2; 3 1; 1 1];
2 b=1[55 —3.5 1.5]";
3 A\b

Orthogonal and parallel vector components

In this section, you will learn how to decompose one vector into
two separate vectors that are orthogonal to each other, and that
have a special relationship to a third vector. This procedure will
draw on concepts you learned in Chapter 2 (adding and subtract-
ing vectors) and in the previous section (projecting onto vectors).
And in turn, it forms the basis for orthogonalization, which you’ll

learn about in the following section.

Let’s start with a picture so you understand our goal (in R2, of
course, because linear algebra always starts in R?). We begin with
two vectors, w and v. Let’s call w the "target" vector, and v the

"reference" vector.

The idea is that we want to break up w into two separate vectors,
one of which is parallel to w and the other is perpendicular to w.
In Figure 13.4, the component of vector w that is parallel to v
is labeled w), and the component that is perpendicular to v is

13.3 ORTH AND PAR VECT COMPS
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This is just a mod-
ified version of
Equation 13.5.

labeled w . The thin gray dashed lines illustrate that these two
vector components sum to form the original vector w. In other

words:

w = WLv+WHv (13.10)

Wy

Figure 13.4: Decomposing vector w into components that are
parallel and orthogonal to vector v.

Now that you have the picture, let’s start deriving formulas and

proofs. Don’t worry, it’ll be easier than you might think.

Parallel component If w and v have their tails at the same
point, then the component of w that is parallel to v is simply
collinear with v. In other words, wy, is a scaled version of v.
Does this situation look familiar? If not, then you were either
sleep-reading section 13.1, or you just opened to book to this
page. Either way, it would behoove you to go back and re-read
section 13.1. All we need to do here is project w onto v. Here’s

what that formula looks like:

WTV

W||y = Proj,w = \% (13.11)

vTv

Perpendicular component How do we solve for w7 We don’t
need to do anything fancy; we simply revisit the fact that the
vector w is exactly decomposed into the sum of its perpendicular
and parallel components (Equation 13.10). In particular, we al-
ready know w, and we just computed w|,. A bit of middle-school

algebra leads us to the solution:

Wi v = W_WHV (13.12)



And this brings us to the full set of equations for decomposing a

vector into two components relative to a target vector.

Decomposing a vector relative to another vector

W=W|, + Wiy (13.13)
T
) WV
Wy = ProjyW = v (13.14)
Wiy =W—W (13.15)

Here’s a tip that might help you remember these formulas: Be-
cause W, is parallel to v, it’s really the same vector as v but
scaled. Thus, w, = av. Try to link the formulas to their geo-
metric pictures rather than memorizing letters; the vector symbols
(e.g., w and v) will change in different examples and textbooks.

We need to prove that w, and w really are orthogonal to each
other.
them, and then expanding then simplifying the results. Hopefully
we’ll find that the dot product is zero.

The proof comes from taking the dot product between

T T T
T . W'V W'V
Ty T wlvwly T
vTv vIv vTv
B (WTV)2 (WTV)2
- VTy vlv

That looks on first glance like a messy set of equations, but when
keeping in mind that the dot product is a single number, I hope
you will see that it’s actually a straightforward proof. If you
find it difficult to follow, then consider re-writing the proof using

a=wlvand 8=vTlv.

Let’s work through an example in R?, using vectors v=[2 3]* and
w=[4 0]T. And to make sure that you are learning concepts in-

stead of memorizing strings of letters, I'll reverse the mapping,

If you squint, this
proof looks like a
flock of birds.

13.3 ORTH AND PAR VECT COMPS
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such that the goal is to decompose v into its parallel and perpen-
dicular components relative to w.

o 24430
W= 44400

4] [2]
0| 1|0

It’s easily seen in this example that v|y, and v are orthogonal
and that v|| + viw = v. This example is also easy to map onto
geometry (Figure 13.5).

Figure 13.5: Example of decomposing vector v relative to vec-

tor w.

Now let’s try an example in R®. We won’t be able to visualize the
results, but the algorithm and interpretation of the findings is the
same. Again, given two vectors with the same dimensionality, we
will decompose vector a into two components, one parallel to and

one perpendicular to b.

N R O O W N
|
)




- .
) 9

W 204324524054+ 15+2-6 | -2 _ 23 |2
= 00+22+22+55+55+-6-6| 5| 94| 5
5 5

__6_. __6_

[2] [ 0] [2] [ 0] [188]

3 —2 3 2 236

51 —23|—2| o94|5] 23| 2 1 |424
A= 1ol T 04| 5| 940l 94 |-5 ~ 94 |115
1 5 1 -5 209

2) 6] 2, | 6] 50 |

You can confirm (on paper or computer) that the two vector com-
ponents (1) sum to produce the original vector a and (2) are or-
thogonal to each other. In general, the arithmetic can become
challenging in these problems, but that’s the nature of linear al-
gebra. The silver lining is that computers are really good at arith-
metic, at least until you start working with really tiny numbers

or really huge numbers.

Practice problems For the following pairs of vectors (a,b), decompose a into parallel and
perpendicular components relative to b. For R? problems, additionally draw all vectors.

i
2 0 1/2] [-1
b 4
2 [ [ ) [5]:[7) Ji
3 0
Answers Answers below are a|p and a|p.

N I & N R
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A quick glance at the geometric representations of vec-
tors in R?, particularly when one vector is horizontal or
vertical, provides an important visual confirmation that
the algebra was correct. Whenever possible, you should
learn math by solving problems where you can see the
correct answer, and working on more challenging prob-

lems only after understanding the concept and algorithm

Reflection

in the visualizable examples. This same principle under-
lies the motivation to test statistical analysis methods
on simulated data (where ground truth is known) before
applying those methods to empirical data (where ground

truth is usually unknown).

Orthogonal matrices

I introduced you to orthogonal matrices in section 5.5. Trans-
forming a matrix into an orthogonal matrix is the main goal of
the Gram-Schmidt procedure and QR decomposition, and so be-
fore discussing those operations I'd like to tell you more about the

properties of orthogonal matrices.

Orthogonal matrices are typically indicated using the letter Q.
That’s not the only letter given to matrices that are orthogonal,
but any time you see matrix Q it is safe to assume that it is an

orthogonal matrix.
There are two key properties of an orthogonal matrix:

1. All columns are pairwise orthogonal.

2. All columns have a magnitude of 1.

Here are these two properties translated into math:

0, if i j
(ai, q;) = T (13.17)
1, ifi=7



In a linear algebra sense, Equation 13.17 is ugly because it can
be written in a more compact and simultaneously more revealing

manner:

Orthogonal matrix definition
Q'Q=1I (13.18)

If you’re struggling to see the link between Equations 13.17 and
13.18, then think about matrix multiplication from the element
perspective, and how each element in the product matrix is the
dot product between the corresponding row of the left matrix and

column of the right matrix.

This is a remarkable definition, because it matches the definition
of the matrix inverse. That means that for a square matrix Q

(T’ get to the rectangular case later),
Q'Q=QQ"=Q'Q=QQ"' =1 (13.19)

That’s really convenient, because computing the inverse is a hassle
and can be numerically unstable. But computing the transpose is

trivial and always accurate.

Now for some examples. The trivial example of an orthogonal
matrix is the identity matrix, because I'T = I. Here’s a less

trivial example:

1 -1
Q—L 1] (13.20)

But wait a minute—it that really an orthogonal matrix? It con-
forms to the first property (orthogonal columns), but the columns
both have a magnitude of /2. Thus, this matrix needs to be

scaled:

V21 1

In fact, this is a special case of the general form for 2 x2 Q

Q= 1 [1 _1] (13.21)

matrices:

_ |cos(f) —sin(0)
Q= [sin(@) cos(&)} (13.22)

13.4 ORTHOGONAL MATRICES
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A Dbit of arithmetic will confirm the first property, and a bit of
trigonometry will confirm the second property.

— cos(#) sin(#) + sin(0) cos(f) = 0 (13.23)

cos?() + sin?(#) = (—sin(8))? + cos?(F) = 1 (13.24)

Rectangular Q The quick version here is that an orthogonal
matrix does not need to be square, however, the transpose of a
rectangular orthogonal matrices is only a one-sided inverse.

Consider the following matrix. Take a moment to prove to yourself

that it is an orthogonal matrix.

2
=-|-2 2
Q=3

1 2

Pre- and post-multiplying this matrix by its transpose shows that
Q7 is the left inverse of Q.

_ 9 _
12 —2 1 19 0
T
_ 1 o9 9| == 13.25
Q=3 22} 910 9 (13:25)
L 12 L
1—212 ) 1] 1_5—24
. _
-~ |-2 2 -~ =2 9 13.26
QQ =3 L 2 2| 9 8 (13.26)
1 2 . 4

This example is for a tall orthogonal matrix. Can we have a wide
orthogonal matrix? Let’s inspect Q™ to find out (I'll rename it to
Q for convenience).

~ 12 -2 1
== 13.27
3[1 2 2] (13.27)

Well, the second requirement (norm of 1) already fails. A scalar
of (3v/5)/5 will work for the first and third columns but not the
second column. You could rescale the columns differently, but
this matrix will still fail the first test of orthogonality.

But this example doesn’t show that a wide matrix cannot be
orthogonal; it merely shows that the transpose of a tall orthogonal



matrix is not necessarily orthogonal. Our question remains: Is a

wide orthogonal matrix possible?

In a strict sense, the answer is No: A wide matrix cannot be
an orthogonal matrix. That’s because both properties of an or-
thogonal matrix (orthogonal columns, each with magnitude of 1)
cannot simultaneously be satisfied. Let’s think about why that is

the case.

A wide matrix has size M < N and its maximum possible rank is
M, corresponding to the number of rows. Thus, the largest possi-
ble set of linearly independent columns is M the rest of columns
r + 1 through N can be expressed as some linear combination of
the first M columns, and thus cannot possibly be orthogonal.

That said, wide matrices can be "almost orthogonal'—they can
have interesting properties that almost meet the criteria of an
orthogonal matrix. The wide Q matrix has at least one column
of zeros, because the zeros vector is orthogonal to every other
vector (meets the first criteria). But obviously the zeros vector
does not have a magnitude of 1. Here is an example of such a

wide matrix:

1 [-2 -1 0
Q:\/Bl—l 5 0] (13.28)

You can see that all columns are pairwise orthogonal, but the third
column has a norm of 0. This matrix transposed still provides a

right inverse. However, it does not provide a left inverse.

1"—2—1 s 1 o] 1'500
. 9
== |-1 =-10 5 0 13.29
Q=3 [—1 2 0| 5 ( )
0 : 00 0
1[—2 —1 o] |72 -1 1[5 0

. 9

= 1 2| == 13.30
QQ 5|1 20] 0o 50 5 ( )

Orthogonal matrices seem a bit magical. Are they exceedingly
rare and nearly impossible to construct? Quite the opposite! And

even better, you already know everything you need to create an

13.4 ORTHOGONAL MATRICES
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orthogonal matrix. In the next section, you’ll see how to put the

pieces together.

Practice problems Determine the value of ¢ that will produce orthogonal matrices.

0 2°° 27" cos(¢) —sin(¢) 0
a) ¢ {1/; 1/3] b) [0 27°% —27° c) |sin(¢)  cos(¢) O
/ / ¢ 0 0 0 0 1
Answers Answers below are (.
a) V2 b) 1 ¢) any ¢

Orthogonalization via Gram-Schmidt

Let’s say you have a set of vectors in RN that is independent but
not orthogonal. You can create a set of orthogonal vectors from
the original vectors by applying the Gram-Schmidt process. Just

follow the three-step plan (using vectors v; through v,,).

Procedure for creating a set of orthonormal vectors

1) Start with v; and normalize to unit length: v] = ™
Vi

For all remaining vectors in the set:

2) Orthogonalize v}, to all previous vectors (eq. 13.15)

3) Normalize vj, to unit length

The result of this procedure is a set of orthonormal vectors that,
when placed as column vectors in a matrix, yield an orthogonal

matrix Q.

Let’s start with an example using three vectors in R?. Before
looking at the math, draw these three vectors on a 2D plane, and
try to visualize how the resulting orthogonalized vectors might
look.



" 1 1
V] = —
! 10 |3 Normalize to unit
vector
. 1 1-1+3-—-1 |1 1+1/5 1 6
Vo = Vg —V = - = = -
2 2 2llva -1 1-1+3-3 |3 -1+3/5 9 | —2| Orthogonalize to
Vi
v = 7\/5 6
2 10\/§ —2 Normalize to unit

vector

—21 B 1071/2.-2 4+ 3.10"1/2 H

V3= V3= V3yr — V3jvz = [ 1 (10-1/2)2 4 (3.10-1/2)2 |3

Orthogonalize to
v and to v3

_ 6V5/10v2: =2+ —2V/5/10v2 | 6
(6v5/10v2)? + (=2v/5/10v2)? | -2

—2] 10721 27 6] o
- bl ews -l

Putting these vectors into a matrix yields

1 35 0

V10 5v2
Q:

3 3V5 0

V10 10v2

A few notes about this example:

1. The arithmetic gets difficult quickly, doesn’t it? I could have
come up with numbers that worked out easier, but there are
several important lessons here: (1) even seemingly simple
problems can become complicated (a general challenge in
life), (2) don’t be intimidated by the complexity—take a
deep breath, get some paper and a pencil, and work through
your (math) problems with a positive and assertive attitude.

2. Note that each vector is orthogonalized to vj_;—the already-
orthogonalized vector—not to the original v_;.

13.5 ORTHOGONALIZATION VIA GS
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3. Are you surprised with the result v;=07 You shouldn’t
be—it’s not possible to have 3 orthogonal vectors in R? or,
in general, n + 1 orthogonal vectors in RN,

4. Numerical computing programs like MATLAB and Python
will omit the final column of zeros, thus returning a true
orthogonal matrix, even though it is not the same size as
the original matrix. I’ll write more about the sizes of or-

thogonalized matrices in a later section.

Figure 13.6 shows the column vectors of V and Q. Aside from the
intense arithmetic on the previous page, it is also geometrically
obvious that qs must be zeros, because it is not possible to have
more than two orthogonal vectors in R?. This is an application
of the theorem about the maximum number of vectors that can
form a linearly independent set, which was introduced in section
4.6.



44
q
Chp 1

Figure 13.6: Lines show column vectors in matrix V (left) and
Q (right). Note that vector q3 is a dot at the origin.

Practice problems Produce orthogonal matrices using the Gram-Schmidt procedure.

1 3 1 3 3 3
2B [ W] 9 [ 4
Answers
A | L[ 13 30
2) 7 L 1] b) 715 [—3 1} ) 5 [4 0}

The Gram-Schmidt procedure is numerically unstable,
due to round-off errors that propagate forward to each
subsequent vector and affect both the normalization and
the orthogonalization. You’ll see an example of this in
the code challenges. Computer programs therefore use

Reflection

numerically stable algorithms that achieve the same con-
ceptual result, based on modifications to the standard

Gram-Schmidt procedure or alternative methods such as

L  Givens rotations or Gaussian elimination. J

QR decomposition

The Gram-Schmidt procedure transforms matrix A into orthog-

onal matrix Q. Unless A is already an orthogonal matrix, Q will

13.6 QR DECOMPOSITION
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QR decomposi-
tion is unrelated
to QR codes.

be different than A, possibly very different. Thus, information is
lost when going from A — Q. Is is possible to recover the infor-
mation that was lost in translation? Obviously, the answer is yes.
And that’s the idea of QR decomposition:

A=QR (13.31)

The Q here is the same Q that you learned about above; it’s the
result of Gram-Schmidt orthogonalization (or other comparable
but more numerically stable algorithm). R is like a "residual"
matrix that contains the information that was orthogonalized out
of A. You already know how to create matrix Q; how do you
compute R? Easy: Take advantage of the definition of orthogonal

matrices:
QTA =QTQR (13.32)

QA =R (13.33)

I’d like to show you an example, but because you already know
how to compute Q, I'll simply write the answer without details
or fanfare; that will allow us to focus the discussion on R.

0 V2l Ve
1, = Q=|v2 ' —v6' (13.34)
1 0 -2v6 "

Following Equation 13.33, we compute R.

A=

O =

1

o

oA [Tl v o vz ovet
R=QA [ Y L] . -[¢ %
(13.35)

In this example, R is an upper-triangular matrix. That’s not
just some happy coincidence. In fact, R will always be an upper-

triangular matrix.

To understand why R must be upper-triangular, it’s useful to
keep your eye on Equation 13.33 while reviewing the mechanics



of matrix multiplication. In particular, on page 144 I stated that
the upper triangle of the product matrix (here that’s R) comprises
dot products between earlier rows in the left matrix (here that’s
Q") with later columns in the right matrix (A). In contrast,
the lower triangle of the product matrix comprises dot products
between later rows of the left matrix and earlier columns of the
right matrix. (Also keep in mind that the rows of QT are the
columns of Q.)

Because orthogonalization works column-wise from left-to-right,
later columns in Q (i.e., rows of Q") are orthogonalized to earlier
columns of A, hence the lower triangle comes from pairs of vectors
that have been orthogonalized. But the other way around is not
the case: earlier columns in Q (earlier rows in Q') have not yet
been orthogonalized to later columns of A. And that’s why R

will always be upper-triangular.

Sizes of Q and R, given A The sizes of Q and R depend on
the size of A, and on a parameter of the implementation.

Let’s start with the square case, because that’s easy: If A is a
square matrix, then Q and R are also square matrices, of the
same size as A. This is true regardless of the rank of A (more on

rank and QR decomposition below).

Now let’s consider a tall matrix A (M > N). Computer algo-
rithms can implement the "economy QR" or "full QR" decompo-
sition. The economy QR is what you might expect based on the
example in the previous page: Q will be the same size as A, and
R will be N x N. However, it is possible to create a square Q
from a tall A. That’s because the columns of A are in RM, so
even if A has only N columns, there are M — N more possible
columns to create that will be orthogonal to the first M. Thus,
the full QR decomposition of a tall matrix will have Q € RMM
and R € RMN_ In other words, Q is square and R is the same

size as A.

Finally, we consider wide matrices. There is no economy QR for
wide matrices, because A already has more columns than could

13.6 QR DECOMPOSITION
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form a linearly independent set. Thus, for a wide matrix A, the

story is the same as for the full QR decomposition of a tall matrix:
Q € RMM 3nd R € RMN,

Figure 13.7 provides a graphical overview of these sizes.

A Q QQ QQ" R

Square [ pixm MxM | I I MxM
full-rank | r=M | =M | =M | M| r=M
Square [ pixm vxm || I I I 1 [mxm
singular |r=k<M =M | *M | “M| r=k
Tall sy MxM I I MxN
"full” r=k r=M M M r=k
Tall oy VYN N P B V7YY
"economy" |r=k r=N AN B r=k
- M<N mv| 1| 1 <N
Yige [ r=k ] {r=M} | IM_ | IM_ [ r=k }

Figure 13.7: Representation of matrix sizes and ranks from
QR decomposition for different possibilities of A (the different
rows). When £ is not specified relative to M, then £ < M. The
"?" indicates that the matrix elements depend on the values
in A and Q, i.e., it is not the identity matrix.

Ranks of Q, R, and A The Q matrix will always have its max-
imum possible rank (M or N depending on its size, as described
above), even if A is not full rank.

It may seem surprising that the rank of Q can be higher than the
rank of A, considering that Q is created from A. But consider
this: If T give you a vector [-1 1], can you give me a different,
orthogonal, vector? Of course you could: [1 1] (among others).
Thus, new columns in Q can be created that are orthogonal to
all previous columns. You can try this yourself in Python or
MATLAB by taking the QR decomposition of 1 (the matrix of all
1’s).



On the other hand, R will have the same rank as A. First of
all, because R is created from the product QT A, the maximum
possible rank of R will be the rank of A, because the rank of A
is equal to or less than the rank of Q. Now let’s think about why
the rank of R equals the rank of A: Each diagonal element in R
is the dot product between corresponding columns in A and Q.
Because each column of Q is orthogonalized to earlier columns in
A, the dot products forming the diagonal of R will be non-zero
as long as each column in A is linearly independent of its earlier
columns. On the other hand, if column k£ in A can be expressed
as a linear combination of earlier columns in A, then column k of
Q is orthogonal to column k£ of A, meaning that matrix element

Ry, 1, will be zero.

Code QR decomposition is easy to implement in Python and
MATLAB. Computing the full vs. economy version requires an
additional optional input. Confusingly, the default is Python is
economy whereas the default in MATLAB is full.

Code block 13.3: Python

1 import numpy as np
2 A = np.random.randn(4,3)
3 Q,R =np.linalg.qr(A)

Code block 13.4: MATLAB
A = randn (4,3);
[Q.R] = ar(A);

N

Inverse via QR

I’ve mentioned before that you should avoid having computers
explicitly compute the inverse unless it’s necessary, because of
the risk of inaccurate results due to numerical instabilities. The
QR decomposition provides a more stable algorithm to compute
the matrix inverse, compared to the MCA algorithm you learned

13.7 INVERSE VIA QR
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about in the previous chapter. To begin, we simply write out
the QR decomposition formula and then invert both sides of the

equation:
A =QR
A= (QR)™!
Al — R—lQ—l
A'=R!QT (13.36)

Well, we still need to compute the explicit inverse of R, but if A
is a dense matrix, then R~ is easier and more stable to calculate
than is A~!, because nearly half of the elements in R are zeros,

and matrices with a lot of zeros are easy to work with.



Exercises

1. Without looking back at page 367, derive w, and w, and
prove that they are orthogonal.

2. Simplify the following operations, assuming Q, A € RMM

a) Q"
b) QQ'QTQTQ'QQ'QT
c) QTQQQ'AAQTQA™!

3. In section 13.1, I defined the difference vector to be (b — Sa).
What happens if you define this vector as (Sa — b)? Do the

algebra to see if the projection formula changes.

4. Why are orthogonal matrices called "pure rotation" matrices?
It’s not because they’ve never committed sins; it’s because
they rotate but do not scale any vector to which they are
applied. Prove this claim by comparing ||x|| to ||Qx]|. (Hint:
It’s easier to prove that the magnitudes-squared are equal.)

5. Determine whether the following are orthogonal matrices.

. 3 340 1/vV2 12 0
a)[ B ] b)i|-4 3 0 c) |—v2/6 V2/6 2v2/3
00 5 2/3 —2/3  2/3
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Answers

1. You can check your proof on page 367.

2. a)Q
b) (Q")
c) Q’A
3. It doesn’t; you’ll arrive at the same projection formula.

4. Here’s the proof; the key result at the end is that || Qx| = ||x]|.
1Qx)* = (Qx)"(Qx)
=x'QTQx

=x"x = x|

5. a) No (but try a scaling factor)
b) Yes

c) No (but change the final element to 1/3)



Code challenges

1. Use code to confirm the sizes of Q and R based on Figure

13.7.

. Implement the Gram-Schmidt algorithm to compute Q from
a matrix A. You can check that your code is correct by (1)
Confirming that QTQ = I and (2) by computing Q from QR
decomposition. I recommend starting with a square A so you
don’t need to worry about economy vs. full decomposition.

Note: When you compare your Q against the output of QR
decomposition, you might find that some columns have the
same values but opposite sign. For example, perhaps your Q
will have a column [1 2 3] whereas the Q from Python/MAT-
LAB is [-1 -2 -3]. There are fundamental sign uncertainties in
many decompositions. The short version of the reason is that
the vectors are crafted to be basis vectors for 1D subspaces,
and thus the sign of the vector is simply a scalar. This will be

more clear after learning about eigenvectors.

. Using your code above, compute Q on the following matrix

(this was the example in section 13.5):

1 1 -2
3 -1 1

The first two columns of your Q should match vi and v}
in the text. But you will not get a third column of zeros;
it will be some other vector that has magnitude of 1 and is
not orthogonal to the previous two columns (easily confirmed:
QTQ #1I). What on Earth is going on here?!?!

13.10 CODE CHALLENGES
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Code solutions

1. This one’s easy, so I'm not giving you code! You simply need
to create random matrices of various sizes, and check the sizes

of the resulting Q and R matrices.

2. This is a tricky algorithm to implement. In fact, this exercise
is one of the most difficult in this book.

Code block 13.5: Python

1 import numpy as np
2

3 m=4

4 n=4

5 A = np.random.randn(m,n)
6 Q= np.zeros((m,n))
7

8 for i in range(n):
9

10 Ql:,i] =A[:,1]
11

12

13 a = A[:,1]
14 for j in range(i):

15 qa=Q[:,j]

16 Q[:,i]=Q[:,i]-np.dot(a,q)/np.dot(q,q)*q
17

18

19 Q[:,1] =Q[:,i] / np.linalg.norm(Q[:,1])
20

21

22 Q2,R = np.linalg.qr(A)
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Code block 13.6: MATLAB

n = 4;
A = randn(m,n);
Q = zeros(m,n);
for i=1:n % loop through columns (n)
Q(:,1) = A(:,1);
% orthogonalize
if i>1
a =A(:,1); % convenience
for j=1:i—1 % only to earlier columns
q=Q(:,j); % convenience
Q(:,1) =Q(:,1) — (a’xq/(a’*q)) * q;
end
end
% normalize
Q(:,1) =Q(:,1) / norm(Q(:,1i));
end
% QR
[Q2,R] = qr(A);
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3. The issue here is normalization of computer rounding errors.
To see this, modify your algorithm so that column 3 of Q is
not normalized.

You will find that both components of the third column have
values close to zero, e.g., around 107'°. That’s basically zero
plus computer round error. The normalization step is making
mountains out of microscopic anthills. Congratulations, you
have just discovered one of the reasons why the "textbook'
Gram-Schmidt algorithm is avoided in computer applications!
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Introduction

The physical and biological world that we inhabit is a really, really,
really complicated place. There are uncountable dynamics and
processes and individuals with uncountable and mind-bogglingly
complex interactions. How can we make sense of this complexity?
The answer is we can’t: Humans are terrible at understanding

such enormously complex systems.

So we do the next-best thing, which is to develop simplified mod-
els of the most important aspects of the system under investiga-
tion, while ignoring or abstracting away the aspects that are less

relevant.

This process leads to a model, which is a set of equations that
allows scientists to isolate and understand the principles of the
system under investigation. Thus, the goal of building models is
not to replicate ezactly the system under investigation, but in-
stead to identity a simplified and low-dimensional representation
that actually can be understood by humans or simulated by com-

puters.

On the other hand, there is a lot of diversity in nature, and models
should be sufficiently generic that they can be applied to different
datasets. This means that the models must be flexible enough
that they can be adjusted to different datasets without having to

create a brand new model for each particular dataset.

This is why models contain both fized features and free param-
eters. The fixed features are components of the model that the
scientist imposes, based on scientific evidence, theories, and in-
tuition (a.k.a. random guesses). Free parameters are variables
that can be adjusted to allow the model to fit any particular data
set. And this brings us to the primary goal of model-fitting: Find
values for these free parameters that make the model match the
data as closely as possible.

Here is an example to make this more concrete. Let’s say you want



to predict how tall someone is. Your hypothesis is that height is a
result of the person’s sex (that is, male or female), their parents’
height, and their childhood nutrition rated on a scale from 1-10.
So, males tend to be taller, people born to taller parents tend to be
taller, and people who ate healthier as children tend to be taller.
Obviously, what really determines an adult’s height is much more
complicated than this, but we are trying to capture a few of the
important factors in a simplistic way. We can then construct our
model of height:

h =018+ Bop+ Bzn +¢ (14.1)

where h is the person’s height, s is the sex, p is the parents’ height,
and n is the childhood nutrition score. These are the fixed features
of the model—they are in the model because I put them there,
because I believe that they are important. On the other hand,
it is obvious that these three factors do not exactly determine
someone’s height; hence, we include the € as an "error term" or
"residual” that captures all of the variance in height that the three

other variables cannot explain.

But here’s the thing: I don’t know how important each of these
factors is. So I specify that the model needs to include these terms,
and I will let the data tell me how important each term is. That’s
why each fixed feature is scaled by a 8 parameter. Those (s are
the free parameters. For example, if (3 is large, then nutrition
is very important for determining someone’s adult height; and if
B3 is close to zero, then the data are telling me that childhood

nutrition is not important for determining height.

Of course, that leads to the question of how you find the model
parameters that make the model match the data as closely as
possible. Randomly picking different values for the s is a ter-
rible idea; instead, we need an algorithm that will find the best
parameters given the data. This is the idea of model fitting. The
most commonly used algorithm for fitting models to data is linear
least-squares, and that is what you will learn in this chapter.

14.2 5 STEPS OF MODEL-FITTING
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Binary variables
are often "dummy-
coded," meaning
that female=0 and
male=1 (this map-
ping will make pos-
itive 8 correspond
to taller adults).

The five steps of model-fitting

The process of model-fitting in statistics can be broken down into
five steps.

Step 1 Determine an equation or set of equations that comprise
your model. In practice, you would often use existing equations
or slight modifications of existing equations. I already showed you
an example above: Our hypothesis about important factors that
predict height were converted into Equation 14.1.

Step 2 Work the data into the model. You get existing data
from a database or by collecting data in a scientific experiment.
Or you can simulate your own data. I made up the data in Table
14.1 for illustration purposes.

ID | Height | Sex | Parents’ height | Nutrition
180 M 175 8

2 170 F 172 6

10 176 F 189 7

Table 14.1: Example data table. Height is in cm.

But this is not the format that we need the data in. We need to
map the data in this table into the model. That means putting
these numbers inside the equation from step 1. The first row of
data, converted into an equation, would look like this:

180 = B11 + B2175 + f38

One row of data gives us one equation. But we have multiple
rows, corresponding to multiple individuals, and so we need to
create a set of equations. And because those equations are all
linked, we can consider them a system of equations. That system
will look like this:



180 = A1l + (o175 + 338

170 = B10 + B2172 + (36
) (14.2)

176 510 + P2189 + 37

Notice that each equation follows the same "template" from Equa-
tion 14.1, but with the numbers taken from the data table. (The
statistically astute reader will notice the absence of an intercept
term, which captures expected value of the data when the pre-
dictors are all equal to zero. I'm omitting that for now, but will

discuss it later.)

Step 3 The system of equations above should active your happy
memories of working through Chapter 10 on solving systems of
equations. Armed with those memories, you might have already
guessed what step 3 is: convert the system of equations into a
single matrix-vector equation. It’s exactly the same concept that
you learned previously: Split up the coefficients, variables, and
constants, and put those into matrices and vectors.

