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Preface

This book is based on the premise that the learning curve is isomorphic to the
historical curve. In other words, the learning order of events is the same as the
historical order of events. For example, we learn arithmetic beforewe learn algebra.
We learn how before we learn why.
Historically, calculus with real numbers came first, initiated by Newton and

Leibnitz in the seventeenth century. Even though complex numbers had been
known about from the time of Fibonacci in the thirteenth century, nobody thought
of doing calculus with complex numbers until the nineteenth century. Here the
pioneers were Cauchy and Riemann. Rigorous mathematics as we know it today
did not come into existence until the twentieth century. It is important to observe
that the nineteenth century mathematicians had the right theorems, even if they
didn’t always have the right proofs.
The learning process proceeds similarly. Real calculus comes first, followed by

complex calculus. In both cases we learn by using calculus to solve problems. It
is when we have seen what a piece of mathematics can do that we begin to ask
whether it is rigorous. Practice always comes before theory.
The emphasis of this book therefore is on the applications of complex calculus,

rather than on the foundations of the subject. Aworking knowledge of real calculus
is assumed, also an acquaintance with complex numbers. A background not unlike
that of an average mathematician in 1800. Equivalently, a British student just
starting at university. The approach is to ask what happens if we try to do calculus
with complexnumbers instead ofwith real numbers.Wefind that parts are the same,
whilst other parts are strikingly different. The most powerful result is the residue
theorem for evaluating complex integrals. Students wishing to study the subject at
a deeper level should not find that they have to unlearn anything presented here.
I would like to thank the mathematics students at Manchester University for

sitting patiently through lectures on thismaterial over the years. Also for their feed-
back (positive and negative) which has been invaluable. The book is respectfully
dedicated to them.

John B. Reade
June 2002
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Chapter 1

Complex numbers

1.1 The square root of minus one

Complex numbers originate from a desire to extract square roots of negative
numbers. They were first taken seriously in the eighteenth century by mathemati-
cians such as de Moivre, who proved the first theorem in the subject in 1722. Also
Euler, who introduced the notation i for

√−1, and who discovered the mysterious
formula eiθ = cos θ + i sin θ in 1748. And third Gauss, who was the first to prove
the fundamental theorem of algebra concerning existence of roots of polynomial
equations in 1799. The nineteenth century saw the construction of the first model
for the complex numbers by Argand in 1806, later known as the Argand diagram,
and more recently as the complex plane. Also the first attempts to do calculus with
complex numbers by Cauchy in 1825. Complex numbers were first so called by
Gauss in 1831. Previously they were known as imaginary numbers, or impossible
numbers. It was not until the twentieth century that complex numbers found appli-
cation to science and technology, particularly to electrical engineering and fluid
dynamics.
If we want square roots of negative numbers it is enough to introduce i = √−1

since then, for example,
√−2 = √−1

√
2 = i√2. Combining i with real numbers

by addition and multiplication cannot produce anything more general than x + iy
where x, y are real. This is because the sum and product of any two numbers of
this form are also of this form. For example,

(1+ 2i)+ (3+ 4i) = 4 + 6i,

(1+ 2i)(3+ 4i) = 3+ 10i + 8i2

= 3+ 10i − 8

= −5+ 10i.

Subtraction produces nothing new since, for example,

(1+ 2i)− (3+ 4i) = −2 − 2i.
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Neither does division since, for example,

1+ 2i

3+ 4i
= (1+ 2i)(3− 4i)

(3+ 4i)(3− 4i)
= 3+ 2i − 8i2

9− 16i2

= 3+ 2i + 8

9+ 16
= 11+ 2i

25
= 11

25
+ 2

25
i.

The number 3 − 4i is called the conjugate of 3+ 4i. For any x + iy we have
(x + iy)(x − iy) = x2 + y2

so division can always be done except when x = y = 0, that is, when x + iy = 0.
It is also possible to extract square roots of numbers of the form x + iy as

numbers of the same form. For example, suppose

√
1+ 2i = A+ iB,

then we have

1+ 2i = (A+ iB)2 = A2 + 2iAB − B2.

So we require

A2 − B2 = 1,

AB = 1.

The second equation gives B = 1/A, which on substitution in the first equation
gives

A2 − 1

A2
− 1 = 0.

Solving this quadratic equation in A2 by the formula we obtain

A2 = 1± √
5

2
.

For real A we must take

A2 =
√
5+ 1

2
,

which gives

B2 = 1

A2
= 2√

5+ 1
=

√
5− 1

2
.
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Hence we obtain

√
1+ 2i =

√√
5+ 1

2
+ i

√√
5− 1

2
.

This last property of numbers of the form x+iy represents a bonus overwhatmight
reasonably have been expected. Introducing square roots of negative real numbers
is one thing. Creating a number system in which square roots can always be taken
is asking rather more. But this is precisely what we have achieved. Existence of
square roots means that quadratic equations can always be solved. We shall see
shortly that much more is true, namely that polynomial equations of any degree
can be solved with numbers of the form x + iy. This is the fundamental theorem
of algebra (see Chapter 8).

1.2 Notation and terminology

If i = √−1, then numbers of the form x + iy are called complex numbers. We
write z = x + iy and call x the real part of z which we abbreviate to Re z, and y
the imaginary part of z which we abbreviate to Im z.
N.B. Re z, Im z are both real.
For z = x+ iy we write (by definition) z̄ = x− iy, and call z̄ the conjugate of z.
For z = x + iy we write (by definition) |z| = √

x2 + y2, and call |z| the
modulus of z.
For example, if z = 3+ 4i we have Re z = 3, Im z = 4, z̄ = 3− 4i, and

|z| =
√
32 + 42 = √

25 = 5.

1.3 Properties of z̄, |z|
We list the fundamental properties of z̄, |z|.

1. zz̄ = |z|2. To see this observe that if z = x + iy, then
zz̄ = (x + iy)(x − iy) = x2 + y2 = |z|2.

2. Re z = (z+z̄)/2, Im z = (z−z̄)/2i. To see this observe that if z = x+iy, then
z+ z̄ = (x + iy)+ (x − iy) = 2x, z− z̄ = (x + iy)− (x − iy) = 2iy.

3. z+ w = z̄+ w̄. To see this observe that if z = x + iy, w = u+ iv, then
z+ w = (x + iy)+ (u+ iv) = (x + u)+ i(y + v),
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therefore we have

z+ w = (x + u)− i(y + v) = (x − iy)+ (u− iv) = z̄+ w̄.
4. zw = z̄ w̄. To see this observe that if z = x + iy, w = u+ iv, then

zw = (x + iy)(u+ iv) = (xu− yv)+ i(xv + yu),
z̄ w̄ = (x − iy)(u− iv) = (xu− yv)− i(xv + yu).

5. |zw| = |z| |w|. We delay the proof of this property until Section 1.9.
6. |z+ w| ≤ |z| + |w|. We delay the proof of this property until Section 1.11.

1.4 The Argand diagram

Weobtain a geometricmodel for the complex numbers by representing the complex
number z = x + iy by the point (x, y) in the real plane with coordinates x and y.
Observe that the horizontal x-axis represents complex numbers x + iy with

y = 0, that is, the real numbers. We therefore call the horizontal axis the real
axis. The vertical y-axis represents complex numbers x + iy with x = 0, that is,
numbers of the form iy where y is real. We call these numbers pure imaginary, and
we call the vertical axis the imaginary axis. The origin O represents the number
zero which is of course real (Figure 1.1).

1.5 Geometric interpretation of addition

If we have two complex numbers z = x + iy, w = u+ iv, then their sum z + w
is given by

z+ w = (x + u)+ i(y + v)
and therefore appears on the Argand diagram as the vector sum of z and w.
The complex number z+w is represented geometrically as the fourth vertex of

the parallelogram formed by 0, z, w (see Figure 1.2). For example, 3 + 2i is the
vector sum of 3 and 2i (see Figure 1.1).

2 i

i

– i

–2 i

–3 –2 –1 1 2 3

× 3 + 2 i

0

Figure 1.1
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w

z

z + w

0

Figure 1.2

0
�

x

r

z

y

Figure 1.3

1.6 Polar form

An alternative representation of points in the plane is by polar coordinates r, θ . The
coordinate r represents the distance of the point from the origin O. The coordinate
θ represents the angle the line joining the point to O makes with the positive direc-
tion of the x-axis measured anticlockwise (see Figure 1.3). Suppose the complex
number z = x + iy on the Argand diagram has polar coordinates r, θ . We call r
the modulus of z, and denote it by |z|. Pythagoras’ theorem gives

|z| =
√
x2 + y2

consistent with the definition of |z| given in Section 1.2.
We call θ the argument of z which we abbreviate to arg z. A little trigonometry

on Figure 1.3 gives

θ = tan−1 y

x
= sin−1 y

r
= cos−1 x

r
.

Observe that whilst |z| is single valued, arg z is many valued. This is because
for any given value of θ we could take instead θ + 2π (in radians) and arrive at
the same complex number z. For example, suppose z = 1 + i. Then |z| = √

2,
but arg z can be taken to be any of the values π/4, 5π/4, 9π/4, etc., also −3π/4,
−7π/4, etc. Equivalently, arg z = π/4 + 2nπ for any integer n.
We define the principal value (PV) of arg z to be that value of θ which satisfies

−π < θ ≤ π . For example, the principal value of arg (1+ i) is π/4 (Figure 1.4).
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0

1+ i

1
2

1
�/4

√

Figure 1.4

We write

arg (1+ i) = π/4 (PV).
For general z = x + iy we have cos θ = x/r , sin θ = y/r (see Figure 1.3).

Therefore

z = x + iy
= r cos θ + ir sin θ
= r(cos θ + i sin θ)
= reiθ ,

since, by Taylor’s theorem,

eiθ = 1+ iθ + (iθ)2

2! + (iθ)3

3! + (iθ)4

4! + · · ·

= 1+ iθ − θ2

2! − i θ
3

3! + θ4

4! + · · ·

=
(
1− θ2

2! + θ4

4! − · · ·
)

+ i
(
θ − θ3

3! + · · ·
)

= cos θ + i sin θ.
We call the formula

eiθ = cos θ + i sin θ
Euler’s formula. We call the representation z = reiθ the polar form for z. We call
the representation z = x + iy the Cartesian form for z. For example, 1 + i =√
2eiπ/4 (see Figure 1.4).

1.7 De Moivre’s theorem

An immediate consequence of Euler’s formula (see Section 1.6) is the result known
as de Moivre’s theorem, viz.,

(cos θ + i sin θ)n = (eiθ )n = einθ = cos nθ + i sin nθ.
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Application 1 We can use de Moivre’s theorem to obtain formulae for cos nθ ,
sin nθ in terms of cos θ , sin θ . For example, we have

cos 2θ + i sin 2θ = (C + iS)2
= C2 + 2iCS + i2S2
= (C2 − S2)+ 2iCS,

where C = cos θ , S = sin θ . Equating real and imaginary parts we obtain

cos 2θ = C2 − S2 = 2C2 − 1 = 1− 2S2,

using the identity C2 + S2 = 1. Hence

cos 2θ = cos2 θ − sin2 θ = 2 cos2 θ − 1 = 1− 2 sin2 θ.

We also obtain similarly

sin 2θ = 2CS = 2 cos θ sin θ.

Application 2 We can use the above formulae to obtain exact values for cos 45◦,
sin 45◦ as follows. If we write θ = 45◦, C = cos 45◦, S = sin 45◦ then we have

0 = cos 90◦ = 2C2 − 1,

fromwhich it follows that 2C2 = 1, and thereforeC2 = 1/2. HenceC = ±1/
√
2,

which gives cos 45◦ = 1/
√
2.

We also have 1 = sin 90◦ = 2CS, which gives S = 1/2C = 1/
√
2, and hence

sin 45◦ = 1/
√
2.

1.8 Euler’s formulae for cos θ, sin θ in terms of e±iθ

We obtained the formula eiθ = cos θ + i sin θ in Section 1.6. From this formula
we can derive two more formulae also attributed to Euler, viz.,

cos θ = eiθ + e−iθ
2

, sin θ = eiθ − e−iθ
2i

.

Proof Observe that

eiθ = cos θ + i sin θ,
e−iθ = cos θ − i sin θ.

Now eliminate sin θ , cos θ , respectively.



8 Complex numbers

Application 3 We can use Euler’s formulae to obtain formulae for cosn θ , sinn θ
in terms of cos kθ , sin kθ (0 ≤ k ≤ n). For example, we have

cos2 θ =
(
eiθ + e−iθ

2

)2

= e2iθ + 2 + e−2iθ

4
= 1

2
(1+ cos 2θ),

sin2 θ =
(
eiθ − e−iθ

2i

)2

= e2iθ − 2 + e−2iθ

−4
= 1

2
(1− cos 2θ).

Application 4 Formulae of the above type are useful for integrating powers of
cos θ , sin θ . For example,

∫
cos2 θ dθ =

∫
1

2
(1+ cos 2θ) dθ = 1

2

(
θ + sin 2θ

2

)
,

∫
sin2 θ dθ =

∫
1

2
(1− cos 2θ) dθ = 1

2

(
θ − sin 2θ

2

)
.

1.9 nth roots

Suppose we have two complex numbers z = reiθ , w = seiφ . If we multiply them
together we obtain

zw = rsei(θ+φ),

which shows that |zw| = |z| |w| as claimed in Section 1.2. Also that arg zw =
arg z+argw. In particular, taking z = w we have z2 = r2e2iθ , and more generally
zn = rneniθ . It follows that

z1/n = r1/neiθ/n.

Observe that r1/n is the unique positive real nth root of r , whilst eiθ/n has n
possible values.
For example, if z = −8 then we have

z = 8eiπ = 8e3iπ = 8e5iπ = · · ·
z1/3 = 2eiπ/3, 2eiπ , 2e5iπ/3.

Even though arg (−8) has infinitely many values, there are only 3 distinct cube
roots. We define the principal value of (−8)1/3 to be that which corresponds to the
principal value of arg (−8), namely π . So (−8)1/3 = 2eiπ/3 (PV).
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1.10 nth roots of unity

Just like any other non-zero complex number, 1 has n complex nth roots. We have

1 = e0 = e2πi = e4πi = · · ·
11/n = e0, e2πi/n, e4πi/n, . . .

If we denote ω = e2πi/n, then the n nth roots of 1 are 1, ω, ω2, . . . , ωn−1

(see Figure 1.5 for the case n = 8). We call ω the primitive nth root of 1.
N.B. 11/n = 1 (PV) of course.

Lemma 1+ ω + ω2 + · · · + ωn−1 = 0.

Proof 1+ ω + ω2 + · · · + ωn−1 = 1− ωn
1− ω = 0.

1.11 Inequalities

The fundamental inequality is the so called triangle, or parallelogram inequality
and is as follows.

Inequality 1 |z + w| ≤ |z| + |w|. This inequality expresses the fact that the
diagonal of a parallelogram has length less than or equal to the sum of the lengths
of two adjacent sides (see Figure 1.6). Equivalently, that the length of one side of
a triangle is less than or equal to the sum of the lengths of the other two sides.
(Consider the triangle with vertices 0, z, z+ w.)

Inequality 2 |z − w| ≤ |z| + |w|. This inequality follows from Inequality 1 by
putting −w for w.

N.B. Note the plus sign on the right-hand side.
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w

z

z + w

0

Figure 1.6

0

z– w

z

w

–w

Figure 1.7

Note also that |z − w| has a geometric significance as the distance between z
and w on the Argand diagram (see Figure 1.7).

Inequality 3 |z − w| ≥ |z| − |w|. This inequality follows from Inequality 1 by
observing that

|z| = |(z− w)+ w| ≤ |z− w| + |w|.
Inequality 4 |z− w| ≥ |w| − |z|. Observe that

|z− w| = |w − z| ≥ |w| − |z|.
Inequality 5 |z+ w| ≥ |z| − |w|. Put −w for w in Inequality 3.

N.B. Note the minus sign on the right-hand side.

Worked Example Prove that for all |z| = 2

1

4
≤

∣∣∣∣z2 + 1

z2 + 8

∣∣∣∣ ≤ 5

4
.

Solution To prove the right-hand inequality we observe first that

|z2 + 1| ≤ |z2| + |1| = 4 + 1 = 5,
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and second that

|z2 + 8| ≥ 8− |z2| = 8− 4 = 4.

