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Added Preface

In the third printing, several errors have been corrected. In particu-
lar, the previous erroneous construction of the splitting in the Homol-
ogy classification theorem (Theorem 111,4.3) has been replaced by a
correct proof, due essentially to DOLD (A. DOLD, Lectures on Algebraic
Topology, Grundlehren der mathematischen Wissenschaften, vol.200,
Springer 1972). Also, the axioms on page 260 for allowable short exact
sequences have been modified, so that they will actually apply where
they are used on page 376.

SAUNDERS MAC LANE
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Introduction

Our subject starts with homology, homomorphisms, and tensors.
Homology provides an algebraic "picture" of topological spaces,

assigning to each space X a family of abelian groups Ho (X), ..., H. (X),
... , to each continuous map l: X--).Y a family of group homomorphisms
f : H (X) --)-H,, (Y). Properties of the space or the map can often be
effectively found from properties of the groups H or the homomorphisms
/.. A similar process associates homology groups to other Mathematical
objects; for example, to a group 17 or to an associative algebra A. Homo-
logy in all such cases is our concern.

Complexes provide a means of calculating homology. Each n-dimen-
sional "singular" simplex T in a topological space X has a boundary
consisting of singular simplices of dimension n -1. If K. is the free
abelian group generated by all these n-simplices, the function 8 assigning
to each T the alternating sum aT of its boundary simplices determines a
homomorphism a : K. -->K_ 1. This yields (Chap. II) a "complex" which
consists of abelian groups K. and boundary homomorphisms a, in the
form

a a a a04-KoK14-K2 Ka. ....
Moreover, a8=0, so the kernel C. of contains the image

The factor group H. (K) = is the n-th homology
group of the complex K or of the underlying space X. Often a smaller
or simpler complex will suffice to compute the same homology groups for
X. Given a group 17, there is a corresponding complex whose homology
is that appropriate to the group. For example, the one dimensional
homology of 17 is its factor commutator group 17/[17,17].

Homomorphisms of appropriate type are associated with each type
of algebraic system; under composition of homomorphisms the systems
and their homomorphisms constitute a "category" (Chap. I). If C and
A are abelian groups, the set Hom (C, A) of all group homomorphisms
: C --A is also an abelian group. For C fixed, it is a covariant "functor"

on the category of all abelian groups A; each homomorphism a:A--A'
induces the map a* : Hom (C, A) -s Hom (C, A') which carries each / into
its composite a/ with a. For A fixed, Horn is contravariant: Each
y: C'-sC induces the map y* in the opposite direction, Hom (C, A) ->
Horn (C', A), sending / to the composite / y. Thus Hom (?, A) applied
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to a complex K=? turns the arrows around to give a complex

Horn (K0,A) a. Horn(K1,A) a. Horn (K,, A) --i

Here the factor group (Kernel a*)/ (Image 8*) is the cohomology H" (K, A)
of K with coefficients A. According to the provenance of K, it yields
the cohomology of a space X or of a group 11.

An extension of a group A by a group C is a group B)A with B/A= C;
in diagramatic language, an extension is just a sequence

E:O--*A--* B --,C -*O

of abelian groups and homomorphisms which is exact in the sense that
the kernel of each homomorphism is exactly the image of the preceding
one. The set Ext' (C, A) of all extensions of A by C turns out to be an
abelian group and a functor of A and C, covariant in A and contra-
variant in C.

Question: Does the homology of a complex K determine its cohomo-
logy ? The answer is almost yes, provided each K. is a free abelian group.
In this case H" (K, A) is determined "up to a group extension" by
H" (K), H,,_1(K), and A ; specifically, the "universal coefficient theorem"
(Chap.III) gives an exact sequence

H"(K,A) --+Hom(H"(K),A) -0

involving the functor Extl just introduced. If the K. are not free groups,
there is a more complex answer, involving the spectral sequences to be
described in Chap. XI.

Tensors arise from vector spaces U, V, and W and bilinear functions,
B (u, v) on U> <V to W. Manufacture the vector space U ® V generated
by symbols u (&v which are bilinear in uE U and vE V and nothing
more. Then u®v is a universal bilinear function; to any bilinear B
there is a unique linear transformation T: U ®V -+ W with B (u, v) =
T (u ®v). The elements of V(& V turn out to be just the classical tensors
(in two indices) associated with the vector space V. Two abelian groups
A and G have a tensor product A ®G generated by bilinear symbols
a®g; it is an abelian group, and a functor covariant in A and G. In
particular, if K is a complex, so is A ®K : A (& K6*-- A ®K1F - . - .

Question: Does the homology of K determine that of A ®K?
Answer: Almost yes; if each K is free, there is an exact sequence

0-sA ®H"(K) -sH"(A (&K) -,Tor1(A,H"_1(K)) --0.

Here Tor1(A , G) is a new covariant functor of the abelian groups A and
G, called the "torsion product" ; it depends (Chap. V) on the elements
of finite order in A and G and is generated, subject to suitable relations,
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by pairs of elements 4E A and g E G for which there is an integer m with
ma=0=mg.

Take the cartesian product X x Y of two spaces. Can we calculate
its homology from that of X and Y? A study of complexes constructed
from simplices (Chap. VIII) reduces this question to the calculation of
the homology of a tensor product K (&L of two complexes. This cdlcu-
lation again involves the torsion product, via an exact sequence (the
Kiinneth Thm, Chap. V)

0-> Z H,,(K) ®HQ(L) ->H"(K ®L) -> Tor1(H.(K),Hr(L)) ->0.
J>+9-" P+q-"-1

But woe, if A is a subgroup of B, A ®G is not usually a subgroup
of B ®G ; in other words, if E : 0 -*A B -* C -1-0 is exact, the sequence
of tensor products

0->A ®G-i- B®G-+C®G--+0,

is exact, except possibly at A ®G. Happily, the torsion product repairs
the trouble ; the given sequence E defines a homomorphism E* : Tor1(C, G)
->A ®G with image exactly the kernel of A ®G-+B ®G, and the
sequence

0 --> Tor1(A, G) Tor1(B, G) -> Tor1(C, G) E. A ®G --9 B ® G

is exact. Call E+ the connecting homomorphism for Tor1 and 0.
But again woe, if A is a subgroup of B, a homomorphism /:A ->G

may not be extendable to a homomorphism B - .G; in other words,
the exact sequence induces a sequence (opposite
direction by contravariance!)

0 -> Horn (C, G) -> Hom (B, G) -+ Horn (A, G) -> 0

which may not be exact at Hom(A,G). Ext' to the rescue: There is a
"connecting" homomorphism E which produces a longer exact sequence

0 -+ Hom (C, G) - Horn (B, G) -> Hom (A, G)
E.

E. Ext' (C, G) -> Ext' (B, G) -+ Ext' (A, G) -* 0.

Now generalize; replace abelian groups by modules over any com-
mutative ring R. Then Ext' (A, G) ist still defined as an R-module, but
the longer sequence may now fail of exactness at Ext' (A, G). There is
a new functor Exte (A, G), a new connecting homomorphism E*: Ext' (A, G)
-+ Ext' (C, G), and an exact sequence extending indefinitely to the right
as

- Ext" (C, G) Ext" (B, G) -> Ext" (A, G) ! Ext"+' (C, G) _* .
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The elements of Ext" (C, G) are suitable equivalence classes of long
exact sequences

running from G to C through n intermediate modules. Similarly for
the tensor product ; there are functors Tor" (A, G), described via suitable
generators and relations, which enter into a long exact sequence

,Tor"+1(C, G) E: Tor" (A, G) -+Tor" (B, G)-*Tor" (C, G) -

induced by each E : 0 --> A -- B --* C -s0. They apply also if the ring is
not commutative - and A, B, and C are right R-modules, G a left
R-module.

These functors Tor" and Ext" are the subject of homological algebra.
They give the cohomology of various algebraic systems. If II is a group,
take R to be the group ring generated by II over the integers. Then the
group Z of integers is (trivially) an R-module ; if A is any other R-module,
the groups ExtR (Z, A) are the cohomology groups H" (II, A) of the
group II with coefficients in A. If n=2, H3(II, A) turns out, as it
should, to be the group of all extensions B of the abelian group A by
the (non-abelian) group 17, where the structure of A as a 17-module
specifies how A is a normal subgroup of B. If n= 3, H3 (17, A) is a group
whose elements are "obstructions" to an extension problem. Similarly,
Tor" (Z, A) gives the homology groups of H. Again, if A is an algebra
over the field F, construct Ext" by long exact sequences of two-sided
A-modules A. The algebra A is itself such a module, and Ext" (A, A) is
the cohomology of A with coefficients A ; again Ext' and Ext3 correspond
to extension problems for algebras.

A module P is projective if every homomorphism P-->BJA lifts to a
homomorphism P-B. Any free module is projective; write any module
in terms of generators; this expresses it as a quotient of a free module,
and hence of a projective module.

How can Tor" and Ext" be calculated? Write A as a quotient of a
projective module P; that is, write an exact sequence The.
kernel of P0-+A is again a quotient of a projective P1. This process con-
tinues to give an exact sequence 0E-AF-P0FP+- . The complex P
is called a "projective resolution" of A. It is by no means unique;
compare two such

O E- A PO 4a 1i P= F-

II +l. 1,

0E-A4-P0 Pi' P=F.....

Since P. is projective, the map P. ->A lifts to to: PO--APP. The composite
map Pl -->PP lifts in turn to an /1:I-+P l with a/=/8, and so on by
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recursion. The resulting comparison /,,:P,--i.P of complexes induces a
homomorphism H (P (&G) ->H, (P' ®G). Reversing the rolesof P and P
and deforming P --s P -> P to the identity (deformations are called homo-
topies) shows this an isomorphism H (P ®G)3H%(P' (&G). Therefore
the homology groups F., (P ®G) do not depend on the choice of the
projective resolution P, but only on A and G. They turn out to be the
groups Tor (A, G). Similarly, the cohomology groups H" (P, G) are the
groups Ext" (A, G), while the requisite connecting homomorphisms E'
may be obtained from a basic exact homology sequence for complexes
(Chap. II). Thus Tor and Ext may be calculated from projective resolu-
tions. For example, if 17 is a group, the module Z has a standard "bar
resolution" (Chap. IX) whose cohomology is that of ff. For particular
groups, particular resolutions are more efficient.

Qualitative considerations ask for the minimum length of a projective
resolution of an R-module A. If there is a projective resolution of A
stopping with P.+1 =0, A is said to have homological dimension at
most n. These dimensions enter into the arithmetic structure of the
ring R; for example, if R is the ring Z of integers, every module has
dimension at most 1; again for example, the Hilbert Syzygy Theorem
(Chap. VII) deals with dimensions of graded modules over a polynomial
ring.

Two exact sequences 0->A --B-*C-- --*0 and 0 -.0-C --),.D --*.F -*0 may
be "spliced" at C to give a longer exact sequence

D -+F-+O;

in other words, an element of Ext' (C, A) and an element of Ext' (F, C)
determine a two-fold extension which is an element of Ext1(F, A), called
their product (Chap. III). These and similar products for Tor can be
computed from resolutions (Chap. VIII).

Every R-module is also an abelian group; that is, a module over the
ring Z of integers. Callan extension E : A -> B -+C of R-modules Z-split
if the middle module B, regarded just as an abelian group, is the direct
sum of A and C. Construct the group Ext(a,z) (C, A) using only such
Z-split extensions. This functor has connecting homomorphisms E' for
those E which are Z-split. With the corresponding torsion functors and
their connecting homomorphisms, it is the subject of relative homological
algebra (Chap. IX). The cohomology of a group is such a relative functor.
Again, if A is an algebra over the commutative ring K, all appropriate
concepts are relative to K; in particular, the cohomology of A arises
from exact sequences of A-bimodules which are split as sequences of
K-modules.
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Modules appear to be the essential object of study. But the exactness
of a resolution and the definition of a projective are properties of homo-
morphisms; all the arguments work if the modules and the homo-
morphisms are replaced by any objects A, B,... with "morphisms"
a : A -, B which can be added, compounded, and have suitable kernels,
cokernels (BJaA), and images. Technically, this amounts to developing
homological algebra in an abelian category (Chap. IX). From the functor
To (A) = A ®G we constructed a sequence of functors T. (A) =Tor (A, G).
More generally, let T. be any covariant functor which is additive
[T0 (a1+ a.j = To a1+ Toots] and which carries each exact sequence
0 -- . A -->.B -+C--O into a right exact sequence TO (A) -,T0 (B) -*T0 (C) --).0.
We again investigate the kernel of T0(A)-,T0(B) and construct new
functors to describe it. If the category has "enough" projectives, each A
has a projective resolution P, and H,,(T0(P)) is independent of the
choice of P and defines a functor T. (A) which enters into a long exact
sequence

Thus T. determines a whole sequence of derived functors T. and of
connecting homomorphisms E: T. (C) These "derived"
functors can be characterized conceptually by three basic properties
(Chap. XII):

(i) The long sequence above is exact,
(ii) If P is projective and n > 0, T. (P) = 0,
(iii) If E-+E' is a homomorphism of exact sequences, the diagram of

connecting homomorphisms commutes (naturality I) :

T. (C)
1

T. (C') -* T*-1(A') .

In particular, given T. (A) = A ® G, these axioms characterize Tor (A, G)
as functors of A. There is a similar characterization of the functors
Ext" (C, A) (Chap. III). Alternatively, each derived functor T. can be
characterized just in terms of the preceding T,,_1: If E:
is another natural connecting homomorphism between additive functors,
each "natural" map of S._1 into T._1 extends to a unique natural map
of S. into T.. This "universal" property of T. describes it as the left
satellite of T*-1; it may be used to construct products.

Successive and interlocking layers of generalizations appear through-
out homological algebra. We go from abelian groups to modules to
bimodules to objects in an abelian category; from rings to groups to
algebras to Hopf algebras (Chap. VI) ; from exact sequences to Z-split
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exact sequences to a "proper" class of exact sequences characterized
by axioms (Chap. XII). The subject is in process of rapid expansion;
the most general formulation is yet to come. Hence this book will
proceed from the special to the general, subsuming earlier results in
the concluding treatment (Chap. XII) of additive functors in an abelian
category relative to a proper class of exact sequences.

As each concept is developed, we take time out to stress its applica-
tions. Thus Chap. IV on the cohomology of groups includes the topo-
logical interpretation of the cohomology groups of 17 as the cohomology
of an aspherical space with fundamental group H, as well as SCHUR'S
Theorem that every extension of a finite group by another finite group
of relatively prime order must split. Chap. VII, on dimension, studies
syzygies and separable algebras. Chap. X on the cohomology of alge-
braic systems includes the Wedderburn principal theorem for algebras
and the cohomology (at various levels) of abelian groups. Chap. XI
includes the standard construction of the spectral sequences of a filtra-
tion and of a bicomplex, used to construct the spectral sequence of a
covering and of a group extension. (The latter is due to LYNDON and
not, as often thought, to the subsequent work of HOCHSCHILD-SERRE).
Much of the general development of homological algebra in the other
chapters can be read independently of these results.

For the expert we note a few special features. The basic functors
Ext and Tor are described directly: Ext, following YONEDA, by long
exact sequences, Tor by an improved set of generators and relations.
Resolutions are relegated to their proper place as a means of computa-
tion. All the varieties of algebras (coalgebras, Hopf Algebras, graded
algebras, differential graded algebras) are described uniformly by com-
mutative diagrams for the product maps. Relative homological algebra
is treated at two levels of generality: First, by a "forgetful" functor,
say one which regards an R-module just as an abelian group, later by
a suitable proper class of short exact sequences in an abelian category.
The cohomology of groups is defined functorially by the bar construction.
This construction later appears in conceptual form: For a pair of cate-
gories with a forgetful functor and a functor constructing relative pro-
jectives (Chap. IX, § 7). The proper definition of connecting homo-
morphisms by additive relations (correspondences) is indicated; these
relations are used to describe the transgression in a spectral sequence.
This gives a convenient treatment of the transgression in LYNDON'S
spectral sequence. Diagram chasing works in an abelian category with
subobjects or quotient objects replacing elements (XII.3).

Notations are standard, with the following few exceptions. A com-
plex is :{ (latin), a commutative ring is K (greek). A "graded" module M
is a family M0, M1, ... of modules and not their direct sum EM while
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a family..., M-1, Mo , M1, ... is said to be "Z-graded". A moomorphism
is written x : A B, an epimorphism a: B-' C, while x1 a states that
0 -A -> B -*C -*0 is exact. A dotted arrow is a homomorphism
to be constructed, a dashed arrow A -B is a group homomorphism
between modules, a half arrow A- B is an additive relation. We
distinguish between a bicomplex (XI.6) and a complex of complexes
(X.9) ; we "augment" but do not "supplement" an algebra. The dual
of a resolution is a "coresolution". If u is a cycle in the homology class h
of H. (X), u E E H. is short for u E h E H., while his written h = cls u. The
coboundary of an n-cochain / is 8/= (-1)' '/ 8, with a sign (11.3).

A reference to Thm V.4.3 is to Theorem 3 of section 4 of Chap. V ;
if the chapter number is omitted, it is to a theorem in the chapter at
hand. A reference such as BovRBAKI [1999] is to that author's article,
as listed in the bibliography at the back of our book and published in
the year cited; [1999b] is to the second article by the same author,
same year. The influential treatise by H. CARTAN and S. EILENBERG
on Homological Algebra is honored by omitting its date. The bibliography
makes no pretense at completeness, but is intended to provide a guide
to further reading, as suggested in the notes at the ends of some chapters
or sections. These notes also contain occasional historical comments
which give positive-and perhaps prejudiced-views of the develop-
ment of our subject. The exercises are designed both to give elementary
practice in the concepts presented and to formulate additional results
not included in the text.

Chapter one

Modules, Diagrams, and Functors

Homology theory deals repeatedly with the formal properties of
functions and their composites. The functions concerned are usually
homomorphisms of modules or of related algebraic systems. The formal
properties are subsumed in the statement that the homomorphisms
constitute a category. This chapter will examine the notions of module
and category.

1. The Arrow Notation

If X and Y are sets, the Cartesian product X>< Y is the set of all
ordered pairs (x, y) for x E X and yEY.

The notation /: X--).Y states that / is a /unction on X to Y. Formally.
such a function may be described as an ordered triple / =(X, F, Y), with
F a subset of X ><Y containing for exactly one pair (x, y).
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Actually we write / (x) = y, as usual, for the value off at the argument x.
Notice that we normally write the function / to the left of its argument,
as in / (x). Notice also that each function f carries with it a definite set X
as domain and a definite set Y as range.

If /: X--)..Y and g: Y--).Z are functions, the composite function g/,
sometimes written go/, is the function on X to Z with the value
(g/) (x) = g (/ (x)) for each x E X. Since functions are written on the left, g/
means first apply /, then apply g. This composite is defined only when
Range (/) =Domain (g); in particular, we do not define the composite
when Range (f) is a proper subset of Domain (g).

For any set X, the identity i or ix is the function 1: X--sX with
1(x) = x for all x. If S is a subset of X the function j : S--)..X with values
j (s) = s for all s E S is called the ("identity") injection of S into X. For
any f : X --* Y the composite f j : S-iY (sometimes written 11S) is the
function / "cut down" to the subset S of its domain. Similarly, when Y
is a subset of W and k: Y-+W is the injection (with k (y) =y), the com-
posite k1: X-+W is the function f with its range expanded from Y to W.
Notice that the functions / and k/ have the same values for each argu-
ment x, but they are different functions, since the range is different.
This distinction, apparently pedantic, will pay off. (See Example 3 in
11. 1.).

We use the usual notations of set theory, with XrY denoting the
intersection of the sets X and Y and with 0 the empty set.

2. Modules

Let R be a ring with identity I to. A left R-module A is an additive
abelian group together with a function p : R <A- .A, written P (r, a) = ra,
such that always

(r+r')a=ra+r'a, (rr')a=r(r'a),
r(a+a') =ra+ra', la=a.

It follows that Oa = 0 and (-1) a = - a. Some authors define an R-
module without requiring that 1 a =a, and call a module with this
property unitary. In this book, every ring has an identity and every
module is unitary.

Our treatment of left R-modules will apply, mutatis mutandis, to
right R-modules. They are abelian groups A with ar E A defined so as to
satisfy the corresponding four identities; for example a(rr')=(ar)r'.

Modules appear in many connections. In case R is a field or a skew
field, a left R-module is a left vector space over R. If F is a field and
R=F[x] the polynomial ring in one indeterminate x with coefficients
in F, then an R-module is simply a vector space V over F together with
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a fixed linear transformation T : V namely, T is the transformation
given by left multiplication by x E R. Consider Z-modules, where Z
denotes the ring of integers. For each positive integer m, ma = a + + a
(m times) ; hence a Z-module A is just an abelian group, with the usual
meaning for integral multiples ma, mEZ. If Zk is the ring of integers
modulo k, a Zk-module A is an abelian group in which every element has
order a divisor of k. Finally, take R to be a commutative ring generated
by 1 and by an element d with ds = 0, so that R consists of all m + n d for
integer coefficients m and n; an R.module is then an abelian group A
together with a homomorphism d: A--;,,A such that ds=0; such a pair
(A, d) is called a "differential group" (11. 1).

A subset S of an R-module A is a submodule (in symbols, S<A), if S
is closed under addition and if rER, sE S imply rsE S; then S itself is an
R-module. The ring R is itself a left R-module. A submodule of R is a
subset L of R closed under addition and with each rL<L; such a subset
is also called a left ideal in R. If L is a left ideal in R and A a left R-
module, the set

LA={all finite sums 2: lia,, for liEL, a;EA}

is a submodule of A, called the product of the ideal L by the module A.
In particular, the product L L' of two left ideals is a left ideal, and
(L L') A =L(L'A).

If A and B are both R-modules, the notation a: A-+B or Aa.B
states that a is an R-module homomorphism of A to B; that is, a function
on A to B such that always

a(a+a')=as+aa', a(ra)=r(aa).

When a: A-#B, call A the domain and B the range of a. The image
Im (a) =aA consists of all elements as for aEA; it is a submodule of the
range B; the kernel Ker(a) consists of all a in A with as =0; it is a
submodule of the domain A. If a A = B, we say that a is an epimorphism
and write a: A-..B, while if Kera =0 we say that a is a monomorphism
and write a : A - B. Finally, a is an isomorphism if and only if at is both a
monomorphism and an epimorphism. For each module A, the identity
function I A: A--)..A is an isomorphism. For any A and B, the zero or
"trivial" function 0 with every 0(a)=0 is a homomorphism 0: A--)..B.
A homomorphism w: A-*A with range and domain equal is called an
endomorphism.

If a1, a2: A -*B are homomorphisms with the same domain A and the
same range B, their sum al + a2 , defined by ((xl + a$) a = al a + aQ a, is an
R-module homomorphism al + a2: A->B.

If a: A-*B and fi: B--).C are R-module homomorphisms, the com-
posite function #a is also an R-module homomorphism fla: A-->C; but
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note that this composite is defined only when Range at = Domain P.
The composition of homomorphisms is associative when defined. A
(two-sided) inverse of a: A-*B is a homomorphism a-1: B-+A such that
both as-'=1B and a-'m =1A. Moreover, a has an inverse if and only if
it is an isomorphism, and the inverse is then unique. We write a: A ='B
when a is an isomorphism. A left inverse of a is any homomorphism y:
B-+A with ya =1 e ; it need not exist or be unique.

A pair of homomorphisms (a, fi) with Range a = Domain ft = B,

A--".B-#.C,

is exact at B if Kerfl = Im a. A longer sequence of homomorphisms:

is said to be exact if a;) is exact at A., for each i = 2, .... n - f .

For each submodule T < B the injection is a monomorphism j : T--3.B.
For each b EB the set b + T of all sums b + t with t E T is a cosec of Tin B;
two cosets b1+T and b$+T are either disjoint or equal (the latter when
bl-b2ET). Recall that the quotient group (factor group or difference
group) BIT has as its elements the cosets of Tin B, with (b1 +T) + (b2+ T)
= (b1 + bs) + T as addition. Since T is a submodule, the abelian group
BIT becomes an R-module when the product of any r E R with a coset is
defined by r (b + T) = rb + T; we call BIT a quotient module. The func-
tion rl which sends each element b E B into its coset 17 b = b + T is an epi-
morphism rl: B- B/T, called the canonical map or projection of B on
B/T.

Proposition 2.1. 1/ ft: B--3,.B' with T<Ker fl, there is a unique module
homwmorphism fi': B/T-+B' with ft'rl =ft; that is, the diagram

B " BIT` R(T)=0.

B'

can be "filled in" by a unique ft' so as to be commutative (fl'71=0).

Proof. Set ft' (b +T) = fl b; since T( Ker ft, this is well defined. In
particular, if fl: is an epimorphism with kernel T,fl': BIT=B'.

This result may be worded : Each ft with ft (T) = 0 /actors uniquely
through the projection rl. This property characterizes rl: B-+B/T up
to an isomorphism of BIT, in the following sense:

Proposition 2.2. If T < B and C : B--.D is such that C (T) = 0 and
each fi : B-* B' with ft (T) = 0 factors uniquely through C, there is an iso-
morphism 0: BIT--D withC =8r1.
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Proof. Factor C through 77 and 77 through C, so C=C'rl, Yj =rl'C. Hence
_ (C'77') C = I C. But C factors uniquely through C, so C'rl' =1. Symmetri-

cally, Hence 71'=(C')-1 and C' is the desired isomorphism 0.
For any T(B the injection j and the projection r] yield an exact

sequence.
0->T..LB-10 B/T-,0.

Conversely, let
(x, a): 0--3. A".B4. C-3.. 0

be any short exact sequence; that is, an exact sequence of five R-modules
with the two outside modules zero (and hence the two outside maps
trivial). Exactness at A means that x is a monomorphism, at B means
that xA = Kera, at C that a is an epimorphism. Thus the short exact
sequence may be written as with exactness at B. Now x
induces an isomorphism x' : A - x A and a anisomorphism a' : B/x A =C ;
together these provide an isomorphism of short exact sequences, in the
form of a commutative diagram

1,e H Jwr> (2.1)
0--.xA-'.B-.B/xA-+O.

In brief, a short exact sequence is but another name for a submodule
and its quotient.

Each homomorphism a: A-*B determines two quotient modules

Coim a =A/Ker a, Coker a =B/Im a,

called the coimage and the cokernel of a. This definition gives two short
exact sequences

Ker a >-. A - Coim at, Im a Coker o c, (2.2)

an isomorphism Coim a =Im a, and a longer exact sequence

0-1. Kera-f.A J10 B2.Cokera-.0. (2.3)

By Prop. 2.1, fla = 0 implies that fi factors uniquely through r) as fi = fl'rl.
Dually, if some y: A'-->A has ay =0, then y factors through j as y =jy'
for a unique V': A'-- Ker a. This property characterizes j : Ker ac--).A up
to an isomorphism of Ker at. Observe the dual statements: a is a mono-
morphism if and only if Ker a = 0, and is an epimorphism if and only if
Coker a = 0. This duality will be discussed in § 8.

If a: A->B and SCA, the set aS of all elements as for S ES is a sub-
module of B called the image of S under a. Similarly, if TCB, the set
O C-1 T of all s E A with a s ET is a submodule of A, called the (complete)



inverse image of T. In particular, Ker a = a-' 0, where 0 denotes the sub-
module of B consisting only of the zero element.

For K<S <A the module S/K is called a subquotient of A ; it is a
quotient module of the submodule S of A, and simultaneously a submo-
dule of the quotient module A/K. Furthermore, if K<K'<S'<S<A,
then K'/K is a submodule of S'/K and the composite projection S'->
S'/K-- (S'/K)/(K'/K) has kernel K', hence the familiar isomorphism
(S'/K)/(K'/K) = S'/K'. This allows us to write each subquotient
(S'JK)/(K'/K) of a subquotient S/K directly as a subquotient of A.

Let S/K be a subquotient of A, S'/K' one of A'. If a:A-->A' has
at S < S' and a K < K', then a s + K' is a coset of S'/K' uniquely determined
by the coset s + K of S/K. Hence at, (s+K)=as+K' defines a homo-
morphism

a, : S/K -- S'/K' (a S < S', a K < K') (2.4)

called the homomorphism induced by a on the given subquotients.
If S and T are submodules of A, their intersection SrT (as sets)

is also a submodule, as is their union S, , T, consisting of all sums s + t
for sES, IET. The Noether isomorphism theorem asserts that 1A induces
an isomorphism

1,: S/(Sr T)-(S. T)/T. (2.5)

3. Diagrams

The diagram of R-modules and homomorphisms

0->A %B °, C- o
l ly (3.1)

0-*A'=.B1- C'-*0

is said to be commutative if x'a = Ox: A-*B' (left square commutative!)
and v'# = ya: B--i. C' (right square commutative!). In general, a dia-
gram of homomorphisms is commutative if any two paths along directed
arrows from one module to another module yield the same composite
homomorphism.

Lemma 3.1. (The Short Five Lemma.) I/ the commutative diagram
(3.1) of R-modules has both rows exact, then

(i) If a and y are isomorphisms, so is fi;
(ii) I/ a and y are monomorphisms, so is fi;

(iii) I/ a and y are epimorphisms, so is P.

The same conclusions hold for a diagram of (not necessarily abelian)
groups.
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Proof. Clearly (ii) and (iii) together yield (i). To prove (ii), take
b E Ker fl. The right square is commutative, so yob =a'flb =0; as y is a
monomorphism, this means that ab = 0. Since the top row is exact, there
is an element a with x a = b. Now the left square is commutative, so
x'aa=flxa=flb=0. But the bottom row is exact at A', soaa =0. Since
a is a monomorphism, a= 0, and hence b =xa =0. This proves fi a
monomorphism.

To prove (iii), consider any b' in Y. Since y is an epimorphism there
is a cEC with yc =a'b'; since the top row is exact, there is a bEB with
a b = c. Then a' (fi b - b') = 0 in C'. The exactness of the bottom row
yields an a' E A' with ,c'a' =Pb - b'. Since a is an epimorphism, there is
an aEA with as=a' and hence with flxa=x'aa=flb-b'. Then
b' _ fl (b - x a) is in the image of fi, q. e. d.

This type of proof is called "diagram chasing". Inspection shows
that the chase succeeds just as well if the groups are non-abelian (multi-
plicative) groups.

By the same method, the reader should verify the following more
general results (as formulated by J. LEIcHT) :

Lemma 3.2. (The Strong Four Lemma.) Let a commutative diagram

1* la 10 1-
n

have exact rows, s an epimorphism, and v a monomorphism. Then

Ker fi =e(Kercc), Ima =rl'(Im fl).

Here the dots in the diagram stand for modules or for not necessarily
abelian groups.

A simpler version (the Weak Four Lemma) states, for the same com-
mutative diagram with exact rows, that fi is a monomorphism if a and
v are monomorphisms and r an epimorphism, while a is an epimorphism
if v and fi are epimorphisms and v a monomorphism. A more frequently
used consequence is

Lemma 3.3. (The Five Lemma.) Let a commutative diagram

19, 1&, 1% lad 1%

have exact rows. If al, a=, a4, as are isomorphims, so is as. In more detail,

(i) If al is an epimorphism and a3 and a4 monomorphisms, then as is a
monomorphism,



4. Direct Sums 15

(ii) I f , is a monomorphism and a, and a, e¢imorphisms, then as is an
epimorphism.

Proof. Chase the diagram, or apply Lemma 3.2 twice to the left-
hand and right-hand portions.

4. Direct Sums

The external direct sum A1®A, of two R-modules Al and As is the
R-module consisting of all ordered pairs (a1, as), for a; a Ai, with module
operations defined by

(a1. as)+(ai, as)_(a,+ai, as+a;), r(a1, as)_(ra1, ras).

The functions i and ;r defined by &1a, = (a1, 0), s,as= (0, as), ni (a1. as) =a1,
ns (al, as) = as are homomorphisms

Al 4-A1®As_, As
fl, RS

(4.1)

which satisfy the identities

n1t1='A. , niis=0,
n=t1=0, rests=l A,, (4.2)
tlnl+ isns=l A,®A,.

Call t1 and is the injections and nl, ns the projections of the direct sum.
The diagram (4.1) contains partial diagrams, to wit :

Injective direct sum diagram: AA=,
Projective direct sum diagram: A1:=A1eA, %As,
One-sided direct sum diagram: Al®As-As,
Sequential direct sum diagram: Al .A1®As- ..A,;

in particular, the last diagram is a short exact sequence. Instead of
defining the direct sum via elements, we can characterize each of these
diagrams by conceptual properties. With a view to later generalizations
(Chap. IX), our proofs of these properties will be so cast as to use only the
diagram (4.1), the identities (4.2), and formal properties of the addition
and composition of homomorphisms; in particular, the distributive laws
fl(a1+a2)=fla1+fla2 and (al+as)y=a1Y+a,Y

Proposition 4.1. For given modules Al and A. any diagram
,;

is

A1_4_-_J.B* As
R, RI

of the form (4.1) and satisfying the five identities like (4.2) is isomorphic to
the direct sum diagram. In more detail, there is exactly one isomorphism
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0: such that

n;0=ni, o;=y, /ory=1,2. (4.3)

Proof. Define 0 as 0 = hni+ c,n; and the analogue 0': Al®A,-+B by
O'= iin,+ y n,. The identities (4.2) show that 0' is a two-sided inverse
for 0 and thus that 0 is an isomorphism; the properties (4.3) follow
directly from (4.2). Also if 0 satisfies (4.3), then 0 = (i1n1+ l,n,) 0 =
91n1 +t r , so 0 is indeed uniquely determined.

Next we characterize the one-sided direct sum diagram.

Proposition 4.2. Any diagram A2-"'+B-'--'+'A2 with ii'i' = 14, is iso-
morphic to a "one-sided" direct sum diagram Al®A,-A, with A1= Kern".

The proof requires an isomorphism 0: B-,Al®A= with 01"=¼,
n,0 =n". Define 0 by Ob=(b-t"ri"b,si'b) and 0-1 by 0-' (a1,a.)=

a1+t"as.

To prove this without using elements, consider the diagram

Kern BMA,,n
with e' the injection. Since n" (1 B- t" x") =0, 1B- t" a" factors through i
as 1 B- t"n"-=c'n' for some n': B--* Kern". rNow n"i=0 and =i
give n'&'= 1, so we have identities like (4.2) and can apply Prop. 4.1.

Now write the direct sum as a short exact sequence (&I, no. Here t, is
a right inverse of n,, while n, t, =1 shows nl a left inverse of h.

Proposition 4.3. The following properties of a short exact sequence
(e', x"): A 1 >- B -. A, are equivalent:

(i) n" has a right inverse t": A2-*B, with n" i" =1;
(ii) t' has a left inverse n': with r' i =1;
(iii) The sequence is isomorphic (with identities on Al and A,) to

A2-, 0.

A short exact sequence with one (and hence all) of these properties
is said to split (some authors say instead that the sequence is inessential).

Proof. We just observed that (iii) implies (i) and (ii). Conversely,
exactness shows that c' gives the isomorphism A1-Kern", so (i) implies
(iii) by Prop. 4.2. Similarly, (ii) implies (iii).

Now consider pairs of coterminal homomorphisms al, a,, as in the
diagram

D: Al °;B:-A,. (4.4)

Such a diagram is said to be universal with ends Al and A. if to every
diagram D': A1-->.B'+-A, with the same ends there exists a unique
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homomorphism of D to D' which is the identity on each A.. In other
words, D is universal if to each rectangular diagram

AB +-A8
(4.5)

A1 B'*'-' A,,

with D as first row and end maps the identities, there is a unique way
of inserting the middle dotted arrow so that the whole diagram becomes
commutative (fia1=a;,#a2=a2).

Proposition 4.4. The (injective) direct sum diagram A1-)--A1®A2<-As is
universal with ends Al and A.. Conversely, any diagram (4.4) which is
universal with ends A, is isomorphic to this direct sum diagram (with
identities on Al and A2).

Proof. To show Al As universal, define the homomorphism p needed
for (4.5) as # (a1, as) = aia1+ oy a8 ; that is, as fl = ainl+ a2 n2 ; this is the
only choice for P. To prove the converse, it will suffice to show that any
two diagrams universal with ends Al and As are isomorphic (with identities
on A.). Suppose then that both rows in (4.5) are universal. Since the
top row is universal, there is a fi: B-+B' with since the bottom
row is universal, there is a fi': B'-+B with fl'oy=at. Then (f'fl)at=act,
for j =1, 2. Since also 1 B ai=ai, the uniqueness property for the top row
gives = f B. Similarly the uniqueness for the bottom row gives

Hence fi and ft' are mutually inverse isomorphisms, q. e. d.
Since the universal diagram is unique up to an isomorphism, it follows

that the maps aj in any universal diagram with ends Al and A2 are
always monomorphisms, since they are such for the external direct sum
diagram.

Notice that the proof of the converse part of the proposition did not
use elements of the modules, but only formal arguments with homomor-
phisms. This proof is thus valid in any category, in the sense soon
(§ 7) to be explained.

Dually, a pair of coinitial maps forming a diagram D: A1FC--I-.A2 is
couniversal with ends Al and A t if to each rectangular diagram

Al:-C'-:As
(4.6)AC''"A

with D as first row and with vertical maps 1 on each At, there is a unique
way of inserting the middle dotted arrow to make the diagram commuta-
tive. The reader should prove
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Proposition 4.5. The (projective) direct sum diagram

A1 :-Al®A=--%A2

is couniversal with ends A, and As. Conversely, any diagram couniversal
with ends A, and A, is isomorphic (identities on each A,) to this diagram.

Direct sums of more than two modules work similarly. For example, in
a direct sum A,®A2 A3 an element may be regarded as an ordered
triple (a,, a$ , aJ or as a function a on the set {1, 2, 3} of indices with
a (i) EA;. In general, given a family of modules {A,} indexed by an arbi-
trary set T, the cartesian product 17, A, is the set of all those functions /
on T to the union of the sets A, for which / (t) E A, for each t. Define the
module operations "termwise" ; that is, define the functions /+/' and
r/ for rER by

tET.

Then 11, A, is an R-module. The homomorphisms n,: [I, A,--.A
defined by n,/=/(t) are called the projections of the cartesian product.

For given A, , let {y,: BMA,} be a diagram with one additional module
B and one homomorphism y, for each tET. This diagram is couniversal
with ends A, if to each diagram (y,': B'-*A, I I ET} there exists a unique
fi : B'-+B such that y, = y, fl for all t. The projections of the cartesian pro-
duct [f, A, yield such a couniversal diagram, and any two such diagrams
are isomorphic, as before.

The external direct sum Z, A, of the same modules A, is that submodule
of 17, A, which consists of all those functions / with but a finite number
of non-zero values. The homomorphisms t,: A,->Z, A, are defined for
each a EA, by letting t, (a) be the function on T with [t, (a)] (t) = a,
[t, (a) ] (s) = 0 for s $ t. These homomorphisms are called the injections of
the direct sum. As in the case of two summands, the diagram
{i,: A,- , A,) is universal for given ends A,, and is determined up to
isomorphism by this fact.

For a finite number of summands the external direct sum is identical
with the cartesian product. This implies that any finite universal
diagram at,: At -+ B, for j=1, ..., n, yields a couniversal diagram
{y, : BMA f}. More explicitly, each yt is that map which is uniquely
determined (since B is universal) by the conditions yfai=1Al,y,ak=0
for j $ k. Dually, the reader should obtain a universal diagram from the
couniversal one.

Direct sums may be treated in terms of submodules. If S, is any
family of submodules of B indexed by a set T, their union US, is the set
of all finite sums s, + + s. with each sj in some S, ; it is a submodule
of B containing all the S, and contained in any submodule which con-
tains all the S,. Their intersection n s, is the intersection of the sets S,;
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it is a submodule of B contained in all the S, which contains every sub-
module contained in every S,. We also write S1u S, or S1 r% S. for the
union or intersection of two submodules S1, Ss.

Proposition 4.6. For submodules St<B, tET, the following conditions
are equivalent:

(i) The diagram {j,: S,--3,.B}, j, the injection, is universal for ends St,
(ii) B =US, and, for each toET, S4r(U S,)=0.

t+b
Proof. Given (i), B is isomorphic to Z S,, which satisfies (ii). Conver-

sely, given (ii), the condition B=US, states that each b*O can be
written as a finite sum b =s1+ +s of elements s;:0 belonging to
different submodules S,,, i =1, ..., n; the second condition of (ii) states
that this representation is unique. For any other diagram (a,: S,--o-B') the
homomorphism fi : B-;B' defined by f (s1+ +s)=s1+ - . + a, s
is the unique homomorphism with flj, = a, ; hence the universality.

When these conditions hold, B is called the internal direct sum of its
submodules S,. Therefore an internal direct sum is isomorphic to the
external direct sum Z S,. In particular, B is the internal direct sum of
two submodules S1 and S, if and only if S1r Ss=O and S1vS2=B; these
conditions imply B =S1®S,.

Exercises
1. Show that a diagram (4.1) with n1 i1=1, x, i, a 1, n1 is = 0, and (i1, n, exact

is a direct sum diagram.
2. If a: A-+A satisfies as=a, then A is the direct sum of Kera and Ima.
3. Show that the diagram (a,: A,-+B, tET) is universal for given ends A, if and

only if (i) B is the union of its submodules a,A,; (ii) there are homomorphisms
nr : B -+A, for t E T with x, a, =1 and n, a, - O for s 4 t.

4. State and prove the dual of Prop. 4.6. (The dual of a submodule is a quotient
module.)

5. If a;l: for i, j =1, 2, show that there is a unique w: Al A,-sA'$A'
with niwii=aif for i,j=1,2.

5. Free and Projective Modules
The ring R, as a left R-module, has the following characteristic

property. If a is any element of an R-module A, there is a unique
R-module homomorphism µ, : R- *A with lc,(1) = a ; namely, the function
a, with u,(r) =ra.

A free left R-module is any direct sum of isomorphic copies of the left
R-module R. In view of the above property of R, we can say more
explicitly that the left R-module F is free on a subset T of its elements if
the homomorphisms µ,: R-.F with u,(r)=rt form a universal diagram
with ends R (one for each t). As each homomorphism v: R-*A is uniquely
determined by v (1) E A, this universal property can be restated as follows.
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Proposition 5.1. The module F is free on a subset T(F if and only if
to each module A and each set function g on T to A there is a unique module
homomorphism a : F--)-A with u (t) =g (t) for every t.

The isomorphism of internal and external direct sums gives.

Proposition 5.2. The module F is free on a subset T<F if and only if
each element of F can be represented uniquely as a sum Z rr t with coe f f i-
cients r, E R which are almost all zero (i. e., all but a finite number are zero).

A module F free on T is determined up to isomorphism by T. Given R
and any set T, we may construct an R-module free on T as F= _F, Rt,
where Rt is the set of all rt for rER, with the obvious module structure.

The left module A is generated by a subset U of its elements if A is the
only submodule of A containing all u E U; that is, if every element of A
can be written as a finite sum r, u; with each r, E R. A module free on T
is generated by T.

Proposition 5.3. Every R-module is isomorphic to a quotient of a
free module.

Proof. Given the module A, take a subset U generating A (e. g., take
U = A). Form a free module F on U and the map ,u : F-+A with p (u) =
u EA. Since U generates A, ,u is an epimorphism, so A -F/(Keru).

A module A is finitely generated (or, of finite type) if it is generated by
a finite subset; that is, if it is isomorphic to a quotient module of a finite
direct sum R® . . . R. A module C is cyclic (or monogenic) if it is gener-
ated by one element; then C=R/L, where L is a submodule of R (i. e.,
L is a left ideal in R). The main theorem of elementary divisor theory
asserts that if R is a commutative integral domain in which every ideal
is principal (i. e., monogenic), then any finitely generated R-module is
isomorphic to a direct sum of cyclic modules. In particular (R=Z) any
finitely generated abelian group is a direct sum of cyclic groups.

A module P is called projective if in each diagram

P
JY (5-1)

BK C

with a an epimorphism, the dotted arrow can be filled in to make the
diagram commutative. In other words, given an epimorphism a: B-0-C,
each map y: P-+C can be lifted to afi: PCB such that afi =y.

Lemma 5.4. Every free module is projective.

Proof. Let F be free on generators t. Since a B = C, we can choose for
each I an element b , E B such that abt=yt. Then the unique fl: F--,B
with fit = b, for each t lifts y, as desired.
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Projective modules will be repeatedly used. Note that a projective
module need not be free. For example, take R =Z(E)Z, the direct sum
of the ring Z of integers with itself (with product (m, x) (m', n') =
(mm', Then the first summand Z, as submodule of an R-module,
is an R-module. It is clearly not free, but is projective according to

Proposition 5.5. An R-module P is projective if and only i f it is a direct
summand of a free R-module.

Proof. Suppose first that a : F= with F free. Given any dia-
gram (5.1), yn: F-+C lifts to fi: F-*B with aft=yn. The injection
t: P-+P®Q has a(flt) =ynt =y, so y lifts to Pt and P is therefore pro-
jective.

Conversely, if P is projective, Prop. 5.3 gives an epimorphism
p : F--> P with F free. Lift I : P-.. P to fl: P-+F with pp =1. By Prop.
4.2, F is the direct sum of ft P = P and Kerp.

Any subgroup of a free abelian group is free; hence every projective
Z-module is free.

Exercises
1. Show that a direct summand of a projective module is projective.
2. For in, n relatively prime, show Z. projective (but not free) over the ring

Z,,,,, of integers modulo mn.
3. Prove: Any direct sum of projective modules is projective.

6. The Functor Horn

Let A and B be R-modules. The set

HomR(A, B)={/) I: A-*B}

of all R-module homomorphisms f of A into B is an abelian group, under
the addition defined for I, g : A -*B by (/ + g) a = 14 + ga. If A = B,
HomR (A, A) is a ring under addition and composition of homomorphisms;
this ring is called the ring of R-endomorphisms of A. In case the ring R
is commutative, HomR (A, B) may be regarded not just as a group but
as an R-module, when t/: A--).B is defined for t E R and f : A--),.B by
(if) (a) = t (1a) for all a E A. That if is still an R-module homomorphism
follows from the calculation

(if) (r a) = i (Ira) = t r (1a) = rt (la) = r[(i/) al

which uses the commutativity of R.
This group Hom occurs frequently. If R is a field, HomR(A, B) is

the vector space of all linear transformations of the vector space A into
the vector space B. If G is an abelian group, and P the additive group
of real numbers, modulo 1, both G and P can be regarded as Z-modules,
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and Homz(G, P) is the character group of G. If op: R-+HomZ (G, G)
is any ring homomorphism, then the abelian group G becomes an R-
module with left operators rg = 9, (r) g. All left R-modules can be so
obtained from such a G and T.

Consider the effect of a fixed module homomorphism fi: B-*B' on
HomR(A, B). Each f: A--).B determines a composite fl/: A-+B', and
S (f +g) = fl/ + fig. Hence the correspondence /-*#/ is a homomorphism

#,: HomR (A, B) -. HomR (A, B') (6.1)

of abelian groups, called the homomorphism "induced" by P. Explicitly,
P. f =#o f. If ft is an identity, so is f,; if ft is a composite, so is (3,; in
detail

(IB)* =1 Hom(A,B)' (PP')* =P. #'*' (6.2)

the latter whenever the composite fifi' is defined. We summarize (6.1)
and (6.2) by the phrase: HomR (A, B) is a "covariant functor" of B
(general definition in § 8).

For the first argument A a reverse in direction occurs. For a fixed
module homomorphism a: A-+A', each /': A'--.B determines a compo-
site /'cc: A-*B with (/'+g')a =/'a+g'a. Hence defines an
"induced" homomorphism

a* : HomR (A', B) -. HomR (A, B) (6.3)

of abelian groups. Again (1A)* is an identity map. If a: A--.A' and
a': A'-*A", the composite a'a is defined, and the induced maps are

HomR (A", B) - HomR (A', B) -` ° + HomR (A, B) ;

one shows that a*(x'* = (a'a)*. This reversal of order generalizes the
fact that the transpose of the product of two matrices is the product of
their transposes in opposite order. Because of this reversal we shall say
that HomR(A, B), for B fixed, is a contravariant functor of A.

Now vary both A and B. Given a: AAA' and fi: B--B', each
f : A'-*B determines a composite s fa: A-->B'; the correspondence/--. fl/a
is a homomorphism

Horn (a, fl): Hom (A', B) -+ Horn (A, B')

of abelian groups, with a*%, = Hom (a, fi) =f, a*. It has the properties

Hom (1,1') = the identity,

Horn (aa', fifi') = Hom (a', fi) Hom (a, P'),

whenever the composites aa' and fifi' are defined. We say that Hom is a
functor in two variables, contravariant in the first and covariant in the
second, from R-modules to groups.
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If al, a,: A-*A' are two homomorphisms one shows that

Hom (a1+ as, fi) = Hom (a,, fl) + Horn (a., fl) . (6.4)

Similarly, Horn (a, Y1+ fip) = Hom (a, fl) + Hom (a, fls). These two pro-
perties state that Hom is an "additive" functor.

For B fixed, apply Hom(-, B) to a direct sum diagram (4.1). The
result

Hom(A1, B)-*Hom(A1As, B).;'Hom(A2, B)
nt 111;

changes injections t, to projections i* , but by (6.4) still satisfies the iden-
tities (4.2) for a direct sum diagram. Similarly, for A fixed, a direct sum
diagram on modules B1 and B2 is carried by Hom (A, -) to a direct sum
diagram (injections to injections). Thus

Hom(A1®A2, B)--Hom(Al, B)®Hom(A2, B),
(6-5)

Hom (A, B1®B2) = Hom (A, B1) ® Hom (A, B2).

In particular, Hom(A, B1)-Horn (A, B1 B') is exact.

Theorem 6.1. For any module D and any sequence 0-.A".B-P L exact
at A and B the induced sequence

0-+HomR (D, A) w. HomR (D, B)& HomR (D, L) (6.6)

of abelian groups is exact.

Proof. To show x, a monomorphism, consider any f: D--.A with
;e, l =0. For each d E D, x, f d = x f d =0; since x is a monomorphism, each
f d = 0, so f = 0, and therefore x, is a monomorphism. Clearly, P. x, =
(Px), = 0, =0, so Im x, < Ker f,. For the converse inclusion, consider
g: D--*B with 8,g =0. Then 5gd =0 for each d. But Ker fl =xA, by the
given exactness, so there is a unique a in A with xa =gd. Then Id =a
defines a homomorphism f : D-->A with x* 1 =g. Thus Im x, ) Kerf,,
which completes the proof of exactness.

By a corresponding argument, the reader should prove

Theorem 6.2. 1/ M 5-, B 0 is exact, and D is any module, the
induced sequence

0 -+HomR (C, D) -'+ HomR (B, D) `* HomR (M, D) (6.7)
is exact.

A sequence M exact at B and C is called a short right
exact sequence. This theorem states that the functor HomR(-, D) for
fixed D turns each short right exact sequence into a short left exact
sequence; by the previous theorem, HomR (D,-) carries a short left exact
sequence into a short left exact sequence. If A,-+B-'*.C is a short exact
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sequence, we wish to have exact sequences

0 --> HomR (D, A) -+ HomR (D, B)-'. HomR (D, C) (6.6')

0-*HomR(C, D)--*HomR(B, D)-->HomR(A, D)-).?. (6.7')

By the two theorems above, each is exact except perhaps at the right
end. With 0 for ? on the right, these would not usually be exact. For
example, exactness of (6.6') at HomR(D, C) would assert that each
h : D-.C has the form h = ah' for some h': D-*B; i. e., that each map h into
the quotient C = B/xA could be lifted to a map h' into B (as would be
possible were D projective). To see that this need not be so, take R=Z
and D =Z,5 the cyclic group of order m. For the short exact sequence
Z,-.Z-.Z with first map x the operation of multiplication by M. the
sequence (6.6') becomes 0-;0--*0-->Hom(Z., and is manifestly
inexact. Similarly, (6.7') can be inexact with a zero at ?, since for A <B a
homomorphism f : A-*D cannot in general be extended to one of B into D.
It will be possible to describe an object which is the "obstruction" to the
problem of extending such an f. The group of these objects, placed at
" ?" in (6.7'), will restore exactness. This construction, done for both
(6.6') and (6.7'), is one of the objectives of homological algebra.

We now can formulate several characterizations of projective modules.

Theorem 6.3. The following properties of a module D are equivalent:
(i) D is projective,
(ii) For each epimorphism a: BBC, a,: HomR(D, B)-.HomR(D, C)

is an epimorphism,
(iii) If A>-.B-i.C is a short exact sequence, so is 0--3- HomR(D, A)

- .HomR(D, B)-+ HomR(D, C)--.0,
(iv) Every short exact sequence A -+B- -D splits.

Proof. In (ii) the statement that a, is an epimorphism means that
each y: D-->C can be factored as y =a#; this is exactly the statement that
D is projective. Given the exactness of (6.6), (ii) is equivalent to (iii).
Finally, if D is projective and a: B-,D, the map ID: DAD lifts to a
fi : D-+B with a# =1, so the sequence of (iv) splits. Conversely, if every such
sequence ending in D splits, write D as an image e: F-sD of some free
module F. Since the sequence Kere >-.F-P-D splits, D is a direct summand
of F, by Prop. 4.2, hence is projective, by Prop. 5.5.

Exercises
1. Any left ideal L in the ring R is an R-module, and is exact.

Suppose L24 L.
(i) The sequence (6.6') need not be exact with zero for ? on the right. Show this

for D = R/L by proving that HomR (R/L, R) --. HomR (R/L, R/L) is not an epimorphism
(1 is not an image!).
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(ii) The sequence (6.7') need not be exact with zero for ? on the right. Show this
for D=L by proving that HomR(R, L) -.HomR(L. L) is not an epimorphism (1 not
an image!).

2. For any set T of indices establish an isomorphism

HomR (& A,, B) is 17, HomR (Ad, B)

by mapping each f: Z A,-.B into the collection of its restrictions t, : Ad -.B.

3. For any set T of indices establish an isomorphism

HomR (A. rI Bd) es jj HomR (A. B,).
I I

7. Categories

A category consists of "objects" and "morphisms" which may
sometimes be "composed". Formally, a category 'B is a class of objects
A, B, C, ... together with

(i) A family of disjoint sets hom(A, B), one for each pair of objects;

(ii) For each triple of objects A, B, C a function which assigns to
aEhorn (A, B) and fiEhom(B, C) an element #a E horn (A, C);

(iii) A function which assigns to each object A an element
IAEhom(A, A);

all subject to the two axioms:

A ssociativity: If a E horn (A, B), fi E hom (B, C), and y E horn (C, D),
then y (#a) = (yfi) a ;

Identity: If aEhom(A, B), then a1A =a=1Ba.
Write a : A-+B for a E hom (A, B) and call at a morphism of '8 with

domain A and range B. By (ii), the composite fa is defined if and only if
range a = domain fi; the triple composite yfia is associative whenever it
is defined. Calla morphism x an identity of'B if both xa =a whenever ma
is defined and fix =fl whenever fix is defined. Each 1 A is an identity.
Conversely, if x is an identity, then x: A-+A for some object A, and
x =MIA =14. Each identity of'B has the form 1 A for a unique object A.
In other words, the identities of '' determine the objects of W. It is
possible to describe a category simply as a class of morphisms, with a
composite sometimes defined and subject to suitable axioms (Ex. 3
below).

A morphism 0: A--.,.B is called an equivalence in'' if there is in''
another morphism p: B-->A such that 9O=1A and 99'=1B. Then 9' is
unique, for if also 97'0 =IA, then rp =1 A (p= p' 0(p = gi'18 =P'- Call p, the
inverse op = 9-1 of the equivalence 0. The composite of two equivalences.
when defined, is an equivalence.
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A (multiplicative) group G is a category with one object G; let
hom (G, G) be all elements of G. If a set M is closed under an associative
multiplication with an identity, it is likewise a category with one object
and composition given by multiplication.

A more typical example of a category is the category R.4 of (left)
modules over a fixed ring R. The objects of this category are all
R-modules A, B, C, ... , the set hom (A, B) of morphisms is the set
HomR (A, B) of all R-module homomorphisms of A to B, while the
composite is the usual composite of homomorphisms. The axioms of
associativity and existence of identities are obviously fulfilled. This
category uses the class of all R-modules. We cannot say the set of all
R-modules because this set would be an illegitimate totality in the usual
axioms for set theory. If one adopts the Godel-Bernays-von Neumann
axioms for set theory [GODEL 19401, one has at hand larger totalities
than sets, called classes, and one can legitimately speak of the class of all
modules, or of all topological spaces. With this interpretation in view, we
have defined a category to be a class of objects .... We call a category
small if the class of its objects is a set.

To give other examples of categories it will suffice to specify the
objects and the morphisms of the category; in most cases the range and
domain of the morphisms, the composite, and the identities will have
their standard meanings. We list a number of examples of categories
which we shall meet.

The category of topological spaces. Objects, all topological spaces;
morphisms, all continuous maps /: X--).Y of one space into a second one.

The category of abelian groups. Objects, all abelian groups; morphisms,
all homomorphisms of such.

The category of groups. Objects, all (not necessarily abelian) groups;
morphisms, all homomorphisms of groups.

The category of sets. Objects, all sets; morphisms, all functions on a
set to a set.

In the next examples R denotes a fixed ring.
The category of exact sequences of R-modules of length n. Objects.

all exact sequences S: A1--o- As--*. morphisms r: S--S',
all n-tuples '= (yr , ys, ... , of module homomorphisms y; : A; -. A;
such that the diagram

A1-*A2--.... -*A.-, -*A.
iY, ,Y. 1Y._, 1Y.

Al-,Ai-* ...

is commutative. If B = V81 , ..., S'-.S", the composite B r is
A Yr, ....P.Yr)
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One may also have the category of exact sequences infinite to the
right or infinite to the left, or both. Another example is the category of
short exact sequences E: AB-,C, with morphisms all triples (a, fi, y) of
module homomorphisms for which the appropriate diagram (3.1) is
commutative. It is by now amply clear how more examples can be
constructed ad libitum - a category of sequences of exact sequences of....

It is also clear that a number of concepts applicable to modules will
apply to the objects of any category - provided the definition of the
concept makes reference not to the elements of the modules but only to
modules and their homomorphisms. Thus, in any category ', a diagram
consisting of morphisms a,: A,-*C of 'B, one for each tin a given set T,
is universal for the given objects A, (or, a direct sum diagram for the A,)
if to each diagram {a;: A, ->C'J t ET} on the same A, there exists a unique
morphism fl: C--j,. C' of 'B with fl a, =a; for each t ET. (For T = {1, 2},
this is exactly the property formulated in (4.5)). The previous
uniqueness proof for the direct sum of two modules carries over verbatim
to give

Proposition 7.1. In any category 'B let {a,: A,-.C} and {aj: A,-*C}
be two direct sum diagrams for the same family {A,) of objects. There is
then a unique equivalence 0: C-+C' of ' with 8a, =a; for every t.

An analogous uniqueness theorem holds for a direct product diagram,
defined as a diagram {y,: B-*A, I I ET} such that to each {y;: B'-+A,J I ET}
there exists a unique morphism fi: B'--).B with y, = y, fl for t E T.

The definition of the direct product is exactly parallel to that for the
direct sum, except that all the arrows are reversed. We say that the direct
product is the "dual" of the direct sum. In general, the dual of any
statement 6 (in the first order propositional calculus) about a category '
is the statement C5+ obtained by reversing the direction of all morphisms,
replacing each composite aft of morphisms by fla and interchanging
"domain" and "range". One observes at once that the dual of each axiom
for a category is an axiom. It follows that the dual of a proof from these
axioms of a statement S about categories is a proof of the dual statement
S*. For example, the dual of Prop. 7.1 is the proposition which asserts
the uniqueness (up to equivalence) of a direct product diagram with
given ends. Since Prop. 7.1 has been proved from the axioms of a cate-
gory, we have this dual proposition without further proof. However, a
proposition S whose statement involves only objects and morphisms
may happen to be true in a particular category although the dual state-
ment is false. For example, in the category of all denumerable abelian
groups there exists a direct sum diagram with summands any denumer-
able list of denumerable groups A1, As, ..., A...... but there does not
exist a direct product of the same groups (essentially because the direct
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product which does exist in the category of all abelian groups is non-
denumerable).

To each category one may construct an opposite category W*P. Take
the objects of %P to be a class in 1 -1 correspondence A***A with the
objects A of''. Take the morphisms to be a class in 1 -1 correspondence
a*H at with the morphisms of W. Decree that a*: A*--.B* if and only if
a: B-.A, and that a* f * is defined and is (,8a)*, exactly when#a is defined.
Then eP is a category, and any statement 8* about the category 'C is
the same as the original statement l about the category W°P. This,
again, shows the dual G* of a provable statement 1 provable. The 1 -1
function T with T(A) =A* and T(a)=a* is an "anti-isomorphism" of
%' to WP, since T(fla) =T(a) T(fl).

Subsequently, we shall define a special sort of category, called an
"abelian category", by requiring essentially that horn (A, B) be an abelian
group and that kernels and cokernels exist, as in the case of the category of
modules. It turns out that many theorems about modules remain true
when the modules and their homomorphisms are replaced by the objects
and the morphisms of any abelian category. The interested reader may
turn at once to Chaps. IX and XII.

Exercises
1. In the category of topological spaces, show that the disjoint union of two

spaces provides a direct sum diagram, and that the cartesian product X>cY of two
spaces, with its usual topology and with the natural projections on X and Y, pro-
vides a direct product diagram.

2. Show that any two objects in the category of groups may be ends of a direct
product diagram and of a direct sum diagram. (Note: The "direct sum" for not
necessarily abelian groups is more often known as the "free product".)

3. Consider a class-d' of elements a, P, y in which a product flaE.4' is sometimes
defined. Call x an identity of..d' if x4=14 whenever up is defined and ax= a whenever
ax is defined. Then ..d' is called an abstract category if it satisfies the following
axioms:

(i) The product V (pa) is defined if and only if (yl)a is defined. When either is
defined, they are equal. This triple product will be written yfia.

(ii) The triple product yfla is defined whenever both products yfi and Pa are
defined.

(iii) For each at in .Q' there exist identities x, x' such that ax and x'a are defined.
Prove that the class of morphisms of a category is an abstract category, and

conversely that the elements of any abstract category are the morphisms of a
category if which is determined uniquely up to an isomorphism of categories.

8. Functors
Let's' and 2 be categories. A covariant /unctor 7' on 'f; to -0 is a pair

of functions (both denoted by the same letter T): An "object function"
which assigns to each object CE's an object T(C)E2, and a "mapping
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function" which assigns to each morphism y: C>C' of ' a morphism
T(y): T(C)->T(C') of 2. This pair of functions must satisfy the two
following conditions:

T(1c)=IT(C), CE'e, (8.1)

T(ay)=T(Q)T(y), fly defined int. (8.2)

A covariant functor T on % to 2 is thus a mapping of ' to 9 which
preserves range, domain, identities, and composites.

For example, let R be a fixed ring. For any set T let F(7) =E, Rt be
the free module on the set T. Then F is a covariant functor on the
category of sets to the category of R-modules. Again, for example, let
9 be the category of all groups, with G' = [G, G] the commutator sub-
group of G; that is, the subgroup generated by all the "commutators"
gig$gilga1 for giE G. Each homomorphism y: G>H clearly maps G' to H'
by a homomorphism y'. The functions T(G) = G' and T(y) =y' make G' a
covariant functor on 9F to 9. Similarly, the "factor-commutator"
group G/[G, G] may be regarded as a covariant functor on (i to the cate-
gory of abelian groups.

Let S and T be two covariant functors on W to 9. A natural trans-
formation h: S- +T is a function which assigns to each object CEO a
morphism h (C) : S (C)--FT(C) of 2 in such a fashion that for each mor-
phism y: C-->C' of'( the diagram

S (C)-LT (C)
jslr) J,T(r) (8.3)

S(C')'l) T(C')

is commutative in 9. When h (C) satisfies this commutativity condition
we say more briefly "h is natural". If in addition each h (C) is an equi-
valence, we say that h is a natural isomorphism.

Intuitively, a "natural transformation" his one which is defined in the
same way or by the same formula for every object in the category in
question. For instance, for each group G let h(G):G>G/[G, G] be the
homomorphism which assigns to each element g E G its coset g [G, G] in
the factor-commutator group. The diagram like (8.3) is commutative,
so h may be viewed as a natural transformation of the identity functor
to the factor-commutator functor (both in the category of all groups).
Other (and more incisive) examples of natural transformations will
appear shortly (e. g., Prop. II.4.2 for relative homology).

A contravariant functor T on r' to 9 consists of an object function T
which assigns to each C a T(C)E9 and a mapping function T which
assigns to each morphism y: C-->C' a morphism T(y): T(C')>T(C) of 9,
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now in the opposite direction. This pair of functions must again
satisfy two conditions:

T(1c)=1T(c), CE`1, (8.4)

T(8y)=T(y) T(fl), fly defined in W. (8.5)

The reversed order of the factors in (8.5) is necessary to make sense,
for fly defined means y: C-->C', fi: C'-,-C", hence T(fl): T(C")-aT(C')
and T(y): T(C')->T(C), so that T(y) T(6) is defined.

For a fixed R-module B we noted in § 6 that HomR (A, B) is a contra-
variant functor of A, in the category of R-modules. The character group
of an abelian group A is the group Ch A = Hornz (A, P), where P is the
additive group of real numbers modulo 1. With the mapping function
Ch a =a* defined as in § 6, Ch is a contravariant functor on the category
of abelian groups to itself - or, with the standard topology on Ch A, a
contravariant functor on discrete abelian groups to compact abelian
groups. For any category 9 and its opposite 9°P, the pair of functions
P with PD =D* and P6 = 6* is a contravariant functor on 9 to 9°P.
Each contravariant functor T on 'S to 9 may be regarded as a covariant
functor on rB to 90P, namely, as the composite P T.

A natural transformation h: S-*T between two contravariant functors
on %' to 9 is a function which assigns to every object CE%' a morphism
h (C) : S (C)-+T(C) of 2 such that for each y: C-+ C' in''the diagram

S(C') '- -..T(C')
JS(Y) IT(Y) (8.6)

S(C) "-FT(C)

is commutative. This diagram is just (8.3) upside down.

If T is a functor on W to 2 and S a functor on 2 to a third category At,
the composite functions S o T yield a functor on ' to ' with variance the
product of the variances of S and T (covariant = + 1, contravariant, -1).
For instance, let .4'F be the category of vector spaces over a fixed field F,
and let D be the functor on.,d'F to.,rt'F which assigns to each vector space
V its dual D(V)=HomF(V, F) and to each linear transformation
(= morphism of.4tF) a: V--).V' its induced map a*: D(V')-,D(V), defined
as in (6.3). Then D is contravariant, while the composite D3 =DoD is
the covariant functor which assigns to each vector space V its double
dual. There is a homomorphism

h=h(V): V->D(DV)

which assigns to each vector v that function hv: DV-+F with (hv)/ =/(v)
for / E D V. For finite dimensional V, h (V) is the familiar isomorphism
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of V to its double dual. One verifies readily that h is a natural trans-
formation h: IUD' (where I denotes the identity functor).

There is a similar natural isomorphism of a finite abelian group to
its double character group.

As an example of a non-natural isomorphism, recall that there is an
isomorphism k: V=D(V) for any finite dimensional vector space V.
Specifically, for each such V choose a fixed basis v1 , .... v., construct in
D(V) the dual basis v', ..., v", with v' defined by the requirement that
v' (vi) is 0 or I according as i=j or i =j, and set kv;=v'. This linear
transformation k = k (V) : V--)..D(V) is defined for each V ; it maps the
covariant identity functor I to the contravariant functor D. If we restrict
attention to the category whose objects are finite dimensional vector
spaces and whose morphisms are isomorphisms at of such, we may replace
D by a covariant functor D with 15(V) =D(V), D(a) =D(a '). But
k(V): V-->.D(V) is not natural. For example, if V is 1-dimensional and
a: V-,V is defined by av1=cvl for some scalar cEF with 0+ci#1, then
15(a) k (V) v1= (11c) v1; however k (V) m v, = c vl, so (8.3) is not commutative.

Functors in several variables may be covariant in some of their
arguments and contravariant in others. Two arguments, contra and co,
suffice to illustrate. Let 9, ', and -9 be three categories. A bifunctor T
on 9> to 9, contravariant in 69 and covariant in ', is a pair of func-
tions : An object function which assigns to BE . and CE ' an object
T(B, C)E9, and a mapping function which assigns to morphisms
fi: B--).B' and y: C-->C' a morphism

T(48, y): T(B', C)-*.T(B, C') (8.7)

of 2 (Note that the direction in B is reversed, that in C is preserved).
These functions must satisfy the conditions

T (IB, 1 C) =1 T(a.c) - (8.8)

T(fly#,y'y)=T(f,Y)T(fl',y), (8.9)

the latter to hold whenever both composites fl'fl and y'y are defined.
The composite on the right is then defined, for fi': B'->B" and
y': C'-+C" with (8.7) give

T (B", C) T(f, v) T (B', C') T(P Y)- T(B, C").

It is convenient to set T (ft, 1 c) =T(ft, C) and T(IB, y) = T(B, V).
When B is fixed, T(B, C) and T(B, y) are object and mapping functions
of a covariant functor on W to 9, while, for fixed C, T(B, C) and T(fl, C)
provide a contravariant functor on 9 to 2. These mapping functions
T(B, y) and T(6, C) determine all T(fl, y) for, by (8.9), T(8, y) =
T(f1 B, y1c) = T(B, V) T(fl, C). We leave the reader to carry out the
rest of the proof of
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Proposition 8.1. For given categories 9, W, and -9 let T be a function
assigning to each B and C an object T(B, C) E9. For each fixed B E 9, let
T(B, C) be the object function of a covariant functor 6-*2 with the mapping
/unction T(B, V). For each fixed let T(B, C) be the object function of
a contravariant functor with mapping /unction T(,8, C). Suppose
that for each fl: B--*B' and each y: C--- C' the diagram

T(B', C) ""v) T(B', C')
T(B.c)l JT(A.c') (8.10)

T(B, C) TT(B,y) T(B, C')

is commutative. Then the diagonal map

T(fl, y) = T(B, y) T(fl, C) = T(8, C) T(B', y)

o/ this diagram makes T a bifunctor on 9 and 'B to .9, contravariant in 9
and covariant in W. Every such functor can be so obtained.

If we write more simply#* for T(8, C) and y* for T(B, y), the corn-
mutativity condition of this proposition can be put with less accuracy
and more vigor as fi*y* =y* #*. This proposition usually provides the
easiest verification that a given T is indeed a bifunctor. A typical
example of such a bifunctor T is HomR (A, B), covariant in B and
contravariant in A.

If S and T are two such bifunctors on 9>c' to 2, a natural trans-
formation /: S-, T is a function which assigns to each pair of objects B, C
a morphism f (B, C) : S (B, C)-->T(B, C) in such wise that for all morphisms
P: B-,B' and y: C-->C' the diagram

S (B', C) t(g'c) T(B', C)
SO. 01 1T(9. v) (8.11)

S(B, C) I(B.1) T(B, C')

is commutative. In view of the decomposition of T(fl, y) above, it suffices
to require this condition only for fi and 1c, and for IB and y. In other
words, it suffices to require that /(B, C) with either variable fixed be a
natural transformation in the remaining variable.

Direct products provide an example of a bifunctor covariant in two
arguments. Let' be a category in which each pair of objects has a direct
product diagram, and choose such a diagram (n;: A,>< A$-*A;l i =1, 2) for
each pair; this includes the choice of a direct product A,><A, for each A,
and As. Let a;:Ai-*A; for i =1, 2be morphismsof W, asin the diagram

A, 4' A,> A2 A2
la, *P 1a, , #- a, >c a2 . (8.12)

A .'-`- A' x ><A2 A
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Then a,n;: A1xA$-*A; ; by the couniversal property of the bottom row,
there is a unique morphism fi: A1xAi-+A'1xA' with sift = a; n; ; that is,
a unique fi which makes the diagram commutative. For example, if'( is
the category of sets or of R-modules, and if each A1xAs is chosen in the
usual way as the set of all pairs (al , a$), then# (a1, a$) = (a1a1, aa2). Call
ft =alxas the direct product of the given morphisms. By the couniversal
property, 1><1 =1, and (y1xy,) (a1xa=)=y1a1xy2OC9 wherever y,a; is
defined for i =1, 2. Hence P(A1, As) =A1xA2, P(a1, az) =alxa$ defines
a covariant bifunctor P on rB, ' to W. For three objects A,, A 2, Aa the
usual map (A1xA2)xA3--+A1>c (AsxAs) is a natural homomorphism
of covariant trifunctors.

The notions of category and functor provide not profound theorems,
but a convenient language. For example, consider the notion of diagrams
of the "same form", say of diagram of modules of the form D: A-->B-*C.
Any such diagram may be regarded as a functor. Indeed, introduce the
finite category ,f,, which has three objects a, b, and c, the corresponding
identity morphisms and the morphisms xo: a--*.b, ): b->c, and fuo: a -+c
with A0xo =µo. Then any diagram of modules as exhibited is a covariant
functor on .*'to the category R.4' of modules: Such a covariant functor D
does provide three modules D (a) =A, D (b) = B, and D (c) = C plus the
homomorphisms D (x0), D (AO), D (µo) = D (A0) D (x0). Furthermore a map
of a diagram D to a another diagram D' of the same form is exactly a
natural transformation D-*D' of functors. In this formulation we also
can include the notions of diagrams with commutativity conditions;
thus a commutative square diagram is a functor on the finite category

a-'.b
rlox0=wo=vuseu. (8.13)c -d

A partly ordered set S is a set with a binary relation rSs which is
reflexive (rSr), transitive (rSs and sSt imply rSt) and such that
rSs and s !!g r imply r = s. The partly ordered set S has a zero if there is
an element 0 E S, necessarily unique, with 0;5 s for every s. An element
u E S is a least upper bound (1. u. b.) of s, t E S if s 5 u, t S u ands 5 v, t S v
imply u<-'v. This 1. u. b. is unique if it exists, and is written u=s,-)t.
Similarly, w= s't is a g. 1. b. of s and t if w;5 s, w;5 t and x S s, x S t
imply xS w. The partly ordered set S is a lattice if s._, t and sni exist for
all sand1.

Each partly ordered set S may be regarded as a category S9, with
objects the elements SE S, morphisms the pairs (s, r):r-s with rSs,
and composition of morphisms defined by (t, s) (s, r) = (t, r) when
r!9 s S t. For example, the finite category (8.13) arises so from the partly
ordered set with four elements a, b, c, d and partial order a S b S d,
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a S c S d. If S is a lattice, any two objects s, t of b have a direct sum
(given by s,-A) and a direct product srt; conversely, if Y has direct
sums and products, S is a lattice.

For any partly ordered S, a covariant functor T : SP-- R.4' is a family
(T I s E S) of R-modules together with homomorphisms T(s, r) : T, -* T,
defined for each r5s and such that T(t, s) T(s, r)=T(t, r) whenever
r S s S t. The "direct limit" of such a family may be described con-
veniently in categorical terms [EILENBERG-MAC LANE 1945, Chap. IV;
KAN 1958].

Exercises
1. If ay: A,-.A; are module homomorphisms, show that the map /1=a1>caz:

A1®Ar-+Ai ®A= characterized by n ;p= o 9N, j= 1, 2, is also characterized by the
conditions Pil=4e . j=1, 2.

2. Show that the associative law for the (external) direct sum of modules can
be expressed as a natural isomorphism (A ®B) ® Cog A ® (B ®C).

3. Prove that the isomorphisms (6.5) are natural.
4. Let ' be a small category in which each set hom (A, B) of morphisms has at

most one element, and in which each equivalence is an identity. Prove that W may
be obtained from a partly ordered set.

Notes. The idea of a module goes back at least to KRONECxER, who considered
modules over polynomial rings; only in the last twenty years has this idea taken on
its present central role in algebra. Projective modules were first used effectively in
CARTAN-EILENBERG; now it is clear that they provide for linear algebra the appro-
priate generalization of a vector space (which is always a free module). EuMY
NOETHER, in lectures at Gottingen. emphasized the importance of homomorphisms.
The initial restriction to homomorphisms a: with a(A)= B, as in vAN DER
WAERDEN'S influential Moderne Algebra, soon proved to be needlessly restrictive.
and was dropped. By now it is expected that each definition of a type of Mathe-
matical system be accompanied by a definition of the morphisms of this system.
The arrow notation developed in topological investigations about 1940, probably
starting with the use for correspondences and then for continous maps. Exact
sequences were first noted in HvREwlcz [1941 ]. The functor "Hom" was long
known, but apparently first appeared by this name in EILENEERC-MAc LANE
(1942). Categories and functors were introduced by the same authors in 1945.
They have proved useful in the formulation of axiomatic homology (Chap. II below),
in the cohomology of a sheaf over a topological space [GODEMENT 19581, in differen-
tial geometry [ERRESMANN 1957), and in algebraic geometry (GROTasNDIECx-
DIEUDONNF.. [1960), cf. also the review by LANG [1961]). Foundational questions
about the theory of categories, using sets and classes, are formulated in MAC LANE
(1961].

Chapter two
Homology of Complexes

Here we first meet the basic notions of homology in simple geometric
cases where the homology group arises from a boundary operator. In
general, an abelian group with a boundary operator is called a "differen-
tial group" or, when provided with dimensions, a "chain complex".
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This chapter considers the algebraic process of constructing homology
and cohomology groups from chain complexes. Basic is the fact (§ 4)
that a short exact sequence of complexes gives a long exact sequence of
homology groups. As illustrative background, the last sections provide a
brief description of the singular homology groups of a topological space.

1. Differential Groups
A di//erential group C is an abelian group C together with an endo-

morphism d : C-+ C such that d' = 0; call d the "differential" or "boundary
operator" of C. Elements of C are often called chains, elements of Kerd,
cycles, and elements of Imd, boundaries. The requirement that d2=0 is
equivalent to the inclusion ImdCKerd. The homology group of the
differential group C is defined to be the factor group of cycles modulo
boundaries,

H(C)= Kerd/Imd=Kerd/dC. (1.1)

Its elements are the cosets c+ Imd of cycles c; we call them homology
classes and write them as

cls(c)=c--dCEH(C).

Two cycles c and c' in the same homology class are said to be homologous;
in symbols c , c'.

As first examples we shall give a number
of specific differential groups with their homo-
logy. Most of these examples will be found
by dissecting a simple geometric figure into
cells and taking d to be the operator which q o
assigns to each cell the sum of its boundary
cells, each affected with a suitable sign.

Example 1. Take two points p and q on
a circle S' which divide the circle into two
semicircular arcs a and b. The "boundary"
or "ends" of the arc a are the points q and p.

a

b
Fig. I

Hence introduce the free abelian group C(S') with the four free generators
a, b, p, and q, and define an endomorphism d of C(P) by setting

da=q-p, db=p-q, dp=o=dq. (1.3)

Any element of C(S1) is represented uniquely as a linear combination
m1a+msb+msp+m4q with integral coefficients m1, m$, me, and m4,
while

d (m1 a+m,b+ msp+ moq) = m1(q- p)+ ma (p- q) _ (m1- ma) (q- p)
Thus C(S') is a differential group. Its cycles are all the integral linear
combinations of p, q, and a+ b, while its boundaries are all the multiples
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of q- p. Hence there is a homology p-'q. and the homology group is the
direct sum

(1.4)

where Z,,,(cls(p)) denotes the infinite cyclic group generated by the
homology class cls (p). Thus the circle S' has two basic homology classes,
the point p (dimension 0), and the circumference a+b (dimension 1).

In this example the same circle could have been subdivided otherwise,
say into more arcs. The homology groups turn out to be independent of
the subdivision chosen. For example, isomorphic homology groups
arise when the circle is cut into three arcs so as to form a triangle!

Example 2. Take a triangle d with vertices 0, 1, and 2, and edges 01,
12, and 02. The corresponding differential group C(d) is the free abelian
group on six generators (0), (1), (2), (01), (12), (02), with the differen-
tial given by d(0)=d(1)=d(2)=0, d(01)=(1)-(0),d(02)=(2)--(0),
d (12) = (2) - (1) ; in other words, the boundary of each edge is the diffe-
rence of its two end vertices. One finds

H(C(d)) =Z (cls (0)) ED Z (cls ((12) - (02) + (01)]).

This group is indeed isomorphic to that found for the circle in Example 1;
both are free abelian with two generators. An isomorphism may be given
by first specifying a homomorphism / of the differential group C(S') into
C(A); we set, say, / (p) _ (0), / (q) _ (1), / (a) _ (01), and / (b) _ (12) - (02).
Then d/(b)=/d(b), d/(a)=/d(a), and / carries the generating cycles p
and a + b of H(C(S')) into the generating cycles (0) and (12) - (02)+ (01)
of H(C(d)).

In general, let C and C' be two differential groups. A homomorphism
C--* C' of differential groups is a group homomorphism with the added

property that d'/=/d; in other words, it is a function on C to C' which
preserves the whole algebraic structure involved (addition and differen-
tial). For a chain c of C this implies that /c is a cycle or a boundary
whenever c is a cycle or boundary, respectively. Hence the function
H(t)=1,, defined by /, (cls (c)) = cls (/c), is a group homomorphism

H(/): H(C)->-H(C') (for /: C-+C'). (1.5)

We call H(/) the homomorphism induced by /. Since H(1c)=1H(c) and
H(/'l) = H(/') H(/), H is a covariant functor on differential groups to
groups.

Example 3. The circular disc D is had by adding the inside c to the
circle S'; construct a corresponding differential group C(D) by adjoining
to C(S') one new free generator c with boundary dc=a+b. Then

The injection j: C(S')-+C(D) thus induces a map
H(1) : H(C(S'))-* H(C (I))) which maps the second summand of (1.4) onto
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zero. In other words, the map H(j) induced by an injection need not be a
monomorphism; that is, the homology group of a subspace need not be a
subgroup of the homology of the original space. This is why the injection
j has a label different from the identity.

Example 4. For the sphere S' with the equator S', labelled as in
Fig. 2, let u be the upper and 1 the lower hemisphere. Construct a differen-
tial group C(S') by adjoining to C(S') two new free generators u and 1,
with boundaries du=a+b=-dl. Then
H(C(S'))=Z.(cls(p))®Z (cls(u+l)); (1.6)

there is a cycle p in dimension 0 and one in
dimension 2. q

Example 5. The real projective plane P',
regarded as a topological space, may be ob-
tained from the sphere S2 by identifying each
point of S2 with the diametrically opposite
point. In particular, each point in the upper
hemisphere is identified with a point in the

Fig. 2

lower hemisphere. This suggests that we proceed algebraically by setting
u = -1, a = b, and p = q in the differential group C(S') above. This will
yield a new differential group C(P'), which is the free abelian group gener-
ated by u, a, and pwith d u = 2 a, da = 0, d p = 0. Then a is a cycle which
is not a boundary, though 2 a is a boundary. Hence

H(C(P2)) =Za, (cls (p)) ®Z2 (cls (a)) ,

where Z2(cls (a)) designates the cyclic group of order 2 with generator
cls (a).

Example 6. Let f (x, y) be a real valued function of class C°° (i. e.,
with continuous partial derivatives of all orders) defined in a connected
open set D of points (x, y) in the Cartesian plane. For fixed D, the set A
of all such functions is an abelian group under the operation of addition
of function values. Take C to be the direct sum A®A®A®A ; an element
of C is then a quadruple (/, g, h, k) of such functions, which we denote
more suggestively as a formal "differential":

(f, g, h, k)= f+gdx+hdy+kdxdy.

Define d: C-s C by setting

d(f, g, h, k)= ax dx+ By dy+ (8x - ay) dxdy.

