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Preface

“Linear Algebra - As an Introduction to Abstract Mathematics” is an introductory

textbook designed for undergraduate mathematics majors and other students who

do not shy away from an appropriate level of abstraction. In fact, we aim to intro-

duce abstract mathematics and proofs in the setting of linear algebra to students

for whom this may be the first step toward advanced mathematics. Typically, such

a student will have taken calculus, though the only prerequisite is suitable math-

ematical maturity. The purpose of this book is to bridge the gap between more

conceptual and computational oriented lower division undergraduate classes and

more abstract oriented upper division classes.

The book begins with systems of linear equations and complex numbers, then re-

lates these to the abstract notion of linear maps on finite-dimensional vector spaces,

and covers diagonalization, eigenspaces, determinants, and the spectral theorem.

Each chapter concludes with both proof-writing and computational exercises.

We wish to thank our many undergraduate students who took MAT67 at UC

Davis in the past several years and our colleagues who taught from our lecture notes

that eventually became this book. Their comments on earlier drafts were invaluable.

This book is dedicated to them and all future students and teachers who use it.

I. Lankham

B. Nachtergaele

A. Schilling

California, October 2015
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Chapter 1

What is Linear Algebra?

1.1 Introduction

This book aims to bridge the gap between the mainly computation-oriented lower

division undergraduate classes and the abstract mathematics encountered in more

advanced mathematics courses. The goal of this book is threefold:

(1) You will learn Linear Algebra, which is one of the most widely used math-

ematical theories around. Linear Algebra finds applications in virtually every

area of mathematics, including multivariate calculus, differential equations, and

probability theory. It is also widely applied in fields like physics, chemistry,

economics, psychology, and engineering. You are even relying on methods from

Linear Algebra every time you use an internet search like Google, the Global

Positioning System (GPS), or a cellphone.

(2) You will acquire computational skills to solve linear systems of equations,

perform operations on matrices, calculate eigenvalues, and find determinants of

matrices.

(3) In the setting of Linear Algebra, you will be introduced to abstraction. As

the theory of Linear Algebra is developed, you will learn how to make and use

definitions and how to write proofs.

The exercises for each Chapter are divided into more computation-oriented exercises

and exercises that focus on proof-writing.

1.2 What is Linear Algebra?

Linear Algebra is the branch of mathematics aimed at solving systems of linear

equations with a finite number of unknowns. In particular, one would like to obtain

answers to the following questions:

• Characterization of solutions: Are there solutions to a given system of

linear equations? How many solutions are there?

• Finding solutions: How does the solution set look? What are the solutions?

1
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Linear Algebra is a systematic theory regarding the solutions of systems of linear

equations.

Example 1.2.1. Let us take the following system of two linear equations in the

two unknowns x1 and x2:

2x1 + x2 = 0

x1 − x2 = 1

}
.

This system has a unique solution for x1, x2 ∈ R, namely x1 = 1
3 and x2 = − 2

3 .

The solution can be found in several different ways. One approach is to first

solve for one of the unknowns in one of the equations and then to substitute the

result into the other equation. Here, for example, we might solve to obtain

x1 = 1 + x2

from the second equation. Then, substituting this in place of x1 in the first equation,

we have

2(1 + x2) + x2 = 0.

From this, x2 = −2/3. Then, by further substitution,

x1 = 1 +

(
−2

3

)
=

1

3
.

Alternatively, we can take a more systematic approach in eliminating variables.

Here, for example, we can subtract 2 times the second equation from the first

equation in order to obtain 3x2 = −2. It is then immediate that x2 = − 2
3 and, by

substituting this value for x2 in the first equation, that x1 = 1
3 .

Example 1.2.2. Take the following system of two linear equations in the two

unknowns x1 and x2:

x1 + x2 = 1

2x1 + 2x2 = 1

}
.

We can eliminate variables by adding −2 times the first equation to the second

equation, which results in 0 = −1. This is obviously a contradiction, and hence this

system of equations has no solution.

Example 1.2.3. Let us take the following system of one linear equation in the two

unknowns x1 and x2:

x1 − 3x2 = 0.

In this case, there are infinitely many solutions given by the set {x2 = 1
3x1 | x1 ∈

R}. You can think of this solution set as a line in the Euclidean plane R2:
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1

−1

1 2 3−1−2−3

x1

x2

x2 =
1
3
x1

In general, a system of m linear equations in n unknowns x1, x2, . . . , xn

is a collection of equations of the form

a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2

...
...

am1x1 + am2x2 + · · ·+ amnxn = bm

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ , (1.1)

where the aij ’s are the coefficients (usually real or complex numbers) in front of the

unknowns xj , and the bi’s are also fixed real or complex numbers. A solution is a

set of numbers s1, s2, . . . , sn such that, substituting x1 = s1, x2 = s2, . . . , xn = sn
for the unknowns, all of the equations in System (1.1) hold. Linear Algebra is a

theory that concerns the solutions and the structure of solutions for linear equations.

As we progress, you will see that there is a lot of subtlety in fully understanding

the solutions for such equations.

1.3 Systems of linear equations

1.3.1 Linear equations

Before going on, let us reformulate the notion of a system of linear equations into

the language of functions. This will also help us understand the adjective “linear”

a bit better. A function f is a map

f : X → Y (1.2)

from a set X to a set Y . The set X is called the domain of the function, and the

set Y is called the target space or codomain of the function. An equation is

f(x) = y, (1.3)

where x ∈ X and y ∈ Y . (If you are not familiar with the abstract notions of sets

and functions, please consult Appendix B.)

Example 1.3.1. Let f : R → R be the function f(x) = x3 − x. Then f(x) =

x3 − x = 1 is an equation. The domain and target space are both the set of real

numbers R in this case.
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In this setting, a system of equations is just another kind of equation.

Example 1.3.2. Let X = Y = R2 = R× R be the Cartesian product of the set of

real numbers. Then define the function f : R2 → R2 as

f(x1, x2) = (2x1 + x2, x1 − x2), (1.4)

and set y = (0, 1). Then the equation f(x) = y, where x = (x1, x2) ∈ R2, describes

the system of linear equations of Example 1.2.1.

The next question we need to answer is, “What is a linear equation?”. Building

on the definition of an equation, a linear equation is any equation defined by a

“linear” function f that is defined on a “linear” space (a.k.a. a vector space as

defined in Section 4.1). We will elaborate on all of this in later chapters, but let

us demonstrate the main features of a “linear” space in terms of the example R2.

Take x = (x1, x2), y = (y1, y2) ∈ R2. There are two “linear” operations defined on

R2, namely addition and scalar multiplication:

x+ y := (x1 + y1, x2 + y2) (vector addition) (1.5)

cx := (cx1, cx2) (scalar multiplication). (1.6)

A “linear” function on R2 is then a function f that interacts with these operations

in the following way:

f(cx) = cf(x) (1.7)

f(x+ y) = f(x) + f(y). (1.8)

You should check for yourself that the function f in Example 1.3.2 has these two

properties.

1.3.2 Non-linear equations

(Systems of) Linear equations are a very important class of (systems of) equations.

We will develop techniques in this book that can be used to solve any systems of

linear equations. Non-linear equations, on the other hand, are significantly harder

to solve. An example is a quadratic equation such as

x2 + x− 2 = 0, (1.9)

which, for no completely obvious reason, has exactly two solutions x = −2 and

x = 1. Contrast this with the equation

x2 + x+ 2 = 0, (1.10)

which has no solutions within the set R of real numbers. Instead, it has two complex

solutions 1
2 (−1 ± i

√
7) ∈ C, where i =

√−1. (Complex numbers are discussed in

more detail in Chapter 2.) In general, recall that the quadratic equation x2+bx+c =

0 has the two solutions

x = − b

2
±
√

b2

4
− c.
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1.3.3 Linear transformations

The set R2 can be viewed as the Euclidean plane. In this context, linear functions of

the form f : R2 → R or f : R2 → R2 can be interpreted geometrically as “motions”

in the plane and are called linear transformations.

Example 1.3.3. Recall the following linear system from Example 1.2.1:

2x1 + x2 = 0

x1 − x2 = 1

}
.

Each equation can be interpreted as a straight line in the plane, with solutions

(x1, x2) to the linear system given by the set of all points that simultaneously lie on

both lines. In this case, the two lines meet in only one location, which corresponds

to the unique solution to the linear system as illustrated in the following figure:

1

2

−1

1 2−1

x

y

y = x− 1

y = −2x

Example 1.3.4. The linear map f(x1, x2) = (x1,−x2) describes the “motion” of

reflecting a vector across the x-axis, as illustrated in the following figure:

1

−1

1 2

x

y

(x1, x2)

(x1,−x2)

Example 1.3.5. The linear map f(x1, x2) = (−x2, x1) describes the “motion” of

rotating a vector by 90
◦
counterclockwise, as illustrated in the following figure:
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1

2

1 2−1

x

y

(x1, x2)

(−x2, x1)

This example can easily be generalized to rotation by any arbitrary angle using

Lemma 2.3.2. In particular, when points in R2 are viewed as complex numbers,

then we can employ the so-called polar form for complex numbers in order to model

the “motion” of rotation. (Cf. Proof-Writing Exercise 5 on page 20.)

1.3.4 Applications of linear equations

Linear equations pop up in many different contexts. For example, you can view the

derivative df
dx (x) of a differentiable function f : R → R as a linear approximation of

f . This becomes apparent when you look at the Taylor series of the function f(x)

centered around the point x = a (as seen in calculus):

f(x) = f(a) +
df

dx
(a)(x− a) + · · · . (1.11)

In particular, we can graph the linear part of the Taylor series versus the original

function, as in the following figure:

1

2

3

1 2 3

x

f(x)

f(a) +
df

dx
(a)(x− a)

f(x)

Since f(a) and df
dx (a) are merely real numbers, f(a)+ df

dx (a)(x−a) is a linear function

in the single variable x.

Similarly, if f : Rn → Rm is a multivariate function, then one can still view the

derivative of f as a form of a linear approximation for f (as seen in a multivariate

calculus course).
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What if there are infinitely many variables x1, x2, . . .? In this case, the system

of equations has the form

a11x1 + a12x2 + · · · = y1
a21x1 + a22x2 + · · · = y2

· · ·

⎫⎬
⎭ .

Hence, the sums in each equation are infinite, and so we would have to deal with

infinite series. This, in particular, means that questions of convergence arise, where

convergence depends upon the infinite sequence x = (x1, x2, . . .) of variables. These

questions will not occur in this course since we are only interested in finite systems

of linear equations in a finite number of variables. Other subjects in which these

questions do arise, though, include

• Differential equations;

• Fourier analysis;

• Real and complex analysis.

In algebra, Linear Algebra is also seen to arise in the study of symmetries, linear

transformations, and Lie algebras.

Exercises for Chapter 1

Calculational Exercises

(1) Solve the following systems of linear equations and characterize their solution

sets. (I.e., determine whether there is a unique solution, no solution, etc.)

Also, write each system of linear equations as an equation for a single function

f : Rn → Rm for appropriate choices of m,n ∈ Z+.

(a) System of 3 equations in the unknowns x, y, z, w:

x+ 2y − 2z + 3w = 2

2x+ 4y − 3z + 4w = 5

5x+ 10y − 8z + 11w = 12

⎫⎬
⎭ .

(b) System of 4 equations in the unknowns x, y, z:

x+ 2y − 3z = 4

x+ 3y + z = 11

2x+ 5y − 4z = 13

2x+ 6y + 2z = 22

⎫⎪⎪⎬
⎪⎪⎭ .

(c) System of 3 equations in the unknowns x, y, z:

x+ 2y − 3z = −1

3x− y + 2z = 7

5x+ 3y − 4z = 2

⎫⎬
⎭ .
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(2) Find all pairs of real numbers x1 and x2 that satisfy the system of equations

x1 + 3x2 = 2, (1.12)

x1 − x2 = 1. (1.13)

Proof-Writing Exercises

(1) Let a, b, c, and d be real numbers, and consider the system of equations given

by

ax1 + bx2 = 0, (1.14)

cx1 + dx2 = 0. (1.15)

Note that x1 = x2 = 0 is a solution for any choice of a, b, c, and d. Prove that

if ad− bc �= 0, then x1 = x2 = 0 is the only solution.
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Chapter 2

Introduction to Complex Numbers

Let R denote the set of real numbers, which should be a familiar collection of

numbers to anyone who has studied calculus. In this chapter, we use R to build the

equally important set of so-called complex numbers.

2.1 Definition of complex numbers

We begin with the following definition.

Definition 2.1.1. The set of complex numbers C is defined as

C = {(x, y) | x, y ∈ R}.

Given a complex number z = (x, y), we call Re(z) = x the real part of z and

Im(z) = y the imaginary part of z.

In other words, we are defining a new collection of numbers z by taking every

possible ordered pair (x, y) of real numbers x, y ∈ R, and x is called the real part of

the ordered pair (x, y) in order to imply that the set R of real numbers should be

identified with the subset {(x, 0) | x ∈ R} ⊂ C. It is also common to use the term

purely imaginary for any complex number of the form (0, y), where y ∈ R. In

particular, the complex number i = (0, 1) is special, and it is called the imaginary

unit. (The use of i is standard when denoting this complex number, though j is

sometimes used if i means something else. E.g., i is used to denote electric current

in Electrical Engineering.)

Note that if we write 1 = (1, 0), then we can express z = (x, y) ∈ C as

z = (x, y) = x(1, 0) + y(0, 1) = x1 + yi = x+ yi.

It is often significantly easier to perform arithmetic operations on complex numbers

when written in this form, as we illustrate in the next section.

9
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2.2 Operations on complex numbers

Even though we have formally defined C as the set of all ordered pairs of real

numbers, we can nonetheless extend the usual arithmetic operations on R so that

they also make sense on C. We discuss such extensions in this section, along with

several other important operations on complex numbers.

2.2.1 Addition and subtraction of complex numbers

Addition of complex numbers is performed component-wise, meaning that the real

and imaginary parts are simply combined.

Definition 2.2.1. Given two complex numbers (x1, y1), (x2, y2) ∈ C, we define

their (complex) sum to be

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2).

Example 2.2.2. (3, 2) + (17,−4.5) = (3 + 17, 2− 4.5) = (20,−2.5).

As with the real numbers, subtraction is defined as addition with the so-called

additive inverse, where the additive inverse of z = (x, y) is defined as −z =

(−x,−y).

Example 2.2.3. (π,
√
2)− (π/2,

√
19) = (π,

√
2) + (−π/2,−√

19), where

(π,
√
2) + (−π/2,−

√
19) = (π − π/2,

√
2−

√
19) = (π/2,

√
2−

√
19).

The addition of complex numbers shares many of the same properties as the

addition of real numbers, including associativity, commutativity, the existence and

uniqueness of an additive identity, and the existence and uniqueness of additive

inverses. We summarize these properties in the following theorem, which you should

prove for your own practice.

Theorem 2.2.4. Let z1, z2, z3 ∈ C be any three complex numbers. Then the fol-

lowing statements are true.

(1) (Associativity) (z1 + z2) + z3 = z1 + (z2 + z3).

(2) (Commutativity) z1 + z2 = z2 + z1.

(3) (Additive Identity) There is a unique complex number, denoted 0, such that,

given any complex number z ∈ C, 0 + z = z. Moreover, 0 = (0, 0).

(4) (Additive Inverse) Given any complex number z ∈ C, there is a unique complex

number, denoted −z, such that z + (−z) = 0. Moreover, if z = (x, y) with

x, y ∈ R, then −z = (−x,−y).

The proof of this theorem is straightforward and relies solely on the definition of

complex addition along with the familiar properties of addition for real numbers.
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For example, to check commutativity, let z1 = (x1, y1) and z2 = (x2, y2) be complex

numbers with x1, x2, y1, y2 ∈ R. Then

z1 + z2 = (x1 + x2, y1 + y2) = (x2 + x1, y2 + y1) = z2 + z1.

2.2.2 Multiplication and division of complex numbers

The definition of multiplication for two complex numbers is at first glance somewhat

less straightforward than that of addition.

Definition 2.2.5. Given two complex numbers (x1, y1), (x2, y2) ∈ C, we define

their (complex) product to be

(x1, y1)(x2, y2) = (x1x2 − y1y2, x1y2 + x2y1).

According to this definition, i2 = −1. In other words, i is a solution of the

polynomial equation z2 + 1 = 0, which does not have solutions in R. Solving such

otherwise unsolvable equations was the main motivation behind the introduction of

complex numbers. Note that the relation i2 = −1 and the assumption that complex

numbers can be multiplied like real numbers is sufficient to arrive at the general

rule for multiplication of complex numbers:

(x1 + y1i)(x2 + y2i) = x1x2 + x1y2i+ x2y1i+ y1y2i
2

= x1x2 + x1y2i+ x2y1i− y1y2

= x1x2 − y1y2 + (x1y2 + x2y1)i.

As with addition, the basic properties of complex multiplication are easy enough

to prove using the definition. We summarize these properties in the following the-

orem, which you should also prove for your own practice.

Theorem 2.2.6. Let z1, z2, z3 ∈ C be any three complex numbers. Then the fol-

lowing statements are true.

(1) (Associativity) (z1z2)z3 = z1(z2z3).

(2) (Commutativity) z1z2 = z2z1.

(3) (Multiplicative Identity) There is a unique complex number, denoted 1, such

that, given any z ∈ C, 1z = z. Moreover, 1 = (1, 0).

(4) (Distributivity of Multiplication over Addition) z1(z2 + z3) = z1z2 + z1z3.

Just as is the case for real numbers, any non-zero complex number z has a unique

multiplicative inverse, which we may denote by either z−1 or 1/z.

Theorem 2.2.6 (continued).

(5) (Multiplicative Inverse) Given z ∈ C with z �= 0, there is a unique complex

number, denoted z−1, such that zz−1 = 1. Moreover, if z = (x, y) with x, y ∈ R,

then

z−1 =

(
x

x2 + y2
,

−y

x2 + y2

)
.
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Proof. (Uniqueness.) A complex number w is an inverse of z if zw = 1 (by the

commutativity of complex multiplication this is equivalent to wz = 1). We will first

prove that if w and v are two complex numbers such that zw = 1 and zv = 1, then

we necessarily have w = v. This will then imply that any z ∈ C can have at most

one inverse. To see this, we start from zv = 1. Multiplying both sides by w, we

obtain wzv = w1. Using the fact that 1 is the multiplicative unit, that the product

is commutative, and the assumption that w is an inverse, we get zwv = v = w.

(Existence.) Now assume z ∈ C with z �= 0, and write z = x + yi for x, y ∈ R.

Since z �= 0, at least one of x or y is not zero, and so x2 + y2 > 0. Therefore, we

can define

w =

(
x

x2 + y2
,

−y

x2 + y2

)
,

and one can check that zw = 1.

Now, we can define the division of a complex number z1 by a non-zero complex

number z2 as the product of z1 and z−1
2 . Explicitly, for two complex numbers

z1 = x1 + iy1 and z2 = x2 + iy2, z2 �= 0, we have that their quotient is

z1
z2

=
x1x2 + y1y2 + (x2y1 − x1y2) i

x2
2 + y22

.

Example 2.2.7. We illustrate the above definition with the following example:

(1, 2)

(3, 4)
=

(
1 · 3 + 2 · 4
32 + 42

,
3 · 2− 1 · 4
32 + 42

)
=

(
3 + 8

9 + 16
,
6− 4

9 + 16

)
=

(
11

25
,
2

25

)
.

2.2.3 Complex conjugation

Complex conjugation is an operation on C that will turn out to be very useful

because it allows us to manipulate only the imaginary part of a complex number.

In particular, when combined with the notion of modulus (as defined in the next

section), it is one of the most fundamental operations on C.

The definition and most basic properties of complex conjugation are as follows.

(As in the previous sections, you should provide a proof of the theorem below for

your own practice.)

Definition 2.2.8. Given a complex number z = (x, y) ∈ C with x, y ∈ R, we define

the (complex) conjugate of z to be the complex number

z̄ = (x,−y).

Theorem 2.2.9. Given two complex numbers z1, z2 ∈ C,

(1) z1 + z2 = z1 + z2.

(2) z1z2 = z1 z2.

(3) 1/z1 = 1/z1, for all z1 �= 0.

(4) z1 = z1 if and only if Im(z1) = 0.
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(5) z1 = z1.

(6) the real and imaginary parts of z1 can be expressed as

Re(z1) =
1

2
(z1 + z1) and Im(z1) =

1

2i
(z1 − z1).

2.2.4 The modulus (a.k.a. norm, length, or magnitude)

In this section, we introduce yet another operation on complex numbers, this time

based upon a generalization of the notion of absolute value of a real number.

To motivate the definition, it is useful to view the set of complex numbers as the

two-dimensional Euclidean plane, i.e., to think of C = R2 being equal as sets. The

modulus, or length, of z ∈ C is then defined as the Euclidean distance between

z, as a point in the plane, and the origin 0 = (0, 0). This is the content of the

following definition.

Definition 2.2.10. Given a complex number z = (x, y) ∈ C with x, y ∈ R, the

modulus of z is defined to be

|z| =
√
x2 + y2.

In particular, given x ∈ R, note that

|(x, 0)| =
√

x2 + 0 = |x|
under the convention that the square root function takes on its principal positive

value.

Example 2.2.11. Using the above definition, we see that the modulus of the

complex number (3, 4) is

|(3, 4)| =
√

32 + 42 =
√
9 + 16 =

√
25 = 5.

To see this geometrically, construct a figure in the Euclidean plane, such as

0

1

2

3

4

5

0 1 2 3 4 5

x

y

•

(3, 4)

and apply the Pythagorean theorem to the resulting right triangle in order to find

the distance from the origin to the point (3, 4).
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The following theorem lists the fundamental properties of the modulus, and

especially as it relates to complex conjugation. You should provide a proof for your

own practice.

Theorem 2.2.12. Given two complex numbers z1, z2 ∈ C,

(1) |z1z2| = |z1| · |z2|.
(2)

∣∣∣∣z1z2
∣∣∣∣ = |z1|

|z2| , assuming that z2 �= 0.

(3) |z1| = |z1|.
(4) |Re(z1)| ≤ |z1| and |Im(z1)| ≤ |z1|.
(5) (Triangle Inequality) |z1 + z2| ≤ |z1|+ |z2|.
(6) (Another Triangle Inequality) |z1 − z2| ≥ | |z1| − |z2| |.
(7) (Formula for Multiplicative Inverse) z1z1 = |z1|2, from which

z−1
1 =

z1
|z1|2

when we assume that z1 �= 0.

2.2.5 Complex numbers as vectors in R2

When complex numbers are viewed as points in the Euclidean plane R2, several

of the operations defined in Section 2.2 can be directly visualized as if they were

operations on vectors.

For the purposes of this Chapter, we think of vectors as directed line segments

that start at the origin and end at a specified point in the Euclidean plane. These

line segments may also be moved around in space as long as the direction (which we

will call the argument in Section 2.3.1 below) and the length (a.k.a. the modulus)

are preserved. As such, the distinction between points in the plane and vectors is

merely a matter of convention as long as we at least implicitly think of each vector

as having been translated so that it starts at the origin.

As we saw in Example 2.2.11 above, the modulus of a complex number can be

viewed as the length of the hypotenuse of a certain right triangle. The sum and

difference of two vectors can also each be represented geometrically as the lengths

of specific diagonals within a particular parallelogram that is formed by copying

and appropriately translating the two vectors being combined.

Example 2.2.13. We illustrate the sum (3, 2)+ (1, 3) = (4, 5) as the main, dashed

diagonal of the parallelogram in the left-most figure below. The difference (3, 2)−
(1, 3) = (2,−1) can also be viewed as the shorter diagonal of the same parallelogram,

though we would properly need to insist that this shorter diagonal be translated so

that it starts at the origin. The latter is illustrated in the right-most figure below.
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0

1

2

3

4

5

0 1 2 3 4 5

x

y

•

•

•

(3, 2)

(1, 3)

(4, 5)

0

1

2

3

4

5

0 1 2 3 4 5

x

y

•

•

•

(3, 2)

(1, 3)

(4, 5)

2.3 Polar form and geometric interpretation for C

As mentioned above, C coincides with the plane R2 when viewed as a set of ordered

pairs of real numbers. Therefore, we can use polar coordinates as an alternate

way to uniquely identify a complex number. This gives rise to the so-called polar

form for a complex number, which often turns out to be a convenient representation

for complex numbers.

2.3.1 Polar form for complex numbers

The following diagram summarizes the relations between cartesian and polar coor-

dinates in R2:

x

y

•

z

r

︸ ︷︷ ︸
x = r cos(θ)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

y = r sin(θ)

θ

We call the ordered pair (x, y) the rectangular coordinates for the complex

number z.

We also call the ordered pair (r, θ) the polar coordinates for the complex

number z. The radius r = |z| is called the modulus of z (as defined in Section 2.2.4
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above), and the angle θ = Arg(z) is called the argument of z. Since the argument

of a complex number describes an angle that is measured relative to the x-axis, it is

important to note that θ is only well-defined up to adding multiples of 2π. As such,

we restrict θ ∈ [0, 2π) and add or subtract multiples of 2π as needed (e.g., when

multiplying two complex numbers so that their arguments are added together) in

order to keep the argument within this range of values.

It is straightforward to transform polar coordinates into rectangular coordinates

using the equations

x = r cos(θ) and y = r sin(θ). (2.1)

In order to transform rectangular coordinates into polar coordinates, we first note

that r =
√
x2 + y2 is just the complex modulus. Then, θ must be chosen so that

it satisfies the bounds 0 ≤ θ < 2π in addition to the simultaneous equations (2.1)

where we are assuming that z �= 0.

Summarizing:

z = x+ yi = r cos(θ) + r sin(θ)i = r(cos(θ) + sin(θ)i).

Part of the utility of this expression is that the size r = |z| of z is explicitly part of

the very definition since it is easy to check that | cos(θ)+ sin(θ)i| = 1 for any choice

of θ ∈ R.

Closely related is the exponential form for complex numbers, which does

nothing more than replace the expression cos(θ)+sin(θ)i with eiθ. The real power of

this definition is that this exponential notation turns out to be completely consistent

with the usual usage of exponential notation for real numbers.

Example 2.3.1. The complex number i in polar coordinates is expressed as eiπ/2,

whereas the number −1 is given by eiπ.

2.3.2 Geometric multiplication for complex numbers

As discussed in Section 2.3.1 above, the general exponential form for a complex

number z is an expression of the form reiθ where r is a non-negative real number and

θ ∈ [0, 2π). The utility of this notation is immediately observed when multiplying

two complex numbers:

Lemma 2.3.2. Let z1 = r1e
iθ1 , z2 = r2e

iθ2 ∈ C be complex numbers in exponential

form. Then

z1z2 = r1r2e
i(θ1+θ2).

Proof. By direct computation,

z1z2 = (r1e
iθ1)(r2e

iθ2) = r1r2e
iθ1eiθ2

= r1r2(cos θ1 + i sin θ1)(cos θ2 + i sin θ2)

= r1r2
[
(cos θ1 cos θ2 − sin θ1 sin θ2) + i(sin θ1 cos θ2 + cos θ1 sin θ2)

]
= r1r2

[
cos(θ1 + θ2) + i sin(θ1 + θ2)

]
= r1r2e

i(θ1+θ2),
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where we have used the usual formulas for the sine and cosine of the sum of two

angles.

In particular, Lemma 2.3.2 shows that the modulus |z1z2| of the product is the

product of the moduli r1 and r2 and that the argument Arg(z1z2) of the product

is the sum of the arguments θ1 + θ2.

2.3.3 Exponentiation and root extraction

Another important use for the polar form of a complex number is in exponentiation.

The simplest possible situation here involves the use of a positive integer as a power,

in which case exponentiation is nothing more than repeated multiplication. Given

the observations in Section 2.3.2 above and using some trigonometric identities, one

quickly obtains the following fundamental result.

Theorem 2.3.3 (de Moivre’s Formula). Let z = r(cos(θ) + sin(θ)i) be a complex

number in polar form and n ∈ Z+ be a positive integer. Then

(1) the exponentiation zn = rn(cos(nθ) + sin(nθ)i) and

(2) the nth roots of z are given by the n complex numbers

zk = r1/n
[
cos

(
θ

n
+

2πk

n

)
+ sin

(
θ

n
+

2πk

n

)
i

]
= r1/ne

i
n (θ+2πk),

where k = 0, 1, 2, . . . , n− 1.

Note, in particular, that we are not only always guaranteed the existence of an

nth root for any complex number, but that we are also always guaranteed to have

exactly n of them. This level of completeness in root extraction is in stark contrast

with roots of real numbers (within the real numbers) which may or may not exist

and may be unique or not when they exist.

An important special case of de Moivre’s Formula yields n nth roots of unity.

By unity, we just mean the complex number 1 = 1 + 0i, and by the nth roots of

unity, we mean the n numbers

zk = 11/n
[
cos

(
0

n
+

2πk

n

)
+ sin

(
0

n
+

2πk

n

)
i

]

= cos

(
2πk

n

)
+ sin

(
2πk

n

)
i

= e2πi(k/n),

where k = 0, 1, 2, . . . , n− 1. The fact that these numbers are precisely the complex

numbers solving the equation zn = 1, has many interesting applications.

Example 2.3.4. To find all solutions of the equation z3 + 8 = 0 for z ∈ C, we

may write z = reiθ in polar form with r > 0 and θ ∈ [0, 2π). Then the equation

z3 + 8 = 0 becomes z3 = r3ei3θ = −8 = 8eiπ so that r = 2 and 3θ = π + 2πk
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for k = 0, 1, 2. This means that there are three distinct solutions when θ ∈ [0, 2π),

namely θ = π
3 , θ = π, and θ = 5π

3 .

2.3.4 Some complex elementary functions

We conclude this chapter by defining three of the basic elementary functions that

take complex arguments. In this context, “elementary function” is used as a tech-

nical term and essentially means something like “one of the most common forms of

functions encountered when beginning to learn Calculus.” The most basic elemen-

tary functions include the familiar polynomial and algebraic functions, such as the

nth root function, in addition to the somewhat more sophisticated exponential func-

tion, the trigonometric functions, and the logarithmic function. For the purposes of

this chapter, we will now define the complex exponential function and two complex

trigonometric functions. Definitions for the remaining basic elementary functions

can be found in any book on Complex Analysis.

The basic groundwork for defining the complex exponential function was

already put into place in Sections 2.3.1 and 2.3.2 above. In particular, we have

already defined the expression eiθ to mean the sum cos(θ) + sin(θ)i for any real

number θ. Historically, this equivalence is a special case of the more general Euler’s

formula

ex+yi = ex(cos(y) + sin(y)i),

which we here take as our definition of the complex exponential function applied to

any complex number x+ yi for x, y ∈ R.

Given this exponential function, one can then define the complex sine func-

tion and the complex cosine function as

sin(z) =
eiz − e−iz

2i
and cos(z) =

eiz + e−iz

2
.

Remarkably, these functions retain many of their familiar properties, which should

be taken as a sign that the definitions — however abstract — have been well thought-

out. We summarize a few of these properties as follows.

Theorem 2.3.5. Given z1, z2 ∈ C,

(1) ez1+z2 = ez1ez2 and ez �= 0 for any choice of z ∈ C.

(2) sin2(z1) + cos2(z1) = 1.

(3) sin(z1 + z2) = sin(z1) · cos(z2) + cos(z1) · sin(z2).
(4) cos(z1 + z2) = cos(z1) · cos(z2)− sin(z1) · sin(z2).

Exercises for Chapter 2

Calculational Exercises

(1) Express the following complex numbers in the form x+ yi for x, y ∈ R:
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(a) (2 + 3i) + (4 + i)

(b) (2 + 3i)2(4 + i)

(c)
2 + 3i

4 + i

(d)
1

i
+

3

1 + i
(e) (−i)−1

(f) (−1 + i
√
3)3

(2) Compute the real and imaginary parts of the following expressions, where z is

the complex number x+ yi and x, y ∈ R:

(a)
1

z2

(b)
1

3z + 2

(c)
z + 1

2z − 5
(d) z3

(3) Find r > 0 and θ ∈ [0, 2π) such that (1− i)/
√
2 = reiθ.

(4) Solve the following equations for z a complex number:

(a) z5 − 2 = 0

(b) z4 + i = 0

(c) z6 + 8 = 0

(d) z3 − 4i = 0

(5) Calculate the

(a) complex conjugate of the fraction (3 + 8i)4/(1 + i)10.

(b) complex conjugate of the fraction (8− 2i)10/(4 + 6i)5.

(c) complex modulus of the fraction i(2 + 3i)(5− 2i)/(−2− i).

(d) complex modulus of the fraction (2− 3i)2/(8 + 6i)2.

(6) Compute the real and imaginary parts:

(a) e2+i

(b) sin(1 + i)

(c) e3−i

(d) cos(2 + 3i)

(7) Compute the real and imaginary parts of ee
z

for z ∈ C.

Proof-Writing Exercises

(1) Let a ∈ R and z, w ∈ C. Prove that

(a) Re(az) = aRe(z) and Im(az) = aIm(z).

(b) Re(z + w) = Re(z) + Re(w) and Im(z + w) = Im(z) + Im(w).

(2) Let z ∈ C. Prove that Im(z) = 0 if and only if Re(z) = z.
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(3) Let z, w ∈ C. Prove the parallelogram law |z − w|2 + |z + w|2 = 2(|z|2 + |w|2).
(4) Let z, w ∈ C with zw �= 1 such that either |z| = 1 or |w| = 1. Prove that∣∣∣∣ z − w

1− zw

∣∣∣∣ = 1.

(5) For an angle θ ∈ [0, 2π), find the linear map fθ : R2 → R2, which describes the

rotation by the angle θ in the counterclockwise direction.

Hint : For a given angle θ, find a, b, c, d ∈ R such that fθ(x1, x2) = (ax1 +

bx2, cx1 + dx2).
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Chapter 3

The Fundamental Theorem of Algebra
and Factoring Polynomials

The similarities and differences between R and C are elegant and intriguing, but

why are complex numbers important? One possible answer to this question is the

Fundamental Theorem of Algebra. It states that every polynomial equation

in one variable with complex coefficients has at least one complex solution. In

other words, polynomial equations formed over C can always be solved over C.

This amazing result has several equivalent formulations in addition to a myriad of

different proofs, one of the first of which was given by the eminent mathematician

Carl Friedrich Gauss (1777-1855) in his doctoral thesis.

3.1 The Fundamental Theorem of Algebra

The aim of this section is to provide a proof of the Fundamental Theorem of Algebra

using concepts that should be familiar from the study of Calculus, and so we begin

by providing an explicit formulation.

Theorem 3.1.1 (Fundamental Theorem of Algebra). Given any positive integer

n ∈ Z+ and any choice of complex numbers a0, a1, . . . , an ∈ C with an �= 0, the

polynomial equation

anz
n + · · ·+ a1z + a0 = 0 (3.1)

has at least one solution z ∈ C.

This is a remarkable statement. No analogous result holds for guaranteeing that

a real solution exists to Equation (3.1) if we restrict the coefficients a0, a1, . . . , an to

be real numbers. E.g., there does not exist a real number x satisfying an equation

as simple as πx2 + e = 0. Similarly, the consideration of polynomial equations

having integer (resp. rational) coefficients quickly forces us to consider solutions that

cannot possibly be integers (resp. rational numbers). Thus, the complex numbers

are special in this respect.

The statement of the Fundamental Theorem of Algebra can also be read as

follows: Any non-constant complex polynomial function defined on the complex

21
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plane C (when thought of as R2) has at least one root, i.e., vanishes in at least one

place. It is in this form that we will provide a proof for Theorem 3.1.1.

Given how long the Fundamental Theorem of Algebra has been around, you

should not be surprised that there are many proofs of it. There have even been

entire books devoted solely to exploring the mathematics behind various distinct

proofs. Different proofs arise from attempting to understand the statement of the

theorem from the viewpoint of different branches of mathematics. This quickly

leads to many non-trivial interactions with such fields of mathematics as Real and

Complex Analysis, Topology, and (Modern) Abstract Algebra. The diversity of

proof techniques available is yet another indication of how fundamental and deep

the Fundamental Theorem of Algebra really is.

To prove the Fundamental Theorem of Algebra using Differential Calculus, we

will need the Extreme Value Theorem for real-valued functions of two real vari-

ables, which we state without proof. In particular, we formulate this theorem in

the restricted case of functions defined on the closed disk D of radius R > 0 and

centered at the origin, i.e.,

D = {(x1, x2) ∈ R2 | x2
1 + x2

2 ≤ R2}.

Theorem 3.1.2 (Extreme Value Theorem). Let f : D → R be a continuous func-

tion on the closed disk D ⊂ R2. Then f is bounded and attains its minimum and

maximum values on D. In other words, there exist points xm, xM ∈ D such that

f(xm) ≤ f(x) ≤ f(xM )

for every possible choice of point x ∈ D.

If we define a polynomial function f : C → C by setting f(z) = anz
n + · · · +

a1z + a0 as in Equation (3.1), then note that we can regard (x, y) �→ |f(x+ iy)| as
a function R2 → R. By a mild abuse of notation, we denote this function by |f( · )|
or |f |. As it is a composition of continuous functions (polynomials and the square

root), we see that |f | is also continuous.

Lemma 3.1.3. Let f : C → C be any polynomial function. Then there exists a

point z0 ∈ C where the function |f | attains its minimum value in R.

Proof. If f is a constant polynomial function, then the statement of the Lemma is

trivially true since |f | attains its minimum value at every point in C. So choose,

e.g., z0 = 0.

If f is not constant, then the degree of the polynomial defining f is at least one.

In this case, we can denote f explicitly as in Equation (3.1). That is, we set

f(z) = anz
n + · · ·+ a1z + a0
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with an �= 0. Now, assume z �= 0, and set A = max{|a0|, . . . , |an−1|}. We can

obtain a lower bound for |f(z)| as follows:

|f(z)| = |an| |z|n
∣∣1 + an−1

an

1

z
+ · · ·+ a0

an

1

zn
∣∣

≥ |an| |z|n
(
1− A

|an|
∞∑
k=1

1

|z|k
)
= |an| |z|n

(
1− A

|an|
1

|z| − 1

)
.

For all z ∈ C such that |z| ≥ 2, we can further simplify this expression and obtain

|f(z)| ≥ |an| |z|n
(
1− 2A

|an||z|
)
.

It follows from this inequality that there is an R > 0 such that |f(z)| > |f(0)|, for
all z ∈ C satisfying |z| > R. Let D ⊂ R2 be the disk of radius R centered at 0, and

define a function g : D → R, by

g(x, y) = |f(x+ iy)|.
Since g is continuous, we can apply Theorem 3.1.2 in order to obtain a point

(x0, y0) ∈ D such that g attains its minimum at (x0, y0). By the choice of R

we have that for z ∈ C \D, |f(z)| > |g(0, 0)| ≥ |g(x0, y0)|. Therefore, |f | attains its
minimum at z = x0 + iy0.

We now prove the Fundamental Theorem of Algebra.

Proof of Theorem 3.1.1. For our argument, we rely on the fact that the function

|f | attains its minimum value by Lemma 3.1.3. Let z0 ∈ C be a point where the

minimum is attained. We will show that if f(z0) �= 0, then z0 is not a minimum,

thus proving by contraposition that the minimum value of |f(z)| is zero. Therefore,
f(z0) = 0.

If f(z0) �= 0, then we can define a new function g : C → C by setting

g(z) =
f(z + z0)

f(z0)
, for all z ∈ C.

Note that g is a polynomial of degree n, and that the minimum of |f | is attained at

z0 if and only if the minimum of |g| is attained at z = 0. Moreover, it is clear that

g(0) = 1.

More explicitly, g is given by a polynomial of the form

g(z) = bnz
n + · · ·+ bkz

k + 1,

with n ≥ 1 and bk �= 0, for some 1 ≤ k ≤ n. Let bk = |bk|eiθ, and consider z of the

form

z = r|bk|−1/kei(π−θ)/k, (3.2)

with r > 0. For z of this form we have

g(z) = 1− rk + rk+1h(r),
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where h is a polynomial. Then, for r < 1, we have by the triangle inequality that

|g(z)| ≤ 1− rk + rk+1|h(r)|.
For r > 0 sufficiently small we have r|h(r)| < 1, by the continuity of the function

rh(r) and the fact that it vanishes in r = 0. Hence

|g(z)| ≤ 1− rk(1− r|h(r)|) < 1,

for some z having the form in Equation (3.2) with r ∈ (0, r0) and r0 > 0 sufficiently

small. But then the minimum of the function |g| : C → R cannot possibly be equal

to 1.

3.2 Factoring polynomials

In this section, we present several fundamental facts about polynomials, including

an equivalent form of the Fundamental Theorem of Algebra. While these facts

should be familiar, they nonetheless require careful formulation and proof. Before

stating these results, though, we first present a review of the main concepts needed

in order to more carefully work with polynomials.

Let n ∈ Z+∪{0} be a non-negative integer, and let a0, a1, . . . , an ∈ C be complex

numbers. Then we call the expression

p(z) = anz
n + · · ·+ a1z + a0

a polynomial in the variable z with coefficients a0, a1, . . . , an. If an �= 0, then we

say that p(z) has degree n (denoted deg(p(z)) = n), and we call an the leading

term of p(z). Moreover, if an = 1, then we call p(z) a monic polynomial.

If, however, n = a0 = 0, then we call p(z) = 0 the zero polynomial and set

deg(0) = −∞.

Finally, by a root (a.k.a. zero) of a polynomial p(z), we mean a complex number

z0 such that p(z0) = 0. Note, in particular, that every complex number is a root of

the zero polynomial.

Convention dictates that

• a degree zero polynomial be called a constant polynomial,

• a degree one polynomial be called a linear polynomial,

• a degree two polynomial be called a quadratic polynomial,

• a degree three polynomial be called a cubic polynomial,

• a degree four polynomial be called a quadric polynomial,

• a degree five polynomial be called a quintic polynomial,

• and so on.

Addition and multiplication of polynomials is a direct generalization of the

addition and multiplication of complex numbers, and degree interacts with these

operations as follows:
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Lemma 3.2.1. Let p(z) and q(z) be non-zero polynomials. Then

(1) deg (p(z)± q(z)) ≤ max{deg(p(z)), deg(q(z))}
(2) deg (p(z)q(z)) = deg(p(z)) + deg(q(z)).

Theorem 3.2.2. Given a positive integer n ∈ Z+ and any choice of a0, a1, . . . , an ∈
C with an �= 0, define the function f : C → C by setting

f(z) = anz
n + · · ·+ a1z + a0, ∀ z ∈ C.

In other words, f is a polynomial function of degree n. Then

(1) given any complex number w ∈ C, we have that f(w) = 0 if and only if there

exists a polynomial function g : C → C of degree n− 1 such that

f(z) = (z − w)g(z), ∀ z ∈ C.

(2) there are at most n distinct complex numbers w for which f(w) = 0. In other

words, f has at most n distinct roots.

(3) (Fundamental Theorem of Algebra, restated) there exist exactly n + 1 complex

numbers w0, w1, . . . , wn ∈ C (not necessarily distinct) such that

f(z) = w0(z − w1)(z − w2) · · · (z − wn), ∀ z ∈ C.

In other words, every polynomial function with coefficients over C can be fac-

tored into linear factors over C.

Proof.

(1) Let w ∈ C be a complex number.

(“=⇒”) Suppose that f(w) = 0. Then, in particular, we have that

anw
n + · · ·+ a1w + a0 = 0.

Since this equation is equal to zero, it follows that, given any z ∈ C,

f(z) = anz
n + · · ·+ a1z + a0 − (anw

n + · · ·+ a1w + a0)

= an(z
n − wn) + an−1(z

n−1 − wn−1) + · · ·+ a1(z − w)

= an(z − w)

n−1∑
k=0

zkwn−1−k + an−1(z − w)

n−2∑
k=0

zkwn−2−k + · · ·+ a1(z − w)

= (z − w)
n∑

m=1

(
am

m−1∑
k=0

zkwm−1−k

)
.

Thus, upon setting

g(z) =

n∑
m=1

(
am

m−1∑
k=0

zkwm−1−k

)
, ∀ z ∈ C,

we have constructed a degree n− 1 polynomial function g such that

f(z) = (z − w)g(z), ∀ z ∈ C.
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(“⇐=”) Suppose that there exists a polynomial function g : C → C of degree

n− 1 such that

f(z) = (z − w)g(z), ∀ z ∈ C.

Then it follows that f(w) = (w − w)g(w) = 0, as desired.

(2) We use induction on the degree n of f .

If n = 1, then f(z) = a1z+a0 is a linear function, and the equation a1z+a0 = 0

has the unique solution z = −a0/a1. Thus, the result holds for n = 1.

Now, suppose that the result holds for n − 1. In other words, assume that

every polynomial function of degree n − 1 has at most n − 1 roots. Using the

Fundamental Theorem of Algebra (Theorem 3.1.1), we know that there exists

a complex number w ∈ C such that f(w) = 0. Moreover, from Part 1 above,

we know that there exists a polynomial function g of degree n− 1 such that

f(z) = (z − w)g(z), ∀ z ∈ C.

It then follows by the induction hypothesis that g has at most n − 1 distinct

roots, and so f must have at most n distinct roots.

(3) This part follows from an induction argument on n that is virtually identical

to that of Part 2, and so the proof is left as an exercise to the reader.

Exercises for Chapter 3

Calculational Exercises

(1) Let n ∈ Z+ be a positive integer, let w0, w1, . . . , wn ∈ C be distinct complex

numbers, and let z0, z1, . . . , zn ∈ C be any complex numbers. Then one can

prove that there is a unique polynomial p(z) of degree at most n such that, for

each k ∈ {0, 1, . . . , n}, p(wk) = zk.

(a) Find the unique polynomial of degree at most 2 that satisfies p(0) = 0,

p(1) = 1, and p(2) = 2.

(b) Can your result in Part (a) be easily generalized to find the unique poly-

nomial of degree at most n satisfying p(0) = 0, p(1) = 1, . . . , p(n) = n?

(2) Given any complex number α ∈ C, show that the coefficients of the polynomial

(z − α)(z − α)

are real numbers.

Proof-Writing Exercises

(1) Let m,n ∈ Z+ be positive integers with m ≤ n. Prove that there is a degree n

polynomial p(z) with complex coefficients such that p(z) has exactly m distinct

roots.
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(2) Given a polynomial p(z) = anz
n + · · · + a1z + a0 with complex coefficients,

define the conjugate of p(z) to be the new polynomial

p(z) = anz
n + · · ·+ a1z + a0.

(a) Prove that p(z) = p(z).

(b) Prove that p(z) has real coefficients if and only if p(z) = p(z).

(c) Given polynomials p(z), q(z), and r(z) such that p(z) = q(z)r(z), prove

that p(z) = q(z)r(z).

(3) Let p(z) be a polynomial with real coefficients, and let α ∈ C be a complex

number.

Prove that p(α) = 0 if and only p(α) = 0.
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Chapter 4

Vector Spaces

With the background developed in the previous chapters, we are ready to begin the

study of Linear Algebra by introducing vector spaces. Vector spaces are essential

for the formulation and solution of linear algebra problems and they will appear on

virtually every page of this book from now on.

4.1 Definition of vector spaces

As we have seen in Chapter 1, a vector space is a set V with two operations defined

upon it: addition of vectors and multiplication by scalars. These operations must

satisfy certain properties, which we are about to discuss in more detail. The scalars

are taken from a field F, where for the remainder of this book F stands either for

the real numbers R or for the complex numbers C. The sets R and C are examples

of fields. The abstract definition of a field along with further examples can be found

in Appendix C.

Vector addition can be thought of as a function + : V × V → V that maps

two vectors u, v ∈ V to their sum u+ v ∈ V . Scalar multiplication can similarly

be described as a function F×V → V that maps a scalar a ∈ F and a vector v ∈ V

to a new vector av ∈ V . (More information on these kinds of functions, also known

as binary operations, can be found in Appendix C.) It is when we place the right

conditions on these operations, also called axioms, that we turn V into a vector

space.

Definition 4.1.1. A vector space over F is a set V together with the operations

of addition V × V → V and scalar multiplication F× V → V satisfying each of the

following properties.

(1) Commutativity: u+ v = v + u for all u, v ∈ V ;

(2) Associativity: (u+ v) +w = u+ (v+w) and (ab)v = a(bv) for all u, v, w ∈ V

and a, b ∈ F;

(3) Additive identity: There exists an element 0 ∈ V such that 0 + v = v for all

v ∈ V ;

29
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(4) Additive inverse: For every v ∈ V , there exists an element w ∈ V such that

v + w = 0;

(5) Multiplicative identity: 1v = v for all v ∈ V ;

(6) Distributivity: a(u + v) = au + av and (a + b)u = au + bu for all u, v ∈ V

and a, b ∈ F.

A vector space over R is usually called a real vector space, and a vector space

over C is similarly called a complex vector space. The elements v ∈ V of a vector

space are called vectors.