1 175 8] B 180
0 172 6| |B| = |170 (14.3)
0 189 7| |Bs 176

In previous chapters, I would have called this Ax = b. The stan-
dard statistics lingo uses different letters, although the concepts
and algorithms are the same. I'll explain the statistics terminol-
ogy in a few pages, but for now, suffice it to say that this equation
is now called X8 = y. X is the matrix of coefficients, 8 is the
vector of the unknown free parameters that we want to solve for,
and y is the vector of constants (in this example, height measured

in cm).

Step 4 Solve for B, which is also called fitting the model, es-
timating the parameters, computing the best-fit parameters, or
some other related terminology. The rest of the chapter is fo-

cused on this step.

Note that 8 here is
a vector, although
I have previously
written that Greek
characters indicate
scalars.

14.2 5 STEPS OF MODEL-FITTING
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Step 5 Statistically evaluate the model: is it a good model? How
well does it fit the data? Does it generalize to new data or have we
over-fit our sample data? Do all model terms contribute or should
some be excluded? This step is all about inferential statistics, and
it produces things like p-values and t-values and F-values. Step
5 is important for statistics applications, but is outside the scope
of this book, in part because it relies on probability theory, not
on linear algebra. Thus, step 5 is not further discussed here.

Terminology

It is unfortunate and needlessly confusing that statisticians and
linear algebrists use different terminology for the same concepts.
Terminological confusion is a common speed-bump to progress in
science and cross-disciplinary collaborations. Nonetheless, there
are worse things in human civilization than giving a rose two
names. The table below introduces the terminology that will be
used only in this chapter.

LinAlg Stats | Description

Ax =Db | X8 =y | General linear model (GLM)

A X Design matrix (columns = independent
variables, predictors, regressors)

X B Regression coefficients or beta parameters

b y Dependent variable, outcome measure, data

Table 14.2: Translating between linear algebra and statistics
terminology.

The final point I want to make here is about the term "linear" in
linear least-squares. Linear refers to the way that the parameters
are estimated; it is not a restriction on the model. The model may
contain nonlinear terms and interactions; the restriction for lin-
earity is that the coefficients (the free parameters) scalar-multiply
their variables and sum to predict the dependent variable. Basi-
cally that just means that it’s possible to transform the system
of equations into a matrix equation. That restriction allows us to




use linear algebra methods to solve for 8; there are also nonlinear
methods for estimating parameters in nonlinear models.

To make sure this point is clear, consider the following model,

which contains two nonlinearities:

h = B1s+ Ba\/Bsp + Bsn® + € (14.4)

One nonlinearity is in the regressors (521/33), and one is in a
predictor (n3). The latter is no problem; the former prevents
linear least-squares from fitting this model (there are nonlinear

alternatives that you would learn about in a statistics course).

Least-squares via left inverse

There is actually one solution to the general linear model equa-
tion, but it is insightful to arrive at that solution from different
perspectives. In this and the next sections, we will start from al-
gebra (this section), geometry (next section), and row-reduction
(next-next section), and arrive at the same conclusion.

The problem we face is simple: Solve for 8 in X8 =y. If X were
a square matrix, we would obtain the solution by pre-multiplying
both sides by X ~!'. However, design matrices are typically tall ma-
trices, because there are typically many more observations than
there are variables. Using our example of predicting height, we
might have data from 1000 individuals and our model contains 3
predictors. Thus, X would be a 1000 x 3 matrix. (Deep learn-
ing applications often have wide matrices—more variables than
observations—and this requires regularization and other tricks to
make the problem solvable. But nearly all statistics applications

involve tall design matrices.)

You know what the solution is: instead of the full inverse, we use
the left-inverse. Thus, the solution to the least squares problem

14.4 LEAST-SQUARES VIA LEFT INVERSE
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is:

XB=y
(XTX)"1X™X8 = (XTX)" !XTy

B =X"X)"'xTy (14.5)

When is Equation 14.5 a valid solution? I'm sure you guessed
it—when X is full column-rank, which means the design matrix
contains a linearly independent set of predictor variables. If the
design matrix has repeated columns, or if one predictor variable
can be obtained from a linear combination of other predictor vari-
ables, then X will be rank-deficient and the solution is not valid.

In statistics lingo, this situation is called "multicollinearity."

When is the solution exact? I wrote in section 8.11 that one
of the fundamental questions in linear algebra is whether some
vector is in the column space of some matrix. Here you can see
an application of that question. We want to know whether vector
y is in the column space of matrix X. They’re both in RM, because
they both have M elements in the columns, so it’s a valid question
to ask. But here’s the thing: y has M elements and X has N
columns, where N << M (e.g., M = 1000 vs. N = 3). In this
example, we are asking whether a specific vector is inside a 3D

subspace embedded in ambient R0,

The answer is nearly always No, y ¢ C(X). Even for a good
model, a tiny bit of noise in the data would push vector y out of
the column space of X. What to do here?

The solution is to think about a slightly different question: Is
there a ¥ such that y really is in the column space of X? Then
we would call the parameters B . Obviously, some 3 and y exist,
and also obviously, we want to find the ¥ that is as close to y as
possible. That leads to the full formulation of the general linear



model and some related equations.

y=XpB+e (14.6)
y=y+e (14.7)
y=Xpj (14.8)

€ is the residual, what you need to add to y to get it into the
column space of the design matrix. The better the model fits
the data, the closer y is to the column space of X, and thus the
smaller the €. Keep in mind that € is not in the data that you
measured, and it’s not in the model that you specify. Instead, it’s
what you need to add to y to reach the column space of X.

There is more to say about this € vector (section 14.7), but first
I want to prove to you that the least squares equation minimizes
€. And to do that, we need to re-derive the least-squares solution

from a geometric perspective.

Least-squares via orthogonal projection

Imagine an ambient RM space, and a subspace inside that am-
bient space, whose basis vectors are the columns of the design
matrix. I will illustrate this using a 2D subspace because it is
easy to visualize (Figure 14.1), but the actual dimensionality of
this subspace corresponds to the number of columns in the design
matrix, which means the number of predictor variables in your

statistical model.

The measured data in y form a vector in RM. As discussed in the
previous chapter, it is sometimes easier to conceptualize y as a
coordinate in space rather than a vector from the origin.

When working with real data, it is incredibly unlikely that y is
exactly in the column space of X. If fact, if y € C'(X), then prob-

ably the model is way too complicated or the data are way too

14.5 LEAST-SQUARES VIA PROJECTION
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n.b. I'm kindof
joking here. Sortof.

Figure 14.1: The geometry of least-squares via orthogonal pro-
jection.

simple. The goal of science is to understand things that are diffi-
cult to understand; if your model explains a phenomenon 100%,
then it’s not difficult to understand, and you should try to work
on a harder problem.

But the column space s important because that is the mathe-
matical representation of our theory of the world. So then the
question is, What is the coordinate that is as close as possible
to the data vector while still being inside the subspace? The an-
swer to that question comes from the orthogonal projection of the
vector onto the subspace. That orthogonal projection is vector
€ =y — X3, which is orthogonal to the column space of X.

XTe=0 (14.9)
XT(y-XB)=0 (14.10)
XTy - xXTXp =0 (14.11)
XTxp =X"Ty (14.12)

B =XTX)"'x"y (14.13)

And amazingly (though perhaps not surprisingly), we’ve arrived
back at the same solution as in the previous section.

We also see that the design matrix X and the residuals vector e



are orthogonal. Geometrically, that makes sense; statistically, it
means that the prediction errors should be unrelated to the model,

which is an important quality check of the model performance.

" You might have noticed that I'm a bit loose with the
plus signs and minus signs. For example, why is € de-
fined as y — X3 and not X8 —y? And why is € added
in Equation 14.6 instead of subtracted? Sign-invariance
often rears its confusing head in linear algebra, and in
many cases, it turns out that when the sign seems like

Reflection

it’s arbitrary, then the solution ends up being the same
regardless. Also, in many cases, there are coefficients
floating around that can absorb the signs. For example,
you could flip the signs of all the elements in € to turn

L wvector —e into +e€. J

Least-squares via row-reduction

Now we’re going to derive the least-squares formula again, this
time using row-reduction and Gauss-Jordan elimination. It may
seem gratuitous to have yet another derivation of least-squares,
but this section will help link concepts across different chapters
of this book, and therefore has high conceptual /educational value
(IMHO).

Recall from Chapter 10 that we can solve a system of equations by
performing row-reduction on a matrix of coefficients augmented
by the constants. And then in Chapter 12 you saw how to apply
that method to computing the matrix inverse. Let’s see if we
can apply that same concept here to solve for 8 in our statistical

model.
rref([ X |y]) = [I]8] (14.14)

Unfortunately, life does not always conform to expectations. Take
a moment to think about the problem with the conclusion above.

14.6 LEAST-SQUARES VIA ROW-REDUCTION
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The problem is not the augmented matrix: X and y both have M
rows, so the augmenting is valid. And row-reduction is also valid.
However, [ X | y | will have N + 1 columns and will have a rank
of N +1 < M. Thus, the actual outcome of RREF will be

ref([ X |y ]) = LI]] (14.15)

In other words, a tall matrix with the identity matrix In on top
and all zeros underneath. This is not useful; we need to re-think
this.

The solution comes from pre-multiplying the general linear model
equation by XT:

XTxg =Xy (14.16)

Equation 14.16 is often called the "normal equation." (I know what
you're thinking and I agree: it looks less normal than the equation
we derived it from. But that’s the terminology.)

Now we can go back to Gauss-Jordan and get a sensible result.
wef(| XTX | X"y |) = [1]8] (14.17)

Let’s think about the sizes. XTX will be N x N and thus the
augmented matrix will be of size N x (N + 1), in other words, a
wide, full row-rank, matrix. That will give us our desired 8 on
the right.

The reason why this works comes from thinking about the row
spaces of X and XTX. Remember from Chapter 8 (section 8.5)
that these two matrices have the same row space, and that XTX
is a more compact representation of the space spanned by rows
of X. Furthermore, assuming that X has linearly independent
columns (which is an assumption we’ve been making in this entire
chapter), then XTX spans all of RN, which means that any point
in RN is guaranteed to be in the column space of XTX. And
XTy is just some point in RN, so it’s definitely going to be in the
column space of XTX. Therefore, B contains the coefficients on
the columns of matrix XTX to get us exactly to XTy. Note that
with the Gauss-Jordan approach to solving least-squares using



the normal equations, we never leave the N-dimensional subspace
of RN, so the question of whether y € C(X) doesn’t even come

up.

However, we still need to compute € to make the GLM equation
correct. The reason is that 8 is a solution to the normal equation,
but we want to find the solution to y, which is not the same thing
as XTy. Fortunately, that’s an easy rearrangement of Equation
14.6:

e=XB-y (14.18)

The statistical interpretation of Equation 14.18 is that the residual
is the difference between the model-predicted values (X3) and the
observed data (y).

By the way, we can also arrive at the normal equations by start-
ing from the known solution of the left-inverse, and then pre-

multiplying by XTX:
B=X'X)"'X"y
XTxp = (XTX)(X™X)'xTy (14.19)

XTxg =X"Ty (14.20)

Model-predicted values and residuals

Let me bring your attention back to Figure 14.1. The data vector
y is unlikely to be exactly in the column space of the design matrix
X, and vector € gets us from the data into the subspace spanned
by the design matrix. We also know that € is defined as being
orthogonal to the column space of X.

Statistically, € is the residual variance in the data that the model

cannot account for. We can also write this as follows:

e=XB-y (14.21)

14.7 PREDICTIONS AND RESIDUALS
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When is the model a good fit to the data? It is sensible that the
smaller € is, the better the model fits the data. In fact, we don’t
really care about the exact values comprising € (remember, there
is one ¢; for each data value y;); instead, we care about the norm
of €.

el = 11X8 — y]* (14.22)

Now we can re-frame the goal of model-fitting in a slightly dif-
ferent way: Find the values in vector 8 that minimize both sides
of Equation 14.22. This is a standard optimization problem, and
can be expressed as

min | X8 - | (14.23)

The solution to this problem is obtained by computing the deriva-
tive and setting that equal to zero:

0= IX-ylP=2X"(Xp-y) (420
0=XTXg8 - X"y (14.25)

XTxp = xTy (14.26)

B =(XTX)"'xTy (14.27)

And here we are, back at the same solution to least-squares that
we’ve obtained already using three different approaches. And now
I’ve slipped in a fourth method to derive the least-squares equa-
tion, using a bit of calculus and optimization. (If your calculus is
rusty, then don’t worry if the first equation is nebulous. The idea
is to take the derivative with respect to 8 using the chain rule.)

Least-squares example

Doing statistics in the real-world is usually not so simple as defin-
ing the model, fitting the parameters to data, and then going out
for sushi to celebrate a job-well-done. In practice, statisticians



will often begin with simple models and then add complexity to
the models as it becomes clear that the simple models are inap-
propriately simple for the data, and according to the available
theoretical frameworks. I want to give you a taste of that pro-

cess.

We begin with a set of numbers. Let’s call it set D for data.
We assume that the order is meaningful; perhaps these are data

values from a signal being recorded over time.
D ={-4,0,-3,1,2,8,5,8}

I’'m going to start by assuming that the signal has a constant
value. Thus, my hypothesis at this point is that there is only one
meaningful signal value, and the divergences at each time point
reflect errors (for example, sensor noise). Thus, my model is:

d=p1+e (14.28)

That was step 1. Step 2 is to work the data into the model. That
will give a series of equations that looks like this:

—4 = B1

0= 41

-3 = 1

1 = 61

- (14.29)
8 = A1

5 = B1

8 = Bl

Why is there a "1" next to the 87 My hypothesis is that a single
number explains the data. But I don’t know a priori what that
number should be. That’s what the g is for. Now, that number
could be anything else, and § would scale to compensate. For
example, let’s say the average data value is 2. With the coefficient
set to 1, then 8 = 2, which is easy to interpret. However, if 1
were to set the coefficient to 9.8, then § = .20408.... And then
the interpretation would be that the average value of the signal is
£5x9.8. That is mathematically correct, but difficult and awkward
to interpret. That’s why we set the coefficient value to 1 (in a few

pages, I will start calling this column the "intercept").
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Another good
reason to set the
coefficients to 1.

Now for step 3: Convert the set of equations into a matrix-vector

equation.
0 i
1 0
1 -3
1 1
X 18] = ) (14.30)
1 8
1 5
1 8
Step 4 is to fit the model.
= (XTX)"1xXTy (14.31)
B=81x17 (14.32)
1
8= §7 —2.125 (14.33)

Did you notice what happened here? We ended up summing all
the data points (dot product between the numbers and a vector
of 1’s) and dividing by the number of elements. That’s literally
the arithmetic mean. So we’ve re-derived the average from a
statistics/linear algebra perspective, where our model is that the
data are meaningfully characterized by a single number.

It’s always a good idea to visualize data and models. Let’s see
what they look like (Figure 14.2).

What do you think of the comparison of predicted and actual data
shown in Figure 14.27 I think the model looks pretty awful, to
be honest. The data clearly show an upward trend, which the
model cannot capture. Let’s try changing the model. (Important
note: I'm skipping step 5, which would involve formal tests of the
model.)

Instead of predicting a single data value, let’s predict that the
data values change over the x-axis (the statistics term for this is
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Figure 14.2: Observed and predicted data. Black squares show
the data (y) and white stars show the model-predicted data
(§ = XB). The dashed gray lines were added to facilitate com-
paring data values to their predicted values.

a "linear trend"). The new model equation from step 3 will look
like this:

(14.34)

0 N O U R W NN
r—
=
—_
I

Note that we are no longer predicting the average value; we are

now predicting a slope. Let’s see what the parameter is:

B=X"X)"'xTy (14.35)

B =204""x148 (14.36)
204

B= %8 = .7255 (14.37)

Figure 14.3 shows the same data with the new model-predicted

data values.
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B Observed data
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Figure 14.3: Our second modeling attempt.

It looks better compared to Figure 14.2, but still not quite right:
The predicted data are too high (over-estimated) in the beginning
and too low (under-estimated) in the end. The problem here is
that the model lacks an intercept term.

The intercept is the expected value of the data when all other
parameters are set to 0. That’s not the same thing as the average
value of the data. Instead, it is the expected value when all model
parameters have a value of zero. Thinking back to the example
model in the beginning of this chapter (predicting adult height as
a function of sex, parents’ height, and childhood nutrition), the
intercept term captures the expected height of an adult female
whose parents’ height is zero cm and who had a score of 0 on
childhood nutrition. Not exactly a plausible situation. So why do
these models need an intercept term?

The reason is that without an intercept, the model is forced to
include the origin of the graph (X,Y=0,0). This caused the model
in Figure 14.3 to be a poor fit. The intercept term allows the best-
fit line to shift off the origin (that is, to intersect the Y-axis at
any value other than zero). Thus, in many statistical models, the
intercept is not necessarily easily interpretable, but is necessary
for proper model fitting (unless all data and regressors are mean-



subtracted, in which case the best-fit line touches the origin).

Now let’s expand the model to include an intercept term, which

involves including an extra column of 1’s in the design matrix.

We’ll also need two (s instead of one.

g VG VU G U G T U VT O WY

0 J O U = W N

The arithmetic gets a bit more involved,

ing.

f=X'X)" X1y

- -1
8 36

b= 136 2041 l
[ —5.5357

p= 1.7024]

(14.38)

but produces the follow-

(14.39)
17
148] (14.40)
(14.41)

I'm sure you agree that this third model (linear trend plus inter-
cept) fits the data reasonably well (Figure 14.4). There are still
residuals that the model does not capture, but these seem like

they could be random fluctuations. Notice that the best-fit line

does not go through the origin of the graph. We don’t see exactly

where the line will cross the y-axis because the x-axis values start

at 1. However, (1, the intercept term, predicts that this crossing

would be at y = —5.5357, which looks plausible from the graph.

The final thing I want to do here is confirm that ¢ 1 X3. The two
columns below show the residual and predicted values, truncated

at 4 digits after the decimal point.
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Figure 14.4: Our final model of this dataset.

€ XA
0.1667 —3.8333
—2.1310 —-2.1310
2.5714 —0.4286
0.2738  1.2738
0.9762  2.9762
—3.3214  4.6786
1.3810  6.3810
0.0833  8.0833

LEAST-SQUARES

€T (X8) = 0.0000000000000142...

It may seem like the dot product is not exactly zero, but it is 14
orders of magnitude smaller than the data values, which we can
consider to be zero plus computer rounding error.



Code challenges

Imagine you work as a data scientist in a company that sells wid-
gets online. The company gives you a dataset of information from
1000 sales, which includes the time of the sale (listed in hours of
the day using a 24-hour clock, e.g., 15 = 3pm), the age of the buyer
(in years), and the number of widgets sold. The data are available
at sincxpress.com/widget_data.txt (Note: these are data I made

up for this exercise.)

1. Explain and write down a mathematical model that is appro-

priate for this dataset.

2. Write the matrix equation corresponding to the model, and

describe the columns in the design matrix.

3. Compute the model coefficients using the least-squares algo-
rithm in MATLAB or Python. You can also divide the 3
coefficients by the standard deviations of the corresponding
independent variables, which puts the various model terms in
the same scale and therefore more comparable.

4. Produce scatter plots that visualize the relationship between
the independent and dependent variables.

5. One measure of how well the model fits the data is called
R? ("R-squared"), and can be interpreted as the proportion
of variance in the dependent variable that is explained by the
design matrix. Thus, an R? of 1 indicates a perfect fit between
the model. The definition of R? is

2
i€

>ilyi — y)?

¢; is the error (residual) at each data point that was introduced

R?=1- (14.42)

earlier, and ¢ is the average of all elements in y.

Compute R? for the model to see how well it fits the data. Are
you surprised, based on what you see in the scatterplots?

14.9 CODE CHALLENGES
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Code solutions

1. Note: There are multiple correct answers to this problem.

A simple model would predict that time and age are both
linear predictors of widget purchases. There needs to be an
intercept term, because the average number of widgets pur-
chased is greater than zero. The variables could interact (e.g.,
older people buy widgets in the morning while younger peo-
ple buy widgets in the evening), but I've excluded interaction
terms in the interest of brevity.

Thus, a basic model would look like this:

y = B1+ Bat + Bsa

y is the number of widgets sold, ;1 is the intercept, t is the
time of day, and a is the age.

2. The matrix equation is X3 = y. X has three columns: inter-
cept, which is all 1’s; time of day; age.

3. Python and MATLAB code are on the following page.
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Code block 14.1: Python

import numpy as np

# load the data
data = np.loadtxt (fname="widget_data.txt’,
delimiter=",")

# design matrix
X = np.concatenate ((np.ones((1000,1)),
data[:,:2]) ,axis=1)

# outcome variable
y = data[:,2]

# beta coefficients

beta = np.linalg.lstsq (X,y)[0]

# scaled coefficients (intercept not scaled)

betaScaled = beta/np.std (X, axis=0,ddof=1)

Code block 14.2: MATLAB

% load the data
data = load (’widget_data.txt’);

% design matrix
X = [ones(1000,1) data(:,1:2)];
% outcome variable

y = data(:,3);

% beta coefficients

beta = X\y;

% scaled coefficients (intercept not scaled)

betaScaled = beta’./std (X);

14.10 CODE SOLUTIONS
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4. The figure is below, code thereafter.
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Figure 14.5: Image for question 1

Code block 14.3: Python

import matplotlib.pyplot as plt

fig ,ax = plt.subplots(1,2,figsize=(8,4))

ax [0].plot (X[:,1],y, o’ ,markerfacecolor="k")
0].set__title(’Time variable’)
0].set_xlabel(’Time of day’)
0].set_ylabel(’Widgets purchased’)

© 00 N DU W N
o
"

ax [1].plot (X[:,2],y, 0o’ ,markerfacecolor="k")
ax[1].set_title(’Age variable’)
10 ax[1].set_xlabel(’Age”)
11 ax[1].set_ylabel(’Widgets purchased’)
12 plt.show ()
Code block 14.4: MATLAB
1 subplot(121)
2 plot(X(:,2),y,’0’, markerfacecolor’,’k”)
3 axis square, title(’Time variable’)
4 xlabel(’Time of day’)
5 ylabel (’Widgets purchased’)
6 subplot(122)
7 plot(X(:,3),y, 0o’ , markerfacecolor’, ’k’)
8 axis square, title(’Age variable’)
9 xlabel(’Age’), ylabel(’Widgets purchased’)




5. The model accounts for 36.6% of the variance of the data.
That seems plausible given the variability in the data that can

be seen in the graphs.

Code block 14.5: Python
1 yHat = X@beta
2 r2 =1 — np.sum((yHat—y)*x%2)
3 / np.sum((y—np.mean(y))**2)

Code block 14.6: MATLAB

1 yHat = Xxbeta;
2 12 =1 — sum((yHat—y)."2)
3 / sum ((y—mean(y))."2);

14.10 CODE SOLUTIONS
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EIGENDECOMPOSITION

START THIS CHAPTER HAPPY
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The terms eigen-
value decomposi-
tion, eigenvector
decomposition, and
eigendecomposition
are all used inter-
changeably; here

I will use eigen-
decomposition.

What are eigenvalues and eigenvectors?

A typical interaction between a student and a teacher about eigen-
decomposition goes something like this:

Student: Honored and respected professor: What is an
eigenvalue?

Teacher: Courteous and ambitious student: It’s the thing
that you use to find an eigenvector.

Student: Oh. OK, but then what’s an eigenvector?
Teacher: It’s the thing you get when you know the eigen-
value.

Student:

Teacher:

Student: "Crystal clear." I'll go spend some time on YouTube.

There are myriad explanations of eigenvectors and eigenvalues,
and in my experience, most students find most explanations in-
coherent on first impression. In this section, I will provide three
explanations that I hope will build intuition; additional expla-
nations and insights will come in subsequent sections as well as

subsequent chapters.

But there are two key properties to know about eigendecomposi-
tion before we get to interpretations. First, eigendecomposition is
defined only for square matrices. They can be singular or invert-
ible, symmetric or triangular or diagonal; but eigendecomposition
can be performed only on square matrices. All matrices in this
chapter are square (the singular value decomposition is defined for
any sized matrix, and is the main topic of the next chapter).

Second, the purpose of eigendecomposition is to extract two sets
of features from a matrix: eigenvalues and eigenvectors. Need-
less to say, eigenvalues are scalars and eigenvectors are vectors.
Typically, eigenvalues are labeled A and eigenvectors are labeled

V.



An M x M matrix has M eigenvalues and M eigenvectors. The
eigenvalues and eigenvectors are paired, meaning that each eigen-
value has an associated eigenvector. There are occasional points
of additional complexity, for example with repeated eigenvalues;
we’ll get to that later. But in general, each eigenvalue has an

associated eigenvector (Figure 15.1).

M A An

M : V1 V2 Vm

M

Figure 15.1: The big picture of eigendecomposition. Each MxM
matrix "hides" M eigenvalues and M associated eigenvectors;
eigendecomposition is the process of revealing the matrix’s
deepest secrets.

Geometric interpretation One way to think about matrix-vector
multiplication is that matrices act as input-output transformers
(section 6.5): Vector w goes in, and vector Aw = y comes out. In
the overwhelming vast majority of possible combinations of dif-
ferent matrices A and vectors w, the resulting vector y will point
in a different direction than w. In other words, A rotates the

vector. Figure 15.3 (left panel) shows an example.

But something is different in the right-side panel of Figure 15.3:
The output vector points in the same direction as the input vector.
The matrix did not change the direction of the vector; it merely

scaled it down.

In other words, the matrix-vector multiplication had the same ef-
fect as scalar-vector multiplication. The entire matrix is acting
on the vector as if that matrix were a single number. That might
not sound so impressive in a 2x2 example, but the same concept
applies to a 10191010 (total of 10!% [a googel] elements!) matrix.
If we could find that single number that has the same effect on the

15.1 EIGENWHATNOW?
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'}
Av

Figure 15.2: Vector w is not an eigenvector of matrix A, but
vector v is an eigenvector of A. Its associated eigenvalue is

A =.5.

vector as does the matrix, we would be able to write the follow-
ing equality, which is also known as the fundamental eigenvalue

equation:

Eigenvalue equation

Av = \v (15.1)

When the above equation is satisfied, then v is an eigenvector and
A is its associated eigenvalue (geometrically, A is the amount of
stretching). Let’s be clear about this equation: It is not saying
that the matrix equals the scalar; both sides of this equation pro-
duce a vector, and we cannot simply divide by v. Instead, this
equation is saying that the effect of the matriz on the vector is
the same as the effect of the scalar on the vector.

The example shown in Figure 15.3 has A = .5. That means that
Av = .5v. In other words, the matrix shrunk the vector by half,
without changing its direction.

Importantly, eigenvectors/values are not special properties of the
vector alone, nor are they special properties of the matrix alone.
Instead, it is the combination of a particular matrix, a particular
vector, and a particular scalar. Changing any of these quantities
(even a single element) will likely destroy this special relationship.
Thus, the vector v shown in Figure 15.3 is unlikely to be an
eigenvector of a different matrix B # A.



Statistical interpretation Do you make New Year’s resolutions?
Many people make a New Year’s resolution to eat healthier and
go to the gym more often. Unfortunately, most people break
their resolutions after a few days or weeks. Imagine you are a
researcher, and you want to know how long it takes people to fall
back to their old habits. Lucky for you, your town has one fast-
food restaurant and one gym, next to each other. So you sit across
the street each day and count how many people walk into the fast-
food place vs. the gym. The data you collect are organized in a
40x2 table, with each row corresponding to a day and each column
corresponding to the number of people that walked into the fast-
food place, and the number of people who walked into the gym.
You make a plot of the data with a "fast-food axis" and a "gym
axis," and each dot in the graph corresponds to the data recorded
on one day (Figure 15.3).

Clearly there is meaningful

structure in this dataset; there

O| o : N
@) I ° is some relationship between

L 3 ® the axes, such that on days

0 e®
y o Ceo ® when more people walk into
"J; o0 O ... the gym, fewer people walk
000 09,y .
© Py R ° into the fast-food place.
L LA
[ ]

Gym Our concern is that neither

axis seems optimal for un-

Figure 15.3: Each dot corre- derstanding the structure in

sponds to one day’s measure- the data. Clearly, a better—

ment of the number of people more efficient and more informative—

going into the fast-food place axis would reflect this struc-
(y-axis) vs. the gym (x-axis).  tyre. I'm sure you agree that
the grey line drawn on top
of the dots is an appropriate

axis.

Why am I writing all of this? It turns out that that the gray line is
an eigenvector of the data matrix times its transpose, which is also
called a covariance matrix. In fact, the gray line shows the first
principal component of the data. Principal components analysis
(PCA) is one of the most important tools in data science (for
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example, it is a primary method used in unsupervised machine
learning), and it is nothing fancier than an eigendecomposition of
a data matrix. More on this in Chapter 19.

Rubik’s cube This explanation is the most conceptual of the
three introductions to eigendecomposition, but I think it provides
a nice mental image of the procedure, and of the outcome.

Think of a Rubik’s cube as a matrix (I know, technically it would
be a sparse tensor; as I wrote, this is a conceptual not a literal
analogy). When you pick up the Rubik’s cube, all of the colors
are randomized; in other words, the information in the cube is
randomly scattered around. Likewise, patterns of information
in a data matrix are often distributed across different rows and

columns.

To solve the Rubik’s cube, you apply a specific sequence of rota-
tions. You twist the rows and columns in a specific way to get

each side of the cube filled with only one color.

That specific sequence of rotations is like the eigenvectors: The
eigenvectors provide a set of instructions for how to rotate the
information in the matrix, and once you apply all of the rota-
tions, the information in the matrix becomes "ordered," with all
of the similar information packed into one eigenvalue. Thus, the
eigenvalue is analogous to a color.

The completed Rubik’s cube is analogous to a procedure called
"diagonalization," which means to put all of the eigenvectors into
a matrix, and all of the eigenvalues into a diagonal matrix. That

diagonal matrix is like the solved Rubik’s cube.

If this analogy is confusing, then hopefully it will make more sense
by the end of the chapter. And if it’s still confusing after this
chapter, then please accept my apologies and I hope the previous
two explanations were sensible.



Finding eigenvalues

Eigenvectors are like secret passages that are hidden inside the
matrix. In order to find those secret passages, we first need to
find the secret keys. Eigenvalues are those keys. Thus, eigende-
composition requires first finding the eigenvalues, and then using
those eigenvalues as "magic keys" to unlock the eigenvectors.

