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Preface to the Second Edition

Homological Algebra has grown in the nearly three decades since the first edi-
tion of this book appeared in 1979. Two books discussing more recent results
are Weibel, An Introduction to Homological Algebra, 1994, and Gelfand–
Manin, Methods of Homological Algebra, 2003. In their Foreword, Gelfand
and Manin divide the history of Homological Algebra into three periods: the
first period ended in the early 1960s, culminating in applications of Homo-
logical Algebra to regular local rings. The second period, greatly influenced
by the work of A. Grothendieck and J.-P. Serre, continued through the 1980s;
it involves abelian categories and sheaf cohomology. The third period, in-
volving derived categories and triangulated categories, is still ongoing. Both
of these newer books discuss all three periods (see also Kashiwara–Schapira,
Categories and Sheaves). The original version of this book discussed the first
period only; this new edition remains at the same introductory level, but it
now introduces the second period as well. This change makes sense peda-
gogically, for there has been a change in the mathematics population since
1979; today, virtually all mathematics graduate students have learned some-
thing about functors and categories, and so I can now take the categorical
viewpoint more seriously.

When I was a graduate student, Homological Algebra was an unpopular
subject. The general attitude was that it was a grotesque formalism, boring
to learn, and not very useful once one had learned it. Perhaps an algebraic
topologist was forced to know this stuff, but surely no one else should waste
time on it. The few true believers were viewed as workers at the fringe of
mathematics who kept tinkering with their elaborate machine, smoothing out
rough patches here and there.

x



Preface to the Second Edition xi

This attitude changed dramatically when J.-P. Serre characterized regular
local rings using Homological Algebra (they are the commutative noetherian
local rings of “finite global dimension”), for this enabled him to prove that
any localization of a regular local ring is itself regular (until then, only spe-
cial cases of this were known). At the same time, M. Auslander and D. A.
Buchsbaum also characterized regular local rings, and they went on to com-
plete work of M. Nagata by using global dimension to prove that every regular
local ring is a unique factorization domain. As Grothendieck and Serre revolu-
tionized Algebraic Geometry by introducing schemes and sheaves, resistance
to Homological Algebra waned. Today, it is just another standard tool in a
mathematician’s kit. For more details, we recommend C. A. Weibel’s chapter,
“History of Homological Algebra,” in the book of James, History of Topology.

Homological Algebra presents a great pedagogical challenge for authors
and for readers. At first glance, its flood of elementary definitions (which
often originate in other disciplines) and its space-filling diagrams appear for-
bidding. To counter this first impression, S. Lang set the following exercise
on page 105 of his book, Algebra:

Take any book on homological algebra and prove all the theorems
without looking at the proofs given in that book.

Taken literally, the statement of the exercise is absurd. But its spirit is ab-
solutely accurate; the subject only appears difficult. However, having rec-
ognized the elementary character of much of the early material, one is often
tempted to “wave one’s hands”: to pretend that minutiae always behave well.
It should come as no surprise that danger lurks in this attitude. For this rea-
son, I include many details in the beginning, at the risk of boring some readers
by so doing (of course, such readers are free to turn the page). My intent is
twofold: to allow readers to see that complete proofs can, in fact, be written
compactly; to give readers the confidence to believe that they, too, can write
such proofs when, later, the lazy author asks them to. However, we must cau-
tion the reader; some “obvious” statements are not only false, they may not
even make sense. For example, if R is a ring and A and B are left R-modules,
then HomR(A, B) may not be an R-module at all; and, if it is a module, it is
sometimes a left module and sometimes a right module. Is an alleged function
with domain a tensor product well-defined? Is an isomorphism really natural?
Does a diagram really commute? After reading the first three chapters, the
reader should be able to deal with such matters efficiently.

This book is my attempt to make Homological Algebra lovable, and I
believe that this requires the subject be presented in the context of other math-
ematics. For example, Chapters 2, 3, and 4 form a short course in module the-
ory, investigating the relation between a ring and its projective, injective, and
flat modules. Making the subject lovable is my reason for delaying the formal
introduction of homology functors until Chapter 6 (although simplicial and
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singular homology do appear in Chapter 1). Many readers wanting to learn
Homological Algebra are familiar with the first properties of Hom and tensor;
even so, they should glance at the first chapters, for there may be some unfa-
miliar items therein. Some category theory appears throughout, but it makes a
more brazen appearance in Chapter 5, where we discuss limits, adjoint func-
tors, and sheaves. Although presheaves are introduced in Chapter 1, we do not
introduce sheaves until we can observe that they usually form an abelian cat-
egory. Chapter 6 constructs homology functors, giving the usual fundamental
results about long exact sequences, natural connecting homomorphisms, and
independence of choices of projective, injective, and flat resolutions used to
construct them. Applications of sheaves are most dramatic in the context of
Several Complex Variables and in Algebraic Geometry; alas, I say only a few
words pointing the reader to appropriate texts, but there is a brief discussion
of the Riemann–Roch Theorem over compact Riemann surfaces. Chapters 7,
8, and 9 consider the derived functors of Hom and tensor, with applications to
ring theory (via global dimension), cohomology of groups, and division rings.

Learning Homological Algebra is a two-stage affair. First, one must learn
the language of Ext and Tor and what it describes. Second, one must be
able to compute these things and, often, this involves yet another language,
that of spectral sequences. Chapter 10 develops spectral sequences via exact
couples, always taking care that bicomplexes and their multiple indices are
visible because almost all applications occur in this milieu.

A word about notation. I am usually against spelling reform; if everyone
is comfortable with a symbol or an abbreviation, who am I to say otherwise?
However, I do use a new symbol to denote the integers mod m because, nowa-
days, two different symbols are used: Z/mZ and Zm . My quarrel with the
first symbol is that it is too complicated to write many times in an argument;
my quarrel with the simpler second symbol is that it is ambiguous: when p is
a prime, the symbol Zp often denotes the p-adic integers and not the integers
mod p. Since capital I reminds us of integers and since blackboard font is in
common use, as in Z,Q,R,C, and Fq , I denote the integers mod m by Im .

It is a pleasure to thank again those who helped with the first edition.
I also thank the mathematicians who helped with this revision: Matthew
Ando, Michael Barr, Steven Bradlow, Kenneth S. Brown, Daniel Grayson,
Phillip Griffith, William Haboush, Aimo Hinkkanen, Ilya Kapovich, Randy
McCarthy, Igor Mineyev, Thomas A. Nevins, Keith Ramsay, Derek Robin-
son, and Lou van den Dries. I give special thanks to Mirroslav Yotov who
not only made many valuable suggestions improving the entire text but who,
having seen my original flawed subsection on the Riemann–Roch Theorem,
patiently guided my rewriting of it.

Joseph J. Rotman
May 2008
Urbana IL



How to Read This Book

Some exercises are starred; this means that they will be cited somewhere
in the book, perhaps in a proof.

One may read this book by starting on page 1, then continuing, page by
page, to the end, but a mathematics book cannot be read as one reads a novel.
Certainly, this book is not a novel! A reader knowing very little homology (or
none at all) should begin on page 1 and then read only the portion of Chapter 1
that is unfamiliar. Homological Algebra developed from Algebraic Topology,
and it is best understood if one knows its origins, which are described in Sec-
tions 1.1 and 1.3. Section 1.2 introduces categories and functors; at the outset,
the reader may view this material as a convenient language, but it is very im-
portant for the rest of the text.

After Chapter 1, one could go directly to Chapter 6, Homology, but I don’t
advise it. It is not necessary to digest all the definitions and constructions in
the first five chapters before studying homology, but one should read enough
to become familiar with the point of view being developed, returning to read
or reread items in earlier chapters when necessary.

I believe that it is wisest to learn homology in a familiar context in which it
can be applied. To illustrate, one of the basic constructs in defining homology
is that of a complex: a sequence of homomorphisms

→ Cn+1
dn+1−→ Cn

dn−→ Cn−1 →
in which dndn+1 = 0 for all n ∈ Z. There is no problem digesting such
a simple definition, but one might wonder where it comes from and why it
is significant. The reader who has seen some Algebraic Topology (as in our
Chapter 1) recognizes a geometric reason for considering complexes. But this

xiii
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observation only motivates the singular complex of a topological space. A
more perspicacious reason arises in Algebra. Every R-module M is a quo-
tient of a free module; thus, M ∼= F/K , where F is free and K ⊆ F is the
submodule of relations; that is, 0 → K → F → M → 0 is exact. If X
is a basis of F , then (X | K ) is called a presentation of G. Theoretically,
(X | K ) is a complete description of M (to isomorphism) but, in practice, it is
difficult to extract information about M from a presentation of it. However, if
R is a principal ideal domain, then every submodule of a free module is free,
and so K has a basis, say, Y [we also say that (X | Y ) is a presentation]. For
example, the canonical forms for matrices over a field k arise from presenta-
tions of certain k[x]-modules. For a general ring R, we can iterate the idea
of presentations. If M ∼= F/K , where F is free, then K ∼= F1/K1 for some
free module F1 (thus, K1 can be thought of as relations among the relations;
Hilbert called them syzygies). Now 0 → K1 → F1 → K → 0 is exact;
splicing it to the earlier exact sequence gives exactness of

0 → K1 → F1
d−→ F → M → 0

(where d : F1 → F is the composite F1 → K ⊆ F), for im d = K =
ker(F → M). Repeat: K1 ∼= F2/K2 for some free F2, and continuing the
construction above gives an infinitely long exact sequence of free modules
and homomorphisms, called a resolution of M , which serves as a generalized
presentation. A standard theme of Homological Algebra is to replace a mod-
ule by a resolution of it. Resolutions are exact sequences, and exact sequences
are complexes (if im dn+1 = ker dn , then dndn+1 = 0). Why do we need the
extra generality present in the definition of complex? One answer can be seen
by returning to Algebraic Topology. We are interested not only in the ho-
mology groups of a space, but also in its cohomology groups, and these arise
by applying contravariant Hom functors to the singular complex. In Algebra,
the problem of classifying group extensions also leads to applying Hom func-
tors to resolutions. Even though resolutions are exact sequences, they become
mere complexes after applying Hom. Homological Algebra is a tool that ex-
tracts information from such sequences. As the reader now sees, the context
is interesting, and it puts flesh on abstract definitions.



1
Introduction

1.1 Simplicial Homology

Homological Algebra is an outgrowth of Algebraic Topology, and so we begin
with a historical discussion of the origins of homology in topology. Let X be
an open set in the plane, and fix points a and b in X . Given a path1 β in X

Fig. 1.1 Two paths.

from a to b, and given a pair P(x, y) and Q(x, y) of real-valued, continuously
differentiable functions on X , one wants to evaluate the line integral∫

β

P dx + Q dy.

1Let I = [0, 1] be the closed unit interval. A path β in X from a to b is a continuous
function β : I → X with β(0) = a and β(1) = b; thus, a path is a parametrized curve. A
path β is closed at a if β(0) = a = β(1) or, what is the same thing, if β is a continuous
map of the unit circle S1 into X with f : (1, 0) �→ a.

J.J. Rotman, An Introduction to Homological Algebra, Universitext, 1
DOI 10.1007/978-0-387-68324-9 1, c© Springer Science+Business Media LLC 2009



2 Introduction Ch. 1

It is wise to regard β as a finite union of paths, for β may be only piece-
wise smooth; for example, it may be a polygonal path. For the rest of this
discussion, we ignore (necessary) differentiability hypotheses.

A fundamental question asks when the line integral is independent of the
path β: is

∫
β ′ P dx + Q dy = ∫

β
P dx + Q dy if β ′ is another path in X from

a to b? If γ is the closed path γ = β − β ′ [that is, γ goes from a to b via β,
and then goes back via −β ′ from b to a, where −β ′(t) = β ′(1 − t)], then the
integral is independent of the paths β and β ′ if and only if

∫
γ

P dx + Q dy =
0. Suppose there are “bad” points z1, . . . , zn deleted from X (for example, if
P or Q has a singularity at some zi ). The line integral along γ is affected by

Fig. 1.2 Green’s theorem.

whether any of these bad points lies inside γ . In Fig. 1.2, each path γi is a
simple closed path in X (that is, γi is a homeomorphism from the unit circle
S1 to im γi ⊆ R

2) containing zi inside, while all the other z j are outside
γi . If γ is oriented counterclockwise and each γi is oriented clockwise, then
Green’s Theorem states that

∫
γ

P dx + Q dy +
n∑

i=1

(∫
γi

P dx + Q dy

)
=
∫∫

R

(
∂Q

∂x
− ∂P

∂y

)
dxdy,

where R is the shaded two-dimensional region in Fig. 1.2. One is tempted to
write

∑ n
i=1

(∫
γi

P dx + Q dy
)

more concisely, as
∫∑

i γi
P dx + Q dy. More-

over, instead of mentioning orientations explicitly, we may write sums and
differences of paths, where a negative coefficient reverses direction. For sim-
ple paths, the notions of “inside” and “outside” make sense.2 A path may
wind around some zi several times along γi , and so it makes sense to write
formal Z-linear combinations of paths; that is, we may allow integer coeffi-
cients other than ±1. Recall that if Y is any set, then the free abelian group

2The Jordan curve theorem says that if γ is a simple closed path in the plane R
2,

then the complement R
2 − im γ has exactly two components, one of which is bounded.

The bounded component is called the inside of γ , and the other (necessarily unbounded)
component is called the outside.



1.1 Simplicial Homology 3

with basis Y is an abelian group G[Y ] in which each element g ∈ G[Y ] has
a unique expression of the form g = ∑

y∈Y my y, where my ∈ Z and only
finitely many my 	= 0 (see Proposition 2.33). In particular, Green’s Theorem
involves the free abelian group G[Y ] with basis Y being the (huge) set of all
paths σ : I → X . Intuitively, elements of G[Y ] are unions of finitely many
(not necessarily closed) paths σ in X .

Consider those ordered pairs (P, Q) of functions X → R satisfying
∂Q/∂x = ∂P/∂y. The double integral in Green’s Theorem vanishes for such
function pairs:

∫
mγ+∑i miγi

P dx + Q dy = 0. An equivalence relation on

G[Y ] suggests itself. If β = ∑
miσi and β ′ = ∑

m′
iσi ∈ G[Y ], call β and

β ′ equivalent if, for all (P, Q) with ∂Q/∂x = ∂P/∂y, the values of their line
integrals agree:

∫
β

P dx + Q dy =
∫
β ′

P dx + Q dy.

The equivalence class of β is called its homology class, from the Latin word
homologia meaning agreement. If β − β ′ = ∑

mσ σ , where
⋃

mσ 	=0 im σ is
the boundary of a two-dimensional region in X , then

∫
β−β ′ P dx+Q dy = 0;

that is,
∫
β

P da+Q dy = ∫
β ′ P da+Q dy. In short, integration is independent

of paths lying in the same homology class.
Homology can be defined without using integration of function pairs.

Poincaré recognized that whether a topological space X has different kinds of
holes is a kind of connectivity. To illustrate, suppose that X is a finite simpli-
cial complex; that is, X can be “triangulated” into finitely many n-simplexes
for n ≥ 0, where 0-simplexes are points, say, v1, . . . , vq , 1-simplexes are
certain edges [vi , v j ] (with endpoints vi and v j ), 2-simplexes are certain tri-
angles [vi , v j , vk] (with vertices vi , v j , vk), 3-simplexes are certain tetrahe-
dra [vi , v j , vk, v�], and there are higher-dimensional analogs [vi0, . . . , vin ]
for larger n. The question to ask is whether a union of n-simplexes in X
that “ought” to be the boundary of some (n + 1)-simplex actually is such a
boundary. For example, when n = 0, two points a and b in X ought to be
the boundary (endpoints) of a path in X ; if, for each pair of points a, b ∈ X ,
there is a path in X from a to b, then X is called path connected; if there
is no such path, then X has a 0-dimensional hole. For an example of a one-
dimensional hole, let X be the punctured plane; that is, X is the plane with
the origin deleted. The perimeter of a triangle � ought to be the boundary of
a 2-simplex, but it is not if � contains the origin in its interior; thus, X has a
one-dimensional hole. If the interior of X were missing a line segment con-
taining the origin, or even a small disk containing the origin, this hole would
still be one-dimensional; we are not considering the size of the hole, but the
size of the possible boundary. We must keep our eye on the doughnut and not
upon the hole!
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The triangle [a, b, c] in Fig. 1.3 has vertices a, b, c and edges [b, c], [a, c],
[a, b]; its boundary ∂[a, b, c] should be [b, c] ∪ [c, a] ∪ [a, c]. But edges are
oriented; think of [a, c] as a path from a to c and [c, a] = −[a, c] as the
reverse path from c to a. Thus, the boundary is

∂[a, b, c] = [b, c] ∪ −[a, c] ∪ [a, b].

Assume now that paths can be added and subtracted; that is, view paths as
lying in the free abelian group C1(X) with basis all 1-simplexes. Then

∂[a, b, c] = [b, c] − [a, c] + [a, b].

Similarly, define the boundary of [a, b] to be ∂[a, b] = b − a ∈ C0(X), the
free abelian group with basis all 0-simplexes, and define the boundary of a
point to be 0. Note that

∂(∂[a, b, c]) = ∂([b, c] − [a, c] + [a, b])

= (c − b)− (c − a)+ (b − a) = 0.

a

��
��

��
��

b

d c

Fig. 1.3. The rectangle �.

The rectangle � with vertices a, b, c, d is the union of two triangles,
namely, [a, b, c] ∪ [a, c, d]; let us check its boundary. If we assume that ∂

is a homomorphism, then

∂(�) = ∂[a, b, c] ∪ ∂[a, c, d]

= ∂[a, b, c] + ∂[a, c, d]

= ([b, c] − [a, c] + [a, b]
)+ ([c, d] − [a, d] + [a, c]

)
= [a, b] + [b, c] + [c, d] − [a, d]

= [a, b] + [b, c] + [c, d] + [d, a].

Note that the diagonal [a, c] occurred twice, with different signs, and so it
canceled, as it should. We have seen that the formalism suggests the use of
signs to describe boundaries as certain alternating sums of edges or points.

Such ideas lead to the following construction. For each n ≥ 0, consider all
formal linear combinations of n-simplexes; that is, form the free abelian group
Cn(X) with basis all n-simplexes [vi0, . . . , vin ], and call such linear combina-
tions simplicial n-chains; define C−1(X) = {0}. Some n-chains ought to be
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boundaries of some union of (n+1)-simplexes; call them simplicial n-cycles.
For example, adding the three edges of a triangle (with appropriate choice of
signs) is a 1-cycle, as is the sum of the four outer edges of a rectangle. Certain
simplicial n-chains actually are boundaries, and these are called simplicial n-
boundaries. For example, if � is a triangle in the punctured plane X , then the
alternating sum of the edges of � is a 1-cycle; this 1-cycle is a 1-boundary if
and only if the origin does not lie in the interior of �. Here are the precise
definitions.

Definition. Let X be a finite simplicial complex. If n ≥ 1, define

∂n : Cn(X) → Cn−1(X)

by

∂n[v0, . . . , vn] =
n∑

i=0

(−1)i [v0, . . . , v̂i , . . . , vn]

(the notation v̂i means that vi is omitted). Define ∂0 : C0(X) → C−1(X) to
be identically zero [since C−1(X) = {0}, this definition is forced on us]. As
every simplicial n-chain has a unique expression as a linear combination of
simplicial n-simplexes, ∂n extends by linearity3 to a function defined on all of
Cn(X). The homomorphisms ∂n are called simplicial boundary maps.

The presence of signs gives the following fundamental result.

Proposition 1.1. For all n ≥ 0,

∂n−1∂n = 0.

Proof. Each term of ∂n[x0, . . . , xn] has the form (−1)i [x0, . . . , x̂i , . . . , xn].
Hence, ∂n[x0, . . . , xn] =∑i (−1)i [x0, . . . , x̂i , . . . , xn], and

∂n−1[x0, . . . , x̂i , . . . , xn] = [̂x0, . . . , x̂i , . . . , xn] + · · ·
+ (−1)i−1[x0, . . . , x̂i−1, x̂i , . . . , xn]

+ (−1)i [x0, . . . , x̂i , x̂i+1 . . . , xn] + · · ·
+ (−1)n−1[x0, . . . , x̂i , . . . , x̂n]

3Proposition 2.34 says that if F is a free abelian group with basis Y , and if f : Y → G
is any function with values in an abelian group G, then there exists a unique homomor-
phism f̃ : F → G with f̃ (y) = f (y) for all y ∈ Y . The map f̃ is obtained from f by
extending by linearity: if u = m1 y1+· · ·+m p yp , then f̃ (u) = m1 f (y1)+· · ·+m p f (yp).
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(when k ≥ i + 1, the sign of [x0. . . . , x̂i , . . . , x̂k, . . . , xn] is (−1)k−1, for the
vertex xk is the (k − 1)st term in the list x0, . . . , x̂i , . . . , xk, . . . , xn). Thus,

∂n−1[x0, . . . , x̂i , . . . , xn] =
i−1∑
j=0

(−1) j [x0, . . . , x̂ j , · · · , x̂i , . . . , xn]

+
n∑

k=i+1

(−1)k−1[x0, . . . , x̂i , . . . , x̂k, . . . , xn].

Now [x0, . . . , x̂i , . . . , x̂ j , . . . , xn] occurs twice in ∂n−1∂n[x0, . . . , xn]: from
∂n−1[x0, . . . , x̂i , . . . , xn] and from ∂n−1[x0, . . . , x̂ j , . . . , xn]. Therefore, the
first term has sign (−1)i+ j , while the second term has sign (−1)i+ j−1. Thus,
the (n − 2)-tuples cancel in pairs, and ∂n−1∂n = 0. •

Definition. For each n ≥ 0, the subgroup ker ∂n ⊆ Cn(X) is denoted by
Zn(X); its elements are called simplicial n-cycles. The subgroup im ∂n+1 ⊆
Cn(X) is denoted by Bn(X); its elements are called simplicial n-boundaries.

Corollary 1.2. For all n,

Bn(X) ⊆ Zn(X).

Proof. If α ∈ Bn , then α = ∂n+1(β) for some (n + 1)-chain β. Hence,
∂n(α) = ∂n∂n+1(β) = 0, so that α ∈ ker ∂n = Zn . •

We have defined a sequence of abelian groups and homomorphisms in
which composites of consecutive arrows are 0:

· · · → C3(X)
∂3−→ C2(X)

∂2−→ C1(X)
∂1−→ C0(X)

∂0−→ 0.

The interesting group is the quotient group Zn(X)/Bn(X).

Definition. The nth simplicial homology group of a finite simplicial com-
plex X is

Hn(X) = Zn(X)/Bn(X).

What survives in the quotient group Zn(X)/Bn(X) are the n-dimensional
holes; that is, those n-cycles that are not n-boundaries; Hn(X) = {0} means
that X has no n-dimensional holes.4 For example, if X is the punctured plane,

4Eventually, homology groups will be defined for mathematical objects other than topo-
logical spaces. It is always a good idea to translate Hn(X) = {0} into concrete terms, if
possible, as some interesting property of X . One can then interpret the elements of Hn(X)

as being obstructions to whether X enjoys this property.
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then H1(X) 	= {0}: if � = [a, b, c] is a triangle in X having the origin in its
interior, then α = [b, c] − [a, c] + [a, b] is a 1-cycle that is not a boundary,5

and the coset α + B1(X) is a nonzero element of H1(X). Topologists modify
this construction in two ways. They introduce homology with coefficients in
an abelian group G by tensoring the sequence of chain groups by G and then
taking homology groups; they also consider cohomology with coefficients in
G by applying Hom(�, G) to the sequence of chain groups and then taking
homology groups. Homological Algebra arose in trying to compute and to
find relations between homology groups and cohomology groups of spaces.

1.2 Categories and Functors

Let us now pass from the concrete to the abstract. Categories are the context
for discussing general properties of systems such as groups, rings, modules,
sets, or topological spaces, in tandem with their respective transformations:
homomorphisms, functions, or continuous maps.

There are well-known set-theoretic “paradoxes” showing that contradic-
tions arise if we are not careful about how the undefined terms set and element
are used. For example, Russell’s paradox gives a contradiction arising from
regarding every collection as a set. Define a Russell set to be a set S that is
not a member of itself; that is, S /∈ S, and define R to be the collection of all
Russell sets. Either R is a Russell set or it is not a Russell set. If R is a Russell
set, then R /∈ R, by definition. But all Russell sets lie in the collection of all
Russell sets, namely, R; that is, R ∈ R, a contradiction. On the other hand,
if R is not a Russell set, then R does not lie in the collection of all Russell
sets; that is, R /∈ R. But now R satisfies the criterion for being a Russell
set, another contradiction. We conclude that some conditions are needed to
determine which collections are allowed to be sets. Such conditions are given
in the Zermelo–Fraenkel axioms for set theory, specifically, by the axiom of
comprehension; the collection R is not a set, and this resolves the Russell
paradox. Another approach to resolving this paradox involves restrictions on
the membership relation: some say that x ∈ x is not a well-formed formula;
others say that x ∈ x is well-formed, but it is always false.

Let us give a bit more detail. The Zermelo–Fraenkel axioms have prim-
itive terms class and ∈ and rules for constructing classes, as well as for con-
structing certain special classes, called sets. For example, finite classes and
the natural numbers N are assumed to be sets. A class is called small if it has
a cardinal number, and it is a theorem that a class is a set if and only if it is
small; a class that is not a set is called a proper class. For example, N, Z, Q, R,

5Of course, α = ∂[a, b, c], but [a, b, c] is not a 2-simplex in X because � has the
origin in its interior. One must do more, however, to prove that α /∈ B1(X).
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and C are sets, the collection of all sets is a proper class, and the collection R
of all Russell classes is not even a class. For a more complete discussion, see
Mac Lane, Categories for the Working Mathematician, pp. 21–24, Douady–
Douady, Algèbre et Théories Galoisiennes, pp. 24–25, and Herrlich–Strecker,
Category Theory, Chapter II and the Appendix. We quote Herrlich–Strecker,
p. 331.

There are two important points (in different approaches to Cate-
gory Theory). ... First, there is no such thing as the category Sets
of all sets. If one approaches set theory from a naive standpoint,
inconsistencies will arise, and approaching it from any other stand-
point requires an axiom scheme, so that the properties of Sets
will depend upon the foundation chosen. ... The second point
is that (there is) a foundation that allows us to perform all of the
categorical-theoretical constructions that at the moment seem de-
sirable. If at some later time different constructions that cannot
be performed within this system are needed, then the foundation
should be expanded to accommodate them, or perhaps should be
replaced entirely. After all, the purpose of foundations is not to ar-
bitrarily restrict inquiry, but to provide a framework wherein one
can legitimately perform those constructions and operations that
are mathematically interesting and useful, so long as they are not
inconsistent within themselves.

We will be rather relaxed about Set Theory. As a practical matter, when an
alleged class arises, there are three possibilities: it is a set; it is a proper class;
it is not a class at all (one consequence of the axioms is that a proper class
is forbidden to be an element of any class). In this book, we will not worry
about the possibility that an alleged class is not a class.

Definition. A category C consists of three ingredients: a class obj(C) of
objects, a set of morphisms Hom(A, B) for every ordered pair (A, B) of ob-
jects, and composition Hom(A, B) × Hom(B,C) → Hom(A,C), denoted
by

( f, g) �→ g f,

for every ordered triple A, B,C of objects. [We often write f : A → B or

A
f→ B instead of f ∈ Hom(A, B).] These ingredients are subject to the

following axioms:

(i) the Hom sets are pairwise disjoint6; that is, each f ∈ Hom(A, B) has a
unique domain A and a unique target B;

6In the unlikely event that some particular candidate for a category does not have
disjoint Hom sets, then one can force them to be disjoint by redefining Hom(A, B) as
Hom(A, B) = {A} × Hom(A, B)× {B}, so that each morphism f ∈ Hom(A, B) is now
relabeled as (A, f, B). If (A, B) 	= (A′, B′), then Hom(A, B) ∩ Hom(A′, B′) = ∅.
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(ii) for each object A, there is an identity morphism 1A ∈ Hom(A, A) such
that f 1A = f and 1B f = f for all f : A → B;

(iii) composition is associative: given morphisms A
f→ B

g→ C
h→ D, then

h(g f ) = (hg) f.

A more important notion in this circle of ideas is that of functor, which
we will define soon. Categories are necessary because they are an essential
ingredient in the definition of functor. A similar situation occurs in Linear
Algebra: linear transformation is the more important notion, but vector spaces
are needed in order to define it.

The following examples will explain certain fine points of the definition
of category.

Example 1.3.

(i) Sets. The objects in this category are sets (not proper classes), mor-
phisms are functions, and composition is the usual composition of func-
tions.

It is an axiom of set theory that if A and B are sets, then the class
Hom(A, B) of all functions from A to B is also a set. That Hom sets
are pairwise disjoint is just a reflection of the definition of equality of
functions, which says that two functions are equal if they have the same
domains and the same targets (as well as having the same graphs). For
example, if U � X is a proper subset of a set X , then the inclusion
function U → X is distinct from the identity function 1U , for they have
different targets. If f : A → B and g : C → D are functions, we define
their composite g f : A → D if B = C . In contrast, in Analysis, one
often says g f is defined when B ⊆ C . We do not recognize this; for us,
g f is not defined, but gi f is defined, where i : B → C is the inclusion.

(ii) Groups. Objects are groups, morphisms are homomorphisms, and com-
position is the usual composition (homomorphisms are functions). Part
of the verification that Groups is a category involves checking that
identity functions are homomorphisms and that the composite of two
homomorphisms is itself a homomorphism [one needs to know that if
f ∈ Hom(A, B) and g ∈ Hom(B,C), then g f ∈ Hom(A,C)].

(iii) A partially ordered set X can be regarded as the category whose objects
are the elements of X , whose Hom sets are either empty or have only
one element:

Hom(x, y) =
{

∅ if x 	 y,

{ιxy} if x  y
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(the symbol ιxy is the unique element in the Hom set when x  y),
and whose composition is given by ι

y
z ι

x
y = ι

x
z . Note that 1x = ιxx , by

reflexivity, while composition makes sense because  is transitive. The
converse is false: if C is a category with |Hom(x, y)| ≤ 1 for every
x, y ∈ obj(C), define x  y if Hom(x, y) 	= ∅. Then C may not be
partially ordered because  need not be antisymmetric. The two-point
category • � • having only two nonidentity morphisms is such an
example that is not partially ordered.

We insisted, in the definition of category, that each Hom(A, B) be a
set, but we did not say it was nonempty. The category X , where X is
a partially ordered set, is an example in which this possibility occurs.
[Not every Hom set in a category C can be empty, for 1A ∈ Hom(A, A)

for every A ∈ obj(C).]

(iv) Let X be a topological space, and let U denote its topology; that is, U is
the family of all the open subsets of X . Then U is a partially ordered set
under ordinary inclusion, and so it is a category as in part (iii). In this
case, we can realize the morphism ιUV , when U ⊆ V , as the inclusion
iU
V : U → V .

(v) View a natural number n ≥ 1 as the partially ordered set whose elements
are 0, 1, . . . , n − 1 and 0 ≤ 1 ≤ · · · ≤ n − 1. As in part (iii), there is a
category n with obj(n) = {0, 1, . . . , n − 1} and with morphisms i → j
for all 0 ≤ i ≤ j ≤ n − 1.

(vi) Another special case of part (iii) is Z viewed as a partially ordered set
(which we order by reverse inequality, so that n  n − 1):

· · · �� •
n + 1

�� •
n

�� •
n − 1

�� · · · .

Actually, there are some morphisms we have not drawn: loops at each n,
corresponding to identity morphisms n → n, and composites m → n
for all m > n + 1; that is, m ≺ n + 1.

(vii) Top. Objects are all topological spaces, morphisms are continuous
functions, and composition is the usual composition of functions. In
checking that Top is a category, one must note that identity functions
are continuous and that composites of continuous functions are contin-
uous.

(viii) The category Sets∗ of all pointed sets has as its objects all ordered pairs
(X, x0), where X is a nonempty set and x0 is a point in X , called the



1.2 Categories and Functors 11

basepoint. A morphism f : (X, x0) → (Y, y0) is called a pointed map;
it is a function f : X → Y with f (x0) = y0. Composition is the usual
composition of functions.

One defines the category Top∗ of all pointed spaces in a similar way;
obj(Top∗) consists of all ordered pairs (X, x0), where X is a nonempty
topological space and x0 ∈ X , and morphisms f : (X, x0) → (Y, y0)

are continuous functions f : X → Y with f (x0) = y0.

(ix) We now define the category Asc of abstract simplicial complexes and
simplicial maps.

Definition. An abstract simplicial complex K is a nonempty set
Vert(K ), called vertices, together with a family of nonempty finite sub-
sets σ ⊆ Vert(K ), called simplexes, such that

(a) {v} is a simplex for every point v ∈ Vert(K ),

(b) every nonempty subset of a simplex is itself a simplex.

A simplex σ with |σ | = n+1 is called an n-simplex. If K and L are sim-
plicial complexes, then a simplicial map is a function ϕ : Vert(K ) →
Vert(L) such that, whenever σ is a simplex in K , then ϕ(σ) is a sim-
plex in L . [We do not assume that ϕ is injective; if σ is an n-simplex,
then ϕ(σ) need not be an n-simplex. For example, a constant function
Vert(K ) → Vert(L) is a simplicial map.]

(x) Let U be an open cover of a topological space X ; that is, U = (Ui )i∈I
is an indexed family of open subsets with X = ⋃

i∈I Ui . We define
the nerve7 N (U) to be the abstract simplicial complex having vertices
Vert(N (U)) = U and simplexes {Ui0,Ui1, . . . ,Uin } ⊆ U such that⋂ n

j=0 Ui j 	= ∅.

(xi) Recall that a monoid is a nonempty set G having an associative binary
operation and an identity element e: that is, ge = g = eg for all g ∈ G.
For example, every group is a monoid and, if we forget its addition,
every ring R is a monoid under multiplication. The following descrip-
tion defines a category C(G): there is only one object, denoted by ∗,
Hom(∗, ∗) = G, and composition

Hom(∗, ∗)× Hom(∗, ∗) → Hom(∗, ∗)
7Nerves first appeared in Lebesgue, “Sur la non applicabilité de deux domaines ap-

partenant ã des espaces de n et n + p dimensions,” Math. Ann. 70 (1911), 166–168.
Lebesgue’s Covering Theorem states that a separable metric space has dimension ≤ n if
and only if every finite open cover has a refinement whose nerve has dimension ≤ n; see
Hurewicz-Wallman, Dimension Theory, p. 42.
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(that is, G × G → G) is the given multiplication of G. We leave
verification of the axioms to the reader.

The category C(G) has an unusual feature. Since ∗ is merely an object,
not a set, there are no functions ∗ → ∗, and so morphisms here are not
functions.

(xii) A less artificial example in which morphisms are not functions arises in
Algebraic Topology. Recall that if f0, f1 : X → Y are continuous func-
tions, where X and Y are topological spaces, then f0 is homotopic to f1,
denoted by f0 � f1, if there exists a continuous function h : I×X → Y
(where I = [0, 1] is the closed unit interval) such that h(0, x) = f0(x)
and h(1, x) = f1(x) for all x ∈ X . One calls h a homotopy, and we
think of it as deforming f0 into f1. A homotopy equivalence is a con-
tinuous map f : X → Y for which there exists a continuous g : Y → X
such that g f � 1X and f g � 1Y . One can show that homotopy is an
equivalence relation on the set of all continuous functions X → Y , and
the equivalence class [ f ] of f is called its homotopy class.

The homotopy category Htp has as its objects all topological spaces and
as its morphisms all homotopy classes of continuous functions (thus,
a morphism here is not a function but a certain equivalence class of
functions). Composition is defined by [ f ][g] = [ f g] (if f � f ′ and
g � g′, then their composites are homotopic: f g � f ′g′), and identity
morphisms are homotopy classes [1X ]. �

The next examples are more algebraic.

Example 1.4.

(i) Ab. Objects are abelian groups, morphisms are homomorphisms, and
composition is the usual composition.

(ii) Rings. Objects are rings, morphisms are ring homomorphisms, and
composition is the usual composition. We assume that all rings R have
a unit element 1, but we do not assume that 1 	= 0. (Should 1 = 0,
however, the equation 1r = r for all r ∈ R shows that R = {0}, because
0r = 0. In this case, we call R the zero ring.) We agree, as part of
the definition, that ϕ(1) = 1 for every ring homomorphism ϕ. Since
the inclusion map S → R of a subring should be a homomorphism, it
follows that the unit element 1 in a subring S must be the same as the
unit element 1 in R.

(iii) ComRings. Objects are commutative rings, morphisms are ring homo-
morphisms, and composition is the usual composition. �
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We now introduce R-modules, a common generalization of abelian groups
and of vector spaces, for many applications of Homological Algebra arise in
this context. An R-module is just a “vector space over a ring R”; that is, in
the definition of vector space, allow the scalars to be in R instead of in a field.

Definition. A left R-module, where R is a ring, is an additive abelian group
M having a scalar multiplication R × M → M , denoted by (r,m) �→ rm,
such that, for all m,m′ ∈ M and r, r ′ ∈ R,

(i) r(m + m′) = rm + rm′,

(ii) (r + r ′)m = rm + r ′m,

(iii) (rr ′)m = r(r ′m),

(iv) 1m = m.8

We often write R M to denote M being a left R-module.

Example 1.5.

(i) Every vector space over a field k is a left k-module.

(ii) Every abelian group is a left Z-module.

(iii) Every ring R is a left module over itself if we define scalar multiplica-
tion R × R → R to be the given multiplication of elements of R. More
generally, every left ideal in R is a left R-module.

(iv) If S is a subring of a ring R, then R is a left S-module, where scalar
multiplication S × R → R is just the given multiplication (s, r) �→ sr .
For example, the center Z(R) of a ring R is

Z(R) = {a ∈ R : ar = ra for all r ∈ R
}
.

It is easy to see that Z(R) is a subring of R and that R is a left Z(R)-
module. A ring R is commutative if and only if Z(R) = R. �

8If we do not assume that 1m = m for all m ∈ M , then the abelian group M is a direct
sum M0 ⊕ M1, where M0 is an abelian group in which rm = 0 for all r ∈ R and m ∈ M0,
and M1 is a left R-module. See Exercise 1.10 on page 34.
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Definition. If M and N are left R-modules, then an R-homomorphism (or
an R-map) is a function f : M → N such that, for all m,m′ ∈ M and r ∈ R,

(i) f (m + m′) = f (m)+ f (m′),

(ii) f (rm) = r f (m).

An R-isomorphism is a bijective R-homomorphism.

Note that the composite of R-homomorphisms is an R-homomorphism
and, if f is an R-isomorphism, then its inverse function f −1 is also an R-
isomorphism.

Example 1.6.

(i) If R is a field, then left R-modules are vector spaces and R-maps are
linear transformations.

(ii) Every homomorphism of abelian groups is a Z-map.

(iii) Let M be an R-module, where R is a ring. If r ∈ Z(R), then multi-
plication by r (or homothety) is the function μr : M → M defined by
m �→ rm. The functions μr are R-maps because r ∈ Z(R): if a ∈ R
and m ∈ M , then

μr (am) = r(am) = (ra)m = (ar)m = a(rm) = aμr (m). �

Definition. A right R-module, where R is a ring, is an additive abelian group
M having a scalar multiplication M × R → M , denoted by (m, r) �→ mr ,
such that, for all m,m′ ∈ M and r, r ′ ∈ R,

(i) (m + m′)r = mr + m′r ,

(ii) m(r + r ′) = mr + mr ′,

(iii) m(rr ′) = (mr)r ′,

(iv) m = m1.

We often write MR to denote M being a right R-module.

Example 1.7. Every ring R is a right module over itself if we define scalar
multiplication R × R → R to be the given multiplication of elements of R.
More generally, every right ideal I in R is a right R-module, for if i ∈ I and
r ∈ R, then ir ∈ I . �
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Definition. If M and M ′ are right R-modules, then an R-homomorphism
(or an R-map) is a function f : M → M ′ such that, for all m,m′ ∈ M and
r ∈ R,

(i) f (m + m′) = f (m)+ f (m′),

(ii) f (mr) = f (m)r .

An R-isomorphism is a bijective R-homomorphism.

If, in a right R-module M , we had denoted mr by rm, then all the
axioms in the definition of left module would hold for M with the exception
of axiom (iii): this axiom now reads

(rr ′)m = r ′(rm).

This remark shows that if R is a commutative ring, then right R-modules are
the same thing as left R-modules. Thus, when R is commutative, we usually
say R-module, dispensing with the adjectives left and right.

There is a way to treat properties of right and left R-modules at the same
time, instead of first discussing left modules and then saying that a similar
discussion can be given for right modules. Strictly speaking, a ring R is an
ordered triple (R, α, μ), where R is a set, α : R × R → R is addition, and
μ : R × R → R is multiplication, and these obey certain axioms. Of course,
we usually abbreviate the notation and, instead of saying that (R, α, μ) is a
ring, we merely say that R is a ring.

Definition. If (R, α, μ) is a ring, then its opposite ring Rop is (R, α, μo),
where μo : R × R → R is defined by

μo(r, r ′) = μ(r ′, r).

It is easy to check that Rop is a ring. Informally, we have reversed the
order of multiplication. It is obvious that (Rop)op = R, and that Rop = R
if and only if R is commutative. Exercise 1.11 on page 35 says that every
right R-module is a left Rop-module and every left R-module is a right Rop-
module.

Definition. The category RMod of all left R-modules (where R is a ring)
has as its objects all left R-modules, asa its morphisms all R-homomorphisms,
and as its composition the usual composition of functions. We denote the sets
Hom(A, B) in RMod by

HomR(A, B).

If R = Z, then ZMod = Ab, for abelian groups are Z-modules and homo-
morphisms are Z-maps.

There is also a category of right R-modules.
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Definition. The category ModR of all right R-modules (where R is a ring)
has as its objects all right R-modules, as its morphisms all R-homomorphisms,
and as its composition the usual composition. We denote the sets Hom(A, B)

in ModR by

HomR(A, B)

(we use the same notation for Hom as in RMod).

Definition. A category S is a subcategory of a category C if

(i) obj(S) ⊆ obj(C),

(ii) HomS(A, B) ⊆ HomC(A, B) for all A, B ∈ obj(S), where we denote
Hom sets in S by HomS(�,�),

(iii) if f ∈ HomS(A, B) and g ∈ HomS(B,C), then the composite g f ∈
HomS(A,C) is equal to the composite g f ∈ HomC(A,C),

(iv) if A ∈ obj(S), then the identity 1A ∈ HomS(A, A) is equal to the
identity 1A ∈ HomC(A, A).

A subcategory S of C is a full subcategory if, for all A, B ∈ obj(S), we have
HomS(A, B) = HomC(A, B).

For example, Ab is a full subcategory of Groups. Call a category discrete
if its only morphisms are identity morphisms. If S is the discrete category
with obj(S) = obj(Sets), then S is a subcategory of Sets that is not a full
subcategory. On the other hand, the homotopy category Htp is not a subcat-
egory of Top, even though obj(Htp) = obj(Top), for morphisms in Htp are
not continuous functions.

Example 1.8. If C is any category and S ⊆ obj(C), then the full subcategory
generated by S, also denoted by S, is the subcategory with obj(S) = S and
with HomS(A, B) = HomC(A, B) for all A, B ∈ obj(S). For example, we
define the category Top2 to be the full subcategory of Top generated by all
Hausdorff spaces. �

Functors9 are homomorphisms of categories.

9The term functor was coined by the philosopher R. Carnap, and S. Mac Lane thought
it was the appropriate term in this context.
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Definition. If C and D are categories, then a functor T : C → D is a func-
tion such that

(i) if A ∈ obj(C), then T (A) ∈ obj(D),

(ii) if f : A → A′ in C, then T ( f ) : T (A) → T (A′) in D,

(iii) if A
f→ A′

g→ A′′ in C, then T (A)
T ( f )→ T (A′)

T (g)→ T (A′′) in D and

T (g f ) = T (g)T ( f ),

(iv) T (1A) = 1T (A) for every A ∈ obj(C).
In Exercise 1.1 on page 33, we see that there is a bijection between ob-

jects A and their identity morphism 1A. Thus, we may regard a category as
consisting only of morphisms (in almost all uses of categories, however, it is
more natural to think of two sorts of entities: objects and morphisms). View-
ing a category in this way shows that the notation T : C → D for a functor is
consistent with standard notation for functions.

Example 1.9.

(i) If S is a subcategory of a category C, then the definition of subcategory
may be restated to say that the inclusion I : S → C is a functor [this is
one reason for the presence of Axiom (iv)].

(ii) If C is a category, then the identity functor 1C : C → C is defined by
1C(A) = A for all objects A and 1C( f ) = f for all morphisms f .

(iii) If C is a category and A ∈ obj(C), then the Hom functor TA : C → Sets,
usually denoted by Hom(A,�), is defined by

TA(B) = Hom(A, B) for all B ∈ obj(C),

and if f : B → B ′ in C, then TA( f ) : Hom(A, B) → Hom(A, B ′) is
given by

TA( f ) : h �→ f h.

We call TA( f ) = Hom(A, f ) the induced map, and we denote it by f∗;
thus,

f∗ : h �→ f h.

Because of the importance of this example, we will verify the parts of
the definition in detail. First, the very definition of category says that
Hom(A, B) is a set. Note that the composite f h makes sense:

A
f h

��
h

�� B
f

�� B ′.
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Suppose now that g : B ′ → B ′′. Let us compare the functions

(g f )∗, g∗ f∗ : Hom(A, B) → Hom(A, B ′′).

If h ∈ Hom(A, B), i.e., if h : A → B, then

(g f )∗ : h �→ (g f )h;
on the other hand, associativity of composition gives

g∗ f∗ : h �→ f h �→ g( f h) = (g f )h,

as desired. Finally, if f is the identity map 1B : B → B, then

(1B)∗ : h �→ 1Bh = h

for all h ∈ Hom(A, B), so that (1B)∗ = 1Hom(A,B).

(iv) A functor T : Z → C, where Z is the category obtained from Z viewed
as a partially ordered set [as in Example 1.3(vi)], is a sequence

· · · → Cn+1 → Cn → Cn−1 → · · · .
(v) Define the forgetful functor U : Groups → Sets as follows: U (G)

is the underlying set of a group G and U ( f ) is a homomorphism f
regarded as a mere function. Strictly speaking, a group is an ordered
pair (G, μ) [where G is its (underlying) set and μ : G × G → G is its
operation], and U ((G, μ)) = G; the functor U “forgets” the operation
and remembers only the set. There are many variants. For example, a
ring is an ordered triple (R, α, μ) [where α : R × R → R is addition
and μ : R × R → R is multiplication], and there are forgetful functors
U ′ : Rings → Ab with U ′(R, α, μ) = (R, α), the additive group of R,
and U ′′ : Rings → Sets with U ′′(R, α, μ) = R, the underlying set. �

We can draw pictures in a category.

Definition. A diagram in a category C is a functor D : D → C, where D is
a small category; that is, obj(D) is a set.

Let us see that this formal definition captures the intuitive idea of a dia-
gram. We think of an abstract diagram as a directed multigraph; that is, as a
set V of vertices and, for each ordered pair (u, v) ∈ V×V , a (possibly empty)
set arr(u, v) of arrows from u to v. A diagram in a category C should be a
multigraph each of whose vertices is labeled by an object of C and each of
whose arrows is labeled by a morphism of C. But this is precisely the image
of a functor D : D → C: if u and v label vertices, then u = Da and v = Db,
where a, b ∈ obj(D), and arr(u, v) = {D f : Da → Db | f ∈ HomD(a, b)}.
That each a ∈ obj(D) has an identity morphism says that there is a loop 1u at
each vertex u = Da. In drawing a diagram, we usually omit these loops; also,
we usually omit morphisms that arise as composites of other morphisms.



1.2 Categories and Functors 19

Definition. A path in a category C is a functor P : n + 1 → C, where n + 1
is the category arising from the partially ordered set 0 ≤ 1 ≤ · · · ≤ n, as in
Example 1.3(v). Thus, P is a sequence P0, P1, . . . , Pn , where Pi ∈ obj(C)
for all i . A labeled path is a path in which the morphisms fi : Pi → Pi+1 are
displayed:

P0
f0−→ P1

f1−→ P2 → · · · → Pn−1
fn−1−→ Pn.

A path is simple if P0, P1, . . . , Pn−1 are distinct (we allow Pn = P0).
A diagram in a category commutes if, for each pair of vertices A and B,

the composites fn−1 · · · f1 f0 of the labels on any two simple labeled paths
from A to B are equal.

X
h

���
��

��
��

f
��

Y
g ��
k

�� Z

A
f ��

g′
��

B

g

��
C

f ′
�� D

The triangular diagram (arising from a category D with three objects and four
nonidentity morphisms) commutes if g f = h and k f = h, and the square
diagram (arising from a category D with four objects and four nonidentity
morphisms) commutes if g f = f ′g′. The term commutes in this context
arises from this last example.

A second type of functor reverses arrows.

Definition. A contravariant functor T : C → D, where C and D are cate-
gories, is a function such that

(i) if C ∈ obj(C), then T (C) ∈ obj(D),

(ii) if f : C → C ′ in C, then T ( f ) : T (C ′) → T (C) in D (note the reversal
of arrows),

(iii) if C
f→ C ′ g→ C ′′ in C, then T (C ′′)

T (g)→ T (C ′)
T ( f )→ T (C) in D and

T (g f ) = T ( f )T (g),

(iv) T (1A) = 1T (A) for every A ∈ obj(C).

To distinguish them from contravariant functors, the functors defined ear-
lier are called covariant functors.
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Example 1.10. If C is a category and B ∈ obj(C), then the contravariant
Hom functor T B : C → Sets, usually denoted by Hom(�, B), is defined, for
all C ∈ obj(C), by

T B(C) = Hom(C, B),

and if f : C → C ′ in C, then T B( f ) : Hom(C ′, B) → Hom(C, B) is given
by

T B( f ) : h �→ h f.

We also call T B( f ) = Hom( f, B) the induced map, and we denote it by f ∗;
thus,

f ∗ : h �→ h f.

Because of the importance of this example, we verify the axioms, show-
ing that Hom(�, B) is a (contravariant) functor. Note that the composite h f
makes sense:

C
h f

��
f

�� C ′
h

�� B.

Given homomorphisms

C
f→ C ′ g→ C ′′,

let us compare the functions

(g f )∗, f ∗g∗ : Hom(C ′′, B) → Hom(C, B).

If h ∈ Hom(C ′′, B), i.e., if h : C ′′ → B, then

(g f )∗ : h �→ h(g f );
on the other hand,

f ∗g∗ : h �→ hg �→ (hg) f = h(g f ) = (hg) f,

as desired. Finally, if f is the identity map 1C : C → C , then

(1C )∗ : h �→ h1C = h

for all h ∈ Hom(C, B), so that (1C )∗ = 1Hom(C,B). �

Example 1.11. Here is a special case of a contravariant Hom functor. Recall
that a linear functional on a vector space V over a field k is a linear transfor-
mation ϕ : V → k [remember that k is a (one-dimensional) vector space over
itself]. For example, if V = {continuous f : [0, 1] → R}, then integration
f �→ ∫ 1

0 f (t) dt is a linear functional on V . If V is a vector space over a
field k, then its dual space is V ∗ = Homk(V, k), the set of all the linear func-
tionals on V . Now V ∗ is a k-module if we define a f : V → k (for f ∈ V ∗ and
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a ∈ k) by a f : v �→ a[ f (v)]; that is, V ∗ is a vector space over k. Moreover, if
f : V → W is a linear transformation, then the induced map f ∗ : W ∗ → V ∗
is also a linear transformation. (By Exercise 2.9 on page 66, if A is a matrix
of f , then the transpose AT is a matrix for f ∗.) The dual space functor is
Homk(�, k) : k Mod → k Mod. �

Example 1.12. Recall Example 1.3(iii): a partially ordered set X can be
viewed as a category, where x  x ′ in X if and only if HomX (x, x ′) 	= ∅;
that is, HomX (x, x ′) = {ιxx ′ }. If Y is a partially ordered set and T : X → Y
is a covariant functor, then T (ιxx ′) = ιT x

T x ′ ; that is, T x  T x ′ in Y . In other
words, a covariant functor is an order-preserving function: if x  x ′, then
T x  T x ′. Similarly, if T : X → Y is a contravariant functor, then T is
order-reversing: if x  x ′, then T x � T x ′. �

Example 1.13. A functor T : C → D is faithful if, for all A, B ∈ obj(C),
the functions HomC(A, B) → HomD(T A, T B) given by f �→ T f are injec-
tions. A category C is concrete if there is a faithful functor U : C → Sets.
Informally, a concrete category is one whose morphisms may be regarded as
functions. The homotopy category Htp is not concrete, but the proof of this
fact is not obvious. �

Example 1.14. If U is an open subset of a topological space X , define

P(U ) = {continuous f : U → R
}
.

It is easy to see that P(U ) is a commutative ring under pointwise operations:
if f, g ∈ P(U ) and x ∈ U , then

f + g : x �→ f (x)+ g(x) and f g : x → f (x)g(x).

If V is an open set containing U , then restriction f �→ f |U is a ring homo-
morphism resV

U : P(V ) → P(U ).
We generalize this construction. As in Example 1.3(iii), the topology U

of X is a category: obj(U) = U and, if U, V ∈ U , then

HomU (U, V ) =
{

∅ if U 	⊆ V,

{iU
V } if U ⊆ V,

where iU
V : U → V is the inclusion.

Definition. If U is the topology of a topological space X and C is a category,
then a presheaf over X is a contravariant functor P : U → C. (This definition
is sometimes generalized by defining a presheaf over an arbitrary category A
to be a contravariant functor A→ C.)
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The construction at the beginning of this example gives a presheaf P of
commutative rings over X . We have already defined P(U ) for each open set
U in X . If U ⊆ V , then the restriction map resV

U : P(V ) → P(U ) is defined
by f �→ f iU

V = f |U . It is routine to check that P is a contravariant functor
(arrows are reversed). �

Just as opposite rings can be used to convert right modules to left modules,
opposite categories can convert contravariant functors to covariant functors.

Definition. If C is a category, define its opposite category Cop to be the cate-
gory with obj(Cop) = obj(C), with morphisms HomCop(A, B) = HomC(B, A)

(we may write morphisms in Cop as f op, where f is a morphism in C), and
with composition the reverse of that in C; that is, gop f op = ( f g)op.

We illustrate composition in Cop: a diagram C
f op

−→ B
gop

−→ A in Cop

corresponds to the diagram A
g−→ B

f−→ C in C.
Opposite categories are difficult to visualize. In Setsop, for example, the

set HomSetsop(X,∅), for any set X , has exactly one element, namely, iop,
where i is the inclusion ∅ → X in HomSets(∅, X). But iop : X → ∅ cannot
be a function, for there are no functions from a nonempty set X to ∅.

It is easy to show that a contravariant functor T : A→ C is the same thing
as a (covariant) functor S : Aop → C (see Exercise 1.4 on page 33). Recall
that a diagram in a category C is a covariant functor D : D → C, where D is
a small category. The opposite diagram is Dop : Dop → C, which is just the
diagram in A obtained by reversing the direction of all arrows.

Here is how to translate isomorphism into categorical language.

Definition. A morphism f : A → B in a category C is an isomorphism if
there exists a morphism g : B → A in C with

g f = 1A and f g = 1B .

The morphism g is called the inverse of f .

Exercise 1.1 on page 33 says that an isomorphism has a unique inverse.
Identity morphisms in a category are always isomorphisms. In X , where

X is a partially ordered set, the only isomorphisms are identities; in C(G),
where G is a group [see Example 1.3(xi)], every morphism is an isomor-
phism. In Sets, isomorphisms are bijections; in Groups, RMod, Rings, or
ComRings, isomorphisms are isomorphisms in the usual sense; in Top, iso-
morphisms are homeomorphisms. A homotopy equivalence is a continuous
map f : X → Y for which there exists a continuous g : Y → X such that
g f � 1X and f g � 1Y . In the homotopy category, isomorphisms are homo-
topy classes of homotopy equivalences. We say that X and Y have the same



1.2 Categories and Functors 23

homotopy type if they are isomorphic in Htp; that is, if there is a homotopy
equivalence between them.

The following result is useful, even though it is very easy to prove. See
Corollary 1.26 for an interesting application of this simple result.

Proposition 1.15. Let T : C → D be a functor of either variance. If f is an
isomorphism in C, then T ( f ) is an isomorphism in D.

Proof. If g is the inverse of f , apply the functor T to the equations g f = 1
and f g = 1. •

How could we prove this result when C = Ab if an isomorphism is viewed
as a homomorphism that is an injection and a surjection? This proposition
illustrates, admittedly at a low level, one reason why it is useful to give cate-
gorical definitions: functors can recognize definitions phrased solely in terms
of objects, morphisms, and diagrams.

Just as homomorphisms compare algebraic objects and functors compare
categories, natural transformations compare functors.

Definition. Let S, T : A → B be covariant functors. A natural transfor-
mation τ : S → T is a one-parameter family of morphisms in B,

τ = (τA : S A → T A)A∈obj(A),

making the following diagram commute for all f : A → A′ in A:

S A
τA ��

S f
��

T A

T f
��

S A′ τA′
�� T A′.

Natural transformations between contravariant functors are defined similarly
(replace A by Aop). A natural isomorphism is a natural transformation τ for
which each τA is an isomorphism.

Natural transformations can be composed. If τ : S → T and σ : T → U
are natural transformations, where S, T,U : A → B are functors of the same
variance, then define στ : S → U by

(στ)A = σAτA

for all A ∈ obj(A). It is easy to check that στ is a natural transformation (see
Exercise 1.15 on page 35).

For any functor S : A → B, define the identity natural transformation
ωS : S → S by setting (ωS)A : S A → S A to be the identity morphism 1S A.
The reader may check, using Exercise 1.15, that a natural transformation
τ : S → T is a natural isomorphism if and only if there is a natural trans-
formation σ : T → S with στ = ωS and τσ = ωT .
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Example 1.16.

(i) Let k be a field and let V = k Mod be the category of all vector spaces
over k. As in Example 1.11, if V ∈ obj(V), then its dual space V ∗ =
Homk(V, k) is the vector space of all linear functionals on V . If f ∈ V ∗
and v ∈ V , denote f (v) by ( f, v). Of course, we are accustomed to
fixing f and letting v vary, thereby describing f as ( f,�). On the
other hand, if we fix v and let f vary, then (�, v) assigns a value in k
to every f ∈ V ∗; that is, if (�, v) is denoted by ve, then ve : V ∗ → k
is the evaluation function defined by ve( f ) = ( f, v) = f (v). In fact,
ve is a linear functional on V ∗: the definitions of addition and scalar
multiplication in V ∗ give ve( f + g) = ( f + g, v) = f (v) + g(v) =
ve( f ) + ve(g) and, if a ∈ k, then ve(a f ) = (a f, v) = a[ f (v)] =
ave( f ). Thus, ve ∈ (V ∗)∗ (which is usually denoted by V ∗∗).

For each V ∈ obj(V), define τV : V → V ∗∗ by v �→ ve = (�, v).
We have two (covariant) functors V → V: the identity functor 1V
and the double dual �∗∗ = Homk(Homk(�, k), k), and we claim that
τ : 1V → �∗∗ is a natural transformation. The reader may show that
each τV : V → V ∗∗ is linear; let us show commutativity of the diagram

V
τV ��

f
��

V ∗∗

f ∗∗
��

W τW
�� W ∗∗.

If f : V → W , then the induced map f ∗ : W ∗ → V ∗ is given by g �→
g f (the dual space functor is contravariant!); similarly, f ∗∗ : V ∗∗ →
W ∗∗ is given by h �→ h f ∗. Now take v ∈ V . Going clockwise, v �→
ve �→ ve f ∗; going counterclockwise, v �→ f (v) �→ ( f v)e. To see that
these elements of W ∗∗ are the same, evaluate each on h ∈ W ∗:

ve f ∗(h) = ve(h f ) = (h f )v and ( f v)e(h) = h( f (v)).

It is not difficult to see that each τV is an injection, but τ may not be
a natural isomorphism. If V is infinite-dimensional, then dim(V ∗) >

dim(V ); hence, dim(V ∗∗) > dim(V ), and there is no isomorphism
V → V ∗∗. On the other hand, if dim(V ) < ∞, a standard result of Lin-
ear Algebra (Exercise 2.9 on page 66) shows that dim(V ∗) = dim(V ),
and so the injection τV : V → V ∗∗ must be an isomorphism. Thus, if
S ⊆ V is the subcategory of all finite-dimensional vector spaces over k,
then τ |S is a natural isomorphism.

We remark that there is no natural transformation from the identity func-
tor to the dual space functor, for these two functors have different vari-
ances.
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(ii) Choose a one-point set P = {p}. We claim that Hom(P,�) : Sets →
Sets is naturally isomorphic to the identity functor on Sets. If X is a set,
define τX : Hom(P, X) → X by f �→ f (p). Each τX is a bijection, as
is easily seen, and we now show that τ is a natural transformation. Let
X and Y be sets, and let h : X → Y ; we must show that the following
diagram commutes:

Hom(P, X)
h∗ ��

τX

��

Hom(P, Y )

τY

��
X

h
�� Y,

where h∗ : f �→ h f . Going clockwise, f �→ h f �→ h f (p), while going
counterclockwise, f �→ f (p) �→ h( f (p)). �

Notation. If F, G : A→ B are functors of the same variance, then

Nat(F, G) = {natural transformations F → G
}
.

The notation Nat(F, G) should be accepted in light of our remarks on Set
Theory on page 8. In general, Nat(F, G) may not be a class and, even if it
is a class, it may be a proper class (see Exercise 1.19 on page 36). The next
theorem shows that Nat(F, G) is a set when F = HomC(A,�).

Theorem 1.17 (Yoneda Lemma). Let C be a category, let A ∈ obj(C), and
let G : C → Sets be a covariant functor. Then there is a bijection

y : Nat(HomC(A,�), G) → G(A)

given by y : τ �→ τA(1A).

Proof. If τ : HomC(A,�) → G is a natural transformation, then y(τ ) =
τA(1A) lies in the set G(A), for τA : HomC(A, A) → G(A). Thus, y is a
well-defined function.

For each B ∈ obj(C) and ϕ ∈ HomC(A, B), there is a commutative dia-
gram

HomC(A, A)
τA ��

ϕ∗
��

G A

Gϕ

��
HomC(A, B)

τB
�� G B,

so that
(Gϕ)τA(1A) = τBϕ∗(1A) = τB(ϕ1A) = τB(ϕ).
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If σ : HomC(A,�) → G is another natural transformation, then σB(ϕ) =
(Gϕ)σA(1A). Hence, if σA(1A) = τA(1A), then σB = τB for all B ∈ obj(C)
and, hence, σ = τ . Therefore, y is an injection.

To see that y is a surjection, take x ∈ G(A). For B ∈ obj(C) and ψ ∈
HomC(A, B), define

τB(ψ) = (Gψ)(x)

[note that Gψ : G A → G B, so that (Gψ)(x) ∈ G B]. We claim that τ is
a natural transformation; that is, if θ : B → C is a morphism in C, then the
following diagram commutes:

HomC(A, B)
τB ��

θ∗
��

G B

Gθ

��
HomC(A,C)

τC
�� GC.

Going clockwise, we have (Gθ)τB(ψ) = GθGψ(x); going counterclock-
wise, we have τCθ∗(ψ) = τC (θψ) = G(θψ)(x). Since G is a functor, how-
ever, G(θψ) = GθGψ ; thus, τ is a natural transformation. Now y(τ ) =
τA(1A) = G(1A)(x) = x , and so y is a bijection. •

Definition. A covariant functor F : C → Sets is representable if there exists
A ∈ obj(C) with F ∼= HomC(A,�).

Theorem 5.50 characterizes all representable functors R Mod → Ab. The
most interesting part of the next corollary is part (iii), which says that if F is
representable, then the object A is essentially unique.

Corollary 1.18. Let C be a category and let A, B ∈ obj(C).

(i) If τ : HomC(A,�) → HomC(B,�) is a natural transformation, then
for all C ∈ obj(C), we have τC = ψ∗, where ψ = τA(1A) : B → A
and ψ∗ is the induced map HomC(A,C) → HomC(B,C) given by
ϕ �→ ϕψ . Moreover, the morphism ψ is unique: if τC = θ∗, then
θ = ψ .

(ii) Let HomC(A,�)
τ−→ HomC(B,�)

σ−→ HomC(B ′,�) be natural
transformations. If σC = η∗ and τC = ψ∗ for all C ∈ obj(C), then

(στ)C = (ψη)∗.

(iii) If HomC(A,�) and HomC(B,�) are naturally isomorphic functors,
then A ∼= B. (The converse is also true; see Exercise 1.16 on page 36.)
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Proof.

(i) If we denote τA(1A) ∈ HomC(B, A) by ψ , then the Yoneda Lemma
says, for all C ∈ obj(C) and all ϕ ∈ HomC(A,C), that τC (ϕ) = ϕ∗(ψ).
But ϕ∗(ψ) = ϕψ = ψ∗(ϕ). The uniqueness assertion follows from
injectivity of the Yoneda function y.

(ii) By part (i), there are unique morphisms ψ ∈ HomC(B, A) and η ∈
HomC(B ′, B) with

τC (ϕ) = ψ∗(ϕ) and σC (ϕ′) = η∗(ϕ′)

for all ϕ ∈ HomC(A,C) and ϕ′ ∈ HomC(B,C). By definition, (στ)C =
σCτC , and so

(στ)C (ϕ) = σC (ψ∗(ϕ)) = η∗ψ∗(ϕ) = (ψη)∗(ϕ).

(iii) If τ : HomC(A,�) → HomC(B,�) is a natural isomorphism, then
there is a natural isomorphism σ : HomC(B,�) → HomC(A,�) with
στ = ωHomC(A,�) and τσ = ωHomC(B,�). By part (i), there are mor-
phisms ψ : B → A and η : A → B with τC = ψ∗ and σC = η∗ for
all C ∈ obj(C). By part (ii), we have τσ = ψ∗η∗ = (ηψ)∗ = 1∗B and
στ = (ψη)∗ = 1∗A. The uniqueness in part (i) now gives ψη = 1A and
ηψ = 1B , so that η : A → B is an isomorphism. •

Example 1.19.

(i) Informally, if A and B are categories, the functor category BA has as
its objects all covariant functors A → B and as its morphisms all nat-
ural transformations. Each functor F : A → B has an identity natural
transformation ωF : F → F , and a composite of natural transforma-
tions is itself a natural transformation (see Exercise 1.15 on page 35).
But there is a set-theoretic problem here: Nat(F, G) need not be a set.
Recall that a category A is small if the class obj(A) is a set; in this case,
Nat(F, G) is a set, and so the formal definition of the functor category
BA requires A to be a small category (see Exercise 1.19 on page 36).
Note that all contravariant functors and natural transformations form the
category BAop

, which is essentially the same as (Bop)A.

(ii) A diagram in a category C is a (covariant) functor D : D → C, where D
is a small category. Thus, D ∈ CD.

(iii) As in Example 1.3(vi), view Z as a partially ordered set under reverse
inequality. A functor in AbZ is essentially a sequence (we have not
drawn identities and composites)

· · · → An+1
dn+1−→ An

dn−→ An−1 → · · · .



28 Introduction Ch. 1

A natural transformation between two such functors is a sequence of
maps (. . . , fn+1, fn, fn−1, . . .) making the following diagram commute.

· · · �� An+1
dn+1 ��

fn+1 ��

An
dn ��

fn��

An−1 ��

fn−1��

· · ·

· · · �� A′n+1 d ′n+1

�� A′n d ′n
�� A′n−1

�� · · ·

A complex (or chain complex) is such a functor with the property that
dndn+1 = 0 for all n, and a natural transformation between complexes
is usually called a chain map. Define Comp to be the full subcategory
of AbZ generated by all complexes.

(iv) Recall (Example 1.14): a presheaf P over a topological space X is
a contravariant functor P : U → Ab, where the topology U on X is
viewed as a (small) category. If G : U → Ab is another presheaf over
X , then a natural transformation τ : P → G is a one-parameter family
of morphisms τU : P(U ) → G(U ), where U ∈ U , making the following
diagram commute for all U ⊆ V .

P(V )
τV ��

P( f )
��

G(V )

G( f )
��

P(U )
τU

�� G(U )

Presheaves over a space X comprise the functor category AbUop
, which

we denote by pSh(X,Ab). �

Corollary 1.20 (Yoneda Imbedding). If C is a small category, then there
is a functor Y : Cop → SetsC that is injective on objects and whose image is a
full subcategory of SetsC .

Proof. Define Y on objects by Y (A) = HomC(A,�). If A 	= A′, then pair-
wise disjointness of Hom sets gives HomC(A,�) 	= HomC(A′,�); that is,
Y (A) 	= Y (A′), and so Y is injective on objects. If ψ : B → A is a mor-
phism in C, then there is a natural transformation Y (ψ) : HomC(A,�) →
HomC(B,�) with Y (ψ)C = ψ∗ for all C ∈ obj(C), by Corollary 1.18(i).
Now Corollary 1.18(ii) gives Y (ψη) = Y (η)Y (ψ), and so Y is a contravari-
ant functor. Finally, surjectivity of the Yoneda function y in Theorem 1.17
shows that every natural transformation HomC(A,�) → HomC(B,�) arises
as Y (ψ) for some ψ . Therefore, the image of Y is a full subcategory of the
functor category SetsC . •

We paraphrase the Yoneda imbedding by saying that every small category
is a full subcategory of a category of presheaves.
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1.3 Singular Homology

In the first section, we defined homology groups Hn(X) for every finite sim-
plicial complex X ; we are now going to generalize this construction so that it
applies to all topological spaces. Once this is done, we shall see that each Hn
is actually a functor Top → Ab.10 The reader will see that the construction
has two parts: a topological half and an algebraic half.

Definition. Recall that Hilbert space is the set H of all sequences (xi ),
where xi ∈ R for all i ≥ 0, such that

∑∞
i=0 x2

i < ∞. Euclidean space R
n is

the subset of H consisting of all sequences of the form (x0, . . . , xn−1, 0, . . .)
with xi = 0 for all i ≥ n.

We begin by generalizing the notion of n-simplex, where a 0-simplex is a
point, a 1-simplex is a line segment, a 2-simplex is a triangle (with interior), a
3-simplex is a (solid) tetrahedron, and so forth. Here is the precise definition.

Definition. The standard n-simplex is the set of all (convex) combinations

�n = [e0, . . . , en] =
{

t0e0 + · · · + tnen : ti ≥ 0 and
n∑

i=0

ti = 1
}
,

where ei denotes the sequence in H having 1 in the i th coordinate and 0
everywhere else. We may also write t0e0+· · ·+ tnen as the vector (t0, . . . , tn)
in R

n+1 ⊆ H. The i th vertex of �n is ei ; the j th faces of �n , for 0 ≤ j ≤ n,
are the convex combinations of j of its vertices.

If X is a topological space, then a singular n-simplex in X is a continuous
map σ : �n → X , where �n is the standard n-simplex.

Definition. If X is a topological space, define S−1(X) = {0} and, for each
n ≥ 0, define Sn(X) to be the free abelian group with basis the set of all
singular n-simplexes in X . The elements of Sn(X) are called singular n-
chains.

The boundary of a singular n-simplex σ ought to be

∂n(σ ) =
n∑

i=0

(−1)iσ
∣∣[e0, . . . , êi , . . . , en].

However, this is not an (n − 1)-chain, because [e0, . . . , êi , . . . , en] is not the
standard (n − 1)-simplex, and so the restriction σ

∣∣[e0, . . . , êi , . . . , en] is not
a singular (n − 1)-simplex. We remedy this by introducing face maps.

10Simplicial homology Hn is also functorial, but defining Hn( f ) for a simplicial map f
is more complicated, needing the Simplicial Approximation Theorem.
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Definition. Define the i th face map εn
i : �n−1 → �n , where 0 ≤ i ≤ n, by

putting 0 in the i th coordinate and preserving the ordering of the other coor-
dinates: the points of [e0, . . . , en−1] are convex combinations (t0, . . . , tn) =
t0e0 + · · · + tn−1en−1, and so

εn
i : (t0, . . . , tn−1) �→

{
(0, t0, . . . , tn−1) if i = 0,

(t0, . . . , ti−1, 0, ti , . . . , tn−1) if i > 0.

The superscript indicates that the target of εn
i is �n . For example, there

are three face maps ε2
i : �1 → �2: ε2

0 : (t0, t1) �→ (0, t0, t1); ε2
1 : (t0, t1) �→

(t0, 0, t1); and ε2
2 : (t0, t1) �→ (t0, t1, 0). The images of these face maps are

the 1-faces of the triangle [e0, e1, e2].
The following identities hold for face maps.

Lemma 1.21. If 0 ≤ j < i ≤ n − 1, then the face maps satisfy

εn
i ε

n−1
j = εn

j ε
n−1
i−1 : �n−2 → �n.

Proof. The straightforward calculations are left to the reader. •
We can now define boundary maps.

Definition. Let X be a topological space. If σ is a 0-simplex in X , define
∂0(σ ) = 0. If n ≥ 1 and σ : �n → X is an n-simplex, define

∂n(σ ) =
n∑

i=0

(−1)iσεn
i .

Define the singular boundary map ∂n : Sn(X) → Sn−1(X) by extending by
linearity.

Proposition 1.22. For all n ≥ 1,

∂n−1∂n = 0.

Proof. We mimic the proof of Proposition 1.1. For any n-simplex σ ,

∂n−1∂n(σ ) = ∂n−1

(∑
i

(−1)iσεn
i

)

=
∑

i

(−1)i∂n−1(σεn
i )

=
∑

i

(−1)i
∑

j

(−1) jσεn
i ε

n−1
j

=
∑
j<i

(−1)i+ jσεn
i ε

n−1
j +

∑
j≥i

(−1)i+ jσεn
i ε

n−1
j .
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By Lemma 1.21, we have σεn
i ε

n−1
j = σεn

j ε
n−1
i−1 if j < i . The term σεn

i ε
n−1
j

occurs in the first sum (over all j < i) with sign (−1)i+ j , and the term
σεn

j ε
n−1
i−1 occurs in the second sum (the first index j is now the larger in-

dex), and with opposite sign (−1) j+i−1. Thus, all terms in ∂∂(σ ) cancel, and
∂∂ = 0. •

We can now define singular cycles and singular boundaries.

Definition. For each n ≥ 0, the group of singular n-cycles is Zn(X) =
ker ∂n , and the group of singular n-boundaries is Bn(X) = im ∂n+1.

Corollary 1.23. Bn(X) ⊆ Zn(X) for all n.

Proof. If z ∈ Bn(X) = im ∂n+1, then z = ∂n+1c for some c ∈ Cn+1, and
∂nz = ∂n∂n+1c = 0. •

Definition. The nth singular homology group of a topological space X is

Hn(X) = Zn(X)/Bn(X).

We are now going to show that each Hn is a functor. If f : X → Y is a
continuous map and σ : �n → X is an n-simplex in X , then the composite
f σ : �n → Y is an n-simplex in Y , for a composite of continuous functions is
continuous. Hence, f σ ∈ Sn(Y ), and we define the chain map f# : Sn(X) →
Sn(Y ) by

f# :
∑
σ

mσ σ �→
∑
σ

mσ f σ.

It is usually reckless to be careless with notation, but the next lemma
shows that one can sometimes do so without causing harm (moreover, it is
easier to follow an argument when notational clutter is absent). Strictly speak-
ing, notation for a chain map f# should display n, X , and Y , while boundary
maps ∂n : Sn(X) → Sn−1(X) obviously depend on X .

Lemma 1.24. If f : X → Y is a continuous map, then ∂n f# = f#∂n; that
is, there is a commutative diagram

Sn(X)
∂n ��

f# ��

Sn−1(X)

f#��
Sn(Y )

∂n

�� Sn−1(Y ).

Proof. It suffices to evaluate each composite on a basis element σ of Sn(X).
Now

f#∂σ = f#

(∑
(−1)iσεi

)
=
∑

(−1)i f#(σεi ) =
∑

(−1)i f (σεi ).
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On the other hand,

∂ f#(σ ) = ∂( f σ) =
∑

(−1)i ( f σ)εi .

These are equal, by associativity of composition. •

Theorem 1.25. For every n ≥ 0, singular homology Hn : Top → Ab is a
functor.

Proof. Having already defined Hn on objects by Hn(X) = Zn(X)/Bn(X),
we need only define it on morphisms. If f : X → Y is a continuous map,
define Hn( f ) : Hn(X) → Hn(Y ) by

Hn( f ) : cls zn �→ cls f#zn,

where zn is an n-cycle in X and cls zn = zn + Bn(X). In more detail, zn is
a linear combination of simplexes σi in X , and Hn( f ) sends cls zn into the
corresponding linear combination of cosets of simplexes f σi in Y .

We claim that f#zn is an n-cycle in Y . If zn is a cycle, then Lemma 1.24
gives ∂ f#zn = f#∂zn = 0. Thus, f#(Zn(X)) ⊆ Zn(Y ). But we also have
f#(Bn(X)) ⊆ Bn(Y ), for if ∂u ∈ Bn(X), then Lemma 1.24 gives f#∂u =
∂ f#u ∈ Bn(Y ). It follows that Hn( f ) is a well-defined function. We let the
reader prove that Hn( f ) is a homomorphism, that Hn(1X ) = 1Hn(X), and that
if g : Y → Y ′ is a continous map, then Hn(g f ) = Hn(g)Hn( f ). •

It is true that if f0, f1 : X → Y are homotopic maps, then Hn( f0) =
Hn( f1) for all n ≥ 0 (Spanier, Algebraic Topology, p. 175). It follows that the
homology functors are actually defined on the homotopy category Htp (recall
that morphisms in Htp are homotopy classes [ f ] of continuous maps), and
we may now define Hn([ f ]) = Hn( f ).

Corollary 1.26. If X and Y are topological spaces having the same homo-
topy type, then Hn(X) ∼= Hn(Y ) for all n ≥ 0.

Proof. An isomorphism in Htp is a homotopy class [ f ] of a homotopy
equivalence f . By Proposition 1.15, any functor takes an isomorphism into
an isomorphism. •

A topological space X is called contractible if 1X � c, where c : X → X
is a constant map [c(x) = x0 ∈ X for all x ∈ X ]. For example, euclidean
space R

n is contractible. It is easy to see that contractible spaces have the
same homotopy type as a one-point set, and so their homology groups are
easily computable: H0(X) = Z and Hn(X) = {0} for n ≥ 1.

Define a functor S : Top → Comp, the category of complexes defined in
Example 1.19(iii): to each topological space X , assign the complex

S•(X) = · · · → Sn+1
∂n+1−→ Sn

∂n−→ Sn−1 → · · · ;
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to each continuous map X → Y , assign the chain map f# : S•(X) → S•(Y ).
The nth homology functor is the composite Top → Comp → Ab, where
Comp → Ab is defined by S•(X) �→ Hn(X) and f# �→ Hn( f ). Thus, in a
very precise way, we see that homology has a topological half and an algebraic
half, for the functor Top → Comp involves the topological notions of spaces
and continuous maps, while the functor Comp → Ab involves only algebra.
Homological Algebra is the study of this algebraic half.

Exercises

*1.1 (i) Prove, in every category C, that each object A ∈ C has a
unique identity morphism.

(ii) If f is an isomorphism in a category, prove that its inverse
is unique.

1.2 (i) Prove that there is a functor F : ComRings → ComRings
defined on objects by F : R �→ R[x] and on morphisms
ϕ : R → S by Fϕ : r0 + r1x + · · · + rnxn �→ ϕ(r0) +
ϕ(r1)x + · · · + ϕ(rn)xn .

(ii) Prove that there is a functor on Dom, the category of all
(integral) domains, defined on objects by R �→ Frac(R),
and on morphisms f : R → S by r/1 �→ f (r)/1.

1.3 Let A S−→ B T−→ C be functors. If the variances of S and T
are the same, prove that the composite T S : A → C is a covariant
functor; if the variances of S and T are different, prove that T S is a
contravariant functor

*1.4 If T : A → B is a functor, define T op : Aop → B by T op(A) =
T (A) for all A ∈ obj(A) and T op( f op) = T ( f ) for all morphisms
f in A. Prove that T op is a functor having variance opposite to the
variance of T .

1.5 (i) If X is a set and k is a field, define the vector space k X to
be the set of all functions X → k under pointwise opera-
tions. Prove that there is a functor G : Sets → kMod with
G(X) = k X .

(ii) Define U : k Mod → Sets to be the forgetful functor [see
Example 1.9(v)]. What are the composites GU : kMod →
kMod and U G : Sets → Sets?

*1.6 (i) If X is a set, define F X to be the free group having ba-
sis X ; that is, the elements of F X are reduced words on
the alphabet X and multiplication is juxtaposition followed
by cancellation. If ϕ : X → Y is a function, prove that
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there is a unique homomorphism Fϕ : F X → FY such
that (Fϕ)|X = ϕ.

(ii) Prove that the F : Sets → Groups is a functor (F is called
the free functor).

*1.7 (i) Define C to have objects all ordered pairs (G, H), where
G is a group and H is a normal subgroup of G, and to
have morphisms ϕ∗ : (G, H) → (G1, H1), where ϕ : G →
G1 is a homomorphism with ϕ(H) ⊆ H1. Prove that C
is a category if composition in C is defined to be ordinary
composition.

(ii) Construct a functor Q : C → Groups with Q(G, H) =
G/H .

(iii) Prove that there is a functor Groups → Ab taking each
group G to G/G ′, where G ′ is its commutator subgroup.

1.8 If X is a topological space, define C(X) to be its ring of continuous
real-valued functions, C(X) = { f : X → R : f is continuous

}
, un-

der pointwise operations: f + g : x �→ f (x)+ g(x) and f g : x �→
f (x)g(x). Prove that there is a contravariant functor T : Top →
ComRings with T (X) = C(X). [A theorem of Gelfand and Kol-
mogoroff (see Dugundji, Topology, p. 289) says that if X and Y are
compact Hausdorff spaces and the rings C(X) and C(Y ) are iso-
morphic, then the spaces X and Y are homeomorphic.]

1.9 Let X be a set and let B(X) be the Boolean ring whose elements
are the subsets of X , whose multiplication is intersection, and whose
addition is symmetric difference: if A, B ⊆ X , then AB = A ∩ B,
A + B = (A − B) ∪ (B − A), and −A = A. You may assume that
B(X) is a commutative ring under these operations in which ∅ is
the zero element and X is the 1 element.

(i) Prove that B(X) has only one unit (recall that an element
u ∈ R is a unit if there is v ∈ R with uv = 1 = vu).

(ii) If Y � X is a proper subset of X , prove that B(Y ) is not a
subring of B(X).

(iii) Prove that a nonempty subset I ⊆ B(X) is an ideal if and
only if A ∈ I implies that every subset of A also lies in I .
In particular, the principal ideal (A) generated by a subset
A is the family of all the subsets of A.

(iv) Prove that every maximal ideal M in B(X) is a principal
ideal of the form (X − {x}) for some x ∈ X .

(v) Prove that every prime ideal in B(X) is a maximal ideal.
*1.10 Let R be a ring. Call an (additive) abelian group M an almost left

R-module if there is a function R × M → M satisfying all the
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axioms of a left R-module except axiom (iv): we do not assume
that 1m = m for all m ∈ M . Prove that M = M1 ⊕ M0 (direct
sum of abelian groups), where M1 = {m ∈ M : 1m = m} and
M0 = {m ∈ M : rm = 0 for all r ∈ R} are subgroups of M that are
almost left R-modules; in fact, M1 is a left R-module.

*1.11 Prove that every right R-module is a left Rop-module, and that every
left R-module is a right Rop-module.

1.12 If R and A are rings, an anti-homomorphism ϕ : R → A is an
additive function for which ϕ(rr ′) = ϕ(r ′)ϕ(r) for all r, r ′ ∈ R.

(i) Prove that R and A are anti-isomorphic if and only if A ∼=
Rop.

(ii) Prove that transposition B �→ BT is an anti-isomorphism
of a matrix ring Matn(R) with itself, where R is a commu-
tative ring. (If R is not commutative, then B �→ BT is an
isomorphism [Matn(R)]op ∼= Matn(Rop).)

*1.13 An R-map f : M → M , where M is a left R-module, is called an
endomomorphism.

(i) Prove that EndR(M) = { f : M → M : f is an R-map} is
a ring (under pointwise addition and composition as multi-
plication) and that M is a left EndR(M)-module. We call
EndR(M) the endomorphism ring of M .

(ii) If a ring R is regarded as a left R-module, prove that there
is an isomorphism EndR(R) → Rop of rings.

1.14 (i) Give an example of topological spaces X, Y and an in-
jective continuous map i : X → Y whose induced map
Hn(i) : Hn(X) → Hn(Y ) is not injective for some n ≥ 0.

Hint. You may assume that H1(S1) ∼= Z.

(ii) Give an example of a subspace A ⊆ X of a topologi-
cal space X and a continuous map f : X → Y such that
Hn( f ) 	= 0 for some n ≥ 0 and Hn( f |A) = 0.

*1.15 Let F, G : A → B and F ′, G ′ : B → C be functors of the same
variance, and let τ : F → G and τ ′ : F ′ → G ′ be natural transfor-
mations.

(i) Prove that their composite τ ′τ is a natural transformation
F ′F → G ′G where, for each A ∈ obj(A), we define

(τ ′τ)A = τ ′F AτA : F ′F(A) → G ′G(A).

(ii) If τ : F → G is a natural isomorphism, define σC : FC →
GC for all C ∈ obj(A) by σC = τ−1

C . Prove that σ is a
natural transformation G → F .
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*1.16 Let C be a category and let A, B ∈ obj(C). Prove the converse of
Corollary 1.18: if A ∼= B, then HomC(A,�) and HomC(B,�) are
naturally isomorphic functors.
Hint. If α : A → B is an isomorphism, define τC = (α−1)∗.

1.17 (i) Let A be the category with obj(A) = {A, B,C, D} and
morphisms HomA(A, B) = { f }, HomA(C, D) = {g}, and
four identities. Define F : A → Sets by F(A) = {1},
F(B) = {2} = F(C), and F(D) = {3}. Prove that F is a
functor but that im F is not a subcategory of Sets.
Hint. The composite Fg ◦ F f , which is defined in Sets,
does not lie in im F .

(ii) Prove that if F : A → B is a functor with F | obj(A) an
injection, then im F is a subcategory of B.

1.18 Let A and B be categories. Prove that A × B is a category, where
obj(A×B) = obj(A)×obj(B), where HomA×B

(
(A1, B1), (A2, B2)

)
consists of all ( f, g) ∈ HomA(A1, A2)×HomB(B1, B2), and where
composition is ( f ′, g′)( f, g) = ( f ′ f, g′g).

*1.19 (i) If A is a small category and F, G : A → B are functors
of the same variance, prove that Nat(F, G) is a set (not a
proper class).

(ii) Give an example of categories C,D and functors S, T : C →
D such that Nat(S, T ) is a proper class. [As discussed on
page 8, do not worry whether Nat(S, T ) is a class.]
Hint. Let S be a discrete subcategory of Sets, and consider
Nat(T, T ), where T : S → Sets is the inclusion functor.

1.20 Show that Cat is a category, where obj(Cat) is the class of all small
categories, where HomCat(A,B) = BA, and where composition is
the usual composition of functors. [We assume that categories here
are small in order that HomCat(A,B) be a set.]
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Hom and Tensor

The most important functors studied in Homological Algebra are Hom, tensor
product, and functors derived from them. We begin by describing certain
constructs in RMod, such as sums, products, and exact sequences, and we will
then apply Hom functors to them. Tensor products will then be introduced,
and we will apply these functors to the constructs in RMod as well. There is
an intimate relationship between Hom and tensor—they form an adjoint pair
of functors.

2.1 Modules

Many properties of vector spaces and of abelian groups are also enjoyed by
modules. We assume that much of this section is familiar to most readers, and
so our account is written to refresh one’s memory. All rings R in this book
are assumed to have an identity element 1 (or unit) (where r1 = r = 1r for
all r ∈ R). We do not insist that 1 	= 0; however, should 1 = 0, then R is the
zero ring having only one element. If f : R → S is a ring homomorphism,
we assume that f (1) = 1; that is, f (1) is the identity element of S.

We can view modules as a tool for studying rings. If M is an abelian
group, then we saw, in Exercise 1.13 on page 35, that

EndZ(M) = {homomorphisms f : M → M}
is a ring under pointwise addition [ f + g : m �→ f (m)+ g(m)] and composi-
tion as multiplication. A representation of a ring R is a ring homomorphism
ϕ : R → EndZ(M) for some abelian group M .

J.J. Rotman, An Introduction to Homological Algebra, Universitext, 37
DOI 10.1007/978-0-387-68324-9 2, c© Springer Science+Business Media LLC 2009
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Proposition 2.1. Let R be a ring and let M an abelian group. If ϕ : R →
End(M) is a representation, define σ : R × M → M by σ(r,m) = ϕr (m),
where we write ϕ(r) = ϕr ; then σ is a scalar multiplication making M into a
left R-module. Conversely, if M is a left R-module, then the function ψ : R →
End(M), given by ψ(r) : m �→ rm, is a representation.

Proof. The proof is straightforward. •

Example 2.2. Let G be a finite1 group and let k be a commutative ring.
The group ring is the set of all functions α : G → k made into a ring with
pointwise operations: for all x ∈ G,

α + β : x �→ α(x)+ β(x) and αβ : x �→ α(x)β(x).

If y ∈ G, the function δy , defined by

δy(x) =
{

1 if x = y,

0 if x 	= y,

is usually denoted by y. It is easy to check that kG is a k-module and that
each γ ∈ kG has a unique expression

γ =
∑
y∈G

ay y,

where ay ∈ k. In this notation, elements of G multiply as they do in G; in
particular, the identity element 1 in G is also the unit in kG. Multiplication in
kG is called convolution, and a formula for it is(∑

x

ax x
)(∑

y

by y
)
=
∑
x,y

ax by xy =
∑

z

(∑
x

ax bx−1z

)
z.

Recall that if G is a group and k is a commutative ring, then a k-representation
of G is a function σ : G → Matn(k) with

σ(xy) = σ(x)σ (y),

σ (1) = I, the identity matrix.

For all x ∈ G, we have σ(x) nonsingular, for I = σ(1) = σ(xx−1) =
σ(x)σ (x−1). It follows that σ is a group homomorphism G → GL(n, k), the
multiplicative group of all nonsingular n × n matrices over k. It is easy to see
that σ extends to a ring homomorphism σ̃ : kG → Matn(k) by

σ̃
(∑

y

ay y
)
=
∑

y

ayσ(y).

1This construction can be done for infinite groups G as well; the elements of kG are
the functions α : G → k for which α(y) = 0 for all but a finite number of y ∈ G.
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Thus, σ̃ : kG → End(kn), so that σ̃ is a representation of the group ring
kG. By Proposition 2.1, the group representation σ corresponds to a left kG-
module. �

Lemma 2.3. If A, B ∈ obj(RMod) [or if A, B ∈ obj(ModR)], then the set
HomR(A, B) is an abelian group. Moreover, if p : A′ → A and q : B → B ′
are R-maps, then

( f + g)p = f p + gp and q( f + g) = q f + qg.

Proof. One easily checks that f +g is an R-map; thus, f +g ∈ HomR(A, B)

and addition is an operation on HomR(A, B). The zero in HomR(A, B) is the
constant map a �→ 0, and the inverse of f : A → B is − f : a �→ −[ f (a)]. It
is routine to see that addition is associative, and so HomR(A, B) is an abelian
group. The last equations are checked by evaluating each on a ∈ A. •

Proposition 2.4. Let R be a ring, and let A, B, B ′ be left R-modules.

(i) HomR(A,�) is an additive functor RMod → Ab.

(ii) If A is a left R-module, then HomR(A, B) is a Z(R)-module, where
Z(R) is the center of R, if we define

r f : a �→ f (ra)

for r ∈ Z(R) and f : A → B. If q : B → B ′ is an R-map, then the
induced map q∗ : HomR(A, B) → HomR(A, B ′) is a Z(R)-map, and
HomR(A,�) takes values in Z(R)Mod. In particular, if R is commuta-
tive, then HomR(A,�) is a functor RMod → RMod.

Proof.

(i) Lemma 2.3 shows that HomR(A, B) is an abelian group and, for all
q : B → B ′, that q( f + g) = q f + qg; that is, q∗( f + g) = q∗( f ) +
q∗(g). Hence, q∗ is a homomorphism. Since HomR(A,�) preserves
identities and composition, it is an additive functor with values in Ab.

(ii) We show that if r ∈ Z(R), then r f , as defined in the statement, is a
Z(R)-map. If s ∈ R, then rs = sr and

(r f )(sa) = f (r(sa)) = f ((rs)a) = (rs) f a = (sr) f a = s[r f ](a).

It follows that HomR(A, B) is a Z(R)-module. If q : B → B ′ is an
R-map, we show that the induced map q∗ : f �→ q f is a Z(R)-map.
Now q∗ is additive, by part (i). We check that q∗(r f ) = rq∗( f ), where
r ∈ Z(R); that is, q(r f ) = (rq) f . But q(r f ) : a �→ q( f (ra)), while
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(rq) f : a �→ (rq)( f (a)) = q(r f (a)) = q f (ra), because q is a Z(R)-
map and f is an R-map. Therefore, q∗ is a Z(R)-map. The last state-
ment is true because R is commutative if and only if R = Z(R). •

We have generalized the familiar fact that if V and W are vector spaces
over a field k, then Homk(V, W ) is also a vector space over k.

If R is a ring and B is a left R-module, then the contravariant Hom functor
HomR(�, B) : ModR → Sets also has more structure.

Proposition 2.5. Let R be a ring, and let A, A′, B be left R-modules.

(i) HomR(�, B) is a contravariant functor RMod → Ab.

(ii) If B is a left R-module, then HomR(A, B) is a Z(R)-module, where
Z(R) is the center of R, if we define

r f : a �→ f (ra)

for r ∈ Z(R) and f : A → B. If p : A → A′ is an R-map, then the
induced map p∗ : HomR(A′, B) → HomR(A, B) is a Z(R)-map, and
Hom(�, B) takes values in Z(R)Mod. In particular, if R is commuta-
tive, then HomR(�, B) is a contravariant functor RMod → RMod.

Proof. Similar to the proof of Proposition 2.4. •

Example 2.6. As in Example 1.11, the dual space V ∗ = Homk(V, k) of a
vector space V over a field k is also a vector space over k. �

Definition. A functor T : RMod → Ab of either variance is called an addi-
tive functor if, for every pair of R-maps f, g : A → B, we have

T ( f + g) = T ( f )+ T (g).

We have just seen that Hom functors RMod → Ab of either variance are
additive functors. If T : C → D is a covariant functor between categories C
and D, then there are functions

TAB : HomC(A, B) → HomD(T A, T B),

namely, h �→ T (h). If T : RMod → Ab is an additive functor, then each
TAB is a homomorphism of abelian groups; the analogous statement for con-
travariant functors is also true.
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Proposition 2.7. Let T : RMod → Ab be an additive functor of either
variance.

(i) If 0: A → B is the zero map, that is, the map a �→ 0 for all a ∈ A,
then T (0) = 0.

(ii) T ({0}) = {0}.
Proof.

(i) Since T is additive, the function TAB between Hom sets is a homomor-
phism, and so it preserves identity elements; that is, T (0) = 0.

(ii) If A is a left R-module, then 0 = 1A if and only if A = {0} [sufficiency
is obvious; for necessity, if 1A = 0, then for all a ∈ A, we have a =
1A(a) = 0(a) = 0, and so A = {0}]. By part (i), we have T (1{0}) =
T (0) = 0, and so T ({0}) = {0}. •

We now show that many constructions made for abelian groups and for
vector spaces can be generalized to left modules over any ring. A submodule S
is a left R-module contained in a larger left R-module M such that if s, s′ ∈ S
and r ∈ R, then s + s′ and rs have the same meaning in S as in M .

Definition. If M is a left R-module, then a submodule N of M , denoted by
N ⊆ M , is an additive subgroup N of M closed under scalar multiplication:
rn ∈ N whenever n ∈ N and r ∈ R. A similar definition holds for right
modules.

Example 2.8.

(i) A submodule of a Z-module (i.e., of an abelian group) is a subgroup,
and a submodule of a vector space is a subspace.

(ii) Both {0} and M are submodules of a module M . A proper submodule
of M is a submodule N ⊆ M with N 	= M . In this case, we may write
N � M .

(iii) If a ring R is viewed as a left module over itself, then a submodule
of R is a left ideal; I is a proper submodule when it is a proper left
ideal. Similarly, if R is viewed as a right module over itself, then its
submodules are its right ideals.

(iv) If M is an R-module and r ∈ R, where R is a commutative ring, then

r M = {rm : m ∈ M}
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is a submodule of M . Here is a generalization. If J is an ideal in R and
M is an R-module, then

J M =
{∑

i

ji mi : ji ∈ J and mi ∈ M
}

is a submodule of M .

(v) If S and T are submodules of a left module M , then

S + T = {s + t : s ∈ S and t ∈ T }
is a submodule of M that contains S and T .

(vi) If (Si )i∈I is a family of submodules of a left R-module M , then
⋂

i∈I Si
is a submodule of M .

(vii) A left R-module S is cyclic if there exists s ∈ S with S = {rs : r ∈ R}.
If M is an R-module and m ∈ M , then the cyclic submodule generated
by m, denoted by 〈m〉, is

〈m〉 = {rm : r ∈ R}.
More generally, if X is a subset of an R-module M , then

〈
X
〉 = {∑

finite

ri xi : ri ∈ R and xi ∈ X
}
,

the set of all R-linear combinations of elements in X . We call 〈X〉
the submodule generated by X . Exercise 2.10 on page 66 states that
〈X〉 =⋂X⊆S S. �

Definition. A left R-module M is finitely generated if M is generated by a
finite set; that is, if there is a finite subset X = {x1, . . . , xn} with M = 〈X〉.

For example, a vector space V over a field k is a finitely generated k-
module if and only if V is finite-dimensional.

Definition. If N is a submodule of a left R-module M , then the quotient
module is the quotient group M/N (remember that M is an abelian group and
N is a subgroup) equipped with the scalar multiplication

r(m + N ) = rm + N .

The natural map π : M → M/N , given by m �→ m + N , is easily seen to be
an R-map.

Scalar multiplication in the definition of quotient module is well-defined:
if m + N = m′ + N , then m − m′ ∈ N . Hence, r(m − m′) ∈ N (because N
is a submodule), rm − rm′ ∈ N , and rm + N = rm′ + N .
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Example 2.9. If N ⊆ M is merely an additive subgroup of M but not a
submodule, then the abelian group M/N is not an R-module. For example,
let V be a vector space over a field k. If a ∈ k and v ∈ V , then av = 0 if and
only if a = 0 or v = 0 [if a 	= 0, then 0 = a−1(av) = (a−1a)v = v]. Now
Q is a vector space over itself, but Q/Z is not a vector space over Q [we have
2( 1

2 + Z) = Z in Q/Z, and neither factor is zero]. �

Example 2.10.

(i) Recall that an additive subgroup J ⊆ R of a ring R is a two-sided ideal
if x ∈ J and r ∈ R imply r x ∈ J and xr ∈ J . If R = Mat2(k), the
ring of all 2 × 2 matrices over a field k, then I = {[

a 0
b 0

]
: a, b ∈ k

}
is

a left ideal and I ′ = {[
a b
0 0

]
: a, b ∈ k

}
is a right ideal, but neither is a

two-sided ideal.

(ii) If J is a left (or right) ideal in R, then R/J is a left (or right) R-module.
If J is a two-sided ideal, then R/J is a ring with multiplication

(r + J )(s + J ) = rs + J.

This multiplication is well-defined, for if r + J = r ′ + J and s + J =
s′ + J , then rs + J = r ′s′ + J , because

rs − r ′s′ = rs − r ′s + r ′s − r ′s′ = (r − r ′)s + r ′(s − s′) ∈ J. �

We continue extending definitions from abelian groups and vector spaces
to modules.

Definition. If f : M → N is an R-map between left R-modules, then

kernel f = ker f = {m ∈ M : f (m) = 0},
image f = im f = {n ∈ N : there exists m ∈ M with n = f (m)},

cokernel f = coker f = N/ im f.

It is routine to check that ker f is a submodule of M and that im f is a
submodule of N .

Theorem 2.11 (First Isomorphism Theorem). If f : M → N is an R-map
of left R-modules, then there is an R-isomorphism

ϕ : M/ ker f → im f

given by
ϕ : m + ker f �→ f (m).
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Proof. If we view M and N only as abelian groups, then the first isomor-
phism theorem for groups says that ϕ : M/ ker f → im f is a well-defined

M
nat ��

f ��

����
���

���
� N

M/ ker f
ϕ

����� im f

inc
��

isomorphism of abelian groups. But ϕ is an R-map: if r ∈ R and m ∈ M ,
then ϕ(r(m + N )) = ϕ(rm + N ) = f (rm); since f is an R-map, however,
f (rm) = r f (m) = rϕ(m + N ), as desired. •

The second and third isomorphism theorems are corollaries of the first.

Theorem 2.12 (Second Isomorphism Theorem). If S and T are submod-
ules of a left R-module M, then there is an R-isomorphism

S/(S ∩ T ) → (S + T )/T .

Proof. If π : M → M/T is the natural map, then kerπ = T ; define f =
π |S, so that f : S → M/T . Now

ker f = S ∩ T and im f = (S + T )/T,

for (S + T )/T consists of all those cosets in M/T having a representative
in S. The first isomorphism theorem now applies. •

Definition. If T ⊆ S ⊆ M is a tower of submodules of a left R-module M ,
then enlargement of coset e : M/T → M/S is defined by

e : m + T �→ m + S

(e is well-defined, for if m + T = m′ + T , then m − m′ ∈ T ⊆ S and
m + S = m′ + S).

Theorem 2.13 (Third Isomorphism Theorem). If T ⊆ S ⊆ M is a tower
of submodules of a left R-module M, then enlargement of coset e : M/T →
M/S induces an R-isomorphism

(M/T )/(S/T ) → M/S.

Proof. The reader may check that ker e = S/T and im e = M/S, so that the
first isomorphism theorem applies at once. •

If f : M → N is a map of left R-modules and S ⊆ N , then the reader may
check that f −1(S) = {m ∈ M : f (m) ∈ S} is a submodule of M containing
f −1({0}) = ker f .



2.1 Modules 45

Theorem 2.14 (Correspondence Theorem). If T is a submodule of a left
R-module M, then ϕ : S �→ S/T is a bijection:

ϕ : {intermediate submodules T ⊆ S ⊆ M} → {submodules of M/T }.
Moreover, T ⊆ S ⊆ S′ in M if and only if S/T ⊆ S′/T in M/T .

Proof. Since every module is an additive abelian group, every submodule
is a subgroup, and so the usual correspondence theorem for groups shows
that ϕ is an injection that preserves inclusions: S ⊆ S′ in M if and only if
S/T ⊆ S′/T in M/T . Moreover, ϕ is surjective: if S∗ ⊆ M/T , then there
is a unique submodule S ⊇ T with S∗ = S/T . The remainder of this proof
is a repetition of the usual proof for groups, checking only that images and
inverse images of submodules are submodules. •

The correspondence theorem is usually invoked tacitly: a submodule S∗
of M/T is equal to S∗ = S/T for some unique intermediate submodule S.

Here is a ring-theoretic version.

Theorem 2.15 (Correspondence Theorem for Rings). If I is a two-sided
ideal of a ring R, then ϕ : J �→ J/I is a bijection:

ϕ : {intermediate left ideals I ⊆ J ⊆ R} → {left ideals of R/I }.
Moreover, I ⊆ J ⊆ J ′ in R if and only if J/I ⊆ J ′/I in R/I .

Proof. The reader may supply a variant of the proof of Theorem 2.14. •

Proposition 2.16. A left R-module M is cyclic if and only if M ∼= R/I for
some left ideal I .

Proof. If M is cyclic, then M = 〈m〉 for some m ∈ M . Define f : R → M
by f (r) = rm. Now f is surjective, since M is cyclic, and its kernel is a
submodule of R; that is, ker f is a left ideal I . The first isomorphism theorem
gives R/I ∼= M .

Conversely, R/I is cyclic with generator m = 1 + I . •

Definition. A left R-module M is simple (or irreducible) if M 	= {0} and M
has no proper nonzero submodules; that is, {0} and M are the only submodules
of M .

Corollary 2.17. A left R-module M is simple if and only if M ∼= R/I , where
I is a maximal left ideal.

Proof. This follows from the correspondence theorem. •
For example, an abelian group G is simple if and only if G is cyclic of

order p for some prime p. The existence of maximal left ideals guarantees
the existence of simple modules.
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Definition. A finite or infinite sequence of R-maps and left R-modules

· · · → Mn+1
fn+1−→ Mn

fn−→ Mn−1 → · · ·
is called an exact sequence2 if im fn+1 = ker fn for all n.

Observe that there is no need to label arrows3 0
f→ A or B

g→ 0: in either
case, there is a unique map, namely, f : 0 �→ 0 or the constant homomorphism
g(b) = 0 for all b ∈ B. Here are some simple consequences of a sequence of
homomorphisms being exact.

Proposition 2.18.

(i) A sequence 0 → A
f→ B is exact if and only if f is injective.

(ii) A sequence B
g→ C → 0 is exact if and only if g is surjective.

(iii) A sequence 0 → A
h→ B → 0 is exact if and only if h is an isomor-

phism.

Proof.

(i) The image of 0 → A is {0}, so that exactness gives ker f = {0}, and so
f is injective. Conversely, given f : A → B, there is an exact sequence

ker f
i−→ A

f−→ B, where i is the inclusion. If f is injective, then
ker f = {0}.

(ii) The kernel of C → 0 is C , so that exactness gives im g = C , and so g
is surjective. Conversely, given g : B → C , there is an exact sequence

B
g−→ C

π−→ C/ im g, where π is the natural map. If g is surjective,
then C = im g and C/ im g = {0}.

(iii) Part (i) shows that h is injective if and only if 0 → A
h→ B is exact,

and part (ii) shows that h is surjective if and only if A
h→ B → 0

is exact. Therefore, h is an isomorphism if and only if the sequence

0 → A
h→ B → 0 is exact. •

2This terminology comes from Advanced Calculus, where a differential form ω is
called closed if dω = 0 and is called exact if ω = dh for some function h. The term
exact sequence was coined by the algebraic topologist W. Hurewicz. It is interesting to
look at the wonderful book by Hurewicz and Wallman, Dimension Theory, which was
written just before this coinage. Many results there would have been much simpler to state
had the term exact sequence been available.

3We usually write 0 instead of {0} in sequences and diagrams.
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Definition. A short exact sequence is an exact sequence of the form

0 → A
f→ B

g→ C → 0.

We also call this short exact sequence an extension of A by C .

Some authors call this an extension of C by A; some authors say that the
middle module B is an extension.

The next proposition restates the first and third isomorphism theorems in
terms of exact sequences.

Proposition 2.19.

(i) If 0 → A
f→ B

g→ C → 0 is a short exact sequence, then

A ∼= im f and B/ im f ∼= C.

(ii) If T ⊆ S ⊆ M is a tower of submodules, then there is an exact sequence

0 → S/T → M/S → M/T → 0.

Proof.

(i) Since f is injective, changing its target gives an isomorphism A →
im f . The first isomorphism theorem gives B/ ker g ∼= im g. By exact-
ness, however, ker g = im f and im g = C ; therefore, B/ im f ∼= C .

(ii) This is just a restatement of the third isomorphism theorem. Define
f : S/T → M/T to be the inclusion and g : M/T → M/S to be
enlargement of coset: g : m + T �→ m + S. As in the proof of Theo-
rem 2.13, g is surjective, and ker g = S/T = im f . •

In the special case when A is a submodule of B and f : A → B is the

inclusion, then exactness of 0 → A
f→ B

g→ C → 0 gives B/A ∼= C .
The familiar notions of direct sum of vector spaces and direct sum of

abelian groups extend to modules. Recall that if S and T are abelian groups,
then their external direct sum S � T is the abelian group whose underlying set
is the cartesian product and whose binary operation is pointwise addition. If S
and T are subgroups of an abelian group such that S+T = G and S∩T = {0},
then G = S ⊕ T is their internal direct sum. Both versions give isomorphic
abelian groups. The external-internal viewpoints persist for modules as well.
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Definition. If S and T are left R-modules, where R is a ring, then their ex-
ternal direct sum, denoted by S � T , is the cartesian product with coordinate-
wise operations:

(s, t)+ (s′, t ′) = (s + s′, t + t ′),
r(s, t) = (rs, r t),

where s, s′ ∈ S, t, t ′ ∈ T , and r ∈ R.

Proposition 2.20. The following statements are equivalent for left R-modules
M, S, and T .

(i) S � T ∼= M.

(ii) There exist injective R-maps i : S → M and j : T → M such that

M = im i + im j and im i ∩ im j = {0}.

(iii) There exist R-maps i : S → M and j : T → M such that, for every
m ∈ M, there are unique s ∈ S and t ∈ T with m = is + j t .

(iv) There are R-maps i : S → M, j : T → M, called projections, and
R-maps p : M → S, q : M → T , called injections, such that

pi = 1S, q j = 1T , pj = 0, qi = 0, and ip + jq = 1M .

(v) The map ψ : M → S�T , given by m �→ (pm, qm), is an isomorphism.

Remark. The equations pi = 1S and q j = 1T show that the maps i and j
must be injective (so that im i ∼= S and im j ∼= T ) and the maps p and q must
be surjective. �
Proof.

(i) ⇒ (ii). Let ϕ : S � T → M be an isomorphism. Define σ : S → S � T
by s �→ (s, 0) and τ : T → S � T by t �→ (0, t). Clearly, σ and τ

are injective R-maps, and so their composites i = ϕσ : S → M and
j = ϕτ : T → M are also injections.

If m ∈ M , then ϕ surjective implies that there exist s ∈ S and t ∈ T
with

m = ϕ(s, t) = ϕ(s, 0)+ ϕ(0, t) = is + j t ∈ im i + im j.

Finally, if x ∈ im i ∩ im j , then x = ϕσ(s) = ϕ(s, 0) and x = ϕτ(t) =
ϕ(0, t). Since ϕ is injective, (s, 0) = (0, t), so that s = 0 and x =
ϕ(s, 0) = 0.
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(ii) ⇒ (iii). Since M = im i + im j , each m ∈ M has an expression m =
is + j t with s ∈ S and t ∈ T , so that only uniqueness need be proved.
If also m = is′ + j t ′, then i(s − s′) = j (t ′ − t) ∈ im i ∩ im j = {0}.
Therefore, i(s − s′) = 0 and j (t − t ′) = 0. Since i and j are injections,
we have s = s′ and t = t ′.

(iii) ⇒ (iv). If m ∈ M , then there are unique s ∈ S and t ∈ T with m =
is + j t . The functions p and q, given by p(m) = s and q(m) = t ,
are thus well-defined. It is routine to check that p and q are R-maps
and that the first four equations in the statement hold (they follow from
the definitions of p and q). For the last equation, if m ∈ M , then
m = is + j t , and i p(m)+ jq(m) = is + j t = m.

(iv) ⇒ (v). Define ϕ : S � T → M by ϕ(s, t) = is + j t . It is easy to check
that ϕ is an R-map. Now ϕ is surjective: if m ∈ M , then i p + jq = 1M
gives m = i pm + jqm = ϕ(pm, qm). To see that ψ is injective,
suppose that ϕ(s, t) = 0; that is, is = − j t . Then s = pis = −pjt = 0
and −t = −q jt = qis = 0. Therefore, ϕ is an isomorphism, and its
inverse is m �→ (pm, qm).

(v) ⇒ (i). Obvious. •

Corollary 2.21. If T : RMod → Ab is an additive functor of either vari-
ance, then

T (A � B) ∼= T (A) � T (B).

In particular, if T is covariant, then x �→ (T (p)x, T (q)x) is an isomorphism,
where p : A � B → A and q : A � B → B are the projections.

Proof. By Proposition 2.7, an additive functor preserves the equations in
Proposition 2.20(iv), and the displayed isomorphism is that given in the proof
of (iv) ⇒ (i) of the proposition. •

Internal direct sum is the most important instance of a module isomorphic
to a direct sum.

Definition. If S and T are submodules of a left R-module M , then M is
their internal direct sum if each m ∈ M has a unique expression of the form
m = s + t , where s ∈ S and t ∈ T . We denote an internal direct sum by

M = S ⊕ T .

Notice that we use equality here and not isomorphism.

Here are restatements of Proposition 2.20 and Corollary 2.21 for internal
direct sums.
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Corollary 2.22.

(i) Let M be a left R-module having submodules S and T . Then M = S⊕T
if and only if S + T = M and S ∩ T = {0}. Thus, S ⊕ T ∼= S � T .

(ii) If T : RMod → Ab is an additive functor of either variance, then
T (A ⊕ B) ∼= T (A) ⊕ T (B). In particular, if T is covariant and
x ∈ T (A ⊕ B), then ψ : x �→ (T (p)x, T (q)x) is an isomorphism,
where p : A ⊕ B → A and q : A ⊕ B → B are the projections.

Proof. This follows at once from the equivalence of parts (ii) and (iii) of
Proposition 2.20 by taking i and j to be inclusions. The second statement
follows from Corollary 2.21. •

We now forsake the notation S � T , and we write as the mathematical
world writes: either version of direct sum is denoted by S ⊕ T .

Definition. A submodule S of a left R-module M is a direct summand of M
if there exists a submodule T of M with M = S ⊕ T . The submodule T is
called a complement of S.

Complements of a direct summand S of M are not unique. For example,
let V be a two-dimensional vector space over a field k, and let a, b be a basis.
For any α ∈ k, the one-dimensional subspace 〈αa + b〉 is a complement of
〈a〉. On the other hand, all complements of S are isomorphic (to M/S).

The next corollary relates direct summands to a special type of homomor-
phism.

Definition. A submodule S of a left R-module M is a retract of M if there
exists an R-map ρ : M → S, called a retraction, with ρ(s) = s for all s ∈ S.

Equivalently, ρ is a retraction if and only if ρi = 1S , where i : S → M is
the inclusion.

Corollary 2.23. A submodule S of a left R-module M is a direct summand
if and only if there exists a retraction ρ : M → S.

Proof. In this case, we let i : S → M be the inclusion. We show that M =
S ⊕ T , where T = ker ρ. If m ∈ M , then m = (m − ρm) + ρm. Plainly,
ρm ∈ im ρ = S. On the other hand, ρ(m − ρm) = ρm − ρρm = 0, because
ρm ∈ S and so ρρm = ρm. Therefore, M = S + T .

If m ∈ S, then ρm = m; if m ∈ T = ker ρ, then ρm = 0. Hence, if
m ∈ S ∩ T , then m = 0. Therefore, S ∩ T = {0}, and M = S ⊕ T .

For the converse, if M = S⊕T , then each m ∈ M has a unique expression
of the form m = s + t , where s ∈ S and t ∈ T , and it is easy to check that
ρ : M → S, defined by ρ : s + t �→ s, is a retraction M → S. •



2.1 Modules 51

Corollary 2.24.

(i) If M = S ⊕ T and S ⊆ N ⊆ M, then N = S ⊕ (N ∩ T ).

(ii) If M = S ⊕ T and S′ ⊆ S, then M/S′ = S/S′ ⊕ (T + S′)/S′.

Proof.

(i) Let ρ : M → S be the retraction s+t �→ s. Since S ⊆ N , the restriction
ρ|N : N → S is a retraction with ker(ρ|N ) = N ∩ T .

(ii) The map ρ : M/S′ → S/S′ is a retraction with ker ρ = T + S′. •

The direct sum constructions can be extended to finitely many submod-
ules. There are external and internal versions, and we temporarily revive the
� notation.

Definition. Given left R-modules S1, . . . , Sn , their (external) direct sum
S1�· · ·�Sn is the left R-module whose underlying set is the cartesian product
and whose operations are

(s1, . . . , sn)+ (s′1, . . . , s′n) = (s1 + s′1, . . . , sn + s′n),
r(s1, . . . , sn) = (rs1, . . . , rsn).

Let M be a left R-module, and let S1, . . . , Sn be submodules of M . Define
M to be their (internal) direct sum

M = S1 ⊕ · · · ⊕ Sn

if each m ∈ M has a unique expression of the form m = s1 + · · · + sn , where
si ∈ Si for all i = 1, . . . , n. We also write the internal direct sum as

⊕n
i=1 Si .

The reader can prove that both external and internal versions, when the
latter is defined, are isomorphic: S1 � · · ·� Sn ∼= S1 ⊕ · · · ⊕ Sn . We shall no
longer use the adjectives external and internal, and we shall no longer use the
� notation.

If S1, . . . , Sn are submodules of a left R-module M , let

S1 + · · · + Sn

be the submodule generated by the Si ; that is, S1 + · · · + Sn is the set of all
elements m ∈ M having a (not necessarily unique) expression of the form
m = s1 + · · · + sn with si ∈ Si for all i . When is S1 + · · · + Sn equal to
their direct sum? A common mistake is to say that it suffices to assume that
Si ∩S j = {0} for all i 	= j , but the next example shows that this is not enough.
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Example 2.25. Let V be a two-dimensional vector space over a field K , and
let x, y be a basis. The vector space V is a k-module, and it is a direct sum:
V = 〈x〉 ⊕ 〈y〉, where 〈x〉 is the one-dimensional subspace spanned by x .
Now

〈x + y〉 ∩ 〈x〉 = {0} = 〈x + y〉 ∩ 〈y〉,
but we do not have V = 〈x + y〉 ⊕ 〈x〉 ⊕ 〈y〉, because 0 has two expressions:

0 = 0 + 0 + 0 and 0 = (x + y)− x − y. �

Proposition 2.26. Let M = S1 + · · · + Sn, where the Si are submodules.
Then M = S1 ⊕ · · · ⊕ Sn if and only if, for each i ,

Si ∩ 〈S1 + · · · + Ŝi + · · · + Sn〉 = {0},
where Ŝi means that the term Si is omitted from the sum.

Proof. If M = S1⊕· · ·⊕Sn and x ∈ Si ∩
(
S1+· · ·+ Ŝi +· · ·+Sn

)
, then x =

si ∈ Si and si =
∑

j 	=i s j , where s j ∈ S j . Unless all the s j = 0, the element
0 has two distinct expressions: 0 = −si +

∑
j 	=i s j and 0 = 0 + 0 + · · · + 0.

Therefore, all s j = 0 and x = si = 0.
We prove the converse by induction on n ≥ 2. The base step is Corol-

lary 2.22(i). For the inductive step, define T = S1 + · · · + Sn , so that
M = T ⊕ Sn+1. If a ∈ M , then a has a unique expression of the form
a = t + sn+1, where t ∈ T and sn+1 ∈ Sn+1 (by the base step). But the induc-
tive hypothesis says that t has a unique expression of the form t = s1+· · ·+sn ,
where si ∈ Si for all i ≤ n, as desired. •

Example 2.27. If V is an n-dimensional vector space over a field k and
v1, . . . , vn is a basis, then V = 〈v1〉 ⊕ · · · ⊕ 〈vn〉, for each vector v ∈ V has
a unique expression v =∑

αivi with αivi ∈ 〈vi 〉. Thus, V is a direct sum of
n one-dimensional vector spaces if and only if dim(V ) = n. �

Direct sums can be described in terms of exact sequences.

Definition. A short exact sequence

0 → A
i−→ B

p−→ C → 0

is split if there exists a map j : C → B with pj = 1C .

Note that j p is a retraction B → im j .

Proposition 2.28. If an exact sequence

0 → A
i→ B

p→ C → 0

is split, then B ∼= A ⊕ C.
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Remark. See Exercise 2.8 on page 65. �
Proof. We show that B = im i ⊕ im j , where j : C → B satisfies pj = 1C .
If b ∈ B, then pb ∈ C and b− j pb ∈ ker p, for p(b− j pb) = pb− pj (pb) =
0 because pj = 1C . By exactness, there is a ∈ A with ia = b − j pb. It
follows that B = im i + im j . It remains to prove im i ∩ im j = {0}. If
ia = x = jc, then px = pia = 0, because pi = 0, whereas px = pjc = c,
because pj = 1C . Therefore, x = jc = 0, and so B ∼= A ⊕ C . •

We shall see, in Example 2.29, that the converse of Proposition 2.28 is not
true.

There are (at least) two ways to extend the notion of direct sum of modules
from finitely many summands to infinitely many summands.

Definition. Let R be a ring and let (Ai )i∈I be an indexed family of left R-
modules. The direct product

∏
i∈I Ai is the cartesian product [i.e., the set of

all I -tuples (ai ) whose i th coordinate ai lies in Ai for all i] with coordinate-
wise addition and scalar multiplication:

(ai )+ (bi ) = (ai + bi ) and r(ai ) = (rai ),

where r ∈ R and ai , bi ∈ Ai for all i . In particular, if all Ai are equal, say,
Ai = A for all i ∈ I , then we may write AI instead of

∏
i∈I Ai .

The direct sum, denoted by
⊕

i∈I Ai , is the submodule of
∏

i∈I Ai con-
sisting of all (ai ) having only finitely many nonzero coordinates.

If B = ∏i∈I Ai , then the j th projection (for j ∈ I ) is the map p j : B →
A j defined by (ai ) �→ a j . The j th injection (for j ∈ I ) is the map ai �→
(ei ) ∈ B, where ei = 0 if i 	= j and e j = a j .

We can be more precise. An I -tuple is a function ϕ : I → ⋃
i Ai with

ϕ(i) ∈ Ai for all i ∈ I . Thus, the direct product consists of all I -tuples,
while the direct sum consists of all those I -tuples having finite support, where
supp(ϕ) = {i ∈ I : ϕ(i) 	= {0}}. Another way to say that ϕ has finite support
is to say that almost all the coordinates of (ai ) are zero; that is, only finitely
many ai are nonzero.

If ai ∈ Ai , let μi ai be the I -tuple in
∏

i Ai whose i th coordinate is ai and
whose other coordinates are 0. Recall that two functions f, g : X → Y are
equal if and only if f (x) = g(x) for all x ∈ X ; thus, two vectors are equal if
and only if they have the same coordinates. It follows that each m ∈⊕i∈I Ai
has a unique expression of the form m = ∑

i∈I μi ai , where ai ∈ Ai and
almost all ai = 0.

Note that if the index set I is finite, then
∏

i∈I Ai =
⊕

i∈I Ai . On the
other hand, when I is infinite and infinitely many Ai 	= 0, then the direct
sum is a proper submodule of the direct product. An infinite direct product
is almost never isomorphic to an infinite direct sum. For example, if k is a
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field and Ai = k for all i ∈ N, then both
∏

Ai and
⊕

Ai are vector spaces
over k; the product has uncountable dimension while the sum has countable
dimension.

Example 2.29. There are exact sequences 0 → S → S ⊕ T → T → 0 that
are not split.

Let A = 〈a〉 and B = 〈b〉 be cyclic groups of order 2 and 4, respectively.
If i : A → B is defined by i(a) = 2b and p : B → A is defined by p(b) = a,

then 0 → A
i−→ B

p−→ A → 0 is an exact sequence that is not split (because
I4 	∼= I2 ⊕ I2). By Exercise 2.5 on page 65, for any abelian group M , there is
an exact sequence

0 → A
i ′−→ B ⊕ M

p′−→ A ⊕ M → 0, (1)

where i ′(a) = (ia, 0) and p′(b,m) = (pb,m), and this sequence does not
split either. If we choose M to be the direct sum of infinitely many copies of
A ⊕ B, then A ⊕ M ∼= M ∼= B ⊕ M . The middle group in extension (1) is
now isomorphic to the direct sum of the two outer groups. �

The next theorem says that covariant Hom functors preserve direct prod-
ucts; the following theorem says that contravariant Hom functors convert di-
rect sums to direct products.

Theorem 2.30. Let R be a ring, let A be a left R-module, and let (Bi )i∈I be
a family of left R-modules.

(i) There is a Z(R)-isomorphism

ϕ : HomR

(
A,
∏
i∈I

Bi

)
→
∏
i∈I

HomR(A, Bi )

with ϕ : f �→ (pi f ), where the pi are the projections of the direct
product

∏
i∈I Bi . If R is commutative, then ϕ is an R-isomorphism.

(ii) The isomorphism ϕ is natural: if (C j ) j∈J is a family of left R-modules
and, for each i ∈ I , there exist j ∈ J and an R-map σi j : Bi → C j ,
then there is a commutative diagram

HomR
(

A,
∏

i∈I Bi
) σ∗ ��

ϕ
��

HomR
(

A,
∏

j∈J C j
)

ϕ
��∏

i∈I HomR(A, Bi )
σ̃ ��

∏
j∈J HomR(A,C j ),

where σ :
∏

i Bi →
∏

j C j is given by (bi ) �→ (σi j bi ), and σ̃ : (gi ) �→
(σi j gi ).
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Proof.

(i) To see that ϕ is surjective, let ( fi ) ∈
∏

HomR(A, Bi ); then fi : A → Bi
for every i .

Bi

∏
Bi

pi
���������

A
θ

		� � � � � � �

fi


�������

Define an R-map θ : A → ∏
Bi by θ(a) = ( fi (a)); it is easy to see

that ϕ(θ) = (piθ) = ( fi ), and so ϕ is surjective.

To see that ϕ is injective, let f, f ′ ∈ HomR(A,
∏

Bi ). Now if a ∈ A,
then f (a) = (bi ) and (pi f )(a) = bi ; similarly, f ′(a) = (b′i ) and
(pi f ′)(a) = b′i . If ϕ( f ) = ϕ( f ′), then (pi f ) = (pi f ′), and so pi f =
pi f ′ for all i . Thus, for all i and all a ∈ A, we have bi = b′i ; that is,
f (a) = f ′(a), and f = f ′.
To see that ϕ is a Z(R)-map, note, for each i and each r ∈ Z(R), that
pir f = r pi f ; therefore,

ϕ : r f �→ (pir f ) = (r pi f ) = r(pi f ) = rϕ( f ).

(ii) Going clockwise, f �→ σ∗( f ) = σ f �→ (q jσ f ), where q j is the j th
projection

∏
j C j → C j ; going counterclockwise, f �→ (pi f ) �→

(q j σ̃ f ). To see that these are equal, evaluate each at a ∈ A. Note that if
f a = (bi ) ∈

∏
i Bi , then pi f a = bi . Hence, q jσ f a = σi j f a = σi j bi .

On the other hand, [q j σ̃ f ]a = q j (σi j f )a = q j (σi j bi ) = σi j bi . •

Theorem 2.31. Let R be a ring, let B be a left R-module, and let (Ai )i∈I be
a family of left R-modules.

(i) There is a Z(R)-isomorphism

ψ : HomR

(⊕
i∈I

Ai , B
)
→
∏
i∈I

HomR(Ai , B),

with ψ : f �→ ( f αi ), where the αi are the injections into the direct sum⊕
i∈I Ai . If R is commutative, then ϕ is an R-isomorphism.

(ii) The isomorphism ψ is natural: if (D j ) j∈J is a family of left R-modules
and, for each j ∈ J , there exist i ∈ I and an R-map τ j i : D j → Ai ,
then there is a commutative diagram

HomR(
⊕

j∈J D j , B)

ψ
��

HomR(
⊕

i∈I Ai , B)

ψ
��

τ∗		

∏
j∈J HomR(D j , B)

∏
i∈I HomR(Ai , B),

τ̂
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where τ :
∏

j DJ →
∏

i Ai is given by (d j ) �→ (τ j i d j ), and τ̂ : (h j ) �→
(h jτ j i ).

Proof. This proof, similar to that of Theorem 2.30, is left to the reader. •
There are examples showing that there are no other isomorphisms involv-

ing Hom,
⊕

, and
∏

(see Exercise 2.25 on page 68).

Here is a new proof of Corollary 2.22(ii).

Corollary 2.32. If A, A′, B, and B ′ are left R-modules, then there are Z(R)-
isomorphisms

HomR(A, B ⊕ B ′) ∼= HomR(A, B)⊕ HomR(A, B ′)

and

HomR(A ⊕ A′, B) ∼= HomR(A, B)⊕ HomR(A′, B).

If R is commutative, these are R-isomorphisms.

Proof. When the index set is finite, the direct sum and the direct product of
modules are equal. •

The simplest modules are free modules.

Definition. A left R-module F is a free left R-module if F is isomorphic to
a direct sum of copies of R: that is, there is a (possibly infinite) index set B
with F = ⊕

b∈B Rb, where Rb = 〈b〉 ∼= R for all b ∈ B. We call B a basis
of F .

By the definition of direct sum, each m ∈ F has a unique expression of
the form

m =
∑
b∈B

rbb,

where rb ∈ R and almost all rb = 0. It follows that F = 〈B〉.
A free Z-module is called a free abelian group. Every ring R, when

considered as a left module over itself, is itself a free R-module.
In the first chapter, we defined the singular chain groups Sn(X) of a topo-

logical space X as the free abelian group with basis all singular n-simplexes
in X . We now prove that such huge abelian groups exist.

Proposition 2.33. Let R be a ring. Given any set B, there exists a free left
R-module F with basis B.
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Proof. The set of all functions RB = {ϕ : B → R} is a left R-module
where, for all b ∈ B and r ∈ R, we define ϕ + ψ : b �→ ϕ(b) + ψ(b) and
rϕ : b �→ r [ϕ(b)]. In vector notation, a function ϕ is written as the B-tuple
whose bth coordinate is ϕ(b). In particular, the function μb, defined by

μb(b
′) =

{
1 if b′ = b,

0 if b′ 	= b,

is the B-tuple whose bth coordinate is 1 and whose other coordinates are all 0.
If we denote μb by b, then RB is the direct product

∏
b∈B〈b〉. Now R ∼= 〈b〉

via the map r �→ rμb, and so the submodule F of RB generated by B is a
direct sum of copies of R; that is, F = ⊕〈b〉 is a free left R-module with
basis B. •

A basis of a free module has a strong resemblance to a basis of a vector
space. If k is a field, then every vector space V over k has a basis, in the sense
of Linear Algebra. It is easy to see that the two notions of basis coincide in this
case (see Example 2.27); moreover, a vector space V is a finitely generated
free k-module if and only if it is finite-dimensional. The theorem of Linear
Algebra that linear transformations are described by matrices can be rephrased
to say that if v1, . . . , vn is a basis of a vector space V and if w1, . . . , wn is a
list (possibly with repetitions) of vectors in a vector space W , then there exists
a unique linear transformation T : V → W with T (vi ) = wi for all i . Since
T has the formula

T (a1v1 + · · · + anvn) = a1w1 + · · · + anwn,

one says that T arises by extending by linearity. This idea can be used for free
R-modules.

Proposition 2.34 (Extending by Linearity). Let R be a ring and let F
be the free left R-module with basis X. If M is any left R-module and if
f : X → M is any function, then there exists a unique R-map f̃ : F → M
with f̃ μ = f , where μ : X → F is the inclusion; that is, f̃ (x) = f (x) for
all x ∈ X, so that f̃ extends f .

F
f̃

���
���

X

μ
��

f
�� M

Proof. Every element v ∈ F has a unique expression of the form

v =
∑
x∈X

rx x,
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where rx ∈ R and almost all rx = 0; it follows that there is a well-defined
function f̃ : F → M given by f̃ (v) = ∑

x∈X rx f (x). Obviously, f̃ ex-
tends f . If s ∈ R, then sv = ∑

srx x ; if v′ = ∑
r ′x x , then v + v′ =∑

(rx + r ′x )x . The formula for f̃ shows that it is an R-map. Finally, f̃ is the
unique R-map extending f : since F = 〈X〉, Exercise 2.3 on page 64 shows
that two R-maps agreeing on a generating set must be equal. •

Arbitrary modules can be described in terms of free modules.

Theorem 2.35. Every left R-module M is a quotient of a free left R-module
F. Moreover, M is finitely generated if and only if F can be chosen to be
finitely generated.

Proof. Choose a generating set X of M , and let F be the free module with
basis {ux : x ∈ X}. By Proposition 2.34, there is an R-map g : F → M with
g(ux ) = x for all x ∈ X . Now g is a surjection, for im g is a submodule of M
containing X , and so F/ ker g ∼= M .

If M is finitely generated, then there is a finite generating set X , and the
free module F just constructed is finitely generated. The converse is obvious,
for any image of a finitely generated module is itself finitely generated •

If F is a free left R-module, then we would like to know that there is an
analog of dimension; that is, the number of elements in a basis of F is an
invariant. The next proposition shows that this is so when R is commutative.
However, there are noncommutative rings R for which R ∼= R ⊕ R as left
R-modules; that is, R is a free left R-module having bases of different sizes.

Example 2.36. Let V be an infinite-dimensional vector space over a field
k, so that there is a k-isomorphism θ : V → V ⊕ V . Define projections
p, q : V ⊕V → V by p : (v, w) �→ v and q : (v, w) �→ w. Let R = Endk(V )

be the ring of all k-linear transformations f : V → V (with composition as
multiplication). Now apply Homk(V,�) to obtain a k-isomorphism

θ∗ : Homk(V, V ) → Homk(V, V ⊕ V ),

namely, θ∗ : g �→ θ∗(g) = θg for g ∈ Homk(V, V ). Let

ψ : Homk(V, V ⊕ V ) → Homk(V, V )⊕ Homk(V, V )

be given by f �→ (p f, q f ) [ψ is the isomorphism of Corollary 2.22(ii) with
T = Homk(V,�)]. Consider the k-isomorphism ψθ∗ : R → R ⊕ R. As
usual, R is a right R-module via right multiplication, and R ⊕ R is a right
R-module via ( f, g)h = ( f h, gh) for f, g, h ∈ R. We show that ψθ∗ is an



2.1 Modules 59

R-isomorphism. If f, h ∈ R, then

(ψθ∗)( f h) = ψ(θ∗[ f h])

= ψ(θ f h)

= (pθ f h, qθ f h)

= (pθ f, qθ f )h

= (ψθ∗)( f )h.

Therefore, ψθ∗ is an R-isomorphism, R ∼= R ⊕ R as right R-modules. (Of
course, replacing R by Rop gives a similar example for left modules; this
amounts to writing composites f g as g f .) �

Proposition 2.37. Let R be a nonzero commutative ring.

(i) Any two bases of a free R-module F have the same cardinality.

(ii) Free R-modules F and F ′ are isomorphic if and only if there are bases
of each having the same cardinality.

(iii) If m and n are natural numbers, then Rm ∼= Rn if and only if m = n.

Proof.

(i) Choose a maximal ideal I in R (which exists, by Zorn’s lemma). If
X is a basis of the free R-module F , then Exercise 2.12 on page 66
shows that the set of cosets {v + I F : v ∈ X} is a basis of the vector
space F/I F over the field R/I . If Y is another basis of F , then the
same argument gives {u + I F : u ∈ Y } a basis of F/I F . But any two
bases of a vector space have the same size (which is the dimension of
the space), and so X and Y have the same cardinality.

(ii) Let X be a basis of F , let X ′ be a basis of F ′, and let γ : X → X ′ be a
bijection (which exists by hypothesis). Composing γ with the inclusion
X ′ → F ′, we may assume that γ : X → F ′. By Proposition 2.34, there
is a unique R-map ϕ : F → F ′ extending γ . Similarly, we may regard
γ−1 : X ′ → X as a function X ′ → F , and there is a unique ψ : F ′ → F
extending γ−1. Finally, both ψϕ and 1F extend 1X , so that ψϕ = 1F .
Similarly, ψϕ = 1F ′ , and so ϕ : F → F ′ is an isomorphism.

Conversely, suppose that ϕ : F → F ′ is an isomorphism. If {vi : i ∈ I }
is a basis of F , then it is easy to see that {ϕ(vi ) : i ∈ I } is a basis of F ′.
But any two bases of the free module F ′ have the same cardinality, by
part (i). Hence, bases of F and of F ′ have the same cardinality.

(iii) If m = n, then Rm ∼= Rn is obvious. Conversely, if Rm ∼= Rn , part (ii)
applies. •
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Definition. A ring R has IBN (invariant basis number) if Rm ∼= Rn as left
R-modules implies m = n. If R has IBN, then the number of elements in
a basis of a free left R-module F is called the rank of F and is denoted by
rank(F).

If a ring R has IBN, then it is also true that Rm ∼= Rn as right R-modules
implies m = n; see Exercise 2.37 on page 97. If R has IBN and F is a
finitely generated free left R-module, then every two bases of F have the
same number of elements, for if x1, . . . , xn is a basis of F , then F ∼= Rn .
Thus, rank(F) is well-defined for rings with IBN. Free modules having an
infinite basis are considered in Exercise 2.26 on page 69.

Proposition 2.37(i) shows that every nonzero commutative ring R has
IBN. Division rings have IBN: if � is a division ring and F is a finitely gen-
erated free left �-module, then any two bases of F have the same number of
elements (see Rotman, Advanced Modern Algebra, p. 537). The proof above
that commutative rings have IBN generalizes to any noncommutative ring R
having a two-sided ideal I for which R/I is a division ring [every local ring is
such a ring (see Proposition 4.56(iii)]. We shall see, in Theorem 3.24, that all
left noetherian rings also have IBN. On the other hand, Example 2.36 shows
that if R = Endk(V ), where V is an infinite-dimensional vector space over a
field k, then R does not have IBN.

Corollary 2.22(ii) says that the Hom functors RMod → Ab preserve di-
rect sums of modules: HomR(X, A ⊕ C) ∼= HomR(X, A) ⊕ HomR(X,C).
If we regard such a direct sum as a split short exact sequence, then we may

rephrase the corollary by saying that if 0 → A
i→ B

p→ C → 0 is a split
short exact sequence, then so is

0 → HomR(X, A)
i∗−→ HomR(X, B)

p∗−→ HomR(X,C) → 0.

This leads us to a more general question: if 0 → A
i→ B

p→ C → 0 is any
short exact sequence, not necessarily split, is

0 → HomR(X, A)
i∗−→ HomR(X, B)

p∗−→ HomR(X,C) → 0

also an exact sequence? Here is the answer (there is no misprint in the state-
ment of the theorem: “→ 0” should not appear at the end of the sequences,
and we shall discuss this point after the proof).

Theorem 2.38 (Left Exactness). If 0 → A
i→ B

p→ C is an exact se-
quence of left R-modules, and if X is a left R-module, then there is an exact
sequence of Z(R)-modules

0 → HomR(X, A)
i∗→ HomR(X, B)

p∗→ HomR(X,C).



2.1 Modules 61

If R is commutative, then the latter sequence is an exact sequence of R-
modules and R-maps.

Proof. That HomR(X, A) is a Z(R)-module follows from Proposition 2.4.

(i) ker i∗ = {0}.
If f ∈ ker i∗, then f : X → A and i∗( f ) = 0; that is, i f (x) =
0 for all x ∈ X . Since i is injective, f (x) = 0 for all x ∈ X , and
so f = 0.

(ii) im i∗ ⊆ ker p∗.

If g ∈ im i∗, then g : X → B and there is some f : X → A with
g = i∗( f ) = i f . But p∗(g) = pg = pi f = 0 because exactness of the
original sequence, namely, im i = ker p, implies pi = 0.

(iii) ker p∗ ⊆ im i∗.

If g ∈ ker p∗, then g : X → B and p∗(g) = pg = 0. Hence, pg(x) = 0
for all x ∈ X , so that g(x) ∈ ker p = im i . Thus, g(x) = i(a) for some
a ∈ A; since i is injective, this element a is unique. Hence, the function
f : X → A, given by f (x) = a if g(x) = i(a), is well-defined. It is
easy to check that f ∈ HomR(X, A); that is, f is an R-homomorphism.
Since g(x + x ′) = g(x) + g(x ′) = i(a) + i(a′) = i(a + a′), we have
f (x + x ′) = a + a′ = f (x) + f (x ′). A similar argument shows that
f (r x) = r f (x) for all r ∈ R. But, i∗( f ) = i f and i f (x) = i(a) =
g(x) for all x ∈ X ; that is, i∗( f ) = g, and so g ∈ im i∗. •

Example 2.39. Even if the map p : B → C in the original exact sequence
is surjective, the functored sequence need not end with “→ 0”; that is, the
induced map p∗ : HomR(X, B) → HomR(X,C) may fail to be surjective.

The abelian group Q/Z consists of cosets q+Z for q ∈ Q, and its element
x = 1

2 +Z has order 2 (x 	= 0 and 2x = 0). It follows that HomZ(I2,Q/Z) 	=
{0}, for it contains the nonzero homomorphism [1] �→ 1

2 + Z.
Apply the functor HomZ(I2,�) to

0 → Z
i→ Q

p→ Q/Z → 0,

where i is the inclusion and p is the natural map. We have just seen that

HomZ(I2,Q/Z) 	= {0}.
On the other hand, HomZ(I2,Q) = {0} because Q has no (nonzero)
elements of finite order. Therefore, the induced map p∗ : HomZ(I2,Q) →
HomZ(I2,Q/Z) cannot be surjective. �
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Definition. A covariant functor T : RMod → Ab is called left exact if
exactness of

0 → A
i→ B

p→ C

implies exactness of abelian groups

0 → T (A)
T (i)−→ T (B)

T (p)−→ T (C).

Thus, Theorem 2.38 shows that the covariant functors HomR(X,�) are
left exact functors.

There is an analogous result for contravariant Hom functors.

Theorem 2.40 (Left Exactness). If

A
i→ B

p→ C → 0

is an exact sequence of left R-modules, and if Y is a left R-module, then there
is an exact sequence of Z(R)-modules

0 → HomR(C, Y )
p∗→ HomR(B, Y )

i∗→ HomR(A, Y ).

If R is commutative, then the latter sequence is an exact sequence of R-
modules and R-maps.

Proof. That HomR(A, Y ) is a Z(R)-module follows from Proposition 2.5.

(i) ker p∗ = {0}.
If h ∈ ker p∗, then h : C → Y and 0 = p∗(h) = hp. Thus, h(p(b)) = 0
for all b ∈ B, so that h(c) = 0 for all c ∈ im p. Since p is surjective,
im p = C , and h = 0.

(ii) im p∗ ⊆ ker i∗.

If g ∈ HomR(C, Y ), then i∗ p∗(g) = (pi)∗(g) = 0, because exactness
of the original sequence, namely, im i = ker p, implies pi = 0.

(iii) ker i∗ ⊆ im p∗.

If g ∈ ker i∗, then g : B → Y and i∗(g) = gi = 0. If c ∈ C , then c =
p(b) for some b ∈ B, because p is surjective. Define f : C → Y by
f (c) = g(b) if c = p(b). Note that f is well-defined: if p(b) = p(b′),
then b − b′ ∈ ker p = im i , so that b − b′ = i(a) for some a ∈ A.
Hence, g(b) − g(b′) = g(b − b′) = gi(a) = 0, because gi = 0. The
reader may check that f is an R-map. Finally,

p∗( f ) = f p = g,

because if c = p(b), then g(b) = f (c) = f (p(b)). Therefore, g ∈
im p∗. •
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Example 2.41. Even if the map i : A → B in the original exact sequence
is assumed to be injective, the functored sequence need not end with “→ 0”;
that is, the induced map i∗ : HomR(B, Y ) → HomR(A, Y ) may fail to be
surjective.

We claim that HomZ(Q,Z) = {0}. Let f : Q → Z, and let f (a/b) =
m ∈ Z. For all n > 0,

n f (a/nb) = f (na/nb) = f (a/b) = m.

Thus, m is divisible by every positive integer n [for f (a/nb) ∈ Z], and this
forces m = 0. Therefore, f = 0.

If we apply the functor HomZ(�,Z) to the short exact sequence

0 → Z
i→ Q

p→ Q/Z → 0,

where i is the inclusion and p is the natural map, then the induced map

i∗ : HomZ(Q,Z) → HomZ(Z,Z)

cannot be surjective, for HomZ(Q,Z) = {0} while HomZ(Z,Z) 	= {0} be-
cause it contains 1Z. �

Definition. A contravariant functor T : RMod → Ab is called left exact if
exactness of

A
i→ B

p→ C → 0

implies exactness of

0 → T (C)
T (p)−→ T (B)

T (i)−→ T (A).

Thus, Theorem 2.40 shows that the contravariant functors HomR(�, Y )

are left exact functors.4

There is a converse of Theorem 2.40 (a similar statement for covariant
Hom functors is true but not very interesting; see Exercise 2.13 on page 66).

Proposition 2.42. Let i : B ′ → B and p : B → B ′′ be R-maps, where R is
a ring. If, for every left R-module M,

0 → HomR(B ′′, M)
p∗−→ HomR(B, M)

i∗−→ HomR(B ′, M)

is an exact sequence of abelian groups, then

B ′ i−→ B
p−→ B ′′ → 0

is an exact sequence of left R-modules.

4These functors are called left exact because the functored sequence has “0 →” on the
left-hand side.
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Proof.

(i) p is surjective.

Let M = B ′′/ im p and let f : B ′′ → B ′′/ im p be the natural map, so
that f ∈ Hom(B ′′, M). Then p∗( f ) = f p = 0, so that f = 0, because
p∗ is injective. Therefore, B ′′/ im p = 0, and p is surjective.

(ii) im i ⊆ ker p.

Since i∗ p∗ = 0, we have 0 = (pi)∗. Hence, if M = B ′′ and g = 1B′′ ,
so that g ∈ Hom(B ′′, M), then 0 = (pi)∗g = gpi = pi , and so
im i ⊆ ker p.

(iii) ker p ⊆ im i .

Now choose M = B/ im i and let h : B → M be the natural map, so
that h ∈ Hom(B, M). Clearly, i∗h = hi = 0, so that exactness of the
Hom sequence gives an element h′ ∈ HomR(B ′′, M) with p∗(h′) =
h′ p = h. We have im i ⊆ ker p, by part (ii); hence, if im i 	= ker p,
there is an element b ∈ B with b /∈ im i and b ∈ ker p. Thus, hb 	= 0
and pb = 0, which gives the contradiction hb = h′ pb = 0. •

The single condition that i∗ : HomR(B, M) → HomR(B ′, M) be sur-
jective is much stronger than the hypotheses of Proposition 2.42 (see Exer-
cise 2.20 on page 68).

Exercises

Unless we say otherwise, all modules in these exercises are left R-modules.

2.1 Let R and S be rings, and let ϕ : R → S be a ring homomorphism.
If M is a left S-module, prove that M is also a left R-module if we
define

rm = ϕ(r)m,

for all r ∈ R and m ∈ M .
2.2 Give an example of a left R-module M = S⊕T having a submodule

N such that N 	= (N ∩ S)⊕ (N ∩ T ).
*2.3 Let f, g : M → N be R-maps between left R-modules. If M = 〈X〉

and f |X = g|X , prove that f = g.
*2.4 Let (Mi )i∈I be a (possibly infinite) family of left R-modules and,

for each i , let Ni be a submodule of Mi . Prove that
(⊕

i

Mi
)
/
(⊕

i

Ni
) ∼=⊕

i

(
Mi/Ni

)
.
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*2.5 Let 0 → A → B → C → 0 be a short exact sequence of left
R-modules. If M is any left R-module, prove that there are exact
sequences

0 → A ⊕ M → B ⊕ M → C → 0

and
0 → A → B ⊕ M → C ⊕ M → 0.

*2.6 (i) Let → An+1
dn+1−→ An

dn−→ An−1 → be an exact sequence,
and let im dn+1 = Kn = ker dn for all n. Prove that

0 → Kn
in−→ An

d ′n−→ Kn−1 → 0

is an exact sequence for all n, where in is the inclusion
and d ′n is obtained from dn by changing its target. We say
that the original sequence has been factored into these short
exact sequences.

(ii) Let

→ A1
f1−→ A0

f0−→ K → 0

and
0 → K

g0−→ B0
g1−→ B1 →

be exact sequences. Prove that

→ A1
f1−→ A0

g0 f0−→ B0
g1−→ B1 →

is an exact sequence. We say that the original two se-
quences have been spliced to form the new exact sequence.

*2.7 Use left exactness of Hom to prove that if G is an abelian group,
then HomZ(In, G) ∼= G[n], where G[n] = {g ∈ G : ng = 0}.

*2.8 (i) Prove that a short exact sequence in RMod,

0 → A
i→ B

p→ C → 0,

splits if and only if there exists q : B → A with qi = 1A.
(Note that q is a retraction B → im i .)

(ii) A sequence A
i→ B

p→ C in Groups is exact if im i =
ker p; an exact sequence

1 → A
i→ B

p→ C → 1

in Groups is split if there is a homomorphism j : C → B
with pj = 1C . Prove that 1 → A3 → S3 → I2 → 1
is a split exact sequence. In contrast to part (i), show, in
a split exact sequence in Groups, that there may not be a
homomorphism q : B → A with qi = 1A.
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*2.9 (i) Let v1, . . . , vn be a basis of a vector space V over a field
k. Let v∗i : V → k be the evaluation V ∗ → k defined by
v∗i = (�, vi ) (see Example 1.16). Prove that v∗1 , . . . , v

∗
n is

a basis of V ∗ (it is called the dual basis of v1, . . . , vn).

Hint. Use Corollary 2.22(ii) and Example 2.27.

(ii) Let f : V → V be a linear transformation, and let A be
the matrix of f with respect to a basis v1, . . . , vn of V ; that
is, the i th column of A consists of the coordinates of f (vi )

with respect to the given basis v1, . . . , vn . Prove that the
matrix of the induced map f ∗ : V ∗ → V ∗ with respect to
the dual basis is the transpose AT of A.

*2.10 If X is a subset of a left R-module M , prove that 〈X〉, the submodule
of M generated by X , is equal to

⋂
S, where the intersection ranges

over all those submodules S of M that contain X .
*2.11 Prove that if f : M → N is an R-map and K is a submodule of

a left R-module M with K ⊆ ker f , then f induces an R-map
f̂ : M/K → N by f̂ : m + K �→ f (m).

*2.12 (i) Let R be a commutative ring and let J be an ideal in R.
Recall Example 2.8(iv): if M is an R-module, then J M is
a submodule of M . Prove that M/J M is an R/J -module
if we define scalar multiplication:

(r + J )(m + J M) = rm + J M.

Conclude that if J M = {0}, then M itself is an R/J -
module. In particular, if J is a maximal ideal in R and
J M = {0}, then M is a vector space over R/J .

(ii) Let I be a maximal ideal in a commutative ring R. If X is
a basis of a free R-module F , prove that F/I F is a vector
space over R/I and that {cosets x+ I F : x ∈ X} is a basis.

*2.13 Let M be a left R-module.
(i) Prove that the map ϕM : HomR(R, M) → M , given by

ϕM : f �→ f (1), is an R-isomorphism.

Hint. Make the abelian group HomR(R, M) into a left R-
module by defining r f (for f : R → M and r ∈ R) by
r f : s �→ f (sr) for all s ∈ R.

(ii) If g : M → N , prove that the following diagram com-
mutes:

HomR(R, M)
ϕM ��

g∗ ��

M
g
��

HomR(R, N )
ϕN

�� N .
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Conclude that ϕ = (ϕM )M∈obj(RMod) is a natural isomor-
phism from HomR(R,�) to the identity functor on RMod.
[Compare with Example 1.16(ii).]

2.14 Let A
f→ B

g→ C be a sequence of module maps. Prove that g f = 0
if and only if im f ⊆ ker g. Give an example of such a sequence
that is not exact.

*2.15 (i) Prove that f : M → N is surjective if and only if coker f =
{0}.

(ii) If f : M → N is a map, prove that there is an exact se-
quence

0 → ker f → M
f→ N → coker f → 0.

*2.16 (i) If 0 → M → 0 is an exact sequence, prove that M = {0}.
(ii) If A

f→ B
g→ C

h→ D is an exact sequence, prove that f
is surjective if and only if h is injective.

(iii) Let A
α−→ B

β−→ C
γ−→ D

δ−→ E be exact. If α and δ

are isomorphisms, prove that C = {0}.
*2.17 If A

f−→ B
g−→ C

h−→ D
k−→ E is exact, prove that there is an

exact sequence

0 → coker f
α−→ C

β−→ ker k → 0,

where α : b + im f �→ gb and β : c �→ hc.

*2.18 Let 0 → A
i→ B

p→ C → 0 be a short exact sequence.
(i) Assume that A = 〈X〉 and C = 〈Y 〉. For each y ∈ Y ,

choose y′ ∈ B with p(y′) = y. Prove that

B = 〈i(X) ∪ {y′ : y ∈ Y }〉.
(ii) Prove that if both A and C are finitely generated, then B

is finitely generated. More precisely, prove that if A can
be generated by m elements and C can be generated by n
elements, then B can be generated by m + n elements.

*2.19 Let R be a ring, let A and B be left R-modules, and let r ∈ Z(R).
(i) If μr : B → B is multiplication by r , prove that the in-

duced map (μr )∗ : HomR(A, B) → HomR(A, B) is also
multiplication by r .

(ii) If mr : A → A is multiplication by r , prove that the in-
duced map (mr )

∗ : HomR(A, B) → HomR(A, B) is also
multiplication by r .
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*2.20 Suppose one assumes, in the hypothesis of Proposition 2.42, that the
induced map i∗ : HomR(B, M) → HomR(B ′, M) is surjective for

every M . Prove that 0 → B ′ i−→ B
p−→ B ′′ → 0 is a split short

exact sequence.
*2.21 If T : Ab → Ab is an additive functor, prove, for every abelian

group G, that the function End(G) → End(T G), given by f �→
T f , is a ring homomorphism.

*2.22 (i) Prove that HomZ(Q,C) = {0} for every cyclic group C .

(ii) Let R be a commutative ring. If M is an R-module such
that HomR(M, R/I ) = {0} for every nonzero ideal I , prove
that im f ⊆ ⋂

I for every R-map f : M → R, where the
intersection is over all nonzero ideals I in R.

(iii) Let R be a domain and suppose that M is an R-module with
HomR(M, R/I ) = {0} for all nonzero ideals I in R. Prove
that HomR(M, R) = {0}.
Hint. Every r ∈⋂I 	=0 I is nilpotent.

2.23 Generalize Proposition 2.26. Let (Si )i∈I be a family of submod-
ules of a left R-module M . If M = 〈⋃

i∈I Si
〉
, then the following

conditions are equivalent.

(i) M =⊕i∈I Si .

(ii) Every a ∈ M has a unique expression of the form a = si1 +
· · · + sin , where si j ∈ Si j .

(iii) Si ∩
〈⋃

j 	=i S j
〉 = {0} for each i ∈ I .

*2.24 (i) Prove that any family of R-maps ( f j : U j → Vj ) j∈J can be
assembled into an R-map ϕ :

⊕
j U j →

⊕
j V j , namely,

ϕ : (u j ) �→ ( f j (u j )).

(ii) Prove that ϕ is an injection if and only if each f j is an
injection.

*2.25 (i) If Zi ∼= Z for all i , prove that

HomZ

( ∞∏
i=1

Zi ,Z

)
	∼=

∞∏
i=1

HomZ(Zi ,Z).

Hint. A theorem of J. Łos and, independently, of E. C.
Zeeman (see Fuchs, Infinite Abelian Groups II, Section 94)
says that

HomZ

( ∞∏
i=1

Zi ,Z

) ∼=
∞⊕

i=1

HomZ(Zi ,Z) ∼=
∞⊕

i=1

Zi .
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(ii) Let p be a prime and let Bn be a cyclic group of order pn ,
where n is a positive integer. If A =⊕∞

n=1 Bn , prove that

Homk

(
A,

∞⊕
n=1

Bn

)
	∼=

∞⊕
n=1

Homk(A, Bn).

Hint. Prove that Hom(A, A) has an element of infinite or-
der, while every element in

⊕∞
n=1 Homk(A, Bn) has finite

order.

(iii) Prove that HomZ(
∏

n≥2 In,Q) 	∼=∏n≥2 HomZ(In,Q).
*2.26 Let R be a ring with IBN.

(i) If R∞ is a free left R-module having an infinite basis, prove
that R ⊕ R∞ ∼= R∞.

(ii) Prove that R∞ 	∼= Rn for any n ∈ N.
(iii) If X is a set, denote the free left R-module

⊕
x∈X Rx by

R(X). Let X and Y be sets, and let R(X) ∼= R(Y ). If X is
infinite, prove that Y is infinite and that |X | = |Y |; that is,
X and Y have the same cardinal.
Hint. Since X is a basis of R(X), each u ∈ R(X) has a
unique expression u =∑x∈X rx x ; define

Supp(u) = {x ∈ X : rx 	= 0}.
Given a basis B of R(X) and a finite subset W ⊆ X , prove
that there are only finitely many elements b ∈ B with
Supp(b) ⊆ W . Conclude that |B| = Fin(X), where Fin(X)

is the family of all the finite subsets of X . Finally, using the
fact that |Fin(X)| = |X | when X is infinite, conclude that
R(X) ∼= R(Y ) implies |X | = |Y |.

2.2 Tensor Products

One of the most compelling reasons to introduce tensor products comes from
Algebraic Topology. The homology groups of a space are interesting (for
example, computing the homology groups of spheres enables us to prove the
Jordan Curve Theorem), and the homology groups of the cartesian product
X × Y of two topological spaces are computed (by the Künneth formula) in
terms of the tensor product of the homology groups of the factors X and Y .

Here is a second important use of tensor products. We saw, in Exam-
ple 2.2, that if k is a field, then every k-representation ϕ : H → Matn(k) of a
group H to n × n matrices makes the vector space kn into a left k H -module;
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conversely, every such module gives a representation of H . If H is a subgroup
of a group G, can we obtain a k-representation of G from a k-representation
of H ; that is, can we construct a kG-module from a k H -module? Now k H is
a subring of kG; can we “adjoin more scalars” to form a kG-module from the
k H -module? Tensor products will give a very simple construction, induced
modules, which does exactly this.

More generally, if S is a subring of a ring R and M is a left S-module, can
we adjoin more scalars to form a left R-module M ′ that contains M? If a left
S-module M is generated by a set X (so that each m ∈ M has an expression of
the form m =∑

i si xi for si ∈ S and xi ∈ X ), can we define a left R-module
M ′ containing M as the set of all expressions of the form

∑
i ri xi for ri ∈ R?

Recall that if V is a vector space over a field k and qv = 0 in V , where q ∈ k
and v ∈ V , then either q = 0 or v = 0. Now suppose that M = 〈a〉 is a cyclic
Z-module (abelian group) of order 2; if M could be imbedded in a Q-module
(i.e., a vector space V over Q), then 2a = 0 in V and yet neither factor is 0.
Thus, our goal of extending scalars has merit, but we cannot be so cavalier
about its solution. We must consider two problems: given a left S-module M ,
can we extend scalars to obtain a left R-module M ′ (always); if we can extend
scalars, does M imbed in M ′ (sometimes).

Definition. Let R be a ring, let AR be a right R-module, let R B be a left R-
module, and let G be an (additive) abelian group. A function f : A× B → G
is called R-biadditive if, for all a, a′ ∈ A, b, b′ ∈ B, and r ∈ R, we have

f (a + a′, b) = f (a, b)+ f (a′, b),

f (a, b + b′) = f (a, b)+ f (a, b′),
f (ar, b) = f (a, rb).

If R is commutative and A, B, and M are R-modules, then a function
f : A × B → M is called R-bilinear if f is R-biadditive and also

f (ar, b) = f (a, rb) = r f (a, b)

[r f (a, b) makes sense here because f (a, b) now lies in the R-module M].

Example 2.43.

(i) If R is a ring, then its multiplication μ : R×R → R is R-biadditive; the
first two axioms are the right and left distributive laws, while the third
axiom is associativity:

μ(ar, b) = (ar)b = a(rb) = μ(a, rb).

If R is a commutative ring, then μ is R-bilinear, for (ar)b = a(rb) =
r(ab).
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(ii) If we regard a left R-module R M as its underlying abelian group, then
the scalar multiplication σ : R × M → M is Z-bilinear.

(iii) If R is commutative and M and N are R-modules, then HomR(M, N )

is an R-module if we define r f : M → N by r f : m �→ f (rm), where
f ∈ HomR(M, N ) and r ∈ R. With this definition, we can now see that
evaluation e : M × HomR(M, N ) → N , given by (m, f ) �→ f (m), is
R-bilinear. The dual space V ∗ of a vector space V over a field k is a
special case of this construction: evaluation V × V ∗ → k is k-bilinear.

(iv) The Pontrjagin dual of an abelian group G is defined to be G∗ =
HomZ(G,R/Z), and evaluation G × G∗ → R/Z is Z-bilinear (see
Exercise 3.19 on page 130). �

Tensor product converts biadditive functions into linear ones.

Definition. Given a ring R and modules AR and R B, then their tensor prod-
uct is an abelian group A ⊗R B and an R-biadditive function

h : A × B → A ⊗R B

such that, for every abelian group G and every R-biadditive f : A × B → G,
there exists a unique Z-homomorphism f̃ : A⊗R B → G making the follow-
ing diagram commute.

A × B
h ��

f ��		
			

		
A ⊗R B

f̃
 
 
 


G

Proposition 2.44. If U and A ⊗R B are tensor products of AR and R B
over R, then A ⊗R B ∼= U.

Proof. Assume that η : A × B → U is an R-biadditive function such that,
for every abelian group G and every R-biadditive f : A×B → G, there exists
a unique Z-homomorphism f ′ : A⊗R B → G making the following diagram
commute.

A × B
η ��

f ��		
			

		
U

f ′���
�

�

G

Setting G = A⊗R B and f = h, there is a homomorphism h′ : U → A⊗R B
with h′η = h. Similarly, setting G = U and f = η in the diagram defining
A ⊗R B, there is a homomorphism η̃ : A ⊗R B → U with η̃h = η.
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Consider the following new diagram.

A ⊗R B
η̃
��

1A⊗R B

��

A × B
η ��

h ���������

h �� U
h′��

A ⊗R B

Now h′η̃ makes the big triangle with vertices A × B, A ⊗R B, and A ⊗R B
commute. But the identity 1A⊗R B also makes this diagram commute. By
the uniqueness of the completing arrow (in the definition of tensor product),
we have h′η̃ = 1A⊗R B . A similar argument shows that η̃h′ = 1U . Hence,
η̃ : A ⊗R B → U is an isomorphism. •

Tensor product has been defined as a solution to a universal mapping
problem; it is an abelian group that admits a unique map making many dia-
grams commute (a precise definition can be found in Mac Lane, Categories
for the Working Mathematician, Chapter III). There are many universal map-
ping problems, and the proof of Proposition 2.44 is a paradigm proving that
solutions, if they exist, are unique to isomorphism (we will give a second
paradigm in Chapter 5).

Proposition 2.45. If R is a ring and AR and R B are modules, then their
tensor product exists.

Proof. Let F be the free abelian group with basis A× B; that is, F is free on
all ordered pairs (a, b), where a ∈ A and b ∈ B. Define S to be the subgroup
of F generated by all elements of the following three types:

(a, b + b′)− (a, b)− (a, b′);
(a + a′, b)− (a, b)− (a′, b);

(ar, b)− (a, rb).

Define A ⊗R B = F/S, denote the coset (a, b)+ S by a ⊗ b, and define

h : A × B → A ⊗R B by h : (a, b) �→ a ⊗ b

(thus, h is the restriction of the natural map F → F/S). We have the follow-
ing identities in A ⊗R B:

a ⊗ (b + b′) = a ⊗ b + a ⊗ b′;
(a + a′)⊗ b = a ⊗ b + a′ ⊗ b;

ar ⊗ b = a ⊗ rb.
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It is now obvious that h is R-biadditive.
Consider the following diagram, where G is an abelian group, f is R-

biadditive, and i : A × B → F is the inclusion.

A × B
h ��

f

���
��

��
��

��
��

� i

��		
			

		
A ⊗R B

f̂

���
�

�
�

�
�

F

nat ��









ϕ
���
�

G

Since F is free abelian with basis A × B, Proposition 2.34 says that there
exists a homomorphism ϕ : F → G with ϕ(a, b) = f (a, b) for all (a, b).
Now S ⊆ kerϕ because f is R-biadditive, and so Exercise 2.11 on page 66
says that ϕ induces a map f̂ : A ⊗R B = F/S → G by

f̂ (a ⊗ b) = f̂ ((a, b)+ S) = ϕ(a, b) = f (a, b).

This equation may be rewritten as f̂ h = f ; that is, the diagram commutes.
Finally, f̂ is unique because A ⊗R B is generated by the set of all a ⊗ b’s,
and Exercise 2.3 on page 64 says that two homomorphisms agreeing on a set
of generators are equal. •

Remark. Since A ⊗R B is generated by the elements of the form a ⊗ b,
every u ∈ A ⊗R B has the form

u =
∑

i

ai ⊗ bi .

This expression for u is not unique; for example, there are expressions

0 = a ⊗ (b + b′)− a ⊗ b − a ⊗ b′,
0 = (a + a′)⊗ b − a ⊗ b − a′ ⊗ b,

0 = ar ⊗ b − a ⊗ rb.

Therefore, given some abelian group G, we must be suspicious of a definition
of a map u : A ⊗R B → G given by specifying u on the generators a ⊗ b;
such a “function” u may not be well-defined, because elements have many
expressions in terms of these generators. In essence, u is defined only on
F , the free abelian group with basis A × B, and we must still show that
u(S) = {0}, because A ⊗R B = F/S. The simplest (and safest!) procedure
is to define an R-biadditive function on A × B; it will yield a (well-defined)
homomorphism. We illustrate this procedure in the next proof. �
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Proposition 2.46. Let f : AR → A′R and g : R B → R B ′ be maps of right
R-modules and left R-modules, respectively. Then there is a unique Z-map,
denoted by f ⊗ g : A ⊗R B → A′ ⊗R B ′, with

f ⊗ g : a ⊗ b �→ f (a)⊗ g(b).

Proof. The function ϕ : A×B → A′⊗R B ′, given by (a, b) �→ f (a)⊗g(b),
is easily seen to be an R-biadditive function. For example,

ϕ : (ar, b) �→ f (ar)⊗ g(b) = f (a)r ⊗ g(b)

and
ϕ : (a, rb) �→ f (a)⊗ g(rb) = f (a)⊗ rg(b);

these are equal because of the identity a′r ⊗ b′ = a′ ⊗ rb′ in A′ ⊗R B ′. The
biadditive function ϕ yields a unique homomorphism A ⊗R B → A′ ⊗R B ′
taking a ⊗ b �→ f (a)⊗ g(b). •

Corollary 2.47. Given maps of right R-modules, A
f→ A′

f ′→ A′′, and maps

of left R-modules, B
g→ B ′ g′→ B ′′,

( f ′ ⊗ g′)( f ⊗ g) = f ′ f ⊗ g′g.

Proof. Both maps take a ⊗ b �→ f ′ f (a)⊗ g′g(b), and so the uniqueness of
such a homomorphism gives the desired equation. •

Theorem 2.48. Given AR, there is an additive functor FA : RMod → Ab,
defined by

FA(B) = A ⊗R B and FA(g) = 1A ⊗ g,

where g : B → B ′ is a map of left R-modules.
Similarly, given R B, there is an additive functor G B : ModR → Ab,

defined by
G B(A) = A ⊗R B and G B( f ) = f ⊗ 1B,

where f : A → A′ is a map of right R-modules.

Proof. First, note that FA preserves identities: FA(1B) = 1A ⊗ 1B is the
identity 1A⊗B , because it fixes every generator a ⊗ b. Second, FA preserves
composition:

FA(g
′g) = 1A ⊗ g′g = (1A ⊗ g′)(1A ⊗ g) = FA(g

′)FA(g),

by Corollary 2.47. Therefore, FA is a functor.
To see that FA is additive, we must show that FA(g+h) = FA(g)+FA(h),

where g, h : B → B ′; that is, 1A ⊗ (g + h) = 1A ⊗ g + 1A ⊗ h. This is also
easy, for both these maps send a ⊗ b �→ a ⊗ g(b)+ a ⊗ h(b). •
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Notation. We denote the functor FA by A⊗R �, and we denote the functor
G B by �⊗R B.

Corollary 2.49. If f : M → M ′ and g : N → N ′ are, respectively, isomor-
phisms of right and left R-modules, then f ⊗ g : M ⊗R N → M ′ ⊗R N ′ is an
isomorphism of abelian groups.

Proof. Now f ⊗ 1N is the value of the functor �⊗R N on the isomorphism
f , and hence f ⊗1N is an isomorphism; similarly, 1M ⊗g is an isomorphism.
By Corollary 2.47, we have f ⊗ g = ( f ⊗ 1N )(1M ⊗ g). Therefore, f ⊗ g
is an isomorphism, being the composite of isomorphisms. •

Before continuing with properties of tensor products, we pause to discuss
a technical point. In general, the tensor product of two modules is only an
abelian group; is it ever a module? If so, do the tensor product functors then
take values in a module category, not merely in Ab; that is, is 1 ⊗ f then a
map of modules? The notion of bimodule usually answers such questions.

Definition. Let R and S be rings and let M be an abelian group. Then M
is an (R, S)-bimodule, denoted by R MS , if M is a left R-module and a right
S-module, and the two scalar multiplications are related by an associative law:

r(ms) = (rm)s

for all r ∈ R, m ∈ M , and s ∈ S.

If M is an (R, S)-bimodule, it is permissible to write rms with no paren-
theses, for the definition of bimodule says that the two possible associations
agree.

Example 2.50.

(i) Every ring R is an (R, R)-bimodule; the extra identity is just the asso-
ciativity of multiplication in R. More generally, if S ⊆ R is a subring,
then R is an (R, S)-bimodule.

(ii) Every two-sided ideal in a ring R is an (R, R)-bimodule.

(iii) If M is a left R-module (i.e., if M = R M), then M is an (R,Z)-
bimodule; that is, M = R MZ. Similarly, a right R-module N is a
bimodule ZNR .

(iv) If R is commutative, then every left (or right) R-module is an (R, R)-
bimodule. In more detail, if M = R M , define a new scalar multiplica-
tion M × R → M by (m, r) �→ rm. To see that M is a right R-module,
we must show that m(rr ′) = (mr)r ′, that is, (rr ′)m = r ′(rm), and this
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is so because rr ′ = r ′r . Finally, M is an (R, R)-bimodule because both
r(mr ′) and (rm)r ′ are equal to (rr ′)m.

(v) We can make any left kG-module M into a right kG-module by defining
mg = g−1m for every m ∈ M and every g in the group G. Even though
M is both a left and right kG-module, it is usually not a (kG, kG)-
bimodule because the required associativity formula may not hold. In
more detail, let g, h ∈ G and m ∈ M . Now g(mh) = g(h−1m) =
(gh−1)m; on the other hand, (gm)h = h−1(gm) = (h−1g)m. To see
that these can be different, take M = kG, m = 1, and g and h noncom-
muting elements of G. �

The next proposition uses tensor product to extend scalars.

Proposition 2.51 (Extending Scalars). Let S be a subring of a ring R.

(i) Given a bimodule R AS and a left module S B, then the tensor product
A ⊗S B is a left R-module, where

r(a ⊗ b) = (ra)⊗ b.

Similarly, given AS and S BR, the tensor product A ⊗S B is a right R-
module, where (a ⊗ b)r = a ⊗ (br).

(ii) The ring R is an (R, S)-bimodule and, if M is a left S-module, then
R ⊗S M is a left R-module.

Proof.

(i) For fixed r ∈ R, the multiplication μr : A → A, defined by a �→ ra, is
an S-map, for A being a bimodule gives

μr (as) = r(as) = (ra)s = μr (a)s.

If F = � ⊗S B : ModS → Ab, then F(μr ) : A ⊗S B → A ⊗S B is a
(well-defined) Z-homomorphism. Thus, F(μr ) = μr ⊗ 1B : a ⊗ b �→
(ra)⊗b, and so the formula in the statement of the lemma makes sense.
It is now straightforward to check that the module axioms do hold for
A ⊗S B.

(ii) Example 2.50(i) shows that R can be viewed as an (R, S)-bimodule,
and so part (i) applies. •

For example, if V and W are vector spaces over a field k, then their tensor
product V ⊗k W is also a vector space over k.
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Example 2.52. If H is a subgroup of a group G, then a representation of
H gives a left k H -module B. Now k H ⊆ kG is a subring, so that kG is a
(kG, k H)-bimodule. Therefore, Proposition 2.51(ii) shows that kG⊗k H B is a
left kG-module. The corresponding representation of G is called the induced
representation. �

We see that proving properties of tensor product is often a matter of show-
ing that obvious maps are, indeed, well-defined functions.

Corollary 2.53.

(i) Given a bimodule S AR, the functor A ⊗R � : RMod → Ab actually
takes values in SMod.

(ii) If R is a ring, then A ⊗R B is a Z(R)-module, where

r(a ⊗ b) = (ra)⊗ b = a ⊗ rb

for all r ∈ Z(R), a ∈ A, and b ∈ B.

(iii) If R is a ring, r ∈ Z(R), and μr : B → B is multiplication by r, then

1A ⊗ μr : A ⊗R B → A ⊗R B

is also multiplication by r.

Proof.

(i) By Proposition 2.51, A ⊗R B is a left S-module, where s(a ⊗ b) =
(sa) ⊗ b, and so it suffices to show that if g : B → B ′ is a map of left
R-modules, then 1A ⊗ g is an S-map. But

(1A ⊗ g)[s(a ⊗ b)] = (1A ⊗ g)[(sa)⊗ b]

= (sa)⊗ gb

= s(a ⊗ gb) by Proposition 2.51

= s(1A ⊗ g)(a ⊗ b).

(ii) Since the center Z(R) is commutative, we may regard A and B as
(Z(R), Z(R))-bimodules by defining ar = ra and br = rb for all
r ∈ Z(R), a ∈ A, and b ∈ B. Proposition 2.51(i) now gives

r(a ⊗ b) = (ra)⊗ b = (ar)⊗ b = a ⊗ rb.

(iii) This statement merely sees the last equation a ⊗ rb = r(a ⊗ b) from a
different viewpoint:

(1A ⊗ μr )(a ⊗ b) = a ⊗ rb = r(a ⊗ b). •
The next technical result complements Proposition 2.51: when one of the

modules is a bimodule, then Hom also has extra structure. The reader will
frequently refer back to this.
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Proposition 2.54. Let R and S be rings.

(i) Given R AS and R B, then HomR(A, B) is a left S-module, where
s f : a �→ f (as), and HomR(A,�) is a functor RMod → SMod.

(ii) Given R AS and BS, then HomS(A, B) is a right R-module, where
f r : a �→ f (ra), and HomS(A,�) is a functor ModS → ModR.

(iii) Given S BR and AR, then HomR(A, B) is a left S-module, where
s f : a �→ s[ f (a)], and HomR(�, B) is a functor ModR → SMod.

(iv) Given S BR and S A, then HomS(A, B) is a right R-module, where
f r : a �→ f (a)r , and HomS(A,�) is a functor SMod → ModR.

Proof. All parts are routine. •

Remark. Let f : A → B be an R-map. Suppose we write f a [instead of
f (a)] when A is a right R-module and a f [instead of (a) f ] when A is a left
R-module (that is, write the function symbol f on the side opposite the scalar
action). With this notation, each of the four parts of Proposition 2.54 is an
associative law. For example, in part (i) with both A and B left R-modules,
writing s f for s ∈ S, we have a(s f ) = (as) f . Similarly, in part (ii), we
define f r , for r ∈ R so that ( f r)a = f (ra). �

We have made some progress in our original problem: given a left S-
module M , where S is a subring of a ring R, we can create a left R-module
from M by extending scalars; that is, Proposition 2.51 shows that R ⊗S M
is a left R-module. However, we still ask, among other things, whether a
left S-module M can be imbedded in R ⊗S M . More generally, let A′ ⊆ A
be right R-modules and let i : A′ → A be the inclusion; if B is a left R-
module, is i ⊗ 1B : A′ ⊗R B → A ⊗R B an injection? Example 2.64 gives
a negative answer, and investigating ker i ⊗ 1B was one of the first tasks of
Homological Algebra. The best way to attack this problem is to continue
studying properties of tensor functors.

We have defined R-biadditive functions for arbitrary, possibly noncom-
mutative, rings R, whereas we have defined R-bilinear functions only for
commutative rings. Recall that if R is commutative and A, B, and M are R-
modules, then a function f : A × B → M is R-bilinear if f is R-biadditive
and f (ar, b) = f (a, rb) = r f (a, b). Tensor product was defined as the solu-
tion of a certain universal mapping problem involving R-biadditive functions;
we show now, when R is commutative, that tensor product A⊗R B also solves
the universal mapping problem for R-bilinear functions.
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Proposition 2.55. If R is a commutative ring and A, B are R-modules, then
A⊗R B is an R-module, the function h : A× B → A⊗R B is R-bilinear, and,
for every R-module M and every R-bilinear function g : A × B → M, there
exists a unique R-homomorphism ĝ : A ⊗R B → M making the following
diagram commute.

A × B
h ��

g ��		
			

		
A ⊗R B

ĝ
 
 
 


M

Proof. By uniqueness, as in the proof of Proposition 2.44, it suffices to show
that A ⊗R B is a solution if we define h(a, b) = a ⊗ b; note that h is also
R-bilinear, thanks to Corollary 2.53. Since g is R-bilinear, it is R-biadditive,
and so there does exist a Z-homomorphism ĝ : A⊗R B → M with ĝ(a⊗b) =
g(a, b) for all (a, b) ∈ A × B. We need only show that ĝ is an R-map. If
u ∈ R,

ĝ(u(a ⊗ b)) = ĝ((ua)⊗ b)

= g(ua, b)

= ug(a, b), for g is R-bilinear

= uĝ(a ⊗ b). •
The tensor functors obey certain commutativity and associativity laws that

have no analogs for the Hom functors.

Proposition 2.56 (Commutativity).

(i) If R is a ring and MR, R N are modules, then there is a Z-isomorphism

τ : M ⊗R N → N ⊗Rop M

with τ : m ⊗ n �→ n ⊗ m. The map τ is natural in the sense that the
following diagram commutes:

M ⊗R N
τ ��

f⊗g ��

N ⊗Rop M
g⊗ f��

M ′ ⊗R N ′
τ

�� N ′ ⊗Rop M ′.

(ii) If R is a commutative ring and M and N are R-modules, then τ is an
R-isomorphism.

Proof. Consider the diagram

M × N
h ��

f ����
���

���
��

M ⊗R N

τ
��� �

�
�

�

N ⊗Rop M,
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where f (m, n) = n ⊗ m. It is easy to see that f is R-biadditive, and so there
is a unique Z-map τ : M ⊗R N → N ⊗Rop M with τ : m ⊗ n �→ n ⊗ m. A
similar diagram, interchanging the roles of M ⊗R N and N ⊗Rop M , gives
a Z-map in the reverse direction taking n ⊗ m �→ m ⊗ n. Both composites
of these maps are obviously identity maps, and so τ is an isomorphism. The
proof of naturality is routine, as is the proof of (ii). •

Proposition 2.57 (Associativity). Given AR,R BS, and SC, there is an iso-
morphism

θ : A ⊗R (B ⊗S C) ∼= (A ⊗R B)⊗S C

given by
a ⊗ (b ⊗ c) �→ (a ⊗ b)⊗ c.

Proof. Define a triadditive function h : A × B × C → G, where G is an
abelian group, to be a function satisfying

h(ar, b, c) = h(a, rb, c) and h(a, bs, c) = h(a, b, sc)

for all r ∈ R and s ∈ S, and that is additive in each of the three variables
when we fix the other two [e.g., h(a + a′, b, c) = h(a, b, c) + h(a′, b, c)].
Consider the univeral mapping problem described by the diagram

A × B × C
h ��

f ����
���

���
��

T (A, B,C)

f̃���
�

�
�

�

G.

Here, an abelian group T (A, B,C) and a triadditive function h are given once
for all, while G is any abelian group, f is triadditive, and f̃ is the unique Z-
homomorphism making the diagram commute.

We show that A ⊗R (B ⊗S C) is a solution to this universal mapping
problem. Define a triadditive function h : A × B × C → A ⊗R (B ⊗S C) by
h : (a, b, c) �→ a ⊗ (b ⊗ c). Let f : A × B × C → G be triadditive, where
G is some abelian group. If a ∈ A, the function fa : B × C → G, defined by
(b, c) �→ f (a, b, c), is S-biadditive, and so it gives a unique homomorphism
f̃a : B⊗S C → G taking b⊗c �→ f (a, b, c). If a, a′ ∈ A, then f̃a+a′(b⊗c) =
f (a+a′, b, c) = f (a, b, c)+ f (a′, b, c) = f̃a(b⊗c)+ f̃a′(b⊗c). It follows
that the function ϕ : A×(B⊗S C) → G, defined by ϕ(a, b⊗c) = f̃a(b⊗c), is
additive in both variables. It is R-biadditive, for if r ∈ R, then ϕ(ar, b⊗ c) =
f̃ar (b ⊗ c) = f (ar, b, c) = f (a, rb, c) = f̃a(rb ⊗ c) = ϕ(a, r(b ⊗ c)).
Hence, there is a unique homomorphism f̃ : A ⊗R (B ⊗S C) → G with
a ⊗ (b ⊗ c) �→ ϕ(a, b ⊗ c) = f (a, b, c); that is, f̃ η = f . Therefore,
A ⊗R (B ⊗S C) and h give a solution to the universal mapping problem.
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In a similar way, we can prove that (A ⊗R B) ⊗S C and the triadditive
function (a, b, c) �→ a⊗b⊗ c is another solution. Uniqueness of solutions to
universal mapping problems, as in the proof of Proposition 2.44, shows that
there is an isomorphism A⊗R (B⊗S C) → (A⊗R B)⊗S C with a⊗(b⊗c) �→
(a ⊗ b)⊗ c. •

The reader can construct another proof of associativity in the spirit of our
proof of the existence of A ⊗R B as a quotient of a free abelian group; see
Exercise 2.30 on page 94.

A set A with an associative binary operation satisfies generalized asso-
ciativity if for all n ≥ 3 and ai ∈ A for all i , every product a1 · · · an needs no
parentheses to be well-defined. Generalized associativity for tensor product
does hold: every product A1 ⊗ · · · ⊗ An needs no parentheses to be well-
defined (see Exercise 2.30 on page 94); however, it does not follow from the
fact just cited because equality A ⊗R (B ⊗S C) = (A ⊗R B) ⊗S C was not
proved; Proposition 2.57 only says that these two groups are isomorphic. (See
Mac Lane, Categories for the Working Mathematician, Section VII 3).

Recall Exercise 2.13 on page 66: for any left R-module M , for any f ∈
HomR(R, M), and for any r, s ∈ R, the map r f : s �→ f (sr) defines a natural
isomorphism from HomR(R,�) → M to the identity functor on RMod. Here
is the analog for tensor products.

Proposition 2.58. There is a natural R-isomorphism

ϕM : R ⊗R M → M,

for every left R-module M, where ϕM : r ⊗ m �→ rm.

Proof. The function R × M → M , given by (r,m) �→ rm, is R-biadditive,
and so there is an R-homomorphism ϕ : R ⊗R M → M with r ⊗ m �→ rm
[we are using the fact that R is an (R, R)-bimodule]. To see that ϕ is an R-
isomorphism, it suffices to find a Z-homomorphism f : M → R ⊗R M with
ϕ f and f ϕ identity maps (for it is now only a question of whether the function
ϕ is a bijection). Such a Z-map is given by f : m �→ 1 ⊗ m.

Naturality is proved by showing commutativity of the following diagram.

R ⊗R M
ϕM ��

1⊗ f
��

M

f
��

R ⊗R N
ϕN

�� N

It suffices to check the maps on generators r ⊗m. Going clockwise, r ⊗m �→
rm �→ f (rm); going counterclockwise, r⊗m �→ r⊗ f (m) �→ r f (m). These
are equal because f is an R-map. •
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Definition. Let k be a commutative ring. Then a ring R is a k-algebra if R
is a k-module satisfying

a(rs) = (ar)s = r(as)

for all a ∈ k and r, s ∈ R.

Consider the important special case in which k is isomorphic to a subring
k′ of R. In this case, the defining identity with s = 1 is ar = ra for all r ∈ R;
that is, k′ ⊆ Z(R), the center of R. This explains why we assume, in the
definition of k-algebra, that k is commutative.

Example 2.59.

(i) If R is a k-algebra, then R[x] is also a k-algebra.

(ii) If k is a commutative ring, then the ring of matrices R = Matn(k) is a
k-algebra.

(iii) If k is a field and R is a finite-dimensional k-algebra, then every left or
right ideal I in R is a subspace of R, so that dim(I ) ≤ dim(R). A basis
of I generates I as a k-module; a fortiori, it generates I as an R-module,
and so I is finitely generated.

(iv) If k is a commutative ring and G is a (multiplicative) group, then the
group ring kG is a k-algebra. �

The tensor product of two k-algebras is itself a k-algebra.

Proposition 2.60. If k is a commutative ring and A and B are k-algebras,
then the tensor product A ⊗k B is a k-algebra if we define

(a ⊗ b)(a′ ⊗ b′) = aa′ ⊗ bb′.

Proof. First, A ⊗k B is a k-module, by Theorem 2.48. Let μ : A × A → A
and ν : B × B → B be the given multiplications on the algebras A and B,
respectively. We must show there is a multiplication on A ⊗k B as in the
statement; that is, there is a k-bilinear function λ : (A ⊗k B) × (A ⊗k B) →
A⊗k B with λ : (a⊗b, a′⊗b′) �→ aa′⊗bb′. Such a function λ exists because
it is the composite

(A ⊗k B)× (A ⊗k B) → (A ⊗k B)⊗ (A ⊗k B) (1)

→ [(A ⊗k B)⊗k A] ⊗k B (2)

→ [A ⊗k (B ⊗k A)] ⊗k B (3)

→ [A ⊗k (A ⊗k B)] ⊗k B (4)

→ [(A ⊗k A)⊗k B] ⊗k B (5)

→ (A ⊗k A)⊗ (B ⊗k B) (6)

→ A ⊗k B : (7)
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map (1) is (a⊗b, a′⊗b′) �→ a⊗b⊗a′⊗b′; maps (2) and (3) are associativity;
map (4) is 1 ⊗ τ ⊗ 1, where τ : B ⊗k A → A ⊗k B takes b ⊗ a �→ a ⊗ b;
maps (5) and (6) are associativity; the last map is μ⊗ ν. Each of these maps
is well-defined (see my book Advanced Modern Algebra, Section 9.6). The
reader may now verify that the k-module A ⊗k B is a k-algebra. •

Bimodules can be viewed as left modules over a suitable ring.

Corollary 2.61. Let R and S be k-algebras, where k is a commutative ring.
Every (R, S)-bimodule M is a left R ⊗k Sop-module, where

(r ⊗ s)m = rms.

Proof. The function R × Sop × M → M , given by (r, s,m) �→ rms, is
k-trilinear, and this can be used to prove that (r ⊗ s)m = rms is well-defined.
Let us write s ∗ s′ for the product in Sop; that is, s ∗ s′ = s′s. The only
axiom that is not obvious is axiom (iii) in the definition of module: if a, a′ ∈
R ⊗k Sop, then (aa′)m = a(a′m), and it is enough to check that this is true
for generators a = r ⊗ s and a′ = r ′ ⊗ s′ of R ⊗k Sop. But

[(r ⊗ s)(r ′ ⊗ s′)]m = [rr ′ ⊗ s ∗ s′]m
= (rr ′)m(s ∗ s′)
= (rr ′)m(s′s)
= r(r ′ms′)s.

On the other hand,

(r ⊗ s)[(r ′ ⊗ s′)m] = (r ⊗ s)[r ′(ms′)] = r(r ′ms′)s. •

Definition. If A is a k-algebra, where k is a commutative ring, then its
enveloping algebra is

Ae = A ⊗k Aop.

Corollary 2.62. If A is a k-algebra, where k is a commutative ring, then
A is a left Ae-module whose submodules are the two-sided ideals. If A is a
simple k-algebra, then A is a simple Ae-module.

Proof. Since a k-algebra A is an (A, A)-bimodule, it is a left Ae-module. •
We now present properties of tensor products that will help us compute

them. First, we give a result about Hom, and then we give the analogous result
for tensor. Corollary 2.22(ii) says that any additive functor T : RMod → Ab
preserves direct sums of modules: T (A ⊕ C) ∼= T (A)⊕ T (C). If we regard
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such a direct sum as a split short exact sequence, then we may specialize the
corollary by taking T = X ⊗R � and saying that if

0 → A
i→ B

p→ C → 0

is a split short exact sequence, then so is

0 → X ⊗R A
1⊗i−→ X ⊗R B

1⊗p−→ X ⊗R C → 0.

This leads us to a more general question: if

0 → A
i→ B

p→ C → 0

is any short exact sequence, not necessarily split, is

0 → X ⊗R A
1⊗i−→ X ⊗R B

1⊗p−→ X ⊗R C → 0

also an exact sequence? Here is the answer (there is no misprint in the state-
ment of the theorem: “0 →” should not appear at the beginning of the se-
quences, and we shall discuss this point after the proof).

Theorem 2.63 (Right Exactness).5 Let A be a right R-module, and let

B ′ i→ B
p→ B ′′ → 0

be an exact sequence of left R-modules. Then

A ⊗R B ′ 1⊗i−→ A ⊗R B
1⊗p−→ A ⊗R B ′′ → 0

is an exact sequence of abelian groups.

Remark. We will give a nicer proof of this theorem once we prove the
Adjoint Isomorphism (see Proposition 2.78). �

Proof. There are three things to check.

(i) im(1 ⊗ i) ⊆ ker(1 ⊗ p).

It suffices to prove that the composite is 0; but

(1 ⊗ p)(1 ⊗ i) = 1 ⊗ pi = 1 ⊗ 0 = 0.

5These functors are called right exact because the functored sequence has “→ 0” on
the right-hand side.
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(ii) ker(1 ⊗ p) ⊆ im(1 ⊗ i).