That d'=0 is a consequence of the fact that aXay = 8T
az

Any cycle in

C is a sum of the following three types: a constant f =a; an expression
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g d x+ h d y with 8g/3y = 8h/ax (in other words, an exact differential) ;
an expression k dx dy. If the domain D of definition is, say, the interior
of the square we can write the function k as 8h/ax for a suitable h, while
any exact differential can be expressed (by suitable integration) as the
differential of a function /. Hence, for this D the only homology classes
are those yielded by the constant functions, and H(C) is the additive
group of real numbers. The same conclusion holds if D is the interior of a
circle, but fails if D is, say, the interior of a circle with the origin deleted.
In this latter case an exact differential need not be the differential of a
function /. For example (-y dx+ x dy)/(xs+ y2) is not such.

al Example 7. A circular cylinder may
be regarded as the cartesian product
S' <I of a circle S' and a unit interval I.
We subdivide this as shown, so that the
circle S' at the base has vertices PO, q0
and edges aoand bo, while those at the top

g x I I I p x I are given by the same letters with sub-

b0

Fig. 3

script 1. The sides of the cylinder are the
intervals px I and qx I above po and q,,
respectively, and the curved faces a>< I
and bxI above ao and bo. Introduce the
free abelian group C(S'x 1) with the
twelve free generators p><1, q>c I, ax I,
b>< 1, and p;, q;, a;, bi, (i=0, 1). Define
d: C-*C on the base and top exactly

as for a circle (das=q;-p1, db;=p1-q,, dpi=o= dq;). Also set
d(p <I)=P1-po and d(gx1)=q1-qo. Inspection of the geometric
boundary of the curved surface ax1 suggests that we set
d(ax1)=a1- (qxI)-ao+(pxl) and d(bxI)=b1-bo+(qxI)-(pxI).
This defines d so that d2=0. Inspection of the cycles and boundaries
shows that

H(C(S'x 1)) = Zoo (cls (po)) ® Zoo (cls (ao+ bo)) .

This homology group is isomorphic to the homology group H(S') found
for the circle in Example I above. The isomorphism can be written
as H(/o): H(S1)=H(S'x1) if we take /o to be the homomorphism
/o: C(S1)->C(S1>d) of differential groups defined by /op=po, /oq=qo
/oa=ao, /ob=bo. One could equally well give the isomorphism as
H(/1),where the homomorphism /1=C(S')-.C(S'xl) is similarly defined.
This equality H(/,) = H(/1) holds because the cycles ao+ bo and a,+ b,
on the cylinder are homologous, for their difference is the boundary

d(axl+b <I)=(a1+b1)-(ao+bo).
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To explicitly compare to and /r, let us define a function s by

s¢=p><1, sq=q><I, sa=a>cI, sb=b><I.

This determines a homomorphism s: C(S')--)-C(S'><I) of abelian groups
(not of differential groups) with the property that

ds c+s dc=/1c-/oc (1.7)

for all c in C(SI). This equation may be read: The boundary d(sc) of the
cylinder sc over c consists of the top frc minus the bottom /oc minus the
cylinder s(dc) over the boundary of c. This equation implies that the
homomorphisms H(/1) and H(fo) are equal, for if c is any cycle (dc=0).
then (1.7) gives /1c-/pc=d(sc), whence /1c"/oc.

Maps with the property (1.7) will appear frequently under the name
of "chain homotopies".

Exercises
1. Let C be a differential group. The definition H(C)= Kerd/Imd can be

written asH(C) -Coker (d': C-.. Kerd), where d' is induced byd. Using C/Kerdelmd,
show that H(C) has a dual description as Ker(d": (Cokerd)--.C).

2. For a family C1, tET, of differential groups, define the direct sum Z Cr and
the direct product II C, and prove that H(E Cd agZ H(Cs). H(II C dc-- II H(Cr).

2. Complexes

In the usual differential groups C of § 1 we can assign integral
dimensions to certain elements of C. The set C. of all elements of
dimension n is a group, C is the direct sum of the and It
is more effective to work directly with this collection of groups. The
resulting object is called a "complex" of abelian groups.

For any ring R, a chain complex K of R-modules is a family {K,,,
of R-modules K. and R-module homomorphisms 8,,: defined
for all integers n, - oo < n < oo, and such that 8 0. This last
condition is equivalent to the statement that Kerd ) A com-
plex K thus appears as a doubly infinite sequence

K:... FK_2FK_1FKO -KIFKj*- ...
with each composite map zero. The homology H(K) is the family of
modules

(2.1)

Thus H. (K) = 0 means that the sequence K is exact at K.. An n-cycle
of K is an element of the submodule C. (K) = Ker an n-boundary is an
element of Then (cycles mod boundaries).
The coset of a cycle c in H. is written as or as {c}, in
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much of the literature. Two n-cycles in the same homology class (clsc=
clsc') are said to be homologous (c.c'); this is the case if and only if
c-c'EaK,.+1

If K and K' are complexes, a chain transformation /: K--)..K' is a
family of module homomorphisms /,,: K,t-*K;, one for each n, such that

for all n. This last condition asserts the commutativity of
the diagram (neglect the dotted arrows)

K K K

I r-t jw tw+t (2.2)

K': Ki

, K,,+, -... ,8wt
(Subsequently, we usually omit the subscript n on 0 and the prime on
a': The function H,(f)=f, defined by
fc+0K,+1 is a homomorphism H (f): H.(K)-.H,(K'). With this
definition, each H. is a covariant functor on the category of chain com-
plexes and chain transformations to the category of modules.

A chain homotopy s between two chain transformations f, g: K-+K' is
a family of module homomorphisms s,,: K*-i..K,+1, one for each dimen-
sion n, as in the dotted arrows of (2.2), such that

(2.3)

We write s : tint g. The geometric background of this relation is sketched
in Example 7 of § 1. Algebraically we have

Theorem 2.1. If s: /=g: K-+K', then

H. H. (K)-*H.(K'), - oo<n< oo. (2.4)

Proof. If cis acycleofK,,, then hence,
This states that fac and are homologous, hence that in
H (K'), as required.

A chain transformation f : K--o.K' is said to be a chain equivalence if
there is another chain transformation h: K'-*K (backwards!) and
homotopies s: hf-r1K, t: fh=1K.. Since H,,(1K)=1, the theorem yields

Corollary 2.2. If /: K-->.K' is a chain equivalence, the induced map
H (h: H. (K) = H. (K') is an isomorphism for each dimension n.

Proposition 2.3. Chain homotopies s: /=g: K--3,.K' and s': f'-g':
K'-*K" yield a composite chain homotopy

/'s+s'g: f'f-g'g: K-*K".

Proof. Both as+sa=f-g and as'+s'a=l'-g' are given. Multiply
the first by /', on the left, and the second by g on the right, and add.
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Subcomplexes and quotient complexes have properties like those of
submodules and quotient modules. A subcomplex S of K is a family of
submodules S" C K" , one for each n, such that always 8S,,( S" _ 1.
Hence S itself is a complex with boundary induced by 8=8K, and the
injection j: S->K is a chain transformation. If SCK, the quotient
complex K/S is the family (K/S)"=K"JS" of quotient modules with
boundary 8': induced by 8K. The projection is a
chain transformation K-->.K/S, and the short sequence S. > K"-s (K/S)"
of modules is exact for each n.

If f: K-*K' is a chain transformation, then Ker/= {Ker f"} is a sub-
complex of K, Im/= {/"K"} a subcomplex of K', while K'/Im f is the
cokernel of / and K/Ker f the coimage. A pair of chain transformations
K 1.K' °.K" is exact at K' if Im/=Kerg; that is, if each sequence
K"-i--K;,-.K', of modules is exact at K,. For any /:

0-*Kerf->K L K'->Cokerf-+0

is an exact sequence of complexes.
Instead of using lower indices, as in K", it is often notationally

convenient to write K" for K_" and a": K"->K"+1 in place of 8_":
This is simply a different "upper index" notation for the

same complex.
A complex K is positive (i. e., non-negative) if K"=0 for n<0; its

homology is then positive (H" (K) = 0 for is < 0). A complex K is negative
if K"=0 for n>0; equivalently, it is positive in the upper indices and
has the form

K° 8a=0,K11°-`

with homology H" (K) = Kera"/8K"-1 positive in the upper indices. In
this form, it is often called a "right complex" or a "cochain complex".
By a "cochain" homotopy s : f = g : K-+ K' is meant a chain homotopy
written with upper indices; that is, a family of maps s":K"-+K'8-1 with
8 s + s 8 = /- g. The complexes arising in practice are usually positive or
negative; the general notion of a chain complex is useful to provide
common proofs of formal properties like those expressed in Thm. 2.1.

Each module A may be regarded as a "trivial" positive complex, with
A0=A, A"=0 for n$0, and 8=0. A complex over A is a positive com-
plex K together with a chain transformation e: K-*A; such an e is
simply a module homomorphism e: K0->A such that e8=0: K1-+A. A
contracting homotopy fore: K-+A is a chain transformation /: A-+K such
that a/=14 together with a homotopy s: 1 c /e. In other words, a con-
tracting homotopy consists of module homomorphisms f : A -*KO and
s": K"-+K"+1, n=0, 1, ... such that

sf=1, 81s0+fe=1K,, 0.+1s"+s._,a"=1 (n>0). (2.5)
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Equivalently, extend the complex by setting K_ 1= A, a0 = e:
and s- 1= /. Then (2.5) states simply that s : 1= 0 for the maps 1, 0 of the
extended complex to itself. If s: K-*A has a contracting homotopy, its
homology groups are e* : H0 (K) = A for n = 0 and H. (K) = 0 for n> 0.

Complexes K of free abelian groups arise in topology. If each K. is
finitely generated, then each H. (K) is a finitely generated abelian group.
The structure theorem for such groups presents H. (K) as a direct sum
Z E) ... ®Z ®Z ® ... ® Z., where the number b" of infinite cyclic
summands and the integers m1, ... , mh (each a divisor of the next)
depend only on H. (K). The integer b" is called the n-th Betti number of K,
and the {m;} the n-th torsion coefficients.

Exercises

I. Call a complex S q-special if S,,= o for n* q, q+l and 0: SQ+1-' St is a mono-
morphism. Prove that any complex K of free abelian groups K" is a direct sum of
q-special complexes (one for each q).

2. Call a q-special complex S of abelian groups elementary if either Sq= Sq+1= Z
or S.- Z, Sq+1= 0. Prove that each special S with S. Sq+1 finitely generated free
groups is a direct sum of elementary complexes. (Hint: use row and column opera-
tions on matrices of integers to choose new bases for S. and S,+1.)

3. Prove that any complex with each K. a finitely generated free abelian group
is a direct sum of elementary complexes.

3. Cohomology

Let C be a differential group and G an abelian group. Form the abelian
group C* = Homz (C, G) ; its elements are the group homomorphisms
f: C--),.G, called cochains of C with "coefficients" in G. The differential
d: C-s.C induces a map d*: C*-*C*defined byd*f=fd:C-.G;call d*f
the coboundary of the cochain f ; it is often written as 61=01. Since
d2=o, (d*)$=0. Hence C* with differential d* is a differential group.
Its homology is called the cohomology of C with coefficients G and is
written H* (C, G) = H(Hom (C, G)).

Let K be a complex of R-modules and G an R-module. Form the
abelian group HomR (K" , G) ; its elements are the module homomor-
phisms f : K.--)..G, called n-cochains of K. The coboundary of f is the
(n+ 1)-cochain

a"/=(-1)n+lf an+l Kn+1-sG. (3.1)

In other words, a"+1: Kn+1--.K" induces a*+1: Hom (K", G) - .
Horn (Kn+1, G) and 8" _ (-1)"+18*+1 (the sign will be explained
below). Since 8" a"-1= 0, the sequence

---,HomR(K"_1,G)-HomR(K",G) °;HomR(K"+1,G)-i (3.2)
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is a complex of abelian groups called HomR (K, G), usually written with
upper indices as Hom" (K, G) = Hom (K., G). If K is positive in lower
indices, Hom (K, G) is positive in upper indices.

The homology of this complex Hom (K, G) is called the cohomology
of K with coel/icients in G. With upper indices, it is the family of abelian
groups

H"(K,G)=H" (Hom(K,G))=Kerb"/8 Hom (K.-,, G). (3.3)

An element of b Hom (K" _1, G) is called an n-coboundary and an element
of Kerb" an n-cocycle. Thus a cocycle is a homomorphism /: K.--+G
with /8=0: Kn+1-+G. Any chain transformation h: K-*K' induces
a chain transformation h* = Hom (h, 1) : Hom (K', G) -+ Hom (K, G). Thus
Horn (K, G) and H" (K, G) are bifunctors, covariant in G and contra-
variant in K. If s: h-g is a homotopy, then (2.3) implies that s. 8,+1
+8.*s,*_1=he-g.*. Hence t~+1=(-1)"+lse is a homotopy t: h*-g*.

More generally, we may define a complex HomR (K, L) from any
pair of complexes K and L of R-modules. With lower indices, set

00

Hom" (K, L) = jj HomR (Kp , Lp+") , (3.4)?-m
so that an element / of Hom" is a family of homomorphisms /p: K,-+
Lp+" for --oo<p<oo. The boundary 0Hf is the family (aH/)p: Kp-+
Lp+"._1 defined by

(aHf)pk-aL(fpk)+(-1)"+1/p-1(aKk), kEKp, /EHom". (3.5)

where 8L and aK denote the boundary operators in K and L, respectively.
That this definition yields a complex is proved by the calculation:

(OHaHf)pk= aLaL(lpk)+ (-1)"8L/p_18Kk

+(-1)"+la 1p-laKk+(-1)1/p-2(aKaKk)=0,

since 8L8L=0=8KOK. Clearly, HomR(K,L) is a bifunctor covariant in
L and contravariant in K.

The signs in the definition (3.5) have been chosen so as to give the
following two results.

Proposition 3.1. When the ring R is regarded as a trivial complex,
then Horn (R, L) = L under the natural homomorphism which assigns to
each /p: R --Lp its image /p (1)ELp.

Proof. This correspondence gives an isomorphism Horn (R, L) =Lp
for each p. In this case the boundary formula (3.5) has no terms with 8K;
the remaining term with + 8L / shows that this isomorphism commutes
with boundaries.
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Proposition 3.2. A 0-dimensional cycle o t Hom (K, L) is a chain
transformation f : it is the boundary of an element s in Homl(K,L)
exactly when s is a homotopy s: /-0.

Proof. The formula (3.5) for the boundary (with signs) becomes

(aHf)p=aLfp-fp-1OK,

(aHS)p=aLsp+Sp-1aK,

n=0,
n=1.

Thus 8/=O asserts that f : K -* L is a chain transformation and a11s=/
asserts that /=aLS+sat, whence s: as asserted. These conclusions
may be reformulated as

Corollary 3.3. The homology group Ha (Hom (K, L)) is the abelian
group of homotopy classes of chain transformations f: K--L.

In particular, when L=G is a trivial complex, the boundary aL is
zero, an element / of Hom (K. G) is a single homomorphism f : K_,--.G,
and K_i}1-+G. With upper indices, this states that
an element of Hom" (K, G) is a homomorphism /: K. -+G with coboundary

This agrees with the sign already used in (3.1), and
explains the sign there. The reader should be warned, however, that
most of the present literature on cohomology does not use this sign,
and writes instead 61=1a.

4. The Exact Homology Sequence
Consider any short exact sequence

E: o---,K=+L--M-+o (4.1)

of chain complexes and chain transformations x, a. The first transforma-
tion x has kernel zero, but the induced map H. (x) : H. (K) -+ H. (L) on
homology may have a non-trivial kernel, as in Example 1.3. To study
when this can happen, identify K with the subcomplex xK of L and
consider a cycle c of K. whose homology class becomes zero in L. This
means that c=al for some (n+1)-chain IEL, and hence that the coset
1+ is a cycle of the quotient complex L/K=M. Conversely, any
homology class of H.+, (LIK) consists of cycles 1+ K.+, with al=cEK",
hence yields a homology class cisc in H"(K) which is in the kernel of
H" (x). This correspondence of 1+ to c is a homomorphism
H"+1(L/K) -,H" (K) which we now describe systematically.

In (4.1), let m be a cycle in M"+1. Since a is an epimorphism, one
can choose 1EL"+1 with al=m. Since am=0, one has aal=0; since E
is exact, there is a unique cycle c E K. with xc = 81, as in

l a

1 1
10

1
c-. 0 in K" "+L" -+M".
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The homology class cls (c) E H. (K) is independent of the choice of I with
al=m, depends only on the homology class of m, and is additive in M.
Hence aE (clsm) = cls c defines a homomorphism

aE: H.+i (M) -H. (K) (4.2)

called the invariant boundary or the connecting homomorphism for E.
Specifically

aEclsm=clsc when xc=al, al=m for some 1. (4.3)

This suggests the notation c=x-laa lm; or regard cls as a homomor-
phism clsK : C (K) -- H (K) ; then aE is defined by a "switchback"
formula aE _ (clsK) x-' a a-' (clsu) -' - even though the inverses cls-1,
x-', a-' are not strictly defined (but see §6 below).

Theorem 4.1. (Exact homology sequence.) For each short exact
sequence (4.1) of chain complexes the corresponding long sequence

H,,_1 (K) -... (4.4)... e . H. (K) -x'. H. (L) a .H,, (M)
as

of homology groups, with maps the connecting homomorphism aE, x.=
H. (x), and as = H. (a), is exact.

This sequence (4.4) is infinite in both directions, but is zero for n<0
when the complexes are positive. It gives the desired description of the
kernel and cokernel of H,, (x) : H,, (K) -+H (L) when x is a monomorphism;
namely the kernel is and the cokernel is isomorphic to
a. H. (L).

Proof. By the definitions, the composite of any two successive
homomorphisms in the sequence (4.4) is the zero homomorphism. It
remains to show for each dimension n that (i) Kerx.
(ii) Kera. <x. H. (K) ; (iii) Ker aE (a. H. (L). Our preparatory discussion
showed the first true.

To prove the second inclusion, suppose that cls (c) is the homology
class of a cycle c of L. such that a. cls (c) =0. This means that ac = em
for some Since a is an epimorphism, there is a with
al=m. Hence a(c-al)=0, so that c--al=xk for some kEK,, with
0k=o. This asserts that cls (c) = cls (c- al) = x cls (k) is in the image
of x..

To prove the third inclusion, recall that 9Ecls (m) = clsc, where
and tEL have xc=al, al=m, as in (4.3). If c1sc=0, there is

a k' in K. with ak'=c. Then xak'=al, hence a(1-xk')=0. Thus
l-xk' is a cycle of L, and a(1-xk')=al=m, so that cls(m)EIma.,
as asserted. This completes the proof.
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Consider the category d' of short exact sequences of chain complexes.
A morphism E-*E' in this category is a triple (/,g,h) of chain trans-
formations which render the diagram

E: 0 -+ K -- . L-. M -+ 0
It 1C 1" (4.5)

E': O - K' --> L' --* M' -- 0

commutative. For each n, H (K), H,, (L), and H,, (M) are functors of E.

Proposition 4.2. For each EEd: the connecting homomorphism
OE: Hit1(M) -->H.(K) is natural.

The statement that a& is natural means exactly that the diagram

H.+1(M) e : H. (K)
1b.+,(") 1e.U) (4.6)

H.+1(M') H. (K')

is commutative. The proof is an easy diagram chase in (4.5) with the
definition of a6. The conclusion can be expressed in a bigger diagram:

-> H.,, (L) --- H.+1(M) H. (K) --%- H. (L) -> .. .
1s. 1". 1,. 1t. (4.7)

... - H.+1 (L') H.+1(M') f + H. (K') -4.. H. (L') -> .. .

Here the rows are the exact homology sequences of Thm. 4.1 for E and
E' and the whole diagram is commutative; for example, the left hand
square because a* g, _ (a'g), , ha=(hi) , and a g = ho by the com-
mutativity of (4.5). The conclusion may be formulated thus: A morphism
of E to E' induces a morphism of the exact homology sequence of E
to that of E'.

The mapping cone of a chain transformation /: K -sK' gives an exam-
ple of this exact sequence. The problem is that of fitting the induced
maps /,: H (K) --.H,, (K') on homology into an exact sequence. For
this purpose, construct a complex M=M(f), called the mapping cone
of / (or sometimes, with less accuracy, the mapping cylinder of f), with

M.=K._1®K;,, a (k, k') = (- ak, ak'+fk).

Then a: M is a complex, and the injec-
tion &: K'-*M is a chain transformation. The projection n: M-I..K'
with n (k, k') = k is also a chain transformation, if by K' we mean the
complex K with the dimensions all raised by one and the sign of the
boundary changed (i.e., Moreover Et: K' H M-nK' is
a short exact sequence of complexes. Hence
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Proposition 4.3. A chain transformation f: KKK' with mapping
cone M(f) determines an exact sequence

... -*H"(K')- H,(M(l))- H"-1(K)AD.
Proof. This is the exact sequence of E1, with H" (K*) =H"_1(K) ;

moreover the connecting homomorphism aR,: H" (K*) +H, _1(K') can
be seen to be identical with the homomorphism induced by f.

The mapping cone is the algebraic analogue of the following geo-
metric construction. Let /: X--,,X' be a continuous map of topological
spaces. Form the cone over X by taking the cartesian product X><I
with the unit interval I and identifying all points (x,0) for xEX. Attach
this cone to X' by identifying each point (z,1) of XxI with /(X) EX';
the resulting space is the map-
ping cone of and suggestsf. i; i i.

d lour boun ary formu a. DOLD
[1960] gives a further devel-
opment of these ideas.

We now consider exact co-
homology sequences. A short
exact sequence E of complexes
of R-modules is said to split

Fig. 4

as a sequence of modules if for each n the sequence K" L" --b.M"
splits; that is, if for each n, K. is a direct summand of L". For ex-
ample, if each M. is a projective module, then E of (4.1) splits as a
sequence of modules, by Thm. I.6.3.

Theorem 4.4. If G is an R-module and E a short exact sequence (4.1)
of complexes of R-modules which splits as a sequence of modules, then
there is for each dimension n a natural connecting homomorphism
6_.: H" (K, G) --)-H"} 1(M, G) such that the sequence o l cohomology groups

H" (M, G) H" (L, G) -"-'. H" (K, G) f f H"+' (M, G) -* ... (4.8)

is exact.

Proof. To construct the cohomology of E, first apply the contra-
variant functor HomR(-,G) to E to get the reversed sequence of
complexes

E*: 0 Hom (M, G) -->Hom (L, G) -Hom (K, G) -*0 .

Since the given sequence splits as a sequence of modules, E* is exact. The
connecting homomorphism aE.: H_";.1(Hom (K, G)) -> lY"(Hom (M, G))
for E*, when written with upper indices is the desired
connecting homomorphism 8E. By Prop-4.2 it follows that 8E is na-
tural when the arguments H(K,G) G) and Hw}1(M, G) are regarded as
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contravariant functors on the category of those short exact sequences
of complexes which split as modules. For that matter, dE is also natural
when its arguments are regarded as covariant functors of the R-modu-
le G. Finally, the exact homology sequence for E*, with indices shifted
up, becomes the desired exact cohomology sequence (4.8).

For reference we describe the action of dE in terms of cochains.
Since E* is exact, each n-cocycle of K, regarded as a homomorphism
f : K" -a G, can be written as /=gx where g: L"-+G is an n-cochain of L.
Then gax=gx8=/8=0, so g8 factors through a as g8=ha for some
h: M"+1-+G. Since h3a=ha8= g88 = 0, and or is an epimorphism, it
follows that h0=0: h is a cocycle of M. Then

dEclsf=clsh defines dE: H"(K,G)--.H"}1(M,G) (4.9)

by h a = g 8, g x = l for some g. This is again a switchback rule : 6E=
clsa* -i dxs -' cls-'.

Another exact sequence of cohomology groups arises from a short
exact sequence

S: 0 --* G' - G 11. G"-* 0 (4.10)

of "coefficient" modules. If K is any complex, the monomorphism
A : G'--. G induces homomorphisms A*: H" (K, G') -+H" (K, G). The inquiry
as to the kernel and the cokernel of A, is met by the following exact
sequence (which is not a dual to that of Thm. 4.4) :

Theorem 4.5. If K is a complex of R-modules with each module K.
projective and if S is a short exact sequence of R-modules, as in (4.10),
there is for each dimension a connecting homomorphism ds : H" (K, G") ->
H"+' (K, G') which is natural when its arguments are regarded as covariant
f unctors o l the exact sequence S or as contravariant functors of K and
which yields the long exact sequence:

-H"(K,G') 4'. H"(K,G) * H"(K,G")-! H"+'(K,G')-*.... (4.11)

Proof. Since each K. is projective,

S,: 0 -- .Hom (K, G') -->.Hom (K, G) --*.Hom (K, G") --> 0

is exact, and yields ds as 8s., with the usual shift to upper indices, and
with (4.11) as a consequence of Thm.4.1.

Note the explicit rule for constructing ds. Let f: K"-*G" be a co-
cycle. Since S, is exact, we may write f = rg for g: K"-). G a cochain ;
since / is a cocycle, g8=Ah, where h: K"+t-*G' is a cocycle. Then

dscls f =clsh, Ah=g8, rg=f. (4.12)

This is again a switchback rule: ds = cls.l,-' 6 T-1 cls-.
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1. If/. g: K -a K' are chain homotopic, show that the associated exact sequences
for the mapping cones M(/) and M(g) are isomorphic.

2. (The BOCKSTEIN Operator.) Let K be a complex of free abelian groups,
Zp the additive group of integers modulo the prime p, and S= (x, r):
the short exact sequence with A multiplication by p. Construct the corresponding
exact sequence (4.11) and show that Ii= seas: H"(K.Zp)-+H"+1(K,Zp) can be
described as follows. Lift each n-cocycle c: to an n-cochain a: K"-+Z;
then 6a=pb for some b: and #(clsc)=c1s(rb). This fi is known as
the BocESTEIN cohomology operator (cf. BROWDER 1961).

3. Let /: K-+K' have mapping cone M, kernel L, and cokernel N, so that
F: Ls..K -. f K, G: f K s- K'-.N are short exact sequences of complexes. Construct
chain transformations g: L+- M and h : M -s N by g (1) = (l, 0), h (k. k') = k'+ / K,
and show the sequence

-H"_1(L).9'0H"(M)

exact, where rl= 2p 2g is the composite of the connecting homomorphisms for F, G.

4. Show that the exact sequence of Ex.3, that of Prop.4.3, and those for F
and G all appear in a "braid" diagram

-..._.H".}1(K') H.,, (N) H._, (L)

H,

(L) H. (K') -, ...

which is commutative except for a sign (-1) in the middle diamond [MAC LANE
1960b].

5. Some Diagram Lemmas

An application of the exact homology sequence is

Lemma 5.1. (The 3><3 Lemma.) In the following commutative dia
gram of modules

0 0 0

1 1 10- A8 a' A2 a'. A1-.0

.,1
a, `'1 a.

'1
0 - BS --, Ba --. B1 -. 0

41 1 1

0 --, C8 -'''. C, '. C1 -- 0
1 1 1

0 0 0

suppose that all three columns and the first two rows (or the last two rows)
are short exact sequences. Then the remaining row is exact.
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Proof. Any sequence A8-,A$-*A1 with maps aa, a such that
ala$=0 may be regarded as a chain complex A with as, al as the bound-
ary homomorphisms and with non-zero chains only in dimensions 1, 2,
and 3. The homology of this complex will vanish (in dimensions 1, 2,
and 3) precisely when it is a short exact sequence.

Suppose now that the last two rows are exact. Then, for aEA3,
vala=a=flfl2Aa=0; since v is a monomorphism, ala2a=0. Thus the
first row is indeed a complex. Since the columns are exact we may
now regard the whole 3><3 diagram as a short exact sequence 0--3'.A-->-
B--o-C--).O of three complexes. The relative homology sequence now
reads

But the exactness of rows B and C give HM+1(C)=O=H,3(B), so the
exactness of the relative homology sequence makes H (A) = 0 for
n=1, 2, and 3.

The argument is similar, given that the first two rows are exact.
The chief result of this chapter - the exactness of the homology

sequence (4.4) - can be proved in a different way from a lemma on
short exact sequences of modules.

A morphism of short exact sequences has the form of a commutative
diagram B C-.0

la la lY (5.1)

with exact rows; the kernel and the cokernel of this morphism are short
sequences, but need not be exact (example: map 0'.A=A to A=A-+0
with fl=1A). The horizontal maps of the diagram do induce maps which
give exact sequences

and

0-* Kera-).Kerfl--o. Kery

Cokera ->Coker fl -*Cokery -0.

They can be combined in a long exact sequence:

Lemma 5.2. For any commutative diagram

A-.B
(D) la lA lY

0 - A'.- B1 -0-'-& C'

with exact rows there is a map D,: natural for functors
of the diagram D, such that the sequence

D' Cokera-*Cokerfl->Cokery (5.2)

is exact. We call (5.2) the Ker-Coker sequence.
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Proof. Let c: Kery-- C be the injection, 17: the pro-
jection. The switchback formula then defines D.
without ambiguity. To prove the exactness of (5.2), say at Cokera,
suppose 4(a' + aA) = 0 for some a'. Then x a' =fib for some b and
Q'x'a=yvb=0, so abEKery has D,ab=a'+aA,which is the required
exactness. The rest of the proof is similar.

We call D, the connecting homomorphism of the diagram D.
Now we prove Thm.4.1 for the short exact sequence E of complexes

K >-+ L -n M. Let C. (K) denote the module of n-cycles of K and form
the diagram

K /a L.10 L.+1 -> M,.+1 -- 0
D (E) : 18. 18. 18.

0 -+ C._1 (L) -, (M)

with exact rows and vertical maps induced by 2. The first kernel is
C.(K)/2KK+1=H.(K), and the first cokernel is
so the Ker-Coker sequence (5.2) is

H. (K) (L) H. (M)
D(E),

(K) (L) --sl _1(M)

The middle map D (E),, as defined by switchback, is identical with
the connecting homomorphism 8s of Thm.4.1.

Exercises
1. Prove the 3>43 lemma by diagram chasing, without using the exact

homology sequence.
2. If in the hypotheses of the 3X3 lemma one assumes only the first and third

rows exact, show that the second row need not be exact, but will be exact if j fig 0.
3. Under the hypotheses of the 3x3 lemma, establish exact sequences

o - As - B, A, -. B, --
19

4. In a commutative 3x3 diagram assume only that all three columns are
"left exact" (i.e., exact at A and B) and that the last two rows are left exact.
Prove that the first row is left exact. If, in addition Yl and $ are epimorphisms,
prove that the first row is exact.

5. Prove the Ker-Coker sequence from the exact homology sequence. [Hint:
Replace A by Coim (A - B) and dually for C'.)

6. For any homomorphisms a: P: B-+C establish an exact sequence
O -. Kera -+ Kerpa -+ Kerp -+Cokera -. Coker f a --o- Cokerp --m- 0.

6. Additive Relations

The "switchback" formulas can be justified in terms of "additive
relations". They will appear later in the treatment of spectral sequences.

An additive relation r: A- B is defined to be a submodule of the direct
sum A® B; in other words, r is a set of pairs (a, b) closed under addition
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and R-multiples and not empty. The converse is the relation r-1: B- A
consisting of all pairs (b, a) with (a, b) E r. If s: B-- C is another additive
relation, the composite sr: A- C is the set of all those pairs (a,c) such
that there is a b E B with (a, b) E r and (b, c) E s. This composition is associa-
tive, when defined. The graph of a homomorphism a: A-sB is the
additive relation consisting of all pairs (a,(xa) for aEA; since the com-
posite of two graphs is the graph of the composite homomorphism,
we may identify each homomorphism with its graph. The class with
objects all modules and morphisms all additive relations r: A-B is
a category - but note that rr-1 need not be the identity relation.

For each additive relation r: A- B introduce the submodules

Defr=[al (3b), (a,b)Er] Imr=Defr-1,
Kerr=[al (a,O)Er] Indr=Kerr-1.

Here Kerr<Defr<A and Indr<Imr<B. Defr is the domain of defini-
tion of r, while Ind is the "indeterminancy" of r, and consists of all b
with (0, b) E r. Moreover, r is the graph of a homomorphism if and only
if Defr=A and Indr=O.

For example, the converse of a homomorphism P: B-*A is an addi-
tive relation A-1 with Defp-1= Imp, Indp-1= Ker fi. In a complex K
the set of pairs (c, else) for CE C. (K) is an additive relation cis:
H,, (K) with Def (cls) = C,, (K). With these observations, the "switch-
back" formula for the connecting homomorphism appears as the com-
posite of additive relations.

Any additive relation can be regarded as a "many-valued" homo-
morphism; more exactly, as a homomorphism of a submodule to a
quotient module:

Proposition 6.1. Each additive relation r: A -- B determines a homo-
morphism r°: such that

r=rc-1r°j-1, j: Defr-*A, n: B-+B/Indr, (6.2)

where j is the injection and rc the projection. Conversely, given a submoduk
S < A, a quotient module B/L of B, and a homomorphism fi : S -). B/L
there is a unique additive relation r: A-- B with r°=fl.

Proof. Given a E Defr, (a, b) E r and (a, b') E r imply (0, b- b') E r, hence
b - b'E Indr. Then r° (a) = b+ Indr defines a homomorphism r° with the
desired form (6.2). Conversely, given fi, r is the set of all pairs (s,b)
with bEe(s).

A similar argument shows that each additive relation r induces an
isomorphism 0,: (Defr)/(Kerr)--(Imr)/(Indr); conversely, each iso-
morphism of a subquotient of A to a subquotient of B arises in this
way from a unique additive relation r.
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Given subquotients S/K of A and S'/K' of A', each homomorphism
a: A- A' induces an additive relation

a# = a (S/K, S'/K') : S/K-- S'/K', (6.3)

defined to be the set of all pairs (s+ K, s'+ K') of cosets with s E S,
s'E S', and s' = a s. This includes the previous notion of induced homo-
morphisms.

For an equivalence one can determine the inverse of an induced
relation.

Proposition 6.2. (Equivalence Principle.) If 0: A-*A' is an equi-
valence, then

(g#)-'= (e-')#: S'/K'- S/K.

Indeed, each of (0#)-' and (9-')# consists of the same pairs.
In Chap. XI we will use the composite of two induced relations.

This is not always the relation induced by the composite homomorphism.
For example, in the direct sum A = BED B let Br be the submodule of
all (b, 0), B. the submodule of all (0, b) and d the submodule of all (b, b)
(the "diagonal" submodule). Then 1A induces isomorphisms B1
A/B,=d, but the relation B1--d induced by 1e consists of (0,0) alone.
Composition works reasonably well only under a restrictive hypothesis,
as follows :

Proposition 6.3. (Composition principle.) I/ homomorphismsa: A-* A'
and fl: A'-*A" induce the additive relations a#: S/K-- S'/K' and P#:
S'/K'- S"/K" on given subquotients, then

fl#a#= (fla)#: S/K--- S"/K",

provided (i) either a K' K' or #K'< K" and (ii) either at S < S' or f -' S"< S'.

Proof. Suppose first that (s+K, s"+K")Ef#a#. By definition of
the composite of two relations, there are si and s; in S' with si+K'=
s'+K' and as=si, f si=s". Thus sl-s==k'EK', and flas=s"+flk'.
In case either fK'<K" or K'<aK this gives (s+K, s"+K")E(fa)#, so
hypothesis (i) gives

fl#a#<(fla)#. Similarly, (ii) gives the opposite in-
clusion.

Exercises
I. For each additive relation r: A- B, prove rr-'r- r.
2. For additive relations r and s, prove (rs)-1=s-'ri.
3. If u= A--A is an additive relation with WI-u- ut, prove that there are

submodules K < S < A with u= [(s, s+ k) I s E S, A CK]. Establish the converse.
4. For each additive relation r: A--B, describe rr1 and r1r.
5. Under the hypotheses of the strong Four Lemma (Lemma I.3.2), prove

a-'- P'n.
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7. Singular Homology
The use of complexes may be illustrated by a brief description of

the singular homology groups of a topological space. We first introduce
affine simplices.

Let E be an n-dimensional Euclidean space; that is, an n-dimensional
vector space over the field of real numbers in which there is given a
symmetric, bilinear, and positive definite inner product (u, v) for each
pair of vectors u, vE E. The usual distance function a (u, v) = (u- v, u- v)i
makes E a metric space and hence a topological space. In particular,
E may be the space E" of all n-tuples u = (al, ..., a") of real numbers ai,
with termwise addition and with the standard inner product (al, ...,
(b,...., b,a=Z aibi.

The line segment joining two points u,vEE is the set of all points
tu+ (1-t) v, for t real and 05t51; that is, of all points xou+ xlv,
where zo, xl are real numbers with xo + xl = 1, xo Z 0, xl ? 0. A subset
C of E is convex if it contains the line segment joining any two of its
points. If uo, .... u,, are m+f points of E, the set of all points

u=xouo+...+xrur,, xo+xi+...+%,,,=1. (7.1)

is a convex set containing uo, ..., u,, and in fact the smallest convex
set containing these points; it is called the convex hull of uo, ...,
The points uo, ..., u,,, are said to be a/fine independent if every point
of this convex hull has a unique representation in the form (7-1); the
real numbers xi are then the barycentric coordinates of u relative to
uo, ..., u.. It can be shown that the points uo, ..., un are affine inde-
pendent if and only if the vectors u1- uo, ..., ur- uo are linearly
independent.

An a/fine m-simplex is by definition the convex hull of m+ I affine
independent points. These points are the vertices of the simplex. Thus
a 1-simplex is a line segment, a 2-simplex is a triangle (with interior),
a 3-simplex is a tetrahedron, etc. For each dimension n we will take a
standard affine n-simplex d" in the space E', and we will label the ver-
tices of d" as (0. 1, ..., n). (For example, take 0 to be the origin and
1, ..., n a basis of n orthogonal vectors in E".)

For any topological space X, a singular n-simplex T in X is a con-
tinuous map T: d"--o-X. Thus a singular 0-simplex of X is just a point
of X, or, more accurately, a map of the standard point d° into (a point
of) X. We first construct certain singular simplices in convex subsets
of E.

Let E and E' be Euclidean spaces, L: E-+E' a linear transformation
and uo a fixed vector of E'. The function / (u) = uo + L(u) on E to E'
is called an offine transformation /: E-->E'. As the composite of the
linear transformation L with the translation by uu, / is continuous.
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Proposition 7.1. I/ uo, ..., u, are n+ I a/fine independent points
in E", while vo , ... , V. E E', there is a unique a/ f ine Iran f ormalion
l : E" -+ E' with / (u,) = %, i = 0, ... , n.

Proof. The vectors u; - uo , i = 1, ..., n, are a basis of E". Let L
be the unique linear transformation with L(u, - uo) = v; - vo; f (u) =
vo- L (uo) + L(u) is the required affine transformation : It may also be
written in barycentric coordinates as

/(xou0+ ...+x"u")=xovo+ ...+x"v", xi=I.
In particular, let vo, ..., v" be an ordered set of points in a convex

subset C of E'. The unique affine transformation f: E"--i-E' which
carries the vertices 0, 1, ..., n of the standard simplex d" in order into
vo, ..., v" thus gives a continuous map d"-->C which we write as

(v0, ..., v")c: (7.2)

This we call the a/line singular n-simplex (with standard vertices 0, ..., n
mapped to vo, ..., v"). For example, if the vo,... , v" are affine independent,
it is a homeomorphism of the standard simplex d" to the affine simplex
spanned by the v's. In particular J" = (0, 1. ..., n)," is the identity map
of d" onto itself. If the v., ..., v" are dependent, the corresponding
map (vo, ..., v")c collapses the standard d" onto a simplex of lower
dimension.

We may now describe the "boundary" of d" to consist of certain
(n-1)-dimensional singular simplices which are the "faces" of d". For
example, the faces of the triangle d'=(0, 1, 2) are the three edges
represented by the segments (12), (02), and (01); in the notation (7.2)
they are the three continuous maps (1, 2)a., (0, 2)a., and (0, 1)a, of
d' into d'. In generald" has n+ I faces; its i-th face is the affine singular
(n-1)-simplex

E8,,: (0, 1, .., t, .., n)a: t=0, (7.3)

where the notation i indicates that the vertex i is to be omitted. Any
singular n-simplex T: d"-*X has n+i faces diT defined by

d1T=Te,'.: d"-1- .X, i=0...., n, n>0. (7.4)

In other words, diT is the map obtained by restricting T to the i-th
face of d" and regarding this restriction (via e') as a map defined on
d"'1. Any singular simplex T can be written as the composite T =T J",
where J": is the identity map of d", and hence a singular n-
simplex of d". The faces of T are then given by the formula

d;T=T(d{J"), i=0, ..., n, n>O. (7.5)
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For an affine singular simplex (7.2), the i-th face omits the i-th vertex:

di(VO, ..., V")C=(Vo, ..., V;, ..., V.)c. (7.6)

The process of forming iterated faces satisfies the identity

d;d,T=di_1d;T, i<j. (7.7)

By (7.5) it suffices to prove this in the case when T= J"; here it is clear,
since the process of first omitting vertex j and then vertex i amounts
to the same as first omitting vertex i and then (in the new numbering
of vertices of d; J") vertex j- 1. An alternative proof may be given by
replacing each point of the standard n-simplex d" by its barycentric
coordinates xo, ..., x,,. A singular n-simplex T in the space X is then
a continuous function with values T(xo, ..., x")EX, defined for all real
x; with x; z 0 and xo+ + x = 1. The i-th face is the function defined by

x ) = T(x x X .-I);

i.e., by letting the i-th variable in T be 0. Hence (7.7) follows, because
first setting xi=0 and then x;=0 for i<j in T(xo, ..., x") amounts
to first setting x;=0 and then setting equal to 0 the variable with the
new number j- 1.

To each space X we now construct a complex S (X) of abelian
groups, called the singular complex of X. Take S"(X) to be the free
abelian group with generators all singular n-simplices T of X. Then
the i-th face operation defines a homomorphism d;: S" (X) - Sn_1(X)
for i = 0, ..., n and n >0. Define the boundary homomorphism

a: S.(X)-iSn-1(X)

as the sum of the face homomorphisms with alternating signs; that is

aT=doT-d1T+ ...+(-1)"d"T= 2 n>0. (7.8)
i-o

An n-chain cE S. (X) has a unique representation as a sum c = Yr c (T) T
where the coefficients c (T) are integers, zero except for a finite number
of T ; its boundary is a c = c (T) aT. To show that S (X) is a complex,
we must prove that the composite aa: S.-S"_a is the zero homo-
morphism for n>1. It suffices to prove a aT=O. But

a OT= (-1)i+id,diT+2: (-1)`+1d;d.T.
i<i ia1

Using (7.7) and switching the labels i and j in the second sum, this is

a aT
f

(-1)i+idi-ld;T+
=i(-1)i+kddd;T.

The two sums are equal except for sign, hence cancel to give as=o.
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The n-dimensional singular homology group H. (X) of the space X
is now defined to be the n-th homology group H. (S (X)) of the complex
S (X).

Theorem 7.2. The homology group H. (X) is a covariant /unctor of X.
Proof. If Y is a second topological space and /: X -+Y any continuous

map, each singular simplex T : A" --3 X of X yields by composition a
singular simplex IT: d" --*.Y of Y. The correspondence

T of S. (X) yields a homomorphism S. (f): S. (X) -s S. (Y).
Moreover, di (/T) = / (diT) ; hence a S (/) = S (f) a, so S (/) is a chain trans-
formation which induces homomorphisms H" (S (l)) : H" (X) -*H4 (Y)
on the homology groups in each dimension. With these homomorphisms,
H. is a covariant functor on the category with objects all topological
spaces, morphisms all continuous maps.

If G is any abelian group, the cohomology groups H"(S(X),G) are
the singular cohomology groups of X with coefficients G. They are bi-
functors, contravariant in X and covariant in G.

The homomorphism e : Se (X) -,Z which carries each singular 0-
simplex into t EZ is called the augmentation of S(X). Since ea=0:
S1 (X) e: S (X) -Z is a complex over Z. Moreover, a induces an
epimorphism e,: He A space X is called acyclic if H,(X)=0
for n>0 and e, is an isomorphism He (X) =Z.

Proposition 7.3. A topological space with only one point is acyclic.

Proof. Let X= {x} be the space. In each dimension n, X has only
one singular simplex, namely the map T": d"->.{x} which collapses A"
to the point z. Hence each face diT" is T"_l, for i=0, ..., n. Since OT
is the alternating sum of faces, 9TB.=T2,"_1 and 8T$r_1=0. Thus in
even dimensions S (X) has no cycles except 0, while in odd dimensions
all elements of S2m_1(X) are cycles and also boundaries. Therefore
H"(X)=0 for all n>0; clearly H0(X)=Z.

Exercises
1. Let the affine simplex I' be the convex hull of the affine independent points

uo, ..., u,,,. Show that u E T is one of the points ui if and only if v, wEr and u on
the segment from v to w imply u= v or u= w. Conclude that the simplex r. as a
convex set, determines its vertices.

2. If X is pathwise connected, prove that e,,: H4(X) OZ. (Definition: Let
I be the unit interval. X is pathwise connected if to each pair of points x,yEX
there exists a continuous map /: I -*X with /(0)= x, /(1)= y.)

8. Homotopy
Two continuous maps of a space X into a space Y are said to be

"homotopic" if it is possible to continuously deform the first map into
the second. Consider the deformation as taking place in a unit interval
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of time; then it can be regarded as a continuous map defined on the
cartesian product X xl of the space X and the unit interval I, 0 S t S 1
on the real t-axis. Hence we make the

Definition. Two continuous maps /o, /i: X -,-Y are homotopic if
and only if there is a continuous map F: XxI Y such that

F(x,0)=/o(x), F(x,1)=/1(x). (8.1)

When this holds, we write F: /o- /1: X -sY.

The condition (8.1) states that the homotopy starts, for 1=0, with
the initial map /o and that it ends, for t=1. with the final map /1. For
example, a space X is called contractible if the identity map 1: X--.X
is homotopic to a map which sends X into a single point. Any convex
set C in a Euclidean space is contractible to any one of its points w, via
the homotopy D defined by

D(u,t)=lw+(1-t) u, O ts1, uEC. (8.2)

This function is clearly continuous and takes values in C, because C
is convex.

This geometric notion is closely related to the algebraic notion of
a chain homotopy. As a first example, we prove

Proposition 8.1. Any convex set C in a Euclidean space is acyclic.

The proof uses a chain homotopy s : S. (C) -+ S"+1(C). Since S. (C)
is the free abelian group generated by the singular n-simplices T of C,
it will suffice to define a singular (n+ 1)-simplex sT: J"+1-sC for each T.
In terms of the barycentric coordinates (xo, ..., x"+1) of a point of
A"+1, set

(sT)(xo,...,x"+1)=xow+(1-xo)T(f
xzo' ...,"z' 1

,

=w,
x°+1.1 (8.3)
xo=1,

where w is a fixed point of C. To see that s T is continuous at xo=1,
we rewrite the definition so that it resembles the geometric homotopy
D of (8.2). Let vo=0 be the initial vertex of A"+'; then

(0, x1/(1- xo), ... , x"+1/(1- x0))

can be viewed as the barycentric coordinates of some point u' on
the opposite face. Each point of Ant' can be written as a weighted
average xovo+ (1- xo) u' for some u', unique except when xo=1. The
point u' on the opposite face determines uEA" with eOu=u'. The
definition (8.3) now reads, in all cases

(sT) (xovo+(1-xo) u')=xow+(1-x0)T(u), sou=u'.
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In other words, the segment in J"+1 joining vo to each point u' of the
opposite face is mapped by sT linearly onto the segment joining wEC
to T(u) E C. In particular, since d" is compact, Td" is compact and hence
bounded, so sT: d"+1->C is continuous at xo=0.

This s : S " (C) --> S"+1(C) provides a contracting homotopy for the
augmented complex e: S(X)--->Z. In the notation of (2.5), let f: Z->
S (X) be the chain transformation which carries 1 EZ to the singular
0-simplex Tat the chosen point W E C. The i-th face di (sT) is the singular
n-simplex obtained from (8.3) by setting x;=0. Hence do(sT)=T,
while di+1(sT)=sdiT if n>0 and 41sT=To if n=0. This gives 8(sT)=
T-s(8T) for n>0, 0sT=T- f eT for n=0, and s/=1, all as in (2.5).
Hence S (X) is acyclic, as required.

More generally, consider any homotopy F: X><I --+Y. Regard X><I
as a cylinder on the base X; the boundary of this cylinder is the top
(where F=11) minus the bottom (where F= fo) minus the sides (i.e.,
minus F on (8X)xl). The resulting schematic formula 8F= fl- fo-F8
suggests the definition 8s=fl-fo-s8 of a chain homotopy. These
indications can be made precise, as follows:

Theorem 8.2. 1/ fo- f l : X-->-Y are homotopic continuous maps, the
induced chain transformations S (f 0), S (fl) : S (X) --* S (Y) are chain homo.-
topic.

We reduce this theorem to the special case of the cylinder XxI.
By the base b and the top t of this cylinder we mean the continuous
maps b, t : X -+X xI defined by b (x) = (x, 0) and t (x) = (x, 1) ; they are
clearly homotopic.

Lemma 8.3. For any cylinder there is a chain homotopy u : S (t) - S (b).
The lemma implies the theorem. For let F: XxI-+Y be any homo-

topy F: fo-f1. Then Fb = fo, Ft=t1, and S (F) is a chain transformation.
Define s as the composite

S=S"+1(F) u: S"(X)-+Sn+1(XXI)--+S,,+1(Y)

Then as+s2=S(F)(2u+u8)=S(F)(S(t)-S(b))=S(fl)-S(fo).
To prove the lemma, we prove more : That u = ux : S (X) -+ S (X>< I)

can be chosen simultaneously for all topological spaces X so as to be
natural. For each continuous map g: X-->X' of spaces, naturality
requires that the diagram

S" (X) S"+1(XXI)
is (g) J,s(tx1) (8.4)

S" (X') S" +1(X'X I )

be commutative. Observe that b, t : X -->X x1 are already natural. We
construct such a u by induction on n. For n=0, a singular 0-simplex
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is just a point T(O) of X. Take u0T to be that singular 1-simplex of
X><I defined by (uoT) (x0, x1) = (T(0), x1), so that uoT is the segment
vertically above T(0) in the cylinder X><I. Then do(u0T)=t(T(0)).
d1(u0T)=b(T(0)), so a (uoT) is indeed S (t) T- S (b) T. Moreover uo is
clearly natural.

For n>O, suppose u", has been defined for all m<n, in particular,
au"_l+u"_,a=S(t)-S(b); if n=1, u"_, is zero here. Let J": d"->d"
be the identity map of the standard simplex. We first define uJ"E
S"+1(d" xI) ; its boundary ought to be

auJ"=S(t)JM S(b)I"-u._laJ (8.5)

Now the expression c on the right is a chain of S. (d"xI) ; its boundary is

ac=aS(t)I"-S(b) 8J"-au"_1aI"=(S(t)-S(b)-au"-1) aI",

which is zero by the induction assumption. Hence c is an n-cycle of
d"xI. But d"xI is a convex subset of a Euclidean space, hence is
acyclic by Prop. 8.1. Therefore c is a boundary, say c = as for some
aES"+l(d"xI). We set uJ"=a; then (8.5) holds.

If T : d"--o.X is now a singular simplex of any space X, T= T J" =
S(T)J" and Txt: d"xI-+Xx1. Define uT=S(Tk1)uJ.=S(T><1)a.
This definition immediately satisfies the naturality requirement. To
show that it gives the required homotopy, calculate

0uT=S(Tx1) aa=S(Tx1)[S(t)I"-S(b)I"-u"-I0J.],

where t and b are top and base for d"xI. But t, b, and u"_1 are all
natural, hence (8.5) gives auT = S (t) T - S (b) T - u"-1 aT, as desired.

This type of proof consists in first constructing the desired object
(here, the desired chain homotopy) on a model chain such as J. by
observing that the space d"xI in which the model lies is acyclic, and
in then carrying the object around to other spaces by the maps T.
It is an old method in topology; it will reappear later (Chap. VIII) as
the method of acyclic models. Here it has the merit of avoiding an
explicit formula for the homotopy u.

Corollary 8.4. I/ the continuous maps fo, /1 : X -*Y are honwtopic,
the induced homomorphisms H(/0), H(/1) : H. (X) -+H"(Y) are equal.

Exercises
1. Show that any contractible space is acyclic.
2. In the prism d"xI let 0, 1, ..., is denote the vertices of the base, 0', 1',
n', those of the top. Show that an explicit homotopy u forX=d"in Lemma 8.;

is given, in the notation for affine singular simplices, by
"

1J"-' (- 1)' (o,I,....',i',(i+ 1)', ...n')d"X(.
i-0
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3. For n= 1, 2 as in Ex.2, show that the terms of uJ" correspond to a "tri-
angulation" of the prism d"xI (Draw a figure).

4. Show that d"xI can be "triangulated" as follows. Partly order the vertices
of d"><{0} and d"x{i} by the rule that for e,rj=o, 1, if i-j and
e ri. Take as simplices of the triangulation all those formed by a linearly ordered
subset of the whole set of vertices, and show that the resulting n-simplices are
those appearing in u,," in Ex. 2.

9. Axioms for Homology

Let A be a subspace of X. Identify each singular simplex T: A'--)'.A
of A with the composite map d"-*A-*X; then T becomes a singular
simplex of X and the singular complex S (A) a subcomplex of S (X).
The homology groups of the quotient complex,

H"(X,A)=H"(S(X)/S(A)), (9.1)

are called the relative homology groups of the pair (X, A) of spaces.
They are subquotient groups of the quotient S(X)IS (A), hence can be
rewritten as subquotients

H. (X, A) =C" (X,A)/B" (X, A) (9.2)

of S (X). Specifically C" (X, A) consists of those elements cE S" (X)
with 0cES"_,(A), while B"(X,A)=S"(A),-, 0S"+1(X); the elementsc
of C. (X, A) are known as relative cycles; those of B. (X, A) as relative
boundaries. A single space X may be regarded as a pair of spaces (X, 0),
with 0 the empty set ; then H. (X, 0) = H. (X).

A map /: (X, A)-s(Y,B) of pairs of spaces is by definition a con-
tinuous map l : X --*Y with / (A) < B. With these maps as morphisms,
the pairs of spaces constitute a category, and H. (X, A) is a covariant
functor on this category to abelian groups.

Each pair (X, A) gives a short exact sequence of complexes S (A)
S (X) -s S (X)/S (A). The connecting hmomorphism 8, for this sequence
is called the invariant boundary of the pair (X, A) ; the exact homology
sequence (Thm. 4.1) gives

Theorem 9.1. Il (X, A) is a pair 0/ spaces, the long sequence

... -- H. (A) {'. H"(X)!'. H"(X,A) H"-1(A)--* ... , (9.3)

ending in -*HO (X)-->Ho(X,A)-9.0, is exact.

Specifically, i : (A, 0) --> (X, 0) and j : (X, 0) -> (X, A) are maps
of pairs induced by the identity function, while 8, is given for each
relative cycle c as 9, (clsc) =cls(0c). We have already noted (Example
(1.3)) that i,: H"(A)-+H"(X) need not be a monomorphism; this
exact sequence describes the kernel and the image of i,.
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Two maps /o, /1: (X, A) - (Y, B) of pairs are homotopic if there is
a homotopy F: /o= /1: X -Y with F(AxI) (B; this last condition
means that F cut down to A ><I is a homotopy between /o and /1 cut
down to maps of A into B. An extension of the argument for Thm. 8.2
shows that homotopic maps of pairs have H. (/o) = H, (/1) : H. (X, A)
->H.(Y,B).

The singular homology theory for pairs of spaces thus gives:
1. Functors H (X, A) of pairs of spaces to abelian groups, n=0,

1,

2. Natural homomorphisms 8, : H. (X, A) (A), -n = 1, 2,
These data satisfy the following additional conditions:
3. If X consists of a single point, Ho (X) =Z and H. (X) = 0 for

n>O.
4. For any pair (X, A) the relative homology sequence (9.3) is exact.
5. Homotopic maps of pairs induce equal homomorphisms on each H..
6. (Excision.) If X)A)M are spaces such that the closure of M

is contained in the interior of A, let X-M)A-M denote the sub-
spaces obtained by removing all points of M from X and from A,
respectively. Then the injection k of X- M into X induces isomorphisms
on the relative homology groups

(9.4)

Our discussion has indicated the proofs of all except the sixth
property; a proof of this uses "barycentric subdivisions"; it may be
found in EILENBERG-STEENROD [1952], WALLACE [1957], or HILTON-
WYLIE [1960].

These six properties may be taken as axioms for homology. It can
be proved that when the pair (X, A) can be "triangulated" by a finite
number of affine simplices, any relative homology groups satisfying
the axioms must agree with the singular homology groups. Moreover,
from the axioms alone one can calculate the singular homology groups
of elementary spaces to agree with those calculated from "naive"
subdivisions in §1. In particular, if S' is the n-sphere, one deduces
that H (S") =Z, H0 (S") =Z and H(S0)=0 for 0* i$ n. This, and
other striking geometric properties (Brouwer fixed point theorem, etc.)
are presented in EILENBERG-STEENROD [1952], Chap. XI.

We have now completed our too brief indication of the use of homo-
logy theory in topology.

Notes. "Complex" originally meant simplicial complex; in topology "complex"
has various geometric meanings, such as "cell complex" or "CW-complex". The
chain complex in our purely algebraic sense was introduced by MAYER [1929.
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t938). The formulation of exact homology sequences, as codified in KELLEY-PITCHER
[1947], allowed a systematic treatment of simple facts which previously were done
"by hand" in each case. POINCAR$ introduced homology, via Betti numbers;
it was Emmy NORTHER who emphasized that the homology of a space deals with
a homology group rather than just with Betti numbers and torsion coefficients.
Singular homology in its present form is due to EILENBEEG; the axioms for homo-
logy theory, with application to other homology theories (LEECH theory) appear
in the influential book by EII.ENBERG-STEENROD. Additive relations have been
explicitly recognized only recently [LuaxiN 1960, MAC LANE 1961, PUPPE 1962].
The corresponding notion for multiplicative groups occurs in WEDDERBURN [1941],
ZASSENHAUS [1958], and for general algebraic structures in LORENZEN [1954] and
LAMBEx (1958).

Chapter three

Extensions and Resolutions

A long exact sequence of R-modules

O-*A-*B»_1-- ...

running from A to C through n intermediate modules is called an
"n-fold extension" of A by C. These extensions, suitably classified by
a congruence relation, are the elements of a group Ext" (C, A). To cal-
culate this group, we present C as the quotient C=F/Se of a free module
FO; this process can be iterated as So=Fr/S1, S1=F2/S2, ... to give
an exact sequence

... -i--F"-->F»_1--i. ... -1-4 ->`Fo-).C--*0

called a "free resolution" of C. The complex Horn (F», A) has cohomology
Ext"(C,A). Alternatively, one may imbed A in an injective module Je
(§7) and then J,/A in an injective module J1; this process iterates to
give an exact sequence

called an "injective coresolution" of A. The complex Horn (C, J») has
cohomology Ext" (C, A). In particular, Ext' (C, A) is often called Ext (C, A).

The chapter starts with the definition of Extl, which is at once
applied (§4) to calculate the cohomology of a complex of free abelian
groups from its homology. The chapter ends with a canonical process
for imbedding any module in a "minimal" injective.

1. Extensions of Modules

Let A and C be modules over a fixed ring R. An extension of A
by C is a short exact sequence E = (x, a) : A -+ B -I C of R-modules and
R-module homomorphisms. A morphism r: EKE' of extensions is a
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triple r= (a, fi, y) of module homomorphisms such that the diagram

E: 0--. A"-, B °.C.... 0
,Jr 1- 1a 1' (1.1)

E' : 0 A' - B' C'--. 0

is commutative. In particular, take A'=A and C'= C; two extensions
E and E' of A by C are congruent (E- E') if there is a morphism
(IA, #, U: E -*E'. When this is the case, the short Five Lemma shows
that the middle homomorphism j9 is an isomorphism; hence congruence
of extensions is a reflexive, symmetric, and transitive relation. Let
ExtR (C, A) denote the set of all congruence classes of extensions of A
by C.

An extension of A by C is sometimes described as a pair (B, 0) where
A is a submodule of B, and 0 is an isomorphism B/A C. Each such
pair determines a short exact sequence

A by C is congruent to one so obtained.
One extension of A by C is the direct sum A.- A®C -3-C. An ex-

tension E = (x, a) is said to be split if it is congruent to this direct sum
extension; as in Prop. 1.4.3, this is the case if and only if a has a right
inverse ,u : C -> B (or, equivalently, x has a left inverse). Any extension
by a projective module P is split, so ExtR(P,A) has but one element.
To illustrate a non-trivial case, take R=Z. Then, for example, the addi-
tive group 2Z of even integers has two extensions by a cyclic group Za
of order 2: The direct sum 2Z®Z. and the group Z) 2Z. This is a
special case of the following fact:

Proposition 1.1. For any abelian group A and for Z,,,(c) the cyclic
group of order m and generator c there is a 1-1 correspondence

rl : Extz (Z, (c), A) =A/mA,

where mA is the subgroup of A consisting of all ma for aEA.

Proof. Take any extension E of A by Z.; in the middle group B
choose an element u with au=c to serve as a sort of "representative"
of the generator c. Each element of B can be written uniquely as b=xa
+hu for some aEA and some integer h, h=0, ..., m-1. Since me=0,
a(mu) =0, so mu=xg for a unique gEA. This g determines the "addition
table" for B, because

(xa+hu)+(xa'+h'u)=x(a+a')+(h+h') u, h+h'<m,
=x(a+a'+g)+(h+h'-m) u, h+h'zm.

The element g is not invariant; the representative u may be replaced
by any u' = u+ x f for f E A, thus replacing g by g' = g+ ml. The coset
g+mA in A/mA is uniquely determined by the extension E. Set n (E) _
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g+mA. If E= E', 27 (E) =r? (E'). If g is any element of A, take for B
the set of all pairs (a,h) with aEA, h=0, ..., m-I and define addition
of pairs, using g, as in the table above. This addition is associative,
makes B a group, and gives an extension E with (E) =g+ mA. Hence
q is 1-1 onto A/mA.

Now 17 is a correspondence between a set Extz and an abelian group
A/m A ; this suggests that ExtR (C, A) is always an abelian group. We
shall shortly show this to be so. First we show that Ext is a functor,
on the category of modules to that of sets.

Let A be fixed. To show ExtR (C, A) a contravariant functor of C
requires for each E E ExtR (C, A) and each y : C'--*C a suitable extension
E'= y E E ExtR (C', A). This E' may be denoted by Ey, and is described
by the following lemma, which shows E' unique and which hence easily
implies the congruences

E1c=E, E(yy')n(Ey)y'. (1.2)

They state that E depends contravariantly upon C; note, in particular,
that the notation Ey, with y behind, gives the good order for multi-
plication of y's in the second equation (1.2).

Lemma 1.2. Il E is an extension of an R-module A by an R-module C
and i/ y: C'--C is a module homomorphism, there exists an extension E'
of A by C' and a morphism T= (1A, fi, y) : E'-+E. The pair (T, E') is
unique up to a congruence of E'.

Existence proof: In the diagram

E': 0 --> A C' -, 0
R is r (1.3)

E: 0--> A "+B C .--, 0

the sides and the bottom are given; we wish to fill in the module at
" ? " and the dotted arrows so as to make the diagram commutative
and the top row exact. To do so, put at ? that subgroup B'( B® C'
which consists of the pairs (b, c') with ob=yc'; define a' and fi as
a'(b, c') = c', fi (b, c') = b. This choice insures commutativity in the right-
hand square of (1.3). With the definition x'a=(xa,0) the diagram is
completed; the remaining conditions may be verified.

Uniqueness proof : Take any other such E" with a morphism P'=
(1 A, fi", y) : E"-+E. If B" is the middle module in E", define P': B", B'
by 'b" "b" a"b" then 1'- 1 1c,): E"-+E' is a congruence
and the composite E"-*E'-+E is r,,, so that the diagram r: E'--),.E
is unique up to a congruence to of E', as asserted.

We call E' = Ey the composite of the extension E and the homomor-
phism y; the type of construction involved occurs repeatedly, for
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instance, in the study of induced fiber spaces (where y is a fiber map!).
Algebraically, E' has the following "couniversal" property:

Lemma 1.3. Under the hypotheses of Lemma 1.2 each morphism
r, = (al, P1, yl) : El -E of extensions with y, = y can be written uniquely
as a composite

E, (=,.A'.1)O-Ey MAY) (1.4)

More briefly, r, can be "factored through" r: Ey-*E.

Proof. Here E, = (x, , al) has the form A1-. B, --s C'. (Draw the
diagram!) Define fi' : B, B' as fl'b, = (fl, b,, a, b,). This is the only way
of defining fl' so that 0, = 0' and so that the diagram (a,, fi', 1) : E, -). E'
will be commutative. The verification that this fi' yields the desired
factorization (1.4) is routine.

Incidentally, this factorization includes the uniqueness assertion of
Lemma 1.2, in as much as F" = (1 A, fi", V): has by (1.4) the fac-
torization (1, fl", y) = (1, fl, y) (1, fi', 1) with the factor (1, fi', 1) : E"-- E'
a congruence.

Next we show Ext (C, A) to be a covariant functor of A, for fixed C,
by constructing for each E and for each a: AAA' a "composite" ex-
tension E'= aE, characterized as follows:

Lemma 1.4. For EEExt(C,A) and a: A-*A' there is an extension
E' of A' by C and a morphism T = (a, p, 1c): E --*E'. The pair (I', E')
is unique up to a congruence of E'.

Proof. We are required to fill in the diagram

E: O-. A-4 B °. C--.O
I. ii (1.5)

at the question mark and the dotted arrows so as to make the diagram
commutative and the bottom row exact. To do so, take in A' (D B
the subgroup N of all elements (-aa, xa) for aEA. At "?" in the
diagram put the quotient group (A'(D B)/N, and write elements of this
quotient group as cosets (a', b) + N. Then the equations x'a' = (a', 0) + N,
a'[(a', b)+N)=ab and flb=(0,b)+N define maps which satisfy the
required conditions. That the E' so constructed is unique may be proved
directly or deduced from the following "universal" property of E'.

Lemma 1.5. Under the hypotheses of Lemma 1.4, any morphism
r, = (c,, #I, y,): E - E, of extensions with a, = a can be written uniquely
as a composite

E cw0''I. aE cI'B'.r`) E1.

More briefly, r, can be "factored through" E -tea E.
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Proof. If El =(x1, a1) with middle module B1, a homomorphism
(A'(DB)/N- .B1 may be defined by #'[(a', b)+N]=xla'+ Aab. One

then verifies that Y1= #'#, that (1A' , A', yl) is a morphism of extensions,
and that this fl' is uniquely determined, completing the proof.

The uniqueness properties of aE yield congruences

1AE=E, (a a') Ema(a'E).
Hence Ext (C, A) is a covariant functor of A. The fact that it is a bi-
functor (of A and C) is demonstrated by the following result:

Lemma 1.6. For a, y, and E as in Lemmas 1.2 and 1.4 there is a
congruence o/ extensions a(Ey)= (a E) y.

Proof. By the definitions of Ey and aE there are morphisms
P.P.-Y) (a'#""

with composite (a, fis Y1, y) : Ey--.aE. By Lemma 1.3, the extension
(a E) y is couniversal for such maps; that is, (a, /J Yl, y) has a factoriza-
tion

(" fr. 1) MAY)Ey - (aE) y aE.
Now the left hand map is exactly the sort of morphism of extensions
used in Lemma 1.4 to define a (Ey) from Ey. Hence, by the uniqueness
assertion of that lemma, a (Ey) m (a E) y, q. e. d.

To illustrate one use of these lemmas, we prove:

Proposition 1.7. For any extension E= (x,a) the composite extensions
xE and Ea are split.

Proof. The diagram

E 0-. A _% B -°.C-. 0

E':
with v defined by vb= (b, ab), is commutative. Hence the definition
of x E in Lemma 1.4 shows that x E is given by the bottom row, hence
is split. Let the reader display the dual diagram which splits Ea.

Proposition I.S. Any morphism r, =(a,#, y) : E.-*E' o/ extensions
implies a congruence a E m E'y.

Proof. By the universal property of aE (Lemma 1.5), the map r,
can be factored through I': E -+a E as r = r r, where r,= (1 A,, fig, y) :
aE-+E'. This last map characterizes aE as E'y, by Lemma 1.2.

2. Addition of Extensions
The direct sum A e C of two modules may be regarded as a covariant

bifunctor of A and C, since there is for any two homomorphisms
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a: A-*A' and y: C-*C' a homomorphism

a®y: A®C-+A'®C'

with the usual properties (a ®y) (a' ®y') = a a' ®y y' and 'A ®IC=
1 A ®c . This homomorphism may be defined by setting ((x®y) (a, c) =
(aa, yc) or as the unique homomorphism in the middle which renders
the diagram

A<--A0C-*C
la aer

IV

A'*-- A'(D C'-* C'

commutative. Here each row consists of projections of the direct sum,
as in (1.8.12).

The diagonal homomorphism for a module C is

d=Ac: C--.C®C, d(c)=(c,c). (2.1)

It may also be described as that map which renders

C C C

11 1 -d 11

C4LC®C4'.C

commutative. The codiagonal map for a module A is

P=PA: V(a,,a=)=al+as; (2.1')

it has a dual diagrammatic description by 17i1=14=17i2: A-*A. The
maps A and V may be used to rewrite the usual definition of the sum
f+g of two homomorphisms f, g: C--*A as

/+g=VA(J®g) Ac; (2.2)

the reader should verify that (f+g)c is still f c+gc under this formula.
Given two extensions Ei = (x;, oi) : A;- B4 -> C; for i=1,2, we

define their direct sum to be the extension

(2.3)

We now make Ext (C, A) a group under an addition which utilizes (2.3).

Theorem 2.1. For given R-modules A and C the set ExtR (C, A) of
all congruence classes of extensions of A by C is an abelian group under
the binary operation which assigns to the congruence classes of extensions
E1 and E. the congruence class of the extension

El+E,=PA(El®E,) Ac. (2.4)
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The class of the split extension A -C is the zero element of this
group, while the inverse of any E is the extension (-1A)E. For homo-
morphisms a: A-+A' and y: C'--)..C one has

a(E1+E$)=aE1+aE2, (E1+E:1 y=Ely+Esy, (2.5)

(a1+as) Ea,E+a,E, E(y1+y:)=Eyi+Eys. (2.6)

The composition (2.4) is known as the Baer sum; the rules (2.5)
state that the maps a, : Ext (C, A) - .Ext (C, A') and y*: Ext (C, A) -s
Ext (C', A) are group homomorphisms.

We give two different proofs. The first is "computational"; it is
like the calculation made in to show that Extz (Z,,., A) is the group
A/mA.

Take any extension E = (x, a) of A by C, with a: B -> .C. To each c
in C choose a representative u (c) ; that is, an element u (c) E B with
au(c)=c. For each rER, the exactness of E gives ru(c)-u(rc)ExA;
similarly, c, d E C have u (c + d) - u (c) - u (d)E x A. Hence there are ele-
ments / (c, d) and g (r, c) E A with

u(c)+u(d)=xf(c,d)+u(c+d), c, dEC. (2.7a)

ru(c)=xg(r,c)+u(rc), rER, cEC. (2.7b)

Call the pair of functions (/, g) a factor system for E. Let FR (C, A) denote,
during this proof, the set of all pairs (f,g) of functions / on CxC to A
and g on RxC to A. Each factor system is an element of FR(C,A),
and F. is a group under termwise addition ; that is, with (fl+ /2) (c, d) =
fl(c,d)+fs(c,d).

The factor system for E is not unique. For any different choice
of representatives u'(c) we must have u'(c)=xh(c)+u(c) for some
function h on C to A. One calculates that

u'(c) + u'(d) =x [h (c) +h (d) - h (c+ d) + f (c, d)] +u'(c+ d) ,
ru'(c)=x[rh(c)-h(rc)+g(r,c)]+u'(rc).

The new factor system f'(c,d), g'(r,c) for the representatives u' is
then given by the expressions in brackets in these equations. We may
express this fact differently: To each function h on C to A there is an
element (8ch, 6Rh)EFR(C,A) defined by

(8ch) (c, d) = h (c) + h (d) - h (c+ d). (8Rh) (r,c)=rh(c)-h(rc).

The factor system /', g' for representatives u' then has the form (f', g') _
(f, g) + (8c h, 6R h). Conversely, any such function h can be used to change
representatives in an extension. Thus, if we denote by SR(C,A) the
subgroup of all those pairs of functions in FR(C,A) of the form (8ch,
6Rh), the factor system (f,g) of E is uniquely defined modulo SR (C, A).
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Use the factor group FR (C, A)/SR (C, A) ; to each extension E assign
the coset w (E) of any one of its factor systems (/, g) in this group FR/SR.
Then co (E) is uniquely determined by E.

A congruence of extensions maps representatives to representatives;
hence congruent extensions have the same factor systems. It follows
that w is a 1-1 mapping of the congruence classes of extensions to a
subset of the abelian group FR (C, A)/SR (C, A). To show Ext (C, A) an
abelian group under the Baer sum it now suffices to show that

w(El+E2)=w(E1)+w(Es). w[(-14)E]=-w(E).
The first follows by calculating a factor system for El ® E2, and thence
for E1+E.. The second follows by observing (draw the diagram!) that
(-1 d) E is obtained from E just by changing the sign of the map
x: A ,- B and hence by changing the signs of / and gin the factor system.
Finally, the split extension E. has (0,0) as one of its factor systems,
hence is the zero of this addition.

It is also possible (see the exercises) to characterize directly those
pairs of functions (/, g) which can occur as factor systems for an exten-
sion, and hence to show that ExtR (C, A) is an abelian group without
using the Baer sum at all.

The proof of (2.5) is easy; FR (C, A)/SR (C, A) is a bifunctor, and w
is a natural homomorphism. The proof of (2.6) is similar.

We now turn to the second (conceptual) proof of the theorem. For
the direct sum (2.3) of two extensions E; the congruences

(ai (D as) (El ®Es) m al El ® as Es, (2.8)

(El ®Es) (Y, ® ys) = El Yi ®Es Ys. (2.9)

may be proved by the lemmas of §1 which characterize the composite
extensions E;yi and aiEi. For a: A->A' one calculates easily that

a V=V (a®a): A®A-i-A', (2.10)

and similarly for y: C'-+C that

dy=(y®y)d: C'--*C®C. (2.10')

Now we can prove the assertion (2.5) of the theorem by the string of
congruences

a(Ei+Es)aV(El®Es)d=V(a®a) (El®Es)d
V(aEl®aEOd-aE,+aEs;

the second half is similar. The proof of (2.6) is parallel to this once we
know that

dEm (E(D E)A, EV=V(E®E). (2.11)
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Since WA , dB, dc) : E -- E ® E is a morphism of extensions, the first
of these identities follows from Prop. 1.8. Similarly, (V, V V) : E ®E -> E
gives the second.

Now let us show that the Baer sum (2.4) makes Ext a group. The
associative law follows from the definition (2.4) once we know that the
diagonal and codiagonal satisfy the identities

(d®1c)d=(1c(Dd)d: C--),.C®C®C, (2.12)

V(V®1A)=V(1A®V): A®A®A-->A. (2.12')

These follow directly from the definition of d or V, provided we identify
(C ® C) ® C with C ® (C ® C) by the obvious isomorphism. To prove
the commutative law for the Baer sum, use the isomorphism rA : A, ®A3
-*A2® A, given by TA (a,, as) = (as, a,) (or, if you wish, by univer-
sality and a suitable diagram!). The morphism (rA, rD, rc): (E1®E2)-*
Es ® E, shows that TA (E, (D E2) _ (Es ® E,) rc; a calculation or a dia-
gram proves that VA rA = VA and that do = rcdc. Hence we get the
commutative law by

E,+Es=V(E,®E2)d=Vr(E,®E3)d
V(E2®E,)rd=V(Es(D E,)d=Es+E,.

To show that the split extension E0 acts as the zero for the Baer sum,
first observe that for any E E Ext (C, A) there is a commutative diagram

E: O-*.A-,B *,C-+O
1° 1' 1!

E°: O-1,- A-*A®C-+ C-> O,

where v is the map vb=(0, ab)=csab. This diagram asserts that the
split extension E0 can be written as the composite E° =OA E, with 0A :
A ->A the zero homomorphism. Now the distributive law gives E+ E°
1AE+0AE=(1A+OA)E-1AE-E. A similar argument shows that
(-1A) E acts as the additive inverse of E under the Baer sum. Our
second proof of the theorem is complete.

The second distributive law (2.6) contained in this theorem may be
expressed as follows. For each a: A-*A' let a,: Ext(C,A)-*Ext(C,A')
be the induced homomorphism, and similarly set y* E = E y. Then
(yi +y.*) E=yi E+y. E, so (2.6) may now be written

(a1 + aa) * = (ai) * + (a2) (Yy + Y2 (y) * + (Y2) *.

A bifunctor with this property is said to be additive. Exactly as in
(I.6.5), this property gives natural isomorphisms

Ext(C,A,(D As)-Ext(C,A,)®Ext(C,A2),
Ext(C,ED C2,A)_Ext(C,,A)®Ext(C.,A).
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For R=Z and C a finitely generated abelian group, these formulas,
with Prop. 1.1 and ExtZ (Z, A) = 0, allow us to calculate ExtZ (C, A).

Corollary 2.2. If the finite abelian groups A and C have relatively
prime orders, then every extension of A by C splits.

Proof. Let m and is be the orders of A and C, and let p,,,: C---.C
be the homomorphism µ,,, c = m c given by multiplication by m in C.
Since m and is are relatively prime, there is an m' with m'm-1 (mod n) ;
hence µ,,, is an automorphism, and every element of Ext (C, A) has the
form E,u,,, for some E. But Ic + + 1c, with m summands, so

Eµm=E(lc+ ...+1c)=(1A-}

where va,: A--.A is vm(a)=ma=0, q.e.d.

Exercises
In the following exercises it is convenient to assume that all factor systems

(/,g) satisfy the "normalization conditions"

/(c,O)- 0=/(0,d), g(r,0)-0.

This can always be accomplished by using representatives u with u (0) - 0.

1. For abelian groups (i.e., with R=Z) show that a "normalized" function
on C><C to A is a factor system for extensions of abelian groups if and only if
it satisfies the identities

1(c,d)+1(c+d.e)=/(c,d+e)+1(d.e), 1(c,d)=1(d,c),

which correspond respectively to the associative and commutative laws.

2. If GZ(C,A) is the set of normalized functions / satisfying the identities of
Ex.1, show that Extz(C,A) asGZ(C,A)/SZ(C,A).

3. Do the analogue of Ex. I for any ring (identities on factor systems consisting
of two functions f and g).

3. Obstructions to the Extension of Homomorphisms

We have already observed that the functor Hom does not preserve
exact sequences, because a homomorphism a: A-*.G on a submodule
A ( B cannot always be extended to a homomorphism of B into G
We can now describe a certain element aE of Ext(BIA,G) which
presents the "obstruction" to this extension.

Lemma 3.1. Let A be a submodule of B, and E: A > - + the
corresponding exact sequence, with C=BIA. A homonwrphism a: A-3,. G
can be extended to a homomorphism B--*G if and only if the extension
a E splits.
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Proof. Suppose first that a is extendable to &: B--.G. Form the
diagram E: O+A-.B ° .C-.0

la i II

E': 0-->G".G®C---* C-). 0,

where E' is the external direct sum with injection h, projection mss.
Fill in the dotted arrow with the map The
resulting diagram is commutative, hence yields a morphism E -. E'.
According to Lemma 1.4, E' m aE. Since E' splits, so does (xE.

Conversely, assume that aE splits. The diagram

E: o--).A-. B-.C-+O
la la II

aE: 0--.G B'-.C-.0,
Sft

used to define aE yields a map n1 fl: B-+G which extends a. The lemma
is proved.

The assignment to each a: A-.G of its obstruction aE is, by (2.6),
a group homomorphism

E*: HomR (A, G) -+ExtR (C, G).

Call this the connecting homomorphism for the exact sequence E.
Theorem 3.2. 1/ E: A A. B C is a short exact sequence o/ R-modules,

then the sequence

0 - HomR (C, G) -. HomR (B, G) HomR (A, G)

ExtR (C, G) °: ExtR (B, G) » ExtR (A, G) 1
(3 1)

of abelian groups is exact for any R-module G.

Proof. We already know exactness at Hom (C, G) and Hom (B, G)
by (I.6.7). Lemma 3.1 gives exactness at Hom(A, G). By Prop. 1.7.
a*E*=(Ea)*=0. Conversely, to show kernel contained in image at
Ext (C, G) we must take an El E Ext (C, G) such that E1 a splits and show
E1 the obstruction for some map A-.G. The fact that E1 splits gives
a commutative diagram A

1~
E1o: O -.IG ->G I®B'4- IB-s0

E1: 0-.G-` .B1! .C-).0.
The splitting map u followed by fi yields (l1=T u: B--.B1 (dotted
arrow above) which makes the right hand lower triangle commutative.
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Therefore a1/J x=ax=0. But E1 is exact, so fl1x factors as x1a1 for
some al : A -,-G. Then ((xl , fi1, 1). E ->E1 is a morphism of exact sequences
which states E1-a1 E.

An analogous argument yields exactness of the sequence at ExtR (B, G)
and hence completes the proof of the theorem.

This theorem asserts that the functor Ext repairs the inexactitude
of Horn on the right. At the same time Ext presents a new inexactitude:
On the right in (3.1), ExtR (B, G) -+ExtR (A, G) is not always an epi-
morphism (see exercise). To describe the cokernel we need a new functor
Ext2.

Turn now to the problem : When can a homomorphism y : G -> B/A
be "lifted" to B; that is, when is there a P: such that y is the
composite G -> B --. B/A ? This yields a dual to the previous lemma.

Lemma 3.3. Let C= B/A be a quotient module, E the corresponding
exact sequence. A homomorphism y: G --> B/A can be lifted to a homomor-
phism P: G -->B it and only it the extension Ey splits.

The proof is exactly dual to that of Lemma 3.1, in the sense that
all arrows are reversed and that direct sums are replaced by direct
products. Again, call EyEExt(G, A) the obstruction to lifting y. The
assignment to each y: G->C of its obstruction Ey is a group homo-
morphism

E.: Horn (G, C) --- o-Ext (G, A)

called the connecting homomorphism for E.

Theorem 3.4. It E: A -' B C is a short exact sequence of R-modules,
then the sequence

0-;HomR(G, A)-*HomR(G, B)-+HomR(G, C)
s: ExtR (G, A) -+ExtR (G, B) -*ExtR (G, C) f3 2)

is exact for any R-module G.
The proof is dual to that of Thm. 3.2.

Theorem 3.5. An R-module P is projective it and only it ExtR (P, G) = 0
for every R-module G.

By Thm.I.6.3, P is projective if and only if every extension by P
splits. Thm. 3.2 provides the following way to calculate the group Ext.

Theorem 3.6. 1/ C and G are given modules and it F: K 4 Pa.C
is an exact sequence with P projective, then

ExtR (C, G) - HomR (K, G)/x' HomR (P, G). (3.3)

In particular, the group on the right is independent (up to isomorphism)
of the choice of the short exact sequence F.
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Proof. In (3.1) replace E by F. Since P is projective, ExtR (P, G) = 0,
and the exactness of (3.1) gives the formula (3.3) for ExtR (C, G).

Since any module C can be represented as a quotient of a free module,
one may always calculate ExtR (C, G) by (3.3) with P free. For example,
the exact sequence Z > : Z ->Z/mZ, with x multiplication by the integer
m, provides a representation of the cyclic group Z. as a quotient of Z.
Since Hom (Z, A) =A under the correspondence which maps each
f : Z--i-A into f (1), we obtain an isomorphism Extz(Z.,A)-A/mA. The
correspondence is that already used in Prop. 1.1.

Proposition 3.7. For abelian groups the sequences of Thms.3.2 and
3.4 remain exact when a zero is added on the right.

Proof. In the case of Thm. 3.2 we must show that x: A >- B a mono-
morphism implies x*: Ext (B, G) -> Ext (A, G) an epimorphism. To this
end, take a free abelian group F, an epimorphism p: F-.B with kernel K,
and let L be q'1(xA). Then 9, maps L onto xA with the same kernel K,
giving a commutative diagram

E1: O-). K--3,. L-+A->0

it 1 1x
E8 : 0 - K -3,. F W. B -> 0

with exact rows E1, E2 and hence E1= E2 x. This yields a commutative
diagram

Hom (K, G) .? Ext (B, G)

II

Hom (K, G) '. Ext (A G) --> Ext (L, G) ;

the bottom row is exact by Thm. 3.2. But L, as a subgroup of the free
abelian group F, is itself free. By Thm. 3.5, Ext (L, G) = 0, hence E1
is an epimorphism in the diagram, and so is r.', q. e. d.