Even though Definition 4.1.1 may appear to be an extremely abstract definition,

vector spaces are fundamental objects in mathematics because there are count-

less examples of them. You should expect to see many examples of vector spaces

throughout your mathematical life.

Example 4.1.2. Consider the set Fn of all n-tuples with elements in F. This is a

vector space with addition and scalar multiplication defined componentwise. That

is, for u = (u1, u2, . . . , un), v = (v1, v2, . . . , vn) ∈ Fn and a ∈ F, we define

u+ v = (u1 + v1, u2 + v2, . . . , un + vn),

au = (au1, au2, . . . , aun).

It is easy to check that each property of Definition 4.1.1 is satisfied. In par-

ticular, the additive identity 0 = (0, 0, . . . , 0), and the additive inverse of u is

−u = (−u1,−u2, . . . ,−un).

An important case of Example 4.1.2 is Rn, especially when n = 2 or n = 3. We

have already seen in Chapter 1 that there is a geometric interpretation for elements

of R2 and R3 as points in the Euclidean plane and Euclidean space, respectively.

Example 4.1.3. Let F∞ be the set of all sequences over F, i.e.,

F∞ = {(u1, u2, . . .) | uj ∈ F for j = 1, 2, . . .}.
Addition and scalar multiplication are defined as expected, namely,

(u1, u2, . . .) + (v1, v2, . . .) = (u1 + v1, u2 + v2, . . .),

a(u1, u2, . . .) = (au1, au2, . . .).

You should verify that F∞ becomes a vector space under these operations.

Example 4.1.4. Verify that V = {0} is a vector space! (Here, 0 denotes the zero

vector in any vector space.)

Example 4.1.5. Let F[z] be the set of all polynomial functions p : F → F with

coefficients in F. As discussed in Chapter 3, p(z) is a polynomial if there exist

a0, a1, . . . , an ∈ F such that

p(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0. (4.1)
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Addition and scalar multiplication on F[z] are defined pointwise as

(p+ q)(z) = p(z) + q(z),

(ap)(z) = ap(z),

where p, q ∈ F[z] and a ∈ F. For example, if p(z) = 5z + 1 and q(z) = 2z2 + z + 1,

then (p+ q)(z) = 2z2 + 6z + 2 and (2p)(z) = 10z + 2.

It can be easily verified that, under these operations, F[z] forms a vector space

over F. The additive identity in this case is the zero polynomial, for which all

coefficients are equal to zero, and the additive inverse of p(z) in Equation (4.1) is

−p(z) = −anz
n − an−1z

n−1 − · · · − a1z − a0.

Example 4.1.6. Extending Example 4.1.5, let D ⊂ R be a subset of R, and let

C(D) denote the set of all continuous functions with domain D and codomain R.

Then, under the same operations of pointwise addition and scalar multiplication,

one can show that C(D) also forms a vector space.

4.2 Elementary properties of vector spaces

We are going to prove several important, yet simple, properties of vector spaces.

From now on, V will denote a vector space over F.

Proposition 4.2.1. In every vector space the additive identity is unique.

Proof. Suppose there are two additive identities 0 and 0′. Then

0′ = 0 + 0′ = 0,

where the first equality holds since 0 is an identity and the second equality holds

since 0′ is an identity. Hence 0 = 0′, proving that the additive identity is unique.

Proposition 4.2.2. Every v ∈ V has a unique additive inverse.

Proof. Suppose w and w′ are additive inverses of v so that v+w = 0 and v+w′ = 0.

Then

w = w + 0 = w + (v + w′) = (w + v) + w′ = 0 + w′ = w′.

Hence w = w′, as desired.

Since the additive inverse of v is unique, as we have just shown, it will from now

on be denoted by −v. We also define w − v to mean w + (−v). We will, in fact,

show in Proposition 4.2.5 below that −v = −1v.

Proposition 4.2.3. 0v = 0 for all v ∈ V .

Note that the 0 on the left-hand side in Proposition 4.2.3 is a scalar, whereas

the 0 on the right-hand side is a vector.
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Proof. For v ∈ V , we have by distributivity that

0v = (0 + 0)v = 0v + 0v.

Adding the additive inverse of 0v to both sides, we obtain

0 = 0v − 0v = (0v + 0v)− 0v = 0v.

Proposition 4.2.4. a0 = 0 for every a ∈ F.

Proof. As in the proof of Proposition 4.2.3, if a ∈ F, then

a0 = a(0 + 0) = a0 + a0.

Adding the additive inverse of a0 to both sides, we obtain 0 = a0, as desired.

Proposition 4.2.5. (−1)v = −v for every v ∈ V .

Proof. For v ∈ V , we have

v + (−1)v = 1v + (−1)v = (1 + (−1))v = 0v = 0,

which shows that (−1)v is the additive inverse −v of v.

4.3 Subspaces

As mentioned in the last section, there are countless examples of vector spaces. One

particularly important source of new vector spaces comes from looking at subsets

of a set that is already known to be a vector space.

Definition 4.3.1. Let V be a vector space over F, and let U ⊂ V be a subset of

V . Then we call U a subspace of V if U is a vector space over F under the same

operations that make V into a vector space over F.

To check that a subset U ⊂ V is a subspace, it suffices to check only a few of

the conditions of a vector space.

Lemma 4.3.2. Let U ⊂ V be a subset of a vector space V over F. Then U is a

subspace of V if and only if the following three conditions hold.

(1) additive identity: 0 ∈ U ;

(2) closure under addition: u, v ∈ U implies u+ v ∈ U ;

(3) closure under scalar multiplication: a ∈ F, u ∈ U implies that au ∈ U .

Proof. Condition 1 implies that the additive identity exists. Condition 2 implies

that vector addition is well-defined and, Condition 3 ensures that scalar multipli-

cation is well-defined. All other conditions for a vector space are inherited from V

since addition and scalar multiplication for elements in U are the same when viewed

as elements in either U or V .
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Remark 4.3.3. Note that if we require U ⊂ V to be a nonempty subset of V , then

condition 1 of Lemma 4.3.2 already follows from condition 3 since 0u = 0 for u ∈ U .

Example 4.3.4. In every vector space V , the subsets {0} and V are easily verified

to be subspaces. We call these the trivial subspaces of V .

Example 4.3.5. {(x1, 0) | x1 ∈ R} is a subspace of R2.

Example 4.3.6. U = {(x1, x2, x3) ∈ F3 | x1+2x2 = 0} is a subspace of F3. To see

this, we need to check the three conditions of Lemma 4.3.2.

The zero vector (0, 0, 0) ∈ F3 is in U since it satisfies the condition x1 + 2x2 =

0. To show that U is closed under addition, take two vectors v = (v1, v2, v3)

and u = (u1, u2, u3). Then, by the definition of U , we have v1 + 2v2 = 0 and

u1 + 2u2 = 0. Adding these two equations, it is not hard to see that the vector

v+u = (v1+u1, v2+u2, v3+u3) satisfies (v1+u1)+2(v2+u2) = 0. Hence v+u ∈ U .

Similarly, to show closure under scalar multiplication, take u = (u1, u2, u3) ∈ U and

a ∈ F. Then au = (au1, au2, au3) satisfies the equation au1+2au2 = a(u1+2u2) = 0,

and so au ∈ U .

Example 4.3.7. U = {p ∈ F[z] | p(3) = 0} is a subspace of F[z]. Again, to check

this, we need to verify the three conditions of Lemma 4.3.2.

Certainly the zero polynomial p(z) = 0zn + 0zn−1 + · · · + 0z + 0 is in U since

p(z) evaluated at 3 is 0. If f(z), g(z) ∈ U , then f(3) = g(3) = 0 so that (f+g)(3) =

f(3) + g(3) = 0 + 0 = 0. Hence f + g ∈ U , which proves closure under addition.

Similarly, (af)(3) = af(3) = a0 = 0 for any a ∈ F, which proves closure under

scalar multiplication.

Example 4.3.8. As in Example 4.1.6, let D ⊂ R be a subset of R, and let C∞(D)

denote the set of all smooth (a.k.a. continuously differentiable) functions with do-

main D and codomain R. Then, under the same operations of point-wise addition

and scalar multiplication, one can show that C∞(D) is a subspace of C(D).

Example 4.3.9. The subspaces of R2 consist of {0}, all lines through the origin,

and R2 itself. The subspaces of R3 are {0}, all lines through the origin, all planes

through the origin, and R3. In fact, these exhaust all subspaces of R2 and R3,

respectively. To prove this, we will need further tools such as the notion of bases

and dimensions to be discussed soon. In particular, this shows that lines and planes

that do not pass through the origin are not subspaces (which is not so hard to

show!).

Note that if U and U ′ are subspaces of V , then their intersection U ∩ U ′ is also
a subspace (see Proof-writing Exercise 2 on page 38 and Figure 4.1). However, the

union of two subspaces is not necessarily a subspace. Think, for example, of the

union of two lines in R2, as in Figure 4.2.
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Fig. 4.1 The intersection U ∩ U ′ of two subspaces is a subspace

4.4 Sums and direct sums

Throughout this section, V is a vector space over F, and U1, U2 ⊂ V denote sub-

spaces.

Definition 4.4.1. Let U1, U2 ⊂ V be subspaces of V . Define the (subspace) sum

of U1 and U2 to be the set

U1 + U2 = {u1 + u2 | u1 ∈ U1, u2 ∈ U2}.
Check as an exercise that U1 + U2 is a subspace of V . In fact, U1 + U2 is the

smallest subspace of V that contains both U1 and U2.

Example 4.4.2. Let

U1 = {(x, 0, 0) ∈ F3 | x ∈ F},
U2 = {(0, y, 0) ∈ F3 | y ∈ F}.

Then

U1 + U2 = {(x, y, 0) ∈ F3 | x, y ∈ F}. (4.2)

If, alternatively, U2 = {(y, y, 0) ∈ F3 | y ∈ F}, then Equation (4.2) still holds.

If U = U1 + U2, then, for any u ∈ U , there exist u1 ∈ U1 and u2 ∈ U2 such that

u = u1 + u2. If it so happens that u can be uniquely written as u1 + u2, then U is

called the direct sum of U1 and U2.
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v

u

u+ v /∈ U ∪ U
′

U

U
′

Fig. 4.2 The union U ∪ U ′ of two subspaces is not necessarily a subspace

Definition 4.4.3. Suppose every u ∈ U can be uniquely written as u = u1 + u2

for u1 ∈ U1 and u2 ∈ U2. Then we use

U = U1 ⊕ U2

to denote the direct sum of U1 and U2.

Example 4.4.4. Let

U1 = {(x, y, 0) ∈ R3 | x, y ∈ R},
U2 = {(0, 0, z) ∈ R3 | z ∈ R}.

Then R3 = U1 ⊕ U2. However, if instead

U2 = {(0, w, z) | w, z ∈ R},
then R3 = U1 + U2 but is not the direct sum of U1 and U2.

Example 4.4.5. Let

U1 = {p ∈ F[z] | p(z) = a0 + a2z
2 + · · ·+ a2mz2m},

U2 = {p ∈ F[z] | p(z) = a1z + a3z
3 + · · ·+ a2m+1z

2m+1}.
Then F[z] = U1 ⊕ U2.

Proposition 4.4.6. Let U1, U2 ⊂ V be subspaces. Then V = U1 ⊕ U2 if and only

if the following two conditions hold:

(1) V = U1 + U2;

(2) If 0 = u1 + u2 with u1 ∈ U1 and u2 ∈ U2, then u1 = u2 = 0.
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Proof.

(“=⇒”) Suppose V = U1 ⊕ U2. Then Condition 1 holds by definition. Certainly

0 = 0 + 0, and, since by uniqueness this is the only way to write 0 ∈ V , we have

u1 = u2 = 0.

(“⇐=”) Suppose Conditions 1 and 2 hold. By Condition 1, we have that, for all

v ∈ V , there exist u1 ∈ U1 and u2 ∈ U2 such that v = u1+u2. Suppose v = w1+w2

with w1 ∈ U1 and w2 ∈ U2. Subtracting the two equations, we obtain

0 = (u1 − w1) + (u2 − w2),

where u1 − w1 ∈ U1 and u2 − w2 ∈ U2. By Condition 2, this implies u1 − w1 = 0

and u2 − w2 = 0, or equivalently u1 = w1 and u2 = w2, as desired.

Proposition 4.4.7. Let U1, U2 ⊂ V be subspaces. Then V = U1 ⊕ U2 if and only

if the following two conditions hold:

(1) V = U1 + U2;

(2) U1 ∩ U2 = {0}.
Proof.

(“=⇒”) Suppose V = U1⊕U2. Then Condition 1 holds by definition. If u ∈ U1∩U2,

then 0 = u+(−u) with u ∈ U1 and −u ∈ U2 (why?). By Proposition 4.4.6, we have

u = 0 and −u = 0 so that U1 ∩ U2 = {0}.

(“⇐=”) Suppose Conditions 1 and 2 hold. To prove that V = U1 ⊕ U2 holds,

suppose that

0 = u1 + u2, where u1 ∈ U1 and u2 ∈ U2. (4.3)

By Proposition 4.4.6, it suffices to show that u1 = u2 = 0. Equation (4.3) implies

that u1 = −u2 ∈ U2. Hence u1 ∈ U1 ∩ U2, which in turn implies that u1 = 0. It

then follows that u2 = 0 as well.

Everything in this section can be generalized to m subspaces U1, U2, . . . , Um,

with the notable exception of Proposition 4.4.7. To see this consider the following

example.

Example 4.4.8. Let

U1 = {(x, y, 0) ∈ F3 | x, y ∈ F},
U2 = {(0, 0, z) ∈ F3 | z ∈ F},
U3 = {(0, y, y) ∈ F3 | y ∈ F}.

Then certainly F3 = U1 + U2 + U3, but F
3 �= U1 ⊕ U2 ⊕ U3 since, for example,

(0, 0, 0) = (0, 1, 0) + (0, 0, 1) + (0,−1,−1).
But U1 ∩ U2 = U1 ∩ U3 = U2 ∩ U3 = {0} so that the analog of Proposition 4.4.7

does not hold.
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Exercises for Chapter 4

Calculational Exercises

(1) For each of the following sets, either show that the set is a vector space or

explain why it is not a vector space.

(a) The set R of real numbers under the usual operations of addition and mul-

tiplication.

(b) The set {(x, 0) | x ∈ R} under the usual operations of addition and multi-

plication on R2.

(c) The set {(x, 1) | x ∈ R} under the usual operations of addition and multi-

plication on R2.

(d) The set {(x, 0) | x ∈ R, x ≥ 0} under the usual operations of addition and

multiplication on R2.

(e) The set {(x, 1) | x ∈ R, x ≥ 0} under the usual operations of addition and

multiplication on R2.

(f) The set

{[
a a+ b

a+ b a

]
| a, b ∈ R

}
under the usual operations of addition

and multiplication on R2×2.

(g) The set

{[
a a+ b+ 1

a+ b a

]
| a, b ∈ R

}
under the usual operations of addi-

tion and multiplication on R2×2.

(2) Show that the space V = {(x1, x2, x3) ∈ F3 | x1+2x2+2x3 = 0} forms a vector

space.

(3) For each of the following sets, either show that the set is a subspace of C(R) or
explain why it is not a subspace.

(a) The set {f ∈ C(R) | f(x) ≤ 0, ∀x ∈ R}.
(b) The set {f ∈ C(R) | f(0) = 0}.
(c) The set {f ∈ C(R) | f(0) = 2}.
(d) The set of all constant functions.

(e) The set {α+ β sin(x) | α, β ∈ R}.
(4) Give an example of a nonempty subset U ⊂ R2 such that U is closed under

scalar multiplication but is not a subspace of R2.

(5) Let F[z] denote the vector space of all polynomials with coefficients in F, and

define U to be the subspace of F[z] given by

U = {az2 + bz5 | a, b ∈ F}.
Find a subspace W of F[z] such that F[z] = U ⊕W .

Proof-Writing Exercises

(1) Let V be a vector space over F. Then, given a ∈ F and v ∈ V such that av = 0,

prove that either a = 0 or v = 0.
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(2) Let V be a vector space over F, and suppose that W1 and W2 are subspaces of

V . Prove that their intersection W1 ∩W2 is also a subspace of V .

(3) Prove or give a counterexample to the following claim:

Claim. Let V be a vector space over F, and suppose that W1, W2, and W3 are

subspaces of V such that W1 +W3 = W2 +W3. Then W1 = W2.

(4) Prove or give a counterexample to the following claim:

Claim. Let V be a vector space over F, and suppose that W1, W2, and W3 are

subspaces of V such that W1 ⊕W3 = W2 ⊕W3. Then W1 = W2.
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Chapter 5

Span and Bases

The intuitive notion of dimension of a space as the number of coordinates one needs

to uniquely specify a point in the space motivates the mathematical definition of

dimension of a vector space. In this Chapter, we will first introduce the notions of

linear span, linear independence, and basis of a vector space. Given a basis, we

will find a bijective correspondence between coordinates and elements in a vector

space, which leads to the definition of dimension of a vector space.

5.1 Linear span

As before, let V denote a vector space over F. Given vectors v1, v2, . . . , vm ∈ V ,

a vector v ∈ V is a linear combination of (v1, . . . , vm) if there exist scalars

a1, . . . , am ∈ F such that

v = a1v1 + a2v2 + · · ·+ amvm.

Definition 5.1.1. The linear span (or simply span) of (v1, . . . , vm) is defined as

span(v1, . . . , vm) := {a1v1 + · · ·+ amvm | a1, . . . , am ∈ F}.
Lemma 5.1.2. Let V be a vector space and v1, v2, . . . , vm ∈ V . Then

(1) vj ∈ span(v1, v2, . . . , vm).

(2) span(v1, v2, . . . , vm) is a subspace of V .

(3) If U ⊂ V is a subspace such that v1, v2, . . . vm ∈ U , then span(v1, v2, . . . , vm) ⊂
U .

Proof. Property 1 is obvious. For Property 2, note that 0 ∈ span(v1, v2, . . . , vm)

and that span(v1, v2, . . . , vm) is closed under addition and scalar multiplication. For

Property 3, note that a subspace U of a vector space V is closed under addition

and scalar multiplication. Hence, if v1, . . . , vm ∈ U , then any linear combination

a1v1 + · · ·+ amvm must also be an element of U .

Lemma 5.1.2 implies that span(v1, v2, . . . , vm) is the smallest subspace of V

containing each of v1, v2, . . . , vm.

39
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Definition 5.1.3. If span(v1, . . . , vm) = V , then we say that (v1, . . . , vm) spans V

and we call V finite-dimensional. A vector space that is not finite-dimensional is

called infinite-dimensional.

Example 5.1.4. The vectors e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en =

(0, . . . , 0, 1) span Fn. Hence Fn is finite-dimensional.

Example 5.1.5. The vectors v1 = (1, 1, 0) and v2 = (1,−1, 0) span a subspace of

R3. More precisely, if we write the vectors in R3 as 3-tuples of the form (x, y, z),

then span(v1, v2) is the xy-plane in R3.

Example 5.1.6. Recall that if p(z) = amzm + am−1z
m−1 + · · · + a1z + a0 ∈ F[z]

is a polynomial with coefficients in F such that am �= 0, then we say that p(z) has

degree m. By convention, the degree of the zero polynomial p(z) = 0 is −∞. We

denote the degree of p(z) by deg(p(z)). Define

Fm[z] = set of all polynomials in F[z] of degree at most m.

Then Fm[z] ⊂ F[z] is a subspace since Fm[z] contains the zero polynomial and is

closed under addition and scalar multiplication. In fact, Fm[z] is a finite-dimensional

subspace of F[z] since

Fm[z] = span(1, z, z2, . . . , zm).

At the same time, though, note that F[z] itself is infinite-dimensional. To see this,

assume the contrary, namely that

F[z] = span(p1(z), . . . , pk(z))

is spanned by a finite set of k polynomials p1(z), . . . , pk(z). Let

m = max(deg p1(z), . . . , deg pk(z)). Then zm+1 ∈ F[z], but zm+1 /∈
span(p1(z), . . . , pk(z)).

5.2 Linear independence

We are now going to define the notion of linear independence of a list of vectors.

This concept will be extremely important in the sections that follow, and especially

when we introduce bases and the dimension of a vector space.

Definition 5.2.1. A list of vectors (v1, . . . , vm) is called linearly independent if

the only solution for a1, . . . , am ∈ F to the equation

a1v1 + · · ·+ amvm = 0

is a1 = · · · = am = 0. In other words, the zero vector can only trivially be written

as a linear combination of (v1, . . . , vm).
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Definition 5.2.2. A list of vectors (v1, . . . , vm) is called linearly dependent if it

is not linearly independent. That is, (v1, . . . , vm) is linear dependent if there exist

a1, . . . , am ∈ F, not all zero, such that

a1v1 + · · ·+ amvm = 0.

Example 5.2.3. The vectors (e1, . . . , em) of Example 5.1.4 are linearly indepen-

dent. To see this, note that the only solution to the vector equation

0 = a1e1 + · · ·+ amem = (a1, . . . , am)

is a1 = · · · = am = 0. Alternatively, we can reinterpret this vector equation as the

homogeneous linear system

a1 = 0

a2 = 0
. . .

...
...

am = 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ ,

which clearly has only the trivial solution. (See Section A.3.2 for the appropriate

definitions.)

Example 5.2.4. The vectors v1 = (1, 1, 1), v2 = (0, 1,−1), and v3 = (1, 2, 0) are

linearly dependent. To see this, we need to consider the vector equation

a1v1 + a2v2 + a3v3 = a1(1, 1, 1) + a2(0, 1,−1) + a3(1, 2, 0)

= (a1 + a3, a1 + a2 + 2a3, a1 − a2) = (0, 0, 0).

Solving for a1, a2, and a3, we see, for example, that (a1, a2, a3) = (1, 1,−1) is a

non-zero solution. Alternatively, we can reinterpret this vector equation as the

homogeneous linear system

a1 + a3 = 0

a1 + a2 + 2a3 = 0

a1 − a2 = 0

⎫⎬
⎭ .

Using the techniques of Section A.3, we see that solving this linear system is equiv-

alent to solving the following linear system:

a1 + a3 = 0

a2 + a3 = 0

}
.

Note that this new linear system clearly has infinitely many solutions. In particular,

the set of all solutions is given by

N = {(a1, a2, a3) ∈ Fn | a1 = a2 = −a3} = span((1, 1,−1)).
Example 5.2.5. The vectors (1, z, . . . , zm) in the vector space Fm[z] are linearly

independent. Requiring that

a01 + a1z + · · ·+ amzm = 0

means that the polynomial on the left should be zero for all z ∈ F. This is only

possible for a0 = a1 = · · · = am = 0.
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An important consequence of the notion of linear independence is the fact that

any vector in the span of a given list of linearly independent vectors can be uniquely

written as a linear combination.

Lemma 5.2.6. The list of vectors (v1, . . . , vm) is linearly independent if and only

if every v ∈ span(v1, . . . , vm) can be uniquely written as a linear combination of

(v1, . . . , vm).

Proof.

(“=⇒”) Assume that (v1, . . . , vm) is a linearly independent list of vectors. Suppose

there are two ways of writing v ∈ span(v1, . . . , vm) as a linear combination of the

vi:

v = a1v1 + · · · amvm,

v = a′1v1 + · · · a′mvm.

Subtracting the two equations yields 0 = (a1 − a′1)v1 + · · · + (am − a′m)vm. Since

(v1, . . . , vm) is linearly independent, the only solution to this equation is a1 − a′1 =

0, . . . , am − a′m = 0, or equivalently a1 = a′1, . . . , am = a′m.

(“⇐=”) Now assume that, for every v ∈ span(v1, . . . , vm), there are unique

a1, . . . , am ∈ F such that

v = a1v1 + · · ·+ amvm.

This implies, in particular, that the only way the zero vector v = 0 can be written

as a linear combination of v1, . . . , vm is with a1 = · · · = am = 0. This shows that

(v1, . . . , vm) are linearly independent.

It is clear that if (v1, . . . , vm) is a list of linearly independent vectors, then the

list (v1, . . . , vm−1) is also linearly independent.

For the next lemma, we introduce the following notation: If we want to drop

a vector vj from a given list (v1, . . . , vm) of vectors, then we indicate the dropped

vector by a hat. I.e., we write

(v1, . . . , v̂j , . . . , vm) = (v1, . . . , vj−1, vj+1, . . . , vm).

Lemma 5.2.7 (Linear Dependence Lemma). If (v1, . . . , vm) is linearly depen-

dent and v1 �= 0, then there exists an index j ∈ {2, . . . ,m} such that the following

two conditions hold.

(1) vj ∈ span(v1, . . . , vj−1).

(2) If vj is removed from (v1, . . . , vm), then span(v1, . . . , v̂j , . . . , vm) =

span(v1, . . . , vm).

Proof. Since (v1, . . . , vm) is linearly dependent there exist a1, . . . , am ∈ F not all

zero such that a1v1 + · · · + amvm = 0. Since by assumption v1 �= 0, not all of
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a2, . . . , am can be zero. Let j ∈ {2, . . . ,m} be the largest index such that aj �= 0.

Then we have

vj = −a1
aj

v1 − · · · − aj−1

aj
vj−1, (5.1)

which implies Part 1.

Let v ∈ span(v1, . . . , vm). This means, by definition, that there exist scalars

b1, . . . , bm ∈ F such that

v = b1v1 + · · ·+ bmvm.

The vector vj that we determined in Part 1 can be replaced by Equation (5.1)

so that v is written as a linear combination of (v1, . . . , v̂j , . . . , vm). Hence,

span(v1, . . . , v̂j , . . . , vm) = span(v1, . . . , vm).

Example 5.2.8. The list (v1, v2, v3) = ((1, 1), (1, 2), (1, 0)) of vectors spans R2. To

see this, take any vector v = (x, y) ∈ R2. We want to show that v can be written as

a linear combination of (1, 1), (1, 2), (1, 0), i.e., that there exist scalars a1, a2, a3 ∈ F

such that

v = a1(1, 1) + a2(1, 2) + a3(1, 0),

or equivalently that

(x, y) = (a1 + a2 + a3, a1 + 2a2).

Clearly a1 = y, a2 = 0, and a3 = x − y form a solution for any choice of x, y ∈ R,

and so R2 = span((1, 1), (1, 2), (1, 0)). However, note that

2(1, 1)− (1, 2)− (1, 0) = (0, 0), (5.2)

which shows that the list ((1, 1), (1, 2), (1, 0)) is linearly dependent. The Linear

Dependence Lemma 5.2.7 thus states that one of the vectors can be dropped from

((1, 1), (1, 2), (1, 0)) and that the resulting list of vectors will still span R2. Indeed,

by Equation (5.2),

v3 = (1, 0) = 2(1, 1)− (1, 2) = 2v1 − v2,

and so span((1, 1), (1, 2), (1, 0)) = span((1, 1), (1, 2)).

The next result shows that linearly independent lists of vectors that span a

finite-dimensional vector space are the smallest possible spanning sets.

Theorem 5.2.9. Let V be a finite-dimensional vector space. Suppose that

(v1, . . . , vm) is a linearly independent list of vectors that spans V , and let

(w1, . . . , wn) be any list that spans V . Then m ≤ n.

Proof. The proof uses the following iterative procedure: start with an arbitrary

list of vectors S0 = (w1, . . . , wn) such that V = span(S0). At the kth step of the

procedure, we construct a new list Sk by replacing some vector wjk by the vector

vk such that Sk still spans V . Repeating this for all vk then produces a new list Sm
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of length n that contains each of v1, . . . , vm, which then proves that m ≤ n. Let us

now discuss each step in this procedure in detail.

Step 1. Since (w1, . . . , wn) spans V , adding a new vector to the list makes the

new list linearly dependent. Hence (v1, w1, . . . , wn) is linearly dependent. By

Lemma 5.2.7, there exists an index j1 such that

wj1 ∈ span(v1, w1, . . . , wj1−1).

Hence S1 = (v1, w1, . . . , ŵj1 , . . . , wn) spans V . In this step, we added the vector v1
and removed the vector wj1 from S0.
Step k. Suppose that we already added v1, . . . , vk−1 to our spanning list and

removed the vectors wj1 , . . . , wjk−1
. It is impossible that we have reached the situa-

tion where all of the vectors w1, . . . , wn have been removed from the spanning list at

this step if k ≤ m because then we would have V = span(v1, . . . , vk−1) which would

allow vk to be expressed as a linear combination of v1, . . . , vk−1 (in contradiction

with the assumption of linear independence of v1, . . . , vn).

Now, call the list reached at this step Sk−1, and note that V = span(Sk−1).

Add the vector vk to Sk−1. By the same arguments as before, adjoining the extra

vector vk to the spanning list Sk−1 yields a list of linearly dependent vectors. Hence,

by Lemma 5.2.7, there exists an index jk such that Sk−1 with vk added and wjk

removed still spans V . The fact that (v1, . . . , vk) is linearly independent ensures

that the vector removed is indeed among the wj . Call the new list Sk, and note

that V = span(Sk).
The final list Sm is S0 but with each v1, . . . , vm added and each wj1 , . . . , wjm

removed. Moreover, note that Sm has length n and still spans V . It follows that

m ≤ n.

5.3 Bases

A basis of a finite-dimensional vector space is a spanning list that is also linearly

independent. We will see that all bases for finite-dimensional vector spaces have the

same length. This length will then be called the dimension of our vector space.

Definition 5.3.1. A list of vectors (v1, . . . , vm) is a basis for the finite-dimensional

vector space V if (v1, . . . , vm) is linearly independent and V = span(v1, . . . , vm).

If (v1, . . . , vm) forms a basis of V , then, by Lemma 5.2.6, every vector v ∈ V

can be uniquely written as a linear combination of (v1, . . . , vm).

Example 5.3.2. (e1, . . . , en) is a basis of Fn. There are, of course, other bases.

For example, ((1, 2), (1, 1)) is a basis of F2. Note that the list ((1, 1)) is also linearly

independent, but it does not span F2 and hence is not a basis.

Example 5.3.3. (1, z, z2, . . . , zm) is a basis of Fm[z].
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Theorem 5.3.4 (Basis Reduction Theorem). If V = span(v1, . . . , vm), then

either (v1, . . . , vm) is a basis of V or some vi can be removed to obtain a basis of

V .

Proof. Suppose V = span(v1, . . . , vm). We start with the list S = (v1, . . . , vm) and

sequentially run through all vectors vk for k = 1, 2, . . . ,m to determine whether to

keep or remove them from S:
Step 1. If v1 = 0, then remove v1 from S. Otherwise, leave S unchanged.

Step k. If vk ∈ span(v1, . . . , vk−1), then remove vk from S. Otherwise, leave S
unchanged.

The final list S still spans V since, at each step, a vector was only discarded if it

was already in the span of the previous vectors. The process also ensures that no

vector is in the span of the previous vectors. Hence, by the Linear Dependence

Lemma 5.2.7, the final list S is linearly independent. It follows that S is a basis of

V .

Example 5.3.5. To see how Basis Reduction Theorem 5.3.4 works, consider the

list of vectors

S = ((1,−1, 0), (2,−2, 0), (−1, 0, 1), (0,−1, 1), (0, 1, 0)).

This list does not form a basis for R3 as it is not linearly independent. However,

it is clear that R3 = span(S) since any arbitrary vector v = (x, y, z) ∈ R3 can be

written as the following linear combination over S:

v = (x+ z)(1,−1, 0) + 0(2,−2, 0) + (z)(−1, 0, 1) + 0(0,−1, 1) + (x+ y + z)(0, 1, 0).

In fact, since the coefficients of (2,−2, 0) and (0,−1, 1) in this linear combination

are both zero, it suggests that they add nothing to the span of the subset

B = ((1,−1, 0), (−1, 0, 1), (0, 1, 0))

of S. Moreover, one can show that B is a basis for R3, and it is exactly the basis

produced by applying the process from the proof of Theorem 5.3.4 (as you should

be able to verify).

Corollary 5.3.6. Every finite-dimensional vector space has a basis.

Proof. By definition, a finite-dimensional vector space has a spanning list. By the

Basis Reduction Theorem 5.3.4, any spanning list can be reduced to a basis.

Theorem 5.3.7 (Basis Extension Theorem). Every linearly independent list of

vectors in a finite-dimensional vector space V can be extended to a basis of V .
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Proof. Suppose V is finite-dimensional and that (v1, . . . , vm) is linearly independent.

Since V is finite-dimensional, there exists a list (w1, . . . , wn) of vectors that spans

V . We wish to adjoin some of the wk to (v1, . . . , vm) in order to create a basis of

V .

Step 1. If w1 ∈ span(v1, . . . , vm), then let S = (v1, . . . , vm). Otherwise, S =

(v1, . . . , vm, w1).

Step k. If wk ∈ span(S), then leave S unchanged. Otherwise, adjoin wk to S.
After each step, the list S is still linearly independent since we only adjoined wk if

wk was not in the span of the previous vectors. After n steps, wk ∈ span(S) for

all k = 1, 2, . . . , n. Since (w1, . . . , wn) was a spanning list, S spans V so that S is

indeed a basis of V .

Example 5.3.8. Take the two vectors v1 = (1, 1, 0, 0) and v2 = (1, 0, 1, 0) in R4.

One may easily check that these two vectors are linearly independent, but they do

not form a basis of R4. We know that (e1, e2, e3, e4) spans R
4. (In fact, it is even a

basis.) Following the algorithm outlined in the proof of the Basis Extension Theo-

rem, we see that e1 �∈ span(v1, v2). Hence, we adjoin e1 to obtain S = (v1, v2, e1).

Note that now

e2 = (0, 1, 0, 0) = 1v1 + 0v2 + (−1)e1
so that e2 ∈ span(v1, v2, e1), and so we leave S unchanged. Similarly,

e3 = (0, 0, 1, 0) = 0v1 + 1v2 + (−1)e1,

and hence e3 ∈ span(v1, v2, e1), which means that we again leave S unchanged.

Finally, e4 �∈ span(v1, v2, e1), and so we adjoin it to obtain a basis (v1, v2, e1, e4) of

R4.

5.4 Dimension

We now come to the important definition of the dimension of a finite-dimensional

vector space, which corresponds to the intuitive notion that R2 has dimension 2, R3

has dimension 3, and, more generally, that Rn has dimension n. This is precisely the

length of every basis for each of these vector spaces, which prompts the following

definition.

Definition 5.4.1. We call the length of any basis for V (which is well-defined by

Theorem 5.4.2 below) the dimension of V , and we denote this by dim(V ).

Note that Definition 5.4.1 only makes sense if, in fact, every basis for a given

finite-dimensional vector space has the same length. This is true by the following

theorem.
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Theorem 5.4.2. Let V be a finite-dimensional vector space. Then any two bases

of V have the same length.

Proof. Let (v1, . . . , vm) and (w1, . . . , wn) be two bases of V . Both span V . By

Theorem 5.2.9, we have m ≤ n since (v1, . . . , vm) is linearly independent. By the

same theorem, we also have n ≤ m since (w1, . . . , wn) is linearly independent. Hence

n = m, as asserted.

Example 5.4.3. dim(Fn) = n and dim(Fm[z]) = m+1. Note that dim(Cn) = n as

a complex vector space, whereas dim(Cn) = 2n as a real vector space. This comes

from the fact that we can view C itself as a real vector space of dimension 2 with

basis (1, i).

Theorem 5.4.4. Let V be a finite-dimensional vector space with dim(V ) = n.

Then:

(1) If U ⊂ V is a subspace of V , then dim(U) ≤ dim(V ).

(2) If V = span(v1, . . . , vn), then (v1, . . . , vn) is a basis of V .

(3) If (v1, . . . , vn) is linearly independent in V , then (v1, . . . , vn) is a basis of V .

Point 1 implies, in particular, that every subspace of a finite-dimensional vector

space is finite-dimensional. Points 2 and 3 show that if the dimension of a vector

space is known to be n, then, to check that a list of n vectors is a basis, it is enough

to check whether it spans V (resp. is linearly independent).

Proof. To prove Point 1, first note that U is necessarily finite-dimensional (otherwise

we could find a list of linearly independent vectors longer than dim(V )). Therefore,

by Corollary 5.3.6, U has a basis, (u1, . . . , um), say. This list is linearly independent

in both U and V . By the Basis Extension Theorem 5.3.7, we can extend (u1, . . . , um)

to a basis for V , which is of length n since dim(V ) = n. This implies that m ≤ n,

as desired.

To prove Point 2, suppose that (v1, . . . , vn) spans V . Then, by the Basis Re-

duction Theorem 5.3.4, this list can be reduced to a basis. However, every basis of

V has length n; hence, no vector needs to be removed from (v1, . . . , vn). It follows

that (v1, . . . , vn) is already a basis of V .

Point 3 is proven in a similar fashion. Suppose (v1, . . . , vn) is linearly inde-

pendent. By the Basis Extension Theorem 5.3.7, this list can be extended to a

basis. However, every basis has length n; hence, no vector needs to be added to

(v1, . . . , vn). It follows that (v1, . . . , vn) is already a basis of V .

We conclude this chapter with some additional interesting results on bases and

dimensions. The first one combines the concepts of basis and direct sum.

Theorem 5.4.5. Let U ⊂ V be a subspace of a finite-dimensional vector space V .

Then there exists a subspace W ⊂ V such that V = U ⊕W .
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Proof. Let (u1, . . . , um) be a basis of U . By Theorem 5.4.4(1), we know that

m ≤ dim(V ). Hence, by the Basis Extension Theorem 5.3.7, (u1, . . . , um) can

be extended to a basis (u1, . . . , um, w1, . . . , wn) of V . Let W = span(w1, . . . , wn).

To show that V = U ⊕W , we need to show that V = U + W and U ∩W =

{0}. Since V = span(u1, . . . , um, w1, . . . , wn) where (u1, . . . , um) spans U and

(w1, . . . , wn) spans W , it is clear that V = U +W .

To show that U ∩ W = {0}, let v ∈ U ∩ W . Then there exist scalars

a1, . . . , am, b1, . . . , bn ∈ F such that

v = a1u1 + · · ·+ amum = b1w1 + · · ·+ bnwn,

or equivalently that

a1u1 + · · ·+ amum − b1w1 − · · · − bnwn = 0.

Since (u1, . . . , um, w1, . . . , wn) forms a basis of V and hence is linearly independent,

the only solution to this equation is a1 = · · · = am = b1 = · · · = bn = 0. Hence

v = 0, proving that indeed U ∩W = {0}.

Theorem 5.4.6. If U,W ⊂ V are subspaces of a finite-dimensional vector space,

then

dim(U +W ) = dim(U) + dim(W )− dim(U ∩W ).

Proof. Let (v1, . . . , vn) be a basis of U ∩W . By the Basis Extension Theorem 5.3.7,

there exist (u1, . . . , uk) and (w1, . . . , w�) such that (v1, . . . , vn, u1, . . . , uk) is a basis

of U and (v1, . . . , vn, w1, . . . , w�) is a basis of W . It suffices to show that

B = (v1, . . . , vn, u1, . . . , uk, w1, . . . , w�)

is a basis of U +W since then

dim(U +W ) = n+k+ � = (n+k)+(n+ �)−n = dim(U)+dim(W )−dim(U ∩W ).

Clearly span(v1, . . . , vn, u1, . . . , uk, w1, . . . , w�) contains U andW , and hence U+W .

To show that B is a basis, it remains to show that B is linearly independent. Suppose

a1v1 + · · ·+ anvn + b1u1 + · · ·+ bkuk + c1w1 + · · ·+ c�w� = 0, (5.3)

and let u = a1v1 + · · ·+ anvn + b1u1 + · · ·+ bkuk ∈ U . Then, by Equation (5.3), we

also have that u = −c1w1 − · · · − c�w� ∈W , which implies that u ∈ U ∩W . Hence,

there exist scalars a′1, . . . , a
′
n ∈ F such that u = a′1v1 + · · ·+ a′nvn. Since there is a

unique linear combination of the linearly independent vectors (v1, . . . , vn, u1, . . . , uk)

that describes u, we must have b1 = · · · = bk = 0 and a1 = a′1, . . . , an = a′n.
Since (v1, . . . , vn, w1, . . . , w�) is also linearly independent, it further follows that

a1 = · · · = an = c1 = · · · = c� = 0. Hence, Equation (5.3) only has the trivial

solution, which implies that B is a basis.
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Exercises for Chapter 5

Calculational Exercises

(1) Show that the vectors v1 = (1, 1, 1), v2 = (1, 2, 3), and v3 = (2,−1, 1) are

linearly independent in R3. Write v = (1,−2, 5) as a linear combination of v1,

v2, and v3.

(2) Consider the complex vector space V = C3 and the list (v1, v2, v3) of vectors in

V , where

v1 = (i, 0, 0), v2 = (i, 1, 0), v3 = (i, i,−1) .
(a) Prove that span(v1, v2, v3) = V .

(b) Prove or disprove: (v1, v2, v3) is a basis for V .

(3) Determine the dimension of each of the following subspaces of F4.

(a) {(x1, x2, x3, x4) ∈ F4 | x4 = 0}.
(b) {(x1, x2, x3, x4) ∈ F4 | x4 = x1 + x2}.
(c) {(x1, x2, x3, x4) ∈ F4 | x4 = x1 + x2, x3 = x1 − x2}.
(d) {(x1, x2, x3, x4) ∈ F4 | x4 = x1 + x2, x3 = x1 − x2, x3 + x4 = 2x1}.
(e) {(x1, x2, x3, x4) ∈ F4 | x1 = x2 = x3 = x4}.

(4) Determine the value of λ ∈ R for which each list of vectors is linear dependent.

(a) ((λ,−1,−1), (−1, λ,−1), (−1,−1, λ)) as a subset of R3.

(b)
(
sin2(x), cos(2x), λ

)
as a subset of C(R).

(5) Consider the real vector space V = R4. For each of the following five statements,

provide either a proof or a counterexample.

(a) dimV = 4.

(b) span((1, 1, 0, 0), (0, 1, 1, 0), (0, 0, 1, 1)) = V .

(c) The list ((1,−1, 0, 0), (0, 1,−1, 0), (0, 0, 1,−1), (−1, 0, 0, 1)) is linearly inde-

pendent.

(d) Every list of four vectors v1, . . . , v4 ∈ V , such that span(v1, . . . , v4) = V , is

linearly independent.

(e) Let v1 and v2 be two linearly independent vectors in V . Then, there exist

vectors u,w ∈ V , such that (v1, v2, u, w) is a basis for V .

Proof-Writing Exercises

(1) Let V be a vector space over F and define U = span(u1, u2, . . . , un), where for

each i = 1, . . . , n, ui ∈ V . Now suppose v ∈ U . Prove

U = span(v, u1, u2, . . . , un) .

(2) Let V be a vector space over F, and suppose that the list (v1, v2, . . . , vn) of

vectors spans V , where each vi ∈ V . Prove that the list

(v1 − v2, v2 − v3, v3 − v4, . . . , vn−2 − vn−1, vn−1 − vn, vn)

also spans V .
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(3) Let V be a vector space over F, and suppose that (v1, v2, . . . , vn) is a linearly

independent list of vectors in V . Given any w ∈ V such that

(v1 + w, v2 + w, . . . , vn + w)

is a linearly dependent list of vectors in V , prove that w ∈ span(v1, v2, . . . , vn).

(4) Let V be a finite-dimensional vector space over F with dim(V ) = n for some

n ∈ Z+. Prove that there are n one-dimensional subspaces U1, U2, . . . , Un of V

such that

V = U1 ⊕ U2 ⊕ · · · ⊕ Un.

(5) Let V be a finite-dimensional vector space over F, and suppose that U is a

subspace of V for which dim(U) = dim(V ). Prove that U = V .

(6) Let Fm[z] denote the vector space of all polynomials with degree less than or

equal tom ∈ Z+ and having coefficient over F, and suppose that p0, p1, . . . , pm ∈
Fm[z] satisfy pj(2) = 0. Prove that (p0, p1, . . . , pm) is a linearly dependent list

of vectors in Fm[z].

(7) Let U and V be five-dimensional subspaces of R9. Prove that U ∩ V �= {0}.
(8) Let V be a finite-dimensional vector space over F, and suppose that

U1, U2, . . . , Um are any m subspaces of V . Prove that

dim(U1 + U2 + · · ·+ Um) ≤ dim(U1) + dim(U2) + · · ·+ dim(Um).
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Chapter 6

Linear Maps

As discussed in Chapter 1, one of the main goals of Linear Algebra is the charac-

terization of solutions to a system of m linear equations in n unknowns x1, . . . , xn,

a11x1 + · · ·+ a1nxn = b1
...

...
...

am1x1 + · · ·+ amnxn = bm

⎫⎪⎬
⎪⎭ ,

where each of the coefficients aij and bi is in F. Linear maps and their properties

give us insight into the characteristics of solutions to linear systems.

6.1 Definition and elementary properties

Throughout this chapter, V and W denote vector spaces over F. We are going

to study functions from V into W that have the special properties given in the

following definition.

Definition 6.1.1. A function T : V →W is called linear if

T (u+ v) = T (u) + T (v), for all u, v ∈ V , (6.1)

T (av) = aT (v), for all a ∈ F and v ∈ V . (6.2)

The set of all linear maps from V to W is denoted by L(V,W ). We sometimes write

Tv for T (v). Linear maps are also called linear transformations.

Moreover, if V = W , then we write L(V, V ) = L(V ) and call T ∈ L(V ) a linear

operator on V .

Example 6.1.2.

(1) The zero map 0 : V →W mapping every element v ∈ V to 0 ∈W is linear.

(2) The identity map I : V → V defined as Iv = v is linear.

(3) Let T : F[z] → F[z] be the differentiation map defined as Tp(z) = p′(z).
Then, for two polynomials p(z), q(z) ∈ F[z], we have

T (p(z) + q(z)) = (p(z) + q(z))′ = p′(z) + q′(z) = T (p(z)) + T (q(z)).

51
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Similarly, for a polynomial p(z) ∈ F[z] and a scalar a ∈ F, we have

T (ap(z)) = (ap(z))′ = ap′(z) = aT (p(z)).

Hence T is linear.

(4) Let T : R2 → R2 be the map given by T (x, y) = (x − 2y, 3x + y). Then, for

(x, y), (x′, y′) ∈ R2, we have

T ((x, y) + (x′, y′)) = T (x+ x′, y + y′) = (x+ x′ − 2(y + y′), 3(x+ x′) + y + y′)

= (x− 2y, 3x+ y) + (x′ − 2y′, 3x′ + y′) = T (x, y) + T (x′, y′).

Similarly, for (x, y) ∈ R2 and a ∈ F, we have

T (a(x, y)) = T (ax, ay) = (ax− 2ay, 3ax+ ay) = a(x− 2y, 3x+ y) = aT (x, y).

Hence T is linear. More generally, any map T : Fn → Fm defined by

T (x1, . . . , xn) = (a11x1 + · · ·+ a1nxn, . . . , am1x1 + · · ·+ amnxn)

with aij ∈ F is linear.

(5) Not all functions are linear! For example, the exponential function f(x) = ex

is not linear since e2x �= 2ex in general. Also, the function f : F → F given by

f(x) = x − 1 is not linear since f(x + y) = (x + y) − 1 �= (x − 1) + (y − 1) =

f(x) + f(y).

An important result is that linear maps are already completely determined if

their values on basis vectors are specified.

Theorem 6.1.3. Let (v1, . . . , vn) be a basis of V and (w1, . . . , wn) be an arbitrary

list of vectors in W . Then there exists a unique linear map

T : V →W such that T (vi) = wi, ∀ i = 1, 2, . . . , n.

Proof. First we verify that there is at most one linear map T with T (vi) = wi. Take

any v ∈ V . Since (v1, . . . , vn) is a basis of V , there are unique scalars a1, . . . , an ∈ F

such that v = a1v1 + · · ·+ anvn. By linearity, we have

T (v) = T (a1v1+ · · ·+anvn) = a1T (v1)+ · · ·+anT (vn) = a1w1+ · · ·+anwn, (6.3)

and hence T (v) is completely determined. To show existence, use Equation (6.3) to

define T . It remains to show that this T is linear and that T (vi) = wi. These two

conditions are not hard to show and are left to the reader.

The set of linear maps L(V,W ) is itself a vector space. For S, T ∈ L(V,W )

addition is defined as

(S + T )v = Sv + Tv, for all v ∈ V .

For a ∈ F and T ∈ L(V,W ), scalar multiplication is defined as

(aT )(v) = a(Tv), for all v ∈ V .
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You should verify that S+T and aT are indeed linear maps and that all properties

of a vector space are satisfied.

In addition to the operations of vector addition and scalar multiplication, we

can also define the composition of linear maps. Let V,U,W be vector spaces

over F. Then, for S ∈ L(U, V ) and T ∈ L(V,W ), we define T ◦ S ∈ L(U,W ) by

(T ◦ S)(u) = T (S(u)), for all u ∈ U .

The map T ◦ S is often also called the product of T and S denoted by TS. It has

the following properties:

(1) Associativity: (T1T2)T3 = T1(T2T3), for all T1 ∈ L(V1, V0), T2 ∈ L(V2, V1)

and T3 ∈ L(V3, V2).