Let E = im(1 ⊗ i). By part (i), E ⊆ ker(1 ⊗ p), and so 1 ⊗ p induces
a map p̂ : (A ⊗ B)/E → A ⊗ B ′′ with

p̂ : a ⊗ b + E �→ a ⊗ pb,

where a ∈ A and b ∈ B. Now if π : A⊗ B → (A⊗ B)/E is the natural
map, then

p̂π = 1 ⊗ p,

for both send a ⊗ b �→ a ⊗ pb.

A ⊗R B
π ��

1⊗p ���
��

��
��

��
(A ⊗R B)/E

p̂�����
���

���
�

A ⊗ B ′′

Suppose we show that p̂ is an isomorphism. Then

ker(1 ⊗ p) = ker p̂π = kerπ = E = im(1 ⊗ i),

and we are done. To see that p̂ is, indeed, an isomorphism, we construct
its inverse A ⊗ B ′′ → (A ⊗ B)/E . Define

f : A × B ′′ → (A ⊗ B)/E

as follows. If b′′ ∈ B ′′, there is b ∈ B with pb = b′′, because p is
surjective; let

f : (a, b′′) �→ a ⊗ b.

Now f is well-defined: if pb1 = b′′, then p(b − b1) = 0 and b − b1 ∈
ker p = im i . Thus, there is b′ ∈ B ′ with ib′ = b − b1, and hence
a⊗ (b−b1) = a⊗ ib′ ∈ im(1⊗ i) = E . Clearly, f is R-biadditive, and
so the definition of tensor product gives a homomorphism f̂ : A⊗B ′′ →
(A ⊗ B)/E with f̂ (a ⊗ b′′) = a ⊗ b + E . The reader may check that
f̂ is the inverse of p̂, as desired.

(iii) 1 ⊗ p is surjective.

If
∑

ai ⊗ b′′i ∈ A ⊗ B ′′, then there exist bi ∈ B with pbi = b′′i for all
i , for p is surjective. But

1 ⊗ p :
∑

ai ⊗ bi �→
∑

ai ⊗ pbi =
∑

ai ⊗ b′′i . •
A similar statement holds for the functor �⊗R B: if B is a left R-module

and A′ i→ A
p→ A′′ → 0 is a short exact sequence of right R-modules, then

the sequence

A′ ⊗R B
i⊗1−→ A ⊗R B

p⊗1−→ A′′ ⊗R B → 0

is exact.
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Definition. A (covariant) functor T : RMod → Ab is called right exact if
exactness of a sequence of left R-modules

B ′ i→ B
p→ B ′′ → 0

implies exactness of the sequence

T (B ′) T (i)−→ T (B)
T (p)−→ T (B ′′) → 0.

There is a similar definition for covariant functors ModR → Ab.

The functors A ⊗R � and �⊗R B are right exact functors.
The next example shows why “0 →” is absent in Theorem 2.63.

Example 2.64. Consider the exact sequence of abelian groups

0 → Z
i−→ Q → Q/Z → 0,

where i is the inclusion. By right exactness, there is an exact sequence

I2 ⊗ Z
1⊗i−→ I2 ⊗Q → I2 ⊗ (Q/Z) → 0

(we abbreviate ⊗Z to ⊗ here). Now I2 ⊗Z ∼= I2, by Proposition 2.58. On the
other hand, if a ⊗ q is a generator of I2 ⊗Q, then

a ⊗ q = a ⊗ (2q/2) = 2a ⊗ (q/2) = 0 ⊗ (q/2) = 0.

Therefore, I2 ⊗Q = {0}, and so 1 ⊗ i cannot be an injection.
Thus, tensor product may not preserve injections: if i : B ′ → B is injec-

tive, the map 1X ⊗ i may have a nonzero kernel. We will determine ker 1X ⊗ i
in general when we study the functor Tor. �

The next theorem says that tensor product preserves arbitrary direct sums;
compare it with Theorems 2.30 and 2.31.

Theorem 2.65. Let AR be a right module, and let (R Bi )i∈I be a family of
left R-modules.

(i) There is a Z(R)-isomorphism

τ : A ⊗R

⊕
i∈I

Bi →
⊕
i∈I

(A ⊗R Bi )

with τ : a ⊗ (bi ) �→ (a ⊗ bi ). Moreover, if R is commutative, then τ is
an R-isomorphism.
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(ii) The isomorphism τ is natural: if (C j ) j∈J is a family of left R-modules
and, for each i ∈ I , there exist j ∈ J and an R-map σi j : Bi → C j ,
then there is a commutative diagram

A ⊗R
⊕

i∈I Bi
1⊗σ ��

τ
��

A ⊗R
⊕

j∈J C j

τ
��⊕

i∈I (A ⊗R Bi )
σ̃

��
⊕

j∈J (A ⊗R C j ),

where σ : (bi ) �→ (σi j bi ) and σ̃ : (a ⊗ bi ) �→ (a ⊗ σi j bi ).

Proof.

(i) Since the function f : A × (⊕
i Bi

) → ⊕
i (A ⊗R Bi ), given by

f : (a, (bi )) �→ (a ⊗ bi ), is R-biadditive, there is a Z-homomorphism

τ : A ⊗R
(⊕

i

Bi
)→⊕

i

(A ⊗R Bi )

with τ : a⊗(bi ) �→ (a⊗bi ). Now A⊗R
(⊕

i∈I Bi
)

and
⊕

i∈I

(
A⊗R Bi

)
are Z(R)-modules, and τ is a Z(R)-map (for τ is the function given by
the universal mapping problem in Proposition 2.55).

To see that τ is an isomorphism, we give its inverse. Denote the in-
jection Bk → ⊕

i Bi by λk [where λkbk ∈ ⊕
i Bi has kth coordi-

nate bk and all other coordinates 0], so that 1A ⊗ λk : A ⊗R Bk →
A ⊗R

(⊕
i Bi

)
. That direct sum is the coproduct in RMod gives a ho-

momorphism θ :
⊕

i (A⊗R Bi ) → A⊗R
(⊕

i Bi
)

with θ : (a ⊗ bi ) �→
a⊗∑i λi bi . It is now routine to check that θ is the inverse of τ , so that
τ is an isomorphism.

(ii) Going clockwise, a ⊗ (bi ) �→ a ⊗ (σi j bi ) �→ (a ⊗ σi j bi ); going coun-
terclockwise, a ⊗ (bi ) �→ (a ⊗ bi ) �→ (a ⊗ σi j bi ). •

We shall see, in Example 3.52, that tensor product may not commute with
direct products.

Example 2.66. Let V and W be vector spaces over a field k. Now W is
a free k-module; say, W = ⊕

i∈I 〈wi 〉, where {wi : i ∈ I } is a basis of W .
Therefore, V ⊗k W ∼= ⊕

i∈I V ⊗k 〈wi 〉. Similarly, V = ⊕
j∈J 〈v j 〉, where

{v j : j ∈ J } is a basis of V and, for each i , V ⊗k 〈wi 〉 ∼=
⊕

j∈J 〈v j 〉 ⊗k 〈wi 〉.
But the one-dimensional vector spaces 〈v j 〉 and 〈wi 〉 are isomorphic to k, and
Proposition 2.58 gives 〈v j 〉 ⊗k 〈wi 〉 ∼= 〈v j ⊗wi 〉. Hence, V ⊗k W is a vector
space over k having {v j ⊗ wi : i ∈ I and j ∈ J } as a basis. In case both V
and W are finite-dimensional, we have

dim(V ⊗k W ) = dim(V ) dim(W ). �
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Example 2.67. We now show that there may exist elements in a tensor prod-
uct V ⊗k V that cannot be written in the form u ⊗ w for u, w ∈ V .

Let v1, v2 be a basis of a two-dimensional vector space V over a field k.
As in Example 2.66, a basis for V ⊗k V is

v1 ⊗ v1, v1 ⊗ v2, v2 ⊗ v1, v2 ⊗ v2.

We claim that there do not exist u, w ∈ V with v1 ⊗ v2 + v2 ⊗ v1 = u ⊗ w.
Otherwise, write u and w in terms of v1 and v2:

v1 ⊗ v2 + v2 ⊗ v1 = u ⊗ w

= (av1 + bv2)⊗ (cv1 + dv2)

= acv1 ⊗ v1 + adv1 ⊗ v2 + bcv2 ⊗ v1 + bdv2 ⊗ v2.

By linear independence of the basis, ac = 0 = bd and ad = 1 = bc. The
first equation gives a = 0 or c = 0, and either possibility, when substituted
into the second equation, gives 0 = 1. �

Proposition 2.68. If R is a ring, r ∈ Z(R), and M is a left R-module, then

R/(r)⊗R M ∼= M/r M.

In particular, for every abelian group B, we have In ⊗Z B ∼= B/nB.

Proof. There is an exact sequence

R
μr−→ R

p→ R∗ → 0,

where R∗ = R/(r) and μr is multiplication by r . Since �⊗r M is right exact,
there is an exact sequence

R ⊗R M
μr⊗1−→ R ⊗R M

p⊗1−→ R∗ ⊗R M → 0.

Consider the diagram

R ⊗R M
μr⊗1 ��

θ
��

R ⊗R M
p⊗1 ��

θ
��

R∗ ⊗R M �� 0

M μr
�� M π

�� M/r M �� 0,

where θ : R ⊗R M → M is the isomorphism of Proposition 2.58, namely,
θ : a⊗m �→ am, where a ∈ R and m ∈ M . This diagram commutes, for both
composites take a ⊗ m �→ ram. Proposition 2.70 applies to this diagram,
yielding R∗ ⊗R M ∼= M/r M . •
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Example 2.69. Exercise 2.29 on page 94 shows that there is an isomorphism
of abelian groups Im ⊗ In ∼= Id , where d = (m, n). It follows that if (m, n) =
1, then Im ⊗ In = {0}. Of course, this tensor product is still {0} if we regard
Im and In as Z-algebras. In this case, the tensor product is the zero ring. Had
we insisted, in the definition of ring, that 1 	= 0, then the tensor product of
rings would not always be defined. �

Proposition 2.70. Given a commutative diagram with exact rows,

A′
i ��

f
��

A
p ��

g

��

A′′ ��

h
���
�
� 0

B ′
j

�� B q
�� B ′′ �� 0,

there exists a unique map h : A′′ → B ′′ making the augmented diagram com-
mute. Moreover, h is an isomorphism if f and g are isomorphisms.

Proof. If a′′ ∈ A′′, then there is a ∈ A with p(a) = a′′ because p is surjec-
tive. Define h(a′′) = qg(a). Of course, we must show that h is well-defined;
that is, if u ∈ A satifies p(u) = a′′, then qg(u) = qg(a). Since p(a) = p(u),
we have p(a − u) = 0, so that a − u ∈ ker p = im i , by exactness. Hence,
a − u = i(a′), for some a′ ∈ A′. Thus,

qg(a − u) = qgi(a′) = q j f (a′) = 0,

because q j = 0. Therefore, h is well-defined. If h′ : A′′ → B ′′ satisfies
h′ p = qg and if a′′ ∈ A′′, choose a ∈ A with pa = a′′. Then h′ pa = h′a′′ =
qga = ha′′, and so h is unique.

To see that the map h is an isomorphism, we construct its inverse. As in
the first paragraph, there is a map h′ making the following diagram commute:

B ′ j ��

f −1

��

B
q ��

g−1

��

B ′′ ��

h′
���
�
� 0

A′ i
�� A p

�� A′′ �� 0.

We claim that h′ = h−1. Now h′q = pg−1. Hence,

h′hp = h′qg = pg−1g = p;

since p is surjective, we have h′h = 1A′′ . A similar calculation shows that the
other composite hh′ is also the identity. Therefore, h is an isomorphism. •
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The proof of the last proposition is an example of diagram chasing. Such
proofs appear long, but they are, in truth, quite mechanical. We choose an
element and, at each step, there are only two things to do with it: either push
it along an arrow or lift it (i.e., choose an inverse image) back along another
arrow. The next proposition is also proved in this way.

Proposition 2.71. Given a commutative diagram with exact rows,

0 �� A′
i ��

f
���
�
� A

p ��

g

��

A′′

h
��

0 �� B ′
j

�� B q
�� B ′′,

there exists a unique map f : A′ → B ′ making the augmented diagram com-
mute. Moreover, f is an isomorphism if g and h are isomorphisms.

Proof. A diagram chase. •
Who would think that a lemma about 10 modules and 13 homomorphisms

could be of any interest?

Proposition 2.72 (Five Lemma). Consider a commutative diagram with
exact rows.

A1 ��

h1
��

A2 ��

h2
��

A3 ��

h3
��

A4 ��

h4
��

A5

h5
��

B1 �� B2 �� B3 �� B4 �� B5

(i) If h2 and h4 are surjective and h5 is injective, then h3 is surjective.

(ii) If h2 and h4 are injective and h1 is surjective, then h3 is injective.

(iii) If h1, h2, h4, and h5 are isomorphisms, then h3 is an isomorphism.

Proof. A diagram chase. •
We have already seen, in Example 2.69, that a tensor product of two

nonzero abelian groups can be zero. Here is another instance of this.

Definition. An abelian group D is called divisible if, for each d ∈ D and
every nonzero natural number n, there exists d ′ ∈ D with d = nd ′.
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It is easy to see that Q is a divisible abelian group. Moreover, every
direct sum and every direct product of divisible groups is divisible. Thus, R is
divisible, for it is a vector space over Q and, hence, it is a direct sum of copies
of Q (for it has a basis); similarly, C is divisible. Every quotient of a divisible
group is divisible. Thus, R/Z and Q/Z are divisible abelian groups (note that
R/Z ∼= S1, the unit circle in C, via x + Z �→ e2π i x ).

Proposition 2.73. If T is an abelian group with every element of finite order
and if D is a divisible abelian group, then T ⊗Z D = {0}.
Proof. It suffices to show that each generator t ⊗d, where t ∈ T and d ∈ D,
is 0 in T ⊗Z D. Since t has finite order, there is a nonzero integer n with
nt = 0. As D is divisible, there exists d ′ ∈ D with d = nd ′. Hence,

t ⊗ d = t ⊗ nd ′ = nt ⊗ d ′ = 0 ⊗ d ′ = 0. •
We now understand why we cannot make a finite abelian group G into a

nonzero Q-module, for G ⊗Z Q = {0}.

Corollary 2.74. If D is a nonzero divisible abelian group with every element
of finite order (e.g., D = Q/Z), then there is no multiplication D × D → D
making D a ring.

Proof. Suppose that there is a multiplication μ : D × D → D making D
a ring. If 1 is the identity, we have 1 	= 0, lest D be the zero ring, which
has only one element. Since multiplication in a ring is Z-bilinear, there is a
homomorphism μ̃ : D⊗Z D → D with μ̃(d⊗d ′) = μ(d, d ′) for all d, d ′ ∈ D.
In particular, if d 	= 0, then μ̃(d⊗1) = μ(d, 1) = d 	= 0. But D⊗Z D = {0},
by Proposition 2.73, so that μ̃(d ⊗ 1) = 0. This contradiction shows that no
multiplication μ on D exists. •

2.2.1 Adjoint Isomorphisms
There is a remarkable relationship between Hom and ⊗. The key idea is that
a function of two variables, say, f : A × B → C , can be viewed as a one-
parameter family of functions of one variable: if we fix a ∈ A, then define
fa : B → C by b �→ f (a, b). Recall Proposition 2.51: if R and S are
rings and AR and R BS are modules, then A ⊗R B is a right S-module, where
(a ⊗ b)s = a ⊗ (bs). Furthermore, if CS is a module, then HomS(B,C)

is a right R-module, where ( f r)(b) = f (rb); thus HomR(A,HomS(B,C))

makes sense, for it consists of R-maps between right R-modules. Finally, if
F ∈ HomR(A,HomS(B,C)), we denote its value on a ∈ A by Fa , so that
Fa : B → C , defined by Fa : b �→ F(a)(b), is a one-parameter family of
functions. There are two versions of the adjoint isomorphism, arising from
two ways in which B can be a bimodule (either R BS or S BR).



92 Hom and Tensor Ch. 2

Theorem 2.75 (Adjoint Isomorphism, First Version). Given modules
AR, R BS, and CS, where R and S are rings, there is a natural isomorphism:

τA,B,C : HomS(A ⊗R B,C) → HomR(A,HomS(B,C)),

namely, for f : A ⊗R B → C, a ∈ A, and b ∈ B,

τA,B,C : f �→ τ( f ),where τ( f )a : b �→ f (a ⊗ b).

Remark. In more detail, fixing any two of A, B,C , each τA,B,C is a natural
isomorphism:

HomS(�⊗R B,C) → HomR(�,HomS(B,C)),

HomS(A ⊗R �,C) → HomR(A,HomS(�,C)),

HomS(A ⊗R B,�) → HomR(A,HomS(B,�)).

For example, if f : A → A′, there is a commutative diagram

HomS(A′ ⊗R B,C)

( f⊗1B)∗
��

τA′,B,C �� HomR(A′,HomS(B,C))

f ∗
��

HomS(A ⊗R B,C)
τA,B,C

�� HomR(A,HomS(B,C)). �

Proof. To prove that τ = τA,B,C is a Z-map, let f, g : A ⊗R B → C . The
definition of f + g gives, for all a ∈ A,

τ( f + g)a : b �→ ( f + g)(a ⊗ b)

= f (a ⊗ b)+ g(a ⊗ b)

= τ( f )a(b)+ τ(g)a(b).

Therefore, τ( f + g) = τ( f )+ τ(g).
Next, τ is injective. If τ( f )a = 0 for all a ∈ A, then 0 = τ( f )a(b) =

f (a ⊗ b) for all a ∈ A and b ∈ B. Therefore, f = 0 because it vanishes on
every generator of A ⊗R B.

We now show that τ is surjective. If F : A → HomS(B,C) is an R-map,
define ϕ : A × B → C by ϕ(a, b) = Fa(b). Now consider the diagram

A × B
h ��

ϕ ��		
			

		
A ⊗R B

ϕ̃
 
 
 


C.

It is straightforward to check that ϕ is R-biadditive, and so there exists a Z-
homomorphism ϕ̃ : A ⊗R B → C with ϕ̃(a ⊗ b) = ϕ(a, b) = Fa(b) for all
a ∈ A and b ∈ B. Therefore, F = τ(ϕ̃) and τ is surjective.

The reader can check that the maps τ are natural. •
If B = S B R is an (S, R)-bimodule, there is a variant of Theorem 2.75

(whose proof is left to the reader).
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Theorem 2.76 (Adjoint Isomorphism, Second Version). Given modules
R A, S BR, and SC, where R and S are rings, there is a natural isomorphism:

τ ′A,B,C : HomS(B ⊗R A,C) → HomR(A,HomS(B,C)),

namely, for f : B ⊗R A → C, a ∈ A, and b ∈ B,

τ ′A,B,C : f �→ τ ′( f ),where τ ′( f )a : b �→ f (b ⊗ a).

Corollary 2.77.

(i) Given modules R BS and CS, the functors HomR(�,HomS(B,C)) and
HomS(�⊗S B,C) : ModR → Ab, are naturally isomorphic.

(ii) Given modules S BR, and SC, the functors HomR(�,HomS(B,C)) and
HomS(B ⊗S �,C) : RMod → Ab are naturally isomorphic.

Proof. If B and C are fixed, then the maps τA,B,C and τ ′A,B,C form natural
isomorphisms. •

As promised earlier, here is another proof of Theorem 2.63, the right ex-
actness of tensor product.

Proposition 2.78 (Right Exactness). Let AR be a right R-module, and let

B ′ i→ B
p→ B ′′ → 0

be an exact sequence of left R-modules. Then

A ⊗R B ′ 1A⊗i−→ A ⊗R B
1A⊗p−→ A ⊗R B ′′ → 0

is an exact sequence of abelian groups.

Proof. Regard a left R-module B as an (R,Z)-bimodule, and note, for any
abelian group C , that HomZ(B,C) is a right R-module, by Proposition 2.54.
In light of Proposition 2.42, it suffices to prove that the top row of the follow-
ing diagram is exact for every C :

0 �� HomZ(A ⊗R B ′′,C) ��

τ ′′A,C ��

HomZ(A ⊗R B,C) ��

τA,C
��

HomZ(A ⊗R B ′,C)

τ ′A,C��
0 �� HomR(A, H ′′) �� HomR(A, H) �� HomR(A, H ′),

where H ′′ = HomZ(B ′′,C), H = HomZ(B,C), and H ′ = HomZ(B ′,C).
By the Adjoint Isomorphism, the vertical maps are isomorphisms and the di-
agram commutes. The bottom row is exact, for it arises from the given exact
sequence B ′ → B → B ′′ → 0 by first applying the left exact (contravari-
ant) functor HomZ(�,C), and then applying the left exact (covariant) functor
HomR(A,�). Exactness of the top row now follows from Exercise 2.31 on
page 95. •
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Exercises

2.27 Let V and W be finite-dimensional vector spaces over a field F ,
say, and let v1, . . . , vm and w1, . . . , wn be bases of V and W , re-
spectively. Let S : V → V be a linear transformation having matrix
A = [ai j ], and let T : W → W be a linear transformation having
matrix B = [bk�]. Show that the matrix of S ⊗ T : V ⊗k W →
V ⊗k W , with respect to a suitable listing of the vectors vi ⊗w j , is
the nm × nm matrix K , which we write in block form:

A ⊗ B =

⎡
⎢⎢⎢⎣

a11 B a12 B · · · a1m B
a21 B a22 B · · · a2m B

...
...

...
...

am1 B am2 B · · · amm B

⎤
⎥⎥⎥⎦ .

Remark. The matrix A ⊗ B is called the Kronecker product of
the matrices A and B. �

2.28 Let R be a domain with Q = Frac(R), its field of fractions. If A
is an R-module, prove that every element in Q ⊗R A has the form
q ⊗ a for q ∈ Q and a ∈ A (instead of

∑
i qi ⊗ ai ). (Compare this

result with Example 2.67.)
*2.29 (i) Let p be a prime, and let p, q be relatively prime. Prove

that if A is a p-primary group and a ∈ A, then there exists
x ∈ A with qx = a.

(ii) If D is a finite cyclic group of order m, prove that D/nD is
a cyclic group of order d = (m, n).

(iii) Let m and n be positive integers, and let d = (m, n). Prove
that there is an isomorphism of abelian groups

Im ⊗ In ∼= Id .

(iv) Let G and H be finitely generated abelian groups, so that

G = A1 ⊕ · · · ⊕ An and H = B1 ⊕ · · · ⊕ Bm,

where Ai and B j are cyclic groups. Compute G ⊗Z H
explicitly.
Hint. G ⊗Z H ∼= ∑

i, j Ai ⊗Z B j . If Ai or B j is infinite
cyclic, use Proposition 2.58; if both are finite, use part (ii).

*2.30 (i) Given AR, R BS , and SC , define T (A, B,C) = F/N , where
F is the free abelian group on all ordered triples (a, b, c) ∈
A × B × C , and N is the subgroup generated by all

(ar, b, c)− (a, rb, c),
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(a, bs, c)− (a, b, sc),

(a + a′, b, c)− (a, b, c)− (a′, b, c),

(a, b + b′, c)− (a, b, c)− (a, b′, c),

(a, b, c + c′)− (a, b, c)− (a, b, c′).

Define h : A × B × C → T (A, B,C) by h : (a, b, c) �→
a ⊗ b ⊗ c, where a ⊗ b ⊗ c = (a, b, c) + N . Prove that
this construction gives a solution to the universal mapping
problem for triadditive functions.

(ii) Let R be a commutative ring and let A1, . . . , An , M be
R-modules, where n ≥ 2. An R-multilinear function is
a function h : A1 × · · · × An → M if h is additive in
each variable (when we fix the other n − 1 variables), and
f (a1, . . . , rai , . . . , an) = r f (a1, . . . , ai , . . . , an) for all i
and all r ∈ R. Let F be the free R-module with basis
A1 × · · · × An , and define N ⊆ F to be the submodule
generated by all the elements of the form

(a1, . . . , rai , . . . , an)− r(a1, . . . , ai , . . . , an)

and

(. . . , ai + a′i , . . .)− (. . . , ai , . . .)− (. . . , a′i , . . .).

Define T (A1, . . . , An) = F/N and h : A1 × · · · × An →
T (A1, . . . , An) by (a1, . . . , an) �→ (a1, . . . , an)+N . Prove
that h is R-multilinear, and that h and T (A1, . . . , An) solve
the univeral mapping problem for R-multilinear functions.

(iii) Let R be a commutative ring and prove generalized asso-
ciativity for tensor products of R-modules.

Hint. Prove that any association of A1 ⊗ · · · ⊗ An is also a
solution to the universal mapping problem.

*2.31 Assume that the following diagram commutes, and that the vertical
arrows are isomorphisms.

0 �� A′ ��

��

A ��

��

A′′ ��

��

0

0 �� B ′ �� B �� B ′′ �� 0

Prove that the bottom row is exact if and only if the top row is exact.
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*2.32 (3 × 3 Lemma) Consider the following commutative diagram in
RMod having exact columns.

0
��

0
��

0
��

0 �� A′
��

�� A
��

�� A′′
��

�� 0

0 �� B ′
��

�� B
��

�� B ′′
��

�� 0

0 �� C ′
��

�� C
��

�� C ′′
��

�� 0

0 0 0

If the bottom two rows are exact, prove that the top row is exact; if
the top two rows are exact, prove that the bottom row is exact.

*2.33 Consider the following commutative diagram in RMod having exact
rows and columns.

A′
��

�� A
��

�� A′′
��

�� 0

B ′
��

�� B
��

�� B ′′
��

�� 0

C ′
��

�� C
��

�� C ′′
��

�� 0

0 0 0

If A′′ → B ′′ and B ′ → B are injections, prove that C ′ → C is
an injection. Similarly, if C ′ → C and A → B are injections,
then A′′ → B ′′ is an injection. Conclude that if the last column
and the second row are short exact sequences, then the third row
is a short exact sequence and, similarly, if the bottom row and the
second column are short exact sequences, then the third column is a
short exact sequence.

2.34 Give an example of a commutative diagram with exact rows and
vertical maps h1, h2, h4, h5 isomorphisms

A1 ��

h1 ��

A2 ��

h2 ��

A3 �� A4 ��

h4��

A5

h5��
B1 �� B2 �� B3 �� B4 �� B5

for which there does not exist a map h3 : A3 → B3 making the
diagram commute.

*2.35 If A,B, and C are categories, then a bifunctor T : A × B → C as-
signs, to each ordered pair of objects (A, B), where A ∈ ob(A) and
B ∈ ob(B), an object T (A, B) ∈ ob(C), and to each ordered pair
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of morphisms f : A → A′ in A and g : B → B ′ in B, a morphism
T ( f, g) : T (A, B) → T (A′, B ′), such that

(a) fixing either variable is a functor; for example, if A ∈ ob(A),
then TA = T (A,�) : B → C is a functor, where TA(B) = T (A, B)

and TA(g) = T (1A, g),

(b) the following diagram commutes:

T (A, B)
T (1A,g)��

T ( f,g)

����
���

���
���

T ( f,1B )

��

T (A, B ′)

T ( f,1B′ )
��

T (A′, B)
T (1A′ ,g)

�� T (A′, B ′).

(i) Prove that ⊗ : ModR × RMod → Ab is a bifunctor.
(ii) Prove that Hom: RMod×RMod → Ab is a bifunctor if

we modify the definition of bifunctor to allow contravari-
ance in one variable.

*2.36 Let R be a commutative ring, and let F be a free R-module.
(i) If m is a maximal ideal in R, prove that (R/m) ⊗R F and

F/mF are isomorphic as vector spaces over R/m.
(ii) Prove that rank(F) = dim

(
(R/m)⊗R F

)
.

(iii) If R is a domain with fraction field Q, prove that rank(F) =
dim(Q ⊗R F).

*2.37 Assume that a ring R has IBN; that is, if Rm ∼= Rn as left R-
modules, then m = n. Prove that if Rm ∼= Rn as right R-modules,
then m = n.
Hint. If Rm ∼= Rn as right R-modules, apply HomR(�, R), using
Proposition 2.54(iii).

*2.38 Let R be a domain and let A be an R-module.
(i) Prove that if the multiplication μr : A → A is an injection

for all r 	= 0, then A is torsion-free; that is, there are no
nonzero a ∈ A and r ∈ R with ra = 0.

(ii) Prove that if the multiplication μr : A → A is a surjection
for all r 	= 0, then A is divisible.

(iii) Prove that if the multiplication μr : A → A is an isomor-
phism for all r 	= 0, then A is a vector space over Q, where
Q = Frac(R).
Hint. A module A is a vector space over Q if and only if it
is torsion-free and divisible.

(iv) If either C or A is a vector space over Q, prove that both
C ⊗R A and HomR(C, A) are also vector spaces over Q.



3
Special Modules

There are special modules that make Hom and tensor functors exact; namely,
projectives, injectives, and flats.

3.1 Projective Modules

The functors HomR(X,�) and HomR(�, Y ) almost preserve short exact se-
quences; they are left exact functors. Similarly, the functors � ⊗R Y and
X ⊗R � almost preserve short exact sequences; they are right exact functors.
Are there any functors that do preserve short exact sequences?

Definition. A covariant functor T : RMod → Ab is an exact functor if, for
every exact sequence

0 → A
i→ B

p→ C → 0,

the sequence

0 → T (A)
T (i)−→ T (B)

T (p)−→ T (C) → 0

is also exact. A contravariant functor T : RMod → Ab is an exact functor if
there is always exactness of

0 → T (C)
T (p)−→ T (B)

T (i)−→ T (A) → 0.

In Theorem 2.35, we saw that every left module is a quotient of a free left
module. Here is a property of free modules that does not mention bases.

98 J.J. Rotman, An Introduction to Homological Algebra, Universitext,
DOI 10.1007/978-0-387-68324-9 3, c© Springer Science+Business Media LLC 2009
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Theorem 3.1. Let F be a free left R-module. If p : A → A′′ is surjective,
then for every h : F → A′′, there exists an R-homomorphism g making the
following diagram commute:

F
h��

g

��� �
�

�

A p
�� A′′ �� 0.

Proof. Let B be a basis of F . For each b ∈ B, the element h(b) ∈ A′′
has the form h(b) = p(ab) for some ab ∈ A, because p is surjective; by the
Axiom of Choice, there is a function u : B → A with u(b) = ab for all b ∈ B.
Proposition 2.34 gives an R-homomorphism g : F → A with

g(b) = ab for all b ∈ B.

Now pg(b) = p(ab) = h(b), so that pg agrees with h on the basis B; since
〈B〉 = F , we have pg = h. •

Definition. A lifting of a map h : C → A′′ is a map g : C → A with pg = h.

C
h��

g

�����
��

��

A p
�� A′′

That g is a lifting of h says that h = p∗(g), where p∗ is the induced map
HomR(C, A) → HomR(C, A′′).

If C is any, not necessarily free, module, then a lifting g of h, should one
exist, need not be unique. Exactness of

0 → ker p
i−→ A

p−→ A′′,

where i is the inclusion, gives pi = 0. Any other lifting has the form g + i f
for f : C → ker p; this follows from exactness of

0 → Hom(C, ker p)
i∗−→ Hom(C, A)

p∗−→ Hom(C, A′′),

for any two liftings of h differ by a map i f ∈ im i∗ = ker p∗.
We promote this (basis-free) property of free modules to a definition.

Definition. A left R-module P is projective if, whenever p is surjective and
h is any map, there exists a lifting g; that is, there exists a map g making the
following diagram commute:

P
h��

g

��� �
�

�

A p
�� A′′ �� 0.
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Theorem 3.1 says that every free left R-module is projective. Is every
projective R-module free? The answer to this question depends on the ring
R. Note that if projective R-modules happen to be free, then free modules are
characterized without mentioning bases.

Let us now see that projective modules arise in a natural way. We know
that the Hom functors are left exact; that is, for any module P , applying
HomR(P,�) to an exact sequence

0 → A′ i−→ A
p−→ A′′

gives an exact sequence

0 → HomR(P, A′) i∗−→ HomR(P, A)
p∗−→ HomR(P, A′′).

Proposition 3.2. A left R-module P is projective if and only if HomR(P,�)

is an exact functor.

Remark. Since HomR(P,�) is a left exact functor, the thrust of the propo-
sition is that p∗ is surjective whenever p is surjective. �
Proof. If P is projective, then given h : P → A′′, there exists a lifting
g : P → A with pg = h. Thus, if h ∈ HomR(P, A′′), then h = pg =
p∗(g) ∈ im p∗, and so p∗ is surjective. Hence, Hom(P,�) is an exact func-
tor.

For the converse, assume that Hom(P,�) is an exact functor, so that p∗
is surjective: if h ∈ HomR(P, A′′), there exists g ∈ HomR(P, A) with h =
p∗(g) = pg. This says that given p and h, there exists a lifting g making the
diagram commute; that is, P is projective. •

Proposition 3.3. A left R-module P is projective if and only if every short

exact sequence 0 → A
i→ B

p→ P → 0 splits.

Proof. If P is projective, then there exists j : P → B with 1P = p∗( j) =
pj ; that is, P is a retract of B. Corollary 2.23 now gives the result.

P
j

���
�

�
1P��

B p
�� P �� 0.

Conversely, assume that every short exact sequence ending with P splits.
Consider the diagram

P
f
��

B p
�� C �� 0
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with p surjective. Let F be a free left R-module for which there exists a sur-
jective h : F → P (by Theorem 2.35), and consider the augmented diagram

F
h ��

g0 ���
� P

j
		

f
��

B p
�� C �� 0.

By hypothesis, there is a map j : P → F with hj = 1P . Since F is free,
there is a map g0 : F → B with pg0 = f h. If we define g = g0 j , then
pg = pg0 j = f h j = f . Therefore, P is projective. •

We restate half this proposition without mentioning the word exact.

Corollary 3.4. Let A be a submodule of a left R-module B. If B/A is
projective, then A has a complement; that is, there is a submodule C of B
with C ∼= B/A and B = A ⊕ C.

The next result gives a concrete characterization of projective modules.

Theorem 3.5.

(i) A left R-module P is projective if and only if P is a direct summand of
a free left R-module.

(ii) A finitely generated left R-module P is projective if and only if P is a
direct summand of Rn for some n.

Proof.

(i) Assume that P is projective. By Theorem 2.35, every module is a quo-
tient of a free module. Thus, there are a free module F and a surjection
g : F → P , and so there is an exact sequence

0 → ker g → F
g→ P → 0.

Proposition 3.3 now shows that P is a direct summand of F .

Suppose that P is a direct summand of a free module F , so there are
maps q : F → P and j : P → F with q j = 1P . Now consider the
diagram

F
q ��

h
���
�
� P

j
		

f
��

B p
�� C �� 0,
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where p is surjective. The composite f q is a map F → C ; since F is
free, it is projective, and so there is a map h : F → B with ph = f q.
Define g : P → B by g = hj . It remains to prove that pg = f . But

pg = phj = f q j = f 1P = f.

(ii) Sufficiency follows from part (i). For necessity, let P = 〈a1, . . . , an〉. If
{x1, . . . , xn} is a basis of Rn , define ϕ : Rn → P by xi �→ ai ; the map ϕ

is surjective because P is generated by a1, . . . , an . But Rn/ kerϕ ∼= P ,
so that projectivity shows that P is a direct summand of Rn . •

Corollary 3.6.

(i) Every direct summand of a projective module is itself projective.

(ii) Every direct sum of projective modules is projective.

Proof.

(i) We can use the proof in the second paragraph of Theorem 3.5. Alterna-
tively, we can use the statement of Theorem 3.5 along with the simple
observation that if A is a direct summand of B and B is a direct sum-
mand of C , then A is a direct summand of C .

(ii) Let (Pi )i∈I be a family of projective modules. For each i , there exists
a free module Fi with Fi = Pi ⊕ Qi for some Qi ⊆ Fi . But

⊕
i Fi is

free (a basis being the union of the bases of the Fi ), and
⊕

i

Fi =
⊕

i

(
Pi ⊕ Qi

) =⊕
i

Pi ⊕
⊕

i

Qi . •

We can now give an example of a commutative ring R and a projective
R-module that is not free.

Example 3.7. The ring R = I6 is the direct sum of two ideals:

I6 = J ⊕ I,

where
J = {[0], [2], [4]

} ∼= I3 and I = {[0], [3]
} ∼= I2.

Now I6 is a free module over itself, and so J and I , being direct summands
of a free module, are projective I6-modules. Neither J nor I can be free,
however. After all, a (finitely generated) free I6-module F is a direct sum of,
say, n copies of I6, and so F has 6n elements. Therefore, J is too small to be
free, for it has only three elements. �
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The next very general result allows us to focus on countably generated
projectives. Let us first consider an ascending sequence of submodules of a
module P ,

{0} = P0 ⊆ P1 ⊆ P2 ⊆ · · · ,
with P = ⋃

n≥0 Pn . Suppose that each Pn is a direct summand of Pn+1; that
is, there are complementary submodules Xn with Pn+1 = Pn ⊕ Xn for all n.
By induction, we have Pn+1 = X1 ⊕ · · · ⊕ Xn (since P0 = {0}, we have
P1 = X1). We claim that P = ⊕

n Xn . Now P = 〈Xn : n ≥ 0〉, because
P = ⋃

n≥0 Pn and Pn+1 = 〈X1, . . . , Xn〉. To see that the Xn generate their
direct sum, suppose that xn1 + · · · + xnm = 0 is a shortest equation with
xni ∈ Xni and n1 < · · · < nm . Then −xnm ∈ Xnm ∩ Xnm−1 = {0} (for the Xs
are ascending), and this gives a shorter equation.

The same reasoning applies to an ascending transfinite sequence of sub-
modules (Pα) indexed by some well-ordered set (which may as well consist
of ordinals). The reader may prove that if P = ⋃

α Pα , if each Pα is a direct
summand of Pα+1, and if Pα =

⋃
β<α Pβ for every limit ordinal α, then P is

isomorphic to the direct sum
⊕

α(Pα+1/Pα). (We have essentially treated the
limit ordinal case in the previous paragraph.)

Proposition 3.8 (Kaplansky). If R is a ring and P ⊕ Q = ⊕
i∈I Mi ,

where I is any (possibly uncountable) index set and each Mi is a countably
generated left R-module, then P is a direct sum of countably generated left
R-modules.

Proof. Write M =⊕i∈I Mi . We are going to construct an ascending family
(Sα)α∈A of submodules with M =⋃α Sα , where A is a well-ordered set, such
that

(i) if α is a limit ordinal, then Sα =
⋃

β<α Sβ ,

(ii) Sα+1/Sα is countably generated,

(iii) each Sα =
⊕

j∈Jα M j for some Jα ⊆ A,

(iv) Sα = Pα ⊕ Qα , where Pα = Sα ∩ P and Qα = Sα ∩ Q.

Before giving the construction, let us see that such a family can be used to
prove the proposition. Now Pα is a direct summand of Sα , by (iv), and Sα is
a direct summand of M , by (iii), so that Pα is a direct summand of M . Apply
Corollary 2.24(i) to Pα ⊆ Pα+1 ⊆ M to see that Pα is a direct summand of
Pα+1. Now

Sα+1/Sα = (Pα+1 ⊕ Qα+1)/(Pα ⊕ Qα) = (Pα+1/Pα)⊕ (Qα+1/Qα),
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by Exercise 2.4 on page 64. It follows that Pα+1/Pα is an image of Sα+1/Sα ,
which is countably generated, by (ii); hence, Pα+1/Pα is countably generated.
If α is a limit ordinal, then

Pα = Sα ∩ P =
( ⋃

β<α

Sβ

)
∩ P =

⋃
β<α

(Sβ ∩ P) =
⋃
β<α

Pβ.

As in the preamble to this proposition, we have P ∼= ⊕
α

(
Pα+1/Pα

)
. This

is what we want, for we have already noted that each Pα+1/Pα is countably
generated.

Let us construct (Sα). Set S0 = {0}. Let α > 0, and assume that Sβ

has been constructed for each β < α; we must construct Sα . If α is a limit
ordinal, define Sα =

⋃
β<α Sβ . Let α = β + 1; we may assume some M j is

not contained in Sβ (otherwise, Sβ = M and we are done). Choose a count-
able generating set of M j , say, x11, x12, x13, . . . (the reason for the double
subscript will soon be apparent). As any element of M = P ⊕ Q, there is
an expression x11 = p + q with p ∈ P, q ∈ Q. Now each of p and q has
only finitely many nonzero coordinates in the decomposition M = ⊕

i Mi .
The finitely many Mi corresponding to these coordinates generate a count-
ably generated submodule of M ; let x21, x22, x23, . . . be a countable set of
generators of it. Next, repeat this procedure for x12, getting a new countable
set x31, x32, x33, . . .. We have constructed the first three rows of an infinite
matrix. Proceed in this fashion, pursuing the elements along successive diag-
onals in the order x11, x12, x21, x13, x22, x31, . . .. Let Iβ be the set of all the
coordinates arising from all the xi j in the infinite matrix, define Jα = Jβ ∪ Iβ ,
and define Sα = Sβ+1 to be the submodule of M generated by Sβ and all the
xs. Note that M j ⊆ Sα . The reader may check that the family of these Sα

satisfies (i) through (iv). •

Corollary 3.9. Let R be a ring.

(i) Every projective left R-module P is a direct sum of countably generated
projective left R-modules.

(ii) If every countably generated projective left R-module is free, then every
projective left R-module is free.

Proof. By Theorem 3.5(i), P is a direct summand of a free module. Since
the ring R is a countably generated left R-module (it is even cyclic), Proposi-
tion 3.8 gives P ∼=⊕ j∈J Pj , where each Pj is countably generated, and each
Pj is projective, by Corollary 3.6(i). The second statement follows immedi-
ately from the first. •

Classifying projective R-modules is a problem very much dependent on
the ring R. If R is a PID (principal ideal domain: a domain in which every
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ideal is principal), then every submodule of a free module is itself free (Corol-
lary 4.15). It follows from Theorem 3.5 that every projective R-module is free
in this case. A much harder result is that if R = k[x1, . . . , xn] is the polyno-
mial ring in n variables over a field k, then every projective R-module is also
free. This question was raised by J.-P. Serre, and it was proved, independently,
by D. Quillen and by A. Suslin (see Theorem 4.100).

There are domains having projective modules that are not free. For exam-
ple, the ring of all the algebraic integers in an algebraic number field K (that
is, K is a field extension of Q of finite degree) is an example of a Dedekind
ring. There are many equivalent definitions of Dedekind rings, one of which
is that they are domains in which every ideal is a projective module. There are
Dedekind rings, even rings of integers in algebraic number fields, that are not
PIDs, and any nonprincipal ideal in a Dedekind ring is a projective module
that is not free.

Here is another characterization of projective modules. Note that if A is
a free left R-module with basis {ai : i ∈ I } ⊆ A, then each x ∈ A has a
unique expression x = ∑

i∈I ri ai , and the coordinate functions ϕi : x �→ ri
are R-maps ϕi : A → R.

Proposition 3.10 (Projective Basis). A left R-module A is projective if and
only if there exist elements (ai ∈ A)i∈I and R-maps (ϕi : A → R)i∈I such
that

(i) for each x ∈ A, almost all ϕi (x) = 0,

(ii) for each x ∈ A, we have x =∑i∈I (ϕi x)ai .

Moreover, A is generated by {ai : i ∈ I } ⊆ A in this case.

Proof. Assume that A is projective. There are a free left R-module F and a
surjective R-map ψ : F → A; by Proposition 3.3, projectivity of A gives an
R-map ϕ : A → F with ψϕ = 1A. Let {ei : i ∈ I } be a basis of F , and define
ai = ψ(ei ). Now if x ∈ A, then there is a unique expression ϕ(x) =∑i ri ei ,
where ri ∈ R and almost all ri = 0. Define ϕi : A → R by ϕi (x) = ri . Of
course, given x , we have ϕi (x) = 0 for almost all i . Finally,

x = ψϕ(x) = ψ
(∑

ri ei

)

=
∑

riψ(ei ) =
∑

(ϕi x)ψ(ei ) =
∑

(ϕi x)ai .

Since ψ is surjective, A is generated by {ai = ψ(ei ) : i ∈ I }.
Conversely, given (ai ∈ A)i∈I and a family of R-maps (ϕi : A → R)i∈I

as in the statement, define F to be the free left R-module with basis {ei : i ∈
I }, and define an R-map ψ : F → A by ψ : ei �→ ai . It suffices to find an
R-map ϕ : A → F with ψϕ = 1A, for then A is (isomorphic to) a retract
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(i.e., A is a direct summand of F), and hence A is projective. Define ϕ by
ϕ(x) =∑i (ϕi x)ei , for x ∈ A. The sum is finite, by condition (i), and so ϕ is
well-defined. By condition (ii),

ψϕ(x) = ψ
∑

(ϕi x)ei =
∑

(ϕi x)ψ(ei ) =
∑

(ϕi x)ai = x;
that is, ψϕ = 1A. •

Definition. If A is a left R-module, then a family (ai ∈ A)i∈I and a family
of R-maps (ϕi : A → R)i∈I satisfying the condition in Proposition 3.10 are
called a projective basis.

Using sheaves, R. Bkouche, “Pureté, molesse, et paracompacité,” C. R.
Acad. Sci. Paris, Sér. A 270 (1970), 1653–1655, proved the following theo-
rem. Let X be a locally compact Hausdorff space, let C(X) be the ring of all
continuous real-valued functions on X , and let J be the ideal in C(X) consist-
ing of all such functions having compact support. Then X is a paracompact
space if and only if J is a projective C(X)-module. An elementary proof of
Bkouche’s theorem, using projective bases, is due to R. L. Finney and J. Rot-
man, “Paracompactness of locally compact Hausdorff spaces,” Mich. Math.
J. 17 (1970), 359–361.

Definition. Let X = {xi : i ∈ I } be a basis of a free left R-module F , and
let Y = {∑i r ji xi : j ∈ J } be a subset of F . If K is the submodule of F
generated by Y , then we say that a module M ∼= F/K has generators X and
relations Y .1 We also say that the ordered pair (X |Y ) is a presentation of M .
An R-module M is finitely presented if there is an exact sequence

Rm → Rn → M → 0,

where m, n ∈ N.

Thus, a module M is finitely generated if it has a presentation (X |Y ) in
which X is finite, while M is finitely presented if it has a presentation (X |Y )

in which both X and Y are finite. Example 3.14 displays a finitely generated
module that is not finitely presented.

Proposition 3.11. Every finitely generated projective left R-module P is
finitely presented.

Proof. Let P = 〈a1, . . . , an〉, and let F be the free left R-module with basis
{x1, . . . , xn}. Define ϕ : F → P by ϕ : x j �→ a j , so there is an exact sequence

0 → kerϕ → F
ϕ−→ P → 0.

1A module is called free because it has no entangling relations.
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This sequence splits, because P is projective, so that F ∼= P ⊕ kerϕ. Now
kerϕ is finitely generated, for it is a direct summand, hence an image, of the
finitely generated module F . Therefore, P is finitely presented. •

If M is a finitely presented left R-module, then there is a short exact
sequence

0 → K → F → M → 0,

where F is free and both K and F are finitely generated. Equivalently, M is
finitely presented if there is an exact sequence

F ′ → F → M → 0,

where both F ′ and F are finitely generated free modules (just map a finitely
generated free module F ′ onto K ). Note that the second exact sequence does
not begin with “0 →.”

Every finitely presented module is finitely generated, but we will soon see
that the converse may be false. We begin by comparing two presentations of
a module (we generalize a bit by replacing free modules by projectives).

Proposition 3.12 (Schanuel’s Lemma). Given exact sequences

0 → K
i→ P

π→ M → 0

and
0 → K ′ i ′→ P ′ π ′→ M → 0,

where P and P ′ are projective, then there is an isomorphism

K ⊕ P ′ ∼= K ′ ⊕ P.

Proof. Consider the diagram with exact rows

0 �� K

α

���
�
�

i �� P
π ��

β

���
�
� M ��

1M

��

0

0 �� K ′
i ′

�� P ′
π ′

�� M �� 0.

Since P is projective, there is a map β : P → P ′ with π ′β = π ; that is, the
right square in the diagram commutes. A diagram chase, Proposition 2.71,
shows that there is a map α : K → K ′ making the other square commute.
This commutative diagram with exact rows gives an exact sequence

0 → K
θ→ P ⊕ K ′ ψ→ P ′ → 0,

where θ : x �→ (i x, αx) and ψ : (u, x ′) �→ βu − i ′x ′, for x ∈ K , u ∈ P , and
x ′ ∈ K ′. Exactness of this sequence is a straightforward calculation that is
left to the reader; this sequence splits because P ′ is projective. •
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Corollary 3.13. If M is finitely presented and

0 → K → F → M → 0

is an exact sequence, where F is a finitely generated free module, then K is
finitely generated.

Proof. Since M is finitely presented, there is an exact sequence

0 → K ′ → F ′ → M → 0

with F ′ free and with both F ′ and K ′ finitely generated. By Schanuel’s
Lemma, K ⊕ F ′ ∼= K ′ ⊕ F . Now K ′ ⊕ F is finitely generated because
both summands are, so that the left side is also finitely generated. But K ,
being a summand, is also a homomorphic image of K ⊕ F ′, and hence it is
finitely generated. •

We can now give an example of a finitely generated module that is not
finitely presented.

Example 3.14. Let R be a commutative ring containing an ideal I that is not
finitely generated (see Exercise 3.7 on page 114 for an example). We claim
that the R-module M = R/I is finitely generated but not finitely presented.
Of course, M is finitely generated; it is even cyclic. If M were finitely pre-
sented, then there would be an exact sequence 0 → K → F → M → 0 with
F free and both K and F finitely generated. Comparing this with the exact
sequence 0 → I → R → M → 0, as in Corollary 3.13, gives I finitely
generated, a contradiction. Therefore, M is not finitely presented. �

Finitely generated modules are the most important modules, and they are
intimately related to a chain condition.

Definition. A left R-module M (over some ring R) has ACC (ascending
chain condition) if every ascending chain of submodules

S1 ⊆ S2 ⊆ S3 ⊆ · · ·
stops; that is, there is an integer n with Sn = Sn+1 = Sn+2 = · · · .

Proposition 3.15. The following three conditions are equivalent for a left
R-module M.

(i) M has ACC on submodules.

(ii) M satisfies the maximum condition: every nonempty family F of sub-
modules has a maximal element; that is, there is some S0 ∈ F for which
there is no S ∈ F with S0 � S.
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(iii) Every submodule of M is finitely generated.

Proof.

(i) ⇒ (ii) Let F be a family of submodules of M , and assume that F has no
maximal element. Choose S1 ∈ F . Since S1 is not a maximal element,
there is S2 ∈ F with S1 � S2. Now S2 is not a maximal element in
F , and so there is S3 ∈ F with S2 � S3. Continuing in this way,
we can construct an ascending chain of submodules that does not stop,
contradicting ACC.

(ii) ⇒ (iii) Let S be a submodule of M , and define F to be the family of
all the finitely generated submodules contained in S; of course, F 	= ∅

(for {0} ∈ F). By hypothesis, there exists a maximal element S∗ ∈ F .
Now S∗ ⊆ S because S∗ ∈ F . If S∗ is a proper submodule of S, then
there is s ∈ S with s /∈ S∗. The submodule S∗∗ = 〈S∗, s〉 ⊆ S is finitely
generated, and so S∗∗ ∈ F ; but S∗ � S∗∗, contradicting the maximality
of S∗. Therefore, S∗ = S, and so S is finitely generated.

(iii) ⇒ (i) Assume that every submodule of M is finitely generated, and let
S1 ⊆ S2 ⊆ · · · be an ascending chain of submodules. It is easy to see
that the ascending union S∗ =⋃n≥1 Sn is a submodule. By hypothesis,
S∗ is finitely generated, say, S∗ = 〈s1, . . . , sq〉. Now si got into S∗ by
being in Sni for some ni . If N is the largest ni , then Sni ⊆ SN for all i ;
hence, si ∈ SN for all i , and S∗ = 〈s1, . . . , sq〉 ⊆ SN . If n ≥ N , then
S∗ ⊆ SN ⊆ Sn ⊆ S∗; therefore, Sn = S∗, the chain stops, and M has
ACC. •

Corollary 3.16. The following conditions are equivalent for a ring R.

(i) R has ACC on left ideals.

(ii) R satisfies the maximum condition: every nonempty family F of left
ideals in R has a maximal element.

(iii) Every left ideal in R is finitely generated.

Proof. This is the special case of the proposition when M = R R. •

Definition. A ring R is left noetherian if it satisfies any of the equivalent
conditions in Corollary 3.16.

Of course, every PID is noetherian. We will soon prove the Hilbert Basis
Theorem, which says that if R is left noetherian, then so is R[x] (where we
assume the indeterminate x commutes with the coefficients in R). A ring R
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is called right noetherian if every right ideal is finitely generated. Obvi-
ously, every commutative left noetherian ring is right noetherian, and one
omits the adjective left, calling them noetherian. If k is a field, then every
finite-dimensional k-algebra R is both left noetherian and right noetherian,
for every left or right ideal is a vector space over k, and so every strictly in-
creasing chain of left (or right) ideals has length ≤ dimk(R). An example of
a ring that is noetherian on one side only is given in Exercise 3.8 on page 114.

Corollary 3.17. Every quotient ring of a left noetherian ring R is left noethe-
rian.

Proof. Let I be a two-sided ideal in R, so that R/I is a ring. If J is a left
ideal in R/I , then J ′ = ν−1(J ) is a left ideal in R, where ν : R → R/I
is the natural map. Since R is left noetherian, J ′ is finitely generated; say,
J ′ = (r1, . . . , rn). Hence, J = ν(J ′) is generated by ν(r1), . . . , ν(rn). Thus,
every left ideal in R/I is finitely generated, and so R/I is left noetherian. •

Let Z〈x, y〉 be the ring of all polynomials with integer coefficients in non-
commuting indeterminates x and y. If (y2, yx) is the two-sided ideal gener-
ated by y2, yx , then Dieudonné showed that R = Z〈x, y〉/(y2, yx) is left
noetherian but not right noetherian (see Lam, A First Course in Noncommu-
tative Rings, p. 23). It follows from Corollary 3.17 that Z〈x, y〉 is not right
noetherian.

Proposition 3.18.

(i) If R is left noetherian, then every submodule of a finitely generated left
R-module M is itself finitely generated.

(ii) If R is a PID and an R-module M can be generated by n elements, then
every submodule of M can be generated by n or fewer elements.

Remark. Part (ii) is not true more generally. For example, R = Q[x, y] is
not a PID, and so there is some ideal I that is not principal. Thus, R has one
generator while its submodule I cannot be generated by one element. �

Proof.

(i) The proof is by induction on n ≥ 1, where M = 〈x1, . . . , xn〉. If n = 1,
then M is cyclic, and so Proposition 2.16 gives M ∼= R/I for some
left ideal I . If S ⊆ M , then the correspondence theorem for rings,
Theorem 2.15, gives a left ideal J with I ⊆ J ⊆ R and S ∼= J/I . But
R is left noetherian, so that J , and hence J/I , is finitely generated.
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If n ≥ 1 and M = 〈x1, . . . , xn, xn+1〉, consider the exact sequence

0 → M ′ i−→ M
p−→ M ′′ → 0,

where M ′ = 〈x1, . . . , xn〉, M ′′ = M/M ′, i is the inclusion, and p is the
natural map. Note that M ′′ is cyclic, being generated by xn+1 + M ′. If
S ⊆ M is a submodule, there is an exact sequence

0 → S ∩ M ′ → S → S/(S ∩ M ′) → 0.

Now S ∩ M ′ ⊆ M ′, and hence it is finitely generated, by the inductive
hypothesis. Furthermore, S/(S∩M ′) ∼= (S+M ′)/M ′ ⊆ M/M ′, so that
S/(S ∩ M ′) is finitely generated, by the base step. Using Exercise 2.18
on page 67, we conclude that S is finitely generated.

(ii) We prove the statement by induction on n ≥ 1. If M is cyclic, then
M ∼= R/I ; if S ⊆ M , then S ∼= J/I for some ideal J in R containing
I . Since R is a PID, J is principal, and so J/I is cyclic.

For the inductive step, we refer to the exact sequence

0 → S ∩ M ′ → S → S/(S ∩ M ′) → 0

in part (i), where M = 〈x1, . . . , xn, xn+1〉 and M ′ = 〈x1, . . . , xn〉. By
the inductive hypothesis, S ∩ M ′ can be generated by n or fewer ele-
ments, while the base step shows that S/(S∩M ′) is cyclic. Exercise 2.18
on page 67 shows that S can be generated by n + 1 or fewer elements.

•

Corollary 3.19. If R is a left noetherian ring, then every finitely generated
left R-module is finitely presented.

Proof. If M is a finitely generated R-module, then there are a finitely gen-
erated free left R-module F and a surjection ϕ : F → M . Since R is left
noetherian, Proposition 3.18 says that every submodule of F is finitely gener-
ated. In particular, kerϕ is finitely generated, and so M is finitely presented.

•
In 1890, Hilbert proved the famous Hilbert Basis Theorem, showing that

every ideal in C[x1, . . . , xn] is finitely generated. As we shall see, the proof
is nonconstructive in the sense that it does not give an explicit set of genera-
tors of an ideal (nowadays, this is often possible using Gröbner bases). It is
reported that when P. Gordan, one of the leading algebraists of the time, first
saw Hilbert’s proof, he said, “Das ist nicht Mathematik. Das ist Theologie!”
(“This is not mathematics. This is theology!”). On the other hand, Gordan
said, in 1899 when he published a simplified proof of Hilbert’s theorem, “I
have convinced myself that theology also has its merits.”
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Lemma 3.20. A ring R is left noetherian if and only if, for every sequence
a1, . . . , an, . . . of elements in R, there exists m ≥ 1 and r1, . . . , rm ∈ R with
am+1 = r1a1 + · · · + rmam.

Proof. Assume that R is left noetherian and that a1, . . . , an, . . . is a sequence
of elements in R. If In is the left ideal generated by a1, . . . , an , then there is
an ascending chain of left ideals, I1 ⊆ I2 ⊆ · · · . By the ACC, there exists
m ≥ 2 with Im = Im+1. Therefore, am+1 ∈ Im+1 = Im , and so there are
ri ∈ R with am+1 = r1a1 + · · · + rmam .

Conversely, suppose that R satisfies the condition on sequences of ele-
ments. If R is not left noetherian, then there is an ascending chain of left
ideals I1 ⊆ I2 ⊆ · · · that does not stop. Deleting any repetitions if necessary,
we may assume that In � In+1 for all n. For each n, choose an+1 ∈ In+1
with an+1 /∈ In . By hypothesis, there exist m and ri ∈ R for i ≤ m with
am+1 =

∑
i≤m ri ai ∈ Im . This contradiction implies that R is left noetherian.

•

Notation. If R is a ring, not necessarily commutative, then R[x] denotes the
polynomial ring in which the indeterminate x commutes with every element
in R.

Theorem 3.21 (Hilbert Basis Theorem). If R is a left noetherian ring,
then R[x] is also left noetherian.

Proof. (Sarges) Assume that I is a left ideal in R[x] that is not finitely gen-
erated; of course, I 	= {0}. Define f0(x) to be a polynomial in I of minimal
degree and define, inductively, fn+1(x) to be a polynomial of minimal degree
in I − ( f0, . . . , fn). Note that fn(x) exists for all n ≥ 0; if I − ( f0, . . . , fn)

were empty, then I would be finitely generated. It is clear that

deg( f0) ≤ deg( f1) ≤ deg( f2) ≤ · · · .

Let an denote the leading coefficient of fn(x). Since R is left noetherian,
Lemma 3.20 applies to give an integer m with am+1 ∈ (a0, . . . , am); that is,
there are ri ∈ R with am+1 = r0a0 + · · · + rmam . Define

f ∗(x) = fm+1(x)−
m∑

i=0

xdm+1−di ri fi (x),

where di = deg( fi ). Now f ∗(x) ∈ I − ( f0(x), . . . , fm(x)); otherwise,
fm+1(x) ∈ ( f0(x), . . . , fm(x)). It suffices to see that deg( f ∗) < deg( fm+1),
for this contradicts fm+1(x) having minimal degree among polynomials in I
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that are not in ( f0, . . . , fm). If fi (x) = ai xdi + lower terms, then

f ∗(x) = fm+1(x)−
m∑

i=0

xdm+1−di ri fi (x)

= (am+1xdm+1 + lower terms)−
m∑

i=0

xdm+1−di ri (ai x
di + lower terms).

The leading term being subtracted is thus
∑m

i=0 ri ai xdm+1 = am+1xdm+1 . •

Corollary 3.22.

(i) If k is a field, then k[x1, . . . , xn] is noetherian.

(ii) The ring Z[x1, . . . , xn] is noetherian.

Proof. The proofs are by induction on n ≥ 1. •
We are now going to show that every left noetherian ring has IBN.

Lemma 3.23. Let R be a ring and let A be a left R-module having ACC. If
ϕ : A → A is surjective, then ϕ is an isomorphism.

Proof. For all n ≥ 0, define Kn = kerϕn; note that ϕ0 = 1A, so that
K0 = {0}. Now Kn ⊆ Kn+1, for if ϕn(x) = 0, then ϕn+1(x) = 0. Thus, there
is an ascending sequence of submodules

K0 ⊆ K1 ⊆ K2 ⊆ · · · .
Since A has ACC, this sequence stops; let t be the smallest integer such that
Kt = Kt+1 = Kt+2 = · · · . We claim that t = 0, which will prove the result.
Otherwise, t ≥ 1, and there is x ∈ Kt with x /∈ Kt−1; that is, ϕt (x) = 0 and
ϕt−1(x) 	= 0. Since ϕ is surjective, there is a ∈ A with x = ϕ(a). Hence,
0 = ϕt (x) = ϕt+1(a), so that a ∈ Kt+1 = Kt . Therefore, 0 = ϕt (a) =
ϕt−1(ϕ(a)) = ϕt−1(x), a contradiction. Thus, ϕ is an injection, and hence it
is an isomorphism. •

Theorem 3.24. If R is a left noetherian ring, then R has IBN.

Proof. Let A be a free left R-module, and assume that A ∼= Rm ∼= Rn ,
where m ≥ n. If m > n, then there is a surjection ϕ : A → A having a
nonzero kernel (just project an m-tuple onto its first n coordinates). Now A
is obviously finitely generated, so that A has the ACC, by Proposition 3.18.
Therefore, ϕ is an isomorphism, by Lemma 3.23, a contradiction. •
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Exercises

3.1 Let M be a free R-module, where R is a domain. Prove that if
rm = 0, where r ∈ R and m ∈ M , then either r = 0 or m = 0.
(This is false if R is not a domain.)

*3.2 Let R be a ring and let S be a nonzero submodule of a free right
R-module F . Prove that if a ∈ R is not a right zero-divisor2, then
Sa 	= {0}.

3.3 Define projectivity in Groups, and prove that a group G is projec-
tive if and only if G is a free group.
Hint. Recall the Nielsen–Schreier Theorem: Every subgroup of a
free group is free.

*3.4 (i) (Pontrjagin) If A is a countable torsion-free abelian group
each of whose subgroups S of finite rank is free abelian,
prove that A is free abelian (the rank of an abelian group S
is defined as dimQ(Q⊗Z S); cf. Exercise 2.36 on page 97).
Hint. See the discussion on page 103.

(ii) Prove that every subgroup of finite rank in Z
N (the product

of countably many copies of Z) is free abelian.
(iii) Prove that every countable subgroup of Z

N is free. (In The-
orem 4.17, we will see that Z

N itself is not free.)
*3.5 (Eilenberg) Prove that every projective left R-module P has a free

complement; that is, there exists a free left R-module F such that
P ⊕ F is free.
Hint. If P ⊕ Q is free, consider Q ⊕ P ⊕ Q ⊕ P ⊕ · · · .

3.6 Let k be a commutative ring, and let P and Q be projective k-
modules. Prove that P ⊗k Q is a projective k-module.

*3.7 (i) Prove that R = C(R), the ring of all real-valued functions
on R under pointwise operations, is not noetherian.

(ii) Recall that f : R → R is a C∞-function if ∂n f/∂xn exists
and is continuous for all n. Prove that R = C∞(R), the
ring of all C∞-functions on R under pointwise operations,
is not noetherian.

(iii) If k is a commutative ring, prove that k[X ], the polynomial
ring in infinitely many indeterminates X , is not noetherian.

*3.8 (Small) Let R be the ring of all 2 × 2 matrices
[

a 0
b c

]
with a ∈ Z

and b, c ∈ Q is a ring. Schematically, we can describe R as
[

Z 0
Q Q

]
.

Prove that R is left noetherian, but that R is not right noetherian.

2An element a ∈ R is a zero-divisor if a 	= 0 and there exists a nonzero b ∈ R with
ab = 0 or ba = 0. More precisely, a is a right zero-divisor if there is a nonzero b with
ba = 0; that is, multiplication r �→ ra is not an injection R → R.
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*3.9 Let V be a vector space over a field k.
(i) Prove that V is a free k-module.
(ii) Prove that a subset B of V is a basis of V considered as a

vector space if and only if B is a basis of V considered as
a free k-module.

3.10 (i) If R is a domain and I and J are nonzero ideals in R, prove
that I ∩ J 	= {0}.

(ii) Let R be a domain and let I be an ideal in R that is a free
R-module; prove that I is a principal ideal.

*3.11 Prove that HomR(P, R) 	= {0} if P is a nonzero projective left R-
module.

3.12 If P is a finitely generated left R-module, prove that P is projec-
tive if and only if 1P ∈ im ν, where ν : HomR(P, R) ⊗R P →
HomR(P, P) is defined, for all x ∈ P , by f ⊗ x �→ f̃ , where
f̃ : y �→ f (y)x .
Hint. Use a projective basis.

*3.13 Let R be a commutative ring, and let A and B be finitely generated
R-modules.

(i) Prove that A ⊗R B is a finitely generated R-module.
(ii) If R is noetherian, prove that HomR(A, B) is a finitely gen-

erated R-module.
(iii) Give an example showing that HomR(A, B) may not be

finitely generated if R is not noetherian.
Hint (Griffith). Let V be an infinite-dimensional vector
space over Fp, and let R = Z⊕ V , where (m, v)(m′, v′) =
(mm′,mv′ + m′v). Then V is an ideal in R that is not
finitely generated, and if A = (R/V )/p(R/V ), then
HomR(A, R) ∼= V as R-modules.

3.2 Injective Modules

There is another type of module that turns out to be interesting.

Definition. A left R-module E is injective if, whenever i is an injection, a
dashed arrow exists making the following diagram commute.

E

0 �� A
i

��

f

��

B

g
���

�
�

�
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In words, every homomorphism from a submodule into E can always be
extended to a homomorphism from the big module into E .

Proposition 3.25. A left R-module E is injective if and only if HomR(�, E)

is an exact functor.

Proof. If

0 → A
i−→ B

p−→ C → 0

is a short exact sequence, we must prove exactness of

0 → HomR(C, E)
p∗−→ HomR(B, E)

i∗−→ HomR(A, E) → 0.

Since HomR(�, E) is a left exact contravariant functor, the thrust of the
proposition is that the induced map i∗ is surjective whenever i is injective. If
f ∈ HomR(A, E), there exists g ∈ HomR(B, E) with f = i∗(g) = gi ; that
is, the appropriate diagram commutes, showing that E is an injective module.

For the converse, if E is injective, then given f : A → E , there exists
g : B → E with gi = f . Thus, if f ∈ HomR(A, E), then f = gi = i∗(g) ∈
im i∗, and so the induced map i∗ is surjective. Therefore, Hom(�, E) is an
exact functor. •

Compare the next result to Proposition 3.3.

Proposition 3.26. If a left R-module E is injective, then every short exact

sequence 0 → E
i→ B

p→ C → 0 splits.

Proof.

E

0 �� E
i

��
1E

��

B

q���
�

�

Since E is injective, there exists q : B → E making the diagram commute;
that is, qi = 1E . Exercise 2.8 on page 65 now gives the result. •

The converse of Proposition 3.26 is also true; it is Proposition 3.40.
This proposition can be restated without using the word exact.

Corollary 3.27. If an injective module E is a submodule of a module M,
then E is a direct summand of M : there is a complement S with M = E ⊕ S.



3.2 Injective Modules 117

Proposition 3.28.

(i) If (Ek)k∈K is a family of injective left R-modules, then
∏

k∈K Ek is also
an injective left R-module.

(ii) Every direct summand of an injective left R-module E is injective.

Proof.

(i) Consider the diagram in which E =∏ Ek .

E

0 �� A

f
��

i
�� B

g���
�

�

Let pk : E → Ek be the kth projection, so that pk f : A → Ek . Since
Ek is an injective module, there is gk : B → Ek with gki = pk f . Now
define g : B → E by g : b �→ (gk(b)). The map g does extend f , for if
b = ia, then

g(ia) = (gk(ia)) = (pk f a) = f a,

because x = (pk x) for every x in the product.

(ii) Assume that E = E1 ⊕ E2, let i : E1 → E be the inclusion, and let
p : E → E1 be the projection (so that pi = 1E1 ).

E1

i ��
E1 ⊕ E2p

		

0 �� B
j

��

f

��

C

g0

���
�
�

The reader should be able to complete the proof using the diagram as a
guide. •

Corollary 3.29. A finite direct sum of injective left R-modules is injective.

Proof. The direct sum of finitely many modules coincides with the direct
product. •

An infinite direct sum of injective left R-modules need not be injective;
indeed, we shall see that all such direct sums are injective if and only if R is
left noetherian (see Proposition 3.31 and Theorem 3.39).

The zero module {0} is injective, but there are no obvious examples of
nonzero injective left R-modules (analogous to free modules as examples of
projective modules). Nevertheless, we are going to see that injective modules
do exist in abundance. We begin with an important result of R. Baer.
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Theorem 3.30 (Baer Criterion). A left R-module E is injective if and only
if every R-map f : I → E, where I is an ideal in R, can be extended to R.

E

0 �� I
i

��

f

��

R

g
���

�
�

�

Proof. Since any left ideal I is a submodule of R, the existence of an exten-
sion g of f is just a special case of the definition of injectivity of E .

Suppose we have the diagram

E

0 �� A
i

��
f
��

B,

where A is a submodule of a left R-module B. For notational convenience,
let us assume that i is the inclusion [this assumption amounts to permitting
us to write a instead of i(a) whenever a ∈ A]. We are going to use Zorn’s
lemma. Let X be the set of all ordered pairs (A′, g′), where A ⊆ A′ ⊆ B
and g′ : A′ → E extends f ; that is, g′|A = f . Note that X 	= ∅ because
(A, f ) ∈ X . Partially order X by defining

(A′, g′)  (A′′, g′′)

to mean A′ ⊆ A′′ and g′′ extends g′. The reader may supply the argument that
chains in X have upper bounds in X ; hence, Zorn’s lemma applies, and there
exists a maximal element (A0, g0) in X . If A0 = B, we are done, and so we
may assume that there is some b ∈ B with b /∈ A0.

Define
I = {r ∈ R : rb ∈ A0}.

It is easy to see that I is a left ideal in R. Define h : I → E by

h(r) = g0(rb).

By hypothesis, there is a map h∗ : R → E extending h. Finally, define A1 =
A0 + 〈b〉 and g1 : A1 → E by

g1(a0 + rb) = g0(a0)+ rh∗(1),

where a0 ∈ A0 and r ∈ R.
Let us show that g1 is well-defined. If a0+rb = a′0+r ′b, then (r−r ′)b =

a′0−a0 ∈ A0; it follows that r−r ′ ∈ I . Therefore, g0((r−r ′)b) and h(r−r ′)
are defined, and we have

g0(a
′
0 − a0) = g0((r − r ′)b) = h(r − r ′) = h∗(r − r ′) = (r − r ′)h∗(1).
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Thus, g0(a′0)− g0(a0) = rh∗(1)− r ′h∗(1) and g0(a′0)+ r ′h∗(1) = g0(a0)+
rh∗(1), as desired. Clearly, g1(a0) = g0(a0) for all a0 ∈ A0, so that the
map g1 extends g0. We conclude that (A0, g0) ≺ (A1, g1), contradicting the
maximality of (A0, g0). Therefore, A0 = B, the map g0 is a lifting of f , and
E is injective. •

Proposition 3.31. If R is a left noetherian ring and (Ek)k∈K is a family of
injective left R-modules, then

⊕
k∈K Ei is an injective left R-module.

Proof. By the Baer Criterion, it suffices to complete the diagram

⊕
k∈K Ek

0 �� I

f
��

i
�� R,

��� � � �

where I is a left ideal in R. If x ∈ ⊕
k Ek , then x = (ek), where ek ∈

Ek ; define Supp(x) = {k ∈ K : ek 	= 0}. Since R is left noetherian, I
is finitely generated, say, I = (a1, . . . , an). As any element in

⊕
k∈K Ek ,

each f a j , for j = 1, . . . , n, has finite support Supp( f a j ) ⊆ K . Thus, S =⋃ n
j=1 Supp( f a j ) is a finite set, and so im f ⊆⊕

�∈S E�; by Corollary 3.29,
this finite direct sum is injective. Hence, there is an R-map g′ : R →⊕

�∈S E�

extending f . Composing g′ with the inclusion of
⊕

�∈S E� into
⊕

k∈K Ek
completes the given diagram. •

Theorem 3.39 will show that the converse of Proposition 3.31 is true;
if every direct sum of injective left R-modules is injective, then R is left
noetherian.

We generalize the definition of divisible abelian groups to divisible R-
modules.

Definition. Let M be an R-module over a domain R. If r ∈ R and m ∈ M ,
then we say that m is divisible by r if there is some m′ ∈ M with m = rm′.
We say that M is a divisible module if each m ∈ M is divisible by every
nonzero r ∈ R.

If R is a domain, r ∈ R, and M is an R-module, then the function
ϕr : M → M , defined by ϕr : m �→ rm, is an R-map. It is clear that M
is a divisible module if and only if ϕr is surjective for every r 	= 0.

Remark. One can define divisible left R-modules for every ring R. There
are several different definitions in the literature, but we prefer that given by
Lam, Lectures on Modules and Rings, p. 70. If r ∈ R, define

ann�(r) = {a ∈ R : ar = 0}.
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Suppose that M is a left R-module and m ∈ M is divisble by r ; i.e., m = rm′
for some m′ ∈ M . Note that if ar = 0, then am = arm′ = 0. Define M
to be divisible if this necessary condition is sufficient: if every m ∈ M is
divisible by r whenever ann�(r) ⊆ ann(m); that is, whenever ar = 0 implies
am = 0. (This generalizes the definition when R is a domain, for if r 	= 0,
then ann�(r) = {0} and, of course, 0m = 0.) A left R-module is divisible if
and only if every R-map f : Rr → M extends to an R-map R → M (Lam,
Ibid., Proposition 3.17). �

Example 3.32. Let R be a domain.

(i) Frac(R) is a divisible R-module.

(ii) Direct sums and direct products of divisible R-modules are divisible. It
follows that every vector space over Frac(R) is a divisible R-module.

(iii) Every quotient of a divisible R-module is divisible. It follows that ev-
ery direct summand of a divisible R-module is divisible, for direct sum-
mands are quotients (in fact, they are retracts). �

Lemma 3.33. If R is a domain, then every injective R-module E is a divisi-
ble module.

Proof. Assume that E is injective. Let e ∈ E and let r0 ∈ R be nonzero; we
must find x ∈ E with e = r0x . Define f : Rr0 → E by f (rr0) = re (note
that f is well-defined because R is a domain: rr0 = r ′r0 implies r = r ′).
Since E is injective, there exists h : R → E extending f . In particular,

e = f (r0) = h(r0) = r0h(1),

so that x = h(1) is the element in E required by the definition of divisible. •

Remark. Lemma 3.33 is true for left R-modules over any ring R if one uses
Lam’s definition of divisible left R-modules. �

The converse of Lemma 3.33 is true for some domains, but it is false
in general. For example, Theorem 4.24 shows that if a domain R is not a
Dedekind ring, then there exists a divisible R-module that is not injective.

We can now give some examples of injective modules.

Proposition 3.34. Let R be a domain and let Q = Frac(R).

(i) Q is an injective R-module.

(ii) Every vector space E over Q is an injective R-module.
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Proof.

(i) By Baer’s Criterion, it suffices to extend an R-map f : I → Q, where
I is an ideal in R, to all of R. Note first that if a, b ∈ I are nonzero,
then a f (b) = f (ab) = b f (a), so that

f (a)/a = f (b)/b in Q for all nonzero a, b ∈ I ;
let c ∈ Q denote their common value (note how I being an ideal is
needed to define c: the product ab must be defined, and either factor
can be taken outside the parentheses). Define g : R → Q by

g(r) = rc

for all r ∈ R. It is obvious that g is an R-map. To see that g extends f ,
suppose that a ∈ I ; then

g(a) = ac = a f (a)/a = f (a).

It now follows from Baer’s Criterion that Q is an injective R-module.

(ii) If R were noetherian, then direct sums of injective R-modules would be
injective, by Proposition 3.31, and the result would follow at once from
part (i). Since we are not assuming that R is noetherian, however, we
must proceed differently; fortunately, a variation of the proof of part (i)
works.

Assume that f : I → E is an R-map from an ideal I to E . For each
nonzero a ∈ I , divisibility of E provides ea ∈ E with f (a) = aea .
We claim that ea = eb for all a, b ∈ I . Since f is an R-map, we
have f (ab) = a f (b) = a(beb); similarly, f (ba) = b(aea). But R is
commutative, so that ab = ba and abea = abeb; that is, ab(ea − eb) =
0. Since E is a vector space over Q and ab 	= 0, we have ea = eb.
Define f̃ : R → E by f̃ (r) = r f (1) = rea (for some choice of nonzero
a ∈ I ). Then f̃ is an R-map extending f , and so E is injective. •

Remark. If R is a domain with Q = Frac(R), then the proof of Proposi-
tion 3.34(ii) shows that every torsion-free divisible R-module E is injective
(recall that an R-module M is torsion-free if both r ∈ R and m ∈ M nonzero
implies rm 	= 0). However, this observation does not give a more general
result, for every torsion-free divisible R-module is a vector space over Q. �

Corollary 3.35. Let R be a principal ideal domain.

(i) An R-module E is injective if and only if it is divisible.

(ii) Every quotient of an injective R-module E is itself injective.
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Remark. This corollary is true for rings R in which every left ideal is prin-
cipal; the proof uses the notion of divisible left R-module. �
Proof.

(i) We use Baer’s Criterion, Theorem 3.30. Assume that f : I → E is an
R-map, where I is a nonzero ideal; by hypothesis, I = Ra for some
nonzero a ∈ I . Since E is divisible, there is e ∈ E with f (a) = ae.
Define h : R → E by h(s) = se for all s ∈ R. It is easy to check
that h is an R-map; moreover, h extends f , for if s = ra ∈ I , then
h(s) = h(ra) = rae = r f (a) = f (ra). Therefore, E is injective.

(ii) Since E is injective, it is divisible; hence, if M ⊆ E is any submodule,
then E/M is divisible. By part (i), E/M is injective. •

Theorem 2.35 says that every module is a quotient of a projective module
(actually, it is a stronger result: every module is a quotient of a free module).
The next result is the “dual” result for Z-modules: every abelian group can be
imbedded in an injective abelian group.

Corollary 3.36. Every abelian group M can be imbedded as a subgroup of
some injective abelian group.

Proof. By Theorem 2.35, there is a free abelian group F = ⊕
i Zi with

M = F/K for some K ⊆ F . Now

M = F/K =
(⊕

i

Zi

)
/K ⊆

(⊕
i

Q i

)
/K ,

where we have merely imbedded each copy Zi of Z into a copy Q i of Q.
But Example 3.32 gives each Q i divisible, hence gives

⊕
i Q i divisible,

and hence gives divisibility of the quotient (
⊕

i Q i )/K . By Corollary 3.35,
(
⊕

i Q i )/K is injective. •

Lemma 3.37. If D is a divisible abelian group, then HomZ(R, D) is an
injective left R-module.

Proof. First of all, HomZ(R, D) is a left R-module, by Proposition 2.54: if
f : R → D and a ∈ R, define (a f )(r) = f (ra) for all r ∈ R. To prove
that HomZ(R, D) is injective, we show that HomR(�,HomZ(R, D)) is an
exact functor. By Corollary 2.77, essentially the adjoint isomorphism, this
functor is naturally isomorphic to HomZ(R⊗R �, D), which is the composite
HomZ(�, D) ◦ (R ⊗R �). Since D is Z-injective, by Corollary 3.35, and
R ⊗R � is naturally isomorphic to the identity functor on RMod, both of
these functors are exact, and so their composite is also exact. •
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Theorem 3.38. For every ring R, every left R-module M can be imbedded
as a submodule of an injective left R-module.

Proof. Regard M as an abelian group, and define ϕ : M → HomZ(R, M) by
m �→ ϕm , where ϕm(r) = rm; it is easy to see that ϕ is a Z-homomorphism,
and we now show it is an injection. If ϕm = ϕm′ , then rm = ϕm(r) =
ϕm′(r) = rm′ for all r ∈ R; in particular, this is true for r = 1, and so
m = m′.

By Corollary 3.36, there exist a injective abelian group D and an injec-
tive Z-homomorphism i : M → D. Left exactness of Hom gives an injection
i∗ : HomZ(R, M) → HomZ(R, D), and so the composite i∗ϕ is an injec-
tive Z-map. It remains to show that i∗ϕ is an R-map; that is, if a ∈ R and
m ∈ M , then (i∗ϕ)(am) = a[(i∗ϕ)(m)]. Now (i∗ϕ) : am �→ iϕam , where
iϕam : r �→ r(am) [the function i merely views the element r(am) ∈ M
as an element of D]. On the other hand, a[(i∗ϕ)(m)] = a(i∗ϕm), where
a(i∗ϕm)(r) = (i∗ϕm)(ra) [this is the definition of the left module structure on
HomZ(R, D)]. Hence, (i∗ϕm)(ra) = i(ra)m = (ra)m, as desired. •

After Proposition 3.54, we will use character modules to give another
proof of Theorem 3.38.

We have seen, in Proposition 3.31, that if R is a left noetherian ring, then
every direct sum of injective left R-modules is injective; we now prove the
converse.

Theorem 3.39 (Bass–Papp). If R is a ring for which every direct sum of
injective left R-modules is an injective module, then R is left noetherian.

Proof. We show that if R is not left noetherian, then there are a left ideal
I and an R-map from I to a sum of injectives that cannot be extended to R.
Since R is not left noetherian, Corollary 3.16 gives a strictly ascending chain
of left ideals I1 � I2 � · · · ; let I = ⋃

In . We note that I/In 	= {0} for all n.
By Theorem 3.38, we may imbed I/In in an injective left R-module En; we
claim that E =⊕n En is not injective.

Let πn : I → I/In be the natural map. For each a ∈ I , note that
πn(a) = 0 for large n (because a ∈ In for some n), and so the R-map
f : I →∏

(I/In), defined by

f : a �→ (πn(a)),

does have its image in
⊕

n(I/In); that is, for each a ∈ I , almost all of
the coordinates of f (a) are 0. Composing with the inclusion

⊕
(I/In) →⊕

En = E , we may regard f as a map I → E . If there is an R-map
g : R → E extending f , then g(1) is defined; say, g(1) = (en). Choose
an index m and choose am ∈ I with am /∈ Im ; since am /∈ Im , we have
πm(am) 	= 0, and so g(am) = f (am) has nonzero mth coordinate πm(am).
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But g(am) = am g(1) = am(en) = (amen), so that πm(am) = amem . It fol-
lows that em 	= 0 for all m, and this contradicts g(1) lying in the direct sum
E =⊕ En . •

Here is the converse of Proposition 3.26.

Proposition 3.40. A left R-module E is injective if and only if every short
exact sequence 0 → E → B → C → 0 splits.

Proof. Necessity has already been proved in Proposition 3.26, and so we
only prove sufficiency. By Theorem 3.38, there is an exact sequence 0 →
E → M → M ′′ → 0 with M injective. By hypothesis, this sequence splits,
and so M ∼= E ⊕ M ′′. It follows from Proposition 3.28(ii) that E is injective,
for it is a direct summand of an injective module. •

We can improve this last result by showing that it suffices to consider only
those short exact sequences 0 → A → B → C → 0 with C cyclic.

Lemma 3.41. The diagram with exact row

0 �� A
α ��

γ
��

B
β �� C �� 0

E

can be completed to a commutative diagram with exact rows:

0 �� A
α ��

γ

��

B
β ��

γ ′
��

C ��

1C

��

0

0 �� E
α′

�� P
β ′

�� C �� 0.

Proof. Our first guess is to define P = E ⊕ B, α′ : e �→ (e, 0), and γ ′ : b �→
(0, b), but the first square does not commute because (γ a, 0) 	= (0, αa). Let

S = {(γ a,−αa) : a ∈ A},
and note that S is a submodule of E ⊕ B. Make new definitions:

P = (E ⊕ B)/S, α′ : e �→ (e, 0)+ S, and γ ′ : b �→ (0, b)+ S.

Now define β ′ : P → C by (e, b) + S �→ βb. The reader may check that β ′
is well-defined and that the diagram commutes.

It remains to prove that the bottom row is exact. If α′(e) = (e, 0) + S is
zero, then (e, 0) = (γ a,−αa) for some a ∈ A. Hence, 0 = −αa, so that
a = 0 because α is an injection; thus, 0 = γ a = e, and so α′ is an injection.
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Now imα′ ⊆ kerβ ′ because β ′α′ = 0. Let us prove the reverse inclusion
kerβ ′ ⊆ imα′. If (e, b) + S ∈ kerβ ′, then βb = 0 and b ∈ kerβ = imα;
that is, b = αa for some a ∈ A. Hence, (e, b) + S = (e, αa) + S =
(e+γ a, 0)+ S ∈ imα′. Finally, β ′ is surjective, for if c ∈ C , then surjectivity
of β gives c = βb for some b ∈ B, and so c = β ′((0, b)+ S). •

The construction of the first square in the diagram is called a pushout, and
we will meet it again in Chapter 5.

Proposition 3.42. A left R-module E is injective if and only if every short

exact sequence 0 → E
i→ B

p→ C → 0 in which C is cyclic splits.

Remark. A proof of this proposition using Ext is in Lemma 8.15. �
Proof. If E is injective, then Proposition 3.40 says that the sequence splits
for every (not necessarily cyclic) module C .

For the converse, let I be a left ideal of R and let f : I → E be an R-map.
By Lemma 3.41, there is a commutative diagram with exact rows

0 �� I
i ��

f
��

R ��

f ′
��

R/I ��

1��

0

0 �� E
α′

�� P �� R/I �� 0.

Since R/I is cyclic, our hypothesis is that the bottom row splits. Thus, there
is a map q : P → E with qα′ = 1E . Now define g : R → E by g = q f ′. It is
easy to see that gi = f , and the Baer criterion shows that E is injective. •

Theorem 3.38 can be improved, for there is a smallest injective module
containing any given module, called its injective envelope.

Definition. Let M and E be left R-modules. Then E is an essential exten-
sion of M if there is an injective R-map α : M → E with S ∩ α(M) 	= {0}
for every nonzero submodule S ⊆ E . If also α(M) � E , then E is called a
proper essential extension of M .

The additive group Q is an essential extension of Z; indeed, every inter-
mediate subgroup G (i.e., Z ⊆ G ⊆ Q) is an essential extension of Z.

Proposition 3.43. A left R-module M is injective if and only if M has no
proper essential extensions.

Proof. Let M be an injective module. If E is an essential extension of M ,
then there is an injection α : M → E with α(M) 	= E with S ∩ α(M) 	= {0}
for every nonzero submodule S of E . Since M , and hence α(M), is injective,
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Corollary 3.27 says that α(M) is a direct summand of E ; that is, there is a
submodule S ⊆ E with E = α(M) ⊕ S, and so S ∩ α(M) = {0}. But S is
nonzero, because E is a proper extension. This contradiction shows that M
has no proper essential extensions.

Conversely, assume that M has no proper essential extensions. By Theo-
rem 3.38, there exist an injective left R-module E and an injection i : M →
E . If E is an essential extension of i(M), then i is an isomorphism and
we are done. Otherwise, there exists a nonzero submodule S ⊆ E with
S ∩ i(M) = {0}. Using Zorn’s lemma, there exists a submodule N ⊆ E
maximal such that S ⊆ N and N ∩ i(M) = {0}. If π : E → E/N is the natu-
ral map, then kerπ ∩ i(M) = N ∩ i(M) = {0}, so that π |i(M) is an injective
R-map. Now Exercise 3.23 on page 130 says that π must also be an injective
R-map; that is, N = kerπ = {0}. But S ⊆ N is nonzero; this contradiction
shows that E must be an essential extension of i(M), and this completes the
proof. •

Lemma 3.44. Given a left R-module M, the following conditions are equiv-
alent for a module E ⊇ M.

(i) E is a maximal essential extension of M; that is, no proper extension of
E is an essential extension of M.

(ii) E is an injective module and E is an essential extension of M.

(iii) E is an injective module and there is no proper injective intermediate
submodule E ′; that is, there is no injective E ′ with M ⊆ E ′

� E.

Proof. We may assume that M is not injective, for all three statements are
equivalent in this case, by Proposition 3.43.

(i) ⇒ (ii) Since being an essential extension is a transitive relation, by Ex-
ercise 3.20 on page 130, it follows that E has no proper essential exten-
sions. Proposition 3.43 says that E is an injective module.

(ii) ⇒ (iii) Assume that E is an injective essential extension of M . If there
exists an injective module E ′ with M ⊆ E ′

� E , then E ′ is a direct
summand: E = E ′ ⊕ E ′′, where E ′′ 	= {0}. But M ∩ E ′′ ⊆ E ′ ∩ E ′′ =
{0}, and this contradicts E being an essential extension of M .

(iii) ⇒ (i) We show that E is a maximal essential extension of M . Let F
be the family of all submodules S ⊆ E that are essential extensions
of M . Now F 	= ∅, for M ∈ F . Partially order F by inclusion.
By Exercise 3.22 on page 130, chains in F have upper bounds, and so
Zorn’s lemma says that F has a maximal element, say, E ′. Now E ′
is an essential extension of M that has no proper essential extension
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N ⊆ E . Can E ′ have an essential extension elsewhere? If there is a
left R-module N that is an essential extension of E ′, then consider the
diagram

E

0 �� E ′
j

��
i
��

N ,

h
��� � � �

where i and j are inclusions. A map h exists with hj = i , because E
is injective, so that hj = h|E is an injection. Since N is an essential
extension of E , we have h injective, by Exercise 3.23 on page 130.
Therefore, h(N ) is an essential extension of E ′ in F . By maximality of
E ′, we have E ′ = h(N ); that is, E ′ has no proper essential extensions.
By Proposition 3.43, E ′ is injective. But our hypothesis says that there
are no injective intermediate submodules, so that either E ′ = M or
E ′ = E . If E ′ = M , then M is injective, which has been considered
at the beginning of the proof; if E ′ = E , then E is a maximal essential
extension of M . •

Definition. If M is a left R-module, then a left R-module E containing M
is an injective envelope of M , denoted by Env(M), if any of the equivalent
conditions in Lemma 3.44 hold.

Theorem 3.45 (Eckmann–Schöpf). Let M be a left R-module.

(i) There exists an injective envelope Env(M) of M.

(ii) If E and E ′ are injective envelopes of M, then there exists an R-iso-
morphism ϕ : E → E ′ that fixes M pointwise.

Proof.

(i) Let Z be an injective left R-module containing M , and construct a
maximal essential extension of M , as in the proof of (iii) ⇒ (i) in
Lemma 3.44.

(ii) Let i : M → E and j : M → E ′ be inclusions. Since E ′ is injective,
there exists an R-map ϕ : E → E ′ with ϕi = j . Thus, ϕ|M = ϕi is
an injection, and so ϕ is an injection, by Exercise 3.23 on page 130.
Therefore, ϕ(E) ⊆ E ′ is an intermediate injective submodule, so that
ϕ(E) = E ′, and ϕ is an isomorphism fixing M pointwise. •
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Remark. One might think that injective envelope is functorial, but this is
not so. Example 5.20 shows that there is no additive functor T : Ab → Ab
with T (G) = Env(G) for all G ∈ obj(Ab). �

Here is an informal definition of duality. The dual of a commutative dia-
gram D is the commutative diagram in which all the arrows in D are reversed;
that is, the corresponding diagram in the opposite category. Some terms are
defined with diagrams; for example, the diagram defining injective modules is
the dual of the diagram defining projective modules. (We will discuss duality
more in Chapter 5 when we will see, in RMod, that kernel and cokernel are
dual, that direct sum and direct product are dual, and that injective and surjec-
tive morphisms are dual; moreover, exact sequence and direct summand are
each self-dual.) Informally, the dual statement of a statement (see Mac Lane,
Categories for the Working Mathematician, pp. 31–32, for a formal definition)
is the new statement in which every noun, adjective, and diagram is replaced
by its dual (when defined). The dual of a theorem may also be a theorem;
if so, there are two possibilities. The proofs may be dual: for example, the
proof that every short exact sequence 0 → A → B → C → 0 with C
projective splits is dual to the proof of Proposition 3.26: every short exact
sequence 0 → A → B → C → 0 with A injective splits. However, proofs
may not be dual: for example, the proof that every module is a quotient of a
projective module is not dual to the proof that every module is a submodule
of an injective module. It is also possible that a theorem that holds in RMod
for every ring R may have a false dual. Every left R-module has an injective
envelope, but the dual statement is false in some module categories: Exam-
ple 4.61 shows that a projective cover (the dual of an injective envelope) of a
Z-module may not exist. Writing a module as a quotient of a free module is
the essence of describing it by generators and relations. We may now think of
Theorem 3.38 as dualizing this idea.

Exercises

*3.14 Prove the dual of Schanuel’s Lemma. Given exact sequences

0 → M
i→ E

p→ Q → 0 and 0 → M
i ′→ E ′ p′→ Q′ → 0,

where E and E ′ are injective, then there is an isomorphism

Q ⊕ E ′ ∼= Q′ ⊕ E .

*3.15 (Schanuel) Let B be a left R-module over some ring R, and con-
sider two exact sequences

0 → K → Pn → Pn−1 → · · · → P1 → P0 → B → 0
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and

0 → K ′ → Qn → Qn−1 → · · · → Q1 → Q0 → B → 0,

where the Ps and Qs are projective. Prove that

K ⊕ Qn ⊕ Pn−1 ⊕ · · · ∼= K ′ ⊕ Pn ⊕ Qn−1 ⊕ · · · .
*3.16 Let R be a ring with IBN.

(i) If 0 → Fn → · · · → F0 → 0 is an exact sequence
with each Fi a finitely generated free R-module, prove that∑ n

i=0(−1)i rank(Fi ) = 0.
(ii) Let 0 → Fn → · · · → F0 → M → 0 and 0 → F ′

m →
· · · → F ′

0 → M → 0 be exact sequences of left R-
modules, where each Fi and F ′

j is finitely generated and
free. Prove that

n∑
i=0

(−1)i rank(Fi ) =
m∑

j=0

(−1) j rank(F ′
j ).

The common integer value is called the Euler characteris-
tic of M and is denoted by χ(M).
Hint. Use Exercise 3.15.

(iii) Let 0 → M ′ → M → M ′′ → 0 be an exact sequence
of finitely generated left R-modules. If two of the modules
have an Euler characteristic, prove that the third does also,
and

χ(M) = χ(M ′)+ χ(M ′′).

Hint. Use Corollary 3.13.

3.17 (i) Prove that every vector space over a field k is an injective
k-module.

(ii) Prove that if 0 → U → V → W → 0 is an exact sequence
of vector spaces, then the corresponding sequence of dual
spaces 0 → W ∗ → V ∗ → U∗ → 0 is also exact.

3.18 (i) Prove that if a domain R is an injective R-module, then R
is a field.

(ii) Prove that I6 is simultaneously an injective and a projective
module over itself.

(iii) Let R be a domain that is not a field, and let M be an
R-module that is both injective and projective. Prove that
M = {0}.
Hint. Use Exercises 2.22 on page 68 and 3.11 on page 115.
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*3.19 (Pontrjagin Duality) If G is a (discrete) abelian group, its Pontrja-
gin dual is the group

G∗ = HomZ(G,R/Z).

(More generally, the Pontrjagin dual of a locally compact abelian
topological group G consists of all the continuous homomorphisms
from G into the circle group S1 ∼= R/Z.)

(i) If G is an abelian group and a ∈ G is nonzero, prove that
there is a homomorphism f : G → R/Z with f (a) 	= 0.

(ii) Prove that R/Z is an injective abelian group.
(iii) Prove that if 0 → A → G → B → 0 is an exact sequence

of abelian groups, then so is 0 → B∗ → G∗ → A∗ → 0.
(iv) If G is a finite abelian group, then G∗ ∼= HomZ(G,Q/Z).
(v) If G is a finite abelian group, prove that G∗ ∼= G.
(vi) Prove that every quotient group G/H of a finite abelian

group G is isomorphic to a subgroup of G.
Remark. The analogous statement for nonabelian groups
is false: if Q is the group of quaternions, then Q/Z(Q) ∼=
V, where Z(Q) is the center of Q and V is the four-group.
But Q has only one element of order 2 while V has three el-
ements of order 2, so that V is not isomorphic to a subgroup
of Q. Part (vi) is also false for infinite abelian groups: since
Z has no element of order 2, it has no subgroup isomorphic
to Z/2Z = I2. �

*3.20 Being an essential extension is transitive. Let M ⊆ E ⊆ E1 be
submodules of a left R-module E1. If E is an essential extension
of M and E1 is an essential extension of E , prove that E1 is an
essential extension of M .

*3.21 (i) Let M ⊆ E be left R-modules. Prove that E is an essential
extension of M if and only if, for every nonzero e ∈ E ,
there is r ∈ R with re ∈ M and re 	= 0.

(ii) Let M ⊆ E be left R-modules, and let S be a chain of
intermediate submodules; that is, M ⊆ S ⊆ E for all S ∈ S
and, if S, S′ ∈ S, either S ⊆ S′ or S′ ⊆ S. If each S ∈ S
is an essential extension of M , use part (i) to prove that⋃

S∈S S is an essential extension of M .
*3.22 Let M ⊆ E ′ ⊆ E be left R-modules. If both E ′ and E are essential

extensions of M , prove that E is an essential extension of E ′.
*3.23 Let E be an essential extension of a left R-module M . If ϕ : E → N

is an R-map with ϕ|M injective, prove that ϕ is injective.
Hint. Consider M ∩ kerϕ.
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3.24 If R is a domain, prove that Frac(R) = Env(R), its injective enve-
lope.

*3.25 Recall that every abelian group G having no elements of infinite or-
der has a primary decomposition: G =⊕p G p, where p is a prime
and G p = {g ∈ G : order g is some power of p}. In particular, the
p-primary component of G = Q/Z is called the Prüfer group; it is
denoted by Z(p∞).

(i) Prove that Z(p∞) is an injective abelian group.
(ii) Prove that the injective envelope Env(Ipn ) is Z(p∞).

*3.26 (i) If A is the abelian group with the presentation

A = (an, n ≥ 0 | pa0 = 0, pan+1 = an),

prove that A ∼= Z(p∞).
(ii) Give an example of two injective submodules of a module

whose intersection is not injective.

Hint. Define E = A⊕{0} and E ′ = 〈{(an+1, an) : n ≥ 0}〉
in A ⊕ A.

3.3 Flat Modules

The next type of module arises from tensor products in the same way that
projective and injective modules arise from Hom.

Definition. If R is a ring, then a right R-module A is flat3 if A ⊗R � is an
exact functor; that is, whenever

0 → B ′ i→ B
p→ B ′′ → 0

is an exact sequence of left R-modules, then

0 → A ⊗R B ′ 1A⊗i−→ A ⊗R B
1A⊗p−→ A ⊗R B ′′ → 0

is an exact sequence of abelian groups. Flatness of left R-modules is defined
similarly.

Because the functors A ⊗R � : RMod → Ab are right exact, we see that
a right R-module A is flat if and only if, whenever i : B ′ → B is an injection,
then 1A ⊗ i : A ⊗R B ′ → A ⊗R B is also an injection.

3 This term arose as the translation into algebra of a geometric property of varieties.
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Proposition 3.46. Let R be an arbitrary ring.

(i) The right R-module R is a flat right R-module.

(ii) A direct sum
⊕

j M j of right R-modules is flat if and only each M j is
flat.

(iii) Every projective right R-module P is flat.

Proof.

(i) Consider the commutative diagram

A
i ��

σ ��

B
τ��

R ⊗R A
1R⊗i

�� R ⊗R B,

where i : A → B is an injection, σ : a �→ 1⊗a, and τ : b �→ 1⊗b. Now
both σ and τ are isomorphisms, by Proposition 2.58, and so 1R ⊗ i =
τ iσ−1 is an injection. Therefore, R is a flat module over itself.

(ii) By Exercise 2.24 on page 68, any family of R-maps ( f j : U j → Vj ) j∈J
can be assembled into an R-map ϕ :

⊕
j U j →

⊕
j V j , namely,

ϕ : (u j ) �→ ( f j (u j ));
it is easy to see that ϕ is an injection if and only if each f j is an injection.

Let i : A → B be an injection. There is a commutative diagram

(
⊕

j M j )⊗R A 1⊗i ��

��

(
⊕

j M j )⊗R B

��⊕
j (M j ⊗R A)

ϕ
��
⊕

j (M j ⊗R B),

where ϕ : (m j ⊗ a) �→ (m j ⊗ ia), 1 is the identity map on
⊕

j M j , and
the downward maps are the isomorphisms of Proposition 2.65. By our
initial observation, 1⊗ i is an injection if and only if each 1M j ⊗ i is an
injection; this says that

⊕
j M j is flat if and only if each M j is flat.

(iii) Combining the first two parts, we see that a free right R-module, being
a direct sum of copies of R, must be flat. Moreover, since a module is
projective if and only if it is a direct summand of a free module, part (ii)
shows that projective modules are always flat. •

The next results will help us recognize whether a given module is flat.
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Lemma 3.47. Let 0 → A
i−→ B be an exact sequence of left R-modules,

and let M be a right R-module. If u ∈ ker(1M ⊗ i), then there are a finitely
generated submodule N ⊆ M and an element u′ ∈ N ⊗R A such that

(i) u′ ∈ ker(1N ⊗ i),

(ii) u = (κ ⊗ 1A)(u′), where κ : N → M is the inclusion.

Proof. Let u = ∑
j m j ⊗ a j ∈ ker(1M ⊗ i), where m j ∈ M and a j ∈ A.

There is an equation in M ⊗R B,

0 = (1M ⊗ i)(u) =
n∑

j=1

m j ⊗ ia j .

Let F be the free abelian group with basis M × B, and let S be the subgroup
of F consisting of the relations of F/S ∼= M ⊗R B (as in the construction of
the tensor product in Proposition 2.45); thus, S is generated by all elements in
F of the form

(m, b + b′)− (m, b)− (m, b′),
(m + m′, b)− (m, b)− (m′, b),

(mr, b)− (m, rb).

Let 0 → S → F
ν−→ M ⊗R B → 0, where ν : (m, b) �→ m ⊗ b. Since

(1M ⊗ i)(u) = ∑
j m j ⊗ ia j = 0 in M ⊗R B, we have

∑
j m j ⊗ ia j =∑

k ν(m′
k, b′k) ∈ ν(S), where m′

k ∈ M and b′k ∈ B. Define N to be the
submodule of M generated by m1, . . . ,mn together with the (finite number of)
first coordinates m′

k . Of course, N is a finitely generated submodule of M . If
we define u′ =∑ j m j ⊗a j in N⊗R A, then (κ⊗1A)(u′) =

∑
κ(m j )⊗b j =

u. Finally, (1N ⊗ i)(u′) = 0, for we have taken care that all the relations
making (1N ⊗ i)(u) = 0 are present in N ⊗R B (identify N ⊗R B with F ′/S′,
where F ′ is free with basis N × B). •

Proposition 3.48. If every finitely generated submodule of a right R-module
M is flat, then M is flat.

Proof. It suffices to prove that exactness of 0 → A
i−→ B gives exactness

of 0 → M ⊗R A
1M⊗i−→ M ⊗R B. If u ∈ ker(1M ⊗ i), then the lemma

provides a finitely generated submodule N ⊆ M and an element u′ ∈ N ⊗R A
with u′ ∈ ker(1N ⊗ i) and u = (κ ⊗ 1A)(u′), where κ : N → M is the
inclusion. Now 1N ⊗ i is injective, by hypothesis, so that u′ = 0; moreover,
u = (κ ⊗ 1A)(u′) = 0. Therefore, 1M ⊗ i is an injection and M is flat. •
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Definition. If R is a domain and M is an R-module, then its torsion4 sub-
module is

t M = {m ∈ M : rm = 0 for some nonzero r ∈ R
}
.

We say that M is a torsion module if t M = M ; we say that M is torsion-free
if t M = {0}.

Were R not a domain, then t M might not be a submodule. If m,m′ ∈ t M ,
then there are nonzero r, r ′ ∈ R with rm = 0 = r ′m′. Now rr ′(m −m′) = 0,
but it is possible that rr ′ = 0, and so we cannot conclude that m − m′ ∈ t M .

For every R-module M over a domain R, there is an exact sequence

0 → t M → M → M/t M → 0.

It is easy to check that M/t M is torsion-free, and so every R-module is an
extension of a torsion module by a torsion-free module. Moreover, every
submodule of a torsion-free module is itself torsion-free.

Proposition 3.49. If R is a domain and A is a flat R-module, then A is
torsion-free.

Proof. Let Q = Frac(R). Since A is flat, the functor �⊗R A is exact. Hence,
exactness of 0 → R → Q gives exactness of 0 → R ⊗R A → Q ⊗R A. But
R ⊗R A ∼= A and Q ⊗R A is torsion-free (it is a vector space over Q). •

Corollary 3.50. If R is a PID, then every torsion-free R-module B is flat.

Proof. If R is a PID, then the Fundamental Theorem says that every finitely
generated R-module M is a direct sum of cyclic modules. In particular, if
M is also torsion-free, then it is a direct sum of copies of R; that is, M is
a free module. Thus, every finitely generated submodule M of B is flat, by
Proposition 3.46, and so B is flat, by Proposition 3.48. •

Corollary 3.51. An R-module A over a PID R is flat if and only if A is
torsion-free.

Proof. This follows from Proposition 3.49 and Corollary 3.50. •
4There are generalizations of torsion to rings R that are not domains. For example, call

an element m in a left R-module M a torsion element if there is a nonzero r ∈ R, not
a zero-divisor, with rm = 0. Call M torsion-free if it has no torsion elements. Another
generalization involves torsion theories. If A is an abelian category (defined in Chapter 5),
then a torsion theory is an ordered pair (T,F) of subclasses of obj(A) that is maximal with
the property that HomA(T, F) = 0 for all T ∈ T and F ∈ F (see Rowen, Ring Theory I).
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Example 3.52. We show that tensor product may not commute with direct
products:

Q⊗Z

∏
n≥2

In 	∼=
∏
n≥2

(
Q⊗Z In

)
.

The right side is {0} because Q⊗Z In = {0} for all n, by Proposition 2.73. On
the other hand,

∏
n≥2 In contains an element of infinite order: if In = 〈an〉,

then there is no positive integer m with 0 = m(an) = (man); hence, there is
an exact sequence 0 → Z → ∏

n≥2 In . Since Q is flat, by Corollary 3.50,
there is exactness of 0 → Q⊗Z Z → Q⊗Z

∏
n≥2 In . But Q⊗Z Z ∼= Q, and

so Q⊗Z

∏
n≥2 In 	= {0}. �

We are now going to give a connection between flat modules and injective
modules (see Exercise 3.19 on page 130).

Definition. If B is a right R-module, define its character module5 B∗ as the
left R-module

B∗ = HomZ(B,Q/Z).

Recall Proposition 2.54: B∗ = HomZ(B,Q/Z) is a left R-module if one
defines r f , for r ∈ R and f : B → Q/Z, by r f : b �→ f (br). We now
improve Proposition 2.42: if i : A′ → A and p : A → A′′ are maps and

0 → Hom(A′′, B)
p∗−→ Hom(A, B)

i∗−→ Hom(A′, B) is an exact sequence

for every module B, then A′ i−→ A
p−→ A′′ → 0 is an exact sequence.

Lemma 3.53. A sequence of right R-modules

A
α−→ B

β−→ C

is exact if and only if the sequence of character modules

C∗ β∗−→ B∗ α∗−→ A∗

is exact.

Remark. Note the special cases A = {0} and C = {0}. �
Proof. If the original sequence is exact, then so is the sequence of character
modules, for the contravariant functor HomZ(�,Q/Z) is exact, because Q/Z

is an injective Z-module, by Corollary 3.35.
We prove the converse.

5If B is a Z-module, then its character module coincides with its Pontrjagin dual (see
Exercise 3.19 on page 130).
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imα ⊆ kerβ. If x ∈ A and αx /∈ kerβ, then βα(x) 	= 0. By Exer-
cise 3.19(i) on page 130, there is a map f : C → Q/Z with fβα(x) 	= 0.
Thus, f ∈ C∗ and fβα 	= 0, which contradicts the hypothesis that α∗β∗ = 0.

kerβ ⊆ imα. If y ∈ kerβ and y /∈ imα, then y + imα is a nonzero
element of B/ imα. Therefore, there is a map g : B/ imα → Q/Z with
g(y + imα) 	= 0, by Exercise 3.19(i). If ν : B → B/ imα is the natural map,
define g′ = gν ∈ B∗; note that g′(y) 	= 0, for g′(y) = gν(y) = g(y + imα).
Now g′(imα) = {0}, so that 0 = g′α = α∗(g′) and g′ ∈ kerα∗ = imβ∗.
Thus, g′ = β∗(h) for some h ∈ C∗; that is, g′ = hβ. Hence, g′(y) = hβ(y),
which is a contradiction, for g′(y) 	= 0, while hβ(y) = 0, because y ∈ kerβ.

•

Proposition 3.54 (Lambek). A right R-module B is flat if and only if its
character module B∗ is an injective left R-module.

Proof. The functors HomR(�,HomZ(B,Q/Z)) = HomR(�, B∗) and
HomZ(�,Q/Z)) ◦ (B ⊗R �) are naturally isomorphic, by Corollary 2.77.
If B is flat, then each of the functors in the composite is exact, for Q/Z is
Z-injective; hence, HomR(�, B∗) is exact and B∗ is injective.

Conversely, assume that B∗ is an injective left R-module and A′ → A
is an injection between left R-modules A′ and A. Since HomR(A, B∗) =
HomR(A,HomZ(B,Q/Z)), the (second version of the) adjoint isomorphism,
Theorem 2.76, gives a commutative diagram in which the vertical maps are
isomorphisms.

HomR(A, B∗) ��

��

HomR(A′, B∗) ��

��

0

HomZ(B ⊗R A,Q/Z) ��

=
��

HomZ(B ⊗ A′,Q/Z) ��

=
��

0

(B ⊗R A)∗ �� (B ⊗R A′)∗ �� 0

Exactness of the top row now gives exactness of the bottom row. The sequence
0 → B ⊗R A′ → B ⊗R A is exact, by Lemma 3.53, and this gives B flat. •

We now sketch another proof of Theorem 3.38: every left R-module M
can be imbedded in an injective left R-module. The character module M∗ =
HomZ(M,Q/Z) is a right R-module, M∗∗ is a left R-module, and the R-map
ϕ : M → M∗∗, given by m �→ ϕm [where ϕm( f ) = f (m) for all f ∈ M∗],
is an injection. If F is a free (hence flat) right R-module and F → M∗ → 0
is exact, there is an exact sequence of left R-modules 0 → M∗∗ → F∗∗. The
composite M → M∗∗ → F∗∗ is an injective R-map of left R-modules, and
F∗∗ is an injective left R-module, by Proposition 3.54.
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Lemma 3.55. Given modules (R X,R YS, ZS), where R and S are rings.

(i) There is a natural transformation in X, Y , and Z,

τ = τX,Y,Z : HomS(Y, Z)⊗R X → HomS(HomR(X, Y ), Z),

that is an isomorphism whenever X is a finitely generated free left R-
module.

(ii) If X is finitely presented and Z = Q/Z, then

τ : Y ∗ ⊗R X → HomR(X, Y )∗

is an isomorphism.

Proof.

(i) Note that both HomS(Y, Z) and HomR(X, Y ) make sense, for Y is a
bimodule. If f ∈ HomS(Y, Z) and x ∈ X , define τX,Y,Z ( f ⊗ x) to be
the S-map HomR(X, Y ) → Z given by

τX,Y,Z ( f ⊗ x) : g �→ f (g(x)).

It is straightforward to check that τX,Y,Z is a homomorphism natural in
X , that τX,Y,Z is an isomorphism when X = R, and, more generally,
that τX,Y,Z is an isomorphism when X is a finitely generated free left
R-module.

(ii) Consider the following diagram, where F ′ → F → X → 0 is an
exact sequence with both F ′ and F finitely generated free modules, and
τ� = τ�,Y,Q/Z.

Y ∗ ⊗R F ′ ��

τF ′ ��

Y ∗ ⊗R F ��

τF��

Y ∗ ⊗R X
τX��

�� 0

HomR(F ′, Y )∗ �� HomR(F, Y )∗ �� HomR(X, Y )∗ �� 0

By the naturality in part (i), this diagram commutes [the middle term is
Y ∗ ⊗R F = HomZ(Y,Q/Z)⊗R F] and the first two vertical maps are
isomorphisms. The top row is exact, because Y ∗ ⊗R � is right exact.
The bottom row is also exact, because HomR(�, Y )∗ is the compos-
ite of the contravariant functors HomR(�, Y ), which is left exact, and
∗ = HomZ(�,Q/Z), which is exact. Proposition 2.70 now shows that
the third vertical arrow, τX : Y ∗ ⊗R X → HomR(X, Y )∗, is an isomor-
phism.6 •

6Proposition 2.72, the Five Lemma, can also be used to prove that τX is an isomor-
phism: just add → 0 → 0 at the end of each row, and draw downward arrows 0 → 0
(which are isomorphisms!).
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Theorem 3.56. A finitely presented left R-module B is flat if and only if it is
projective.

Proof. All projective modules are flat, by Proposition 3.46, and so only the
converse is significant. Since B is finitely presented, there is an exact se-
quence

F ′ → F → B → 0,

where both F ′ and F are finitely generated free left R-modules. We be-
gin by showing, for every left R-module Y [which is necessarily an (R,Z)-
bimodule], that the map τB = τB,Y,Q/Z : Y ∗ ⊗R B → HomR(B, Y )∗ of
Lemma 3.55 is an isomorphism.

To prove that B is projective, it suffices to prove that Hom(B,�) pre-
serves surjections: that is, exactness of A → A′′ → 0 implies exactness
of Hom(B, A) → Hom(B, A′′) → 0 is exact. By Lemma 3.53, it suffices to
show that 0 → Hom(B, A′′)∗ → Hom(B, A)∗ is exact. Consider the diagram

0 �� A′′ ∗ ⊗R B ��

τ
��

A∗ ⊗R B
τ
��

0 �� Hom(B, A′′)∗ �� Hom(B, A)∗.

Naturality of τ gives commutativity of the diagram, while the vertical maps
τ are isomorphisms, by Lemma 3.55(ii), for B is finitely presented. Since
A → A′′ → 0 is exact, 0 → A′′∗ → A∗ is exact, and so the top row is
exact, because B is flat. It follows that the bottom row is also exact; that is,
0 → Hom(B, A′′)∗ → Hom(B, A′′)∗ is exact, which is what we were to
show. Therefore, B is projective. •

Corollary 3.57. If R is left noetherian, then a finitely generated left R-
module B is flat if and only if it is projective.

Proof. This follows from the theorem once we recall Proposition 3.19: ev-
ery finitely generated left R-module over a left noetherian ring R is finitely
presented. •

If A is a right R-module and I is a left ideal in R, then

AI = {∑
j

a j r j : a j ∈ A and r j ∈ I
}
.

Proposition 3.58. The following three statements are equivalent for a right
R-module A.

(i) A is flat.

(ii) The sequence 0 → A ⊗R I
1A⊗i−→ A ⊗R R is exact for every left ideal I ,

where i : I → R is the inclusion.
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(iii) The sequence 0 → A ⊗R J
1A⊗ j−→ A ⊗R R is exact for every finitely

generated left ideal J , where j : J → R is the inclusion.

Remark. This proposition, mutatis mutandis, also characterizes flat left R-
modules. �

Proof.

(i) ⇒ (ii) If A is flat, then the sequence 0 → A ⊗R I → A ⊗R R is exact
for every left R-module I .

(ii) ⇒ (iii) This is obvious.

(iii) ⇒ (i) Let I be a left ideal in R. By hypothesis, 0 → A ⊗R J →
A ⊗R R is exact for every finitely generated left ideal J ⊆ I , and
so Lemma 3.47 (for left modules instead of right modules) says that

0 → A ⊗R I
1⊗i−→ A ⊗R R is exact. There is thus an exact sequence

of character modules: (A ⊗R R)∗ → (A ⊗R I )∗ → 0 and, as in the
proof of Proposition 3.54, the adjoint isomorphism gives exactness of
HomR(R, A∗) → HomR(I, A∗) → 0. This says that every map from
any ideal I to A∗ extends to a map R → A∗. Thus, A∗ is injective, by
the Baer Criterion, and so A is flat, by Proposition 3.54. •

Corollary 3.59. If A is a flat right R-module and I is a left ideal, then the
Z-map θA : A ⊗R I → AI , given by a ⊗ i �→ ai , is an isomorphism.

Proof. Let κ : I → R be the inclusion, and let ϕA : A ⊗R R → A be the
isomorphism a ⊗ r �→ ar of Proposition 2.58. The composite

ϕA(1A ⊗ κ) : A ⊗R I → A ⊗R R → A

is given by a ⊗ i �→ ai ∈ R, and its image is AI . Now 1A ⊗ κ is an
injection, because A is flat, and so composing it with the isomomorphism ϕA
is an injection. Therefore, the composite θA(1A ⊗ κ) is an injection, so that
θA : a ⊗ i �→ ai is an isomorphism. •

A quotient of a flat module need not be flat; after all, free modules are
flat, and every module is a quotient of a free module.

Proposition 3.60. Let 0 → K → F
ϕ−→ A → 0 be an exact sequence

of right R-modules in which F is flat. Then A is a flat module if and only if
K ∩ F I = K I for every finitely generated left ideal I .
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Proof. We give a preliminary discussion before proving the lemma. For
every left ideal I , right exactness of �⊗R I gives exactness of

K ⊗R I → F ⊗R I
ϕ⊗1−→ A ⊗R I → 0.

By Corollary 3.59, there is an isomorphism θF : F⊗R I → F I with f ⊗ i �→
f i ; of course, θK : K ⊗R I → K I is a surjection. The following diagram
commutes, where inc is the inclusion and nat is the natural map.

K ⊗R I ��

θK

��

F ⊗R I
ϕ⊗1 ��

θF

��

A ⊗R I

γ

���
�
�

�� 0

K I
inc

�� F I nat
�� F I/K I �� 0

By Proposition 2.70, there exists a map γ : A ⊗R I → F I/K I , given by
ϕ f ⊗ i �→ f i + K I , where f ∈ F and i ∈ I ; since θK is a surjection and θF
is an isomorphism, the map γ is an isomorphism. Now

ϕ(F I ) = {ϕ(∑
j

f j i j
)

: f j ∈ F, i j ∈ I
} = {∑

j

(ϕ f j )i j
} = AI.

Therefore, the first isomorphism theorem provides an isomorphism

δ : F I/(F I ∩ K ) → ϕ(F I ) = AI,

namely, f i + (F I ∩ K ) �→ ϕ( f i). We assemble these maps to obtain the
composite σ :

F I/K I
γ−1

−→ A ⊗R I
θA−→ AI

δ−1

−→ F I/(F I ∩ K ).

Explicitly, σ : f i + K I �→ f i + (F I ∩ K ). But K I ⊆ F I ∩ K , so that σ is
the enlargement of coset map of the third isomorphism theorem and, hence,
ker σ = (F I ∩ K )/K I . Therefore, σ is an isomorphism if and only if K I =
F I ∩ K . Moreover, since the flanking maps γ−1 and δ−1 are isomorphisms,
σ is an isomorphism if and only if θA is an isomorphism.

If A is flat, then Lemma 3.59 says that θA is an isomorphism. Therefore, σ
is an isomorphism and K I = F I ∩K . Conversely, if K I = F I ∩K for every
finitely generated left ideal I , then θA is an isomorphism, and Proposition 3.58
says that A is flat. •

Here are some more characterizations of flatness.

Lemma 3.61. Let 0 → K → F → A → 0 be an exact sequence of right
R-modules, where F is free with basis {x j : j ∈ J }. For each v ∈ F, define
I (v) to be the left ideal in R generated by the “coordinates” r1, . . . , rt ∈ R
of v, where v = x j1r1 + · · · + x jt rt . Then A is flat if and only if v ∈ K I (v)
for every v ∈ K .
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Proof. If A is flat and v ∈ K , then v ∈ K ∩ F I (v) = K I (v), by Proposi-
tion 3.60.

Conversely, let I be any left ideal, and let v ∈ K ∩ F I . Then I (v) ⊆ I ,
so the hypothesis gives v ∈ K I (v) ⊆ K I . Hence, K ∩ F I ⊆ K I . As the
reverse inclusion always holds, Proposition 3.60 says that A is flat. •

Theorem 3.62 (Villamayor). Let 0 → K → F → A → 0 be an exact
sequence of right R-modules, where F is free. The following statements are
equivalent.

(i) A is flat.

(ii) For every v ∈ K , there is an R-map θ : F → K with θ(v) = v.

(iii) For every v1, . . . , vn ∈ K , there is an R-map θ : F → K with θ(vi ) =
vi for all i .

Proof.

(i) ⇒ (ii) Assume that A is flat. Choose a basis {x j : j ∈ J } of F . If
v ∈ K , then I (v) is the left ideal generated by r1, . . . , rt , where v =
x j1r1 + · · · + x jt rt . By Lemma 3.61, v ∈ K I (v), and so v = ∑

kpsp,
where kp ∈ K and sp ∈ I (v). Hence, sp =

∑
u piri , where u pi ∈ R.

Rewrite: v =∑ k′i ri , where k′i =
∑

kpu pi ∈ K , and define θ : F → K
by θ(x ji ) = k′i and θ(x j ) = 0 for all other basis elements x j . Clearly,
θ(v) = v.

(ii) ⇒ (i) Let v ∈ K , and let θ : F → K be a map with θ(v) = v. Choose
a basis {x j : j ∈ J } of F , and write v = x j1r1 + · · · + x jt rt . Then
v = θ(v) = θ(x j1)r1 + · · · + θ(x jt )rt ∈ K I (v). Hence, A is flat, by
Lemma 3.61.

Since (iii) obviously implies (ii), it only remains to prove (ii) ⇒ (iii).
The proof is by induction on n. The base step is our hypothesis (ii). Let
v1, . . . , vn ∈ K , where n ≥ 2. There is a map θn : F → K with θn(vn) = vn .
By induction, there is a map θ ′ : F → K with θ ′[vi − θn(vi )] = vi − θn(vi )

for all i = 1, . . . , n − 1. Now define θ : F → K by

θ(u) = θn(u)+ θ ′[u − θn(u)]

for all u ∈ F . It is routine to see that θ(vi ) = vi for all i . •
Here is a variant of Theorem 3.56.
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Theorem 3.63. A finitely generated right R-module B is projective if and
only if it is finitely presented and flat.

Proof. Every projective module is flat, by Proposition 3.46; if it is also
finitely generated, then it is finitely presented, by Proposition 3.11.

Let 0 → K → F → B → 0 be an exact sequence of right R-modules,
where K , F are finitely generated and F is free. If K = 〈v1, . . . , vn〉, then
Theorem 3.62 gives θ : F → K with θ(vi ) = vi for all i (because A is
flat). Therefore, K is a retraction of F , and hence it is a direct summand:
F ∼= K ⊕ B. Therefore, B is projective. •

We have seen that direct sums of injective left R-modules are injective if
and only if R is left noetherian. We are going to characterize those rings R
for which direct products of flat left R-modules are flat. However, we will not
complete the proof of this until Chapter 7.

Definition. A ring R is called left coherent if every finitely generated left
ideal is finitely presented.

Example 3.64.

(i) Every left noetherian ring is left coherent.

(ii) If k is a field, then the polynomial ring R = k[X ] in infinitely many
indeterminates X is coherent but not noetherian.

(iii) There are left coherent rings that are not right coherent (see Lam, Lec-
tures on Modules and Rings, p. 138).

(iv) A left semihereditary ring is a ring all of whose finitely generated left
ideals are projective. Theorem 4.32 shows that all such rings are left
coherent. �

Lemma 3.65. Let R be a ring and let A be a right R-module. Then the
following statements are equivalent.

(i) A is flat.

(ii) Whenever
∑ n

j=1 a jr ji = 0, where a j ∈ A, r ji ∈ R, and i = 1, . . . , d,
there exist a′q ∈ A, for q = 1, . . . ,m, and sq j ∈ R with

∑
j sq j r ji = 0

for all q, i and
∑m

q=1 a′qsq j = a j for all j .

(iii) Whenever
∑ n

j=1 a jr j = 0, where a j ∈ A and r j ∈ R, there exist
a′q ∈ A, for q = 1, . . . ,m, and sq j ∈ R with

∑
j sq j r j = 0 for all q

and
∑m

q=1 a′qsq j = a j for all j .
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Proof.

(i) ⇒ (ii). Consider a short exact sequence 0 → K
inc−→ F

ϕ−→ A → 0,
where F is a free right R-module, K = kerϕ, and inc is the inclusion.
Choose yi , . . . , ym ∈ F with ϕ(y j ) = a j . Define ui = ∑

j y j r ji

for i = 1, . . . , d; note that ui ∈ K , for ϕ(ui ) = ϕ(
∑

j y j r ji ) =∑
j a j r ji = 0. Since A is flat, Theorem 3.62 gives an R-map θ : F → K

with θ(ui ) = ui for all i . Let X be a basis of F , and write

y j − θ(y j ) =
∑

q

xqsq j ,

where xq ∈ X and sq j ∈ R. Define a′q = ϕ(xq); now

a j = ϕ(y j ) = ϕ(y j − θ(y j ))

because im θ ⊆ K = kerϕ, and

a j = ϕ(y j − θ(y j )) = ϕ
(∑

q

xqsq j

)
=
∑

q

a′qsq j .

Finally,

0 = ui − θ(ui ) =
∑

j

y j r ji − θ
(∑

j

y j r ji

)

=
∑

j

(
y j − θ(y j )

)
r ji

=
∑

j

(∑
q

xqsq j

)
r ji

=
∑

q

xq

(∑
j

sq j r ji

)
.

Since the xq are part of the basis X of F , we have 0 =∑ j sq j r ji for all
q, i , as desired.

(ii) ⇒ (iii). This is the special case of (ii) with d = 1.

(iii) ⇒ (i). We prove that A is flat using Proposition 3.58: if I is a left ideal,
then the map 1A ⊗λ : A⊗R I → A⊗R R is injective, where λ : I → R
is the inclusion. If

∑
j a j ⊗ r j ∈ ker(1A ⊗ λ), where a j ∈ A and

r j ∈ I , then
∑

j a j ⊗ r j = 0 in A ⊗R R; hence,
∑

j a j r j = 0 in A
(because A ⊗R R ∼= A via a ⊗ r �→ ar ). By hypothesis, there exist
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a′1, . . . , a′m ∈ A and si j ∈ R with
∑

j si j r j = 0 and
∑

i a′i si j = a j .
Substituting,∑

j

a j ⊗ r j =
∑

j

(∑
i

a′i si j

)
⊗ r j =

∑
i

(
a′i ⊗

∑
j

si j r j

)
= 0.

Therefore, 1A ⊗ λ is injective, and so A is flat. •

Theorem 3.66 (Chase). The following are equivalent for a ring R.

(i) For every set X, the right R-module RX (the direct product of |X | copies
of R) is flat.

(ii) Every finitely generated submodule of a free left R-module is finitely
presented.

(iii) R is left coherent.

Proof.

(i) ⇒ (ii) Let B be a finitely generated submodule of a free left R-module
G; say, B has generators b1, . . . , bn . Since each b j involves only finitely
many elements of a basis of G, we may assume that G = Rd , so that its
elements are d-tuples. Thus, b j = (r j1, . . . , r jd) for j = 1, . . . , n. If
F is the free left R-module with basis {x1, . . . , xn} and if ϕ : F → B is
defined by ϕ(x j ) = b j , then there is an exact sequence

0 → K → F
ϕ−→ B → 0,

where K = kerϕ. We must show that B is finitely presented, and so it
suffices to prove that K is finitely generated. Each k ∈ K has a unique
expression

k = a1(k)x1 + · · · + an(k)xn,

where a j (k) ∈ R is the j th coordinate of k ∈ K ⊆ F . Let us view RK

as a right R-module. For j = 1, . . . , n, define

a j = (a j (k)) ∈ RK .

The kth row in the |K | × d matrix below displays the coordinates of
k ∈ K with respect to the basis x1, . . . , xd of G, while the j th column
is a j ∈ RK .

...
...

...
...

a1(k) a2(k) · · · ad(k)

a1(k′) a2(k′) · · · ad(k′)

...
...

...
...
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If k ∈ K , we have 0 = ϕ(k) = a1(k)b1 + · · · + an(k)bn in B; that is,∑
j a j (k)b j = 0 for all k ∈ K . View these last equations in B ⊆ Rd :

0 =
∑

j

a j (k)(r j1, . . . , r jd) =
(∑

j

a j (k)r j1, . . . ,
∑

j

a j (k)r jd

)
.

Thus, all coordinates are 0, and
∑

j a j (k)r ji = 0 for all i = 1, . . . , d;
that is,

∑
j a j r ji = 0 for all i . Since RK is flat, Lemma 3.65 gives

a′q ∈ RK , for q = 1, . . . ,m, and sq j ∈ R, such that
∑

j sq j r ji = 0 for
all q, i and

∑
q a′qsq j = a j for all q. Define

zq =
∑

j

sq j x j ∈ F.

The first set of equations gives zq ∈ K for all q:

ϕ(zq) =
∑

j

sq j b j

=
∑

j

sq j (r j1, . . . , r jd)

=
(∑

j

sq j r j1, . . . ,
∑

j

sq j r jd

)
= 0.

To prove that K is finitely generated, it is enough to show that K =
〈z1, . . . , zm〉. Define a′q ∈ RK by

a′q =
(
a′q(k)

)
.

Rewrite the set of equations
∑

q a′qsq j = a j as

a j = (a j (k)) =
∑

q

(a′q(k))sq j =
(∑

q

a′q(k)sq j

)
.

Hence a j (k) =
∑

q a′q(k)sq j . If k ∈ K , then

k =
∑

j

a j (k)x j =
∑

j

(∑
q

a′q(k)sq j

)
x j =

∑
q

a′q(k)zq;

that is, K is finitely generated.

(ii) ⇒ (iii) This is a special case, for every finitely generated left ideal is a
submodule of the free module R.
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(iii) ⇒ (i) We use the criterion of Lemma 3.65(iii) to prove that A = RY is
a flat right R-module. Suppose that

n∑
j=1

a jr j = 0

for a j ∈ RY and r j ∈ R. Write a j = (
a j (y)

)
. Let I be the left

ideal generated by r1, . . . , rn , let F be the free left R-module with basis
x1, . . . , xn , define ϕ : F → I by ϕ(x j ) = r j , and consider the exact

sequence 0 → K → F
ϕ−→ I → 0, where K = kerϕ. By hypothesis,

K is finitely generated, say, K = 〈z1, . . . , zt 〉. Since K ⊆ F , there are
equations zi =

∑
j si j x j , where si j ∈ R. For each y ∈ Y , define

u(y) = a1(y)x1 + · · · + an(y)xn ∈ F.

Now ϕ(u(y)) = ∑
j a j (y)r j = 0, for this is the yth coordinate of the

original equation
∑ n

j=1 a jr j = 0. Thus, for each y ∈ Y , we have
u(y) ∈ K = 〈z1, . . . , zt 〉, and so there are bi (y) ∈ R with

u(y) =
∑

i

bi (y)zi =
∑

j

(∑
i

bi (y)si j

)
x j .

Since x1, . . . , xn is a basis of F , we may equate coordinates: a j (y) =∑
i bi (y)si j for all j, y. Define bi ∈ RY by bi =

(
bi (y)

)
; then a j =∑

i bi si j for all j . Finally,
∑

j si j r j = ϕ(zi ) = 0. Therefore, A = RY

is flat. •

Remark. Each of the statements in the theorem is equivalent to every direct
product of flat right R-modules being flat. As we mentioned earlier, it is more
convenient to prove this using the functor Tor (see Theorem 7.9). �

3.3.1 Purity
Let us consider loss of exactness from a different viewpoint. We have blamed
A if 0 → B ′ → B is exact but 0 → A ⊗R B ′ → A ⊗R B is not exact.
Tensoring by “good” modules preserves exactness (and we have called them
flat). Perhaps, however, the fault is not in our modules but in our sequences.

Definition. An exact sequence 0 → B ′ λ−→ B → B ′′ → 0 of left R-
modules is pure exact if, for every right R-module A, we have exactness of

0 → A ⊗R B ′ 1A⊗λ−→ A ⊗R B → A ⊗R B ′′ → 0. We say that λB ′ ⊆ B is a
pure submodule in this case.

Every split short exact sequence is pure exact, but the next result shows
that the converse is false.
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Proposition 3.67. A left R-module B ′′ is flat if and only if every exact se-
quence 0 → B ′ → B → B ′′ → 0 of left R-modules is pure exact.

Proof. Let → A′ → A → A′′ → 0 be an exact sequence of right R-
modules. Since tensor is a bifunctor, right exact in each variable, there is a
commutative diagram with exact rows and columns.

A′ ⊗R B ′

��

�� A′ ⊗R B

��

�� A′ ⊗R B ′′

��

�� 0

A ⊗R B ′

��

�� A ⊗R B

��

�� A ⊗R B ′′

��

�� 0

A′′ ⊗R B ′

��

�� A′′ ⊗R B

��

�� A′′ ⊗R B ′′

��

�� 0

0 0 0

Specialize the diagram so that A is a free right R-module and B ′′ is a flat left
R-module; this forces both the third column and the second row to be short
exact sequences. By Exercise 2.33 on page 96, the bottom row is a short exact
sequence for every A′′; that is, 0 → B ′ → B → B ′′ → 0 is pure exact.

Conversely, assume that every exact sequence 0 → B ′ → B → B ′′ → 0
is pure exact; in particular, there is such a sequence with B free. Now take
any short exact sequence 0 → A′ → A → A′′ → 0 of right R-modules
and form the 3 × 3 diagram as above (now the middle row is a short exact
sequence because B is free and, hence, flat; moreover, all the rows are short
exact sequences). Purity says that the bottom row is a short exact sequence,
and Exercise 2.33 says that the last column is a short exact sequence; that is,
B ′′ is flat. •

See Corollary 7.3 for another proof of Proposition 3.67 using Tor.
By Corollary 3.51, an abelian group D is flat if and only if it is torsion-

free. Thus, the sequence 0 → tG → G → G/tG → 0 of abelian groups is
always pure exact even though it may not split (see Exercise 3.31 on page 151).

Here is a variant of Lemma 3.65.

Lemma 3.68. Let A be a finitely presented right R-module with generators
a1, . . . , an and relations

∑
j a j r ji , where i = 1, . . . ,m. If B is a left R-

module with
n∑

j=1

a j ⊗ b j = 0 in A ⊗R B,

then there exist elements hi ∈ B with b j =
∑

i r ji hi for all j .

Proof. Let us make the statement precise. We assume that F is a free right
R-module with basis {x1, . . . , xn}, that ϕ : F → A is defined by ϕx j = a j ,
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that there is an exact sequence 0 → K
λ−→ F

ϕ−→ A → 0 with K = kerϕ
generated by

∑
j x j r ji , where λ : K → F is the inclusion. Tensoring by B

gives exactness of

K ⊗R B
λ⊗1−→ F ⊗R B

ϕ⊗1−→ A ⊗R B → 0.

By hypothesis,
∑

j x j ⊗ b j ∈ ker(ϕ ⊗ 1) = im(λ ⊗ 1). But every element
of K ⊗R B has an expression of the form

∑
i j x j r ji ⊗ hi , where hi ∈ B. In

particular,

∑
j

x j ⊗ b j = (λ⊗ 1)
∑

i j

x j r ji ⊗ hi =
∑

j

x j ⊗
(∑

i

r ji hi

)
.

Since F is free on the x j s, every element of F ⊗R B = ⊕
(x j R) ⊗R B has

a unique expression of the form
∑

j x j ⊗ β j , where β j ∈ B. It follows that
b j =

∑
i r ji hi for all j . •

Theorem 3.69 (Cohn). Let λ : B ′ → B be an injection of left R-modules.
Then λB ′ is a pure submodule of B if and only if, given any commutative
diagram with F0, F1 finitely generated free left R-modules, there is a map
F0 → B ′ making the upper triangle7 commute.

F1 ��

��

F0

�����
�

�

0 �� B ′
λ

�� B

Remark. The diagrammatic condition can be restated: if b′1, . . . , b′n ∈ B ′
satisfy equations λb′j = ∑

i r ji bi for each j , where b1, . . . , bm ∈ B and
r ji ∈ R, then there exist h′i ∈ B ′ with b′j =

∑
i r ji h′i for all j . �

Proof. Assume that λB ′ is a pure submodule of B. Let b′1, . . . , b′n ∈ B ′, and
assume there are equations λb′j =

∑
i r ji bi for all j , where i = 1, . . . ,m. Let

F be the free right R-module with basis {x1, . . . , xn}, and define A = F/K ,
where K ⊆ F is generated by the m elements

∑
j x j r ji . Obviously, A is a

finitely presented module generated by {ai = xi + K : i = 1, . . . ,m}. In
A ⊗R B, we have

∑
j

a j ⊗ λb′j =
∑

j

a j ⊗
(∑

i

r ji bi

)
=
∑

i

(∑
j

a j r ji ⊗ bi

)
= 0.

7If F1 → F0 were surjective, then commutativity of the square and of the upper triangle
would imply commutativity of the lower triangle.
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Purity says that 1 ⊗ λ is injective, so that
∑

j a j ⊗ b′j = 0 in A ⊗R B ′. By
Lemma 3.68, there are elements h′i ∈ B ′ with b′j =

∑
i r ji h′i for all j .

For the converse, we must show that 1 ⊗ λ : A ⊗ B ′ → A ⊗ B is an
injection for every A. By Exercise 3.42 on page 152, we may assume that A
is finitely presented, say, with generators ai , . . . , an and relations

∑
j a j r ji ,

i = 1, . . . ,m. A typical element of A ⊗R B ′ can be written as
∑

j a j ⊗ b′j
for b′j ∈ B ′. If (1 × λ)

∑
j a j ⊗ b′j = 0 in A ⊗R B, is

∑
j a j ⊗ b′j = 0 in

A ⊗R B ′? By Lemma 3.42, there are elements hi ∈ B with λb′j =
∑

i r ji hi

for all j . By hypothesis, there are elements h′i ∈ B ′ with b′j =
∑

i r ji h′i for
all j . Therefore,

∑
j

a j ⊗b′j =
∑

j

a j ⊗
(∑

i

a j r ji

)
=
∑

i

(∑
j

a j r ji

)
⊗h′i = 0 in A⊗R B ′.

Hence, 1 ⊗ λ is an injection, and so λB ′ is a pure submodule of B. •

Lemma 3.70. Let 0 → B ′ i−→ B
p−→ B ′′ → 0 be a pure exact se-

quence, where i is the inclusion. If M is a finitely presented left R-module,
then p∗ : HomR(M, B) → HomR(M, B ′′) is surjective.

Proof. Since M is finitely presented, there is an exact sequence

Rm f−→ Rn g−→ M → 0.

If ϕ ∈ HomR(M, B ′′), we construct the commutative diagram with exact
rows:

Rm
f ��

σ

���
�
� Rn

η��

g ��

τ

���
�
� M

ψ��

��

ϕ

��

0

0 �� B ′
i

�� B p
�� B ′′ �� 0.

Since Rn is free, hence projective, the map ϕg : Rn → B ′′ can be lifted to
τ : Rn → B; that is, a map τ exists making the square on the right commute.
Now pτ f = ϕg f = 0, so that im τ f ⊆ ker p = im i = B ′. Thus, if we define
σ = τ f , then the first square commutes. By Theorem 3.69, pure exactness
gives a map η : Rn → B ′ with η f = σ . Now iη f = iσ = τ f , so that
(τ−iη) f = 0. Hence, if we define τ ′ = τ−iη : Rn → B, then im f ⊆ ker τ ′;
thus, τ ′ induces a map ψ : M → B with τ ′ = ψg (for M ∼= Rn/ im f ). But
pψg = pτ ′ = p(τ − iη) = pτ = ϕg. Since g is surjective, we conclude that
pψ = ϕ. •
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Proposition 3.71. Let 0 → B ′ → B
p−→ B ′′ → 0 be an exact sequence of

left R-modules.

(i) If B ′′ is finitely presented, then this sequence is pure exact if and only if
it is split.

(ii) If R is left noetherian and B ′′ is finitely generated, then the sequence is
pure exact if and only if it splits.

Proof.

(i) If we define M = B ′′ and ϕ = 1B′′ , then Lemma 3.70 provides a map
ψ : B ′′ → B with pψ = 1B′′ .

(ii) Every finitely generated module over a noetherian ring is finitely pre-
sented. •

In the theory of Abelian Groups, one calls a subgroup S of a group G a
pure subgroup if S ∩ nG = nS for all n ∈ Z. We now show that this notion
of pure subgroup coincides with that of pure Z-submodule.

Corollary 3.72. Let 0 → S
λ−→ G → G/S → 0 be an exact sequence of

abelian groups, where λ is the inclusion. This sequence is pure exact if and
only if S is pure in the sense of abelian groups; that is, S ∩ nG = nS for all
n ∈ Z.

Proof. Necessity is the special case of Theorem 3.69 with n = 1 = m.
For the converse, it suffices to prove that 1A ⊗ λ : A ⊗Z S → A ⊗Z G is

an injection for every abelian group A. Suppose that A = 〈a〉 is cyclic. If A
is infinite cyclic, then A ∼= Z is flat, and 1A ⊗ λ is injective. Thus, we may
assume that A has a presentation A = (a | qa) for some q > 0. Now a typical
element u ∈ A ⊗Z G is

∑
j k j a ⊗ g j , where k j ∈ Z and g j ∈ G. But

u =
∑

j

k j a ⊗ g j =
∑

j

(a ⊗ k j g j ) = a ⊗
(∑

j

k j g j

)
;

that is, u = a⊗ g for some g ∈ G. If a⊗ s ∈ A⊗Z S lies in ker(1A⊗λ), then
a ⊗ s = 0 in A ⊗Z G, and Lemma 3.68 (with n = 1 = m) gives h ∈ G with
s = qh ∈ S ∩ qG. But S ∩ qG = q S, by hypothesis, so that there is s′ ∈ S
with s = qs′. Hence, a ⊗ s = a ⊗ qs′ = aq ⊗ s′ = 0 in A ⊗Z S, and 1A ⊗ λ

is injective in this case as well.
If A is finitely generated, then it is a direct sum of cyclic groups. Since

tensor product commutes with direct sums, it follows easily that 1A ⊗ λ is
injective in this case. The result for general A follows from Lemma 3.47. •
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Thus, if a subgroup S of an abelian group G satisfies S ∩ nG = nS for
all n ∈ Z, then the sequence 0 → A ⊗Z S → A ⊗Z G → A ⊗Z (G/S) →
0 is exact for every abelian group A. Corollary 3.72 shows why purity is
so important. For example, suppose that S = 〈s〉 is a subgroup of a finite
abelian p-group G, where s has maximal order in G. It is not difficult to
prove that S is a pure subgroup of G, and so Proposition 3.71 says that S is
a direct summand. In other words, we can prove S is a direct summand by
solving equations instead of by constructing a complement. An interesting
result of Kulikov (Fuchs, Infinite Abelian Groups I, p. 120) is that a pure
exact sequence of abelian groups 0 → S → G → G/S → 0 in which
G/S is a direct sum of cyclic groups must be split. It follows that if G is
finitely generated, then a subgroup S of G is pure if and only if it is a direct
summand. This is false in general, for Exercise 3.31 shows that the torsion
subgroup (which is always pure) need not be a direct summand.

Exercises

3.27 Prove that I2 is not a flat Z-module.
3.28 Let k be a commutative ring, and let P and Q be flat k-modules.

Prove that P ⊗k Q is a flat k-module.
3.29 Let R be a PID, let Q = Frac(R), and let M be a torsion-free R-

module.
(i) Prove that M can be imbedded in Q ⊗R M .
(ii) Prove that Q ⊗R M ∼= Env(M), the injective envelope

of M .
3.30 If R is a commutative ring (not necessarily a domain), define

t M = {m ∈ M : rm = 0 for some nonzero r ∈ R
}
.

(i) Let R = I6, and regard R as a module over itself. Prove
that [1] /∈ tI6.

(ii) Prove that tI6 is not a submodule of I6.
Hint. Both [2], [3] ∈ tI6, but [3] − [2] /∈ tI6.

*3.31 (i) Let P be the set of all primes in Z. Prove that
⊕

p∈P Ip is
the torsion subgroup of

∏
p∈P Ip.

(ii) Prove that
(∏

p∈P Ip
)
/
(⊕

p∈P Ip
)

is divisible.

(iii) Prove that t
(∏

p∈P Ip
)

is not a direct summand of
∏

p∈P Ip.
*3.32 Let 0 → A → B → C → 0 be an exact sequence of right R-

modules, for some ring R. If both A and C are flat modules, prove
that B is a flat module.
Hint. This result is routine if one uses the derived functor Tor.
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*3.33 Let R be a domain, let T be a torsion R-module, and let D be a di-
visible R-module. Prove that T⊗R D = {0}. (See Proposition 2.73.)

*3.34 Let B = R B, so that HomR(B, R) is a right R-module. If C is a
left R-module, define ν : HomR(B, R) ⊗R C → HomR(B,C) by
ν : f ⊗ c �→ f̂ , where f̂ (b) = f (b)c for all b ∈ B and c ∈ C .

(i) Prove that ν is natural in B.

(ii) Prove that ν is an isomorphism if B is finitely generated
free.

(iii) If B is a finitely presented left R-module and C is a flat left
R-module, prove that ν is an isomorphism.

3.35 A right R-module B is called faithfully flat if

(i) B is a flat module,

(ii) for all left R-modules X , if B ⊗R X = {0}, then X = {0}.
Prove that R[x] is a faithfully flat R-module (if R is not commuta-
tive, then R[x] is the polynomial ring in which the indeterminate x
commutes with each coefficient in R).

3.36 Prove that a right R-module B is faithfully flat if and only if B is
flat and B ⊗R (R/I ) 	= {0} for all proper left ideals I of R.

3.37 (i) Prove that a right R-module B is flat if and only if exact-

ness of any sequence of left R-modules A′ i−→ A
p−→ A′′

implies exactness of B ⊗R A′ 1⊗i−→ B ⊗R A
1⊗p−→ B ⊗R A′′.

(ii) Prove that a right R-module B is faithfully flat if and only

if it is flat and B ⊗R A′ 1⊗i−→ B ⊗R A
1⊗p−→ B ⊗R A′′ exact

implies A′ i−→ A
p−→ A′′ is exact.

3.38 Prove that if B is a faithfully flat module and C is a flat module,
then B ⊕ C is faithfully flat.

3.39 (i) Prove that Q is a flat Z-module that is not faithfully flat.

(ii) Prove that an abelian group G is a faithfully flat Z-module
if and only if it is torsion-free and pG 	= G for all primes p.

3.40 Let 0 → A → B → C → 0 be an exact sequence of right R-
modules, for some ring R. If both A and C are flat modules and if
one of them if faithfully flat, prove that B is a faithfully flat module.

3.41 Prove that if B = R BS is a bimodule that is R-flat, and if C = CS
is S-injective, then HomS(B,C) is an injective left R-module.
Hint. The composite of exact functors is an exact functor.

*3.42 Prove that an exact sequence 0 → B ′ → B → B ′′ → 0 of left R-
modules is pure exact if and only if it remains exact after tensoring
by all finitely presented right R-modules A.
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Hint. That an element lies in ker(A ⊗R B ′ → A ⊗R B) involves
only finitely many elements of A.

3.43 (Kulikov) If H and K are torsion abelian groups, prove that H⊗Z K
is a direct sum of cyclic groups.
Hint. Use Kulikov’s Theorem: if G is a p-primary abelian group,
then there exists a pure exact sequence 0 → B → G → D →
0 with B a direct sum of cyclic groups and D divisible. Such a
pure subgroup B is called a basic subgroup of G. See Rotman, An
Introduction to the Theory of Groups, p. 327.

3.44 If G is a finite abelian group, prove that a subgroup S ⊆ G is a
direct summand of G if and only if S is a pure subgroup of G.
Hint. Proposition 3.71.

*3.45 Let G be an abelian group, and let S ⊆ G be a pure subgroup. If
S ⊆ H ⊆ G, prove that H is a pure subgroup of G if and only if
H/S is a pure subgroup of G/S.



4
Specific Rings

We consider two general problems in this chapter: if conditions are imposed
on projective, injective, or flat R-modules, how does this affect R; if condi-
tions are imposed on a ring R, how does this affect these special R-modules?
We have already encountered several instances of these questions. A ring R
is left noetherian if and only if every direct sum of injective left R-modules is
injective [Theorem 3.39]. If R is a PID, then an R-module is injective if and
only if it is divisible [Corollary 3.35(ii)], while an R-module is flat if and only
if it is torsion-free [Corollary 3.51] (we will soon see that if R is a PID, then
an R-module is projective if and only if it is free).

4.1 Semisimple Rings

If k is a field, then k-modules are vector spaces. It follows that all k-modules
are projective (even free, for every vector space has a basis). Indeed, every
k-module is injective and flat as well. We now describe all rings for which
this is true.

Definition. Let R be a ring. A left R-module M is simple (or irreducible)
if M 	= {0} and if M has no proper nonzero submodules; we say that M
is semisimple (or completely reducible) if it is a direct sum of (possibly in-
finitely many) simple modules.

The zero module is not simple, but it is semisimple, for {0} =⊕i∈∅
Si .

154 J.J. Rotman, An Introduction to Homological Algebra, Universitext,
DOI 10.1007/978-0-387-68324-9 4, c© Springer Science+Business Media LLC 2009
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Proposition 4.1. A left R-module M is semisimple if and only if every sub-
module is a direct summand.

Proof. If M is semisimple, then M = ⊕
j∈J S j , where every S j is simple.

Given a subset I ⊆ J , define SI = ⊕
j∈I S j . If N is a submodule of M ,

we see, using Zorn’s Lemma, that there exists a subset I of J maximal with
SI ∩ N = {0}. We claim that M = N ⊕ SI , which will follow if we prove that
S j ⊆ N + SI for all j ∈ J . This inclusion holds, obviously, if j ∈ I . If j /∈ I ,
then the maximality of I gives (S j+SI )∩N 	= {0}. Thus, s j+sI = n 	= 0 for
some s j ∈ S j , sI ∈ SI , and n ∈ N , so that s j = n− sI ∈ (N + SI )∩ S j . Now
s j 	= 0, lest sI ∈ SI ∩ N = {0}. Since S j is simple, we have (N + SI )∩ S j =
S j ; that is, S j ⊆ N + SI .

Suppose, conversely, that every submodule of M is a direct summand. We
begin by showing that each nonzero submodule N contains a simple submod-
ule. Let x ∈ N be nonzero; by Zorn’s Lemma, there is a submodule Z ⊆ N
maximal with x /∈ Z . Now Z is a direct summand of M , by hypothesis, and
so Z is a direct summand of N , by Corollary 2.24; say, N = Z ⊕Y . We claim
that Y is simple. If Y ′ is a proper nonzero submodule of Y , then Y = Y ′ ⊕Y ′′
and N = Z ⊕ Y = Z ⊕ Y ′ ⊕ Y ′′. Either Z ⊕ Y ′ or Z ⊕ Y ′′ does not con-
tain x [lest x ∈ (Z ⊕ Y ′) ∩ (Z ⊕ Y ′′) = Z ], contradicting the maximality
of Z . Next, we show that M is semisimple. By Zorn’s Lemma, there is a
family (Sk)k∈K of simple submodules of M maximal with the property that
they generate their direct sum D = ⊕

k∈K Sk . By hypothesis, M = D ⊕ E
for some submodule E . If E = {0}, we are done. Otherwise, E = S ⊕ E ′
for some simple submodule S, by the first part of our argument. But now the
family {S} ∪ (Sk)k∈K violates the maximality of (Sk)k∈K , a contradiction. •

Corollary 4.2. Every submodule and every quotient module of a semisimple
module M is semisimple.

Proof. Let N be a submodule of M . Every submodule of N is a direct
summand of M , by Proposition 4.1, so that Corollary 2.24 shows that every
submodule of N is a direct summand of N ; therefore, N is semisimple. A
quotient M/N is semisimple, for M = N ⊕ Q for some submodule Q of M .
But M/N ∼= Q, and Q is semisimple, as we have just seen. •

Lemma 4.3. If a ring R is a direct sum of left ideals, say, R = ⊕
i∈I Li ,

then only finitely many Li are nonzero.

Proof. Each element in a direct sum has finite support; in particular, the unit
element can be written as 1 = e1 + · · · + en , where ei ∈ Li . If a ∈ L j for
some j 	= 1, . . . , n, then

a = a1 = ae1 + · · · + aen ∈ L j ∩ (L1 ⊕ · · · ⊕ Ln) = {0}.
Therefore, L j = {0}, and R = L1 ⊕ · · · ⊕ Ln . •
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Definition. A ring R is left semisimple if it is semisimple as a left R-module.

When viewing R as a left R-module, its submodules are its left ideals.
Now a simple submodule is a minimal left ideal, for it is a nonzero ideal con-
taining no proper nonzero left ideals. (Such ideals may not exist; for example,
Z has no minimal left ideals.) By the lemma, a left semisimple ring is a direct
sum of finitely many minimal left ideals.

Example 4.4.

(i) The Wedderburn–Artin Theorem (see Rotman, Advanced Modern Alge-
bra, pp. 562 and 567) says that every left semisimple ring R is (isomor-
phic to) a finite direct product of matrix rings:

R ∼= Matn1(�1)× · · · × Matnt (�t ),

where �i are division rings. Moreover, the division rings �i and the
integers t, n1, . . . , nt are a complete set of invariants of R.

(ii) Every left semisimple ring is also right semisimple, and we call such
rings semisimple, dropping the adjective left or right (Advanced Mod-
ern Algebra, p. 563). Moreover, semisimple rings are left and right
noetherian.

(iii) Maschke’s Theorem (Advanced Modern Algebra, p. 556) says that if G
is a finite group and k is a field, then the group ring kG is semisim-
ple if and only if the characteristic of k does not divide |G|. If k is
algebraically closed, then kG ∼= Matn1(k) × · · · × Matnt (k) (Molien’s
Theorem, Advanced Modern Algebra, p. 568).

(iv) If k is a field of characteristic 0, then R = k[x]/(xn − 1) is semisimple,
for R ∼= kG, where G is a cyclic group of order n.

(v) A finite direct product of fields is semisimple; in particular, R = In is
semisimple if and only if n is squarefree. �

Here is the reason we have introduced semisimple rings here.

Proposition 4.5. The following conditions on a ring R are equivalent.

(i) R is semisimple.

(ii) Every left (or right) R-module M is a semisimple module.

(iii) Every left (or right) R-module M is injective.

(iv) Every short exact sequence of left (or right) R-modules splits.

(v) Every left (or right) R-module M is projective.
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Proof.

(i) ⇒ (ii). Since R is semisimple, it is semisimple as a module over itself;
hence, every free left R-module is a semisimple module. Now M is a
quotient of a free module, by Theorem 2.35, and so Corollary 4.2 gives
M semisimple.

(ii) ⇒ (iii). If E is a left R-module, then Proposition 3.40 says that E is
injective if every exact sequence 0 → E → B → C → 0 splits. By
hypothesis, B is a semisimple module, and so Proposition 4.1 implies
that the sequence splits; thus, E is injective.

(iii) ⇒ (iv). If 0 → A → B → C → 0 is an exact sequence, then it must
split because, as every module, A is injective (see Corollary 3.27).

(iv) ⇒ (v). Given a module M , there is an exact sequence

0 → F ′ → F → M → 0,

where F is free. By hypothesis, this sequence splits and F ∼= M ⊕ F ′.
Therefore, M is a direct summand of a free module, and hence it is
projective, by Theorem 3.5.

(v) ⇒ (i). If I is a left ideal of R, then

0 → I → R → R/I → 0

is an exact sequence. By hypothesis, R/I is projective, and so this
sequence splits, by Proposition 3.3; that is, I is a direct summand of R.
By Proposition 4.1, R is a semisimple left R-module. Therefore, R is a
left semisimple ring. •

Semisimple rings are so nice that there is a notion of global dimension
of a ring R, defined in Chapter 8, which measures how far R is from being
semisimple.

Galois Theory has been generalized from field extensions to extensions of
commutative rings, by Chase, Harrison, and Rosenberg, Galois Theory and
Cohomology of Commutative Rings; see also De Meyer–Ingraham, Separable
Algebras over Commutative Rings. Here is a connection between projective
modules and separable field extensions.

Recall that if L is a commutative k-algebra, then its enveloping algebra is
Le = L ⊗k L; multiplication in Le is given by

(a ⊗ b)(a′ ⊗ b′) = aa′ ⊗ bb′.
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Theorem 4.6. If L and k are fields and L is a finite separable extension of k,
then L is a projective Le-module, where Le is the enveloping algebra.

Proof. Now L is an (L , L)-bimodule, so that L is an Le-module (Corol-
lary 2.61). It suffices to prove that L⊗k L is a direct product of fields, for then
it is a semisimple ring and every module is projective.

Since L is a finite separable extension of k, the Theorem of the Primitive
Element (see Rotman, Advanced Modern Algebra, p. 230) provides an ele-
ment α ∈ L with L = k(α). If f (x) ∈ k[x] is the irreducible polynomial of
α, then there is an exact sequence of k-modules

0 → ( f )
i−→ k[x]

ν−→ L → 0,

where i is the inclusion, ν is a k-algebra map, ν : x �→ α, and ( f ) is the
principal ideal generated by f (x). Since k is a field, the vector space L is a
free k-module, and hence it is flat. Thus, the following sequence is exact.

0 → L ⊗k ( f )
1⊗i−→ L ⊗k k[x]

1⊗ν−→ L ⊗k L → 0.

Of course, L ⊗k L = Le (for L is commutative), and it is easily checked that
1L ⊗ν is a k-algebra map; thus, im 1L ⊗ i is an ideal in k[x]⊗k L . Let L[y] be
the polynomial ring in an indeterminate y, and define θ : L⊗k k[x] → L[y] by
a ⊗ g(x) �→ ag(y); the map θ is an isomorphism, and the following diagram
is commutative and has exact rows.

0 �� L ⊗k ( f )

��

1⊗i ��L ⊗k k[x]

θ

��

1⊗ν �� Le

���
�
�

�� 0

0 �� ( f ) ��L[y] ��L[y]/( f ) �� 0.

By Proposition 2.70, there is a k-isomorphism Le → L[y]/( f ), which is
easily seen to be a k-algebra isomorphism.

Now f , though irreducible over k, may factor in L[y], and separability
says that there are no repeated factors:

f (y) =
∏

i

pi (y),

where the pi (y) are distinct irreducible polynomials in L[y]. The ideals (pi )

are thus distinct maximal ideals in L[y], and the Chinese Remainder Theorem
gives a k-algebra isomorphism

Le ∼= L[y]/( f (y)) ∼=
∏

i

L[y]/(pi ).

Since each L[y]/(pi ) is a field, Le is a semisimple ring. •
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The converse of Theorem 4.6 is true (see De Meyer-Ingraham, p. 49),
and generalizations of Galois Theory to commutative k-algebras R (where k
is a commutative ring) define R to be separable over k if R is a projective
Re-module (Chase-Harrison-Rosenberg, Galois Theory and Cohomology of
Commutative Rings).

4.2 von Neumann Regular Rings

We have just seen that every R-module is projective (or injective) if and only
if R is semisimple. What if every R-module is flat?

Definition. A ring R is von Neumann regular if, for each r ∈ R, there is
r ′ ∈ R with rr ′r = r .

Informally, one may think of r ′ as a generalized inverse of r .

Example 4.7.

(i) A ring R is a Boolean ring if every element r ∈ R is idempotent; that
is, r2 = r . Boolean rings are von Neumann regular: if r ∈ R, define
r ′ = r . Boolean rings are commutative.

(ii) Here is a proof that if V is a (possibly infinite-dimensional) vector space
over a field k, then R = Endk(V ) is von Neumann regular. Given a
linear transformation ϕ : V → V , we have V = kerϕ ⊕ W , for every
subspace of a vector space is a direct summand. Let X be a basis of
kerϕ and let Y be a basis of W , so that X ∪Y is a basis of V . Now ϕ(Y )

is a linearly independent subset (because W ∩ kerϕ = {0}), and so it
can be extended to a basis ϕ(Y ) ∪ Z of V . If we define ϕ′ : V → V by
ϕ′(ϕ(y)) = y for all y ∈ Y and ϕ′(z) = 0 for all z ∈ Z , then ϕϕ′ϕ = ϕ.
(Example 2.36 shows that von Neumann regular rings may not have
IBN; on the other hand, the uniqueness part of the Wedderburn–Artin
Theorem shows that semisimple rings do have IBN.) �

Lemma 4.8. If R is a von Neumann regular ring, then every finitely gener-
ated left (or right) ideal is principal, and it is generated by an idempotent.

Proof. Denote a principal left ideal by Ra = {ra : r ∈ R}. If a′ ∈ R satisfies
a = aa′a, then e = aa′ is idempotent; moreover, a ∈ Re and e ∈ Ra, so that
Ra = Re is generated by an idempotent.

To prove that every finitely generated left ideal is principal, it suffices
to prove that I = Ra + Rb is principal. There is an idempotent e with



160 Speci c Rings Ch. 4

Ra = Re; we claim that Re + Rb = Re + Rb(1 − e): both e and b lie in
Re+ Rb(1−e); both e and b(1−e) lie in Re+ Rb. There is an idempotent f
with Rb(1 − e) = R f , so that f = rb(1 − e) for some r ∈ R. It follows that
f e = rb(1 − e)e = 0. We do not know whether e f = 0, and so we adjust f .
Define g = (1 − e) f . Now g is idempotent, for

g2 = (1− e) f (1− e) f = (1− e)( f − f e) f = (1− e) f 2 = (1− e) f = g.

It is easily checked that ge = 0 = eg and that Rg = R f , so that Ra + Rb =
Re+ Rg. We claim that Re+ Rg = R(e+ g). Clearly, R(e+ g) ⊆ Re+ Rg.
For the reverse inclusion, if u, v ∈ R, then (ue + vg)(e + g) = ue2 + ueg +
vge + vg2 = ue + vg; hence, Re + Rg ⊆ R(e + g). A similar argument
proves that every finitely generated right ideal is principal. •

Theorem 4.9 (Harada). A ring R is von Neumann regular if and only if
every right R-module is flat.

Proof. Assume that R is von Neumann regular and that B is a right R-
module. If 0 → K → F → B → 0 is an exact sequence of right R-
modules with F free, then Lemma 3.60 says that B is flat if K I = K ∩ F I
for every finitely generated left ideal I . By Lemma 4.8, I is principal, say,
I = Ra. We must show that if k ∈ K and k = f a ∈ Fa, then k ∈ K a. But
k = f a = f aa′a = ka′a ∈ K a. Therefore, B is flat.

For the converse, take a ∈ R. By hypothesis, the cyclic right R-module
R/a R is flat. Since R is free, Lemma 3.60 applies to the exact sequence
0 → a R → R → R/a R → 0 to give (a R)I = a R ∩ RI = a R ∩ I for every
left ideal I . In particular, if I = Ra, then a Ra = a R ∩ Ra. Thus, there is
some a′ ∈ R with a = aa′a, and so R is von Neumann regular. •

Corollary 4.10. Every semisimple ring is von Neumann regular.

Proof. If a ring is semisimple, then every module is projective and, hence,
every module is flat. •

4.3 Hereditary and Dedekind Rings

We have seen that assuming every R-module is “special” (projective, injec-
tive, or flat) constrains R. Moreover, interesting rings are characterized in this
way. We now assume that every ideal is special.

Assuming that every left ideal is injective gives nothing new.
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Proposition 4.11. Every left ideal in a ring R is injective if and only if R is
semisimple.

Proof. The submodules of R are its left ideals. As each left ideal is injective,
it is a direct summand, by Corollary 3.27. Proposition 4.1 now says that R is
a semisimple left R-module; that is, R is a (left) semisimple ring. Conversely,
if R is semisimple, then every left ideal is injective, by Proposition 4.5. •

Definition. A ring R is left hereditary if every left ideal is projective; a ring
R is right hereditary if every right ideal is projective. A Dedekind ring is a
hereditary domain.

Example 4.12.

(i) Every semisimple ring is both left and right hereditary.

(ii) Small’s example of a right noetherian ring that is not left noetherian (see
Exercise 3.8 on page 114) is right hereditary but not left hereditary.

(iii) Every PID R is hereditary (for nonzero principal ideals in a domain are
isomorphic to R), and so they are Dedekind rings.

(iv) The ring of integers in an algebraic number field is a Dedekind ring
(Zariski–Samuel, Commutative Algebra I, p. 283). Thus, there are Dede-
kind rings that are not PIDs. For example, R = {a + b

√−5 : a, b ∈ Z}
is a Dedekind ring that is not a PID.

(v) If k is a field, then R = k〈x, y〉, the ring of polynomials in noncommut-
ing variables, is both left and right hereditary (see Cohn, Free Rings and
Their Relations, p. 106; every one-sided ideal is a free R-module). This
ring is neither right nor left noetherian, so there exist non-noetherian
hereditary rings. However, Dedekind rings are always noetherian; in
fact, every ideal in a Dedekind ring can be generated by two elements
(Rotman, Advanced Modern Algebra, p. 959).

(vi) If R is a domain, then certain R-algebras, called R-orders, arise in the
theory of integral representations of finite groups (see Reiner, Maxi-
mal Orders). When R is a Dedekind ring, then maximal R-orders are
hereditary rings. �

The following theorem, well-known for modules over Dedekind rings,
was generalized by Kaplansky for left hereditary rings.



162 Speci c Rings Ch. 4

Theorem 4.13 (Kaplansky). If R is left hereditary, then every submodule
A of a free left R-module F is isomorphic to a direct sum of left ideals.

Proof. Let {xk : k ∈ K } be a basis of F ; by the Axiom of Choice, we may
assume that the index set K is well-ordered. Define F0 = {0}, where 0 is the
smallest index in K and, for each k ∈ K , define

Fk =
⊕
i<k

Rxi and Fk =
⊕
i≤k

Rxi = Fk ⊕ Rxk .

It follows that F0 = Rx0. Each element a ∈ A ∩ Fk has a unique expression
a = b + r xk , where b ∈ Fk and r ∈ R, so that ϕk : A ∩ Fk → R, given by
a �→ r , is well-defined. There is an exact sequence

0 → A ∩ Fk → A ∩ Fk → imϕk → 0.

Since imϕk is a left ideal, it is projective, and so this sequence splits:

A ∩ Fk = (A ∩ Fk)⊕ Ck,

where Ck ∼= imϕk . We claim that A = ⊕
k∈K Ck , which will complete the

proof.

(i) A = 〈⋃k∈K Ck〉: Since F = ⋃
k∈K Fk , each a ∈ A (as any element of

F) lies in some Fk ; let μ(a) be the smallest index k with a ∈ Fk . Define
C = 〈⋃k∈K Ck〉 ⊆ A. If C � A, then J = {μ(a) : a ∈ A − C} 	= ∅.
Let j be the smallest element in J , and let y ∈ A − C have μ(y) = j . Now
y ∈ A∩F j = (A∩Fj )⊕C j , so that y = b+c, where b ∈ A∩Fj and c ∈ C j .
Hence, b = y − c ∈ A, b /∈ C (lest y ∈ C), and μ(b) < j , a contradiction.
Therefore, A = C = 〈⋃k∈K Ck〉.
(ii) Uniqueness of expression: Suppose that c1+· · ·+cn = 0, where ci ∈ Cki ,
k1 < · · · < kn , and kn is minimal (among all such equations). Then

c1 + · · · + cn−1 = −cn ∈ (A ∩ Fkn ) ∩ Ckn = {0}.

It follows that cn = 0, contradicting the minimality of kn . •

Corollary 4.14. If R is a left hereditary ring, then every submodule S of a
projective left R-module P is projective.

Proof. Since P is projective, it is a submodule, even a direct summand, of
a free module, by Theorem 3.5. Therefore, S is a submodule of a free mod-
ule, and so S is a direct sum of ideals, each of which is projective, by Theo-
rem 4.13. Therefore, S is projective, by Corollary 3.6(ii). •
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Corollary 4.15. Let R be a PID.

(i) If A is a submodule of a free R-module F, then A is a free R-module
and rank(A) ≤ rank(F).

(ii) If B = 〈b1, . . . , bn〉 is a finitely generated R-module and B ′ ⊆ B is a
submodule, then B ′ is finitely generated and it can be generated by n or
fewer elements.

Proof.

(i) In the notation of Theorem 4.13, if F has a basis {xk : k ∈ K }, then
A = ⊕

k∈K Ck , where Ck is isomorphic to an ideal in R. Since R
is a PID, every nonzero ideal is isomorphic to R: either Ck = {0} or
Ck ∼= R. Therefore, A is free and rank(A) ≤ |K | = rank(F).

(ii) Let F be a free R-module with basis {x1, . . . , xn}. Define ϕ : F → B
by xi �→ bi for all i , define A = ϕ−1(B ′), and note that ϕ|A : A → B ′
is surjective. By part (i), A is free of rank m ≤ n, and so B ′ can be
generated by m elements. •

We remark that part (ii) of Corollary 4.15 may be false for more general
domains. First, if R is a domain that is not noetherian, then it has an ideal I
that is not finitely generated; that is, I is a submodule of a cyclic module that
is not finitely generated. Second, if B can be generated by n elements and
B ′ ⊆ B is finitely generated, B ′ still may require more than n generators. For
example, if k is a field and R = k[x, y], then R is not a PID, and so there is
some ideal I that is not principal; that is, R is generated by one element and
its submodule I cannot be generated by one element.

Corollary 4.16. If R is a PID, then every projective R-module is free.

Proof. This follows at once from Corollary 4.15(i), for every projective
module is a submodule (even a summand) of a free module. •

If R is a Dedekind ring, then we have just shown, in Theorem 4.13, that
every finitely generated projective R-module P is (isomorphic to) a direct sum
of ideals: P ∼= I1 ⊕ · · · ⊕ In . This decomposition is not unique: P ∼= F ⊕ J ,
where F is free and J is an ideal (in fact, J is the product ideal I1 · · · In).
Steinitz proved that this latter decomposition is unique to isomorphism (see
Rotman, Advanced Modern Algebra, p. 967).

Let us show that a direct product of projectives need not be projective.

Theorem 4.17 (Baer). The direct product Z
N of infinitely many copies of

Z is not free (and, hence, it is not projective).
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Proof. Let us write the elements of Z
N as sequences (mn), where mn ∈ Z.

It suffices, by Corollary 4.15, to exhibit a subgroup S ⊆ Z
N that is not free.

Choose a prime p, and define S by

S = {(mn) ∈ Z
N : for each k ≥ 1, we have pk | mn for almost all n

}
1.

Thus, p divides almost all mn , p2 divides almost all mn , and so forth. For
example, s = (1, p, p2, p3, . . .) ∈ S. It is easy to check that S is a subgroup
of Z

N. We claim that if s = (mn) ∈ S and s = ps∗ for some s∗ ∈ Z
N, then

s∗ ∈ S. If s∗ = (dn), then pdn = mn for all n; since pk+1 | mn for almost all
n, we have pk | dn for almost all n.

If (mn) ∈ S, then so is (εnmn), where ε = ±1, so that S is uncount-
able. Were S a free abelian group, then S/pS would be uncountable, for
S = ⊕

j∈J C j implies S/pS ∼= ⊕
j∈J (C j/pC j ). We complete the proof

by showing that dim(S/pS) is countable, which gives the contradiction S/pS
countable. Let en = (0, . . . , 0, 1, 0, . . .), where 1 is in the nth spot; note that
en ∈ S. We claim that the countable family of cosets {en + pS : n ∈ N}
spans S/pS. If s = (mn) ∈ S, then almost all mn are divisible by p. Hence,
there is an integer N so that s −∑N

n=0 mnen = ps∗, and s∗ lies in S. Thus, in
S/pS, the coset s + pS is a finite linear combination of cosets of en , and so
dim(S/pS) is countable. •

We have just seen that Z
N, the direct product of countably many copies

of Z, is not free abelian, but we saw, in Exercise 3.4 on page 114, that every
countable subgroup of Z

N is a free abelian group. A theorem of Specker–
Nobeling (see Fuchs, Infinite Abelian Groups II, p. 175) shows that the sub-
group B of all bounded sequences,

B = {(mn) ∈ Z
N : there exists N with |mn| ≤ N for all n},

is a free abelian group (in fact, this is true for Z
I for any index set I ).

We are going to show that Corollary 4.14 characterizes left hereditary
rings, but we begin with a lemma.

Lemma 4.18. A left R-module P is projective if and only if every dia-
gram with exact row and with Q injective can be completed to a commutative
diagram; that is, every map f : P → Q′′ can be lifted. The dual is also true.

P
f����� �

�
�

Q �� Q′′ �� 0.

1For readers familiar with the p-adic topology, S consists of null-sequences and it is
essentially the p-adic completion of Z.
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Proof. If P is projective, then the diagram can always be completed, with
no hypothesis on Q.

For the converse, we must find a map P → A making the following
diagram commute.

P
f����� �

�
�

0 �� A′ i
�� A τ

�� A′′ �� 0.

There are an injective module Q and an imbedding σ : A → Q, by Theo-
rem 3.38. Enlarge the diagram to obtain

P

γ

��

f
��

0 �� A′
i ��

1
��

A

σ

��

τ �� A′′

ρ

���
�
�

�� 0.

0 �� A′
σ i

�� Q
ν

�� Q′′ �� 0,

where Q′′ = coker σ i and ν is the natural map. By Proposition 2.70, there
exists a map ρ : A′′ → Q′′ making the diagram commute. By hypothesis, the
map ρ f can be lifted: there exists γ : P → Q with νγ = ρ f . We claim that
im γ ⊆ im σ , which will complete the proof (because im σ ∼= A). If x ∈ P ,
choose a ∈ A with τa = f x . Then νγ x = ρ f x = ρτa = νσa, so that
γ x − σa ∈ ker ν = im σ i . Hence, there is a′ ∈ A′ with γ x − σa = σ ia′, and
so γ x = σ(a + ia′) ∈ im σ . •

Theorem 4.19 (Cartan–Eilenberg). The following statements are equiv-
alent for a ring R.

(i) R is left hereditary.

(ii) Every submodule of a projective module is projective.

(iii) Every quotient of an injective module is injective.

Proof.

(i) ⇒ (ii) Corollary 4.14.

(ii) ⇒ (i) R is a free R-module, and so it is projective. Therefore, its sub-
modules, the left ideals, are projective, and R is left hereditary.
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(iii) ⇒ (ii) Consider the diagram with exact rows

P

k
���
�
�
h

���
�

�
� P ′j		

f
��

g

��

0		

Q r
�� Q′′ �� 0,

where P is projective and Q is injective. By Lemma 4.18, it suffices
to find a map g : P ′ → Q with rg = f . Now Q′′ is injective, by
hypothesis, so that there exists a map h : P → Q′′ giving commutativ-
ity: hj = f . Since P is projective, there is a map k : P → Q with
rk = h. The composite g = k j : P ′ → P → Q is the desired map, for
rg = r(k j) = hj = f .

(ii) ⇒ (iii) Dualize the proof just given, using the dual of Lemma 4.18. •
We can characterize noetherian hereditary rings in terms of flatness.

Proposition 4.20. If R is a left noetherian ring, then every left ideal is flat if
and only if R is left hereditary.

Proof. Since R is left noetherian, every left ideal I is finitely presented,
and so I flat implies that it is projective, by Corollary 3.57. Hence, R is
left hereditary. Conversely, if R is left hereditary, then every left ideal is
projective, and so every left ideal is flat, by Proposition 3.46. •

Let us now show that our definition of Dedekind ring coincides with more
classical definitions.

Definition. Let R be a domain with Q = Frac(R). An ideal I is invertible
if there are elements a1, . . . , an ∈ I and elements q1, . . . , qn ∈ Q with

(i) qi I ⊆ R for all i = 1, . . . , n,

(ii) 1 =∑ n
i=1 qi ai .

For example, every nonzero principal ideal Ra is invertible: define a1 = a
and q1 = 1/a. Note that if I is invertible, then I 	= (0). We show that
I = (a1, . . . , an). Clearly, (a1, . . . , an) ⊆ I . For the reverse inclusion,
let b ∈ I . Now b = b1 = ∑

(bqi )ai ; since bqi ∈ qi I ⊆ R, we have
I ⊆ (a1, . . . , an).
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Remark. If R is a domain and Q = Frac(R), then a fractional ideal is a
finitely generated nonzero R-submodule of Q. All the fractional ideals in Q
form a commutative monoid under the following multiplication: if I, J are
fractional ideals, their product is

I J =
{∑

k

αkγk : αk ∈ I and γk ∈ J
}
.

The unit in this monoid is R. If I is an invertible ideal and I−1 is the R-
submodule of Q generated by q1, . . . , qn , then I−1 is a fractional ideal and

I I−1 = R = I−1 I

[one can show that I−1 ∼= HomR(I, R)]. We will soon see that every nonzero
ideal in a Dedekind ring R is invertible, so that the monoid of all fractional
ideals is an abelian group (which turns out to be free with basis all nonzero
prime ideals). The class group of R is defined to be the quotient group of this
group by the subgroup of all nonzero principal ideals. �

Proposition 4.21. If R is a domain, then a nonzero ideal I is projective if
and only if it is invertible.

Proof. If I is projective, then Proposition 3.10 says that I has a projec-
tive basis: there are (ak ∈ I )k∈K and R-maps (ϕk : I → R)k∈K such that,
(i) for each b ∈ I , almost all ϕk(b) = 0, (ii) for each b ∈ I , we have
b =∑k∈K (ϕkb)ak .

Let Q = Frac(R). If b ∈ I and b 	= 0, define qk ∈ Q by

qk = ϕk(b)/b.

Note that qk does not depend on the choice of nonzero b: if b′ ∈ I is nonzero,
then b′ϕk(b) = ϕk(b′b) = bϕk(b′), so that ϕk(b′)/b′ = ϕk(b)/b. It follows
that qk I ⊆ R for all k: if b ∈ I , then qkb = [ϕk(b)/b]b = ϕk(b) ∈ R.
By condition (i), if b ∈ I , then almost all ϕk(b) = 0. Since qk = ϕk(b)/b
whenever b 	= 0, there are only finitely many (nonzero) qk . Discard all ak for
which qk = 0. Condition (ii) gives, for b ∈ I ,

b =
∑

(ϕkb)ak =
∑

(qkb)ak = b
(∑

qkak

)
.

Cancel b from both sides to obtain 1 =∑ qkak . Thus, I is invertible.
Conversely, if I is invertible, there are elements ai , . . . , an ∈ I and

q1, . . . , qn ∈ Q, as in the definition. Define ϕk : I → R by b �→ qkb (note
that qkb ∈ qk I ⊆ R). If b ∈ I , then∑

(ϕkb)ak =
∑

qkbak = b
∑

qkak = b.

Therefore, I has a projective basis and, hence, I is a projective module. •
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Corollary 4.22. A domain R is a Dedekind ring if and only if every nonzero
ideal in R is invertible.

Proof. This follows at once from Proposition 4.21. •

Corollary 4.23. Every Dedekind ring is noetherian.

Proof. Invertible ideals are finitely generated. •
We can now generalize Corollary 3.35 from PIDs to Dedekind rings.

Theorem 4.24. A domain R is a Dedekind ring if and only if every divisible
R-module is injective.

Proof. Assume that every divisible R-module is injective. If E is an injective
R-module, then E is divisible, by Lemma 3.33. Since every quotient of a
divisible module is divisible, every quotient E ′′ of E is divisible, and so E ′′ is
injective, by hypothesis. Therefore, R is a Dedekind ring, by Theorem 4.19.

Conversely, assume that R is Dedekind and that E is a divisible R-module.
By the Baer Criterion, it suffices to complete the diagram

E

0 �� I
inc

��
f
��

R,

���
�

�

where I is an ideal and inc is the inclusion. Of course, we may assume that
I is nonzero, so that I is invertible: there are elements a1, . . . , an ∈ I and
q1, . . . , qn ∈ Frac(R) with qi I ⊆ R and 1 = ∑

i qi ai . Since E is divisible,
there are elements ei ∈ E with f (ai ) = ai ei . Note, for every b ∈ I , that

f (b) = f
(∑

i

qi ai b
)
=
∑

i

(qi b) f (ai ) =
∑

i

(qi b)ai ei = b
∑

i

(qi ai )ei .

Hence, if we define e =∑i (qi ai )ei , then e ∈ E and f (b) = be for all b ∈ I .
Now define g : R → E by g(r) = re; since g extends f , the module E is
injective. •

Lemma 4.25. If R is a unique factorization domain, then a nonzero ideal I
is projective if and only if it is principal.

Proof. Every nonzero principal ideal I = (b) in a domain R is isomorphic to
R via r �→ rb. Thus, I is free and, hence, projective. Conversely, suppose that
R is a UFD. If I is a projective ideal, then it is invertible, by Proposition 4.21.
There are elements ai , . . . , an ∈ I and q1, . . . , qn ∈ Q with 1 = ∑

i qi ai
and qi I ⊆ R for all i . Write qi = bi/ci and assume, by unique factorization,
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that bi and ci have no nonunit factors in common. Since (bi/ci )a j ∈ R for
j = 1, . . . , n, we have ci | a j for all i, j . We claim that I = (c), where c =
lcm{c1, . . . , cn}. Note that c ∈ I , for c = c

∑
bi ai/ci =

∑
(bi c/ci )ai ∈ I ,

for (bi c/ci ) ∈ R. Hence, (c) ⊆ I . For the reverse inclusion, ci | a j for all
i, j implies c | a j for all j , and so a j ∈ (c) for all j . Hence, I ⊆ (c). •

Theorem 4.26. A Dedekind ring R is a unique factorization domain if and
only if it is a PID.

Proof. Every PID is a UFD. Conversely, if R is a Dedekind ring, then every
nonzero ideal I is projective. Since R is a UFD, I is principal, by Lemma 4.25,
and so R is a PID. •

4.4 Semihereditary and Prüfer Rings

We now investigate rings in which all finitely generated ideals are special.

Definition. A ring R is left semihereditary if every finitely generated left
ideal is projective. A semihereditary domain is called a Prüfer ring.

Example 4.27.

(i) Every left hereditary ring is left semihereditary (of course, these notions
coincide for left noetherian rings).

(ii) Chase gave an example of a left semihereditary ring that is not right
semihereditary (see Lam, Lectures on Modules and Rings, p. 47). A
theorem of Small says that a one-sided noetherian ring is left semihered-
itary if and only if it is right semihereditary (see Lam, p. 268).

(iii) Every von Neumann regular ring is both left and right semihereditary.
By Lemma 4.8, every finitely generated left (or right) ideal I is prin-
cipal; say, I = (a). If aa′a = a, the map ϕ : R → I , defined by
ϕ(r) = ra′a, is a retraction. Therefore, I is a direct summand of R and,
hence, I is projective. �

Definition. A ring R is a Bézout ring if it is a domain in which every finitely
generated ideal is principal.

It is clear that every Bézout ring is a Prüfer ring; i.e., it is semihereditary.
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Example 4.28.

(i) A valuation ring is a domain R in which, for all a, b ∈ R, either a | b
or b | a. Every valuation ring is a Bézout ring.

(ii) A domain R is a Prüfer ring if and only if, for every maximal ideal
m, the localization Rm is a valuation ring (see Kaplansky, Commutative
Rings, p. 39).

(iii) Let X be a noncompact Riemann surface, and let R be the ring of all
complex-valued holomorphic functions on X . Helmer [see “Divisibil-
ity properties of integral functions,” Duke Math J. 6 (1940), 345–356]
proved that R is a Bézout ring.

(iv) The ring of all algebraic integers (in C) is a Bézout ring (see Kaplansky,
Commutative Rings, p. 72). �

Proposition 4.29. If R is a left semihereditary ring, then every finitely gen-
erated submodule of a free module is a direct sum of a finite number of finitely
generated left ideals.

Proof. Let F be a free left R-module, let {xk : k ∈ K } be a basis, and let
A = 〈a1, . . . , am〉 be a finitely generated submodule of F . Each ai , when
expressed as a linear combination of the xk , has finite support, so that X =⋃

k supp(ak) is finite and A ⊆ 〈X〉. Now 〈X〉 is a free submodule of F , and
so we may assume that F is finitely generated with basis {x1, . . . , xn}.

We prove, by induction on n ≥ 1, that A is (isomorphic to) a direct sum
of finitely generated left ideals. If n = 1, then A is isomorphic to a finitely
generated left ideal. If n > 1, define B = A ∩ (Rx1 + · · · + Rxn−1); by the
inductive hypothesis, B is a direct sum of a finite number of finitely generated
left ideals. Now each a ∈ A has a unique expression of the form a = b+ r xn ,
where b ∈ B and r ∈ R; define ϕ : A → R by a �→ r , and note that imϕ is a
finitely generated left ideal in R. There is an exact sequence 0 → B → A →
imϕ → 0, and this sequence splits because imϕ is projective: A ∼= B⊕ imϕ.
Therefore, A is a direct sum of finitely many finitely generated left ideals. •

The reader has probably observed that the proof just given is merely that
of Theorem 4.13 stripped of its transfinite apparel. Albrecht [see “On pro-
jective modules over a semihereditary ring,” Proc. AMS 12 (1961), 638–639]
proved that if R is left semihereditary, then every (not necessarily finitely gen-
erated) projective R-module is a direct sum of finitely generated left ideals.

Proposition 4.30 (Albrecht). A ring R is left semihereditary if and only
if every finitely generated submodule A of a projective left R-module P is
projective.
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Proof. Now P is a submodule, even a summand, of a free left R-module,
so that A is a finitely generated submodule of a free module. By Proposi-
tion 4.29, A is a direct sum of finitely generated left ideals. As each of these
ideals is projective, A is projective.

Conversely, every finitely generated left ideal is a finitely generated sub-
module of the free R-module R. Hence, such ideals are projective, and R is
left semihereditary. •

Definition. A right R-module A is torsionless if it is isomorphic to a sub-
module of a direct product RX for some index set X .

Example 4.31.

(i) Every projective right R-module is torsionless.

(ii) Every right ideal I is torsionless.

(iii) If R is a domain, then every torsionless R-module is torsion-free. The
converse is false. For example, Q is not a submodule of Z

X for any
set X .

(iv) If A is a left R-module, then HomR(A, R) ⊆ R A is a torsionless right
R-module. �

In the midst of proving the next theorem, we are going to use Corol-
lary 8.26: if every left ideal in a ring R is flat, then every submodule of a flat
left R-module is flat.

Theorem 4.32 (Chase). The following statements are equivalent.

(i) R is left semihereditary.

(ii) R is left coherent and every submodule of a flat left R-module is flat.

(iii) Every torsionless right R-module is flat.

Proof. (i) ⇒ (ii) If R is left semihereditary, then every finitely generated
left ideal I is projective; hence, I is finitely presented, by Proposition 3.11.
Therefore, Theorem 3.66 gives R left coherent. Since every finitely generated
left ideal is projective, it is flat. It follows from Proposition 3.48 that every
left ideal is flat, and so Corollary 8.26 applies to show that every submodule
of a flat module is itself flat.
(ii) ⇒ (i) If I is a finitely generated left ideal, then I is a submodule of the flat
module R, and so I is flat; since R is left coherent, I is also finitely presented.
Hence, I is projective, by Theorem 3.56, and so R is left semihereditary.
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(ii) ⇒ (iii) Since R is left coherent, Theorem 3.66 says that the right R-
modules RX are flat, for any X . By definition, every torsionless right R-
module is a submodule of some RX , and so it is flat.
(iii) ⇒ (ii) For every set X , the right R-module RX is torsionless, and so it
is flat, by hypothesis. It follows from Theorem 3.66 that R is left coherent.
Every left ideal is torsionless, so it, too, is flat. Thus, Corollary 8.26 says that
every submodule of a flat module is flat. •

Let us now consider Prüfer rings.
Recall that if R is any domain, then the torsion submodule t M of an R-

module M is t M = {m ∈ M : rm = 0 for some nonzero r ∈ R}. Note that
t M is a submodule of M and that M/t M is torsion-free; that is, its torsion
submodule is {0}.

Lemma 4.33. Let R be a domain with fraction field Q.

(i) If A is a torsion-free R-module, then there is an exact sequence

0 → A → V → T → 0,

where V is a vector space over Q and T is torsion.

(ii) If A is finitely generated and torsion-free, then A can be imbedded in a
finitely generated free R-module.

Proof.

(i) Let V = Env(A), the injective envelope of A. If v ∈ V , then there is
r ∈ R with rv 	= 0 and rv ∈ A. It follows that A torsion-free implies V
torsion-free, and that V/A is torsion. Finally, Exercise 2.38 on page 97
shows that V is a vector space over Q, for it is torsion-free and divisible.