In the case of Thm. 3.4 we are given E : A >-. B - C exact and we must
show Ext (G, B) --o-Ext (G, C) an epimorphism. Represent any element of
Ext (G, C) by an exact sequence S: C-D->G. Since p: C-->D is a mono-
morphism, the case just treated shows that there is an exact sequence
E': A *M-sD with to*E'=E. This states that we can fill out the
following commutative diagram so that the first two rows and the last
column will be exact

E: 0-->A-.B--.C->0
II

xN

E': 0->A.... 1 >D0
Y

G=G
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A diagram chase then shows the middle column exact. This middle
column provides an element of Ext (G, B) mapping on the last column
S E Ext (G, C), as desired.

Note that the diagram above is symmetric: Given exactness of the
top row and the right column, exactness of the middle row is equivalent
to exactness of the middle column. The case of Thm.3.2 asserts that
the diagram can be filled out so that the middle row is exact, while the
case of Thm. 3.4 asserts that the diagram can be filled out so the middle
column is exact. The same fact can be stated in subgroup language as
follows :

Corollary 3.8. Given abelian groups D and A< B and a momomorphism
u: B/A+D, there exists an abelian group M)B and an extension 0/ µ
to an isomorphism MIA D.

This amounts to the construction of a group M from a given sub-
group B and an "overlapping" quotient group D.

Exercises
1. (Inexactitude of Ext on the right.) Let R= K[x,y] be the polynomial ring

in two indeterminates x and y with coefficients in a field K and (x,y) the ideal
of all polynomials with constant term 0. The quotient module R/(x,y) is isomorphic
to K, where K is regarded as an R-module with xk= O= yk, for all k E K. and
E: (x,y)r-iR K is an exact sequence of R-modules. Show that ExtR(R,G)-
ExtR((x,y),G) is not an epimorphism for all G. by choosing an extension on
the right in which (x,y) is represented as the quotient of a free module in two
generators.

2. Show similarly that the sequence of Thm.3.4 cannot be completed with
a zero on the right.

3. Show that Cor.3.8 amounts to the following (self-dual) assertion: Any
homomorphism a: B -+D of abelian groups can be written as a composite a- tv
with v a monomorphism, s an epimorphism, and Ker r = v (Kera).

4. Give a direct proof of the second half of Prop.3.7. (Write G as quotient
of a free group.)

5. Prove Prop. 3.7 for modules over a principal ideal domain.

6. For p a prime number and C an abehan group with pC=0, prove
Ext2(C,G)a Homz(C,G/pG) [EILENBERG-MAC LANE 1954, Thm.26.5].

7. For p a prime, P the additive group of all rational numbers of the form
m/p', m, eEZ, and Z(P) the additive group of p-adic integers, prove

ExtZ(P,Z)°LZ(P)/Z [EILENBERG-MAC LANE 1942, Appendix B].

4. The Universal Coefficient Theorem for Cohomology

As a first application of the functor Ext we give a method of "cal-
culating" the cohomology groups of a complex for any coefficient group
from the homology of that complex - provided we are dealing with
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complexes of free abelian groups or of free modules over a principal
ideal domain.

Theorem 4.1. (Universal Coefficients.) Let K be a complex of free
abelian groups K. and let G be any abelian group. Then for each dimension
n there is an exact sequence

(4.1)

with homomorphisms fi and a natural in K and G. This sequence splits,
by a homomorphism which is natural in G but not in K.

The second map a is defined on a cohomology class, cls f, as follows.
Each n-cocycle of Hom (K, G) is a homomorphism f: K,--). G which vanishes
on OKi+1, so induces /,,: H. (K) -*G. 11 f = Sg is a coboundary, it vanishes
on cycles, so (8g),=0. Define a(clsf)=f,.

Proof. Write C. for the group of n-cycles of K; then
is isomorphic to the group of (n-1)-boundaries of K. The bound-
ary homomorphism 8: factors as

K.-1, (4.2)

with j the projection, i the injection. The short sequences

T.: S.: (4.3)

are exact, the second by the definition of H. as C. 18K.. The coboundary
in the complex Hom(K,G) is 4=±8', where 8*:
Hom (K,,, G) is induced by 8. This complex appears as the middle row
in the diagram

0 0

T 1

0 -+ Hom (H., G) Horn (C,,, G) a-+ Horn (D.+1, G)
ti.

-+Hom(K._1,G) -°.Hom(K.+1,G)-s...
,. .

e-s.Hom

t.

(D., G) - Ext(ILs_1,G)-+0.
I t
0 0

This diagram is commutative up to a sign (that involved in the defini-
tion &=± In the diagram the fundamental exact sequence (Thm. 3.2)
for Hom and Ext appears several times. The top row is the exact se-
quence for S,,, the bottom that for with the right-hand zero
standing for which vanishes because is free.
The columns are (parts of) the exact sequences for T,,, and
the zero at the middle top is zero because D. is free.
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The cohomology of the middle row is Kero/Ima. Since j* is a mono-
morphism and i* an epimorphism, it is Ker (a' * i*)/Im (j* a' *), and is
mapped by i* onto Ker a' *, isomorphic to Horn (H", G) by exactness
of the top row. The combined map is a. Its kernel is Im j*/Im (j* a'*);
as j* is a monomorphism, this is Ext(H"_1,G), by exactness of the
bottom row. This proves (4.1) exact, with ft described in "switchback"
notation as cls j* (S:-,) -1, hence natural.

To split the sequence (4.1), observe that D,, B"_1<K"_1 is free, so
the sequence T. of (4.3) splits by a homomorphism p: with
j T =1 D. Then q9* j * = 1, so S"**_ 1 q;* cls-1 is defined and is a left inverse
for fl= j* (S"**__,)-1. This left inverse depends on the choice of the maps q)
splitting T.. Such a choice cannot be made uniformly for all free com-
plexes K, hence qJ* is not natural in K (but is natural in G for K fixed).

This proof uses several times the fact that subgroups of free abelian
groups are free. The analogous statement holds for free modules over a
principal ideal domain; hence the theorem holds for K a complex of
free modules over such a domain D (and G a D-module). The most
useful case is that for vector spaces over a field. Here Thm.4.1 gives

Corollary 4.2. If K is a chain complex composed of vector spaces K.
over a field F, and if V is any vector space over that field, there is a natural
isomorphism H" (K, V) =_e Horn (H" (K), V).

In particular, when V =F, H" (K, F) is the vector space dual of H. (K).
Thm. 4.1 is a special case of a more general result which "calculates"

the homology of the complex Hom (K, L) formed from two complexes K
and L. Recall (11 .3-4) that Hom (K, L) is a complex with Hom" (K, L) =
jj Hom (Kp , L p+,,) and with the boundary a = aH of any n-chain
p

/={/p: Kp-+Ly+"} given by

(aHf)pk=OLVpk)+(-1)"+1fp-1(0Kk), kEKp. (4.4)

The general theorem reads

Theorem 4.3. (Homotopy Classification Theorem.) For K and L
complexes of abelian groups with each K. free as an abelian group, there
is for each n a short exact sequence

jj Ext (H,, (K), Hp+"+1 (L)) >00 H. (Horn (K, L))p-- (4.5)
3 N Hom (Hp (K), Hp+"(L))

with homomorphisms fi and a which are natural in K and L. This sequence
splits by a homomorphism which is not natural.

Change lower indices here to upper indices by the usual convention
H_"= H" and assume L = Lo = G with boundary zero ; then each of
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the products has at most one non-zero term, and (4.5) becomes (4.1).
In general, if we shift the indices of L by n (and change the sign of the
boundaries in L by (-1)") we shift Li (Hom (K, L)) to Ha (Horn (K, L)) ;
hence it suffices to prove the theorem when n=0. Now a 0-cycle of
Hom (K, L) is by (4.4) just a chain transformation /: K -*L ; as such
it induces for each dimension p a homomorphism (/p),: Hp (K) --J.-Hp (L).
The family of these homomorphisms is an element / , = {(/p),} E
ji Hom (Hp (K), Hp (L)). Any f' homotopic to / induces the same homo-
p

morphism /,. Since an element of Ho (Hom (K. L)) is just a homotopy
class, cls /, of such chain transformations (Prop. 11 .3.2), the assignment
a (cls/) = /, determines the natural homomorphism a for the theorem.
The definition of the homomorphism fi is more subtle and will be given
below. We first treat a special case of the theorem.

Lemma 4.4. If the boundary in K is identically zero, then a=ao is
an isomorphism

00

oco: Ho (Hom (K,L))= fJ Hom (K., Hp (L)).
p- -00

Proof. Since 8K = 0, Hp (K) = Kp. Let Cp (L) denote the group of
p-cycles of L, while B,(L) is that of p-boundaries. Any g= {gp} E
ji Hom (K., Hp (L)) consists of homomorphisms gp: Kp - .H, (L) ; since
K is free and C. (L) -s Hp (L) is an epimorphism, each gp can be lifted
to gp : Kp -i,. Cp (L). These gp with range extended to Lp) Cp (L) constitute
a chain transformation f : K -+ L with ao (cls f) = g. Thus ao is an epimor-
phism.

To show ao a monomorphism, suppose ao (cls/) = 0 for some f. For each
p this means that /p (Kp) < Bp (L). Since 8: Lp+1 - Bp (L) and K. is free,
the map /p can be lifted to sp: K,-+L,+1 with 8s,=/p. Since sp_18=
sp_14=0, this equation may be written 1p=8s,+sp_18. This states
that / is chain homotopic to zero, hence cls/=0 in H0(Hom(K,L)).
Thus Ker ao=0, and the lemma is proved.

Now consider the general case of Thm.4.3, using the notation (4.2)
and (4.3) in K. The family of groups CK<K can be regarded as a com-
plex with boundary zero. A similar convention for D gives an exact
sequence

0--.C-s+K ;.D-.0 (4.6)

of complexes. Apply the functor Hom (-, L) to get another exact
sequences of complexes

E : 0 --. Hom (D, L) !Z. Hom (K, L) - Hom (C, L) -+0,

where the zero on the right stands for Ext (D, L), which vanishes because
is a subgroup of a free group, hence free. The exact
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homology sequence of E reads

....a', HO (Horn (D, L)) --'*+ HO (Horn (K, L)) HO (Horn (C, L))

with the connecting homomorphisms, for n =1 and n = 0,

aE.,,:

The middle portion of this sequence can be expressed in terms of aE
as a short exact sequence

0-Coker aE,I--*H.(Horn aE,o--* 0. (4.7)

This is a short exact sequence with middle term HO(Horn (K,L)), exactly
as in our theorem ; it remains only to identify the end terms by analys-
ing aE.

Now a': D -- C induces maps a'*: Hom (C, L) - L) anti-
commuting with aL and hence also induces maps on homology. These
maps (up to sign) are the connecting homomorphisms OE. Indeed, aE
was defined on cycles by the "switchback" j"aHi". A cycle g of

is a family of maps {g,: with aLg,=0; since
Dc is free, KQ=CD®D., so each gy can be extended to /D: Kp,,
with aL/0=0. Since i*/=/i=g, take i*-1g to be /. Since -DL/=O, the
formula (4.4) for the boundary aH in Hom(K,L) reduces to aH/=±axl.
Now aK=i a'j by(4.2),soaH/=±j*a'*i*/and we may
to be f a* Thus aE is indeed induced by ±.9'*. But the isomorphism
aco of Lemma 4.4 is natural, so we have commutativity up to a sign
in the diagrams

H,(Hom(C,L)) H»__I(Hom(D,L))

fl Hom(C,. H,,,. (L)) . n Hom(D,+1, Hy+»(L)).
9 0

We may thus read off the kernel of aE as isomorphic to that of a' *
(lower line).

Now apply Hom(-, Hy+,,(L)) to the exact sequence Sy of (4.3).
According to the fundamental exact sequence (Thm. 3.2) for Hom and
Ext, we get an exact sequence

0- Hom(H.(K), Horn (C., Hy+,(L))
(48)Hom(D..,1, Hp+»(L))-.Ext(H,(K), Hp+*(L})-+0,

where the last zero stands for Ext (C,,, Hy+.(L)), which vanishes because
C,( KO is free. The direct product of these sequences over all ¢ is still
exact, and gives the kernels and cokernels of a'* as

Ker aE.o=Ker a'*= J7Hom(Hy(K), HO (L)),

Coker aE.I =Coker a' * = lI Ext (H,, (K), Hy+ I (L)).
0
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Substituting these values in (4.7) gives the desired exact sequence (4.5)
of Thm.4.3. The homomorphism a thereby is the composite

H.(Hom(K,L)) `-*. H.(Hom(C,L))--' J7Hom (C,,, HO (L))

-.1 J Hom (14 (K), H, (L)) ;

here the last arrow stands for the additive relation which is the converse
(or, the "inverse") of the first monomorphism of (4.8). This composite at
assigns to each /: K-->L the family of induced maps of homology
classes, so is the map already described. The homomorphism fi is the
composite of natural maps, hence is natural.

To split (4.5), first construct L' and a chain transformation h: L'--)-.L
so that each Hp (h) is an isomorphism and each L. is free. By naturality,
h maps the sequence (4.5) for L' to that for L, isomorphically by the
short five lemma; hence it suffices to split (4.5) for L' not L. Now regard
H(L') as a complex with zero boundary; because L' is free, there is a
chain transformation g: L' --*H(L') which is the identity on homology.
By naturality, it now suffices to split (4.5) with L' replaced by H(L').
Finally, use /: K-..H(K) the identity on homology. The map a for H(K)
and H(L') is the identity map, while by naturality / maps this to a for
K, H (L') and so is a right inverse, splitting that a.

Corollary 4.5. 1/ K and L are complexes of abelian groups with each
K. and each H. (K) free, then two chain traps/ormations f, t': K -> L are
chain hotnotopic it and only i/ f * = f*: H. (K) -H" (L) for every dimension X.

The proof depends on observing that / = f' means exactly that
cls /=cls /' in H.(Hom(K, L)). On the other hand, when some
Ext (Hp (K), H041 (L)) $ 0, the condition f* = f; for all n is not sufficient
to make / chain homotopic to /'.

Corollary 4.6. I/ f : K.-.K' is a chain transformation between com-
plexes K and K' of /ree abelian groups with /*: H. (K) =H" (K') for all is,
then, for any coefficient group G, t*: H" (K', G) -s H" (K, G) is an isomor-
phism.

Proof. Since the maps at and P are natural in K, the diagram

0 -> Ext (H._1. (K'), G) -+ H" (K', G) - Hom (H, (K'), G) -+ 0
It* lr lr

o -+ Ext (H"_ 1(K), G) -+ H" (K, G) .-> Hom (H" (K), G) --> 0

is commutative. Since the maps /": H. (K) -*H, (K') are isomorphisms,
so are th('outside vertical maps Ext(/"_l, IG) and Hom(/",1a). By
the short five lemma, the middle map is an isomorphism, q.e.d.
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Exercises
1. Give a direct proof of Cor.4.2.
2. Show that Thms.4.1 and 4.3 hold for complexes of R-modules if the hypo-

thesis that K. is free is replaced by the assumption that C, (K) and K /C (K)
are projective modules for every n.

3. If K and L are complexes of abelian groups with each K. free, then to any
family y,,: H,, (K) --r H. (L) of homomorphisms, one for each it, there is a chain
transformation /: with y,, = H,,(/).

5. Composition of Extensions

Return now to the study of the extensions of modules. Two short
exact sequences

E: a K-->0, E':

the first ending at the module K where the second starts, may be spliced
together by the composite map BI-+K-+B0 to give a longer exact
sequence

EoE': 0-*A-*B1--Bo-->C- O (5.1)

called the Yoneda composite of E and E'. Conversely, any exact sequence
A >- B1--> Bo -s C has such a factorization, with K = Ker (Bo - C) _
Im(B1-+Bo).

Longer exact sequences work similarly. Consider

S: O-sA->. C->0

an n-fold exact sequence starting at A and ending at C. If T is any m-fold
exact sequence, starting at the module C where S ends, a splice at C gives
the Yoneda composite S o T, which is an (n+ m)-fold exact sequence
starting where S starts and ending where T ends. This composition
of sequences is clearly associative, but it need not be associative under
the composition with homomorphisms. For example, for E and E' as
in (5.1), let M be any module and n: K®M-*K the projection of the
direct sum. The commutative diagrams

El: K®M Ei: KED M-Bo®M-, C
1 l lA 1 i l

E : A >- B1 -s K, E': K r Bo - - C

and the definitions of composites show that E1-En and E'=nEi;
in the top row, the composite

E1 o El': O -± A --C BI ® M -®+ Bo ® M - C -+ O (5.1')

is not the same as (5.1) ; in other words (E n) o El * E o (n El'), and the
associative law fails.
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For short exact sequences we have already defined congruence as
isomorphism with end maps the identity. For long sequences we need
a wider congruence relation "=c" with the property that

(E"#) o E'- E"o (P E') (5.2)

whenever the composites involved are all defined; that is, for E" ending
at some module K, for fi: L>K for some L, and E' starting at L. Let us
then define congruence as the weakest reflexive, symmetric, and tran-
sitive relation including (5.2) and the previous congruence for short exact
sequences. This definition can be restated as follows. Write any n-fold
exact sequence S as the composite of n exact sequences E; in the form

S=ENo EN_1o ... o E,; (5.3)

the E, are unique up to isomorphism. A second n-fold sequence S'
with the same start and end as S is congruent to S if S' can be obtained
from S by a finite sequence of replacements of the following three types

(i) Replace any one factor E{ by a congruent short exact sequence;
(ii) If two successive factors have the form E"fio E' for some F.",

and E', as in (5.2), replace them by E"ofE';
(iii) If two successive factors have the form E"o fE', replace by

E" floE'.
For example, the 2-fold sequences (5.1) and (5.1') are congruent.
We also define the composite of a long exact sequence or its con-

gruence class with a "matching" homomorphism. Specifically, if S is
an n-fold exact sequence starting at A and ending at C, then we define
a S whenever at is a homomorphism with domain A and Sy whenever y
has range C by the formulas (for S as in (5.3))

a(ENO ...

o o Eso (Ely)

If S and S' are n-fold exact sequences, a morphism I': S>S' is a
family of homomorphisms (a, ..., y) forming a commutative diagram

S:
Jr

1" 1 1 1Y

S':

We say that r starts with the homomorphism a and ends with y. Now
aE was defined by just such a diagram E ->aE, so our definition of
aS above yields a morphism starting with a and ending with 1,
as well as Sy -> S starting with I and ending with y. More generally
we have, as in Prop. 1.8,
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Proposition 5.1. Each morphism I': SOS' of n-fold exact sequences
S and S' starting with a and ending with y yields a congruence aSm S'y.

Proof. For notational symmetry, set BN=A and B_1=C. Write
for thus S

factors as E. E1, where Ei: K;>-*B;_1-*K._1 and Ko=C.
Factor S' similarly. The given morphism r: S S' induces homo-
morphisms fii: K;-+K; which form a commutative diagram

E,: o K,
lfi, 1 10-=

E;: O - K; -> B;-1--> K,-1-> 0.

By Prop.1.8 this diagram implies that ,5,E, - E; f,_1; at the ends,
PN=a and Po=y. Hence, by our definition of congruence.

=(ENfN-1)oEN_1o ... =ENO(j8N_,EN_I)o ...

ENo S'po= S'y.

This result also gives an alternative definition of congruence, as follows.

Proposition 5.2. A congruence Sm S' holds between two n-fold exact
sequences starting at A and ending at C if and only if there is an integer
k and 2k morphisms o t n-/old exact sequences

=S',
running alternately to the left and to the right, all starting with 1 e and
ending with 1c.

This proposition states that S- S' is the weakest reflexive, sym-
metric, and transitive relation such that r: S -* S' with ends I implies
Sm S'.

Proof. First suppose S= S'. In the elementary congruence (5.2),
the definition of E" P yields a morphism E" P-->E", while the definition
of PE' yields a morphism E'-*f E' of exact sequences. Placing these
morphisms side by side yields a diagram

E" fl: A .+ B1-sL L BO' --j,. C: E'

II 1 10 1V I II

E": A Bi -sK K -Bo -s C: fE'.

Splicing these two diagrams together on the common map r# yields a
morphism (E" fi) o E'--sE"o (fE'). Hence a string of congruences (5.2)
yields a string of morphisms, as displayed. The converse is immediate.
by Prop. 5.1.

Let ExtR(C,A), for fixed R-modules C and A, stand for the set
of all congruence classes a = cls S of n-fold exact sequences S starting
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at A and ending at C. Write SEEExt"(C,A) for SEaEExt"(C,A). If
TE,rcExt"(D, C') the composite SoT is defined when C=C'; the class
of So T is determined by a and r, and is an element of Ext"+ (D, A)
which we denote as ar (without the circle notation for composition).
The "matching" condition needed to define ar can be remembered if
one regards aE Ext" (C, A) as a "morphism" from the end module C
to the starting module A ; then ar is defined when the range of the
morphism r equals the domain of a. This rule will include the matching
conditions for the composition of a homomorphism a: A-*A' with an
extension aE Ext" (C, A). This rule will also include the composition of
two ordinary homomorphisms if we interpret Ext° (C, A) to be Hom (C, A).
This we do.

Each Extx (C, A) is a bifunctor on R-modules to sets, contravariant
in C and covariant in A. It is also an abelian group, under addition by
a Baer sum. Indeed, two n-fold exact sequences SEaEExt"(C,A) and
S'E a'E Ext" (C', A') have a direct sum S®S'E E Ext" (C ®C', A ®A')
found by taking direct sums of corresponding modules and maps in S
and S'. The congruence class of S® S' depends only on the classes a
and a', and hence may be denoted as a® a'; to see this, note that the
congruence (E" fl) o E'= E"o (PE') of (5.2) will carry over to a con-
gruence on the direct sum as in

(E" fteF")o(E'®F') _ (E"eF") (f(D 1)o(E'(D F')
(E" F") o (fl ®1) (E' ®F')

(E"(D F")o (fE'®F').

Finally, the Baer sum is defined for al , a2E Ext" (C, A), i =1, 2, by the
familiar formula

a,+ as=PA(o,(Das) do- (5.4)

Theorem 5.3. Let EXtR be the collection of all congruence classes
a, r, ... of multiple exact sequences of R-modules. Each or has a degree n
(n=0, 1, 2, ...), an R-module C as domain, and a module A as range;
we then write aE Ext" (C, A), and Ext° (C, A) = Hom (C, A). The composite
at is defined when ranger=domains, and

degree (ar)=dega+degr, rangear=ranges, domain ar =domain T.

The sum alas is defined for a,, a2 in the same Ext"(C,A) and makes
Ext" (C, A) an abelian group. The distributive laws

(a,+a.) r=alr+a2r, a(r,+rO =arl+ar2 (5.5)

and the associative law e(ar)=(pa)r all hold when the addition and
composition involved are defined.
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In brief, ExtR is like a ring, except that the sum a+ r and the
product ar are not always defined.

This theorem clearly includes the previous Thm. 2.1 on Ext' = Ext,
and the proof is exactly like the "conceptual" proof of that theorem.
That proof rested on certain rules for "direct sums". In the present
case these rules (and their prior counterparts) are

(a(Da')(T 'r)=ar®a's', (2.8) and (2.9). (5.6)

aV=V(a®a), (2.10), (2.11), (5.7)

Ar= (r®r) A, (2.10'), (2.11'), (5.8)

w(a®a)=(a'(D a)w, (5.9)

where w is the natural isomorphism w: ®A'--)--A'®A. It remains to
prove these rules.

First take (5.6). If or and r both have degree zero, they are ordinary
homomorphisms, and (5.6) is the usual (functorial) rule for computing
direct sums of homomorphisms. If a and r both have positive degree,
(5.6) is an obvious rule about the composition of direct sums of exact
sequences. If a has degree zero and r has positive degree, then a and a'
actually operate just on the leftmost factor of r and r', hence (5.6)
is reduced to the case where r and r' are short exact sequences; this
case is (2.8). Similarly, when a has positive degree and r degree zero,
(5.6) reduces to (2.9).

Next take (5.7). When a has degree zero, (5.7) becomes (2.10); when
a has degree I and is a short exact sequence, it is the second of (2.11).
When a has degree 2, (2.11) gives the congruences

(Es o El)V = Eso (El V) = Eso V(El ED El)

a Es Vo (El ® E1) = V (E2 ®Es) o (E, ® EI) ,

which is (5.7). Longer cases are similar.
The proof of (5.8) is analogous, and (5.9) comes from the rule

w (El ®Es) (Es ®E1) w, obtained by applying Prop.1.8 to the mor-
phism (co, co, w) : El ®Es Es ®El .

It remains only to exhibit the zero and the inverse for the abelian
group Ext"(C,A). The inverse of cisS will be cls((-1A)S). The zero
element of Ext" is for n = 0 the zero homomorphism, for n =1 the direct
sum extension, and for n>1 the congruence class of the n-fold exact
sequence

So: 0->A-'.A-).O-* -+O--.)-C-C-- 0.

Indeed, for each SEEExt"(C,A) there is a morphism (0, ..., 1): S-+Se,
so, by Prop. 5 .1, So - 0A S and cls S+ cls S. = cls S.
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The rules (5.5) show that Ext" is additive, so we obtain, as for
Ext', the isomorphisms Ext" (A (DB, G) = Ext" (A, G) ®Ext" (B, G),
Ext" (A, G ®H) Ext" (A, G) ®Ext" (A, H). Furthermore, any short
extension by a projective module splits, hence

Ext"(P,G)=0, n>0, P projective. (5.10)

Our construction of an element a E Ext" (C, A) as a class of all (possible)
n-fold sequences congruent to one given sequence S yields a "big"
class, and the class Ext" (C, A) of such classes is then not well defined
in the usual axiomatics of set theory. This "wild" use of set theory can
be repaired: It is intuitively clear that it suffices to limit the cardinal
numbers of the sets used in constructing sequences S for given modules
A and C.

We turn now to find means of computing the groups Ext.

6. Resolutions

Any module C is a quotient C=FO/R0 of some free module F0. The
submodule Ro is again a quotient Ro=FJR1 of a suitable free module Fl.
Continuation of this process yields an exact sequence -.Tj --o-Fo-*
C->0 which will be called a "free resolution" of C. We aim to compare
any two such.

In more detail, a complex (X, e) over the R-module C is a sequence
of R-modules X and homomorphisms

---*X"-I

X"_1-... -->X1--' X0 ".C-.o, (6.1)

such that the composite of any two successive homomorphisms is zero.
In other words, X is a positive complex of R-modules, C is a trivial
chain complex (C=Co, 2=0), and e: X-->C is a chain transformation
of the complex X to the complex C. A resolution of C is an exact sequence
(6.1) ; that is, a complex (X, e) over C with the homology H. (X) = 0,
for n>0, and e: H0(X)=C. The complex X is free if each X" is a free
module and projective if each X. is projective. We compare any pro-
jective complex with any resolution.

Theorem 6.1. (Comparison Theorem.) If y : C -> C' is a homomor-
phism o t modules, while e : X -+ C is a projective complex over C and
z': X'-*C' is a resolution o l C', then there is a chain transformation f : X -i. X'
with e' f = y e and any two such chain transformations are chain homo-
topic.

We say that such an / lifts y.
The proof uses only categorical properties of projectives and of

exactness. Since X. is projective and e' an epimorphism, ye: X0->C'
can be lifted to fo: X0-*Xo with e'fo=ye. By induction it then suffices
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to construct /", given such that the diagram

X. XI"-1 C

lbw
8w i aw-1 i i e ,

is commutative. By this commutativity,
Hence Im (f"_ l a") < Ker a;,_1. By exactness of the bottom row, this
kernel is Since X" is projective, the map f"_law can be lifted
to an f" with 9;,f"=f"-12", q.e.d.

The construction of the homotopy is similar; it may be obtained
directly or by applying the following lemma, noting that the difference
of any two chain transformations f : X-*X' lifting the same y is a
chain transformation lifting 0: C -> C'.

Lemma 6.2. Under the hypotheses o l Thm. 6.1, let f : X -> X' be a
chain transformation lilting y: C--->C'. Suppose that there is a t: C-.Xo
such that e't = y. Then there exist homomorphisms s.: X.-->X'.} 1 for
n=0, 1,... such that, for all n,

a'so+te=fo, a's"+l+s"a=/"+1

Proof. First, e'(f0-te): is zero. Hence /0-te maps the
projective module X0 into Kere'=Im(X'->X,); it can therefore be
lifted to a map so: X0->Xi with a's0=f0-te. Suppose by induction
that we have t=s_1, so, ..., s", as desired. We wish to find s"+1 with
a's"+1=f"+1-s"a. Now a'(f"+1-s"a)=f"a-(f"-s"-la)a=o by the
induction assumption, so f"}1-sa maps X"i.1 into Ker a'=a'X;,+2;
therefore it can be lifted to the desired s"+1: X"+1-*.XK+2.

Let A be a fixed module ; apply the functor HomR (-, A) to a reso-
lution (6.1). Since the functor does not preserve exactness, the resulting
complex HomR (X, A) may have non-trivial cohomology

H"(X, A)=H"(HomR(X, A)).

Corollary 6.3. I l X and X' are two projective resolutions of C, while
A is any module, then H"(X,A)=H"(X',A) depends only on C and A.

Proof. By the first part of Thm.6.1, there are maps f : X --*.X'
and g: X'-.X lifting 1c; by the second half of the theorem, gl is homo-

_topic to 1: X - .X. Hence /*: H" (X', A) ->H" (X, A) and g* have g* /*
1= /*g*, so both are isomorphisms, q. e. d.

We now show that this function H" (X, A) of A and C is exactly
Ext"(C,A). For n=0, X1->X0-.C- .0 is right exact, so

0->Hom(C,A)f.Hom(X0,A)->Horn (X1,A)

is left exact. This states that e* : Hom (C, A) =H° (X, A). For n>O,
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each n-fold exact sequence S may be regarded as a resolution of C,
zero beyond the term A of degree n, as in the diagram

XN+1

a I
(6.2)

S: B"_l BOC-*0.
Theorem 6.4. If C and A are R-modules and e: X-.C a projective

resolution of C, there is an isomorphism

C: Ext"(C,A)=H"(X,A), n=0, 1...., (6.3)

defined for n>0 as follows. Regard S E E Ext" (C, A) as a resolution of C,
and lift Ic to g: X-sS. Then g": X"-* A is a cocycle of X. Define

C(clsS)=clsgNEH"(X,A). (6.4)

This isomorphism C is natural in A. It is also natural in C in the following
sense: If y: C'--sC, e': X'-* C' is a projective resolution of C', and /: X'--*X
lifts y, then C'ys = fs C: Ext" (C, A) H" (X', A) . (6.5)

Proof. First observe that C is well defined. Since g.8=0, g" is an
n-cocycle, as stated. Replace g by any other chain transformation g'
lifting 1c, as in (6.2). By Thm.6.1, there is a chain homotopy s such
that g.-gN=8sN+s,_12. But sN: X'.-O' so s.=O, go,-g"=s8_18=

this by the definition (II.3.1) of the coboundary in
Hom (X, A). This states that the cocycles g and g" are cohomologous, so
cls g.'= cls gN . Next replace S by any congruent exact sequence S'.
According to the description of the congruence relation S= S' given
in Prop. 5.2, it will suffice to consider the case when there is a morphism
1': S -> S' starting and ending with 1. In this case any g : X -> S yields
1'g: X -,S' with the same cocycle gN= (Fg)N; hence cls gN is well defined
as a function of cls S. Thus C is defined; its naturality properties as
asserted follow at once, using suitable compositions of chain transfor-
mations.

Rather than proving directly that C is an isomorphism we construct
its inverse. Given a resolution X, factor 8: XN-+XN_1 as X,. 2XN
'*XN_1, with x the injection; this yields an n-fold exact sequence

S. (C, X) as in a

XN+1 XN

1°'
SN(C,X): 0--.OX.-4X._'-a... X0-sC (6.6)

1x it

hSN: OVA C.

Any n-cocycle XN->A vanishes on 8XN+1=Ker8', hence may be
written uniquely in the form h2' for some h: 8XN-.A. Construct the
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composite hS,, of h with the n-fold exact sequence S"; this fills in the
bottom row of this diagram. Define rl : H" (X, A) -* Ext" (C, A) by setting

77 cls(h8')=cls(hS.(C,X)), h: 2X"-->A. (6.7)

By the distributive law for the composition in Ext, the right hand
side is additive in h. Hence to show rl well defined it suffices to show
that n (cls h 8') vanishes when h 8' is the coboundary of some cochain
k: Xn_1-->.A. But h8'=6k=(-1)"k2=(-1)"kx 8' means that h=±kx
and hence that hS"=±kxS", where xS"-0 by Prop. 1.7. Hence rl is
well defined and is a homomorphism. Comparison of the diagrams (6.2)
and (6.6) now shows that rl = C-1.

This theorem states that the groups Ext" (C, A) may be computed
from any projective resolution e: X-*C; in particular, (6.5) shows how
to compute induced homomorphisms y* : Ext" (C, A) -+Ext" (C', A) from
resolutions.

Alternatively, many authors define the functor Ext" without using
long exact sequences, setting Ext" (C, A) =H" (X, A) =H"(Hom (X, A)).
This gives a covariant functor of A, while for y: C'--*C the induced
maps y* : Ext" (C, A) ->Ext" (C', A) are defined by lifting y to a compari-
son X'-*X.

Another consequence is a "canonical form" for sequences under
congruence:

Corollary 6.5. 1/ S E E Ext" (C, A) with n> 1, then there is a T = S
of the form T: 0-.A-->B"_1-+B"_$-r --.Bo-p.C-.O in which the
modules Bo are free.

Proof. Take T=hS"(C,X) for a suitable h: 8X"--A, and X any
free resolution of C.

Corollary 6.6. For abelian groups A and C, Exti (C, A) = 0 i f n > 1.

Proof. Write C=FIR for F free abelian. Since the subgroup R of
the free abelian group F is free, 0--)-R--)-F--)-C-->O is a free resolution
which vanishes (with its cohomology) in dimensions above 1.

Consider now the effect of a ring homomorphism e: R'-.R (with
2I= 1). Any left R-module A becomes a left R'-module when the
operators are defined by r'a=(er')a; we say that A has been pulled
back along a to become the R'-module QA. Any R-module homomorphism
a: is also an R'-module homomorphism QC-,eA. By the same
token, any long exact sequence S of R-modules pulls back to a long
exact sequence e S of R'-modules, and congruent sequences remain
congruent. Hence e#a = a, e# (cls S) = cls eS define homomorphisms

e#: n=0, 1, ... (6.8)

called change of rings. For a fixed, they are natural in C and A.
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These homomorphisms may be calculated from projective resolu-
tions e: X--)..C and e': X'--)..QC by R and R'-modules, respectively.
To exhibit the ring R, write H" (HomR (X, A)) for H" (X, A).

Theorem 6.7. The change of rings a#, via the isomorphism Z of
Thm.6.4, is given by the composite map

H"(HomR(X,A)) -Q+H"(HomR.(QX,QA)) - H"(HomR.(X', QA))

where e* is the cohomology map induced by the chain transformation
o#: HomR-HomR. and f: X'_+QX is a chain transformation lifting the
identity of C.

Proof. The case n=0 is left to the reader. For n>0 take any
SEEExtR (C,A). As in (6.2), 1c lifts to g: X--.S. Since X--.,C is a
resolution of C, the comparison theorem lifts the identity of C to a
chain transformation f : X'--)4X. The diagram is

It. 1 1 II

... --),. X"--.X"_,--* ... -+X,-). C

1`" 1 1
S: 0-*A -*B"_,BQ-+ C.

Now read off the maps: The isomorphism t: carries clsS to clsg", e#
regards g" as a R'-module homomorphism, f * maps clsg" to cis (g" f"),
which is exactly C(clsQS) because gf lifts 1. Hence the result, which will
be of use in the treatment of products.

Exercises

1. If e: Y-+C is a projective complex over C and e': X-..C a resolution of C,
construct natural homomorpbisms

Z: H"(X,A)-.Ext4(C,A).

2. (Calculation of Yoneda product by resolutions.) If X-.C and Y-,A are
projective resolutions, g E Hom" (X, A) and h E Hom"(Y, D) are cocycles, write g
as g0a' for go: lift gQ to f as in the diagram

s, i lu
y,n ... - Yo --, A - 0.

show h f an (m+ n)-cocycle of Hom'"+" (X, D), and prove that the Yoneda product
, (cls h) o 7 1 (cls g) is , (cls h f).

3. Given E- (x, a): A -.B-,C exact and maps a: A', show
by a diagram that (a+Qx)Ea"aE.
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4. If S= E" o --- o El, show that any morphism F: S -* S' of n-fold exact
sequences starting with a map a: A-+ A' can be factored as

o El-..S'.

5. (Another formulation of the congruence relation on exact sequences.) If
S, S'E E Ext" (C, A), show that Ss= -S' if and only if there is a TE E Ext" (C, A )
with morphisms r: T--m. S. 1": T-*S' starting and ending with l's. (Use Exs.3
and 4 and T=hS"(C,X).)

7. Injective Modules

The description of Ext" by resolutions reads: Resolve the first
argument by projective modules and calculate Ext" by cohomology:
Ext" (C, A) =H" (Horn (X, A)). We wish a dual statement, using a suit-
able resolution of the second argument A. For this we need the dual
of a projective module; it is called an injective module.

A left R-module J is said to be injective if a homomorphism a with
range J can always be extended; that is, if for each a: and A<B
there exists fl: B -*J extending a. Equivalently, J is injective if any
diagram of the form

o-AmB
J-.e

with horizontal row exact can be filled in (on the dotted arrow) so as
to be commutative. The characterization of projective modules in
Thm.I.6.3 and Thm.3.5 dualizes at once to give

Theorem 7.1. The following properties of a module J are equivalent:
(i) J is injective;
(ii) For each monomorphism x : A->. B, x*: Horn (B, J) --* Horn (A, J)

is an epimorphism;
(iii) Every short exact sequence J'- B splits;
(iv) For every module C, Ext' (C, J) = 0.

The latter characterization can be further specialized.

Proposition 7.2. A left R-module J is injective if and only if
ExtR(R/L, J) = 0 for every left ideal L in R.

Proof. This condition is necessary. Conversely, suppose each
Ext (R/L, J) zero. Given A< B and a: A--J we must, as in (7.1), con-
struct an extension fi: B-*J of a. Consider all pairs (S, y) consisting
of a submodule S with A < S ( B and an extension y: S -,J of the given
a: A-o.J. Partly order these pairs by the rule (S, y) S (S', y') when
S ( S' and y' is an extension of y. To any linearly ordered collection
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(Si, yi) of these pairs there is an upper bound (T, r) with (Si, y;) S (T, r),
for take T to be the union of the submodules Si with r defined for each
t by rt = y;t when t E S;. Hence, by Zorn's lemma, there is a maximal
such pair (S,,, We need only prove S. = B. If not, there is an ele-
ment bE B not in S,,; take the submodule U of B generated by b and S.
Then r-*rb+ S. is an epimorphism R+ U/S00, the kernel of the epi-
morphism is a left ideal L in R, and R/L=U/S,,. Since the sequence
S U- U/S is exact, so is the sequence

Hom(U,J)--.Hom(S0,J)-->Ext(U/S00o,J). (7.2)

But Ext (U/S,o , J) =Ext (R/L, J) = 0 by hypothesis, so Hom (U, J) -
Horn (S,,, J) is an epimorphism. In other words, each homomorphism

can be extended to a homomorphism U->J; in particular,
y,,: can be so extended, a contradiction to the maximality of
(S., V.) -

Consider now injective modules over special types of rings R. If
R is a field, there are no proper left ideals L<R, while ExtR(R, -)
is always zero. Hence every module (= vector space) over a field is
injective. Take R=Z, the ring of integers. Call a Z-module (= abelian
group) D divisible if and only if there exists to each integer m+ -O and
each d E D a solution of the equation m x= d.

Corollary 7.3. An abelian group is injective (as a Z-module) i/ and
only it it is divisible.

Proof. The only ideals in Z are the principal ideals (m), and Z/(m)
is the cyclic group of order m. By Prop.1.1, Ext(Z/(m),A) A/mA,
while A/mA = 0 for all m 4 0 precisely when A is divisible.

The construction of projective resolutions rested on the fact that
any module is a quotient of a free module, hence certainly a quotient
of a projective module. To get injective resolutions we need

Theorem 7.4. Every R-module is a submodule o/ an injective R-module.

Proof. Suppose first that R =Z. The additive group Z is embedded
in the additive group Q of rational numbers, and Q is divisible. Any
free abelian group F is a direct sum of copies of Z; it is embedded in
the direct sum of corresponding copies of Q, and this direct sum D
is divisible. Now represent the arbitrary abelian group as a quotient
A =F/S with F free, and embed F in some divisible group D as above;
this embeds A =F/S in D/S. An immediate argument shows that any
quotient D/S of a divisible group D is divisible, hence injective. The
abelian group A is thus embedded in an injective group D/S.

Return now to the case of an arbitrary ring R. For any abelian
group G, the additive group Homz (R, G) is a left R-module when the
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product s t, for s E R, f : R -,G, is defined as the homomorphism
sf: R-*G with

(sf)(r)=f(rs), rER.

If C is any left R-module we can define a homomorphism

j: C-*HomZ(R,C)

by letting j c, for c E C, be the homomorphism j c: R --i-C given as

(jc)(r)=rc, rER.

(7.3)

(7.4)

(7.5)

To show this a homomorphism of R-modules, take s, rER, and compute

[j(sc)](r)=r(sc) = (rs) c=(jc)(rs) by (7.5),

= [s (j c)] (r), by (7.3) -

This gives j (s c) = s (j c). Since 1 c = c, j is a monomorphism.
Now embed the additive group of C in a divisible group D; this

induces a monomorphism of R-modules

h : Horns (R, C) -- .Homs (R, D) .

The composite kj embeds C in Homz (R, D). If we show that Homs (R, D)
=J is injective, we are done. By Thm.7.1 (ii), it suffices to show that
each monomorphism x: A-->B of R-modules induces an epimorphism
x* =HomR (x,1 j). Here x* is the top row of the diagram

HomR (x,1 j) : HomR (B,I Homz (R, D)) - HomR (A, Homz (R, D))
q8 Ill.

HomZ (x,I0) : Horns (B, D) -+ Homs (A, D)

where the vertical maps are isomorphisms, to be established in a lemma
below. These isomorphisms are natural, so the diagram commutes. The
bottom row refers not to R, but only to Z; since D is a divisible group,
this bottom map HomZ (x, ID) is an epimorphism. Since tiB and r1A are
isomorphisms, the top map HomR (x,1j) is also an epimorphism.

Lemma 7.5. I l G is an abelian group and A an R-module, there is a
natural isomorphism 71A: HomR(A, Homz(R,G))=Homz(A,G).

Proof. Take an fEHomR(A, Homz(R,G)). For aEA, la: R-9G;
that is, (/a) (r) E G. Now regard f as a function of two variables f (a, r) E G.
The fact that la is a Z-homomorphism means that f (a, r) is additive
in the argument r. The fact that /:A -*Homz(R,G) is an R-homo-
morphism means that / (a, r) is additive in a and that s (f a) = f (s a) for
each s E R. By the definition (7.3) of the multiplication by s, this means
that always

Ls (1a)] (r) = (f a) (r s) = [f (s a) ] (r)
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in other words, that /(a, r s) = f (s a, r) always. In particular, f (a, s) =
f (s a, 1) so the function / is determined by g (a) = f (a, 1). Clearly g: A--.G.
Now ?IA and its inverse are defined by

('1 e n (a) =1(a, 1); (1a 1 g) (a, r) = g (r a) .

The maps ?IA and 77A-1 are clearly homomorphisms and natural (in A
and in G).

This idea of regarding a function f (a, r) of two variables as a function
of a whose values are functions of r will reappear more formally later
(V.3), and this lemma will turn out to be a special case of a more general
natural isomorphism, called "adjoint associativity". Injective modules
will be studied further in § 11.

Exercises
1. If R is an integral domain, show that the field of quotients of R is a divisible

R-module. If, in addition, R is a principal ideal domain, show that this field is
injective as an R-module.

2. If A is a left R-module and L a left ideal in R, each a E A defines an R-module
homomorphism fa: L-.A by fa(i)=la. Prove that A is injective if and only if,
for all L every f : L -+A is /Q for some a.

3. If K is a complex of R-modules and J an injective R-module, show that a
of (4.1) yields an isomorphism

H " (HomR (K, J) sz HomR(H, (K), J) .

8. Injective Resolutions
A complex e: A-*Y under the module A is a sequence

....,Y"-°.Y"+i
... (8.1)O,A

such that the composite of any two successive homomorphisms is zero.
In other words, Y is a negative complex, positive in upper indices, and
e: A--.Y a chain transformation. If this sequence is exact, s: A--Y is
called a coresolution of A; if each Y. is injective, e: AMY is an injective
complex under A. The results of the previous section show that every
module A has an injective (co)resolution - by a customary abuse of
language, an "injective resolution".

Theorem 8.1. (Comparison theorem.) If a: A-sA' is a module
homomorphism, e: A--)-Y a core-solution, and e': A'-*Y' an injective
complex under A', then there is a chain transformation f : Y-*Y' with
e 'a= f e and any two such chain transformations are homolopic.

The proof is exactly dual to that of Thm.6.f, which used only the
categorical properties of projective modules and exact sequences. Again
the map / will be said to lift a.
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For each module C the negative complex Y determines, as in (4.4),
a negative complex

Hom (C, Y) : Hom (C, Y°) -;. Hom (C, Y') .- -, Hom (C, Y") --> (8.2)

Its homology gives Ext, as follows

Theorem 8.2. For each module C and each injective coresolution
E: A-. Y there is an isomorphism

t: Ext"(C,A)=H"(Hom(C,Y)), n=0, 1, ..., (8.3)

which is natural in C and natural in A, in the sense that if a: A-->A',
E': A'MY' is an injective coresolution, and f : Y-+Y' is any chain trans-
formation lifting a, then t a, = f * t. Here f. is the induced homomorphism

H"(Hom(C,Y))-3.H"(Hom(C,Y')).
The homomorphism 4 is defined as follows. Regard any SEE Ext" (C, A)

as a coresolution of A, zero beyond the term C of (upper) degree n; by
Thm. 8.1 construct a cochain transformation as in

Y: 0-- Y" I Y-+1
Is

I

i _ 1 = c" (8.4)
S: 0-.A-+B"B"_s. -*0.

Then g": C-Y" is a cycle of Hom(C,Y). Define

'(cls S) = (clsg") E H"(Hom (C, Y)) . (8.5)

The rest of the proof, like the definition, is dual to the proof of Thm.6.4.
We can summarize the theorems of §6 and §8 in the scheme

H"(Hom (Resp C, A)) =Ext" (C, A) =H"(Hom (C, Rest A)) ,

where RespC denotes an arbitrary projective resolution of C, ResjA
an arbitrary injective coresolution of A. A symmetric formula Ext" (C, A)

H"(Hom (RespC, ResjA)) can be established (Ex. V.9.3).

Exercises
1. Carry out the construction of g in (8.4) and of the inverse of
2. State and prove the dual of Lemma 6.2.
3. For direct sums and products establish the isomorphisms

Ext"(ZCt,A) ns 11 Ext"(C1,A), Ext"(C, 17A1) j1 Ext"(C,A1).

9. Two Exact Sequences for Ext"
Composition of long exact sequences with a short exact sequence E

from A to C yields connecting homomorphisms

E*: Ext"(A,G)-*Ext"}1(C,G), E,,: Ext"(G,C),Ext"+'(G,A).
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Since E determines A and C, both Ext" (A, G) and Ext"+1(C, G) may
be regarded as contravariant functors of the short exact sequence E.
Moreover, each morphism r= (a, p, y) : E-i.. E' of short exact sequences
gives a E - E'y and hence

E*a*=y*E'*: Exth(A',G)-*Ext"+I(C,G).

This states that E* is a natural transformation between functors of
E, as is E* . With these connecting homomorphisms, the exact sequences
for Horn and Ext = Extl already found in (3.1) and (3.2) will now be
continued to higher dimensions. Observe similarly that an n-fold exact
sequence S starting at A and ending at C is a composite of n short
exact sequences; hence composition with S yields iterated connecting
homomorphisms

S*: Ext"(A,G)--*Ext"+"(C,G), S*: Ext"(G,C)-*Ext"+"(G,A),

which depend only on the congruence class of S.

Theorem 9.1. I l E = (x, a) : A >- B -sC is a short exact sequence of
modules and G is another module, then the sequences

Ext"+1(C,G) (9.1)

--.Ext" (G, A) .!. Ext" (G, B) Ext" (G, A) - . (9.2)

are exact. These sequences start at the left with 0 -- Hom (C, G) = Ext° (C, G)
and with 0->Hom(G,A), respectively, and continue to the right for all
n = 0, 1, 2, .... The maps in these sequences are defined for arguments
eEExt"(C,G), wEExt"(B,G), rEExt"(A,G),... by composition with
x, a, E as follows:

a*e=ea, x*W=Wx, E*r=(-1)"TE,
(9.3)

x*e'=xe', a*cu'=aW', E*z'=Er'. (9.4)

The sign in the last part of (9.3) occurs because involves
an interchange of an element E of degree I with an element z of degree n.

Proof. First consider (9.2). Take any free resolution X of G and
apply the exact cohomology sequence (Thm.II.4.5) for the sequence E
of coefficients. Since the cohomology groups H" (X, A) are Ext" (G, A),
and so on, this yields an exact sequence with the same terms as (9.2).
To show that the maps in this sequence are obtained by composition,
as stated in (9.4), we must prove commutativity in the diagram

Ext" (G, A) -' Ext" (G, B) f , Ext" (G, C) E' Ext"+1(G, A)

1t IC !t it (9.5)H"(X,A)
. H"(X,B) :g"+r(X.A),
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where each C is the isomorphism provided by Thm.6.4, while 6E is
the connecting homomorphism provided in Thm.II.4.5. Since C is
natural for coefficient homomorphisms x and a, the first two squares
are commutative. The commutativity of the right-hand square requires
a systematic use of the definitions of various maps involved, as follows.
For n>0 and S E c Ext" (G, C), regard E o S as a resolution of G and
construct the commutative diagram

X: X"+1-' X"-. X.-1-->...
it P. it.-,

1 II

EoS: A
1° 1° i! II it

S: 0 -->C -.B"B0->G
where / lifts 1G. By the definition of (,

CE. (cls S) = (cls/"+1) E H"+" (X, A).

On the other hand, a/ is a chain transformation lifting 1G, SO C (CISS)=
cls (a/"). Now 8E is defined by the switchback 8E= clsx-18 a-1 cls-1 of W-
4.12) and x-1 6 a-' (a/.) =x-1b/"=(-1)"+1x-1U"a)=(-1)"+lx 1(x/"+1)=

so that 6Ecls(a/")=(-1)"+1cls/"+1=(-1)"+1 CE*cisS.
This shows (9.5) commutative.

For n=0 the definition of Z (and the commutativity proof) is cor-
respondingly simpler.

The exactness of the sequence (9.1) of the theorem is proved similarly,
using injective coresolutions. Specifically, let s: G--).Y be an injective
coresolution of G. Then Hom (A , Y) is, as in §8, a negative complex ;
furthermore each Y" is injective, so each sequence Hom(C,Y"--+)
Horn (B, Y") -> Horn (A, Y") is exact. Therefore

0-. Hom (C, Y) TO Hom (B, Y) . Hom (A,Y)-.0

is an exact sequence of complexes. Hence Thm.II.4.1, in the version
with upper indices, states that the first row of the following diagram
is exact for each n:

H"(Hom (C, Y))-H"(Hom Y)) Y))

(C, G) -. Ext" (B, G) " Ext" (A , G) - Ext"}1(C, G) .

The desired proof that the bottom row is exact requires now only
the commutativity of the diagram. Note that the connecting homo-
morphism 8E is defined by switchback as 6E=clsa*-lax*and no
trouble with signs occurs. Given this definition, the proof that commuta-
tivity holds is now like that given above for the dual case - though
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since the proof manipulates not only arrows, but also elements, we
cannot say that the proof is exactly dual. Thm.9.1, though formulated
in the language of exact sequences, can also be regarded as a statement
about annihilators in the "pseudo-ring" ExtR of Thm. 5.3. Indeed, if
E = (x, a) is a short exact sequence of R-modules, then

xE=0, ax=0, Ea=0
and these equations indicate the whole left and right annihilator in
ExtR of each of x, E, and a, as follows. The right annihilator of x con-
sists of multiples of E ; whenever e E ExtR is such that the composite
x e is defined and is 0, then either e=0 or Lo=ET for a suitable V E ExtR.
Similarly, ex=0 implies a=ra for some r, etc. In other words, the left
annihilator of x is the principal left ideal (ExtR)a.

Exercises
1. Given the usual short exact sequence E of modules and given projective

resolutions e': and a": Z-P. C of the end modules A and C, construct a
projective resolution e: Y- B of the middle module B and chain transformations
l: X-.Y, g: Y-*Z lifting x and a, respectively, such that X"Y-fZ is an exact
sequence of complexes. (Hint: for each is, take Y"=X"®Z" and define a and 0
so that (Y, e) is a complex.)

2. Use the result of Ex. I to give a proof of the exactness of (9.1) by projec-
tive resolutions.

3. Deduce Prop. 3.7 from Thm.9.1 and Cor.6.6.
4. For A a finite abelian group, Q the additive group of rational numbers,

prove Extz (A, Z) 95 Homz (A, Q(Z).

10. Axiomatic Description of Ext

The properties already obtained for the sequence of functors Ext"
suffice to determine those functors up to a natural equivalence, in the
following sense.

Theorem 10.1. For each n=0, 1, ... , let there be given a contra-
variant functor Ex"(A) of the module A, taking abelian groups as values,
and for each n and each short exact sequence E: A,..* B-,C let there be given
a homomorphism E": Ex" (A) -+Ex"+1 (C) which is natural for morphisms
r: E-+F_' of short exact sequences. Suppose that there is a fixed module G
such that

Ex° (A) = Hom (A, G) for all A, (10.1)

Ex"(F)=0 for n>0 and all /see F. (10.2)

and suppose that for each E = (x, a) the sequence

04
Ex" (B)

r.
Ex" (A) Ex"+1(C) -, ... (10.3)
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is exact. Then there is /or each A and n an isomorphism q : Ex" (A)
Ext" (A, G), with qPA =1, which is natural in A and such that the diagram

Ex" (A) ± Ex"}' (C)
IV"

IV"& (10.4)

Ext" (A, G) + Extw}' (C, G)

is commutative for all n and all short exact E : A B --P.C.

Property (10.4) reads "p commutes with the connecting homomor-
phisms". With the naturality of T, it states that the gd' provide a mor-
phism of the long sequence (10.3) into the corresponding sequence (9.1)
for Ext.

The same theorems holds with "free" in (10.2) replaced by "pro-
jective". Since the functors Ext" clearly satisfy the analogues of (10.1),
(10.2), and (10.3), we may regard these three properties as axioms
characterizing the sequence of functors Ext" "connected" by the homo-
morphisms E*.

The proof will construct q1" by induction on n; the case n = I presents
the most interest. Represent each module C as a quotient F(K, with
F free. This gives a short exact sequence Ec: K>-' F-s.C. By (10.2),
Ex' (F) = 0, so the sequence (10.3) becomes

Horn (F,G) Hom(K,G).Ex'(C), 0.
Exactness states that Ex' (C) ,Hom (K, G)/x*Hom (F, G). The sequence
(9.1) for Ext' shows Ext' (C, G) isomorphic to the same group. Com-
bining these isomorphisms yields an isomorphism p'c: Ex' (C) =Ext' (C, G) ;
by its construction, ec is characterized by the equation

gr1cE1= EcO: Hom (K, G) (C, G) ,

which is a special case of (10.4). To show that c is natural for any
y: pick an exact Ec.: K'-F'--,v-C'. The comparison theorem
lifts y to fi : F-*F', which induces a morphism I'= (a, fi, y) : Ec -> Ec..
Since both connecting homomorphisms E' and E* are natural with
respect to such morphisms 1', it follows that y* Oc. E'. = y* E *c = E* a*
= qr'c Ec a* =,pc y* E',. But E', is an epimorphism, so

Y* eC, =eCy* : Ex' (C') -+Ext' (C, G) ;

97' is indeed natural for maps of C. In particular, if Ec and E. are two
free presentations of the same module C (y=ic), this identi ty shows
that the homomorphism gglc is independent of the choice of the particular
free module F used in its construction. Finally, if E: A>- is any
short exact sequence, the comparison theorem (for F free) again lifts
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I to a morphism (a, P, 1) : EC and yields

1 c E* = E* a* (because E* is natural),
= VCE'C a* (definition of 9P),

= eCEl (because El is natural).

This is the required property (10.4) for n=1.
For n>1 we proceed in similar vein, choosing again a short exact

sequence EC with middle term free. Then Ex"-1(F) = 0= Ex" (F), so
the exact sequence (10.3) becomes

E 1

0 - Ex"-1(K) Ex" (C) -0.0

and Ex" (C) =Ex"-1(K). Using the similar sequence for Ext", we define
qq" by

9'"c=Ecq'n 1(Ef-1)-': Ex"(C)=Ext"(C,G)

and establish naturality, independence of the choice of F, and the
commutativity (10.4) much as in the case n=1.

There is a dual characterization for Ext (C, A) as a functor of A
using the second exact sequence (9.2).

Theorem 10.2. For a fixed module G, the covariant /unctors Ext" (G, A)
o t A, n = 0, 1, ... together with the natural homotnorphisms E,: Ex t" (G, C)
-.Extw+1(G,A) defined for short exact sequences E of modules, are char-
acterized up to a natural isomorphism by these three properties:

Ext°(G,A)=Hom(G,A) for all A, (10.5)

Ext" (G, J) = 0 for n>0 and all injective J, (10.6)

The sequence (9.2) is exact for all E. (10.7)

Proof. Observe first that Ext" does have the property (10.6), for
an injective module J has the injective coresolution 0-*J--).J-+O, which
vanishes in all dimensions above 0. Conversely, the proof that these
three properties characterize the Ext" (G, A) as functors of A is dual
to the proof we have just given.

Exercises
1. (S. SCHANURL.) Given two short exact sequences K>+P-..C and

K and
an isomorphism P® P'w P® P which maps K® P isomorphically on P®K'.

2. Call two modules C and C' projectively equivalent if there are projective
modules Q and Q' and an isomorphism C®Q'eC'®Q. Let S: K'-+P,-t-' "'
- P -C be an n-fold exact sequence with all P; projective. Using Ex. 1, show
that the projective equivalence class of K depends only on that of C and not on
the choice of S.
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3. For S as in Ex. 2, show that the iterated connecting homomorphism provides
an isomorphism SO: Ext1(K, G) e5Ext*+ (C, G) for any G.

11. The Injective Envelope

Every R-module A is a submodule of an injective one (Thm. 7.4).
We now show that there is a unique "minimal" such injective module
for each A.

An extension A<B - or a monomorphism x: A'-* B with image A -
is called essential if S<B and Sr'A=0 always implies S=O. This
amounts to the requirement that to each b+0 in B there is an rER
with rb+0 and in A. For example, the additive group Q of rational
numbers is an essential extension of the group Z of integers. If A C B
and BCC are essential extensions, so is ACC.

Lemma 11.1. If x: A'->B is an essential monomorphism, while
A: A'-->J is a monomorphism with injective range J, there is a monomorphism
µ: B-'J with ux=A.

In other words, an essential extension of A' can be embedded in any
injective extension o/ A'.

Proof. Because j is injective, A: A'-->J extends to a u with ux=A.
Let K be the kernel of y. Since A is a monomorphism, KexA'=0;
since x is essential, K = 0. Hence u is a monomorphism.

Proposition 11.2. A module J is injective it and only it j has no
proper essential extension.

Proof. If J< B with j injective, then j is a direct summand of B,
so the extension J< B is inessential unless I= B. Conversely, if J has
no proper essential extensions, we wish to show that any extension
J< B splits. Consider the set So of all submodules S < B with Sr.J= 0.
If a subset {S1} of elements of S/ is linearly ordered by inclusion, the
union S=U S, of the sets S1 is a submodule of B with S"J=0, hence
also in Y. Since any linearly ordered subset of S/ has an upper bound
in .' Zorn's lemma asserts that ,9 has an element M maximal in the
sense that it is properly contained in no S. Then J- B -> B/M is an
essential monomorphism. But j is assumed to have no proper essential
extension, so JAB/M is an isomorphism, B=JvM and J'\M=O. Thus
j is a direct summand of any containing B, so is injective.

This suggests that we might construct a minimal injective extension
as a maximal essential extension.

Theorem 11.3. For every module A there is an essential monomorphism
x: A--J with j injedive. I/ x': A->J' is another such, there is an isomor-
phism 0: J--.>.J' with 0X=M'.
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Proof. By Thm. 7.4 there is an injective module Je with A< Je.
Let 1' be the set of all submodules S of Jo with A < S essential. If {SI}
is a subset of - linearly ordered by inclusion, the union US, is an
essential extension of A, hence is in ,' By Zorn's lemma again, ,P has
a maximal element, J, and A<J is essential. Any proper essential
extension of J could by Lemma 11.1 be embedded in JO, counter to
the maximality of J. Hence J is injective, by Prop. 11.2.

Let x: A-*J be the injection. If x': A-.J' is another essential mono-
morphism to an injective J', Lemma 11.1 gives a monomorphism
p : J'-4.J with u x' = x. Since p J' is injective, it is a direct summand
of J. Since A-*J is essential, pJ' must be all of J, sop is an isomorphism,
as asserted.

The essential monomorphism x: A-*J with J injective, unique up
to equivalence, is called the injective envelope of A. Its existence was
established by BAER [1940]; our proof follows ECKMANN-SCHOPF [1953].
For some of its applications, see MATLIS [1958]. A dual construction -
of a "least" projective P with an epimorphism P-+A - is not in general
possible (Why ?).

Notes. The study of extensions developed first for extensions of multiplicative
groups (see Chap. IV), with extensions described by factor systems. The systematic
treatment by SCHREIER [1926] was influential, though the idea of a factor system
appeared much earlier [HOLDER 1893). The same factor systems were important
in the representation of central simple algebras as crossed product algebras [BRAVER
1928], [HASSE-BRAVER-NOETHER 19321 and hence in class field theory. An invariant
treatment of extensions without factor systems was first broached by BAER [1934,
1935). That the group of abelian group extensions had topological applications
was first realized by EILENBERG-MAC LANE [1942] in their treatment of the uni-
versal coefficient problem. There Extl-was named. Another proof of the universal
coefficient theorem and the homotopy classification theorem of § 4 has been given
by MASSEY [1958), using the mapping cone.

Resolutions, perhaps without the name, have long been used, for example
in HILBERT [1890]. Hope in 1944 used them explicitly to describe the homology
of a group. CARTAN [1950] used them for the cohomology of groups and gave an
axiomatic description as in §t0. Ext" was defined via resolutions by CARTAN-
EILENBERG. The definition by long exact sequences is due to YONEDA [1954],
who also has [1960] a more general treatment of composites.

Chapter four

Cohomology of Groups

The cohomology of a group II provides our first example of the
functors ExtR(C,A) - with R the group ring and C=Z. These co-
homology groups may be defined directly in terms of a standard "bar
resolution". In low dimensions they arise in problems of group extensions
by II; in all dimensions they have a topological interpretation (§11).
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1. The Group Ring

Let 17 be a multiplicative group. The free abelian group Z(17)
generated by the elements xEH consists of the finite sums 2:m(x)x
with integral coefficients m(x)EZ. The product in 17 induces a product

(Ejm (x) x) (Zym'(y) y) =E:,rm (x) sn'(y) x y

of two such elements, and makes Z (17) a ring, called the integral group
ring of H. Thus an element in Z (fl) is a function in on H to Z, zero
except for a finite number of arguments xEH; the sum of two func-
tions is defined by (m + ni') (x) = in (x) + m'(x), while the product is
(min') (x) = in (y) m'(z), where the latter sum is taken over all y and z in
17 with yz = x. A ring homomorphism e : Z (17) ->Z, called augmentation,
is defined by setting

e(]sm(x)x)=Zsm(x). (1.1)

Let 4uo: 17-+Z(11) be the function which assigns to each yE17 the
element labelled 1 y in Z (M; this means more exactly that fro y is
that function on 17 to Z for which (yo y) (y) =1 and (µo y) (x) = 0 for
x + y. Clearly fro is a multiplicative homomorphism, in the sense that
fro (y y') _ (uo y) (µo y') and uo (1) =1. The group ring Z (M, together with
this homomorphism yo, can be characterized by the following universal
property.

Proposition 1.1. I l II is a multiplicative group, R a ring with identity,
and y: 17-a R a function with ,u (1) = i and u 4(z y) = (fc x) (u y), then there
is a unique ring homomorphism e : Z (II) -+R such that Logo =,u.

Proof. We may define e(Z m (x) x) = f m (x) ,u (x) ; this is a ring
homomorphism, and the only such with apo= p.

In view of this property it would be more suggestive to call Z (M
not the "group ring of 17", but the free ring over the multiplicative groupl7.

Modules over Z (17) (H-modules for short) will appear repeatedly.

Proposition 1.2. An abelian group A is given a unique structure
as a left 17-module by giving either

(i) A function on 17><A to A, written xa for xE17, aEA, such that
always

x(a,+a.)=xal+xas. (xixs) a=x1(xEa), to =a: (1 ?)

(ii) A group homomorphism

97: 17-*AutA. (1.3)

Here Aut A designates the set of all automorphisms of A ; that is,
of all isomorphisms a: A-+A. Under composition, AutA is a multi-
plicative group.



2. Crossed Homomorphisms 105

The proof is immediate, for (1.2) gives 57 by p(x) a=xa, while
Aut A is contained in the endomorphism ring Hom1 (A, A), and q,
extends by Prop. 1.1 to V: Z (11) -* Homz (A, A), making A a left module
with operators w (u) a for each u EZ (17).

In particular, any abelian group A can be regarded as a trivial
17-module by taking ip x=1; then xa=a for all x.

To each 17-module A we construct an additive, but not necessarily
abelian, group A x,17 called the semi-direct product of A and H with
operators q). Its elements are all pairs (a, x) with the addition

(a,x)+(a1, x1)=(a+xa1. xx1). xa1=gp(x)a1. (1.4)

One proves that this is a group with the "identity" element 0= (0, 1)
and inverse - (a, x) _ (- x-1 a, x-1) and that there is a short exact
sequence

A>,17°.17 1, (1.5)

where x is the homomorphism given by x a = (a, 1), a is a (a, x) = x,
and 1 denotes the trivial multiplicative group. Also a has a right inverse
v defined by vx= (0, x) for all x; it is a homomorphism of the multi-
plicative group 17 to the additive group A><,17.

Exercises
1. A holomorphism h of the multiplicative group G is a 1-t function on G to G

with h (ab-1c) _ (ha) (hb)-1(hc) for a, b, cEG. Show that the set of all holomorphisms
of G under composition form a group, the holomorph HoIG. Construct a short
exact sequence (A,a): G-Ho1G-..AutG, where (Ag)(a)=ga, (sh) a=h(1)"1h(a),
and a has a right inverse.

2. (R. BAER.) Let A be a I7-module and Ho1A the holomorph of its additive
group, as in Ex. 1. Form the direct product (HoIA)xIl with projections n1 and Try
upon its factors, show that A x V17 is isomorphic to the subgroup of (Hol A) X17
where

and=q?x1: (HolA)xll --j-AutA,

and compare the sequence (1.5) with that of Ex.1.

2. Crossed Homomorphisms

If A is a 17-module, a crossed homomorphism of 17 to A is a function f
on 17 to A such that

f(xy)=xf(y)+f(x), x,yE17. (2.1)

Then necessarily f(i)=O. For example, if A is a trivial 17-module
(xa=a always), a crossed homomorphism is just an ordinary homo-
morphism of the multiplicative group 17 to the additive abelian group A.
The sum of two crossed homomorphisms f and g, defined by (/+ g) x=
f (x) + g (x), is a crossed homomorphism. Under this addition the set
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of all crossed homomorphisms of 17 to A is an abelian group which
will be denoted by Z'' (17, A) - here 99 records the H-module structure
17-±AutA of A. For each fixed aEA the function /, defined by /a(x)=
xa-a is a crossed homomorphism. The functions of this form f, are
principal crossed homomorphisms. Since f.+ lb = /(.+b) and fc-.>= - f.
they constitute a subgroup B'

'

(17,A) of 4. The first cohomology
group of 17 over A is defined to be the quotient group

H'' (I7,A)=Z'o(II,A)/B' (H, A). (2.2)

If A is the multiplicative group of a field and 17 a finite group of
automorphisms of A (thus determining the 77-module structure of A),
a fundamental theorem of Galois Theory (ARTIN 1944, Thm.21) asserts
that H' (17, A) = 0 - that is, in this case, every crossed homomorphism
is principal. Another application of crossed homomorphisms is

Proposition 2.1. The group of all those automorphisms of the semi-direct
product B =A>< 17 which induce the identity both on the subgroup A and
the quotient group B/A =I7 is isomorphic to the group Z' (17, A) of crossed
homomorphisms. Under this isomorphism the inner automorphisms of B
induced by elements of A correspond to the principal crossed homomor-
phisms.

Proof. An automorphism co of the sort described must be given
by a formula co (a, x) = (a-1- / (x), x) for some function / on 17 to A with
f (1) = 0. The condition that w be an automorphism is equivalent to the
equation (2.1). Composition of automorphisms then corresponds to the
addition of the functions /, and inner automorphisms (b, x) -* (a,1)+
(b, x) - (a, 1) to principal crossed homomorphisms, as asserted.

Crossed homomorphisms may be described in terms of the group
ring Z(17) and its augmentation e: Z(H)--.Z, as follows.

Proposition 2.2. A crossed homomorphism of 17 to the Z (M-module
A is a homomorphism g : Z (17) -). A of abelian groups such that always

g(rs)=rg(s)+g(r)e(s), r,sEZ(17). (2.3)

The principal homomorphisms are the homomorphisms gg defined for a
fixed aEA as g.(r)=ra-ass (r).

Proof. In these formulas a (r) and a (s) are integers which operate
on A on the right as multiples; thus ae(r)=e(r)a. Given any function g,
as in (2.3), its restriction /=gII7 to the elements xEJ7 is a crossed homo-
morphism in the previous sense of (2.1), since a (x) = 1. Conversely, any
crossed homomorphism / in the sense of (2.1) may be extended by
linearity to a homomorphism g: Z(II)-->A of abelian groups; that is,
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by g (2] mx x) = Z mm / (x). Then (2.3) follows from (2.1). We identify f
with its extension g, and obtain thus the results stated.

The augmentation e : Z (11) -*Z is a ring homomorphism, hence its
kernel 1(17) is a two-sided ideal in Z (fl) and therefore also a 17-sub-
module of Z(11). The injection c gives an exact sequence

0 -*I(17) `. Z (I7) `Z --).O (2.4)

of II-modules, where Z has the trivial module structure. The map
of Z to Z (M is a homomorphism of additive groups (not of

11-modules!) which is a right inverse of e. Hence the sequence (2.4)
splits as a sequence of abelian groups. A left inverse p: Z(11)->I(17) of
the injection a is therefore the map defined for rEZ(II) as pr=r- e(r)1.
It is a homomorphism of abelian groups and a crossed homomorphism
of 17 to the module 1(17).

Proposition 2.3. For any 17-module A the operation of restricting
to 1(II) a crossed homomorphism g of the form (2.3) provides an isomor-
phism

Z (17, A) =Homz(m (I(I, A). (2.5)

The principal homomorphisms correspond to the module homomorphisms
h,: I(11)--,A defined for fixed a by the formula h,(u)=ua, uE1(17).

Proof. When a (s) = 0 the identity (2.3) for g becomes g (rs) = rg (s),
so g restricted to the kernel of a is a module homomorphism, as stated.
Conversely, any module homomorphism h: 1(11)-,A, when composed
with the special crossed homomorphism pr=r-e(r) 1, yields a crossed
homomorphism hp on Z(17) whose restriction to I (H) is exactly h.
Finally, the principal homomorphisms behave as stated.

For 17 fixed, Z'(17, A) and H', are covariant functors of A ; for each
module homomorphism a: A-, B, (a* f) (x) is defined as a [/ (x)]. For a
fixed abelian group A with the trivial 17-module structure one can
make Z* and H4 contravariant functors of 17; for a group homomor-
phism C: 17-317' and a crossed homomorphism f on IT define the in-
duced map C*: Z, (II', A) -,Z', (I7, A) by (C* f) (x) = f (; x). This will not
do when A is a non-trivial IT or 17'-module. However, if l; : II -->II' and
A' is a 17'-module via p': 17'-,Aut A', then A' is also a17-module via
97'C: 17-,Aut A', and we may define induced homomorphisms

* : Z'. (!7', A') C*: H,.(!7', A') -, H , t(17, A')

by setting (C* f) (x) = f (C x) for any crossed homomorphism f on 17'.
These induced homomorphismsC* behave functorially; that is, (('c)
C*C'* and 1*=i.
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More formally, regard the triple (I7, A, q)) as a single object in a
category OF- in which the morphisms e: (17, A. p) --o- (H', A', qi) are
changes o l groups ; that is, pairs L q= (C, a) of group homomorphisms
with

C: H--.H', a: A'--A, x(aa')=a[(Cx)a] (2.6)

for all xE11 and a'EA'. Note that a is backwards (from A' to A), and that
the third condition states that a is a homomorphism a: A'--.A of
17-modules. If e' = (C', a'): (II', A', p') -s (17", A", p") is another change
of groups, the composite o'e is (C'1;, as ). For any crossed homomor-
phism /' on IT to A' the definition (es f') (x) = a [/'(C x)] gives a map

Z1.(IT , A') -.Z1,(17, A) which makes Zv and Ho contravariant func-
tors on the change of groups category 9F-. This map e` is the composite

H1,.(IT, A') t' H'. (TI. A') H',(17,A)

of the maps C' and a,, previously defined.

3. Group Extensions

A group extension is a short exact sequence

E: 1

of not necessarily abelian groups; it is convenient to write the group
composition in 0, G, and B as addition; that in H and I as multiplica-
tion. As before, the statement that E is exact amounts to the assertion
that x maps G isomorphically onto a normal subgroup of B and that a
induces an isomorphism B/xG=17 of the corresponding quotient group.
The extension E splits if a has a right inverse v; that is, if there is a
homomorphism v : 9--)..B with av =1 R , the identity automorphism
of H. The semi-direct product extension (1.5) splits.

Let Aut G denote the group of automorphisms of G, with group
multiplication the composition of automorphisms. Conjugation in B
yields a homomorphism 0: B-sAutG under which the action of each
0 (b) on any g E G is given by

x[(Ob)g]=b+(xg)-b, bEB, gEG.

Suppose G=A abelian; then O(A)=I, so that 0 induces a homomor-
phism q): )7--)..AutA with 9;a=0. Thus 97 is defined by

x[(Tab) a] = b+(xa)-b, bEB, aEA. (3.2)

We then say that E is an extension of the abelian group A by the group
17 with the operators T: II-* AutA. This map 97 records the way in which
A appears as a normal subgroup in the extension.
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The problem of group extensions is that of constructing all E,
given A, H, and 9,. Now T gives A the structure of a 17-module; hence
the group extension problem is that of constructing all E, given H
and a II-module A. There is at least one such extension, the semi-direct
product Ax,1I.

If E and E' are any two group extensions, a morphism I': EKE'
is a triple 1'= (a, fi, y) of group homomorphisms such that the diagram

E: 0-*A --),. B III -* 1
1°` 1P jy (3.3)

E': 0VA'-+B'-II'-1
is commutative. If A and A' are abelian, and 9, and 4p': II'->AutA'
the associated operators of E and E', one shows readily that always

a[9,(x)a]=(p yx)aa. (3.4)

For example, if A=A', and a =1A , then (p x) a= (p y x) a: In other
words, the 17 module structure on A is determined by the H'-module
structure. If I': EKE' and I": E'->E" are morphisms of extensions,
so is the composite I"I': E-E".

If E and E' are two group extensions of the same module A by the
group II, a congruence T : E E' is a morphism I'= (a, fi, y) with a =1 A
and y=1 , 7 . For A abelian, it follows from (3.4) that 9, = p'; i. e., con-
gruent extensions have the same operators. The (non-commutative!)
short five lemma shows that a congruence r= (1 A, A, 1 n) has fi an iso-
morphism, hence that each congruence has an inverse. We may there-
fore speak of congruence classes of extensions. Let Opext (II, A, p) denote
the set of all congruence classes of extensions of the abelian group A
by H with operators p. We wish to describe Opext.

Any extension (3.1) with G = A abelian which splits (under v: HOB)
is congruent to the semi-direct product A><,II, under the isomorphism
14: B-,Ax,17 given by #b=(x-1[b-vab],ab). In detail,

b+ bl-va(b+b1) _ (b-vob)+vab+(bl-vab1-vob
_ (b-vab)+x[(Ob)x-1(b1-vab1)],

exactly as in the addition table (1.4) for the semi-direct product.
If 17 is a (non-abelian) free group with generators 1,,, then any epi-

morphism a : B ->. 17 has a right inverse given by setting vtt = bk, where
bk is any element of B with a free
group splits, and Opext then consists of a single element.

As a more interesting case, take H=Cm(t) cyclic of finite order m
with generator t. In any extension E by C. identify each aEA with its
image xaE B, so that A(B. Choose a representative u fort with au=t; as
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a (m u) = t'" =1, m u = a0E A. Each element of B can be written uniquely
as a+iu for aEA and 05i<m. By the choice of ao and (3.2),

mu=ao, u+a=ta+u. (3.5)

With these equations, the sum of any two elements of the form a+iu
can be put in the same form. By associativity, u+mu=(m+1) u=
mu+ u, so u+ ao = ao+ u. Therefore ao = tao, so ao is "invariant" under t.
This element ao is not unique; if u'= a1+u is a different representative
for t in B, then, by (3.5) and induction on in,

mu'=m(al+u)=al+tal+ ... } t"'-'a1 emu=Nea1 ao.

Here N,a1=al+tal+ +t'"-'a, is the norm with respect to tin the
C,, module A; it is a group homomorphism N,: A-*.A. Since the coset
of ao modulo NA is uniquely determined by the congruence class of
the extension, we have established a correspondence

Opext(C.(t),A,gp)*+[aI ta=a]IIYIA. (3.6)

This is 1-1; given any invariant ao, take B to be all symbols a+iu
with 0 S i <m and addition given by (3.5). The invariance of ao proves
this addition associative, and B is an extension of A by C. with the
given operators. In particular, if A has trivial operators (ta=a always),
the expression on the right of (3.6) is the group AImA - in agreement
with the result already found in the case of abelian extensions in Prop.
III.1.1. In this case, all extensions of A by C. are abelian.

Again, let H= C.>< C. be the free multiplicative abelian group on
two generators tl and 1=. In any extension by 17, take representatives
u; of 1j, i= 1, 2. There is then a constant ao in A with u:+ u1= ao+ u1+ u2,
all elements of the extension can be written uniquely as a+ miu1+ m=u1
with integral coefficients m1 and m=, and the addition in B is determined
by the addition in A and the rules

ul+a=4a+u1, u2+a=taa+us, u2+u1=ao+u1+u2.
This addition is always associative and makes the collection of elements
a+ m1u1+ msus a group. If the representatives u1 and us are replaced
by any other ui=a1+u1, u==as+u2, for al, a2EA, the constant ao
is replaced by ao+as-4a2-al+tpal. Hence, if S is the subgroup of
A generated by all sums as-teas-al+tsa,, we have a 1-1 correspond-
ence, O xt C C., A, asA S.Pe I (3.7)

Exercises
1. Describe Opext (C. x Coo is Coo, A, 7),
2. Describe Opext (C1,><C", A, 9P).
3. Show that Prop. 2.1 holds if Ax,17 is replaced by any extension of (17, A, p).
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4. Factor Sets

The calculations just made suggest that Opext (17, A, q,), like Ext,
is a group. This group structure can be described by means of certain
factor sets.

Let E be an extension (3.1) in Opext (17, A, T): For convenience,
identify each a with xa. To each x in 17 choose a "representative"
u (x) in B ; that is, an element u (x) with au (x) = x. In particular, choose
u (1) = 0. Now each coset of A in B contains exactly one u (x), and the
elements of B can be represented uniquely as a+u(x) for aEA, xE17.
We write the operators as p (x) a = xa: Then (3.2) for b= u (x) becomes

u(x)+a=xa+u(x). (4.1)

On the other hand, the sum u (x) + u (y) must He in the same coset as
u (x y), so there are unique elements / (x, y) E A such that always

u(x)+u(Y)(x,Y)+u(xy). (4.2)

Since u (1) = 0, we also have

/(x,1)=0=/(1,Y), x,yE17. (4.3)

The function / is called a factor set of the extension E. With this
factor set and the data (17, A, 97), the addition in B is determined,
for the sum of any two elements a+ u (x) and al+ u (y) of B can be
calculated, by (4.1) and (4.2), as

[a+u(x)]+ [ai+u(Y)]=(a+xal+/(x,Y))+u(xy). (4.4)

By this rule form the triple sums

[u(x)+u(Y)]+u(z)=/(x,Y)+/(xy,z)+u(xYz)
u(x)+ [u(Y)+u(z)]=x/(Y, z)+/(x,Y z)+u(xY z).

Their equality (associative law!) gives

xf(Y,z)+/(x,Yz)=/(x,Y)+/(xy,z), x,Y,zE17. (4.5)

The factor set / for an extension depends on a choice of represen-
tatives; if u'(x) is a second set of representatives with u'(1)=0, then
u'(x) and u (x) lie in the same coset, so there is a function g on 17 to A
with g(1)=0 such that u'(x)=g(x)+u(x). Thus

u'(x)+u'(Y)=g(x)+xg(Y)+u(x)+u(Y)=g(x)+xg(Y)+/(x,Y)+u(xy)
The new factor set is /'(x, y) = bg (x, y) + /(x, y), where 6g is the function

(6 g) (x, Y)=xg(Y)-g(xA)+g(x), x,YE17. (4.6)

One verfies that this function dg does satisfy the identity (4.5), with /
replaced by 6g there.



112 Chapter IV. Cohomology of Groups

These observations suggest the following definitions. Let 4 (I7, A)
denote the set of all functions / on 11>< H to A which satisfy the identity
(4.5) and the normalization condition (4.3). This set is an abelian group
under the termwise addition (f+ f') (x,y)= f (x,y)+/'(x,y). Let B2, (11,A)
denote the subset of V, which consists of all functions / of the form
/=8g, where 6g is defined as in (4.6) from any function g on IT to A
with g (1) = 0. The factor group

H',,(11,A)=Z:(H.A)/B2,(II,A)
is called the 2-dimensional cohomology group of 17 over A. Our discus-
sion has suggested

Theorem 4.1. Given q : H-* Aut A, A abelian, the function (o which
assigns to each extension of A by 11 with operators q. the congruence class
of one of its factor sets is a 1-1-correspondence

co: Opext(II,A,g) «H,(11,A) (4.7)

between the set Opext of all congruence classes of such extensions and the
2-dimensional cohomology group. Under this correspondence the semi-direct
product corresponds to the zero element of H,.

Since H, is an abelian group, this correspondence co imposes the
desired group structure on Opext. This group structure can also be
described conceptually via the Baer product, as set forth in the exercises
below.

Proof. Since the factor set of an extension is well defined modulo
the subgroup B21, and since congruent extensions have the same factor
sets, we know that the correspondence w is well defined. The semi-
direct product Axo11 clearly has the trivial function /(x,y)=0 as one
of its factor sets. If two extensions yield factor sets whose difference
is some function Eg (x, y), then a change of representatives in one ex-
tension will make the factor sets equal and the extensions congruent.
Therefore (4.7) is a 1-1 correspondence of Opext with part of H2. Finally,
given any f satisfying (4.5) and (4.3), one may define a group B to con-
sist of pairs (a, x) with a sum given as in (4.4) by

(a,x)+(a,,y)=(a+xal+f(x,y),xy), a,bEA.

The module rules and the condition (4.5) show that this composi-
tion is associative; it clearly yields an extension with representatives
u (x) = (0, x) and factor set f. This completes the proof of the theorem.