(2) Identity: TI = IT = T , where T ∈ L(V,W ) and where I in TI is the identity

map in L(V, V ) whereas the I in IT is the identity map in L(W,W ).

(3) Distributivity: (T1 + T2)S = T1S + T2S and T (S1 +S2) = TS1 + TS2, where

S, S1, S2 ∈ L(U, V ) and T, T1, T2 ∈ L(V,W ).

Note that the product of linear maps is not always commutative. For example,

if we take T ∈ L(F[z],F[z]) to be the differentiation map Tp(z) = p′(z) and S ∈
L(F[z],F[z]) to be the map Sp(z) = z2p(z), then

(ST )p(z) = z2p′(z) but (TS)p(z) = z2p′(z) + 2zp(z).

6.2 Null spaces

Definition 6.2.1. Let T : V → W be a linear map. Then the null space

(a.k.a. kernel) of T is the set of all vectors in V that are mapped to zero by

T . I.e.,

null (T ) = {v ∈ V | Tv = 0}.
Example 6.2.2. Let T ∈ L(F[z],F[z]) be the differentiation map Tp(z) = p′(z).
Then

null (T ) = {p ∈ F[z] | p(z) is constant}.
Example 6.2.3. Consider the linear map T (x, y) = (x−2y, 3x+y) of Example 6.1.2.

To determine the null space, we need to solve T (x, y) = (0, 0), which is equivalent

to the system of linear equations

x− 2y = 0

3x+ y = 0

}
.

We see that the only solution is (x, y) = (0, 0) so that null (T ) = {(0, 0)}.
Proposition 6.2.4. Let T : V → W be a linear map. Then null (T ) is a subspace

of V .
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Proof. We need to show that 0 ∈ null (T ) and that null (T ) is closed under addition

and scalar multiplication. By linearity, we have

T (0) = T (0 + 0) = T (0) + T (0)

so that T (0) = 0. Hence 0 ∈ null (T ). For closure under addition, let u, v ∈ null (T ).

Then

T (u+ v) = T (u) + T (v) = 0 + 0 = 0,

and hence u + v ∈ null (T ). Similarly, for closure under scalar multiplication, let

u ∈ null (T ) and a ∈ F. Then

T (au) = aT (u) = a0 = 0,

and so au ∈ null (T ).

Definition 6.2.5. The linear map T : V →W is called injective if, for all u, v ∈ V ,

the condition Tu = Tv implies that u = v. In other words, different vectors in V

are mapped to different vectors in W .

Proposition 6.2.6. Let T : V → W be a linear map. Then T is injective if and

only if null (T ) = {0}.

Proof.

(“=⇒”) Suppose that T is injective. Since null (T ) is a subspace of V , we know

that 0 ∈ null (T ). Assume that there is another vector v ∈ V that is in the kernel.

Then T (v) = 0 = T (0). Since T is injective, this implies that v = 0, proving that

null (T ) = {0}.
(“⇐=”) Assume that null (T ) = {0}, and let u, v ∈ V be such that Tu = Tv. Then

0 = Tu−Tv = T (u− v) so that u− v ∈ null (T ). Hence u− v = 0, or, equivalently,

u = v. This shows that T is indeed injective.

Example 6.2.7.

(1) The differentiation map p(z) �→ p′(z) is not injective since p′(z) = q′(z) implies

that p(z) = q(z) + c, where c ∈ F is a constant.

(2) The identity map I : V → V is injective.

(3) The linear map T : F[z]→ F[z] given by T (p(z)) = z2p(z) is injective since it is

easy to verify that null (T ) = {0}.
(4) The linear map T (x, y) = (x− 2y, 3x+ y) is injective since null (T ) = {(0, 0)},

as we calculated in Example 6.2.3.
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6.3 Range

Definition 6.3.1. Let T : V → W be a linear map. The range of T , denoted by

range (T ), is the subset of vectors in W that are in the image of T . I.e.,

range (T ) = {Tv | v ∈ V } = {w ∈W | there exists v ∈ V such that Tv = w}.
Example 6.3.2. The range of the differentiation map T : F[z]→ F[z] is range (T ) =

F[z] since, for every polynomial q ∈ F[z], there is a p ∈ F[z] such that p′ = q.

Example 6.3.3. The range of the linear map T (x, y) = (x−2y, 3x+y) is R2 since,

for any (z1, z2) ∈ R2, we have T (x, y) = (z1, z2) if (x, y) =
1
7 (z1 + 2z2,−3z1 + z2).

Proposition 6.3.4. Let T : V →W be a linear map. Then range (T ) is a subspace

of W .

Proof. We need to show that 0 ∈ range (T ) and that range (T ) is closed under

addition and scalar multiplication. We already showed that T0 = 0 so that 0 ∈
range (T ).

For closure under addition, let w1, w2 ∈ range (T ). Then there exist v1, v2 ∈ V

such that Tv1 = w1 and Tv2 = w2. Hence

T (v1 + v2) = Tv1 + Tv2 = w1 + w2,

and so w1 + w2 ∈ range (T ).

For closure under scalar multiplication, let w ∈ range (T ) and a ∈ F. Then there

exists a v ∈ V such that Tv = w. Thus

T (av) = aTv = aw,

and so aw ∈ range (T ).

Definition 6.3.5. A linear map T : V →W is called surjective if range (T ) = W .

A linear map T : V →W is called bijective if T is both injective and surjective.

Example 6.3.6.

(1) The differentiation map T : F[z] → F[z] is surjective since range (T ) = F[z].

However, if we restrict ourselves to polynomials of degree at most m, then the

differentiation map T : Fm[z] → Fm[z] is not surjective since polynomials of

degree m are not in the range of T .

(2) The identity map I : V → V is surjective.

(3) The linear map T : F[z] → F[z] given by T (p(z)) = z2p(z) is not surjective

since, for example, there are no linear polynomials in the range of T .

(4) The linear map T (x, y) = (x− 2y, 3x+ y) is surjective since range (T ) = R2, as

we calculated in Example 6.3.3.
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6.4 Homomorphisms

It should be mentioned that linear maps between vector spaces are also called

vector space homomorphisms. Instead of the notation L(V,W ), one often sees

the convention

HomF(V,W ) = {T : V →W | T is linear}.
A homomorphism T : V →W is also often called

• Monomorphism iff T is injective;

• Epimorphism iff T is surjective;

• Isomorphism iff T is bijective;

• Endomorphism iff V = W ;

• Automorphism iff V = W and T is bijective.

6.5 The dimension formula

The next theorem is the key result of this chapter. It relates the dimension of the

kernel and range of a linear map.

Theorem 6.5.1. Let V be a finite-dimensional vector space and T : V → W be a

linear map. Then range (T ) is a finite-dimensional subspace of W and

dim(V ) = dim(null (T )) + dim(range (T )). (6.4)

Proof. Let V be a finite-dimensional vector space and T ∈ L(V,W ). Since null (T )

is a subspace of V , we know that null (T ) has a basis (u1, . . . , um). This implies that

dim(null (T )) = m. By the Basis Extension Theorem, it follows that (u1, . . . , um)

can be extended to a basis of V , say (u1, . . . , um, v1, . . . , vn), so that dim(V ) = m+n.

The theorem will follow by showing that (Tv1, . . . , T vn) is a basis of range (T )

since this would imply that range (T ) is finite-dimensional and dim(range (T )) = n,

proving Equation (6.4).

Since (u1, . . . , um, v1, . . . , vn) spans V , every v ∈ V can be written as a linear

combination of these vectors; i.e.,

v = a1u1 + · · ·+ amum + b1v1 + · · ·+ bnvn,

where ai, bj ∈ F. Applying T to v, we obtain

Tv = b1Tv1 + · · ·+ bnTvn,

where the terms Tui disappeared since ui ∈ null (T ). This shows that

(Tv1, . . . , T vn) indeed spans range (T ).

To show that (Tv1, . . . , T vn) is a basis of range (T ), it remains to show that this

list is linearly independent. Assume that c1, . . . , cn ∈ F are such that

c1Tv1 + · · ·+ cnTvn = 0.
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By linearity of T , this implies that

T (c1v1 + · · ·+ cnvn) = 0,

and so c1v1 + · · · + cnvn ∈ null (T ). Since (u1, . . . , um) is a basis of null (T ), there

must exist scalars d1, . . . , dm ∈ F such that

c1v1 + · · ·+ cnvn = d1u1 + · · ·+ dmum.

However, by the linear independence of (u1, . . . , um, v1, . . . , vn), this implies that

all coefficients c1 = · · · = cn = d1 = · · · = dm = 0. Thus, (Tv1, . . . , T vn) is linearly

independent, and this completes the proof.

Example 6.5.2. Recall that the linear map T : R2 → R2 defined by T (x, y) =

(x− 2y, 3x+ y) has null (T ) = {0} and range (T ) = R2. It follows that

dim(R2) = 2 = 0 + 2 = dim(null (T )) + dim(range (T )).

Corollary 6.5.3. Let T ∈ L(V,W ).

(1) If dim(V ) > dim(W ), then T is not injective.

(2) If dim(V ) < dim(W ), then T is not surjective.

Proof. By Theorem 6.5.1, we have that

dim(null (T )) = dim(V )− dim(range (T ))

≥ dim(V )− dim(W ) > 0.

Since T is injective if and only if dim(null (T )) = 0, T cannot be injective.

Similarly,

dim(range (T )) = dim(V )− dim(null (T ))

≤ dim(V ) < dim(W ),

and so range (T ) cannot be equal to W . Hence, T cannot be surjective.

6.6 The matrix of a linear map

Now we will see that every linear map T ∈ L(V,W ), with V and W finite-

dimensional vector spaces, can be encoded by a matrix, and, vice versa, every

matrix defines such a linear map.

Let V and W be finite-dimensional vector spaces, and let T : V →W be a linear

map. Suppose that (v1, . . . , vn) is a basis of V and that (w1, . . . , wm) is a basis for

W . We have seen in Theorem 6.1.3 that T is uniquely determined by specifying the

vectors Tv1, . . . , T vn ∈ W . Since (w1, . . . , wm) is a basis of W , there exist unique

scalars aij ∈ F such that

Tvj = a1jw1 + · · ·+ amjwm for 1 ≤ j ≤ n. (6.5)
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We can arrange these scalars in an m× n matrix as follows:

M(T ) =

⎡
⎢⎣
a11 . . . a1n
...

...

am1 . . . amn

⎤
⎥⎦ .

Often, this is also written as A = (aij)1≤i≤m,1≤j≤n. As in Section A.1.1, the set of

all m× n matrices with entries in F is denoted by Fm×n.

Remark 6.6.1. It is important to remember that M(T ) not only depends on the

linear map T but also on the choice of the bases (v1, . . . , vn) and (w1, . . . , wm)

for V and W , respectively. The jth column of M(T ) contains the coefficients of

the jth basis vector vj when expanded in terms of the basis (w1, . . . , wm), as in

Equation (6.5).

Example 6.6.2. Let T : R2 → R2 be the linear map given by T (x, y) = (ax +

by, cx+ dy) for some a, b, c, d ∈ R. Then, with respect to the canonical basis of R2

given by ((1, 0), (0, 1)), the corresponding matrix is

M(T ) =

[
a b

c d

]
since T (1, 0) = (a, c) gives the first column and T (0, 1) = (b, d) gives the second

column.

More generally, suppose that V = Fn and W = Fm, and denote the standard

basis for V by (e1, . . . , en) and the standard basis for W by (f1, . . . , fm). Here, ei
(resp. fi) is the n-tuple (resp. m-tuple) with a 1 in position i and zeroes everywhere

else. Then the matrix M(T ) = (aij) is given by

aij = (Tej)i,

where (Tej)i denotes the ith component of the vector Tej .

Example 6.6.3. Let T : R2 → R3 be the linear map defined by T (x, y) = (y, x +

2y, x+ y). Then, with respect to the standard basis, we have T (1, 0) = (0, 1, 1) and

T (0, 1) = (1, 2, 1) so that

M(T ) =

⎡
⎣0 1

1 2

1 1

⎤
⎦ .

However, if alternatively we take the bases ((1, 2), (0, 1)) for R2 and

((1, 0, 0), (0, 1, 0), (0, 0, 1)) for R3, then T (1, 2) = (2, 5, 3) and T (0, 1) = (1, 2, 1)

so that

M(T ) =

⎡
⎣2 1

5 2

3 1

⎤
⎦ .
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Example 6.6.4. Let S : R2 → R2 be the linear map S(x, y) = (y, x). With respect

to the basis ((1, 2), (0, 1)) for R2, we have

S(1, 2) = (2, 1) = 2(1, 2)− 3(0, 1) and S(0, 1) = (1, 0) = 1(1, 2)− 2(0, 1),

and so

M(S) =

[
2 1

−3 −2
]
.

Given vector spaces V and W of dimensions n and m, respectively, and given a

fixed choice of bases, note that there is a one-to-one correspondence between linear

maps in L(V,W ) and matrices in Fm×n. If we start with the linear map T , then

the matrix M(T ) = A = (aij) is defined via Equation (6.5). Conversely, given the

matrix A = (aij) ∈ Fm×n, we can define a linear map T : V →W by setting

Tvj =

m∑
i=1

aijwi.

Recall that the set of linear maps L(V,W ) is a vector space. Since we have

a one-to-one correspondence between linear maps and matrices, we can also make

the set of matrices Fm×n into a vector space. Given two matrices A = (aij) and

B = (bij) in Fm×n and given a scalar α ∈ F, we define the matrix addition and

scalar multiplication component-wise:

A+B = (aij + bij),

αA = (αaij).

Next, we show that the composition of linear maps imposes a product on

matrices, also called matrix multiplication. Suppose U, V,W are vector spaces

over F with bases (u1, . . . , up), (v1, . . . , vn) and (w1, . . . , wm), respectively. Let

S : U → V and T : V → W be linear maps. Then the product is a linear map

T ◦ S : U →W .

Each linear map has its corresponding matrix M(T ) = A,M(S) = B and

M(TS) = C. The question is whether C is determined by A and B. We have,

for each j ∈ {1, 2, . . . p}, that
(T ◦ S)uj = T (b1jv1 + · · ·+ bnjvn) = b1jTv1 + · · ·+ bnjTvn

=

n∑
k=1

bkjTvk =

n∑
k=1

bkj
( m∑
i=1

aikwi

)

=

m∑
i=1

( n∑
k=1

aikbkj
)
wi.

Hence, the matrix C = (cij) is given by

cij =

n∑
k=1

aikbkj . (6.6)
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Equation (6.6) can be used to define the m×p matrix C as the product of an m×n

matrix A and an n× p matrix B, i.e.,

C = AB. (6.7)

Our derivation implies that the correspondence between linear maps and matrices

respects the product structure.

Proposition 6.6.5. Let S : U → V and T : V →W be linear maps. Then

M(TS) = M(T )M(S).

Example 6.6.6. With notation as in Examples 6.6.3 and 6.6.4, you should be able

to verify that

M(TS) = M(T )M(S) =

⎡
⎣2 1

5 2

3 1

⎤
⎦[ 2 1

−3 −2
]
=

⎡
⎣1 0

4 1

3 1

⎤
⎦ .

Given a vector v ∈ V , we can also associate a matrix M(v) to v as follows. Let

(v1, . . . , vn) be a basis of V . Then there are unique scalars b1, . . . , bn such that

v = b1v1 + · · · bnvn.
The matrix of v is then defined to be the n× 1 matrix

M(v) =

⎡
⎢⎣
b1
...

bn

⎤
⎥⎦ .

Example 6.6.7. The matrix of a vector x = (x1, . . . , xn) ∈ Fn in the standard

basis (e1, . . . , en) is the column vector or n× 1 matrix

M(x) =

⎡
⎢⎣
x1

...

xn

⎤
⎥⎦

since x = (x1, . . . , xn) = x1e1 + · · ·+ xnen.

The next result shows how the notion of a matrix of a linear map T : V → W

and the matrix of a vector v ∈ V fit together.

Proposition 6.6.8. Let T : V →W be a linear map. Then, for every v ∈ V ,

M(Tv) = M(T )M(v).

Proof. Let (v1, . . . , vn) be a basis of V and (w1, . . . , wm) be a basis for W . Suppose

that, with respect to these bases, the matrix of T is M(T ) = (aij)1≤i≤m,1≤j≤n.

This means that, for all j ∈ {1, 2, . . . , n},

Tvj =

m∑
k=1

akjwk.
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The vector v ∈ V can be written uniquely as a linear combination of the basis

vectors as

v = b1v1 + · · ·+ bnvn.

Hence,

Tv = b1Tv1 + · · ·+ bnTvn

= b1

m∑
k=1

ak1wk + · · ·+ bn

m∑
k=1

aknwk

=

m∑
k=1

(ak1b1 + · · ·+ aknbn)wk.

This shows that M(Tv) is the m× 1 matrix

M(Tv) =

⎡
⎢⎣
a11b1 + · · ·+ a1nbn

...

am1b1 + · · ·+ amnbn

⎤
⎥⎦ .

It is not hard to check, using the formula for matrix multiplication, that M(T )M(v)

gives the same result.

Example 6.6.9. Take the linear map S from Example 6.6.4 with basis ((1, 2), (0, 1))

of R2. To determine the action on the vector v = (1, 4) ∈ R2, note that v = (1, 4) =

1(1, 2) + 2(0, 1). Hence,

M(Sv) = M(S)M(v) =

[
2 1

−3 −2
] [

1

2

]
=

[
4

−7
]
.

This means that

Sv = 4(1, 2)− 7(0, 1) = (4, 1),

which is indeed true.

6.7 Invertibility

Definition 6.7.1. A map T : V → W is called invertible if there exists a map

S : W → V such that

TS = IW and ST = IV ,

where IV : V → V is the identity map on V and IW : W → W is the identity map

on W . We say that S is an inverse of T .

Note that if the map T is invertible, then the inverse is unique. Suppose S and

R are inverses of T . Then
ST = IV = RT,

TS = IW = TR.

Hence,

S = S(TR) = (ST )R = R.

We denote the unique inverse of an invertible map T by T−1.
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Proposition 6.7.2. A map T : V −→ W is invertible if and only if T is injective

and surjective.

Proof.

(“=⇒”) Suppose T is invertible.

To show that T is injective, suppose that u, v ∈ V are such that Tu = Tv.

Apply the inverse T−1 of T to obtain T−1Tu = T−1Tv so that u = v. Hence T is

injective.

To show that T is surjective, we need to show that, for every w ∈W , there is a

v ∈ V such that Tv = w. Take v = T−1w ∈ V . Then T (T−1w) = w. Hence T is

surjective.

(“⇐=”) Suppose that T is injective and surjective. We need to show that T is

invertible. We define a map S ∈ L(W,V ) as follows. Since T is surjective, we know

that, for every w ∈ W , there exists a v ∈ V such that Tv = w. Moreover, since T

is injective, this v is uniquely determined. Hence, define Sw = v.

We claim that S is the inverse of T . Note that, for all w ∈W , we have TSw =

Tv = w so that TS = IW . Similarly, for all v ∈ V , we have STv = Sw = v so that

ST = IV .

Now we specialize to invertible linear maps.

Proposition 6.7.3. Let T ∈ L(V,W ) be invertible. Then T−1 ∈ L(W,V ).

Proof. Certainly T−1 : W −→ V so we only need to show that T−1 is a linear map.

For all w1, w2 ∈W , we have

T (T−1w1 + T−1w2) = T (T−1w1) + T (T−1w2) = w1 + w2,

and so T−1w1 + T−1w2 is the unique vector v in V such that Tv = w1 + w2 = w.

Hence,

T−1w1 + T−1w2 = v = T−1w = T−1(w1 + w2).

The proof that T−1(aw) = aT−1w is similar. For w ∈W and a ∈ F, we have

T (aT−1w) = aT (T−1w) = aw

so that aT−1w is the unique vector in V that maps to aw. Hence, T−1(aw) =

aT−1w.

Example 6.7.4. The linear map T (x, y) = (x− 2y, 3x+ y) is both injective, since

null (T ) = {0}, and surjective, since range (T ) = R2. Hence, T is invertible by

Proposition 6.7.2.

Definition 6.7.5. Two vector spaces V and W are called isomorphic if there

exists an invertible linear map T ∈ L(V,W ).

Theorem 6.7.6. Two finite-dimensional vector spaces V and W over F are iso-

morphic if and only if dim(V ) = dim(W ).
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Proof.

(“=⇒”) Suppose V and W are isomorphic. Then there exists an invertible linear

map T ∈ L(V,W ). Since T is invertible, it is injective and surjective, and so

null (T ) = {0} and range (T ) = W . Using the Dimension Formula, this implies that

dim(V ) = dim(null (T )) + dim(range (T )) = dim(W ).

(“⇐=”) Suppose that dim(V ) = dim(W ). Let (v1, . . . , vn) be a basis of V and

(w1, . . . , wn) be a basis of W . Define the linear map T : V →W as

T (a1v1 + · · ·+ anvn) = a1w1 + · · ·+ anwn.

Since the scalars a1, . . . , an ∈ F are arbitrary and (w1, . . . , wn) spans W , this means

that range (T ) = W and T is surjective. Also, since (w1, . . . , wn) is linearly indepen-

dent, T is injective (since a1w1 + · · ·+ anwn = 0 implies that all a1 = · · · = an = 0

and hence only the zero vector is mapped to zero). It follows that T is both injective

and surjective; hence, by Proposition 6.7.2, T is invertible. Therefore, V and W

are isomorphic.

We close this chapter by considering the case of linear maps having equal domain

and codomain. As in Definition 6.1.1, a linear map T ∈ L(V, V ) is called a linear

operator on V . As the following remarkable theorem shows, the notions of injec-

tivity, surjectivity, and invertibility of a linear operator T are the same — as long

as V is finite-dimensional. A similar result does not hold for infinite-dimensional

vector spaces. For example, the set of all polynomials F[z] is an infinite-dimensional

vector space, and we saw that the differentiation map on F[z] is surjective but not

injective.

Theorem 6.7.7. Let V be a finite-dimensional vector space and T : V → V be a

linear map. Then the following are equivalent:

(1) T is invertible.

(2) T is injective.

(3) T is surjective.

Proof. By Proposition 6.7.2, Part 1 implies Part 2.

Next we show that Part 2 implies Part 3. If T is injective, then we know that

null (T ) = {0}. Hence, by the Dimension Formula, we have

dim(range (T )) = dim(V )− dim(null (T )) = dim(V ).

Since range (T ) ⊂ V is a subspace of V , this implies that range (T ) = V , and so T

is surjective.

Finally, we show that Part 3 implies Part 1. Since T is surjective by assumption,

we have range (T ) = V . Thus, again by using the Dimension Formula,

dim(null (T )) = dim(V )− dim(range (T )) = 0,

and so null (T ) = {0}, from which T is injective. By Proposition 6.7.2, an injective

and surjective linear map is invertible.



November 2, 2015 14:50 ws-book961x669 Linear Algebra: As an Introduction to Abstract Mathematics 9808-main page 64

64 Linear Algebra: As an Introduction to Abstract Mathematics

Exercises for Chapter 6

Calculational Exercises

(1) Define the map T : R2 → R2 by T (x, y) = (x+ y, x).

(a) Show that T is linear.

(b) Show that T is surjective.

(c) Find dim (null (T )).

(d) Find the matrix for T with respect to the canonical basis of R2.

(e) Find the matrix for T with respect to the canonical basis for the domain

R2 and the basis ((1, 1), (1,−1)) for the target space R2.

(f) Show that the map F : R2 → R2 given by F (x, y) = (x + y, x + 1) is not

linear.

(2) Let T ∈ L(R2) be defined by

T

(
x

y

)
=

(
y

−x
)
, for all

(
x

y

)
∈ R2 .

(a) Show that T is surjective.

(b) Find dim (null (T )).

(c) Find the matrix for T with respect to the canonical basis of R2.

(d) Show that the map F : R2 → R2 given by F (x, y) = (x + y, x + 1) is not

linear.

(3) Consider the complex vector spaces C2 and C3 with their canonical bases, and

let S ∈ L(C3,C2) be the linear map defined by S(v) = Av, ∀v ∈ C3, where A is

the matrix

A = M(S) =

(
i 1 1

2i −1 −1
)

.

Find a basis for null(S).

(4) Give an example of a function f : R2 → R having the property that

∀ a ∈ R, ∀ v ∈ R2, f(av) = af(v)

but such that f is not a linear map.

(5) Show that the linear map T : F4 → F2 is surjective if

null(T ) = {(x1, x2, x3, x4) ∈ F4 | x1 = 5x2, x3 = 7x4}.
(6) Show that no linear map T : F5 → F2 can have as its null space the set

{(x1, x2, x3, x4, x5) ∈ F5 | x1 = 3x2, x3 = x4 = x5}.
(7) Describe the set of solutions x = (x1, x2, x3) ∈ R3 of the system of equations

x1 − x2 + x3 = 0

x1 + 2x2 + x3 = 0

2x1 + x2 + 2x3 = 0

⎫⎬
⎭ .
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Proof-Writing Exercises

(1) Let V and W be vector spaces over F with V finite-dimensional, and let U be

any subspace of V . Given a linear map S ∈ L(U,W ), prove that there exists a

linear map T ∈ L(V,W ) such that, for every u ∈ U , S(u) = T (u).

(2) Let V andW be vector spaces over F, and suppose that T ∈ L(V,W ) is injective.

Given a linearly independent list (v1, . . . , vn) of vectors in V , prove that the list

(T (v1), . . . , T (vn)) is linearly independent in W .

(3) Let U , V , and W be vector spaces over F, and suppose that the linear maps

S ∈ L(U, V ) and T ∈ L(V,W ) are both injective. Prove that the composition

map T ◦ S is injective.

(4) Let V and W be vector spaces over F, and suppose that T ∈ L(V,W ) is surjec-

tive. Given a spanning list (v1, . . . , vn) for V , prove that

span(T (v1), . . . , T (vn)) = W.

(5) Let V and W be vector spaces over F with V finite-dimensional. Given T ∈
L(V,W ), prove that there is a subspace U of V such that

U ∩ null(T ) = {0} and range(T ) = {T (u) | u ∈ U}.
(6) Let V be a vector space over F, and suppose that there is a linear map T ∈

L(V, V ) such that both null(T ) and range(T ) are finite-dimensional subspaces

of V . Prove that V must also be finite-dimensional.

(7) Let U , V , and W be finite-dimensional vector spaces over F with S ∈ L(U, V )

and T ∈ L(V,W ). Prove that

dim(null(T ◦ S)) ≤ dim(null(T )) + dim(null(S)).

(8) Let V be a finite-dimensional vector space over F with S, T ∈ L(V, V ). Prove

that T ◦ S is invertible if and only if both S and T are invertible.

(9) Let V be a finite-dimensional vector space over F with S, T ∈ L(V, V ), and

denote by I the identity map on V . Prove that T ◦ S = I if and only if

S ◦ T = I.
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Chapter 7

Eigenvalues and Eigenvectors

In this chapter we study linear operators T : V → V on a finite-dimensional vector

space V . We are interested in finding bases B for V such that the matrix M(T )

of T with respect to B is upper triangular or, if possible, diagonal. This quest

leads us to the notions of eigenvalues and eigenvectors of a linear operator, which is

one of the most important concepts in Linear Algebra and essential for many of its

applications. For example, quantum mechanics is largely based upon the study of

eigenvalues and eigenvectors of operators on finite- and infinite-dimensional vector

spaces.

7.1 Invariant subspaces

To begin our study, we will look at subspaces U of V that have special properties

under an operator T ∈ L(V, V ).

Definition 7.1.1. Let V be a finite-dimensional vector space over F with dim(V ) ≥
1, and let T ∈ L(V, V ) be an operator in V . Then a subspace U ⊂ V is called an

invariant subspace under T if

Tu ∈ U for all u ∈ U .

That is, U is invariant under T if the image of every vector in U under T remains

within U . We denote this as TU = {Tu | u ∈ U} ⊂ U .

Example 7.1.2. The subspaces null (T ) and range (T ) are invariant subspaces

under T . To see this, let u ∈ null (T ). This means that Tu = 0. But, since

0 ∈ null (T ), this implies that Tu = 0 ∈ null (T ). Similarly, let u ∈ range (T ). Since

Tv ∈ range (T ) for all v ∈ V , in particular we have Tu ∈ range (T ).

Example 7.1.3. Take the linear operator T : R3 → R3 corresponding to the matrix⎡
⎣1 2 0

1 1 0

0 0 2

⎤
⎦

67
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with respect to the basis (e1, e2, e3). Then span(e1, e2) and span(e3) are both

invariant subspaces under T .

An important special case of Definition 7.1.1 is that of one-dimensional invariant

subspaces under an operator T ∈ L(V, V ). If dim(U) = 1, then there exists a non-

zero vector u ∈ V such that

U = {au | a ∈ F}.
In this case, we must have

Tu = λu for some λ ∈ F.

This motivates the definitions of eigenvectors and eigenvalues of a linear operator,

as given in the next section.

7.2 Eigenvalues

Definition 7.2.1. Let T ∈ L(V, V ). Then λ ∈ F is an eigenvalue of T if there

exists a non-zero vector u ∈ V such that

Tu = λu.

The vector u is called an eigenvector of T corresponding to the eigenvalue λ.

Finding the eigenvalues and eigenvectors of a linear operator is one of the most

important problems in Linear Algebra. We will see later that this so-called “eigen-

information” has many uses and applications. (As an example, quantum mechan-

ics is based upon understanding the eigenvalues and eigenvectors of operators on

specifically defined vector spaces. These vector spaces are often infinite-dimensional,

though, and so we do not consider them further in this book.)

Example 7.2.2.

(1) Let T be the zero map defined by T (v) = 0 for all v ∈ V . Then every vector

u �= 0 is an eigenvector of T with eigenvalue 0.

(2) Let I be the identity map defined by I(v) = v for all v ∈ V . Then every vector

u �= 0 is an eigenvector of T with eigenvalue 1.

(3) The projection map P : R3 → R3 defined by P (x, y, z) = (x, y, 0) has eigenval-

ues 0 and 1. The vector (0, 0, 1) is an eigenvector with eigenvalue 0, and both

(1, 0, 0) and (0, 1, 0) are eigenvectors with eigenvalue 1.

(4) Take the operator R : F2 → F2 defined by R(x, y) = (−y, x). When F = R, R

can be interpreted as counterclockwise rotation by 90
◦
. From this interpreta-

tion, it is clear that no non-zero vector in R2 is mapped to a scalar multiple of

itself. Hence, for F = R, the operator R has no eigenvalues.

For F = C, though, the situation is significantly different! In this case, λ ∈ C

is an eigenvalue of R if

R(x, y) = (−y, x) = λ(x, y)
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so that y = −λx and x = λy. This implies that y = −λ2y, i.e., λ2 = −1. The

solutions are hence λ = ±i. One can check that (1,−i) is an eigenvector with

eigenvalue i and that (1, i) is an eigenvector with eigenvalue −i.
Eigenspaces are important examples of invariant subspaces. Let T ∈ L(V, V ),

and let λ ∈ F be an eigenvalue of T . Then

Vλ = {v ∈ V | Tv = λv}
is called an eigenspace of T . Equivalently,

Vλ = null (T − λI).

Note that Vλ �= {0} since λ is an eigenvalue if and only if there exists a non-zero

vector u ∈ V such that Tu = λu. We can reformulate this as follows:

• λ ∈ F is an eigenvalue of T if and only if the operator T − λI is not injective.

Since the notion of injectivity, surjectivity, and invertibility are equivalent for op-

erators on a finite-dimensional vector space, we can equivalently say either of the

following:

• λ ∈ F is an eigenvalue of T if and only if the operator T − λI is not surjective.

• λ ∈ F is an eigenvalue of T if and only if the operator T − λI is not invertible.

We close this section with two fundamental facts about eigenvalues and eigenvectors.

Theorem 7.2.3. Let T ∈ L(V, V ), and let λ1, . . . , λm ∈ F be m distinct eigenvalues

of T with corresponding non-zero eigenvectors v1, . . . , vm. Then (v1, . . . , vm) is

linearly independent.

Proof. Suppose that (v1, . . . , vm) is linearly dependent. Then, by the Linear De-

pendence Lemma, there exists an index k ∈ {2, . . . ,m} such that

vk ∈ span(v1, . . . , vk−1)

and such that (v1, . . . , vk−1) is linearly independent. This means that there exist

scalars a1, . . . , ak−1 ∈ F such that

vk = a1v1 + · · ·+ ak−1vk−1. (7.1)

Applying T to both sides yields, using the fact that vj is an eigenvector with eigen-

value λj ,

λkvk = a1λ1v1 + · · ·+ ak−1λk−1vk−1.

Subtracting λk times Equation (7.1) from this, we obtain

0 = (λk − λ1)a1v1 + · · ·+ (λk − λk−1)ak−1vk−1.

Since (v1, . . . , vk−1) is linearly independent, we must have (λk − λj)aj = 0 for all

j = 1, 2, . . . , k − 1. By assumption, all eigenvalues are distinct, so λk − λj �= 0,

which implies that aj = 0 for all j = 1, 2, . . . , k − 1. But then, by Equation (7.1),

vk = 0, which contradicts the assumption that all eigenvectors are non-zero. Hence

(v1, . . . , vm) is linearly independent.



November 2, 2015 14:50 ws-book961x669 Linear Algebra: As an Introduction to Abstract Mathematics 9808-main page 70

70 Linear Algebra: As an Introduction to Abstract Mathematics

Corollary 7.2.4. Any operator T ∈ L(V, V ) has at most dim(V ) distinct eigenval-

ues.

Proof. Let λ1, . . . , λm be distinct eigenvalues of T , and let v1, . . . , vm be corre-

sponding non-zero eigenvectors. By Theorem 7.2.3, the list (v1, . . . , vm) is linearly

independent. Hence m ≤ dim(V ).

7.3 Diagonal matrices

Note that if T has n = dim(V ) distinct eigenvalues, then there exists a basis

(v1, . . . , vn) of V such that

Tvj = λjvj , for all j = 1, 2, . . . , n.

Then any v ∈ V can be written as a linear combination v = a1v1 + · · · + anvn of

v1, . . . , vn. Applying T to this, we obtain

Tv = λ1a1v1 + · · ·+ λnanvn.

Hence the vector

M(v) =

⎡
⎢⎣
a1
...

an

⎤
⎥⎦

is mapped to

M(Tv) =

⎡
⎢⎣
λ1a1
...

λnan

⎤
⎥⎦ .

This means that the matrix M(T ) for T with respect to the basis of eigenvectors

(v1, . . . , vn) is diagonal, and so we call T diagonalizable:

M(T ) =

⎡
⎢⎣
λ1 0

. . .

0 λn

⎤
⎥⎦ .

We summarize the results of the above discussion in the following Proposition.

Proposition 7.3.1. If T ∈ L(V, V ) has dim(V ) distinct eigenvalues, then M(T )

is diagonal with respect to some basis of V . Moreover, V has a basis consisting of

eigenvectors of T .



November 2, 2015 14:50 ws-book961x669 Linear Algebra: As an Introduction to Abstract Mathematics 9808-main page 71

Eigenvalues and Eigenvectors 71

7.4 Existence of eigenvalues

In what follows, we want to study the question of when eigenvalues exist for a given

operator T . To answer this question, we will use polynomials p(z) ∈ F[z] evaluated

on operators T ∈ L(V, V ) (or, equivalently, on square matrices A ∈ Fn×n). More

explicitly, given a polynomial

p(z) = a0 + a1z + · · ·+ akz
k

we can associate the operator

p(T ) = a0IV + a1T + · · ·+ akT
k.

Note that, for p(z), q(z) ∈ F[z], we have

(pq)(T ) = p(T )q(T ) = q(T )p(T ).

The results of this section will be for complex vector spaces. This is because

the proof of the existence of eigenvalues relies on the Fundamental Theorem of

Algebra from Chapter 3, which makes a statement about the existence of zeroes of

polynomials over C.

Theorem 7.4.1. Let V �= {0} be a finite-dimensional vector space over C, and let

T ∈ L(V, V ). Then T has at least one eigenvalue.

Proof. Let v ∈ V with v �= 0, and consider the list of vectors

(v, Tv, T 2v, . . . , Tnv),

where n = dim(V ). Since the list contains n + 1 vectors, it must be linearly

dependent. Hence, there exist scalars a0, a1, . . . , an ∈ C, not all zero, such that

0 = a0v + a1Tv + a2T
2v + · · ·+ anT

nv.

Let m be the largest index for which am �= 0. Since v �= 0, we must have m > 0

(but possibly m = n). Consider the polynomial

p(z) = a0 + a1z + · · ·+ amzm.

By Theorem 3.2.2 (3) it can be factored as

p(z) = c(z − λ1) · · · (z − λm),

where c, λ1, . . . , λm ∈ C and c �= 0.

Therefore,

0 = a0v + a1Tv + a2T
2v + · · ·+ anT

nv = p(T )v

= c(T − λ1I)(T − λ2I) · · · (T − λmI)v,

and so at least one of the factors T − λjI must be non-injective. In other words,

this λj is an eigenvalue of T .
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Note that the proof of Theorem 7.4.1 only uses basic concepts about linear

maps, which is the same approach as in a popular textbook called Linear Algebra

Done Right by Sheldon Axler. Many other textbooks rely on significantly more

difficult proofs using concepts like the determinant and characteristic polynomial of

a matrix. At the same time, it is often preferable to use the characteristic polynomial

of a matrix in order to compute eigen-information of an operator; we discuss this

approach in Chapter 8.

Note also that Theorem 7.4.1 does not hold for real vector spaces. E.g., as we

saw in Example 7.2.2, the rotation operator R on R2 has no eigenvalues.

7.5 Upper triangular matrices

As before, let V be a complex vector space.

Let T ∈ L(V, V ) and (v1, . . . , vn) be a basis for V . Recall that we can associate

a matrix M(T ) ∈ Cn×n to the operator T . By Theorem 7.4.1, we know that T has

at least one eigenvalue, say λ ∈ C. Let v1 �= 0 be an eigenvector corresponding to

λ. By the Basis Extension Theorem, we can extend the list (v1) to a basis of V .

Since Tv1 = λv1, the first column of M(T ) with respect to this basis is⎡
⎢⎢⎢⎣
λ

0
...

0

⎤
⎥⎥⎥⎦ .

What we will show next is that we can find a basis of V such that the matrix M(T )

is upper triangular.

Definition 7.5.1. A matrix A = (aij) ∈ Fn×n is called upper triangular if

aij = 0 for i > j.

Schematically, an upper triangular matrix has the form⎡
⎢⎣
∗ ∗
. . .

0 ∗

⎤
⎥⎦ ,

where the entries ∗ can be anything and every entry below the main diagonal is

zero.

Here are two reasons why having an operator T represented by an upper trian-

gular matrix can be quite convenient:

(1) the eigenvalues are on the diagonal (as we will see later);

(2) it is easy to solve the corresponding system of linear equations by back substi-

tution (as discussed in Section A.3).
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The next proposition tells us what upper triangularity means in terms of linear

operators and invariant subspaces.

Proposition 7.5.2. Suppose T ∈ L(V, V ) and that (v1, . . . , vn) is a basis of V .

Then the following statements are equivalent:

(1) the matrix M(T ) with respect to the basis (v1, . . . , vn) is upper triangular;

(2) Tvk ∈ span(v1, . . . , vk) for each k = 1, 2, . . . , n;

(3) span(v1, . . . , vk) is invariant under T for each k = 1, 2, . . . , n.

Proof. The equivalence of Condition 1 and Condition 2 follows easily from the

definition since Condition 2 implies that the matrix elements below the diagonal

are zero.

Clearly, Condition 3 implies Condition 2. To show that Condition 2 implies

Condition 3, note that any vector v ∈ span(v1, . . . , vk) can be written as v =

a1v1 + · · ·+ akvk. Applying T , we obtain

Tv = a1Tv1 + · · ·+ akTvk ∈ span(v1, . . . , vk)

since, by Condition 2, each Tvj ∈ span(v1, . . . , vj) ⊂ span(v1, . . . , vk) for j =

1, 2, . . . , k and since the span is a subspace of V .

The next theorem shows that complex vector spaces indeed have some basis for

which the matrix of a given operator is upper triangular.

Theorem 7.5.3. Let V be a finite-dimensional vector space over C and T ∈
L(V, V ). Then there exists a basis B for V such that M(T ) is upper triangular

with respect to B.

Proof. We proceed by induction on dim(V ). If dim(V ) = 1, then there is nothing

to prove.

Hence, assume that dim(V ) = n > 1 and that we have proven the result of the

theorem for all T ∈ L(W,W ), where W is a complex vector space with dim(W ) ≤
n− 1. By Theorem 7.4.1, T has at least one eigenvalue λ. Define

U = range (T − λI),

and note that

(1) dim(U) < dim(V ) = n since λ is an eigenvalue of T and hence T − λI is not

surjective;

(2) U is an invariant subspace of T since, for all u ∈ U , we have

Tu = (T − λI)u+ λu,

which implies that Tu ∈ U since (T − λI)u ∈ range (T − λI) = U and λu ∈ U .
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Therefore, we may consider the operator S = T |U , which is the operator obtained

by restricting T to the subspace U . By the induction hypothesis, there exists a

basis (u1, . . . , um) of U with m ≤ n − 1 such that M(S) is upper triangular with

respect to (u1, . . . , um). This means that

Tuj = Suj ∈ span(u1, . . . , uj), for all j = 1, 2, . . . ,m.

Extend this to a basis (u1, . . . , um, v1, . . . , vk) of V . Then

Tvj = (T − λI)vj + λvj , for all j = 1, 2, . . . , k.

Since (T − λI)vj ∈ range (T − λI) = U = span(u1, . . . , um), we have that

Tvj ∈ span(u1, . . . , um, v1, . . . , vj), for all j = 1, 2, . . . , k.

Hence, T is upper triangular with respect to the basis (u1, . . . , um, v1, . . . , vk).

The following are two very important facts about upper triangular matrices and

their associated operators.

Proposition 7.5.4. Suppose T ∈ L(V, V ) is a linear operator and that M(T ) is

upper triangular with respect to some basis of V . Then

(1) T is invertible if and only if all entries on the diagonal of M(T ) are non-zero.

(2) The eigenvalues of T are precisely the diagonal elements of M(T ).

Proof of Proposition 7.5.4, Part 1. Let (v1, . . . , vn) be a basis of V such that

M(T ) =

⎡
⎢⎣
λ1 ∗

. . .

0 λn

⎤
⎥⎦

is upper triangular. The claim is that T is invertible if and only if λk �= 0 for all

k = 1, 2, . . . , n. Equivalently, this can be reformulated as follows: T is not invertible

if and only if λk = 0 for at least one k ∈ {1, 2, . . . , n}.
Suppose λk = 0. We will show that this implies the non-invertibility of T . If

k = 1, this is obvious since then Tv1 = 0, which implies that v1 ∈ null (T ) so that

T is not injective and hence not invertible. So assume that k > 1. Then

Tvj ∈ span(v1, . . . , vk−1), for all j ≤ k,

since T is upper triangular and λk = 0. Hence, we may define S = T |span(v1,...,vk)
to be the restriction of T to the subspace span(v1, . . . , vk) so that

S : span(v1, . . . , vk)→ span(v1, . . . , vk−1).

The linear map S is not injective since the dimension of the domain is larger than

the dimension of its codomain, i.e.,

dim(span(v1, . . . , vk)) = k > k − 1 = dim(span(v1, . . . , vk−1)).

Hence, there exists a vector 0 �= v ∈ span(v1, . . . , vk) such that Sv = Tv = 0. This

implies that T is also not injective and therefore not invertible.
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Now suppose that T is not invertible. We need to show that at least one λk = 0.

The linear map T not being invertible implies that T is not injective. Hence, there

exists a vector 0 �= v ∈ V such that Tv = 0, and we can write

v = a1v1 + · · ·+ akvk

for some k, where ak �= 0. Then

0 = Tv = (a1Tv1 + · · ·+ ak−1Tvk−1) + akTvk. (7.2)

Since T is upper triangular with respect to the basis (v1, . . . , vn), we know that

a1Tv1 + · · · + ak−1Tvk−1 ∈ span(v1, . . . , vk−1). Hence, Equation (7.2) shows that

Tvk ∈ span(v1, . . . , vk−1), which implies that λk = 0.

Proof of Proposition 7.5.4, Part 2. Recall that λ ∈ F is an eigenvalue of T if and

only if the operator T − λI is not invertible. Let (v1, . . . , vn) be a basis such that

M(T ) is upper triangular. Then

M(T − λI) =

⎡
⎢⎣
λ1 − λ ∗

. . .

0 λn − λ

⎤
⎥⎦ .

Hence, by Proposition 7.5.4(1), T − λI is not invertible if and only if λ = λk for

some k.

7.6 Diagonalization of 2 × 2 matrices and applications

Let A =

[
a b

c d

]
∈ F2×2, and recall that we can define a linear operator T ∈ L(F2)

on F2 by setting T (v) = Av for each v =

[
v1
v2

]
∈ F2.

One method for finding the eigen-information of T is to analyze the solutions

of the matrix equation Av = λv for λ ∈ F and v ∈ F2. In particular, using

the definition of eigenvector and eigenvalue, v is an eigenvector associated to the

eigenvalue λ if and only if Av = T (v) = λv.

A simpler method involves the equivalent matrix equation (A−λI)v = 0, where

I denotes the identity map on F2. In particular, 0 �= v ∈ F2 is an eigenvector for T

associated to the eigenvalue λ ∈ F if and only if the system of linear equations

(a− λ)v1 + bv2 = 0

cv1 + (d− λ)v2 = 0

}
(7.3)

has a non-trivial solution. Moreover, System (7.3) has a non-trivial solution if and

only if the polynomial p(λ) = (a−λ)(d−λ)−bc evaluates to zero. (See Proof-writing

Exercise 12 on page 79.)

In other words, the eigenvalues for T are exactly the λ ∈ F for which p(λ) = 0,

and the eigenvectors for T associated to an eigenvalue λ are exactly the non-zero

vectors v =

[
v1
v2

]
∈ F2 that satisfy System (7.3).
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Example 7.6.1. Let A =

[−2 −1
5 2

]
. Then p(λ) = (−2 − λ)(2 − λ) − (−1)(5) =

λ2 + 1, which is equal to zero exactly when λ = ±i. Moreover, if λ = i, then the

System (7.3) becomes

(−2− i)v1 − v2 = 0

5v1 + (2− i)v2 = 0

}
,

which is satisfied by any vector v =

[
v1
v2

]
∈ C2 such that v2 = (−2− i)v1. Similarly,

if λ = −i, then the System (7.3) becomes

(−2 + i)v1 − v2 = 0

5v1 + (2 + i)v2 = 0

}
,

which is satisfied by any vector v =

[
v1
v2

]
∈ C2 such that v2 = (−2 + i)v1.

It follows that, given A =

[−2 −1
5 2

]
, the linear operator on C2 defined by T (v) =

Av has eigenvalues λ = ±i, with associated eigenvectors as described above.

Example 7.6.2. Take the rotation Rθ : R2 → R2 by an angle θ ∈ [0, 2π) given by

the matrix

Rθ =

[
cos θ − sin θ

sin θ cos θ

]
.

Then we obtain the eigenvalues by solving the polynomial equation

p(λ) = (cos θ − λ)2 + sin2 θ

= λ2 − 2λ cos θ + 1 = 0,

where we have used the fact that sin2 θ + cos2 θ = 1. Solving for λ in C, we obtain

λ = cos θ ±
√
cos2 θ − 1 = cos θ ±

√
− sin2 θ = cos θ ± i sin θ = e±iθ.

We see that, as an operator over the real vector space R2, the operator Rθ only has

eigenvalues when θ = 0 or θ = π. However, if we interpret the vector

[
x1

x2

]
∈ R2

as a complex number z = x1 + ix2, then z is an eigenvector if Rθ : C → C maps

z �→ λz = e±iθz. Moreover, from Section 2.3.2, we know that multiplication by e±iθ

corresponds to rotation by the angle ±θ.

Exercises for Chapter 7

Calculational Exercises

(1) Let T ∈ L(F2,F2) be defined by

T (u, v) = (v, u)

for every u, v ∈ F. Compute the eigenvalues and associated eigenvectors for T .
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(2) Let T ∈ L(F3,F3) be defined by

T (u, v, w) = (2v, 0, 5w)

for every u, v, w ∈ F. Compute the eigenvalues and associated eigenvectors for

T .

(3) Let n ∈ Z+ be a positive integer and T ∈ L(Fn,Fn) be defined by

T (x1, . . . , xn) = (x1 + · · ·+ xn, . . . , x1 + · · ·+ xn)

for every x1, . . . , xn ∈ F. Compute the eigenvalues and associated eigenvectors

for T .

(4) Find eigenvalues and associated eigenvectors for the linear operators on F2

defined by each given 2× 2 matrix.