(ii) Let A = 〈a1, . . . , an〉. By part (i), A is imbedded in a vector space V
over Q. If X is a basis of V , then each ai is a linear combination of
finitely many basis vectors in X . It follows that A is imbedded in the
finite-dimensional vector space with basis B = {x1, . . . , xm} consisting
of all x ∈ X involved in expressing any of the ai . For each ai , there are
ri j , si j ∈ R with ai =

∑
j (ri j/si j )x j . If s = ∏

i, j si j , then s−1 B =
{s−1x1, . . . , s−1xm} is a basis of V . In fact, the R-submodule of V
generated by s−1 B is free with basis s−1 B, and it contains A. •

Theorem 4.34. A domain R is a Prüfer ring if and only if every finitely
generated torsion-free R-module A is projective.



4.5 Quasi-Frobenius Rings 173

Proof. By Lemma 4.33(ii), A can be imbedded as a submodule of a free R-
module. Since R is a Prüfer ring, Proposition 4.30 says that A is projective.

Conversely, let I be a finitely generated ideal in a domain R. Since R is a
torsion-free R-module, the hypothesis says that I is projective. Therefore, R
is a Prüfer ring. •

In Corollary 3.51, we saw that if R is a PID, then R-modules are flat if
and only if they are torsion-free. We now generalize this to Prüfer rings.

Theorem 4.35. If R is a Prüfer ring, then an R-module B is flat if and only
if B is torsion-free.

Proof. We proved, in Proposition 3.49, that if R is any domain, then flat
R-modules are torsion-free. Conversely, assume that B is a torsion-free R-
module. By Proposition 3.48, it suffices to prove that every finitely generated
submodule B ′ ⊆ B is flat. Since R is a Prüfer ring and B ′ is torsion-free,
Theorem 4.34 says that B ′ is projective. Hence, B ′ is flat, and so B is flat. •

We now combine the two previous results to give another characterizion
of Prüfer rings.

Corollary 4.36. Let R be a domain. Then R is a Prüfer ring if and only if
every torsion-free R-module is flat.

Proof. If R is a Prüfer ring and B is a torsion-free R-module, then B is flat,
by Theorem 4.35. Conversely, we prove that every torsionless R-module is
flat. Now RX is torsion-free, because R is a domain, and so every torsionless
R-module, being a submodule of some RX , is flat, by hypothesis. Therefore,
R is a Prüfer ring, by Theorem 4.35. •

4.5 Quasi-Frobenius Rings

We are now going to assume that a ring R is self-injective; that is, R is in-
jective as a left R-module. (There is no need to consider self-projective or
self-flat, for the left R-module R is always projective, and hence it is always
flat.) Self-injectivity is most interesting when it is coupled with chain condi-
tions.

Definition. A ring R is quasi-Frobenius if it is left and right noetherian and
R is an injective left R-module.
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It can be shown that the apparent asymmetry of the definition is only
virtual: if R is quasi-Frobenius, then R is an injective right R-module (see
Jans, Rings and Homology, p. 78, or Lam, Lectures on Modules and Rings,
p. 409).

Clearly, semisimple rings are quasi-Frobenius (for they are both left and
right noetherian, and every module is injective); in particular, kG is quasi-
Frobenius when G is a finite group and k is a field whose characteristic does
not divide |G|. Although there are other examples, as we shall see, the most
important examples of quasi-Frobenius rings are group rings kG for G finite
and k a field of any characteristic (see Theorem 4.46). Such rings arise nat-
urally in the theory of modular group representations. For example, if G is
a finite solvable group, then a minimal normal subgroup V of G is a vector
space over Fp for some prime p (see Rotman, An Introduction to the Theory
of Groups, p. 105). Since V � G, the group G acts on V by conjugation, and
so V is an FpG-module.

Proposition 4.37. If R is a PID and I is a nonzero proper ideal, then R/I
is quasi-Frobenius.

Proof. It is clear that R/I is noetherian, and so we need show only that R/I
is an injective (R/I )-module. By Baer’s Criterion, it suffices to extend a map

R/I

0 �� J/I
inc

��
f
��

R/I,

��	
	

	

where f : J ′ → R/I from an ideal J ′ to a map R/I → R/I . By the Corre-
spondence Theorem, J ′ = J/I , where J is an ideal in R containing I ; note
that J = Rb, because R is a PID. Let I = Ra. Since Ra = I ⊆ J = Rb, we
have bc = a for some c ∈ R. The R/I -module R/I is cyclic with generator
x = 1 + I , and J/I is cyclic with generator bx .

Now f (bx) = sx for some s ∈ R. Since bcx = ax = 0, we have
0 = c f (bx) = csx , so that cs ∈ Ra (because x = 1 + Ra). Therefore,
cs = ra = rbc for some r ∈ R. Canceling c gives s = rb, so that f (bx) =
sx = rbx . Define g : R/I → R/I to be multiplication by r . Now g extends
f , for g(bx) = rbx = f (bx). Therefore, R/I is self-injective, and R/I is
quasi-Frobenius. •

Compare the next result with Examples 4.4(iv) and (v).

Corollary 4.38. The rings In, where n > 1, and the rings k[x]/I , where k
is a field and I is a nonzero ideal, are quasi-Frobenius rings.
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Proposition 4.39. If R is left and right noetherian, then R is quasi-Frobenius
if and only if every projective left R-module is injective.

Proof. If R is quasi-Frobenius, then every free left R-module F is a direct
sum of injectives (for R is injective). Since R is left noetherian, Proposi-
tion 3.31 says that F is injective. If P is projective, then it is a direct sum-
mand of a free module; here, P is a direct summand of an injective module
and, hence, it is injective.

Conversely, the left R-module R R is projective, and so it is injective, by
hypothesis. Since R is left and right noetherian, it is quasi-Frobenius. •

One of the standard proofs of the Basis Theorem for finite abelian groups
has as its crucial step the observation that a cyclic subgroup of largest order is
a direct summand.

Corollary 4.40 (Basis Theorem). Every finite abelian group G is a direct
sum of cyclic groups.

Proof. By the primary decomposition theorem, we may assume that G is a
p-primary group for some prime p. If pn is the largest order of elements in
G, then png = 0 for all g ∈ G, and so G is an Ipn -module. If x ∈ G has order
pn , then S = 〈x〉 ∼= Ipn . Hence, S is injective, for Ipn is quasi-Frobenius, by
Corollary 4.38. But injective submodules are always direct summands, and so
G = S ⊕ T for some submodule T . By induction on |G|, the complement T
is a direct sum of cyclic groups. •

There is another chain condition that is dual, in the lattice-theoretic sense,
to noetherian rings.

Definition. A left R-module M (over any ring R) has DCC (descending
chain condition) if every descending chain of submodules

M = M0 ⊇ M1 ⊇ M2 ⊇ · · ·
stops; that is, there is an integer n with Mn = Mn+1 = Mn+2 = · · · .

Definition. A ring R is left artinian if it has DCC on left ideals.

Example 4.41.

(i) There exist left artinian rings that are not right artinian (see Lam, A First
Course in Noncommutative Rings, p. 22).

(ii) The Hopkins–Levitzki Theorem (see Rotman, Advanced Modern Alge-
bra, p. 555) says that every left artinian ring is left noetherian.
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(iii) If k is a field, then every finite-dimensional k-algebra is left and right
artinian. In particular, if G is a finite group, then kG is left and right
artinian.

(iv) Every semisimple ring is left and right artinian.

(v) Every finite ring is left and right artinian.

(vi) A left R-module M has both chain conditions (DCC and ACC on sub-
modules) if and only if M has a composition series; that is, there is a
chain of submodules

M = M0 ⊇ M1 ⊇ M2 ⊇ · · · ⊇ Mn = {0}
in which every factor module Mi/Mi−1 is a simple module.

(vii) Every quasi-Frobenius ring is left and right artinian (see Lam, Lectures
on Modules and Rings, p. 409). �

Proposition 4.42.

(i) A ring R is left artinian if and only if R satisfies the minimum condi-
tion: every nonempty family F of left ideals in R has a minimal element.

(ii) If R is left artinian, then every nonzero left ideal I contains a minimal
left ideal.

Proof. The proof of part (i) is dual to that of Corollary 3.16, and it is left to
the reader. To prove (ii), let I be a nonzero left ideal, and define F to be the
family of all the nonzero left ideals J contained in I . The reader may show
that a minimal element of F is a minimal left ideal. •

Corollary 4.43. Every quotient ring of a left artinian ring R is left artinian.

Proof. Let I be a two-sided ideal in R, so that R/I is a ring. By the Corre-
spondence Theorem, any descending chain of left ideals in R/I corresponds
to a descending chain of left ideals in R (which contain I ). This chain in R
stops, and so the original chain in R/I stops. •

We are now going to show, for every finite group G and every field k (of
any characteristic), that kG is quasi-Frobenius.

Definition. Let R be a finite-dimensional algebra over a field k. Then R is
called a Frobenius algebra if R ∼= Homk(RR, k) as left R-modules.

Observe that the dual space Homk(RR, k) is a left R-module, as in Propo-
sition 2.54.
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Proposition 4.44. Every Frobenius algebra R is quasi-Frobenius.

Proof. Every finite-dimensional k-algebra is left and right noetherian. Now
R ∼= Homk(RR, k), by hypothesis. On the other hand, Lemma 3.37 shows
that Homk(RR, k) is injective. Therefore, R ∼= Homk(RR, k) is injective, and
so R is quasi-Frobenius. •

Lemma 4.45. Let R be a finite-dimensional algebra over a field k. If there
is a linear functional f : R → k whose kernel contains no nonzero left ideals,
then R is a Frobenius algebra.

Proof. Define θ : R → Homk(R, k) by θr (x) = f (xr) for all x ∈ R; it is
easy to check that each θr is a k-map and that r ′θr = θr ′r ; that is, θ is an
R-map. We claim that θ is injective. If θr = 0, then 0 = θr (x) = f (xr) for
all x ∈ R. But this says that Rr ⊆ ker f ; by hypothesis, r = 0. Finally, if
dimk(R) = n, then dimk Homk(R, k) = n [for Homk(R, k) is just the dual
space of R R]. Therefore, θ must be surjective, being an injection between two
n-dimensional spaces. •

Theorem 4.46. If G is a finite group and k is any field, then kG is a Frobe-
nius algebra, and hence it is quasi-Frobenius.

Proof. By Lemma 4.45, it suffices to give a linear functional f : kG → k
whose kernel contains no nonzero left ideals. Each r ∈ kG has a unique
expression

r =
∑
x∈G

rx x, where rx ∈ k.

Define f : kG → k by f : r �→ r1, the coefficient of 1. Suppose that ker f
contains a left ideal I . If r = ∑

rx x ∈ I , then 0 = f (x−1r) = rx . Hence,
rx = 0 for all x ∈ G and r = 0. Therefore, I = {0}. •

Definition. A module M is indecomposable if M 	= {0} and M has no
nonzero direct summands.

Every simple module is indecomposable, but the converse is false. For
example, if p is a prime, then the abelian group Ip2 is indecomposable, but it
is not simple.

Proposition 4.47. Let R be a ring. If a left R-module M has either chain
condition on submodules, then M is a direct sum of a finite number of inde-
composable submodules.
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Proof. Call a module good if it is a direct sum of a finite number of inde-
composable submodules; call it bad otherwise. An indecomposable module
is good and, if both A and B are good, then A⊕ B is good. Therefore, if M is
a bad module, then M = U ⊕ V , where U, V are proper submodules at least
one of which is bad.

If M is a bad module, define N0 = M . By induction, for every n ≥ 0,
there are bad submodules N0, N1, . . . , Nn with each Ni a proper bad direct
summand of Ni−1. There is a strictly decreasing sequence of submodules:

M = N0 � N1 � N2 � · · · .
If M has DCC, we have reached a contradiction.

Suppose M is a bad module having ACC. Since each Ni is a direct sum-
mand of Ni−1, there are complements Li with Ni−1 = Ni ⊕ Li . This gives a
strictly ascending sequence of submodules of M ,

L1 � L1 ⊕ L2 � L1 ⊕ L2 ⊕ L3 � · · · ,
another contradiction. •

Definition. If a ring R is a direct sum of indecomposable modules, say,
R =⊕

i Li , then any module M isomorphic to some Li is called a principal
indecomposable module.

By Proposition 4.47, a ring with either chain condition has principal in-
decomposable modules. Indeed, every indecomposable direct summand of R
is such a module. In particular, quasi-Frobenius rings, being left noetherian,
have principal indecomposable modules.

Recall that minimal left ideals are, by definition, nonzero.

Proposition 4.48. If R is quasi-Frobenius, then there is a bijection between
its minimal left ideals and its principal indecomposable modules.

Proof. Let I be a minimal left ideal in R. Since R = R R is injective, The-
orem 3.45(ii) shows that we may assume its injective envelope, Env(I ), is a
submodule of R; that is, Env(I ) is a left ideal. We claim that Env(I ) is a prin-
cipal indecomposable module. As Env(I ) is injective, it is a direct summand
of R. Suppose that Env(I ) is not indecomposable; that is, Env(I ) = A ⊕ B,
where A and B are nonzero. If I ∩ A 	= {0} and I ∩ B 	= {0}, then min-
imality of I gives I ∩ A = I = I ∩ B; that is, I ⊆ A ∩ B = {0}, a
contradiction. Hence, either I ∩ A = {0} or I ∩ B = {0}; but either of
these contradicts Env(I ) being an essential extension of I . Thus, the func-
tion ϕ : {minimal left ideals} → {principal indecomposable modules}, given
by ϕ : I → Env(I ), is well-defined.
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We show that ϕ is surjective. If E is a principal indecomposable module,
then it is injective, for it is a direct summand of R. Since R is left artinian, E
(viewed as a left ideal) contains a minimal left ideal I . By Theorem 3.45(ii)
(which applies because E is injective), we may assume that Env(I ) is a sub-
module of E . As Env(I ) is injective, it is a direct summand of E ; but E is
indecomposable, and so E = Env(I ) = ϕ(I ).

We show that ϕ : I �→ Env(I ) is injective. If Env(I ) = Env(I ′), where
I and I ′ are distinct minimal left ideals, then Env(I ) cannot be an essential
extension of I because it contains a nonzero submodule I ′ with I ∩ I ′ = {0}.
Therefore, ϕ is a bijection. •

This last result takes on more interest when we observe that every sim-
ple module over a quasi-Frobenius ring is isomorphic to a minimal left ideal
(see Curtis–Reiner, Representation Theory of Finite Groups and Associative
Algebras, p. 401). Modular Representation Theory investigates the group ring
kG of a finite group G when |G| is divisible by the characteristic of k. This
last result suggests that the role of minimal left ideals in semisimple rings is
played by principal indecomposable modules in the modular case.

4.6 Semiperfect Rings

There is a notion dual to that of injective envelope, called projective cover.
In contrast to injective envelopes, which exist for modules over any ring, pro-
jective covers exist only for certain rings, called perfect. A semiperfect ring
is one for which every finitely generated module has a projective cover. We
shall see that local rings and artinian rings are semiperfect.

We begin with some basic ring theory.

Definition. If R is a ring, then its Jacobson radical J (R) is defined to be
the intersection of all the maximal left ideals in R.

Clearly, we can define another Jacobson radical: the intersection of all
the maximal right ideals. It turns out, however, that both of these coincide
(see Rotman, Advanced Modern Algebra, p. 547), so that J (R) is a two-sided
ideal. Consequently, R/J (R) is a ring.

Example 4.49.

(i) The maximal ideals in Z are the nonzero prime ideals (p), and so J (Z) =⋂
p prime(p) = {0}, for a nonzero integer is divisible by only finitely

many primes.
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(ii) Let k be a field and let R = Matn(k). For any � between 1 and n, let
col(�) = {

[ai j ] ∈ R : ai j = 0 for all j 	= �
}
, and let col∗(�) =∑

i 	=� col(i). Now col(�) is a minimal left ideal, hence, a simple
left R-module. Since R/col∗(�) ∼= col(�), we see that col∗(�) is a
maximal left ideal. Therefore, J (R) ⊆⋂� col∗(�) = {0}. �

We can characterize the elements in the Jacobson radical.

Proposition 4.50. If x is an element in a ring R, then x ∈ J (R) if and only
if, for each a ∈ R, the element 1−ax has a left inverse; that is, there is u ∈ R
with u(1 − ax) = 1.

Proof. If R(1 − ax) is a proper left ideal, then Zorn’s Lemma shows that
there is some maximal left ideal containing it; say, R(1 − ax) ⊆ M . By
definition, ax ∈ J ⊆ M , so that 1 = (1 − ax) + ax ∈ M , contradicting M
being a proper ideal. Therefore, R(1 − ax) = R, and so there is u ∈ R with
u(1 − ax) = 1.

Conversely, if x /∈ J , then there is a maximal left ideal M with x /∈ M .
Since M � M + Rx , we have M + Rx = R, so that there are m ∈ M and
a ∈ R with m+ax = 1. If m = 1−ax has a left inverse u, then 1 = um ∈ M ,
contradicting M being a proper left ideal. •

Proposition 4.51 (Nakayama’s Lemma). If M is a finitely generated left
R-module, and if J M = M, where J = J (R) is the Jacobson radical, then
M = {0}.
Proof. Let m1, . . . ,mn be a generating set of M that is minimal in the
sense that no proper subset generates M . Since J M = M , we have m1 =∑n

i=1 ri mi , where ri ∈ J . It follows that

(1 − r1)m1 =
n∑

i=2

ri mi .

Since r1 ∈ J , Proposition 4.50 says that 1 − r1 has a left inverse, say, u, and
so m1 =

∑n
i=2 uri mi . This is a contradiction, for now M can be generated by

the proper subset {m2, . . . ,mn}. •

Remark. The hypothesis in Nakayama’s lemma that the module M be
finitely generated is necessary. For example, it is easy to check that Z(2) =
{a/b ∈ Q : b is odd} has a unique maximal ideal, namely, P = Z(2)2, so that
J (Z(2)) = P . But Q is a Z(2)-module with PQ = 2Q = Q. �



4.6 Semiperfect Rings 181

Proposition 4.52. Let R be a left artinian ring.

(i) J = J (R) is nilpotent; that is, there is n > 0 with J n = {0}.
(ii) If a ∈ J , then an = 0.

Proof.

(i) Since R is left artinian, the descending chain J ⊇ J 2 ⊇ J 3 ⊇ · · ·
must stop: there is n > 0 with J n = J n+1 = J n+2 = · · · . We claim
that J n = {0}. Otherwise, J n J = J n+1 = J n 	= {0}, and so F ={

I : I is a left ideal, J n I 	= {0}} 	= ∅ (for J ∈ F). Left artinian rings
satisfy the minimum condition, so that F has a minimal element: there
is a left ideal Im minimal such that J n Im 	= {0}. Of course, Im 	= {0};
choose y ∈ Im with J n y 	= {0}, so that J n y ∈ F . Now J n y ⊆ Im ,
so that minimality gives J n y = Im . But J n y ⊆ Ry ⊆ Im , so that
J n y = Ry; hence, J n y is finitely generated (even cyclic).2 Finally,
J n Ry = J (J n y) = J n+1 y = J n y = Ry, and Nakayama’s Lemma
gives Ry = {0}, a contradiction. Therefore, J n = {0}.

(ii) Since J n = {0}, every product a1 · · · an having n factors ai ∈ J is 0. In
particular, if every ai = a ∈ J , then an = 0. •

Definition. An idempotent in a ring R is an element e with e2 = e. If I is
a two-sided ideal in a ring R, then an idempotent g + I ∈ R/I can be lifted
mod I if there is an idempotent e ∈ R with e + I = g + I .

Proposition 4.53. If R is left artinian with Jacobson radical J = J (R),
then every idempotent can be lifted mod J .

Proof. By Proposition 4.52, we may assume that J n = {0}. Let g+J ∈ R/J
be an idempotent: g + J = g2 + J . Then g − g2 ∈ J , and

0 = (g − g2)n

=
n∑

k=0

(
n

k

)
gn−k(−g2)k

=
n∑

k=0

(−1)k
(

n

k

)
gn+k

= gn − gn+1

[
n∑

k=1

(−1)k−1
(

n

k

)
gk

]
.

2The Hopkins–Levitzki Theorem states that every left artinian ring is left noetherian.
Had we proved this, we could have used it here to show that J n y is finitely generated.
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If we define h =∑ n
k=1(−1)k−1

(n
k

)
gk , then

gn = gn+1h and gh = hg.

Define
e = gnhn.

We claim that e is idempotent: e = gnhn = (gn+1h)hn = gn+1hn+1; it-
erating, e = gn+2hn+2 = · · · = g2nh2n = e2. Finally, we show that
e+ J = g+ J . The equation g+ J = g2+ J gives g+ J = gn+ J = gn+1+ J .
Now

g + J = gn + J

= gn+1h + J

= (gn+1 + J )(h + J )

= (g + J )(h + J )

= gh + J.

Hence, g + J = gn + J = (g + J )n = (gh + J )n = gnhn + J = e + J . •

Definition. A (not necessarily commutative) ring is local if it has a unique
maximal left ideal.

Many authors who use the term local ring assume that the ring is commu-
tative, and many of these assume further that it is noetherian.

It appears that local rings should be called left local, but it can be shown
that a ring has a unique left ideal if and only if it has a unique right ideal, in
which case they coincide (each is the Jacobson radical). If R is a local ring,
then J (R) is its unique maximal left (or right) ideal.

Example 4.54.

(i) Division rings and fields are local with unique maximal left ideal {0}.
(ii) If p is a prime, then Ipn = Z/pn

Z is local with unique maximal ideal
(p + pn

Z).

(iii) If k is a field, then k[[x]] is local with unique maximal ideal (x).

(iv) If p is a prime, then Z(p) = {a/b ∈ Q : p � b} is a local ring with
unique maximal ideal {ap/b ∈ Q : p � b}.

(v) If E is an indecomposable injective R-module, then EndR(E) is a local
ring with unique maximal left ideal {ϕ : E → E : kerϕ 	= {0}} (Lam,
Lectures on Modules and Rings, p. 84). �
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Corollary 4.55. If R is a local ring with maximal left ideal P, and if M is a
finitely generated R-module with P M = M, then M = {0}.
Proof. The statement follows at once from Nakayama’s Lemma, because
J (R) = P when R is a local ring with unique maximal left ideal P . •

Here are some properties of local rings.

Proposition 4.56. Let R be a local ring with maximal left ideal J .

(i) If r ∈ R and r /∈ J , then r has a left inverse in R.

(ii) If R is a local ring with maximal left ideal J , then J is a two-sided ideal
and R/J is a division ring.

(iii) R has IBN.

Proof.

(i) If r /∈ J , then Rr � J . Now every proper left ideal is contained in some
maximal left ideal. Since R has only one maximal left ideal, namely,
J , we conclude that Rr is not a proper left ideal: Rr = R. Therefore,
there is u ∈ R with ur = 1.

(ii) The unique maximal ideal J is the Jacobson radical J (R), which is a
two-sided ideal, and so R/J is a ring. If r + J 	= 0 in R/J , then r /∈ J .
By part (i), r has a left inverse in R, and so r + J has a left inverse in
R/J . It follows that the nonzero elements in R/J form a multiplicative
group3; that is, R/J is a division ring.

(iii) As we remarked on page 60, the proof that nonzero commutative rings
have IBN generalizes to rings R having a two-sided ideal J for which
R/J is a division ring. •

Theorem 4.57. Let R be a local ring with maximal left ideal J , Let M be a
finitely generated left R-module, and let B = {m1, . . . ,mn} be a minimal set
of generators of M (that is, M cannot be generated by a proper subset of B).
If F is a free left R-module with basis x1, . . . , xn, and if ϕ : F → M is given
by ϕ(xi ) = mi for all i , then kerϕ ⊆ J F.

Proof. There is an exact sequence

0 → K → F
ϕ−→ M → 0, (1)

3To prove that a monoid is a group, it suffices to assume the existence of left inverses.
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where K = kerϕ. If K � J F , there is an element y = ∑n
i=1 ri xi ∈ K

that is not in J F ; that is, some coefficient, say, r1 /∈ J . Thus, r1 has a left
inverse u ∈ R, by Proposition 4.56(i); that is, ur1 = 1. Now y ∈ K = kerϕ
gives

∑
ri mi = 0. Hence, m1 = −u

(∑n
i=2 ri mi

)
, which implies that M =

〈m2, . . . ,mn〉, contradicting the minimality of the original generating set. •

Theorem 4.58. If R is a local ring, then every finitely generated projective
left R-module M is free.

Proof. Returning to exact sequence (1), projectivity of M gives F = K ⊕
M ′, where M ′ is a submodule of F with M ′ ∼= M . Hence, J F = J K ⊕ J M ′.
Since J K ⊆ K ⊆ J F , Corollary 2.24 gives

K = J K ⊕ (K ∩ J M ′).

But K ∩ J M ′ ⊆ K ∩M ′ = {0}, so that K = J K . The submodule K is finitely
generated, being a summand (and hence a homomorphic image) of the finitely
generated module F , so that Nakayama’s Lemma gives K = {0}. Therefore,
ϕ is an isomorphism and M is free. •

After proving Corollary 3.9(ii) [if every countably generated projective
left R-module is free (for a ring R), then every projective left R-module is
free], Kaplansky proved that every countably generated projective left R-
module over a local ring R is free [“Projective modules,” Annals Math. 68
(1958), 372–377)]. Thus, the finiteness hypothesis in Theorem 4.58 is unnec-
essary.

We now discuss projective covers.

Definition. A submodule S of a module M is superfluous if, whenever
L ⊆ M is a submodule with L + S = M , then L = M .

One often calls elements of a superfluous submodule nongenerators, for
if M = 〈x1, . . . , xn, s1, . . . , sk〉, then M = 〈x1, . . . , xn〉; discarding them
from a generating set of M leaves a generating set of M . It is clear that any
submodule of a superfluous submodule is itself superfluous.

Lemma 4.59.

(i) Let S be superfluous in M. If M ⊆ N, then S is superfluous in N.4

(ii) If Si is superfluous in Mi for i = 1, . . . , n, then
⊕

Si is superfluous
in
⊕

Mi .

4The converse is false: if S ⊆ M ⊆ N and S is superfluous in N , then S need not be
superfluous in M . For example, if S is superfluous in N and S 	= {0}, take S = M .



4.6 Semiperfect Rings 185

Proof.

(i) Let L + S = N . We claim that (L ∩ M) + S = M . The inclusion ⊆
is obvious; for the reverse inclusion, if m ∈ M , then m = � + s for
� ∈ L and s ∈ S. Now � = m − s ∈ L ∩ M (because S ⊆ M), and so
m ∈ (L ∩ M)+ S. Since S is superfluous in M , we have M = L ∩ M ;
that is, M ⊆ L . Hence, N = S + L = L (because S ⊆ M ⊆ L).

(ii) By induction, we may assume that n = 2. Since S1 is superfluous in
M1, it is superfluous in M1⊕M2, by part (i); similarly, S2 is superfluous
in M1⊕M2. Suppose that L ⊆ M1⊕M2 and L+(S1+S2) = M1⊕M2.
Now L+ (S1+ S2) = (L+ S1)+ S2, so that S2 superfluous in M1⊕M2
gives L + S1 = M1 ⊕ M2; finally, S1 superfluous in M1 ⊕ M2 gives
L = M1 ⊕ M2. •

Lemma 4.60.

(i) Let R be a ring with Jacobson radical J . If M is a finitely generated
left R-module, then J M is superfluous in M.

(ii) Let R be a local ring with maximal left ideal J . If M is a finitely gener-
ated left R-module, then J M is superfluous in M.

Proof.

(i) If L is a submodule of M such that L + J M = M , then M/L =
(L + J M)/L = J (M/L) ⊆ M/L; hence, M/L = J (M/L). Since
M/L is finitely generated, Nakayama’s Lemma gives M/L = {0}; that
is, L = M .

(ii) In this case, J is the Jacobson radical. •
The notion of superfluous submodule should be compared to that of es-

sential extension. Using lattice-theoretic notation, a submodule S ⊆ M is
superfluous if S ∨ L = M implies L = M , while M ⊇ T is essential if
T ∧ L = 0 implies L = 0. An injection i : T → E is called essential if
M ⊇ im i is an essential extension; dually (in the categorical sense), a surjec-
tion ϕ : F → T is called essential if kerϕ is a superfluous submodule of F .

Definition. A projective cover of a module B is an ordered pair (P, ϕ),
where P is projective and ϕ : P → B is a surjective map with kerϕ a super-
fluous submodule of P .

Example 4.61. The Z-module I2 does not have a projective cover. Let
ϕ : F → I2 be a surjection, where F is a free abelian group. If ϕ(x) = a,
where I2 = 〈a〉, then ϕ(3x) = a. Hence, F = kerϕ + 〈3x〉. If kerϕ is
superfluous in F , then F = 〈3x〉, which is not so. �
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Theorem 4.62. If R is a local ring with maximal left ideal J , then every
finitely generated left R-module B has a projective cover: there is an exact
sequence

0 → K → F
ϕ−→ B → 0

with F a finitely generated free left R-module and K ⊆ J F.

Proof. There exist a free module F and a surjective ϕ : F → B with K ⊆
J F , by Theorem 4.57. But K is superfluous, by Lemma 4.60, and so (F, ϕ)

is a projective cover of B. •

Definition. A ring R is called left perfect if every left R-module has a pro-
jective cover. A ring R is semiperfect if every finitely generated left R-module
has a projective cover.

Theorem 4.62 says that local rings are semiperfect.
There are left perfect rings that are not right perfect (Lam, A First Course

in Noncommutative Rings, p. 356). Lam calls a ring R semiperfect if R/J is
semisimple and idempotents in R/J can be lifted mod J , a definition not
needing any left/right distinction. However, Theorem 24.16 on p. 364 of
Lam’s book shows that this definition is equivalent to our definition in terms
of projective covers. Therefore, the notions of left semiperfect ring and right
semiperfect ring coincide, and we will write semiperfect ring without the ad-
jectives left or right.

Theorem (Bass). The following conditions are equivalent for a ring R.

(i) R is left perfect.

(ii) R has the DCC on principal right ideals.

(iii) Every flat left R-module is projective.

Proof. See Lam, A First Course in Noncommutative Rings, p. 354. •

The following two results can be found in S. U. Chase, “Direct products
of modules,” Trans. AMS 97 (1960), 457–473.

Theorem (Chase). Every direct product of projective left R-modules is pro-
jective if and only if R is left perfect and right coherent.

Theorem (Chase). If R is commutative, then every direct product of projec-
tive R-modules is projective if and only if R is artinian.

Let us return to projective covers.
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Lemma 4.63. Let (P, ϕ) be a projective cover of a module B. If Q is pro-
jective and ψ : Q → B is surjective, then any lifting σ : Q → P is surjective.
Moreover, P is (isomorphic to) a direct summand of Q.

Q
ψ
��

σ

���
�

�

P ϕ
�� B �� 0.

Proof. Since Q is projective, there exists a map σ : Q → P with ϕσ = ψ .
Now ϕ(im σ) = imψ = B, because ψ is surjective. Therefore, P = im σ +
kerϕ, by Exercise 2.18 on page 67. But kerϕ is a superfluous submodule of
P , so that im σ = P . The second statement follows from the projectivity
of P . •

Projective covers, when they exist, are unique.

Proposition 4.64.

(i) Let P and Q be R-modules having either chain condition on submod-
ules. If each of P, Q is isomorphic to a direct summand of the other,
then P ∼= Q.

(ii) Let R have either chain condition on left ideals. If ϕ : P → B and
ψ : Q → B are projective covers of a finitely generated left R-module
B, then there is an isomorphism σ : Q → P with ϕσ = ψ .

Proof.

(i) Let P = Q1 ⊕ A1 and Q1 = P1 ⊕ B1, where P1 ∼= P and Q1 ∼= Q.
Hence, P = Q1 ⊕ A1 = P1 ⊕ B1 ⊕ A1; write B1 ⊕ A1 = C1. Now
repeat: by induction, there are direct summands

P ⊇ P1 ⊇ P2 ⊇ P3 ⊇ · · · ,
with Pn ∼= P for all n ≥ 1, and this violates the DCC. If we display the
complements, we have a sequence

P = P1 ⊕ C1 = P2 ⊕ C2 ⊕ C1 = P3 ⊕ C3 ⊕ C2 ⊕ C1 = · · · ,
where Pn−1 = Pn ⊕ Cn for all n ≥ 1. The ascending sequence C1 ⊆
C2 ⊕ C1 ⊆ C3 ⊕ C2 ⊕ C1 ⊆ · · · violates the ACC. Therefore, A1 =
{0} = B1, and P ∼= Q.

(ii) Since R has either chain condtion on left ideals, then P being finitely
generated forces P to have either chain condition on submodules. By
Lemma 4.63, each of P and Q is a direct summand of the other. By
part (i), P ∼= Q. •

We now prove that left artinian rings are semiperfect.
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Lemma 4.65. Let R be a left artinian ring with Jacobson radical J . If e′ is
an idempotent in R/J , then there is a projective cover of (R/J )e′.

Proof. By Proposition 4.53, the idempotent e′ can be lifted to an idempotent
e ∈ R. There is an exact sequence

0 → Je → Re
ϕ−→ (R/J )e′ → 0,

where ϕ : re �→ re′ (the reader may verify that kerϕ = Je). Now P = Re is
a direct summand of R, because e is idempotent, and so P = Re is projective.
By Lemma 4.60, Je = J 〈e〉 is superfluous in Re, and so we see that (Re, ϕ)
is a projective cover of (R/J )e′. •

Theorem 4.66. Every left artinian ring R is semiperfect; that is, every
finitely generated left R-module M has a projective cover.

Proof. Let M be a finitely generated left R-module. If J is the Jacobson
radical of R, then the kernel of the natural map π : M → M/J M is J M ,
which is superfluous in M , by Lemma 4.60. Since R/J is semisimple, the
(R/J )-module M/J M is a direct sum of simple modules: M/J M = ⊕

Si ,
where each Si is isomorphic to a minimal left ideal of R/J . But Si = (R/J )e′i
for some idempotent e′i (because Si , as every submodule of R/J , is a direct
summand). By Lemma 4.65, there are projective covers ϕi : Pi → Si for
all i . Finally, Lemma 4.59 shows that (

⊕
Pi ,⊕ϕi ) is a projective cover of⊕

Si = M . •

4.7 Localization

All rings in this section are commutative.

The ring Z has infinitely many prime ideals, but the ring Z(2) = {a/b ∈ Q :
b is odd} has only one prime ideal, namely, (2) (all other primes in Z are in-
vertible in Z(2)). Now Z(2)-modules are much simpler than Z-modules. For
example, there are only two Z(2)-submodules of Q (to isomorphism): Z(2)
and Q. On the other hand, there are uncountably many nonisomorphic sub-
groups of Q. Similar observations lead to a localization-globalization strategy
to attack algebraic and number-theoretic problems. The fundamental assump-
tion underlying this strategy is that the local case is simpler than the global.
Evidence for this can be seen in the structure of projective R-modules: for
arbitrary commutative rings R, projectives can be quite complicated, but The-
orem 4.58 says that projective modules over local rings are always free. Given
a prime ideal p in a commutative ring R, we will construct local rings Rp. Lo-
calization looks at problems involving the rings Rp, while globalization uses
all such local information to answer questions about R.
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Definition. A subset S ⊆ R of a commutative ring R is multiplicative if S
is a monoid not containing 0; that is, 0 /∈ S, 1 ∈ S, and S is closed under
multiplication: if s, s′ ∈ S, then ss′ ∈ S.

Example 4.67.

(i) If p is a prime ideal in R, then its set-theoretic complement S = R − p

is multiplicative.

(ii) If R is a domain, then the set S = R× of all its nonzero elements is
multiplicative [this is a special case of part (i), for {0} is a prime ideal
in a domain].

(iii) If a ∈ R is not nilpotent, then the set of its powers S = {an : n ≥ 0} is
multiplicative. More generally, any submonoid of R not containing 0 is
multiplicative. �

Definition. If S ⊆ R is multiplicative, consider C(S), all ordered pairs
(A, ϕ), where A is a commutative R-algebra, ϕ : R → A is an R-algebra
map, and ϕ(s) is invertible in A for all s ∈ S. An ordered pair (S−1 R, h) in
C(S) is a localization of R if it is a solution to the following universal mapping
problem.

R
h ��

ϕ ���
���

���
S−1 R

ϕ̃��� � � �

A

If (A, ϕ) ∈ C(S), then there exists a unique R-algebra map ϕ̃ : S−1 R → A
with ϕ̃h = ϕ. The map h is called the localization map.

A localization S−1 R, as any solution to a universal mapping problem, is
unique to isomorphism if it exists, and we call S−1 R the localization at S.

The reason for excluding 0 from a multiplicative set is now apparent, for
0 is invertible only in the zero ring.

Given a multiplicative subset S ⊆ R, most authors construct the localiza-
tion S−1 R by generalizing the (tedious) construction of the fraction field of a
domain R. They define a relation on R × S by (r, s) ≡ (r ′, s′) if there exists
s′′ ∈ S with s′′(rs′ − r ′s) = 0 (this definition reduces to the usual definition
involving cross multiplication when R is a domain and S = R× is the sub-
set of its nonzero elements). After proving that ≡ is an equivalence relation,
S−1 R is defined to be the set of all equivalence classes, addition and multipli-
cation are defined and proved to be well-defined, all the R-algebra axioms are
verified, and the elements of S are shown to be invertible. Our exposition fol-
lows that of M. Artin; we develop the existence and first properties of S−1 R in
a less tedious way, which will show that the equivalence relation generalizing
cross multiplication arises naturally.
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Theorem 4.68. If S ⊆ R is multiplicative, then the localization S−1 R exists.

Proof. Let X = {xs : s ∈ S} be a set with xs �→ s a bijection X → S, and
let R[X ] be the polynomial ring over R with indeterminates X . Define

S−1 R = R[X ]/J,

where J is the ideal generated by {sxs −1 : s ∈ S}, and define h : R → S−1 R
by h : r �→ r + J , where r is a constant polynomial. It is clear that S−1 R
is an R-algebra, that h is an R-algebra map, and that each h(s) is invertible.
Assume now that A is an R-algebra and that ϕ : R → A is an R-algebra
map with ϕ(s) invertible for all s ∈ S. Consider the diagram in which the
top arrow ι : R → R[X ] sends each r ∈ R to the constant polynomial r and
ν : R[X ] → R[X ]/J = S−1 R is the natural map.

R
ι ��

ϕ

  �
��

��
��

��
��

�
h
����

���
�� R[X ]

ν

���
���

ϕ0

!!�
�

�
�

�
�

S−1 R

���
�

A

The top triangle commutes because both h and νι send r ∈ R to r + J .
Define an R-algebra map ϕ0 : R[X ] → A by ϕ0(xs) = ϕ(s)−1 for all xs ∈ X .
Clearly, J ⊆ kerϕ0, for ϕ0(sxs − 1) = 0, and so there is an R-algebra map
ϕ̃ : S−1 R = R[X ]/J → A making the diagram commute. The map ϕ̃ is the
unique such map because S−1 R is generated by im h ∪ {h(s)−1 : s ∈ S} as an
R-algebra. •

We now describe the elements in S−1 R.

Proposition 4.69. If S ⊆ R is multiplicative, then each y ∈ S−1 R has a
(not necessarily unique) factorization y = h(r)h(s)−1, where h : R → S−1 R
is the localization map, r ∈ R, and s ∈ S.

Proof. Define A = {y ∈ S−1 R : y = h(r)h(s)−1, for r ∈ R and s ∈ S}. It
is routine to check that A is an R-subalgebra of S−1 R containing im h. Since
im h ⊆ A, there is an R-algebra map h′ : R → A that is obtained from h by
changing its target. Consider the diagram

R
h′

""��������������
h ��

h

���
��

��
��

��
��

��
��

� S−1 R
h̃′��

1S−1 R

��

A
j��

S−1 R,
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where j : A → S−1 R is the inclusion and h̃′ : S−1 R → A is given by
universality (so the top triangle commutes). The lower triangle commutes,
because h(r) = h′(r) for all r ∈ R, and so the large triangle commutes:
( j h̃′)h = h. But 1S−1 R also makes this diagram commute, so that uniqueness
gives j h̃′ = 1S−1 R . By set theory, j is surjective; that is, S−1 R = A. •

In light of this proposition, the elements of S−1 R can be regarded as “frac-
tions” h(r)h(s)−1, where r ∈ R and s ∈ S.

Notation. Let h : R → S−1 R be the localization map. If r ∈ R and s ∈ S,
define

r/s = h(r)h(s)−1.

In particular, r/1 = h(r).

Is the localization map h : r �→ r/1 an injection?

Proposition 4.70. If S ⊆ R is multiplicative and h : R → S−1 R is the
localization map, then

ker h = {r ∈ R : sr = 0 for some s ∈ S}.

Proof. If sr = 0, then 0 = h(s)h(r) in S−1 R. Since h(s) is a unit, we have
0 = h(s)−1h(s)h(r) = h(r), and so r ∈ ker h.

Conversely, suppose that h(r) = 0 in S−1 R. Since S−1 R = R[X ]/J ,
where J = (sxs − 1 : s ∈ S), there is an equation r =∑n

i=1 fi (X)(si xsi − 1)
in R[X ] that involves only finitely many elements {s1, . . . , sn} ⊆ S; let S0
be the submonoid of S they generate. If h0 : R → S−1

0 R is the localization
map, then r ∈ ker h0. In fact, if s = s1 · · · sn and h′ : R → 〈s〉−1 R is the
localization map (where 〈s〉 = {sn : n ≥ 0}), then every h′(si ) is invertible,
for s−1

i = s−1s1 · · · ŝi · · · sn . Now 〈s〉−1 R = R[x]/(sx−1), so that r ∈ ker h′

says that there is f (x) =∑m
i=0 ai xi ∈ R[x] with

r = f (x)(sx − 1) =
(

m∑
i=0

ai x
i

)
(sx − 1) =

m∑
i=0

(
sai x

i+1 − ai x
i) in R[x].

Expanding and equating coefficients of like powers of x gives

r = −a0, sa0 = a1, . . . , sam−1 = am, sam = 0.

Hence, sr = −sa0 = −a1, and, by induction, sir = −ai for all i . In particu-
lar, smr = −am , and so sm+1r = −sam = 0, as desired. •

When are two “fractions” r/s and r ′/s′ equal?
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Corollary 4.71. Let S ⊆ R be multiplicative. If both r/s, r ′/s′ ∈ S−1 R,
where s, s′ ∈ S, then r/s = r ′/s′ if and only if there exists s′′ ∈ S with
s′′(rs′ − r ′s) = 0 in R.

Remark. If S contains no zero-divisors, then s′′(rs′ − r ′s) = 0 if and only
if rs′ − r ′s = 0, because s′′ is a unit, and so rs′ = r ′s. �

Proof. If r/s = r ′/s′, then multiplying by ss′ gives (rs′ − r ′s)/1 = 0 in
S−1 R. Hence, rs′ − r ′s ∈ ker h, and Proposition 4.70 gives s′′ ∈ S with
s′′(rs′ − r ′s) = 0 in R.

Conversely, if s′′(rs′ − r ′s) = 0 in R for some s′′ ∈ S. then we have
h(s′′)h(rs′ − r ′s) = 0 in S−1 R. As h(s′′) is a unit, we have h(r)h(s′) =
h(r ′)h(s); as h(s) and h(s′) are units, h(r)h(s)−1 = h(r ′)h(s′)−1; that is,
r/s = r ′/s′. •

Corollary 4.72. Let S ⊆ R be multiplicative.

(i) If S contains no zero-divisors, then the localization map h : R → S−1 R
is an injection.

(ii) If R is a domain with Q = Frac(R), then S−1 R ⊆ Q. Moreover, if
S = R×, then S−1 R = Q.

Proof.

(i) This follows easily from Proposition 4.70.

(ii) The localization map h : R → S−1 R is an injection, by Proposition 4.70.
The result now follows from Proposition 4.69. •

If R is a domain and S ⊆ R is multiplicative, then Corollary 4.72 says
that S−1 R consists of all elements a/s ∈ Frac(R) with a ∈ R and s ∈ S.

Let us now investigate the ideals in S−1 R.

Notation. If S ⊆ R is multiplicative and I is an ideal in R, then we denote
the ideal in S−1 R generated by h(I ) by S−1 I .

Example 4.73.

(i) If S ⊆ R is multiplicative and I is an ideal in R containing an element
s ∈ S (that is, I ∩ S 	= ∅), then S−1 I contains s/s = 1, and so
S−1 I = S−1 R.
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(ii) Let S consist of all the odd integers [that is, S is the complement of the
prime ideal (2)], let I = (3), and let I ′ = (5). Then S−1 I = S−1

Z =
S−1 I ′. Therefore, the function from the ideals in Z to the ideals in
S−1

Z = Z(2) = {a/b ∈ Q : b is odd}, given by I �→ S−1 I , is not
injective. �

Corollary 4.74. Let S ⊆ R be multiplicative.

(i) Every ideal J in S−1 R is of the form S−1 I for some ideal I in R. In
fact, if R is a domain and I = J ∩ R, then J = S−1 I ; in the general
case, if I = h−1(h(R) ∩ J ), then J = S−1 I .

(ii) If I is an ideal in R, then S−1 I = S−1 R if and only if I ∩ S 	= ∅.

(iii) If q is a prime ideal in R with q ∩ S = ∅, then S−1q is a prime ideal in
S−1 R.

(iv) The function f : q �→ S−1q is a bijection from the family of all prime
ideals in R disjoint from S to the family of all prime ideals in S−1 R.

(v) If R is noetherian, then S−1 R is also noetherian.

Proof.

(i) Let J = ( jλ : λ ∈ �). By Proposition 4.69, we have jλ = h(rλ)h(sλ)−1,
where rλ ∈ R and sλ ∈ S. Define I to be the ideal in R generated by
{rλ : λ ∈ �}; that is, I = h−1(h(R) ∩ J ). It is clear that S−1 I = J ; in
fact, since all sλ are units in S−1 R, we have J = (h(rλ) : λ ∈ �).

(ii) If s ∈ I ∩ S, then s/1 ∈ S−1 I . But s/1 is a unit in S−1 R, and so
S−1 I = S−1 R. Conversely, if S−1 I = S−1 R, then h(a)h(s)−1 = 1
for some a ∈ I and s ∈ S. Therefore, s − a ∈ ker h, and so there is
s′′ ∈ S with s′′(s − a) = 0. Therefore, s′′s = s′′a ∈ I . Since S is
multiplicatively closed, s′′s ∈ I ∩ S.

(iii) Suppose that q is a prime ideal in R. First, S−1q is a proper ideal, for
q∩ S = ∅. If (a/s)(b/t) = c/u, where a, b ∈ R, c ∈ q, and s, t, u ∈ S,
then there is s′′ ∈ S with s′′(uab − stc) = 0. Hence, s′′uab ∈ q. Now
s′′u /∈ q (because s′′u ∈ S and S ∩ q = ∅); hence, ab ∈ q (because q is
prime). Thus, either a or b lies in q, and either a/s or b/t lies in S−1q.
Therefore, S−1q is a prime ideal.

(iv) Suppose that p and q are prime ideals in R with f (p) = S−1p =
S−1q = f (q); we may assume that p ∩ S = ∅ = q ∩ S. If a ∈ p, then
there are b ∈ q and s ∈ S with a/1 = b/s. Hence, sa−b ∈ ker h, where
h is the localization map, and so there is s′ ∈ S with s′sa = s′b ∈ q.
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But s′s ∈ S, so that s′s /∈ q. Since q is prime, we have a ∈ q; that is,
p ⊆ q. The reverse inclusion is proved similarly. Thus, f is injective.

Let P be a prime ideal in S−1 R. By part (i), there is some ideal I in R
with P = S−1 I . We must show that I can be chosen to be a prime ideal
in R. Now h(R)∩P is a prime ideal in h(R), and so p = h−1(h(R)∩P)

is a prime ideal in R. By part (i), P = S−1p, and so f is surjective.

(v) If J is an ideal in S−1 R, then part (i) shows that J = S−1 I for some
ideal I in R. Since R is noetherian, we have I = (r1, . . . , rn), and so
J = (r1/1, . . . , rn/1). Hence, every ideal in S−1 R is finitely generated,
and so S−1 R is noetherian. •

Notation. If p is a prime ideal in a commutative ring R and S = R−p, then
S−1 R is denoted by Rp.

The next proposition explains why S−1 R is called localization.

Theorem 4.75. If p is a prime ideal in a commutative ring R, then Rp is a
local ring with unique maximal ideal pRp = {r/s : r ∈ p and s /∈ p}.
Proof. If x ∈ Rp, then x = r/s, where r ∈ R and s /∈ p. If r /∈ p, then r/s
is a unit in Rp; that is, all nonunits lie in pRp. Hence, if I is any ideal in Rp

that contains an element r/s with r /∈ p, then I = Rp. It follows that every
proper ideal in Rp is contained in pRp, and so Rp is a local ring with unique
maximal ideal pRp. •

Here is an application of localization.

Definition. A prime ideal p in a commutative ring R is a minimal prime
ideal if there is no prime ideal strictly contained in it.

In a domain, (0) is a minimal prime ideal, and it is the unique such.

Proposition 4.76. Let R be a commutative ring.

(i) If S ⊆ R is multiplicative, then any ideal I maximal with I ∩ S = ∅ is
a prime ideal.

(ii) If p is a minimal prime ideal, then every x ∈ p is nilpotent; that is,
xn = 0 for some n = n(x) ≥ 1.

Proof.

(i) If ab ∈ I and neither a nor b lies in I , then I � I+Ra and I � I+Rb.
By maximality, (I + Ra) ∩ S 	= ∅ and (I + Rb) ∩ S 	= ∅, so there
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are r, r ′ ∈ R and i, i ′ ∈ I with i + ra = s ∈ S and i ′ + r ′b = s′ ∈ S.
Hence,

ss′ = (i + ra)(i ′ + r ′b) = i i ′ + ir ′b + rai ′ + rr ′ab ∈ S ∩ I,

a contradiction.

(ii) Let x ∈ p be nonzero. By Corollary 4.74(iv), there is only one prime
ideal in Rp, namely, pRp, and x/1 is a nonzero element in it. Indeed, x
is nilpotent if and only if x/1 is nilpotent, by Proposition 4.70. Thus, we
have normalized the problem; we may now assume that x ∈ p and that p
is the only prime ideal in R. If x is not nilpotent, then S = {1, x, x2, . . .}
is multiplicative. We can prove, with Zorn’s Lemma, that there exists
an ideal I in R maximal with I ∩ S = ∅. Now part (i) says that I is a
prime ideal; that is, p = I . But x ∈ S∩p = S∩ I = ∅, a contradiction.
Therefore, x is nilpotent. •

Having localized a commutative ring, we now localize its modules. If M
is an R-module and s ∈ R, let μs : M → M denote the multiplication map
m �→ sm. For a subset S ⊆ R, the map μs is invertible for every s ∈ S (that
is, every μs is an automorphism) if and only if M is an S−1 R-module.

Definition. Let M be an R-module and let S ⊆ R be multiplicative. A
localization of M is an ordered pair (S−1 M, hM ), where S−1 M is an S−1 R-
module and hM : M → S−1 M is an R-map (called the localization map),
which is a solution to the following universal mapping problem:

M
hM ��

ϕ ���
��

��
� S−1 M

ϕ̃� � � �

M ′;
if M ′ is an S−1 R-module and ϕ : M → M ′ is an R-map, then there exists a
unique S−1 R-map ϕ̃ : S−1 M → M ′ with ϕ̃hM = ϕ.

The obvious candidate for (S−1 M, hM ), namely, (S−1 R⊗R M, h ⊗ 1M ),
where h : R → S−1 R is the localization map, actually is the localization.

Proposition 4.77. Let S ⊆ R be multiplicative and let M be an R-module.
Then S−1 R ⊗R M and the R-map hM = h ⊗ 1M : M → S−1 R ⊗R M, given
by m �→ 1 ⊗ m, is a localization of M.

Proof. Let ϕ : M → M ′ be an R-map, where M ′ is an S−1 R-module. The
function S−1 R × M → M ′, defined by (r/s,m) �→ (r/s)ϕ(m), where r ∈ R
and s ∈ S, is easily seen to be R-bilinear. Hence, there is a unique R-map
ϕ̃ : S−1 R ⊗R M → M ′ with ϕ̃hM = ϕ. Now M ′ is an S−1 R-module, by
Proposition 2.51. We let the reader check that ϕ̃ is an S−1 R-map. •
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One of the most important properties of S−1 R is that it is flat as an R-
module. To prove this, we first generalize the argument in Proposition 4.70.

Proposition 4.78. Let S ⊆ R be multiplicative. If M is an R-module and
hM : M → S−1 M is the localization map, then

ker hM = {m ∈ M : sm = 0 for some s ∈ S}.
Proof. Denote {m ∈ M : sm = 0 for some s ∈ S} by K . If sm = 0, for m ∈
M and s ∈ S, then hM (m) = (1/s)hM (sm) = 0, and so K ⊆ ker hM . For
the reverse inclusion, proceed as in Proposition 4.70: if m ∈ K , there is s ∈ S
with sm = 0. Reduce to S = 〈s〉 for some s ∈ S, where 〈s〉 = {sn : n ≥ 0},
so that S−1 R = R[x]/(sx − 1). Now R[x]⊗R M ∼=∑i Rxi ⊗R M , because
R[x] is the free R-module with basis {1, x, x2, . . .}. Hence, each element in
R[x]⊗R M has a unique expression of the form

∑
i x i ⊗mi , where mi ∈ M .

Hence,

ker hM = {m ∈ M : 1 ⊗ m = (sx − 1)
n∑

i=0

xi ⊗ mi
}
.

The proof now finishes as the proof of Proposition 4.70. Expanding and equat-
ing coefficients gives equations

1 ⊗ m = −1 ⊗ m0, x ⊗ sm0 = x ⊗ m1, . . . ,

xn ⊗ smn−1 = xn ⊗ mn, xn+1 ⊗ smn = 0.

It follows that

m = −m0, sm0 = m1, . . . , smn−1 = mn, smn = 0.

Hence, sm = −sm0 = −m1, and, by induction, si m = −mi for all i . In
particular, snm = −mn and so sn+1m = −smn = 0 in M . Therefore,
ker hM ⊆ K , as desired. •

Corollary 4.79. Let S ⊆ R be multiplicative and let M be an R-module.

(i) Every element u ∈ S−1 M = S−1 ⊗R M has the form u = s−1 ⊗ m for
some s ∈ S and some m ∈ M.

(ii) Every S−1 R-module A is isomorphic to S−1 M for some R-module M.

(iii) s−1
1 ⊗ m1 = s−1

2 ⊗ m2 in S−1 ⊗R M if and only if s(s2m1 − s1m2) in
M for some s ∈ S.
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Proof.

(i) If u ∈ S−1 ⊗R M , then u =∑i (ri/si )⊗mi , where ri ∈ R, si ∈ S, and
mi ∈ M . If we define s =∏ si and ŝi =

∏
j 	=i s j , then

u =
∑

(1/si )ri ⊗ mi

=
∑

(ŝi/s)ri ⊗ mi

= (1/s)
∑

ŝi ri ⊗ mi

= (1/s)⊗
∑

ŝi ri mi

= (1/s)⊗ m,

where m =∑ ŝi ri mi ∈ M .

(ii) The localization map h : R → S−1 R allows us to view A as an R-
module [define ra = h(r)a for r ∈ R and a ∈ A]; denote this R-
module by h A. We claim that A ∼= S−1 R ⊗R h A as S−1 R-modules.
Define f : A → S−1 R ⊗R h A by a �→ 1⊗ a. Now f is an S−1 R-map:
if s ∈ S and a ∈ A, then

f (s−1a) = 1 ⊗ s−1a = s−1s ⊗ s−1a = s−1 ⊗ a = s−1 f (a).

To see that f is an isomorphism, we construct its inverse. Since A is an
S−1 R-module, the function S−1 R × h A → A, defined by (rs−1, a) �→
(rs−1)a, is a well-defined R-bilinear function, and so it induces an R-
map S−1 R ⊗R h A → A, which is obviously inverse to f .

(iii) If s ∈ S with s(s2m1−s1m2) = 0 in M , then (s/1)(s2⊗m1−s1⊗m2) =
0 in S−1 R ⊗R M . As s/1 is a unit, s2 ⊗ m1 − s1 ⊗ m2 = 0, and so
s−1

1 ⊗ m1 = s−1
2 ⊗ m2.

Conversely, if s−1
1 ⊗ m1 = s−1

2 ⊗ m2 in S−1 ⊗R M , then we have
(1/s1s2)(s2 ⊗ m1 − s1 ⊗ m2) = 0. Since 1/s1s2 is a unit, we have
(s2⊗m1−s1⊗m2) = 0 and s2m1−s1m2 ∈ ker hM . By Proposition 4.78,
there exists s ∈ S with s(s2m1 − s1m2) = 0 in M . •

Theorem 4.80. If S ⊆ R is multiplicative, then S−1 R is a flat R-module.

Proof. We must show that if 0 → A
f−→ B is exact, then so is

0 → S−1 R ⊗R A
1⊗ f−→ S−1 R ⊗R B.

By Corollary 4.79, every u ∈ S−1 A has the form u = s−1 ⊗ a for some s ∈ S
and a ∈ A. In particular, if u ∈ ker(1⊗ f ), then (1⊗ f )(u) = s−1⊗ f (a) = 0.
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Multiplying by s gives 1 ⊗ f (a) = 0 in S−1 B; that is, f (a) ∈ ker hB . By
Proposition 4.78, there is t ∈ S with 0 = t f (a) = f (ta). Since f is an
injection, ta ∈ ker f = {0}. Hence, 0 = 1 ⊗ ta = t (1 ⊗ a). But t is a unit in
S−1 R, so that 1⊗a = 0 in S−1 A. Therefore, 1⊗ f is an injection, and S−1 R
is a flat R-module. •

Corollary 4.81. If S ⊆ R is multiplicative, then localization M �→ S−1 M =
S−1 R ⊗R M defines an exact functor RMod → S−1 RMod.

Proof. Localization is the functor S−1 R⊗R �, and it is exact because S−1 R
is a flat R-module. •

Since tensor product commutes with direct sums, it is clear that if M is
a free (or projective) R-module, then S−1 M is a free (or projective) S−1 R-
module.

Example 4.82. Let R be a Dedekind ring that is not a PID, and let p be a
nonzero prime ideal in R. Then Rp is a local PID (see Rotman, Advanced
Modern Algebra, p. 950). Hence, if P is a projective R-module, then Pp is
a projective Rp-module, and so it is free. In particular, if b is a nonprincipal
ideal in R, then b is not free even though all its localizations are free. �

Proposition 4.83. Let S ⊆ R be multiplicative. If B is a flat R-module, then
S−1 B is a flat S−1 R-module.

Proof. For any S−1 R-module A, there is an isomorphism

S−1 B ⊗S−1 R A = (S−1 R ⊗R B)⊗S−1 R A ∼= S−1 R ⊗R (B ⊗R A),

which can be used to give a natural isomorphism

S−1 B ⊗S−1 R � ∼= (S−1 R ⊗R �)(B ⊗R �).

As each factor is an exact functor, the composite S−1 B ⊗S−1 R � is also an
exact functor; that is, S−1 B is flat. •

We now investigate localization of injective modules, and we begin with
some identities.

Proposition 4.84. If A and B are R-modules, then there is a natural iso-
morphism

ϕ : S−1(B ⊗R A) → S−1 B ⊗S−1 R S−1 A.
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Proof. Every element u ∈ S−1(B ⊗R A) has the form u = s−1m for s ∈ S
and m ∈ B ⊗R A, by Corollary 4.79; hence, u = s−1∑ ai ⊗ bi .

A × B ��

""���
����

���
A ⊗R B

��

�� S−1(A ⊗R B)

##� � � � �

S−1 B ⊗S−1 R S−1 A

The idea is to define ϕ(u) =∑ s−1ai ⊗ bi , but, as usual with tensor product,
the problem is whether obvious maps are well-defined. We suggest that the
reader use the universal property of localization to complete the proof. •

The analogous isomorphism for Hom,

S−1 HomR(B, A) ∼= HomS−1 R(S−1 B, S−1 A),

may not hold. However, there is such an isomorphism when B and R are
restricted.

Lemma 4.85. Let A be an R-algebra, and let N be a finitely presented
R-module. For every A-module M, there is a natural isomorphism

θ : HomR(N , M) → HomA(N ⊗R A, M),

given by θ : f �→ f̃ , where f̃ (n ⊗ 1) = f (n) for all n ∈ N.

Proof. Assume first that N is a finitely generated free R-module, say, with
basis {e1, . . . , en}; then {e1 ⊗ 1, . . . , en ⊗ 1} is a basis of the free A-module
N ⊗R A. If f : N → M is an R-map, define an A-map f̃ : N ⊗R A → M by
f̃ (ei ⊗ 1) = f (ei ) for all i . It is easy to see that θ : f �→ f̃ is a well-defined
natural isomorphism HomR(N , M) → HomA(N ⊗R A, M).

Assume now that N is finitely presented, so that there is an exact sequence

Rk → Rn → N → 0.

This gives rise to the commutative diagram with exact rows.

0 �� HomR(N , M) ��

���
�
� HomR(Rn, M) ��

θ

��

HomR(Rk, M)

θ

��
0 �� HomA(N ⊗R A, M) �� HomA(An, M) �� HomA(Ak, M)

The vertical maps θ are isomorphisms, and so the dashed vertical arrow [which
exists by diagram chasing (Proposition 2.71) and which has the desired for-
mula] is also an isomorphism. The reader may prove naturality. •
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Lemma 4.86. Let B be a flat R-module, and let N be a finitely presented
R-module. For every R-module M, there is a natural isomorphism

ψ : B ⊗R HomR(N , M) → HomR(N , M ⊗R B),

given by b ⊗ g �→ gb, where gb(n) = g(n)⊗ b for all n ∈ N.

Proof. The reader may check that ψ arises from the R-bilinear function with
domain B × HomR(N , M) that sends (b, g) �→ gb; this map is natural in N ,
and it is an isomorphism when N is finitely generated and free. If N is finitely
presented, there is an exact sequence

Rk → Rn → N → 0.

Since B is flat, there is a commutative diagram with exact rows.

0 �� B ⊗ Hom(N , M) ��

ψ

��

B ⊗ Hom(Rn, M) ��

ψ

��

B ⊗ Hom(Rk, M)

ψ

��
0 �� Hom(N , M ⊗ B) �� Hom(Rn, M ⊗ B) �� Hom(Rk, M ⊗ B)

By the Five Lemma, the first vertical map is an isomorphism because the
second two are. •

Lemma 4.87. Let S ⊆ R be multiplicative, and let N be a finitely presented
R-module. For every R-module M, there is a natural isomorphism

ϕ : S−1 HomR(N , M) → HomS−1 R(S−1 N , S−1 M),

given by g/1 �→ ĝ, where ĝ(n/1) = g(n)⊗ 1 for all n ∈ N.

Proof. By definition, S−1 HomR(N , M) = S−1 R ⊗R HomR(N , M). Since
S−1 R is a flat R-module, Lemma 4.86 gives an isomorphism

S−1 HomR(N , M) ∼= HomR(N , S−1 M);

but S−1 R is an R-algebra, and so Lemma 4.85 gives an isomorphism

HomR(N , S−1 M) ∼= HomS−1 R(S−1 N , S−1 M).

The composite is an isomorphism with the desired formula. •

Theorem 4.88. Let R be noetherian and let S ⊆ R be multiplicative. If E
is an injective R-module, then S−1 E is an injective S−1 R-module.
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Proof. By Baer’s Criterion, it suffices to extend any map I → S−1 E to a
map S−1 R → S−1 E , where I is an ideal in S−1 R; that is, if i : I → S−1 R is
the inclusion, then the induced map

i∗ : HomS−1 R(S−1 R, S−1 E) → HomS−1 R(I, S−1 E)

is a surjection. Now S−1 R is noetherian because R is, and so I is finitely
generated; say, I = (r1/s1, . . . , rn/sn), where ri ∈ R and si ∈ S. There is
an ideal J in R, namely, J = (r1, . . . , rn), with I = S−1 J . Naturality of the
isomorphism in Lemma 4.87 gives a commutative diagram

S−1 HomR(R, E) ��

��

S−1 HomR(J, E)

��
HomS−1 R(S−1 R, S−1 E) �� HomS−1 R(S−1 J, S−1 E).

Now HomR(R, E) → HomR(J, E) is a surjection, because E is an injective
R-module, and so S−1 = S−1 R ⊗R � being right exact implies that the top
arrow is also a surjection. But the vertical maps are isomorphisms, and so the
bottom arrow is a surjection; that is, S−1 E is an injective S−1 R-module. •

Remark. Theorem 4.88 may be false if R is not noetherian. E. C. Dade,
“Localization of injective modules,” J. Algebra 69 (1981), 415–425, showed,
for every commutative ring k, that if R = k[X ], where X is an uncountable
set of indeterminates, then there are a multiplicative subset S ⊆ R and an
injective R-module E such that S−1 E is not an injective S−1 R-module.

If, however, R = k[X ], where k is noetherian and X is countable, then
S−1 E is an injective S−1 R-module for every injective R-module E and every
multiplicative subset S ⊆ R. �

Here are some globalization tools.

Notation. In the special case S = R − p, where p is a prime ideal in R, we
write

S−1 M = S−1 ⊗R M = Mp.

If f : M → N is an R-map, write fp : Mp → Np, where fp = 1Rp
⊗ f .

We restate Corollary 4.74(iv) in this notation. The function f : q �→ qp is
a bijection from the family of all prime ideals in R that are contained in p to
the family of prime ideals in Rp.

Proposition 4.89. Let I and J be ideals in a domain R. If Im = Jm for
every maximal ideal m, then I = J .



202 Speci c Rings Ch. 4

Proof. Take b ∈ J , and define

(I : b) = {r ∈ R : rb ∈ I }.
Let m be a maximal ideal in R. Since Im = Jm, there are a ∈ I and s /∈ m

with b/1 = a/s. As R is a domain, sb = a ∈ I , so that s ∈ (I : b); but
s /∈ m, so that (I : b) � m. Thus, (I : b) cannot be a proper ideal, for it is not
contained in any maximal ideal. Therefore, (I : b) = R; hence, 1 ∈ (I : b)
and b = 1b ∈ I . We have proved that J ⊆ I , and the reverse inclusion is
proved similarly. •

Proposition 4.90. Let R be a commutative ring.

(i) If M is an R-module with Mm = {0} for every maximal ideal m, then
M = {0}.

(ii) If f : M → N is an R-map and fm : Mm → Nm is an injection for
every maximal ideal m, then f is an injection.

(iii) If f : M → N is an R-map and fm : Mm → Nm is a surjection for
every maximal ideal m, then f is a surjection.

(iv) If f : M → N is an R-map and fm : Mm → Nm is an isomorphism for
every maximal ideal m, then f is an isomorphism.

Proof.

(i) If M 	= {0}, then there is m ∈ M with m 	= 0. It follows that the
annihilator I = {r ∈ R : rm = 0} is a proper ideal in R, for 1 /∈ I , and
so there is some maximal ideal m containing I . Now 1⊗m = 0 in Mm,
so that m ∈ ker hM . Proposition 4.78 gives s /∈ m with sm = 0 in M .
Hence, s ∈ I ⊆ m, and this is a contradiction. Therefore, M = {0}.

(ii) There is an exact sequence 0 → K → M
f−→ N , where K = ker f .

Since localization is an exact functor, there is an exact sequence

0 → Km → Mm

fm−→ Nm

for every maximal ideal m. By hypothesis, each fm is an injection,
so that Km = {0} for all maximal ideals m. Part (i) now shows that
K = {0}, and so f is an injection.

(iii) There is an exact sequence M
f−→ N → C → 0, where C = coker f =

N/ im f . Since tensor product is right exact, Cm = {0} for all max-
imal ideals m, and so C = {0}. But f is surjective if and only if
C = coker f = {0}.

(iv) This follows at once from parts (ii) and (iii). •
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4.8 Polynomial Rings

In the mid-1950s, Serre proved that if R = k[x1, . . . , xm], where k is a field,
then every finitely generated projective R-module P has a finitely generated
free complement F ; that is, P ⊕ F is free. Serre wondered5 whether every
projective k[x1, . . . , xm]-module is free (for projective and free modules over
R have natural interpetations in algebraic geometry). This problem was the
subject of much investigation until 1976, when it was solved in the affirma-
tive by Quillen and Suslin, independently. We refer the reader to T. Y. Lam,
Serre’s Problem on Projective Modules, for a more thorough account. The
last chapter of Lam’s book describes recent work, after 1976, inspired by and
flowing out of the work of Serre, Quillen, and Suslin.

Definition. Let R be a commutative ring and let Rn denote the free R-
module of rank n (recall that every commutative ring has IBN). A unimodular
column is an element α = (a1, . . . , an) ∈ Rn for which there exist bi ∈ R
with a1b1 + · · · + anbn = 1.

A commutative ring R has the unimodular column property if, for every
n, every unimodular column is the first column of some n×n invertible matrix
over R.

If ε1 denotes the column vector having first coordinate 1 and all other
entries 0, then α ∈ Rn is the first column of a matrix M over R if and only if

α = Mε1.

The first column α = [ai1] of an invertible matrix M = [ai j ] is always uni-
modular. Since M is invertible, det(M) = u, where u is a unit in R, and
Laplace expansion down the first column gives det(M) = u = ∑

i ai1di .
Hence,

∑
i ai1(u−1di ) = 1, and α = Mε1 is a unimodular column. The

unimodular column property for R asserts the converse.

Proposition 4.91. Let R be a commutative ring. If every finitely generated
projective R-module is free, then R has the unimodular column property.

Proof. If α = (a1, . . . , an) ∈ Rn is a unimodular column, then there exist
bi ∈ R with

∑
i ai bi = 1. Define ϕ : Rn → R by (r1, . . . , rn) �→

∑
i ri bi .

Since ϕ(α) = 1, there is an exact sequence

0 → K → Rn ϕ−→ R → 0,

5Serre wrote, on page 243 of “Faisceaux algèbriques cohérents,” Annals Math. 61
(1955), 197–278, “... on ignore s’il existe des A-modules projectifs de type fini qui ne
soient pas libres” (here, A = k[x1, . . . , xn]).
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where K = kerϕ. As R is projective, this sequence splits and

Rn = K ⊕ 〈α〉.

By hypothesis, K is free (of rank n − 1). If α2, . . . , αn is a basis of K , then
adjoining α gives a basis of Rn . If ε1, . . . , εn is the standard basis of Rn

(i.e., εi has i th coordinate 1 and all other coordinates 0), then the R-map
T : Rn → Rn , with T ε1 = α and T εi = αi for i ≥ 2, is invertible, and the
matrix of T with respect to the standard basis has first column α. •

In general, the converse of Proposition 4.91 is false. For example, we
know that I6 has nonfree projectives, yet it is not difficult to see that I6 does
have the unimodular column property.

Definition. A finitely generated R-module P is stably free if there exists a
finitely generated free R-module F with P ⊕ F free.

Example 4.92.

(i) Every finitely generated free module is stably free.

(ii) If P and Q are stably free, then P ⊕ Q is stably free.

(iii) Every stably free module is projective, for it is a direct summand of
a free module. However, there are (finitely generated) projective R-
modules that are not stably free. For example, if R = I6, then R =
I ⊕ J , where I ∼= I2 and J ∼= I3. An easy counting argument shows
that there is no finitely generated free I6-module F with I ⊕ F free.

(iv) A direct summand of a stably free module need not be stably free. After
all, every projective module is a direct summand of a free (hence, stably
free) module, yet we have seen in (iii) that projectives need not be stably
free. However, a complement of a stably free direct summand is stably
free: if K = K ′ ⊕ K ′′, where both K and K ′ are stably free, then it is
easy to see that K ′′ is also stably free.

(v) Kaplansky exhibited a stably free R-module that is not free, where R
is the ring of all continuous real-valued functions on the 2-sphere [see
R. G. Swan, “Vector bundles and projective modules,” Trans. AMS 105
(1962), 264–277]. This example has been modified, and there is a com-
pletely algebraic proof that if R = Z[x, y, z]/(x2 + y2 + z2 − 1), then
there is a stably free R-module that is not free [see M. Kong, “Euler
classes of inner product modules,” J. Algebra 49 (1977), 276–303].
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(vi) Eilenbergs’s observation (see Exercise 3.5 on page 114) that every pro-
jective module has a free complement (which, of course, need not be
finitely generated) shows why we assume, in the definition of stably
free, that complements are finitely generated. �

Theorem 4.93 (Serre). If k is a field, then finitely generated projective
k[x1, . . . , xm]-modules are stably free.

Proof. See Theorem 8.48. •

Proposition 4.94. If a commutative ring R has the unimodular column prop-
erty, then every stably free R-module P is free.

Proof. By induction on the rank of a free complement, it suffices to prove
that if P ⊕ R = Rn , then P is free. Let ε1, . . . , εn be the standard basis of
Rn , and let π : Rn → R be an R-map with kerπ = P . Since π is surjective,
there exists α = (a1, . . . , an) ∈ Rn with 1 = π(α) = ∑

aiπ(εi ); that is,
α is a unimodular column. By hypothesis, there is an invertible matrix M
with first column α, and with other columns, say, α2, . . . , αn . Define an R-
map T : Rn → Rn by T (εi ) = Mεi . If π(α j ) = λ j ∈ R for j ≥ 2,
then the elementary column operations α j → α′j , where α′j = α j − λ jα,
yield the invertible matrix M ′ having columns α, α′2, . . . , α

′
n . If j ≥ 2, then

π(α′j ) = π(α j ) − λ jπ(α) = 0 [for π(α) = 1]. Thus, the R-isomorphism
determined by M ′, namely, T ′(ε1) = α and T ′(ε j ) = α′j for j ≥ 2, satisfies
α′j = T ′(ε j ) ∈ kerπ = P for all j ≥ 2.

We claim that the restriction T ∗ = T ′|〈ε2, . . . , εn〉 : 〈ε2, . . . , εn〉 → P
is an R-isomorphism. We have just seen that im T ∗ ⊆ P . Of course, T ∗
is injective, for T ′ is. To see that T ∗ is surjective, take β ∈ P . Now β =
T ′(r1ε1 + δ), where δ = ∑n

i=2 riεi . Since β ∈ P , we have β − T ′(δ) =
r1T ′(ε1) = r1α ∈ P ∩ 〈α〉 = {0}. Hence, β ∈ im T ∗, T ∗ is an isomorphism,
and P is free. •

Corollary 4.95. If k[x1, . . . , xm] has the unimodular column property, where
k is a field, then every finitely generated projective k[x1, . . . , xm]-module is
free.

Proof. This follows at once from Theorem 4.93. •
We are now going to give Suslin’s solution of Serre’s problem; afterward,

we will sketch Quillen’s solution. Let us begin with a technical result that
is the heart of the classical Noether Normalization Lemma. Recall that the
total degree of a monomial r x j1

1 · · · x jm
m is j1+· · ·+ jm ; a general polynomial

a ∈ k[x1, . . . , xm] is a sum of monomials, and its total degree is defined as
the largest total degree of its monomial summands.
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Proposition 4.96 (Noether). Let R = k[x1, . . . , xm], where k is a field, let
a ∈ R have (total) degree δ, and let b = δ + 1. Define

y = xm,

and, for 1 ≤ i ≤ m − 1, define

yi = xi − xbm−i

m = xi − ybm−i
. (1)

Then a = ra′, where r ∈ k and a′ ∈ (k[y1, . . . , ym−1]
)
[y] is monic.

Proof. Note that k[y1, . . . , ym−1] is a polynomial ring, that is, the ys are
independent transcendentals, for the defining equations give an automorphism
of R (with inverse given by xm �→ xm and xi �→ xi+xbm−i

m for 1 ≤ i ≤ m−1)
that restricts to an isomorphism k[x1, . . . , xm−1] → k[y1, . . . , ym−1].

Denote m-tuples ( j1, . . . , jm) ∈ N
m by ( j), and equip N

m with the usual
dot product: ( j) · ( j ′) = j1 j ′1 + · · · + jm j ′m . We denote the specific m-
tuple (bm−1, bm−2, . . . , b, 1) by ν. Of course, the exponents of the monomial
x j1

1 · · · x jm
m give rise to ( j). Write the polynomial a in this notation:

a =
∑
( j)

r( j)x
j1
1 · · · x jm

m ,

where r( j) ∈ k and r( j) 	= 0. Substituting the equations in Eq. (1), the ( j)th
monomial is

r( j)(y1 + ybm−1
) j1(y2 + ybm−2

) j2 · · · (y1 + yb) jm−1 y jm .

Expand and separate the “pure” power of y from the rest to obtain

r( j)
(
y( j)·ν + f( j)(y1, . . . , ym−1, y)

)
,

where the polynomial f( j) has at least one positive power of some yi ; the
highest exponent of any such yi is at most the total degree, and so it is strictly
less than b. Thus, 0 ≤ ji < b for each ji occurring in any ( j). Each ( j) · ν =
j1bm−1+ j2bm−2+· · ·+ jm−1b+ jm is the expression of a positive integer in
base b; the uniqueness of this b-adic expression says that if ( j) 	= ( j ′), then
( j) · ν 	= ( j ′) · ν. Thus, there is no cancellation of terms in

∑
( j) r( j)y( j)·ν ,

the pure part of a. If D is the largest ( j) · ν, then

a = rD y D + g(y1, . . . , ym−1, y),

where the largest exponent of y occurring in g = ∑
( j)·ν<D f( j) is smaller

than D. As rD is a nonzero element of the field k, we have a = rDa′, where
a′ = y D + r−1

D g(y1, . . . , ym−1, y), a monic polynomial in y. •
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Lemma 4.97 (Suslin Lemma). Let B be a commutative ring, let s ≥ 1,
and consider polynomials in B[y]:

f (x) = ys + a1 ys−1 + · · · + as;
g(y) = b1 ys−1 + · · · + bs .

Then, for each j with 1 ≤ j ≤ s − 1, the ideal ( f, g) ⊆ B[y] contains a
polynomial of degree ≤ s − 1 having leading coefficient bj .

Proof. Let I be the set consisting of 0 and all leading coefficients of h(y) ∈
( f, g) with deg(h) ≤ s−1; it is clear that I is an ideal in B containing b1. We
prove, by induction on j ≥ 1, that I contains b1, . . . , b j for all j ≤ s. Define
g′(y) ∈ ( f, g) by

g′(y) = yg(y)− b1 f (y) =
s∑

i=1

(bi+1 − b1ai )ys−i .

By induction, I contains the first j − 1 coefficients of g′(y), the last of which
is b j − b1a j−1. It follows that b j ∈ I . •

Observe that performing elementary row operations on any n × q matrix
L yields a matrix N L , where N ∈ GL(n, R), the group of all invertible n × n
matrices over R. Thus, if α ∈ Rn is an n × 1 column vector and Nα is the
first column of some invertible matrix M , then α = (N−1 M)ε1 is also the
first column of some invertible matrix.

Proposition 4.98 (Horrocks). Let R = B[y], where B is a local ring, and
let α = (a1, . . . , an) ∈ Rn be a unimodular column. If some ai is monic, then
α is the first column of some invertible matrix in GL(n, R).

Proof. (Suslin) If n = 1 or 2, then the conclusion is true for any commuta-
tive ring R. For example, if α = (a1, a2) and a1b1 + a2b2 = 1, then α is the

first column of
[

a1 −b2
a2 b1

]
. Therefore, we may assume n ≥ 3. We do an induc-

tion on s, the degree of the monic polynomial a1 (there is no loss in generality
assuming a1 is monic). If s = 0, then a1 = 1, and our preceding remark about
row operations, applied here to the column vector α, yields Nα = ε1, which
is the first column of the n × n identity matrix. Thus, we may assume that
s > 0; moreover, after applying elementary row operations to the column α,
we may assume that deg(ai ) ≤ s − 1 for all i ≥ 2.

Let m be the (unique) maximal ideal in B. Now mR consists of those
polynomials having all coefficients in m. The column

α = (a1 +mR, . . . , an +mR) ∈ Rn/mRn
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is unimodular over (B/m)[y] (for α is unimodular). If ai ∈ mR for all i ≥ 2,
then a1 + m would be a unit in (B/m)[y]; but B/m is a field, and the non-
constant polynomial a1(y) in the PID (B/m)[y] cannot be a unit. Thus, we
may assume that a2(y) /∈ mR; say, a2(y) = b1 ys−1 + · · · + bs , where some
b j /∈ m. Since B is a local ring, b j is a unit. By Suslin’s Lemma, the ideal
(a1, a2) ⊆ R contains a monic polynomial of degree≤ s−1. Since n ≥ 3, we
may perform an elementary row operation of adding a linear combination of
a1 and a2 to a3 to obtain a monic polynomial in the third coordinate of degree
≤ s − 1. The inductive hypothesis applies to this new version of α, and this
completes the proof. •

Let R = B[y], where B is a commutative ring. In the next proposition,
we will denote a matrix M over R by M(y) to emphasize the fact that its
entries are polynomials in y. If r ∈ R, then the notation M(r) means that
every occurrence of y in M(y) has been changed to r .

The next proof is ingenious!

Proposition 4.99. Let B be a domain, let R = B[y], and let α(y) be a
unimodular column at least one of whose coordinates is monic, say, α(y) =(
α1(y), . . . , αn(y)

)
. Then

α(y) = M(y)β,

where M(y) ∈ GL(n, R) and β is a unimodular column over B.

Proof. (Vaserstein) Define

I = {b ∈ B : GL(n, R)α(u + bv) = GL(n, R)α(u) for all u, v ∈ R
}
.

One checks that I is an ideal in B; for example, if b, b′ ∈ I , then

GL(n, R)α(u + bv + b′v) = GL(n, R)α(u + bv) = GL(n, R)α(u),

so that b + b′ ∈ I .
If I = B, then 1 ∈ I ; set u = y, b = 1, and v = −y, and obtain

GL(n, R)α(y) = GL(n, R)α(0).

Thus, α(y) = M(y)α(0) for some M(y) ∈ GL(n, R). Since α(0) is a uni-
modular column over B, the proposition is true in this case.

We may now assume that I is a proper ideal in B, and so I ⊆ J for some
maximal ideal J in B. Since B is a domain, B is a subring of the localization
BJ . As BJ is a local ring and α(y) is a unimodular column over BJ [y] having
a monic coordinate, Proposition 4.98 applies:

α(y) = M(y)ε1,
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for some M(y) = [mi j (y)] ∈ GL(n, BJ [y]). Adjoin a new indeterminate z to
BJ [y], and define a matrix

N (y, z) = M(y)M(y + z)−1 ∈ GL(n, BJ [y, z]).

Note that the matrix M(y + z) is invertible: if M(y)−1 = [hi j (y)], then it is
easy to see that M(y + z)−1 = [hi j (y + z)], for the map BJ [y] → BJ [y, z],
given by y �→ y + z, is a BJ -algebra map.

Now N (y, 0) = In , the n × n identity matrix. Since α(y) = M(y)ε1, it
follows that α(y + z) = M(y + z)ε1, and

N (y, z)α(y + z) = N (y, z)M(y + z)ε1 = M(y)ε1 = α(y). (2)

Each entry of N (y, z) has the form fi j (y) + gi j (y, z), where each mono-
mial in gi j (y, z) involves a positive power of z; that is, gi j (y, 0) = 0. Since
N (y, 0) = In , it follows that each fi j (y) = 0 or 1. Hence, the entries of
N (y, z) contain no nonzero terms of the form λyi for i > 0 and λ ∈ BJ ; that
is, hi j (y, z) = r + gi j (y, z), where r = 0 or r = 1. If b is the product of the
denominators of all the coefficients of the entries in N (y, z), then hi j (y, bz)
has all its coefficients in B[y, z]. The definition of the localization BJ shows
that b /∈ J , and so b /∈ I . Equation (2), with bz playing the role of z, gives

GL(n, B[y, z])α(y + bz) = GL(n, B[y, z])α(y).

For fixed u, v ∈ R = B[y], define a B-algebra map ϕ : B[y, z] → B[y] by
ϕ(y) = u and ϕ(z) = v. Applying ϕ to the last displayed matrix equation
gives

GL(n, R)α(u + bv) = GL(n, R)α(u),

and this contradicts b /∈ I . •

Theorem 4.100 (Quillen–Suslin). If k is a field, then every finitely gener-
ated projective k[x1, . . . , xm]-module is free.

Proof. Corollary 4.95 says that it suffices to prove that R = k[x1, . . . , xm]
has the unimodular column property, and we prove this by induction on m.
The base step is true, for Proposition 4.91 says that k[x1], as any PID, has
the unimodular column property. For the inductive step, let α = (a1, . . . , an)

be a unimodular column over k[x1, . . . , xm]. We may assume that a1 	= 0;
hence, by Noether’s Proposition, there is r ∈ k with a1 = ra′1 for a′1 ∈
k[y1, . . . , ym−1](y) a monic polynomial in y (where y and the yi are defined
in Proposition 4.96). Since k is a field and r ∈ k is nonzero, r is a unit, and
so there is no loss in generality in assuming that a1 = a′1; that is, a1 is monic.
Thus, Proposition 4.99 applies, and

α = Mβ,
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where M ∈ GL(n, k[x1, . . . , xm]) and β is a unimodular column over B =
k[y1, . . . , ym−1]. By induction, B has the unimodular column property, so
that β = Nε1 for some N ∈ GL(n, B). But M N ∈ GL(n, k[x1, . . . , xm]),
because B ⊆ k[x1, . . . , xm], and so

α = (M N )ε1;
that is, α is the first column of an invertible matrix over k[x1, . . . , xm]. •

Suslin’s proof generalizes to polynomial rings with coefficient rings other
than fields once one relaxes the hypotheses of Noether’s Proposition. We now
sketch Quillen’s solution, which also applies to more general coefficient rings.

In 1958, Seshadri proved that if R is a PID, then finitely generated projec-
tive R[x]-modules are free; it follows that if k is a field, then finitely generated
k[x, y]-modules are free. One of the ideas used by Seshadri is that of an ex-
tended module.

Definition. If R is a commutative ring and A is an R-algebra, then an A-
module P is extended from R if there is an R-module P0 with P ∼= A⊗R P0.

Example 4.101.

(i) If V is a free R-module, then A⊗R V is a free A-module, because tensor
product commutes with direct sums. Similarly, since a projective R-
module is a direct summand of a free module, any A-module extended
from a projective R-module is itself projective.

(ii) Every free A-module F is extended from R: if B = {ei : i ∈ I } is a
basis of F and F0 is the free R-module with basis B, then F ∼= A⊗R F0.

(iii) Not every module is extended. For example, if A = k[x], where k
is a field, then every k-module V is a vector space over k and, hence,
every extended module is free. Thus, any nonfree k[x]-module is not
extended. �

A projective A-module need not be extended, but Quillen proved the fol-
lowing result.

Theorem (Quillen). Let R be a commutative ring, and let P be a finitely
generated projective R[x]-module. If every Rm[x]⊗R P is extended from the
localization Rm, where m is a maximal ideal in R, then P is extended from R.

Proof. D. Quillen, “Projective modules over polynomial rings,” Invent. Math.
36 (1976), 167–171. •

Here is Quillen’s main theorem.
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Theorem (Quillen). Let C be a class of commutative rings such that

(i) if R ∈ C, then R(x) ∈ C, where R(x) denotes the ring of all rational
functions of the form f (x)/g(x) with f (x), g(x) ∈ R[x],

(ii) if R ∈ C and m is a maximal ideal in R, then projective Rm[x]-modules
are free.

Then finitely generated projective R[x1, . . . , xm]-modules are extended from
R for all R ∈ C and all m ≥ 1.

Proof. See Lam, Serre’s Problem on Projective Modules, p. 177. •

Theorem 4.102 (Quillen–Suslin). If k is a field, then every finitely gener-
ated projective k[x1, . . . , xm]-module is free.

Proof. The class C of all fields satisfies the conditions of Quillen’s theorem.
If R is a field, then R(x) = Frac(R[x]) ∈ C. To check (ii), note that the only
maximal ideal m in a field R is m = {0}, so that Rm = R, Rm[x] = R[x] is
a PID, and (finitely generated) projective R[x]-modules are free. Since R is
a field, every R-module is a vector space, hence is free, and so every module
extended from R is free. •

It can be shown that the classes of all PIDs as well as of all Dedekind rings
satisfy Quillen’s condtions; hence, finitely generated R[x1, . . . , xm]-modules
are extended from R. If R is a PID, it follows that every such module is free.
If R is Dedekind, then finitely generated projective R-modules P0 need not be
free; however, one knows that P0 ∼= F0⊕ J , where F0 is a free R-module and
J is an ideal in R (see Rotman, Advanced Modern Algebra, p. 964). Thus,
every finitely generated projective R[x1, . . . , xm]-module has the form F⊕Q,
where F is free and Q ∼= R[x1, . . . , xm] ⊗R J . If R is a Prüfer ring, then
every finitely generated projective R[x1, . . . , xn]-module is extended from R
(see Fontana–Huckaba–Papick, Prüfer Domains, p. 211); in particular, if R is
a Bézout ring, then every such module is free.

The noncommutative version of Quillen’s Theorem is false: Ojanguren
and Sridharan, “Cancellation of Azumaya algebras,” J. Algebra 18 (1971),
501–505, gave an example of a division ring D and a nonfree projective
D[x, y]-module (where the indeterminates x and y commute with constants
in D).

The following problem remains open. Let R be a commutative noetherian
ring. We say that R has Property (E) if, for all n ≥ 1, every finitely generated
projective R[x1, . . . , xn]-module is extended from R; we say that R is regu-
lar if every finitely generated R-module has a projective resolution of finite
length. The Bass-Quillen Conjecture asks whether every regular ring of finite
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Krull dimension has property (E). See the last chapter of Lam, Serre’s Prob-
lem on Projective Modules, for an account of recent progress on this problem.

We summarize some results we have proved about special R-modules
when R is constrained.

(i) R semisimple: every R-module is projective, injective, and flat.

(ii) R von Neumann regular: every R-module is flat.

(iii) R hereditary: every R-submodule of a projective is projective; every
quotient of an injective R-module is injective.

(iv) R Dedekind (= hereditary domain): divisible R-modules are injective.

(v) R semihereditary: finitely generated R-submodules of projectives are
projective; submodules of flat R-modules are flat.

(vi) R Prüfer (= semihereditary domain): torsion-free R-modules are flat;
finitely generated torsion-free R-modules are projective.

(vii) R quasi-Frobenius: projective R-modules are injective.

(viii) R semiperfect: projective covers exist; direct products of projective R-
modules are projective.

(ix) R local: projective R-modules are free.

(x) R = k[X ] = polynomial ring in several variables over a field k: finitely
generated projective R-modules are free.

(xi) R noetherian: direct sums of injective R-modules are injective.



5
Setting the Stage

We plan to use Homological Algebra to prove results about modules, groups,
and sheaves. A common context for discussing these topics is that of abelian
categories; moreover, categories of complexes, the essential ingredient needed
to define homology, are also abelian categories. This chapter is devoted to dis-
cussing this circle of ideas.

5.1 Categorical Constructions

Imagine a set theory whose primitive terms, instead of set and element, are
set and function. How could we define bijection, cartesian product, union,
and intersection? Category Theory forces us to think in this way, for functors
do not recognize elements. One nice aspect of thinking categorically is that
we can see unexpected analogies; for example, we shall soon see that disjoint
union in Sets, direct sum in RMod, and tensor product in ComRings are
special cases of the same categorical notion. We now set ourselves the task
of describing various constructions in Sets or in Ab in such a way that they
make sense in arbitrary categories.

Let us begin by investigating the notion of disjoint union of subsets. Two
subsets A and B of a set can be forced to be disjoint. Consider the cartesian
product (A∪ B)×{1, 2} and its subsets A′ = A×{1} and B ′ = B ×{2}. It is
plain that A′ ∩ B ′ = ∅, for a point in the intersection would have coordinates
(a, 1) = (b, 2), which cannot be, for their second coordinates are not equal.
We call A′ ∪ B ′ the disjoint union of A and B, and we note that it comes
equipped with two functions, namely, α : A → A′ ∪ B ′ and β : B → A′ ∪ B ′,
defined by α : a �→ (a, 1) and β : b �→ (b, 2). Denote A′ ∪ B ′ by A  B.

J.J. Rotman, An Introduction to Homological Algebra, Universitext, 213
DOI 10.1007/978-0-387-68324-9 5, c© Springer Science+Business Media LLC 2009
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Given functions f : A → X and g : B → X , for some set X , there is a unique
function θ : A  B → X that extends both f and g; namely,

θ(u) =
{

f (a) if u = (a, 1) ∈ A′,
g(b) if u = (b, 2) ∈ B ′.

The function θ is well-defined because A′ ∩ B ′ = ∅. We have described
disjoint union categorically (i.e., with diagrams).

In Category Theory, we often view objects, not in isolation, but together
with morphisms relating them to other objects; for example, objects may arise
as solutions to universal mapping problems.

Definition. If A and B are objects in a category C, then their coproduct is
a triple (A  B, α, β), where A  B is an object in C and α : A → A  B,
β : B → A  B are morphisms, called injections,1 such that, for every object
X in C and every pair of morphisms f : A → X and g : B → X , there exists
a unique morphism θ : A  B → X making the diagram commute: θα = f
and θβ = g.

A
α

���
���

� f

����
���

��

A  B
θ ��������� X

B
β

��							 g

$$������

Here is a proof that the disjoint union A B = A′ ∪ B ′ ⊆ (A∪ B)×{1, 2}
is a coproduct in Sets. If X is any set and f : A → X and g : B → X are
functions, we have already seen that the function θ : A  B → X , given by
θ(a, 1) = f (a) and θ(b, 2) = g(b), makes the diagram commute. Let us
prove uniqueness of θ . If ψ : A  B → X satisfies ψα = f and ψβ = g,
then ψ(a, 1) = f (a) = θ(a, 1) and ψ(b, 2) = g(b) = θ(b, 2). Therefore,
ψ agrees with θ on A′ ∪ B ′ = A  B, and so ψ = θ . We have proved that a
coproduct of two sets exists in Sets, and that it is the disjoint union.

It is not true that coproducts always exist; in fact, it is easy to construct
examples of categories in which a pair of objects does not have a coproduct
(see Exercise 5.6 on page 227).

Proposition 5.1. If A and B are left R-modules, then their coproduct in
RMod exists and is the direct sum A ⊕ B.

1We will introduce the notion of monomorphism later. Exercise 5.57 on page 321 says
that the injections α, β are, in fact, monomorphisms.
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Proof. The statement of the proposition is not complete, for a coproduct
requires morphisms α and β. The underlying set of C = A⊕B is the cartesian
product A × B, and we define α : A → C by α : a �→ (a, 0) and β : B → C
by β : b �→ (0, b). Of course, α and β are R-maps.

Now let X be a module, and let f : A → X and g : B → X be R-
maps. Define θ : C → X by θ : (a, b) �→ f (a) + g(b). First, the diagram
commutes: if a ∈ A, then θα(a) = θ(a, 0) = f (a) and, similarly, if b ∈ B,
then θβ(b) = θ(0, b) = g(b). Second, θ is unique. If ψ : C → X makes the
diagram commute, then ψ(a, 0) = f (a) for all a ∈ A and ψ(0, b) = g(b)
for all b ∈ B. Since ψ is an R-map, we have

ψ(a, b) = ψ[(a, 0)+ (0, b)] = ψ(a, 0)+ ψ(0, b) = f (a)+ g(b).

Therefore, ψ = θ . •

Proposition 5.2. If k is a commutative ring and A and B are commutative
k-algebras, then A ⊗k B is the coproduct in the category of commutative k-
algebras.

Proof. Define α : A → A⊗k B by α : a �→ a⊗1, and define β : B → A⊗k B
by β : b �→ 1 ⊗ b; note that both α and β are k-algebra maps. Let X be a
commutative k-algebra, and consider the diagram

A
α












 f

���
��

��
��

A ⊗k B � ��������� X

B,
β

���������� g

$$������

where f and g are k-algebra maps. The function ϕ : A × B → X , given by
(a, b) �→ f (a)g(b), is easily seen to be k-bilinear, and so there is a unique
map of k-modules � : A ⊗k B → X with �(a ⊗ b) = f (a)g(b). To prove
that � is a k-algebra map, it suffices to prove that �

(
(a ⊗ b)(a′ ⊗ b′)

) =
�(a ⊗ b)�(a′ ⊗ b′). Now

�
(
(a ⊗ b)(a′ ⊗ b′)

) = �(aa′ ⊗ bb′) = f (a) f (a′)g(b)g(b′).

On the other hand, �(a ⊗ b)�(a′ ⊗ b′) = f (a)g(b) f (a′)g(b′). Since X is
commutative, f (a′)g(b) = g(b) f (a′), and so � does preserve multiplication.

To prove uniqueness of �, let � : A ⊗k B → X be a k-algebra map
making the diagram commute. In A⊗k B, we have a⊗ b = (a⊗ 1)(1⊗ b) =
α(a)β(b), where a ∈ A and b ∈ B. Thus,

�(a ⊗ b) = �(α(a)β(b)) = �(α(a))�(β(b)) = f (a)g(b) = �(a ⊗ b).

Since A ⊗k B is generated as a k-module by all a ⊗ b, we have � = �. •
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We know that if 〈x〉 and 〈y〉 are infinite cyclic groups, then each is a free
abelian group and 〈x〉 ⊕ 〈y〉 is a free abelian group with basis {x, y}. If k is a
commutative ring, then the polynomial ring k[x] is a free k-algebra with basis
{x} (given any k-algebra A and any a ∈ A, there exists a unique k-algebra
map ϕ : k[x] → A with ϕ(x) = a). In light of Proposition 5.2, we expect that
k[x] ⊗k k[y] is a free commutative k-algebra with basis {x, y}. Exercise 5.5
on page 226 says that this is, in fact, true; moreover, k[x] ⊗k k[y] ∼= k[x, y].

In Chapter 2, we used the structure of the proof of Proposition 2.44 as
a strategy for proving uniqueness to isomorphism of solutions to universal
mapping problems. We are now going to describe a second strategy.

Definition. An object A in a category C is called an initial object if, for
every object X in C, there exists a unique morphism A → X .

The empty set ∅ is an initial object in Sets, the zero module {0} is an
initial object in RMod, and 0 is the initial object of the natural numbers N

viewed as a partially ordered set. On the other hand, a category may not have
an initial object; for example, Z, viewed as a partially ordered set, has no
initial object.

Lemma 5.3. Any two initial objects A, A′ in a category C, should they exist,
are isomorphic. In fact, the unique morphism f : A → A′ is an isomorphism.

Proof. By hypothesis, there exist unique morphisms f : A → A′ and
g : A′ → A. Since A is an initial object, the unique morphism h : A → A
must be the identity: h = 1A. Thus, the composites g f : A → A and
f g : A′ → A′ are identities, and so f : A → A′ is an isomorphism. •

Proposition 5.4. If C is a category and if A and B are objects in C, then any
two coproducts of A and B, should they exist, are isomorphic.

Proof. If C is a coproduct of A and B, then there are morphisms α : A → C
and β : B → C . Define a new category D whose objects are diagrams

A
γ−→ X

δ←− B,

where X is in obj(C) and γ : A → X and δ : B → X are morphisms. Define a
morphism in D to be a triple (1A, θ, 1C ), where θ is a morphism in C making
the following diagram commute:

A
γ ��

1A ��

X
θ��

B
δ		

1B��
A

γ ′
�� X ′ B.

δ′
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Define composition in D by (1A, ψ, 1C )(1A, θ, 1C ) = (1A, ψθ, 1C ). It is
easy to check that D is a category and that a coproduct in C is an initial ob-
ject in D. By Lemma 5.3, coproducts in a category are unique to (unique)
isomorphism if they exist. •

Here is an illustration of this uniqueness. If A, B are submodules of a
module M with A + B = M and A ∩ B = {0}, then their internal direct sum
A ⊕ B is isomorphic to their external direct sum via a + b �→ (a, b).

Remark. Informally, an ordered pair (S, (ϕi )i∈I ) occurring in a commuta-
tive diagram,, where S is an object and the ϕi are morphisms having domain
or target S, is a solution to a universal mapping problem if every other such
ordered pair factors uniquely through S. There is a “metatheorem” which
states that solutions, if they exist, are unique to isomorphism; indeed, such an
isomorphism is itself unique. The proof just given is the prototype for proving
the metatheorem (if we wax categorical, then the statement of the metatheo-
rem can be made precise, and we can then prove it; see Mac Lane, Categories
for the Working Mathematician, Chapter III, for appropriate definitions, state-
ment, and proof). �

Here is the dual definition (obtained by reversing all arrows).

Definition. If A and B are objects in a category C, then their product is
a triple (A " B, p, q), where A " B is an object in C and p : A " B → A,
q : A"B → B are morphisms, called projections,2 such that, for every object
X ∈ C and every pair of morphisms f : X → A and g : X → B, there exists
a unique morphism θ : X → A " B making the diagram commute.

A

A " B

p
��









q ����
���

���
X

g����
��

��
θ		� � � � � � �

f���������

B

Example 5.5. We claim that the (categorical) product of two sets A and B
in Sets is their cartesian product A × B. Define projections p : A × B → A
by p : (a, b) �→ a and q : A × B → B by q : (a, b) �→ b. If X is a set and
f : X → A and g : X → B are functions, then the reader may show that
θ : X → A × B, defined by θ : x �→ ( f (x), g(x)) ∈ A × B, is the unique
function making the diagram commute. �

2We will introduce the notion of epimorphism later. Exercise 5.57 on page 321 says
that the projections p, q are, in fact, epimorphisms.
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Definition. An object � in a category C is called a terminal object if, for
every object C in C, there exists a unique morphism X → �.

Every one-point set is a terminal object in Sets [the empty set ∅ is not a
terminal object in Sets because HomSets(X,∅) = ∅ for every nonempty set
X ]. The zero module {0} is a terminal object in RMod, but N, viewed as a
partially ordered set, has no terminal object.

The solution to a universal mapping problem is an object (with mor-
phisms) defined in terms of a diagram D; the dual object is defined as the
solution to the universal mapping problem posed by the dual diagram; that
is, the diagram obtained from D by reversing all its arrows. For example,
initial and terminal objects are dual, as are coproducts and products. There
are examples of categories in which an object and its dual object both exist,
there are categories in which neither exists, and there are categories in which
an object exists while its dual does not exist. For example, N has an initial
object but no terminal object; −N = {−n : n ∈ N} has a terminal object but
no initial object; Z has neither initial objects nor terminal objects.

Lemma 5.6. Any two terminal objects �,�′ in a category C, should they
exist, are isomorphic. In fact, the unique morphism f : �′ → � is an isomor-
phism.

Proof. Just reverse all the arrows in the proof of Lemma 5.3; that is, apply
Lemma 5.3 to the opposite category Cop. •

Proposition 5.7. If A and B are objects in a category C, then any two prod-
ucts of A and B, should they exist, are isomorphic.

Proof. Adapt the proof of the prototype, Proposition 5.4; products are ter-
minal objects in a suitable category. •

What is the categorical product of two modules?

Proposition 5.8. If R is a ring and A and B are left R-modules, then their
(categorical) product A " B exists; in fact,

A " B ∼= A ⊕ B.

Remark. Thus, the product and coproduct of two objects, though distinct in
Sets, coincide in RMod. �
Proof. In Proposition 2.20(iii), we characterized M ∼= A ⊕ B by the exis-
tence of projections and injections

A
i

�
p

M
q
�
j

B
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satisfying the equations

pi = 1A, q j = 1B, pj = 0, qi = 0, and i p + jq = 1M . (1)

If X is a module and f : X → A and g : X → B are homomorphisms, define
θ : X → A ⊕ B by θ = i f + jg. The product diagram commutes:

A

M

p
��������

q ���
��

��
�
		 θ ������� X

g����
��

��

f���������

B

for all x ∈ X , pθ(x) = pi f (x)+ pjg(x) = pi f (x) = f (x) [using Eq. (1)],
and, similarly, qθ(x) = g(x). To prove the uniqueness of θ , note that 1M =
i p + jq, so that ψ = 1Mψ = i pψ + jqψ = i f + jg = θ . •

Coproducts exist in Groups; if G, H are groups, then their coproduct is
called a free product, and it is denoted by G∗H ; free groups turn out to be free
products of infinite cyclic groups (analogous to free abelian groups being di-
rect sums of infinite cyclic groups). If G and H are groups, then Exercise 5.9
on page 227 shows that the direct product G × H is the categorical product
G " H in Groups. Thus, coproduct and product are distinct in Groups.

There is a practical value in recognizing coproducts in categories. For
example, Exercise 5.7 on page 227 shows that wedge, (X ∨ Y, z0), is the
coproduct in Top∗, the category of pointed spaces. The fundamental group
is a functor π1 : Top∗ → Groups. Since free product is the coproduct in
Groups, a reasonable guess (which is often correct) is that π1(X ∨ Y, z0) ∼=
π1(X, x0) ∗π1(Y, y0). With a mild hypothesis on X ∨ Y , this is a special case
of van Kampen’s theorem.

If F : C → D is a contravariant functor and a  b ∈ obj(C), then it
is reasonable to guess (often true) that F(a  b) = a " b. For example,
Exercise 5.6 on page 227 says that if a partially ordered set X is viewed as
a category and if a, b ∈ X , then their coproduct is their least upper bound
a ∨ b and their product is their greatest lower bound a ∧ b. Let E/k be a
finite Galois extension, let L be the family of all intermediate fields B; that is,
k ⊆ B ⊆ E , and let S be the family of all the subgroups of the Galois group
Gal(E/k); of course, both L and S are partially ordered sets. Part of the
statement of the Fundamental Theorem of Galois Theory is that the function
g : L → S, given by B �→ Gal(E/B), is an order-reversing function and that
B ∨ C �→ Gal(E/B) ∩ Gal(E/C). Example 1.12 shows that g : L → S is a
contravariant functor, and we now see that g converts coproducts to products.

We now extend the definitions of coproduct and product of two objects to
(possibly infinite) families of objects.
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Definition. Let C be a category, and let (Ai )i∈I be a family of objects in C
indexed by a set I . A coproduct is an ordered pair (C, (αi : Ai → C)i∈I ),
consisting of an object C and a family (αi : Ai → C)i∈I of morphisms, called
injections, that is a solution to the following universal mapping problem: for
every object X equipped with morphisms ( fi : Ai → X)i∈I , there exists a
unique morphism θ : C → X making the diagram commute for each i .

Ai
αi

����
��

�� fi

���
��

��
�

C
θ

��������� X

Should it exist, a coproduct is usually denoted by
⊔

i∈I Ai (the injections
are not mentioned). A coproduct is unique to isomorphism, for it is an initial
object in a suitable category.

We sketch the existence of the disjoint union of sets (Ai )i∈I . Form the set
U = (

⋃
i∈I Ai ) × I , and define A′i = {(ai , i) ∈ U : ai ∈ Ai }. The disjoint

union is (
(⊔

i Ai , (αi : Ai →
⊔

i Ai )i∈I
)
, where

⊔
i∈I Ai =

⋃
i∈I A′i and

αi : ai �→ (ai , i) ∈⊔i Ai (of course, the disjoint union of two sets is a special
case of this construction). The reader may show that this is a coproduct in
Sets; that is, it is a solution to the universal mapping problem.

Proposition 5.9. If (Ai )i∈I is a family of left R-modules, then the direct sum⊕
i∈I Ai is their coproduct in RMod.

Proof. The statement of the proposition is incomplete, for a coproduct re-
quires injections αi . Write C =⊕

i∈I Ai , and define αi : Ai → C to be the
function that assigns to each ai ∈ Ai the I -tuple whose i th coordinate is ai
and whose other coordinates are zero. Note that each αi is an R-map.

Let X be a module and, for each i ∈ I , let fi : Ai → X be an R-map.
If (ai ) ∈ C = ⊕

i Ai , then only finitely many ai are nonzero, and (ai ) =∑
i αi ai . Define θ : C → X by θ : (ai ) �→

∑
i fi ai . The coproduct diagram

does commute: if ai ∈ Ai , then θαi ai = fi ai . We now prove that θ is unique.
If ψ : C → X makes the coproduct diagram commute, then

ψ
(
(ai )

)
= ψ

(∑
i

αi ai

)
=
∑

i

ψαi ai =
∑

i

fi (ai ) = θ
(
(ai )

)
.

Therefore, ψ = θ . •
Here is the dual notion.

Definition. Let C be a category, and let (Ai )i∈I be a family of objects in
C indexed by a set I . A product is an ordered pair (C, (pi : C → Ai )i∈I ),
consisting of an object C and a family (pi : C → Ai )i∈I of projections, that
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is a solution to the following universal mapping problem: for every object
X equipped with morphisms fi : X → Ai , there exists a unique morphism
θ : X → C making the diagram commute for each i .

Ai

C

pi
$$������

X
θ

		� � � � � � �

fi
��������

Should it exist, a product is denoted by"i∈I Ai , and it is unique to iso-
morphism, for it is a terminal object in a suitable category.

We let the reader prove that cartesian product is the product in Sets.

Proposition 5.10. If (Ai )i∈I is a family of left R-modules, then the direct
product C =∏i∈I Ai is their product in RMod.

Proof. The statement of the proposition is incomplete, for a product requires
projections. For each j ∈ I , define p j : C → A j by p j : (ai ) �→ a j ∈ A j .
Note that each p j is an R-map.

Now let X be a module and, for each i ∈ I , let fi : X → Ai be an R-
map. Define θ : X → C by θ : x �→ ( fi (x)). First, the diagram commutes:
if x ∈ X , then piθ(x) = fi (x). Second, θ is unique. If ψ : X → C makes
the diagram commute, then piψ(x) = fi (x) for all i ; that is, for each i ,
the i th coordinate of ψ(x) is fi (x), which is also the i th coordinate of θ(x).
Therefore, ψ(x) = θ(x) for all x ∈ X , and so ψ = θ . •

We now present another pair of dual constructions.

Definition. Given two morphisms f : B → A and g : C → A in a category
C, a pullback (or fibered product) is a triple (D, α, β) with gα = fβ that
is a solution to the universal mapping problem: for every (X, α′, β ′) with
gα′ = fβ ′, there exists a unique morphism θ : X → D making the diagram
commute. The pullback is often denoted by B "A C .

C
g
��

B
f
�� A

X
α′

%%��������������

θ&&�
�

�
�

β ′

'' 
  

  
  

  
  

  

D

β
��

α �� C
g
��

B
f

�� A

Pullbacks, when they exist, are unique to isomorphism, for they are ter-
minal objects in a suitable category. We now prove the existence of pullbacks
in RMod.
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Proposition 5.11. The pullback of two maps f : B → A and g : C → A in
RMod exists.

Proof. Define

D = {(b, c) ∈ B ⊕ C : f (b) = g(c)},
define α : D → C to be the restriction of the projection (b, c) �→ c, and define
β : D → B to be the restriction of the projection (b, c) �→ b. It is easy to see
that (D, α, β) satisfies gα = fβ.

If (X, α′, β ′) satisfies gα′ = fβ ′, define a map θ : X → D by θ : x �→
(β ′(x), α′(x)). The values of θ do lie in D, for fβ ′(x) = gα′(x). We let the
reader prove that the diagram commutes and that θ is unique. Thus, (D, α, β)

is a solution to the universal mapping problem. •

Example 5.12.

(i) That B and C are submodules of a module A can be restated as saying
that there are inclusion maps i : B → A and j : C → A. The reader will
enjoy proving that the pullback D exists in RMod and that D = B ∩C .

(ii) Pullbacks exist in Groups: they are subgroups of a direct product de-
fined as in the proof of Proposition 5.11.

(iii) We show that kernel is a pullback. More precisely, if f : B → A is a
homomorphism in RMod, then the pullback of the first diagram below
is (ker f, i), where i : ker f → B is the inclusion.

0
0��

B
f
�� A

X

""�����������������

θ���
�

�
�

h

((!
!!

!!
!!

!!
!!

!!
!

ker f

i
��

�� 0

0
��

B
f

�� A

Let h : X → B be a map with f h = 0; then f hx = 0 for all x ∈ X ,
and so hx ∈ ker f . If we define θ : X → ker f to be the map obtained
from h by changing its target, then the diagram commutes: iθ = h. To
prove uniqueness of the map θ , suppose that θ ′ : X → ker f satisfies
iθ ′ = h. Since i is the inclusion, θ ′x = hx = θx for all x ∈ X , and so
θ ′ = θ . Thus, (ker f, i) is a pullback. �

Here is the dual construction; we have already seen it in Lemma 3.41
when we were discussing injective modules.
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Definition. Given two morphisms f : A → B and g : A → C in a category
C, a pushout (or fibered sum) is a triple (D, α, β) with βg = α f that is a
solution to the universal mapping problem: for every triple (Y, α′, β ′) with
β ′g = α′g, there exists a unique morphism θ : D → Y making the diagram
commute. The pushout is often denoted by B ∪A C .

A
g ��

f
��

C

B

A
g ��

f
��

C

β
��

β ′

''"
""

""
""

""
""

""

B
α ��

α′ %%�������������� D θ

&&#
#

#
#

Y

Pushouts are unique to isomorphism when they exist, for they are initial
objects in a suitable category.

Proposition 5.13. The pushout of two maps f : A → B and g : A → C in
RMod exists.

Proof. It is easy to see that

S = {( f (a),−g(a)
) ∈ B ⊕ C : a ∈ A

}

is a submodule of B ⊕ C . Define D = (B ⊕ C)/S, define α : B → D by
b �→ (b, 0) + S, define β : C → D by c �→ (0, c) + S; it is easy to see that
βg = α f , for if a ∈ A, then α f a − βga = ( f a,−ga) + S = S. Given
another triple (X, α′, β ′) with β ′g = α′ f , define

θ : D → X by θ : (b, c)+ S �→ α′(b)+ β ′(c).

We let the reader prove commutativity of the diagram and uniqueness of θ . •

Example 5.14.

(i) If B and C are submodules of a left R-module U , there are inclusions
f : B ∩C → B and g : B ∩C → C . The reader will enjoy proving that
the pushout D exists in RMod and that D is B + C .

(ii) If B and C are subsets of a set U , there are inclusions f : B ∩ C → B
and g : B ∩ C → C . The pushout in Sets is the union B ∪ C .

(iii) If f : A → B is a homomorphism in RMod, then coker f is the pushout
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of the first diagram below.

A
f ��

0 ��

B

0

A
f ��

0
��

B

��

))$
$$

$$
$$

$$
$$

$$
$

0 ��

**%%%%%%%%%%%%%%%%%%% coker f
θ

���
�

�
�

X

The verification that coker f is a pushout is similar to that in Exam-
ple 5.12(iii).

(iv) Pushouts exist in Groups, and they are quite interesting; for example,
the pushout of two injective homomorphisms is called a free product
with amalgamation. If K1 and K2 are subcomplexes of a connected
simplicial complex K with K1 ∪ K2 = K and K1 ∩ K2 connected, then
van Kampen’s Theorem says that π1(K ) is the free product of π1(K1)

and π1(K2) with π1(K1 ∩ K2) amalgamated (see Spanier, Algebraic
Topology, p. 151). �

Here is another dual pair of useful constructions.

Definition. Given two morphisms f, g : B → C , then their coequalizer is
an ordered pair (Z , e) with e f = eg that is universal with this property: if
p : C → X satisfies p f = pg, then there exists a unique p′ : Z → X with
p′e = p.

B
f ��
g

�� C

p ���
��

��
��

e �� Z

p′
���
�
�

X.

More generally, if ( fi : B → C)i∈I is a family of morphisms, then the co-
equalizer is an ordered pair (Z , e) with e fi = e f j for all i, j ∈ I that is
universal with this property.

We can prove the existence of coequalizers in Sets using the notion of
orbit space.

Definition. Let ∼ be an equivalence relation on a set X . The orbit space
X/ ∼ is the set of all equivalence classes:

X/ ∼= {[x] : x ∈ X},
where [x] is the equivalence class containing x . The function ν : X → X/ ∼,
defined by ν(x) = [x], is called the natural map.
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If f, g : B → C in Sets and ∼ is the equivalence relation on C generated
by {( f b, gb) : b ∈ B}, then the coequalizer is the ordered pair (C/ ∼, ν). In
RMod, the coequalizer is (coker( f − g), ν), where ν : C → coker( f − g) is
the natural map. Hence, coker f is the coequalizer of f and 0.

Definition. Given two morphisms f, g : B → C , then their equalizer is
an ordered pair (A, e) with f e = ge that is universal with this property: if
q : X → B satisfies f q = gq, then there exists a unique q ′ : X → B with
eq ′ = q.

A
e �� B

f ��
g

�� C

X.

q

++&&&&&&&
q ′
���
�
�

More generally, if ( fi : B → C)i∈I is a family of morphisms, then the equal-
izer is an ordered pair (A, e) with fi e = f j e for all i, j ∈ I that is universal
with this property.

In Sets, the equalizer is (E, e), where E = {b ∈ B : f b = gb} ⊆
B and e : E → C is the inclusion. In RMod, the equalizer of f and g is
(ker( f − g), e), where e : ker( f − g) → B is the inclusion. Hence, ker f is
the equalizer of f and 0.

Example 5.15. If X is a topological space and (Ui )i∈I is a family of open
subsets of X , write U =⋃i∈I Ui and Ui j = Ui ∩U j for i, j ∈ I .

(i) If f, g : U → R are continuous functions such that f |Ui = g|Ui for all
i ∈ I , then f = g.

If x ∈ U , then x ∈ Ui for some i , and f (x) = ( f |Ui )x = (g|Ui )x =
g(x). Hence, f = g.

(ii) If ( fi : Ui )i∈I is a family of continuous real-valued functions such that
fi |Ui j = f j |Ui j for all i, j , then there exists a unique continuous
f : U → R with f |Ui = fi for all i ∈ I .

If x ∈ U , then x ∈ Ui for some i; define f : U → Y by f (x) = fi (x).
The condition on overlaps U(i, j) shows that f is a well-defined function;
it is obviously the unique function U → Y satisfying f |Ui = fi for all
i ∈ I . We prove the continuity of f . If V is an open subset of Y , then
f −1(V ) = U ∩ f −1(V ) = (

⋃
i Ui ) ∩ f −1(V ) =⋃i (Ui ∩ f −1(V )) =⋃

i f −1
i (V ). Continuity of fi says that f −1

i (V ) is open in Ui for all i ,
hence is open in U ; thus, f −1(V ) is open in U , and f is continuous.
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For every open V ⊆ X , define �(V ) = {continuous f : V → R} and, if
V ⊆ W , where W ⊆ X is another open subset, define �(W ) → �(V ) to be
the restriction map f �→ f |V . Then properties (i) and (ii) say that �(U ) is
the equalizer of the family of maps �(Ui ) → �(Ui j ). �

Exercises

*5.1 (i) Prove that ∅ is an initial object in Sets.
(ii) Prove that any one-point set � = {x0} is a terminal object

in Sets. In particular, what is the function ∅ → �?
*5.2 A zero object in a category C is an object that is both an initial object

and a terminal object.
(i) Prove the uniqueness to isomorphism of initial, terminal,

and zero objects, if they exist.
(ii) Prove that {0} is a zero object in RMod and that {1} is a

zero object in Groups.
(iii) Prove that neither Sets nor Top has a zero object.
(iv) Prove that if A = {a} is a set with one element, then (A, a)

is a zero object in Sets∗, the category of pointed sets. If A
is given the discrete topology, prove that (A, a) is a zero
object in Top∗, the category of pointed topological spaces.

5.3 (i) Prove that the zero ring is not an initial object in ComRings.
(ii) If k is a commutative ring, prove that k is an initial object

in ComAlgk , the category of all commutative k-algebras.
(iii) In ComRings, prove that Z is an initial object and that the

zero ring {0} is a terminal object.
5.4 For every commutative ring k, prove that the direct product R × S

is the categorical product in ComAlgk (in particular, direct product
is the categorical product in ComAlgZ = ComRings).

*5.5 Let k be a commutative ring.
(i) Prove that k[x, y] is a free commutative k-algebra with ba-

sis {x, y}.
Hint. If A is any commutative k-algebra, and if a, b ∈ A,
there exists a unique k-algebra map ϕ : k[x, y] → A with
ϕ(x) = a and ϕ(y) = b.

(ii) Use Proposition 5.2 to prove that k[x] ⊗k k[y] is a free k-
algebra with basis {x, y}.

(iii) Use Proposition 5.4 to prove that k[x]⊗k k[y] ∼= k[x, y] as
k-algebras.
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*5.6 (i) Let Y be a set, and let P(Y ) denote its power set; that is,
P(Y ) is the partially ordered set of all the subsets of Y . As
in Example 1.3(iii), view P(Y ) as a category. If A, B ∈
P(Y ), prove that the coproduct A B = A ∪ B and that the
product A " B = A ∩ B.

(ii) Generalize part (i) as follows. If X is a partially ordered set
viewed as a category, and a, b ∈ X , prove that the coprod-
uct a  b is the least upper bound of a and b, and that the
product a " b is the greatest lower bound.

(iii) Give an example of a category in which there are two ob-
jects whose coproduct does not exist.
Hint. Let � be a set with at least two elements, and let C be
the category whose objects are its proper subsets, partially
ordered by inclusion. If A is a nonempty subset of �, then
the coproduct of A and its complement does not exist in C.

*5.7 Define the wedge of pointed spaces (X, x0), (Y, y0) ∈ Top∗ to be
(X ∨ Y, z0), where X ∨ Y is the quotient space of the disjoint union
X  Y in which the basepoints are identified to z0. Prove that wedge
is the coproduct in Top∗.

5.8 Give an example of a covariant functor that does not preserve co-
products.

*5.9 If A and B are (not necessarily abelian) groups, prove that A " B =
A × B (direct product) in Groups. For readers familiar with group
theory, prove that A  B = A ∗ B (free product) in Groups.

*5.10 (i) Given a pushout diagram in RMod:

A
g ��

f
��

C
β
��

B α
�� D

prove that g injective implies α injective and that g surjec-
tive implies α surjective. Thus, parallel arrows have the
same properties.

(ii) Given a pullback diagram in RMod:

D
α ��

β
��

C
g
��

B
f

�� A

prove that f injective implies α injective and that f sur-
jective implies α surjective. Thus, parallel arrows have the
same properties.
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5.11 (i) Assuming that coproducts exist, prove commutativity:

A  B ∼= B  A.

(ii) Assuming that coproducts exist, prove associativity:

A  (B  C) ∼= (A  B)  C.

5.12 (i) Assuming that products exist, prove commutativity:

A " B ∼= B " A.

(ii) Assuming that products exist, prove associativity:

A " (B " C) ∼= (A " B) " C.

*5.13 (i) If � is a terminal object in a category C, prove, for any
G ∈ obj(C), that the projections λ : G " � → G and
ρ : � " G → G are isomorphisms.

(ii) If A is an initial object in a category C, prove, for any G ∈
obj(C), that the injections λ : G → G  � and ρ : G →
�  G are isomorphisms.

*5.14 Let C1,C2, D1, D2 be objects in a category C.
(i) If there are morphisms fi : Ci → Di , for i = 1, 2, and if

C1 " C2 and D1 " D2 exist, prove that there exists a unique
morphism f1 " f2 making the following diagram commute
for i = 1, 2:

C1 " C2
f1 " f2 ��

pi ��

D1 " D2

qi��
Ci fi

�� Di ,

where pi and qi are projections.
(ii) If there are morphisms gi : X → Ci , where X is an object

in C and i = 1, 2, prove that there is a unique morphism
(g1, g2) making the following diagram commute:

X
g1

,,'''
'''

'''
(g1,g2)��

g2

����
���

���
�

C1 C1 " C2p1
		

p2
�� C2,

where the pi are projections.
Hint. Define an analog of the diagonal �X : X → X × X
in Sets, given by x �→ (x, x), and then define (g1, g2) =
(g1 " g2)�X .
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5.15 Let C be a category having finite products and a terminal object �.
A group object in C is a quadruple (G, μ, η, ε), where G is an object
in C, μ : G"G → G, η : G → G, and ε : � → G are morphisms,
so that the following diagrams commute:
Associativity:

G " G " G
1"μ ��

μ" 1
��

G " G
μ
��

G " G μ
�� G,

Identity:

G " �
1" ε ��

λ ��



 G " G

μ
��

� " G
ε " 1		

ρ,,���
���

���

G,

where λ and ρ are the isomorphisms in Exercise 5.13.
Inverse:

G
(1,η)��

ω
��

G " G
μ
��

G
(η,1)		

ω
��

� ε
�� G �,

ε
		

where ω : G → � is the unique morphism to the terminal object.
(i) Prove that a group object in Sets is a group.
(ii) Prove that a group object in Groups is an abelian group.
(iii) Define a morphism between group objects in a category

C, and prove that all the group objects form a subcategory
of C.

(iv) Define the dual notion cogroup object, and prove the dual
of (iii).

*5.16 Prove that every left exact covariant functor T : RMod → Ab pre-
serves pullbacks. Conclude that if B and C are submodules of a
module A, then for every module M , we have

HomR(M, B ∩ C) = HomR(M, B) ∩ HomR(M,C).

5.2 Limits

We now discuss inverse limit, a construction generalizing products, pullbacks,
kernels, equalizers, and intersections, and direct limit, which generalizes co-
products, pushouts, cokernels, coequalizers, and unions.
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Definition. Given a partially ordered set I and a category C, an inverse sys-
tem in C is an ordered pair

(
(Mi )i∈I , (ψ

j
i ) j�i

)
, abbreviated {Mi , ψ

j
i }, where

(Mi )i∈I is an indexed family of objects in C and (ψ
j

i : M j → Mi ) j�i is an
indexed family of morphisms for which ψ i

i = 1Mi for all i , and such that the
following diagram commutes whenever k � j � i .

Mk
ψk

i ��

ψk
j

���
��

��
� Mi

M j
ψ

j
i

��((((((

A partially ordered set I , when viewed as a category, has as its objects
the elements of I and as its morphisms exactly one morphism κ i

j : i → j
whenever i  j . It is easy to see that inverse systems in C over I are merely
contravariant functors M : I → C; in our original notation, M(i) = Mi and
M(κ i

j ) = ψ
j

i .

Example 5.16.

(i) If I = {1, 2, 3} is the partially ordered set in which 1  2 and 1  3,
then an inverse system over I is a diagram of the form

A
g
��

B
f

�� C.

(ii) If M is a family of submodules of a module A, then it can be partially
ordered under reverse inclusion; that is, M  M ′ in case M ⊇ M ′. For
M  M ′, the inclusion map M ′ → M is defined, and it is easy to see
that the family of all M ∈M with inclusion maps is an inverse system.

(iii) If I is equipped with the discrete partial order, that is, i  j if and
only if i = j , then an inverse system over I is just an indexed family of
modules.

(iv) If N is the natural numbers with the usual partial order, then an inverse
system over N is a diagram

M0 ← M1 ← M2 ← · · ·
(we have hidden identities Mn → Mn and composites Mn+k → Mn).

(v) If J is an ideal in a commutative ring R, then its nth power is defined
by

J n =
{∑

a1 · · · an : ai ∈ J
}
.
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Each J n is an ideal, and there is a descending sequence

R ⊇ J ⊇ J 2 ⊇ J 3 ⊇ · · · .
If A is an R-module, there is a descending sequence of submodules

A ⊇ J A ⊇ J 2 A ⊇ J 3 A ⊇ · · · .
If m ≥ n, define ψm

n : A/J m A → A/J n A by

ψm
n : a + J m A �→ a + J n A

(these maps are well-defined, for m ≥ n implies J m A ⊆ J n A). It is
easy to see that {A/J n A, ψm

n } is an inverse system over N.

(vi) Let G be a group and let N be the family of all the normal subgroups
N of G having finite index. Partially order N by reverse inclusion:
if N  N ′ in N , then N ′ ⊆ N , and define ψN ′

N : G/N ′ → G/N
by gN ′ �→ gN . It is easy to see that the family of all such quotients
together with the maps ψN ′

N form an inverse system over N . �

Definition. Let I be a partially ordered set, let C be a category, and let
{Mi , ψ

j
i } be an inverse system in C over I . The inverse limit (also called

projective limit or limit) is an object lim←− Mi and a family of projections
(αi : lim←− Mi → Mi )i∈I such that

(i) ψ
j

i α j = αi whenever i  j ,

(ii) for every X ∈ obj(C) and all morphisms fi : X → Mi satisfying
ψ

j
i f j = fi for all i  j , there exists a unique morphism θ : X →

lim←− Mi making the diagram commute.

lim←− Mi

α j

--

αi

��		
			

		
X

θ		� � � � � � �
fi

�����
��

��

f j

..))
))
))
))
))
))

Mi

M j

ψ
j

i

��

The notation lim←− Mi for an inverse limit is deficient in that it does not
display the morphisms of the corresponding inverse system (and lim←− Mi does
depend on them; see Exercise 5.17 on page 254). However, this is standard
practice.

As with any object defined as a solution to a universal mapping problem,
the inverse limit of an inverse system is unique (to unique isomorphism) if it
exists; it is a terminal object in a suitable category.

Here is a fancy rephrasing of inverse limit, using the notion of constant
functor.
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Definition. Let C be a category and let A ∈ obj(C). The constant functor
at A is the functor F : C → C with F(C) = A for every C ∈ obj(C) and with
F( f ) = 1A for every morphism f in C.

Remark. View the partially ordered index set I as a category, so that an
inverse system {Mi , ϕ

j
i } is a contravariant functor M : I → C, where M(i) =

Mi for all i ∈ I . If L = lim←− Mi , then its projections αi : L → Mi give
commutative diagrams

L
αi �� Mi

L

1L

��

α j
�� M j .

ϕ
j
i

��

More concisely, the projections constitute a natural transformation α : |L| →
M , where |L| : I → C is the constant functor at L . Thus, the inverse limit is
the ordered pair (L , α) ∈ C × (Cop)I . �

Proposition 5.17. The inverse limit of any inverse system {Mi , ψ
j

i } of left
R-modules over a partially ordered index set I exists.

Proof. Define a thread to be an element (mi ) ∈ ∏
Mi such that mi =

ψ
j

i (m j ) whenever i  j , and define L to be the set of all threads. It is
easy to check that L is a submodule of

∏
i Mi . If pi is the projection of the

direct product to Mi , define αi : L → Mi to be the restriction pi |L . It is clear
that ψ j

i α j = αi when i  j .
Let X be a module, and let there be given R-maps fi : X → Mi satisfying

ψ
j

i f j = fi for all i  j . Define θ : X →∏
Mi by

θ(x) = ( fi (x)).

That im θ ⊆ L follows from the given equation ψ
j

i f j = fi for all i  j . Also,
θ makes the inverse limit diagram commute: αiθ : x �→ ( fi (x)) �→ fi (x).
Finally, θ is the unique map X → L making the diagram commute for all
i  j . If ϕ : X → L , then ϕ(x) = (mi ) and αiϕ(x) = mi . Thus, if ϕ satisfies
αiϕ(x) = fi (x) for all i and all x , then mi = fi (x), and so ϕ = θ . We
conclude that L ∼= lim←− Mi . •

Inverse limits in categories other than module categories may exist; for
example, inverse limits of commutative rings always exist, as do inverse limits
of groups or of topological spaces.

Example 5.18. The reader should supply verifications of the following as-
sertions in which we describe the inverse limit of inverse systems in Exam-
ple 5.16.
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(i) If I is the partially ordered set {1, 2, 3} with 1 � 3 and 2 � 3, then an
inverse system is a diagram

A
g
��

B
f

�� C

X

""��������������

θ���
�

�

h

((*
**

**
**

**
**

K
i��

�� 0
0��

B
f

�� C

and the inverse limit is the pullback. In RMod, if A = {0}, then ker f is
a pullback (and is an equalizer), and so K = ker f may be regarded as
an inverse limit. In more detail, the kernel of f is an ordered pair (K , i),
where i : K → B satisfies f i = 0 and, given any map h : X → B with
f h = 0, there exists a unique θ : X → K with iθ = h.

(ii) We have seen that the intersection of two submodules of a module is
a special case of pullback. If M is a family of submodules M of a
module, then M and inclusion maps form an inverse system if M is
partially ordered by reverse inclusion [see Example 5.16(ii)].

Let us first consider the special case when M is closed under finite
intersections; that is, if M, N ∈ M, then M ∩ N ∈ M. For example,
a nested family M (if M, N ∈ M, then either M ⊆ N or N ⊆ M) is
closed under finite intersections.

⋂
M∈M M

pN

��

pM

����
���

���
X

θ		� � � � � � �
fM

����
��

��

fN

..++
++
++
++
++
+

M

N

ψM
N

��

Let us show that
⋂

M∈M M is the inverse limit of {M, ψM
N } (where

ψM
N : M → N is the inclusion when M  N ; that is, when N ⊆ M).

For each M ∈ M, define pM :
⋂

M∈M M → M to be the inclusion
map. If x ∈ X and M ∈ M, then fM (x) ∈ M . We claim that fM (x) =
fN (x) for all M, N ∈ M. If D ∈ M and D ⊆ M , then fD = ψD

M fM
and fD(x) = fM (x). Since M is closed under finite intersections,
M, N ∈ M implies D = M ∩ N ∈ M, and so fM (x) = fM∩N (x) =
fN (x). Define θ : X → ⋂

M∈M M by θ(x) = fM (x). We have just
shown that θ(x) is independent of the choice of M ; moreover, θ(x) =
fM (x) ∈ M for all M ∈M, and so θ(x) ∈⋂M∈M M .

In general, define M′ = {Mi1 ∩ · · · ∩ Min : Mi j ∈M, n ≥ 1}; then M′
is closed under finite intersections and

⋂
M∈M′ M =⋂M∈M M .
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(iii) If I is a discrete index set, then the inverse system {Mi : i ∈ I } in
RMod has the direct product

∏
i Mi as its inverse limit. Indeed, this is

precisely the categorical definition of a product. �

Example 5.19.

(i) If J is an ideal in a commutative ring R and M is an R-module, then the
inverse limit of {M/J n M, ψm

n } [in Example 5.16(v)] is usually called
the J -adic completion of M ; let us denote it by M̂ .

Recall that a sequence (xn) in a metric space X with metric d converges
to a limit y ∈ X if, for every ε > 0, there is an integer N so that
d(xn, y) < ε whenever n ≥ N ; we denote (xn) converging to y by

xn → y.

A difficulty with this definition is that we cannot tell if a sequence is
convergent without knowing what its limit is. A sequence (xn) is a
Cauchy sequence if, for every ε > 0, there is N so that d(xm, xn) < ε

whenever m, n ≥ N . The virtue of this condition on a sequence is that
it involves only the terms of the sequence and not its limit. If X = R,
then a sequence is convergent if and only if it is a Cauchy sequence. In
general metric spaces, however, we can prove that convergent sequences
are Cauchy sequences, but the converse may be false. For example, if
X is the set of all strictly positive real numbers with the usual metric
|x − y|, then (1/n) is a Cauchy sequence in X that does not converge
(because its limit 0 does not lie in X ). A metric space X is complete if
every Cauchy sequence in X converges to a limit in X .

Definition. A completion of a metric space (X, d) is an ordered pair
(X̂ , ϕ : X → X̂) such that

(a) (X̂ , d̂) is a complete metric space,

(b) ϕ is an isometry; that is, d̂(ϕ(x), ϕ(y)) = d(x, y) for all x, y ∈ X ,

(c) ϕ(X) is a dense subspace of X̂ ; that is, for every x̂ ∈ X̂ , there is a
sequence (xn) in X with ϕ(xn) → x̂ .

It can be proved that completions exist (Kaplansky, Set Theory and Met-
ric Spaces, p. 92) and that any two completions of a metric space X are
isometric: if (X̂ , ϕ) and (Y, ψ) are completions of X , then there exists
a unique bijective isometry θ : X̂ → Y with ψ = θϕ. Indeed, a com-
pletion of X is just a solution to the obvious universal mapping prob-
lem (density of imϕ gives the required uniqueness of θ). One way to
prove existence of a completion is to define its elements as equivalence
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classes of Cauchy sequences (xn) in X , where we define (xn) ≡ (yn) if
d(xn, yn) → 0.

Let us return to the inverse system {M/J n M, ψm
n }. A thread

(a1 + J M, a2 + J 2 M, a3 + J 3 M, . . .) ∈ lim←−(M/J n M)

satisfies the condition ψm
n (am + J m M) = am + J n M for all m ≥ n, so

that
am − an ∈ J n M whenever m ≥ n.

This suggests the following metric on M in the (most important) special
case when

⋂∞
n=1 J n M = {0}. If x ∈ M and x 	= 0, then there is i with

x ∈ J i M and x /∈ J i+1 M ; define ‖x‖ = 2−i ; define ‖0‖ = 0. It
is a routine calculation to see that d(x, y) = ‖x − y‖ is a metric on
M (without the intersection condition, ‖x‖ would not be defined for
a nonzero x ∈ ⋂∞

n=1 J n M). Moreover, if a sequence (an) in M is a
Cauchy sequence, then it is easy to construct an element (bn + J M) ∈
lim←− M/J n M that is a limit of (ϕ(an)). In particular, when M = Z and
J = (p), where p is a prime, then the completion Zp is called the ring
of p-adic integers. It turns out that Zp is a domain, and Qp = Frac(Zp)

is called the field of p-adic numbers.

(ii) We have seen, in Example 5.16(vi), that the family N of all normal
subgroups of finite index in a group G forms an inverse system; the
inverse limit lim←− G/N , denoted by Ĝ, is called the profinite completion
of G. There is a map G → Ĝ, namely, g �→ (gN ), and it is an injection
if and only if G is residually finite; that is,

⋂
N∈N N = {1}. It is known,

for example, that every free group is residually finite.

There are some lovely results obtained making use of profinite comple-
tions. If r is a positive integer, a group G is said to have rank r if every
subgroup of G can be generated by r or fewer elements. If G is a p-
group (every element in G has order a power of p) of rank r that is resid-
ually finite, then G is isomorphic to a subgroup of GL(n,Zp) for some
n (not every residually finite group admits such a linear imbedding).
See Dixon–du Sautoy–Mann–Segal, Analytic Pro-p Groups, p. 98. �

Example 5.20 (Griffith). Injective envelope is not an additive functor;
that is, there is no additive functor T : Ab → Ab with T (G) = Env(G) for
all G ∈ obj(Ab). If such a functor exists, then Exercise 2.21 on page 68
says that the function T∗ : End(G) → End(Env(G)), given by f �→ T f , is a
nonzero ring homomorphism. Now if G = Ip, then Env(Ip) ∼= Z(p∞) (the
Prüfer group), End(Ip) ∼= Fp, and End(Z(p∞)) ∼= Zp (by Exercise 5.20 on
page 254). But the additive group of Fp is finite, while the additive group of
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Zp is torsion-free (by Exercise 5.20). Hence, there can be no nonzero additive
map End(Ip) → End(Env(Ip)), and so Env is not an additive functor. �

We now prove that covariant Hom functors preserve inverse limits; The-
orem 2.30 is the special case involving a discrete index set. We will give
another proof of this after we introduce adjoint functors.

Proposition 5.21. If {Mi , ψ
j

i } is an inverse system of left R-modules, then
there is a natural isomorphism

HomR(A, lim←− Mi ) ∼= lim←−HomR(A, Mi )

for every left R-module A.

Proof. This statement follows from inverse limit solving a universal map-
ping problem. In more detail, HomR(A,�) carries the inverse system {Mi , ψ

j
i }

into the inverse system {HomR(A, Mi ), ψ
j

i∗}. Consider the diagram

lim←−HomR(A, Mi )

β j

����
��

��
��

��
��

��
��

� βi

**%%%
%%%%

%%%
HomR(A, lim←− Mi )

θ		� � � � � � � � � � �
αi ∗

##,,,,
,,,,

,,

α j ∗
��(((

((
((

((
((

((
((

((

HomR(A, Mi )

HomR(A, M j ).

ψ
j

i ∗
��

We may assume that lim←−HomR(A, Mi ) is constructed as in Proposition 5.17,
so that its elements are threads (gi ) ∈

∏
i HomR(A, Mi ) and βi : (gi ) �→ gi .

The maps αi : lim←− Mi → Mi are the projections (mi ) �→ mi , and αi∗ are the
induced maps.

Define θ : HomR(A, lim←− Mi ) → lim←−HomR(A, Mi ) by f �→ (αi f ); it
is easy to check that θ( f ) is a thread and that θ is a homomorphism. The
diagram commutes, for if f ∈ HomR(A, lim←− Mi ), then

βiθ( f ) = βi
(
(αi f )

) = αi f = αi∗( f ).

To see that θ is injective, let θ( f ) = 0, where f ∈ HomR(A, lim←− Mi ).
Then 0 = θ( f ) = (αi f ), so that αi f = 0 for all i . If a ∈ A, then f (a) =
(mi ), say. Hence, αi f (a) = mi = 0 and f = 0.

To see that θ is surjective, take g = (gi ) ∈ lim←−HomR(A, Mi ). Since (gi )

is a thread, the right-hand triangle in the following diagram commutes.

lim←− Mi

α j
��

αi

����
���

�
A

g′		� � � � � � �
βi g

�����
��

�

β j g

//--
--
--
--
--

Mi

M j

ψ
j

i

��
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But this says that g = (gi ) = (αi g′) = θ(g′); that is, θ is surjective.
Naturality means that if ϕ : A → B, then the following diagram com-

mutes.
HomR(B, lim←− Mi )

θ �� lim←−HomR(B, Mi )

HomR(A, lim←− Mi )
θ ��

ϕ∗
��

lim←−HomR(A, Mi )

ϕ∗
��

The straightforward proof is left to the reader. •

Remark. Once we define a morphism of inverse systems, then it will be
clear that the isomorphism in Proposition 5.21 is also natural in the second
variable. �

We now consider the dual construction.

Definition. Given a partially ordered set I and a category C, a direct sys-
tem in C is an ordered pair

(
(Mi )i∈I , (ϕ

i
j )i j

)
, abbreviated {Mi , ϕ

i
j }, where

(Mi )i∈I is an indexed family of objects in C and (ϕi
j : M j → Mi )i j is an

indexed family of morphisms for which ϕi
i = 1Mi for all i , and such that the

following diagram commutes whenever i  j  k.

Mi
ϕi

k ��

ϕi
j

���
��

��
� Mk

M j
ϕ

j
k

��((((((

A partially ordered set I , when viewed as a category, has as its objects
the elements of I and as its morphisms exactly one morphism κ i

j when i  j .
It is easy to see that direct systems in C over I are merely covariant functors
M : I → C; in our original notation, M(i) = Mi and M(κ i

j ) = ϕi
j .

Example 5.22.

(i) If I = {1, 2, 3} is the partially ordered set in which 1  2 and 1  3,
then a direct system over I is a diagram of the form

A
f ��

g
��

B

C.

(ii) If I is a family of submodules of a module A, then it can be partially
ordered under inclusion; that is, M  M ′ in case M ⊆ M ′. For M 
M ′, the inclusion map M → M ′ is defined, and it is easy to see that the
family of all M ∈ I with inclusion maps is a direct system.
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(iii) If I is equipped with the discrete partial order, then a direct system over
I is just a family of modules indexed by I . �

Definition. Let I be a partially ordered set, let C be a category, and let
{Mi , ϕ

i
j } be a direct system in C over I . The direct limit (also called inductive

limit or colimit) is an object lim−→ Mi and insertion morphisms (αi : Mi →
lim−→ Mi )i∈I such that

(i) α jϕ
i
j = αi whenever i  j ,

(ii) Let X ∈ obj(C), and let there be given morphisms fi : Mi → X sat-
isfying f jϕ

i
j = fi for all i  j . There exists a unique morphism

θ : lim−→ Mi → X making the diagram commute.

lim−→ Mi
θ ��������� X

Mi

ϕi
j ��

αi
��							

fi
$$�������

M j

α j

00

f j

11

The notation lim−→ Mi for a direct limit is deficient in that it does not display
the morphisms of the corresponding direct system (and lim−→ Mi does depend
on them; see Exercise 5.17 on page 254). However, this is standard practice.

As with any object defined as a solution to a universal mapping problem,
the direct limit of a direct system is unique (to unique isomorphism) if it
exists; it is an initial object in a suitable category.

Here is a fancy rephrasing of direct limit similar to the remark on page 232.
View the partially ordered index set I as a category, so that a direct system
{Mi , ϕ

i
j } is a (covariant) functor M : I → C, where M(i) = Mi for all i ∈ I .

If L = lim−→ Mi , then its insertion morphisms αi : Mi → L give commutative
diagrams:

L
1L ��

Mi

ϕi
j��

αi		

L M j .α j
		

More concisely, the insertion morphisms constitute a natural transformation
α : M → |L|, where |L| : I → C is the constant functor at L (constant func-
tors are both covariant and contravariant). Thus, the direct limit is the ordered
pair (L , α) ∈ C × C I .
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Proposition 5.23. The direct limit of any direct system {Mi , ϕ
i
j } of left R-

modules over a partially ordered index set I exists.

Proof. For each i ∈ I , let λi be the morphism of Mi into the direct sum⊕
i Mi . Define

D =
(⊕

i

Mi

)
/S,

where S is the submodule of
⊕

Mi generated by all elements λ jϕ
i
j mi −λi mi

with mi ∈ Mi and i  j . Now define insertion morphisms αi : Mi → D by

αi : mi �→ λi (mi )+ S.

It is routine to check that D solves the universal mapping problem, and so
D ∼= lim−→ Mi . •

Thus, each element of lim−→ Mi has a representative of the form
∑

λi mi+S.
The argument in Proposition 5.23 can be modified to prove that direct lim-

its in other categories exist; for example, direct limits of commutative rings,
of groups, or of topological spaces always exist.

Example 5.24. The reader should supply verifications of the following as-
sertions, in which we describe the direct limit of some direct systems in Ex-
ample 5.22.

(i) If I is the partially ordered set {1, 2, 3} with 1  2 and 1  3, then the
diagram

A
f ��

g
��

B

C

is a direct system and its direct limit is the pushout. In particular, if
g = 0, then coker f is a pushout, and so cokernel may be regarded as a
direct limit.

(ii) If I is a discrete index set, then the direct system is just the indexed fam-
ily {Mi : i ∈ I }, and the direct limit is the direct sum: lim−→ Mi ∼=

⊕
i Mi ,

for the submodule S in the construction of lim−→ Mi is {0}. Alternatively,
this is just the categorical definition of a coproduct. �

Definition. A covariant functor F : A→ C preserves direct limits if, when-
ever (lim−→ Ai , (αi : Ai → lim−→ Ai )) is a direct limit of a direct system {Ai , ϕ

i
j }

in A, then (F(lim−→ Ai ), (Fαi : F Ai → F(lim−→ Ai ))) is a direct limit of the

direct system {F Ai , Fϕi
j } in C.
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Dually, a covariant functor F : A → C preserves inverse limits if, when-
ever (lim←− Ai , (αi : lim←− Ai → Ai )) is an inverse limit of an inverse system

{Ai , ψ
j

i } in A, then (F(lim←− Ai ), (Fαi : F(lim←− Ai ) → F Ai )) is an inverse

limit of the inverse system {F Ai , Fψ
j

i } in C.
A contravariant functor F : A → C converts direct limits to inverse lim-

its if, whenever {Ai , ϕ
i
j } is a direct system and lim−→ Ai has insertion mor-

phisms αi : Ai → lim−→ Ai , then F(lim−→ Ai ) ∼= lim←− F Ai and its projections are
Fαi : F(lim←− Ai ) → F Ai . There is a similar definition of a contravariant func-
tor converting inverse limits to direct limits.

Let us illustrate these definitions.

Proposition 5.25. Let F : RMod → Ab be a covariant functor. Then F
preserves kernels if and only if F is left exact, and F preserves cokernels if
and only if F is right exact.

Proof. Let 0 → A′ i−→ A
p−→ A′′ be exact. If F preserves kernels, then

(F A′, Fi) is a kernel of Fp, and Example 5.12(iii) shows that Fi is an injec-
tion; that is, F is left exact. Conversely, if F is left exact, then (ker Fp, Fi)
is a kernel of Fp, and so F preserves kernels. The proof that right exactness
and preserving cokernels are equivalent is dual. •

The reader may wonder why we have mentioned kernel and cokernel but
not image. If f : A → B in RMod, then coker f = B/ im f , and so

im f = ker(B → coker f ).

When the index set is discrete, it makes sense to say that a functor pre-
serves direct products or converts direct sums. In Proposition 5.21, we proved
that covariant Hom functors preserve inverse limits. We now generalize The-
orem 2.31, which says that HomR(

⊕
i Ai , B) ∼=∏i HomR(Ai , B), by show-

ing that HomR(�, B) converts direct limits to inverse limits.

Proposition 5.26. If {Mi , ϕ
i
j } is a direct system of left R-modules, then there

is an isomorphism

θ : HomR(lim−→ Mi , B) → lim←−HomR(Mi , B)

for every left R-module B.

Proof. Since HomR(�, B) is a contravariant functor, {HomR(Mi , B), ϕi∗
j }

is an inverse system. The isomorphism θ is defined by f �→ ( f αi ), where αi
are the insertion morphisms of the direct limit lim−→ Mi ; the proof, modeled on
that of Proposition 5.21, is left to the reader. •



5.2 Limits 241

Remark. Once we define a morphism of direct systems, then it will be clear
that the isomorphism in Proposition 5.26 is natural. �

We now prove that A⊗R � preserves direct limits. This also follows from
Theorem 5.43, a result about adjoint functors, but the proof here is based on
the construction of direct limits.

Theorem 5.27. If A is a right R-module, then A ⊗R � preserves direct
limits. Thus, if {Bi , ϕ

i
j } is a direct system of left R-modules over a partially

ordered index set I , then there is a natural isomorphism

A ⊗R lim−→ Bi ∼= lim−→(A ⊗R Bi ).

Proof. Note that Exercise 5.18 on page 254 shows that {A⊗R Bi , 1⊗ ϕi
j } is

a direct system, so that lim−→(A ⊗R Bi ) makes sense.
We begin by constructing lim−→ Bi as the cokernel of a certain map between

direct sums. For each pair i, j ∈ I with i  j in the partially ordered index
set I , define Bi j = Bi × { j}, and denote its elements (bi , j) by bi j . View
Bi j as a module isomorphic to Bi via the map bi �→ bi j , where bi ∈ Bi , and
define σ :

⊕
i j Bi j →

⊕
i Bi by

σ : bi j �→ λ jϕ
i
j bi − λi bi ,

where λi is the injection of Bi into the direct sum. Note that im σ = S, the
submodule arising in the construction of lim−→ Bi in Proposition 5.23. Thus,

coker σ = (
⊕

Bi )/S ∼= lim−→ Bi , and there is an exact sequence3

⊕
Bi j

σ→
⊕

Bi → lim−→ Bi → 0.

Right exactness of A ⊗R � gives exactness of

A ⊗R

(⊕
Bi j

)
1⊗σ−→ A ⊗R

(⊕
Bi

)
→ A ⊗R (lim−→ Bi ) → 0.

By Theorem 2.65, the map τ : A⊗R
(⊕

i Bi
)→⊕

i (A⊗R Bi ), given by

τ : a ⊗ (bi ) �→ (a ⊗ bi ),

is a natural isomorphism, and so there is a commutative diagram

A ⊗⊕ Bi j
1⊗σ ��

τ
��

A ⊗⊕ Bi

τ ′��

�� A ⊗ lim−→ Bi ��

��

0

⊕
(A ⊗ Bi j )

σ̃ ��⊕(A ⊗ Bi ) �� lim−→(A ⊗ Bi ) �� 0,

3The astute reader will recognize lim−→ Bi as a coequalizer.
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where τ ′ is another instance of the isomorphism of Theorem 2.65, and

σ̃ : a ⊗ bi j �→ (1 ⊗ λ j )(a ⊗ ϕi
j bi )− (1 ⊗ λi )(a

′ ⊗ bi ).

By the Five Lemma, there is an isomorphism A ⊗R lim−→ Bi → coker σ̃ ∼=
lim−→(A ⊗R Bi ), the direct limit of the direct system {A ⊗R Bi , 1 ⊗ ϕi

j }.
The proof of naturality is left to the reader. •
The reader may have observed that the hypothesis of Theorem 5.27 is too

strong. We really proved that any right exact functor that preserves direct sums
must preserve all direct limits (for these are the only properties of A ⊗R �
that we used). But this generalization is only virtual, for we will soon prove,
in Theorem 5.45, that such functors must be tensor products. The dual of
Theorem 2.65 also holds, and it has a similar proof; every left exact functor
that preserves products must preserve all inverse limits (see Exercise 5.28 on
page 256).

There is a special kind of partially ordered index set that is useful for
direct limits.

Definition. A directed set is a partially ordered set I such that, for every
i, j ∈ I , there is k ∈ I with i  k and j  k.

Example 5.28. If I is the partially ordered set {1, 2, 3} with 1  2 and
1  3, then I is not a directed set. �

Example 5.29.

(i) If I is a simply ordered family of submodules of a module A (that is, if
M, M ′ ∈ I, then either M ⊆ M ′ or M ′ ⊆ M), then I is a directed set.

(ii) If I is a family of submodules of a left R-module M , then it can be
partially ordered by inclusion; that is, S  S′ if and only if S ⊆ S′. If
S  S′, then the inclusion map S → S′ is defined. If S, S′ ∈ I, then
S + S′ ∈ I, and so the family of all S ∈ I is a directed set.

(iii) If (Mi )i∈I is some family of modules, and if I is a discrete partially
ordered index set, then I is not directed. However, if we consider the
family F of all finite partial sums

Mi1 ⊕ · · · ⊕ Min ,

then F is a directed set under inclusion.

(iv) If A is a left R-module, then the family Fin(A) of all the finitely gen-
erated submodules of A is partially ordered by inclusion, as in part (ii),
and is a directed set.
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(v) If R is a domain and Q = Frac(R), then the family of all cyclic R-
submodules Q of the form 〈1/r〉, where r ∈ R and r 	= 0, is a partially
ordered set, as in part (ii); here, it is a directed set under inclusion, for
given 〈1/r〉 and 〈1/s〉, then each is contained in 〈1/rs〉.

(vi) Let X be a topological space. If x ∈ X , let �(x) be the family of all
those open sets containing x . Partially order �(x) by reverse inclusion:

U  V if V ⊆ U.

Notice that �(x) is directed: given U, V ∈ �(x), then U ∩ V ∈ U0 and
U  U ∩ V and V  U ∩ V .

(vii) Abstract simplicial complexes have geometric realizations that are topo-
logical spaces. Finite simplicial complexes are homeomorphic to cer-
tain subspaces of Euclidean space, while an infinite simplicial complex
X is, by definition, a CW-complex; that is, it is a Hausdorff space that
is closure finite with the weak topology. Direct limits exist in Top2, the
category of all Hausdorff spaces (they are quotients of coproducts), and
X ≈ lim−→K K , where K is the family of all finite simplicial complexes
in X . �

There are two reasons to consider direct systems with directed index sets.
The first is that a simpler description of the elements in the direct limit can be
given; the second is that lim−→ preserves short exact sequences.

Lemma 5.30. Let {Mi , ϕ
i
j } be a direct system of left R-modules over a di-

rected index set I , and let λi : Mi → ⊕
Mi be the i th injection, so that

lim−→ Mi = (
⊕

Mi )/S, where S = 〈λ jϕ
i
j mi − λi mi : mi ∈ Mi and i  j

〉
.

(i) Each element of lim−→ Mi has a representative of the form λi mi + S
(instead of

∑
i λi mi + S).

(ii) λi mi + S = 0 if and only if ϕi
t (mi ) = 0 for some t � i .

Proof.

(i) As in the proof Proposition 5.23, the existence of direct limits, lim−→ Mi =
(
⊕

Mi )/S, and so a typical element x ∈ lim−→ Mi has the form x =∑
λi mi + S. Since I is directed, there is an index j with j � i for all

i occurring in the sum for x . For each such i , define bi = ϕi
j mi ∈ M j ,

so that the element b, defined by b =∑i bi , lies in M j . It follows that∑
λi mi − λ j b =

∑
(λi mi − λ j b

i )

=
∑

(λi mi − λ jϕ
i
j mi ) ∈ S.

Therefore, x =∑ λi mi + S = λ j b + S, as desired.
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(ii) If ϕi
t mi = 0 for some t � i , then

λi mi + S = λi mi + (λtϕ
i
t mi − λi mi )+ S = S.

Conversely, if λi mi + S = 0, then λi mi ∈ S, and there is an expression

λi mi =
∑

j

a j (λkϕ
j
k m j − λ j m j ) ∈ S,

where a j ∈ R. We are going to normalize this expression; first, we
introduce the following notation for relators: if j  k, define

r( j, k,m j ) = λkϕ
j
k m j − λ j m j .

Since a jr( j, k,m j ) = r( j, k, a j m j ), we may assume that the notation
has been adjusted so that

λi mi =
∑

j

r( j, k,m j ).

As I is directed, we may choose an index t ∈ I larger than any of the
indices i, j, k occurring in the last equation. Now

λtϕ
i
t mi = (λtϕ

i
t mi − λi mi )+ λi mi

= r(i, t,mi )+ λi mi

= r(i, t,mi )+
∑

j

r( j, k,m j ).

Next,

r( j, k,m j ) = λkϕ
j
k m j − λ j m j

= (λtϕ
j
t m j − λ j m j )+

[
λtϕ

k
t (−ϕ

j
k m j )− λk(−ϕ

j
k m j )

]
= r( j, t,m j )+ r(k, t,−ϕ

j
k m j ),

because ϕk
t ϕ

i
k = ϕi

t , by the definition of direct system. Hence,

λtϕ
i
t mi =

∑
�

r(�, t, x�),

where x� ∈ M�. But it is easily checked, for �  t , that

r(�, t,m�)+ r(�, t,m′
�) = r(�, t,m� + m′

�).
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Therefore, we may amalgamate all relators with the same smaller index
� and write

λtϕ
i
t mi =

∑
�

r(�, t, x�)

=
∑
�

λtϕ
�
t x� − λ�x�

= λt

(∑
�

ϕ�
t x�

)
−
∑
�

λ�x�,

where x� ∈ M� and all the indices � are distinct. The unique expression
of an element in a direct sum allows us to conclude, if � 	= t , that
λ�x� = 0; it follows that x� = 0, for λ� is an injection. The right
side simplifies to λtϕ

t
t mt − λt mt = 0, because ϕt

t is the identity. Thus,
the right side is 0 and λtϕ

i
t mi = 0. Since λt is an injection, we have

ϕi
t mi = 0, as desired. •

When the index set is directed, there is a simpler description of direct
limits in terms of orbit spaces.

Corollary 5.31.

(i) Let {Mi , ϕ
i
j } be a direct system of left R-modules over a directed index

set I , and let
⊔

i Mi be their disjoint union. For mi ∈ Mi ,m j ∈ M j ,
define mi ∼ m j if they have a common successor; that is, there ex-

ists an index k with k � i, j such that ϕi
kmi = ϕ

j
k m j . Then ∼ is an

equivalence relation on
⊔

i Mi .

(ii) The orbit space L = (
⊔

i Mi )/∼ is a left R-module.

(iii) L ∼= lim−→ Mi ; hence, elements of lim−→ Mi are equivalence classes [mi ],

where mi ∈ Mi , and [mi ] + [m′
j ] = [ϕi

kmi + ϕ
j
k m′

j ], where k � i, j .

Proof.

(i) Reflexivity and symmetry are obvious. For transitivity, assume that
ϕi

pmi = ϕ
j
pm j for some p � i, j and ϕ

j
q m j = ϕk

qmk for some q � j, k.
Since I is directed, there is an index r � p, q. Using the commutativity
relation between the maps of the direct system, we have ϕi

r mi = ϕk
r mk .

(ii) Denote the equivalence class of mi by [mi ]. It is routine to check that
the operations

r [mi ] = [rmi ] if r ∈ R,

[mi ] + [m′
j ] = [ϕi

kmi + ϕ
j
k m′

j ], where k � i, j,

are well-defined and that they give L the structure of a left R-module.
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(iii) As in the proof of Proposition 5.23, let lim−→ Mi =
(⊕

i Mi
)
/S, where

S is generated by {λ jϕ
i
j mi − λi mi : mi ∈ Mi and i  j}. Define

f : L → lim−→ Mi by f : [mi ] �→ mi + S. It is routine to check that f
is a well-defined R-map. Since I is directed, Lemma 5.30(i) shows that
f is surjective. If 0 = f ([mi ]) = mi + S, then Lemma 5.30(ii) says
that ϕi

t mi = 0 for some t � i ; that is, [mi ] = [0]. Therefore, f is an
isomorphism. •

Example 5.32. We now compute the direct limits of some of the direct
systems in Example 5.29.

(i) Let I be a simply ordered family of submodules of a module A; that is,
if M, M ′ ∈ I, then either M ⊆ M ′ or M ′ ⊆ M . Then I is a directed
set, and lim−→ Mi ∼=

⋃
i Mi .

(ii) If (Mi )i∈I is some family of modules, then F , all finite partial sums, is
a directed set under inclusion, and lim−→ Mi ∼=

⊕
i Mi .

(iii) If A is a module, then the family Fin(A) of all the finitely generated
submodules of A is a directed set and lim−→ Mi ∼= A.

(iv) If R is a domain and Q = Frac(R), then the family of all cyclic R-
submodules Mr ⊆ Q of the form 〈1/r〉, where r ∈ R and r 	= 0, forms
a directed set under inclusion, and lim−→ Mr ∼= Q; that is, Q is a direct
limit of modules Mr ∼= R.

(v) In Example 1.14, we considered the presheaf P over a topological space
X , defined on an open U ⊆ X by P(U ) = {

continuous f : U → R
}
.

For a point p ∈ X , let U be the family of all open neighborhoods U
of p partially ordered by reverse inclusion. As in Example 5.29(vi), U
is a directed set. If f, g are continuous functions U,U ′ → R, where
U,U ′ ∈ U , define f ∼ g in case there is some neighborhood W of p
with W ⊆ U ∩U ′ such that f |W = g|W . Now ∼ is an equivalence re-
lation (transitivity uses the hypothesis that U is directed), and the equiv-
alence class [ f, p] of f is called the germ of f at p. By Corollary 5.31,
a germ [ f, p] is just an element of lim−→P(W ), and we may view [ f, p]
as a typical element of this direct limit. �

Recall that a direct system {Ai , α
i
j } in a category C over a partially ordered

index set I can be construed as a covariant functor A : I → C, where A(i) =
Ai and A(κ i

j ) = αi
j .

Definition. Let A = {Ai , α
i
j } and B = {Bi , β

i
j } be direct systems over the

same (not necessarily directed) index set I . A morphism of direct systems is
a natural transformation r : A → B.
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In more detail, r is an indexed family of homomorphisms

r = (ri : Ai → Bi )i∈I

making the following diagrams commute for all i  j :

Ai
ri ��

αi
j ��

Bi

βi
j��

A j r j
�� B j .

A morphism of direct systems r : (Ai , α
i
j )} → {Bi , β

i
j } determines a ho-

momorphism
→
r : lim−→ Ai → lim−→ Bi

by
→
r :

∑
λi ai + S �→

∑
μi ri ai + T,

where S ⊆⊕ Ai and T ⊆⊕ Bi are the relation submodules in the construc-
tion of lim−→ Ai and lim−→ Bi , respectively, and λi and μi are the injections of Ai
and Bi , respectively, into the direct sums. The reader should check that r be-

ing a morphism of direct systems implies that
→
r is independent of the choice

of coset representative, and hence
→
r is a well-defined function. One can, in

a similar way, define a morphism of inverse systems, and such a morphism
induces a homomorphism between the inverse limits. With these definitions,
the reader may state and prove the naturality assertions for Theorems 5.21,
5.26, and 5.27.

Proposition 5.33. Let I be a directed set, and let {Ai , α
i
j }, {Bi , β

i
j }, and

{Ci , γ
i
j } be direct systems of left R-modules over I . If r : {Ai , α

i
j } → {Bi , β

i
j }

and s : {Bi , β
i
j } → {Ci , γ

i
j } are morphisms of direct systems, and if

0 → Ai
ri→ Bi

si→ Ci → 0

is exact for each i ∈ I , then there is an exact sequence

0 → lim−→ Ai

→
r→ lim−→ Bi

→
s→ lim−→Ci → 0.

Proof. We prove only that
→
r is an injection, for the proof of exactness of

the rest is routine; moreover, the hypothesis that I be directed enters the proof

only in showing that
→
r is an injection.

Suppose that
→
r (x) = 0, where x ∈ lim−→ Ai . Since the index set I is

directed, Lemma 5.30(i) allows us to write x = λi ai + S (where S ⊆⊕ Ai is
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the relation submodule and λi is the injection of Ai into the direct sum). By

definition,
→
r (x+S) = μi ri ai+T (where T ⊆⊕ Bi is the relation submodule

and μi is the injection of Bi into the direct sum). Now Lemma 5.30(ii) shows
that μi ri ai + T = 0 in lim−→ Bi implies that there is an index k � i with

β i
kri ai = 0. Since r is a morphism of direct systems, we have

0 = β i
kri ai = rkα

i
kai .

Finally, since rk is an injection, we have αi
kai = 0 and, hence, that x =

λi ai + S = 0. Therefore,
→
r is an injection. •

The next result generalizes Proposition 3.48.

Proposition 5.34. If {Fi , ϕ
i
j } is a direct system of flat right R-modules over

a directed index set I , then lim−→ Fi is also flat.

Proof. Let 0 → A
k−→ B be an exact sequence of left R-modules. Since

each Fi is flat, the sequence

0 → Fi ⊗R A
1i⊗k−→ Fi ⊗R B

is exact for every i , where 1i abbreviates 1Fi . Consider the commutative
diagram

0 �� lim−→(Fi ⊗ A)
%k ��

ϕ
��

lim−→(Fi ⊗ B)

ψ
��

0 �� (lim−→ Fi )⊗ A 1⊗k �� (lim−→ Fi )⊗ B,

where the vertical maps ϕ and ψ are the isomorphisms of Theorem 5.27, the
map %k is induced from the morphism of direct systems {1i ⊗ k}, and 1 is the
identity map on lim−→ Fi . Since each Fi is flat, the maps 1i ⊗ k are injections;
since the index set I is directed, the top row is exact, by Proposition 5.33.
Therefore, 1 ⊗ k : (lim−→ Fi ) ⊗ A → (lim−→ Fi ) ⊗ B is an injection, for it is the

composite of injections ψ %kϕ−1. Therefore, lim−→ Fi is flat. •

Corollary 5.35.

(i) If R is a domain with Q = Frac(R), then Q is a flat R-module.

(ii) If every finitely generated submodule of a right R-module M is flat, then
M is flat.
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Proof.

(i) In Example 5.29(v), we saw that Q is a direct limit, over a directed index
set, of cyclic submodules, each of which is isomorphic to R. Since R is
projective, hence flat, the result follows from Proposition 5.34.

(ii) In Example 5.29(iii), we saw that M is a direct limit, over a directed
index set, of its finitely generated submodules. Since every finitely gen-
erated submodule is flat, by hypothesis, the result follows from Proposi-
iton 5.34. We have given another proof of Proposition 3.48. •

Example 5.36. The generalization of Corollary 5.35(ii): a right R-module
M is flat if every finitely presented submodule of M is flat, may not be true.
Let k be a field, let R = k[X ], where X is an infinite set of indeterminates,
and let m be the ideal generated by X . Now m is a maximal ideal because
R/m ∼= k. Hence, the module M = R/m is a simple module; that is, it has
no submodules other than {0} and M . As in Example 3.14, M is not finitely
presented, and so the only finitely presented submodule of M is {0}. Thus,
every finitely presented submodule of M is flat. However, we claim that M is
not flat. By Proposition 3.49, every flat module over a domain is torsion-free.
But R = k[X ] is a domain and M = R/m is not torsion-free, for if x ∈ X ,
then x(1 +m) = 0. Therefore, M is not flat. �

We are going to prove the surprising result that every flat module is a
direct limit of free modules. We often think of direct limits as generalized
unions, but this can be misleading. After all, I6 = I2 ⊕ I3, so that I2 is a
projective I6-module and, hence, it is flat; but I2 is surely not a union of free
modules, each of which has at least six elements. Our exposition follows that
in Osborne, Basic Homological Algebra.

We begin with a technical definition.

Definition. Let D be a submodule of a module C , let A be a set of submod-
ules of C partially ordered by inclusion, and let B be a set of submodules of
D partially ordered by inclusion. Then (C, D,A,B) is a (C, D)-system if

(i) A and B are directed sets,

(ii) C =⋃A∈A A, and D =⋃B∈B B,

(iii) A dominates B; that is, for each B ∈ B, there exists A ∈ A with A ⊇ B.

Every (C, D)-system determines a directed set. Define

I = I (C, D,A,B) = {(A, B) ∈ A× B : A ⊇ B}.
Partially order I by

(A, B) ≤ (A′, B ′) if A ⊆ A′ and B ⊆ B ′.



250 Setting the Stage Ch. 5

Proposition 5.37. Let (C, D,A,B) be a (C, D)-system. Then the set I =
I (C, D,A,B) is a directed set and

lim−→(A,B)∈I
(A/B) ∼= C/D.

Proof. To see that I is directed, let (A, B), (A′, B ′) ∈ I . Since B is directed,
there is B ′′ ∈ B with B, B ′ ⊆ B ′′. But A dominates B, so there is A′′ ∈ A
with B ′′ ⊆ A′′. Finally, since A is directed, there is A∗ ∈ A with A, A′, A′′ ⊆
A∗. Then (A, B), (A′, B ′) ≤ (A∗, B ′′).

The indexed family (A/B)(A,B)∈I is a direct system if we define

ϕ
(A,B)

(A′,B′) : A/B → A′/B ′, whenever (A, B) ≤ (A′, B ′), as the composite
A/B → A′/B → A′/B ′, where the first arrow is inclusion and the second is
enlargement of coset.

Consider the diagram in which (A, B) ≤ (A′, B ′):

C/D θ ����������� X

A/B

ϕ
A,B
A′,B′ ��

αA,B

��������� f A,B

22�������

A′/B ′,
αA′,B′

33

f A′,B′

��

where αA,B : A/B → C/D is the composite A/B → C/B → C/D (inclu-
sion followed by enlargement of coset); that is, αA,B : a + B → a + D.

Uniqueness of a map θ : C/D → X is easy. Let c + D ∈ C/D. By (ii),
there is A ∈ A with c ∈ A; if B ∈ B, there is A′ ∈ A with A′ ⊇ B, by
(iii); finally, there is A′′ ∈ A with A′′ ⊇ A, A′, by (i). Thus, (A′′, B) ∈ I and
c ∈ A′′. Commutativity of the completed diagram would give

θ(c + D) = θαA′′,B(c + D) = f A′′,B(c + D).

It is straightforward to prove that this formula gives a well-defined homo-
morphism; commutativity of the triangles shows that it is independent of the
choice of index (A′′, B) and, if c ∈ D, that θ(c + D) = 0. •

Corollary 5.38. Let A be a left R-module, let J be a directed set, and let
(A j ) j∈J be a family of submodules of A. Then

lim−→J
A j =

⋃
J

A j and lim−→J
A/A j = A/

⋃
A j .

Proof. For the first result, apply the proposition when C =⋃J A j , D = {0},
A = (A j ) j∈J , and B = {D}. For the second result, apply the proposition
when A = {A} and B = (A j ) j∈J . •

We will need the following technical result.
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Lemma 5.39 (Lazard). Let R be a ring and let M be a left R-module.

(i) Then M ∼= lim−→I
Gi , where every Gi is finitely presented and I is a

(C, D)-system (hence is directed) with M ∼= C/D.

(ii) The (C, D)-system I is universal with respect to all homomorphisms
from finitely presented modules to M : given (A, B) ∈ I , a finitely pre-
sented X, and maps ρ : X → M and σ : A/B → X with αA,B = ρσ ,
there exist (A′, B ′) ∈ I with (A′, B ′) ≥ (A, B) and an isomorphism
τ : X → A′/B ′ making the following diagram commute.

A/B
σ

��

αA,B

""

ϕ
A,B
A′,B′ ���

��
��

��
��

X

τ

���
�
� ρ

�� M

A′/B ′
αA′,B′

44........

Proof.

(i) Let C be the free left R-module with basis4 M × N, let π : C → M
be defined by (m, n) �→ m, and let D = kerπ ; since π is surjective,
we have C/D ∼= M . Define A to be all those submodules of C gen-
erated by a finite subset of M × N (so that each A ∈ A is finitely
generated free), and define B to be all the finitely generated submod-
ules of D. It is easy to check that (C, D,A,B) is a (C, D)-system, so
that I = I (C, D,A,B) is a directed set. If (A, B) ∈ I , then A/B is
finitely presented (for both A and B are, by definition, finitely gener-
ated). Therefore, lim−→I

(A/B) ∼= C/D ∼= M , by Proposition 5.37.

(ii) Given the top triangle, our task is to find (A′, B ′) ∈ I with (A′, B ′) ≥
(A, B) and an isomorphism τ : X → A′/B ′ making the augmented
diagram commute. We first construct the following auxiliary diagram
for some (A∗, B∗) ∈ I .

0 �� D �� C
π �� M �� 0

0 �� B∗

��

�� A∗

nat ��		
			

		

��

β
�� X

ρ
��

�� 0

A∗/B∗ β∗

���������

Since A ∈ A, it is a free module with basis {(m1, n1), . . . , (m�, n�)};
choose N > ni for i = 1, . . . , �. Now X is finitely presented; let X =

4This part of the lemma can be proved if C were defined as the free module with basis
M ; the reason for the larger basis M × N will appear in part (ii).
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〈x1, . . . , x p〉. For each j ≤ p, let ρ(x j ) = π(y j ), where y j ∈ C ; define
A∗ to be the free submodule of C with basis {(πy j , N + j) for j ≤ p};
note that A∗ ∈ A. If we define β : A∗ → X by β : (πy j , N + j) �→ x j ,
then the right-hand square commutes:

ρβ : (πy j , N + j) �→ ρ(x j ) = π(y j ).

The map β is surjective, and its kernel B∗ is finitely generated, by
Corollary 3.13; thus, B∗ ∈ B and (A∗, B∗) ∈ I . The map induced
by β, namely, β∗ : a∗ + B∗ �→ βa∗ for all a∗ ∈ A∗, is an isomorphism
A∗/B∗ → X , by the First Isomorphism Theorem.

Now (A, B) 	≤ (A∗, B∗), but we use it to construct (A′, B ′) and τ .
Define A′ = A ⊕ A∗ ⊆ C (A′ is an internal direct sum because the
bases of A and A∗ are disjoint subsets of the basis of C). Since the
isomorphism β∗ is surjective, there exist zi ∈ A∗, for each i ≤ �, with

σ
(
(mi , ni )+ B

) = β∗(zi + B∗).

Define B ′ = 〈
B, B∗, (mi , ni ) − zi for i ≤ �

〉
. Obviously, B ′ is finitely

generated. We claim that if a ∈ A, a∗ ∈ A∗, and σ(a + B) = β(a∗) in
X , then the element a − a∗ ∈ A ⊕ A∗ ⊆ C lies in kerπ .

a + D = α(a + B) = ρσ(a + B) = ρβ(a∗)
= ρβ∗(a∗ + B∗) = α(a∗ + B∗) = a∗ + D.

Hence, B ′ ⊆ D = kerπ , (A′, B ′) ∈ I , and (A, B) ≤ (A′, B ′).

Write ϕ = ϕ
A,B
A′,B′ : A/B → A′/B ′ and ϕ∗ = ϕ

A∗,B∗
A′,B′ : A∗/B∗ →

A′/B ′; thus, if a ∈ A and a∗ ∈ A∗, then ϕ : a + B �→ a + B ′ and
ϕ∗ : a∗ + B∗ �→ a∗ + B ′. Let us see that ϕ∗β∗−1σ = ϕ and that
ϕ∗ is an isomorphism. We saw above that if a = (mi , ni ) ∈ A and
a∗ = zi ∈ A∗, then σ(a + B) = β∗(a∗ + B∗). Hence,

ϕ∗β∗−1
σ(a + B) = ϕ∗(a∗ + B∗) = a∗ + B ′ = a + B ′ = ϕ(a + B),

the next-to-last equation holding because a − a∗ ∈ B ′, by construction.

Recall that A′ = A⊕ A∗. If a ∈ A, then we have just seen that a+ B ′ =
ϕ(a + B) = ϕ∗β∗−1σ(a + B) ∈ imϕ∗; if a∗ ∈ A∗, then a∗ + B ′ =
ϕ∗(a∗ + B∗). It follows that ϕ∗ is surjective.

Suppose that ϕ∗(a∗ + B∗) = a∗ + B ′ = 0; that is, a∗ ∈ B ′ ∩ A∗. Now
a∗ ∈ B ′ says that a∗ = b + b∗ +∑i ri

(
(mi , ni )− zi

)
; that is,

a∗ =
(

b +
∑

i

ri (mi , ni )
)
+
(

b∗ −
∑

i

ri zi

)
, (1)
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where b ∈ B, b∗ ∈ B∗, and ri ∈ R. Since a∗ ∈ A∗, unique expression
in A′ = A⊕ A∗ gives b+∑i ri (mi , ni ) = 0, so that

∑
i ri (mi , ni ) ∈ B.

Now ∑
i

ri zi + B∗ =
∑

i

riβ
∗−1

σ
(
(mi , ni )+ B

)

= β∗−1
σ
(∑

i

ri (mi , ni )+ B
)
= 0 + B∗,

so that
∑

i ri zi ∈ B∗. Equation (1) says a∗ = b∗ −∑i ri zi ∈ B∗; that
is, a∗ ∈ B∗. Therefore, ϕ∗ is an isomorphism.

Assemble the maps into a commutative diagram:

A/B
ϕ ��

β∗−1σ ����
���

��
A′/B ′

A∗/B∗

ϕ∗ ��''''''' β∗ ��

α∗ ����
���

��
X

ρ�����
���

�

ϕ∗β∗−1��///////

C/D.

Define τ : X → A′/B ′ by τ = ϕ∗β∗−1. Now τ is an isomorphism,
for both β∗ and ϕ∗ are isomorphisms. Consider the diagram in the
statement of this proposition. The left triangle commutes, for τσ =
ϕ∗β∗−1σ = ϕ. Finally, the right-hand triangle commutes: α′τ =
α′ϕ∗β∗−1 = α′ϕ∗α∗−1ρ = (α′ϕ∗)α∗−1ρ = ρ, the last equation hold-
ing because α′ϕ∗ = α∗ in the direct system. •

Theorem 5.40 (Lazard). For any ring R, a left R-module M is flat if and
only if it is a direct limit (over a directed index set) of finitely generated free
left R-modules.

Proof. Sufficiency is Proposition 5.34. For the converse, let M be flat, and
let I = I (C, D,A,B) be the (C, D)-system in Lemma 5.39(i) with M ∼=
C/D. Define

J = {(A, B) ∈ I : A/B is free}.
The result will follow from Exercise 5.22 on page 255 if we show that J is a
cofinal subset of I .

Since C/D is flat, the map HomR(X, R) ⊗R C/D → HomR(X,C/D),
given by f ⊗(c+D) �→ [ϕ : x �→ f (x)(c+D)], is an isomorphism for every
finitely presented left R-module X , by Exercise 3.34 on page 152. Given
(A, B) ∈ I , the insertion α : A/B → C/D, taking a + B �→ a + D, lies in
HomR(A/B,C/D) ∼= HomR(A/B, R)⊗R C/D. If we write c = c + D for
c ∈ C and a = a+B for a ∈ A, then there exist σ1, . . . , σn ∈ HomR(A/B, R)
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and y1, . . . , yn ∈ C/D with α(a) = ∑
i σi (a)yi . Define σ : A/B → Rn by

σ(a) = (σi (a), . . . , σn(a)), and ρ : Rn → C/D by ρ(r1, . . . , rn) =
∑

i ri yi .
Now α = ρσ . By Lemma 5.39(ii), there are (A′, B ′) ∈ I with (A, B) ≤
(A′, B ′) and an isomorphism A′/B ′ ∼= Rn . Therefore, (A′, B ′) ∈ J , and J is
cofinal in I , as desired. •

Exercises

*5.17 (i) Let (An)n∈N be a family of isomorphic abelian groups; say,
An ∼= A for all n. Consider inverse systems {An, f m

n } and
{An, gm

n }, where each f m
n = 0 and each gm

n is an isomor-
phism. Prove that the inverse limit of the first inverse sys-
tem is {0} while the inverse limit of the second inverse sys-
tem is A. Conclude that inverse limits depend on the mor-
phisms in the inverse systems.

(ii) Give an example of two direct systems having the same
abelian groups and whose direct limits are not isomorphic.

*5.18 Let {Mi , ϕ
i
j } be a direct system of R-modules over an index set I ,

and let F : RMod → C be a functor to some category C. Prove that
{F Mi , Fϕi

j } is a direct system in C if F is covariant, while it is an
inverse system if F is contravariant.
Hint. If we regard the direct system as a functor D : I → RMod,
then the composite F D is a functor I → C.

5.19 Give an example of a direct system of modules, {Ai , α
i
j }, over some

directed index set I , for which Ai 	= {0} for all i and lim−→ Ai = {0}.
*5.20 (i) Prove that End(Z(p∞)) ∼= Zp as rings, where Zp is the

ring of p-adic integers.
Hint. A presentation for Z(p∞) is

(a0, a1, a2 . . . , | pa0 = 0, pan = an−1 for n ≥ 1).

(ii) Prove that the additive group of Zp is torsion-free.
Hint. View Zp as a subgroup of

∏
n Ipn .

*5.21 Let 0 → U → V → V/U → 0 be an exact sequence of left
R-modules.

(i) Let {Ui , α
i
j } be a direct system of submodules of U , where

(αi
j : Ui → U j )i≤ j are inclusions. Prove that {V/Ui , ei

j }
is a direct system, where each ei

j : V/Ui → V/U j is en-
largement of coset.

(ii) If lim−→Ui = U , prove that lim−→(V/Ui ) ∼= V/U .
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*5.22 (i) Let K be a cofinal subset of a directed index set I (that is,
for each i ∈ I , there is k ∈ K with i  k). Let {Mi , ϕ

i
j }

be a direct system over I , and let {Mi , ϕ
i
j } be the subdirect

system whose indices lie in K . Prove that the direct limit
over I is isomorphic to the direct limit over K .

(ii) Let K be a cofinal subset of a directed index set I , let
{Mi , ϕ

i
j } be an inverse system over I , and let {Mi , ϕ

i
j } be

the subinverse system whose indices lie in K . Prove that
the inverse limit over I is isomorphic to the inverse limit
over K .

(iii) A partially ordered set I has a top element if there exists
∞ ∈ I with i  ∞ for all i ∈ I . If {Mi , ϕ

i
j } is a direct

system over I , prove that

lim−→ Mi ∼= M∞.

(iv) Show that part (i) may not be true if the index set is not
directed.

Hint. Pushout.

*5.23 Prove that a ring R is left noetherian if and only if every direct limit
(with directed index set) of injective left R-modules is itself injec-
tive.
Hint. See Theorem 3.39.

*5.24 Let

D
β
��

α �� C
g
��

B
f

�� A

be a pullback diagram in Ab. If there are c ∈ C and b ∈ B with
gc = f b, prove that there exists d ∈ D with cα(d) and b = β(d).
Hint. Define p : Z → C by p(n) = nc, and define q : Z → B
by q(n) = nb. There is a map θ : Z → D making the diagram
commute; define d = θ(1).

5.25 Consider the ideal J = (x) in k[x], where k is a commutative ring.
Prove that the completion lim←−(k[x]/J n) of the polynomial ring k[x]
is k[[x]], the ring of formal power series.

5.26 In RMod, let r : {Ai , α
i
j } → {Bi , β

i
j } and s : {Bi , β

i
j } → {Ci , γ

i
j }

be morphisms of inverse systems over any (not necessarily directed)
index set I . If

0 → Ai
ri→ Bi

si→ Ci
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is exact for each i ∈ I , prove that there are homomorphisms
←
r ,

←
s

given by the universal property of inverse limits, and an exact se-
quence

0 → lim←− Ai

←
r→ lim←− Bi

←
s→ lim←−Ci .

5.27 Definition. A category C is complete if lim←− Ai exists in C for every

inverse system {Ai , ψ
j

i } in C; a category C is cocomplete if lim−→ Ai

exists in C for every direct system {Ai , ϕ
i
j } in C.

Prove that a category is complete if and only if it has equalizers
and products (over any index set). Dually, prove that a category is
cocomplete if and only if it has coequalizers and coproducts (over
any index set).

*5.28 Prove that if T : RMod → Ab is an additive left exact functor pre-
serving direct products, then T preserves inverse limits.
Hint. Consider an inverse limit as the kernel of a map between
direct products.

5.3 Adjoint Functor Theorem for Modules

Recall the adjoint isomorphism, Theorem 2.75: given modules AR , R BS , and
CS , there is a natural isomorphism

τA,B,C : HomS(A ⊗R B,C) → HomR(A,HomS(B,C)).

Write F = �⊗R B and G = HomS(B,�), so that the isomorphism reads

HomS(F A,C) ∼= HomR(A, GC).

If we pretend that Hom(�,�) is an inner product, then this reminds us of
the definition of adjoint pairs in Linear Algebra: if T : V → W is a linear
transformation between vector spaces equipped with inner products, then its
adjoint is the linear transformation T ∗ : W → V such that

(T v,w) = (v, T ∗w)

for all v ∈ V and w ∈ W . This analogy explains why the isomorphism τ is
called the adjoint isomorphism.
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Definition. Let F : C → D and G : D → C be covariant functors. The
ordered pair (F, G) is an adjoint pair if, for each C ∈ obj(C) and D ∈ obj(D),
there are bijections

τC,D : HomD(FC, D) → HomC(C, G D)

that are natural transformations in C and in D.

In more detail, naturality says that the following two diagrams commute
for all f : C ′ → C in C and g : D → D′ in D:

HomD(FC, D)
(F f )∗ ��

τC,D
��

HomD(FC ′, D)

τC ′,D��
HomC(C, G D)

f ∗
�� HomC(C ′, G D);

HomD(FC, D)
g∗ ��

τC,D
��

HomD(FC, D′)
τC,D′��

HomC(C, G D)
(Gg)∗

�� HomC(C, G D′).

Example 5.41.

(i) If B = R BS is a bimodule, then
(
� ⊗R B,HomS(B,�)

)
is an adjoint

pair, by Theorem 2.75. Similarly, if B = S B R is a bimodule, then(
B ⊗R �,HomS(B,�)

)
is an adjoint pair, by Theorem 2.76.

(ii) Let U : Groups → Sets be the forgetful functor which assigns to each
group G its underlying set and views each homomorphism as a mere
function. Let F : Sets → Groups be the free functor defined in Ex-
ercise 1.6 on page 33, which assigns to each set X the free group F X
having basis X . The function

τX,H : HomGroups(F X, H) → HomSets(X,U H),

given by f �→ f |X , is a bijection (its inverse is ϕ �→ ϕ̃, where X , being
a basis of F X , says that every function ϕ : X → H corresponds to a
unique homomorphism ϕ̃ : F X → H ). Indeed, τX,H is a natural bijec-
tion, showing that (F,U ) is an adjoint pair of functors. This example
can be generalized by replacing Groups by other categories having free
objects; e.g., RMod or ModR .

(iii) If U : ComRings → Sets is the forgetful functor, then (F,U ) is an
adjoint pair where, for any set X , we have F(X) = Z[X ], the ring
of all polynomials in commuting variables X . More generally, if k is
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a commutative ring and ComAlgk is the category of all commutative
k-algebras, then F(X) = k[X ], the polynomial ring over k. This is
essentially the same example as in part (ii), for k[X ] is the free k-algebra
on X . �

For many examples of adjoint pairs of functors, see Herrlich–Strecker,
Category Theory, p. 197, and Mac Lane, Categories for the Working Mathe-
matician, Chapter 4, especially pp. 85–86.

Example 5.42. Adjointness is a property of an ordered pair of functors; if
(F, G) is an adjoint pair of functors, it does not follow that (G, F) is also an
adjoint pair. For example, if F = �⊗ B and G = Hom(B,�), then the ad-
joint isomorphism says that Hom(A, B ⊗ C) ∼= Hom(A,Hom(B,C)) for all
A and C ; that is, Hom(F A,C) ∼= Hom(A, GC). It does not say that there an
isomorphism (natural or not) Hom(Hom(B, A),C) ∼= Hom(A, B ⊗ C). In-
deed, if A = Q, B = Q/Z, and C = Z, then Hom(GQ,Z) 	∼= Hom(Q, FZ);
that is,

Hom
(
Hom(Q/Z,Q),Z

) 	∼= Hom
(
Q, (Q/Z)⊗ Z

)
,

for the left side is {0}, while the right side is isomorphic to Hom(Q,Q/Z),
which contains the natural map Q → Q/Z. �

Definition. Let C
F
�
G

D be functors. If (F, G) is an adjoint pair, then we say

that F has a right adjoint and that G has a left adjoint.

Let (F, G) be an adjoint pair, where F : C → D and G : D → C. If
C ∈ obj(C), then setting D = FC gives a bijection τ : HomD(FC, FC) →
HomC(C, G FC), so that ηC , defined by

ηC = τ(1FC ),

is a morphism C → G FC . Exercise 5.30 on page 271 says that η : 1C → G F
is a natural transformation; it is called the unit of the adjoint pair.

Theorem 5.43. Let (F, G) be an adjoint pair of functors, where F : C → D
and G : D → C. Then F preserves direct limits and G preserves inverse
limits.

Remark. There is no restriction on the index sets of the limits; in particular,
they need not be directed. �
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Proof. Let I be a partially ordered set, and let {Ci , ϕ
i
j } be a direct system in

C over I . By Exercise 5.18 on page 254, {FCi , Fϕi
j } is a direct system in D

over I . Consider the following diagram in D:

F(lim−→Ci )
γ ���������� D

FCi

Fϕi
j ��

Fαi
55��������

fi
��(((((((

FC j ,

Fα j

66

f j

77

where αi : Ci → lim−→Ci are the maps in the definition of direct limit. We
must show that there exists a unique morphism γ : F(lim−→Ci ) → D making
the diagram commute. The idea is to apply G to this diagram, and use the
unit η : 1C → G F to replace G F(lim−→Ci ) and G FCi by lim−→Ci and Ci , re-
spectively. In more detail, Exercise 5.30 on page 271 gives morphisms η and
ηi making the following diagram commute:

lim−→Ci
η �� G F(lim−→Ci )

Ci

αi

��

ηi
�� G FCi .