The left-hand inequality is proved similarly.

1.12 Extension to 3 terms (or more)

We give the inequalities for 3 terms. The generalization to more terms is left to the
reader.

Inequality 6 |A+ B + C| ≤ |A| + |B| + |C|.
Proof Observe that

|A+ B + C| ≤ |A+ B| + |C| ≤ |A| + |B| + |C|
by repeated application of Inequality 1.

Inequality 7 |A+ B + C| ≥ |A| − |B| − |C|.
Proof Observe that

|A| = |(A+ B + C)− B − C|
≤ |A+ B + C| + | − B| + | − C|
= |A+ B + C| + |B| + |C|.

Notes

Wenever defined eiθ , or proved that the lawsof indices hold for complex exponents.
A rigorous treatment of thismaterialwould define ez, cos z, sin z by theirMaclaurin
series

ez = 1+ z+ z2

2! + z3

3! + · · ·

cos z = 1− z2

2! + z4

4! − z6

6! + · · ·

sin z = z− z3

3! + z5

5! − z7

7! + · · ·

and prove their properties by manipulation of these series.
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Purists might prefer to prove |zw| = |z| |w| and |z+w| ≤ |z|+|w| by algebraic
methods. For example, if z = x + iy, w = u+ iv, then we have

zw = (x + iy)(u+ iv) = (xu− yv)+ i(xv + yu).

Therefore

|zw|2 = (xu− yv)2 + (xv + yu)2
= (x2u2 − 2xuyv + y2v2)+ (x2v2 + 2xvyu+ y2u2)
= x2u2 + y2v2 + x2v2 + y2u2
= (x2 + y2)(u2 + v2)
= |z|2|w|2.

We also have z+ w = (x + u)+ i(y + v). Therefore,

|z+ w|2 = (x + u)2 + (y + v)2 = (x2 + 2xu+ u2)+ (y2 + 2yv + v2),
(|z| + |w|)2 = |z|2 + 2|zw| + |w|2

= x2 + y2 + u2 + v2 + 2
√
(x2 + y2)(u2 + v2).

From which it follows that

(|z| + |w|)2 − |z+ w|2 = 2
√
(x2 + y2)(u2 + v2)− 2xu− 2yv,

which is ≥ 0 if

(xu+ yv)2 ≤ (x2 + y2)(u2 + v2).

However,

(x2 + y2)(u2 + v2)− (xu+ yv)2 = (x2u2 + x2v2 + y2u2 + y2v2)
− (x2u2 + 2xuyv + y2v2)

= x2v2 + y2u2 − 2xuyv

= (xv − yu)2
≥ 0

as required.
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Examples

1. Express the following complex numbers in the form x + iy.
(i) (1+ 3i)+ (5+ 7i), (ii) (1+ 3i)− (5+ 7i), (iii) (1+ 3i)(5+ 7i),

(iv)
1+ 3i

5+ 7i
, (v)

√
3+ 4i, (vi) log(1+ i).

Hint For (vi) use the polar form.

2. Find
√
1+ i. Hence show tan π/8 = √

2 − 1.

3. Expand (cos θ + i sin θ)3 to obtain formulae for cos 3θ , sin 3θ in terms of
cos θ , sin θ . Use these formulae to show

cos 3θ = 4 cos3θ − 3 cos θ,

sin 3θ = 3 sin θ − 4 sin3θ.

4. Use Question 3 to show that cos 30◦ = √
3/2, sin 30◦ = 1/2.

5. Expand (eiθ ± e−iθ )3 to show
cos3θ = 1

4 (3 cos θ + cos 3θ),

sin3θ = 1
4 (3 sin θ − sin 3θ).

6. Use Question 5 to evaluate
∫ π/2

0
cos3 θ dθ ,

∫ π/2

0
sin3 θ dθ .

7. Evaluate the integral
∫ π

0
e2x cos 4x dx by taking the real part of

∫ π

0
e2xe4ix dx =

∫ π

0
e(2+4i)x dx.

Now do it by integrating by parts twice, and compare the efficiency of the two
methods.



Chapter 2

Complex functions

2.1 Polynomials

Having constructed the complex number system the next task is to consider how
the standard functions we do real calculus with extend to complex variables. Poly-
nomials cause no problems since they only require addition, multiplication and
subtraction for their definition. For example, p(z) = 3z+ 4, q(z) = 4z2 − 5z+ 6,
etc. The numbers occurring are called coefficients. The degree of the polynomial
is the highest power of z occurring with a non-zero coefficient.

2.2 Rational functions

These are functions of the form r(z) = p(z)/q(z) where p(z), q(z) are polyno-
mials. They can be defined for all z except where the denominator vanishes. Such
points are called singularities. Every rational function has at least one singularity
because of the fundamental theorem of algebra. For example,

r(z) = z+ 1

z+ 2

has a singularity at z = −2, whilst

s(z) = z2 + 1

z2 + 4

has two singularities at z = ±2i.

2.3 Graphs

Every real function y = f (x) of a real variable x has a graph in two dimensional
space. For example, Figure 2.1 shows the graph of y = x2.
For a complex functionw = f (z) of a complex variable z this option is not avail-

able because the graph is a two-dimensional surface in a four-dimensional space.
What we have to do instead is to draw two diagrams which we call a z-plane and
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y

x0

y = x2

Figure 2.1

y
z w

v

x u

Figure 2.2

aw-plane, and then indicate howgeometrical figures in the z-plane are transformed
to geometrical figures in the w-plane under the action of the function w = f (z).
For example, for the complex function w = z2 we find that the grid lines

x = constant, y = constant in the z-plane transform to confocal parabolas in the
w-plane (Figure 2.2).
To see this observe that if z = x + iy, w = u+ iv, then

u+ iv = (x + iy)2 = x2 − y2 + 2ixy,

therefore

u = x2 − y2, v = 2xy,
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y v

u

z w

x

Figure 2.3

which gives, on eliminating y,

u = x2 − v2

4x2
,

4x4 − 4x2u− v2 = 0,

u2 + v2 = u2 − 4x2u+ 4x4 = (u− 2x2)2,

|w| = |Rew − 2x2|,

which is the equation of a parabola with focus w = 0, directrix Rew = 2x2. This
parabola is the image of the line x = constant.
Similarly, eliminating x, we get

u2 + v2 = (u+ 2y2)2,

|w| = |Rew + 2y2|,

which is a parabola, again with focusw = 0, but nowwith directrix Rew = −2y2.
This is the image of the grid line y = constant.
Another examplewhich readersmight like toworkout for themselves isw = 1/z

which transforms the grid lines x = constant, y = constant in the z-plane to circles
through the origin with centres on the real and imaginary axes in the w-plane (see
Figure 2.3).

2.4 The exponential function

For real variables the function y = ex has the graph illustrated in Figure 2.4.
For complex variables we have

w = ez = ex+iy = exeiy
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y
y = ex

x0

1

Figure 2.4

y v
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z w

x

Figure 2.5

showing that if we use the polar form w = seiφ we get s = ex, φ = y. In other
words

|ez| = eRe z, arg ez = Im z.

This will of course not be the principal value of arg ez unless −π < Im z ≤ π .
The complex graph ofw = ez is as in Figure 2.5. The grid lines x = constant go

to circles centre the origin. The grid lines y = constant go to half lines emanating
from the origin.

2.5 Trigonometric and hyperbolic functions

For real variables the trigonometric functions and the hyperbolic functions are very
different animals. For example, the graphs for sin x, cos x are periodic and bounded
(see Figure 2.6). Whereas the graphs for sinh x, cosh x are neither periodic nor
bounded (see Figure 2.7).
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For complex variables however it turns out that trigonometric functions
and hyperbolic functions are intimately related. The following formulae are
fundamental for all that follows.

2.6 Fundamental formulae

For all real x we have

sin(ix) = i sinh x,
sinh(ix) = i sin x,
cos(ix) = cosh x,

cosh(ix) = cos x.

These formulae can be proved in several ways. For example, by definition

sinh(ix) = eix − e−ix
2

= i sin x,

cosh(ix) = eix + e−ix
2

= cos x

from Euler’s formulae for sin x, cos x (see Section 1.8).
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Or, from the Maclaurin series we have

sin(ix) = ix − (ix)3

3! + (ix)5

5! − · · ·

= ix + i x
3

3! + i x
5

5! + · · ·
= i sinh x,

cos(ix) = 1− (ix)2

2! + (ix)4

4! − · · ·

= 1+ x2

2! + x4

4! + · · ·
= cosh x.

2.7 Application 1

We can use the Fundamental formulae of 2.6 to obtain the real and imaginary parts
of sin z, and hence draw the graph ofw = sin z. If wewrite z = x+iy, w = u+iv,
then we have

sin(x + iy) = sin x cos(iy)+ cos x sin(iy)

= sin x cosh y + i cos x sinh y,

which gives

u = sin x cosh y, v = cos x sinh y.

Eliminating x we get

u2

cosh2 y
+ v2

sinh2 y
= 1

which is the equation of an ellipse with foci at ±1. Eliminating y we get

u2

sin2 x
− v2

cos2 x
= 1

which is the equation of a hyperbola with foci at ±1.
It follows that w = sin z transforms the grid lines x = constant, y = constant

in the z-plane to confocal ellipses and hyperbolae in the w-plane (see Figure 2.8).
The graph ofw = cos z is similar. For sinh z, cosh zwe also get confocal ellipses

and hyperbolae, but with foci at ±i instead of at ±1.
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2.8 Application 2

The inequality | sin x| ≤ 1 for real x fails for complex variables. If we write
z = x + iy, then we have

| sin z|2 = | sin(x + iy)|2 = sin2 x cosh2 y + cos2 x sinh2 y

= sin2 x(1+ sinh2 y)+ (1− sin2 x) sinh2 y = sin2 x + sinh2 y.

So if, for example, z = π/2 + iε, where ε > 0, then | sin z|2 = 1+ sinh2 ε > 1.

2.9 Application 3

The only zeros of sin z for complex z are the real zeros at z = nπ for integral n.
This is because if z = x + iy and sin z = 0 then

0 = | sin z|2 = sin2 x + sinh2 y.

Therefore sin x = sinh y = 0, which gives x = nπ, y = 0 and hence z = nπ .
Similarly, we leave it as an exercise for the reader to show that the only zeros

of cos z for complex z are at z = nπ + π/2 for integral n.

2.10 Identities for hyperbolic functions

The fundamental formulae (see Section 2.6) can be used to obtain identities for
hyperbolic functions from analogous identities for trigonometric functions. For
example, the trigonometric identity sin2 x + cos2 x = 1 gives, on substituting ix
for x,

1 = sin2(ix)+ cos2(ix) = (i sinh x)2 + (cosh x)2 = cosh2 x − sinh2 x.
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2.11 The other trigonometric functions

We define tan z, cot z, sec z, cosec z in terms of sin z, cos z as follows.

tan z = sin z

cos z
, cot z = cos z

sin z
, sec z = 1

cos z
, cosec z = 1

sin z
.

Similarly for the other hyperbolic functions.
These functions all have singularities. For example, tan z has singularities

at the zeros of cos z, that is, z = nπ + π/2. The corresponding hyperbolic
function tanh z = sinh z/ cosh z has singularities at the zeros of cosh z, that is,
z = i(nπ + π/2).

2.12 The logarithmic function

The graph of y = log x for real x is as in Figure 2.9. Observe that log x is only
defined for x > 0. This is because the real exponential function only takes positive
values (see Figure 2.4).
To define log z for complex z we use the polar form z = reiθ . We get

log z = log(reiθ ) = log r + log(eiθ ) = log r + iθ = log |z| + iarg z.

Since arg z is many valued it follows that log z is also many valued. We define
the principal value of log z to be the one obtained by taking the principal value of
arg z. For example, we have 1 + i = √

2eiπ/4 (PV) therefore

log(1+ i) = 1

2
log 2 + i π

4
(PV).

Observe that log z has a singularity at z = 0 since we cannot define log r for r = 0.
To get the complex graph for w = log z it is best to consider the action of

log z on the circles |z| = constant and the half lines arg z = constant in the z-
plane. These transform to the grid lines Rew = constant, Imw = constant in the
w-plane (see Figure 2.10).

y

x0 1

y = log x

Figure 2.9
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Notes

We have not actually defined ez, sin z, cos z, log z for complex z. We have merely
assumed that these functions can be defined, and that they continue to have
the properties they possess in the real domain. For example, laws of indices,
laws of logarithms, trigonometric identities. A rigorous treatment would define
ez, sin z, cos z, log z from their Maclaurin series, and derive their properties from
these series. The function log z would be defined as the inverse function of ez.
The functions we have drawn complex graphs of are all conformal mappings

in the sense that curves which intersect at an angle θ in the z-plane transform to
curves which intersect at the same angle θ in the w-plane. Observe that in every
case the grid lines x = constant, y = constant in the z-plane transform to curves
which intersect orthogonally in the w-plane. This conformal property is crucial in
applications to fluid dynamics.

Examples

1. Prove that for all |z| = 2

2 ≤ |z− 4| ≤ 6.

2. Prove that for all |z| = 3

8

11
≤

∣∣∣∣z2 + 1

z2 + 2

∣∣∣∣ ≤ 10

7
.

3. Prove that for all |z| = 4

3

5
≤

∣∣∣∣z+ i
z− i

∣∣∣∣ ≤ 5

3
.
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4. Prove that for all |z| = R > 2∣∣∣∣ 1

z2 + z+ 1

∣∣∣∣ ≤ 1

R2 − R − 1
.

5. Prove that |ez| = eRe z.
6. Find where |ez| is maximum for |z| ≤ 2 (draw a diagram).
7. Prove that for z = x + iy

| sin(x + iy)|2 = sin2x + sinh2y,

| cos(x + iy)|2 = cos2x + sinh2y.

8. Find where | sin z| is maximum for |z| ≤ 1 (draw a diagram).
9. Prove that all points z satisfying∣∣∣∣z+ 1

z+ 4

∣∣∣∣ = 2

lie on a circle. Find its centre and radius.



Chapter 3

Derivatives

3.1 Differentiability and continuity

For a real function f (x) of a real variable x the derivative f ′(x) is defined as the
limit

f ′(x) = lim
h→0

f (x + h)− f (x)
h

.

Observe that (see Figure 3.1)

f (x + h)− f (x)
h

is the gradient of the line PQ which converges to the tangent at P asQ→ P . So
f ′(x) is the gradient of the tangent at P .
For example, if f (x) = x2 then we have
f (x + h)− f (x)

h
= (x + h)2 − x2

h
= x2 + 2xh+ h2 − x2

h

= 2xh+ h2
h

= 2x + h,

which → 2x as h→ 0. Therefore f ′(x) = 2x.

y

xx0

P

Q

y = f (x)

f (x + h)

f (x)

x + h

Figure 3.1
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y

y = |x|

x0

Figure 3.2

Similarly one can in principle go through all the elementary functions of calculus
and show they have the derivatives they are supposed to have.
We can also prove all the elementary combination rules for differentiating sums,

products, quotients and composites.
We cannot assume that the derivative f ′(x) always exists. For example, if

f (x) = |x| then

f (h)− f (0)
h

= h

h
= 1 (h > 0)

= |h|
h

= −1 (h < 0),

so has no limit as h→ 0.
Observe that the graph of f (x) = |x| has no well defined tangent at x = 0 (see

Figure 3.2).
We therefore define f (x) to be differentiable at x if

lim
h→0

f (x + h)− f (x)
h

exists. According to this definition f (x) = |x| is not differentiable at x = 0.
Another case where differentiability fails is at a discontinuity of f (x). A

continuous function f (x) is one whose graph has no breaks. We make this idea
precise by defining f (x) to be continuous at x if

lim
h→0

f (x + h) = f (x).

For example, f (x) = 1/x is not continuous at x = 0 (Figure 3.3). In this
connection we have the following theorem.

Theorem 1 Differentiability implies continuity.
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y

x
0
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Proof Suppose f (x) is differentiable at x, then we have

f (x + h)− f (x) = hf (x + h)− f (x)
h

→ 0 × f ′(x) = 0

as h→ 0. Therefore f (x + h)→ f (x) as h→ 0.

Corollary f (x) = 1/x is not differentiable at x = 0.