(a)

[
3 0

8 −1
]

(b)

[
10 −9
4 −2

]
(c)

[
0 3

4 0

]

(d)

[−2 −7
1 2

]
(e)

[
0 0

0 0

]
(f)

[
1 0

0 1

]

Hint: Use the fact that, given a matrix A =

[
a b

c d

]
∈ F2×2, λ ∈ F is an

eigenvalue for A if and only if (a− λ)(d− λ)− bc = 0.

(5) For each matrix A below, find eigenvalues for the induced linear operator T on

Fn without performing any calculations. Then describe the eigenvectors v ∈ Fn

associated to each eigenvalue λ by looking at solutions to the matrix equation

(A− λI)v = 0, where I denotes the identity map on Fn.

(a)

[−1 6

0 5

]
, (b)

⎡
⎢⎢⎣
− 1

3 0 0 0

0 − 1
3 0 0

0 0 1 0

0 0 0 1
2

⎤
⎥⎥⎦, (c)

⎡
⎢⎢⎣
1 3 7 11

0 1
2 3 8

0 0 0 4

0 0 0 2

⎤
⎥⎥⎦

(6) For each matrix A below, describe the invariant subspaces for the induced linear

operator T on F2 that maps each v ∈ F2 to T (v) = Av.

(a)

[
4 −1
2 1

]
, (b)

[
0 1

−1 0

]
, (c)

[
2 3

0 2

]
, (d)

[
1 0

0 0

]

(7) Let T ∈ L(R2) be defined by

T

(
x

y

)
=

(
y

x+ y

)
, for all

(
x

y

)
∈ R2 .

Define two real numbers λ+ and λ− as follows:

λ+ =
1 +

√
5

2
, λ− =

1−√5

2
.
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(a) Find the matrix of T with respect to the canonical basis for R2 (both as

the domain and the codomain of T ; call this matrix A).

(b) Verify that λ+ and λ− are eigenvalues of T by showing that v+ and v− are

eigenvectors, where

v+ =

(
1

λ+

)
, v− =

(
1

λ−

)
.

(c) Show that (v+, v−) is a basis of R2.

(d) Find the matrix of T with respect to the basis (v+, v−) for R2 (both as the

domain and the codomain of T ; call this matrix B).

Proof-Writing Exercises

(1) Let V be a finite-dimensional vector space over F with T ∈ L(V, V ), and let

U1, . . . , Um be subspaces of V that are invariant under T . Prove that U1+ · · ·+
Um must then also be an invariant subspace of V under T .

(2) Let V be a finite-dimensional vector space over F with T ∈ L(V, V ), and suppose

that U1 and U2 are subspaces of V that are invariant under T . Prove that U1∩U2

is also an invariant subspace of V under T .

(3) Let V be a finite-dimensional vector space over F with T ∈ L(V, V ) invertible

and λ ∈ F \ {0}. Prove that λ is an eigenvalue for T if and only if λ−1 is an

eigenvalue for T−1.

(4) Let V be a finite-dimensional vector space over F, and suppose that T ∈ L(V, V )

has the property that every v ∈ V is an eigenvector for T . Prove that T must

then be a scalar multiple of the identity function on V .

(5) Let V be a finite-dimensional vector space over F, and let S, T ∈ L(V ) be linear

operators on V with S invertible. Given any polynomial p(z) ∈ F[z], prove that

p(S ◦ T ◦ S−1) = S ◦ p(T ) ◦ S−1.

(6) Let V be a finite-dimensional vector space over C, T ∈ L(V ) be a linear operator

on V , and p(z) ∈ C[z] be a polynomial. Prove that λ ∈ C is an eigenvalue of

the linear operator p(T ) ∈ L(V ) if and only if T has an eigenvalue μ ∈ C such

that p(μ) = λ.

(7) Let V be a finite-dimensional vector space over C with T ∈ L(V ) a linear

operator on V . Prove that, for each k = 1, . . . , dim(V ), there is an invariant

subspace Uk of V under T such that dim(Uk) = k.

(8) Prove or give a counterexample to the following claim:

Claim. Let V be a finite-dimensional vector space over F, and let T ∈ L(V )

be a linear operator on V . If the matrix for T with respect to some basis on V

has all zeroes on the diagonal, then T is not invertible.

(9) Prove or give a counterexample to the following claim:
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Claim. Let V be a finite-dimensional vector space over F, and let T ∈ L(V )

be a linear operator on V . If the matrix for T with respect to some basis on V

has all non-zero elements on the diagonal, then T is invertible.

(10) Let V be a finite-dimensional vector space over F, and let S, T ∈ L(V ) be linear

operators on V . Suppose that T has dim(V ) distinct eigenvalues and that,

given any eigenvector v ∈ V for T associated to some eigenvalue λ ∈ F, v is also

an eigenvector for S associated to some (possibly distinct) eigenvalue μ ∈ F.

Prove that T ◦ S = S ◦ T .
(11) Let V be a finite-dimensional vector space over F, and suppose that the linear

operator P ∈ L(V ) has the property that P 2 = P . Prove that V = null(P ) ⊕
range(P ).

(12) (a) Let a, b, c, d ∈ F and consider the system of equations given by

ax1 + bx2 = 0 (7.4)

cx1 + dx2 = 0. (7.5)

Note that x1 = x2 = 0 is a solution for any choice of a, b, c, and d. Prove

that this system of equations has a non-trivial solution if and only if ad−
bc = 0.

(b) Let A =

[
a b

c d

]
∈ F2×2, and recall that we can define a linear operator

T ∈ L(F2) on F2 by setting T (v) = Av for each v =

[
v1
v2

]
∈ F2.

Show that the eigenvalues for T are exactly the λ ∈ F for which p(λ) = 0,

where p(z) = (a− z)(d− z)− bc.

Hint: Write the eigenvalue equation Av = λv as (A − λI)v = 0 and use

the first part.
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Chapter 8

Permutations and the Determinant of a
Square Matrix

This chapter is devoted to an important quantity, called the determinant, which

can be associated with any square matrix. In order to define the determinant, we

will first need to define permutations.

8.1 Permutations

The study of permutations is a topic of independent interest with applications in

many branches of mathematics such as Combinatorics and Probability Theory.

8.1.1 Definition of permutations

Given a positive integer n ∈ Z+, a permutation of an (ordered) list of n distinct

objects is any reordering of this list. A permutation refers to the reordering itself and

the nature of the objects involved is irrelevant. E.g., we can imagine interchanging

the second and third items in a list of five distinct objects — no matter what those

items are — and this defines a particular permutation that can be applied to any

list of five objects.

Since the nature of the objects being rearranged (i.e., permuted) is immaterial,

it is common to use the integers 1, 2, . . . , n as the standard list of n objects. Alter-

natively, one can also think of these integers as labels for the items in any list of n

distinct elements. This gives rise to the following definition.

Definition 8.1.1. A permutation π of n elements is a one-to-one and onto func-

tion having the set {1, 2, . . . , n} as both its domain and codomain.

In other words, a permutation is a function π : {1, 2, . . . , n} −→ {1, 2, . . . , n} such

that, for every integer i ∈ {1, . . . , n}, there exists exactly one integer j ∈ {1, . . . , n}
for which π(j) = i. We will usually denote permutations by Greek letters such as π

(pi), σ (sigma), and τ (tau). The set of all permutations of n elements is denoted

by Sn and is typically referred to as the symmetric group of degree n. (In

particular, the set Sn forms a group under function composition as discussed in

Section 8.1.2.)

81
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Given a permutation π ∈ Sn, there are several common notations used for

specifying how π permutes the integers 1, 2, . . . , n.

Definition 8.1.2. Given a permutation π ∈ Sn, denote πi = π(i) for each i ∈
{1, . . . , n}. Then the two-line notation for π is given by the 2× n matrix

π =

(
1 2 · · · n

π1 π2 · · · πn

)
.

In other words, given a permutation π ∈ Sn and an integer i ∈ {1, . . . , n}, we are

denoting the image of i under π by πi instead of using the more conventional function

notation π(i). Then, in order to specify the image of each integer i ∈ {1, . . . , n}
under π, we list these images in a two-line array as shown above. (One can also use

the so-called one-line notation for π, which is given by simply ignoring the top

row and writing π = π1π2 · · ·πn.)

It is important to note that, although we represent permutations as 2 × n ma-

trices, you should not think of permutations as linear transformations from an

n-dimensional vector space into a two-dimensional vector space. Moreover, the

composition operation on permutation that we describe in Section 8.1.2 below does

not correspond to matrix multiplication. The use of matrix notation in denoting

permutations is merely a matter of convenience.

Example 8.1.3. Suppose that we have a set of five distinct objects and that we

wish to describe the permutation that places the first item into the second position,

the second item into the fifth position, the third item into the first position, the

fourth item into the third position, and the fifth item into the fourth position. Then,

using the notation developed above, we have the permutation π ∈ S5 such that

π1 = π(1) = 3, π2 = π(2) = 1, π3 = π(3) = 4, π4 = π(4) = 5, π5 = π(5) = 2.

In two-line notation, we would write π as

π =

(
1 2 3 4 5

3 1 4 5 2

)
.

It is relatively straightforward to find the number of permutations of n elements,

i.e., to determine cardinality of the set Sn. To construct an arbitrary permutation

of n elements, we can proceed as follows: First, choose an integer i ∈ {1, . . . , n} to

put into the first position. Clearly, we have exactly n possible choices. Next, choose

the element to go in the second position. Since we have already chosen one element

from the set {1, . . . , n}, there are now exactly n− 1 remaining choices. Proceeding

in this way, we have n − 2 choices when choosing the third element from the set

{1, . . . , n}, then n − 3 choices when choosing the fourth element, and so on until

we are left with exactly one choice for the nth element. This proves the following

theorem.
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Theorem 8.1.4. The number of elements in the symmetric group Sn is given by

|Sn| = n · (n− 1) · (n− 2) · · · · · 3 · 2 · 1 = n!

We conclude this section with several examples, including a complete description

of the one permutation in S1, the two permutations in S2, and the six permutations

in S3. If you are patient you can list the 4! = 24 permutations in S4 as further

practice.

Example 8.1.5.

(1) Given any positive integer n ∈ Z+, the identity function id : {1, . . . , n} −→
{1, . . . , n} given by id(i) = i, ∀ i ∈ {1, . . . , n}, is a permutation in Sn. This

function can be thought of as the trivial reordering that does not change the

order at all, and so we call it the trivial or identity permutation.

(2) If n = 1, then, by Theorem 8.1.4, |Sn| = 1! = 1. Thus, S1 contains only the

identity permutation.

(3) If n = 2, then, by Theorem 8.1.4, |Sn| = 2! = 2 ·1 = 2. Thus, there is only one

non-trivial permutation π in S2, namely the transformation interchanging the

first and the second elements in a list. As a function, π(1) = 2 and π(2) = 1,

and, in two-line notation,

π =

(
1 2

π1 π2

)
=

(
1 2

2 1

)
.

(4) If n = 3, then, by Theorem 8.1.4, |Sn| = 3! = 3 · 2 · 1 = 6. Thus, there are five

non-trivial permutations in S3. Using two-line notation, we have that

S3 =

{(
1 2 3

1 2 3

)
,

(
1 2 3

1 3 2

)
,

(
1 2 3

2 1 3

)
,

(
1 2 3

2 3 1

)
,

(
1 2 3

3 1 2

)
,

(
1 2 3

3 2 1

)}
.

Keep in mind the fact that each element in S3 is simultaneously both a function

and a reordering operation. E.g., the permutation

π =

(
1 2 3

π1 π2 π3

)
=

(
1 2 3

2 3 1

)

can be read as defining the reordering that, with respect to the original list,

places the second element in the first position, the third element in the second

position, and the first element in the third position. This permutation could

equally well have been identified by describing its action on the (ordered) list

of letters a, b, c. In other words,(
1 2 3

2 3 1

)
=

(
a b c

b c a

)
,

regardless of what the letters a, b, c might happen to represent.



November 2, 2015 14:50 ws-book961x669 Linear Algebra: As an Introduction to Abstract Mathematics 9808-main page 84

84 Linear Algebra: As an Introduction to Abstract Mathematics

8.1.2 Composition of permutations

Let n ∈ Z+ be a positive integer and π, σ ∈ Sn be permutations. Then, since π

and σ are both functions from the set {1, . . . , n} to itself, we can compose them to

obtain a new function π ◦ σ (read as “pi after sigma”) that takes on the values

(π ◦ σ)(1) = π(σ(1)), (π ◦ σ)(2) = π(σ(2)), . . . (π ◦ σ)(n) = π(σ(n)).

In two-line notation, we can write π ◦ σ as(
1 2 · · · n

π(σ(1)) π(σ(2)) · · · π(σ(n))
)

or

(
1 2 · · · n

πσ(1) πσ(2) · · · πσ(n)

)
or

(
1 2 · · · n

πσ1
πσ2

· · · πσn

)
.

Example 8.1.6. From S3, suppose that we have the permutations π and σ given

by

π(1) = 2, π(2) = 3, π(3) = 1 and σ(1) = 1, σ(2) = 3, σ(3) = 2.

Then note that

(π ◦ σ)(1) = π(σ(1)) = π(1) = 2,

(π ◦ σ)(2) = π(σ(2)) = π(3) = 1,

(π ◦ σ)(3) = π(σ(3)) = π(2) = 3.

In other words,(
1 2 3

2 3 1

)
◦
(
1 2 3

1 3 2

)
=

(
1 2 3

π(1) π(3) π(2)

)
=

(
1 2 3

2 1 3

)
.

Similar computations (which you should check for your own practice) yield compo-

sitions such as (
1 2 3

1 3 2

)
◦
(
1 2 3

2 3 1

)
=

(
1 2 3

σ(2) σ(3) σ(1)

)
=

(
1 2 3

3 2 1

)
,

(
1 2 3

2 3 1

)
◦
(
1 2 3

1 2 3

)
=

(
1 2 3

σ(1) σ(2) σ(3)

)
=

(
1 2 3

2 3 1

)
,

and (
1 2 3

1 2 3

)
◦
(
1 2 3

2 3 1

)
=

(
1 2 3

id(2) id(3) id(1)

)
=

(
1 2 3

2 3 1

)
.

In particular, note that the result of each composition above is a permutation, that

composition is not a commutative operation, and that composition with id leaves

a permutation unchanged. Moreover, since each permutation π is a bijection, one

can always construct an inverse permutation π−1 such that π ◦ π−1 = id. E.g.,(
1 2 3

2 3 1

)
◦
(
1 2 3

3 1 2

)
=

(
1 2 3

π(3) π(1) π(2)

)
=

(
1 2 3

1 2 3

)
.



November 2, 2015 14:50 ws-book961x669 Linear Algebra: As an Introduction to Abstract Mathematics 9808-main page 85

Permutations and Determinants 85

We summarize the basic properties of composition on the symmetric group in

the following theorem.

Theorem 8.1.7. Let n ∈ Z+ be a positive integer. Then the set Sn has the following

properties.

(1) Given any two permutations π, σ ∈ Sn, the composition π ◦ σ ∈ Sn.
(2) (Associativity of Composition) Given any three permutations π, σ, τ ∈ Sn,

(π ◦ σ) ◦ τ = π ◦ (σ ◦ τ).
(3) (Identity Element for Composition) Given any permutation π ∈ Sn,

π ◦ id = id ◦ π = π.

(4) (Inverse Elements for Composition) Given any permutation π ∈ Sn, there exists
a unique permutation π−1 ∈ Sn such that

π ◦ π−1 = π−1 ◦ π = id.

In other words, the set Sn forms a group under composition.

Note that the composition of permutations is not commutative in general. In

particular, for n ≥ 3, it is easy to find permutations π and σ such that π ◦σ �= σ ◦π.

8.1.3 Inversions and the sign of a permutation

Let n ∈ Z+ be a positive integer. Then, given a permutation π ∈ Sn, it is natural
to ask how “out of order” π is in comparison to the identity permutation. One

method for quantifying this is to count the number of so-called inversion pairs in

π as these describe pairs of objects that are out of order relative to each other.

Definition 8.1.8. Let π ∈ Sn be a permutation. Then an inversion pair (i, j) of

π is a pair of positive integers i, j ∈ {1, . . . , n} for which i < j but π(i) > π(j).

Note, in particular, that the components of an inversion pair are the positions

where the two “out of order” elements occur. An inversion pair is often referred to

simply as an inversion.

Example 8.1.9. We classify all inversion pairs for elements in S3:

• id =

(
1 2 3

1 2 3

)
has no inversion pairs since no elements are “out of order”.

• π =

(
1 2 3

1 3 2

)
has the single inversion pair (2, 3) since π(2) = 3 > 2 = π(3).

• π =

(
1 2 3

2 1 3

)
has the single inversion pair (1, 2) since π(1) = 2 > 1 = π(2).

• π =

(
1 2 3

2 3 1

)
has the two inversion pairs (1, 3) and (2, 3) since we have that

both π(1) = 2 > 1 = π(3) and π(2) = 3 > 1 = π(3).
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• π =

(
1 2 3

3 1 2

)
has the two inversion pairs (1, 2) and (1, 3) since we have that

both π(1) = 3 > 1 = π(2) and π(1) = 3 > 2 = π(3).

• π =

(
1 2 3

3 2 1

)
has the three inversion pairs (1, 2), (1, 3), and (2, 3), as you can

check.

Example 8.1.10. As another example, for each i, j ∈ {1, . . . , n} with i < j, we

define the transposition tij ∈ Sn by

tij =

(
1 2 · · · i · · · j · · · n
1 2 · · · j · · · i · · · n

)
.

In other words, tij is the permutation that interchanges i and j while leaving all

other integers fixed in place. One can check that the number of inversions in tij is

exactly 2(j − i) − 1. Thus, the number of inversions in a transposition is always

odd. E.g.,

t13 =

(
1 2 3 4

3 2 1 4

)
has inversion pairs (1, 2), (1, 3), and (2, 3).

For our purposes in this text, the significance of inversion pairs is mainly due to

the following fundamental definition.

Definition 8.1.11. Let π ∈ Sn be a permutation. Then the sign of π, denoted by

sign(π), is defined by

sign(π) = (−1)# of inversion pairs in π =

{
+1, if the number of inversions in π is even

−1, if the number of inversions in π is odd
.

We call π an even permutation if sign(π) = +1, whereas π is called an odd

permutation if sign(π) = −1.
Example 8.1.12. Based upon the computations in Example 8.1.9 above, we have

that

sign

(
1 2 3

1 2 3

)
= sign

(
1 2 3

2 3 1

)
= sign

(
1 2 3

3 1 2

)
= +1

and that

sign

(
1 2 3

1 3 2

)
= sign

(
1 2 3

2 1 3

)
= sign

(
1 2 3

3 2 1

)
= −1.

Similarly, from Example 8.1.10, it follows that any transposition is an odd permu-

tation.

We summarize some of the most basic properties of the sign operation on the

symmetric group in the following theorem.
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Theorem 8.1.13. Let n ∈ Z+ be a positive integer. Then,

(1) for id ∈ Sn the identity permutation,

sign(id) = +1.

(2) for tij ∈ Sn a transposition with i, j ∈ {1, . . . , n} and i < j,

sign(tij) = −1. (8.1)

(3) given any two permutations π, σ ∈ Sn,
sign(π ◦ σ) = sign(π) sign(σ), (8.2)

sign(π−1) = sign(π). (8.3)

(4) the number of even permutations in Sn, when n ≥ 2, is exactly 1
2n!.

(5) the set An of even permutations in Sn forms a group under composition.

8.2 Determinants

Now that we have developed the appropriate background material on permutations,

we are finally ready to define the determinant and explore its many important

properties.

8.2.1 Summations indexed by the set of all permutations

Given a positive integer n ∈ Z+, we begin with the following definition:

Definition 8.2.1. Given a square matrix A = (aij) ∈ Fn×n, the determinant of

A is defined to be

det(A) =
∑

π ∈Sn

sign(π)a1,π(1)a2,π(2) · · · an,π(n) , (8.4)

where the sum is over all permutations of n elements (i.e., over the symmetric

group).

Note that each permutation in the summand of (8.4) permutes the n columns

of the n× n matrix.

Example 8.2.2. Suppose that A ∈ F2×2 is the 2× 2 matrix

A =

[
a11 a12
a21 a22

]
.

To calculate the determinant of A, we first list the two permutations in S2:

id =

(
1 2

1 2

)
and σ =

(
1 2

2 1

)
.

The permutation id has sign 1, and the permutation σ has sign −1. Thus, the

determinant of A is given by

det(A) = a11a22 − a12a21.
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If one attempted to compute determinants directly using Equation (8.4), then

one would need to sum up n! terms, where each summand is itself a product of n

factors. This is an incredibly inefficient method for finding determinants since n!

increases in size very rapidly as n increases. E.g., 10! = 3628800. Thus, even if

you could compute one summand per second without stopping, it would still take

you well over a month to compute the determinant of a 10× 10 matrix using Equa-

tion (8.4). Fortunately, there are properties of the determinant (as summarized in

Section 8.2.2 below) that can be used to greatly reduce the size of such computa-

tions. These properties of the determinant follow from general properties that hold

for any summation taken over the symmetric group, which are in turn themselves

based upon properties of permutations and the fact that addition and multiplication

are commutative operations in the field F (which, as usual, we take to be either R

or C).

Let T : Sn → V be a function defined on the symmetric group Sn that takes

values in some vector space V . E.g., T (π) could be the term corresponding to the

permutation π in Equation (8.4). Then, since the sum∑
π ∈Sn

T (π)

is finite, we are free to reorder the summands. In other words, the sum is indepen-

dent of the order in which the terms are added, and so we are free to permute the

term order without affecting the value of the sum. Some commonly used reorderings

of such sums are the following:∑
π ∈Sn

T (π) =
∑

π ∈Sn

T (σ ◦ π) (8.5)

=
∑

π ∈Sn

T (π ◦ σ) (8.6)

=
∑

π ∈Sn

T (π−1), (8.7)

where σ is a fixed permutation.

Equation (8.5) follows from the fact that, if π runs through each permutation

in Sn exactly once, then σ ◦ π similarly runs through each permutation but in a

potentially different order. I.e., the action of σ upon something like Equation (8.4)

is that σ merely permutes the permutations that index the terms. Put another

way, there is a one-to-one correspondence between permutations in general and

permutations composed with σ.

Similar reasoning holds for Equations (8.6) and (8.7).

8.2.2 Properties of the determinant

We summarize some of the most basic properties of the determinant below. The

proof of the following theorem uses properties of permutations, properties of the
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sign function on permutations, and properties of sums over the symmetric group as

discussed in Section 8.2.1 above. In thinking about these properties, it is useful to

keep in mind that, using Equation (8.4), the determinant of an n × n matrix A is

the sum over all possible ways of selecting n entries of A, where exactly one element

is selected from each row and from each column of A.

Theorem 8.2.3 (Properties of the Determinant). Let n ∈ Z+ be a positive integer,

and suppose that A = (aij) ∈ Fn×n is an n× n matrix. Then

(1) det(0n×n) = 0 and det(In) = 1, where 0n×n denotes the n× n zero matrix and

In denotes the n× n identity matrix.

(2) det(AT ) = det(A), where AT denotes the transpose of A.

(3) denoting by A(·,1), A(·,2), . . . , A(·,n) ∈ Fn the columns of A, det(A) is a linear

function of column A(·,i), for each i ∈ {1, . . . , n}. In other words, if we denote

A =
[
A(·,1) | A(·,2) | · · · | A(·,n)

]
then, given any scalar z ∈ F and any vectors a1, a2, . . . , an, c, b ∈ Fn,

det [a1 | · · · | ai−1 | zai | · · · | an] = z det [a1 | · · · | ai−1 | ai | · · · | an] ,
det [a1 | · · · | ai−1 | b+ c | · · · | an] = det [a1 | · · · | b | · · · | an]

+ det [a1 | · · · | c | · · · | an] .
(4) det(A) is an antisymmetric function of the columns of A. In other

words, given any positive integers 1 ≤ i < j ≤ n and denoting A =[
A(·,1) | A(·,2) | · · · | A(·,n)],

det(A) = − det
[
A(·,1) | · · · | A(·,j) | · · · | A(·,i) | · · · | A(·,n)

]
.

(5) if A has two identical columns, det(A) = 0.

(6) if A has a column of zeroes, det(A) = 0.

(7) Properties (3)–(6) also hold when rows are used in place of columns.

(8) given any other matrix B ∈ Fn×n,

det(AB) = det(A) det(B).

(9) if A is either upper triangular or lower triangular,

det(A) = a11a22 · · · ann.
Proof. First, note that Properties (1), (3), (6), and (9) follow directly from the sum

given in Equation (8.4). Moreover, Property (5) follows directly from Property (4),

and Property (7) follows directly from Property (2). Thus, we only need to prove

Properties (2), (4), and (8).

Proof of (2). Since the entries of AT are obtained from those of A by inter-

changing the row and column indices, it follows that det(AT ) is given by

det(AT ) =
∑

π ∈Sn

sign(π) aπ(1),1aπ(2),2 · · · aπ(n),n .
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Using the commutativity of the product in F and Equation (8.3), we see that

det(AT ) =
∑

π ∈Sn

sign(π−1) a1,π−1(1)a2,π−1(2) · · · an,π−1(n) ,

which equals det(A) by Equation (8.7).

Proof of (4). Let B =
[
A(·,1) | · · · | A(·,j) | · · · | A(·,i) | · · · | A(·,n)] be the ma-

trix obtained from A by interchanging the ith and the jth column. Then note

that

det(B) =
∑

π ∈Sn

sign(π) a1,π(1) · · · aj,π(i) · · · ai,π(j) · · · an,π(n) .

Define π̃ = π ◦ tij , and note that π = π̃ ◦ tij . In particular, π(i) = π̃(j) and

π(j) = π̃(i), from which

det(B) =
∑

π ∈Sn

sign(π̃ ◦ tij) a1,π̃(1) · · · ai,π̃(i) · · · aj,π̃(j) · · · an,π̃(n) .

It follows from Equations (8.2) and (8.1) that sign(π̃ ◦ tij) = −sign (π̃). Thus, using

Equation (8.6), we obtain det(B) = − det(A).

Proof of (8). Using the standard expression for the matrix entries of the

product AB in terms of the matrix entries of A = (aij) and B = (bij), we have that

det(AB) =
∑

π ∈Sn

sign(π)

n∑
k1=1

· · ·
n∑

kn=1

a1,k1bk1,π(1) · · · an,knbkn,π(n)

=
n∑

k1=1

· · ·
n∑

kn=1

a1,k1
· · · an,kn

∑
π ∈Sn

sign (π)bk1,π(1) · · · bkn,π(n).

Note that, for fixed k1, . . . , kn ∈ {1, . . . , n}, the sum∑
π ∈Sn

sign (π)bk1,π(1) · · · bkn,π(n) is the determinant of a matrix composed of rows

k1, . . . , kn of B. Thus, by Property (5), it follows that this expression vanishes

unless the ki are pairwise distinct. In other words, the sum over all choices of

k1, . . . , kn can be restricted to those sets of indices σ(1), . . . , σ(n) that are labeled

by a permutation σ ∈ Sn. In other words,

det(AB) =
∑

σ ∈Sn

a1,σ(1) · · · an,σ(n)
∑

π ∈Sn

sign(π) bσ(1),π(1) · · · bσ(n),π(n) .

Now, proceeding with the same arguments as in the proof of Property (4) but with

the role of tij replaced by an arbitrary permutation σ, we obtain

det(AB) =
∑

σ ∈Sn

sign(σ) a1,σ(1) · · · an,σ(n)
∑

π ∈Sn

sign(π◦σ−1) b1,π◦σ−1(1) · · · bn,π◦σ−1(n) .

Using Equation (8.6), this last expression then becomes (det(A))(det(B)).

Note that Properties (3) and (4) of Theorem 8.2.3 effectively summarize how

multiplication by an Elementary Matrix interacts with the determinant operation.

These Properties together with Property (9) facilitate numerical computation of

determinants of larger matrices.
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8.2.3 Further properties and applications

There are many applications of Theorem 8.2.3. We conclude this chapter with

a few consequences that are particularly useful when computing with matrices.

In particular, we use the determinant to list several characterizations for matrix

invertibility, and, as a corollary, give a method for using determinants to calculate

eigenvalues. You should provide a proof of these results for your own benefit.

Theorem 8.2.4. Let n ∈ Z+ and A ∈ Fn×n. Then the following statements are

equivalent:

(1) A is invertible.

(2) denoting x =

⎡
⎢⎣
x1

...

xn

⎤
⎥⎦, the matrix equation Ax = 0 has only the trivial solution

x = 0.

(3) denoting x =

⎡
⎢⎣
x1

...

xn

⎤
⎥⎦, the matrix equation Ax = b has a solution for all b =

⎡
⎢⎣
b1
...

bn

⎤
⎥⎦ ∈ Fn.

(4) A can be factored into a product of elementary matrices.

(5) det(A) �= 0.

(6) the rows (or columns) of A form a linearly independent set in Fn.

(7) zero is not an eigenvalue of A.

(8) the linear operator T : Fn → Fn defined by T (x) = Ax, for every x ∈ Fn, is

bijective.

Moreover, should A be invertible, then det(A−1) =
1

det(A)
.

Given a matrix A ∈ Cn×n and a complex number λ ∈ C, the expression

P (λ) = det(A− λIn)

is called the characteristic polynomial of A. Note that P (λ) is a basis indepen-

dent polynomial of degree n. Thus, as with the determinant, we can consider P (λ)

to be associated with the linear map that has matrix A with respect to some basis.

Since the eigenvalues of A are exactly those λ ∈ C such that A−λI is not invertible,

the following is then an immediate corollary.

Corollary 8.2.5. The roots of the polynomial P (λ) = det(A− λI) are exactly the

eigenvalues of A.
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8.2.4 Computing determinants with cofactor expansions

As noted in Section 8.2.1, it is generally impractical to compute determinants di-

rectly with Equation (8.4). In this section, we briefly describe the so-called cofactor

expansions of a determinant. When properly applied, cofactor expansions are par-

ticularly useful for computing determinants by hand.

Definition 8.2.6. Let n ∈ Z+ and A ∈ Fn×n. Then, for each i, j ∈ {1, 2, . . . , n},
the i-j minor of A, denoted Mij , is defined to be the determinant of the matrix

obtained by removing the ith row and jth column from A. Moreover, the i-j cofactor

of A is defined to be

Aij = (−1)i+jMij .

Cofactors themselves, though, are not terribly useful unless put together in the right

way.

Definition 8.2.7. Let n ∈ Z+ and A = (aij) ∈ Fn×n. Then, for each i, j ∈
{1, 2, . . . , n}, the ith row (resp. jth column) cofactor expansion of A is the sum
n∑

j=1

aijAij (resp.
n∑

i=1

aijAij).

Theorem 8.2.8. Let n ∈ Z+ and A ∈ Fn×n. Then every row and column factor

expansion of A is equal to the determinant of A.

Since the determinant of a matrix is equal to every row or column cofactor

expansion, one can compute the determinant using a convenient choice of expansions

until the calculation is reduced to one or more 2 × 2 determinants. We close with

an example.

Example 8.2.9. By first expanding along the second column, we obtain∣∣∣∣∣∣∣∣
1 2 −3 4

−4 2 1 3

3 0 0 −3
2 0 −2 3

∣∣∣∣∣∣∣∣ = (−1)1+2(2)

∣∣∣∣∣∣
−4 1 3

3 0 −3
2 −2 3

∣∣∣∣∣∣+ (−1)2+2(2)

∣∣∣∣∣∣
1 −3 4

3 0 −3
2 −2 3

∣∣∣∣∣∣ .
Then, each of the resulting 3×3 determinants can be computed by further expansion:∣∣∣∣∣∣

−4 1 3

3 0 −3
2 −2 3

∣∣∣∣∣∣ = (−1)1+2(1)

∣∣∣∣ 3 −32 3

∣∣∣∣+ (−1)3+2(−2)
∣∣∣∣−4 3

3 −3
∣∣∣∣ = −15 + 6 = −9.

∣∣∣∣∣∣
1 −3 4

3 0 −3
2 −2 3

∣∣∣∣∣∣ = (−1)2+1(3)

∣∣∣∣−3 4

−2 3

∣∣∣∣+ (−1)2+3(−3)
∣∣∣∣ 1 −32 −2

∣∣∣∣ = 3 + 12 = 15.

It follows that the original determinant is then equal to −2(−9) + 2(15) = 48.
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Exercises for Chapter 8

Calculational Exercises

(1) Let A ∈ C3×3 be given by

A =

⎡
⎣ 1 0 i

0 1 0

−i 0 −1

⎤
⎦ .

(a) Calculate det(A).

(b) Find det(A4).

(2) (a) For each permutation π ∈ S3, compute the number of inversions in π, and

classify π as being either an even or an odd permutation.

(b) Use your result from Part (a) to construct a formula for the determinant

of a 3× 3 matrix.

(3) (a) For each permutation π ∈ S4, compute the number of inversions in π, and

classify π as being either an even or an odd permutation.

(b) Use your result from Part (a) to construct a formula for the determinant

of a 4× 4 matrix.

(4) Solve for the variable x in the following expression:

det

([
x −1
3 1− x

])
= det

⎛
⎝
⎡
⎣1 0 −3
2 x −6
1 3 x− 5

⎤
⎦
⎞
⎠ .

(5) Prove that the following determinant does not depend upon the value of θ:

det

⎛
⎝
⎡
⎣ sin(θ) cos(θ) 0

− cos(θ) sin(θ) 0

sin(θ)− cos(θ) sin(θ) + cos(θ) 1

⎤
⎦
⎞
⎠ .

(6) Given scalars α, β, γ ∈ F, prove that the following matrix is not invertible:⎡
⎣sin2(α) sin2(β) sin2(γ)

cos2(α) cos2(β) cos2(γ)

1 1 1

⎤
⎦ .

Hint: Compute the determinant.

Proof-Writing Exercises

(1) Let a, b, c, d, e, f ∈ F be scalars, and suppose that A and B are the following

matrices:

A =

[
a b

0 c

]
and B =

[
d e

0 f

]
.

Prove that AB = BA if and only if det

([
b a− c

e d− f

])
= 0.
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(2) Given a square matrix A, prove that A is invertible if and only if ATA is

invertible.

(3) Prove or give a counterexample: For any n ≥ 1 and A,B ∈ Rn×n, one has

det(A+B) = det(A) + det(B).

(4) Prove or give a counterexample: For any r ∈ R, n ≥ 1 and A ∈ Rn×n, one has

det(rA) = r det(A).
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Chapter 9

Inner Product Spaces

The abstract definition of a vector space only takes into account algebraic properties

for the addition and scalar multiplication of vectors. For vectors in Rn, for example,

we also have geometric intuition involving the length of a vector or the angle formed

by two vectors. In this chapter we discuss inner product spaces, which are vector

spaces with an inner product defined upon them. Using the inner product, we will

define notions such as the length of a vector, orthogonality, and the angle between

non-zero vectors.

9.1 Inner product

In this section, V is a finite-dimensional, non-zero vector space over F.

Definition 9.1.1. An inner product on V is a map

〈·, ·〉 : V × V → F

(u, v) �→ 〈u, v〉

with the following four properties.

(1) Linearity in first slot: 〈u + v, w〉 = 〈u,w〉 + 〈v, w〉 and 〈au, v〉 = a〈u, v〉 for
all u, v, w ∈ V and a ∈ F;

(2) Positivity: 〈v, v〉 ≥ 0 for all v ∈ V ;

(3) Positive definiteness: 〈v, v〉 = 0 if and only if v = 0;

(4) Conjugate symmetry: 〈u, v〉 = 〈v, u〉 for all u, v ∈ V .

Remark 9.1.2. Recall that every real number x ∈ R equals its complex conjugate.

Hence, for real vector spaces, conjugate symmetry of an inner product becomes

actual symmetry.

Definition 9.1.3. An inner product space is a vector space over F together with

an inner product 〈·, ·〉.

95
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Example 9.1.4. Let V = Fn and u = (u1, . . . , un), v = (v1, . . . , vn) ∈ Fn. Then

we can define an inner product on V by setting

〈u, v〉 =
n∑

i=1

uivi.

For F = R, this reduces to the usual dot product, i.e.,

u · v = u1v1 + · · ·+ unvn.

Example 9.1.5. Let V = F[z] be the space of polynomials with coefficients in F.

Given f, g ∈ F[z], we can define their inner product to be

〈f, g〉 =
∫ 1

0

f(z)g(z)dz,

where g(z) is the complex conjugate of the polynomial g(z).

For a fixed vector w ∈ V , one can define a map T : V → F by setting Tv = 〈v, w〉.
Note that T is linear by Condition 1 of Definition 9.1.1. This implies, in particular,

that 〈0, w〉 = 0 for every w ∈ V . By conjugate symmetry, we also have 〈w, 0〉 = 0.

Lemma 9.1.6. The inner product is anti-linear in the second slot, that is, 〈u, v +
w〉 = 〈u, v〉+ 〈u,w〉 and 〈u, av〉 = a〈u, v〉 for all u, v, w ∈ V and a ∈ F.

Proof. For additivity, note that

〈u, v + w〉 = 〈v + w, u〉 = 〈v, u〉+ 〈w, u〉
= 〈v, u〉+ 〈w, u〉 = 〈u, v〉+ 〈u,w〉.

Similarly, for anti-homogeneity, note that

〈u, av〉 = 〈av, u〉 = a〈v, u〉 = a〈v, u〉 = a〈u, v〉.

We close this section by noting that the convention in physics is often the exact

opposite of what we have defined above. In other words, an inner product in physics

is traditionally linear in the second slot and anti-linear in the first slot.

9.2 Norms

The norm of a vector in an arbitrary inner product space is the analog of the length

or magnitude of a vector in Rn. We formally define this concept as follows.

Definition 9.2.1. Let V be a vector space over F. A map

‖ · ‖ : V → R

v �→ ‖v‖
is a norm on V if the following three conditions are satisfied.
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(1) Positive definiteness: ‖v‖ = 0 if and only if v = 0;

(2) Positive homogeneity: ‖av‖ = |a| ‖v‖ for all a ∈ F and v ∈ V ;

(3) Triangle inequality: ‖v + w‖ ≤ ‖v‖+ ‖w‖ for all v, w ∈ V .

Remark 9.2.2. Note that, in fact, ‖v‖ ≥ 0 for each v ∈ V since

0 = ‖v − v‖ ≤ ‖v‖+ ‖ − v‖ = 2‖v‖.
Next we want to show that a norm can always be defined from an inner product

〈·, ·〉 via the formula

‖v‖ =
√
〈v, v〉 for all v ∈ V . (9.1)

Properties (1) and (2) follow easily from Conditions (1) and (3) of Definition 9.1.1.

The triangle inequality requires more careful proof, though, which we give in The-

orem 9.3.4 below.

If we take V = Rn, then the norm defined by the usual dot product is related to

the usual notion of length of a vector. Namely, for v = (x1, . . . , xn) ∈ Rn, we have

‖v‖ =
√

x2
1 + · · ·+ x2

n. (9.2)

We illustrate this for the case of R3 in Figure 9.1.

x2

x3

x1

v

Fig. 9.1 The length of a vector in R3 via Equation 9.2

While it is always possible to start with an inner product and use it to define

a norm, the converse does not hold in general. One can prove that a norm can be

written in terms of an inner product as in Equation (9.1) if and only if the norm

satisfies the Parallelogram Law (Theorem 9.3.6).
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9.3 Orthogonality

Using the inner product, we can now define the notion of orthogonality, prove that

the Pythagorean theorem holds in any inner product space, and use the Cauchy-

Schwarz inequality to prove the triangle inequality. In particular, this will show

that ‖v‖ =√〈v, v〉 does indeed define a norm.

Definition 9.3.1. Two vectors u, v ∈ V are orthogonal (denoted u⊥v) if 〈u, v〉 =
0.

Note that the zero vector is the only vector that is orthogonal to itself. In fact,

the zero vector is orthogonal to every vector v ∈ V .

Theorem 9.3.2 (Pythagorean Theorem). If u, v ∈ V , an inner product space, with

u⊥v, then ‖ · ‖ defined by ‖v‖ :=√〈v, v〉 obeys
‖u+ v‖2 = ‖u‖2 + ‖v‖2.

Proof. Suppose u, v ∈ V such that u⊥v. Then
‖u+ v‖2 = 〈u+ v, u+ v〉 = ‖u‖2 + ‖v‖2 + 〈u, v〉+ 〈v, u〉

= ‖u‖2 + ‖v‖2.

Note that the converse of the Pythagorean Theorem holds for real vector spaces

since, in that case, 〈u, v〉+ 〈v, u〉 = 2Re〈u, v〉 = 0.

Given two vectors u, v ∈ V with v �= 0, we can uniquely decompose u into two

pieces: one piece parallel to v and one piece orthogonal to v. This is called an

orthogonal decomposition. More precisely, we have

u = u1 + u2,

where u1 = av and u2⊥v for some scalar a ∈ F. To obtain such a decomposition,

write u2 = u− u1 = u− av. Then, for u2 to be orthogonal to v, we need

0 = 〈u− av, v〉 = 〈u, v〉 − a‖v‖2.
Solving for a yields a = 〈u, v〉/‖v‖2 so that

u =
〈u, v〉
‖v‖2 v +

(
u− 〈u, v〉‖v‖2 v

)
. (9.3)

This decomposition is particularly useful since it allows us to provide a simple

proof for the Cauchy-Schwarz inequality.

Theorem 9.3.3 (Cauchy-Schwarz Inequality). Given any u, v ∈ V , we have

|〈u, v〉| ≤ ‖u‖‖v‖.
Furthermore, equality holds if and only if u and v are linearly dependent, i.e., are

scalar multiples of each other.
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Proof. If v = 0, then both sides of the inequality are zero. Hence, assume that

v �= 0, and consider the orthogonal decomposition

u =
〈u, v〉
‖v‖2 v + w

where w⊥v. By the Pythagorean theorem, we have

‖u‖2 =

∥∥∥∥ 〈u, v〉‖v‖2 v

∥∥∥∥2 + ‖w‖2 =
|〈u, v〉|2
‖v‖2 + ‖w‖2 ≥ |〈u, v〉|2

‖v‖2 .

Multiplying both sides by ‖v‖2 and taking the square root then yields the Cauchy-

Schwarz inequality.

Note that we get equality in the above arguments if and only if w = 0. But, by

Equation (9.3), this means that u and v are linearly dependent.

The Cauchy-Schwarz inequality has many different proofs. Here is another one.

Alternate proof of Theorem 9.3.3. Given u, v ∈ V , consider the norm square of the

vector u+ reiθv:

0 ≤ ‖u+ reiθv‖2 = ‖u‖2 + r2‖v‖2 + 2Re(reiθ〈u, v〉).
Since 〈u, v〉 is a complex number, one can choose θ so that eiθ〈u, v〉 is real. Hence,

the right-hand side is a parabola ar2 + br+ c with real coefficients. It will lie above

the real axis, i.e., ar2 + br+ c ≥ 0, if it does not have any real solutions for r. This

is the case when the discriminant satisfies b2 − 4ac ≤ 0. In our case this means

4|〈u, v〉|2 − 4‖u‖2‖v‖2 ≤ 0.

Moreover, equality only holds if r can be chosen such that u + reiθv = 0, which

means that u and v are scalar multiples.

Now that we have proven the Cauchy-Schwarz inequality, we are finally able to

verify the triangle inequality. This is the final step in showing that ‖v‖ = √〈v, v〉
does indeed define a norm. We illustrate the triangle inequality in Figure 9.2.

Theorem 9.3.4 (Triangle Inequality). For all u, v ∈ V we have

‖u+ v‖ ≤ ‖u‖+ ‖v‖.

Proof. By a straightforward calculation, we obtain

‖u+ v‖2 = 〈u+ v, u+ v〉 = 〈u, u〉+ 〈v, v〉+ 〈u, v〉+ 〈v, u〉
= 〈u, u〉+ 〈v, v〉+ 〈u, v〉+ 〈u, v〉 = ‖u‖2 + ‖v‖2 + 2Re〈u, v〉.

Note that Re〈u, v〉 ≤ |〈u, v〉| so that, using the Cauchy-Schwarz inequality, we obtain
‖u+ v‖2 ≤ ‖u‖2 + ‖v‖2 + 2‖u‖‖v‖ = (‖u‖+ ‖v‖)2.

Taking the square root of both sides now gives the triangle inequality.
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v

u

u+v

u+v‘
v‘

Fig. 9.2 The triangle inequality in R2

Remark 9.3.5. Note that equality holds for the triangle inequality if and only if

v = ru or u = rv for some r ≥ 0. Namely, equality in the proof happens only

if 〈u, v〉 = ‖u‖‖v‖, which is equivalent to u and v being scalar multiples of one

another.

Theorem 9.3.6 (Parallelogram Law). Given any u, v ∈ V , we have

‖u+ v‖2 + ‖u− v‖2 = 2(‖u‖2 + ‖v‖2).

Proof. By direct calculation,

‖u+ v‖2 + ‖u− v‖2 = 〈u+ v, u+ v〉+ 〈u− v, u− v〉
= ‖u‖2 + ‖v‖2 + 〈u, v〉+ 〈v, u〉+ ‖u‖2 + ‖v‖2 − 〈u, v〉 − 〈v, u〉
= 2(‖u‖2 + ‖v‖2).

Remark 9.3.7. We illustrate the parallelogram law in Figure 9.3.

9.4 Orthonormal bases

We now define the notions of orthogonal basis and orthonormal basis for an inner

product space. As we will see later, orthonormal bases have special properties that

lead to useful simplifications in common linear algebra calculations.
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v

u

u+vu−v

h

g

Fig. 9.3 The parallelogram law in R2

Definition 9.4.1. Let V be an inner product space with inner product 〈·, ·〉. A list

of non-zero vectors (e1, . . . , em) in V is called orthogonal if

〈ei, ej〉 = 0, for all 1 ≤ i �= j ≤ m.

The list (e1, . . . , em) is called orthonormal if

〈ei, ej〉 = δi,j , for all i, j = 1, . . . ,m,

where δij is the Kronecker delta symbol. I.e., δij = 1 if i = j and is zero otherwise.

Proposition 9.4.2. Every orthogonal list of non-zero vectors in V is linearly in-

dependent.

Proof. Let (e1, . . . , em) be an orthogonal list of vectors in V , and suppose that

a1, . . . , am ∈ F are such that

a1e1 + · · ·+ amem = 0.

Then

0 = ‖a1e1 + · · ·+ amem‖2 = |a1|2‖e1‖2 + · · ·+ |am|2‖em‖2.
Note that ‖ek‖ > 0, for all k = 1, . . . ,m, since every ek is a non-zero vector. Also,

|ak|2 ≥ 0. Hence, the only solution to a1e1 + · · · + amem = 0 is a1 = · · · = am =

0.

Definition 9.4.3. An orthonormal basis of a finite-dimensional inner product

space V is a list of orthonormal vectors that is basis for V .
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Clearly, any orthonormal list of length dim(V ) is an orthonormal basis for V .

Example 9.4.4. The canonical basis for Fn is an orthonormal basis.

Example 9.4.5. The list (( 1√
2
, 1√

2
), ( 1√

2
,− 1√

2
)) is an orthonormal basis for R2.

The next theorem allows us to use inner products to find the coefficients of a

vector v ∈ V in terms of an orthonormal basis. This result highlights how much

easier it is to compute with an orthonormal basis.

Theorem 9.4.6. Let (e1, . . . , en) be an orthonormal basis for V . Then, for all

v ∈ V , we have

v = 〈v, e1〉e1 + · · ·+ 〈v, en〉en
and ‖v‖2 =

∑n
k=1 |〈v, ek〉|2.

Proof. Let v ∈ V . Since (e1, . . . , en) is a basis for V , there exist unique scalars

a1, . . . , an ∈ F such that

v = a1e1 + · · ·+ anen.

Taking the inner product of both sides with respect to ek then yields 〈v, ek〉 =

ak.

9.5 The Gram-Schmidt orthogonalization procedure

We now come to a fundamentally important algorithm, which is called the Gram-

Schmidt orthogonalization procedure. This algorithm makes it possible to

construct, for each list of linearly independent vectors (resp. basis) in an inner

product space, a corresponding orthonormal list (resp. orthonormal basis).

Theorem 9.5.1. If (v1, . . . , vm) is a list of linearly independent vectors in an inner

product space V , then there exists an orthonormal list (e1, . . . , em) such that

span(v1, . . . , vk) = span(e1, . . . , ek), for all k = 1, . . . ,m. (9.4)

Proof. The proof is constructive, that is, we will actually construct vectors

e1, . . . , em having the desired properties. Since (v1, . . . , vm) is linearly indepen-

dent, vk �= 0 for each k = 1, 2, . . . ,m. Set e1 = v1
‖v1‖ . Then e1 is a vector of norm 1

and satisfies Equation (9.4) for k = 1. Next, set

e2 =
v2 − 〈v2, e1〉e1
‖v2 − 〈v2, e1〉e1‖ .