G Fαi

��

Apply G to the original diagram and adjoin this diagram to its left:

lim−→Ci

β

**η �� G F(lim−→Ci ) G D

Ci
ηi ��

ϕi
j��

αi
88

G F(Ci )

G Fαi
8800000000

G Fϕi
j ��

G fi
��''''''''

C j η j
��

α j

9911111111111111
G F(C j ).

G f j

::22222222222222

This diagram commutes: we know that (G Fϕi
j )ηi = η jϕ

i
j , since η is nat-

ural, and G fi = G f j (G Fϕi
j ), since G is a functor; therefore, G fiηi =

G f j (G Fϕi
j )ηi = G f jη jϕ

i
j . By the definition of direct limit, there exists a

unique β : lim−→Ci → G D [that is, β ∈ HomC(lim−→Ci , G D)] making the dia-
gram commute. Since (F, G) is an adjoint pair, there exists a natural bijection

τ : HomD(F(lim−→Ci ), D) → HomC(lim−→Ci , G D).

Define
γ = τ−1(β) ∈ HomD(F(lim−→Ci ), D).
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We claim that γ : F(lim−→Ci ) → D makes the first diagram commute. The
first commutative square in the definition of adjointness, which involves the
morphism αi : Ci → lim−→Ci , gives commutativity of

HomD(F(lim−→Ci ), D)
(Fαi )

∗
��

τ

��

HomD(FCi , D)

τ

��
HomC(lim−→Ci , G D)

α∗i
�� HomC(Ci , G D).

Thus, τ(Fαi )
∗ = α∗i τ , and so τ−1α∗i = (Fαi )

∗τ−1. Evaluating on β, we
have

(Fαi )
∗τ−1(β) = (Fαi )

∗γ = γ Fαi .

On the other hand, since βαi = (G fi )ηi , we have

τ−1α∗i (β) = τ−1(βαi ) = τ−1((G fi )ηi ).

Therefore,

γ Fαi = τ−1((G fi )ηi ).

The second commutative square in the definition of adjointness, for the mor-
phism fi : FCi → D, gives commutativity of

HomD(FCi , FCi )
( fi )∗ ��

τ

��

HomD(FCi , D)

τ

��
HomC(Ci , G FCi )

(G fi )∗
�� HomC(Ci , G D);

that is, τ( fi )∗ = (G fi )∗τ . Evaluating at 1FCi , the definition of ηi gives
τ( fi )∗(1) = (G fi )∗τ(1), and so τ fi = (G fi )∗ηi . Therefore,

γ Fαi = τ−1((G fi )ηi ) = τ−1τ fi = fi ,

so that γ makes the original diagram commute. We leave the proof of the
uniqueness of γ as an exercise for the reader, with the hint to use the unique-
ness of β.

The dual proof shows that G preserves inverse limits. •
We are now going to characterize the Hom and tensor functors on module

categories, yielding a necessary and sufficient condition for a functor on such
categories to be half of an adjoint pair (Theorems 5.51 and 5.52).
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Lemma 5.44.

(i) If M is a right R-module and m ∈ M, then ϕm : R → M, defined by
r �→ mr, is a map of right R-modules. In particular, if M = R and
u ∈ R, then ϕu : R → R is a map of right R-modules.

(ii) If M is a right R-module, m ∈ M, and u ∈ R, then

ϕmu = ϕmϕu .

(iii) Let f : M → N be an R-map between right R-modules. If m ∈ M,
then

ϕ f m = f ϕm .

Proof.

(i) ϕm is additive because m(r + s) = mr + ms; ϕm preserves scalar mul-
tiplication on the right because ϕm(rs) = m(rs) = (mr)s = ϕm(r)s.

(ii) Now ϕmr : u �→ (mr)u, while ϕmϕr : u �→ ϕm(ru) = m(ru). These
values agree because M is a right R-module.

(iii) Now ϕ f m : u �→ ( f m)u, while f ϕm : u �→ f (mu). These values agree
because f is an R-map. •

Theorem 5.45 (Watts). If F : ModR → Ab is a right exact additive
functor that preserves direct sums, then F is naturally isomorphic to �⊗R B,
where B is F(R) made into a left R-module.

Proof. We begin by making the abelian group F R [our abbreviation for
F(R)] into a left R-module. If M is a right R-module and m ∈ M , then
ϕm : R → M , defined by r �→ mr , is an R-map, by Lemma 5.44(i), and so
the Z-map Fϕm : F R → F M is defined. In particular, if M = R and u ∈ R,
then ϕu : R → R and, for all x ∈ F R, we define ux by

ux = (Fϕu)x .

Let us show that this scalar multiplication makes F R into a left R-module.
If M = R and u, v ∈ R, then Fϕu, Fϕv : F R → F R, and Lemma 5.44(ii)
gives ϕuv = ϕuϕv . Hence,

(uv)x = (Fϕuv)x = F(ϕuϕv)x = (Fϕu)(Fϕv)x = u(vx).

Denote the left R-module F R by B, so that � ⊗R B : ModR → Ab.
We claim that τM : M × F R → F M , defined by (m, x) �→ (Fϕm)x , is R-
biadditive; that is, τM (mu, x) = τM (m, ux) for all u ∈ R. Now

τM (mu, x) = (Fϕmu)x = F(ϕmϕu)x,
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by Lemma 5.44(ii). On the other hand,

τM (m, ux) = (Fϕm)ux = (Fϕm)(Fϕu)x = (Fϕmu)x .

Thus, τM induces a homomorphism σM : M ⊗R B → F M . We claim that
σ : � ⊗R B → F is a natural transformation; that is, the following diagram
commutes for R-maps f : M → N .

M ⊗R B
σM ��

f⊗1
��

F M
F f
��

N ⊗R B
σN

�� F N

Going clockwise, m ⊗ x �→ (Fϕm)x �→ (F f )(Fϕm)x ; going counterclock-
wise, m ⊗ x �→ f (m) ⊗ x �→ (Fϕ f m)x = F( f ϕm)x = (F f )(Fϕm)x , by
Lemma 5.44(iii).

Now σR : R ⊗R B → F R is an isomorphism (because B = F R); more-
over, since both �⊗R B and F preserve direct sums, σA : A⊗R B → F A is an
isomorphism for every free right R-module A. Let M be any right R-module.
There are a free right R-module A and a short exact sequence

0 → K
i−→ A → M → 0;

there is also a surjection f : C → K for some free right R-module C . Splic-
ing these together, there is an exact sequence

C
i f−→ A → M → 0.

Now the following commutative diagram has exact rows, for both � ⊗R B
and F are right exact.

C ⊗R B ��

σC
��

A ⊗R B ��

σA
��

M ⊗R B
σM
��

�� 0

FC �� F A �� F M �� 0

Since σC and σA are isomorphisms, the Five Lemma shows that σM is an
isomorphism. Therefore, σ is a natural isomorphism. •

Remark. If, in Theorem 5.45, F takes values in ModS instead of in Ab,
then the first paragraph of the proof can be modified to prove that the right
S-module F R may be construed as an (R, S)-bimodule; thus, the theorem
remains true if Ab is replaced by ModS . �
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Example 5.46. If R is a commutative ring and r ∈ R, then there is a functor
F : RMod → RMod that takes an R-module M to M/r M [if ϕ : M → N is
an R-map, define Fϕ : M/r M → N/r N by m + r M �→ ϕ(m) + r N ]. The
reader may check that F is a right exact functor preserving direct sums, and
so it follows from Watts’ Theorem that F is naturally isomorphic to � ⊗R
(R/r R), for F R = R/r R. This generalizes Proposition 2.68. �

Corollary 5.47. Let R be a right noetherian ring, and let FR be the category
of all finitely generated right R-modules. If F : FR → ModS is a right exact
additive functor, then F is naturally isomorphic to �⊗R B, where B is F(R)

made into a left R-module.

Proof. The proof is almost the same as that of Theorem 5.45 coupled with
the remark after it. Given a finitely generated right R-module M , we can
choose a finitely generated free right R-module A mapping onto M . More-
over, since R is right noetherian, Proposition 3.18 shows that the kernel K of
the surjection A → M is also finitely generated (if K were not finitely gener-
ated, then there would be no free right R-module in the category FR mapping
onto K ). Finally, we need not assume that F preserves finite direct sums, for
Corollary 2.21 shows that this follows from the additivity of F . •

We now characterize contravariant Hom functors.

Theorem 5.48 (Watts). If H : RMod → Ab is a contravariant left ex-
act additive functor that converts direct sums to direct products, then H is
naturally isomorphic to HomR(�, B), where B is H(R) made into a right
R-module.

Proof. We begin by making the abelian group H R into a right R-module.
As in the beginning of the proof of Theorem 5.45, if M is a right R-module
and m ∈ M , then the function ϕm : R → M , defined by r �→ mr , is an
R-map. In particular, if M = R and u ∈ R, then Hϕu : H R → H R, and
Lemma 5.44(ii) gives ϕuv = ϕuϕv for all u, v ∈ R. If x ∈ H R, define

ux = (Hϕu)x .

Here, H R is a right R-module, for the contravariance of H gives

(uv)x = (Hϕuv)x = H(ϕuϕv)x = (Hϕv)(Hϕu)x = v(ux).

Define σM : H M → HomR(M, B) by σM (x) : m �→ (Hϕm)x , where
x ∈ H M . It is easy to check that σ : H → HomR(�, B) is a natural transfor-
mation and that σR is an isomorphism. The remainder of the proof proceeds,
mutatis mutandis, as that of Theorem 5.45. •

We can characterize covariant Hom functors, but the proof is a bit more
complicated.
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Definition. A left R-module C is called a cogenerator of RMod if, for
every left R-module M and every nonzero m ∈ M , there exists an R-map
g : M → C with g(m) 	= 0.

Exercise 3.19(i) on page 130 can be restated to say that Q/Z is an injective
cogenerator of Ab.

Lemma 5.49. There exists an injective cogenerator of RMod.

Proof. Define C to be an injective left R-module containing
⊕

I R/I , where
I varies over all the left ideals in R (the module C exists, by Theorem 3.38).
If M is a left R-module and m ∈ M is nonzero, then 〈m〉 ∼= R/J for some
left ideal J . Consider the diagram

C

0 �� 〈m〉
f
��

i
�� M,

g
��/ / / /

where i is the inclusion and f is an isomorphism of 〈m〉 to some submodule
of C isomorphic to R/J . Since C is injective, there is an R-map g : M → C
extending f , and so g(m) 	= 0. •

An analysis of the proof of Proposition 5.21 shows that it can be gener-
alized by replacing Hom(A,�) by any left exact functor that preserves di-
rect products. However, this added generality is only illusory, in light of the
following theorem of Watts characterizing representable functors on module
categories.

Theorem 5.50 (Watts). If G : RMod → Ab is a covariant additive functor
preserving inverse limits, then G is naturally isomorphic to HomR(B,�) for
some left R-module B.

Proof. For a module M and a set X , let M X denote the direct product of
copies of M indexed by X ; more precisely, M X is the set of all functions
X → M . In particular, 1M ∈ M M , and we write e = 1M ∈ M M . If m ∈ M
and πm : M M → M is the mth projection, then the mth coordinate of e is
πm(e) = m.

Choose an injective cogenerator C of RMod. Let � = CGC , and let
its projection maps be px : � → C for all x ∈ GC . Since G preserves
inverse limits, it preserves direct products, and so G� is a direct product
with projection maps Gpx . More precisely, if πx : (GC)GC → GC are the
projection maps, then there is a unique isomorphism θ making the following
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diagrams commute for all x ∈ GC :

G�

Gpx ����
���

��
(GC)GCθ		

πx,,'''
'''

'

GC.

Thus, (Gpx )θ = πx for all x ∈ GC . Write

e = 1GC ∈ (GC)GC .

Define τ : HomR(�,C) → GC by

τ : f �→ (G f )(θe).

If f : � → C , then G f : G� → GC ; since θe ∈ G�, τ( f ) = (G f )(θe)
makes sense.

The map τ is surjective, for if x ∈ GC , then τ(px ) = (Gpx )(θe) =
πx (e) = x . We now describe ker τ . If S ⊆ �, denote the inclusion S → �

by iS . Define

B =
⋂
S∈S

S, where S = {submodules S ⊆ � : θe ∈ im G(iS)}.

We show that S is closed under finite intersections. All the maps in the first
diagram below are inclusions, so that iSλ = iS∩T . Since G preserves inverse
limits, it preserves pullbacks; since the first diagram is a pullback, the second
diagram is also a pullback.

S ∩ T
μ
��

λ �� S
iS��

T
iT

�� �

G(S ∩ T )

Gμ
��

Gλ �� GS
G(iS)��

GT
G(iT )

�� G�

By the definition of S, there are u ∈ GS with (GiS)u = θe and v ∈ GT with
(GiT )v = θe. By Exercise 5.24 on page 255, there is d ∈ G(S ∩ T ) with
(GiS)(Gλ)d = θe. But (GiS)(Gλ) = GiS∩T , so that θe ∈ im G(iS∩T ) and
S ∩ T ∈ S. It now follows from Example 5.18(ii) that B = ⋂

S ∼= lim←− S, so
that B ∈ S.

Now G is left exact, so that exactness of 0 → ker f
ν−→ �

f−→ C gives

exactness of 0 → G(ker f )
Gν−→ G�

G f−→ GC . Thus, im Gν = ker(G f ). If

j : B → �

is the inclusion, then ker τ = ker j∗, where j∗ : f �→ f j is the induced map
j∗ : HomR(�,C) → HomR(B,C): if f ∈ ker τ , then (G f )θe = 0, and
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θe ∈ ker G f = im Gν; thus, ker f ∈ S. Hence, B ⊆ ker f , f j = 0, f ∈
ker j∗, and ker τ ⊆ ker j∗. For the reverse inclusion, assume that f ∈ ker j∗,
so that B ⊆ ker f . Then im G j ⊆ im Gν = ker G f . But θe ∈ ker G f ; that
is, (G f )θe = 0, and f ∈ ker τ . Therefore, ker j∗ = ker τ .

In the diagram

0 �� HomR(�/B,C)

=
��

�� HomR(�,C)

=
��

j∗ �� HomR(B,C) ��

σC

���
�
� 0

0 �� HomR(�/B,C) �� HomR(�,C)
τ

�� GC �� 0,

the first two vertical arrows are identities, so that the diagram commutes. Ex-

actness of 0 → B
j−→ � → �/B → 0 and injectivity of C give exactness

of the top row, while the bottom row is exact because τ is surjective and
ker τ = ker j∗. It follows that the two cokernels are isomorphic: there is an
isomorphism

σC : HomR(B,C) → GC,

given by σC : f �→ (G f )θe (for the fussy reader, this is Proposition 2.70).
For any module M , there is a map M → CHomR(M,C) given by m �→

( f m), that “vector” whose f th coordinate is f m; this map is an injection
because C is a cogenerator. Similarly, if N = coker(M → CHomR(M,C)),
there is an injection N → CY for some set Y ; splicing these together gives an
exact sequence

0 �� M �� CHomR(M,C) �����

%%



 CY

N .

��

Since both G and HomR(B,�) are left exact, there is a commutative diagram
with exact rows

0 �� HomR(B, M) ��

σM

���
�
� HomR(B,CHomR(M,C)) ��

σ
CHomR (M,C)

��

HomR(B,CY )

σCY

��
0 �� G M �� GCHomR(M,C) �� GCY .

The vertical maps σCHomR (M,C) and σCY are isomorphisms, so that Proposi-
tion 2.71 gives a unique isomorphism σM : HomR(B, M) → G M . It re-
mains to prove that the isomorphisms σM constitute a natural transformation.
Recall, for any set X , that HomR(B,C X ) ∼= HomR(B,C)X via f �→ (px f ),
where px is the x th projection. The map σC X : HomR(B,C X ) → GC X

is given by f �→ (
(Gpx f )θe

) = (
(Gpx f )

)
θe = (G f )θe. Therefore,

σM : HomR(B, M) → G M is given by f �→ (G f )θe, and Yoneda’s Lemma,
Theorem 1.17, shows that σ is a natural isomorphism. •
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Remark. No easy description of the module B is known. However, we know
that B is not G(R). For example, if G = HomZ(Q,�), then Watts’ Theorem
applies to give HomZ(B,�) ∼= HomZ(Q,�). Now Corollary 1.18(iii) says
that B ∼= Q, but B 	∼= G(Z) = HomZ(Q,Z) = {0}. �

Theorem 5.51. If F : ModR → Ab is an additive functor, then the following
statements are equivalent.

(i) F preserves direct limits.

(ii) F is right exact and preserves direct sums.

(iii) F ∼= �⊗R B for some left R-module B.

(iv) F has a right adjoint; there is a functor G : Ab → ModR so that
(F, G) is an adjoint pair.

Proof.

(i) ⇒ (ii) Cokernels and direct sums are direct limits.

(ii) ⇒ (iii) Theorem 5.45.

(iii) ⇒ (iv) Take G = HomR(B,�) in the adjoint isomorphism theorem.

(iv) ⇒ (i) Theorem 5.43. •

Theorem 5.52. If G : RMod → Ab is an additive functor, then the following
statements are equivalent.

(i) G preserves inverse limits.

(ii) G is left exact and preserves direct products.

(iii) G is representable; i.e., G ∼= HomR(B,�) for some left R-module B.

(iv) G has a left adjoint; there is a functor F : Ab → RMod so that (F, G)

is an adjoint pair.

Proof.

(i) ⇒ (ii) Kernels and direct products are inverse limits.

(ii) ⇒ (iii) Theorem 5.50.

(iii) ⇒ (iv) Take F = �⊗R B in the adjoint isomorphism theorem.

(iv) ⇒ (i) Exercise 5.28 on page 256. •
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The Adjoint Functor Theorem says that a functor G on an arbitrary cat-
egory has a left adjoint [that is, there exists a functor F so that (F, G) is an
adjoint pair] if and only if G preserves inverse limits and G satisfies a “so-
lution set condition” [Mac Lane, Categories for the Working Mathematician,
pp. 116–127 and 230]. One consequence is a proof of the existence of free ob-
jects when a forgetful functor has a left adjoint; see M. Barr, “The existence of
free groups,” Amer. Math. Monthly, 79 (1972), 364–367. The Adjoint Func-
tor Theorem also says that F has a right adjoint if and only if F preserves all
direct limits and satisfies a solution set condition. Theorems 5.51 and 5.52 are
special cases of the Adjoint Functor Theorem.

It can be proved that adjoints are unique if they exist: if (F, G) and
(F, G ′) are adjoint pairs, where F : A → B and G, G ′ : B → A, then
G ∼= G ′; similarly, if (F, G) and (F ′, G) are adjoint pairs, then F ∼= F ′
(Mac Lane, Categories for the Working Mathematician, p. 83, or May, Sim-
plicial Objects in Algebraic Topology, p. 61). Here is the special case for
module categories.

Proposition 5.53. Let F : RMod → Ab and G, G ′ : Ab → RMod be
functors. If (F, G) and (F, G ′) are adjoint pairs, then G ∼= G ′.

Proof. For every left R-module C , there are natural isomorphisms

HomR(C, G�) ∼= HomZ(FC,�) ∼= HomR(C, G ′�).

Thus, HomR(C,�) ◦ G ∼= HomR(C,�) ◦ G ′ for every left R-module C . In
particular, if C = R, then HomR(R,�) ∼= 1, the identity functor on RMod,
and so G ∼= G ′. •

Remark. In Functional Analysis, one works with topological vector spaces;
moreover, there are many different topologies imposed on vector spaces, de-
pending on the sort of problem being considered. We know that if A, B,C
are modules, then the Adjoint Isomorphism, Theorem 2.75, gives a natural
isomorphism

Hom(A ⊗ B,C) ∼= Hom(A,Hom(B,C)).

Thus, � ⊗ B is the left adjoint of Hom(B,�). In the category of topolog-
ical vector spaces, Grothendieck defined topological tensor products as left
adjoints of Hom(B,�). Since the Hom sets consist of continuous linear trans-
formations, they depend on the topology, and so topological tensor products
also depend on the topology. �

The Wedderburn–Artin theorems can be better understood in the context
of determining those abstract categories that are isomorphic to module cate-
gories.
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Definition. A module P is small if the covariant Hom functor Hom(P,�)

preserves (possibly infinite) direct sums.

In more detail, if P is small and B =⊕i∈I Bi has injections λi : Bi → B,
then Hom

(
P,
⊕

i∈I Bi
) = ⊕

i∈I Hom(P, Bi ) has as injections the induced
maps (λi )∗ : Hom(P, Bi ) → Hom(P, B).

Example 5.54.

(i) Any finite direct sum of small modules is small, and any direct sum-
mand of a small module is small.

(ii) Since every ring R is a small R-module, by Exercise 2.13 on page 66, it
follows from part (i) that every finitely generated projective R-module
is small. �

Definition. A right R-module P is a generator of ModR if every right R-
module M is a quotient of a direct sum of copies of P .

It is clear that R is a generator of ModR , as is any free right R-module.
However, a projective right R-module may not be a generator. For example,
if R = I6, then R = P ⊕ Q, where P ∼= I3. The projective module P is not a
generator, for Q ∼= I2 is not a quotient of a direct sum of copies of P .

Recall that a functor F : C → D is an isomorphism if there is a functor
G : D → C such that the composites G F and FG are naturally isomorphic to
the identity functors 1C and 1D, respectively.

Theorem 5.55 (Morita). Let R be a ring and let P be a small projective
generator of ModR. If S = EndR(P), then there is an isomorphism

F : ModS → ModR

given by M �→ M ⊗S P.

Proof. Notice that P is a left S-module, for if x ∈ P and f, g ∈ S =
EndR(P), then (g ◦ f )x = g( f x). In fact, P is an (S, R)-bimodule, for
associativity f (xr) = ( f x)r , where r ∈ R, is just the statement that f is an
R-map. It now follows from Corollary 2.53 that the functor F : ModS → Ab,
defined by F = � ⊗S P , actually takes values in ModR . Proposition 2.4
shows that the functor G : HomR(P,�) : ModR → Ab actually takes values
in ModS . As (F, G) is an adjoint pair, Exercise 5.30 on page 271 gives natural
transformations FG → 1R and 1S → G F , where 1R and 1S denote identity
functors on the categories ModR and ModS , respectively. It suffices to prove
that each of these natural transformations is a natural isomorphism.
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Since P is a projective right R-module, the functor G = HomR(P,�)

is exact; since P is small, G preserves direct sums. Now F = � ⊗S P , as
any tensor product functor, is right exact and preserve sums. Therefore, both
composites G F and FG preserve direct sums and are right exact.

Note that

FG(P) = F(HomR(P, P)) = F(S) = S ⊗S P ∼= P.

Since P is a generator of ModR , every right R-module M is a quotient of

some direct sum of copies of P . There is an exact sequence K →⊕
P

f−→
M → 0, where K = ker f . There is also some direct sum of copies of P
mapping onto K , and so there is an exact sequence

⊕
P →

⊕
P → M → 0.

Hence, there is a commutative diagram (by naturality of the upward maps)
with exact rows

⊕
P ��⊕ P �� M �� 0

⊕
FG(P)

��

��⊕ FG(P)

��

�� FG(M)

��

�� 0.

We know that the first two vertical maps are isomorphisms, and so the Five
Lemma gives the other vertical map an isomorphism (just extend both rows
to the right by adjoining → 0, and insert two vertical arrows 0 → 0). Thus,
FG(M) ∼= M , and so 1R ∼= FG.

For the other composite, note that

G F(S) = G(S ⊗S P) ∼= G(P) = HomR(P, P) = S.

If N is any left S-module, there is an exact sequence of the form
⊕

S →
⊕

S → N → 0,

because every module is a quotient of a free module. The argument now
concludes as that just done. •

Corollary 5.56.

(i) If R is a ring and n ≥ 1, there is an isomorphism of categories

ModR ∼= ModMatn(R).

(ii) If R is a semisimple ring and n ≥ 1, then Matn(R) is semisimple.
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Proof. For any integer n ≥ 1, the free module P = ⊕n
i=1 Ri , where Ri ∼=

R, is a small projective generator of ModR , and S = EndR(P) ∼= Matn(R).
The isomorphism F : ModR → ModMatn(R) in Morita’s Theorem carries
M �→ M ⊗S P ∼= ⊕

i Mi , where Mi ∼= M for all i . Hence, if M is a
projective right R-module, then F(M) is also projective. But every module
in ModMatn(R) is projective, by Proposition 4.5 (a ring R is semisimple if and
only if every R-module is projective). Therefore, Matn(R) is semisimple, •

There is a lovely part of ring theory, Morita theory (after K. Morita),
developing these ideas. A category C is isomorphic to a module category
if and only if it is an abelian category (see Section 5.5) containing a small
projective generator P , and which is closed under infinite coproducts (see
Mitchell, Theory of Categories, p. 104, or Pareigis, Categories and Func-
tors, p. 211). Given this hypothesis, then C ∼= ModS , where S = End(P) (the
proof is essentially that given for Theorem 5.55). Two rings R and S are called
Morita equivalent if ModR ∼= ModS . If R and S are Morita equivalent, then
Z(R) ∼= Z(S); that is, they have isomorphic centers (the proof actually iden-
tifies all the possible isomorphisms between the categories). In particular, two
commutative rings are Morita equivalent if and only if they are isomorphic.
See Jacobson, Basic Algebra II, pp. 177–184, Lam, Lectures on Modules and
Rings, Chapters 18 and 19, or Reiner, Maximal Orders, Chapter 4.

Exercises

5.29 Give an example of an additive functor H : Ab → Ab that has
neither a left nor a right adjoint.

*5.30 Let (F, G) be an adjoint pair, where F : C → D and G : D → C,
and let τC,D : Hom(FC, D) → Hom(C, GC) be the natural bijec-
tion.

(i) If D = FC , there is a natural bijection

τC,FC : Hom(FC, FC) → Hom(C, G FC)

with τ(1FC ) = ηC : C → G FC . Prove that η : 1C → G F
is a natural transformation.

(ii) If C = G D, there is a natural bijection

τ−1
G D,D : Hom(G D, G D) → Hom(FG D, D)

with τ−1(1D) = εD : FG D → D. Prove that ε : FG →
1D is a natural transformation. (We call ε the counit of the
adjoint pair.)
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5.31 Let (F, G) be an adjoint pair of functors between module categories.
Prove that if G is exact, then F preserves projectives; that is, if P is
a projective module, then F P is projective. Dually, prove that if F
is exact, then G preserves injectives.

5.32 (i) Let F : Groups → Ab be the functor with F(G) = G/G ′,
where G ′ is the commutator subgroup of a group G, and
let U : Ab → Groups be the functor taking every abelian
group A into itself (that is, U A regards A as a not neces-
sarily abelian group). Prove that (F,U ) is an adjoint pair
of functors.

(ii) Prove that the unit of the adjoint pair (F,U ) is the natural
map G → G/G ′.

*5.33 (i) If I is a partially ordered set, let Dir(I, RMod) denote
all direct systems of left R-modules over I . Prove that
Dir(I, RMod) is a category and that lim−→ : Dir(I, RMod) →
RMod is a functor.

(ii) In Example 1.19(ii), we saw that constant functors define a
functor |�| : C → CD; to each object C in C assign the con-
stant functor |C |, and to each morphism ϕ : C → C ′ in C,
assign the natural transformation |ϕ| : |C | → |C ′| defined
by |ϕ|D = ϕ. If C is cocomplete, prove that (lim−→, |�|) is an
adjoint pair, and conclude that lim−→ preserves direct limits.

(iii) Let I be a partially ordered set and let Inv(I, RMod) denote
the class of all inverse systems, together with their mor-
phisms, of left R-modules over I . Prove that Inv(I, RMod)
is a category and that lim←− : Inv(I, RMod) → RMod is a
functor.

(iv) Prove that if C is complete, then (|�|, lim←−) is an adjoint pair
and lim←− preserves inverse limits.

5.34 (i) If A1 ⊆ A2 ⊆ A3 ⊆ · · · is an ascending sequence of sub-
modules of a module A, prove that A/

⋃
Ai ∼=

⋃
A/Ai ;

that is, coker(lim−→ Ai ⊆ A) ∼= lim−→ coker(Ai → A).
(ii) Generalize part (i): prove that any two direct limits (per-

haps with distinct index sets) commute.
(iii) Prove that any two inverse limits (perhaps with distinct in-

dex sets) commute.
(iv) Give an example in which direct limit and inverse limit do

not commute.
5.35 (i) Define ACC in RMod, and prove that if SMod ∼= RMod,

then SMod has ACC. Conclude that if R is left noetherian,
then S is left noetherian.
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(ii) Give an example showing that RMod and ModR are not
isomorphic.

5.36 (i) Recall that a cogenerator of a category C is an object C
such that Hom(�,C) : C → Sets is a faithful functor; that
is, if f, g : A → B are distinct morphisms in C, then there
exists a morphism h : B → C with h f 	= hg. Prove, when
C = RMod, that this definition coincides with the defini-
tion of cogenerator on page 264.

(ii) A generator of a category C is an object G such that
Hom(G,�) : C → Sets is a faithful functor; that is, if
f, g : A → B are distinct morphisms in C, then there ex-
ists a morphism h : G → A with f h 	= gh. Prove, when
C = RMod, that this definition coincides with the defini-
tion of cogenerator on page 269.

5.37 We call a functor F : A → B a strong isomorphism if there exists
a functor G : B → A with G F = 1A and FG = 1B. If R is a
ring, show that HomR(R,�) : RMod → RMod (which is naturally
isomorphic to 1RMod, by Exercise 2.13 on page 66) is not a strong
isomorphism. Conclude that strong isomorphism is not an interest-
ing idea.

5.4 Sheaves

At the beginning of his book, The Theory of Sheaves, Swan asks, “What are
sheaves good for? The obvious answer is that sheaves are very useful in prov-
ing theorems.” He then lists interesting applications of sheaves to Topology,
Complex Variables, and Algebraic Geometry, and he concludes, “the impor-
tance of the theory of sheaves is simply that it gives relations (quite strong
relations, in fact) between the local and global properties of a space.” We
proceed to the definition of sheaves.

Definition. A continuous map p : E → X between topological spaces E
and X is called a local homeomorphism if, for each e ∈ E , there is an open
neighborhood S of e, called a sheet, with p(S) open in X and p|S : S → p(S)
a homeomorphism. The triple (E, p, X) is called a protosheaf 5 if the local
homeomorphism p is surjective.

5 This term, with a slightly different meaning, was used by Swan in The Theory of
Sheaves. Since protosheaf has not been widely adopted (Swan’s book appeared in 1964),
our usage should not cause any confusion.
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Each of the ingredients of a protosheaf has a name. The space E is called
the sheaf space, p is the projection, and X is the base space. For each x ∈ X ,
the fiber p−1(x) is denoted by Ex and is called the stalk over x .

Fig. 5.1 Protosheaf.

Here are several examples of protosheaves.

Example 5.57.

(i) If X is a topological space and Y is a discrete space, define E = X ×Y ,
and define p : E → X by p : (x, y) �→ x . If e = (x, y) ∈ E and V
is an open neighborhood of x , then S = {(v, y) : v ∈ V } is an open
neighborhood of e (because {y} is open in Y ) and p|S : S → V =
p(S) is a homeomorphism. The triple (E, p, X) is called a constant
protosheaf.

(ii) The triple (R, p, S1) is a protosheaf, where p(x) = e2π i x .

(iii) A covering space is a triple (E, p, X) in which each x ∈ X has an open
neighborhood V such that p−1(V ) = ⋃

i Si , a disjoint union of open
subsets of E with p|Si : Si → V a homeomorphism for each i . Every
covering space is a protosheaf.

(iv) If G is a topological group and H is a discrete normal subgroup of G,
then (G, p, G/H) is a covering space, where p is the natural map.

(v) The protosheaf in part (ii) (which is actually a covering space) gives rise
to an example showing that the converse is false. Let E = (0, 3) ⊆ R

and let p′ = p|E , where p : R → S1 is the projection in part (ii).
The map p′ is a local homeomorphism, being a restriction of such, but
(E, p′, S1) is not a covering space because there is no open neighbor-
hood V of (1, 0) ∈ S1 with p−1(V ) a disjoint union

⋃
i Si . �
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Proposition 5.58. Let (E, p, X) be a protosheaf.

(i) The sheets form a base of open sets for E.

(ii) p is an open map.

(iii) Each stalk Ex is discrete.

(iv) Let (Ui )i∈I be a family of open subsets of X, and let U = ⋃
i∈I Ui . If

f, g : U → Y for some space Y and f |Ui = g|Ui for all i ∈ I , then
f = g.

(v) Let (Ui )i∈I be a family of open subsets of X and, for (i, j) ∈ I × I ,
define U(i, j) = Ui ∩ U j . If ( fi : Ui → Y )i∈I are continuous maps
satisfying fi |U(i, j) = f j |U(i, j) for all (i, j) ∈ I × I , then there exists a
unique continuous f : U → Y with f |Ui = fi for all i ∈ I .

Proof.

(i) Since, for each e ∈ E , there is a sheet S containing e, the sheaf space
E is the union of all the sheets: E = ⋃

S S. If U ⊆ E is open, then
U ∩ S is open for every sheet S, and so U = ⋃

S(U ∩ S). But every
open subset of a sheet is also a sheet, and so U is a union of sheets; that
is, the sheets comprise a base for the topology of E .

(ii) If U ⊆ E is open, then p(U ) =⋃S p(U ∩ S). But p(U ∩ S) is open in
X , because p is a local homeomorphism; thus, p(U ) is open, for it is a
union of open sets.

(iii) Let e ∈ Ex , and let S be a sheet containing e. If e′ ∈ Ex and e′ 	= e,
then e′ /∈ S, for p|S is injective and p(e′) = x = p(e). Therefore,
S ∩ Ex = {e}, and so Ex is discrete.

(iv) If x ∈ U , then x ∈ Ui for some i , and f (x) = ( f |Ui )x = (g|Ui )x =
g(x). Hence, f = g.

(v) This is proved in Example 5.15. •

There are two equivalent versions of sheaf : the first, defined as a special
kind of protosheaf, we call an etale-sheaf (the French term for sheaf space is
espace étalé); the second, defined as a special kind of presheaf, we call a sheaf
(recall Example 1.14: if C is a category and U is the topology of a topological
space X viewed as a category, then a presheaf on X is a contravariant functor
P : U → C).
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Definition. If p : E → X is continuous, where X and E are topological
spaces, then S = (E, p, X) is an etale-sheaf of abelian groups if

(i) (E, p, X) is a protosheaf,

(ii) the stalk Ex is an abelian group for each x ∈ X ,

(iii) inversion and addition are continuous.

The meaning of continuity of inversion e �→ −e is clear, but we elaborate
on the definition of continuity of addition. Define

E + E =
⋃
x∈X

(Ex × Ex ) = {(e, e′) ∈ E × E : p(e) = p(e′)}.

Addition α : E + E → E is given by α : (e, e′) �→ e + e′, and continuity
means, of course, that for every open neighborhood V of e + e′ in E , there
exists an open neighborhood U of (e, e′) in E + E with α(U ) ⊆ V . Since
E × E has the product topology and E + E ⊆ E × E , there are open neigh-
borhoods H ⊆ E of e and K ⊆ E of e′, with α

(
(H × K )∩ (E + E)

) ⊆ V . If
we define H + K = {(h, k) ∈ H × K : p(h) = p(k)}, then α(H + K ) ⊆ V .

The definition of etale-sheaf can be modified so that its stalks lie in alge-
braic categories other than Ab, such as RMod or ComRings. For example,
the structure sheaf of a commutative ring R has base space Spec(R) with
the Zariski topology, sheaf space E = ⋃

p∈Spec(R) Rp suitably topologized,
and projection p : E → Spec(R) defined by p(e) = p for all e ∈ Rp (see
Example 5.95). Of course, axiom (iii) is modified so that all the algebraic op-
erations are continuous. Even though the results in this section hold in more
generality, we assume throughout that stalks are merely abelian groups.

Definition. Let S = (E, p, X) and S ′ = (E ′, p′, X) be etale-sheaves over
a space X . An etale-map ϕ : S → S ′ is a continuous map ϕ : E → E ′ such
that p′ϕ = p (so that ϕ|Ex : Ex → E ′

x for all x ∈ X ), and each ϕ|Ex is a
homomorphism. We write Homet(S,S ′) for the set of all etale-maps.

It is easy to check that all etale-sheaves of abelian groups over a topolog-
ical space X form a category, which we denote by

Shet(X,Ab).

Proposition 5.59. Let S = (E, p, X) and S ′ = (E ′, p′, X) be etale-sheaves
over a topological space X.

(i) Homet(S,S ′) is an additive abelian group.
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(ii) The distributive laws hold: given etale-maps

X α−→ S
ϕ

⇒
ψ

S ′ β−→ Y,

where X and Y are etale-sheaves over X, then

β(ϕ + ψ) = βϕ + βψ and (ϕ + ψ)α = ϕα + ψα.

(iii) Every etale-map ϕ : S → S ′ is an open map E → E ′.

Proof. Define ϕ+ψ : E → E ′ by ϕ+ψ : e �→ ϕ(e)+ψ(e). Verification of
the first two statements is routine. The third follows from Proposition 5.58(i),
which says that the sheets form a base of open sets for E . •

It will be simpler to give examples of etale-sheaves once we see the
(equivalent) definition of sheaf in terms of presheaves, and so we merely de-
scribe an example without verifying that all the particulars in the definition of
etale-sheaf actually hold.

Example 5.60.

(i) Let X be a topological space, and let A be an abelian group equipped
with the discrete topology. Define the constant etale-sheaf at A to be
(X × A, p, X), where X × A has the product topology and p : (x, a) �→
x is the projection. In particular, if A = {0}, then the constant sheaf at
A is called the zero sheaf.

(ii) The protosheaf (R, p, S1), where p : R → S1 is the local homeomor-
phism given by x �→ e2π i x , is not an etale-sheaf of abelian groups (for
its stalks are not abelian groups). �

Definition. Let S ′ = (E ′, p′, X) and S = (E, p, X) be etale-sheaves. Then
S ′ is an subetale-sheaf of S if E ′ ⊆ E and the inclusion ι : E ′ → E is an
etale-map.

By Proposition 5.59, if (E ′, p′, X) is a subetale-sheaf of (E, p, X), then
E ′ is an open subset of E . The reader may prove the converse: if E ′ is an open
subset of E and p′ = p|E ′, then (E ′, p′, X) is a subetale-sheaf of (E, p, X).

Even though the next proposition is obvious, we state it explicitly.

Proposition 5.61. Two subetale-sheaves (E, p, X) and (E ′, p′, X) of an
etale-sheaf S are equal if and only if they have the same stalks; that is, Ex =
E ′

x for all x ∈ X.

Proof. This is true because E =⋃x∈X Ex . •
We now introduce the sections of an etale-sheaf.
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Definition. If S = (E, p, X) is an etale-sheaf of abelian groups and U ⊆ X
is an open set, then a section over U is a continuous map σ : U → E such
that pσ = 1U ; call σ a global section if U = X . Define �(∅,S) = {0} and,
if U 	= ∅, define

�(U,S) = {sections σ : U → E}.

Sections �(U,S) may be viewed as describing local properties of a base
space X , while �(X,S) describes the corresponding global properties.

Proposition 5.62. Let S = (E, p, X) be an etale-sheaf of abelian groups,
and let F = �(�,S).

(i) F(U ) is an abelian group for each open U ⊆ X.

(ii) F = �(�,S) is a presheaf of abelian groups on X, called the sheaf of
sections of S.

(iii) The function z : X → E, defined by z(x) = 0x ∈ Ex (called the zero
section), is a global section.

Proof.

(i) Let us show that F(U ) 	= ∅ for every open set U ⊆ X . If U = ∅,
then F(U ) = {0}, by definition. If x ∈ U , choose e ∈ Ex and a sheet S
containing e. Since p is an open map, p(S)∩U is an open neighborhood
of x . Now (p|S)−1 : p(S) → S ⊆ E is a section; define σS to be its
restriction to p(S) ∩ U . The family of all such p(S) ∩ U is an open
cover of U ; since the maps σS agree on overlaps, Proposition 5.58(v)
shows that they may be glued together to give a section in F(U ).

If σ, τ ∈ F(U ), then (σ, τ ) : x �→ (σ x, τ x) is a continuous map U →
E+E ; composing with the continuous map (σ x, τ x) �→ σ x+τ x shows
that σ + τ : x �→ σ x + τ x ∈ F(U ). That F(U ) is an abelian group
now follows from inversion E → E being continuous, for σ ∈ F(U )

implies −σ ∈ F(U ).

(ii) If U ⊆ V are open sets, then the restriction σ → σ |U is the required
group homomorphism F(V ) → F(U ).

(iii) If U = X , then z is the identity element of the group F(X). •

If S is an etale-sheaf, then the presheaf F = �(�,S) satisfies a special
property not shared by arbitrary presheaves.
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Proposition 5.63. Let S = (E, p, X) be an etale-sheaf with sheaf of sec-
tions �(�,S), let U be an open set and let (Ui )i∈I be an open cover of it:
U =⋃i∈I Ui .

(i) If σ, τ ∈ �(U,S) and σ |Ui = τ |Ui for all i ∈ I , then σ = τ .

(ii) If (σi ∈ �(Ui ,S))i∈I satisfies σi |(Ui ∩ U j ) = σ j |(Ui ∩ U j ) for all
(i, j) ∈ I × I , then there exists a unique σ ∈ �(U,S) with σ |Ui = σi
for all i ∈ I .

Proof. Propositions 5.58(iv) and 5.58(v). •

Definition. A presheaf {F, ρV
U } of abelian groups on a space X satisfies the

equalizer conditon if

(i) (Uniqueness) for every open set U and open cover U = ⋃
i∈I Ui , if

σ, τ ∈ F(U ) satisfy σ |Ui = τ |Ui for all i ∈ I , then σ = τ [we have
written σ |Ui instead of ρU

Ui
(σ )],

(ii) (Gluing) for every open set U and open cover U = ⋃
i∈I Ui , if σi ∈

F(Ui ) satisfy σi |(Ui ∩U j ) = σ j |(Ui ∩U j ) for all i, j , then there exists
a unique σ ∈ F(U ) with σ |Ui = σi for all i ∈ I .

Proposition 5.63 shows that the sheaf of sections of an etale-sheaf satisfies
the equalizer condition, but there are presheaves that do not satisfy it.

Example 5.64. Let X = R
2 and, for each open U ⊆ R

2, define

P(U ) = { f : U → R | f is constant};
if U ⊆ V , define ρV

U : P(V ) → P(U ) to be the restriction map σ �→ σ |U . It
is easy to check that P is a presheaf of abelian groups over R

2, but P does not
satisfy the equalizer condition. For example, let U = U1 ∪U2, where U1,U2
are disjoint nonempty open sets. Define σ1 ∈ P(U1) by σ1(u1) = 0 for all
u1 ∈ U1, and define σ2 ∈ P(U2) by σ2(u2) = 5 for all u2 ∈ U2. The overlap
condition here is vacuous, because U1 ∩ U2 = ∅, but there is no constant
function σ ∈ P(U ) with σ |Ui = σi for i = 1, 2. �

The equalizer condition can be restated in a more categorical way; see
Example 5.15.

Corollary 5.65. Let S be an etale-sheaf with sheaf of sections F = �(�,S).
Given a family (Ui )i∈I of open subsets of X, write U =⋃i∈I Ui and U(i, j) =
Ui ∩U j for i, j ∈ I . Then there is an exact sequence

0 → F(U )
α−→
∏
i∈I

F(Ui )
β−→

∏
(i, j)∈I×I

F(U(i, j));
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if σ ∈ F(U ), the i th coordinate of α(σ) is σ |Ui ; if (σi ) ∈
∏

i∈I F(Ui ), the
(i, j)th coordinate of β((σi )) is σi |U(i, j) − σ j |U(i, j).

Proof. Proposition 5.63(i) shows that α is an injection. Now imα ⊆ kerβ,
for βα(σ) has (i, j) coordinate σ |(U(i, j)−σ |(i, j) = 0. The reverse inclusion
follows from Proposition 5.63(ii). •

It follows that P(U ) is an equalizer of

P(U )
α−→
∏
i∈I

P(Ui )
β ′
⇒
β ′′

∏
(i, j)∈I×I

P(U(i, j)),

where α : σ �→ (σ |Ui ), β ′ : (σi ) �→ (σi |U(i, j)), and β ′′ : (σi ) �→ (σi |U( j,i)).

We now adopt another point of view, one that is preferred by every serious
user of sheaves.

Definition. A sheaf of abelian groups over a space X is a presheaf 6 F on
X that satisfies the equalizer condition. We shall always assume that F(∅) =
{0}.

As with etale-sheaves, we may define sheaves with values in categories
other than Ab.

Corollary 5.66. If F is a sheaf of abelian groups over a space X, then every
family σ = (σi ) ∈

∏
i∈I F(Ui ) for which σi |(Ui ∩ U j ) = σ j |(Ui ∩ U j )

corresponds to a unique global section in F(X).

Proof. Such an element σ lies in kerβ, where β = β ′ − β ′′, where β, β ′ are
the maps in the equalizer diagram above. •

Sheaves arise naturally when encoding local information (sheaf cohomol-
ogy, discussed in the next chapter, is the way to globalize this data), as we
shall see in the subsection on manifolds.

Definition. If {F, ρV
U }, {G, τ V

U } are sheaves over X , a sheaf map ϕ : F → G
is a natural transformation; that is, ϕ is a one-parameter family of homomor-
phisms ϕU : F(U ) → G(U ), indexed by the open sets U in X , such that there
is a commutative diagram whenever U ⊆ V :

F(V )
ϕV ��

ρV
U ��

G(V )

τ V
U��

F(U )
ϕU

�� G(U ).

6We denote a sheaf by F because F is the initial letter of the French term faisceau.
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If U is the topology on X , then U is a set, and so U is a small category; as
in Example 1.19(iv), all presheaves form a category pSh(X,Ab), with mor-
phisms Hom(P,Q) = Nat(P,Q). We call morphisms P → Q presheaf
maps. It follows that if F and G are sheaves, then every presheaf map F → G
is a sheaf map.

Notation. Define Sh(X,Ab) to be the full subcategory of pSh(X,Ab) gen-
erated by all sheaves over a space X . We denote the Hom sets by

Homsh(F,F ′) = Nat(F,F ′).

Example 5.67. For each open set U of a topological space X , define

F(U ) = {continuous f : U → R}.
It is routine to see that F(U ) is an abelian group under pointwise addition:
f + g : x �→ f (x)+ g(x), and that F is a presheaf over X . For each x ∈ X ,
define an equivalence relation on

⋃
U&x F(U ) by f ∼ g if there is some open

set W containing x with f |W = g|W . The equivalence class of f , denoted
by [x, f ], is called a germ at x . Define Ex to be the family of all germs at
x , define E = ⋃

x∈X Ex , and define p : E → X by p : [x, f ] �→ x . In our
coming discussion of associated etale-sheaves, we will see how to topologize
E so that (E, p, X) is an etale-sheaf (called the sheaf of germs of continuous
functions over X ). The stalks Ex of this etale-sheaf can be viewed as direct
limits: the family of all open sets U containing x is a directed partially ordered
set and, by Corollary 5.31, a germ [x, f ] is just an element of the direct limit
lim−→U&x

F(U ). Variations of this construction are the sheaves of germs of
differentiable functions and of germs of holomorphic functions. �

Example 5.67 generalizes; we shall see, in Theorem 5.68, that the stalks
of every etale-sheaf are direct limits.

We now construct an etale-sheaf from any presheaf P (we do not assume
that P is the sheaf of sections of an etale-sheaf). The next result shows that
there is no essential difference between sheaves and etale-sheaves.

Theorem 5.68.

(i) The sheaf of sections defines a functor � : Shet(X,Ab) → pSh(X,Ab),
and im� ⊆ Sh(X,Ab).

(ii) There are a functor � : pSh(X,Ab) → Shet(X,Ab) (which is injective
on objects) and a natural transformation ν : 1pSh(X,Ab) → �� such
that νF : F → ��(F) is an isomorphism whenever F is a sheaf.
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(iii) The restriction �|Sh(X,Ab) is an isomorphism of categories:

Sh(X,Ab) ∼= Shet(X,Ab).

Proof.

(i) If ϕ : S → S ′, define �(ϕ) : �(U,S) → �(U,S ′) by σ �→ ϕσ . The
reader may check that � is a functor. Proposition 5.63 says that �(�,S)

is a sheaf.

(ii) Given a presheaf P of abelian groups over a space X , we first construct
its associated etale-sheaf Pet = (Eet, pet, X). For each x ∈ X , the
index set consisting of all open neighborhoods U & x , partially ordered
by reverse inclusion, is a directed set. Define Eet

x = lim−→U&x
P(U ) (gen-

eralizing the stalks of the sheaf of germs in Example 5.67).

Eet
x = lim−→U&x

P(U )

P(V )

ρV
U��

ρV
x88���������

P(U )

ρU
x



333333333333333

Since the index set is directed, Corollary 5.31(iii) says that the elements
of Eet

x = lim−→P(U ) are equivalence classes [ρU
x (σ )], where U & x ,

σ ∈ P(U ), and ρU
x : P(U ) → Eet

x is an insertion morphism of the di-
rect limit; moreover, [ρU

x (σ )]+ [ρU ′
x (σ ′)] = [ρW

x ρU
W (σ )+ρW

x ρU ′
W (σ ′)],

where W ⊆ U ∩U ′ (thus, [ρU
x (σ )] generalizes [x, f ] in Example 5.67).

Define Eet = ⋃
x∈X Eet

x , and define a surjection pet : Eet → X by
[ρU

x (σ )] �→ x .

If U ⊆ X is a nonempty open set and σ ∈ P(U ), define

〈σ,U 〉 = {[ρU
x (σ )] : x ∈ U }.

We claim that 〈σ,U 〉 ∩ 〈σ ′,U ′〉 either is empty or contains a subset
of the same form. If e ∈ 〈σ,U 〉 ∩ 〈σ ′,U ′〉, then e = [ρU

x (σ )] =
[ρU ′

y (σ ′)], where x ∈ U , σ ∈ P(U ), and y ∈ U ′, σ ′ ∈ P(U ′).
But x = pet[ρU

x (σ )] = pet[ρU ′
y (σ ′)] = y, so that x ∈ U ∩ U ′.

By Lemma 5.30(ii), there is an open W ⊆ U ∩ U ′ with W & x and
[ρU

WρW
x (σ )] = [ρU ′

W ρW
x (σ ′)]; call this element [τ ]; note that 〈τ, W 〉 ⊆

〈σ,U 〉 ∩ 〈σ ′,U ′〉, as desired. Equip Eet with the topology7 generated

7This is the coarsest topology on E that makes all sections continuous.



5.4 Sheaves 283

by all 〈σ,U 〉; it follows that these sets form a base for the topology; that
is, every open set is a union of 〈σ,U 〉s.

To see that (Eet, pet, X) is a protosheaf, we must show that the surjec-
tion pet is a local homeomorphism. If e ∈ Eet, then e = [ρU

x (σ )] for
some x ∈ X , where U is an open neighborhood of x and σ ∈ P(U ). If
S = 〈σ,U 〉, then S is an open neighborhood of e, and it is routine to see
that pet|S : S → U is a homeomorphism.

Now each stalk Eet
x is an abelian group. To see that addition is continu-

ous, take (e, e′) ∈ Eet + Eet; that is, e = [ρU
x (σ )] and e′ = [ρU ′

x (σ ′)].
We may assume the representatives have been chosen so that σ, σ ′ ∈
P(U ) for some U , so that e+e′ = [ρU

x (σ+σ ′)]. Let V et = 〈σ+σ ′, V 〉
be a basic open neighborhood of e+ e′. If α : Eet + Eet → Eet is addi-
tion, then it is easy to see that if U et = [〈τ, W 〉×〈τ ′, W 〉]∩ (Eet+Eet),
then α(U et) ⊆ V et. Thus, α is continuous. As inversion Eet → Eet is
also continuous, Pet = (Eet, pet, X) is an etale-sheaf.

Define � : pSh(X,Ab) → Shet(X,Ab) on objects by �(P) = Pet =
(Eet, pet, X). Note that � is injective on objects, for if P 	= P ′, then
{lim−→U&x

P(U )} 	= {lim−→U&x
P ′(U )}, and so their direct limits are distinct

(of course, they may be isomorphic). Hence, Pet 	= P ′et and �P 	=
�P ′. To define � on morphisms, let ϕ : P1 → P2 be a presheaf map,
and let Pet

i = (Eet
i , pet

i , X) for i = 1, 2. For each x ∈ X , ϕ induces
a morphism of direct systems {P1(U ) : U & x} → {P2(U ) : U & x}
and, hence, a homomorphism ϕx : lim−→U&x

P1(U ) → lim−→U&x
P1(U );

that is, ϕx : (Eet
1 )x → (Eet

2 )x . Finally, define �(ϕ) : Eet
1 → Eet

2 by
ex �→ ϕx (ex ) for all ex ∈ (Eet

1 )x . We let the reader prove that �(ϕ) is
an etale-map and that � is a functor.

Given a presheaf {P, ρV
U } and an open subset U ⊆ X (that is, U ∈ U),

a base for the topology of Eet consists of all 〈σ,U 〉 = {[ρU
x (σ )] : x ∈

U }. Define σ et : U → Eet by σ et(x) = [ρU
x (σ )]; Exercise 5.39(i)

on page 301 now says that σ et ∈ �(U,Pet). Define νU : P(U ) →
�(U,Pet) by σ �→ σ et. If V is an open set containing U , then it easy to
see that νV = νUρV

U , so that the family {νU : U ∈ U} gives a presheaf
map νP : P → �(�,Pet). We let the reader check that ν = (νU ) is a
natural transformation 1pSh(X,Ab) → ��.

If F is a sheaf, we show that νF : F → �(�,Fet) is an isomorphism
using Exercise 5.41 on page 301. It suffices to prove, for each open U ,
that νU : F(U ) → �(U,Fet), given by σ → σ et, is a bijection. To see
that νU is injective, suppose that σ, τ ∈ F(U ) and σ et = τ et. For each
x ∈ U , we have ρU

x (σ ) = ρU
x (τ ); that is, there is an open neighborhood

Wx of x with σ |Wx = τ |Wx . The family of all such Wx is an open
cover of U , and so Proposition 5.58(iv) gives σ = τ . To see that νU is



284 Setting the Stage Ch. 5

surjective, let β ∈ �(U,Fet). For each x ∈ U , there is a basic open
set 〈U, σx 〉 containing β(x), where σx ∈ F(Ux ). The gluing condition,
Proposition 5.58(v), shows that there is σ ∈ F(U ) with σ |Ux = σx
for all x ∈ U , and another application of Proposition 5.58(iv) gives
β = σ et. Thus, νU is a bijection.

(iii) This follows easily from parts (i) and (ii). •

The stalks of the etale-sheaf of germs in Example 5.67 are direct limits,
as are the stalks of Pet; we now define the stalks of an arbitrary presheaf.

Definition. If P is a presheaf on a space X , then the stalk at x ∈ X is

Px = lim−→U&x
P(U ).

For each x ∈ X , the presheaf map ϕ : P → Q induces a morphism
of direct systems {P(U ) : U & x} → {Q(U ) : U & x}, which, in turn,
gives the homomorphism ϕx : lim−→U&x

P(U ) → lim−→U&x
Q(U ) defined by

ϕx : [σ ] �→ [ϕσ ], where σ ∈ P(U ) and x ∈ U . Exercise 5.33 on page 272
shows that lim−→ is a functor Dir(I,Ab) → Ab, where Dir(I,Ab) is the cat-
egory of direct systems of abelian groups over I = {U & x}. Hence, if

P ϕ−→ Q ψ−→ R are presheaf maps, then (ψϕ)x = ψxϕx . See Exercise 5.45
on page 302 for a description of νx , where ν : P → �(�,Pet) is the natural
map in Theorem 5.68.

Lemma 5.69. Let ϕ,ψ : P → F be presheaf maps, where P is a presheaf
and F is a sheaf. If ϕ,ψ agree on stalks, that is, ϕx = ψx for all x ∈ X, then
ϕ = ψ .

Proof. We must show that ϕU = ψU for all open U . Given U , choose x ∈ U
and ex = [σx ] ∈ Px , where σx ∈ P(Ux ) for some open Ux & x with Ux ⊆ U .
By hypothesis,

[ϕσx ] = ϕx ([σx ]) = ψx ([σx ]) = [ψσx ] in lim−→U&x
F(U ).

By the definition of equality in direct limits, there are open neighborhoods Wx
of x with ϕσx |Wx = ψσx |Wx , and (Wx )x∈U is an open cover of U . Since the
equalizer condition holds for the sheaf F , the restrictions determine a unique
section; that is, ϕσx = ψσx . Hence, ϕU = ψU and ϕ = ψ . •

Theorem 5.70. Let P = {P(U ), ρV
U } be a presheaf of abelian groups over

a space X, let Pet = (Eet, pet, X) be its associated etale-sheaf, and let
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P∗ = �(�,Pet) be the sheaf of sections of Pet. There exists a presheaf
map ν : P → P∗ that solves the following universal mapping problem:

P ν ��

ϕ ���
��

��
� P∗

ϕ̃��(
(

(

F

for every presheaf map ϕ : P → F , where F is a sheaf over X, there exists a
unique sheaf map ϕ̃ : P∗ → F with ϕ̃ν = ϕ.

Proof. Applying � gives an etale-map �(ϕ) : �(P) → �(F), and applying
� gives a sheaf map ��(P) → ��(F). But P∗ = ��(P), by definition,
while νF : F → ��(F) is a natural isomorphism, because F is a sheaf.
Therefore, the diagram commutes if we define ϕ̃ = ν−1

F ��(ϕ).
By Lemma 5.69, it suffices to see that ϕ̃x = ψx for all x ∈ X . But

P∗
x = lim−→U&x

P(U ),

P(U )
νx ��

ϕx %%��
���

���
��

P∗
x = lim−→P(U )

ϕ̃x##, , , , ,

Fx = lim−→F(U ),

and the universal property of direct limit gives a unique map making the dia-
gram commute. •

Definition. If P is a presheaf of abelian groups, then its sheafification is the
sheaf P∗ = �(�,Pet), where � is the sheaf of sections of Pet, the associated
etale-sheaf of P .

The construction of the associated etale-sheaf in Theorem 5.68 shows that
a presheaf P and its sheafification P∗ have the same stalks.

Example 5.71. Let A be an abelian group and let X be a topological space.
The constant presheaf at A over X is defined on a nonempty open set U ⊆ X
by

P(U ) = { f : U → A| f is constant};
define P(∅) = {0} and, if U ⊆ V , define ρV

U : P(V ) → P(U ) by f �→ f |U
[an equivalent description of P has P(U ) = A for every nonempty open U
and ρV

U = 1A]. As in Example 5.64, P is not a sheaf, for we may not be able
to glue sections defined on disjoint open sets.

Let the protosheaf of Pet be (E, p, X). Now the stalk Ex = A, and so the
underlying set of E is X × A; what is the topology on X × A making Pet an
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etale-sheaf? As in the proof of Theorem 5.68, a base for open sets consists of
all the subsets of the form

〈 f,U 〉 = {[ρU
x ( f )] : x ∈ U };

here, f : U → A is a constant function; say, f (x) = a for all x ∈ U . Thus,
〈 f,U 〉 = U × {a}. Since stalks always have the discrete topology, it follows
that X×A has the product topology. Since there may be nonconstant functions
f : U → X × A with p f = 1U (see Example 5.64), the constant presheaf P
is not a sheaf.

Define the constant sheaf at A to be the sheafification P∗ of the constant
presheaf P . Recall that a function f : X → Y between spaces is locally
constant if each x ∈ X has an open neighborhood Ux with f |Ux constant.
If Y is discrete, then every continuous f : X → Y is locally constant; since
{ f (x)} is open, we may take Ux = f −1({ f (x)}). The reader may check that
the constant sheaf P∗ has sections

P(U ) = { f : U → A| f is locally constant}.

It follows that P 	= P∗. �

Here is an example showing that both protosheaf and presheaf views of a
sheaf are useful.

Example 5.72.

(i) Let A be an abelian group, X a topological space, and x ∈ X . Define a
presheaf by

x∗A(U ) =
{

A if x ∈ U ,

{0} otherwise.

If U ⊆ V , then the restriction map ρV
U is either 1A or 0. It is easy to

check that x∗A is a sheaf; it is called a skyscraper sheaf . Its name arises
because all the stalks of x∗A are {0} except (x∗A)x , which is A.

(ii) Let X be the unit circle, which we view as {z ∈ C : |z| = 1}, and let
p : X → X be defined by p : z �→ z2. If we set E = X , then we have
defined a protosheaf S = (E, p, X). Now S is an etale-sheaf with all
stalks isomorphic to I2, which we call the double cover. An interesting
feature of the sheaf of sections �(�,S) is that it has the same stalks as
the constant sheaf at I2, yet the two sheaves are not isomorphic. The
nonisomorphism merely reflects the obvious fact that different spaces
can be the same locally. �
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Fig. 5.2 Double cover.

Definition. Let P ′ and P be presheaves of abelian groups on a topological
space X such that P ′(U ) ⊆ P(U ) for every open set U in X ; that is, there
are inclusions ιU : P ′(U ) → P(U ). Then P ′ is a subpresheaf of P if the
inclusion ι : P ′ → P is a presheaf map..

If F is a sheaf, then P ′ is a subsheaf of F if P ′ is a subpresheaf that is
also a sheaf.

Example 5.73.

(i) The zero sheaf [see Example 5.60(i)] is a subsheaf of every sheaf.

(ii) Let F be the sheaf of germs of continuous functions on an n-manifold X
[see Example 5.67], let F ′ be the sheaf of germs of differentiable func-
tions on X , and let F ′′ be the sheaf of germs of holomorphic functions
on X . Then F ′′ is a subsheaf of F ′, and F ′ is a subsheaf of F .

(iii) Let F be the sheaf of germs of continuous functions on a space X .
Define G by setting G(U ) = F(U ) for all open sets U and by setting
restrictions ψV

U to be identically 0. Then G is a presheaf, but G is not a
subpresheaf of F (for the inclusion is not a presheaf map). �

It is clear that subpresheaves F and F ′ of a presheaf G are equal if and
only if F(U ) = F ′(U ) for all open U . This simplifies for sheaves.

Proposition 5.74.

(i) If � : pSh(X,Ab) → Shet(X,Ab) is the functor in Theorem 5.68, and
if F is a subsheaf of a sheaf G, then �F is a subetale-sheaf of �G.

(ii) If all the stalks of a sheaf F are {0}, then F is the zero sheaf.

(iii) If F and F ′ are subsheaves of a sheaf G, then F = F ′ if and only if
they have the same stalks; that is, Fx = F ′

x for all x ∈ X.



288 Setting the Stage Ch. 5

Remark. Example 5.81 shows that part (ii) is false for presheaves, and so
the hypothesis in part (iii) that F and F ′ both be subsheaves of a sheaf G is
necessary. �

Proof.

(i) If ι : F → G is the inclusion, then �(ι) : �F → �F is an etale-map.
Since each ιU : F(U ) → G(U ) is an injection, the induced map on
stalks ιx : Fx → Gx is an injection (Proposition 5.33 applies because
{open W ⊆ U : W & x} is a directed set).

(ii) The construction in Theorem 5.68 shows, for any presheaf P , that the
stalks of P and �(�,Pet) are the same. It follows that if all the stalks of
a sheaf F are {0}, then �(�,Fet) are {0}. But the restriction of the func-
tor � : pSh(X,Ab) → Shet(X,Ab) to Sh(X,Ab) is an isomorphism,
and so �(F) = �(0) is the zero sheaf.

(iii) By Proposition 5.61, if F and F ′ have the same stalks, then �F = �F ′.
But � is injective on objects, and so F = F ′. •

5.4.1 Manifolds

In his book Differential Geometry: Cartan’s Generalization of Klein’s Erlan-
gen Program (Springer-Verlag, New York, 1997, p. 52), R. W. Sharpe writes,

Let us begin with a rough and ready description of p-forms for
p ≤ 2. The 0-forms (with values in a finite-dimensional vector
space V ) on a manifold M are just the V -valued functions on M .
The 1-forms generalize the derivatives of a function on M . The
2-forms are used as a way of formalizing the necessary conditions
on a 1-form for it to be the derivative of a function.

When we first learn Calculus, it is natural for us to regard differential
forms dx as being very small and, hence, to regard (dx)2 = dxdx as being
neglible. Taking this observation seriously leads to Grassmann algebras.

Definition. Let Vn be an n-dimensional vector space over R, and label a
basis of Vn as dx1, . . . , dxn . The Grassmann algebra8 G(Vn) is the (asso-
ciative) R-algebra with generators dx1, . . . , dxn and relations v2 = 0 for all
v ∈ Vn .

8This is a special case of an exterior algebra. The product of two elements is usually
denoted by dx ∧ dy instead of by dxdy, and the maps d p : G p(Vn) → G p+1(Vn) defined
below are special cases of exterior derivatives.



5.4 Sheaves 289

Of course, (dxi )
2 = 0 in G(Vn); note that (dxi + dx j )

2 = 0 gives 0 =
(dxi )

2 + dxi dx j + dx j dxi + (dx j )
2 = dxi dx j + dx j dxi , so that

dxi dx j = −dx j dxi .

In particular, products of dxi s can be rewritten in the form±dxi1dxi2 · · · dxi p ,
where 1 ≤ i1 < i2 < · · · < i p ≤ n. For example, dx3dx1dx2 = −dx1dx3dx2
= dx1dx2dx3. If I = (i1, . . . , i p), write

dxI = dxi1dxi2 · · · dxi p .

We can prove that G(Vn) is a graded algebra:

G(Vn) =
⊕
p≥0

G p(Vn),

where G0(Vn) = R and G p(Vn), for p ≥ 1, is the vector space over R gener-
ated by all dxi1dxi2 · · · dxi p . It follows that G p(Vn) = {0} if p > n, because
any product of dxi s having more than n factors must have some dxj repeated.
In fact, dim(G p(Vn)) =

(n
p

)
, with basis all dxI with I = (i1, . . . , i p) and

1 ≤ i1 < i2 < · · · < i p ≤ n (Rotman, Advanced Modern Algebra, p. 749).

Definition. A euclidean m-chart is an ordered pair (U, ϕ), where U is a
topological space, called a coordinate neighborhood, and ϕ : U → R

m is a
homeomorphism. A function f : U → R is smooth if f ϕ−1 : ϕ(U ) → R is
smooth (if V ⊆ R

m is open, then a function f : V → R is smooth if all its
mixed partials exist). All these smooth functions form a commutative ring,

C(U, ϕ).

Definition. An m-manifold is a Hausdorff space X such that every x ∈ X
has an open neighborhood homeomorphic to R

m .

If Ux is an open neighborhood of X and ϕx : Ux → R
m is a homeomor-

phism, then (Ux , ϕx ) is an m-chart.

Definition. Given a euclidean m-chart (U, ϕ), define

�p(U, ϕ) = C(U, ϕ)⊗R G p(Vm).

Now �0(U, ϕ) = C(U, ϕ) and, when p ≥ 1, �p(U, ϕ) is the free C(U, ϕ)-
module with basis all dxI with I = (i1, . . . , i p) and 1 ≤ i1 < i2 < · · · <
i p ≤ m. The elements ω ∈ �p(U, ϕ) are called real p-forms; each has
a unique expression ω = ∑

I f I dxI , where f I ∈ C(U, ϕ) (we write dxI
instead of 1 ⊗ dxI and, more generally, f I dxI instead of f I ⊗ dxI ).
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Definition. If (U, ϕ) is a euclidean chart, then the de Rham complex
�•(U, ϕ) is the sequence

0 → �0(U, ϕ)
d0

−→ �1(U, ϕ)
d1

−→ �2(U, ϕ) → · · · ,

where d p : �p(U, ϕ) → �p+1(U, ϕ) is defined9 as follows:

if f ∈ �0(U, ϕ) = C, then d0 f =
∑

i

∂ f

∂xi
dxi ;

if ω =
∑

I

f I dxI ∈ �p(U, ϕ), then d p(ω) =
∑

I

(d0 f I ) dxI .

The de Rham complex is a complex; that is, d p+1d p = 0; the proof
depends on the fact that the mixed partials of a smooth function are equal (see
Bott–Tu, Differential Forms in Algebraic Topology, p. 15).

Example 5.75. If U ⊆ R
3, then the de Rham complex is just the familiar

one of Advanced Calculus:10

0 → �0(U )
grad−→ �1(U )

curl−→ �2(U )
div−→ �3(U ) → 0. �

As in Advanced Calculus, we say that a p-form ω is closed if d pω = 0,
and it is exact if ω = d p−1ζ for some (p − 1)-form ζ . Let Z p(U, ϕ) denote
the subspace of �p(U, ϕ) comprised of all closed p-forms, and let B p(U, ϕ)

denote the subspace of �p(U, ϕ) comprised of all exact p-forms. Since
d pd p−1 = 0, every exact p-form is closed; that is, B p(U, ϕ) ⊆ Z p(U, ϕ),
and we define

H p(�•(U, ϕ)) = Z p(U, ϕ)/B p(U, ϕ).

The cohomology groups H p(�•(U, ϕ)) of the de Rham complex are isomor-
phic to the singular cohomology groups H p(U,R).

We shall see, in Example 5.77, that sheaves will allow us to generalize
this discussion from charts to manifolds.

The following general construction is useful.

9Strictly speaking, we should write ∂( f ϕ−1)/∂xi instead of ∂ f/∂xi .
10Recall: grad f = ∂ f

∂x dx + ∂ f
∂y dy + ∂ f

∂z dz; curl( f1 dx + f2 dy + f3 dz) =(
∂ f3
∂y − ∂ f2

∂z

)
dydz−

(
∂ f1
∂z − ∂ f3

∂x

)
dxdz+

(
∂ f2
∂x − ∂ f1

∂y

)
dxdy; div( f1 dydz− f2 dxdz+

f3 dxdy) =
(
∂ f1
∂x + ∂ f2

∂y + ∂ f3
∂z

)
dxdydz.
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Definition. Let F be a sheaf of abelian groups over X , and let U be an open
subset of X . If V ⊆ U is an open set, define a presheaf F |U : V �→ F(V ). It
is easy to see that F |U is a sheaf; it is called the restriction sheaf.

If F is a sheaf over a space X and U ⊆ X is open, we may say “F over
U” instead of “the restriction sheaf F |U .”

Here is the geometric picture of the restriction F |U . If Fet = (E, p, X)

is the etale-sheaf of F , then the etale-sheaf of F |U is (E ′, p|E ′,U ), where
E ′ = p−1(U ).

Given a euclidean m-chart (U, ϕ), we have seen how to define the de
Rham complex �p(U, ϕ). We can generalize this construction from m-charts
to smooth manifolds, which are the most interesting manifolds for Geometry
and Analysis.

Definition. Let X be an m-manifold. An atlas is a family of m-charts
((Ui , ϕi ))i∈I with U = (Ui )i∈I an open cover of X .

Let ((Ui , ϕi ))i∈I be an atlas of an m-manifold. If p ∈ Ui , then ϕi equips
p with coordinates, namely, ϕi (p). Write Ui j = Ui ∩ U j . If Ui j 	= ∅, then
every p ∈ Ui j has two sets of coordinates: ϕi (p) and ϕ j (p).

Definition. If ((Ui , ϕi ))i∈I is an atlas, then its transition functions are

hi j = ϕiϕ
−1
j : ϕ j (Ui j ) → ϕi (Ui j ).

Transition functions compare the two sets of coordinates of p ∈ Ui j . If
(y1, . . . , ym) = ϕ j (p) and (x1, . . . , xm) = ϕi (p), then hi j : (y1, . . . , ym) �→
(x1(y1, . . . , ym), . . . , xm(y1, . . . , ym)). If V and W are open subsets of R

m

and h : V → W , then

h : (y1, . . . , ym) �→ (x1(y1, . . . , ym), . . . , xm(y1, . . . , ym)).

Call h smooth if all its mixed partials exist; that is, for each 1 ≤ q ≤ m, the
coordinate function (y1, . . . , ym) �→ xq(y1, . . . , ym) is smooth.

Definition. A smooth m-manifold is an m-manifold having an atlas whose
transition functions are smooth.

The next proposition will allow us to define (global) smooth functions
on X .

Proposition 5.76 (Gluing Lemma). Let U = (Ui )i∈I be an open cover of
a space X. For each i ∈ I , let Fi be a sheaf of abelian groups over Ui and,
for each i, j ∈ I , let there be sheaf isomorphisms θi j : F j |Ui j → Fi |Ui j such
that
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(i) θi i = 1Fi |Ui j ,

(ii) for all i, j, k ∈ I , the restrictions to Ui ∩U j ∩Uk satisfy

θik = θi jθ jk .

Then there exist a unique sheaf F over X and isomorphisms ηi : F |Ui → Fi
such that ηiη

−1
j = θi j over Ui j for all i, j .

Proof. Uniqueness of F (to isomorphism) is left to the reader. For existence,
note that if V ⊆ X is open, then

V = V ∩ X = V ∩
⋃
i∈I

Ui =
⋃
i∈I

(V ∩Ui ).

Define F(V ) = lim−→Fi (V ∩ Ui ). It is routine to check that the presheaf F is
a sheaf that satisfies the stated properties. •

Example 5.77. Let ((Ui , ϕi ))i∈I be an atlas of an m-manifold X . For each
i ∈ I , define a commutative ring over Ui by setting, for each open Wi ⊆ Ui ,

Fi (Wi ) = { f |Wi : f ∈ C(Ui , ϕi )},

where C(Ui , ϕi ) is the commutative ring of all smooth functions on (Ui , ϕi ).
If W ′

i ⊆ Wi are open, define Fi (Wi ) → Fi (W ′
i ) to be “honest” restriction:

f |Wi �→ f |W ′
i . It is easy to see that Fi is a sheaf of commutative rings

over Ui . The reader can define sheaf maps θi j that satisfy the hypotheses of
the Gluing Lemma, Proposition 5.76, yielding a sheaf C over X . In light of
Corollary 5.66, define a smooth function on X to be a global section; that
is, define C(X) = �(X, C). With this definition, the smooth functions on X
form a commutative ring. Let (E, p, X) be the etale-sheaf corresponding to
C. Locally, smooth functions have values in R

m ; however, smooth functions
on X correspond to global sections; that is, they take values in E .

A similar construction allows us to define (global) p-forms on X , and
the de Rham complex can be defined for manifolds (see Bott–Tu, Differential
Forms in Algebraic Topology, for more details). �

Here are two important constructions, called change of base (but which
we will not be using in the text); the first generalizes the construction of the
restriction sheaf just given.

(i) Given a continuous f : Y → X , there is a change of base construction,
called inverse image, that constructs a sheaf over Y from a sheaf over
X . It is simplest to define inverse image in terms of etale-sheaves. If
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P is a presheaf, then Pet = (E, p, X) is an etale-sheaf. Construct the
pullback (in Top)

E ′ �����

p′
���
�
� E

p

��
Y

f
�� X.

Then S ′ = (E ′, p′, Y ) is an etale-sheaf over Y , and define f ∗P =
�(�,S ′). There is a functor f ∗ : pSh(X,Ab) → pSh(Y,Ab), called
inverse image, with f ∗ : P �→ �(�,Pet). For example, if f : U → X
is the inclusion of an open subset, then f ∗F is the restriction sheaf
F |U .

(ii) Given a continuous f : Y → X , the second change of base construction
constructs a presheaf over X from a presheaf over Y . If P is a presheaf
over Y , define the direct image f∗P by f∗P(V ) = P( f −1V ) for every

open subset V ⊆ X and, if W ⊆ V , then ρW
V = ρ

f −1W
f −1V

. Then f∗P
is a presheaf over X ; if P is also a sheaf, then f∗P is a sheaf as well.
Moreover, f∗ : pSh(Y ;Ab) → pSh(X,Ab) is a functor.

As an example, let i : Y → X be the inclusion of a subspace, and let F
be a sheaf of abelian groups over Y . If Y is closed, then we can prove
(see Tennison, Sheaf Theory, p. 64) that the stalks of i∗F are

(i∗F)x =
{
Fx if x ∈ Y ,

{0} if x /∈ Y .

If Y is an open subset, then the stalks of i∗F are {0} outside Y , the
closure of Y .

Theorem. If f : X → Y is continuous and P is a presheaf over Y , then
f ∗P is a sheaf over X. Moreover, there is a presheaf map ν : P → f∗ f ∗P
solving the universal mapping problem (where F is a sheaf)

P ν ��

ϕ
���

��
��

��
��

f∗ f ∗P

���
�
�

F .

Proof. Tennison, Sheaf Theory, p. 60. •
This generalizes Theorem 5.70, for the sheafification of a presheaf P

(which we constructed using etale-sheaves) turns out to be P∗ = f∗ f ∗P ,
where f = 1X : X → X .
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Corollary. If f : X → Y is continuous, then ( f ∗, f∗) is an adjoint pair of
functors pSh(Y,Ab) → pSh(X,Ab).

Proof. Tennison, Sheaf Theory, p. 61. •
The reader should note that P �→ f∗ f ∗P is the unit of this adjoint pair of

functors.

5.4.2 Sheaf Constructions

We now show that many constructions made for abelian groups can be gen-
eralized to presheaves and to sheaves. It turns out that finite products and
finite coproducts exist in the categories pSh(X,Ab) and Sh(X,Ab) and, as
in RMod, they coincide.

Proposition 5.78. Let P and Q be presheaves of abelian groups on a space X.

(i) If, for every open U ⊆ X, we define

(P ⊕Q)(U ) = P(U )⊕Q(U ),

then P ⊕Q is both a product and a coproduct in pSh(X,Ab).

(ii) If both P and Q are sheaves, then P ⊕ Q is a sheaf, and it is both a
product and a coproduct in Sh(X,Ab).

Proof.

(i) It is easy to generalize Proposition 2.20(iii) from modules to presheaves;
P ⊕ Q is a coproduct if and only if there are projection and injec-

tion presheaf maps P i
�
p

P ⊕Q
q
�
j

Q satisfying the equations pi =
1P , q j = 1Q, pj = 0, qi = 0, and i p + jq = 1P⊕Q. If X is a
presheaf and α : P → X and β : Q → X are presheaf maps, define
θ : P ⊕ Q → X by θ = αi + β j . We conclude that P ⊕ Q is a
coproduct.

P
i
���

�� α

--�
��

�

P ⊕Q θ ������� X

Qj

��					 β

44....

P

P ⊕Q
q ��		
			

p �������
Xθ ′		� � � � �

s

����

t;;..
..

Q

Similarly, P ⊕ Q is a product, for if s : X → P and t : X → Q are
presheaf maps, define θ ′ : X → P ⊕Q by θ ′ = is + t j .
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(ii) If P and Q are sheaves, then the equalizer condition holds for each,
from which it follows that there is an exact sequence of abelian groups

0 → (P ⊕Q)(U )
α→
∏
i∈I

(P ⊕Q)(Ui )

β′−→−→
β ′′

∏
(i, j)∈I×I

(P ⊕Q)(U(i, j)).

Thus, P ⊕Q is a sheaf. That P ⊕Q is both a product and a coproduct
in pSh implies that this also holds in the subcategory Sh (for there are
more diagrams to complete in the large category).11 •

Remark. If P and Q are presheaves (or sheaves), we call P⊕Q their direct
sum. Note that the stalks of P ⊕Q are (P ⊕Q)x = Px ⊕Qx . �

Definition. If (Fi )i∈I is a family of presheaves of abelian groups over a
space X with restriction maps ρi , define the direct product presheaf P =∏

i∈I Fi as follows. For every open U ⊆ X , define

P(U ) =
∏
i∈I

Fi (U );

if U ⊆ V are open, define the restriction P(V ) → P(U ) coordinatewise:

(si ) �→ (ρi (si )).

Proposition 5.79. If (Fi )i∈I is a family of sheaves of abelian groups over
a space X, then

∏
i∈I Fi is a sheaf, and it is a categorical direct product in

Sh(X,Ab).

Proof. The straightforward checking is left to the reader. •
We want to define exact sequences of sheaves; defining the kernel of a

presheaf map is straightforward.

Definition. The kernel of a presheaf map ϕ : P → Q is defined by

(kerϕ)(U ) = ker(ϕU ).

It is easy to check that kerϕ is a subpresheaf of P . Note that the inclusions
ιU : ker(ϕU ) → P constitute a presheaf map ι : kerϕ → P; we call ι the
inclusion.

11However, a product in a subcategory need not be a product in a larger category. For
example, let T be the category of all torsion abelian groups. If (Gn)n≥1 is a family of
torsion groups, then t (

∏
n≥1 Gn) is the categorical direct product in T , while

∏
n≥1 Gn is

the categorical direct product in Ab.
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Proposition 5.80. Let {P, ρV
U } and {Q, ψV

U } be presheaves over a space X,
and let ϕ : P → Q be a presheaf map.

(i) The inclusion ι : kerϕ → P is a categorical kernel of ϕ in pSh(X,Ab);
that is, ι solves the universal mapping problem

X

j &&�
��

��
��

�

θ

���
�
�

0

%%���������������

kerϕ
ι

�� P ϕ
�� Q.

(ii) If P and Q are sheaves, then kerϕ is a sheaf, and the sheaf map
ι : kerϕ → P is a categorical kernel of ϕ in Sh(X,Ab).

(iii) If P and Q are sheaves, then (kerϕ)x = ker(ϕx ).

Proof.

(i) For each U , there is a unique map θU : X (U ) → (kerϕ)(U ) for each
U , because (kerϕ)(U ) = ker(ϕU ) solves the universal problem in Ab,
as in Example 5.12(iii).

X (U )

jU ��		
			

			
		

θU

���
�
�

0

**4444444444444444444

(kerϕ)(U )
ιU

�� P(U )
ϕU

�� Q(U )

The reader may check that θ : X → kerϕ is a presheaf map.

(ii) It suffices to prove that kerϕ is a sheaf. Assume that (Ui )i∈I is an open
cover of an open U ⊆ X . If σ, σ ′ ∈ F(U ) agree on overlaps [i.e.,
ρ

Ui
Ui∩U j

(σ ) = ρ
Ui
Ui∩U j

(σ ′) for all i, j], then σ = σ ′, because P is a
sheaf. For the gluing axiom, suppose that σi ∈ kerϕUi for all i satisfy

the compatibility condition ρ
Ui
Ui∩U j

(σi ) = ρ
U j
Ui∩U j

(σ j ) for all i, j . Since

P is a sheaf, there is σ ∈ P(U ) with ρU
Ui

(σ ) = σi for all i . Now

ψU
Ui

ϕU (σ ) = ϕUi ρ
U
Ui

(σ ) = ϕUi (σi ) = 0,

because σi ∈ kerϕUi . Since Q is a sheaf, ϕU (σ ) = 0; that is, σ ∈
kerϕU . Therefore, σ ∈ (kerϕ)(U ), and so kerϕ is a sheaf.

(iii) Since (kerϕ)(U ) = ker(ϕU ) ⊆ P(U ) for all U , we have (kerϕ)x =
lim−→ ker(ϕU ) ⊆ lim−→P(U ), because {U : U & x} is directed. Now
ϕx : lim−→U&x

P(U ) → lim−→U&x
Q(U ) is defined by ϕx : [σU ] �→ [ϕUσU ],
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and so ker(ϕx ) ⊆ lim−→U&x
P(U ). Since both (kerϕ)x and ker(ϕx ) are

subsets of lim−→U&x
P(U ), it makes sense to assert their equality. If

[σU ] ∈ ker(ϕU )x = lim−→ ker(ϕU ), then ϕUσU = 0 for all U ; hence,
lim−→ ker(ϕU ) ⊆ ker(ϕx ). For the reverse inclusion, if [σU ] ∈ ker(ϕx ),
then [ϕUσU ] = 0 in lim−→Q(U ), and so there is some W ⊆ U with

ϕW (ρU
WσU ) = 0, by Lemma 5.30(ii). Hence, ϕV σV = 0 for all V ⊆ W ,

and so [σU ] ∈ lim−→ ker(ϕU ). •
Defining the image of a presheaf map and, hence, defining exactness, is

straightforward for presheaves. If ϕ : P → Q is a presheaf map, define imϕ

by (imϕ)(U ) = imϕU ; note that im ϕ is a subpresheaf of Q.

Definition. A sequence of presheaves P ′ ϕ−→ P ψ−→ P ′′ is exact in
pSh(X,Ab) if

imϕ = kerψ.

It is easy to see that P ′ ϕ−→ P ψ−→ P ′′ is an exact sequence of presheaves

if and only if P ′(U )
ϕU−→ P(U )

ψU−→ P ′′(U ) is an exact sequence of abelian
groups for every open set U .

If P ′ is a subpresheaf of a presheaf P , define the quotient presheaf by
(P/P ′)(U ) = P(U )/P ′(U ). It is easy to see that P/P ′ is a presheaf and
that the natural map π : P → P/P ′ [with πU : P(U ) → P(U )/P ′(U )] is a
presheaf map. If ϕ : P → Q is a presheaf map, then Q/ imϕ is a cokernel.
The First Isomorphism Theorem, P/ kerϕ ∼= imϕ, holds as well.

Example 5.81. If F is a sheaf over a space X with every stalk {0}, then F is
the zero sheaf. However, this is not true for presheaves. Let P be a presheaf
that is not a sheaf. There is an exact sequence of presheaves

P ν−→ P∗ → P∗/P → 0,

where P∗ is the sheafification of P . For each x ∈ X , the index set {U : U & x}
is a directed set, and so there is an exact sequence

Px
νx−→ P∗

x → (P∗/P)x → 0,

where νx is the identity on Px . Thus, (P∗/P)x = {0} for all x ∈ X . �
Alas, the image of a sheaf map need not be a sheaf.

Example 5.82. Let O be the sheaf of germs of complex holomorphic func-
tions on the punctured plane X = C− {0}; thus,

O(U ) = {holomorphic f : U → C}.
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Let O× be the sheaf on X defined by O×(U ) = {holomorphic f : U → C
×};

that is, f (z) 	= 0 for all z ∈ U . If ϕ : O → O×is the sheaf map defined by
ϕU : f �→ e2π i f , then kerϕ ∼= Z, the constant sheaf at Z on X , and, for each
U , there is an exact sequence of presheaves

0 → Z → O ϕ−→ O× → 0.

We claim that imϕ is not a sheaf. Let (Ui )i∈I be an open cover of X by disks.
Define fi ∈ O×(Ui ) by fi (z) = z for all z ∈ Ui . Of course, this family agrees
on overlaps, and the unique global section they determine is f = 1X . Now
each fi ∈ ϕ(Ui ), for there is a logarithm �i (z) defined on Ui with e�i (z) = z
(because the disk Ui is simply connected). However, it is well-known that
there is no complex holomorphic logarithm defined on all of X , and so 1X is
not a global section of imϕ. Therefore, imϕ is not a sheaf. �

Example 5.82 shows that we must be more careful with sheaves than with
presheaves, for the image of a sheaf map P → Q need not be a sheaf, even
when both P and Q are sheaves. There is also a problem with quotients:
if F ′ is a subsheaf of a sheaf F , then the quotient F/F ′ is a presheaf that
need not be a sheaf. If ϕ : F → G is a sheaf map between sheaves, then the
First Isomorphism Theorem for presheaves gives an isomorphism F/ ker ϕ ∼=
imϕ. Hence, if imϕ is not a sheaf, then the quotient presheaf F/ ker ϕ is not
a sheaf either. The definition of quotient sheaf is given in Exercise 5.49 on
page 302.

How should an image sheaf be defined? In Ab, the cokernel of a map
f : A → B is B/ im f ; that is, then im f = kerπ , where π : B → B/ im f
is the natural map. Thus,

im(A
f→ B) = ker(coker(A

f→ B)).

This remark is interesting because coker f can be defined as a solution to a
universal mapping problem in Ab that does not mention im f .

A

0
%%��

���
���

���
���

���
f �� B

π ��

h

���
��

��
��

��
� coker f

θ

���
�
�

X

Note that the natural map π : B → coker f is needed to pose the universal
problem. In fact, it is more convenient to think of π as the cokernel rather
than B/ im f . We could call π the categorical cokernel to avoid confusion.

We now define the cokernel of a sheaf map. Recall that Hom(F,X ) is an
abelian group whose identity element is the sheaf map 0: F → X .
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Definition. A cokernel of a sheaf map ϕ : F → G is a sheaf map π : G → C
with πϕ = 0, where C ∈ obj(Sh), that solves the universal mapping problem:
for every sheaf map η : G → X with ηϕ = 0, there exists a unique sheaf map
θ : C → X with θπ = η.

F

0
����

���
���

���
���
ϕ �� G π ��

η

��5
55

55
55

5 C
θ

���
�
�

X

Proposition 5.83. If F,G are sheaves and ϕ : F → G is a sheaf map, then
cokerϕ exists in Sh(X,Ab); it is the composite G → G/ imϕ → (G/ imϕ)∗,
where (G/ imϕ)∗ is the sheafification of G/ imϕ.

Proof. Consider the diagram of presheaves:

F

0
<<

ϕ �� G π ��
η0

���
���

���
(G/ imϕ)∗

θ

���
�
�
�
�

G/ imϕ

ν
��6666666

θ0

����
���

���

X .

Since ηϕ = 0, there are presheaf maps θ0 : G/ imϕ → X and η0 : G →
G/ imϕ with η = θ0η0 (because G/ imϕ is a cokernel in pSh). There is a
presheaf map ν : G/ imϕ → (G/ imϕ)∗, and we define π : G → (G/ imϕ)∗
by π = νη0. By Theorem 5.70, there is a sheaf map θ : (G/ imϕ)∗ → X
making the diagram commute. Uniqueness of the sheaf map θ now follows
from Lemma 5.69. •

Proposition 5.84. If F,G are sheaves and ϕ : F → G is a sheaf map, then
kerϕ = 0 if and only if ϕx = 0 for all x ∈ X, and cokerϕ = 0 if and only if
imϕx = Gx for all x ∈ X.

Proof. If kerϕ = 0, then (kerϕ)x = {0} for all x , for Proposition 5.74(ii)
says that sheaves are zero if and only if all their stalks are zero. But (kerϕ)x =
ker(ϕx ); that is, ϕx = 0 for all x . Conversely, if ϕx = 0 for all x ∈ X ,
then (kerϕ)x = 0 for all x , and so kerϕ = 0, by Proposition 5.74(ii). This
argument can be repeated for coker ϕ, for (cokerϕ)x = coker(ϕx ). •

Definition. If ϕ : F → G is a sheaf map, then

imϕ = ker(G π−→ cokerϕ).
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We are abusing notation: we have defined a sheaf, namely, cokerϕ, that is
equal to (G/ imϕ)∗. By definition, the cokernel of ϕ is a morphism (not a
sheaf!), namely, the sheaf map π : G → (G/ imϕ)∗. Thus, the definition says
that imϕ = kerπ .

Solutions to universal mapping problems, when they exist, are unique
only to (unique!) isomorphism. However, since we are working in Sh(X,Ab)
and not in some abstract category, we may choose, once and for all, a spe-
cific solution, namely, the composite G → G/ imϕ → (G/ imϕ)∗. Thus,
we may assume that (cokerϕ)x = coker(ϕx ). More important for us is the
consequence:

(imϕ)x = (kerπ)x = ker(πx ) = im(ϕx ).

Definition. A sequence F ′ ϕ−→ F ψ−→ F ′′ of sheaves of abelian groups
over a space X is exact if

imϕ = kerψ.

Theorem 5.85. A sequence F ′ ϕ−→ F ψ−→ F ′′ of sheaves of abelian groups
over a space X is exact in Sh(X,Ab) if and only if the sequence of stalks

F ′
x

ϕx−→ Fx
ψx−→ F ′′

x

is exact in Ab for all x ∈ X.

Proof. If the sequence of sheaves is exact, then ker ϕ = imψ and (kerϕ)x =
(imψ)x for all x ∈ X . But (kerϕ)x = ker(ϕx ) and (imψ)x = im(ψx ), and
so the sequence of stalks is exact.

If the sequences of stalks are exact (for each x ∈ X ), then Proposition 5.74
gives imϕ = kerψ , for both imϕ and kerψ are subsheaves of F , and so the
sequence of sheaves is exact. •

Corollary 5.86. If F,G are sheaves and ϕ : F → G is a sheaf map, then
there is an exact sequence

0 → K ι−→ F ϕ−→ G ν−→ K′ → 0

with ι = kerϕ and ν = cokerϕ.

Proof. This follows at once from Theorem 5.85. •
Thus, exactness of a sequence of sheaves means exactness at each stalk. In

contrast, exactness of a sequence of presheaves means exactness at each open
set. If a sequence of sheaves F ′ → F → F ′′ is exact in pSh(X,Ab), then it is
also exact in Sh(X,Ab), for Proposition 5.33 says that exactness of F ′(U ) →
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F(U ) → F ′′(U ) for all open U implies exactness of lim−→U&x
F ′(U ) →

lim−→U&x
F(U ) → lim−→U&x

F ′′(U ) for all x ∈ X ; that is, F ′
x → Fx → F ′′

x
is exact for all x ∈ X . We have seen that the converse is false.

Exercises

*5.38 (i) Prove that the zero sheaf is a zero object in Sh(X,Ab) and
in pSh(X,Ab).

(ii) Prove that Hom(P,P ′) is an additive abelian group when
P,P ′ are presheaves or when P,P ′ are sheaves.

(iii) The distributive laws hold: given presheaf maps

X α−→ P
ϕ

⇒
ψ

Q β−→ Y,

where X and Y are presheaves over a space X , prove that

β(ϕ + ψ) = βϕ + βψ and (ϕ + ψ)α = ϕα + ψα.

*5.39 Let (E, p, X) be an etale-sheaf, and let F be its sheaf of sections.
(i) Prove that a subset G ⊆ E is a sheet if and only if G =

σ(U ) for some open U ⊆ X and σ ∈ F(U ).
(ii) Prove that G ⊆ E is a sheet if and only if G is an open

subset of E and p|G is a homeomorphism.
(iii) If G = σ(U ) and H = τ(V ) are sheets, where σ ∈ F(U )

and τ ∈ F(V ), prove that G ∩ H is a sheet.
(iv) If σ ∈ F(U ), prove that

supp(σ ) = {x ∈ X : σ(x) 	= 0x ∈ Ex }
is a closed subset of X .
Hint. Consider σ(U ) ∩ z(U ), where z ∈ F(U ) is the zero
section.

5.40 Prove that an etale-map ϕ : (E, p, X) → (E ′, p′, X) is an isomor-
phism in Shet(X,Ab) if and only if ϕ : E → E ′ is a homeomor-
phism.

*5.41 Let ϕ : P → P ′ be a presheaf map. Prove that the following state-
ments are equivalent:

(i) ϕ is an isomorphism;

(ii) ϕ|P(U ) : P(U ) → P ′(U ) is an isomorphism for every open
set U ;
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(iii) ϕ|P(U ) : P(U ) → P ′(U ) is a bijection for every open set U .

5.42 Prove that every presheaf of abelian groups P on a discrete space X
is a sheaf.

5.43 If X = {x} is a space with only one point, prove that

pSh(X,Ab) = Sh(X,Ab) ∼= Ab .

*5.44 Let x∗A be a skyscraper sheaf, as in Example 5.72.
(i) Prove, for every sheaf G, that there is an isomorphism

HomZ(Gx , A) ∼= HomSh(G, x∗A)

that is natural in G.
(ii) Every sheaf map ϕ : F → G induces homomorphisms of

stalks ϕy : Fy → Gy for all y ∈ X . Choose x ∈ X . If F
is a sheaf over X with stalk Fx = A, prove that there is a
sheaf map ϕ : F → x∗A with ϕx = 1A.

*5.45 Let ν : P → �(�,Pet) be the natural map in Theorem 5.68: in
the notation of this proposition, if U is an open set in X , then
νU : P(U ) → �(U,Pet) is given by σ �→ σ et. If x ∈ X , prove
that νx : σ(x) �→ σ et(x) = σ(x).

*5.46 Let X be a topological space and let B be a base for the topology U
on X . Viewing B as a partially ordered set, we may define a presheaf
on B to be a contravariant functor Q : B → Ab. Prove that Q can
be extended to a presheaf Q̃ : U → Ab by defining

Q̃(U ) = lim←−V∈B
V⊆U

Q(V ).

If U ∈ B, prove that Q̃(U ) is canonically isomorphic to Q(U ).
5.47 (i) If f : A → B is a homomorphism in Ab and K = ker f

is the usual kernel (which is a subgroup!), prove that the
inclusion i : K → A is a categorical kernel of f .

(ii) If f : A → B is a homomorphism in Ab and C = B/ im f
is the usual cokernel (which is a quotient group), then the
natural map p : B → C is a categorical cokernel of f . Note
that im f = ker p.

5.48 Let S = (E, p, X) be an etale-sheaf and let G = (G, p|G, X),
where G ⊆ E . Prove that �(�,G) is a subsheaf of �(�,S) if and
only if G is open in E and Gx = G∩Ex is a subgroup for all x ∈ X .

*5.49 If F is a subsheaf of a sheaf G, define the quotient sheaf as (G/F)∗,
the sheafification of the presheaf G/F . Define the natural map to be
the composite π : G → G/F → (G/F)∗. Prove that if ι : F → G
is the inclusion, then the natural map is coker ι.
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5.50 Denote the sheafification functor pSh(X,Ab) → Sh(X,Ab) by
P �→ P∗. Prove that ∗ is left adjoint to the inclusion functor
Sh(X,Ab) → pSh(X,Ab). [Either prove this directly or use the
fact that f∗ f ∗ is the unit of the adjoint pair ( f∗, f ∗).]

5.5 Abelian Categories

The most interesting categories for Homological Algebra are abelian cate-
gories, so called because of their resemblance to Ab. Our discussion will
apply to categories of modules, sheaves, and chain complexes.

Definition. A category C is additive if

(i) Hom(A, B) is an (additive) abelian group for every A, B ∈ obj(C),

(ii) the distributive laws hold: given morphisms

X
a−→ A

f
⇒
g

B
b−→ Y,

where X and Y ∈ obj(C), then

b( f + g) = b f + bg and ( f + g)a = f a + ga,

(iii) C has a zero object (recall that a zero object is an object that is both
initial and terminal),

(iv) C has finite products and finite coproducts: for all objects A, B in C,
both A " B and A  B exist in obj(C).

If C and D are additive categories, a functor T : C → D (of either vari-
ance) is additive if, for all A, B and all f, g ∈ Hom(A, B), we have

T ( f + g) = T f + T g;
that is, the function HomC(A, B) → HomD(T A, T B), given by f �→ T f , is
a homomorphism of abelian groups.

Of course, if T is an additive functor, then T (0) = 0, where 0 is either a
zero object or a zero morphism.

Lemma 2.3 shows that RMod and ModR are additive categories, while
Exercise 5.38 on page 301 and Proposition 5.78 show that both pSh(X,Ab)
and Sh(X,Ab) are additive categories. Of course, Shet(X,Ab) ∼= Sh(X,Ab)
is also additive. On the other hand, neither Groups nor ComRings is an
additive category.
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Proposition 2.4 shows that the Hom functors RMod → Ab are additive
functors, while Theorem 2.48 shows that the tensor product functors are ad-
ditive.

That finite coproducts and products coincide for modules and for sheaves
is a special case of a more general fact: finite products and finite coproducts
coincide in all additive categories.

Lemma 5.87. Let C be an additive category, and let M, A, B ∈ obj(C).
Then M ∼= A " B if and only if there are morphisms i : A → M, j : B → M,
p : M → A, and q : M → B such that

pi = 1A, q j = 1B, pj = 0, qi = 0, and ip + jq = 1M .

Moreover, A " B is also a coproduct with injections i and j , and so

A " B ∼= A  B.

Proof. The proof of the first statement, left to the reader, is a variation of the
proof of Proposition 2.20. The proof of the second statement is a variation of
the proof of Proposition 5.8, and it, too, is left to the reader. The last statement
holds because two coproducts, here A B and A" B, must be isomorphic. •

If A and B are objects in an additive category, then A " B ∼= A  B; their
common value, denoted by A ⊕ B, is called their direct sum (or biproduct).

Corollary 5.88. If C and D are additive categories and T : C → D is an
additive functor of either variance, then T (A ⊕ B) ∼= T (A) ⊕ T (B) for all
A, B ∈ obj(C).
Proof. Modify the proof of Corollary 2.21 using Lemma 5.87. •

We have been reluctant to discuss injections and surjections in categories;
after all, morphisms in a category need not be functions. On the other hand, it
is often convenient to have them.

Definition. A morphism u : B → C in a category C is a monomorphism12

(or is monic) if u can be canceled from the left; that is, for all objects A and
all morphisms f, g : A → B, we have that u f = ug implies f = g.

A
f

⇒
g

B
u−→ C.

It is clear that u : B → C is monic if and only if, for all A, the induced
map u∗ : Hom(A, B) → Hom(A,C) is an injection. In an additive category,

12A useful notation for a monomorphism f : A → B is A 	 B, while a notation for an
epimorphism g : B → C is B 
 C .
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Hom(A, B) is an abelian group, and so u is monic if and only if ug = 0
implies g = 0. Exercise 5.55 on page 321 shows that monomorphisms and
injections coincide in Sets and in RMod. Every injective homomorphism in
Groups is monic, but we must be clever to show this (see Exercise 5.59).
The underlying function of a monomorphism in a concrete category is usually
(but not always) an injection; Exercise 5.56 gives an example of a concrete
category in which these two notions are distinct.

Here is the dual definition.

Definition. A morphism v : B → C in a category C is an epimorphism (or
is epic) if v can be canceled from the right; that is, for all objects D and all
morphisms h, k : C → D, we have that hv = kv implies h = k.

B
v−→ C

h
⇒
k

D.

It is clear that v : B → C is epic if and only if, for all D, the induced
map v∗ : Hom(C, D) → Hom(B, D) is an injection. In an additive category,
Hom(A, B) is an abelian group, and so v is monic if and only if gv = 0
implies g = 0. The relation between an epimorphism in a concrete category
and the surjectivity of its underlying function is not clear. Exercise 5.55 on
page 321 shows that epimorphisms and surjections coincide in Sets and in
RMod. On the other hand, if R is a domain, then the ring homomorphism
ϕ : R → Frac(R), given by r �→ r/1, is an epimorphism in ComRings; if
A is a commutative ring and h, k : Frac(R) → A are ring homomorphisms
agreeing on R, then h = k. However, ϕ is a surjective function only when R
is a field. Another example is provided by Top2, the category of Hausdorff
spaces. A continuous f : X → Y with im f a dense subspace of Y is an
epimorphism, for any two continuous functions agreeing on a dense subspace
must be equal. Recognizing presheaf monomorphisms and epimorphisms will
follow from the upcoming discussion of abelian categories.

Definition. If u : A → B is a morphism in an additive category A, then its
kernel ker u is a morphism i : K → A that satisfies the following universal
mapping property: ui = 0 and, for every g : X → A with ug = 0, there exists
a unique θ : X → K with iθ = g.

X

θ

���
�
�

g ���
��

��
��

0

����
���

���
���

���

K ι
�� A u

�� B

A

0
����

���
���

���
���
u �� B

π ��

h

���
��

��
��

C

θ

���
�
�

Y

There is a dual definition for cokernel (the morphism π in the diagram).
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Proposition 5.89. Let u : A → B be a morphism in an additive category A.

(i) If ker u exists, then u is monic if and only if ker u = 0.

(ii) Dually, if coker u exists, then u is epic if and only if coker u = 0.

Proof. We refer to the diagrams in the definitions of kernel and cokernel. Let
ker u be ι : K → A, and assume that ι = 0. If g : X → A satisfies ug = 0,
then the universal property of kernel provides a morphism θ : X → K with
g = ιθ = 0 (because ι = 0). Hence, u is monic. Conversely, if u is monic,
consider

K
ι

⇒
0

A
u−→ B.

Since uι = 0 = u0, we have ι = 0. The proof for epimorphisms and cokers
is dual. •

Categorical kernels and cokernels are equivalence classeses of morphisms
even though, in our heart of hearts, we think of them as subobjects. However,
we saw, in Example 1.3(xi), that objects in a category may not have subob-
jects in a naive sense, for objects in an arbitrary category are not comprised
of elements—there are only other objects and morphisms. Let us try, never-
theless, to define a subobject of an object B. It must, obviously, involve an
object, say, A, but this is not enough; we need a morphism i : A → B (indeed,
a monomorphism i) to relate A to B. Defining a subobject A of B to be an
ordered pair (A, i), where i : A → B is monic, is inadequate. In Ab, for ex-
ample, let B = Q and A = Z. The homomorphisms i, j : A → B, defined by
i(1) = 1 and j (1) = −1, are both monic. The ordered pairs (A, i) and (A, j)
are distinct, but, intuitively, we want them to be the same; the subgroups 〈1〉
and 〈−1〉 are equal, after all.

Definition. If B is an object in an additive category A, consider all ordered
pairs (A, f ), where f : A → B is a monomorphism. Call two such pairs
(A, f ) and (A′, f ′) equivalent if there exists an isomorphism g : A′ → A
with f ′ = f g.

A
f �� B

A′
f ′

++7777777
g

��

A subgadget of B is an equivalence class [(A, f )], and we call A a subobject
of B. Note that if (A′, f ′) is equivalent to (A, f ), then A′ ∼= A.

Even though kernels are morphisms, we may regard them as subobjects—
just choose a pair (A, f ) from the equivalence class. In a general category C,
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there may not exist any monomorphisms X → B, where X ∈ obj(C), ex-
cept 1B , and so B may have no subobjects other than [1B] (see Exercise 5.63
on page 321). Here is the dual notion of quotient.

Definition. If B is an object in an additive category A, consider all ordered
pairs ( f,C), where f : B → C is an epimorphism. Call two such pairs
( f,C) and ( f ′,C ′) equivalent if there exists an isomorphism g : C → C ′
with f ′ = g f . A quotient of B is an equivalence class [( f,C)], and we call
C a quotient object of B. Note that if ( f ′,C ′) is equivalent to ( f,C), then
C ′ ∼= C .

We may now regard cokernels as quotient objects—just choose a pair
( f,C) from the equivalence class.

Abelian categories are additive categories in which a reasonable notion of
exactness can be defined. In Proposition 5.89, we saw that if u : A → B is a
morphism in an additive category and ker u exists, then u is monic if and only
if ker u = 0; dually, if coker u exists, then u is epic if and only if coker u = 0.

Definition. A category C is an abelian category if it is an additive category
such that

(i) every morphism has a kernel and a cokernel,

(ii) every monomorphism is a kernel and every epimorphism is a coker-
nel.13

One consequence of the existence of finite direct sums, kernels, and cok-
ernels in an abelian category is the existence of finite direct and inverse limits
(see Exercise 5.60 on page 321).

Remark. Abelian categories are self-dual in the sense that the dual of every
axiom in its definition is itself an axiom; it follows that if A is an abelian cate-
gory, then so is its opposite Aop. A theorem using only the axioms in its proof
is true in every abelian category; moreover, its dual is also a theorem in every
abelian category, and its proof is dual to the original proof. The categories
RMod and ModR are abelian categories having extra properties [a category is
isomorphic to RMod for some ring R if and only if it is a cocomplete abelian
category having a small projective generator P; in this case, R ∼= End(P)

(see Pareigis, Categories and Functors, p. 241)]. Module categories are not
self-dual, because they have these additional properties. This explains why
a theorem and its dual that are true in every module category may have very

13Exercise 5.53 on page 320 says, in any category having a zero object, that kernels are
monic and cokernels are epic. The converse is true in abelian categories.
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different proofs. For example, the statements “every module is a quotient
of a projective module” and “every module can be imbedded in an injective
module” are dual and are always true. The proofs are not dual, because these
statements are not true in every abelian category. Exercise 5.64 on page 322
shows that the abelian category of all torsion abelian groups has no nonzero
projectives, and Exercise 5.65 shows that the abelian category of all finitely
generated abelian groups has no nonzero injectives. �

Example 5.90.

(i) For every ring R, both RMod and ModR are abelian categories. In
particular, ZMod = Ab is abelian.

(ii) The full subcategory G of Ab of all finitely generated abelian groups is
an abelian category, as is the full subcategory T of all torsion abelian
groups.

(iii) The full subcategory of Ab of all torsion-free abelian groups is not an
abelian category, for there are morphisms having no cokernel; for ex-
ample, the inclusion 2Z → Z has cokernel I2, which is not torsion-free.

(iv) Quillen introduced a more general notion that is adequate for Algebraic
K -Theory.

Definition. A category P is an exact category if P is a full subcategory
of some abelian category A and if P is closed under extensions; that
is, if 0 → P ′ → A → P ′′ → 0 is an exact sequence in A, and if
P ′, P ′′ ∈ obj(P), then A ∈ obj(P).

Every abelian category is an exact category. The full subcategory of Ab
consisting of all torsion-free abelian groups is an exact category, but it
is not an abelian category.

(v) The category Groups is not abelian (it is not even additive). If S ⊆ G is
a nonnormal subgroup of a group G, then the inclusion i : S → G has
no cokernel. However, if K is a normal subgroup of G with inclusion
j : K → G, then coker j does exist. Thus, axiom (ii) essentially says
that every subobject in an abelian category is normal. �

Definition. Let f : A → B be a morphism in an abelian category, and let
coker f be τ : B → C for some object C . Then its image is

im f = ker(coker f ) = ker τ.
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In more suggestive notation,

im(A
f→ B) = ker(coker A

f→ B) = ker τ.

A sequence A
f−→ B

g−→ C in A is exact if there is equality of subobjects

ker g = im f.

Remark. Here is another way to view exactness. If f : A → B is a mor-
phism in an abelian category, then f = me, where m = ker(coker f ) is
monic and e = coker(ker f ) is epic. Moreover, this factorization is unique
in the following sense. If f = m′e′, where m′ is monic and e′ is epic, then
there is equality of subobjects [m] = [m′] and [e] = [e′] (see Mac Lane, Cat-
egories for the Working Mathematician, Chapter VIII, Sections 1 and 3). In
light of this, we may redefine exactness of a sequence in an abelian category.
If f = me and g = m′e′, where m,m′ are monic and e, e′ are epic, then

A
f−→ B

g−→ C is exact if and only if [e] = [m′]. �
Recall that if X is a topological space with topology U , then a presheaf

of abelian groups over X is a contravariant functor U → Ab, and a sheaf is a
presheaf that satisfies the equalizer condition. We now generalize this notion
by replacing Ab by an abelian category.

Definition. If A is an abelian category, then a presheaf on X with values
in A is a contravariant functor P : U → A; we shall always assume that
P(∅) = 0. A sheaf is a presheaf that satisfies the equalizer condition. A
(pre)sheaf map is a natural transformation, and all presheaves form the cate-
gory pSh(X,A). All sheaves form the full subcategory

Sh(X,A).

Theorem 5.91. If A is an abelian category, then Sh(X,A) is an abelian
category.

Proof. The theorems in the previous section for Sh(X,Ab) generalize to
Sh(X,A), for the only properties of Ab that were used hold in every abelian
category. Now Sh(X,A) is an additive category, by Exercise 5.38 on page 301
and Proposition 5.78, and it has kernels and cokernels, by Propositions 5.80
and 5.83. It remains to show that monomorphisms ϕ are kernels and epimor-
phisms ψ are cokernels. Given a sheaf map ϕ : F → G, then cokerϕ equals
ψ : G → (G/ imϕ)∗.

By Corollary 5.86, there is an exact sequence of sheaves

0 → K ι−→ F ϕ−→ G ν−→ K′ → 0.
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If ϕ is monic, then kerϕ = 0, by Proposition 5.89, for Sh(X,A) is an additive

category, and so 0 → F ϕ−→ G ν−→ K′ is an exact sequence in Sh(X,A).

Hence, there is an exact sequence 0 → Fx
ϕx−→ Gx

νx−→ K′
x in A; that is,

imϕx = ker νx for all x . Therefore, ϕ = ker ν, by Lemma 5.69. A dual
argument shows that epimorphisms are cokernels. •

We remark that minor changes in the proof of Theorem 5.91 show that
pSh(X,A) is an abelian category. However, we will give another proof of
this fact in Corollary 5.94.

The next two propositions construct new abelian categories from old ones.

Proposition 5.92. Let S be a full subcategory of an abelian category A. If,
for all A, B ∈ obj(S) and all f : A → B,

(i) a zero object in A lies in S,

(ii) the direct sum A ⊕ B in A lies in S,

(iii) both ker f and coker f lie in S,

then S is an abelian category. Moreover, if A
f−→ B

g−→ C is an exact
sequence in S, then it is an exact sequence in A.

Proof. The hypothesis gives S additive, by Exercise 5.54 on page 320, so
that S is abelian if axiom (ii) in the definition of abelian category holds. If
f : A → B is a monomorphism in S, then ker f = 0, by Proposition 5.89.
But ker f is the same in A as in S, by hypothesis, so that f is monic in
A. By hypothesis, coker f is a morphism in S. As A is abelian, there is a
morphism g : B → C with f = ker g. But g is a morphism in S, because
S contains cokernels, and so f = ker g in S. The dual argument shows that
epimorphisms in S are cokernels.

Finally, since kernels and cokernels are the same in S as in A, images are
also the same, and so exactness in S implies exactness in A. •

Proposition 5.93. If A is an abelian category and C is a small category,
then the functor category AC is an abelian category.

Proof. We assume that C is small to guarantee that the Hom sets Hom(F, G),
where F, G : C → A, are sets, not proper classes (see the discussion on
page 18). The zero object in AC is the constant functor with value 0, where 0 is
a zero object in A. If τ, σ ∈ Hom(F, G) = Nat(F, G), where F, G : C → A
are functors, define τ + σ : F → G by (τ + σ)C = τC + σC : FC → GC
for all C ∈ obj(C). Finally, define F ⊕ G by (F ⊕ G)C = FC ⊕ GC . It is
straightforward to check that these definitions make AC an additive category.
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If τ : F → G, define K by

K C = ker(τC ).

In the following commutative diagram with exact rows, where f : C → C ′
in C, there is a unique K f : K C → K C ′ making the augmented diagram
commute.

0 �� K C
ιC ��

K f
���
�
� FC ��

F f
��

GC

G f
��

0 �� K C ′
ιC ′

�� FC ′ �� GC ′

The reader may check that K is a functor, ι : K → F is a natural transforma-
tion, and ι = ker τ ; dually, cokernels exist in AC . Verification of the axioms
is routine. •

Combining these propositions gives the following examples.

Corollary 5.94. Let A be an abelian category.

(i) The category pSh(X,A) of presheaves over a space X with values in A
is abelian.

(ii) The categories of direct systems Dir(I,A) and inverse systems Inv(I,A)

are abelian.

Proof.

(i) pSh(X,A) is the functor category AUop
, where U is the topology on X .

The contravariance of a presheaf is encoded by the “exponent” being
the small opposite category Uop.

(ii) Dir(I,A) is the functor category AI , where the partially ordered set
I is viewed as a (small) category; similarly, Inv(I,A) is the functor
category AI op

. •
Theorem 5.91, which says that categories of sheaves are abelian, does

not follow from Corollary 5.94 and Proposition 5.92, for the category of
presheaves and its subcategory of sheaves do not satisfy the conditions of
Proposition 5.92; sheaf cokernels may be different than presheaf cokernels.

Example 5.95. If R is a commutative ring, then X = Spec(R) is the set of
all of its prime ideals. The Zariski topology has as closed sets those subsets
of the form

V (S) = {p ∈ Spec(R) : S ⊆ p},
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where S is any subset of R. Of course, open sets are complements of closed
sets. A base14 of the Zariski topology turns out to be all D(s) = X − V ({s}),
where s ∈ R is nonzero. Thus,

D(s) = {p ∈ Spec(R) : s /∈ p}.
Exercise 5.46 on page 302 shows that we can define a presheaf on a space X
by giving its values on basic open sets. If D(t) ⊆ D(s), then t ∈ √

Rs, by
Hilbert’s Nullstellensatz, and so tn = rs for some r ∈ R and n ≥ 0. The
structure sheaf of R is the presheaf O over X = Spec(R) of commutative
rings having sections O(D(s)) = s−1 R and restriction maps ρ

D(s)
D(t) : s−1 R →

t−1 R defined by u/sm �→ urm/tnm (recall that tn = rs). The structure sheaf
O is a sheaf of commutative rings, and the stalk Op is the localization Rp.
(See Hartshorne, Algebraic Geometry, p. 71.) �

Example 5.96. Serre [“Faisceaux algébriques cohérents,” Annals Math 61
(1955), pp. 197–278] developed the theory of sheaves over spaces X that need
not be Hausdorff, enabling him to apply sheaves in Algebraic Geometry. For
example, the structure sheaf O of a commutative ring R is a sheaf of com-
mutative rings over X = Spec(R), and Spec(R) is rarely Hausdorff. Because
of the importance of Serre’s paper, it has acquired a nickname; it is usually
referred to as FAC.

Definition. An O-Module (note the capital M), where O is a sheaf of com-
mutative rings over a space X , is a sheaf F of abelian groups over X such
that

(i) F(U ) is an O(U )-Module for every open U ⊆ X ,

(ii) if U ⊆ V , then F(U ) is also an O(V )-Module, and the restriction
ρV

U : F(V ) → F(U ) is an O(V )-Module homomorphism.

If F and G are O-Modules, then an O-morphism τ : F → G is a sheaf map
such that τU : F(U ) → G(U ) is an O(U )-map for every open set U .

For example, if O is the structure sheaf of a commutative ring R, then
every R-module M gives rise to an O-Module M̃ over Spec(R) whose stalk
over p ∈ Spec(R) is Mp = Rp⊗R M .

All O-Modules and O-morphisms form an abelian category OMod which
has a version of tensor product. If F and G are O-Modules, then U �→
F(U ) ⊗O(U ) G(U ) is a presheaf, and the tensor product F ⊗O G is defined
to be its sheafification. There is a faithful exact functor RMod → OMod

14Recall that a base of a topology is a family of open subsets B such that every open set
is a union of sets in B.
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with M �→ M̃ , and RMod is isomorphic to the full subcategory of OMod
generated by all M̃ (see Hartshorne, Algebraic Geometry, II §5).

Definition. If O is a sheaf of commutative rings over a space X , then an
O-Module F is coherent15 if there is an exact sequence

Os → Or → F → 0,

where r, s are natural numbers and Or is the direct sum of r copies of O. (We
remark that Or is not a projective object in the category of O-Modules.)

If F is an O-Module over X , then an r -chart is an ordered pair (U, ϕ),
where ϕ : F |U → Or |U is an O-isomorphism of O-Modules; we call U
the coordinate neighborhood of the chart. An O-Module F is locally free
of rank r if there is a family (Ui , ϕi )i∈I of r -charts, called an atlas, whose
coordinate neighborhoods form an open cover of X . An invertible sheaf 16 is
a locally free O-Module of rank 1.

Let F be a locally free O-Module over a space X , and let (Ui , ϕi )i∈I be
an atlas. Whenever an intersection Ui j = Ui ∩ U j is nonempty, we can de-
fine O|Ui j -isomorphisms ϕi : (F |Ui )|Ui j → Or |Ui j and ϕ j : (F |U j )|Ui j →
Or |Ui j (these isomorphisms are really restrictions of ϕi and ϕ j ). Now define
O|Ui j -automorphisms of Or |Ui j

gi j = ϕiϕ
−1
j ,

called transition functions. Transition functions satisfy the cocycle condi-
tions:

(i) gi j g jk gki = 1Or |Ui j for all i, j ∈ I (ϕiϕ
−1
j ϕ jϕ

−1
k ϕkϕ

−1
i = 1);

(ii) gii = 1Or |Ui for all i ∈ I .

Of course, transition functions depend on the choice of atlas (Ui , ϕi )i∈I . Con-
sider new transition functions arising from a new atlas (Ui , ϕ̃i )i∈I in which
we vary only the O|Ui -isomorphisms, keeping the same coordinate neigh-
borhoods. If we define hi by ϕ̃i = hiϕ

−1
i , then the new transition functions

are
g̃i j = ϕ̃i ϕ̃

−1
j = hiϕiϕ

−1
j h−1

j = hi gi j h
−1
j .

Let (gi j ), (g̃i j ), where gi j , g̃i j ∈ Aut(Or |Ui j ), be two families that may not
have arisen as transition functions of a locally free O-Module of rank r . Call
(gi j ), (g̃i j ) equivalent if there are O(Ui j )-isomorphisms hi such that

g̃i j = hi gi j h
−1
j .

15A coherent F -Module is an analog of a finitely presented module, and coherent
rings are so called because their finitely generated modules are analogous to coherent O-
Modules.

16If F is an invertible sheaf, then there exists an (invertible) sheaf G with F ⊗O G ∼= O.



314 Setting the Stage Ch. 5

Definition. Locally free O-Modules F and G of rank r are isomorphic if
their transition functions (gi j ) and (g̃i j ) are equivalent.

Given a family (gi j ), where gi j ∈ Aut(Or |Ui j ), that satisfies the cocycle
conditions, it is not hard to see that there is a unique (to isomorphism) locally
free O-Module F whose transition functions are the given family. In particu-
lar, if F is the constant sheaf with F(U ) of rank r , then there is an open cover
U giving transition functions gi j = hi h

−1
j .

A locally free O-Module of rank r is almost classified by an equivalence
class of cocycles (gi j ); we must still investigate transition functions that arise
from an atlas having different families of coordinate neighborhoods. It turns
out that transition functions are elements of a certain cohomology set of a
sheaf with coefficients in the general linear group GL(r, k) (cohomology need
not be a group when coefficients lie in a nonabelian group). �

Projectives and injectives can be defined in any category. However, rec-
ognizing epimorphisms and monomorphisms in general categories is too dif-
ficult, and we usually restrict attention to abelian categories.

Definition. An object P in an abelian category A is projective if, for every
epic g : B → C and every f : P → C , there exists h : P → B with f = gh.

P
h

���
�

�
f
��

B g
�� C

E

A

f
��

g
�� B

h
���

�
�

An object E in an abelian category A is injective if, for every monic g : A→ B
and every f : A → E , there exists h : B → E with f = hg.

Definition. An abelian category A has enough injectives if, for every A ∈
obj(A), there exist an injective E and a monic A → E . Dually, A has enough
projectives if, for every A ∈ obj(A), there exist a projective P and an epic
P → A.

We saw in Theorem 2.35 that RMod has enough projectives, and we saw
in Theorem 3.38 that RMod has enough injectives.

Proposition 5.97. If A is an abelian category that is closed under products
and that has enough injectives, then Sh(X,A) has enough injectives.17

17 In The Theory of Sheaves, Swan writes “... if the base space X is not discrete, I know
of no examples of projective sheaves except the zero sheaf.” In Bredon, Sheaf Theory,
McGraw-Hill, New York, 1967, Exercise 4 on p. 20 reads: show that on a locally connected
Hausdorff space without isolated points, the only projective sheaf is 0.



5.5 Abelian Categories 315

Proof. In Example 5.72(i), we defined a skyscraper sheaf x∗A, where A is
an abelian group and x ∈ X , by

(x∗A)(U ) =
{

A if x ∈ U ,

{0} otherwise.

Of course, we may generalize to A ∈ obj(A). By Exercise 5.44 on page 302,
there is an isomorphism HomA(Gx , A) ∼= HomSh(G, x∗A) that is natural in G.
In particular, if A is injective, then HomA(�, A) is an exact functor. It follows
that HomSh(�, x∗A) is also an exact functor; that is, x∗A is an injective sheaf.
The proof of Proposition 3.28 shows that any product of injectives is injective;
therefore, if Ax is injective, then so is the sheaf

∏
x∈X (x∗Ax ).

Let F be a sheaf. By hypothesis, for every x ∈ X , there are an injective
Ax ∈ obj(A) and a monic λx : Fx → Ax . Assemble these morphisms into a
sheaf map λ :

∏
x∈X (x∗Fx ) →

∏
x∈X (x∗Ax ). By Exercise 5.44 on page 302,

there is a sheaf map ϕ : F → x∗Fx with ϕx : Fx → Fx the identity. By the
universal property of product, there is a sheaf map

∏
x∈X (x∗Fx )

px %%��
���

���
Fθ		� � � �

ϕx
��

x∗Fx .

The composite λθ : F → ∏
x∈X (x∗Ax ) is a monic sheaf map: ker λθ = 0

because (λθ)x = λxθx , each of whose factors is monic in A. •
The thrust of the next theorem is that it allows us to do diagram chasing

in abelian categories.

Definition. A functor F : C → D, where C,D are categories, is faithful
if, for each A, B ∈ obj(C), the function HomC(A, B) → HomD(F A, F B),
given by f �→ F f , is an injection; F is full if the function HomC(A, B) →
HomD(F A, F B) is surjective.

If A is an abelian category, then a functor F : A → Ab is exact if
A′ → A → A′′ exact in A implies F A′ → F A → F A′′ exact in Ab.

Theorem 5.98 (Freyd–Heron18–Lubkin). If A is a small abelian cate-
gory, then there is a covariant faithful exact functor F : A→ Ab.

Sketch of Proof. Recall the Yoneda Imbedding, Corollary 1.20: if A is a
small category, then the functor Y : Aop → SetsA, which sends each A ∈
obj(A) to the representable functor Hom(A,�), imbeds A as a subcategory

18I have been unable to find any data about Heron other than that he was a student at
Oxford around 1960.
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of SetsA. In the functor category, Hom(F, G) = Nat(F, G). The Yoneda
Lemma, Theorem 1.17, says that

Hom(Y (A), Y (B)) = Nat(Hom(A,�),Hom(B,�)) = Hom(B, A),

from which it follows that if A is an additive category, then im Y ⊆ AbA and
Y is an additive functor.

One observes next that the functor category AbA has a generator, namely,
U =⊕A∈obj(A) Hom(A,�), and this is used to prove that every functor F ∈
AbA has an injective envelope, Env(F) (however, Example 5.20 shows that
Env is not, in general, a functor). In particular, Env(U ) : A → Ab turns out
to be an exact faithful functor. For details, see Mitchell, Theory of Categories,
p. 101. •

The imbedding theorem can be improved so that its image is a full sub-
category of Ab.

Theorem 5.99 (Mitchell). If A is a small abelian category, then there is a
covariant full faithful exact functor F : A→ Ab.

Proof. Mitchell, Theory of Categories, p. 151. •
In his Theory of Categories, p. 94, Mitchell writes,

Let us say that a statement about a diagram in an abelian category
is categorical if it states that certain parts of the diagram are or
are not commutative, that certain sequences in the diagram are
or are not exact, and that certain parts of the diagram are or are
not (inverse) limits or (direct) limits. Then we have the following
metatheorem.

Metatheorem. Let A be an abelian category.

(i) If a statement is of the form “p implies q,” where p and q are categori-
cal statements about a diagram in A, and if the statement is true in Ab,
then the statement is true in A.

(ii) Consider a statement of the form “p implies q,” where p is a categor-
ical statement concerning a diagram in A, and q states that additional
morphisms exist between certain objects in the diagram and that some
categorical statement is true of the extended diagram. If the statement
can be proved in Ab by constructing the additional morphisms through
diagram chasing, then the statement is true in A.

Proof. See Mitchell, Theory of Categories, p. 97. The category A need
not be a small category, for the metatheorem follows from the Imbedding
Theorems with A replaced by its full subcategory having objects occurring in
a diagram. •
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Part (i) follows from the Freyd–Heron–Lubkin Imbedding Theorem. To
illustrate, the Five Lemma is true in Ab, and so it is true in every abelian
category. Another example is the 3×3 Lemma (see Exercise 2.32 on page 96),
which we now see holds in every abelian category.

Part (ii) follows from Mitchell’s Full Imbedding Theorem. To illustrate,
recall Proposition 2.70: given a commutative diagram of abelian groups with
exact rows,

A′
i ��

f
��

A
p ��

g

��

A′′ ��

h
���
�
� 0

B ′
j

�� B q
�� B ′′ �� 0,

there exists a unique map h : A′′ → B ′′ making the augmented diagram com-
mute. Suppose now that the diagram lies in an abelian category A. Applying
the imbedding functor F : A → Ab of the Full Imbedding Theorem, we
have a diagram in Ab as above, and so there is a homomorphism in Ab, say,
h : F(A′′) → F(B ′′), making the diagram commute: F(q)F(g) = hF(p).
Since F is a full imbedding, there exists η ∈ HomA(A′′, B ′′) with h = F(η);
hence, F(qg) = F(q)F(g) = hF(p) = F(η)F(p) = F(ηp). But F is faith-
ful, so that qg = ηp. Other examples are given in the next chapter: the Snake
Lemma, which constructs the connecting homomorphism in homology; the
Comparison Theorem; the Horseshoe Lemma.

5.5.1 Complexes

The singular homology groups Hn(X) of a topological space X , for n ≥ 0,
are constructed in two steps: first, construct the singular complex

S•(X) =→ Cn+1(X)
∂n+1−→ Cn(X)

∂n−→ Cn−1(X) →;
second, define Hn(X) = ker ∂n/ im ∂n+1. The first step is geometric; the sec-
ond is algebraic, and it is this second step that is the raison d’etre of Homo-
logical Algebra. For any abelian category A, we are now going to construct
another abelian category Comp(A), the category of complexes over A; the
assignment X �→ S•(X) will then be a functor Top → Comp(Ab). In the
next chapter, we will construct homology functors Hn : Comp(A) → A, for
all n, and singular homology is the composite of these two functors.

Definition. A complex (abbreviating chain complex) in an abelian category
A is a sequence of objects and morphisms in A (called differentials),

(C•, d•) =→ An+1
dn+1−→ An

dn−→ An−1 →,
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such that the composite of adjacent morphisms is 0:

dndn+1 = 0 for all n ∈ Z.

We usually simplify the notation, writing C• or even C instead of (C•, d•).

It is convenient to consider the category of all complexes, and so we in-
troduce its morphisms.

Definition. If (C•, d•) and (C′•, d ′•) are complexes, then a chain map

f = f• : (C•, d•) → (C′
•, d ′•)

is a sequence of morphisms fn : Cn → C ′
n for all n ∈ Z making the following

diagram commute:

· · · �� Cn+1
dn+1 ��

fn+1 ��

Cn
dn ��

fn ��

Cn−1

fn−1��

�� · · ·

· · · �� C ′
n+1

d ′n+1 �� C ′
n

d ′n �� C ′
n−1

�� · · · .

It is easy to check that the composite g f of two chain maps

f• : (C•, d•) → (C′
•, d ′•) and g• : (C′

•, d ′•) → (C′′
•, d ′′• )

is itself a chain map, where (g f )n = gn fn . The identity chain map 1C• on
(C•, d•) is the sequence of identity morphisms 1Cn : Cn → Cn .

The singular complex S•(X) of a topological space X is an example of a
complex of abelian groups.

Definition. If A is an abelian category, then the category of all complexes
in A is denoted by Comp(A). If R is a ring, then Comp(RMod) is denoted
by RComp and Comp(ModR) is denoted by CompR . If the category A (or
the ring R) is understood, we may simply write Comp.

The most important example of Comp(A) is Comp = Comp(Ab), but it
is also interesting when A = Sh(X,Ab), which arises when one defines co-
homology of a topological space with sheaf coefficients. Although everything
we say in this subsection holds for general abelian categories, we assume here
that complexes are complexes of abelian groups, leaving the reader to gener-
alize using the Metatheorem on page 316.

A complex (A•, δ•) is defined to be a subcomplex of a complex (C•, d•)
if there is a chain map i : A• → C• with each in monic. In RComp, we
have that (A•, δ•) is a subcomplex of (C•, δ•) if An is a submodule of Cn and
δn = dn|An for every n ∈ Z.
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Proposition 5.100. If A is an abelian category, then Comp(A) is an abelian
category.

Proof. As we have just said, we only prove this when A = Ab. View Z first
as a partially ordered set under reverse inequality and then as a small category
(with morphisms m → n if m ≥ n). By Proposition 5.93, the functor category
AbZ is an abelian category. Proposition 5.92 says that S is abelian if S is a
full subcategory of AbZ containing a zero object, the direct sum A ⊕ B of
A, B ∈ obj(S), and both ker f and coker f , where f is a morphism in S.
All the steps are routine. Note that Comp is, by definition, a full subcategory
of AbZ. The zero complex is the complex each of whose terms is 0, while
(C•, d•)⊕ (C′•, d ′•) is, by definition, the complex whose nth term is Cn ⊕ C ′

n
and whose nth differential is dn ⊕ d ′n . If f• : (C•, d•) → (C′•, d ′•) is a chain
map, define

ker f =→ ker fn+1
δn+1−→ ker fn

δn−→ ker fn−1 →,

where δn = dn| ker fn , and

im f =→ im fn+1
�n+1−→ im fn

�n−→ im fn−1 →,

where �n = d ′n| im fn . Then ker f is a subcomplex of C•, and im f is a
subcomplex of C′•. If A• is a subcomplex of C•, define the quotient complex
to be

C•/A• = → Cn/An
dn−→ Cn−1/An−1 →,

where dn : cn+ An �→ dncn+ An−1 (it must be shown that dn is well-defined:
if cn+An = bn+An , then dncn+An−1 = dnbn+An−1). If pn : Cn → Cn/An
is the natural map, then p : C• → C•/A• is a chain map. Finally, define

coker f =→ Cn+1/ im ∂n+2
∂n+1−→ Cn/ im ∂n+1

∂n−→ Cn−1/ im ∂n
∂n−1−→→ .

The reader must verify that the definitions just given agree with the categorical
definitions of ker and coker in Comp. •

Let us make some other important items in Comp explicit.

(i) An isomorphism in Comp is a chain map f : C• → C′• for which
fn : Cn → C ′

n is an isomorphism in A for all n ∈ Z (note that the se-
quence of inverses f −1

n is a chain map; that is, the appropriate diagram
commutes).

(ii) If ((Ci•, di•))i∈I is a family of complexes, then their direct sum is the
complex

⊕
i

Ci
• = →

⊕
i

Ci
n+1

⊕
i di

n−→
⊕

i

Ci
n

⊕
i di

n−1−→
⊕

i

Ci
n−1 →,

where
⊕

i di
n acts coordinatewise; that is,

⊕
i di

n : (ci
n) �→ (di

nci
n).
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(iii) It is easy to see that direct limits and inverse limits of complexes exist
in Comp(A) if they exist in A.

(iv) A sequence of complexes and chain maps

· · · → Cm+1
•

f m+1

−→ Cm
•

f m

−→ Cm−1
• → · · ·

is exact if im f m+1 = ker f m for all m ∈ Z.

The reader should realize that this notation is very compact. For ex-
ample, if we write a complex as a column, then a short exact sequence
of complexes is really the infinite commutative diagram having three
columns and exact rows:

�� �� ��
0 �� C ′

n+1
in+1 ��

d ′n+1 ��

Cn+1
pn+1��

dn+1
��

C ′′
n+1

d ′′n+1��

�� 0

0 �� C ′
n

in ��

d ′n ��

Cn
pn ��

dn
��

C ′′
n

d ′′n��

�� 0

0 �� C ′
n−1

in−1 ��

��

Cn−1
pn−1��

��

C ′′
n−1

��

�� 0.

A sequence of complexes → Cn+1•
f n+1

−→ Cn•
f n

−→ Cn−1• → is exact if
and only if each row → Cn+1

m → Cn
m → Cn−1

m → is an exact sequence
of modules.

Exercises

5.51 If C is an additive category with zero object 0, prove that the unique
morphism A → 0 [where A ∈ obj(C)] and the unique morphism
0 → A are the identity elements of the abelian groups HomC(A, 0)
and HomC(0, A).

5.52 If C is an additive category and C ∈ obj(C), prove that Hom(C,C)

is a ring with composition as product.
*5.53 In any category having a zero object, prove that every kernel is a

monomorphism and, dually, every cokernel is an epimorphism.
*5.54 Let C be an additive category and let S be a subcategory. Prove that

S is an additive category if S is full, contains a zero object of C, and
contains the direct sum A ⊕ B (in C) of all A, B ∈ obj(S).
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*5.55 (i) Prove that a function is epic in Sets if and only if it is sur-
jective and that a function is monic in Sets if and only if it
is injective.

(ii) Prove that an R-map is epic in RMod if and only if it is
surjective and that an R-map is monic in RMod if and only
if it is injective.

*5.56 Let C be the category of all divisible abelian groups.
(i) Prove that the natural map Q → Q/Z is monic in C.

(ii) Conclude that C is a concrete category in which monomor-
phisms and injections do not coincide.

*5.57 Prove, in every category, that the injections of a coproduct are monic
and the projections of a product are epic.

*5.58 (i) Prove that every isomorphism in an additive category is
both monic and epic.

(ii) Prove that a morphism in an abelian category is an isomor-
phism if and only if it is both monic and epic.

(iii) Prove, in ComRings, that ϕ : R → Frac(R) is both monic
and epic, but that ϕ is not an isomorphism.

*5.59 (Eilenberg–Moore) Let G be a (possibly nonabelian) group.
(i) If H is a proper subgroup of a group G, prove that there

exist a group L and distinct homomorphisms f, g : G → L
with f |H = g|H .

Hint. Define L = SX , where X denotes the family of all the
left cosets of H in G together with an additional element,
denoted ∞. If a ∈ G, define f (a) = fa ∈ SX by fa(∞) =
∞ and fa(bH) = abH . Define g : G → SX by g = γ f ,
where γ ∈ SX is conjugation by the transposition (H,∞).

(ii) Prove that a homomorphism ϕ : A → G, where A and G
are groups, is surjective if and only if it is an epimorphism
in Groups.

*5.60 We call lim−→I
F or lim←−I

F finite if the index set I is finite. Prove that
if A is an additive category having kernels and cokernels, then A
has all finite inverse limits and direct limits. Conclude that A has
pullbacks, pushouts, equalizers, and coequalizers.

5.61 State and prove the First Isomorphism Theorem in an abelian cate-
gory A.

5.62 Prove that every object in Sets is projective and injective.
*5.63 (i) Let X be a set and, for each subset Y ⊆ X , let iY : Y →

X be the inclusion. If 2X is the family of all subsets of
X , prove that the function 2X → {[iy] : Y ⊆ X}, given
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by Y �→ [iY ], is a bijection, where [iY ] is the categorical
subobject of X .

(ii) Prove that the analog of (i) is true for Groups, Rings, and
RMod, but it is false for Top.

*5.64 (i) Prove that the category T of all torsion abelian groups is an
abelian category having no nonzero projective objects.

(ii) Prove, for every index set I , that T has a product"i∈I Gi .
*5.65 (i) Prove that the full subcategory T of Ab consisting of all

torsion abelian groups is an abelian category that is closed
under (infinite) coproducts.

(ii) Prove that T has enough injectives.
(iii) Prove that T has no nonzero projective objects. Conclude

that T is not isomorphic to a category of modules.
*5.66 If A is an abelian category, prove that a morphism f = ( fn) in

Comp(A) [i.e., a chain map] is monic (or epic) if and only if each
fn is monic (or epic) in A.

5.67 Let A be an abelian category with enough projectives, and let C ⊆
obj(A) satisfy

(i) for every object A in A, there exists C ∈ C and an epimor-
phism C → A;

(ii) if C ∈ C, then every direct summand of C also lies in C.

Prove that every projective lies in C. The dual result also holds.



6
Homology

At the end of Chapter 1, we saw that the construction of homology groups of
topological spaces has a geometric half and an algebraic half. More precisely,
for each n ≥ 0, the nth singular homology functor Hn : Top → Ab is a
composite Top → Comp(Ab) → Ab, where Comp(Ab) is the category of
all complexes of abelian groups. We now focus on the algebraic portion of
this construction.

The theorems in this chapter are true for abelian categories A and additive
functors between them (the most interesting categories for us are categories
of modules, but the extra generality allows us to apply results to sheaves and
to complexes). Even though some of these results hold for arbitrary abelian
categories, we will usually assume that A has enough projectives or injectives.
In light of the Metatheorem on page 316, however, it suffices to prove these
theorems for the special case A = Ab.

6.1 Homology Functors

Recall that a complex in an abelian category A is a sequence of morphisms
(called differentials),

(C•, d•) =→ Cn+1
dn+1−→ Cn

dn−→ Cn−1 →,

with the composite of adjacent morphisms being 0:

dndn+1 = 0 for all n ∈ Z.

We usually simplify notation and write C• or C instead of (C•, d•).

J.J. Rotman, An Introduction to Homological Algebra, Universitext, 323
DOI 10.1007/978-0-387-68324-9 6, c© Springer Science+Business Media LLC 2009
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In RMod, the condition dndn+1 = 0 is equivalent to im dn+1 ⊆ ker dn .
The category Comp(A) has as objects complexes whose terms and dif-

ferentials are in A, as morphisms chain maps f = ( fn) : (C•, d•) → (C′•, d ′•)
making the following diagram commute:

�� Cn+1
dn+1 ��

fn+1 ��

Cn
dn ��

fn ��

Cn−1
dn−1 ��

fn−1��
�� C ′

n+1 d ′n+1

�� C ′
n d ′n

�� C ′
n−1 d ′n−1

�� ,

and as composition (gn)( fn) = (gn fn) (i.e., coordinatewise composition).
We proved in Chapter 5 that Comp(A) is an abelian category when A is.

Example 6.1.

(i) Every exact sequence is a complex, for the equalities im dn+1 = ker dn
imply dndn+1 = 0.

(ii) If X is a topological space, then its singular chain groups and boundary
maps form a complex of abelian groups (called the singular complex)

S•(X) =→ Sn+1(X)
∂n+1−→ Sn(X)

∂n−→ Sn−1(X) → .

However, the definition of singular complex is incomplete, for Sn(X)

was defined only for n ≥ 0. To complete the definition, set Sn(X) =
{0} for all n ≤ −1. The differentials Sn → Sn−1 for negative n are
necessarily 0, and so the lengthened sequence is, indeed, a complex.
This device of adding 0s is always available.

Similarly, if K is a simplicial complex, then C•(K ) is a complex, where
Cn(K ) is the group of all simplicial n-chains.

(iii) If A ∈ obj(A) and k ∈ Z is a fixed integer, then the sequence !k(A)

whose kth term is A, whose other terms are 0, and whose differentials
are zero maps is a complex, called A concentrated in degree k.

(iv) Every morphism f : A → B is a differential; in more detail, form a
complex "k( f ) whose kth term is A, whose (k − 1)st term is B, whose
other terms are 0, and whose kth diffentiation is f :

"k( f ) =→ 0 → 0 → A
f−→ B → 0 → 0 → .

Call "k( f ) the complex having f concentrated in degrees (k, k − 1).



6.1 Homology Functors 325

(v) A short exact sequence can be made into a complex by adding 0s to the
left and right:

→ 0 → 0 → A
i−→ B

p−→ C → 0 → 0 → .

Usually, one assumes that A is term 2, B is term 1, and C is term 0.
This is a complex because pi = 0.

(vi) Every sequence of objects (Mn) occurs in a complex, namely, (M•, d•),
in which all the differentials dn are 0. �

Let us begin by seeing that the idea of describing a module by generators
and relations gives rise to complexes. Recall our discussion in How to Read
This Book on pages xi and xii: if A is an R-module, then a presentation of A
is (X, Y ), where F is a free R-module mapping onto A, X is a basis of F , and
Y generates K = ker(F → A). A presentation allows us to treat equations in
A as if they were equations in the free module F . Computations in F , espe-
cially those involved in whether elements of F lie in K , become much simpler
when K is also free and Y is a basis. We know, however, that submodules of
free modules need not be free. It is natural to iterate taking generators and
relations: map a free module F1 onto K , and let (X1, Y1) be a presentation of
K ; that is, X1 is a basis of F1 and Y1 generates K1 = ker(F1 → K ). If K1
is free, we stop; if K1 is not free, we continue with a presentation of it. Thus,
a free resolution of a module A is a generalized presentation; it is our way of
treating equations in A by a sequence of equations in free modules. We can
now begin to appreciate Theorem 8.37, Hilbert’s Theorem on Syzygies, which
says that if R = k[x1, . . . , xn] (where k is a field) and A is an R-module, then
the kernel Kn after n iterations must be free.

Definition. A projective resolution of A ∈ obj(A), where A is an abelian
category, is an exact sequence

P =→ P2
d2−→ P1

d1−→ P0
ε−→ A → 0

in which each Pn is projective. If A is RMod or ModR , then a free resolu-
tion of a module A is a projective resolution in which each Pn is free; a flat
resolution is an exact sequence in which each Pn is flat.

If P is a projective resolution of A, then its deleted projective resolution
is the complex

PA =→ P2
d2−→ P1

d1−→ P0 → 0.

A projective (or free or flat) resolution is a complex if we assume it has
been lengthened by adding 0s to the right. Of course, a deleted resolution is
no longer exact if A 	= 0, for im d1 = ker ε 	= ker(P0 → 0) = P0.
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Deleting A loses no information: A ∼= coker d1; the inverse operation,
restoring A to PA, is called augmenting. Deleted resolutions should be re-
garded as glorified presentations.

Proposition 6.2. Every (left or right) R-module A has a free resolution
(which is necessarily a projective resolution and a flat resolution).

Proof. There are a free module F0 and an exact sequence

0 → K1
i1−→ F0

ε−→ A → 0.

Similarly, there are a free module F1, a surjection ε1 : F1 → K1, and an exact
sequence

0 → K2
i2−→ F1

ε1−→ K1 → 0.

Splice these together: define d1 : F1 → F0 to be the composite i1ε1. It is
plain that im d1 = K1 = ker ε and ker d1 = K2, yielding the exact row

F1
d1 ��

ε1 ���
��

��
� F0

ε �� A �� 0

0 �� K2

��������
K1.

i1

��((((((

This construction can be iterated for all n ≥ 0, and the ultimate exact sequence
is infinitely long.

The parenthetical statement follows because free ⇒ projective ⇒ flat. •
We have actually proved more.

Corollary 6.3. If A is an abelian category with enough projectives, then
every A ∈ obj(A) has a projective resolution.

Proof. Apply the proof of Proposition 6.2, mutatis muntandis. •

Definition. An injective resolution of A ∈ obj(A), where A is an abelian
category, is an exact sequence

E = 0 → A
η−→ E0 d0

−→ E1 d1

−→ E2 →
in which each En is injective.

If E is an injective resolution of A, then its deleted injective resolution is
the complex

EA = 0 → E0 d0

−→ E1 d1

−→ E2 → .

Deleting A loses no information, for A ∼= ker d0.
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Proposition 6.4. Every (left or right) R-module A has an injective resolu-
tion.

Proof. By Theorem 3.38, every module can be imbedded as a submodule
of an injective module. Thus, there are an injective module E0, an injection
η : A → E0, and an exact sequence

0 → A
η−→ E0 π−→ V 0 → 0,

where V 0 = coker η and π is the natural map. Repeat: there are an injective
module E1 and an imbedding η1 : V 0 → E1, yielding the exact row

0 �� A
η �� E0 d0

��

p ���
��

��
� E1

���
��

��
�

V 0
η1

��������
V 1 �� 0,

where d0 is the composite d0 = η1 p. This construction can be iterated. •
Deleted injective resolutions should be regarded as duals of presentations.

Corollary 6.5. If A is an abelian category with enough injectives, then every
A ∈ obj(A) has an injective resolution.

In particular, every sheaf with values in A has an injective resolution.

Proof. By Theorem 5.91, the category Sh(X,A) of sheaves is an abelian
category; by Proposition 5.97, it has enough injectives. •

Most categories of sheaves do not have enough projectives.
We may lengthen an injective resolution by adding 0s to the left, but this

does not yet make it a complex, for the definition of complex says that the
indices must decrease if we go the right. The simplest way to satisfy the
definition is to use negative indices: define C−n = En , and

0 → A → C0 → C−1 → C−2 →
is a complex.

Definition. Given a projective resolution in an abelian category A,

P =→ Pn
dn−→ Pn−1 → · · · → P1

d1−→ P0
ε−→ A → 0,

define K0 = ker ε and Kn = ker dn , for n ≥ 1. We call Kn the nth syzygy of
P. Given an injective resolution

E = 0 → A
η−→ E0 d0

−→ E1 → · · · → En dn

−→ En+1 →,

define V0 = coker η and V n = coker dn−1, for n ≥ 1. We call V n the nth
cosyzygy of E.
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Injective resolutions are not the only way in which complexes with indices
going up can occur.

Example 6.6. Let A be an abelian category.

(i) Let F : A→ Ab be a covariant additive functor, and let

C =→ Cn
dn−→ Cn−1 →

be a complex. Then

(FC, Fd) =→ F(Cn)
Fdn−→ F(Cn−1) →

is also a complex, for 0 = F(0) = F(dndn+1) = F(dn)F(dn+1) [the
equation 0 = F(0) holds because F is additive]. Note that even if the
original complex is exact, the functored complex FC may not be exact.

(ii) If F is a contravariant additive functor, it is also true that FC is a com-
plex, but we have to arrange notation so that differentials lower indices.
In more detail, after applying F , we have

FC =← F(Cn)
Fdn←− F(Cn−1) ←;

the differentials Fdn increase indices by 1. Introducing negative indices
almost solves the problem. Define

X−n = F(Cn),

so that the sequence becomes

← X−n
Fdn←− X−n+1 ←,

or → X−n+1
Fdn−→ X−n →. The index on the map should be −n + 1,

and not n. Define
δ−n+1 = Fdn.

The relabeled sequence now reads properly:

FC =→ X−n+1
δ−n+1−→ X−n → . �

Definition. A complex C is a positive complex if Cn = 0 for all n < 0.
Thus, a positive complex looks like

→ Cn → Cn−1 → · · · → C1 → C0 → 0.
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All positive complexes form the full subcategory Comp≥0(A) of Comp(A).
A complex C is a negative complex (or cochain complex) if Cn = 0 for all
n > 0. A negative complex looks like

0 → C0 → C−1 → · · · → C−n → C−n−1 → .

All negative complexes form the full subcategory Comp≤0(A) of Comp(A).
As in Example 6.6(ii), we usually raise indices and change sign in this case:

0 → C0 → C1 → · · · → Cn → Cn+1 → .

Projective resolutions are positive complexes, and injective resolutions
are negative complexes.

Since Comp(A) is an abelian category when A is, its Hom sets are abelian
groups; addition is given by

f + g = ( fn + gn), where f = ( fn) and g = (gn).

The following definitions imitate the construction of homology groups of
topological spaces, which we described in Section 1.3.

Definition. If (C, d) is a complex in Comp(A), where A is an abelian cat-
egory, define

n-chains = Cn,

n-cycles = Zn(C) = ker dn,

n-boundaries = Bn(C) = im dn+1.

Notice that Cn, Zn , and Bn all lie in A.

In RMod, the equation dndn+1 = 0 in a complex is equivalent to the
condition im dn+1 ⊆ ker dn; hence, Bn(C) ⊆ Zn(C) for every complex C.
This is also true in an abelian category:

Bn

j ���
��

��
��

�

θ

���
�
�

0

%%��
���

���
���

���
�

Zn i
�� Cn dn

�� Cn−1.

Definition. If C is a complex in Comp(A), where A is an abelian category,
and n ∈ Z, its nth homology is

Hn(C) = Zn(C)/Bn(C).

Now Hn(C) lies in obj(A) if quotients are viewed as objects, as on page 307.
However, if we recognize A as a full subcategory of Ab, then an element of
Hn(C) is a coset z+ Bn(C); we call this element a homology class, and often
denote it by cls(z).
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Example 6.7.

(i) A complex C is an exact sequence if and only if Hn(C) = 0 for all
n. Thus, homology measures the deviation of a complex from being an
exact sequence. An exact sequence is often called an acyclic complex;
acyclic means “no cycles”; that is, no cycles that are not boundaries.

(ii) There are two fundamental exact sequences arising from a complex
(C, d): for each n ∈ Z,

0 → Bn
in−→ Zn → Hn(C) → 0

and

0 → Zn
jn−→ Cn

d ′n−→ Bn−1 → 0,

where in, jn are inclusions and jn−1in−1d ′n = dn; that is, d ′n is just dn
with its target changed from Cn−1 to im dn = Bn−1.

(iii) If (C, d) is a complex with all dn = 0, then Hn(C) = Cn for all n ∈ Z,
for

Hn(C) = ker dn/ im dn+1 = ker dn = Cn.

In particular, the subcomplexes Z of cycles and B of boundaries have
all differentials 0, and so Hn(Z) = Zn and Hn(B) = Bn .

(iv) In Example 6.1(iv), we saw that every morphism f : A → B can be
viewed as the complex "1( f ) concentrated in degrees 1, 0:

"1( f ) =→ 0 → 0
d2−→ A

d1−→ B
d0−→ 0 → 0,

with A term 1 and B term 0. Now d2 = 0 implies im d2 = 0, and d0 = 0
implies ker d0 = B; it follows that

Hn("
1( f )) =

⎧⎪⎨
⎪⎩

ker f if n = 1,

coker f if n = 0,

0 otherwise. �

Proposition 6.8. If A is an abelian category, then Hn : Comp(A) → A is
an additive functor for each n ∈ Z.

Proof. In light of the Metatheorem on page 316, a consequence of Theo-
rem 5.99, Mitchell’s Full Imbedding Theorem, it suffices to prove this propo-
sition when A = Ab. We have just defined Hn on objects; it remains to
define Hn on morphisms. If f : (C, d) → (C′, d ′) is a chain map, define
Hn( f ) : Hn(C) → Hn(C′) by

Hn( f ) : cls(zn) �→ cls( fnzn).
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We must show that fnzn is a cycle and that Hn( f ) is independent of the choice
of cycle zn; both of these follow from f being a chain map; that is, from
commutativity of the following diagram:

Cn+1
dn+1 ��

fn+1 ��

Cn
dn ��

fn ��

Cn−1

fn−1��
C ′

n+1 d ′n+1

�� C ′
n d ′n

�� C ′
n−1.

First, let z be an n-cycle in Zn(C), so that dnz = 0. Then commutativity of
the diagram gives d ′n fnz = fn−1dnz = 0, so that fnz is an n-cycle.

Next, assume that z + Bn(C) = y + Bn(C); hence, z − y ∈ Bn(C);

z − y = dn+1c

for some c ∈ Cn+1. Applying fn gives

fnz − fn y = fndn+1c = d ′n+1 fn+1c ∈ Bn(C′).

Thus, cls( fnz) = cls( fn y), and Hn( f ) is well-defined.
Let us now see that Hn is a functor. It is obvious that Hn(1C) is the

identity. If f and g are chain maps whose composite g f is defined, then for
every n-cycle z, we have (with obvious abbreviations)

Hn(g f ) : cls(z) �→ (g f )n cls(z)

= gn fn(cls(z))

= Hn(g)(cls( fnz))

= Hn(g)Hn( f )(cls(z)).

Finally, Hn is additive: if f, g : (C, d) → (C′, d ′) are chain maps, then

Hn( f + g) : cls(z) �→ ( fn + gn) cls(z)

= cls( fnz + gnz)

= (Hn( f )+ Hn(g)
)

cls(z). •

Proposition 6.8 says that if C is a complex in an abelian category A, then
Hn(C) ∈ obj(A) for all n; in particular, if A is the category of all sheaves of
abelian groups over a space X , then Hn(C) is a sheaf. In this case, one often
denotes Hn(C) by Hn(C).

Definition. We call Hn( f ) the induced map, and we usually denote it by
fn∗, or even by f∗.
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The following elementary construction is fundamental; it gives a relation
between different homologies. The proof is a series of diagram chases, which
is legitimate because of the metatheorem on page 316. Ordinarily, we would
just say that the proof is routine, but, because of the importance of the result,
we present (perhaps too many) details; as a sign that the proof is routine, we
drop many subscripts.

Proposition 6.9. Let A be an abelian category. If

0 → C′ i−→ C
p−→ C′′ → 0

is an exact sequence in Comp(A), then, for each n ∈ Z, there is a morphism
in A

∂n : Hn(C′′) → Hn−1(C′)

defined by
∂n : cls(z′′n) �→ cls(i−1

n−1dn p−1
n z′′n).

Proof. We will make many notational abbreviations in this proof. Consider
the commutative diagram having exact rows:

�� �� ��
0 �� C ′

n+1
in+1 ��

d ′n+1
��

Cn+1
pn+1 ��

dn+1

��

C ′′
n+1

d ′′n+1
��

�� 0

0 �� C ′
n

in ��

d ′n
��

Cn

==

pn ��

dn

��

C ′′
n

d ′′n
��

��
��

0

0 �� C ′
n−1

in−1 ��

��

Cn−188

pn−1 ��

��

C ′′
n−1

��

�� 0.

Let z′′ ∈ C ′′
n and d ′′z′′ = 0. Since pn is surjective, there is c ∈ Cn with

pc = z′′. Now push c down to dc ∈ Cn−1. By commutativity, pn−1dc =
d ′′ pnc = d ′′z′′ = 0, so that dc ∈ ker pn−1 = im in−1. Therefore, there
is a unique c′ ∈ C ′

n−1 with in−1c′ = dc, for in−1 is an injection. Thus,

i−1
n−1dp−1

n z′′ makes sense; that is, the claim is that

∂n(cls(z′′)) = cls(c′)

is a well-defined homomorphism.
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First, let us show independence of the choice of lifting. Suppose that
pnč = z′′, where č ∈ Cn . Then c − č ∈ ker pn = im in , so that there is
u′ ∈ C ′

n with inu′ = c − č. By commutativity of the first square, we have

in−1d ′u′ = dinu′ = dc − dč.

Hence, i−1dc − i−1dč = d ′u′ ∈ B ′
n−1; that is, cls(i−1dc) = cls(i−1dč).

Thus, the formula gives a well-defined function

Z ′′
n → C ′

n−1/B ′
n−1.

Second, the function Z ′′
n → C ′

n−1/B ′
n−1 is a homomorphism. If z′′, z′′1 ∈

Z ′′
n , let pc = z′′ and pc1 = z′′1. Since the definition of ∂ is independent of the

choice of lifting, choose c + c1 as a lifting of z′′ + z′′1. This step may now be
completed in a routine way.

Third, we show that if in−1c′ = dc, then c′ is a cycle: 0 = ddc = dic′ =
idc′, and so d ′c′ = 0 because i is an injection. Hence, the formula gives a
homomorphism

Z ′′ → Z ′/B ′ = Hn−1.

Finally, the subgroup B ′′
n goes into B ′

n−1. Suppose that z′′ = d ′′c′′, where
c′′ ∈ C ′′

n+1, and let pu = c′′, where u ∈ Cn+1. Commutativity gives pdu =
d ′′ pu = d ′′c′′ = z′′. Since ∂(z′′) is independent of the choice of lifting, we
choose du with pdu = z′′, and so ∂(cls(z′′)) = cls(i−1d(du)) = cls(0).
Thus, the formula gives a homomorphism ∂n : Hn(C′′) → Hn−1(C′). •

Definition. The morphisms ∂n : Hn(C′′) → Hn−1(C′) are called connecting
homomorphisms.

The first question we ask is what homology functors do to a short exact
sequence of complexes. The next theorem is also proved by diagram chasing
and, again, we give too many details because of the importance of the result.
The reader should try to prove the theorem before looking at the proof.

Theorem 6.10 (Long Exact Sequence). Let A be an abelian category. If

0 → C′ i−→ C
p−→ C′′ → 0

is an exact sequence in Comp(A), then there is an exact sequence in A

→ Hn+1(C′′)
∂n+1−→ Hn(C′) i∗−→ Hn(C)

p∗−→ Hn(C′′) ∂n−→ Hn−1(C′) → .

Proof. This proof is also routine and, again, it suffices to prove it when A =
Ab. Our notation is abbreviated, and there are six inclusions to verify.

(i) im i∗ ⊆ ker p∗ because p∗i∗ = (pi)∗ = 0∗ = 0.
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(ii) ker p∗ ⊆ im i∗: If p∗ cls(z) = cls(pz) = cls(0), then pz = d ′′c′′ for
some c′′ ∈ C ′′

n+1. But p surjective gives c′′ = pc for some c ∈ Cn+1, so
that pz = d ′′ pc = pdc, because p is a chain map, and so p(z−dc) = 0.
By exactness, there is c′ ∈ C ′

n with ic′ = z − dc. Now c′ is a cycle, for
id ′c′ = dic′ = dz − ddc = 0, because z is a cycle; since i is injective,
d ′c′ = 0. Therefore, i∗ cls(c′) = cls(ic′) = cls(z − dc) = cls(z).

(iii) im p∗ ⊆ ker ∂: If p∗ cls(c) = cls(pc) ∈ im p∗, then ∂ cls(pz) =
cls(z′), where i z′ = dp−1 pz. Since this formula is independent of
the choice of lifing of pz, let us choose p−1 pz = z. Now dp−1 pz =
dz = 0, because z is a cycle. Thus, i z′ = 0, and hence z′ = 0, because
i is injective.

(iv) ker ∂ ⊆ im p∗: If ∂ cls(z′′) = cls(0), then z′ = i−1dp−1z′′ ∈ B ′; that
is, z′ = d ′c′ for some c′ ∈ C ′. But i z′ = id ′c′ = dic′ = dp−1z′′,
so that d(p−1z′′ − ic′) = 0; that is, p−1z′′ − ic′ is a cycle. Exactness
of the original sequence gives pi = 0, so that p∗ cls(p−1z′′ − ic′) =
cls(pp−1z′′ − pic′) = cls(z′′).

(v) im ∂ ⊆ ker i∗: We have i∗∂ cls(z′′) = cls(i z′). But i z′ = dp−1z′′ ∈ B;
that is, i∗∂ = 0.

(vi) ker i∗ ⊆ im ∂: If i∗ cls(z′) = cls(i z′) = cls(0), then i z′ = dc for
some c ∈ C . Since p is a chain map, d ′′ pc = pdc = piz′ = 0, by
exactness of the original sequence, and so pc is a cycle. But ∂ cls(pc) =
cls(i−1dp−1 pc) = cls(i−1dc) = cls(i−1i z′) = cls(z′). •

Theorem 6.10 is often called the exact triangle because of the diagram

H•(C′)
i∗ �� H•(C)

p∗,,666
666

6

H•(C′′).
∂

55�������

Example 6.11. Let X be a topological space and let S•(X) be its singular
complex. If G is an abelian group, we define H•(X, G), homology of X with
coefficients G, to be the homology groups of the complex S•(X)⊗Z G. Given
a short exact sequence 0 → G ′ → G → G ′′ → 0 of abelian groups, there
is a short exact sequence of complexes 0 → S•(X, G ′) → S•(X, G) →
S•(X, G ′′) → 0 [each Sn(X) is free, hence flat], and a long exact sequence

�� Hq(X, G ′) �� Hq(X, G) �� Hq(X, G ′′) �� Hq−1(X, G ′) �� .

In this case, the connecting homomorphism Hq(X, G ′′) → Hq−1(X, G ′) is
called the Bockstein homomorphism. �
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Corollary 6.12 (Snake Lemma1). Let A be an abelian category. Given a
commutative diagram in Comp(A) with exact rows,

0 �� A′ ��

f
��

A ��

g

��

A′′ ��

h
��

0

0 �� B ′ �� B �� B ′′ �� 0,

there is an exact sequence in A

0 → ker f → ker g → ker h → coker f → coker g → coker h → 0.

Proof. If we view each of the vertical maps f , g, and h as a complex con-
centrated in degrees 1, 0 [as in Example 6.1(iv)], then the given commutative
diagram can be viewed as a short exact sequence of complexes. The homol-
ogy of each of these complexes has only two nonzero terms: for example,
Example 6.7(iv) shows that the homology of the first column is H1 = ker f ,
H0 = coker f , and all other Hn = 0. The lemma now follows at once from
the long exact sequence. •

We have just proved that the Long Exact Sequence implies the Snake
Lemma; the converse is contained in Exercise 6.5 on page 338.

Theorem 6.13 (Naturality of ∂). Let A be an abelian category. Given a
commutative diagram in Comp(A) with exact rows,

0 �� C′ i ��

f
��

C
p ��

g
��

C′′ ��

h��

0

0 �� A′
j
�� A q

�� A′′ �� 0,

there is a commutative diagram in A with exact rows,

�� Hn(C′)
i∗ ��

f∗ ��

Hn(C)
p∗ ��

g∗
��

Hn(C′′) ∂ ��

h∗��

Hn−1(C′)
f∗��

��

�� Hn(A′)
j∗

�� Hn(A) q∗
�� Hn(A′′)

∂ ′
�� Hn−1(A′) �� .

Proof. Exactness of the rows is Theorem 6.10, while commutativity of the
first two squares follows from Hn being a functor. To prove commutativity
of the square involving the connecting homomorphism, let us first display the

1The Snake Lemma is also called the Serpent Lemma.
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chain maps and differentials in one (three-dimensional!) diagram:

0 �� C ′
n

f∗

��

i ��
d ′
>>88

Cn
d
>>88
8 g∗

��

p �� C ′′
n

��

h∗

��

d ′′
>>88

0

0 �� C ′
n−1

f∗

��

i �� Cn−1
g∗

��

p �� C ′′
n−1

h∗

��

�� 0

0 �� A′n j
��

δ′>>88
An q

��

δ>>88
8

A′′n ��

δ′′>>88
0

0 �� A′n−1 j
�� An−1 q

�� A′′n−1
�� 0.

If cls(z′′) ∈ Hn(C′′), we must show that f∗∂ cls(z′′) = ∂ ′h∗ cls(z′′). Let
c ∈ Cn be a lifting of z′′; that is, pc = z′′. Now ∂ cls(z′′) = cls(z′), where
i z′ = dc. Hence, f∗∂ cls(z′′) = cls cls( f z′). On the other hand, since h is a
chain map, we have qgc = hpc = hz′′. In computing ∂ ′ cls(hz′′), we choose
gc as the lifting of hz′′. Hence, ∂ ′ cls(hz′′) = cls(u′), where ju′ = δgc. But
j f z′ = giz′ = gdc = δgc = ju′, and so f z′ = u′, because j is injective. •

Remark. One advantage of having worked in an abelian category is that
we can now give a conceptual proof of Theorem 6.13. (Homology in abelian
categories will also be very useful when we discuss sheaf cohomology.)

Let A be an abelian category, and let D be the category having exactly
two objects, * and •, and only one nonidentity morphism, *→ •. Since D is
a small category, the functor category AD is also abelian, by Proposition 5.93
(AD is often called an arrow category). Of course, objects in AD are mor-
phisms in A, while a morphism f → g in AD is an ordered pair (α, β) of
morphisms in A making the following diagram commute.

A
α ��

f
��

A′

g

��
B

β
�� B ′

Naturality of the connecting homomorphism may be restated. A 2 × 3 com-
mutative diagram in CompA with exact rows can be viewed as a short exact
sequence in CompAD, and the corresponding Long Exact Sequence in AD,
when viewed in A, is the usual “ladder” diagram in homology. The proof
of Theorem 6.13 shows that the connecting homomorphism in AD is just the
ordered pair (∂, ∂ ′) of connecting homomorphisms in A. �

There are interesting maps of complexes that are not chain maps.

Definition. Let C and D be complexes, and let p ∈ Z. A map of degree p,
denoted by s : C → D, is a sequence s = (sn) with sn : Cn → Dn+p for all n.
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For example, a chain map is a map of degree 0, while the differentials of
(C, d) form a map d : C → C of degree −1.

We now introduce a notion that arises in topology.

Definition. Chain maps f, g : (C, d) → (C′, d ′) are homotopic,2 denoted
by f � g, if, for all n, there is a map s = (sn) : C → C′ of degree +1 with

fn − gn = d ′n+1sn + sn−1dn.

�� Cn+1

fn+1 ��

dn+1 �� Cn

sn��((
((

((
fn��

dn �� Cn−1

fn−1��

��

sn−1��(((
(((

(

�� C ′
n+1 d ′n+1

�� C ′
n d ′n

�� C ′
n−1

��

A chain map f : (C, d) → (C′, d ′) is null-homotopic if f � 0, where 0 is
the zero chain map.

Theorem 6.14. Homotopic chain maps induce the same morphism in ho-
mology: if f, g : (C, d) → (C′, d ′) are chain maps and f � g, then for all
n,

f∗n = g∗n : Hn(C) → Hn(C′).
Proof. If z is an n-cycle, then dnz = 0 and

fnz − gnz = d ′n+1snz + sn−1dnz = d ′n+1snz.

Therefore, fnz − gnz ∈ Bn(C′), and so f∗n = g∗n . •

Definition. A complex (C, d) has a contracting homotopy if its identity 1C
is null-homotopic. A complex C is contractible3 if its identity 1 = 1C is
null-homotopic; that is, there is s : C → C of degree +1 with 1 = sd + ds.

Proposition 6.15. A complex C having a contracting homotopy is acyclic;
that is, it is an exact sequence.

Proof. We use Example 6.1(i). Now 1C : Hn(C) → Hn(C) is the identity
map, while 0∗ : Hn(C) → Hn(C) is the zero map. Since 1C � 0, however,
these maps are the same. It follows that Hn(C) = {0} for all n; that is,
ker dn = im dn+1 for all n, and this is the definition of exactness. •

2Recall that two continuous functions f, g : X → Y are called homotopic if there exists
a continuous F : X × I → Y , where I = [0, 1] is the closed unit interval, with F(x, 0) =
f (x) and F(x, 1) = g(x) for all x ∈ X . If f and g are homotopic, then their induced
maps are equal: f∗ = g∗ : Hn(X) → Hn(Y ). The algebraic definition of homotopy given
here has been distilled from the proof of this topological theorem.

3A topological space is called contractible if its identity map is homotopic to a constant
map. A contractible space has the same homotopy type as a point.
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Exercises

*6.1 If C is a complex with Cn = {0} for some n, prove that Hn(C) =
{0}.

6.2 Prove that isomorphic complexes have the same homology: if C and
D are isomorphic, then Hn(C) ∼= Hn(D) for all n ∈ Z.

6.3 If f = ( fn) : C → D is a chain map, prove, for all n ∈ Z, that

fn∗Zn(C) ⊆ Zn(D) and fn∗Bn(C) ⊆ Bn(D).

*6.4 (i) If P and P′ are projective resolutions of a module A with
syzygies Kn and K ′

n for all n ≥ 0, prove that there are
projective modules Qn, Q′

n with Kn ⊕ Q′
n
∼= K ′

n ⊕ Qn .

Hint. Schanuel’s Lemma.

(ii) If one projective resolution of a module A has a projective
nth syzygy, prove that the nth syzygy of every projective
resolution of A is projective.

*6.5 This exercise shows that the Snake Lemma implies Theorem 6.10
(so this theorem should not be used in solving this problem).

Consider the commutative diagram with exact rows (note that two
zeros are “missing” from this diagram):

A ��

α
��

B
p ��

β
��

C ��

γ
��

0

0 �� A′ i
�� B ′ �� C ′.

(i) Prove that � : ker γ → cokerα, defined by

� : z �→ i−1βp−1z + imα,

is a well-defined homomorphism.
(ii) Prove that there is an exact sequence

kerα �� kerβ �� ker γ ��� cokerα
i ′ �� cokerβ �� coker γ,

where i ′ : a′ + imα �→ ia′ + imβ for a′ ∈ A′.
(iii) Given a commutative diagram with exact rows,

0 �� A′n ��

d ′n ��

An ��

dn
��

A′′n ��

d ′′n��

0

0 �� A′n−1
�� An−1 �� A′′n−1

�� 0,
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prove that the following diagram is commutative and has
exact rows:

A′n/ im d ′n+1
��

d ′ ��

An/ im dn+1 ��

d
��

A′′n/ im d ′′n+1
��

d ′′��

0

0 �� ker d ′n−1
�� ker dn−1 �� ker d ′′n−1.

(iv) Use part (ii) and this last diagram to give another proof of
Theorem 6.10, the Long Exact Sequence.

6.6 Let f, g : C → C′ be chain maps, and let F : C → C′ be an additive
functor. If f � g, prove that F f � Fg; that is, if f and g are
homotopic, then F f and Fg are homotopic.

*6.7 Let 0 → C′ i−→ C
p−→ C′′ → 0 be an exact sequence of com-

plexes in which C′ and C′′ are acyclic; prove that C is also acyclic.
6.8 Let R and A be rings, and let T : RMod → AMod be an exact

additive functor. Prove that T commutes with homology; that is, for
every complex (C, d) ∈ RComp and for every n ∈ Z, there is an
isomorphism

Hn(T C, T d) ∼= T Hn(C, d).

*6.9 (i) Prove that homology commutes with direct sums: for all n,
there are natural isomorphisms

Hn

(⊕
α

Cα
) ∼=⊕

α

Hn(Cα).

(ii) Define a direct system of complexes (Ci )i∈I , (ϕ
i
j )i≤ j , and

prove that lim−→Ci exists.

(iii) If (Ci )i∈I , (ϕ
i
j )i≤ j is a direct system of complexes over a

directed index set, prove, for all n ≥ 0, that

Hn(lim−→Ci ) ∼= lim−→ Hn(Ci ).

*6.10 Assume that a complex (C, d) of R-modules has a contracting ho-
motopy in which the maps sn : Cn → Cn+1 satisfying

1Cn = dn+1sn + sn−1dn

are only Z-maps. Prove that (C, d) is an exact sequence.
*6.11 (Barratt–Whitehead). Consider the commutative diagram with ex-

act rows:

�� An
in ��

fn ��

Bn
pn ��

gn��

Cn
∂n ��

hn��

An−1 ��

fn−1��

Bn−1 ��

gn−1��

Cn−1

hn−1��

��

�� A′n jn
�� B ′

n qn
�� C ′

n
�� A′n−1

�� B ′
n−1

�� C ′
n−1

�� .
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If each hn is an isomorphism, prove that there is an exact sequence

→ An
( fn,in)−→ A′n ⊕ Bn

jn−gn−→ B ′
n

∂nh−1
n qn−→ An−1

→ A′n−1 ⊕ Bn−1 → B ′
n−1 →,

where

( fn, in) : an �→ ( fnan, inan) and jn − gn : (a′n, bn) �→ jna′n − gnbn.

*6.12 (Mayer–Vietoris). Given a commutative diagram of complexes with
exact rows,

0 �� C′ i ��

f
��

C
p ��

g
��

C′′ ��

h��

0

0 �� A′
j
�� A q

�� A′′ �� 0,

if every third vertical map h∗ in the diagram

�� Hn(C′)
i∗ ��

f∗ ��

Hn(C)
p∗ ��

g∗
��

Hn(C′′) ∂ ��

h∗��

Hn−1(C′)
f∗��

��

�� Hn(A′)
j∗

�� Hn(A) q∗
�� Hn(A′′)

∂ ′
�� Hn−1(A′) ��

is an isomorphism, prove that there is an exact sequence

�� Hn(C′) �� Hn(A′)⊕ Hn(C) �� Hn(A) → Hn−1(C′) �� .

6.2 Derived Functors

In order to apply the general results in the previous section, we need a source
of short exact sequences of complexes. The idea is to replace every module by
a deleted resolution of it; given a short exact sequence of modules, we shall
see that this replacement gives a short exact sequence of complexes. We then
apply either Hom or ⊗, and the resulting homology modules are called Ext or
Tor.

We know that a module has many presentations; since resolutions are
generalized presentations, the next result is fundamental.

Theorem 6.16 (Comparison Theorem). Let A be an abelian category.
Given a morphism f : A → A′ in A, consider the diagram

�� P2
d2 ��

f̌2
���
�
� P1

d1 ��

f̌1
���
�
� P0

ε ��

f̌0
���
�
� A ��

f

��

0

�� P ′
2 d ′2

�� P ′
1 d ′1

�� P ′
0 ε′

�� A′ �� 0,
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where the rows are complexes. If each Pn in the top row is projective, and if
the bottom row is exact, then there exists a chain map f̌ : PA → P′A′ making
the completed diagram commute. Moreover, any two such chain maps are
homotopic.

Remark. The dual of the comparison theorem is also true. Given a mor-
phism g : A′ → A, consider the diagram of negative complexes

0 �� A �� E0 �� E1 �� E2 ��

0 �� A′ ��

g

��

X0 ��

���
�
�

X1 ��

���
�
�

X2 ��

���
�
�

.

If the bottom row is exact and each En in the top row is injective, then there
exists a chain map XA′ → EA making the completed diagram commute. �
Proof. Again, it suffices to prove the result when A = Ab.

(i) We prove the existence of f̌n by induction on n ≥ 0. For the base step
n = 0, consider the diagram

P0

f ε
��

f̌0

���
�

�

P ′
0 ε′

�� A′ �� 0.

Since ε′ is surjective and P0 is projective, there is a map f̌0 : P0 → P ′
0

with ε′ f̌0 = f ε. For the inductive step, consider the diagram

Pn+1
dn+1 �� Pn

dn ��

f̌n ��

Pn−1

f̌n−1��
P ′

n+1 d ′n+1

�� P ′
n d ′n

�� P ′
n−1.

If im f̌ndn+1 ⊆ im d ′n+1, then we have the diagram

Pn+1

f̌ndn+1��
f̌n+1


 
 
 


P ′
n+1 d ′n+1

�� im d ′n+1
�� 0,

and projectivity of Pn+1 gives f̌n+1 : Pn+1 → P ′
n+1 with d ′n+1 f̌n+1 =

f̌ndn+1. To check that the inclusion holds, note that exactness at P ′
n of

the bottom row of the original diagram gives im d ′n+1 = ker d ′n , and so it

suffices to prove that d ′n f̌ndn+1 = 0. But d ′n f̌ndn+1 = f̌n−1dndn+1 = 0.
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(ii) We prove uniqueness of f̌ to homotopy. If h : PA → P′A′ is another
chain map with ε′h0 = f ε, we construct the terms sn : Pn → P ′

n+1 of a
homotopy s by induction on n ≥ −1; that is, we will show that

hn − f̌n = d ′n+1sn + sn−1dn.

For the base step, first view A and {0} as being terms −1 and −2 in the
top complex, and define d0 = ε and d−1 = 0. Also, view A′ and {0} as
being terms −1 and −2 in the bottom complex, and define d ′0 = ε′ and

d ′−1 = 0. Finally, define f̌−1 = f = h−1 and s−2 = 0.

�� P1
d1 �� P0

d0=ε ��
f̌0

��
h0

��

s0

>>7
7

7
7

A

s−1>>88
88

88
88

d−1 ��

f

��

0

s−2
��22

22
22

22

�� P ′
1 d ′1

�� P ′
0 d ′0=ε′

�� A′
d ′−1

�� 0

With this notation, defining s−1 = 0 gives h−1 − f̌−1 = f − f = 0 =
d ′0s−1 + s−2d−1.

For the inductive step, it suffices to prove, for all n ≥ −1, that

im(hn+1 − f̌n+1 − sndn+1) ⊆ im d ′n+2,

for then we have a diagram with exact row

Pn+1

hn+1− f̌n+1−sndn+1
��

sn+1

��� �
�

�
�

P ′
n+2 d ′n+2

�� im d ′n+2
�� 0,

and projectivity of Pn+1 gives a map sn+1 : Pn+1 → P ′
n+2 satisfying

the desired equation. As in the proof of part (i), exactness of the bottom
row of the original diagram gives im d ′n+2 = ker d ′n+1, and so it suffices

to prove d ′n+1(hn+1 − f̌n+1 − sndn+1) = 0. But

d ′n+1(hn+1− f̌n+1 − sndn+1) = d ′n+1(hn+1 − f̌n+1)− d ′n+1sndn+1

= d ′n+1(hn+1 − f̌n+1)− (hn − f̌n − sn−1dn)dn+1

= d ′n+1(hn+1 − f̌n+1)− (hn − f̌n)dn+1,

and the last term is 0 because h and f̌ are chain maps. •
We introduce a term to describe the chain map f̌ just constructed.
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Definition. If f : A → A′ is a morphism and PA and P′A′ are deleted pro-

jective resolutions of A and A′, respectively, then a chain map f̌ : PA → P′A′
is said to be over f if f ε = ε′ f̌0.

�� P2
d2 ��

f̌2��

P1
d1 ��

f̌1��

P0
ε ��

f̌0��

A ��

f
��

0

�� P ′
2 d ′2

�� P ′
1 d ′1

�� P ′
0 ε′

�� A′ �� 0

Given a morphism f : A → A′, the comparison theorem implies that a
chain map over f always exists between deleted projective resolutions of A
and A′; moreover, such a chain map is unique to homotopy.

6.2.1 Left Derived Functors

In Algebraic Topology, we apply the functor �⊗Z G, for an abelian group G,
to the singular complex S•(X) of a topological space X to get the complex

→ Sn+1(X)⊗ G
∂n+1⊗1G−→ Sn(X)⊗ G

∂n⊗1G−→ Sn−1(X)⊗ G → .

The homology groups Hn(X, G) = Hn(S•(X) ⊗Z G) are called the homol-
ogy groups of X with coefficients in G, as we have seen in Example 6.11.
Similarly, applying the contravariant functor Hom(�, G) gives the complex

← Hom(Sn+1(X), G)
∂∗n←− Hom(Sn(X), G)

∂∗n−1←− Hom(Sn−1(X), G) ←;
its homology groups Hn(X, G) are called the cohomology groups of X with
coefficients in G. This last terminology generalizes. If a contravariant functor
T is applied to a complex C, then many of the usual terms involving the com-
plex T C acquire the prefix “co” and all indices are raised. For example, one
has n-cochains Cn = T (Cn), n-cocycles Zn(T C), n-coboundaries Bn(T C),
nth cohomology Hn(T C), and induced maps f ∗. Originally, the left derived
functors LnT were called homology when T is a covariant functor, and the
right derived functors RnT were called cohomology when T is contravari-
ant.4 Unfortunately, this clear distinction is blurred because the Hom functor
is contravariant in one variable but covariant in the other. As a result, derived
functors of any variance which involve Hom are often called cohomology.

Given an additive covariant functor T : A → C between abelian cate-
gories, where A has enough projectives, we now construct its left derived

4In their book Homology Theory, Hilton and Wylie tried to replace cohomology by
contrahomology, but their suggestion was not adopted.
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functors LnT : A → C, for all n ∈ Z (we will construct right derived func-
tors afterwards). The definition will be in two parts: first on objects; then on
morphisms.

Choose, once and for all, one projective resolution5

P =→ P2
d2−→ P1

d1−→ P0
ε−→ A → 0

for every object A (thus, the chosen projective resolution of A is the analog
of the singular complex of a space X , but it is more fruitful to regard it as a
presentation of A). Form the deleted resolution PA, then form the complex
T PA (as in Example 6.6), take homology, and define

(LnT )A = Hn(T PA).

Let f : A → A′ be a morphism. By the comparison theorem, there is a
chain map f̌ : PA → P′A′ over f . Then T f̌ : T PA → T P′A′ is also a chain
map, and we define (LnT ) f : (LnT )A → (LnT )A′ by

(LnT ) f = Hn(T f̌ ) = (T f̌ )n∗.

In more detail, if z ∈ ker T dn , then

(LnT ) f : z + im T dn+1 �→ (T f̌n)z + im T d ′n+1;

that is,

(LnT ) f : cls(z) �→ cls(T f̌nz).

In pictures, look at the chosen projective resolutions:

�� P2 ��

���
�
� P1

���
�
�

�� P0

���
�
�

�� A ��

f

��

0

�� P ′
2

�� P ′
1

�� P ′
0

�� A′ �� 0.

Fill in a chain map f̌ over f , delete A and A′, apply T to this diagram, and
then take the map induced by T f̌ in homology.

Theorem 6.17. If T : A → C is an additive covariant functor between
abelian categories, where A has enough projectives, then LnT : A→ C is an
additive covariant functor for every n ∈ Z.

5We will see, in Proposition 6.20, that the definition does not depend on the choice of
projective resolution.
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Proof. We will prove that LnT is well-defined on morphisms; it is then rou-
tine to check that it is an additive covariant functor [remember that Hn is an
additive covariant functor Comp(A) → A].

If h : PA → P′A′ is another chain map over f , then the comparison theo-

rem says that h � f̌ ; therefore, T h � T f̌ , by Exercise 6.6 on page 339, and
so Hn(T h) = Hn(T f̌ ), by Theorem 6.14. •

Here is a useful computation of an induced map when A = RMod. Recall
that if r ∈ Z(R) and A is a left R-module, then multiplication by r , denoted
by μr : A → A, is an R-map. We say that a functor T : RMod → RMod, of
either variance, preserves multiplications if, for all r ∈ Z(R), T (μr ) : T A →
T A is also multiplication by r . For example, tensor product and Hom preserve
multiplications.

Proposition 6.18. If T : RMod → RMod is an additive functor that pre-
serves multiplications, then LnT : RMod → RMod also preserves multipli-
cations.

Proof. Given a projective resolution → P1
d1−→ P0

ε−→ A → 0, it is easy
to see that μ̌ is a chain map over μr , where every μ̌n : Pn → Pn is

�� P2
d2 ��

μ̌2 ��

P1
d1 ��

μ̌1��

P0
ε ��

μ̌0��

A ��

μr
��

0

�� P2 d2

�� P1 d1

�� P0 ε
�� A �� 0,

multiplication by r . Since T preserves multiplications, the terms T μ̌n of the
chain map T μ̌ are also multiplication by r , and so the induced maps in ho-
mology are multiplication by r :

(T μ̌)∗ : cls(zn) �→ cls((T μ̌n)zn) = cls(r zn) = r cls(zn),

where zn ∈ ker T dn . •

Definition. Given an additive covariant functor T : A→ C between abelian
categories, where A has enough projectives, the functors LnT are called the
left derived functors of T .

Proposition 6.19. If T : A → C is an additive covariant function between
abelian categories, then (LnT )A = 0 for all negative n and for all A.

Proof. By Exercise 6.1 on page 338, we have (LnT )A = 0 because the nth
term of PA is 0 when n is negative. •

The functors LnT are called left derived functors because of the last
proposition. Since LnT = 0 on the right, that is, for all negative n, these
functors are of interest only on the left; that is, for n ≥ 0.
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Definition. If B is a left R-module and T = �⊗R B, define

TorR
n (�, B) = LnT .

Thus, if P = → P2
d2−→ P1

d1−→ P0
ε−→ A → 0 is the chosen projective

resolution of a right R-module A, then

TorR
n (A, B) = Hn(PA ⊗R B) = ker(dn ⊗ 1B)

im(dn+1 ⊗ 1B)
.

The domain of TorR
n (�, B) is ModR , the category of right R-modules,

and its target is Ab [if B is an (R, S)-bimodule, then the target is ModS].
In particular, if R is commutative, then A ⊗R B is an R-module, and so the
values of TorR

n (�, B) lie in RMod.
We can also form the left derived functors of A ⊗R �, obtaining functors

RMod → Ab.

Definition. If A is a right R-module and T = A ⊗R �, define

torR
n (A,�) = LnT .

Thus, if Q = → Q2
d2−→ Q1

d1−→ Q0
η−→ B → 0 is the chosen projective

resolution of a left R-module B, then

torR
n (A, B) = Hn(A ⊗R QB) = ker(1A ⊗ dn)

im(1A ⊗ dn+1)
.

One nice result of Homological Algebra is Theorem 6.32 on page 355:
for all left R-modules A, all right R-modules B, and all n ≥ 0,

TorR
n (A, B) ∼= torR

n (A, B).

Thus, the notation torR
n (A, B) is only temporary.

The definition of LnT assumes that a choice of projective resolution of
every module has been made. Does LnT depend on this choice?

Proposition 6.20. Let A be an abelian category with enough projectives.
Assume that new choices P̃A of deleted projective resolutions have been made,
and denote the left derived functors arising from these new choices by L̃nT .

If T : A → C is an additive covariant functor, where C is an abelian
category, then the functors LnT and L̃nT , for each n ≥ 0, are naturally
isomorphic. In particular, for all A, the objects

(LnT )A ∼= (L̃nT )A

are independent of the choice of projective resolution of A.
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Proof. Consider the diagram

�� P2 �� P1 �� P0 �� A ��

1A
��

0

�� P̃2
�� P̃1

�� P̃0
�� A �� 0,

where the top row is the chosen projective resolution of A used to define
LnT and the bottom is that used to define L̃nT . By the comparison theorem,
there is a chain map ι : PA → P̃A over 1A. Applying T gives a chain map
T ι : T PA → T P̃A over T 1A = 1T A. This last chain map induces morphisms,
one for each n,

τA = (T ι)∗ : (LnT )A → (L̃nT )A.

We now prove that each τA is an isomorphism (thereby proving the last
statement in the theorem) by constructing its inverse. Turn the preceding di-
agram upside down, so that the chosen projective resolution PA → A → 0
is now the bottom row. Again, the comparison theorem gives a chain map,
say, κ : P̃A → PA. Now the composite κι is a chain map from PA to itself
over 1A. By the uniqueness statement in the comparison theorem, κι � 1PA ;
similarly, ικ � 1P̃A

. It follows that T (ικ) � 1T P̃A
and T (κι) � 1T PA . Hence,

1(L̃n T )A = (T ικ)∗ = (T ι)∗(T κ)∗ and 1(Ln T )A = (T κι)∗ = (T κ)∗(T ι)∗.
Therefore, τA = (T ι)∗ is an isomorphism.

We now prove that the isomorphisms τA constitute a natural isomorphism;
that is, if f : A → B is a morphism, then the following diagram commutes.