Observe that the converse of Theorem1 is false. A counterexample isf (x) = |x|
which is continuous but not differentiable at x = 0.
For a complex function of a complex variable z, we define differentiability and

continuity of f (z) exactly as we have done for real functions of a real variable. The
familiar functions all have their familiar derivatives, and the familiar combination
rules are all valid. There is also a further constraint in the form of the Cauchy–
Riemann equations to which we devote the next section.

3.2 Cauchy–Riemann equations

Suppose we have a complex valued function w = f (z) of the complex variable
z, and suppose we write w = u + iv, z = x + iy, then we can express u, v
as functions of x, y and consider their partial derivatives ∂u/∂x, ∂u/∂y, ∂v/∂x,
∂v/∂y. For example, if w = z2, then

u+ iv = w = z2 = (x + iy)2 = x2 + 2ixy − y2,
which gives in this case

u = x2 − y2, v = 2xy.

In general we can use the chain rule to obtain

∂w

∂x
= dw

dz

∂z

∂x
= ∂u

∂x
+ i ∂v
∂x
,

∂w

∂y
= dw

dz

∂z

∂y
= ∂u

∂y
+ i ∂v
∂y
,
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which, on observing that ∂z/∂x = 1, ∂z/∂y = i, gives

dw

dz
= ∂u

∂x
+ i ∂v
∂x

= −i ∂u
∂y

+ ∂v

∂y
.

Therefore on equating real and imaginary parts we have

∂u

∂x
= ∂v

∂y
,

∂v

∂x
= −∂u

∂y
.

These are the Cauchy–Riemann equations published independently by Cauchy
(1818) and Riemann (1851).
We call the formula

dw

dz
= ∂u

∂x
+ i ∂v
∂x

the Cauchy–Riemann formula for the derivative.
In the case w = z2, we get

∂u

∂x
= ∂v

∂y
= 2x,

∂v

∂x
= −∂u

∂y
= 2y.

Also the Cauchy–Riemann formula gives

dw

dz
= ∂u

∂x
+ i ∂v
∂x

= 2x + 2iy = 2z

as expected.

3.3 Failure of the Cauchy–Riemann equations

Consider the function w = z̄ = x − iy. If w = u + iv, then we have u = x,
v = −y. Therefore

∂u

∂x
= 1,

∂v

∂y
= −1,

∂v

∂x
= −∂u

∂y
= 0,

which means that the first Cauchy–Riemann equation is not satisfied for any x, y.
We are forced to the conclusion that the function f (z) = z̄ cannot be differentiable
for any z.
In this connection we have the following theorem.
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Theorem 2 For u+ iv = f (x + iy) with continuous partial derivatives ∂u/∂x,
∂u/∂y, ∂v/∂x, ∂v/∂y the function f (z) is differentiable at z if and only if the
Cauchy–Riemann equations

∂u

∂x
= ∂v

∂y
,

∂v

∂x
= −∂u

∂y
,

are satisfied.

Proof We proved necessity above. For sufficiency we refer the reader to rigorous
books on complex analysis.

3.4 Geometric significance of the complex derivative

For a real function f (x) of a real variable x, the equation of the tangent to the
graph y = f (x) at x = a is

y = f (a)+ (x − a)f ′(a).

For a complex function f (z) of a complex variable z, the equation of the tangent
plane (in 4 dimensions) to the graph w = f (z) at z = a is

w = f (a)+ (z− a)f ′(a) = Az+ B,

where A = f ′(a), B = f (a)− af ′(a).
The geometric effect of the linear function w = Az+B is a rotation, a scaling,

and a translation. The rotation is through the angle argA, the scaling is by the
factor |A|. The translation is through a distance |B| in the direction argB.
What this tells us about the transformation w = f (z) is that near z = a the

effect is approximately a rotation through arg f ′(a), and a scaling by |f ′(a)|. For
example, if a = iπ/2 and f (z) = ez, then we have f (a) = eiπ/2 = i. Also
f ′(a) = ea = eiπ/2 = i. So the effect near z = a is a rotation through 90◦
anticlockwise (see Figure 3.4). If b = iπ/2 + 1, then we have f (b) = f ′(b) =
ei, so the effect locally is now a scaling by e, and again a rotation through 90◦
anticlockwise (see Figure 3.4).
The fact that w = f (z) acts locally like a rotation through arg f ′(z) explains

why curves which intersect at a certain angle in the z-plane are transformed under
the action ofw = f (z) to curves which intersect at the same angle in thew-plane.
This is the characteristic property of a conformal mapping which is important for
the applications to fluid mechanics.
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3.5 Maclaurin expansions

It has always been important to be able to approximate functions by polynomials.
This is because polynomials are the only functions whose values can be calculated
arithmetically. For a calculator to calculate ex for given x it has to evaluate the
series

ex = 1+ x + x2

2! + x3

3! + · · ·

to as many terms as are needed to achieve the required degree of accuracy. To
calculate the value of π it is necessary to use the series

tan−1 x = x − x3

3
+ x5

5
− · · ·

with x = 1. In practice, both of these calculations are done by more sophisticated
methods, but they still have to make use of polynomial expansions in one form or
another.
Maclaurin (1742) gave the general form for expanding a function f (x) in powers

of x. The expansion is

f (x) =
∞∑
n=0

anx
n,

where the nth coefficient an is given by the formula

an = f (n)(0)

n! ,

and where f (n)(0) denotes the nth derivative f (n)(x) of f (x) evaluated at x = 0.
We call this expansion theMaclaurin expansion off (x), andwe call the coefficient
an the nth Maclaurin coefficient of f (x).
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For example, if f (x) = ex , then we have f ′(x) = f ′′(x) = · · · = ex , and
therefore f ′(0) = f ′′(0) = · · · = 1. So the Maclaurin expansion of ex is

ex = 1+ x + x2

2! + x3

3! + · · ·

as already observed above.
To see where the Maclaurin formula for the nth coefficient comes from, observe

that if

f (x) = a0 + a1x + a2x2 + a3x3 + · · ·
then putting x = 0 gives f (0) = a0.
Differentiating term by term we get

f ′(x) = a1 + 2a2x + 3a3x
2 + · · · ,

which on substituting x = 0 gives f ′(0) = a1.
Differentiating again we get

f ′′(x) = 2a2 + 6a3x
2 + · · · ,

which on substituting x = 0 gives f ′′(0) = 2a2, and hence a2 = f ′′(0)/2!
Similarly, differentiating n times and putting x = 0 we get f (n)(0) = n!an,

and hence an = f (n)(0)/n! as required.
Maclaurin was concerned with real variables only, but his expansion remains

valid for complex variables also. We list below some examples of Maclaurin
expansions in the complex context.

ez = 1+ z+ z2

2! + z3

3! + · · ·

sin z = z− z3

3! + z5

5! − · · ·

cos z = 1− z2

2! + z4

4! − · · ·

sinh z = z+ z3

3! + z5

5! + · · ·

cosh z = 1+ z2

2! + z4

4! + · · ·

(1+ z)α = 1+ αz+ α(α − 1)

2! z2 + · · · (|z| < 1)

1

1− z = 1+ z+ z2 + · · · (|z| < 1)

log(1+ z) = z− z2

2
+ z3

3
− · · · (|z| < 1).
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The first five expansions are valid for all z, whilst the last three are only valid for
|z| < 1. The expansion for (1+z)α is of course the binomial theorem, which gives
a terminating series in the case α a positive integer. The particular case α = −1
gives the geometric series

1

1+ z = 1− z+ z2 − · · · ,

which on integrating term by term gives the series for log(1+ z) (PV).

3.6 Calculating Maclaurin expansions

We can either use the Maclaurin formula an = f (n)(0)/n! or we can combine the
standard expansions listed in Section 3.5.
For example, suppose f (z) = tan z. Then writing T = tan z, S = sec z and

observing that dT /dz = S2, dS/dz = ST we have the following.

f (z) = T = 0 at z = 0, therefore a0 = 0.

f ′(z) = S2 = 1 at z = 0, therefore a1 = 1.

f ′′(z) = 2S2T = 0 at z = 0, therefore a2 = 0.

f ′′′(z) = 4S2T 2 + 2S4 = 2 at z = 0, therefore a3 = 2/3! = 1/3.

Hence we obtain

tan z = z+ z3

3
+ · · ·

Alternatively, we can write

tan z = sin z

cos z
= z− z3/3! + z5/5! − · · ·

1− z2/2! + z4/4! − · · ·

=
(
z− z3

6
+ z5

120
− · · ·

)

×
(
1+

(
z2

2
− z2

24
+ · · ·

)
+

(
z2

2
− z2

24
+ · · ·

)2

− · · ·
)

=
(
z− z3

6
+ z5

120
− · · ·

) (
1+ z2

2
+ 5

24
z4 + · · ·

)

= z+ z3

3
+ 2

15
z5 + · · · .
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3.7 Taylor expansions

The Maclaurin expansion is a particular case of a more general expansion due to
Taylor (1715) which represents f (z) as a series in powers of z−c for any fixed c as

f (z) =
∞∑
n=0

an(z− c)n,

where the nth coefficient an is given by the formula

an = f (n)(c)

n! .

We call this expansion the Taylor expansion of f (z) at z = c, and we call the
coefficient an the nth Taylor coefficient of f (z) at z = c.
For example, suppose f (z) = 1/z and c = 1. We can calculate an as follows:

a0 = f (1) = 1.

f ′(z) = −1/z2 = −1 at z = 1. Therefore a1 = −1.

f ′′(z) = 2/z3 = 2 at z = 1. Therefore a2 = 2/2! = 1.

f ′′′(z) = −6/z4 = −6 at z = 1. Therefore a3 = −6/3! = −1.

Hence we obtain

1

z
= 1− (z− 1)+ (z− 1)2 − (z− 1)3 + · · · =

∞∑
n=0

(−1)n(z− 1)n.

An alternative method of finding the Taylor expansion of 1/z at z = 1 is to put
t = z− 1 and expand in powers of t . We obtain

1

z
= 1

1+ t = 1− t + t2 − t3 + · · ·

= 1− (z− 1)+ (z− 1)2 − (z− 1)3 + · · ·
as before.
The range of validity for this expansion is |z− 1| < 1.

3.8 Laurent expansions

The Taylor expansion is a special case of a still more general expansion due to
Laurent (1843) which represents f (z) as the sum of a two-way power series

f (z) =
∞∑

n=−∞
an(z− c)n

= · · · + a−2

(z− c)2 + a−1

z− c + a0 + a1(z− c)+ a2(z− c)2 + · · · .
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The Laurent expansion is used for functions which have a singularity at c. We
classify singularities according to the type of Laurent expansion obtained. We call
that part of the Laurent expansion with negative powers of z − c the principal
part. We say f (z) has a pole at z = c if the principal part has only finitely many
non-zero terms. If the principal part has infinitely many non-zero terms we say
f (z) has an essential singularity.
The order of a pole is the largest n for which a−n �= 0. A pole of order 1 is

called a simple pole. A pole of order 2 is called a double pole. The residue of f (z)
at z = c is the coefficient a−1 in the Laurent expansion at z = c.
For example, f (z) = e1/z has an essential singularity at z = 0, since the Laurent

expansion at z = 0 is

e1/z = 1+ 1

z
+ 1

2!
1

z2
+ · · · .

The residue of e1/z at z = 0 is 1.
On the other hand, g(z) = ez/z4 has a pole of order 4 at z = 0, since the Laurent

expansion at z = 0 is

ez

z4
= 1

z4

(
1+ z+ z2

2! + z3

3! + · · ·
)

= 1

z4
+ 1

z3
+ 1

2!
1

z2
+ 1

3!
1

z
+ · · · .

The residue of ez/z4 at z = 0 is 1/3! = 1/6.

3.9 Calculation of Laurent expansions

We proceed by way of example. Consider the function

f (z) = 1

1+ z2 ,

which has singularities at z = ±i.
We find the Laurent expansion at z = i by putting t = z − i and expanding in

powers of t . We obtain

1

1+ z2 = 1

1+ (t + i)2 = 1

1+ t2 + 2it − 1
= 1

t2 + 2it
= 1

2it

1

1+ t/2i

= 1

2it

(
1− t

2i
+

(
t

2i

)2

− · · ·
)

= 1

2it
+ 1

4
− t

8i
+ · · · ,

which shows that f (z) has a simple pole at z = i with residue 1/2i.
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We get the Laurent expansion at z = −i by putting t = z+ i and expanding in
terms of t . This time we have

1

1+ z2 = − 1

2it
+ 1

4
+ t

8i
+ · · · ,

which shows that f (z) also has a simple pole at z = −i, but now with
residue −1/2i.

Notes

For a proof of Theorem 2, see, for example, Knopp (1945) page 30.
Neither Taylor nor Maclaurin gave a rigorous proof of the validity of their

expansions. They are not valid in general, even for functions with derivatives of
all orders. An interesting example is the function

f (x) = e−1/x2 ,

which (if we assume f (x) = 0 at x = 0) has f (n)(0) = 0 for all n, so has
a Maclaurin expansion which vanishes identically, therefore cannot = f (x) at
any x �= 0.
They are of course valid for the elementary functions we consider here.
Rigorous treatments of complex analysis are able to give proofs of the validity

of Taylor, Maclaurin and Laurent expansions in the complex domain using the
theory of contour integration developed in the next chapter. (See Knopp (1945)
chapter 7 for the details.)

Examples

1. Verify the Cauchy–Riemann equations for the following functions:

z3, ez, sin z, log z.

Verify the Cauchy–Riemann formula for the derivative in each case.
2. Prove |z|2 is differentiable only at z = 0. What is its derivative at this point?
3. Prove f (z) = z̄(|z|2 − 2) is differentiable only on the unit circle |z| = 1.

Verify that f ′(z) = z̄2 for these z.
4. Prove that if f (z) is differentiable for all z and is everywhere real valued then

f (z) must be constant.
5. Find theMaclaurin expansion of ez sin z up to terms in z5 (i) by differentiating

and putting z = 0, (ii) bymultiplying theMaclaurin expansions of ez and sin z
together.

6. Find the Taylor expansions of the following functions at the points indicated.
State the range of validity in each case.

(i) 1/z at z = 2, (ii) ez at z = i, (iii) log z (PV) at z = 1.
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7. Find the Laurent expansions of the following functions at the points indicated.
State what type of singularity each one is, and what the residues are. Indicate
the principal part in each case.

(i) ez/z10 at z = 0, (ii) sin z/z15 at z = 0, (iii)
1

z2 − 1
at z = ±1.

8. Find constants A,B such that

f (z) = 3z+ 1

(z+ 2)(z− 3)
= A

z+ 2
+ B

z− 3
.

Hence find the Maclaurin expansion of f (z). What is its range of validity?



Chapter 4

Integrals

4.1 Review of real variables

Suppose that I = [a, b] is a real interval, and that f (x) is a real valued function
defined for x ∈ I . Then the integral of f (x) from a to b, or over I , is defined to be

∫ b

a

f (x) dx =
∫
I

f (x) dx = lim
dx→0

∑
f (x) dx.

Geometrically the integral represents the area under the graph of f (x) between
the limits x = a, x = b. The approximating area

∑
f (x) dx represents the sum

of the areas of the rectangles height f (x) and width dx (Figure 4.1).
We have the following two theorems.

Theorem 1 (Existence theorem) f (x) continuous implies f (x) integrable.

Theorem 2 (Fundamental theorem of calculus) If f (x) is continuous for a ≤
x ≤ b, then

∫ b

a

f (x) dx = F(b)− F(a) = [F(x)]ba,

where F(x) is any primitive of f (x).

a b

f (x)

y = f (x)

dx

Figure 4.1
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M

a

y = f (x)

b

Figure 4.2

An integrable function is one for which the above limit exists finite. A primitive
for f (x) is any F(x) such that F ′(x) = f (x). Theorem 1 guarantees that the
integral exists for any continuous function. Theorem 2 gives us a practical method
for evaluating integrals. Together with the following combination rules.

• Linear combination rule∫ b

a

(λf (x)+ µg(x)) dx = λ
∫ b

a

f (x)+ µ
∫ b

a

g(x) dx.

• Product rule (integration by parts)∫ b

a

f (x)g′(x) dx = [f (x)g(x)]ba −
∫ b

a

f ′(x)g(x) dx.