This is, in fact, the normalized version of the orthogonal decomposition Equa-

tion (9.3). I.e.,

w = v2 − 〈v2, e1〉e1,
where w⊥e1. Note that ‖e2‖ = 1 and span(e1, e2) = span(v1, v2).
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Now, suppose that e1, . . . , ek−1 have been constructed such that (e1, . . . , ek−1)

is an orthonormal list and span(v1, . . . , vk−1) = span(e1, . . . , ek−1). Then define

ek =
vk − 〈vk, e1〉e1 − 〈vk, e2〉e2 − · · · − 〈vk, ek−1〉ek−1

‖vk − 〈vk, e1〉e1 − 〈vk, e2〉e2 − · · · − 〈vk, ek−1〉ek−1‖ .

Since (v1, . . . , vk) is linearly independent, we know that vk �∈ span(v1, . . . , vk−1).

Hence, we also know that vk �∈ span(e1, . . . , ek−1). It follows that the norm in

the definition of ek is not zero, and so ek is well-defined (i.e., we are not dividing

by zero). Note that a vector divided by its norm has norm 1 so that ‖ek‖ = 1.

Furthermore,

〈ek, ei〉 =
〈

vk − 〈vk, e1〉e1 − 〈vk, e2〉e2 − · · · − 〈vk, ek−1〉ek−1

‖vk − 〈vk, e1〉e1 − 〈vk, e2〉e2 − · · · − 〈vk, ek−1〉ek−1‖ , ei
〉

=
〈vk, ei〉 − 〈vk, ei〉

‖vk − 〈vk, e1〉e1 − 〈vk, e2〉e2 − · · · − 〈vk, ek−1〉ek−1‖ = 0,

for each 1 ≤ i < k. Hence, (e1, . . . , ek) is orthonormal.

From the definition of ek, we see that vk ∈ span(e1, . . . , ek) so that

span(v1, . . . , vk) ⊂ span(e1, . . . , ek). Since both lists (e1, . . . , ek) and (v1, . . . , vk)

are linearly independent, they must span subspaces of the same dimension and

therefore are the same subspace. Hence Equation (9.4) holds.

Example 9.5.2. Take v1 = (1, 1, 0) and v2 = (2, 1, 1) in R3. The list (v1, v2)

is linearly independent (as you should verify!). To illustrate the Gram-Schmidt

procedure, we begin by setting

e1 =
v1
‖v1‖ =

1√
2
(1, 1, 0).

Next, set

e2 =
v2 − 〈v2, e1〉e1
‖v2 − 〈v2, e1〉e1‖ .

The inner product 〈v2, e1〉 = 1√
2
〈(1, 1, 0), (2, 1, 1)〉 = 3√

2
, so

u2 = v2 − 〈v2, e1〉e1 = (2, 1, 1)− 3

2
(1, 1, 0) =

1

2
(1,−1, 2).

Calculating the norm of u2, we obtain ‖u2‖ =
√

1
4 (1 + 1 + 4) =

√
6
2 . Hence, nor-

malizing this vector, we obtain

e2 =
u2

‖u2‖ =
1√
6
(1,−1, 2).

The list (e1, e2) is therefore orthonormal and has the same span as (v1, v2).

Corollary 9.5.3. Every finite-dimensional inner product space has an orthonormal

basis.
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Proof. Let (v1, . . . , vn) be any basis for V . This list is linearly independent and

spans V . Apply the Gram-Schmidt procedure to this list to obtain an orthonormal

list (e1, . . . , en), which still spans V by construction. By Proposition 9.4.2, this list

is linearly independent and hence a basis of V .

Corollary 9.5.4. Every orthonormal list of vectors in V can be extended to an

orthonormal basis of V .

Proof. Let (e1, . . . , em) be an orthonormal list of vectors in V . By Proposi-

tion 9.4.2, this list is linearly independent and hence can be extended to a basis

(e1, . . . , em, v1, . . . , vk) of V by the Basis Extension Theorem. Now apply the Gram-

Schmidt procedure to obtain a new orthonormal basis (e1, . . . , em, f1, . . . , fk). The

first m vectors do not change since they are already orthonormal. The list still spans

V and is linearly independent by Proposition 9.4.2 and therefore forms a basis.

Recall Theorem 7.5.3: given an operator T ∈ L(V, V ) on a complex vector space

V , there exists a basis B for V such that the matrix M(T ) of T with respect to B

is upper triangular. We would like to extend this result to require the additional

property of orthonormality.

Corollary 9.5.5. Let V be an inner product space over F and T ∈ L(V, V ). If T is

upper triangular with respect to some basis, then T is upper triangular with respect

to some orthonormal basis.

Proof. Let (v1, . . . , vn) be a basis of V with respect to which T is upper triangular.

Apply the Gram-Schmidt procedure to obtain an orthonormal basis (e1, . . . , en),

and note that

span(e1, . . . , ek) = span(v1, . . . , vk), for all 1 ≤ k ≤ n.

We proved before that T is upper triangular with respect to a basis (v1, . . . , vn) if

and only if span(v1, . . . , vk) is invariant under T for each 1 ≤ k ≤ n. Since these

spans are unchanged by the Gram-Schmidt procedure, T is still upper triangular

for the corresponding orthonormal basis.

9.6 Orthogonal projections and minimization problems

Definition 9.6.1. Let V be a finite-dimensional inner product space and U ⊂ V be

a subset (but not necessarily a subspace) of V . Then the orthogonal complement

of U is defined to be the set

U⊥ = {v ∈ V | 〈u, v〉 = 0 for all u ∈ U}.
Note that, in fact, U⊥ is always a subspace of V (as you should check!) and

that

{0}⊥ = V and V ⊥ = {0}.
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In addition, if U1 and U2 are subsets of V satisfying U1 ⊂ U2, then U⊥2 ⊂ U⊥1 .

Remarkably, if U ⊂ V is a subspace of V , then we can say quite a bit more

about U⊥.

Theorem 9.6.2. If U ⊂ V is a subspace of V , then V = U ⊕ U⊥.

Proof. We need to show two things:

(1) V = U + U⊥.
(2) U ∩ U⊥ = {0}.
To show that Condition (1) holds, let (e1, . . . , em) be an orthonormal basis of U .

Then, for all v ∈ V , we can write

v = 〈v, e1〉e1 + · · ·+ 〈v, em〉em︸ ︷︷ ︸
u

+ v − 〈v, e1〉e1 − · · · − 〈v, em〉em︸ ︷︷ ︸
w

. (9.5)

The vector u ∈ U , and

〈w, ej〉 = 〈v, ej〉 − 〈v, ej〉 = 0, for all j = 1, 2, . . . ,m,

since (e1, . . . , em) is an orthonormal list of vectors. Hence, w ∈ U⊥. This implies

that V = U + U⊥.
To prove that Condition (2) also holds, let v ∈ U ∩ U⊥. Then v has to be

orthogonal to every vector in U , including to itself, and so 〈v, v〉 = 0. However, this

implies v = 0 so that U ∩ U⊥ = {0}.

Example 9.6.3. R2 is the direct sum of any two orthogonal lines, and R3 is the

direct sum of any plane and any line orthogonal to the plane (as illustrated in

Figure 9.4). For example,

R2 = {(x, 0) | x ∈ R} ⊕ {(0, y) | y ∈ R},
R3 = {(x, y, 0) | x, y ∈ R} ⊕ {(0, 0, z) | z ∈ R}.

Another fundamental fact about the orthogonal complement of a subspace is as

follows.

Theorem 9.6.4. If U ⊂ V is a subspace of V , then U = (U⊥)⊥.

Proof. First we show that U ⊂ (U⊥)⊥. Let u ∈ U . Then, for all v ∈ U⊥, we have

〈u, v〉 = 0. Hence, u ∈ (U⊥)⊥ by the definition of (U⊥)⊥.
Next we show that (U⊥)⊥ ⊂ U . Suppose 0 �= v ∈ (U⊥)⊥ such that v �∈ U , and

decompose v according to Theorem 9.6.2, i.e., as

v = u1 + u2 ∈ U ⊕ U⊥

with u1 ∈ U and u2 ∈ U⊥. Then u2 �= 0 since v �∈ U . Furthermore, 〈u2, v〉 =

〈u2, u2〉 �= 0. But then v is not in (U⊥)⊥, which contradicts our initial assumption.

Hence, we must have that (U⊥)⊥ ⊂ U .
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Fig. 9.4 R3 as a direct sum of a plane and a line, as in Example 9.6.3

By Theorem 9.6.2, we have the decomposition V = U ⊕ U⊥ for every subspace

U ⊂ V . This allows us to define the orthogonal projection PU of V onto U .

Definition 9.6.5. Let U ⊂ V be a subspace of a finite-dimensional inner product

space. Every v ∈ V can be uniquely written as v = u+w where u ∈ U and w ∈ U⊥.
Define

PU : V → V,

v �→ u.

Note that PU is called a projection operator since it satisfies P 2
U = PU . Further,

since we also have

range (PU ) = U,

null (PU ) = U⊥,

it follows that range (PU )⊥null (PU ). Therefore, PU is called an orthogonal projec-

tion.

The decomposition of a vector v ∈ V as given in Equation (9.5) yields the

formula

PUv = 〈v, e1〉e1 + · · ·+ 〈v, em〉em, (9.6)

where (e1, . . . , em) is any orthonormal basis of U . Equation (9.6) is a particularly

useful tool for computing such things as the matrix of PU with respect to the basis

(e1, . . . , em).

Let us now apply the inner product to the following minimization problem:

Given a subspace U ⊂ V and a vector v ∈ V , find the vector u ∈ U that is closest

to the vector v. In other words, we want to make ‖v− u‖ as small as possible. The
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next proposition shows that PUv is the closest point in U to the vector v and that

this minimum is, in fact, unique.

Proposition 9.6.6. Let U ⊂ V be a subspace of V and v ∈ V . Then

‖v − PUv‖ ≤ ‖v − u‖ for every u ∈ U .

Furthermore, equality holds if and only if u = PUv.

Proof. Let u ∈ U and set P := PU for short. Then

‖v − Pv‖2 ≤ ‖v − Pv‖2 + ‖Pv − u‖2
= ‖(v − Pv) + (Pv − u)‖2 = ‖v − u‖2,

where the second line follows from the Pythagorean Theorem 9.3.2 since v−Pv ∈ U⊥

and Pv − u ∈ U . Furthermore, equality holds only if ‖Pv − u‖2 = 0, which is

equivalent to Pv = u.

Example 9.6.7. Consider the plane U ⊂ R3 through 0 and perpendicular to the

vector u = (1, 1, 1). Using the standard norm on R3, we can calculate the distance

of the point v = (1, 2, 3) to U using Proposition 9.6.6. In particular, the distance

d between v and U is given by d = ‖v − PUv‖. Let ( 1√
3
u, u1, u2) be a basis for R3

such that (u1, u2) is an orthonormal basis of U . Then, by Equation (9.6), we have

v − PUv = (
1

3
〈v, u〉u+ 〈v, u1〉u1 + 〈v, u2〉u2)− (〈v, u1〉u1 + 〈v, u2〉u2)

=
1

3
〈v, u〉u

=
1

3
〈(1, 2, 3), (1, 1, 1)〉(1, 1, 1)

= (2, 2, 2).

Hence, d = ‖(2, 2, 2)‖ = 2
√
3.

Exercises for Chapter 9

Calculational Exercises

(1) Let (e1, e2, e3) be the canonical basis of R3, and define

f1 = e1 + e2 + e3

f2 = e2 + e3

f3 = e3.

(a) Apply the Gram-Schmidt process to the basis (f1, f2, f3).

(b) What do you obtain if you instead applied the Gram-Schmidt process to

the basis (f3, f2, f1)?
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(2) Let C[−π, π] = {f : [−π, π]→ R | f is continuous} denote the inner product

space of continuous real-valued functions defined on the interval [−π, π] ⊂ R,

with inner product given by

〈f, g〉 =
∫ π

−π

f(x)g(x)dx, for every f, g ∈ C[−π, π].

Then, given any positive integer n ∈ Z+, verify that the set of vectors{
1√
2π

,
sin(x)√

π
,
sin(2x)√

π
, . . . ,

sin(nx)√
π

,
cos(x)√

π
,
cos(2x)√

π
, . . . ,

cos(nx)√
π

}
is orthonormal.

(3) Let R2[x] denote the inner product space of polynomials over R having degree

at most two, with inner product given by

〈f, g〉 =
∫ 1

0

f(x)g(x)dx, for every f, g ∈ R2[x].

Apply the Gram-Schmidt procedure to the standard basis {1, x, x2} for R2[x]

in order to produce an orthonormal basis for R2[x].

(4) Let v1, v2, v3 ∈ R3 be given by v1 = (1, 2, 1), v2 = (1,−2, 1), and v3 = (1, 2,−1).
Apply the Gram-Schmidt procedure to the basis (v1, v2, v3) of R

3, and call the

resulting orthonormal basis (u1, u2, u3).

(5) Let P ⊂ R3 be the plane containing 0 perpendicular to the vector (1, 1, 1).

Using the standard norm, calculate the distance of the point (1, 2, 3) to P .

(6) Give an orthonormal basis for null(T ), where T ∈ L(C4) is the map with canon-

ical matrix ⎛
⎜⎜⎝
1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

⎞
⎟⎟⎠ .

Proof-Writing Exercises

(1) Let V be a finite-dimensional inner product space over F. Given any vectors

u, v ∈ V , prove that the following two statements are equivalent:

(a) 〈u, v〉 = 0

(b) ‖u‖ ≤ ‖u+ αv‖ for every α ∈ F.

(2) Let n ∈ Z+ be a positive integer, and let a1, . . . , an, b1, . . . , bn ∈ R be any

collection of 2n real numbers. Prove that(
n∑

k=1

akbk

)2

≤
(

n∑
k=1

ka2k

)(
n∑

k=1

b2k
k

)
.

(3) Prove or disprove the following claim:
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Claim. There is an inner product 〈· , ·〉 on R2 whose associated norm ‖ · ‖ is

given by the formula

‖(x1, x2)‖ = |x1|+ |x2|
for every vector (x1, x2) ∈ R2, where | · | denotes the absolute value function on

R.

(4) Let V be a finite-dimensional inner product space over R. Given u, v ∈ V , prove

that

〈u, v〉 = ‖u+ v‖2 − ‖u− v‖2
4

.

(5) Let V be a finite-dimensional inner product space over C. Given u, v ∈ V , prove

that

〈u, v〉 = ‖u+ v‖2 − ‖u− v‖2
4

+
‖u+ iv‖2 − ‖u− iv‖2

4
i.

(6) Let V be a finite-dimensional inner product space over F, and let U be a sub-

space of V . Prove that the orthogonal complement U⊥ of U with respect to

the inner product 〈· , ·〉 on V satisfies

dim(U⊥) = dim(V )− dim(U).

(7) Let V be a finite-dimensional inner product space over F, and let U be a sub-

space of V . Prove that U = V if and only if the orthogonal complement U⊥ of

U with respect to the inner product 〈· , ·〉 on V satisfies U⊥ = {0}.
(8) Let V be a finite-dimensional inner product space over F, and suppose that

P ∈ L(V ) is a linear operator on V having the following two properties:

(a) Given any vector v ∈ V , P (P (v)) = P (v). I.e., P 2 = P .

(b) Given any vector u ∈ null(P ) and any vector v ∈ range(P ), 〈u, v〉 = 0.

Prove that P is an orthogonal projection.

(9) Prove or give a counterexample: For any n ≥ 1 and A ∈ Cn×n, one has

null(A) = (range(A))⊥.

(10) Prove or give a counterexample: The Gram-Schmidt process applied to an

orthonormal list of vectors reproduces that list unchanged.
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Change of Bases

In Section 6.6, we saw that linear operators on an n-dimensional vector space are

in one-to-one correspondence with n × n matrices. This correspondence, however,

depends upon the choice of basis for the vector space. In this chapter we address

the question of how the matrix for a linear operator changes if we change from one

orthonormal basis to another.

10.1 Coordinate vectors

Let V be a finite-dimensional inner product space with inner product 〈·, ·〉 and

dimension dim(V ) = n. Then V has an orthonormal basis e = (e1, . . . , en), and,

according to Theorem 9.4.6, every v ∈ V can be written as

v =

n∑
i=1

〈v, ei〉ei.

This induces a map

[ · ]e : V → Fn

v �→

⎡
⎢⎣
〈v, e1〉

...

〈v, en〉

⎤
⎥⎦ ,

which maps the vector v ∈ V to the n × 1 column vector of its coordinates with

respect to the basis e. The column vector [v]e is called the coordinate vector of

v with respect to the basis e.

Example 10.1.1. Recall that the vector space R1[x] of polynomials over R of

degree at most 1 is an inner product space with inner product defined by

〈f, g〉 =
∫ 1

0

f(x)g(x)dx.

Then e = (1,
√
3(−1 + 2x)) forms an orthonormal basis for R1[x]. The coordinate

vector of the polynomial p(x) = 3x+ 2 ∈ R1[x] is, e.g.,

[p(x)]e =
1

2

[
7√
3

]
.

111
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Note also that the map [ · ]e is an isomorphism (meaning that it is an injective

and surjective linear map) and that it is also inner product preserving. Denote the

usual inner product on Fn by

〈x, y〉Fn =

n∑
k=1

xkyk.

Then

〈v, w〉V = 〈[v]e, [w]e〉Fn , for all v, w ∈ V ,

since

〈v, w〉V =

n∑
i,j=1

〈〈v, ei〉ei, 〈w, ej〉ej〉 =
n∑

i,j=1

〈v, ei〉〈w, ej〉〈ei, ej〉

=

n∑
i,j=1

〈v, ei〉〈w, ej〉δij =
n∑

i=1

〈v, ei〉〈w, ei〉 = 〈[v]e, [w]e〉Fn .

It is important to remember that the map [ · ]e depends on the choice of basis

e = (e1, . . . , en).

10.2 Change of basis transformation

Recall that we can associate a matrix A ∈ Fn×n to every operator T ∈ L(V, V ).

More precisely, the jth column of the matrix A = M(T ) with respect to a basis

e = (e1, . . . , en) is obtained by expanding Tej in terms of the basis e. If the basis

e is orthonormal, then the coefficient of ei is just the inner product of the vector

with ei. Hence,

M(T ) = (〈Tej , ei〉)1≤i,j≤n,

where i is the row index and j is the column index of the matrix.

Conversely, if A ∈ Fn×n is a matrix, then we can associate a linear operator

T ∈ L(V, V ) to A by setting

Tv =

n∑
j=1

〈v, ej〉Tej =
n∑

j=1

n∑
i=1

〈Tej , ei〉〈v, ej〉ei

=

n∑
i=1

⎛
⎝ n∑

j=1

aij〈v, ej〉
⎞
⎠ ei =

∑
i=1

(A[v]e)iei,

where (A[v]e)i denotes the ith component of the column vector A[v]e. With this

construction, we have M(T ) = A. The coefficients of Tv in the basis (e1, . . . , en)

are recorded by the column vector obtained by multiplying the n×n matrix A with

the n× 1 column vector [v]e whose components ([v]e)j = 〈v, ej〉.
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Example 10.2.1. Given

A =

[
1 −i
i 1

]
,

we can define T ∈ L(V, V ) with respect to the canonical basis as follows:

T

[
z1
z2

]
=

[
1 −i
i 1

] [
z1
z2

]
=

[
z1 − iz2
iz1 + z2

]
.

Suppose that we want to use another orthonormal basis f = (f1, . . . , fn) for V .

Then, as before, we have v =
∑n

i=1〈v, fi〉fi. Comparing this with v =
∑n

j=1〈v, ej〉ej ,
we find that

v =

n∑
i,j=1

〈〈v, ej〉ej , fi〉fi =
n∑

i=1

⎛
⎝ n∑

j=1

〈ej , fi〉〈v, ej〉
⎞
⎠ fi.

Hence,

[v]f = S[v]e,

where

S = (sij)
n
i,j=1 with sij = 〈ej , fi〉.

The jth column of S is given by the coefficients of the expansion of ej in terms of

the basis f = (f1, . . . , fn). The matrix S describes a linear map in L(Fn), which is

called the change of basis transformation.

We may also interchange the role of bases e and f . In this case, we obtain the

matrix R = (rij)
n
i,j=1, where

rij = 〈fj , ei〉.
Then, by the uniqueness of the expansion in a basis, we obtain

[v]e = R[v]f

so that

RS[v]e = [v]e, for all v ∈ V .

Since this equation is true for all [v]e ∈ Fn, it follows that either RS = I or R = S−1.

In particular, S and R are invertible. We can also check this explicitly by using the

properties of orthonormal bases. Namely,

(RS)ij =

n∑
k=1

rikskj =

n∑
k=1

〈fk, ei〉〈ej , fk〉

=
n∑

k=1

〈ej , fk〉〈ei, fk〉 = 〈[ej ]f , [ei]f 〉Fn = δij .

Matrix S (and similarly also R) has the interesting property that its columns are

orthonormal to one another. This follows from the fact that the columns are the

coordinates of orthonormal vectors with respect to another orthonormal basis. A

similar statement holds for the rows of S (and similarly also R). More information

about orthogonal matrices can be found in Appendix A.5.1, in particular Defini-

tion A.5.3.
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Example 10.2.2. Let V = C2, and choose the orthonormal bases e = (e1, e2) and

f = (f1, f2) with

e1 =

[
1

0

]
, e2 =

[
0

1

]
,

f1 =
1√
2

[
1

1

]
, f2 =

1√
2

[−1
1

]
.

Then

S =

[〈e1, f1〉 〈e2, f1〉
〈e1, f2〉 〈e2, f2〉

]
=

1√
2

[
1 1

−1 1

]
and

R =

[〈f1, e1〉 〈f2, e1〉
〈f1, e2〉 〈f2, e2〉

]
=

1√
2

[
1 −1
1 1

]
.

One can then check explicitly that indeed

RS =
1

2

[
1 −1
1 1

] [
1 1

−1 1

]
=

[
1 0

0 1

]
= I.

So far we have only discussed how the coordinate vector of a given vector v ∈ V

changes under the change of basis from e to f . The next question we can ask is

how the matrix M(T ) of an operator T ∈ L(V ) changes if we change the basis. Let

A be the matrix of T with respect to the basis e = (e1, . . . , en), and let B be the

matrix for T with respect to the basis f = (f1, . . . , fn). How do we determine B

from A? Note that

[Tv]e = A[v]e

so that

[Tv]f = S[Tv]e = SA[v]e = SAR[v]f = SAS−1[v]f .

This implies that

B = SAS−1.

Example 10.2.3. Continuing Example 10.2.2, let

A =

[
1 1

1 1

]
be the matrix of a linear operator with respect to the basis e. Then the matrix B

with respect to the basis f is given by

B = SAS−1 =
1

2

[
1 1

−1 1

] [
1 1

1 1

] [
1 −1
1 1

]
=

1

2

[
1 1

−1 1

] [
2 0

2 0

]
=

[
2 0

0 0

]
.
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Exercises for Chapter 10

Calculational Exercises

(1) Consider R3 with two orthonormal bases: the canonical basis e = (e1, e2, e3)

and the basis f = (f1, f2, f3), where

f1 =
1√
3
(1, 1, 1), f2 =

1√
6
(1,−2, 1), f3 =

1√
2
(1, 0,−1) .

Find the matrix, S, of the change of basis transformation such that

[v]f = S[v]e, for all v ∈ R3 ,

where [v]b denotes the column vector of v with respect to the basis b.

(2) Let v ∈ C4 be the vector given by v = (1, i,−1,−i). Find the matrix (with

respect to the canonical basis on C4) of the orthogonal projection P ∈ L(C4)

such that

null(P ) = {v}⊥ .

(3) Let U be the subspace of R3 that coincides with the plane through the origin

that is perpendicular to the vector n = (1, 1, 1) ∈ R3.

(a) Find an orthonormal basis for U .

(b) Find the matrix (with respect to the canonical basis on R3) of the orthog-

onal projection P ∈ L(R3) onto U , i.e., such that range(P ) = U .

(4) Let V = C4 with its standard inner product. For θ ∈ R, let

vθ =

⎛
⎜⎜⎝

1

eiθ

e2iθ

e3iθ

⎞
⎟⎟⎠ ∈ C4.

Find the canonical matrix of the orthogonal projection onto the subspace

{vθ}⊥.

Proof-Writing Exercises

(1) Let V be a finite-dimensional vector space over F with dimension n ∈ Z+, and

suppose that b = (v1, v2, . . . , vn) is a basis for V . Prove that the coordinate

vectors [v1]b, [v2]b, . . . , [vn]b with respect to b form a basis for Fn.

(2) Let V be a finite-dimensional vector space over F, and suppose that T ∈ L(V )

is a linear operator having the following property: Given any two bases b and

c for V , the matrix M(T, b) for T with respect to b is the same as the matrix

M(T, c) for T with respect to c. Prove that there exists a scalar α ∈ F such

that T = αIV , where IV denotes the identity map on V .
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Chapter 11

The Spectral Theorem for Normal Linear
Maps

In this chapter we come back to the question of when a linear operator on an inner

product space V is diagonalizable. We first introduce the notion of the adjoint

(a.k.a. hermitian conjugate) of an operator, and we then use this to define so-called

normal operators. The main result of this chapter is the Spectral Theorem, which

states that normal operators are diagonal with respect to an orthonormal basis. We

use this to show that normal operators are “unitarily diagonalizable” and generalize

this notion to finding the singular-value decomposition of an operator. In this

chapter, we will always assume F = C.

11.1 Self-adjoint or hermitian operators

Let V be a finite-dimensional inner product space over C with inner product 〈·, ·〉.
A linear operator T ∈ L(V ) is uniquely determined by the values of

〈Tv,w〉, for all v, w ∈ V .

This means, in particular, that if T, S ∈ L(V ) and

〈Tv,w〉 = 〈Sv,w〉 for all v, w ∈ V ,

then T = S. To see this, take w to be the elements of an orthonormal basis of V .

Definition 11.1.1. Given T ∈ L(V ), the adjoint (a.k.a. hermitian conjugate)

of T is defined to be the operator T ∗ ∈ L(V ) for which

〈Tv,w〉 = 〈v, T ∗w〉, for all v, w ∈ V .

Moreover, we call T self-adjoint (a.k.a. hermitian) if T = T ∗.

The uniqueness of T ∗ is clear by the previous observation.

Example 11.1.2. Let V = C3, and let T ∈ L(C3) be defined by T (z1, z2, z3) =

(2z2 + iz3, iz1, z2). Then

〈(y1, y2, y3), T ∗(z1, z2, z3)〉 = 〈T (y1, y2, y3), (z1, z2, z3)〉
= 〈(2y2 + iy3, iy1, y2), (z1, z2, z3)〉
= 2y2z1 + iy3z1 + iy1z2 + y2z3

= 〈(y1, y2, y3), (−iz2, 2z1 + z3,−iz1)〉

117



November 2, 2015 14:50 ws-book961x669 Linear Algebra: As an Introduction to Abstract Mathematics 9808-main page 118

118 Linear Algebra: As an Introduction to Abstract Mathematics

so that T ∗(z1, z2, z3) = (−iz2, 2z1 + z3,−iz1). Writing the matrix for T in terms of

the canonical basis, we see that

M(T ) =

⎡
⎣0 2 i

i 0 0

0 1 0

⎤
⎦ and M(T ∗) =

⎡
⎣ 0 −i 0
2 0 1

−i 0 0

⎤
⎦ .

Note that M(T ∗) can be obtained from M(T ) by taking the complex conjugate

of each element and then transposing. This operation is called the conjugate

transpose of M(T ), and we denote it by (M(T ))∗.

We collect several elementary properties of the adjoint operation into the follow-

ing proposition. You should provide a proof of these results for your own practice.

Proposition 11.1.3. Let S, T ∈ L(V ) and a ∈ F.

(1) (S + T )∗ = S∗ + T ∗.
(2) (aT )∗ = aT ∗.
(3) (T ∗)∗ = T .

(4) I∗ = I.

(5) (ST )∗ = T ∗S∗.
(6) M(T ∗) = M(T )∗.

When n = 1, note that the conjugate transpose of a 1 × 1 matrix A is just

the complex conjugate of its single entry. Hence, requiring A to be self-adjoint

(A = A∗) amounts to saying that this sole entry is real. Because of the transpose,

though, reality is not the same as self-adjointness when n > 1, but the analogy does

nonetheless carry over to the eigenvalues of self-adjoint operators.

Proposition 11.1.4. Every eigenvalue of a self-adjoint operator is real.

Proof. Suppose λ ∈ C is an eigenvalue of T and that 0 �= v ∈ V is a corresponding

eigenvector such that Tv = λv. Then

λ‖v‖2 = 〈λv, v〉 = 〈Tv, v〉 = 〈v, T ∗v〉
= 〈v, Tv〉 = 〈v, λv〉 = λ〈v, v〉 = λ‖v‖2.

This implies that λ = λ.

Example 11.1.5. The operator T ∈ L(V ) defined by T (v) =

[
2 1 + i

1− i 3

]
v is

self-adjoint, and it can be checked (e.g., using the characteristic polynomial) that

the eigenvalues of T are λ = 1, 4.
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11.2 Normal operators

Normal operators are those that commute with their own adjoint. As we will see,

this includes many important examples of operations.

Definition 11.2.1. We call T ∈ L(V ) normal if TT ∗ = T ∗T .

Given an arbitrary operator T ∈ L(V ), we have that TT ∗ �= T ∗T in general.

However, both TT ∗ and T ∗T are self-adjoint, and any self-adjoint operator T is

normal. We now give a different characterization for normal operators in terms of

norms.

Proposition 11.2.2. Let V be a complex inner product space, and suppose that

T ∈ L(V ) satisfies

〈Tv, v〉 = 0, for all v ∈ V .

Then T = 0.

Proof. You should be able to verify that

〈Tu,w〉 = 1

4
{〈T (u+ w), u+ w〉 − 〈T (u− w), u− w〉
+i〈T (u+ iw), u+ iw〉 − i〈T (u− iw), u− iw〉} .

Since each term on the right-hand side is of the form 〈Tv, v〉, we obtain 0 for each

u,w ∈ V . Hence T = 0.

Proposition 11.2.3. Let T ∈ L(V ). Then T is normal if and only if

‖Tv‖ = ‖T ∗v‖, for all v ∈ V .

Proof. Note that

T is normal⇐⇒ T ∗T − TT ∗ = 0

⇐⇒ 〈(T ∗T − TT ∗)v, v〉 = 0, for all v ∈ V

⇐⇒ 〈TT ∗v, v〉 = 〈T ∗Tv, v〉, for all v ∈ V

⇐⇒ ‖Tv‖2 = ‖T ∗v‖2, for all v ∈ V .

Corollary 11.2.4. Let T ∈ L(V ) be a normal operator.

(1) null (T ) = null (T ∗).
(2) If λ ∈ C is an eigenvalue of T , then λ is an eigenvalue of T ∗ with the same

eigenvector.

(3) If λ, μ ∈ C are distinct eigenvalues of T with associated eigenvectors v, w ∈ V ,

respectively, then 〈v, w〉 = 0.
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Proof. Note that Part 1 follows from Proposition 11.2.3 and the positive definiteness

of the norm.

To prove Part 2, first verify that if T is normal, then T −λI is also normal with

(T − λI)∗ = T ∗ − λI. Therefore, by Proposition 11.2.3, we have

0 = ‖(T − λI)v‖ = ‖(T − λI)∗v‖ = ‖(T ∗ − λI)v‖,
and so v is an eigenvector of T ∗ with eigenvalue λ.

Using Part 2, note that

(λ− μ)〈v, w〉 = 〈λv,w〉 − 〈v, μw〉 = 〈Tv,w〉 − 〈v, T ∗w〉 = 0.

Since λ− μ �= 0 it follows that 〈v, w〉 = 0, proving Part 3.

11.3 Normal operators and the spectral decomposition

Recall that an operator T ∈ L(V ) is diagonalizable if there exists a basis B for

V such that B consists entirely of eigenvectors for T . The nicest operators on V

are those that are diagonalizable with respect to some orthonormal basis for V . In

other words, these are the operators for which we can find an orthonormal basis for

V that consists of eigenvectors for T . The Spectral Theorem for finite-dimensional

complex inner product spaces states that this can be done precisely for normal

operators.

Theorem 11.3.1 (Spectral Theorem). Let V be a finite-dimensional inner product

space over C and T ∈ L(V ). Then T is normal if and only if there exists an

orthonormal basis for V consisting of eigenvectors for T .

Proof.

(“=⇒”) Suppose that T is normal. Combining Theorem 7.5.3 and Corollary 9.5.5,

there exists an orthonormal basis e = (e1, . . . , en) for which the matrix M(T ) is

upper triangular, i.e.,

M(T ) =

⎡
⎢⎣
a11 · · · a1n

. . .
...

0 ann

⎤
⎥⎦ .

We will show that M(T ) is, in fact, diagonal, which implies that the basis elements

e1, . . . , en are eigenvectors of T .

Since M(T ) = (aij)
n
i,j=1 with aij = 0 for i > j, we have Te1 = a11e1 and

T ∗e1 =
∑n

k=1 a1kek. Thus, by the Pythagorean Theorem and Proposition 11.2.3,

|a11|2 = ‖a11e1‖2 = ‖Te1‖2 = ‖T ∗e1‖2 = ‖
n∑

k=1

a1kek‖2 =

n∑
k=1

|a1k|2,

from which it follows that |a12| = · · · = |a1n| = 0. Repeating this argument,

‖Tej‖2 = |ajj |2 and ‖T ∗ej‖2 =
∑n

k=j |ajk|2 so that aij = 0 for all 2 ≤ i < j ≤ n.
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Hence, T is diagonal with respect to the basis e, and e1, . . . , en are eigenvectors of

T .

(“⇐=”) Suppose there exists an orthonormal basis (e1, . . . , en) for V that consists

of eigenvectors for T . Then the matrix M(T ) with respect to this basis is diagonal.

Moreover, M(T ∗) = M(T )∗ with respect to this basis must also be a diagonal

matrix. It follows that TT ∗ = T ∗T since their corresponding matrices commute:

M(TT ∗) = M(T )M(T ∗) = M(T ∗)M(T ) = M(T ∗T ).

The following corollary is the best possible decomposition of a complex vector

space V into subspaces that are invariant under a normal operator T . On each

subspace null (T −λiI), the operator T acts just like multiplication by scalar λi. In

other words,

T |null (T−λiI) = λiInull (T−λiI).

Corollary 11.3.2. Let T ∈ L(V ) be a normal operator, and denote by λ1, . . . , λm

the distinct eigenvalues of T .

(1) V = null (T − λ1I)⊕ · · · ⊕ null (T − λmI).

(2) If i �= j, then null (T − λiI)⊥null (T − λjI).

As we will see in the next section, we can use Corollary 11.3.2 to decompose the

canonical matrix for a normal operator into a so-called “unitary diagonalization”.

11.4 Applications of the Spectral Theorem: diagonalization

Let e = (e1, . . . , en) be a basis for an n-dimensional vector space V , and let T ∈
L(V ). In this section we denote the matrix M(T ) of T with respect to basis e by

[T ]e. This is done to emphasize the dependency on the basis e. In other words, we

have that

[Tv]e = [T ]e[v]e, for all v ∈ V ,

where

[v]e =

⎡
⎢⎣
v1
...

vn

⎤
⎥⎦

is the coordinate vector for v = v1e1 + · · ·+ vnen with vi ∈ F.

The operator T is diagonalizable if there exists a basis e such that [T ]e is diag-

onal, i.e., if there exist λ1, . . . , λn ∈ F such that

[T ]e =

⎡
⎢⎣
λ1 0

. . .

0 λn

⎤
⎥⎦ .
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The scalars λ1, . . . , λn are necessarily eigenvalues of T , and e1, . . . , en are the cor-

responding eigenvectors. We summarize this in the following proposition.

Proposition 11.4.1. T ∈ L(V ) is diagonalizable if and only if there exists a basis

(e1, . . . , en) consisting entirely of eigenvectors of T .

We can reformulate this proposition using the change of basis transformations as

follows. Suppose that e and f are bases of V such that [T ]e is diagonal, and let S be

the change of basis transformation such that [v]e = S[v]f . Then S[T ]fS
−1 = [T ]e

is diagonal.

Proposition 11.4.2. T ∈ L(V ) is diagonalizable if and only if there exists an

invertible matrix S ∈ Fn×n such that

S[T ]fS
−1 =

⎡
⎢⎣
λ1 0

. . .

0 λn

⎤
⎥⎦ ,

where [T ]f is the matrix for T with respect to a given arbitrary basis f = (f1, . . . , fn).

On the other hand, the Spectral Theorem tells us that T is diagonalizable with

respect to an orthonormal basis if and only if T is normal. Recall that

[T ∗]f = [T ]∗f

for any orthonormal basis f of V . As before,

A∗ = (aji)
n
ij=1, for A = (aij)

n
i,j=1,

is the conjugate transpose of the matrix A. When F = R, note that A∗ = AT is

just the transpose of the matrix, where AT = (aji)
n
i,j=1.

The change of basis transformation between two orthonormal bases is called

unitary in the complex case and orthogonal in the real case. Let e = (e1, . . . , en)

and f = (f1, . . . , fn) be two orthonormal bases of V , and let U be the change of

basis matrix such that [v]f = U [v]e, for all v ∈ V . Then

〈ei, ej〉 = δij = 〈fi, fj〉 = 〈Uei, Uej〉.
Since this holds for the basis e, it follows that U is unitary if and only if

〈Uv, Uw〉 = 〈v, w〉 for all v, w ∈ V . (11.1)

This means that unitary matrices preserve the inner product. Operators that pre-

serve the inner product are often also called isometries. Orthogonal matrices also

define isometries.

By the definition of the adjoint, 〈Uv, Uw〉 = 〈v, U∗Uw〉, and so Equation (11.1)

implies that isometries are characterized by the property

U∗U = I, for the unitary case,

OTO = I, for the orthogonal case.
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The equation U∗U = I implies that U−1 = U∗. For finite-dimensional inner product

spaces, the left inverse of an operator is also the right inverse, and so

UU∗ = I if and only if U∗U = I,

OOT = I if and only if OTO = I.
(11.2)

It is easy to see that the columns of a unitary matrix are the coefficients of the

elements of an orthonormal basis with respect to another orthonormal basis. There-

fore, the columns are orthonormal vectors in Cn (or in Rn in the real case). By

Condition (11.2), this is also true for the rows of the matrix.

The Spectral Theorem tells us that T ∈ L(V ) is normal if and only if [T ]e is

diagonal with respect to an orthonormal basis e for V , i.e., if there exists a unitary

matrix U such that

UTU∗ =

⎡
⎢⎣
λ1 0

. . .

0 λn

⎤
⎥⎦ .

Conversely, if a unitary matrix U exists such that UTU∗ = D is diagonal, then

TT ∗ − T ∗T = U∗(DD −DD)U = 0

since diagonal matrices commute, and hence T is normal.

Let us summarize some of the definitions that we have seen in this section.

Definition 11.4.3. Given a square matrix A ∈ Fn×n, we call

(1) symmetric if A = AT .

(2) Hermitian if A = A∗.
(3) orthogonal if AAT = I.

(4) unitary if AA∗ = I.

Note that every type of matrix in Definition 11.4.3 is an example of a normal

operator. An example of a normal operator N that is neither Hermitian nor unitary

is

N = i

[−1 −1
−1 1

]
.

You can easily verify that NN∗ = N∗N and that iN is symmetric (not Hermitian).

Example 11.4.4. Consider the matrix

A =

[
2 1 + i

1− i 3

]
from Example 11.1.5. To unitarily diagonalize A, we need to find a unitary matrix

U and a diagonal matrix D such that A = UDU−1. To do this, we need to first

find a basis for C2 that consists entirely of orthonormal eigenvectors for the linear

map T ∈ L(C2) defined by Tv = Av, for all v ∈ C2.
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To find such an orthonormal basis, we start by finding the eigenspaces of T . We

already determined that the eigenvalues of T are λ1 = 1 and λ2 = 4, so D =

[
1 0

0 4

]
.

It follows that

C2 = null (T − I)⊕ null (T − 4I)

= span((−1− i, 1))⊕ span((1 + i, 2)).

Now apply the Gram-Schmidt procedure to each eigenspace in order to obtain the

columns of U . Here,

A = UDU−1 =

[−1−i√
3

1+i√
6

1√
3

2√
6

] [
1 0

0 4

] [−1−i√
3

1+i√
6

1√
3

2√
6

]−1

=

[−1−i√
3

1+i√
6

1√
3

2√
6

] [
1 0

0 4

] [−1+i√
3

1√
3

1−i√
6

2√
6

]
.

As an application, note that such diagonal decomposition allows us to easily

compute powers and the exponential of matrices. Namely, if A = UDU−1 with D

diagonal, then we have

An = (UDU−1)n = UDnU−1,

exp(A) =

∞∑
k=0

1

k!
Ak = U

( ∞∑
k=0

1

k!
Dk

)
U−1 = U exp(D)U−1.

Example 11.4.5. Continuing Example 11.4.4,

A2 = (UDU−1)2 = UD2U−1 = U

[
1 0

0 16

]
U∗ =

[
6 5 + 5i

5− 5i 11

]
,

An = (UDU−1)n = UDnU−1 = U

[
1 0

0 22n

]
U∗ =

[
2
3 (1 + 2n−1) 1+i

3 (−1 + 22n)
1−i
3 (−1 + 22n) 1

3 (1 + 22n+1)

]
,

exp(A) = U exp(D)U−1 = U

[
e 0

0 e4

]
U−1 =

1

3

[
2e+ e4 e4 − e+ i(e4 − e)

e4 − e+ i(e− e4) e+ 2e4

]
.

11.5 Positive operators

Recall that self-adjoint operators are the operator analog for real numbers. Let us

now define the operator analog for positive (or, more precisely, non-negative) real

numbers.

Definition 11.5.1. An operator T ∈ L(V ) is called positive (denoted T ≥ 0) if

T = T ∗ and 〈Tv, v〉 ≥ 0 for all v ∈ V .

(If V is a complex vector space, then the condition of self-adjointness follows

from the condition 〈Tv, v〉 ≥ 0 and hence can be dropped.)
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Example 11.5.2. Note that, for all T ∈ L(V ), we have T ∗T ≥ 0 since T ∗T is

self-adjoint and 〈T ∗Tv, v〉 = 〈Tv, Tv〉 ≥ 0.

Example 11.5.3. Let U ⊂ V be a subspace of V and PU be the orthogonal

projection onto U . Then PU ≥ 0. To see this, write V = U ⊕ U⊥ and v = uv + u⊥v
for each v ∈ V , where uv ∈ U and u⊥v ∈ U⊥. Then 〈PUv, w〉 = 〈uv, uw + u⊥w〉 =
〈uv, uw〉 = 〈uv + u⊥v , uw〉 = 〈v, PUw〉 so that P ∗U = PU . Also, setting v = w in the

above string of equations, we obtain 〈PUv, v〉 = 〈uv, uv〉 ≥ 0, for all v ∈ V . Hence,

PU ≥ 0.

If λ is an eigenvalue of a positive operator T and v ∈ V is an associated eigen-

vector, then 〈Tv, v〉 = 〈λv, v〉 = λ〈v, v〉 ≥ 0. Since 〈v, v〉 ≥ 0 for all vectors v ∈ V ,

it follows that λ ≥ 0. This fact can be used to define
√
T by setting

√
Tei =

√
λiei,

where λi are the eigenvalues of T with respect to the orthonormal basis e =

(e1, . . . , en). We know that these exist by the Spectral Theorem.

11.6 Polar decomposition

Continuing the analogy between C and L(V ), recall the polar form of a complex

number z = |z|eiθ, where |z| is the absolute value or modulus of z and eiθ lies on

the unit circle in R2. In terms of an operator T ∈ L(V ), where V is a complex inner

product space, a unitary operator U takes the role of eiθ, and |T | takes the role of

the modulus. As in Section 11.5, T ∗T ≥ 0 so that |T | := √T ∗T exists and satisfies

|T | ≥ 0 as well.

Theorem 11.6.1. For each T ∈ L(V ), there exists a unitary U such that

T = U |T |.
This is called the polar decomposition of T .

Sketch of proof. We start by noting that

‖Tv‖2 = ‖ |T | v‖2,
since 〈Tv, Tv〉 = 〈v, T ∗Tv〉 = 〈√T ∗Tv,

√
T ∗Tv〉. This implies that null (T ) =

null (|T |). By the Dimension Formula, this also means that dim(range (T )) =

dim(range (|T |)). Moreover, we can define an isometry S : range (|T |) → range (T )

by setting

S(|T |v) = Tv.

The trick is now to define a unitary operator U on all of V such that the restriction

of U onto the range of |T | is S, i.e.,
U |range (|T |) = S.
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Note that null (|T |)⊥range (|T |), i.e., for v ∈ null (|T |) and w = |T |u ∈ range (|T |),
〈w, v〉 = 〈|T |u, v〉 = 〈u, |T |v〉 = 〈u, 0〉 = 0

since |T | is self-adjoint.
Pick an orthonormal basis e = (e1, . . . , em) of null (|T |) and an orthonormal basis

f = (f1, . . . , fm) of (range (T ))⊥. Set S̃ei = fi, and extend S̃ to all of null (|T |)
by linearity. Since null (|T |)⊥range (|T |), any v ∈ V can be uniquely written as

v = v1 + v2, where v1 ∈ null (|T |) and v2 ∈ range (|T |). Now define U : V → V by

setting Uv = S̃v1 + Sv2. Then U is an isometry. Moreover, U is also unitary, as

shown by the following calculation application of the Pythagorean theorem:

‖Uv‖2 = ‖S̃v1 + Sv2‖2 = ‖S̃v1‖2 + ‖Sv2‖2
= ‖v1‖2 + ‖v2‖2 = ‖v‖2.

Also, note that U |T | = T by construction since U |null (|T |) is irrelevant.

11.7 Singular-value decomposition

The singular-value decomposition generalizes the notion of diagonalization. To

unitarily diagonalize T ∈ L(V ) means to find an orthonormal basis e such that

T is diagonal with respect to this basis, i.e.,

M(T ; e, e) = [T ]e =

⎡
⎢⎣
λ1 0

. . .

0 λn

⎤
⎥⎦ ,

where the notation M(T ; e, e) indicates that the basis e is used both for the domain

and codomain of T . The Spectral Theorem tells us that unitary diagonalization can

only be done for normal operators. In general, we can find two orthonormal bases

e and f such that

M(T ; e, f) =

⎡
⎢⎣
s1 0

. . .

0 sn

⎤
⎥⎦ ,

which means that Tei = sifi even if T is not normal. The scalars si are called

singular values of T . If T is diagonalizable, then these are the absolute values of

the eigenvalues.

Theorem 11.7.1. All T ∈ L(V ) have a singular-value decomposition. That is,

there exist orthonormal bases e = (e1, . . . , en) and f = (f1, . . . , fn) such that

Tv = s1〈v, e1〉f1 + · · ·+ sn〈v, en〉fn,
where si are the singular values of T .
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Proof. Since |T | ≥ 0, it is also self-adjoint. Thus, by the Spectral Theorem, there

is an orthonormal basis e = (e1, . . . , en) for V such that |T |ei = siei. Let U be

the unitary matrix in the polar decomposition of T . Since e is orthonormal, we can

write any vector v ∈ V as

v = 〈v, e1〉e1 + · · ·+ 〈v, en〉en,
and hence

Tv = U |T |v = s1〈v, e1〉Ue1 + · · ·+ sn〈v, en〉Uen.

Now set fi = Uei for all 1 ≤ i ≤ n. Since U is unitary, (f1, . . . , fn) is also an

orthonormal basis, proving the theorem.

Exercises for Chapter 11

Calculational Exercises

(1) Consider R3 with two orthonormal bases: the canonical basis e = (e1, e2, e3)

and the basis f = (f1, f2, f3), where

f1 =
1√
3
(1, 1, 1), f2 =

1√
6
(1,−2, 1), f3 =

1√
2
(1, 0,−1) .

Find the canonical matrix, A, of the linear map T ∈ L(R3) with eigenvectors

f1, f2, f3 and eigenvalues 1, 1/2,−1/2, respectively.
(2) For each of the following matrices, verify that A is Hermitian by showing that

A = A∗, find a unitary matrix U such that U−1AU is a diagonal matrix, and

compute exp(A).

(a) A =

[
4 1− i

1 + i 5

]
(b) A =

[
3 −i
i 3

]
(c) A =

[
6 2 + 2i

2− 2i 4

]

(d) A =

[
0 3 + i

3− i −3
]

(e) A =

⎡
⎣ 5 0 0

0 −1 −1 + i

0 −1− i 0

⎤
⎦ (f) A =

⎡
⎢⎢⎣

2 i√
2
−i√
2

−i√
2

2 0

i√
2

0 2

⎤
⎥⎥⎦

(3) For each of the following matrices, either find a matrix P (not necessarily uni-

tary) such that P−1AP is a diagonal matrix, or show why no such matrix exists.