(LnT )A
τA ��

(Ln T ) f
��

(L̃nT )A

(L̃n T ) f��
(LnT )B

τB
�� (L̃nT )B

To evaluate in the clockwise direction, consider

�� P1 �� P0 �� A ��

1A
��

0

�� P̃1
�� P̃0

�� A ��

f
��

0

�� Q̃1
�� Q̃0

�� B �� 0,

where the bottom row is the new chosen projective resolution of B. The com-
parison theorem gives a chain map PA → Q̃B over f 1A = f . Going counter-
clockwise, the picture will now have the original chosen projective resolution
of B as its middle row, and we get a chain map PA → Q̃B over 1B f = f .
The uniqueness statement in the comparison theorem tells us that these two
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chain maps are homotopic, and so they induce the same morphism in homol-
ogy. Thus, the appropriate diagram commutes, showing that τ : LnT → L̃nT
is a natural isomorphism. •

Corollary 6.21. The modules TorR
n (A, B) are independent of the choice of

projective resolution of A, and the modules torR
n (A, B) are independent of the

choice of projective resolution of B.

Proof. Both TorR
n (�, B) and torR

n (A,�) are left derived functors, and so
Proposition 6.20 applies to each of them. •

Corollary 6.22. Let T : RMod → SMod be an additive covariant functor.
If P is a projective module, then (LnT )P = {0} for all n ≥ 1. In particular,
if A and P are right R-modules with P projective, and if B and Q are left
R-modules with Q projective, then for all n ≥ 1,

TorR
n (P, B) = {0} and torR

n (A, Q) = {0}.
Proof. Since P is projective, a projective resolution is P, the complex with
1P concentrated in degrees 0,−1. The corresponding deleted projective res-
olution PP is !0(P), the complex with P concentrated in degree 0. Hence,
T PP has nth term {0} for all n ≥ 1, and so (LnT )P = Hn(T PP) = {0} for
all n ≥ 1, by Exercise 6.1 on page 338. •

Corollary 6.23. Let A be an abelian category with enough projectives. Let

P =→ P2
d2−→ P1

d1−→ P0
ε−→ A → 0

be a projective resolution of A ∈ objA. Define K0 = ker ε, and define
Kn = ker dn for all n ≥ 1. Then

(Ln+1T )A ∼= (LnT )K0 ∼= (Ln−1T )K1 ∼= · · · ∼= (L1T )Kn−1.

In particular, if A = ModR and B is a left R-module,

TorR
n+1(A, B) ∼= TorR

n (K0, B) ∼= · · · ∼= TorR
1 (Kn−1, B).

Similarly, if A is a right R-module, let P′ = → P ′
1

d ′1−→ P ′
0

ε′−→ B → 0
be a projective resolution of a left R-module B, and define V0 = ker ε′ and
Vn = ker d ′n for all n ≥ 1. Then

torR
n+1(A, B) ∼= torR

n (A, V0) ∼= · · · ∼= torR
1 (A, Vn−1).
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Proof. By exactness of P, we have K0 = ker ε = im d1, and so

Q =→ P2
d2−→ P1

d1−→ K0 → 0

is a projective resolution of K0 if we relabel the indices; replace each n by
n − 1, and define Qn = Pn+1 and δn = dn+1 for all n ≥ 0. Since the value
of LnT on a module is independent of the choice of projective resolution, we
have

(LnT )K0 ∼= Hn(T QK0) =
ker T δn

im T δn+1

= ker T dn+1

im T dn+2
= Hn+1(T PA) ∼= (Ln+1T )A.

The remaining isomorphisms are obtained by iteration. •
We are now going to show that there is a long exact sequence of left

derived functors. We begin with a useful lemma; it says that if we are given
a short exact sequence 0 → A′ → A → A′′ → 0 as well as projective
resolutions of A′ and A′′, then we can “fill in the horseshoe”; that is, there is
a projective resolution of A that fits in the middle.

Proposition 6.24 (Horseshoe Lemma). Given a diagram in an abelian cat-
egory A with enough projectives,

�� ��
P ′

1

��

P ′′
1

��
P ′

0

ε′
��

P ′′
0

ε′′
��

0 �� A′ i
�� A q

�� A′′ �� 0,

where the columns are projective resolutions and the row is exact, then there
exist a projective resolution of A and chain maps so that the three columns
form an exact sequence of complexes.

Remark. The dual theorem, in which projective resolutions are replaced by
injective resolutions, is also true. �
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Proof. We show first that there are a projective Q0 and a commutative 3× 3
diagram with exact columns and rows:

0
��

0
��

0
��

0 �� K ′
0

��

�� V0

��

�� K ′′
0

��

�� 0

0 �� P ′
0

ε′ ��

i0 �� Q0
q0 ��

ε���
� P ′′

0
ε′′��

��

σ��� � �
0

0 �� A′ i
��

��
A q

��

��
A′′ ��

��
0

0 0 0.

Define Q0 = P ′
0 ⊕ P ′′

0 ; it is projective because both P ′
0 and P ′′

0 are projective.
Define i0 : P ′

0 → P ′
0 ⊕ P ′′

0 by x ′ �→ (x ′, 0), and define q0 : P ′
0 ⊕ P ′′

0 → P ′′
0

by (x ′, x ′′) �→ x ′′. It is clear that

0 → P ′
0

i0−→ Q0
q0−→ P ′′

0 → 0

is exact. Since P ′′
0 is projective, there exists a map σ : P ′′

0 → A with qσ = ε′′.
Now define ε : Q0 → A by ε : (x ′, x ′′) �→ iε′x ′ + σ x ′′ (the map σ makes the

square with base A
q−→ A′′ commute). Surjectivity of ε follows from the

Five Lemma. It is a routine exercise that if V0 = ker ε, then there are maps
K ′

0 → K0 and K0 → K ′′
0 (where K ′

0 = ker ε′ and K ′′
0 = ker ε′′), so that the

resulting 3× 3 diagram commutes. Exactness of the top row is Exercise 2.32
on page 96.

We now prove, by induction on n ≥ 0, that the bottom n rows of the
desired diagram can be constructed. For the inductive step, assume that the
first n steps have been filled in, and let Vn = ker(Qn → Qn−1), while K ′

n =
ker d ′n and K ′′

n = ker d ′′n . As in the base step, there is a commutative diagram
with exact rows and columns.

0
��

0
��

0
��

0 �� K ′
n+1

��

�� Vn+1

��

�� K ′′
n+1

��

�� 0

0 �� P ′
n+1

d ′n+1 ��

in+1 �� Qn+1
qn+1 ��

δn+1��

P ′′
n+1

d ′′n+1��

�� 0

0 �� K ′
n

��

��

Vn ��

��

K ′′
n

��

��

0

0 0 0

Now splice this diagram to the nth diagram by defining δn+1 : Qn+1 → Qn
as the composite Qn+1 → Vn → Qn . •
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Corollary 6.25. Let 0 → A′ → A → A′′ → 0 be an exact sequence of
left R-modules. If both A′ and A′′ are finitely presented, then A is finitely
presented.

Proof. There are exact sequences 0 → K ′
0 → P ′

0 → A′ → 0 and 0 →
K ′′

0 → P ′′
0 → A′′ → 0, where P ′

0, P ′′
0 , K ′′

0 , P ′′
0 are finitely generated and

P ′
0, P ′′

0 are projective. As in the beginning of the proof of Proposition 6.24,
there is a 3 × 3 diagram, with Q0 projective, whose rows and columns are
exact.

0
��

0
��

0
��

0 �� K ′
0

��

�� V0

��

�� K ′′
0

��

�� 0

0 �� P ′
0

��

�� Q0 ��

��

P ′′
0

��

�� 0

0 �� A′ ��

��
A ��

��
A′′ ��

��
0

0 0 0

Both Q0 and V0 are finitely generated, being extensions of finitely generated
modules, and so A is finitely presented. •

Theorem 6.26. Given a commutative diagram of right R-modules having
exact rows,

0 �� A′

f
��

i �� A
p ��

g

��

A′′

h
��

�� 0

0 �� C ′
j

�� C q
�� C ′′ �� 0,

there is a commutative diagram with exact rows for every left R-module B,

TorR
n (A′, B)

f∗ ��

i∗ �� TorR
n (A, B)

p∗ ��

g∗
��

TorR
n (A′′, B)

h∗��

∂n �� TorR
n−1(A′, B)

f∗��
TorR

n (C ′, B)
j∗

�� TorR
n (C, B) q∗

�� TorR
n (C ′′, B)

∂ ′n
�� TorR

n−1(C
′, B).

The similar statement for torR
n (A,�) is also true.

Proof. Exactness of 0 → A′ → A → A′′ → 0 gives exactness of the
sequence of deleted complexes 0 → PA′ → PA → PA′′ → 0. If T =
�⊗R B, then 0 → T PA′ → T PA → T PA′′ → 0 is still exact, for every row
splits because each term of PA′′ is projective. Therefore, the naturality of the
connecting homomorphism, Theorem 6.13, applies at once. •

We now show that a short exact sequence gives a long exact sequence of
left derived functors.
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Theorem 6.27. Let A be an abelian category with enough projectives. If

0 → A′ i−→ A
p−→ A′′ → 0 is an exact sequence in A and T : A → C is

an additive covariant functor, where C is an abelian category, then there is a
long exact sequence in C

→ (LnT )A′ (Ln T )i−→ (LnT )A
(Ln T )p−→ (LnT )A′′ ∂n−→

(Ln−1T )A′
(Ln−1T )i−→ (Ln−1T )A

(Ln−1T )p−→ (Ln−1T )A′′
∂n−1−→

which ends with

→ (L0T )A′ → (L0T )A → (L0T )A′′ → 0.

Proof. Let P′ and P′′ be the chosen projective resolutions of A′ and A′′,
respectively. By the Horseshoe Lemma, there is a projective resolution P̃ of
A with

0 → P′A′
j−→ P̃A

q−→ P′′A′′ → 0.

Here, j is a chain map over i and q is a chain map over p. Applying T gives
the sequence of complexes

0 → T P′A′
T j−→ T P̃A

T q−→ T P′′A′′ → 0.

This sequence is exact, for each row 0 → P ′
n

jn−→ P̃n
qn−→ P ′′

n → 0 is a split
exact sequence (because P ′′

n is projective), and additive functors preserve split
short exact sequences.6 There is thus a long exact sequence

→ Hn(T P′A′)
(T j)∗−→ Hn(T P̃A)

(T q)∗−→ Hn(T P′′A′′)
∂n−→ Hn−1(T P′A′) →;

that is, there is an exact sequence

→ (LnT )A′
(T j)∗−→ (L̃nT )A

(T q)∗−→ (LnT )A′′ ∂n−→ (Ln−1T )A′ → .

The sequence does terminate with 0, for L−1T is zero for all negative n, by
Proposition 6.19.

We do not know that P̃A arises from the projective resolution of A origi-
nally chosen, and so we must change it into the sequence we seek. There are
chain maps κ : PA → P̃A and λ : P̃A → PA, where both κ, λ are chain maps
over 1A in opposite directions. Indeed, as in the proof of Proposition 6.20,
T κTλ and TλT κ are chain maps over 1T A in opposite directions, whose in-
duced maps in homology are isomorphisms; in fact, (Tλ)∗ : L̃nT → LnT is

6The exact sequence of complexes may not split, because the sequence of splitting
maps need not constitute a chain map P′′A′′ → P̃A.
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the inverse of (T κ)∗. Now ǐ is a chain map over i , and p̌ is a chain map over
p, while κ, λ are chain maps over 1A.

The diagram displaying these chain maps is not commutative!

P′A′
j ��

ǐ ��1
11

11
11

1 P̃A

λ

��

q �� P′′A′′

PA

κ

��

p̌

??99999999

Consider this diagram after applying T and taking homology.

�� Hn(T P′A′)
(T j)∗ ��

(T ǐ)∗ ����
���

���
��

Hn(T P̃A)
(T q)∗ ��

(Tλ)∗
��

Hn(T P′′A′′) ��

Hn(T PA)

(T p̌)∗

��










(T κ)∗

��

The noncommutative diagram remains noncommutative after applying T , but
the last diagram is commutative. Now TλT j � T ǐ , because both are chain
maps T P′A′ → T PA over T i ; hence, (TλT j)∗ = (T ǐ)∗, because homotopic
chain maps induce the same homomorphism in homology. But (TλT j)∗ =
(Tλ)∗(T j)∗, and so

(Tλ)∗(T j)∗ = (T ǐ)∗ = (LnT )i.

Similarly, (T q)∗(T κ)∗ = (T p̌)∗ = (LnT )p. The proof that

(LnT )A′ (Ln T )i−→ (LnT )A
(Ln T )p−→ (LnT )A′′

is exact can be completed using Exercise 6.14 on page 376. •

Corollary 6.28. If T : RMod → SMod is an additive covariant functor,
then the functor L0T is right exact.

Proof. If A → B → C → 0 is exact, then (L0T )A → (L0T )B →
(L0T )C → 0 is exact. •

Theorem 6.29.

(i) If an additive covariant functor T : A → B is right exact, where A,B
are abelian categories and A has enough projectives, then T is natu-
rally isomorphic to L0T .

(ii) The functor � ⊗R B is naturally isomorphic to TorR
0 (�, B), and the

functor A ⊗R � is naturally isomorphic to torR
0 (A,�). Hence, for all

right R-modules A and left R-modules B, there are isomorphisms

TorR
0 (A, B) ∼= A ⊗R B ∼= torR

0 (A, B).
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Proof.

(i) Let P =→ P1
d1−→ P0

ε−→ A → 0 be the chosen projective resolution
of A. By definition, (L0T )A = coker T d1. But right exactness of T
gives an exact sequence

T P1
T d1−→ T P0

T ε−→ T A → 0.

Now T ε induces an isomorphism σA : coker T d1 → T A, by the First
Isomorphism Theorem; that is,

coker T d1 = T P0/ im T d1 = T P0/ ker T ε
σA−→ im T ε = T A.

It is easy to prove that σ = (σA)A∈obj(ModR) : L0T → T is a natural
isomorphism.

(ii) Immediate from part (i), for both � ⊗R B and A ⊗R � are additive
covariant right exact functors. •

Corollary 6.30. If 0 → A′ → A → A′′ → 0 is a short exact se-
quence of right R-modules, then there is a long exact sequence for every left
R-module B,

→ TorR
2 (A′, B) → TorR

2 (A, B) → TorR
2 (A′′, B)

→ TorR
1 (A′, B) → TorR

1 (A, B) → TorR
1 (A′′, B)

→ A′ ⊗R B → A ⊗R B → A′′ ⊗R B → 0.

The similar statement for torR
n (A,�) is also true.

Thus, the Tor sequence repairs the loss of exactness after tensoring a short
exact sequence.

We now prove that Tor and tor are the same, and we begin with a variation
of the Snake Lemma.

Lemma 6.31. Given the commutative diagram with exact rows and columns
in an abelian category A,

ker f

i ��

�� 0

��

ker h

��
ker a

��

j �� L ′
a ��

f
��

M ′ ��

g
��

N ′ ��

h��

0

0 �� L ��

��

M ��

��

N ��

��

0

ker b �� L ′′
b ��

��

M ′′ ��

��

N ′′ ��

��

0

0 0 0,
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then ker f ∼= ker a and ker h ∼= ker b.

Proof. Apply the version of the Snake Lemma in Exercise 6.5 on page 338
(with two “missing” zeros) to the maps f, g, h, obtaining exactness of

ker g → ker h → coker f → coker g.

Now ker g = {0}, coker f = L ′′, coker g = M ′′, and we may assume

coker f → coker g is b (as in Exercise 6.5). Thus, 0 → ker h → L ′′ b−→ M ′′
is exact, and we conclude that ker h ∼= ker b.

We may assume that i and j are inclusions. Commutativity of the square
with corner ker a gives f j = 0; that is, ker a = im j ⊆ ker f = im i ;
commutativity of the square with corner ker f gives ai = 0; that is, ker f =
im i ⊆ ker a = im j . Therefore, im i = im j and ker f = ker a. •

Theorem 6.32. Let A be a right R-module, let B be a left R-module, and let

P =→ P1
d1−→ P0

ε−→ A → 0 and Q =→ Q1
d ′1−→ Q0

ε′−→ B → 0

be projective resolutions. Then Hn(PA⊗R B) ∼= Hn(A⊗R QB) for all n ≥ 0;
that is,

TorR
n (A, B) ∼= torR

n (A, B).

Proof. (A. Zaks) The proof is by induction on n ≥ 0. The base step n = 0
is true, by Theorem 6.29(ii). Let us display the syzygies of P by “factoring”
it into short exact sequences:

P3 ��

���
��

��
��

P2 ��

���
��

��
��

P1 ��

���
��

��
��

P0 �� A �� 0.

K2

@@:::::::
K1

@@:::::::
K0

@@:::::::

There are exact sequences 0 → Ki → Pi → Ki−1 → 0 for all i ≥ 0 if we
write A = K−1 (so that 0 → K0 → P0 → A → 0 has the same notation as
the others). Similarly, we display the syzygies of Q by factoring it into short
exact sequences 0 → Vj → Q j → Vj−1 → 0 for all j ≥ 0. Since tensor
is a functor of two variables (see Exercise 2.35 on page 96), the following
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diagram commutes for each i, j ≥ 0.

X

��

�� 0

��

W

��
Y

��

�� Ki ⊗ Vj ��

��

Ki ⊗ Q j ��

��

Ki ⊗ Vj−1 ��

��

0

0 �� Pi ⊗ Vj ��

��

Pi ⊗ Q j ��

��

Pi ⊗ Vj−1 ��

��

0

Z �� Ki−1 ⊗ Vj ��

��

Ki−1 ⊗ Q j ��

��

Ki−1 ⊗ Vj−1 ��

��

0

0 0 0

The rows and columns are exact because tensor is right exact; the modules
W, X, Y, Z are, by definition, kernels of obvious arrows. Zeros flank the mid-
dle row and column because Pi and Q j are flat (they are even projective).
Now W = Tor1(Ki−1, Vj−1), X = Tor1(Ki−1, Vj ), Y = tor1(Ki , Vj−1), and
Z = tor1(Ki−1, Vj−1). By Lemma 6.31, we conclude, for all i, j ≥ −1,

Tor1(Ki−1, Vj−1) ∼= tor1(Ki−1, Vj−1).

If i = 0 = j , then Tor1(A, B) ∼= tor1(A, B) because K−1 = A and V−1 = B.
The theorem has been proved for n = 1.

We now prove the inductive step. Corollary 6.23 gives

torn+1(A, B) ∼= tor1(A, Vn−1) = tor1(K−1, Vn−1),

Torn+1(A, B) ∼= Tor1(Kn−1, B) = Tor1(Kn−1, V−1).

Use these isomorphisms and the isomorphism X ∼= Y ; i.e.,

Tor1(Ki−1, Vj ) ∼= tor1(Ki , Vj−1).

To go from any equation to the one below it, use the theorem for n = 1:

torn+1(A, B) ∼= tor1(K−1, Vn−1);
Tor1(K−1, Vn−1) ∼= tor1(K0, Vn−2);

Tor1(K0, Vn−2) ∼= tor1(K1, Vn−3);
· · ·

Tor1(Kn−2, V0) ∼= tor1(Kn−1, V−1);
Tor1(Kn−1, V−1) ∼= Torn+1(A, B). •

This last proof is ingenious; we will give a straightforward proof of the
theorem once we have spectral sequences.

Remark. The fact that the proof of Theorem 6.32 uses only the flatness of
the terms in a projective resolution suggests that Tor can be defined using flat
resolutions. See Theorem 7.5 for a proof of this. �
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6.2.2 Axioms

Here is a set of axioms characterizing the sequence of functors TorR
n (�, M).

Theorem 6.33 (Axioms for Tor). Let (Tn : ModR → Ab)n≥0 be a se-
quence of additive covariant functors. If,

(i) for every short exact sequence 0 → A → B → C → 0 of right
R-modules, there is a long exact sequence with natural connecting ho-
momorphisms

→ Tn+1(C)
�n+1−→ Tn(A) → Tn(B) → Tn(C)

�n−→ Tn−1(A) →,

(ii) T0 is naturally isomorphic to �⊗R M for some left R-module M,

(iii) Tn(P) = {0} for all projective right R-modules P and all n ≥ 1,

then Tn is naturally isomorphic to TorR
n (�, M) for all n ≥ 0.

Proof. We proceed by induction on n ≥ 0. The step n = 0 is axiom (ii). For
the step n = 1, given a right R-module A, there is an exact sequence

0 → K → P → A → 0,

where P is projective. By axiom (i), there is a diagram with exact rows:

�� T1(P) �� T1(A)

τ1A

���
�
�

�1 �� T0(K )

τ0K

��

�� T0(P)

τ0P

��
�� TorR

1 (P, M) �� TorR
1 (A, M)

δ1

�� TorR
0 (K , M) �� TorR

0 (P, M),

where the maps τ0K and τ0P are the natural isomorphisms given by axiom (ii).
Of course, naturality gives commutativity of the square on the right. Ax-
iom (iii) gives T1(P) = {0} = TorR

1 (P, M), so that the maps �1 and δ1
are injective. Diagram chasing, Proposition 2.71, gives an isomorphism τ1A
making the augmented diagram commute.

We now prove the inductive step, and we may assume that n ≥ 1. Look
further out in the long exact sequence. By axiom (i), there is a commutative
diagram with exact rows

Tn+1(P) �� Tn+1(A)

τn+1,A

���
�
�

�n+1 �� Tn(K )

τnK

��

�� Tn(P)

��
TorR

n+1(P, M) �� TorR
n+1(A, M)

δn+1

�� TorR
n (K , M) �� TorR

n (P, M),
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where τnK : Tn(K ) → TorR
n (K , M) is an isomorphism given by the inductive

hypothesis. Since n ≥ 1, all four terms involving the projective P are {0}.
It follows from exactness of the rows that both �n and ∂n are isomorphisms.
Therefore, the composite, τn+1,A = δ−1

n+1τnK�n+1 : Tn+1(A) → Fn+1(A) is
an isomorphism.

That the isomorphisms τn+1,A constitute a natural isomorphism Tn+1 →
TorR

n+1(�, M) is left to the reader with the remark that the proof uses the
assumed naturality of the connecting homomorphisms � and δ. •

The strategy of the proof of Theorem 6.33 occurs frequently, and it is
called dimension shifting. Choose a short exact sequence 0 → A → X →
C → 0 whose middle term X forces higher homology groups to vanish; for
example, X might be projective or injective. The proof proceeds as a slow
starting induction, proving results for n = 0 and n = 1 before proving the
inductive step.

The theorem can be generalized.

Corollary 6.34. Let (Tn)n≥0, (T ′
n)n≥0 be sequences of additive covariant

functors A → B, where A, B are abelian categories and A has enough
projectives. If,

(i) for every short exact sequence 0 → A → B → C → 0 in A, there are
long exact sequences with natural connecting homomorphisms,

(ii) T0 is naturally isomorphic to T ′
0,

(iii) Tn(P) = 0 = T ′
n(P) for all projectives P and all n ≥ 1,

then Tn is naturally isomorphic to T ′
n for all n ≥ 0.

Remark. Notice that this corollary does not assume that the sequences
(Tn)n≥0, (T ′

n)n≥0 are derived functors. �

Proof. A harmless rewriting of the proof of Theorem 6.33. •
This corollary can itself be generalized.

Definition. Let (Tn : A→ B)n≥0 be a sequence of additive functors, where
A and B are abelian categories. If X is a class of objects in A, then we say
that A has enough X -objects if every object in A is a quotient of an object in
X . We call (Tn)n≥0 X -effaceable if Tn(X) = 0 for all X ∈ X and n ≥ 1.

We could call X -objects acyclic or relatively projective.
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Corollary 6.35. Let (Tn : A → B)n≥0, (T ′
n : A → B)n≥0 be sequences of

additive covariant functors, where A, B are abelian categories, X is a class
of objects in A, and A has enough X -objects. If,

(i) for every short exact sequence 0 → A → B → C → 0 in A, there are
long exact sequences with natural connecting homomorphisms,

(ii) T0 is naturally isomorphic to T ′
0,

(iii) both (Tn)n≥0, (T ′
n)n≥0 are X -effaceable,

then Tn is naturally isomorphic to T ′
n for all n ≥ 0.

Grothendieck made this last corollary into a definition, for it displays the
fundamental properties of homology [see “Sur quelques points d’algèbre ho-
mologique,” Tohoku Math J., 1957, pp. 119–183, pp. 185–221] .

Definition. If A, B are abelian categories, then a sequence of additive func-
tors (Tn : A → B)n≥0 is a homological ∂-functor if, for every short exact
sequence 0 → A → B → C → 0 in A, there is a long exact sequence

→ Tn(A) → Tn(B) → Tn(C)
∂n−→ Tn−1(A) →

ending → T0(A) → T0(B) → T0(C)7 and having natural connecting homo-
morphisms ∂n : Tn(C) → Tn−1(A); that is, if 0 → A′ → B ′ → C ′ → 0 is
exact in A, then the following diagram commutes.

Tn(C)
∂ ′ ��

��

Tn−1(A)

��
Tn(C ′)

∂
�� Tn−1(A′)

A morphism τ : (Tn)n≥0 → (Hn)n≥0 of homological ∂-functors is a sequence
of natural transformations τn : Tn → Hn , for n ≥ 0, such that the following
diagram commutes:

Tn(C)
∂ ��

τn,C

��

Tn−1(A)

τn−1,A

��
Hn(C)

∂
�� Hn−1(A)

for every short exact sequence 0 → A → B → C → 0 in A.

We can now give a useful variation of Corollary 6.35.

7Most authors assume further, as part of the definition, that the long exact sequence
ends with → T0(A) → T0(B) → T0(C) → 0; that is, that T0 is right exact.
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Definition. If F : A → B is an additive functor, then a homological ∂-
functor (Tn : A→ B)n≥0 is a homological extension of F if there is a natural
isomorphism τ : F → T0.

For example, (TorR
n (A,�))n≥0 is a homological extension of A ⊗R �.

Theorem 6.36. Let A be an abelian category with enough projectives.

(i) If (Tn) and (Hn) are homological ∂-functors A → Ab with Hn(P) =
{0} for all projective P and n ≥ 1, and if τ0 : T0 → H0 is a natural
transformation, then there exists a unique morphism τ : (Tn) → (Hn).
Moreover, if τ0 is a natural isomorphism, then τn is a natural isomor-
phism for all n ≥ 0.

(ii) If F : A → Ab is a right exact additive covariant functor, then there
exists a unique homological extension (Hn)n≥0 of F with Hn(P) = {0}
for all projective P and all n ≥ 1.

Proof.

(i) If 0 → A → B → C → 0 is exact, we construct τn : Tn → Hn by
induction on n ≥ 0. We are assuming the existence of τ0, and so we
may assume that n > 0 and that there is a natural τn−1 : Tn−1 → Hn−1.
Since there are enough projectives, there is an exact sequence

0 → K → P → C → 0 (1)

with P projective. In the commutative diagram

Tn(C) ��

���
�
� Tn−1(K ) ��

��

Tn−1(P)

��
Hn(P) �� Hn(C) �� Hn−1(K ) �� Hn−1(P),

the map Hn(C) → Hn−1(K ) is an isomorphism [for Hq(P) = {0}
for n ≥ 1], and there exists a unique homomorphism τn,C : Tn(C) →
Hn(C) (the clockwise composite) making the first square commute. We
claim that τn = (τn,C : Tn → Hn)C∈obj(A) is natural, that it is well-
defined [it does not depend on the choice of sequence (1)], and that it
commutes with the connecting homomorphisms of (Tn) and (Hn).

We prove these assertions with the aid of the following fact. We claim,
given the diagram

C

f
��

0 �� A′ �� A �� A′′ �� 0
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with exact row, that there is a commutative diagram

Tn(C)
Tn f ��

τn,C

��

Tn(A′′) ∂ �� Tn−1(A′)
τn−1,A′
��

Hn(C)
Hn f

�� Hn(A′′)
∂

�� Hn−1(A′).

Since P is projective, there is a commutative diagram

0 �� K ��

g
��

P ��

��

C ��

f
��

0

0 �� A′ �� A �� A′′ �� 0.

Consider the following diagram (which can also be drawn as a cube).

Tn(C)
∂ ��

τn,C ����
���

���
��

Tn f

��

Tn−1(K )

τn−1,K















τn−1,K

��

Hn(C)

Hn f
��

∂ �� Hn−1(K )

Hn−1g
��

Hn(A′′)
∂

�� Hn−1(A′)

Tn(A′′)
∂

�� Tn−1(A′)

τn−1,A′
������������

The upper trapezoid commutes, by construction of τn,C ; the inner
square commutes because (Hn) is a ∂-functor; the right trapezoid com-
mutes, by naturality of τn−1; finally, the outer square commutes because
(Tn) is a ∂-functor. It follows that the rectangle of the claim commutes.

We now show that τn is natural. Let X1, X2 ∈ obj(A), and choose exact
sequences 0 → Ki → Pi → Xi → 0 with Pi projective, for i = 1, 2.
Given f : X1 → X2, define τn,Xi : Tn(Xi ) → Hn(Xi ), as in the first
paragraph of this proof. Apply the fact just proved to

X1

f
��

0 �� K2 �� P2 �� X2 �� 0,
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and obtain the diagram in which the perimeter commutes:

Tn(X1)
Tn f ��

τn,X1

��

Tn(X2)

τn,X2

��

∂ �� Tn−1(X2)

τn−1,K2
��

Hn(X1) Hn f
�� Hn(X2)

∂
�� Hn−1(K2).

The right square commutes, by construction of τn,X2 , while the connect-
ing homomorphism ∂ in the bottom row is injective because Hn(P2) =
{0}. It now follows that the left square commutes; that is, τn = (τn,X ) is
natural. To see that τn,X does not depend on the choice of sequence (1),
apply this argument with X1 = X2 and f = 1Xi . Finally, to see that τn
commutes with connecting homomorphisms, take any exact sequence
0 → A → B → C → 0 and apply the fact to the diagram

C

1C

��
0 �� A �� B �� C �� 0.

(ii) The existence of a homological extension follows from Theorems 6.10,
6.26, and 6.29. Uniqueness follows from part (i) with τ0 the identity. •

We could have defined (TorR
n (A,�))n≥0 as the homological extension of

A ⊗R � [and also TorR
n (�, B) as the homological extension of �⊗R B], but

we would then have been obliged to prove the existence of such a sequence;
that is, the earlier results in this section. There are other constructions of Tor
(for example, generators and relations for TorZ1 (A, B) are given on page 411),
but it is comforting to realize, in principle, that we can use the functors Tor
without being constantly aware of the details of their construction as left de-
rived functors.

Remark. In the 1930s, there were many constructions of homology groups
and cohomology groups associated to topological spaces (e.g., simplicial ho-
mology, singular homology, cubical homology, Čech cohomology), each in-
vented for a specific purpose, and it was natural to ask whether these groups
coincided with other homology groups. The first axiomatic characterization
of homology was due to Eilenberg and Steenrod, “Axiomatic approach to
homology theory,” Proc. Nat. Acad. Sci. U.S.A., 31 (1945), 117–120.

Definition. Let Top2 be the category having as objects all pairs (X, A) of
topological spaces with A a subspace of X , as morphisms (X, A) → (X ′, A′)
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all continuous functions f : X → X ′ for which f (A) ⊆ A′, and usual compo-
sition. The Eilenberg–Steenrod Axioms for a sequence of covariant functors
(Gn : Top2 → Ab) and natural maps (∂n : Gn(X, A) → Gn−1(A,∅)) are

(i) Homotopy Axiom. If f0, f1 : (X, A) → (X ′, A′) are homotopic, then,
for all n ≥ 0,

Gn( f0) = Gn( f1) : Gn(X, A) → Gn(X ′, A′);

(ii) Exactness Axiom. Write Gn(X,∅) = Gn(X). Given a pair (X, A) and
inclusion maps i : (A,∅) → (X,∅) and j : (X,∅) → (X, A), there is
a long exact sequence

Gn+1( j)−→ Gn+1(X, A)
∂n+1−→ Gn(A)

Gn(i)−→ Gn(X)
Gn( j)−→ Gn(X, A)

∂n−→;

(iii) Excision Axiom. Given a pair (X, A) and an open U ⊆ X such that
U ⊆ interior(A), then the inclusion (X −U, A−U ) → (X, A) induces
isomorphisms Gn(X −U, A −U ) → Gn(X, A) for all n ≥ 0;

(iv) Dimension Axiom. For every one-point space P , we have

Gn(P) =
{
{0} if n > 0,

Z if n = 0.

In more detail, on the full subcategory of all one-point subspaces, there
is a natural isomorphism τ : G0 → Z (where Z denotes the constant
functor at Z). Thus, if P and Q are one-point spaces and f : P → Q,
then there is a commutative diagram

G0(P)
τP ��

G0( f )
��

Z

1Z

��
G0(Q)

τQ
�� Z.

Theorem (Eilenberg–Steenrod). If two sequences of covariant functors
(Gn, Hn : Top2 → Ab)n≥0 and natural maps satisfy the Eilenberg–Steenrod
Axioms, then

Gn ∼= Hn for all n ≥ 0. �

It follows that the singular and simplicial homology of a simplicial com-
plex K are the same.
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6.2.3 Covariant Right Derived Functors
Left derived functors LnT satisfy Corollary 6.28: if T is right exact, then L0T
is naturally isomorphic to T . For this reason, it is natural to take left derived
functors of tensor. We are now going to define right derived functors RnT ,
where T : A→ C is an additive covariant functor between abelian categories.
We will prove the analog of Corollary 6.28, which says that R0T ∼= T when
T is left exact. Thus, this construction is appropriate for Hom functors.

Choose, once for all, an injective resolution

E = 0 → B
η−→ E0 d0

−→ E1 d1

−→ E2 d2

−→ E3 →
of every object B, form the complex T EB , where EB is the deleted injective
resolution, and take homology:

(RnT )B = Hn(T EB) = ker T dn

im T dn−1
.

The reader should reread Example 6.6(ii); if we relabel En as E−n and dn as
d−n , then the definition is

(RnT )B = H−n(T EB) = ker T d−n

im T d−n+1
.

Notice that the indices on homology are now superscripts; we write Hn in-
stead of H−n .

The definition of (RnT ) f , where f : B → B ′ is a homomorphism, is
similar to that for left derived functors. By the dual of the comparison theo-
rem, there is a chain map f̌ : EB → E′B′

over f , unique to homotopy, and
so there is a well-defined map (RnT ) f : Hn(T EB) → Hn(T EB′

) induced in
homology, namely, (T f̌ )n∗.

In pictures, look at the chosen injective resolutions:

0 �� B ′ �� E ′0 �� E ′1 ��

0 �� B

f
��

�� E0 �� E1 �� .

Fill in a chain map f̌ over f , then apply T to this diagram, and then take the
map induced by T f̌ in homology.

The proofs of the following propositions about right derived functors are
essentially duals of the proofs we have given for left derived functors, and so
they will be omitted.

Theorem 6.37. If T : A → C is an additive covariant functor between
abelian categories, where A has enough injectives, then RnT : A → C is an
additive covariant functor for every n ∈ Z.
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Definition. If T : A → C is an additive covariant functor between abelian
categories, where A has enough injectives, the functors RnT are called the
right derived functors of T .

Proposition 6.38. If T : RMod → RMod is an additive covariant functor
that preserves multiplications, then RnT : RMod → RMod also preserves
multiplications.

The next proposition shows that RnT is of interest only for n ≥ 0.

Proposition 6.39. If T : A → C is an additive covariant functor between
abelian categories, where A has enough injectives, then (RnT )B = 0 for all
negative n and for all B.

Definition. If T = HomR(A,�), define ExtnR(A,�) = RnT . If the chosen

injective resolution of B is E = 0 → B
η−→ E0 d0

−→ E1 d1

−→ E2 →, then

ExtnR(A, B) = Hn(HomR(A,EB)) = ker dn∗
im dn−1∗

,

where dn∗ : HomR(A, En) → HomR(A, En+1) is defined, as usual, by

dn
∗ : f �→ dn f.

The domain of ExtnR(A,�) is RMod, the category of left R-modules, and
its target is Ab (there are also Extn functors defined on ModR if the Hom
functor T acts on right modules). If R is commutative, then HomR(A, B) is
an R-module, and so the values of ExtnR(A,�) lie in RMod.

Assume that new choices Ẽ of injective resolutions have been made; de-
note the right derived functors arising from these new choices by R̃nT .

Proposition 6.40. If T : A → C is an additive covariant functor between
abelian categories, where A has enough injectives, then the functors RnT and
R̃nT are naturally isomorphic for each n. In particular, for all A ∈ obj(A),

(RnT )B ∼= (R̃nT )B,

and so these objects are independent of the choice of injective resolution of B.
In particular, if T : RMod → SMod, where R and S are rings, then the
module ExtnR(A, B) is independent of the choice of injective resolution of B.

Corollary 6.41. Let T : A → C be an additive covariant functor between
abelian categories, where A has enough injectives. If E is injective, then
(RnT )E = {0} for all n ≥ 1. In particular, if E is an injective left R-module,
then ExtnR(A, E) = {0} for all n ≥ 1 and all left R-modules A.
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Corollary 6.42. Let A be an abelian category with enough injectives, let

B ∈ obj(A), and let E = 0 → B
η−→ E0 d0

−→ E1 d1

−→ E2 d2

−→ E3 → be
an injective resolution of B. Define V0 = im η and define Vn = im dn−1 for
all n ≥ 1. Then

(Rn+1T )B ∼= (RnT )V0 ∼= (Rn−1T )V1 ∼= · · · ∼= (R1T )Vn−1.

In particular, for any left R-modules A and B,

Extn+1
R (A, B) ∼= ExtnR(A, V0) ∼= · · · ∼= Ext1R(A, Vn−1).

Theorem 6.43. If 0 → B ′ i−→ B
p−→ B ′′ → 0 is an exact sequence in an

abelian category A with enough injectives, and if T : A → C is an additive
covariant functor, where C is an abelian category, then there is a long exact
sequence

→ (RnT )B ′ (Rn T )i−→ (RnT )B
(Rn T )p−→ (RnT )B ′′ ∂n

−→

(Rn+1T )B ′ (Rn+1T )i−→ (Rn+1T )B
(Rn+1T )p−→ (Rn+1T )B ′′ ∂n+1

−→

that begins with

0 → (R0T )B ′ → (R0T )B → (R0T )B ′′ → .

Corollary 6.44. If T : A → C is an additive covariant functor between
abelian categories, where A has enough injectives, then the functor R0T is
left exact.

Theorem 6.45.

(i) If an additive covariant functor T : A→ C is left exact, where A and C
are abelian categories and A has enough injectives, then T is naturally
isomorphic to R0T .

(ii) If A is a left R-module, then the functor HomR(A,�) is naturally iso-
morphic to Ext0R(A,�). Hence, for all left R-modules B, there is an
isomorphism

HomR(A, B) ∼= Ext0R(A, B).

Corollary 6.46. If 0 → B ′ → B → B ′′ → 0 is a short exact sequence of
left R-modules, then for every left R-module A, there is a long exact sequence
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of abelian groups,

0 → HomR(A, B ′) → HomR(A, B) → HomR(A, B ′′)

→ Ext1R(A, B ′) → Ext1R(A, B) → Ext1R(A, B ′′)

→ Ext2R(A, B ′) → Ext2R(A, B) → Ext2R(A, B ′′) → .

Thus, Ext repairs the loss of exactness after applying HomR(A,�) to a
short exact sequence.

Theorem 6.47. Given a commutative diagram of left R-modules having ex-
act rows,

0 �� B ′
f
��

i �� B
p ��

g
��

B ′′
h��

�� 0

0 �� C ′
j

�� C q
�� C ′′ �� 0,

there is a commutative diagram of abelian groups with exact rows,

ExtnR(A, B ′)
f∗ ��

i∗ �� ExtnR(A, B)
p∗ ��

g∗
��

ExtnR(A, B ′′)
h∗��

∂n
�� Extn+1

R (A, B ′)
f∗��

ExtnR(A,C ′)
j∗

�� ExtnR(A,C)
q∗

�� ExtnR(A,C ′′)
∂ ′n

�� Extn+1
R (A,C ′).

Theorem 6.48 (Axioms for Covariant Ext). Let (Fn : RMod → Ab)n≥0
be a sequence of additive covariant functors. If,

(i) for every short exact sequence 0 → A → B → C → 0, there is a long
exact sequence with natural connecting homomorphisms

→ Fn−1(C)
�n−1−→ Fn(A) → Fn(B) → Fn(C)

�n−→ Fn+1(A) →,

(ii) there is a left R-module M such that F0 and HomR(M,�) are naturally
isomorphic,

(iii) Fn(E) = {0} for all injective left R-modules E and all n ≥ 1,

then Fn is naturally isomorphic to ExtnR(M,�) for all n ≥ 0.

Proof. See the proof of Theorem 6.33. •
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Corollary 6.49. Let (Fn : A → B)n≥0, (F ′n)n≥0 be sequences of additive
covariant functors, where A, B are abelian categories and A has enough
injectives. If,

(i) for every short exact sequence 0 → A → B → C → 0, there are long
exact sequences with natural connecting homomorphisms,

(ii) F0 is naturally isomorphic to F ′0,

(iii) Fn(E) = 0 = F ′n(E) for all injective objects E and all n ≥ 1,

then Fn is naturally isomorphic to F ′n for all n ≥ 0.

Definition. Let (Fn : A→ B)n≥0 be a sequence of additive functors, where
A and B are abelian categories. If Y is a class of objects in A, then we say that
A has enough co-Y-objects if every object can be imbedded in a Y-object. We
call (Fn)n≥0 Y-coeffaceable if Fn(Y ) = 0 for all Y ∈ Y and all n ≥ 1.

We could call objects in Y acyclic or relatively injective.

Corollary 6.50. Let (Fn : A → B)n≥0, (F ′n : A → B)n≥0 be sequences of
additive covariant functors, where A, B are abelian categories, Y is a class
of objects in A, and A has enough co-Y-objects. If,

(i) for every short exact sequence 0 → A → B → C → 0 in A, there are
long exact sequences with natural connecting homomorphisms,

(ii) F0 is naturally isomorphic to F ′0,

(iii) both (Fn)n≥0, (F ′n)n≥0 are Y-coeffaceable,

then Fn is naturally isomorphic to F ′n for all n ≥ 0.

Definition. If A, B are abelian categories, then a sequence of additive func-
tors (T n : A → B)n≥0 is a cohomological ∂-functor if, for every short exact
sequence 0 → A → B → C → 0 in A, there is a long exact sequence

→ T n(A) → T n(B) → T n(C)
∂n

−→ T n+1(A) →
beginning with T 0(A) → T 0(B) → T 0(C)8 having natural connecting ho-
momorphisms ∂n : T n(C) → T n+1(A); that is, if 0 → A′ → B ′ → C ′ → 0

8Most authors assume further, as part of the definition, that the long exact sequence
starts with 0 → T0(A) → T0(B) → T0(C); that is, that T0 is left exact.
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is exact in A, then the following diagram commutes.

T n(C)
∂ ′ ��

��

T n+1(A)

��
T n(C ′)

∂
�� T n+1(A′)

A morphism τ : (Hn)n≥0 → (T n)n≥0 of cohomological ∂-functors is a se-
quence of natural transformations τ n : Hn → T n , for n ≥ 0, such that the
following diagram commutes.

Hn(C)
∂ ��

τ n
C
��

Hn+1(A)

τ n+1
A

��
T n(C)

∂
�� T n+1(A)

for every short exact sequence 0 → A → B → C → 0 in A.

Definition. If F : A → B is an additive functor, then a cohomological ∂-
functor (T n : A → B)n≥0 is a cohomological extension of F if there is a
natural isomorphism τ : F → T 0.

(ExtnR(A,�))n≥0 is a cohomological extension of HomR(A,�).

Theorem 6.51. Let A be an abelian category with enough injectives.

(i) If (Hn) and (T n) are cohomological ∂-functors with Hn(E) = {0} for
all injective E and n ≥ 1, and if τ 0 : H0 → T 0 is a natural transforma-
tion, then there exists a unique morphism τ : (Hn) → (T n). Moreover,
if τ 0 is a natural isomorphism, then τ n is a natural isomorphism for all
n ≥ 0.

(ii) If F is a left exact covariant additive functor, then there exists a unique
cohomological extension (Hn)n≥0 of F with Hn(E) = {0} for all injec-
tive E and all n ≥ 1.

Proof. Dual to the proof of Theorem 6.36. •

6.2.4 Contravariant Right Derived Functors

We now discuss right derived functors RnT of an additive contravariant func-
tor T . Given a resolution C, we want T C to have only negative indices. Thus,
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we start with a projective resolution P of A, for the contravariance of T puts
T PA on the right.9

Given an additive contravariant functor T : A→ C between abelian cate-
gories, we are now going to construct, for all n ∈ Z, its right derived functors
RnT : A→ C.

Choose, once and for all, a projective resolution P = → P1
d1−→ P0

ε−→
A → 0 for every object A, form the complex T PA, and take homology:

(RnT )A = Hn(T PA) = ker T dn+1

im T dn
.

If f : A → A′, define (RnT ) f : (RnT )A′ → (RnT )A as we did for left
derived functors. There is a chain map f̌ : PA → P′A′ over f , unique to ho-
motopy, that induces a map (RnT ) f : Hn(T P′A′) → Hn(T PA) in homology,

and we define (RnT ) f = (T f̌ )n∗.

Theorem 6.52. If T : A → C is an additive contravariant functor between
abelian categories, where A has enough projectives, then RnT : A→ C is an
additive contravariant functor for every n ∈ Z.

Definition. If T : A → C is an additive contravariant functor between
abelian categories, where A has enough projectives, the functors RnT are
called the right derived functors of T .

Proposition 6.53. If T : RMod → RMod is an additive functor that pre-
serves multiplications, then RnT : RMod → RMod also preserves multipli-
cations.

Definition. If T = HomR(�, B), define extnR(�, B) = RnT . If the chosen

projective resolution of A is P =→ P2
d2−→ P1

d1−→ P0
ε−→ A → 0, then

extnR(A, B) = Hn(HomR(PA, B)) = ker dn∗

im dn−1,∗ ,

where dn∗ : HomR(Pn−1, B) → HomR(Pn, B) is defined, as usual, by

dn∗ : f �→ f dn.

9If we cared about left derived functors of a contravariant T (we do not, because there
are few interesting examples, but see Exercise 7.13 on page 435), then we would use
injective resolutions E, for the contravariance of T would put all the nonzero terms of
T E on the left.



6.2 Derived Functors 371

Proposition 6.54. If T : A → C is an additive contravariant functor, where
A, C are abelian categories and A has enough projectives, then (RnT )A = 0
for all negative n and for all A.

Corollary 6.55. Let A be an abelian category with enough projectives, and

let P = → P2
d2−→ P1

d1−→ P0
ε−→ A → 0 be a projective resolution of A.

Define K0 = ker ε and Kn = ker dn for all n ≥ 1. Then

(Rn+1T )A ∼= (RnT )K0 ∼= (Rn−1T )K1 ∼= · · · ∼= (R1T )Kn−1.

In particular, for any left R-module B,

extn+1
R (A, B) ∼= extnR(K0, B) ∼= · · · ∼= ext1R(Kn−1, B).

Assume that new choices P̃A of deleted projective resolutions have been
made, and denote the right derived functors arising from these new choices
by R̃nT .

Proposition 6.56. If T : A → C is an additive contravariant functor be-
tween abelian categories, where A has enough projectives, then for each
n ∈ Z, the functors RnT and R̃nT are naturally isomorphic. In particular,
for all A,

(RnT )A ∼= (R̃nT )A,

and so these objects are independent of the choice of projective resolution
of A.

Corollary 6.57. The module extnR(A, B) is independent of the choice of
projective resolution of A.

Corollary 6.58. Let T : A→ C be an additive contravariant functor, where
A and C are abelian categories and A has enough projectives. If P is projec-
tive, then (RnT )P = 0 for all n ≥ 1.

In particular, if T : RMod → SMod and P is a projective left R-module,
then extnR(P, B) = {0} for all n ≥ 1 and all left R-modules B.

Theorem 6.59. Let A be an abelian category with enough projectives. If

0 → A′ i−→ A
p−→ A′′ → 0 is an exact sequence and T : A → C is an

additive contravariant functor, where C is an abelian category, then there is a
long exact sequence in C,

→ (RnT )A′′
(Rn T )p−→ (RnT )A

(Rn T )i−→ (RnT )A′ ∂n

−→

(Rn+1T )A′′
(Rn+1T )p−→ (Rn+1T )A

(Rn+1T )i−→ (Rn+1T )A′ ∂n+1

−→,
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that begins with

0 → (R0T )A′′ → (R0T )A → (R0T )A′ → .

Corollary 6.60. If T : A → C is an additive contravariant functor, where
A, C are abelian categories and A has enough projectives, then the functor
R0T is left exact.

Theorem 6.61.

(i) If an additive contravariant functor T : A → C is left exact, where
A, C are abelian categories and A has enough projectives, then T is
naturally isomorphic to R0T .

(ii) If B is a left R-module, the functor HomR(�, B) is naturally isomor-
phic to ext0R(�, B). Hence, for all left R-modules A, there is an iso-
morphism

HomR(A, B) ∼= ext0R(A, B).

Corollary 6.62. If 0 → A′ → A → A′′ → 0 is a short exact sequence of
left R-modules, then for every left R-module B, there is a long exact sequence
of abelian groups

0 → HomR(A′′, B) → HomR(A, B) → HomR(A′, B)

→ ext1R(A′′, B) → ext1R(A, B) → ext1R(A′, B)

→ ext2R(A′′, B) → ext2R(A, B) → ext2R(A′, B) → .

Proposition 6.63. Given a commutative diagram of left R-modules having
exact rows,

0 �� A′
f
��

i �� A
p ��

g
��

A′′
h��

�� 0

0 �� C ′
j

�� C q
�� C ′′ �� 0,

then for every left R-module B, there is a commutative diagram of abelian
groups with exact rows

extnR(A′′, B)
p∗ �� extnR(A, B)

i∗ �� extnR(A′, B)
∂n
�� extn+1

R (A′′, B)

extnR(C
′′, B)

h∗
��

q∗
�� extnR(C, B)

g∗
��

j∗
�� extnR(C

′, B)

f ∗
��

∂
′n
�� extn+1

R (C ′′, B).

h∗
��
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Theorem 6.64 (Axioms for Contravariant Ext). Let (Gn : RMod → Ab)
be a sequence of additive contravariant functors. If,

(i) for every short exact sequence 0 → A → B → C → 0, there is a long
exact sequence with natural connecting homomorphisms,

→ Gn−1(A)
�n−1

−→ Gn(C) → Gn(B) → Gn(A)
�n

−→ Gn+1(C) →,

(ii) there exists a left R-module M with G0 and HomR(�, M) naturally
isomorphic,

(iii) Gn(P) = {0} for all projective left R-modules P and all n ≥ 1,

then Gn is naturally isomorphic to ExtnR(�, M) for all n ≥ 0.

Proof. See the proof of Theorem 6.33. •

Remark. It is easy to see that Theorem 6.64 is true if we replace projective
in part (iii) by free. �

Corollary 6.65. Let (Gn : A → B)n≥0, (G ′n : A → B)n≥0 be sequences
of additive contravariant functors, where A, B are abelian categories and A
has enough projectives. If,

(i) for every short exact sequence 0 → A → B → C → 0, there are long
exact sequences with natural connecting homomorphisms,

(ii) G0 is naturally isomorphic to G ′0,

(iii) Gn(E) = 0 = G ′n(P) for all projective objects P and all n ≥ 1,

then Gn is naturally isomorphic to G ′n for all n ≥ 0.

Corollary 6.66. Let (Gn : A → B)n≥0, (G ′n : A → B)n≥0 be sequences of
additive covariant functors, where A, B are abelian categories, X is a class
of objects in A, and A has enough X -objects. If,

(i) for every short exact sequence 0 → A → B → C → 0 in A, there are
long exact sequences with natural connecting homomorphisms,

(ii) G0 is naturally isomorphic to G ′0,

(iii) both (Gn(n≥0, (G ′n)n≥0 are X -effaceable,

then Gn is naturally isomorphic to G ′n for all n ≥ 0.

We let the reader give the obvious definition of cohomological extension
of a contravariant additive functor, and then prove the analog of Theorem 6.51.
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The next theorem shows that Ext and ext are the same.

Theorem 6.67. Let A and B be left R-modules, let E = 0 → B
η−→

E0 d0

−→ E1 d1

−→ E2 d2

−→ E3 → be an injective resolution of B, and let

P = → P1
d1−→ P0

ε−→ A → 0 be a projective resolution of A. Then
Hn(HomR(PA, B)) ∼= Hn(HomR(A,EB)) for all n ≥ 0, and so

ExtnR(A, B) ∼= extnR(A, B).

Proof. Use Theorem 6.32. •
Singular cohomology groups Hq(X, G) of a space X with coefficients

in an abelian group G, defined as Hq(HomZ(S•(X), G)), arise for several
reasons. One application arises in obstruction theory (see Spanier, Alge-
braic Topology, §8.4). Recall that the nth homotopy group πn(X, x0) of X
(with basepoint x0 ∈ X ) essentially consists of homotopy classes of con-
tinuous maps Sn → X , where Sn is the n-sphere. If X is a CW com-
plex, we often construct a continuous map X → Y by induction on the
n-skeletons X (n) of X . In particular, having defined a map X (n−1) → Y ,
extending it to an n-cell of X naturally leads to Hn+1(X, πn(Y )), where
Hn(X, π) = Hn(HomZ(S•(X), π)). There is a Universal Coefficient The-
orem for cohomology, Theorem 7.59, that computes such groups in terms of
homology groups.

The most important uses of cohomology involve products (see Mac Lane,
Homology, Chapter VIII). Assume that the coefficients form a commutative
ring R. Although cup product is defined on singular complexes of spaces X ,
we will define it only for simplicial complexes K . If f is a p-cochain and g
is a q-cochain, then their cup product is the (p + q)-cochain f ∪ g defined
on a (p + q)-simplex [v0, . . . , vp+q ] by

( f ∪ g)[v0, . . . , vp+q ] = f [v0, . . . , vp]g[vp, . . . , vp+q ],

where f g is the product in the the ring R [see Munkres, Elements of Algebraic
Topology, §48]. Now δ( f ∪ g) = (δ( f ) ∪ g) + (−1)p( f ∪ δg), so that cup
product induces a bilinear function H p(X, R)× Hq(X,Z) → H p+q(X, R).
The direct sum

⊕∞
n=0 Hn(X, R) is now equipped with a multiplication that

makes it a graded ring, called the cohomology ring of X with coefficients
in R. Although there are more important uses of this ring, it can be used
to show that even though the torus X = S1 × S1 and the wedge of spheres
Y = S2 ∨ S1 ∨ S1 have the same cohomology groups (with Z coefficients),
they do not have the same homotopy type, because their cohomology rings are
not isomorphic (see Rotman, An Introduction to Algebraic Topology, p. 404).

There is also a cap product:

H p(X, R)⊗ Hp+q(X, R) → Hq(X, R).
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If X is a compact orientable n-manifold without boundary, then it has an ori-
entation class � ∈ Hn(X,Z), and the cap products with � are isomorphisms
for all p with 0 ≤ p ≤ n, called Poincaré Duality (see Munkres, §66, §67):

H p(X, G) ∼= Hn−p(X, G).

Here is another source of complexes giving rise to homology.

Definition. A simplicial object in a category C is a sequence of objects
X0, X1, X2, . . . and two doubly indexed families of morphisms: face opera-
tors, which are morphisms di

n : Xn → Xn−1 for all 0 ≤ i ≤ n and 1 ≤ n; de-
generacy operators, which are morphisms si

n : Xn → Xn+1 for all 0 ≤ i ≤ n
and 0 ≤ n. These morphisms satisfy the following identities:

di
nd j

n+1 = d j−1
n di

n+1 if 0 ≤ i < j ≤ n + 1,

s j
n si

n−1 = si
nd j−1

n−1 if 0 ≤ i < j ≤ n,

di
n+1s j

n =

⎧⎪⎨
⎪⎩

s j−1
n−1di

n if 0 ≤ i < j ≤ n,

1 if 0 ≤ i = j ≤ n or 0 ≤ i − 1 = j < n,

s j
n−1di−1

n if 0 < j < i − 1 ≤ n.

We picture face operators as

· · · X3
→→→→ X2

→→→ X1
→→ X0,

and degeneracy operators as

· · · X3
←←← X2

←← X1 ← X0.

These operators arise naturally when one constructs the boundary operator
for simplicial complexes. Recall that the standard n-simplex �n consists of
all convex combinations (t0, . . . , tn) in R

n+1; that is, ti ≥ 0 for all i and∑ n
i=0 ti = 1. The face operators are precisely the face maps εn

i : �n−1 → �n

defined in Chapter 1:

εn
i : (t0, . . . , tn−1) �→

{
(0, t0, . . . , tn−1) if i = 0,

(t0, . . . , ti−1, 0, ti , . . . , tn−1) if i > 0.

We did not define degeneracies in Chapter 1; they are given by

si (t0, . . . , tn) = (t0, . . . , ti−1, ti + ti+1, ti+2, . . . , tn).

Given a simplicial object in an abelian category A, define its associated
complex

→ Xn
∂n−→ Xn−1 → · · · X1

∂1−→ X0 → 0,
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where ∂n =
∑n

i=0(−1)i di
n . The given identities for di

n imply ∂∂ = 0. Thus,
simplicial objects have homology. The degeneracies allow one to construct an
abstract version of homotopy groups as well (see Gelfand–Manin, Methods of
Homological Algebra, May, Simplicial Objects in Algebraic Topology, and
Weibel, An Introduction to Homological Algebra).

Exercises

6.13 If τ : F → G is a natural transformation between additive functors,
prove that τ gives chain maps τC : FC → GC for every complex
C. If τ is a natural isomorphism, prove that FC ∼= GC.

*6.14 Consider the commutative diagram with exact row

B ′ j ��

i ���
��

��
� C

q ��

���

B ′′

B.
p

��((((((
k
��

If k is an isomorphism with inverse �, prove exactness of

B ′ i−→ B
p−→ B ′′.

6.15 Let T : A → C be an exact additive functor between abelian cat-
egories, and suppose that P projective implies T P projective. If
B ∈ obj(A) and PB is a deleted projective resolution of B, prove
that T PT B is a deleted projective resolution of T B.

6.16 Let R be a k-algebra, where k is a commutative ring, which is flat as
a k-module. Prove that if B is an R-module (and hence a k-module),
then

R ⊗k Tork
n(B,C) ∼= TorR

n (B, R ⊗k C)

for all k-modules C and all n ≥ 0.
6.17 Let R be a semisimple ring.

(i) Prove, for all n ≥ 1, that TorR
n (A, B) = {0} for all right

R-modules A and all left R-modules B.
(ii) Prove, for all n ≥ 1, that ExtnR(A, B) = {0} for all left

R-modules A and B.
*6.18 If R is a PID, prove, for all n ≥ 2, that TorR

n (A, B) = {0} =
ExtnR(A, B) for all R-modules A and B.
Hint. Use Corollary 4.15.

*6.19 Let R be a domain with fraction field Q, and let A,C be R-modules.
If either C or A is a vector space over Q, prove that TorR

n (C, A) and
ExtnR(C, A) are also vector spaces over Q.
Hint. Use Exercise 2.38 on page 97.
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*6.20 Let R be a domain and let Q = Frac(R).
(i) If r ∈ R is nonzero and A is an R-module for which r A =

{0}, that is, ra = 0 for all a ∈ A, prove that ExtnR(Q, A) =
{0} = TorR

n (Q, A) for all n ≥ 0.

(ii) Prove that ExtnR(V, A) = {0} = TorR
n (V, A) for all n ≥ 0

whenever V is a vector space over Q and A is an R-module
for which r A = {0} for some nonzero r ∈ R.

6.21 Let A and B be R-modules, and let A′ be a submodule of A. De-
fine the obstruction of a map f : A′ → B to be ∂( f ), where ∂ is
the connecting homomorphism HomR(A′, B) → Ext1R(A/A′, B).
Prove that f can be extended to a homomorphism f̃ : A → B if
and only if its obstruction is 0.

6.22 Give an example of an R-module B for which L0 HomR(B,�) is
not naturally isomorphic to HomR(B,�), where L0 is the 0th left
derived functor.

6.3 Sheaf Cohomology

Even though there were earlier accounts of abelian categories (for example,
Buchsbaum’s appendix on exact categories in Cartan–Eilenberg, Homologi-
cal Algebra), it was Grothendieck’s Tohoku papers that have been most influ-
ential. Grothendieck began:

Ce travail a son origine dans une tentative d’exploiter l’analo-
gie formelle entre la théorie de la cohomologie d’un espace à
coéfficients dans un faisceau et la théorie des foncteurs dérivés de
foncteurs de modules, pour trouver un cadre commun permettant
d’englober ces théories et d’autres.

In a word, sheaf cohomology arises as the right derived functors of global
sections. We restrict our discussion to sheaves of abelian groups, but the
reader should have no problem extending it to sheaves having values in other
abelian categories.

If X is a topological space, the group of global sections defines functors
� : pSh(X) → Ab and � : Sh(X) → Ab. In each case, the functor is defined
on objects X by

� : X �→ �(X,F) = F(X)

and on (pre)sheaf maps ϕ = (ϕU )Uopen : F → G by � : ϕs �→ ϕX (s), where
s ∈ �(X,F). It is clear that each � is a (covariant) additive functor.
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Lemma 6.68. The functors � : pSh(X) → Ab and � : Sh(X) → Ab are
left exact.

Proof. Exactness of presheaves 0 → P ′ ϕ−→ P ψ−→ P ′′ → 0 is defined as

exactness of the abelian groups 0 → P ′(U )
ϕU−→ P(U )

ψU−→ P ′′(U ) → 0 for
every open U ⊆ X . In particular, the sequence is exact when U = X , and so
� is even an exact functor on presheaves.

Exactness of sheaves means exactness of stalks, which is usually different

from exactness of presheaves. However, if 0 → F ′ → F ψ−→ F ′′ is an exact
sequence of sheaves, then ψ is a presheaf map, and Proposition 5.80(ii) says
that kerψ computed in Sh(X) is the same as kerψ computed in pSh(X).
Hence, 0 → F ′ → F → F ′′ is exact in pSh(X), and the proof in the first
paragraph now applies. •

The next example shows that � : Sh(X) → Ab need not be an exact
functor.

Example 6.69. In Example 5.82, we saw that there is an exact sequence of
sheaves over the punctured plane X = C− {0},

0 → Z → O ϕ−→ O× → 0,

where Z is the constant sheaf, O is the sheaf of germs of holomorphic func-
tions, O× is the sheaf of nonzero holomorphic functions, and ϕU : O(U ) →
O∗(U ) is given by f �→ e2π i f . For every open set U , we have O(U ) the
additive group of all holomorphic f : U → C and O×(U ) the multiplicative
group of all never-zero holomorphic f : U → C

×. If the function s(z) = z in
�(X, C×) is in imϕ∗ [where ϕ∗ : �(O) → �(O×) is the induced map], then
z = e2π i f (z); that is, f (z) = 1

2π i log(z). This is a contradiction, for no branch
of log(z) on the punctured plane is single-valued. Therefore, � is not an exact
functor. �

We now define sheaf cohomology as right derived functors of global sec-
tions �; this is possible because Sh(X) has enough injectives, by Proposi-
tion 5.97. Note that taking derived functors of � : pSh(X) → Ab is uninter-
esting, for the higher derived functors of an exact functor are trivial.

Definition. If X is a topological space, then sheaf cohomology is defined,
for every sheaf F over X , by

Hq(F) = (Rq�)(F).

In short, take an injective resolution E of F , delete F to obtain EF , apply
�, and take homology:

Hq(F) = Hq(�EF ).



6.3 Sheaf Cohomology 379

As usual, H0(F) can be computed.

Proposition 6.70. If X is a topological space, then

H0(F) ∼= �(F)

for every sheaf F over X.

Proof. Since � is a left exact functor, the result follows at once from Theo-
rem 6.45. •

Thus, H1(F) repairs the loss of exactness arising from � : Sh(X) → Ab
not being exact; in other words, we may interpret H1 as obstructions.

Remark. The global section functor � = �(X,�) is often modified.

Definition. A family of supports � is a family of closed subsets of X such
that

(i) whenever A ∈ � and B ⊆ A is closed, then B ∈ �,

(ii) whenever A, A′ ∈ �, then A ∪ A′ ∈ �.

Define ��(F) = {s ∈ �(X,F) : {x ∈ X : s(x) 	= 0x ∈ Ex } ∈ �}, where
F has etale-sheaf (E, p, X) and � is a family of supports. It is easy to see
that �� : Sh(X) → Ab is a covariant left exact additive functor. One defines
sheaf cohomology Hq

� with supports � as the right derived functors of ��.
The family � of all closed subsets is a family of supports, so that �� = �

and Hq
� = Hq in this case. �

Definition. A sheaf L over a space X is acyclic if Hq(L) = {0} for all
q ≥ 1.

We know that injective sheaves are acyclic, by Corollary 6.41, but there
are other examples. Acyclic sheaves become especially interesting when there
are enough of them; that is, when every sheaf F can be imbedded in an acyclic
sheaf L. In this case, the short exact sequence 0 → F → L→ L/F → 0 can
be used in dimension shifting arguments. The most popular acyclic sheaves
are flabby sheaves.

Definition. A sheaf L over a space X is flabby (or flasque) if, for each open
U ⊆ X , every section s ∈ L(U ) can be extended to a global section.

A flabby resolution of a sheaf F is an exact sequence

0 → F → L0 → L1 → · · ·
in which Lq is flabby for all q ≥ 0.
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A sheaf L is flabby if and only if the restriction maps �(X,L) → �(U,L)

are all epic; it follows that the restriction maps ρV
U : �(V,L) → �(U,L) are

epic for all open sets U ⊆ V , because ρX
V ρV

U = ρX
U . Hence, if U ⊆ X is

open, then L flabby implies L|U is also flabby.

Example 6.71. Every skyscraper sheaf S = x∗A is flabby. Recall that
S(U ) = A if x ∈ U , while S(U ) = {0} otherwise, and its restrictions are
either 1A or zero. Hence, if x ∈ U ⊆ V , then ρV

U = 1A is surjective. �

Definition. If F is a sheaf of abelian groups over a space X , then its Gode-
ment sheaf G0F is defined by

G0F(U ) =
∏
x∈U

Fx ,

and ρV
U : G0F(V ) → G0F(U ), for U ⊆ V , is given by s �→ s|U .

It is routine to check that G0F is a sheaf. In fact, G0 defines a covariant
exact functor Sh(X) → Sh(X): if 0 → F ′ → F → F ′′ → 0 is an exact
sequence of sheaves, then it is clear, for every open U ⊆ X , that

0 →
∏
x∈U

F ′(U ) →
∏
x∈U

F(U ) →
∏
x∈U

F ′′(U ) → 0

is an exact sequence of abelian groups; that is, 0 → G0F ′(U ) → G0F(U ) →
G0F ′′(U ) → 0 is exact. Taking the direct limit gives exactness of stalks: 0 →
G0F ′

x → G0Fx → G0F ′′
x → 0; that is, 0 → G0F ′ → G0F → G0F ′′ → 0 is

an exact sequence of sheaves.

Proposition 6.72. The Godement sheaf G0F of a sheaf F is flabby.

Proof. Since global sections here are merely (not necessarily continuous)
functions X → ∏

x∈X Fx , every section s over U extends to a global section
s′; for example, define s′|U = s and, if x /∈ U , define s′(x) = 0. •

Proposition 6.73 (Godement). Let F be a sheaf over a space X.

(i) There is a natural imbedding 0 → F → G0F .

(ii) There is a flabby resolution

G•F = 0 → F → G0F → G1F → · · · .
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Proof.

(i) If U ⊆ X is open, define F(U ) → (G0F)(U ) by

s �→ (s(x)) ∈
∏
x∈U

Fx = (G0F)(U ).

It is routine to check that this is a natural sheaf monomorphism.

(ii) We prove, by induction on q, that there are flabby sheaves GiF for all
i ≤ q and sheaf maps di : GiF → Gi+1F for i ≤ q − 1 such that

0 → F → G0F d0

−→ G1F → · · · → Gq−1F dq−1

−→ GqF

is exact. We have already defined G0F . Define

Gq+1F = G0(coker dq−1),

and define dq : GqF → Gq+1F as the composite

GqF → coker dq−1 → G0(coker dq−1) = Gq+1F .

Now Gq+1F is flabby because it is G0 of some sheaf, and the sequence
is exact because coker dq−1 → Gq+1F is monic. •

Corollary 6.74. Every injective sheaf E over a space X is flabby.

Proof. It is easy to see that every direct summand of a flabby sheaf is flabby.
By Proposition 6.73(i), there is an exact sequence 0 → E → G0E →
G0E/E → 0, and G0E is flabby. But this sequence splits, because E is in-
jective; thus, E is a direct summand of G0E and, hence, it is flabby. •

Flabby sheaves give another construction of sheaf cohomology.

Definition. The flabby resolution G•F in Proposition 6.73(ii) is called the
Godement resolution of F .

Proposition 6.75. Let F be a sheaf over a space X.

(i) If 0 → F ′ ι−→ F ϕ−→ F ′′ → 0 is an exact sequence of sheaves
with F ′ flabby, then 0 → �(F ′) → �(F) → �(F ′′) → 0 is an exact
sequence of abelian groups.

(ii) Let 0 → L′ → L → Q → 0 be an exact sequences of sheaves. If L′
and L are flabby, then Q is flabby.
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(iii) Flabby sheaves L are acyclic.

(iv) Hq(�(G•F)F ) ∼= Hq(F) for all q ≥ 0, where (G•F)F is the deleted
Godement resolution of F .

Proof.

(i) It suffices to prove that ϕX : �(F) → �(F ′′), given by ϕX : s �→ ϕs, is
epic. Let s′′ ∈ F ′′(X) = �(F ′′). Define

X = {(U, s) : U ⊆ X is open, s ∈ F(U ), ϕs = s′′|U}.
Partially order X by (U, s)  (U1, s1) if U ⊆ U1 and s1|U = s. It
is routine to see that chains in X have upper bounds, and so Zorn’s
Lemma provides a maximal element (U0, s0). If U0 = X , then s0 is a
global section and ϕX is epic. Otherwise, choose x ∈ X with x /∈ U0.
Since ϕ : F → F ′′ is an epic sheaf map, it is epic on stalks, and so
there are an open V ⊆ X with V & x and a section t ∈ F(V ) with
ϕt = s′′|V . Now s − t ∈ F ′(U ∩ V ) (we regard ι : F ′ → F as
the inclusion), so that F ′ flabby provides r ∈ F ′(X) extending s − t .
Hence, s = t + r |(U ∩ V ) in F(U ∩ V ). Therefore, these sections may
be glued: there is s̃ ∈ F(U∪V ) with s̃|U = s and s̃|V = t+r |(U∩V ).
But ϕ(s̃) = s′′, and this contradicts the maximality of (U0, s0).

(ii) Let U ⊆ X be open, and consider the commutative diagram

F(X)
ϕX ��

ρ

��

F ′′(X)

ρ′′
��

F(U )
ϕU

�� F ′′(U ),

where ρ, ρ′′ are restriction maps. Since F is flabby, ρ is epic. We
have exactness of 0 → F ′|U → F |U → F ′′|U → 0, for exactness
of sheaves is stalkwise. As mentioned earlier, F ′ flabby implies F ′|U
flabby, so that part (i) gives ϕU epic. Therefore, the composite ϕUρ =
ρ′′ϕX is epic, and hence ρ′′ is epic; that is, F ′′ is flabby.

(iii) Let L be flabby. Since there are enough injective sheaves, there is an
exact sequence 0 → L → E → Q → 0 with E injective. Now E is
flabby, by Corollary 6.74, and so Q is flabby, by part (ii). We prove
that Hq(L) = {0} by induction on q ≥ 1. If q = 1, the long exact
cohomology sequence contains the fragment

H0(E) → H0(Q) → H1(L) → H1(E).
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Since H1(E) = {0}, we have H1(L) = coker(�(E) → �(Q)). But this
cokernel is 0, by part (i), and so H1(L) = {0}. For the inductive step,
consider the fragment

Hq(Q) → Hq+1(L) → Hq+1(E).
Now Hq+1(E) = {0}, because E is injective, while Hq(Q) = {0}, by
the inductive hypothesis (which applies because Q is flabby). There-
fore, exactness gives Hq+1(L) = {0}.

(iv) Since the homology functors defined from flabby resolutions are efface-
able, by part (iii), the result follows from uniqueness, Corollary 6.66. •

Corollary 6.76. If S = x∗A is a skyscraper sheaf over a space X, where
x ∈ X and A is an abelian group, then Hq(X,S) = {0} for all q ≥ 1.

Proof. Skyscraper sheaves are flabby. •
There are other kinds of sheaves that are convenient when the base space

X is paracompact.

Definition. A topological space X is paracompact if it is Hausdorff and
every open cover U of X has a locally finite refinement. An open cover V
is locally finite if each x ∈ X has an open neighborhood N that meets only
finitely many V ∈ V; that is, N ∩ V 	= ∅ for only finitely many V ∈ V .

Of course, compact Hausdorff spaces are paracompact, and a theorem of
A. H. Stone (“Paracompactness and product spaces,” Bull. AMS 54 (1948),
977–982) says that every metric space is paracompact.

Definition. A sheaf F over a paracompact space X is fine if, for every
locally finite open cover U = (Ui )i∈I of X , there exists a family of sheaf
morphisms (ηi : F → F)i∈I , called a partition of unity subordinate to U ,
such that

(i) for each i ∈ I , there is an open neighborhood Vi of the complement of
Ui on which ηi is trivial; that is, ηiF(W ) = {0} for all open W ⊆ Vi ,

(ii)
∑

i ηi = 1F .

For example, sheaves of differentials on a paracompact manifold are fine;
they comprise the de Rham complex, which, by the Poincaré Lemma, is a
fine resolution of the constant sheaf R (see Bott–Tu, Differential Forms in
Algebraic Topology, p. 35). Fine sheaves are acyclic (Gunning, Lectures
on Riemann Surfaces, p. 36; Wells, Differential Analysis on Complex Mani-
folds, Chapter II §3). Moreover, every sheaf over a paracompact space can be
imbedded in a fine sheaf, and so sheaf cohomology can also be computed in
terms of fine resolutions.
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6.3.1 Čech Cohomology

There is another construction of cohomology of sheaves, called Čech co-
homology. Although its definition seems complicated, Čech cohomology is
more amenable to computation than is sheaf cohomology.

Recall Example 1.3(x): if U = (Ui )i∈I is an open cover of a topological
space X , then the nerve N (U) is the abstract simplicial complex with vertices
Vert(N (U)) = U and q-simplexes all (q + 1)-tuples σ of distinct open sets,
σ = [Ui0, . . . ,Uiq ], with

⋂ q
j=0 Ui j 	= ∅.

Example 6.77.

(i) Let K be an abstract simplicial complex. Recall the complex

C•(K ) =→ Cq(K )
∂q−→ Cq−1(K ) →,

that we constructed in Chapter 1: the term Cq(K ) is the free abelian
group with basis all q-simplexes σ = [vi0, . . . , viq ], and the differential
∂q : Cq(X) → Cq−1(X) is

∂q(σ ) = ∂q [v0, . . . , vq ] =
q∑

i=0

(−1)i [v0, . . . , v̂i , . . . , vq ].

If G is an abelian group, then Cq(K , G) = HomZ(Cq(K ), G) is called
the simplicial q-cochains with coefficients in G. Since Cq(K ) is free
abelian, a q-cochain f : Cq(K ) → G is determined by its values on
the basis "q(K ), the family of all q-simplexes in K . Thus, we may
view f as a function "q(K ) → G. The differential δq : Cq(K , G) →
Cq+1(K , G) is the induced map f �→ f ∂q : if f is a q-cochain, then
δq f ∈ Cq+1(K , G) is defined on a (q+1)-simplex τ = [vi0, . . . , viq+1]
by

(δq f )(τ ) = f ∂q(τ )

= f ∂q [vi0, . . . , viq+1]

= f

⎛
⎝

q+1∑
j=0

(−1) j [vi0, . . . , v̂i j . . . , viq+1]

⎞
⎠

=
q+1∑
j=0

(−1) j f [vi0, . . . , v̂i j . . . , viq+1].

The homology groups of the complex HomZ(C•(K ), G) are called the
simplicial cohomology groups of K with coefficients in G.
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(ii) Recall that the singular complex of a topological space X is (S•(X), ∂),
whose qth term Sq(X) is the free abelian group with basis "q , the fam-
ily of all q-simplexes σ : �q → X , where �q is the standard q-simplex.
The differential ∂q : Sq(X) → Sq−1(X) has a formula similar to that in
part (i). If G is an abelian group, we define the singular cohomology
groups of X with coefficients in G to be the homology groups of the
complex HomZ(S•(X), G). �

Since N (U), the nerve of an open cover U of a space X , is an abstract sim-
plicial complex [see Example 1.3(x)], the last example shows how to define
cohomology groups of N (U) with coefficients in an abelian group G. If "q is
the set of all the q-simplexes in N (U), then a q-cochain is a Z-linear combi-
nation of functions f : "q → G. If τ = [Ui0, . . . ,Uiq+1] is a (q+1)-simplex,
define

(δq f )(τ ) =
q+1∑
j=0

(−1) j f [Ui0, . . . , Ûi j . . .Uiq+1 ].

We obtain a complex of abelian groups C•(N (U), G).

Definition. The homology groups of the complex C•(N (U), G) are called
the cohomology groups of the open cover U with coefficients G, and they are
denoted by

Hq(U, G).

We now modify this construction by replacing an abelian group G by a
sheaf of abelian groups F over a space X . Given an open cover U of X , define
the group Cq(U,F) of q-cochains by

Cq(U,F) =
∏

[Ui0 ,...,Uiq ]

F(Ui0 ∩ · · · ∩Uiq ),

where the product is over the set "q of all q-simplexes in N (U). Let us
rephrase this. A q-cochain with coefficients in F is a function

f : "q →
⋃

σ∈"q

F(Uσ ),

where σ = [Ui0, . . . ,Uiq ] ∈ "q and Uσ = Ui0 ∩ · · · ∩ Uiq . Define the
differential δq : Cq(U,F) → Cq+1(U,F) by

(δq f )([Ui0, . . . ,Uiq+1]) =
q+1∑
j=0

(−1) j f
(
[Ui0, . . . , Ûi j . . . ,Uiq+1]

)
.

We obtain a complex of abelian groups C•(N (U),F).
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Definition. The homology groups of the complex C•(N (U),F) are called
the cohomology groups of the open cover U with sheaf coefficients F , and
they are denoted by

Ȟq(U,F).

We would like to use Corollary 6.49 to show that Ȟq(U,F) coincides
with sheaf cohomology Hq(F) but, alas, it may not apply, as part (v) of the
next example shows: a short exact sequence of sheaves 0 → F ′ → F →
F ′′ → 0 need not give a long exact cohomology sequence

→ Ȟq(U,F ′) → Ȟq(U,F) → Ȟq(U,F ′′) → Ȟq+1(U,F ′) → .

This does not say that Ȟq(U,�) is irrelevant, but it does say that we may
have to add some hypotheses to guarantee that the two cohomologies agree.

Example 6.78.

(i) For any any sheaf F over X and any open cover U , we claim that

Ȟ0(U,F) = �(F) = F(X).

To see this, it is clearest to describe δq : Cq(U,F) → Cq+1(U,F)

more precisely. Formally, a q-cochain f is a function

{
q-simplexes [U0, . . . ,Uq ] ∈ N (U)

}→ ⋃
[U0,...,Uq ]

F(U0 ∩ · · · ∩Uq)

with f ([U0, . . . ,Uq ]) ∈ F(U0 ∩ · · · ∩ Uq). Thus, f lies in the direct
product

∏
[U0,...,Uq ] F(U0 ∩ · · · ∩Uq), and it can be written as a tuple

f = (s[U0,...,Uq ]),

where s[U0,...,Uq ] ∈ F(U0 ∩ · · · ∩ Uq). Therefore, a 0-cochain is a
tuple of sections (sU ), where sU ∈ F(U ), while a 1-cochain is a tu-
ple of sections (t[U,V ]) indexed by all 1-simplexes [U, V ] ∈ N (U),
where t[U,V ] ∈ F(U ∩ V ). The differential δ0 : C0(U,F) → C1(U,F)

sends (sU ) �→ (ρV
U∩V sV −ρU

U∩V sU ), where ρV
U∩V is the restriction map

F(V ) → F(U ∩V ). Thus, (sU ) ∈ ker δ0 if the family of sections satis-
fies the equalizer condition. Since F is a sheaf, there is a unique global
section of F obtained by gluing these local sections. We conclude that
Ȟ0(U,F) = ker δ0 = �(F).

(ii) If K is a simplicial complex K and G is an abelian group, then C•(K )

is the complex of simplicial chains and Hq(K , G) is the homology of
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HomZ(C•(K ), G). But Cq(K ) is the free abelian group with basis all
q-simplexes in K , and so a map f ∈ Hom(Cq(K ), G) is just a function
with f (σ ) ∈ G for every q-simplex σ in K .

Let G be the constant sheaf at G over a space X . If U is an open cover of
X , we claim that Ȟq(U,G) is the simplicial cohomology Hq(N (U), G):
after all, a q-cochain f ∈ Cq(U,G) is just a function that satisfies
f ([U0, . . . ,Uq ]) ∈ G(U0 ∩ · · · ∩ Uq) = G for every q-simplex
[U0, . . . ,Uq ]. Thus, Hom(Cq(N (U)), G) = Cq(U,G), and we have
Hq(N (U), G) ∼= Ȟq(U,G).

(iii) If K is a simplicial complex, then dim(K ) ≤ n if K has no (n + 1)-
simplexes. In this case, Hq(K ) = {0} for all q > n. Now dim(N (U)) ≤
n for some open cover U if U0 ∩ · · · ∩Un+1 = ∅ whenever all Ui ∈ U
are distinct. In this case, Ȟq(U,F) = {0} for every sheaf F and all
q > n.

(iv) If U = {X}, the open cover consisting of X itself, then dim(N (U)) ≤ 0,
and so part (iii) gives Ȟq(U,F) = {0} for every sheaf F and all q ≥ 1.

(v) An exact sequence of sheaves 0 → F ′ → F → F ′′ → 0 may not give

a long exact sequence. For example, 0 → Z → O exp−→ O× → 0 is a
short exact sequence of sheaves over the punctured plane X = C− {0}
(see Example 6.69). If U = {X} is the open cover consisting of X itself,
consider the sequence

0 → Ȟ0(U,Z) → Ȟ0(U,O) → Ȟ0(U,O×) → Ȟ1(U,Z). (1)

By part (i), Ȟ0(U,F) ∼= �(F), while part (iv) gives Ȟ1(U,Z) = {0}.
Example 6.69 shows that �(O) → �(O×) is not surjective and, hence,
sequence (1) is not exact.

(vi) The cohomology groups Ȟq(U,F) may depend on the open cover.
There is an open cover V = {V1, V2, V3} of the punctured plane X =
C − {0} with Vi ∩ Vj 	= ∅ for all i, j but with V1 ∩ V2 ∩ V3 = ∅.
Thus, N (V) is a triangle; that is, N (V) ≈ S1. But if Z is the constant
sheaf Z, then part (ii) gives Ȟ1(V,Z) ∼= H1(S1,Z) ∼= Z. In contrast, if
U = {X}, then part (iv) gives Ȟ1(U,Z) = {0}. �

Here is a sketch of a way to compare Ȟq(U,F) and Hq(F).

Lemma 6.79. Let U be an open cover of a space X, and let F be a sheaf of
abelian groups over X.
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(i) There is an exact sequence of sheaves

0 → F → C0(U,F) → C1(U,F) → C2(U,F) → (2)

with �(Cq(U,F)) = Cq(U,F) for all q ≥ 0.

(ii) If F is flabby, then Cq(U,F) is flabby for all q ≥ 0, and so (2) is a
flabby resolution.

Proof. Godement, Topologie Algébrique et Théorie des Faisceaux, pp. 206–
207; see our Section §10.8 for more details. •

We can now construct a map relating open covers and sheaf cohomol-
ogy; unfortunately, this construction may not give an isomorphism without
additional hypotheses.

Proposition 6.80. If U = (Ui )i∈I is an open cover of a space X and F is a
sheaf of abelian groups over X, then for each q ≥ 0, there is a natural map
ϕq : Ȟq(U,F) → Hq(F).

Proof. Consider the following diagram of sheaves:

0 �� F ��

1F
��

C0(U,F)

���
�
�

�� C1(U,F)

���
�
�

�� C2(U,F))

���
�
�

��

0 �� F �� E0 �� E1 �� E2 �� ,

where the bottom row E is an injective resolution of F in Sh(X). Let f =
( f q) be a chain map C•(U,F) → E of sheaves over 1F arising from the
Comparison Theorem. Applying the global section functor � gives a chain
map � f : �C•(U,F) → �EF of complexes of abelian groups. Note that
�C•(U,F) = C•(U,F), so that

H•(�C•(U,F)) = H•(C•(U,F)) = Ȟ•(U,F).

On the other hand, H•(�EF ) = (R•�)F = H•(F). Therefore, ϕ = H•(� f )
maps Ȟ•(U,F)) → H•(F). •

Čech cohomology Ȟq(X,F) will be defined as a direct limit of Ȟq(U,F)

over all open covers U , so that it will be independent of the choice of U . Let
us begin by trying to partially order the open covers of X .

Definition. An open cover V of X is a refinement of an open cover U ,
denoted by V � U , if, for each V ∈ V , there exists U ∈ U with V ⊆ U . For
each V ∈ V , a choice of U ∈ U with V ⊆ U defines a function r : V → U
with r(V ) = U , which we call a refining map (there are many refining maps
for each pair V � U).
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Of course, every subcover of an open cover U is a refinement of U .
We want the family of all open covers of X to be a partially ordered set

under refinement, but there are two difficulties. The first problem is whether
refinement is a partial order. It is easy to see that V � U is reflexive and
transitive, but it may not be antisymmetric. Recall that an open cover U is
an indexed family U = (Ui )i∈I [indices are needed to define the simplexes
in the nerve N (U), and the ordering of the vertices in a simplex is needed
to define differentials]. Suppose that X = U1 ∪ U2, where U1,U2 are open
sets. The open covers {U1,U2} and {U2,U1} are distinct, yet each refines the
other. To surmount this difficulty, we will partially order the homology groups
Ȟq(U,F) instead of the open covers.

Recall that a simplical map f : K → L , for simplicial complexes K
and L , is a function f : Vert(K ) → Vert(L) such that [ f v0, . . . , f vq ] is a
simplex in L for every simplex [v0, . . . , vq ] in K (we do not insist that the
vertices f v0, . . . , f vq be distinct).

Definition. Simplicial maps f, g : K → L are contiguous if, for every
simplex [v0, . . . , vq ] in K , we have [ f v0, . . . , f vq , gv0, . . . , gvq ] a simplex
in L .

Every refining map r induces a simplicial map r# : N (V) → N (U): if
[V0, . . . , Vq ] is a simplex, define r#([V0, . . . , Vq ]) = [r V0, . . . , r Vq ]. Note
that [r V0, . . . , r Vq ] is a simplex in N (U), for

⋂
i r Vi ⊇

⋂
i Vi 	= ∅. Indeed,

if r, s : V → U are refining maps, then r# and s# are contiguous, for
⋂

i r Vi ⊇⋂
i Vi and

⋂
i sVi ⊇

⋂
i Vi ; therefore, [r V0, . . . , r Vq , sV0, . . . , sVq ] is a sim-

plex, for
⋂

i r Vi ∩
⋂

i sVi ⊇
⋂

i Vi 	= ∅.

Lemma 6.81.

(i) If K and L are simplicial complexes and f, g : K → L are contigu-
ous simplicial maps, then f ∗ = g∗ : Hq(K ) → Hq(L); that is, their
induced maps in cohomology are equal.

(ii) If r : U → U is a refining map of an open cover of itself, then the
induced map r∗ : Ȟq(U,F) → Ȟq(U,F) is the identity.

Proof.

(i) It is proved in Munkres, Elements of Algebraic Topology, p. 67, that the
chain maps f#, g# : C•(K ) → C•(L) induced by f, g are homotopic,
and so the maps they induce in cohomology are equal.

(ii) Both r : U → U and 1U are refining maps, and so both induce the same
map in cohomology. •
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Definition. If F is a sheaf over a space X , define Ȟq(U,F)  Ȟq(V,F) if
there exists a refining map r : V → U .

Lemma 6.82. Ȟq(U,F)  Ȟq(V,F) is a partial order.

Proof. Lemma 6.81 implies that there is at most one map Ȟq(V,F) →
Ȟq(U,F) induced by a refining map. The class of all Ȟq(U,F) and maps r∗
induced by refining maps r is a category, and so Example 1.3(iii) shows that{

Ȟq(U,F) : U is an open cover of X
}

is partially ordered. •
The second difficulty in dealing with all the open covers of a space is

set-theoretical. Given open covers U and V , there is an open cover W that
refines each: define W = (U ∩ V )U∈U and V∈V . It is possible that W has
many repetitions; for example, the empty set ∅ can occur many times. Here
is the formal definition of an open cover (we have already explained why open
covers are indexed sets).

Definition. An open cover U = (Ui )i∈I of a topological space X is an in-
dexed family of open subsets whose union is X ; thus, U is a function I → T ,
where T is the family of all open subsets of X .

Since open covers may have repeated terms, any set is allowed to be an
index set. Thus, the number of terms in an open cover can be arbitrarily large,
and the class of all open covers of a space X is a proper class! Were it not for
this inconvenient fact, the class K of all Ȟq(U,F) would be a directed set.
Here is a way to deal with this. Informally, we say that a class K is a directed
class if it is a directed set whose underlying set may be a proper class.

Definition. A class K is a directed class if there is a relation k  k′ defined
on K that is reflexive, antisymmetric, and transitive, and, for each k, k′ ∈ K,
there is k∗ ∈ K with k  k∗ and k′  k∗. We say that a subclass L ⊆ K is
cofinal in K if, for each k ∈ K, there exists � ∈ L with k  �. We can also
define a direct system {Ai , ϕ

i
j } with indices lying in a directed class I .

Example 6.83. Let F be a sheaf over a space X . Lemma 6.82 and the
paragraph following it show that the class K of all groups Ȟq(U,F), where U
varies over all open covers U of a space X , is a directed class. If U = (Ui )i∈I
is an open cover, let V be obtained from U by throwing away repetitions; for
example, if U = {U0,U1,U1}, then V = {U0,U1}. It is clear that V is a
refinement of U , and so

H = {Ȟq(U,F) : U is an open cover having no repeated terms
}

is a cofinal subclass of K. Indeed, H is a set, for if Ȟq(U,F) ∈ H, then
U = (Ui )i∈I is an injective function I → T , and so |I | ≤ |T | ≤ 2|X |
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(because the topology T is a family of subsets of X ). Thus, H is a directed
set for any sheaf F over X . �

The next proposition says, under certain circumstances, that it is possible
to form direct limits over directed classes.

Proposition 6.84. Let K be a directed class, let C be a cocomplete category,
and let {Ak, ϕ

k
j } be a direct system in C over K. If L and M are cofinal in K

and both L and M are sets, then lim−→L Ak ∼= lim−→M Ak.

Proof. Let L ∪ M be the partially ordered subset of K generated by the
subsets L and M. Note that each of L and M is cofinal in L ∪M because
each is cofinal in K; it follows that L ∪M is directed. Since L ∪M is a set,
the direct limit D = lim−→L∪M Ak is defined, and Exercise 5.22 on page 255
gives lim−→L Ak ∼= D ∼= lim−→M Ak . •

Definition. Čech cohomology of a space X with coefficients in a sheaf F
over X is defined by

Ȟq(F) = lim−→H Ȟq(U,F),

where H is the directed set of all cohomology groups Ȟq(U,F) with U an
open cover of X having no repeated terms.

It follows easily from Example 6.78(i) that Ȟ0(F) = �(F) for every
sheaf F , and so Ȟ0(F) ∼= H0(F); that is, Čech cohomology and sheaf
cohomology agree in degree 0. It is true that they also agree in degree 1:
Ȟ1(F) ∼= H1(F) (Tennison, Sheaf Theory, p. 147), but they can disagree
otherwise.

Lemma 6.85. If F is an injective sheaf over a space X, then Ȟq(F) = {0}
for all q ≥ 1.

Proof. Tennison, Sheaf Theory, p. 145. •

Theorem 6.86 (Serre). If 0 → F ′ → F → F ′′ → 0 is a short exact
sequence of sheaves over a topological space X, then there is a six term exact
sequence in Čech cohomology:

0 → Ȟ0(F ′) → Ȟ0(F) → Ȟ0(F ′′)

→ Ȟ1(F ′) → Ȟ1(F) → Ȟ1(F).

Proof. Serre, FAC, p. 217. •
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Although Serre’s paper FAC is concerned with sheaves over arbitrary
spaces, it also contains results about sheaves over Hausdorff spaces.

Given a sheaf F over a paracompact space X , it is easy to see that the
class of all Ȟq(V,F), where V varies over all locally finite open covers of X
with no repeated terms, is cofinal in the directed set H.

Theorem 6.87 (Serre). If 0 → F ′ → F → F ′′ → 0 is a short exact
sequence of sheaves over a paracompact space X, then there is an exact se-
quence in Čech cohomology:

0 → Ȟ0(F ′) → Ȟ0(F) → Ȟ0(F ′′)

→ Ȟ1(F ′) → Ȟ1(F) → Ȟ1(F) → · · ·
→ Ȟq(F ′) → Ȟq(F) → Ȟq(F ′′) → Ȟq+1(F ′) → .

Proof. Serre, FAC, p. 218. •

Theorem 6.88. If F is a sheaf over a paracompact space X, then Čech
cohomology agrees with sheaf cohomology: for all q ≥ 0,

Ȟ q(F) ∼= Hq(F).

Proof. Using Lemma 6.85, we see that the hypotheses of Corollary 6.49
hold for Čech cohomology over a paracompact space. •

The next corollary illustrates how Čech cohomology can be used.

Theorem 6.89. Let F be a sheaf over a paracompact space X. If X has an
open cover U with dim(N (U)) ≤ n, then Ȟq(F) = {0} for all q ≥ n + 1.

Proof. Swan, The Theory of Sheaves, p. 109. •

Corollary 6.90. If X is a compact Hausdorff space, then Hq(F) = {0} for
large q.

Proof. Since X is compact, every open cover U of X has a finite subcover
V . But N (V) is a finite simplicial complex, and hence it is finite-dimensional.
Theorem 6.89 now gives Ȟq(F) = {0} for all q > dim(N (U)), and Theo-
rem 6.88 gives Hq(F) = {0} for all q > dim(N (U)). •

6.3.2 Riemann–Roch Theorem

We end this chapter by describing the Riemann–Roch Theorem, first for the
Riemann sphere Ĉ = C ∪ {∞} and then, more generally, for compact Rie-
mann surfaces. We shall see that the statement of this theorem involves a
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formula whose ingredients can be better understood in terms of sheaf coho-
mology. Although there are proofs of this special case of Riemann–Roch
without sheaves (see Fulton, Algebraic Topology, Chapter 21, or Kendig, Ele-
mentary Algebraic Geometry, Chapter V.7), both the statement and the proof
of its generalizations for higher-dimensional manifolds or for varieties de-
fined over fields of characteristic p > 0, involve sheaves in an essential way.
This discussion will illustrate how a sheaf, constructed using local data, yields
global information.

Recall some definitions from Complex Analysis.

Definition. Let U ⊆ C be open. A complex-valued function f is mero-
morphic on U if f is defined on U − D, where D is discrete and, for each
p ∈ U ,

f (z) =
∑
n≥m

an(z − p)n

for all z in some deleted neighborhood of p, where m ∈ Z, an ∈ C, and
am 	= 0. We write

ordp( f ) = m.

If m > 0, then p is called a zero of f of order m, and if m < 0, then p
is called a pole of f of order |m|. Call f holomorphic (or analytic) if it is
meromorphic and has no poles.

This definition can be extended to the Riemann sphere Ĉ: if p = ∞,
replace z by 1/z (basic open neighborhoods of ∞ in Ĉ have the form U∞ =
{∞} ∪ {z ∈ C : |z| > N } for some number N ). Thus, there is a pole of order
m at ∞ if f (1/z) has a pole of order m at 0.

Later, we will discuss generalizations of these terms for complex mani-
folds instead of Ĉ and, in particular, for Riemann surfaces.

The following query was posted on the newsgroup sci.math.

I know that the Riemann–Roch Theorem is a very famous the-
orem in Algebraic Geometry. I’m an undergraduate student. I
don’t know the terms of Algebraic Geometry, but I want to grasp
the meaning of the theorem. Can you explain it in an elementary
way?

Keith Ramsay posted the following excellent reply.

There are various forms of the Riemann–Roch Theorem of
varying generality. The basic problem is to determine the func-
tions on a space that have prescribed poles. The space is typically
an algebraic variety, but you might find it easier to learn the ver-
sion of the theorem which is concerned with compact complex
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manifolds. In fact, the special case of compact Riemann surfaces
(i.e., compact complex manifolds of complex dimension 1) are of
enough interest to start out with.

A compact Riemann surface S has an invariant g, called its
genus. Roughly speaking, the genus is the number of holes in the
surface; a sphere has genus 0, a torus (a doughnut-shaped surface)
has genus 1, and so on. Given a list of points p1, . . . , pn on S and
a list of integers m1, . . . ,mn , we’d like to have some information
about the meromorphic functions f on S that are holomorphic
except at the points p1, . . . , pn , where the orders of the poles are
prescribed; that is, ordpi ( f ) ≥ −mi for all i . The set of all such
functions f is a complex vector space: if f satisfies the given
conditions and c is a complex number, then c f also does; if g
satisfies the conditions, then so does f + g (the order of the pole
at a point can’t be any greater than the order of the poles of each
of f and g). Write m1 p1+· · ·+mn pn as just an abstract notation
describing the points and associated orders; this is called a divisor.
Note that every nonconstant meromorphic function f determines
a divisor: there are only finitely many points p1, . . . , pn at which
f has either a pole or a zero, and we define

Div( f ) = ordp1( f )p1 + · · · + ordpn ( f )pn .

Define the degree of a divisor D = m1 p1 + · · · + mn pn to be∑
i mi ; hence,

deg(Div( f )) = ordp1( f )+ · · · + ordpn ( f ).

A theorem of Abel (see Fulton, Algebraic Topology, p. 267) says
that if f is a nonconstant meromorphic function, then Div( f ) has
degree 0. If D = m1 p1 + · · · + mn pn , write

L(D)

for the vector space of functions that satisfy the bounds on poles
at the points p1, . . . , pn . Now L(D) is finite-dimensional, and we
define

�(D) = dim
(
L(D)

)
.

For example, let S be the Riemann sphere. The meromor-
phic functions are just the rational functions (any meromorphic
function on the complex plane that isn’t rational has an essential
singularity at ∞). The functions having no poles except at ∞
are the polynomials, by Liouville’s Theorem. The space L(m∞)

(here, we are taking only one point, namely, p1 = ∞) is the set
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of functions that are holomorphic except at ∞, where they’re al-
lowed to have a zero of order at most m. That’s just the set of
polynomials of degree ≤ m. So �(m∞) = m + 1, for the func-
tions 1, z, z2, . . . , zm form a basis. Here is a second example. The
space L(1∞− 1(1 + i)) (so p1 = ∞, m1 = 1, and p2 = 1 + i ,
m2 = −1) consists of those meromorphic functions with a zero
at 1 + i and, at worst, a pole of order 1 at ∞. This is a sub-
space of L(1∞), and so it consists of just those functions of the
form c(z − 1 − i); hence, �(1∞ − 1(1 + i)) = 1. Similarly,
L(2∞− 1(1 + i)) is the space of all those functions of the form
(z − 1 − i)(az + b), so the dimension �(2∞ − 1(1 + i)) = 2.
Generally, L(m1 p1 + · · · + mn pn) is the space of meromorphic
functions of the form

(z − p1)
−m1(z − p2)

−m2 · · · (z − pn)
−mn (c0zd + · · · + cd),

where d = m1 + · · · + mn if d ≥ 0. (If d < 0, the only function
satisfying the conditions is the function identically 0.) So, on
the Riemann sphere we always get �(m1 p1 + · · · + mn pn) =
m1 + · · · + mn + 1 = d + 1 unless that’s negative, in which case
we get �(m1 p1 + · · · + mn pn) = 0.

That’s a special case of Riemann–Roch for a Riemann surface
of genus g = 0. In this case, Riemann–Roch is enough to tell us
exactly what this dimension � is. If D is a divisor of degree d < 0,
then there are no functions other than 0 satisfying the conditions,
and so � = 0.

Theorem (Riemann–Roch). A compact Riemann surface of
genus g has a canonical divisor K = k1 p1 + · · · + kn pn of
deg(K ) = 2g − 2 such that

�(D)− �(K − D) = deg(D)+ 1 − g

for every divisor D = m1 p1 + · · · + mn pn.

Notice that the formula displays a connection between topol-
ogy on the one hand (the genus) and analysis on the other (mero-
morphic functions). The equality is, of course, two inequalities.
Riemann proved that �(D) ≥ d + 1 − g; a few years later, Roch
proved that �(D) = d + 1− g+ �(K − D). Both mathematicians
died in 1866, and both died young; Riemann was 40 and Roch
was 26.

Riemann–Roch isn’t enough by itself to determine � = �(D)

in every case but, in some special cases, it is enough. In particu-
lar, if d > 2g − 2, then the dual divisor has degree < 0, which



396 Homology Ch. 6

simplifies the formula to

� = d + 1 − g.

So, for example, if g = 0 and d < 0, we know � = 0; when g = 0
and d ≥ 0, we have d > 2g − 2 = −2 so that � = d + 1 − g =
d +1, which is just what we figured out for the special case of the
Riemann sphere.

If g = 1 and d < 0, we get � = 0; when g = 1 and d > 0 =
2g − 2, we get � = d + 1− 1 = d. But if d = 0, Riemann–Roch
isn’t enough to tell us whether � = 0 or � = 1, i.e., whether the set
of functions is {0} or {c f : c ∈ C} for some nonzero function f .
Both cases occur. A curve of genus 1 with a specified basepoint p
is called an elliptic curve (different from an ellipse in Calculus).
The set of functions on an elliptic curve that have no poles is one-
dimensional; it consists of constant functions. So �(0p1) = 1.
But if p2 is some point other than p1, the only function on the
elliptic curve having no poles except at p1 (where it has a pole
of order at most 1) and a zero at p2 is the zero function, so that
�(1p1 − 1p2) = 0.

This is the start of an interesting analysis of elliptic curves.
Since �(1p) = 1, L(1p) consists just of constant functions c;
since �(2p) = 2, we can see that L(2p) is a set of functions of
the form c0 + c1 f for some f that has a pole of order exactly 2
at p. Likewise L(3p) is three-dimensional, so there’s some inde-
pendent function g in it that has a pole of order 3 at p; L(3p) =
{c0+ c1 f + c2g}. Now L(4p) is four-dimensional, but f 2 is in it,
and is independent of 1, f, g, so L(4p) = {c0+c1 f +c2g+c3 f 2}.
Then L(5p) = {c0 + c1 f + c2g + c3 f 2 + c4 f g}. Where it gets
interesting is when we get to L(6p), the set of functions having
no poles except at p, and having a pole of order at most 6 at p. All
of 1, f, g, f 2, f g, f 3, g2 are in this set. But since the set is only
six-dimensional and not seven-dimensional, there is some linear
dependence among them:

g2 = c0 f 3 + c1 f g + c2 f 2 + c3g + c4 f + c5.

So, if we plot the values of f and g on the plane, they fall within
this algebraic curve given by a cubic equation. In fact, the original
Riemann surface is essentially given by the cubic equation, and it
turns out to be an algebraic plane curve after all.

We introduce complex manifolds in order to discuss Riemann surfaces.
The definitions parallel those for (real) manifolds in Section §5.4.1.
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Definition. A complex n-chart is an ordered pair (U, ϕ) with U a topologi-
cal space, called a coordinate neighborhood, and ϕ : U → C

n a homeomor-
phism.

We restrict our discussion to complex 1-charts, for we are interested in
spaces (Riemann surfaces) that only involve such charts; this simplification
allows us to avoid subtleties arising in the passage from functions of one com-
plex variable to several complex variables.

It is clear how to generalize the definition on page 393 of f being mero-
morphic from functions f defined on open subsets of the Riemann sphere to
coordinate neighborhoods of complex 1-charts.

Definition. Let (U, ϕ) be a complex 1-chart. A complex-valued function f
is meromorphic on U if f is defined on U − D, where D is discrete and, for
each p ∈ U , f ϕ−1 : imϕ → C is meromorphic; that is,

f ϕ−1(z) =
∑
n≥m

an(z − ϕ(p))n

for all z in some deleted neighborhood of ϕ(p), where m ∈ Z, an ∈ C, and
am 	= 0. We write

ordp( f ) = m.

If m > 0, then p is called a zero of f of order m, and if m < 0, then p is
called a pole of f of order |m|. Call f holomorphic if it is meromorphic and
has no poles.

All meromorphic functions on (U, ϕ) form a commutative R-algebra

M(U, ϕ)

under pointwise operations, and all holomorphic functions on U form an R-
subalgebra:

O(U, ϕ) ⊆M(U, ϕ).

It follows that O(U, ϕ) is a domain and that Frac(O(U, ϕ)) ⊆M(U, ϕ); that
is, if f, g are holomorphic and g 	= 0, then f/g is meromorphic.

We now pass from complex charts to more interesting topological spaces:
complex manifolds.

Definition. A complex atlas of a 2-manifold X is a family of complex
1-charts ((Ui , ϕi ))i∈I with (Ui )i∈I an open cover of X .

Let ((Ui , ϕi ))i∈I be a complex atlas of a 2-manifold. If p ∈ Ui , then ϕi
equips p with complex coordinates, namely, ϕi (p). Write Ui j = Ui ∩ U j . If
Ui j 	= ∅, then every p ∈ Ui j has two coordinates: ϕi (p) and ϕ j (p).
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Definition. If ((Ui , ϕi ))i∈I is a complex atlas, then its transition functions
are the homeomorphisms

hi j = ϕiϕ
−1
j : ϕ j (Ui j ) → ϕi (Ui j ).

Transition functions compare the two coordinates of p ∈ Ui j : if y =
ϕ j (p) and x = ϕi (p), then hi j : y �→ x(y).

Definition. A complex 1-manifold is a 2-manifold having holomorphic tran-
sition functions, and a Riemann surface is a connected complex 1-manifold.

Viewing Ĉ as a Riemann surface, we need not treat ∞ differently from
other points (as we did on page 393), for we can use the complex 1-chart
(U∞, ϕ∞), where U∞ is an open neighborhood of ∞ and ϕ∞ : U∞ → C is
the homeomorphism given by ∞ �→ 0 and p �→ 1/p if p 	= ∞.

We now generalize the definitions of meromorphic, holomorphic, and 1-
forms from charts to Riemann surfaces.

Definition. If ((Ui , ϕi ))i∈I is a complex atlas of a Riemann surface X with
transition functions hi j = ϕ jϕ

−1
i , then a family f = ( fi : Ui → C)i∈I is

meromorphic (or holomorphic) if each fi is meromorphic (or holomorphic)
[i.e., f ϕ−1

i is meromorphic (or holomorphic)] and the fi are compatible; that
is, fi hi j = f j on ϕi (Ui ∩ U j ) for all i, j . At any point p ∈ Ui , there is a
Laurent expansion fi (z) =

∑
n≥m an(z − ϕi (p))n . If fi is not identically

zero, then ordp( fi ) does not depend on the choice of the chart containing p,
and so, if f = ( fi ) and p ∈ Ui , we can define

ordp( f ) = ordp( fi ).

If m > 0, then f has a zero of order m at p; if m < 0, then f has a pole at p
of order |m|. We say that f is meromorphic on X if it is defined and mero-
morphic on the complement of a discrete subset of X , and f is holomorphic
if it is meromorphic on X and has no poles.

As in Example 5.77, we may define a sheaf M of fields over X [construct
sheaves Mi over Ui having global sections M(Ui , ϕi ), and glue them to-
gether using Proposition 5.76]. Meromorphic functions on a Riemann surface
X are the global sections of this sheaf; that is, they are compatible families of
locally defined meromorphic functions. Define �0, the structure sheaf of X ,
to be the subsheaf of M with �0(Ui ) = O(Ui , ϕi ) for all i ∈ I . The ring of
holomorphic functions on X is

�0(X) = �(X, �0),

the global sections of �0. Now �0(X) is a subring of the field M(X) and so
it is a domain.
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One can define the de Rham complex of a Riemann surface and, indeed,
of higher-dimensional complex manifolds (see Bott–Tu, Differential Forms in
Algebraic Topology). However, as our aim is more modest, we will define
complex 1-forms in an ad hoc way. Define

�1(Ui , ϕi )

to be the free O(Ui , ϕi )-module of rank 1 with basis element denoted by
dzi . If ((Ui , ϕi ))i∈I is a complex atlas for X , define �1 to be the sheaf with
�1(Ui ) = �1(Ui , ϕi ) that is obtained by gluing compatible sheaves over
Ui (see Example 5.77). Thus, a complex 1-form ω on X is a global sec-
tion; that is, ω is a compatible family of complex 1-forms ω = ( fi dzi )i∈I
with fi holomorphic. In a similar way, we may define meromorphic 1-forms
that, locally, look like gi dzi with gi meromorphic. More precisely, define
M1 =M⊗�0 �1.

Define
d : �0 → �1

to be the sheaf map that is defined locally by

d : fi �→ f ′i dzi ,

where, if f = ( fi ) and fi (z) =
∑

n≥0 anzn , then f ′i (z) =
∑

n≥1 nanzn−1.

We are now going to discuss the Riemann–Roch Theorem for Riemann
surfaces (generalizing the special case for the Riemann sphere Ĉ). Given a
divisor D, we will see how the number �(D) and the canonical divisor K are
related to sheaf cohomology. Our account follows that in Serre, Algebraic
Groups and Class Fields, Chapter II.

If X is a Riemann surface, let D(X) be the free abelian group with basis
the points in X . A divisor D is an element of D(X):

D =
∑
p∈X

n p p,

where n p ∈ Z and almost all n p = 0. The coefficients n p of D will also be
denoted by νp(D), so that

D =
∑
p∈X

n p p =
∑
p∈X

νp(D)p.

The degree of D is
deg(D) =

∑
p∈X

νp(D).

If ((Ui , ϕi ))i∈I is a complex atlas for a compact Riemann surface X , then
the open cover (Ui )i∈I has a finite subcover. It follows that a nonzero mero-
morphic function f ∈ M(X) has only finitely many poles and zeros; define
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Div( f ), the divisor of f , by

Div( f ) =
∑
p∈X

ordp( f )p.

A divisor D is positive (or effective) if νp(D) ≥ 0 for all p ∈ X . In
particular, if f is meromorphic, then Div( f ) is positive if and only if f is
holomorphic. Define

P(X) = {D ∈ D(X) : D = Div( f ) for some f ∈M(X)}
[divisors of the form Div( f ) are called principal divisors]. Since Div( f g) =
Div( f )+Div(g), the subset P(X) is a subgroup of D(X); the quotient group
D(X)/P(X) is called the group of divisor classes. The subgroup P(X) de-
fines an order relation on D(X). Define

D1 ≤ D2 if D2 − D1 ∈ P(X).

We say that divisors D1, D2 ∈ D(X) are linearly equivalent if their cosets in
D(X)/P(X) are equal; that is, D2 = D1 +Div( f ) for some meromorphic f .

Proposition A. If D ∈ P(X), then deg(D) = 0.

Proof. See Gunning, Lectures on Riemann Surfaces, or Wells, Differential
Analysis on Complex Manifolds. •

It follows that we may define the degree of a divisor class: if D1, D2 are
linearly equivalent, then deg(D1) = deg(D2).

Given a divisor D, consider all those positive divisors D′ that are linearly
equivalent to D; that is, D′ ≥ 0 (where 0 is the divisor identically zero) and
D′ = D + Div( f ) for some f ∈M(X). Thus, Div( f ) ≥ −D. Define

L(D) = {0} ∪ {Div( f ) : f ∈M(X) and Div( f ) ≥ −D};
that is,

L(D) = {0} ∪ {Div( f ) : f ∈M(X) and ordp( f ) ≥ −νp(D) for all p ∈ X}.
Recall that the constant sheaf F at M(X) has etale-sheaf (E, π, X),

where E p = M(X), and the sections over an open set U are locally constant
functions s : U →⋃

p∈X E p with πs = 1U . If U is an open neighborhood of
a point p ∈ X and s ∈ F(U ), then s(p) ∈M(X) has an order: define L(D)p
to be all locally constant functions s : X → E satisfying νp(s(p)) ≥ −νp(D).
Finally, define L(D) to be the subsheaf of F whose stalk over p is L(D)p.

Proposition B. The vector spaces H0(X,L(D)) and H1(X,L(D)) are finite-
dimensional.

Proof. See Gunning or Wells. •
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As in Ramsay’s exposition, define �(D) = dim(L(D)). Now

H0(X,L(D)) = �(X,L(D)) = L(D),

and so
�(D) = dim(L(D)) = dim(H0(X,L(D))).

Define i(D) = dim(H1(X,L(D))). In particular, if D = 0, then L(D) = O,
and so i(0) = dim(H1(X,O)).

The following analog of Liouville’s Theorem holds for compact Riemann
surfaces.

Proposition C. If X is a compact Riemann surface, then L(0) ∼= C.

Theorem 6.91. For every divisor D of a compact Riemann surface X, we
have

�(D)− i(D) = deg(D)+ 1 − i(0),

where i(D) = dim(H1(X,L(D))).

Proof. The formula is true when D = 0: by Proposition C, we have �(0) =
1, while deg(0) = 0. Thus, the formula reads

1 − i(0) = 0 + 1 − i(0).

Since any divisor D can be obtained from 0 in a finite number of steps,
each adding or subtracting a point, it suffices to show that if the formula holds
for a divisor D, then it also holds for the divisors D + p and D − p. Write

χ(D) = �(D)− i(D) and χ ′(D) = deg(D)+ 1 − i(0).

Now χ ′(D+p) = χ ′(D)+1, so that we must show that χ(D+p) = χ(D)+1.
There is an exact sequence of sheaves

0 → L(D) → L(D + p) → Q→ 0,

where Q is the quotient sheaf. But Q is a skyscraper sheaf, with Qq = {0} for
q 	= p while Qp ∼= C. The corresponding long exact sequence begins

0 → L(D) → L(D + p) → H0(X,Q)

→ H1(X,L(D)) → H1(X,L(D + p)) → H1(X,Q).

But H0(X,Q) is one-dimensional, and H1(X,Q) = {0}, by Corollary 6.76,
for Q is a skyscraper sheaf. Hence, the alternating sum of the dimensions is 0:

�(D)− �(D + p)+ dim(L(Q))− i(D)+ i(D + p) = 0;
that is,

χ(D + p) = χ(D)+ 1.

The same argument works for D − p. •
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Proposition D. If X is a compact Riemann surface of genus g, then i(0) = g.
Hence, for every divisor D of X, we have

�(D)− i(D) = deg(D)+ 1 − g.

Proof. Serre, Algebraic Groups and Class Fields. p. 17, proves this assum-
ing that one can recognize the genus as the dimension of a certain space of
differential forms. Fulton, Algebraic Topology: A First Course, Chapter 21,
gives a more detailed discussion. •

The Riemann–Roch Theorem follows from this result once we show that
i(D) = �(K − D), where K is a canonical divisor (we will define K in a
moment).

Now M1(X) is a vector space over the field M(X); we claim that it is
one-dimensional. It can be proved that there always exists a nonzero mero-
morphic 1-form in M1(X); choose, once and for all, one such, say, ω0 =
(ω 0 i )i∈I . It follows that M1(X) is a one-dimensional vector space over the
field M(X). Indeed, if ω = (ωi )i∈I ∈ M1(X), then we construct a mero-
morphic h with ω = hω0 as follows. Locally, ω 0 i = fi dzi and ωi = gi dzi ,
where fi is not identically zero. Then hi = gi/ fi in M(Ui , ϕi ), and it is
straightforward to check that the family (hi )i∈I can be glued to define a global
meromorphic function h with ω = hω0. Note that h ∈ M(X) is unique be-
cause M1(X) is a vector space over M(X).

Definition. If ω is a nonzero meromorphic 1-form, then ω = hω0; define

ordp(ω) = ordp(h).

Since X is compact, the set of zeros and poles of a meromorphic function
h is finite, and so ordp(h) is nonzero for only finitely many points p. There-
fore, if ω = hω0 is a nonzero meromorphic 1-form, then ordp(ω) = ordp(h)
is nonzero for only finitely many p.

Definition. If ω ∈M1(X) is a nonzero meromorphic 1-form, define

Div(ω) =
∑
p∈X

ordp(ω)p.

If ω is a nonzero meromorphic 1-form, then ω = hω0 and Div(ω) =
Div(h) + Div(ω0). Thus, all Div(ω) are linearly equivalent, and they form a
single divisor class. Call

Div(ω0)+ P(X)

the canonical class; any divisor K in this class is called a canonical divisor.
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Definition. If D is a divisor, define

�(D) = {0} ∪ {ω ∈M1(X) : Div(ω) ≥ D}.
Now if ω is a nonzero meromorphic 1-form, then ω = f ω0 for some

meromorphic f . Given a divisor D, the following statements are equivalent
for ω = f ω0:

ω ∈ �(D);
Div(ω) ≥ D;
Div( f )+ Div(ω0) ≥ D;
Div( f ) ≥ Div(D)− Div(ω0);
f ∈ L(K − D).

Thus, �(D) ∼= L(K − D).

Serre proved H1(X,L(D)) ∼= �(D) using Serre Duality (see Gunning,
Lectures on Riemann Surfaces, §5 and §6); actually, Serre Duality is the dif-
ficult part of the proof of the Riemann–Roch Theorem. It follows that

i(D) = dim(�(D)) = �(K − D).

The statement of the Riemann–Roch Theorem for compact Riemann sur-
faces is the same as for the Riemann sphere.

Theorem (Riemann−Roch). For every divisor D on a compact Riemann sur-
face of genus g, we have

�(D)− �(K − D) = deg(D)+ 1 − g.

All canonical divisors have the same degree, for they lie in the same
divisor class. If D = 0, then �(0) = 1, and the Riemann–Roch Theo-
rem gives �(K ) = g. If D = K , then the Riemann–Roch Theorem gives
deg(K ) = 2g − 2.

There are fancier, more general, versions of the Riemann–Roch Theorem
that are needed to cope with complications arising from replacing compact
Riemann surfaces by compact complex manifolds of higher dimension or by
varieties in Algebraic Geometry defined over fields of positive characteris-
tic. One such version is due to Hirzebruch (Hartshorne, Algebraic Geometry,
p. 431), and an even more general version is due to Grothendieck, (Ibid.,
p. 436).
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Tor and Ext

7.1 Tor

We now examine Tor more closely. As we said in the last chapter, all proper-
ties of TorR

n (A,�) must follow from Theorem 6.33, the axioms characterizing
it. In particular, its construction via derived functors need not be used (now
that existence of such functors has been proved). However, it is possible that
a proof of some property of Tor using derived functors may be simpler than
a proof from the axioms. For example, it was very easy to prove Proposi-
tion 6.18: TorR

n (A,�) preserves multiplications, but it is not obvious how to
give a new proof of this fact from the axioms.

Theorem 7.1.

(i) If R is a ring, A is a right R-module, and B is a left R-module, then

TorR
n (A, B) ∼= TorRop

n (B, A)

for all n ≥ 0, where Rop is the opposite ring of R.

(ii) If R is a commutative ring and A and B are R-modules, then for all
n ≥ 0,

TorR
n (A, B) ∼= TorR

n (B, A).

404 J.J. Rotman, An Introduction to Homological Algebra, Universitext,
DOI 10.1007/978-0-387-68324-9 7, c© Springer Science+Business Media LLC 2009
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Proof.

(i) Recall Exercise 1.11 on page 35: every left R-module is a right Rop-
module, and every right R-module is a left Rop-module. Choose a
deleted projective resolution PA of A. Now t : PA ⊗R B → B ⊗Rop PA
is a chain map of Z-complexes, by Proposition 2.56, where

tn : Pn ⊗R B → B ⊗Rop Pn

is given by tn : xn ⊗ b �→ b ⊗ xn. Since each tn is an isomorphism of
abelian groups (its inverse is b ⊗ xn �→ xn ⊗ b), the chain map t is an
isomorphism of complexes. Since isomorphic complexes have the same
homology (because each Hn is a functor),

TorR
n (A, B) = Hn(PA ⊗R B) ∼= Hn(B ⊗Rop PA)

for all n ≥ 0. But PA, viewed as a complex of left Rop-modules,
is a deleted projective resolution of A qua left Rop-module, and so
Hn(B ⊗Rop PA) ∼= TorRop

n (B, A).

(ii) This is obvious from part (i). •
In light of this result, theorems about Torn(A,�) will yield results about

Torn(�, B); we will not have to say “similarly in the other variable.”
We know that Torn vanishes on projectives for all n ≥ 1; we now show

that they vanish on flat modules.

Theorem 7.2. If a right R-module F is flat, then TorR
n (F, M) = {0} for all

n ≥ 1 and every left R-module M. Conversely, if TorR
1 (F, M) = {0} for every

left R-module M, then F is flat.

Proof. Let P be a projective resolution of M . Since F is flat, the functor
F ⊗R � is exact, and so the complex

F ⊗R PM =→ F ⊗R P2 → F ⊗R P1 → F ⊗R P0 → 0

is exact for all n ≥ 1. Therefore, Torn(F, M) = {0} for all n ≥ 1.

For the converse, 0 → A
i−→ B exact implies exactness of

0 = TorR
1 (F, B/A) → F ⊗ A

1⊗i−→ F ⊗ B.

Hence, 1 ⊗ i is an injection, and so F is flat. •
Here is another proof of Proposition 3.67. Recall that an exact sequence

0 → B ′ → B → B ′′ → 0 of left R-modules is pure exact if the sequence
of abelian groups 0 → A ⊗R B ′ → A ⊗R B → A ⊗R B ′′ → 0 is exact for
every right R-module A.
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Corollary 7.3. A left R-module B ′′ is flat if and only if every exact sequence
0 → B ′ → B → B ′′ → 0 of left R-modules is pure exact.

Proof. There is an exact sequence

TorR
1 (A, B ′′) → A ⊗R B ′ → A ⊗R B → A ⊗R B ′′ → 0.

Since B ′′ is flat, TorR
1 (A, B ′′) = {0}, by Theorem 7.2, and so the sequence of

Bs is pure exact.

Conversely, choose an exact sequence 0 → B ′ i→ B → B ′′ → 0 with B
free. For every right R-module A, there is an exact sequence

TorR
1 (A, B) → TorR

1 (A, B ′′) → A ⊗R B ′ 1⊗i−→ A ⊗R B.

But TorR
1 (A, B ′′) = ker 1⊗i , for B free implies TorR

1 (A, B) = {0}. By purity,
1 ⊗ i is an injection; hence, TorR

1 (A, B ′′) = {0} for all A, and B ′′ is flat. •
The next corollary generalizes Exercise 3.32 on page 151.

Corollary 7.4. Let 0 → A → B → C → 0 be an exact sequence of right
R-modules for some ring R. If C is flat, then A is flat if and only if B is flat.

Proof. For any left R-module X , there is an exact sequence

TorR
2 (C, X) → TorR

1 (A, X) → TorR
1 (B, X) → TorR

1 (C, X).

Since C is flat, the flanking terms are {0}, so that TorR
1 (A, X) ∼= TorR

1 (B, X).
Therefore, if one of these terms is {0}, i.e., if one of them is flat, then so is the
other. •

Note that A, B flat does not imply that C is flat: For example, 0 → Z →
Z → I2 → 0 is an exact sequence of abelian groups, but I2 is not flat.

We are going to use a very general fact in the middle of the next proof. If
N is a submodule of a module M and there is a commutative diagram

M
f ��

g
��

X

M/N ,
h

22�������

then (ker f )/N = ker h [since hg(m) = f (m) for all m ∈ M , we have
m ∈ ker f if and only if g(m) ∈ ker h].

Theorem 7.5. The functors TorR
n (A,�) and TorR

n (�, B) can be computed
using flat resolutions of either variable; more precisely, for all flat resolutions
F and G of A and B, respectively, and for all n ≥ 0,

Hn(FA ⊗R B) ∼= TorR
n (A, B) ∼= Hn(A ⊗R GB).
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Remark. There is a much simpler proof of this using spectral sequences;
see Corollary 10.23. �
Proof. It suffices to prove that Hn(FA ⊗R B) ∼= TorR

n (A, B); the other iso-
morphism follows by replacing R by Rop; that is, by Theorem 7.1.

The proof is by dimension shifting; that is, by a slow starting induction
on n ≥ 0. If

→ F2
d2−→→ F1

d1−→ F0 → A → 0

is a flat resolution, then F1 ⊗R B
d1⊗1→ F0 ⊗R B → A ⊗R B → 0 is exact,

and so

H0(FA ⊗R B) = coker(d1 ⊗ 1) ∼= A ⊗R B ∼= TorR
0 (A, B).

For n = 1, there is a commutative diagram

F2
d2 �� F1

d ′1 ���
��

��
��

�
d1 �� F0

Y,
i

++7777777

where Y = ker d1, i : Y → F0 is the inclusion, and d ′1 and d1 differ only in
their target. Applying �⊗R B gives a commutative diagram

F1 ⊗R B

d ′1⊗1 ���
��

��
��

��
d1⊗1 �� F0 ⊗R B

Y.
i⊗1

�����������

Now

im(d1 ⊗ 1) = im(i ⊗ 1), (1)

because right exactness of �⊗R B gives d ′1 ⊗ 1 surjective. Next, consider

F2 ⊗R B
d2⊗1 �� F1 ⊗R B

d1⊗1 ��

α

��

F0 ⊗R B

F1 ⊗R B/ im(d2 ⊗ 1)

δ

AA;;;;;;;

β

��
F1 ⊗R B/ ker(d1 ⊗ 1),

γ

::

where α is the natural map. Since im(d2 ⊗ 1) ⊆ ker(d1 ⊗ 1), the enlargement
of coset map β is surjective, while γ : F1 ⊗R B/ ker(d1 ⊗ 1) is the injection
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of the First Isomorphism Theorem [whose image is im(d1 ⊗ 1]. If we define
δ = γβ, the general fact mentioned before the theorem says that

ker δ = (ker(d1 ⊗ 1)/ im(d2 ⊗ 1) = H1(FA ⊗R B).

On the other hand, im δ = im γ (because δ = γβ and β is surjective). But
d1 ⊗ 1 = γβα, so that im(d1 ⊗ 1) = im γ (both β and α are surjective).
Therefore, H1(FA ⊗R B) ∼= im γ = im(d1 ⊗ 1); but im(d1 ⊗ 1) = im(i ⊗ 1),
by Eq. (1), so that H1(FA ⊗R B) ∼= im(i ⊗ 1).

Consider the fragment of the long exact sequence for Tor:

TorR
1 (F0, B) → TorR

1 (A, B) → Y ⊗R B
i⊗1−→ F0 ⊗R B.

Now TorR
1 (F0, B) = {0}, because F0 is flat (Theorem 7.2), so that

TorR
1 (A, B) ∼= ker(i ⊗ 1).

Hence, Tor1(A, B) ∼= ker(i ⊗ 1) ∼= H1(FA ⊗ B).
For the inductive step n ≥ 1, there is an exact sequence

Torn+1(F0, B) → Torn+1(A, B) → Torn(Y, B) → Torn(F0, B).

Since F0 is flat, the two ends are {0}, and Torn+1(A, B) ∼= Torn(Y, B). Now
F′ = → F2 → F1 → Y → 0 is a flat resolution of Y , and so Hn(F′Y ⊗ B) ∼=
Torn(Y, B), by the inductive hypothesis. But Hn(F′Y ⊗ B) = Hn+1(FA ⊗ B):
in the notation of F, both are (ker dn+1 ⊗ 1)/(im dn+2 ⊗ 1). •

Proposition 7.6. If (Bk)k∈K is a family of left R-modules, then there are
natural isomorphisms, for all n ≥ 0,

TorR
n

(
A,
⊕
k∈K

Bk

) ∼=⊕
k∈K

TorR
n (A, Bk).

There is also an isomorphism if the direct sum is in the first variable.

Proof. The proof is by dimension shifting. The base step is Theorem 2.65,
for TorR

0 (A,�) is naturally equivalent to A ⊗�.
For the inductive step, choose, for each k ∈ K , a short exact sequence

0 → Nk → Pk → Bk → 0,

where Pk is projective. There is an exact sequence

0 →
⊕

k

Nk →
⊕

k

Pk →
⊕

k

Bk → 0,
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and
⊕

k Pk is projective, for every direct sum of projectives is projective.
There is a commutative diagram with exact rows:

Tor1(A,
⊕

k Pk) �� Tor1(A,
⊕

k Bk)

���
�
�

∂ �� A ⊗⊕k Nk ��

τ

��

A ⊗⊕k Pk

σ

��⊕
k Tor1(A, Pk) ��

⊕
k Tor1(A, Bk)

∂ ′
��
⊕

k A ⊗ Nk ��
⊕

k A ⊗ Pk,

where the maps in the bottom row are just the usual induced maps in each co-
ordinate, and the maps τ and σ are the isomorphisms given by Theorem 2.65.
The proof is completed by dimension shifting. •

Example 7.7.

(i) We show, for every abelian group B, that

TorZ1 (In, B) ∼= B[n] = {b ∈ B : nb = 0}.
There is an exact sequence

0 → Z
μn−→ Z → In → 0,

where μn is multiplication by n. Applying �⊗ B gives exactness of

Tor1(Z, B) → Tor1(In, B) → Z⊗ B
1⊗μn−→ Z⊗ B.

Now Tor1(Z, B) = {0}, because Z is projective. Moreover, 1 ⊗ μn is
also multiplication by n, while Z ⊗ B = B. In more detail, Z ⊗ �
is naturally isomorphic to the identity functor on Ab, and so there is a
commutative diagram with exact rows:

0 ��B[n]

���
�
�

�� B

τB

��

μn �� B

τB

��
0 �� Tor1(In, B) �� Z⊗ B

1⊗μn

�� Z⊗ B.

By Proposition 2.71, there is an isomorphism B[n] ∼= Tor1(In, B).

(ii) We can now compute TorZ1 (A, B) whenever A and B are finitely gen-
erated abelian groups. By the fundamental theorem, both A and B are
direct sums of cyclic groups. Since Tor commutes with direct sums,
TorZ1 (A, B) is the direct sum of groups TorZ1 (C, D), where C and D are
cyclic. We may assume that C and D are finite; otherwise, they are pro-
jective and Tor1 = {0}. This calculation can be completed using part (i)
and the fact that if D is a cyclic group of finite order m, then D[n] is a
cyclic group of order d, where d = (m, n) is their gcd. �
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Proposition 7.8. If {Bi , ϕ
i
j } is a direct system of left R-modules over a

directed index set I , then for all right R-modules A and all n ≥ 0, there
is an isomorphism

TorR
n

(
A, lim−→ Bi

) ∼= lim−→TorR
n (A, Bi ).

Proof. The proof is by dimension shifting. The base step is Theorem 5.27,
for Tor0(A,�) is naturally isomorphic to A ⊗�.

For the inductive step, choose, for each i ∈ I , a short exact sequence

0 → Ni → Pi → Bi → 0,

where Pi is projective. Since the index set is directed, Proposition 5.33 says
that there is an exact sequence

0 → lim−→ Ni → lim−→ Pi → lim−→ Bi → 0.

Now lim−→ Pi is flat, for every projective module is flat, and a direct limit of flat
modules is flat, by Corollary 5.34. There is a commutative diagram with exact
rows:

Tor1(A, lim−→ Pi ) �� Tor1(A, lim−→ Bi )

���
�
�

∂ �� A ⊗ lim−→ Ni ��

τ

��

A ⊗ lim−→ Pi

σ

��
lim−→Tor1(A, Pi ) �� lim−→Tor1(A, Bi )%∂

�� lim−→ A ⊗ Ni �� lim−→ A ⊗ Pi ,

where the maps in the bottom row are just the usual induced maps between
direct limits, and the maps τ and σ are the isomorphisms given by Theo-
rem 5.27. The step n ≥ 2 is routine. •

We can now augment Theorem 3.66.

Theorem 7.9 (Chase). The following are equivalent for a ring R.

(i) Every direct product of flat right R-modules is flat.

(ii) For every set X, the right R-module RX is flat.

(iii) Every finitely generated submodule of a free left R-module is finitely
presented.

(iv) R is left coherent.

Proof. The equivalence of the last three statements was proved in Theo-
rem 3.66. It is obvious that (i) ⇒ (ii), for R viewed as a right module over
itself is flat. We complete the proof by showing that (iii) ⇒ (i).
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Let (Ai )i∈I be a family of flat right R-modules, and write A = ∏
i∈I Ai .

Define the functor G : RMod → Ab on objects by G(C) =∏i (Ai ⊗R C) and
on maps f : C → C ′ by G f : (ai ⊗ c) �→ (ai ⊗ f c). It is easy to see that G is
an additive functor that is exact (because all the Ai are flat). Define a natural
transformation τ : A⊗R � → G, where τC : (

∏
i Ai )⊗R C →∏

i (Ai ⊗R C)

is given by (ai )⊗ c �→ (ai ⊗ c).

Let C be a finitely generated left R-module, and let 0 → K → F →
C → 0 be an exact sequence, where F is a finitely generated free module.
There is a commutative diagram with exact rows:

A ⊗R K ��

τK
��

A ⊗R F ��

τF
��

A ⊗R C ��

τC
��

0.

��
0 �� G K �� G F �� GC �� 0.

Since G R ∼= C and F ∼= Rn , the additivity of G shows that τF is an isomor-
phism. Hence, if C is finitely presented; that is, if K is finitely generated,
then τK is also a surjection. A diagram chase shows that τC is a surjec-
tion, and so the Five Lemma shows that τC is an isomorphism. Now K is
a finitely generated submodule of the free module F , so that K is finitely pre-
sented, by hypothesis; therefore, τK is an isomorphism. It follows that the
arrow A ⊗R K → A ⊗R F in the top row is an injection. But exactness of
0 = Tor1(A, F) → Tor1(A,C) → A⊗R K → A⊗R F allows us to conclude
that Tor1(A,C) = {0} whenever C is finitely presented.

Consider now any finitely generated left R-module C , and let 0 → K →
F → C → 0 be an exact sequence with F finitely generated free. The family
(Ki )i∈I of all the finitely generated submodules of K forms a direct system
with lim−→ Ki = K , by Example 5.32(iii), and Exercise 5.21 says that C ∼=
lim−→(F/Ki ). Now F/Ki is finitely presented for all i , so that Tor1(A, F/Ki ) =
{0} for all i . Proposition 7.8 gives Tor1(A,C) ∼= Tor1(A, lim−→(F/Ki )) ∼=
lim−→Tor1(A, F/Ki ) = {0}. Thus, Tor1(A,C) = {0} for every finitely gener-
ated left R-module C . Therefore, Tor1(A, B) = {0} for every left R-module
B, by Proposition 3.48, and so Theorem 7.2 says that A is flat. •

Corollary 7.10. If R is left noetherian, then every direct product of flat right
R-modules is flat.

Proof. Every left noetherian ring is left coherent. •

There are other constructions of Tor. For example, TorZ1 (A, B) can be
defined by generators and relations. Consider all triples (a, n, b), where a ∈
A, b ∈ B, na = 0, and nb = 0; then TorZ1 (A, B) is generated by all such
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triples subject to the relations (whenever both sides are defined)

(a + a′, n, b) = (a, n, b)+ (a′, n, b),

(a, n, b + b′) = (a, n, b)+ (a, n, b′),
(ma, n, b) = (a,mn, b) = (a,m, nb).

For a proof of this result, and its generalization to TorR
n (A, B) for arbitrary

rings R, see Mac Lane, Homology, pp. 150–159 and Mac Lane, “Slide and
torsion products for modules,” Rendiconti del Sem. Mat. 15 (1955), 281–309.

7.1.1 Domains
We are now going to assume that R is a domain, so that the notion of torsion
submodule is defined.

Notation. Denote Frac(R) by Q and Q/R by K .

Lemma 7.11. Let R be a domain.

(i) If A is a torsion R-module, then TorR
1 (K , A) ∼= A.

(ii) For every R-module A, we have TorR
n (K , A) = {0} for all n ≥ 2.

(iii) If A is a torsion-free R-module, then TorR
1 (K , A) = {0}.

Proof.

(i) Exactness of 0 → R → Q → K → 0 gives exactness of

Tor1(Q, A) → Tor1(K , A) → R ⊗ A → Q ⊗ A.

Now Q is flat, by Corollary 5.35, and so Tor1(Q, A) = {0}, by Theo-
rem 7.2. The last term Q ⊗ A = {0} because Q is divisible and A is
torsion (Proposition 2.73), and so the middle map Tor1(K , A) → R⊗A
is an isomorphism.

(ii) The sequence Torn(Q, A) → Torn(K , A) → Torn−1(R, A) is exact.
Since n ≥ 2, we have n − 1 ≥ 1, and so both the first and third Tors are
{0}, because Q and R are flat. Thus, exactness gives Torn(K , A) = {0}.

(iii) By Lemma 4.33(ii), there is an exact sequence 0 → A → V → T → 0,
where V is a vector space over Q and T is torsion. Since every vector
space has a basis, V is a direct sum of copies of Q. Corollary 5.35 says
that Q is flat, and Lemma 3.46 says that a direct sum of flat modules is
flat. We conclude that V is flat. Exactness of 0 → A → V → V/A →
0 gives exactness of Tor2(K , V/A) → Tor1(K , A) → Tor1(K , V ).
Now Tor2(K , V/A) = {0}, by (ii), and Tor1(K , V ) = {0}, for V is flat,
and so Tor1(K , A) = {0}. •
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The next result shows why Tor is so called.

Theorem 7.12. TorR
1 (K , A) ∼= t A for all R-modules A. In fact, the functor

TorR
1 (K ,�) is naturally isomorphic to the torsion functor.

Proof. Consider the exact sequence

Tor2(K , A/t A) → Tor1(K , t A)
ιA∗−→ Tor1(K , A) → Tor1(K , A/t A),

where ιA∗ is the map induced by the inclusion i A : t A → A. The first term is
{0}, by Lemma 4.33(ii), and the last term is {0}, by Lemma 7.11(iii). There-
fore, the map ιA∗ : Tor1(K , t A) → Tor1(K , A) is an isomorphism.

Let f : A → B and let f ′ : t A → t B be its restriction. The follow-
ing diagram commutes, because Tor1(K ,�) is a functor, which says that the
isomorphisms ιA∗ constitute a natural transformation.

Tor1(K , t A)
ιA∗ ��

f ′∗ ��

Tor1(K , A)

f∗��
Tor1(K , t B)

ιB∗
�� Tor1(K , B)

Proof of naturality is left to the reader. •

Corollary 7.13. Let R be a domain.

(i) For every R-module A, there is an exact sequence

0 → t A → A → Q ⊗R A → K ⊗R A → 0.

(ii) An R-module A is torsion if and only if Q ⊗R A = {0}.
Proof.

(i) In the exact sequence

Tor1(Q, A) → Tor1(K , A) → R ⊗ A → Q ⊗ A → K ⊗ A → 0,

Q flat gives Tor1(Q, A) = {0}, Lemma 4.33(ii) gives Tor1(K , A) ∼= t A,
and R ⊗R A ∼= A.

(ii) Necessity is Exercise 3.33 on page 152; sufficiency follows at once from
part (i). •

Another reason for the name Tor is that TorR
n is a torsion R-module for all

n ≥ 1.
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Lemma 7.14. If R is a domain and B is a torsion R-module, then TorR
n (A, B)

is torsion for all A and for all n ≥ 0.

Proof. The proof is by dimension shifting. If n = 0, then each generator
a ⊗ b is torsion, and so TorR

0 (A, B) is torsion.
If n = 1, there is an exact sequence 0 → N → P → A → 0 with P

projective, and this gives exactness of

0 = TorR
1 (P, B) → TorR

1 (A, B) → N ⊗R B.

Since N ⊗R B is torsion, so is its submodule TorR
1 (A, B).

For the inductive step, look further out in the long exact sequence. There
is exactness

0 = TorR
n+1(P, B) → TorR

n+1(A, B) → TorR
n (N , B) → TorR

n (P, B) = 0.

But TorR
n (N , B) is torsion, by induction, and so TorR

n+1(A, B) ∼= TorR
n (N , B)

is torsion. •

Theorem 7.15. If R is a domain, then TorR
n (A, B) is a torsion module for

all A, B and all n ≥ 1.

Proof. Let n = 1, and consider the special case when B is torsion-free. By
Lemma 4.33(i), there is an exact sequence

0 → B → V → T → 0,

where V is a vector space over Q and T = V/B is torsion. This gives an
exact sequence

TorR
2 (A, T ) → TorR

1 (A, B) → TorR
1 (A, V ).

Now TorR
2 (A, T ) is torsion, by Lemma 7.14, while TorR

1 (A, V ) = {0}, be-
cause V is flat (V is a direct sum of copies of Q). Thus, TorR

1 (A, B) is a
quotient of a torsion module, and hence it is torsion.

Now let B be arbitrary. Exactness of 0 → t B → B → B/t B → 0 gives
exactness of

TorR
1 (A, t B) → TorR

1 (A, B) → TorR
1 (A, B/t B).

The flanking terms are torsion, for t B is torsion and B/t B is torsion-free.
Thus, TorR

1 (A, B) is torsion, being an extension of one torsion module by
another. The proof is completed by dimension shifting. •
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7.1.2 Localization
We are now going to see that Tor gets along well with localization.

Proposition 7.16. Let R and A be rings, and let T : RMod → AMod be
an exact additive functor. Then T commutes with homology; that is, for every
complex (C, d) ∈ RComp and for every n ∈ Z, there is an isomorphism

Hn(T C, T d) ∼= T Hn(C, d).

Proof. Consider the commutative diagram with exact bottom row,

Cn+1

d ′n+1 ��

dn+1 �� Cn
dn �� Cn−1

0 �� im dn+1 j
�� ker dn

k
��

�� Hn(C) �� 0,

where j , and k are inclusions and d ′n+1 is just dn+1 with its target changed
from Cn to im dn+1. Applying the exact functor T gives the commutative
diagram with exact bottom row

T Cn+1

T d ′n+1 ��

T dn+1 �� T Cn
T dn �� T Cn−1

0 �� T (im dn+1) T j
�� T (ker dn)

T k
��

�� T Hn(C) �� 0.

On the other hand, because T is exact, we have T (im dn+1) = im T (dn+1)

and T (ker dn) = ker(T dn), so that the bottom row is

0 → im(T dn+1) → ker(T dn) → T Hn(C) → 0.

By definition, ker(T dn)/ im(T dn+1) = Hn(T C), and a diagram chase, Propo-
sition 2.70, gives Hn(T C) ∼= T Hn(C). •

Localization commutes with Tor, essentially because S−1 R is a flat R-
module.

Proposition 7.17. If S is a multiplicative subset of a commutative ring R,
then for all n ≥ 0 and all R-modules A and B, there are isomorphisms,
natural in A and B,

S−1 TorR
n (A, B) ∼= TorS−1 R

n (S−1 A, S−1 B).

Proof. First consider the case n = 0. For a fixed R-module A, there is a
natural isomorphism

τA,B : S−1(A ⊗R B) → S−1 A ⊗S−1 R S−1 B,
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for either is a universal solution U of the universal mapping problem

S−1 A × S−1 B ��

f %%��
���

���
� U

f̃���
�

�

M,

where M is an S−1 R-module, f is S−1 R-bilinear, and f̃ is an S−1 R-map.
If PB is a deleted projective resolution of B, then S−1(PB) is a deleted

projective resolution of S−1 B, for localization is an exact functor that pre-
serves projectives. Naturality of the isomorphisms τA,B gives an isomorphism
of complexes

S−1(A ⊗R PB) ∼= S−1 A ⊗S−1 R S−1(PB),

so that their homology groups are isomorphic. Since localization is an exact
additive functor, Proposition 7.16 applies: for all n ≥ 0,

Hn(S−1(A ⊗R PB)) ∼= S−1 Hn(A ⊗R PB) ∼= S−1 TorR
n (A, B).

On the other hand, since S−1(PB) is a deleted projective resolution of S−1 B,
the definition of Tor gives

Hn(S−1 A ⊗S−1 R S−1(PB)) ∼= TorS−1 R
n (S−1 A, S−1 B).

Proof of naturality is left for the reader. •

Corollary 7.18. Let A be an R-module over a commutative ring R. If Am is
a flat Rm-module for every maximal ideal m, then A is a flat R-module.

Proof. Since Am is flat, Proposition 7.2 gives TorRm
n (Am, Bm) = {0} for all

n ≥ 1, for every R-module B, and for every maximal ideal m. But Proposi-
tion 7.17 gives TorR

n (A, B)m = {0} for all maximal ideals m and all n ≥ 1.
Finally, Proposition 4.90 shows that TorR

n (A, B) = {0} for all n ≥ 1. Since
this is true for all R-modules B, we have A flat. •

Lemma 7.19. If R is a left noetherian ring and A is a finitely generated left
R-module, then there is a projective resolution P of A in which each Pn is
finitely generated.

Proof. Since A is finitely generated, there exist a finitely generated free left
R-module P0 and a surjective R-map ε : P0 → A. Since R is left noetherian,
ker ε is finitely generated, and so there exist a finitely generated free left R-
module P1 and a surjective R-map d1 : P1 → ker ε. Define D1 : P1 → P0
as the composite id1, where i : ker ε → P0 is the inclusion; there is an exact
sequence

0 → ker D1 → P1
D1−→ P0

ε−→ A → 0.



7.1 Tor 417

This construction can be iterated, for ker D1 is finitely generated, and the
proof is completed by induction. (We remark that we have, in fact, constructed
a free resolution of A, each of whose terms is finitely generated.) •

Theorem 7.20. If R is a commutative noetherian ring, and if A and B
are finitely generated R-modules, then TorR

n (A, B) is a finitely generated R-
module for all n ≥ 0.

Remark. There is an analogous result for Ext (see Theorem 7.36). �

Proof. Note that Tor is an R-module because R is commutative. We prove
that Torn is finitely generated by induction on n ≥ 0. The base step holds, for
A⊗R B is finitely generated, by Exercise 3.13 on page 115(i). If n ≥ 0, choose

a projective resolution · · · → P1
d1−→ P0 → A → 0 as in Lemma 7.19. Since

Pn ⊗R B is finitely generated, so are ker(dn ⊗ 1B) (by Proposition 3.18) and
its quotient TorR

n (A, B). •

Exercises

*7.1 If R is right hereditary, prove that TorR
j (A, B) = {0} for all j ≥ 2

and for all right R-modules A and B.
Hint. Every submodule of a projective module is projective.

7.2 If 0 → A → B → C → 0 is an exact sequence of right R-modules
with both A and C flat, prove that B is flat.

*7.3 If F is flat and π : P → F is a surjection with P flat, prove that
kerπ is flat.

7.4 If A, B are finite abelian groups, prove that TorZ1 (A, B) ∼= A⊗Z B.
7.5 Let R be a domain with Frac(R) = Q and K = Q/R. Prove that

the right derived functors of t (the torsion submodule functor) are

R0t = t, R1t = K ⊗R �, Rnt = 0 for all n ≥ 2.

7.6 Let k be a field, let R = k[x, y], and let I be the ideal (x, y).
(i) Prove that x ⊗ y − y ⊗ x ∈ I ⊗R I is nonzero.

Hint. Consider (I/I 2)⊗ (I/I 2).

(ii) Prove that x(x ⊗ y− y⊗ x) = 0, and conclude that I ⊗R I
is not torsion-free.

7.7 Prove that the functor T = TorZ1 (G,�) is left exact for every abelian
group G, and compute its right derived functors LnT .
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7.2 Ext

We now examine Ext more closely. As we said in the last chapter, all proper-
ties of ExtnR(A,�) and ExtnR(�, B) must follow from the axioms characteriz-
ing them, Theorems 6.48 and 6.64. In particular, their construction as derived
functors need not be used. As for Tor, it is possible that a proof of some
property of Ext using derived functors may be simpler than a proof from the
axioms. For example, it was very easy to prove Proposition 6.38: ExtnR(A,�)

preserves multiplications, but it is not obvious how to give a new proof of this
fact from the axioms.

We begin by showing that Ext behaves like Hom with respect to direct
sums and direct products.

Proposition 7.21. If (Ak)k∈K is a family of modules, then there are natural
isomorphisms, for all n ≥ 0,

ExtnR
(⊕

k∈K

Ak, B
) ∼= ∏

k∈K

ExtnR(Ak, B).

Proof. The proof is by dimension shifting. The step n = 0 is Theorem 2.31,
because Ext0R(�, B) is naturally isomorphic to HomR(�, B).

For the step n = 1, choose, for each k ∈ K , a short exact sequence

0 → Lk → Pk → Ak → 0,

where Pk is projective. There is an exact sequence

0 →
⊕

k

Lk →
⊕

k

Pk →
⊕

k

Ak → 0,

and
⊕

k Pk is projective, for every direct sum of projectives is projective.
There is a commutative diagram with exact rows:

Hom(
⊕

Pk, B) ��

τ

��

Hom(
⊕

Lk, B)
∂ ��

σ

��

Ext1(
⊕

Ak, B) ��

���
�
�

Ext1(
⊕

Pk, B)

∏
Hom(Pk, B) �� ∏Hom(Lk, B)

d
�� ∏Ext1(Ak, B) �� ∏Ext1(Pk, B),

where the maps in the bottom row are just the usual induced maps in each
coordinate, and the maps τ and σ are the natural isomorphisms given by The-
orem 2.31. Now Ext1(

⊕
Pk, B) = {0} = ∏

Ext1(Pk, B), because
⊕

Pk
and each Pk are projective; thus, the maps ∂ and d are surjective. This is
precisely the diagram in Proposition 2.70, and so there exists an isomorphism
Ext1(

⊕
Ak, B) →∏

Ext1(Ak, B) making the augmented diagram commute.
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We now prove the inductive step for n ≥ 1. Look further out in the long
exact sequence. There is a commutative diagram

Extn
(⊕

Pk,B
)

�� Extn
(⊕

Lk,B
) ∂��

σ

��

Extn+1
(⊕

Ak,B
)

��

���
�
�
�

Extn+1
(⊕

Pk,B
)

∏
Extn(Pk,B) �� ∏Extn(Lk,B)

d
�� ∏Extn+1(Ak,B) �� ∏Extn+1(Pk,B),

where σ : Extn(
⊕

Lk, B) → ∏
Extn(Lk, B) is an isomorphism that exists

by the inductive hypothesis. Since n ≥ 1, all four Exts whose first variable
is projective are {0}; it follows from exactness of the rows that both ∂ and
d are isomorphisms. Finally, the composite dσ∂−1 : Extn+1(

⊕
Ak, B) →∏

Extn+1(Ak, B) is an isomorphism, as desired. •
There is a dual result in the second variable.

Proposition 7.22. If (Bk)k∈K is a family of modules, then there are natural
isomorphisms, for all n ≥ 0,

ExtnR

(
A,
∏
k∈K

Bk

) ∼= ∏
k∈K

ExtnR(A, Bk).

Proof. The proof is by dimension shifting. The step n = 0 is Theorem 2.30,
for Ext0(A,�) is naturally isomorphic to the covariant functor Hom(A,�).

For the step n = 1, choose, for each k ∈ K , a short exact sequence

0 → Bk → Ek → Nk → 0,

where Ek is injective. There is an exact sequence 0 → ∏
k Bk →

∏
k Ek →∏

k Nk → 0, and
∏

k Ek is injective, for every product of injectives is in-
jective, by Proposition 3.28. The proof finishes as that of Proposition 7.21.

•
It follows that Extn commutes with finite direct sums in either variable; of

course, this also follows from Extn being an additive functor in either variable.

Remark. These last two proofs cannot be generalized by replacing direct
sums by direct limits or direct products by inverse limits; the reason is that
direct limits of projectives need not be projective and inverse limits of injec-
tives need not be injective. �
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Example 7.23.

(i) We show, for every abelian group B, that if m ≥ 2, then

Ext1
Z
(Im, B) ∼= B/m B.

There is an exact sequence

0 → Z
μm−→ Z → Im → 0,

where μm is multiplication by m. Applying Hom(�, B) gives exactness

of Hom(Z, B)
μ∗m−→ Hom(Z, B) → Ext1(Im, B) → Ext1(Z, B). Now

Ext1(Z, B) = {0} because Z is projective. Moreover, μ∗m is also mul-
tiplication by m, while Hom(Z, B) ∼= B. More precisely, Hom(Z,�)

is naturally equivalent to the identity functor on Ab, and so there is a
commutative diagram with exact rows:

B

τB

��

μm �� B

τB

��

�� B/m B

���
�
�

�� 0

Hom(Z, B)
μ∗m

�� Hom(Z, B) �� Ext1(Im, B) �� 0.

By Proposition 2.70, there is an isomorphism B/m B ∼= Ext1(Im, B).

(ii) We can now compute Ext1
Z
(A, B) whenever A and B are finitely gen-

erated abelian groups. By the Fundamental Theorem of Finitely Gen-
erated Abelian Groups, both A and B are direct sums of cyclic groups.
Since Ext1

Z
commutes with finite direct sums, Ext1

Z
(A, B) is the direct

sum of groups of the form Ext1
Z
(C, D), where C and D are cyclic. We

may assume that C is finite; otherwise, C ∼= Z, and Ext1(C, D) = {0}.
This calculation can be completed using part (i) and Exercise 2.29 on
page 94: if D is a cyclic group of finite order m, then D/nD is a cyclic
group of order d = (m, n). �

Definition. Given R-modules C and A, an extension of A by C is a short
exact sequence

0 → A
i−→ B

p−→ C → 0.

An extension is split if there exists an R-map s : C → B with ps = 1C .

Of course, if 0 → A → B → C → 0 is a split extension, then B ∼=
A ⊕ C . The converse is false; there are nonsplit extensions with B ∼= A ⊕ C .
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Proposition 7.24. If Ext1R(C, A) = {0}, then every extension of A by C
splits.

Proof. Apply Hom(C,�) to 0 → A
i−→ B

p−→ C to obtain an exact

sequence Hom(C, B)
p∗−→ Hom(C,C)

∂−→ Ext1(C, A). By hypothesis,
Ext1(C, A) = {0}, so that p∗ is surjective. Hence, there exists s ∈ Hom(C, B)

with 1C = p∗(s); that is, 1C = ps, and this says that the extension splits. •
We will soon prove the converse of Proposition 7.24.

Corollary 7.25.

(i) A left R-module P is projective if and only if Ext1R(P, B) = {0} for
every R-module B.

(ii) A left R-module E is injective if and only if Ext1R(A, E) = {0} for every
left R-module A.

Proof.

(i) If P is projective, then Ext1R(P, B) = {0} for all B, by Corollary 6.58.
Conversely, if Ext1R(P, B) = {0} for all B, then every exact sequence
0 → B → X → P → 0 splits, by Proposition 7.24, and so P is
projective, by Proposition 3.3.

(ii) Similar to the proof of (i), but using Proposition 3.40. •

The next definition arises from Schreier’s solution to the extension prob-
lem in Group Theory (see Proposition 9.12).

Definition. Given modules C and A, two extensions ξ : 0 → A → B →
C → 0 and ξ ′ : 0 → A → B ′ → C → 0 of A by C are equivalent if there
exists a map ϕ : B → B ′ making the following diagram commute:

ξ = 0 �� A
i ��

1A
��

B
p ��

ϕ
��

C
1C��

�� 0

ξ ′ = 0 �� A
i ′

�� B ′
p′

�� C �� 0.

We denote the equivalence class of an extension ξ by [ξ ], and we define

e(C, A) = {[ξ ] : ξ is an extension of A by C
}
.
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Example 7.26. If two extensions are equivalent, then the Five Lemma shows
that the map ϕ must be an isomorphism; it follows that equivalence is, indeed,
an equivalence relation (for we can now prove symmetry). However, the con-
verse is false: there are inequivalent extensions having isomorphic middle
terms. For example, let p be an odd prime, and consider the diagram with
exact rows

0 �� K
i ��

1K ��

G
π ��

��

Q
1Q��

�� 0

0 �� K
i ′

�� G
π ′

�� Q �� 0.

In the top row, K = 〈a〉, a cyclic group of order p, G = 〈g〉, a cyclic group
of order p2, i : K → G is defined by i(a) = pg, Q = G/ im i , and π is the
natural map. In the bottom row, define i ′(a) = 2pg; note that i ′ is an injection
because p is odd. Suppose there is a map ϕ : G → G making the diagram
commute. Commutativity of the first square gives ϕ(pa) = 2pa, and this
forces ϕ(g) = 2g, by Exercise 7.8 on page 435. But commutativity of the
second square now gives g + im i = 2g + im i , which says that g ∈ im i , a
contradiction. Therefore, the two extensions are not equivalent. �

We are going to show that there is a bijection ψ : e(C, A) → Ext1(C, A).
Given an extension ξ : 0 → A → B → C → 0 and the chosen projective
resolution P of C (in the definition of Extn), form the diagram

�� P2
d2 ��

���
�
� P1

d1 ��

α1

���
�
� P0 ��

α0

���
�
� C ��

1C

��

0

�� 0 �� A �� B �� C �� 0.

By Theorem 6.16, the Comparison Theorem, there exist dashed arrows which
comprise a chain map (αn) : PC → ξ over 1C . In particular, the first compo-
nent α1 : P1 → A satisfies α1d2 = 0; thus, d∗2 (α1) = 0, α1 ∈ ker d∗2 , and α1
is a cocycle. Define

ψ : e(C, A) → Ext1R(C, A) by [ξ ] �→ cls(α1)

[recall that Ext1R(C, A) = (ker d∗2 )/(im d∗1 ) and cls(α1) = α1 + im d∗1 ]. To
see that ψ is well-defined, we show that ψ does not depend on the chain map
(αn) : PC → ξ nor on the choice of extension in the equivalence class [ξ ].

P2
d2 �� P1

d1 ��

α′1
��

α1

��

s1

��&&
&&

&&
&&

P0

s0��&&
&&

&&
&&

0 �� A �� B
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The Comparison Theorem says that if (α′n) : PC → ξ is another chain map
over 1C , then (αn) and (α′n) are homotopic: there are maps s0 and s1 with
α′1−α1 = 0 ·s1+s0d1 = s0d1, so that α′1−α1 ∈ im d∗1 and cls(α1) = cls(α′1).
To see that equivalent extensions ξ and ξ ′ determine the same element of Ext1,
consider the diagram

�� P2
d2 ��

��

P1
d1 ��

α1
��

P0 ��

α0
��

C ��

1C��

0

ξ = �� 0

��

�� A
1A ��

�� B
β
��

�� C
1C��

�� 0

ξ ′ �� 0 �� A �� B ′ �� C �� 0.

Regarding the equivalence from row 2 to row 3 as a chain map over 1C , we
see that the bottom row ξ ′ gives the same cocycle α1 as does ξ .

Lemma 7.27. The function ψ : e(C, A) → Ext1R(C, A), given by [ξ ] �→
cls(α1), is well-defined, and if ξ is a split extension, then ψ : [ξ ] �→ 0.

Proof. We have just proved that ψ is is a well-defined function, for it is
independent of the choices. If ξ is a split extension, there is a map j : C → B
with pj = 1C , and

�� P2
d2 ��

��

P1
d1 ��

0 ��

P0
ε ��

jε
��

C ��

1C��

0

�� 0 �� A �� B p
�� C �� 0

is a commutative diagram with α1 = 0. •
We will prove that ψ is a bijection by constructing its inverse; to each

cocycle α : P1 → A, we must find an extension of A by C . Let us begin by
analyzing the diagram defining the map α1.

Lemma 7.28. Let $ = 0 → X1
j−→ X0

ε−→ C → 0 be an extension of a
module X1 by a module C. Given a map h : X1 → A, consider the diagram

$ = 0 �� X1
j ��

h ��

X0
ε �� C ��

1C��

0

A C.
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(i) There exists a commutative diagram with exact rows that completes the
given diagram:

0 �� X1
j ��

h ��

X0
ε ��

β
��

C ��

1C��

0

0 �� A
i

�� B η
�� C �� 0.

(ii) Any two bottom rows of completed diagrams are equivalent extensions.

Proof.

(i) Define B to be the pushout of j and h. As in Lemma 3.41, let S ⊆
A ⊕ X0 by S = {(hx1,− j x1) : x1 ∈ X1} and define B = (A ⊕ X0)/S.
If we define i : A → B by a �→ (a, 0) + S and β : X0 → B by x0 �→
(0, x0)+S, then i is an injection and the first square commutes. It is easy
to check that η : B → C , given by (a, x0) + S �→ εx0 is well-defined,
the second square commutes, and the bottom row is exact.

(ii) Let

0 �� X1
j ��

h
��

X0
ε ��

β ′��

C ��

1C��

0

0 �� A
i ′

�� B ′
η′

�� C �� 0

be a second completion of the diagram. We must define θ : B → B ′
making the following diagram commute.

0 �� A
1A ��

i �� B
η ��

θ��

C
1C��

�� 0

0 �� A
i ′

�� B ′
η′

�� C �� 0

Now θ , given by (a, x0)+ S �→ i ′a+β ′x0, is well-defined, and it makes
the diagram commute; that is, the extensions are equivalent. •

Notation. Denote the extension of A by C just constructed by

h$.

Here is the dual result.
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Lemma 7.29. Let $′ = 0 → A → Y0 → Y1 → 0 be an extension of A
by Y1, where A and Y0 are modules. Given a map k : C → Y1, consider the
diagram

A
1A ��

C
k��

$′ = 0 �� A �� Y0 p
�� Y1 �� 0.

(i) There exists a commutative diagram with exact rows that completes the
given diagram:

$′k = 0 �� A
1A ��

�� B ��

��

C
k��

�� 0

$′ = 0 �� A �� Y0 p
�� Y1 �� 0.

(ii) Any two top rows of completed diagrams are equivalent extensions.

Proof. Dual to that of Lemma 7.28; in particular, construct the top row using
the pullback of k and p. •

Notation. Denote the extension of A by C just constructed by

$′k.

Theorem 7.30. The function ψ : e(C, A) → Ext1(C, A) is a bijection.

Proof. We construct the inverse θ : Ext1(C, A) → e(C, A) of ψ . Choose a
projective resolution of C ,

→ P2
d2−→ P1

d1−→ P0 → C → 0,

and choose a 1-cocycle α1 : P1 → A. Since α1 is a cocycle, we have 0 =
d∗2 (α1) = α1d2; thus, α1 induces a homomorphism α1 : P1/ im d2 → A [if
x1 ∈ P1, then α1 : x1 + im d2 �→ α1(x1)]. Let $ denote the extension

$ = 0 → P1/ im d2 → P0 → C → 0.

As in the lemma, there is a commutative diagram with exact rows:

0 �� P1/ im d2 ��

α1 ��

P0

β
��

�� C
1C��

�� 0

0 �� A
i

�� B �� C �� 0.

Define θ : Ext1(C, A) → e(C, A) using the construction in Lemma 7.28(ii):

θ : cls(α1) �→ [α1$].
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Let us see that θ is independent of the choice of cocycle α1. If α′1 is another
representative of the coset α1 + im d∗1 , then there is a map s : P0 → A with
α′1 = α1 + sd1. But it is easy to see that the following diagram commutes:

P2
d2 ��

0 ��

P1
d1 ��

α1+sd1 ��

P0 ��

β+is
��

C ��

1C��

0

0 �� A
i

�� B �� C �� 0.

As the bottom row has not changed, [α1$] = [α′1$].
It remains to show that the composites ψθ and θψ are identities. If

cls(α1) ∈ Ext1(C, A), then θ(cls(α1)) is the bottom row of the diagram

P2

0
��

�� P1 ��

α1
��

P0

α0
��

�� C
1C��

�� 0

0 �� A �� B �� C �� 0,

and ψθ(cls(α1)) = cls(α1) because α1 is the first component of a chain map
PC → θ(cls(α1)) over 1C ; therefore, ψθ is the identity.

For the other composite, start with an extension ξ , and then imbed it as
the bottom row of a diagram, using Lemma 7.28(i).

0 �� P/ im d2
d1 ��

α1 ��

P0 ��

���
� C ��

1C��

0

0 �� A �� B �� C �� 0

Both ξ and α1$ are bottom rows of such a diagram, and so Lemma 7.28(ii)
shows that [ξ ] = [α′1$]. Hence, θψ is the identity, and ψ is a bijection. •

We can now prove the converse of Proposition 7.24.

Theorem 7.31. Every extension 0 → A
i−→ B

p−→ C → 0 splits if and
only if Ext1R(C, A) = {0}.
Proof. Sufficiency is Proposition 7.24. For the converse, if every extension
is split, then |e(C, A)| is the number of equivalence classes of split exten-
sions. But all split sequences are equivalent, by Exercise 7.9 on page 435,
so that |e(C, A)| = 1. Therefore, |Ext1R(C, A)| = 1, by Theorem 7.30, and
Ext1R(C, A) = {0}. •

Whenever meeting a homology group, we must ask what it means for it
to be zero, for its elements can then be construed as being obstructions. Thus,
nonzero elements of Ext1R(C, A) describe nonsplit extensions (indeed, this
result is why Ext is so called).
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Example 7.32. If p is a prime, then Ext1
Z
(Ip, Ip) ∼= Ip, as we saw in Ex-

ample 7.23(i), so that |Ext1
Z
(Ip, Ip)| = p. It follows from Theorem 7.30 that

there are p equivalence classes of extensions 0 → Ip → B → Ip → 0.
However, if |B| = p2, then elementary Group Theory says that there are,
to isomorphism, only two choices for B, namely, B ∼= Ip2 or B ∼= Ip ⊕ Ip
(two inequivalent extensions with middle group Ip2 are displayed in Exam-
ple 7.26). Therefore, if mid(A,C) is the number of middle terms B in exten-
sions of the form 0 → A → B → C → 0, then mid(A,C) ≤ |Ext1

Z
(C, A)|;

moreover, this inequality can be strict. �

Proposition 7.33.

(i) If F is a torsion-free abelian group and T is a group of bounded order
(i.e., nT = {0} for some positive integer n), then Ext1(F, T ) = {0}.

(ii) If the torsion subgroup tG of an abelian group G is of bounded order,
then tG is a direct summand of G.

Proof.

(i) Since F is torsion-free, it is a flat Z-module, by Theorem 4.35, so that
exactness of 0 → Z → Q gives exactness of 0 → Z ⊗ F → Q ⊗ F .
Thus, F ∼= Z⊗ F can be imbedded in a vector space V over Q, namely,
V = Q ⊗ F . Applying the contravariant functor Hom(�, T ) to 0 →
F → V → V/F → 0 gives an exact sequence

Ext1(V, T ) → Ext1(F, T ) → Ext2(V/F, T ).

The last term is {0}, by Exercise 6.18 on page 376. Also, Ext1(V, T )

is a vector space over Q, by Proposition 6.19, so that Ext1(F, T ) is
divisible. Now multiplication μn : Q → Q is an isomorphism, and so
the induced map μ∗n : Ext1(F, T ) → Ext1(F, T ) is an isomorphism.
On the other hand, multiplication μ′n : T → T is the zero map (since
nT = {0}), and so the induced map μ′n∗ : Ext1(F, T ) → Ext1(F, T )

is the zero map. But both induced maps are multiplication by n, so
that Ext1(F, T ) = {0}, as desired. (We have solved Exercise 6.20 on
page 377.)

(ii) To prove that the extension 0 → tG → G → G/tG → 0 splits, it
suffices to prove that Ext1(G/tG, tG) = {0}. Since G/tG is torsion-
free, this follows from part (i) and Corollary 7.31. •

Remark. Let T be a torsion abelian group. We say that T has Property S if,
whenever T is the torsion subgroup of a group G, then it is a direct summand
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of G [in homological language, a torsion group T has Property S if and only
if Ext1

Z
(C, T ) = {0} for every torsion-free abelian group C]. We have just

proved that a group T of bounded order has Property S, and it follows easily
that a torsion group B ⊕ D has Property S if B has bounded order and D
is divisible. The converse is true, and it follows from a theorem of Kulikov:
a pure subgroup of bounded order is a direct summand (see Fuchs, Infinite
Abelian Groups I, p. 118). �

Proposition 7.34. There exists an abelian group G whose torsion subgroup
is not a direct summand of G; in fact, we may choose tG =⊕p Ip, where the
direct sum is over all primes p.

Proof. By Corollary 7.31, it suffices to prove that Ext1
Z

(
Q,
⊕

p Ip
) 	= 0,

where p ranges over all primes. In Exercise 3.31 on page 151, it is shown
that D = (

∏
p Ip)/(

⊕
p Ip) is a torsion-free divisible group; that is, D is a

vector space over Q. Exactness of 0 → ⊕
p Ip →

∏
p Ip → D → 0 gives

exactness of

Hom
(
Q,
∏

p

Ip

)
→ Hom(Q, D)

∂−→ Ext1
(
Q,
⊕

p

Ip

)
→ Ext1

(
Q,
∏

Ip

)
.

Now Hom(Q,
∏

p Ip) ∼= ∏
Hom(Q, Ip) = {0}, by Theorem 2.31, while

Propositions 7.22 and 7.33(i) give Ext1
(
Q,
∏

p Ip
) ∼=∏p Ext1(Q, Ip) = {0}.

Hence, ∂ is an isomorphism. But Hom(Q, D) 	= {0}, because D is a nonzero
vector space over Q. Therefore, Ext1(Q,

⊕
p Ip) 	= {0}. •

It should come as no surprise that Ext1 does not preserve infinite direct
sums. We just saw that Ext1(Q,

⊕
p Ip) 	= {0}, while

⊕
p Ext1(Q, Ip) = {0}.

Therefore, Ext1(Q,⊕pIp) 	∼=
⊕

p Ext1(Q, Ip).

7.2.1 Baer Sum
If X is a set and ψ : X → G is a bijection to a group G, then there is a unique
group structure on X making it a group and ψ an isomorphism [if x, x ′ ∈ X ,
then x = ψ−1(g) and x ′ = ψ−1(g′); define xx ′ = ψ−1(gg′)]. In particular,
Theorem 7.30 implies that there is a group structure on e(C, A). It was R.
Baer who made this explicit. If f : C → A and g : C ′ → A′, define

f ⊕ g : C ⊕ C ′ → A ⊕ A′ by f ⊕ g : (c, c′) �→ ( f c, gc′).

Define the diagonal map �C : C → C ⊕ C by �C : c �→ (c, c), and define
the codiagonal map ∇A : A ⊕ A → A by ∇A : (a1, a2) �→ a1 + a2. Let us
show that if f, g : C → A are homomorphisms, then ∇A( f ⊕ g)�C = f + g.
If c ∈ C , then

∇A( f ⊕ g)�C : c �→ (c, c) �→ ( f c, gc) �→ f c + gc = ( f + g)c.
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Thus, if f, g : C → A, then the formula f + g = ∇A( f ⊕ g)�C describes
addition in Hom(C, A). Now Ext1 generalizes Hom [for Hom = Ext0], and
Baer mimicked this definition to define addition in e(C, A).

Definition. The direct sum of extensions

ξ = 0 → A
i−→ B

p−→ C → 0 and ξ ′ = 0 → A′ i ′−→ B ′ p′−→ C ′ → 0

is the extension

ξ ⊕ ξ ′ = 0 → A ⊕ A′ i⊕i ′−→ B ⊕ B ′ p⊕p′−→ C ⊕ C ′ → 0.

By analogy with the sum of two homomorphisms, define [ξ ] + [ξ ′] in
e(C, A) to be the function e(C, A) × e(C, A) → e(C, A) given by the com-
posite

([ξ ], [ξ ′]) �→ [ξ ⊕ ξ ′] �→ [∇(ξ ⊕ ξ ′)] �→ [
(∇(ξ ⊕ ξ ′)

)
�].

Pay attention to the parentheses, for we have not proved that this operation
is associative (even though it is). The reader can check that this addition is
independent of the choice of representative; that is, if [ξ ] = [ξ1] and [ξ ′] =
[ξ ′1], then [ξ ] + [ξ ′] = [ξ1] + [ξ ′1].

We will need three bookkeeping formulas. Recall that if ξ is an extension
of A by C , then ψ[ξ ] = cls(α1), where P is a projective resolution of C and
α1 is the first component of a chain map P → ξ over 1C .
Formula I. ψ[ξ⊕ξ ′] = ψ[ξ ]⊕ψ[ξ ′], where the right side is obtained from
the direct sum ξ ⊕ ξ ′ pictured below.

0 �� P1 ⊕ P ′
1

α1⊕α′1 ��

�� P0 ⊕ P ′
0

��

α0⊕α′0��

C ⊕ C ′ ��

1C⊕C ′��

0

0 �� A ⊕ A′ �� B ⊕ B ′ �� C ⊕ C ′ �� 0

We know that Ext1(C⊕C ′, A⊕ A′) is independent of the choice of projective
resolution of the first variable; hence, if P and P′ are chosen resolutions of C
and C ′, respectively, then we may assume that P⊕P′ is the chosen resolution
of C ⊕ C ′.
Formula II. If [ξ ] ∈ e(C, A) and h : A → A′, then

ψ[hξ ] = hψ[ξ ] in e(C, A′).

This formula follows from the diagram

P2 �� P1 ��

α1
��

P0 ��

��

C ��

1C��

0

ξ = 0 �� A ��

h ��

B ��

��

C ��

1C��

0

hξ = 0 �� A′ �� E �� C �� 0.
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Formula III. If [ξ ] ∈ e(C, A) and k : C ′ → C , then [ξk] ∈ e(C ′, A); let
us denote the function e(C ′, A) → Ext1(C ′, A) by ψ ′; that is, if P′ is the
chosen projective resolution of C ′, then ψ ′([ξk]) = cls(k′1), where k′1 is the
first component of a chain map P′C ′ → ξk over 1C ′ . We can now state the
formula:

ψ ′[ξk] = ψ[ξ ]k′1 in e(C ′, A).

Consider the diagram with middle row ξk and bottom row ξ :

P ′
2

d ′2 ��

��

P ′
1

d ′1 ��

γ1
��

P ′
0

��

γ0
��

C ′ ��

1C ′��

0

0 ��

��

A ��

1A ��

B ′ ��

��

C ′ ��

k��

0

0 �� A �� E �� C �� 0.

Thus, ψ ′[ξk] = γ1. Having pictured ψ ′([ξk]), let us now picture ψ[ξ ]k′1.

P ′
2

��

��

P ′
1

��

k′1 ��

P ′
0

��

k′0��

C ′ ��

k
��

0

P2 ��

��

P1 ��

α1
��

P0 ��

��

C ��

1C��

0

0 �� A �� B �� C �� 0

Both γ1 and α1k′1 are first components of chain maps P′C ′ → ξ over k. The
Comparison Theorem says such chain maps are unique to homotopy, and so
cls(γ1) = cls(α1k′1).

This formula will be used for [ξ ⊕ ξ ′] ∈ Ext1(C ⊕ C, A ⊕ A), where
[ξ ], [ξ ′] ∈ e(C, A), and the diagonal map � : C → C ⊕ C . The appropriate
diagram is

P2 ��

��

P1 ��

�′
1 ��

P0 ��

�′
0��

C ��

���

0

P2 ⊕ P2 ��

��

P1 ⊕ P1 ��

α1⊕α′1 ��

P0 ⊕ P0 ��

��

C ⊕ C ��

1C⊕C��

0

0 �� A ⊕ A �� B ⊕ B ′ �� C ⊕ C �� 0.

As in the proof of Formula I, we may assume that P⊕P is the chosen projec-
tive resolution of C ⊕ C . Furthermore, we also know that ψ is independent
of the chain map PC → PC ⊕PC over �. But the sequence of diagonal maps
�n : Pn → Pn ⊕ Pn is a chain map over �, and so we may take �′

1 to be the
diagonal map.
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Theorem 7.35 (Baer). e(C, A) is an abelian group under Baer sum, de-
fined by

[ξ ] + [ξ ′] = [
(∇(ξ ⊕ ξ ′)

)
�],

and ψ : e(C, A) → Ext1R(C, A) is an isomorphism.

Remark. The associative law [(hξ)k] = [h(ξk)] does hold, but we will not
need it in this proof. �
Proof. The formula for Baer sum defines a relation

ρ : e(C, A)× e(C, A) → e(C, A),

which we do not yet know is a function. After verifying Formula III, we saw
that we may assume here that �′

1 is a diagonal map.

ψ[
(∇(ξ ⊕ ξ ′)

)
�] = ψ[∇(ξ ⊕ ξ ′)]� (Formula III)

= (∇ψ[ξ ⊕ ξ ′])� (Formula II)

= ∇(ψ[ξ ] ⊕ ψ[ξ ′])� (Formula I)

= ψ[ξ ] + ψ[ξ ′].

There are two conclusions from this computation. First, ψ ◦ ρ is a func-
tion,1 so that, since ψ is a bijection, ρ = ψ−1(ψρ) is also a function. Second,
ψ([ξ ]+ [ξ ′]) = ψ[ξ ]+ψ[ξ ′], so that ρ is the good addition on e(C, A) mak-
ing it a group and ψ an isomorphism. •

One can prove directly [without using Ext1(C, A)] that e(C, A) is an
abelian group under Baer sum and that e(C, A) repairs the loss of exactness
after applying Hom to a short exact sequence (see Exercises 7.23 through 7.26
on pages 436–437). This approach has the advantage that it avoids choosing
resolutions of either variable, and no projectives or injectives are required!
This illustrates Mac Lane’s viewpoint that the Ext functors should be defined
by the axioms in Theorems 6.48 and 6.64, so that resolutions may be rele-
gated to their proper place as aids to computation. Baer’s description of Ext1

as e(C, A) has been generalized by N. Yoneda to a description of Extn for all
n ≥ 1. Elements of Yoneda’s Extn(C, A) are certain equivalence classes of
exact sequences

0 → A → B1 → · · · → Bn → C → 0,

1Let X, Y, Z be sets, and let ρ ⊆ X × Y and ψ ⊆ Y × Z be relations. Recall that the
composite ψ ◦ ρ is the relation

ψ ◦ ρ = {(x, z) : there is y ∈ Y with (x, y) ∈ ρ and (y, z) ∈ ψ}.

In particular, it makes sense to consider the composite of a relation and a function.
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and we add them by a generalized Baer sum (see Mac Lane, Homology,
pp. 82–87). Thus, there is a construction of Extn for all n ≥ 1 that does
not use derived functors, projectives, or injectives.

Another construction of Ext1R(C, A) is given in the remark on page 512,
which mimics the homological classification of group extensions in terms of
factor sets.

Here are some localization results for Ext.

Theorem 7.36. If R is a commutative noetherian ring, and if A and B
are finitely generated R-modules, then ExtnR(A, B) is a finitely generated R-
module for all n ≥ 0.

Proof. Since R is commutative, Ext is an R-module. The proof, an induction
on n ≥ 0 showing that Extn is finitely generated, is essentially that of Theo-
rem 7.20 with �⊗R B replaced by HomR(�, B). If n = 0, then HomR(A, B)

is finitely generated, by Exercise 3.13 on page 115, for R is noetherian.2 If

n ≥ 1, choose a projective resolution · · · → P1
d1−→ P0 → A → 0, as in

Lemma 7.19. Since HomR(Pn, B) is finitely generated, so are ker d∗n (by
Proposition 3.18) and its quotient ExtnR(A, B). •

Lemma 7.37. Let S be a multiplicative subset of a commutative ring R, and
let M and A be R-modules with A finitely presented. Then there is a natural
S−1 R-isomorphism

τA,B : S−1 HomR(A, M) → HomS−1 R(S−1 A, S−1 M).

Proof. It suffices to construct natural isomorphisms

θA : HomR(A, S−1 M) → HomS−1 R(S−1 A, S−1 M)

and
ϕA : S−1 HomR(A, M) → HomR(A, S−1 M),

for then we can define τA = θAϕA.
Assume first that A = Rn is a finitely generated free R-module. If

a1, . . . , an is a basis of A, then S−1 A = S−1 R ⊗R Rn is a free S−1 R-module
with basis a1/1, . . . , an/1. The map

θRn : HomR(A, S−1 M) → HomS−1 R(S−1 A, S−1 M),

given by f �→ f̃ , where f̃ (ai/σ) = f (ai )/σ , is easily seen to be a well-
defined R-isomorphism.

2Exercise 3.13(iii) gives an example of a commutative ring R and finitely generated
R-modules A and B for which HomR(A, B) is not a finitely generated R-module.
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If, now, A is a finitely presented R-module, then there is an exact sequence

Rt → Rn → A → 0. (1)

Apply the contravariant functors HomR(�, M ′) and HomS−1 R(�, M ′), where
M ′ = S−1 M is first viewed as an R-module; we obtain a commutative dia-
gram with exact rows

0 �� HomR(A, M ′) ��

θA
���
�
� HomR(Rn, M ′) ��

θRn

��

HomR(Rt , M ′)

θRt

��
0 �� HomL(S−1 A, M ′) �� HomL((S−1 R)n, M ′) �� HomL((S−1 R)t , M ′),

where L = S−1 R. Since the vertical maps θRn and θRt are isomorphisms,
there is a dashed arrow θA that must be an isomorphism, by Proposition 2.71.
If β ∈ HomR(A, M), then the reader may check that

θA(β) = β̃ : a/σ �→ β(a)/σ,

from which it follows that the isomorphisms θA are natural.
Construct ϕA : S−1 HomR(A, M) → HomR(A, S−1 M) by defining

ϕA : g/σ �→ gσ , where gσ (a) = g(a)/σ . Now ϕA is well-defined, for it arises
from the R-bilinear function S−1 R × HomR(A, M) → HomR(A, S−1 M)

given by (r/σ, g) �→ rgσ [for S−1 HomR(A, M) = S−1 R⊗R HomR(A, M)].
Observe that ϕA is an isomorphism when A is finitely generated free, and con-
sider the commutative diagram

0 �� S−1 HomR(A, M) ��

ϕA ��

S−1 HomR(Rn, M) ��

ϕRn
��

S−1 HomR(Rt , M)

ϕRt
��

0 �� HomR(A, S−1 M) �� HomR(Rn, S−1 M) �� HomR(Rt , S−1 M).

The top row is exact, for it arises from (1) by first applying the left exact
contravariant functor HomR(�, M) and then applying the exact localization
functor. The bottom row is exact, for it arises from (1) by applying the left
exact contravariant functor HomR(�, S−1 M). The Five Lemma shows that
ϕA is an isomorphism. •

Example 7.38. Lemma 7.37 can be false if A is not finitely presented. For
example, let R = Z and S−1 R = Q. We claim that

Q⊗Z HomZ(Q,Z) 	∼= HomQ(Q⊗Z Q,Q⊗Z Z).

The left-hand side is {0} because HomZ(Q,Z) = {0}. On the other hand, the
right-hand side is HomZ(Q,Q) ∼= Q. �
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Proposition 7.39. Let R be a commutative noetherian ring, and let S be a
multiplicative subset. If A is a finitely generated R-module, then there are
isomorphisms, natural in A, B,

S−1 ExtnR(A, B) ∼= ExtnS−1 R(S−1 A, S−1 B)

for all n ≥ 0 and all R-modules B.

Proof. Since R is noetherian and A is finitely generated, Lemma 7.19 says
there is a projective resolution P of A each of whose terms is finitely gener-
ated. By Lemma 7.37, there is a natural isomorphism

τA,B : S−1 HomR(A, B) → HomS−1 R(S−1 A, S−1 B)

for every R-module B (a finitely generated module over a noetherian ring
must be finitely presented). Now τA,B gives an isomorphism of complexes

S−1(HomR(PA, B)) ∼= HomS−1 R(S−1(PA), S−1 B).

Taking homology of the left-hand side gives

Hn(S−1(HomR(PA, B))) ∼= S−1 Hn(HomR(PA, B)) ∼= S−1 ExtnR(A, B),

because localization is an exact functor. On the other hand, homology of the
right-hand side is

Hn(HomS−1 R(S−1(PA), S−1 B)) = ExtnS−1 R(S−1 A, S−1 B),

because S−1(PA) is an S−1 R-projective resolution of S−1 A. •

Remark. An alternative proof of Proposition 7.39 can be given using a
deleted injective resolution EB in the second variable. We must still assume
that A is finitely generated, in order to use Lemma 7.37, but now we use the
fact, when R is noetherian, that localization preserves injectives. �

Corollary 7.40. Let A be a finitely generated R-module over a commutative
noetherian ring R. Then Am is a projective Rm-module for every maximal
ideal m if and only if A is a projective R-module.

Proof. Sufficiency is easy: if A is a free (or projective) R-module, then
S−1 A is a free (or projective) S−1 R-module for any multiplicative subset
S ⊆ R, for tensor product commutes with direct sums. In particular, if A
is projective, then Am is projective. Necessity follows from Proposition 7.39:
for every R-module B and maximal ideal m, we have

Ext1R(A, B)m ∼= Ext1Rm
(Am, Bm) = {0},

because Am is projective. By Proposition 4.90, Ext1R(A, B) = {0} for all B,
which says that A is projective. •
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Exercises

*7.8 (i) Let G be a p-primary abelian group, where p is prime. If
(m, p) = 1, prove that x �→ mx is an automorphism of G.

(ii) If p is an odd prime and G = 〈g〉 is a cyclic group of order
p2, prove that ϕ : x �→ 2x is the unique automorphism with
ϕ(pg) = 2pg.

*7.9 Prove that any two split extensions of modules A by C are equiva-
lent.

7.10 Prove that if A is an abelian group with n A = A for some positive
integer n, then every extension 0 → A → E → In → 0 splits.

*7.11 (i) Find an abelian group B for which Ext1
Z
(Q, B) 	= {0}.

(ii) Prove that Q⊗Z Ext1
Z
(Q, B) 	= {0} for the group B in (i).

(iii) Prove that Proposition 7.39 may be false when A is not
finitely generated, even when R = Z.

*7.12 Let E be a left R-module. Prove that E is injective if and only if
Ext1R(A, E) = {0} for every left R-module A.

*7.13 (i) Prove that the covariant functor E = Ext1
Z
(G,�) is right

exact for every abelian group G, and compute its left de-
rived functors Ln E .

(ii) Prove that the contravariant functor F = Ext1
Z
(�, G) is

right exact for every abelian group G, and compute its left
derived functors Ln F . (See the footnote on page 370.)

7.14 (i) If A is an abelian group with m A = A for some nonzero
m ∈ Z, prove that every exact sequence 0 → A → G →
Im → 0 splits. Conclude that m Ext1

Z
(A, B) = {0} =

m Ext1
Z
(B, A).

(ii) If A and C are abelian groups with m A = {0} = nC , where
(m, n) = 1, prove that every extension of A by C splits.

7.15 (i) For any ring R, prove that a left R-module B is injective if
and only if Ext1R(R/I, B) = {0} for every left ideal I .

Hint. Use the Baer criterion.

(ii) If D is an abelian group and Ext1
Z
(Q/Z, D) = {0}, prove

that D is divisible. The converse is true because divisible
abelian groups are injective. Does this hold if we replace Z

by a domain R and Q/Z by Frac(R)/R?
7.16 Let G be an abelian group G. Prove that G is free abelian if and

only if Ext1
Z
(G, F) = {0} for every free abelian group F .

*7.17 Let A be a torsion abelian group and let S1 be the circle group.
Prove that Ext1

Z
(A,Z) ∼= HomZ(A, S1).
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*7.18 An abelian group W is a Whitehead group if Ext1
Z
(W,Z) = {0}.3

(i) Prove that every subgroup of a Whitehead group is a White-
head group.

(ii) Prove that Ext1
Z
(A,Z) ∼= HomZ(A, S1) if A is a torsion

group and S1 is the circle group. Prove that if A 	= {0} is
torsion, then A is not a Whitehead group; conclude further
that every Whitehead group is torsion-free.
Hint. Use Exercise 7.17.

(iii) Let A be a torsion-free abelian group of rank 1; i.e., A
is a subgroup of Q. Prove that A ∼= Z if and only if
HomZ(A,Z) 	= {0}.

(iv) Let A be a torsion-free abelian group of rank 1. Prove that
if A is a Whitehead group, then A ∼= Z.
Hint. Use an exact sequence 0 → Z → A → T → 0,
where T is a torsion group whose p-primary component is
either cyclic or isomorphic to Prüfer’s group of type p∞.

(v) (K. Stein). Prove that every countable4 Whitehead group
is free abelian.
Hint. Use Exercise 3.4 on page 114, Pontrjagin’s Lemma:
if A is a countable torsion-free group and every subgroup of
A having finite rank is free abelian, then A is free abelian.

7.19 We have constructed the bijection ψ : e(C, A) → Ext1(C, A) us-
ing a projective resolution of C . Define a function ψ ′ : e(C, A) →
Ext1(C, A) using an injective resolution of A, and prove that ψ ′ is
a bijection.

7.20 Consider the diagram

ξ1 = 0 �� A1 ��

h ��

B1 �� C1 ��

k��

0

ξ2 = 0 �� A2 �� B2 �� C2 �� 0.

Prove that there is a map β : B1 → B2 making the diagram com-
mute if and only if [hξ1] = [ξ2k].

7.21 (i) Prove, in e(C, A), that −[ξ ] = [(−1A)ξ ] = [ξ(−1C )].
(ii) Generalize (i) by replacing (−1A) and (−1C ) by μr for any

r in the center of R.
3 Dixmier proved that a locally compact abelian group A is path connected if and only

if A ∼= R
n ⊕ D̂, where D is a (discrete) Whitehead group and D̂ is its Pontrjagin dual.

4The question whether Ext1
Z
(G,Z) = {0} implies G is free abelian is known as White-

head’s problem. S. Shelah proved that it is undecidable whether uncountable Whitehead
groups must be free abelian (see Eklof, “Whitehead’s problem is undecidable,” Amer.
Math. Monthly 83 (1976), 775–788).