The way to discover the eigenvalues of a matrix is to re-write
Equation 15.1 so that we have some expression equal to the zeros

vector.
Av—-)Av=0 (15.2)

Notice that both terms of the left-hand side of the equation con-
tain vector v, which means we can factor out that vector. In
order to make this a valid operation, we need to insert an identity

matrix before the vector.
Av - )Iv=0 (15.3)
(A—M)v=0 (15.4)

Equation 15.4 is important. It means that a matrix shifted by A
times a vector v gives us the zeros vector. Where have you seen
something like this before? Yes, you saw it in section 8.6 (page
214): this is the definition of the null space of a matrix.

Of course, we could set v = 0 to make Equation 15.4 true for any
matrix and any A. But this is a trivial solution, and we do not
consider it. Thus, the eigenvalue equation tells us that (A —AI)—
the matrix shifted by A—has a non-trivial null space.

Thus, we’ve discovered that when shifting a matrix by an eigen-
value, the eigenvector is in its null space. That becomes the mech-
anism for finding the eigenvector, but it’s all very theoretical at
this point—we still don’t know how to find !

The key here is to remember what we know about a matrix with

a non-trivial null space, in particular, about its rank: We know
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that any square matrix with a non-trivial null space is reduced
rank. And we also know that a reduced-rank matrix has a deter-
minant of zero. And this leads to the mechanism for finding the

eigenvalues of a matrix.

Finding eigenvalues
|A— M| =0 (15.5)

In section 11.3 you learned that the determinant of a matrix is
computed by solving the characteristic polynomial. And you saw
examples of how a known determinant can allow us to solve for
some unknown variable inside the matrix. That’s exactly the situ-
ation we have here: We have a matrix with one missing parameter
(M) and we know that its determinant is zero. And that’s how you
find the eigenvalues of a matrix. Let’s work through some exam-

ples.

Eigenvalues of a 2x2 matrix For a 2x2 matrix, the characteristic
polynomial is a quadratic equation. Let’s start with a lettered

example.

=0

(a—A)(d—=A)—bc=0

A —(a+d)\+ (ad — bc) =0 (15.6)

The characteristic polynomial of a 2 x 2 matrix is a 2"¢ degree
algebraic equation, meaning there are two A’s that satisfy the
equation (they might be complex). The solutions can be found
using the quadratic formula, which is one of those things that
people try but fail to memorize in high-school math class.

_ —bx Vb —dac

A 2a

(15.7)



WARNING. a, b, and ¢ in Equation 15.7 are not the same as a,
b, and ¢ in Equation 15.6; the former are polynomial coefficients
whereas the latter are matrix elements. Let me rewrite these two

equations using distinct variables.

aX? — A+ =0 (15.8)
a=1
§=—(a+d)
v =ad — bc

S sz — 4 (15.9)

(a+d)++/(a+d)? —4(ad — be)
2

A= (15.10)

If you're lucky, then your teacher or linear algebra textbook au-
thor designed matrices with entries that can be factored into the
form (A\; — A)(A2 — A) = 0. Otherwise, you'll have to try again
to memorize the quadratic formula, or at least keep it handy for

quick reference.

Let’s solve a few numerical examples.

o

1-N1-A)—-4=0

1-A 2

=0 15.11
2 1—)\| (1511

A2 —20—3=0
A=3)A+1)=0
=>)\1:3, Ay = —1

You should always check to see whether the characteristic poly-
nomial can be factored before applying the quadratic formula. In

the next example, you won’t be so lucky.

15.2 FINDING EIGENVALUES
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1 2 1—A 2 0
2 3 23—\
1-NB-\)—4=0
M—4r-1=0
A74i¢%
2
A=2+5
Practice problems Find the eigenvalues of the following matrices.
—4 2 0 3 3 0 2 5
TR RS R B B
Answers
a) 4,—4 b) +/15 c) 3,5 d) -3,8

There is a small short-cut you can take for finding eigenvalues of
a 2x2 matrix. It comes from careful inspection of Equation 15.6.
In particular the A! coefficient is the trace of the matrix and the
A0 coefficient is the determinant of the matrix. Hence, we can
rewrite Equation 15.6 as follows:

M —tr(A)AN+|A|=0 (15.12)

You still need to solve the equation for A, so this admittedly isn’t
such a brilliant short-cut. But it will get to you the characteristic
polynomial slightly faster.

Be mindful that this trick works only for 2x 2 matrices; don’t try

to apply it to any larger matrices.

Practice problems Use the trace-determinant trick to find the eigenvalues of the following
matrices.

-4 1 -2 2 6 —6 6 3
2) [ 1 3] k) [—3 2] °) [0 —3} ) [3 1.5}
Answers
a) (—1++/53)/2 b) £v2i c) 6,-3 d) 0,75

=




Eigenvalues of a 3x3 matrix The algebra gets more complicated,
but the principle is the same: Shift the matrix by —\ and solve
for A = 0. The characteristic polynomial produces a third-order
equation, so you will have three eigenvalues as roots of the equa-

tion. Here is an example.

9 0 -8 9—-2A 0 -8
15 3 -15 = 15 3-X —-15|=0
0 0 1 0 0 1—-A

O—-NB-M\)1-A)=0
AM=9 d=3 Ag=1

That example was easy because the characteristic polynomial was
already factored due to the zeros in the matrix. It’s not always

so simple.
—2 2 -3 —2—=A 2 -3
—4 1 —6 = —4 1-\ —61]=0
-1 -2 0 -1 -2 0-=A
(2= N1 =XN(-A)+12—-24—-3(1 —X) =8\ +12(2+)X) =0
“N A +BA+9=0
B=XN1-XNB-X)=0

The three X’s are 3, 1, and -3.

Practice problems Find the eigenvalues of the following matrices.
3 00 3 -2 -2 3
a) [-2 2 1 b) | 2 -2 -2 c) |-2
1 0 1 —2 3 3 —4
Answers
a) 1,2,3 b) 0, 1,3 c) 4,3,3

M columns, M As It is no coincidence that the 2 x 2 matrices
had 2 eigenvalues and the 3x3 matrices had 3 eigenvalues. Indeed,
the Fundamental Theorem of Algebra states that any m-degree

15.2 FINDING EIGENVALUES
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Remember that
the trivial zeros
vector is not con-

sidered a solution.

polynomial has m solutions. And because an MxM matrix has an
M*™ order characteristic polynomial, it will have M roots, or M
eigenvalues. Hence, an M x M matrix has M eigenvalues (some of
those eigenvalues may be repeated, complex numbers, or zeros).

You can already see from the examples above that eigen-
values have no intrinsic sorting. We can come up with
sensible sorting, for example, ordering eigenvalues ac-
cording to their position on the number line or mag-
nitude (distance from zero), or by a property of their

Reflection

corresponding eigenvectors. Sorted eigenvalues can facil-
itate data analyses, but eigenvalues are an intrinsically

L unsorted set. J

Finding eigenvectors

The eigenvectors of a matrix reveal important "directions" in that
matrix. You can think of those directions as being invariant to
rotations, like in the illustration in Figure 15.3. The eigenvectors
are encrypted inside the matrix, and each eigenvalue is the de-
cryption key for each eigenvector. Once you have the key, slot it
into the matrix, turn it, and the eigenvector will be revealed.

In particular, once you’'ve identified the eigenvalues, shift the ma-
trix by each —)\; and find a vector v; in the null space of that
shifted matrix. This is the eigenvector associated with eigenvalue
Ai. This can be written down in two alternative ways; both are

presented below to make sure you get the idea.

Finding eigenvectors

v; € N(A — \I) (15.13)

(A — /\iI)Vz’ =0 (15.14)



Let’s work through a practice problem. I’ll use the matrix pre-
sented on page 423. As a quick reminder, that matrix and its

eigenvalues are:

1 2
= A =3 A=-1
AR

Before looking at the numbers below, I encourage you to work
through this on your own: Shift the matrix by each A and find a

vector in its null space.

Here is my solution for Aj:

S e B i

Now let’s repeat for the other eigenvalue.
1—-1 2 12 2 2 20 |-1] |0
2 1--1] |2 2 2 2| | 1] |0

That gives us our eigendecomposition for this matrix:

T
[1 2] M=3, vi=[1 1] 15.15)

2 1 Ay = —1, V2:|:—]_ l]T

I wonder whether you got the same answers that I wrote above.
The eigenvalues are unique—there are no other possible solutions
to the characteristic polynomial. But are the eigenvectors unique?
Are the eigenvectors I printed above the only possible solutions?
Take a moment to test the following possible eigenvectors to see
whether they are also in the null space of the shifted matrix.

? —1] [2 T
Vi = ) )
—1| |2 T

> [ 1] [ 13] [-a
Vo = ’ )
—1 —13 a

~
—_

I believe you see where this is going: There is an infinite number
of equally good solutions, and they are all connected by being

I know, it looks
weird to write ——
instead of +. If you
don’t like it, then
feel free to write on
the page or screen.

15.3 FINDING EIGENVECTORS
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Figure 15.4: The
"preferred" eigen-
vector is the unit-
length basis vec-
tor for the null
space of the ma-
trix shifted by its

scaled versions of each other. Thus, the true interpretation
of an eigenvector is a basis vector for a 1D subspace.
Therefore, we could re-imagine solution 15.15 as

o

Given that we have an infinite number of equally accurate eigen-

M=3 vi=all 1]T, acR

" (15.16)
Ao = —1, V2=ﬁ[—1 1] , BER

vectors for each eigenvalue, how can we pick just one? For a
variety of practical reasons (which you will learn about later), the
best eigenvector to pick is the one that has a unit norm. Thus,
out of the infinity of possible eigenvectors, we generally prefer

eigenvalue. ) ]
the one such that ||v|| = 1 (Figure 15.4). That’s what numerical
processing software programs like MATLAB and Python will do.
This leads to our final re-expression of solution 15.15:
A =3 — !
1 =9 Vi = ﬁ 1
1 2 L
15.17
[2 1] r ( )
M= 1, va=2 |
2 — 4 Vo = ﬁ 1
That said, when solving problems by hand, it’s usually easier
to have eigenvectors with integer elements, rather than having
to worry about all the fractions and square roots that arise in
CZ> normalization.
&
§ Practice problems Find the eigenvectors of the following matrices.
= _
5 a) {3 b) [3 2}
(@) 4 6 1 0
=
a
% Answers Vectors are not normalized for computational ease.
= 1 1 1 2
M a) /\1:2,v1:|:_1:|, )\2:7,V2:|:4:| b) /\1:1,v1:[1}, A2:2,V2:|:1:|

I’d like to show another example of eigendecomposition of a 3x3
matrix. You’ll see that the concept is the same, but the arith-
metic quickly gets challenging. It’s important to work through
enough examples that you understand the concept, and then you
let computers do the hard work for you.




Again, the concept is that we find the 3 eigenvalues of the 3 x 3
matrix by shifting by —A\, setting the determinant to zero, and
solving for A. Then we shift the matrix by each solved A and
find a vector in the null space of that shifted matrix. Easy peasy,
right? Let’s see...

1
4
3

w W N
S N W
W
w
|
>~
\]
Il
(e}

(1=X)B=N(6—-X)+42+36—-9(3—-X) —8(6—X) —21(1—)\) =0
A4 10A% —27TA 4+ 18+ 42+ 33 — 27+ 9\ — 48 48X — 21 + 21X =0
A 10A%2 +11A =0
“AA2—10A—=11)=0
“AA+1)(A=11) =0

Our three eigenvalues are 0, -1, and 11. Notice that we got a A =
0, and the matrix is reduced-rank (the third column is the sum of
the first two). That’s not a coincidence, but a deeper discussion

of the interpretation of zero-valued eigenvalues will come later.

Now we can solve for the three eigenvectors, which are the vectors
just to the left of the equals sign (non-normalized).

1-0 2 3 12 3] [ 1] o] .
Mo 4 3-0 7 | = |43 7] 1]=]o0 S
3 3 6-0 3 3 6| |-1| o S
1—-1 2 3 2 2 3] [ 1 0 S
Ao 4 3-1 7 = |4 4 7| |-1| =10 5
3 3 6-1 33 71 0ol o A
L - L R R L <
7 Mo You can appreciate 2
1—11 2 3 ~10 2 3] [19 0 A app
why linear algebra
A3 4 3—-11 7 = 4 -8 7| (41 =10 was mostly a the-
3 3 6—11 3 3 -5 36 0 oretical branch of

mathematics before
computers came to
the rescue.
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A is the capital
version of \. Be
careful not to con-
fuse the Greek

A with the Ro-
man A. We don’t
want to start

any new Greek-
Roman conflicts.

Diagonalization via eigendecomposition

It is time to take a step back and look at the big picture. An MxM
matrix contains M eigenvalues and M associated eigenvectors.
The set of eigenvalue/vector pairs produces a set of similar-looking
equations:

AV1 == >\1V1

Avz = AzV2 (15.18)

Av,, = A\

This is clunky and ugly, and therefore violates an important prin-
ciple in linear algebra: Make equations compact, elegant, and
simple. Fortunately, all of these equations can be simplified by
having each eigenvector be a column in a matrix, and having each

eigenvalue be an element in a diagonal matrix.
AV =VA (15.19)

On first glance, it may seem inconsistent that I wrote Av in Equa-
tion 15.18 but VA in the matrix Equation 15.19. There are two
reasons why it must be VA and cannot be AV. Both reasons can
be appreciated by seeing the right-hand side of Equation 15.19
written out for a 3 x 3 matrix. Before reading the text below the
equation, try to understand why (1) the A’s have to be the diag-
onal elements and (2) why we need to post-multiply by A. In the
eigenvectors below, the first subscript number corresponds to the
eigenvector, and the second subscript number corresponds to the
eigenvector element. For example, vio is the second element of
the first eigenvector.

vy v21 war| (A1 00 A1v11 A2u2r Agvsy

vig w22 w2l [0 A2 O = |Aviz Aovaz  Azvse

vig v23 w3zl [0 0 Ag A1v13 A2vu23  A3vs3
(15.20)

Those two questions are closely related. The reason why the
eigenvalues go in the diagonal of a matrix that post-multiplies



the eigenvectors matrix is that the eigenvalues must scale each
column of the V matrix, not each row (refer to page 151 for the
rule about pre- vs. post-multiplying a diagonal matrix). If A pre-
multiplied V, each element of each eigenvector would be scaled
by a different A.

There is another reason why it’s VA and not AV. If the equa-
tion read AV = AV, then we could multiply both sides by V1,
producing the statement A = A, which is not generally true.

So then why did I write Av for the single equation instead of the
more-consistent vA? For better or worse, Av is the common way
to write it, and that’s the form you will nearly always see.

Diagonalization The elegant Equation 15.19 is not only a prac-
tical short-hand for a set of equations; it provides an important
conceptual insight into one of the core ideas of eigendecomposi-
tion: Finding a set of basis vectors such that the matrix is di-
agonal in that basis space. This can be seen by left-multiplying
both sides of the equation by V~!. This is a valid operation if
we assume that all eigenvectors form an independent set. This
assumption is valid when there are M distinct eigenvalues (more

on this in the next section).
A=VAV™! (15.21)

Thus, matrix A is diagonal in basis V. That’s why eigendecom-
position is also sometimes called diagonalization. To diagonalize
a matrix A means to find some matrix of basis vectors such that

A is a diagonal matrix in that basis space.

Let’s now revisit the Rubik’s cube analogy from the beginning of
this chapter: In Equation 15.21, A is the scrambled Rubik’s cube
with all sides having inter-mixed colors; V is the set of rotations
that you apply to the Rubik’s cube in order to solve the puzzle; A
is the cube in its "ordered" form with each side having exactly one
color; and V™! is the inverse of the rotations, which is how you
would get from the ordered form to the original mixed form.

Figure 15.5 shows what diagonalization looks like for a 5x 5 ma-

15.4 DIAGONALIZATION
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V-1

1

Figure 15.5: Diagonalization of a matrix in pictures.

trix; the gray-scale intensity corresponds to the matrix element

value.

Practice problems Diagonalize the following matrices.

2 6
i

Answers Matrices below are V, A, V1.

a)\/%{

b)'1 0]

3 2] [-2 o] , [-3 2 b)'0450_17—4
2 3|17 0 11]'VvV3| 2 3 1 7/7[0 1]7*[-1 o0

r The previous reflection box mentioned sorting eigenval-
ues. Figure 15.5 shows that the eigenvalues are sorted
ascending along the diagonal. Re-sorting eigenvalues is
fine, but you need to be diligent to apply the same re-

Reflection

sorting to the columns of V, otherwise the eigenvalues

and their associated eigenvectors will be mismatched. _

Code Obtaining eigenvalues and eigenvectors is really easy in
Python and in MATLAB. Annoyingly, the outputs are different
between the programs: Python returns the eigenvalues in a vector
and the eigenvectors in a matrix (note that I create the diagonal A
in a separate line); in contrast, MATLAB outputs the eigenvectors
and the eigenvalues in the diagonal of a matrix, unless you request
only one output, in which case you get the vector of eigenvalues.

Code block 15.1: Python

1 import numpy as np
2 A:np.array([[2,3],[3,2]])
3 L,V =np.linalg.eig(A)




4 L = np.diag (L)

Code block 15.2: MATLAB
1 A=1]23; 32 ];
2 L =ceig(A);
[VvL] = eig(A);

w

Conditions for diagonalization

Not all square matrices are diagonalizable. It might seem circular,
but the definition of a diagonalizable matrix is a matrix that can
be diagonalized, that is, that Equation 15.21 (A = VAV 1) is

true.

Fortunately, if you are interested in applied linear algebra, then
"most" matrices are diagonalizable. "Most" is a difficult word in
math, because there is an infinite number of diagonalizable and
non-diagonalizable matrices. But what I mean is that most of
the square matrices that show up in statistics, machine-learning,
data science, computational simulations, and other applications,
are likely to be diagonalizable. Importantly, all symmetric

matrices are diagonalizable.

But there are matrices for which no matrix V can make that
decomposition true. Here’s an example of a non-diagonalizable

matrix.

1 -1 1 1

A:[_l 1], A = {0,0}, V:[_l _1]

Notice that the matrix is rank-1 and yet has two zero-valued eigen-
values. This means that our diagonal matrix of eigenvalues would
be the zeros matrix, and it is impossible to reconstruct the original

matrix using A = 0.

There is an entire category of matrices that is non-diagonalizable,

15.5 CONDITIONS FOR DIAGONALIZATION
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called nilpotent matrices’. A nilpotent matrix means that for

some matrix power k, A¥ = 0. In other words, keep multiplying
the matrix by itself and eventually you’ll get the zeros matrix;
below is an example of a rank-1 nilpotent matrix with £ = 2. 1
encourage you to take a moment to confirm that AA = 0.

b

All triangular matrices that have zeros on the diagonal are nilpo-
tent, have all zero-valued eigenvalues, and thus cannot be diago-

nalized.

All hope is not lost, however, because the singular value decom-
position is valid on all matrices, even the non-diagonalizable ones.
The two non-diagonalizable example matrices above have singular
values, respectively, of {2,0} and {1,0}.

LA proof for this statement is given in section 15.11.



Distinct vs. repeated eigenvalues

Distinct eigenval-
ues means \; # Aj;

... . . . . distinct eigenvec-
Distinct eigenvalues Many square matrices have M distinct eigen- g

tors means they
values. That’s nice because distinct eigenvalues always lead oy a linearly in-
to distinct eigenvectors. You might already have the intuition | dependent set.
that plugging different \’s into a matrix should reveal different

eigenvectors. But we need to prove that this is the case.

We are going to prove the claim that distinct eigenvalues lead to
distinct eigenvectors by trying to disprove it and failing (a good

strategy in scientific research).
We start with the following assumptions:

1. Matrix A has distinct eigenvalues A\; and Ay (A1 # A2).

2. Their associated eigenvectors vi and vo are linearly depen-
dent, meaning that one can be expressed as a scaled version
of the other. This assumption can be written as follows.

pivi + Bave =0, B1,B2 # 0 (15.22)

Equation 15.22 is the starting point for our proof. We proceed by
multiplying the entire equation by matrix A. And from there we

can replace Av with Av.

B1Av] + B2Avy = AOD
BiA1vi + BaAave =0 (15.23)

Next I will multiply Equation 15.22 by A;, and then subtract
equations 15.23 from 15.22.

B1A1vi + B2A1ve =0
- B1A1v1 + B2A2ve = 0

BaA1ve — BaAove =0

The two terms in the left-hand side of the difference equation both
contain B2vs, so that can be factored out, revealing the final nail

15.6 DISTINCT, REPEATED EIGENVALUES
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in the coffin of our to-be-falsified hypothesis:
()\1 — )\Q)BQVQ =0 (15.24)

Why is this the key equation? It says that we multiply three terms
to obtain the zeros vector, which means at least one of these terms
must be zero. (A1 — A2) cannot equal zero because we began from
the assumption that they are distinct. vo # 0 because we do not

consider zero eigenvectors.

Thus, we are forced to conclude that S5 = 0. This violates the
assumption in Equation 15.22, which proves that the assumption
is invalid, which proves that distinct eigenvalues lead to linearly
independent eigenvectors.

However, when we consider a set with more than two eigenvectors,
it is possible to have a linearly dependent set with one 5 = 0. So
let’s allow B = 0 and plug that into Equation 15.22. This forces
us to conclude that 8 = 0. Thus, the only way to combine
the two vectors to produce the zeros vector is by weighting both
vectors by zero; in other words, there is no nontrivial combination
of the two vectors that produces the zeros vector, which means the
two vectors are linearly independent. If our set contained more
than two eigenvectors, then repeating the above logic (setting
each # = 0) ultimately leads to the conclusion that all Ss must
be zero.

Either way you look at it, the conclusion is that distinct eigenval-
ues lead to linearly independent eigenvectors.

We did not need to impose any assumptions about the field from
which the As are drawn; they can be real or complex-valued, ratio-
nal or irrational, integers or fractions. The only important quality
is that each A is distinct.

Repeated eigenvalues Repeated eigenvalues complicate matters
because they sometimes have distinct eigenvectors and sometimes
not. T’ll start by showing two examples before discussing the
more general principle. Consider the following matrix and its
eigenvalues.



6 —4 6-\ —4
l ]:| L A’:»A2—55A+16=0:s(A—4)2:0

The two solutions are \; = Ay = 4. Plugging 4 into the shifted

matrix yields

It’s clear how to get the first eigenvector, but then how do you get
the second eigenvector? The answer is you don’t—there is only
one eigenvector. MATLAB will return the following.

>> [V,L] = eig([6 -4; 1 2])

V =
0.8944 -0.8944
0.4472 -0.4472
L =
4.0000 0
0 4.0000

The columns of output matrix V are the same subspace, although
one points in the opposite direction. There isn’t anything "wrong"
with the matrix—it has a rank of 2 and a non-zero determinant.
But it has a single eigenvalue that reveals only a single eigenvector.
Let’s see another example of a matrix with repeated eigenvalues.

4 0 4— )X 0
=
0 4 0 4—-A

‘ = M -8\+16=0 = (A-4)?=0

Again, the two solutions are A = 4. Plugging this into the matrix

yields

lo 01 [”11:0 = 7 (15.25)
0 Of |vg

MATLAB normal-
ized the vectors

to be unit-length
vectors: the vector
[1 2] points in the

same direction as

[12]/V5.

15.6 DISTINCT, REPEATED EIGENVALUES
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Now we have an interesting situation: any vector times the zeros
matrix produces the zeros vector. So all vectors are eigenvectors
of this matrix. Which two vectors to select? The standard basis
vectors are a good practical choice, because they are easy to work
with, are orthogonal, and have unit length. Therefore, for the
matrix above, V=1. To be clear: V could be I, or it could
be any other 2 x 2 full-rank matrix. This is a special case of
eigendecomposition of the identity matrix. I just multiplied it by
4 so we’d get the same eigenvalues as in the previous example.

Perhaps that was too extreme an example. Consider the following

matrix.
5 -1 0
-1 5 0 = A=6,4,4 (15.26)
1/3 —1/3 4

This matrix has one distinct eigenvalue and one repeated eigen-
value. We know with certainty that the eigenvector associated
with A\ = 6 will be distinct (I encourage you to confirm that a

good integer-valued choice is [3 -1 1]1); what will happen when

1 0
vi=|1], va=10

we plug 4 into the shifted matrix?

1 -1 0 (%
-1 1 0| |ve| =
1/3 —1/3 0| |vs

o O O
I

Again, we can ask the question whether these are the only two
eigenvectors. I'm not referring to scaled versions of these vectors
such as avg, I mean whether we could pick equally good eigen-
vectors with different directions from the two listed above.

Consider vector vo. Because the third column of the shifted ma-
trix is all zeros, the third element of the eigenvector can be any
number. I could have picked [1 1 1] or [1 1 10]. As long as the
first two elements are the same, the third element can be any-
thing. The pair of eigenvectors I picked is a convenient choice
because they are orthogonal and contains 0’s and 1’s; but these
weren’t the only possible vectors I could have selected.



Now you've seen several examples of the possible outcomes of
repeated eigenvalues: there can be only one eigenvector or distinct
eigenvectors, or an infinity of possible sets of distinct eigenvectors.
Which of these possibilities is the case depends on the numbers

in the matrix.

To understand why this can happen, let’s revisit the proof in the
beginning of this section. We need to modify the first assump-
tion, though: We now assume that the two eigenvalues are the
same, thus Ay = Ay. Most of the rest of the proof continues as
already written above. Below is Equation 15.24, re-written for

convenience.

(A1 —A2)fava = 0

Again, we have the product of three terms producing the zeros
vector. What do we know now? We still don’t accept the zeros
vector as an eigenvector, so vy # 0. However, we also know that
the first term is equal to zero. Thus, the equation really is

0B2vy = 0

What can we now conclude? Not much. We have the zeros vector
without the trivial solution of a zeros eigenvector, so assumption
2 can be maintained (any vector set that includes the zeros vector
is linearly dependent). We could now drop assumption 2 and
say that the set of eigenvectors could dependent or independent,

depending on the entries in the matrix.

Geometric interpretation of repeated eigenvalues Here’s the
situation: Each distinct eigenvalue has its own distinct eigenvec-
tor, and that eigenvector is a basis vector for a 1D subspace (Fig-
ure 15.6).

Repeated eigenvalues can lead to one of two situations. First,
both eigenvectors can lie on the same 1D subspace. In that case,
the eigenspace won’t span the entire ambient space RM; it will
be a smaller-dimensional subspace. The second possibility is that
there are two distinct eigenvectors associated with one eigenvalue.
In this case, there isn’t a unique eigenvector; instead, there is a
unique eigenplane and the two eigenvectors are basis vectors for

15.6 DISTINCT, REPEATED EIGENVALUES
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Distinct A: Repeated A:
Distinct v Repeated v Eigenplane

/
S

Figure 15.6: The geometric possibilities of eigenvectors with
repeated eigenvalues, shown in R? for convenient visualization.

that eigenplane. Any two independent vectors in the plane can
be used as a basis. It is convenient to define those vectors to be

orthogonal, and this is what computer programs will return.

Do you really need to worry about repeated eigenvalues
for applications of eigendecomposition? Repeated eigen-
values may seem like some weird quirk of abstract math-
ematics, but real datasets can have eigenvalues that are
exactly repeated or statistically indistinguishable. In my

Reflection

own research on multivariate neural time series analysis,
I find nearly identical eigenvalues to be infrequent, but

common enough that I keep an eye out for them.

Complex eigenvalues or eigenvectors

If 4ac > b? in Equation 15.6, then you end up with the square root
of a negative number, which means the eigenvalues will be com-
plex numbers. And complex eigenvalues lead to complex eigen-

vectors.

Don’t be afraid of complex numbers or complex solutions; they are
perfectly natural and can arise even from matrices that contain
all real values. The typical example of complex eigenvalues is the



identity matrix with one row-swap and a minus sign:

= oa=" v Mt
1 0 0 —2 -1 1

o
|
—_
-
o

1 0 O { 0 0 0 01
0 0 1 = A=|0 —i , V=[-1 -1 0
0 -1 0 0 0 1 —1 t 0

Complex solutions can also arise from "normal” matrices with real-
valued entries. Consider the following matrix, which I generated
in MATLAB from random integers (that is, I did not carefully
hand-select this matrix or look it up in a secret online website for
math teachers who want to torment their students). (Numbers
are rounded to nearest tenth.)

H 145] A=

0 1.5-9.2¢ dA+.57 1.5

1.5+9.2i 0 } B

85 85 }

It is no coincidence that the two solutions is a pair of complex con-
jugates. For a 2 x 2 matrix, complex conjugate pair solutions are
immediately obvious from Equation 15.7 (page 422): A complex
number can only come from the square-root in the numerator,
which is preceded by a =+ sign. Thus, the two solutions will have
the same real part and flipped-sign imaginary part.

This generalizes to larger matrices: A real-valued matrix with
complex eigenvalues has solutions that come in pairs: X and .
Furthermore, their associated eigenvectors also come in conjugate
pairs v and v. This can be shown by inspecting the complex

conjugate of the fundamental eigenvalue equation.

Av = \v
Av = )\v
Av = )\v (15.28)

Equation 15.28 follows from the previous line because the matrix
is real-valued, thus A = A.

15.7 COMPLEX SOLUTIONS
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Complex-valued solutions in eigendecomposition can be difficult
to work with in applications with real datasets, but there is noth-
ing in principle weird or strange about them.

Practice problems Identify the eigenvalues from the following matrices (consult page 423
for the quadratic formula).

2 -3 3.7 a b
o 22 ] 2[5
Answers
a) A\=2+i/3 b) A =347 c) A=a=ib

Eigendecomposition of a symmetric ma-

trix

By this point in the book, you know that I'm a HUGE fan of
symmetric matrices. And I'm not the only one—everyone who
works with matrices has a special place in their heart for the
elation that comes with symmetry across the diagonal. In this
section, you are going to learn two additional properties that make
symmetric matrices really great to work with.

Eigendecomposition of a symmetric matrix has two notable fea-
tures: orthogonal eigenvectors (assuming distinct eigenvalues; for
repeated eigenvalues the eigenvectors can be crafted to be or-
thogonal, as discussed earlier), and real-valued (as opposed to
complex) solutions.

Orthogonal eigenvectors If the matrix is symmetric, then all
of its eigenvectors are pairwise orthogonal. There is an example
showing this property earlier in this chapter, and I encourage you
to find the symmetric matrix and confirm that its eigenvectors

are orthogonal.