If A is abelian, a central group extension of A by 11 is an extension
E as in (3.1) in which xA is in the center of B. In other words, a central
extension is one with operators ip = 1. This theorem thus includes the
fact that the set of congruence classes of central extensions of A by 17
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is in 1-1 correspondence with the group H'(II,A), where the abelian
group A is taken with trivial operators p. If 17 is abelian, every abelian
extension is central, so there is a monomorphism Extz' (17, A) --*H2(17, A).

We can regard the cohomology groups H', and H,', as the cohornology
groups of a suitable complex

X°.-X1E--X,4--XS

of free 17-modules. Take X. to be the free 17-module generated by
all pairs [x, y] of elements x$ 1, y+ 1 of H. In order to define [x, y] E X,
for all x,yd17, set also [1,y]=0=[x,1] and [1,1]=0. A 2-dimensional
cochain / of Homn (X, A) is thus a II-homomorphism /: X2--).A; it is
determined by its values / [x, y] on the free generators of X,; hence is
in effect a function on 17x17 to A with / (x,1) = 0 = / (1, y). Next take
X. to be the free II-module generated by all triples [x, y, z] of elements
not I in IT with a: X3-*X, given by

a [x, Y. z] = x [Y, z] - [x y, z] + [x, Y z] - [x, A; (4.8)

the condition that / be a cocycle (/a=0) is exactly the identity (4.5).
Finally, take Xs to be the free module generated by all [x] with x4 I
and set [1 ] = 0. A 1-dimensional cochain is a module homomorphism
X1--A, and is hence determined by its values on [x], so is, in effect,
a function g on 17 to A with g(1)=0. If we now define 8: X,-+X1 by

a [x, Y] = x [Y] - Ix Y1 + (XI, (4.9)

then a a = 0, and the coboundary of g is the function given by the for-
mula (4.6). Thus H', (1I, A) is H'(Homz(17) (X, A)). We get the analogous
result for Ho if we take X0 to be Z(17) and set a [x] = x- I EZ(II).

This complex also defines a 0-dimensional cohomology group as
Hv (17, A) = H°(Homz(m (X, A)). A 0-dimensional cochain is a module
homomorphism /: Z(II) --o. A; it is determined by its value /(f)=aEA.
It is a cocycle if - (b/) [x] -- = /a [x] _ / (x-1) = xa- a is zero. Hence
the 0-cocycles correspond to the elements aEA invariant under 17
(xa=a for all x):

H°O,(17,A)=All, An=[al xa=a for xEI7]. (4.10)

Exercises
The Baer sum, introduced for extensions of modules in Chap.III, can also be

applied to group extensions, as indicated in the following sequence of exercises.

1. Prove: If E is an extension of G by II and y: there exists an extension
E' of G by 17' and a morphism I'. (1 G, ft. y) : E'-* E. The pair (r, E') is unique up
to a congruence of E'. If G is abelian and has operators 7: then E'
has operators ipy. Define Ey= E'.
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2. Under the hypotheses of Ex. 1, prove that each morphism (a1. fl , y,):
of extensions with yl=y can be factored uniquely through A.

3. For EEOpext(II,A,q)), qp': H-*AutA', and a: A-+A' a 17-module homo-
morphism, prove that there exists an extension E'E Opext (17, A'. q") and a morphism
e= (a, fl, 1 n): E-.E', unique up to a congruence of E'. Define aE to be E'.

4. Under the hypotheses of Ex. 3, prove that for E1EOpext(171, A', 971) each
morphism (al , #1, y1): E - E1 with a1= a and Tl yj s q>' can be factored uniquely
through ®.

5. For a, y, and E as in Exs. I and 3. with G= A abelian, prove that a (Ey)
is congruent to (aE) y.

6. Using Exs. 1, 3, and 5. show that Opext is a contravariant functor on the
category g- of changes of groups.

7. Show that Opext (H, A, q') is an abelian group under the Baer sum defined
by El + E, = VA (El x E1) d p, and show that this composition agrees with that
given by factor sets.

5. The Bar Resolution

The boundary formulas (4.8) and (4.9) for the complex X of the
last section can be generalized to higher dimensions. Specifically, for
any group 17 we construct a certain chain complex of H-modules
B. (Z(17)). Take B. to be the free 17-module with generators [x11 ... I xp]
all n-tuples of elements x1 1, ..., I of H. Operation on a generator
with an xE 17 yields an element x [xl I ... I in B., so B. may be described
as the free abelian group generated by all x [x11 ... I x.]. To give a meaning
to every symbol [x11 ... I x.], set

[x1I ... I if any one x;=1; (5.1)

this is called the normalization condition. In particular, B0 is the free
module on one generator, denoted [ ], so is isomorphic to Z(II), while
e [ ] =1 is a 17-module homomorphism e : Bo --+Z, with Z the trivial
17-module.

Homomorphisms s_ 1: Z --*.Bo , s.: B.--).B.+, of abelian groups are
defined by

s_11 =[ ] , X - 1
(5.2)

Define 17-module homomorphisms 8: for n>0 by
a-1

8[x11...I x%]=x1[x:I ...I xr] i1(-1)'1xll ... I x:x{+-1
(5.3)

+ (-1)* [x11 ... I X.-'];

in particular 2 [x] = x [ ] - [ ], 8 [xj y] = x [y] - [xy] + [x]. Note that
formula (5.3) holds even when some xi=1, for then the terms numbered
i -1 and i on the right cancel, and the remaining terms are zero. All
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told, we have a diagram

. a a

-B"_1 g"y..., (5.4)
S.

with solid arrows module homomorphisms and dotted arrows group
homomorphisms. Call B = B (Z(II)) the bar resolution.

Theorem 5.1. For any group 17 the bar resolution B (Z(ll)) with
augmentation a is a free resolution of the trivial II-module Z.

Proof. The B. are free modules, by construction, so we must show
that the sequence of solid arrows in (5.4), with zero adjoined on the left,
is exact. We will prove more : That this sequence is a complex of abelian
groups with s as a contracting homotopy. The latter statement means
that

es_1=1, aso+s_1e=1, (n>O). (5.5)

Each of these equations is immediate from the definition; for example,
by (5.3), as"(x [x11 ... I x"]) starts with x [x1J ... I x"] while the remaining
terms are those of si_1ax[x1J ... Ix.], each with sign changed; this
proves the last equation of (5.5). Moreover, these equations determine
e and a"+1: B,,.,1-. B. uniquely by recursion on n, for B.+1 is generated
as a 17-module by the subgroup s"B", and the equations (5.5) give
a"+1 on this subgroup as thus the formula (5.3)
for a can be deduced from (5.5) and (5.2) for s. By the same recursion
argument it follows that 01=0 and a" a.+1= 0, for

a a"+S,20,la"
gives a2=0 by induction. This can also be proved, directly but labor-
iously, from the formula (5.3) for a. Either argument shows B(Z(I1))
a complex and a resolution of Z, as stated in the theorem.

The same theorem holds for the "non-normalized" bar resolution
#(Z(17)). Here P. is the free 17-module generated by all the n-tuples
x1®. . ®x" of elements of 17 (no normalization condition) and e, a,
s are given by the same formulas as for B. Thus B"-.fl"fD", where D.
is the submodule generated by all x1® . . ®x" with one xi =1. The
symbol ® is used here because this description makes P. the (n+ })-
fold "tensor product" Z(11) ®. . . ®Z(17) of the abelian groups Z(17) ;
these tensor products are defined in Chap. V and applied to the bar reso-
lution in Chap. IX.

For any 17-module A we define the cohomology groups of 17 with
coefficients A by the formula

H"(17,A)=H"(B(Z(FI)),A), (5.6)
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in keeping with the special cases treated in the previous section (where
the subscript p was used to record explicitly the structure of A as a
17-module). The cohomology groups H" (II, A) are thus those of the
cochain complex B (II, A) = Homn [B(Z(I7)), A], where Homn is short
for HomZ(n). Since B. is a free module with generators [xil ... I x"]

(no xi =1) , an n-cochain /: B. -k A is a II-module homomorphism which
is uniquely determined by its values on these generators. Therefore the
group B" (II, A) of n-cochains may be identified with the set of all those
functions / of n arguments xi in H, with values in A, which satisfy the
"normalization" conditions

f (xi, ..., xx-1, 1, xs+i...., x")=0, i=1, ..., X. (5.7)

The sum of two cochains /1 and /2 is given by addition of values as

(/1+/5)(xi, ..., x")=/1(xi, .... x")+/s(xl, ..., x.).

Under this addition the set B" of all such / is an abelian group. The
coboundary homomorphism 6: B" -->.B"-1 is defined by

8/(x1, .... x*+1)=(-f)*+1[x1/(x$, ..., x"+i)+
(5.8)

+ (-1)'l(xi..... xix:+1,..., x"+1)+(-1)"+1/(x1, ...,x")].
i-1

H" (17, A) is the n-th cohomology group of this complex B (II, A).
As a functor, H" (17, A) is contravariant in the objects (17, A. 4p),

for if e = (i;, a) is a change of groups as in (2.6), the induced map
P : H" (I7', A') --H" (17, A) is defined for any /'E B` by

Cx*)]. C: 17-->17', a: (5.9)

In particular, for 17 fixed, H" (11, A) is a covariant functor of the H-
module A.

Corollary 5.2. For any 17-module A there is an isomorphism

0: Ext*z(n)(Z,A)=H"(H,A)
which is natural in A.

Since B is a free resolution of the trivial 17-module Z, the result is
immediate, by Thm.111.6.4; it shows that the cohomology of a group is
a special case of the functor ExtR, for R the group ring.

For a short exact sequence E: A>- B -b- C of II-modules, Cor. 5.2
and the usual exact sequence for Ext yield an exact sequence

... --+H"(17,A)-,H"(17,B)-*H"(17,C)E' H"+1(17 A)....

The connecting homomorphisms E, are natural in E. For fixed 17, the
cohomology groups H" (17, A) are covariant functors of A which may
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be characterized, with these connecting homomorphisms, by three
axioms like those for Ext (111.10): The sequence above is exact, H° (I7, A)
=A", and H" (IT, J) =0 if n>0 and J is an injective 17-module.

For 17 finite, the coboundary formula gives an amusing result:

Proposition 5.3. If 17 is a finite group of order k, every element
of H"(II,A) for n>0 has order dividing k.

Proof. For each n-cochain / define an (n-1)-cochain g by

g(x,, ..., x" ,)= f (x1. x"-r. X).
zEn

Add the identities (5.8) for all x=xii}1 in ff. The last term is inde-
pendent of x; in the next to the last term, for x" fixed,

21,/(....
x"-1,

x"x)=Zs f(..., x"-' x)=g( .., x"--1)-

Hence the result is

2] 8/(xl, ..., x", x)=-8g(xl, .... x")+k/(x1, ..., x").
sE17

For 8/-0 this gives k/=8g a coboundary, hence the result.
Corollary 5.4. If IT is finite, while the divisible abelian group D with

no elements of finite order is a IT-module in any way, then H" (17, D) = 0
for n>0.

Proof. For g as above, there is an (n-1)-cochain h with g=kh.
Then k/=± k dh; since D has no elements of finite order, /=± 8h,
and the cocycle / is a coboundary.

Corollary 5.5. If 17 is finite, P is the additive group of real numbers,
mod 1, and P and Z are trivial II-modules, H2 (17, Z) - Hom (17, P).

The (abelian) group Hom(IT, P) of all group homomorphisms 11-+P
is the character group of 17.

Proof. The additive group R of reals is divisible, with no elements
of finite order. The short exact sequence Z-R->P of trivial II-modules
yields the exact sequence

H' (17, R) -iH' (17, P) -) H2(11, Z) -+ HS (IT, R).

By Cor.5.4, the two outside groups vanish; since P has trivial module
structure, H' (17, P) = Hom (II, P). Hence the connecting homomorphism
is the desired isomorphism.

To illustrate the use of resolutions, consider the operation of con-
jugation by a fixed element tE17. Let 0,: 17-47 denote the inner auto-
morphism 0,x=t-'xt, while, for any 17-module A, a,: AAA is the
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automorphism given by ma=ta. Then x(m,a)=xta=t(t-lxta)=
a, [(08 x) a], so (0,, a,) : (II, A. 4') - (H, A, p) is a change of groups in the
sense of (2.6). The induced map on cohomology is necessarily an iso-
morphism, but more is true:

Proposition 5.6. For any II-module A, conjugation by a fixed tEH
induces the identity isomorphism

(9 m,)*: H" (II, A) = H* (17, A).

Proof. A module homomorphism g,: B"(Z(II)) -- B"(Z(II)) is given
by

g* (x [x11 ... 1 x"]) = xt [t_1 Xit 1 ... It-l xit l ... 11-1 x"t] .

Observation shows g, 8 = 2 g, , so g, is a chain transformation of resolu-
tions which lifts the identity Z -i.-Z. By the comparison theorem for
resolutions, g, is homotopic to the identity, so the induced map on
cohomology is the identity. But this induced map carries any n-cochain
/ into g, *1 where

(gi f) (x1, ..., x")=fg,[xll ... I x"]=tf (t-lilt, ..., t-lx"t).

The cochain on the right is (0,, m,)*l, as defined by (5.9), hence the
conclusion. Note that the comparison theorem has saved us the trouble
of constructing an explicit homotopy g,-1.

This theorem may be read as stating that each n-cocycle / is co-
homologous to the cocycle e l defined above. Like many results in the
cohomology of groups, this result was discovered in the case n = 2 from
properties of group extensions (Ex.3 below).

In the bar resolution, B"(Z(H)) is the free abelian group with free
generators all symbols x [x1l ... I x"] with all xEH and none of x1, ..., x"
equal to I EH. We call these symbols the nonhomogeneous generators
of B. Now the string of elements x, x1, ..., x" in 17 determines and is
determined by the string of elements y,=x,y1=xx1, y2-xxlx2, ...,
y"=xx1... x" in II, and the condition xi=1 becomes y,_1=y,. Hence
the generators of B" may be labelled by the elements y,EH, in symbols

.Y")=Yo[Yo1YiiYi (5.10)

while conversely

x[x11 ... I x"]=(x,xx1, xxixj, ..., xx1... x"). (5.11)

Translating the boundary formula to this notation proves

Proposition 5.7. The abelian group B"(Z(H)) contains the elements
(Yo ,Y") of (5.10) for all y,EH. Il yi-1=y1. (Yo Y")=0. The
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remaining such elements are free generators of B,,. The 17-module structure
is given by

Y(Yo, Y1, ...,yy,.) (5.12)

and the boundary 8: is determined by

(yo, Y1, ...,Y,.)= i (-1)i(Yo, (5.13)
i-e

where the A over yi indicates that yi is to be omitted.

Note that this formulation of B(Z(II)) uses the multiplication of 17
only in the definition (5.12) of the module structure. In view of the form
of this definition, the symbols (yo' ..., are called the homogeneous
generators of B,,. They have a geometrical flavor. If we regard (yo,y1,
.... as an n-simplex a with the element yiE U as a label on the i-th
vertex, then (yo, ... , y;, ... , y,,) is the n-1 simplex which consists of the
i-th face of a with its labels, and the boundary formula (5.13) is the usual
formula for the boundary of a simplex as the alternating sum of its
(n- I)-dimensional faces.

The non-homogeneous generators may be similarly read as a system
of edge labels. On the simplex, label the edge from the vertex i to vertex j
by z; i =y' y, , so that the simplices a and ya have the same edge labels,
and zif zzA=zik. Hence the edge labels x1=z,_l.i determine all the edge
labels by composition. The non-homogeneous generator x [xii ... I
simply records these edge labels xi and the label x=yo on the initial
vertex, as in the figure

X.x./\s+-y.'y.
y::.y.' Y. Y.

The non-homogeneous boundary formula (5.3) may be read off from
these edge labels. This schematic description can be given an exact
geometrical meaning when fl is the fundamental group of a space
(EILENBERG-MACLANE 1945).

Exercises

1. Show that fi(Z(17)) - the non-normalized bar resolution - with a suitable
augmentation is a free 17-module resolution of Z.

2. Deduce that Opext(17,A,q') can be described by factor sets which satisfy
(4.5) but not the normalization condition (4.3). Find the identity element in the
group extension given by such a non-normalized factor set.

3. For n= 2 in Prop. 5.6, show explicitly that the cohomologous factor sets /
and g7 / determine congruent elements of Opext (17, A, y').

4. Show that Exti (n): (Z, A) is a contravariant functor on the category
of changes of groups, and prove the isomorphism 0 of Cor. 5.2 natural.
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6. The Characteristic Class of a Group Extension

For n 2, Cor. 5.2 provides an isomorphism

0:

E of A by II,

E: 0-.A
with given operators p must determine a two-fold 17-module extension
of A by the trivial module Z. It is instructive to construct this module
extension

X(E): 0-3--A -Z(II)-!-Z-*O (6.2)

directly. To do so, take Z(17) to be the group ring of 17, with a its aug-
mentation. Take M to be the quotient module M=F/L, where F is
the free 17-module on generators [b], one for each b* 0 in B. with the
convention that [0] = 0 in F, while L is the submodule of F generated
by all [b1+ be] - @b) [b2] - [b,] for b, , bq E B. The module homomorphisms
a and fi of (6.2) may then be given by aa=[xa]+L, f([b]±L)=
ab- IEZ(II). Clearly floc=0 and efl=0, so the sequence X(E) of (6.2)
may be regarded as a complex of H-modules. The exactness of this
sequence is a consequence of

Lemma 6.1. As a chain complex of abelian groups, (6.2) has a con-
tracting homotopy.

Proof. A contracting homotopy s would consist of homomorphisms
s: Z-.Z(17), s: Z(17)-).M, and s: MBA of abelian groups such that
es=1Z, fls+se=1Z(11), as+sfl=1M, and sa=1A. The first condition
is satisfied by setting s 1=1, and the second by s x = [u (x)] + L, where
u (x) E B is a representative of x in B with au (x) = x and u (1) = 0. For
all x and b, u (x) + b - u (x (a b)) is in the kernel of a, so there are ele-
ments h (x, b) E A with

u (x) + b = x h (x, b) + u (x (ab)).

A homomorphism s: M->A may be defined by s(x[b]+L)=h(x,b).
The proof is completed by showing that a s+ sfi =1, sa =1.

The given short exact sequence E of groups thus determines an
exact sequence X (E) of modules, hence an element of ExtZ(1,)(Z, A),
called the characteristic class of E. That the correspondence

X : Opext (17, A , q7) -+Ext$i (,,) (Z, A )

is an isomorphism will follow by composing it with the 0 of (6.1) and
applying
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Theorem 6.2. The composite correspondence

Opext(II,A,gp)- ExtZ(,I) (Z,A) f-.H3(II,A) (6.3)

is the isomorphism which assigns to each E the cohomology class of one
of its factor sets.

Sketch of proof. To apply the definition of 0 we must find a chain
transformation of the bar resolution, regarded as a free resolution of
the trivial module Z, into the sequence x (E), regarded also as a resolu-
tion of Z. Such a chain transformation

B2(Z(17)) -*B1(Z(II)) -+B0(Z(17))

191 19S i{ li

0 -- A --> M Z(11) --i-.Z -0

may be specified in terms of representatives u (x) of x in B, with the
usual factor set f (x,y) for the u(x), by the module homomorphisms

gi[x]_[u(x)] +L, gY[xIy]=f(x,y). (6.4)

The cohomology class belonging to X (E) is then the cohomology class
of g2, regarded as a cocycle on B(Z(17)); that is, is the cohomology
class of a factor set f for the extension E, as asserted in our theorem.

This construction may be reversed. The bar resolution provides a
2-fold exact sequence starting with 0B$ and ending in Z. Left multi-
plication of this sequence by the cocycle f produces the sequence x(E).

Exercises
1. Show that a and ft as defined for (6.2) are indeed module homomorphisms.
2. Complete the proof of Lemma 6.1, in particular showing that the function h

there introduced satisfies h (x, b1+ by) = h (x (a bl), b2) + h (x, b1) and hence that
s: M-+A is well defined.

3. Express the function h in terms of the factor set J.
4. Verify that (6.4) gives a chain transformation as claimed.

7. Cohomology of Cyclic and Free Groups

Since H3 (17, A) =Exti (m (Z, A), we may calculate the cohomology
of a particular group 17 by using a 17-module resolution of Z suitably
adapted to the structure of the group 17.

Let I7= Cm (1) be the multiplicative cyclic group of order m with
generator t. The group ring I'=Z(Cm (t)) is the ring of all polynomials

u=2: ait' in t with integral coefficients a1, taken modulo the relation
:-o

t'"=1. Two particular elements in r are

N=1+t+ D=t--1. (7.1)



122 Chapter IV. Cohomology of Groups

Clearly ND=O, while, if u=2: a;1' is any element of r,

Nu= Du(at_1-a1)t', a,"=ao-

If Du=O, then
and u = - D [a°+ (ai+ a°) t+ - + (a,"_l+ + a°) t"-i]. This means that
the sequence of 17-modules

D*u=Du, N*u=Nu,

is exact. The augmentation E: r--+Z is eu=Zai, hence eu=O implies
that u= D v for some v. All told, the long exact sequence

(7.2)

thus provides a free resolution of Z. This resolution is customarily
denoted by W, especially in algebraic topology, where it is of considerable
use in calculating cohomology operations (STEENROD [1953]).

For any 17-module A the isomorphism Hom11(r, A) =A sends any
f: r-+A into f (1). Hence the cochain complex Homf,(W, A), with the
usual signs b f = (-1)"}l f a for the coboundary, becomes

A A ------ I. A -D--

starting with dimension zero, where N* a = Na, D* a = D a = (t _ 1) a.
The kernel of D* is the subgroup [a I t a= a] of all elements of A invariant
under the action of while the kernel of N* is the subgroup of
all a in A with The cohomology groups of C.
are those of this cochain complex, hence

Theorem 7.1. For a finite cyclic group C," of order m and generator t
and a C.-module A, the cohomology groups are

H2"(C.,A)=[aIta=a]/.N*A, n>0,
Hs0+1(Cm , A) = [a l N a = O]/D*A, n z 0.

Note that these groups for n>0 repeat with period two.
Next we consider free groups.

Lemma 7.2. If F is a free group on free generators e; , for i E J, then
Z' (F, A) is isomorphic to the cartesian product i7A; of copies A,--A
of A. under the correspondence which sends each crossed homomorphism /
to the family [lei) of its values on the generators.

Proof. By definition, the free group F consists of I and the words
x = e, ... e!,'; in the generators, with exponents e.=± 1. If we assume
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that the word is reduced (i.e., e+ e,+1$ O, when ij = ij } 1), then this
representation is unique. The product of two words is obtained by
juxtaposition and subsequent cancellation. Now a crossed homomor-
phism / satisfies the equation / (xy) =x/ (y) + / (x) and hence also f(1)=0
and f (x-1) _- x-1 f (x). Therefore / is completely determined by its
values f (e;) =a1EA on the free generators e,. Conversely, given constants
ai in A, we may set / (e;) = a; and define / (x) by induction on the length
of the reduced word x by the formulas

f(e,x)=e,f(x)+a,, /(e. 1x)=e.1/(x)-e, 1a1.

We verify that these formulas hold even when the word ex or e, 1 x
is not reduced, and hence that the / so defined is a crossed homomor-
phism. This completes the proof.

Consider now the exact sequence (2.4) of Z(F)-modules

O,I(F) LZ(F) (7.3)

with p the crossed homomorphism from F to I(F) given by p x = x--1.
By Prop. 2.3 the crossed homomorphisms / on F to A correspond one-one
to the module homomorphisms h: I(F) ->.A, indeed each h determines
an f=hp. In particular /e;=hpe;=h(e;-1). Thus the lemma above
states that the module homomorphisms h are determined in one-one
fashion by their values on a{-1 EI(F). This means that I(F) is a free
F-module on the generators ei-1. Hence (7.3) is a free resolution of
the trivial F-module Z, and may thus be used to calculate the cohomology
of F. Since this resolution is zero in dimensions beyond 1, we conclude

Theorem 7.3. For a free group F, H' (F, A)=0, for n>1.

Exercises
1. Describe H1 (F, A) for F free.
2. Without using crossed homomorphisms, prove I(F) a free module.
3. Find a resolution for Z as a trivial module over the free abelian group 17

on two generators, and calculate the cohomology of H.
4. Determine the Yoneda products for the cohomology groups H5 (Cm, Z),

showing that
S=": o-Z---- r-°. F-.. ... -r -.Z-.o

is an exact sequence with 2n intermediate terms r and maps alternately multi-
plication by N and by D, that, for n>0, H$"(Cm, Z)= Ext="(Z, Z)=Z/mZ has
an additive generator of order m given by the congruence class of the sequence
Ss", and that the composite S4" S'A is S'("+'t).

5. If E. is the exact sequence Z - Z - 'Cm, where the map Z -Z is multi-
plication by m, show that the characteristic class x(Es) in the sense of §6 is the
sequence S' of Ex.4. Deduce that Opext(Cm,Z) is the cyclic group of order m
generated by the extension E0.
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6. Let C: be a homomorphism of cyclic groups. For A a trivial 17-
module in Thm. 7.1, calculate the induced map t in cohomology.

8. Obstructions to Extensions

The 3-dimensional cohomology groups appear in the study of ex-
tensions of a non-abelian group G. We write the composition in G as
addition, even though G is not abelian.

For any element h of G, denote by ,u (h) or µa the inner automorphism
µ,,g=h+g-h given by conjugation with Is. The map µ:G-.AutG
is a homomorphism of the additive group G to the multiplicative group
Aut G of all automorphisms of G ; its image u G is the group InG of
inner automorphisms of G. This image is a normal subgroup of AutG,
for if I E Aut G, then always

and hence
rl (Pig) =r) (h-1- g- h) =r7h+rjg-rfh=,u,,,5 (rlg)

27µ~7l-1=µ'7h, µ,, =conjugation by Is. (8.1)

The factor group Aut G/In G is called the group of automorphism classes
or of outer automorphisms of G; it is the cokernel of, u: The
kernel of µ is the center C of G; it consists of all c E G such that c+g=
g+ c for all G. The sequence

O-)- C-*G-"-AutG-.AutG/InG-.i (8.2)

is therefore exact.

Any group extension

E:

of G by 17 determines, via conjugation in the additive group B, a homo-
morphism 0: B --r Aut G for which 0 (m G) < In G. It hence determines an
induced homomorphism 1p: 17-->AutG/InG. In other words, for each
b E B the automorphism g -* b + g - b of G is in the automorphism class
1p(vb). We say that the extension E has conjugation class >p: thus v
records the fashion in which G appears as a normal subgroup of B.
Conversely, call a pair of groups 17, G together with a homomorphism
1p: I7-->AutG/InG an abstract kernel. The general problem of group
extensions is that of constructing all extensions E to a given abstract
kernel (17, G,1p) ; that is, of constructing all short exact sequences E
with given end groups G and 17 and given conjugation class V. As in
§ 3, congruent extensions have the same conjugation class.

A given extension E may be described as follows. Identify each
gE G with xgE B. To each xE17 choose it (x) E B with au (x) = x, choosing
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in particular u (1) = 0. Then conjugation by u (x) yields an automorphism
gi(x)E1p(x) of G with

u(x)+g=[p(x)g]+u(x), xE17, gEG. (8.3)

The sum u (x)+ u (y) equals u (z y) up to a summand in G, which we may
denote as / (x, y) E G,

u(x)+u(Y)(x,Y)+u(xY), x,yEI7. (8.4)

The associativity law for u (x) + u(y) + u (z) implies that

[4'(x) /(Y, z)]+/(x,Yz)=/(x,Y)+/(xY,z) (8.5)

If the group G containing the values of / were abelian, this identity
would state that 6/=0. Also, conjugation by the left and by the right
side of (8.4) must yield the same automorphism of G; hence the identity

47(x) T(Y)=PU(x,Y)] q (xy), (8.6)

which states that lC/ measures the extent to which 97 deviates from a
homomorphism cv: 17-+Aut G.

Conversely, these conditions may be used to construct an extension
as follows:

Lemma 8.1. Given 17, G, and /unction q. on 17 to Aut G, / on 17x17
to G which satis/y the identities (8.5) and (8.6) and the (normalization)
conditions Sa (1) = 1, / (x, 1) = 0 (1, y), the set B0 [G, g), /, 17] o/ all pairs
(g, x) under the sum de/fined by

(g,x)+(gi,Y)=(g+P(x) gi+/(x,Y),xY) (8.7)

is a group. With the homomorphisms g -, (g, 1) and (g, x) - x, G r B0 -6-17
is an extension of G by 17 with conjugation class given by the automorphism
class of 97.

Proof. A routine calculation shows that (8.5) and (8.6) yield the
associative law. Because of the normalization condition, (0,1) is the
zero, while (- / (x-1, x) - p(x-1) g, x-1) is the negative of the element
(g, x) .

We call the group B0 = [G, q ,1,17] so constructed a crossed product
group and the resulting extension a crossed product extension. Our
analysis just before the previous lemma showed that any extension
was isomorphic to such a crossed product, in the following explicit
sense.

Lemma 8.2. I/ c (x) EW (x) has 9) (1) = 1, then any extension E o/
the abstract kernel (17, G, tp) is congruent to a crossed product extension
[G, c, /, 17] with the given /unction q7.
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Proof. In the given extension E the representatives u (x) can be
chosen so that g-.u(x)+g-u(x) is any automorphism in the auto-
morphism class 1p(x). Make this choice so that the automorphism is
T (x), Each element of B then has a unique representation as g+u(x),
and the addition rules (8.3) and (8.4) yield a sum which corresponds
under g+ a (x) -->(g, x) to that in the crossed product (8.7). This cor-
respondence is a congruence. This proves the lemma.

Suppose now that just the abstract kernel (17, G, +p) is given. In
each automorphism class tp(x) choose an automorphism q,(x), taking
care to pick r (1) =1. Since ti is a homomorphism into Aut G/In G,
.p (x) p (y) c (x y)'' is an inner automorphism. To each x, yE ll choose an
element / (x, y) in G yielding this inner automorphism, in particular picking
/(x,1)=0=/(1.y); then 9) (x) q, (y)= p[/(x,y)] p (x y). This is (8.6); we
would like (8.5) to hold, but this need not be so. The associative law
for 9(x) .p(y) .p(z) shows only that (8.5) holds after u is applied to
both sides. The kernel of p is the center C of G; hence there is for all
x, y, z an element k (x, y, z) E C such that

[q>(x)f(y.z)]±f(x,yz)=k(x,y,z)+f(x.y)+1(xy,z) (8.5')

Clearly k (1, y, z) = k (x,1, z) = k (x, y,1) = 0, so that this function k may
be regarded as a normalized 3-cochain of H with coefficients in C.

The abelian group C= center (G) may be regarded as a 17-module,
for each automorphism (x) of G carries C into C and yields for CE C
an automorphism c-,p(x) c independent of the choice of 9)(x) in its
class V(x). We may thus write xc for p(x) c.

We call the cochain k of (8.5') an obstruction of the abstract kernel
(17,G,p). There are various obstructions to a given kernel, depending
on the choice of ip(x)EV(x) and of / satisfying (8.6), but when there is
an extension E we have shown in (8.5) that there is an obstruction
k=0; hence

Lemma 8.3. An abstract kernel (17,G,to) has an extension if and
only it one o l its obstructions is the cochain identically 0.

Next we prove

Lemma 8.4. Any obstruction k of a kernel (17,G,+p) is a non-homo-
geneous 3-dimensional cocycle of B(Z(17)).

We must prove 6k=0. This is plausible, for if only G were abelian
and 97 a homomorphism, the definition (8.5') of k would read k=61,
hence would give 6k=881=0. The proof consists in showing that 68
is still 0 in the non-abelian case. In detail, for x, y, z, t in H we calculate
the expression

L=4,(x) [,p (y) f(z, t)+/(y, zt)]+f(x, yz1)
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in two ways. In the first way, apply (8.5') to the inside terms beginning
q, (y) f (z, t) ; upon application of the homomorphism q (x) to the result
there are terms 99 (x) / (y, z) and p (x) / (y z, t) to each of which (8.5')
may again be applied. When the terms k in the center are put in front,
the result reads

L = [xk(y, z, t)]+k(x, yz, t)+k(x.y, z)+ U, (8.8)

where U is an abbreviation for the expression

U=l(x'Y)+l(xy, z)+/(xyz, t)
In the second way of calculation, the automorphisms p(x) p(y) on the
first terms in the brackets in L may be rewritten by (8.6) to give

/(z, t)-f(x,y)+4'(x) /(y, zt)+l(x,y i).
Using (8.5') on each term involving 97, the fact that all values of k lie
in the center gives

L=k(xy,z,t)-}-k(x,y,zt)+U (8.9)

with U as before. But the terms added to U in (8.8) and (8.9) are respec-
tively the positive and the negative terms in 6 k (x, y, z, 1) ; hence com-
parison of (8.8) and (8.9) gives 6 k = 0. q. e. d.

We now investigate the effect of different choices of p and / in the
construction of an obstruction to a given kernel.

Lemma 8.5. For given 9' (z) E ip (x), a change in the choice o/ / in (8.6)
replaces k by a cohomologous cocycle. By suitably changing the choice
of 1, k may be replaced by any cohomologous cocycle.

Proof. Since the kernel of fu is the center C of G, any other choice
of the function / in (8.6) must have the form

/'(x.Y)=h(x,Y)+f (x, Y), h(x.1)=0=h(1,Y) (8.10)

where the function h has values in C, hence may be viewed as a 2-di-
mensional normalized cocycle of 17 with values in C. Now the definition
(8.5') states essentially that the obstruction k is the coboundary k = 6/.
The obstruction k' of /' is thus k'= 6 (h+ /). The values of h lie in the
center, so we may write 6 (h+ /) = (6h) + (61); the new obstruction thus
has the asserted form ; since in (8.10) h may be chosen arbitrarily in C,
we can indeed replace the obstruction k by any cohomologous cocycle.

Lemma 8.6. A change in the choice o/ the automorphisms 9'(x) may
be followed by a suitable new selection o/ / such as to leave the obstruction
cocycle k unchanged.

Proof. Let 97(x)Etp(x) be replaced by automorphisms p(x)Etp(x)
with q (1) =1. Since p(x) and 9i (x) lie in the same automorphism
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class there must be elements g (x) E G with g (1) = 0 such that 9;'(x) _
[,ug(x)].p(x). Using (8.1) and (8.6), calculate that

q'(x) P,(Y) _,u [g(x)+p(x) g(Y)+/(x,Y)-g(xy)] q'(xy).
As the new function /'(x,y) we may then select the expression in brackets.
We write this definition as

/'(x,Y)+g(xy)=g(x)+q,(x) g(Y)+/(x.Y). (8.11)

This definition has the form /'=(6g)+ f, so that we should have 6/'=
(68g)+81=6/, modulo troubles with commutativity. If one, in fact,
successively transforms the expression 4p'(x) f'(y,z)+/'(x,yz)+g(xyz)
by (8.11) and (8.6) one obtains k(x,y,z)+/'(x,y)+/'(xy,z)+g(xyz),
which shows that the obstruction k is the same as before.

These results may be summarized as follows.

Theorem 8.7. In any abstract kernel (II,G,y,), interpret the center C
of G as a II-module with operators x c = T (x) c for any choice of automor-
phisms gp(x)E+p(x). The assignment to this kernel of the eohomology class
of any one of its obstructions yields a well defined element Obs (17, G, V) E
H3 (fI, C). The kernel (II, G, gyp) has an extension if and only if Obs (17, G, p)

0.
Indeed, when the cohomology class of k is zero, any obstruction k

has the form k = 8 h. By Lemma 8.5. there is a new choice f' for f which
makes the obstruction identically zero; with this factor set /' the ex-
tension may be constructed as the crossed product [G,fp, f',II].

To complete the study of the extension problem we have the follow-
ing result on the manifold of extensions.

Theorem 8.8. I/ the abstract kernel (17,G,,p) has an extension, then
the set of congruence classes of extensions is in 1-1 correspondence with
the set Hs (I7, C), where C is the center of G with nodule structure as in
Thm. 8.7.

We shall actually show more: That the group H2(17,C) operates
as a group of transformations on the set Opext (17, G,yi) and that this
operation is simply transitive, in that from any one extension E. we
obtain all congruence classes of extensions, each once, by operation
with the elements of H9 (17, C).

Proof. Write any extension E EOpext (17, G,V) as a crossed product
[G, q', f ,17]. Hold q' fixed. Represent each element of H2 (17, C) by a factor
set (2-cocycle) h. The required operation is [G, q', [G, q,,h+
The stated properties of this operation follow. In particular, to show
that any extension E' is so obtained from E, write E', as in Lemma 8.2,
in the form of a crossed product [G, 4p, f', II] with the same function 9).
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Two applications of (8.6) give

KI (x,Y)]=9'(x) 9'(Y) 9,(xy)--1=,u [/'(x,Y))

This states that / (x,y) - /'(x,y) lies in the kernel of 4u, that is, in the center
of G. If his defined as h (x, y) = - / (x, y) + 1'(x, y), then (8.5) for / and
shows 0=0, hence Is a cocycle with /'=h+/, as desired.

The operations of Hs on Opext may also be defined in invariant
terms, without using factor sets. Represent an element of H' (II, C),
according to Thm. 4.1, as an extension D of C by 17 with the indicated
operators. Let CxG be the cartesian product of the groups C and G.
Define a "codiagonal" map V : C xG -*G by setting 17(c, g) = c-}- g ;
since C is the center of G, this is a homomorphism. The result of operating
with D on an extension E in Opext(Ii,G,V) may then be written as
V (D>< E) dn. Exactly as in the case of the Baer sum (Ex. 4.7) this does
yield an extension of G by 17 with the operators 1p; if we calculate the
factor set for this extension we find that it is given, just as above, by
a map /-*h+/.

9. Realization of Obstructions

We have proved that the obstruction to an extension problem is
an element of Hs (17, C). If C=0, the obstruction vanishes, hence the
extension problem has a solution. The result is

Theorem 9.1. If the (additive, non-abelian) group G has center 0,
then any abstract kernel (17,G,1p) has an extension.

This simple result is worth a direct proof. Since G is centerless,
G -* Aut G -)-- Aut G/In G is an extension E0; the induced extension E0tp
of Ex. 4.1 is the desired extension of G by 17 with operators V.

In other cases the extension problem may not have a solution.
By § 7 there are cases (e. g., with 17 finite cyclic) where II$ (17, C) $ 0;
the obstruction theory above then produces abstract kernels with no
extension, provided that we know that every 3-cocycle can be realized
as an obstruction. This fact, which is also of interest in showing that
the cohomology of groups "fits" the extension problem, may be stated
as follows.

Theorem 9.2. Given II not cyclic of order 2, a 17-module C, and any
cohomology class k of H3 (17, C) there exists a group G with center C and a
homomorphism tp: 17-AutGfInG inducing the given II-module structure
on C and such that Obs (17, G, V) = k.

The theorem is true for all 17 (cf. EILENBERG-MAC LANE [19471);
a special proof is required when 11 is cyclic of order 2.
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The proof is obtained by reversing the considerations leading to
the definition of the obstruction in such a way as to construct a "free"
kernel with a given 3-cocycle k as obstruction.

Take G - C><F, where C is the given II-module and F is the free
(non-abelian) group with generators all symbols [x, y] for x+-1 and
y= I in H. Write the composition in F and G as addition. Define a func-
tion / on H><17 to GAF by / (x, 1) = / (1, y) = 0, and / (x, y) = [x, y] for
x4 1 may. For each xE1I define an endomorphism ft (x) : G --G by setting
fl(x) c=xc (under the module structure of C) and

fl(x)[y,z]=k(x,y,z)+/(x,Y)+/(xy,z)-/(x,Yz) (9.1)

for each generator [y, z] of F. Since k is normalized ti. e., k (x, y, 1) =
k (z, 1, z) = k (1, y, z) = 0 always), this equation also holds with [y, z]
replaced by / (y, z) ; that is, with y or z=1. The equation thus asserts
that k=6/, in the same "non-abelian" sense as in the definition (8.51
of the obstruction.

By this definition, ft (1) is the identity automorphism. We now assert
that always

fl(x)fl(Y)=1u[/(x,Y)]fl(xy): G->G. (9.2)

Both sides have the same effect on an element c of the 17-module C;
hence it suffices to prove that the endomorphism on each side of (9.2)
has the same effect on any one of the generators [z, 1] of F. First calculate
fi (x) ft (y) [z, t] by repeated applications of the definition (9.1), once for

(y) and three times for fi (x). The terms in k all lie in C, which is surely
contained in the center of G, so can be collected. These terms in k
include all the terms of b k (x, y, z, t) except for the term - k (x y, z, t).
Since 6 k=0, we can replace the terms in k by the one term k(xy, z, t).
The result is

d(x)fl(Y)[z,t]=/(x,y)+k(xY,z,t)+/(xy,z)+/(xYz,t)-/(xy,zt)-/(x,Y)
=/(x,Y)+fl(xy) [z, t]-/(x,Y)
=it U(x,Al fl(xY) [z, t].

This proves (9.2).
We claim that each ft(x) is an automorphism of G. Indeed, (9.2)

proves that ft(x)fl(x-1)=,u[/(x,x-1)] fl(I)=µ[/(x,x-')] is an inner
automorphism. Hence fl (x-1) has kernel 0 and fl (x) has image G. Since
x is arbitrary, this gives the result.

Denote by tp(x) the automorphism class containing ft(x). By (9.2),
w is a homomorphism tp: I7-*AutG/InG. hence (II,G,p) is an abstract
kernel. Since II is not cyclic of order 2, we can assume that II contains
more than two elements. The free group F then has more than one
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generator, hence is centerless, so that C is exactly the center of G=
C><F. Our construction has been designed precisely to yield the given
cocycle k as the obstruction of this kernel, hence the theorem.

A many-one correspondence of abstract kernels with center C to
the group H3 (17, C) has now been established. This correspondence can
be so decorated as to become a group isomorphism; one first defines a
relation of similarity between abstract kernels such that two kernels
are similar if and only if they have the same obstruction; with a suitable
product of kernels the group of similarity classes of kernels (HG, V)
with fixed 17 and fixed 17-module C as center is then isomorphic to
H3 (I7, C). The details are given in EILENBERC-MAC LANE [1947].

No reasonable analogous interpretation of H4 (17, C) or of higher
dimensional cohomology groups is known.

10. Schur's Theorem

We now apply factor sets to a problem in group theory.
For any set S the collection Aut S of all 1-1 mappings of S onto

itself is a group under composition. A (multiplicative) group G is said
to act on the set S if a homomorphism u : G -s Aut S is given. Equivalently,
to each gEG and to each "point" sES there is given a unique point
g s = u (g) s E S so that always (glga) s = gI (gas) and Is=s. The orbit of
a point soE S under the action of G is the set of all gso for gEG; any other
point in this subset has the same orbit. The whole set S is the union
of disjoint orbits. The set of all hE G such that hso=so is a subgroup H
of G called the group fixing so. The correspondence gH->gso is a 1-1
mapping of the left cosets of H in G onto the orbit of so. By definition,
the number of such cosets is the index [G: H] ; if the index is finite, it
is therefore the number of points in the orbit. Thus when a finite group
G acts on a set S, the number of points in each orbit is a divisor of the
order of G.

Take S to be the set of all subgroups U of a given group G. The
correspondence U- g Ug-I defines an action of G on S; one says that
G acts on S by conjugation. Similarly G (or any subgroup of G) acts by
conjugation on the set of elements of G.

Theorem 10.1. (Cauchy's Theorem.) If the order n of a finite group
G is divisible by a prime number p, then G contains an element of order p.

The proof is by induction on n. Let G act on itself by conjugation.
The orbit of an element c consists of c alone when always gcg-'=c;
that is, precisely when c is in the center C of G. Let m denote the order of
C and ki> 1, the number of points in the i-th orbit outside C, i =1, ... , t.
Since G is the union of disjoint orbits, n = m+ kt+ -i- k, .
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If m is divisible by p, write the abelian group C as a direct sum of
cyclic groups; one of these summands then has order divisible by p,
hence contains an element of order p. Otherwise m is prime to p, so
also at least one of the integers k;. But k, is the number of points in
some orbit, hence equals the index [G:H] of some subgroup. Since p
does not divide k, it must divide the order of the subgroup H. By the
induction assumption, H contains an element of order p.

A p-group is a group in which every element has order some power
of the prime p. By Cauchy's Theorem, a finite p-group may also be
described as a group of order some power of p.

Theorem 10.2. Any finite p-group $1 has a center C+ 1.

Proof. Let the p-group act on itself by conjugation. Each orbit
consists of p" points for some exponent m; z0; together the orbits
exhaust the p" elements of the group. Since the orbit of I consists of
itself only, p"= I +Z pa'. Therefore at least p-1 other orbits consist
of one element c only. These elements lie in the center C, so C4 1.

A maximal p-subgroup of G is a p-group P(G which is contained
in no larger p-subgroup of G. By Cauchy's Theorem, a finite group
of order n has at least one maximal p-subgroup *I for each prime p
which divides n.

A subgroup U of G is said to normalize a subgroup V if uVu-1=V
for all uE U; that is, if V is a one-point orbit under the action of U
on subgroups of G.

Lemma 10.3. If P and Q are maximal p-subgroups of G such that
P normalizes Q, then P= Q.

Proof. Let PQ denote the subgroup of G generated by P and Q.
Since P normalizes Q, Q is a normal subgroup of PQ. Since P is a
p-group, so is its quotient P/PnQ=PQ/Q. Thus PQ is an extension
of the p-group Q by the p-group P/Pn Q, hence is itself a p-group. Since
P is contained in no larger p-subgroup, P = P Q, so P ) Q. Since Q is
contained in no larger p-subgroup, P= Q.

Any conjugate of a maximal p-subgroup is itself a maximal
p-subgroup. Moreover

Theorem 10.4. Any two maximal p-subgroups of a finite group are
conjugate.

Proof. Let S be the set of all conjugates in G of some maximal
p-subgroup P, and let P act on S by conjugation. By the lemma, a
point P'E S is a one-point orbit exactly when P'= P. The number of
points in any other orbit is the index of a subgroup of P, hence is
divisible by p. Therefore the number of points in S is congruent to 1,
modulo p.
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Any maximal p-subgroup Q of G acts by conjugation on S; under this
action each orbit again has either one point or a number of points divis-
ible by p. The congruence above thus shows that there is a one-point
orbit P'. In other words, Q normalizes some conjugate P' of P, so,
by the lemma, Q=P' and is itself a conjugate of P.

Theorem 10.5. (SCHUR-ZASSENHAUS) If the integers m and n are
relatively prime, any extension of a group of order m by one of order n
splits.

Proof. Let G>-' B 17 be such an extension, with G of order m and
11 of order n. This extension splits if a has a right inverse; that is, if
B contains a subgroup (also of order n) mapped by a isomorphically
on H.

Suppose first that G is abelian. The given extension is then an ele-
ment eEH$(17,G). By Prop.5.3, ne=0; trivially, me=0. Since m and
n are relatively prime, e=0; the extension splits.

For G not abelian the proof will be by induction on the order m
of G. It suffices to prove that the extension B contains a subgroup
of order n, for such a subgroup is mapped by B--)..H isomorphically
upon H.

Take a prime p dividing m and a maximal p-subgroup P of B.
The normalizer N of Pin B is defined to be the set of all b with b P b -' = P.
The index [ B: N] is then the number of conjugates
of P in B. All these conjugates must lie in G and are B
maximal p-subgroups there. By Thm. 10.4 they are \ \`
all conjugate in G. Now GrN is the normalizer G N
of P in G, so the index [G: GrN] is the number of \ \
these conjugates and is therefore equal to [B:N].

GrN HiT i d i i ls n ex equal ty (see the d agram) proves a soh
that n= [B:G]= [N : GrN]. Now P and GrN
are normal subgroups of N, and N/P is an ex- P.* K
tension of the group (GrN)/P, of order some ".. '

proper divisor of in, by the group N/GrN of C . ' I
order n. By the induction assumption, N/P thus
contains a subgroup of order n, which may be
written in the form H/P for some H with P<H<N I
and [H: P] = n.

The center C of P is, by Thm.10.2, not 1. Conjugation by elements
of II < N maps P onto itself and hence C onto itself, so that C and P
are normal in H. Thus H/C is an extension of the p-group P/C by the
group H/P of order n prime to p. Since C41, the order of P/C is less
than in, so the induction assumption provides a subgroup K/C < H/C
of order is. This group K is an extension of the abelian p-subgroup C
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by a group K/C of order n, hence splits by the abelian case already
reated. This splitting provides a subgroup L<K of order n, and the
subgroup L splits the original extension B.

Exercises
1. (The first Sylow Theorem.) If the order of a finite group G is divisible by

pk, p a prime, then G contains a subgroup of order pk.
2. If p" is the highest power of p dividing the ordtr of G. every maximal p-

subgroup of G has order p".
3. If the order of the finite group 11 is prime to the order of the finite abelian

group A, prove that F_+" (17, A) = 0 for n> 0 and any H-module structure on A.
4. Let a: B -.77 be an extension of an abelian group G of order m by H of

order , with (n,m)= 1, as in the Schur-Zassenhaus Theorem. If S and T are two
subgroups of B isomorphic to 17 under a, show S and T conjugate under conjuga-
tion by an element of G (use H1(17, G) = 0).

11. Spaces with Operators

The geometrical meaning of the cohomology groups of a group will
now be illustrated by an examination of spaces with operators.

For any topological space X, let Aut(X) denote the group of all
homeomorphisms of X with itself. A group 17 operates on the space X
if a homomorphism a: II-sAut (X) is given. Equivalently, to each aE17
and each XEX a unique point a x = ,u (a) xE X is given such that ax
is continuous in x for each fixed a and such that always (alaq)x=
a1 (a$ x) and I x = x. An open set U in X is called proper (under the action
of f7) if a Ur U=O (the null set) whenever a+ 1. Any open subset
of a proper open set is proper. The group 17 is said to operate properly
on X if every point of X is contained in a proper open set; then every
open set in X is the union of proper open sets, so that the proper open
sets constitute a base for the topology of X. When 17 operates properly,
no homeomorphism 1` (a) with a+- I can leave a point x fixed.

Assume henceforth that 17 operates properly on X. The quotient
space X/17 is the space whose points are the orbits of points of X under
the action of 17. Let the projection p: X-+X/17 be the function which
assigns to each x its orbit p x. Thus p x1= p x2 if and only if there is an
aEf7 with ax1= xt. The topology of X/17 is defined by taking as a base
for its open sets the sets p U, where U is a proper open set of X under f7;
these sets V = p U are called proper in X117.

Proposition 11.1. The map p: X-*X/17 is continuous. The space
X/f7 is covered by proper open sets V; each p-1V is the union of disjoint
open sets U. such that each restriction p I U. is a homeomorphism U. =V.

This proposition asserts that X is a "covering space" for X117 under
the map p. The U. are the sheets of X over V.
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Proof. If U is proper and V= p U, then p-1V is the union of the
sets a U for aE17. These sets are disjoint by the assumption that U is
proper. Each a U is mapped by p onto V, and the open sets a U are all
proper, and map onto proper open sets in X/I7, so that pJaU is
indeed a homeomorphism.

For example, let X be the real line El and 17 the infinite (multi-
plicative) cyclic group with generator c, acting on El by the rule chx=
x+ k for any integer k. Then open intervals of length less than 1 on the
line are proper, so 1I acts properly. The quotient E'/II is homeomorphic
to the unit circle S'. If we identify E1/I7 with S', P: E1-i,-S' becomes
the map p x = O"': which wraps the line El around the circle S'. Similarly,
the free abelian group on two generators b and c acts properly on the
Euclidean plane E' by b" c1 (x, y) = (x+ k, y+ 1) ; here b is horizontal
translation and c vertical translation, each by one unit. The quotient
space E2/17 is the 2-dimensional torus S'><S'. Again, the cyclic group
of order 2 operates properly on the 2-sphere S' by mapping each point
into its diametrically opposite point, and S2117 is the real projective
plane. In each of these cases X is the "universal covering space" of
X/TI, and 17 is the "fundamental group" of X/17 [Hu 1959].

Now consider the singular homology of X, as defined in Chap. II.

Lemma 11.2. I/ the group 17 operates properly on X, then the singular
complex S(X) is a complex o/ /ree 17-modules.

Proof. The group S. (X) of n-chains is the free abelian group gener-
ated by the singular n-simplices T: d"-->X. For each aEl7the composite
aT is also a singular n-simplex; the operators T-*aT make S"(X) a
17-module. If d{T denotes the i-th face of T, then a (d;T) =d; (aT),
hence 2=2: (-1)`d;:
S is a complex of TI-modules. To show S. (X) free, pick any subset
X, (X (a "fundamental domain") containing exactly one point from
each orbit of X under H. Then those singular n-simplices T with initial
vertex in X0 constitute a set of free generators for S" (X) as a module.

Lemma 11.3. Il the group 17 operates properly on the space X, any
T: d"-->X/17 can be written as T=pT' /or some T': With
suitable choice of one T' for each T, these T' are tree generators of S"(X)
as a II-module.

We say that T' can be lifted to T'; the possibility of such a lifting
is actually a consequence of a more general fact on the lifting of maps
in a covering space.

Proof. If T is "small" in the sense that T(1") is contained in a proper
open subset V of X/17, and if U is any sheet over V then T can be
lifted to T'=(pJU)-'T in U. The general case can then be handled
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by subdividing A" into small pieces, lifting T in succession on these
pieces. It is technically easier to do this by replacing A" by the n-cube
I"=I>< ... xI (n factors), where I is the unit interval. Since A" is
homeomorphic to I", it will suffice to lift any T: 1"-*X/I7. The cube
1" is covered by the inverse images T-1 (V) of proper open sets of X/17.
Since I" is a compact metric space, the Lebesgue Lemma provides a
real s>0 such that any subset of diameter less than a lies in one of the
T-1(1'). Now subdivide I" into congruent n-cubes, with sides parallel
to the axes, each of diameter less than e. Then T can be lifted in suc-
cession on the cubes of this subdivision, beginning with the cubes on
the bottom layer. When we come to lift Ton any one cube, the continuous
lifting T' will already be defined on a certain connected set of faces of
this cube and will lie in one sheet U over some proper V ; the rest of
the cube is then lifted by (p I U) -1. This completes the proof.

Proposition 11.4. If 17 operates properly on X, while the abelian
group A has the trivial TI-module structure, then p: X-.-X/17 induces an
isomorphism p* : Hom2(S(X/11), A) =Hom,, (S(X), A) of chain complexes
and hence an isomorphism

p*: H"(X/II,A)=H"(Hom,7(S(X),A)). (11.1)

Proof. A cochain /: S" (XITI) -*A is uniquely determined by its
values on the n-simplices T of X117, while a cochain /' of S(X), as a
module homomorphism f': S"(X)-*A, is uniquely determined by its
values on the free module generators T' of S. (X). Since these generators
are in 1-1 correspondence T'--> pT' by Lemma 11.3 and since (p* f) T' =
f (p T'), the result follows.

More generally, when A is any 17-module, the cohomology of
Homin(S(X),A) is known as the equivariant cohomology of X with
coefficients A ; in this general circumstance the theorem would still hold if
H" (X/17, A) were interpreted as the cohomology of X/IT with "local
coefficients" A, defined as in EILENBERG [1947] and EILENBERG-MAC
LANE [1949]. The main result now is

Theorem 11.5. 1/ a group 17 operates properly on an acyclic space X
and if A is an abelian group with trivial IT-module structure, there is an
isomorphism

H"(XfIT,A)=H"(II,A), n=0, 1, ..., (11.2)

natural in A, between the cohomology groups of the quotient space X/TI
and those of the group H.

Proof. The hypothesis that X is acyclic means that H. (S(X)) = 0
for n>0 and H0(S(X));Z. This latter isomorphism yields an epi-
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morphism So(X)-+Z with kernel 0S1(X). Thus the exact sequence of
17-modules

... 51(X) --)- So (X) -Z - 0

is a free resolution of the trivial module Z. Hence the equivariant
cohomology of S (X) is Exti(fl)(Z, A), which is HN (17, A) by Cor. 5.2.

The system (X,17) consisting of a topological space with a proper
group of operators 17 may be regarded as an object in a category where
the morphisms e : (X,17) - . (X',17') are pairs e = (t; , y), with : X -+X'
a continuous map and y: 17-47' a group homomorphism such that
always $ (a x) = (ya) x for a EH. The isomorphism (11.2) is natural for
these maps.

This theorem provides a geometric interpretation of all the cohomo-
logy groups of a group 17. Assuming some concepts from homotopy
theory, let Y be a pathwise connected topological space with funda-
mental group 17=n1(Y). Then, if Y has suitable local connectivity,
one can construct its universal covering space; this is a space upon
which 17 properly operates in such wise that Y is homeomorphic to
X/I7. Suppose, in particular, that Y is aspherical (all higher homotopy
groups vanish). One can then prove that the universal covering space
X is acyclic. Thm.11.5 thus applies to show that the cohomology of
the aspherical space Y is, in fact, isomorphic to the cohomology of the
fundamental group of Y.

Notes. The fact that the cohomology of an aspherical space Y depends only
on the fundamental group was proved by HuRRwlcz [1935], while the expression
of this dependence via the cohomology of groups was discovered by EILENnERG-
MAC LANE (1943, 1945b), and later but independently by ECKMANN [1945-1946].
There is a corresponding result expressing the homology of Y by the homology
of 17, found by HoPF [1945] and independently by FREUDENTHAL [1946]. All
these investigations were stimulated by the prior study of Hopp [1942) on the
influence of the fundamental group on the second homology group of any space.
This line of investigation provided the justification for the study of cohomology
of groups in all dimensions and was the starting point of homological algebra.
The 1-dimensional cohomology groups (crossed homomorphisms) had been long
known; the 2-dimensional cohomology groups, in the guise of factor sets, had
appeared long since in the study of group extensions by SCHREIER (1926], BAER
[1934, 1935], HALL [1938], and FITTING [1938]. Earlier, SCHUR had considered
projective representations e of a group 17. Each is a homomorphism of II to the
group of projective collineations of complex projective n-space, hence may be
represented by a set of (n+ 1)><(n+1) non-singular complex matrices A. for
xEI7 with AX Ay=/(x,y) Ay, where /(x,y) is a non-zero complex number. This
/ is a factor set for 17 in the multiplicative group C of non-zero complex numbers.
Hence SCHUR's "multiplicator", which is the cohomology group with
trivial II-module structure for CO. (For recent literature AsANO-SHODA (1935).
FRUCHT [1955], KOCHEND6RFFER [1956].) Projective representations of infinite
groups have been studied by MACKEY [1958). The 3-dimensional cohomology
groups of a group were first considered by TEICHMULLER (1940) in a study of
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simple algebras over a number field. The cohomology of groups has been applied
extensively in class-field theory: HocHSCHILD [1950], TATS [1952], ARTIN-TATE
[1960).

Exercises
1. Show that a set V is open in X/II if and only if p'1 V is open in X. (This

asserts that X/II has the standard "quotient space" topology.)
2. Construct an explicit homeomorphism of d" with I".

Chapter five

Tensor and Torsion Products

1. Tensor Products

Let G be a right R-module and A a left R-module - a situation we
may indicate as GR , RA. Their tensor product G ®R A is the abelian group
generated by the symbols g ®a for gE G and aE A subject to the relations

(g+g')®a=g®a+g'®a, g®(a+a')=g®a+g®a, (1.1)

gr®a=g®ra, aEA, rER, gEG. (1.2)

More formally, this statement describes G®RA as a factor group
(G O A)/S, where G O A is the free abelian group with generators all
symbols gOa, while S is the subgroup of GOA generated by all ele-
ments (g+g')Oa-gOa-g'Oa, gO(a+a')-gOa-gOa', and grOa-
gOra. Then g®a denotes the coset (gOa)+ S in (GOA)/S.

The intention is that G ®R A be a group in which an element of G
can be "multiplied" by an element of A to give a "product" g®a;
one wishes the product to be distributive, as assured by (1.1), and
associative, as in (1.2). More formally, let G ><A be the cartesian pro-
duct of the sets G and A, while M is any abelian group. Call a function f
on G><A to M biadditive if always

/(g-l-g', a) =/(g, a) +/(g', a), /(g, a+a')=/(g, a)+/(g, a') (1.3)

and middle associative if always

/(gr, a) =/(g, r4). (1.4)

If / satisfies both conditions, call / middle linear. Now g ®a is middle
linear by definition, and G ®RA is the universal range for any middle
linear /, in the following sense.

Theorem 1.1. Given modules GR and RA and a middle linear function
f on GxA to an abelian group M, there is a unique homomorphism
cu : G ®R A -* M of abelian groups with w (g (& a) = f (g, a).
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Proof. The formula w (g 0 a) = / (g, a) defines w on the generators
of G ®R A ; the assumption that / is middle linear implies that w "pre-
serves" the relations (1.1) and (1.2) defining G &A; hence co is a homo-
morphism; it is manifestly the only such. This proof is a shorter state-
ment of the following argument: Since GOA is free abelian on the gene-
rators gOa, there is a unique homomorphism w': GOA-sM with
w'(gO a) = f (g, a). The assumptions on / show that w' maps the sub-
group S above into zero; hence w' factors as GOA-*(GOA)/S-*M;
the second factor is the desired w.

This theorem has a variety of uses. First, it gives a universal property
of Mo =G ®R A which characterizes this group and the middle linear
function 0: G><A-+M0 uniquely (up to an isomorphism of M0). Hence
the theorem may be taken as a conceptual definition of the tensor
product. Next, the theorem states that every middle linear f can be
obtained from one such function ® followed by a group homomorphism
w ; in this sense, the theorem reduces middle linear functions to homo-
morphisms. Finally, the theorem states that a homomorphism w with
domain the tensor product G ®R A is uniquely defined by giving the
images of the symbols g®a under w, provided only that these images
are additive in g and a and middle associative in R. This last version
we shall use repeatedly to construct maps w.

For example, if y: GR-+GR and a: RA-+RA' are R-module homo-
morphisms, then in G'®RA' we can form the expression yg®aa, which
is middle associative and additive in gEG and aEA. Hence there is
a homomorphism y®a: G®RA-.G'®R A' with (y(&a)(g(D a)=yg®aa.
Clearly 1c®1n=1, and, for matching maps, yy'®a(x'=(y®a)
hence G®RA is a covariant bifunctor of A and G. Moreover

y®(a+fi)=y®a+y®fl, (yi+y2)®a=yi0a+y2®a. (1.5)

These identities can be applied to a direct sum diagram to give an iso-
morphism

C: G(gR(A®B)=(G®R A)®(G ORB). (1.6)

Alternatively, since (g®a, g(&b) is middle linear as a function of g
and (a, b), we can construct C directly by Thm. 1.1 as that homomorphism
4': G®R(A®B)--.(G(&R A) ®(G(& B) with 4'[g®(a,b))=(g®a. g(&b);
i'' may also be constructed from g ®a -s.g ®(a, 0) and g ®b -->g ®(0, b).

The ring R may be considered as either a left or a right module
over itself. For modules GR and RA one has isomorphisms (of abelian
groups)

G®RR=G, R®RA-A. (1.7)

given by g®r-mgr, r®a-->ra.
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If o: S-->R is a homomorphism of rings, each right R-module G
becomes a right S-module GQ when the operators are defined by gs=
g(es). Similarly, each left R-module A becomes a left S-module QA;
this is "pull-back along a", as in 111.6. If o': T-*S is a second ring
homomorphism, G(QQ. = (GQ)Q , while (QQ.)A =Q.(QA), in opposite order.

Lemma 1.2. (The Pull-back Lemma.) For a ring homomorphism
e: S-sR and modules GR, RA, RC there are natural homomorphisms

p#: a#: (1.8)

If a is an epimorphism, both e# and e# are isomorphisms.

Proof. For gEG, aEA, and sES,

gs®Ra=ge(s) ®Ra=g®Re(s) a=g®Rsa.

so g ®R a is S-middle associative. Thus e# (g (&sa) = g ®R a determines
a homomorphism, by Thm.1.1. If a (R) = S, e# has an inverse g ®R a -+
g ®s a. Similarly each R-module homomorphism /: C -+A is an S-module
homomorphism, and conversely if e(S)=R.

We normally write the modules GQ, QA without the subscript e
when this is indicated by the context G ®s A.

An abelian group A is a module over the ring Z of integers, so our
definition of tensor product includes that of the tensor product G®A
of two abelian groups (here (& is short for ®z). In this case, any bi-
additive function / (g, a) is automatically middle associative, for, with
m any positive integer,

1 (mg, a) _l(g+...+g. a) _l (g. a)+...+l (g a)

=/(g a+---+a)=/(g, ma).

This holds also for negative m, since / (- g, a) = - / (g, a) = / (g, -a).
Hence the middle associativity condition (1.2) may be omitted in
defining ®z.

Tensor products of finite abelian groups can be explicitly computed.
For each positive integer m, let Z. (go) be the cyclic group with generator
go of order m, while mA denotes that subgroup of A which consists
of all multiples ma, a E A. We claim that an isomorphism

r?: A/mA=Zm(go)®A (1.9)

is given by setting 77(a+mA)=go®a. Indeed, since g0®ma=mgo®a
=0, the product go ®a depends only on the coset of a, modulo mA,
hence r) is a homomorphism A/mA-+Zm®A. To construct an inverse
for 77, note that any generator of the tensor product has the form k go (&a,
for some kE2; since the product ka is distributive in both factors, the
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formula W (k g0 ®a) = k a -{- m A provides a homomorphism from right
to left in (1.9). Clearly rn =1, while r1p(kg0®a)=g0®ka=kg0®a,
so also r7tp =1. Therefore , and V are mutually reciprocal isomorphisms,
proving (1.9).

We also have Z®A=A by (1.7). Since any finitely generated
abelian group is a direct sum of cyclic groups 2 and Z,,,, these formulas,
with (1.6), provide a calculation of G OA for G finitely generated.
Note also that G®A=A ®G.

Exercises
1. Prove Z(,,,,,,) , where (m, n) is the g. c. d. of m and n.

2. Show that G OR 2 A t si G OR A,.

3. Determine the tensor product of two free modules.

4. If Q is the additive group of rational numbers, Q®QIM Q.

2. Modules over Commutative Rings

The meaning of tensor products may be illustrated by examining
other special cases. If K is a commutative ring (as usual, with an iden-
tity), then any left K-module A can be regarded as a right K-module,
simply by defining the multiple- ak, with kEK on the right, as ka. The
rule a(kk') = (ak) k' then follows, because K is commutative, by the
calculation a (k k') = (k'k) a = k' (k a) = (a k) k'; the other axioms for a right
module follow even more directly. With this observation, it is fruitless
to distinguish between left and right modules over K; instead we speak
simply of modules and write scalar multiples on either side, as may
be convenient.

For modules A and B over a commutative K, the tensor product
A ®K B is not just an abelian group, but is also a K-module, with mul-
tiples defined (on the generators) as

k(a®b)=(ka)®b, (or =a®kb). (2.1)

This definition leads to a variant of Thm.1.1. Let A, B, and M be
K-modules. Call a function /on A> <B to M K-bilinear if f (a, b) is K-linear
in each argument when the other is fixed (e.g., /(k1a1+kga2, b)=
k, / (a,, b) -}- k$ / (a9 , b)). Thus a ®b is a K-bilinear function f on Ax B
to A®KB, and Thm.1.1 implies that any K-bilinear function / on AxB
to M can be written as / (a, b) =w (a ®b), for a unique homomorphism
w: A ®K B -+ M of K-modules.

Since A ®K B is still a K-module, one may form iterated tensor pro-
ducts such as (A® KB) OK C; this iterated product is associative and
commutative, in the sense that E [(a 0 b) 0 c] = a 0 (b 0 c) and z (a 0 b) =
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b®a define natural isomorphisms

: (A®B)®C=A®(B(&C), r: A®B-BOA (2.2)

of K-modules, with (9 short for 0K. The function (a ®b) ®c is K-
trilinear (i. e., K-linear in each argument separately) and is universal
for K-trilinear functions on A><B><C to a K-module. The same holds
for K-multilinear functions in any number of arguments.

Similarly, (cf. 1.6) HomK (A, B) becomes a K-module if to each
J: A-*B the multiple k/: A-->.B is defined as (kj)(a)=k(la).

A module over a field F is simply a vector space V, and HomF(V, W)
is the vector space of all linear transformations f : V->.W. Suppose
that V and W have finite bases {e1, ..., e1,} and {h1, ..., respectively.
This means that V is a direct sum Z Fe; of copies Fe; of the field F.
Since "Hom" carries finite direct sums to direct sums, HomF(V, W)
is a vector space of dimension mn, as in the usual representation of
linear transformations f : V-+W by mxn matrices. Since the tensor
product is additive, V®FW has a basis of mn vectors e,®h,, hence
has dimension mn. In particular, any vector u of V®FV has a unique
expression as u= Zx'1(e; (&e1) ; the m1 constants X"EF are known
as the "components" of the "tensor" u relative to the basis {e;} . From
a change of bases one calculates the corresponding change in these
components x'f. Classical tensor analysis, lacking a proper conceptual
definition of the tensor product, described twice covariant tensors
(elements u of V ®FV) strictly in terms of such components and their
transformations under change of basis. A tensor with one covariant
and one contravariant index is, by definition, an element of

V; = HomF (V, F) is the dual space. Now the given basis {e;}
for V determines a dual basis {e'} for V*. Any tensor in V®FV has a
unique representation as a sum Zx'f (e; ®ef), so is determined by com-
ponents x',., for i, j =1, ..., n.

Exercises
1. If a new basis (e;} in the finite dimensional space V is given by the formulas

e;= t.tef, calculate the resulting transformation in the components of
a) a twice covariant tensor in V®FV;
b) a tensor in

2. Describe the transformation of components for tensors covariant in r indices
and contravariant in s indices.

3. Bimodules

If R and S are two rings, an R-S-bimodule A - in symbols RAS -
is an abelian group which is both a left R-module and a right S-module,
with always (r a) s = r (a s). For example, any ring R is an R-R-bimodule;
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any left R-module can be regarded as an R-Z-bimodule; any K-module,
with K commutative, is a K-K-bimodule; etc. If A and B are R-S-
bimodules, we denote by HomR.s (A, B) the abelian group of all bi-
module homomorphisms /: A->B; that is, of all those group homo-
morphisms / with r(/a)s=l(ras) always. A bimodule RAS can be
pulled back by ring homomorphisms e: R'--i,.R and a: S'->S to give
an R'-S'-bimodule QA,.

The functors Hom and ® carry suitable bimodules into bimodules.
To show how this takes place, let T, R, and S be any three rings. Then
we have the implication

TGR & RAS = T[G®RA]S, (3.1)

where the bimodule structure indicated on the right is defined on
generators, according to Thm.1.1, by t (g ®a) s = tg ®a s. Note that the
formula t (g ®a) = t g ®a which makes G OA a left module over T is
essentially the same as the formula y (g (&a) = (yg) ®a which makes
G ®R A a covariant functor of G. Similarly there is an implication

SCR & TAR = T[HOmR(C.A)Js, (3.2)

where the bimodule structure on the right is defined for each /: C-*A
by (tls) (c) =t [/(sc)]. The reader should show that this does produce
a T-S-bimodule, noting that the given bimodule associativities s (cr) =
(s c) r and t (ar) = (ta)r are used to insure that Its is indeed a homo-
morphism of right R-modules when / is one. Observe also how the contra-
variance of HomR in C changes left operators of S on C into right
operators of S on HomR (C, A). In case S = T, the group Homs.R (C, A)
of bimodule homomorphisms can be described as the set of all those /
in the S-S-bimodule HomR(C,A) with s/=/s. For left-module homo-
morphisms, the analogue of (3.2) is the implication

RCS & RAT = S[HomR(C,A)JT. (3.3)

An endomorphsmn of the right R-module A is by definition an R-
module homomorphism /: A-.A. Under addition and composition the
set of all R-endomorphisms of A form a ring EndR (A) =HomR (A, A)
with identity element 1A. The equation (la) r=l(ar) which states that
f is a homomorphism of right R-modules also states that A is an EndR (A)-
R-bimodule. If SAR is a bimodule, the left multiplication 1, by sES,
defined by l,a=sa, is an R-endomorphism of A, and the correspondence
S __*1, is a ring homomorphism S EndRA. Conversely, given A R and
a ring homomorphism S-* EndRA, pull-back along this homomorphism
yields a bimodule sAR. In our treatment of ExtR(C,A) (Chap.IlI),
we showed how to multiply an element SOE E ExtR (C, A) on the left
by a homomorphism a: A-.A' and on the right by a y: C'-*C, and we
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proved (Lemma 111.1.6) the congruence (a So) y- a (Soy). For endo-
morphisms a and y, this means that ExtR (C, A) is an EndR (A)-EndR(C)-
bimodule. If we pull back this bimodule structure along T-->EndRC
and S --> EndR A, we /get the implication

T"R & SAR S[EXtR(C,A)]T (3.4)

exactly as in (3.2) for n=0.
A function of two variables f (a, b) can be turned into a function q l

of the first variable a whose values are functions of the second variable,
according to the formula [(rl f) a] b = f (a, b). This change of simultaneous
arguments to successive arguments appears in many connections; for
example, in the treatment of the topology of function spaces. In the
present context it takes the following form, which we call the adjoins
associativity of Horn and ®:

Theorem 3.1. I l R and S are rings with A. B, and C modules in the
situation AR, RBS, CS, there is a natural isomorphism

rs: Homs(AORB, C)=HomR(A,Homs(B,C)) (3.5)

of abelian groups defined for each f: A®RB-* C by

[(rlf)a](b)=f(a(& b), aEA, bEB. (3.6)

The proof is mechanical. First check that (3.6) assigns to each aEA
and each S-module homomorphism f : A ®R B -' C a function F=
[(ri f)a] which, as a function of b, is an S-homomorphism [(n/)a]: B--.>.C.
Next check that i f, as a function of a, is an R-module homomorphism
of A into Homs(B,C). Finally check that rl(fl+f$)=rlf1+i?f2, so that
r] is a group homomorphism, as asserted.

To show that rl is an isomorphism, construct an inverse map l;.
To this end, take any right R-module homomorphism g: A -* Horns (B, C),
and consider the function (ga)b of aEA, bEB. Any r in R operates on
a on the right and on b on the left, and

[g (a r)] (b) = [(ga) r] b = (ga) (rb),

this because g is an R-module homomorphism and because of the way
an operation of r on a homomorphism ga: B--)C was defined. This
equation is the "middle associative" property for the function (ga) b
of the elements a and b. Hence, by Thm.1.1, a homomorphism
1; g: A ®RB->C is defined by setting

(Cg)(a®b)=(ga)b.

One checks that C: HomR (A, Horns (B, C)) -+Horns (A®R B, C), and that
both composites Ct) and rlC are the identity. Both domain and range
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of [; are functors of A, B, and C, covariant in C but contravariant
in A and B. Moreover C and 17 are natural homomorphisms between
these functors.

Corollary 3.2. 1/ U, R, S, and T are rings and OAR. R Bs , rCs are
bimoduies, then the map 77 of (3.5) is a isomorphism of T-U-bimodules.
If U=T, it induces a natural isomorphism

rj' : HomT.s (A (&R B, C) =HomT.R (A, Horns (B, C)). (3.7)

Proof. The right U-module structure on the terms of (3.5) and the
description of these terms as functors of A are given by identical for-
mulas. Hence the fact that n is natural (in A and C) implies that rl is
a module homomorphism in U and T. In case U=T, this yields (3.7).

As another application we prove

Corollary 3.3. I l PR is projective as an R-module, while the bimodule
RP; is projective as an S-module, then P®R P' is a projective S-module.

Proof. To say that P' is S-projective means that to each epimor-
phism B -+C of S-modules the induced map Horns (P', B) -- Horns (P', C)
is an epimorphism (of R-modules). Since P is projective as an R-module,

HomR(P, Horns(P', B))-.HomR(P, Homs(P', C))

is an epimorphism. Application of adjoint associativity to each side
gives the statement that P®RP' is S-projective.

A simpler analogue of adjoint associativity is the associativity of
the tensor product. In the situation AR, RBs, 5C, the correspondence
(a (&b) ®c -a ®(b (&c) yields the natural isomorphism

(A(&R B) ®sC=A®R (B &C). (3.8)

If in addition UAR and SCT, this is an isomorphism of U-T-bimodules.
We normally identify the two sides of (3.8) by this isomorphism.

For modules AR, RB we also make the identifications

A®RR=A R®RB=B (3.9)

by the natural isomorphisms a®r- .ar, r®b-*rb.

Exercises
1. If A and B are left R-modules, show that Homz(A,B) is an R-R-bimodule,

and that the subgroup HomR(A,B) consists of those group homomorphisms
I: A-*.Bwith rf=fr.

2. For GR, RA show that G®RA is an EndR(G)-EndR(A)-bimodule.

3. For R-S-bimodules C and A define the group ExtR.S(C,A) of bimodule
extensions of A by C.
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4. Establish a "permuted" adjoint associativity

Horn (A®B, C) 2F Horn (B, Hom (A, C)).

Deduce that if UPR is a projective U-module and RP' a projective R-module,
then P®RP' is a projective U-module.

5. In the situation AK, BK, CK, with K commutative, establish the natural
isomorphism HomK (A, HomK (B, C)) s--HomK (B, HomK (A, C)) of K-modules.

4. Dual Modules

The dual or conjugate of a left R-module A is the right R-module
A*=HomR(A,R). Thus an element of A * is an R-module map f: ASR,
while /r: A--3 R is the R-module map defined for each aEA by (1r)a=
(/a)r. The dual of an R-module homomorphism a: A--).A' is 0=
Horn (a,1) : A' * so the dual is a contravariant functor on left
modules to right modules. Similarly, the dual of a right R-module G
is a left R-module G*.

For left modules A and B there is a natural isomorphism

(A(D B)*=A*® B*. (4.1)

Indeed, in the direct sum diagram A-A®B B take the dual of
each object and each map; the result is still a direct sum diagram,
with the injections cA: A-aA®B and tB converted into projections
tA*: (AE)B)*--a--A* and &a*.

By the properties of Hom, A > B -a C short exact gives C* B* -*.A
(left) exact. In other words, if A(B, then (B/A)*=C* is isomorphic
to that submodule of B* which consists of all those f: B--*R which
vanish on A. Call this submodule the annihilator of A, in symbols
Annih A ; thus

(B/A)*=AnnihA(B*, B*/AnnihA >-. A*. (4.2)

For each left R-module A, there is a natural homomorphism

(p4: A-*A**=HomR(HomR(A,R),R), (4.3)

which assigns to each aEA the map (a: A* +R with (pa) 1=1(a).
In other words, for fixed a, regard the expression /(a) as a linear function
of the element IEA*.

Theorem 4.1. If L is a finitely generated and projective left R-module,
then L* is a finitely generated projective right R-module. For such
L, p: L->L* * is a natural isomorphism.

Proof. If F is free on the generators e,, ..., e0, we may define
elements e' in F* by

eI(e;)=1, if i=j,
=0, if i+j.
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Any 1: F-- * R is uniquely determined by the elements f e; = r1 E R, hence
/ _ Z eir,, and F* is free on the generators el, ..., e. They are said
to be the dual basis to e1, ..., c". Now pj, maps the , to the basis ele-
ments dual to the e', so 9F: F-->F* * is an isomorphism.

If L is finitely generated and projective, there is such an F with
F-->L and L' is also finitely generated and projective.
Hence F* =L* ®L' *, and L®L' -=F=F* * =L* *(DL' * * ; this iso-
morphism carries L onto L** by qL, whence the conclusion.

For example, if R is a field, any finitely generated module V (i. e.,
any finite dimensional vector space) is free. For such spaces V** =V,
and, for V) W,

(V/W)*_AnnihW; V*/AnnihW=W*.

For left modules A and C there is a natural homomorphism
C: A*®RC-sHomR(A,C) (4.4)

defined for each /: A-->R and each cEC by [[(f (&c)]a= f (a)c for all a.
One checks that g(f (&c) is a module homomorphism A-->.C, and that
this homomorphism is biadditive and middle associative in / and c.

Proposition 4.2. If L is a finitely generated projective left R-module,
then C is a natural isomorphism C=CL: L*®RC=HomR(L,C).

For example, if V and W are finite dimensional vector spaces, take
L=V* and C=W. Then L*=V, so C gives V®W=Hom(V*, W). Thus
tensor products of such vector spaces may be defined via Hom and
the dual. Alternatively, V (&W is the dual of the space of bilinear maps
of V><W to the base field.

Proof. First suppose that L =F is free on the generators el, ..., e".
With the dual basis e1, ..., e", each element of F* ®C has a unique
representation as Z e'®ci for constants C; E C. But (Z e (& ci) = f is
that homomorphism f : with / (et) = c1, j = 1, ... , n. Since F is
free, any f : F-->C is uniquely determined by its values t(e5) for all j.
Hence CF is an isomorphism. The case when L is a finitely generated
projective is now treated as in the proof of Thm.4.1.

Proposition 4.3. For modules L and B over a commutative ring K,
with L finitely generated and projective, there is a natural isomorphism
1p: L* ®B*-(L(DB)*.

Proof. For any two K-modules A and B a natural homomorphism
+p: A* ®B*-s(A(&B)* is defined for /EA*, gEB* by setting

[v'(/®g)] (a (&b) =1(a) g (b) E K.

This map 1p is the composite

A*®B* C Hom(A,B*)=Horn (A,Hom(B.K))=Hom(A(& B,K)
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of ; of (4.4) with adjoint associativity. The latter is always an isomor-
phism, and so is C when A = L is finitely generated and projective.

Note. For further discussions of duality see DIEUDONN$ [1958], MORITA
[1958], BASS [1960], or JAMS [1961].

Exercises
1. For each RA, show that (!(a®J)=Ja is a bimodule homomorphism

9: A®ZAs .R.

2. For modules RA,GR, a bimodule homomorphism tp: A®ZG-*R is called a
pairing. Show that tp determines tpG: such that tp=6(1®yrG), for 0 as in
Ex 1.

3. For each R-module A, prove that the composite

is the identity.
A* 9'Uh (V.4)0 ,A*

5. Right Exactness of Tensor Products

The tensor product preserves short right exact sequences:

Theorem 5.1. 1/ G is a right R-module, while D 0 B °I C is an
exact sequence o/ left R-modules, then

G®RD (5.1)

is an exact sequence (o/ abelian groups).

Proof. With the cokernel L of 1®fl manufacture the exact sequence

G®RD -L,0.
Compare this with (5.1). The composite (1(&a) (I ®fl) =1(gap is zero,
so 1®a factors as o'rl for some a': C. Since a(B)=C, there
is to each c in C a b with ob=c. By exactness at B, each rl (g (&b) depends
only on gEG and CEC, but not on the choice of b. Moreover, ?7(gob)
is biadditive and middle associative. Hence Thm.1.1 gives w : G ®R C -+L
with w(g(&c)=yl(g®b), and aw=l, wu'=1. Thus w:G®RC=L
makes (5.1) isomorphic to the manufactured sequence and hence exact.

Corollary 5.2. The tensor product of two epimorphisms is an epi-
morphism.

Proof. By the theorem, if z and a are epimorphisms, so are z ®1
and 1®v, hence also their composite (z ®1) (1®0) = z ®v. For the
kernel of z(3a, see Lemma VIII.3.2 or Ex.3 below.

In Thm. 5.1 it would not be true to state that a short exact sequence
(x, a) : A -B C yields a short exact sequence like (5.1) because when
x: A--*B is a monomorphism 1®x: G®RA--,G®RB need not be a
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monomorphism. To illustrate this, take R =Z, A = 2Z (the group of
even integers), B=Z, x the injection, and G=Z2(g) a cyclic group of
order 2 with generator g. Then, as calculated in (1.9), Z2(g) ®(2Z) is
the cyclic group of order 2 with generator g®2, while

(1®x)(g®2)=g®2=2g®1=0®1=0,
so g ®2 is in the kernel of 1®x.

This example can be reformulated thus. For a submodule A( B
one cannot assume that G ®AC GOB, because an element g ®a of
G OA may be non-zero while the "same" element g ®a becomes zero
in GOB. For these and related reasons we have insisted from the
start that the inclusion AC B be represented by a map x: A--> B.

In this example, the integer 2 can be replaced by any integer m.
Thus we can describe certain elements in Ker(t®x) for R=Z and
(x, a) : A B - C any short exact sequence of abelian groups. These
elements g®a arise whenever there is an element b with both xa=mb
and mg = 0 for the same integer m, for then

(1®x) (g®a)=g®xa=g®mb=mg®b=0®b=0.