• Composite rule (integration by substitution)∫ b

a

f (x) dx =
∫ β

α

f (g(t))g′(t) dt,

where g(α) = a, g(β) = b.

For integrals which cannot be evaluated exactly we have the inequalities∣∣∣∣
∫ b

a

f (x) dx

∣∣∣∣ ≤
∫ b

a

|f (x)| dx ≤ M(b − a),

where |f (x)| ≤ M for a ≤ x ≤ b (Figure 4.2).

4.2 Contours

Instead of intervals we shall integrate complex functions f (z) of the complex
variable z along contours. By a contour γ we mean a continuous curve in the
complex plane. A parametrisation of γ is a representation of γ as

γ = {φ(t):α ≤ t ≤ β},
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where φ(t) is a continuous function on the real interval [α, β]. We call t the
parameter, φ(t) the parametric function, [α, β] the parametric interval. We call
the points a = φ(α), b = φ(β) the end points of γ . We say γ is a closed contour if
a = b. The orientation of a contour γ is the direction in which the point z = φ(t)
moves as t moves along the parametric interval. We put an arrow on the contour
to indicate the orientation.

Example 1 (Straight line) We can parametrise the straight line γ going from
a to b as z = (1− t)a + tb where 0 ≤ t ≤ 1 (Figure 4.3).

Example 2 (Unit circle) Wecan parametrise the unit circle γ described once anti-
clockwise as z = eit where 0 ≤ t ≤ 2π (Figure 4.4).

Example 3 (Unit square) The squareγ withvertices at 0, 1, 1+i, i describedonce
anticlockwise can be written as γ = γ1+γ2+γ3+γ4, where γ1, γ2, γ3, γ4 are the
four sides of the square indicated in Figure 4.5. We need a different parametrisation
for each side.

On γ1 We can take z = t , where 0 ≤ t ≤ 1.
On γ2 We can take z = 1+ it , where 0 ≤ t ≤ 1.
On γ3 We can take z = t + i, where 1 ≥ t ≥ 0.
On γ4 We can take z = it , where 1 ≥ t ≥ 0.

a

b�

Figure 4.3

0 1

�

Figure 4.4
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1+ ii

�2

�3

�1

�4

0 1

Figure 4.5

Observe that the orientation of γ3, γ4 is given by decreasing t . We indicate this by
writing 1 ≥ t ≥ 0 instead of 0 ≤ t ≤ 1.

4.3 Contour integrals

Given a contour γ and a function f (z) defined for z ∈ γ we define∫
γ

f (z) dz = lim
dz→0

∑
f (z) dz.

Theorems 1 and 2 of Section 4.1 remain valid in the complex context, also the
combination rules for integrals. The inequalities generalise to the following.

4.4 Estimate lemma

If |f (z)| ≤ M for z ∈ γ , then∣∣∣∣
∫
γ

f (z) dz

∣∣∣∣ ≤ Mlγ ,

where lγ is the length of γ .

Regarding evaluation of contour integrals we give three methods.

4.5 Method 1: Substituting the parametric function

We describe the method by way of examples.

Example 1 Evaluate∫
γ

zn dz,

where γ is the unit circle parametrised by letting z = eit where 0 ≤ t ≤ 2π .
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If we substitute z = eit , then we have dz = ieit dt . Therefore∫
γ

zn dz =
∫ 2π

0
(eit )nieit dt

= i
∫ 2π

0
ei(n+1)t dt

= i
[
ei(n+1)t

i(n+ 1)

]2π

0

= 0,

if n �= −1. If n = −1, then we have∫
γ

dz

z
= i

∫ 2π

0
dt = 2πi.

Example 2 Evaluate∫
γ

z2 dz,

where γ is the unit square γ = γ1 + γ2 + γ3 + γ4 as in Figure 4.5.
On γ1 We have z = t where 0 ≤ t ≤ 1. Therefore dz = dt which gives∫

γ1

z2 dz =
∫ 1

0
t2 dt = 1

3
.

On γ2 We have z = 1+ it where 0 ≤ t ≤ 1. Therefore dz = idt which gives∫
γ2

z2 dz =
∫ 1

0
(1+ it)2i dt =

∫ 1

0
(i − 2t − it2) dt = −1+ 2

3
i.

On γ3 We have z = t + i where 1 ≥ t ≥ 0. Therefore dz = dt which gives∫
γ3

z2 dz =
∫ 0

1
(t + i)2 dt =

∫ 0

1
(t2 + 2it − 1) dt = 2

3
− i.

On γ4 We have z = it where 1 ≥ t ≥ 0. Therefore dz = idt which gives∫
γ4

z2 dz =
∫ 0

1
(it)2i dt = −i

∫ 0

1
t2 dt = 1

3
i.

Hence we have∫
γ

z2 dz =
∫
γ1

+
∫
γ2

+
∫
γ3

+
∫
γ4

= 1

3
+

(
−1+ 2

3
i

)
+

(
2

3
− i

)
+ 1

3
i = 0.
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4.6 Method 2: Using the fundamental theorem of calculus

If the contour γ has end points a, b with orientation a to b, and if the function
f (z) has a primitive F(z) on γ (F ′(z) = f (z)), then∫

γ

f (z) dz = F(b)− F(a) = [F(z)]ba.

For example, if γ is the parabolic arc z = t + it2 (0 ≤ t ≤ 1), then∫
γ

z2 dz =
[
z3

3

]1+i
0

= (1+ i)3
3

.

Observe that if γ is any contour going from 0 to 1 + i we must have∫
γ

z2 dz = (1+ i)3
3

.

Observe also that if γ is any closed contour (a = b), then we must have∫
γ

z2 dz = 0.

More generally we have the following theorem.

Theorem 3 If γ is any closed contour, and if f (z) has a primitive on γ then∫
γ

f (z) dz = 0.

Corollary 1 (See Example 1 of Section 4.5) If γ is the unit circle, then for all
n �= −1 we have∫

γ

zn dz = 0.

Proof For n �= −1 the function zn has the primitive zn+1/(n+ 1) on γ .

Corollary 2 The function 1/z has no primitive on the unit circle.

Proof We showed in Section 4.5 that∫
γ

dz

z
= 2πi �= 0.

It might be thought that log z is a primitive for 1/z on the unit circle. However
by Theorem 1 of Chapter 3, any F(z) such that F ′(z) = f (z) must be contin-
uous. Whichever values we take for log z on the unit circle there is bound to be
a discontinuity. For example, log z (PV) has a discontinuity at z = −1.
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4.7 Method 3: Using the residue theorem

Theorem 3 above says that if f (z) has a primitive on the closed contour γ , then∫
γ

f (z) dz = 0.

The analogue of this theorem for derivatives is as follows.

Theorem 4 (Cauchy’s theorem) If γ is a closed contour and if f (z) has a
derivative on γ and everywhere inside γ , then∫

γ

f (z) dz = 0.

Proof See Appendix 1.

We can use Cauchy’s theorem to show (for a third time) that if γ is the unit
circle, then∫

γ

zn dz = 0

for n ≥ 0. For n < 0 Cauchy’s theorem does not tell us anything, since zn then
has a singularity at z = 0 which is inside γ .
Cauchy’s theorem might appear at first sight to be rather trivial. However, it

turns out to have far reaching consequences as we shall shortly see.

Corollary 1 If the contours γ1, γ2 have the same end points a, b and if f (z) is
differentiable on γ1, γ2 and between them, then (Figure 4.6)∫

γ1

f (z) dz =
∫
γ2

f (z) dz.

Proof If γ = γ2 − γ1, then we can apply Cauchy’s theorem to γ to obtain

0 =
∫
γ

f (z) dz =
∫
γ2

f (z) dz−
∫
γ1

f (z) dz.

a b�1

�2

Figure 4.6
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�3 �4

��2 ��1

��2

��1

Figure 4.7

Corollary 2 If the closed contours γ1, γ2 are such that γ2 lies inside γ1, and if
f (z) is differentiable on γ1, γ2 and between them, then∫

γ1

f (z) dz =
∫
γ2

f (z) dz.

Proof If we make cross cuts γ3, γ4 as indicated in Figure 4.7, and if we denote
the upper parts of γ1, γ2 by γ ′

1, γ
′
2 and the lower parts by γ

′′
1 , γ

′′
2 then by Corollary 1

we have∫
γ ′
1

f (z) dz =
∫
γ ′
2

f (z) dz−
∫
γ3

f (z) dz−
∫
γ4

f (z) dz,

∫
γ ′′
1

f (z) dz =
∫
γ ′′
2

f (z) dz+
∫
γ3

f (z) dz+
∫
γ4

f (z) dz.

Therefore∫
γ1

f (z) dz =
∫
γ ′
1

f (z) dz+
∫
γ ′′
1

f (z) dz

=
∫
γ ′
2

f (z) dz+
∫
γ ′′
2

f (z) dz =
∫
γ2

f (z) dz.

Corollary 3 If non-intersecting closed contours γ1, . . . , γn all lie inside the
closed contour γ , and if f (z) is differentiable on γ, γ1, . . . , γn and on the area
internal to γ and external to γ1, . . . , γn, then (Figure 4.8)∫

γ

f (z) dz =
n∑
k=1

∫
γk

f (z) dz.

Proof Make cross cuts as in the proof of Corollary 2.
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�4
�3

�

�1
�2

Figure 4.8

Theorem 5 (Residue theorem) If γ is a closed contour and if f (z) is diff-
erentiable on γ and inside γ except at c1, . . . , cn inside γ , then

∫
γ

f (z) dz = 2πi
n∑
k=1

Rk,

where Rk is the residue of f (z) at ck .

Proof (Special case) Suppose f (z) has a single singularity at z = c inside γ . If
we let γr be a circle centre c, radius r small enough to ensure that γr lies inside γ ,
then by Corollary 2 of Cauchy’s theorem we have∫

γ

f (z) dz =
∫
γr

f (z) dz.

If the Laurent expansion of f (z) at z = c is

f (z) =
∞∑

−∞
an(z− c)n,

then we have

∫
γr

f (z) dz =
∞∑

−∞
an

∫
γr

(z− c)n dz = a−1

∫
γr

dz

z− c

since for n �= −1 we have

∫
γr

(z− c)n dz =
[
(z− c)n+1

n+ 1

]
γr

= 0

by Method 2.
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On γr we have z = c + reit (0 ≤ t ≤ 2π ), therefore by Method 1 we have

∫
γr

dz

z− c =
∫ 2π

0

ireit

reit
dt =

∫ 2π

0
i dt = 2πi.

Hence∫
γ

f (z) dz = 2πia−1

as required.

General case If f (z) has a singularities at z = c1, . . . , cn inside γ then we can
draw circles γ1, . . . , γn with centres at c1, . . . , cn and with radii small enough
to ensure they all lie inside γ and that they don’t intersect each other. Hence by
Corollary 3 of Cauchy’s theorem we have

∫
γ

f (z) dz =
n∑
k=1

∫
γk

f (z) dz =
n∑
k=1

2πiRk

by what we have already proved.

Example Evaluate the integral∫
γ

dz

z2 + 1
,

where γ is to be specified.

Answer We need to find the singularities of the integrand, and find the residues
at these singularities. In fact we already did this in Section 3.9 where we found
that the singularities are at z = ±i with residues ±1/2i.

γ = circle centre i, radius 1. In this case i is inside γ , −i is outside γ .
Therefore,∫
γ

dz

z2 + 1
= 2πi

(
1

2i

)
= π.

γ = circle centre −i, radius 1. In this case −i is inside γ , i is outside γ .
Therefore,∫
γ

dz

z2 + 1
= 2πi

(
− 1

2i

)
= −π.
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γ = circle centre 0, radius 2. In this case both singularities ±i are inside
γ . Therefore,∫
γ

dz

z2 + 1
= 2πi

(
1

2i
− 1

2i

)
= 0.

γ = circle centre 0, radius 1/2. In this case neither singularity is inside γ .
Therefore,∫
γ

dz

z2 + 1
= 0

by Cauchy’s theorem.

4.8 Quick ways of finding residues

For simple poles there are quicker methods for finding residues than calculating
the Laurent expansion and taking the −1th Laurent coefficient. For example, we
have the following.

Cover up rule If f (z) takes the form

f (z) = g(z)

z− c ,

where g(c) �= 0, then the residue of f (z) at z = c is g(c).
Proof The Taylor expansion for g(z) at z = c is

g(z) = g(c)+ (z− c)g′(c)+ · · · ,
which gives immediately

f (z) = g(c)

z− c + g′(c)+ · · ·

Example Consider again

1

z2 + 1
= 1

(z+ i)(z− i) ,

which has simple poles at z = ±i. Covering up z− i, z+ i in turn we have

Res
z=i

1

z2 + 1
=

[
1

z+ i
]
z=i

= 1

2i
, Res

z=−i
1

z2 + 1
=

[
1

z− i
]
z=−i

= − 1

2i
.
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Differentiating the denominator If f (z) takes the form f (z) = g(z)/h(z), where
g(c) �= 0, h(c) = 0, h′(c) �= 0 then the residue of f (z) at z = c is g(c)/h′(c).

Proof We have

f (z) = g(c)+ (z− c)g′(c)+ · · ·
(z− c)h′(c)+ (z− c)2h′′(c)/2! + · · · = k(z)

z− c ,

where

k(z) = g(c)+ (z− c)g′(c)+ · · ·
h′(c)+ (z− c)h′′(c)/2! + · · · .

Therefore the residue of f (z) at z = c is g(c)/h′(c) by the cover up rule.

Example Consider again

Res
z=i

1

z2 + 1
=

[
1

2z

]
z=i

= 1

2i
, Res

z=−i
1

z2 + 1
=

[
1

2z

]
z=−i

= − 1

2i
.

Notes

A rigorous treatment of contour integration would present the facts in a different
order. We have assumed in our proof of the residue theorem that a differentiable
function has a valid Laurent expansion near an isolated singularity, and that this
expansion can be integrated term by term. We have also assumed in our statement
of Cauchy’s theorem that the ‘inside’ of a closed contour is well defined. A rig-
orous proof of the residue theorem requires a knowledge of uniform convergence.
A rigorous proof of Cauchy’s theorem requires a knowledge of plane topology.
Both of these can be found in Knopp (1945).

Examples

1. Evaluate the following contour integrals.

(i)
∫
γ
Re z dz where γ is the unit circle z = eit (0 ≤ t ≤ 2π).

(ii)
∫
γ

|z|2 dz where γ is the parabolic arc z = t + it2 (0 ≤ t ≤ 1).

(iii)
∫
γ
z̄ dz where γ is the straight line joining 0 to 1 + i.

2. Use the estimate lemma to prove the following inequalities.

(i)

∣∣∣∣
∫
γ

ez

z− 1
dz

∣∣∣∣ ≤ 2πe2 where γ is the circle |z− 1| = 1.

(ii)

∣∣∣∣
∫
γ

sin z

z+ i dz
∣∣∣∣ ≤ π sinh 1√

2
where γ is the semicircle z = eit (0 ≤ t ≤ π ).
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(iii)

∣∣∣∣
∫
γ

z− 2

z− 3
dz

∣∣∣∣ ≤ 4
√
10 where γ is the square with vertices at ±1± i.

3. Find all the singularities of the following functions. Use the method of
differentiating the denominator to find all the residues.

(i)
z+ 1

z− 1
, (ii)

ez

z2 + π2 , (iii)
1

z2 − 6z+ 8
.

4. Use the residue theorem to evaluate the following integrals round the contours
indicated.

(i)
∫
γ

z+ 1

z− 1
dz (γ = circle centre 1, radius 1).

(ii)
∫
γ

ez

z2 + π2 dz (γ = circle centre πi, radius π ).

(iii)
∫
γ

dz

z2 − 6z+ 8
(γ = circle centre 0, radius 3).

5. Prove that if f (z) is differentiable inside and on the closed contour γ , then
for any a inside γ

f (a) = 1

2πi

∫
γ

f (z) dz

z− a
(Cauchy’s integral formula). What is the value of this integral if a is outside γ ?
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Evaluation of finite
real integrals

As a first application of the residue theorem (see Section 4.7) we describe amethod
for evaluating a certain class of real integrals over a finite interval.

Example 1 Consider the integral∫ 2π

0

dt

5+ 4 cos t
.