But of course we need to prove this rigorously for all symmetric



matrices. The goal is to show that the dot product between any
pair of eigenvectors is zero. We start from two assumptions: (1)
matrix A is symmetric (A = AT) and (2) A\; and A are distinct
eigenvalues of A (thus A; # A2). vi and vg are their correspond-
ing eigenvectors. I'm going to write a series of equalities; make

sure you can follow each step from left to right.

)\1V1TV2 = (AVl)TVQ = vlTATVQ = VlT)\QVQ = )\QV;FVQ (15.29)

The middle steps are actually just way-points; we care about the
equality between the first and last terms. I'll write them below,

and then set the equation to zero.
MVIve = Aavivy (15.30)
AMVive — Aavive =0 (15.31)

Notice that both terms contain the dot product V?VQ, which can

be factored out, bringing us to the crux of the proof:

(AL — A2)vive =0 (15.32)

Equation 15.32 says that two quantities multiply to produce 0,
which means that one or both of those quantities must be zero.
(A1—A2) cannot equal zero because we began from the assumption
that they are distinct. Therefore, v{ vy must be zero, which means
that vi L vo, i.e., the two eigenvectors are orthogonal. Note that
this proof is valid only for symmetric matrices, when AT = A.
Otherwise, you'll get stuck in the middle of line 15.29—it won’t be
possible to set the first and last expressions equal to each other.

Orthogonal eigenvectors are a big deal. It means that the dot
product between any two non-identical columns will be zero:
2 . . .
v; ifi=
Iy, = Vil J (15.33)
0 ifi#£j
When putting all of those eigenvectors as columns into a matrix
V, then VIV is a diagonal matrix.
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Recall from Chap-
ter 8 that the su-
perscript ¥ indi-
cates the Hermi-
tian transpose,
which means
transpose and flip
the sign of the
imaginary parts.

But wait, there’s more! Remember that eigenvectors are impor-
tant because of their direction, not their magnitude. And remem-
ber that I wrote that it’s convenient to have unit-length eigenvec-
tors. So let’s rewrite 15.33 assuming unit-norm eigenvectors:

1 ifi=j

viv; = J (15.34)

0 ifi#j
I hope this looks familiar. This is also the definition of an orthog-
onal matrix. And that means:

viv=1l (15.35)

vi=v-! (15.36)

Thus, the eigenvectors of a symmetric matrix form an orthogo-
nal matrix. This in an important property with implications for
statistics, multivariate signal processing, data compression, and
other applications. You’ll see several examples of this property
later in this book, for example in Chapter 19.

Real solutions Now let’s examine the property that real-valued

symmetric matrices always have real-valued eigenvalues (and there-
fore also real-valued eigenvectors). There are 6 steps to this proof.

Before reading the text below, try to understand the proof only

from the equations.

1) Av=)\v

2) (Av) = ()"
3) vIA = \HyH
4) viAv = \vily
5) Aavily = \lyily
6) A=\

Could you understand it just from the equations? Here’s my
explanation, just in case you want to confirm your own under-

standing. Step 1 is the basic eigenvalue equation. Step 2 says to



take the Hermitian of both sides of the equation, which is then
implemented in Step 3. Because A is symmetric and comprises
real numbers, A" = AT = A. In Step 4, both sides of the equa-
tion are right-multiplied by the eigenvector v. In Step 5, Av is

Hy is the magnitude squared of

turned into its equivalent Av. v
vector v and can simply be divided away (remember that v # 0).
This brings us to the conclusion that A = A, A number is equal
to its complex conjugate (a + ib = a — ib) only when b = 0, i.e.,
it is a real-valued number. This concludes the proof that A must
have an imaginary part equal to 0, which means it is real-valued.

If the matrix is not symmetric, we cannot proceed to Step 3.

Final note for this section: Some people use different letters to
indicate the eigendecomposition of a symmetric matrix. In other

texts or lectures you might see the following options.
A =PDP!

A =UDU!

Practice problems Each problem gives a matrix and its unscaled eigenvectors. Fill in the
missing eigenvector element. Then find the eigenvalues using the trace and determinant. Finally,
compute VAVT to confirm that it reproduces the original matrix.

2 [ 0 Y BN [ M

Answers
a) *x=1 b) * = —4 c) x=1
A= 3,2 A = 20,60 A=0,6

5

Eigenvalues of singular matrices

Every singular matrix has at least one zero-valued eigenvalue.
And every full-rank matrix has no zero-valued eigenvalues. Before
discussing why singular matrices have zero-valued eigenvalues, I
want to show a few examples to illustrate that eigenvectors asso-
ciated with zero-valued eigenvalues are not unusual (for example,

15.9 EIGENVALUES SINGULAR MATRICES
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they are not zeros, complex-valued, necessarily irrational, or have

any bizarre properties; they’re just regular eigenvectors).

1-A 2

1 2—-A

1 2
A= = [A=-)X|]=0 =
1 2

‘:0

1-N2-N—-2=0 = XN-3\=0 =
)\()\—3):0 = )\1:0,>\2:3

Now we can substitute in each A to find the two eigenvectors.

S P N
S | N

Lest you think I carefully selected that matrix to give a zero eigen-
value, the next example shows that even in the general case of a
matrix where one column is a multiple of another column (thus,

a rank-1 matrix), one of the eigenvalues will be zero.

a— A\ oa

A=|"7" = A=A =0
b ob—\

b ob

|:O

(a=N)(ob=N)—cab=0 = MN—(a+ob)A=0 =
MA—(a+0db)=0 = M\ =0 \a=a+ob

You can see from this example that the off-diagonal product (—(oax
b)) will cancel with the "left" terms from the diagonal product
(a x ob); it doesn’t matter what values you assign to a, b, and
0. (The same effect happens if you construct one row to be a
multiple of the other, which you should try on your own.) The
canceling of the constant term means all terms on the left-hand
side of the characteristic polynomial contain A, which means 0
will always be a solution.

At this point, you might be jumping to the conclusion that the
rank of a matrix corresponds to the number of non-zero eigenval-

ues. Although this is a good thought, it’s incorrect (it is, however,



true for singular values, which you will learn in the next chapter).
Let me make that more clear: The number of non-zero eigenval-
ues equals the rank for some matrices, but this is not generally
true for all matrices. You’ve already seen an example of this in
the section about conditions for diagonalizability. As an addi-
tional demonstration, create matrix A above using a=-4, b=2,
0=2. You will find that that matrix has both eigenvalues equal
to zero, and yet is a rank-1 matrix. (This is another example of a
nilpotent matrix. You can confirm that the suggested matrix has
AA=0)

Let’s see how this would work with a 3 x 3 rank-2 matrix (I en-
courage you to work through this problem on your own before

inspecting the equations below).

a d oa a— A\ d oa
A=1|b e ob = b e— A\ ob | =0
c f oc c f oc— A

(a—X)(e = X)(oc— X) + dobe + gabf — ogac(e — \) — db(oc — X) —abf(a—A) =0

X+ (a+ e+ 0c)\? — (ae + aoc+ eoc — oac — db — abf)A =0

There is a bit of algebra in that final step, but you can see that
A appears in all terms, which means A = 0 is one of the three

solutions.

I hope you find those examples compelling. There are several
explanations for why singular matrices have at least one zero-
valued eigenvalue. One is that the determinant of a matrix equals
the product of the eigenvalues, and the determinant of a singular

matrix is 0, so at least one eigenvalue must be zero.

But I think it’s more insightful to reconsider Equation 15.4, rewrit-

ten below for convenience.
(A—-X)v=0 (15.4)

We can interpret this equation in two ways. First let’s assume
that A = 0. Then we’re not actually shifting the matrix and the
equation can be rewritten as Av = 0. Because we do not consider
the zeros vector to be an eigenvector, matrix A already has a

non-trivial vector in its null space, hence it is singular.
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Another way to interpret Equation 15.4 is to work the other way
around: start from the assumption that A is singular, hence there
is a non-trivial solution to Av = 0. The way to reconcile that
statement with Equation 15.4 is to assume that at least one \ =
0.

Practice problems Compute the missing eigenvalues of these matrices (hint: remember

2 -2 =2
3 -3 —=2|,A=-2,7,
2 =2 =X

Answers Printed below are all eigenvalues.

a) A=1,0 b) A=0,11 c) A=-2,-1,0

that the sum of eigenvalues equals the trace of the matrix).

a) |1 9a=1,2 by |3 4 a=2.2 o)
1 0 6 8

Eigenlayers of a matrix

This section will tie together eigendecomposition with the "layer
perspective" of matrix multiplication. It will also set you up to
understand the "spectral theory of matrices" and applications such
as data compression and PCA. We're going to discover how to
reconstruct a matrix one "layer" at a time, where each layer comes

from an eigenvector.

Consider computing the outer product of one eigenvector with
itself. That will produce an M x M rank-1 matrix. The norm of
this matrix will also be 1, because it is formed from a unit-norm
vector. An M x M matrix has M eigenvectors, and thus, M outer

product matrices can be formed from the set of eigenvectors.

What would happen if we sum together all of those outer product
matrices? Well, nothing terribly important. It’s a valid operation,
but that sum would not equal the original matrix A. Why not?
It’s because eigenvectors have no intrinsic length; they need the
eigenvalues to scale them.




Therefore, we’ll multiply each eigenvector outer product matrix
by its corresponding eigenvalue. And now we have an interest-
ing situation, because this sum will exactly reproduce the original
matrix. In other words, we can reconstruct the matrix one "eigen-

layer" at a time.
M
A=> viNv/ (15.37)
i=1

Expanding out the summation sign leads to the insight that we

are re-expressing diagonalization:
A =VAVT (15.38)

But actually, this is not exactly Equation 15.21 (page 431). Previ-
ously we right-multiplied by V! but here we’re right-multiplying
by VT. Can you guess what that means? It means that recon-
structing a matrix using Equation 15.37 is valid only for symmet-

ric matrices, because V-1 = VT,

But don’t worry, reconstructing a matrix via eigenlayers is still
valid for non-symmetric matrices. We just need a different for-
mulation. In fact, now the vector on the right is the i*" row of
V~1. This comes from the definition of the outer product, as the
multiplication between a column vector and a row vector. Some

additional notation should minimize confusion.

w=vT (15.39)
M

A= vinw] (15.40)
=1

Now we have the outer product between the eigenvector and the
corresponding row of the inverse of the eigenvector matrix trans-
posed, which here is printed as the i** column of matrix W. I
hope it is clear why Equation 15.37 is a simplification of Equation
15.40: V'T =V for an orthogonal matrix.

It is important to appreciate that Equation 15.37 is valid only
when the eigenvectors are unit-normalized. The eigenvectors need
to be unit-normalized so that they provide only direction with no
magnitude, allowing the magnitude to be specified by the eigen-
value. That equation could be generalized to non-unit vectors by

dividing by the magnitudes of the vectors.

What happens here
for \; =07

Eigenvector nor-
malization is also
relevant for the
SVD.
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On the other hand, Equation 15.40 does not require unit-normalized

eigenvectors. Can you think about why that’s the case? It’s be-

cause Equation 15.40 includes the matrix inverse. Thus, VV 1 =

I regardless of the magnitude of the individual eigenvectors, whereas

VVT =1 only when each eigenvector is unit-normalized.

Let’s see an example with a 2 x 2 matrix.

A 1 1 -1
1=—4 Vvi=-—F
92 3 vzl
A = L
3 2 L1
)\2:5, Vo = —/=
V2 1
—5 5
Ai =viNvi =
(25 25
Ag = vodovi =
SR P 2.5]
-5 5] [25 25 2 3
e [.5 —5) [2.5 2.5] l3 2]

It is easy to confirm that the rank of A is 2 and the ranks of A4

and Ao are both 1.



Practice problems The matrices below are eigenvectors and eigenvalues. Reconstruct the
matrix from which these were extracted by summing over eigenlayers. It’s safer to apply Equation

15.40 if you don’t know for sure that the matrix is symmetric.

2 3] [1 o 1

a) [—4 2} ’ [0 3} b) [0
Answers

25 .75 2

2) [1 1.5} b) [0

1l 3

— =

[1.5

.25

S =N

of (1 0 O
0f,{0 2 O
1] |0 0 3
1 0
1.5 0
-1 3

k < r eigenvalues?

Reflection

Matrix powers and inverse

Who cares about eigenlayers? It may seem circuitous to
deconstruct a matrix only to reconstruct it again. But
consider this: do you need to sum up all of the layers?
What if you would sum only the layers with the largest
That will actually be a low-rank
approximation of the original matrix. Or maybe this is
a data matrix and you identity certain eigenvectors that
reflect noise; you can then reconstruct the data without
the "noise layers." More on this in the next few chapters!

One of the reasons that eigendecomposition has many applications

is that diagonal matrices are really easy to compute with. You’ve

already seen examples of this with matrix multiplication and the

inverse. In this section I'm going to show you two applications

of eigendecomposition that follow from the special properties of

diagonal matrices.

Matrix powers Compute A2 = AA for the following two matri-

ces:

A:Ol,
00

=l

15.11 MATRIX POWERS AND INVERSE
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For simple matrices like this, a few minutes of pen-and-paper work
will easily reveal the answer. What if the matrix were larger, and
what if you had to compute A> = AAAAA?

Raising matrices to powers can be computationally intensive. But
watch what happens when we raise the diagonalized version of a
matrix to a higher power.

A? = (VDV )2 =vDV-lvDV~! = vD*Vv~!  (1541)

The matrix of eigenvectors cancels with its inverse in the middle
of that expression (V™!V =1). And you will remember from the
chapter on matrix multiplication that multiplying two diagonal
matrices simply involves multiplying their diagonal elements and
ignoring all the off-diagonal zeros. Let’s see how this looks for
A3,

A? = (VDV} =vDVl'VvDV-lVvDV~! = vD3v~!
(15.42)

You see where this is going: The general form for matrix powers

is:

A" = (VDV Hr = vD"v~! (15.43)

Therefore, once you’ve completed the eigendecomposition, taking
matrices to higher powers requires very few FLOPs (floating point
operations, the count of basic computer arithmetic operations).
Of course, if you will square a matrix only once, then it might be
more hassle than advantage to diagonalize it. But Equation 15.43
becomes very efficient if you need to raise the matrix to powers
multiple times.

While we’re on the subject of matrix powers and eigendecomposi-
tion, we can take a small tangent to show that squaring a matrix
squares its eigenvalues without changing the eigenvectors. Here’s
the proof (assume v is an eigenvector of A and ) is the associated
eigenvalue):

A%v = AAv = A)\v = \(Av) = \%v (15.44)



This generalizes to any power. Extending this proof to A™ involves
additional replacements of Av with Av.

Matrix powers and eigenvalues

For eigenvalue/vector A\v of matrix A,

A"v = \"v (15.45)
This proof also shows why nilpotent matrices have zero-valued

eigenvalues: If there is some k for which A¥ = 0, then 0 = Afv =
Aev, which means that A = 0 if v # 0.

In case you were
curious: A° =1

Practice problems Compute A? for the following matrices. The eigenvalues are provided

but you’ll have to compute the eigenvectors.

4
1 4 -2
a) [ 0}7,\:1,—1 b) [ },,\—3,6 o) |-2
6 -1 -1 5
-2
1,2,3
Answers
1 0 90 —126 16
a) [ } b) [ ] c) |-38
6 —1 —63 153
—38

0 1

1 0], =
0 1

0 19

1 —12

0 —11

5

Matrix inverse The other application in this section follows the
same logic: Diagonalize a matrix, apply some operation to the
diagonal elements of A, then optionally reassemble the three ma-

trices into one.

Remember from Chapter 12 that the inverse of a diagonal matrix
is the diagonal elements individually inverted. That’s the key

insight to inverse-via-eigendecomposition.

A7l =(vDv Hl = (v H~ D lv-l = vD V! (15.46)

Of course, this procedure is valid only for matrices with all non-
zero diagonal elements, which unsurprisingly excludes all singular

matrices.

15.11 MATRIX POWERS AND INVERSE
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You might wonder whether this is really a short-cut, considering
that V still needs to be inverted. There are two computational
advantages of Equation 15.46. One advantage is obviously from
inverting a symmetric matrix (with an orthogonal eigenvectors
matrix), where V™! = VT, A second advantage is that because
the eigenvectors are normalized, V has a low condition number
and is therefore more numerically stable. Thus, the V of a non-
symmetric matrix might be easier to invert than A. (Condition
number is a measure of the "spread" of a matrix that characterizes
the stability of a matrix to minor perturbations or noise; you’ll
learn more about this quantity in the next chapter. The point
is that even if A is theoretically invertible, the inverse of V may

have a more accurate inverse.)

Equation 15.46 also has a theoretical advantage, because it helps
build intuition for the algorithm to compute the pseudoinverse via
the singular value decomposition.

Practice problems Each exercise provides a matrix, its eigenvectors, and eigenvalues.

Compute A~ by VD 'V ~!. Then confirm that AA™* =1.

(1
13

Answers Matrices are A™!

4
.3

)

2
—.1

’ 2 ! 7A:27_5 b) ¥ 2 ) 2 ! 7>\:271
1 -3 101 1
b) 0 1
-5 15

~




Generalized eigendecomposition

One quick glance will reveal that the following two equations are

equivalent.
Av = \v
Av = A\lIv

What if we replace I with another (suitably sized) matrix?

Generalized eigenvalue equation

Av = \Bv (15.47)
AV =BVA (15.48)
Generalized eigendecomposition is also called simultaneous diago-

nalization of two matrices and leads to several equations that are

not immediately easy to interpret, including:

VIBTlAV =A (15.49)
A =BVAV! (15.50)
B=V !AlAV (15.51)

Perhaps a better way to interpret generalized eigendecomposition
is to think about "regular" eigendecomposition on a matrix prod-

uct involving an inverse.
Interpretation of generalized eigendecomposition
(B™'A)v = \v (15.52)
Cv=J\v, C=B'A
This interpretation is valid only when B is invertible. In practice,

even when B is invertible, inverting large or high-conditioned ma-
trices can lead to numerical inaccuracies and therefore should be

15.12 GENERALIZED EIGENDECOMPOSITION
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avoided. Computer programs will perform the eigendecomposi-
tion without actually inverting matrices. Nonetheless, Equation
15.52 helps build intuition.

In section 6.7 I showed how the product of two symmetric matri-
ces is generally not symmetric. That is important because even if
matrices A and B are both symmetric, B"!A will generally not
be symmetric. That means that the special properties of eigen-
decomposition for symmetric matrices (orthogonal eigenvectors,
real-valued eigenvalues) do not apply to generalized eigendecom-

position.

Code Generalized eigendecomposition is easy to implement. Just
be mindful of the order of function inputs: Following Equation
15.52, A must be the first input and B must be the second in-
put. Numpy cannot perform generalized eigendecomposition (at

the time of this writing), but scipy’s implementation can.

Code block 15.3: Python

1 import numpy as np
2 from scipy.linalg import eig
3 n=3
4 A = np.random.randn(n,n)
5 B = np.random.randn(n,n)
6 evals,evecs = eig(A,B)
Code block 15.4: MATLAB

1 n= 3;
2 A = randn(n);
3 B = randn(n);
4 [evecs,evals] = eig(A,B);

[ You can also think of B'A as the matrix version of a |
g ratio of A to B. This interpretation makes generalized
| eigendecomposition a computational workhorse for sev-
% | eral multivariate data science and machine-learning ap-
& plications, including linear discriminant analysis, source

| separation, and classifiers. |




Exercises

1. Find the eigenvalues of the following matrices.

0 3
4 b
2 [1 s )
d)25 e)—41
6 3 103
2 5 —1 (0 34 V23
g) o 4 3 h) [0 b ™
00 1 00 ¢

2. Diagonalize the following matrices.
11 -1
2) by [
-3 5 -1 0

3. The following pairs of matrices show a matrix and its eigenvec-

c)

c)

f)-

-2 2
_—3 2

a 0 O
34 b 0
V23 ™ e
4

-2 1
-2 0

tors. Without computing eigenvalues, determine the missing

eigenvector component.

a)

c)

3 3] [ 1
-3 3]7[1 -1

2 2] [—2 1 2 1
, by |*2 10
2 1 * 9 16 28

R

4. I wrote that finding eigenvectors involves computing the null

space of A — AI. What would happen if you started from
Al — A? Try this using the matrix in Equation 15.15 (page
427) to see whether the results differ. Either way, explain why

this happens.

5. Left-multiply both sides of the eigenvalue equation the eigen-

value equation (Av = Av) by v'. Assume that ||v|]| = 1 and

simplify. What can you conclude?

15.13 EXERCISES
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Answers

1. Following are the missing pieces.

a) 4 b) £v15 c) 3,5
d)-3,8 e) (—1+£+/53)/2 ) £V2i

g)2,4,1 h)a,b,c i) a,b,c

2. Matrices below are eigenvalues, eigenvectors (non-normalized).

B0 [

100 [o 1 -1
c) 0 3 0f,|1 -1 2
002 |0 -1 2

3. Following are the eigenvector values.

a)x=1 b) x = —4 c)x=1

4. You get the same results: Same eigenvalues and same eigen-
vectors. It’s a bit awkward in my opinion, because you have
to flip the signs of all the matrix elements, but conceptually
it’s the same thing as writing (a — b) = —(b — a).

5. Pre- and post-multiplying a matrix by a vector produces a
scalar. In a few chapters, I will call the general expression
vTAv the quadratic form, which will reveal some interesting
properties about the definiteness and eigenvalues of the ma-

trix.

The second thing to notice is that the matrix reduces to its
eigenvalue when transformed on both sides by its eigenvector.
That is: vIAv = \. Again, this leads to some interesting

discoveries about the matrix, which you will learn about in

Chapter 17.



Code challenges

1. In this code challenge, you will explore the relationship be-

tween Equations 15.47 and 15.52 in the section on generalized
eigendecomposition. Create two matrices A and B. Then per-
form (1) generalized eigendecomposition of both matrices, and
(2) "regular’ eigendecomposition on the matrix B~ A; inspect
whether the eigenvalues are the same. Try this for 2x2 matri-
ces, and then again for larger matrices like 10 x 10 or 50 x 50.
Do you also need to compare the eigenvectors or is it sufficient

to compare the eigenvalues?

. In this chapter, you learned that diagonalization means to
transform a matrix into a diagonal matrix, with the eigen-
vectors providing the transformation matrix. What happens
if the matrix A is already a diagonal matrix? What are its
eigenvalues and eigenvectors? Use code to explore this empir-
ically by taking the eigendecomposition of diagonal matrices.

Then explain why you get those results.

. In Chapter 5 you learned about Hankel matrices (123), and
I mentioned that they have aesthetically pleasing properties
in eigendecomposition. Now is your chance to explore this.
Create a 50 x 50 Hankel matrix and take its eigendecomposi-
tion. Sort the eigenvectors according to descending eigenval-
ues. Then produce a figure that shows Hankel matrix and its

eigenvectors matrix. Then plot the first few eigenvectors.

15.15 CODE CHALLENGES
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Code solutions

1. The answer is that for random-numbers matrices, the two ap-

proaches produce basically identical eigenvalues in MATLAB,
but different results in Python. These are very difficult nu-
merical problems to solve. The two methods are similar in
MATLAB because the matrices are invertible and have a low
condition number. In the next chapter, you’ll see that this
conclusion changes for matrices with a larger condition num-
ber (youll learn about condition number in the next chap-
ter). It is not necessary to compare the eigenvectors—if the
eigenvalues differ, so do the eigenvectors. When comparing
eigenvalues, it’s important to make sure they’re sorted!

Code block 15.5: Python

1 import numpy as np

2 from scipy.linalg import eig

3 import matplotlib.pyplot as plt

4

5 avediffs = np.zeros(100)

6 for n in range(1,101):

7 A = np.random.randn(n,n)

8 B = np.random.randn(n,n)

9 11 = eig(A,B)[0]

10 12 = eig(np.linalg.inv(B)@QA)[0]
11

12

13 11.sort ()

14 12 .sort ()

15

16 avediffs [n—1] = np.mean(np.abs(11-12))
17

18 plt.plot(avediffs);




Code block 15.6: MATLAB

1 for n=1:100

2 A = randn(n);

3 B = randn(n);

4 11 = eig(A,B);

5 12 = eig(inv(B)*A);

6

7 % important to sort evals
8 11 = sort(11);

9 12 = sort(12);

10 avediffs (n) = mean(abs(11-12));
11 end

12 plot(avediffs , 's—")
13 xlabel (’Matrix size’)
14 ylabel(’\Delta\lambda )

15.16 CODE SOLUTIONS
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2. Conveniently, the eigenvalues of a diagonal matrix are simply
the diagonal elements, while the eigenvectors matrix is the
identity matrix. This is because (A — AI) is made singular
simply by setting A to each diagonal element.

In fact, the eigenvalues of any triangular matrix (including di-
agonal matrices) are simply the elements on the main diagonal
(see exercise question 1g-i). However, V =T only for a diag-
onal matrix. The eigenvectors matrix of a triangular matrix
is itself triangular. That’s not shown in the code below, but I
encourage you to test it!

Code block 15.7: Python

—_

import numpy as np

\V]

D = np.diag(range(1,6))
L,V = np.linalg.eig (D)

w

Code block 15.8: MATLAB
D = diag(1:5);
2 [V,L] = eig(D)




3. The eigenvectors matrix looks cute, like a pixelated flower from
a 1970’s computer. Plotting the eigenvectors reveals their re-
markable property—they’re sine waves! (Figure is shown be-
low the code.) If you are familiar with signal processing, then
this might look familiar from the Fourier transform. In fact,
there is a deep connection between the Hankel matrix and the
Fourier transform. By the way, you can run this code on a
Toeplitz matrix for comparison (spoiler alert: Not nearly as

cool!).
Code block 15.9: Python
1 import numpy as np
2 import matplotlib.pyplot as plt
3 from scipy.linalg import hankel
4
5 t = np.arange(1,51)
6 lstrow = np.append(t[—1],np.arange(1l,t[—1]))
7 H = hankel (t,r=lstrow)
8 d,V = np.linalg.eig(H)
9 V=V][:,np.argsort(d)[:: —1]]
10
11 plt.subplot(221)
12 plt.imshow (H)
13 plt.subplot(222)
14 plt.imshow (V)
15 plt.subplot(212)
16 plt.plot(V[:,:4]);

15.16 CODE SOLUTIONS
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© 00 N O U= W N

—_ = = =
= W N = O

Code block 15.10: MATLAB

N = 50;
toeplitz (1:N);
hankel (1:N,[N 1:N—1]);

T A
1l

V,D] = eig(H);

[~,sidx] = sort(diag(D), 'descend’);
V =V(:,sidx);

subplot (221) % the matrix
imagesc(H), axis square
subplot (222) % all eigenvectors
imagesc(V), axis square
subplot (212) % a few evecs

plot (V(:,1:4),0—")

Hankel matrix Elgenvectors matrix

-0.1

Eigenvector element value
.
o

=
N

0 5 10 15 20 25 30 35 40 45 50
Eigenvector element index

Figure 15.7: Image for code challenge 3.
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Singular value decomposition

Singular value decomposition, or SVD, is closely related to eigen-
decomposition. In fact, eigendecomposition can be seen as a spe-
cial case of the SVD in which the to-be-decomposed (decompos-
ing?) matrix is square. Alternatively, SVD can be seen as a gen-
eralization of eigendecomposition to a matrix of any size. This
latter interpretation is more consistent with how it will be intro-

duced.

Before learning about the mechanics of the SVD, I want to present
the big picture and the terminology. The core idea of SVD is to
provide sets of basis vectors—called singular vectors—for the four
matrix subspaces: the row space, the null space, the column space,
and the left-null space; and to provide scalar singular values that
encode the "importance" of each singular vector. The singular
vectors are similar to eigenvectors, and the singular values are
similar to eigenvalues (though their exact relationships are com-
plicated and will be described later). The full SVD is expressed
using the following matrix letters.

Singular value decomposition

A =UxVT (16.1)



The MxN matrix to be decomposed. It can be square
or rectangular, and any rank.

The left singular vectors matriz (M x M), which pro-
vides an orthonormal basis for RM. This includes the
column space of A and its complementary left-null

space.

The singular values matriz (MxN'), which is diagonal
and contains the singular values (the i*" singular value
is indicated o;). All singular values are non-negative

(that is, positive or zero) and real-valued.

The right singular vectors matriz (NxN), which pro-
vides an orthonormal basis for RN. That includes
the row space of A and its complementary null space.

Vv Notice that the decomposition contains VT; hence, al-
though the right singular vectors are in the columns
of V, it is usually more convenient to speak of the
right singular vectors as being the rows of V.

As you can see in the descriptions above, the sizes of the right-
hand-side matrices depend on the size of A. Figure 16.1 shows
graphical representations of the SVD for square, tall, and wide

rectangular matrices.

Notice that the size of U corresponds to the number of rows in
A, that the size of V corresponds to the number of columns in
A, and that the size of X is the same as that of A. These sizes
allow for U to be an orthonormal basis for RM and for V to be

an orthonormal basis for RY.

Let’s see what the SVD looks like for a real matrix. Figure 16.2
shows a matrix (created by applying a 2D smoothing kernel to
random noise; the grayscale intensity at each pixel in the image is

mapped onto the numerical value at that element of the matrix)
and its SVD.

So that’s the purpose of the SVD: Represent a matrix using two
orthogonal matrices surrounding a diagonal matrix. Now let’s
figure out how to create those three matrices, and then the rest
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A = U > vT
(MxM) (MxM) (MxM) (MxM)
A | = U > vT

(NxNV)
(M><N) (M><M) (M><N)
A =| U > vT
(MxN) (MxM) (MxN)
(NxN)

Figure 16.1: The sizes of SVD matrices for different sizes of
the to-be-decomposed matrix.

of the chapter will give you opportunities to develop intuition for
why the SVD is so useful.

Computing the SVD

Given the importance of the SVD in theoretical and applied linear
algebra, you might think that the SVD is really difficult to com-
pute. Well, you're wrong (if that’s what you thought). In fact,
once you know eigendecomposition, the SVD is almost trivial to
compute.

Let’s start by considering the eigendecomposition of matrix A
of size M # N. Actually, eigendecomposition is not defined for
this non-square matrix. However, ATA is eigendecomposable.



Scree plot of singular values

Singular value order

Figure 16.2: Visualization of the SVD of a smoothed random
numbers matrix. The lower plot shows the singular values,
which are the diagonal of the ¥ matrix. This plot is called a
"scree plot" in statistics nomenclature. The singular vectors
are in the columns of U and the rows of VT.

Replacing ATA with its SVD matrices gives us the following.