(a) A =

⎡
⎣ 19 −9 −625 −11 −9
17 −9 −4

⎤
⎦ (b) A =

⎡
⎣−1 4 −2
−3 4 0

−3 1 3

⎤
⎦ (c) A =

⎡
⎣ 5 0 0

1 5 0

0 1 5

⎤
⎦

(d) A =

⎡
⎣ 0 0 0

0 0 0

3 0 1

⎤
⎦ (e) A =

⎡
⎣−i 1 1

−i 1 1

−i 1 1

⎤
⎦ (f) A =

⎡
⎣ 0 0 i

4 0 i

0 0 i

⎤
⎦
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(4) Let r ∈ R and let T ∈ L(C2) be the linear map with canonical matrix

T =

(
1 −1
−1 r

)
.

(a) Find the eigenvalues of T .

(b) Find an orthonormal basis of C2 consisting of eigenvectors of T .

(c) Find a unitary matrix U such that UTU∗ is diagonal.

(5) Let A be the complex matrix given by:

A =

⎡
⎣ 5 0 0

0 −1 −1 + i

0 −1− i 0

⎤
⎦

(a) Find the eigenvalues of A.

(b) Find an orthonormal basis of eigenvectors of A.

(c) Calculate |A| = √A∗A.

(d) Calculate eA.

(6) Let θ ∈ R, and let T ∈ L(C2) have canonical matrix

M(T ) =

(
1 eiθ

e−iθ −1
)

.

(a) Find the eigenvalues of T .

(b) Find an orthonormal basis for C2 that consists of eigenvectors for T .

Proof-Writing Exercises

(1) Prove or give a counterexample: The product of any two self-adjoint operators

on a finite-dimensional vector space is self-adjoint.

(2) Prove or give a counterexample: Every unitary matrix is invertible.

(3) Let V be a finite-dimensional vector space over F, and suppose that T ∈ L(V )

satisfies T 2 = T . Prove that T is an orthogonal projection if and only if T is

self-adjoint.

(4) Let V be a finite-dimensional inner product space over C, and suppose that

T ∈ L(V ) has the property that T ∗ = −T . (We call T a skew Hermitian

operator on V .)

(a) Prove that the operator iT ∈ L(V ) defined by (iT )(v) = i(T (v)), for each

v ∈ V , is Hermitian.

(b) Prove that the canonical matrix for T can be unitarily diagonalized.

(c) Prove that T has purely imaginary eigenvalues.

(5) Let V be a finite-dimensional vector space over F, and suppose that S, T ∈ L(V )

are positive operators on V . Prove that S + T is also a positive operator on T .

(6) Let V be a finite-dimensional vector space over F, and let T ∈ L(V ) be any

operator on V . Prove that T is invertible if and only if 0 is not a singular value

of T .
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Appendix A

Supplementary Notes on Matrices and
Linear Systems

As discussed in Chapter 1, there are many ways in which you might try to solve a sys-

tem of linear equation involving a finite number of variables. These supplementary

notes are intended to illustrate the use of Linear Algebra in solving such systems.

In particular, any arbitrary number of equations in any number of unknowns — as

long as both are finite — can be encoded as a single matrix equation. As you

will see, this has many computational advantages, but, perhaps more importantly,

it also allows us to better understand linear systems abstractly. Specifically, by

exploiting the deep connection between matrices and so-called linear maps, one can

completely determine all possible solutions to any linear system.

These notes are also intended to provide a self-contained introduction to matrices

and important matrix operations. As you read the sections below, remember that

a matrix is, in general, nothing more than a rectangular array of real or complex

numbers. Matrices are not linear maps. Instead, a matrix can (and will often) be

used to define a linear map.

A.1 From linear systems to matrix equations

We begin this section by reviewing the definition of and notation for matrices. We

then review several different conventions for denoting and studying systems of linear

equations. This point of view has a long history of exploration, and numerous

computational devices — including several computer programming languages —

have been developed and optimized specifically for analyzing matrix equations.

129
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A.1.1 Definition of and notation for matrices

Let m,n ∈ Z+ be positive integers, and, as usual, let F denote either R or C. Then

we begin by defining an m× n matrix A to be a rectangular array of numbers

A = (aij)
m,n
i,j=1 = (A(i,j))m,n

i,j=1 =

⎡
⎢⎣
a11 · · · a1n
...

. . .
...

am1 · · · amn

⎤
⎥⎦
⎫⎪⎬
⎪⎭m numbers

︸ ︷︷ ︸
n numbers

where each element aij ∈ F in the array is called an entry of A (specifically, aij
is called the “i, j entry”). We say that i indexes the rows of A as it ranges over

the set {1, . . . ,m} and that j indexes the columns of A as it ranges over the set

{1, . . . , n}. We also say that the matrix A has size m × n and note that it is a

(finite) sequence of doubly-subscripted numbers for which the two subscripts in no

way depend upon each other.

Definition A.1.1. Given positive integers m,n ∈ Z+, we use Fm×n to denote the

set of all m× n matrices having entries in F.

Example A.1.2. The matrix A =

[
1 0 2

−1 3 i

]
∈ C2×3, but A /∈ R2×3 since the “2, 3”

entry of A is not in R.

Given the ubiquity of matrices in both abstract and applied mathematics, a

rich vocabulary has been developed for describing various properties and features

of matrices. In addition, there is also a rich set of equivalent notations. For the

purposes of these notes, we will use the above notation unless the size of the matrix

is understood from the context or is unimportant. In this case, we will drop much

of this notation and denote a matrix simply as

A = (aij) or A = (aij)m×n.

To get a sense of the essential vocabulary, suppose that we have an m × n

matrix A = (aij) with m = n. Then we call A a square matrix. The elements

a11, a22, . . . , ann in a square matrix form the main diagonal of A, and the elements

a1n, a2,n−1, . . . , an1 form what is sometimes called the skew main diagonal of A.

Entries not on the main diagonal are also often called off-diagonal entries, and a

matrix whose off-diagonal entries are all zero is called a diagonal matrix. It is

common to call a12, a23, . . . , an−1,n the superdiagonal of A and a21, a32, . . . , an,n−1

the subdiagonal of A. The motivation for this terminology should be clear if

you create a sample square matrix and trace the entries within these particular

subsequences of the matrix.

Square matrices are important because they are fundamental to applications of

Linear Algebra. In particular, virtually every use of Linear Algebra either involves

square matrices directly or employs them in some indirect manner. In addition,
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virtually every usage also involves the notion of vector, by which we mean here

either an m× 1 matrix (a.k.a. a row vector) or a 1× n matrix (a.k.a. a column

vector).

Example A.1.3. Suppose that A = (aij), B = (bij), C = (cij), D = (dij), and

E = (eij) are the following matrices over F:

A =

⎡
⎣ 3

−1
1

⎤
⎦, B =

[
4 −1
0 2

]
, C =

[
1, 4, 2

]
, D =

⎡
⎣ 1 5 2

−1 0 1

3 2 4

⎤
⎦, E =

⎡
⎣ 6 1 3

−1 1 2

4 1 3

⎤
⎦.

Then we say that A is a 3× 1 matrix (a.k.a. a column vector), B is a 2× 2 square

matrix, C is a 1 × 3 matrix (a.k.a. a row vector), and both D and E are square

3× 3 matrices. Moreover, only B is an upper-triangular matrix (as defined below),

and none of the matrices in this example are diagonal matrices.

We can discuss individual entries in each matrix. E.g.,

• the 2nd row of D is d21 = −1, d22 = 0, and d23 = 1.

• the main diagonal of D is the sequence d11 = 1, d22 = 0, d33 = 4.

• the skew main diagonal of D is the sequence d13 = 2, d22 = 0, d31 = 3.

• the off-diagonal entries of D are (by row) d12, d13, d21, d23, d31, and d32.

• the 2nd column of E is e12 = e22 = e32 = 1.

• the superdiagonal of E is the sequence e12 = 1, e23 = 2.

• the subdiagonal of E is the sequence e21 = −1, e32 = 1.

A square matrix A = (aij) ∈ Fn×n is called upper triangular (resp. lower

triangular) if aij = 0 for each pair of integers i, j ∈ {1, . . . , n} such that i > j

(resp. i < j). In other words, A is triangular if it has the form⎡
⎢⎢⎢⎢⎢⎣

a11 a12 a13 · · · a1n
0 a22 a23 · · · a2n
0 0 a33 · · · a3n
...

...
...

. . .
...

0 0 0 · · · ann

⎤
⎥⎥⎥⎥⎥⎦ or

⎡
⎢⎢⎢⎢⎢⎣

a11 0 0 · · · 0

a21 a22 0 · · · 0

a31 a32 a33 · · · 0
...

...
...

. . .
...

an1 an2 an3 · · · ann

⎤
⎥⎥⎥⎥⎥⎦ .

Note that a diagonal matrix is simultaneously both an upper triangular matrix and

a lower triangular matrix.

Two particularly important examples of diagonal matrices are defined as follows:

Given any positive integer n ∈ Z+, we can construct the identity matrix In and

the zero matrix 0n×n by setting

In =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0 0

0 1 0 · · · 0 0

0 0 1 · · · 0 0
...
...
...
. . .

...
...

0 0 0 · · · 1 0

0 0 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and 0n×n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 0

0 0 0 · · · 0 0

0 0 0 · · · 0 0
...
...
...
. . .

...
...

0 0 0 · · · 0 0

0 0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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where each of these matrices is understood to be a square matrix of size n×n. The

zero matrix 0m×n is analogously defined for any m,n ∈ Z+ and has size m×n. I.e.,

0m×n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 0

0 0 0 · · · 0 0

0 0 0 · · · 0 0
...
...
...
. . .

...
...

0 0 0 · · · 0 0

0 0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

m rows

︸ ︷︷ ︸
n columns

A.1.2 Using matrices to encode linear systems

Let m,n ∈ Z+ be positive integers. Then a system of m linear equations in n

unknowns x1, . . . , xn looks like

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = b2

a31x1 + a32x2 + a33x3 + · · ·+ a3nxn = b3

...

am1x1 + am2x2 + am3x3 + · · ·+ amnxn = bm

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (A.1)

where each aij , bi ∈ F is a scalar for i = 1, 2, . . . ,m and j = 1, 2, . . . , n. In other

words, each scalar b1, . . . , bm ∈ F is being written as a linear combination of the

unknowns x1, . . . , xn using coefficients from the field F. To solve System (A.1)

means to describe the set of all possible values for x1, . . . , xn (when thought of

as scalars in F) such that each of the m equations in System (A.1) is satisfied

simultaneously.

Rather than dealing directly with a given linear system, it is often convenient to

first encode the system using less cumbersome notation. Specifically, System (A.1)

can be summarized using exactly three matrices. First, we collect the coefficients

from each equation into the m × n matrix A = (aij) ∈ Fm×n, which we call the

coefficient matrix for the linear system. Similarly, we assemble the unknowns

x1, x2, . . . , xn into an n× 1 column vector x = (xi) ∈ Fn, and the right-hand sides

b1, b2, . . . , bm of the equation are used to form an m×1 column vector b = (bi) ∈ Fm.

In other words,

A =

⎡
⎢⎢⎢⎣
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn

⎤
⎥⎥⎥⎦ , x =

⎡
⎢⎢⎢⎣
x1

x2

...

xn

⎤
⎥⎥⎥⎦ , and b =

⎡
⎢⎢⎢⎣
b1
b2
...

bm

⎤
⎥⎥⎥⎦ .
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Then the left-hand side of the ith equation in System (A.1) can be recovered by

taking the dot product (a.k.a. Euclidean inner product) of x with the ith row

in A: [
ai1 ai2 · · · ain

] · x =

n∑
j=1

aijxj = ai1x1 + ai2x2 + ai3x3 + · · ·+ ainxn.

In general, we can extend the dot product between two vectors in order to form

the product of any two matrices (as in Section A.2.2). For the purposes of this

section, though, it suffices to define the product of the matrix A ∈ Fm×n and the

vector x ∈ Fn to be

Ax =

⎡
⎢⎢⎢⎣
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
x1

x2

...

xn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

a11x1 + a12x2 + · · ·+ a1nxn

a21x1 + a22x2 + · · ·+ a2nxn

...

am1x1 + am2x2 + · · ·+ amnxn

⎤
⎥⎥⎥⎦ . (A.2)

Then, since each entry in the resulting m× 1 column vector Ax ∈ Fm corresponds

exactly to the left-hand side of each equation in System (A.1), we have effectively

encoded System (A.1) as the single matrix equation

Ax =

⎡
⎢⎢⎢⎣

a11x1 + a12x2 + · · ·+ a1nxn

a21x1 + a22x2 + · · ·+ a2nxn

...

am1x1 + am2x2 + · · ·+ amnxn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎣
b1
...

bm

⎤
⎥⎦ = b. (A.3)

Example A.1.4. The linear system

x1 + 6x2 + 4x5 − 2x6 = 14

x3 + 3x5 + x6 = −3
x4 + 5x5 + 2x6 = 11

⎫⎬
⎭

has three equations and involves the six variables x1, x2, . . . , x6. One can check that

possible solutions to this system include⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x6

x6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

14

0

−3
11

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x6

x6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

6

1

−9
−5
2

3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Note that, in describing these solutions, we have used the six unknowns

x1, x2, . . . , x6 to form the 6 × 1 column vector x = (xi) ∈ F6. We can similarly

form the coefficient matrix A ∈ F3×6 and the 3× 1 column vector b ∈ F3, where

A =

⎡
⎣1 6 0 0 4 −2
0 0 1 0 3 1

0 0 0 1 5 2

⎤
⎦ and

⎡
⎣b1b2
b3

⎤
⎦ =

⎡
⎣14−3
11

⎤
⎦ .

You should check that, given these matrices, each of the solutions given above

satisfies Equation (A.3).
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We close this section by mentioning another common convention for encoding

linear systems. Specifically, rather than attempting to solve Equation (A.1) di-

rectly, one can instead look at the equivalent problem of describing all coefficients

x1, . . . , xn ∈ F for which the following vector equation is satisfied:

x1

⎡
⎢⎢⎢⎢⎢⎣

a11
a21
a31
...

am1

⎤
⎥⎥⎥⎥⎥⎦+ x2

⎡
⎢⎢⎢⎢⎢⎣

a12
a22
a32
...

am2

⎤
⎥⎥⎥⎥⎥⎦+ x3

⎡
⎢⎢⎢⎢⎢⎣

a13
a23
a33
...

am3

⎤
⎥⎥⎥⎥⎥⎦+ · · ·+ xn

⎡
⎢⎢⎢⎢⎢⎣

a1n
a2n
a3n
...

amn

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

b1
b2
b3
...

bm

⎤
⎥⎥⎥⎥⎥⎦ . (A.4)

This approach emphasizes analysis of the so-called column vectors A(·,j) (j =

1, . . . , n) of the coefficient matrix A in the matrix equation Ax = b. (See in Sec-

tion A.2 for more details about how Equation (A.4) is formed.) Conversely, it is

also common to directly encounter Equation (A.4) when studying certain questions

about vectors in Fn.

It is important to note that System (A.1) differs from Equations (A.3) and (A.4)

only in terms of notation. The common aspect of these different representations is

that the left-hand side of each equation in System (A.1) is a linear sum. Because of

this, it is also common to rewrite System (A.1) using more compact notation such

as

n∑
k=1

a1kxk = b1,

n∑
k=1

a2kxk = b2,

n∑
k=1

a3kxk = b3, . . . ,

n∑
k=1

amkxk = bm.

A.2 Matrix arithmetic

In this section, we examine algebraic properties of the set Fm×n (where m,n ∈ Z+).

Specifically, Fm×n forms a vector space under the operations of component-wise

addition and scalar multiplication, and it is isomorphic to Fmn as a vector space.

We also define a multiplication operation between matrices of compatible size

and show that this multiplication operation interacts with the vector space structure

on Fm×n in a natural way. In particular, Fn×n forms an algebra over F with respect

to these operations. (See Section C.3 for the definition of an algebra.)

A.2.1 Addition and scalar multiplication

Let A = (aij) and B = (bij) be m× n matrices over F (where m,n ∈ Z+), and let

α ∈ F. Then matrix addition A+B = ((a+b)ij)m×n and scalar multiplication

αA = ((αa)ij)m×n are both defined component-wise, meaning

(a+ b)ij = aij + bij and (αa)ij = αaij .
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Equivalently, A+B is the m× n matrix given by⎡
⎢⎣
a11 · · · a1n
...

. . .
...

am1 · · · amn

⎤
⎥⎦+

⎡
⎢⎣
b11 · · · b1n
...

. . .
...

bm1 · · · bmn

⎤
⎥⎦ =

⎡
⎢⎣
a11 + b11 · · · a1n + b1n

...
. . .

...

am1 + bm1 · · · amn + bmn

⎤
⎥⎦ ,

and αA is the m× n matrix given by

α

⎡
⎢⎣
a11 · · · a1n
...

. . .
...

am1 · · · amn

⎤
⎥⎦ =

⎡
⎢⎣
αa11 · · · αa1n
...

. . .
...

αam1 · · · αamn

⎤
⎥⎦ .

Example A.2.1. With notation as in Example A.1.3,

D + E =

⎡
⎣ 7 6 5

−2 1 3

7 3 7

⎤
⎦ ,

and no two other matrices from Example A.1.3 can be added since their sizes are

not compatible. Similarly, we can make calculations like

D − E = D + (−1)E =

⎡
⎣−5 4 −1

0 −1 −1
−1 1 1

⎤
⎦ and 0D = 0E =

⎡
⎣ 0 0 0

0 0 0

0 0 0

⎤
⎦ = 03×3.

It is important to note that the above operations endow Fm×n with a natural

vector space structure. As a vector space, Fm×n is seen to have dimension mn since

we can build the standard basis matrices

E11, E12, . . . , E1n, E21, E22, . . . , E2n, . . . , Em1, Em2, . . . , Emn

by analogy to the standard basis for Fmn. That is, each Ek� = ((e(k,�))ij) satisfies

(e(k,�))ij =

{
1, if i = k and j = �

0, otherwise
.

This allows us to build a vector space isomorphism Fm×n → Fmn using a bijection

that simply “lays each matrix out flat”. In other words, given A = (aij) ∈ Fm×n,⎡
⎢⎣
a11 · · · a1n
...

. . .
...

am1 · · · amn

⎤
⎥⎦ �→ (a11, a12, . . . , a1n, a21, a22, . . . , a2n, . . . , am1, am2, . . . , amn) ∈ Fmn.

Example A.2.2. The vector space R2×3 of 2 × 3 matrices over R has standard

basis {
E11 =

[
1 0 0

0 0 0

]
, E12 =

[
0 1 0

0 0 0

]
, E13 =

[
0 0 1

0 0 0

]
,

E21 =

[
0 0 0

1 0 0

]
, E22 =

[
0 0 0

0 1 0

]
, E23 =

[
0 0 0

0 0 1

]}
,

which is seen to naturally correspond with the standard basis {e1, . . . , e6} for R6,

where

e1 = (1, 0, 0, 0, 0, 0), e2 = (0, 1, 0, 0, 0, 0), . . . , e6 = (0, 0, 0, 0, 0, 1).
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Of course, it is not enough to just assert that Fm×n is a vector space since

we have yet to verify that the above defined operations of addition and scalar

multiplication satisfy the vector space axioms. The proof of the following theorem

is straightforward and something that you should work through for practice with

matrix notation.

Theorem A.2.3. Given positive integers m,n ∈ Z+ and the operations of matrix

addition and scalar multiplication as defined above, the set Fm×n of all m × n

matrices satisfies each of the following properties.

(1) (associativity of matrix addition) Given any three matrices A,B,C ∈ Fm×n,

(A+B) + C = A+ (B + C).

(2) (additive identity for matrix addition) Given any matrix A ∈ Fm×n,

A+ 0m×n = 0m×n +A = A.

(3) (additive inverses for matrix addition) Given any matrix A ∈ Fm×n, there exists

a matrix −A ∈ Fm×n such that

A+ (−A) = (−A) +A = 0m×n.

(4) (commutativity of matrix addition) Given any two matrices A,B ∈ Fm×n,

A+B = B +A.

(5) (associativity of scalar multiplication) Given any matrix A ∈ Fm×n and any

two scalars α, β ∈ F,

(αβ)A = α(βA).

(6) (multiplicative identity for scalar multiplication) Given any matrix A ∈ Fm×n

and denoting by 1 the multiplicative identity of F,

1A = A.

(7) (distributivity of scalar multiplication) Given any two matrices A,B ∈ Fm×n

and any two scalars α, β ∈ F,

(α+ β)A = αA+ βA and α(A+B) = αA+ αB.

In other words, Fm×n forms a vector space under the operations of matrix addition

and scalar multiplication.

As a consequence of Theorem A.2.3, every property that holds for an arbitrary

vector space can be taken as a property of Fm×n specifically. We highlight some of

these properties in the following corollary to Theorem A.2.3.

Corollary A.2.4. Given positive integers m,n ∈ Z+ and the operations of matrix

addition and scalar multiplication as defined above, the set Fm×n of all m × n

matrices satisfies each of the following properties:
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(1) Given any matrix A ∈ Fm×n, given any scalar α ∈ F, and denoting by 0 the

additive identity of F,

0A = A and α0m×n = 0m×n.

(2) Given any matrix A ∈ Fm×n and any scalar α ∈ F,

αA = 0 =⇒ either α = 0 or A = 0m×n.

(3) Given any matrix A ∈ Fm×n and any scalar α ∈ F,

−(αA) = (−α)A = α(−A).

In particular, the additive inverse −A of A is given by −A = (−1)A, where −1
denotes the additive inverse for the additive identity of F.

While one could prove Corollary A.2.4 directly from definitions, the point of recog-

nizing Fm×n as a vector space is that you get to use these results without worrying

about their proof. Moreover, there is no need for separate proofs for F = R and

F = C.

A.2.2 Multiplication of matrices

Let r, s, t ∈ Z+ be positive integers, A = (aij) ∈ Fr×s be an r × s matrix, and B =

(bij) ∈ Fs×t be an s× t matrix. Then matrix multiplication AB = ((ab)ij)r×t is

defined by

(ab)ij =

s∑
k=1

aikbkj .

In particular, note that the “i, j entry” of the matrix product AB involves a sum-

mation over the positive integer k = 1, . . . , s, where s is both the number of columns

in A and the number of rows in B. Thus, this multiplication is only defined when

the “middle” dimension of each matrix is the same:

(aij)r×s(bij)s×t = r

⎧⎪⎨
⎪⎩
⎡
⎢⎣
a11 · · · a1s
...

. . .
...

ar1 · · · ars

⎤
⎥⎦

︸ ︷︷ ︸
s

⎡
⎢⎣
b11 · · · b1t
...

. . .
...

bs1 · · · bst

⎤
⎥⎦
⎫⎪⎬
⎪⎭ s

︸ ︷︷ ︸
t

=

⎡
⎢⎣
∑s

k=1 a1kbk1 · · ·
∑s

k=1 a1kbkt
...

. . .
...∑s

k=1 arkbk1 · · ·
∑s

k=1 arkbkt

⎤
⎥⎦
⎫⎪⎬
⎪⎭ r

︸ ︷︷ ︸
t

Alternatively, if we let n ∈ Z+ be a positive integer, then another way of viewing

matrix multiplication is through the use of the standard inner product on Fn =
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F1×n = Fn×1. In particular, we define the dot product (a.k.a. Euclidean inner

product) of the row vector x = (x1j) ∈ F1×n and the column vector y = (yi1) ∈
Fn×1 to be

x · y =
[
x11, · · · , x1n

] ·
⎡
⎢⎣
y11
...

yn1

⎤
⎥⎦ =

n∑
k=1

x1kyk1 ∈ F.

We can then decompose matrices A = (aij)r×s and B = (bij)s×t into their con-

stituent row vectors by fixing a positive integer k ∈ Z+ and setting

A(k,·) =
[
ak1, · · · , aks

] ∈ F1×s and B(k,·) =
[
bk1, · · · , bkt

] ∈ F1×t.

Similarly, fixing � ∈ Z+, we can also decompose A and B into the column vectors

A(·,�) =

⎡
⎢⎣
a1�
...

ar�

⎤
⎥⎦ ∈ Fr×1 and B(·,�) =

⎡
⎢⎣
b1�
...

bs�

⎤
⎥⎦ ∈ Fs×1.

It follows that the product AB is the following matrix of dot products:

AB =

⎡
⎢⎣
A(1,·) ·B(·,1) · · · A(1,·) ·B(·,t)

...
. . .

...

A(r,·) ·B(·,1) · · · A(r,·) ·B(·,t)

⎤
⎥⎦ ∈ Fr×t.

Example A.2.5. With the notation as in Example A.1.3, the reader is advised to

use the above definitions to verify that the following matrix products hold.

AC =

⎡
⎣ 3

−1
1

⎤
⎦ [ 1, 4, 2 ] =

⎡
⎣ 3 12 6

−1 −4 −2
1 4 2

⎤
⎦ ∈ F3×3,

CA =
[
1, 4, 2

] ⎡⎣ 3

−1
1

⎤
⎦ = 3− 4 + 2 = 1 ∈ F,

B2 = BB =

[
4 −1
0 2

] [
4 −1
0 2

]
=

[
16 −6
0 4

]
∈ F2×2,

CE =
[
1, 4, 2

] ⎡⎣ 6 1 3

−1 1 2

4 1 3

⎤
⎦ =

[
10, 7, 17

] ∈ F1×3, and

DA =

⎡
⎣ 1 5 2

−1 0 1

3 2 4

⎤
⎦
⎡
⎣ 3

−1
1

⎤
⎦ =

⎡
⎣ 0

−2
11

⎤
⎦ ∈ F3×1.

Note, though, that B cannot be multiplied by any of the other matrices, nor does it

make sense to try to form the products AD, AE, DC, and EC due to the inherent

size mismatches.
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As illustrated in Example A.2.5 above, matrix multiplication is not a commuta-

tive operation (since, e.g., AC ∈ F3×3 while CA ∈ F1×1). Nonetheless, despite the

complexity of its definition, the matrix product otherwise satisfies many familiar

properties of a multiplication operation. We summarize the most basic of these

properties in the following theorem.

Theorem A.2.6. Let r, s, t, u ∈ Z+ be positive integers.

(1) (associativity of matrix multiplication) Given A ∈ Fr×s, B ∈ Fs×t, and C ∈
Ft×u,

A(BC) = (AB)C.

(2) (distributivity of matrix multiplication) Given A ∈ Fr×s, B,C ∈ Fs×t, and

D ∈ Ft×u,

A(B + C) = AB +AC and (B + C)D = BD + CD.

(3) (compatibility with scalar multiplication) Given A ∈ Fr×s, B ∈ Fs×t, and α ∈ F,

α(AB) = (αA)B = A(αB).

Moreover, given any positive integer n ∈ Z+, F
n×n is an algebra over F.

As with Theorem A.2.3, you should work through a proof of each part of Theo-

rem A.2.6 (and especially of the first part) in order to practice manipulating the

indices of entries correctly. We state and prove a useful followup to Theorems A.2.3

and A.2.6 as an illustration.

Theorem A.2.7. Let A,B ∈ Fn×n be upper triangular matrices and c ∈ F be any

scalar. Then each of the following properties hold:

(1) cA is upper triangular.

(2) A+B is upper triangular.

(3) AB is upper triangular.

In other words, the set of all n×n upper triangular matrices forms an algebra over

F.

Moreover, each of the above statements still holds when upper triangular is

replaced by lower triangular.

Proof. The proofs of Parts 1 and 2 are straightforward and follow directly from

the appropriate definitions. Moreover, the proof of the case for lower triangular

matrices follows from the fact that a matrix A is upper triangular if and only if AT

is lower triangular, where AT denotes the transpose of A. (See Section A.5.1 for

the definition of transpose.)
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To prove Part 3, we start from the definition of the matrix product. Denoting

A = (aij) and B = (bij), note that AB = ((ab)ij) is an n × n matrix having “i-j

entry” given by

(ab)ij =

n∑
k=1

aikbkj .

Since A and B are upper triangular, we have that aik = 0 when i > k and that

bkj = 0 when k > j. Thus, to obtain a non-zero summand aikbkj �= 0, we must

have both aik �= 0, which implies that i ≤ k, and bkj �= 0, which implies that k ≤ j.

In particular, these two conditions are simultaneously satisfiable only when i ≤ j.

Therefore, (ab)ij = 0 when i > j, from which AB is upper triangular.

At the same time, you should be careful not to blithely perform operations on

matrices as you would with numbers. The fact that matrix multiplication is not a

commutative operation should make it clear that significantly more care is required

with matrix arithmetic. As another example, given a positive integer n ∈ Z+, the

set Fn×n has what are called zero divisors. That is, there exist non-zero matrices

A,B ∈ Fn×n such that AB = 0n×n:[
0 1

0 0

]2
=

[
0 1

0 0

] [
0 1

0 0

]
=

[
0 0

0 0

]
= 02×2.

Moreover, note that there exist matrices A,B,C ∈ Fn×n such that AB = AC but

B �= C: [
0 1

0 0

] [
1 0

0 0

]
= 02×2 =

[
0 1

0 0

] [
0 1

0 0

]
.

As a result, we say that the set Fn×n fails to have the so-called cancellation

property. This failure is a direct result of the fact that there are non-zero matrices

in Fn×n that have no multiplicative inverse. We discuss matrix invertibility at length

in the next section and define a special subset GL(n,F) ⊂ Fn×n upon which the

cancellation property does hold.

A.2.3 Invertibility of square matrices

In this section, we characterize square matrices for which multiplicative inverses

exist.

Definition A.2.8. Given a positive integer n ∈ Z+, we say that the square matrix

A ∈ Fn×n is invertible (a.k.a. non-singular) if there exists a square matrix B ∈
Fn×n such that

AB = BA = In.

We use GL(n,F) to denote the set of all invertible n × n matrices having entries

from F.
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One can prove that, if the multiplicative inverse of a matrix exists, then the

inverse is unique. As such, we will usually denote the so-called inverse matrix of

A ∈ GL(n,F) by A−1. Note that the zero matrix 0n×n /∈ GL(n,F). This means

that GL(n,F) is not a vector subspace of Fn×n.

Since matrix multiplication is not a commutative operation, care must be taken

when working with the multiplicative inverses of invertible matrices. In particular,

many of the algebraic properties for multiplicative inverses of scalars, when properly

modified, continue to hold. We summarize the most basic of these properties in the

following theorem.

Theorem A.2.9. Let n ∈ Z+ be a positive integer and A,B ∈ GL(n,F). Then

(1) the inverse matrix A−1 ∈ GL(n,F) and satisfies (A−1)−1 = A.

(2) the matrix power Am ∈ GL(n,F) and satisfies (Am)−1 = (A−1)m, where m ∈
Z+ is any positive integer.

(3) the matrix αA ∈ GL(n,F) and satisfies (αA)−1 = α−1A−1, where α ∈ F is any

non-zero scalar.

(4) the product AB ∈ GL(n,F) and has inverse given by the formula

(AB)−1 = B−1A−1.

Moreover, GL(n,F) has the cancellation property. In other words, given any

three matrices A,B,C ∈ GL(n,F), if AB = AC, then B = C.

At the same time, it is important to note that the zero matrix is not the only

non-invertible matrix. As an illustration of the subtlety involved in understanding

invertibility, we give the following theorem for the 2× 2 case.

Theorem A.2.10. Let A =

[
a11 a12
a21 a22

]
∈ F2×2. Then A is invertible if and only if

A satisfies

a11a22 − a12a21 �= 0.

Moreover, if A is invertible, then

A−1 =

⎡
⎢⎢⎢⎣

a22
a11a22 − a12a21

−a12
a11a22 − a12a21

−a21
a11a22 − a12a21

a11
a11a22 − a12a21

⎤
⎥⎥⎥⎦ .

A more general theorem holds for larger matrices. Its statement requires the no-

tion of determinant and we refer the reader to Chapter 8 for the definition of the

determinant. For completeness, we state the result here.

Theorem A.2.11. Let n ∈ Z+ be a positive integer, and let A = (aij) ∈ Fn×n be

an n × n matrix. Then A is invertible if and only if det(A) �= 0. Moreover, if A

is invertible, then the “i, j entry” of A−1 is Aji/ det(A). Here, Aij = (−1)i+jMij,



November 2, 2015 14:50 ws-book961x669 Linear Algebra: As an Introduction to Abstract Mathematics 9808-main page 142

142 Linear Algebra: As an Introduction to Abstract Mathematics

and Mij is the determinant of the matrix obtained when both the ith row and jth

column are removed from A.

We close this section by noting that the set GL(n,F) of all invertible n × n

matrices over F is often called the general linear group. This set has many

important uses in mathematics and there are several equivalent notations for it,

including GLn(F) and GL(Fn), and sometimes simply GL(n) or GLn if it is not

important to emphasize the dependence on F. Note that the usage of the term

“group” in the name “general linear group” has a technical meaning: GL(n,F)

forms a group under matrix multiplication, which is non-abelian if n ≥ 2. (See

Section C.2 for the definition of a group.)

A.3 Solving linear systems by factoring the coefficient matrix

There are many ways in which one might try to solve a given system of linear

equations. This section is primarily devoted to describing two particularly popular

techniques, both of which involve factoring the coefficient matrix for the system

into a product of simpler matrices. These techniques are also at the heart of many

frequently used numerical (i.e., computer-assisted) applications of Linear Algebra.

Note that the factorization of complicated objects into simpler components is

an extremely common problem solving technique in mathematics. E.g., we will

often factor a given polynomial into several polynomials of lower degree, and one

can similarly use the prime factorization for an integer in order to simplify certain

numerical computations.

A.3.1 Factorizing matrices using Gaussian elimination

In this section, we discuss a particularly significant factorization for matrices known

as Gaussian elimination (a.k.a. Gauss-Jordan elimination). Gaussian elim-

ination can be used to express any matrix as a product involving one matrix in

so-called reduced row-echelon form and one or more so-called elementary ma-

trices. Then, once such a factorization has been found, we can immediately solve

any linear system that has the factorized matrix as its coefficient matrix. Moreover,

the underlying technique for arriving at such a factorization is essentially an ex-

tension of the techniques already familiar to you for solving small systems of linear

equations by hand.

Let m,n ∈ Z+ denote positive integers, and suppose that A ∈ Fm×n is an m×n

matrix over F. Then, following Section A.2.2, we will make extensive use of A(i,·)

and A(·,j) to denote the row vectors and column vectors of A, respectively.

Definition A.3.1. Let A ∈ Fm×n be an m×n matrix over F. Then we say that A

is in row-echelon form (abbreviated REF) if the rows of A satisfy the following

conditions:
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(1) either A(1,·) is the zero vector or the first non-zero entry in A(1,·) (when read

from left to right) is a one.

(2) for i = 1, . . . ,m, if any row vector A(i,·) is the zero vector, then each subsequent

row vector A(i+1,·), . . . , A(m,·) is also the zero vector.

(3) for i = 2, . . . ,m, if some A(i,·) is not the zero vector, then the first non-zero

entry (when read from left to right) is a one and occurs to the right of the initial

one in A(i−1,·).

The initial leading one in each non-zero row is called a pivot. We furthermore say

that A is in reduced row-echelon form (abbreviated RREF) if

(4) for each column vector A(·,j) containing a pivot (j = 2, . . . , n), the pivot is the

only non-zero element in A(·,j).

The motivation behind Definition A.3.1 is that matrix equations having their

coefficient matrix in RREF (and, in some sense, also REF) are particularly easy to

solve. Note, in particular, that the only square matrix in RREF without zero rows

is the identity matrix.

Example A.3.2. The following matrices are all in REF:

A1 =

⎡
⎣1 1 1 1

0 1 1 1

0 0 1 1

⎤
⎦ , A2 =

⎡
⎣1 1 1 0

0 1 1 0

0 0 1 0

⎤
⎦ , A3 =

⎡
⎣1 1 0 1

0 1 1 0

0 0 0 1

⎤
⎦ , A4 =

⎡
⎣1 1 0 0

0 0 1 0

0 0 0 1

⎤
⎦ ,

A5 =

⎡
⎣1 0 1 0

0 0 0 1

0 0 0 0

⎤
⎦ , A6 =

⎡
⎣0 0 1 0

0 0 0 1

0 0 0 0

⎤
⎦ , A7 =

⎡
⎣0 0 0 1

0 0 0 0

0 0 0 0

⎤
⎦ , A8 =

⎡
⎣0 0 0 0

0 0 0 0

0 0 0 0

⎤
⎦ .

However, only A4 through A8 are in RREF, as you should verify. Moreover, if we

take the transpose of each of these matrices (as defined in Section A.5.1), then only

AT
6 , A

T
7 , and AT

8 are in RREF.

Example A.3.3.

(1) Consider the following matrix in RREF:

A =

⎡
⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎦ .

Given any vector b = (bi) ∈ F4, the matrix equation Ax = b corresponds to the

system of equations

x1 = b1
x2 = b2

x3 = b3
x4 = b4

⎫⎪⎪⎬
⎪⎪⎭ .
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Since A is in RREF (in fact, A = I4 is the 4 × 4 identity matrix), we can

immediately conclude that the matrix equation Ax = b has the solution x = b

for any choice of b.

Moreover, as we will see in Section A.4.2, x = b is the only solution to this

system.

(2) Consider the following matrix in RREF:

A =

⎡
⎢⎢⎣
1 6 0 0 4 −2
0 0 1 0 3 1

0 0 0 1 5 2

0 0 0 0 0 0

⎤
⎥⎥⎦ .

Given any vector b = (bi) ∈ F4, the matrix equation Ax = b corresponds to the

system of equations

x1 + 6x2 + 4x5 − 2x6 = b1
x3 + 3x5 + x6 = b2

x4 + 5x5 + 2x6 = b3
0 = b4

⎫⎪⎪⎬
⎪⎪⎭ .

Since A is in RREF, we can immediately conclude a number of facts about

solutions to this system. First of all, solutions exist if and only if b4 = 0.

Moreover, by “solving for the pivots”, we see that the system reduces to

x1 = b1 −6x2 − 4x5 + 2x6

x3 = b2 − 3x5 − x6

x4 = b3 − 5x5 − 2x6

⎫⎬
⎭ ,

and so there is only enough information to specify values for x1, x3, and x4 in

terms of the otherwise arbitrary values for x2, x5, and x6.

In this context, x1, x3, and x4 are called leading variables since these are

the variables corresponding to the pivots in A. We similarly call x2, x5, and

x6 free variables since the leading variables have been expressed in terms of

these remaining variables. In particular, given any scalars α, β, γ ∈ F, it follows

that the vector

x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b1 − 6α− 4β + 2γ

α

b2 − 3β − γ

b3 − 5β − 2γ

β

γ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b1
0

b2
b3
0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−6α
α

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−4β
0

−3β
−5β
β

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2γ

0

−γ
−2γ
0

γ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

must satisfy the matrix equation Ax = b. One can also verify that every solution

to the matrix equation must be of this form. It then follows that the set of all

solutions should somehow be “three dimensional”.
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As the above examples illustrate, a matrix equation having coefficient matrix in

RREF corresponds to a system of equations that can be solved with only a small

amount of computation. Somewhat amazingly, any matrix can be factored into a

product that involves exactly one matrix in RREF and one or more of the matrices

defined as follows.

Definition A.3.4. A square matrix E ∈ Fm×m is called an elementary matrix

if it has one of the following forms:

(1) (row exchange, a.k.a. “row swap”, matrix) E is obtained from the identity

matrix Im by interchanging the row vectors I
(r,·)
m and I

(s,·)
m for some particular

choice of positive integers r, s ∈ {1, 2, . . . ,m}. I.e., in the case that r < s,

E =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0
0 1 0 · · · 0 0 0 · · · 0 0 0 · · · 0
0 0 1 · · · 0 0 0 · · · 0 0 0 · · · 0
...
...
...
. . .

...
...
...
. . .

...
...
...
. . .

...

0 0 0 · · · 1 0 0 · · · 0 0 0 · · · 0
0 0 0 · · · 0 0 0 · · · 0 1 0 · · · 0
0 0 0 · · · 0 0 1 · · · 0 0 0 · · · 0
...
...
...
. . .

...
...
...
. . .

...
...
...
. . .

...

0 0 0 · · · 0 0 0 · · · 1 0 0 · · · 0
0 0 0 · · · 0 1 0 · · · 0 0 0 · · · 0
0 0 0 · · · 0 0 0 · · · 0 0 1 · · · 0
...
...
...
. . .

...
...
...
. . .

...
...
...
. . .

...

0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

← rth row

← sth row.

(2) (row scaling matrix) E is obtained from the identity matrix Im by replacing

the row vector I
(r,·)
m with αI

(r,·)
m for some choice of non-zero scalar 0 �= α ∈ F

and some choice of positive integer r ∈ {1, 2, . . . ,m}. I.e.,

E = Im + (α− 1)Err =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0 0 0 · · · 0
0 1 · · · 0 0 0 · · · 0
...
...
. . .

...
...
...
. . .

...

0 0 · · · 1 0 0 · · · 0
0 0 · · · 0 α 0 · · · 0
0 0 · · · 0 0 1 · · · 0
...
...
. . .

...
...
...
. . .

...

0 0 · · · 0 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
← rth row,

where Err is the matrix having “r, r entry” equal to one and all other entries

equal to zero. (Recall that Err was defined in Section A.2.1 as a standard basis

vector for the vector space Fm×m.)
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(3) (row combination, a.k.a. “row sum”, matrix) E is obtained from the identity

matrix Im by replacing the row vector I
(r,·)
m with I

(r,·)
m +αI

(s,·)
m for some choice

of scalar α ∈ F and some choice of positive integers r, s ∈ {1, 2, . . . ,m}. I.e., in
the case that r < s,

E = Im + αErs =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0
0 1 0 · · · 0 0 0 · · · 0 0 0 · · · 0
0 0 1 · · · 0 0 0 · · · 0 0 0 · · · 0
...
...
...
. . .

...
...
...
. . .

...
...
...
. . .

...

0 0 0 · · · 1 0 0 · · · 0 0 0 · · · 0
0 0 0 · · · 0 1 0 · · · 0 α 0 · · · 0
0 0 0 · · · 0 0 1 · · · 0 0 0 · · · 0
...
...
...
. . .

...
...
...
. . .

...
...
...
. . .

...

0 0 0 · · · 0 0 0 · · · 1 0 0 · · · 0
0 0 0 · · · 0 0 0 · · · 0 1 0 · · · 0
0 0 0 · · · 0 0 0 · · · 0 0 1 · · · 0
...
...
...
. . .

...
...
...
. . .

...
...
...
. . .

...

0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

← rth row

↑
sth column

where Ers is the matrix having “r, s entry” equal to one and all other entries

equal to zero. (Ers was also defined in Section A.2.1 as a standard basis vector

for Fm×m.)

The “elementary” in the name “elementary matrix” comes from the correspon-

dence between these matrices and so-called “elementary operations” on systems of

equations. In particular, each of the elementary matrices is clearly invertible (in

the sense defined in Section A.2.3), just as each “elementary operation” is itself

completely reversible. We illustrate this correspondence in the following example.

Example A.3.5. Define A, x, and b by

A =

⎡
⎣2 5 3

1 2 3

1 0 8

⎤
⎦ , x =

⎡
⎣x1

x2

x3

⎤
⎦ , and b =

⎡
⎣45
9

⎤
⎦ .

We illustrate the correspondence between elementary matrices and “elementary”

operations on the system of linear equations corresponding to the matrix equation

Ax = b, as follows.

System of Equations Corresponding Matrix Equation

2x1 + 5x2 + 3x3 = 5

x1 + 2x2 + 3x3 = 4

x1 + 8x3 = 9
Ax = b
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To begin solving this system, one might want to either multiply the first equa-

tion through by 1/2 or interchange the first equation with one of the other equa-

tions. From a computational perspective, it is preferable to perform an interchange

since multiplying through by 1/2 would unnecessarily introduce fractions. Thus,

we choose to interchange the first and second equation in order to obtain

System of Equations Corresponding Matrix Equation

x1 + 2x2 + 3x3 = 4

2x1 + 5x2 + 3x3 = 5

x1 + 8x3 = 9

E0Ax = E0b, where E0 =

⎡
⎣0 1 0

1 0 0

0 0 1

⎤
⎦ .

Another reason for performing the above interchange is that it now allows us to use

more convenient “row combination” operations when eliminating the variable x1

from all but one of the equations. In particular, we can multiply the first equation

through by −2 and add it to the second equation in order to obtain

System of Equations Corresponding Matrix Equation

x1 + 2x2 + 3x3 = 4

x2 − 3x3 = −3
x1 + 8x3 = 9

E1E0Ax = E1E0b, where E1 =

⎡
⎣ 1 0 0

−2 1 0

0 0 1

⎤
⎦ .

Similarly, in order to eliminate the variable x1 from the third equation, we can next

multiply the first equation through by −1 and add it to the third equation in order

to obtain

System of Equations Corresponding Matrix Equation

x1 + 2x2 + 3x3 = 4

x2 − 3x3 = −3
−2x2 + 5x3 = 5

E2E1E0Ax = E2E1E0b, where E2 =

⎡
⎣ 1 0 0

0 1 0

−1 0 1

⎤
⎦ .

Now that the variable x1 only appears in the first equation, we can somewhat sim-

ilarly isolate the variable x2 by multiplying the second equation through by 2 and

adding it to the third equation in order to obtain

System of Equations Corresponding Matrix Equation

x1 + 2x2 + 3x3 = 4

x2 − 3x3 = −3
−x3 = −1

E3 · · ·E0Ax = E3 · · ·E0b, where E3 =

⎡
⎣1 0 0

0 1 0

0 2 1

⎤
⎦ .

Finally, in order to complete the process of transforming the coefficient matrix into

REF, we need only rescale row three by −1. This corresponds to multiplying the

third equation through by −1 in order to obtain
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System of Equations Corresponding Matrix Equation

x1 + 2x2 + 3x3 = 4

x2 − 3x3 = −3
x3 = 1

E4 · · ·E0Ax = E4 · · ·E0b, where E4 =

⎡
⎣1 0 0

0 1 0

0 0 −1

⎤
⎦ .

Now that the coefficient matrix is in REF, we can already solve for the variables

x1, x2, and x3 using a process called back substitution. In other words, starting

from the third equation we see that x3 = 1. Using this value and solving for x2 in

the second equation, it then follows that

x2 = −3 + 3x3 = −3 + 3 = 0.

Similarly, by solving the first equation for x1, it follows that

x1 = 4− 2x2 − 3x3 = 4− 3 = 1.

From a computational perspective, this process of back substitution can be ap-

plied to solve any system of equations when the coefficient matrix of the corre-

sponding matrix equation is in REF. However, from an algorithmic perspective, it

is often more useful to continue “row reducing” the coefficient matrix in order to

produce a coefficient matrix in full RREF.

There is more than one way to reach the RREF form. We choose to now work

“from bottom up, and from right to left”. In other words, we now multiply the

third equation through by 3 and then add it to the second equation in order to

obtain

System of Equations Corresponding Matrix Equation

x1 + 2x2 + 3x3 = 4

x2 = 0

x3 = 1

E5 · · ·E0Ax = E5 · · ·E0b, where E5 =

⎡
⎣1 0 0

0 1 3

0 0 1

⎤
⎦ .

Next, we can multiply the third equation through by −3 and add it to the first

equation in order to obtain

System of Equations Corresponding Matrix Equation

x1 + 2x2 = 1

x2 = 0

x3 = 1

E6 · · ·E0Ax = E6 · · ·E0b, where E6 =

⎡
⎣1 0 −3
0 1 0

0 0 1

⎤
⎦ .

Finally, we can multiply the second equation through by −2 and add it to the first

equation in order to obtain

System of Equations Corresponding Matrix Equation

x1 = 1

x2 = 0

x3 = 1

E7 · · ·E0Ax = E7 · · ·E0b, where E7 =

⎡
⎣1 −2 0

0 1 0

0 0 1

⎤
⎦ .
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Previously, we obtained a solution by using back substitution on the linear system

E4 · · ·E0Ax = E4 · · ·E0b.

However, in many applications, it is not enough to merely find a solution. Instead,

it is important to describe every solution. As we will see in the remaining sections of

these notes, Linear Algebra is a very useful tool to solve this problem. In particular,

we will use the theory of vector spaces and linear maps.

To close this section, we take a closer look at the following expression obtained

from the above analysis:

E7E6 · · ·E1E0A = I3.

It follows from their definition that elementary matrices are invertible. In particular,

each of the matrices E0, E1, . . . , E7 is invertible. Thus, we can use Theorem A.2.9

in order to “solve” for A:

A = (E7E6 · · ·E1E0)
−1I3 = E−1

0 E−1
1 · · ·E−1

7 I3.

In effect, since the inverse of an elementary matrix is itself easily seen to be an

elementary matrix, this has factored A into the product of eight elementary matrices

(namely, E−1
0 , E−1

1 , . . . , E−1
7 ) and one matrix in RREF (namely, I3). Moreover,

because each elementary matrix is invertible, we can conclude that x solves Ax = b

if and only if x solves

(E7E6 · · ·E1E0A)x = (I3)x = (E7E6 · · ·E1E0) b.