Now xa, and hence a, is determined by b, while g®a depends only on
abEC. Indeed, ab=ob' by exactness implies b'=b+xao for some ao,
whence x(a+mao)=mb' and g®(a+mao)=g®a+g®mao=g®a.
The kernel element g®a depends on g, mEZ, and ab=c; furthermore
me=tn(ab)=a(mb)=axa=0, by exactness. By way of notation, set

k(g, m, c)=g®a E Ker(1®x), mg=0=mc; (5.2)

here a is any element of A such that xa=mb, ab=c for some b; that
is, a is obtained by "switchback" as a=x-'m a 'c. In the next section,
we shall show that the elements k (g, m, c) of (5.2) generate Ker (1®x).

These elements k (g, m, c) satisfy certain identities. They are additive
in g and in c; for example, additivity in c means that

k (g, m, c1 + c2) = k (g, m, c1) + k (g, m, c2) (5.3)

whenever mc, = 0 = m c2 . For any two integers m and it, one calculates
that

k (g, m n, c) = k (g, m, n c)

whenever mg = 0, nine = 0, and that

k (g, m n, c) = k (g m, n, c)

whenever gmn=0, nc=0. Here we have written gin for mg because
we can consider the abelian group G as a right module over Z. These
relations will now be used to define a new group.
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Exercises
1. If A>-"B, show that each element in Ker(A®Z.-b- B®Z,,,) has the form

k (c, m, 1) for I the generator of Z..
2. If J is a two-sided ideal in the ring R show that the map a®(r+ J) --I- ar for

aEJ yields an epimorphism J®R (R/J) -J/J' of R-modules. If J'$ J prove that
the injection J --i- R induces a map J OR (R/J) -> R®R (R/J) which is not a mono-
morphism.

3. If (y, s): G-+H-..K and (,6, a): D-.B-.C are exact, then s®a: H®RB-.
K®RC has kernel y. (G ®B)jg9. (H®D).

6. Torsion Products of Groups

For abelian groups A and G we define the torsion product Tor (G, A)
as that abelian group which has generators all symbols <g, in, a), with
mEZ, gm=0 in G, and ma=0 in A, subject to the relations ("additivity"
and "slide" rules for factors m, n)

<gl +g,, m, a)=<g1, in, a>+ <g2, in, a>, g:m=0=ma, (6.1)

<g, in, a1+ a,>=<g, in, a1)+<g, in, aq), gm=0=ma;, (6.2)

<g, mn, a)=<gm, n, a>, gmn=0=na, (6.3)

<g, mn, a> _ <g, m, na>, gm=0=mna. (6.4)

Each relation is imposed whenever both sides are defined; in each
case this amounts to the requirement that the symbols on the right
hand side be defined. The additivity relations (6.1) and (6.2) imply
that <0, in, a> = 0 = <g, in, 0). Hence Tor (G, A) = 0 when A has no ele-
ments (except 0) of finite order. Also Tor (A, G) =Tor (G, A).

If a : AAA', the definition a* <g, in, a> = <g, m, a a> makes Tor (G, A)
a covariant functor of A. It is likewise covariant in G. From (6.2) one
deduces (a+ fl) * = a* + fl* and hence the isomorphism Tor (G, A1® A$)
Tor (G, Al) ® Tor (G, A 2). Thus to calculate Tor (G, A) for finitely gener-
ated groups it will suffice to make a calculation for G finite cyclic.

For G=Z9(go) a cyclic group of order q and generator go, there is
an isomorphism

C: gA=Tor(Zq(go), A), (6.5)

where qA denotes the subgroup of those elements a E A for which qa=0.
Indeed, each a EqA yields an element Ca = <go, q, a) in Tor (Zq, A) ; by
(6.2), C is a homomorphism. To find a homomorphism n in the reverse
direction, write each element of Z. as g0k for some kEZ; each generator
of the torsion product then has the form <gok,m,a> where ma=0 and
mkm 0 (mod q). With n=mk/q, (6.3) and (6.4) give

<gok, in, a)=<go, km, a)=<go, q, na).
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This suggests that 77 be defined by q <g0 k, m, a> = (mk1q) a. The reader
should verify that this definition respects the defining relations (6.1)
to (6.4), in the sense that ri carries elements defined to be equal in Tor
into equal elements of qA. This shows that il yields a homomorphism
rt : Tor (Z., A) -*,A. Furthermore rte' a = a, while the calculation displayed
just above shows that Cr7 =1. Therefore q and C are reciprocal isomor-
phisms, as asserted.

For a fixed cyclic group, the isomorphism (6.5) is natural in A, but
depends on the choice of the generator for the cyclic group Zg.

The torsion product, born of the inexactitude of ®, does measure
that inexactitude as follows.

Theorem 6.1. I l E = (x, a) : A >- B - C is an exact sequence of abelian
groups, then each abelian group G gives an exact sequence

0 ->.Tor (G, A) -).Tor (G, B) dea, Tor (G, C)

G®A 0.E' 1 I
The maps are those induced by x and a except for E,,, which is defined
on each generator of Tor (G, C) by the formula

E, <g, m, c> = k (g, in, c) (6.7)

for k as in (5.2). This map E, is natural when its arguments are considered
as bi f unctors o l E and G.

Proof. E, is a homomorphism because the identities already noted
in (5.3), (5.4), and (5.5) for k match exactly the defining identities for
Tor. Naturality is readily proved. Since each k (g, in, c) lies in Ker (1®x),
one has (1®x) E, = 0, and one also verifies that E, a, = 0. As usual,
the crux of the exactness proof lies in the demonstration that each
kernel is contained in the corresponding image.

It suffices to prove this, we claim, in the case when G has a finite
number of generators. As a sample consider exactness at G®A. An
element u =,E g; ® ai of G ® A involves only a finite number of elements
of G. If its image (1®x) u = Z gi ®x a; is zero in G ®B, it is zero because
of a finite number of defining relations for G®B; these relations again
involve but a finite list hl, ..., of elements of G. Now take Go to be
the subgroup of G generated by all the elements g1. .... g,,, h1, ..., h.
which have occurred, and let t: Go-).G be the injection. Then u0=
Z g; ®a; is an element of Go ®A with (t ®1) uo = u. By naturality the
diagram

Tor(GO,C) Go®A w-1~Go®B
1.. - 1'®t 1161

Tor (G, C) G OA "'-'®" GOB



152 Chapter V. Tensor and Torsion Products

commutes, and we are allowed to assume the top row exact. Since G.
contains all the elements hj E G used to show x u = 0, these same ele-
ments will show x* uo = 0 in Go ® B. By exactness of the top row, there is
a to E Tor (GO, C) with E, to = uo . But Et t to = (t ®1) E+ to = (a ®1) uo= u;
this proves the bottom row exact at G ®A.

This argument depends not on the particular form of the definitions
of Tor and ®, but only on the fact that these groups were described
by generators and relations.

Return to the proof of exactness. Now G is finitely generated, hence
representable as a direct sum of cyclic groups. Since both Tor and ®
carry direct sums into direct sums, the sequence (6.6) is the direct sum
of the corresponding sequences for cyclic groups G. If G=Z is cyclic
infinite, the torsion products are all zero and the sequence is isomorphic
to the given sequence E. If G=Zq is finite cyclic, the various terms have
been calculated in (1.9) and (6.5); the calculations amount to a diagram
in which the central portion is

...--* Tor(Zq,B) ->Tor(Z.,C) " Zq(& A ->
TC TC E Top

C A/qA --) ...-> qq
B

In the second row, define E# by the switchback rule E#c=x-'q a-lc
+qA; with this definition this diagram is readily seen to be commu-
tative. Since 17 of (1.9) and C of (6.5) are isomorphisms, the exactness
of the top row is now reduced to the exactness of the bottom row,
which reads in full

0.

Exactness here may be verified from the definitions of the terms and
the exactness of E. For example, if x(a+gA)=0 in B/qB, then xa=qb
for some bEB. Thus a(qb)=0, hence ab=cEgC; the very definition of
the switchback yields E#c=a+qA.

We leave the reader to prove

Theorem 6.2. The following conditions on an abelian group G are
equivalent:

(i) G has no elements of finite order, except 0;

(ii) Tor (G, A) = 0 for every abelian group A ;

(iii) If x: A-->B is a monomorphism, so is 1®x: G®A->G®B;
(iv) Any short exact sequence remains exact upon tensor multiplication

by G;

(v) Any exact sequence remains exact when Censored with G.
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Such a group G is said to be torsion-free (condition (i)).
A different description of the generators of Tor(G,A) is useful for

generalization. The triple <g, in, a> determines three homomorphisms

v: Z=Z*-*.A

by 1uI =g, 81 =m, v1 =a. Regard L: Z*--Z as a chain complex, zero
except in dimensions Lo=Z=L1; since µ8=0, µ: L-->G is a chain com-
plex over G. Regard the dual L* as a chain complex a*: Lo* -*Ll* over
A via v: Li -*A. The triple <g, in, a> has become a triple (µ, L, v), where

L and its dual L* are chain complexes (of "length" 1),

µ: L-*G and v: L* ->A are chain transformations.

The slide rules (6.3) and (6.4) can be written as one rule

m', n1a>; nom=m'nl, g'm'=0=ma. (6.8)

If in and m' determine chain complexes L and L', nom=m'n1 makes

L: Z -`-Z
ej

L':

commutative, hence e : L-+L' a chain transformation. Now g' and a
determine µ': L. =Z-*G and v: Li -+A by µ'1=g', vl =a and µ'e1=
g'no, ve*1=nla. In this notation, the slide rule (6.8) becomes

(µ'p, L, v) = (µ', L', v e*) , e : L--* L'.

Exercises
1. For both sides defined, prove <g. m1+ m2, a> = <g, m1, a> + <g, ms, a>.

2. Let Q) Z be the additive group of rational numbers, and let T(A) (the "tor-
sion subgroup ") be the subgroup of A consisting of all elements of finite order in A.
Establish a natural isomorphism Tor(Q/Z,A) tm= T(A).

3. If Q0 is that subgroup of Q consisting of all rational numbers with denominator
some power of p, describe Tor (Qp/Z, A).

4. Investigate Tor (G, A) when its arguments are infinite direct sums.

5. If A and B are finite abelian groups prove that A ®B Tor (A, B) (The
isomorphism is not natural).

6. Show that Tor (G, A) = 0 if for each element a of finite order k in A and each
g of finite order fin G one always has k and I relatively prime.

7. For modules GR, RA, let T(G,A) be defined by generators <g, r, a> for
g r = 0 = r a and relations (6.1) through (6.4). Show that the sequence (6.6) with
Tor replaced by T need not be exact at G ®RA.
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7. Torsion Products of Modules

For fixed n z 0 we consider chain complexes L of length n,
8 8 8 8L: LO-L,-

with each Lt a finitely generated projective right R-module. The dual
L* = HomR (L, R) can also be regarded as a chain complex L*, with
Lk* as the chains of dimension n- k,

e a e eL*: Ln -L*_1 2-L1' 0.LEach
is also a finitely generated projective left module, and

c3k: Lk ,Lk+i is defined from 8k+1: Ls+l L as Here
and below, we could equally well require the L,t to be finitely generated
and free; the same then holds for the Lj*k.

If G is a right R-module, regarded as a trivial chain complex, a
chain transformation u: L-+G is a module homomorphism µo: L0-->G
with1u08=0: Ll -*G, while a chain transformation v: L*-ARC is a module
homomorphism v: L* with v6=0. For given modules GR and RC
we take as the elements of Tort; (G, C) all the triples

I= (µ, L, v), u: LAG, v: L*-*C,

where L has length n and u, v are chain transformations, as above.
If L' is a second such complex and p: L--,-L' a chain transformation,
then so is the dual e*: Given 4u': L'-G and v: L*-+C, we
propose that

(u'e,L,v)=(IA',L',vP*) (7.1)

These maps may be exhibited by a pair of commutative diagrams

G.<- LO-<- <-- L. Lo --> ... -+ L: -+ C

!l 1Q' Je 0'1 Q"t, II

L' -a C,G<- LoF ... L'
is f

resembling the definition of the congruence relation on Ext" by mor-
phisms of long exact sequences. Formally, the equality relation on
Tor" is to be the weakest equivalence relation in which (7.1) holds;
this means that two triples in Tor" are equal if the second is obtained
from the first by a finite succession of applications of the rule (7.1).
This describes Tor" as a set.

This set is a functor. Indeed, for maps ti: G -+G', y: C -+C' the rules

(7.2)

preserve the equality (7.1) and make Tor" a covariant bifunctor.
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Two triples t1 and is in Tor (G, C) have as direct sum the triple

(pl. L', vi) ® (p2 , L2, v2) = (11®P2. L' ®L', v1 (Dvs)

in Tore (G (DG, C ®C). If t1= 4 and t2=4 according to (7.1), then
t1®t$ = 4 ®t$ . If WG is the automorphism of G e G given by w (gl, g2) =
(gs, gl), then ((0G)* (t1® to = (WC)* (ts® t1), as one sees by applying (7.1)
with o: L'®L2-- .L'®L' the map interchanging the summands.

Now Torn (G, C) is an abelian group when the addition is defined by

tl+ 12 -(PG)*(Pc)*(4 6) 12) E Tor,,(G,C), (7.3)

with PG : G ®G >G and PG the codiagonal maps (III.2.1'). The proof
of the group axioms is direct. The associative law follows from the
associativity of the codiagonal maps. The commutative law follows from
(WG)* (6®t$) = (wC)* (t2e t) and PG wG = PG. As a zero for the addition
we may take (0, 0, 0), where the middle zero designates the zero complex
of length n, while the inverse - (I,L,v) is (-µ,L,v). The maps rl* and
V*, defined as in (7.2), respect this addition, so Tor, is a bifunctor to
the category of abelian groups. The same formulas (7.2) show that if
the modules G and C are bimodules TGR, RCS for other rings T and S,
then Tor is a bimodule much as in (3.1).

Proposition 7.1. The symbols (µ, L,v) in Tor are additive in It and v;
e. g.,

(7.4)

Proof. Recall (111.2.2) that pa-f.,"2=VG (p1®u4) AL. The dual of
the diagonal map AL: L.>LeL is the codiagonal PL.: L*eL*>L*.
Hence the equality rule (7.1) and the definition (7.3) yield (7.4) as

(/h+ Pz, L, v) = (PG (ul®Its) dt, L, v) = (IG (ftiED Io), L(D L, v PL.)

=(VG(fk®Is), L®L. Pc(v®v))=(#1, L,v)+(ps. L,v).

Proposition 7.2. Every element o l Tor,, (G, C) has the form (p. F. v)
where JA: F--).. G, v: F*>C, and F is a chain complex of length n of finitely
generated free right modules. Hence the functor Tor defined using complexes
of finitely generated free modules F is naturally isomorphic to the functor
Tor defined using complexes of finitely generated projective modules Li.

Proof. The construction above, using only free modules instead of
projectives, yields a functor Torf (G, C). Since each free complex F
of length n is also projective, each element (,u, F, v) of Torf is also an
element of This map Torf-*.Tor has a two-sided inverse. For take
any (ft, L, v) E Each Lk can be written as a direct summand of
some finitely generated free module F=Lh®Mk. Make F a complex
with boundary 000: Lk®Mk-,.Lk_1®Mk_1. The injection c: L-->F
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and the projection n: F-*L are chain transformations with x t=1,
t* a* =1. By our equality rule,

(y. L, v) = (ju, L, v t* 2*) _ (ft n, F, v t*) ;

this is an element of Torf, for F is a free complex of length it. By this
process, triples equal in the sense (7.1) are turned into equal triples
of Torf; hence the natural isomorphism

For n=0, Toro may be identified with ®:
Theorem 7.3. There is a natural isomorphism G ®RC =Toro (G, C).

Proof. Each gEG determines a map y1: R-,G of right R-modules by
,u`(r)=gr; similarly each cEC determines a map vv: R=R*--sC of
left R-modules by v,, (1) = c. The triple (IA., R, vi) E Toro (G, C) is additive
in g and c and middle linear, so g ®c--),. (Aug. R, vJ is a homomorphism
G ®C Toro (G, C) of abelian groups. It is natural. This homomorphism
takes each element Z g; ®c; of G ® C into the triple (µ, F, v), where F is
free on generators e;, ue;=g;, and ve'=c;.

To construct an inverse map ®, use Prop. 7.2 to write each element
of Toro (G,C) as (,u, F, v) where ,u: F--).G, v: F*-aC, and F is a finitely
generated free module. Choose any free generators el, .... e,,, for F,
use the dual basis 61 , ... , e'" of F*, and set

19 (,u, F, v) = u (ei) ®v (e`) E G ®RC.

To express the equality in Toro, write e: F-*F', in terms of bases ei
and er, as a ei = ei rii with a matrix {ris} of elements from R. Then

e*e'irive' and

e(,use. F, v) = { u'(ej ri,) (& v e')

{µ'ei v (ri t e')) = ®(µ', F', v e*) .

i
This shows e well defined for the equality in Tor; also, if F=F' and
of is a different basis in F, it shows the definition of a independent of
the choice of the basis in F. Since e is a two-sided inverse of the previous
map, the proof is complete.

Corollary 7.4. For L a finitely generated and projective right R-module
a natural isomorphism : HomR (L*, C) ~- L®R C is defined by a (v) =
(II., L, v). Hence each element t of Tor,(L,C) has a unique representation
as t=(IL, L, v) for some v: L*--).C.

Proof. By additivity (Prop.7.1), a is a natural homomorphism.
To show it an isomorphism, it suffices to prove the composite

L®RC=L**®RC ,.HomR(L*, C) E+Tor,(L.C)
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the identity, where C is the isomorphism defined in Prop.4.2. If L=R,
the definitions show that C is the identity; since all functors are addi-
tive, this makes C the identity for L finitely generated and free. Any
L is a direct summand of a finitely generated free module F. Since E
and Z are natural, their composite maps direct summands to direct
summands, hence is the identity for any L.

The torsion products are symmetric in G and A. To show this, con-
struct from the ring R its opposite ring R°P: The additive group of R°P
is an isomorphic copy of that of R, under an isomorphism r- .t' ; the
product in R°P is defined by r°Ps°P=(sr)°P. Each right R-module G
becomes a left R°'-module via the definition r°Pg=gr; symmetrically,
each left R-module A is a right R°P-module.

Proposition 7.5. The correspondence (u, L, v) --s (v, u) is an iso-
morphism

Tor, (G,A)=Torr(A,G), n=O, 1, ... .

Proof. The complex L consists of finitely generated projective
R°P-modules. Hence the correspondence is well defined; it is clearly
an isomorphism.

For a short exact sequence E = (x, a) : A >- B -s C and an element
t=(u,L,v)ETor"(G,C) with n>0 a product EtETor"_1(G,A) may be
defined. Regard v: L* ->C and E as complexes over C, the first projective
and the second exact. By the comparison theorem, there is a chain
map 97:

lc"-' 1V- II

E: OVA -+B --.C - O.

Let "-'L designate the chain complex of length n- I formed by removing
the last module L. from L, and set

E(,u, L, v) = (u, "-1L, (7.6)

Theorem 7.6. For E E Ext' (C, A) and I E Tor" (G, C) the product E t
is a well defined element of Tor"_1(G,A) which satisfies the associative
laws

a(Et)=(aE)1, (Ey)t'=E(yil'), E(dit)=rti(E1), (7.7)

for a: A-.. A', y: C'->. C, >): G-->G', and t'E Tor. (G, C'). It provides a
homomorphism

Ext'(C,A) ®z Tor"(G,C)-+Tor"(G,A), #=1,2,.... (7.8)

Proof. Any different choice qr' for the chain transformation 9' of
(7.5) is homotopic to q,, so there is an s: L"'->A with 9''_1=9'"_1+s6.
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The product Et defined via rp' is

But let iL be L with the first module L. removed; then 8: iL->"--1L
is a chain transformation, and the second term above is (± It 8, iL, s) _
(O,;L,s)=0. The product Et is thus independent of the choice of
If (,u'e, L, v)=(µ', L', is e*) is an equality in Tor» for some e: L-* L',
then q e* is a chain transformation, and the products

E (u'e L, v) = (11' e, " 0 L, 4'»-1) = (1f', " IL', q' » -1 eK-1) = E (y', L', v e*)

are equal. Hence Ei is well defined.
Consider the associative laws (7.7). If a: AAA', attach the mor-

phism E- rzE to the bottom of the diagram (7.5). It gives (aE) (,u,L,v) _
(,u,"-oL, a =a (iu,"-IL, p._1) =a [E(4u, L, v)], proving the first rule
of (7.7). A similar large diagram for y: C'-*C, EyEExt'(C', A), and
t'E Tor" (G, C') proves the second of (7-7); the third rule is immediate.

To say that (7.8) is a homomorphism is to say that the product
El is additive in each factor E and t separately. But E(t+t')=Et+Et'
follows at once by the definition (7.3) of the addition in Tor The other
rule (E1+E2) t=E1t+Est derives from the definition E1+E2=
VA (El ® E8) do of the addition of extensions. The proof is complete.

Given E and G, a map E* : Tor" (G, C) -+Tor" _ 1(G, A) is defined
as E* I= E t ; hence the long sequence

Tor» (G, A) B) C)

Tor"_1(G,A)-Torn-1(G,B)-....} (7.9)

Its exactness will be proved in the next section by homological means.
An element S E a E Ext ' (C, A) is a long exact sequence which may

be written as a composite S = E1 E2... E. of short exact sequences.
Define the product at to be E1(Es...(Ert)). By (7.7), the result is un-
changed by a congruence (E"y) o E'- E"o (yE') of long exact sequences,
hence gives a well-defined "composite" connecting homomorphism

Extt (C, A) ®Tor" (G, C) ->Tor"_," (G, A) , n z m . (7.10)

Exact sequences in the first argument of Tor" yield symmetric
results. For E'E Ext' (K, G) and t E Tor" (K, A) a product E't E Tor"_ 1(G, A)
is defined, with properties as in Thm. 7.6, and yielding composite
connecting homomorphisms

Ext'" (K, G) ®Tor" (K, A) -,Tor" _. (G, A), n ? M. (7.11)
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Multiplications by E and E' commute in the following sense:

Theorem 7.7. Let E=(x,a): A>-.B-*.C, and E'=(A,T): G>+H-*K
be short exact sequences o/ le/t and right modules, respectively, while

If n:->- 2,

Proof. Take t= (µ, L, v). The products Et and E't are calculated
from the diagrams

* a a

1% li IV. 1* it

A '.B °+C, G "H
as Et = (µ "-OIL, and E't= (tp1, iL, v). If n z 2, the diagrams do
not overlap, so we may calculate EE't from the first diagram if we
note that 6 for L* and 6 for (7L)* have opposite signs. Changing the
sign of q> in the diagram gives E E't = (tg ,"-1L, - 1). Similarly, but
without sign trouble, E'Et=(p "-1L, _1). Hence E'E=-EE', as
asserted.

Exercises
1. By taking L free with a given basis, show that the elements of Tor, (G, C)

can be taken to be symbols ((g1, ..., g,,,), x, (c,, ..., cm)) with g.EG. c,EC and x an
m x n matrix of entries from R such that ( g 1 . . . . . g,,,) x - 0 - x (cl, ..., here
the prime denotes the transpose. Describe the addition of such symbols and show
that the equality of such is given by sliding matrix factors of x right and left.

2. Obtain a similar definition of Tor (G, C).
3. Prove that Tor (P, C) = 0 for n> 0 and P projective. (Hint: show first that

it suffices to prove this when P is finitely generated.)
The exactness of (7.9) can be proved directly (i.e., without homology) as in the

following sequence of exercises.
4. Show that the composite of two successive maps in (7.9) is zero and that the

exactness of (7.9) for G finitely generated implies that for all G.
5. For E'= (.l, T): G -H -.. K exact with H free show that e,: Tor (K, C) -,.

1(G, C) is an isomorphism for *> 1 and a monomorphism with image Ker (A ®10)
for n = t. (Hint: construct an inverse map.) Show that E'. maps the displayed
portion of (7.9) for n=1 isomorphically onto the Ker-Coker sequence of the 2X3
diagram with rows G ®E and H ®E.

6. Prove by induction on n that the displayed portion of (7.9) is exact.

8. Torsion Products by Resolutions
The functor Ext" (C, A) can be calculated (Thm. III.6.4) from a

projective resolution X of C as H"(HomR(X,A)). There is an analogous
calculation for If e: X-*G is a projective resolution by
right R-modules, X ®RA is a complex of abelian groups, with boundary
a® 1 e : X The comparison theorem for resolutions
shows the homology H5 (X (&R A) independent of the choice of X,



160 Chapter V. Tensor and Torsion Products

hence a function of G and A which we call, for the moment,

Top, (G, A)=H. (X OR A).

It is clearly a functor of A, and also a functor of G. For, given ti: G-+G',
choose a projective resolution e': X'-- .G', lift 77 to a chain transformation
/: X--.X', and construct the induced map
By the comparison theorem, any two such /'s are homotopic, so /,
depends only on t) and gives rl, : Top, (G, A) (G', A). Thus Top,,
is a covariant bifunctor, which we now identify with Tor,,. (Often Tor.
is defined to be what we have called Top,,.)

Theorem 8.1. For a resolution e: of the module GR and a
module RA there is a homomorphism

w: n=0,1,..., (8.1)

natural in A. Il X is a projective resolution, w is an isomorphism, natural
in G and A.

Sketch. Each (u, L, v) of Tor consists of a projective complex
p: L-->G of length n over G and an n-cycle (1, v)EToro(L,,A) of
the complex L®A, hence determines a homology class in
A comparison L-.X gives a homology class in thus an
element of Top..

Proof. Take t = (,u, L, v) in Tor. (G, A). The comparison theorem
yields a chain transformation h: L-*X of the projective complex L
over G (via u) to the exact complex X over G (via e). Set

w (f4, L, v) = cls (h., L,, , v) E H (X ®A) .

This makes sense, for h,,: v: L,, -*A, so (h,,, L,,, v)EToro(X,,,A)
X. ®A. It is a cycle there, as

8 (h,, , L,, , v) = (a h., L., v) = (h -1 a, L.. v)

_ LM-1, v L.-1, 0) = 0.

The homology class of this cycle is unique, for if h': L-->X is another
chain transformation lifting fo, there is a homotopy s with

Then

which is the original cycle v) plus a boundary. Furthermore,
if t = (µ'e, L, v) and 9'= (µ', L', v ei) for some e: L--).L' are equal ele-
ments according to the definition of Tor,,, while h': L'->.X, then
h'e: L-- X and wt =w t' in Toro.
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To show w a homomorphism, note that two chain transformations
h': L' -> X yield V (h' ®h$) : L' ®I_9 -> X, and hence that

w[(fir, L',vr)+(us, La,1'a))=w[V(,u,® u2).LIED L'.V(v,®vs)J

L,',® L.2, V(vi®vs)]=w(u,, L',vi)+w(us, L2,vs).

That w is natural in A is immediate, while the asserted naturality
in G follows by observing that a chain transformation f : X-->.X' lifting
tj: G-+G' composes with an h: L-*X to give /h: L->~X'.

It suffices to show cu an isomorphism when the resolution X is free.
Any homology class in X (&A is the class of a cycle in some X'®A,
where X' is a suitable finitely generated subcomplex of X. By Cor. 7.4,
this cycle can be written as (1, X;,, v) for some v: If the com-
plex X', with e': X'-+G, is cut off beyond dimension n, it is one of the
complexes L used in the definition of Tor", so t= (e', X', v) is an element
of Tor.(G,A). The injection c: X'-..X shows cut=cls(i.X;,v). Hence
w is an epimorphism.

It remains to prove w a monomorphism. Suppose wt=0 for some 1.
This means that the cycle (h,,, L", v) is a boundary in X ®A, hence
also in some X'®A for X'(X a finitely generated free subcomplex
of X. Choose X' to contain h (L). Then h: L->X cut down yields
h': L--*X' with (hp, L., v) = (1, X.', v b.*) the boundary of some (n+ !)-
chain of X'®A. By Cor.7.4, write this chain as (1, X;+,,i;) for some
C: X.*, --*A. Now

(1, X., vh;,*)=a(1, X;,+r,C)=(1,

so the uniqueness assertion of Cor. 7.4 yields v h;, = C as. Let oX' be
the part of X' from Xo to X inclusive and "+'X' the part from X;
to X".,.,, so that h': L- X' and a: "+'X'-;"oX' are chain transformations.
The original element t of Tor" (G, A) becomes

(eu, L, v) _ (e'h', L, v) = (e', ,X', v h' *)

_ (e', *X', C as) = (s'a,"+iX', C) = (0, - , -) = 0,

and 1=0, as desired. The proof is complete.
It is convenient to have a homomorphism "converse" to w.

Corollary 8.2. 11,q: Y - .G is a projective complex over G, there is
a homomorphism

'r: H"(Y®RA)-Tor*(G,A) (8.2)

natural in A. If Y is a resolution, z=w-''.

Proof. Let X be a projective resolution of G. The comparison theorem
lifts 1G to a chain transformation /: Y-+X such that f,: H"(Y®RA) -->
H"(X®RA) is independent of the choice of f. Set
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The connecting maps t-->EL may also be calculated from resolutions:

Proposition 8.3. Let e: X -*G be a projective resolution. Each short
exact sequence E : A H B - C o l left R-modules yields an exact sequence
X ®E : X ®A Y X ®B - X ®C o l complexes with a connecting homo-
morphism aaW: For each tETora(G,C),

w(Et)=(- 1)*aX®wt;

that is, the isomorphism w of Thm.8.1 commutes with connecting homo-
morphisms.

The proof applies the relevant definitions directly and is left to
the reader. The exactness of the homology sequence for the sequence
X(& E of complexes now implies

Theorem 8.4. A short exact sequence E: A "B-10. C of left R-modules
and a right R-module G yield a long exact sequence

- Tor. (G, A) -).Tor» (G, B) -3.TorR (G, C) E Tor _1(G, A) --> , (8.3)

ending with Toro (G, C) = G ®C -+ 0. The map E,, is left multiplication
by E.

For a projective module A = P, the exactness of a resolution X makes
H. (X ®P) and hence Tor* (G, P) zero for n>0. Much as for Ext (111. 10)
we can now characterize Tor by axioms, as follows.

Theorem S.S. For a fixed right R-module G the covariant functors
Tor,, (G, A) o l A, n = 0, 1, ..., taken together with the homomorphisms
E,: Tor (G, C) A), natural for short exact sequences E o l
modules, are characterized up to natural isomorphisms by the properties

(i) Toro (G, A) = G ®R A for all A,
(ii) TorN(G,F)=0 for n>0, and all free F,

(iii) The sequence (8.3) is exact for all E.

By symmetry (Prop.7.5), will also yield a long exact
sequence when the first argument G is replaced by a short exact sequence ;
this gives a corresponding characterization of the Tor as functors of
G for fixed A. For R=Z, it follows that Tor, for abelian groups agrees
with the functor Tor defined by generators and relations in § 6.

Theorem 8.6. The following properties o t a right R-module G are
equivalent:

(i) For every left R-module C, Tor, (G, C) = 0;
(ii) Whenever x : A-3. B is a monomorphism, so is 1®x: G ®A--.G ®B;
(iii) Every exact sequence o/ left R-modules remains exact upon tensor

multiplication by G;
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(iv) If A is a left module and G'-G"->G is exact so is the sequence
G'®A »G"®A-*G ®A;

(v) For every RC and every is >0, Tor. (G, C) = 0.

Proof. Clearly (iii) #, (ii). Conversely, given (ii), Thm. 5.1 implies
that any short exact sequence remains exact upon tensor multiplication
by G; since a long exact sequence is a composite of short ones, this gives
(iii).

Given (i), the long exact sequences for Tore yield (ii) and (iv). Con-
versely, given (ii), represent C as a quotient C=P/A of a projective P,
so that

O=Tor1(G,P)-*Tor1(G,C)-* G®A--> G®P

is exact with G®A-->G®P a monomorphism by (ii), and therefore
Tor, (G, C) = 0. The proof that (iv) = (i) is analogous.

Finally, (v) = (i) ; conversely C =P/A and exactness of

0 = Tor (G, P) -*Tor (G, C) A)

show by induction on n that (i) (v).

A module G with the equivalent properties listed in Thm.8.6 is said
to be flat. Note the analogy: P projective means that the functor
Hom (P, -) preserves exact sequences; G flat means that the functor
G ®- preserves exact sequences. Every projective module is clearly
flat. When R =Z, Thm. 6.2 shows that a flat Z-module is just a torsion-
free abelian group. Hence a flat module need not be projective.

Exercises
1. If is Y-.A is a projective resolution, establish an isomorphism

Cu': TorR,(G, A) a H,(G ®RY). For E': G- H -*-K exact prove that w'E' = 8g®y(O'.
2. For a projective resolution X of G let S. (G, X) be the n-fold exact sequence

0-)- Show that the isomorphism co of Thm. 8.1 is
wt = cls e-1 [S (G, X) t].

9. The Tensor Product of Complexes

If KR and RL are chain complexes of right and left R-modules,
respectively, their tensor product K OR L is the chain complex of abelian
groups with

(K(&L)e= Z KP®RLq. (9.1)
P+q-n

with boundary homomorphisms defined on the generators k ®1 by

8(k01)=8k01+ (-1)ft"k®8l. (9.2)
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If K and L are positive complexes, so is K®L, and the direct sum in
(9.1) is finite, with p running from 0 to n. The boundary formula (9.2)
resembles that for the derivative of a product of two functions; the sign
(- 1)d`1k appears in accord with the standard sign commutation rule:
Whenever two symbols u and v with degrees are interchanged, affix
the sign (- 1)` with e= (degree u) (degree v). In the second term of (9.2),
8 of degree -1 has been moved past k, hence the sign. With this sign,
one checks that 88=0.

If /: K-->K' and g: L-*L' are chain transformations, the definition
(f ®g) (k ®l) = f k ®gl gives a chain transformation log: K ®L-*
K'®L'; in this way the tensor product is a covariant bifunctor of com-
plexes. For chain homotopies one has

Proposition 9.1. I f f 1= f s: K--).K' and g1= g2: L- .L', then 11®g,'
t ®g, In detail, chain homotopies s: f1= fy and t: g1- g9 yield a homolopy

u: /1®g,-/s®gs: K®L-*K'®L' (9.3)

given as u=s®g1+/s®l; that is, by

u(k®l)=sk®g1l+(-1)d`gk fsk®tl.

This is in accord with the sign convention, since t of degree 1 has
been commuted past k.

Proof. First, s and t give homotopies s ®1 : f l ®1= f, ®1: K ® L- +
K'®L and 1®t: 1®g1=i ®g2. Composing these two homotopies (by
Prop. 11.2-3) gives the result.

Corollary 9.2. If f : K-->K' and g: L--),.L' are chain equivalences,
so is log: K®L-+K'®L'.

As a first application of the tensor product of complexes, we show
that the torsion products can be computed from resolutions of both
arguments, as follows.

Theorem 9.3. If e: X--3-.G and rl: Y-*A are projective resolutions
of the modules GR and RA, respectively, then eel: X ®Y-*G ® Y
induces an isomorphism H (X ®R Y) =H (G ®R Y), and hence an iso-
morphism

H. (X ®R Y) =Tor;; (G, A), n=0, 1, .... (9.4)

Proof. Let F", for k = 0, 1, ..., be the subcomplex of X ® Y spanned
by all Xi ®Y, with j S k, while M" is the subcomplex of G ® Y consisting
of all G ®Yj with j:9 k. Then

0=F-1(Fo(Fl(...(X®y,
(9.5)O=M-1(Mo(M1(...(G®y,
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and a ®1 maps F" into Mk. Since 8 (x (&y) = a x ®y ± x ®ay in X ®Y,
the quotient complex FklFk-' is isomorphic to

Xo®Yk4e®1

Similarly Mk/Mk-' consists only of the chain group G®Yh in dimension
k. Because each Y. is projective and Of-GE-X04--X1 is exact, the
sequence

o- G ®Y1 -<-Xo ®Y,. -X1®Yk f-

is exact. This amounts to the statement that 6(&1: Fk/Fk-' -->.Mk/Mk-'
induces an isomorphism in homology for all k. On the other hand, F. ®1
maps the exact sequence Fk'' -sFk/Fk-' into the corresponding
sequence for the M's, as in the commutative diagram

H" _ 1 {Fk-')H,, 1(Fk/F'-') . H. (F'-') - H. (F) - H. (PIP-')

H"+,(MklMk-') -H"(M"-') -H"(Mk)-H"(Mk/Mk-')-*H"11(Mk-').

We claim that H. (Fk) --),. H. (Mk) is an isomorphism for all n and k.
This is true for k negative and all n. Now suppose by induction that
this is so for smaller k and all n. Thus the four outside vertical maps
in the diagram are isomorphisms, so the Five Lemma makes the
middle vertical map an isomorphism. This completes the induction.

In dimension n every cycle or boundary of X ®Y will appear
within F""'. Hence the isomorphism H,,(Fk) =H" (Mk) for large k
(specifically, for k z n + 1) implies the desired isomorphism H. (X 0 Y)
H" (G (&Y). Now H" (G ®Y) =Tor" (G, A) by the symmetric case of
Thm. 8.1 ; hence the result.

A sequence of subcomplexes Fk of X ®Y arranged as in (9.5) is
called a /ilfralion of X (&Y. The method here used of comparing two
complexes via filtrations of each will be formulated in general terms in
Chap. XI.

Exercises

1. For complexes K, L, Al over a commutative ring, establish the adjoint
associativity Hom (K ®L, M) Hom(K, Hom (L. M)).

2. Let l: K -aL be a chain transformation, Fk a filtration of K and Mk one of L
with / (Fk)(MA. If /.: H. (Fk/Fk-i) -H"(Mk/Mk-1) is an isomorphism for all it and k,
while for each n there is a k such that the injections induce isomorphisms
H,, (Fk) es H" (K), H. (Mk) eg H. (L), show /.: H. (K) -.. H. (L) an isomorphism for
all X.

3. If e: X .-..C is a projective resolution and 9: A -. Y an injective coresolution
prove that Ext" (C, A) =ti H" (Hom (X, Y)).
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10. The KUNNETH Formula

The tensor product of complexes corresponds to the cartesian pro-
duct of spaces X and Y, in the sense that the singular complex S (X>< Y)
can be proved (VIII.8) chain equivalent to S(X) ®S(Y). This suggests
the problem of the present section : To determine the homology of K ®L
in terms of the homologies of K and L.

The boundary formula (9.2) shows that the tensor product u®v
of cycles is a cycle in K (&L and that the tensor product of a cycle
by a boundary is a boundary. Hence for cycles u and v in K and L,
respectively,

p(clsu®clsv)=cls(u®v) (10.1)

is a well defined homology class in K®L, so yields a homomorphism

p: Hrn(K)®'RHq(L)-->Hm+q(K(&RL)

of abelian groups, called the (external) homology product. The direct
sum 2]H, .OH, for m+ q = n is thereby mapped into Hn (K ®R L),
and the image gives all of H. (K ®L) under stringent conditions on the
modules B. (K), C. (K), and H,,, (K) of boundaries, cycles, and homology
classes of K, respectively:

Theorem 10.1 (The KuNNETH Tensor Formula.) If L is a complex
of left R-modules while K is a complex of right R-modules satisfying

(i) C. (K) and Hn (K) are projective modules, for all n,
then, for each n, the homology product is an isomorphism

p Hm(K) ®RHq(L)=Nn(K®RL) (10.2)
m+q-n

This is a consequence of a more general theorem, which among
other things shows that the image of p does not usually exhaust H(K ®R L).

Theorem 10.2. (The KUNNETH Formula.) If L is a complex of left
R-modules and K a complex o l right R-modules satisfying

(ii) C,, (K) and B,, (K) are flat modules, for all n,
then there is for each dimension n a short exact sequence

0 H.(K)®RHe(L) 2] Tori(Hm(K),Hq(L))-+0 (10.3
'n +q-ts M+9-M-1

where p is the homology product and P a natural homonwrphisin.
Neither complex K, L need be positive.
This implies the previous theorem. Indeed, since H,(K) =Cn (K)/B (K),

the hypothesis (i) that H. (K) is projective implies that C. -P-H,
splits, hence that is a direct summand of the projective module
Cn, so is itself projective. Now every projective module is flat (Thm.8.6),
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so C. and B. are flat, as required for (ii). Moreover, H. flat makes
Torj (Hp Hq) = 0, so (10.3) reduces to (10.2).

Before proving Thm. 10.2 we treat the special case when the bound-
ary in K is zero. It suffices to set K=G.

Lemma 10.3. Il G is a flat right R-module, Q: G ®H (L) =H (G ®L).

Proof. Set HA= H. (L), C. = C. (L), B. = B. (L). To say that H.
is the n-th homology group of L is to say that the commutative diagram

0 0

T 1

0-->B -sC -+-
T s 1

L,,+1L.

has exact rows and columns. Indeed, the exactness of the long column
states that C. is the kernel of 0: while the exactness of the
short column gives B. as 2L.+1, and the exact row defines H. as
Now take the tensor product of this diagram with G. Since G is flat,
the new diagram is exact, and states that G®H is isomorphic, under

to the homology group H (G (&L), thus proving the lemma.
To prove Thm.10.2, we regard the families C = C (K) and D.=

as complexes of flat modules with zero boundary,
so that C,.+K-iD is an exact sequence of complexes. As
is flat by hypothesis, L,) = 0, so the sequence E : C ®L >-
K®L-io-D®L is also an exact sequence of complexes. The usual
exact homology sequence for E reads

with connecting homomorphisms E,,. Equivalently, the sequence

(10.4)

is exact. We wish to compare this with the sequence (10.3) of the theorem,
which also has H (K (&L) as middle term. Let 0' denote the map
D,,+1-).. C. induced by 0.

The homology module H,,,(K) can be described by a short exact
sequence S: Take the tensor product of this
sequence with HH(L). Since C. is flat, Torl(C,,,, H,(L)) =0, so the long
exact sequence for the torsion product, summed over m+ q=n, becomes

Tor1(H,,1(K),

10 !p (10.5)

(&L) -+'' H,,
(C ®L)
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Since Dni+1 and C. are flat, the vertical maps are isomorphisms by the
lemma. If we know that the square part of the diagram is commu-
tative, we get Ker from Ker (8' (g1) ; explicitly, Ker
Ker(0' (&1) -2:Tor1(H(K), H(L)), and Coker 1) -
ZH(K) ®H(L). Thereby (10.4) becomes the desired sequence (10.3).
One checks also that the first map of (10.3) is indeed the homology
product, while the second map fi is described by the commutativity of
the diagram

H. (K ®L) 10 Z Torl(Hm_1(K), Hq (L))
1 m+q-x Is, (W.6)
(&L) 4 2] (KJC)m®H,(L)

m+q

with K--#KfC the canonical projection, p an isomorphism, S. the short
exact sequence Sm: and S,, the sum of the
corresponding connecting homomorphisms on Tort. This shows P
natural, but note that its definition is not symmetric in K and L; if
C. (L) and B. (L) are also flat, symmetric arguments on L will produce
a possibly different map fi'. We show below (Prop. 10.6) that fl_fl'
for complexes of abelian groups; we conjecture that this should hold
in general.

It remains to show the square in (10.5) commutative. An element
d, ®cls v1 in Dm+.l ®Hq (L) is mapped by p to cls (2: d; ®v;). The

definition of the connecting homomorphism Eit1 reads: Pull the cycle
d, ®v; of D (DL back to a chain Z k, ®v; in K (&L, take its boundary
8'd;®vi pulled back to C®L and the homology class of the result.

This gives cls(Za'd,®v;)=p(a'®1) (Zd,(& clsv;), hence the com-
mutativity.

In the case of complexes of abelian groups we can say more.

Theorem 10.4. (The KUNNETH Formula for Abelian Groups.) For (not
necessarily positive) chain complexes K and L of abelian groups where no
K has elements of finite order except 0, the sequence (10.3) is exact and
splits by a homomorphism which is not natural.

Proof. Since K. torsion-free implies that its subgroups C. and B.
are also torsion-free and hence flat (as Z-modules), the previous theorem
gives the exact sequence (10.3). It remains to show that it splits. First sup-
pose that both K and L are complexes of free abelian groups Km and Lq. Then
D. oaKm<Km_1 is a subgroup of a free abelian group, hence is free, so
that K. splits as an extension of Cm by Dm, with Km =Cm®Dm. The
homomorphism cls : Cm -3' Hm (K) can thus be extended to a map
ry Km-*H.(K) with pmc=clsc for each cycle c. There is a similar
y4 : L,--, H4 (L) for the free complex L. The tensor product of these
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group homomorphisms yields a map 97(&V: (K ®L),. - Z H," (K) ®HQ(L) ;
since p and ip vanish on boundaries, so does q, ®1p. There is thus an
induced map (g ®1p), : H" (K ®L) -*> H," (K) ®HQ (L). For cycles u
and v, (q® ip), p (cls u ®cls v) = (p (&1p), cls (u ®v) = qqu ®1pv = cls u ®
cls v so (p ®rp), p =I; (q' (&V), is a left inverse of p, splitting our
sequence.

Now consider any complexes K and L (with K torsion-free). Just
below we will show that one can choose a free complex K' and a chain
transformation f : K'--)..K such that each /,: HO (K') -sH, (K) is an iso-
morphism. With a similar choice g: L'-*L, the naturality of p and fi
means that the diagram

0
I1.®6e lU®l). ,TorU..e.)

0H(K)0H(L) ±01 H(K®L) ZTor(H(K), H(L)) 0
commutes. By the choice of / and g, the outside vertical maps are iso-
morphisms. Hence by the Short Five Lemma the middle vertical map
is also an isomorphism. The bottom exact sequence is thereby iso-
morphic to the top exact sequence, which has just been shown to split.
Therefore the bottom sequence splits.

This proof, due to A. DOLD, depends on the following useful lemma.

Lemma 10.5. If K is a complex of abelian groups there exists a
complex X of free abelian groups and a chain transformation f : X --*K
such that /,: H" (X) H. (K) is an isomorphism for each dimension n.

Proof. It suffices to take X the direct sum of complexes X("> with
chain transformations f(">: X(")-+K such that (ft">),: H"(X1">) =H"(K)
and Hq (X(")) = 0 for q+n. For fixed n, construct a diagram

0 -), R"+1 F. - 0
vR if
Kn+1 K.

First write the group C. of n-cycles of K as a quotient of a free group F.;
this gives e: ,F -->C"<K". Next take and j: Rn}1->F,, the
injection. Since R"+1 is free and j R"+1= eK"+1, j lifts to a map rl
which makes the diagram commute. The top row is now a complex
XM with homology F"1R"+1 eC"fB"=H"(K) in dimension n and all
other homology groups zero. The vertical maps constitute a chain
transformation which is a homology isomorphism in dimension n, as
required.

Thm. 10.4 shows that the homology of K®L is spanned by two
types of cycles. Type I is a cycle u®v built from cycles UEK, vEL; in
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the theorem, Im p is spanned by the classes of Type I cycles. Secondly,
consider a triple <cis it, in, cis v> in Tor, (H(K), H (L)) ; there are then
chains k and 1 with 2k =mu, 01=mv for the same integer m; thus

(1/m)8(k®l)=u®l+(-1)"+lk®v, dim u=n

is a (Type II) cycle. One may verify that its homology class is deter-
mined, modulo Im p, by clsu and clsv. This yields an expression for fi
in the KUNNETH formula, as follows:

Proposition 10.6. For t = <cls u, m, cis v> E Tor, (H" (K), H (L)) with
8k =mu, 01=mv the formula yt= (-1)"+1 els(1/m) 8(k ®l) defines a
hmomorphism

y: Torl(H(K), H(L)) -* H(K(&L)/p[H(K)®H(L)].

Under the hypotheses of Thm. 10.4, y is an isomorphism and its inverse
induces fl.

Proof. Since D = K/C, the map H (K (&L) -3. H (D (gL) carries y t =
cls [(-1)"+1 u ®1+ k ®v] into cls [(k+ C) ®v]. The maps p S. of (10.6)
carry t into (k+ C) ®cls v and thence into cls [(k+ C) ®v]. The iden-
tity of these two results proves that y induces #, as stated.

Exercises
1. Show that Thm. 10.1 holds with (i) replaced by either (iii) C.(K), B. (K), and

H" (K) are flat modules, for all it, or (iv) C. (K), B" (K), and H,, (L) are flat modules,
for all n.

2. For K and L finitely generated complexes of free abelian groups, calculate
the Betti numbers and the torsion coefficients of K®L from those of K and L.
(Cf. 11.6; this version gives the original theorem of KUNNETH [1923, 1924].)

3. Prove Thm 10.4 as follows. It suffices to take K finitely generated, hence to
take K elementary (Ex. 11.2.2). In this case every cycle of K®L can be written as
a sum of cycles of types I and II; deduce that p is a monomorphism and y of Prop.
10.2 an isomorphism (EILENBERG-MAC LANE [1954, § 12]).

4. State a KUNNETH formula for K®L®M.

5. Using this, establish for abelian groups the isomorphisms

Tor (A, Tor (B, C)) = Tor (Tor (A, B), C),
Ext (A, Ext (B, C)) Ext (Tor (A, B), C).

11. Universal Coefficient Theorems

The various homologies of a complex may now be listed. If K is a
complex of right R-modules, while RA and G. are modules, regard A
as a complex (with trivial grading A=Ae and boundary 8=0), so that

K, K®RA, HomR(K,R), HomR(K,G)
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are complexes derived from K. The homology groups

11. (K (&R A), H" (K, G) =H"(HomR(K, G))

are known, respectively, as the n-dimensional homology of K with
coefficients A and the n-dimensional cohomology of K with coefficients G.
According to our rules for shifting indices up or down, H"(HomR(K, G))
is H_,,(HomR (K, G) ). When K is a positive complex, H. (K OR A) = 0
for n< 0, while H" (K, G) = 0 for n <0; hence the custom of writing the
homology index down, the cohomology index up. For K positive,
H. (K ®R A) is sometimes written as H. (K, A). Warning: Do not shif t
this index up, where it would have a different meaning H-"(K,A) _
H. (Horn (K, A)).

Consider complexes of abelian groups (R=Z). If each K. is free,
the universal coefficient theorem (Thm. III.4.1) is an exact sequence

0--.Ext(H"_1(K), G)-- H"(K, G)-*Hom(H"(K), G)--0.

We now have a corresponding homology theorem:

Theorem 11.1. I l K is a (not necessarily positive) complex of abelian
groups with no elements o/ finite order and A is an abelian group, there
is for each dimension n a split exact sequence of groups

0->H"(K) ®A 2s H"(K®A)-*Tor(H"_1(K), A) -*0 (11.1)

with both homomorphisms natural and p defined for a cycle u of K by
p (cls u (& a) = cls (u (&a). If K is a complex of vector spaces over some
field and V a vector space over the same field, then p : H" (K) 0 V
H"(K(& V).

This is a corollary to the previous Thm. 10.4. A direct proof is easy
when K is free. Wri te 8" for 8®1: K"®A->Kn_1®A. The exact
sequence

0-,. C"-*K"-C"_1--.H"-1 -+0

is a free resolution of H,_1; its tensor product with A then has homology
0 in dimension 2, Tor(H._1, A) in dimension 1, and H"_1 ®A in dimen-
sion zero. The first states that C"®A can be regarded as a subgroup
of K,,®A; indeed

Im 2"}1(C"®A<Ker 8"<K"®A.

The second states that Ker 2"/C" ®A =Tor(H"_1, A); the third (with n
replaced by n ; 1) that C"®A/Im 8"+1=H"®A. Therefore H"(K ®A) =
Kera"/Im8"+1 is an extension of H"®A by Tor(H"-1, A), as asserted
by the exact sequence (11.1).



172 Chapter V. Tensor and Torsion Products

Corollary 11.2. I/ K and K' are complexes of abelian groups, each with
no elements of finite order, while l: K-.K' is a chain translormation
with l.: II" (K) =H" (K') an isomorphism for each n, then is : H. (K (& A)

H. (K' 0A) is an isomorphism for every abelian group A and every n.

Proof. Write the sequences (11.1) for K and K' and apply the Five
Lemma, as in the proof of Cor. 111.4.6.

These universal coefficient theorems express the homology and
cohomology of K with any coefficients in terms of the so-called "integral"
homology H. (K), at least when the K. are free. If the K. are free and
finitely generated abelian groups, there are corresponding expressions
in terms of the "integral" cohomology H* (K, Z), as in Ex. 2 below.

Exercises

1. For abelian groups K and A construct natural homomorphisms
Hom(K,Z)®A-Hom(K,A) and K®A-'Hom(Hom(K.Z),A). Show them
isomorphisms when K is a finitely generated free group, and chain transformations
when K is a complex.

2. Let K be a complex of abelian groups, with each K. a finitely generated free
abelian group. Write JI"(K) for H"(Hom(K,Z)). Using Ex. I and the universal
coefficient theorems, establish natural exact sequences

0 -r H" (K) ®G - H" (K, G) -Tor (H"+1(K), G) --i 0,

0 - Ext (H"+1(K), A) -H" (K®A) -Hom (H" (K), A) -0.

3. If K is a complex of finitely generated free abelian groups, show that the
n-th Betti number b,, of K (11.2) is the dimension of the vector space H"(K®Q),
where Q is the field of rational numbers.

4. For K as in Ex. 3, and Zp the field of integers modulo p. calculate the dimension
of the vector space H,, (K ® Zp) from the Betti numbers and torsion coefficients of K.

5. If K is a complex of vector spaces over a field F, write K for its dual
Hom (K, F). If each K. is finite dimensional, establish the natural isomorphisms
H"(K') 99 [H"(K)]'.

Notes: Tensor products were long used implicitly; for example, via GORE Rej
a EGe, or V ®W n< Hom (V', W). Their central role in multilinear algebra was
highlighted by BoURBAKI's [1948] treatise on this subject. The tensor product for
abelian groups was first explicitly defined by WHITNEY [1938]. The universal
coefficient theorem 11.1 was first proved by CEcx [1935] who thereby first intro-
duced (hut did not name) the torsion product Tor,. CARTAN-EILENBERG used
resolutions to define the higher torsion products. The description (§ 6) of Tor, for
abelian groups by generators and relations (EILENBERG- MAcLANE [1954, § 12]) is
useful in treating the BOCKSTEIN spectrum of a complex K of abelian groups (the
various Ii"(K,Z,") and their interrelations - BocesrsiN [1958); PALERMO [1957]).
A similar description (Ex. 7.1, 7.2) of Tor" by generators and relations (MAcLANE
[1955]) involves some rather mysterious new functors, the "slide products" (e.g.,
T in Ex. 6.7) and leads to the conceptual characterization (§ 7) of the elements of
Tor" as triples <p, L, >.
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Chapter six
Types of Algebras

1. Algebras by Diagrams

This chapter studies the formal properties of various types of algebras
over a fixed commutative ring K, with ® short for ®K, Hom for HomK.

A K-algebra A is a ring which is also a K-module such that always

k( A2)=(kA1)4 =A,(k4$), kEK, A1, AsEA.

If 1,1 is the identity element of A, then I (k) =k 1e defines a ring
homomorphism I: K-;A. Indeed, a K-algebra may be described as a
ring A together with a ring homomorphism I: K--).A such that always
(I k) A = A (I k) ; that is, with I K in the center of A.

The product AIA2 is left and right distributive, so is a K-bilinear
function. Hence n (Al ®A$) = Al AQ determines a K-module homomorphism
n: A®A-*A. In these terms a K-algebra may be described as a
K-module A equipped with two homomorphisms

n=n4: A®A-*A, 1=14: K-->A (1.1)

of K-modules such that the diagrams

A®A®A- A®A K®A =AA®K
11OX in Vol ii

11®1 (1.2)

A®A -` A ,

are commutative. Indeed, the first diagram asserts that the product
is associative, while the left and right halves of the second diagram state
that 1(IK) is a left and right identity element for the product in A and
that n(Ik(&A) =kA=n(A(&Ik).

In case K is the ring Z of integers, a Z-algebra is simply a ring, so
this gives a diagrammatic definition of a ring, via tensor products of
abelian groups. The dual diagrams define a "coring" or a "coalgebra".
Algebras may be graded by degrees such that deg (A1 A2) =deg A1+ deg Az,
or may have a differential a, with a (AIA3) = (aA1) A,+ A1(aA,). This
chapter will give a uniform treatment of these various types of algebras
and the modules over them. As an illustration of algebras with a dif-
ferential, we first consider certain resolutions over a polynomial ring.

Let P=F[x] be the usual ring of polynomials in an indeterminate x
with coefficients in a field F; actually, P can be regarded as an F-algebra,
but for the moment we consider it just as a commutative ring. Since
F=F[x]/(x) is the quotient of P by the principal ideal (x) of all multiples
of x, we can regard F as a P-module so that z (x) = 0 defines a P-module
homomorphism e: P-sF. Form the sequence

0- F" P4Pu- 0 (1.3)
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of P-modules, where Pit is the free P-module on one generator u and
a the P-module homomorphism with au = x. The sequence is exact,
so is a free resolution of F. For any P-module A, the group Extp(F,A)
may be calculated from this resolution as the first cohomology group
of the complex

Home(P,A)-3. Homp(Pu,A)--)-0 -

Under the isomorphism Homp (P, A) =A, this is the complex d: A- -A
with 8a = - xa, so Ext'p (F, A) -AI(x)A. By taking the tensor product
of the resolution (1.3) with a module B, we find Tore (F, B) to be the
submodule of B consisting of all bEB with xb=0. For example,
Extp (F, F) =F, and Torl (F, F) =F.

Similarly, let P=F[x, y] be the ring of polynomials in two indeter-
minates x and y over F. If (x, y) denotes the ideal generated by x and y,
then F=P/(x, y) is again a P-module and e: P-,F a P-module homo-
morphism with a (x) = 0 = e (y). The kernel of e can be written as the
image of the free P-module on two generators u and v under the module
homomorphism a1: Pit ® Pv -> P with a1 u = x, 81 v =y. The kernel of
this map a1 consists of all fu + g v for polynomials f, gE P such that
fx+gy=0; by the unique factorization of polynomials we must then
have / = - h y and g = h x for some polynomial h. This kernel is therefore
the image of the free module P(uv) on one generator uv under the
homomorphism as with 82 (h uv) = (h x) v - (h y) u = f u+ gv. Since P has
no divisors of zero, 0, is a monomorphism. We have thereby shown that
the sequence

0,F- P402 Pu®Pv as P(uv)h 0 (1.4)

is exact. From this resolution one calculates that Ext ,(F, F) =F ®F
Torl (F, F), and Ext p(F, F) =F =Tore (F, F).

In the resolution (1.4) omit F and write E= P®Pu®Pv®P(uv).
Now set vu = - uv, u2=0, v'=0; this makes E a ring, with lp acting
as the identity and products given, for example, by (f u) (g v) = (f g) (u v) =
- (gv)(f u). It is called the "exterior" ring over P in two generators u
and v. Its elements may be "graded" by assigning dimensions a
dim 1p=0, dimu=l=dim v, and dim uv=dim u+dim v=2, in ac-
cordance with the usual dimensions for the resolution (1.4). The dimen-
sion of a product is then the sum of the dimensions of its factors. Further-
more, the boundary homomorphism in the resolution is now a module
homomorphism 8: E-*E of degree -1 with au=x, av=y, and
0 (uv) = (8u) v- u (av). This implies a formula for the differential of a
product of two elements e1, e2 of E as

a (e1 e2 = (a e1) e$ + (-1)dim r, e1(a e2 . (1-5)
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This "Leibniz formula" is typical for a ring which is also a complex.
Other examples are found in the next chapter, which may be read in
parallel with this one.

Exercises
1. Prove that the three definitions given for a K-algebra are equivalent.
2. If f is an ideal in K, show that K/J is a K-algebra.
3. For P= F [x, y] and A any P-module, show that Ext}(F, A) is the quotient

A/(xAvyA), while
Extp(F,A) a5 [(a, a.JIa,, a,EA, xa,= yal]/[(xa, ya) I aEA].

4. Obtain a similar formula for Torl (F, F) when P=F[x, y].
5. Obtain a free resolution for F as a module over the polynomial ring F[x, y, z]

in three indeterminates.

2. Graded Modules
An (externally) Z-graded K-module is a family M={M", n=0,

f 1 , ± 2, ...} of K-modules M"; an element m of M. is also said to be
an element of degree n in M (briefly, deg m = n). A graded submodule
S<M is a family of submodules S"<M", one for each n. For two
Z-graded modules L and M a homomorphism /: of degree d is a
family / = {/" : L -*M"+d ; n E Z} of K-module homomorphisms /.. The
set of all /: L --). M of fixed degree d is a K-module Homd (L, M). The
composite of homomorphisms of degrees d and d' has degree d+d'.
A Z-graded module M may also be written with upper indices as
M"=M_"; in particular, Homd(L, M)=Hom_d(L, M).

A graded K-module M is a Z-graded module with M"=0 for n<0.
These graded modules are of most frequent occurrence, and will be
studied below, leaving the reader to formulate the corresponding facts
for Z-graded modules. Warning: Many authors use "graded" for our
Z-graded and "positively graded" for our graded modules.

A trivially graded module M has M"=0 for n$ 0.
The graded K-modules M, with morphisms hom (L, M) =Homo (L, M)

the homomorphisms of degree 0, form a category. Each /: L -* M of degree
0 has kernel, image, cokernel, and coimage defined as expected (i.e.,
termwise for each n) ; they are graded modules with the usual properties.
For fixed degree d, Homd (L, M) is a bifunctor on this category, contra-
variant in L and covariant in M. Alternatively, the family Horn (L, M) =
{Homd (L, M)) is a bifunctor on this category to the category of Z-graded
K-modules. Both bifunctors are left exact, in the sense of Thm. 1.6.1
and Thm. 1.6.2.

The tensor product of two graded modules L and M is the graded
module given by

(L(9 M)"= 21 Lp (9 M,; (2.1)
p+q-"
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in brief, the grading in the tensor product is defined by deg(1(&m) _
deg l+deg m. If /: L -*L' and g: M-*M' are homomorphisms of
degrees d and e, respectively, then /(&g: L®M--).L'®M' is the homo-
morphism of degree d+ e defined by

(/®g) (l(gm)=(-1)(dos1)(&s:) (/l®gm) (2.2)

in accord with the sign convention (interchange g and 1). For
deg / =deg g=0, this makes L (&M a covariant bifunctor on graded
modules to graded modules. It is right exact, as in Thm. V.5.1.

The tensor product for graded modules satisfies the same formal
identities as in the ungraded (= trivially graded) case; that is, there are
natural isomorphisms of degree 0

L®(M(& N) =(L(9 M) ®N, x[1®(m(9 n)]=(1®m)®n. (2.3)

r: L®Ma_!WOL, r[1®m]=(-1)(d`aj)(d`s'")m®1, (2.4)

K®M=M=M®K, k®m-*km--m®k. (2.5)

Here ® = ®K, and the ground ring K is regarded as the trivially graded
module K with K, = K, K. = 0 for n* 0. We regard these isomorphisms
as identities. This we can do because they are manifestly consistent with
each other: Given any two iterated tensor products of the same modules
MI, ..., M, , a suitable combination of these isomorphisms provides a
canonical map of the first tensor product into the second-deleting or
adding factors K at will, and with sign according to the sign conventions,
as in (2.4).

The same properties of HomK and ®K hold for Z-graded modules
and in a variety of other cases, as follows.

A bigraded K-module B is a family B= {Bp q l p, qEZ} of K-modules
with BP, q = 0 when p <0 or q<0; a homomorphism /: B--).B' of
bidegree (d, e) is a family {/p,a: Bp,q-->B'+d,q+.) of K-module homo-
morphisms. For example, the tensor product of two graded modules
L and M is initially a bigraded module {Lp ®Mq}, which the summation
(2.1) has turned into a singly graded module. Similarly, the tensor
product of two bigraded modules B and C is a 4-graded module which
yields a bigraded module by

E (2.6)
p+q-w r+t-,,

An element of Bp,q is said to have total degree p+q. The natural iso-
morphisms (2.3), (2.4), and (2.5) hold for bigraded modules when the
total degrees are used in the sign of the transposition r.

Trigraded modules, Z-bigraded modules, and the like are defined
similarly.
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An internally graded K-module A is a K-module with a given direct
sum decomposition A= A.; in other words, A and its submodules
A, n = 0, 1, ..., are given so that each element a+- 0 in A has a unique
representation as a finite sum of non-zero elements from different sub-
modules A,,. The elements of A. are said to be homogeneous elements
of A, of degree n. Each internally graded module A determines an
externally graded module Conversely, each externally graded
module M= determines an associated internally graded module
M = Z M,, . Moreover, (L ®M), = L, ®M,, but Horn (L, , M,) is
larger than [Hom (L, M)], , because a K-module homomorphism
f : L, -+M, need not be a sum of a finite number of homogeneous
homomorphisms.

In much of the literature, "graded module" means internally graded module.
Following a suggestion of Joax Moor, we have chosen to work with external
gradings. This choice has the advantage that in either event we always operate
with the homogeneous elements and not with the sums +,+ - + m of elements of
different degrees. Similarly, one needs only the homogeneous homomorphisms
L --j. M, not the arbitrary homomorphisms L. -s M.. Moreover, our choice dis-
penses with the use of infinite direct sums, so that we can define a graded object M
over any category .,t' to be a family {M,,} of objects in 4' with morphisms of
various degrees, just as for modules. For example, a graded set S is a family of
sets M. n = 0, 1, 2, ...}.

3. Graded Algebras

A graded K-algebra A is a graded K-module equipped with two
K-module homomorphisms n==A: A®A-->A and I=IA: K-*A, each
of degree 0, which render commutative the diagrams

A®A®A K®A= A=A®K

- 4116t (3.1)11en

R l- 114P IIA®A -A A®A A ®A

The first asserts that the " product " Ay = a (A (&µ) is associative, and
the second that 'A('K)='A is a two-sided identity for this product.
A homomorphism f: A-+A' between two graded algebras over the same
K is a homomorphism of degree 0 of graded K-modules such that the
diagrams

A(& A 4 A K`-* A
1®1

1 II, it

A'®A' A A
It

', K-=': A'
are commutative.

These definitions may be restated in terms of elements. A graded
algebra A is a family of K-modules {A,,, n=0, 1, ...) with a distinguished
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element 1EAO and a function which assigns to each pair of elements
A,,u a product Ay which is K-bilinear and such that always

deg (Aµ)=deg A+deg1a,

A(1uv)=(All)y, 1A=A=A1.

Similarly, an algebra homomorphism f : A --.A' is a function carrying
elements of A to those of A' so as to preserve all the structures involved:

/(A+,t)=/A+f1,
deg (IA) = deg A,

f (k A)=k(VA), (module structure),

(grading), (3.3)

RAY) =VA)up), /(1e)=1A' (product).

We emphasize that each homomorphism / takes the identity to the
identity.

As for rings, we also assume for algebras that 1 + 0.
A graded subalgebra E(A is a graded submodule of A such that

14E1 and a, o' E E imply ua' E E. Thus E is itself a graded algebra, with
the same identity as A, and the injection is E-->.A is a monomorphism
of graded K-algebras. If f : A -*A' is an algebra homomorphism, the
image / (E) is a graded subalgebra of A'.

A graded left ideal L(A is a graded submodule of A such that
AL <L (i.e., AEA and £EL imply AIE L). Thus L is closed under products,
but need not be a subalgebra since it may not contain the identity 1e.
If a1, ..., a, are elements of A, the smallest graded left ideal containing
all a; is often denoted by A (a1, ..., a,) or simply by (a,, ..., a,), with A
understood. In degree n, it consists of all sums ZA,.a; with A;EA of
degree n-deg a;. A graded right ideal R(A is similarly defined by the
condition that RA (R.

A graded (two-sided) ideal J of A is a graded submodule which is
both a left and a right graded ideal of A. The quotient module All is a
graded algebra with a product determined by the condition that the
projection rl: A-1`A/J is a homomorphism of graded algebras. This
quotient algebra, with the map 71, is characterized up to isomorphism
by the fact that any homomorphism /: A-+A' of graded algebras with
/(J)=o has a unique factorization as 1=g71 for some algebra homo-
morphism g: All-+A'. Moreover, the kernel of any homomorphism
f : A --*A' of graded algebras is an ideal of A. (Note : In case J =A, the
quotient "ring" A/J=0 has 1=0, counter to our convention 1+0.)

A graded algebra A is commutative (some authors say skew-commu-
tative or anti-commutative) if always

Aµ= (-1)deg1"µA: (3.4)
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that is, if ;r,,=srAr: A®A-*A, with z the transposition (2.4). In con-
sequence, the elements of even degree commute in the ordinary sense.
If, in addition, A$=0 for every element A of odd degree, A is called
strictly commutative. If the ground ring K is a field of characteristic not 2,
then any commutative graded K-algebra is strictly commutative, for
(3.4) with deg A odd gives AA= - AA, 2A2=0, so 2--' in K implies A'=0.

For example, a graded Polynomial algebra P=PK[x] may be defined
for an " indeterminate " x of any degree d z 0. If d = 0, P is the ordinary
ring of polynomials in x with coefficients in K. For d> 0, P is the
graded module with 0 for n * 0 (mod d), while Pq, is the free
K-module on one generator xq for each q z 0; the product is defined by
xpxq=xp+q. If d is even, this polynomial algebra is commutative. P is
characterized up to isomorphism by the fact that it is free in x: For any
graded K-algebra A with a selected element Ad of degree. d there is a
unique homomorphism f : P --A of graded algebras with f x = A, .

The exterior algebra E=EK[u] on one symbol u of odd degree d is
constructed from the free K-module Ku with one generator u as the
graded algebra E with E. = K, Ed = Ku, E. = 0 for 0+- n+ d, and with
product determined by I u=u=ul, u2=0. It is strictly commutative.
We may also define E as the quotient algebra PK [x]/(x2), where x is an
indeterminate of degree d and (x2) denotes the (two-sided) ideal in P
generated by x=. The algebra E may be characterized as the strictly
commutative algebra free on u: Given any strictly commutative A
with a selected element AdEAd, there is a unique homomorphism
f : EK [u] ->A of graded algebras with f (u) =Ad.

The tensor algebra T(M) of a K-module M is the graded K-module

To(M)=K, ®M (n factors),

with product given by the identification map n: Mp ®M1=Mp+q. In
other words, the product is formed by juxtaposition, as in

(nh®...®mp)(nh®...(&m')=m ®...®mp®m®...®m'

Clearly T is a covariant functor on K-modules to graded K-algebras.
More generally, if M is a graded K-module, a tensor algebra T(M) is
defined similarly, with

00To(M)=K®Z (Mo)p, T"(M)=2:Md,®... ®Md,,

p-1

where the second sum is taken over all d; with d1+ -{- d, = n. For
M=M1 this includes the previous case. The graded algebra T(M) with
the obvious K-module injection M-+T(M) (of degree 0) is characterized
up to isomorphism by the following "universal" property:
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Proposition 3.1. I l M is a graded modue land A a graded algebra
over K, each homomorphism g: M-->A of graded modules, of degree zero,
extends to a unique hwmomorphism f : T(M) -*A of graded algebras.

Proof. Set f (mz ®... ®mp) = (gmi) - .. (g mp)
In particular, if M is the free graded K-module F on is free generators

xl, ..., x,,, each of a given degree, T(F) is the free graded algebra on
these generators, in the sense that any set map : (xr, ..., of
degree zero extends to a unique homomorphism T(F) --,,-A of graded
algebras. When F has just one generator x, T(F) is the polynomial
algebra on the indeterminate x; when V is a vector space over a field K,
T(V) is the tensor algebra of V over K, consisting of all covariant tensors
in any number of indices (cf. V.2).

The ground ring K itself is a graded K-algebra, with trivial grading.
An augmented graded algebra is a graded algebra A together with a
homomorphism e: A-> K of graded algebras. The polynomial, exterior,
and tensor algebras each have an evident such augmentation. An
augmented algebra has been called a "supplemented" algebra (CARTAN-
EILENBERG). In the present book, an "augmentation" of an object C in a
category V will always mean a morphism e: C-->.B into some fixed
"base" object B of''. In the category of K-algebras, the base object
is the algebra K; in the category of chain complexes of abelian groups,
it is the trivial complex Z, and so on.

Starting with graded K-modules, we have defined graded K-algebras
by the product and identity element morphisms n and I which make the
diagrams (3.1) commutative. By starting with other types of modules,
we get the corresponding types of algebras. Thus, the diagrams (1.2) for
(ungraded) K-modules define K-algebras; call them ungraded K-algebras
when a distinction is necessary. Similarly Z-graded modules yield
Z-graded algebras, bigraded modules, bigraded algebras, and internally
graded modules yield internally graded algebras. As before, internally
and externally graded algebras are equivalent : Each graded algebra A
determines an internally graded algebra A, _ A,,, with product given
by bilinearity as in

(4 +...+7p)(,uo+...+,uq));lui, .2 EA U1EA1.

Note that a graded algebra isn't an algebra, but that an internally graded
algebra may be regarded simply as an algebra (ignore the grading). The
internally graded ideals, defined as above, are usually called homogeneous
ideals; they are among the ideals of the associated ungraded algebra.

Exercises
1. Describe the free graded K-module on any graded set of generators.
2. Describe the bigraded tensor algebra of a bigraded module, and prove the

analogue of Prop. 3.1.
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3. Let S be a set of elements in a graded algebra A. Show that the set of all
homogeneous sums of products As A', for sES, is a graded ideal in A and is the
smallest ideal containing S. It is called the ideal generated by S (or, spanned by S).

4. Show that a graded K-algebra may be described as a graded ring R equipped
with a homomorphism r: K -* R of graded rings such that always (1h) r = r (I k).

4. Tensor Products of Algebras

The tensor product of two graded K-algebras A and E is their tensor
product A ®E, as graded modules, with product map defined as the
composite

(A(&E)®(A(&E) 1®®®. A®A®E®E "®-'A®E. (4.1)

where v is the (signed) transposition (2.4) of E and A, and with identity-
element map given by I ®I : K = K ®K --*A ®E. In terms of elements,
the product is given by

(A ®a) (2'®a')(-1)d'g°ftA' 22'®aa'

and the identity of A ®E is 1e ®1 E. The axioms for a graded algebra
all hold. I f/ : A-*A' and g: EKE' are homomorphisms of graded
algebras, so is f ®g: A®E->A'®E'. Also, A- A®1r, a-.1A®o define
homomorphisms

A-*A®EF-E

of graded algebras. With these mappings, the tensor product A ®E is
characterized up to isomorphism by the following property:

Proposition 4.1. If /: A-* Q and g: ESQ are homomorphisms of
graded K-algebras such that always

(IA)
(go)=(-1)degadeg°(go)

(IA). (4.2)

there is a unique homomorphism h: A®E-*Q 0/ graded algebras with
h (.1®1) =/(A), h(1®a) =g(a).

The proof is left to the reader (set h(A(& a)=/(A) g(a)).
If S1 is commutative, condition (4.2) holds automatically. Thus in

the category of commutative graded algebras, A -*A ® EF E is a uni-
versal diagram with ends A and E. In the category of all (not necessarily
commutative) algebras, the universal diagram requires a free product
[COHN 1959], the couniversal diagram a direct product A><E as defined
below in (VII.5.1).

The tensor product of algebras, with this characterization. applies in
all the other relevant cases: The tensor product of K-algebras (trivial
grading); of rings (K=Z); of bigraded algebras. In each case the tensor
product of algebras is commutative (z: A®E=E®A) and associative,
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and satisfies K ®A =A; in other words, the natural isomorphisms
(2.3) - (2.5) hold for algebras. The tensor product of algebras is also
called their KRONECKER product or, in older literature, their "direct"
product.

We also assign to each graded algebra A a graded opposite algebra
A°p. This is defined to be the graded K-module A with the same identity
element and the new product n,1 a: A®A-*A (transpose the order of the
factors, with the appropriate sign, then multiply). To avoid the in-
convenience of writing two different products for the same pair of
elements, we also say that the underlying graded module of A°p is an
isomorphic copy of that of A, under an isomorphism A-3 A°p, and with
product defined by A°p u°p = (-1)degxdtP (,u A)°p. This product is clearly
associative. For example, if A is the (trivially graded) algebra of nxn
matrices with entries in K, with the usual "row-by-column" matrix
multiplication, then A°p is the ring of n><n matrices with "column-by-
row" multiplication. The same construction of an opposite applies to
rings (as already noted in V.7), to bigraded algebras, etc., and in each
case there are natural isomorphisms

(A°p)°p =A, (A ®E)°p =A°p ®Z'°p (4.3)

The tensor product may be used to construct various examples of
algebras, as follows.

Let PK [xi], i=1, ..., n, be the graded polynomial algebra (§ 3) on the
indeterminate x; of even degree d; z 0. The commutative graded algebra

PK [xl , ... , PK [xi] ®... ®PK [xn] (4.4)

is called the graded polynomial algebra on the given x; . In each dimension
m, PK [x1, ..., is the free K-module on all

with (if e,=0, read z9 as I

two such generators are multiplied by adding the corresponding ex-
ponents. This polynomial algebra is the free commutative algebra on the
generators x; of even degree, in the sense of the following characterization.

Proposition 4.2. I l A is a commutative graded algebra, any set map
{x1, ..., -->A with deg (g xi) = deg x; for all i extends to a unique

homomorphism f : PK [x1, ..., xn] ->.A o l graded algebras.

Proof. Since PK [x;] is free on xi, the correspondence x; -* xi
extends to an algebra homomorphism fi: PK [xi] -*A. Since A is com-
mutative, these to combine by Prop. 4.1 to give a unique f: PK-+A.

If all x; have the same degree, this property shows that a change in
the order of the indeterminates simply replaces the polynomial algebra
by an isomorphic algebra; hence the order of the xi is irrelevant. If all
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the xi have degree zero, PK [x1, ..., is trivially graded. We may
regard it as an ungraded algebra, and denote it as K [x1, ... , x.]; it is
the ordinary polynomial algebra in n indeterminates over K. For is
given constants k, E K, Prop. 4.2 yields a unique homomorphism
/: PK -a K with / xi = ki, i =1, ..., is. This is the homomorphism obtained
by the familiar process of "substituting ki for xi, i=1, ..., n".

We next construct a similar free strictly commutative algebra with
generators ui of odd degree (degree I will suffice). For is letters ul, ... , u,,,
each of degree 1, the tensor product (over K)

EK [ul , ... , u,,] = EK 10110 ... ®EK [u,]

is a strictly commutative graded algebra, called the exterior algebra over
K with generators u1..... u,,. As before,

Proposition 4.3. The exterior algebra E=EK [ul, ..., is in degree I
the free K-module El on the generators ul , ..., uw . It A is any strictly
commutative graded K-algebra, each module homomorphism P: El --).A,
extends to a unique homomorphism f : E-*A of graded algebras.

The product of two elements e and e' in the exterior algebra is often
written as e A e'. Clearly E is the free module on all products (in order)
of generators u, ; the products of degree p> 0 are

ui,ui,... ui'=uisAUi,A ... Aur

with 1 S il< 12< < iy S n. The number of such products is (p, n- p),
where

(p,q)=(p+q)!I(p!q!)=('+P q) _ (P q+ q) (4.5)

is our notation for the binomial coefficient. Any permutation a of the
marks 1, ..., p can be written as the composite of sgna transpositions
of adjacent marks, where sgn a =1 or 0 (mod 2) according as the
permutation a is odd or even, so the commutation rule yields

ui. "ioo ... uy, = (-1)`pa ui. ui.... f{i,.

The tensor product K ®Z K' of two commutative rings is a commuta-
tive ring, and the definition of E shows that

EK [u] ®Z EK. [u'] = EK®K [u, u'] (4.6)

There are similar isomorphisms for more u's, more factors, or for E
replaced by P. The polynomials on is commuting indeterminates with
coefficients in a not necessarily commutative (ungraded) K-algebra A
may be defined as

PA[xI, ..., x.]=A®KPK[xl, ..., x,,]. (4.7)
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Exercises
1. In any graded algebra A let C= C (A) be the ideal spanned (cf. Ex. 3.3) by

all differences A1s - (- 1)"'"µ x for m- deg 1, n= deg p. Show that A/C is com-
mutative, and that any homomorphism of A into a commutative algebra factors
uniquely through the projection A-.A/C.

2. The symmetric algebra S(M) is defined from the tensor algebra as S(M)=
T (M)/C (T (M)), for C as in Ex. 1. Show that Prop. 3.1 holds when A is commutative
and T(M) is replaced by S (M), and that, for M free on a finite set of generators of
even degrees, S (M) is the polynomial algebra.

3. Make a similar construction of the exterior algebra on any graded K-module
M consisting of elements all of degree 1.

4. In Ex. 2, show S (M ®N) es S (M) ®S (N).
5. Show that a free strictly commutative graded algebra on any finite graded set

of generators may be constructed as a tensor product of polynomial and exterior
algebras.

6. If P = K[x] and Q= P[y], show that Q, as an (ungraded) K-algebra, is
isomorphic to K [x, y]. Extend this result to the graded case with more indeter-
minates.

5. Modules over Algebras

Let A be a graded K-algebra. A lelt A-module A is a graded K-module
together with a homomorphism 'A : A (&A --)-A of graded K-modules, of
degree zero, such that the diagrams

A®A®AnA®i.A ®A
K (&A = Ajj

11674 1-1 !A®11 X
I1

(5.1)
A®A A , A®A-4A

commute. Alternatively, a left A-module is a graded abelian group A
together with a function assigning to each AEA and aEA an element
A a E A with deg (A a) = deg A -}- deg a such that always (for deg A, = deg As,
deg a1= deg aa)

(A1+A2)a=A1a+A'a, A(a1+a.)=Aa1+Aa., (5.2)

(Au)a=A(µa), 1Aa=a. (5.3)

Indeed, given these conditions, the definition ka=(klA)a makes A a
graded K-module. By (5.3), (k2)a=k(Aa)=A(ka) holds. With (5.2)
this makes the function Aa K-bilinear, so defines'cA as nA (A (&a) =Aa.
Finally, (5.3) is a restatement of the commutativity (5.1).

If C and A are left A-modules, a A-module homomorphism 1: C-).A
of degree d is a homomorphism of graded K-modules, of degree d, such
that

1nc=aA(1(&l): A®C-A; (5.4)

in other words, such that always
/(Ae)=(-1)(deat)(degA) A(/c); (5.4')



5. Modules over Algebras 185

the usual sign arises from the definition (2.2) of I ®/. The set of all
such / of degree d is a K-module which we denote as Hom-d (C, A).

The class A"*f of all left A-modules is a category with morphisms
homA (C, A) = Hom,°1(C, A) those of degree 0. In A..0, direct sums, sub-
and quotient-modules, kernel, image, coimage, and cokernel are defined
as expected, with the usual properties. For each is, Hom" (C, A) is an
additive bifunctor on ,i.4 to K-modules, contravariant in C and co-
variant in A. The family HomA (C, A) = (HomA (C, A), n = 0, ± 1, f 2, ...}
is a similar bifunctor on A..,d' to Z-graded K-modules. According to the
definition (5.4) of a A-module homomorphism, we can also describe
HomA (C, A) as that Z-graded K-module which is the kernel of the natural
homomorphism

,p: Hom(C,A)-*-Hom(A(gC,A), Hom=HomK, (5.5)

of Z-graded K-modules defined by

jpf =x,1(1®l)-/n :

Proposition 5.1. The /unctor HomA is k/t exact; that is, i/
D -, B -, C -, 0 is a short right exact sequence in AA then the induced
sequence

HomA(B,A)--Hom, (D, A) (5.6)

is exact, with the corresponding result when A is replaced by a short left
exact sequence.

Proof. Construct the commutative 3x3 diagram

0--).. HomA(C,A) -, HomA(B,A) -, HomA(D,A)
1 1 I

0--> Hom(C,A) Hom(B,A) -, Hom(C,A)

1 1V I,

By right exactness of the tensor product (Thm. V.5.1), A ®D -,A ®B
A®C-,0 is right exact. The left exactness of HomK makes the last
two rows left exact; by the definition (5.5), all three columns are left
exact (when starting with 0-,.. .). The 3x3 lemma (in the strong form
of Ex. II.5.4) now shows the first row left exact, q. e. d.