ATA = (UzvhHT(uzvTh) (16.2)
=vxtutuzv?t (16.3)
=vx?vT (16.4)

We’ve now discovered how to find the V and ¥ matrices from
the SVD: V are the eigenvectors of ATA and 3 are the squared
eigenvalues of AT A. Remember that because X is a diagonal ma-
trix, then X2 simplifies to the diagonal elements (the eigenvalues)
squared.

You can immediately see why the singular values are non-negative—
any real number squared will be non-negative. This doesn’t show
immediately why the singular values are real-valued, though; that
comes from the proof that the eigenvalues of a symmetric matrix
are real-valued (page 444).

We’re missing the U matrix, but I’'m sure you’ve already figured

U is orthogonal,
ergo UTU =1

16.2 COMPUTING THE SVD
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it out: Take the eigendecomposition of matrix AA™:

AAT = (UzvhH(uzvhHT (16.5)
=vuxzvivztu? (16.6)
=Uxu?t (16.7)

So there you have it—the way to compute the SVD of any rect-
angular matrix is to apply the following steps:

1. Compute the eigendecomposition of ATA to get ¥ and V.
2. Compute the eigendecomposition of AAT to obtain U.

It is actually not necessary to compute both steps to obtain the
SVD. After applying either one of these steps, you can compute
the third matrix directly using one of the following two formu-
las.

AVZTl=U (16.8)
s luTa=vT (16.9)

Quick question: How do you know that U and V are orthogonal
matrices? Think of your answer and then check the footnote!.

I explained earlier in this chapter that the 3 matrix is the same
size as A, and yet computing £TE actually produces a square
matrix, even if A is rectangular. Thus, in practice, the 'real" X
matrix is the same size as A and its diagonal elements are drawn
from the diagonal elements of ¥TX. Equivalently, you could cut
out the "excess" rows or columns from square XTX to trim it

down to the size of A.

When computing SVD by hand—which I recommend doing at
least a few times to solidify the concept—you should first de-
cide whether to apply step 1 and then Equation 16.8, or step 2
and Equation 16.9. The best strategy depends on the size of the
matrix, because you want to compute the eigendecomposition of
whichever of ATA or AAT is smaller. On the other hand, follow-

ing steps 1 and 2 is easier than it looks, because you need to solve

'Because they come from the eigendecomposition of a symmetric matrix.



for the squared eigenvalues (the singular values on the diagonal
of 32) only once.

Normalizing singular vectors Singular vectors, like eigenvectors,
are important because of their direction. Thus, in some sense,
normalizing each singular vector to be unit length is arbitrary.
However, the goal of the SVD is to have an exact decomposition

of the matrix. If the singular vectors are not properly normalized,
then A #UXVT,

Therefore, in practice, all singular vectors must be normalized to
unit vectors. For the same reason, the signs of the singular vectors
are not arbitrary. The singular values are all non-negative, so flip-
ping signs of singular vectors may be necessary for reconstructing

the matrix.

This is noticeably different from diagonalization via eigendecom-

position, where the eigenvectors are sign- and magnitude-invariant.

The key to understanding the difference is that the eigenvalues
matrix is flanked on both sides by the eigenvectors matrix and its
inverse (VAV™1); any non-unit-magnitudes in V can be absorbed
into V1. But in the SVD, U and V7T are not inverses of each
other (indeed, they may even have different dimensionalities), and
thus the magnitude of singular vectors is not canceled.

You can see the effects of not normalizing in the exercises below. It
will take you a while to work through these two exercises by hand,
but I believe it’s worth the effort and will help you understand
the SVD.

16.2 COMPUTING THE SVD
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Practice problems Perform the following steps on each matrix below: (1) Compute the
SVD by hand. Construct the singular vectors to be integer matrices for ease of visual inspection.
(2) Using your non-normalized singular vectors, compute UXVT to confirm that it does not
equal the original matrix. (3) Normalize each singular vector (each column of U and row of
V7). (4) Re-compute UXVT and confirm that it exactly equals the original matrix.

1 10 bl
b 2
2) {0 1 1] ) (1) X

Answers Matrices are ordered as U, X, and VT. Top rows show integer vectors; bottom
rows show normalized versions.

) 1 -1 V3 ool | o duct = |V3-1 2v3 VB+1
e Lol foovof|, T TR T Ve 2B VB
[—1/v/6 —2/v/6 —1/6
% E _ﬂ» [\gg (1) 8:|s 1/vV2 0 —1/v/2| ; product= |:é 1 (1)]

L 1/V3 -1/V3  1/V3
1 1 -1 V6 0 0 1 V2 V6
b) | -2 0o -11, 0 2|, |:1 0]; product=| 0 —2v6
-1 1 1 0 0 V2 -6
1/v/6 —1/v2 —-1/V/3] [v6 0 0 1 1 -1
—2/v/6 0 —1/V3[, | 0 Vv2[, { | O]’ product= | 0 2
-1/v6 —1/vV2  1/V3 0 0 B 11

Singular values and eigenvalues

The previous section seemed to imply the trivial relationship that
the eigenvalues of AT A equal the squared singular values of A.
That is true, but there is a more nuanced relationship between the
eigenvalues and the singular values of a matrix. That relationship
is organized into three cases.

Case 1: eig(ATA) vs. svd(A) The eigenvalues equal the squared
singular values, for the reasons explained in the previous section.




Let’s see a quick example:

A_[3 10
110
(10 4 0

ATA=1|4 2 0
0 0 0

MATA) =0, .3431, 11.6569
o(A) = .5858, 3.4142

o?(A) = .3431, 11.6569

Why are there three As but only two os? It’s because ATA is 3x3
but ¥ has the same size as the matrix A, which is 2 x 3; hence,
the diagonal has only two elements. But the non-zero \’s equal

the squared o’s.

This case concerns the eigenvalues of ATA, not the eigenvalues
of A. In fact, there are no eigenvalues of A because it is not a

square matrix. This brings us to our second case.

Case 2: eig(ATA) vs. svd(ATA) In this case, the eigenval-
ues and singular values are identical—without squaring the sin-
gular values. This is because eigendecomposition and SVD are
the same operation for a square symmetric matrix (more on this

point later).

Case 3a: eig(A) vs. svd(A) for real-valued A\ This is different
from Case 2 because here we assume that A is not symmetric,
which means that the eigenvalues can be real-valued or complex-
valued, depending on the elements in the matrix. We start by
considering the case of a matrix with all real-valued eigenvalues.
Of course, the matrix does need to be square for it to have eigen-
values, so let’s add another row to the example matrix above.

16.3 SINGULAR VALUES AND EIGENVALUES
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Here I'm using W
for eigenvectors
to avoid confusion
with the right sin-
gular vectors V.

>

Il
—_ =W
— = =
_ o O

A(A) = 5858, 1, 3.4142

o(A) = .4938, 1.1994, 3.6804

There is no easy-to-spot relationship between the eigenvalues and
the singular values. In fact, there isn’t really a relationship at
all. Of course, there is the relationship that WAW ™! = UZVT,
in other words, the entire eigendecomposition equals the entire
SVD (because they are both equal to A). But that doesn’t say
anything about a necessary relationship between A and 3.

Case 3b: eig(A) vs. svd(A) for complex-valued A The lack of
trivial relationship between eigenvalues and singular values is even
more apparent when a matrix has complex-valued eigenvalues.
You learned in the previous chapter that a real-valued matrix
can have complex-valued eigenvalues. So if A has complex-valued
eigenvalues, what can we say about its singular values?

In fact, the singular values of any matrix—real-valued or complex-
valued—are always real-valued. Guaranteed. Why? Because the
SVD can be obtained from the eigendecomposition of the matrix
times its transpose, and that matrix is always symmetric. (The
SVD of complex matrices uses the Hermitian transpose instead of
the regular transpose.)

Cases 2 and 3 may initially seem contradictory. AT A is simply a
matrix, so if we set C = AT A then I've written that A\(C)=c(C)
but A(A) # o(A). Would you like to guess the difference and then
the reason for the difference before reading the next paragraph?

The difference is that C is defined as a matrix times its trans-
pose, whereas A is not. And the reason why this matters is



that the 2-norm of the eigenvectors matrix of a symmetric matrix
is 1, whereas the 2-norm of the eigenvectors matrix for a non-
symmetric matrix is not constrained to be 1. This isn’t about the
individual eigenvectors—computer programs will unit-norm each
individual eigenvector—this is about the eigenvectors and singu-
lar vectors matrices being orthogonal matrices, and thus having

a norm of 1.

Eigendecomposition and SVD are exact decompositions, thus, all
of the "energy" in the matrix A must be contained inside the three
eigendecomposition or SVD matrices. For the SVD, matrices U
and V are orthogonal and have a matrix norm of 1, which means
that all of the energy in the right-hand side of the equation must
come from matrix 3. That’s always the case for the SVD.

Eigendecomposition, on the other hand, has an orthogonal eigen-
vectors matrix only when the matrix is symmetric. When the
matrix is not symmetric, then the "total energy" in the matrix
can be distributed over the eigenvectors and the eigenvalues. This
is the reason why there seems to be a discrepancy between cases
2 and 3, which is actually due to the symmetry of the matrix.
(For a related discussion, consult section 15.10 on reconstructing

a matrix from eigenlayers.)

In conclusion, there is a clear relationship between the eigenvalues
of ATA and the singular values of A (or the singular values of
ATA), but there is no relationship between the eigenvalues of

non-symmetric A and the singular values of A.

Code As you might guess, the SVD is really easy to compute
in Python and in MATLAB. If you use both programs, be very
mindful that Python returns V1 whereas MATLAB returns V.
Python also returns the singular values in a vector instead of in
a diagonal matrix. You can use the code below to confirm the

answers to the practice problems a few pages ago.

duced 2-norm is
the most that a
matrix can stretch
a vector, and is
computed as the
largest singular

value of the matrix.
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Code block 16.1: Python

1 import numpy as np
2 A= [[1,1,0],[0,1,1]]
3 U,s,V=np.linalg.svd(A)

Code block 16.2: MATLAB

1 A=1[110;01 1];
[U,S,V] = svd(A);

\V)

SVD of a symmetric matrix

Simply stated: The left and right singular vectors of a symmetric

matrix are the same. In other words,

SVD of a symmetric matrix
A=UxUT, ifA=AT (16.10)

Proving that this is the case simply involves writing out the SVD
of the matrix and its transpose:

A =UxVT (16.11)
AT = (uzvhHT = vxu? (16.12)

Because A = AT, these two these equations must be equal:
Uuxvt =vxu? (16.13)

And this proves that U = V, which means that the left and right

singular vectors are the same.

Notice that this is not necessarily the same thing as "Case 2" of
the relationship between singular values and eigenvalues, because
not all symmetric matrices can be expressed as some other matrix

times its transpose.



SVD and the four subspaces

One of the remarkable features of the SVD is that it provides
orthogonal basis sets for each of the four matrix subspaces. This
is one of the main reasons why the SVD is such a powerful and

useful decomposition.

But let me start by talking more about 3—the matrix that con-
tains the singular values on the diagonal and zeros everywhere
else. Below is an example of a 3 matrix for a 5x 3, rank-2 ma-

trix. ~ _
op 0 O
0 o9 O
0O 0 O
0O 0 O
0O 0 O

By construction, o1 > g9. Indeed, SVD algorithms always sort
the singular values descending from top-left to lower-right. Thus,
zero-valued singular values will be in the lower-right of the diag-
onal. o3 = 0 because this is a rank-2 matrix. You’ll learn below
that any zero-valued singular values correspond to the null space
of the matrix. Therefore, the number of non-zero singular values
corresponds to the dimensionality of the row and column spaces,
which means that the number of non-zero singular values corre-
sponds to the rank of the matrix. In fact, this is how programs
like MATLAB and Python compute the rank of a matrix: Take
its SVD and count the number of non-zero singular values.

Figure 16.3 shows the "big picture" of the SVD and the four sub-
spaces. There is a lot going on in that figure, so let’s go through
each piece in turn. The overall picture is a visualization of Equa-
tion 16.1; as a quick review: the matrix gets decomposed into
three matrices: U provides an orthogonal basis for RM and con-
tains the left singular vectors; 3 is the diagonal matrix of singular
values (all non-negative, real-valued); and V provides an orthogo-
nal basis for RN (remember that the SVD uses VT, meaning that

the rows are the singular vectors, not the columns).

This figure additionally shows how the columns of U are organized

16.5 SVD AND THE FOUR SUBSPACES
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A (MxN, rank r) U (MxM, orth.) I (MxN, diag.) VT (NxN, orth.)
fo 1
"o, » RN
Tr M 0 AN | NA) |

C(A)  N(AT)

——

RM

Figure 16.3: Visualization of how the SVD reveals basis sets

for the four subspaces of a rank-r matrix. (orth. = orthogonal
matrix; diag. = diagonal matrix; 1:r = columns (or rows) 1
through r.)

into basis vectors for the column space (light gray) and left-null
space (darker gray); and how the rows of VI are organized into
basis vectors for the row space (light gray) and null space (darker
gray). In particular, the first » columns in U, and the first r rows
in VT, are the bases for the column and row spaces of A. The
columns and rows after r get multiplied by the zero-valued singu-
lar values, and thus form bases for the null spaces. The singular
vectors for the column and row spaces are sorted according to
their "importance" to the matrix A, as indicated by the relative

magnitude of the corresponding singular values.

You can see that the SVD reveals a lot of important information
about the matrix. The points below are implicit in the visualiza-
tion, and written explicitly in the interest of clarity:

o The rank of the matrix (r) is the number of non-zero singular
values.

e The dimensionality of the left-null space is the number of
columns in U from r 4+ 1 to M.

e The dimensionality of the null space is the number of rows
in VI from r + 1 to N.

It is important the realize that the organization of the SVD matrix
in Figure 16.3 is not a trivial result of the decomposition. Recall
from the previous chapter that eigenvalues have no intrinsic sort-
ing; likewise, when you compute the SVD by hand, the singular



values are not magically revealed in descending order. Computer
algorithms will sort the singular values—and their associated sin-

gular vectors—to produce this beautiful arrangement.

Figure 16.3 also nicely captures the fact that the column space and
left-null space are orthogonal: If each column in U is orthogonal
to each other column, then any subset of columns is orthogonal
to any other non-overlapping subset of columns. Together, all of
these columns span all of RM, which means the rank of U is M,
even if the rank of A is r < M.

The story for VT is the same, except we deal with rows instead of
columns (or, if you prefer, the columns of V) and the row space
and null space of A. So, the first r rows provide an orthonormal
basis for the row space of A, and the rest of the rows, which get
multiplied by the zero-valued singular values, are a basis for the

null space of A.

s N

Practice problems The following triplets of matrices are UXVT that were computed from
a matrix A that is not shown. From visual inspection, determine the size and rank of A, and
identify the basis vectors for the four spaces of A. (Note: I re-scaled U and V to integers.)

1 1 1 -1 0 -3 0| (= O
-1 -—-1|(489 0 O 0 1 0 0|0 2(|-1 O
a) 1 0 -1 b)
-1 1 0 2 0 1 9 1 -3 0 1 0] (0 O 0 1
0 0 0 1] [0 O
Answers
a) The matrix is 2 X 3 with rank 2. U is b) The matrix is 4x2 with rank 2. The first
a basis for the column space; the left-null two columns of U are a basis for the col-
space is empty. The first 2 rows of VT are umn space; the latter two are a basis for
a basis for the row space, and the third the left-null space. All of VT is a basis
row is a basis for the null space. for the row space, and the null space is
empty.

r

I know, Figure 16.3 is a lot to take in of first glance.
Don’t expect to understand everything about the SVD
just by staring at that figure. You’ll gain more famil-

Reflection

iarity and intuition about the SVD by working with it,
which is the goal of the rest of this chapter!
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SVD and matrix rank

It may seems strange that the number of non-zero eigenvalues
does not necessarily equal the matrix rank (demonstrated in the
previous chapter), whereas above I claimed that the number of
non-zero singular values is equal to the matrix rank. In this sec-
tion, I will provide two explanations for this.

One key difference between eigendecomposition and SVD is that
for SVD, the two singular vectors matrices span the entire ambi-
ent spaces (RM and RY), which is not necessarily the case with
eigenvectors (e.g., for non-diagonalizable matrices).

Given that matrix rank is the dimensionality of the column space,
it is sensible that the rank of the matrix corresponds to the num-
ber of columns in U that provide a basis for the column space
(we could say the same thing about the number of rows in VT
that provide a basis for the row space). Thus, it is sufficient to
demonstrate that each column in U that is in the column space of
A has a non-zero singular value, and that each column in U that
is in the left-null space of A has a singular value of zero. (Again,
the same is true of V', the row space, and the null space.)

Let’s start by rewriting the SVD using one pair of singular vectors
and their corresponding singular value. This is analogous to the
single-vector eigenvalue equation.

Av =uo (16.14)

Notice that replacing the vectors with matrices and then right-
multiplying by VT gives the SVD matrix equation that you're

now familiar with.

Now let me remind you of the definition of the column space and
left-null space: The column space comprises all vectors that can
be expressed by some combination of the columns of A, whereas
the left-null space comprises all non-trivial combinations of the



columns of A that produce the zeros vector. In other words:
C(A): Ax=Db (16.15)
NAT): Ay=0 (16.16)

Now we can think about Equation 16.14 in this context: all singu-
lar vectors are non-zeros, and thus the right-hand side of Equation
16.14 must be non-zero—and thus in the column space of A—if
o is non-zero. Likewise, the only possible way for the right-hand
side of Equation 16.14 to be the zeros vector—and thus in the
left-null space of A—is for o to equal zero.

Thus, any u with a corresponding non-zero ¢ is in the column
space of the matrix, whereas any u with a corresponding zero-
valued o is in the left-null space of the matrix. The elements of

v provide those weightings across the columns of A.

You can make the same argument for the row space, by starting

from the equation uTA = ovT.

I hope that explanation provides intuition. There is another way
to explain why the rank of A corresponds to the number of non-
zero singular values. This second explanation comes from the rule

about the rank of the product of matrix multiplications.

A is the product of the three SVD matrices, therefore the rank
of A is constrained by the ranks of those matrices. U and V are
by definition full-rank. ¥ is of size M x N but could have a rank
smaller than M or N. Thus, the maximum possible rank of A
is the rank of 3. However, the rank of A could not be smaller
than the rank of X, because the ranks of A and UXVT are equal.
Therefore, the rank of A must equal the smallest rank of the three
SVD matrices, which is always ¥. And as a diagonal matrix, the
rank of ¥ is the number of non-zero diagonal elements, which is

the number of non-zero singular values.

"Effective' rank You've read many times in this book that com-

puters have difficulties with really small and really large numbers.
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These are called rounding errors, precision errors, underflow, over-
flow, etc. How does a computer decide whether a singular value
is small but non-zero vs. zero with rounding error?

The MATLAB source code for computing rank looks like this:

svd(A);
sum(s > tol);

R
]

In other words, retrieve the singular values, and count the number
of those values that are above a tolerance (variable tol). So the
question is, how to set that tolerance? If it’s too small, then the
rank will be over-estimated; if it’s too large, then the rank will
be under-estimated. MATLAB’s solution is to set the tolerance
dynamically, based on the size and elements in the matrix:

tol = max(size(A)) * eps(max(s));

The function eps returns the distance between a number and the
next-larger number that your computer is capable of representing.
For example, if your computer could only represent integers, then
eps=1. (And you probably need to buy a new computer...)

Without getting any deeper into the computer science of numer-
ical processing, I wanted to give you some sense of the way that
theoretical mathematical concepts are translated into code that
gives acceptable results on digital computers.

SVD spectral theory

There are several "spectral theories" in mathematics, and they all
involve the concept that a complicated thing—such as a matrix,
an operation, or a transformation—can be represented by the sum
of simpler things. It’s like how visible light can be decomposed
into the colors of the rainbow.



There is a spectral theory of matrices, which is sometimes used
as another term for eigendecomposition. I'm going to adapt this
concept and bend the terminology slightly to the SVD spectral
theory, which is that all matrices can be expressed as a sum of
rank-1 matrices, and that the SVD provides a great decomposition

to obtain these individual rank-1 matrices.

Let me begin by reminding you of the "layer perspective" of matrix
multiplication (page 144), which involves constructing a product
matrix as the sum of outer-product matrices created from the
columns of a matrix on the left, and the rows of a matrix to
the right. Each of those outer-product matrices has a rank of 1,
because each column (or row) is a scalar multiple of one column

(or one row).

With matrix multiplication via layers, the two vectors that multi-
ply to create each "layer" of the product matrix are defined purely
by their physical position in the matrix. Is that really the best way
to define basis vectors to create each layer? Probably not: The
position of a row or column in a matrix may not be the organizing
principle of "importance"; indeed, in many matrices—particularly
matrices that contain data—rows or columns can be swapped or
even randomized without any change in the information content

of the data matrix.

The SVD provides an interesting way to construct a matrix by
summing rank-1 layers that are computed using the columns of
U and the rows of VT, scaled by their corresponding singular
value. The mechanics are given by re-writing the SVD formula

using a summation of vectors instead of matrices.
T
A= Z wov; (16.17)
i=1

where 7 is the rank of the matrix (the singular values after o, are
zeros, and thus can be omitted from this equation). Your delicate
linear-algebraic sensibilities might be offended by going from the
elegant matrix Equation 16.1 to the clumsy vector-sum Equation
16.17. But this equation will set us up for the SVD spectral
theory, and will also lead into one of the important applications
of SVD, which is low-rank approximations (next section).

Figure

16.4:

Outer product,

visualized.
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Let’s consider only the first iteration of the summation:
A =uwovi (16.18)

We might call matrix A; the "first SVD-layer of A." It is a rank-
1 matrix (same size as A) formed as the outer product between
the first left singular vector and the first right singular vector.
Because the two vectors are unit length (||u;|| = ||[vi]] = 1), the
2-norm of their outer product is also 1. But is the norm of A also
equal to 17 No, it isn’t, and that’s because the outer product gets
scalar-multiplied by the corresponding singular value (notwith-
standing when o1 = 1).

Because the singular values are sorted descending, A is actually
the "most meaningful" SVD-layer of matrix A ("meaningful" can
be interpreted as the amount of total variance in the matrix, or
as the most important feature of the matrix; more on this in the
next section). Ay will be the next-most-meaningful SVD-layer,
and so on down to A,. The SVD-layers after r have zero-valued
singular values and thus contribute nothing to the final matrix.

Thus, each corresponding left and right singular vector combine
to produce a layer of the matrix. This layer is like a direction in
the matrix space. But that direction is simply a pointer—it does
not convey "importance." Instead, it is the singular value that
indicates how "important" each direction is. It’s like a sign-post
that points to the nearest gas station (1 km away) and to Siberia
(10,000 km away). The signs (the singular vectors) have the same
size; you have to look at the numbers on the signs (the singular

values) to know how far each destination is.

Figure 16.5 illustrates the concept of reconstructing a matrix by
successively adding SVD-layers. The three singular values of
this random matrix are 3.4, 1.0, and 0.5 (rounded to the near-
est tenth). In the next section, you will learn how to interpret
these values and how to normalize them into a more meaningful

metric.

Notice that layer 1 ("L1" in panel B) captures the most prominent
feature of the matrix A (the horizontal band in the middle); in the



1+2+3
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Figure 16.5: Illustration of the SVD spectral theory. Panel A
shows the SVD matrices. It is visually apparent that A is a

rank-3 matrix (3 non-zero singular values). Panel B shows the
three SVD-layers formed from outer products of corresponding
columns of U, rows of VT, and singular values ("L1" = layer
1). Panel C shows the cumulative sum of layers. The first two
maps are low-rank approximations of A while the final map
("14243") is an exact reconstruction of A.

next section I will refer to this as the best rank-1 approximation
of A.

Although it might not be obvious from the color scaling, each
column of the L1 matrix is simply the left-most column of U
scalar-multiplied by the corresponding elements of the first row of
VT, and also multiplied by 31,1 Same story for matrices L2 and
L3. Columns 4 and 5 of U do not contribute to reconstructing
A—that’s built-in to Equation 16.17 because the rank of this
matrix is » = 3—and it’s also apparent from visualization of the
multiplication: Columns 4 and 5 in U multiply rows 4 and 5 of
3., which are all zeros. In terms of matrix spaces, columns 4 and
5 of U are in the left-null space of A.

SVD-layer 2 captures the second-most prominent feature of the

16.7 SVD SPECTRAL THEORY



THE SVD

matrix A, which is the vertical stripe in the lower-right. Layer
3 has a relatively small singular value (10% of the total variance
in the matrix; I'll describe later how I compute this) and there-
fore accounts for relatively little information in the matrix. You
can see in panel C that adding SVD-layer 3—though technically
necessary for a full reconstruction of A—changes the matrix only
slightly.

SVD and low-rank approximations

Equation 16.17 in the previous section showed how to reconstruct
a matrix exactly by summing up outer products from left- and
right-singular values, scalar-multiplied by the corresponding sin-
gular vaule. I also wrote that SVD-layers with smaller singular
values are less important for the matrix.

This leads to the idea of low-rank approximations: Create a ma-
trix A that is sort-of like matrix A it’s a rank-k version of the
original rank-r matrix created by adapting the full vector-sum
formula slightly:

Low-rank approximation

k
A= ZuiaiviT , k<r (16.19)
i=1

Figure 16.6 shows an example. The matrix A is a 30x40 random
numbers matrix that was smoothed with a 2D Gaussian kernel.
Panel A shows its SVD decomposition, similar to previous figures.
The important addition here is that matrix A has rank = 30,
whereas the right-most matrix in panel D has a rank = 4. And
yet, visually, that matrix appears extremely similar to matrix A.
In other words, the rank-4 approximation of the original rank-30

matrix appears to capture all the important features.

Why did I pick k& = 4 SVD-layers to reconstruct? That is, ad-
mittedly, an arbitrary choice that was partly driven by the visual



Singular value number

C) L1

Figure 16.6: Example of using SVD for a low-rank approxima-
tion of a matrix. Panels C and D are comparable to panels
B and C in Figure 16.5. 1:4 indicates the cumulative sum of
SVD-layers 1 through 4.

layout of the figure. There are two ways to select an appropriate
value of k. One is based on visual inspection of the "scree plot"
(the plot of decreasing singular values; Figure 16.6B); you look for
the set of singular values that seem to "pop out" or are relatively
large compared to the distribution of singular values. From Figure
16.6B there appears to be anywhere between 4 and 6 relatively
large values. You can already see in this example that this can be
a non-trivial decision, and there might be disagreement about the
"correct” number of SVD-layers to include. A related technique is
called the "elbow method," and involves imagining that the scree
plot is your arm bent at the elbow (the first singular value on
the left is your shoulder; the last one is your hand). Look at the
plot and decide which node is at the elbow; that’s the number
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of components the preserve. Again, it’s a bit ambiguous in this

example (as it often is), but I'd say the elbow is node 4 or 5.

A second method for choosing k is less arbitrary and is based on
selecting a threshold, for example, all SVD-layers that contribute
at least 1% of the variance of the entire matrix. This method
requires converting the singular values into a more meaningful

metric, which is the topic of the next section.

Why is a low-rank approximation useful? Why not simply keep
A in all its glorious original-rank perfection? There are several
applications of low-rank approximations; below are three exam-
ples.

1. Noise reduction: It is possible that the data features as-
sociated with large singular values represent signal, whereas
data features associated with small singular values repre-
sent noise. Thus, by reconstructing the matrix using k < r
layers, the matrix becomes cleaner. This technique is some-
times referred to as "projecting out noise."

2. Machine-learning classification: Many machine-learning
analyses involve identifying features or patterns in data that
predict some outcome variable. It may be the case that the
most relevant data features are represented in the k largest
singular vectors, and thus the analyses can be faster and
more accurately done by training on the "most important"
singular vectors instead of on the original data matrix.

3. Data compression: Let’s imagine a large dataset con-
tained in a 10,000 x 100,000 matrix. At floating-point pre-
cision, this matrix can take up 8 GB of hard-disk space
(assuming no compression). Now let’s imagine that this is
a rank-100 matrix. Storing the first 100 columns of U and
V, and the first 100 singular values (as a vector, not as a
diagonal matrix) would take up only 0.09 GB (around 90
MB). It would then be possible to load in these vectors and
scalars and recreate the full-sized A as needed.



Normalizing singular values

Imagine you have two different matrices, and find that the largest
singular value of matrix A is 8 and the largest singular value of
matrix B is 678. How would you interpret that difference? Are
those two numbers comparable? And what does the number "8"

even mean??

The answer is that those two 0,4, values are probably not compa-
rable, unless you know that the matrices have numbers in exactly

the same range.

Before showing you how to normalize the singular values, I want
to show that singular values are scale-dependent, meaning they
change with the scale of the numbers in the matrix. Below is an
example; the second matrix is the same as the first but multiplied
by 10. Notice that their singular values are the same except for a
scaling of 10 (numbers are rounded to the nearest thousandth).

A 8 4 10 , 5, 15.867 0
45 6 0 2286
(80 40 1 [158.674
B — 10A — 80 40 100 sy 58.67 0 _ 105,
40 50 60 0 22.863

So when a matrix is multiplied by a scalar, its singular values are
multiplied by that same scalar. To understand why this must be
the case, remember that the singular vectors are unit-normalized
to create orthogonal matrices. So it is not possible for U or V to
"absorb" the scalar. Instead, the only part of the SVD that can

be scalar-multiplied is 3, the singular values.

The point here is that it is difficult or impossible to compare "raw"
singular values across matrices, because those values depend both
on the numerical ranges in the matrices and on the data features

embedded in the matrices.

The third column
of ¥ was trimmed.
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See also sec-
tion 6.10 about

matrix norms.

What is the solution to this limitation? As I'm sure you've
guessed, the solution is to normalize the singular values. The
normalization I will discuss here is converting to percent of total

variance of the matrix.

Because the singular vectors are all unit-length and are scaled
by the singular values when reconstructing the matrix from its
SVD layers, the sum over all singular values can be interpreted
as the total variance or "energy" in the matrix. This sum over
all singular values is formally called the Schatten 1-norm of the
matrix. For completeness, the equation below is the full formula
for the Schatten p-norm, although here we are considering only
the case of p = 1.

T 1/10
Al = (Z Uﬁ’) (16.20)

i=1

The next step is to scale each singular value to the percent of the
Schatten 1-norm:

_ 1000;
o; =
C AL

(16.21)

This is a useful normalization, because it allows for direct inter-
pretation of each singular value, as well as direct comparison of
singular values across different matrices. In the example matrices
on page 490, the two normalized 3 matrices would be equal to
each other.