We can transform this integral into a contour integral round the unit circle by
making the substitution z = eit . We have dz = ieit dt = izdt which gives
dt = dz/iz. We also have

cos t = eit + e−it
2

= z+ 1/z

2
.

Therefore we get∫ 2π

0

dt

5+ 4 cos t
=

∫
γ

dz

iz

1

5+ 2(z+ 1/z)
= 1

i

∫
γ

dz

2z2 + 5z+ 2
,

where γ is the unit circle.
We now evaluate this contour integral using the residue theorem. Observe that

2z2 + 5z+ 2 = (2z+ 1)(z+ 2), therefore the singularities of the integrand occur
at z = −2,−1/2 (Figure 5.1). Of these only z = −1/2 is inside γ , where the
residue is

1

i

[
1

4z+ 5

]
z=−1/2

= 1

3i
,

using the method of differentiating the denominator (see Section 4.8).
Hence we have∫ 2π

0

dt

5+ 4 cos t
= 1

i

∫
γ

dz

2z2 + 5z+ 2
= 2πi × 1

3i
= 2π

3
.
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× ×
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Figure 5.1

Example 2 Consider the integral∫ 2π

0

dt

1+ sin2 t
.

Putting z = eit gives∫ 2π

0

dt

1+ sin2 t
=

∫
γ

dz

iz

1

1− (z− 1/z)2/4
=

∫
γ

4iz dz

z4 − 6z2 + 1
,

where γ is the unit circle. Here we used the formula

sin t = eit − e−it
2i

= z− 1/z

2i
.

The singularities of the integrand are at the solutions of the equation

z4 − 6z2 + 1 = 0,

which are given by

z2 = 6± √
36− 4

2
= 3± 2

√
2.

Of these only z = ±
√
3− 2

√
2 = ±(√2 − 1) are inside γ (Figure 5.2).

Differentiating the denominator we obtain the residues by evaluating

4iz

4z3 − 12z
= i

z2 − 3

at z2 = 3− 2
√
2. Therefore the residues are −i/2√2 at both these points.

Hence by the residue theorem we have∫ 2π

0

dt

1+ sin2 t
=

∫
γ

4iz dz

z4 − 6z2 + 1
= − i

2
√
2

× 2 × 2πi = π√
2.
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Example 3 Consider the integral

∫ 2π

0
cos4 t dt.

The substitution z = eit gives

∫ 2π

0
cos4 t dt =

∫
γ

dz

16iz

(
z+ 1

z

)4

=
∫
γ

dz

16iz

(
z4 + 4z2 + 6+ 4

z2
+ 1

z4

)

= 1

16i

∫
γ

(
z3 + 4z+ 6

z
+ 4

z3
+ 1

z5

)
dz,

where γ is the unit circle.
Observe that the integrand is already a Laurent expansion, indicating that there

is a pole of order 5 at z = 0, and that the residue there is 6/16i = 3/8i.
Hence we have

∫ 2π

0
cos4 t dt = 2πi × 3

8i
= 3π

4
.

Example 4 Consider the integral

∫ 2π

0
sin 2t cos 3t dt.
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Making the substitution z = eit we obtain
∫ 2π

0
sin 2t cos 3t dt = 1

4i

∫
γ

dz

iz

(
z2 − 1

z2

) (
z3 + 1

z3

)

= 1

4i

∫
γ

dz

iz

(
z5 − z+ 1

z
− 1

z5

)

= −1

4

∫
γ

(
z4 − 1+ 1

z2
− 1

z6

)
dz

= 0,

since the integrand is a Laurent expansion with no term in 1/z.
Hence we have∫ 2π

0
sin 2t cos 3t dt = 0.

Examples

Evaluate the following integrals.

1.
∫ 2π

0

dt

2 + cos t
(2π/

√
3)

2.
∫ 2π

0

dt

3+ 2 sin t
(2π/

√
5)

3.
∫ 2π

0

dt

4 − 3 cos2 t
(π)

4.
∫ 2π

0

sin 5t

sin t
dt (2π)

5.
∫ 2π

0
cos6 t dt (5π/8)
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Evaluation of infinite
real integrals

6.1 Convergence

For integrals of the form

∫ ∞

−∞
f (x) dx

the problem of convergence arises. We shall define the Cauchy principal value
(CPV) of such an integral to be

∫ ∞

−∞
f (x) dx = lim

R→∞

∫ R

−R
f (x) dx,

and say the integral converges whenever this limit exists. For example, consider
the integral

∫ ∞

−∞
dx

x2 + 1
.

We have

∫ R

−R
dx

x2 + 1
=

[
tan−1 x

]R
−R = 2 tan−1 R → 2 × π

2
= π

as R → ∞. Therefore, the integral converges and its value is

∫ ∞

−∞
dx

x2 + 1
= π.
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6.2 The method

We illustrate the method for evaluating infinite real integrals using complex
calculus by applying it to the integral

∫ ∞

−∞
dx

x2 + 1

considered in Section 6.1.
Let γ = γ1 + γ2 be the D-shaped contour consisting of the real interval

[−R,R] = γ1 together with the upper semicircle γ2 having [−R,R] as diameter
(Figure 6.1). And consider the contour integral∫

γ

dz

z2 + 1
=

∫
γ1

dz

z2 + 1
+

∫
γ2

dz

z2 + 1
.

On γ1 We have z = x (−R ≤ x ≤ R) therefore
∫
γ1

dz

z2 + 1
=

∫ R

−R
dx

x2 + 1
.

Inside γ For all R > 1 the integrand has one singularity at z = i where the
residue is 1/2i. Therefore∫

γ

dz

z2 + 1
= 2πi × 1

2i
= π.

On γ2 We have |z| = R therefore

|z2 + 1| ≥ R2 − 1

(see Inequality 5 of Section 1.11) from which it follows that∣∣∣∣ 1

z2 + 1

∣∣∣∣ ≤ 1

R2 − 1

× i

0–R R�1

�2

Figure 6.1
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provided R > 1. We also have lγ = πR. Therefore by the estimate lemma (see
Section 4.4) we obtain∣∣∣∣

∫
γ2

dz

z2 + 1

∣∣∣∣ ≤ πR

R2 − 1
→ 0

as R → ∞.
Putting all this information together we have

∫ R

−R
dx

x2 + 1
=

∫
γ1

dz

z2 + 1
=

∫
γ

dz

z2 + 1
−

∫
γ2

dz

z2 + 1
= π−

∫
γ2

dz

z2 + 1
→ π

as R → ∞. Hence we deduce that∫ ∞

−∞
dx

x2 + 1
converges = π

agreeing with what we found in Section 6.1.

6.3 Failure of
∫
γ2

→ 0

It is essential to the success of the method outlined in Section 6.2 that we can prove∫
γ2

→ 0. For example, consider the integral

∫ ∞

−∞
x dx

x2 + 1
.

In this case, we have

Res
z=i

z

z2 + 1
=

[
z

2z

]
z=i

= 1

2
.

Therefore,∫
γ

z dz

z2 + 1
= 2πi × 1

2
= πi

for R > 1. If we could prove that∫
γ2

z dz

z2 + 1
→ 0

as R → ∞, then we could deduce that∫ R

−R
x dx

x2 + 1
=

∫
γ1

z dz

z2 + 1
=

∫
γ

z dz

z2 + 1
−

∫
γ2

z dz

z2 + 1
→ πi
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as R → ∞. Which is nonsense because∫ R

−R
x dx

x2 + 1
= 0

for all R since the integrand is odd. In fact∫
γ2

z dz

z2 + 1
�→ 0

in this case. Its value is∫
γ2

z dz

z2 + 1
=

∫
γ

z dz

z2 + 1
−

∫
γ1

z dz

z2 + 1
= πi

for all R > 1.

6.4 Integrals involving cos x, sin x

Consider the integral∫ ∞

−∞
cos x dx

x2 + 1
.

The contour integral∫
γ

cos z dz

z2 + 1
,

where γ = γ1 + γ2 as in Section 6.2 will be no use here because
| cos z|2 = cos2 x + sinh2 y

(z = x + iy) is unbounded in the upper half plane. Instead we use
∫
γ

eiz dz

z2 + 1
,

observing first that the integral we require

∫ ∞

−∞
cos x dx

x2 + 1
= Re

∫ ∞

−∞
eix dx

x2 + 1
,

and second that eiz is bounded in the upper half plane since

|eiz| = |ei(x+iy)| = |eix−y | = |eix | |e−y | = e−y ≤ 1



Evaluation of infinite real integrals 57

for y ≥ 0. It follows that∣∣∣∣
∫
γ2

eiz dz

z2 + 1

∣∣∣∣ ≤ πR

R2 − 1
→ 0

as R → ∞. For R > 1 the integrand has a singularity at z = i inside γ where the
residue is

Res
z=i

eiz

z2 + 1
=

[
eiz

2z

]
z=i

= 1

2ie
.

Therefore,∫
γ

eiz dz

z2 + 1
= 2πi × 1

2ie
= π

e
.

Hence we have∫ R

−R
eix dx

x2 + 1
=

∫
γ1

eiz dz

z2 + 1
=

∫
γ

eiz dz

z2 + 1
−

∫
γ2

eiz dz

z2 + 1
= π

e
−

∫
γ2

eiz dz

z2 + 1
→ π

e

as R → ∞, from which it follows that∫ ∞

−∞
cos x dx

x2 + 1
converges = π

e
.

We therefore deduce that∫ ∞

−∞
cos x dx

x2 + 1
= Re

∫ ∞

−∞
eix dx

x2 + 1
= π

e
.

We can also deduce that∫ ∞

−∞
sin x dx

x2 + 1
= Im

∫ ∞

−∞
eix dx

x2 + 1
= 0,

though this is of course immediate from the fact that the integrand is odd in this
case.

6.5 Roots of unity

Suppose we want to evaluate the integral∫ ∞

−∞
dx

x4 + 1

by considering the contour integral∫
γ

dz

z4 + 1
,
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where γ = γ1+γ2 as in Section 6.2. The integrand has singularities at the solutions
of the equation z4 + 1 = 0 which are ω,ω3, ω5, ω7 (Figure 6.2) where ω = eiπ/4
is the primitive 8th root of unity (see Section 1.10).
Differentiating the denominator we find the residues of the integrand at z =

ω,ω3 are 1/4ω3, 1/4ω9, respectively. Therefore,∫
γ

dz

z4 + 1
= 2πi

(
1

4ω3
+ 1

4ω9

)
= πi

2ω9
(ω6+1) = πi(1− i)

2ω
= π(1+ i)

2ω

since ω6 = −i. But ω = (1+ i)/√2 so we get∫
γ

dz

z4 + 1
= π√

2
.

By the estimate lemma (4.4) we have∣∣∣∣
∫
γ2

dz

z4 + 1

∣∣∣∣ ≤ πR

R4 − 1
→ 0

as R → ∞. Therefore,∫ R

−R
dx

x4 + 1
=

∫
γ1

dz

z4 + 1
=

∫
γ

dz

z4 + 1
−

∫
γ2

dz

z4 + 1
→ π√

2

as R → ∞, which shows that∫ ∞

−∞
dx

x4 + 1
converges = π√

2
.

6.6 Singularities on the real axis

We cannot evaluate the integral∫ ∞

0

dx

x3 + 1
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by considering the contour integral

∫
γ

dz

z3 + 1

round γ as in Section 6.2 since the integrand has a singularity at z = −1 which is
on γ . Instead we use the pizza slice contour γ = γ1+γ2+γ3 shown in Figure 6.3.
Here ω = e2πi/3 is the primitive cube root of unity (see Section 1.10).
On γ1 We have z = t (0 ≤ t ≤ R). Therefore,

∫
γ1

dz

z3 + 1
=

∫ R

0

dt

t3 + 1
.

On γ3 We have z = ωt (R ≥ t ≥ 0). Therefore,

∫
γ3

dz

z3 + 1
= −

∫ R

0

ω dt

ω3t3 + 1
= −ω

∫ R

0

dt

t3 + 1
(ω3 = 1).

On γ2 We have∣∣∣∣
∫
γ2

dz

z3 + 1

∣∣∣∣ ≤ 2πR/3

R3 − 1
→ 0

as R → ∞.
The integrand has a singularity inside γ at z = eiπ/3 = −ω2 (if R > 1) where

the residue is

Res
z=−ω2

1

z3 + 1
=

[
1

3z2

]
z=−ω2

= 1

3ω4
= 1

3ω
.

Therefore,∫
γ

dz

z3 + 1
= 2πi

3ω
.
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Hence we have

2πi

3ω
= (1− ω)

∫ R

0

dt

t3 + 1
+

∫
γ2

dz

z3 + 1
,

which shows that∫ ∞

0

dt

t3 + 1
converges = 2πi

3ω(1− ω) = 2π

3
√
3
,

since ω(1− ω) = ω − ω2 = √
3i (see Figure 6.4).

6.7 Half residue theorem

To evaluate the integral

∫ ∞

−∞
sin x

x
dx

we would like to consider the contour integral

∫
γ

eiz

z
dz

round the usual D-shaped contour as in Section 6.4 except that the integrand has a
singularity at z = 0. We use instead the indented contour γ = γ1 + γ2 + γ3 + γ4
shown in Figure 6.5.
On γ1 We have z = t (r ≤ t ≤ R). Therefore,

∫
γ1

eiz

z
dz =

∫ R

r

eit

t
dt.
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On γ3 We have z = −t (R ≥ t ≥ r). Therefore,∫
γ3

eiz

z
dz = −

∫ R

r

e−it

t
dt.

Combining these two integrals we get

∫
γ1

eiz

z
dz+

∫
γ3

eiz

z
dz =

∫ R

r

eit − e−it
t

dt = 2i
∫ R

r

sin t

t
dt.

On γ2 We have (integrating by parts)

∫
γ2

eiz

z
dz =

[
eiz

iz

]
γ2

+
∫
γ2

eiz

iz2
dz.

The first term on the right-hand side[
eiz

iz

]
γ2

= e−iR

−iR − eiR

iR
= −2 cosR

iR
→ 0

as R → ∞. Whilst the second term∣∣∣∣
∫
γ2

eiz

iz2
dz

∣∣∣∣ ≤ πR

R2
= π

R
→ 0

as R → ∞. Therefore,∫
γ2

eiz

z
dz → 0

as R → ∞.
On γ4 We have z = reit (π ≥ t ≥ 0). Therefore,

∫
γ4

eiz

z
dz =

∫
γ4

dz

z
+

∫
γ4

1

z

∞∑
1

(iz)n

n! dz.
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The first term on the right-hand side

∫
γ4

dz

z
= −

∫ π

0

ireit

reit
dt = −

∫ π

0
i dt = −πi.

As for the second term, we have∣∣∣∣∣1z
∞∑
1

(iz)n

n!

∣∣∣∣∣ ≤ 1

r

∞∑
1

rn

n! = er − 1

r
,

which gives∣∣∣∣∣
∫
γ4

1

z

∞∑
1

(iz)n

n! dz

∣∣∣∣∣ ≤ πr
(
er − 1

r

)
= π(er − 1)→ 0

as r → 0. Therefore,

∫
γ4

eiz

z
dz → −πi

as r → 0.
This is a particular case of the half residue theorem. If γ were a full circle centre

0, radius r , then

∫
γ4

eiz

z
dz = 2πi

for all r > 0, since the residue of the integrand at z = 0 is 1. The half residue
theorem states that if γ is a semicircle then the integral converges to half this value
as r → 0 (see Appendix 2).
Piecing all this together we have

0 =
∫
γ

eiz

z
dz = 2i

∫ R

r

sin t

t
dt +

∫
γ2

eiz

z
dz+

∫
γ4

eiz

z
dz

which on letting R → ∞, r → 0 gives

0 = 2i
∫ ∞

0

sin t

t
dt − πi,

and hence∫ ∞

0

sin t

t
dt = π

2
.
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Example Consider the integral

∫ ∞

−∞

(
sin x

x

)2

dx.

To evaluate this integral we observe that

∫ ∞

−∞

(
sin x

x

)2

dx = 1

2

∫ ∞

−∞
1− cos 2x

x2
dx = 1

2
Re

∫ ∞

−∞
1− e2ix
x2

dx,

and work with

1

2

∫
γ

1− e2iz
z2

dz

where γ = γ1 + γ2 + γ3 + γ4 as in Figure 6.5.
The Laurent expansion of the integrand at z = 0 is

1

2

1− e2iz
z2

= 1

2

1− (1+ 2iz+ · · · )
z2

= − i
z

+ · · · ,

which shows that z = 0 is a simple pole with residue −i. Therefore, the half
residue theorem applies and, continuing as in the first example, we obtain

∫ ∞

−∞

(
sin x

x

)2

dx = π.