7.2 Ext 437

7.22 Prove that [ξ ] = [0 → A
i−→ B → C → 0] ∈ e(C, A) has finite

order if and only if there are a nonzero m ∈ Z and a map s : B → A
with si = m · 1A.

*7.23 (i) Prove that e(C,�) : RMod → Ab is a covariant functor
if, for h : A → A′, we define h∗ : e(C, A) → e(C, A′) by
[ξ ] �→ [hξ ].

(ii) Prove that e(C,�) is naturally isomorphic to Ext1R(C,�).

7.24 Consider the extension χ = 0 → A′ i−→ A
p−→ A′′ → 0.

(i) Define D : HomR(C, A′′) → e(C, A′) by k �→ [χk], and
prove exactness of

Hom(C, A)
p∗−→ Hom(C, A′′) D−→ e(C, A′)

i∗−→ e(C, A)
p∗−→ e(C, A′′).

(ii) Prove commutativity of

Hom(C, A′′) D ��

∂ �� e(C, A′)

ψ

��
Ext1(C, A′),

where ∂ is the connecting homomorphism.
7.25 (i) Prove that e(�, A) : RMod → Ab is a contravariant func-

tor if, for k : C ′ → C , we define k∗ : e(C, A) → e(C ′, A)

by [ξ ] �→ [ξk].
(ii) Prove that e(�, A) is naturally isomorphic to Ext1R(�, A).

*7.26 Consider the extension X = 0 → C ′ i−→ C
p−→ C ′′ → 0.

(i) Define D′ : HomR(C ′, A) → e(C ′′, A) by h �→ [h X ], and
prove exactness of

Hom(C, A)
i∗−→ Hom(C ′, A)

D′
−→ e(C ′′, A)

p∗−→ e(C, A)
i∗−→ e(C ′, A).

(ii) Prove commutativity of

Hom(C ′, A)
D′

��

∂ �� e(C ′′, A)

ψ

��
Ext1(C ′′, A),

where ∂ ′ is the connecting homomorphism.
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7.3 Cotorsion Groups

Here is a circle of ideas involving two related questions. Which abelian
groups can be equipped with a topology that makes them compact topo-
logical groups? Which abelian groups A are realizable in the sense that
A ∼= Ext1

Z
(X, Y ) for some abelian groups X and Y ? The first question was an-

swered by Kaplansky; the second was answered, independently, by Harrison,
Nunke, and Fuchs.

We will use two results, consequences of the Künneth Formula (which
we will prove later). All results in the section may be generalized to modules
over Dedekind rings.

Proposition 10.86. Given a commutative hereditary ring R and R-modules
A, B, and C, there is an isomorphism

Ext1R(TorR
1 (A, B),C) ∼= Ext1R(A,Ext1R(B,C)).

Proposition 10.87. If R is a commutative hereditary ring and A, B,C are
R-modules, then

Ext1R(A ⊗R B,C)⊕ HomR(TorR
1 (A, B),C))

∼=Ext1R(A,HomR(B,C))⊕ HomR(A,Ext1R(B,C)).

Notation. In this section, we abbreviate HomZ(A, B), Ext1
Z
(A, B), and

A ⊗Z B to, respectively, Hom(A, B), Ext1(A, B), and A ⊗ B.

We begin with a fundamental notion.

Definition. If G is an abelian group, then its maximal divisible subgroup is

dG = 〈S ⊆ G : S is divisible〉.
We say that G is reduced if dG = {0}.

It is easy to see that G is reduced if and only if Hom(Q, G) = {0}. It
follows that if 0 → A → B → C → 0 is exact and both A and C are
reduced, then B is reduced.

Proposition 7.41. Let G be an abelian group.

(i) dG is a divisible subgroup of G.

(ii) The exact sequence 0 → dG → G
π−→ G/dG → 0 is split, and

G/dG is reduced.
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(iii) d : G �→ dG defines a left exact additive functor Ab → Ab, and G �→
G/dG defines a right exact additive functor Ab → Ab.

Proof.

(i) This result is a special case of Exercise 5.23 on page 255, but, neverthe-
less, we give a proof of it. We claim that if S1, . . . , Sm are divisible sub-
groups, then S1+· · ·+ Sm is a divisible subgroup. If x ∈ S1+· · ·+ Sm ,
then x = s1 + · · · + sm , where si ∈ Si . If n > 0, then there are s′i ∈ Si
with si = ns′i ; hence, x = n(s′1 + · · · + s′m) and S1 + · · · + Sm is di-
visible. It follows that dG is divisible, for if x ∈ dG and n > 0, then
x ∈ S1 + · · · + Sm for some divisible subgroups Si , and so x = nx ′ for
x ′ ∈ S1 + · · · + Sm ⊆ dG.

(ii) The exact sequence splits, for divisible abelian groups are injective
(Corollary 3.35). If D ⊆ G/dG is a nonzero divisible subgroup, then
π−1(D) is a divisible subgroup of G properly containing dG, a contra-
diction.

(iii) If f : G → H is a homomorphism and S ⊆ G is divisible, then f (S)
is divisible, and so f (S) ⊆ d H . Hence, f (dG) ⊆ d H . The reader
may show that if we define d f = f |dG, then d is, indeed, a functor as
stated. The proof that G �→ G/dG gives a right exact functor is also
routine. •

Recall Corollary 3.72: a subgroup S ⊆ G is pure if S ∩ nG = nS for all
n > 0; that is, if s ∈ S and s = ng for some g ∈ G and n > 0, then there

is s′ ∈ S with s = ns′. We say that a sequence 0 → A
i−→ B → C → 0

is pure exact if it is exact and i(A) is a pure subgroup of B. We note that if
C is torsion-free, then every exact sequence 0 → A → B → C → 0 is pure
exact.

Definition. An abelian group A is algebraically compact if every pure exact
sequence 0 → A → B → C → 0 splits.

The motivation for this definition comes from Pontrjagin duality. The cat-
egory LCA having as objects all locally compact abelian topological groups
and as morphisms Homc(G, H), all continuous homomorphisms G → H ,
admits a duality G �→ Ĝ = Homc(G, S1), where S1 = R/Z is the circle
group; that is, ̂̂G = G. Now discrete abelian groups are locally compact, and
Ĝ is compact if and only if G is discrete (see Hewitt–Ross, Abstract Harmonic
Analysis).

An abelian group C is cocyclic if there is a prime p such that C is isomor-
phic to a subgroup of the Prüfer group Z(p∞); that is, either C is finite cyclic
of order pm for some m or C ∼= Z(p∞).
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Theorem 7.42. The following statements are equivalent for a (discrete)
abelian group G.

(i) G is algebraically compact.

(ii) There is a compact topological group C and G is isomorphic to an
algebraic direct summand of C (that is, if one forgets the topology on
C, then C ∼= G ⊕ B for some not necessarily closed subgroup B).

(iii) G is a direct summand of a product of cocyclic groups.

(iv) G ∼= D ⊕ E, where D is divisible and E is a direct summand of a
product of finite cyclic groups.

Proof. See Fuchs, Infinite Abelian Groups I, Chapter VII. The key idea is a
theorem of Łos (Fuchs, Infinite Abelian Groups I, p. 127) that every abelian
group can be imbedded as a pure subgroup of a product of cocyclic groups •

There is another class of abelian groups, complete groups, that is closely
related to the class of algebraically compact groups.

Definition. The n-adic topology on an abelian group A is the family of all
cosets of subgroups n!A for all n > 0. If Aω = ⋂

n>0 n!A, then A is metric
if Aω = {0}; in this case, A is a metric space in the n-adic topology.5 We
say that A is complete if A is metric and complete as a metric space: every
Cauchy sequence in A converges to a limit in A (see Example 5.19, which
discusses the p-adic topology and shows that completeness corresponds to
being a certain inverse limit).

There are abelian groups G that are not metric. For example, since dG is
divisible, dG = n!(dG) for all n > 0, and so dG ⊆ Gω ⊆ G. It is easy to
see, for every abelian group G, that G/Gω is metric; in particular, G/Gω is
always reduced.

Theorem 7.43 (Kaplansky). If A is a reduced group A, then A is complete
if and only if it is algebraically compact. Hence, every reduced algebraically
compact group is metric.

Proof. Fuchs, Infinite Abelian Groups I, p. 163. •
There are reduced groups that are not metric.

5If a, b ∈ A, define ‖a − b‖ = en if a − b ∈ n!A, but a − b /∈ (n + 1)!A.
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Proposition 7.44. If T is the group with presentation

T = (a, bn : n ≥ 1|pa, a − pnbn : n ≥ 1),

where p is prime, then T is a reduced torsion group with Tω = 〈a+ R〉 ∼= Ip.

Sketch of proof. We have T = F/R, where F is the free abelian group with
basis {a, bn : n ≥ 1} and R = 〈pa, a − pnbn : n ≥ 1〉. First, a + R 	= 0, lest
it lead to an impossible equation in the free abelian group F . It is obvious that
a + R ∈ Tω, and it is not difficult to show that it generates Tω. To see that T
is reduced, apply Hom(Q,�) to 0 → Tω → T → T/Tω → 0; the flanking
terms are {0}, hence the middle Hom is {0}, and so T is reduced. •

Definition. An abelian group G is cotorsion if Ext1(Q, G) = {0}.
Thus, G is cotorsion if every exact sequence 0 → G → B → Q → 0

splits.
The premier example of a cotorsion group is Ext1(X, Y ) viewed as an

abelian group. Before seeing this, let us first note some elementary properties
of cotorsion groups.

Proposition 7.45.

(i) Every algebraically compact group is cotorsion.

(ii) G is cotorsion if and only if every exact sequence 0 → G → B →
X → 0 with X torsion-free splits.

(iii) A quotient of a cotorsion group is cotorsion.

(iv) A direct summand of a cotorsion group is cotorsion.

(v) A direct product of cotorsion groups is cotorsion.

(vi) A torsion cotorsion group G = B ⊕ D, where D is divisible and B has
bounded order; that is, nB = {0} for some n > 0.

Proof.

(i) If G is algebraically compact, then every pure exact sequence 0 →
G → B → C → 0 splits. Since any short exact sequence with C =
Q is pure exact, 0 → G → B → Q → 0 always splits; that is,
Ext1(Q, G) = {0}.

(ii) If X is torsion-free, there is an exact sequence 0 → X → Q ⊗ X →
C → 0, which gives exactness of

Ext1(Q⊗ X, G) → Ext1(X, G) → Ext2(C, G).
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Now Ext2
Z
(C, G) = {0}, because D(Z) = 1. Also, Q ⊗ X ∼= ⊕

Q,
because Q⊗ X is a vector space over Q, so that

Ext1(Q⊗ X, G) ∼= Ext1
(⊕

Q, G
) ∼=∏Ext1(Q, G) = {0}.

Therefore, Ext1(X, G) = {0}.
(iii) If C → C ′ → 0 is exact, then Ext1(Q,C) → Ext1(Q,C ′) → 0 is

exact, and Ext1(Q,C ′) = {0}. Thus, C ′ is cotorsion.

(iv) If C is cotorsion and C = A ⊕ B, then

{0} = Ext1(Q,C) ∼= Ext1(Q, A)⊕ Ext1(Q, B),

and so both A and B are cotorsion.

(v) This follows from Ext1(Q,
∏

i Ci ) ∼=
∏

i Ext1(Q,Ci ).

(vi) This statement follows from the result quoted in the remark on page 427:
a pure subgroup of bounded order is a direct summand. •

Here is the important result.

Theorem 7.46. An abelian group G is cotorsion if and only if

G ∼= D ⊕ Ext1(X, Y ),

where X, Y, D are abelian groups and D is divisible.

Proof. If G ∼= D ⊕ Ext1(X, Y ). then

Ext1(Q, G) ∼= Ext1(Q, D)⊕ Ext1(Q,Ext1(X, Y )).

Since D is divisible, it is injective and Ext1(Q, D) = {0}. Proposition 10.86
gives

Ext1(Q,Ext1(X, Y )) ∼= Ext1(Tor1(Q, X), Y ).

Now Tor1(Q, X) = {0}, because Q is flat, and so Ext1(Q,Ext1(X, Y )) = {0}.
Hence, G is cotorsion.

Conversely, let G be cotorsion. As any abelian group, G = dG⊕A, where
A is reduced. Since every direct summand of a cotorsion group is cotorsion,
it suffices to prove that A ∼= Ext1(X, Y ) for some X, Y . Apply Hom(�, A) to
the exact sequence

0 → Z → Q → K → 0,

where K = Q/Z, to obtain exactness of

Hom(Q, A) → Hom(Z, A) → Ext1(K , A) → Ext1(Q, A). (1)

The first term vanishes because A is reduced; the last term vanishes because
A is cotorsion. Therefore, A ∼= Hom(Z, A) ∼= Ext1(K , A). •
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Corollary 7.47.

(i) For every abelian group G, Ext1(K , G) and Hom(K , G) are reduced
and cotorsion.

(ii) If a group A is reduced and cotorsion, then A ∼= Ext1(K , A).

Proof.

(i) The proof of Theorem 7.46 shows that Ext1(K , G) is cotorsion. By
Proposition 10.87,

Ext1(Q⊗ K , G)⊕ Hom(Tor1(Q, K ), G))

∼= Ext1(Q,Hom(K , G))⊕ Hom(Q,Ext1(K , G)).

The left side vanishes because Q ⊗ K = {0}, by Proposition 2.73, and
Tor1(Q, K ) = {0}, because Q is flat, and so the right side vanishes
as well. Therefore, Hom(Q,Ext1(K , G)) = {0}; that is, Ext1(K , G)

is reduced; also, Ext1(Q,Hom(K , G)) = {0}; that is, Hom(K , G) is
cotorsion. Finally, we prove that Hom(K , T ) is reduced. The Adjoint
Isomorphism says

Hom(Q,Hom(K , T )) ∼= Hom(Q⊗ K , T ),

and Hom(Q⊗ K , T ) = {0} because Q⊗ K = {0}.
(ii) If A is reduced and cotorsion, then it was shown in Eq. (1) that A ∼=

Ext1(K , A). •

Proposition 7.48.

(i) If T is a reduced torsion group, then there is an exact sequence

0 → T → Ext1(K , T ) → V → 0,

where V is torsion-free divisible.

(ii) There exist cotorsion groups that are not algebraically compact.

Proof.

(i) Apply Hom(�, T ) to 0 → Z → Q → K → 0 to obtain exactness of

Hom(Q, T ) �� Hom(Z, T ) ���� Ext1(K , T ) �� Ext1(Q, T ) �� Ext1(Z, T ).

The outside terms vanish because T is reduced and Z is projective. Now
Hom(Z, T ) ∼= T , and Ext1(Q, T ) is a vector space over Q, hence is
torsion-free.
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(ii) Let T be the reduced torsion group in Proposition 7.44. The group
G = Ext1(K , T ) is reduced and cotorsion, by Corollary 7.47, and T is
its torsion subgroup, by (i). Now

Tω =
⋂
n≥1

nT ⊆
⋂
n≥1

nG = Gω,

so that Tω 	= {0} implies Gω 	= {0}. But if A is a reduced algebraically
compact group, then Aω = {0}, by Theorem 7.43, and so G is not
algebraically compact. •

We are going to see the etymology of cotorsion.

Proposition 7.49. The assignment η : T �→ Hom(K , T ) is a bijection from
all isomorphism classes of divisible torsion groups to all isomorphism classes
of torsion-free reduced cotorsion groups.

Proof. Let T be a torsion abelian group. Now Hom(K , T ) is reduced and
cotorsion, by Corollary 7.47. Exactness of Q → K → 0 gives exactness of
0 → Hom(K , T ) → Hom(Q, T ). But Hom(Q, T ) is torsion-free, since it is
a vector space over Q, and so its subgroup Hom(K , T ) is also torsion-free.

(i) η is an injection. The exact sequence

0 → Hom(K , T ) → Hom(Q, T ) → Hom(Z, T ) → Ext1(K , T )

simplifies to 0 → Hom(K , T ) → Hom(Q, T ) → T → 0 [note that
Ext1(K , T ) = {0} because T is divisible, hence injective]. Tensoring
by K gives exactness of

Tor1(K ,Hom(Q, T )) → Tor1(K , T )

→ K ⊗ Hom(K , T ) → K ⊗ Hom(Q, T ).

Now Hom(Q, T ) is torsion-free divisible, for it is a vector space over
Q. Hence, the first term vanishes because Hom(Q, T ) is flat, while the
last term vanishes because K is torsion and Hom(Q, T ) is divisible. But
Tor1(K , T ) ∼= T , by Lemma 7.11. Therefore, T ∼= K ⊗ Hom(K , T ).

Suppose that T and T ′ are divisible torsion. If η(T ) = η(T ′), then
Hom(K , T ) ∼= Hom(K , T ′), and

T ∼= K ⊗ Hom(K , T ) ∼= K ⊗ Hom(K , T ′) ∼= T ′.

(ii) η is a surjection. For any group G, the group K ⊗G is divisible torsion:
it is torsion because K is torsion, and it is divisible because exactness
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of Q → K → 0 gives exactness of Q ⊗ G → K ⊗ G → 0. There is
an exact sequence

Tor1(K , G) → Z⊗ G → Q⊗ G → K ⊗ G → 0.

If G is torsion-free, then the Tor term vanishes, and this simplifies to

0 → G → Q⊗ G → K ⊗ G → 0.

Applying Hom(K ,�) gives exactness of

Hom(K ,Q⊗ G) → Hom(K , K ⊗ G) → Ext1(K , G) → Ext1(Q, G).

Assume further that G is reduced cotorsion. The first term vanishes be-
cause K is torsion and Q⊗G is torsion-free, and the last term vanishes
because G is cotorsion. Therefore, Hom(K , K ⊗ G) ∼= Ext1(K , G).
Since G is reduced cotorsion, G ∼= Ext1(K , G), by Corollary 7.47. •

Corollary 7.50. A group G is torsion-free reduced cotorsion if and only if it
is a direct summand of a product of copies of p-adic integers Zp for various
primes p. Hence, G is algebraically compact.

Proof. If G is torsion-free reduced cotorsion, then there exists a torsion di-
visible T with G ∼= Hom(K , T ). Now T ∼= ⊕

i∈I Di , where each Di is a
Prüfer group Z(p∞) for some prime p (Kaplansky, Infinite Abelian Groups,
p. 10). The exact sequence

0 →
⊕

Di →
∏

Di → X → 0

splits, because T ∼= ⊕
Di is injective, and so G ∼= Hom(K , T ) is a direct

summand of Hom(K ,
∏

i Di ) ∼=
∏

i Hom(K , Di ). But K ∼= ⊕
p Z(p∞),

and Hom(Z(p∞),Z(p∞)) ∼= Zp, the p-adic integers (Fuchs, Infinite Abelian
Groups I, p. 181).

Now Zp ∼= Hom(K ,Z(p∞)), where Zp is the group of p-adic integers,
and so Zp is torsion-free reduced cotorsion, by Proposition 7.49. Hence,
Proposition 7.45 says that a direct product of copies of Zp (for various primes)
is torsion-free reduced cotorsion, as is any direct summand.

The last statement follows from Theorem 7.42. •

Definition. A cotorsion group G is adjusted if it is reduced and has no
torsion-free direct summands.

We shall see that adjusted groups arise from reduced torsion groups.
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Proposition 7.51. If G is a reduced cotorsion group, then there exists a
unique adjusted subgroup A such that G = A ⊕ B and B is torsion-free.

Proof. Let tG ⊆ H ⊆ G be such that H/tG = d(G/tG); thus, G/tG ∼=
(H/tG) ⊕ (G/tG)/(H/tG) with G/H ∼= (G/tG)/(H/tG) reduced. Now
G/tG is a torsion-free group, and H/tG is a pure subgroup [for H/tG =
d(G/tG) is even a direct summand]; therefore, G/H ∼= (G/tG)/(H/tG) is
torsion-free. We claim that H is a direct summand of G. Consider the ex-
act sequence Hom(Q, G/H) → Ext1(Q, H) → Ext1(Q, G): the first term
vanishes because G/H is reduced, and the last term vanishes because G is
cotorsion. Therefore, Ext1(Q, H) = {0}, and H is cotorsion. By Proposi-
tion 7.45(ii), Ext1(X, H) = {0} for every torsion-free group X ; in particular,
Ext1(G/H, H) = {0}; that is, G ∼= H ⊕ (G/H).

We claim that H is adjusted. If H = S ⊕ S′ and S is torsion-free, then
S ∩ tG = {0}, and so H/tG = S ⊕ (S′/tG).6 Since H/tG is divisible, S
is divisible. We have shown that every torsion-free direct summand of H is
divisible. But H is reduced, for it is a subgroup of the reduced group G, and
so it has no torsion-free direct summands; that is, H is adjusted.

Finally, we prove uniqueness of H . Suppose that H ′ ⊆ G is an adjusted
direct summand with G/H ′ torsion-free. We claim that H ⊆ H ′. Otherwise,

G

H ′ ⊇
H + H ′

H ′
∼= H

H ∩ H ′
∼= H/tG

(H ∩ H ′)/tG
.

But G/H ′ is reduced (being isomorphic to a summand of G) and the last
group is divisible, being a quotient of H/tG = d(G/tG). Hence, H ⊆ H ′.
Now G = H⊕B with B torsion-free, so that H ′ = H⊕(H ′ ∩B). But H ′ ∩B
is torsion-free, contradicting H ′ having no torsion-free summands (because it
is adjusted). Therefore, H = H ′. •

Corollary 7.52. A reduced cotorsion group G is adjusted if and only if G ∼=
Ext1(K , tG).

Proof. Since G is reduced cotorsion, it has a unique adjusted direct sum-
mand H with G/H divisible; the proof of Proposition 7.51 identifies H as
the subgroup with tG ⊆ H and d(G/tG) = H/tG. If G is adjusted, then
H = G; that is, G/tG = d(G/tG) is divisible.

Consider the exact sequence

Hom(K , G/tG) → Ext1(K , tG) → Ext1(K , G) → Ext1(K , G/tG).

6If h ∈ tG ⊆ H , then nh = 0 for some n > 0. Now h = s + s′, where s ∈ S and
s′ ∈ S′, and 0 = nh = ns + ns′. Hence, ns ∈ S ∩ S′ = {0}, so that ns = 0. But S is
torsion-free, and so s = 0 and h = s′ ∈ S′; that is, tG ⊆ S′.
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The first term vanishes because K is torsion and G/tG is torsion-free, and
the last term vanishes because G/tG is divisible (hence, injective). There-
fore, Ext1(K , tG) ∼= Ext1(K , G). But, as any reduced cotorsion group,
G ∼= Ext1(K , G), by Corollary 7.47(ii).

Conversely, if G ∼= Ext1(K , tG), then G is reduced and cotorsion, by
Corollary 7.47. If G = X ⊕ Y , where Y is torsion-free, then tG ∩ Y = {0}.
Hence, G/tG ∼= X/tG ⊕ Y ; that is, Y is a direct summand of G/tG. Since
G/tG is divisible, Y is divisble. But Y is reduced, being a subgroup of the
reduced group G, and so Y = {0}. Therefore, G is adjusted. •

Proposition 7.53. The assignment ζ : A �→ t A is a bijection from all iso-
morphism classes of adjusted cotorsion groups to all reduced torsion groups.

Proof. Let A and A′ be adjusted. If ζ(A) = ζ(A′), then t A ∼= t A′ and
Ext1(K , t A) ∼= Ext1(K , t A′). Hence, A ∼= Ext1(K , t A) ∼= Ext1(K , t A′) ∼=
A′, by Corollary 7.52; that is, ζ is an injection.

Let T be a reduced torsion group. We claim that A = Ext1(K , T ) is an
adjusted cotorsion group with t A = T . Of course, A is cotorsion. Consider
the exact sequence

Hom(Q, T ) → Hom(Z, T ) → Ext1(K , T ) → Ext1(Q, T ) → Ext1(Z, T ).

The first term vanishes because T is reduced, and the last term vanishes be-
cause Z is projective. The sequence simplifies to

0 → T → Ext1(K , T ) → Ext1(Q, T ) → 0.

Since Ext1(Q, T ) is a vector space over Q, it is torsion-free (divisible), and so
T ∼= t Ext1(K , T ) = t A. Finally, A is adjusted, by Corollary 7.52. •

Theorem 7.54. There is a bijection from all isomorphism classes of torsion
abelian groups to all isomorphism classes of reduced cotorsion groups; it is
given by

T �→ Hom(K , T )⊕ Ext1(K , T ).

Proof. If T is torsion, then T = dT ⊕ T ′, where T ′ is reduced torsion, and

Hom(K , T )⊕ Ext1(K , T ) = Hom(K , dT )⊕ Ext1(K , T ′).

Now Hom(K , dT ) is torsion-free reduced cotorsion, by Proposition 7.49,
while T ′ �→ Ext1(K , T ′), being the inverse of the bijection ζ of Proposi-
tion 7.53, is an adjusted cotorsion group. •

It follows from Theorem 7.54 that any classification of torsion groups
gives a classification of reduced cotorsion groups. For example, all countable
reduced torsion groups T are classified by Ulm’s Theorem (Kaplansky, Infi-
nite Abelian Groups, p. 27), and so all reduced cotorsion groups Ext1(K , T )

are classified for such T .
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7.4 Universal Coefficients

In Chapter 6, we defined the homology groups Hn(X) of a topological space
X with coefficients in an abelian group A as

Hn(X, A) = Hn(S•(X)⊗Z A).

Of course, Hn(X,Z) = Hn(X), the homology group defined in Chapter 1.
Similarly, we defined cohomology groups with coefficients as

Hn(X, A) = H−n(HomZ(S•(X), A)).

Your first guess is Hn(X, A) ∼= Hn(X)⊗Z A, but this is usually not the case.
The next theorem allows us to compute Hn(X, A) from Hn(X); the corre-
sponding result for cohomology will be given afterwards.

We will use Exercise 2.17 on page 67 in the next proof: if

A
f−→ B

g−→ C
h−→ D

k−→ E

is exact, then there is a short exact sequence

0 → coker f
α−→ C

β−→ ker k → 0,

where α : b + im f �→ gb and β : c �→ hc.

Theorem 7.55 (Universal Coefficient Theorem for Homology, I). Let R
be a ring, let A be a left R-module, and let (K, d) be a complex of flat right
R-modules whose subcomplex B of boundaries also has all terms flat.

For all n ≥ 0, there is an exact sequence

0 → Hn(K)⊗R A
λn→ Hn(K ⊗R A)

μn→ TorR
1 (Hn−1(K), A) → 0,

where λn : cls(z)⊗ a �→ cls(z ⊗ a), and both λn and μn are natural.

Proof. By Corollary 7.4, each term in the fundamental exact sequence

0 → Zn
in−→ Kn

d ′n−→ Bn−1 → 0 (1)

is flat, where in is the inclusion and d ′n is obtained from the differential dn
by changing its target from Kn−1 to im dn = Bn−1. Since Bn−1 is flat,
TorR

1 (Bn−1, A) = {0}, and we have exactness of

0 → Zn ⊗R A
in⊗1−→ Kn ⊗R A

d ′n⊗1−→ Bn−1 ⊗R A → 0.

The maps in ⊗ 1, d ′n ⊗ 1 can be assembled to give an exact sequence of com-
plexes

0 → Z ⊗R A
i⊗1−→ K ⊗R A

d ′⊗1−→ B[−1] ⊗R A → 0
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(recall that B[−1] is the complex obtained from B by reindexing: B[−1]n =
Bn−1 for all n). The corresponding long exact sequence is

Hn+1(B[−1] ⊗R A)
∂n+1−→ Hn(Z ⊗R A)

(in⊗1)∗−→ Hn(K ⊗R A)

→ Hn(B[−1] ⊗R A)
∂n−→ Hn−1(Z ⊗R A).

Since Z and B[−1] have zero differentials, we have Hn+1(B[−1] ⊗R A) =
Bn ⊗R A and Hn(Z ⊗R A) = Zn ⊗R A, by Example 6.1(iii). Thus, we may
rewrite the long exact sequence as

Bn ⊗R A
∂n+1−→ Zn ⊗R A → Hn(K ⊗R A)

→ Bn−1 ⊗R A
∂n−→ Zn−1 ⊗R A.

By Exercise 2.17, there are short exact sequences

coker ∂n+1
αn	 Hn(K ⊗R A)

βn
 ker ∂n, (2)

where αn : z ⊗ a + im ∂n+1 �→ cls(inz ⊗ a).
We compute the connecting homomorphism ∂n+1 using its definition.

Kn+1 ⊗R A

dn+1⊗1
��

d ′n+1⊗1
�� Bn ⊗R A

Zn ⊗R A
in⊗1 �� Kn ⊗R A.

If b ∈ Bn , then b = dn+1k for some k ∈ Kn+1, and so

∂n+1 : b ⊗ a �→ k ⊗ a �→ b ⊗ a → (in ⊗ 1)−1(b ⊗ a).

Now (in ⊗ 1)−1(b ⊗ a) = b ⊗ a, where b is regarded as an element of Zn;
thus, if jn : Bn → Zn is the inclusion, then ∂n+1 = jn ⊗ 1 and ∂n = jn−1⊗ 1.
Hence, exact sequence (2) is

coker( jn ⊗ 1)
αn	 Hn(K ⊗R A)

βn
 ker( jn−1 ⊗ 1), (3)

where αn : cls(z ⊗ a) + im( jn ⊗ 1) �→ cls(inz ⊗ a). The reader may prove
that both αn and βn are natural.

Consider the flanking terms in (3). Since Bn and Zn are flat, the exact

sequence 0 → Bn
jn−→ Zn → Hn(K) → 0 is a flat resolution of Hn(K).

Thus, 0 → Bn
jn−→ Zn → 0 is a deleted flat resolution of Hn(K); after

tensoring by A, its homology is given by

H1 = ker( jn−1 ⊗ 1) = TorR
1 (Hn−1(K), A)
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and
H0 = coker( jn ⊗ 1) = TorR

0 (Hn(K), A).

Recall Theorem 7.5: Tor can be computed using flat resolutions instead of
projective resolutions. Thus, exact sequence (3) is

0 → TorR
0 (Hn(K), A) → Hn(K ⊗R A) → TorR

1 (Hn−1(K), A) → 0.

But TorR
0 (Hn(K), A) ∼= Hn(K) ⊗R A; making this isomorphism explicit,

we see that the imbedding λn : Hn(K) ⊗R A → Hn(K ⊗R A) is given by
cls(z)⊗ a �→ cls(z ⊗ a). •

Corollary 7.56 (Universal Coefficient Theorem for Homology, II). Let
R be a right hereditary ring, let A be a left R-module, and let (K, d) be a
complex of projective right R-modules.

(i) For all n ≥ 0, there is an exact sequence

0 → Hn(K)⊗R A
λn→ Hn(K ⊗R A)

μn→ TorR
1 (Hn−1(K), A) → 0,

where λn : cls(z)⊗ a �→ cls(z ⊗ a), and both λn and μn are natural.

(ii) For all n ≥ 0, the exact sequence splits7:

Hn(K ⊗R A) ∼= Hn(K)⊗R A ⊕ TorR
1 (Hn−1(K), A).

Proof.

(i) Since R is right hereditary, every submodule of a projective right R-
module is also projective, by Corollary 4.14. Therefore, Bn ⊆ Kn is
projective, hence flat, and so the hypothesis of Theorem 7.55 is satisfied.

(ii) The sequence 0 → Zn ⊗ A
in⊗1−→ Kn ⊗ A → Bn−1 ⊗ A → 0 is split

exact, because exact sequence (1) splits. More precisely, im(in ⊗ 1) is
a direct summand of Kn ⊗ A. There are inclusions

im(dn+1 ⊗ 1) ⊆ im(in ⊗ 1) ⊆ ker(dn ⊗ 1) ⊆ Kn ⊗ A.

By Corollary 2.24(i), im(in⊗1) is a direct summand of ker(dn⊗1) and,
by Corollary 2.24(ii), im(in ⊗ 1)/ im(dn+1 ⊗ 1) is a direct summand of
ker(dn ⊗ 1)/ im(dn+1 ⊗ 1) = Hn(K ⊗R A). Now dn+1 = in jnd ′n+1.
Using the general fact that im f g = f (im g), we see that

im(dn+1 ⊗ 1) = (in ⊗ 1) im( jnd ′n+1 ⊗ 1)

7The splitting need not be natural.
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and
im( jnd ′n+1 ⊗ 1) = ( jn ⊗ 1) im(d ′n+1 ⊗ 1).

But im(d ′n+1 ⊗ 1) = Bn ⊗R A, because d ′n+1 is surjective and �⊗R A
is right exact; therefore,

( jn ⊗ 1) im(d ′n+1 ⊗ 1) = ( jn ⊗ 1)(Bn ⊗R A) = im( jn ⊗ 1).

Therefore,

im(in ⊗ 1)/ im(dn+1 ⊗ 1) = im(in ⊗ 1)/(in ⊗ 1) im( jn ⊗ 1).

But im(in ⊗ 1) = Zn ⊗R A, so that im(in ⊗ 1)/(in ⊗ 1) im( jn ⊗ 1) =
Zn ⊗R A/ im( jn ⊗ 1) = coker( jn ⊗ 1) = Hn(K)⊗R A. •

Corollary 7.57. If X is a topological space and A is an abelian group, then,
for all n ≥ 0,

Hn(X, A) ∼= Hn(X)⊗Z A ⊕ TorZ1 (Hn−1(X), A).

Proof. Now Hn(X) = Hn(S•(X)) and Hn(X, A) = Hn(S•(X)⊗Z A). The
Universal Coefficient Theorem applies at once, for Z is hereditary and every
term of S•(X) is free abelian. •

Corollary 7.58. If either Hn−1(X) or A is a torsion-free abelian group, then

Hn(X, A) ∼= Hn(X)⊗Z A.

Proof. Either hypothesis forces TorZ1 (Hn−1(X), A) = {0}. •
Here is the dual result.

Theorem 7.59 (Universal Coefficient Theorem for Cohomology). Let R
be a ring, let A be a left R-module, and let (K, d) be a complex of projective
left R-modules whose subcomplex B of boundaries has all terms projective.

(i) Then, for all n ≥ 0, there is an exact sequence

0 → Ext1R(Hn−1, A)
λn→ Hn(HomR(K, A))

μn→ HomR(Hn, A)) → 0

[where Hn abbreviates Hn(K)] with both λn and μn natural.

(ii) If R is left hereditary, then, for all n ≥ 0, the exact sequence splits8:

Hn(HomR(K, A)) ∼= HomR(Hn(K), A) ⊕ Ext1R(Hn−1(K), A).

8The splitting need not be natural.
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Proof. Adapt the proof of Theorem 7.55, using the (contravariant) functor
HomR(�, A) instead of �⊗R A. The stronger hypothesis that boundaries be
projective (instead of flat) is needed because Ext requires projective resolu-
tions. •

The next result shows that the homology groups of a space determine its
cohomology groups.

Corollary 7.60. If X is a topological space and A is an abelian group, then
for all n ≥ 0,

Hn(X, A) ∼= HomZ(Hn(X), A)⊕ Ext1
Z
(Hn−1(X), A).

Proof. By definition,

Hn(X) = H−n(HomZ(S•(X),Z)),

while
Hn(X, A) = H−n(HomZ(S•(X), A)).

The Universal Coefficient Theorem for Cohomology applies at once, for Z is
hereditary and every term of S•(X) is free abelian. •

Corollary 7.61. Let K be a complex of free abelian groups. If Hn−1(K)

is free or A is divisible (for example, if A is the additive group of a field of
characteristic 0), then

Hn(HomZ(K, A)) ∼= HomZ(Hn(K), A).

Proof. Either hypothesis forces Ext1
Z
(Hn−1, A) = {0}. •

Of course, variations on this theme are played by other hypotheses guar-
anteeing the vanishing of Ext1.

Corollary 7.62. If K is a complex of vector spaces over a field k, and if V
is a vector space over k, then for all n ≥ 0,

Hn(Homk(K, V )) ∼= Homk(Hn(K), V ).

In particular, Hn(Homk(K, k)) ∼= Hn(K)∗, where ∗ denotes the dual space.

Proof. As every k-module, V is injective, and so Ext1k(Hn−1, V ) = {0}. •
It is known, for any sequence of abelian groups C0,C1,C2, . . ., that there

exists a topological space X with homology groups Hn(X) ∼= Cn for all n. In
contrast, if the cohomology group Hn(X,Z) is countable, then it is a direct
sum of a finite group and a free abelian group [Nunke–Rotman, “Singular
cohomology groups,” J. London Math Soc, 37 (1962), 301–306].
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Homology and Rings

We are now going to show that homology is a valuable tool in studying rings.

8.1 Dimensions of Rings

We can use Ext and Tor to define various dimensions of a ring, essentially
measuring how far it is from being semisimple. We shall see, for example,
that semisimple rings have dimension 0, while hereditary rings have dimen-
sion 1. The basic idea has already arisen, in the proof of Proposition 7.33:
if the torsion subgroup tG of an abelian group G is of bounded order, then
tG is a direct summand of G. The proof used Exercise 6.18, which says that
Ext2

Z
(A, B) = {0} for all abelian groups A and B. Here is that proof general-

ized from abelian groups to modules over Dedekind rings.

Recall that if → Pn
dn−→ Pn−1 → · · · → P1

d1−→ P0 → 0 is a deleted
projective resolution of a left R-module A, then

ExtnR(A, B) = ker d∗n
im d∗n−1

,

where d∗n is the induced map HomR(Pn−1, B) → HomR(Pn, B).

Proposition 8.1. If R is left hereditary, then ExtnR(A, B) = {0} for all n ≥ 2
and for all left R-modules A, B.

Proof. There is an exact sequence 0 → P1 → P0 → A → 0 with P0
projective. Since R is left hereditary, Corollary 4.14 says that P1 is projective,

J.J. Rotman, An Introduction to Homological Algebra, Universitext, 453
DOI 10.1007/978-0-387-68324-9 8, c© Springer Science+Business Media LLC 2009
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and so this short exact sequence can be viewed as a projective resolution of A
in which Pn = {0} for all n ≥ 2. Hence, the differentials d∗n = 0 for all n ≥ 2,
and ExtnR(A, B) = {0} for all n ≥ 2. •

Proposition 8.2. If R is a Dedekind ring and A is a torsion-free R-module,
then Ext1R(A, B) is a divisible R-module for every R-module B.

Proof. By Lemma 4.33(ii) (which holds for every domain R), there is an

exact sequence 0 → A
i−→ V → X → 0, where V is a vector space over

Q = Frac(R). This gives rise to the exact sequence

Ext1R(V, B)
i∗−→ Ext1R(A, B) → Ext2R(X, B).

The last term is {0}, by Proposition 8.1, so that i∗ is surjective. But Ext1R(V, B)

is also a vector space over Q, by Exercise 6.19 on page 376, and so it is a di-
visible R-module. Therefore, its image, Ext1R(A, B), is divisible. •

We have seen, in Proposition 7.34, that the torsion subgroup of an abelian
group need not be a direct summand.

Theorem 8.3. Let R be a Dedekind ring, and let B be an R-module with
torsion submodule T = t B. If there is a nonzero r ∈ R with rT = {0}, then
T is a direct summand of B.

Proof. We must show that 0 → T → B → B/T → 0 splits. Since
B/T is torsion-free, it suffices to prove that Ext1R(A, T ) = {0} whenever A
is torsion-free. Now Ext1R(A, T ) is divisible, by Proposition 8.2; on the other
hand, rT = {0} implies r Ext1R(A, T ) = {0}, by Proposition 6.38. It follows
that Ext1R(A, T ) = {0}, for if E is a divisible module, then r E = E for all
r 	= 0. Therefore, the short exact sequence splits. •

We can measure how far away a module is from being projective.

Definition. If A is a left R-module (for some ring R), then pdR(A) ≤ n
(pd abbreviates projective dimension) if there is a finite projective resolution

0 → Pn → · · · → P1 → P0 → A → 0.

We will usually omit the subscript R. If no such finite resolution exists, then
pd(A) = ∞; otherwise, pd(A) = n if n is the length of a shortest projective
resolution of A.
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Example 8.4.

(i) pd(A) = 0 if and only if A is projective.

(ii) If R is semisimple, then Proposition 4.5 gives pd(A) = 0 for every left
R-module A.

(iii) If R is left hereditary, then pd(A) ≤ 1 for every left R-module A, for
Theorem 4.19 says that every submodule of a projective R-module is
projective. �

Recall that the nth syzygy Kn of a module R is defined by K0 = ker ε and

Kn = ker dn for n ≥ 1, where P = → Pn
dn−→ Pn−1 → · · · → P1

d1−→
P0

ε−→ A → 0 is a projective resolution of A. Obviously, the syzygies of A
depend on the choice of projective resolution of A.

Definition. Two modules A and B are projectively equivalent if there exist
projective modules P and P ′ with A ⊕ P ∼= B ⊕ P ′.

It is clear that this is an equivalence relation.

Proposition 8.5. Let (Kn)n≥0 and (K ′
n)n≥0 be syzygies of a left R-module

A defined by two projective resolutions of A.

(i) For each n ≥ 0, Kn and K ′
n are projectively equivalent.

(ii) For every left R-module B, we have Ext1R(Kn, B) ∼= Ext1R(K ′
n, B).

(iii) For every left R-module B and every n ≥ 1, we have Extn+1
R (A, B) ∼=

Ext1R(Kn−1, B).

Proof.

(i) This follows at once from Exercise 3.15 on page 128, the generalized
Schanuel Lemma.

(ii) If P is projective, Ext1R(Kn ⊕ P, B) ∼= Ext1R(Kn, B)⊕ Ext1R(P, B) ∼=
Ext1R(Kn, B). Thus, if Kn ⊕ P ∼= K ′

n ⊕ P ′, then Ext1R(Kn, B) ∼=
Ext1R(K ′

n, B).

(iii) Corollary 6.55. •
As a result of Proposition 8.5, one often abuses language and speaks of

the nth syzygy of a module, even though such a module is only defined to
projective equivalence.
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Proposition 8.6. The following are equivalent for a left R-module A.

(i) pd(A) ≤ n.

(ii) ExtkR(A, B) = {0} for all left R-modules B and all k ≥ n + 1.

(iii) Extn+1
R (A, B) = {0} for all left R-modules B.

(iv) There exists a projective resolution of A whose (n − 1)st syzygy is pro-
jective.

(v) Every projective resolution of A has its (n − 1)st syzygy projective.

Proof.

(i) ⇒ (ii) There is a projective resolution 0 → Pn → · · · → P0 →
A → 0 with Pk = {0} for all k ≥ n + 1. Therefore, the induced maps
d∗k : HomR(Pk−1, B) → HomR(Pk, B) are 0 for all k ≥ n + 1, and so
ExtkR(A, B) = {0} for all k ≥ n + 1.

(ii) ⇒ (iii) Trivial.

(iii) ⇒ (iv) Let Kn−1 be the (n−1)st syzygy of a projective resolution of A.
By hypothesis, Extn+1

R (A, B) = {0} for all B. Now Extn+1
R (A, B) ∼=

Ext1R(Kn−1, B), by Proposition 8.5(iii), and so Ext1R(Kn−1, B) = {0}
for all B. Hence, Kn−1 is projective, by Corollary 7.25.

(iv) ⇒ (v) Assume that Kn−1 and K ′
n−1 are (n − 1)st syzygies arising from

two projective resolutions of A. By Proposition 8.5(i), there are projec-
tive modules P and P ′ with Kn−1 ⊕ P ∼= K ′

n−1 ⊕ P ′. But if Kn−1
is projective, then K ′

n−1 is a direct summand of the projective module
Kn−1 ⊕ P and, hence, is projective.

(v) ⇒ (i) If · · · → P1 → P0 → A → 0 is a projective resolution of A,
then

0 → Kn−1 → Pn−1 → · · · → P1 → P0 → A → 0

is an exact sequence, where Kn−1 is the (n − 1)st syzygy. But if Kn−1
is projective, then this sequence is a projective resolution of A, and this
says that pd(A) ≤ n. •

We now introduce a notation that will soon be simplified.

Definition. If R is a ring, then its left projective global dimension is

�pD(R) = sup{pd(A) : A ∈ obj(RMod)}.
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Corollary 8.7. �pD(R) ≤ n if and only if Extn+1
R (A, B) = {0} for all left

R-modules A and B.

Proof. Immediate from Proposition 8.6(iii). •

Example 8.8.

(i) If R is semisimple, then �pD(R) = 0.

(ii) If R is left hereditary, then �pD(R) ≤ 1. �

All of this discussion can be repeated using injective modules instead
of projectives; we merely state the definitions and results. The fundamental
reason this can be done is Theorem 6.67: Ext does not depend on the variable
being resolved.

Definition. If B is a left R-module (for some ring R), then idR(B) ≤ n
(id abbreviates injective dimension) if there is a finite injective resolution

0 → B → E0 → E1 → · · · → En → 0.

We will usually omit the subscript R. If no such finite resolution exists, then
id(B) = ∞; otherwise, id(B) = n if n is the length of a shortest injective
resolution of B.

Example 8.9.

(i) id(B) = 0 if and only if B is injective.

(ii) If R is semisimple, then Proposition 4.5 gives id(B) = 0 for every left
R-module B.

(iii) If R is left hereditary, then id(B) ≤ 1 for every left R-module B, for
Theorem 4.19 says that every submodule of an injective R-module is
injective. �

Recall that the nth cosyzygy V n of a module B is defined by V 0 = coker η

and V n = coker dn−1 for n ≥ 1, where E = 0 → B
η−→ E0 d0

−→ E1 d1

−→
E2 → · · · is an injective resolution of B. Obviously, the cosyzygies of B
depend on the choice of injective resolution of B.

Definition. Two modules V and W are injectively equivalent if there exist
injective modules E and E ′ with V ⊕ E ∼= W ⊕ E ′.

It is obvious that this is an equivalence relation.
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Proposition 8.10. Let (V n)n≥0 and (V ′ n
)n≥0 be cosyzygies of a left R-

module B defined by two injective resolutions of B.

(i) For each n ≥ 0, V n and V ′ n are injectively equivalent.

(ii) For every left R-module A, we have Ext1R(A, V n) ∼= Ext1R(A, V ′ n
).

(iii) For every left R-module A and every n ≥ 1, we have Extn+1
R (A, B) ∼=

Ext1R(A, V n−1).

As a result of Proposition 8.10, one often abuses language and speaks of
the nth cosyzygy of a module, even though such a module is only defined to
injective equivalence.

Proposition 8.11. The following are equivalent for a left R-module B.

(i) id(B) ≤ n.

(ii) ExtkR(A, B) = {0} for all left R-modules A and all k ≥ n + 1.

(iii) Extn+1
R (A, B) = {0} for all left R-modules A.

(iv) There exists an injective resolution of B whose (n − 1)st cosyzygy is
injective.

(v) Every injective resolution of B has its (n − 1)st cosyzygy injective.

Definition. If R is a ring, then its left injective global dimension is

�iD(R) = sup{id(B) : B ∈ obj(RMod)}.

Corollary 8.12. �iD(R) ≤ n if and only if Extn+1
R (A, B) = {0} for all left

R-modules A and B.

Example 8.13.

(i) If R is semisimple, then �iD(R) = 0.

(ii) If R is left hereditary and B is a left R-module, then Example 8.9(iii)
shows that �iD(R) ≤ 1. �

We now combine Corollaries 8.7 and 8.12.
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Theorem 8.14. For any ring R, we have �pD(R) = �iD(R).

Proof. Both dimensions are characterized by Extn+1
R (A, B) = {0} for all left

R-modules A and B. •
In light of Theorem 8.14, we now simplify earlier notation.

Definition. If R is a ring, then its left global dimension �D(R) is the com-
mon value of �pD(R) and �iD(R).

We now see why, in Chapter 4, we first discussed semisimple rings and
then hereditary rings; semisimple rings have global dimension 0 while hered-
itary rings, having global dimension 1, are only one step removed from semi-
simple rings. Hilbert’s Syzygy Theorem, which we will soon prove, states
that if k is a field, then k[x1, . . . , xn] has global dimension n.

All of the results just proved for left modules hold, mutatis mutandis, for
right modules. The right global dimension rD(R) is the common value of
rpD(R) and r iD(R). Of course, if R is a commutative ring, then we speak of
the global dimension D(R), dropping � and r .

Recall that a ring R is left semisimple if it is a direct sum of minimal left
ideals. The Wedderburn–Artin Theorem says that a ring R is left semisimple
if and only if it is isomorphic to a direct product of matrix algebras over di-
vision rings; it follows that these rings are also right semisimple. Therefore,
�D(R) = 0 = rD(R).

The first example of a ring for which the left and right global dimensions
differ was given by Kaplansky [“On the dimension of rings and modules X,”
Nagoya Math. J. 13 (1958), 85–88] who exhibited a ring R with �D(R) = 1
and rD(R) = 2. Jategaonkar [“A counterexample in ring theory and homolog-
ical algebra,” J. Algebra 12 (1966), 97–105] proved that if 1 ≤ m ≤ n ≤ ∞,
then there exists a ring R with �D(R) = m and rD(R) = n. The same phe-
nomenon, but with n finite, can be found in Fossum–Griffith–Reiten, Trivial
Extensions of Abelian Categories, pp. 74–75.

On the positive side, we shall prove that �D(R) = rD(R) when R is
left and right noetherian. Jensen [“Homological dimensions of rings with
countably generated ideals,” Math Scand. 18 (1966), 97–105] proved that
if all one-sided ideals (i.e., all left ideals and all right ideals) of a ring R
are countably generated, then |�D(R) − rD(R)| ≤ 1. This, in turn, was
generalized by Osofsky [“Upper bounds of homological dimension,” Nagoya
Math. J. 32 (1968), 315–322] who showed that if every one-sided ideal of R
can be generated by at most ℵn elements, then |�D(R) − rD(R)| ≤ n + 1;
thus, Set Theory makes its presence known in these results. Indeed, if R
is the direct product of countably many fields, then Osofsky (Homological
Dimension of Modules, p. 60) proved that D(R) ≤ 2, and that D(R) = 2 if
and only if the Continuum Hypothesis holds. Another example involving Set
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Theory is the ring E of all entire functions (a function f : C → C is entire if
it is holomorphic at every z ∈ C). Now E is a Bézout ring, and every Bézout
ring R of cardinality ℵm has global dimension D(R) ≤ m + 2 (Osborne,
Basic Homological Algebra, p. 357). In particular, assuming the Continuum
Hypothesis, D(E) ≤ 3.

Lemma 8.15. A left R-module is injective if and only if Ext1R(R/I, B) = {0}
for all left ideals I .

Proof. If B is injective, then Ext1R(A, B) = {0} for every left R-module
A. Conversely, apply HomR(�, B) to 0 → I → R → R/I → 0 to obtain
exactness of HomR(R, B) → HomR(I, B) → Ext1R(R/I, B) = 0. The result
now follows from Theorem 3.30, Baer’s Criterion, for every map I → B can
be extended to R. •

It is natural to ask whether there is an analog of Lemma 8.15 to test for
projectivity. The obvious candidates do not work (but see Exercise 8.11 on
page 467). If we assume that Ext1R(A, R/I ) = {0} for all I , then Exercise 8.1
on page 466 shows, when R is Dedekind, that we may conclude only that
A is torsion-free. If we assume that A satisfies Ext1R(A, I ) = {0} for all
ideals I , then this, too, is not enough to force A to be projective. Indeed,
when R = Z and I 	= {0}, then we are assuming Ext1

Z
(A,Z) = {0} (for

nonzero ideals here are principal and, hence, are isomorphic to Z), and we are
posing Whitehead’s problem: if A is an abelian group with Ext1

Z
(A,Z) = {0},

is A free abelian? (See Exercise 7.18 on page 436.) It is not difficult to
prove that every countable subgroup of A is free. However, Shelah [“Infinite
abelian groups, Whitehead problem, and some constructions,” Israel Math.
J. 18 (1974), 243–256] proved that Whitehead’s problem is undecidable: the
statement “Ext1

Z
(A,Z) = {0} and |A| = ℵ1 implies A is free” and its negation

are each consistent with the ZFC axioms of Set Theory.
We now develop some ways to compute global dimension. The next result

shows that left global dimension is determined by finitely generated modules;
indeed, it is determined by cyclic modules.

Theorem 8.16 (Auslander). For any ring R,

�D(R) = sup{pd(R/I ) : I is a left ideal}.
Proof. (Matlis) If supI {pd(R/I )} = ∞, we are done, and so we may assume
that pd(R/I ) ≤ n for all left ideals I ; thus, Extn+1

R (R/I, B) = {0} for every
left R-module B. Now Theorem 8.14 says �D(R) = �iD(R), so that it suf-
fices to prove id(B) ≤ n for every B. Take an injective resolution of B with
(n − 1)st cosyzygy V n−1. By Proposition 8.10(iii), {0} = Extn+1

R (R/I, B) ∼=
Ext1R(R/I, V n−1) for all left ideals I . But Lemma 8.15 gives V n−1 injective
and, therefore, id(B) ≤ n. •
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We now introduce another notion of dimension arising from flat resolu-
tions and Tor, for von Neumann regular rings will then appear naturally.

Definition. If A is a right R-module, then fdR(A) ≤ n (fd abbreviates flat
dimension) if there is a finite flat resolution

0 → Fn → · · · → F1 → F0 → A → 0.

We will usually omit the subscript R. If no such finite resolution exists, then
fd(A) = ∞; otherwise, define fd(A) = n if n is the length of a shortest flat
resolution of A.

A right R-module A is flat if and only if fd(A) = 0.

Definition. If → Fn
dn−→ Fn−1 → · · · → F1

d1−→ F0
ε−→ A → 0 is a

flat resolution of A, define its nth syzygy1 by Y0 = ker ε and Yn = ker dn for
n ≥ 1.

Of course, the nth syzygy of A depends on the flat resolution. Unfortu-
nately, Schanuel’s Lemma does not hold for flat resolutions (for the Compari-
son Theorem may not apply). For example, two flat resolutions of the abelian
group Q/Z are

0 → Z → Q → Q/Z → 0 and 0 → S → F → Q/Z → 0,

where F is a free abelian group (of infinite rank) mapping onto Q/Z (recall
Corollary 3.51: an abelian group is flat if and only if it is torsion-free). Now
Z⊕F is free abelian, but it is not isomorphic to Q⊕ S, for Q is not projective.
Still, we should be able to link flat dimension to Tor, for Theorem 7.5 says that
Tor can be computed using flat resolutions.

Proposition 8.17. The following four statements are equivalent for a right
R-module A.

(i) fd(A) ≤ n.

(ii) TorR
k (A, B) = {0} for all left R-modules B and all k ≥ n + 1.

(iii) TorR
n+1(A, B) = {0} for all left R-modules B.

(iv) Every flat resolution of A has its (n − 1)st syzygy flat.

1We denote syzygies by Yn because the Greek word syzygy means yoke.
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Proof.

(i) ⇒ (ii) By Theorem 7.5, we may compute TorR
k (A, B) using any flat

resolution of A; in particular, we may use the given flat resolution whose
kth term Fk = {0} for all k ≥ n + 1. Therefore, TorR

k (A, B) = {0} for
all k ≥ n + 1, because all the differentials dk ⊗R 1B are 0.

(ii) ⇒ (iii) Trivial.

(iii) ⇒ (iv) Assume that TorR
n+1(A, B) = {0} for all left R-modules B. If

Yn−1 is the (n−1)st syzygy of A, then TorR
n+1(A, B) ∼= TorR

1 (Yn−1, B),
by Corollary 6.23. Hence, TorR

1 (Yn−1, B) = {0} for all B, so that Yn−1
flat, by Theorem 7.2.

(iv) ⇒ (i) Analogous to the proof of Proposition 8.6. •

Remark. The proof of (iii) ⇒ (iv) just given could have been used in the
proof of Proposition 8.6, thus avoiding projective equivalence there. �

Definition. The right weak dimension of a ring R is defined by

rwD(R) = sup{fd(A) : A ∈ obj(ModR)}.

Proposition 8.18. rwD(R) ≤ n if and only if TorR
n+1(A, B) = {0} for all

right R-modules A and all left R-modules B.

Proof. Immediate from Proposition 8.17. •

Definition. The left weak dimension of a ring R is defined by

�wD(R) = sup{fd(B) : B ∈ obj(RMod)}.

Theorem 8.19. For any ring R, we have �wD(R) = rwD(R).

Proof. We can prove the left versions of Propositions 8.17 and 8.18, obtain-
ing the same formula for �wD(R) and rwD(R). •

Definition. The weak dimension wD(R) of a ring R is the common value
of �wD(R) and rwD(R).

In the beginning, it is a nuisance that A⊗R B and TorR
n (A, B) are hybrids

in that each requires A to be a right R-module and B to be a left R-module.
However, we now see that weak dimension requires no left/right distinction
as does global dimension; that is, wD(R) = wD(Rop). This fact will soon be
exploited.
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Example 8.20.

(i) If R is a ring, then wD(R) = 0 if and only if every R-module is flat.
In light of Theorem 4.9, we have wD(R) = 0 if and only if R is von
Neumann regular.

(ii) If R is a ring, then wD(R) ≤ 1 if and only if every submodule of a
flat R-module is flat. In Corollary 4.36, we saw that a domain R has
wD(R) ≤ 1 if and only if R is a Prüfer ring. No “intrinsic” description
of all rings of weak dimension 1 is known.

(iii) Let R be a ring with wD(R) ≤ 1. Theorem 4.32 shows that R is left
semihereditary if and only if it is left coherent. Similarly, R is right
semihereditary if and only if it is right coherent. �

The next result explains why wD is called “weak dimension.”

Proposition 8.21. Let R be a ring.

(i) For every right R-module A, we have fd(A) ≤ pd(A).

(ii) wD(R) ≤ min{�D(R), r D(R)}.
Proof.

(i) The inequality obviously holds if pd(A) = ∞, and so we may assume
that pd(A) ≤ n; that is, there is a projective resolution

0 → Pn → · · · → P0 → A → 0.

Since projective modules are flat, this is a flat resolution of A showing
that fd(A) ≤ n. A similar argument works for left R-modules.

(ii) This follows at once from part (i). •.

The inequality in Proposition 8.21 can be strict, for there are von Neu-
mann regular rings that are not semisimple. In Corollary 8.28, we shall see
that the inequality in Proposition 8.21 is an equality when R is both left and
right noetherian.

Corollary 8.22. If Extn+1
R (A, B) = {0} for all left R-modules A and B (or

for all right R-modules A and B), then TorR
n+1(C, D) = {0} for all right

R-modules C and left R-modules D.

Proof. The Ext condition says that �D(R) ≤ n, while the Tor condition says
that wD(R) ≤ n. Thus, this is just a restatement of Proposition 8.21. •

We now understand why TorR
2 (A, B) = {0} for hereditary rings R.
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Proposition 8.23. If S is a multiplicative subset of a commutative ring R,
then

wD(S−1 R) ≤ wD(R).

Proof. We may assume that wD(R) = n < ∞. By Proposition 8.18, it
suffices to show that TorS−1 R

n+1 (A, B) = {0} for all S−1 R-modules A and B.
Now there are R-modules M, N with A ∼= S−1 M and B ∼= S−1 N as S−1 R-
modules, by Corollary 4.79(ii), and so Proposition 7.17 gives

TorS−1 R
n+1 (A, B) = TorS−1 R

n+1 (S−1 M, S−1 N )

∼= S−1 TorR
n+1(M, N )

= {0}. •

Lemma 8.24. A left R-module B is flat if and only if TorR
1 (R/I, B) = {0}

for every right ideal I .

Proof. Proposition 3.58 says that a left R-module B is flat if and only if the

sequence 0 → I ⊗R B
i⊗1−→ R ⊗R B is exact for every right ideal I , where

i : I → R is the inclusion. If B is flat, 1 ⊗ i is an injection, and exactness of

0 = TorR
1 (R, B) → TorR

1 (R/I, B) → I ⊗R B
i⊗1−→ R ⊗R B

shows that TorR
1 (R/I, B) = {0}. The converse is obvious. •

Weak dimension, as global dimension, is determined by finitely generated
modules; indeed, it is even determined by cyclic modules.

Theorem 8.25. For any ring R, we have

wD(R) = sup{fd(R/I ) : I is a right ideal}
= sup{fd(R/J ) : J is a left ideal}.

Proof. The proof is the same as that of Theorem 8.16, using Lemma 8.24
instead of Lemma 8.15. •

We can now complete the proof of Theorem 4.32.

Corollary 8.26. Every left ideal of a ring R is flat if and only if every sub-
module of a flat left R-module is flat.

Proof. Sufficiency is clear, for every left ideal is a submodule of R.
Conversely, if every left ideal I is flat, then 0 → I → R → R/I → 0

is a flat resolution of R/I , which shows that fd(R/I ) ≤ 1. By Theorem 8.25,
we have wD(R) ≤ 1; hence, if S is a submodule of a flat module B, then
fd(B/S) ≤ 1. There is a flat resolution → B

ν−→ B/S → 0, where ν is the
natural map. By Proposition 8.17, the 0th syzygy Y0 is flat. But Y0 = ker ν =
S, and so S is flat. •
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Let us return to dimensions. For noetherian rings, weak dimension is
nothing new.

Theorem 8.27. Let R be a right noetherian ring.

(i) Let A be a finitely generated 2 right R-module, then fd(A) = pd(A).

(ii) wD(R) = r D(R).

(iii) If R is left noetherian, then wD(R) = �D(R).

Proof.

(i) As we saw in the proof of Proposition 8.21, fd(A) ≤ pd(A). For the
reverse inequality, we may assume that fd(R) = n < ∞, and we must
show that pd(A) ≤ n. A projective resolution → Pk → Pk−1 →
· · · → P0 → A → 0 in which each Pk is finitely generated, as in
Lemma 7.19, is also a flat resolution, so that Proposition 8.17(iv) says
that the (n − 1)st syzygy Yn−1 is flat; that is,

0 → Yn−1 → Pn−1 → · · · → P0 → A → 0 (1)

is a flat resolution. Since R is right noetherian, Corollary 3.57 says that
Yn−1 is projective. But all the Pi are projective; hence, sequence (1) is
a projective resolution of A, and so pd(A) ≤ n.

(ii) Statements (ii) and (iii) follows from part (i), for both weak and global
dimension are determined by dimensions of finitely generated modules.

•

Osofsky (Homological Dimension of Modules, p. 57) generalized Theo-
rem 8.27 as follows. If every right ideal of a ring R can be generated by at
most ℵn elements (where we agree that ℵ−1 means finite), then r D(R) ≤
wD(R)+ n + 1.

Corollary 8.28 (Auslander). If R is both left and right noetherian, then
�D(R) = r D(R).

Proof. In this case, �D(R) = wD(R) = r D(R). •
2We must assume that A is finitely generated; for example, Q is a flat Z-module, so that

fd(Q) = 0, but pd(Q) = 1.
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Exercises

*8.1 Let R be a Dedekind ring. Prove that an R-module A is torsion-free
if and only if Ext1R(A, R/I ) = {0} for every nonzero ideal I .
Hint. Use Theorem 8.3.

8.2 (i) If R is quasi-Frobenius, prove that �D(R) = 0 or ∞.
(ii) Prove that D(In) = ∞ if n is not squarefree.
(iii) Let G be a finite group and let k be a field whose charac-

teristic divides |G|; prove that �D(kG) = ∞.
*8.3 If M is a left R-module with pd(M) = n < ∞, prove that there is a

free R-module F with ExtnR(M, F) 	= {0}.
*8.4 (i) If I is a left ideal in a ring R, prove that either R/I is pro-

jective or pd(R/I ) = 1+pd(I ) (we agree that 1+∞ =∞).
(ii) If 0 → M ′ → M → M ′′ → 0 is exact and if two of

the modules have finite projective (or injective) dimension,
prove that the third module has finite projective (or injec-
tive) dimension as well.

*8.5 Let 0 → M ′ → M → M ′′ → 0 be an exact sequence of left
R-modules for some ring R. Prove each of the following using the
long exact Ext sequence.

(i) If pd(M ′) < pd(M), prove that pd(M ′′) = pd(M).
(ii) If pd(M ′) > pd(M), prove that pd(M ′′) = pd(M ′)+ 1.
(iii) If pd(M ′) = pd(M), prove that pd(M ′′) ≤ pd(M ′)+ 1.

*8.6 Let 0 → M ′ → M → M ′′ → 0 be an exact sequence of left
R-modules for some ring R.

(i) Prove that if pd(M ′) = n < ∞ and pd(M ′′) ≤ n, then
pd(M) = n.

(ii) Prove that pd(M) ≤ max{pd(M ′), pd(M ′′)}. Moreover, if
pd(M ′) = 1 + pd(M ′′) and the short exact sequence is not
split, then the inequality is an equality.

*8.7 Let 0 → M ′ → M → M ′ → 0 be an exact sequence of left
R-modules for some ring R.

(i) Prove that pd(M ′′) ≤ 1 + max{pd(M), pd(M ′)}.
Hint. Use the long exact Ext sequence.

(ii) If 0 → M ′ → M → M ′′ → 0 is exact and M projective,
prove that either all three modules are projective or that
pd(M ′′) = 1 + pd(M ′).
Hint. Use the long exact Ext sequence.

*8.8 Let 0 → M ′ → M → M ′′ → 0 be an exact sequence of right
R-modules for some ring R. Prove that if fd(M ′) = n < ∞ and
fd(M ′′) ≤ n, then fd(M) = n.
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*8.9 Given a family of left R-modules (Ak)k∈K , prove that

pd
(⊕

k∈K

Ak

)
= sup

k∈K
{pd(Ak)}.

Conclude that if �D(R) = ∞, then there exists a module A with
pd(A) = ∞. [A priori, there might exist a ring R with pd(A) < ∞
for every left R-module A, yet �D(R) = ∞ because there is a se-
quence of left R-modules An with supn{pd(An)} = ∞.]

8.10 Let R be a Dedekind ring with fraction field Q. Prove that an R-
module B is injective if and only if Ext1R(Q/R, B) = {0}.

*8.11 If R is a Dedekind ring, prove that an R-module P is projective if
and only if Ext1R(P, F) = {0} for every free R-module F .

8.12 If R is a left coherent ring, prove that wD(R) ≤ 1 if and only if R
is left hereditary. Conclude that if R is left and right coherent, then
wD(R) ≤ 1 if and only if R is left and right hereditary.

8.13 Prove that every left ideal of a ring R is flat if and only if every right
ideal is flat.

8.2 Hilbert’s Syzygy Theorem

If R is a (not necessarily commutative) ring, let R[x] denote the polyno-
mial ring in which the indeterminate x commutes with all the coefficients
in R. Since R[x1, . . . , xn+1] = (

R[x1, . . . , xn]
)
[xn+1], the polynomial ring

R[x1, . . . , xn] consists of polynomials in which the indeterminates commute
with each other as well as with the coefficients in R. Hilbert’s Syzygy The-
orem states that �D(R[x]) = 1 + �D(R) (actually, Hilbert proved only the
special case when R = C[x1, . . . , xn]).

If M is a left R-module, write

M[x] = R[x] ⊗R M.

Since R[x] is the free R-module with basis {1, x, x2, . . .}, and since tensor
product commutes with direct sums, we may view the underlying R-module
of M[x] as a direct sum: M[x] =⊕i∈N

Mi , where Mi ∼= M . Thus, elements
of M[x] are “vectors” (xi⊗mi ), where i ≥ 0, mi ∈ M , and almost all mi = 0.
One may also regard these elements as “polynomials” with coefficients in M .

If an abelian group M is an R-module, we may use the subscript R, writ-
ing pdR(M) to denote its projective dimension. Now M[x] is an R-module
as well as an R[x]-module, and so both pdR(M[x]) and pdR[x](M[x]) are
defined.
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Lemma 8.29. For every left R-module M, we have

pdR(M) = pdR[x](M[x]).

Proof. It suffices to prove, for any n ≥ 0, that if one dimension is finite and
≤ n, then the other is also finite and ≤ n.

If pdR(M) ≤ n, then there is a projective resolution

0 → Pn → · · · → P0 → M → 0.

Since R[x] is a flat right R-module (R[x] is a free R-module), there is an
exact sequence of left R[x]-modules

0 → R[x] ⊗R Pn → · · · → R[x] ⊗R P0 → R[x] ⊗R M → 0.

But R[x] ⊗R Pi is R[x]-projective for all i , and so pdR[x](M[x]) ≤ n.
If pdR[x](M[x]) ≤ n, then there is an R[x]-projective resolution

0 → Qn → · · · → Q0 → M[x] → 0. (1)

View this sequence as an R-exact sequence. Now each Qi is a direct summand
of a free R[x]-module Fi ; that is, Fi = Qi⊕Si for some R[x]-module Si . But
Fi is also a free R-module, and so Qi is projective as an R-module. Thus, the
exact sequence (1) is also an R-projective resolution of M[x] ∼=⊕

i∈N
Mi , a

direct sum of countably many copies of M . But pdR(M[x]) = pdR(M), by
Exercise 8.9 on the previous page. •

Corollary 8.30. If �D(R) = ∞, then �D(R[x]) = ∞.

Proof. If �D(R) = ∞, there exists an R-module M with pd(M) = ∞, by
Exercise 8.9. But pdR[x](M[x]) = ∞, by Lemma 8.29, and so �D(R[x]) =
∞. •

Lemma 8.31. If M is a left R[x]-module, then there is an R[x]-exact se-
quence

0 → M[x] → M[x]
e−→ M → 0,

where e : M[x] → M by xi ⊗ mi �→ xi mi .

Proof. Clearly, e is a surjective R[x]-map, and there is an R[x]-exact se-
quence 0 → ker e → M[x] → M → 0. It suffices to prove that M[x] ∼= ker e
as left R[x]-modules. Define f : M[x] → ker e by

f :
∑

xi ⊗ mi �→
∑

xi (1 ⊗ x − x ⊗ 1)mi .
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It is routine to see that f is an R[x]-map with im f ⊆ ker e. To see that f is
an isomorphism, we write its formula in more detail:

k∑
i=0

xi ⊗ mi �→ 1 ⊗ xm0 +
k∑

i=1

xi ⊗ (xmi − mi−1)− xk+1 ⊗ mk .

If
∑

xi ⊗ mi ∈ ker f , then

0 = −mk = xmk − mk−1 = · · · = xm1 − m0,

so that each mi = 0; hence, f is injective. If
∑ k

i=0 xi ⊗ vi ∈ ker e, then∑ k
i=0 xivi = 0 in M , and we can solve the equations

−v0 = xm0, v1 = xm1 − m0, . . . , vk = −mk−1

recursively to show that f is surjective. •

Corollary 8.32. For every ring R, we have

�D(R[x]) ≤ 1 + �D(R).

Proof. Let us agree that ∞ = ∞+ 1, so that Corollary 8.30 lets us assume
that �D(R) = n < ∞. Take a left R[x]-module M , and view it as a left
R-module. By Lemma 8.29, we have pdR[x](M[x]) = pdR(M) ≤ n. Apply
Exercise 8.7 on page 466 to the R[x]-exact sequence 0 → M[x] → M[x] →
M → 0 in Lemma 8.31; we obtain pdR[x](M) ≤ 1 + pdR[x](M[x]) ≤ 1 + n.

•
We are now going to prove the reverse inequality: if �D(R) = n, then

�D(R[x]) ≥ 1+�D(R). Note that we have already proven this in the infinite-
dimensional case in Corollary 8.30.

Given a left R-module M , we had to create a left R[x]-module M[x].
The reverse direction is easier, for a left R[x]-module N can be viewed as a
left R-module by forgetting the action of x . The proper context in which to
view the upcoming discussion is that of change of rings (we will elaborate on
this circle of ideas when discussing spectral sequences). If ϕ : R → R∗ is a
ring homomorphism, then every left R∗-module M∗ acquires a left R-module
structure via the formula

rm∗ = ϕ(r)m∗, r ∈ R and m∗ ∈ M∗.

For example, the inclusion ϕ : k → k[x] that takes a ∈ k to the constant
polynomial a views each left k[x]-module as a left k-module by forgetting
the action of x . Every R∗-map f ∗ : M∗ → N∗ can also be viewed as an
R-map:

f ∗(rm∗) = f ∗(ϕ(r)m∗) = ϕ(r) f ∗(m∗) = r f ∗(m∗).



470 Homology and Rings Ch. 8

Proposition 8.33. Every ring homomorphism ϕ : R → R∗ defines an exact
additive functor U : R∗Mod → RMod. Moreover, if ϕ is surjective, then
U∗ : HomR∗(M∗, N∗) → HomR(U M∗,U N∗), given by f ∗ �→ U f ∗, is an
isomorphism for all left R∗-modules M∗ and N∗.

Proof. It is easy to see that U is an additive functor; U is exact because, for
any R∗-map f ∗, both f ∗ and U f ∗ are equal as additive functions and, hence,
they have the same kernel and the same image. Equality of the underlying
functions of f ∗ and U f ∗ shows that U∗ is an injection, for every R∗-map
is an R-map. If ϕ is surjective, then U∗ is a surjection, for every R-map
g : M∗ → N∗ is an R∗-map: if r ∈ R and r∗ = ϕ(r), then

g(r∗m∗) = g(ϕ(r)m∗) = g(rm∗) [for ϕ(r)m∗ = rm∗]

= rg(m∗) = ϕ(r)g(m∗) = r∗g(m∗).

Therefore, g ∈ HomR∗(M∗, N∗) and g = Ug. •
Since the underlying additive functions of an R∗-map f ∗ and its corre-

sponding R-map U f ∗ are the same, one usually identifies them and writes
HomR∗(M∗, N∗) = HomR(M∗, N∗).

Let �D(R) = n. We will prove that �D(R[x]) ≥ 1+ �D(R) = 1+ n by
exhibiting a pair of left R[x]-modules V and W with Extn+1

R[x](V, W ) 	= {0}.
The next result will help us do this.

Definition. Let R be a ring. An element x ∈ Z(R) is regular on a left R-
module M if the multiplication M → M , given by m �→ xm, is an injection;
that is, if m ∈ M and xm = 0 imply m = 0.

If M = R, then x is regular on R if x is not a zero-divisor.

Theorem 8.34 (Rees). Let R be a ring, let x ∈ Z(R) be a nonzero element
that is neither a unit nor a zero-divisor, and let R∗ = R/x R. If M is a left
R-module and x is regular on M, then there is an isomorphism

ExtnR∗(L∗, M/x M) ∼= Extn+1
R (L∗, M)

for every R∗-module L∗ and every n ≥ 0.

Proof. Since a left R∗-module is merely a left R-module annihilated by x ,
the quotient M/x M is also a left R∗-module; thus, ExtnR∗(L∗, M/x M) makes
sense for every left R∗-module L∗. The natural map R → R∗ gives a change
of rings functor U : R∗Mod → RMod, so that U L∗ is a left R-module and
Extn+1

R (U L∗, M) also makes sense. However, we shall write Extn+1
R (L∗, M)

as in the statement instead of the more accurate Extn+1
R (U L∗, M).

Recall Theorem 6.64, the axioms characterizing the contravariant Ext
functors. If (Gn : R∗Mod → Ab)n≥0 is a sequence of additive contravari-
ant functors satisfying the following three axioms:
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(i) every short exact sequence gives a long exact sequence having natural
connecting homomorphisms;

(ii) there exists a left R∗-module M∗ with G0 ∼= HomR∗(�, M∗);
(iii) Gn(P∗) = {0} for all free R∗-modules P∗ and all n ≥ 1 (we have used

the remark after Theorem 6.64 to write free instead of projective),

then
Gn ∼= ExtnR∗(�, M∗) for all n ≥ 0.

Set M∗ = M/x M , and define Gn : R∗Mod → Ab, for all n ≥ 0, by

Gn = Extn+1
R (�, M).

It is clear that this sequence of functors satisfies axiom (i). Let us verify

axiom (ii). Exactness of the sequence of R-modules 0 → M
μ−→ M →

M/x M → 0, where μ : m �→ xm, gives exactness of

HomR(L∗, M) → HomR(L∗, M/x M)
∂−→ Ext1R(L∗, M)

μ∗−→ Ext1R(L∗, M).

We claim that HomR(L∗, M) = {0}. If u ∈ L∗, then xu = 0, because
L∗ is a left R∗-module. Hence, if f : L∗ → M is an R-map, then x f (u) =
f (xu) = f (0) = 0. But f (u) ∈ M , so that μ : M → M being an injection
gives f (u) = 0; hence, f = 0. Thus, ∂ is injective.

We claim that μ∗ = 0. On the one hand, μ∗ is multiplication by x . On
the other hand, if ν : L∗ → L∗ is multiplication by x , then ν = 0 (because L∗
is a left R∗-module), and so the induced map ν∗ = 0. But μ∗ = ν∗, for both
are multiplication by x ; hence, μ∗ = 0. Thus, ∂ is surjective.

We conclude that the connecting homomorphism ∂ is a natural isomor-
phism HomR(L∗, M/x M) → Ext1R(L∗, M). But the change of rings map
R → R∗ is surjective, and so HomR(L∗, M/x M) = HomR∗(L∗, M/x M),
by Proposition 8.33. Thus, G0 = Ext1R(�, M) and HomR∗(�, M/x M) are
naturally isomorphic.

We now prove (the modified) axiom (iii): Gn(F∗) = Extn+1
R (F∗, M) =

{0} for all free left R∗-modules F∗ and all n ≥ 1. Choose a basis of F∗,
and let Q be the free left R-module with the same basis. In more detail,
F∗ =⊕k∈K R∗uk =

⊕
k∈K (R/x R)uk , and Q =⊕k∈K Ruk . If λ : Q → Q

is multiplication by x , then the hypothesis that x is a central nonzero divisor
in R shows that λ is an injective R-map; moreover, coker λ = Q/x Q =(⊕

k∈K Ruk
)
/x
(⊕

k∈K Ruk
)= ⊕

k∈K (R/x R)uk = F∗. Thus, there is an

R-exact sequence 0 → Q
λ−→ Q → F∗ → 0. In the exact sequence

ExtnR(Q, M) → Extn+1
R (F∗, M) → Extn+1

R (Q, M),
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the flanking Exts are {0} because Q is a free R-module. Hence, Gn(F∗) =
Extn+1

R (F∗, M/x M) = {0} for all n ≥ 1 Therefore, (Gn)n≥0 satisfies the
axioms, and Gn ∼= ExtnR∗(�, M/x M). But Gn = Extn+1

R (�, M), and this
gives the desired isomorphism. •

Corollary 8.35. Let R be a ring, and let x ∈ Z(R) be a nonzero element that
is neither a unit nor a zero-divisor. If R∗ = R/x R, and �D(R∗) = n < ∞,
then

�D(R) ≥ �D(R∗)+ 1.

Proof. Assume that L∗ is a left R∗-module with pdR∗(L∗) = n. By Exer-
cise 8.3 on page 466, there is a free left R∗-module F∗ with ExtnR∗(L∗, F∗) 	=
{0}. Define Q as the free left R-module having the same basis as F∗ (as in
the proof of Theorem 8.34), so that Q/x Q ∼= F∗. By Theorem 8.34,

ExtnR∗(L∗, F∗) ∼= Extn+1
R (L∗, Q).

This says that pdR(L∗) ≥ n + 1, and so �D(R) ≥ n + 1 = 1 + �D(R∗). •

Theorem 8.36. For any ring R,

�D(R[x]) = 1 + �D(R).

Proof. Corollary 8.32 gives �D(R[x]) ≤ 1 + �D(R), while Corollary 8.30
gives the reverse inequality if �D(R) = ∞. Assume that �D(R) = n < ∞.
If R = R[x], then R∗ = R/x R = R[x]/x R[x] = R; hence, Corollary 8.35
applies to give �D(R[x]) ≥ 1 + �D(R). •

Theorem 8.37 (Hilbert Theorem on Syzygies). If k is a (not necessar-
ily commutative) ring and k[x1, . . . , xn] is the polynomial ring in which the
indeterminates commute with each other and with the coefficients in k, then

�D(k[x1, . . . , xn]) = �D(k)+ n.

In particular, if k is a field, then D(k[x1, . . . , xn]) = n.

Proof. Induction on n ≥ 1 using Theorem 8.36. •
If ϕ : R → R∗ is a ring map, then change of rings says that every left R∗-

module M can be viewed as a left R-module; we now compare its projective
dimensions over the two rings.
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Proposition 8.38. Let R∗ = R/(x), let x ∈ Z(R) not be a zero-divisor, and
let M be a left R-module with x regular on M.

(i) If pdR(M) = n < ∞, then pdR∗(M/x M) ≤ n − 1.

(ii) If pdR∗(M/x M) = n < ∞, then pdR(M) ≥ n + 1.

Proof.

(i) Since pd(M) = n < ∞, we have Extn+1
R (L , M) = {0} for all left R-

modules L; in particular, Extn+1
R (L∗, M) = {0} for all left R∗-modules

L∗ (by change of rings, L∗ can be viewed as a left R-module). By
the Rees Theorem, ExtnR∗(L∗, M/x M) ∼= Extn+1

R (L∗, M). Therefore,
ExtnR∗(L∗, M/x M) = {0} for all L∗, and pdR∗(M/x M) ≤ n − 1.

(ii) If pdR∗(M/x M) = n < ∞, then there is a left R∗-module L∗ with
ExtnR∗(L∗, M/x M) 	= {0}. We have Extn+1

R (L∗, M) 	= {0}, by the Rees
Theorem, and so pdR(M) ≥ n + 1. •

Here is another change of rings theorem, simpler than the theorem of
Rees, which also yields Corollary 8.35. Note that the hypothesis does not
involve regularity.

Proposition 8.39 (Kaplansky). Let R be a ring, let x ∈ Z(R) not be a
unit or a zero-divisor, let R∗ = R/(x), and let M∗ be a left R∗-module. If
pdR∗(M∗) = n < ∞, then pdR(M∗) = n + 1.

Proof. We note that a left R∗-module is merely a left R-module M with
x M = {0}.

The proof is by induction on n ≥ 0. If n = 0, then M∗ is a projective left
R∗-module. Since x is not a zero-divisor, there is an exact sequence of left
R-modules

0 → R
x−→ R → R∗ → 0,

so that pdR(R∗) ≤ 1. Now M∗, being a projective left R∗-module, is a direct
summand of a free left R∗-module F∗. But pdR(F∗) ≤ 1, for it is a direct
sum of copies of R∗, and so pdR(M∗) ≤ 1. Finally, if pdR(M∗) = 0, then
M∗ would be a projective left R-module; but this contradicts Exercise 3.2 on
page 114, for x M = {0}. Therefore, pdR(M∗) = 1.

If n ≥ 1, then there is an exact sequence of left R∗-modules

0 → K ∗ → F∗ → M∗ → 0 (2)

with F∗ free. Now pdR∗(K ∗) = n − 1, so induction gives pdR(K ∗) = n.
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If n = 1, then pdR(K ∗) = 1 and pdR(K ∗) ≤ 2, by Exercise 8.5 on
page 466. There is an exact sequence of left R-modules

0 → L → F → M∗ → 0 (3)

with F free. Since x M∗ = {0}, we have x F ⊆ ker(F → M∗) = L , and this
gives an exact sequence of R∗-modules (each term is annihilated by x)

0 → L/x F → F/x F → M∗ → 0.

Thus, pdR∗(L/x F) = pdR∗(M∗)−1 = 0, because F/x F is a free R∗-module,
so the exact sequence of R∗-modules

0 → x F/x L → L/x L → L/x F → 0

splits. Since M∗ ∼= F/L ∼= x F/x L , we see that M∗ is a direct summand
of L/x L . Were L a projective left R-module, then L/x L and, hence, M∗
would be projective left R∗-modules, contradicting pdR∗(M∗) = 1. Exact
sequence (3) shows that pdR(M∗) = 1 + pdR(L) ≥ 2, and so pdR(M∗) = 2.

Finally, assume that n ≥ 2. Exact sequence (2) gives pdR∗(K ∗) = n−1 >

1 ≥ pdR(F∗); hence, Exercise 8.5 on page 466 gives

pdR(M∗) = pdR(K ∗)+ 1 = n + 1. •
The following theorem compares global dimensions (in case A = R[x],

it only gives the inequality �D(R) ≤ �D(R[x])). Note that the hypothesis of
the theorem makes sense, for if a ring R is a subring of a ring A, then A is an
(R, R)-bimodule.

Theorem 8.40 (McConnell–Roos). Let A be a ring that is a faithfully
flat3 right R-module, where R is a subring of A with �D(R) = n < ∞. If
either

(i) A is a projective left R-module or

(ii) A is a flat left R-module and R is left noetherian,

then �D(R) ≤ �D(A).

Remark. K. R. Goodearl, [“Global dimension of differential operator rings,”
Proc. AMS 45 (1974), 315–322] gives an example showing that one must
assume that �D(R) is finite. He displays a commutative ring R with D(R) =
∞ and a differential ring R[θ] with r D(R[θ]) = 1. �

3Recall that a right R-module A is faithfully flat if it is flat and A ⊗R X = {0} implies
X = {0}.
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Proof. We claim, for every left R-module M , that ϕ : M → A⊗R M , defined

by m �→ 1⊗m, is an injection. Exactness of 0 → kerϕ → M
ϕ−→ A ⊗R M

gives exactness of 0 → A ⊗R kerϕ → A ⊗R M
1⊗ϕ−→ A ⊗R (A ⊗R M),

because A is flat. The reader may show that multiplication in the ring A gives
an R-map μ : A ⊗R (A ⊗R M) → A ⊗R M with a ⊗ a′⊗ �→ aa′ ⊗m. Now
the composite μ(1 ⊗ ϕ) = 1A⊗M , and so 1 ⊗ ϕ is an injection. Therefore,
{0} = ker(1 ⊗ ϕ) = A ⊗ kerϕ; since A is faithfully flat, kerϕ = {0}, and so
ϕ is an injection.

(i) Choose a left R-module M with pdR(M) = n. There is an exact se-
quence

0 → M
ϕ−→ A ⊗R M → C → 0,

where C = cokerϕ. Now pdR(C) ≤ n (for �D(R) = n), so that
Exercise 8.6 on page 466 gives pdR(A ⊗R M) = n. We claim that
pdA(A ⊗R M) ≥ n [of course, A ⊗R M is a left A-module]; this will
suffice to prove �D(A) ≥ n = �D(R).

Assume that A is R-projective. Every free left A-module F is a direct
sum of copies of A; as each A is R-projective, we see that F , too, is R-
projective. Now any A-projective Q is an A-direct summand of a free
A-module F and, hence, is also an R-direct summand of F ; thus, Q is
R-projective. If pdA(A ⊗R M) = d < n, then there is an A-projective
resolution

0 → Qd → · · · → Q0 → A ⊗R M → 0.

But we have just seen that A-projectives are R-projective, so that this
is also an R-projective resolution of A ⊗R M . Thus, pdR(A ⊗R M) ≤
d < n, a contradiction.

(ii) Since R is left noetherian, Theorem 8.27 says that �D(R) = wD(R).
Choose a left R-module X with fdR(X) = n, and let ϕ′ : X → A⊗R X
send x �→ 1 ⊗ x . There is an exact sequence

0 → X
ϕ′−→ A ⊗R X → C ′ → 0,

where C = cokerϕ′. Now fdR(C ′) ≤ n (for wD(R) = n), so that
Exercise 8.8 on page 466 gives fdR(A ⊗R X) = n. Now A ⊗R X is a
left A-module, and we claim that pdA(A⊗R X) ≥ n; this will suffice to
prove �D(A) ≥ n = �D(R).

Every left A-module B is also a left R-module; we claim that if B is
a flat left A-module, then it is also a flat left R-module. Both � ⊗R B
and �⊗R (A ⊗A B) are functors RMod → Ab, and they are naturally
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isomorphic. Since A is a flat left R-module, however, the latter functor
is exact, being the composite of exact functors. Hence, �⊗R B is exact
and R B is R-flat.

If pdA(A ⊗R X) = d < n, then there is an A-projective resolution

0 → Bd → · · · → B0 → A ⊗R X → 0,

which is also an A-flat resolution. Since A-flats are R-flat, this is also
an R-flat resolution of A ⊗R X . Thus, fdR(A ⊗R X) ≤ d < n, a
contradiction. •

8.3 Stably Free Modules

If k is a field, then Theorem 4.100, the Quillen–Suslin Theorem, shows that
finitely generated projective k[x1, . . . , xn]-modules are free. However, the
proof uses a theorem of Serre saying that projective k[x1, . . . , xn]-modules
are stably free (a module P is stably free if there exist finitely generated free
modules F and F ′ with F ′ ∼= P ⊕ F). Of course, finitely generated free
modules are stably free. We prove Serre’s theorem in this section. The basic
idea of this proof is due to Borel, Serre, and Swan; our exposition provides
details of the sketch given by Kaplansky in Commutative Rings, pp. 134–135.

Definition. A module M has FFR (a finite free resolution) of length ≤ n if
M is finitely generated and there is an exact sequence

0 → Fn → Fn−1 → · · · → F0 → M → 0

in which each Fi is a finitely generated free module.

It is redundant to say that a module M having FFR is finitely generated
(it is even finitely presented, by Corollary 3.13); we have made this explicit in
the definition only for emphasis.

The next proposition shows why FFR is relevant here.

Proposition 8.41. A finitely generated projective left R-module P has FFR
if and only if P is stably free.

Proof. If P is stably free, then P is finitely generated and there is a finitely
generated free module F with P ⊕ F free. Hence, P has FFR of length ≤ 1,
for 0 → F → P ⊕ F → P → 0 is exact. Conversely, assume that P has
FFR: there is a free resolution 0 → Fn → Fn−1 → · · · → F0 → P → 0
with each Fi finitely generated. We prove that P is stably free by induction on
the length n ≥ 0. If n = 0, then there is an exact sequence 0 → F0 → P → 0
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with F0 finitely generated free. Exactness gives F0 ∼= P , so that P is free and,
hence, stably free. For the inductive step, assume that there is a free resolution
0 → Fn+1 → Fn → · · · F1 → F0 → P → 0 with each Fi finitely generated.
If K is the 0th syzygy, we may factor this resolution into two exact sequences:

0 → Fn+1 → · · · F1 → K → 0 and 0 → K → F0 → P → 0.

The first exact sequence shows that K has FFR of length ≤ n. Since P is
projective, the short exact sequence splits, F0 ∼= P ⊕ K , and so K is finitely
generated projective. By induction, K is stably free; that is, there is a finitely
generated free module Q with K ⊕Q finitely generated free. Thus,P is stably
free, for P ⊕ (K ⊕ Q) ∼= (P ⊕ K )⊕ Q ∼= F0 ⊕ Q. •

Lemma 8.42. If a module M has a projective resolution

0 → Pn → · · · → P2
d2−→ P1

d1−→ P0
ε−→ M → 0

in which each Pi is stably free, then M has FFR of length ≤ n + 1.

Proof. We do an induction on n ≥ 0. If n = 0, then ε : P0 → M is an
isomorphism. Since M ∼= P0 is stably free, there are finitely generated free
modules F0 and F1 with F0 ∼= M ⊕ F1, and so there is an exact sequence
0 → F1 → F0 → M → 0, as desired. Let n > 0. Since P0 is stably free,
there is a finitely generated free module F with P0⊕F finitely generated free.
There is an exact sequence

0 → Pn → · · · → P2
d ′2−→ P1 ⊕ F

d1⊕1F−→ P0 ⊕ F
ε′−→ M → 0,

where d ′2 : p2 �→ (d2, p2, 0) and ε′ : (p0, f ) �→ ε(p0). Now ker ε′ has a
stably free resolution with n − 1 terms, and so it has FFR of length n, by
induction. Splicing this FFR for ker ε′ with the short exact sequence 0 →
ker ε′ → P0 ⊕ F → M → 0 (see Exercise 2.6 on page 65) shows that M has
FFR of length ≤ n + 1. •

Proposition 8.43. Let 0 → M ′ → M → M ′′ → 0 be an exact sequence of
left R-modules, where R is left noetherian. If two of the modules have FFR,
then so does the third.

Proof. Since modules having FFR are finitely generated, two of the modules
in the short exact sequence are finitely generated; as R is left noetherian, the
third module is finitely generated as well. The noetherian hypothesis also
allows us to use Lemma 7.19: there are free resolutions of M ′ and M ′′ each
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of whose terms is finitely generated.

�� ��
F ′

1

��

F ′′
1

��
F ′

0

��

F ′′
0

��
0 �� M ′

��

�� M �� M ′′

��

�� 0

0 0

By the Horseshoe Lemma (Proposition 6.24), we may insert a free resolution
→ F1 → F0 → M → 0 between them; note that all Fi ∼= F ′

i ⊕ F ′′
i are

finitely generated free. For each n ≥ 0, there is an exact sequence of syzygies:
0 → K ′

n → Kn → K ′′
n → 0. If any of these syzygies, say, Kn , is stably free,

then the truncated resolution 0 → Kn → Fn → · · · → F0 → M → 0 is
a finite resolution each of whose terms is stably free (finitely generated free
modules Fi are stably free!). Lemma 8.42 applies to show that M has FFR.

By hypothesis, two of {M ′, M, M ′′} have FFR of length ≤ n. Assume
first that one of these two is M ′′. By Exercise 8.16 on page 484, K ′′

n is stably
free, as is one of the other syzygies. The exact sequence of syzygies now
splits (for stably free modules are projective). In this case, the third syzygy
is also stably free, by Example 4.92(iv), for its complement is stably free. As
above, M ′ and M have FFR, by Lemma 8.42.

The remaining case assumes that M ′ and M have FFR of length ≤ n,
so that K ′

n and Kn are stably free, by Exercise 8.16. Now splice the short
exact sequence 0 → K ′

n → Kn → K ′′
n → 0 and the truncated resolution

0 → K ′′
n → F ′′

n → · · · → F ′′
0 → M ′′ → 0 to obtain a resolution of M ′′ by

stably free modules:

0 → K ′
n → Kn → F ′′

n → · · · → F ′′
0 → M ′′ → 0.

Lemma 8.42 applies to show that M ′′ has FFR. •

Definition. A family F is a subclass of obj(RMod) such that whenever an
exact sequence 0 → M ′ → M → M ′′ → 0 has two terms in F, the third
term also lies in F.

Proposition 8.43 says that if R is left noetherian, then the class of all FFR
left R-modules is a family.

Lemma 8.44. Every intersection of families of left R-modules is a family.
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Proof. Let F∗ = ⋂
α Fα , where each Fα is a family. If 0 → M ′ → M →

M ′′ → 0 is an exact sequence having two terms in F∗, then these two terms
lie in every Fα . Since each Fα is a family, the third term must lie in every Fα ,
and so the third term lies in F∗. •

Definition. In light of Lemma 8.44, we may define F(X ), the family gen-
erated by a subclass X ⊆ obj(RMod), as the intersection of all the families
containing X .

If X ⊆ obj(RMod), define an X -child to be a module occurring in a short
exact sequence whose other two terms lie in X , and define

C(X ) to be the class of all X -children.

We claim that C(X ) contains X . If X = ∅, there is nothing to prove. If

M ∈ X , then exactness of 0 → M
1M−→ M → 0 → 0 shows that {0} ∈ C(X ),

while M and {0} being terms in this same short exact sequence shows that
M ∈ C(X ); that is, X ⊆ C(X ). Define an ascending chain of subclasses:

C0(X ) = X ; Cn+1(X ) = C(Cn(X )).

The union
⋃∞

n=0 Cn(X ) consists of all the descendants of X .

Lemma 8.45. If X is a subclass of obj(RMod), then
⋃∞

n=0 Cn(X ) = F(X ),
the family generated by X .

Proof. It is clear that every family F containing X must contain C(X ) and
Cn(X ) for all n; that is,

⋃∞
n=0 Cn(X ) ⊆ F for all F. Hence,

⋃∞
n=0 Cn(X ) ⊆⋂

FF = F(X ).
For the reverse inclusion, it suffices to prove that

⋃∞
n=0 Cn(X ) is a family

containing X . Let 0 → M ′ → M → M ′′ → 0 be an exact sequence having
two terms in the union. There exists n ≥ 0 with Cn(X ) containing these two
terms, and so the third term lies in Cn+1(X ). Thus, the union is a family. •

Corollary 8.46. If R is left noetherian and X is a class of left R-modules
each of whose members has FFR, then every member of the family F(X ) gen-
erated by X has FFR.

Proof. If M ∈ F(X ), there is a smallest number n ≥ 0 with M ∈ Cn(X );
we prove that M has FFR by induction on n. If n = 0, then M ∈ X , and so M
has FFR, by hypothesis. If n > 0, then there is a short exact sequence whose
other two terms lie in Cn−1(X ). By induction, these two terms have FFR, and
so M has FFR, by Proposition 8.43. •

The next theorem is the main result about families. We will state it now
so that the reader may see that Serre’s Theorem follows quickly from it.
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Theorem 8.47. Let R be a commutative noetherian ring. If every finitely
generated R-module has FFR, then every finitely generated R[x]-module has
FFR.

Theorem 8.48 (Serre). If k is a field, then every finitely generated projec-
tive k[x1, . . . , xn]-module is stably free.

Proof. We begin by proving, by induction on n ≥ 1, that every finitely gen-
erated k[x1, . . . , xn]-module has FFR. If n = 1, then k[x] is a PID, and every
k[x]-module has FFR of length ≤ 1. If n > 1, then k[x1, . . . , xn] is noethe-
rian, by the Hilbert Basis Theorem. By induction, every finitely generated
R-module has FFR, where R = k[x1, . . . , xn], and so Theorem 8.47 says
that every finitely generated R[xn+1]-module has FFR (of course, R[xn+1] =
k[x1, . . . , xn+1]). In particular, finitely generated projective k[x1, . . . , xn+1]-
modules have FFR, and so they are stably free, by Proposition 8.41. •

We prepare a lemma for the proof of Theorem 8.47.

Definition. If M is an R-module, where R is commutative, then a subset
X ⊆ M is scalar closed if x ∈ X implies that r x ∈ X for all r ∈ R.

Every submodule of a module M is scalar closed;

Zer(R) = {r ∈ R : r = 0 or r is a zero-divisor}
is an example of a scalar closed subset (of R) that is not a submodule.

Definition. Let X ⊆ M be a scalar closed subset. The annihilator of x ∈ X
is

ann(x) = {r ∈ R : r x = 0},
the annihilator of X is

ann(X) = {r ∈ R : r x = 0 for all x ∈ X},
and

A(X) = {ann(x) : x ∈ X and x 	= 0}.
Note that ann(x) and ann(X) are ideals.

Lemma 8.49. Let R be a commutative noetherian ring, let M be a nonzero
finitely generated R-module, and let X ⊆ M be a nonempty scalar closed
subset.

(i) An ideal I maximal among A(X) is a prime ideal.
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(ii) There is a descending chain

M = M0 ⊇ M1 ⊇ M2 ⊇ · · · ⊇ Mn = {0}
whose factor modules Mi/Mi+1 ∼= R/pi for prime ideals pi .

Proof.

(i) Since R is noetherian, the nonempty set A(X) contains a maximal el-
ement, by Proposition 3.16; call it I = ann(x). Suppose that a, b are
elements in R with ab ∈ I and b /∈ I ; that is, abx = 0 but bx 	= 0.
Thus, ann(bx) ⊇ I + Ra ⊇ I . If a /∈ I , then ann(bx) ⊇ I + Ra � I .
But bx ∈ X because X is scalar closed, so that ann(bx) ∈ A(X), which
contradicts the maximality of I = ann(x). Therefore, a ∈ I and I is a
prime ideal.

(ii) Since R is left noetherian, it has the maximum condition on left ide-
als. Thus, the nonempty set A(M) has a maximal element, say, p1 =
ann(x1), which is prime, by part (i). Define M1 = 〈x1〉, and note
that M1 ∼= R/ann(x1) = R/p1. Now repeat this procedure. Let
p2 = ann(x2 + M1) be a maximal element of A(M/M1), so that p2
is prime, and define M2 = 〈x2, x1〉. Note that {0} ⊆ M1 ⊆ M2 and that
M2/M1 ∼= R/ann(x2 + M1) = R/p2. By Proposition 3.18, the mod-
ule M has ACC, and so this process terminates, say, with M∗ ⊆ M .
We must have M∗ = M , however, lest the process continue for another
step. Now reindex the subscripts to get the desired statement. •

Here is the proof of Theorem 8.47.

Proof. Let X be the class of all finitely generated extended R[x]-modules
M ; that is, M ∼= R[x] ⊗R B for some finitely generated R-module B. By
hypothesis, B has FFR: there is an R-exact sequence

0 → Fm → · · · → F1 → F0 → B → 0

in which all Fi are finitely generated free R-modules. Since R[x] is a flat R-
module, tensoring this sequence by R[x] yields an R[x]-exact sequence. But
each R[x]⊗R Fi is a free R[x]-module, and so M has FFR. By Corollary 8.46,
every module in F(X ) has FFR. Thus, our task is to prove that every finitely
generated R[x]-module M lies in F = F(X ).

We begin by normalizing M . Suppose that ann(M) ∩ R 	= {0}. Let
m ∈ M be nonzero, and let ann(m) be its annihilator; note that ann(m)∩ R ⊇
ann(M) ∩ R 	= {0}. If we write I = ann(m) ∩ R, then R/I ∼= 〈m〉R , the
R-submodule of M generated by m. Since R[x] is a flat R-module, there is
an exact sequence

0 → R[x] ⊗R I → R[x] → R[x] ⊗R 〈m〉R → 0. (1)
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Corollary 3.59 says that R[x] ⊗R I ∼= R[x]I , so that R[x]I 	= {0}. Now
R[x]/R[x]I ∼= R[x] ⊗R 〈m〉R is a cyclic submodule of M , say, 〈m1〉. Thus,
〈m1〉 is extended, for 〈m1〉 ∼= R[x] ⊗R 〈m〉R , and so 〈m1〉 ∈ X ⊆ F . Exact-
ness of (1) implies ann(m1) ∼= R[x]⊗R I ∼= R[x]I , so that ann(m1)∩R 	= {0}.
This argument can be applied to M/〈m1〉: there is m2+〈m1〉 ∈ M/〈m1〉 with
ann(m2 + 〈m1〉) ∩ R 	= {0} and with 〈m1,m2〉/〈m1〉 ∈ X . It follows that
〈m1,m2〉 ∈ F and ann(〈m1,m2〉 ∩ R 	= {0}. This process must stop, by
Proposition 3.15, for M has ACC. We conclude that if ann(M) ∩ R 	= {0},
then M ∈ F .

By Lemma 8.49(ii), there is a descending chain

M = M0 ⊇ M1 ⊇ M2 ⊇ · · · ⊇ Mn = {0}

whose factor modules Mi/Mi+1 ∼= R[x]/pi for prime ideals pi . It thus suf-
fices, by induction on n, to show that M = R[x]/p ∈ F . Our normalization
allows us to assume that ann(R[x]/p) ∩ R = p ∩ R = {0}. But p ∩ R is a
prime ideal in R, so that R and, hence, R[x] are domains. Choose a nonzero
f (x) ∈ p ⊆ R[x], and consider the exact sequence 0 → ( f ) → p → p/( f ).
Now ( f ) ∼= R[x], since R[x] is a domain, while ann(p/( f )) 	= {0} [for it con-
tains f (x)]. Thus, both ( f ), p/( f ) ∈ F , so that p ∈ F . Finally, R[x]/p ∈ F ,
for both R[x], p ∈ F . •

We will need the following proposition in the next section.

Lemma 8.50 (Prime Avoidance). Let p1, . . . , pn be prime ideals in a
commutative ring R. If J is an ideal with J ⊆ p1 ∪ · · · ∪ pn, then J is
contained in some pi .

Proof. The proof is by induction on n ≥ 1, and the base step is trivially true.
For the inductive step, let J ⊆ p1 ∪ · · · ∪ pn+1, and define

Di = p1 ∪ · · · ∪ p̂i ∪ · · · ∪ pn+1.

We may assume that J � Di for all i , for otherwise the inductive hypothesis
can be invoked to complete the proof. Hence, for each i , there exists ai ∈ J
with ai /∈ Di ; since J ⊆ Di ∪pi , we must have ai ∈ pi . Consider the element

b = a1 + a2 · · · an+1.

Now b ∈ J because all the ai are. We claim that b /∈ p1. Otherwise,
a2 · · · an+1 = b − a1 ∈ p1; but p1 is a prime ideal, and so ai ∈ p1 for
some i ≥ 2. This is a contradiction, for ai ∈ p1 ⊆ Di and ai /∈ Di . There-
fore, b /∈ pi for any i , contradicting J ⊆ p1 ∪ · · · ∪ pn . •
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Proposition 8.51. If R is a commutative noetherian ring, then there are
finitely many prime ideals p1, . . . , pn with

Zer(R) = {r ∈ R : r = 0 or r is a zero-divisor} ⊆ p1 ∪ · · · ∪ pn.

Proof. In Lemma 8.49(i), which applies because Zer(R) is scalar closed,
we proved that any ideal I that is a maximal member of the family A(X) =
(ann(x))x∈Zer(R) is prime (maximal members exist because R is noetherian).
Let (pα)α∈A be the family of all such maximal members. If x is a zero-divisor,
then there is a nonzero r ∈ R with r x = 0; that is, x ∈ ann(r) [of course,
r ∈ Zer(R)]. It follows that every zero-divisor x lies in some pα , and so
Zer(R) ⊆ ⋃

α∈A pα . It remains to prove that we may choose the index set A
to be finite.

Each pα = ann(xα) for some xα ∈ X ; let S be the submodule of M
generated by all the xα . Since R is noetherian and M is finitely generated, the
submodule S is generated by finitely many of the xα; say, S = 〈x1, . . . , xn〉.
We claim that ann(X) ⊆ p1 ∪ . . . ∪ pn , and it suffices to prove that pα ⊆
p1 ∪ . . . ∪ pn for all α. Now pα = ann(xα), and xα ∈ S; hence,

xα = r1x1 + · · · + rnxn

for ri ∈ R. If a ∈ p1 ∩ · · · ∩ pn = ann(x1) ∩ · · · ∩ ann(xn), then axi = 0 for
all i and so axα = 0. Therefore,

p1 ∩ · · · ∩ pn ⊆ ann(xα) = pα.

But pα is prime, so that pi ⊆ pα for some i ,4 and this contradicts the maxi-
mality of pi . •

Exercises

*8.14 Consider the change of rings functors U : RMod → R′Mod and
V : ModR → ModR′ arising from a ring map ϕ : R′ → R. Prove
that the function B ⊗R A → V B ⊗R′ U A, given by

∑
i

bi ⊗ ai (in B ⊗R R) �→
∑

i

bi ⊗ ai (in V B ⊗R′ U A),

is a well-defined injective Z-map.
Hint. The relations defining V B ⊗R′ U A include all ordered pairs
(bϕ(r), a) − (b, ϕ(r)b), which are special cases of the relations
(br, a)− (b, rb) in B ⊗R A.

4Assume that I1 ∩ · · · ∩ In ⊆ p, where p is prime. If Ii 	⊆ p for all i , then there are
ui ∈ Ii with ui /∈ p. But u1 · · · un ∈ I1 ∩ · · · ∩ In ⊆ p; since p is prime, some ui ∈ p, a
contradiction.
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8.15 Let F be a family, and let M ∈ F. If M ′ ∼= M , prove that M ′ ∈ F.
*8.16 Let R be left noetherian, and let M be a left R-module having FFR

of length ≤ n. Prove that the nth syzygy of every free resolution of
M , each of whose terms is finitely generated, is stably free.
Hint. Use Exercise 3.15 on page 128, the generalized Schanuel
Lemma.

8.17 Let S be a multiplicative set in a commutative ring R. If an R-
module M has FFR, prove that the S−1 R-module S−1 M has FFR
and that χ(S−1 M) = χ(M). [The Euler characteristic χ(M) is
defined in Exercise 3.16 on page 129.]

8.4 Commutative Noetherian Local Rings

This section discusses the theorems of Auslander, Buchsbaum, and Serre
about regular local rings. We are now going to focus on commutative noe-
therian local rings, the main results being that such rings have finite global
dimension if and only if they are regular local rings (regular local rings arise
quite naturally in Algebraic Geometry in describing nonsingular points on va-
rieties), and that they are unique factorization domains. Let us begin with a
localization result.

Proposition 8.52. Let R be a commutative noetherian5 ring.

(i) If A is a finitely generated R-module, then

pd(A) = sup
m

{
pd(Am)

}
,

where m ranges over all the maximal ideals of R.

(ii)
D(R) = sup

m

{
D(Rm)

}
,

where m ranges over all the maximal ideals of R.

Proof.

(i) We first prove that pd(A) ≥ pd(Am) for every maximal ideal m. If
pd(A) = ∞, there is nothing to prove, and so we may assume that
pd(A) = n < ∞. Thus, there is an R-projective resolution

0 → Pn → Pn−1 → · · · → P0 → A → 0.

5Part (ii) of this proposition may be false if R is not noetherian. For example, an infinite
Boolean ring R is not semisimple, and so D(R) > 0. On the other hand, Rm

∼= F2 is a
field for every maximal ideal m, and so supm{D(Rm)} = 0.
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Since Rm is a flat R-module, by Theorem 4.80,

0 → Rm⊗R Pn → Rm⊗R Pn−1 → · · · → Rm⊗R P0 → Am → 0

is an Rm-projective resolution of Am, and so pd(Am) ≤ n. (This im-
plication does not need the hypothesis that R is noetherian nor that A is
finitely generated.)

For the reverse inequality, it suffices to assume that supm

{
pd(Am)

} =
n < ∞. Since R is noetherian, Theorem 8.27(i) says that pd(A) =
fd(A). Now pd(Am) ≤ n if and only if TorRm

n+1(Am, Bm) = {0} for
all Rm-modules Bm, by Proposition 8.17. However, Proposition 7.17
gives an isomorphism TorRm

n+1(Am, Bm) ∼= (
TorR

n+1(A, B)
)
m

. There-
fore, Proposition 4.90(i) gives TorR

n+1(A, B) = {0}. We conclude that
n ≥ pd(A).

(ii) This follows at once from part (i), for D(R) = supA{pd(A)}, where
A ranges over all finitely generated (even cyclic) R-modules, by Theo-
rem 8.16. •

We now set up notation that will be used in the rest of this section.

Notation. We denote a commutative noetherian local ring by R, by (R,m),
or by (R,m, k), where m is its unique maximal ideal and k is its residue field
k = R/m.

Theorem 8.16 allows us to compute the global dimension of a ring R as
the supremum of the projective dimensions of its cyclic modules. When R is
a local ring, there is a dramatic improvement; global dimension is determined
by the projective dimension of one cyclic module: the residue field k, as we
shall see in Theorem 8.55.

Lemma 8.53. Let (R,m, k) be a local ring. If M is a finitely generated
R-module, then pd(M) ≤ n if and only if TorR

n+1(M, k) = {0}.
Proof. Assume that pd(M) ≤ n. By Proposition 8.21(i), we have fd(M) ≤
pd(M), so that TorR

n+1(M, B) = {0} for every R-module B. In particular,
TorR

n+1(M, k) = {0}.
We prove the converse by induction on n ≥ 0. For the base step n = 0,

we must prove that TorR
1 (M, k) = {0} implies pd(M) = 0; that is, M is

projective. By Theorem 4.62, there is a projective cover: an exact sequence

0 → N
i−→ F

ϕ−→ M → 0
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with F a finitely generated free R-module and N ⊆ mF . Since TorR
1 (M, k) =

{0}, the sequence

0 → N ⊗R k
i⊗1−→ F ⊗R k

ϕ⊗1−→ M ⊗R k → 0

is exact. Tensor 0 → m → R → k → 0 by N ; right exactness gives a natural
isomorphism

τN : N ⊗R k → N/mN ;
if n ∈ N and b ∈ k, then τN : n ⊗ b �→ n + mN . There is a commutative
diagram

0 �� N ⊗R k

τN

��

i⊗1 �� F ⊗R k

τF

��
N/mN

i
�� F/mF,

where i : n + mN �→ n + mF . Since i ⊗ 1 is an injection, so is i . But
N ⊆ mF says that the map i is the zero map. Thus, N/mN = {0}, so that
N = mN . Hence, N = {0}, by Nakayama’s lemma (Corollary 4.51) (which
applies because finitely generated modules over a noetherian ring are finitely
presented). Therefore, ϕ : F → M is an isomorphism, and so M is free.

For the inductive step, we must prove that if TorR
n+2(M, k) = {0}, then

pd(M) ≤ n + 1. Take a projective resolution P of M , and let �n be its
nth syzygy. Since P must also be a flat resolution of M , we have Yn = �n
(where Yn denotes the nth syzygy of P viewed as a flat resolution of M).
By Corollary 6.23, TorR

n+2(M, k) ∼= TorR
1 (Yn, k). The base step shows that

Yn = �n is free, and this gives pd(M) ≤ n + 1, by Lemma 8.6. •

Corollary 8.54. Let (R,m, k) be a local ring. If M is a finitely generated
R-module, then

pd(M) = sup
{
i : TorR

i (M, k) 	= {0}}.
Proof. Let n = sup

{
i : TorR

i (M, k) 	= {0}}. Then pd(M) ≤ n − 1; since
pd(M) 	< n, we have pd(M) = n. •

Theorem 8.55. Let (R,m, k) be a local ring.

(i) D(R) ≤ n if and only if TorR
n+1(k, k) = {0}.

(ii) D(R) = pd(k).
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Proof.

(i) If D(R) ≤ n, then Lemma 8.53 applies at once to give TorR
n+1(k, k) =

{0}. Conversely, if TorR
n+1(k, k) = {0}, Lemma 8.53 gives pd(k) ≤

n. Now TorR
n+1(M, k) = {0} for every R-module M , by Proposi-

tion 8.17. In particular, if M is finitely generated, then Lemma 8.53
gives pd(M) ≤ n. Finally, D(R) = supM {pd(M)}, where M ranges
over all finitely generated (even cyclic) R-modules, by Proposition 8.52.
Hence, D(R) ≤ n.

(ii) Immediate from part (i) and Corollary 8.54. •

Definition. A prime chain of length n in a commutative ring R is a strictly
decreasing chain of prime ideals

p0 � p1 � · · · � pn.

If R is a commutative ring, then its Krull dimension, dim(R), is the length n
of a longest prime chain in R.

Let k be a field and let R = k[x1, . . . , xn] be the polynomial ring. If
pi−1 = (x1, . . . , xi ), then pi is a prime ideal, for R/pi−1 ∼= k[xi+1, . . . , xn]
is a domain, and

p0 � p1 � · · · � pn−1 � (0)

is a prime chain of length n. It turns out that this prime chain has maximal
length, so that dim(k[x1, . . . , xn]) = n.

We cite some results of Commutative Algebra that do not use homology.
If (R,m, k) is a local ring, then elements x1, . . . , xd in m comprise a minimal
set of generators (no proper subset of them generates m) if their cosets mod
m2 form a basis of the k-vector space m/m2 (Rotman, Advanced Modern Al-
gebra, Proposition 11.165). It follows that any two minimal sets of generators
of m have the same number of elements, namely,

V (R) = dimk(m/m2).

There is always an inequality dim(R) ≤ V (R) (Advanced Modern Algebra,
Corollary 11.166).

Proposition 8.56. Let (R,m, k) be a noetherian local ring. If x ∈ m−m2,
then (R∗,m∗, k) is a local ring, where R∗ = R/(x) and m∗ = m/(x), and

V (R) = V (R∗)+ 1.

Proof. Let {y∗1 , . . . , y∗t } be a minimal generating set of m∗, and let y∗i =
yi + m. It is clear that {x, y1, . . . , yt } generates m, and we now show that it
is a minimal generating set; that is, their cosets mod m form a basis of m/m2.
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If r x +∑i ri yi ∈ m2, where ri , r ∈ R, then we must show that each term
lies in m2; that is, all ri , r ∈ m. Passing to R∗, we have

∑
i r∗i y∗i ∈ (m∗)2

[where ∗ denotes coset mod (x)] for r∗x∗ = 0. But {y∗1 , . . . , y∗t } is a basis of
m∗/(m∗)2, so that r∗i ∈ m∗ and ri ∈ m for all i . Therefore, r x ∈ m2. But
x /∈ m2, and so r ∈ m, as desired. •

Definition. A local ring (R,m, k) is regular of dimension n if it is noethe-
rian and

n = dim(R) = V (R).

It is clear that every field is a regular local ring of dimension 0, and it
is easy to see that every local PID is a regular local ring of dimension 1.
Regular local rings must be domains (Rotman, Advanced Modern Algebra,
Proposition 11.172); it follows that if p is a prime, R = Ip2 is a noetherian
local ring that is not regular.

Example 8.57. Regular local rings arise in connection with nonsingular
points on varieties. In more detail, let k be an algebraically closed field, and
let I ⊆ k[X ] be a set of polynomials, where k[X ] abbreviates k[x1, . . . , xm].
We regard each f (X) ∈ k[X ] as a k-valued function, and we define the variety
of I to be

Var(I ) = {a ∈ km : f (a) = 0 for all f ∈ I }.
Given a subset A ⊆ km , define

Id(A) = { f (X) ∈ k[X ] : f (a) = 0 for all a ∈ A}.
The coordinate ring of A is

k[A] = { f |A : f (X) ∈ k[X ]}.
Now Id(A) is always an ideal in k[X ], and k[A] ∼= k[X ]/Id(A). A variety
V is irreducible if its coordinate ring k[V ] is a domain; that is, if Id(V ) is
a prime ideal (it is common usage to assume, as part of the definition, that
varieties are irreducible). Let k(V ) = Frac(k[V ]).

If V is a variety and a ∈ V , then the local ring of V at a is the localization

Oa,V = k[V ]Id(a),

where Id(a) = { f/g ∈ k[V ] : f (a) = 0 and g(a) 	= 0}. Now Oa,V is a local
ring with maximal ideal ma,V the localization of Id(a), and Oa,V /ma,V ∼= k.
We can define formal partial derivatives ∂ f/∂xi for every f ∈ k[V ], which
allows us to define the tangent space Ta,V of V at a. There is an isomorphism
T ∗

a,V
∼= ma,V /m2

a,V of vector spaces over k, where T ∗
a,V is the dual space

of Ta,V , and so dimk(ma,V /m2
a,V ) = dim(Ta,V ). We say a is a nonsingular
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point if the tangent space at a has the expected number of linearly independent
tangents. There are several ways to express this algebraically, but all of them
say that a ∈ V is nonsingular if and only if (Oa,V ,ma,V , k) is a regular local
ring. �

Serre and Auslander–Buchsbaum proved, independently, that R is regular
if and only if D(R) is finite, in which case D(R) = dim(R) = V (R). The
proof that if (R,m, k) is regular, then D(R) = dim(R) = V (R) is not too
difficult.

Definition. Let R be a commutative ring and let M be an R-module. A
sequence x1, . . . , xn in R is an M-regular sequence if x1 is regular on M
(i.e., the multiplication map M → M , given by m �→ xm, is an injection),
x2 is regular on M/(x1)M , x3 is regular on M/(x1, x2)M , · · · , xn is regular
on M/(x1, . . . , xn−1)M . If M = R, then x1, . . . , xn is also called an R-
sequence.

For example, if R = k[x1, . . . , xn] is a polynomial ring over a field k,
then it is easy to see that x1, . . . , xn is an R-sequence.

Proposition 8.58. A noetherian local ring (R,m, k) is regular if and only if
m is generated by an R-sequence x1, . . . , xd . Moreover, in this case,

d = V (R).

Proof. Rotman, Advanced Modern Algebra, Proposition 11.173. •

Lemma 8.59. Let (R,m, k) be a local ring, let M be a finitely generated
R-module, and let x ∈ m be regular on M. If pd(M) = n < ∞, then
pd(M/x M) = n + 1.

Proof. Since x is regular on M , there is an exact sequence

0 → M
x−→ M → M/x M → 0,

where the first map is multiplication by x . There is a long exact sequence
arising from applying �⊗R k; consider the fragment for i > n + 1:

0 = TorR
i (M, k) → TorR

i (M/x M, k) → TorR
i−1(M, k) = 0

[since i − 1 > n = pd(M), the outside terms vanish, by Lemma 8.53]. Thus,
TorR

i (M/x M, k) = {0} for all i > n + 1, and so pd(M/x M) ≤ n + 1 [we
are using Theorem 8.27(i): since R is noetherian and M is finitely generated,
fd(M) = pd(M)].



490 Homology and Rings Ch. 8

Now consider the fragment of the long exact sequence for i = n + 1:

0 = TorR
n+1(M, k) → TorR

n+1(M/x M, k) → TorR
n (M, k)

x−→ TorR
n (M, k).

Since x ∈ m, multiplication by x annihilates k = R/m, and hence multipli-
cation by x is the zero map on TorR

n (M, k). Exactness shows that the map
TorR

n+1(M/x M, k) → TorR
n (M, k) is an isomorphism. But pd(M) = n gives

TorR
n (M, k) 	= {0}, by Corollary 8.54. Hence, TorR

n+1(M/x M, k) 	= {0}, and
pd(M/x M) = n + 1. •

Proposition 8.60. If (R,m, k) is a regular local ring, then D(R) is finite; in
fact,

D(R) = V (R) = dim(R).

Proof. Since R is regular, m can be generated by an R-sequence x1, . . . , xd ,
by Proposition 8.58. But Lemma 8.59 applied to the modules R, R/(x1),
R/(x1, x2), · · · , R/(x1, . . . , xd) = R/m = k shows that pd(k) = d. Hence,
d = V (R) = dim(R), by Proposition 8.58. On the other hand, Theorem 8.55
gives d = pd(k) = D(R). •

The converse of Proposition 8.60: a noetherian local ring of finite global
dimension is regular, is more difficult to prove. The following proof is essen-
tially that in Lam, Lectures on Modules and Rings, Chapter 2, § 5F.

In proving that D(R) finite implies R regular, we cannot assume that R
is a domain (though this will turn out to be true); hence, we must deal with
zero-divisors.

Proposition 8.61. Let (R,m, k) be a local ring.

(i) If m−m2 consists of zero-divisors, then there is a nonzero a ∈ R with
am = {0}.

(ii) If 0 < D(R) = n < ∞, then there exists a nonzero-divisor x ∈ m−m2.

Proof.

(i) By Proposition 8.51, there are prime ideals p1, . . . , pn with

m−m2 ⊆ Zer(R) ⊆ p1 ∪ · · · ∪ pn.

If we can show that

m ⊆ p1 ∪ · · · ∪ pn, (1)

then Prime Avoidance, Lemma 8.50, gives m ⊆ pi for some i . But
pi = ann(a) for some a ∈ m, so that am = {0}, as desired.
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To verify Eq. (1), it suffices to prove m2 ⊆ p1∪· · ·∪ pn . Now m 	= m2,
by Nakayama’s Lemma (we may assume that m 	= {0}, for the result is
trivially true otherwise), and so there exists x ∈ m−m2 ⊆ p1∪· · ·∪ pn .
Let y ∈ m2. For every integer s ≥ 1, we have x + ys ∈ m − m2 ⊆
p1∪· · ·∪pn; that is, x + ys ∈ p j for some j = j (s). By the pigeonhole
principle, there are an integer j and integers s < t with x+ ys, x+ yt ∈
p j . Subtracting, ys(1 − yt−s) ∈ p j . But 1 − yt−s is a unit [if u ∈ m,
then 1 − u is a unit; otherwise, (1 − u) is a proper ideal, (1 − u) ⊆ m,
1 − u ∈ m, and 1 ∈ m]. Since p j is a prime ideal, y ∈ p j .

(ii) (Griffith) In light of (i), it suffices to show there is no nonzero a ∈ m

with am = {0}. If, on the contrary, such an a exists and if μ : R → R is
given by μ : r �→ ar , then m ⊆ kerμ. This inclusion cannot be strict;
if b ∈ kerμ, then ab = 0, but if b /∈ m, then b is a unit (for Rb is not
contained in the maximal ideal), and so ab 	= 0. Hence, m = kerμ.
Thus, k = R/m = R/ kerμ ∼= imμ = Ra; that is, k ∼= Ra. Consider
the exact sequence 0 → Ra → R → R/Ra → 0; by Exercise 8.4 on
page 466, either pd(R/Ra) = pd(Ra)+1 = pd(k)+1 or pd(R/Ra) =
0. In the first case, pd(R/Ra) = pd(k) + 1 > pd(k), contradicting
Theorem 8.55(ii) [which says that pd(k) = D(R)]. In the second case,
0 = pd(Ra) = pd(k), contradicting pd(k) = D(R) > 0. •

Theorem 8.62 (Serre–Auslander–Buchsbaum). A noetherian local ring
(R,m, k) is regular if and only if D(R) is finite; in fact,

D(R) = V (R) = dim(R).

Proof. Necessity is Proposition 8.60. We prove the converse by induction
on D(R) = n ≥ 0. If n = 0, then R is semisimple. Since R is commutative,
it is the direct product of finitely many fields; since R is local, it is a field, and
hence it is regular.

If n ≥ 1, then Proposition 8.61(ii) says that m −m2 contains a nonzero-
divisor x . Now (R∗,m∗, k) is a local ring, where R∗ = R/(x) and m∗ =
m/(x). Since x is not a zero-divisor, it is regular on m; since pdR(m) < ∞,
Proposition 8.38(i) gives pdR∗(m/xm) < ∞.

Consider a short exact sequence of R-modules

0 → k
α−→ B → C → 0 (2)

in which α(1) = e, where e ∈ B − mB. Now the coset e + mB is part of a
basis of the k-vector space B/mB, and so there is a k-map β : B/mB → k

with β(e+mB) = 1. The composite π : B
nat−→ B/mB

β−→ k shows that the
exact sequence (2) splits, for πα = 1k . In particular, this applies when B =
m/xm and k is the cyclic submodule generated by e+ xm. Thus, k is a direct
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summand of m/xm. It follows that pdR∗(k) < ∞, so that Proposition 8.39
gives pdR∗(k) = pdR(k)− 1. Theorem 8.55 now gives

D(R∗) = pdR∗(k) = n − 1.

By induction, R∗ is a regular local ring and dim(R∗) = n − 1. Hence, there
is a prime chain of length n − 1 in R∗

p∗0 � p∗1 � · · · � p∗n−1 = (0)

[we have p∗n−1 = (0) because R∗ is a domain (being regular) and (0) is a
prime ideal]. Taking inverse images gives a prime chain in R:

p0 � p1 � · · · � pn−1 = (x).

Were (x) a minimal prime ideal, then every element in it would be nilpotent,
by Proposition 4.76. Since x is not a zero-divisor, it is not nilpotent, and so
there is a prime ideal q � (x). Hence, dim(R) ≥ n.

Since x ∈ m − m2, Proposition 8.56 says that V (R) = 1 + V (R∗) =
1 + dim(R∗) = n. Therefore,

n = V (R) ≥ dim(R) ≥ n

[the inequality V (R) ≥ dim(R) always being true], and dim(R) = V (R);
that is, R is a regular local ring of dimension n. •

Corollary 8.63. If S is a multiplicative subset of a regular local ring, then
S−1 R is also a regular local ring. In particular, if p is a prime ideal in R,
then Rp is regular.

Proof. Theorem 8.27(ii) says that D(R) = wD(R) in this case. But Propo-
sition 8.23 says that wD(S−1 R) ≤ wD(R). Therefore,

D(S−1 R) = wD(S−1 R) ≤ wD(R) = D(R) < ∞.

It follows from Corollary 4.74 that S−1 R is a local ring; therefore, S−1 R is
regular, by Theorem 8.62. The second statement follows: if S = R − p, then
Rp is a local ring, and so the Serre–Auslander–Buchsbaum Theorem says that
Rp is regular. •

There are several proofs that regular local rings are unique factorization
domains; most use the notion of depth that was used in the original proof of
Auslander and Buchsbaum. If M is a finitely generated R-module, then its
depth is defined by

depth(M) = length of a maximal regular M-sequence.

The depth of M was originally called its codimension because of the following
result of Auslander and Buchsbaum.
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Theorem (Codimension Theorem). Let (R,m) be a noetherian local
ring, and let M be a finitely generated R-module with pd(M) < ∞. Then

pd(M)+ depth(M) = depth(R).

In particular, if R is regular, then depth(R) = D(R) and

pd(M)+ depth(M) = D(R).

Proof. Rotman, Advanced Modern Algebra, Proposition 11.181. •
M. Nagata proved, using the result of Serre–Auslander–Buchsbaum, that

if one knew that every regular local ring R with D(R) = 3 is a unique fac-
torization domain, then this is so for every regular local ring [see “A general
theory of algebraic geometry over Dedekind rings II,” Amer. J. Math. 80
(1958), 382–420].

Corollary 8.64. If (R,m) is a noetherian local ring with D(R) = 3 and
p 	= m is a prime ideal in R, then

pd(p) ≤ 1.

Proof. By hypothesis, there exists x ∈ m − p. Now x is regular on R/p: if
x(r + p) = p, then xr ∈ p and r ∈ p, for x /∈ p and p is prime. Therefore,
depth(R/p) ≥ 1 and so pd(R/p) ≤ 2, by the Codimension Theorem. But
there is an exact sequence 0 → p → R → R/p → 0, which shows that
pd(p) ≤ 1. •

Theorem 8.65 (Auslander–Buchsbaum). Every regular local ring R is a
unique factorization domain.

Proof. A standard result of Commutative Algebra is that a domain R is a
unique factorization domain if every minimal nonzero prime ideal p (there
is no nonzero prime ideal q with q � p) is principal. If D(R) = 3, then
Corollary 8.64 gives pd(p) ≤ 1. Auslander and Buchsbaum showed that
pd(p) = 1 gives a contradiction, so that pd(p) = 0; that is, p is a projective,
hence free, R-module (Corollary 4.16). But any ideal in a domain R that is
free as an R-module must be principal. •

Another proof, not using Nagata’s difficult proof, is based on the follow-
ing criterion.

Proposition 8.66. If R is a noetherian domain for which every finitely gen-
erated R-module has FFR, then R is a unique factorization domain.
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Proof. This is Theorem 184 in Kaplansky, Commutative Rings. The proof
uses a criterion for a domain to be a unique factorization domain (his Theo-
rem 179), which involves showing that if a commutative ring R has the prop-
erty that every finitely generated R-module has FFR, then so does R[x]. But
this is just our Theorem 8.47. •

Unique factorization for regular local rings follows easily from this last
proposition. If D(R) = n, then every finitely generated R-module M has
a projective resolution 0 → Pn → · · · → P0 → M → 0 in which each
Pi is finitely generated (Lemma 7.19). But (finitely generated) projective R-
modules are free [Theorem 4.57], and so every finitely generated R-module
has FFR.



9
Homology and Groups

Applications of homology to Group Theory are usually called Cohomol-
ogy of Groups. The history of this subject is quite interesting. Its algebraic
origins can be found in the early 1900s, with Schur’s work on projective rep-
resentations [homomorphisms of groups to PGL(n, k)] in the first decade and
in Schreier’s work on extensions of groups in 1926. Its topological origins
lie in the discovery, by Hurewicz in the 1930s, that if X is a connected as-
pherical space (the higher homotopy groups of X are all trivial), then all the
homology and cohomology groups of X are determined by the fundamental
group π = π1(X). But it was a theorem of Hopf in 1944, about actions of
fundamental groups, that led Eilenberg and Mac Lane to define and develop
the basic ideas of Cohomology of Groups. This mixed parentage (which ex-
plains why groups in the early papers are always denoted by π instead of by
G) is a reflection of a deep relationship between Group Theory and Algebraic
Topology.

9.1 Group Extensions

Exactness of a sequence of nonabelian groups,

→ Gn+1
dn+1−→ Gn

dn−→ Gn−1 →,

is defined just as it is for abelian groups: im dn+1 = ker dn for all n. Of
course, each ker dn is a normal subgroup of Gn .

J.J. Rotman, An Introduction to Homological Algebra, Universitext, 495
DOI 10.1007/978-0-387-68324-9 9, c© Springer Science+Business Media LLC 2009
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Definition. If K and Q are groups, then an extension of K by Q is a short

exact sequence 1 → K
i−→ E

p→ Q → 1.

Unless we say otherwise, we will assume that the map i : K → E is the
inclusion. The notation K and Q reminds us of kernel and quotient. Hence-
forth, we shall denote the elements of K by a, b, c, . . . and the elements of Q
by x, y, z, . . . .

A group E having a normal subgroup K can be “factored” into K and
E/K . The extension problem is the inverse question: find all possible exten-
sions of a given ordered pair of groups (K , Q). In other words, to what extent
can E be recovered from a normal subgroup K and the quotient Q = E/K ?
For example, we know that |E | = |K ||Q| if E is finite. O. Schreier [“Über
die Erweiterung von Gruppen, I,” Monatsh. Math. Phys. 34 (1926), 165–
180; “Über die Erweiterung von Gruppen, II,” Abh. Math. Sem. Hamburg
4 (1926), 321–346] solved the extension problem for groups by constructing
all possible multiplication tables for E . Even though the proof of Schreier’s
Theorem consists of manipulating and organizing long series of elementary
calculations, his results are still strong enough to yield a proof of the Schur–
Zassenhaus Lemma. Our discussion in this section displays the origins of
several definitions of Homological Algebra, but, more importantly, it gives
interpretations of low-dimensional cohomology groups.

Remark. We must point out that Schreier’s solution of the extension prob-
lem does not allow us, given K and Q, to determine the number of noniso-
morphic middle groups E of extensions 1 → K → E → Q → 1. It is not
easy to recognize whether two multiplication tables of a group of order n arise
from a given group E ; after all, there are n! different lists of the elements of
E , each of which gives a multiplication table. If E ′ is another group of or-
der n, the problem of determining whether or not E and E ′ are isomorphic
is essentially the problem of comparing two families of multiplication tables,
one for E and one for E ′, to see if there is a pair of tables that coincide.

�

The significance of the extension problem arises from the Jordan–Hölder
Theorem. Assume that a group E has a composition series; say,

E = K0 ≥ K1 ≥ K2 ≥ · · · ≥ Kn−1 ≥ Kn = {1},

with simple factor groups Q1, . . . , Qn , where Qi = Ki−1/Ki for all i ≥ 1.
Since Kn = {1}, we have Qn = Kn−1. If we could solve the extension prob-
lem, then Kn−2 could be found from the extension 1 → Kn−1 → Kn−2 →
Qn−1 → 1; that is, from Qn, Qn−1. Iterating, E could be recaptured from
Qn, Qn−1, . . . , Q1. Since all finite simple groups are classified (the proof
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having been completed in 2005), all finite groups could be surveyed if we
could solve the extension problem.1

The definition of extension makes sense for any, possibly nonabelian,
group K , but, to keep hypotheses uniform, we assume in our discussion that
K is abelian, even when this assumption is not needed. As usual, we write
abelian groups K additively. The group E containing K is allowed to be
nonabelian, and it, too, is written additively (it would be confusing to do
otherwise). The group Q will always be written multiplicatively. Proposi-
tion 9.1(iii) gives a reason for using this mixture of additive and multiplicative
notation.

Definition. If 0 → K → E
p−→ Q → 1 is an extension, then a lifting is

a function � : Q → E , not necessarily a homomorphism, with p� = 1Q . We
assume further that �(1) = 0.

If K is a subgroup of a group E , then a right transversal of K (or a
complete system of coset representatives of K ) is a subset T ⊆ E consisting
of exactly one element from each right coset K + t of K . We normalize T by
assuming that t = 0 is chosen for the coset K .

Given a right transversal, we can construct a lifting. For each x ∈ Q,
surjectivity of p provides �(x) ∈ E with p�(x) = x ; thus, the function x �→
�(x) is a lifting if we choose �(1) = 0. Conversely, given a lifting, we claim
that �(Q) is a right transversal of K . If K + e is a coset, then p(e) ∈ Q; say,
p(e) = x ; hence, p(e−�(x)) = 1, so that e−�(x) ∈ K and K+e = K+�(x).
Thus, every coset has a representative in �(Q). Finally, we must show that
�(Q) does not contain two elements in the same coset. If K+�(x) = K+�(y),
then there is a ∈ K with a + �(x) = �(y). Apply p to this equation; since
p(a) = 1, we have x = y and so �(x) = �(y).

The automorphism group Aut(E) of a group E is the group whose ele-
ments are all the isomorphisms of E with itself and whose operation is compo-
sition. An automorphism ϕ is inner if it is a conjugation; that is, there is c ∈ E
with ϕ(e) = c + e − c for all e ∈ E (in additive notation). An automorphism
of E is outer if it is not inner. The subset Inn(E) ⊆ Aut(E) consisting of all
the inner automorphisms of E is a normal subgroup of Aut(E); the quotient
Aut(E)/Inn(E) is denoted by Out(E) and is called the outer automorphism
group.

1Alas, these remarks are not practical. Besche–Eick–O’Brien [“The groups of order
at most 2000,” Electron. Res. Announc. Amer. Math. Soc. 7 (2001), 1–4] have shown
that there are 56,092 nonisomorphic groups of order 28, and 10,494,213 groups of order
29. Besche–Eick–O’Brien [“A millenium project: constructing small groups,” Internat.
J. Algebra Comput., 12 (2002), 623–644] show that there are 49,487,365,422 groups of
order 210.
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Proposition 9.1. Let 0 → K → E
p→ Q → 1 be an extension of an abelian

group K by a group Q, and let � : Q → E be a lifting.

(i) For every x ∈ Q, conjugation θx : K → K , defined by

θx : a �→ �(x)+ a − �(x),

is independent of the choice of lifting �(x) of x.

(ii) The function θ : Q → Aut(K ), defined by x �→ θx , is a homomorphism.

(iii) K is a left ZQ-module with scalar multiplication given by

xa = θx (a) = �(x)+ a − �(x).

Proof.

(i) Suppose that �′ is another lifting, so that p�′(x) = x for all x ∈ Q.
There is b ∈ K with �′(x) = �(x)+b [for −�(x)+�′(x) ∈ ker p = K ].
Therefore,

�′(x)+ a − �′(x) = �(x)+ b + a − b − �(x)

= �(x)+ a − �(x),

because a and b commute in the abelian group K .

(ii) Now θx (a) ∈ K , for K �E , so that θx : K → K ; also, θx ∈ Aut(K ), be-
cause conjugations are automorphisms. Let us see that θ : Q → Aut(K )

is a homomorphism. If x, y ∈ Q and a ∈ K , then

θx (θy(a)) = θx (�(y)+ a − �(y)) = �(x)+ �(y)+ a − �(y)− �(x),

while
θxy(a) = �(xy)+ a − �(xy).

But �(x) + �(y) and �(xy) are both liftings of xy, and so θxθy = θxy
follows from part (i).

(iii) Parts (i) and (ii). •
The homomorphism θ : Q → Aut(K ) in Proposition 9.1(ii) tells “how”

K is normal in E . For example, let K be a cyclic group of order 3 and Q = 〈x〉
be cyclic of order 2. If E = K × Q, then E is abelian and K lies in the center
Z(E). In this case, �(x)+ a − �(x) = a for all a ∈ K , and θx = 1K . On the
other hand, if E = S3 and K = A3 (which does not lie in the center of S3),
then conjugating (1 2 3) by �(x) = (1 2) gives (1 3 2); thus, θx 	= 1K .
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In Proposition 2.1, we saw that if R is a ring, then an abelian group K is a
left R-module if and only if there is a ring homomorphism ϕ : R → End(K )

with ϕ(r) : a �→ ra for all a ∈ K .2 In the special case R = ZQ, we note
that ϕ : ZQ → End(K ) is completely determined by its restriction θ : Q →
Aut(K ) [because Aut(K ) is the group of (two-sided) units in End(K )]. In
down-to-earth language, if we know xa for all x ∈ Q and a ∈ K , then
(
∑

mx x)a =∑x mx (xa). Consequently, we use the following abbreviations.

Definition. If Q is a group and K is an abelian group, then a Q-module
is a left ZQ-module. We will abbreviate HomZQ(A, B) to HomQ(A, B) and
M ⊗ZQ N to M ⊗Q N when A, B, N are left ZQ-modules and M is a right
ZQ-module.

Exercise 9.3 on page 503 shows that every left ZQ-module K is also a
right ZQ-module if one defines ax to be x−1a, where x ∈ Q and a ∈ K .
Thus, if K and L are Q-modules, we can always adjust them so that K ⊗Q L
is defined.

An abelian group K can be a Q-module in many ways. In particular, if
K happens to be a Q-module, then the ZQ-action arising from conjugation,
as in Proposition 9.1, may not be the same as the given Q action. We give a
name to those extensions for which these two ZQ actions coincide.

Definition. Let K be a Q-module. An extension 0 → K → E → Q → 1
realizes the operators if, for all x ∈ Q and a ∈ K , we have

xa = �(x)+ a − �(x).

Definition. A Q-module K is trivial if xa = a for all x ∈ Q and all a ∈ K .

Proposition 9.2. Let K be a Q-module, and let 0 → K → E → Q → 1
be an extension that realizes the operators. Then K is a trivial Q-module if
and only if K ⊆ Z(E).

Proof. Since the extension realizes the operators, xa = �(x)+ a − �(x) for
all x ∈ Q and a ∈ K . If K is a trivial Q-module, then xa = a, so that a
commutes with �(x) for all x . A general element of E has the form b + �(y),
where b ∈ K and y ∈ Q; hence, a+ b+ �(y) = b+ a+ �(y) = b+ �(y)+ a
(for K is abelian), and so a ∈ Z(E).

Conversely, if a ∈ Z(E), then it commutes, in particular, with every �(x),
and so xa = �(x)+ a − �(x) = a. •

2Exercise 9.12 on page 513 puts this into the context of adjoint functors.
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9.1.1 Semidirect Products

The simplest extension of K by Q is a semidirect product.

Definition. An extension 0 → K → E
p→ Q → 1 is split if there is a

homomorphism j : Q → E with pj = 1Q . The middle group E in a split
extension is called a semidirect product of K by Q and is denoted by K � Q.

Thus, an extension is split if and only if there is a lifting, namely, j , that
is also a homomorphism.

Proposition 9.3. The following conditions are equivalent for an additive
group E having a normal abelian subgroup K with E/K ∼= Q.

(i) E is a semidirect product of K by Q.

(ii) There is a subgroup C ⊆ E (called a complement of K ) with C ∼= Q,
K ∩ C = {0}, and K + C = E .

(iii) Each e ∈ E has a unique expression e = a + x, where a ∈ K and
x ∈ C.

Proof. A routine adaptation of Proposition 2.20. •

Example 9.4.

(i) An abelian group E is a semidirect product if and only if it is a di-
rect product (usually called a direct sum), for every subgroup of an
abelian group is normal. Thus, cyclic groups of prime power order are
not semidirect products, for they cannot be a direct sum of two proper
subgroups.

(ii) A direct product K × Q is a semidirect product of K by Q (and also
of Q by K ). A semidirect product is so called because a direct product
E of K and C requires, in addition to K + C = E and K ∩ C = {0},
that both subgroups K and Q be normal. For example, E = S3 is a
semidirect product of K = 〈σ 〉 by Q = 〈τ 〉, where σ = (1 2 3) and
τ = (1 2). Note that K is a normal subgroup of order 3, but that Q, a
subgroup of order 2, is not normal. It follows that the nonabelian group
S3 is not the direct product K × Q, for this last group is abelian.

This example also shows that complements need not be unique. For
example, S3 is the semidirect product of K by 〈τ ′〉, where τ ′ is any
transposition in S3. However, any two complements in a semidirect
product E of K by Q are isomorphic, for every complement Q of K is
isomorphic to E/K .
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(iii) The dihedral group D8 of order 8 is a semidirect product in two ways:
D8 ∼= I4 � I2 and D8 ∼= V � I2, where V is the four-group. The other
nonabelian group of order 8, the quaternion group Q, is not a semidirect
product (see Exercise 9.7 on page 503). �

We now construct semidirect products.

Theorem 9.5. Given a group Q and a Q-module K , there exists a split
extension 0 → K → K � Q → Q → 1 that realizes the operators. The
elements of K � Q are all ordered pairs (a, x) ∈ K × Q, and its operation is

(a, x)+ (b, y) = (a + xb, xy).

Remark. The operation looks more natural in multiplicative notation;

(ax)(by) = a(xbx−1)xy. �

Proof. We begin by proving that K � Q is a group. For associativity,

[(a, x)+ (b, y)] + (c, z) = (a + xb, xy)+ (c, z)

= (a + xb + (xy)c, (xy)z).

On the other hand,

(a, x)+ [(b, y)+ (c, z)] = (a, x)+ (b + yc, yz)

= (a + x(b + yc), x(yz)).

Of course, (xy)z = x(yz), because of associativity in Q. The first coordinates
are also equal: since K is a Q-module,

x(b + yc) = xb + x(yc) = xb + (xy)c,

and so the operation is associative. The identity element is (0, 1), for

(0, 1)+ (a, x) = (0 + 1a, 1x) = (a, x),

and the inverse of (a, x) is (−x−1a, x−1), for

(−x−1a, x−1)+ (a, x) = (−x−1a + x−1a, x−1x) = (0, 1).

Therefore, K � Q is a group.
Define a function p : K � Q → Q by p : (a, x) �→ x . Since the only

“twist” occurs in the first coordinate, p is a surjective homomorphism with
ker p = {(a, 1) : a ∈ K }. If we define i : K → K � Q by i : a �→ (a, 1), then

0 → K
i→ K � Q

p→ Q → 1
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is an extension. The function j : Q → K � Q, defined by j : x �→ (0, x), is
a homomorphism, for (0, x)+ (0, y) = (0, xy). Now pjx = p(0, x) = x , so
that pj = 1Q , and the extension splits. Finally, K � Q realizes the operators:
if x ∈ Q, then every lifting of x has the form �(x) = (b, x) for some b ∈ K ,
and

(b, x)+ (a, 1)− (b, x) = (b + xa, x)+ (−x−1b, x−1)

= (b + xa + x(−x−1b), xx−1)

= (b + xa − b, 1)

= (xa, 1). •

Theorem 9.6. Let K be an abelian group. If a group E is a semidirect
product of K by a group Q, then there is a Q-module structure on K so that
E ∼= K � Q.

Proof. Regard E as a group having subgroups K and Q [so we may write x
instead of �(x)] with K � E and Q a complement of K . If a ∈ K and x ∈ Q,
define

xa = x + a − x .

By Proposition 9.3(iii), each e ∈ E has a unique expression as e = a + x ,
where a ∈ K and x ∈ Q. It follows that ϕ : E → K � Q, defined by
ϕ : a + x �→ (a, x), is a bijection. We now show that ϕ is an isomorphism.

ϕ((a + x)+ (b + y)) = ϕ(a + x + b + (−x + x)+ y)

= ϕ(a + (x + b − x)+ x + y)

= (a + xb, x + y).

The definition of addition in K � Q now gives

(a + xb, x + y) = (a, x)+ (b, y)

= ϕ(a + x)+ ϕ(b + y). •

Exercises

In the first two exercises, the group K need not be abelian; in all other exer-
cises, it is assumed to be abelian.

*9.1 Let E be a group of order mn, where (m, n) = 1. Prove that a
normal subgroup K of order m has a complement in E if and only if
there exists a subgroup C ⊆ E of order n. (Kernels in this exercise
may not be abelian groups.)
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*9.2 (Baer). Call a group E injective3 in Groups if it solves the ob-
vious universal mapping problem: for every group G and every
(not necessarily abelian) subgroup S ⊆ G, every homomorphism
f : S → E can be extended to G:

E

1 �� S

f

��

�� G.

@@�
�

�
�

Prove that E is injective if and only if E = {1}.
Hint. Let A be free with basis {x, y}, and let B be the semidirect
product B = A � 〈z〉, where z is an element of order 2 that acts on
A by zxz = y and zyz = x .

*9.3 (i) Let K be a Q-module, where Q is a group. Prove that K
is also a right ZQ-module if one defines ax to be x−1a,
where x ∈ Q and a ∈ K .

(ii) If a Q-module K is made into a right ZQ-module, as in
part (i), give an example showing that K is not a (ZQ,ZQ)-
bimodule.

9.4 Give an example of a split extension 0 → K → G
p→ Q → 1 in

Groups for which there does not exist a homomorphism q : G → K
with qi = 1K . Compare with Exercise 2.8.

*9.5 Let 0 → B → A → Ip → 0 be an exact sequence of finite abelian
p-groups, where p is prime. If B is cyclic, prove that either A is
cyclic or the sequence splits.

*9.6 If G = K � Q and Q ⊆ N ⊆ G, prove that N = (N ∩ K ) � Q.
Hint. Adapt the proof of Corollary 2.24.

*9.7 Prove that Q, the group of quaternions, is not a semidirect product.
Hint. The quaternion group Q is the subgroup of order 8,

Q = {I, A, A2, A3, B, B A, B A2, B A3}
= 〈A〉 ∪ B〈A〉 ⊆ GL(2,C),

where I = [
1 0
0 1

]
, A = [

0 1
−1 0

]
, and B = [

0 i
i 0

]
. Note that A2 = −I

is the unique element of order 2 and that Z(Q) = 〈−I 〉.
9.8 If K and Q are solvable groups, prove that a semidirect product of

K by Q is also solvable.

3The term injective had not yet been coined when R. Baer, who introduced the notion
of injective module, proved this result. After recognizing that injective groups are duals of
free groups, he jokingly called such groups fascist groups, and he was delighted to have
proved that they are trivial.
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9.9 Let K be an abelian group, let Q be a group, and let θ : Q →
Aut(K ) be a homomorphism. Prove that K � Q ∼= K × Q if and
only if θ is the trivial map; that is, θx = 1K for all x ∈ Q.

*9.10 (i) If K is cyclic of prime order p, prove that Aut(K ) is cyclic
of order p − 1.

(ii) Let G be a group of order pq, where p > q are primes. If
q � (p − 1), prove that G is cyclic. Conclude, for example,
that every group of order 15 is cyclic.

*9.11 (i) Prove that Aut(S3) ∼= GL(2, 2) ∼= S3.
(ii) Prove that if G is a group, then Aut(G) = {1} if and only

if |G| ≤ 2. Conclude that every abelian group of order > 2
has an outer automorphism.

(iii) Prove that D8 has an outer automorphism.
Hint. D8 = 〈a, b〉, where a4 = 1 = b2 and bab = a−1.
Define ϕ : D8 → D8 by ϕ(a) = a3 and ϕ(b) = b.

(iv) Prove that Q has an outer automorphism.
Hint. Show that Aut(Q) ∼= S4 and Inn(Q) ∼= V.

9.1.2 General Extensions and Cohomology
We now solve the extension problem. In light of our discussion of semidi-
rect products, it is reasonable to refine the problem by assuming that K is a
Q-module and then to seek all those extensions E realizing the operators.
One way to describe a group E is to give an addition table for it; that is, to
list all its elements a1, a2, . . . and all sums ai + a j . Indeed, this is how we
constructed semidirect products: elements are the ordered pairs (a, x) with
a ∈ K and x ∈ Q, and addition is (a, x)+ (b, y) = (a + xb, xy).

Suppose an extension 0 → K → E → Q → 1 is given. If � : Q → E is
a lifting (� need not be a homomorphism), then im � is a transversal4 of K in
E . The group E is the disjoint union of the cosets of K , so that every element
can be expressed uniquely as a + �x . If x, y ∈ Q, then �(xy) and �x + �y
represent the same coset of K , and so

�x + �y = f (x, y)+ �(xy) for some f (x, y) ∈ K . (1)

Definition. Given an extension 0 → K → E → Q → 1 and a lifting
� : Q → E , a factor set5 (or cocycle) is a function f : Q×Q → K such that,
for all x, y ∈ Q,

�(x)+ �(y) = f (x, y)+ �(xy).

4Since K is a normal subgroup, each right coset K x is equal to the left coset x K , and
so it makes no difference whether one chooses a right transversal or a left one.

5 If we switch to multiplicative notation, we see that a factor set occurs in the factoriza-
tion �(x)�(y) = f (x, y)�(xy).
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Of course, a factor set depends on the choice of lifting �. When E is a
split extension, there exists a lifting that is a homomorphism, and the cor-
responding factor set is identically 0. Therefore, we can regard a factor set
as the obstruction to a lifting � being a homomorphism; that is, a factor set
describes how an extension differs from being a split extension.

Proposition 9.7. Let Q be a group, K a Q-module, and 0 → K → E →
Q → 1 an extension realizing the operators. If � : Q → E is a lifting and
f : Q × Q → K is its corresponding factor set, then

(i) for all x, y ∈ Q,

f (1, y) = 0 = f (x, 1);

(ii) the cocycle identity6 holds: for all x, y, z ∈ Q, we have

f (x, y)+ f (xy, z) = x f (y, z)+ f (x, yz).

Proof. Set x = 1 in the equation that defines f (x, y),

�(x)+ �(y) = f (x, y)+ �(xy),

to see that �(y) = f (1, y) + �(y) [since �(1) = 0 is part of the definition
of lifting], and hence f (1, y) = 0. Setting y = 1 gives the other equation
in (i).

The cocycle identity follows from associativity in E . For all x, y, z ∈ Q,
we have

[�(x)+ �(y)] + �(z) = f (x, y)+ �(xy)+ �(z)

= f (x, y)+ f (xy, z)+ �(xyz).

On the other hand,

�(x)+ [�(y)+ �(z)] = �(x)+ f (y, z)+ �(yz)

= x f (y, z)+ �(x)+ �(yz)

= x f (y, z)+ f (x, yz)+ �(xyz). •

It is more interesting that the converse is true. The next result generalizes
the construction of K � Q in Proposition 9.5.

6Written as an alternating sum, f (x, y) = x f (y, z)− f (xy, z)+ f (x, yz), this identity
is reminiscent of the formulas describing geometric cycles as described in Section 1.1.
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Theorem 9.8. Given a group Q and a Q-module K , then a function
f : Q × Q → K is a factor set if and only if it satisfies the cocycle identity:
for all x, y, z ∈ Q,

x f (y, z)− f (xy, z)+ f (x, yz)− f (x, y) = 0,

and, for all x, y ∈ Q,
f (1, y) = 0 = f (x, 1).

More precisely, if f satisfies these two identities, then there is an extension
0 → K → E → Q → 1 realizing the operators, and there is a lifting
� : Q → E whose corresponding factor set is f .

Proof. Necessity is Proposition 9.7. For the converse, define E to be the set
of all ordered pairs (a, x) in K × Q equipped with the operation

(a, x)+ (b, y) = (a + xb + f (x, y), xy)

(if f is identically 0, then E = K � Q). The proof that E is a group is
similar to the proof of Proposition 9.5. The cocycle identity is used to prove
associativity, the identity is (0, 1), and the inverse of (a, x) is

−(a, x) = (−x−1a − x−1 f (x, x−1), x−1).

Define p : E → Q by p : (a, x) �→ x . Because the only “twist” occurs in
the first coordinate, it is easy to see that p is a surjective homomorphism with
ker p = {(a, 1) : a ∈ K }. If we define i : K → E by i : a �→ (a, 1), then we

have an extension 0 → K
i→ E

p→ Q → 1.
To see that this extension realizes the operators, we must show, for every

lifting �, that xa = �(x) + a − �(x) for all a ∈ K and x ∈ Q. Now �(x) =
(b, x) for some b ∈ K and

�(x)+ (a, 1)− �(x) = (b, x)+ (a, 1)− (b, x)

= (b + xa, x)+ (−x−1b − x−1 f (x, x−1), x−1)

= (b + xa + x[−x−1b − x−1 f (x, x−1)] + f (x, x−1), 1)

= (xa, 1).

Finally, we show that f is the factor set determined by some lifting �.
Define �(x) = (0, x) for all x ∈ Q. The factor set F determined by � is
defined by

F(x, y) = �(x)+ �(y)− �(xy)

= (0, x)+ (0, y)− (0, xy)

= ( f (x, y), xy)+ (−(xy)−1 f (xy, (xy)−1), (xy)−1)

= ( f (x, y)+ xy[−(xy)−1 f (xy, (xy)−1)]

+ f (xy, (xy)−1), xy(xy)−1)

= ( f (x, y), 1). •
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Definition. Given a group Q, a Q-module K , and a factor set f , denote the
group constructed in Theorem 9.8 by Gr(K , Q, f ), and denote the extension
of K by Q constructed there by

XGr(K , Q, f ) = 0 → K → Gr(K , Q, f ) → Q → 1.

The next result shows that we have found all the extensions of a Q-module
K by a group Q.

Theorem 9.9. Let Q be a group, let K be a Q-module, and let 0 → K →
E → Q → 1 be an extension realizing the operators. Then there exists a
factor set f : Q × Q → K with

E ∼= Gr(K , Q, f ).

Proof. Let � : Q → E be a lifting, and let f : Q × Q → K be the corre-
sponding factor set: that is, for all x, y ∈ Q, we have

�(x)+ �(y) = f (x, y)+ �(xy).

Since E is the disjoint union of the cosets, E =⋃x∈Q K + �(x), each e ∈ E
has a unique expression e = a + �(x) for a ∈ K and x ∈ Q. Uniqueness
implies that the function ϕ : E → Gr(K , Q, f ), given by

ϕ : e = a + �(x) �→ (a, x),

is a well-defined bijection. We now show that ϕ is an isomorphism.

ϕ(a + �(x)+ b + �(y)) = ϕ(a + �(x)+ b − �(x)+ �(x)+ �(y))

= ϕ(a + xb + �(x)+ �(y))

= ϕ(a + xb + f (x, y)+ �(xy))

= (a + xb + f (x, y), xy)

= (a, x)+ (b, y)

= ϕ(a + �(x))+ ϕ(b + �(y)). •

Remark. Note that if a ∈ K , then ϕ(a) = ϕ(a + �(1)) = (a, 1), and, if
x ∈ Q, then ϕ(�(x)) = (0, x). This would not be so had we chosen a lifting
� with �(1) 	= 0. �

We have described all extensions in terms of factor sets, but a factor set
depends on a choice of lifting.



508 Homology and Groups Ch. 9

Lemma 9.10. Given a group Q, a Q-module K , an extension 0 → K →
E → Q → 1 realizing the operators, and liftings � and �′ giving factor sets
f and f ′, respectively, there exists a function h : Q → K with h(1) = 0 and,
for all x, y ∈ Q,

f ′(x, y)− f (x, y) = xh(y)− h(xy)+ h(x).

Proof. For each x ∈ Q, both �(x) and �′(x) lie in the same coset of K in E ,
and so there exists an element h(x) ∈ K with

�′(x) = h(x)+ �(x).

Since �(1) = 0 = �′(1), we have h(1) = 0. The main formula is derived as
follows:

�′(x)+ �′(y) = [h(x)+ �(x)] + [h(y)+ �(y)]

= h(x)+ xh(y)+ �(x)+ �(y),

because E realizes the operators. The equations continue,

�′(x)+ �′(y) = h(x)+ xh(y)+ f (x, y)+ �(xy)

= h(x)+ xh(y)+ f (x, y)− h(xy)+ �′(xy).

By definition, f ′ satisfies �′(x)+ �′(y) = f ′(x, y)+ �′(xy). Therefore,

f ′(x, y) = h(x)+ xh(y)+ f (x, y)− h(xy),

and so
f ′(x, y)− f (x, y) = xh(y)− h(xy)+ h(x). •

Definition. Given a group Q and a Q-module K , a function g : Q×Q → K
is called a coboundary if there exists a function h : Q → K with h(1) = 0
such that, for all x, y ∈ Q,

g(x, y) = xh(y)− h(xy)+ h(x).

The term coboundary arises because its formula is an alternating sum
analogous to the formula for geometric boundaries in Chapter 1.

We have just shown that if f and f ′ are factor sets of an extension G that
arise from different liftings, then f ′ − f is a coboundary.

Definition. Given a group Q and a Q-module K , define

Z2(Q, K ) = {all factor sets f : Q × Q → K }
and

B2(Q, K ) = {all coboundaries g : Q × Q → K }.
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Proposition 9.11. Given a group Q and a Q-module K , then Z2(Q, K ) is
an abelian group with operation pointwise addition,

f + f ′ : (x, y) �→ f (x, y)+ f ′(x, y),

and B2(Q, K ) is a subgroup of Z2(Q, K ).

Proof. Pointwise addition is an (associative) operation on Z2, for Theo-
rem 9.8 implies that the sum of two factor sets is a factor set. Now the zero
function, f (x, y) = 0 for all x, y ∈ Q, is a factor set (of the semidirect prod-
uct), and − f set is a factor set if f is (using Theorem 9.8 again), so that Z2

is a group.
Note that B2 ⊆ Z2, for if g(x, y) = xh(y)−h(xy)+h(x), then g(1, y) =

0 = g(x, 1) [this uses the hypothesis that h(1) = 0] and g satisfies the co-
cycle identity (a routine calculation); moreover, B2 is nonempty, for the zero
function is a coboundary. To see that B2 is a subgroup of Z2, it now suffices
to prove it is closed under subtraction. But if g, g′ are coboundaries, then they
are factor sets (because B2 ⊆ Z2), and so g − g′ ∈ B2, by Lemma 9.10. •

The following quotient group suggests itself.

Definition. The second cohomology group is defined by

H2(Q, K ) = Z2(Q, K )/B2(Q, K ).

Definition. Given a group Q and a Q-module K , two extensions of K by Q
realizing the operators are called equivalent if there are factor sets f and f ′
of each so that f ′ − f is a coboundary.

The notion of equivalence of extensions of modules that arose in Chap-
ter 6 first arose in the context of group extensions.

Proposition 9.12. Given a group Q and a Q-module K , two extensions of
K by Q realizing the operators are equivalent if and only if there exists an
isomorphism γ : E → E ′ making the following diagram commute:

0 �� K
i ��

1K

��

E
p ��

γ

���
�
� Q

1Q

��

�� 1

0 �� K
i ′

�� E ′
p′

�� Q �� 1.

Remark. A diagram chase shows that any homomorphism γ making the
diagram commute is necessarily an isomorphism. �
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Proof. Assume that the two extensions are equivalent. We begin by setting
up notation. Let � : Q → E and �′ : Q → E ′ be liftings, and let f, f ′ be the
corresponding factor sets; that is, for all x, y ∈ Q, we have

�(x)+ �(y) = f (x, y)+ �(xy),

with a similar equation for f ′ and �′. Equivalence means that there is a func-
tion h : Q → K with h(1) = 0 and

f (x, y)− f ′(x, y) = xh(y)− h(xy)+ h(x)

for all x, y ∈ Q. Since E = ⋃
x∈Q K + �(x) is a disjoint union, each e ∈ E

has a unique expression e = a + �(x) for a ∈ K and x ∈ Q; similarly, each
e′ ∈ E ′ has a unique expression e′ = a + �′(x).

Define γ : E → E ′ by

γ (a + �(x)) = a + h(x)+ �′(x).

This function makes the diagram commute. If a ∈ K , then

γ (a) = γ (a + �(1)) = a + h(1)+ �′(1) = a;
furthermore,

p′γ (a + �(x)) = p′(a + h(x)+ �′(x)) = x = p(a + �(x)).

Finally, γ is a homomorphism:

γ
(
[a + �(x)] + [b + �(y)]

) = γ (a + xb + f (x, y)+ �(xy))

= a + xb + f (x, y)+ h(xy)+ �′(xy),

while

γ (a + �(x))+ γ (b + �(y)) = (a + h(x)+ �′(x)
)+ (b + h(y)+ �′(y)

)
= a + h(x)+ xb + xh(y)+ f ′(x, y)+ �′(xy)

= a + xb + (h(x)+ xh(y)+ f ′(x, y)
)+ �′(xy)

= a + xb + f (x, y)+ h(xy)+ �′(xy).

We have used the given equation for f ′ − f [remember that the terms other
than �′(xy) all lie in the abelian group K , and so they may be rearranged].
Therefore, the diagram commutes.

Conversely, assume that there exists a homomorphism γ making the dia-
gram commute; thus, γ (a) = a for all a ∈ K and

x = p(�(x)) = p′γ (�(x))

for all x ∈ Q. It follows that γ � : Q → E ′ is a lifting. Applying γ to the
equation �(x)+�(y) = f (x, y)+�(xy), which defines the factor set f , we see
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that γ f is the factor set determined by the lifting γ �. But γ f (x, y) = f (x, y)
for all x, y ∈ Q, because f (x, y) ∈ K . Therefore, f is also a factor set of
the second extension. On the other hand, if f ′ is any other factor set for the
second extension, then Lemma 9.10 shows that f ′ − f ∈ B2; that is, the
extensions are equivalent. •

Remark. We have seen, in Example 7.26, that there can be two inequivalent
extensions of K by Q with isomorphic middle groups. Since both extensions
in that example have abelian middle groups, each K is a trivial Q-module,
and so both extensions realize the operators. �

The next theorem summarizes the calculations in this section.

Theorem 9.13 (Schreier). Let Q be a group, let K be a Q-module, and let
e(Q, K ) denote the family of all the equivalence classes of extensions of K
by Q realizing the operators. There is a bijection

ϕ : H2(Q, K ) → e(Q, K )

that takes 0 to the class of the split extension.

Proof. Denote the equivalence class of an extension

0 → K → E → Q → 1

by [E]. Define ϕ : H2(Q, K ) → e(Q, K ) by

ϕ : f + B2 �→ [XGr(K , Q, f )],

where f is a factor set of the extension and the target extension is that con-
structed in Theorem 9.8.

First, ϕ is a well-defined injection: f and g are factor sets with f + B2

= g + B2 if and only if [XGr(K , Q, f )] = [XGr(K , Q, g)], by Proposi-
tion 9.12. To see that ϕ is a surjection, let [E] ∈ e(Q, K ). By Theorem 9.9
and the remark following it, [E] = [XGr(K , Q, f )] for some factor set f ,
and so [E] = ϕ( f + B2). Finally, the zero factor set corresponds to the
semidirect product. •

Corollary 9.14. If Q is a group, K is a Q-module, and H2(Q, K ) = {0},
then every extension of K by Q realizing the operators splits. Thus, if 0 →
K → E → Q → 1 is an extension realizing the operators, then E ∼= K � Q.

Proof. By the theorem, e(Q, K ) = imϕ = {[ϕ(0)]}; that is, every extension
of K by Q realizing the operators is equivalent to the split extension. In this
case, the middle group E of an extension is a semidirect product K � Q. •
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Remark. Schreier’s approach to extensions can be modified to give another
construction of Ext1R(C, A) for any ring R. Given an extension 0 → A →
B → C → 0 of left R-modules, choose a lifting � : C → B with �0 = 0.
Each element of B has a unique expression of the form a + �c, and, when we
try to add two elements, a factor set emerges:

(a + �c)+ (a′ + �c′) = a + a′ + f (c, c′)+ �(c + c′). (2)

Here, f : C × C → A satisfies the identities

(i) f (c, 0) = 0 = f (0, c′),

(ii) f (c′, c′′)− f (c + c′, c′′)+ f (c, c′ + c′′)− f (c, c′) = 0,

(iii) f (c, c′) = f (c′, c).

The second and third identities arise, respectively, from associativity and com-
mutativity of addition. If we define addition on B̃ = A × C by Eq. (1),
then B̃ is an abelian group because f satisfies (i), (ii), (iii). To ensure that
B̃ is a left R-module, we return to the left R-module B. Define a function
g : R×C → A by g(r, c) = r�c− �(rc). Additional identities arise from the
module axioms:

(i) g(1, c) = 0 = g(r, 0);

(ii) rg(s, c) = g(rs, c)− g(r, sc);

(iii) g(r + s, c)+ f (rc, sc) = g(r, c)+ g(s, c);

(iv) g(r, c + c′)+ f (rc, rc′) = g(r, c)+ g(r, c′).

The ordered pair ( f, g) conveys all the necessary data to make B̃ into a left
R-module if one defines scalar multiplication by

r(a + �c) = ra + �(rc)

(remember that A and C are left R-modules). The set of all such ( f, g)
forms an abelian group Z(C, A), where each coordinate acts via pointwise
addition, and choosing a second lifting �′ : C → A determines a subgroup
B(C, A) ⊆ Z(C, A). Obviously, the resolution and the boundary formula are
more complicated than those for groups, but they are simple for Z-modules
when g can be forgotten. �
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Exercises

*9.12 Let U : Rings → Groups be the functor assigning to each ring R
its group of (two-sided) units U (R); let F : Groups → Rings be
the functor assigning to each group G its integral group ring ZG and
to each group homomorphism ϕ : G → H the ring homomorphism
F(ϕ) : ZG → ZH , defined by

∑
x∈G mx x �→ ∑

x∈G mxϕ(x).
Prove that (F,U ) is an adjoint pair of functors.

*9.13 Let Q be a group and let K be a Q-module. Prove that any two split
extensions of K by Q realizing the operators are equivalent.

9.14 Let Q be abelian, let K be a Q-module, and let A(Q, K ) be the
subset of H2(Q, K ) consisting of all [0 → K → E → Q → 1]
with E abelian.

(i) Prove that A(Q, K ) is a subgroup of H2(Q, K ).
(ii) Prove that A(Q, K ) ∼= Ext1

Z
(Q, K ).

9.15 The generalized quaternion group Qn , for n ≥ 3, is the subgroup
of GL(2,C) generated by A = [

0 ω
ω 0

]
and B = [

0 1
−1 0

]
, where ω is

a primitive 2n−1th root of unity. Note that |Qn| = 2n and that

A2n−1 = 1, B AB−1 = a−1, and B2 = A2n−2
.

(i) Prove that B is the unique element of order 2, Z(Qn) =
〈B〉, and that Qn is not a semidirect product.

(ii) Prove that Qn is a central extension (i.e., θ is trivial) of I2
by D2n−1 .

(iii) Using factor sets, give a proof of the existence of Qn .
9.16 If p is an odd prime, prove that every group G of order 2p is a

semidirect product of Ip by I2, and conclude that either G is cyclic
or G ∼= D2p.

9.17 (i) Let T be the subgroup of GL(2,C) generated by
[
ω 0
0 ω2

]
and

[
0 i
i 0

]
, where ω = e2π i/3 is a primitive cube root of

unity. Prove that |T | = 12.
(ii) Prove that T has a presentation

(a, b | a6 = 1, b2 = a3 = (ab)2).

(iii) Prove that T ∼= I3 � I4.
Hint. Let K = 〈u〉 ∼= I3, let Q = 〈x〉 ∼= I4, and make K
into a Q-module by xu = 2u, x(2u) = u, and x2u = u. In
K � Q, define a = (2u, x2) and b = (0, x).

(iv) Prove that every group G of order 12 is isomorphic to ex-
actly one of the following five groups:

I12, V × I3, A4, S3 × I2, T .
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9.1.3 Stabilizing Automorphisms

The Schur–Zassenhaus Lemma, Theorem 9.43, gives a condition guarantee-
ing that H2(Q, K ) = {0}: if Q and K are finite groups whose orders are
relatively prime. In this case, the middle group E of an extension is a semidi-
rect product. If C,C ′ are complements of K in E , then C ∼= C ′ (for both are
isomorphic to E/K ∼= Q). The Schur–Zassenhaus Lemma goes on to say that
C and C ′ are conjugate subgroups. Let us examine conjugacy.

We begin with a computational lemma. Let Q be a group, let K be a
Q-module, and let 0 → K → E → Q → 1 be a split extension. Choose a
lifting � : Q → E , so that every element e ∈ E has a unique expression of the
form

e = a + �x,

where a ∈ K and x ∈ Q.

Definition. An automorphism ϕ of a group E stabilizes an extension

0 → K
i−→ E

p−→ Q → 1 if the following diagram commutes:

0 �� K
i ��

1K ��

E
p ��

ϕ
��

Q
1Q��

�� 1

0 �� K
i

�� E p
�� Q �� 1.

The set of all stabilizing automorphisms of an extension of K by Q, where K
is a Q-module, is a group under composition; it is denoted by

Stab(Q, K ).

We shall see, in Corollary 9.17, that Stab(Q, K ) does not depend on the
extension.

Proposition 9.15. Let Q be a group, let K be a Q-module, and let

0 → K → E
p→ Q → 1

be an extension. If � : Q → E is a lifting, then every stabilizing automorphism
ϕ : E → E has the form

ϕ(a + �x) = a + d(x)+ �x,

where d(x) ∈ K is independent of the choice of lifting �. Moreover, this
formula defines a stabilizing automorphism if and only if, for all x, y ∈ Q,
the function d : Q → K satisfies

d(xy) = d(x)+ xd(y).
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Proof. If ϕ is stabilizing, then ϕ(a) = a, for all a ∈ K , and pϕ = p. To
use the second constraint on ϕ, suppose that ϕ(�x) = d(x) + �y for some
d(x) ∈ K and y ∈ Q. Then

x = p(�x) = pϕ(�x) = p(d(x)+ �y) = y;
that is, x = y. Therefore,

ϕ(a + �x) = ϕ(a)+ ϕ(�x) = a + d(x)+ �x .

To see that the formula for d holds, we first show that d is independent
of the choice of lifting. Suppose that �′ : Q → G is another lifting, so that
ϕ(�′x) = d ′(x) + �′x for some d ′(x) ∈ K . Now there is k(x) ∈ K with
�′x = k(x)+ �x , for p�′x = x = p�x . Therefore,

d ′(x) = ϕ(�′x)− �′x
= ϕ(k(x)+ �x)− �′x
= k(x)+ d(x)+ �x − �′x
= d(x),

because k(x)+ �x − �′x = 0.
There is a factor set f : Q → K with �x+�y = f (x, y)+�(xy) for each

x, y ∈ Q. We compute ϕ(�x + �y) in two ways.
On the one hand,

ϕ(�x + �y) = ϕ( f (x, y)+ �(xy))

= ϕ( f (x, y))+ ϕ�(xy)

= f (x, y)+ ϕ�(xy) for f (x, y) ∈ K

= f (x, y)+ d(xy)+ �(xy).

On the other hand,

ϕ(�x + �y) = ϕ(�x)+ ϕ(�y)

= d(x)+ �x + d(y)+ �y

= d(x)+ xd(y)+ f (x, y)+ �(xy).

After canceling �(xy) from the right, all terms lie in the abelian group K ; now
cancel f (x, y) from both sides to obtain

d(xy) = d(x)+ xd(y).

The proof of the converse: if ϕ(a+�x) = a+d(x)+�x (where d satisfies
the given identity), then ϕ is a stabilizing isomorphism, is left to the reader.

•
We give a name to functions like d.
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Definition. Let Q be a group and let K be a Q-module. A derivation (or
crossed homomorphism) is a function d : Q → K such that

d(xy) = xd(y)+ d(x).

The set of all derivations, Der(Q, K ), is an abelian group under pointwise
addition. If K is a trivial Q-module, then Der(Q, K ) = Hom(Q, K ).

If d is a derivation, then d(1) = 0, for d(1 · 1) = 1d(1)+ d(1).

Proposition 9.15 can be restated. If 0 → K → E → Q → 1 is an
extension with lifting � : G → E , then �(x) = (d(x), x), where d : Q → K ,
and � is a homomorphism if and only if d is a derivation.

Recall that Stab(Q, K ) denotes the group of all the stabilizing automor-
phisms of an extension of K by Q.

Corollary 9.16. Let Q be a group, K a Q-module, and 0 → K → E →
Q → 1 an extension. The function σ : ϕ �→ d, where ϕ(�x) = d(x)+ �x, is
an isomorphism

σ : Stab(Q, K ) → Der(Q, K ).

Proof. If ϕ is a stabilizing automorphism and � : Q → E is a lifting, then
Proposition 9.15 says that ϕ(a+�x) = a+d(x)+�x , where d is a derivation.
This proposition further states that d is independent of the choice of lifting;
that is, σ is a well-defined function Stab(Q, K ) → Der(Q, K ). The reader
can easily check that σ is a homomorphism.

We now show that σ is an isomorphism. If d ∈ Der(Q, K ), define
ϕ : E → E by ϕ(a + �x) = a + d(x)+ �x . Now ϕ is stabilizing, by Propo-
sition 9.15, and d �→ ϕ is inverse to σ . •

It is not obvious from its definition that Stab(Q, K ) is abelian, for its
operation is composition.

Corollary 9.17. If Q is a group and K is a Q-module, then Stab(Q, K ) is
an abelian group that does not depend on the extension of K by Q used to
define it.

Proof. By Corollary 9.16, Stab(Q, K ) ∼= Der(Q, K ); hence, Stab(Q, K )

is abelian because Der(Q, K ) is. Moreover, Der(Q, K ) is defined without
referring to any extension of K by Q. •
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Example 9.18. If Q is a group and K is a Q-module, then a function
d0 : Q → K of the form d0(x) = xa0 − a0, where a0 ∈ K , is a derivation:

d0(x)+ xd0(y) = xa0 − a0 + x(ya0 − a0)

= xa0 − a0 + xya0 − xa0

= xya0 − a0

= d0(xy).

If the action of Q on K is conjugation, say, xa = �x + a − �x , then

xa0 − a0 = �x + a0 − �x − a0;
that is, xa0 − a0 is the commutator of x and a0 (in multiplicative notation,
xa0 − a0 becomes xa0x−1a−1

0 ). �

Definition. A derivation d0 : Q → K of the form d0(x) = xa0 − a0, where
a0 ∈ K , is called a principal derivation. The set of all principal derivations is
denoted by

PDer(Q, K ).

PDer(Q, K ) is a subgroup of Der(Q, K ), because (xa − a) − (xb − b) =
x(a − b)− (a − b).

Lemma 9.19. Let 0 → K → E → Q → 1 be an extension, and let
� : Q → E be a lifting.

(i) A function ϕ : E → E is an inner stabilizing automorphism by some
a0 ∈ K if and only if

ϕ(a + �x) = a + xa0 − a0 + �x .

(ii) Stab(Q, K )/Inn(Q, K ) ∼= Der(Q, K )/PDer(Q, K ),

where Inn(Q, K ) = Inn(E) ∩ Stab(Q, K ).

Proof.

(i) If we write d(x) = xa0 − a0, then ϕ(a + �x) = a + d(x) + �x . But
d is a (principal) derivation, and so ϕ is a stabilizing automorphism, by
Proposition 9.15. Finally, ϕ is conjugation by −a0, for

−a0 + (a + �x)+ a0 = −a0 + a + xa0 + �x = ϕ(a + �x).

Conversely, assume that ϕ is a stabilizing conjugation. That ϕ is sta-
bilizing says that ϕ(a + �x) = a + d(x) + �x ; that ϕ is conjuga-
tion by a0 ∈ K says that ϕ(a + �x) = a0 + a + �x − a0. But
a0 + a + �x − a0 = a0 + a − xa0 + �x , so that d(x) = a0 − xa0.
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(ii) We prove that σ(Inn(Q, K )) = PDer(Q, K ), where σ : Stab(Q, K ) →
Der(Q, K ) is the isomorphism of Corollary 9.16: if ϕ ∈ Stab(Q, K ),
then ϕ(a + �x) = a + d(x) + �x and σ : ϕ �→ d. If ϕ ∈ Inn(Q, K ),
then ϕ(a + �x) = a + xa0 − a0 + �x , by part (i), so that σ(ϕ) = d with
d(x) = xa0 − a0; hence, σ(ϕ) ∈ PDer(Q, K ) and σ(Inn(Q, K )) ⊆
PDer(Q, K ). For the reverse inclusion, if d0 ∈ PDer(Q, K ), define
ϕ0 : E → E by ϕ0(a + �x) = a + d0(x) + �x . Now ϕ0 ∈ Inn(Q, K ),
by part (i), and so d0 = σ(ϕ0). •

Definition. If Q is a group and K is a Q-module, define

H1(Q, K ) = Der(Q, K )/PDer(Q, K ).

Corollary 9.20. For every group Q and Q-module K ,

H1(Q, K ) ∼= Stab(Q, K )/Inn(Q, K ).

Proof. Immediate from the definition of H1(Q, K ) and Lemma 9.19(iii). •

Proposition 9.21. Let 0 → K → E → Q → 1 be a split extension, and let
C and C ′ be complements of K in E. If H1(Q, K ) = {0}, then C and C ′ are
conjugate.

Proof. Since E is a semidirect product, there are liftings � : Q → E , with
image C , and �′ : Q → E , with image C ′, that are homomorphisms. Thus,
the factor sets f and f ′ determined by each of these liftings are identically
zero, and so f ′ − f = 0. But Lemma 9.10 says that there exists h : Q → K ,
namely, h(x) = �′x − �x , with

0 = f ′(x, y)− f (x, y) = xh(y)− h(xy)+ h(x);

thus, h is a derivation. Since H1(Q, K ) = {0}, h is a principal derivation:
there is a0 ∈ K with

�′x − �x = h(x) = xa0 − a0

for all x ∈ Q. Since addition in E satisfies �′x − a0 = −xa0 + �′x , we have

�x = a0 − xa0 + �′x = a0 + �′x − a0.

But im � = C and im �′ = C ′, and so C and C ′ are conjugate via a0. •
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9.2 Group Cohomology

If A and B are left R-modules, for some ring R, then the abelian group
HomR(A, B) is usually not an R-module unless A or B is a bimodule (see
Proposition 2.54). Similarly, if A is a right R-module and B is a left R-
module, then A ⊗R B is only an abelian group (see Proposition 2.51). How-
ever, module structures are available when R = ZG.

Definition. Let G be a group, and let A and B be left ZG-modules. The
diagonal action on HomG(A, B) is given by

(gϕ)(a) = gϕ(g−1a),

where g ∈ G, ϕ : A → B, and a ∈ A.
If M is a right ZG-module and B is a left ZG-module, the diagonal action

on M ⊗G B is given by

g(m ⊗ b) = gm ⊗ gb,

where g ∈ G, m ∈ M , and b ∈ B. Note that if M is G-trivial, then diagonal
action is g(m ⊗ b) = m ⊗ gb.

Exercise 9.18 on page 557 asks you to prove that diagonal action makes
HomG(A, B) and M ⊗G B into G-modules.

Consider the formulas that have arisen in the Section 9.1.

factor set: 0 = x f (y, z)− f (xy, z)+ f (x, yz)− f (x, y)

coboundary: f (x, y) = xh(y)− h(xy)+ h(x)

derivation: 0 = xd(y)− d(xy)+ d(x)

principal derivation: d(x) = xa0 − a0

A pattern suggests that the next equation is

0 = xa0 − a0.

Definition. If G is a group (we now denote groups by G instead of by Q)
and K is a G-module, then the submodule of fixed points is defined by

K G = {a ∈ K : xa = a for all x ∈ G}.
It is easy to see that K G is a G-trivial submodule; indeed, it is the unique

maximal G-trivial submodule of K . If ϕ : K → L is a G-map and a ∈ K G ,
then xa = a for all x ∈ G, and so ϕ(xa) = ϕ(a). Since ϕ is a G-map,
ϕ(xa) = xϕ(a), and so ϕ(a) ∈ LG . Define ϕG = ϕ|K G .
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Definition. The fixed-point functor FixG : ZGMod → ZGMod is defined
by FixG(K ) = K G and FixG(ϕ) = ϕG = ϕ|K G .

It is easy to see that FixG is an additive functor.

Proposition 9.22. If Z is viewed as a G-trivial module, then

FixG ∼= HomG(Z,�),

and, hence, FixG is left exact.

Proof . Define τK : HomG(Z, K ) → K G by f �→ f (1). Now f (1) ∈ LG :
if x ∈ G, then x f (1) = f (x · 1) = f (1), because Z is G-trivial. To see that
τK is an isomorphism, we display its inverse. If a ∈ K G , there is a Z-map
fa : Z → K with fa(1) = a. Since xa = a for all x ∈ G, it follows that fa is
a G-map, and a �→ fa is the inverse of τK . The reader may check naturality:
the following diagram commutes.

HomG(Z, K )
τK ��

ϕ∗ ��

K G

ϕG
��

HomG(Z, L)
τL

�� LG •

Definition. If G is a group and K is a G-module, then the cohomology
groups of G with coefficients in K are

Hn(G, K ) = Extn
ZG(Z, K ),

where Z is viewed as a trivial G-module.

Having defined group cohomology Hn(G, K ) as the right derived func-
tors of FixG ∼= HomZG(Z,�), we are now obliged to show that these groups
coincide with Schreier’s groups when n = 1 and n = 2.

As Ext(Z,�) is computed with a G-projective resolution of Z, let us be-
gin by mapping ZG onto Z.

Proposition 9.23. There is a G-exact sequence

0 → G → ZG
ε−→ Z → 0,

where ε : ZG → Z is defined by
∑

x∈G mx x �→∑
x∈G mx . The function ε is

a ring map as well as a G-map, and ker ε = G is a two-sided ideal in ZG.

Proof. We can calculate directly that ε is a G-map, but let us be fancy and
use the functor F : Groups → Rings (in Exercise 9.12 on page 513) assign-
ing to each group G its integral group ring ZG. The trivial group homomor-
phism ϕ : G → {1} induces a ring map Fϕ : ZG → Z{1} = Z, namely,
Fϕ = ε :

∑
mx x �→∑

mx . Since ε is a ring homomorphism, G = ker ε is a
two-sided ideal in ZG. •
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The map ε : ZG → Z is important because of the special role played by
the G-trivial module Z.

Definition. The map ε : ZG → Z, given by
∑

mx x �→∑
mx , is called the

augmentation, and G = ker ε is called the augmentation ideal.

Lemma 9.24. The additive group of the augmentation ideal G is the free
abelian group with basis {x − 1 : x ∈ G×}, where G× = {x ∈ G : x 	= 1}.
Proof. If u =∑x∈G mx x ∈ ZG, then u ∈ ker ε if and only if

∑
x∈G mx = 0.

Therefore, u = u− (∑x∈G mx
)
1 =∑x∈G× mx (x − 1). Thus, G is additively

generated by all x − 1. Suppose that
∑

x∈G× mx (x − 1) = 0. Then we have∑
x∈G× mx x − (∑x∈G× mx

)
1 = 0. But, as an abelian group, ZG is free with

basis {x ∈ G}. Hence, mx = 0 for all x ∈ G×. •
The next result shows that the hybrid Der(G, A) (G is a group and A is a

G-module) may be viewed as an ordinary Hom between G-modules.

Proposition 9.25. There is a natural isomorphism

τ : HomG(G,�) → Der(G,�);

the maps τA : HomG(G, A) → Der(G, A) are given by τA( f ) = f ′, where
f ′ : G → A is given by x �→ f (x − 1) for all x ∈ G.

Proof. It is routine to check that if f : G → A is a G-map, then f ′ is a
derivation and that τA is a homomorphism.

We construct the inverse of τA. If d ∈ Der(G, A), define d̃ : G → A,
where d̃(x − 1) = d(x) (Lemma 9.24 shows that d̃ is a well-defined Z-map,
for G is the free abelian group with basis {x − 1 : x ∈ G×}). Since d is
a derivation, it is easy to see that d̃ is a G-map. Define σA : Der(G, A) →
HomG(G, A) by σA : d �→ d̃. The reader may prove that both composites
σAτA and τAσA are identities, and that τ is natural. •

We now compute the cohomology groups of a finite cyclic group.

Lemma 9.26. Let G = 〈x〉 be a finite cyclic group of order k, and define
elements D and N of ZG by D = x − 1 and N = 1 + x + x2 + · · · + xk−1.
Then

→ ZG
D−→ ZG

N−→ ZG
D−→ ZG

ε−→ Z → 0

is a G-free resolution of Z, where the maps alternate being multiplication
by D and multiplication by N.
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Proof. Since ZG is commutative here, the maps D and N are G-maps (we
abuse notation by denoting the maps multiplication by D and N by D and N ,
respectively). Since N D = DN = xk − 1 = 0, the composites N D = 0 =
DN , while if u ∈ ZG, then

ε(Du) = ε
(
(x − 1)u

) = ε(x − 1)ε(u) = 0,

because ε is a ring map. Thus, we have a complex, and it only remains to
prove exactness.

We have already noted that ε is surjective. Now ker ε = G = im D, by
Lemma 9.24, and so we have exactness at the zeroth step.

We show that ker D ⊆ im N . If u =∑k−1
i=0 mi xi , then

(x − 1)u = (mk−1 − m0)+ (m0 − m1)x + · · · + (mk−2 − mk−1)x
k−1.

Hence, if u ∈ ker D, then Du = (x − 1)u = 0, and mk−1 = m0 = m1 =
· · · = mk−2; thus, u = m0 N ∈ im N .

We show that ker N ⊆ im D. If u = ∑k−1
i=0 mi xi ∈ ker N , then 0 =

ε(Nu) = ε(N )ε(u) = kε(u), so that ε(u) = ∑k−1
i=0 mi = 0; this is used in

showing

u = −D
(
m0 + (m0 + m1)x + · · · + (m0 + · · · + mk−1)x

k−1) ∈ im D. •

Theorem 9.27. Let G be a finite cyclic group. If A is a G-module, define
N A = {a ∈ A : Na = 0}. Then, for all n ≥ 1,

H0(G, A) = AG,

H2n−1(G, A) = N A/D A,

H2n(G, A) = AG/N A.

Proof. Apply HomG(Z,�) to the resolution in Lemma 9.26, and take ho-
mology. In more detail, if d2n+1 = D and d2n = N for n ≥ 0, then

ker N∗ = N A, im N∗ = N A, ker D∗ = AG, im D∗ = D A,

where N∗ and D∗ are the induced maps. The formulas follow from the defi-
nition: Hm(G, A) = ker d∗m+1/ im d∗m . •

Corollary 9.28. If G = {1}, then Hn(G, A) = {0} for all n > 0 and all
G-modules A.

Proof. This follows at once from the theorem. •
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Corollary 9.29. Let G be a finite cyclic group of order k. If A is a G-trivial
module, then, for all n ≥ 1,

H0(G, A) = A,

H2n−1(G, A) = k A = {a ∈ A : ka = 0},
H2n(G, A) = A/k A.

In particular, if A is the G-trivial module Z, then

H0(G,Z) = Z, H2n−1(G,Z) = {0}, H2n(G,Z) = Ik .

Corollary 9.30. If G is a finite cyclic group, then the global dimension
D(ZG) = ∞.