Getting back to the problem at the outset of this section, two
matrices with largest singular values of 8 and 678 are not com-
parable, but let’s say their normalized largest singular values are
35% and 82%. In this case, 35% means that the largest SVD-layer
accounts for only 35% of the total variance in the matrix. One
interpretation is that this is a complicated matrix that contains a
lot of information along several different directions. In contrast,
a largest normalized singular value of 82% means nearly all of the
variance is explained by one component, so this matrix probably
contains less complex information. If this were a data matrix, it

might correspond to one pattern and 18% noise.



Now let’s think back to the question of how many SVD-layers to
use in a low-rank approximation (that is, how to select k). When
the singular values are normalized, you can pick some percent
variance threshold and retain all SVD-layers that contribute at
least that much variance. For example, you might keep all SVD-
layers with o > 1%, or perhaps 0.1% to retain more information.
The choice of a threshold is still somewhat arbitrary, but this is at
least more quantitative and reproducible than visual inspection of

the scree plot.

Condition number of a matrix

The condition number of a matrix is used to evaluate the "spread"
of a matrix. It is defined as the ratio of the largest to the smallest

singular values, and is often indicated using the Greek letter k.

Condition number of a matrix

) = Jmaz (16.22)

Omin

For example, the condition number of the identity matrix is 1,
because all of its singular values are 1. The condition number of
any singular matrix is undefined ("not a number"; NaN), because
singular matrices have at least one zero-valued singular value, thus

making the condition number J =777

The condition number of all orthogonal matrices is the same. Can
you guess what that condition number is, and why? To build
suspense, I'll explain the answer at the end of this section.

A matrix is called well-conditioned if it has a low condition num-
ber and high-conditioned if it has a high condition number. How-
ever, there is no absolute threshold for when a matrix can be
labeled high-conditioned. In some cases, £ > 10,000 is used as
a threshold, but this can be application-specific. Furthermore,
singular matrices can contain a lot of information and be useful
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in applications, but have a condition number of NaN. Likewise,
near-singular matrices can have an astronomically high condition
number while still being a meaningful matrix.

In data analysis and statistics, the condition number is used to
indicate the stability of a matrix, in other words, the sensitivity
of the matrix to small perturbations. A high condition number
means that the matrix is very sensitive, which could lead to un-
reliable results in some analyses, for example those that require

the matrix inverse.

But don’t take the condition number of a matrix too seriously:
Matrices can contain a lot of information or very little informa-
tion regardless of their condition number. The condition number
should not be used on its own to evaluate the usefulness of a

matrix.

OK, the answer to the question about orthogonal matrices is that
the condition number of any orthogonal matrix is 1, and that’s
because all of the singular values of an orthogonal matrix are
1. This is the case because an orthogonal matrix is defined as
QTQ =1, and the eigenvalues of a diagonal matrix are its diago-
nal elements. And you know from earlier in this chapter that the
singular values of Q are the principal square roots of the singular
values of QTQ.

Code You can compute the condition number on your own based
on the SVD, but Python and MATLAB have built-in functions.



Code block 16.3: Python

import numpy as np

A = np.random.randn(5,5)

s = np.linalg.svd(A)[1]
condnum = np.max(s)/np.min(s)

S T s W N

print (condnum,np.linalg.cond(A))

Code block 16.4: MATLAB
A = randn (5,5);
s = svd(A);
condnum = max(s)/min(s);
]

=W N =

disp ([condnum, cond (A)])

SVD and the matrix inverse

Let’s consider the inverse of a matrix and its SVD. Assume A is

square full-rank.

A7l = (UuzvhH! (16.23)
=vxlu! (16.24)
=vxlut (16.25)

Because U and V are orthogonal matrices, their inverses are triv-
ial to compute (their transposes). Furthermore, because 3 is a
diagonal matrix, its inverse is also trivial to compute (simply in-
vert each diagonal element; see section 12.2 on page 327).

Actually, 37! might not be trivial to compute in practice, be-
cause if some singular values are close to machine precision, then
tiny rounding errors or other numerical inaccuracies can make the
inverse unstable (for example, 10%15 is a very large number). This
shows why the explicit inverse of an ill-conditioned matrix can be

numerically unstable.
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Equation 16.25 also allows us to prove that the inverse of a sym-
metric matrix is itself symmetric. Let’s write out the SVD for
a symmetric matrix and its inverse (remember that symmetric
matrices have identical left and right singular vectors).

AT = (vEvhHT = vevT (16.26)

Al =(vzvhHl=vzivT (16.27)

It is immediately clear that A, AT, and A~! have the same sin-
gular vectors; the singular values may differ, but the point is that
3 is also symmetric, and thus A~! is symmetric as long as A is

symmetric.

Expressing the inverse via the SVD may seem like an academic
exercise, but this is a crucial introduction to the pseudoinverse,

as you will now learn.

The MP Pseudoinverse, part 2

In section 12.8, you read about the idea of the pseudoinverse:
It is an approximation to an inverse for a singular matrix. I
promised that you would find the algorithm for the Moore-Penrose
pseudoinverse easily comprehensible by the time you got to this
chapter. And here we are.

Here’s the algorithm: Compute the SVD of a matrix, swap and
transpose the U and V matrices (just like with the full inverse),
invert its non-zero singular values, then multiply to reconstitute

the matrix pseudoinverse.



Pseudoinverse via SVD

Al = (UzVTf
=vxiu? (16.28)
L if o
i _Jo o #0
“oolo ife;=0

Notice that this procedure will work for any matrix, square or
rectangular, full-rank or singular. When the matrix is square
and full-rank, then the Moore-Penrose pseudoinverse will equal
the true inverse, which you can see yourself by considering what
happens when all of the singular values are non-zero.

Computer programs that implement the MP pseudoinverse will
threshold very small-but-nonzero singular values to avoid numer-
ical instability issues. As described earlier for computing rank,
that tolerance is some multiple of the machine precision, and the
idea is to treat as zero any singular values that are too small to

be confidently distinguished from zero.

Figure 16.7 illustrates two examples of the MP pseudoinverse for
a singular matrix (top row) and a full-rank matrix (bottom row).
Notice that the pseudoinverse times the original matrix is not-

quite-but-trying-to-be the identity matrix.

One-sided inverse When the matrix is rectangular and either
full column rank or full row rank, then the pseudoinverse will
equal the left inverse or the right inverse. This makes computing
the one-sided inverse computationally efficient, because it can be

done without explicitly computing (ATA)™L.

To understand the relationship between the one-sided inverse and
the pseudoinverse, let’s work through the math of the left inverse.
Recall that the left inverse of a tall matrix T is (TTT)"!TT. Let’s
write out its SVD, simplify, and see what happens.

16.12 MP PSEUDOINVERSE, PART 2
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ATA
B'B

Figure 16.7: Visualization of two matrices (left column) and
those matrices times their pseudoinverses (right column). A
is reduced-rank whereas B is full-rank.

T=UxV" (16.29)

(TTT) 7T = ((UEVT)TUEVT)_1 (U2VT)T (16.30)

= (VETUTUEVT)_1V2UT (16.31)
- (VEQVT)AVEUT (16.32)
=v2vivzu? (16.33)
= vy luT (16.34)

I know it’s a lot to work through, but the take-home message is
that when you write out the SVD of a left inverse and simplify, you
end up with exactly the same expression as the SVD-based inverse
of the original matrix (replace ~! with t where appropriate).

Needless to say, the conclusion is the same for the right inverse,
which you can work through on your own.



Code challenges

I decided against by-hand exercises here, because the SVD is only
a few additional steps on top of eigendecomposition. Instead, I've
added more code challenges to help you internalize the conceptual
ideas of the SVD and implementing them on computers.

1. In Chapter 13, you learned about "economy' QR decomposi-
tion, which can be useful for large tall matrices. There is a
comparable "economy" version of the SVD. Your goal here is
to figure out what that means. First, generate three random
matrices: square, wide, and tall. Then run the full SVD to
confirm that the sizes of the SVD matrices match your expec-
tations (e.g., Figure 16.1). Finally, run the economy SVD on

all three matrices and compare the sizes to the full SVD.

2. Obtain the three SVD matrices from eigendecomposition, as
described in section 16.2. Then compute the SVD of that ma-
trix using the svd () function, to confirm that your results are
correct. Keep in mind the discussions of sign-indeterminacy.

3. Write code to reproduce panels B and C in Figure 16.5. Con-
firm that the reconstructed matrix (third matrix in panel C)
is equal to the original matrix. (Note: The matrix was pop-
ulated with random numbers, so don’t expect your results to
look ezactly like those in the figure.)

4. Create a random-numbers matrix with a specified condition
number. For example, create a 6 x 16 random matrix with a
condition number of k = 42. Do this by creating random U
and V matrices, an appropriate ¥ matrix, and then create
A = UXVT. Finally, compute the condition number of A to
confirm that it matches what you specified (42).

5. This and the next two challenges involve taking the SVD of
a picture. A picture is represented as a matrix, with the ma-

trix values corresponding to grayscale intensities of the pixels.

16.13 CODE CHALLENGES
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We will use a picture of Einstein. You can download the file at
https://upload.wikimedia.org/wikipedia/en/8/86 /Einstein_ tongue.jpg
Of course, you can replace this with any other picture—a selfie
of you, your dog, your kids, your grandmother on her wedding
day... However, you may need to apply some image processing
to reduce the image matrix from 3D to 2D (thus, grayscale in-
stead of RGB) and the datatype must be double (MATLAB)
or floats (Python).

After importing the image, construct a low-rank approxima-
tion using various numbers of singular values. Show the orig-
inal and low-rank approximations side-by-side. Test various
numbers of components and qualitatively evaluate the results.
Tip: You don’t need to include the top components!

6. Create a scree plot of the percent-normalized singular values.
Then test various thresholds for reconstructing the picture
(e.g., including all components that explain at least 4% of the
variance). What threshold seems reasonable?

7. The final challenge for this picture-SVD is to make the assess-
ments of the number of appropriate components more quanti-
tative. Compute the error between the reconstruction and the
original image. The error can be operationalized as the RMS
(root mean square) of the difference map. That is, create a dif-
ference image as the subtraction of the original and low-rank
reconstructed image, then square all matrix elements (which
are pixels), average over all pixels, and take the square root
of that average. Make a plot of the RMS as a function of the
number of components you included. How does that function

compare to the scree plot?

8. What is the pseudoinverse of a column vector of constants?
That is, the pseudoinverse of k1. It obviously doesn’t have a
full inverse, but it is clearly a full column-rank matrix. First,
work out your answer on paper, then confirm it in MATLAB
or Python.

9. The goal here is to implement the series of equations on page



10.

11.

496 and confirm that you get the same result as with the pinv()
function. Start by creating a 4 x 2 matrix of random integers
between 1 and 6. Then compute its SVD (Equation 16.29).
Then implement each of the next four equations in code. Fi-
nally, compute the MP pseudoinverse of the tall matrix. You
will now have five versions of the pseudoinverse; make sure

they are all equal.

This challenge follows up on the first code challenge from the
previous chapter (about generalized eigendecomposition im-
plemented as two matrices vs. the product of one matrix and
the other’s inverse). The goal is to repeat the exploration of
differences between eig(A,B) and eig(inv(B)*A). Use only
10x10 matrices, but now vary the condition number of the ran-
dom matrices between 10' and 10'°. Do you come to different

conclusions from the previous chapter?

This isn’t a specific code challenge, but instead a general sug-
gestion: Take any claim or proof I made in this chapter (or any
other chapter), and demonstrate that concept using numerical
examples in code. Doing so (1) helps build intuition, (2) im-
proves your skills at translating math into code, and (3) gives
you opportunities to continue exploring other linear algebra

principles (I can’t cover everything in one book!).
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Code solutions

1. "Economy" SVD involves computing only the first N columns
of U if A is tall, or only the first M rows of VT if A is wide.
For square A, "economy" SVD is the same as the full SVD.

Below is code for a tall matrix; modifying for wide and square

matrices is easy.

© 00 O O W N
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Code block 16.5: Python

import numpy as np
m= 6
n=3
A = np.random.randn (m,n)
Uf,sf ,Vf = np.linalg.svd(A)
Ue,se,Ve = np.linalg.svd (A,

full _matrices=False)
print (Uf.shape, sf.shape, Vf.shape)
print (Ue.shape, se.shape, Ve.shape)

Code block 16.6: MATLAB

B

= 6;

= 3;

= randn(m,n);

Uf,Sf, V] = svd(A);
Ue,Se,Ve] = svd (A, ’econ’);
whos A Ux Sx Vx

> =




2. Hint: You need to sort the columns of U and V based on
descending eigenvalues. You can check your results by sub-
tracting the eigenvectors and the matching singular vectors
matrices. Due to sign-indeterminacy, you will likely find a few
columns of zeros and a few columns of non-zeros; comparing
against —U will flip which columns are zeros and which are
non-zeros. Don’t forget that Python returns V.

Code block 16.7: Python

1 A = np.random.randn(4,5)

2 L2,V = np.linalg.eig(A.TQA)

3 V=V][:,np.argsort (L2)[:: —1]]

4 L2,U = np.linalg.eig (AQA.T)

5 U=TU[:,np.argsort (L2)[:: —1]]

6

7 S = np.zeros (A.shape)

8 for i,s in enumerate(np.sort(L2)[:: —1]):
9 S[i,i] = np.sqrt(s)

10 U2,S2,V2 = np.linalg.svd(A)

Code block 16.8: MATLAB

1 A = randn(4,5);

2 [V,L2] = eig(A’xA);

3 [L2,idx] = sort(diag(L2),’d");
4 V=V(:,idx);

5 [U,L2] = eig(AxA’);

6 [L2,idx] = sort(diag(L2),’d’);
7 U="U(:,idx);

8

9 S = zeros(size(A));

10 for i=I1:length (L2)

11 S(i,i) = sqrt(L2(i));

12 end

13 [U2,S2,V2] = svd(A);
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3. I changed the code slightly from the Figure to include the orig-
inal matrix to the right of the reconstructed matrix. Anyway,
the important part is creating the low-rank approximations in
a for-loop. Be very careful with the slicing in Python!

Code block 16.9: Python

1 import matplotlib.pyplot as plt

2 fig ,ax = plt.subplots(2,4)

3

4 A = np.random.randn(5,3)

5 U,s,V = np.linalg.svd(A)

6 S = np.diag(s)

7

8 for i in range(3):

9

10 onelayer = np.outer (U[:,1i],V[i,:])*s][i]
11 ax[0,1].imshow (onelayer)

12 ax[0,1i].set_title (' Layer %g %i)

13 ax[0,1].axis(’off")

14

15 lowrank=U[: ,:i+1]@S[:i+4+1,:i4+1]@QV[:1+41,:]
16 ax[1,1].imshow (lowrank)

17 ax[1l,i].set__title( Layers 0:%g '%i)
18 ax[1,i].axis( off’)

19

20

21 ax[1,3].imshow(A)

22 ax[1,3].set_title(’Orig. A’)

23 ax[1,3].axis(’off”)

24 ax[0,3].axis(’off’);
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Code block 16.10: MATLAB

A = randn(5,3);
[U,S,V] = svd(A);

for i=1:3
subplot (2,4,1)
onelayer = U(:,i)*S(i,1)*V(:,i)";
imagesc (onelayer)
title (sprintf(’Layer %g’,i))

subplot (2,4 ,1+4)
lowrank = U(:,1:1)*S(1:i,1:1)%V(:,1:1)";
imagesc (lowrank)
title (sprintf(’Layers 1:%g’,i))
end
subplot (248)
imagesc(A),title (’Original A’)
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4. There are two insights to this challenge. First, U and V must
be orthogonal, which you can obtain via QR decomposition on
random matrices. Second, you only need to specify the target
singular value; the smallest can be 1 and rest can be anything
in between (for simplicity, I've made them linearly spaced from
smallest to largest).

Code block 16.11: Python
m=6; n=16

condnum = 42

U,r = np.linalg.qr( np.random.randn(m,m) )
V,r = np.linalg.qr( np.random.randn(n,n) )

s = np.linspace (condnum,1 ,np.min((m,n)))

S = np.zeros ((m,n))

© 00 N O U = W N

for i in range(min((m,n))):
S[i,i] = s[i]

A = U@sav.T

np.linalg.cond(A)

[
[N )

Code block 16.12: MATLAB
m=6; n=16;
condnum = 42;

[U,r] = qr( randn(m) );
= qr( randn(n) );

s = linspace (condnum,1 ,min(m,n));

S = zeros(m,n);

© 00 N O U W N
—

for i=1:min(m,n)

10 S(i,i) = s(i);
11 end

12 A = UxSxV’;

13 cond(A)




5. You might have struggled a bit with transforming the image,
but hopefully the SVD-related code wasn’t too difficult. My
code below reconstructs the image using components 1-20, but

you can also try, e.g., 21-40, etc.
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e e T e =
S U W N~ O

17
18
19
20
21
22
23

Code block 16.13: Python

import numpy as np

import matplotlib.pyplot as plt

from imageio import imread

pic = imread(’https://upload.wikimedia.org/
wikipedia/en/8/86/Einstein__tongue.jpg’)

np.array (pic ,dtype=float) # convert to float

U,s,V = np.linalg.svd( pic )
S = np.zeros(pic.shape)
for i in range(len(s)):

S[i,i] = s[i]

comps = slice (0,21) # low—rank approx.

lowrank=U[: , comps]|@S[comps, comps|@QV[comps , : |

# show the original and low—rank
plt.subplot (1,2,1)
plt .imshow ( pic ,cmap="gray ")
plt.title (’Original ”)
plt.subplot (1,2,2)
plt .imshow (lowrank ,cmap="gray ")
plt.title ( "Comps. %g—%g’
%(comps . start ,comps.stop —1));
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Code block 16.14: MATLAB

pic = imread(’https://upload.wikimedia.org/
wikipedia/en/8/86/Einstein_tongue.jpg’);
pic = double(pic); % convert to double

[U,S,V] = svd( pic );
comps = 1:20; % low—rank approximation
lowrank = U(:,comps) x

Y

S (comps, comps ) *V(:,comps) ’;
% show the original and low—rank
subplot (121)
imagesc(pic), axis image
title (’Original ”)
subplot (122)
imagesc (lowrank), axis image
title (sprintf(’Comps. %g—%g’ ,...

comps (1) ,comps(end)))

colormap gray




6. The low-rank calculations and plotting are basically the same
as the previous exercise. The main additions here are comput-
ing percent variance explained and thresholding. It’s a good
idea to check that all of the normalized singular values sum to
100.

Code block 16.15: Python

1 # convert to percent explained

2 s = 100%s/np.sum(s)

plt .plot (s, ’s—"); plt.xlim ([0,100])
plt . xlabel (’Component number’)
plt.ylabel (’Pct variance explains’)
plt .show ()

thresh = 4 # threshold in percent
I,J=np.ix_ (s>thresh ,s>thresh) # comps > X%
10 lowrank = np.squeeze (U[:,J]@QS[I,J]@QV[],:])
11

12 # show the original and low—rank

13 plt.subplot(1,2,1)

14 plt.imshow (pic ,cmap="gray )

15 plt.title(’Original’)

16 plt.subplot(1,2,2)

17 plt.imshow (lowrank ,cmap="gray ")

18 plt.title ('%g comps. at %gl’

19 %(len (I),thresh));

© 0 N O Ot ke W
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% convert to percent explained

s = 100xdiag(S)./sum(S(:));
plot (s, ’s—"), xlim ([0 100])
xlabel ( ’Component number’)

% show the original and low—rank

figure , subplot(121)

imagesc(pic), axis image

title (’Original 7)

subplot (122)

imagesc (lowrank), axis image

title (sprintf(’%g comps with > %g%%’
sum (comps) , thresh))

Code block 16.16: MATLAB

ylabel (’Pct variance explains’)

thresh = 4; % threshold in percent
comps = s>thresh; |
lowrank = U(:,comps) x

S (comps, comps)*V(:,comps) ’;

colormap gray

% comps greater than X%

PRI




7. The RMS error plot goes down when you include more compo-
nents. That’s sensible. The scale of the data is pixel intensity
errors, with pixel values ranging from 0 to 255. However, each
number in the plot is the average over the entire picture, and
therefore obscures local regions of high- vs. low-errors. You

can visualize the error map (variable diffimg).

Code block 16.17: Python
1 RMS = np.zeros(len(s))
for si in range(len(s)):
i=si+l
lowrank = U[:,:1]@S[:i,:1]@QV[:1,:]
diffimg = lowrank — pic

RMS[si] = np.sqrt (np.mean(
diffimg . flatten ()*x2))

© 00 N O O ke W N

plt.plot (RMS, 's—")
plt . xlabel ("Rank approximation’)
plt.ylabel(’Error (a.u.)’);

— =
—= O

Code block 16.18: MATLAB

for si=1l:length(s)
lowrank=U(:,1:8i)*S(1:81,1:81)*V(:,1:8i)7;
diffimg = lowrank — pic;
RMS(si) = sqrt(mean(diffimg (:).72));

end

plot (RMS, 's—")

xlabel (’Rank approximation’)

ylabel (’Error (a.u.)’)

0 O U R W NN =
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8. This code challenge illustrates that translating formulas into
code is not always straightforward. I hope you enjoyed it!

Code block 16.19: Python

1 import numpy as np

2 = np.random.randint (

3 low=1,high=7,size=(4,2))

4 U,s,V = np.linalg.svd(X)

5 S = np.zeros (X.shape)

6 for i,ss in enumerate(s):

7 S[i,i] = ss

8 longV1l = np.linalg.inv( (UQSQV).TQU@SAV )
9 @ (Uasav).T
10 longV2 = np.linalg.inv( V.TQS.TAQU.TAQU@SAV )
11 @ (Uasav).T
12 longV3 = np.linalg.inv (V.TGQS.TQSQV)
13 @ (Uasav).T
14 longV4 = V@np. linalg .matrix_power (S.TQ@S,—1)
15 @ vVav.TaS.Tau.T
16 MPpinv = np.linalg . pinv(X)

Code block 16.20: MATLAB

1 X = randi([1 6],[4 2]);

2 [U,S,V] = svd(X);

3 longV1 = inv ((UxSxV’) "%« UxS*xV’)*x (UxSxV’) ’;
4 longV2 =inv (VxS « U’ «UxS*V’) % (UxSxV’) 7;

5 longV3 = inv (VxS’«S*xV’) x (UxSxV’) ’;

6 longV4 = Vx(S'%S) " (—1)*xV’«VxS’%xU’;

7 MPpinv = pinv (X);




9. The pseudoinverse of a column of constants is a row vector
where each element is 1/kn where k is the constant and n is
the dimensionality. The reason is that the vector times its
pseudoinverse is actually just a dot product; summing up k£ n
times yields nk, and thus 1/nk is the correct inverse to yield
1. (I'm not sure if this has any practical value, but I hope it
helps you think about the pseudoinverse.)

Code block 16.21: Python

import numpy as np

k=5

n =13

a = np.linalg.pinv(np.ones((n,1))xk)
a — 1/(kxn)

T = W N =

Code block 16.22: MATLAB

= 5;
= 13;

= pinv(ones(n,l)*k);
— 1/(kxn)

I N
o B
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10. The differences between the two approaches is much more ap-
parent. The issue is that high-conditioned matrices are more
unstable and thus so are their inverses. In practical applica-
tions, B might be singular, and so an eigendecomposition on
B~ 'A is usually not a good idea.

Code block 16.23: Python

1 import numpy as np

2 from scipy.linalg import eig

3 import matplotlib.pyplot as plt

4

5 M= 10

6 cns = np.linspace(10,1e¢10,30)

7 avediffs = np.zeros(len(cns))

8

9

10 for condi in range(len(cns)):

11

12

13 U,r = np.linalg.qr( np.random.randn (M,M)
14 V,r = np.linalg.qr( np.random.randn (MM)
15 S = np.diag(np.linspace (cns[condi],1 ,M))
16 A = Ua@sav.T

17

18

19 U,r = np.linalg.qr( np.random.randn (M,M)
20 V,r = np.linalg.qr( np.random.randn (M,M)
21 S = np.diag(np.linspace (cns[condi],1 ,M))
22 B = U@sav.T

23

24

25 11 = eig(A,B)[0]

26 12 = eig(np.linalg.inv(B)@QA)[0]

27 .sort ()

28 12 .sort ()

29

30 avediffs[condi] = np.mean(np.abs(11-12))
31

32 plt.plot(cns,avediffs);




Code block 16.24: MATLAB

1 M= 10; % matrix size

2
3

© 0 N O Ot

10
11
12
13
14
15
16
17
18
19
20
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22
23
24
25
26
27
28
29
30
31

cns

= linspace(10,1e10,30);

% condition numbers

for

condi=1:length (cns)

% create A
[U,~] = qr( randn(M) );
[V,~] = qr( randn(M) );

S = diag(linspace(cns(condi),1 ,M));
A =TUxS*xV’; % construct matrix
% create B
[U,~] = qr( randn(M) );
[V,~] = qr( randn(M) );
S = diag(linspace(cns(condi),1 ,M));
B = UxSxV’; % construct matrix
% eigenvalues and sort
11 = eig(A,B);
12 = eig(inv(B)*A);
11 = sort(11);
12 = sort(12);
% store the differences
avediffs (condi) = mean(abs(11-12));
end
plot (cns,avediffs)
xlabel (’Cond. number )
ylabel ( 7\ Delta\lambda )

16.14 CODE SOLUTIONS
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CHAPTER 17

QUADRATIC FORM AND
DEFINITENESS

START THIS CHAPTER HAPPY



QUADRATIC FORM

The quadratic form is one of my favorite topics in linear algebra,
because it combines math, geometry, art, data visualization, mul-
tivariate signal processing, and statistics, all into one nifty little
package.

One important note before we start: The quadratic form applies
only to square matrices. Thus, throughout this chapter, you can
assume that all matrices are square. Some will be symmetric or
non-symmetric, some will be invertible and some singular. There
is some debate about whether the quadratic form should be ap-
plied to non-symmetric matrices, because many special properties
of the quadratic form are valid only when the matrix is symmet-
ric. I will relax this constraint and point out when symmetry is

relevant.

Algebraic perspective

Imagine an M x M matrix and an M x 1 column vector. You
already know that a matrix times a vector will produce another
M-element vector whose orientation depends on whether the vec-
tor pre- or post-multiplies the matrix. In particular, Av will pro-
duce a column vector while vI A will produce a row vector. But
what will happen if we both pre- and post-multiply by the same
vector?

viAv =¢ (17.1)

Take a moment to check the sizes of the multiplications to con-
firm that this vector-matrix-vector product really does produce
a scalar (that one is the Greek letter "zeta"). That’s pretty
neat, because in total this vector-matrix-vector expression con-
tains 2M + M? elements, which can be a huge number of compu-
tations (e.g., 10,200 elements for M = 100), and it all boils down

to a single number.

Equation 17.1 is called the "quadratic form of matrix A" and it
represents the energy in the matrix over the coordinate space de-
scribed by vector v. That "energy" definition will make more sense



in the next section when you learn about the geometric perspec-
tive of the quadratic form. First I want to show a few numerical

examples, using the same matrix and different vectors.
2 4] 3 2
A= V] = Vo =
0 3 -1 1

- 2 4] [ 3
viAv = [3 1] [o 5 [_1] =9 (17.2)

viAvy = [2 1] [(2) ;"] ﬂ =19 (17.3)

Two things in particular to notice about this example: The ma-
trix is always pre- and post-multiplied by the same vector; and
the same matrix multiplied by different vectors will give different
results (that’s obvious, but it becomes important later). Again,
we’ll return to the interpretation of this in the next section.

Now let’s generalize this by using letters instead of numbers. I
will use a, b, ¢, d for the matrix elements and x,y for the vector

elements.
[x y} [Z Z] B] = [aw +cy bxr+ dy} Lﬂ (17.4)
= (az + cy)x + (bz + dy)y (17.5)
= ax® + (c + d)zy + dy? (17.6)

Please take a moment to work through the multiplications by hand
to confirm that you arrive at the same expression. And then take
a moment to admire the beauty of what we've done: We have
converted a vector-matrix-vector expression into a polynomial.

2 and their cross-

Notice that we get three terms here: 2, y
product zy. The matrix elements become the coefficients on these
terms, with the diagonal elements getting paired with the individ-
ual vector elements and the off-diagonal elements getting paired

with the cross-term.

Now imagine that the matrix elements are fixed scalars and =z
and y are continuous variables, as if this were a function of two

17.1 ALGEBRAIC PERSPECTIVE
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Quadratic is a gen-
eral term for a 2"¢
degree polynomial.

variables:

F(A,vi) = [:cz yz} [Z Z] Bl] = ax} + (c+ d)ziyi + dyf = Gi

(17.7)

The interpretation is that for each matrix A, we can vary the
vector elements x; and y; and obtain a scalar value for each (x;, y;)

pair.

It’s often fruitful in math to think about what happens to func-
tions as their variables approach 0 and +oco0. As x and y go to
zero, it is trivial that ¢ will also go to zero (anything times zeros
vectors will be zero). As x and y grow towards infinity, the func-
tion can either go to plus infinity, minus infinity, or can balance
out to zero, depending on the exact coefficients. For example, if
a > d > 0 then ¢ will grow to plus infinity as « tends to plus or

minus infinity.

Whether this expression is always positive, always negative, or
sometimes positive and sometimes negative, is an important ques-
tion that defines the definiteness of the matrix. More on this later
in the chapter.

The squared terms are why this expression is called the quadratic
form. Below is an example with a 3 x 3 matrix.

a f d| |z

VTAV:{x Yy z] f b el ly (17.8)
d e c| |z

x
:{azz:—kfy—i—dz fr+by+ez d:v—i—ey—}—cz} Y
z

(17.9)

= ax® + fyr + dzx + fry + by® + ezy + daz + eyz + c2®
(17.10)

= ax?® + by? + c2% + 2dxz + 2eyz + 2fxyz (17.11)

Yeah, that’s quite a lot to look at. Still, you see the squared terms
and the cross-terms, with coefficients defined by the elements in



the matrix, and the diagonal matrix elements paired with their

corresponding squared vector elements.