Examples

Evaluate the following integrals.

1.
∫ ∞

−∞
dx

x2 + 4
(π/2)

2.
∫ ∞

−∞
dx

(x2 + 1)(x2 + 4)
(π/6)

3.
∫ ∞

−∞
dx

(x2 + 1)2
(π/2)

4.
∫ ∞

−∞
dx

x2 + x + 1
(2π/

√
3)

5.
∫ ∞

−∞
cos x dx

x2 + 2x + 2
(πe−1 cos 1)
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6.
∫ ∞

−∞
x2 + 1

x4 + 1
dx (π

√
2)

7.
∫ ∞

0

dx

x5 + 1
((π/5) sin(π/5))

8.
∫ ∞

−∞

(
sin x

x

)3

dx (3π/4)



Chapter 7

Summation of series

7.1 Residues of cot z

Elementary theory of sequences and series only allows very few series to be
summed exactly. In most cases, one has to be content with knowing that a series
converges without knowing what the sum is. It is however possible to sum a wide
class of series by exploiting properties of the complex cotangent function cot z.
The singularities of cot z = cos z/ sin z occur at the zeros of sin z which are at

z = nπ for integral n (see Section 2.9). The residues at these singularities can be
obtained by differentiating the denominator rule, and are

Res
z=nπ cot z = Res

z=nπ
cos z

sin z
=

[
cos z

cos z

]
z=nπ

= 1.

7.2 Laurent expansion of cot z

We can either divide the Maclaurin expansions of cos z, sin z (as we did in
Section 3.6 for tan z) or use the expansion of tan z to obtain

cot z = 1

tan z
= 1

z+ z3/3+ 2z5/15+ · · ·

= 1

z

(
1−

(
z2

3
+ 2

15
z4 + · · ·

)
+

(
z2

3
+ 2

15
z4 + · · ·

)2
− · · ·

)

= 1

z
− z

3
− z3

45
− · · · .

7.3 The method

We demonstrate the method by summing the series

∞∑
1

1

n2
.
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We let γN be the square centre 0 with half side (N + 1/2)π (Figure 7.1), and
consider the integral

∫
γN

cot z

z2
dz.

The integrand has singularities at z = nπ where the residues are

Res
z=nπ

cot z

z2
= 1

n2π2

for n �= 0. At z = 0 the Laurent expansion is

cot z

z2
= 1

z2

(
1

z
− z

3
− z3

45
− · · ·

)
= 1

z3
− 1

3z
− z

45
− · · ·

showing that there is a triple pole at z = 0 with residue −1/3.
Therefore by the residue theorem (see Section 4.7) we have

∫
γN

cot z

z2
dz = 2πi

(
2
N∑
1

1

n2π2
− 1

3

)
.

If we can show the integral → 0 as N → ∞, then we get

2
N∑
1

1

n2π2
− 1

3
→ 0,

and hence

∞∑
1

1

n2
= π2

6
.
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7.4 Boundedness of cot z

From Section 2.8 we have

| cot z|2 =
∣∣∣∣cos zsin z

∣∣∣∣
2

= cos2 x + sinh2 y

sin2 x + sinh2 y
,

where z = x + iy.
For y fixed we have

cos2 x + sinh2 y

sin2 x + sinh2 y
≤ 1+ sinh2 y

sinh2 y
= cosh2 y

sinh2 y
= coth2 y,

which shows that | cot z| ≤ coth π/2 = 1.090331411 . . . for all z ∈ the horizontal
sides of γN for all N ≥ 1.
For x fixed = (N + 1/2)π we have

cos2 x + sinh2 y

sin2 x + sinh2 y
= sinh2 y

1+ sinh2 y
≤ 1,

which shows that | cot z| ≤ 1 for all z ∈ the vertical sides of γN for all N ≥ 1.
Hence we have | cot z| ≤ M = coth π/2 for all z ∈ γN for all N ≥ 1.
We can now show∫

γN

cot z

z2
dz → 0

as N → ∞. For z ∈ γN we have |z| ≥ (N + 1/2)π > Nπ , and the length of
γN is 8(N + 1/2)π ≤ 9Nπ for N ≥ 4. Therefore by the estimate lemma (4.4)
we have∣∣∣∣

∫
γN

cot z

z2
dz

∣∣∣∣ ≤ 9MNπ

N2π2
= 9M

Nπ
→ 0

as N → ∞ as required.

7.5 Use of cosec z

Having shown that

1+ 1

22
+ 1

32
+ 1

42
+ · · · = π2

6
,

we can obtain the sum of

1− 1

22
+ 1

32
− 1

42
+ · · · = S
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by observing that

S =
(
1+ 1

22
+ 1

32
+ 1

42
+ · · ·

)
− 2

(
1

22
+ 1

42
+ · · ·

)

=
(
1+ 1

22
+ 1

32
+ 1

42
+ · · ·

)
− 1

2

(
1+ 1

22
+ · · ·

)

= 1

2

(
1+ 1

22
+ 1

32
+ 1

42
+ · · ·

)

= π2

12
.

An alternative way to sum this second series is to use cosec z. The singularities
of cosec z = 1/ sin z are at z = nπ where the residues are

Res
z=nπ cosec z = Res

z=nπ
1

sin z
=

[
1

cos z

]
z=nπ

= (−1)n.

The Laurent expansion of cosec z at z = 0 is

cosec z = 1

sin z
= 1

z− z3/3! + z5/5! − · · ·

= 1

z

(
1+

(
z2

6
− z4

120
+ · · ·

)
+

(
z2

6
− z4

120
+ · · ·

)2
+ · · ·

)

= 1

z
+ z

6
+ 7

360
z3 + · · · .

And cosec z is bounded on γN as in Section 7.3 since

|cosec z|2 = 1

| sin z|2 = 1

sin2 x + sinh2 y
≤ 1

sinh2 y
<

1

y2
≤ 4

π2
< 1

for |y| ≥ π/2, and for x = (N + 1/2)π

|cosec z|2 = 1

sin2 x + sinh2 y
= 1

1+ sinh2 y
≤ 1.

It follows (see Section 7.4) that∣∣∣∣
∫
γN

cosec z

z2
dz

∣∣∣∣ ≤ 9Nπ

N2π2
= 9

Nπ
→ 0

as N → ∞. But∫
γN

cosec z

z2
dz = 2πi

(
2

∞∑
1

(−1)n

π2n2
+ 1

6

)
.
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Hence we obtain

∞∑
1

(−1)n

n2
= −π

2

12
,

equivalently,

1− 1

22
+ 1

32
− 1

42
+ · · · = π2

12

as before.

7.6 Use of tan z

We can sum the series

1+ 1

32
+ 1

52
+ 1

72
+ · · ·

given that

1+ 1

22
+ 1

32
+ 1

42
+ · · · = π2

6
,

by observing that

1+ 1

32
+ 1

52
+ 1

72
+ · · · =

(
1+ 1

22
+ 1

32
+ 1

42
+ · · ·

)

−
(
1

22
+ 1

42
+ · · ·

)

= π2

6
− 1

4

π2

6

= π2

8
.

Alternatively, we can use the integral∫
γn

tan z

z2
dz,

where γN is the square centre at 0 with half side Nπ (Figure 7.2).
The singularities of tan z are at z = (n + 1/2)π with residues −1. Therefore

the residue of tan z/z2 at z = (n+ 1/2)π is

Res
z=(n+1/2)π

tan z

z2
= − 1

(n+ 1/2)2π2
= − 4

(2n+ 1)2π2
.
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There is also a singularity of tan z/z2 at z = 0 where the Laurent expansion is
(see Section 3.6)

tan z

z2
= 1

z2

(
z+ z3

3
+ 2z5

15
+ · · ·

)
= 1

z
+ z

3
+ 2z3

15
+ · · · .

Therefore the residue at z = 0 is 1.
It follows that

∫
γn

tan z

z2
dz = 2πi

(
−
N−1∑
−N

4

(2n+ 1)2π2
+ 1

)
,

which gives

∞∑
−∞

1

(2n+ 1)2
= π2

4
,

equivalently,

1+ 1

32
+ 1

52
+ 1

72
+ · · · = π2

8
,

provided we can show∫
γn

tan z

z2
dz → 0

as N → ∞.
For this it is sufficient as previously to show tan z is bounded on γN for all N .

Which it is since

| tan z|2 =
∣∣∣∣ sin zcos z

∣∣∣∣
2

= sin2 x + sinh2 y

cos2 x + sinh2 y
≤ 1+ sinh2 π

sinh2 π
= coth2 π
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for |y| ≥ π . And for x = Nπ we have

| tan z|2 = sinh2 y

1+ sinh2 y
≤ 1.

Hence | tan z| ≤ coth π for all z ∈ all γN .

7.7 Use of cot πz

Consider the series

∞∑
1

1

n2 + 1
.

The integral∫
γN

cot z

z2 + 1
dz,

where γN is the square centre 0 with half side (N + 1/2)π will sum the series

∞∑
1

1

π2n2 + 1

which is not quite what we want. Instead we use∫
γN

cot πz

z2 + 1
dz,

where γN is the square centre 0 with half side (N + 1/2) (Figure 7.3).
The singularities of cot πz occur at z = n with residues

Res
z=n cot πz = Res

z=n
cosπz

sin πz
=

[
cosπz

π cosπz

]
z=n

= 1

π
.

�N

N0
× ×

N +1

Figure 7.3
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Therefore,

Res
z=n

cot πz

z2 + 1
= 1

π

1

n2 + 1
.

The integrand also has singularities at z = ±i where the residues are

Res
z=i

cot πz

z2 + 1
=

[
cot πz

2z

]
z=i

= cot πi

2i
= −coth π

2
= Res
z=−i

cot πz

z2 + 1
.

Therefore,

∫
γN

cot πz

z2 + 1
dz = 2πi

(
1

π

N∑
−N

1

n2 + 1
− coth π

)
,

which gives

∞∑
−∞

1

n2 + 1
= π coth π,

provided the integral → 0 as N → ∞. Which it does since | coth πz| ≤ coth π/2
on γN , and the length of γN is 8(N + 1/2), therefore∣∣∣∣

∫
γN

cot πz

z2 + 1
dz

∣∣∣∣ ≤ 8(N + 1/2) coth π/2

(N + 1/2)2 − 1
→ 0

as N → ∞.

7.8 Use of sec z

It might be thought that the integral∫
γN

sec z

z2
dz,

where γN is the square centre 0 with half side Nπ (see Figure 7.2) will sum the
series

1− 1

32
+ 1

52
− 1

72
+ · · ·

However it turns out that it doesn’t. The problem is that it sums the series

∞∑
−∞

(−1)n

(2n+ 1)2
= 0

which is true but not very helpful.
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In fact, no closed form is known for the sum of the series

1− 1

32
+ 1

52
− 1

72
+ · · ·

Examples

1. Find the sum of the series

1+ 1

24
+ 1

34
+ 1

44
+ · · ·

by integrating cot z/z4 round a large square contour.
2. Use your answer to Question 1 to find the sums of the following series.

1− 1

24
+ 1

34
− 1

44
+ · · ·

1+ 1

34
+ 1

54
+ 1

74
+ · · · .

3. Find the sum of

1− 1

24
+ 1

34
− 1

44
+ · · ·

by integrating cosec z/z4 round a large square contour. Compare your answer
with the answer you got in Question 2.

4. Find the sum of

1+ 1

34
+ 1

54
+ 1

74
+ · · ·

by integrating tan z/z4 round a large square contour. Compare with the answer
you got in Question 2.

5. Find the sum of

1+ 1

34
+ 1

54
+ 1

74
+ · · ·

by integrating cot πz/(2z + 1)4 round a large square contour. Compare with
Questions 2 and 4.

6. Find the sum of

∞∑
1

1

n(n+ 1)
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by writing the nth term as

1

n(n+ 1)
= 1

n
− 1

n+ 1
.

7. Find the sum of

∞∑
1

1

n(n+ 1)

by integrating cot πz/z(z + 1) round a large square contour. Compare with
Question 6.



Chapter 8

Fundamental theorem of
algebra

8.1 Zeros

We call the point c a zero of the function f (z) if f (c) = 0. For example, the zeros
of sin z are at z = nπ for n = 0,±1,±2, . . . .
We define the order ormultiplicity of a zero as follows. Suppose f (z) has Taylor

expansion

f (z) =
∞∑
0

an(z− c)n =
∞∑
0

f (n)(c)

n! (z− c)n

at z = c. We say c is a zero of order n if a0 = a1 = · · · = an−1 = 0, but an �= 0.
Equivalently, if f (c) = f ′(c) = · · · = f (n−1)(c) = 0, but f (n)(c) �= 0. A zero of
order 1 is called a simple zero, a zero of order 2 is called a double zero, etc. For
example, the zeros of f (z) = sin z are all simple since f ′(z) = cos z = ±1 at
z = nπ . However, for example, g(z) = z sin z has a double zero at z = 0 since
the Maclaurin expansion is

z sin z = z
(
z− z3

3! + · · ·
)

= z2 − z4

3! + · · ·

Theorem 1 (Fundamental theorem of algebra) Every polynomial of degree
n with complex coefficients has n zeros in the complex plane taking account of
multiplicity.

Case n = 2 Every quadratic polynomial p(z) with complex coefficients has
2 roots, possibly coincident. The case of coincident roots is when p(z) is a perfect
square taking the form

p(z) = A(z− B)2,

therefore p(z) has a double zero at z = B.
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8.2 Argument principle

We can count the number of zeros a function has inside a closed contour by means
of the following theorem.

Theorem 2 (Argument principle) If f (z) is differentiable inside and on the
closed contour γ , and if f (z) �= 0 anywhere on γ , then the number N of zeros of
f (z) inside γ is given by the formula

N = 1

2πi

∫
γ

f ′(z)
f (z)

dz.

Geometrical interpretation Observe that

1

2πi

∫
γ

f ′(z)
f (z)

dz = 1

2πi

[
log f (z)

]
γ

since log f (z) is a primitive of f ′(z)/f (z). But (see Section 2.12)

log f (z) = log |f (z)| + iarg f (z),
and log |f (z)| is single valued. Therefore,

1

2πi

[
log f (z)

]
γ

= 1

2π

[
arg f (z)

]
γ
.

So Theorem 2 says that the number of zeros of f (z) inside γ is equal to the number
of times f (z) circulates the origin as z goes round γ .

Example Suppose f (z) = z2 − 1.

Case 1 γ1 = circle centre 0, radius 1/2.

We can parametrise γ1 as z = eit /2 (0 ≤ t ≤ 2π). Therefore, the image
contour f (γ1) parametrises as w = f (z) = z2 − 1 = e2it /4 − 1 which is the
circle centre−1, radius 1/4 described twice. Observe that f (γ1) does not circulate
the origin at all, corresponding to the fact that there are no zeros of f (z) inside γ1
(Figure 8.1).

�1

1–1 –1 10

f (�1)

0

z w

Figure 8.1
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Case 2 γ2 = circle centre 0, radius 2.

We can parametrise γ2 as z = 2eit (0 ≤ t ≤ 2π). Therefore, the image contour
f (γ2) parametrises asw = f (z) = z2−1 = 4e2it−1which is the circle centre−1,
radius 4 described twice. Hence in this case the image contour f (γ2) circulates
the origin twice, reflecting the fact that f (z) has 2 zeros inside γ2 (Figure 8.2).

Case 3 γ3 = circle centre 1, radius 1.

On γ3 we have z = 1+ eit (0 ≤ t ≤ 2π). Therefore on f (γ3) we have

w = f (z) = (1+ e2it )2 − 1 = eit (e−it/2 + eit/2)2 − 1 = 4eit cos2 t/2 − 1

which shows w + 1 = reiθ where r = 4 cos2 t/2, θ = t . Hence in this case the
image contour is the cardioid illustrated in Figure 8.3 which circulates the origin
once, in agreement with the fact that z2 − 1 has one zero inside γ at z = 1.