Proof. We have pd(Z) = ∞, for H2n(G,Z) = Ext2n
ZG(Z,Z) 	= {0} for all n,

by Corollary 9.29. •

Remark. A group G for which there exists a positive integer d such that
Hn(G, A) ∼= Hn+d(G, A) for all n ≥ 1 and all G-modules A is said to have
periodic cohomology. We have just seen that finite cyclic groups have peri-
odic cohomology. Other examples arise topologically as groups acting freely
as orientation-preserving homeomorphisms of spheres (see Adem–Milgram,
Cohomology of Finite Groups, p. 143). It can be proved that a finite group G
has periodic cohomology if and only if its Sylow p-subgroups are cyclic, for
all odd primes p, while its Sylow 2-subgroups are either cyclic or generalized
quaternion (see Brown, Cohomology of Groups, VI, §9, or Adem–Milgram,
IV, §6). For example, G = SL(2, 5), the group of all unimodular 2× 2 matri-
ces over F5, has periodic cohomology: it is a group of order 120 = 8 · 3 · 5;
its Sylow 3-subgroups and Sylow 5-subgroups are cyclic (for they have prime
order), and its Sylow 2-subgroups are isomorphic to the quaternions. �

The next corollary is a key lemma in Class Field Theory.

Definition. If G is a finite cyclic group and A is a finite G-module, then the
Herbrand quotient is

h(A) = |H2(G, A)|/|H1(G, A)|.
[Note that h(A) is defined, for A finite implies finiteness of both H2(G, A)

and H1(G, A), by Theorem 9.27.]

Corollary 9.31 (Herbrand). If G = 〈x〉 is a finite cyclic group of order k,
and if A is a finite G-module, then h(A) = 1.
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Proof. (Hoechsmann) There are exact sequences

0 → N A → A
N−→ N A → 0 and 0 → ker D → A

D−→ D A → 0,

where D = x − 1 and N = 1 + x + x2 + · · · + xk−1. We claim that
ker D = AG . If a ∈ ker D, then (x − 1)a = 0, then xa = a and, by
induction, xma = a for all m ≥ 1. Since G = 〈x〉, we have a ∈ AG , and
so ker D ⊆ AG . The reverse inclusion is clear, for if a ∈ AG , then xa = a.
Thus, |N A||N A| = |A| = |AG ||D A|, and so Theorem 9.27 gives

|H1(G, A)| = |N A/D A| = |AG/N A| = |H2(G, A)|. •
The next two results are used in Number Theory.

Theorem 9.32. Let E/k be a Galois extension with Galois group G =
Gal(E/k). The multiplicative group E× is a kG-module, and

H1(G, E×) = {0}.

Remark. This theorem is one of the first results in what is called Galois
Cohomology. Another early result is that Hn(G, E) = {0} for all n ≥ 1,
where E (in contrast to E×) is the additive group of the Galois extension (this
result follows easily from the Normal Basis Theorem; see Jacobson, Basic
Algebra I, p. 283). �
Proof. If c : G → E× is a 1-cocycle, denote c(σ ) by cσ . In multiplicative
notation, the cocycle condition is the identity σ(cτ )c−1

στ cσ = 1 for all σ, τ ∈
G; that is,

σ(cτ ) = cστ c−1
σ . (1)

For e ∈ E×, define
b =

∑
τ∈G

cτ τ (e).

By Dedekind’s lemma on the independence of characters (Rotman, Advanced
Modern Algebra, p. 220), there is some e ∈ E× with b 	= 0. For such an
element e, we have, using Eq. (1),

σ(b) =
∑
τ∈G

σ(cτ )στ(e)

=
∑
τ∈G

cστ c−1
σ στ(e)

= c−1
σ

∑
τ∈G

cστ στ(e)
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= c−1
σ

∑
ω∈G

cωω(e)

= c−1
σ b.

Hence, cσ = bσ(b)−1, c is a coboundary, and H1(G, E×) = {0}. •
The next corollary describes the elements of norm 1 in a cyclic extension;

it is so called because it was Theorem 90 in an 1897 treatise of Hilbert on
Number Theory. The result itself is due to Kummer.

Corollary 9.33 (Hilbert’s Theorem 90). Let E/k be a Galois extension
whose Galois group G = Gal(E/k) is cyclic, say, with generator σ . If u ∈
E×, then Nu = 1 if and only if there is v ∈ E× with

u = σ(v)v−1.

Proof. By Theorem 9.27, we have H1(G, E×) = ker N/ im D, where N is
the norm (remember that E× is a multiplicative group) and De = σ(e)e−1.
Theorem 9.32 gives H1(G, E×) = {0}, so that ker N = im D. Hence, if
u ∈ E×, then Nu = 1 if and only if there is v ∈ E× with u = σ(v)v−1. •

9.3 Bar Resolutions

Do the low-dimensional cohomology groups agree with Schreier’s groups?

Notation. Let B0 be the free G-module with basis the symbol [ ] (so that
B0 ∼= ZG). If n ≥ 1, define Bn to be the free G-module with basis Gn , the
cartesian product of n copies of G. We shall denote the elements of Gn by
[x1 | . . . | xn] instead of by (x1, . . . , xn).

Lemma 9.34. The sequence of G-modules

B3
d3−→ B2

d2−→ B1
d1−→ B0

ε−→ Z → 0

is exact; it is the beginning of a G-free resolution of the G-trivial module Z,
where

d3[x | y | z] = x[y | z] − [xy | z] + [x | yz] − [x | y],

d2[x | y] = x[y] − [xy] + [x],

d1[x] = x[ ] − [ ],

ε[ ] = 1.
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Proof. We have defined each of d3, d2, and d1 on bases of free modules, and
so each extends to a G-map. If the sequence is exact, then it can be completed
to a G-free resolution of Z by splicing it to a G-free resolution of ker d3. We
prove that im d2 ⊆ ker d1 and im d3 ⊆ ker d2. One could prove the reverse
inclusions now, but it is not routine (the definition of the resolution will be
completed, and its exactness will be proved, in Proposition 9.37).

d1d2[x | y] = d1(x[y] − [xy] + [x])

= xd1[y] − d1[xy] + d1[x])

= x(y − 1)− (xy − 1)+ (x − 1) = 0

(the equation d1x[y] = xd1[y] holds because d1 is a G-map).

d2d3[x | y | z] = d2(x[y | z] − [xy | z] + [x | yz] − [x | y])

= xd2[y | z] − d2[xy | z] + d2[x | yz] − d2[x | y]

= x(y[z] − [yz] + [y])− (xy[z] − [xyz] + [xy])

+ (x[yz] − [xyz] + [x])− (x[y] − [xy] + [x]) = 0. •

Corollary 9.35. Ext1
ZG(Z, K ) ∼= Der(G, K )/PDer(G, K ); that is, the Ext

version of H1(G, K ) coincides with Schreier’s cohomology group H 1(G, K ).

Proof. We compute Ext1
ZG(Z, K ) by applying the contravariant functor

HomG(�, K ) to the exact sequence in Lemma 9.34:

HomG(B2, K )
d∗2←− HomG(B1, K )

d∗1←− HomG(B0, K );
by definition, Ext1(Z, K ) = ker d∗2/ im d∗1 .

There is no loss in generality in identifying a G-map g ∈ HomG(B1, K )

with its restriction to the basis G2; hence, g(x[y]) = xg[y] for all x, y ∈ G.
Moreover, we may extend any function δ : G → K to a G-map B1 → K by
[y] �→ δ(y); in particular, we may regard Der(G, K ) ⊆ HomG(B1, K ).

If g : G → K lies in ker d∗2 , then

0 = (d∗2 g)[x | y]

= gd2[x | y]

= g(x[y] − [xy] + [x])

= xg[y] − g[xy] + g[x].

Thus, g[xy] = xg[y] + g[x], g is a derivation, and ker d∗2 ⊆ Der(G, K ). For
the reverse inclusion, take δ ∈ Der(G, K ). Then

(d∗2 δ)[x | y] = δd2[x | y]

= δ
(
x[y] − [xy] + [x]

)
= xδ[y] − δ[xy] + δ[x] = 0,
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because δ is (the restriction of) a G-map. Hence, ker d∗2 = Der(G, K ).
Let us compute im d∗1 . If t ∈ HomG(B0, K ), then t[ ] = a0 ∈ K . Now

(d∗1 t)[x] = td1[x] = t
(
x[ ] − [ ]

) = xt[ ] − t[ ] = xa0 − a0,

because t is (the restriction of) a G-map. Thus, d∗1 t is a principal derivation;
that is, im d∗1 ⊆ PDer(G, K ). For the reverse inclusion, let p : G → K be
a principal derivation: p(x) = xb0 − b0 for some b0 ∈ K . Now define
u : B0 → K by u[ ] = b0, so that p = d∗1 u and PDer(G, K ) ⊆ im d∗1 .

Therefore, Ext1(Z, K ) = Der(G, K )/PDer(G, K ), which is the defini-
tion of Schreier’s H1(G, K ). •

Let us now consider Ext2(G, K ) = ker d∗3/ im d∗2 . If f : G2 → K lies in
ker d∗3 , then 0 = d∗3 f = f d3. Hence, for all x, y, z ∈ G, we have

0 = f d3[x | y | z]

= f (x[y | z] − [xy | z] + [x | yz] − [x | y])

= x f [y | z] − f [xy | z] + f [x | yz] − f [x | y],

the equation f (x[y | z]) = x f [y | z] holding because f is (the restriction
of) a G-map. Thus, f satisfies the cocycle identity; it would be a factor set if
f [1 | y] = 0 = f [x | 1] for all x, y ∈ G. Alas, we do not know this. If f
lies in im d∗2 , then there is some h : G → K with f = d∗2 h = hd2. Thus,

f [x | y] = hd2[x | y]

= h(x[y] − [xy] + [x])

= xh[y] − h[xy] + h[x];
the equation h(x[y]) = xh[y] holding because h is (the restriction of) a
G-map. Now f is almost a coboundary, but it may not be one because we
cannot guarantee h(1) = 0. Thus, Ext2(Z, K ) does not quite coincide with
Schreier’s cohomology group H2(G, K ). That these two groups are isomor-
phic is shown in Theorem 9.39. The key idea is that we can choose any
projective resolution of Z to compute the groups Extn

ZG(Z, K ).
Before we investigate other resolutions of Z, we must say that there is a

group-theoretic interpretation of H3(Q, K ). Given an extension with a non-
abelian kernel N , say, 1 → N → G → Q → 1, the normality of N need
not give a homomorphism Q → Aut(N ); instead, there is a homomorphism
θ : Q → Out(N ), called a coupling, where Out(N ) = Aut(N )/Inn(N ).
Not every homomorphism θ : Q → Out(N ) actually corresponds to a cou-
pling arising from some extension, and the group H3(Q, Z(N )) = {0} if
and only if every such θ can be realized by some extension (see Robinson, A
Course in the Theory of Groups, Section 11.4). For n ≥ 4, Robinson says,
“While group-theoretic interpretations of the cohomology groups in dimen-
sions greater than 3 are known, no really convincing applications to group the-
ory have been made.” On the other hand, higher cohomology groups will be



528 Homology and Groups Ch. 9

used to define the cohomological dimension cd(G) of a group G [cd(G) ≤ n
if Hq(G, A) = {0} for all G-modules A and all q > n].

There are two constant themes in Homological Algebra: low-dimensional
homology groups should have interesting interpretations (we do not expect
an interpretation of H1409); homology groups should be amenable to com-
putation. We have just interpreted Hn(G, A) for n ≤ 3; we are now going
to construct explicit G-free resolutions of the G-trivial module Z. After all,
since homology groups are independent of projective resolutions, choosing
an explicit resolution may help in computing them. One consequence of this
technical interlude will be a topological interpretation of cohomology groups,
but let us begin by completing the definition of the resolution in Lemma 9.34.

Definition. Let G be a group. The bar resolution of Z is the sequence

B(G) =→ B2
d2−→ B1

d1−→ B0
ε−→ Z → 0,

where B0 is the free G-module on the single generator [ ], ε : B0 → Z is
the augmentation, Bn is the free G-module, for n ≥ 1, with basis all symbols
[x1 | x2 | · · · | xn], where xi ∈ G, and dn : Bn → Bn−1 is given by

dn : [x1 | · · · | xn] �→x1[x2 | · · · | xn]

+
n−1∑
i=1

(−1)i [x1 | · · · | xi xi+1 | · · · | xn]

+ (−1)n[x1 | · · · | xn−1].

Remark. Just as the G-module B0(G) ∼= ZG can be viewed as the free
Z-module with basis

{
x[ ] : x ∈ G

}
, so, too, can Bn(G) be viewed as the free

Z-module with basis
{

x[x1 | x2 | · · · | xn] : x, x1, . . . , xn ∈ G
}
. �

The low-dimensional part of the bar resolution does agree with the se-
quence in Lemma 9.34.

d1 : [x] �→ x[ ] − [ ];
d2 : [x | y] �→ x[y] − [xy] + [x];
d3 : [x | y | z] �→ x[y | z] − [xy | z] + [x | yz] − [x | y].

There are actually two bar resolutions: the bar resolution just defined, which
we have already found lacking; the normalized bar resolution, which will eas-
ily show that H2(G, K ) coincides with Schreier’s second cohomology group.

It is not obvious that the bar resolution is a complex, let alone that it is an
exact sequence; we prove this by comparing B(G) to a resolution familiar to
algebraic topologists.
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Definition. Let G be a group. The homogeneous resolution P(G) of Z (or
standard resolution) is the sequence

P(G) =→ P2
∂2−→ P1

∂1−→ P0
ε−→ Z → 0

in which each Pn is the free abelian group with basis all (n + 1)-tuples of
elements of G made into a G-module by defining

x(x0, x1, . . . , xn) = (xx0, xx1, . . . , xxn).

In particular, P0 is the free abelian group with basis {(y) : y ∈ G}, made into
a G-module by x(y) = (xy). The map ε : P0 → Z, given by ε :

∑
my(y) �→∑

my , is (essentially) the augmentation.7 Define ∂n : Pn → Pn−1, whenever
n ≥ 1, by

∂n : (x0, x1, . . . , xn) �→
n∑

i=0

(−1)i (x0, . . . , x̂i , . . . , xn).

It is clear that P(G) is a complex, for its differentials are essentially those
arising in Algebraic Topology (see Proposition 1.1). Finally, each Pn is a free
G-module with basis {(1, x1, . . . , xn) : xi ∈ G for all i}, as the reader may
check.

Proposition 9.36. The homogeneous resolution P(G) is a G-free resolution
of the G-trivial module Z.

Proof. To prove exactness of P(G), it suffices, by Proposition 6.15 and Ex-
ercise 6.10 on page 339, to construct a contracting homotopy; that is, Z-maps

← P2
s1←− P1

s0←− P0
s−1←− Z

such that εs−1 = 1Z and ∂n+1sn + sn−1∂n = 1Pn for all n ≥ 0. Define
s−1 : Z → P0 by m �→ m(1), where the 1 in the parentheses is the identity
element of the group G; for n ≥ 0, define sn : Pn → Pn+1 by

sn : (x0, x1, . . . , xn) �→ (1, x0, x1, . . . , xn).

Here are the computations. First, εs−1(m) = ε
(
m(1)

) = m. If n ≥ 0, then

∂n+1sn(x0, . . . , xn) = ∂n+1(1, x0, . . . , xn)

= (x0, . . . , xn)+
n∑

i=0

(−1)i+1(1, x0, . . . , x̂i , . . . , xn)

7Actually, the map ε is the composite of the isomorphism P0 → ZG, given by∑
my(y) �→∑

my y, with the augmentation ZG → Z.
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[the range of summation has been rewritten because xi sits in the (i + 1)st
position in (1, x0, . . . , xn)]. On the other hand,

sn−1∂n(x0, . . . , xn) = sn−1

n∑
j=0

(−1) j (x0, . . . , x̂ j , . . . , xn)

=
n∑

j=0

(−1) j (1, x0, . . . , x̂ j , . . . , xn).

It follows that
(
∂n+1sn + sn−1∂n

)
(x0, . . . , xn) = (x0, . . . , xn). •

Proposition 9.37. The bar resolution B(G) is a G-free resolution of Z.

Proof. For each n ≥ 0, define τn : Pn → Bn by

τn : (x0, . . . , xn) �→ x0[x−1
0 x1 | x−1

1 x2 | · · · | x−1
n−1xn],

and define σn : Bn → Pn by

σn : [x1 | · · · | xn] �→ (1, x1, x1x2, x1x2x3, . . . , x1x2 · · · xn).

It is routine to check that τn and σn are inverse, and so each τn is an isomor-
phism. The reader can also check that τ = (τn : P(G) → B(G)

)
n≥0 is a chain

map; that is, the following diagram commutes:

Pn
τn ��

∂n ��

Bn

dn��
Pn−1 τn−1

�� Bn−1.

We now can see that B(G) is a complex. Since dn = τn−1∂nτ
−1
n , we have

dndn+1 = (τn−1∂nτ
−1
n )(τn∂n+1τ

−1
n+1) = τn−1∂n∂n+1τ

−1
n+1 = 0.

Finally, Exercise 6.2 on page 338 shows that both complexes have the same
homology groups. By Proposition 9.36, the complex P(G) is an exact se-
quence, so that all of its homology groups are {0}. It follows that all of the
homology groups of B(G) are {0} and, hence, B(G) is an exact sequence. •

Although we now know that the bar resolution is, in fact, a resolution,
we have seen that it is inadequate to prove that Schreier’s second cohomol-
ogy group is Ext2(Z,�). We now introduce another resolution by modifying
B(G). Define Un ⊆ Bn to be the submodule generated by all [x1 | · · · | xn]
having at least one xi = 1. It is easy to check that dn(Un) ⊆ Un−1, for if
xi = 1, then every term in the expression for dn[x1 | · · · | xn] involves xi
except two (those involving xi−1xi and xi xi+1) that cancel. Hence, U(G) is a
subcomplex of B(G).
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Definition. The normalized bar resolution B%(G) is the quotient complex

B%(G) = B(G)/U(G) =→ B%
2

d%
2−→ B%

1

d%
1−→ B%

0
ε−→ Z → 0.

Note that B%
0 = B0 (for U0 = {0}) and, when n ≥ 1, B%

n = Bn/Un is the free
G-module with basis all cosets [x1 | · · · | xn]% = [x1 | · · · | xn]+Un in which
all xi 	= 1. Moreover, each differential d%

n has the same formula as the map dn
in the bar resolution except that all symbols [x1| · · · |xn] now occur with stars;
in particular, [x1| · · · |xn]% = 0 if some xi = 1.

Theorem 9.38. The normalized bar resolution B%(G) is a G-free resolution
of Z.

Proof. To prove exactness of B%(G), it suffices, by Proposition 6.15 and
Exercise 6.10 on page 339, to construct a contracting homotopy

← B%
2

t1←− B%
1

t0←− B%
0

t−1←− Z,

where each tn is a Z-map. Define t−1 : Z → B%
0 by t−1 : m �→ m[ ]. To define

tn for n ≥ 0, we take advantage of the fact that tn need only be a Z-map.
Since ZG is a free abelian group, B%

n is also a free abelian group, with basis{
x[x1 | · · · | xn]% : x, xi ∈ G and xi 	= 1

}
(x = 1 is allowed), and it suffices

to define tn on this basis; moreover, freeness allows us to choose the values
without restriction. Thus, for n ≥ 0, we define tn : B%

n → B%
n+1 by

tn : x[x1 | · · · | xn]% �→ [x | x1 | · · · | xn]%.

That we have constructed a contracting homotopy is routine; the reader may
check that εt−1 = 1Z and, for n ≥ 0, that d%

n+1tn + tn−1d%
n = 1B%

n
. •

Theorem 9.39. Ext2
ZG(Z, K ) coincides with Schreier’s second cohomology

group H2(G, K ).

Proof. When we use the normalized bar resolution B%(G), the identities
f (1, y) = 0 = f (x, 1) and h(1) = 0 that were lacking in the calculation
on page 527 are now present. •

Proposition 9.40. If G is a finite group of order m, then m H n(G, K ) = {0}
for all n ≥ 1 and all G-modules K .

Proof. Use the bar resolution B(G). If f : Bn → K , define g : Bn−1 → K
by

g[x1| · · · |xn−1] =
∑
x∈G

f [x1| . . . |xn−1|x];
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g is well-defined because G is finite and K is abelian. Now sum the cocycle
identity over all x = xn+1 ∈ G:

(dn f )[x1 | · · · | xn] = x1 f [x2 | · · · | xn]

+
n−2∑
i=1

(−1)i f [x1 | · · · | xi xi+1 | · · · | xn]

+ (−1)n−1 f [x1 | · · · | xnx]

+ (−1)n f [x1 | · · · | xn−1].

In the next-to-last term, as x varies over G, so does xnx . Therefore, if dn f =
0, we have

0 = x1g[x2 | · · · | xn] +
n−2∑
i=1

(−1)i g[x1 | · · · | xi xi+1 | · · · | x]

+ (−1)n−1g[x1 | · · · | xn−1]

+ m(−1)n f [x1 | · · · | xn]

(the last term is independent of x). Hence,

0 = gdn−1 + m(−1)n f,

and so m f = ±gdn−1 = d∗n−1g is a coboundary. •
We will give a second proof of this in Corollary 9.89.

Corollary 9.41. If G is a finite group and A is a finitely generated G-module,
then Hn(G, A) is finite for all n ≥ 0.

Proof. Since G is finite, the group ring ZG is a finitely generated abelian
group; it follows that finitely generated G-modules, for example, A and the
terms Bn in the bar resolution, are also finitely generated abelian groups. Now
HomG(Bn, A) ⊆ HomZ(Bn, A). Since the latter is finitely generated as an
abelian group, so are HomG(Bn, A), ker d∗n , and Hn(G, A). If |G| = m, then
m Hn(G, A) = {0}, by Proposition 9.40. Therefore, Hn(G, A) is finite, for it
is a finitely generated abelian group of finite exponent. •

We now apply Schreier’s theorem.

Theorem 9.42 (Zassenhaus). Let G be a finite group of order mn, where
(m, n) = 1. If K is an abelian normal subgroup of order n, then G is a
semidirect product of K by G/K , and any two complements of K are conju-
gate.
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Proof. Define Q = G/K . Note that |Q| = |G|/|K | = mn/n = m. By
Corollary 9.14 and Proposition 9.21, it suffices to prove that H2(Q, K ) =
{0} = H1(Q, K ). For every q ≥ 0, we know that m Hq(Q, K ) = {0},
by Proposition 9.40. Since (m, n) = 1 and K is a finite abelian group of
order n, the multiplication map μm : K → K , given by a �→ ma, is an
automorphism. Hence, the induced map (μm)∗, which is also multiplication
by m, is an automorphism of Hq(Q, K ). Therefore, Hq(Q, K ) = {0}. •

The hypothesis that K be abelian can be removed.

Theorem 9.43 (Schur–Zassenhaus). Let G be a finite group of order mn,
where (m, n) = 1. If K is a normal subgroup of order n, then G is a semi-
direct product of K by G/K , and any two complements of K are conjugate.

Sketch of Proof. The proof that G is a semidirect product is a series of normal-
izations, eventually reaching the case K abelian (see Rotman, An Introduction
to the Theory of Groups, p. 190).

Proving conjugacy of complements is much more difficult. We first prove
that complements are conjugate if either K or Q is a solvable group (see
Robinson, A Course in the Theory of Groups, p. 255). Since |Q| and |K |
are relatively prime, at least one of K or Q has odd order. The deep Feit-
Thompson Theorem, which says that every group of odd order is solvable,
now completes the proof. •

The homogeneous resolution P(G) suggests a connection between group
cohomology and cohomology of topological spaces, which we now sketch.

Definition. Let X be a topological space, and let Aut(X) be the group of all
homeomorphisms of X with itself. We say that a group G operates on X if
there is a homomorphism G → Aut(X).

When a group G operates on a space X , we may regard each g ∈ G as a
homeomorphism of X ; moreover, there are identities

g1(g2x) = (g1g2)x and 1x = x (1)

for all g1, g2 ∈ G and x ∈ X .

Definition. A group G operates without fixed points on a space X if gx = x
for some x ∈ X implies g = 1.

Proposition 9.44. If a group G operates on a space X, then the singular
complex

S•(X) =→ Sn(X)
∂n−→ Sn−1(X)

∂n−1−→ Sn−2(X) →
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is a complex of G-modules. Moreover, if G operates without fixed points, then
each Sn(X) is a free G-module.

Proof. Recall from Chapter 1 that Sn(X) is the free abelian group with basis
all singular n-simplexes; that is, all continuous T : �n → X , where �n =
[v0, v1, . . . , vn] is the standard n-simplex. Since G operates on X , we may
regard any g ∈ G as a homeomorphism of X , so that gT is also an n-simplex.
The identities in Eq. (1) show that Sn(X) is a G-module. Also, in the notation
of Section 1.3, if T i = T εn

i is the i th face of T , then (gT )i = gT εn
i = g(T i ),

and this shows that ∂ is a G-map.
If x ∈ X , then its orbit is the equivalence class {gx : g ∈ G}; the orbit

space X/G is the space of all orbits. Choose a transversal X0 ⊆ X ; that is, a
subset consisting of exactly one element from each orbit. Call an n-simplex
T basic if T v0 ∈ X0. We claim that Sn(X) is a free G-module with basis all
basic n-simplexes. These simplexes do generate Sn(X), for if σ : �n → X ,
then σv0 = gx0 for some x0 ∈ X0 and g ∈ G (because X is the union of all
the orbits); hence, g−1σ is basic, and σ = g(g−1σ).

To see that the family of all basic n-simplexes is a G-basis of Sn(X), we
first show that if gT1 = hT2, where T1, T2 are basic, then g = h and T1 = T2.
For suppose that T1v0 	= T2v0; then, as these elements of X lie in distinct
orbits, gT1v0 	= hT2v0, a contradiction. Therefore, T1v0 = T2v0 = x , say.
But gx = hx implies that g−1h fixes x ; since G operates without fixed points,
g = h. Finally, since g is a homeomorphism, T1 = T2. Finally, suppose that∑

j α j Tj = 0, where the Tj are distinct, and α j =
∑

k m jk gk ∈ ZG, where
the gk are distinct. Then

∑
j,k m jk(gk Tj ) = 0. Hence, all the simplexes gk Tj

are distinct, so that each m jk = 0 and, therefore, each α j = 0. •

Definition. A topological space X is acyclic if H0(X) ∼= Z and Hn(X) =
{0} for all n ≥ 1.

Theorem 9.45. If a group G operates on an acyclic space X without fixed
points, then the singular complex S•(X) is a deleted G-free resolution of the
G-trivial module Z.

Proof. We know that S•(X) is a complex of G-free modules. That X is

acyclic says that → S2(X)
d2−→ S1(X)

d1−→ S0(X) → 0 is exact at each

n ≥ 1 and, hence, → S2(X)
d2−→ S1(X) → coker d1 → 0 is exact. But, since

X is acyclic, coker d1 = H0(X) ∼= Z. •
Let A be a G-module. Now H•(X; A) is defined as the homology of

the complex HomG(S•(X), A). If X is acyclic and G operates on X without
fixed points, then H•(G, A) is the homology of HomG(S•(X), A), by Theo-
rem 9.45. Suppose now that G also acts properly on X ; that is, each x ∈ X
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lies in some open set U with gU ∩ U = ∅ for all g ∈ G× (this hypothesis
implies that G operates without fixed points). Then there is an isomorphism
of complexes (see Mac Lane, Homology, pp. 135–136)

HomZ(S•(X/G), A) ∼= HomG(S•(X), A)

whenever A is G-trivial and X/G is the orbit space of X . But isomorphic
complexes have isomorphic homology: for all n ≥ 0,

Hn(X/G, A) ∼= Hn(G, A). (2)

The next step is to exhibit a space X satisfying all the conditions above. Given
a group G, there exists an Eilenberg–Mac Lane space K (G, 1) that is path-
connected, that is aspherical (its nth homotopy groups vanish for all n > 1),
and whose fundamental group π1(K (G, 1)) ∼= G (see Adem–Milgram, Co-
homology of Finite Groups, Chapter II, Brown, Cohomology of Groups, §1.4,
or Spanier, Algebraic Topology, §8.1). The desired space BG, called the clas-
sifying space of G, is the universal covering space of K (G, 1); the space BG
is acyclic, G acts properly on BG, and BG/G ≈ K (G, 1). It follows from
Eq. (2) that if A is a G-trivial module, then

Hn(K (G, 1), A) ∼= Hn(G, A);
the cohomology of an abstract group G coincides with the cohomology of a
certain topological space.

9.4 Group Homology

The groups Hn(G, A) are obtained by applying the functor Hom(�, A) to
the bar resolution B(G), obtaining Hn(G, A) = Extn

ZG(Z, A). If we were
topologists, we would also study homology groups by applying � ⊗G A to
B(G) [tensoring here is well-defined, by Exercise 9.3 on page 503, because
left ZG-modules [e.g., Bn(G)] can also be viewed as right ZG-modules].

Definition. Let G be a group, let A be a G-module, and let Z be the integers
viewed as a trivial G-module. The homology groups of G are

Hn(G, A) = TorZG
n (Z, A).

Proposition 9.46. If A is a G-module, then there is a natural isomorphism

ηA : H0(G, A) = Z⊗G A → A/GA

given by
m ⊗ a �→ ma + GA.
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Proof. By definition, H0(G, A) = TorZG
0 (Z, A) = Z ⊗G A. Exactness of

0 → G → ZG → Z → 0 gives exactness of

G ⊗G A → ZG ⊗G A → Z⊗G A → 0.

Now ZG ⊗G A → A, given by
∑

x mx x ⊗ a �→ ∑
x mx a, is a surjection,

and, under this map, im Z⊗G A goes into GA. Hence, the map ηA : m⊗ a �→
ma + GA is an isomorphism. •

It is easy to see that A/GA is G-trivial; indeed, it is the largest G-trivial
quotient of A. We often denote A/GA by AG , in analogy with AG , the largest
G-trivial submodule of A.

Example 9.47. Suppose that E is a semidirect product of an abelian group A
by a group G. Recall that [G, A] is the subgroup generated by all commutators
of the form [x, a] = xax−1a−1, where x ∈ G and a ∈ A. If we write
commutators additively, then

[x, a] = (x + a − x)− a = xa − a = (x − 1)a.

Hence, GA = [G, A] and A/GA = A/[G, A] here. �

We compute the homology groups of a finite cyclic group G = 〈x〉 of
order k (the reader should compare this with Theorem 9.27, the cohomology
groups of G). Define elements D and N of ZG by D = x − 1 and N =
1 + x + x2 + · · · + xk−1. Lemma 9.26 gives a free G-resolution of Z:

→ ZG
D−→ ZG

N−→ ZG
D−→ ZG

ε−→ Z → 0, (1)

where the maps alternate between being multiplication by D and multiplica-
tion by N .

Theorem 9.48. If G is a cyclic group of finite order and A is a G-module,
then, for n ≥ 1,

H0(G, A) = A/GA,

H2n−1(G, A) = AG/N A,

H2n(G, A) = N A/GA,

where N A = {a ∈ A : Na = 0
}
.

Proof. Apply � ⊗G A to the resolution of Z in Eq. (1). After identifying
ZG ⊗G A with A via γ ⊗ a �→ γ a, we have ker(D⊗ 1) = GA, im(D⊗ 1) =
GA, ker(N ⊗ 1) = N A, and im(N ⊗ 1) = N A. •
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Corollary 9.49. If G is a finite cyclic group of order k and A is a trivial
G-module, then, for all n ≥ 1,

H0(G, A) = A,

H2n−1(G, A) = A/k A,

H2n(G, A) = k A.

In particular,

H0(G,Z) = Z, H2n−1(G,Z) = Ik, H2n(G,Z) = {0}.
Proof. Since A is G-trivial, we have AG = A and GA = {0} [for Da =
(x − 1)a = 0 because xa = a]. •

Corollary 9.50. If G is a finite cyclic group and A is a G-module, then, for
all n ≥ 1,

H2n−1(G, A) = H2n(G, A),

H2n(G, A) = H2n−1(G, A).

Proof. Theorems 9.48 and 9.27. •
We will understand Corollary 9.50 better once we introduce the Tate

groups (see Proposition 9.105).
Let us now compute low-dimensional homology groups of not necessarily

cyclic groups.

Lemma 9.51.

(i) The connecting homomorphism ∂ : H1(G,Z) → H0(G,G) is an iso-
morphism.

(ii) For any group G, there is an isomorphism H1(G,Z) ∼= G/G2.

(iii) An explicit formula for an isomorphism is cls(z) �→ −z + G2.

Proof.

(i) The long exact sequence arising from 0 → G → ZG
ε−→ Z → 0 ends

with

H1(G,ZG) �� H1(G,Z)
∂ �� H0(G,G) �� H0(G,ZG)

ε∗ �� H0(G,Z) �� 0.

Now H1(G,ZG) = {0} because ZG is projective, so that ∂ is an in-
jection. Proposition 9.46 with A = G gives H0(G,G) ∼= G/G2. Now
H0(G,Z) ∼= Z, because Z is G-trivial, so that ε∗ is essentially a map
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Z → Z. But every nonzero map Z → Z is an injection; as ε∗ is a sur-
jection, it is nonzero, and so ε∗ is injective. Exactness of the homology
sequence says that ε∗ is injective if and only if ∂ is surjective. Hence, ∂
is an isomorphism.

(ii) Now H0(G,G) = Z ⊗G G. We conclude from Proposition 9.46 that
if m ∈ Z and γ ∈ G, then the composite ϕ = ηG∂ : H1(G,Z) →
H0(G,G) → G/G2 is an isomorphism, where ηG : m ⊗ γ �→ mγ + G2.

H1(G,Z)
∂ ��

ϕ ����
���

���
��

H0(G,G)
ηG
��

G/G2

(iii) The isomorphism ϕ : H1(G,Z) → G/G2 is equal to ηG∂ , so that we
can give an explicit formula once we have a formula for the connecting
homomorphism ∂ . We give a formula for ∂ = j−1 D1r−1 using the bar
resolution and the Horseshoe Lemma, Proposition 6.24.

0 �� B2
d2 ��

�� B2 ⊕ B1
D1 ��

r �� B1
d1��

�� 0

0 �� B1
d ′1 ��

j �� B1 ⊕ B0
D0 ��

q �� B0
ε��

��

σ**5 5 5 5 0

0 �� G
i

�� ZG ε
��
Z

�� 0

The third column is the bar resolution B; the first column is the res-
olution of G obtained by truncating B; thus, d ′1 : B1 → G is the map
[x] �→ x − 1. Recall that the horizontal maps into and out of the direct
sums are just injections and projections. As in the proof of the Horse-
shoe Lemma, the boundary homomorphism D0 is given by (b1, b0) �→
id ′1b1 + σb0, where εσ = ε; obviously, we may take σ = 1ZG (for
B0 = ZG). Thus, D0 : (b1, b0) �→ id ′1b1 + b0, and so ker D0 =
{(b1, b0) : id ′1b1 = −b0}.
Using the proof of the Horseshoe Lemma again, the construction of D1
involves a map τ : B1 → ker D0 with q ′τ = d ′1, where q ′ = q| ker D0.

0 �� B2
d ′2 ��

�� B2 ⊕ B1
D′

1 ��

r �� B1

τ**5 5 5 5
d ′1��

�� 0

0 �� ker d1
j ′

�� ker D0
q ′

�� G �� 0

Here, d ′2 and d ′1 differ from d2 and d1, respectively, only in their
targets; in particular, d ′2 : [x | y] �→ x[y] − [xy] + [x] ∈ ker d1. For
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a basis element [x] of B1 (where x ∈ G), the map τ must satisfy
τ [x] = (β1, β0) ∈ ker D0, so that id1β1 = −β0. Also, q ′τ [x] =
(β1, β0) = β0, so that β0 = −(x − 1). We can construct such a map τ .
Since B1 is the free module with basis all [x], there exists a map τ with
τ [x] = (−[x], x−1) for x ∈ G; thus, τb1 = (−b1, d1b1) and q ′τ = d ′1.
Define D1 : B2 ⊕ B1 → B1 ⊕ B0 by (b2, b1) �→ jd2b2 + τb1; that is,

D1 : (b2, b1) �→ ( jd2b2 − b1, d1b1)

(the map D′
1 : B2 ⊕ B1 → ker D0 differs from D1 only in its target).

We can now give a formula for the boundary homomorphism ∂ . If z is
a 1-cycle, then

∂(cls z) = cls( j−1 D1r−1z)

= cls( j−1 D1(0, z))

= cls( j−1(−z, 0))

= − cls z ∈ H0(G,G).

The isomorphism ηG : H0(G,G) = Z⊗G G → G/G2 is 1⊗z �→ z+G2,
by Proposition 9.46. Therefore, if z is a 1-cycle, then

ϕ cls(z) = ηG∂ cls(z) = ηG(− cls(z)) = −z + G2. •

Theorem 9.52. Let G ′ denote the commutator subgroup of a group G. There
is an isomorphism

θG : H1(G,Z) → G/G ′.
If H1(G,Z) is computed with the bar resolution, then a formula for θG is

θG : cls
(∑

x

mx [x]
)
�→
∏

x

x−mx G ′,

where
∑

x mx = 0.

Proof. Since H1(G,Z) ∼= G/G2, by Lemma 9.51, it is enough to prove
G/G2 ∼= G/G ′. Define λ : G → G/G2 by

λ : x �→ (x − 1)+ G2.

To see that λ is a homomorphism, note that

xy − 1 − (x − 1)− (y − 1) = (x − 1)(y − 1) ∈ G2,

so that

λ(xy) = xy − 1 + G2

= (x − 1)+ (y − 1)+ G2

= x − 1 + G2 + y − 1 + G2

= λ(x)+ λ(y).
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Since G/G2 is abelian, G ′ ⊆ ker λ; therefore, λ induces a homomorphism
λ′ : G/G ′ → G/G2, namely, xG ′ �→ x − 1 + G2.

We show that λ′ is an isomorphism by constructing its inverse. Recall
Lemma 9.24: G is a free abelian group with basis all x − 1, where x ∈ G×. It
follows that there is a (well-defined) Z-homomorphism μ : G → G/G ′ with

μ : x − 1 �→ xG ′.

If G2 ⊆ kerμ, then μ induces a Z-homomorphism μ′ : G/G2 → G/G ′,
which, obviously, is the inverse of λ′, and this will complete the proof.

If u ∈ G2, then

u =
(∑

x 	=1

mx (x − 1)
)(∑

y 	=1

ny(y − 1)
)

=
∑
x,y

mx ny(x − 1)(y − 1)

=
∑
x,y

mx ny
(
(xy − 1)− (x − 1)− (y − 1)

)
.

Therefore, μ(u) = ∏
x,y(xyx−1 y−1)mx ny G ′ = G ′, and so u ∈ kerμ, as

desired.
By Lemma 9.51(iii), the isomorphism H1(G,Z) → G/G2 is just cls z �→

−z + G2; in particular, cls([x] − [1]) �→ −x + 1 + G2. Therefore, if z =∑
x mx [x] is a 1-cycle, that is,

∑
x mx = 0, then the composite H1(G,Z) →

G/G2 → G/G ′ sends cls
(∑

x mx [x]
) �→∏

x x−mx G ′. •
The Universal Coefficient Theorem gives a nice description of H1(G, A)

(see Robinson, A Course in the Theory of Groups, p. 342, for a proof not
using Universal Coefficients).

Proposition 9.53. If G is a group and A is a trivial 8 G-module, then there
is a natural isomorphism

H1(G, A) ∼= H1(G,Z)⊗Z A ∼= (G/G ′)⊗Z A.

Proof. Let B be the bar resolution of the trivial G-module Z, and let K =
B ⊗G Z. By Exercise 9.20 on page 558, we may view K as a complex of
free Z-modules. By the Universal Coefficient Theorem for homology (Theo-
rem 7.55), there is an exact sequence

0 → H1(K)⊗Z A
λ→ H1(K ⊗Z A)

μ→ TorZ1 (H0(K), A) → 0

8This result may be false if A is not G-trivial.
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with both λ and μ natural. By Proposition 9.46, we have

H0(K) = H0(G,Z) = ZG = Z,

because Z is G-trivial; thus, TorZ1 (H0(K), A) = TorZ1 (Z, A) = {0}. There-
fore, λ : H1(K)⊗Z A → H1(K ⊗Z A) is a natural isomorphism. Finally, the
associative law for tensor product, Proposition 2.57, gives

K ⊗Z A = (B ⊗G Z)⊗Z A ∼= B ⊗G (Z)⊗Z A,

where (Z)⊗Z A is a G-module via x(n⊗ a) = xn⊗ a = n⊗ a (because Z is
G-trivial). Thus, (Z)⊗Z A is G-trivial. Now Z⊗Z A ∼= A as abelian groups;
but this is a G-isomorphism because A is G-trivial. Hence, K⊗Z A ∼= B⊗G A
and H1(K ⊗G A) = H1(B ⊗G A) = H1(G, A).

The last isomorphism follows from Theorem 9.52. •

9.4.1 Schur Multiplier
The Schur multiplier9 is a subtle invariant of a group that turns out to be very
useful.

Definition. The Schur multiplier of a group G is H2(G,Z).

We are going to prove Hopf’s formula: if a group G has a presentation
G = F/R, where F is a free group and R is the normal subgroup of relations,
then H2(G,Z) ∼= (R ∩ F)/[F, R].

Proposition 9.54. If G is a free group with basis X, then its augmentation
ideal G is a free G-module with basis X − 1 = {x − 1 : x ∈ X}.

Remark. Recall Lemma 9.24: the augmentation ideal G is a free abelian
group with basis X − 1. �
Proof. The formulas

xy − 1 = (x − 1)+ x(y − 1) and x−1 − 1 = −x−1(x − 1)

show that if g = xe1
1 · · · xen

n , then g − 1 is a G-linear combination of X − 1.
Therefore, X − 1 generates G as a G-module.

To see that G is freely generated by X − 1, we complete the diagram

G
ϕ̃

++�
�

�
�

�

X − 1

i

��

ϕ
�� A,

9The multiplier is often called the multiplicator, which is a transliteration from Ger-
man.
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where i is the inclusion, A is a G-module, ϕ is a function, and ϕ̃ is a G-
map (uniqueness of ϕ̃ follows from G being generated by X − 1). Since
HomG(G, A) ∼= Der(G, A), by Proposition 9.25, we seek a derivation. Con-
sider the extension 0 → A → E

π−→ G → 1; since G is free, this extension
splits, so we may assume that E consists of all ordered pairs (a, g) ∈ A × G
and π(a, g) = g. Define a function � : X → E by �x = (ϕ(x − 1), x).
As G is free on X , the function � extends to a homomorphism L : G → E ,
say, L(g) = (dg, g). By Proposition 9.15, d : G → A is a derivation. Now
the isomorphism of Proposition 9.25 yields a G-map ϕ̃ : G → A, namely,
ϕ̃(g − 1) = dg. Since �x = Lx = (dx, x) = (ϕ(x − 1), x), we have
ϕ̃(x − 1) = ϕ(x − 1), which shows that ϕ̃ extends ϕ. •

Corollary 9.55. If G is a free group, then

Hn(G, A) = {0} = Hn(G, A)

for all n ≥ 2 and all G-modules A.

Proof. The sequence 0 → G → ZG → Z → 0 is a G-free resolution of Z.
•

In Corollary 9.28, we saw that all the higher cohomology groups of the
trivial group G = {1} vanish; the next corollary shows that the homology
groups vanish as well.

Corollary 9.56. If G = {1}, then

Hn(G, A) = {0} = Hn(G, A)

for all n ≥ 1 and all G-modules A.

Proof. If G = {1}, then ZG ∼= Z and G = {0}. Thus, 0 → ZG → Z → 0
is a G-free resolution of Z. •

Let G be a group, let F be a free group (with basis X ), and let π : F → G
be a surjection with kernel R. As every subgroup of a free group is free
(Nielsen–Schreier Theorem), R is free, say, with basis Y . Recall (see Exer-
cise 9.12 on page 513): the homomorphism π induces a surjective ring map
ZF → ZG; namely, π∗ :

∑
m f f �→ ∑

m f π( f ). Hence, kerπ∗ is a two-
sided ideal in ZF , and ZF/ kerπ∗ ∼= ZG.

Definition. If G is a group, F is a free group (with basis X ), and π : F → G
is a surjection with kernel R, then the relation ideal, denoted by R, is kerπ∗.

Beware! We denote the relation ideal by R, and not by R, for R is a
two-sided ideal in ZF ; in contrast, the augmentation ideal R of R is merely
a two-sided ideal in ZR ⊆ ZF . However, the next lemma shows that the
relation ideal R is the two-sided ideal in ZF generated by the augmentation
ideal R.
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Lemma 9.57. Let F be a free group with basis X, and let R be a normal
subgroup of F with basis Y . Then the relation ideal R is the free (left or right)
F-module with basis Y − 1 = {y − 1 : y ∈ Y }. Moreover, R is the two-sided
ideal in ZF generated by the augmentation ideal R of R.

Proof. Clearly, Y − 1 ⊆ kerπ∗. Choose a left transversal T of R in F :

F =
⋃
t∈T

t R.

If α ∈ ZF , then α =∑
i, j mi j ti r j , where ti r j ∈ ti R and mi j ∈ Z. If α ∈ R,

then
0 = π∗α =

∑
i, j

mi jπ(ti ),

where the π(ti ) are distinct elements of G. Therefore,

α = α − 0 =
∑

i

(∑
j

mi j ti (r j − 1)
)

is an F-linear combination of elements of the form r − 1 with r ∈ R. How-
ever, the proof of Proposition 9.54 shows that each such r − 1 is an R-linear
combination, a fortiori, an F-linear combination, of Y − 1. Thus, R is gen-
erated as an F-module by Y − 1. The same argument, using F = ⋃

t∈T Rt ,
shows that R is also generated by Y − 1 as a right ZF-module.

To see that Y − 1 freely generates R, assume that
∑

αk(yk − 1) = 0,
where αk ∈ ZF . It is easy to see that αk =

∑
p tpβpk , where βpk ∈ ZR. Now

the coset representatives {tp} are independent over ZR (0 = ∑
p,q tpm pqrq

implies that each m pq = 0, since all tprq are distinct), from which it follows
that

∑
k βpk(yk − 1) = 0 for each p. The problem has been reduced to

Proposition 9.54, for R is free with basis Y . Again, using the transversal as
right coset representatives proves that R is the free right ZF-module with
basis Y − 1.

The second statement follows from Lemma 9.24: the augmentation ideal
of R is the free abelian group with basis {y − 1 : x ∈ Y }. •

Lemma 9.58. Let G be a group, let R be a normal subgroup of a free group
F with F/R ∼= G, and let M be a free left F-module with basis W .

(i) M/RM is a free left G-module with basis {w + RM : w ∈ W }. A
similar statement holds for M ′/M ′R when M ′ is a free right F-module.

(ii) M/FM is a free abelian group with basis {w + FM : w ∈ W }. A
similar statement holds for M ′/M ′F when M ′ is a free right F-module.
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Proof.

(i) First of all, we let G act on M/RM by

g(m +RM) = f m +RM, where π( f ) = g.

This action is well-defined, for if π( f1) = π(F), then f1 − f ∈
kerπ∗ = R and ( f1 − f )m ∈ RM . Since M = ⊕

w∈W (ZF)w and
R = ⊕

w∈W Rw, it follows that M/RM ∼= ⊕
w∈W (ZF)w/Rw ∼=⊕

(ZF/R)w. The last module is G-free, for ZF/R ∼= ZG.

(ii) Specialize the argument in (i) to the case G = {1}. The (trivial) map
F → G induces the ring map ZF → ZG = Z whose kernel is F , the
augmentation ideal of F , and F now plays the role of R in part (i). •

Recall that if A ⊆ B ⊆ M are submodules, then there is a surjection
M/A → M/B, defined by m + A �→ m + B. If also M ⊆ M ′, then M/B ⊆
M ′/B, and the composite M/A → M/B → M ′/B is called enlargement of
coset.

Theorem 9.59 (Gruenberg). Let 1 → R → F → G → 1 be an exact
sequence of groups, where F is free with basis X and R is free with basis Y .

(i) For all n ≥ 1, P2n = Rn/Rn+1 is the G-free module with basis

{(y1 − 1) · · · (yn − 1)+Rn+1 : yi ∈ Y },

and P2n−1 = Rn−1F/RnF is the G-free module with basis

{(y1 − 1) · · · (yn−1 − 1)(x − 1)+RnF : yi ∈ Y and x ∈ X}.

(ii) There is a G-free resolution of Z,

→ P2
d2−→ P1

d1−→ ZG
ε−→ Z → 0,

where the maps dk : Pk → Pk−1 are enlargements of coset.

Proof.

(i) Since F is F-free on X − 1 and R is F-free on Y − 1, iterated use of
Exercise 9.25 on page 559 shows that the F-modules Rn−1F and Rn

are free with bases {(y1 − 1) · · · (yn−1 − 1)(x − 1) : yi ∈ Y, x ∈ X} and
{(y1−1) · · · (yn −1) : y j ∈ Y }, respectively. Lemma 9.58 now applies,
showing that P2n−1 and P2n are free G-modules with the stated bases.
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(ii) Let us describe the maps in more detail. Since Rn+1 ⊆ RnF , the
enlargement of coset map d2n : P2n → P2n−1 is

d2n : Rn/Rn+1 → Rn/RnF → Rn−1F/RnF .

The Third Isomorphism Theorem gives

im d2n : Rn/RnF and ker d2n = RnF/Rn+1.

Since Rn+1F ⊆ Rn+1, the map d2n+1 : P2n+1 → P2n is

d2n+1 = RnF/Rn+1 → RnF/Rn+1 → Rn/Rn + 1.

Our calculation in part (i) now gives exactness at all terms in the se-

quence with the possible exception of F/RF = P1
d1−→ ZG

ε−→ Z.
Let us interpret R0 = ZF , so that P0 = R0/R1 = ZF/R ∼= ZG;
hence, d1 : x − 1 +RF �→ x − 1 +R �→ πx − 1. Thus, im d1 is the
augmentation ideal G = ker ε, and the proof is complete. •

Definition. Given a presentation of a group G as F/R, where F is free, the
G-free resolution of Z in Theorem 9.59 is called the Gruenberg resolution.

Example 9.60. If G = 〈g〉 is a cyclic group of order k, then one presentation
of G has F = 〈x〉, R = 〈xk〉, and π(x) = g. Let us check that the Gruenberg
resolution of Z in this case is the resolution of Lemma 9.26. The module P2n
is free on one generator x2n = (xk − 1)n + Rn+1, and P2n−1 is free on one
generator x2n−1 = (xk−1)n+1(x−1)+RnF . Under the enlargement of coset
map P2n+1 → P2n , we have x2n+1 = (xk−1)n(x−1)+RnF �→ (xk−1)n(x−
1)+Rn+1. But (xk −1)n(x−1) = (xk −1)n−1(xk −1)(x−1) = (x−1)x2n;
that is, if D = x −1, then the map P2n+1 → P2n is just μD , multiplication by
D. The map P2n → P2n−1 takes x2n = (xk−1)n+Rn+1 �→ (xk−1)n+RnF .
But (xk − 1)n = (x − 1)(xk − 1)n−1(1 + x + · · · + xk−1). Hence, if N =
1+ x +· · ·+ xk−1, then x2n �→ N x2n−1 in P2n−1, and the map P2n → P2n−1
is multiplication by N . �

In Lemma 9.51 and Theorem 9.52, we saw that G/G2 ∼= G/G ′. Thus,
there is a relationship between group ring constructions and group construc-
tions. Here is another such.

Lemma 9.61. In the notation of the Gruenberg resolution, there are isomor-
phisms of abelian groups,

R/RF ∼= R/R′ and (RF + FR)/RF ∼= [F, R]/R′.
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Proof. Now R/RF is free abelian with basis {y − 1 + RF : y ∈ Y },
by Lemma 9.58, while R/R′ is the free (multiplicative) abelian group with
basis {y R′ : y ∈ Y }. Thus, there is an isomorphism of abelian groups,
θ : R/RF → R/R′, given by θ : y − 1 + RF �→ y R′. If r = ye1

1 · · · yen
n ,

what is θ(r − 1 +RF)? The identities

(uv − 1)− (u − 1)− (v − 1) = (u − 1)(v − 1)

and
−(u−1 − 1)− (u − 1) = (u − 1)(u−1 − 1),

together with R2 ⊆ RF , show that θ(r − 1 +RF) = r R′.
Now restrict the isomorphism θ to (RF + FR)/RF , the subgroup gen-

erated by all ( f − 1)(r − 1)+RF , where r ∈ R. The identity

( f − 1)(r − 1) = ([ f, r ] − 1)+ ([ f, r ] − 1)(r f − 1)+ (r − 1)( f − 1)

shows that ( f − 1)(r − 1)+RF = [ f, r ] − 1 +RF . Therefore,

θ
(
( f − 1)(r − 1)+R

[
0 1
−1 0

]) = [ f, r ]R′. •

Remark. Actually, more is true. The multiplicative abelian group R/R′ is
a G-module if one defines g(r R′) = f r f −1 R′, where π( f ) = g, and the
isomorphism in the lemma is now a G-isomorphism, for

θ(g(r − 1)+RF) = θ( f (r − 1)+RF) (see Lemma 9.58)

= θ( f (r − 1)+ f (r − 1)( f −1 − 1)+RF)

= θ( f r f −1 − 1 +RF)

= f r f −1 R′ = g(r R′) = gθ(r − 1 +RF). �

We need one more elementary lemma before we prove Hopf’s formula.

Lemma 9.62. Let G be a group, and let R be a normal subgroup of a free
group F with F/R ∼= G. If M is an F-module, then

Z⊗G (M/RM) ∼= M/FM.

Proof. A G-module A may be regarded as an F-module annihilated by R;
moreover, if π f = g (where π : F → G), then ga = f a for all a ∈ A.
Therefore, (g− 1)a = ( f − 1)a, which implies that GA = F A. In particular,

G(M/RM) = F(M/RM) = FM/RM.

By Proposition 9.46,

Z⊗G (M/RM) ∼= (M/RM)/G(M/RM)

= (M/RM)/(FM/RM) ∼= M/FM. •
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Theorem 9.63 (Hopf’s Formula). Let G be a group, and let R be a normal
subgroup of a free group F with F/R ∼= G. Then

H2(G,Z) ∼= (R ∩ F ′)/[F, R],

and so (R∩ F ′)/[F, R] depends only on G and not on the choice of F and R.

Proof . Apply Z⊗G � to the Gruenberg resolution

→ RF/R2F d3−→ R/R2 d2−→ F/RF →;
using Lemma 9.62, obtain the complex

→ RF/FRF �3−→ R/FR
�3−→ F/F2 →

(the maps �n are still enlargements of coset). Now

H2(G,Z) = ker�2/ im�3

= (RF2)/(FR+RF)

= ker(R/(FR+RF) → F/F2),

the last arrow being enlargement of coset. But F/F2 ∼= F/F ′ and, by
Lemma 9.61,

R

FR+RF
∼= R/RF

(FR+RF)/RF
∼= R/R′

[F, R]/R′
∼= R/[F, R].

We conclude that

H2(G,Z) ∼= ker(R/[F, R] → F/F ′) = (R ∩ F ′)/[F, R],

for the reader may check commutativity of the diagram

R/(FR+RF) ��

��

F/F2

��
R/[F, R] �� F/F ′. •

Example 9.64. Let us compute H2(V,Z), where V = I2 ⊕ I2 is the four-
group, using the presentation

V = (x1, x2 | x2
1 , x2

2 , [x1, x2]).

Here, F is free with basis {x1, x2}; the normal subgroup R generated by the
relations turns out to have five generators, three of which are the displayed
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relations. [In contrast to free abelian groups, a basis of a subgroup can have
larger cardinal than a basis of the big group. In fact, the commutator sub-
group of a free group of rank 2 is a free group of infinite rank (Rotman, An
Introduction to the Theory of Groups, Theorem 11.48).]

We are going to use Hopf’s formula to show that H2(V,Z) ∼= I2. Set
K = F/[F, R]. Since F/R is abelian, F ′ ⊆ R and R ∩ F ′ = F ′. Therefore,

K ′ = F ′/[F, R] = (R ∩ F ′)/[F, R] ∼= H2(G,Z).

Define a = x[F, R] and b = y[F, R], so that K = 〈a, b〉. If L = 〈[a, b]〉,
then clearly L ⊆ K ′; on the other hand, L � K and K/L is abelian, being
generated by two commuting elements, so that L ⊇ K ′. Therefore, K ′ = L
is cyclic with generator [a, b].

We claim that [a, b]2 = 1. Observe first that F ′ ⊆ R implies that
[F ′, F] ⊆ [F, R], from which it follows that K ′ ⊆ Z(K ), the center of
K ; furthermore, b2 ∈ Z(K ) (for y2 ∈ R and [y2, f ] ∈ [R.F] for all f ∈ F).
Hence,

b2 = ab2a−1 = (aba−1)2 = ([a, b]b)2

= [a, b]2b2, since [a, b] ∈ Z(K ).

Canceling b2 gives [a, b]2 = 1, and so |K ′| ≤ 2.
It remains to show that K ′ 	= {1}; that is, K = F/[F, R] is not abelian.

Consider the group Q of quaternions of order 8, with presentation

Q = (x, y | x2 = y2, xyx = y).

Recall that Q has the following properties:

(i) if S is the normal subgroup of F generated by x2 y−2 and xyxy−1, then
Q is generated by c = x S and d = yS;

(ii) 〈c2〉 has order 2;

(iii) Z(Q) = 〈c2〉 = Q′.

It suffices to show that if [F, R] ⊆ S, then F/[F, R] maps onto the nonabelian
group F/S = Q, for then F/[F, R] = K is not abelian and K ′ 	= {1}. To
see that [F, R] ⊆ S, it is enough to prove [r , f ] = 1 in Q for every f ∈ F
and r = x2, y2, or [x, y], where bar means coset mod S. But this is true, for
x2 = c2 = y2 lie in Z(Q), and [x, y] ∈ Q′ = Z(Q).

Recall that if p is a prime, then an elementary abelian group of order
pn is the direct product of n copies of Ip. Using spectral sequences, The-
orem 10.55 generalizes this example by showing that if G is an elementary
abelian p-group of order pn , then H2(G,Z) is elementary abelian of order
pn(n−1)/2. We sketch another proof of this in the next example. �
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Example 9.65. The multiplier of any abelian group G can be computed with
exterior algebra.

Definition. If R is a commutative ring and G is an R-module, then its exte-
rior square is

G ∧ G = (G ⊗R G)/W,

where W is the submodule generated by all {g ⊗ g : g ∈ G}.

Theorem. If G is an abelian group, then H2(G,Z) ∼= G ∧ G.

Sketch of proof. Given a presentation 1 → R → F → G → 1 of G, we
have F ′ ⊆ R because G is abelian. Now H2(G,Z) ∼= (R ∩ F ′)/[F, R]) =
F ′/[F, R], by Hopf’s Formula. But θ : (F/R)× (F/R) → F ′/[F, R], given
by ( f1 R, f2 R) �→ [ f1, f2][F, R], is a bilinear function with θ( f R, f R) = 0
for all f ∈ F . Thus, θ induces a homomorphism � : G ∧ G → H2(G,Z),
and one then proves that � is an isomorphism by constructing its inverse (see
Robinson, A Course in the Theory of Groups, p. 348). •

If P is a free R-module of rank n, then P ∧ P is a free R-module of
rank

(n
2

)
(see Rotman, Advanced Modern Algebra, p. 749). An elementary

abelian p-group E of order pn can be viewed as an n-dimensional vector
space over Fp. It follows that H2(E,Z) is an elementary abelian p-group of
order pn(n−1)/2. �

Definition. A group G is finitely presented if it has a finite presentation

(x1, . . . , xn | y1, . . . , yr ).

There exist finitely generated groups that are not finitely presented. Ob-
viously, there are only countably many finitely presented groups, but B. H.
Neumann proved that there are uncountably many finitely generated groups
(Rotman, An Introduction to the Theory of Groups, Theorem 11.73).

Notation. If A is a finitely generated abelian group, let

ρ(A) = rank(A) = rank(A/t A),

and let

d(A) = the smallest cardinal of a generating set of A.

Here are some facts about finitely generated abelian groups (which are
easily verified using the Fundamental Theorem; in fact, (iii) and (iv) are true
for arbitrary abelian groups).
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(i) If A is a finitely generated abelian group, then ρ(A) ≤ d(A). Moreover,
ρ(A) = d(A) if and only if A is free abelian, while ρ(A) = 0 if and
only if A is finite.

(ii) If A and A′ are finitely generated abelian groups with A′ free abelian,
then d(A ⊕ A′) = d(A) + d(A′). This equality is not generally true:
if A = I2 and B = I3, then A ⊕ B ∼= I6; thus, d(A ⊕ B) = 1 and
d(A)+ d(B) = 2.

(iii) ρ(A) = dimQ(Q⊗ A).

(iv) If 0 → A′ → A → A′′ → 0 is exact, then

ρ(A) = ρ(A′)+ ρ(A′′).

Lemma 9.66. Let a group G have a presentation (x1, . . . , xn | y1, . . . , yr ),
so that G ∼= F/R, where F is free on {x1, . . . , xn} and R is the normal
subgroup of F generated by y1, . . . , yr . Then R/[F, R] is a finitely generated
abelian group, and

d
(
R/[F, R]

) ≤ r.

Proof. Since R�F , we see that [F, R] is a normal subgroup of R containing
[R, R] = r ′. Therefore, R/[F, R] is an abelian group. It suffices to show that
R/[F, R] is generated by the cosets of the ys. Every element of R is a product
of elements of the form f s f −1, where s lies in the subgroup generated by the
ys. But f s f −1s−1 ∈ [F, R], so that f s f −1 ≡ s mod [F, R], and the result
follows. •

Theorem 9.67. If a group G has a presentation (x1, . . . , xn | y1, . . . , yr ),
then H2(G,Z) is finitely generated with d(H2(G,Z)) ≤ r and

n − r ≤ ρ(G/G ′)− d(H2(G,Z)).

Proof. Let F be free on {x1, . . . , xn}, and let R be the normal subgroup of
F generated by {y1, . . . , yr }. We will use the descending chain of normal
subgroups of F :

F ⊇ F ′R ⊇ R ⊇ R ∩ F ′ ⊇ [F, R].

By Lemma 9.66, R/[F, R] is a finitely generated abelian group with at most
r generators. There is an exact sequence

0 → (R ∩ F ′)/[F, R] → R/[F, R] → R/(R ∩ F ′) → 0. (2)

By Hopf’s formula,

d(H2(G,Z)) = d((R ∩ F ′)/[F, R]) ≤ r
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(recall Corollary 4.15: if A is an abelian group with r generators, then every
subgroup of A can be generated by r or fewer elements). Since F/F ′ is free
abelian and R/(R ∩ F ′) ∼= F ′R/F ′ ⊆ F/F ′, the group R/(R ∩ F ′) is free
abelian; hence, the exact sequence (2) splits. Using fact (ii), the additivity of
d when one summand is free,

d(R/[F, R]) = d(R/(R ∩ F ′))+ d((R ∩ F ′)/[F, R])

= d(F ′R/F ′)+ d(H2(G,Z)).

There is another exact sequence

0 → F ′R/F ′ → F/F ′ → F/F ′R → 0,

and fact (iv) gives ρ(F/F ′) = ρ(F ′R/F ′)+ ρ(F/F ′R). Since F/F ′ and its
subgroup F ′R/F ′ are free abelian, however, we have

d(F ′R/F ′) = d(F/F ′)− ρ(F ′/F ′R) = n − ρ(F/F ′R).

We conclude that

r ≥ d(R/[F, R]) = n − ρ(F/F ′R)+ d(H2(G,Z)).

This completes the proof, because F/F ′R ∼= G/G ′ (for F ′R is the subgroup
of F mapping onto G ′ under the map F → G). •

Definition. A finite presentation (x1, . . . , xn | y1, . . . , yr ) is balanced if
n = r . A group is balanced if it has a balanced presentation.

Corollary 9.68. If a group G is balanced, then

d(H2(G,Z)) ≤ ρ(G/G ′).

In particular, if G is a finite balanced group, then H2(G,Z) = {0}.
It follows that H2(G,Z) = {0} for every finite cyclic group G. On the

other hand, we have seen that H2(V,Z) 	= {0}, and so there is no balanced
presentation of the four-group.

The converse of Corollary 9.68 is false; see Swan, “Minimal resolutions
for finite groups,” Topology 4 (1965), 193–208, for a counterexample. It is not
known whether every p-group with a trivial Schur multiplier has a balanced
presentation.

The next result shows that a finite group usually has more relations than
generators.
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Corollary 9.69. If G is a finite group with a presentation having n genera-
tors and r relations, then d(H2(G,Z)) ≤ r − n. Hence, n ≤ r .

Given a group G, regard the cyclic group Ip of prime order p as a trivial
G-module. Since multiplication by p is the zero map on Ip, so is the induced
map on Hn(G, Ip) for every n. Thus, pHn(G, Ip) = {0}, and so Hn(G, Ip)

is a vector space over Fp; let δn(G) be its dimension. By Exercise 9.24 on
page 558, if G is a finite p-group, then δ1(G) = d(G), the minimal number
of generators of G. In view of Theorem 9.67, it is reasonable to expect that
δ2(G) somehow involves the number of relators of G.

Theorem (Golod–Šafarevič). If G is a finite p-group, then

δ2(G) > 1
4δ1(G)2.

Proof. Golod-Šafarevič, “On the class field tower,” Izv. Akad. Nauk SSSR
28 (1964), 261–272. See Gruenberg, Cohomological Topics in Group Theory,
p. 104. There is a proof of this inequality without Homological Algebra in
Herstein, Noncommutative Rings, Chapter 8. •

Thus, a criterion exists to determine whether a p-group G is finite. Golod
and Šafarevič constructed a finitely generated p-group G violating their in-
equality, and concluded that G is an infinite finitely generated p-group. Burn-
side had proved 50 years earlier that a finitely generated subgroup of GL(n,C)

all of whose elements have finite order must be finite (it follows that the
group of Golod–Šafarevič has no faithful finite-dimensional complex repre-
sentation). Burnside’s problem asks whether a finitely generated group B
of exponent e (i.e., xe = 1 for all x ∈ B) must be finite (there is no uniform
bound on orders of elements in the group of Golod–Šafarevič). In 1968, Adjan
and Novikov proved that the answer is negative when e is odd and sufficiently
large; their proof is over 300 pages long. A. Ol’shanskii found a more ele-
gant proof [“On the Novikov-Adyan theorem,” Mat. Sb. 118 (1982); English
translation: Math USSR-Sb 46 (1983), 203–236]. The solution of the Burnside
problem was completed by S. V. Ivanov “The free Burnside groups of suffi-
ciently large exponents,” Internat. J. Math 4 (1994), 1–308, who showed that
there exist infinite finitely generated groups of exponent 2km for all k ≥ 48
and all odd m ≥ 1. It is an open question whether a finitely presented group
of finite exponent must be finite.

We are now going to see that the Schur multiplier arises as a cohomology
group (indeed, this was Schur’s original investigation [“Über die Darstellun-
gen der endlichen Gruppen durch gebrochene lineare Substitutionen,” J. Reine
Angew. Math. 127 (1904), 20–50, “Untersuchungen über die Darstellungen
der endlichen Gruppen durch gebrochene lineare Substitutionen,” J. Reine
Angew. Math. 132 (1907), 85–137]).
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Definition. An exact sequence 0 → A → E → G → 1 of groups is a
central extension of a group G if A ⊆ Z(E). A universal central extension
is a central extension 0 → M → U → G → 1 for which there exists a
commutative diagram whenever the bottom row is a central extension:

0 �� M ��

��

U ��

��

G
1G��

�� 1

0 �� A �� E �� G �� 1.

If G is a finite group, then G has a universal central extension if and only
if G is perfect; that is, G = G ′, in which case M ∼= H2(G,Z) (see Milnor,
Introduction to Algebraic K -Theory, pp 43–46). For example, nonabelian
simple groups are perfect. What if G is not perfect?

Definition. A stem extension of a group G is a central extension

1 → A → E → G → 1

in which A ⊆ E ′ (Schur called such groups E “representation groups”).
A stem cover is a stem extension of the form

0 → H2(G,Z) → S → G → 1.

We have seen that H2(V,Z) ∼= I2, and the two nonabelian groups of
order 8, namely, D8 and Q, give stem covers of V. We will need two facts.

(i) Each stem extension is a homomorphic image (a homomorphism here is
an ordered triple of homomorphisms making the diagram commute) of
of some stem cover (this is the analog of the diagrammatic property of
the universal central extension when G is not perfect). (See Gruenberg,
Cohomological Topics in Group Theory, p. 213.)

(ii) If 1 → A → E → G → 1 is a central extension in which A is divisible,
then there exists a homomorphism of every stem cover of G into it. (See
Gruenberg, Cohomological Topics in Group Theory, p. 216.)

Representation Theory deals with homomorphisms G → GL(n, k) where
k is a field.

Definition. The projective general linear group is

PGL(n, k) = GL(n, k)/Z(GL(n, k)).

Note that Z(GL(n, k)), the center of the matrix group GL(n, k), consists of all
the nonzero scalar matrices, and so it is isomorphic to k×, the multiplicative
group of k of nonzero elements of k.

A projective representation of G is a homomorphism G → PGL(n, k).
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Now we prefer a representation of G, that is, a homomorphism G →
GL(n, k), but we may only have a projective representation. The next theo-
rem says that a projective representation of a group G can be replaced by an
“honest” representation for a price: G must be replaced by a stem cover of G.

Theorem 9.70 (Schur). Let τ : G → PGL(n, k) be a projective represen-
tation, where k is algebraically closed. If 0 → M → S

π−→ G → 1 is a
stem cover, then τ arises from a representation T of S; that is, there exist a
homomorphism T and a commutative diagram

S
π ��

T
���
�
� G

τ

��
GL(n, k) �� PGL(n, k).

Sketch of Proof . By Lemma 7.29, there is a commutative diagram

1 �� k× ��

1k×
��

E ��

σ

���
�
� G ��

τ

��

1

1 �� k× �� GL(n, k) �� PGL(n, k) �� 1.

The top row is a central extension. Since k is algebraically closed, the group
k× is divisible (every element has an nth root for every n > 0), and so fact (ii)
above gives a commutative diagram

1 �� H2(G,Z)

��

�� S
ρ
��

�� G ��

1G��

1

1 �� k× �� E �� G �� 1.

The desired representation is T = σρ : S → GL(n, k). •
Consider the diagram

S
π ��

T ��

G
τ��

L
AA;;;;

;;;;
;;;

GL(n, k) �� PGL(n, k),

where T is a representation of G arising from a projective representation τ .
For each x ∈ G, choose a lifting L(x) ∈ GL(n, k) of τ(x). A straightforward
computation gives a function f : G × G → k× with

L(xy) = f (x, y)L(x)L(y)

(we see now why such a function f is called a multiplier), and, using the fact
that k× is a trivial G-module, we can see that f is a factor set (this is why



9.4 Group Homology 555

factor sets are so called). Moreover, if another set of liftings L ′(x) of τ(x) is
chosen, then there is a factor set f ′ satisfying L ′(xy) = f ′(x, y)L ′(x)L ′(y),
and f −1 f ′ is a coboundary (written multiplicatively). In other words, when
k is algebraically closed, each projective representation τ gives an element
of the cohomology group H2(G, k×). Thus, it appears that there may be a
connection between homology and cohomology.

We begin with a mixed identity, a variant of Lemma 3.55.

Lemma 9.71. Let R and S be rings, and let R A, R BS, CS be modules, where
A is finitely presented and C is injective. Then there is a natural isomorphism

HomS(B,C)⊗R A ∼= HomS(HomR(A, B),C).

Proof. Note that the hypothesis makes the Homs into modules, so that the
terms in the statement make sense. For f ⊗ a ∈ HomS(B,C) ⊗R A, define
σA( f ⊗ a) ∈ HomS(HomR(A, B),C) by σA( f ⊗ a) : g �→ f (g(a)). It is
straightforward to check, for any left R-module A, that σA : HomS(B,C)⊗R
A → HomS(HomR(A, B),C) is a homomorphism, natural in A. Moreover,
if A is finitely generated free, then σA is an isomorphism.

As A is finitely presented, there is an exact sequence F1 → F0 → A → 0
with F1, F0 finitely generated free. Consider the diagram in which we denote
HomS and HomR by hS and h R , respectively.

hS(B,C)⊗R F1 ��

σF1 ��

hS(B,C)⊗R F0 ��

σF0��

hS(B,C)⊗R A
σA��

�� 0

hS(h R(F1, B),C) �� hS(h R(F0, B),C) �� hS(h R(A, B),C) �� 0

The top row is exact because tensor product is right exact; the bottom row is
exact because HomR(�,C) is (contravariant) exact (for C is injective) and
HomR(�, B) is (contravariant) left exact. The diagram commutes because of
the naturality of σ . Finally, σF1 and σF0 are isomorphisms, because F1, F0 are
finitely generated free, and so the Five Lemma says that σA is an isomorphism.

•

Lemma 9.72. Let R and S be rings with R left noetherian, and let R A, R BS,
CS be modules, where A is finitely generated and C is injective. Then, for all
n ≥ 0, there are isomorphisms

TorR
n (HomS(B,C), A) ∼= HomS(ExtnR(A, B),C).

Proof. Since R is left noetherian and A is finitely generated, A is finitely
presented. Thus, Lemma 9.71 applies to give a natural isomorphism

HomS(B,C)⊗R A ∼= HomS(HomR(A, B),C).
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Let PA =→ Pi → Pi−1 → · · · → P0 → 0 be a deleted projective res-
olution of A with each Pi finitely generated. Naturality of the isomorphism
HomS(B,C)⊗R Pi ∼= HomS(HomR(Pi , B),C) gives isomorphic complexes.
Take homology; there are isomorphisms for all n ≥ 0,

Hn(HomS(B,C)⊗R PA) ∼= HomS(Hn(HomR(PA, B)),C),

for Hn commutes with the contravariant exact (because C is injective) functor
HomS(�,C). The left-hand side is TorR

n (HomS(B,C), A), and the right-
hand side is HomS(ExtnR(A, B),C). •

Theorem 9.73 (Duality Theorem). For every finite group G, for every
G-module B, and for all n ≥ 0, there are isomorphisms

Hn(G, B)∗ ∼= Hn(G, B∗),

where B∗ = HomZ(B,Q/Z).

Proof. By Lemma 9.72, given rings R and S, there are isomorphisms for all
n ≥ 0,

TorR
n (HomS(B,C), A) ∼= HomS(ExtnR(A, B),C).

Set S = Z and R = ZG; note that ZG is left noetherian because G is fi-
nite. Setting A = Z and C = Q/Z (which is Z-injective), the isomorphism
becomes

TorZG
n (B∗,Z) ∼= Extn

ZG(Z, B)∗.

Now TorZG
n (B∗,Z) ∼= TorZG

n (Z, B∗) = Hn(G, B∗), by Exercise 9.23 on
page 558, while Extn

ZG(Z, B)∗ = Hn(G, B)∗. •
The next result explains why H2(G,Z) is called the multiplier (it is iso-

morphic to H2 whose elements are essentially factor sets).

Theorem 9.74. If G is a finite group, then

H2(G,Z) ∼= H2(G,Q/Z),

where the abelian group Q/Z is viewed as a trivial G-module.

Proof. Exactness of 0 → Z → Q → Q/Z → 0 gives exactness of

H2(G,Q) → H2(G,Q/Z) → H3(G,Z) → H3(G,Q).

We claim that H2(G,Q) = {0} = H3(G,Q). Multiplication by |G| is an iso-
morphism of Q, and so its induced map on Hn(G,Q), which is multiplication
by |G|, is also an isomorphism. But m Hn(G,Q) = {0}, by Proposition 9.40,
so that Hn(G,Q) = {0}. We conclude that

H2(G,Q/Z) ∼= H3(G,Z).
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A similar argument gives an isomorphism in homology:

H3(G,Q/Z) ∼= H2G,Z).

Applying the Duality Theorem gives

H3(G,Z)∗ ∼= H3(G,Z
∗).

But H3(G,Z) is finite, so that H3(G,Z)∗ ∼= H3(G,Z). Also, Z
∗ ∼= Q/Z,

so that H3(G,Z) ∼= H3(G,Q/Z). Assembling all the isomorphisms gives
H2(G,Q/Z) ∼= H2(G,Z). •

Exercises

*9.18 (i) Let A and B be G-modules. Prove that HomZ(A, B) is a
G-module under diagonal action:

(gϕ)(a) = gϕ(g−1a)

for all ϕ : A → B, g ∈ G, and a ∈ A. Moreover, prove
that HomG(A, B) = HomZ(A, B)G .

(ii) Let A be a right ZG-module, and let B be a (left) G-module.
Prove that A ⊗ ZB is a G-module under diagonal action:

g(a ⊗ b) = ga ⊗ ga

for all g ∈ G, a ∈ A, and b ∈ B.
9.19 Let G and Q be groups, and let ϕ : ZG → ZQ be a ring homomor-

phism.
(i) Prove that if K is a Q-module, then ϕ equips K with the

structure of a G-module (which we denote by ϕ K ).
Hint. See Proposition 2.1: if σ : ZQ → End(K ), then
ϕσ : ZG → End(K ).

(ii) If G and Q are groups with isomorphic group rings, ZG ∼=
ZQ, prove that G and Q have the same homology and the
same cohomology: for every G-module K , Hn(G, ϕ K ) ∼=
Hn(Q, K ) and Hn(G, ϕ K ) ∼= Hn(Q, K ).

(iii) If G and Q are abelian groups with isomorphic group rings,
prove that G ∼= Q.
Hint. H1(G,Z) ∼= H1(Q,Z).

There exist nonisomorphic finite groups whose integral group rings
are isomorphic [see M. Hertweck, “A counterexample to the isomor-
phism problem for integral group rings,” Annals Math 154 (2001),
115–138].
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*9.20 Let G be a group and, for n ≥ 1, let Bn be the free G-module with
basis X = {[x0| · · · |xn] : xi ∈ G} (Bn is the nth term of the bar
resolution). Prove that (Bn)G = Bn/GBn is the free Z-module with
basis X .

9.21 Give an example of a group G and a G-module A for which Propo-
sition 9.53 is false; that is, H1(G, A) 	∼= H1(G,Z)⊗Z A.

9.22 Let G be a group, let k be a commutative ring, and let kG be the
group algebra.

(i) If A is a left kG-module, prove, for all n ≥ 0, that

ExtnkG(k, A) ∼= Extn
ZG(Z, A).

Conclude that the cohomology groups Hn(G, A) do not de-
pend on the coefficient ring k.

(ii) If A is a left kG-module, prove, for all n ≥ 0, that

TorkG
n (k, A) ∼= TorZG

n (Z, A).

Conclude that the homology groups Hn(G, A) do not de-
pend on the coefficient ring k.

*9.23 (i) Prove that ϕ : ZG → (ZG)op, defined by ϕ :
∑

x mx x �→∑
x mx x−1, is a ring isomorphism.

(ii) Let A be a left ZG-module and B be a right ZG-module.
Prove that TorZG

n (B, A) ∼= TorZG
n (A, B), where A, B are

viewed [as in part (i)] as right and left ZG-modules, respec-
tively, in the second Tor. Compare with Theorem 7.1.

*9.24 For a group G and integer m > 0, view Im as a trivial G-module.
Prove that H1(G, Im) ∼= G/G ′Gm , where G ′ is the commutator
subgroup and Gm is the subgroup generated by all mth powers.
Hint. Consider the exact sequence of G-trivial modules

0 → Z
m−→ Z → Im → 0.

Remark. The Frattini subgroup �(G) of a group G is the intersection of
its maximal subgroups. If p is a prime and G is a finite p-group, then �(G) =
G ′G p. The Burnside Basis Theorem says that G/�(G) is a vector space over
Fp whose dimension is the cardinal of a minimal set of generators of G (see
Rotman, An Introduction to the Theory of Groups, pp. 123–124). Compare
this with the following. Recall that the Jacobson radical J (R) of a ring R is
the intersection of its maximal left ideals. If (R,m, k) is a noetherian local
ring, then J (R) = m, and m/m2 is a vector space over k whose dimension is
the cardinal of a minimal set of generators of m. �
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*9.25 Let F be a free group. If I and J are two-sided ideals in ZF , which
are free F-modules on U and V , respectively, prove that I J is a free
F-module with basis U V = {uv : u ∈ U, v ∈ V }.

9.26 If G is a group, prove that Pn ∼= ⊗n+1
ZG, where Pn is the nth

term in the homogeneous resolution P(G) and
n⊗

ZG = ZG ⊗Z ZG ⊗Z · · · ⊗Z ZG,

the tensor product of ZG with itself n times.
9.27 If G is a finite cyclic group, prove, for all G-modules A and for all

n ≥ 1, that Hn(G, A) ∼= Hn+1(G, A).
9.28 Let G be a finite cyclic group, and let 0 → A → B → C → 0 be

an exact sequence of G-modules.
(i) Prove that there is an exact hexagon:

H1(G, A) �� H1(G, B)

����
���

�

H2(G,C)

��������
H1(G,C)

���
���

�

H2(G, B)

��						

H2(G, A).		

(ii) Prove that if the Herbrand quotient is defined for two of the
modules A, B,C [that is, both H1(G, M) and H2(G, M)

are finite, where M = A, B, or C], then it is defined for the
third one, and

h(B) = h(A)h(C).

9.29 If R = Z[x]/(xk − 1), prove that D(R) = ∞ (where D is global
dimension).

9.30 (Barr–Rinehart) For a group G, define H̃n(G, A) = Extn
ZG(G, A),

where A is a G-module and G is the augmentation ideal. Prove that
H̃0(G, A) ∼= Der(G, A) and H̃n(G, A) ∼= Hn+1(G, A) for n ≥ 1.

9.5 Change of Groups

Both the homology functors Hq(G,�) = TorZG
q (Z,�) and the cohomology

functors Hq(G,�) = Extq
ZG(Z,�) are covariant functors ZGMod → Ab;

in this section, we shall see that they are also functors of the first variable.
Interesting maps arise from group homomorphisms. We shall see that an exact
sequence 1 → S → G → G/S → 1 of groups gives an exact cohomology
sequence 0 → H1(G/S, K S) → H1(G, K ) → H1(S, K ), and this sequence
will be used in §9.8 to prove a theorem of Gaschütz that finite nonabelian p-
groups have outer automorphisms.
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Definition. A G-module A is G-acyclic if Hn(G, A) = {0} for all n ≥ 1.

Of course, injective G-modules A are G-acyclic, but, since Hn(G, A) =
ExtnG(Z, A), it is very likely that there are others [for injectivity is equivalent
to ExtnG(C, A) = {0} for every G-module C , not just for C = Z].

We discussed the notion of change of rings in Chapter 8: if ϕ : R′ → R is
a ring homomorphism, then every left R-module A acquires a left R′-module
structure by r ′a = ϕ(r ′)a, and every R-map is an R′-map. Consider the
following special case of the change of rings functor U = Uϕ : RMod →
R′Mod.

Definition. A group homomorphism f : G ′ → G induces a ring homomor-
phism ZG ′ → ZG, also denoted by f , namely, f :

∑
nx ′x ′ �→

∑
nx ′ f (x ′).

By change of rings, every G-module A is a G ′-module: if x ′ ∈ G ′ and a ∈ A,
then x ′a = f (x ′)a. Denote a G-module A viewed as a G ′-module by

U A = f A,

and call U = U f : ZGMod → ZG ′Mod a change of groups functor.

Lemma 9.75. Let f : G ′ → G be a homomorphism, and let U : ZGMod →
ZG ′ Mod be the corresponding change of groups functor.

(i) If P is a G-acyclic complex, then UP is a G ′-acyclic complex.

(ii) Let S ⊆ G, and let f : S → G be the inclusion. If P is a projec-
tive G-module, then U P is a projective S-module. Moreover, if P is a
G-projective resolution of a G-module A, then UP is an S-projective
resolution of U A.

Proof.

(i) Proposition 8.33 says that U : ZGMod → ZG ′Mod is an exact additive
functor, and so U preserves exact sequences.

(ii) If T is a right transversal of S in G, then G is the disjoint union
⋃

t∈T St ;
thus, every x ∈ G has a unique expression of the form x = st , where
s ∈ S and t ∈ T . As an S-module, ZG is free, for ZG =⊕t∈T (ZS)t is
a direct sum of S-modules. It follows that if P is a projective S-module,
then U P = f P is a projective S-module. The second statement now
follows from part (i). •

Recall that if S is a subgroup of a group G and A is an S-module, then
HomS(ZG, A) is a (left) G-module by diagonal action: if y ∈ G and
g : ZG → A, define

yg : x �→ yg(y−1x).
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In particular, if S = {1}, then ZS = Z and HomZ(ZG, A) is a G-module.
If S is a subgroup of a group G, we regard ZG as a (ZG,ZS)-bimodule,

as usual, by letting S act as right multiplication. If A is an S-module, then
ZG ⊗S A is a G-module with diagonal action:

y(x ⊗ a) = (yx)⊗ ya.

In particular, if S = {1}, then ZG ⊗Z A is a G-module.

Proposition 9.76 (Eckmann–Shapiro Lemma). Let G be a group, let
S ⊆ G be a subgroup, and let A be an S-module.

(i) Hn(S, A) ∼= Hn(G,HomS(ZG, A)) for all n ≥ 0.

(ii) Hn(S, A) ∼= Hn(G,ZG ⊗S A) for all n ≥ 0.

Proof.

(i) If → P1 → P0 → Z → 0 is a G-free resolution, then

Hn(G,HomS(ZG, A)) = Hn(HomG(P,HomS(ZG, A))).

By the adjoint isomorphism, we have, for all i ,

HomG(Pi ,HomS(ZG, A)) ∼= HomS(Pi⊗G ZG, A) ∼= HomS(U Pi , A),

where U : ZGMod → ZSMod is the change of groups functor. But UP
is an S-projective resolution of Z, by Lemma 9.75(ii). Thus, there is an
isomorphism of complexes

HomS(P, A) ∼= HomG(UP,HomS(ZG, A)),

and isomorphisms in homology: Hn(S, A) ∼= Hn(G,HomS(ZG, A)).

(ii) By definition, Hn(G,ZG ⊗S A) = Hn(P ⊗G (ZG ⊗S A)). Since ZG
is a (ZG,ZS)-bimodule, the associativity of tensor product (Proposi-
tion 2.57) gives Pi ⊗G (ZG ⊗S A) ∼= Pi ⊗S A for all i . But UP is an
S-projective resolution of Z, by Lemma 9.75(ii), and Hn(UP ⊗S A) =
Hn(S, A). •

Definition. If G is a group, then a G-module of the form HomZ(ZG, A),
where A is an abelian group, is called a coinduced module. A G-module of
the form ZG ⊗Z A is called an induced module.

Note that every free G-module F is induced, for if X is a basis of F , then
F = ZG ⊗Z A, where A is the free abelian group with basis X .
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Proposition 9.77.

(i) Every coinduced G-module A is G-acyclic: Hn(G, A) = {0} for all
n ≥ 1; moreover, every G-module can be imbedded in a coinduced
module.

(ii) Every induced module B satisfies Hn(G, B) = {0} for all n ≥ 1; more-
over, every G-module is a quotient of an induced module.

Proof.

(i) If S = {1}, the Eckmann–Shapiro Lemma gives

Hn(G,HomZ(ZG, A)) ∼= Hn({1}, A).

But Hn({1}, A) = {0} for all n ≥ 1, by Corollary 9.28. The proof of
Theorem 3.38 gives an imbedding ϕ : A → HomZ(ZG, A) [if a ∈ A,
define ϕ(a) : x �→ xa].

(ii) The vanishing of Hn(G, B) when B is induced is the dual of that just
given for cohomology. Moreover, the map ZG ⊗Z A → A, given by
x ⊗ a �→ xa, is a surjection. •

We can now give another, equivalent, description of group cohomology
and group homology.

Theorem 9.78.

(i) Given a group G, the sequence (Hn(G,�))n≥0 is the cohomological
extension of FixG for which Hn(G, A) = {0} for all coinduced G-
modules A and all n ≥ 1.

(ii) Given a group G, the sequence (Hn(G,�))n≥0 is the homological ex-
tension of Z⊗G � for which Hn(G, B) = {0} for all induced G-modules
B and all n ≥ 1.

Proof.

(i) By Proposition 9.22, we have FixG ∼= HomG(Z,�), while Proposi-
tion 9.77 says that GMod has enough co-Y-objects, where Y is the class
of all coinduced G-modules. Hence, (RnFixG)n≥0 is a cohomological
extension of FixG . On the other hand, (Extn(G,�))n≥0 is also a co-
homological extension of FixG . Therefore, the uniqueness assertion of
Corollary 6.50 gives the result.

(ii) Similar to part (i); Corollary 6.35 applies, where X is the class of all
induced G-modules. •

When G is finite, coinduced modules and induced modules coincide.
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Proposition 9.79. If G is finite and A is an abelian group, then there is a
natural G-isomorphism

θ : HomZ(ZG, A) → ZG ⊗Z A

given by θ : f �→∑
x∈G x ⊗ f (x).

Remark. Of course, finiteness of G is needed for θ to be defined.
We can adapt the proof to show that if S ⊆ G is a subgroup of finite

index and A is an S-module, then there is a G-isomorphism HomS(ZG, A) →
ZG ⊗S A. �
Proof. It is obvious that θ( f + g) = θ( f )+ θ(g). To see that θ is a G-map,
we use the diagonal actions. Let y ∈ G and f : ZG → A; then

θ(y f ) =
∑
x∈G

x ⊗ (y f )(x) =
∑
x∈G

x ⊗ y f (y−1x).

Change variables: z = y−1x , and note that as x varies over G, so does z.
Hence,

∑
x∈G

x ⊗ y f (y−1x) =
∑
z∈G

yz ⊗ y f (z) = y
∑
z∈G

z ⊗ f (z) = yθ( f ).

We show that θ is injective. Now ZG ⊗Z A = ⊕
x∈G Ax , where Ax is the

subgroup {x ⊗ a : a ∈ A}. If θ( f ) = ∑
x∈G x ⊗ f (x) = 0, then f (x) = 0

for all x ∈ G, and so f = 0. Finally, we show that θ is surjective. Let
u = ∑

x∈G x ⊗ ax ∈ ZG ⊗Z A. Since ZG is the free abelian group with
basis G, there is a Z-map f : ZG → A with f (x) = ax for all x ∈ G, and
θ( f ) = u.

To prove naturality, we must show that the following diagram commutes
for every map ϕ : A → B of abelian groups.

HomZ(ZG, A)
ϕ∗ ��

θ

��

HomZ(ZG, B)

θ

��
ZG ⊗Z A

1⊗ϕ
�� ZG ⊗Z A

If f : ZG → A, then going clockwise, f �→ ϕ f �→ ∑
x ⊗ (ϕ) f (x); going

counterclockwise, f �→∑
x ⊗ f (x) �→∑

x ⊗ ϕ( f (x)). •

Corollary 9.80. Let S be a subgroup of a finite group G, and let A be a
G-module.

(i) HomZ(ZG, A) is S-coinduced.
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(ii) If S is normal, then HomZ(ZG, Z)S ∼= HomZ(Z(G/S), A), and so
HomZ(ZG, Z)S is G/S-coinduced.

Proof.

(i) The following isomorphisms hold because Hom commutes with finite
direct sums in either variable.

HomZ(ZG, A) ∼= HomZ(⊕ZS, A)

∼= ⊕HomZ(ZS, A)

∼= HomZ(ZS,⊕A).

(ii) Since G is finite, it suffices to show that (ZG ⊗Z A)S is G/S-induced.
As each u ∈ (ZG ⊗Z A)S has a unique expression of the form u =∑

x∈G nx x , the result will follow if nsx = nx for all x ∈ G and s ∈ S
(that is, if the coefficients are constant on cosets of S). Since s−1u = u,
we have

u =
∑

nx x =
∑

nx s−1x =
∑

nsx x .

Uniqueness of expression gives nx = nsx , as desired. •

9.5.1 Restriction and Inflation

We now show that group cohomology and group homology are functorial in
the first variable G.

Definition. Let G ′, G be groups and let α : G ′ → G be a homomorphism.
If A′ is a G ′-module and f : A → A′ is a Z-map, then we call (α, f ) a
cocompatible pair if f : α A → A′ is a G ′-map, where α A denotes A made
into a G ′-module as on page 560; that is,

f ((α x ′)a) = x ′ f (a).

Define a category Pairs∗ with objects all ordered pairs (G, A) (where G
is a group and A is a G-module), with morphisms (G, A) → (G ′, A′) being
cocompatible pairs (α, f ), and with composition (β, g)(α, f ) = (αβ, g f ) [of
course, 1(G,A) = (1G, 1A)]. Note that composition in Pairs∗ makes sense:
if β : G ′′ → G ′ and g : β A′ → A′′, then g f : A → A′′ is a Z-map and
g f (αβ(x ′′)a) = g((βx ′′)( f a)) = x ′′g f (a).

Given a cocompatible pair (α, f ) : (G, A) → (G ′, A′) [so α : G ′ → G
and f : α A → A′], let U : ZGMod → ZG ′Mod be the change of groups
functor, let P′ be a G ′-projective resolution of Z, and let P be a G-projective
resolution of Z. Since U is a functor, there is a map

HomG(P, A) → HomG ′(UP,U A) = HomG ′(UP, α A).
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The G ′-complex UP is acyclic, by Lemma 9.75(i), and so the Comparison
Theorem (Theorem 6.16) gives a chain map τ(α) : P′ → UP over 1Z that
is unique to homotopy. Apply the (contravariant) functor HomG ′(�, α A) to
obtain a chain map

τ #(α) : HomG ′(UP, α A) → HomG ′(P′, α A).

Next, f : α A → A′ induces a chain map

f# : HomG ′(P′, α A) → HomG ′(P′, A′).

Thus, we have

HomG(P, A)
U �� HomG ′(UP, α A)

f# �� HomG ′(P′, α A)
τ #(α)�� HomG ′(P′, A′),

and we define
(α, f )∗ : Hn(G, A) → Hn(G ′, A′)

to be the map in homology induced by this composite. If ζ ∈ HomG(Pn, A)

is a cocycle, where P =→ Pn → Pn−1 → · · · → P0 → Z → 0, then

(α, f )∗ : cls(ζ ) �→ cls( f ζ τ(α)).

There is a “ladder” theorem for these induced maps.

Proposition 9.81. Let α : G ′ → G be a group homomorphism, and consider
a commutative diagram

0 �� A ��

(α, f )
��

B ��

(α,g)
��

C ��

(α,h)
��

0

0 �� A′ �� B ′ �� C ′ �� 0,

where the top row is an exact sequence of G-modules, the bottom row is an ex-
act sequence of G ′-modules, and the vertical arrows are cocompatible. Then
there is a commutative diagram with exact rows

�� Hn(G,C)
δ ��

(α,h)∗
��

Hn+1(G, A) ��

(α, f )∗
��

Hn+1(G, B) ��

(α,g)∗
��

Hn+1(G,C)

(α,h)∗
��

�� Hn(G ′,C ′) δ′ �� Hn+1(G ′, A′) �� Hn+1(G ′, B ′) �� Hn+1(G ′,C ′).

Proof. The proof is left to the reader. •
Here are three important special cases of induced maps (α, f )∗.
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Definition. Let S be a subgroup of a group G, let A be a G-module, and
let α be the inclusion i : S → G. Then (i, 1A) is a cocompatible pair: if
x ′ ∈ S, then i(α(x ′)a) = x ′a = x ′i(a). The induced homomorphism (i, 1A)

∗
is called restriction and is denoted by

Resn : Hn(G, A) → Hn(S, A)

(it is customary to write A instead of i A).

If ζ is an n-cocycle, then Resn : cls(z) �→ cls(ζ τ (α)). The homogeneous
resolution P(S) = (Pn(S)) of Z is a subcomplex of the homogeneous resolu-
tion P(G) of Z, and we may choose τ(α) to be the inclusion P(S) → P(G).
Thus,

Resn : cls(ζ ) �→ cls(ζ i), (1)

where ζ : Pn(G) → A and ζ i is the restriction ζ |Pn(S).

Definition. Given a normal subgroup S of a group K ′, let π : K ′ → K ′/S
be the natural map. If B ′ is a K ′-module, view (B ′)S as a (K ′/S)-module by
(k′S)b = k′b for all k′ ∈ K ′ and b ∈ (B ′)S; this action is well-defined, for
if k′S = k′′S, then k′′ = k′s for some s ∈ S, and so k′′b = k′sb = k′b. If
f : AS → A is the inclusion, then (π, f ) is a cocompatible pair: if b ∈ (B ′)S ,
then f (π(k′)b) = (k′S)b = k′b = k′ f (b).

The induced homomorphism (π, f )∗ : Hn(K ′/S, (B ′)S) → Hn(K ′, B ′)
is called inflation. In more customary notation, with K ′ = G and B ′ = A,
we have

Inf n : Hn(G/S, AS) → Hn(G, A).

The homogeneous resolution P(G/S) of Z is a quotient complex of the
homogeneous resolution P(G) of Z, and we may choose τ(α) to be the natural
map. If ζ is an n-cocycle, then Inf n : Hn(G/S, AS) → Hn(G, A) is given
by

Inf n : cls(ζ ) �→ cls(ζπ), (2)

where ζπ(x0, . . . , xn) = ζ(x0S, . . . , xn S). In words, evaluate ζπ(x0, . . . , xn)

by letting its value depend, for all coordinates j , only on the coset xj S; thus,
ζ has been “inflated” from a function (G/S)×· · ·×(G/S) → A to a function
G × · · · × G → A by letting it be constant on cosets of S.

Conjugation gives another important example.

Definition. Let G ′ = G and let α : G → G be γy , conjugation by y, where
y ∈ G; that is, α = γy : x �→ yxy−1. If A is a G-module, define f =
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fy : A → A to be the Z-map fy(a) = y−1a. Now (γy, fy) is a cocompatible
pair: if x ∈ G, then

fy((γy x)a) = fy(yxy−1a) = y−1 yxy−1a = xy−1a = x fy(a).

If P(G) is the homogeneous resolution of Z, then the terms in UP are
α Pn(G), where α(x)u = yxy−1u for all u ∈ Pn(G). Thus, if v = (x0, . . . , xn)

is a basis element of Pn(G), then xv = (xx0, . . . , xxn); however, if we view
(x0, . . . , xn) as an element of α Pn(G), then

x · (x0, . . . , xn) = yxy−1(x0, . . . , xn) = (yxy−1x0, . . . , yxy−1xn).

Define τ : P(G) → UP(G) by τ(x0, . . . , xn) = (yx0, . . . , yxn). Note that
τ : Pn(G) → α Pn(G) is a G-map:

τ(x(x0, . . . , xn)) = τ(xx0, . . . , xxn) = (yxx0, . . . , yxxn),

and

x · τ(x0, . . . , xn) = yxy−1τn(x0, . . . , xn)

= yxy−1(yx0, . . . , yxn)

= (yxy−1 yx0, . . . , yxy−1 yxn)

= (yxx0, . . . , yxxn).

It is easy to see that τ is a chain map over 1Z. Thus, the map (γy, fy)
∗ induced

by conjugation γy and fy : a �→ y−1a is

cls(ζ ) �→ cls( fyζ τ) = cls(y−1ζ y). (3)

If S � G, then we can use conjugation to make Hn(S, A) into a (G/S)-
module.

Lemma 9.82. Let G be a group and let A be a G-module.

(i) If y ∈ G and f : a �→ y−1a, then (γy, fy)
∗ : cls(ζ ) �→ cls(y−1ζ y) is

the identity map on Hn(G, A).

(ii) If S is a normal subgroup of G, then Hn(S, A) is a G/S-module. More-
over, if A is a trivial G-module, then H n(S, A) is a trivial G/S-module.

Proof.

(i) We have just seen that γy(cls(ζ )) = cls(y−1ζ y). But

y−1ζ y(x0, . . . , xn) = (y−1ζ )(yx0, . . . , yxn)

= ζ(y−1yx0, . . . , y−1 yxn)

= ζ(x0, . . . , xn).

Thus, γy fixes every cls(ζ ), and so γy is the identity on Hn(G, A).
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(ii) If S is any (not necessarily normal) subgroup of G, and if ρy = γy |S,
then ρy : S → ySy−1. If A is a (ySy−1)-module, then fy : A → A is
given by fy(a) = y−1a, and (ρy, fy) is a cocompatible pair, because
ρy = α|S. Of course, (ρy, fy)

∗ : Hn(ySy−1, A) → Hn(S, A). If now
S�G, then ySy−1 = S and (ρy, fy)

∗ : Hn(S, A) → Hn(S, A). Define
a (G/S)-action on Hn(S, A) by

(yS) cls(ζ ) = (ρy, fy)
∗ cls(ζ )

for all y ∈ G and cls(ζ ) ∈ Hn . If yS = y′S, then y′ = ys for some s ∈
S, and (ρy′, fy′)

∗ = (ρys, fys)
∗ = (ρy, fy)

∗(ρs, fs)
∗. But (ρs, fs)

∗ is
the identity, by (i), and so (ρy′, fy′)

∗ = (ρy, fy)
∗. Hence, this action is

well-defined, and Hn(S, A) is a (G/S)-module.

If A is a trivial G-module, then

(yS) cls(ζ ) = (ρy, fy)
∗ cls(ζ ) = cls(y−1ζ y) = cls(ζ ),

and so yS acts trivially. •

Corollary 9.83. If S is a normal subgroup of a group G and if A is a G-
module, then, for all n ≥ 0,

im Resn ⊆ Hn(S, A)G/S.

Proof. If ζ ∈ Der(G, A), then Resn(cls(ζ )) = cls(ζ |S). Hence, for y ∈ G,
we have (ρy, fy)

∗ cls(ζ |S) = cls(y−1(ζ |S)y). But

y−1(ζ |S)y(s0, . . . , sn) = y−1ζ(ys0, . . . , ysn)

= ζ(y−1 ys0, . . . , y−1 ysn)

= ζ(s0, . . . , sn). •

Theorem 9.84. Let S be a normal subgroup of a group G, and let A be a
G-module.

(i) There is an exact sequence

0 �� H1(G/S, AS)
Inf1

�� H1(G, A)
Res1
�� H1(S, A)G/S d �� H2(G/S, AS).

(ii) If q ≥ 1 and Hi (S, A) = {0} for all 1 ≤ i ≤ q − 1, then there is an
exact sequence

0 → Hq(G/S, AS)
Inf q

−→ Hq(G, A)
Resq

−→ Hq(S, A)G/S.

(iii) If q ≥ 1 and Hi (S, A) = {0} for all 1 ≤ i ≤ q − 1, then

Inf i : Hi (G/S, AS) → Hi (G, A)

is an isomorphism for all i ≤ q − 1.
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Remark. In Theorem 10.53, which uses spectral sequences, we shall see
that the exact sequence can be lengthened to a five-term sequence that ends
with

→ H1(S, A)G/S d−→ H2(G/S, AS)
Inf 2

−→ H2(G, A).

We do not prove exactness involving the map d : H1(S, A)G → H2(G/S, AS)

(indeed, we do not even define d here), but there is a proof in Suzuki, Group
Theory I, pp. 214–216. We do prove exactness of the rest of the sequence,
however, using a proof of Serre, Local Fields, pp. 125–126. �
Proof.

(i) Corollary 9.83 says that im Res1 ⊆ H1(S, A)G/S , and so it suffices to
prove exactness when the third term is H1(S, A). We use the interpre-
tation of H1 as Der/PDer (formally, we are using the normalized bar
resolution).

Inf 1 is an injection. If ζ : G/S → AS is a derivation and ζ̇ : G → A
is the function obtained from ζ by making it constant on cosets of S,
then Inf 1 : cls(ζ ) �→ cls(ζ̇ ). If cls(ζ ) ∈ ker Inf 1, then ζ̇ is a principal
derivation; that is, there is a ∈ A with ζ̇ (x) = xa − a for all x ∈ G.
Since ζ̇ is constant on cosets of S, we have xsa − a = xa − a for all
s ∈ S and x ∈ G; hence, xsa = xa. If x = 1, then sa = a; that is,
a ∈ AS . It follows that ζ is a principal derivation, and cls(ζ ) = 0.

im Inf 1⊆ ker Res1. If Z : G → A is a derivation, then Res1 cls(Z) =
cls(Z |S). In particular, if cls(Z) = cls(ζ̇ ) ∈ im Inf 1, then Z is constant
on the coset S. But Z(1) = 0 (because every derivation sends 1 to 0),
and so Z = 0.

ker Res1⊆ im Inf 1. If cls(Z) ∈ ker Res1, then cls(Z |S) = 0; that is,
Z |S is a principal derivation. Thus, there is a ∈ A with Z(s) = sa − a
for all s ∈ S. Replacing Z by Z − δ, where δ is the principal derivation
g �→ ga − a, we may assume that Z(s) = 0 for all s ∈ S. But Z is
constant on cosets of S, for the definition of derivation gives Z(gs) =
gZ(s)+ Z(g) = Z(g). Now ζ : G/S → A, defined by ζ(gS) = Z(g),
is a well-defined derivation, and Z = ζ̇ ∈ im Inf 1.

(ii) We prove the result by induction on q ≥ 1. The base step q = 1
is just part (i). Now the proof of Theorem 3.38 gives an imbedding
ϕ : A → A∗ = HomZ(ZG, A) [if a ∈ A, define ϕ(a) : x �→ xa]; thus,
there is an exact sequence of G-modules

0 → A → A∗ → C → 0 (4)

with A∗ G-coinduced. Note that A∗ is S-induced, by Corollary 9.80(i),
and that (A∗)S is G/S-coinduced, by Corollary 9.80(ii).
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By hypothesis, H1(S, A) = {0} (for q ≥ 2 now), and so there is exact-
ness of

0 → AS → (A∗)S → C S → 0. (5)

Consider the commutative diagram

0 �� Hq−1(G/S,C S)
Inf ��

δ′ ��

Hq−1(G,C)
Res ��

δ
��

Hq−1(S,C)

δ′′��
0 �� Hq(G/S, AS)

Inf
�� Hq(G, A)

Res
�� Hq(S, A).

The first column occurs in the long exact sequence arising from ap-
plying H•(G,�) to exact sequence (5), while the other two columns
arise by applying H•(G,�) and H•(S,�), respectively, to exact se-
quence (4). Now δ′ is an isomorphism, for (A∗)S is G/S-coinduced; δ
is an isomorphism because A∗ is G-coinduced; δ′′ is an isomorphism
because A∗ is S-coinduced. Since C (instead of A) also satisfies the
inductive hypothesis (with i ≤ q − 2), the top row of the diagram is
exact. Finally, commutativity gives the bottom row exact as well.

(iii) This follows from the exactness of the top row of the diagram in part (ii)
and Hq−1(S,C) = {0}. •

There is a similar discussion for group homology.

Definition. Let G ′, G be groups and let α : G → G ′ be a homomorphism.
If A′ is a G ′-module and f : A → A′ is a Z-map, then we call (α, f ) a
compatible pair if f : A → α A′ is a G-map, where α A′ denotes A′ made into
a G-module as on page 560; that is,

f (xa) = (α x) f (a).

Define the category Pairs∗ with objects all pairs (G, A) (with G a group
and A a G-module), with morphisms (G, A) → (G ′, A′) being compati-
ble pairs (α, f ), and with composition (β, g)(α, f ) = (βα, g f ) [of course,
1(G,A) = (1G, 1A)]. Composition in Pairs∗ makes sense: if β : G ′ → G ′′ and
g : A′ → β A′′, then g f : A → A′′ is a Z-map and g f (xa) = g((αx)( f a)) =
βα(x)g f (a).

Given a compatible pair (α, f ) : (G, A) → (G ′, A′) (so that α : G → G ′
and f : A → α A′), let U : ZG ′Mod → ZGMod be the change of groups
functor, let P be a G-projective resolution of Z, and let P′ be a G ′-projective
resolution of Z. The G-complex UP′ is acyclic, by Lemma 9.75(i), and so
the Comparison Theorem gives a chain map τ#(α) : UP′ → P over 1Z that is
unique to homotopy. Apply the functor �⊗G α A to obtain a chain map

τ#(α) : UP′ ⊗G α A → P ⊗G α A.
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Next, f : A → α A′ induces a chain map

f# : P ⊗G A → P ⊗G α A′.

Thus, f#τ#(α) : UP′ ⊗G A → P ⊗G α A′, and we define

(α, f )∗ : Hn(G, A) → Hn(G
′, A′)

to be the map in homology induced by this composite. If ζ ∈ Pn ⊗G A is a
cocycle, where P =→ Pn → Pn−1 → · · · → P0 → Z → 0, then

(α, f )∗ : cls(ζ ) �→ cls( f ζ τn(α)).

There is a “ladder” theorem for these induced maps.

Proposition 9.85. Let α : G ′ → G be a group homomorphism, and consider
a commutative diagram

0 �� A ��

(α, f )
��

B ��

(α,g)
��

C ��

(α,h)
��

0

0 �� A′ �� B ′ �� C ′ �� 0,

where the top row is an exact sequence of G-modules, the bottom row is an
exact sequence of G ′-modules, and the vertical arrows are compatible. Then
there is a commutative diagram with exact rows

�� Hn(G ′,C ′) δ ��

(α,h)∗
��

Hn−1(G ′, A′) ��

(α, f )∗
��

Hn−1(G ′, B ′) ��

(α,g)∗
��

Hn−1(G ′,C ′)

(α,h)∗
��

�� Hn(G,C)
δ′ �� Hn−1(G, A) �� Hn−1(G, B) �� Hn−1(G,C).

Proof. The computations are left to the reader. •
If α : S → G is the inclusion of a subgroup and f : A → A is the identity

1A, then (α, f )∗ is called restriction

Resn : Hn(S, A) → Hn(G, A).

If S �G is a normal subgroup, α : G → G/S is the natural map, and f : A →
AS = A/SA is the natural map, then (α, f )∗ is called coinflation:

Coinfn : Hn(G, A) → Hn(G/S, AS).

Conjugation gives maps that show that if S � G, then H∗(S, A) is a (G/S)-
module; moreover, there is an exact sequence in homology analogous to the
sequence in Theorem 9.84.
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9.6 Transfer

If G is a group and S is a subgroup S, then we have constructed restriction
maps Resn : Hn(G, A) → Hn(S, A); moreover, if S is a normal subgroup,
then there are inflation maps Infn : Hn(G/S, AS) → Hn(G, A). Similarly,
there are maps in homology: corestriction Corn : Hn(G, A) → Hn(S, A) and
coinflation Coinfn : Hn(G, A) → Hn(G/S, AS). When G is a group and
S ⊆ G is a subgroup of finite index, Eckmann constructed transfer maps in
the reverse direction: Trn : Hn(G, A) → Hn(S, A) and Trn : Hn(G, A) →
Hn(G, A). Transfer does not arise via change of groups, for it is not a functor
defined on Pairs∗ or Pairs∗.

Recall that if G is a finite group and A is a G-module, then the norm
N : A → A is defined by a �→∑

x∈G xa. We now generalize this.

Definition. If G is a group, S ⊆ G is a subgroup of finite index n, and A is
a G-module, then the norm10 NG/S : A → A is defined by

NG/S(a) =
n∑

i=1

ti a,

where {t1, . . . , tn} is a left transversal of S in G; that is, G = ⋃n
i=1 ti S. If

S = {1}, we continue to use the simpler notation

NG/{1} = N .

Lemma 9.86. Let S be a subgroup of finite index in a group G, and let A be
a G-module.

(i) The norm NG/S is independent of the choice of left transversal of S in G.

(ii) NG/S : AS → AG; that is, im NG/S ⊆ AG.

(iii) NG/S : FixS → FixG is a natural transformation making the following
diagram commute for all G-maps f : A → B.

AS
f∗ ��

N

��

BS

N

��
AG

f∗
�� BG

10Some authors call NG/S the trace.
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Proof.

(i) Let T = {t1, . . . , tm} and T ′ = {t ′1, . . . , t ′m} be left transversals of S in
G. Now t ′i = ti si for each i , where si ∈ S. Hence, if a ∈ AS ,

∑
i

t ′i a =
∑

i

ti si a =
∑

i

ti a.

Thus, NG/S(a) does not depend on the choice of transversal.

(ii) If T is a left transversal of S in G and x ∈ G, then xT = {xt : t ∈ T }
is also a left transversal: since multiplication by x is a bijection, G =
x(
⋃

t∈T t S) =⋃t∈T xt S. Now

x NG/S(a) = x
∑
t∈T

ta =
∑
t∈T

(xt)a = NG/S(a),

the last equality holding because NG/S(a) does not depend on the trans-
versal. Therefore, NG/S(a) ∈ AG .

(iii) A routine computation. •

Proposition 9.87. Let S be a subgroup of finite index in a group G, and let
A be a G-module. There exist unique homomorphisms

Trn : Hn(S, A) → Hn(G, A),

called transfer (or corestriction), such that

(i) Tr0 = NG/S : AS → AG,

(ii) for every exact sequence 0 → A
i−→ B

p−→ C → 0 of G-modules,
there is a commutative diagram

Hn(S, B)

Trn ��

p∗ �� Hn(S,C)
∂S ��

Trn��

Hn+1(S, A)
i∗ ��

Trn+1��

Hn+1(S, B)

Trn+1��
Hn(G, B) p∗

�� Hn(G,C)
∂G

�� Hn+1(G, A)
i∗

�� Hn+1(G, B).

Proof. Both (Hn(S,�)) and (Hn(G,�)) are cohomological ∂-functors
that vanish on injectives (recall that every injective G-module is an injective
S-module), and NG/S : H0(S,�) → H0(G,�) is a natural transformation.
Thus, Theorem 6.51 applies at once. •
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Theorem 9.88. If S is a subgroup of G of finite index m and A is a G-module,
then Trn Resn : Hn(G, A) → Hn(G, A) is multiplication by m.

Proof. Let T be a left transversal of S in G. If n = 0, then Tr0 : AS → AG

sends a �→∑
t∈T ta, while Res0 : AG → AS is the inclusion. Thus, the com-

posite Tr0 Res0 is multiplication by m, for AG is G-trivial. The result now
follows from Theorem 6.36, for if τn : Hn(G, A) → Hn(G, A) is multipli-
cation by m, then both (τn) and (Resn Trn) are morphisms of cohomological
∂-functors agreeing in degree 0. •

Corollary 9.89 (= Proposition 9.40). If G is a finite group of order m, then
m Hn(G, A) = {0} for all n ≥ 0 and all finitely generated G-modules A.

Proof. By Theorem 9.88, if S is a subgroup of G of finite index, then the
composite

Hn(G, A)
Resn

−→ Hn(S, A)
Trn

−→ Hn(G, A)

is multiplication by [G : S]. This is true, in particular, when G is finite,
S = {1}, and [G : S] = |G|. But Hn({1}, A) = {0}, and so multiplication by
|G| is 0. •

If p is a prime, then a Sylow p-subgroup of a finite group G, denoted by
G p, is a maximal p-subgroup of G. It is known that such subgroups exist for
every prime divisor of |G| and that |G p| is the largest power of p dividing |G|;
that is, ([G : G p], p) = 1. In general, Sylow p-subgroups are not unique (but
any two such are conjugate); in the special case when G is abelian, however,
G p is unique and is called the p-primary component.

Recall Corollary 9.41: if G is a finite group and A is a finitely generated
G-module, then Hn(G, A) is finite for all n ≥ 0; hence, there is a primary
decomposition Hn(G, A) =⊕p Hn(G, A)p.

Corollary 9.90. Let G be a finite group, and let A be a G-module.

(i) Resn : Hn(G, A) → Hn(G p, A) is injective on the p-primary compo-
nent Hn(G, A)p for every n ≥ 0 and for every prime p | |G|.

(ii) There is an injection θ : Hn(G, A) →⊕
p Hn(G p, A).

(iii) If Hn(G p, A) = {0} for all Sylow p-subgroups, then H n(G, A) = {0}.
Proof.

(i) If u ∈ Hn(G, A)p, then peu = 0 for some e ≥ 0. Let [G : G p] =
q. Now Trn Resn(u) = qu, by Theorem 9.88. If Resn(u) = 0, then
qu = Trn(Resn u) = 0. Since (q, pe) = 1 (because G p is a Sylow
p-subgroup), there are integers s and t with 1 = sq + tpe, and so
u = squ + tpeu = 0.
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(ii) Since |G|Hn(G, A) = {0}, the order of any element in Hn(G, A) is a
divisor of |G|. It follows that the primary decomposition of Hn(G, A)

involves only the prime divisors of |G|:

Hn(G, A) =
⊕
p||G|

Hn(G, A)p.

Thus, if u ∈ Hn(G, A), then u = (u p) for u p ∈ Hn(G, A)p. De-
note Resn : Hn(G, A) → Hn(G p, A) by f p, and consider the map
θ : Hn(G, A) → ⊕

P Hn(G p, A) given by θ : u �→ ( f pu). If u ∈
ker θ , then f pu = 0 for all p. But f p(u p) = 0 implies u p = 0, by (i),
and so θ is an injection.

(iii) Immediate from (ii). •

Let us now consider homology.

Definition. If G is a group, S ⊆ G is a subgroup of finite index n, and A is
a G-module, then the conorm νG/S : A → A is defined by

νG/S(a) =
∑

i

t−1
i a,

where {t1, . . . , tn} is a left transversal of S in G; that is, G =⋃n
i=1 ti S.

If x ∈ G, then each xti , as any element of G, lies in a unique left coset,
say, xti ∈ t j (i)S; that is,

xti = t j (i)si, j (i) (1)

for some si, j (i) ∈ S and j (i) ∈ {1, . . . , n}. It is easy to see that j is a
permutation of {1, . . . , n}; it follows that

νG/S(a) =
∑

i

t−1
j (i)a. (2)

Lemma 9.91. Let S be a subgroup of finite index in a group G, and let A be
a G-module.

(i) The conorm νG/S is independent of the choice of right transversal of S
in G.

(ii) νG/S : AG → AS.
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(iii) νG/S : �G → �S is a natural transformation making the following di-
agram commute for all G-maps f : A → B.

AG
f∗ ��

ν

��

BG

ν

��
AS f∗

�� BS

Proof. We prove (ii), leaving the other parts to the reader. Since AG =
A/GA, it suffices to prove that νG/S(GA) ⊆ SA, where S is the augmentation
ideal of S. A typical generator of G is x − 1, for x ∈ G and

νG/S(x − 1)a =
∑

i

t−1
j (i)(x − 1)a [Eq. (2)]

=
(∑

i

t−1
j (i)x

)
a − Na

(
where N =

∑
i

t−1
j (i)

)

=
(∑

i

si, j (i)t
−1
i

)
a − Na [Eq. (1)]

=
∑

i

(si, j (i) − 1)(t−1
i a) ∈ SA. •

We record a consequence of this computation.

Corollary 9.92. Let S be a subgroup of finite index in a group G, and let A
be a G-module. If a ∈ A, then [using the notation in Eq. (1)]∑

i

t−1
j (i)(x − 1)a + SA =

∑
i

(si, j (i) − 1)(t−1
i a)+ SA in AS .

Proposition 9.93. Let S be a subgroup of finite index in a group G, and let
A be a G-module. There exist unique homomorphisms

Trn : Hn(G, A) → Hn(S, A),

called transfer, such that

(i) Tr0 : H0(G, A) → H0(S, A) is given by a + GA �→ νG/S(a) + SA,
where S is the augmentation ideal of S,

(ii) for every exact sequence 0 → A
i−→ B

p−→ C → 0 of G-modules,
there is a commutative diagram

Hn(G, B)

Trn ��

p∗ �� Hn(G,C)
∂G ��

Trn��

Hn−1(G, A)
i∗ ��

Trn−1��

Hn−1(G, B)

Trn−1��
Hn(S, B) p∗

�� Hn(S,C)
∂S

�� Hn−1(S, A)
i∗

�� Hn−1(S, B).
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Proof. By Theorem 6.36, there exists a unique morphism between homolog-
ical ∂-functors that annihilates projectives. •

Theorem 9.94. If S is a subgroup of G of finite index m and A is a G-module,
then Resn Trn : Hn(G, A) → Hn(G, A) is multiplication by m.

Proof. As in the proof of Theorem 9.88. •

Corollary 9.95. If G is a finite group of order m, then m Hn(G, A) = {0}
for all n ≥ 0 and all finitely generated G-modules A.

Proof. As in the proof of Corollary 9.89. •

Corollary 9.96. Let G be a finite group, and let A be a G-module. If
Hn(G p, A) = {0} for all Sylow p-subgroups, then Hn(G, A) = {0}.
Proof. As in the proof of Corollary 9.90. •

Remark. Propositions 9.87 and 9.93 prove that the transfer maps Trn and
Trn exist, but it is not so obvious how to use them for computation.

Given a ring map ϕ : R → S, change of rings discusses how to view S-
modules as R-modules; that is, it gives a functor SMod → RMod. We now
construct a functor RMod → SMod in the reverse direction; that is, we show
how to use ϕ to view R-modules as S-modules. Regard S as a right R-module
by defining

s.r = sϕ(r).

It is easy to see that S is an (S, R)-bimodule, so that if A is a left R-module,
then S⊗R A is a left S-module. Indeed, the reader may show that A �→ S⊗R A
is functorial. We refer the reader to Brown, Cohomology of Groups III, §9, to
see how this general situation applies to transfer. �

Transfer maps are so called because they generalize the transfer in Group
Theory. Let S ⊆ G be a subgroup of finite index; say, [G : S] = n < ∞.
An n × n monomial matrix over S is an n × n permutation matrix in which
all entries equal to 1 are replaced by elements of S. It is easy to check that
the usual matrix product of monomial matrices is defined (nonzero entries
never need to be added), it is a monomial matrix, and the set Monn(S) of all
n × n monomial matrices over S is a group. Monomial matrices arise in the
following context. If T = {t1, . . . , tn} is a left transversal of S in G, then
Eq. (1) on page 575 shows, for any x ∈ G, that there is a permutation j of
{1, . . . , n} with xti = t j (i)si, j (i), and so [si, j (i)] ∈ Monn(S).
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Definition. Let S be a subgroup of finite index n in a group G. If {t1, . . . , tn}
is a left transversal of S in G, then the transfer VG→S : G → S/S′ is defined
by

x �→ det[si, j (i)]S′ =
n∏

i=1

si, j (i)S
′ =

n∏
i=1

t−1
j (i)xti S′,

where S′ is the commutator subgroup of S.

Transfer VG→S : G → S/S′ is a homomorphism whose definition is in-
dependent of the choice of left transversal of S in G (Rotman, An Intro-
duction to the Theory of Groups, Theorem 7.45). Since S/S′ is abelian,
G ′ ⊆ ker VG→S , and one usually views the transfer as a map G/G ′ → S/S′.
Since G/G ′ ∼= H1(G,Z), by Theorem 9.52, the transfer can be viewed as a
map H1(G,Z) → H1(S,Z), and it is natural to wonder whether it is related
to Tr1. The next theorem is due to B. Eckmann, “Cohomology of groups and
transfer,” Annals Math. 58 (1953), 481–493.

Theorem 9.97 (Eckmann). If G is a group and S is a subgroup of finite
index m, then Tr1 : H1(G,Z) → H1(S,Z) is the transfer VG→S.

Proof. Consider the commutative diagram of S-modules with vertical maps
inclusions:

0 �� G �� ZG ��
Z

�� 0

0 �� S

λ

��

�� ZS ��

��

Z
��

=
��

0.

Taking homology gives the bottom two rows of the following diagram.

0 �� G/G ′ = H1(G,Z)
∂G ��

Tr1

��

H0(G,G) = G/G2

Tr0

��
0 �� S/S′ = H1(S,Z)

� �� H0(S,G) = G/GS

0 �� H1(S,Z)

=
��

∂S

�� H0(S,S) = S/S2

λ∗

��

The top row arises from the G-exact sequence 0 → G → ZG → Z → 0.
Recall Proposition 9.46: we may identify H0(G,G) with G/G2; recall The-
orem 9.52: the connecting homomorphism ∂G : H1(G,Z) → H0(G,G) =
G/G2, given by cls([x] − 1) �→ x − 1 + G2, is an isomorphism. All the rows
are exact, for the preceding terms H1(G,ZG) and H1(S,ZG) are {0}, be-
cause ZG is projective, even free, as a G-module and as an S-module. Finally,
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the diagram commutes; in particular, the top square commutes, by Proposi-
tion 9.93:

Tr0 ∂G = �Tr1 . (3)

We compute. Let G =⋃i ti S. Using the notation in Eqs. (1) and (2),

Tr0 ∂G(xG ′) = νG/S(x − 1 + G2)

=
∑

i

t−1
j (i)(x − 1)+ SG

=
∑

i

(si, j (i) − 1)t−1
i + SG by Corollary 9.92

=
∑

i

(si, j (i) − 1)+ SG,

the last equation holding because (s−1)t−1
i −(s−1) = (s−1)(t−1

i −1) ∈ SG
for all s ∈ S.

By definition, VG→S(xG ′) =∏i si, j (i)S′. Hence,

�VG→S(xG ′) = �
(∏

i

si, j (i)S
′
)

= λ∗∂S

(∏
i

si, j (i)S
′
)

= λ∗
(∑

i

si, j (i) − 1
)
+ S2

=
∑

i

(si, j (i) − 1)+ SG.

Therefore, Tr0 ∂G(xG ′) = �VG→S(xG ′). But Tr0 ∂G = �Tr1, by Eq. (3),
so that �Tr1 = �VG→S . Since � is an injection, we have Tr1 = VG→S . •

Exercises

*9.31 Consider the commutative diagram of modules

A
� �� B

d ��

f
��

C �� D

B ′
α

�� C ′

g

��

in which d� = 0, f is surjective, and g is injective.
(i) Prove that d̄ : B/ im� → C , given by b + im� �→ db, is

a well-defined map with ker d̄ = ker d/ im�.
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(ii) Prove that ϕ : B/ im� → C ′, given by b + im� �→ α f b,
is well-defined.

(iii) Using surjectivity of f , prove that ker d̄ ∼= kerα.
(iv) As in the first three parts, prove that coker d̄ ∼= cokerα.

9.32 If T ⊆ S ⊆ G are subgroups of finite index, use Theorem 9.97 to
prove

VG→T = VS→T VG→S.

9.7 Tate Groups

If G is a finite group and 0 → A → B → C → 0 is an exact sequence of
G-modules, then the long exact homology and cohomology sequences can be
spliced to form a doubly infinite long exact sequence. This will allow us to do
dimension shifting in both directions, enabling us to define change of groups
maps in homology as well as in cohomology.

Recall that

H0(G, A) = AG = A/GA and H0(G, A) = AG,

where G is the augmentation ideal of G.

Lemma 9.98. Let G be a finite group, and let A be a G-module.

(i) If N : A → A is the norm map, then GA ⊆ ker N, im N ⊆ AG, and
αA : H0(G, A) → H0(G, A), given by

αA : a + GA �→ Na,

is a well-defined natural map.

(ii) If N A = ker N = {a ∈ A : Na = 0}, then

kerαA = N A/GA and cokerαA = AG/N A;
that is, there is an exact sequence

0 → N A/GA → H0(G, A)
αA−→ H0(G, A) → AG/N A → 0.

Proof.

(i) By Lemma 9.24, G is generated by all y−1 for y ∈ G. If (y−1)a ∈ GA,
then N (y − 1)a = 0, for N (y − 1) =∑x xy −∑x x = 0. That Na ∈
im N is Lemma 9.86 [a simpler proof here is yNa = (

∑
x yx)a = Na].

It follows that αA is a well-defined map whose values lie in AG .
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To prove naturality, we must show that the following diagram commutes
for f : A → B.

H0(G, A)

αA

��

f∗ �� H0(G, B)

αB

��
H0(G, A)

f∗
�� H0(G, B).

Going clockwise, a + GA �→ f a + GB �→ N f a; going counterclock-
wise, a + GA �→ Na �→ f (Na).

(ii) Both equalities are easily verified. •

Proposition 9.99. If G is a finite group and A is an induced G-module, then

N A/GA = {0} = AG/N A

and αA : H0(G, A) → H0(G, A) is a natural isomorphism.

Proof. We know that GA ⊆ N A is always true. We prove the reverse inclu-
sion when A is induced; that is, A = ZG ⊗Z B for some abelian group B. If
a ∈ N A, then a has a unique expression a = ∑

x∈G x ⊗ bx , where bx ∈ B,
and Na = 0. Since N x = N for every x ∈ G, we have

0 = N
(∑

x

x ⊗ bx

)
=
∑

x

N x ⊗ bx =
∑

x

N ⊗ bx

= N
(∑

x

1 ⊗ bx

)
= N

(
1 ⊗

∑
x

bx

)
.

If b ∈ B and N (1 ⊗ b) = 0, then b = 0, for the x-component of N (1 ⊗ b)
in ZG ⊗ B is 0 = x ⊗ b. It follows that

∑
x bx = 0 and

∑
x 1 ⊗ bx =

1 ⊗∑x bx = 0. Therefore,

a = a −
∑

x

1 ⊗ bx =
∑

x

(x − 1)⊗ bx ∈ GA,

for G is generated by all x − 1.
We know that N A ⊆ AG is always true. We prove the reverse inclusion

when A = ZG ⊗Z B. If a ∈ AG , then a has a unique expression a =∑
x∈G x ⊗ bx and ya = a for all y ∈ G. Thus,

∑
yx ⊗ bx =

∑
x ⊗ bx . It

follows that byx = bx for all y, x . Therefore, all bx are equal, say, bx = b for
all x , and so a =∑ x ⊗ bx =

∑
x ⊗ b = N (1 ⊗ b) ∈ N A.

Finally, αA is natural, by Lemma 9.98, and it is an isomorphism because
kerαA = {0} = cokerα. •
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Definition. If G is a finite group and A is a G-module, then

Ĥq(G, A) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Hq(G, A) if q ≥ 1,

AG/N A if q = 0,

N A/GA if q = −1,

Hq−1(G, A) if q ≤ −2.

We will soon see that the Tate groups arise naturally as the cohomology
groups of a doubly infinite complex.

Proposition 9.100. If G is a finite group and A is an induced G-module,
then

Ĥq(G, A) = {0}
for all q ∈ Z.

Proof. Since G is finite, Ĥq(G, A) = {0} for all q ≥ 1 and all q ≤ −2, by
Proposition 9.77. If q = −1, 0, then Ĥq(G, A) = {0}, by Proposition 9.99.

•

Theorem 9.101. If G is a finite group and 0 → A → B → C → 0 is an
exact sequence of G-modules, then there is a long exact sequence

→ Ĥq(G, A) → Ĥq(G, B) → Ĥq(G,C) → Ĥq−1(G, A) → .

Proof. Since Ĥq(G, A) = Hq(G, A) for all q ≥ 1, we have exactness of
the sequence for all such q; similarly, since Ĥq(G, A) = Hq−1(G, A) for all
q ≤ −2, we have exactness of the sequence for all such q.

Let us prove exactness for q = −1 and q = 0. By naturality of the maps
αA, there is a commutative diagram

H1(G,C)
∂ �� H0(G, A) ��

αA

��

H0(G, B) ��

αB

��

H0(G,C) ��

αC

��

0

0 �� H0(G, A) �� H0(G, B) �� H0(G,C)
δ �� H1(G, A).

The version of the Snake Lemma in Exercise 6.5 on page 338 gives an exact
sequence

kerαA �� kerαB �� kerαC �� cokerαA �� cokerαB �� cokerαC ;
that is, there is an exact sequence

Ĥ−1(G, A) →Ĥ−1(G, B) → Ĥ−1(G,C)

→ Ĥ0(G, A) → Ĥ0(G, B) → Ĥ0(G,C).

The reader is asked to prove exactness at Ĥ−1(G, A) and Ĥ0(G,C) in Exer-
cise 9.36 on page 595. •
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Definition. Let G be a finite group and let Z be viewed (as usual) as a trivial
G-module. A complete resolution is an exact sequence X

�� X1 �� X0
d ��

ε ���
��

��
� X−1 �� X−2 ��

Z,
η

��(((((((

where each Xq is finitely generated G-free, ε is surjective, η is injective, and
d = ηε.

We will use the next lemma to prove the existence of complete resolutions.

Lemma 9.102. If
→ Fn+1 → Fn → Fn−1 →

is an exact sequence of finitely generated free abelian groups, then

→ Hom(Fn−1,Z) → Hom(Fn,Z) → Hom(Fn+1,Z) →
is also an exact sequence of finitely generated free abelian groups.

Proof. Factor the original exact sequence into short exact sequences:

�� Fn+1 ��

����
���

��
Fn ��

����
���

��
Fn−1 ��

Kn

��������
Kn−1.

��








Since every subgroup of a free abelian group is free abelian, hence projective,
each exact sequence 0 → Kn → Fn → Kn−1 → 0 splits. The result follows,
for HomZ(�,Z) preserves split exact sequences. •

Proposition 9.103. Every finite group G has a complete resolution X.

Proof. Since G is finite, there is a G-free resolution of Z

→ P1 → P0 → Z → 0

in which each Pi is finitely generated. Define the dual M∗ of a G-module M
by

M∗ = HomZ(M,Z)

[as usual, M∗ is a G-module with diagonal action: x f : m �→ x f (x−1m)].
Since Z

∗ = Z, Lemma 9.102 gives an exact sequence

0 → Z → P∗
0 → P∗

1 →
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in which each P∗
i is a finitely generated G-free module. Splicing these two

sequences together gives a doubly infinite exact sequence

�� P1 �� P0 ��

���
��

��
� P∗

0
�� P∗

1
��

Z,

##������

which is a complete resolution once we relabel: for all q ≥ 0, set

Xq = Pq and X−q = P∗
q+1. •

Remark. If G is finite, then every complete resolution X is of the form just
constructed (see Brown, Cohomology of Groups, p. 133). �

Proposition 9.104. If G is a finite group and X is the complete resolution
constructed in Proposition 9.103, then for all q ∈ Z,

Ĥ q(G, A) ∼= Hq(HomG(X, A)).

Proof. The left half of X gives a deleted G-free resolution of Z

L =→ P1 → P0 → 0,

and so Hq(HomG(L, A)) = Extq
ZG(Z, A) = Hq(G, A) for all q ≥ 0. There-

fore, Hq(HomG(X, A)) = Hq(G, A) for all q ≥ 1 (this is not true for q = 0
because X−1 	= {0} = L−1).

We now treat the right half of X. The reader may check that if M is
any finitely generated free G-module, then there is a natural G-isomorphism
σ : M ⊗G A → HomZ(M∗, A), where M∗ is the dual of M , defined as fol-
lows: if f ∈ M∗ = HomZ(M,Z), then

σ(m ⊗ a) : f �→ f (m)a.

By Proposition 9.99, the composite τ : M ⊗G A → HomG(M∗, A),

(M ⊗Z A)G

τ

BB
αA �� (M ⊗Z A)G σ �� HomZ(M∗, A)G,

is a natural isomorphism [recall that M ⊗G A = (M ⊗Z A)G and
HomZ(M∗, A)G = HomG(M∗, A)]. Naturality of τ implies that τ gives an
isomorphism of complexes L ⊗G A ∼= HomG(L∗, A). Since X−q = P∗

q+1, it
follows, for all q ≥ 1, that

H−q−1(HomG(X, A)) = H−q−1(HomG(L∗, A))

∼= Hq(L ⊗G A) = TorZG
q (Z, A) = Hq(G, A).
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Therefore, Hq(HomG(X, A) ∼= Hq(G, A) for all q ≤ −2.
It remains to prove Hq(HomG(X, A)) ∼= Ĥq(G, A) for q = −1, 0; that

is, H−1(HomG(X, A)) = N A/GA and H0(HomG(X, A)) = AG/N A. The
reader may show that the following diagram commutes:

HomG(P−1, A)
d∗ ��

=
��

HomG(P0, A)

HomG(P∗
0 , A)

τ−1
��

P0 ⊗G A

ε⊗1 ��
AG αA

�� AG

ε∗

��

[if u ⊗ a ∈ P0 ⊗G A and v ∈ P0, then both clockwise and counterclock-
wise composites send u ⊗ a to the map f ∈ HomG(P0, A) with f : v �→
ε(Nv)ε(u)]. The result now follows from Exercise 9.31 on page 579, for
Ĥ−1(G, A) = kerαA and Ĥ0(G, A) = cokerαA. •

We now give another proof of Corollary 9.50 that explains why indices
are off by 1.

Proposition 9.105 (= Corollary 9.50). If G is a finite cyclic group and A
is a G-module, then, for all n ≥ 1,

H2n−1(G, A) = H2n(G, A),

H2n(G, A) = H2n−1(G, A).

Proof. There is a complete resolution

N �� ZG
D �� ZG

ε ����
���

��
N �� ZG

D �� ZG
N ��

Z,
η

��(((((((

where D : x �→ x − 1, ε is the augmentation, and η : 1 �→ N . The result now
follows by recalling that Hq(G, A) = Ĥ−q−1(G, A) for all q ≥ 1. •

There are products defined in Tate cohomology.

Theorem. Let G be a finite group, and let A, B be G-modules. There exists
a unique family of homomorphisms

Ĥ p(G, A)⊗Z Ĥq(G, B) → Ĥ p+q(G, A ⊗ B)

for every ordered pair (p, q) ∈ Z×Z (denoted by a⊗b �→ a.b) that satisfies
the following conditions:
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(i) they are functorial in A and in B;

(ii) when p = 0 = q, they are induced by the obvious product AG ⊗ BG →
(A ⊗ B)G;

(iii) if 0 → A′ → A → A′′ → 0 is an exact sequence of G-modules, and if

0 → A′ ⊗ B → A ⊗ B → A′′ ⊗ B → 0

is an exact sequence, then

(δa′′).b = δ(a′′.b) ∈ Ĥ p+q+1(G, A′ ⊗ B),

where a′′ ∈ Ĥ p(G, A′′) and b ∈ Ĥq(G, B);

(iv) if 0 → B ′ → B → B ′′ → 0 is an exact sequence of G-modules and if

0 → A ⊗ B ′ → A ⊗ B → A ⊗ B ′′ → 0

is exact, then

a.(δb′′) = (−1)pδ(a.b′′) ∈ Ĥ p+q+1(G, A ⊗ B)

for all a ∈ Ĥ p(G, A) and b′′ ∈ Ĥq(G, B ′′).

Proof. See any of the following: Brown, Cohomology of Groups, Chapter V;
Cassels–Fröhlich, Algebraic Number Theory, p. 105; Evens, The Cohomology
of Groups, Chapter 3; Serre, Local Fields, p. 139; or Weiss, Cohomology of
Groups, Chapter 4. •

The special case A = k = B, where k is a commutative ring viewed as
a trivial G-module, is most interesting. Now Ĥ∗(G, k) = ⊕

q≥0 Ĥq(G, k),
called the cohomology ring of G over k, is a graded ring with multiplication
cup product, where if u ∈ Ĥq(G, k) and v ∈ Ĥq(G, k), then

u ∪ v = μ∗(u.v),

where μ : k⊗k → k is the multiplication in the ring k, u.v ∈ Ĥ p+q(G, k⊗k),
and μ∗ : Ĥ p+q(G, k ⊗ k) → Ĥ p+q(G, k). This added structure has impor-
tant applications. For example, cup product is used to prove the Integral
Duality Theorem: Hp−1(G,Z) ∼= Ĥ p(G,Z) for all p ∈ Z. It is a theorem of
Evens and Venkov, independently, that if G is a finite group and k is a noethe-
rian commutative ring on which G acts trivially, then the cohomology ring
Ĥ∗(G, k) is a noetherian k-algebra (see Evens, The Cohomology of Groups,
p. 92).
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9.8 Outer Automorphisms of ppp-Groups

If G is a group of order p, where p is prime, then Aut(G) ∼= Ip−1, by Exer-
cise 9.10 on page 504 and, of course, every automorphism except 1G is outer
(because G is abelian). We are now going to prove a theorem of Gaschütz,
“Nichtabelsche p-Gruppen besitzen äussere p-Automorphismen,” J. Algebra
4 (1966), 1–2: if G is a finite p-group with |G| > p, then G has an outer auto-
morphism of order p (it is not obvious that G has any outer automorphisms!).

Lemma 9.106 (Gaschütz). Let p be a prime, let G be a finite p-group,
and let A be a G-module that is also a finite p-group. If H 1(G, A) = {0},
then H1(S, A) = {0} = H2(S, A) for all subgroups S ⊆ G.

Remark. Gaschütz proved, given the hypotheses, that Hq(S, A) = {0} for
all q ≥ 1 and all subgroups S ⊆ G. �
Proof. We prove the lemma by induction on |G| ≥ 1. The base step is
true, by Corollary 9.28. Assume now that |G| > 1, and choose a maximal
subgroup M ⊆ G. Note that M � G and |G/M | = p.11 By Theorem 9.84(i),
there is an exact sequence

0 �� H1(G/M, AM ) �� H1(G, A) �� H1(M, A)G/M �� H2(G/M, AM ).

Now H1(G, A) = {0}, by hypothesis, so that H1(G/M, AM ) = {0}, by ex-
actness. Recall that if B is a finite J -module, where J is a finite cyclic group,
then its Herbrand quotient is h(B) = |H2(J, B)|/|H1(J, B)|; Corollary 9.31
says that h(B) = 1. As AM is a finite G/M-module, we have h(AM ) = 1,
and so

H2(G/M, AM ) = {0}.
The exact sequence now gives

H1(M, A)G/M = {0}.
Since H1(M, A) is finite (Corollary 9.41) of p-power order (Proposition 9.40)
acted on by the p-group G/M , there must be a fixed point if H1(M, A) 	= {0}
(Suzuki, Group Theory I, p. 87); we conclude that H1(M, A) = {0}.

Now let S be any proper subgroup of G. There is a maximal subgroup M
containing S. By induction, H1(S, A) = {0} = H2(S, A), and it remains to
show that H2(G, A) = {0}. By Theorem 9.84(ii), there is an exact sequence

0 → H2(G/M, AM ) → H2(G, A) → H2(M, A)G/M .

We have already seen that H2(G/M, AM ) = {0}, while H2(M, A)G/M = {0}
because H2(M, A) = {0}. Exactness now gives H2(G, A) = {0}. •

11Rotman, An Introduction to the Theory of Groups, Theorem 5.40.
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As is common in the Theory of Groups, many proofs proceed by a series
of reductions. We follow the proof in Gruenberg, Cohomological Topics in
Group Theory, pp. 110–115. In contrast to earlier notation in this chapter, all
groups and subgroups will now be written multiplicatively.

Lemma 9.107. Let p be a prime, let G be a finite p-group with |G| > p,
and let A be a normal abelian subgroup. If H1(G/A, A) 	= {0}, then there
exists an outer automorphism of G of order p.

Proof. Let ϕ : G → G be an automorphism that stabilizes the extension
1 → A → G → G/A → 1. Now H1(G/A, A) ∼= Stab(G, A)/Inn(G, A),
by Corollary 9.20, so that the hypothesis gives such a ϕ that is not an inner
automorphism. Moreover, |G/A|H1(G/A, A) = {0}, by Proposition 9.40,
and so every ϕ has order some power of p. •

Lemma 9.108. Let p be a prime, and let G be a finite p-group with |G| > p.
If there is a maximal subgroup M with Z(M) ⊆ Z(G), then there exists an
outer automorphism of G of order p.

Proof. We have noted earlier that M � G and |G/M | = p. Now M 	= {1}
because |G| > p, and so Z(M) 	= {1}.12 In particular, Z(G) 	= {1}. Now
there exists a homomorphism f : G → Z(M) with M = ker f ; for example,
let f be the composite of the natural map G → G/M with a map taking a
generator of G/M to an element of order p in Z(M). Define ϕ : G → G by

ϕ(x) = x f (x).

Note that ϕ fixes M pointwise, for if x ∈ M , then x ∈ ker f , and so ϕ(x) =
x f (x) = x . Conversely, if ϕ(x) = x , then x f (x) = x , f (x) = 1, and
x ∈ ker f = M . It follows that ϕ 	= 1G . Now ϕ is a homomorphism:

ϕ(xy) = xy f (xy) = xy f (x) f (y) = x f (x)y f (y) = ϕ(x)ϕ(y),

for f (x) ∈ Z(M) ⊆ Z(G). The map ϕ is injective: if 1 = ϕ(x) = x f (x),
then x = f (x)−1 ∈ Z(M) ⊆ M ; hence, ϕ(x) = x and x = 1. Since G is
finite, ϕ ∈ Aut(G). Now ϕ p(x) = x f (x)p = x , for im f is cyclic of order p,
and so ϕ p = 1G . Therefore, ϕ is an automorphism of order p.

If ϕ is inner, there is g ∈ G with ϕ(x) = gxg−1 for all x ∈ G. But ϕ fixes
M pointwise, so that if x ∈ M , then x = ϕ(x) = gxg−1; that is, g ∈ CG(M),
the centralizer of M in G. If g ∈ M , then g ∈ CG(M)∩M = Z(M) ⊆ Z(G),
which says that conjugation by g is 1G , contradicting ϕ 	= 1G . Therefore,
g /∈ M . By maximality, G = 〈g〉M . But this also implies g ∈ Z(G): every

12Ibid., Theorem 5.41(i): if H is a nontrivial normal subgroup of a finite p-group G,
then H ∩ Z(G) 	= {1}.
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z ∈ G has the form z = gi m for some m ∈ M and i ≥ 0, and so g commutes
with z. Again, g ∈ Z(G), so that conjugation by g is 1G in this case as well,
a contradiction. Therefore, ϕ is outer. •

There are finite groups that have no outer automorphisms. For example,
if n 	= 2, 6, then every automorphism of the symmetric group Sn is inner.13

Theorem 9.109 (Gaschütz). If p is a prime and G is a finite p-group with
|G| > p, then there exists an outer automorphism of G of order p.14

Proof. Let A be a maximal abelian normal subgroup of G. We may as-
sume that H1(G/A, A) = {0}, by Lemma 9.107, and so Lemma 9.106 gives
H2(G/A, A) = {0}; by the Schur-Zassenhaus Theorem, G = A � Q, where
Q ∼= G/A.

Choose a maximal subgroup M containing Q; by Lemma 9.108, we may
assume that Z(M) 	⊆ Z(G). Write

B = A ∩ M and C = A ∩ Z(M).

We are going to prove that B is cyclic. Now M � G and |G/M | = p.15

Since Z(M) 	⊆ Z(G), there is y ∈ Z(M) with y /∈ Z(G). Hence, G = AM ,
because G = A � Q and M ⊇ Q. If y ∈ A, then y commutes with all
elements in Q ⊆ M and in A, giving y ∈ Z(G), a contradiction. Thus,
y /∈ A and, hence, y /∈ C = A ∩ Z(M). Replacing y by a suitable pth
power if necessary, we may assume that y p ∈ C . Hence, |〈y,C〉/C | = p,
and so S = 〈y,C〉A/A is cyclic with generator s = y A of order p. The
normal subgroup A is an S-module, where s acts as conjugation by y. We
claim that AS 	= A; otherwise, y ∈ CG(A) = A, the centralizer of A in G;16

that is, if gag−1 = a for all a ∈ A, then g ∈ A, contradicting y /∈ A.
Now B = A ∩ M ⊆ AS , for y ∈ Z(M) fixes M pointwise. For the reverse
inclusion, it is obvious that AS ⊆ A. If AS 	⊆ M , then maximality of M
gives G = AS M , so that y ∈ Z(G), a contradiction. Therefore, AS = B.
Since S = A〈y,C〉/A ⊆ G/A, Lemma 9.106 gives H2(S, A) = {0}. But
H2(S, A) = AS/N A, by Theorem 9.27, where N = 1 + s + · · · + s p−1, so
that AS = N A. Thus, A/B = A/(A ∩ M) ∼= AM/M = G/M , which is

13Ibid., p. 158.
14If one merely wants the existence of outer automorphisms (not necessarily of order

p), then the hypothesis can be weakened to “|G| > 2.” If p is a prime and |G| = p, then
G is cyclic, |Aut(G)| = p − 1, and there are no automorphisms of order p; if |G| = 2,
then Aut(G) = {1} and there are no outer automorphisms at all.

15Ibid., Theorem 5.40: if M is a maximal subgroup of a finite p-group G, then M � G
and |G/M | = p.

16Ibid., Theorem 5.41(ii): if A is a maximal abelian normal subgroup of a finite p-group
G, then CG(A) = A
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cyclic of order p. Hence, A = 〈a, B〉, where a ∈ A, a p ∈ B, and

B = AS = N A = 〈Na, N B〉 = 〈Na, B p〉 = 〈Na〉,
because B p ⊆ �(B).17 We have shown that B is cyclic.

Suppose that every abelian normal subgroup of G is cyclic. Since G =
A � Q, we have M = (A ∩ M) � Q = B � Q, by Exercise 9.6 on page 503.
Note that C = A ∩ Z(M) � G, for it is the intersection of two normal sub-
groups. We claim that B 	= C . Now

B

C
= A ∩ M

A ∩ Z(M)
= A ∩ M

(A ∩ M) ∩ Z(M)
∼= (A ∩ M)Z(M)

Z(M)
= B Z(M)

Z(M)
.

If B = C , then B Z(M) = Z(M), so that B ⊆ Z(M) and Exercise 9.6
on page 503 gives Z(M) = B � (Q ∩ Z(M)) = B × (Q ∩ Z(M)). But
Z(M), B, and Q ∩ Z(M) are nontrivial groups, the latter being nontrivial
because Q ⊆ M . This cannot be, for cyclic p-groups are indecomposable.
Thus, B/C 	= {1}, so that Z(G/C) ∩ B/C 	= {1}, by [If H is a nontrivial
normal subgroup of a finite p-group G, then H ∩ Z(G) 	= {1}. In particular,
Z(G) 	= {1},18, and so there is a nontrivial xC ∈ B/C commuting with every
gC ∈ G/C ; that is, x ∈ B, x /∈ C , and xgx−1g−1C = C for all g ∈ G. Thus,
〈x,C〉� G; since 〈x,C〉 is abelian, it is cyclic, by hypothesis. Now

〈x,C〉Z(M)

C
∼= 〈x,C〉

C
× Z(M)

C
,

for 〈x,C〉 ⊆ B implies 〈x,C〉∩Z(M) ⊆ B∩Z(M) = C . But both factors on
the right-hand side are nontrivial: 〈x,C〉 	= C , because x /∈ C ; Z(M) 	= C ,
because y ∈ Z(M), but y /∈ C . The indecomposability of cyclic p-groups
has been contradicted again, and we conclude that not all abelian normal sub-
groups of G can be cyclic.

We may now assume that G contains a noncyclic abelian normal sub-
group, say, D. There is a maximal abelian normal subgroup A containing D,
and it is not cyclic (for every subgroup of a cyclic group is cyclic). Know-
ing that A is not cyclic, Exercise 9.5 on page 503 says that the exact se-
quence 0 → B → A → Ip → 0 splits: A = B × 〈a〉, where a p = 1
(for A/B ∼= G/M is cyclic of order p). We have seen that B = 〈Na〉 if
A = 〈a, B〉 and a p ∈ B (recall that N = 1 + s + · · · + s p−1, where S = 〈s〉
and s p = 1). Now sa = bai for some b ∈ B and i ≥ 1, for sa ∈ A; since
a p = 1, we must have bp = 1. Iterating, s j a = b1+i+···+ j ai j

. In particular,

17Ibid., Theorem 5.48: if G is a finite p-group, then �(G) = G pG′, where G p = 〈g p :
g ∈ G〉 and G′ is the commutator subgroup, and Theorem 5.47: the Frattini subgroup
�(G) consists of all the nongenerators of G; that is, if G = 〈X,�(G)〉, then G = 〈X〉.

18Ibid., Theorem 5.41(i).
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if j = p, then s p = 1 gives a = s pa = b1+i+···+i p
ai p

. By Fermat’s Theo-
rem, i p ≡ i mod p, so that a1−i ∈ B ∩ 〈a〉 = {1}. Since a p = 1, we have
i ≡ 1 mod p, and so sa = ba and s j a = b j a. Hence,

Na = a(ba)(b2a) · · · (bp−1a) = bp(p−1)/2a p = bp(p−1)/2.

If p is odd, then Na = bp(p−1)/2 = 1 (because bp = 1), so that B = 〈Na〉 =
{1} and A = 〈a〉 has order p, contradicting our hypothesis that A is not cyclic.
Therefore, p = 2, |B| = 2, and A ∼= V. Now NG(A) = G, the normalizer
of A in G, because A � G, and A = CG(A);19 that is, if gag−1 = a for all
a ∈ A, then g ∈ A. Therefore, [If A ⊆ G, then CG(A)� NG(A), and there is
an imbedding NG(A)/CG(A) → Aut(A)20 gives G/A imbedded in Aut(A).
But A ∼= V and Aut(V) ∼= S3. Since G/A is a 2-group and |S3| = 6, we have
|G/A| = 2 and |G| = 8.

There are only five groups of order 8: three abelian ones, Q, and D8, and
Exercise 9.11 on page 504 shows that each of these has an outer automorphism
of order 2. •

We mention another nice result.

Theorem. If G is a finite group, then G is nilpotent if and only if whenever
A is a finite G-module for which Ĥn(G, A) = {0} for some n ∈ Z, then
Ĥq(G, A) = {0} for all q ∈ Z.

Proof. K. Hoechsmann, P. Roquette, and H. A. Zassenhaus, “A cohomo-
logical characterization of finite nilpotent groups,” Arch. Mat. 19 (1968),
225–244. •

9.9 Cohomological Dimension

We have interpreted Hn(G, A) for n = 0, 1, 2, 3, but are higher-dimensional
groups of any value? The following definition is reminiscent of global dimen-
sion of rings.

Definition. A group G has cohomological dimension ≤ n, denoted by
cd(G) ≤ n, if

Hq(G, A) = {0}
for all q > n and all G-modules A. Define cd(G) = ∞ if no such integer n
exists.

We say that cd(G) = n if cd(G) ≤ n and it is not true that cd(G) ≤ n−1;
that is, cd(G) ≤ n and Hn(G, A) 	= {0} for some G-module A.

19Ibid., Theorem .41(ii): if A is a maximal abelian normal subgroup of a finite p-group
G, then CG(A) = A.

20Ibid., Theorem 7.1(i).
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Example 9.110.

(i) If G = {1}, then cd(G) = 0, which is merely a restatement of Corol-
lary 9.28. We will prove the converse in Corollary 9.113.

(ii) If G is a finite cyclic group of order k > 1, then cd(G) = ∞, as we see
from Corollary 9.30 with A = Z.

(iii) If G ∼= Z is an infinite cyclic group, then cd(G) ≤ 1, by Theorem 9.55.
If cd(G) = 0, then H1(G, A) = {0} for all modules A. In particular,
H1(G,Z) = Der(G,Z)/PDer(G,Z) ∼= Hom(Z,Z) 	= {0}. Hence,
cd(G) = 1.

(iv) If G 	= {1} is free, then the argument just given in (iii) for Z applies
here, so that cd(G) = 1.

(v) If G is a free abelian group of finite rank n, then cd(G) = n (see Theo-
rem 10.57). �

Proposition 9.111. If G is a group and S ⊆ G is a subgroup, then

cd(S) ≤ cd(G).

Proof. We may assume that cd(G) = n < ∞. If m > n, there is a ZS-
module A with Hm(S, A) 	= {0}, and the Eckmann–Shapiro Lemma, Propo-
sition 9.76, applies to give Hm(G,HomZS(ZG, A)) ∼= Hm(S, A) 	= {0},
contradicting cd(G) = n. •

Corollary 9.112. A group G of finite cohomological dimension is torsion-
free; that is, G has no elements of finite order (other than 1).

Proof. The statement follows from Proposition 9.111, for if S is a finite
cyclic subgroup with |S| > 1, then cd(S) = ∞. •

Corollary 9.113. A group G = {1} if and only if cd(G) = 0.

Proof. If G = {1}, then cd(G) = 0, by Example 9.110(i). Conversely, if
cd(G) = 0, then Proposition 9.111 gives cd(S) = 0 for every cyclic subgroup
S ⊆ G. By Example 9.110(ii), all S = {1}, and so G = {1}. •

Are there groups G with cd(G) = 1 that are not free?
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Theorem 9.114 (Stallings). Let G be a finitely presented group, and let
F2G be the group algebra of G over F2. If H1(G,F2G) has more than two
elements, then G is a free product, G = H ∗ K , where H 	= {1} and K 	= {1}
(free product is the coproduct in Groups).

Proof. J. Stallings, “On torsion-free groups with infinitely many ends,” An-
nals Math. 88 (1968), 312–334 •

As a consequence, he proves the following corollaries.

Corollary 9.115. If G is a finitely generated group with cd(G) = 1, then G
is free.

The next corollary answers a question of Serre, “Sur la dimension coho-
mologique des groupes profinis,” Topology 3 (1965), 413–420.

Corollary 9.116. If G is a torsion-free finitely generated group having a free
subgroup S of finite index, then G is free.

Proof. Serre [“Cohomologie des groupes discrets,” Annals Math. Studies 70
(1971), 77-169] proved that if H is a subgroup of finite index in a torsion-free
group G, then cd(G) = cd(H). Now S is finitely generated21 (a subgroup of a
finitely generated group need not be finitely generated).22 Hence, cd(S) ≤ 1,
so that S is free, by Corollary 9.115. By Serre’s Theorem, cd(G) = 1; hence
G is free, by Corollary 9.115. •

Swan showed that both corollaries remain true if we remove the hypothe-
sis that G be finitely generated.

Theorem 9.117 (Stallings–Swan). A torsion-free group having a free sub-
group of finite index must be free.

Proof. R. G. Swan, “Groups of cohomological dimension 1,” J. Algebra 12
(1969), 585–610. •

There are interesting groups of cohomological dimension 2; we merely
mention some results whose proofs can be found in Gruenberg, Cohomologi-
cal Topics in Group Theory, Chapter 8.

21Rotman, Advanced Modern Algebra, Corollary 5.91: if G is a finitely generated group,
then every subgroup of finite index is also finitely generated

22Ibid., Corollary 5.90: if G is a free group of rank 2, then its commutator subgroup G′
is free of infinite rank.
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Theorem (Berstein). If G = lim−→i∈I
Gi , where I is a countable directed

set, then
cd(G) ≤ 1 + sup

i∈I
{cd(Gi )}.

Proof. I. Berstein, “On the dimension of modules and algebras IX; direct
limits,” Nagoya Math. J. 13 (1958), 83–84. •

Corollary. cd(Q) = 2, where Q is the group of rationals.

Proof. Since Q = lim−→〈1/n〉, we have cd(Q) ≤ 2, by Berstein’s Theorem.
However, cd(Q) 	= 1 because Q is not free. •

Theorem. If *i∈I Gi denotes the free product of groups Gi , then

cd(*i∈I
Gi ) = sup

i∈I
{cd(Gi )}.

Proof. Gruenberg, Cohomological Topics in Group Theory, pp. 138–140. •

Theorem (Lyndon). If G is a group having only one defining relation r ,
that is not a proper power (that is, r 	= wh for h > 1), then cd(G) ≤ 2.

Proof. Gruenberg, Cohomological Topics in Group Theory, pp. 129–130. •
Gruenberg also mentions a theorem of Papakyriakopoloulos, “On Dehn’s

lemma and the asphericity of knots,” Annals Math. 66 (1957), 1–26: if K is a
tame knot, then cd(π1(R

3 − K )) ≤ 2, and the knot is trivial if and only if the
fundamental group is infinite cyclic.

Exercises

9.33 (i) Give an example of a induced G-module that is not injec-
tive.

(ii) Give an example of an induced G-module that is not pro-
jective.

*9.34 The ring LZ[x] of all Laurent polynomials over Z in one indeter-
minate consists of all formal sums

∑ n
i=k mi xi , where mi ∈ Z and

k ≤ n are (possibly negative) integers.
(i) Prove that LZ[x] ∼= ZG, where G ∼= Z.
(ii) If S = {xk : k ≥ 0}, prove that LZ[x] ∼= S−1

Z[x].
(iii) If G is the free abelian group with basis {x1, . . . , xn}, de-

fine the ring LZ[x1, . . . , xn] of Laurent polynomials over
Z in n indeterminates to be S−1

Z[x1, . . . , xn]. Prove that
LZ[x1, . . . , xn] ∼= ZG.
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(iv) Prove that cd(ZG) ≤ n+1 when G is free abelian of rank n.
Hint. Use Hilbert’s Syzygy Theorem.

9.35 Let G be a group. If B and A are G-modules, make A ⊗Z B into a
G-module with diagonal action:

g(b ⊗ a) = (gb)⊗ (ga).

If A is a G-module, let A0 be its underlying abelian group. Prove
that ZG ⊗Z A0 ∼= ZG ⊗Z A as G-modules.
Hint. Define f : ZG ⊗Z A0 → ZG ⊗Z A by g ⊗ a �→ g ⊗ ga.

*9.36 Let G be a finite group and let 0 → A → B → C → 0 be an exact
sequence of G-modules. Find a formula for the boundary maps, and
prove exactness of

H̃−2(G,C) → H̃−1(G, A) → H̃−1(G, B)

and
H̃0(G, B) → H̃0(G,C) → H̃1(G, A).

9.10 Division Rings and Brauer Groups

Brauer groups, which are useful in studying division rings, turn out to be
cohomology groups. We begin by discussing some standard definitions and
examples, and we state some important theorems without proof (the reader
is referred to my book Advanced Modern Algebra). Our ultimate goal in
this section is illustrate again the value of Homological Algebra, this time by
constructing a (noncommutative) division ring of characteristic p > 0.

Definition. A division algebra over a field k is a division ring regarded as
an algebra over its center k.

Example 9.118. The most familiar example of a noncommutative division
ring is the quaternions, the four-dimensional R-algebra H with basis 1, i, j, k,
such that

i2 = j2 = k2 = −1,

i j = k = − j i, jk = i = −k j, ki = j = −ik.

It is routine to check that H is an R-algebra with center R · 1. To see that it
is a division ring, define the conjugate of h = a + bi + cj + dk ∈ H to be
h = a − bi − cj − dk. Then hh = a2 + b2 + c2 + d2, so that if h 	= 0, then
hh 	= 0. If h 	= 0, define

h−1 = h/hh = h/(a2 + b2 + c2 + d2).
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If k is a field such that a2 + b2 + c2 + d2 = 0 if and only if a = b =
c = d = 0, then these formulas show that the four-dimensional k-algebra
with basis 1, i, j, k is also a division ring (of course, this construction does
not apply when k = C). �

W. R. Hamilton discovered the quaternions in 1843, and F. G. Frobenius,
in 1880, proved that the only division algebras over R are R, C, and H (see
Theorem 9.128). No other examples of noncommutative division rings were
known until cyclic algebras were found in the early 1900s, by J. M. Wed-
derburn and by L. E. Dickson. In 1932, A. A. Albert found an example of a
crossed product algebra that is not a cyclic algebra, and S. A. Amitsur (“On
central division algebras,” Israel J. Math. 12 (1972), 408–420) found an ex-
ample of a noncommutative division ring that is not a crossed product algebra.

Definition. A k-algebra A over a field k is central simple if it is finite-
dimensional, simple (no two-sided ideals other than A and {0}), and its center
Z(A) = k.

Example 9.119.

(i) Every division algebra � that is finite-dimensional over its center k is
a central simple k-algebra. The quaternions H is a central simple R-
algebra, and every field is a central simple algebra over itself.

(ii) If k is a field, then Matn(k) is a central simple k-algebra, where Matn(k)
is the k-algebra of all n × n matrices with entries in k.

(iii) If A is a central simple k-algebra, then its opposite algebra Aop is also
a central simple k-algebra. �

Theorem 9.120. Let A be a central simple k-algebra. If B is a simple k-
algebra, then A ⊗k B is a central simple Z(B)-algebra. In particular, if B is
a central simple k-algebra, then A ⊗k B is a central simple k-algebra.

Proof. Advanced Modern Algebra, Theorem 9.112. •
It is not generally true that the tensor product of simple k-algebras is again

simple; we must pay attention to the centers. In fact, a tensor product of
division algebras need not be a division algebra, as we see in the next example.

Example 9.121. The eight-dimensional R-algebra C ⊗R H is also a four-
dimensional C-algebra: a basis is

1 = 1 ⊗ 1, 1 ⊗ i, 1 ⊗ j, 1 ⊗ k.
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The reader can prove that the vector space isomorphism C⊗R H → Mat2(C)

with 1⊗ 1 �→ [
1 0
0 1

] = I , 1⊗ i �→ [
i 0
0 −i

]
, 1⊗ j �→ [

0 1
−1 0

]
, 1⊗ k �→ [

0 i
i 0

]
is an isomomorphism of C-algebras. �

The next theorem puts the existence of the isomorphism in Example 9.121
into the context of central simple algebras.

Notation. If A is an algebra over a field k, then we write [A : k] = dimk(A).

Theorem 9.122. Let k be a field and let A be a central simple k-algebra.

(i) If k is the algebraic closure of k, then there is an integer n with

k ⊗k A ∼= Matn(k).

(ii) If A is a central simple k-algebra, then there is an integer n with

[A : k] = n2.

Proof. Advanced Modern Algebra, Theorem 9.114. •
The division ring H of quaternions is a central simple R-algebra, and so

its dimension [H : R] must be a square (it is 4). Moreover, since C is alge-
braically closed, Theorem 9.122 gives C ⊗R H ∼= Mat2(C) (Example 9.121
displays an explicit isomorphism).

Definition. A splitting field for a central simple k-algebra A is a field exten-
sion E/k for which there exists an integer n such that E ⊗k A ∼= Matn(E).

Theorem 9.122 says that the algebraic closure k of a field k is a splitting
field for every central simple k-algebra A. There always exists a splitting field
that is a finite extension of k.

Theorem 9.123. If D is a division algebra over a field k and E is a maximal
subfield of D, then E is a splitting field for D; that is, E ⊗k D ∼= Mats(E),
where s = [D : E] = [E : k].

Proof. Advanced Modern Algebra, Theorem 9.118. •

Corollary 9.124. If D is a division algebra over a field k, then all maximal
subfields have the same degree over k.

This corollary can be illustrated by Example 9.121. The division algebra
H of quaternions is a four-dimensional R-algebra, and a maximal subfield
must have degree 2 over R. And so it is, for C is a maximal subfield.

Recall that a unit in a noncommutative ring A is an element having a
two-sided inverse in A.
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Theorem 9.125 (Skolem–Noether). Let A be a central simple k-algebra
over a field k, and let B and B ′ be isomorphic simple k-subalgebras of A. If
ψ : B → B ′ is an isomorphism, then there exists a unit u ∈ A with ψ(b) =
ubu−1 for all b ∈ B.

Proof. Advanced Modern Algebra, Corollary 9.121. •

Theorem 9.126 (Wedderburn). Every finite division ring D is a field.

Proof. (van der Waerden) Let Z = Z(D), and let E be a maximal subfield
of D. If d ∈ D, then Z(d) is a subfield of D and, hence, there is a maximal
subfield Ed containing Z(d). By Corollary 9.124, all maximal subfields have
the same degree, hence have the same order, and hence are isomorphic [two
finite fields are isomorphic if and only if they have the same order (it is not
generally true that maximal subfields of a division algebra are isomorphic)].
For every d ∈ D, the Skolem–Noether theorem says there is xd ∈ D with
Ed = xd Ex−1

d . Therefore, D =⋃x x Ex−1, and so

D× =
⋃

x

x E×x−1.

If E is a proper subfield of D, then E× is a proper subgroup of D×. But
this equation contradicts a standard exercise of group theory: if H is a proper
subgroup of a finite group G, then G 	=⋃x∈G x H x−1. Therefore, D× = E×,
D = E , and D is commutative. •

Lemma 9.127. If � is a division algebra over a field k, then a subfield
E ⊆ � is a maximal subfield if and only if every a ∈ � commuting with each
e ∈ E must lie in E.

Proof. Advanced Modern Algebra, Lemma 9.117. •

Theorem 9.128 (Frobenius). If D is a noncommutative finite-dimensional
real division algebra, then D ∼= H.

Proof. If E is a maximal subfield of D, then [D : E] = [E : R] ≤ 2. If
[E : R] = 1, then [D : R] = 12 = 1 and D = R. Hence, [E : R] = 2
and [D : R] = 4. If [E : R] = 2, then E ∼= C; let us identify E with
C. Now complex conjugation is an automorphism of E , so that the Skolem–
Noether theorem gives x ∈ D with z = xzx−1 for all z ∈ E . In particular,
−i = xi x−1. Hence,

x2i x−2 = x(−i)x−1 = −xi x−1 = i,

and so x2 commutes with i . Therefore, x2 ∈ CD(E) = E , by Lemma 9.127,
and so x2 = a + bi for a, b ∈ R. But

a + bi = x2 = xx2x−1 = x(a + bi)x−1 = a − bi,



9.10 Divis ion Rings and Brauer Groups 599

so that b = 0 and x2 ∈ R. If x2 > 0, then there is t ∈ R with x2 = t2. Now
(x + t)(x − t) = 0 gives x = ±t ∈ R, contradicting −i = xi x−1. Therefore,
x2 = −r2 for some real r . The element j , defined by j = x/r , satisfies
j2 = −1 and j i = −i j . The list 1, i, j, i j is linearly independent over R: if
a + bi + cj + di j = 0, then (−di − c) j = a + ib ∈ C. Since j /∈ C (lest
x ∈ C), we must have −di − c = 0 = a + bi . Hence, a = b = 0 = c = d.
Since [D : R] = 4, the list 1, i, j, i j is a basis of D. It is now routine to see
that if we define k = i j , then ki = j = −ik, jk = i = −k j , and k2 = −1,
and so D ∼= H. •

Brauer introduced the Brauer group to study division rings. Since con-
struction of division rings was notoriously difficult, he considered the wider
class of central simple algebras. Theorem 9.131 shows the success of this
approach.

Definition. Two central simple k-algebras A and B are similar, denoted by
A ∼ B, if there are integers n and m with

A ⊗k Matn(k) ∼= B ⊗k Matm(k).

By the Wedderburn theorem, A ∼= Matn(�) for a unique division algebra
� over k, and we shall see that A ∼ B if and only if they determine the same
division algebra.

Theorem 9.123 can be extended from division algebras to central simple
algebras.

Theorem 9.129. Let A be a central simple k-algebra over a field k, so that
A is isomorphic to a ring of matrices over �, a division algebra over k. If E
is a maximal subfield of �, then E splits A; that is, there are an integer n and
an isomorphism

E ⊗k A ∼= Matn(E).

Proof. Advanced Modern Algebra, Theorem 9.127. •

Definition. If [A] denotes the equivalence class of a central simple k-algebra
A under similarity, define the Brauer group Br(k) to be the set

Br(k) = {[A] : A is a central simple k-algebra
}

with binary operation

[A][B] = [A ⊗k B].
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Theorem 9.130. Br(k) is an abelian group for every field k. Moreover, if
A ∼= Matn(�) for a division algebra �, then � is central simple and [A] =
[�] in Br(k).

Proof. Advanced Modern Algebra, Theorem 9.128. The operation is well-
defined, the identity is [k], and [A]−1 = [Aop]. •

The next theorem shows the significance of the Brauer group.

Theorem 9.131. If k is a field, then there is a bijection from Br(k) to the
family D of all isomorphism classes of finite-dimensional division algebras
over k, and so

|Br(k)| = |D|.
Therefore, there exists a noncommutative division ring, finite-dimensional
over its center k, if and only if Br(k) 	= {0}.
Proof. Define a function ϕ : Br(k) → D by setting ϕ([A]) to be the isomor-
phism class of �, where A ∼= Matn(�). Note that Theorem 9.130 shows that
[A] = [�] in Br(k). Let us see that ϕ is well-defined. If [�] = [�′], then
� ∼ �′, so there are integers n and m with �⊗k Matn(k) ∼= �′ ⊗k Matm(k).
Hence, Matn(�) ∼= Matm(�′). By the uniqueness in the Wedderburn–Artin
theorems, � ∼= �′ (and n = m). Therefore, ϕ([�]) = ϕ([�′]).

Clearly, ϕ is surjective, for if � is a finite-dimensional division algebra
over k, then the isomorphism class of � is equal to ϕ([�]). To see that ϕ

is injective, suppose that ϕ([�]) = ϕ([�′]). Then, � ∼= �′, which implies
� ∼ �′. •

Example 9.132.

(i) If k is an algebraically closed field, then Br(k) = {0} (Theorem 9.122).

(ii) If k is a finite field, then Br(k) = {0} (Wedderburn’s Theorem 9.126).

(iii) If k = R, then Frobenius’s Theorem 9.128 shows that Br(R) ∼= I2, for
its only nonzero element is [H]. �

Proposition 9.133. If E/k is a field extension, then there is a homomorphism

fE/k : Br(k) → Br(E)

given by [A] �→ [E ⊗k A].
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Proof. If A and B are central simple k-algebras, then E ⊗k A and E ⊗k B
are central simple E-algebras, by Theorem 9.120. If A ∼ B, then E ⊗k A ∼
E ⊗k B as E-algebras, by Exercise 9.42 on page 606. It follows that the
function fE/k is well-defined. Finally, fE/k is a homomorphism, because

(E ⊗k A)⊗E (E ⊗k B) ∼= (E ⊗E E)⊗k (A ⊗k B) ∼= E ⊗k (A ⊗k B),

by associativity of tensor product. •

Definition. If E/k is a field extension, then the relative Brauer group,
Br(E/k), is the kernel of homomorphism fE/k : Br(k) → Br(E):

Br(E/k) = ker fE/k =
{
[A] ∈ Br(k) : A is split by E

}
.

Corollary 9.134. For every field k, we have

Br(k) =
⋃

E/k finite

Br(E/k).

Proof. This follows at once from Theorem 9.129. •
We now show that the Brauer group is related to cohomology. Suppose

that V is a vector space over a field E having basis {uσ : σ ∈ G} for some
set G, so that each v ∈ V has a unique expression as an E-linear combination
v = ∑

σ aσ uσ for aσ ∈ E . For a function μ : V × V → V , with μ(uσ , uτ )

denoted by uσ uτ , define structure constants gσ,τ
α ∈ E by

uσ uτ =
∑
α∈G

gσ,τ
α uα.

To have the associative law, we must have uσ (uτuω) = (uσ uτ )uω; expanding
this equation, the coefficient of each uβ is

∑
α

gσ,τ
α gα,ω

β =
∑
γ

gτ,ω
γ gσ,γ

β .

Let us simplify these equations. Let G be a group and suppose that gσ,τ
α = 0

unless α = στ ; that is, uσ uτ = f (σ, τ )uστ , where f (σ, τ ) = gσ,τ
στ . The

function f : G × G → E×, given by f (σ, τ ) = gσ,τ
στ , satisfies the following

equation for all σ, τ, ω ∈ G:

f (σ, τ ) f (στ, ω) = f (τ, ω) f (σ, τω),

an equation reminiscent of the cocycle identity written in multiplicative nota-
tion. This is why factor sets enter into the next definition.
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Let E/k be a Galois extension with Gal(E/k) = G, and let f : G×G →
E× be a factor set: in multiplicative notation,

f (σ, 1) = 1 = f (1, τ ) for all σ, τ ∈ G,

and, if we denote the action of σ ∈ G on a ∈ E× by aσ , then

f (σ, τ ) f (στ, ω) = f (τ, ω)σ f (σ, τω).

Definition. Given a Galois extension E/k with Galois group G = Gal(E/k)
and a factor set f : G × G → E×, define the crossed product algebra
(E, G, f ) to be the vector space over E having as a basis the set of all symbols
{uσ : σ ∈ G} and multiplication

(auσ )(buτ ) = abσ f (σ, τ )uστ

for all a, b ∈ E . If G is a cyclic group, then the crossed product algebra
(E, G, f ) is called a cyclic algebra.

Since every element in (E, G, f ) has a unique expression of the form∑
aσ uσ , the definition of multiplication extends by linearity to (E, G, f ).

We note two special cases:

uσ b = bσ uσ ;
uσ uτ = f (σ, τ )uστ .

Proposition 9.135. If E/k is a Galois extension with Galois group G =
Gal(E/k), and if f : G×G → E× is a factor set, then (E, G, f ) is a central
simple k-algebra that is split by E.

Proof. Denote (E, G, f ) by A. First, we show that A is a k-algebra. To
prove that A is associative, it suffices to prove that

auσ (buτ cuω) = (auσ buτ )cuω,

where a, b, c ∈ E . Using the definition of multiplication,

auσ (buτ cuω) = auσ (bcτ f (τ, ω)uτω)

= a
(
bcτ f (τ, ω)

)σ
f (σ, τω)uστω

= abσ cστ f (τ, ω)σ f (σ, τω)uστω.

We also have

(auσ buτ )cuω = abσ f (σ, τ )uστ cuω

= abσ f (σ, τ )cστ f (στ, ω)uστω

= abσ cστ f (σ, τ ) f (στ, ω)uστω.
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The cocycle identity shows that multiplication in A is associative.
That u1 is the unit in A follows from our assuming that factor sets are

normalized:

u1uτ = f (1, τ )u1τ = uτ and uσ u1 = f (σ, 1)uσ1 = uσ .

We have shown that A is a ring. We claim that ku1 = {au1 : a ∈ k}
is the center Z(A). If a ∈ E , then uσau1 = aσ uσ . If a ∈ k = EG , then
aσ = a for all σ ∈ G, and so k ⊆ Z(A). For the reverse inclusion, suppose
that z =∑σ aσ uσ ∈ Z(A). For any b ∈ E , we have zbu1 = bu1z. But

zbu1 =
∑

aσ uσ bu1 =
∑

aσ bσ uσ .

On the other hand,
bu1z =

∑
baσ uσ .

For every σ ∈ G, we have aσ bσ = baσ , so that if aσ 	= 0, then bσ = b.
If σ 	= 1 and H = 〈σ 〉, then E H 	= E {1} = E (see Advanced Modern
Algebra, Theorem 4.33), and so there exists b ∈ E with bσ 	= b. We conclude
that z = a1u1. For every σ ∈ G, the equation (a1u1)uσ = uσ (a1u1) gives
aσ

1 = a1, and so a1 ∈ EG = k. Therefore, Z(A) = ku1.
We now show that A is simple. Observe first that each uσ is invertible,

for its inverse is f (σ−1, σ )−1uσ−1 (remember that im f ⊆ E×, so that its
values are nonzero). Let I be a nonzero two-sided ideal in A, and choose
a nonzero y = ∑

σ cσ uσ ∈ I of shortest length; that is, y has the smallest
number of nonzero coefficients. Multiplying by (cσ uσ )

−1 if necessary, we
may assume that y = u1 + cτuτ + · · · . Suppose that cτ 	= 0. Since τ 	= 1E ,
there is a ∈ E with aτ 	= a. Now I contains ay − ya = bτuτ + · · · , where
bτ = cτ (a−aτ ) 	= 0. Hence, I contains y−cτb−1

τ (ay− ya), which is shorter
than y (it involves u1 but not uτ ). We conclude that y must have length 1; that
is, y = cσ uσ . But y is invertible, and so I = A and A is simple.

Finally, Theorem 9.129 says that A is split by K , where K is any maximal
subfield of A. The reader may show, using Lemma 9.127, that Eu1 ∼= E is a
maximal subfield. •

In light of Proposition 9.135, it is natural to expect a connection between
relative Brauer groups and cohomology.

Theorem. Let E/k be a Galois extension with G = Gal(E/k). There is an
isomorphism H2(G, E×) → Br(E/k) with cls f �→ [(G, E, f )].

Remark. The usual proofs of this theorem are rather long. Each of the
items: the isomorphism is a well-defined function; it is a homomorphism; it is
injective; it is surjective, must be checked, and the proofs are computational.
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For example, see the proof in Herstein, Noncommutative Rings, pp. 110–116;
there is a less computational proof in Serre, Local Fields, pp. 164–167, using
the method of descent. �

What is the advantage of this isomorphism? In Corollary 9.134, we saw
that Br(k) =⋃E/k finite Br(E/k).

Corollary 9.136. Let k be a field.

(i) The Brauer group Br(k) is a torsion group.

(ii) If A is a central simple k-algebra, then there is an integer n so that the
tensor product of A with itself r times, where r is the order of [A] in
Br(k), is a matrix algebra: A ⊗k A ⊗k · · · ⊗k A ∼= Matn(k).

Sketch of proof .

(i) Br(k) is the union of the relative Brauer groups Br(E/k), where E/k
is finite. It can be shown that Br(k) is the union of those Br(E/k) for
which E/k is a Galois extension. We may now invoke Proposition 9.40,
which says that |G| H2(G, E×) = {0}.

(ii) Tensor product is the binary operation in the Brauer group. •

Remark. It is proved, using Class Field Theory, that Br(Qp) ∼= Q/Z, where
Qp is the field of p-adic numbers. Moreover, there is an exact sequence

0 → Br(Q) → Br(R)⊕
∑

p

Br(Qp) → Q/Z → 0.

In a series of deep papers in the 1930s, Br(k) was computed for the most
interesting fields k of algebraic number theory, by Albert, Brauer, Hasse, and
Noether. �

Recall Theorem 9.131: there exists a noncommutative division k-algebra
over a field k if and only if Br(k) 	= {0}.

The following notion of norm arises in Algebraic Number Theory.

Definition. If E/k is a (finite) Galois extension with Galois group G =
Gal(E/k), then the norm N : E× → k× is given by

N (u) =
∏
σ∈G

σ(u).
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Corollary 9.137. Let k be a field. If there is a cyclic Galois extension E/k
such that the norm N : E× → k× is not surjective, then there exists a non-
commutative k-division algebra.

Sketch of proof . If G is a finite cyclic group, then Theorem 9.27 gives

H2(G, E×) = (E×)G/ im N = k×/ im N .

Therefore, Br(E/k) 	= {0} if N is not surjective, and so Br(k) 	= {0}. •
If k is a finite field and E/k is a finite extension, then it follows from

Wedderburn’s theorem on finite division rings that the norm N : E× → k× is
surjective.

Theorem 9.138. If p is a prime, then there exists a noncommutative division
algebra of characteristic p > 0.

Proof. If k is a field of characteristic p, it suffices to find a cyclic extension
E/k for which the norm N : E× → k× is not surjective; that is, we must find
some z ∈ k× that is not a norm.

If p is an odd prime, let k = Fp(x). Since p is odd, t2 − x is a separable
irreducible polynomial, and so E = k(

√
x) is a Galois extension of degree 2.

If u ∈ E , then there are polynomials a, b, c ∈ Fp[x] with u = (a + b
√

x)/c.
Moreover,

N (u) = (a2 − b2x)/c2.

We claim that x2 + x is not a norm. Otherwise,

a2 − b2x = c2(x2 + x).

Since c 	= 0, the polynomial c2(x2 + x) 	= 0, and it has even degree. On the
other hand, if b 	= 0, then a2−b2x has odd degree, and this is a contradiction.
If b = 0, then u = a/c; since a2 = c2(x2 + x), we have c2 | a2, hence c | a,
and so u ∈ Fp[x] is a polynomial. But it is easy to see that x2 + x is not the
square of a polynomial. We conclude that N : E× → k× is not surjective.

Here is an example in characteristic 2. Let k = F2(x), and let E = k(α),
where α is a root of f (t) = t2 + t + x + 1 [ f (t) is irreducible and separable;
its other root is α + 1]. As before, each u ∈ E can be written in the form
u = (a + bα)/c, where a, b, c ∈ F2[x]. Of course, we may assume that x is
not a divisor of all three polynomials a, b, and c. Moreover,

N (u) = ((a + bα)(a + bα + b)
)
/c2 = (a2 + ab + b2(x + 1)

)
/c2.

We claim that x is not a norm. Otherwise,

a2 + ab + b2(x + 1) = c2x . (1)
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Now a(0), the constant term of a, is either 0 or 1. Consider the four cases
arising from the constant terms of a and b; that is, evaluate Eq. (1) at x = 0.
We see that a(0) = 0 = b(0); that is x | a and x | b. Hence, x2 | a2 and
x2 | b2, so that Eq. (1) has the form x2d = c2x , where d ∈ F2[x]. Dividing
by x gives xd = c2, which forces c(0) = 0; that is, x | c, and this is a
contradiction. •

For further discussion of the Brauer group, see Gille and Szamuely, Cen-
tral Simple Algebras and Galois Cohomology, Janusz, Algebraic Number
Theory, and Reiner, Maximal Orders.

Exercises

9.37 Prove that H⊗R H ∼= Mat4(R) as R-algebras.
Hint. Every simple left artinian ring, e.g., H ⊗R H, is isomorphic
to Matn(�) for some n ≥ 1 and some division ring �.

9.38 We have given one isomorphism C ⊗R H ∼= Mat2(C) in Exam-
ple 9.121. Describe all possible isomorphisms between these two
algebras.
Hint. Use the Skolem–Noether Theorem.

9.39 Prove that C⊗R C ∼= C× C as R-algebras.
9.40 (i) Let C(x) and C(y) be function fields. Prove that R =

C(x)⊗C C(y) is isomorphic to a subring of C(x, y). Con-
clude that R has no zero-divisors.

(ii) Prove that C(x)⊗C C(y) is not a field.

Hint. Show that R is isomorphic to the subring of C(x, y)
consisting of polynomials of the form f (x, y)/g(x)h(y).

9.41 Let A be a central simple k-algebra. If A is split by a field E , prove
that A is split by any field extension E ′ of E .

*9.42 Let E/k be a field extension. If A and B are central simple k-
algebras with A ∼ B, prove that E ⊗k A ∼ E ⊗k B as central
simple E-algebras.

9.43 Prove that Mat2(H) ∼= H⊗R Mat2(R) as R-algebras.
9.44 (i) Let A be a four-dimensional vector space over Q, and let

1, i, j, k be a basis. Prove that A is a division algebra over
Q if we define 1 to be the identity and

i2 = −1, j2 = −2, k2 = −2,

i j = k, jk = 2i, ki = j,

j i = −k, k j = −2i, ik = − j.
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(ii) Prove that Q(i) and Q( j) are nonisomorphic maximal sub-
fields of A.

9.45 Let D be the Q-subalgebra of H having basis 1, i, j, k.
(i) Prove that D is a division algebra over Q.

Hint. Compute the center Z(D).

(ii) For any pair of nonzero rationals p and q, prove that D has
a maximal subfield isomorphic to Q(

√
−p2 − q2).

Hint. Compute (pi + q j)2.

9.46 (Dickson) If D is a division algebra over a field k, then each d ∈ D
is algebraic over k. Prove that d, d ′ ∈ D are conjugate in D if and
only if irr(d, k) = irr(d ′, k) [irr(d, k) is the polynomial in k[x] of
least degree having d as a root].
Hint. Use the Skolem–Noether theorem.

9.47 Prove that if A is a central simple k-algebra with A ∼ Matn(k), then
A ∼= Matm(k) for some integer m.

9.48 Show that the structure constants in the crossed product (E, G, f )
are

gσ,τ
α =

{
f (σ, τ ) if α = στ,

0 otherwise.



10
Spectral Sequences

Given a map f : A→M , where A is a submodule of a module B, when can f
be extended to a map B → M? Applying Hom(�, M) to the exact sequence

0 → A
i−→ B → B/A → 0, where i is the inclusion, gives exactness of

Hom(B, M)
i∗−→ Hom(A, M)

∂−→ Ext1(B/A, M).

Now there exists a map g : B → M extending f if and only if f = gi =
i∗(g) ∈ im i∗ = ker ∂ . Thus, we may regard ∂( f ) ∈ Ext1(B/A, M) as an
obstruction, for f can be extended to B if and only if ∂( f ) = 0. For example,
if Ext1(B/A, M) = {0}, then every map f : A → M can be extended to B.
But what value would the notion of obstruction have if we could not compute
Ext1? The basic reason for the success of Homological Algebra is that homol-
ogy groups can often be computed. So far, our most useful techniques have
involved dimension shifting and “ladder” diagrams arising from the naturality
of connecting homomorphisms. But many problems resist solution by routine
application of the axioms for homology. For example, we had to be clever to
prove that Tor and Ext are independent of the variable being resolved.

The most important functors in Homological Algebra are Hom, tensor,
and their derived functors Ext and Tor, each of which involves two vari-
ables. More precisely, Ext and Tor involve resolutions of each variable. Con-
sidering two complexes simultaneously leads to bicomplexes, and a bicom-
plex M yields a complex—its total complex, Tot(M). Computing the ho-
mology of Tot(M) involves several steps: there are two filtrations, each of
which determines a spectral sequence, and both spectral sequences converge
to Hn(Tot(M)).

Of course, the reader must digest these new ideas in order to apply them,
but it is worth the effort.

J.J. Rotman, An Introduction to Homological Algebra, Universitext, 608
DOI 10.1007/978-0-387-68324-9 10, c© Springer Science+Business Media LLC 2009
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10.1 Bicomplexes

Almost all spectral sequences arise from bicomplexes, and so we begin dis-
cussing them now.

Definition. A graded module is an indexed1 family M = (Mp)p∈Z of R-
modules (for some ring R). Graded modules M are often denoted by M•.

Example 10.1.

(i) If (C, d) = → Cn+1
dn+1−→ Cn

dn−→ Cn−1 → is a complex, then C =
(Cn)n∈Z is a graded module.

(ii) If (C, d) is a complex, then the family H•(C) = (Hp(C))p∈Z of its
homology modules is a graded module. �

Definition. Let M and N be graded modules, and let a ∈ Z. A graded
map of degree a, denoted by f : M → N , is a family of homomorphisms
f = ( f p : Mp → Np+a)p∈Z. The degree of f is a, and we denote it by
deg( f ) = a.

Example 10.2.

(i) If (C, d) is a complex, then its differential d : C → C, given by d =
(dn : Cn → Cn−1)n∈Z, is a graded map of degree −1.

(ii) If f : C → C′ is a chain map, then f = ( fn : Cn → C ′
n)n∈Z is a graded

map of degree 0.

(iii) If f, g : C → C′ are homotopic chain maps, then a homotopy s =
(sn : Cn → C ′

n+1)n∈Z is a graded map of degree +1. �

Proposition 10.3. If M
f−→ N

g−→ P are graded maps of degree a and b,
respectively, then their composite g f is a graded map of degree a + b.