I’'m sure you’re super-curious to see how it looks for a 4x4 matrix.
It’s written out below. The principle is the same: diagonal matrix
elements are coefficients on the squared vector elements, and the
off-diagonals are coefficients on the cross-terms. Just don’t expect

me to be patient enough to keep this going for larger matrices...

a b ¢ d| |w

b e f g||x|
{wxyz}cfhiy_

d g 1 j| |z

aw? + ex® + hy? + j 22 4 2bwx + 2cwy + 2dwz + 2 fxy + 2gxz + 2iyz

Symmetric matrices When the matrix is symmetric, then the
quadratic form is also symmetric. This is easily proven by trans-

posing the entire expression:

T
(VTAV) = vIATVIT = vTAv (17.12)

Complex matrices The quadratic form for complex-valued ma-
trices is nearly the same as for real-valued matrices, except that

the Hermitian transpose replaces the regular transpose:
H _
viAv =( (17.13)

If the matrix A is Hermitian (the complex version of symmetric,
thus A" = A), then the quadratic form is real-valued. Non-
Hermitian matrices will have complex-valued quadratic forms.
Equations 17.12 and 17.13 are two of the reasons why some peo-
ple limit the quadratic form to symmetric (and Hermitian) ma-

trices.

Rectangular matrices Technically, the quadratic form is math-
ematically valid for rectangular matrices, if the first and second

vectors differ.

Recall that
vl = vl fora

real-valued vector.
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aw? + ex? + hy? + 2bwz + 2cwy + dzw + 2fzy + gzx + izy

This result is slightly harder to interpret, because the left side is
in R? whereas the right side is in R* (in this particular example).

This situation is not further considered.

Code Not much new here, but be mindful of vector orientations:
The vector on the left needs to be a row vector, regardless of its
original orientation. I've swapped the orientations in the code
just to make it a bit more confusing (which requires you to think

a bit morel!).

Code block 17.1: Python

import numpy as np

m= 4

v = np.random.randn (1 ,m)

1
2
3 A = np.random.randn (m,m)
4
5 v@QAQv.T

Code block 17.2: MATLAB

1 m= 4;

2 A = randn(m);
3 v = randn(1,m);
4

vxAxv’

Notice that when A = I, the quadratic form reduces to
the dot product of the vector with itself, which is the
magnitude-squared of the vector. Thus, putting a dif-
ferent matrix in between the vectors is like using this

Reflection

matrix to modulate, or scale, the magnitude of this vec-

tor. In fact, this is the mechanism for measuring distance

in several non-Euclidean geometries.



Geometric perspective

Let’s return to the idea that the quadratic form is a function that
takes a matrix and a vector as inputs, and produces a scalar as

an output:

f(A,v)=vTAv =¢ (17.14)

Now let’s think about applying this function over and over again,
for the same matrix and different elements in vector v. In fact, we
can think about the vector as a coordinate space where the axes
are defined by the vector elements. This can be conceptualized
in R?, which is illustrated in Figure 17.1. In fact, the graph of
f(A,v) for v € R? is a 3D graph, because the two elements of v
provide a 2D coordinate space, and the function value is mapped
onto the height above (or below) that plane.

Thus, the 2D plane defined by the v; and vs axes is the co-
ordinate system; each location on that plane corresponds to a
unique combination of elements in the vector, that is, when set-
ting v = [v1, v2]. The z-axis is the function result (¢). The vertical
dashed gray lines leading to the gray dots indicate the value of

for two particular v’s.

Once we have this visualization, the next step is to evaluate
f(A,v) for many different possible values of v (of course, using
the same A). If we keep using stick-and-button lines like in Fig-
ure 17.1, the plot will be impossible to interpret. So let’s switch
to a surface plot (17.2).

That graph is called the quadratic form surface, and it’s like an
energy landscape: The matrix has a different amount of "energy"
at different points in the coordinate system (that is, plugging in
different values into v), and this surface allows us to visualize that

energy landscape.

Let’s make sure this is concrete. The matrix that I used to create

Af(Av)

y

Figure 17.1: A vi-
sualization of the
quadratic form re-
sult of a matrix at
two specific coor-
dinates.
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Parentheses added
to indicate the op-
eration I did first.

Figure 17.2: A better visualization of the quadratic form sur-

L

Now let’s compute one specific data value, at coordinate (-2,1),

face of a matrix.

that surface is

which is near the lower-left corner of the plot. Let’s do the

(o 1] DRt i

The value (the height of the surface) of the function at coordinate
(-2,1) is 1. That looks plausible from the graph.

math:

The coordinates for this quadratic form surface are not bound by
+2; the plane goes to infinity in all directions, but it’s trimmed
here because I cannot afford to sell this book with one infinitely
large page. Fortunately, though, the characteristics of the surface
you see here don’t change as the axes grow; for this particular ma-
trix, two directions of the quadratic form surface will continue to
grow to infinity (away from the origin), while two other directions

will continue at 0.

This surface is the result for one specific matrix; different matri-
ces (with the same vector v) will have different surfaces. Figure
17.3 shows examples of quadratic form surfaces for four different
matrices. Notice the three possibilities of the quadratic form sur-
face: The quadratic form can bend up to positive infinity, down



Figure 17.3: Examples of quadratic form surfaces for four dif-
ferent matrices. The v{,v; axes are the same in all subplots,
and the f(A,v) = ( axis is adapted to each matrix.

to negative infinity, or stay along zero, in different directions away

from the origin of the [v1, v2] space.

There is more to say about the relationship between the matrix
elements and the features of the quadratic form surface. In fact,
the shape and sign of the quadratic form reflects the definiteness of
the matrix, its eigenvalues, its invertibility, and other remarkable
features. For now, simply notice that the shape and sign of the

quadratic form surface depends on the elements in the matrix.

That said, one thing that all quadratic form surfaces have (for all
matrices) is that they equal zero at the origin of the graph, corre-
sponding to v = [0 0]. That’s obvious algebraically—the matrix
is both pre- and post-multiplied by all zeros—but geometrically,
it means that we are interested in the shape of the matrix relative

to the origin.

This visualization of the quadratic form is beautiful and insight-
ful, but is limited to 2x2 matrices. The quadratic form surface of

a 3x3 matrix, for example, is some kind of 4D hyper-sheet that
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Philosophical side-
note: What does
it mean to "even-
tually" get to oo

and how long
does that take?

The Cauchy-
Schwarz inequal-
ity for the dot
product was on
page 49 if you

I I A P

is floating on top of a 3D coordinate space. It could be com-
pressed down into 3D as a solid block where each point in that
block has a color value. But we still couldn’t visualize that dense
block. Nonetheless, the concept is the same: the quadratic form
of a matrix is zero at the origin of space, and in different direc-
tions can go up to infinity, down to minus infinity, or lie flat along
zero, depending on the values in the matrix. We're going to quan-
tify those directions later, but there is more to explore about the
quadratic form.

Code I bet you’re hoping to see to code to generate those beau-
tiful surfaces! That’s reserved for one of the code challenges.

The normalized quadratic form

On the quadratic form surface, any direction away from the origin
goes in one of three directions: down to negative infinity, up to
positive infinity, or to zero. However, the surface doesn’t neces-
sarily go to infinity equally fast in all directions; some directions
have steeper slopes than others. However, if a quadratic form goes

up, it will eventually get to infinity.

That’s because the value of the function at each [v1, v2] coordinate
is not only a function of the matrix; it is also a function of the
vector v. As the vector elements grow, so does the quadratic form.
That statement may feel intuitive, but we’re going to take the
time to prove it rigorously. This is important because the proof
will help us discover how to normalize the quadratic form, which
becomes the mathematical foundation of principal components

analysis.

The proof involves (1) expressing the quadratic form as a vector
dot product, (2) applying the Cauchy-Schwarz inequality to that
dot product, and then (3) applying the Cauchy-Schwarz inequality
again to the matrix-vector product.



To start with, think about vT Av as the dot product between two
vectors: (v)T(Av). Then apply the Cauchy-Schwarz inequality:

VI AV| < [|v][[|Av]| (17.15)
The next step is to break up ||Av|| into the product of norms:
[Av] < A v (17.16)
Then we put everything together:
VI AV| < |[v][[|All£[lv]
v Av| < [|A]|p|lv] (17.17)

Equation 17.17 is the crux of our predicament: The magnitude of
the quadratic form depends on the matrix and on our coordinate
system. In other words, of course the quadratic form tends to
plus or minus infinity (if not zero) as it moves away from the
origin of the space defined by v (and thus as the magnitude of v

increases).

You can call this a feature or you can call it a bug. Either way,
it impedes using the quadratic form in statistics and in machine
learning. We need something like the quadratic form that reveals
important directions in the matrix space independent of the mag-
nitude of the vector that we use for the coordinate space. That
motivates including some kind of normalization factor that will al-
low us to explore the quadratic form in a way that is independent

of the vector v.

To discover the right normalization factor, let’s think about the
quadratic form of the identity matrix. What values of v will
maximize the quadratic for vIIv? The mathy way of writing this

question is:
arg max {VTIV} (17.18)
v

This means we are looking for the argument (here v) that maxi-

mizes the expression.

Obviously, the quadratic form goes to infinity in all directions,
because we’re simply adding up all of the squared vector elements.

The Cauchy-
Schwarz inequality
for matrix-vector
multiplication was
on page 168.
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So then, what normalization factor could we apply to remove this
trivial growth?

Perhaps you’ve already guessed it: We normalize by the squared
magnitude of v. We can put this normalization factor in the
denominator. Let’s start with our simple 2x2 example (Equation
17.6):

az? + (¢ + d)zy + dy?

A = 17.19
f( 7V) ) + yg ( )
The more general expression looks like this:
The normalized quadratic form
vTAv
fnorm(A;V) = vIiv (17.20)

Perhaps it isn’t yet obvious why normalizing by the squared vector
magnitude is the right thing to do. Let’s revisit Equation 17.17

but now include the normalization factor.

vIAv] _ [|A]lrv]®

17.21
ME < IV (17.21)
vTAv
VA < s (17.22)

Now we see that the magnitude of the normalized quadratic form
is bounded by the magnitude of the matrix, and does not depend
on the vector that provides the coordinate space.

Let’s apply this normalization to the quadratic form of the iden-
tity matrix.
1

A% A%

[Iv]]?
Geometrically, this means that the normalized quadratic form sur-
face of the identity matrix is a flat sheet on the v, v plane.

Have you noticed the failure scenario yet? If you don’t already
know the answer, I think you can figure it out from looking again



at Equation 17.20. The failure happens when v = 0, in other

words, with the zeros vector.

The normalized quadratic form surfaces look quite different from
the "raw" quadratic form surfaces. Figure 17.4 shows the surfaces
from the normalized quadratic forms for each of the four matrices

shown in Figure 17.3.

If you are reading this book carefully and taking notes
(which you should be doing!), then you’ll remember that
on page 13.1 I introduced the concept of "mapping over
magnitude." The normalized quadratic form can be con-

ceptualized in the same way: It’s a mapping of a matrix

Reflection

onto a vector coordinate space, over the magnitude of

that coordinate space. ]

Figure 17.4: Same as Figure 17.3 but using the normalized
quadratic form equation. Also notice the differences in the (
axis; the number at the top-left of each graph is the Frobenius
norm of that matrix.

17.3 THE NORMALIZED QUADRATIC FORM
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All analogies
break down at
some point, so

you should never
think too deeply
about them.

Important informa-
tion hidden inside
a long paragraph.
Terrible textbook

writing style!

Eigenvectors and quadratic form surfaces

Fach normalized quadratic form surface in Figure 17.4 has two
prominent features: a ridge and a valley. Going back to the in-
terpretation that the quadratic form surface is a representation
of the "energy" in the matrix along particular directions, the nor-
malized surface tells us that there are certain directions in the
matrix that are associated with maximal and minimal "energy" in

the matrix.

(What does matrix "energy" mean? I put that term in apology
quotes because it is an abstract concept that depends on what the
matrix represents. In the next two chapters, the matrix will con-
tain data covariances, and then "energy" will translate to pattern
of covariance across the data features.)

Thus, normalizing out the magnitude of the vector v revealed im-
portant directions in the matrix. A 2x2 matrix has two important
directions, and more generally, an N x N matrix has N important
directions.

Higher-dimensional quadratic form surfaces are impossible to vi-
sualize and difficult to imagine, but the concept is this: The nor-
malized quadratic form surface has an absolute ridge and an ab-
solute valley, and N — 2 saddle directions. A saddle point is a
point that goes up in some directions and down in other direc-
tions (the upper-left matrix in Figure 17.3 shows an example of a
saddle-point in 3D); a saddle line is a hyper-line that is straight,
but the surrounding space curves up in some directions and curves
down in other directions. An analogy is that the absolute ridge
and valley are like the global maximum and minimum, and the

intermediate saddle points are like local maxima and minima.

For the 3D surfaces in these figures, you can identify the ridges
and valleys simply by visual inspection. But that’s obviously not
very precise, nor is it scalable. It turns out that the eigenvec-
tors of a symmetric matrix point along the ridges and valleys of
the normalized quadratic form surface. This applies only to sym-



metric matrices; the eigenvectors of a non-symmetric matrix do
not necessarily point along these important directions. This is
another one of the special properties of symmetric matrices that

make all other matrices fume with jealousy.

To be more precise: The eigenvector associated with the largest
eigenvalue points from the origin along the ridge, and the eigen-
vector associated with the smallest eigenvalue points from the
origin along the valley. You can see this in Figure 17.5, which
shows the quadratic form surface from the top looking down, and

the eigenvectors of the matrix plotted on top.

Figure 17.5: The bird’s-eye-view of the quadratic form surface
of a symmetric matrix, with the eigenvectors plotted on top.
The matrix and its eigenvectors (W, rounded to the nearest
tenth) are printed on top. Colorbar indicates the value of (.
Notice the small missing box at the center; this was an NaN

value corresponding to v = 0.

Why is this the case? Why do the eigenvectors point along the
directions of maximal and minimal "energy" in the matrix? The
short answer is that the vectors that maximize the quadratic form
(Equation 17.20) turn out to be the eigenvectors of the matrix.
A deeper discussion of why that happens is literally the mathe-
matical basis of principal components analysis, and so I will go
through the math in that chapter.

17.4 EVECS AND THE QF SURFACE
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One of the most important applications of the nor-
malized quadratic form is principal components anal-
ysis (PCA), which is a dimension-reduction and data-
exploration method used in multivariate statistics, sig-
nal processing, and machine learning. The math of PCA

is pretty simple: Compute a covariance matrix by mul-

Reflection

tiplying the data matrix by its transpose, eigendecom-
pose that covariance matrix, and then multiply the data
by the eigenvectors to obtain the principal components.
More on this in Chapter 19!

Definiteness, geometry, and eigenvalues

As with other properties introduced in this chapter, "definiteness"
of a matrix is a property that applies only to square matrices.
Some strict definitions limit definiteness to symmetric matrices,
but I will relax this and say that any square matrix can have a

definiteness.

Geometrically, the definiteness of a matrix refers to whether the
sign of the non-normalized quadratic form surface is positive, neg-
ative, or zero in different directions away from the origin. You can
see in the examples in Figure 17.3 that some matrices have posi-
tive surfaces, some negative, and some have ¢ of both signs. (The

zero point v = 0 is ignored because ¢ = 0 is trivially the case.)

The algebraic interpretation of definiteness is whether vT Av is
positive, negative, or zero, for all possible vectors v (again, ex-

cluding v = 0).

There are five categories of definiteness. Table 17.1 provides an

overview of the categories and their properties.

A few observations of Table 17.1: Definite matrices are always in-

vertible while semidefinite matrices are never invertible (because



Category Geometry | Eigenvalues | Invertible
Positive definite T + Yes
Positive semidefinite 0 +, 0 No

Indefinite T and | +, - Possibly
Negative semidefinite 3,0 -0 No
Negative definite + - Yes

Table 17.1: Properties of matrix definiteness categories. T and
J indicate that the quadratic form surface goes up or down rel-
ative to the origin; "0" indicates that it can also be zero outside
the origin. "+" and "-" refer to the signs of the eigenvalues of

the matrix.

they have at least one zero-valued eigenvalue). The invertibility
of indefinite matrices is unpredictable; it depends on the numbers
in the matrix. Finally, matrix definiteness is exclusive—a ma-
trix cannot have more than one definiteness label (except for the

always-bizarre zeros matrix; see Reflection Box).

With this list in mind, refer back to Figure 17.3 and see if you
can determine the definiteness of each matrix based on visual

inspection and the associated descriptions.

Although I really enjoy looking at quadratic form surfaces, they
are not the best way to determine the definiteness of a matrix.
Instead, the way to determine the definiteness category of a matrix

is to inspect the signs of the eigenvalues.

Question: Can you determine the definiteness of a matrix from

its singular values? The answer is in the footnote.!

Complex matrices For Hermitian matrices (remember that a
Hermitian matrix is the complex version of a symmetric matrix:
it equals its Hermitian transpose), the story is exactly the same.
This is because vHECv is a real-valued number, and because the

eigenvalues of a Hermitian matrix are real-valued.

!The answer is No, because all singular values are non-negative.

Indefinite matri-
ces are sometimes
called indetermi-

nate.
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w instead of v. Try
to see the concepts
behind the letters.

When it comes to definiteness, no matrix is weirder than
the zeros matrix. Its quadratic form surface is flat and
zero everywhere, and it actually belongs to two defi-
niteness categories: positive semidefinite and negative

Reflection

semidefinite. I’'m not sure if that will help you live a
richer, healthier, and more meaningful life, but I thought

I’d mention it just in case.

The definiteness of ATA

Here is yet another special property of the symmetric matrix
ATA: Tt is guaranteed to be positive definite or positive semidef-
inite [often written "positive (semi)definite']. It cannot be indefi-

nite or negative (semi)definite.

The proof here is fairly straightforward. Let’s start by defining
the quadratic form for matrix S = ATA.

wiSw =wl (ATA)w (17.23)
— (wTAT)(Aw)
— (Aw)T(Aw)

= || Aw]?

The key take-home message here is that the quadratic form of
a matrix ATA can be re-written as the squared magnitude of a
matrix times a vector. Magnitudes cannot be negative. A magni-
tude (and, thus, the quadratic form) can be zero when the vector
is zero. In this context, it means that Aw = 0 for at least one
vector w. And because we do not consider the zeros vector here,
then it means that A has a non-trivial null space, which means

that it is singular.



(This is another nice example of how simply moving parentheses

can provide important insights into linear algebra.)

The conclusion is that any matrix that can be expressed as ATA
is positive definite if it is full-rank, and positive semidefinite if it

is reduced rank.

Before going further, please take a moment to test whether the
above proof works for the matrix AAT. (Obviously it will, but

it’s good practice to work through it on your own.)

Important: All matrices S = ATA are symmetric, but not all
symmetric matrices can be expressed as ATA (or AAT). A sym-
metric matrix that cannot be decomposed into another matrix
times its transpose is not necessarily positive definite. Symme-
try does not guarantee positive (semi)definiteness.

Here is an example:

9 4
) . As=-9.8,9.8
49

Eigenvalues and matrix definiteness

A few pages ago, I wrote that the best way to determine the
definiteness of a matrix is to inspect the signs of its eigenvalues.
You don’t even need to know the magnitudes of the eigenvalues;
you only need to know whether they are positive, negative, or

Zero.

Positive definite case Let’s start by proving that all eigenvalues
of a positive definite matrix are positive. We begin by writing
the eigenvalue equation and left-multiplying by the eigenvector to
arrive at the quadratic form. Assume that matrix A is positive

Decomposing a
symmetric ma-
trix S into ATA
is the goal of the
Cholesky decom-
position, which is
valid only for posi-
tive (semi)definite
matrices.
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definite.

Av = \v (17.24)
vIiAv = viav (17.25)
vIiAv = \wlv (17.26)
vIiAv = \|lv|? (17.27)

Equation 17.27 says that the (non-normalized) quadratic form is
equal to the squared vector magnitude times the eigenvalue. Our
assumption is that A is positive definite, meaning that v Av is
positive for all vectors v # 0. Thus, the left-hand side of the
equation is always positive. On the right-hand side we have the
product of two terms, one of which must be positive (||v||?), and
the other of which () in theory could be positive or negative. But
if A were negative, then the left-hand side must also be negative.
Ergo, A must be positive.

But wait a minute: the quadratic form is defined for all vectors,
not only for eigenvectors. You might be tempted to say that
our conclusion (positive definite means all positive eigenvalues) is

valid only for eigenvectors.

The key to expanding this to all vectors is to appreciate that as
long as the eigenvectors matrix is full-rank and therefore spans all
of RM, any vector can be created by some linear combination of
eigenvectors. Let’s see how this works for a linear combination of

two eigenvectors.

A(Vl + V2) = ()\1 + )\2)(V1 + Vg) (1728)
(Vl + VQ)TA(Vl + VQ) = (V1 + VQ)T()\l + )\2)(V1 + VQ) (17.29)

= (A1 + Xo)||vi + Va2 (17.30)

Appreciating that (vq + vg) is simply a vector and (A + A2) is



simply a scalar, we can simplify:

W =V] + Va (17.31)
B= (A + o) (17.32)
wlAw = B|w|? (17.33)

Equation 17.33 allows us to draw the same conclusion as Equa-
tion 17.27. In this case, the two eigenvectors were each weighted
(implicitly) with 1. You can work through on your own how to
modify this equation for any other linear combination of the eigen-
vectors; it will involve scalar-multiplying each vector v; by some
arbitrary scalar «;. Even if you choose a negative-valued scalar,
it will be squared on both sides of the equation and thus would

not change the conclusion.

That conclusion is that if we assume that a matrix is positive
definite, then all of its eigenvalues must be positive. You can also
think about this proof the other way: If a matrix has all positive
eigenvalues (meaning the right-hand side of Equation 17.33 is al-
ways positive), then it is a positive definite matrix (meaning the
left-hand side of that equation is always positive).

Positive semidefinite case Let’s continue our proof with posi-
tive semidefinite matrices, which Table 17.1 claims have all non-

negative eigenvalues.

We don’t need to write out a new set of equations. All we need to
do is change our assumption about the matrix: Now we assume
that the quadratic form of A is non-negative, meaning that ¢ can
be positive and it can be zero, but it can never be negative. Below
is Equation 17.27 repeated for reference.

vIAv = \||v]?

Again, the right-hand-side of the equation has a term that is
strictly positive and a term that could be positive, negative, or
zero. The left-hand side of the equation can take values that are
positive or zero, but not negative. This proves that at least one
eigenvalue must be zero, and all non-zero eigenvalues must be pos-
itive. And the proof works the other way: If all eigenvalues are

Pro life tip: Some-
times you need to
reassess your as-
sumptions about
matrices, yourself,
other people, life,
etc.
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zero or positive, then the quadratic form must be non-negative,
which is definition of positive semidefinite.

The other categories I trust you see the pattern here. Proving
the relationship between the signs of the eigenvalues and the def-
initeness of a matrix does not require additional math; it simply
requires changing your assumption about A and re-examining the
above equations. As math textbook authors love to write: The
proof is left as an exercise to the reader.



Code challenges

1. Write code to create and visualize the quadratic form surfaces

of 2x2 matrices.

. The goal of this code challenge is to explore the definiteness of
random-integer matrices. Start by writing code that generates
a 4 x4 matrix of random integers between -10 and +10, and
that has all real-valued eigenvalues. You could solve this by
multiplying the matrix by its transpose, but that will limit the
possibilities of definiteness categories. Thus, continue creating
random matrices until all 4 eigenvalues are real-valued. Next,
compute the definiteness category of that matrix.

Once you have the code working, embed it inside a for-loop to
generate 500 matrices. Store the definiteness category for each
matrix. Finally, print out a list of the number of matrices in
each definiteness category. What have you discovered about

the quadratic forms of random matrices?

17.8 CODE CHALLENGES
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Code solutions

1. The code below computes the normalized quadratic form sur-
faces. You can modify the code to create the non-normalized
quadratic form surface by commenting out the division (lines
14/8 for Python/MATLAB). Mind the parentheses in the nor-

malization step.

Code block 17.3: Python

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from mpl_ toolkits.mplot3d import Axes3D
4

5 A= np.array([[—2,3],[2,8]])

6 vi = np.linspace(—2,2,30)

7 qf = np.zeros((len(vi),len(vi)))

8

9

10 X,Y = np.meshgrid(vi, vi)

11

12 for i in range(len(vi)):

13 for j in range(len(vi)):

14 v = np.array ([ vi[i],vi[j] ])
15 qf [i,j] = v.T@AQv / (v.T@v)
16

17 ax = plt.axes(projection="3d")

18 ax.plot surface(X, Y, qf.T)

19 ax.set_ xlabel(’v 17), ax.set ylabel(’v 27)
20 ax.set_zlabel(’$\zeta$’)

21 plt.show ()
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Code block 17.4: MATLAB

A=11 2; 2 3]; % matrix
vi = —2:.1:2; % vector elements
quadform = zeros(length(vi));
for i=1l:length (vi)
for j=1l:length(vi)
v = [vi(i) vi(j)]’; % vector
quadform (i,j) = v’ *xAxv/(v'*v);
end
end
surf(vi,vi,quadform ")
xlabel (’'v_17), ylabel(’v_2")
zlabel (’$\zeta$’, Interpreter’,’latex’)

17.9 CODE SOLUTIONS
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2. Notice that I've set a tolerance for "zero"-valued eigenvalues,

as discussed in previous chapters for thresholds for computing

rank. You will find that all or nearly all random matrices are

indefinite (positive and negative eigenvalues). If you create

smaller matrices (3x3 or 2x2), you'll find more matrices in

the other categories, although indefinite will still dominate.

Category number corresponds to the rows of table 17.1.
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Code block 17.5: Python

import numpy as np

n =4
nlterations = 500
defcat = np.zeros(nlterations)

for iteri in range(nlterations):

A = np.random.randint (—10,11,size=(n,n))
e = np.linalg.eig(A)[0]

while ~np.all(np.isreal(e)):

A = np.random.randint (—10,11,size=(n,n))
e = np.linalg.eig(A)[0]

t=n*np.spacing (np.max(np. linalg .svd(A)[1]))

if np.all(np.sign(e)==1):

defcat [iteri] =1

elif np.all(np.sign(e)>—1)&sum(abs(e)<t)>0:
defcat [iteri] = 2

elif np.all (np.sign(e)<l)&sum(abs(e)<t)>0:
defcat [iteri] = 4

elif np.all(np.sign(e)==—1):
defcat [iteri] = 5
else:

defcat [iteri] = 3

for i in range(1,6):
print ('cat %g: %g’ %(i ,sum(defcat=i)))
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Code block 17.6: MATLAB

n = 4;
nlterations = 500;
defcat = zeros(nlterations ,1);
for iteri=1:nlterations
% create the matrix
A = randi([—10 10],n);
ev = eig(A); % ev = EigenValues
while ~isreal (ev)
A = randi([—10 10],n);
ev = eig(A);
end
% "zero" threshold (from rank)
t = n *x eps(max(svd(A)));
% test definiteness
if all(sign(ev)==1)
defcat (iteri) = 1; % pos. def
elseif all(sign(ev)>—1) && sum(abs(ev)<t)>0
defcat (iteri) = 2; % pos. semidef
elseif all(sign(ev)<l) && sum(abs(ev)<t)>0
defcat (iteri) = 4; % neg. semidef
elseif all(sign(ev)==—1)
defcat (iteri) = 5; % neg. def
else
defcat (iteri) = 3; % indefinite
end
end
% print out summary
for i=1:5
fprintf(’cat %g: %g\n’,i,sum(defcat=i))
end

17.9 CODE SOLUTIONS
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CHAPTER 18

DATA AND COVARIANCE
MATRICES

START THIS CHAPTER HAPPY



COVARIANCE MATRICES

This chapter may seem like it belongs more in a statistics textbook
than a linear algebra textbook, but correlation and covariance will
bring linear algebra concepts—including the dot product, matrix
multiplication, transposing, symmetric matrices, and inverses—to
the world of statistics and data science. And covariance matrices
are key to principal components analysis, which is the main focus
of the next chapter.

Correlation: Motivation and interpretation

The goal of a correlation analysis is to identify commonalities
between variables. Imagine, for example, the variables "height"
and "weight" measured from a group of people. In general, taller
people tend to weigh more than shorter people. We could visualize
this relationship in a plot that shows a dot for each person, and
their height on the x-axis and weight on the y-axis (Figure 18.1).
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Figure 18.1: A scatter plot showing the relationship between
height and weight. These are made-up data.

Clearly, these two variables are related to each other; you can
imagine drawing a straight line through that relationship. The
correlation coefficient is the statistical analysis method that quan-



tifies this relationship.

Correlation is a bivariate measure, meaning it can only be com-
puted between two variables. In the next section, you’ll see corre-
lation matrices, but a correlation matrix is just a convenient way

of organizing a collection of bivariate correlations.

A correlation coefficient is a number between -1 and +1. -1 means
that the two variables are perfectly negatively correlated (one goes
up when the other goes down), 0 means that there is no relation-
ship between the variables, and +1 means that the two variables
are perfectly positively correlated. Figure 18.2 shows examples of
various relationships and their correlation coefficients.
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Figure 18.2: Four examples of bivariate data and their corre-

lation coefficients ("r" value).

Limited to linearity One thing to know about the correlation
is that it can detect only the linear component of an interaction
between two variables. Any nonlinear interactions will not be
detected by a correlation. The lower-right panel of Figure 18.2
shows an example: the value of y is clearly related to the value
of x, however that relationship is monlinear; there is no linear
component of that relationship. (There are, of course, measures
of nonlinear relationships, such as mutual information. It’s also
possible to transform the variables so that their relationship is

18.1 CORRELATION
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Subtracting the
mean to enforce
an average value
of 0 is also called
"mean-centering."

linearized.)

Before learning the formula to compute the correlation, it’s useful
to learn the formula for a covariance. That’s because the correla-

tion coefficient is simply a normalized version of the covariance.

A covariance is the same concept as a correlation, except it is
not bound by +1. Instead, the covariance is in the same scale
as the data. If you multiply the data by a factor of 1000, then
the covariance will increase proportionally but the correlation will

remain the same.

And before learning about covariance, we need to talk about vari-

ance.

Variance and standard deviation

Variance is a measure of dispersion, which is a general term to
describe how different the data values are from each other.

Variance is defined as the average of the squared differences be-
tween each data value and the data average. It is common to use
the Greek letter o2 to indicate variance. In the formula below, x
is a vector of data points, X is the average of all data values, and
n is the total number of data points.

1
n—1

n
o? = > (xi —x)? (18.1)
i=1
The scalar division by n — 1 is a normalization that prevents the
variance from increasing simply by adding more data, analogous
to dividing a sum by n to compute the average. There is a longer
statistical explanation for why we scale by n — 1 and not n; the
short answer is that mean-centering reduces the degrees of free-
dom by 1. As soon as we know n — 1 data values, we necessarily
know the n'* data value, because we know the dataset average.