–2 –1 1 20 –5 –4 –3 –2 –1 2 310

z

w

�2

f (�2)

Figure 8.2

0 1 2

�3

f (�3)

–1 10 2 3

z w

Figure 8.3



78 Fundamental theorem of algebra

Proof of the argument principle The singularities of f ′(z)/f (z) occur at the
zeros of f (z). If f (z) has a zero of order n at z = c, then the Taylor expansion is

f (z) = an(z− c)n + an+1(z− c)n+1 + · · · ,
where an �= 0. Therefore,

f ′(z)
f (z)

= nan(z− c)n−1 + (n+ 1)an+1(z− c)n + · · ·
an(z− c)n + an+1(z− c)n+1 + · · ·

= 1

z− c
nan + (n+ 1)an+1(z− c)+ · · ·

an + an+1(z− c)+ · · ·
has a simple pole at z = c with residue n by the cover up rule (see Section 4.8).
The result follows.

8.3 Rouché’s theorem

The following theoremdue toRouché (1862) enables us to say something about the
distribution of the zeros of a given function by comparing it with another function
whose zeros are known.

Theorem 3 (Rouché’s theorem) If f (z), g(z) are differentiable inside and on
the closed contour γ , and if |f (z)| > |g(z)| for all z ∈ γ , then f (z), f (z)+ g(z)
have the same number of zeros inside γ .

Proof Informally, we can add any ‘smaller’ function g(z) to f (z) without
changing the number of zeros inside the contour.
By the argument principle it will be sufficient to prove that∫

γ

f ′(z)+ g′(z)
f (z)+ g(z) dz =

∫
γ

f ′(z)
f (z)

dz.

Observe that

f ′(z)+ g′(z)
f (z)+ g(z) − f ′(z)

f (z)
= d

dz
log(f (z)+ g(z))− d

dz
log f (z)

= d

dz
log

(
f (z)+ g(z)
f (z)

)

= d

dz
log

(
1+ g(z)

f (z)

)

= d

dz
logh(z)

= h′(z)
h(z)
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0 1 2

xh (z)

Figure 8.4

where

h(z) = 1+ g(z)

f (z)
.

The condition |f (z)| > |g(z)| implies that h(z) must satisfy the inequality
|h(z) − 1| < 1 for all z ∈ γ . It follows that h(z) cannot circulate the origin as z
goes round γ (Figure 8.4). Therefore by the argument principle we must have

∫
γ

h′(z)
h(z)

dz = 0

as required.
Application We can use Rouché’s theorem to show, for example, that the zeros

of the polynomial p(z) = z3 + z2 + 3 all lie in the annulus 1 < |z| < 2. If we take
f (z) = z3, g(z) = z2 + 3, then for |z| = 2 we have

|g(z)| = |z2 + 3| ≤ |z2| + 3 = 4 + 3 = 7 < 8 = |z3| = |f (z)|.

Therefore by Rouché’s theorem p(z) = f (z) + g(z) and f (z) have the same
number of zeros inside |z| = 2. But f (z) = z3 has 3 zeros inside |z| = 2 in the
form of a triple zero at z = 0. Hence also p(z) has 3 zeros inside |z| = 2.
If instead we take f (z) ≡ 3, g(z) = z3 + z2, then for |z| = 1 we have

|g(z)| = |z3 + z2| ≤ |z3| + |z2| = 1+ 1 = 2 < 3 = |f (z)|.

Therefore by Rouché’s theorem p(z) = f (z)+ g(z) and f (z) ≡ 3 have the same
number of zeros inside |z| = 1. But f (z) has no zeros inside |z| = 1. Hence
neither has p(z) (Figure 8.5).
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0 1 2

Figure 8.5

8.4 Proof of the fundamental theorem of algebra

Suppose that

p(z) = anzn + an−1z
n−1 + · · · + a1z+ a0,

where an �= 0, is a polynomial of degree n. Let

f (z) = anzn,
g(z) = an−1z

n−1 + · · · + a1z+ a0,
and let γR be the contour |z| = R. Then on γR we have∣∣∣∣ g(z)f (z)

∣∣∣∣ =
∣∣∣∣an−1z

n−1 + · · · + a1z+ a0
anzn

∣∣∣∣
≤ |an−1z

n−1| + · · · + |a1z| + |a0|
|anzn|

= |an−1|Rn−1 + · · · + |a1|R + |a0|
|an|Rn

→ 0

as R → ∞. Therefore, we can choose R such that |f (z)| > |g(z)| for all z ∈ γR .
It follows by Rouché’s theorem that p(z) = f (z) + g(z) and f (z) have the

same number of zeros inside γR for this R. But f (z) = anz
n has n zeros inside

γR , all at z = 0. Hence also p(z) has n zeros inside γR , as required.

Examples

1. Prove that all the zeros of the polynomial z3 + 9z2 + 9z + 9 lie inside the
circle |z| = 10.
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2. Prove that exactly two zeros of the polynomial z3 + 9z2 + 9z + 9 lie inside
the circle |z| = 2.

3. Prove that none of the zeros of the polynomial z3 + 9z2 + 9z + 9 lie inside
the circle |z| = 1/2.

4. Prove that all the zeros of the polynomial z3 + 6z + 8 lie between the two
circles |z| = 1, |z| = 3.

5. Prove that the polynomial z4 + z+ 1 has one zero in each quadrant.



Solutions to examples

1 Complex numbers

1. (i) 6 + 10i. (ii) −4 − 4i. (iii) −16 + 22i. (iv) (13/37) + (4/37)i.
(v) ±(2 + i). (vi) log

√
2 + iπ/4 (PV).

2.
√
1+ i = ±

√√
2 + 1

2
± i

√√
2 − 1

2
= ± 4

√
2eiπ/8.

Since arg
√
1+ i = π/8 (PV), we have

tan π/8 =
√√

2 − 1√
2 + 1

= √
2 − 1 = 0.4142135624 . . .

3. If C = cos θ , S = sin θ , then

cos 3θ = C3 − 3CS2 = C3 − 3C(1− C2) = 4C3 − 3C,

sin 3θ = 3C2S − S3 = 3(1− S2)S − S3 = 3S − 4S3.

4. If C = cos 30◦, then

0 = cos 90◦ = 4C3 − 3C = C(4C2 − 3).

Therefore C = 0 or ±√
3/2. What do the other values of C represent?

5. (eiθ + e−iθ )3 = e3iθ + 3eiθ + 3e−iθ + e−3iθ = 2 cos 3θ + 6 cos θ .

6.
∫ π/2

0
cos3θ dθ =

∫ π/2

0
sin3θ dθ = 2/3.

7. (e2π − 1)/10.
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2 Complex functions

8. To find the maximum of | sin z| on the disc |z| ≤ 1 we use the infinite form of
the triangle inequality which states that∣∣∣∣∣

∞∑
1

zn

∣∣∣∣∣ ≤
∞∑
1

|zn|

for any sequence of complex numbers (zn)n≥1.
In particular,

| sin z| =
∣∣∣∣∣z− z3

3! + z5

5! − z7

7! + · · ·
∣∣∣∣∣

≤ |z| + |z|3
3! + |z|5

5! + |z|7
7! + · · ·

≤ 1+ 1

3! + 1

5! + 1

7! + · · ·
= sinh 1

for |z| ≤ 1.
Also for z = i we have | sin i| = |i sinh 1| = sinh 1.
Therefore, | sin z| is maximum on |z| ≤ 1 at z = i with maximum value

equal to sinh 1.

9. If z = x + iy then∣∣∣∣z+ 1

z+ 4

∣∣∣∣ = 2

is equivalent to

|x + iy + 1|2 = 4|x + iy + 4|2
(x + 1)2 + y2 = 4((x + 4)2 + y2)

x2 + 2x + 1+ y2 = 4(x2 + 8x + 16+ y2)
0 = 3x2 + 3y2 + 30x + 63

0 = x2 + y2 + 10x + 21

4 = x2 + 10x + 25+ y2 = (x + 5)2 + y2
4 = |x + 5+ iy|2
2 = |z+ 5|

which is the equation of a circle centre −5, radius 2.
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3 Derivatives

1. If z = reiθ = x + iy, then

log z = log r + iθ = 1
2 log(x

2 + y2)+ i tan−1 y

x
.

u(x, y) = 1
2 log(x

2 + y2), v(x, y) = tan−1 y

x
.

∂u

∂x
= ∂v

∂y
= x

x2 + y2 ,
∂u

∂y
= −∂v

∂x
= y

x2 + y2 .

f ′(z) = ∂u

∂x
+ i ∂v
∂x

= x − iy
x2 + y2 = 1

x + iy = 1

z
.

2. |z|2 = x2 + y2. Therefore u(x, y) = x2 + y2, v(x, y) = 0. The Cauchy–
Riemann equations hold only at x = y = 0. The derivative at z = 0 is 0.

3. If f (z) = z̄(|z|2 − 2) = (x − iy)(x2 + y2 − 2), then

u(x, y) = x(x2 + y2 − 2), v(x, y) = −y(x2 + y2 − 2).

∂u

∂x
= 3x2 + y2 − 2,

∂u

∂y
= 2xy,

∂v

∂x
= −2xy,

∂v

∂y
= −x2 − 3y2 + 2.

∂u

∂y
= −∂v

∂x
for all x, y.

∂u

∂x
= ∂v

∂y
only when

3x2 + y2 − 2 = −x2 − 3y2 + 2,

which simplifies to

x2 + y2 = 1.

For |z| = 1 we have

f ′(z) = ∂u

∂x
+i ∂v
∂x

= 3x2+y2−2−2ixy = x2−y2−2ixy = (x−iy)2 = z̄2.

4. If f (z) is real valued, then v(x, y) = 0. Therefore,

∂u

∂x
= ∂v

∂y
= 0,

∂u

∂y
= −∂v

∂x
= 0.

Therefore u(x, y) = constant.

5. ez sin z = z+ z2 + z3/3− z5/30 + · · · .
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6. (i) Put t = z− 2. Then z = t + 2. Therefore,

1

z
= 1

t + 2
= 1

2

1

1+ t/2 = 1

2

(
1− t

2
+ t2

4
− t3

8
+ · · ·

)

= 1

2
− 1

4
(z− 2)+ 1

8
(z− 2)2 − · · · .

The range of validity of the geometric series is |t/2| < 1. Therefore the
range of validity of the Taylor series is |z− 2| < 2.

(ii) Put t = z− i. Then z = t + i. Therefore,

ez = et+i = eiet = ei
(
1+ t + t2

2! + · · ·
)

= ei + ei(z− i)+ ei

2! (z− i)2 + · · · .

Range of validity is all t , therefore all z.

(iii) Put t = z− 1. Then z = t + 1. Therefore,

log z = log(t + 1) = t − t2

2
+ t3

3
− · · ·

= (z− 1)− 1

2
(z− 1)2 + 1

3
(z− 1)3 − · · · .

Valid for |t | < 1, therefore |z− 1| < 1.

7. (i)
ez

z10
= 1

z10

(
1+ z+ z2

2! + · · ·
)

= 1

z10
+ 1

z9
+ · · · + 1

9!
1

z
+ · · · .

Pole of order 10 with residue 1/9!

(ii)
sin z

z15
= 1

z15

(
z− z3

3! + · · ·
)

= 1

z14
− 1

3!
1

z12
+· · ·+ 1

13!
1

z2
− 1

15! + · · · .

Pole of order 14 with residue 0.
(iii) To find the Laurent expansion at z = 1 put t = z− 1. Then

1

z2 − 1
= 1

(t + 1)2 − 1
= 1

t2 + 2t
= 1

2t

1

1+ t/2

= 1

2t

(
1− t

2
+ t2

4
− · · ·

)
= 1

2t
− 1

4
+ t

8
− · · · .

Simple pole with residue 1/2.
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To find the Laurent expansion at z = −1 put t = z+ 1. Then

1

z2 − 1
= 1

(t − 1)2 − 1
= 1

t2 − 2t
= − 1

2t

1

1− t/2

= − 1

2t

(
1+ t

2
+ t2

4
+ · · ·

)
= − 1

2t
− 1

4
− t

8
− · · · .

Simple pole with residue −1/2.

8. Using the geometric series expansion we have

3z+ 1

(z+ 2)(z− 3)
= 1

z+ 2
+ 2

z− 3
= 1

2

1

1+ z/2 − 2

3

2

1− z/3

= 1

2

(
1− z

2
+ z2

4
− · · ·

)
− 2

3

(
1+ z

3
+ z2

9
+ · · ·

)
.

The first bracket is valid for |z/2| < 1, that is, |z| < 2, the second for
|z/3| < 1, that is, |z| < 3. Therefore both are valid for |z| < 2.

4 Integrals

1. (i)
∫
γ

Re z dz =
∫ 2π

0
(cos t)ieit dt = πi.

(ii)
∫
γ

|z|2 dz =
∫ 1

0
(t2 + t4)(1+ 2it) dt = 8

15
+ 5

6
i.

(iii) γ parametrises as z = (1 + i)t (0 ≤ t ≤ 1). Therefore dz = (1 + i) dt ,
and hence∫
γ

z̄ dz =
∫ 1

0
(1− i)t(1+ i) dt = 2

∫ 1

0
t dt = 1.

2. (i) |ez| = eRe z ≤ e2 for z ∈ γ . Length of γ is 2π .

(ii) | sin z| ≤ sinh 1, |z+ i| ≥ √
2 for z ∈ γ . Length of γ is π .

(iii) |z− 2| ≤ √
10, |z− 3| ≥ 2 for z ∈ γ . Length of γ is 8.

3. (i) Singularity at 1. Residue 2.

(ii) Singularities at ±πi. Residues ∓1/2πi.

(iii) Singularities at 2,4. Residues ∓1/2.

4. (i) 4πi. (ii) −1. (iii) −πi.
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5. Residue of
f (z)

z− a at z = a is f (a).

The integral vanishes for a outside γ by Cauchy’s theorem.

5 Evaluation of finite real integrals

1. We have∫ 2π

0

dt

2 + cos t
= 2

i

∫
γ

dz

z2 + 4z+ 1
= 2π√

3

by the residue theorem. The integrand has one singularity inside γ at z =√
3− 2, where the residue is 1/2

√
3 (differentiate the denominator).

2. We have∫ 2π

0

dt

3+ 2 sin t
=

∫
γ

dz

z2 + 3iz− 1
= 2π√

5
.

The integrand has one singularity inside γ at z = (
√
5 − 3)i/2, where the

residue is 1/
√
5i.

3. We have∫ 2π

0

dt

4 − 3 cos2 t
= 4i

∫
γ

z dz

3z4 − 10z2 + 3
= π.

The integrand has two singularities inside γ at z = ±1/
√
3, where the

residues are both equal to −1/16.

4. We have∫ 2π

0

sin 5t

sin t
dt =

∫
γ

z5 − 1/z5

z− 1/z

dz

iz
=

∫
γ

z10 − 1

z2 − 1

dz

iz5

=
∫
γ

1+ z2 + z4 + z6 + z8
iz5

dz

= 1

i

∫
γ

(
1

z5
+ 1

z3
+ 1

z
+ z+ z3

)
dz = 2π.

5. We have∫ 2π

0
cos6 t dt = 1

64

∫
γ

(
z+ 1

z

)6
dz

iz

= 1

64

∫
γ

(
z6 + 6z4 + 15z2 + 20 + 15

z2
+ 6

z4
+ 1

z6

)
dz

iz
= 5π

8
.
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6 Evaluation of infinite real integrals

1.
1

z2 + 4
has singularities at z = ±2i.

The residue at z = 2i is 1/4i (differentiate the denominator).∣∣∣∣
∫
γ2

dz

z2 + 4

∣∣∣∣ ≤ πR

R2 − 4
(R > 2)→ 0 as R → ∞.

2.
1

(z2 + 1)(z2 + 4)
has singularities at z = ±i,±2i.

The residue at z = i is 1/6i. The residue at z = 2i is −1/12i.∣∣∣∣
∫
γ2

dz

(z2 + 1)(z2 + 4)

∣∣∣∣ ≤ πR

(R2 − 1)(R2 − 4)
(R > 2)→ 0 as R → ∞.

3.
1

(z2 + 1)2
has a double pole at z = i.