Consequently, given any linear system, one can use Gaussian elimination in order to

reduce the problem to solving a linear system whose coefficient matrix is in RREF.

Similarly, we can conclude that the inverse of A is

A−1 = E7E6 · · ·E1E0 =

⎡
⎣ 13 −5 −3
−40 16 9

5 −2 1

⎤
⎦ .

Having computed this product, one could essentially “reuse” much of the above

computation in order to solve the matrix equation Ax = b′ for several different

right-hand sides b′ ∈ F3. The process of “resolving” a linear system is a common

practice in applied mathematics.

A.3.2 Solving homogeneous linear systems

In this section, we study the solutions for an important special class of linear sys-

tems. As we will see in the next section, though, solving any linear system is fun-

damentally dependent upon knowing how to solve these so-called homogeneous

systems.

As usual, we use m,n ∈ Z+ to denote arbitrary positive integers.



November 2, 2015 14:50 ws-book961x669 Linear Algebra: As an Introduction to Abstract Mathematics 9808-main page 150

150 Linear Algebra: As an Introduction to Abstract Mathematics

Definition A.3.6. The system of linear equations, System (A.1), is called a ho-

mogeneous system if the right-hand side of each equation is zero. In other words,

a homogeneous system corresponds to a matrix equation of the form

Ax = 0,

where A ∈ Fm×n is an m×n matrix and x is an n-tuple of unknowns. We also call

the set

N = {v ∈ Fn | Av = 0}
the solution space for the homogeneous system corresponding to Ax = 0.

When describing the solution space for a homogeneous linear system, there are

three important cases to keep in mind:

Definition A.3.7. The system of linear equations System (A.1) is called

(1) overdetermined if m > n.

(2) square if m = n.

(3) underdetermined if m < n.

In particular, we can say a great deal about underdetermined homogeneous systems,

which we state as a corollary to the following more general result.

Theorem A.3.8. Let N be the solution space for the homogeneous linear system

corresponding to the matrix equation Ax = 0, where A ∈ Fm×n. Then

(1) the zero vector 0 ∈ N .

(2) N is a subspace of the vector space Fn.

This is an amazing theorem. Since N is a subspace of Fn, we know that either

N will contain exactly one element (namely, the zero vector) or N will contain

infinitely many elements.

Corollary A.3.9. Every homogeneous system of linear equations is solved by the

zero vector. Moreover, every underdetermined homogeneous system has infinitely

many solutions.

We call the zero vector the trivial solution for a homogeneous linear system. The

fact that every homogeneous linear system has the trivial solution thus reduces

solving such a system to determining if solutions other than the trivial solution

exist.

One method for finding the solution space of a homogeneous system is to first

use Gaussian elimination (as demonstrated in Example A.3.5) in order to factor

the coefficient matrix of the system. Then, because the original linear system is

homogeneous, the homogeneous system corresponding to the resulting RREF matrix

will have the same solutions as the original system. In other words, if a given matrix

A satisfies

EkEk−1 · · ·E0A = A0,
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where each Ei is an elementary matrix and A0 is an RREF matrix, then the

matrix equation Ax = 0 has the exact same solution set as A0x = 0 since

E−1
0 E−1

1 · · ·E−1
k 0 = 0.

Example A.3.10. In the following examples, we illustrate the process of determin-

ing the solution space for a homogeneous linear system having coefficient matrix in

RREF.

(1) Consider the matrix equation Ax = 0, where A is the matrix given by

A =

⎡
⎢⎢⎣
1 0 0

0 1 0

0 0 1

0 0 0

⎤
⎥⎥⎦ .

This corresponds to an overdetermined homogeneous system of linear equations.

Moreover, since there are no free variables (as defined in Example A.3.3), it

should be clear that this system has only the trivial solution. Thus, N = {0}.
(2) Consider the matrix equation Ax = 0, where A is the matrix given by

A =

⎡
⎢⎢⎣
1 0 1

0 1 1

0 0 0

0 0 0

⎤
⎥⎥⎦ .

This corresponds to an overdetermined homogeneous system of linear equations.

Unlike the above example, we see that x3 is a free variable for this system, and

so we would expect the solution space to contain more than just the zero vector.

As in Example A.3.3, we can solve for the leading variables in terms of the free

variable in order to obtain

x1 = − x3

x2 = − x3

}
.

It follows that, given any scalar α ∈ F, every vector of the form

x =

⎡
⎣x1

x2

x3

⎤
⎦ =

⎡
⎣−α−α

α

⎤
⎦ = α

⎡
⎣−1−1

1

⎤
⎦

is a solution to Ax = 0. Therefore,

N =
{
(x1, x2, x3) ∈ F3 | x1 = −x3, x2 = −x3

}
= span ((−1,−1, 1)) .

(3) Consider the matrix equation Ax = 0, where A is the matrix given by

A =

⎡
⎣1 1 1

0 0 0

0 0 0

⎤
⎦ .

This corresponds to a square homogeneous system of linear equations with two

free variables. Thus, using the same technique as in the previous example, we
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can solve for the leading variable in order to obtain x1 = −x2 − x3. It follows

that, given any scalars α, β ∈ F, every vector of the form

x =

⎡
⎣x1

x2

x3

⎤
⎦ =

⎡
⎣−α− β

α

β

⎤
⎦ = α

⎡
⎣−11

0

⎤
⎦+ β

⎡
⎣−10

1

⎤
⎦

is a solution to Ax = 0. Therefore,

N =
{
(x1, x2, x3) ∈ F3 | x1 + x2 + x3 = 0

}
= span ((−1, 1, 0), (−1, 0, 1)) .

A.3.3 Solving inhomogeneous linear systems

In this section, we demonstrate the relationship between arbitrary linear systems

and homogeneous linear systems. Specifically, we will see that it takes little more

work to solve a general linear system than it does to solve the homogeneous system

associated to it.

As usual, we use m,n ∈ Z+ to denote arbitrary positive integers.

Definition A.3.11. The system of linear equations System (A.1) is called an in-

homogeneous system if the right-hand side of at least one equation is not zero.

In other words, an inhomogeneous system corresponds to a matrix equation of the

form

Ax = b,

where A ∈ Fm×n is an m× n matrix, x is an n-tuple of unknowns, and b ∈ Fm is a

vector having at least one non-zero component. We also call the set

U = {v ∈ Fn | Av = b}
the solution set for the linear system corresponding to Ax = b.

As illustrated in Example A.3.3, the zero vector cannot be a solution for an

inhomogeneous system. Consequently, the solution set U for an inhomogeneous

linear system will never be a subspace of any vector space. Instead, it will be a

related algebraic structure as described in the following theorem.

Theorem A.3.12. Let U be the solution space for the inhomogeneous linear system

corresponding to the matrix equation Ax = b, where A ∈ Fm×n and b ∈ Fm is a

vector having at least one non-zero component. Then, given any element u ∈ U , we

have that

U = u+N = {u+ n | n ∈ N} ,
where N is the solution space to Ax = 0, or the kernel of A. In other words,

if B = (n(1), n(2), . . . , n(k)) is a list of vectors forming a basis for N, then every

element of U can be written in the form

u+ α1n
(1) + α2n

(2) + . . .+ αkn
(k)

for some choice of scalars α1, α2, . . . , αk ∈ F.
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As a consequence of this theorem, we can conclude that inhomogeneous linear sys-

tems behave a lot like homogeneous systems. The main difference is that inhomo-

geneous systems are not necessarily solvable. This, then, creates three possibilities:

an inhomogeneous linear system will either have no solution, a unique solution, or

infinitely many solutions. An important special case is as follows.

Corollary A.3.13. Every overdetermined inhomogeneous linear system will neces-

sarily be unsolvable for some choice of values for the right-hand sides of the equa-

tions.

The solution set U for an inhomogeneous linear system is called an affine sub-

space of Fn since it is a genuine subspace of Fn that has been “offset” by a vector

u ∈ Fn. Any set having this structure might also be called a coset (when used

in the context of Group Theory) or a linear manifold (when used in a geometric

context such as a discussion of hyperplanes).

In order to actually find the solution set for an inhomogeneous linear system, we

rely on Theorem A.3.12. Given an m× n matrix A ∈ Fm×n and a non-zero vector

b ∈ Fm, we call Ax = 0 the associated homogeneous matrix equation to

the inhomogeneous matrix equation Ax = b. Then, according to Theorem A.3.12,

U can be found by first finding the solution space N for the associated equation

Ax = 0 and then finding any so-called particular solution u ∈ Fn to Ax = b.

As with homogeneous systems, one can first use Gaussian elimination in order

to factorize A, and so we restrict the following examples to the special case of RREF

matrices.

Example A.3.14. The following examples use the same matrices as in Exam-

ple A.3.10.

(1) Consider the matrix equation Ax = b, where A is the matrix given by

A =

⎡
⎢⎢⎣
1 0 0

0 1 0

0 0 1

0 0 0

⎤
⎥⎥⎦

and b ∈ F4 has at least one non-zero component. Then Ax = b corresponds

to an overdetermined inhomogeneous system of linear equations and will not

necessarily be solvable for all possible choices of b.

In particular, note that the bottom row A(4,·) of A corresponds to the equation

0 = b4,

from which we conclude that Ax = b has no solution unless the fourth com-

ponent of b is zero. Furthermore, the remaining rows of A correspond to the

equations

x1 = b1, x2 = b2, and x3 = b3.
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It follows that, given any vector b ∈ Fn with fourth component zero, x = b is

the only solution to Ax = b. In other words, U = {b}.
(2) Consider the matrix equation Ax = b, where A is the matrix given by

A =

⎡
⎢⎢⎣
1 0 1

0 1 1

0 0 0

0 0 0

⎤
⎥⎥⎦

and b ∈ F4. This corresponds to an overdetermined inhomogeneous system of

linear equations. Note, in particular, that the bottom two rows of the matrix

correspond to the equations 0 = b3 and 0 = b4, from which we see that Ax = b

has no solution unless the third and fourth components of the vector b are both

zero. Furthermore, we conclude from the remaining rows of the matrix that x3

is a free variable for this system and that

x1 = b1 − x3

x2 = b2 − x3

}
.

It follows that, given any scalar α ∈ F, every vector of the form

x =

⎡
⎣x1

x2

x3

⎤
⎦ =

⎡
⎣b1 − α

b2 − α

α

⎤
⎦ =

⎡
⎣b1b2
0

⎤
⎦+ α

⎡
⎣−1−1

1

⎤
⎦ = u+ αn

is a solution to Ax = b. Recall from Example A.3.10 that the solution space

for the associated homogeneous matrix equation Ax = 0 is

N =
{
(x1, x2, x3) ∈ F3 | x1 = −x3, x2 = −x3

}
= span ((−1,−1, 1)) .

Thus, in the language of Theorem A.3.12, we have that u is a particular solution

for Ax = b and that (n) is a basis for N . Therefore, the solution set for Ax = b

is

U = (b1, b2, 0) +N =
{
(x1, x2, x3) ∈ F3 | x1 = b1 − x3, x2 = b2 − x3

}
.

(3) Consider the matrix equation Ax = b, where A is the matrix given by

A =

⎡
⎣1 1 1

0 0 0

0 0 0

⎤
⎦

and b ∈ F4. This corresponds to a square inhomogeneous system of linear

equations with two free variables. As above, this system has no solutions unless

b2 = b3 = 0, and, given any scalars α, β ∈ F, every vector of the form

x =

⎡
⎣x1

x2

x3

⎤
⎦ =

⎡
⎣b1 − α− β

α

β

⎤
⎦ =

⎡
⎣b10
0

⎤
⎦+ α

⎡
⎣−11

0

⎤
⎦+ β

⎡
⎣−10

1

⎤
⎦ = u+ αn(1) + βn(2)
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is a solution to Ax = b. Recall from Example A.3.10, that the solution space

for the associated homogeneous matrix equation Ax = 0 is

N =
{
(x1, x2, x3) ∈ F3 | x1 + x2 + x3 = 0

}
= span ((−1, 1, 0), (−1, 0, 1)) .

Thus, in the language of Theorem A.3.12, we have that u is a particular solution

for Ax = b and that (n(1), n(2)) is a basis for N . Therefore, the solution set for

Ax = b is

U = (b1, 0, 0) +N =
{
(x1, x2, x3) ∈ F3 | x1 + x2 + x3 = b1

}
.

A.3.4 Solving linear systems with LU-factorization

Let n ∈ Z+ be a positive integer, and suppose that A ∈ Fn×n is an upper triangular

matrix and that b ∈ Fn is a column vector. Then, in order to solve the matrix

equation Ax = b, there is no need to apply Gaussian elimination. Instead, we can

exploit the triangularity of A in order to directly obtain a solution.

Using the notation in System (A.1), note that the last equation in the linear

system corresponding to Ax = b can only involve the single unknown xn, and so we

can obtain the solution

xn =
bn
ann

as long as ann �= 0. If ann = 0, then we must be careful to distinguish between

the two cases in which bn = 0 or bn �= 0. Thus, for reasons that will become

clear below, we assume that the diagonal elements of A are all non-zero. Under this

assumption, there is no ambiguity in substituting the solution for xn into the penul-

timate (a.k.a. second-to-last) equation. Since A is upper triangular, the penultimate

equation involves only the single unknown xn−1, and so we obtain the solution

xn−1 =
bn−1 − an−1,nxn

an−1,n−1
.

We can then similarly substitute the solutions for xn and xn−1 into the antepenul-

timate (a.k.a. third-to-last) equation in order to solve for xn−2, and so on until a

complete solution is found. In particular,

x1 =
b1 −

∑n
k=2 ankxk

a11
.

As in Example A.3.5, we call this process back substitution. Given an ar-

bitrary linear system, back substitution essentially allows us to halt the Gaussian

elimination procedure and immediately obtain a solution for the system as soon as

an upper triangular matrix (possibly in REF or even RREF) has been obtained

from the coefficient matrix.

A similar procedure can be applied when A is lower triangular. Again using the

notation in System (A.1), the first equation contains only x1, and so

x1 =
b1
a11

.
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We are again assuming that the diagonal entries of A are all non-zero. Then, acting

similarly to back substitution, we can substitute the solution for x1 into the second

equation in order to obtain

x2 =
b2 − a21x1

a22
.

Continuing this process, we have created a forward substitution procedure. In

particular,

xn =
bn −

∑n−1
k=1 ankxk

ann
.

More generally, suppose that A ∈ Fn×n is an arbitrary square matrix for which

there exists a lower triangular matrix L ∈ Fn×n and an upper triangular matrix

U ∈ Fn×n such that A = LU . When such matrices exist, we call A = LU an

LU-factorization (a.k.a. LU-decomposition) of A. The benefit of such a fac-

torization is that it allows us to exploit the triangularity of L and U when solving

linear systems having coefficient matrix A.

To see this, suppose that A = LU is an LU-factorization for the matrix A ∈ Fn×n

and that b ∈ Fn is a column vector. (As above, we also assume that none of the

diagonal entries in either L or U is zero.) Furthermore, set y = Ux, where x is the

as yet unknown solution of Ax = b. Then, by substitution, y must satisfy

Ly = b.

Then, since L is lower triangular, we can immediately solve for y via forward sub-

stitution. In other words, we are using the associativity of matrix multiplication

(cf. Theorem A.2.6) in order to conclude that

(A)x = (LU)x = L(Ux) = L(y).

Then, once we have obtained y ∈ Fn, we can apply back substitution in order to

solve for x in the matrix equation

Ux = y.

In general, one can only obtain an LU-factorization for a matrix A ∈ Fn×n when

there exist elementary “row combination” matrices E1, E2, . . . , Ek ∈ Fn×n and an

upper triangular matrix U such that

EkEk−1 · · ·E1A = U.

There are various generalizations of LU-factorization that allow for more than just

elementary “row combinations” matrices in this product, but we do not mention

them here. Instead, we provide a detailed example that illustrates how to obtain an

LU-factorization and then how to use such a factorization in solving linear systems.
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Example A.3.15. Consider the matrix A ∈ F3×3 given by

A =

⎡
⎣2 3 4

4 5 10

4 8 2

⎤
⎦ .

Using the techniques illustrated in Example A.3.5, we have the following matrix

product: ⎡
⎣1 0 0

0 1 0

0 2 1

⎤
⎦
⎡
⎣ 1 0 0

0 1 0

−2 0 1

⎤
⎦
⎡
⎣ 1 0 0

−2 1 0

0 0 1

⎤
⎦
⎡
⎣2 3 4

4 5 10

4 8 2

⎤
⎦ =

⎡
⎣2 3 4

0 −1 3

0 0 −2

⎤
⎦ = U.

In particular, we have found three elementary “row combination” matrices, which,

when multiplied by A, produce an upper triangular matrix U .

Now, in order to produce a lower triangular matrix L such that A = LU , we

rely on two facts about lower triangular matrices. First of all, any lower triangular

matrix with entirely non-zero diagonal is invertible, and, second, the product of

lower triangular matrices is always lower triangular. (Cf. Theorem A.2.7.) More

specifically, we have that⎡
⎣2 3 4

4 5 10

4 8 2

⎤
⎦ =

⎡
⎣ 1 0 0

−2 1 0

0 0 1

⎤
⎦
−1 ⎡
⎣ 1 0 0

0 1 0

−2 0 1

⎤
⎦
−1 ⎡
⎣1 0 0

0 1 0

0 2 1

⎤
⎦
−1 ⎡
⎣2 3 4

0 −1 3

0 0 −2

⎤
⎦ ,

where ⎡
⎣ 1 0 0

−2 1 0

0 0 1

⎤
⎦
−1 ⎡
⎣ 1 0 0

0 1 0

−2 0 1

⎤
⎦
−1 ⎡
⎣1 0 0

0 1 0

0 2 1

⎤
⎦
−1

=

⎡
⎣1 0 0

2 1 0

0 0 1

⎤
⎦
⎡
⎣1 0 0

0 1 0

2 0 1

⎤
⎦
⎡
⎣1 0 0

0 1 0

0 −2 1

⎤
⎦

=

⎡
⎣1 0 0

2 1 0

2 −2 1

⎤
⎦ .

We call the resulting lower triangular matrix L and note that A = LU , as desired.

Now, define x, y, and b by

x =

⎡
⎣x1

x2

x3

⎤
⎦ , y =

⎡
⎣y1y2
y3

⎤
⎦ , and b =

⎡
⎣ 6

16

2

⎤
⎦ .

Applying forward substitution to Ly = b, we obtain the solution

y1 = b1 = 6

y2 = b2 − 2y1 = 4

y3 = b3 − 2y1 + 2y2 = −2

⎫⎬
⎭ .

Then, given this unique solution y to Ly = b, we can apply backward substitution

to Ux = y in order to obtain

2x1 = y1 − 3x2 − 4x3 = 8

−1x2 = y2 − 2x3 = 2

−2x3 = y3 = −2

⎫⎬
⎭ .
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It follows that the unique solution to Ax = b is

x1 = 4

x2 = −2
x3 = 1

⎫⎬
⎭ .

In summary, we have given an algorithm for solving any matrix equation Ax = b

in which A = LU , where L is lower triangular, U is upper triangular, and both L

and U have nothing but non-zero entries along their diagonals.

We note in closing that the simple procedures of back and forward substitution

can also be used for computing the inverses of lower and upper triangular matrices.

E.g., the inverse U = (uij) of the matrix

U−1 =

⎡
⎣2 3 4

0 −1 3

0 0 −2

⎤
⎦

must satisfy⎡
⎣2u11 + 3u21 + 4u31 2u12 + 3u22 + 4u32 2u13 + 3u23 + 4u33

−u21 + 3u31 −u22 + 3u32 −u23 + 3u33

−2u31 −2u32 −2u33

⎤
⎦= U−1U= I3=

⎡
⎣1 0 0

0 1 0

0 0 1

⎤
⎦ ,

from which we obtain the linear system

2u11 +3u21 +4u31 = 1

2u12 +3u22 +4u32 = 0

2u13 +3u23 +4u33 = 0

−u21 +3u31 = 0

−u22 +3u32 = 1

−u23 +3u33 = 0

−2u31 = 0

−2u32 = 0

−2u33 = 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

in the nine variables u11, u12, . . . , u33. Since this linear system has an upper trian-

gular coefficient matrix, we can apply back substitution in order to directly solve

for the entries in U .

The only condition we imposed upon the triangular matrices above was that

all diagonal entries were non-zero. Since the determinant of a triangular matrix is

given by the product of its diagonal entries, this condition is necessary and sufficient

for a triangular matrix to be non-singular. Moreover, once the inverses of both L

and U in an LU-factorization have been obtained, we can immediately calculate the

inverse for A = LU by applying Theorem A.2.9(4):

A−1 = (LU)−1 = U−1L−1.
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A.4 Matrices and linear maps

This section is devoted to illustrating how linear maps are a fundamental tool for

gaining insight into the solutions to systems of linear equations with n unknowns.

Using the tools of Linear Algebra, many familiar facts about systems with two

unknowns can be generalized to an arbitrary number of unknowns without much

effort.

A.4.1 The canonical matrix of a linear map

Let m,n ∈ Z+ be positive integers. Then, given a choice of bases for the vector

spaces Fn and Fm, there is a correspondence between matrices and linear maps.

In other words, as discussed in Section 6.6, every linear map in the set L(Fn,Fm)

uniquely corresponds to exactly one m × n matrix in Fm×n. However, you should

not take this to mean that matrices and linear maps are interchangeable or indistin-

guishable ideas. By itself, a matrix in the set Fm×n is nothing more than a collection

of mn scalars that have been arranged in a rectangular shape. It is only when a

matrix appears in a specific context in which a basis for the underlying vector space

has been chosen, that the theory of linear maps becomes applicable. In particular,

one can gain insight into the solutions of matrix equations when the coefficient ma-

trix is viewed as the matrix associated to a linear map under a convenient choice of

bases for Fn and Fm.

Given a positive integer, k ∈ Z+, one particularly convenient choice of basis

for Fk is the so-called standard basis (a.k.a. the canonical basis) e1, e2, . . . , ek,

where each ei is the k-tuple having zeros for each of its components other than in

the ith position:

ei = (0, 0, . . . , 0, 1, 0, . . . , 0).

↑
i

Then, taking the vector spaces Fn and Fm with their canonical bases, we say that

the matrix A ∈ Fm×n associated to the linear map T ∈ L(Fn,Fm) is the canonical

matrix for T . With this choice of bases we have

T (x) = Ax, ∀x ∈ Fn. (A.5)

In other words, one can compute the action of the linear map upon any vector in

Fn by simply multiplying the vector by the associated canonical matrix A. There

are many circumstances in which one might wish to use non-canonical bases for

either Fn or Fm, but the trade-off is that Equation (A.5) will no longer hold as

stated. (To modify Equation (A.5) for use with non-standard bases, one needs to

use coordinate vectors as described in Chapter 10.)

The utility of Equation (A.5) cannot be over-emphasized. To get a sense of this,

consider once again the generic matrix equation (Equation (A.3))

Ax = b,
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which involves a given matrix A = (aij) ∈ Fm×n, a given vector b ∈ Fm, and the

n-tuple of unknowns x. To provide a solution to this equation means to provide a

vector x ∈ Fn for which the matrix product Ax is exactly the vector b. In light of

Equation (A.5), the question of whether such a vector x ∈ Fn exists is equivalent

to asking whether or not the vector b is in the range of the linear map T .

The encoding of System (A.1) into Equation (A.3) is more than a mere change

of notation. The reinterpretation of Equation (A.3) using linear maps is a genuine

change of viewpoint. Solving System (A.1) (and thus Equation (A.3)) essentially

amounts to understanding how m distinct objects interact in an ambient space of

dimension n. (In particular, solutions to System (A.1) correspond to the points of

intersect of m hyperplanes in Fn.) On the other hand, questions about a linear map

involve understanding a single object, i.e., the linear map itself. Such a point of

view is both extremely flexible and fruitful, as we illustrate in the next section.

A.4.2 Using linear maps to solve linear systems

Encoding a linear system as a matrix equation is more than just a notational trick.

Perhaps most fundamentally, the resulting linear map viewpoint can then be used

to provide clear insight into the exact structure of solutions to the original linear

system. We illustrate this in the following series of revisited examples.

Example A.4.1. Consider the following inhomogeneous linear system from Exam-

ple 1.2.1:

2x1 + x2 = 0

x1 − x2 = 1

}
,

where x1 and x2 are unknown real numbers. To solve this system, we can first form

the matrix A ∈ R2×2 and the column vector b ∈ R2 such that

A

[
x1

x2

]
=

[
2 1

1 −1
] [

x1

x2

]
=

[
0

1

]
= b.

In other words, we have reinterpreted solving the original linear system as asking

when the column vector [
2 1

1 −1
] [

x1

x2

]
=

[
2x1 + x2

x1 − x2

]
is equal to the column vector b. Equivalently, this corresponds to asking what input

vector results in b being an element of the range of the linear map T : R2 → R2

defined by

T

([
x1

x2

])
=

[
2x1 + x2

x1 − x2

]
.

More precisely, T is the linear map having canonical matrix A.

It should be clear that b is in the range of T , since, from Example 1.2.1,

T

([
1/3

−2/3
])

=

[
0

1

]
.
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In addition, note that T is a bijective function. (This can be proven, for example,

by noting that the canonical matrix A for T is invertible.) Since T is bijective, this

means that

x =

[
x1

x2

]
=

[
1/3

−2/3
]

is the only possible input vector that can result in the output vector b, and so we

have verified that x is the unique solution to the original linear system. Moreover,

this technique can be trivially generalized to any number of equations.

Example A.4.2. Consider the matrix A and the column vectors x and b from

Example A.3.5:

A =

⎡
⎣2 5 3

1 2 3

1 0 8

⎤
⎦ , x =

⎡
⎣x1

x2

x3

⎤
⎦ , and b =

⎡
⎣45
9

⎤
⎦ .

Here, asking if the equation Ax = b has a solution is equivalent to asking if b is an

element of the range of the linear map T : F3 → F3 defined by

T

⎛
⎝
⎡
⎣x1

x2

x3

⎤
⎦
⎞
⎠ =

⎡
⎣2x1 + 5x2 + 3x3

x1 + 2x2 + 3x3

2x1 + 8x3

⎤
⎦ .

In order to answer this corresponding question regarding the range of T , we take a

closer look at the following expression obtained in Example A.3.5:

A = E−1
0 E−1

1 · · ·E−1
7 .

Here, we have factored A into the product of eight elementary matrices. From the

linear map point of view, this means that we can apply the results of Section 6.6 in

order to obtain the factorization

T = S0 ◦ S1 ◦ · · · ◦ S7,

where Si is the (invertible) linear map having canonical matrix E−1
i for i = 0, . . . , 7.

This factorization of the linear map T into a composition of invertible linear

maps furthermore implies that T itself is invertible. In particular, T is surjective,

and so b must be an element of the range of T . Moreover, T is also injective, and

so b has exactly one pre-image. Thus, the solution that was found for Ax = b in

Example A.3.5 is unique.

In the above examples, we used the bijectivity of a linear map in order to prove

the uniqueness of solutions to linear systems. As discussed in Section A.3, many

linear systems do not have unique solutions. Instead, there are exactly two other

possibilities: if a linear system does not have a unique solution, then it will either

have no solution or it will have infinitely many solutions. Fundamentally, this is
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because finding solutions to a linear system is equivalent to describing the pre-image

(a.k.a. pullback) of an element in the codomain of a linear map.

In particular, based upon the discussion in Section A.3.2, it should be clear that

solving a homogeneous linear system corresponds to describing the null space of

some corresponding linear map. In other words, given any matrix A ∈ Fm×n, finding

the solution space N to the matrix equation Ax = 0 (as defined in Section A.3.2)

is the same thing as finding null(T ), where T ∈ L(Fn,Fm) is the linear map having

canonical matrix A. (Recall from Section 6.2 that null(T ) is a subspace of Fn.)

Thus, the fact that every homogeneous linear system has the trivial solution then

is equivalent to the fact that the image of the zero vector under any linear map

always results in the zero vector, and determining whether or not the trivial solution

is unique can be viewed as a dimensionality question about the null space of a

corresponding linear map.

We close this section by illustrating this, along with the case for inhomogeneous

systems, in the following examples.

Example A.4.3. The following examples use the same matrices as in Exam-

ple A.3.10.

(1) Consider the matrix equation Ax = b, where A is the matrix given by

A =

⎡
⎢⎢⎣
1 0 0

0 1 0

0 0 1

0 0 0

⎤
⎥⎥⎦

and b ∈ F4 is a column vector. Here, asking if this matrix equation has a

solution corresponds to asking if b is an element of the range of the linear map

T : F3 → F4 defined by

T

⎛
⎝
⎡
⎣x1

x2

x3

⎤
⎦
⎞
⎠ =

⎡
⎢⎢⎣
x1

x2

x3

0

⎤
⎥⎥⎦ .

From the linear map point of view, it should be clear that Ax = b has a solution

if and only if the fourth component of b is zero. In particular, T is not surjective,

so Ax = b cannot have a solution for every possible choice of b.

However, it should also be clear that T is injective, from which null(T ) = {0}.
Thus, when b = 0, the homogeneous matrix equation Ax = 0 has only the

trivial solution, and so we can apply Theorem A.3.12 in order to verify that

Ax = b has a unique solution for any b having fourth component equal to zero.

(2) Consider the matrix equation Ax = b, where A is the matrix given by

A =

⎡
⎢⎢⎣
1 0 1

0 1 1

0 0 0

0 0 0

⎤
⎥⎥⎦
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and b ∈ F4 is a column vector. Here, asking if this matrix equation has a

solution corresponds to asking if b is an element of the range of the linear map

T : F3 → F4 defined by

T

⎛
⎝
⎡
⎣x1

x2

x3

⎤
⎦
⎞
⎠ =

⎡
⎢⎢⎣
x1 + x3

x2 + x3

0

0

⎤
⎥⎥⎦ .

From the linear map point of view, it should be clear that Ax = b has a solution

if and only if the third and fourth components of b are zero. In particular,

2 = dim(range (T )) < dim(F4) = 4 so that T cannot be surjective, and so

Ax = b cannot have a solution for every possible choice of b.

In addition, it should also be clear that T is not injective. E.g.,

T

⎛
⎝
⎡
⎣−1−1

1

⎤
⎦
⎞
⎠ =

⎡
⎢⎢⎣
0

0

0

0

⎤
⎥⎥⎦ .

Thus, {0} � null(T ), and so the homogeneous matrix equation Ax = 0 will

necessarily have infinitely many solutions since dim(null(T )) > 0. Using the

Dimension Formula,

dim(null(T )) = dim(F3)− dim(range (T )) = 3− 2 = 1,

and so the solution space for Ax = 0 is a one-dimensional subspace of F3.

Moreover, by applying Theorem A.3.12, we see that Ax = b must then also

have infinitely many solutions for any b having third and fourth components

equal to zero.

(3) Consider the matrix equation Ax = b, where A is the matrix given by

A =

⎡
⎣1 1 1

0 0 0

0 0 0

⎤
⎦

and b ∈ F3 is a column vector. Here, asking if this matrix equation has a

solution corresponds to asking if b is an element of the range of the linear map

T : F3 → F3 defined by

T

⎛
⎝
⎡
⎣x1

x2

x3

⎤
⎦
⎞
⎠ =

⎡
⎣x1 + x2 + x3

0

0

⎤
⎦ .

From the linear map point of view, it should be extremely clear that Ax = b

has a solution if and only if the second and third components of b are zero. In

particular, 1 = dim(range (T )) < dim(F3) = 3 so that T cannot be surjective,

and so Ax = b cannot have a solution for every possible choice of b.
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In addition, it should also be clear that T is not injective. E.g.,

T

⎛
⎝
⎡
⎣1/21/2

−1

⎤
⎦
⎞
⎠ =

⎡
⎣00
0

⎤
⎦ .

Thus, {0} � null(T ), and so the homogeneous matrix equation Ax = 0 will

necessarily have infinitely many solutions since dim(null(T )) > 0. Using the

Dimension Formula,

dim(null(T )) = dim(F3)− dim(range (T )) = 3− 1 = 2,

and so the solution space for Ax = 0 is a two-dimensional subspace of F3.

Moreover, by applying Theorem A.3.12, we see that Ax = b must then also

have infinitely many solutions for any b having second and third components

equal to zero.

A.5 Special operations on matrices

In this section, we define three important operations on matrices called the trans-

pose, conjugate transpose, and the trace. These will then be seen to interact with

matrix multiplication and invertibility in order to form special classes of matrices

that are extremely important to applications of Linear Algebra.

A.5.1 Transpose and conjugate transpose

Given positive integers m,n ∈ Z+ and any matrix A = (aij) ∈ Fm×n, we define the

transpose AT = ((aT )ij) ∈ Fn×m and the conjugate transpose A∗ = ((a∗)ij) ∈
Fn×m by

(aT )ij = aji and (a∗)ij = aji ,

where aji denotes the complex conjugate of the scalar aji ∈ F. In particular, if

A ∈ Rm×n, then note that AT = A∗.

Example A.5.1. With notation as in Example A.1.3,

AT =
[
3 −1 1

]
, BT =

[
4 0

−1 2

]
, CT =

⎡
⎣ 14
2

⎤
⎦,

DT =

⎡
⎣ 1 −1 3

5 0 2

2 1 4

⎤
⎦, and ET =

⎡
⎣ 6 −1 4

1 1 1

3 2 3

⎤
⎦.

One of the motivations for defining the operations of transpose and conjugate

transpose is that they interact with the usual arithmetic operations on matrices in

a natural manner. We summarize the most fundamental of these interactions in the

following theorem.
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Theorem A.5.2. Given positive integers m,n ∈ Z+ and any matrices A,B ∈
Fm×n,

(1) (AT )T = A and (A∗)∗ = A.

(2) (A+B)T = AT +BT and (A+B)∗ = A∗ +B∗.
(3) (αA)T = αAT and (αA)∗ = αA∗, where α ∈ F is any scalar.

(4) (AB)T = BTAT .

(5) if m = n and A ∈ GL(n,F), then AT , A∗ ∈ GL(n,F) with respective inverses

given by

(AT )−1 = (A−1)T and (A∗)−1 = (A−1)∗.

Another motivation for defining the transpose and conjugate transpose opera-

tions is that they allow us to define several very special classes of matrices.

Definition A.5.3. Given a positive integer n ∈ Z+, we say that the square matrix

A ∈ Fn×n

(1) is symmetric if A = AT .

(2) is Hermitian if A = A∗.
(3) is orthogonal if A ∈ GL(n,R) and A−1 = AT . Moreover, we define the (real)

orthogonal group to be the set O(n) = {A ∈ GL(n,R) | A−1 = AT }.
(4) is unitary if A ∈ GL(n,C) and A−1 = A∗. Moreover, we define the (complex)

unitary group to be the set U(n) = {A ∈ GL(n,C) | A−1 = A∗}.
A lot can be said about these classes of matrices. Both O(n) and U(n), for exam-

ple, form a group under matrix multiplication. Additionally, real symmetric and

complex Hermitian matrices always have real eigenvalues. Moreover, given any ma-

trix A ∈ Rm×n, AAT is a symmetric matrix with real, non-negative eigenvalues.

Similarly, for A ∈ Cm×n, AA∗ is Hermitian with real, non-negative eigenvalues.

A.5.2 The trace of a square matrix

Given a positive integer n ∈ Z+ and any square matrix A = (aij) ∈ Fn×n, we define

the trace of A to be the scalar

trace(A) =
n∑

k=1

akk ∈ F.

Example A.5.4. With notation as in Example A.1.3 above,

trace(B) = 4 + 2 = 6, trace(D) = 1 + 0 + 4 = 5, and trace(E) = 6 + 1 + 3 = 10.

Note, in particular, that the traces of A and C are not defined since these are not

square matrices.

We summarize some of the most basic properties of the trace operation in the

following theorem, including its connection to the transpose operations defined in

the previous section.
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Theorem A.5.5. Given positive integers m,n ∈ Z+ and square matrices A,B ∈
Fn×n,

(1) trace(αA) = α trace(A), for any scalar α ∈ F.

(2) trace(A+B) = trace(A) + trace(B).

(3) trace(AT ) = trace(A) and trace(A∗) = trace(A).

(4) trace(AA∗) =
n∑

k=1

n∑
�=1

|ak�|2. In particular, trace(AA∗) = 0 if and only if A =

0n×n.

(5) trace(AB) = trace(BA). More generally, given matrices A1, . . . , Am ∈ Fn×n,

the trace operation has the so-called cyclic property, meaning that

trace(A1 · · ·Am) = trace(A2 · · ·AmA1) = · · · = trace(AmA1 · · ·Am−1).

Moreover, if we define a linear map T : Fn → Fn by setting T (v) = Av for each

v ∈ Fn and if T has distinct eigenvalues λ1, . . . , λn, then trace(A) =
n∑

k=1

λk.

Exercises for Appendix A

Calculational Exercises

(1) In each of the following, find matrices A, x, and b such that the given system

of linear equations can be expressed as the single matrix equation Ax = b.

(a)

2x1 − 3x2 + 5x3 = 7

9x1 − x2 + x3 = −1
x1 + 5x2 + 4x3 = 0

⎫⎬
⎭ (b)

4x1 − 3x3 + x4 = 1

5x1 + x2 − 8x4 = 3

2x1 − 5x2 + 9x3 − x4 = 0

3x2 − x3 + 7x4 = 2

⎫⎪⎪⎬
⎪⎪⎭

(2) In each of the following, express the matrix equation as a system of linear

equations.

(a)

⎡
⎣ 3 −1 2

4 3 7

−2 1 5

⎤
⎦
⎡
⎣x1

x2

x3

⎤
⎦ =

⎡
⎣ 2

−1
4

⎤
⎦ (b)

⎡
⎢⎢⎣

3 −2 0 1

5 0 2 −2
3 1 4 7

−2 5 1 6

⎤
⎥⎥⎦
⎡
⎢⎢⎣
w

x

y

z

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0

0

0

0

⎤
⎥⎥⎦

(3) Suppose that A, B, C, D, and E are matrices over F having the following sizes:

A is 4× 5, B is 4× 5, C is 5× 2, D is 4× 2, E is 5× 4.

Determine whether the following matrix expressions are defined, and, for those

that are defined, determine the size of the resulting matrix.

(a) BA (b) AC +D (c) AE +B (d) AB +B (e) E(A+B) (f) E(AC)
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(4) Suppose that A, B, C, D, and E are the following matrices:

A =

⎡
⎣ 3 0

−1 2

1 1

⎤
⎦, B =

[
4 −1
0 2

]
, C =

[
1 4 2

3 1 5

]
,

D =

⎡
⎣ 1 5 2

−1 0 1

3 2 4

⎤
⎦, and E =

⎡
⎣ 6 1 3

−1 1 2

4 1 3

⎤
⎦.

Determine whether the following matrix expressions are defined, and, for those

that are defined, compute the resulting matrix.
(a) D + E (b) D − E (c) 5A (d) −7C (e) 2B − C

(f) 2E − 2D (g) −3(D + 2E) (h) A−A (i) AB (j) BA

(k) (3E)D (l) (AB)C (m) A(BC) (n) (4B)C + 2B (o) D − 3E

(p) CA+ 2E (q) 4E −D (r) DD
(5) Suppose that A, B, and C are the following matrices and that a = 4 and b = −7.

A =

⎡
⎣ 1 5 2

−1 0 1

3 2 4

⎤
⎦, B =

⎡
⎣ 6 1 3

−1 1 2

4 1 3

⎤
⎦, and C =

⎡
⎣ 1 5 2

−1 0 1

3 2 4

⎤
⎦ .

Verify computationally that
(a) A+ (B + C) = (A+B) + C (b) (AB)C = A(BC)

(c) (a+ b)C = aC + bC (d) a(B − C) = aB − aC

(e) a(BC) = (aB)C = B(aC) (f) A(B − C) = AB −AC

(g) (B + C)A = BA+ CA (h) a(bC) = (ab)C

(i) B − C = −C +B
(6) Suppose that A is the matrix

A =

[
3 1

2 1

]
.

Compute p(A), where p(z) is given by

(a) p(z) = z − 2 (b) p(z) = 2z2 − z + 1

(c) p(z) = z3 − 2z + 4 (d) p(z) = z2 − 4z + 1
(7) Define matrices A, B, C, D, and E by

A =

[
3 1

2 1

]
, B =

[
4 −1
0 2

]
, C =

⎡
⎣ 2 −3 5

9 −1 1

1 5 4

⎤
⎦,

D =

⎡
⎣ 1 5 2

−1 0 1

3 2 4

⎤
⎦, and E =

⎡
⎣ 6 1 3

−1 1 2

4 1 3

⎤
⎦.

(a) Factor each matrix into a product of elementary matrices and an RREF

matrix.
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(b) Find, if possible, the LU-factorization of each matrix.

(c) Determine whether or not each of these matrices is invertible, and, if pos-

sible, compute the inverse.

(8) Suppose that A, B, C, D, and E are the following matrices:

A =

⎡
⎣ 3 0

−1 2

1 1

⎤
⎦, B =

[
4 −1
0 2

]
, C =

[
1 4 2

3 1 5

]
,

D =

⎡
⎣ 1 5 2

−1 0 1

3 2 4

⎤
⎦, and E =

⎡
⎣ 6 1 3

−1 1 2

4 1 3

⎤
⎦.

Determine whether the following matrix expressions are defined, and, for those

that are defined, compute the resulting matrix.
(a) 2AT + C (b) DT − ET (c) (D − E)T

(d) BT + 5CT (e) 1
2C

T − 1
4A (f) B −BT

(g) 3ET − 3DT (h) (2ET − 3DT )T (i) CCT

(j) (DA)T (k) (CTB)AT (l) (2DT − E)A

(m) (BAT − 2C)T (n) BT (CCT −ATA) (o) DTET − (ED)T

(p) trace(DDT ) (q) trace(4ET −D) (r) trace(CTAT + 2ET )

Proof-Writing Exercises

(1) Let n ∈ Z+ be a positive integer and ai,j ∈ F be scalars for i, j = 1, . . . , n.

Prove that the following two statements are equivalent:

(a) The trivial solution x1 = · · · = xn = 0 is the only solution to the homoge-

neous system of equations

n∑
k=1

a1,kxk = 0

...
n∑

k=1

an,kxk = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

.

(b) For every choice of scalars c1, . . . , cn ∈ F, there is a solution to the system

of equations

n∑
k=1

a1,kxk = c1

...
n∑

k=1

an,kxk = cn

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

.
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(2) Let A and B be any matrices.

(a) Prove that if both AB and BA are defined, then AB and BA are both

square matrices.

(b) Prove that if A has size m×n and ABA is defined, then B has size n×m.

(3) Suppose that A is a matrix satisfying ATA = A. Prove that A is then a

symmetric matrix and that A = A2.

(4) Suppose A is an upper triangular matrix and that p(z) is any polynomial. Prove

or give a counterexample: p(A) is a upper triangular matrix.
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Appendix B

The Language of Sets and Functions

All of mathematics can be seen as the study of relations between collections of

objects by rigorous rational arguments. More often than not the patterns in those

collections and their relations are more important than the nature of the objects

themselves. The power of mathematics has a lot to do with bringing patterns to the

forefront and abstracting from the “real” nature of the objects. In mathematics, the

collections are usually called sets and the objects are called the elements of the set.

Functions are the most common type of relation between sets and their elements.

It is therefore important to develop a good understanding of sets and functions

and to know the vocabulary used to define sets and functions and to discuss their

properties.

B.1 Sets

A set is an unordered collection of distinct objects, which we call its elements. A

set is uniquely determined by its elements. If an object a is an element of a set A,

we write a ∈ A, and say that a belongs to A or that A contains a. The negation of

this statement is written as a �∈ A, i.e., a is not an element of A. Note that both

statements cannot be true at the same time.

If A and B are sets, they are identical (this means one and the same set), which

we write as A = B, if they have exactly the same elements. In other words, A = B

if and only if for all a ∈ A we have a ∈ B, and for all b ∈ B we have b ∈ A.

Equivalently, A �= B if and only if there is a difference in their elements: there

exists a ∈ A such that a �∈ B or there exists b ∈ B such that b �∈ A.

Example B.1.1. We start with the simplest examples of sets.

(1) The empty set (a.k.a. the null set), is what it sounds like: the set with no

elements. We usually denote it by ∅ or sometimes by { }. The empty set, ∅,
is uniquely determined by the property that for all x we have x �∈ ∅. Clearly,

there is exactly one empty set.

(2) Next up are the singletons. A singleton is a set with exactly one element. If

171
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that element is x we often write the singleton containing x as {x}. In spoken

language, ‘the singleton x’ actually means the set {x} and should always be

distinguished from the element x: x �= {x}. A set can be an element of another

set but no set is an element of itself (more precisely, we adopt this as an axiom).

E.g., {{x}} is the singleton of which the unique element is the singleton {x}.
In particular we also have {x} �= {{x}}.

(3) One standard way of denoting sets is by listing its elements. E.g., the set

{α, β, γ} contains the first three lower case Greek letters. The set is completely

determined by what is in the list. The order in which the elements are listed

is irrelevant. So, we have {α, γ, β} = {γ, β, α} = {α, β, γ}, etc. Since a set

cannot contain the same element twice (elements are distinct) the only reason-

able meaning of something like {α, β, α, γ} is that it is the same as {α, β, γ}.
Since x �= {x}, {x, {x}} is a set with two elements. Anything can be considered

as an element of a set and there is not any kind of relation required between

the elements in a set. E.g., the word ‘apple’ and the element uranium and the

planet Pluto can be the three elements of a set. There is no restriction on the

number of different sets a given element can belong to, except for the rule that

a set cannot be an element of itself.

(4) The number of elements in a set may be infinite. E.g., Z, R, and C, denote the

sets of all integer, real, and complex numbers, respectively. It is not required

that we can list all elements.

When introducing a new set (new for the purpose of the discussion at hand) it is

crucial to define it unambiguously. It is not required that from a given definition of

a set A, it is easy to determine what the elements of A are, or even how many there

are, but it should be clear that, in principle, there is a unique and unambiguous

answer to each question of the form “is x an element of A?”. There are several

common ways to define sets. Here are a few examples.

Example B.1.2.

(1) The simplest way is a generalization of the list notation to infinite lists that can

be described by a pattern. E.g., the set of positive integers N = {1, 2, 3, . . .}.
The list can be allowed to be bi-directional, as in the set of all integers

Z = {. . . ,−2,−1, 0, 1, 2, . . .}. Note the use of triple dots . . . to indicate the

continuation of the list.

(2) The so-called set builder notation gives more options to describe the mem-

bership of a set. E.g., the set of all even integers, often denote by 2Z, is defined

by

2Z = {2a | a ∈ Z} .
Instead of the vertical bar, |, a colon, :, is also commonly used. For example,

the open interval of the real numbers strictly between 0 and 1 is defined by

(0, 1) = {x ∈ R : 0 < x < 1}.
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B.2 Subset, union, intersection, and Cartesian product

Definition B.2.1. Let A and B be sets. B is a subset of A, denoted by B ⊂ A,

if and only if for all b ∈ B we have b ∈ A. If B ⊂ A and B �= A, we say that B is a

proper subset of A.

If B ⊂ A, one also says that B is contained in A, or that A contains B, which is

sometimes denoted by A ⊃ B. The relation ⊂ is called inclusion. If B is a proper

subset of A the inclusion is said to be strict. To emphasize that an inclusion is not

necessarily strict, the notation B ⊆ A can be used but note that its mathematical

meaning is identical to B ⊂ A. Strict inclusion is sometimes denoted by B � A,

but this is less common.

Example B.2.2. The following relations between sets are easy to verify:

(1) We have N ⊂ Z ⊂ Q ⊂ R ⊂ C, and all these inclusions are strict.

(2) For any set A, we have ∅ ⊂ A, and A ⊂ A.

(3) (0, 1] ⊂ (0, 2).

(4) For 0 < a ≤ b, [−a, a] ⊂ [−b, b]. The inclusion is strict if a < b.

In addition to constructing sets directly, sets can also be obtained from other

sets by a number of standard operations. The following definition introduces the

basic operations of taking the union, intersection, and difference of sets.

Definition B.2.3. Let A and B be sets. Then

(1) The union of A and B, denoted by A ∪B, is defined by

A ∪B = {x | x ∈ A or x ∈ B}.
(2) The intersection of A and B, denoted by A ∩B, is defined by

A ∩B = {x | x ∈ A and x ∈ B}.
(3) The set difference of B from A, denoted by A \B, is defined by

A \B = {x | x ∈ A and x /∈ B}.
Often, the context provides a ‘universe’ of all possible elements pertinent to a

given discussion. Suppose, we have given such a set of ‘all’ elements and let us call

it U . Then, the complement of a set A, denoted by Ac, is defined as Ac = U \A.

In the following theorem the existence of a universe U is tacitly assumed.

Theorem B.2.4. Let A, B, and C be sets. Then

(1) (distributivity) A∩(B∪C) = (A∩B)∪(A∩C) and A∪(B∩C) = (A∪B)∩(A∪C).