Right A-modules G are treated similarly. A homomorphism
y : G-->G' of right A-modules must satisfy y (g A) = (yg) A; no sign is
needed (as in (5.4')), because the homomorphism and the module
operations act on opposite sides of gEG. A right A-module G may also
be described as a left A°P-module, with operators switched by A°1 g=
(4 )(d x) decal g A; this definition insures that A°Q (µ°Pg) = (A°P a°P) g.
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Given modules GA and AA, their tensor Product over A is a graded
K-module. It is defined to be the cokernel of the map q, of graded
K-modules

G®A®A y G®A-*G®4A-*o (5.7)

given as p(g®A®a)=gA®a-g®Aa. This amounts to stating that
each (G ®4 A) is the K-module quotient of (G ®A) by the submodule
generated by all differences gA®a-g®Aa in (G®A),,. This tensor
product is characterized via the middle linear functions to a graded
K-module M, just as in Thm. V.1.1:

Theorem 5.2. If f is a family of K-bilinear functions I.,., on G,,><A,
to Mp+q which is A-middle associative in the sense that always f (g A, a) =
f (g,Aa), there is a unique homomorphism w: G®4A---M of graded
K-modules, with deg w = 0, such that always w (g ®a) = f (g, a).

Proof. Each /,,, is bilinear, hence determines wy q : Gp ®Aq ->Mp+q
with w'(g®a) =lp.q(g, a); the middle associativity insures that w'
vanishes on the image of the map 9, of (5.7), and hence that w' induces a
map to on the cokernel G ®^ A of p, as desired.

This result implies that A-module homomorphisms y: GAG' and
a : A -).A' of degrees d and e, respectively, determine a homomorphism
y ®a : G ®4 A --s G' ®A A' of degree d+ e of graded K-modules by the
formula

(y®a) (g ®a) _ (-1)(de")(a ")yg®aa,
(5.8)

with the expected rules for composing (y ®a) with (y' (Da') - with a
sign (-1 ) (d`$a) (fsy) . In particular, G ®i1 A is a covariant and biadditive
bifunctor on the categories .fA and e.A of right and left A-modules to
graded K-modules. From the definition (5.7) it follows as in Prop. 5.1
that this functor carries right exact sequences (in G or A) into right
exact sequences.

Modules over other types of algebras (Z-graded, bigraded, etc.) are
correspondingly defined. Note that each A-module A automatically
carries the same type of structure as A (e.g., graded when A is graded,
bigraded when A is bigraded). We may introduce modules with added
structure; thus a graded module over an ungraded algebra A means a
module over A, regarded as a trivially graded algebra - exactly as for
graded modules over the commutative ring K.

If A and E' are two graded K-algebras, a A-Z-bimodule A - in
symbols 4A2 - is a graded K-module which is both a left A-module
and a right Imodule such that always (Aa)a=A(aa). This condition
amounts to the commutativity of an appropriate diagram. Note that
k a = (k 14) a = a (k 1), so that the same given K-module structure on A
comes from the left A-module structure by pull-back along I: K-*A,
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or from the right E-module structure by pull-back along I: K--).E.
For example, any graded algebra A is a A-A-bimodule. Since A is a
left A-module and E a right E-module, the tensor product A ®KE is a
A-Z-bimodule: in fact, the free bimodule on one generator I®1. Simi-
larly, for modules AA and Br the tensor product A ®KB is canonically
a A-E-bimodule via A(a®b)a=Aa®ba.

The typographical accident that a letter has two sides could hardly
mean that modules are restricted to one-sided modules and bimodules.
Indeed, we naturally reach trimodules; for example, modules AA and
rBa will have a tensor product A OK B which is canonically a right Q-
and left A-E-module. Here we have called C a left A-E module if it is
both a left A- and a left -r-module such that always

A (0c) = (-1) (deg l) (delta) a (A C) .

Fortunately we can reduce trimodules to bimodules or even to left
modules over a single algebra. By setting (A ®a) c = J. (ac), each left
A-E-module may be regarded as a left (A ®E)-module, or conversely.
Similarly we have the logical equivalences

Br <= ,B, AA` t* (A®2A (5.9)

via a°Pb= (-1)(d`ga) (degb) ba, (A®a°P)a=(-1)(degi)(dega)Aaa. This reduc-
tion carries with it the definitions of Hom and ® for bimodules. Thus
for bimodules rGA and iAr the bimodule tensor product

G ®A-rA =G ®(A®rp)A (5.10)

is by (5.7) the quotient of G ®KA by the graded K-submodule spanned
by all

gA®a-g®Aa, alt®a-(-1)(dega)(dege+dega)g®aa.

The vanishing of the first expression is A-middle associativity; that of
the second is E-outside associativity. Similarly the graded K-module of
bimodule homomorphisms of AC-1 into AAr is written HomA_r(C,A)=
Hom(A®-`°p) (C, A).

Exercises
1. An (ungraded) K-algebra A is a ring R equipped with a ring homomorphism

I: with I(K) in the center of R. Show that a left A-module A is just a left
R-module, with the K-module structure of A given by pull-back along I. Show
also that HomA (C. A) - HomR (C, A) and G ® A A % , A .

2. As in Ex. 1, reduce modules over the graded algebra A to modules over A,
regarded as a graded ring (cf. Ex. 3.4).

6. Cohomology of free Abelian Groups
As an illustration of tensor products of algebras we calculate the

cohomology of a free abelian group.
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For the group ring Z (171 x17,) of the cartesian product of two multi-
plicative groups 171 and 17, there is a natural isomorphism

Z(171x17,)=Z(17i)®Z(172). (6.1)

For Z(11,) is characterized (Prop. IV.1.1) by the fact that any multi-
plicative map ,u, of II, into a ring S, with ,u, (1) =Is, extends to a ring
homomorphism Z (17,) -* S. By Prop. 4.1, a multiplicative map
,u: 17,x172 -> S with ,u (1) =1 then extends to a unique ring homomorphism
Z (171) ®Z (172) -* S, so that Z (171) ®Z (172) satisfies this characterization
of the group ring Z(171> Ho.

Let C be the infinite (multiplicative) cyclic group with generator 1,
and its group ring. Any element of R is a polynomial in
positive, negative, and zero powers of 1, hence may be written as M p (I)
where p is an (ordinary) polynomial in positive powers of t with integral
coefficients. The kernel of the augmentation E : R -*Z is the set of all
multiples of t-1, hence the exact sequence

OFZ'-R a Ru4-0 (6.2)

with Ru the free R-module with one generator u and 8u=t-1. Thus
a: R (- Ru is a free R-module resolution of Z; it is a special case of the
resolution found in (IV.7.3) for any free group, and is analogous to the
resolution (1.3) for a polynomial ring. For any R-module A, HI (C"., A)
may be calculated from this resolution to be the factor group
Al[ta-al aEA], while H"(C,,, A) =0 if n>1.

The free abelian group 17 on n generators 11, ..., t, is the cartesian
product of n infinite cyclic groups. By (6.1) the group ring Z(17) is
R1® ®R", where each R' is the group ring Z (C (t,)), while the
augmentation e: Z (II) ->Z is the tensor product e' ® . ® e" of the
augmentations e': R-#Z. For each index i form the R'-projective
resolution X': as in (6.2). Form the tensor product complex

X=XI®®X2®Z... ®ZX";

it is a chain complex of free R1®... ®R"=Z(fl)-modules.
On the one hand, each X' is a complex of free abelian groups. The

iterated KONNETH tensor formula (Thm. V.10.1) shows that the homo-
logy product

2] H.,(X1)®... 0H..(X")->H.(X10 ... ®X")

is an isomorphism in each dimension m= ml+ + m,, . But H,,,, (X') = 0
unless in, = 0, while E, : Ho (X') =Z, so H. (X) = 0 for m positive, while
E : H0(X) =Z. This proves that X is a free resolution of Z as a17-module.



7. Differential Graded Algebras 189

On the other hand, each X' is the exterior algebra ER, [u]; as in
(4.6), X is the exterior algebra Ez l [u1, ..., so has the form of an
exact sequence

0 E-Z * -X04- X14-- *-X. *- 0

of H7-modules, with each X. free on the generators u,, ® ®u4 with
1;5i,< ... < i n. Since 8u;=t;-1, the boundary formula (V.9.2) for
the tensor product gives

t
a(u<<®... ®u+.)=

A

®u:,®... ®u4, (6.3)
wl

where the - indicates omission. The cohomology of H may be computed
from this resolution. For any I7-module A,

p>n. (6.4)

For P S n, a p-cochain f: X9 -*A, as a module homomorphism, is deter-
mined by (p, n-p) arbitrary elements/(u,,® .. ®u4)EA, and

P+1

af(ui,®... ®uj,+,)=21 (-1)A-1(tt,-1)/(u:,®... ®u:,®...
®u4,+.).

Aal

In particular, if A is an abelian group regarded as a trivial HI-module
(ti a = a for all i), then 6t is always zero, so Hp (11, A) is simply the
direct sum of (p, n- p) copies of A.

Exercises
1. For 17 free abelian as above, show that HI (H, A) is the quotient Lf M, where

L is the subgroup of A®... ®A (n summands) consisting of all (a1, ..., with
ttaf - tlai=of - ai always, while M is all (tia - a, ..., ima-a) for aEA. Interpret
this result in terms of classes of crossed homomorphisms.

2. Obtain a similar formula for Hs (17, A) and compare this with the result found
for two generators in IV.3.7.

3. Determine 1f"(17,A) for 17 free abelian on n generators.

7. Differential Graded Algebras

The resolution X of the last section is both a complex and an algebra,
with the boundary of a product given by the Leibniz formula (1.5).
Such we call a DG-algebra. Further examples of DG-algebras will
appear in the next chapter; they will be used extensively in Chap. X, to
which the following systematic development will be relevant.

A positive complex X= (X, 8) of K-modules is a graded K-module
equipped with a K-module homomorphism 8=0X: X->X of

degree -1 such that 82=0. A positive complex will thus also be called
a differential graded module (DG-module for short); the homology of
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X is the graded K-module H(X)={H"(X)}. A chain transformation
(=DG-module homomorphism) /: X-->X' is just a homomorphism of
graded modules, of degree 0, with 8X./=/49X. The set of all such f is
an abelian group hom(X, X'); with these morphisms the DG-modules
form a category. Similarly, a not necessarily positive complex of
K-modules is a differential Z-graded module (DGz-module).

The tensor product X (&Y of two DG-modules is the tensor product
over K of the graded modules X and Y equipped with the differential
8 = ax ®1+1®ay . According to the definition (2.2) of 1®ay this gives

a(x(9 Y)=ax®Y-i- 0119 sx®aY, (7.1)

in agreement with the previous definition (V.9.2) of the tensor product of
chain complexes. This tensor product of DG-modules satisfies the
standard natural isomorphisms (2.3), (2.4), and (2.5) ; in the latter, the
ground ring K is regarded as a DG-module with trivial grading and
differential a=0.

For DG-modules X and Y the Z-graded module Hom (X, Y) _
{Hom" (X, Y)} has a differential defined for each f E Hom" as EH/==
3y1+ (-1)"i 1/ Ox, as in (III.4.4). Thus Hom(X, Y) is a DGZ-module.
Note especially that Hom (X, Y) with capital H in " Hom" stands for
homomorphisms of graded modules of all degrees, while hom (X, Y),
with lower case h, includes only the homomorphisms of DG-modules, of
degree 0.

A DG-algebra U= (U, a) over K is a graded algebra U equipped with
a graded K-module homomorphism 0: U -+ U of degree ---1 with os = 0,
such that the Leibniz formula

a (u1 us) = (a u1) us+ (-1)d`g w =h (a us) (7.2)

always holds. Similarly, a homomorphism /: U -),. U' of DG-algebras
is a homomorphism of graded algebras (conditions (3.3)) with Of =1a.
With these morphisms, the DG-algebras form a category.

By the Leibniz formula the product of two cycles is a cycle, and the
product of a boundary au, by a cycle u2 is a boundary a(ulu2). Hence
a product of homology classes in H (U) may be defined by (cls u1) (cis u2) =
cls (u1 u8) ; this makes H(U) a graded algebra. Any homomorphism
f: U-.U' of DG-algebras induces a homomorphism f,,: H(U)-*H(U')
of graded algebras.

The tensor product U ® U' of two DG-algebras is their tensor product
as graded algebras, with the differential given by (7.1). The analogue
of Prop. 4.1 holds. The opposite U°P of a DG-algebra is the opposite of U,
as a graded algebra, with the same differential.

A left U-module X= (X, 0) is a left module over the graded algebra U
equipped with a graded K-module homomorphism a: X--),.X of degree
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-1 with 02- 0, such that the formula

a(ux)=(ats)x+(-1)dg"u(ax) (7.3)

always holds. Equivalently, a left U-module X is a DG-module over K
equipped with a homomorphism U ®K X -#X of DG-modules, of degree
0, written u 0 x --+u x, such that the standard conditions

(uf-u2)x u1x+u2x, u(x1-+x2)=ux1+ux2,
(u1 u2) x=u1(u2x), 1x=x,

always hold, as in the diagrams (5.1). If X and Y are U-modules, a
morphism : X -->.Y is a homomorphism of the whole structure: A homo-
morphism of DG-modules, of degree 0, which is also a homomorphism
of modules over the graded algebra U; in other words, is additive and

$(kx)=k($x), $(ax)=a($x), $(ux)=u($x), (7.4)

The K-module of all such morphisms is written homU (X, Y). With
these morphisms, the left U-modules form a category in which sub-
and quotient modules, kernels, images, coimages, and cokernels are
defined as usual. Right U-modules are treated similarly.

On this category we define bifunctors HomU and (Du. For U-modules
X and Y, a graded U-module homomorphism /: X>Y of degree -n
is a homomorphism of X to Y, regarded just as modules over the graded
algebra U; in other words, / is additive and

/(kx)--k(/x), /(ux)=u(/x), deg(/x)=degx-n, (7.5)

but / need not commute with a. The set of all such / is a K-module
HomU (X, Y). The family HomU (X, Y) _ (HomU (X, Y)) becomes a
DGz-module over K when the differential aH: is defined
by the usual formula

all f= ayf+ (-1)' 41/ aX. (7.6)

Thus HomU with capital "H" differs from homU, with lower case "h

HomU (X, Y) is a DGz-module over K; elements all /: X -* Y;

homU(X, Y) is an (ungraded) K-module; elements all : X-. Y.

Moreover, homU is the K-module of cycles of degree 0 in the complex
HomU.

Let X be a right U-module, Y a left U-module. Considered just as
modules over the graded algebra U, they define a graded K-module
X ®U Y which becomes a DG-module over K when the differential is
defined by (7.1); for, by that formula, 0(xic®y)=0(x®u y) (U-middle
associativity). Thus the elements of HomU and ®U are defined from
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the grading and module structure of X and Y; the di//erentials on Homt,
and ®u come from the differentials on X and Y.

For two DG-algebras U and U' a U- U'-bimodule (X, 8) has one
differential 8 which satisfies (7.3) for 8(ux) and the corresponding rule
for 8 (xu') - just as a bimodule has just one K-module structure induced
from U or from U'.

The augmented case is relevant. A dil/erential graded augmented
algebra U (DGA-algebra, for short) is a DG-algebra together with an
augmentation e : U -* K which is a homomorphism of DG-algebras. Here
the ground ring K is regarded as a DG-algebra with trivial grading
(Ko=K) and differential (8=0). Such an augmentation is entirely
determined by its component of degree 0, which is a homomorphism
so : Uo -- K of (ungraded) K-modules with

eo1=1, eo(uouo)=(eouo) (eouo), eoa=0: U1-. K.

A DG-algebra U is connected if Uo = K and 8: U1-* Uo is zero; this
implies H0(U)=K (hence the choice of the term "connected": A topo-
logical space X is path-connected precisely when H0(X)=Z). A con-
nected DG-algebra has a canonical augmentation eo=1: Uo--+K.

Next some examples of DG-algebras. Take the polynomial algebra
PK [x] in an indeterminate x of degree 1, select some koE K, and set
8x=k0; with this, W"=O, 8x' "'+1= ko x='", and P is a DG-algebra.
Similarly, the exterior algebra EK [u], with u of degree 1, has a unique
differential with 8u=ko, and is a DG-algebra.

If X is a DG-module over K, the tensor algebra T(X) has a unique
DG-algebra structure such that the injection X -3.. T(X) is a chain trans-
formation; the requisite differential in T(X) is given by

8(x1®... ®xr)=Z (-1)'7x1®... ®0x,®... ®x"
i-1

with rt; = deg x1 + ... +deg x1_1, in accord with the sign convention.
The analogue of Prop. 3.1 holds for this T(X).

One may construct universal DG-algebras on given generators. Thus
if x has degree 2 and u degree 1, there is exactly one DG-algebra structure
on V=P[x]®E[u] for which 8x=u, for by the Leibniz rule (7.2) the
differential is given on the free K-module generators of the algebra V as

8(x"'®1)=mx"''1®u, 8(x'"0u)=0. (7.7)

If u= is a selected element of degree 2 in any strictly commutative DG-
algebra U, there is a unique homomorphism /: V -+ U of DG-algebras
with /x=u9 (and hence with f u=8uq).

Similar considerations will define differential internally graded and
differential Z-graded algebras.
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Exercises
1. For DG-modules over K, show that the exact homology sequence (Thm. 11-4.1)

for a short exact sequence E: W- X - Y of DG-homomorphisms x and a takes the
form of an exact triangle

H(W) "'+ H(X)

H(Y)

(kernel = image at each vertex), with x, and a, homomorphisms of graded modules
of degree o, while the connecting homomorphism 8E has degree -1. [The usual
long exact sequence spirals around this triangle, dropping one level with each 8E.]

2. Prove that a DG-algebra U is a DG-module over K with homomorphisms
n: U ®U -+ U and I: K- U of DG-modules, of degree 0. satisfying (3.1). Give a
similar definition of U-modules by (5.1), and show that HornU and ®p may be
obtained from HomK and ®K, for DG-modules, by the analogues of (5.5) and (5.7).

3. For V as in (7.7) determine the graded homology algebra H(V) when K-Z
and when K=Z. (the field of integers modulo p).

4. Construct a universal strictly commutative DG-algebra on a given finite set
of generators (of odd and even degrees).

5. For degxi= 2, degui= 1, the graded algebra P[xr, ..., ®E[ur, ...,
is isomorphic to the tensor product of is algebras Vi = P[xi] ®E[ui] like that treated
in the text, hence has a unique differential with 8xi=ui. i®1. ..., is. For any

polynominal p in the xi, show that 8p = E

a
p ®u,, where- - denotes the usual
i i

partial derivative. Hence show directly that 8=p= 0. Note that 8p is the usual
differential of the function p of n variables if we replace ui by a symbol dxi.

8. Identities on Horn and (&

Consider modules and bimodules over various graded K-algebras
'1, I, and 0 (which may equally well be DG-algebras). The functors
HomA and ®A have inherited module structure as follows

XCA&DAA=:>o[HomA(C,A)]r,

ZGA &AAa (&AA)n,

defined for /: C -*A by (wt a) (c) = w[/ (a c)] and for g ®a by a (g (&a) a _
ag (&a w, just as in (V.3.2) and (V.3.1).

There are several natural isomorphisms for iterated tensor products.
Thus

A®AA=A. (AA) (8.1)

is given by A(2)4--)-A4. The commutative law

G ®AA =A ( 9 , 1 . (GA, AA) (8.2)
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is given by The associative law

a: A®A®a(B®rC)=(A®1B)®r®0C. (AA-10, ABr,r-QC) (8.3)

is given by a[a ®(b (&c)] = (a (&b) ®c; here B ®rC is regarded as a left
D-module with operators to (b ®c) _ (-1 )(h1) (ft-) b ®w c. To show this
map a well-defined, observe first that for fixed a the function (a (& b) ®c
is bilinear and E -middle associative in b and c. By Thm. 5.2 there is
for each a a unique homomorphism F(a) : B ®, C -* (A (&A B) ®r®AC
which satisfies F(a) (b (&c) = (a (&b) ®c. The function F(a) (b (&c) is again
bilinear and (A (&d?)-middle associative in its arguments in A and
B &C. By Thm. 5.2 again there is a unique homomorphism a with
a[a®(b(&c)]=(a(&b)®c. The inverse of at is constructed similarly.
The associativity law also holds in simpler cases; e.g., with.Q omitted
(set .Q= K in (8.3)). A general version of the commutative law is the
middle four interchange

r: (A ®4 B) (C Or D) =(A (&A.C) ®®r(B (8.4)

defined for modules AA-A', AB,., r-rD by setting

a [(a ®b) ®(e ®d)] = (-1)' m,) (a ®e) ®(b ®d).

In the DG-case, all of these natural isomorphisms are isomorphisms of
DG-modules over K, as one verifies by showing that each of the given
isomorphisms commutes with the differential which we have defined
on ®u.

For the functor HorA alone, we have the natural isomorphism

HomA(A, A) --A (AA) (8.5)

given by / -*/ (1) and the natural homomorphism

K-* Hom4(A,A), (AA) (8.6)

given by mapping 1 K into the identity homomorphism 1A : A -,A.

Adjoint associativity is the natural isomorphism

r): Homn_r(A ®AB, C)=HomD_A(A, Homr(B, C)) (8.7)

for modules QAA, ABr, and DCr, defined for /: A ®A B - C by
[(rl/)a]b=/(a(&b), just as in the case of rings (V.3.5). In the DG-case
one checks that r] commutes with the differentials defined on both sides,
hence is an isomorphism of DGE-modules over K. In particular, taking
the cycles of degree zero on each side of (8.7) gives the natural iso-
morphism

homg_r(A 04B, C)=homp_A(A, Homr(B, C)) (8.8)
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- where, as above, hom with lower case h denotes homomorphisms of
degree zero of the full DG -structure. In this case, since A has no elements
of negative degree, the Z-graded Hom (B, C) on the right may be re-
placed by the graded module {Hom-"(B, C), n=0, 1, ...).

Composition of homomorphisms yields a map

HomA (B, C) ®Q Home (A, B) -, HomA (A, C) (AA, QBA, CA) (8.9)

which is natural in A and C. Another useful natural homomorphism is
the Hom-® interchange for modules AB, AA, A.B', A'A',

C : HomA (B, A) ®HomA. (B', A') --> HomA®A (B ®B', A (&A'), (8.10)

defined for /: B --.).A and /': B'--o, A' by

(b(&b')=(-1)(atr)(de b)/b®/'b'.

In the DG-case, this and composition are homomorphisms of DG-
modules.

A notational curiosity emerges here. In this definition, denotes
a typical element in the tensor product shown on the left of (8.10).
Previously, in (2.2), we used /(&/' to denote the homomorphism
B (& B' -).A ®A' here written as C (/ (&/'). The two symbols / ®/' need
not agree, because C may well have a kernel not zero. This ambiguity
is not serious; long ago we observed that the tensor product a®b of
two elements has meaning only when the modules in which these ele-
ments lie are specified, and may become zero when one or the other
module is enlarged.

Various other natural homomorphisms may be defined by com-
position of these. For example, the evaluation homomorphism

e: HomA (A, B) ®A -+B (AA, AB) (8.11)

is given for /: A -. B by a (/ ®a) = / (a) ; i.e., by taking the value of the
function / at a. It may be written as the composition

HomA (A, B) ®A -+ HomA (A, B) ®HomA (A, A) -> HomA (A, B) --)..B

of the maps (8.5), (8.9), and (8.5). It would be instructive to know the
various identities holding between composites of the assorted natural
homomorphisms (8.1)-(8.10) described above.

As an application, consider free and projective A-modules over a
graded algebra A. A left A-module P is projective, as usual, if each
epimorphism a: B-C of left A-modules, of degree 0, induces an epi-
morphism hom4(P, C). The free A-module on the graded
set S of generators is the A-module C containing S and characterized up
to isomorphism by the usual property (Prop. I.5.1) that each set map
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S--),.AA of degree zero extends to a unique A-module homomorphism
C-->.A; as usual, a free module is projective. The algebra A itself is the
free A-module on one generator I of degree 0; the free A-module on any
S may be constructed as the direct sum A S = YA s for s E S. Here A s
denotes the left A-module with elements As of degrees deg (As) =
deg a+degs. Note that AS=A®KS, where KS=2:Ks is the free
graded K-module on the generators S. In other words, each free graded
K-module F yields a free A-module A ®F. Similarly,

Proposition 8.1. If M is a projective graded K-module and A a graded
K-algebra, then A ®M is a projective A-module.

The proof, as in Cor. V.3.3, follows from the adjoint associativity

home (A (& M, B) - hom (M, Hom4 1(A, B)) = hom (M, B).

The same associativity proves more generally

Proposition 8.2. For each graded K-module M define a homomorphism
e: M-.A®M of graded K-modules by e(m)=1®m. This e is universal:
For every left A-module A each homomorphism g: M-*A of graded
K-modules of degree 0 can be factored uniquely through e as g=ye, with
y: A®M-,.A a A-module homomorphism of degree 0.

Proof. Observe that y must have y (A ®m) _ Ag (m) E A ; the right
side of this formula is K-bilinear in A and in, hence defines y uniquely.

For "e is universal" in the sense of this proposition we also say that
A ®M is the relatively free A-module generated by the graded K-module
M, or that A ®M is (A, K)-free. Similarly, for two graded algebras A
and E, each A®M®E is a (A-E, K) relatively free bimodule; if M is
K-projective, it is A-E projective; if M is K-free, it is A-E free.

For Thm. X.7.4 we shall need

Proposition 8.3. 1/ B and B' are free left A- and A'-nwdules of finite
type, the Hom- (& interchange is a natural isomorphism

C: HomA(B,A) ®HomA.(B',A')=HorA®A.(B®B',A (&A'), (A A, A.A').

Proof. By direct sums, this reduces to the case B=A, B'=A'; in
this case C is the identity A ®A'=A ®A'.

Exercises
1. Give a direct proof of the middle four interchange; that is, show that s as

specified is well defined and has an inverse.
2. Deduce the middle four interchange by repeated applications of the associa-

tivity (8.3) and A & K B ®K A.

3. For modules ACr and AAp describe the bimodule structure on Homo (C, A)
(Attention to signs!).

4. Describe the behavior of composition (8.9) for a map B -. B'.
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5. Show that Z of (8.10) may have non-zero kernel (Hint: use finite cyclic
groups).

6. Construct a natural homomorphism
A ®p Home (B, C) - Hom4 (Homo (A, B), C).

9. Coalgebras and Hopf Algebras
A formal dualization of the notion of an algebra yields that of a

coalgebra. These coalgebras have recently gained importance from a
variety of topological applications; for instance, the singular complex
of a topological space turns out to be a coalgebra.

A graded coalgebra W over the commutative ground ring K is a graded
K-module W with two homomorphisms v: W --W ®W and e: W -*K
of graded K-modules, each of degree 0, such that the diagrams

W W (&W W ®W " (W W® W

iV w®1
1101 1`®1 li 11®` (9.1)

W®W W®W®W, K®W = W= W®K
are commutative. The first diagram gives the associative law for the
diagonal map (or coproduct) Ip; the second diagram states that a is a
counit. Coalgebras which are not associative or which have no counit
are sometimes useful, but will not occur in this book. A homomorphism
,u: W-rW' of coalgebras is a K-module homomorphism of degree 0 such
that the diagrams

W-" W®W W -'-I- K
j" 1M®" 11,

11 (9.2)
W'-'°- W' ®W' , W'- K

are commutative. If the following diagram is commutative

W "
W commutative. As usual, our definition

includes the special cases of coalgebras (W trivially graded) and graded
corings (K-Z). DG-coalgebras may also be defined by the diagram (9.1),
for W a DG-K-module. In particular, the ground ring K itself is a
(trivially graded) K-coalgebra with diagonal map K --. K ® K the canonical
isomorphism and counit the identity K-->K.

If W and W' are graded coalgebras, their tensor product W ®W' (as
graded modules) is a graded coalgebra with diagonal map the com-
posite

W®W, v®'' W®W®1'1''®W"® ®'(W(&W')®(W®N''),
(9.4)

for T as in (9.3), and with counit e®e': W ®W'-* K®K=K.
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For completeness, let us also define comodules by dualizing the
diagrammatic definition (5.1) of a module over an algebra. A graded
left W-comodule over the graded coalgebra W is a graded K-module C
equipped with a homomorphism qq: C-*W ®C of degree zero such that
the diagrams

C
. W®C C = K®C

1° ,®, 11®. V1 ,®1
II

(9.5)
W®C-'.W®W®C, W(&C-'K®C

both commute.
A graded Hopl algebra V is a graded K-module V = {V) which, with

this grading, is both a graded algebra for a product map r : V ® V --3.. V
and unit I : K -+ V and a graded coalgebra for a diagonal V and a counit e,
and such that

(i) I : K --> V is a homomorphism of graded coalgebras ;

(ii) e: V-+K is a homomorphism of graded algebras;

(iii) ;r: V ®V-V is a homomorphism of graded coalgebras.

Condition (i) states that w(l) =1®1 and that eI: K -* K is the identity.
Condition (ii) states that V is an augmented algebra, with augmentation
the counit. In view of the definition (9.4), condition (iii) states that the
following diagram commutes

V®V'®" V®V®V®V 1®`®1 V®V®V®V
1" 1"®" (9.6)
V V -+ V®V ,

for r as in (9.3). But (n (&a) (1®r (&1) is the product map in the tensor
product algebra V ® V, so this diagram may equally well be read as

(iii') q,: V-*V ®V is a homomorphism of graded algebras.
Thus (iii) is equivalent to (iii').

A homomorphism v: V --* V' of Hopf algebras is a K-module homo-
morphism which is both an algebra and a coalgebra homomorphism.

Let V and V' be graded Hopf algebras over K. A formal argument
from the definitions shows that V ®V' is a graded Hopf algebra over K,
with grading that of the tensor product of graded modules, product and
unit that of the tensor product of algebras, coproduct and counit that
of the tensor product (9.4) of coalgebras.

Now for some examples of Hopf algebras.
The ground ring K is itself (trivially) a graded Hopf algebra.
Let E = EK [u] be the exterior algebra on one symbol u of degree 1.

Since E is the free strictly commutative algebra on one generator u,
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there are unique algebra homomorphisms e : E -->. K, V: E -1`E ® E with

e(u)=0, V(u)=u®1+1®u. (9.7)

With this structure, we claim that E is a Hopf algebra. To prove it a
coalgebra, note that ('p ®1) tp and (1(&V) V may both be characterized
as the unique homomorphism rl : E ®E ®E of algebras with
Y1(u)=u(&1 ®i + 1®u ®1 + 1®1®u ; by a similar argument (e ®1) p=1
=(I 0 s) V. Condition (i) for a Hopf algebra is trivial, while conditions
(ii) and (iii') follow by the definitions of is and V.

Let P = PK [x] be the polynomial algebra in one symbol x of even
degree. By a similar argument, it is a Hopf algebra with

e(x)=0, 1p(x)=x®1+1®x. (9.8)

Since 1p is an algebra homomorphism, 1p (x") = (1p x)", so

TV(x")= E (p q) xP(& x`. (P. q)=(p+q)!I(p!q . (9.9)
P+9-"

By taking tensor products of Hopf algebras, it follows that the ex-
terior algebra EK [u1.... , u"] on generators u; of degree I or the poly-
nomial algebra PK [x1, ... , x"] on generators x; of even degrees is a Hopf
algebra.

The group ring Z (17) of any multiplicative group is a (trivially graded)
Hopf algebra over Z, for if x E 17, the function +p (x) = x ® x on 17 to
Z (17) ®Z (17) carries 1 to I and products to products, hence (Prop. I V.1.1)
extends to a ring homomorphism 1p: Z (17) -#Z (I1) ®Z (I7). With the
usual augmentation e : Z (17) --.2 this makes Z (H) a coalgebra (condition
(9.1)) and a Hopf algebra, with unit I: Z--aZ(17) the injection. Any
homomorphism C: 1 --ifl' of groups induces a homomorphism
Z (C) : Z (17) -)-Z (II') of Hopf algebras.

For any commutative K, the group algebra K (M is defined as the
K-algebra K ®ZZ (17) ; equivalently, it is the free K-module with free
generators the elements xE17 and product determined by the product
in 17. It is a Hopf algebra, with coproduct 1p (x) = x ®x.

Now consider left modules A, B, C over a graded Hopf algebra V :
that is, modules over the graded algebra V. The tensor product A ®K B
is a left (V ®V)-module, but becomes a left V-module by pull-back
along the diagonal y: V --> V ® V : We write this module as A 0 B =
,,(A ®KB). The associative law (9.1) for 1p proves the usual associativity
law A®(B®C)=(A(& B)®C for this tensor product. Moreover, the
ground ring K is a left V-module,K by pull-back along e: V->K, and the
rule (e ®1) y, =1= (1®e) w gives the isomorphism K ®A =A =A ®K.
Using these two isomorphisms, parallel to (2.3) and (2.5), one can define
an algebra over a graded Hop/ algebra V - by exactly the mechanism used
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to define algebras over K itself. If the coproduct tp is commutative (9.3),
one can obtain the isomorphism i : A ®B =-B ®A for V-modules, and
in this case one can define the tensor product of algebras over V.

Exercises
1. If M is a K-module show that the tensor algebra T(M) has a unique Hopf

algebra structure with V (m) = m ®1 + 1 ®m.
2. If A is a graded K-algebra with each A. finitely generated and projective as

a K-module, show that the dual A is a coalgebra with diagonal map induced by
n (use Prop. V.4.3). Under similar hypotheses, show that the dual of a Hopf
algebra is a Hopf algebra.

3. Characterize the group algebra K(11) by the analogue of Prop. IV.1.1.

Notes. Originally, a linear associative algebra meant an algebra over a field K
which was of finite dimensions as a vector space over that field, and the classical
theory dealt with the structure of such algebras (e.g. the WEDDERBURN Principal
Theorem X.3.2). In analysis, algebras of continuous functions were vector spaces
of infinite dimension. In topology, the cup product in cohomology (Chap. VIII)
introduces graded algebras over a commutative ring not a field. BouRBAxi and
CREVALLEY (1956] codified the present general concept of a graded algebra, and
emphasized a principle due to E. H. Mooaz: State theorems in the maximum
useful generality; e.g., for graded algebras, not just for rings. Hopf algebras first
occurred in H. HoPF's study of the cohomology of a Lie group. Their algebraic
structure has been examined by various authors (e.g., [1953], HALPERN
[1958)); for a systematic treatment see MILNOR-MOORE (196?). Algebras over Hopf
algebras were recently considered by STEENROD [1962].

Chapter seven

Dimension
This chapter is a brief introduction to the extensive applications of

homological algebra to ring theory and algebraic geometry. We define
various dimensions, use them in polynomial rings and separable algebras,
and in the Hilbert theorem on syzygies. Subsequent chapters are indepen-
dent of this material, except for the description (§ 3) of Ext and Tor for
algebras and the direct product and ground ring extensions for algebras.

1. Homological Dimension

For abelian groups C and A. Exti (C. A) is always zero; we say that C,
regarded as a module over the ring Z of integers, has homological dimen-
sion at most 1. Over any ring R, a projective module P is characterized
by the fact that all ExtR (P. G) vanish; we say that P has homological
dimension 0. The general phenomenon may be described as follows.

Theorem 1.1. For each integer n, the following conditions on a left
R-module C are equivalent:
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(i) For all left R-modules B, Ext"}1(C, B) =0;

(ii) Any exact sequence of modules

S: 0->C"-sX"_1-

with the Xi all projective has the first term C. projective;

(iii) C has a projective resolution of length n:

0-.X"-.X"_1- ... -.Xo-3-.C-.0.

Here and below we write Ext for ExtR.

Proof. Factor the sequence S of (ii) into short exact sequences
E,: Ci+1 H X, -+C, . Each gives the standard long exact sequence

Extk(X,, B)-.Ext*(C,+1, B)E,* Exe+1(C;, B)-.Ext*t1(X,, B)

of (111.9.1). Since Xi is projective, the outside terms Ext"(X,, B) are
zero if k>O, so the connecting homomorphism E' is an isomorphism.
The iterated connecting homomorphism S* is the composite Eo ... E, 1,
hence an isomorphism

S*: Ext1(C" , B) = Ext"+1(C, B).

Now given Extw+1(C, B) = 0 by (i), this isomorphism makes
Ext1(C,, , B)=0 for all B, hence C. projective as in (ii). Since C has
at least one projective resolution, (ii) implies (iii). Given a resolution
of the form (iii), Ext"+1 (C, B) computed thereby is 0, whence (i).

The homological dimension of an R-module C is defined by the
statement that h.dimRCSn when any one of the equivalent conditions
of Thm. 1.1 hold. In other words, h. dimR C = n means that all
Ext"t1(C, B) = 0, but that Ext" (C, B) 4r 0 for at least one module B.

Corollary 1.2. I/ h.dimRC=n, then for all modules RB and GR,

Ext"+''(C, B)=0, Tor,+,(G, C)=0, k>0,
while for each mS n there is a left module B. with Ext'" (C, B,,)+0.

Proof. The first result follows by (iii). If Ext"(C, B)40 for n>0,
imbed B in an injective module J to get a short exact sequence
B J- . B'. The corresponding exact sequence

Ext"'1(C, B') -). Ext" (C, B) -. Ext" (C, J) = 0

shows that Ext"-1 (C, B')+0.

Similarly, h. dim C = oo implies that for each positive integer is
there is a module B. with Ext"(C, B")+0. The homological dimension
of a module C can be calculated from any projective resolution
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0<--C.-X0F-X1*-- as the first n with Im(X"--.X"_1) projective (for
n =0, read X_1 as C), or as oo when none of these images is projective.

For example, the calculations of VI.6 show that the trivial module Z
over the group ring Z (11) of a free abelian group l7 on n generators has
homological dimension n.

The left global dimension of a ring R is defined as

1. gl. dim. R = sup (h. dim C),

where the supremum is taken over all left R-modules C. For example,
1. gl. dim Z =1. For a field F, every module is a vector space, hence free,
so 1. gl, dim F = 0. More generally,

Proposition 1.3. Each o l the following conditions is equivalent to
1.gl.dim R=0:

(i) Every left R-module is projective;
(ii) Every short exact sequence A of left R-modules splits;
(iii) Every left R-module is injective;
(iv) Every left ideal of R is injective, as a left R-module;
(v) Every le/t ideal o l R is a direct summand of R, as a left R-module.

Proof. Condition (i) is the definition of 1.gl.dim R=O. Given (i),
each short exact sequence (ii) has C projective, hence splits. Since every
such sequence beginning with A splits, each A is injective by Prop. 111. 7-1.
Hence (i) = (ii) = (iii), and the reverse argument shows (iii) = (ii) = (i).
Clearly (iii) = (iv) (v). Given (v) and a left ideal L, the short exact
sequence L R -n R/L splits, so that Horn (R, A) -- Hom (L, A) is an
epimorphism for each module A. By Prop.III.7.2, A is injective
Hence (v) #, (iii) ; the proof is complete.

Theorem 1.4. For each ring R and each n z 0 the following conditions
are equivalent:

(i) i s ;

(ii) Each left R-module has homological dimension S n ;
(iii) Ext"+'=0, as a functor of left R-modules;
(iv) Extk = 0 for all k> n ;
(v) Any exact sequence

S: 0-.A--* YO --... -,Y"-i-->A"-+0,

with n intermediate modules Yk all injective, has A" injective.

Proof. The first four conditions are equivalent by Thm. I.I. The
sequence S in (v) gives a connecting homomorphism which is an iso-
morphism S# : Extl (C, A ") =Ext"-" (C, A) for each C. But Ext' (C, A") =0
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for all C states exactly that A. is injective; hence the equivalence of
(iii) and (v).

Corollary I.S. (AUSLANDER [1955].) For any ring R

1. gl. dim R = sup (h. dim R/L I L a left ideal in R) .

Proof. (MATLIS [1959].) If the supremum is infinite, l.gl.dim R=oo.
Hence assume that the supremum is n < oo, so that Ext"+1(R/L, A) = 0
for all left ideals L and all R-modules A. For each S as in (v) above,
S,,: Ext1(RJL,A")=_Extn}1(R/L,A)=0. By Prop.III.7.2, A. is in-
j ective ; by the theorem, 1. gl. dim R S n.

The condition I. gl. dim R = 0 is equivalent to the requirement that R
be semi-simple, and so is connected with classical representation theory.
Indeed, a left R-module A may be regarded as an abelian group A
together with the ring homomorphism 97: which gives the
left operators of R on A. This q' is a representation of R and A is the
corresponding representation module. The module A is called simple
(and the corresponding representation irreducible) if A+0 and A has
no submodules except 0 and A. A module A is semi-simple if it is a
direct sum of simple modules; a ring Rr0 is semi-simple if it is a semi-
simple left R-module. Using Zorn's lemma, one can prove (see e.g.
CARTAN-EILENBERG, Prop. 1.4.1) that a module is semi-simple if and
only if every submodule of A is a direct summand of A. By condition
(v) of Prop. 1.3 it then follows that R is semi-simple if and only if
1. gl. dim R = 0, and by (ii) that every left module over a semi-simple ring
R is itself semi-simple. It can also be proved that left semi-simplicity
of R (as here defined) is equivalent to right semi-simplicity.

Various other dimensions can be introduced. For example, the left
injective dimension of a module is defined by the analogue of Thm. 1.1
using injective resolutions, so that the equivalence (v)s (iii) in the
theorem above states that the left global dimension of R agrees with
its left global injective dimension. Right dimensions are defined using
right R-modules; KAPLANSKY [1958] has constructed an example of a
ring for which the left and right global dimensions differ by 1. Aus-
LANDER has proved that if R satisfies the ascending chain condition for
left ideals and for right ideals, its left and right global dimensions agree
(for proof see NORTHCOTT [1960], Thm. 7.20). The finitistic left global
dimension of R is the supremum of the homological dimensions of all
left R-modules C with h. dim C < oo. The weak dimension of a module C
is defined by replacing the condition that Ext"+1(C,A)=0 for all A
by the weaker condition that Tor"+1(G, C) = 0 for all GR. For example,
C is flat if and only if its weak homological dimension is 0. For the
development of these ideas, see BASS [1960].
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Exercises
1. State and prove the analogue of Thm. 1.1 for left injective dimensions.
2. If 1. gl. dim R gZ 1, then

1. gl. dim R = I + sup {h. dim L IL a left ideal in R).

3. If A++ B -PC is a short exact sequence of R-modules, then if any two have
finite homological dimension, so does the third.

4. In Ex- 3 above, show that h. dimA < h.dim B implies h. dimC = h. dim B,
h. dim A = h. dim B implies h. dim C gk 1 + h. dim B, and h. dim A > h. dim B implies
h.dimC= 1+h.dimA.

2. Dimensions in Polynomial Rings

In (VI.1.4) the exterior ring provided an explicit resolution for a
field F regarded as a module over the polynomial ring F[x, y] in two
indeterminates. The same device works if F is replaced by a commutative
ring K or the two indeterminates are replaced by n such.

In detail, let P= K[x1, ..., be the polynomial ring in n in-
determinates x; , each of degree 0. Then a (x;) = 0 defines an augmenta-
tion e=ep: P-*K, while pull-back along a makes K a P-module K.
This amounts to regarding K as the quotient module PJ(x1..... x.),
where (x1, ..., denotes the ideal in P generated by all the x;.

Let E = Ep[ul, ... , be the exterior algebra over P on n generators
u,, each of degree 1. Thus E. in each degree m is the free P-module
with generators all exterior products of m of the u; in order. The dif-
ferential with 2u; = x; makes E a DG-algebra over P with OE,. 1(Em ,

while ep gives an augmentation Eo--),.K. Together these provide a
sequence

E1 ... E. *--0 (2.1)

of P-modules and P-module homomorphisms.

Proposition 2.1. For P the polynomial ring in n indeterminates over K,
the exterior algebra E in n generators over P provides, as in (2.1), a free
P-module resolution of ,K.

The proof will construct K-module homomorphisms rt: K->E and
s : E-->.E of respective degrees 0 and I such that t j is a chain trans-
formation with e r J =1 while s is a chain homotopy s : I tj r : E--).E.
This contracting homotopy will show (2.1) exact as a sequence of K-
modules, hence exact as a sequence of P-modules, hence a resolution.

The chain transformation 77 is defined by >7k= ki; clearly en =1. The
homotopy s is constructed by induction on n. Set

P"=K[x1, ..., P'=K[xj,
E" = EP.. [u1 .. . u.-,], E' = EP. [u? .
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Thus P = P" ®P', E" and E' are DG-algebras over P" and P' respec-
tively, their tensor product E" ®E' is a P" ®P'-algebra, and (VI-4.6)
gives an isomorphism E=E"®E' of DG-algebras over P. Moreover,
e = e"®e' and rJ = rl" ®rt'. For n=1, the contracting homotopy
s': E' -*El' may be defined on a polynomial /= Z a4 x' of degree k in
x = x with coefficients a, E K by setting

s'(ao+alx+ ... +aA,xk)=(ai+asx+ - - - +akxk-1) u;

then a s' f = f - ao = f -rt'e' / and s' 8 f u = f u, so s': Note in
particular that s', though a homomorphism of K-modules, is not a
homomorphism of P-modules.

Now assume by induction that there is a K-chain homotopy
s": 1 -27" e": E" --*E". Since we already have s', Prop. V.9.1 gives a
K-chain homotopy s on E= E"®E', and so completes the induction.

The resolution (2.1) is known as the Koszul resolution; it first occurs
explicitly in a study of Lie algebras by Koszui. [1950].

Theorem 2.2. I J P= K [x1, ..., is the ungraded polynomial algebra
over a commutative ring K in is indeterminates x; , while I : K -* P is the
injection and K is a P-module in any way such that IK=K, then

h.dim,K=n, h.dim,(xl, ..., (2.2)

Ext p (K, K) is the direct sum o l (m, n- m) copies o l K, and Tore (K, K) =
{Tor,P (K, K)} is an exterior algebra over K on is generators in Tor, (K, K).

Proof. Suppose first that K is the P-module,K. The Koszul resolu-
tion (2.1) stops with degree is. Hence the homological dimension of K
is at most is.

We may calculate TorP(K, K) from the resolution (2.1) as the homo-
logy of the complex

K®PEP=K®p(P®EK[41, ..., u.])
= (K(&P P) ®EK=K ®EK =EK [u,, ..., u,,]

with boundary 2 (k (&u,) = k ®x; . But under the isomorphisms above,
k ®x; -a (k ®P x;) ®1 -- ). k e (x,) ® I = 0, since by definition e (x,) = 0. Thus
the differential on the complex is zero, so TorP(K, K) is the exterior
algebra over K in is generators. In particular, Tor'(K, K),-=K=J=0, so
h.dim, K is exactly n. Similarly, Extp(K, K) is calculated from the
resolution as the cohomology of the complex

HomP (EP, K) HomP (P ®EK, K)

HomK(EK, HomP (P, K)=HomK(EK, K)).
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The coboundary in this complex is again zero, so Ext"(K. K)
HomK (E., K) is the direct sum of (m, n - m) copies of K, as asserted in
the Theorem.

Now consider the ideal J = (xl , ..., Ker s. Since 00: E1-.Eo = P
has image exactly J, the Koszul resolution (2.1) yields a resolution

0*- J

of J, with Em+, in "dimension" m. Hence Extp(J, K)HomK(Em+l, K)
for m> 0, so Ext- ' (J, K) = K$ 0, and J has exact dimension n--1, as
asserted.

Now let K have some other P-module structure, say by operators
P o k for P E P. The condition ,K = K states that this P-module structure,
pulled back along the injection I : K -* P with I (k) =kip, is the original
K-module structure of K; in other words, that k' o k = k'k. Now
e (I') = p o 1 K defines an algebra homomorphism e: P -* K, because
p o k = p o (1 K k) = e (p) o k = e (p) k. In other words, K is the P-module
vK obtained by pull-back along e. But set a1- a xi e K and x; = x, - ai.
Then P can be viewed as the polynomial algebra K [xi , ..., and
o x'= 0, so a is the corresponding augmentation, and the previous
calculations apply.

In conclusion, note that Torp (K, K) = EK [u, , - .. , turns out to
be not just a graded P-module -- as it should be , on general principles --
but actually a graded algebra; to wit, the exterior algebra on the n cycles
(homology classes) ui in Tor,. This algebra structure on Torp(K, K)
hides a mystery. By our general results we may (and did) compute
Tor"(K, K) from any convenient resolution. By "accident" the DG-
module E which we used as a resolution was in fact a DG-algebra, so
Torp(K, K) inherited "by accident" an algebra structure. We shall
show in Chap. VIII that this structure arises intrinsically from the fact
that K (as a P-module) is a P-algebra; indeed, the torsion product of
two algebras is an algebra.

Exercises
1. Calculate Tor '(J, K) and Extp(J, K) for J= (x1, ..., x.).
2. Show that h.dimp(x,,...,xk)=k-1.
3. Examine Thm.2.2 when K is a skew field.

3. Ext and Tor for Algebras

If A is an (ungraded!) K-algebra, the usual functors Ext,1 and Tor'
may be regarded as functors with values which are K-modules. For this
purpose, as in VI.1, we regard the K-algebra A as the composite object
A= (R, I) consisting of a ring R and a ring homomorphism I: K ->R
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with (I k) r = r (1 k) ; that is, with I (K) in the center of R. A left A-module
(say as defined by (VI.5.2) and is just a left R-module A; by
pull-back along I : K R it is a K-module, hence also an R- K-bimodule
RAK. A homomorphism a: AAA' of left A-modules is defined to be a
homomorphism of left R-modules, and then is automatically a homo-
morphism of R-K-bimodules.

Proposition 3.1. For A = (R, I) a K-algebra and C, A left A-modules,
the abelian group ExtR(C. A) has two K-module structures induced by the
K-module structures o/ C and A, respectively. These two K-module
structures agree; if we write ExtA" (C, A) for the resulting K-module, then
Ext^ is a bifunctor from A-modules to K-modules which satisfies the axioms
formulated in Thm. I11.10.1. For a third A-module D, composition is a
homomorphism of K-modules

Extki (A, D) ®KExtA (C,A) -*ExtAk+(C, D). (3.1)

Proof. The first K-module structure is that induced on ExtR(C,A)
as a functor of C by the R-module endomorphisms pk: C->C defined for
each k E K by pk (c) = k c ; the second arises similarly from A. Equi-
valently, regard C and A as R-K-bimodules; then ExtR (C, A) is a
K-K-bimodule as in V.3.4. The crux of the proof is the demonstration
that these two K-module structures agree.

For n=0 and /E HomR (C, A), the first K-module structure defines
kf by (kf)c=/(kc), the second by (/k)c=k(fc). Since f is a K-module
homomorphism, they agree.

For n>0, take a long exact sequence SEEExtR(C,A). Multiplication
by k is a morphism pk : S - S of sequences of R-modules which agrees
on the left end with multiplication in A by k and on the right end with
multiplication in C by k. By Prop. III.5.1, pkS- SPA, and the structures
agree. Alternatively, if X is a projective resolution of C and ExtR (C, A)
is calculated as H"(HomR(X,A)), the K-module structure, like the
functorial structure, is computed from that of X or of A, which are
known to agree in HomR (X, A).

Any R-module homomorphism a: A A' commutes with the endo-
morphism pt, so the induced map a.: ExtR (C, A) -ExtR (C, A') is a
K-module homomorphism, and Ext" (C, A) is a bifunctor of K-modules.
The connecting homomorphisms are also K-module homomorphisms,
and the Yoneda composite is K-bilinear; hence (3.1).

The treatment of torsion products is similar.

Proposition 3.2. If A= (R, I) and GA, AC are A-modules, then for
each n z 0 the abelian group Torte (G, C) has two K-module structures
induced by the K-module structures of G and C, respectively. These two
K-module structures agree; it we write Tore (G, C) for the resulting K-module,
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then Torts is a covariant bifunctor from A-modules to K-modules which
satisfies the axioms formulated in Thm. V.8.5.

Proof. For n = 0, k g ®c = g ®k c, so the two K-module structures
agree. We leave the proof for n>0 to the reader (use V.7.1).

Now let A and E be two K-algebras (still ungraded). A A-E bimodule
,,A, is then a bimodule over the rings A, E such that the two induced
K-module structures agree. They induce identical K-module structures
on Homn_r(C,A). The corresponding K-modules ExtA*_r(C,A) for
n>0 could be defined as the congruence classes of exact sequences of
bimodules leading from A to C through is intermediate steps, just as
before. Equivalently, turn A and C into left A®2°9-modules, and
define ExtA_r as Ext(4®z.). Similarly, bimodules rB4, 4Cr are one-
sided modules B(A®r,.), (A®sep)C and so have a tensor product

and torsion products Tor(''®)(B, C) which are K-modules.
We also write these products as TorA-r(B, C). We next show that Ext
for left A-modules sometimes reduces to a A-bimodule Ext.

Theorem 3.3. Let A be a K-algebra and C and A left A-modules.
Assume that A and C are projective K-modules (for instance, this automat-
ically holds if K is a field). Then adjoint associativity induces a natural
isomorphism

rl*: HomK(C,A)), n=0, 1, ..., (3.2)

of K-modules. For n=0, Ext0A (C, A)=HomA(C,A)=Homes(A®A C. A),
and ,q is the ordinary adjoint associativity.

In (3.2), HornK (C, A) is a left A-module via the left A-module struc-
ture of A and a right A-module via the left A-module structure of the
contravariant argument C.

Proof. Take a free resolution e : X -+A of the A-A-bimodule A. As a
free bimodule, each X. has the form ®A for some free
K-module F.. Now a projective module is a direct summand of a free
module, so the tensor product of two projective K-modules is a pro-
jective K-module. Since we have assumed A and C projective as
K-modules, A OF. and F. ®C are projective K-modules, so, by Prop.
VI.8.1, (A OF.) ®A is a projective right A-module and
A ®(F (& C) is a projective left A-module.

Adjoint associativity is natural, so yields an isomorphism of com-
plexes

rl: Hom.4(X(&4C,A)=HomA_4(X, HomK(C,A)). (3.3)

The cohomology groups of the right hand complex are

ExtA_4(A, HomK (C, A)) .
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Examine those of the left hand complex. Since e: X -o-A is a projective
resolution of A as a right A-module, the homology of the complex
X ®AC is Tor° (A, Q. But A itself is a free right A-module, so all
Torts (A,C)=0 for n>0, so the complex X®AC with a®l: X0®AC-*
A ®A C = C constitutes a projective resolution of AC. Therefore its
cohomology over A, as on the left side of (3.3), is ExtA(C,A). Thus 17
induces an isomorphism of these cohomology groups, as asserted.

This isomorphism can be described as follows in terms of long exact
sequences.

Corollary 3.4. For any long exact sequence SEEExtA"(C,A) with
n>0 the isomorphism rl of (3.2) carries the class of S into the class of

[HomK(C, S)] rl(1c) EE ExtA*_A(A, HomK(C,A)).

Proof. First analyze [Hom (C, S)] r) (1c). Since 1cE HorA (C, C) and
j?: HomA (C, C) = HomA (A (&A C, C) a Homr_4 (A, Hom (C, C)), rl (1c) is
a map u: A-rHom(C, C) (actually, with (u A)c=Ac). If

S: -*Bo-.CEO

is exact, and Horn is short for HomK, then Hom(C, S) is the sequence

0-+Hom(C,A)-9.Hom(C, B"_r)-*. Be)-.Hom(C,

C is K-projective, it is an exact sequence of A-A-bimodules. Acting
on the right of this sequence with rl(1c), we get a long exact sequence
of bimodules from Hom (C, A) to A, as in the conclusion of the corollary.

To apply the canonical isomorphism C: Extt (C, A) =--H" (X (&,t C, A)
of (111.6.3), we regard S as a resolution of C, lift 1c to /: X ®A C S,
and obtain C(cls S) as the class of the cocycle /". But apply adjoint
associativity; rl/: X -+Hom (C, S) lifts ,(lc): A -->Hom (C, C), so rl/
factors through a chain transformation g: X-i.[Hom(C, S)]rl(1c)
lifting 1A with rlf"=g". Thus t?s cls f"=clsg", Z(cls S) = cls f", and
(again by the definition of Z) C cls [Hom (C, S) rl (1c)] =cls g", whence
the conclusion.

Exercises

1. If A is an algebra over a field, P a projective A-A-bimodule, and B a left
A-module, show that P®AB is a projective left A-module.

2. If TEE Ext j _ A (A, Hom (C, A)), as in Cor. 3.4, is the exact sequence

T: Hom (C,A)r+B"_1

with all X. projective show rr 1clsT=cls(e(T®AC)), where a is the evaluation
map a:

3. For A an algebra over a field F, 1? a A ®A°D, and modules CA, AA, prove
Torx (C. A) t- Tora(A. A®KC).
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4. For K-algebras A and F, modules GA and AAr and an injective right -
r-module J use Ex. 111-7.3 to establish the isomorphism ("duality"; CARTAh-EILEr-
BERG VI.5)

ExtA"(G, Homr(A. J)) Homr(TorA. (G, A), J).

4. Global Dimensions of Polynomial Rings

We can now compute the global dimensions of polynomial rings over
a field.

Proposition 4.1. It the modules C and A over the commutative ring K
are regarded as modules over the polynomial ring P=K[x], by pull-back
along e : P -> K with a (x) = 0, then Home (C, A) = HomK (C, A) and, for
n> 0, there is an isomorphism of P-modules

Extp(C,A)=ExtK(C,A)®ExtK`1(C,A). (4.1)

Here the ExtK on the right are K-modules, hence P-modules by pull-
back.

Proof. Take a K-projective resolution rl: X -*C. The exterior
algebra E = Ep[u] provides a resolution e : E--> K of K by free P-modules
E0 E1= P and the boundary 8: E1 -->Eo is given by multiplication by x.
Now P is a free K-module, hence so are E1, E0, H(E), and the cycles
of E. The Kiinneth tensor formula (Thm. V.10.1) asserts that
H(E®X)=11(E)0H(X), so that H,,(E(&X)=0 for n>0 and
e®q: Ho(E®X),=K®C=C. Thus e®q: E®X-.C is a resolution
of C by projective P-modules. Hence Extp(C,A) is the cohomology of
the complex Homp(E®X, A).

Now (E(&X).=Eo(&X.E)E,(&X.-,--P(&X.ED POX,-,, so by
adjoint associativity

Homp((E®X),,, A) =Homp(P, Hom (X,,, A))® Homp(P, Hom A)),

Hom (X,, , A) ® Hom (Xn _ 1 , A).

Since the boundary 8: E1 -a Eo is multiplication by x and since A and
X. are P-modules via a with a (x) = 0, these isomorphisms carry the
coboundary on the left into the coboundary on the right (induced by 8
in X). This isomorphism of cochain complexes gives the asserted iso-
morphism (4.1).

Theorem 4.2. 1/ the commutative ring K has global dimension r:&- co,
then the polynomial ring P= K[x] has global dimension r±1 (or oo,
it r=oo).

Since K and P are commutative, we can omit " left " in 1. gl. dim.

Proof. Let G be any P-module. The first r terms of a free resolution
of G as a P-module give an exact sequence S: G, Y,-, --o- --- Yo -*G.
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Now P itself and hence each Y, is also a free K-module, so h.dimKGS
gl. dim K = r implies that the K-module G, is projective. For anyP-module
H we have the isomorphisms

ExtP 2(G,H)=Ext2 (G,, H)=ExtP_P(P. Horn (G,, H)),

the first by the iterated connecting homomorphism of the sequence S
and the second by adjoint associativity (Thm. 3.3). On the right regard
the P-bimodules as P ®P°P-left modules. Then P°P = P, so P ®P°P
P ® K[y] is isomorphic to a polynomial ring P[y] in one indeterminate
y over P. In particular, the P- P-bimodule P becomes a P[y]-module,
and the injection Jr: P-. P[y] satisfies (I p) p'= p p'. Hence Thm. 2.2
(with K there replaced by P and P by P[y]) gives h. dimpIl,l P =1,
which asserts that Ext ,_ p(P, -) above vanishes, hence that Extr 2=0,
so gl. dim P 5 r+ 1. On the other hand, gl. dim K =r means that there
are K-modules C and A with ExtK(C,A)+0. By Prop. 4.1. this gives
Ext' 1(C, A) = Extk (C, A) * 0, so gl. dim P is at least r+ 1. This latter
argument also gives the result stated for r=oo.

Corollary 4.3. The global dimension of Z[x1, ..., is n+1.

Corollary 4.4. The global dimension of the polynomial ring P=
PF[x1, in n indeterminates over a field F is n. If J is any ideal
in P, h.dimpJSn-1.

Only the assertion as to the ideal J requires proof. Any projective
resolution of J yields an exact sequence

O-* Ci-1-;X*-z-;... Xo--,J-*0

of P-modules with the X, projective. Compose this sequence with
J to give an exact sequence with n intermediate projec-
tive modules, ending in P/J. Since n is the global dimension of P,
h. dime PJJ S n, so by the characterization of homological dimension
(Thm. 1.1), is projective. This proves h.dimeJSn-1.

5. Separable Algebras

We now consider applications to the classical theory of (ungraded)
algebras A. Recall that 1,1 denotes the identity element of A.

Proposition 5.1. The following conditions on an algebra A are equi-
valent:

(i) h. diml,l(&4,,)A = 0.

(ii) A is a projective A-bimodule.

(iii) The product map a : A ®A -*A has a bimodule right inverse.
(iv) There is an element e in A ®A with ne=1 i1 and 2e= e.} for all 2.
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In this section we denote these equivalent properties by writing bidim
A = 0 (read : " The homological dimension of A as a A-bimodule is
zero ").

Proof. Properties (i) and (ii) are equivalent by the definition of
homological dimension. In (iii), the product map n (,l ®µ) = ; µ is an
epimorphism of A-bimodules. If A is projective, this product map splits
by a bimodule homomorphism a : A --*A ®A with -tot =1; this proves
(ii)_>(iii). Conversely, if na=1, then A is a bimodule direct summand
of the free bimodule A ®A, hence is projective. If .za =1, then a 14=
eEA ®A has ne=1,1; since a is a bimodule homomorphism, a A = e==e2.
Conversely, an element e with these properties determines such an a.

We now investigate the preservation of the property bidim A = 0
under three standard constructions for algebras: Direct products, ground
ring extension, and formation of total matrix algebras.

The direct product of two K-algebras r and E is a K-algebra A =-1'><
as a K-module it is the direct sum r® E with elements all pairs (y, a) ;
its multiplication is given by

(Y, a) (5.1)

its identity is thus (ir, 1r). The projections - r , ?r2(y,a)=a
are algebra homomorphisms

r - rxE "%. E, (5.2)

(the injections y, y are not; they do not map identity to identity). With
these maps the algebra rxZ is couniversal for r and E in the category
of algebras. This is why we call rxE the direct "product ", even though
it is often called the direct "sum" of r and E.

Any r-bimodule becomes a (rxE)-bimodule by pull-back along 74
(on both left and right sides) ; similarly any E bimodule or any (r--E)-
bimodule becomes a (rxE)-bimodule. In particular, the definition (5.1)
shows that A = rxZ, regarded as a A-bimodule, is the direct sum
r® E of the A-bimodules r and E. Since the tensor product is additive,
A ®A= we E) ®(r®z) is the direct sum of four A-bimodules

A®A=(r®r)e WOE) ®(E®n®(E®E) (5.3)

Proposition 5.2. For algebras r and E, bidim I'= 0 = bidim E
implies bidim (r>< E) = 0.

Proof. By hypothesis, Prop. 5.1, part (iii) gives bimodule maps
ar: r-)-r®r and az: E-*E®E with nar=1 and naz=1. They are
also maps of A-bimodules, hence combine as are (xr: re E-; (r®I')
(E®E) which, followed by the injection into (5.3), yields a A-bimodule
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map a : A >A ®A. Since the injections I ®T -.A ®A and E(&E--)-A®A
preserve the product, not =1, as required for bidim A=O.

A ground-ring extension is the process of passing from algebras over
the commutative ground-ring K to algebras over a new ground-ring R.
where R is now assumed to be a commutative algebra over K. If A is a
K-algebra, then R ®A is a ring (as the tensor product of rings) and an
R-module (via its left factor) ; since R is commutative, it is also an
algebra over R. As an algebra over R we denote R®A by AR (the
standard notation is AR; this would conflict with our previous notation
for R-modules).

Proposition 5.3. 1/ bidim A = 0, then bidim AR= 0.

Proof. The AR-bimodule AR ®RAR= (R ®A) ®R (R (&A) is iso-
morphic to R ®A ®A under the correspondence (r ®(s
rs ®A®u. If e=2:u, (gv1EA ®A has the property (iv) of Prop. 5.1
for A, one checks that e' =) I ®u1 ®v1 has the corresponding properties
for AR.

The ground-ring extension is useful in the classical case of algebras A
of finite dimension (as vector spaces) over a field F. Any field L)F may
be regarded as a commutative algebra over F, so that AL is an algebra
over L. If A has F-basis ul, ..., the product in A is determined via
ui ui = 2:,k f ti uk by n8 constants /','E F. The extended algebra AL is the
vector space over L with basis 1®u;, i=1, ..., n and the same multi-
plication constants f,,'. In this case we have a converse of the last
proposition.

Proposition 5.4. 1/ A is an algebra over a field F and R a commutative
algebra over F, then bidim AR = 0 implies bidim A= 0.

Proof. For ®=®F. the product map for AR is equivalent to the
epimorphism (t (&n) : R ®A ®A -.R ®A of AR bimodules; by hypo-
thesis it has a right inverse a which is a map of A'-bimodules. Since an
F-algebra homomorphism j : A-.AR is defined by each
AR-bimodule pulls back along j to become a A-bimodule; in particular,
we may regard a: R ®A -.R ®A ®A as a map of A-bimodules. Now
R is a vector space over the field F; choose a basis with first element 1R-
If rl maps 1R to IF and the remaining basis elements to zero, rl: R--.F
is an F-module homomorphism whose composite with the injection
c: F-.R is the identity. Now form the diagram

F®A " -L R®A -a--* R®A®A '®-'®1iF®A®A = A®A'AR®A ®y F®A = A.
The squares are commutative; the composite of the top row is a com-
posite of A-bimodule maps, hence is a bimodule map a': A-.A®A.
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Since (1®n) a =land ri t =l, the diagram shows :ca' =1, so bidim A= O
by (iii) of Prop. 5.1.

The process of ground-ring extensions also includes the process of
" reduction modulo a prime p ". Indeed, the ring Zy of integers modulo p
may be regarded as a commutative algebra R over Z. For any Z-algebra
A, AZD is then the algebra A " reduced modulo p ".

The total matrix algebra over a field F consists of all nxn
matrices of elements from F with the usual product; as a vector space
over F it has a basis consisting of the matrices ei i for i, j= 1, .... n.
Here eii is the matrix with entry I in the i-th row and the j-th column
and zeros elsewhere. The multiplication is given by e,, e,* = eik and
ei,e,R=0 for r+s. If L>F is a larger field,

Proposition 5.5. For any /field F, bidim M. (F) = 0.

Proof. The element e=Z ei1®eliinM (F) OM. (F) hasne = eii=1M
and e e = e,1 ®e1 s = e e,, , so that it satisfies the conditions (iv) of
Prop. 5.1.

An algebra A over afieldF is semi-simple (cf. § 1) if every left A-module
is projective. If bidim A =0, A is semi-simple: For any left A-modules
C and A, Thm. 3.3 gives an isomorphism

Ext'(C, A) ExtA' -.4 (A, Horn (C, A)),

so Ext' (C, -) vanishes and C is left-A projective.
An algebra A over a field F is called separable if, for every extension

field L ) F, the algebra AL is semi-simple. By Prop. 5.5, each total
matrix algebra is separable. It is easy to see that the direct product of
separable algebras is separable. Conversely, the Wedderburn structure
theorem states that for every separable algebra A of finite dimension
over a field F there is an extension field L of F (actually of finite dimen-
sion as a vector space over F) such that AL is a direct product of a finite
number of total matrix algebras. Assuming this result we prove

Theorem 5.6. Il the algebra A over a field F has finite dimension as a
vector space over F, A is separable if and only i f bidim A = 0.

Proof. First suppose A separable. By the structure theorerp, there
is a L with AL=E1x ... ><E,,, with each Ei a total matrix algebra over L.
By Prop. 5.5, bidim E, = 0, hence by Prop. 5.2 bidim AL = 0, whence
by Prop. 5.4, bidim A = 0.

Conversely, suppose bidim A= 0. For each L) F we wish to prove
every left AL-module C projective. Let B be another left AL-module.
By adjoint associativity (Thm. 3.3),

Ext,'1i(C, B)=ExtA _i1c(AL, HomL(C, B)).
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But bidim A= 0 implies bidim AL=O by Prop. 5.3, so that AL is a
projective bimodule, and the Ext on the right vanishes. Therefore
Ext' (C, B) = 0 for any B, which states that C is projective, as desired.

Note that the proof has been wholly elementary, except for the use
of Ext', via adjoint associativity, to switch from the bimodule AL to left
modules.

The effect of direct product and ground-ring extensions upon the
functor Ext (A, -) in the more general case when bidim A* 0 will be
studied in Chap. X.

Exercises
1. Construct the direct product of two DG-algebras (over the same K) so as

to be couniversal.

2. For r and z algebras over K prove (I'®E)R -_ r' ®R ER, (r)<E)R _ I'RxER,
and (TxE)°Pmf°pxZ°P.

3. (Coefficient extensions need not remain semi-simple.) For p a rational
prime, Z. the field of integers mod p, and L=Z,(x) the field of all rational functions
over ZQ in one indeterminate x, let F be the subfield Z9(xp). Then L is a commu-
tative algebra over F; let A be an isomorphic F-algebra under x-+uEA. Show
A but not AL semi-simple. (If M is the ideal in AL generated by u - x, the epi-
morphism AL-+M with i-+ u-x does not split.)

6. Graded Syzygies

Let P=F[x1, .... be the polynomial algebra over a field F in n
indeterminates x; , each of degree 1. Cor. 4.4 shows that any P-module A
has a projective resolution

0<- A <-X0 - ... X. *-0

which stops with the term X,,. The Hilbert syzygy theorem asserts that
a graded P-module A has such a resolution with XX free graded modules
stopping at the same point. Though closely related, we cannot deduce
this syzygy theorem from our previous result, because we do not know
that a projective module must be free.

In this section we regard P as an internally graded algebra over F;
the homogeneous elements of degree m are thus the ordinary homo-
geneous polynomials of that degree. We work in the category of all
internally graded P-modules with morphisms all P-module homo-
morphisms of degree 0; the kernels and cokernels of such morphisms
are again internally graded P-modules. Each internally graded P-mo-
dule A = 2] A. is also an ungraded module over the ungraded algebra P.
If G is a second such module, we use G®pA and Tore (G, A) to denote
the ordinary tensor and torsion products, constructed without regard to
the grading. This use of internal grading has the advantage of suiting
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the classical notion of a polynomial ring and the technical advantage
of using the ordinary torsion product. A grading of the torsion product
will be introduced in X.8 where it is appropriate.

The coefficient field F is a (trivially) graded P-module under the
usual action x;/=0 for /EF.

Lemma 6.1. I/ A is a graded P-module with A®pF=O, then A=0.

Proof. Let J= (x1, ... , be the ideal of all polynomials in P with
constant term 0. The exact sequence j)-+ P -.F of P-modules gives
A®PJ-.A®pP-sA®pF=0 exact, so that A®pJ--A®pP=A.
This states that each a E A lies in A J. If A 10, take a non-zero element
a of lowest possible degree k. Every product in AJ=A then has degree
at least one higher, in contradiction to the assumption A+0.

Note that this proof does not work for Z-graded modules, where there
could be elements of arbitrary negative degree.

Lemma 6.2. A graded P-module A with Torl (A, F) =0 is free.

Proof. Since A is graded, A ®pF is a graded vector space over F,
spanned by homogeneous elements a®1. Take a set S of homogeneous
elements such that the s ®1 form a basis of this vector space and form
the free graded P-module M on the set S. The identity S -+S (A gives
a homomorphism ri: M->.A of degree zero; by the choice of S,

rj®1: M®pF=A(&pF (6.1)

is an isomorphism. The kernel B and the cokernel C of 71 give an exact
sequence of graded P-modules

(with homogeneous homomorphisms of degree 0, though we do not need
this fact). Applying ®pF to the right hand portion produces an
exact sequence

M®pF--> A®pF-..C®PF.

By (6.1), C ®pF = 0, so C = 0 by the previous lemma. To the remaining
short exact sequence B,-.M-sA apply the fundamental exact sequence
for the torsion product (with F) to get the exact sequence

0-+Tori (A, F) ®pF->.M®pF °®' A ®pF- 0,

where the left hand zero stands for Tor1(M, F), which vanishes since M
is free. By (6.1) again, B ®p F =Tort (A, F), which vanishes by as-
sumption. Hence B ®p F = 0, so B=0 by another application of the
previous lemma. Our exact sequence has collapsed to 0 -M -;A -->0,
showing A isomorphic to the free module M.
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Proposition 6.3. For each graded P-module A there is a free graded
P-module M and an epimorphism rl: M-->A of degree 0, such that to each
epimorphism e: X0--.A with Xo free, every fl: ei8=rl has fi a
monomorphism. The kernel of rl is contained in JM; with this property,
the pair (M, rl) is unique up to isomorphism.

Proof. Construct rl with , ®1 an isomorphism as in (6.1) ; the first
part of the proof above shows rl (M) =A. The usual comparison gives a
homomorphism fi; let C be its cokernel. Since Tor, (X0, F) = 0, this
yields an exact sequence F)-+M®PF-+Xo®PF. But (e(&1)
(ft®1) =rl®1 is an isomorphism, so #(&I: M®PF->Xo®PF is a mono-
morphism; therefore Tor,(C, F) = 0 and C is free. Hence X0- C splits,
so the image of fl: M-.X0 is free; it suffices to let Xo be this image.
Construct the diagram, with B the kernel of P,

0 B ®pFM ®pF

®pF

where the left-hand zero stands for Torl (X0, F), zero because X. is free.
The row is exact and the dotted composite is the isomorphism (6.1),
hence B®F=0, so B = 0 by Lemma 6.1. The uniqueness is similar.

The kernel A, of rl: M--*A can be again written as an image M,-*A1;
iteration yields a unique free resolution -M2-..M1-)- M-*A---- 0 of
A, called a minimal resolution. For applications see ADAMS [1960, p. 28] ;
for a general discussion, EILENBERG [1956].

Theorem 6.4. (The HILBERT Theorem on Syzygies.) If A is a graded
module over the graded polynomial ring P=F[x,,..., x.] in n indeter-
minates o/ degree 1 over a /ield F. then any exact sequence

T: 04-A E--Xa*--

of graded P-modules with the X, free has its n-th term A. free.

Such a sequence can always be constructed, by choosing X. free on
a set of homogeneous generators of A, X, similarly for generators of
Ker [Xo-- A J, and so on. The theorem implies that h. dimpA S n.

Proof. Since the X; are free, the connecting homomorphism of the
given exact sequence T provides an isomorphism Tor 1(A, F)
Tori F). But the Koszul resolution for F showed h.dimpFSn,
so Tor +1(A, F) = 0. Then by Lemma 6.2 A. is free, as asserted.

Any ideal J of P is a submodule of P; as in VI.3 it is called a homo-
geneous ideal if it is a graded submodule; that is, if J is generated by its
homogeneous elements.



21 8 Chapter VII. Dimension

Corollary 6.5. I/ J is a homogeneous ideal in P, any exact sequence
0. -- J E-Xo +- s -<-- I F 0 of graded P-modules with all X i
free has A._1 free.

Proof. This implies our previous result that h.dimiJSn-1. As
in that case, we prove it by composing the given sequence with the
short exact sequence P/J.*- P « J and applying the Syzygy Theorem
to the graded quotient module P/J.

Note. HILBERT's Theorem was proved [HILBERT 1890] with a view to in-
variant theory, especially to the modules of forms invariant under a group of
linear transformations; his paper (on pp.504-508) contains a calculation equi-
valent to the KoszUL resolution of F. His proof was simplified by GROBNER (1949] ;
our proof follows CARTAN [1952], who first applied homological methods and
established a much more general theorem, valid also for local rings (see § 7, below).

Exercises
1. For P= F[x, y, z] construct an ungraded P-module which has no internal

grading consistent with this P-module structure.

2. Show that the HILBERT Syzygy Theorem holds with P replaced by any
internally graded ring G for which Go is a field.

3. (General KoszUL resolution.) If A is a right R-module, an element x4 0
of R is called a zero-divisor for A if a x = 0 for some a 4 0 in A. Thus x is not a
zero-divisor for A exactly when the map a-+ax is a monomorphism A>-..A. For
x1, ... , x.ER let Js be the right ideal of R generated by x1, ..., xi1. If for each
k = 1, ..., x, xt is not a zero divisor for AIAJR_I, prove that A®RER(u1, ..., u5]
with differential 2ui=xi and e: given by e(a®r)=
ar+aJ,, provides a resolution of length n for the R-module A/AJ5. (Hint: Use
induction on n and apply the exact homology sequence to the quotient of A ®E
by the corresponding complex without u5.)

Note. This result with A=R=F[xl,...,xA] gives the previous Koszul
resolution of F as a P-module. The more general case is useful in ideal theory,
where the sequence x1, ..., x,, with xp no iero divisor for A/AJ,t_1 and 0
is called an A-sequence for A [AUSLANDER-BUCUSBAUM 1957, with E in place of
our A] while the least upper bound of all n for such A-sequences is the codimension
of A.

7. Local Rings

In this section we summarize without proofs some of the accomplish-
ments of homological algebra for the study of local rings. All rings will
be commutative.

A prime ideal P in a ring K is an ideal such that rsE P implies rE P
or s E P; it is equivalent to require that the quotient ring KIP has no
divisors of zero. Any ring K has as ideals the set (0) consisting of 0
alone and the set K; a proper ideal j of K is an ideal with (0) 4 J$ K.
A unit u of K is an element with an inverse v (vu=1) in K. Clearly no
proper ideal can contain an unit.
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A local ring L is a commutative ring in which the non-units form an
ideal M; then M must contain all proper ideals of L. If L is not a field,
M is the maximal proper ideal of L. In any event, M is a prime ideal.
Moreover LIM is a field, the residue field of L. For a rational prime p,
the ring of p-adic integers is a local ring; the residue field is the field of
integers mod '. Another local ring is the set of all formal power series in
non-negative powers of n indeterminates xl, ..., x" and with coefficients
in a field F; a power series has a (formal) inverse if and only if its con-
stant term is not zero, so the maximal ideal is the set of all formal power
series with vanishing constant term, and the residue field is F.

If P is a prime ideal in the integral domain D, the ring of quotients Dp
is the set of all formal quotients alb for a, bcD and b not in P, with the
usual equality alb =a'lb' if and only if ab' = a' b. These quotients form
a ring under the usual operations alb+ a'lb'= (a b'+ a' b)lbb', (alb) (a'lb') =
aa'lbb'. Such a quotient alb has an inverse b/a in Dp if and only if a& P,
hence Dp is a local ring with maximal ideal all alb with aE P; if we regard
D,,, as a D-module, this maximal ideal may be written as the product
PDp. For example, if D is the ring of all polynomials in n indeter-
minates over an algebraically closed field C, the set of all zeros of P
- that is, of all points (c1, ... , with f (c1, .... c") = 0 for each /E P -
is an irreducible (affine) algebraic manifold V. The corresponding local
ring DD is then known as the ring of rational functions on the manifold V ;
indeed, for each formal quotient //g in Dp we can define the value of the
quotient f/g at each point (c1..... c 1 . . . . . c")/g (c1, ... , ca).
Similarly, a point on the manifold V is associated with a prime ideal
containing P, and the ring of rational functions at this point is a local
ring. This example explains the terminology "local".

A K-module C is noetherian if every submodule of C is of finite type;
it is equivalent to require that C satisfy the ascending chain condition
for submodules: For any sequence C1 C . . . C CA C C,,+1 C of sub-
modules of C there is an index n with C. = C.,-, = . The ring K itself
is noetherian if it is a noetherian K-module. Hilbert's basis theorem
asserts that the ring of polynomials in n indeterminates over a field is
noetherian. Also any module of finite type over a noetherian ring is
itself noetherian.

Over a noetherian ring it is natural to consider the category of all
noetherian modules; every submodule or quotient module of such is
again noetherian. With this agreement, the Hilbert Theorem on Syzygies
holds for noetherian local rings: In the statement of Theorem 6.4, replace
the polynomial ring by a local ring L, the field of coefficients by the
residue field L/M, and read "finitely generated module" for "graded
module". The crux of the proof lies in the analogue of Lemma 6.1,
with the ideal J replaced by M : When A = A M, then A = A M" for
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each n, and the intersection of the M" is zero. An instructive presen-
tation of this argument may be found in EILE14BERG [1956].

In a noetherian ring K the Krug dimension k is the largest integer
for which there is a properly ascending sequence of prime ideals
P<P,< <P< K; if K is finitely generated, this dimension is finite.
In a local ring L with maximal ideal M, the quotient M/Ms is a
vector space over the residue field L/M; since M is a finitely generated
ideal, the vector space dimension n=dimL,MM1M2 is finite. It can be
shown that the Krull dimension of L is at most n. The local ring is
said to be regular if its Krull dimension is exactly n=dimL,MM/M9.
These are the local rings of greatest geometric interest.

Using homological methods, SERRE [1956] and later AUSLANDER-
BUCHSBAUM [1956] have proved (see also AssMUS [1959]

Theorem. A local ring L with maximal ideal M is regular it and only
i/ h. dimL L/M< oo, or equivalently, it and only i/ gl. dim L < oo.

In particular this characterization of regularity allows an easy proof
that if P is a prime ideal in a regular local ring L, then the (local) ring
of quotients Lp is also regular. Before the use of homological methods this
result had been known only for certain geometrically important cases.

More recently AUSLANDER-BUCHSBAUM [1959] have proved Krull's
conjecture:

Theorem. Any regular local ring is a unique laclorizalion domain.
The proof made essential use of NAGATA'S [1958] reduction of this

conjecture to the case of homological dimension 3. This theorem in-
cludes, for example, the classical result of the unique factorization for
power series rings.

Note. The torsion product in local rings yields an efficient treatment of inter-
section multiplicity of submanifolds of an algebraic manifold [SERRE 1958). Among
the many recent studies of homological dimension in noetherian rings we note
TATE [1957], AUSLANDER-BUCHSBAUM [1958], MATLIS (1960], JANS [1961]. One
of the earliest uses of homological dimension was HOCHSCHILD's (1945, 1946]
discovery of the connection (§ $) between the bidimension of A and separability.
The homology theory of Frobenius algebras is analogous to that of groups [NAKA-
YAMA 1957; NAKAYAMA-TSUZUKU 1960, 1961; KASCH 19611, ROSENBERG-ZELINSKY
(1956] show that Theorem 5.6 holds even if dimFA is infinite.

Chapter eight
Products

1. Homology Products

Throughout the study of products there is an interplay between
"external" and "internal" products. This relation may be illustrated
in the case of homology products. If X. and RY are chain complexes of
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R-modules the external homology product is the homomorphism of abelian
groups

p: Hk(X)®RHm(Y)-+Hk+m(X®RY), (1.1)

defined on cycles u of X and v of Y by

p (cls u (&cls v) = cls (u (&V).

This mapping p is natural in X and Y; it has already appeared in the
Kifnneth Formula. This product is associative: For rings R and S and
complexes XR, RYS, and S W the composites

p(1®p) =p(p®1): Hk(X)®RHI(Y)®SH.(W) --*H.(XORY®SW).
with n=k+I+m, are equal.

On the other hand suppose U a DG-algebra over a commutative
ring K. Then H (U) is a graded K-algebra under the product

n: H(U)®H(U)-+H(U)
already defined (VI-7) as

n (cls u ®cls v) = cls (u V);

we call this the internal homology product. The internal product may be
obtained from the external product via the product map au: U®U -+ U,
as the composite

x=(nu)sp: H(U)®H(U)-H(U®U)--*H(U).
The external homology product can be defined with coefficient mo-

dules. Take (ungraded) K-algebras A and A', complexes AX and 4.X'
of K-modules, and right modules GA, GA., and set Q=A®A'. The
external homology product is the composite map py = r p in the diagram

HH(G04X)®Hm(G'(&,,.X') ±.Hk+m((G(94X)®(G'(&e'X'))

1=

Hk+m((G®G')®v(X ®X'))

(1.2)

where p is the homology product of (1.1) with R=K, while r is
short for Hk+m(r); that is, for the homology map induced by the
middle four interchange of (VI.8.4). This product p is natural and
associative - the latter meaning that the diagram

H(X)®H(X')®H(X") Pa® H(X ®X')®H(X")
jt®Pp 1P.