To get the residue we have to compute the Laurent expansion. Put t = z− i.
Then we have

1

(z2 + 1)2
= 1

(t2 + 2it)2
= − 1

4t2

(
1+ t

2i

)−2

= − 1

4t2

(
1− t

i
+ · · ·

)
= − 1

4t2
+ 1

4it
+ · · ·

(using the binomial theoremwith exponent−2). Therefore the residue is 1/4i.∣∣∣∣
∫
γ2

dz

(z2 + 1)2

∣∣∣∣ ≤ πR

(R2 − 1)2
(R > 1)→ 0 as R → ∞.

4.
1

z2 + z+ 1
has singularities at z = ω,ω2, where ω3 = 1.

The residue at z = ω is
1

2ω + 1
= 1√

3i
.

∣∣∣∣
∫
γ2

dz

z2 + z+ 1

∣∣∣∣ ≤ πR

R2 − R − 1
(R > 2)→ 0 as R → ∞.

5. Observe first that∫ ∞

−∞
cos x dx

x2 + 2x + 2
= Re

∫ ∞

−∞
eix dx

x2 + 2x + 2
.
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Second that |eiz| = |ei(x+iy)| = |eix−y | = |eixe−y | = e−y ≤ 1 on γ2.
Therefore∣∣∣∣
∫
γ2

eizdz

z2 + 2z+ 2

∣∣∣∣ ≤ πR

R2 − 2R − 2
(R > 3)→ 0 as R → ∞.

eiz

z2 + 2z+ 2
has singularities at z = −1± i.

The residue at z = −1+ i is e−1−i/2i. Therefore,∫ ∞

−∞
eix dx

x2 + 2x + 2
= πe−1−i .

Now take real parts.

6.
z2 + 1

z4 + 1
has singularities at z = ω,ω3, ω5, ω7 where ω8 = 1.

The residue at z = ω is

ω2 + 1

4ω3
= ω7 + ω5

4
= −

√
2i

4
= − i

2
√
2
.

The residue at z = ω3 is
ω6 + 1

4ω9
= ω6 + 1

4ω
= ω5 + ω7

4
= −

√
2i

4
= − i

2
√
2
.

∣∣∣∣
∫
γ2

z2 + 1

z4 + 1
dz

∣∣∣∣ ≤ πR(R2 + 1)

R4 − 1
(R > 1)→ 0 as R → ∞.

7. Use a pizza slice contour with angle 2π/5.

8. Observe that for x real(
sin x

x

)3
= 3 sin x − sin 3x

4x3
= Im

3eix − e3ix
4x3

,

and that for z complex

3eiz − e3iz
4z3

= 3(1+ iz− z2/2! + · · · )− (1+ 3iz− 9z2/2! + · · · )
4z3

= 2 + 3z2 + · · ·
4z3

= 1

2z3
+ 3

4z
+ · · ·

(See N.B. at the end of Appendix 2.)
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7 Summation of series

1. π4/90.

2. 7π4/720, π4/96.

6. Observe that

∞∑
1

1

n(n+ 1)
=

∞∑
1

(
1

n
− 1

n+ 1

)

=
(
1− 1

2

)
+

(
1

2
− 1

3

)
+ · · · +

(
1

n
− 1

n+ 1

)
+ · · · = 1.

7. If γ is the square with centre 0, and half side N + 1/2, then∣∣∣∣
∫
γ

cot πz

z(z+ 1)
dz

∣∣∣∣ ≤ 8(N + 1/2) coth π/2

(N + 1/2)(N + 3/2)
= 16 coth π/2

2N + 3
→ 0

as N → ∞. For n �= 0,−1 we have

Res
z=n

cot πz

z(z+ 1)
= 1

πn(n+ 1)
.

At z = 0 we have

cot πz

z(z+ 1)
= 1

z

(
1

πz
− πz

3
− π3z3

45
− · · ·

) (
1− z+ z2 − z3 + · · ·

)

= 1

πz2
− 1

πz
+ · · ·

which shows that z = 0 is a double pole with residue −1/π .
At z = −1 we have, putting t = z+ 1,

cot πz

z(z+ 1)
= cot π(t − 1)

(t − 1)t
= cot πt

(t − 1)t

= −1

t

(
1

πt
− πt

3
− π3t3

45
− · · ·

) (
1+ t + t2 + t3 + · · ·

)

= − 1

πt2
− 1

πt
+ · · ·

which shows that z = −1 is also a double pole with residue −1/π .
Therefore by the residue theorem we have

∫
γ

cot πz

z(z+ 1)
dz = 1

π

N∑
1

1

n(n+ 1)
+ 1

π

N−1∑
1

1

n(n+ 1)
− 2

π
,
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which, on letting N → ∞, gives

0 = 2

π

∞∑
1

1

n(n+ 1)
− 2

π
,

and hence

∞∑
1

1

n(n+ 1)
= 1.

8 Fundamental theorem of algebra

1. If f (z) = z3, g(z) = 9z2 + 9z+ 9, then for all |z| = 10 we have

|g(z)| = |9z2 + 9z+ 9| ≤ 9|z|2 + 9|z| + 9 = 999 < 1000 = |z3| = |f (z)|.
Therefore by Rouché’s theorem f (z) = z3, f (z)+g(z) = z3+9z2+9z+9

have the same number of zeros inside |z| = 10. But f (z) = z3 has 3 zeros
inside |z| = 10, all at z = 0. Hence also z3 + 9z2 + 9z+ 9 has 3 zeros inside
|z| = 10, as required.

2. If f (z) = 9z2, g(z) = z3 + 9z+ 9, then for all |z| = 2 we have

|g(z)| = |z3 + 9z+ 9| ≤ |z|3 + 9|z| + 9 = 35 < 36 = |9z2| = |f (z)|.
Therefore byRouché’s theoremf (z) = 9z2, f (z)+g(z) = z3+9z2+9z+9

have the same number of zeros inside |z| = 2, namely 2, since f (z) = 9z2

has 2 zeros inside |z| = 2, both at z = 0.

3. If f (z) ≡ 9, g(z) = z3 + 9z2 + 9z, then for all |z| = 1/2 we have

|g(z)| = |z3 + 9z2 + 9z| ≤ |z|3 + 9|z|2 + 9|z| = 55/8 < 9 = |f (z)|.
Therefore by Rouché’s theorem f (z) ≡ 9, f (z)+g(z) = z3+9z2+9z+9

have the same number of zeros inside |z| = 1/2, namely none, since f (z) ≡ 9
has no zeros inside |z| = 1/2.

4. On |z| = 1 we have

|z3 + 6z| ≤ |z|2 + 6|z| = 7 < 8.

Therefore z3 + 6z+ 8 has no zeros inside |z| = 1.
On |z| = 3 we have

|6z+ 8| ≤ 6|z| + 8 = 26 < 27 = |z3|.
Therefore z3 + 6z+ 8 has 3 zeros inside |z| = 3.
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5. Take f (z) = z4 + 1, g(z) = z. The zeros of f (z) are at ω, ω3, ω5, ω7

where ω = eiπ/4. Let γ = γ1 + γ2 + γ3, where γ1 is the straight line z = x

(0 ≤ x ≤ R), γ2 is the arc z = eit (0 ≤ t ≤ π/2), and γ3 is the straight line
z = iy (R ≥ y ≥ 0).

On γ1 We have x4 + 1 > x. (Clearly!)

On γ3 We have |f (z)| = y4 + 1 > y = |g(z)|.
On γ2 We have |f (z)| = |z4 + 1| ≥ R4 − 1 > R = |g(z)| if R > 2.

Hence |f (z)| > |g(z)| on γ if R > 2. Therefore f (z) = z4 + 1,
f (z)+ g(z) = z4 + z+ 1 have the same number of zeros inside γ if R > 2,
namely 1. Argue similarly for the other quadrants.



Appendix 1: Cauchy’s theorem

If γ is a closed contour, and if f (z) is differentiable inside γ and on γ , then

∫
γ

f (z) dz = 0.

Proof
Case 1: γ = Unit square Writing γ = γ1+γ2+γ3+γ4 where γ1, γ2, γ3, γ4 are
the four sides taken in anti-clockwise order starting from0, andwritingf (x+iy) =
u(x, y)+ iv(x, y), we have

∫
γ1

f (z) dz =
∫ 1

0
(u(x, 0)+ iv(x, 0)) dx,

∫
γ2

f (z) dz = i
∫ 1

0
(u(1, y)+ iv(1, y)) dy,

∫
γ3

f (z) dz = −
∫ 1

0
(u(x, 1)+ iv(x, 1)) dx,

∫
γ4

f (z) dz = −i
∫ 1

0
(u(0, y)+ iv(0, y)) dy.

Therefore,∫
γ1

f (z) dz+
∫
γ3

f (z) dz

=
∫ 1

0
(u(x, 0)− u(x, 1)) dx + i

∫ 1

0
(v(x, 0)− v(x, 1)) dx

= −
∫ 1

0

∫ 1

0

∂u

∂y
(x, y) dx dy − i

∫ 1

0

∫ 1

0

∂v

∂y
(x, y) dx dy.
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Also∫
γ2

f (z) dz+
∫
γ4

f (z) dz

=
∫ 1

0
(v(0, y)− v(1, y)) dy + i

∫ 1

0
(u(1, y)− u(0, y)) dy

= −
∫ 1

0

∫ 1

0

∂v

∂x
(x, y) dx dy + i

∫ 1

0

∫ 1

0

∂u

∂x
(x, y) dx dy.

But the Cauchy–Riemann equations

∂u

∂x
= ∂v

∂y
,

∂u

∂y
= −∂v

∂x

hold everywhere inside and on γ . Hence we have∫
γ

f (z) dz =
∫
γ1

f (z) dz+
∫
γ2

f (z) dz+
∫
γ3

f (z) dz+
∫
γ4

f (z) dz = 0.

Case 2: γ = Any rectangle Similar.

Case 3: γ = Any rectilinear contour Meaning γ = ∑N
1 γn where each γn is

a straight line parallel either to the real axis or to the imaginary axis.

By adding and subtracting further straight lines we canwrite γ = ∑N ′
1 γ

′
n where

γ ′
n are all rectangles. Therefore,

∫
γ

f (z) dz =
N ′∑
1

∫
γ ′
n

f (z) dz = 0.

Case 4: γ = Any closed contour We can choose a sequence of rectilinear
contours γn, all lying inside γ , such that∫

γn

f (z) dz →
∫
γ

f (z) dz

as n→ ∞.



Appendix 2: Half residue theorem

If γr is the contour z = reit (0 ≤ t ≤ π), and if f (z) has a simple pole at z = 0
with residue A, then

∫
γr

f (z) dz → πiA

as r → 0.

Proof The Laurent expansion of f (z) at z = 0 must take the form

f (z) = A

z
+

∞∑
0

anz
n.

Therefore we must have

∫
γr

f (z) dz =
∫
γr

A

z
dz+

∫
γr

( ∞∑
0

anz
n

)
dz.

The first integral evaluates to

∫
γr

A

z
dz =

∫ π

0

A

reit
ireit dt = iA

∫ π

0
dt = πiA.

The second integral → 0 as r → 0, since for all z ∈ γr
∣∣∣∣∣

∞∑
0

anz
n

∣∣∣∣∣ ≤
∞∑
0

|anzn| =
∞∑
0

|an|rn,
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and therefore by the estimate lemma∣∣∣∣∣
∫
γr

( ∞∑
0

anz
n

)
dz

∣∣∣∣∣ ≤ πr
∞∑
0

|an|rn

which → 0 as r → 0. The result follows.

N.B. We can allow multiple poles provided there are only odd negative powers
in the Laurent expansion, since these make no contribution to the integral round
the small semicircle.
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Index of symbols and abbreviations

i 1

Re z 3

Im z 3

z̄ 3

|z| 3, 5

arg z 5

(PV) 5

f (n)(x) 29

γ 37

lγ 39

Res 46

(CPV) 53



General index

Argand 1
Argand diagram 4
argument 5
argument principle 76

boundedness of cot z 67

Cartesian form 6
Cauchy 1, 26
Cauchy principal value 53
Cauchy–Riemann equations 26
Cauchy’s integral formula 48
Cauchy’s theorem 42, 43
closed contour 38
conformal mapping 22
conjugate 3
continuous function 25
contour 37
convergence of an infinite integral 53
cover up rule 46

de Moivre 1
de Moivre’s theorem 6
derivative 24
differentiable function 25
differentiating the denominator 47
double pole 33
double zero 75
D-shaped contour 54

essential singularity 33
estimate lemma 39
Euler 1
Euler’s formula 6
Euler’s formulae for cos θ , sin θ 7

fundamental theorem: of algebra 75; of
calculus 36

Gauss 1

half residue theorem 95
hyperbolic functions 17

imaginary axis 4
imaginary part 3
indented contour 61
inequalities 9
integrable function 37

Laurent expansion 32
length of a contour 39
logarithm 21

Maclaurin coefficient 29
Maclaurin expansion 29
modulus 3, 5

nth root 8, 9

order of a pole 33
order of a zero 75
orientation of a contour 38

parallelogram law of addition 5
parametrisation of a contour 37
pizza slice contour 59
polar form 6
pole 33
polynomial 14
primitive of a function 37
primitive nth root of unity 9
principal part 33



100 General index

principal value: of arg z 5; of log z 8; of
z1/n 8

pure imaginary 4

rational function 14
real axis 4
real part 3
residue 33
residue theorem 44
Riemann 1, 26
roots of unity 9
Rouché’s theorem 78

simple pole 33

simple zero 75
singularity 14, 33
straight line 38
substituting the parametric function 39

Taylor coefficient 32
Taylor expansion 32
triangle inequality 9
trigonometric function 17

unit circle 38
unit square 38

zero 75


	Page_Cover.pdf
	Page_i.pdf
	Page_ii.pdf
	Page_iii.pdf
	Page_iv.pdf
	Page_v.pdf
	Page_vi.pdf
	Page_vii.pdf
	Page_viii.pdf
	Page_1.pdf
	Page_2.pdf
	Page_3.pdf
	Page_4.pdf
	Page_5.pdf
	Page_6.pdf
	Page_7.pdf
	Page_8.pdf
	Page_9.pdf
	Page_10.pdf
	Page_11.pdf
	Page_12.pdf
	Page_13.pdf
	Page_14.pdf
	Page_15.pdf
	Page_16.pdf
	Page_17.pdf
	Page_18.pdf
	Page_19.pdf
	Page_20.pdf
	Page_21.pdf
	Page_22.pdf
	Page_23.pdf
	Page_24.pdf
	Page_25.pdf
	Page_26.pdf
	Page_27.pdf
	Page_28.pdf
	Page_29.pdf
	Page_30.pdf
	Page_31.pdf
	Page_32.pdf
	Page_33.pdf
	Page_34.pdf
	Page_35.pdf
	Page_36.pdf
	Page_37.pdf
	Page_38.pdf
	Page_39.pdf
	Page_40.pdf
	Page_41.pdf
	Page_42.pdf
	Page_43.pdf
	Page_44.pdf
	Page_45.pdf
	Page_46.pdf
	Page_47.pdf
	Page_48.pdf
	Page_49.pdf
	Page_50.pdf
	Page_51.pdf
	Page_52.pdf
	Page_53.pdf
	Page_54.pdf
	Page_55.pdf
	Page_56.pdf
	Page_57.pdf
	Page_58.pdf
	Page_59.pdf
	Page_60.pdf
	Page_61.pdf
	Page_62.pdf
	Page_63.pdf
	Page_64.pdf
	Page_65.pdf
	Page_66.pdf
	Page_67.pdf
	Page_68.pdf
	Page_69.pdf
	Page_70.pdf
	Page_71.pdf
	Page_72.pdf
	Page_73.pdf
	Page_74.pdf
	Page_75.pdf
	Page_76.pdf
	Page_77.pdf
	Page_78.pdf
	Page_79.pdf
	Page_80.pdf
	Page_81.pdf
	Page_82.pdf
	Page_83.pdf
	Page_84.pdf
	Page_85.pdf
	Page_86.pdf
	Page_87.pdf
	Page_88.pdf
	Page_89.pdf
	Page_90.pdf
	Page_91.pdf
	Page_92.pdf
	Page_93.pdf
	Page_94.pdf
	Page_95.pdf
	Page_96.pdf
	Page_97.pdf
	Page_98.pdf
	Page_99.pdf
	Page_100.pdf