(2) (De Morgan’s Laws) (A ∪B)c = Ac ∩Bc and (A ∩B)c = Ac ∪Bc.

(3) (relative complements) A \ (B ∪ C) = (A \ B) ∩ (A \ C) and A \ (B ∩ C) =

(A \B) ∪ (A \ C).
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To familiarize yourself with the basic properties of sets and the basic operations

of sets, it is a good exercise to write proofs for the three properties stated in the

theorem.

The so-called Cartesian product of sets is a powerful and ubiquitous method

to construct new sets out of old ones.

Definition B.2.5. Let A and B be sets. Then the Cartesian product of A and

B, denoted by A × B, is the set of all ordered pairs (a, b), with a ∈ A and b ∈ B.

In other words,

A×B = {(a, b) | a ∈ A, b ∈ B} .
An important example of this construction is the Euclidean plane R2 = R×R. It

is not an accident that x and y in the pair (x, y) are called the Cartesian coordinates

of the point (x, y) in the plane.

B.3 Relations

In this section we introduce two important types of relations: order relations and

equivalence relations. A relation R between elements of a set A and elements of

a set B is a subset of their Cartesian product: R ⊂ A× B. When A = B, we also

call R simply a relation on A.

Let A be a set and R a relation on A. Then,

• R is called reflexive if for all a ∈ A, (a, a) ∈ R.

• R is called symmetric if for all a, b ∈ A, if (a, b) ∈ R then (b, a) ∈ R.

• R is called antisymmetric if for all a, b ∈ A such that (a, b) ∈ R and (b, a) ∈ R,

a = b.

• R is called transitive if for all a, b, c ∈ A such (a, b) ∈ R and (b, c) ∈ R, we

have (a, c) ∈ R.

Definition B.3.1. Let R be a relation on a set A. R is an order relation if R

is reflexive, antisymmetric, and transitive. R is an equivalence relation if R is

reflexive, symmetric, and transitive.

The notion of subset is an example of an order relation. To see this, first define

the power set of a set A as the set of all its subsets. It is often denoted by P(A).

So, for any set A, P(A) = {B : B ⊂ A}. Then, the inclusion relation is defined as

the relation R by setting

R = {(B,C) ∈ P(A)× P(A) | B ⊂ C}.
Important relations, such as the subset relation, are given a convenient notation of

the form a <symbol> b, to denote (a, b) ∈ R. The symbol for the inclusion relation

is ⊂.
Proposition B.3.2. Inclusion is an order relation. Explicitly,
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(1) (reflexive) For all B ∈ P(A), B ⊂ B.

(2) (antisymmetric) For all B,C ∈ P(A), if B ⊂ C and C ⊂ B, then B = C.

(3) (transitive) For all B,C,D ∈ P(A), if B ⊂ C and C ⊂ D, then B ⊂ D.

Write a proof of this proposition as an exercise.

For any relation R ⊂ A×B, the inverse relation, R−1 ⊂ B ×A, is defined by

R−1 = {(b, a) ∈ B ×A | (a, b) ∈ R}.

B.4 Functions

Let A and B be sets. A function with domain A and codomain B, denoted by

f : A→ B, is a relation between the elements of A and B satisfying the properties:

for all a ∈ A, there is a unique b ∈ B such that (a, b) ∈ f . The symbol used to

denote a function as a relation is an arrow: (a, b) ∈ f is written as a → b (often

also a �→ b). It is not necessary, and a bit cumbersome, to remind ourselves that

functions are a special kind of relation and a more convenient notation is used all

the time: f(a) = b. If f is a function we then have, by definition, f(a) = b and

f(a) = c implies b = c. In other words, for each a ∈ A, there is exactly one b ∈ B

such that f(a) = b. b is called the image of a under f . When A and B are sets of

numbers, a is sometimes referred to as the argument of the function and b = f(a)

is often referred to as the value of f in a.

The requirement that there is an image b ∈ B for all a ∈ A is sometimes relaxed

in the sense that the domain of the function is a, sometimes not explicitly specified,

subset of A. It is important to remember, however, that a function is not properly

defined unless we have also given its domain.

When we consider the graph of a function, we are relying on the definition of a

function as a relation. The graph G of a function f : A→ B is the subset of A×B

defined by

G = {(a, f(a)) | a ∈ A}.
The range of a function f : A → B, denoted by range (f), or also f(A), is the

subset of its codomain consisting of all b ∈ B that are the image of some a ∈ A:

range (f) = {b ∈ B | there exists a ∈ A such that f(a) = b}.
The pre-image of b ∈ B is the subset of all a ∈ A that have b as their image. This

subset is often denoted by f−1(b).

f−1(b) = {a ∈ A | f(a) = b}.
Note that f−1(b) = ∅ if and only if b ∈ B \ range (f).

Functions of various kinds are ubiquitous in mathematics and a large vocabulary

has developed, some of which is redundant. The term map is often used as an

alternative for function and when the domain and codomain coincide the term
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transformation is often used instead of function. There is a large number of terms

for functions in a particular context with special properties. The three most basic

properties are given in the following definition.

Definition B.4.1. Let f : A→ B be a function. Then we call f

(1) injective (f is an injection) if f(a) = f(b) implies a = b. In other words, no

two elements of the domain have the same image. An injective function is also

called one-to-one.

(2) surjective (f is a surjection if range (f) = B. In other words, each b ∈ B is

the image of at least one a ∈ A. Such a function is also called onto.

(3) bijective (f is a bijection) if f is both injective and surjective, i.e., one-to-

one and onto. This means that f gives a one-to-one correspondence between

all elements of A and all elements of B.

Let f : A → B and g : B → C be two functions so that the codomain of f

coincides with the domain of g. Then, the composition ‘g after f ’, denoted by

g ◦ f , is the function g ◦ f : A→ C, defined by a �→ g(f(a)).

For every set A, we define the identity map, which we will denote here by idA
or id for short. idA : A → A is defined by idA(a) = a for all a ∈ A. Clearly, idA is

a bijection.

If f is a bijection, it is invertible, i.e., the inverse relation is also a function,

denoted by f−1. It is the unique bijection B → A such that f−1 ◦ f = idA and

f ◦ f−1 = idB .

Proposition B.4.2. Let f : A → B and g : B → C be bijections. Then, their

composition g ◦ f is a bijection and

(g ◦ f)−1 = f−1 ◦ g−1.

Prove this proposition as an exercise.
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Summary of Algebraic Structures
Encountered

Loosely speaking, an algebraic structure is any set upon which “arithmetic-

like” operations have been defined. The importance of such structures in abstract

mathematics cannot be overstated. By recognizing a given set S as an instance of

a well-known algebraic structure, every result that is known about that abstract

algebraic structure is then automatically also known to hold for S. This utility is,

in large part, the main motivation behind abstraction.

Before reviewing the algebraic structures that are most important to the study

of Linear Algebra, we first carefully define what it means for an operation to be

“arithmetic-like”.

C.1 Binary operations and scaling operations

When we are presented with the set of real numbers, say S = R, we expect a great

deal of “structure” given on S. E.g., given any two real numbers r1, r2 ∈ R, one

can form the sum r1 + r2, the difference r1 − r2, the product r1r2, the quotient

r1/r2 (assuming r2 �= 0), the maximum max{r1, r2}, the minimum min{r1, r2}, the
average (r1 + r2)/2, and so on. Each of these operations follows the same pattern:

take two real numbers and “combine” (or “compare”) them in order to form a new

real number. Such operations are called binary operations. In general, a binary

operation on an arbitrary non-empty set is defined as follows.

Definition C.1.1. A binary operation on a non-empty set S is any function

that has as its domain S × S and as its codomain S.

In other words, a binary operation on S is any rule f : S × S → S that assigns

exactly one element f(s1, s2) ∈ S to each pair of elements s1, s2 ∈ S. We illustrate

this definition in the following examples.

Example C.1.2.

(1) Addition, subtraction, and multiplication are all examples of familiar binary

177
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operations on R. Formally, one would denote these by something like

+ : R× R→ R, − : R× R→ R, and ∗ : R× R→ R, respectively.

Then, given two real numbers r1, r2 ∈ R, we would denote their sum by

+(r1, r2), their difference by −(r1, r2), and their product by ∗(r1, r2). (E.g.,

+(17, 32) = 49, −(17, 32) = −15, and ∗(17, 32) = 544.) However, this level

of notational formality can be rather inconvenient, and so we often resort to

writing +(r1, r2) as the more familiar expression r1 + r2, −(r1, r2) as r1 − r2,

and ∗(r1, r2) as either r1 ∗ r2 or r1r2.

(2) The division function ÷ : R×(R \ {0})→ R is not a binary operation on R since

it does not have the proper domain. However, division is a binary operation on

R \ {0}.
(3) Other binary operations on R include the maximum function max : R×R→ R,

the minimum function min : R × R → R, and the average function (· + ·)/2 :

R× R→ R.

(4) An example of a binary operation f on the set S = {Alice, Bob, Carol} is given
by

f(s1, s2) =

{
s1 if s1 alphabetically precedes s2,

Bob otherwise.

This is because the only requirement for a binary operation is that exactly one

element of S is assigned to every ordered pair of elements (s1, s2) ∈ S × S.

Even though one could define any number of binary operations upon a given

non-empty set, we are generally only interested in operations that satisfy additional

“arithmetic-like” conditions. In other words, the most interesting binary operations

are those that share the salient properties of common binary operations like addition

and multiplication on R. We make this precise with the definition of a “group” in

Section C.2.

In addition to binary operations defined on pairs of elements in the set S, one

can also define operations that involve elements from two different sets. Here is an

important example.

Definition C.1.3. A scaling operation (a.k.a. external binary operation) on

a non-empty set S is any function that has as its domain F×S and as its codomain

S, where F denotes an arbitrary field. (As usual, you should just think of F as being

either R or C.)

In other words, a scaling operation on S is any rule f : F × S → S that assigns

exactly one element f(α, s) ∈ S to each pair of elements α ∈ F and s ∈ S. As such,

f(α, s) is often written simply as αs. We illustrate this definition in the following

examples.
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Example C.1.4.

(1) Scalar multiplication of n-tuples in Rn is probably the most familiar scaling

operation. Formally, scalar multiplication on Rn is defined as the following

function:

(α, (x1, . . . , xn)) �−→ α(x1, . . . , xn) = (αx1, . . . , αxn), ∀α ∈ R, ∀ (x1, . . . , xn) ∈ Rn.

In other words, given any α ∈ R and any n-tuple (x1, . . . , xn) ∈ Rn, their scalar

multiplication results in a new n-tuple denoted by α(x1, . . . , xn). This new

n-tuple is virtually identical to the original, each component having just been

“rescaled” by α.

(2) Scalar multiplication of continuous functions is another familiar scaling oper-

ation. Given any real number α ∈ R and any function f ∈ C(R), their scalar

multiplication results in a new function that is denoted by αf , where αf is

defined by the rule

(αf)(r) = α(f(r)), ∀ r ∈ R.

In other words, this new continuous function αf ∈ C(R) is virtually identical to

the original function f ; it just “rescales” the image of each r ∈ R under f by α.

(3) The division function ÷ : R× (R \ {0})→ R is a scaling operation on R \ {0}.
In particular, given two real numbers r1, r2 ∈ R and any non-zero real number

s ∈ R \ {0}, we have that ÷(r1, s) = r1(1/s) and ÷(r2, s) = r2(1/s), and so

÷(r1, s) and ÷(r2, s) can be viewed as different “scalings” of the multiplicative

inverse 1/s of s.

This is actually a special case of the previous example. In particular, we can

define a function f ∈ C(R \ {0}) by f(s) = 1/s, for each s ∈ R \ {0}. Then,

given any two real numbers r1, r2 ∈ R, the functions r1f and r2f can be defined

by

r1f(·) = ÷(r1, ·) and r2f(·) = ÷(r2, ·), respectively.

(4) Strictly speaking, there is nothing in the definition that precludes S from

equalling F. Consequently, addition, subtraction, and multiplication can all

be seen as examples of scaling operations on R.

As with binary operations, it is easy to define any number of scaling operations

upon a given non-empty set S. However, we are generally only interested in op-

erations that are essentially like scalar multiplication on Rn, and it is also quite

common to additionally impose conditions for how scaling operations should inter-

act with any binary operations that might also be defined upon S. We make this

precise when we present an alternate formulation of the definition for a vector space

in Section C.2.
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C.2 Groups, fields, and vector spaces

We begin this section with the following definition, which is one of the most funda-

mental and ubiquitous algebraic structures in all of mathematics.

Definition C.2.1. Let G be a non-empty set, and let ∗ be a binary operation on

G. (In other words, ∗ : G × G → G is a function with ∗(a, b) denoted by a ∗ b, for
each a, b ∈ G.) Then G is said to form a group under ∗ if the following three

conditions are satisfied:

(1) (associativity) Given any three elements a, b, c ∈ G,

(a ∗ b) ∗ c = a ∗ (b ∗ c).
(2) (existence of an identity element) There is an element e ∈ G such that, given

any element a ∈ G,

a ∗ e = e ∗ a = a.

(3) (existence of inverse elements) Given any element a ∈ G, there is an element

b ∈ G such that

a ∗ b = b ∗ a = e.

You should recognize these three conditions (which are sometimes collectively

referred to as the group axioms) as properties that are satisfied by the operation of

addition on R. This is not an accident. In particular, given real numbers α, β ∈ R,

the group axioms form the minimal set of assumptions needed in order to solve the

equation x+ α = β for the variable x, and it is in this sense that the group axioms

are an abstraction of the most fundamental properties of addition of real numbers.

A similar remark holds regarding multiplication on R \ {0} and solving the

equation αx = β for the variable x. Note, however, that this cannot be extended

to all of R.

The familiar property of addition of real numbers that a+ b = b+ a, is not part

of the group axioms. When it holds in a given group G, the following definition

applies.

Definition C.2.2. Let G be a group under binary operation ∗. Then G is called an

abelian group (a.k.a. commutative group) if, given any two elements a, b ∈ G,

a ∗ b = b ∗ a.
We now give some of the more important examples of groups that occur in Linear

Algebra, but note that these examples far from exhaust the variety of groups studied

in other branches of mathematics.
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Example C.2.3.

(1) If G ∈ {Z, Q, R, C}, then G forms an abelian group under the usual definition

of addition.

Note, though, that the set Z+ of positive integers does not form a group under

addition since, e.g., it does not contain an additive identity element.

(2) Similarly, if G ∈ {Q \ {0}, R \ {0}, C \ {0}}, then G forms an abelian group

under the usual definition of multiplication.

Note, though, that Z \ {0} does not form a group under multiplication since

only ±1 have multiplicative inverses.

(3) If m,n ∈ Z+ are positive integers and F denotes either R or C, then the set

Fm×n of all m× n matrices forms an abelian group under matrix addition.

Note, though, that Fm×n does not form a group under matrix multiplication

unless m = n = 1, in which case F1×1 = F.

(4) Similarly, if n ∈ Z+ is a positive integer and F denotes either R or C, then the set

GL(n,F) of invertible n×nmatrices forms a group under matrix multiplications.

This group, which is often called the general linear group, is non-abelian

when n ≥ 2.

Note, though, that GL(n,F) does not form a group under matrix addition for

any choice of n since, e.g., the zero matrix 0n×n /∈ GL(n,F).

In the above examples, you should notice two things. First of all, it is important

to specify the operation under which a set might or might not be a group. Second,

and perhaps more importantly, all but one example is an abelian group. Most

of the important sets in Linear Algebra possess some type of algebraic structure,

and abelian groups are the principal building block of virtually every one of these

algebraic structures. In particular, fields and vector spaces (as defined below) and

rings and algebra (as defined in Section C.3) can all be described as “abelian groups

plus additional structure”.

Given an abelian group G, adding “additional structure” amounts to imposing

one or more additional operations on G such that each new operation is “compat-

ible” with the preexisting binary operation on G. As our first example of this, we

add another binary operation to G in order to obtain the definition of a field:

Definition C.2.4. Let F be a non-empty set, and let + and ∗ be binary operations

on F . Then F forms a field under + and ∗ if the following three conditions are

satisfied:

(1) F forms an abelian group under +.

(2) Denoting the identity element for + by 0, F \{0} forms an abelian group under

∗.
(3) (∗ distributes over +) Given any three elements a, b, c ∈ F ,

a ∗ (b+ c) = a ∗ b+ a ∗ c.
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You should recognize these three conditions (which are sometimes collectively

referred to as the field axioms) as properties that are satisfied when the operations

of addition and multiplication are taken together on R. This is not an accident. As

with the group axioms, the field axioms form the minimal set of assumptions needed

in order to abstract fundamental properties of these familiar arithmetic operations.

Specifically, the field axioms guarantee that, given any field F , three conditions are

always satisfied:

(1) Given any a, b ∈ F , the equation x+ a = b can be solved for the variable x.

(2) Given any a ∈ F \ {0} and b ∈ F , the equation a ∗ x = b can be solved for x.

(3) The binary operation ∗ (which is like multiplication on R) can be distributed

over (i.e., is “compatible” with) the binary operation + (which is like addition

on R).

Example C.2.5. It should be clear that, if F ∈ {Q, R, C}, then F forms a field

under the usual definitions of addition and multiplication.

Note, though, that the set Z of integers does not form a field under these oper-

ations since Z \ {0} fails to form a group under multiplication. Similarly, none of

the other sets from Example C.2.3 can be made into a field.

The fields Q, R, and C are familiar as commonly used number systems. There

are many other interesting and useful examples of fields, but those will not be used

in this book.

We close this section by introducing a special type of scaling operation called

scalar multiplication. Recall that F can be replaced with either R or C.

Definition C.2.6. Let S be a non-empty set, and let ∗ be a scaling operation on

S. (In other words, ∗ : F × S → S is a function with ∗(α, s) denoted by α ∗ s or

even just αs, for every α ∈ F and s ∈ S.) Then ∗ is called scalar multiplication

if it satisfies the following two conditions:

(1) (existence of a multiplicative identity element for ∗) Denote by 1 the multiplica-

tive identity element for F. Then, given any s ∈ S, 1 ∗ s = s.

(2) (multiplication in F is quasi-associative with respect to ∗) Given any α, β ∈ F

and any s ∈ S,

(αβ) ∗ s = α ∗ (β ∗ s).

Note that we choose to have the multiplicative part of F “act” upon S because

we are abstracting scalar multiplication as it is intuitively defined in Example C.1.4

on both Rn and C(R). This is because, by also requiring a “compatible” additive

structure (called vector addition), we obtain the following alternate formulation

for the definition of a vector space.

Definition C.2.7. Let V be an abelian group under the binary operation +, and

let ∗ be a scalar multiplication operation on V with respect to F. Then V forms
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a vector space over F with respect to + and ∗ if the following two conditions are

satisfied:

(1) (∗ distributes over +) Given any α ∈ F and any u, v ∈ V ,

α ∗ (u+ v) = α ∗ u+ α ∗ v.
(2) (∗ distributes over addition in F) Given any α, β ∈ F and any v ∈ V ,

(α+ β) ∗ v = α ∗ v + β ∗ v.

C.3 Rings and algebras

In this section, we briefly mention two other common algebraic structures. Specif-

ically, we first “relax” the definition of a field in order to define a ring, and we

then combine the definitions of ring and vector space in order to define an alge-

bra. Groups, rings, and fields are the most fundamental algebraic structures, with

vector spaces and algebras being particularly important within the study of Linear

Algebra and its applications.

Definition C.3.1. Let R be a non-empty set, and let + and ∗ be binary operations

on R. Then R forms an (associative) ring under + and ∗ if the following three

conditions are satisfied:

(1) R forms an abelian group under +.

(2) (∗ is associative) Given any three elements a, b, c ∈ R, a ∗ (b ∗ c) = (a ∗ b) ∗ c.
(3) (∗ distributes over +) Given any three elements a, b, c ∈ R,

a ∗ (b+ c) = a ∗ b+ a ∗ c and (a+ b) ∗ c = a ∗ c+ b ∗ c.

As with the definition of group, there are many additional properties that can be

added to a ring; here, each additional property makes a ring more field-like in some

way.

Definition C.3.2. Let R be a ring under the binary operations + and ∗. Then we

call R

• commutative if ∗ is a commutative operation; i.e., given any a, b ∈ R, a ∗ b =
b ∗ a.

• unital if there is an identity element for ∗; i.e., if there exists an element i ∈ R

such that, given any a ∈ R, a ∗ i = i ∗ a = a.

• a commutative ring with identity (a.k.a. CRI) if it is both commutative

and unital.

In particular, note that a commutative ring with identity is almost a field; the

only thing missing is the assumption that every element has a multiplicative inverse.

It is this one difference that results in many familiar sets being CRIs (or at least
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unital rings) but not fields. E.g., Z is a CRI under the usual operations of addition

and multiplication, yet, because of the lack of multiplicative inverses for all elements

except ±1, Z is not a field.

In some sense, Z is the prototypical example of a ring, but there are many other

familiar examples. E.g., if F is any field, then the set of polynomials F [z] with

coefficients from F is a CRI under the usual operations of polynomial addition and

multiplication, but again, because of the lack of multiplicative inverses for every

element, F [z] is itself not a field. Another important example of a ring comes from

Linear Algebra. Given any vector space V , the set L(V ) of all linear maps from V

into V is a unital ring under the operations of function addition and composition.

However, L(V ) is not a CRI unless dim(V ) ∈ {0, 1}.
Alternatively, if a ring R forms a group under ∗ (but not necessarily an abelian

group), then R is sometimes called a skew field (a.k.a. division ring). Note that

a skew field is also almost a field; the only thing missing is the assumption that

multiplication is commutative. Unlike CRIs, though, there are no simple examples

of skew fields that are not also fields.

We close this section by defining the concept of an algebra over a field. In

essence, an algebra is a vector space together with a “compatible” ring structure.

Consequently, anything that can be done with either a ring or a vector space can

also be done with an algebra.

Definition C.3.3. Let A be a non-empty set, let + and × be binary operations

on A, and let ∗ be scalar multiplication on A with respect to F. Then A forms an

(associative) algebra over F with respect to +, ×, and ∗ if the following three

conditions are satisfied:

(1) A forms an (associative) ring under + and ×.
(2) A forms a vector space over F with respect to + and ∗.
(3) (∗ is quasi-associative and homogeneous with respect to ×) Given any element

α ∈ F and any two elements a, b ∈ R,

α ∗ (a× b) = (α ∗ a)× b and α ∗ (a× b) = a× (α ∗ b).
Two particularly important examples of algebras were already defined above:

F [z] (which is unital and commutative) and L(V ) (which is, in general, just unital).

On the other hand, there are also many important sets in Linear Algebra that are

not algebras. E.g., Z is a ring that cannot easily be made into an algebra, and R3

is a vector space but cannot easily be made into a ring (note that the cross product

operation from Vector Calculus is not associative).
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Some Common Mathematical Symbols
and Abbreviations
(with History)

This Appendix contains a list of common mathematical symbols as well as a list of

common Latin abbreviations and phrases. While you will not necessarily need all

of the included symbols for your study of Linear Algebra, this list will give you an

idea of where much of our modern mathematical notation comes from.

Binary Relations

= (the equals sign) means “is the same as” and was first introduced in the 1557

book The Whetstone of Witte by physician and mathematician Robert Recorde

(c. 1510–1558). He wrote, “I will sette as I doe often in woorke use, a paire of

parralles, or Gemowe lines of one lengthe, thus: =====, bicause noe 2 thynges

can be moare equalle.” (Recorde’s equals sign was significantly longer than the

one in modern usage and is based upon the idea of “Gemowe” or “identical”

lines, where “Gemowe” means “twin” and comes from the same root as the

name of the constellation “Gemini”.)

Robert Recorde also introduced the plus sign, “+”, and the minus sign, “−”,
in The Whetstone of Witte.

< (the less than sign) means “is strictly less than”, and > (the greater than

sign) means “is strictly greater than”. These first appeared in the book Ar-

tis Analyticae Praxis ad Aequationes Algebraicas Resolvendas (“The Analyti-

cal Arts Applied to Solving Algebraic Equations”) by mathematician and as-

tronomer Thomas Harriot (1560–1621), which was published posthumously in

1631.

Pierre Bouguer (1698–1758) later refined these to ≤ (“is less than or equals”)

and ≥ (“is greater than or equals”) in 1734. Bouger is sometimes called “the

father of naval architecture” due to his foundational work in the theory of naval

navigation.

:= (the equal by definition sign) means “is equal by definition to”. This is a

common alternate form of the symbol “=Def”, the latter having first appeared in

the 1894 book Logica Matematica by logician Cesare Burali-Forti (1861–1931).

185
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Other common alternate forms of the symbol “=Def” include “
def
=” and “≡”,

with “≡” being especially common in applied mathematics.

≈ (the approximately equals sign) means “is approximately equal to” and

was first introduced in the 1892 book Applications of Elliptic Functions by

mathematician Alfred Greenhill (1847–1927).

Other modern symbols for “approximately equals” include “
.
=” (read as “is

nearly equal to”), “∼=” (read as “is congruent to”), “�” (read as “is similar to”),

“ ” (read as “is asymptotically equal to”), and “∝” (read as “is proportional

to”). Usage varies, and these are sometimes used to denote varying degrees of

“approximate equality” within a given context.

Some Symbols from Mathematical Logic

∴ (three dots) means “therefore” and first appeared in print in the 1659 book

Teusche Algebra (“Teach Yourself Algebra”) by mathematician Johann Rahn

(1622–1676).

Teusche Algebra also contains the first use of the obelus, “÷”, to denote

division.

∵ (upside-down dots) means “because” and seems to have first appeared in

the 1805 book The Gentleman’s Mathematical Companion. However, it is

much more common (and less ambiguous) to just abbreviate “because” as

“b/c”.

" (the such that sign) means “under the condition that” and first appeared

in the 1906 edition of Formulaire de mathématiques by the logician Giuseppe

Peano (1858–1932). However, it is much more common (and less ambiguous)

to just abbreviate “such that” as “s.t.”.

There are two good reasons to avoid using “"” in place of “such that”. First

of all, the abbreviation “s.t.” is significantly more suggestive of its meaning

than is “"”. More importantly, the symbol “"” is now commonly used to

mean “contains as an element”, which is a logical extension of the usage of

the standard symbol “∈” to mean “is contained as an element in”.

⇒ (the implies sign) means “logically implies that”, and ⇐ (the is implied

by sign) means “is logically implied by”. Both have an unclear historical

origin. (E.g., “if it’s raining, then it’s pouring” is equivalent to saying “it’s

raining ⇒ it’s pouring.”)

⇐⇒ (the iff symbol) means “if and only if” (abbreviated “iff”) and is used to

connect two logically equivalent mathematical statements. (E.g., “it’s raining

iff it’s pouring” means simultaneously that “if it’s raining, then it’s pouring”

and that “if it’s pouring, then it’s raining”. In other words, the statement

“it’s raining ⇐⇒ it’s pouring” means simultaneously that “it’s raining ⇒
it’s pouring” and “it’s raining ⇐ it’s pouring”.)

The abbreviation “iff” is attributed to the mathematician Paul Halmos
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(1916–2006).

∀ (the universal quantifier) means “for all” and was first used in the 1935

publication Untersuchungen über das logische Schliessen (“Investigations on

Logical Reasoning”) by logician Gerhard Gentzen (1909–1945). He called it

the All-Zeichen (“all character”) by analogy to the symbol “∃”, which means

“there exists”.

∃ (the existential quantifier) means “there exists” and was first used in the

1897 edition of Formulaire de mathématiques by the logician Giuseppe Peano

(1858–1932).

� (the Halmos tombstone or Halmos symbol) means “Q.E.D.”, which is

an abbreviation of the Latin phrase quod erat demonstrandum (“which was

to be proven”). “Q.E.D.” has been the most common way to symbolize the

end of a logical argument for many centuries, but the modern convention of

the “tombstone” is now generally preferred both because it is easier to write

and because it is visually more compact.

The symbol “�” was first made popular by mathematician Paul Halmos

(1916–2006).

Some Notation from Set Theory

⊂ (the is included in sign) means “is a subset of” and ⊃ (the includes sign)

means “has as a subset”. Both symbols were introduced in the 1890 book

Vorlesungen über die Algebra der Logik (“Lectures on the Algebra of the Logic”)

by logician Ernst Schröder (1841–1902).

∈ (the is in sign) means “is an element of” and first appeared in the 1895 edition

of Formulaire de mathématiques by the logician Giuseppe Peano (1858–1932).

Peano originally used the Greek letter “ε” (viz. the first letter of the Latin word

est for “is”). The modern stylized version of this symbol was later introduced in

the 1903 book Principles of Mathematics by logician and philosopher Betrand

Russell (1872–1970).

It is also common to use the symbol “"” to mean “contains as an element”,

which is not to be confused with the more archaic usage of “"” to mean “such

that”.

∪ (the union sign) means “take the elements that are in either set”, and ∩ (the

intersection sign) means “take the elements that the two sets have in com-

mon”. These were both introduced in the 1888 book Calcolo geometrico sec-

ondo l’Ausdehnungslehre di H. Grassmann preceduto dalle operazioni della log-

ica deduttiva (“Geometric Calculus based upon the teachings of H. Grassman,

preceded by the operations of deductive logic”) by logician Giuseppe Peano

(1858–1932).

∅ (the null set or empty set) means “the set without any elements in it” and

was first used in the 1939 book Éléments de mathématique by Nicolas Bour-
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baki. (Bourbaki is the collective pseudonym for a group of primarily European

mathematicians who have written many mathematics books together.) It was

borrowed simultaneously from the Norwegian, Danish and Faroese alphabets by

group member André Weil (1906–1998).

∞ (infinity) denotes “a quantity or number of arbitrarily large magnitude” and

first appeared in print in the 1655 publication De Sectionibus Conicus (“Tract

on Conic Sections”) by mathematician John Wallis (1616–1703).

Possible explanations for Wallis’ choice of “∞” include its resemblance to the

symbol “oo” (used by ancient Romans to denote the number 1000), to the final

letter of the Greek alphabet ω (used symbolically to mean the “final” number),

and to a simple curve called a “lemniscate”, which can be endlessly traversed

with little effort.

Some Important Numbers in Mathematics

π (the ratio of the circumference to the diameter of a circle) denotes the

number 3.141592653589 . . ., and was first used in the 1706 book Synopsis pal-

mariorum mathesios (“A New Introduction to Mathematics”) by mathematician

William Jones (1675–1749). The use of π to denote this number was then pop-

ularized by the great mathematician Leonhard Euler (1707–1783) in his 1748

book Introductio in Analysin Infinitorum. (It is speculated that Jones chose the

letter “π” because it is the first letter in the Greek word perimetron, περιμετρoν,

which roughly means “around”.)

e = limn→∞(1 + 1
n )

n (the natural logarithm base, also sometimes called Eu-

ler’s number) denotes the number 2.718281828459 . . ., and was first used in

the 1728 manuscript Meditatio in Experimenta explosione tormentorum nuper

instituta (“Meditation on experiments made recently on the firing of cannon”)

by Leonhard Euler. (It is speculated that Euler chose “e” because it is the first

letter in the Latin word for “exponential”.)

The mathematician Edmund Landau (1877–1938) once wrote that, “The letter e

may now no longer be used to denote anything other than this positive universal

constant.”

i =
√−1 (the imaginary unit) was first used in the 1777 memoir Institutionum

calculi integralis (“Foundations of Integral Calculus”) by Leonhard Euler.

The five most important numbers in mathematics are widely considered to be

(in order) 0, 1, i, π, and e. These numbers are even remarkably linked by the

equation eiπ + 1 = 0, which the physicist Richard Feynman (1918–1988) once

called “the most remarkable formula in mathematics”.

γ = limn→∞(
∑n

k=1
1
k − lnn) (the Euler-Mascheroni constant, also known as

just Euler’s constant), denotes the number 0.577215664901 . . ., and was first

used in the 1792 book Adnotationes ad Euleri Calculum Integralem (“Anno-

tations to Euler’s Integral Calculus”) by geometer Lorenzo Mascheroni (1750–
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1800).

The number γ is widely considered to be the sixth most important number in

mathematics due to its frequent appearance in formulas from number theory

and applied mathematics. However, as of this writing, it is still not even known

whether or not γ is an irrational number.

Some Common Latin Abbreviations and Phrases

i.e. (id est) means “that is” or “in other words”. (It is used to paraphrase

a statement that was just made, not to mean “for example”, and is

always followed by a comma.)

e.g. (exempli gratia) means “for example”. (It is usually used to give an

example of a statement that was just made and is always followed by

a comma.)

viz. (videlicet) means “namely” or “more specifically”. (It is used to clarify

a statement that was just made by providing more information and is

never followed by a comma.)

etc. (et cetera) means “and so forth” or “and so on”. (It is used to sug-

gest that the reader should infer further examples from a list that has

already been started and is usually not followed by a comma.)

et al. (et alii) means “and others”. (It is used in place of listing multiple

authors past the first. The abbreviation “et al.” can also be used in

place of et alibi, which means “and elsewhere”.

cf. (conferre) means “compare to” or “see also”. (It is used either to draw

a comparison or to refer the reader to somewhere else that they can

find more information, and it is never followed by a comma.)

q.v. (quod vide) means “which see” or “go look it up if you’re interested”.

(It is used to cross-reference a different written work or a different part

of the same written work, and it is never followed by a comma.) The

plural form of “q.v.” is “q.q.”

v.s. (vide supra) means “see above”. (It is used to imply that more infor-

mation can be found before the current point in a written work and is

never followed by a comma.)

N.B. (Nota Bene) means “note well” or “pay attention to the following”.

(It is used to imply that the wise reader will pay especially careful

attention to what follows and is never followed by a comma. Cf. the

abbreviation “verb. sap.”)

verb. sap. (verbum sapienti sat est) means “a word to the wise is enough” or

“enough has already been said”. (It is used to imply that, while some-

thing may still be left unsaid, enough has been said for the reader to

infer the entire meaning.)

vs. (versus) means “against” or “in contrast to”. (It is used to contrast two
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things and is never followed by a comma.) The abbreviation “vs.” is

also often written as “v.”

c. (circa) means “around” or “near”. (It is used when giving an approx-

imation, usually for a date, and is never followed by a comma.) The

abbreviation “c.” is also commonly written as “ca.”, “cir.”, or “circ.”

ex lib. (ex libris) means “from the library of”. (It is used to indicate ownership

of a book and is never followed by a comma.).

• vice versa means “the other way around” and is used to indicate that an

implication can logically be reversed. (This is sometimes abbreviated

as “v.v.”)

• a fortiori means “from the stronger” or “more importantly”.

• a priori means “from before the fact” and refers to reasoning that is

done while an event still has yet to happen.

• a posteriori means “from after the fact” and refers to reasoning that

is done after an event has already happened.

• ad hoc means “to this” and refers to reasoning that is specific to an

event as it is happening. (Such reasoning is regarded as not being

generalizable to other situations.)

• ad infinitum means “to infinity” or “without limit”.

• ad nauseam means “causing sea-sickness” or “to excess”.

• mutatis mutandis means “changing what needs changing” or “with the

necessary changes having been made”.

• non sequitur means “it does not follow” and refers to something that

is out of place in a logical argument. (This is sometimes abbreviated

as “non seq.”)
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π, 188

abbreviation, 189

abelian group, 180

absolute value, 13

abstraction, 177

addition, 177

affine subspace, 153

algebra, 183, 184

algebraic structure, 177

analysis

complex, 7, 18

real, 7

angle, 95

antisymmetric, 174, 175

approximately equals sign, 186

argument, 15

argument of a function, 175

arithmetic

matrix, 134

associativity, 10, 11, 29, 53, 136, 139, 180,
183

associativity

of composition, 85

automorphism, 56

axioms, 1, 29

axioms

group, 180

back substitution, 148

basis, 39, 44, 159

basis

canonical, 159

change of, 111

orthonormal, 100, 101, 104

standard, 159

Basis Extension Theorem, 45

Basis Reduction Theorem, 45

bijection, 176

bijectivity, 55

binary operation, 29, 177

Bouguer, Pierre, 185

Bourbaki, Nicolas, 187

Burali-Forti, Cesare, 185

calculus, 6

multivariate, 1

cancellation property, 140, 141

canonical basis, 159

canonical matrix, 159

Cartesian product, 4, 173, 174

Cauchy-Schwarz inequality, 98

change of basis, 111

change of basis transformation, 112

change of basis transformation

orthogonal, 122

unitary, 122

characteristic polynomial, 91, 118

closed disk, 22

closure

under addition, 32

under scalar multiplication, 32

codomain, 3, 31, 175

coefficient matrix, 132

cofactor expansion, 92

column vector, 131, 134, 138

commutative, 183

commutative group, 180

commutative ring with identity, 183
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commutativity, 10, 11, 29, 136
complement

orthogonal, 104
complement of set, 173
complex conjugation, 12
complex multiplication, 11
complex numbers, 21
complex numbers

addition, 10
polar form, 6
subtraction, 10

composition
of functions, 176
of linear maps, 53
of permutations, 84

congruent, 186
conjugate, 12, 27
conjugate

hermitian, 117
conjugate symmetry

inner product, 95
conjugate transpose, 118, 164
conjugation

complex, 12
continuous functions

vector space, 31
coordinate vector, 111, 159
coordinates

polar, 15
coset, 153
cyclic property of trace, 166

de Moivre’s formula, 17
De Morgan’s laws, 173
decomposition

LU, 155, 156
orthogonal, 98
polar, 125
singular-value, 117, 126
spectral, 120

derivative, 6
determinant, 1, 81, 87, 141
determinant

properties of, 89
diagonal matrix, 67, 70, 130
diagonalizability, 117, 126
diagonalizable, 70
diagonalization, 121
difference of sets, 173
differential equations, 1

differentiation map, 51
dimension, 39, 44, 46
dimension formula, 56, 163
direct sum, 47
direct sum

of vector spaces, 34
disk

closed, 22
distance

Euclidean, 13
distributivity, 11, 29, 53, 136, 139, 181,

183
distributivity

of sets, 173
division, 12
division ring, 184
domain, 3, 31, 175
dot product, 133, 138

e, 188
eigenspace, 69, 124
eigenvalue, 67, 68, 118
eigenvalue

existence of, 71
eigenvector, 67, 68
elementary function, 18
elementary matrix, 142, 145, 161
elements of a set, 171
elimination

Gaussian, 142, 150, 153
empty set, 171, 187
endomorphism, 56
epimorphism, 56
equal by definition sign, 185
equal sign, 185
equation

matrix, 146
quadratic, 4
solution, 21
vector, 134

equations
differential, 7
non-linear, 4

equivalence relation, 174
Euclidean inner product, 133, 138
Euclidean plane, 5, 30
Euclidean space, 30
Euler number, 188
Euler’s formula, 18
Euler, Leonhard, 188
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Euler-Mascheroni constant, 188

even permutation, 86

existence of identity element, 180

existence of inverse element, 180

existential quantifier, 187

expansion

cofactor, 92

exponential form, 16

exponential function, 18

extraction

root, 17

extreme value theorem, 22

factorization

LU, 155, 156

polynomial, 24

Feynman, Richard, 188

field, 29, 181

form

exponential, 16

formula

de Moivre, 17

Euler, 18

Fourier analysis, 7

free variable, 144

function, 3, 171, 175

function

argument, 175

bijective, 176

complex cosine, 18

composition, 176

continuous, 22

elementary, 18

exponential, 18

graph of, 175

image, 175

injective, 176

invertible, 176

linear, 51

one-to-one, 176

one-to-one and onto, 176

onto, 176

pre-image, 175

range, 175

surjective, 176

value, 175

Fundamental Theorem of Algebra, 21, 24,
25, 71

proof, 22

Gauss-Jordan elimination, 142

Gaussian elimination, 142, 149, 150, 153

general linear group, 142, 181

Gentzen, Gerhard, 187

Gram-Schmidt orthogonalization
procedure, 102, 124

graph of a function, 175

greater than sign, 185

Greenhill, Alfred, 186

group, 178, 180

group

abelian, 180

commutative, 180

general linear, 142

nonabelian, 142

group axioms, 180

Halmos symbol, 187

Halmos, Paul, 186, 187

Harriot, Thomas, 185

hermitian conjugate, 117

hermitian matrix, 165

hermitian operator, 117, 123

homogeneous system of linear equations,
149, 153

homomorphism, 56

i, 9, 188

identity, 53

identity

additive, 10, 29, 31, 32, 136

composition, 85

multiplicative, 11, 29

identity element

existence, 180

identity function, 176

identity map, 51, 176

identity matrix, 131

iff symbol, 186

image of a function, 175

imaginary part, 9

imaginary unit, 9, 188

implies sign, 186

included in sign, 187

inclusion of sets, 173

inequality

Cauchy-Schwarz, 98

triangle, 14, 99

infinity sign, 188
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inhomogeneous system of linear equations,
152, 162

injection, 176
injectivity, 54, 61
inner product, 95
inner product

conjugate symmetry, 95
Euclidean, 133, 138
linearity, 95
positive definiteness, 95
positiviy, 95

inner product space, 95, 104, 117
interpretation

geometric, 15
intersection of sets, 173
intersection sign, 187
invariant subspace, 67
inverse

additive, 10, 29, 31, 136
composition, 85
multiplicative, 11, 14, 140

inverse element
existence, 180

inverse matrix, 141
inverse relation, 175
inversion, 85
inversion pair, 85
invertibility, 61
invertibility of square matrices, 140
invertible function, 176
is in sign, 187
isometry, 122
isomorphic, 62
isomorphism, 56, 62

Jones, William, 188

kernel, 53, 56, 106, 153, 162

Landau, Edmund, 188
Latin abbreviation and phrases, 189
law

parallelogram, 100
leading variable, 144
Lemma

Linear Dependence, 42
length, 13
length

of vector, 96
less than sign, 185

Lie algebras, 7
linear combination, 39
Linear Dependence Lemma, 42
linear equations

solutions, 1, 132
system of, 51, 132

linear function, 51
linear independence, 39, 40
linear manifold, 153
linear map, 51, 129, 159
linear map

composition, 53
invertible, 161
kernel, 53
matrix, 57, 159
null space, 53
range, 55, 161

linear operator, 51, 63, 111, 117
linear span, 39
linear system

of equations, 1, 129, 132, 142
linear transformation, 51
linearity

inner product, 95
lower triangular matrix, 131
LU decomposition, 155, 156
LU factorization, 155, 156

magnitude, 13
magnitude

of vector, 96
manifold

linear, 153
map, 176
Mascheroni, Lorenzo, 188
matrix, 129
matrix

canonical, 159
coefficient, 132
column index, 130
diagonal, 70, 130
elementary, 142, 145, 161
entry, 130
hermitian, 165
identity, 131
invertible, 140
lower triangular, 131
main diagonal, 130
non-singular, 140
of linear map, 57, 159
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off-diagonal, 130
orthogonal, 165
row exchange, 145
row index, 130
row scaling, 145
row sum, 145
skew main diagonal, 130
square, 81, 111, 130
subdiagonal, 130
superdiagonal, 130
symmetric, 165
trace, 165
triangular, 155
two-by-two, 75
unitary, 165
upper triangular, 72, 131, 155
zero, 132

matrix addition, 59, 134
matrix arithmetic, 134
matrix equation, 129, 133, 146
matrix multiplication, 59, 137
minus sign, 185
modulus, 13
monic polynomial, 24
monomorphism, 56
multiplication, 177
multiplication

matrix, 59
scalar, 134

norm, 13, 98
norm of vector, 96
normal operator, 117, 119
notation

one-line, 82
two-line, 82

null set, 171, 187
null space, 53, 106, 162
numbers

complex, 4, 9
real, 3, 9

obelus, 186
odd permutation, 86
one-line notation, 82
operator

hermitian, 117, 123
normal, 117, 119
orthogonal, 123
positive, 124

self-adjoint, 117, 124
skew hermitian, 128
symmetric, 123
unitary, 123

order relation, 174
orthogonal, 98
orthogonal change of basis

transformation, 122
orthogonal complement, 104
orthogonal decomposition, 98
orthogonal group, 165
orthogonal matrix, 165
orthogonal operator, 123
orthogonal projection, 106
orthogonality, 95, 98
orthonormal basis, 100, 101, 104
overdetermined system of linear

equations, 150, 153

parallelogram law, 100
Peano, Giuseppe, 186, 187
permutation, 81
permutation

even, 86
identity, 83
odd, 86
sign of, 85, 86
trivial, 83

permutations
composition of, 84

pivot, 143
plus sign, 185
polar coordinates, 15
polar decomposition, 125
polynomial

coefficients, 24
constant, 24
cubic, 24
degree, 24
leading term, 24
linear, 24
monic, 24
quadratic, 24
quadric, 24
quintic, 24
root, 22, 24
vector space, 30
zero, 24

polynomial equation, 21, 76
positive definiteness
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inner product, 95
of norm, 97

positive homogeneity
of norm, 97

positive operator, 124
positivity

inner product, 95
power set, 174
pre-image of a function, 175
probability theory, 1
product, 53
product

complex, 11
dot, 133

projection
orthogonal, 106

proof, 1
Pythagorean theorem, 13, 98

q.e.d., 187
quantifier

existential, 187
universal, 187

quod erat demonstrandum, 187
quotient

complex, 12

Rahn, Johann, 186
range, 55, 56, 106, 161
range of a function, 175
real part, 9
Recorde, Robert, 185
reduced row-echelon form, 142, 148–150,

153, 155
REF, 142, 147, 155
reflexive, 174, 175
relative set complements, 173
ring, 183
root, 22, 24
root extraction, 17
root of unity, 17
rotation, 6
row exchange matrix, 145
row scaling matrix, 145
row sum matrix, 145
row vector, 131, 138
row-echelon form, 142, 147, 155
row-echelon form

reduced, 142
RREF, 143, 148–150, 153, 155

Russell, Betrand, 187

scalar multiplication, 4, 29, 59, 134, 179,
182

scalar multiplication
compatibility, 139

scaling operation, 178
Schröder, Ernst, 187
self-adjoint operator, 117, 118, 124
set, 171
set

complement, 173
difference, 173
elements of a, 171
empty, 171
inclusion, 173
intersection, 173
null, 171
singleton, 171
union, 173

sign
approximately equals, 186
equal, 185
equal by definition, 185
greater than, 185
implies, 186
included in, 187
infinity, 188
intersection, 187
is in, 187
less than, 185
minus, 185
plus, 185
such that, 186
union, 187

sign of permutation, 85, 86
singleton set, 171
singular value, 126
singular-value decomposition, 117, 126
skew field, 184
skew hermitian operator, 128
solution

infinitely many, 2, 150, 153, 162
none, 153, 162
of linear system of equations, 129, 142,

148, 150, 159
particular, 153
trivial, 150
unique, 2, 153, 161, 162

solution space
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of system of linear equations, 149
spectral decomposition, 120
spectral theorem, 120
square matrix, 111
square system of linear equations, 150
standard basis, 159
standard basis matrices, 135
straight line, 5
subset, 173
subspace, 105, 150
subspace

affine, 153
intersection, 33
of vector space, 32
trivial, 33
union, 33

substitution, 3, 148, 155
subtraction, 177
such that sign, 186
surjection, 176
surjectivity, 55, 61
symbol

Halmos, 187
iff, 186
mathematical logic, 186
numbers, 188
set theory, 187

symmetric, 174
symmetric group, 81
symmetric matrix, 165
symmetric operator, 123
symmetry, 7
system of linear equations, 51, 132, 142
system of linear equations

homogeneous, 149
inhomogeneous, 152, 162
overdetermined, 150, 153
square, 150
underdetermined, 150

target space, 3
Taylor series, 6
theorem

basis extension, 45
basis reduction, 44
Pythagorean, 13, 98
spectral, 120
triangle inequality, 99

three dots, 186
trace, 164, 165

trace
cyclic property, 166

transformation, 176
transformation

change of basis, 112
linear, 5, 7

transitive, 174, 175
transpose, 164
transposition, 86
triangle inequality, 14, 97, 99
triangular matrix, 155
trivial solution, 150
two-line notation, 82

underdetermined system of linear
equations, 150

union of sets, 173
union sign, 187
unital, 183
unitary change of basis transformation,

122
unitary group, 165
unitary matrix, 165
unitary operator, 123
universal quantifier, 187
unknown, 3
upper triangular matrix, 67, 72, 131, 155
upper triangular operator, 104
upside-down dots, 186

value
absolute, 13

value of a function, 175
variable, 2
variable

free, 144
leading, 144

vector, 131
vector

column, 131, 134, 138
coordinate, 111, 159
length, 95
row, 131, 138

vector addition, 4, 29
vector equation, 134
vector space, 4, 29, 159, 182
vector space

complex, 30
direct sum, 34
finite-dimensional, 39
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infinite-dimensional, 39
real, 30

vectors
linearly dependent, 40
linearly independent, 40, 101
orthogonal, 101

Wallis, John, 188
Weil, André, 188

zero divisor, 140
zero map, 51
zero matrix, 132
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