Proof. Since f p : Mp → Np+a and gp+a : Np+a → Pp+a+b, we have
g f : Mp → Pp+a+b, and so g f has degree a + b. •

1Other index sets do arise, but we assume that Z is the index set for graded modules.
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Graded modules (over a given ring R) and graded maps form a category.
If f : M → N is a graded map of degree a, then f ∈ ∏p Hom(Mp, Np+a),
and so

Hom(M, N ) =
⋃
a∈Z

(∏
p∈Z

Hom(Mp, Np+a)
)
.

Let us define exactness in the category of graded modules. If M ′ = (M ′
p)p∈Z

and M = (Mp)p∈Z are graded modules, then M ′ is a submodule of M if
M ′

p ⊆ Mp for all p; thus, inclusions are graded maps of degree 0. If M ′ ⊆ M ,
then the quotient is M/M ′ = (Mp/M ′

p)p∈Z, and the natural map M →
M/M ′ is a graded map of degree 0. If f : M → N is a graded map of
degree a, then there is an inclusion ker f = (ker f p) → (Mp). On the other
hand, we want im f ⊆ N , so that its pth term (im f )p ⊆ Np. Thus, we must
define

im f = (im f p−a)p∈Z ⊆ (Np)p∈Z.

Of course, exactness of A
f−→ B

g−→ C means that im f = ker g; that is,
im f p−a = ker gp for all p ∈ Z.

Given a short exact sequence 0 → C′ i−→ C
π−→ C′′ → 0 of complexes,

the long exact sequence of homology modules is sometimes called an exact
triangle:

H•(C′)
i∗ �� H•(C)

π∗,,666
666

6

H•(C′′).
∂

55�������

If we regard each vertex as a graded module, then the arrows are, indeed,
graded maps: i∗ and π∗ have degree 0, and the connecting homomorphism
∂ has degree −1. More generally, given an exact triangle of graded modules
and graded maps,

A
α �� B

β����
��

��

C
γ

��������

with α, β, γ having degree a, b, c, respectively, we can reconstruct the long
exact sequence from which it comes. Choose some p ∈ Z, and go right and
left from Ap:

→ Bp−b−c
β−→ C p−c

γ−→ Ap
α−→ Bp+a

β−→ C p+a+b
γ−→ Ap+a+b+c → .

Definition. A bigraded module is a doubly indexed familty

M = (Mp,q)(p,q)∈Z×Z

of R-modules. Bigraded modules M are often denoted by M••.
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Just as one may picture a graded module as the x-axis with a module
sitting on each integer point, so we may picture a bigraded module as the
plane with a module sitting on each lattice point.

Definition. Let M and N be bigraded modules, and let (a, b) ∈ Z × Z.
A bigraded map of bidegree (a, b), denoted by f : M → N , is a family of
homomorphisms f = ( f p,q : Mp,q → Np+a,q+b)(p,q)∈Z×Z. The bidegree
of f is (a, b), and we denote it by deg( f ) = (a, b).

As in Proposition 10.3, bidegrees add when composing bigraded maps:
if f : M → N and g : N → P are bigraded maps of bidegrees (a, b) and
(a′, b′), respectively, then g f : M → P has bidegree (a + a′, b + b′).

All bigraded modules (over a fixed ring R) and bigraded maps form a
category. If f : M → N is a bigraded map of bidegree (a, b), then f ∈∏

(p,q) Hom(Mp,q , Np+a,q+b), and so

Hom(M, N ) =
⋃
(a,b)

(∏
(p,q)

Hom(Mp,q , Np+a,q+b)
)
.

Let us define exactness in the category of bigraded modules. If M ′ = (M ′
p,q)

and M = (Mp,q) are bigraded modules, then M ′ is a submodule of M if
M ′

p,q ⊆ Mp,q for all (p, q); inclusions are bigraded maps of bidegree (0, 0).
If M ′ ⊆ M , then the quotient is M/M ′ = (Mp,q/M ′

p,q), and the natural
map M → M/M ′ is a bigraded map of bidegree (0, 0). If f : M → N is a
bigraded map of bidegree (a, b), then ker f = (ker f p,q) ⊆ M . On the other
hand, im f ⊆ N , so that its (p, q)th term (im f )p,q ⊆ Np,q . Thus, we must
define

im f = (im f p−a,q−b) ⊆ (Np,q).

Of course, exactness of A
f−→ B

g−→ C means that im f = ker g; that is,
im f p−a,q−b = ker gp,q for all (p, q) ∈ Z× Z.

Consider a triangle (A, B,C, α, β, γ ) of bigraded modules and bigraded
maps,

A
α �� B

β����
��

��

C,
γ

��������

which is exact at each vertex: ker α = im γ , kerβ = imα, and ker γ =
imβ. This exact triangle is really a host of long exact sequences, one for each
(p, q) ∈ Z × Z. If α, β, γ have bidegree (a, a′), (b, b′), (c, c′), respectively,
go left and right of Ap,q to obtain the exact sequence

→ C p−c,q−c′
γ−→ Ap,q

α−→ Bp+a,q+a′
β−→ C p+a+b,q+a′+b′′ → .
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Conversely, given a family of such long exact sequences, one for each (p, q),
we can define an exact triangle from which they come.

Equipping a bigraded module with differentials gives a bicomplex.

Definition. A bicomplex (or double complex) is an ordered triple (M, d ′, d ′′),
where M = (Mp,q) is a bigraded module, d ′, d ′′ : M → M are differentials of
bidegree (−1, 0) and (0,−1), respectively (so that d ′d ′ = 0 and d ′′d ′′ = 0),
and

d ′p,q−1d ′′p,q + d ′′p−1,qd ′p,q = 0.

Fig. 10.1 Bicomplex. Fig. 10.2 Total complex.

As any bigraded module, a bicomplex M may be pictured as a family
of modules in the pq-plane with Mp,q sitting on the lattice point (p, q) (see
Fig. 10.1). For each p, q, the differential d ′p,q : Mp,q → Mp−1,q points to
the left, and the differential d ′′p,q : Mp,q → Mp,q−1 points down; thus, the
rows M∗,q and the columns Mp,∗ are complexes. The identity d ′p,q−1d ′′p,q =
−d ′′p−1,qd ′p,q says that each square of the diagram anticommutes.

Example 10.4. Let M = (Mp,q) be a bigraded module, and assume that
there are bigraded maps d ′ : M → M of bidegree (−1, 0) and d ′′ : M → M
of bidegree (0,−1) making the rows and columns of M complexes. If M is
a commutative diagram, then we can make it into a bicomplex with a sign
change.
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Define �′′
p,q = (−1)pd ′′p,q . Changing sign does not affect kernels and

images, and so �′′�′′ = 0. Finally,

d ′p,q−1�
′′
p,q +�′′

p−1,qd ′p,q = (−1)pd ′p,q−1d ′′p,q + (−1)p−1d ′′p−1,qd ′p,q
= (−1)p(d ′p,q−1d ′′p,q − d ′′p−1,qd ′p,q

)
= 0.

Therefore, (M, d ′,�′′) is a bicomplex. �
Before giving some examples of bicomplexes, let us explain the signifi-

cance of the anticommutativity equation d ′d ′′ + d ′′d ′ = 0.

Definition. If M is a bicomplex, then its total complex, denoted by Tot(M),
is the complex with nth term

Tot(M)n =
⊕

p+q=n

Mp,q

and with differentials Dn : Tot(M)n → Tot(M)n−1 given by

Dn =
∑

p+q=n

(d ′p,q + d ′′p,q)

(see Fig. 10.2).

Lemma 10.5. If M is a bicomplex, then (Tot(M), D) is a complex.

Proof. The summands of Tot(M)n are the modules Mp,q lying on the 45◦
line p + q = n in the pq-plane. Note that im d ′p,q ⊆ Mp−1,q and im d ′′p,q ⊆
Mp,q−1; in either case, the sum of the indices is p + q − 1 = n − 1, and so
im D ⊆ Tot(M)n−1. We show that D is a differential.

DD =
∑
p,q

(d ′ + d ′′)(d ′ + d ′′)

=
∑

d ′d ′ +
∑

(d ′d ′′ + d ′′d ′)+
∑

d ′′d ′′

= 0,

because each of the summands is 0. •
Spectral sequences arose as a method of computing the homology of the

total complex Tot(M).

Recall that if A,B, C are categories, a function T : A × B → C is a
bifunctor if

(i) T (A,�) : B → C is a functor for each A ∈ obj(A),
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(ii) T (�, B) : A→ C is a functor for each B ∈ obj(B),

(iii) for each pair of morphisms f : A′ → A in A and g : B ′ → B in B,
there is a commutative diagram

T (A′, B ′)
T (A′,g)��

T ( f,B′)
��

T (A′, B)

T ( f,B)

��
T (A, B ′)

T (A,g)
�� T (A, B).

We saw, in Exercise 2.35 on page 96, that � ⊗R � : ModR × RMod → Ab
and HomR(�,�) : ModR ×ModR → Ab are bifunctors (if the definition
of bifunctor is modified so that T can be covariant or contravariant in either
variable). Exercise 10.2 on the facing page says that the derived functors
TorR

n (�,�) and ExtnR(�,�) are also bifunctors.

Example 10.6.

(i) Let R be a ring, and let

A =→ Ap
�′

p−→ Ap−1 → · · · → A0 → 0

and

B =→ Bq
�′′

q−→ Bq−1 → · · · → B0 → 0

be positive complexes of right R-modules; that is, Ap = {0} for nega-
tive p and Bq = {0} for negative q. Define (M, d ′, d ′′) by

Mp,q = Ap⊗R Bq , d ′p,q = �′
p⊗1BQ , and d ′′p,q = (−1)p1Ap⊗�′′

q .

Since tensor is a bifunctor, the diagram consisting of the bigraded mod-
ule M and the arrows �′

p⊗1BQ and 1Ap⊗�′′
q commutes. Incorporating

the sign (−1)p in vertical arrows gives a bicomplex, as in Example 10.4.
This bicomplex is concentrated in the first quadrant.

Definition. A first quadrant bicomplex is a bicomplex (Mp,q) for
which Mp,q = {0} whenever p or q is negative.

The total complex here is called the tensor product of complexes and is
denoted by Tot(M) = A ⊗R B. Thus,

(A ⊗R B)n =
⊕

p+q=n

Ap ⊗R Bq ,
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and Dn : (A ⊗R B)n → (A ⊗R B)n−1 is given by

Dn : ap ⊗ bq �→ �′ap ⊗ bq + (−1)pap ⊗�′′
qbq .

(ii) Let A = AR and B = R B be modules, and let

PA =→ Pp
�′

p−→ Pp−1 → · · · → P0 → 0

and

QB =→ Qq
�′′

q−→ Qq−1 → · · · → Q0 → 0

be deleted projective resolutions. A special case of the bicomplex in
part (i) is PA ⊗R QB .

(iii) The Eilenberg-Zilber Theorem (see Rotman, An Introduction to Alge-
braic Topology, p. 266) states that if X and Y are topological spaces,
then

Hn(X × Y ) ∼= Hn(S•(X)⊗Z S•(Y )),

where S•(X) is the singular complex of X .

(iv) Let M = (Mp,q) be a bigraded module, and let (M, d ′, d ′′) be a bicom-
plex. The transpose of M is (Mt , δ′, δ′′), where Mt

p,q = Mq,p for all
p, q, δ′′p,q = d ′q,p, and δ′p,q = d ′′q,p. Then (Mt , δ′, δ′′) is a bicomplex;
that is, (Mt , d ′′, d ′) is a bicomplex. Moreover, the total complexes are
identical: Tot(Mt )n = Tot(M)n for all n, and Dt

n = ∑
(δ′ + δ′′) =∑

(d ′ + d ′′) = Dn . Thus,

Tot(Mt ) = Tot(M). �

There are other interesting examples of bicomplexes. In particular, there
are also third quadrant bicomplexes, but let us first discuss spectral sequences.

Exercises

10.1 If (M, d ′, d ′′) is a bicomplex of left R-modules, and if F : RMod →
SMod is an additive functor, prove that (F M, Fd ′, Fd ′′) is a bicom-
plex of left S-modules.

*10.2 (i) For a ring R and a fixed k ≥ 0, prove that TorR
k (�,�) is a

bifunctor.
(ii) For a ring R and a fixed k ≥ 0, prove that ExtkR(�,�) is a

bifunctor.
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10.2 Filtrations and Exact Couples

One method of analyzing a group uses normal series. Recall that a sequence
of subgroups (Gi ) of a group G is a normal series if

G = G0 ⊇ G1 ⊇ G2 ⊇ · · · ⊇ Gn = {1},
where each Gi+1 � Gi . The factor groups of this normal series are

G0/G1, G1/G2, . . . , Gn−1/Gn.

The factor groups of a normal series of a group G may not determine G. For
example, if V = 〈a〉 ⊕ 〈b〉 is the four-group, then V ⊇ 〈a〉 ⊇ {0} is a normal
series with factor groups I2, I2; if I4 = 〈x〉, then I4 ⊇ 〈2x〉 ⊇ {0} is a normal
series whose factor groups are also I2, I2. However, some information about
a group G can be gleaned from its factor groups: for example, if G is finite,
then |G| =∏i |Gi/Gi+1|.

Let us generalize this notion to modules.

Definition. A filtration of a module M is a family (Mp)p∈Z of submodules
of M such that

· · · ⊆ Mp−1 ⊆ Mp ⊆ Mp+1 ⊆ · · · .
The factor modules of this filtration form the graded module (Mp/Mp−1)p∈Z.

One can define filtrations of objects in any abelian category. In particular,
a filtration of a complex C is a family of subcomplexes (F pC)p∈Z with

· · · ⊆ F p−1C ⊆ F pC ⊆ F p+1C ⊆ · · · .
Of course, the factors are · · · , F pC/F p−1C, F p+1C/F pC, · · · . In more

detail, a filtration of C is a commutative diagram such that, for each n, the nth
column is a filtration of Cn .

�� Cn+1 �� Cn �� Cn−1 ��

�� F p
n+1

��

�� F p
n

��

�� F p
n−1

��

��

�� F p−1
n+1

��

�� F p−1
n

��

�� F p−1
n−1

��

��
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Remark. We do not insist that filtrations always be ascending, nor do we
insist that they always be descending (in which case, the submodules should
be re-indexed); either option is a filtration. In Group Theory, one also uses
ascending series; for example, the central series {1} ⊆ Z(G) ⊆ Z2(G) ⊆
· · · ⊆ G of a group G is ascending. �

Filtrations may have only finitely many terms (if M0 ⊆ M1 ⊆ · · · ⊆ Mn ,
define Mi = M0 for all i ≤ 0 and M j = Mn for all j ≥ n); moreover, the
“endpoints” (if there are any) of a filtration of M need not be {0} or M ; that
is, neither {0} nor M must equal Mp for some p.

Here are two very important filtrations of the total complex.

Example 10.7. Let (M, d ′, d ′′) be a bicomplex.

Definition. The first filtration of Tot(M) is given by

(I F
p

Tot(M)
)

n =
⊕
i≤p

Mi,n−i

= · · · ⊕ Mp−2,q+2 ⊕ Mp−1,q+1 ⊕ Mp,q .

Fig. 10.3 should make this clear. The term of I F
p

Tot(M) of degree n is the
direct sum of those Mi,n−i lying to the left of the vertical line.

Fig. 10.3 First filtration. Fig. 10.4 Second filtration.



618 Spectral Sequences Ch. 10

Let us check that (I F
p
)n≥0 is a subcomplex of Tot(M).

Di,n−i Mi,n−i = (d ′i,n−i + d ′′i,n−i )Mi,n−i ⊆ d ′Mi,n−i + d ′′Mi,n−i

⊆ Mi−1,n−i ⊕ Mi,n−i−1

⊆ (I F
p

Tot(M))n−1.

Definition. The second filtration of Tot(M) (see Fig. 10.4) is given by

(II F
p

Tot(M)
)

n =
⊕
j≤p

Mn− j, j

= · · · ⊕ Mq−1,p−2 ⊕ Mq+1,p−1 ⊕ Mq,p.

The term of II F
p

Tot(M) of degree n is the direct sum of those Mi,n−i lying
below the horizontal line. One checks, as for the first filtration, that (II F

p
)n≥0

is a subcomplex of Tot(M). We shall return to this example in §10.4. �

There are several ways to introduce spectral sequences. We think that
using exact couples is the simplest way; for other discussions, see Mac Lane,
Homology, XI.1 and XI.3, or McCleary, User’s Guide to Spectral Sequences.

Definition. An exact couple is a 5-tuple (D, E, α, β, γ ), where D and E are
bigraded modules, α, β, γ are bigraded maps, and there is exactness at each
vertex: kerα = im γ , kerβ = imα, and ker γ = imβ.

D
α �� D

β����
��

��

E
γ

��������

Proposition 10.8. Every filtration (F pC)p∈Z of a complex C determines an
exact couple

D
α (1,−1) �� D

β (0,0)����
��

��

E
γ (−1,0)

��������

whose bigraded maps have the displayed bidegrees.

Proof. Abbreviate F pC to F p. For each fixed p, there is a short exact se-
quence of complexes,

0 → F p−1 j p−1

−→ F p ν p

−→ F p/F p−1 → 0
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(where j p−1 is the inclusion and ν p is the natural map) that gives rise to the
long exact sequence

→ Hn(F p−1)
α−→ Hn(F p)

β−→ Hn(F p/F p−1)
γ−→

Hn−1(F p−1)
α−→ Hn−1(F p)

β−→ Hn−1(F p/F p−1) →,

where α = j p−1
∗ , β = ν

p
∗ , and γ = ∂ . Introduce q by writing n = p + q.

Hp+q(F p−1)
α−→ Hp+q(F p)

β−→ Hp+q(F p/F p−1)
γ−→

Hp+q−1(F p−1)
α−→ Hp+q−1(F p)

β−→ Hp+q−1(F p/F p−1).

There are two types of homology groups: homology of a subcomplex F p or
F p−1 and homology of a quotient complex F p/F p−1. Define

D = (Dp,q), where Dp,q = Hp+q(F p),

E = (E p,q), where E p,q = Hp+q(F p/F p−1).

With this notation, the long exact sequence is, for fixed q,

�� Dp−1,q+1
α

(1,−1)
�� Dp,q

β

(0,0)
�� E p,q

γ

(−1,0)
�� Dp−1,q �� .

Therefore, (D, E, α, β, γ ) is an exact couple with the displayed bidegrees. •

Notation. By universal agreement, everyone writes n = p + q.

Every exact couple determines another exact couple, but let us first intro-
duce an important notion.

Definition. A differential bigraded module is an ordered pair (M, d), where
M is a bigraded module and d : M → M is a bigraded map with dd = 0.

If (M, d) is a differential bigraded module, where d has bidegree (a, b),
then its homology H(M, d) is the bigraded module whose p, q term is

H(M, d)p,q = ker dp,q

im dp−a,q−b
.

A bicomplex (M, d ′, d ′′) gives rise to two differential bigraded modules,
namely, (M, d ′) and (M, d ′′). However, (M, d ′ + d ′′) is not a differential
bigraded module, for d ′ + d ′′ : M → M is not a bigraded map.

A reader eager to begin applying spectral sequences can skim the routine
proof of exactness in the next proposition.
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Proposition 10.9. If (D, E, α, β, γ ) is an exact couple, then d1 = βγ is a
differential d1 : E → E, and there is an exact couple (D2, E2, α2, β2, γ 2),
called the derived couple, with E2 = H(E, d1).

D2 α2
�� D2

β2����
��

��

E2
γ 2

��������

Remark. See Exercise 10.4 on page 623 for an explicit formula for d1 when
the original exact couple arises from a filtration of a complex.

Given the bidegrees of α, β, γ , there are formulas for the bidegrees of
d1, α2, β2, γ 2, which we will state after the proof. �
Proof. To make the proof more concrete, we are going to assume that the
bidegrees in the given exact couple are those that have arisen in Proposi-
tion 10.8: let α, β, γ have respective bidegrees (1,−1), (0, 0), (−1, 0).

Define a bigraded map d1 : E → E by d1 = βγ ; the composite βγ

makes sense, but it is in the “wrong order.” Note that γβ = 0, because the
original couple is exact, and so d1 is a differential: d1d1 = β(γβ)γ = 0.
Since bidegrees add, the bidegree of d1 is (−1, 0).

Define E2 = H(E, d1). Thus, E2
p,q = ker d1

p,q/ im d1
p+1,q .

Define D2 = imα ⊆ D. Thus, D2
p,q = imαp−1,q+1 ⊆ Dp,q .

We now define the bigraded maps. Define α2 : D2 → D2 to be the re-
striction α|D2; that is, α2 = αi , where i : D2 → D is the inclusion. Since
inclusions have bidegree (0, 0), α2 has bidegree (1,−1), the same bidegree
as that of α. If x ∈ D2

p,q , then x = αu (for u ∈ Dp+1,q−1), and

α2
p,q : x = αu �→ αx = ααu.

Define β2 : D2 → E2 as follows. If y ∈ D2
p,q , then y = αv (for v ∈

Dp+1,q−1), and βv is a cycle [for d1βv = β(γβ)v = 0]. Since v = α−1 y,
we set

β2(y) = cls(βα−1 y).

To see that β2 is well-defined (i.e., that β2 does not depend on the choice v of
the preimage α−1 y), we must show that if y = αv′, then cls(βv′) = cls(βv).
Now v′ − v ∈ kerα = im γ , so that v′ − v = γw for some w ∈ E , and hence
β(v′ − v) = βγw = d1w is a boundary. Note that β2 has bidegree (−1, 1).

We now define γ 2 : E2 → D2. Let cls(z) ∈ E2
p,q , so that z ∈ E p,q and

d1z = βγ z = 0. Hence, γ z ∈ kerβ = imα, so that γ z ∈ imα = D2;
displaying subscripts, γp,q z ∈ Dp−1,q . Define γ 2 by

γ 2 : cls(z) �→ γ z.
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Now γ 2 does not depend on the choice of cycle: if w ∈ im d1
p+1,q is a bound-

ary, then w = d1x = βγ x , and so γw = (γβ)γ x = 0. Note that γ 2 has
bidegree (−1, 0), the same bidegree as that of γ .

It remains to prove exactness. Since all the maps are well-defined, there
is no reason to display subscripts. First of all, adjacent composites are 0.

β2α2 : x = αu �→ ααu �→ cls(βα−1αu) = cls(βαu) = 0.

γ 2β2 : x = αu �→ cls(βu) �→ γβu = 0.

α2γ 2 : cls(z) �→ γ z �→ αγ z = 0.

We have verified the inclusions of the form im ⊆ ker. Here are the reverse
inclusions.

ker α2 ⊆ im γ 2. If x ∈ kerα2, then αx ∈ D2 and αx = 0. Hence, x ∈
kerα = im γ , so that x = γ y for some y ∈ E . Now x ∈ imα = kerβ, and
0 = βx = βγ y = d1 y. Thus, y is a cycle, and x = γ y = γ 2 cls(y) ∈ im γ 2.

ker β2 ⊆ im α2. If x ∈ kerβ2, then x ∈ D2 = imα and β2x = 0. Thus,
x = αu and 0 = β2x = cls(βα−1αu) = cls(βu). Hence, βu ∈ im d1; that is,
βu = d1w = βγw for some w ∈ E . Now u − γw ∈ kerβ = imα = D2,
and α2(u − γw) = αu − αγw = αu = x . Therefore, x ∈ imα2.

ker γ 2 ⊆ im β2. If cls(z) ∈ ker γ 2, then γ 2 cls(z) = γ z = 0. Thus,
z ∈ ker γ = imβ, so that z = βv for some v ∈ D. Hence, β2(αv) =
cls(βα−1αv) = cls(βv) = cls(z), and cls(z) ∈ imβ2. •

Remark. It is easy to check that if the maps α, β, γ have bidegrees (a, a′),
(b, b′), and (c, c′), respectively, then the bigraded maps α2, β2, γ 2 have bide-
grees (a, a′), (b−a, b′−a′), and (c, c′), respectively. Thus, only the bidegree
of β changes. �

Definition. Define the r th derived couple of an exact couple (D, E, α, β, γ )

inductively: its (r + 1)st derived couple (Dr+1, Er+1, αr+1, βr+1, γ r+1) is
the derived couple of (Dr , Er , αr , βr , γ r ), the r th derived couple.

Corollary 10.10. Let (D, E, α, β, γ ) be the exact couple arising from a
filtration (F p) of a complex C.

D α

(1,−1) �� D
β

(0,0)��77
77

77
7

E
(−1,0)

γ
BB�������

Dr
αr

(1,−1) �� Dr

βr

(1−r,r−1)��==
==

==
==

Er
(−1,0)

γ r
99########

Then the constituents of the rth derived couple have the following properties:
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(i) the bigraded maps αr , βr , γ r have bidegrees (1,−1), (1 − r, r − 1),
(−1, 0), respectively;

(ii) the diffential dr has bidegree (−r, r−1), and it is induced by βα−r+1γ ;
(iii) Er+1

p,q = ker dr
p,q/ im dr

p+r,q−r+1;
(iv) Dr

p,q = im(αp−1,q+1)(αp−2,q+2) · · · (αp−r+1,q+r−1); in particular, for
the exact couple in Proposition 10.8,

Dr
p,q = im( j p−1 j p−2 · · · j p−r+1)∗ : Hn(F p−r+1) → Hn(F p).

Proof. All parts are easy inductions on r ≥ 1, but the last statement needs
more explanation. Recall that D2

p,q = αp−1,q+1 Dp−1,q+1. Focus on the first

subscript: D2
p,q = αp−1,# Dp−1,#, and so D2

p−1,# = αp−2,# Dp−2,#. Now

D3
p,q = α2

p−1,# D2
p−1,# = αp−1,#αp−2,# Dp−2,#. The result follows by induc-

tion. The final statement merely reminds us that αp,q = j p
∗ : Hp+q(F p) →

Hp+q(F p+1) and that j p−1
∗ j p−2

∗ · · · j p−r+1
∗ = ( j p−1 j p−2 · · · j p−r+1)∗. •

Definition. A spectral sequence is a sequence (Er , dr )r≥1 of differential
bigraded modules such that Er+1 = H(Er , dr ) for all r .

If an exact couple (D, E, α, β, γ ) is relabeled as (D1, E1, α1, β1, γ 1),
then every exact couple yields a spectral sequence. We have proved the fol-
lowing result.

Theorem 10.11. Every filtration of a complex yields a spectral sequence as
described in Corollary 10.10.

Proof. A filtration gives an exact couple, as in Proposition 10.8, and the Er

terms of its derived couples form a spectral sequence. •
Spectral sequences were invented in the 1940s, independently, by J. Leray

and R. C. Lyndon. Leray was a German prisoner of war from 1940 through
1945, during World War II. He was an applied mathematician, but, because
he did not want the Nazis to exploit his expertise, he did abstract work in Al-
gebraic Topology there. Lyndon invented spectral sequences, in his Ph.D. dis-
sertation, in order to compute the cohomology groups of finite abelian groups.
Exact couples were introduced by the algebraic topologist W. S. Massey, “Ex-
act couples in algebraic topology, I, II,” Annals Math. (2) 56 (1952), 363–396,
“Exact couples in algebraic topology, III, IV, V,” Annals Math. (2) 57 (1953),
248–286,

In practice, most spectral sequences do arise from bounded filtrations of
complexes (but see Exercise 10.5 on the facing page). The reader meeting
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a more general spectral sequence is referred to another text treating spectral
sequences (e.g., Mac Lane, Homology), but we maintain that understanding
what we are doing here is sufficient preparation for a more general case.

Exercises

10.3 Let (Er , dr )r≥0 be a spectral sequence. If there is an integer s with
Es

p,q = {0} for some (p, q), prove that Er
p,q = {0} for all r ≥ s.

*10.4 Let (F pC)p∈Z be a filtration of a complex C, and let the corre-
sponding exact couple be (D, E, α, β, γ ) (as in Proposition 10.8).
Prove that the differential d1

p,q : E p,q → E p−1,q is the connecting
homomorphism

Hp+q(F p/F p−1) → Hp+q−1(F p−1/F p−2)

arising from 0 → F p−1/F p−2 → F p/F p−2 → F p/F p−1 → 0.
Hint. Recall that d1

p,q : E p,q → E p−1,q is the composite

Hp+q(F p/F p−1)
γp,q−→ Hp+q−1(F p−1)

βp−1,q−→ Hp+q−1(F p−1/F p−2),

where γp,q is the connecting homomorphism and βp−1,q is the map
induced by the natural map F p−1 → F p−1/F p−2.

*10.5 Consider the commutative diagram in which the top row is exact,

�� Ap+1 ��

&&1
11

11
Ap ��

&&�
��

��
Ap−1 ��

K p

::22222
K p−1,

$$�����

where im(Ap+1 → Ap) = K p = ker(Ap → Ap−1). For each p
and module C , the exact sequence 0 → K p → Ap → K p−1 → 0
gives the long exact sequence

Torq(C, K p)
β �� Torq(C, Ap)

γ�� Torq(C, K p−1)
α �� Torq−1(C, K p).

If Dp,q = Torq(C, K p) and E p,q = Torq(C, Ap), prove that α, β,
and γ are bigraded maps with respective bidegrees (1,−1), (0, 0),
and (−1, 0) and that (D, E, α, β, γ ) is an exact couple. (Notice that
this exact couple does not arise from a filtration.)
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10.3 Convergence

We pause for an elementary interlude.

Definition. If M is a module, then a subquotient of M is a module of the
form M ′/M ′′, where M ′′ ⊆ M ′ ⊆ M .

This definition can easily be modified to pertain to graded modules or
bigraded modules.

Example 10.12.

(i) If M has a filtration (F p M), then each factor module F P M/F p−1 M is
a subquotient of M .

(ii) The nth homology Hn(C) of a complex C = (Cn) is a subquotient
of Cn .

(iii) Each of the following properties of an abelian group E is inherited by
all its subquotients: E = {0}; E is finite; E is finitely generated; E is
torsion; E is p-primary; E is cyclic; m E = {0} for some m ∈ Z. �

Theorem 10.11 shows that a filtration of a complex C gives a spectral se-
quence. There are two obvious questions. What is the connection between the
Er terms of the spectral sequence (which are, after all, homology modules)
and the homology of H•(C)? Can we use this connection to compute H•(C)?

If {Er , dr } is a spectral sequence, then E2 = H•(E1, d1) is a subquotient
of E1: hence, E2 = Z2/B2 = cycles/boundaries, where

B2 ⊆ Z2 ⊆ E1.

By the Correspondence Theorem, every submodule of E2 is equal to S/B2 for
a unique submodule S with B2 ⊆ S. In particular, the relative cycles Z3 and
boundaries B3 may be regarded as quotients B3/B2 ⊆ Z3/B2 ⊆ Z2/B2 =
E2, so that

B2 ⊆ B3 ⊆ Z3 ⊆ Z2 ⊆ E1.

More generally, for every r , there is a chain

B2 ⊆ · · · ⊆ Br ⊆ Zr ⊆ · · · ⊆ Z2 ⊆ E1.

Definition. Given a spectral sequence {Er , dr }, define Z∞ = ⋂
r Zr and

B∞ = ⋃
r Br (an ascending union of submodules is a submodule). Then

B∞ ⊆ Z∞, and the limit term of the spectral sequence is the bigraded module
E∞ defined by

E∞
p,q = Z∞

p,q/B∞
p,q .
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In Mac Lane’s informal language, Zr consists of the elements that “live
till stage r” and Br consists of the elements that “bound by stage r .” The
module Z∞ consists of those elements that “live forever,” while B∞ consists
of those elements that “eventually bound.” In this sense, the Er terms of a
spectral sequence approximate the limit term.

Lemma 10.13. Let {Er , dr } be a spectral sequence.

(i) Er+1 = Er if and only if Zr+1 = Zr and Br+1 = Br .

(ii) If Er+1 = Er for all r ≥ s, then Es = E∞.

Proof.

(i) If X/Y is a subquotient of Z , then Y ⊆ X ⊆ Z , and so X/Y = Z if
and only if Y = {0} and X = Z . If Er+1 = Zr+1/Br+1 = Er , then
Br+1 = {0} in Er = Zr/Br ; that is, Br+1 = Br . Hence, Er+1 =
Zr+1/Br+1 = Zr+1/Br = Er = Zr/Br , so that Zr+1 = Zr . The
converse is obvious.

(ii) If Er = Er+1 for r ≥ s, then Zs = Zr for all r ≥ s; hence, Zs =⋂
r≥s Zr = Z∞. Also, Bs = Br for all r ≥ s; hence, Bs =⋃r≥s Br =

B∞. Therefore,

Es = Zs/Bs = Z∞/B∞ = E∞. •

Given a filtration (F p) of a complex C with inclusions i p : F p → C, then
i p
∗ : H•(F p) → H•(C). Since F p ⊆ F p+1, we have im i p

∗ ⊆ im i p+1
∗ ; that is,

(im i p
∗ ) is a filtration of H•(C).

Definition. If (F pC) is a filtration of a complex C and i p : F p → C are
inclusions, define

�p Hn(C) = im i p
∗ .

We call (�p Hn(C)) the induced filtration of Hn(C).

Given a filtration of a complex C, the induced filtration is the obvious fil-
tration on the homology H•(C). We are more interested in the factor modules
of the induced filtration of H•(C) than we are in the filtration. The spectral
sequence (Er ) of a filtration of a complex obviously determines E∞; thus, if

E∞
p,q

∼= �p Hp+q/�
p−1 Hp+q for all p, q,

then the spectral sequence determines the factor modules of H•(C).
To obtain interesting results, it is not enough to have E∞ ∼= �p/�p−1;

some restriction on the filtration of a complex is necessary. For example,
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if F p is the zero subcomplex for all p, then E p,q = Hp+q(F p/F p−1) =
Hp+q(0) = {0}. It follows that Er

p,q = {0} for all r , and so the subquo-
tient E∞

p,q = {0}. The induced filtration �p Hp+q = {0} for all p, and so

�p Hp+q/�
p−1 Hp+q = {0}. Thus, E∞

p,q
∼= �p Hp+q/�

p−1 Hp+q , but an
isomorphism {0} ∼= {0} is useless.

The following condition on a filtration often holds.

Definition. A filtration (F p M) of a graded module M = (Mn) is bounded
if, for each n, there exist integers s = s(n) and t = t (n) such that

Fs Mn = {0} and Ft Mn = Mn.

If {F p} is a bounded filtration of a complex C, then the induced filtration
on homology is also bounded, and with the same bounds. More precisely,
we know that if i p : F p → C is the inclusion, then �p Hn = im i p

∗ , where
i p
∗ : Hn(F p) → Hn(C). Since Fs = 0 and Ft = C, we have �s Hn = {0} and
�t Hn = Hn . Thus, for each n, there is a finite chain (as in Group Theory),

{0} = �s Hn ⊆ �s+1 Hn ⊆ · · · ⊆ �t Hn = Hn.

Of course, �i Hn = {0} for all i ≤ s, and � j Hn = Hn for all j ≥ t .

Definition. A spectral sequence (Er , dr )r≥1 converges to a graded module
H , denoted by

E2
p,q ⇒p Hn,

if there is some bounded filtration (�p Hn) of H with

E∞
p,q

∼= �p Hn/�
p−1 Hn

for all n (we remind the reader of the notational convention n = p + q).

The significance of the subscript p (called the filtration degree) in the
notation E2

p,q ⇒
p

Hn is that the isomorphism involves the limit term E∞
p,q ,

which may not be isomorphic to E∞
q,p.

Theorem 10.14. Let (F pC)p be a bounded filtration of a complex C, and let
(Er , dr )r≥1 be the spectral sequence of Theorem 10.11 [so that the induced
filtration (�p H) is bounded with the same bounds s(n) and t (n) as (F pC)].
Then

(i) for each p, q, we have E∞
p,q = Er

p,q for large r (depending on p, q),

(ii) E2
p,q ⇒p Hn(C).
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Proof.

(i) If p is “large”; that is, p > t (n), then F p−1 = F p, and F p/F p−1 = 0.
By definition, E p,q = Hp+q(F p/F p−1), and so E p,q = {0}. Since
Er

p,q is a subquotient of E p,q , we have Er
p,q = {0} for all r . Similarly,

if p is “small”; that is, p < s(n), then F p = 0, and Er
p,q = {0} for all r .

How can we say anything at all about Er
p,q? The one thing we do know

is that its differential dr has bidegree (−r, r − 1). Focus on first sub-
scripts. For any fixed (p, q), dr (Er

p,q) ⊆ Er
p−r,#. For large r , the index

p − r is small, and so Er
p−r,# = {0}. Hence, ker dr

p,q = Er
p,q . Let

us compute Er+1
p,q = ker dr

p,q/ im dr
p+r,#. Now im dr

p+r,# = {0}, be-
cause the domain of dr

p+r,# is Er
p+r,# = {0} when r is large. Therefore,

Er+1
p,q = ker dr

p+r,#/{0} = Er
p,q/{0} = Er

p,q for large r (depending on
p, q). Thus, the p, q term of Er

p,q is constant for large r , which says
that E∞

p,q = Er
p,q , by Lemma 10.13.

(ii) We continue focusing on the first index in the subscript by writing # for
every second index. Consider the exact sequence obtained from the r th
derived couple:

Dr
p+r−2,#

αr

−→ Dr
p+r−1,#

βr

−→ Er
p,q

γ r

−→ Dr
p−1,q . (1)

The indices arise from the bidegrees displayed in Corollary 10.10(i): αr

has bidegree (1,−1), βr has bidegree (1−r, r−1), and γ r has bidegree
(−1, 0); as in Corollary 10.10(iv), the module

Dr
p,q = im( j p−1 j p−2 · · · j p−r+1)∗ : Hn(F p−r+1) → Hn(F p).

Replacing p first by p + r − 1 and then by p + r − 2, we have

Dr
p+r−1,# = im( j p+r−2 · · · j p)∗ ⊆ Hn(F p+r−1)

and
Dr

p+r−2,# = im( j p+r−3 · · · j p−1)∗ ⊆ Hn(F p+r−2).

For large r , F p+r−1 = Ft = C, and the composite j p+r−2 · · · j p of
inclusions is just the inclusion i p : F p → C. Therefore, Dr

p+r−1,# =
im i p

∗ = �p Hn . Similarly, Dr
p+r−2,# = �p−1 Hn for large r . Therefore,

we may rewrite exact sequence (1) as

�p−1 Hn(C) → �p Hn(C)) → Er
p,q → Dr

p−1,q ,

where the first arrow is inclusion. If Dr
p−1,q = {0} for large r , then

�p Hn(C)/�p−1 Hn(C) ∼= Er
p,q = E∞

p,q ,

and we are done. But Dr
p−1,q = im Hn(F p−r ) → Hn(F p−1), which is

{0} because F p−1−r = 0 for large r . •
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10.4 Homology of the Total Complex

Given a bicomplex (M, d ′, d ′′), recall the two filtrations of Tot(M) in Exam-
ple 10.7. The first filtration of Tot(M) is (I F

p
) [see Fig. 10.5], where

I F
p

Tot(M)n =
⊕
i≤p

Mi,n−i

= · · · ⊕ Mp−2,q+2 ⊕ Mp−1,q+1 ⊕ Mp,q ,

is the subcomplex of Tot(M) whose nth term is the direct sum of those Mi,n−i
lying to the left of the vertical line.

Fig. 10.5 First filtration. Fig. 10.6 Second filtration.

The second filtration of Tot(M) is (II F
p
) [see Fig. 10.6], where

II F
p

Tot(M)n =
⊕
j≤p

Mn− j, j

= · · · ⊕ Mq−1,p−2 ⊕ Mq+1,p−1 ⊕ Mq,p,

is the subcomplex of Tot(M) whose nth term is the direct sum of those Mi,n−i
lying below the horizontal line. Warning: the index p signals the first index,
but we are using it to restrict the second index. This does not affect the defi-
nition of II F

p
.

Lemma 10.15. If Tot(M) is the total complex of a bicomplex (M, d ′, d ′′),
then the second filtration II F

p
of Tot(M) is equal to the first filtration of

Tot(Mt ), where Tot(Mt ) arises from the transposed bicomplex (Mt , d ′′, d ′).
Proof. Recall Example 10.6(iv): the transpose Mt is defined by Mt

p,q =
Mq,p, and so

⊕
j≤p Mn− j, j =

⊕
j≤p Mt

j,n− j . •
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Theorem 10.16. Let M be a first quadrant bicomplex, and let I E
r

and
II E

r
be the spectral sequences determined by the first and second filtrations

of Tot(M).

(i) The first and second filtrations are bounded.

(ii) For all p, q, we have I E
∞
p,q = I E

r
p,q and II E

∞
p,q = II E

r
p,q for large r

(depending on p, q).

(iii) I E
2
p,q ⇒p Hn(Tot(M)) and II E

2
p,q ⇒p Hn(Tot(M)).

Proof. The bounds for either filtration are s(n) = −1 and t (n) = n, and so
statements (ii) and (iii) for I E follow from Theorem 10.14. Since Tot(Mt ) =
Tot(M), where Mt is the transpose, and since the second filtration of Tot(M)

equals the first filtration of Mt , we have II E
∞
p,q = II E

r
p,q for large r and

II E
2
p,q ⇒p Hn(Tot(Mt )) = Hn(Tot(M)). •

We have created notational monsters, I E
r
p,q and II E

r
p,q (they could be

worse; one corner is still undecorated), but the next proposition will replace
them by something less ugly.

We can compute I E
2
, the E2-term of the spectral sequence arising from

the first filtration I F
p

of Tot(M). Let us drop the prescript I in this discussion.
As in the proof of Proposition 10.8, E p,q = Hn(F p/F p−1), where

(F p)n = · · · ⊕ Mp−2,q+2 ⊕ Mp−1,q+1 ⊕ Mp,q ,

(F p−1)n = · · · ⊕ Mp−2,q+2 ⊕ Mp−1,q+1.

Hence, the nth term of F p/F p−1 is Mp,q . The differential (F p/F p−1)n →
(F p/F p−1)n−1 is

Dn : an + (F p−1)n �→ Dnan + (F p−1)n−1,

where an ∈ (F p)n; we have just seen that we may assume an ∈ Mp,q . Now
Dnan = (d ′p,q + d ′′p,q)an ∈ Mp−1,q ⊕ Mp,q−1. But Mp−1,q ⊆ (F p−1)n , so

that Dnan ≡ d ′′p,qan mod (F p−1)n−1. Thus, only d ′′ survives in F p/F p−1.
More precisely, since n = p + q,

Hn(F p/F p−1) = ker Dn

im Dn+1

∼=
ker d ′′p,q

im d ′′p,q+1
= Hq(Mp,∗),

where Mp,∗ is the pth column of M viewed as a complex with differential
d ′′ induced by d ′′. We have constructed a new bigraded module whose (p, q)
term is Hq(Mp,∗, d ′′). Note that elements of Hq(Mp,∗) have the form cls z,
where z ∈ Mp,q and d ′′z = 0.
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For each fixed q, the qth row H ′′(M)∗,q of H ′′(M),

. . . , Hq(Mp+1,∗), Hq(Mp,∗), Hq(Mp−1,∗), . . . , (1)

can be made into a complex if we define d ′ p : Hq(Mp,∗) → Hq(Mp−1,∗) by

d ′ p : cls(z) �→ cls(d ′p,q z),

where z ∈ ker d ′′p,q . There is a new bigraded module whose (p, q) term,
denoted by H ′

p H ′′
q (M), is the pth homology of the qth row (1). Note that

elements of H ′
p H ′′

q (M) have the form cls(d ′z), where z ∈ Mp,q and d ′′z = 0.

Definition. If (M, d ′, d ′′) is a bicomplex, its first iterated homology is the
bigraded module whose (p, q) term is H ′

p H ′′
q (M).

The first iterated homology of a bicomplex (M, d ′, d ′′) can be computed.
Taking homology of pth columns gives a bigraded module whose (p, q) term
is Hq(Mp,∗); taking homology of the qth rows gives the first iterated homol-
ogy. Before giving examples, we prove that H ′

p H ′′
q (M) is the E2

p,q -term of
the first spectral sequence.

Proposition 10.17. If M is a first quadrant bicomplex, then

I E
1
p,q = Hq(Mp,∗)

and
I E

2
p,q = H ′

p H ′′
q (M) ⇒

p
Hn(Tot(M)).

Proof. In our discussion leading up to the definition of the first iterated ho-
mology, we saw that F p/F p−1 is the complex (Mp.∗, d ′′). Now Exercise 10.4
on page 623 identifies the differential d ′′ with d1, the connecting homomor-
phism arising from 0 → F p−1/F p−2 → F p/F p−2 → F p/F p−1 → 0..
Proposition 10.8 gives I E1

p,q = Hp+q(F p/F p−1), while our discussion above

shows that Hp+q(F p/F p−1) = Hq(Mp,∗). Therefore, I E1
p,q = Hq(Mp,∗).

and the elements of I E1
p,q have the form cls(z), where z ∈ Mp,q and d ′′z = 0.

We omit the prescript I for the rest of this proof. It only remains to prove
that the first iterated homology is the E2-term of the spectral sequence arising
from the first filtration. We show that d1

p,q : E1
p,q → E1

p−1,q takes cls z �→
cls(d ′z) ∈ H ′

p H ′′
q (M). As d1 : Hp+q(F p/F p−1) → Hp+q−1(F p−1/F p−2)

is the connecting homomorphism, it arises from the diagram

Mp−1,q+1 ⊕ Mp,q
π ��

D
��

Mp,q �� 0

0 �� Mp−1,q
i �� Mp,q−1 ⊕ Mp−1,q ,
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where D : (ap−1,q , ap,q) �→ (d ′′ap−1,q + d ′ap,q , d ′′ap,q). Let z ∈ Mp,q be a
cycle; that is, d ′′p,q z = 0. Choose π−1z = (0, z), so that D(0, z) = (d ′p,q z, 0).
Then,

d1 cls(z) = cls(i−1 Dπ−1z) = cls(d ′z) ∈ H ′
p H ′′

q (M). •

We know that both the first and second spectral sequences converge to
Tot(M); let us now compute the E1- and E2-terms from the second filtration.

By Lemma 10.15, the second filtration of Tot(M) is the first filtration of
Tot(Mt ) [Mt is the transposed bicomplex (Mt , δ′, δ′′), where δ′ = d ′′ and
δ′′ = d ′]. Thus, taking homology of pth columns of Mt gives a bigraded
module whose (p, q) term is Hq(Mt

p,∗); taking homology of the qth rows
gives the second iterated homology.

Let us rewrite H ′
p H ′′

q (Mt ) in terms of M . Of course, the terms Mt
p,q =

Mq,p. Thus, the pth column of Mt is the pth row of M , and the (p, q) term
is Hq(M∗,p), the homology of M∗,p with respect to δ′′ = d ′:

II E
1
p,q = Hq(M∗,p).

For each fixed q, the qth row of this bicomplex is the homology with respect
to δ′ = d ′′ of the qth column:

· · · , Hq(M∗,p+1), Hq(M∗,p), Hq(M∗,p−1), · · · . (2)

Taking homology gives a new bigraded module with (p, q) term is H ′′
p H ′

q(M),
the pth homology of the qth column (2).

Definition. If (M, d ′, d ′′) is a bicomplex, its second iterated homology is
the bigraded module whose (p, q) term is H ′′

p H ′
q(M).

We have proved the analog of Proposition 10.17 for the second filtration.

Proposition 10.18. If M is a first quadrant bicomplex, then

II E
1
p,q = Hq(M∗,p)

and
II E

2
p,q = H ′′

p H ′
q(M) ⇒

p
Hn(Tot(M)).

Informally, the first iterated homology computes I E2 by taking homology
of the columns and then taking homology of the rows; the second iterated
homology computes II E2 by taking homology of the rows and then taking
homology of the columns.
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Even though both the first and second spectral sequences converge to
Hn(Tot(M)), one should not expect that I E

∞
p,q

∼= II E
∞
p,q . The induced fil-

trations on Hn from (I F
p
) and from (II F

p
) need not be the same, and so the

factor modules of Hn arising from them may be different.
Here is a nice way to view convergence that I learned from Dave Benson.

A spectral sequence is a sequence E1, E2, . . . of differential bigraded mod-
ules, and so each Er can be regarded as a page; thus, approximating the (p, q)
term of the limit E∞ involves focusing on the (p, q) position as we turn the
pages. The E2 page is important, for we can compute it with iterated homol-
ogy and, of course, E∞

p,q is a subquotient of E2
p,q . Moreover, the differential

dr : Er
p,q → Er

p−r,q+r−1 has bidegree (−r, r − 1), and it may be viewed as a
family of arrows each having slope (1 − r)/r .

We now illustrate computing H•(Tot(M)) using iterated homology.

Example 10.19. A commutative diagram

C
j
��

D
f		

g
��

A B
i

		

is a bigraded module if we define M0,0 = A, M1,0 = B, M0,1 = C , M1,1 =
D, and Mp,q = {0} for all other (p, q); using the sign trick, we replace g by
−g and obtain a first quadrant bicomplex.

We compute H•(Tot(M)) in the special case in which B,C are submod-
ules of A and j, i are their inclusions. The total complex is

Tot(M) : 0 → D
( f,−g)−→ C ⊕ B

j+i−→ A → 0,

where ( f,−g) : d �→ ( f d,−gd) ∈ C ⊕ B and j + i : (c, b) �→ jc+ ib. Now
H2 = ker( f,−g). Thus,

H2(Tot(M)) = ker( f,−g) = {d ∈ D : f d = 0 = gd} = ker f ∩ ker g.

Also,

H0(Tot(M)) = coker( j + i) = A/ im( j + i) = A/(B + C).

Computing H1(Tot(M)) is not so simple, and we will use spectral sequences

to do it. We display the bigraded module Hq(Mp,∗) as a 2×2 matrix
[

h10 h11
h00 h01

]
[note that ker(−g) = ker g and coker(−g) = coker g]:

[I E
1
p,q ] = [Hq(Mp,∗)] =

[
coker j coker g
ker j ker g

]
.
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Let us compute the first iterated homology: f induces a map of the top row,
namely, its restriction f ′ : ker g → ker j , and i induces a map of the bottom
row, namely, i : coker g → coker j , defined by b + im g �→ ib + im j . Thus,

[I E
2
p,q ] = [H ′

p H ′′
q (M)] =

[
coker i ker i

coker f ′ ker f ′
]
.

Since M is a first quadrant bicomplex, the first filtration of H1 = H1(Tot)M))

is �−1 H1 = {0} ⊆ �0 H1 ⊆ �1 H1 = H1. Now I E0,1 = ker j = {0}, and so
all the subquotients I E

r
0,1 = {0}; hence, I E

∞
0,1 = {0}. Since I E

r
p,q ⇒ Hn , we

have {0} = I E
∞
0,1 = �0 H1. Therefore, I E

∞
1,0 = �1 H1/�

0 H1 = �1 H1 = H1.

If r ≥ 1, then I E
r+1
1,0 = ker dr

1,0/ im dr
r+1,1−r . But both dr

1,0 and dr
r+1,1−r are

identically 0 [the target of the first map and the domain of the second map are

both {0} because they lie outside the 2 × 2 square]. Hence, I E
2
0,1 = I E

3
0,1 =

· · · = I E
∞
0,1. Therefore,

H1 = I E
2
0,1 = ker i .

Let us simplify this. By definition, H1 = ker( j + i)/ ker( f,−g). Define
ϕ : ker( j + i) → im j ∩ im i by ϕ : (c, b) �→ jc, where jc + ib = 0 (note
that jc = −ib ∈ im j ∩ im i). It is easy to see that ϕ is surjective and that
im( f,−g) ⊆ kerϕ; hence, ϕ induces a surjection

ϕ̃ : H1 = ker( j + i)

im( f,−g)
→ im j ∩ im i.

If ν : im j ∩ im i → (im j ∩ im i)/ im j f is the natural map, then νϕ̃ is
a surjection H1 → (im j ∩ imi)/ im j f . Finally, we claim that νϕ̃ is an
isomorphism. If (c, b) + im( f,−g) ∈ ker νϕ̃, then jc ∈ im j f ; that is,
jc = j f d = igd = ib′ for some d ∈ D and b′ ∈ B [note that jc = −ib,
because (c, b) ∈ ker( j + i), so that ib′ = jc = −ib; since i is injective,
b′ = −b]. Since j and i are injections, c = f d and gd = b′ = −b, and so
(c, b) = ( f d,−gd) ∈ im( f,−g). Therefore,

H1(Tot(M)) = (im j ∩ im i)/ im j f.

To compute the second iterated homology, we first transpose M :

Mt =
B

i ��

D
−g		

f
��

A C.
j

		

The second iterated homology is

[II E
2
p,q ] = [H ′′

p H ′
q(M)] =

[
coker j ker j
coker g′ ker g′

]
,

which is different than the first iterated homology. The reader should check
that the second iterated homology gives the same H1(Tot(M)). �



634 Spectral Sequences Ch. 10

We now use Example 10.19.

Proposition 10.20.

(i) If R is a ring with right ideal I and left ideal J , then

TorR
1 (R/I, R/J ) ∼= (I ∩ J )/I J.

(ii) If R is a local ring (not necessarily commutative or noetherian) with
maximal ideal m, then

TorR
1 (k, k) ∼= m/m2,

where k = R/m.

Proof.

(i) Let 0 → I
i−→ R

ν−→ R/I → 0 be exact, where i is the inclusion
and ν is the natural map, and let j : J → R be an inclusion. As in
Example 10.19, we compute H1(Tot(M)), where Tot(M) is the total
complex arising from the top rectangle of the diagram

R ⊗R J

1R⊗ j

��

I ⊗R J
i⊗1		

1I⊗ j

��
R ⊗R R

1R⊗ν

��

I ⊗R R
i⊗1		

1I⊗ν

��
R ⊗R (R/J ) I ⊗ (R/J ).

i⊗1
		

Both 1 ⊗ i and 1 ⊗ j are injections, so that H1(Tot(M)) ∼= ker i ⊗ 1,
by Example 10.19, where i ⊗ 1: coker 1I ⊗ j → coker 1R ⊗ j . But
ker i ⊗ 1 = TorR

1 (R/I, R/J ) [because TorR
1 (R, R/J ) = {0}], and so

H1(Tot(M)) ∼= TorR
1 (R/I, R/J ).

To complete the proof, let us simplify the diagram by applying the nat-
ural isomorphisms A ⊗R R ∼= A and R ⊗R B ∼= B to it, where A is a
right R-module and B is a left R-module.

J

��

I J		

��
R I		
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The reason we started this proof with the more complicated version
(with tensors) was to enable us to identify H1 as TorR

1 . It is easy to
check that the natural isomorphisms give rise to a chain map

0 �� I ⊗R I J

ρ

��

�� (R ⊗R J )⊕ (I ⊗R R) ��

σ

��

R ⊗R R

τ

��

�� 0

0 �� I J �� J ⊕ I �� R �� 0.

Now σ, τ are isomorphisms, so that ρ is as well, by the Five Lemma.
Therefore, these two complexes are isomorphic, hence have the same
homology. In particular, TorR

1 (R/I, R/J ) ∼= H1 ∼= (I ∩ J )/I J .

(ii) Immediate from part (i): take I = m = J so that R/I = k = R/J . •
As a general rule, the more 0s occurring in an E2-term, the simpler is the

spectral sequence. The following situation arises often.

Definition. A spectral sequence (Er , dr ) collapses on the p-axis if E2
p,q =

{0} for all q 	= 0; a spectral sequence (Er , dr ) collapses on the q-axis if
E2

p,q = {0} for all p 	= 0.

Thus, a spectral sequence collapses if the only nonzero modules on its E2

page lie on one of the axes.

Proposition 10.21. Let (Er , dr ) be a first quadrant spectral sequence, and
let E2

p,q ⇒p Hn(Tot(M)).

(i) If (Er , dr ) collapses on either axis, then E∞
p,q = E2

p,q for all p, q.

(ii) If (Er , dr ) collapses on the p-axis, then Hn(Tot(M)) ∼= E2
n,0;

if (Er , dr ) collapses on the q-axis, then Hn(Tot(M)) ∼= E2
0,n.

Proof.

(i) Assume that (Er , dr ) collapses on the p-axis (the argument when the
spectral sequence collapses on the q-axis is similar), and choose r ≥ 2.
First of all, Er

p,q = {0} for all r ≥ 2 and q 	= 0, because Er
p,q is

a subquotient of E2
p,q = {0}. Now Er+1

p,0 = ker dr
p,0/ im dr

p+r,−r+1.
Picturing Er as the r th page of the spectral sequence, the differential
dr : Er → Er is a family of arrows each having nonzero slope (1−r)/r .
Now dr

p,0 = 0, because its target is off the axis, hence is {0}; thus,
ker dr

p,0 = Er
p,0. Also, dr

p+r,−r+1 = {0}, because its domain is off the

axis, and so im dr
p+r,−r+1 = {0}. Therefore, Er+1

p,0 = Er
p,0/{0} = Er

p,0,

and Lemma 10.13 gives E∞ = E2.
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(ii) The induced filtration on Hn = Hn(Tot(M)) is

{0} = �−1 Hn ⊆ �0 Hn ⊆ · · · ⊆ �n−1 Hn ⊆ �n Hn = Hn.

If the spectral sequence collapses on the p-axis, then {0} = E2
p,q for

all p ≤ n − 1. But E∞
p,q = E2

p,q , by part (i), so that {0} = E∞
p,q =

�p Hn/�
p−1 Hn for all p ≤ n − 1. Hence, {0} = �−1 Hn = �0 Hn =

· · · = �n−1 Hn and Hn = �n Hn/�
n−1 Hn ∼= E2

n,0. A similar argument
can be given when the spectral sequence collapses on the q-axis. •

Here is a proof, using spectral sequences, of Theorem 6.32: Tor is inde-
pendent of the variable resolved. What is more natural than to resolve both
variables simultaneously? Recall our earlier notation:

TorR
n (A, B) = Hn(PA ⊗R B) and torR

n (A, B) = Hn(A ⊗R QB),

where PA is a deleted projective resolution of A and QB is a deleted projective
resolution of B.

Theorem 10.22. Let PA and QB be deleted projective resolutions of a right
R-module A and a left R-module B, then TorR

n (A, B) ∼= torR
n (A, B); in fact,

for all n ≥ 0,

Hn(PA ⊗ B) ∼= Hn(PA ⊗ QB) ∼= Hn(A ⊗ QB).

Proof. Let (M, d ′, d ′′) be the bicomplex in Example 10.6(i) whose total
complex is PA ⊗ QB . Now E1 is the bigraded module whose (p, q) term
is H ′′

q (Mp,∗), the qth homology of the pth column

Mp,∗ =→ Pp ⊗ Qq+1 → Pp ⊗ Qq → Pp ⊗ Qq−1 → .

Since Pp is projective, hence flat, this sequence is exact at every q > 0; hence,
Hq(Mp,∗) = {0} for q > 0, while H0(Mp,∗) = coker(Pp⊗Q1 → Pp⊗Q0.).
But Q1 → Q0 → B → 0 is exact, so that right exactness of tensor gives
H0 = Pp ⊗ B. To sum up,

I E1
p,q =

{
{0} if q > 0,

Pp ⊗ B if q = 0.

Therefore,

I E
2
p,q = H ′

p H ′′
q (M) =

{
{0} if q > 0,

Hp(PA ⊗ B) if q = 0.



10.4 Homology of the Total Complex 637

Thus, this spectral sequence collapses,2 and Proposition 10.21 gives

Hn(PA ⊗ QB) = Hn(Tot(M)) ∼= I E
2
n,0

∼= Hn(PA ⊗ B).

A similar argument applies to the second iterated homology, using the fact
that each Qq is projective and hence is flat. Hence,

II E
2
p,q = H ′′

p H ′
q(M) =

{
{0} if q > 0,

Hp(A ⊗ QB) if q = 0.

Thus, this spectral sequence also collapses, and

Hn(PA ⊗ QB) ∼= Hn(A ⊗ QB). •
An immediate consequence is Theorem 7.5.

Corollary 10.23. The functors TorR
n (A,�) and TorR

n (�, B) can be com-
puted using flat resolutions of either variable; more precisely, for all deleted
flat resolutions FA and GB of A and B and for all n ≥ 0,

Hn(FA ⊗R B) ∼= TorR
n (A, B) ∼= Hn(A ⊗R GB).

Proof. The only property of the resolutions PA and QB that was used in the
proof of Theorem 10.22 is that all the terms Pp and Qq are flat. •

There is a similar proof showing that Ext is independent of the variable
resolved, but we must first return briefly to bicomplexes to set up the appropri-
ate notation. When it comes to visualizing bicomplexes, we must recognize
that the integer points on the x-axis increase as we go to the right, in contrast
to the usual notation for a complex. To conform to the geometric picture of
bicomplexes, let us now write a complex C “backwards”:

← C−2
d−1←− C−1

d0←− C0
d1←− C1

d2←− C2 ← .

Thus, a deleted projective resolution lives on the positive side of the x-axis,
while a deleted injective resolution lives on the negative side.

Example 10.24.

(i) Given two complexes (A,�′) and (B,�′′), let us make a bicomplex
whose terms are Hom(Ap, Bq) and whose arrows are induced maps.

2We could have concluded that the spectral sequence collapses from the calculation of
H ′′

q (Mp,∗); that is, E p,q = {0} for all q > 0. The extra information we now have is that

E2
p,0 = Torp(A, B).
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Now (�′
p)
∗ : Hom(Ap−1, Bq) → Hom(Ap, Bq), because of the con-

travariance of Hom(�, Bq), so defining Mp,q = Hom(Ap, Bq) gives
(�′

p)
∗ bidegree (1, 0) instead of (−1, 0). To conform to the definition

of bicomplex, redefine the bigrading using a sign-changing trick.

Mp,q = Hom(A−p, Bq),

d ′p,q = (�′
−p+1)

∗ : Hom(A−p, Bq) → Hom(A−p+1, Bq),

d ′′p,q = (−1)p+q+1(�′′
q)∗ : Hom(A−p, Bq) → Hom(A−p, Bq−1).

We have forced the differentials d ′ and d ′′ to have bidegrees (−1, 0) and
(0,−1), respectively. Without the sign in d ′′, the diagram commutes,
because Hom is a bifunctor; with the sign, (M, d ′, d ′′) is a bicomplex.

The natural candidate for the total complex is Hom(A,B), whose term
of degree n is

Hom(A,B)n =
∏

i

Hom(Ai , Bi+n),

the maps of degree n as defined earlier. Set Mp,q = Hom(A−p, Bq),
and recall that n = p + q. Then we have

Hom(A,B)n =
∏

p

Hom(A−p, B−p+n)

=
∏

p+q=n

Hom(A−p, Bq)

=
∏

p+q=n

Mp,q .

[In contrast to Tot(M) = ⊕
p+q=n Mp,q , this complex involves di-

rect products.] Make the graded module Hom(A,B) into a complex
by defining its differential Dn : Hom(A,B)n → Hom(A,B)n−1 as fol-
lows. Consider a map f : A → B of degree n as a sequence of maps
f−p : A−p → Bq , and define

Dn f−p = (d ′p,q + d ′′p,q) f−p

= (�′
−p+1)

∗ + (−1)p+q+1(�′′
q)∗) f−p

= f−p�
′
−p+1 + (−1)p+q+1�′′

q) f−p.

A routine check shows that DD = 0 [the sign (−1)p+q+1 in the defini-
tion of D is needed in this computation].

(ii) When A is a positive complex and B is a negative complex (that is,
Bq = {0} for positive q), the bicomplex M in part (i) has Mp,q = {0}
whenever p or q is positive.
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Definition. A third quadrant bicomplex (or cohomology bicomplex)
is a bicomplex (Mp,q) for which Mp,q = {0} whenever p or q is posi-
tive.

For example, if PA is a deleted projective resolution of a module A and
EB is a deleted injective resolution of a module B, then the bicomplex
M in part (i) with Mp,q = Hom(A−p, E−q) is third quadrant.

For any negative integer −n, the line in the pq-plane with equation
p + q = −n intersects the third quadrant in only finitely many lattice
points (if n > 0, this line does not meet the third quadrant at all). Since
there are now only finitely many nonzero Mp,q with p + q = −n, the
direct product

∏
p+q=−n Mp,q is a direct sum:

Hom(PA,EB)−n =
⊕

p+q=−n

Hom(P−p, E−q).

Therefore, the complex is the total complex:

Hom(PA,EB) = Tot(M).

As usual, we eliminate negative indices by raising them. For third quad-
rant bicomplexes, write

M p,q = M−p,−q .

[Once this is done, the relabeled third quadrant looks like the first quad-
rant. However, the differentials, which originally pointed left and down,
for they had bidegrees (−1, 0) and (0,−1), now point right and up.]

Consider the first filtration of Tot(M) when M is a third quadrant bi-
complex.

(I F
−p

)−n =
⊕

i≤−p

Mi,−n−i

= M−n,0 ⊕ · · · ⊕ M−p,−n+p

and

(I F
−p+1

)−n =
⊕

i≤−p−1

Mi,−n−i

= M−n,0 ⊕ · · · ⊕ M−p,−n+p ⊕ M−p+1,−n+p−1.

Thus,

{0} = F−n−1 ⊆ F−n ⊆ F−n+1 ⊆ · · · ⊆ F0 = Tot(M).
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If we lower indices and change their sign, we have

{0} = Fn+1 ⊆ Fn ⊆ Fn−1 ⊆ · · · ⊆ F0 = Tot(M);
that is, the filtration so labeled is a decreasing filtration (which is accept-
able). Similarly, lowered indices on the second filtration give another
decreasing filtration of Tot(M).

For third quadrant bicomplexes, we change the signs of p, q, and n.
Thus, we write H−n(Tot(M)) = Hn(Tot(M)), call it the nth cohomol-
ogy module and, for 1 ≤ r ≤ ∞,

dr
−p,−q = d p,q

r , I E
r
−p,−q = I E

p,q
r , and II E

r
−p,−q = II E

p,q
r . �

Lemma 10.25. If M is a third quadrant bicomplex, then the first and second
filtrations are bounded.

Proof. The bounds are s(n) = −n − 1 and t (n) = 0. •
Here is the third quadrant version of Proposition 10.21, so that the reader

can see index raising.

Proposition 10.26. Let (Er , dr ) be a third quadrant spectral sequence, and
let E p,q

2 ⇒
p

Hn(Tot(M)).

(i) If (Er , dr ) collapses on either axis, then E p,q
∞ = E p,q

2 for all p, q.

(ii) If (Er , dr ) collapses on the p-axis, then Hn(Tot(M)) ∼= En,0
2 ;

if (Er , dr ) collapses on the q-axis, then Hn(Tot(M)) ∼= E0,n
2 .

Proof.

(i) This proof can be copied verbatim from that of Proposition 10.21(i).

(ii) The induced filtration on Hn = Hn(Tot(M)) is

{0} = �n+1 Hn ⊆ �n Hn ⊆ · · · ⊆ �−1 Hn ⊆ �0 Hn = Hn.

Suppose the spectral sequence collapses on the p-axis; if p < −n, then
q = −n + p 	= 0 and E p,q

∞ = E p,q
2 = {0} = �p Hn/�p−1 Hn . Hence,

{0} = �n+1 Hn = �n Hn = · · · = �1 Hn , and Hn = �0 Hn/�1 Hn ∼=
En,0

2 . A similar argument can be given when the spectral sequence col-
lapses on the q-axis. •

We can prove that Ext is independent of the variable resolved in the
style of the proof of Theorem 10.22. Recall that we defined Extn(A, B) =
Hn(Hom(A,EB)) and extn(A, B) = Hn(Hom(PA, B)).



10.4 Homology of the Total Complex 641

Theorem 10.27. Let A and B be left R-modules, let PA be a deleted projec-
tive resolution of A, and let EB be a deleted injective resolution of B. Then
ExtnR(A, B) ∼= extnR(A, B) for all n ≥ 0: in fact,

Hn(Hom(A,EB)) ∼= Hn(HomR(PA,EB)) ∼= Hn(Hom(PA, B)).

When a spectral sequence collapses, it is very easy to compute the homol-
ogy of its total complex. Here is another simple example.

Proposition 10.28. Let M be a first quadrant bicomplex for which E2

consists of two columns: there is t > 0 with E2
p,q = {0} for p 	= 0 and p 	= t .

Then

(i) E2 = E3 = · · · = Et ,

(ii) Et+1 = E∞,

(iii) there are exact sequences

0 → Et+1
0,n → Hn(Tot(M)) → Et+1

t,n−t → 0,

(iv) there is an exact sequence

→ Hn+1 → E2
t,n+1−t

dr

−→ E2
0,n → Hn → E2

t,n−t
dt

−→ E2
0,n−1 → .

Proof. The differential dr : Er → Er has bidegree (−r, r − 1); that is, dr

goes r steps left and r − 1 steps up. It follows that dr = 0 for r 	= t , since it
either begins or ends at {0}. Lemma 10.13 applies to prove (i) and (ii).

Consider Fig. 10.7 on the following page, the picture of the E2-plane.
Since M is first quadrant, we know that E2

p,q ⇒p Hn(Tot(M)); that is,

{0} = �−1 Hn ⊆ �0 Hn ⊆ · · · ⊆ �n Hn = Hn

and
E∞

p,q
∼= �p Hn/�

p−1 Hn for all p, q.

It follows that �0 Hn = E∞
0,n ⊆ Hn . Now �1 Hn/�

0 Hn = E∞
1,n−1 = {0},

so that �0 Hn = �1 Hn . Indeed, �0 Hn = �1 Hn = · · · = �t−1 Hn . When
we reach t , however, �t Hn/�

t−1 Hn ∼= E∞
t,n−t , and then all remains constant

again: �t Hn = �t+1 Hn = · · · = �n Hn = Hn . Hence, Hn/E∞
0,n

∼= E∞
t,n−t :

there is an exact sequence 0 → E∞
0,n → Hn → E∞

t,n−t → 0. In light of (ii),
this may be rewritten as

0 → Et+1
0,n → Hn → Et+1

t,n−t → 0, (3)

which is (iii).
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Fig. 10.7 Two columns.

There is an exact sequence obtained from dt = dt
t,n+1−t :

0 → ker dt → Et
t,n+1−t

dt

−→ Et
0,n → coker dt → 0.

By definition, Et
t,n+1−t = ker dt

t,n+1−t/ im dt
2t,n+2−2t = ker dt

t,n+1−t , and

Et+1
0,n = ker dt

0,n/ im dt
t,n+1−t = Et

0,n/ im dt
t,n+1−t = coker dt

t,n+1−t . The
sequence may thus be rewritten as

0 → Et+1
t,n+1−t → Et

t,n+1−t
dt

−→ Et
0,n → Et+1

0,n → 0. (4)

Splicing Eqs. (3) and (4) together, remembering that Et = E2, yields the
desired exact sequence

→ Hn+1 → E2
t,n+1−t

dt

−→ E2
0,n → Hn → E2

t,n−t → . •
Note that it is possible that the terms Er of a spectral sequence remain

constant for a while before moving. Thus, it is not true in general that Er =
Er+1 implies Er = E∞.

The proposition simplifies when the two columns are adjacent. There
is a third quadrant version of Proposition 10.28 (whose statement is left to
the reader); however, we do state both versions for adjacent columns. This
corollary applies, in particular, to the 2 × 2 rectangle in Example 10.19.

Corollary 10.29.

(i) Let M be a first quadrant bicomplex for which E2 consists of two adja-
cent columns: E2

p,q = {0} for all p 	= 0, 1. For each n, there is an exact
sequence

0 → E2
0,n → Hn(Tot(M)) → E2

1,n−1 → 0.
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(ii) Let M be a third quadrant bicomplex for which E2 consists of two ad-
jacent columns: E p,q

2 = {0} for all p 	= 0, 1. For each n, there is an
exact sequence

0 → E1,n−1
2 → Hn(Tot(M)) → E0,n

2 → 0.

We can now give a “poor man’s version” of the Universal Coefficient
Theorem (it mentions neither splitting nor naturality).

Corollary 10.30. Let R be a commutative hereditary ring, and let C be a
positive complex of free R-modules. If A is a R-module, then, for all n ≥ 0,
there are exact sequences

0 → Hn(C)⊗R A → Hn(C ⊗R A) → TorR
1 (Hn−1(C), A) → 0

and

0 → Ext1R(Hn−1(C), A) → Hn(HomR(C, A)) → HomR(Hn(C), A) → 0.

Proof. For the first sequence, let 0 → P1 → P0 → A → 0 be a projec-
tive resolution of A (which exists because R is hereditary), and apply Corol-
lary 10.29 to the bicomplex M with Mp,q = Cq ⊗R E p.

For the second sequence, let 0 → A → E0 → E1 → 0 be an injec-
tive resolution of A (R is hereditary), and apply Corollary 10.29 to the third
quadrant bicomplex M with M p,q = HomR(C p, Eq). •

Here is a useful byproduct of convergence: the five-term exact sequence.
We have already seen the basic idea of its proof: many differentials dr in a
spectral sequence are zero because their bidegree forces either their domain
or their target to be {0}.

Theorem 10.31 (Homology Five-Term Exact Sequence). Assume that
(Er , dr ) is a first quadrant spectral sequence, so that E2

p,q ⇒p Hn(Tot(M)).

(i) For each n, there is a surjection E2
0,n → E∞

0,n; dually, there is an injec-

tion E∞
n,0 → E2

n,0.

(ii) For each n, there is an injection E∞
0,n → Hn(Tot(M)); dually, there is

a surjection Hn(Tot(M)) → E∞
n,0.

(iii) There is an exact sequence

H2(Tot(M)) → E2
2,0

d2

−→ E2
0,1 → H1(Tot(M)) → E2

1,0 → 0.
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Remark. The maps in (i) are called edge homomorphisms. �
Proof.

(i) By definition, E3
0,n = ker d2

0,n/ im d2
2,n−1. Since E2 is first quadrant,

d2
0,n : E2

0,n → E2
−2,n+1 = {0} is the zero map. Therefore, ker d2

0,n =
E2

0,n , and there is a surjection E2
0,n → E3

0,n . This argument can be
repeated for each dr : Er → Er , using only the fact that dr has bidegree
(−r, r −1). There is thus a chain of surjections E2

0,n → E3
0,n → · · · →

Er
0,n . This completes the argument, for E∞

0,n = Er
0,n for large r .

Dually, there is an injection E2
n,0 → E3

n,0, for

E3
n,0 = ker d2

n,0/ im d2
n+2,−1 = ker d2

n,0 ⊆ E2
n,0

(d2
n+2,−1 = 0 because E2 is first quadrant). Thus, there is an injec-

tion E3
n,0 → E2

n,0. Now iterate; all im dr
n,0 = {0} because im dr

n,0 ⊆
Er

n+r,−1 = {0}.
(ii) The definition of convergence yields

E∞
0,n = �0 Hn/�

−1 Hn = �0 Hn ⊆ Hn

and
E∞

n,0 = �n Hn/�
n−1 Hn = Hn/�

n−1 Hn.

(iii) There is an exact sequence arising from d2:

0 → ker d2
2,0 → E2

2,0
d2

−→ E2
0,1 → coker d2

2,0 → 0. (5)

Now ker d2
2,0 = ker d2

2,0/ im d2
4,−1 = E3

2,0. Iterating this argument gives

ker d2
2,0 = Er

2,0 for large r , and hence ker d2
2,0 = E∞

2,0. Dually,

coker d2
2,0 = E2

0,1/ im d2
2,0 = ker d2

0,1/ im d2
2,0 = E3

0,1.

Iteration gives coker d2
2,0 = E∞

0,1. Exact sequence (5) now reads

0 → E∞
2,0 → E2

2,0
d2

−→ E2
0,1 → E∞

0,1 → 0.

The surjection H2(Tot(M)) → E∞
2,0 in (iv) gives exactness of

H2(Tot(M)) → E2
2,0

d2

−→ E2
0,1 → E∞

0,1 → 0. (6)

Finally, the equations

H1 = �1 H1, E∞
1,0 = �1 H1/�

0 H1, E∞
0,1 = �0 H1/�

−1 H1 = �0 H1
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combine to give
H1/E∞

0,1
∼= E∞

1,0;
otherwise said, there is a short exact sequence

0 → E∞
0,1 → H1(Tot(M)) → E∞

1,0 → 0.

Splicing this to the exact sequence (6) yields exactness of

H2(Tot(M)) → E2
2,0

d2

−→ E2
0,1

α−→ H1(Tot(M)) → E∞
1,0 → 0,

where α is the composite E2
0,1 → E∞

0,1 → H1(Tot(M)).

If r ≥ 2, then both dr
1,0 and dr

r+1,r−1 are zero maps, for im dr
1,0 ⊆

Er
1−r,r−1 = {0} and the domain of dr

r+1,1−r ⊆ Er
r+1,1−r = {0}. But

Er+1
1,0 = ker dr

1,0/ im dr
r+1,1−r = Er

1,0, so that E2
1,0 = Er

1,0. Finally,

E∞
1,0 = Er

1,0 for large r , so that E∞
1,0 = E2

1,0. Substituting this in the
last exact sequence completes the proof. •

Here is a variation of the five-term exact sequence whose proof is left to
the reader.

Corollary 10.32. If (Er , dr ) is a first quadrant spectral sequence and there
is n > 0 with E2

p,q = {0} for all q < n, then there is an exact sequence

Hn+1(Tot(M)) → E2
n+1,0

dn+1

−→ E2
0,n → Hn(Tot(M)) → E2

n,0 → 0.

The proofs for cohomology are dual to the proofs for homology.

Theorem 10.33 (Cohomology Five-Term Exact Sequence). Assume that
(Er , dr ) is a third quadrant spectral sequence, so that E p,q

2 ⇒
p

Hn(Tot(M)).

Then there is an exact sequence

0 → E1,0
2 → H1(Tot(M)) → E0,1

2
d2−→ E2,0

2 → H2(Tot(M)).

Corollary 10.34. If (Er , dr ) is a third quadrant spectral sequence and there
is n > 0 with E p,q

2 = {0} for all q < n, then there is an exact sequence

0 → En,0
2 → Hn(Tot(M)) → E0,n

2
dn+1−→ En+1,0

2 → Hn+1(Tot(M)).

We cannot appreciate these exact sequences in this generality. After giv-
ing the Lyndon–Hochschild–Serre spectral sequence, we will see that we have
lengthened the exact sequence in Theorem 9.84.
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Exercises

10.6 (Mapping Theorem) Let (Er , dr ) and (E ′r , d ′r ) be spectral se-
quences. A map of spectral sequences is a family of bigraded
maps f = ( f r : Er → E ′r )), each of bidegree (0, 0), such that,
for all r , we have d ′r f r = f r dr and f r+1 is the map induced
by f r in homology; that is, since Er+1 = H(Er , dr ), we have
f r+1 : cls(z) �→ cls( f r z).

(i) Prove that if f = ( f r : (Er , dr ) → (E ′r , d ′r )) is a map
of spectral sequences for which f t is an isomorphism for
some t , then f r is an isomorphism for all r ≥ t .

(ii) Let E2 and E ′2 be either first or third quadrant spectral
sequences. If f = ( f r : (Er , dr ) → (E ′r , d ′r )) is a map
of spectral sequences for which f t is an isomorphism for
some t , prove that f induces an isomorphism E∞ ∼= E ′∞.

10.7 (i) If P is a projective resolution of a right R-module A and Q
is a projective resolution of a left R-module B, prove that
P ⊗R Q is a projective resolution of A ⊗R B.

(ii) Use part (i) to redo Exercise 9.34 on page 594: if G is a
free abelian group of rank r , then cd(G) ≤ r .

10.8 Prove that there is an analog of the adjoint isomorphism for com-
plexes: if R and S are rings, A is a complex of right R-modules,
B is a complex of (R, S)-bimodules, and C is a complex of right
S-modules, then

HomS(A ⊗R B,C) ∼= HomR(A,HomS(B,C)).

*10.9 (i) For fixed k ≥ 0 and (A, d) ∈ Comp(ModR), (C, δ) ∈
Comp(RMod), prove that there is a bicomplex (M, d ′, d ′′)
with Mp,q = TorR

k (Ap, Bq), d ′p,q = (dp ⊗ 1Cq )∗, and
d ′′p,q = (−1)p(1Ap ⊗ δq)∗. We denote Tot(M) by

TorR
k (A,C).

[See Example 10.6(i).]

(ii) Prove, as in part (i), that there is a bicomplex with (p.q)
term ExtkR(A−p,Cq); its total complex is denoted by

Extk
R(A,C).

[See Example 10.24(i).]
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*10.10 (i) If R is a ring and 0 → A′ → A → A′′ → 0 is an exact se-
quence in Comp(ModR), prove, for any complex C of left
R-modules, that there is an exact sequence in Comp(Z):

→TorR
1 (A′,C) → TorR

1 (A,C) → TorR
1 (A′′,C)

→ A′ ⊗R C → A ⊗R C → A′′ ⊗R C → 0.

(ii) Definition. A complex A flat if 0 → C′ i−→ C is exact

in Comp(ModR), then 0 → A⊗R C′ 1⊗i−→ A⊗R C is exact
in Comp(Ab).

Prove that the following statements are equivalent.

(i) A is a complex having all terms flat.
(ii) TorR

1 (A,C) = 0 for every C; i.e., every term of the
complex TorR

1 (A,C) is {0}.
(iii) A is flat.3

*10.11 Let A be a complex of right R-modules, and let C be a complex
of left R-modules. If A has zero differentials and all its terms are
flat, and if H•(C) is viewed as a complex having zero differentials,
prove that

Hn(A ⊗R C) = (A ⊗R H•(C))n.

10.5 Cartan–Eilenberg Resolutions

We are going to see that if A is an abelian category with enough projectives (or
injectives), then Comp(A), the category of all chain complexes over A, also
has enough projectives (or injectives). A Cartan–Eilenberg resolution is a
special kind of projective (or injective) resolution of a complex in Comp(A),
and we shall see that there are enough of them as well.

Definition. Let A be an abelian category, and let (C, d) be a complex in A.
The fundamental exact sequences of C are, for all n ∈ Z:

0 → Zn → Cn
d ′−→ Bn−1 → 0;

0 → Bn → Zn → Hn → 0.

In RMod, the morphism d ′ : Cn → Bn−1 is d with its target changed from
Cn−1 to Bn−1; thus, d = id ′, where i : B → C is the inclusion. In a general
abelian category, there exists a factorization d = id ′ with i monic and d ′ epic.

3Compare this with Theorem 10.42; characterizing flat complexes is very much simpler
than characterizing projective complexes or injective complexes.
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Definition. A complex (C, d) in an abelian category A is split if all its
fundamental exact sequences are split.

Recall Example 6.1(iv): if f : A → B is a morphism, then

"k( f )

is the complex with f concentrated in degrees (k, k−1); that is, A is the term
of degree k, B is the term of degree k − 1, all other terms are 0, and f is the
kth differential.

Lemma 10.35. If P is a projective object in an abelian category A and
k ∈ Z, then "k(1P) is projective in Comp(A).

Proof. Consider the diagram in Comp(A):

P 1P

**%%%
%%%%

%%

h

;;.
.

.
.

f
��

P

f ′
��

h′

;;.
.

.
.

.

Ck
g ��

d ����
���

� C ′
k

d ′
%%��

���
��

Ck−1
g′

�� C ′
k−1.

Here, g and g′ are parts of an epic chain map C → C′, so that each of them
is epic in A (Exercise 5.66 on page 322). Since P is projective, there is
h : P → Ck with gh = f . Define h′ : P → Ck−1 by h′ = dh. All the faces
of the prism commute, with the possible exception of the triangle on the right.
In particular, (h, h′) : "k(1P) → C is a chain map. It remains to prove that
g′h′ = f ′. But g′h′ = g′dh = d ′gh = d ′ f = f ′. •

Proposition 10.36. If (C, d) is split, then

C ∼=
⊕
k∈Z

"k(δk),

where δk : Bk(C) → Zk(C) is the inclusion and "k(δk) is the complex having
δk concentrated in degrees (k, k − 1).

Proof. As usual, we invoke the Metatheorem on page 316, so that we may
assume that A = Ab; that is, we may assume our objects have elements.
Write Bk = Bk(C) and Zk = Zk(C). Since (C, d) is split, there are split exact
sequences 0 → Zk → Ck → Bk−1 → 0, for each k, and Proposition 2.20
gives morphisms,

0 → Zk
i

�
q

Ck

p
�

j
Bk−1 → 0,
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where p is merely d with its target changed from Ck−1 to Bk−1, and

qi = 1Zk , pj = 1Bk−1, pi = 0, q j = 0, and iq + j p = 1Ck .

Now "k(i) is a direct summand of "k(1Ck ) for all k, by Exercise 10.15 on
page 655.

The nth term of
⊕

k∈Z
"k(δk) is Zn ⊕ Bn−1, and the nth differential is

�n : (zn, bn−1) �→ (δnbn−1, 0). Define θn : Cn → Zn ⊕ Bn−1 by θ : cn �→
(qcn, pcn). Note that each θ is an isomorphism, for its inverse is (z, b) �→
i z + jb. Finally, θ = (θn) is a chain map because the following diagram
commutes, as the reader may check using the explicit formulas:

Cn
d ��

θ ��

Cn−1

θ��
Zn ⊕ Bn−1

�
�� Zn−1 ⊕ Bn−2. •

Corollary 10.37. If A is an abelian category and C is a split complex each
of whose terms is projective in A, then C is projective in Comp(A).

Proof. Proposition 10.36 gives C ∼= ⊕
k∈Z

"k(δk), where δk : Bk → Zk

is the inclusion. As C is a split complex, the exact sequence 0 → Zk
ιk−→

Ck → Bk−1 → 0 splits; hence, "k(ιk) is a direct summand of "k(1Ck ), by
Exercise 10.15 on page 655. Since Ck is projective, "k(1Ck ) is projective in
Comp(A), by Lemma 10.35 and so its direct summand "k(ιk) is also pro-

jective in Comp(A). Similarly, splitting of 0 → Bk
δk−→ Zk → Hk → 0

implies projectivity of "k(δk), and so C is projective, being a direct sum of
projectives. •

We are going to prove the converse of Corollary 10.37.

Notation. If p ∈ Z and (A, d) is a complex, define A[p] to be the com-
plex whose indices have been shifted by p: its nth term is An+p and its nth
differential is dn+p.

For example, if (C, d) is a complex with cycles Z and boundaries B, then

0 → Z → C
d ′−→ B[ − 1] → 0

is an exact sequence of complexes, where d ′n is just dn with its target Cn−1
replaced by Bn−1.

It is obvious that
Hn(A[p]) = Hn+p(A).
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Definition. If f : (A, d) → (C, δ) is a chain map, then its mapping cone4

is the complex cone( f ) whose term of degree n is cone( f )n = An−1 ⊕ Cn
and whose differential Dn : cone( f )n → cone( f )n−1 is

Dn : (an−1, cn) �→ (−dn−1an−1, δncn − fn−1an−1);
that is, if (an−1, cn) is viewed as a column vector,

Dn

[
an−1

cn

]
=
[−dn−1 0
− fn−1 δn

] [
an−1

cn

]
.

It is routine to check that cone( f ) is a complex.

Lemma 10.38. Let f : (A, d) → (C, δ) be a chain map. There is an exact
sequence of complexes

0 → C
i−→ cone( f )

j−→ A[−1] → 0,

where i : c �→ (0, c) and j : (a, c) �→ −a. The connecting homomorphism
Hn(A[−1]) → Hn−1(C) in the corresponding long exact sequence is the
induced map f∗ : Hn−1(A) → Hn−1(C).

Proof. Exactness of the sequence of complexes is a routine calculation. Since
∂ = j−1 Di−1, we have

∂ : a �→ (−a, c) �→ (−d(−a), δc − f (−a)
) �→ f a. •

Example 10.39. Let f : A → C be a chain map. Construct a two-column
bicomplex M = Mp,q with terms

Mp,q =

⎧⎪⎨
⎪⎩

Cq if p = 0,

Aq if p = 1,

{0} if p ≥ 2,

with vertical maps the differentials in A,C, respectively, and with horizontal
maps − fq : Aq → Cq . It is easy to see that

Tot(M) = cone( f ),

and that the exact sequence of Lemma 10.38 is the exact sequence which
occurs in Corollary 10.29. �

4See Gelfand–Manin, Methods of Homological Algebra, p. 27, for the geometric origin
of this cone construction.
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Lemma 10.40. Let A be an abelian category, and let (C, d) be a complex
in A.

(i) cone(1) is an acyclic complex, where 1 is the identity chain map on C.

(ii) If there exists a morphism s : C → C of degree +1 with d = dsd (that
is, dn = dnsn−1dn for all n), then C is split.

(iii) cone(1) is a split complex.

Proof.

(i) Since the connecting homomorphisms in the long exact sequence aris-
ing from 0 → C → cone(1) → C[−1] → 0 are identities, Exer-
cise 2.16 on page 67 applies to show that Hn(cone(1)) = {0} for all n;
that is, cone(1) is acyclic.

(ii) As usual, we may assume that A = Ab. If b ∈ Bn−1, then b = dc
for some c ∈ Cn . If we define t = s|Bn−1 : Bn−1 → Cn , then the
sequence 0 → Zn → Cn → Bn−1 → 0 splits, for dtb = dsb =
dsdc = dc = b; that is, d ′t = 1Bn−1 . To see that 0 → Bn → Zn

ν−→
Hn → 0 splits, define u : Hn → Zn by u : cls(z) �→ z− dsz. We claim
that u is well-defined. If b ∈ Bn , then b = dc for some c ∈ Cn+1,
and b − dsb = dc − dsdc = dc − dc = 0 (because dsd = d).
Hence, if cls(z) = cls(z′), then z′ = z + b for some b ∈ Bn and
z′ − dsz′ = z + b − ds(z + b) = z − dsz. The map u is a splitting:
the map ν : Zn → Hn is is given by z �→ cls(z), and the composite
νu : cls(x) �→ z − dsz �→ cls(z − dsz) = cls(z), because dsz is a
boundary.

(iii) Define s : cone(1) → cone(1) by s : (cn−1, cn) �→ (−cn, 0). A rou-
tine calculation shows that D = Ds D, where D is the differential of
cone(1), so that (ii) shows that cone(1) is split. •

Definition. A chain map f : (A, d) → (C, δ) is a quasi-isomorphism (or
weak equivalence) if all of its induced maps f∗ : Hn(A) → Hn(C) are iso-
morphisms.

Corollary 10.41. A chain map f is a quasi-isomorphism if and only if
cone( f ) is acyclic.

Proof. Since cone( f ) is acyclic, all of its homology groups are 0, and so all
of the connecting homomorphisms are isomorphisms. •



652 Spectral Sequences Ch. 10

Theorem 10.42. If A is an abelian category, then a complex (C, d) is pro-
jective (or injective) in Comp(A) if and only if it is split with every term Cn
projective (or injective) in A.

Proof. Sufficiency is Corollary 10.37. Conversely, if C is projective, then
it is easy to see that C[−1] is also projective; hence, the exact sequence of
complexes 0 → C → cone(1) → C[−1] → 0 is split, where 1 is the identity
chain map on C. By Lemma 10.40, cone(1) is a split complex, and so its
direct summand C is split, by Exercise 10.16 on page 655.

We now show that each term Cn is projective in A. Given an object A′, let
!n(A′) be the complex with A′ concentrated in degree n; given a morphism
f : Cn → A′, define a chain map F = (Fi ) : C → !n(A′), where Fn = f
and all other Fi = 0. Similarly, if g : A → A′ is an epimorphism and !n(A)

is the complex with A concentrated in degree n, then there is a chain map
G = (Gi ) : !n(A) → !n(A′), where Gn = g and all other Gi = 0. Since C
is projective, there is a chain map H : C → !n(A) with G H = F . It follows
that gh = f , and so Cn is projective.

Cn

f
��

h

��&
&

&

A g
�� A′

C
F��

H
��� � � �

!n(A)
G
�� !n(A′)

This argument dualizes when C is injective. •

Theorem 10.43. If an abelian category A has enough projectives (or enough
injectives), then so does Comp(A).

Proof. Let C =→ Cn
dn−→ Cn−1

dn−1−→ Cn−2 → be a complex in A. For
each n, there exists a projective Pn and an epic gn : Pn → Cn . Consider the
following chain map Gn : "n(1Pn ) → C:

�� 0

��

�� Pn
1Pn ��

gn

��

Pn ��

dn gn

��

0

��

��

�� Cn+1 �� Cn dn

�� Cn−1 �� Cn−2 ��

Now " = ⊕
n∈Z

"n(1Pn ) is projective in Comp(A), by Lemma 10.35, and
G =⊕Gn : " → C is an epimorphism. •

Remark. The full subcategories Comp≥0(A) of all positive complexes and
Comp≤0(A) of all negative complexes also have enough projectives (or in-
jectives) when A does. �

The following proposition is not needed in our discussion of projective
complexes, but this is a convenient place to put it.



10.5 Cartan{Eilenberg Resolutions 653

Proposition 10.44. Let R be a left hereditary ring, and let (A, d) be a com-
plex of left R-modules. Then there exist a complex P having all terms projec-
tive and a quasi-isomorphism f : P → A.

Proof. For fixed n, there exist a projective left R-module Vn and a surjective
ϕn : Vn → Zn , the n-cycles in An . Consider the commutative diagram

Wn
ϕ′′n

;;.
.

.
.

ϕ′n
��

αn �� Vn

ϕn

��
An+1

d ′n+1

�� Bn jn
�� Zn in

�� An.

Here, Wn = ϕ−1(Bn) ⊆ Vn , and ϕ′n : Wn → Bn is the restriction ϕn|Wn
(with target changed to Bn); moreover, αn : Wn → Vn , jn : Bn → Zn , and
in : Zn → An are inclusions, while d ′n+1 : An+1 → Bn differs from dn+1 only
in its target, so that dn+1 = in jnd ′n+1. Now Wn is projective, because every
submodule of a projective is projective since R is left hereditary. As ϕ′n is
surjective, there exists ϕ′′n : Wn → An+1 making the diagram commute.

Define

Xn = "n+1(αn) = 0 → Wn
αn−→ Vn → 0,

the complex concentrated in degrees n + 1 and n. Note that

Hq(Xn) =
{

Hn(A) if q = n,

{0} otherwise.

Define

P =
⊕

i

Xi =→ Vn+1 ⊕ Wn
δn+1−→ Vn ⊕ Wn−1 →,

where δn+1 : (vn+1, wn) �→ (αnwn, 0), and define f = ( fn) : P → A, where
fn : Vn⊕Wn−1 is given by (vn, wn−1) �→ inϕnvn . It follows from Exercise 6.9
on page 339 that Hn(P) = Hn(

⊕
i Xi ) = Hn(Xn) = Hn(A); moreover, f∗ is

an isomorphism. Hence, f is a quasi-isomorphism. •

Definition. Let C be a complex in Comp(A), where A is an abelian cate-
gory. A Cartan–Eilenberg projective resolution (or a proper projective reso-
lution) of C is an exact sequence in Comp(A),

→ M•,q → · · · → M•,1 → M•,0 → C → 0,

such that the following sequences in A are projective resolutions for each p:
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(i) → Mp,1 → Mp,0 → C p → 0;

(ii) → Z p,1 → Z p,0 → Z p(C) → 0;

(iii) → Bp,1 → Bp,0 → Bp(C) → 0;

(iv) → Hp,1 → Hp,0 → Hp(C) → 0.

Our notation is a bit misleading; every term with a double subscript is a pro-
jective object in A.

There is a dual notion of Cartan–Eilenberg injective resolution.

A Cartan–Eilenberg projective resolution can be viewed as a large com-
mutative diagram M in A (which would be a bicomplex if we invoked the
sign trick of Example 10.4). For each p, the pth column Mp,∗ is a deleted
projective resolution of C p; for each q, the qth row M∗,q is a complex each of
whose terms is projective. Now the fundamental exact sequences of the qth
row M∗,q ,

0 → Z p,q → Mp,q → Bp−1,q → 0

0 → Bp,q → Z p,q → Hp,q → 0,

are split, because Bp−1,q and Hp,q are projective. Therefore, each row M∗,q
is projective in Comp(A), by Theorem 10.42, and so a Cartan–Eilenberg pro-
jective resolution of a complex C is, indeed, a projective resolution of C in
the category Comp(A).

Theorem 10.45. If A is an abelian category with enough projectives (or
injectives), then every complex C in Comp(A) has a Cartan–Eilenberg pro-
jective (or injective) resolution.

Proof. Let C = → C2
d2−→ C1

d1−→ C0
d0−→ C−1 → be a complex. For

each p ∈ Z, there are fundamental exact sequences

0 → Bp → Z p → Hp → 0 and 0 → Z p → C p → Bp−1 → 0.

Choose projective resolutions Bp,∗ and Hp,∗ of Bp and Hp, respectively; by
the Horseshoe Lemma, Proposition 6.24, there is a projective resolution Z p,∗
of Z p so that 0 → Bp,∗ → Z p,∗ → Hp,∗ → 0 is an exact sequence of com-
plexes. Using the Horseshoe Lemma again, there is a projective resolution
Mp,∗ of C p so that 0 → Z p,∗ → Mp,∗ → Bp−1,∗ → 0 is an exact sequence
of complexes. For each p, define chain maps dp,q : Mp,q → Mp−1,q as the
composite

dp,q : Mp,q → Bp−1,q → Z p−1,q → Mp−1,q . (1)
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We have a commutative two-dimensional diagram whose columns are the pro-
jective resolutions Mp,• of C p.

�� �� �� ��
�� M2,1

d2,1 ��

��

M1,1
d1,1 ��

��

M0,1
d0,1 ��

��

M−1,1

��

��

�� M2,0
d2,0 ��

��

M1,0
d1,0 ��

��

M0,0
d0,0 ��

��

M−1,0

��

��

�� C2

��

�� C1

��

�� C0

��

�� C−1

��

��

0 0 0 0

We have constructed a Cartan-Eilenberg projective resolution. •

Exercises

10.12 Let C = (C p,q) and D = (Dp,q) be first quadrant bicomplexes,
and let f = ( f p,q : C p,q → Dp,q) be a map of bicomplexes. If,
for all p ≥ 0, we have f p,∗ : C p,∗ → Dp,∗ a quasi-isomorphism,
prove that the map Tot(C) → Tot(D) induced by f is a quasi-
isomorphism.

10.13 Let M be a first quadrant or third quadrant bicomplex all of whose
rows (or all of whose columns) are exact. Prove that Tot(M) is
acyclic.

10.14 Let P = !0(Z), the complex of abelian groups having Z concen-
trated in degree 0. Prove, without using Proposition 10.42, that P is
not projective in Comp(Ab).

*10.15 If 0 → A′ δ−→ A → A′′ → 0 is a split exact sequence in an abelian
category A, prove that "k(δ) is a direct summand of "k(1A), where
"k(δ) is the complex with δ concentrated in degrees (k, k − 1).

*10.16 Let C = C′ ⊕ C′′ be a direct sum of complexes. If C is split, prove
that C′ is also split.

10.17 A complex (C, d) split exact if it is split and acyclic. Prove that if
(C, d) is acyclic and 0 → Zn → Cn → Bn−1 → 0 splits for all n,
then 0 → Bn → Zn → Hn → 0 splits for all n; i.e., (C, d) is split.

10.18 (i) Prove that every contractible complex C is split exact.

(ii) Prove, using induction, that a positive or a negative com-
plex C which is split exact is contractible.
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10.6 Grothendieck Spectral Sequences

The main result in this section shows that there are spectral sequences, due to
Grothendieck,5 relating the derived functors of a composite of two functors
and the derived functors of the factors. We will state and prove these theorems
in this section, and we will apply them in following sections.

Definition. Let B be an abelian category with enough projectives (or with
enough injectives), and let F : B → Ab be an additive functor of either vari-
ance. An object B is called right F-acyclic if (R p F)B = {0} for all p ≥ 1.
An object B is called left F-acyclic if (L p F)B = {0} for all p ≥ 1.

Example 10.46.

(i) If F = HomR(A,�), then every injective R-module E is right F-
acyclic because Extp

R(A, E) = {0} for all p ≥ 1.

(ii) If F = A ⊗R �, then every projective R-module P is left F-acyclic
because TorR

p (A, P) = {0} for all p ≥ 1. In fact, every flat R-module
B is left F-acyclic.

(iii) If R is a domain with Q = Frac(R), and if F = Q⊗R �, then every R-
module B is left F-acyclic, for TorR

p (Q, B) = {0} for all p ≥ 1 because
Q is flat.

(iv) If B = Sh(X) and � : Sh(X) → Ab is the global sections functor, then
every flabby sheaf F is right �-acyclic. �

There are four Grothendieck spectral sequences, depending on the vari-
ances of the functors involved; two are first quadrant (homology) and two
are third quadrant (cohomology). We will prove one of the third quadrant
versions, but we will merely state the other versions.

The following elementary fact is used in the next proof. If α : U → W
is a homomorphism of abelian groups, and if V ⊆ U is a subgroup, then
α∗ : U/V → α(U )/α(V ), given by u + V �→ αu + α(V ), is a surjection.
Moreover, if α is an injection, then α∗ is an isomorphism. By the Full Imbed-
ding Theorem, this is also true in any abelian category.

5There is an earlier discussion of derived functors of composites in Cartan–Eilenberg,
Homological Algebra, pp. 376–377, using hyperhomology.
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Theorem 10.47 (Grothendieck). Let A G−→ B F−→ C be covariant ad-
ditive functors, where A,B, and C are abelian categories with enough injec-
tives. Assume that F is left exact and that G E is right F-acyclic for every
injective object E in A. Then, for every object A in A, there is a third quad-
rant spectral sequence with

E p,q
2 = (R p F)(Rq G)A ⇒

p
Rn(FG)A.

Proof. Choose an injective resolution E = 0 → A → E0 → E1 →, and
apply G to its deletion EA to obtain the complex

GEA = 0 → G E0 → G E1 → G E2 → .

By Theorem 10.45, there exists a Cartan–Eilenberg injective resolution of
GEA: a third quadrant bicomplex M whose rows are complexes and whose
columns are deleted injective resolutions (the definition also gives injective
resolutions of cycles, boundaries, and homology). Here is the picture of M
after raising indices.

�� M01 ��

��

M11

��

�� M21

��

�� M31

��

��

�� M00

��

�� M10

��

�� M20

��

�� M30

��

��

�� G E0

��

�� G E1

��

�� G E2

��

�� G E3

��

��

0

��

0

��

0

��

0

��

Consider the bicomplex F M and its total complex Tot(F M). It is very
easy to compute its first iterated homology. For fixed p, the pth column
F M p,∗ is a deleted injective resolution of G E p, and so F M p,∗ is a complex
whose qth homology is (RF)q(G E p):

Hq(F M p,∗) = (Rq F)(G E p).

Now E p is injective, so that G E p is right F-acyclic; that is, (Rq F)(G E p) =
{0} for all q ≥ 1. Hence,

Hq(F M p,∗) =
{
(R0 F)(G E p) if q = 0,

{0} if q > 0.

But F is assumed to be left exact, so that R0 F = F , by Theorem 6.45. All
that survives is on the p-axis,

0 → FG(E0) → FG(E1) → FG(E2) →,



658 Spectral Sequences Ch. 10

and this is FG applied to the deleted injective resolution EA. Hence, its pth
homology is R p(FG)A:

I E
p,q
2 =

{
R p(FG)A if q = 0,

{0} if q > 0.

Thus, the first spectral sequence of F M collapses on the p-axis, and we have

Hn(Tot(F M)) ∼= Rn(FG)A.

To compute the second iterated homology, we first transpose the indices
p, q in the bicomplex F M , noting that

Hq(F M∗,p) = ker Fdq,p

im Fdq−1,p
.

Apply F to the commutative diagram in which j : B → Z and i : Z → M
are inclusions, and δ : M → B is the surjection arising from d by changing
its target; note that d = i jδ.

Mq+1,p

0 �� Zq,p
i

�� Mq,p
δ

��

d
��(((((((((

Bq+1,p

i j

��

�� 0

We are now going to use the hypothesis that M is a Cartan–Eilenberg injective
resolution. Since Zq,p is injective [being a term in the injective resolution of

Z(G E p)], the exact sequence 0 → Zq,p i−→ Mq,p δ−→ Bq+1,p → 0
splits. Therefore, the sequence remains exact after applying F , so that Fi
is monic, ker Fδ = im Fi , and Fδ is epic. Similarly, the exact sequence

0 → Bq,p j−→ Zq,p → Hq,p → 0 splits, because Bq,p is injective, so that
it, too, remains exact after applying F . Hence, F j is monic.

It is clearer to give the next argument in Ab (as usual, this is no loss in gen-
erality, thanks to the Full Imbedding Theorem). We compute ker Fd/ im Fd.
Now Fd = F(i jδ) = (Fi)(F j)(Fδ). Since both Fi and F j are injections,
the numerator

ker Fd = ker Fδ = im Fi = (Fi)(F Z).

The denominator

im Fd = (Fd)(F M) = (Fi)[(F j)(Fδ)(F M)] = (Fi)[(F j)(F B)],

because Fδ : F M → F B is a surjection. Invoke the elementary fact: the
homomorphism Fi : F Z → F M and the subgroup (F j)(F B) ⊆ F Z give a
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surjection (Fi)(F Z)/(Fi)[(F j)(F B)] → F Z/(F j)(F B); moreover, this is
an isomorphism because Fi is an injection. Therefore,

ker Fd

im Fd
= (Fi)(F Z)

(Fi)[(F j)(F B)]
∼= F Z

(F j)(F B)
.

But F Z/(F j)(F B) = coker F j ∼= F H , because 0 → F B
F j−→ F Z →

F H → 0 is exact. Restoring indices, we conclude that

Hq(F M∗,p) = ker Fdq,p

im Fdq−1,p
∼= F Hq,p;

that is, F commutes with Hq . By hypothesis, each 0 → Hq(GEA) →
Hq,0 → Hq,1 → · · · → Hq,p → is an injective resolution of Hq(M∗,p).
By definition, Hq(GEA) = (Rq G)A, so that the modules Hq(M∗,p) form an
injective resolution of (Rq G)A. Hence,

II E
p,q
2 = H p Hq(F M) = (R p F)(Rq G)A,

for F commutes with Hq , and so (R p F)(Rq G)A ⇒
p

Rn(FG)A, because

both spectral sequences have the same limit, namely, Rn(FG)A. •
Here are several variations of the Grothendieck spectral sequence, whose

proofs are routine modifications of the proof just given.

Theorem 10.48. Let A G−→ B F−→ C be covariant additive functors, where
A,B, and C are abelian categories with enough projectives. Assume that F is
right exact and that G P is left F-acyclic for every projective P in A. Then,
for every object A in A, there is a first quadrant spectral sequence with

E2
p,q = (L p F)(Lq G)A ⇒

p
Ln(FG)A.

Theorem 10.49. Let A G−→ B F−→ C be additive functors, where A is
an abelian category with enough projectives, B is an abelian category with
enough injectives, and C is an abelian category with enough projectives. As-
sume that F is contravariant left exact, G is covariant, and G P is right F-
acyclic for every projective P in A. Then, for every object A in A, there is a
third quadrant spectral sequence with

E p,q
2 = (R p F)(Lq G)A ⇒

p
Rn(FG)A.
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Theorem 10.50. Let A G−→ B F−→ C be additive contravariant functors,
where A is an abelian category with enough injectives, and B, C are abelian
categories with enough projectives. Assume that F is left exact and that G P
is right F-acyclic for every projective P in A. Then, for every object A in A,
there is a first quadrant spectral sequence with

E2
p,q = (R p F)(Rq G)A ⇒

p
Ln(FG)A.

10.7 Groups

The most common use of spectral sequences in Group Theory involves the
Lyndon–Hochschild–Serre spectral sequence. Lyndon discovered spectral se-
quences in his dissertation: “The cohomology theory of group extensions,”
Duke Math J. 15 (1948), 271–292 (it is interesting to watch spectral sequences
arising naturally), and his results were extended by Hochschild and Serre,
“Cohomology of Group Extensions,” Trans. AMS 74 (1953), pp. 110–134;
as they developed their results, Hochschild and Serre rewrote Lyndon’s spec-
tral sequence in the the present language. Here is one of Lyndon’s main
results.

Notation. Let k be a positive integer and let A be an abelian group. Denote
the direct sum of A with itself k times by k A, and define 0A = {0}. Regard
−k A as a symbol such that n A ⊕ −k A = (n − k)A when n ≥ k, while
−(−k A) = k A. If s < 0, let

(s
j

)
denote the coefficient of x j in the power

series expansion of 1/(1 + x)s .

Theorem (Lyndon). Let π = Iq1 ⊕ · · · ⊕ Iqm be a finite abelian group, in
which qm | qm−1 | · · · | q1 (this is the reverse of the usual notation). Then,
for all n ≥ 2,

Hn(π,Z) = (−1)n
m⊕

k=1

n−2⊕
j=0

(−k

j

)
Iqk .

Proof. The cohomology theory of group extensions, Theorem 6. •
We now specialize the Grothendieck spectral sequence to groups.

Lemma 10.51. Let π be a group with normal subgroup N, and let πMod and
π/N Mod be, respectively, the categories of left π-modules and left (π/N )-
modules.



10.7 Groups 661

(i) Let πMod
G−→ π/N Mod

F−→ Ab be defined by G = HomN (Z,�)

and F = Homπ/N (Z,�). If E is an injective π-module, then G E is an
injective π/N-module and, hence, is right F-acyclic.

(ii) Let πMod
G−→ π/N Mod

F−→ Ab be defined by G = Z ⊗N � and
F = Z⊗π/N �. If P is a projective π-module, then G P is a projective
π/N-module and, hence, is left F-acyclic.

Proof.

(i) By change of rings, the ring map ϕ : Zπ → Z(π/N ) allows us to re-
gard every (π/N )-module as a π-module and every (π/N )-map as a
π-map. Recall that G E = HomN (Z, E) = E N ; we claim that E N is
an injective (π/N )-module. Consider the diagram in πMod

0 �� E N
j �� E

0 �� M ′

f

��

i
�� M,

f̃

���
�
�

where M ′ ⊆ M and i and j are inclusions. Given f : M ′ → E N ,
injectivity of E as a π-module gives a π-map f̃ : M → E making the
diagram commute. We claim that im f̃ ⊆ E N : if n ∈ N and m ∈ M ,
then n f̃ (m) = f̃ (nm) = f̃ (m), for M is a (π/N )-module and hence
nm = m. Therefore, f̃ is a (π/N )-map, and so E N is (π/N )-injective.

(ii) The proof in part (i) dualizes. •

Theorem 10.52 (Lyndon–Hochschild–Serre). 6 Let N be a normal sub-
group of a group π .

(i) 7 For each π-module A, there is a third quadrant spectral sequence with

H p(π/N , Hq(N , A)) ⇒
p

Hn(π, A).

(ii) For each π-module A, there is a first quadrant spectral sequence with

Hp(π/N , Hq(N , A)) ⇒
p

Hn(π, A).

6There is an analog of this spectral sequence for Lie algebras; see Weibel, An Introduc-
tion to Homological Algebra, p. 232.

7Lemma 9.82 says that Hq (N , A) is a (π/N )-module. Similarly, the map in homology
induced by conjugation makes Hq (N , A) into a (π/N )-module.
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Proof.

(i) Define covariant functors πMod
G−→ π/N Mod

F−→ Ab by

G = HomN (Z,�) and F = Homπ/N (Z,�).

By Lemma 10.51(i), the ordered pair of functors (F, G) satisfies the
hypotheses of Theorem 10.47: F is left exact (it is a Hom functor)
and, if E is an injective π-module, then G E is right F-acyclic. The
Grothendieck spectral sequence is

E p,q
2 = (R p F)(Rq G)A ⇒

p
Rn(FG)A.

It is easy to see that E p,q
2 = H p(π/N , Hq(N , A)), and Rn(FG)(A) =

Rn(Homπ/N (Z,HomN (Z, A))) = Rn(Homπ(Z, A) = Hn(π, A).

(ii) Define covariant functors πMod
G−→ π/N Mod

F−→ Ab by

G = Z⊗N � and F = Z⊗π/N �.

By Lemma 10.51(ii), the ordered pair of functors (F, G) satisfies the
hypotheses of Theorem 10.48: F is right exact (it is a tensor functor)
and, if P is a projective π-module, then G E is left F-acyclic. It is
easy to check that E2

p,q = Hp(π/N , Hq(N , A)) and Ln(FG)(A) =
Ln(Z⊗N (Z⊗π/N A)) ∼= Ln(Z⊗π A) = Ln(FG)A = Hn(π, A). •

Here is a new proof of Theorem 9.84 that lengthens the exact sequence
there.

Theorem 10.53 (Five-Term Sequences). If N � π and A is a π-module,
there are exact sequences of abelian groups:

(i)

0 → H1(π/N , AN ) → H1(π, A) → H1(N , A)π/N

→ H2(π/N , AN ) → H2(π, A);
(ii)

H2(π, A) → H2(π/N , AN ) → H1(N , A)π/N

→ H1(π, A) → H1(π/N , AN ) → 0.

Proof. By Theorem 10.33, there is an exact sequence

0 → E1,0
2 → H1(Tot(M)) → E0,1

2
d2−→ E2,0

2 → H2(Tot(M)).

Now substitute the values for E p,q
2 from Theorem 10.52.

The proof for homology groups is dual, and it is left to the reader. •
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Recall Lemma 9.82: if N � π and A is a π-module, then H p(N , A) and
Hp(N , A) are (π/N )-modules; moreover, if A is a trivial π-module, then
both H p(N , A) and Hp(N , A) are trivial (π/N )-modules. We use this result
in the next proof.

Theorem 10.54 (Green). If � is a prime and G is a group of order �n, then

card(H2(G,Z) ≤ �n(n−1)/2.

Proof. If n = 1, then π is cyclic and H2(π,Z) = {0}, by Corollary 9.49.
We proceed by induction on n.

As every finite �-group has a nontrivial center, there is a (necessarily)
normal subgroup N of order � with N ⊆ Z(π), and

Hp(π/N , Hq(N , A)) ⇒
p

Hn(π, A),

by Theorem 10.52. Thus, there is a filtration

{0} = �−1 H2 ⊆ �0 H2 ⊆ �1 H2 ⊆ �2 H2 = H2(G,Z)

with
�p H2/�

p−1 H2 ∼= E∞
p,q , where p + q = 2.

Writing |X | for card(X) when X is a set,

|H2(π,Z)| = |E∞
2,0||E∞

1,1||E∞
0,2| ≤ |E2

2,0||E2
1,1||E2

0,2|,

for E∞
p,q is a subquotient of E2

p,q .

We use the fact that Hq(π/N ,Z) is (π/N )-trivial to compute E2
p,q . Now

E2
2,0 = H2(π, H0(N ,Z)) ∼= H2(π/N ,Z), so that induction gives |E2

2,0| ≤
�(n−1)(n−2)/2. The term E2

1,1 = H1(π/N , H1(N ,Z)) ∼= H1(π/N , I�), for
H1(N ,Z) ∼= N/N ′ = N ∼= I�. Exercise 9.24 on page 558 now applies: if
we denote π/N by Q, then H1(Q, I�) ∼= Q/Q′Q�, which is a quotient of Q.
Hence, |E2

1,1| ≤ |Q| = |π/N | = �n−1. Now E2
0,2 = H0(π/N , H2(N ,Z));

but H2(N ,Z) = {0}, by the base step n = 1, so that |E2
0,2| = |{0}| = 1. We

conclude that

|H2(π,Z)| ≤ �(n−1)(n−2)/2 · �n−1 · 1 = �n(n−1)/2. •
The next result shows that Green’s inequality is sharp (we have already

sketched a proof using exterior algebra in Example 9.65). Recall that if � is
a prime, then an elementary abelian group of order �n is the direct product
of n copies of I�. As we remarked at the beginning of this section, the next
theorem was proved in Lyndon’s thesis.
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Theorem 10.55. If � is a prime and π is an elementary abelian group of
order �n, then H2(π,Z) is elementary abelian of order �n(n−1)/2.

Proof. First, we show that �H2(π,Z) = {0}. A presentation of π is

(x1, . . . , xn | x�
1, . . . , x�

n, [xi , x j ] for i < j).

Let F be a free group with basis {x1, . . . , xn} and let R be the normal sub-
group of F generated by the relations. We proceed as we did in Exam-
ple 9.64 when we computed the Schur multiplier of the four-group. De-
fine K = F/[R, F]; since F ′ ⊆ R, Hopf’s Formula, Theorem 9.63, gives
K ′ = F ′/[R, F] ∼= H2(π,Z). Define ai = xi [R, F], and observe, as in the
four-group example, that

K ′ = 〈[ai , a j ] : i < j〉, [ai , a j ] ∈ Z(K ), a�
j ∈ Z(K ).

Hence,

a�
j = ai a

�
j a
−1
i = (ai a j a

−1
i )� = ([ai , a j ]a j )

� = [ai , a j ]
�a�

j .

Therefore, [ai , a j ]� = 1 for all i < j , as desired.
The theorem is proved by induction on n, the base step n = 1 being

Theorem 10.54. Choose a subgroup N of π of index � so that π/N is cyclic
of order � (note that N � π because π is abelian). Theorem 10.52 gives a
spectral sequence with

E2
p,q = Hp(π/N , Hq(N ,Z)) ⇒

p
Hn(π,Z).

Now E2
2,0 = H2(π/N , H0(N ,Z)); but Corollary 9.49 gives H0(N ,Z) = Z

and H2(N ,Z) = {0}, so that E2
2,0 = {0}. Hence, E∞

2,0 = {0}, and the filtration
of H2(π,Z) has only two steps. The usual bidegree argument (see the proof
of Theorem 10.31, for example) shows that E∞

0,2 = E2
0,2 and E∞

1,1 = E2
1,1.

Thus, there is an exact sequence

0 → E2
0,2 → H2(π,Z) → E2

1,1 → 0.

As �H2(π,Z) = {0}, the middle term H2(π,Z) is a vector space over F�;
thus, the flanking terms are also vector spaces and the sequence splits. It
remains to compute dimensions. Now

H1(π,Z) ∼= N/N ′ = N ∼=
n−1⊕

I�,

so that Exercise 9.24 on page 558 gives

E2
1.1 = H1(π/N , H1(N , Z)) ∼=

n−1⊕
H1(π/N , I�) ∼=

n−1⊕
I�,
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for N is elementary abelian of order �n−1. The term

E2
0,2 = H0(π/N , H2(N ,Z)) ∼= H2(N ,Z);

by induction, E2
0,2 is elementary abelian of order �(n−1)(n−2)/2. Therefore,

H2(π,Z) has dimension (n − 1) + 1
2 (n − 1)(n − 2) = 1

2 n(n − 1) and or-
der �n(n−1)/2. •

Our final application computes the cohomological dimension of a free
abelian group.

Lemma 10.56. If π is a free abelian group of finite rank r, then cd(π) ≤ r .

Proof. If π = π ′ × π ′′ is a direct product of groups, then the reader may
prove that there is a ring isomorphism Zπ ∼= Zπ ′ ⊗Z Zπ ′′. It follows that if
P′ is a deleted π ′-projective resolution of Z and P′′ is a deleted π ′′-projective
resolution of Z, then P′⊗ZP′′ is a deleted π-projective resolution of Z⊗ZZ =
Z. (Of course, if π ′, π ′′ are abelian, then π ′ × π ′′ = π ′ ⊕ π ′′.)

We prove the lemma by induction on r . The base step r = 1 is in Exam-
ple 9.110(iii): if π = Z, then the augmentation ideal P is projective and

0 → P → Zπ → Z → 0 (1)

is a projective resolution. For the inductive step, let π = Z
r+1 = Z

r ⊕ Z.
By induction, there is a projective Z

r -projective resolution P of Z of length r ,
and the tensor product of P and the resolution (1) is a projective π-resolution
of Z of length ≤ r + 1. •

Theorem 10.57. If π is a free abelian group of finite rank r, then Hn(π,Z)

is free abelian of rank
(r

n

)
(we interpret the binomial coefficient

(r
n

)
to be 0 if

n > r).

Proof. First of all, Lemma 10.56 shows that Hn(π,Z) = {0} for n > r . We
proceed by induction on r .

If r = 1, then π = Z. Now H0(π,Z) = Z
π = Z and H1(π,Z) =

Homπ(Z,Z) = Z, so the induction begins.
For the inductive step, choose a subgroup N with π/N ∼= Z (N is nec-

essarily free abelian of rank r − 1). The Lyndon-Hochschild-Serre spectral
sequence satisfies

E p,q
2 = H p(π/N , Hq(N ,Z)) ⇒

p
Hn(π,Z).

Since π/N ∼= Z, we know that E p,q
2 = {0} for p 	= 0, 1. Therefore, the

two-adjacent column hypothesis of Corollary 10.29 (rather, the third quadrant
version of that corollary) holds, so there are exact sequences

0 → E1,n−1
2 → Hn(π,Z) → E0,n

2 → 0. (2)
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Now E1,n−1
2 = H1(π/N , Hn−1(N ,Z)). Hence, Hp(N , A) is (π/N )-trivial

for all p, by Lemma 9.82, and

H1(π/N , Hn−1(N ,Z)) ∼= Homπ/N (Z, Hn−1(N ,Z)) ∼= Hn−1(N ,Z).

By induction, this group is free abelian of rank
(r−1

n−1

)
. The term E0,n

2 =
H0(π/N , Hn(N ,Z)) ∼= Hn(N ,Z), using Lemma 9.82 once again. By in-
duction, this group is free abelian of rank

( r
n−1

)
. It follows that exact se-

quence (2) of abelian groups splits, whence Hn(π,Z) is free abelian of rank(r−1
n−1

)+ (r−1
n

) = (rn
)
. •

Corollary 10.58. If π is a free abelian group of finite rank r, then

cd(π) = r.

Proof. Lemma 10.56 shows that cd(π) ≤ k, while Theorem 10.57 shows
that this inequality is not strict. •

10.8 Rings

We now examine composites of suitable pairs of functors and the correspond-
ing Grothendieck spectral sequences. Let R and S be rings, and consider the
situation (AR, R BS, SC); the associative law for tensor product gives a natural
isomorphism

A ⊗R (B ⊗S C) ∼= (A ⊗R B)⊗S C.

Thus, if SMod
G−→ RMod

F−→ Ab are defined by G = B ⊗S � and F =
A ⊗R �, then FG = (A ⊗R B) ⊗S � : SMod → Ab. Clearly, F is right
exact, so that Theorem 10.48 applies when there is acyclicity.

Theorem 10.59. Assume that AR and R BS satisfy TorR
i (A, B ⊗S P) = {0}

for all i ≥ 1 whenever S P is projective. Then there is a first quadrant spectral
sequence for every SC :

TorR
p (A,TorS

q (B,C)) ⇒
p

TorS
n (A ⊗R B,C).

Let us write the five-term exact sequence in this case so that the reader
can see that it is not something he or she would have invented otherwise.

TorS
2 (A ⊗R B,C) → TorR

2 (A, B ⊗S C) → A ⊗R TorS
1 (B,C)

→ TorS
1 (A ⊗R B,C) → TorR

1 (A, B ⊗S C) → 0.
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Assume that AR is flat (which ensures the hypothesis of Theorem 10.59).
The spectral sequence now collapses on the q-axis, and Proposition 10.21
gives

A ⊗R TorS
n (B,C) ∼= TorS

n (A ⊗R B,C).

There is a second way to look at the associative law for tensor product.

Let ModR
G−→ ModS

F−→ Ab be defined by G = �⊗R B and F = �⊗S C ;
then FG = �⊗R (B⊗S C). Here is the corresponding Grothendieck spectral
sequence.

Theorem 10.60. Assume that R BS and SC satisfy TorS
i (Q ⊗R B,C) = {0}

for all i ≥ 1 whenever Q R is projective. Then there is a first quadrant spectral
sequence for each AR :

TorS
p(TorR

q (A, B),C) ⇒
p

TorR
n (A, B ⊗S C).

Here is another way to force these spectral sequences to collapse.

Corollary 10.61. If R BS is flat on either side, then

TorS
n (A ⊗R B,C) ∼= TorR

n (A, B ⊗S C).

Proof. If R B is flat and Q R is projective, hence flat, then Q ⊗R B is a
flat right S-module, and the hypothesis of Theorem 10.60 holds. Moreover,
the spectral sequence collapses, giving the desired isomorphism. A similar
argument, using Theorem 10.59, works when BS is flat. •

We can do something more interesting: we present various “mixed iden-
tities” involving Hom, tensor, and their derived functors Ext and Tor. For
example, consider the adjoint isomorphism in the situation (R A, S B R, SC):

HomS(B ⊗R A,C) ∼= HomS(A,HomR(B,C)).

If G = B⊗S � and F = HomR(�,C), then FG = HomS(�,HomR(B,C)).
Now F is left exact, being a Hom functor, and Theorem 10.49 applies.

Theorem 10.62. Assume that S BR and SC satisfy Ext i
S (B ⊗R P,C) = {0}

for all i ≥ 1 whenever R P is projective. Then there is a third quadrant
spectral sequence for every R A:

Extp
R(TorS

q (B, A),C) ⇒
p

ExtnS(A,HomR(B,C)).
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Corollary 10.63. If SC is injective, then

HomR(TorS
q (B, A),C) ∼= ExtnS(A,HomR(B,C)).

Proof. In this case, the spectral sequence collapses on the q-axis. •
We may view the adjoint isomorphism differently: if G = HomR(B,�)

and F = HomS(A,�), then FG = HomR(B ⊗R A,�).

Theorem 10.64. Assume that R A and S BR satisfy Ext i
S (A,HomR(B, E)) =

{0} for all i ≥ 1 whenever S E is injective. Then there is a third quadrant
spectral sequence

Extp
S (A,ExtqR(B,C)) ⇒

p
ExtnR(B ⊗S A,C).

Corollary 10.65. If S BR is projective on either side, then

ExtnS(A,HomR(B,C)) ∼= ExtnR(B ⊗S A,C).

Proof. If B is projective on either side, then the hypothesis of either Theo-
rem 10.62 or 10.64 holds, and the corresponding spectral sequence collapses
on the p-axis. •

If we assume that R A is projective (instead of assuming projectivity of
B), then we obtain

ExtnS(B ⊗R A,C) ∼= HomR(A,ExtnS(B,C)).

Yet another isomorphism arises if we choose SC injective. The hypothesis
of Theorem 10.62 holds and the spectral sequence collapses on the p-axis.
Hence, there are isomorphisms

HomR(TorS
n (B, A),C) ∼= ExtnS(A,HomR(B,C)).

Theorem 10.66. Let R and S be rings with R left noetherian, and consider
the situation (R A, R BS,CS) in which A is finitely generated and C is injec-
tive. Then there are isomorphisms for all n ≥ 0,

HomS(B,C)⊗R A ∼= TorR
n (HomS(B,C), A).

Proof. Since R is left noetherian, A finitely generated implies A is finitely
presented. The hypothesis of Lemma 3.55 is satisfied, and there is thus a
natural isomorphism

HomS(B,C)⊗R A ∼= HomS(HomR(A, B),C).
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Define G = HomR(�, B) : A → SMod, where A is the category of all
finitely generated left R-modules. (The reason we assume that R is left
noetherian is that A has enough projectives.) If P is a finitely generated
projective left R-module, then Ext i

S (HomR(P, B),C) = {0} for all i ≥ 1,
because C is injective. Having verified acyclicity, Theorem 10.50 gives

Extp
S (ExtqR(A, B),C) ⇒

p
TorR

n (HomS(B,C), A).

Since C is injective, this spectral sequence collapses on the q-axis, yielding
isomorphisms

HomS(ExtnR(A, B),C) ∼= TorR
n (HomS(B,C), A). •

The mixed identities above arise from the collapsing of a Grothendieck
spectral sequence. Here is a variation of this technique in which we use two
composite functors. The next theorem generalizes Proposition 7.39.

Theorem 10.67. Let S be a multiplicative subset of a commutative noethe-
rian ring R. If N is a finitely generated R-module, then there are isomor-
phisms

S−1 ExtnR(N , M) ∼= ExtnS−1 R(S−1 N , S−1 M)

for every R-module M.

Proof. Consider covariant functors RMod
G−→ RMod

F−→ S−1 RMod de-
fined by G = HomR(N ,�) and F = S−1 = S−1 R ⊗R �. Now F is left
exact; in fact, F is an exact functor (since S−1 R is flat), and so

(Rq F)M =
{

{0} if q 	= 0,

S−1 M if q = 0.

Thus, the acyclicity condition holds: if E is injective, then G E is right F-
acyclic:

(Ri F)(G E) = {0}
for all i ≥ 1. Hence, there is a spectral sequence given by Theorem 10.47:

(R p F)(Rq G)M = (R p F)(ExtqR(N , M) ⇒
p

Rn(FG)M.

This spectral sequence collapses on the q-axis, and

S−1 ExtnR(N , M) ∼= Rn(FG)M.

Now consider covariant functors RMod
�−→ S−1 RMod

�−→ S−1 RMod
defined by � = S−1 and � = HomS−1 R(S−1 N ,�). Clearly, � is left ex-
act, being a Hom, and the acyclicity condition holds: if E is an injective
R-module, then �E is right �-acyclic:

Ext i
S−1 R(S−1 N , S−1 E) = {0}
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for all i ≥ 1 [because R is noetherian and S−1 E is (S−1 R)-injective, by
Theorem 4.88]. Thus, Theorem 10.47 gives a spectral sequence

Extp
S−1 R

(S−1 N , (Rq�)M) ⇒
p

Rn(��)M.

Since � is exact, (Rq�)M = {0} for q 	= 0, and this spectral sequence col-
lapses on the p-axis, yielding isomorphisms

ExtnS−1 R(S−1 N , S−1 M) ∼= Rn(��)M.

But FG and �� are naturally isomorphic, by Lemma 4.87, and hence their
derived functors are naturally isomorphic: Rn(FG) ∼= Rn(��). Therefore,

S−1 ExtnR(N , M) ∼= ExtnS−1 R(S−1 N , S−1 M). •

Our final topic is a continuation of our discussion in Chapter 8 of change
of rings, which will lead to change of rings spectral sequences. Recall that
a ring map ϕ : R → T defines an exact functor U : T Mod → RMod (in
essence, every left T -module may be viewed as a left R-module and every
T -map may be viewed as an R-map) by defining

rm = ϕ(r)m

for every r ∈ R and every m in a left T -module M . At our pleasure, therefore,
a module M may be regarded as either an R-module or a T -module; we will
not provide different notations.

The ring T plays a special role: it is an (R, T )-bimodule, for the associa-
tive law in T gives

r(t1t2) = ϕ(r)(t1t2) = (ϕ(r)t1))t2 = (r t1)t2.

Similarly, one may equip T with a right R-module structure, namely, tr =
tϕ(r), making T a (T, R)-bimodule.

Since a T -module may also be regarded as an R-module, we ask what is
the relation between “homological properties” of modules over T and mod-
ules over R.

It is not necessary to be fancy, but it helps to put this in proper context.

Lemma 10.68. If ϕ : R → T is a ring map and U : T Mod → RMod is the
corresponding change of rings functor, then both

(U,HomR(T,�)) and (T ⊗R �,U )

are adjoint pairs.
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Remark. There is also a change of rings functor for right modules, ModT →
ModR , and a similar lemma holds for it. �

Proof. A routine exercise. •
Nature is telling us to look at HomR(T,�) and T ⊗R �. Actually, there

are more cases to consider, because of the various right/left possibilities due
to the noncommutativity of the rings R and T . Let us assume that A = AR
and B = R B. Here is the elaborate notation. Denote

ϕ B = T ⊗R B ∈ obj(T Mod), T = T T R,

and

Aϕ = A ⊗R T ∈ obj(ModT ), T = RT T .

There are also left and right modules resulting from HomR(T,�):

Bϕ = HomR(T, B) ∈ obj(ModT ), T = RT T ,

and
ϕ A = HomR(T, A) ∈ obj(T Mod) T = T T R .

In short, when the symbol ϕ is a subscript, it denotes tensor; when ϕ is a
superscript, it denotes Hom; it is set right or left depending on whether the
resulting T -module is a right or a left T -module.

We need two more technical facts before we can state change of rings
spectral sequences.

Lemma 10.69. Let ϕ : R → T be a ring map, and let A = AR and B = R B.

(i) If A is R-projective, then Aϕ is T -projective.

(ii) If B is R-projective, then ϕ B is T -projective.

(iii) If A is R-injective, then ϕ A is T -injective.

(iv) If B is R-injective, then Bϕ is T -injective.

Proof. Straightforward. •
Remember that a left T -module L can be viewed as a left R-module and

that a right T -module M can be viewed as a right R-module.
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Lemma 10.70. Let ϕ : R → T be a ring map, and let A = AR, B = R B,
L = T L, and M = MT . Then there are natural isomorphisms in the following
cases:

(i) (AR, T L) : A ⊗R L ∼= Aϕ ⊗T L;
(ii) (MT , R B) : M ⊗R B ∼= M ⊗T (ϕ B);

(iii) (R B, T L) : HomR(B, L) ∼= HomT (ϕ B, L);
(iv) (T L, R B) : HomR(L , B) ∼= HomT (L , ϕ B).

Proof. (i) and (ii) follow from associativity of tensor product. For example,

Aϕ ⊗T L = (A ⊗R T )⊗T L ∼= A ⊗R (T ⊗T L) ∼= A ⊗R L .

(iii) and (iv) follow from adjoint isomorphisms:

HomT (ϕ B, L) = HomT (T ⊗R B, L)

∼= HomR(B,HomT (T, L)) ∼= HomR(B, L).

HomT (L , ϕ B) = HomT (L ,HomR(T, B))

∼= HomR(T ⊗T L , B) ∼= HomR(L , B). •

Theorem 10.71 (Change of Rings). Let ϕ : R → T be a ring map, and let
A = AR and B = R B. There is a spectral sequence

TorT
p (TorR

q (A, T ), L) ⇒
p

TorR
n (A, L).

Proof. Let G : A �→ Aϕ [that is, G = � ⊗R T ], and let F = � ⊗T L .
By Lemma 10.70, FG = � ⊗R L . Now F is right exact (being a tensor
functor), and left acyclicity holds: if PR is projective, then Pϕ is T -projective
and TorT

i (Pϕ, L) = {0} for all i ≥ 1. Now apply Theorem 10.48. •
The next corollary generalizes Proposition 7.17 when R is commutative

and T = S−1 R.

Corollary 10.72. Let ϕ : R → T be a ring map. If RT is flat, then there are
isomorphisms for all n ≥ 0,

TorT
n (Aϕ, L) ∼= TorR

n (A, L)

for all A = AR and K = T L.

Proof. Flatness of T forces the spectral sequence to collapse. •
The other isomorphisms in Lemma 10.70 also give spectral sequences;

we merely state the results.
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Theorem 10.73 (Change of Rings). If ϕ : R → T is a ring map, then there
is a spectral sequence

TorT
p (M,TorR

q (T, B)) ⇒
p

TorR
n (M, B)

for M = MT and B = R B. Moreover, if TR is flat, then there are isomor-
phisms for all n ≥ 0:

TorT
n (M, ϕ B) ∼= TorR

n (M, B).

Theorem 10.74 (Change of Rings). If ϕ : R → T is a ring map, then there
is a spectral sequence

Extp
T (TorR

q (T, B), L) ⇒
p

ExtnR(B, L)

for L = T L and B = R B. Moreover, if TR is flat, then there are isomorphisms
for all n ≥ 0:

ExtnT (ϕ B, L) ∼= ExtnR(B, L).

Theorem 10.75 (Change of Rings). If ϕ : R → T is a ring map, then there
is a spectral sequence

Extp
T (L ,ExtqR(T, B)) ⇒

p
ExtnR(L , B)

for L = T L and B = R B. Moreover, if RT is projective, then there are
isomorphisms for all n ≥ 0:

ExtnT (L , ϕ B) ∼= ExtnR(L , B).

We give three applications of these change of rings theorems. The first is
another proof of the Eckmann–Shapiro Lemma.

Corollary 10.76. If S is a subgroup of a group G and B is a G-module, then

Hn(S, B) ∼= Hn(G,HomS(ZG, B)).

Proof. The inclusion S → G induces a ring map ϕ : ZS → ZG. Since
Hn(G,�) = Extn

ZG(Z,�), we can apply Theorem 10.75 with L = Z. Since
ZG is a projective S-module (it is even free) and ϕ B = HomS(ZG, B), we
are merely asserting the isomorphism of Theorem 10.75. •

Here is the spectral sequence proof of Theorem 8.34 of Rees.
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Theorem 10.77. Let R be a ring, let x ∈ Z(R) be a nonzero element that is
neither a unit nor a zero-divisor, and let T = R/x R. If L is a left R-module
and x is regular on L, then there is an isomorphism

ExtnT (A, L/x L) ∼= Extn+1
R (A, L)

for every left T -module A and every n ≥ 0.

Proof. Since x is central, multiplication by x is an R-map; since x is not a
zero-divisor, there is an R-exact sequence

0 → R
x−→ R → T → 0.

Applying HomR(�, B) gives exactness of

0 → HomR(T, B) → HomR(R, B)
x−→ HomR(R, B)

→ Ext1R(T, B) → Ext1R(R, B) →
and

ExtqR(R, B) → Extq+1
R (T, B) → Extq+1

R (R, B)

for all q ≥ 1. Since HomR(R, B) = B and multiplication by x is an injection,
we have

HomR(T, B) = {0}.
Since Ext1R(R, B) = {0}, we also have

Ext1R(T, B) ∼= B/x B.

Finally, the other exact sequences give

ExtqR(T, B) = {0} for all q ≥ 2.

Consider the change of rings spectral sequence, Theorem 10.75:

E p,q
2 = Extp

T (L ,ExtqR(T, B)) ⇒
p

ExtnR(L , B).

We have just seen that E p,q
2 = {0} for all q 	= 1, so there is collapsing on the

line q = 1. Thus, there are isomorphisms for all n ≥ 1:

Extn−1
T (L ,Ext1R(T, B)) ∼= ExtnR(L , B),

and replacing n by n + 1 gives

ExtnT (L , B/x B) ∼= Extn+1
R (L , B). •

Our last application is to projective dimension.
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Theorem 10.78. If ϕ : R → T is a ring map and L is a left T -module, then

pdR(L) ≤ pdT (L)+ pdR(T ).

Proof. Clearly, we may assume that both pdT (L) = � and pdR(T ) = t are
finite. By Theorem 10.75, there is a spectral sequence

E p,q
2 = Extp

T (L ,ExtqR(T, B)) ⇒
p

ExtnR(L , B)

for every left R-module B. If m = p+ q > �+ t , then either p > � or q > t .
If p > �, then E p,q

2 = {0} because we have exceeded pdT (L); if q > t , then
E p,q

2 = {0} because we have exceeded pdR(T ). It follows that E p,q
∞ = {0}

for all (p, q) with m = p + q > � + t , whence ExtmR (L , B) = {0}. As B is
arbitrary, pd(R(L) ≤ �+ t . •

10.9 Sheaves

We now discuss the relation between sheaf cohomology and Čech cohomol-
ogy. Since our goal is merely to see how spectral sequences are used in this
context, we do not give complete proofs. Recall that sheaf cohomology is de-
fined as right derived functors of global sections �: if F is a sheaf of abelian
groups over a space X , then

Hq(F) = Hq(�EF ),

where EF is a deleted injective resolution of F in the category of sheaves.
Čech cohomology is introduced because sheaf cohomology is very diffi-

cult to compute. Let U = (Ui )i∈I be an open cover of a space X , and let N (U)

be its nerve. Thus, N (U) is an abstract simplicial complex with q-simplexes
all (q + 1)-tuples σ = [Ui0, . . . ,Uiq ] of distinct open sets in U for which
Uσ 	= ∅, where Uσ = Ui0 ∩ · · · ∩ Uiq . Denote the set of all q-simplexes in
N (U) by "q(U) or, more simply, by "q .

Recall that Čech cohomology Ȟq(F) is defined (see §6.3.1) in terms of
the Čech complex C•(U,F), where

Cq(U,F) =
∏

σ∈"q

F(Uσ ).

The differentials are defined as follows: if α = (ασ ) ∈ Cq(U,F), then
δα = β ∈ Cq+1(U,F) = ∏

τ∈"q+1
F(Uτ ); that is, β = (βτ ), where, if

τ = [Ui0, . . . ,Uiq+1] is a (q + 1)-simplex, then

βτ = β[Ui0 ,...,Uiq+1 ] =
q+1∑
j=0

(−1) jα[Ui0 ,...,Ûi j ,...,Uiq+1 ].
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Define
Ȟq(U,F) = Hq(C•(U,F)).

Čech cohomology Ȟq(F) is then defined as a certain direct limit of Ȟq(U,F)

over all U .

Here are two comparison theorems.

Theorem 10.79 (Leray). Let F be a sheaf of abelian groups over a space
X, and let U be an open cover of X such that Ȟq(F |Y ) = {0} for every
intersection Y of finitely many terms of U and all q ≥ 1. Then there are
isomorphisms, for all q ≥ 0,

Ȟ q(U,F) ∼= Hq(F).

Proof. Godement, Topologie Algébrique et Théorie des Faisceaux, p. 209.
•

Theorem 10.80 (Cartan). Let F be a sheaf over a space X. Assume that
U is an open cover of X that contains arbitrarily small open sets and that is
closed under finite intersections. If Ȟq(U,F) = {0} for all U ∈ U and all
q ≥ 1, then there are isomorphisms for all q ≥ 0

Ȟq(F) ∼= Hq(F).

Proof. Godement, Topologie Algébrique et TThéorie des Faisceaux, p. 227.
•

In each case, one constructs a third quadrant bicomplex involving a res-
olution of F and an open cover U . The desired isomorphism is obtained
because the hypothesis on U forces the first or second spectral sequence to
collapse.

In Chapter 6, we gave a sheaf version of the Čech complex C•(U,F)

of an open cover U of X and a sheaf F of abelian groups over X . In fancy
language, define

Cq(U,F) =
∏

σ∈"q (U)

( jσ )∗(F |Uσ ),

where jσ : Uσ → X is the inclusion, where F |Uσ is the restriction sheaf over
Uσ [defined on open sets W ⊆ Uσ by (F |Uσ )(W ) = F(W )], and where
( jσ )∗(F |Uσ ) is the direct image sheaf. A less fancy, but longer, definition
of Cq(U,F) is given in Godement, Topologie Algébrique et TThèorie des
Faisceaux, §5.2.1. If U is an open set in X , then

Cq(U,F) : U �→
∏

σ∈"q

F(Uσ ∩U ).
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In particular, if U = X , then global sections are

�(X) = Cq(U,F)(X) =
∏

σ∈"q

F(Uσ ∩ X) = Cq(U,F).

Recall the following result from Chapter 6.

Lemma 6.79. Let U be an open cover of a space X, and let F be a sheaf of
abelian groups over X.

(i) There is an exact sequence of sheaves

0 → F → C0(U,F) → C1(U,F) → C2(U,F) → (1)

with �(C•(U,F)) = C•(U,F).

(ii) If F is flabby, then Cq(U,F) is flabby for all q ≥ 0, and so (1) is a
flabby resolution.

For Leray’s Theorem, let E = 0 → F → E0 → E1 → be a flabby
resolution of F , and define a bicomplex M with

M p,q = �(G pEq),

where GqEq is the pth term of the Godement resolution of the sheaf Eq . Let
Hq(EF ) be the qth cohomology; it is a sheaf because the deleted resolution
EF is a complex of sheaves. Godement computes the E2-term of the first
spectral sequence:

I E p,q
2 = Ȟ p(U,Hq(F)),

and he then proves
Ȟ p(U,Hq(F)) ⇒

p
Hn(F).

The hypothesis that Ȟq(F |Y ) = {0} for every intersection Y of finitely many
terms of U and all q ≥ 1 forces the spectral sequence to collapse, yielding
Ȟq(U,F) ∼= Hq(F) for all q.

Cartan’s Theorem is a bit trickier. Given a sheaf F of abelian groups over
a space X , define a complex of abelian groups

Č•(X,F) = lim−→U �C•(U,F)

(we discussed such direct limits when we introduced Čech cohomology in
Chapter 6). Now define a third quadrant bicomplex K with

K p,q = Č p(X,GqF).
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Godement proves that the second spectral sequence collapses on the p-axis,
while

I E p,q
2 = Ȟ p(Hq(F)).

Hence,
Ȟ p(Hq(F)) ⇒

p
Hn(F).

The Cartan hypothesis forces the first spectral sequence to collapse as well,
giving the desired isomorphism.

10.10 Künneth Theorems

The Eilenberg–Zilber Theorem says that the singular complex S•(X × Y ) of
the cartesian product X × Y of topological spaces X and Y is isomorphic to
the tensor product S•(X) ⊗Z S•(Y ). This theorem poses the problem: given
complexes of R-modules, A and C, find H•(A ⊗R C) in terms of H•(A) and
H•(C). The Künneth Formula does exactly this.

The problem is not simple even in the special case when C is a complex
with C0 = C and Cq = {0} for q 	= 0. If we further assume that R is
hereditary and each term Ap of A is projective, then the problem is solved
by the Universal Coefficient Theorem, Theorem 7.55. To indicate why the
general problem involving two complexes is difficult, even when A has all
terms projective, let us see what happens when we try the obvious idea of
using the bicomplex M having Mp,q = Ap ⊗Cq ; after all, Tot(M) = A⊗C.

The first iterated homology is I E
2
p,q = H ′

p H ′′
q (M). The pth column of M is

Ap ⊗ C; since Ap is projective, hence flat, Hq(Ap ⊗ C) ∼= Ap ⊗ Hq(C), for
homology commutes with exact functors. Hence, Hq(Mp,∗) = Ap ⊗ Hq(C).
The Universal Coefficient Theorem now gives

I E
2
p,q = Hp(A ⊗ Hq(C)) = Hp(A)⊗ Hq(C)⊕ TorR

1 (Hp−1(A), Hq(C)).

Though it is true that E2 ⇒ H(A ⊗ C), we are essentially helpless because

we cannot compute E∞. The spectral sequence arising from II E
2
p,q is worse;

the Universal Coefficient Theorem may not apply, and so we may not even be
able to compute its E2-term. Indeed, there seems to be only one meager result
that can be salvaged: if each Ap is projective and if either A or C is acyclic,
then A ⊗ C is acyclic (the proof is left to the reader).

We give two solutions to the problem of computing H•(A⊗C). The first
is strong enough for the Eilenberg–Zilber Theorem, and its proof does not use
spectral sequences (we have deferred the proof to this chapter because it uses
bicomplexes and graded modules). In essence, the Künneth Formula is the
Universal Coefficient Theorem in a suitable category of complexes.
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Theorem 10.81 (Künneth Formula for Homology, I). Let R be a ring
and let (A, δ) be a complex of right R-modules such that all the terms of A
and its subcomplex B of boundaries are flat. Given a complex (C, d) of left
R-modules, there is an exact sequence for each n:

⊕
p+q=n

Hp(A)⊗R Hq(C)
α
	 Hn(A ⊗ C)

β



⊕
p+q=n−1

TorR
1 (Hp(A), Hq(C)),

where αn :
∑

p cls(bp) ⊗ cn−p �→ ∑
p cls(bp ⊗ cn−p). Moreover, α and β

are natural in A and C.

Proof. (Heller) We adapt the proof of Theorem 7.55 to the abelian category
Comp. There is a short exact sequence of complexes,

0 → Z
i−→ A → B[−1] → 0,

where Z is the subcomplex of cycles, i is the inclusion, and B[−1] is the
complex obtained from B by setting B[−1]n = Bn−1. By Exercise 10.10 on
page 647, there is an exact sequence of complexes

0 → Z ⊗R C
i⊗1−→ A ⊗R C → B[−1] ⊗R C → 0.

The corresponding long exact sequence is an exact sequence of complexes

Hn+1(B[−1] ⊗R C)
∂n+1−→ Hn(Z ⊗R C) → Hn(A ⊗R C)

→ Hn(B[−1] ⊗R C)
∂n−→ Hn−1(Z ⊗R C).

Now Hn+1(B[−1] ⊗R C) = (B ⊗R C)n and Hn(Z ⊗R C) = (Z ⊗R C)n ,
because Z and B[−1] have zero differentials. Thus, we may rewrite the long
exact sequence as

(B ⊗R C)n
∂n+1−→ (Z ⊗R C)n → Hn(A ⊗R C)

→ (B ⊗R C)n−1
∂n−→ (Z ⊗R C)n−1.

By Exercise 2.17 (which holds in any abelian category), there are short exact
sequences

0 → (coker ∂n+1)n
αn−→ Hn(A ⊗R C)

βn−→ (ker ∂n)n → 0, (1)

where αn :
∑

p cls(bp) ⊗ cn−p �→ ∑
p cls(i pbp ⊗ cn−p). The reader may

prove that both αn and βn are natural.
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We claim that the definition of the connecting homomorphism gives ∂n =
( jn ⊗ 1)∗, as in the proof of Theorem 7.55, where jn : Bn → Zn is the inclu-
sion. The connecting homomorphism arises from the diagram.

(A ⊗R C)n
δ⊗1 ��

D
��

(B ⊗R C)n−1

(Z ⊗R C)n−1
i⊗1 �� (A ⊗R C)n−1,

where D is the usual differential of a total complex. If z ∈ (B ⊗R C)n−1 is a
cycle, then z =∑p+q=n−1 bp ⊗ cq , where bp ∈ Bp and cq ∈ Cq . Since each
bp is a boundary, there are ap+1 ∈ Ap+1 with bp = δap+1. Hence [abusing
notation by writing ∂n(z) instead of ∂n cls(z)],

∂n(z) = (i ⊗ 1)−1 D(δ ⊗ 1)−1[ ∑
p+q=n−1

bp ⊗ cq
]

= (i ⊗ 1)−1 D
[∑

ap+1 ⊗ cq
]

= (i ⊗ 1)−1[∑ δap+1 ⊗ cq + (−1)p+1ap+1 ⊗ dcq
]

= (i ⊗ 1)−1[∑ bp ⊗ cq + (−1)p+1ap+1 ⊗ dcq
]

= (i ⊗ 1)−1(z)+ (i ⊗ 1)−1[∑(−1)p+1ap+1 ⊗ dcq
]
.

Applying (i ⊗1)−1 tells us to regard elements as lying in (Z⊗R C)n−1. Thus,
∂n(z) − z ∈ (Z ⊗R C)n−1, and so

∑
(−1)p+1ap+1 ⊗ dcq ∈ (Z ⊗R C)n−1.

Since Z has all differentials zero, the defining formula for the differential
in Z ⊗ C says that

∑
(−1)p+1ap+1 ⊗ dcq is a boundary; that is, ∂n(z) is

homologous to z. Thus, if z is a cycle, then ∂n cls(z) = cls(( jn ⊗ 1)z); that is,
∂n = ( jn ⊗ 1)∗. Hence, exact sequence (1) is

0 → (coker( jn ⊗ 1))n
αn−→ Hn(A ⊗R C)

βn−→ (ker( jn−1 ⊗ 1))n → 0. (2)

Consider the flanking terms in (2). Since B and Z are flat, the exact se-
quence of complexes

0 → B
j−→ Z → H•(A) → 0

is a flat resolution of H•(A), where H•(A) is viewed as a complex with zero

differentials. Thus, 0 → B
j−→ Z → 0 is a deleted flat resolution of H•(A);

after tensoring by C, its homology in degree n is given by

(H1)n−1 = (ker( j ⊗ 1))n−1 = TorR
1 (H•(A),C)n−1

and
(H0)n = (coker( j ⊗ 1))n = TorR

0 (H•(A),C)n.
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Thus, exact sequence (2) is

0 → TorR
0 (H•(A),C)n → Hn(A ⊗R C) → TorR

1 (H•(A),C)n−1 → 0.

But

TorR
0 (H•(A),C)n ∼= (H•(A)⊗R C)n =

⊕
p+q=n

Hp(A)⊗R Hq(C)

and
TorR

1 (H•(A),C)n−1 =
⊕

p+q=n−1

TorR
1 (Hp(A), Hq(C)). •

Corollary 10.82 (Künneth Formula for Homology, II). Let R be a right
hereditary ring, let (A, δ) be a complex of projective right R-modules, and let
C be a complex of left R-modules.

(i) For all n ≥ 0, there is an exact sequence
⊕

p+q=n

Hp(A)⊗R Hq(C)
α
	 Hn(A ⊗ C)

β



⊕
p+q=n−1

TorR
1 (Hp(A), Hq(C)),

where αn :
∑

p cls(bp) ⊗ cn−p �→
∑

p cls(bp ⊗ cn−p), and both λn and μn
are natural.

(ii) For all n ≥ 0, the exact sequence splits:8

Hn(A⊗R C) ∼=
[ ⊕

p+q=n

Hp(A)⊗R Hq(C)
]
⊕

⊕
p+q=n−1

TorR
1 (Hp(A), Hq(C)).

Proof. The first statement is true because R right hereditary implies that
every submodule of a projective module is projective, and hence flat. To prove
that the sequence splits, there are inclusions of subcomplexes

im(δ ⊗ 1) ⊆ im(i ⊗ 1) ⊆ ker(δ ⊗ 1) ⊆ A ⊗ C.

The proof is completed by adapting the proof of Theorem 7.56. •

Corollary 10.83. For every pair of topological spaces X and Y , there are
isomorphisms for every n ≥ 0,

Hn(X×Y ) ∼=
[ ⊕

p+q=n

Hp(X)⊗Z Hq(Y )
]
⊕
[ ⊕

p+q=n−1

TorZ1 (Hp(X), Hq(Y ))
]
.

Proof. This follows from the Eilenberg–Zilber Theorem and the Künneth
Formula, for Z is a hereditary ring and the terms of the singular complex are
free abelian groups. •

The following corollary will be used in our discussion of the Künneth
spectral sequence.

8The splitting need not be natural.
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Corollary 10.84. Let R be a ring, let A be a complex of right R-modules,
and let C be a complex of left R-modules. If all the terms of A, its subcomplex
B of boundaries, and its homology Hn(A) are flat, then

⊕
p+q=n

Hp(A)⊗R Hq(C) ∼= Hn(A ⊗R C).

Proof. By Theorem 10.81, there is an exact sequence

⊕
p+q=n

Hp(A)⊗R Hq(C) 	 Hn(A ⊗ C) 

⊕

p+q=n−1

TorR
1 (Hp(A), Hq(C)).

But flatness of every Hp(A) forces all the Tor terms to vanish. •
We merely state the dual of Corollary 10.82; the proof is left to the reader.

Theorem 10.85 ([Künneth Formula for Cohomology). Let R be a ring
and let A be a complex of left R-modules such that all the terms of A and its
subcomplex B of boundaries are projective.

(i) For all n ≥ 0 and every complex C of left R-modules, there is an exact
sequence

∏
p−q=n−1

Ext1R(Hp, Hq)
αn	 Hn(HomR(A,C))

βn

∏

p−q=n

HomR(Hp, Hq),

where Hp abbreviates Hp(A), Hq abbreviates Hq(C) = H−q(C), and both
αn and βn are natural.

(ii) If R is left hereditary, then the exact sequence splits for all n ≥ 0.9

Consider the special case of Theorem 10.85 when C is the complex with
a module C concentrated in degree 0; that is, H0 = C and Hq = {0} for all
q > 0. We obtain exactness of

Ext1R(Hn−1(A),C)
αn	 Hn(HomR(A,C))

βn
 HomR(Hn(A),C),

which is Theorem 7.59, the Universal Coefficient Theorem for Cohomology.
The Künneth Formulas give some curious identities, which we have used

in our study of cotorsion groups.

9The splitting need not be natural.
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Proposition 10.86. Given a commutative hereditary ring R and R-modules
A, B, and C, there is an isomorphism

Ext1R(TorR
1 (A, B),C) ∼= Ext1R(A,Ext1R(B,C)).

Proof. Consider the case n = 2 of Theorem 10.85 with A = PA⊗R B, where
PA is a deleted projective resolution of A and C = EC is a deleted injective
resolution of C . Thus, Hp(A) = Hp(PA ⊗R B) = TorR

p (A, B), and, since

C = EC is a deleted resolution, H0(C) = C and Hq(C) = {0} for all q > 0.
Now the exact sequence of Theorem 10.85 splits (because R is hereditary),
and so the only possible nonzero terms involved in H2(HomR(PA⊗R B,EC ))

are ⊕
p−q=1

Ext1R(Hp, Hq) and
⊕

p−q=2

HomR(Hp, Hq).

The only possible nonzero Ext term is Ext1R(H1,H0) = Ext1R(TorR
1 (A,B),C).

The only possible nonzero Hom term is HomR(H2, H0); but, since R is hered-
itary, H2 = {0} (for TorR

2 = {0} because wD(R) ≤ �D(R) = 1). We conclude
that

H2(HomR(PA ⊗R B,EC )) ∼= Ext1R(TorR
1 (A, B),C).

A similar argument with the complexes A′ = PA and C′ = Hom(B,EC )

gives

H2(HomR(PA,HomR(B,EC ))) ∼= Ext1R(A,Ext1R(B,C)).

But naturality of the adjoint isomorphism in Theorem 2.75 gives an isomor-
phism of the complexes HomR(PA⊗R B,EC ) ∼= HomR(PA,HomR(B,EC )),
so that these complexes have the same homology. We conclude that

Ext1R(TorR
1 (A, B),C) ∼= Ext1R(A,Ext1R(B,C)). •

Here is a variant of Proposition 10.86.

Proposition 10.87. If R is a commutative hereditary ring and A, B,C are
R-modules, then

Ext1R(A ⊗R B,C)⊕ HomR(TorR
1 (A, B),C))

∼= Ext1R(A,HomR(B,C))⊕ HomR(A,Ext1R(B,C)).

Proof. Consider the case n = 1 of Theorem 10.85 with A = PA⊗R B, where
PA is a deleted projective resolution of A and C = EC is a deleted injective
resolution of C . Thus, Hp(A) = Hp(PA ⊗R B) = TorR

p (A, B) and, since

C = EC is a deleted resolution, H0(C) = C and Hq(C) = {0} for q > 0.
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Now the exact sequence of Theorem 10.85 splits (because R is hereditary),
and so the only possible nonzero terms are

H1(HomR(PA ⊗R B,EC )) ∼= Ext1R(H0, H0)⊕ HomR(H1, H0)

= Ext1R(A ⊗R B,C)⊕ HomR(TorR
1 (A, B),C).

Similarly, the Künneth Formula for the complexes A′ = PA and C′ =
B ⊗R EC gives an isomorphism

H1(HomR(A′,C′)) ∼= Ext1R(A,HomR(B,C))⊕ HomR(A,Ext1R(B,C)).

Naturality of the adjoint isomorphism gives an isomorphism of complexes

HomR(PA ⊗R B,EC ) ∼= HomR(PA,HomR(B,EC )).

Therefore, H1(HomR(A,C)) ∼= H1(HomR(A′,C′)), which gives the desired
isomorphism. •

Proposition 10.88. Given a right hereditary ring R, a left hereditary ring S,
and modules AR, R BS, and SC, there is a natural isomorphism

TorR
1 (A,TorS

1 (B,C)) ∼= TorS
1 (TorR

1 (A, B),C).

Proof. The proof is similar to that of Proposition 10.86, and we leave it to
the reader. It uses the fact that wD(R) ≤ �D(R) = 1; that is, TorR

2 = {0}. •

Proposition 10.89. If R is a commutative hereditary ring and A, B, and C
are R-modules, then there is an isomorphism

TorR
1 (A, B)⊗R C ⊕ TorR

1 (A ⊗R B,C)

∼= A ⊗R TorR
1 (B,C)⊕ TorR

1 (A, B ⊗R C).

Proof. The proof is modeled on the proof of Proposition 10.87. Consider
the case n = 1 of Theorem 10.82:

⊕
p+q=n

Hp(A)⊗R Hq(C)
α
	 Hn(A ⊗ C)

β



⊕
p+q=n−1

TorR
1 (Hp(A), Hq(C)),

with A = PA ⊗R B and C = QC , where PA, QC are deleted projective
resolutions of A and C , respectively. Thus, Hp(A) = Hp(PA ⊗R B) =
TorR

p (A, B) and, since C = QC is a deleted resolution, H1(C) = C and
Hq(C) = {0} for q > 0. Now the exact sequence of Theorem 10.82 splits
(because R is hereditary), and so the only possible nonzero terms are

H1((PA ⊗R B)⊗R QC ) ∼= TorR
1 (A, B)⊗R C ⊕ TorR

1 (A ⊗R B,C).
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Similarly,

H1(PA ⊗R (B ⊗R QC )) ∼= A ⊗R TorR
1 (B,C)⊕ TorR

1 (A, B ⊗R C).

Finally, naturality of associativity of tensor product gives

H1((PA ⊗R B)⊗R QC ) ∼= H1(PA ⊗R (B ⊗R QC )),

as desired. •
We are going to use spectral sequences to prove a more general version

of the Künneth Formula. A constant theme in Homological Algebra is the
replacement of a module by a deleted resolution of it. Thus, it is natural for
us to replace a complex C by a deleted projective resolution of it in Comp; an
exact sequence of projective complexes M•,q

0 ← C ← M•,0 ← M•,1 ← · · · ← M•,q ← .

Using the sign trick of Example 10.4, M is a bicomplex in A whose rows are
projective complexes and whose columns Mp,∗ are projective resolutions.

�� �� ��
M01		

��

M11

��

		 M21

��

		 		

M00

��

		 M10

��

		 M20

��

		 		

C0

��

		 C1

��

		 C2

��

		 		

0 0 0

How can we compute homology by replacing a complex by a Cartan–
Eilenberg resolution of it? A tricomplex is a 4-tuple (L , d ′, d ′′, d ′′′), where L
is triply graded and the three differentials pairwise anticommute. For exam-
ple, given a complex A and a bicomplex M , Mac Lane (Homology, p. 403)
constructs a tricomplex A ⊗ M with L p,q,r = Ap ⊗ Mq,r , and he defines its
total complex to have terms

Tot(A ⊗ M)n =
⊕

p+q+r=n

Ap ⊗ Mq,r .

The hyperhomology of A and M is defined as

Hn(A, M) = Hn(Tot(A ⊗ M)).

A bicomplex (K , d ′+d ′′′, d ′′) can be constructed from the tricomplex A⊗M ,
where

K p,q =
⊕

s+t=p

As ⊗ Mq,t .

This construction will appear in the next proof.



686 Spectral Sequences Ch. 10

Theorem 10.90 (Künneth Homology Spectral Sequence). Let R be a
ring, let A be a positive complex of flat right R-modules, and let C be a posi-
tive complex of left R-modules. There is a first quadrant spectral sequence

E2
p,q =

⊕
s+t=q

TorR
p (Hs(A), Ht (C)) ⇒

p
Hn(A ⊗R C).

Proof. We have already seen, at the beginning of this section, that the ho-
mology of the obvious bicomplex [having (p, q) term Ap ⊗R Cq ] is too com-
plicated; we cannot even compute its E2-term. Let us replace C by a Cartan–
Eilenberg projective resolution M of C. Note that the bicomplex M is first
quadrant because C is a positive complex. Define the bicomplex (K , d ′, d ′′),
where

K p,q =
⊕

s+t=p

As ⊗R Mq,t ,

the horizontal d ′ is 1As ⊗ δ (here, δ is the horizontal differential of M), and
the vertical d ′′ is built from the differential of A and the vertical differential
of M .

The first filtration begins with the bicomplex Hq(K p,∗). The pth column
K p,∗ is

→
⊕

s+t=p

As ⊗R M2,t →
⊕

s+t=p

As ⊗R M1,t →
⊕

s+t=p

As ⊗R M0,t → 0.

For fixed (s, t) with s + t = p, we have the complex

→ As ⊗R M2,t → As ⊗R M1,t → As ⊗R M0,t → 0, (3)

which is just As ⊗R � applied to → M2,t → M1,t → M0,t → 0, a deleted
projective resolution of Ct . Since As is flat, the complex (3) is a deleted flat
resolution of As ⊗R Ct . Since Tor commutes with direct sums,

H ′′
p,q(K ) =

⊕
s+t=p

TorR
q (As,Ct ).

Using flatness of As once again, we see that all these terms vanish for q > 0.
We conclude that

I E2
p,q = H ′

p H ′′
q (K ) =

{⊕
s+t=p Hp

(
As ⊗R Ct

)
if q = 0;

{0} if q > 0.

Hence, the first spectral sequence collapses, and Proposition 10.21 gives

Hn(Tot(K )) = I E
2
n,0 = Hn(A ⊗R C).
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Since the limit of the second spectral sequence is the same as the limit of
the first, namely, Hn(A ⊗R C), it is only necesssary to show that

II E2
p,q = H ′′

p H ′
q(K ) =

⊕
s+t=q

TorR
p (Hs(A), Ht (C)).

To compute the second iterated homology of K , first transpose the indices:

Kq,p =
⊕

s+t=q

As ⊗R Mp,t .

Fixing p gives the complex with qth term
⊕

s+t=q As ⊗R Mp,t ; this complex
is just Tot(A ⊗R Mp,∗). Since M is a Cartan–Eilenberg projective resolution
of C, the cycles, boundaries, and homology of Mp,∗ are projective, hence flat.
Hence, Corollary 10.84 applies to give

H ′
q(K p,∗) = Hq(Tot(A ⊗R Mp,∗)) =

⊕
s+t=q

Hs(A)⊗R Ht (Mp,∗).

The definition of Cartan–Eilenberg projective resolution says that

Ht (Mp,∗) =→ Ht (Mp,2) → Ht (Mp,1) → Ht (Mp,0) → Ht (C) → 0

is a projective resolution of Ht (C)). Now

Hp
(
Hs(A)⊗ Ht (Mq,∗)

) = TorR
p (Hs(A), Ht (C)),

for this is the definition of Tor. Therefore,

II E2
p,q = H ′′

p H ′
q(K ) = Hp

( ⊕
s+t=q

Hs(A)⊗R Ht (C)
)

=
⊕

s+t=q

Hp(Hs(A)⊗R Ht (C))

=
⊕

s+t=q

TorR
p (Hs(A)⊗R Ht (C)). •

Let us now see that the Künneth spectral sequence gives the Künneth
Formula, Theorem 10.81 (but only for positive complexes).

Corollary 10.91 (Künneth Formula Again). Let A be a positive complex
of right R-modules whose subcomplexes Z of cycles and B of boundaries have
each term flat. Given a positive complex C of left R-modules, there is an exact
sequence for each n ≥ 0

⊕
p+q=n

Hp(A)⊗R Hq(C)
α
	 Hn(A ⊗ C)

β



⊕
p+q=n−1

TorR
1 (HP(A), Hq(C).
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Remark. One can prove α and β are natural in A and C if one is more
careful. �
Proof. Since A and C are positive complexes, Theorem 10.90 applies to give

E2
p,q =

⊕
s+t=q

TorR
p (Hs(A), Ht (C)) ⇒

p
Hn(A ⊗R C).

Now exactness of 0 → Bs → Zs → Hs(A) → 0 gives exactness of

TorR
p (Zs, X) → TorR

p (Hs(A), X) → TorR
p−1(Bs, X)

for every module X . If p−1 ≥ 1, then flatness of Zs and Bs forces the middle
term to vanish:

TorR
p (Hs(A), X) = {0}

for all X and all p ≥ 2. Thus, E2
p,q = {0} for p 	= 0 and p 	= 1, which is the

adjacent column hypothesis of Corollary 10.29. We conclude that there are
exact sequences

0 → E2
0,n → Hn(A ⊗R C) → E2

1,n−1 → 0,

and this is what is sought once we replace the terms E2
0,n and E2

1,n−1 by their
values. •

The reader should now be convinced that using spectral sequences can
prove interesting theorems. Moreover, even if there are “elementary” proofs
of these results (i.e., avoiding spectral sequences), these more “sophisticated”
proofs offer a systematic approach in place of sporadic success.
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Grothendieck, A., Éléments de Géométrie Algèbrique III; Étude Cohomo-
logique des Faisceaux Cohérents, IHES, Paris, 1961.

Gruenberg, K. W., Cohomological Topics in Group Theory, Lecture Notes
143, Springer-Verlag, New York, 1970.

Gunning, R. C., Introduction to Holomorphic Functions of Several Variables
III, Homological Theory, Wadsworth & Brooks/Cole, Monterey, CA, 1990.

Gunning, R. C., Lectures on Riemann Surfaces, Princeton University Press,
Princeton, NJ, 1966.

Hartshorne, R., Algebraic Geometry, Springer-Verlag, New York, 1977.

Herrlich, H., and Strecker, G. E., Category Theory, Allyn and Bacon, Boston,
1973.

Herstein, I. N., Noncommutative Rings, Carus Mathematical Monograph,
American Mathematical Society, Providence, RI, 1968.

Hewitt, E., and Ross, K. A., Abstract Harmonic Analysis I, Springer-Verlag,
New York, 1963.

Hilton, P., and Stammbach, U., A Course in Homological Algebra, Springer-
Verlag, New York, 1971.

Hilton, P., and Wylie, S., Homology Theory, Cambridge University Press,
Cambridge, 1960.

Humphreys, J., Introduction to Lie Algebras and Representation Theory,
Springer-Verlag, New York, 1972.

Hurewicz, W., and Wallman, H., Dimension Theory, Princeton University
Press, Princeton, NJ, 1948.

Jacobson, N., Basic Algebra I, Freeman, San Francisco, 1974.

Jacobson, N., Basic Algebra II, Freeman, San Francisco, 1980.

James, I. M., History of Topology, North-Holland, Amsterdam, 1999.

Jans, J., Rings and Homology, Holt, New York, 1964.

Janusz, G. J., Algebraic Number Theory, Academic Press, New York, 1973.

Kaplansky, I., Infinite Abelian Groups, University of Michigan Press, Ann
Arbor, MI, 1954.



692 References

Kaplansky, I., Commutative Rings, Allyn and Bacon, Boston, 1970.

Kaplansky, I., Set Theory and Metric Spaces, 2d ed., Chelsea, New York,
1977.

Kashiwara, M., and Schapira, P., Categories and Sheaves, Springer, New
York, 2006.

Kendig, K., Elementary Algebraic Geometry, Springer-Verlag, New York,
1977.

Lam, T. Y., A First Course in Noncommutative Rings, Springer-Verlag, New
York, 1991.

Lam, T. Y., Lectures on Modules and Rings, Springer-Verlag, New York,
1999.

Lam, T. Y., Serre’s Problem on Projective Modules, Springer, New York,
2006.

Lambek, J., Lectures on Rings and Modules, Ginn (Blaisdell), Boston, 1966.

Lang, S., Algebra, Addison-Wesley, Reading, MA, 1965.

Lyndon, R. C., “The cohomology theory of group extensions,” Duke Math J.
15 (1948), 271–292.

Mac Lane, S., Categories for the Working Mathematician, Springer-Verlag,
New York, 1971.

Mac Lane, S., Homology, Springer-Verlag, New York, 1975.

Macdonald, I. G., Algebraic Geometry: Introduction to Schemes, W. A. Ben-
jamin, Inc., New York, 1968.

Matsumura, H., Commutative Ring Theory, Cambridge University Press,
Cambridge, 1986.

May, J. P., Simplicial Objects in Algebraic Topology, van Nostrand Reinhold,
New York, 1967.

McCleary, J., User’s Guide to Spectral Sequences, Publish or Perish, Wilm-
ington, DE, 1985.

Milnor, J., Introduction to Algebraic K -Theory, Princeton University Press,
Princeton, NJ, 1971.

Mitchell, B., Theory of Categories, Academic Press, New York, 1965.

Munkres, J. R., Elements of Algebraic Topology, Addison-Wesley, Menlo
Park, CA, 1984.

Osborne, M. S., Basic Homological Algebra, Springer-Verlag, New York,
2000.



References 693

Osofsky, B. L., Homological Dimension of Modules, CBMS Regional Conf.
Ser. Math. 12, American Mathematical Society, Providence, RI, 1973.

Pareigis, B., Categories and Functors, Academic Press, New York, 1970.

Reiner, I., Maximal Orders, Academic Press, New York, 1975; reprinted, Ox-
ford University Press, New York, 2003.

Robinson, D. J. S., A Course in the Theory of Groups, 2d ed., Springer-Verlag,
New York, 1996.

Rosen, M., Number Theory in Function Fields, Springer-Verlag, New York,
2002.

Rosenberg, J., Algebraic K-theory and Its Applications, Springer-Verlag, New
York, 1994.

Rotman, J. J., Advanced Modern Algebra, Prentice-Hall, Upper Saddle River,
NJ, 2002.

Rotman, J. J., An Introduction to Homological Algebra, Academic Press, New
York, 1979.

Rotman, J. J., An Introduction to the Theory of Groups, 4th ed., Springer-
Verlag, New York, 1995.

Rotman, J. J., Notes on Homological Algebra, van Nostrand Reinhold, New
York, 1970.

Rowen, L. H., Ring Theory I, Academic Press, New York, 1988.

Serre, J.-P., Algebraic Groups and Class Fields, Springer-Verlag, New York,
1988.

Serre, J.-P., Local Fields, Springer-Verlag, New York, 1979.

Serre, J.-P., “Faisceaux algèbriques cohérents,” Annals Math. 61 (1955), 197–
278.

Spanier, E. H., Algebraic Topology, Springer-Verlag, New York, 1981.

Suzuki, M., Group Theory I, Springer-Verlag, New York, 1982.

Swan, R. G., The Theory of Sheaves, University of Chicago Press, Chicago,
1964.

Tennison, B. R., Sheaf Theory, London Mathematical Society Lecture Note
Series 20, Cambridge University Press, Cambridge, 1975.

Verschoren, A., Relative Invariants of Sheaves, Monographs and Textbooks
in Pure and Applied Mathematics 11, Marcel Dekker, New York, 1987.

Weibel, C. A., An Introduction to Homological Algebra, Cambridge Univer-
sity Press, New York, 1994.



694 References

Weiss, E., Cohomology of Groups, Academic Press, New York, 1969.

Wells, R. O., Jr., Differential Analysis on Complex Manifolds, 2d ed., Gradu-
ate Texts in Mathematics, 65, Springer-Verlag, New York, 1980.

Zariski, O., and Samuel, P. Commutative Algebra, I, 2d ed., van Nostrand
Reinhold, Princeton, NJ, 1975.



Special Notation
N natural numbers Z integers
Q rationals R real numbers
C complex numbers In integers mod n

A ⊆ B A a subset of B A � B A a proper subset of B
|X | cardinal number of a set X X � x x ∈ X

X 	 Y injection, monomorphism X 
 Y surjection, epimorphism

v0, . . . , v̂i , . . . , vn list v0, . . . , vn with vi omitted

∂n 5
Zn 6
Bn 6
Hn 6

HomC(A, B) 8
obj(C) 8

Sets 9
Groups 9

Top 10
Asc 11

N (U) 11
Htp 12
Ab 12

ComRings 12
R M 13

Z(R) 13
MR 14

HomR(A, B) 15
R Mod 15

Rop 15
ModR 16

HomR(A,�) 17
f∗ 17

HomR(�, B) 20
f ∗ 20

V ∗ 20
Cop 22

Nat(F, G) 25
BA 27

pSh(X,Ab) 28
�n 29

S•(X) 33
kG 38
〈X〉 42

ker f 43
im f 43

coker f 43
S ⊕ T 49

⊕
i∈I Ai 53∏
i∈I Ai 53

AX 53
(Ai )i∈I 53
A ⊗R B 71

A ⊗R �, �⊗R B 75
R M S 75

Ae 83
Frac(R) 94
Env(M) 127
Z(p∞) 131

t M 134
R× 189
Rp 194

S−1 R 195
A  B 214
A " B 217
X ∨ Y 227

{Mi , ψ
j

i } 230
lim←− Mi 231
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{Mi , ϕ
i
j } 237

lim−→ Mi 238

Spec(R) 276
Homet(F,F ′) 276

Shet(X,Ab) 276
�(�,S) 278

Homsh(F,F ′) 281
Sh(X,Ab) 281

Pet 282
P∗ 285

Sh(X,A) 309
C• or (C•, d•) 318

Comp(A) 318

R Comp,CompR 318
"k( f ) 324

PA 325
EA 326
Cn 329
Zn 329
Bn 329
Hn 329

cls(z) 329
f∗, fn∗ 331
f � g 337

LnT 344
f ∗ 343

TorR
n (�, B) 346

torR
n (A,�) 346

RnT 364
ExtnR(A,�) 365

RnT 370
extnR(�, B) 370

Hq(F) 378
Cq(U,F) 385
Ȟq(U,F) 386

Ȟq(F) 391

Ĉ 392
Div( f ) 394

ordp( f ) 397

pd(A) 454
id(B) 457

�D(R), r D(R) 459
fd(A) 461

wD(R) 462
pdR(A) 467

ann(X), ann(x) 480
Aut(G) 497
Inn(G) 497
Out(G) 497
K � Q 500

D8 501
V 501
Q 503

XGr(K , Q, f ) 507
Gr(K , Q, f ) 507

Qn 513
T 513

Stab(Q, K ) 514
Der(Q, K ) 516

PDer(Q, K ) 517
Inn(Q, K ) 517

AG 519
FixG 520

Hn(G, A) 520
G 521

G× 521
B•(G) 528
P•(G) 529
B%•(G) 531

AG 536

Hn(G, A) 535
PGL(n, k) 553

�(G) 558
Pairs∗,Pairs∗ 564

Res 566
Inf 566

NG/S 572

Tr 573
Ĥq(G, A) 582

CG(A) 588
NG(A) 591
cd(G) 591

H 595
Matn(k) 596

Br(k) 599
Br(E/k) 601

Mp,q 610

(M, d ′, d ′′) 612
Tot(M) 613

A• ⊗R B• 614
{F pC} 616

I F
p

Tot(M) 617
II F

p
Tot(M) 618
{Er , dr } 622

E∞
p,q 624

E2
p,q ⇒p Hn 626

{I E
r
, dr } 629

{II E
r
, dr } 629

H ′
p H ′′

q (M) 630

H ′′
p H ′

q(M) 631

Hom(A•,B•) 638
I E

p,q
r 640

II E
p,q
r 640

cone( f ) 650
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abelian category, 307
abstract simplicial complex, 11
acyclic

G-module, 560
complex, 330
left F-, 656
right F-, 656
sheaf, 379
topological space, 534

additive category, 303
additive functor, 40, 303
Adjan, S. I., 552
Adjoint Functor Theorem, 268
adjoint functors, 257

left, right, 258
unit, 258

adjoint isomorphism, 92, 93, 646
adjusted, 445
Albert, A. A., 596, 604
Albrecht Theorem, 170
Albrecht, F., 170
algebra

k-algebra, 82
central simple, 596
crossed product, 602
cyclic, 602
division, 595
enveloping, 83
group, 38

algebraically compact, 439
almost all, 53
Amitsur, S. A., 596
annihilator, 480
anti-homomorphism, 35
arrow category, 336
artinian, 175
associated etale-sheaf, 282
associativity, tensor, 80
atlas, 291, 313

complex, 397
augmentation, 521
augmentation ideal, 521
Auslander Theorem, 460, 465
Auslander, M., xi, 491
Auslander-Buchsbaum Theorem, 493
automorphism

inner, 497
outer, 497

automorphism group, 497
outer automorphism group, 497

Baer sum, 431
Baer Theorem, 163, 431
Baer, R., 118, 428, 431, 503
balanced presentation, 551
bar resolution, 528

normalized, 531
Barr, M., 268, 559
Barratt, M., 339
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Barratt–Whitehead Theorem, 339
basic subgroup, 153
basis

free abelian group, 3
free module, 56

basis theorem
finite abelian groups, 175
Hilbert, 112

Bass Theorem, 186
Bass, H., 123, 186, 212
Bass–Quillen conjecture, 211
Bass-Papp Theorem, 123
Benson, D., 632
Berstein, I., 594
Besche, H. U., 497
Bézout ring, 169
biadditive, 70
bicomplex, 612

cohomology, 639
first quadrant, 614
third quadrant, 639
total complex, 613
transpose, 615

bidegree, 611
bifunctor, 96
bigraded map, 611
bigraded module, 610

differential, 619
bilinear, 70, 78
bimodule, 75
Bkouche, R., 106
Bockstein homomorphism, 334
Bockstein, M., 334
Boolean ring, 34, 159
Borel, A., 476
boundaries

complex, 329
simplicial, 6
singular, 31

boundary map
simplicial, 5
singular, 30

bounded filtration, 626
Brauer group, 599

relative, 601
Brauer, R., 599, 604
Buchsbaum, D. A., xi, 377, 491
Burnside Basis Theorem, 558

Burnside’s problem, 552
Burnside, W., 552

canonical class, 402
canonical divisor, 402
Carnap, R., 16
Cartan Theorem, 676
Cartan, H., 676
Cartan–Eilenberg resolution, 653
Cartan–Eilenberg Theorem, 165
categorical statement, 316
category, 8

abelian, 307
additive, 303
arrow, 336
cocomplete, 256
cogenerator, 264
complete, 256
composition, 8
concrete, 21
direct product, 36
discrete, 16
enough injectives, 314
enough projectives, 314
exact, 308
functor, 27
generator, 269
morphism, 8
objects, 8
opposite, 22
small, 18

Cauchy sequence, 234
(C, D)-system, 249
Čech, E., 391
Čech cohomology, 391
center of ring, 13, 271
central extension, 513, 553

universal, 553
central simple algebra, 596
chain complex

see complex, 28
chain map, 318

over f , 343
chains

complex, 329
simplicial, 4
singular, 29

change of groups, 560
change of rings, 469, 577, 670
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character module, 135
chart

r -chart, 313
complex n-chart, 397
euclidean, 289

Chase Theorem, 144, 171, 186, 410
Chase, S. U., 157, 169
class group, 167
classifying space, 535
coboundary, 508
cocompatible pair, 564
cocomplete category, 256
cocycle identity, 505
codiagonal, 428
coeffaceable, 368
coefficients, 374
coequalizer, 224
cofinal, 255
cogenerator, 264
cogroup object, 229
coherent ring, 142
coherent sheaf, 313
Cohn Theorem, 148
Cohn, P. M., 148
cohomological ∂-functor, 368
cohomological dimension, 591
cohomological extension, 369
cohomology

Čech, 391
bicomplex, 639
of groups, 520
open cover, 385
sheaf, 378
sheaf coefficients, 386
simplicial, 384
singular, 385

coinduced module, 561
cokernel

additive category, 305
module, 43
sheaf map, 299

colimit (see direct limit), 238
collapses, 635
commutative diagram, 19
Comparison Theorem, 340
compatible pair, 570
complement

subgroup, 500
submodule, 50

complete category, 256
complete group, 440
complete resolution, 583
completion, 234
complex, 28, 317

acyclic, 330
concentrated in degree (k, k−1),

324
concentrated in degree k, 324
contractible, 337
differential, 317
filtration, 616
flat, 647
negative, 329
positive, 328
projective, 652
quotient, 319
singular, 324
split, 648
split exact, 655
total, 613

complex atlas, 397
composition, in category, 8
concentrated in degree (k, k − 1), 324
concentrated in degree k, 324
concrete category, 21
connecting homomorphisms, 333
conorm, 575
constant

etale-sheaf, 277
functor, 232
presheaf, 285
protosheaf, 274
sheaf, 286

contractible, 337
contracting homotopy, 337
contravariant functor, 19
convergence

spectral sequence, 626
converts limits, 240
coordinate neighborhood, 289

complex, 397
coproduct

family of objects, 220
two objects, 214

Correspondence Theorem
modules, 45
rings, 45

cosyzygy, 327
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cotorsion, 441
covariant functor, 19
covering space, 274
crossed homomorphism

see derivation, 516
crossed product algebra, 602
cup product, 374, 585
cycles

complex, 329
simplicial, 6
singular, 31

cyclic algebra, 602
cyclic module, 42

Dedekind ring, 161
Dedekind, J. W. R., 161
degeneracy operators, 375
degree

divisor, 399
graded map, 609

degree p, 336
deleted resolution, 325, 326
de Rham complex, 290
de Rham, G., 290
derivation

group, 516
principal, 517

derived couple, 620
diagonal action, 519
diagonal map, 428
diagram, 18

commutative, 19
diagram chasing, 90
Dickson, L. E., 596, 607
Dieudonné, J., 110
differential, 317, 323
differential bigraded module, 619
dihedral group, 501
dimension

cohomological, 591
flat, 461
left global, 459
right global, 459
weak, 462

dimension shifting, 358
direct image, 293
direct limit, 238
direct product

modules, 53

of categories, 36
sheaves, 295

direct sum, 304
extensions, 429
modules, 53

external, 48, 51
finite, 51
infinite, 53
internal, 49, 51

presheaves, 295
sheaves, 295

direct summand, 50
direct system over I , 237
directed set, 242
discrete category, 16
disjoint union, 220
divisible

abelian group, 90
module, 119

division algebra, 595
characteristic p, 605

divisor, 399
Dixmier, J., 436
double complex

see bicomplex, 612
double cover, 286
dual

diagram, 128
object, 218
statement, 128

dual space, 20
Duality Theorem, 556

Eckmann, B., 578
Eckmann-Shapiro Lemma, 561
edge homomorphisms, 644
effaceable, 358
Eick, B., 497
Eilenberg, S., 114, 165, 321, 362, 495,

615
Eilenberg-Zilber Theorem, 678
Eklof, P. C., 436
elementary abelian group, 548
endomorphism, 35
endomorphism ring, 35
enlargement of coset, 44
enough injectives, 314
enough projectives, 314
enveloping algebra, 83
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epimorphism (epic), 305
equalizer, 225

condition, 279
equivalent

extensions, 421, 509
injectively, 457
projectively, 455

essential extension, 125
proper, 125

etale-map, 276
etale-sheaf, 276

associated, 282
constant, 277

etymology
abelian category, 303
acyclic, 330
adjoint functors, 256
boundaries, 31
coherent ring, 313
cohomology, 343
commutative diagram, 19
cycles, 31
exact sequence, 46
Ext, 426
factor set, 504
flat, 131
free module, 106
functor, 16
homology, 3
left derived, 345
left exact, 63
multiplier, 556
right exact, 84
syzygy, 461
Tor, 413

euclidean space, 29
Euler characteristic, 129
Euler, L., 129
Evens, L., 586
exact

abelian category, 309
category, 308
couple, 618

derived couple, 620
functor, 98
hexagon, 559
sequence, 46

complexes, 320
factored, 65

sheaves, 300
short, 47

triangle, 334
extended module, 210
extending by linearity, 57
extension, 47

central, 513, 553
universal, 553

groups, 496
modules, 420
stem, 553

exterior square, 549

FAC, 312
face map, 30
face operators, 375
factor modules, 616
factor set, 504
faithful functor, 21
faithfully flat, 152
family, 478

generated by X , 479
family of supports, 379
Feit, W., 533
Feit–Thompson Theorem, 533
FFR, 476
filtration, 616

bounded, 626
complex, 616
degree, 626
factor modules, 616
first, 617
induced, 625
second, 618

fine sheaf, 383
finite limit, 321
finite partial sums, 242
finitely generated, 42
finitely presented

group, 549
module, 106

Finney, R. L., 106
first filtration, 617
First Isomorphism Theorem

abelian category, 321
modules, 43

first quadrant bicomplex, 614
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Five Lemma, 90
five-term exact sequence, 643, 662
fixed points, 519
flabby sheaf, 379
flat

complex, 647
dimension, 461
faithfully, 152
module, 131
resolution, 325

forgetful functor, 18
formal power series, 255
Fossum, R. M., 459
fractional ideal, 167
Frattini subgroup, 558
Frattini, G., 558
free

abelian group, 3
functor, 34
module, 56
product, 219
resolution, 325

Freyd, P., 315
Frobenius algebra, 176
Frobenius theorem, 598
Frobenius, F. G., 596
Fuchs, L., 438
full functor, 315
Full Imbedding Theorem, 316
full subcategory, 16

generated by S, 16
functor

additive, 40, 303
category, 27
constant, 232
contravariant, 19
contravariant Hom, 20
covariant, 17, 19
covariant Hom, 17
dual space, 21
exact, 98
faithful, 21
forgetful, 18
free, 34
full, 315
identity, 17
left derived, 345
left exact, 62, 63
representable, 26

right derived
contravariant, 370
covariant, 365

right exact, 84
fundamental exact sequences, 647

Gaschütz, W., 589
Gelfand, I., 34
generalized quaternions, 513
generator

category, 273
of ModR , 269

generators and relations, 106
germs, 246, 281
global dimension, 459

injective, 458
projective, 456

global section, 278
gluing, 279
Gluing Lemma, 291
Godement resolution, 381
Godement sheaf, 380
Godement, R., 380
Golod, E. S., 552
Goodearl, K. R., 474
Gordan, P., 111
graded map, 609
graded module, 609
Grassmann algebra, 288
Green Theorem, 663
Green’s Theorem, 2
Green, G., 2
Green, J. A., 663
Griffith, P. A., 115, 235, 459, 491
Grothendieck Theorem, 657, 659, 660
Grothendieck, A., x, 268, 359, 377
group

elementary, 548
finitely presented, 549
generalized quaternions, 513
quaternion, 503

group object, 229
group ring, 38
Gruenberg resolution, 545
Gruenberg, K. W., 544

Hamilton, W. R., 596
Harada Theorem, 160
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Harada, M., 160
Harrison, D. K., 157, 438
Hasse, H., 604
Heller, A., 679
Helmer, O., 170
Herbrand quotient, 523
Herbrand, J., 523
hereditary ring, 161
Hertweck, M., 557
Hilbert

Basis Theorem, 112
space, 29
Syzygy Theorem, 472
Theorem 90, 525

Hilbert, D., 111, 467
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Prüfer, 169
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direct image, 293
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flabby, 379
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708 Index

kernel, 296
locally free, 313
map, 280
of sections, 278
quotient, 302
restriction, 291
sheet, 273
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singular, 29
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abstract, 11
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face operators, 375
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singular simplex, 29
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Lyndon–Hochschild–Serre, 661
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