You can imagine from the formula that when all data values are



close to the mean, the variance is small; and when the data val-
ues are far away from the mean, the variance is large. Figure
18.3 shows examples of two datasets with the identical means but

different variances.
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Figure 18.3: Examples of datasets with small and large vari-
ance.

It is obvious that we can expand the squared term in Equation
18.1 and rewrite as follows. This is relevant for understanding

covariance.

(18.2)

Once you know the variance, you also know the standard devi-
ation. Standard deviation is simply the square root of variance.
It is implicit that standard deviation is the principal (positive)
square root of variance, because it doesn’t make sense for a mea-
sure of dispersion to be negative, just like it doesn’t make sense

for a length to be negative.

o=Vo? (18.3)

Covariance

The term covariance means variance between two variables. The
covariance between variables x and y is computed by modifying
Equation 18.2.

It is a bit confusing
that o indicates
singular values in
linear algebra and
standard deviation
in statistics. As I
wrote in Chapter
14, terminological
overloading is sim-
ply unavoidable in
modern human civ-

ilization.

18.3 COVARIANCE



COVARIANCE MATRICES

The covariance coefficient

——> x—X)(yi—y) (18.4)

where n is the number of observations, and X and ¥ are the aver-
ages over all elements in x and y. Needless to say, this equation
is valid only when x and y have the same number of elements.

Equation 18.4, though technically correct, is ugly from a linear
algebra perspective. Let’s see if we can make it more compact and
therefore more appealing to an airplane full of linear algebraticians
traveling to Hawaii for holiday (I suppose this could happen; the
universe is a strange and wondrous place):

C:L‘,y = m, X = y =0 (185)

This is looking better. It turns out that the normalization factor
of n — 1 is often unnecessary in applications (for example, when
comparing multiple covariances that all have the same n), there-
fore Equation 18.5 really simplifies to xTy under the assumption
that both variables are mean-centered.

This is a remarkable discovery, because it means that the co-
variance between two variables—one of the most fundamental

building-blocks of statistics, machine-learning, and signal processing—

is nothing more than the dot product between two vectors that

contain data.

This insight gives a huge advantage to understanding covariance
and correlation for anyone who understands the algebraic and
geometric properties of the dot product (that includes you!).



Do data always need to be mean-centered before comput-
ing the covariance? That depends on what will be done
with the covariance. For example, non-mean-centered
covariance matrices produce uninterpretable PCA re-
sults, which you will see in the next chapter. Further-
more, mean-centering ensures that the diagonal of the

Reflection

covariance matrix contains the variances of each data
feature. Thus, it is convenient to mean-center all data
before computing covariances, even if it not strictly nec-

essary for a particular application.

Correlation coefficient

Take a moment to compare Equation 18.6 to Equation 18.4, and

identify the similiarities and differences.

The correlation coefficient

poo— 2= - )i~ )
SN) v e ) s ER

The numerators are the same. The denominator of Equation 18.6
has two terms, each of which is almost identical to the standard
deviation, except that the 1/(n — 1) term is missing. In fact, that
normalization term is missing once in the numerator and twice
in the denominator (each time inside each square root). In other
words, that term cancels and thus is omitted for simplicity.

Again, the formula above is technically correct but is going to give
our plane full of linear algebaticians indigestion. Let us make their
flight more pleasant by rewriting Equation 18.6, again assuming
that the variables are already mean-centered.
_ xly
[Ix[[[lyll

The letter r is commonly used to indicate a correlation coeffi-

Tay (18.7)

cient.

18.4 CORRELATION COEFFICIENT
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Let us meditate on this equation for a moment. This is a perfect
example of the principle of mapping over magnitude: We have a
dot product between vectors, normalized by the product of their
magnitudes. This formula looks similar (though not identical) to
the orthogonal projection of a vector onto a subspace (page 359).
And it looks even more similar to the geometric interpretation of
the dot product, which I’ll discuss presently.

Equation 18.7 nicely shows how a correlation of r = 1 would
be obtained. Imagine replacing y with x; the numerator and
denominator would be identical. Finally, notice that if the data

are already unit-normed, then the denominator is 1.

Cosine similarity I realize that Chapter 3 was a long time ago,
but I hope you remember the geometric formula for the dot prod-
uct, and how we derived a formula for the angle between vectors.
That was Equation 3.16 (page 51), and I will reprint it below for

convenience.

a’b
Bup) = o
cos{0a) = ol

Remarkably, the Pearson correlation coefficient is nothing more
than the cosine of the angle between two vectors—when those
vectors are mean-centered. This is another example of how we
arrived at the same formula from two completely different starting

points (c.f. the least-squares solution).

When the data are not mean-centered, Equation 3.16 is called
cosine similarity. The difference in interpretation and use of cor-
relation vs. cosine similarity is a topic for a machine-learning
course, but you can already see that the two measures are some-
where between identical and similar, depending on the average of
the data values.



Covariance matrices

In applications, it is common to have larger sets of variables, per-
haps dozens, hundreds, or even thousands of variables, all col-
lected from the same individuals (or animals, planets, cells, time
points, whatever is the object of study). For convenience, all of
those variables can be stored in a matrix, with data features (vari-
ables) in the columns, and observations in the rows. This is just
like the design matrices you learned about in the discussion of
least-squares fitting (Chapter 14).

To compute all pairwise covariances, we follow the same principle
as for a single variable, but translate column vectors into matri-

ces.
Cc=X'x (18.8)

Matrix X is the data matrix, and we assume that the columns are
mean-centered. (For simplicity, I omitted the factor 1/(n — 1).)
Note that there is nothing magical about transposing the first
matrix; if your data are stored as features-by-observations, then
the correct formula is C = XX'. The covariance matrix should

be features-by-features.

Assuming the columns are mean-centered, the diagonal elements
of C contain the variances of each variable. That is,

diag(C) = [O’% oz ... 02} (18.9)

m

It is obvious from the math that the covariance matrix is symmet-
ric. But it is also sensible from the perspective of a correlation:
The correlation between x and y is the same as the correlation
between y and x (e.g., the relationship between height and weight
is the same as that between weight and height).

18.5 COVARIANCE MATRICES
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I’ve also omit-
ted the factor of
1/(n — 1) here.

From correlation to covariance matrices

You learned that a correlation coeflicient is obtained by scaling
the covariance by the norms of the two variables.

Equation 18.10 below expands this translation from an individual
correlation to a correlation matrix, and then uses the power of
parentheses to shuffle the equation a bit. R is the correlation
matrix and ¥ is a diagonal matrix containing standard deviations
of each corresponding data feature (again, not to be confused with
the X in the SVD).

R =>1XTx¥»! (18.10)
= (=xXT)x=" (18.11)
=Xz HT(xzh (18.12)

You might be tempted to simplify that final expression to | X271,
but don’t do it! X3! is a matrix not a vector, so taking the norm

is not the correct conclusion.

Instead, the correct conclusion is that the correlation matrix is
obtained by the multiplication of the data matrix with itself (just
like the covariance matrix), but first normalizing each data feature
by its standard deviation. To make this more clear: set X =
X3! then the correlation matrix is obtained as XTX.

Because the data are already mean-centered, multiplying by the
inverse of the standard deviations is equivalent to z-standardizing
the data. Z-standardization, also called z-scoring, involves sub-
tracting the mean and dividing by the standard deviation. It
forces the data to have a mean of zero and a standard deviation
of one. This means that correlation and covariance are identical

metrics when the data are z-standardized.

We can also turn this equation around to compute a covariance
matrix given correlation and standard deviation matrices. (Again,
the normalization factor is omitted for simplicity.)

C =3RX (18.13)



Code challenges

1. The goal here is to implement Equations 18.10 and 18.13. Cre-
ate a data matrix of random numbers with 4 features and 200
observations. Then compute the correlation and covariance
matrices using the equations above. Finally, confirm that you
obtain the same result as Python or MATLAB’s built-in co-

variance and correlation functions.

18.7 CODE CHALLENGES
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Code solutions

1. I generated random numbers matrices, so the inter-variable
correlations will be low—the expected correlations are 0, but
with sampling variability and random numbers, the correla-
tions will instead be small but non-zero. Anyway, the impor-
tant thing is that the matrices match the outputs of Python’s
and MATLAB’s built-in functions. Be mindful that Python’s
std() function computes a biased standard deviation by de-
fault, so you need to specify that the degrees of freedom is
1.

Code block 18.1: Python

import numpy as np

n = 200

X = np.random.randn(n,4)

X = X—np.mean (X, axis=0)

covM = X.T@X / (n—1)

stdM = np.linalg.inv( np.diag(
np.std (X, axis=0,ddof=1)) )

corM = stdM@ X.Ta@X @stdM / (n—1)

© 00 N O U = W N
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print (np.round (covM—np.cov(X.T),3))

—_
[\)

print (np.round (corM—np. corrcoef (X.T) ,3))

Code block 18.2: MATLAB
n = 200;
X = randn(n,4);
X = X—mean (X,1);
covM = X’xX / (n—1);
stdM = inv( diag(std(X)) );
corM = stdMx X’%X #stdM / (n—1);

disp (covM—cov (X))
disp (corM—corrcoef (X))

© 00 N O U = W N
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PRINCIPAL COMPONENTS
ANALYSIS

START THIS CHAPTER HAPPY
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A "feature" is a
property that you
measure, such as
age, salary, al-
cohol content,
pixel intensity,
number of stars
in a galaxy, etc.

PCA is a multivariate data analysis method widely used in statis-
tics, machine-learning, data mining, signal processing, image pro-
cessing, compression, and lots of other nerdy topics. There are
entire books and courses dedicated solely to PCA. A complete dis-
cussion of this method requires venturing into statistics. That’s a
rabbit hole too deep to fall into here. But I do want to introduce
you to PCA because it nicely ties together many linear algebra
concepts you learned about in this book.

Thus, in this chapter I will present the linear algebra aspects
of PCA while simplifying or ignoring some of the statistical as-
pects.

Interpretations and applications of PCA

A multivariate dataset with N features can be conceptualized as a
set of vectors in an N-dimensional space. The data are stored in a
matrix with features in the columns and observations in the rows,
just like the design matrices you saw in Chapter 14. In the data
space, each feature (thus, each column in the data matrix) is a
basis vector, and all the columns together span some subspace of
RN. But is this the best set of basis vectors? The goal of PCA is
to identify a basis set such that each basis vector maximizes data

covariance while being orthogonal to all other basis vectors.

What does it mean to "maximize covariance?" It means to identify
a weighted combination of data channels, such that that weighted
combination has maximal variance. Figure 19.1 provides a graphi-
cal overview of three scenarios to illustrate the concept. Let’s start
with panel A. Two time series (at left) are clearly correlated; the
PCA scalar-multiplies each data channel by .7, adds the weighted
data channels together, and the result is a "component' that has
higher variance than either of the individual channels.

Now let’s consider panel B. The two data channels are negatively
correlated. Keeping the same weighting of .7 for each channel



actually reduced the variance of the result (that is, the result-
ing component has less variance than either individual channel).
Thus, a weighting of .7 for both channels is not a good PCA

solution.

Instead, PCA will negatively weight one of the channels to flip
its sign (panel C). That resulting component will maximize vari-

ance.

Why scalar-multiply by .77 If the goal is to maximize variance,
then surely variance is maximized by using scalars of 7,000,000, or
any arbitrarily large number. To avoid this triviality, PCA adds
the constraint that the sum of squared weights must equal 1. In
this example, .72 + .72 = .98. (I truncated the weights for visual
simplicity, but you get the idea.)

This is the idea of PCA: You input the data, PCA finds the best

set of weights, with "best" corresponding to the weights that maxi-
mize the variance of the weighted combination of data channels.

Ar)vm\/‘/\v
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Figure 19.1: Three scenarios to illustrate PCA in 2D data.

We can visualize the data shown in panel A as a scatter plot, with
each axis corresponding to a channel (Figure 19.2), and each dot

19.1 PCA: INTERPS AND APPS
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Figure 19.2: The time series data in Figure 19.1A visualized in
a scatter plot, along with the principal components.

corresponding to a time point. The dashed line is the first princi-
pal component—the weighting of the two channels that maximizes
covariance. The second principal component is the direction in
the data cloud that maximizes the residual variance (that is, all
the variance not explained by the first component) subject to the
constraint that that component is orthogonal to the first compo-

nent.

In a 2D dataset, there is only one possible second component,
because there is only one possible vector in R? that is orthogonal
to the first component. But for larger-dimensional datasets, there
are many possible orthogonal directions.

Selecting the number of components A PCA returns M com-
ponents for a M-feature dataset (because of the eigendecomposi-
tion of the M x M covariance matrix). How many of those com-

ponents are meaningful and should be retained?

There are quantitative and qualitative methods for determining



the number of components that have large enough eigenvalues to
retain for subsequent analyses. The quantitative methods involve
identifying appropriate statistical thresholds, and are beyond the
scope of this book.

The qualitative method involves examining the scree plot, which
is a plot of the sorted eigenvalues. You learned about creating
and interpreting scree plots in Chapter 16 about the SVD (e.g.,
Figure 16.6).

Applications A common application of PCA is data compres-
sion, where only the first kK < r components are retained for sub-
sequent analyses or data storage. The assumption is that direc-
tions in the data space associated with relatively little covariance
are unimportant or noise, and therefore can be "squeezed out" of
the data. The validity and appropriateness of this assumption
depends on the type of data and the goals of the analysis, but
that’s the idea. Notice that this application is very similar to the
low-rank approximation you learned about in the SVD chapter.
In fact, you’ll see by the end of this chapter that PCA can be
implemented via SVD.

How to perform a PCA

In this section, I will describe how a PCA is done, and then in the
next section, you’ll learn about the math underlying PCA. There
are five steps to performing a PCA, and you will see how linear
algebra is central to those steps.

1) Compute the covariance matrix of the data, as described in
the previous chapter. The data matrix may be observations-
by-features or features-by-observations, but the covariance
matrix must be features-by-features. Each feature in the
data must be mean-centered prior to computing covariance.

2) Take the eigendecomposition of that covariance matrix.

19.2 How TO PERFORM A PCA
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3) Sort the eigenvalues descending by magnitude, and sort the
eigenvectors accordingly. There are several relevant facts
that you learned in this book, including (1) the eigenval-
ues of a covariance matrix are all non-negative, (2) eigen-
values have no intrinsic sorting, (3) eigenvectors are paired
with eigenvalues, so sorting one requires sorting the other.
Eigenvalues are sometimes called latent factor scores.

4) Compute the "component scores" (called "component time
series" if the data are time series). The component score
is the weighted combination of all data features, where the
eigenvector provides the weights. Hence, for data matrix X,
component 1 is calculated as vi X, where vy is the "first'
eigenvector (the one with the largest associated eigenvalue).

5) Convert the eigenvalues to percent change to facilitate inter-
pretation. This is the same procedure as converting singular

values to percent variance explained.

Below is another example of a PCA on correlated data, using
the height-weight data illustrated in the previous chapter. Figure
19.3A shows the raw data, with each person represented as a dot.

The Pearson correlation is r = .69.

A) B) C)
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Figure 19.3: Visual overview of PCA in 2D data. Note: these
are simulated data. You’ll learn how to simulate these data in

the code challenges.

Panel B shows the same data, mean-centered, and with the two
principal components (the eigenvectors of the covariance matrix)
drawn on top. Notice that the eigenvector associated with the
larger eigenvalue points along the direction of the linear relation-

ship between the two variables.

Panel C shows the same data but redrawn in PC space. Because



PCs are orthogonal, the PC space is a pure rotation of the original
data space. Therefore, the data projected through the PCs are
decorrelated.

Because these data are in R?, we can visualize the normalized
quadratic form surface of the data covariance matrix. It’s shown
in Figure 19.4. The two panels actually show the same data. I
thought the rotated view (left panel) looked really neat but was
suboptimal for visualizing the eigenvectors. The right panel is
the bird’s-eye-view, and more clearly shows how the eigenvectors
point along the directions of maximal and minimal energy in the

quadratic form surface.

As expected for a positive-definite matrix, the normalized quadratic

form surface energy is above zero everywhere.
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Figure 19.4: Quadratic form surface of the data covariance ma-
trix of the data shown in Figure 19.3. The black and white lines
show the two eigenvectors (scaled for visibility) corresponding

to the larger (black line) and smaller (white line) eigenvalue.

The algebraic motivation for PCA

The previous section was very mechanical: 1 explained how to
compute a PCA but didn’t explain why that’s the right thing to
do.

19.3 THE ALGEBRA OF PCA
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Let’s get back to the problem statement: Find a direction in
the data space that maximizes the data covariance. This can be
translated into finding a vector v that maximizes the quadratic

form of the data covariance matrix.

Vimar = arg max {VTCV} (19.1)

v

You know from Chapter 17 that this maximization problem is dif-
ficult for the non-normalized quadratic form, because the quadratic
form will grow to infinity as the elements in v get larger. Fortu-
nately, avoiding this trivial solution simply requires adding the
constraint that v be a unit vector. That can be equivalently writ-

ten in one of two ways:

Vinar = argmax {VTCV} , stv|l=1 (19.2)
vICv
Vinar = arg‘r,nax { Ty (19.3)

When we obtain v,,4;, we can plug that value into the normalized
quadratic form to obtain a scalar, which is the amount of variance

in the covariance matrix along direction v,qz.

W = Vimazx
T
w Cw
A= ——— 194
wTw (19.4)

But how do we find v,,4,7 This is an optimization problem, so
you can use calculus: Take the derivative of Equation 19.4, set
the derivative to zero, and solve for w.

But calculus is tedious. The linear algebra solution is more elegant
and allows us to solve for all M solutions simultaneously. We
begin by considering not a single vector v, but instead the total set
of possible vectors, which are columns in matrix V. That means
that the denominator will be a matrix, which is not allowed. So
instead we multiply by the inverse. Notice how the first equation



below follows from Equation 19.4.

A= (WIw)t(WTcw) (19.5)
A=WIwWTwTcw (19.6)
A=WIlCwW (19.7)
WA = CW (19.8)

Remarkably, we’ve discovered that the solution to our maximiza-
tion problem is given by the eigendecomposition of the covariance
matrix. The diagonal matrix A contains the eigenvalues, which
are the covariance energy values from the quadratic form, and the
columns of W are the eigenvectors, which are called the principal

components.

(I put the "denominator" term on the left in Equation 19.5. What
happens if you put (WTW)~! on the right?)

Given that PCA is implemented as the eigendecomposition of a
covariance matrix, you might be wondering whether PCA can
equivalently be implemented via SVD. The answer is Yes, and
you will have the opportunity to demonstrate this in the code
challenges. There is no theoretical reason to prefer eigendecom-
position over SVD for a PCA. However, eigendecomposition is
often advantageous when working with large datasets, because
covariance matrices are easy to construct and take up much less
memory than the full dataset, and because it is often easier to

select or filter data when creating a covariance matrix.

Regularization

Regularization is an umbrella term in machine-learning, statis-
tics, data compression, deep learning, signal processing, image
processing, etc. The overarching idea of regularization is to make
numerically difficult problems easier to solve by "smoothing" the
data.

19.4 REGULARIZATION
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There are many forms of regularization and many algorithms for
regularizing. In this section, I will introduce you to shrinkage
reqularization. This method is simple and effective, and relies
on linear algebra concepts you've learned throughout this book.
Other regularization methods (e.g., ridge, Tikhonov, L1, L2, drop-
out) are similar in concept, but have different algorithms that are

optimized for particular applications.

The idea of shrinkage regularization is to replace the covariance
matrix C with another matrix (~3, which is a shifted version of C.

In particular:
C=(1-7)C+nal (19.9)

a=n""Y XC) (19.10)
The scalar « is the average of all eigenvalues of C.

The scalar v is the key parameter, and defines the regularization
amount. It is specified in proportion, so v = .01 corresponds
to 1% shrinkage regularization. Setting this parameter is non-
trivial and data- and application-specific, but the general idea is

to regularize as little as possible and as much as necessary.

You can see from Equation 19.9 that we reduce C and then inflate
the diagonal by shifting. Scaling the identity by a ensures that the
regularization amount reflects the numerical range of the matrix.
Imagine that that scalar wasn’t in the equation: The effect of 1%
shrinkage could be huge or insignificant, depending on the values
in C.

You can often gain insight into mathematical or statistical opera-
tions by imagining what happens at extreme parameter settings.
When v = 0, we’re not changing the matrix at all. On the other
side, when v = 1, we’ve completely replaced C by al.

Figure 19.5 shows the effects of shrinkage regularization on a co-
variance matrix and its eigenvalues. To generate this figure, I
created a 20 x 1000 data matrix, computed its covariance matrix,
and re-ran eigendecomposition after various levels of shrinkage.



—{++=0

N
wn

Condition number
3%

-
4]

A
S X ke
Bt sisrek

0 5 10 15 20 0 0.5 1
Component number Shrinkage (7)

Figure 19.5: Illustration of the effects of regularization. Panel
A shows the covariance matrix after three levels of shrink-
age regularization (y = 0 is the original matrix); notice that
the matrix looks more like the identity matrix with increased
regularization. Panel B shows eigenspectra for these three ma-
trices. Panel C shows the condition number of the covariance

matrix as a function of ~.

Figure 19.5B shows why this method is called shrinkage: The
larger eigenvalues get smaller while the smaller eigenvalues get
larger. This makes the matrix more numerically stable by de-
creasing the condition number. And of course, any shrinkage
above 0% will transform a rank-deficient covariance matrix into a

full-rank matrix.

19.4 REGULARIZATION
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Is PCA always the best?

PCA is a commonly used procedure, but it is not always the
best thing to do. One important caveat is that PCA relies on
the assumption that the directions of maximal variability are the
most important. Whether this is a valid assumption depends on
the data. For example, if a dataset contains a lot of measurement
noise, then the first few components may reflect the noise instead
of signal. Furthermore, if an important pattern in the data is
restricted to a relatively small number of data channels, then PCA
might ignore that data pattern because it does not have large

covariance in the entire dataset.

A common example of a "failure scenario” with PCA is shown
in Figure 19.6 (similar to Figure 4.11). The graph shows an "X"
pattern in the data. The top PC points exactly in between the two
branches of the "X" pattern, and the second PC is orthogonal to
that, pointing in between the two branching arms (dashed lines).
That seems counter-intuitive, but it is correct, according to the
goals of PCA: The average of the two prongs truly is the direction
in the data that maximizes covariance.

Data in XY space Data in PC space Data in IC space

Y axis
PC2 axis
IC2 axis

X axis PC1 axis IC1 axis

Figure 19.6: PCA and ICA (via the jade algorithm) on the
same dataset.

The vectors drawn in the dotted lines correspond to basis vectors
derived from an independent components analysis (ICA), which
is conceptually similar to PCA in that it creates a set of weights
for each data channel such that the weighted sum of data chan-
nels maximizes a statistical criteria. However, ICA maximizes

independence, not variance.



The distinction between PCA and ICA is clear from the middle
and right panels, which show the data transformed into those two
spaces. The data in PCA space are decorrelated, but the data in

IC space are demized.

Keep in mind that this example is constructed specifically to high-
light the difference between PCA and ICA; it does not mean that
ICA is always better than PCA. They are simply different multi-
variate decomposition methods with different opimization criteria,
assumptions, and outcomes. When analyzing data, it is important
to understand the methods you are applying in order to obtain

sensible results.

19.5 Is PCA ALWAYS THE BEST?
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Code challenges

1. The goal of this challenge is to simulate a dataset and then

perform PCA. We'll create a dataset of heights and weights
from N=1000 people, similar to the datasets illustrated in this
and the previous chapters. Below are descriptions of how to
create the two variables. After creating those variables, per-
form a PCA and then make a scatter plot of the mean-centered
data with the two principal components vectors drawn on top.

Height Start by creating 1000 linearly spaced numbers be-
tween 150 and 190, then add random Gaussian noise with a
standard deviation of 5. This simulates height in cm. (The
imperialist reader may convert this to inches as a bonus chal-
lenge.)

Weight The formula to create correlated weight values in kg
is w = .7Th — 50. Then add Gaussian random noise with a
standard deviation of 10. (Again, you may convert this to

pounds if kg isn’t your thing.)

. Now implement PCA on the same dataset via SVD of the

data matrix (not the covariance matrix). Before implementing
them code, think about whether the principal components are
in the U or the V singular vectors matrices. Check that the
singular values and singular vectors match the eigenvalues and
eigenvectors from the previous exercise.

. Is mean-centering really so important? To find out, repeat the

first code challenge, but implement the PCA on the non-mean-
centered data. But generate the plot using the mean-center the
data. How do the PCs look, and what does this tell you about
mean-centering and PCA?



Code solutions

1. Note the arbitrary scaling factors on the PC vectors. Those
are just to make the lines look good given the range of the
data.

Code block 19.1: Python

import numpy as np

import matplotlib.pyplot as plt

= 1000

h = np.linspace (150,190 ,N) +
np.random . randn (N)x5

w = h%.7 — 50 + np.random.randn(N)=x10
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= np.vstack ((h,w)).T
X—np.mean (X, axis=0)
= X.T@aX / (len(h)—1)

gt
S T R W N
aQ ™~
Il

eigvals ,V = np.linalg.eig(C)
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i = np.argsort(eigvals)[:: —1]
V=V, i]

eigvals = eigvals[i]

N = =
S ©

eigvals = 100xeigvals/np.sum(eigvals)
scores = Xav

N NN
W N =

fig = plt.figure(figsize=(5,5))

plt.plot (X[:,0] ,X[:,1], 'ko")

plt.plot ([0,V][0,0]«x45],[0,V[1,0]«x45], ")
plt.plot ([0,V[0,1]%25],[0,V[1,1]%25], r")
plt.xlabel (’Height’), plt.ylabel(’Weight’)
plt.axis([—50,50,—50,50])

plt .show ()
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Code block 19.2: MATLAB

% create data

N = 1000;

h = linspace (150,190 ,N) + randn(1,N)*5;

w = h*.7 — 50 + randn(1,N)=*10;

% covariance

X = [ w];

X = X—mean(X,1);
C=X"%X / (length(h)—1);

% PCA and sort results
[V7D] = eig(C);

[eigvals ,i] = sort(diag (D), 'descend’);

V=V(,i);

eigvals = 100xeigvals/sum(eigvals);
scores = X*V; % not used but useful

% plot data with PCs
figure , hold on
plot (X(:,1),X(:,2), ko")

plot ([0 V(1,1)]%45,[0 V(2,1)]%45, k")
plot ([0 V(1,2)]%25,[0 V(2,2)]%25, k")
xlabel (’Height (cm)’), ylabel(’Weight (kg)’)

axis([—1 1 —1 1]%50), axis square




2. The tricky part of this exercise is normalizing the singular
values to match the eigenvalues. Refer back to section 16.3
if you need a refresher on their relationship. There’s also the
normalization factor of n — 1 to incorporate. Finally, you still
need to mean-center the data. That should already have been
done from the previous exercise, but I included that line here

as a reminder of the importance of mean-centering.

Code block 19.3: Python

1 X = X—np.mean (X, axis=0)
2 U,s,Vv = np.linalg.svd(X)
3 scores = XQVv.T
4 s = sxx2 / (len(X)—1)
5 s = 100%s/sum(s)
Code block 19.4: MATLAB
1 X = X—mean(X,1);
2 [U,S,Vv] = svd(X);
3 scores = XxVv;
4 s = diag(S).”72 / (length(X)—1);
5 s = 100xs/sum(s);

19.7 CODE SOLUTIONS



PCA

3. All you need to do in the code is move line 11 to 24 in the
Python code, or line 8 to 20 in the MATLAB code. See figure
below.

The PCs look wrong—they no longer point along the direction
of maximal covariance. However, they are still mathematically
the correct solutions, even if that seems counter-intuitive. Be-
cause PCA vectors start at the origin, offsets in the data mean
that the largest covariance is obtained from the origin to the
center of the data cloud. And then PC2 must be orthogo-
nal to that first PC. This is why mean-centering the data is

important.

50

Centered weight (kg)
o

251

-50 -25 0 25 50
Centered height (cm)

Figure 19.7: Image for code challenge 3.



CHAPTER 20

WHERE TO GO FROM
HERE?

FART THIS CHAPTER HAPPY



THE END.

The end... of the beginning!

You are reading this either because

1. You read the chapters in order, and you’ve now finished
the book. Congrats! Amazing! Go treat yourself to an ice
cream, chocolate bar, glass of wine, pat on the back, 2-week
trip to Tahiti, or whatever you like to do to reward yourself.

2. You skipped forwards because you are curious, even though
you haven’t finished the book. In that case, feel free to keep
reading, but then get back to the important chapters!

I designed this book to contain what would be covered in 1-2
semesters of a university linear algebra course (1 or 2 depending
on the particular curriculum and expectations). If you are re-
ally excited about continuing your linear algebra learning and are
wondering where to go from here, then it can be challenging to

know where next to turn.

I have no specific recommendations because linear algebra has
such wide-ranging applications and it’s not possible for me to
custom-tailor such recommendations here. However, I can make
two general recommendations that I hope will help you decide the
right path forward for yourself.

Abstract linear algebra As you know by now, I have tried to
keep this book focused on linear algebra concepts that are most
relevant for applications. I like to call it "down-to-Earth" linear
algebra. However, linear algebra is a huge topic in mathematics,
and there are many avenues of linear algebra that are more fo-
cused on proofs, abstractions, and topics that are mathematically
intriguing but less directly relevant to applications on comput-

€ers.

If you are interested in following this line of study, then a quick
Internet search for something like "theoretical linear algebra" or
"abstract linear algebra" will give you some places to start.



Application-specific linear algebra I intentionally avoided fo-
cusing on any particular application or any particular field, to
make the book relevant for a broad audience.

But because linear algebra is so important for so many scientific
and engineering disciplines, advanced studies in most STEM fields
will involve linear algebra. Control engineering, computational
biology, mathematical physics, multivariate signal processing, fi-
nance and mathematical economics, machine learning, deep learn-
ing... these are all disciplines that rely on linear algebra. Again,
some Internet sleuthing for the keywords you are interested in
should help you find a suitable book or course.

Thanks!

Thank you for choosing to learn from this book, and for trusting
me with your linear algebra education. I hope you found the book
useful, informative, and perhaps even a bit entertaining. Your
brain is your most valuable asset, and investments in your brain

always pay large dividends.

I’d be remiss if I didn’t take this opportunity to invite you to check
out my other educational material, which you can find linked from

my website sincxpress.com.

).2 THANKS!
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