H(X)®H(X'(0 X") Pe H(X®X'(&X"),
with G's and A's everywhere omitted, is commutative.
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Theorem 1.1. For algebras A and A' over a field, the homology product
is an isomorphism

PH: Z

Proof. All modules over a field are free, so the Kenneth tensor
formula makes p an isomorphism, while r is always an isomorphism.

For left modules ,A and A.A' the external cohomology product is the
composite map pH=Cp in the diagram

Hk(HomA(X,A))®Hm(Hom4.(X, A'))-°+H" '-m(Homa(X,A)®Homj,(X;A'));__.
jc

Hk+m(Homo(X(&X',A (&A'))

Here p is the homology product of (1.1), written with upper indices,
while C is the chain transformation determined by the Hom - ® inter-
change of (VI.8.10). This product is natural and associative. Its de-
finition may be rewritten in terms of cochains h: X,,--+A, h': X.-+A'.
Regard h and h' as homomorphisms of graded modules. By definition,
(h ®h') is the homomorphism

h®h': (X(&X').= 2] Xy®Xo--.*A ®A'
P+v-n

defined for n=k+m, xEXy, x'EXy as

(h®h') (z®x')=hx®h'x'. p=k,q=m (1.4)
=0, p+k.

Then 8(h®h')=8h®h'+(-1)kh®8h' and pH is given on cohomology
classes as pH(cls h (&cls h') =cls(h ®h').

Theorem 1.2. For algebras A and A' over a field and positive com-
plexes X and X' with each X. and each a free A- or A'-module of
finite type, the cohomology product is an isomorphism

pH: Hk(HomA(X,A))®Hm(Hom,,,(X', A'))
k+m-n

Hk+m(Homo (X (&X', A OA')).

Proof. Since X and X' are positive, each (X (&X')n is a finite direct
sum 2:X®Xq, and Hom(X, -) is additive for finite direct sums
(=direct products). The finite type assumption, as in Prop. VI.8.3,
insures that the Hom-® interchange is an isomorphism of complexes,
while p is an isomorphism by the Kenneth tensor formula over a field.

Theorem 1.3. Connecting homomorphisms, when defined, commute
with the homology product p.
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Proof. In (1.1), replace X by a short exact sequence

E: O-*K->L -*M--)- 0

of complexes of right R-modules. The homology connecting homo-
morphisms are

o=Ei: H,,+,(M)-+H*(K)-
The sequence of tensor product complexes

E®RY:0->K®,QY-+L®RY-*M®RY_*O, (1-5)

if it is exact, also defines connecting homomorphisms, as in the diagram

Hk+I (M) ®RHm (Y) -?, Hh+m+I (M (&R Y)
IE401 i(EO.V). (1.6)

HR (K) ®R Hm (Y) P' HR+m (K (&R Y) -

Our theorem asserts that this diagram is commutative; the proof is
a direct application of the "switchback" description of the connecting
homomorphisms. A corresponding result holds if Y is replaced by a
short exact sequence of complexes.

This result applies whenever E ®RY is exact. It may not be; to get
exactness we should replace the left hand zero in (1.5) by Torl (M,,, Y4).
It will be exact in any one of the following cases:

Case 1: Each Y. is a flat left R-module;
Case 2: Each M. is a flat right R-module;
Case 3: E is split as a sequence of right R-modules.

The third condition means that each sequence is split.

Corollary 1.4. Connecting homomorphisms, when defined, commute
with the homology and cohomology products PH and pH.

Proof. The result is immediate, since PH=,rp and pH=4'p and the
natural maps z and i; commute with connecting homomorphisms. The
statement includes the cases when any one of the arguments G, X, G' or
X' for pH is replaced by an appropriate short exact sequence. For ex-
ample, replace G by a short exact sequence E of right A-modules. Suppose

(i) X is a complex of flat left A-modules
(ii) E is split as a sequence of K-modules;

(iii) X' is a complex of flat left A'-modules X.

(These are plausible hypotheses; they hold if X and X' are projective
resolutions and K is a field.) In succession, they insure that F. ®4X
is a short exact sequence of complexes of K-modules, that E (&G' is a
short exact sequence of Q=A ®A'-modules, and that the product
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(E ®G') ®n (X ®X') is a short exact sequence of complexes of K-modu-
les. Thus all connecting homomorphisms are defined, and the diagram
like (1.6) is commutative.

2. The Torsion Product of Algebras

When X and X' are resolutions, the (co)homology products pH and
pH will give corresponding products for Tor and Ext.

For K-modules B, A, B', A' the middle four interchange

z: (B(& A)®(B'(& A')_(B®B')®(A®A) (2.1)

of (VI.8.4) may be regarded as an external product for the functor ®.
Recall that Thm. V.7.3 gives an isomorphism r): Toro(B,A)=B®A,
where the elements of Toro are written as triples i = (µ, F, v) for F a
finitely generated free module with dual F* and homomorphisms
a: F--)..B, v: F*-).A. Using this isomorphism rl, the middle four inter-
change takes the form

r [(p, F, v) 0 (µ', F', v')] = (a ®µ', F OF', v ®v') . (2.2)

Here is ®v : F* ®F'* a A 0 A', but we may regard is ®v as a map
defined on (F ®F')* by the identification F* ®F'* = (F (&F')*, given
by the isomorphism of Prop. V.4.3 (incidentally, this identification is
consistent with the identification (F®F')®F"=F®(F'®F")). This
formula (2.2) will be extended to higher torsion products.

An element of Tork (B, A) was written as a triple t = (,u, L, v) with L
a finitely generated free complex of length k and u: L-.B, v: L*-, A
chain transformations. Given a second such t'ETor.(B', A'), define a
product

Cu, L, v) (p', L', v') = (®,n', L ®L', v ®v') (2.3)

Here L ®L' is a finitely generated free complex of length h+m, and
v (&v' a chain transformation L* ®L'* = (L ®L')* ->A ®A'. This
product is well defined with respect to the equality used for the elements
of Tor and is natural in the four modules concerned. This product tt'
is bilinear; we avoid the direct proof, via the addition defined in Tor,
by the following use of resolutions.

Theorem 2.1. For /our K-modules B, A, B', A', the product (2.3) is a
homomorphism

Pr: Tory (B, A) (B', A')--).. Tor,4.+,* (B ®B', A OA'). (2.4)

It may be computed from projective resolutions e: X-*B, e': X'--*- B', and
c": Y -. B ®B' as the composite

H(X ®A) 0 H(X' (& A') H(X 0 X'0 A 0 A') y H(Y 0 A ®A')
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where pE, is the external homology product of (1.2), with the roles of G and X
interchanged, while /: X ®X'->Y is a chain transformation lilting

Proof. The tensor product of free or projective K-modules is free or
projective, as the case may be, so a®e': X®X'--B®B' is a pro-
jective complex over B ®B'. By the comparison theorem, the map /
lifting I exists and its homology map f, is unique. The calculation of
Tor (B, A) from the resolution X is expressed by the isomorphism
w : Tor (B, A) =H(X ®A) of Thm. V.8.1. Let w' and w" be analogous.
The statement that pT can be computed as the composite f, pH is

w" (t t') = f* PM (w t ®w, t') (2.5)

Since w": Tor (B ®B', A ®A') = H(Y ®A ®A') is an isomorphism,
this equation also shows the product It' bilinear, hence will prove that pr
is a homomorphism as in (2.4).

To prove (2.5), recall that w was defined by regarding t= (,u, L, v) as
a free complex 4u : L -> B of length k over B plus a cycle (1, L,%, v) E L,, ®A,
by lifting 1B to a chain transformation h: L--*X, and by setting
w t = (h ®1). cls (1, L,t , v). But It' is correspondingly written as the free
complex u®u': L®L'-*B®B' plus the cycle (1,Lk®L;.,v®v').
This cycle is the homology product rp[(1, Lt, v) ®(1, L;., v')] while
f (h oh'): L ®L' --> Y lifts 1 B®B'. Therefore

co" (tt') =/, (h ®h'®l ®1), pX {cls (1, Lk, v) ®cls (1, L;., v')),

so that (2.5) is a consequence of the naturality of the homology product p
under the chain transformations h and h'.

Let A and r be two K-algebras, a: A®A- *A and e: r®r-)-r their
multiplication maps. The composite

(A or) ®(A®r)-'(A®A)®(r®r) """ A®r
gives the product in the algebra A or. In other words, the internal
product in the tensor product algebra A or is obtained from the
external product s of the modules.

This internal product will now be defined for Tor (A, r).

Theorem 2.2. For K-algebras A and r, the family fl) is a
graded K-algebra TorK(A, r) in which the elements of degree zero con-
stitute the tensor product algebra A or, The product of two elements
t= (p, L, v) and t'= (u', L', v') is defined by

(it, L, v) (u', L', v') = (7r (,u ®u'), L ®L', a (v ®v')) , (2.6)

for n and e the product maps of A and r.
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Proof. The internal product (2.6) is the composite [Tor (n, pr,
with pr the external product. By Thm. 2.1, this product it' is bilinear;
it is manifestly associative. The identity elements of the algebras A and r
are represented by K-module homomorphisms I : K -*A, I': K -mar, and
the identity element 1 e ®f IT of A or appears, via rl : Toro (A, I) -c--A (&r,
as the triple 17= (I, K, I') of Toro, where K is regarded as a free K-module
on one generator. Then formula (2.6) shows that 1 T t = t = t 1 T . Hence
Tor (A, r) is a graded algebra as asserted.

We record how this product may be computed from a suitable
resolution of A.

CoroUary 2.3. It U is a DG-algebra and e: U--)..A a homomorphism of
DG-algebras such that U, regarded as a complex, is a projective resolution
o l the K-module A, then the canonical module isomorphism w : Tor (A, I)
H(U(9r) which expresses the torsion products by this resolution is also
an isomorphism of graded algebras.

Proof. Here U®r, as tensor product of a DG-algebra U and a
trivial DG-algebra r, is a DG-algebra, so that H(U ®r) is indeed a
graded algebra. In Thm. 2.1 above, we take B=B'=A, so we may
choose both X and X' to be the resolution U, while Y is any projective
resolution of A ®A. Lift I and r to chain transformations / and g, as in

U®U-13- Y -j.U

A ®A = A ®A -i A.

Then Torn, e) is the homology map induced by g®p: Y®r®r->
U ®r. The product in Tor (A, r) is thus (g ®e)* f * PH, as in the diagram

H(U®r) ®H(U®r)

H(U®r®r) `1®Q' H(U®r).

But the product ru: U®U-*U and gf: U®U-+U are both chain
transformations of resolutions lifting n: A®A->A, hence are homo-
topic by the comparison theorem. Therefore the homology diagram
above is commutative, so the product in Tor (A, r) is given by (au (& e)* PH
This is exactly the internal product in the graded algebra H(U®r).

For the polynomial algebra P we have already noted in Thm. VII.2.2
that the graded algebra Torp(K, K) is an exterior algebra over P;
the proof used the fact that the KOSZUL resolution of K is a DG-algebra.
Indeed, any algebra A has a projective resolution which is a D G-algebra U
(Ex. 2).
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Our product definition (2.3) is new, but the external product PT which it
defines is exactly the product at defined by CARTAN-EILENBERG (Chap. XI.4).
Their definition uses resolutions of A and A', but this is irrelevant (Ex.3).

Exercises
1. If U is a D G-algebra, A a K-module, and q: A-+U,1 a module homomorphism

with 0, show that the graded algebra U®T(A) has a unique DG-structure
with 2l U=8U, 0IA=4p, and A of degree n+1.

2. For any K-algebra A construct a DG-algebra U and a homomorphism
e: U-.A of graded algebras, so that, as in Cor.2.3, U is a projective resolution
of A as a K-module. Hint: Use Ex. i to construct a DG-algebra U(") by recursion
on n so that it is a projective resolution up to dimension it.

3. Describe the external product in Tor(B,A) using resolutions of both B
and A, or of A only.

4. For K-algebras A and A' and modules BA, AA, show that the
formula (2.3) provides an external product

TorA (B, A) ®TorA'(B', A') -TorA0A'(B ®B', A ®A') .

describe its properties, and show that it commutes with all four connecting homo-
morphisms. This is the product T Of CARTAN-EILENBERG XI.1.

3. A Diagram Lemma
In the next section we need the following anticommutative rule on

the splicing of exact sequences.

Lemma 3.1. (The 3x3 splice.) If a commutative 3>< 3 diagram of
modules has columns the short exact sequences E', E, and E", rows the
short exact sequences EA, EB, and Ec, then

EAo E" m-E'o Ec.

Proof. The given 3x3 diagram has the form

EA: A'-+A->A"

EB: B'-'B-.B" (3.1)

1 I. I.
Ec: C'-.CyC"

(zeros on the edges not shown). Construct the diagram

o --> A'-> A - B" -C"-moo
y 1

o -.A'-+ B B"!C"-->o (3.2)

11 ? ?h 11

0 ->A'-> B'-- C -C"-->o



228 Chapter VIII. Products

with pb=(ab, jb) and tp(c, b")=yc-rb" (note the sign), while the
other unlabelled arrows are maps or composites from (3.1). The diagram
is commutative; a diagram chase shows the middle row exact. The top
row is the composite EA o E"; by the vertical maps with -1c..: C"-.C"
at the right, it is congruent to the negative of the middle row, which in
turn is congruent to the bottom row E' o Ec. This is the desired result.

A related and frequently used result is

Lemma 3.2. For right R-nodules A( B, left R-modules A'( B',

(B/A) ®R(B'/A')=[B OR B']/[im(A®RB') -im(B®RA')]. (3.3)

Proof. The first image here is that of A®B'-+B®B'. This and the
symmetric map yield the exact sequence

A®RB' ® B®RA'-'B®RB'-+(BIA)®R(B'/A')-U.

This sequence can also be derived (cf. Ex-2 below) from a diagram
like (3.1) with first row A®A', A®B', A(&(B'/A').

Exercises
1. In (3.1) assume only that the rows and columns are right exact, with the

third row and the third column short exact. Prove that (3.2), with the left hand
zeros omitted, is commutative with exact rows.

2. Prove Lemma 3.1 by a diagram like (3.2) with vertical arrows reversed and
middle row A'),-.B'®A-.f3-+C".

4. External Products for Ext
The composition of long exact sequences yields an external product

in Ext. For a single A-module A, composition is a homomorphism

Extk (A, A) ®Ext,'", (A, A) (A, A).

By Thm. III.5.3, this makes Ext4 (A, A) a graded ring; indeed (by
VII.3.1) a graded K-algebra. In this algebra, the elements of degree
zero form the K-algebra of A-module endomorphisms of A. We now
describe how this product can sometimes be obtained from the cohomo-
logy product for resolutions.

Let A and A' be algebras over a commutative ring K, while C and
A are left A-modules, C' and A' are left A'-modules. Write Q for A®A',
where ® is short for ®K, and note that C ®C' and A®A' are left
S2-modules. We wish to define a K-module homomorphism

v: Ext" (C, A)®Ext,"1.(C', A')-+ExtA "(C®C', A(&A') (4.1)

called the external or wedge product; for IEExt4 and a'EExt4. we will
write v (a (Oa') as a v a'. Take free resolutions e: X -;C and E': X'-+C'
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by A- and A'-modules, respectively. The cohomology product (1.3) is

phi: H"(Hom,i(X, A))®Hm(Hom4,(X; A'))-*Hk+m(Homn(X®X',A®A')).

With the canonical isomorphisms Ext,(C, A)=Hk(HomA(X, A)), this
will define the desired wedge product (4.1) provided (e ®e') : X (&X'--),.
C ®C' is a free Q-module resolution, for standard comparison argu-
ments show that the result is independent of the resolutions used. In
any event, each Xk is a free left Q-module. The proviso that
X OX' is a resolution holds in two cases.

Case 1. K is a field. By the KUnneth tensor formula, valid over a
field K, H"(X®X')=0 for n>0 and a®e': Ho(X(&X')=C®C', so
X &X' is a resolution.

Case 2. A and A' are free as K-modules and C is a flat K-module.
For, each free A-module X is a direct sum of copies of the free K-
module A, so X. is a free K-module. Then X --*-C is also a free K-module
resolution of C, so Tort (C, C') may be calculated (Thm. V.9.3) from
X and X' as H" (X ®X'). But C is flat, so Tor" (C, -)=0 for n>0,
hence X ®X'-* C ®C' is a resolution.

Other cases will occur in the exercises and in our subsequent discus-
sion of relative Ext functors (Chap.X). From the definition, it follows
that the wedge product commutes with connecting homomorphisms,
and is associative; for k=m=o, it reduces to the Hom-® interchange.
In Case 1, the wedge product may be expressed by the Yoneda compo-
sition product.

Theorem 4.1. [YONEnn 1958.] For algebras A and A' over a /field
and a ExtA(C, A), a'EExt,,,.(C', A') the wedge product is given by

ava'=(a®A')o(C®a')=(-1)1"`[(A(&a)o(a®C')]. (4.2)

Here a®A' has an evident meaning, as follows. If k=0, a is a homo-
morphism CAA; let a®A' mean a®14.: C®A'-.A®A'. If k>0
and m>0, a and a' are the congruence classes of long exact sequences

S: 0-*A -->Bk_l

S':

Since K is a field, ®K preserves exactness, so gives long exact sequences

S®A': 0-
C®S':

Take a®A'=cls(S(&A') and C®a'=cls(C®S'), so the Yoneda
composite (a ®A') o (C ®a') is defined; fork or m zero it is the usual
composite of a homomorphism with a long exact sequence.
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Proof. First assume k>0 and m>0. Regard S as a resolution of C;
the comparison theorem lifts Ic to a chain transformation /: X-..S.
Similarly, 1c. lifts to /': X'--*S'; in particular, /m: X,;,-->A' is a cocycle
of X' and its class represents cls S' in the isomorphism Hm (X', A')
Ext'' (C', A') of Thm. 111.6.4. The complex X ®X' is the first row of
the diagram

(X ®X')m+i* (X ®X')m~ (X ®X')m-1 ' (X ®X')m-2
4 4 1 4

Xi®Xm -' Xo®XM - Xo®x _1 -' Xo®XM_2
1401L 11.0r,

B,®A' - Bo®A' -. COB' _1 - COB' _2

C ®A'

which extends in the same fashion left and right, ending with a column
C®C' on the right. The first row of vertical maps projects each (X ®X'),
to the indicated one of its direct summands. The bottom row is the
composite long sequence T= (S ®A') o (C ®S'), with the splice at
C OA' displayed. The top squares do not commute, but erase the
middle row; the resulting diagram is commutative, even at the splice.
Hence the composite vertical map is a chain transformation h: X ®X'

which lifts the identity on C®C'. To read off the cohomology
class of X OX' corresponding to T, take h on dimension k+-m. But
h there is just

(X ®X')kkm+Xk®Xm/k
0 r'. A®A';

the cohomology class of this cocycle is exactly the one obtained from
cis /k ®cls /;,, by the cohomology product pH. Since cis fk and cls /;,,
represent S and S', respectively, this proves the first equation of the
theorem for k>0 and m>0. The proof for k = 0 (or m = 0) uses a similar
diagram, with splicing of sequences replaced by the action of a homo-
morphism a: C-*A on a sequence.

The second equality in (4.2) is an (anti-) commutation rule. It is
immediate from the definition if k=0 or m=0. Since any long exact
sequence is a composite of short ones, it suffices to give a proof in the
case k = m = 1, for short exact sequences E and E'. Here the commutative
square diagram

A®E': A®A'--.A®B'->A®C'
I I I

B®E': BOA'->B®B'-->B®C'
1 1 1

C®E': C®A'->C®B'->C®C'
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and Lemma 3.1 prove (A ®E') o (E (&C') _ - (E ®A') o (C (&E'), as
required.

From this theorem it again follows that the v product is associative.

Theorem 4.2. 1/ the K-algebras A and A' are tree as K-modules,
while C, A, C', A' are all flat as K-modules, the wedge product (4.1) is
defined. It may be expressed by the composition product as in (4.2).

Proof. This falls under Case 2 above. The previous argument
applies, since X (&X' is a resolution and the tensor product S®KA'
of a long exact sequence S with a K-flat module A' is still exact.

Corollary 4.3. It A and A' are augmented K-algebras which are tree
as K-modules, the wedge product of aEExtt(K, K) and aEExt'(K, K) is
given by

ava'=eaota'_(-1)k'",a'o1.a E Exta -(K, K). (4.4)

Here K is to be regarded as a A- or A'-module by pull-back along
the augmentations e: ASK and s', while ..a is short for
i.e., for the exact sequence in a pulled back along 1®e': A®A'-->
A(&K=A.

Now let V be a Hopf algebra with counit e : V--). K and diagonal
map p: V->V®V. Pull-back along V turns (V(&V)-modules into V-
modules, exact sequences into exact sequences, and so gives a change
of rings map tp#: ExtV®v--.ExtV. If C, A, C', and A' are left V-modules,
so are ,(C(&C') and r(A ®A'), and the composite y,# v of wedge product
and pull-back is a K-module homomorphism

V#v: Ext, (C, A) ®Extm(C', "'(,(C®C'),,(A®A')) (4.5)

called the Hopl wedge product. It is defined when K is a field, or when
C is K-flat and V is free as a K-module, and the analogues of Thms.4.1
and 4.2 hold. Since , is associative, so is this product.

By pull-back, each K-module becomes a V-module M.

Lemma 4.4. For a K-module M and a module C over the Hop l algebra V

r(eM(&C).M®C, r(C(&,M)=C®M (4.6)

are isomorphisms o/ V-modules, with the V-module structure on the right
induced by that of C.

Proof. The Hopf algebra, as a coalgebra, satisfies the identity
(E®1)V=1 of (VI.9.1). Pull-back yields

r[.31®C]=r[(t®1)(M®C)]=( 1),(M(&C)=M®C

and similarly on the other side. Hence a curious result:
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Proposition 4.5. 1/ V is a Hopl algebra over a field K and M, N are
K-modules, C, A V-modules, the Hopl wedge products

ExtvGM, A) ®Extv(C', ,N') -*Extv(M ®C', A(9N'),

Exty(C,,N) (&Exty(,M', A') (C ®M', N OA')

are independent of the diagonal map o; that is, depend only on V as an
augmented algebra e : K.

Proof. These wedge products are still given in terms of composi-
tion of long exact sequences by the formulas (4.2), where the modules
in these long exact sequences are pulled back to V-modules by y,. The
Lemma asserts that the resulting V-module structure is independent
of V.

In particular, let all modules in sight be K; then K®K=K, and the
external wedge product becomes an internal product

Extv(K, K) ®Extv(K, K) ->Exty (K, K) (4.7)

which makes Extv(K, K) a graded K-algebra. Since a®K= a, the for-
mula (4.4) shows this algebra commutative.

Note. The external product for Tor arises from the middle four interchange
and agrees with that map for Tor,= ®; it may be obtained, as in (2.5), by replacing
suitable arguments by resolutions, and composing with the homology product
and a comparison of resolutions. The external product for Ext arises similarly
from the Hom-® interchange. Various other "products" involving Tor and Ext
arise by the same mechanism from identities on Horn and ®; for example, there
is one arising from the mixed adjoint associativity

Horn (A ®A', Horn (C, G')) - Hom (C ®A, Horn (A', CI).

These are given in detail, via resolutions, in CARTAI -EILENBERG Chap. XI. De-
scription in terms of the invariant definition of Tor and Ext would be of interest.
Other types of products will appear in Chap. X below.

Exercises

1. Describe how the external product in Ext commutes with connecting
homomorphisms.

In the following exercises, K is a commutative ring, not necessarily a field.

2. If P and P' are projective A- and A'-modules, respectively, show P®P
a projective (A ®A')-module. If A and A' are projective as K-modules, show also
that P®P' is a projective K-module.

3. Show that the wedge product for K a ring can still be defined, using projec-
tive resolutions, provided A and A' are projective as K-modules and Tor; (C, C') = 0
for n > 0. If, in addition, A and A' are K-flat, show that Thm.4.t still holds.
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5. Simplicial Objects

The cohomology H(X, Z) of a topological space X with coefficients
Z is a graded ring under a product known as the cup product. This
product can be defined not only for spaces but for other complexes
with a "simplicial" structure. Hence we now analyze the combinatorial
structure of a simplex; more exactly of a p-dimensional simplex AP
with ordered vertices.

For each non-negative integer P. let [p] denote the set {0, 1, ..., p}
of integers in their usual order. A (weakly) monotonic map U: [q] a [p]
is a function on [q] to [p] such that i S j implies µ i S f j. The objects
[p] with morphisms all weakly monotonic maps lC constitute a category
.4' (for monotonic). Note that a monotonic ju is determined by the
sequence of q+ 1 integers uo S 1h S . S #q in [p] where y0=p0,...;
hence we regard u as the affine simplex (lto, ..., feq) determined by the
vertices 4ui on the standard p-simplex dp.

Let W be any category. A contravariant functor S:.,rE'- '( will be
called a simplicial object in W. Specifically, S assigns to each non-negative
integer q (to each object of .4') an object S. of r', and to each monotonic
y: [q]-[p] a morphism u*=S(µ): Sp-+Sq of W, with S(1)=1 and
S (It v) = S (v) S (µ). By a simplicial set is meant a simplicial object
in the category of sets; by a simplicial A-module is meant a simplicial
object in the category of all A-modules.

If F: rB-a.9 is a covariant functor, each simplicial object S in 'C
determines a simplicial object FS in 2, with (FS)q=F(Sq), FS(µ)-=
F(S ft). In particular, if A is an algebra, and F4 the functor which assigns
to each set Y the free (left) A-module with generators Y, then each
simplicial set S determines a simplicial A-module F4 S.

The singular simplices (II.7) of a topological space X constitute a
simplicial set 9(X). In detail, let 3,(X) be the set of all singular p-
simplices T of X; each T is a continuous map T: AP-+X defined on
the standard affine p-simplex AP. Now each monotonic a: [q]-gy[p]
determines a unique affine map ft: dq-4dp carrying vertex i of Aq
onto vertex u, of AP; the composite u*T=Ty: dq-*X defines a map
µ* =S (y): Sp (X) -*Sq (X) which makes S a functor on. & and hence
a simplicial set. For Z the ring of integers, S' =FZS is a simplicial
abelian group with S, the free abelian group generated by all singular
p-simplices of X. In other words, Sp is just the usual group of singular
p-chains of the space X. We shall soon see that the usual boundary
of a singular p-chain is also determined by the simplicial structure of
S'(X).

It is convenient to use two special families of monotonic maps

e =e4: [q-1]-'.[q]. nr=n4: [q+1]-+[q] (5.1)
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defined for i = 0, ... , q (and for q>0 in the case of e') by

forj<i, rl'(l)=j forj<i,
=j+1 forjz i, =j-1 forj>i.

In other words, e' may be described as the (q-1)-face of All with
vertices (0, 1, ..., i , ... , q) - omit index i - and rl' is the (q+ 1)-face
with vertices (0, 1, ..., i, i, .... q) - double the vertex i. From this
description one verifies the identities

Eq+l Eq (5.2)

r14+1 = rl`q+i iSj. (5.3)

q-1eQ
= 1, i=j, i=j+1, } (5.4)

= Bi-1 j
4-1rlq-2.

i>j+1.
We normally omit the subscripts q on s and rl.

Lemma 5.1. Any monotonic u: [q]-*[p] has a unique factorization
µ=e''... ci,77f,... y1i,, (5.5)

with OSj1<...<jr<q, and q-t+s=p.
Proof. Let the elements of [p] not in u [q] be i, , ... , is in reverse

order, while those elements j of [q] with 4u (1) = u (j-}-1) are j, ..., j,
in order. Then (5.5) holds, and presents iu as the composite of a mono-
tonic epimorphism (the product of the ti's) with a monotonic mono-
morphism (the product of the c's).

This lemma allows an alternative definition of a simplicial object.

Theorem 5.2. A simplieial object S in a category'' is a family (Sq)
of objects of %' together with two families of morphisms of W,

di: Sq-Sq-1, Si: Sq--*Sq+1, i=0, ..., q,

(and with q>0 in the case of di) which satisfy the identities

didi=di-,di, i<j, (5.6)

sisi = si+lsi, i5i, (5.7)

d,si=si_ldi,
=1,

i<j,
i=j, i=j-}-1, (5.8)

Proof. Since S is contravariant, the morphisms di = S (e'), si = S (r1')
satisfy the identities (5.6)-(5.8), which are the duals of (5.2)-(5.4).
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Conversely, given the di and the si, write any monotonic it in the unique
form (5.5) and define

S(p)=s1,... sitdi,... di,: So-,Sq.

The identities (5.6)-(5.8) suffice to commute any two of d s,, hence
to calculate the factorization of a composite u v from that of lC and
of v, hence to prove that S (,u v) = S (v) S (a). This makes S:
contravariant.

We call di the i-th face operator and si the j-th degeneracy operator
of S. Note that (5.6) and (5.7) imply

did;=d,d,+1 izj, (5.9)

sis1=s,si_1, i>j. (5.10)

For example, let V be any partly ordered set (1.8); call an ordered
(q A-1) -tuple (vo, ..., vq) with elements vo 5 S vq in the given partial
order of V a q-simplex of V. Let S. (V) be the set of all q-simplices of V.
Then S (V) is a simplicial set under the face and degeneracy operators
defined by

di(v( , ..., vq)=(vo, ..., v"...... vq) (omit vi), (5.11)

si(vo, ..., i'q)=(110, ..., vi, vi, vq) (double v,). (5.12)

Geometrically, V may be regarded as a schematic description of a
polyhedron with partly ordered vertices vi.

If S and S' are simplicial objects in a category ', a simplicial snap
a: S > S' is a natural transformation of the contravariant functors
S, S':.A> '. In other words, a simplicial map a is a family of mor-
phisms aq : Sq -o- SQ of 4' such that aq S (µ) = S'(u) a , for each monotonic
lc : [q] -- [p], or, equivalently, such that adi = dia and as, = sia for every i.
The simplicial objects in' ' form a category with morphisms the simpli-
cial maps.

Each simplicial module S determines a (positive) chain complex
K = K(S) with K,= Sq and with boundary homomorphism a: Kq >Kq_1
the alternating sum of the face homomorphisms:

8=do-dl±...+(-1)1dq: Kq +Kq-1. (5.13)

The identities (5.6) for d,di imply that 82 =0. This allows us to speak
of the homology or cohomology modules of a simplicial module S,
meaning those of the associated chain complex K(S). For a topological
space X, (5.13) gives the usual boundary operator 0 in the singular
complex S (X). More formally, X determines the simplicial set .S (X)
described above, hence the simplicial abelian group F i 9 (X), hence the
chain complex K FZ S (X) ; with boundary 0, this complex is the usual
singular complex S(X).



236 Chapter VIII. Products

A simplicial module S over the ring R is augmented if there is a module
homomorphism s: S0--?.R with edo=edl: the associated chain
complex is then augmented by e.

Notes. Simplicial sets, under the name complete semisimplicial complexes.
arose in the study by EILENBERG-ZILBER [1950, 19531 of the singular homology
of spaces and their cartesian products. Simplicial abelian groups, under the name
FD-complexes (F for face, D for degeneracy) arose simultaneously in the analysis
by EILENSERG-MAC LANE [1953] of the spaces K(!I, n) with one non-vanishing
homotopy group 11 in dimension it. Simplicial sets satisfying the additional "Kan
condition" and simplicial (multiplicative) groups subsequently proved to provide
the suitable algebraic formulation of homotopy theory; see KAN [1958b]. The
normalization theorem of the next section and its proof are due to EILENSERG-
MAcLANE [1947]. Each simplicial module is determined by its normalized chain
complex; this gives an equivalence between the categories of simplicial modules
and (positive) chain complexes of modules, DOLD [1958].

6. Normalization

Let S be a simplicial module. In each dimension is, define (D S)
to be the submodule of S. generated by all degenerate elements; that
is, set (DS)o=0 and

n>0.
By the identities (5.8) for d; s, , D S is closed under a, so is a subcomplex
of the associated chain complex K S of S. The quotient K S/D S = KN S
is known as the normalized chain complex of the simplicial module S.

Theorem 6.1. (Normalization Theorem.) For each simplicial mo-
dule S the canonical projection n : K S -*KN S = K S/D S is a chain
equivalence.

For the proof, we interpret the degeneracies s; as homotopies. For
each non negative k, let DR S be the graded submodule of S generated
by all degenerate elements s;a with iSk; that is, set

(DRS),.=soS._I-.... s,r-ISA_I, n-1Sk,
n-1>k.

By (5.8), each DRS is a subcomplex, while D S is the union of all DRS.
Define tR : S -s S of degree 1 by

4Ra=(-1)RSRa, kSdima, 4E S,
=0, k>dima, aES,

and set hR=1-atR-tRa. This makes hR: K(S)-+K(S) a chain trans-
formation and ik : 1 ac hR a chain homotopy. Since 1R S < DR and 8DR < DR

h5a= a (mod DS), 4E S. (6.1)



7. Acyclic Models 237

Moreover we claim that

h,D*S<D,k_,S, hkDiS<DiS, j<k. (6.2)

Since sksj=SjSk_, by (5.10), the second inclusion is immediate. As for
the first, the identities (5.8) for k5dima, aES, give

d$tkska=(- 1)hSk_,sk_,d.a, i<k,
=(-1)kska, i=k, k+1, k+2,
=(-1)kskskd;_sa, i>k+2,

while, for k:5: dim a, (5.8) and (5.10) give

tkd,ska=(- 1)hsk_,sk_ld;a, i<k,
=(-1)hska, i=k, k+1,
_ (- 1)kskshd,_,a, i>k+ 1.

With 8=2:(-1)`d;, these combine to give (8th+tk8) ska- ska (modDh_, S)
for k S dim a and hence the first inclusion of (6.2). In particular,
hoDOS=O.

Now set h=hah, ... hk .... Since hka=a for k>dima, this com-
posite is finite in each dimension, and defines a chain transformation
h : KS--)..KS. By (6.1), h,,D S < D S, so an iteration of (6.1) gives

hama (modDS). (6.3)

By (6-2), ADS=O. Since each hh is chain homotopic to 1, there is a
composite homotopy t : 1= h. Because h D = 0, g (a+ D S) = ha defines
a chain transformation g: KS/DS-*KS; by (6.3), xg=1, where n
is the projection KS-*KS/DS. Moreover, gn=h: KS--o-KS is chain
homotopic to 1, by construction, so i is a chain equivalence, as asserted.

7. Acyclic Models

The treatment of products of simplicial modules in the next section
will require the use of acyclic models; here we state the preliminaries,
for simplicial modules over some fixed ring R.

For each non-negative integer n a simplicial R-module M" is defined
by taking M* to be the free module with generators all monotonic
maps A : [p] - . [n], while fe* = M" (u) : M9 -.Mq is defined for each
monotonic u: [q]-gy[p] as u*A=Au. This makes M" a contravariant
functor. Observe that the generators A of My are all the p-dimensional
faces (An, ..., At), degenerate or not, on the usual n-simplex, and
that M" is augmented by a (Ao) =1; often M" is denoted as d". We
call M" the n-dimensional model simplicial module and the identity
map x"=1: [n] -+ [n] the basic cell on this model; thus x"E M.
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As in the case of spaces (II.7), an augmented chain complex -: K--*R
is acyclic if H"(K)=0 for n>0 and e: H0(K)=R.

Proposition 7.1. For each non-negative integer n, K(M") is acyclic.

Proof. It will suffice to construct a contracting homotopy. Define
a homomorphism s : Mp"" -±Mp+1 by s 2p) = (0, ;0, ... , 2p). By
(5.11) and (5.12),

dos=1, d,s=sd,_1, i>0 (7.1)

and s s, = s,+1 s. Hence, in the associated chain complex, s induces a
chain homotopy s : I = / e, where /: R --* S is defined by / 1 R = (0).

Proposition 7.2. For each simplicial module S and each a E S" there
is a unique simplicial map a: M"-+S with a x* =a.

Proof. Each free generator A of Mp can be written uniquely in
terms of the basic cell x" as A*x"=x"A. Hence a(A*r.")=A*a defines
a simplicial map a : M" -- S ; it is clearly the only such with ax"=a.

To summarize: the models are acyclic and represent each ac.S".
Similarly, in the proof (11.8) of the homotopy axiom for the singular
complex S (X) of a topological space, the models S (A") and S (A"xI)
are acyclic and represent each singular simplex T via T: d" X. This
situation recurs in many connections as a means of constructing chain
transformations and chain homotopies. It can be described in cate-
gorical terms (EILENBERG-MAC LANE [1953], GUGENHEIM-MOORE [19571)
it is more efficient to apply it directly in each case, as in the argument
to follow in the next section.

Exercise
1. If V is any set with the partial order defined by v :5.v' for every v, V E V,

K(FZSV) is acyclic.

8. The Eilenberg-Zilber Theorem
If U and V are simplicial sets, their cartcsian product U><V is the

simplicial set with (UxV)"= U"xV" the cartesian product of sets and

d, (u, v)=(d,u, div), s, (u, v)=(s,u, s, v), i=0, ..., n, (8.1)

for uE U", vEV", and n>0 in the case of d,. This definition is suggested
by the case of topological spaces. If Xx Y is the cartesian product
of two spaces X and Y, with projections n1 and n$ on X and Y, respec-
tively, each singular simplex T: d"-.XxY is determined by its pro-
jections n1T and nsT, while d,niT=nid,T, sin1T=nis,T. Hence
T -. (n1 T, n, T) provides an isomorphism S (Xx Y) - S (X) x S (Y) of
simplicial sets. The computation of the singular homology of X> <Y is
thus reduced to the computation of the homology of a cartesian product
of simplicial sets.
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There is a parallel product for simplicial modules A and B over a
commutative ring. The cartesian product AxB is defined to be the
simplicial module with (Ax B)" = A" ®B" and

d;(a(&b)= d,a®d,b, s.(a(&b)=s,a®s;b, i=0, ..., n, (8.2)

for a E A., b E B., and n> 0 in the case of d; . To avoid confusion with
the tensor product of complexes we shall write axb for the element
a ® b of A. ® B.. For simplicial sets U and V, this definition insures
that there is a natural isomorphism of simplicial modules

F(UxV) =FU><FV; (8.3)

for F(U><V) in dimension n is the free module generated by the set
U"xV, and this free module is naturally isomorphic to the tensor
product (F U") ®(FV").

The associated chain complex K(Ax B) now reduces to the tensor
product of the chain complexes K(A) and K(B).

Theorem 8.1. (EILENBERG-ZILBER.) For simplicial modules A and
B over a commutative ring there is a natural chain equivalence

K(A>< B) g K(A) ®K(B). (8.4)

In view of the normalization theorem, K(A) ->KN (A) is a chain
equivalence, so there is also a natural chain equivalence

KN (Ax B) *----"KN (A) ®KN (B) . (8.S)

The proof, as recorded in the following lemmas, will use the method
of acyclic models. Note that K0 (A><B) = A0 ®B0 = K0 (A) ®K0 (B) ;
hence we can choose maps / and g in (8.4) to be the identity in dimension
zero.

Lemma 8.2. For simplicial modules A and B there exists a natural
chain transformation /: K(AxB) ->K(A) ®K(B) which is the identity
in dimension zero. Any two such natural maps/ are chain homotopic
via a homotopy which is natural.

Proof. Since /0 is given, suppose by induction on n that /4 is already
defined for all q< ,n and natural on K4 (Ax B), with 8 f4 =/4_18. We
wish to define /" with 8/"=/"_18; we do this first for the product
x"xx" of the two basic cells in the model A=M"=B. We require
that 8 f" (x"xx") = f"_18 (x"xx"). The right hand side e is already defined
and has 8e = 0 (or e e = 0, if n = 1); it is thus a cycle in the complex
K(M") ®K(M"), which is acyclic as the tensor product of two acyclic



240 Chapter VIII. Products

complexes (Prop.7.1). Hence there is in this complex a chain c of dimen-
sion n with ac=e. We set /"(x"><x") = c, so that

a/"(x"xx")=ac=f"_la(x"xx"). (8.6)

Now consider a E A", be B" . By Prop. 7.2, there are simplicial maps
a: M"-*A, fi: M"->B with ax"=a, Px"=b. Then K(a):
K(A) is a chain transformation which we again denote as a, and
a ®fl: K(M") ®K(M") -->K(A) ®K(B) is a chain transformation. Set
f" (axb) = (at (&fi) c, for c as in (8.6) ; since the simplicial maps a and fi
are unique, the right hand side is bilinear in a and b, so defines

K. (A>< B) -> [K(A) ®K(B)]". Moreover,

of"(axb)=a(a®fl)c=(a®fi)ac=(a®fl)l"-ia(x"xx").
Now /"_1 is natural, so

a/"(axb)=f"_1a((x x"xf x")=/"_1a(axb).

Thus / is indeed a chain transformation up to dimension n.
To prepare for the next induction step it remains to show that

is natural. Let 71: A-* A', C : B be any simplicial maps, with ?la=a',
Cb=b'. Then 17 a: M"-*-A' has rtax"=rta=a', so is the unique sim-
plicial map carrying x" to a'. Hence

(rl (& C) f" (axb) = (r! (9 C) (a (9p) c = (n a ®C c (a'><

and /" is natural.
Now let / and /' be two such chain transformations. By induction

on n we may assume that the tq: K9 (A>< B)-*(K(A)®K(B))q+1 are
maps defined for q=0, ..., n- f with at+ta =/-/' in dimensions
q<n. (For q=0, fo=/o; so choose to=0.) Again we define 1" first on
x"xx". We require

By the induction assumption, a (f - J'- t a) = 0, so the right hand side
is a cycle in an acyclic complex, hence is the boundary of some chain d.
Set t" (x"xx") = d, t" (axb) = (a (&fl) d for a, fi with a x" = a, f )" = b.
The previous type of argument then shows 1" natural and at"-} t"_12=
/-f' for all a>< b.

Lemma 8.3. For simplicial modules A and B there is a natural
chain trans/ormalion g: K(A) ®K(B) -->K(A <B) which is the identity
in dimension zero. Any two such g are homotopic by a chain homotopy
natural in A and B.

The proof is analogous. A typical chain of K(A) ®K(B) in dimen-
sion n has the form a®b, with aeKO(A), bEKq(B), and p+q=n. Use
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the models MP and Mq and maps a: MP-* A, A: Mq +B with a %P ==a,
flxq=b. Now the complex K(MPxMq) is acyclic, for the homotopies s
of (7.1) for MP and MI yield a contracting homotopy s (axb) = s axs b
on K(MPxMe). Using this acyclicity, the construction of g proceeds
as before.

We now have the chain transformations / and g of the theorem;
it remains to establish homotopies 1=1g, 1= g/. These are done by
exactly the same method; for instance the homotopy I = g/ in K(A >< B)
is obtained, using the acyclicity of K(MPxMP), by comparing h=1
with h' =g/ as follows.

Lemma 8.4. Il h, h': K(Ax B) -->K(Ax B) are two natural chain
transformations, both the identity in dimension zero, there is a natural
chain homoto5y t: h^-h'.

These proofs are actually constructive; explicit formulas for / and
g can be found by calculating the chain c used at each stage of the
induction (e.g., in (8.6)) from the explicit contracting homotopies given
in the proof of Prop. 7.1 for the models. We do not need the explicit
homotopies 1-1g, 1- g/, but the explicit formulas so obtained for /
and g are useful. To write them out, denote the "last" face in a simplicial
object S by d; that is, for a in S. set da=d»a. Thus, for any exponent
n-i, d"`a=di+1... d»a.

Theorem 8.5. For any simplicial modules A and B, a natural chain
transformation /: K(AXB) -->K(A) ®K(B) for the EILENBERG-ZLLBER
theorem is given by

/(axb) =S'd"''a®dob, aEA», bEB (8.7)
i-o

Proof. Since / is defined by face operators, it is natural. It reduces
to the identity in dimension n=0. It remains to prove that is/(axb)=
/ 8 (axb) ; in view of naturality, it suffices to prove this for a = x" = b
in the model M". Now x"= (0, 1, ..., n), is the simplex (0, 1, .... i)
and

=1(0,...,1)®(i,i+1....,n). (8.8)
i-0

In 8/(x"Xx") the last face of each first factor cancels with the term
arising from the initial face of the second factor, and the remaining
terms assemble to give as required.

The chain transformation / of (8.7) is known as the Alexander-
Whitney map, since it appeared in the simultaneous and independent
definition of the cup product in topology by these authors. The explicit
map / calculated from our contracting homotopy differs from the
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Alexander-Whitney map, but only by terms which are degenerate.
Moreover,

Corollary 8.6. The Alexander-Whitney map / induces a chain trans-
formation on the associated normalized chain complexes,

IN: KN(AxB)-+KNA®KNB.

Proof. By definition, KNA=KA/DA; by (3.3) regard KNA®KNB
as KA®KB modulo the subcomplex spanned by the images of both
DA®KB and KA®DB. In (8.7) suppose axbEK(AxB) degenerate, so
of the form ska'xskb' for some k. In each term on the right of (8.7)
one of the factors is degenerate. Specifically, if i<-k, (5.8) shows do sk b'
degenerate, while if i>k, d"-'ska' is degenerate, whence the desired
result.

Geometrically, / is an "approximation to the diagonal". Consider
for instance the cartesian product A1x,l of two 1-simplices (= inter-
vals) ; it is a square with four vertices. Algebraically, A' is represented
by K(11P) ; in KN (11P) ®KN (M') the group of 1-chains is a free group
on four generators, corresponding to the four edges of the square.
The diagonal of the square does not appear directly as a chain. How-
ever,

f (x' xxl) = (0) ®(0 1) + (0 1) ®(1)

is the chain represented by left hand edge plus top edge of the square.
This chain is "homotopic" to the diagonal, hence an "approximation"
to the diagonal. Observe that the bottom edge plus the right hand
edge would give a different approximation, which could be developed
algebraically by interchanging the roles of initial and final faces in the
formula (8.7). Comparison of these two different approximations to the
diagonal leads to the Steenrod squaring operations (STEENROD [1953],
MILNOR [1958), DOLD [1961], STEENROD-EPSTEIN [19621).

For three simplicial modules A, B, and C, any natural Eilenberg-
Zilber map / may be iterated, as in

K(Ax BxC) K(A) ®K(BxC) 101 K(A) ®K(B) ®K(C) .

Proposition 8.7. Any natural / is associative up to homotopy, in
the sense that there is a natural chain homotopy (1(&/) f= (/ (& 1) /. The
Alexander-Whitney map is associative.

Proof. Since (1(&f) / and (/ (& 1) f are each the identity in dimension
0, a natural homotopy between them may be constructed by the method
of acyclic models. The associativity (no homotopy necessary) of the
Alexander-Whitney map can be computed directly, say by (8.8).
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To describe the second map g of the Eilenberg-Zilber theorem we
introduce certain "shuffles". If p and q are non-negative integers,
a (p, q) -shuffle (u, v) is a partition of the set [p+q-1] of integers
into two disjoint subsets u,< < up and v,<... < vq of p and q integers,
respectively. Such a partition describes a possible way of shuffling a
deck of p cards through a deck of q cards, placing the cards of the first
deck in order in the position u,...... y and those of the second deck
in order in the positions v, , ..., vq. A shuffle may be pictured as a se-
quence of moves in the lattice of points (m, n) in the plane with integral
coordinates: Start at (0, 0) at time 0; at time k move to the right if
k is one of u,...... p and up if k is one of v1, ..., vq; the result is a "stair-
case" from (0, 0) to (p, q). A (p, q) -shuffle can also be defined to be a
permutation t of the set of integers {1, ..., p+ q} such that t(i)<t(y)
whenever i< j S p or p< i< j ; for, each such permutation t determines
the u; as t(i)-1, the vi as t(p-+-1)-1, and conversely. The signature

c (p) of the shuffle (u, v) is the integer then

(-1)9(0) is the sign of the associated permutation t.

Theorem 8.8. For any simplicial modules A and B a natural chain
transformation g for the Eilenberg-Zilber theorem is given, for aEA,,
bE Bq, by

g(a(&b)° 1&)(s,,... s,,,b),
(N.,)

(8.9)

where the sum is taken over all (p, q)-shuffles (u, v).

Clearly g is natural, a ®b has dimension p -}- q, and so do s,, ... s, a
and s,,,... s,,, b. The proof that g is a chain transformation is a straight-
forward verification which we omit (details in EILENBERG-MAC LANE
[1953 b], § 5, where the shuffles were first introduced).

Geometrically this function g provides a "triangulation" of the
cartesian product ApXAq of two simplices. Specifically, take a=xpEMp
and b=xgEMq, so xp has vertices (0, 1, ..., p). In this vertex notation,

s"... sop = (to , i, , ... , ip+q),

with 0 = io S it 5 . S ip+q = p, and ik = ik+, precisely when k is one of
v,, ..., vq. Similarly with 1k=1k+i precisely
when k is one of u, , ..., p.. The simplex displayed on the right of (8.9)
then has the form

(i0, ..., ip+q)XVO, ..., jp+q),

where the first factor is degenerate at those indices k for which the
second factor is not degenerate. This symbol may be read as the (p + q)-
dimensional affine simplex with vertices (ik, jk) in the product ApXAq.
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These simplices, for all (p, q)-shuffles, provide a simplicial subdivision
of AP><J . For example, if P=2, q=1, dsxd' is a triangular prism
and the three possible (2, 1) shuffles triangulate this prism into three
simplices

(0 1 2 2)><(O 0 0 1), (0 1 1 2)x(0 0 1 1), (0 0 1 2) >< (0 1 1 1),

each of dimension three. (Draw a figure!)
This description also shows that if either factor a or b is degenerate,

so is each term on the right in (8.9). Hence

Corollary 8.9. The shuffle map g of (8.9) induces a chain translorma-
lion on the normalized chain complexes

gN: KN(A)®KN(B)-- KN(A> B).

For these normalized complexes, the composite INgN can be shown
to be the identity (no homotopy 1=/NgN is needed).

Exercises
1. Exhibit a second explicit formula for /, with first and last faces interchanged

in (8.7).
2. Establish associativity for the shuffle map g.
3. Prove the normalization theorem of § 6 by the method of acyclic models.
4. Show that the EILENBERG-ZILBER theorem holds for A a simplicial right

R-module, B a simplicial left R-module, and R any ring.
5. Calculate the integral homology of a torus SI><SI from that of a circle S'

(EILENBERG-ZILBER Plus KUNNETH).

9. Cup Products

For any simplicial set U, du=u><u defines a simplicial map d: U-->
U><U called the simplicial diagonal map. Now U determines the sim-
plicial abelian group Fz U and hence the chain complex K(Fz U) which
we write simply as K(U) ; each K. (U) is the free abelian group generated
by the set U,,, with a=Z (-1)'d;. The diagonal induces a chain trans-
formation K(U) -->K(U>< U), also denoted by A. If / is any one of the
natural maps from the EILENBERG-Z[LBER theorem the composite

w=/d: K(U)- .K(U><U)-->K(U)®K(U) (9.1)

is called a diagonal map in K(U). Since / is unique up to a (natural)
chain homotopy, so is w. Since d is associative - (A >< 1),J = (1 x J) ,J --
and f is associative up to homotopy (Prop.8.7), there is a homotopy
(w (& 1) to - (1(&w) w. The complex K(U) is augmented by a (u) =1 for
UE UO. We assert that there are homotopies

(e®1)w=1-(1®e)w: K(U)-,K(U). (9.2)
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Indeed, each of (e ®1) w and (1®s) w is natural and is the identity
in dimension zero, so natural homotopies may be constructed by using
the acyclic models M" (taken this time as simplicial sets U). Now
equalities in (9.2) and in associativity are exactly the conditions (VI.9.1)
required to make w a coproduct with counit e, so that we might say
that K(U) with diagonal w is a differential graded coalgebra "up to
homotopy".

If we choose for / the Alexander-Whitney map, then w is associative
and it is easy to check that (e ®1) w = (1® e) w. Hence with this choice
K(U) is a differential graded coalgebra, and so is the normalized com-
plex KN (U).

Now let A and A' be abelian groups, and write H"(U, A) for the
cohomology group H"(Hom (K(U), A)). The composite v=w pN,

H6 (U, A)®H'"(U, A')
I (9.3)H"+"'(K(U) ®K(U), A®A')°'-. H"+"'(U. A(& A').

where p" is the cohomology product of (1.3), is called the (external)
simplicial cup product. With cochains h and h', the definition reads
(cis h) v (cls h') = cls (h,-, h'), where

(h v h') u = (h (& h') / Au, (9.4)

for h®h' as in (1.4). In particular, if U=S(V) is the simplicial set
associated with a partly ordered set V of vertices and / is the Alexander-
Whitney map, while hEH", h'EH"-", then

(hvh')(vo,.... v")=h(vo,...,v")®h'(v",...,v"). (9.5)

If A = A' is the additive group of a commutative ring R with product
ir: R®R-.R, the composite sr. v is a map

HI (U, R) ®Hm(U, R)-->H"+"`(U, R) (9.6)

called the internal simplicial cup product.

Theorem 9.1. For each simplicial set U and each coefficient ring R
the cohomology modules H" (Horn (K(U), R)) = H" (U, R) constitute a
graded ring under the internal simplicial cup product. If R is commutative,
so is this cohomology ring.

Proof. The associativity of the product is known. The augmentation
s : K(U) -*Z composed with I: Z --).. R gives a zero dimensional cocycle
Jr of K(U). Then (hvIs) where a(h(&1):
K ®Z -* R is Is when K OZ is identified with K, while (1®e) w=1.
Hence the cohomology class e of the cocycle Is acts as the identity
for the cup product. Similarly, to show that the cup product is com-
mutative, it suffices to establish a chain homotopy /='r/ for the usual
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interchange r: K,*®Km=-Km®K,,. Both / and s/ are the identity in
dimension 0, and this homotopy is given by using acyclic models.

When / is the Alexander-Whitney map, the cochains themselves form
a graded ring, but the ring is not commutative: Commutativity holds
only for cohomology classes.

This theorem shows that the singular cohomology of a topological
space X with coefficients Z is a commutative ring under the cup pro-
duct.

The simplicial cup product also applies to the cohomology of a
group 17. By a H-set S is meant a set S together with an action of H
on S ; more formally, this action is given by q, : 17-. Aut (S), a homo-
morphism of 17 into the group of 1-1 maps of S onto S. The II-sets form
a category. For example, take P. (17) to be the set of all (n+ 1)-tuples
(x0, ..., with the action of 17 given by x(x0, ..., x#)=(x x0, ..., xx ).
The usual face and degeneracy operators

d;(x0, ..., ...,zi, ..., 0SiSn, n>0,
Si(x0, ..., (x0, ..., xi, xi, ..., x.), 05iSn,

are 17-maps, so B (II) is a simplicial 17--set. The associated simplicial
abelian group FZ (19 (17)) is a simplicial 17-module, while K=KFZ(B (17))
is a complex of II-modules, with K. the free abelian group generated
by the (xo, ... , and with boundary

ri
(x0, ... , x.) (x0, ... , zi , ... , x.)

i-0
We have recovered the homogeneous description (IV.5.13) of the un-
normalized bar resolution fl (17) = KFZ ( (17)), while KNFZ (R (17)) is the
normalized bar resolution B (17).

Now recall that the group ring Z (17) is a Hopf algebra with co-
product y: Z(17)-Z(17)®Z(17). p(x)=x®x.
By pull-back along the corresponding diagonal map 17-i 17 < 17, the
cartesian product b (17) x$ (17) of two 17--sets is a 17--set. The diagonal
map w for # (II) = K11 (17) is the composite

w: I(II)-
here A is a 17-map, / is natural, so commutes with the action of 17
and is also a 17-map. Therefore w is a chain transformation for complexes
of 17-modules. This implies that the simplicial cup product is defined,
for two 17 modules A and A', as a homomorphism

v: H' ( . A) ®K"'(n. A') v(A®A')) . (9.7)

This product is associative.
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A homomorphism a: v,(A(&A') -*A" of H-modules is called a pairing
of A and A' to A". The cup product followed by the homomorphism
induced by the pairing a yields an "internal" cup product which is a
homomorphism H(17, A) ® H(17, A') --j,. H(H, A").

The discussion of 17-sets in the definition of this cup product could
be short-cut by simply giving the direct description of the cup product
by cochains. If h and h' are cochains of dimensions k and m, respectively,
regarded as functions on the homogeneous generators (x ..... x,%) and
(xo, ..., of #(17), their cup product is the cochain defined, via
Alexander-Whitney, by

(h-h')(xo, ..., x")=h(xo..... xk)®h'(xk,..., x"), n=k+m. (9.8)

This h. . h' is clearly a H-module homomorphism into A®A' with
diagonal operators, that is, into,, (A ®A').

In particular, if A and A' are both the ring Z with trivial operators
(Z =A, then ,CZ (&,Z) is Z. It follows that H' (H, ,Z) is a commutative
graded ring under the simplicial cup product.

Theorem 9.2. Under the isomorphism H"(17, A)=Exti(R)(Z, A), for
any 17-module A, the simplicial cup product is mapped onto the Hopf
wedge product defined in Ext.

The crux of the proof is the observation that the diagonal map
w: fl (17) --.r(fl(17) ®fl(n')]

of complexes of 17-modules commutes with the augmentation, hence is
a comparison of the resolution s : fi (17) -*Z to the resolution given by

Both H" and Ext" are H"(fl(17), A). The Hopf
wedge product of (4.5) is where pH is the cohomology product
and yr# the change of rings defined by gyp: Now
Thm.III.6.7 asserts that this change of rings can be calculated as
,P#= f* p*, where p' maps Homz(H)®Z(Th to HomZ(n), while the map
f : fi (17) (17) ® fi (17)] is a comparison. Choose f to be the comparison
w; then y,#pH becomes w*y,*pH, which is the simplicial cup product.

The cup product in the cohomology ring H* (17, Z) can thus be de-
fined in three equivalent ways:

(i) As the simplicial cup product;
(ii) As the wedge product induced by the diagonal map y,;
(iii) As the YONEDA product, by composites of long exact sequences.

Still a fourth definition will appear in Chap. XII and will facilitate the
computation of examples.

One application is the "cup product reduction theorem". Suppose
17= FIR where F is a free multiplicative group. Let [R, R] be the com-
mutator subgroup of R and set Fo=F/[R, R], Ro=RI[R, R]. Then Ro
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is abelian and I7_-Fo/Ro, so F. is an extension of Ro by II with factor
set a 2-cocycle to of 17 in the 17-module Ro. For any II-module A,
Homz(R0, A) is al-module with operators xa defined for a: Ro-+ A by
(x a) r= x [a (x-'r)], while a ®r->a r is a pairing Hom (Ro, A) ®Ro--±A.

The internal cup product of an n-cocycle with /o then determines a
homomorphism

H"(17, Hom(R0, A))-->Hat2(17, A).

The cup product reduction theorem asserts that this is an isomorphism
for n>0. The theorem is due to EILENBERG-MAC LANE [1947]; an elegant
proof, using relative cohomology and the characteristic class (IV.6) of
an extension is given by SWAN [1960] and also below in IX.7, Ex. 7--- 10.

The cohomology groups H'(17, Z) were shown in IV.11 to be the
singular homology groups of the space X/II when H operates properly
on the acyclic space X. The comparison made there evidently preserves
the simplicial structure, hence the cup product, so H(17, Z)=H(X%II, Z)
is an isomorphism of cohomology rings.

Exercise
1. Show that l4 (I7) with non-homogeneous generators (IV.5.11) has degener-

acies and faces given by

Si (z [xl , .... x"1) = x [xr, ... , xi. I. xi+I, ..., x"], o i `a n,
di(x[xl, xx1 [x2..... x"], i=0,

x[xi, ..., xixi+I, ..., x"], 0<i<n,
=x[XI,.. ,x"_11, i=n

and that the map rv, for / Alexander-Whitney, is

al(x[x11 ... Ix"])=Ex[xlI ...1xi]®xx1...o
Notes. For topological discussion of the cup product (in contrary terminology)

see HILTON-WYLIE [1960]. For the cup product for groups see EILENBERC-MAC
LANE [1947), ECKMANN (1945-1946], (1954). A fiber space may be regarded
as a sort of "twisted" cartesian product; there is a corresponding twisted version
of the EILENBERG-ZILBER theorem (BROWN [1959], GtiGENHEIM [1960], SZCZARBA
[1961]). Simplicial fiber bundles are treated in BARRATT-GUGENHEIM-MOORS
[1959].

Chapter nine

Relative Homological Algebra

Introduction. When we described the elements of Ext"(C, A) as long
exact sequences from A to C we supposed that A and C were left modules
over a ring. We could equally well have supposed that they were right
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modules, bimodules, or graded modules. An efficient formulation of
this situation is to assume that A and C are objects in a category with
suitable properties: One where morphisms can be added and kernels
and cokernels constructed. The first three sections of this chapter are
devoted to the description of such "abelian" categories.

If 17 is a group, each II-module is also an abelian group; this gives a
homomorphism of the category of all 17-modules to that of all abelian
groups. If A is an algebra over the ground ring K, each A-module is
also a K-module, while each A-bimodule is also a right A-module. If
R:) S are rings, each R-module is an S-module. In each such case we
have a homomorphism of one abelian category to a second which leads
naturally to the definition of "relative" functors Ext and Tor; for
further introductory explanation, see § 8 below. The general method
is described in this chapter and will be applied in the next chapter to
study the cohomology of various types of algebraic systems.

1. Additive Categories

First examine the categories in which suitable pairs of morphisms
can be added. An additive category % is a class of objects A, B, C, ...
together with

(i) A family of disjoint abelian groups hom (A, B), one for each
ordered pair of objects. We write a: A-*B for aEhom(A, B) and call
a a morphism of W.

(ii) To each ordered triple of objects A, B, C a homomorphism

horn (B, C) ®hom (A, B) -*hom (A, C) (1.1)

of abelian groups. The image of fi ®a under composition is written j9 a,
and called the composite of P and a.

(iii) To each object A a morphism 1A: A-*A, called the identity
of A.

These data are subject to the following four axioms:

Associativity: If a: A-sB, ft: B-->C, and y: C-->D, then

Y(fia)=(YR) a; (1.2)

Identities: If a: A->B, then

a 1A=a=18

Zero: There is an object 0' such that hom(O', 0') is the zero group.
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Finite Direct Sums: To each pair of objects A,, A. there exists
an object B and four morphisms forming a diagram

A,4B-A2
n, n.

with
n,c,=1A,, n2c2=1A., Lln,+L2n8=1B. (1.4)

To avoid foundational difficulties, two further axioms of a set-theoretic
character are required; they will be stated at the end of this section.

These axioms are like those for a category (I.7). Indeed, an additive
category may be defined as a category with zero and direct sums, as
above, in which each set hom (A, B) of morphisms has the structure
of an abelian group such that the distributive laws

fl (al+az) = i a,+ P 0(2. (fli-l- f2) a= Yl a-}- Az a (1.5)

are valid whenever both sides are defined. (This insures that composi-
tion is bilinear, as required by (1.1).)

If the existence of direct sums is not required, we speak of a pre-
additive category. As in the case of categories, we can omit the objects
and work only with the morphisms, using the identity morphisms 1A
in place of objects. The axioms are then like the axioms for a ring in
which the compositions a,+ a2 and fg x are not always defined but,
whenever defined, satisfy the usual ring axioms such as (1.2), (1.3),
and (1.5). Thus HILTON-LEDERMANN [1958] call a preadditive category
a ringoid, following the terminology of BARRATT [1954].

By 0 we denote (ambiguously) the zero element of any group
hom(A, B); then 0a=0= f30 whenever defined (proof: 0a=(0±0)a;
use the distributive law). An object 0' with hom(0', 0') the zero group
is called a zero object. Then 10, = 0, hence hom (A, 0') and horn (0', B)
are the zero groups whatever the objects A and B, and any two zero
objects are equivalent.

Examine next the consequences of the finite direct sum axiom.
By (1.4),

n1t2=7V1(hn1+WZO4==-In02+ni(21=n,t2+n1h,

hence ntii=0 and n2c,=0, as usual. Props-4.1 and 4.3-4.5 of Chap.1
follow; in particular, the diagram (1.4) determines the object B up to
equivalence, and we usually write such a B as A, ®A2. Each morphism
y: A,®A2,C determines a pair of morphisms y.=ycj: AJ->C; the
correspondence q (y) = (y, , y2) is an isomorphism

ry: hom(A1®A2, C)_hom(A C)®hom(A2, C)

of abelian groups. The inverse is given by T-' (y, , y2) =y1 n1-i- y2n2:
A,®A2->C. Thus y=y, n,+y2n2 is the unique morphism A,®A2-->C
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with yt,=y;, j=1, 2, so the injections 1i: A.--.A1wA2 of the direct
sum constitute a universal diagram. Here a diagram {a,: A,-+BItET}
of coterminal morphisms a,, with T any set of indices, is universal
if to each diagram {y,: A , -* CJt E T} there is a unique morphism y : B -* C
with y a, = y, for each t. Dually, there is an isomorphism

V: hom (C, A, w A 2) =hom (C, Al) w hom (C, A 2)

with o y= (ir y, n2y) and 1p-' (yi, Ys) =1y1+1sy2 Consequently, the
diagram {ni : Al ED A2->A, j =1, 2} is couniversal. The usual diagonal
and codiagonal morphisms

AA=il+tS: A+AwA, VA=xi-I-n2: (1.6)

are characterized by the respective properties

7h4A=1A=n24A, 17e11=1A=P12. (1.7)

Given two direct sums Al (I)A2 and Al'w Ai and morphisms (y Aj -*-Ai
there is a unique morphism al ®a2: Al w A2 --A' w As with

'r1 (al®a2)=al7Cl1 72(alw(4)=a27r2. (1.8)

The same morphism is characterized by the dual properties

(alED a2)11=11x1, (al®02)12=i2x2. (1.9)

The iterated direct sum Al w (A 2 w ... GA,,) with the corresponding
injections is a universal diagram, and any universal diagram on A1,
.... A. is equivalent to this iterated direct sum. Dually, the projections
r1, of an (iterated) direct sum provide a couniversal diagram. The axiom
requiring the existence of finite direct sums may be replaced either
by the assumption that there exists a universal diagram for any two
objects Al and A2, or by the dual requirement. In any event, the axioms
for an additive category are self-dual.

In an additive category ', hom (A, B) is a bifunctor on the category
' to the category of abelian groups.

To prepare the way for the study of kernels, we formulate defini-
tions of "monic" and "epic" in categories to agree in the standard
examples with monomorphisms and epimorphisms. In the category of
sets, a function / on X to Y is surjective if / (X) = Y (/ is onto Y) and
injective if /(x)=/(x') always implies x=x' (/ is 1-1 into Y). In any
category, a morphism x: A-*B is said to be monic if each induced
map x,: hom (C, A) --> hom (C, B) is injective. Thus x monic means that
x a =x a' implies a=a' for all a, a': C -*A, hence that x is left cancellable.
In an additive category, x is monic if and only if xa=0 implies a=0
whenever x a is defined. Dually, a morphism a: B --> C in any category
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is said to be epic if each induced map a*: hom (C, G) ->hom (B, G) is
injective. Thus a epic means that as=aa always implies a=a', hence
that a is right cancellable. In an additive category, a is epic if and only
if a a = 0 always implies a = 0. In this chapter we systematically denote
morphisms which are monic by x, A1, Ee, v and those which are epic by
p, a, T. If X and A are monic, so is r. A whenever it is defined, and dually.
Warning: In certain additive categories of modules, "monic" may not
agree with "monomorphism" (see Ex. 5) though the agreement does
hold in the category of all modules with morphisms all homomorphisms.

An equivalence is a morphism 0 with a two-sided inverse y, (tp 0=1,
Oep=1). Two morphisms a: S--.A and a': S'--* A with the same range
are called right equivalent if there is an equivalence 0: S-->S' with
a'O=a; this relation is reflexive, symmetric, and transitive, so allows
the formulation of right equivalence classes of morphisms with range A.
If x is monic, so is each right equivalent of x. In the additive category
of all modules, two monomorphisms with range A are right equivalent
if and only if their images are identical, as submodules of A. Hence
in any additive category we say that the right equivalence class of a
monic x: S->A is a subobject of A. It is convenient to say that x itself
is a subobject of A - meaning thereby the right equivalence class, cls r.,
,of x. Observe that a "subobject" so defined is not an object of the cate-
gory; for example, we cannot regard A as a subobject of itself but we
must use instead cls 1A , which is the class of all equivalences with range A.

The dual definitions are: a: A-->T and a': ACT' are le/t equivalent
if Oa'=a for some equivalence 0. The left equivalence class of an epic
a: A- T consists of epic morphisms and is called a quotient object of A.

For modules, the kernel K of a homomorphism a: A-->.B is the
largest submodule of A mapped by a into 0 and is characterized by the
property that each morphism fi with aft=0 factors uniquely through
the injection x: K-->A as fl=xfl'. This can be paraphrased in any
additive category W: A kernel of a: A-+B is a monic x with range A
such that

ax=0, while implies fl=x#' (1.10)

for some fl', necessarily unique. In other words, the right annihilators
of a are exactly the right multiples of its kernel x. Hence any two
kernels x and x' of a are right equivalent, so the class of all kernels
of a, if not vacuous, is a subobject of A which we write as ker a. Dually,
a cokernel of a: A--B is an epic a with domain B such that

as=0, while ya=0 implies y=y'a (1.11)

for some y', necessarily unique. The left annihilators of a are thus the
left multiples of a cokernel a of a. Any two cokernels of a are left equi-
valent; if a has a cokernel, the class of all cokernels of a is a quotient
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object of B, so o coker a states that a is one of the cokernels of a.
In the category of modules, the projection B--*BfxA is a cokernel
of a.

An immediate consequence of the respective definitions is

Lemma 1.1. If the composites a fl, x at, and a a are defined, the
following implications hold:

a ft monic = ig monic, at # epic a epic,

x monic ker (x a) = ker o c, a epic coker (a a) = coker o t.

Also ker 1A = O, coker 1A = 0, and, for 0: A--B, 1A E ker 0 and 1,6E
coker 0. (Here ker 1 =0 is short for OEker1.)

Finally we introduce a notation for short exact sequences, defining

app a E ker fi & fi E coker a. (1.12)

This implies at monic and >q epic, so we may read "xIl a" as "x and a
are the morphisms of a short exact sequence".

To keep the foundations in order we wish the collection of all sub-
objects of an object A and the collection of all extensions of A by C
both to be sets and not classes. Hence, for an additive category we
assume two additional axioms:

Sets of sub- and quotient objects. For each object A there is a set
of morphisms x, each monic with range A, which contains a represen-
tative of every subobject of A and dually, for quotient objects of A.

Set of extensions. For each pair of objects C, A and each n ? I there
is a set of n-fold exact sequences from A to C containing a representative
of every congruence class of such sequences (with "congruence" defined
as in III.5).

Both axioms hold in all the relevant examples.

Exercises

1. Prove: If 0: A is a zero object, and conversely.
2. In the isomorphism q above, show that ' (yi y:) = PC (yi 9 V0
3. For a, P: prove that a+iq- Pg((x ®fi) dA.
4. Show that the direct sum of two short exact sequences is exact.
5. Construct an additive category of (some) abelian groups in which a morphism

which is monic need not be a monomorphism. (Hint: Omit lots of subgroups.)
6. Construct an additive category of some abelian groups in which some of the

morphisms do not have kernels or cokernels.
7. In the categories of sets, of modules, and of (not necessarily abelian) groups,

show that a morphism is monic if and only if it is injective, and epic if and only
if it is surjective (as a function on sets).



254 Chapter IX. Relative Homological Algebra

2. Abelian Categories

To use effectively the notions of kernel and cokernel just introduced,
we need conditions to insure that these classes are not empty. Further-
more, each monomorphism should be the kernel of its cokernel, and
conversely. For modules, the image of a homomorphism a: A--> B appears
in its factorization A>aA->B, with first factor A->aA an epimor-
phism and second factor the injection aA->B, which is a monomor-
phism. Corresponding properties hold in other familiar categories: The
category of all complexes of modules over a fixed ring, with morphisms
the chain transformations; the category of all modules over a given
graded algebra, with morphisms of degree zero; the category of all
modules over a given D G-algebra. Thus an abelian category is to be
an additive category d satisfying the following further axioms:

(Abel-1). For every morphism a of rat there exists a xE ker a and a
ac coker a.

(Abel-2). For x monic and a epic, xEkera if and only if a E coker x.

(Abel-3). Every morphism of sat can be factored as a=A a with A
monic and a epic.

(Abel-2) may be restated thus: a epic and me kera imply x1ja, and
dually. The three axioms together are subsumed in

Theorem 2.1. To each morphism a there exist 9norphismns r, a, 2, r
forming the following diagram with the indicated properties

a
a=Aa, x1a, 111r. (2.1

Here and below the dots designate unnamed objects.

Proof. By (Abel-3), write a = A a; by (Abel-1), x E ker a =ker a
and r E coker a = coker A exist; by (Abel-2), xua and Ali T. The converse
proof that this theorem implies the three axioms is left to the reader.

The diagram (2.1) is called an analysis of a, and a = ).or is a standard
factorization of a.

Proposition 2.2. The analysis of a morphism aEsl is a functor.
Here we regard the analysis (2.1) of a as a functor on the category

..W=Morph(d) of morphisms of a; the objects of.,' are the morphisms
a : A--i,. B of sat; the maps H: a ->a' of ,V are the pairs S = ($1, $2) of
morphisms of .sat with a'$1=$2a. The values of the "analysis" functor
lie in a similar category of diagrams from .sat. As the analysis is not
uniquely determined, we assert more exactly that any choice of ana-
lyses, one for each a, provides such a functor.
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Thus, given S = a -*a' and analyses of a and a', we assert
that there are unique morphisms rl rli, and , , of d which render the
diagram

% O T

J17.. J ' F'
% d l T'

a=1.a,

cc' = A'O

commutative. (In ordinary parlance, rl, is the map induced by , on the
kernels, etc.) Indeed, =E$a x=0 implies that ,x factors through
x'E ker a' as E,x =x'rl,; since x' is left cancellable, rl, is unique. Dually,

for a unique %. Also A' is left
cancellable, and factors through aEcokerx as
with rls unique. Then cancelling a, 62"'171-
This proves the diagram commutative and unique. Applied to 1: a--).a.
with two different analyses of cc, this argument gives equivalences rl
r12' 273; thus

Corollary 2.3. An analysis (2.1) o/ a is uniquely determined up to
equivalences o/ the three objects domain x, range a=domain d, range T.

In the analysis (2.1) the unique right equivalence class of A is the
image of a and the unique left equivalence class of a the coimage of a.
The image of at is a subobject of the range of a, the coimage a quotient
of the domain. An analysis of a: A-+B has the form of a commutative
diagram

kera coime

lima

B
icokera

with row and column short exact sequences. Here "ker a" of course
stands for any morphism in the class ker a. With the same convention
we may read off the relations

(ker a) h (coim a) , (im a) I (coker a) , (2.4)

coim at = coker (ker (x) , im a = ker (coker a) , (2-5)

ker a= ker (coim c) , coker a= coker (im a) . (2.6)

Hence also ker (coker (ker a)) = ker a, and dually.

Proposition 2.4. A morphism a is monic it and only if ker a=0,
epic it and only i/ coker a = 0, and an equivalence if and only i/ both
ker a and coker at are zero. In particular, a morphism which is both monic
and epic is an equivalence.
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Here kera=0 is short for 0 E ker a; it means that every element
of the class ker a is a zero morphism.

Proof. The definition states that a monic a has only zeros as right
annihilators, so that necessarily kera=0. Conversely, if 0Ekera, then
any right annihilator of a factors through zero, hence is zero, so that a
is monic by definition. The proof for a epic is dual; both proofs use
only the axioms of an additive category. Finally, an equivalence a is
both monic and epic, so that ker a = 0 = coker a. Conversely, if ker a =
0 = coker a, then i E ker 0 = ker (coker a) = im a by (2-5), so im a is equi-
valent to 1, hence an equivalence. Dually, coim a is an equivalence,
and thus so is a= (im a) (coim a).

Exact sequences operate as usual and can be defined in two (dual)
ways.

Proposition 2.5. 1/ the composite fla is defined, then im a=ker fl
it and only it coim fl= coker a.

When this is the case, we say that (a, #) is exact. In particular,
x1la implies (x, a) exact.

Proof. If im a = ker fi, then coim fi = coker (ker fi) = coker (im a) =
coker a by (2.5) and (2.6), and dually.

Proposition 2.6. The short live lemma holds in any abelian category.

Proof. Given a commutative diagram
x a

1% IP
0' ly

with x4a and x1a', we wish to prove that a, y monic imply fi monic,
and dually. But take /sEker#. Then flu=0 gives 0=a'f,u=y aµ;
since y is monic, a ,u = 0. This implies that ,u factors through x E ker a
as 1u= x v, for a v which is necessarily monic. Then x' a v = fl x v =fit = 0.
But x' and a are monic, so v=0 and thus kerfl=,u=xv=0, so fi is
monic, as desired.

The Five Lemma, the Four Lemma, and the 3x3 Lemma also hold
in an abelian category. The proofs, which depend on certain additional
techniques, will be given in Chap. XII.

Call an abelian category selective if

(Select 1). There is a function assigning to each pair of objects
A1, A., a direct sum diagram, of the form specified in (1.4).

(Select 2). There is a function selecting a unique representative x
for each subobject and a unique representative a for each quotient
object.
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In a selective abelian category sat we can assign an object K as
Kernel for each morphism a: Take K to be the domain of the selected
representative x: K-->A of the right equivalence class kera. (Observe
that now "Kernel" in capitals means an object, in lower case, a mor-
phism.) Similarly, we can assign Cokernels and form Quotients of sub-
objects: In this regard we operate as if we were in the category of all
R-modules. The various cited examples of abelian categories are all
selective; by the axiom of choice, any small abelian category is selec-
tive.

Note on Terminology. The possibility of doing homological algebra abstractly
in a suitable category was first demonstrated by MAcLANE [1950]. working in
an "abelian bicategory" which was substantially an abelian category with a can-
onical selection of representatives of subobjects and quotient objects. This canonical
selection proved cumbersome and was dropped at the price of the present arrange-
ment in which a subobject is not an object. The formulation of BUCHSBAUM [1955]
uses exact categories, which are our abelian categories minus the direct sum axiom,
while GROTHENDIECK's extensive study [1957] introduced the term "abelian
category" in the sense used here. Other authors have used "abelian category"
in other meanings. ATIYAH [1956] established the KRULL-SCHMIDT theorem stating
the uniqueness of a direct sum decomposition into indecomposable objects for an
abelian category satisfying a "bichain" condition. Set-theoretical questions about
abelian categories are considered in MACLANE [1961 b]. Various other types of cate-
gories may be constructed by imposing additional structure on the sets hom (A, B).
Thus a graded category (XII.4 below) has each hom(A, B) a graded group; a
differential category (EILENBERG-MOORE, unpublished) has each horn (A, B) a
positive complex of K-modules. One might wish categories with a tensor product
functor satisfying suitable axioms, as in our treatment (Chap. VI) of types of alge-
bras. Noetherian Categories have been studied by GABRIEL [1962].

Exercises
1. Given (Abel-2) and (Abel-3), show that (Abel-1) may be replaced by the

weaker statement that each epic has a kernel and each monic a cokernel.

2. In (2.2), show E1 monic implies 'h monic and F, monic implies % monic.

3. Categories of Diagrams

Let sat be an additive category and'' a category which is small
(i.e., the class of objects in' is a set). By Dgram ('e, .rat) we denote the
category with objects the covariant functors T: and morphisms
the natural transformations f : T--),.S of functors. The sum of two
natural transformations / and g: T --. S is defined for each object
C E'f by (f+g) (C) = f (C) +g (C). The axioms for an additive category hold
in Dgram ('', sat) ; in particular, the direct sum of two diagrams TI and
T. is (T1(D T$) (C) =TI (C) ®T$ (C) : Take the direct sum at each vertex.
Here, as in 1.8, we can regard each T: as a "diagram" in sit
with "pattern" W. For example, if 18e is the category with two objects
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C, C' and three morphisms 1c, 1c., and y: C-->C', then each
T(y) in nt, so that Dgram (' '0, .saf) is the

category Morph(.sd) of § 2, with objects the morphisms of d.

Proposition 3.1. (GROTHENDIECK [1957].) It the category ' is small
and rat is abelian, 9= Dgram ((f, .rat) is an abelian category. If f and g
are morphisms of 9, /1g in 9 if and only if, for each C, f in .sat.

Proof. Let f : T--* S be natural. Since is small, we can choose
for each object C a monic k (C) E ker / (C), with domain, say, K(C).
Thus k (C) : K(C) -s T(C) is a morphism of .rat. Since f is natural, each
y: C--.C' gives a commutative diagram

0 -+ K(C)
A(c)

- T(C) 1cc)
S (C)

T(y) S(Y)

0 - K(C') L T(C') lE')> S
(C)

with exact rows. Since f (C) [T (y) k (C)] = 0, and k (C) is the kernel
off (C'), there is a unique K(y) (dotted arrow) with T(y) k (C) = k (C) K(y).
It follows that K: -+ et with mapping function K(y) is a functor
and k: K->T natural. As a morphism of 9, k is monic, for if kh=0,
then (kh)(C)=k(C) h(C)=0 for each object C; since k(C) is monic
in sat, h(C)=O. Furthermore, if g: R -o-T is natural with f g = 0, each
g (C) factors uniquely through k (C) as g (C) = k (C) h (C), A: R -* K is
natural, and g=kh. Therefore kEkerg/. This argument with its dual
proves (Abel-1) in 9 and also gives

/ monic in 9 e:* each f (C) monic in rat,

kEker9/ q each k(C)Eker,ie/(C).

These statements with their duals prove (Abel-2).

To get a standard factorization (Abel-3) for /: T-*S, choose for
each C a standard factorization f (C) =l (C) t (C) ; the range R (C) of
t(C) yields a functor R:''-.d, t: T-sR is epic and 1: R-+S monic
in 9, and /=1 t. Since 'e is small, we can also select for each T a set
of representatives of the subobjects of T and for each S and T a set
of representatives for the extensions of S by T, thus proving that 9
satisfies the supplementary set-theoretical axioms (§ 1) for an additive
category.

Next consider the diagrams which involve zero objects. In any cate-
gory '8 call an object N a null object if for each object C of % there is
exactly one morphism C-+N and exactly one morphism N--> C; write
Oc: and 0c: NBC for these morphisms. Any two null objects
in W are equivalent, and any object equivalent to a null object is null.
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For given objects C and D, the composite morphism O'Oc: C-.N->D
is independent of the choice of the intermediate null object N; it may
be called the null morphism Oc : C -*D. A (new) null object may be
adjoined to any category. In an additive category the null objects
are exactly the zero objects, and the null morphism 0: C- .D is the
zero of horn (C, D).

If' and sat have null objects, a normalized functor T: W- *.d is
one with T(N) null for some (and hence for any) null N of W. It follows
that T maps null morphisms to null morphisms. DgramN ('(, sat) will
denote the category of all such T. Prop. 3.1 again applies.

An example is the category of complexes. To get this, take SB to be
the following small category:

N; ...4- -2

the objects of are all integers is plus a null object N; the niorphisms
are all identities, the null morphisms n---.N, and and
morphisms 8,,: n-* (n - 1). The composite of morphisms is defined by
requiring a.--, a. to be null. Take any abelian category W. A normalized
covariant functor T : '--sat is then given by . FT,,_14-T <- , a
sequence of objects and morphisms of sat, with so is just
a chain complex of objects from sat (in brief, an sat-complex). A natu-
ral transformation /: T-*S is a chain transformation. Therefore
DgramN(%', d) is the category of all d-complexes; by ProP.3.1 it is
an abelian category. If sat is selective, the homology objects H (T) =
Ker 2 /Im 0.,1 may be defined as usual; the reader should show that
each /: T-+S induces /,: so that H. is a covariant
functor on this category, and that homotopies have the usual properties.

Exercises

1. If a is abelian, show that the category of graded objects of it is abelian.

2. Describe an abelian category whose objects include the analyses (2.1).

3. Show that the category of positive complexes of objects from an abelian
category .d is abelian.

4. (MAc LANE (1950].) In a category V with null, assume that to each pair
of objects A1, A. there is a diagram A= in which the two morphisms
with range B are universal and the two with domain B couniversal. In each
hom(A, C) introduce a binary operation of addition as in Ex.1.3 and show this
addition commutative, associative, and distributive.

5. In Ex.4, assume also that there is a natural transformation VA: A-.A with
PA (V 1®14) d 1- 0 for all A. Use V to define - a for each morphism a, and prove
that W becomes an additive category.



260 Chapter IX. Relative Homological Algebra

4. Comparison of Allowable Resolutions

If A is an algebra over a fixed commutative ground ring K, many
concepts are appropriately taken "relative to V. Each left A-module
A is also a K-module and each A-module homomorphism a : A --*B
is also a homomorphism of K-modules, but not conversely. Call such a
homomorphism at "allowable" relative to (A, K) if there is a K-module
homomorphism t: B.... A (backwards!) with at ta=a. In particular, a
monomorphism a is allowable if there is a l with t a =1A ; that is, if at
has a left inverse t which is a K-module homomorphism but not neces-
sarily a homomorphism of A-modules. Similarly, a A-module epimor-
phism a is allowable if and only if it has a K-module right inverse t.
Hence a short exact sequence x1la of A-module homomorphisms is
allowable if x has a left K-inverse and a has a right K-inverse. These pro-
perties state that the sequence (x, a) becomes a direct sum sequence
when regarded just as a sequence of K-modules. More briefly, the
sequence of A-modules is K-split (for some authors, weakly split). The
use of such a class of "K-split" or "allowable" short exact sequences
is typical of relative homological algebra. We shall now show how the
comparison theorem for resolutions applies to any such situation.

In any abelian category .21, a class of of short exact sequences of .C11
will be called allowable if d contains, with any one short exact sequence
(x, a), all isomorphic short exact sequences of Qf and if also d contains
the short exact sequences (0, 1 A) and (1 A, 0) for any object A in an
allowable s.e.s. Write x it a if (x, a) is one of the short exact sequences
of d and call (x, a) d-allowable. Call a monic x of sad allowable and write
xE d. if x if a for some a; this is the case if and only if x8 (coker x).
Dually, call an epic a allowable and write a E d, if and only if (ker a) 8 a.
Since x f a if and only if x E 8,,, and x Ira, the class d is determined by the
class of allowable monics, or by the class d, of allowable epics. Thus
d, determines for x monic, x E d,,, if and only if coker x E d,. If x E
any left or right equivalent of x is also in

From the properties of an analysis of a we derive at once

Proposition 4.1. For a given allowable class d, the following condi-
tions on a morphism a are equivalent:

(i) imaEdm and coimaEd,;
(ii) keraEd,,, and cokeraEd,;
(iii) In a standard factorization a = 2 a, AE and aE B,;

(iv) Each analysis of a consists of allowable monics and epics.
The morphism a: AFB is called allowable when it satisfies these

conditions. If a happens to be monic, then coim a=14 , so a is allowable
and monic if and only if aE 8.. Likewise, the allowable morphisms which
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are epic are the elements of d',. The composite of allowable morphisms
need not be allowable.

For example, in the category of all left A-modules, the K-split short
exact sequences form an allowable class, and the corresponding allow-
able morphisms can be shown to be those a with a t a=a for some t,
as above. Additional properties which hold in this case will be studied
in Chap. XI I.

Let f be any allowable class in d. An 8-projective object P (or,
an allowable projective object) is any object P of at such that, for every
allowable epic a: B-+C, each morphism y: P-.C of rah can be factored
through a as y = a y' for some y': P.-* B. As before, this condition can
be formulated in several equivalent ways:

Proposition 4.2. For a given allowable class d'of short exact sequences
the following conditions on an object P are equivalent:

(i) P is an allowable projective;
(ii) Each a: B-->C in d', induces an epimorphism hom (P, B) -r

horn (P, C);
(iii) For each allowable short exact sequence A - B -+C the induced

sequence hom (P, A) --. horn (P, B) -D. hom (P, C) of abelian groups is short
exact.

We say that there are enough allowable projectives if to each object
C of tit there is at least one morphism e: P->C which is an allowable
epic with an allowable projective domain P. The dual notion is that
there are enough allowable injectives.

Any long exact sequence in an abelian category can be written as
a Yoneda composite of short exact sequences; we call the long exact
sequence allowable if and only if each of these short exact sequences
is allowable.

Consider a complex - ..+. -+Xl ->Xo-+C -*0 over an object
C of a. Call it an allowable resolution if it is an allowable long exact
sequence, and an allowable projective complex over C if each X. is an
allowable projective. If both conditions hold, it is an allowable pro-
jective resolution of C.

Theorem 4.3. (Comparison Theorem.) Let 8 be an allowable class
of short exact sequences in the abelian category At. If y: C-+C' is a mor-
phism ofd, s : X C an allowable projective complex over C and z': C'
an allowable resolution of C', then there is a chain transformation f: X ->X'
of morphisms of at with e' f =ye. Any two such chain transformations are
chain homotopic.

The proof is substantially a repetition of the previous argument for
the case of modules (Thm. III.6.1). Since X0 is an allowable projective
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and E': Xo --. C' an allowable epic, y e : Xo -. C factors as e'/o for some /o .

We next wish to construct so that the diagram

XI e
:l,
V e'

it, IV

Xi . X01 `- C' , 0
a A

will be commutative. Take a standard factorization F= A a as dis-
played; since X' is allowable, .6e'. But e'/oa=yea=0, so /oa factors
through A E ker e' as 43=A for some P. Now a is an allowable epic
and X1 an allowable projective, soft=a/1 for some /1, and a'/I=2a/1=
A P =foa, as desired. The construction of /_, / ... and of the homotopy
is similar.

Note on injective envelopes. A family {a,} of subobjects of A is directed by
inclusion if each pair of subobjects a+, a, of the family is contained in a third
subobject of the family (in the obvious sense of "contained", as defined in Chap. XI I
below). An abelian category ,d satisfies GROTHENDIECx's axiom AB-5 if for each
A, each subobject b, and each family aI directed by inclusion, bn(U,al) =U,(bnat)
holds in the lattice of subobjects of Wand if A( has infinite direct sums. An object
U is a generator of if if to each non-zero morphism a: A - B there is a morphism
e: U-.A with a$# 0. Both conditions hold in the category of all A-modules,
with A a generator. GROTHENDIECK [1957, Thm.i.io.1] shows that an abelian
category with AB-5 and a generator has enough injectives; MITCHELL [1962]
constructs the ECKMANN-SCHOPF injective envelope under these hypotheses. In
particular this shows that there are enough injectives in the category of sheaves
over a fixed topological space (though in this case there are not enough projectives) :
See GROTHENDIECK [1957]. GODEMENT (1958).

Exercise
1. (Characterization of allowable short exact sequences by allowable projec-

tives [HELLER 1958].) If if is an allowable class of short exact sequences satis-
fying the condition a/3E6e= aE6, and if there are enough allowable projectives,
show that an epic a: B - C is allowable if and only if hom (P, B) --b- hom (P. C)
is an epimorphism for all allowable projectives P.

5. Relative Abelian Categories

Let S be a subring of R with the same identity as R. Some short
exact sequences of R-modules will split when regarded as sequences
of S-modules. Each R-module A is also an S-module,A, by pull-back
along the injection t: S--.R, and a function which is an R-module
homomorphism a : A -. B is also an S-module homomorphism o c: A
Thus (A) _ ,A, 0 (a) _ ,a is a functor 0 on the category sat of all
left R-modules to the category ..iE' of all left S-modules; it "forgets"
or "neglects" part of the structure of an R-module. We have in mind
many other examples, such as modules over an algebra A and modules
over the ground ring K, as explained in the introduction of § 4. In each
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example there will be a similar functor . Let us state the appropriate
general properties of such a functor.

A relative abelian category will mean a pair of selective abelian
categories a1 and At together with a covariant functor : rah -*. rt'

(write A = A , a = which is additive, exact, and faithful.
Additive means that a, fEhom,y(A, B) implies in

hom, (A0 , It follows that 00 = 0 and that (A® B
a a in At. It follows that x

monic and a epic in V imply x monic and a epic in .,', that
carries each analysis (2.1) of a in V into an analysis of a and hence
that x E kerfi implies xo E kerflo , and similarly for coker, im, and coim.
Moreover, carries exact sequences into exact sequences.

Faith/ul means that a0=0 implies a = 0. It follows that A3 = 0
implies A = 0', but A0 = Bo need not imply A = B. However ao epic
(or monic) in .4' implies a epic (or monic, respectively) in d.

Write objects of W as A, B, C, ... and morphisms a: A-*B in Greek
letters with solid arrows. Write objects of .,' as L, M, N, ... and mor-
phisms t : L ---M in lower case Latin letters with broken arrows.

A short exact sequence x a in d is said to be relatively split (or,
-split) if the exact sequence x u ao splits in X; that is, if a has a
right inverse k or (equivalently) xo has a left inverse t in This gives
two diagrams

N O

A - B->C,

the first an exact sequence in W, the second a direct sum diagram
in W. For simplicity, we often replace these by a single schematic dia-
gram

,, k

A B -C
r a

(5.2)

(solid arrows for the sd part, solid and broken arrows for.,'). Similarly
the equations

t a x=0,

valid in the direct sum diagram (5.1), will be written schematically as

tx=1A, ax=0, xt±ka=1B, ...,

without the , so that a composite t x is short for t x in .,'.
The class of -split short exact sequences of .V is allowable in the

sense of § 4; the conditions of Prop. 4.1 then describe certain morphisms
a of ssf as allowable (say, -allowable). In detail,
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Proposition 5.1. A morphism a: A--*B with standard factorization
x = A a is -allowable in the relative abelian category i f and only i f
it satisfies any one of the following equivalent conditions:

(i) A0 has a left inverse and a0 a right inverse in .,ff;
(ii) (im a)0 and (ker a)0 have left inverses in .4';

(iii) There is a morphism u: its -At with a.aa0=a0;
(iv) There is a morphism v: B----A in.,d' with both

a0va0=a0, va0v=v.

Condition (ii) may be read: The image of at is an.4'-direct summand
of B. and the kernel of a an .4'-direct summand of AD - or dually.

Proof. The equivalence of (i), (ii), and the allowability of a is im-
mediate, by Prop.4.1. If 0=1 and ak=1, as in

C A

A'% B, a=A a,

then v=kt: B --A has ava=Aakt2a=Aa=a and vav=ktAakt=
kI=v; this proves (i) (iv). Trivially, (iv)=(iii). Finally, to get (iii) =
(i), assume aua=a and set a=Aa. Thus Aauha=?.a with A monic
(in .XI) and a epic implies au).=I, so A has a left inverse au in .,k
and a a right inverse uA.

If X is an 0-complex in the sense of § 3 (X objects and a mor-
phisms in .m') then oX is an -f-complex; since is exact, it follows that
O

Theorem 5.2. If X is an sat-complex (not necessarily positive) then
X has a contracting homotopy s with as+ s a =1 (and each s.: X.----

X.,1 a morphism of .4') if and only if all H. (X) vanish and all boundary
homomorphisms a are allowable. When these conditions hold, s may be
chosen so that ss=0.

Proof. Given s, we know that all o H. (X) - H. (O X) = o. But
is faithful, so Moreover, a=as a+s a s=a s a, so each a
is allowable by part (iii) of the preceding proposition.

Conversely, suppose the sequence exact
and all a allowable. Take a standard factorization a=Aa for each
Then X factors into -split short exact sequences D.-X.--J.-D._1, and
each X,, is an At-direct sum via morphisms as in the sche-
matic diagram

k 1 k l
o D,, X,, o

with the usual direct sum identities

lx.=At+ka, to=1, ak=1, tk=0, aA=0
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in ..R. Now define each s,,: X..--X.+, as so that sa=0 and

as+sa=A(ak)t+k(IA)a=,fit+ka=1X,,.

Now a complex e: X-* C is allowable if both e: X0-* C and also each
a,,: are allowable, and a resolution if e: H0(X)=C and

for n>0.

Corollary 5.3. A complex s: X -*C in d over C is a O-allowable
resolution of C it and only it the complex eo : X0 -- Co in ,f over Co
has a contracting homotopy. When this is the case, there is such a homotopy
s with ss = 0.

As usual, s consists of morphisms s_1: C---'X0, s.: X.--- - X.+, in -W
with

es_1=1c, aSo+S_1e=1X,, as+sa=1X,,, n>0.

The condition s2=0 means for all n=0, 1, .... The proof
is immediate.

A O-allowable projective object P in d will also be called a relative
projective object for O

Any projective object P in sal is a lortiori relatively projective,
but this does not show that there are enough relative projectives: If
we write an object as the image PEA of a projective, we do not know
PEA to be an allowable epic.

Exercises
(The first three exercises deal with the absolute case of=.4'.)
1. A complex X in an abelian category d has a contracting homotopy s if

and only if (im an+1 coim a ): - is a direct sum representation of each X,,.
When these conditions hold, there is an s with ss = 0.

2. A complex X of modules has a contracting homotopy if and only if, for
each n, the module of n-cycles is a direct summand of X,,.

3. A (not necessarily positive) complex X of free abelian groups has homo-
morphisms s: with as+sa= I if and only if all vanish.

4. Deduce Thm.5.2 from the result of Ex.1.

6. Relative Resolutions

To construct enough relative projectives, we further specialize our
relative abelian categories. By a resolvent pair 9 of categories we mean
a relative abelian category O:together with

(i) A covariant functor F:..&
(ii) A natural transformation e : OF, for I.0 the identity functor,

such that every morphism u: M +A0 in.4" has a factorization u=apeM
for a unique morphism a: F(M) -+A of d.
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Thus each M determines FM in .rah and a morphism eM : M- O FM,
and each u lifts uniquely to FM, as in the schematic diagram

A f
sx : : Y
M

in other words, FM is the "relatively free" object in d to the given
object M in .,&. The lifting property states that a*a = ao a defines a
natural isomorphism

e*: homd(FM, A) =hom.,4(M, A);

this last property states that the functor d is a le/i adjoint
[KAN 1958] of the functor 0:(see note below).

Conversely, the conditions (i) and (ii) for a resolvent pair may be
replaced by the requirement that the functor has a left adjoint F.
Indeed, this requirement means that there is a natural isomorphism

99: hom,r(FM, A)=hom,A,(M, A)

(of abelian groups). Take A =FM in this isomorphism; then 1FM in
the group on the left gives p(1FM)=eM: That e:
is a natural transformation follows by taking any µ: M --* M' and apply-
ing 4p to the diagram

hom f(FM, FM') hom,,r(FM', FM').

Next take any A and any a: FM-*A. Since q, is natural, the diagram

hom.w(F M, FM)-q'+ hom,& (M, O FM)

1 I-.
homd(FM, A) v hom_f (M, A)

commutes. Take 1FM in the group at the upper left; it goes to a below
and to em at the right, so commutativity gives 9' a = ao em. Since p
is an isomorphism, this proves that each u: A in the group at
the lower right has the form u = ao eM for a unique a, as required in our
previous condition (ii).

For example, two rings R) S yield a resolvent pair, denoted . (R, S)
or just (R, S), with d and .' the categories of R- and S-modules,
respectively, the usual "neglect" functor, and

F(M)=R®SM, eM(m)=1®m E F(M).

Again, for each K-algebra A there is a resolvent pair with .sit the left
A-modules, ..0 the K-modules, F(M) =A®KM (Prop. VI.8.2). Other
examples of resolvent pairs appear in Ex.2 below.
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Theorem 6.1. In a resolvent pair of categories, each F(M) is relatively
projective in sad. For each object A, the factorization 1A =a eAo yields a
0-allowable epimorphism a: F(A0) --),,A. Hence there are enough relative
projectives.

The proof that F(M) is relatively projective is the familiar argument
(Lemma 1.5.4) that each free module is projective. Indeed, let y: F(M) -+C
be a morphism and a: B-->C an allowable epic of d, so that ao has a
right inverse k. Form the schematic diagram

M `'` FM
kyoeM=kyeM a

B -i,

acl k=1.

The composite kyeM displayed factors uniquely through FM as kyeM =
gee for some j9: FM--.B in V. Hence afeM=yeM; but yeM factors
uniquely through eM, so afl=y; this states that FM is relatively pro-
jective.

The usual comparison theorem maps a projective complex to a
resolution. The comparison of a relatively free complex to an allowable
resolution can be put in canonical form. A relatively free complex ex: X--*A
over A in d has each X. of the form F(M,,) for some object M of .4';
we write e for em.: M.-+.X.. An allowable resolution ey: Y-+B has
an .,d'-contracting homotopy s with s2=0, as in Cor. 5.3 (in particular,
s_1: B- -Y0).

Theorem 6.2. Let ex: X -*A be a relatively free complex over A
in 0 and E1.: Y--).B an allowable resolution. Each morphism a: A--3..B
in Qf lifts to a unique chain transformation p: X -*Y of d-complexes
such that each factors through s.-I. This q' is determined
from the data e and s by the recursive formulas

q)oeo=s_1a Exeo, 9,.+le,v+1=s p*a

We call q' the canonical comparison for the given representation
X = F(MA) and the given homotopy s in Y. In case .4' is a category
of modules, the condition that each factors through sa_1 can be
written

q' e0Mo<s_1B, q'4 l ef+ 1 M +, < sAY8.

We write this more briefly as 97eM < s Y.

Proof. We construct p,,: with EYq'o=a ex, a'»+1=4'.a
and show it unique, all by induction on n. If ggoeo factors through s_,,
then ss=0 gives so9oeo=0 and

q'oeo=1 q'oeo= (aso-f- S_lEy) poeo=s_leyq'oeo=s_la exeo.
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By the lifting property, there is a unique such 4po; this qo does satisfy
ey po = a ex. Given pro, ..., unique, any which factors through

has hence

Twew=I T.ew=

This uniquely determines ip so as to satisfy The proof
is complete.

Next, each object C of sat has a canonical -split resolution. Write
PC for for the n-fold iteration of F, and construct the
objects

P.(C)= C)=F"FC, n=0, 1. 2, ...

of sl. Define morphisms s between the corresponding objects

C. ... (6.2)

in _W as s

Theorem {{6.3. There are unique morrphisms

e: Y0(C)-* C, n=1,2,...

of d which make P (9, C) = {fl (R, C)) a relatively free allowable resolu-
tion of C with s as contracting homotopy in .4'. This resolution, with its
contracting homotopy, is a covariant functor of C.

We do not claim s$= 0 - because it usually isn't so.

Proof. We wish to fill in the schematic diagram
a, a, a,

t-, s, t,

at the solid arrows (morphisms of .rat) to get a contracting homotopy.
By the properties of e, Ic factors uniquely as Ic=E ec; this gives e
uniquely and shows e allowable. The boundary operators are now
defined by recursion so that s will be a contracting homotopy; given E,
I - s_, a factors uniquely as a so =1- s_, a for some 0,: and
similarly fl.-O. determines given Using
this equation,

aw=Sw-taw-, an

so, by induction and the uniqueness of the factorization, e0=0 and
a3=0. Moreover, s aw+, so is allowable.

This resolution # (9, C) is clearly functorial; it is called the (unnormal-
ized) bar resolution; for a concrete example, see § 8 below.
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A "relative" ext bifunctor may now be defined by

Extl(C, A)=H"(hom,,. (fi(9, C), A)). (6.3)

The comparison theorem shows that we can equally well use any O-split
relatively projective resolution s: X-.C to calculate Ext.q=Exto as

Ext;r (C, A)=H"(homd (X, A)); (6.4)

note that, in each dimension n, hom,r (X", A) stands for the group of
all morphisms $: X,,-+A in nf - not just the allowable ones. In partic-
ular, Ext°yg (C, A) = hom,r (C, A). Replacement of C by a short exact
sequence E will give the usual long exact sequence for Ext". as in
Thm.III.9.1, provided E is O-split. The analogous result holds if A
is replaced by a O-split short exact sequence; the proof uses either an
exact sequence of resolutions (Ex. 111.9.1) or the assumption that there
are enough relative injectives. These long exact sequences are actually
valid in any relative abelian category without the assumption that
there are enough relative projectives or injectives. The proof, to be
given in Chap. XII, depends on the interpretation of Exto (C. A) as
congruence classes of n-fold, [3-split exact sequences from A to C.
In particular, Exto , unlike Exto, depends on O.

Note on Adjoints. If 1e and of are categories, a functor T: 'B--* if is called
a right adjoint of S: if there is a natural equivalence

hom,y (A, T(C)) homy (S (A), C);

here both sides are bifunctors of A and C with values in the category of sets (or,
if ' and a/ are additive, in the category of abelian groups). For example, adjoint
associativity

Horn (A ®B, C) as Hom (A, Horn (B, C) )

states for fixed B that T(C) - Horn (B, C) is a right adjoint to S(A) - A®B. There
are many other examples [KAN 1958].

Exercises
1. If the relative abelian category 0 is a resolvent pair of categories for two

functors F and F', show that there is a unique natural isomorphism ri:
with ,e=e'.

2. Construct resolvent pairs of categories in the following cases:
(a) For graded rings R) S; .a/ and X as in the text.
(b) For L): R'-..R any ring homomorphism, a= left R-modules, X= left

R'-modules, OA=QA the R-module A pulled back along a to be an R'-module.
(c) For it, £ both K-algebras, .d= A-2-bimodules, .1= K-modules.

3. In case (b) of Ex. 2 show that the allowable exact sequences and the relative
Ext functor are identical with those for A= (R. 5) when S = nR'.
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7. The Categorical Bar Resolution

The (normalized) bar resolution e: B(Z(II))-+Z for a group ring
Z(17), as presented in Chap. IV, provides a standard Z-split resolution
of the trivial 17-module Z. For each H-module A the cohomology of A
is defined via the bar resolution as H"(Homn(B(Z(I7)), A)). Hence

H"(I7, A)=Extzlnl(Z, A)=Ext"(Z(fl),Z)(Z, A).

In other words, the cohomology of a group is an instance of both the
absolute and relative functor Ext. The same (normalized) bar resolution
will be used in the next chapter in many other cases. It may be defined
in the context of any resolvent pair

9: O : sxt .,', F:.,# -->d, er : M . O FM

of categories. To each object ME. f, select pM E coker eM and F(M)=
Coker em. Thus

M 0 (7.1)

is exact in .AL , F: f ,-*.4' is a covariant functor, and p : O F-->F is a
natural transformation. Apply OF to FM to form the diagram

M °'`+ O F M Pit FM ---. 0
,sY

(7.2)

O FFM

the composite sM=e'p is a natural transformation OF----OFF. Its
characteristic property is

Lemma 7.1. The morphisms e = eM and s = sM induce for every object
A a left exact sequence of abelian groups,

0-.homd(FFM,A) hom,0 (o FM, OA) (M, OA).

Proof. Each morphism a: FFM->A of d yields a0: 0 FFM'"
O A, and is the composite a0 s: O FM O A, a morphism in .4'.
Clearly e=a00=0. If 0=aos=a0e'p, with p epic, then
a0 e'= 0. But the factorization of 0 through e' is unique, so a = 0. Next,
if some v : 0 FM A has e* v = 0, construct the commutative diagram

M ` OFFM
v W v

OA = OA= OA
as follows. Since v e = 0, v factors through p = coker eM as v= tip. By
the definition of e', u in turn factors through e' as a=aoe' for some a.
All told, v = a0 e' p =aos, which gives the asserted exactness.
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Each object C of W yields a sequence of objects M, =F" C of .,W.
The bar resolution consists of the associated relatively free objects

B"(C)=B" (9, n=0, 1, 2, ... (7.3)

of W. Define morphisms s between the corresponding "neglected" objects,

C.,_ BOC-s%. B1C-14 (7.4)

of.4' by and

s"=s(M"): (7.5)

This construction at once gives s2=0.

Theorem 7.2. There are unique morphisms

e: BO(C)-*C, a": B"(C)-->B"-1(C), n=1, 2, ...

of d which make B (9, C) = {B,, (9, C)) an d-complex and a relatively
free allowable resolution of C with s as contracting homotopy of square
zero in .,d'. This resolution, with its contracting homotopy, is a covariant
/unctor o/ C.

Proof. We are required to fill in the schematic diagram
a,

O'B,C
e.

(7.6)
$-I S. 4 S,

at the solid arrows (morphisms of d) so as to satisfy the conditions

ES-].=I, w "1Sp=1-S_1E, aw+1S"=1-S"-la", n>0, (7.7)

for a contracting homotopy. But 1: C --). C factors through ea = s_ 1 as
I= e s_ 1; this gives e. The morphisms a" are then constructed by re-
cursion. Given al, ..., 8" satisfying (7.7),

(1 -S"-1a")S"-1=S"-1-5"-1(1 -S"-2a"-1)-O+S"-1S"-Sa"-1-0;

since s"_1=ep with p epic, (1-s"_1a")e=0. By Lemma 7.1, 1-s"_la"
factors as (i-sa_1a")=as", which gives a"+1=a satisfying (7.7). These
morphisms e, a" are uniquely determined, again by Lemma 7.1. More-
over, (7.7) gives

a"a"+IS"=a"-a"S"-la"=a"-

so an induction using Lemma 7.1 shows a a1= 0 and a= = 0. This shows
B (R, C) a complex over C and completes the proof of the theorem.

We call B (5@, C) the bar resolution of C. By the comparison theorem,
it is chain equivalent to our previous "unnormalized" bar resolution
ft (_Q, C) (see Ex.3).
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To show that this description of the bar resolution agrees with the
previous usage for a group 17, take .W to be the category of left 17-
modules, .4' that of abelian groups, F(M) =Z (17) ®M, and em (m) =
1®m for each mEM. This gives a resolvent pair of categories. Now the
sequence Z -.Z (17) (17)/Z of free abelian groups is exact, hence so
is its tensor product with M:

0-+M=Z®M- .F(M)=Z(II)®M-3-- [Z(II)/Z] ®M-.0.

Therefore 1'(M)=[Z(II)/Z]®M. Take for C the trivial 17-module Z.
Then

F" (Z) = [Z (17)/Z] ®... ®[Z (17)/Z] , n factors.

But Z(II)/Z is the free abelian group with generators all x$1 in 17.
Hence F" (Z) may be identified with the free abelian group generated
by all symbols [xi) ... Jx"], with no x; in 17 equal to 1. Then B" (., Z) _
Z (17) ®F" (Z) is the free abelian group with generators all x [xI I ... I x"]
with xE17, while the map s=ep: B.---+B.,, defined above becomes

s(x[x11 ... I x"])=[xI xi1 ... I x"J,

zero when x= 1. This is exactly the contracting homotopy s used for
the bar resolution B(Z(11)) in (IV.5.2). The boundary operators are
uniquely determined by s (in Chap. IV as here), so must agree. In short,
we have proved that in this resolvent pair of categories

B(. ,Z)=B(Z(17)).

The next chapter will develop explicit formulas in other cases.

Exercises
1. Show that the long sequence (7.4) is exact in ..t.
2. Show that the canonical comparison ig (9, C) - B (R, C) is epic.
3. For the case of groups, show that P gives the unnormalized bar resolution.
The following three exercises consider the relative ext functor for the rings

Z (17) and Z.

4. For left II-modules A. B, and C, make B®ZC and Hom2(C, A) left 17-
modules with operators x(b®c) a xb®xc and (xa)c= x[a(x'lc)], a: C-+A.
respectively, and establish a natural isomorphism,

Homn(B, Hom2(C, A)) sm Homn(B®ZC, A).

5. If A is relatively injectivc or C relatively projective, show that Hom2(C. A),
with operators as in Ex. 4, is relatively injective.

6. Using axioms for the relative ext functor, establish a natural isomorphism

Ext2inl Z(C, A) s-- Exttfnl Z(Z, Hom2(C, A)).

With this result the following exercises, suggested to me by J. SCHMID, will yield
the cup product reduction theorem as stated in VIII.9 (ci. ScH11ID [1963;).
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7. From a presentation I7= FIR with F a free group obtain a group extension
E: Re s where [R. R] is the commutator subgroup of R, Re = R/[R, R]
and B'= F/[R, R].

8. The characteristic class X of the group extension E, described as in IV.6,
is a two-fold Z-split extension of Re by Z. Show that the intermediate module M
in X is free; specifically, let F be the free group on generators g, S the free 17-
module on corresponding generators g' and show that g'-. (cls g]E M is an isomor-
phism S M. (Hint: Use Lemma IV.7.2 to construct an inverse.)

9. Let A be a II-module. Show that the iterated connecting homomorphism
for X yields an isomorphism Ext" (Ro, A) s A) for the relative ext
functor and it > 0 and hence, by Ex.6, isomorphisms

H"+2(17, A) sH"(17, Homj(Ro. A)), n>o.
H'(H, A) esCoker[Homn(M, A) -Homf(Ro, A)].

10. For n > 0 and G a right 77-module obtain the "dual" reduction theorem

H"+2(n. G) rsH,,(II, G®yRu).

8. Relative Torsion Products
Let S be a subring of the ring R, with the same identity. This gives

a resolvent pair . = (R, S) of categories, with W the left R-modules,
..0 the left S-modules, (A) the functor which remembers only the
S-module structure, F(M) = R ®s M, and a (m) =1®m. A -split short
exact sequence is thus an exact sequence of R-modules which splits
when regarded as a sequence of S-modules; call such a sequence S-split.
Label the corresponding allowable homomorphisms (R, S)-allowable,
and the relative projectives (R, S)-projectives.

Define a complex ft (R) of R-modules over R,

R' flo (R) i-P (R) E--#s (R) E- .. .

by rg"(R)=R®R"®R=R"+*, with n+2 factors, e(ro®rl)=ror1, ®
short for 0s, and

(ro®... ®r"+1)= (-1)`ro®... ®r;r,+10 ... ®r"+1. (8.1)to
Theorem 8.1. For RC S, e: fg (R) --,R is a complex o/ R-bimoduks

over R with a contracting homotopy s: R"+s-++a, defined for n2!1 by
s (ro ®... ®r"+1) =1®ro ®... ®r"+1, (8.2)

which is a homomorphism o/ k/t-S, right-R bimodules.

Proof. First esro-s(1®ro)=ro, so es=1. Let u=r0®...®r"+1
with n z 0. The first term of as u is u ; the remaining terms are - s au ;
hence as+ s a =1, as desired. From the definition it follows that e a = 0,
08=0. By symmetry there is also a contracting homotopy

t (r®®... ®r"+1) =ro ®... ®r"+1®1.

which is an R-S-bimodule homomorphism.
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Corollary 8.2 For each left R-module C, P (R) ®R C is the bar resolu-
tion fi(C) for the resolvent pair (R, S). Symmetrically, for each right
R-module G, G ®R fi (R) with contracting homotopy I is the (rigid) bar
resolution fi (G).

Proof. Since R ®R C=C, one forms fl (R) ®R C simply by replacing
the last argument r,,.,, in (8.1) and (8.2) above by CEC. Then #. (R) ®RC
=F"F(C), the contracting homotopy s of (8.2) is that of (6.2), and 8
is the unique boundary with s as contracting homotopy, by Thm.6.3.
In particular, fi(R) itself is just the bar resolution (left or right) of the
R-module R.

Observe that the boundary operator (8.1) in f(R) is the alternating
sum of the face operators d,: defined by

(8.3)

i = 0, ..., n. The corresponding degeneracy operators si : P. are

si(ro®... (a r,.+i)=ro®... ®ri®1®ri+i®... ®r"+i, (8.4)

the usual identities for di and s1 hold, and ft (R) is a simplicial R-bimodule
in the sense of VIII.5. The reader may show that the simplicial normal-
ization of ft (R) yields the normalized bar resolution B (R).

Take R-modules GR and RC. The (absolute) torsion products Toe. (G, C)
are calculated from a projective resolution e: X--).C as H (G ®R X).
In the present relative case, ft (R) ®R C provides a canonical and func-
torial resolution, so we define the n-th relative torsion product as:

Tor(R.s)(G, C)=H"(G(DRfl(R) ®RC); (8.5)

it is a covariant bifunctor of G and C, and is manifestly symmetric
in G and C. Since G ®R R = G and R ®R C = C, the group of n-chains of
the complex G ®R ft (R) ®R C is G ®S R" ®s C. The boundary formula
is obtained from (8.1) by replacing ro by gEG and r"i., by cEC; the com-
plex may be viewed as a simplicial abelian group.

If E: A m. B -.C is an S-split short exact sequence of left R-modules,
its tensor product (over S) with G ® R" is still S-split, hence exact,
and so is the sequence of complexes

G ®R P (R) ®R A r G &#(R) ®R B -,.G ®R f (R) ®R C .

The resulting connecting homomorphisms

E": Tor(R,s)(G, C)--).Tor(,, )(G, A), n>0,
are natural in G and E, and yield the exactness of the corresponding
long exact sequence

_*Tor( ,R.s)(G, A)-.Tor( R-s) (G, C)

(8.6)
E. Tor( -) (G, A) -, ... ,
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just as for the absolute torsion product, except that here E must be
S-split. If E': G >- K -D.L is an S-split short exact sequence of right
R-modules, the same argument (interchanging left and right) gives
natural connecting homomorphisms

Tor;,R,s>(L, C)-*TorpR-ii(G, C), n>0,

and the corresponding long exact sequence in the first argument.

Theorem 8.3. For rings R) S and modules GR, RC, each Tor( , S) (G, C)
is a covariant bifunctor of G and C with

Torg', S) (G, C) G OR C. (natural), (8.7)

Tor(R,1) (P', C) = O = Tor(R. s) (G, P) , n>0, (8.8)

when P' and P are (R, S)-projective right and left modules, respectively.
I/ E' and E are S-split short exact sequences of right and left R-modules,
respectively, the corresponding connecting homomorphisms are natural and
yield long exact sequences (8.6), and symmetrically.

In particular, this Theorem leads to a characterization of the relative
torsion products as functors of the second argument, by properties
(8.7), (8.8), and (8.6), just as in Thm.V.8.5; for this purpose we may
replace "(R, S)-projective" by "(R, S)-free" in (8.8).

We need only prove (8.7) and (8.8). First #, (R) --)--lo (R) -*0 is
exact; since tensor products carry right exact sequences into right
exact sequences, so is

G®R#1(R) ®RC-iG®RR®RC-+0.
The last term is G ®RC; this gives (8.7). To prove (8.8), use

Lemma 8.4. For rings R) S, i/ P is an (R, : )-projective right R-module
and E: A - B-->C an S-split short exact sequ ice of left R-modules, then
0 -* P OR A -3"P OR B -> P OR C -s0 is an exact sequence o l abelian groups.

Proof. Since there are enough relatively free right modules M®SR,
each P is an S-split quotient and hence an R-direct summand of some
M®SR. Hence it suffices to prove the Lemma with P=M®SR. Then
P ®R A = M ®S R ®R A = M ®S A , so the sequence in question is iso-
morphic to M ®S A -,.M ®s B --*M ®s C, which S-splits because E does,
and hence is exact.

Now we prove (8.8). The complex # (R) ORC over C has a left S-
module contracting homotopy s as in (8.2). Hence, by the Lemma,
P'®R(0(R) OR C) is exact over P'®RC, so has homology zero in di-
mensions n>0.

The relative torsion products can also be calculated from other
resolutions.
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Theorem 8.5. It e: Y-+G is an S-split resolution of the right R-
module G by (R, S)-projective modules Y,,, there is a canonical isomorphism

Tor(R-S) (G, C) =H. (Y®R C), (8.9)

natural in C. If E is any S-split short exact sequence of left R-modules,
the connecting homomorphisms E. of (8.6) are mapped by the isomorphism
(8.9) into the homology connecting homomorphism of the exact sequence
Y®RA Y®RB-Y®RC of complexes. Symmetrically, Tor may be
calculated from an S-split, (R, S)-projective resolution of C by left R-
modules.

Proof. The relative comparison theorem gives a right R-module
chain transformation ip: G OR ft (R) --*Y, unique up to homotopy, which
induces the isomorphism (8.9). Since each Y. is (R, S)-projective, each
Y OR A ).+Y OR B ®RC is exact by Lemma 8.4. The chain trans-
formation 9) maps the previous exact sequence of complexes onto this
exact sequence ; hence by naturality of the connecting homomorphism
of a sequence of complexes, this yields the method stated for the cal-
culation of the connecting homomorphisms E.

Since an (R, S)-projective P' has the resolution 0-*P'-±P'- .0, this
gives an immediate proof of (8.8). We leave the reader to verify the
other properties of the relative torsion product: Additivity in each
argument, anti-commutation of E. with E.'_1 (E'-,E,=-F-.-,E' as
in Thm. V.7.7) , and the additivity of E. in E.

The relative torsion product can be considered as a functor of the
pair of rings R ) S. More specifically, consider objects (R, S; G, C, A)
consisting of rings R) S and modules GR, RC, RA. A change of rings
(+ in G and C, - in A) is a quadruple

X = (e. y, a) : (R, S; G, C, A) -* (R', S'; G', C', A') (8.10)

where o : R -+R' is a ring homomorphism with a (S) < S', while

C: G--* GQ, Y: C--)-.QC', a: QA'-+A

are homomorphisms of R-modules (note that the direction of a is opposite
that for y). These objects and morphisms X, with composition (e, C, y, a)
(e'. C', y'.,%') = (e e', C l;', y y', a'a) constitute the change of rings category
.9`' -; omitting A and a gives a "covariant" change of rings category
R+ +. Each

X

induces
p QS ®e"®y. G ®RQ an (R) ®RC-+G'®R'YM(R') ®R'C'

a chain transformation, and thence, by the definition (8.5), a map

Xs : Tor(R,sl (G, C) -*Tor!R''s') (G', C')
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which makes the relative torsion product Tore a covariant functor on
yi" i to abelian groups. The homomorphism x, can also be calculated
from S-split relatively free resolutions 6: Y--*G, t': Y'--*G'; indeed,
by pull-back, e': Y,'-->G,' is a map of complexes of R-modules with an
S-module splitting homotopy, so the comparison theorem (relatively
projective complexes to split resolutions) lifts C: G-->GQ to a chain
transformation q: Y--o.YQ. The induced map on homology composed
with the pull-back map YQ ®R QC'->'Y'®R. C' gives x; as the composite of

H"(Y(&RC) H"(Yo
(&R QC') -sH"(Y'(&,eC')

with the isomorphisms (8.9).
By analogy with Tor,(,'S), we write Ext'(Rs) for the corresponding

relative ext functor. Thus by (6.3)

Ext-(R,s) (C, A) = H" (HomR (fi (R) ®RC, A))

H"(HomR_R(f(R), Homz(C, A))),

where the isomorphism on the right is by adjoint associativity, and
Homz (C, A) is an R-bimodule. This Ext is a contravariant functor on
the change of rings category M+- (omit G and C in (8.10) above). When
R is fixed and p =1, this includes the usual description of Ext*(R,S) (C, A)
as a bifunctor, contravariant in C and covariant in A.

Exercises
The first six of the following exercises are taken from HOCHSCHILD [1956).

1. Every (R, S)-projective P is an R-direct summand of some R®SA.

2. For each SM, HomS (R, M) is (R, S)-relative injective.

3. Prove: There are enough (R, S)-relative injectives.

4. If P is (R. S)-projective and a: A-.B a homomorphism of R-modules
with HomR(P, A) -HomR(P, B), then HomR(P, A) iHomR(P, B).

5. For P as in Ex.4 and at a map of right R-modules, A®SP'-' B®SP monic
implies 4®R'-' B ®RP monic.

6. For (R, S) -projective resolutions X -+C and Y--p. G which are S-split, prove
that Tor(RS) (G, C) H" (Y®RX).

7. Give a description for elements of Tor(R.S)(G, A) analogous to the elements
(ii, L, v) used in V.7.

8. Show by example that ExtJR s) * Ext}t.

9. Show that i4 (R) is the (unnormalized) bar resolution for the resolvent
pair 9?' with d = R-bimodules, ..t = S-R-bimodules, F(M) = R ®SM and e (m) _
1®m.

10. For bY' as in Ex. 9. show that Ext(R S) (C, A) g5 Homz(C, A)) and
Tor(R-S) (G, C) ak Tore' (R. C®ZG). Here C®ZGisthebimodulewith r(c®g)-rc®g,
(c®g)r=c®gr.
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9. Direct Products of Rings

The direct product R=R'xR" of two rings is the ring with the
additive group R' (D R" and multiplication (ri , r') (r2', r') = (ri r2', r' r'2').
(This is just the direct product of R' and R" asZ-algebras, as in (VII.5.1)).
Each left R'-module A' is an R-module 1A' by pull-back along the pro-
jection 7r,: R'xR"-->R', and similarly for R"-modules. In particular, R'
and R" are left R-modules, while the termwise definition of the product
in R shows that R=R'® R" is an isomorphism of R-modules, and
hence that R' and R" are projective R-modules.

Lemma 9.1. I l the R'-modules C' and G' and the R"-module A"
are regarded as R = R'x R" modules, then

G'®RA"=0, HomR(C', A")=0. (9.1)

Proof. Take the element (1', 0) ER. Then

g'(& a" = g'(1', 0) ®a"=g'®(1', 0)a"=g'®0=0.

Similarly, if f : C'-3.A", then

f (c') = / [(1', 0)c'] = (1', 0) f (c') = 0.

The correspondence A--o-A'=R'®RA, a-tea'=1R,®a is a covariant
functor on R-modules to R'-modules which is exact : a I# implies at' l fl'.
Moreover,

Proposition 9.2. Each left (R'xR")-module A has a representation
A=- (..,,A') ® (.,A") as a direct sum of two R-modules, the first obtained
by full-back from an R'-module A' and the second from an R"-module A".
These modules A' and A" are determined up to isomorphism as A'=R'®RA,
A"=R"®RA. Given such decomposition for A and B. each R-module
homomorphism a: has a unique decomposition as a=a'®a",
with a': A'--* B' and m": A"--o-B" respectively R'- and R"-module maps

Proof. Using R=R'®R" we get the decomposition

A =R
®RA=(R,(DR") ®RA=(R'(&RA)®(R"(&RA)

If A = A' ®A" is such a decomposition, (9.1) gives R' ®R A = R' ®R A' =
R'®R.A'=A'. Given a, a'=1R.®a: R'®RA-.R'®RB and a"=1R" (9 at
have a=-a'®a".

Corollary 9.3. For left R-modules A and C and a right R-module G,
each decomposed as in Prop-9.2, there are natural isomorphisms

HomR(C, A)=HomR.(C', A')®HomR..(C", A"), (9.2)

G ®RA-G'®R A'®G"®R..A". (9.3)
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Proof. HomR (C, A) is additive in C and A, and HomR (C', A')
HomR,(C', A'), while HomR(C', A")=0 by (9.t).

Isomorphisms like (9.2) and (9.3) hold for the relative Ext and Tor
functors. For example, if S'(R' and S"<R" are subrings, then S=
S'x S" is a subring of R'><R", with n, S = S', n2 S = S". We treat the
more general case of any subring of R' <R".

Theorem 9.4. 1/ S is a subring of R'.<R", set S' = n, S (R', S" =
ns S ( R". For left R-modules A and C and a right R-module G, each
decomposed as in Prop. 9.2, there are natural isomorphisms

Ext(R,s) (Cl A)-Ext(R..s.) (C', A') ® Ext(R".$.) (C", A"), (9.4)

Tor(R,s) (G, C) =Tor((G', C') ® Tor( R'"-s") (G", C"), (9-5)

valid for all n. The same isomorphisms hold with S, S', and S" omitted.

Proof. First observe that an (R', S')-free module R'®s.M' is also
(R, S)-projective (though not necessarily (R, S)-free). For, the left
S'-module M' is a left S-module by pull-back, and, using the pull-back
lemma,

R®s M'=R'®sM' ®

R ®s M' is (R, S)-projective, so is its R-direct summand R'®s.M'.
Now choose relatively free split resolutions e': X'->C' and e": X"-+C"

of the components of C. Then e'® e": X'®X"-*C'® C" is a resolution
of the R-module C'® C" which is S-split by the direct sum of the S'
and S" contracting homotopies for X' and X". By the first observation,
each term X;,® X;; is an (R, S)-projective. By (9.2) and (9.3) for X =
X'®X"

HomR (X, A)-HomR.(X', A') ®HomR..(X", A"),

G®RX-G'®R.X' ®G"®R..X".

Taking cohomology and homology groups gives the desired isomorphisms
(9.4) and (9.5).

In the isomorphism (9.5), each projection Tor (G, C) -Tor (G', C')
can be described as the map X, induced by. that change of rings X :
(R, S; G, C)-+(R', S'; G', C) which is obtained by the projections
R = R'><R"-*R', G = G'® G"-> G', etc. In fact, to calculate X, one lifts

to a chain transformation yv: X -X'; such a p is the projection
X =X'® X"->.X' used in deducing, (9.5).

The proof for the same resultsth S omitted is easier; when X'
is a free R'-module, it is a direct summand of copies of R, hence is R-
projective.

This theorem will be applied in the next chapter to algebras (§ 6).
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Chapter ten

Cohomology of Algebraic Systems

1. Introduction

The homology of algebraic systems is an instance of relative homo-
logical algebra.

For a group 17, use exact sequences of 17-modules which split as
sequences of abelian groups. The cohomology of 17 for coefficients in
a module nA is then (cf. IX.7)

H"(17, A)=Exti(m(Z, A)=Ext'(Z(M,Z) (Z, A). (1.1)

Correspondingly, the homology of 17 for coefficients G11 will be defined as

H. (II, G) =Tor* (m (G, Z)=Tor(z(IIl-z) (G, Z). (1.2)

For a K-algebra A, use exact sequences of A-bimodules which split
as sequences of right A-modules, or those which split just as sequences
of K-modules. For a A-bimodule A, the cohomology and homology of
A will be

H" (A, A) = Ext-(A-A. K-A) (A, A)=Ext*(A-A.K)(A, A); (1.3)

H. (A, A) = Tor(A-A. K-A) (A, A)a Tor(A-A, K) (A, A). (1.4)

These equivalent descriptions are presented in terms of the bar resolu-
tion for algebras, which is given explicitly in § 2 - it is a special case
of the bar resolution (IX-7) for a resolvent pair of categories. This
chapter examines the properties of H. and H"` and develops similar
(co)-homology for graded and for differential graded algebras, as well
as for monoids and for abelian groups.

2. The Bar Resolution for Algebras

Let A be an algebra over K. The identity element 1A gives a K-
module map I: K.---A; its cokernel A/I(K)=A/(K1A) will be denoted
(simply but inaccurately) as A/K, with elements the cosets A+ K. For
each left A-module C construct the relatively free A-module (®=(&)

B,,(A, (n factorsA/K). (2.1)

As a K-module, it is spanned by elements which we write, with a vertical
bar replacing "®", as

d[,,J...IA,.]r=A®[(k+K)®...®(A.+K)J®r; (2.2)

in particular, elements of BO are written as A [] c. The left factor A
gives the left A-module structure of B,,, and [A I ... 1),]c without the



2. The Bar Resolution for Algebras 281

operator A will designate the corresponding element of (A/K)" ®C.
These elements are normalized, in the sense that

[All IA"]c=O (2.3)
when any one A, E K.

Now construct maps as in the diagram
a

C'........ Bo (A, C) BI(A, C)' i ...,
t-, to

The K-module homomorphisms s_1: C--'B0 and s.: B.----B.+, are
defined by setting s_1c =I[] c and

s"(A[At I ... IA"]c)=1[AIA11... I n?o. (2.4)

By the normalization, s"+1s"=0. Define left A-module homomorphisms
e: B0--o-C and a": B"--)-B"_1 for n>0 by e(A[]c)=Ac, and

a" (A[A1I ... I A.] c)=A Al[A:I ... IA"] c
"-1

+ E (-1)'A[All ... 1;;A,+11 ... IA"] c
i-1

+(-1)"A[211...

This definition is legitimate because the right side is K-multilinear and
normalized: If some Al=1, the terms with indices i-1 and i cancel
and the remaining terms are zero.

Theorem 2.1. For each left A-module C, e : B (A, C) --> C is a resolu-
tion of C by (A, K)-relatively free left A-modules which is K-split by the
contracting homotopy s with s2=0. Moreover, B(A, C) is a covariant
functor of C.

This can be proved directly from the formulas above. Alternatively,
apply the resolution of IX.7 for the resolvent pair of categories a with
d =left A-modules, .4' = K-modules, F(M) =A ®M, a (m) =1®m. Since
K ---A A/K 0 is a right exact sequence of K-modules, each K-module
M yields a right exact sequence

M= K ®M.---F(M) =A ®M..-. (A/K) ®M _-i0,

so F(M) - (A/K) ®M. Also, sM : F(M) ----FT(M) is given by s (A (&m) _
1®(A+ K) ®m. Hence, with B (9, C) as in (IX.7.3),

B, (9, C)=FF"o C=A®(A/K)"®C=B"(A, C),

with s given by (2.4). The formulas for a and a" provide the unique
boundaries for which s is the contracting homotopy. Hence B (a, C) _
B (A, Q.

There are several variants of the bar resolution, as follows.



282 Chapter X. Cohomology of Algebraic Systems

The un-normalized bar resolution fi (9, C) =fl (A, C) (cf. IX.6) has

#"(A, C)=PP' C=A®A"®C, (2.6)

where A"=A®.. ®A, with n factors. The contracting homotopy s, e,
and the boundary are given by the formulas (2.4) and (2.5) with each
A [A, l ... I A"] c replaced by A ®A, ®. ®A" ®c. In this case the boundary
may be written, much as in the singular complex of a space, in the form

where d,: is the A-module homomorphism
defined by

di() ®A,®...®A"®c)=Ao®...®A,A,+1®...®c, i=0,...,n (2.7)

(for i=n, the right side is Ao (& ... ®A"c). Thm. 2.1 holds with B (A, C)
replaced by fi (A, C), except that s2 need not be zero in fi (A, C).

The A-module map rl: P"-*B" defined by rl(A®A,(& ..®A"®c)=
A [All ... IA.] c is a A-module chain transformation lifting 1c : C --*C;
indeed, it is the canonical comparison map of P. to B. Hence, by the
comparison theorem,

Corollary 2.2. (The "Normalization Theorem".) The projection
rl : #(A, C) -* B (A, C) is a chain equivalence of complexes of A-modules.

The kernel of rl is the A-module generated by the union of the images
of the A-module maps s",: defined by

s. (A®A1®...®A"®c)=A®...®A,®1®A;+1®...®A"®c (2.8)

for i = 0, ..., n. With these si and d; as in (2.7), #(A, C) is the associated
chain complex of a simplicial A-module and rl is the simplicial normaliza-
tion of Thm.VIII.6.1.

For the bimodule bar resolution B (A, A), take C above to be A.
Each B. is then a A-bimodule; formula (2.5) with c replaced by A'EA
shows that a and each 8" is a A-bimodule homomorphism. Similarly,
s of (2.4) becomes a homomorphism of right A-modules. Hence

Corollary 2.3. If A is a K-algebra, e: is a right-A-split
resolution of the bimodule A by (A-A, right A)-free bimodules, and a
K-split resolution of A by (A-A, K)-free bimodules.

The last clause does not mean that B (A, A) is the categorical resolu-
tion for the resolvent pair (A-bimodules, K-modules). Note also that
B (A, C) - B (A, A) ®, C.

The left bar resolution applies to an augmented algebra e : A --> K,
and is B (A) = B (A, ,K), where 5K is K regarded as a left A-module by
pull-back along e. Thus B " (A) =A ®(A/K)" is generated by elements
A [All ... I A"], while s and a are given by (2.4) and (2.5) with c omitted.
and with the "outside" factor A"c in the last term of (2.5) replaced by
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e (A"). Thus B (A) ->,K is a K-split, (A, K) -free resolution of the left
A-module K. In particular, when K=Z and A=Z(17), this is the bar
resolution of IV-

5-The reduced bar resolution for an augmented algebra A is the complex
R (A) = K, ®AB (A), so B 0 (A) = K and R" (A) = (A1 K)" for n>0. The
contracting homotopy does not apply ton, but the formula for the bound-
ary still applies, with c and the left operator A omitted: In (2.5) replace
the operator Al by e (A1) and Ac by e (A.). The "reduced bar resolution"
is not a resolution, but is useful for computations. The left and the re-
duced bar resolution can also be formed without normalization.

Exercises
1. For an augmented algebra A, let X be any relatively free K-split resolution

of K by left A-modules. Show that the canonical comparisons (Thm.IX.6.2)
97: B (A) -.. X, tp: X -s B (A) over the identity satisfy ip = 1.

2. (CARTAN.) For A as in Ex. 1, show that the left bar resolution B (A) is
characterized up to isomorphism as a K-split resolution X of K with a contracting
homotopy s such that s' = 0 and X. s--A ®sX"_I.

3. The normalization theorem can be proved directly. Show that a bimodule
chain transformation Z: B (A, C) - #(A, C) with eC = e can be defined recursively
with to= 1, C"e"=st"_18e", where a"=e(F°"DC). Prove that ,C = 1. and by
similar means construct a chain homotopy C rim 1, all for 17 as in Cor. 2.2.

4. For left A-modules C and A, show that the 1-cocycles of the cochain com-
plex HomA(B(A, C), A) can be regarded as factor sets for K-split A-module ex-
tensions of A by G.

3. The Cohomology of an Algebra

The n-th cohomology module of a K-algebra A with coefficients
in a A-bimodule A is the K-module

H"(A, A)=H"(Home-A(B(A,A), A)), n=0, 1, ...; (3.1)

it is a covariant functor of A. Here HomA_A stands for bimodule homo-
morphisms. According to the normalization theorem we can replace
the bimodule bar resolution B (A, A) here by the un-normalized bar
resolution P (A, A). Both B (A, A) and +g (A, A) are right A-split (A-A,
K-A) relative projective resolutions of the bimodule A, and also are
K-split (A-A, K) relative projective resolutions of A, so H" (A, A) is
the n-th relative Ext functor in either case, as stated in (1.3).

We call H" (A, A) the Hochschild cohomology modules of A, since
they were originally defined by HOCHSCIULD [1945] using exactly the
formulas given by the bar resolution with K a field.

The complex HomA_11 (B (A, A), A) used in (3.1) may be described
more directly. Consider K-multilinear functions / on the n-fold cartesian
product A x ... xA to A ; call / normalized if / (A1, ... , A.)= 0 whenever
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one A< is 1. For example, the function [A,I ... IA"] c of (2.3) is K-multi-
linear and normalized. The universal property of the tensor product
B, (A, A) =A ®(A/K)" ®A states that each normalized K-multilinear f
determines a unique bimodule homomorphism f: B" (A, A) -*A such
that always

/(1®[A11 ... IA"] (& 1)=/(A1, ..., A").

Hence HomA_,, (B, (A, A), A) is isomorphic to the K-module of all
K-multilinear normalized / on the n-fold product. The coboundary 61 is
the function given, with the standard sign, as

6 f (A1, ... , A.+1) _ (- 1)"+1 {A1/ (A=, ... , A"+1)

(A1, ..., A,A,+1, ..., A"+1) (3.2)i.l
+(-1)"+1/(] ,....A.)A.+1}

In particular, a zero-cochain is a constant aEA; its coboundary is the
function /: A-+A with /(A)=aA-Aa. Call an element aEA invariant
if Aa=aA for all A, and let A^ denote the sub-K-module of all such
invariant elements of A ; thus

HO(A, A)-A''= [al Aa=aA for all AEA]. (3.3)

Similarly, a 1-cocycle is a K-module homomorphism f: A-+A satisfying
the identity

/(A1Az)=Al/(A1)+/(A1)As, A1, A2EA; (3.4)

such a function / is called a crossed homomorphism of A to A. It is a
coboundary if it has the form /,(A)=aA-Aa for some fixed a; call /,
a principal crossed homomorphism. Therefore H'(A, A) is the K-module
of all crossed homomorphisms modulo the principal ones, exactly as
in the case of the cohomology of groups (IV.2).

As in the case of groups, H2 (A, A) can be interpreted in terms of
extensions by the algebra A. An extension by the algebra A is an epi-
morphism a: 1'-..A of algebras. The kernel J of a is a two-sided ideal
in r, hence a r-bimodule. For each n, let J" denote the K-submodule
of r generated by all products jljz... j, of n factors j;E J. Then J=
Jl> Jz> J'> , and each j* is a two-sided ideal of T. An extension a
is said to be cleft if a has an algebra homomorphism p: A-+1' as right
inverse (aq' =1 A); that is, if I' contains a subalgebra mapped isomorphic-
ally onto A by a. An extension a is said to be singular if J=Kera
satisfies J9=0. In each singular extension the P-bimodule j may be
regarded as a A-bimodule, for ay=ay' implies (y-y')EJ, so J2=0
implies y j = y' j for each j E J. This defines the left action of each A = or (y)
on j.
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Conversely, given any A-bimodule A, a singular extension of A by
A is a short exact sequence (r, a) : A)-* r-*A where r is an algebra,
a a homomorphism of algebras, A is regarded as a r-bimodule by pull-
back along a, and x: A -r is a monomorphism of r-bimodules. For
given A and A, two such extensions (x, a) and (x', a') are congruent if
there is an algebra homomorphism e: r-.r' with x'=e x, a=a'e.
This gives the familiar commutative diagram which implies that a is
an isomorphism. One example of an extension of A by A is the semi-
direct sum, defined to be the K-module A®A with product defined
by (a1, A1) (as, As) _ (a122+ Al a2 , 22); with x a = (a, 0), a(a, A) =A, it is a
singular extension of A by A, cleft by q' with pA=(0, A). Any cleft
singular extension is congruent to this semi-direct sum.

Consider those singular extensions (x, a) which K-split, in the sense
that there is a K-module homomorphism u: A which is a right
inverse to a. (Any cleft extension is K-split; if K is a field, any extension
K-splits.) Identify each aEA with xaEr, so that x: A-sris the identity
injection. The right inverse u can be chosen to satisfy the "normaliza-
tion" condition U(1A)=1,r, for if u does not satisfy this condition,
au=u(1A)-irEA and u'(A) = u (A) - A ao is a new right inverse which
is normalized. Moreover, a [u(2122)] = l 12=a [u (2k) u (22)], so there are
uniquely determined elements f (Al, A2)EA such that

u(Al) u(As)=/(Ar, AS)+u(A,A,) (3.5)

Call / the factor set of the extension corresponding to the representatives u.

Theorem 3.1. 1/ A is a K-algebra and A a A-bimodule, each factor
set of a K-split singular algebra extension of A by A is a 2-cocycle of
Hom,,_A (B (A, A), A). The assignment to each extension of the cohomology
class of any one of its factor sets is a 1-1-correspondence between the set
of congruence classes of K-split singular algebra extensions of A by A
and H3(A, A). Under this correspondence the cleft extensions (in particular,
the semi-direct sum) correspond to zero.

Proof. Regard u (A) as a representative of A in the extension r.
The description of the I -bimodule structure of A can be written in
terms of u as u(A)a=Aa, au(A)=aA, (3.6)

for any aEA, AEA. Since u is a K-module homomorphism,

u(k1A,+k:A2)=ku(A,)+k2u(A,J, k;EK. (3.7)

With the factor set f for u defined by (3.5), the rule (3.6) gives

[u(Ai) u(A2)) u(A2)=/(A,, A4) A3+/(AtA2, Ai)+u(AIAEAs)1

u(Al)[u(A1) u(1)]=4/(A: 4+/(At, A24)+u(A1A2A3)
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As the product in r is associative,

AI/(4, A)-/(lI2. , A)+/(). A2Aa)-/(Al. 2s) 4=0. (3.8)

This is exactly the condition 6/=0 that the factor set be a 2-cocycle;
moreover the choice u(1)=1 implies that / is normalized. A change
in the choice of u to u' by u'(A)=g(,i)+u(A) for any K-linear g:
with the normalization g(1)=0 gives a new (normalized) factor set
1+6g. Thus the extension uniquely determines the cohomology class
of /.

Any element in the algebra r can be written uniquely as a+ u (2k).
The K-module structure of r and the sum and product of any two such
elements are determined by the equations (3.5)-(3.7). Given A, A.
and any 2-cocycle /, these equations construct the extension r; in partic-
ular, the condition 61 = 0 suffices to make the product in r associative.
When /=0, the construction is the semi-direct sum, so the proof is
complete.

A two-sided ideal J is said to be nilpotent if J"=0 for some n.

Theorem 3.2. (J. H. C. WHITEHEAD-HOCHSCHILD.) I l K is a field
and i/ the K-algebra A has H2 (A, A)=0 /or every A-bimodule A, then
any extension of A with a nilpotent kernel is cleft.

Let the extension a: have kernel I with J"= 0. The proof
will be by induction on n. If n = 2, the extension is singular and K-split ;
since H2 (A, J)=0, the extension is cleft by Thm.3.1.

Suppose the result true for kernels with exponent n-1, and take
a with kernel J+O, J"=0. Then J2 is properly contained in J, since
J2=J would give J"=J+O. From the quotient algebra r/J', form
the commutative diagram on the left in

J - Ir A r' r
1p d 11

"tip'
1p

JlJ'-+r/J"A, qA c r/J8.
c

The projection p has kernel J2, while a' has kernel J/JE, hence is a sin-
gular extension of A. By the case n = 2, a' is cleft by some q,. Now
p-I(pA)=r' is a subalgebra of r, and p induces p': r'-3pA=A with
kernel J2. Since (J2)"-'< J"=O, the induction assumption shows p'
cleft by some p', so a is cleft by eqi p.

This result includes the Principal Theorem of Wedderburn for an
algebra r of finite dimension (as a vector space) over a field. Each
such algebra has a two-sided nilpotent ideal R, called the radical, such
that r/R is semi-simple. The Wedderburn Theorem asserts that if rf R
is separable, then the extension r-*r/R is cleft. This follows from
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Thm.3.2, for F/R separable implies (Thm.VII.5.6) bidim I'/R=O, hence
bidim F/R S 1, hence H2 (F'/R, A) = 0 for all (I'JR)-bimodules A, hence
I'-*F'lR cleft.

Note. For algebras of finite dimension over a field. Thm.3.2 is also valid
without the hypothesis that the kernel is nilpotent [HocnscaILD 1945, Prop.6.1];
[ROSENBERG-ZELINSKY 1956]. The obstruction problem for the construction of
non-singular K-split extensions with a given kernel [HOCHSCHILD 1947] leads to
an interpretation of H' (A, A) parallel to that for groups (IV.8). Extensions which
are not K-split require a second, additive, factor set in place of the linearity of u
in (3.7); we return to this question in § 13.

The cohomology groups of a fixed K-algebra A are characterized
by axioms like those for Ext, as follows.

Theorem 3.3. For each n 2t 0, H" (A, A) is a covariant f unctor of
the A-bimodule A to K-modules. H° is given by (3.3). H"(A, A)=0 when
n>0 and A is a bimodule with A =HomK (A OA, M) for M a K-module.
For each K-split short exact sequence E: A > B-D. C of bimodules and
each n z 0 there is a connecting homomorphism E, : H" (A, C) -#H"+1(A, A),
natural in E, such that the long sequence

-+H" (A, A)-+H" (A, B) -+H" (A, C) E', H"+1 (A, A) .+.. .

is exact. These properties determine H" and the connecting homomorphisms
E, up to natural isomorphisms of H".

The proof is left to the reader; note that HomK (A(9A, M) is a "rela-
tively injective" bimodule.

If e: A-+K is an augmented algebra, each left A-module D becomes
a A-bimodule D, by pull-back on the right along the augmentation.

Proposition 3.4. For a left module D over an augmented algebra
(A, e) the Hoehsehild cohomology of the bimodule D, can be computed from
the left bar resolution by a natural isomorphism

H" (A, D,) =H" (Home (B(A), D)). (3.9)

Proof. The canonical isomorphism Hom(K, D)=D of left A-
modules is also an isomorphism Hom (,K, D) =D, of A-bimodules. Thus,
for any bimodule B, adjoint associativity yields a natural isomorphism

Home(B ®e (,K), D)=Hom4_e (B, Horn (,K, D))=Home_e (B, DJ.

When B is the two-sided bar resolution, B (gA (,K) is the left bar reso-
lution; hence the result (3.9).

Note. Suppose that the K-algebra A is projective as a K-module. Then A"
is K-projective (Cor. V.3.3), hence ll" (A, A) is a projectiveA-bimodule (Prop. VI.8.t).
Hence e: #(A, A) --*A is a projective bimodule resolution of A. In this case H"
of (3.1) is therefore given as an "absolute" functor Ext:

H" (A, A) a Ext,"1 _e (A, A) (if A is K-projective).
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Using B for ft, the same result holds for A/K projective as a K-module. CARTAN-
EILENBERG define the "Hochschild" cohomology by the absolute Ext functor
in all cases, so their definition does not always agree with ours.

Exercises
1. Show that AA is a sub-A-bimodule of A when A is commutative.
2. Construct a "Baer sum" of extensions of A by A so that the correspondence

of Thm. 3.1 maps the Baer sum into the sum in H' (A. A).
3. Show that HI(A, A) is the group of congruence classes of those bimodule

extensions A>-s B -.A which K-split.
4. Show explicitly that each short exact sequence A>- B -.A of bimodules

which is K-split is also split as a sequence of right A-modules.
5. If A is an augmented algebra and M a K-module then the cohomology of

M, pulled back to be a bimodule, may be calculated from the reduced bar resolution
as H" (A, 4Ms) °J H"(Hom (P (A), M)).

4. The Homology of an Algebra

Two A-bimodules A and B have a "bimodule" tensor product
A®A_AB; it is obtained from the tensor product A®KB by the identi-
fications a2®b=a®Ab, as®b=a®bA
(middle associativity and outside associativity, as in (VI-5.10)). The
canonical isomorphism A®AA=A has an analogue for bimodules.
Indeed, if A is a bimodule and M is a K-module, a natural isomorphism

0: A®A-A(A®M(&A)=A®M, ®=®K, (4.1)

may be defined by 0[a®(2®m®A')]=,Va7.®m, for the expression
on the right is K-multilinear and satisfies the middle and outside associa-
tivity rules. The inverse is given by 0-I (a (Dm) = a ®(1®m (&1).

The Hochschild homology modules of a K-algebra A with coefficients
in a A-bimodule A are defined via the bar resolution to be the K-modules

H. (A, A) = H"(A ®A-A B (A, A)), n=0,1 , ... , . (4.2)

As for cohomology, this is an instance (1.4) of the relative torsion
functor, for sequences of A-bimodules split either as sequences of right
A-modules or as sequences of K-modules.

In the definition (4.2) we may replace B by the un-normalized bar
resolution fl (A, A) with ft" (A, A) =A ®A" ®A. By (4A), A ®A_j" (A,A)
-.A OA". Hence H. (A, A) is the n-th homology module of the complex
of K-modules A ®A" with a boundary a = do- d1+ -+ (-1)"d", where
the d1 are "simplicial" faces:

d;(a®21®.a)®4®...®4, i=0,
=a®1I®-..®AA-+I®...®A", 0<i<n, (4.3)
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in the last term, A. appears in front in virtue of the "outside" associa-
tivity rule. In particular 0(a (&A) =a A- A a, so that H. is the quotient
of A, H0(A,A)-=A/{da-a AlAEA,aGA), (4.4)

by the sub-K-module generated by all differences A a- a A.
Much as in Thm.3.3 we have

Theorem 4.1. For a fixed K-algebra A, each H. (A, A) is a covariant
functor of the A-bimodule A to K-modules, with He given by (4.4) and

H.(A,A®L(&A)=0, n>0, L a K-module.

If E: A >- B -C is a K-split short exact sequence of bimodules, there is
for each n>0 a "connecting" homomorphism E,,: H (A, C) -*H,,_1(A, A),
natural in E, such that the long sequence

...._.,H"+1(A, C) fi,+. H. (A, A)-.H"(A, B)- .H"(A, C)-*...

is exact. These properties characterize the H. and E. up to natural iso-
morphism.

The functorial behavior of the homology of algebras is like that for
groups (IV.2.6). Consider quadruples (K, A, A, C) where K is a com-
mutative ring, A a K-algebra, and A, C are A-bimodules. A change
of algebras (+ in A, - in C) is a quadruple

C = (x, e, a, y) : (K, A, A, C) (K', A', A', C') (4.5)

where x : K--,,K' and e : A -*A' are ring homomorphisms such that
always a (k 2) _ (x k) (e A) and where a : A -*0 AQ and y: 0Ca-' C (opposite
direction!) are homomorphisms of A-bimodules; i.e., a (Aa) = (QA) (aa) and
a (a A) = (a a) (e 1). The category with these morphisms C is denoted
R'-; here the exponent + - indicates that the change is covariant in
the first bimodule A and contravariant in C. Omitting C and y gives
the category R'. We also use the category RK, with K= K' fixed and
x the identity.

The complex A ®a _1 B (A, A) of (4.2) and hence H. (A, A) is a co-
variant functor on 91,; in particular, this gives the previous result
that H. (A, A) for A and K fixed is covariant in A. Similarly, the co-
homology H" (A, C) is a contravariant functor on R-. The action of
a change l; (with a omitted) on a normalized cochain / for A', of the
form (3.2), is defined by (C*f)().1, , eA").

Exercises
1. Show that the isomorphism (1.1) is natural over the category al-.
2. Let e: A -+ K be an augmented algebra. For M a right A-module and G a

K-module, prove that

H"(A,,M) =H"(M®AB(A)), H. (A, G.) - H. (G OD (A)).
Mac Lane, Homology 19



290 Chapter X. Cohomology of Algebraic Systems

5. The Homology of Groups and Monoids

The cohomology of a group H was treated in Chap. IV, using the
functor Hom1 for Z(17)-modules. Now that we have at hand the tensor
product ®n= ®zirrl we can define and study the homology of a group 17.
It is just as easy to do this for a monoid M, though the added generality
is not of great moment.

A monoid is a set M with a distinguished element 1 =1m and a func-
tion assigning to each pair x, yEM a "product" x yE M in such a way
that always (xy)z=x(yz) and lx=x=xl. The monoid ring Z(Af),
like the group ring, consists of all finite sums k,x, with k,EZ, x,EM,
under the obvious product, and with augmentation the ring homo-
morphism s : Z(M) defined by e (Z k; x,) =Z k; . This ring Z(M)
may be regarded as the free ring on the monoid M in the sense of Prop.
IV.1.1. By a left M-module A we mean a left Z(M)-module, and we
write ®M for ®z(M). If M is a free commutative monoid on n gen-
erators, Z(M) is the polynomial ring in n indeterminates.

The homology of M with coefficients in a right module Gm is now
defined by the left bar resolution B(Z(M)) as

H. (M, G)=H.(G®MB(Z(M)), n=0, 1, .... (5.1)

Since B(Z(M)) is a Z-split projective resolution of the left M-module
Z =,Z, we may also write this definition in terms of the relative torsion
product as

H. (M, G) = Tor z (G, Z).Torz (M) (G, Z). (5.2)

In particular, Ho (M, G) = Gem Z. We leave to the reader the descrip-
tion of the cohomology of a monoid.

For a free module the higher torsion products vanish, hence

Proposition 5.1. For 17 a group and F a /ree 17-module

HO(17, F)=F®n Z, F)=0, n>0.
Note that if F is the free !I-module on generators {t}, then F®o Z is

the free abelian group on the generators {t ®1 }.
The commutator subgroup [H,17] is the subgroup of H generated by

all commutators x y x-' y-' for x, y in 17. It is a normal subgroup of 17;
the factor group 17/[17, H] is abelian, and any homomorphism of 17
into any abelian group has kernel containing [17,17].

Proposition 5.2. For 17 a group and Z the trivial 17-module

H (17.Z)=Z, (5.3)

Proof. The homology of Z is that of the complex Z ®n B(Z(II))
which is the reduced bar resolution R(Z(17)) of § 2, with Ro=Z, R,



S. The Homology of Groups and Monoids 291

and R2 the free abelian groups on generators [x] and [xj y] for x-+ 1$ y,
and with boundaries 0[x]=o, a [xjy] = [y] - [x y] ± [x]. This gives
HO--Z and each [x] a cycle. By the boundary formula, its homology
class satisfies cls [x y] -= cls [x] + cls [ y]. Hence q, x = cls [x] gives a
homomorphism w: H/[17, 17] -*H1 (17, Z). Since U1 is free abelian,
[x] -*x [II,17] defines a homomorphism R1-rI7/[17, II] which annihi-
lates all boundaries. Thus an inverse of q' may be defined as prlcls[x]=
x [17,17], so 9; is an isomorphism, as required for the second equation
of (5.3)

The homology of a group (or a monoid) is a special case of the Hoch-
schild homology of its group ring.

Proposition 5.3. For a right module G over the monoid M there is
an isomorphism H. (M, G)=H" (Z(M), G) of the homology of the monoid
M to that of the algebra Z(M). This isomorphism is natural in G.

Proof. Take A=Z(M), a Z-algebra. For any A-bimodule B an iso-
morphism .G®A_AB=G®A(B(&AZ) is given by g®b->g®(b(&1).
Apply this with B = B (A, A) ; it shows the complex used to define the
homology of A over G is isomorphic to the complex used to define
the homology of M over G.

A corresponding result for cohomology is

Proposition 5.4. For left 17-modules A there is a natural isomorphism

H"(17, A)ZH"(Z(17), A.).

Proof. This is a consequence of Prop.3.4, for the cohomology of
the group 17 on the left was defined by B(Z(11)), that of the algebra
Z(II) by B(Z(II),Z(I7)).

These propositions reduce the (co)homology of groups to that of
algebras. Conversely, the (co)homology of the Z-algebra Z(I1) reduces
to that of the group 17. This reduction depends on two special properties
of the group ring Z(17). First, 1px=x®x defines a ring homomorphism
y,: Z(17)-*Z(H) ®Z(17); indeed, 1p is the coproduct which makes Z(17)
a Hopf algebra (VI.9). Second, Z(11) is canonically isomorphic to its
opposite ring. Indeed, if the opposite ring Z(17)°P consists as usual of
elements r°P for rEZ(17) with product r°Ps°P=(sr)°P, then the function

(x) = (x-')°P on 17 to Z(17)°P has (1) =1, (x y) = (i; y), hence
extends (Prop.IV.1.1) to a ring homomorphism E: which
is clearly an isomorphism. Composition with the coproduct gives a ring
homomorphism

X: Z(17)1. Z(17) ®Z(17) 1® Z(11) ®Z(17)°P; (5.4)

it is that ring homomorphism X which extends the multiplicative map
X (x) = x ®(x-')°P.
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This map x allows a reduction of the (bimodule) cohomology of the
algebra Z(17) to the cohomology of the group H. Each bimodule nCn
is a left Z(17) ®Z(17)°P-module and hence also a left 17-module C,
by pull-back along X. These new left operators of !7 on C will be denoted
as xoc for xE17; they are not the original left operators, but are given
in terms of the bimodule operators as xoc=xcx-2. Similarly, C:
denotes the right I7-module with operators co x = x-' c x.

Theorem 5.5. For a group 17 and a 17-bimodule C there are natural
isomorphisms

H"(Z(n), C) =- H"(17, zC), H"(17, C,)-H"(Z(II), C) (5.5)

induced by the chain transformation h: B(Z(17)) -B(Z(17), Z(I7)) defined
as

h.(x[x1I...Ix"])=x[xiI -- I
x"](xxl... x")'', x;E17.

In brief, "two-sided" operators in the cohomology of groups reduce
to "one-sided" operators (EILENBERG-MAC LANE [1947], § 5).

For this proof, write BL=B(Z(17)) for the left bar resolution and
B = B (Z(17), Z(17)) for the bimodule bar resolution. Since B. is the
free abelian group on generators x[-,1l ... I x"], the formula given defines
Is,, as a homomorphism X--o.B" of abelian groups. For a left operator
yEI7,

x[4 ... Ix"])=y{x[x1I ... Ix"](xx1 ... x")-')y-';

this shows h : BL __>. XB a homomorphism of left 17-modules. Now con-
sider the diagram

Z `L Ba -e- BL '- BL
1J 8-1

k. y 1` 91
"' (5.6)

Z(17) '..:. Bo ! ...:... B, 4:...:.. B2 ...

with I: the injection. The contracting homotopies s above
and below are both defined by "moving the front argument inside",
hence the commutativity hs=sh (with h_1=I). Then a and 8 above
and below are uniquely determined recursively by the fact that s is a
contracting homotopy ; it follows that h d h, I eL = e ho. Alternatively,
these commutativities may be verified directly; only the initial and
final terms in the boundary formulas require attention. Thus h: BLAB
is a chain transformation.

Now let h' be the induced map on the cochain complexes Horn (B, C).
Composition with the pull-back Homn_ n Homn gives the cochain
transformation

p : Homn_n (B, C) -* Homn (,B, zC) Homn (BL, P.
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Explicitly, for an n-cochain / on the left, q,/ is

(4'/)(x1, ..., x.)=/(h[xl( ... (x.])=[ (xl..... x»)](xt... xn)-t

But for an n-cochain g of BL an inverse to p is given by

(9'-I g)(x1,..., x.)=[g(x1,..., x.)](xl... X.).

Thus 4p is an isomorphism on cochains, hence on cohomology. The
argument on homology is similar.

The isomorphisms of this theorem may be described in more in-
variant terms as an instance of change of rings. In homology, regard

C) via (1.4) as the relative torsion product Tor.(C, Z(M) for
the pair of rings (Z(TI) ®Z(II)°P, Z), and H.(17, C5) via (5.2) as the
relative torsion product Tor,, (C5 , .Z) for the pair of rings Z(17), Z. Now
x and I: Z -*Z(,U) yield a morphism

(x. 1C, I) : (Z(n) Z; C5 , Z) - V(H) ®Z(n)°P, Z; C, Z(n))

in the "change of rings" category M++ of (IX.8.10). The diagram (5.6)
displays h as the chain transformation found in IX.8 from the comparison
theorem, so the isomorphism of the present theorem is just the induced
map (x, 1c, I), for relative torsion products in the change of rings.

Note. Among explicit calculations of the cohomology and homology of groups
we cite I.YNDON [1950] for groups with one defining relation; GRUENBERr. [1960]
for a resolution constructed from a free presentation of 17; WALL (1961) for a
"twisted product" resolution for a group extension.

Exercises
1. (CAR'AN-EILENBERG, p.201.) For an abelian group G regarded as a trivial

17-module the homology and cohomology can be calculated from the reduced
bar resolution. Establish the exact sequences

0 -+ H (17, Z) ®G -+H,, (1l, G) -+ Z), G) -+0,
0 -+ Ext Z), G) -+H" (II, G) - Hom(H (17, Z). G) -+ 0.

2. For G an abelian group, show HI (17, G) ek G ®(lll [f, II]).
3. Study the effect of conjugation on H,,(I7, G) (cf. Prop.IV.5.6).
4. (CARTAN-EILENBERG, Cor. X.4.2.) If the abelian group 17 contains a monoid

M which generates 17 as a group, then each 17-module A or G is also an M-module.
Show that the injection M -+II induces isomorphisms

H"(17,A)esH"(M,A),

6. Ground Ring Extensions and Direct Products

This section will study the effect upon Hochschild homology and
cohomology of certain standard constructions on algebras: Ground ring
extensions and direct products. Tensor products will be treated in § 7.
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Consider the ground ring extension from K to a commutative K-
algebra R. Each K-algebra A yields an R-algebra AR = R (DA; there are
ring homomorphisms jK : K -* R and jA : A -BAR given by jK (k) = k lR
and jA(A)=1R®A, so that UK,jA): (K, A)-+(R,AR) is a change of al-
gebras. Each AR-module or bimodule pulls back along jA to be a
A-module or bimodule. There is also a passage in the opposite direction.
Each K-module M determines an R-module MR=R®M and a homo-
morphism IM : M--1--M8 of K-modules given as jM (m) =1®m. Each
K-module homomorphism µ: MAN determines an R-module homo-
morphism u R : MR->NR by ftR(r®m)=r&cm, so that IARjM=jNY.
Thus TR(M)=MR, TR(u)=µR is a covariant functor on K-modules to
R-modules. This functor preserves tensor products (with ® for (&K,
as always), since lM and IN yield a natural isomorphism

(M®MR=MR®RNR, 9,r®(m®n))-=rjMm®iNn (6.1)

with an inverse given by ' [(r®m) ®R (r'®n)) = r r'®m ®n. We
regard 9, as an identification.

For any R-module U and any K-module M there is a natural iso-
morphism

tel. U®Mf._U®R MR, iV(u(&m)=u®RiMm (6.2)

of R-modules, where U®M on the left is an R-module via the R-
module structure of the left factor U. The inverse of y, is given by
y, (u ®R(r®m)) =ur®m. There is a similar natural isomorphism of
R-modules

X: Hom(M, U)=HomR(MR, U), (Xf)(r(&m)=rf(m) (6.3)

with inverse defined for each R-module homomorphism g: MR---,.U as
(X-'g)(m)=g(1(&m)

The homology and cohomology of an extended algebra AR with
coefficients in any AR-bimodule A is entirely determined by that of
A with coefficients in A pulled back along jA: A->AR to be a A-bimodule:

Theorem 6.1. For K-algebras A and R, R commutative, and for each
AR-bimodule A there are natural isomorphisms

_,: H. (A, tAj)H"(AR, A), a*: H"(AR, A)=H"(A,1Aj)

of R-modules, where H(A, ,A;) is an R-module through the R-module
structure of A. Here r, is induced by the change o/ algebras T= (jK, jA, IA) :
(K, A, AA1)->(R, AR, A) in 2", and a* by a=(jK, jA, 1a) in 9- (c/. § 4).

Proof. On the un-normalized complexes for homology, T.: A®A"-->
A®R(A')" is just the composite of tp: A®A"=A®R(A")R with 99: (A")R

(.1R) By (6.1) and (6.2) both are isomorphisms, hence r, is an iso-
morphism for the complexes and hence for their homology H" (A, ,A1),
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H. (AR, A). The argument for cohomology is analogous, using X in place
of V.

The direct product A=IS<E of two K-algebras may be treated as
a special case of the direct product of two rings (IX.9). The Hochschild
cohomology H" (A, A) is Ext*(R.5)(A, A), where R=A®A°P is

( E) ®(r>< E) °P = (r®r°P) x (r®E°P) >c (E ®r°P) x (E ®E°P) ,
while S is the image of I: K-*A®A°P; the projection of this image on
any one of the four direct factors of A ®A°P above is then the corre-
sponding image of K in that factor. Prop.IX.9.2 asserts that each
A-bimodule A has a canonical decomposition

E D ' E D 1A', JAr, rAr, 'A' , (6.4)

into the bimodules shown; explicitly, 'A'=T®AA®AF, etc. In par-
ticular, the A-bimodule A is represented as the direct sum A=I'®E
of just two non-vanishing components; the r-bimodule r and the
Z-bimodule E. Thm.IX.9.4 for the case of four direct factors now
implies

Theorem 6.2. For each (ICE)-bimodule A there are natural isomor-
phisms

H"(I'>cE, A)=H"(F, F®AA®Ar)®H"(E, E®AA(&AE), (6.5)

H"(i'<E, A)=H"(F, r®AA®Af ®H"(E, E®AA(&AE). (6.6)

Specifically, the projections FxE--.f and A-->F®AA®AF yield
a morphism C' in the change of algebras category R'K of § 4, hence a map

H. (FhE, A) ->H" (F, F(&AA®AF). Replacement of r by E gives
C"; the isomorphism (6.6) is h-s h, C' h). Similarly the isomorphism
(6.5), in the opposite direction, is induced by the projection IScE-.F
and the injection F®AA®Ar-+A in RK-.

Exercises
1. If 17 is a group and K a commutative ring, give a direct description of the

augmented K-algebra Z (17)K. (It is called the group algebra of H over K.)
2. If A is a A-bimodule, show that there is a unique AR-bimodule structure

on AR such that (/K, /A' jA): (K, A, A) --* (R, AR, AR) is a change of rings in 9+.
Derive a natural homomorphism H,, (A, A) -r H" (AR, AR) and show by example
that it need not be an isomorphism. Note also that A R pulled back by jA to be a
A-bimodule is not identical with A.

7. Homology of Tensor Products
Consider the tensor product A®A' of two K-algebras A and A'.

If A and A' are bimodules over A and A', respectively, then A®A'
is a A ®A'-bimodule, with left operators given as (A ®A') (a ®a') _
A a®A'a' and right operators similarly defined. In certain cases we
can compute the homology of A®A' from that of A and A'.
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Proposition 7.1. If e: X-.A and e': X'-*A' are K-split resolutions
of dell A- and A'-modules, respectively, then e®e': X®X'-.A®A' is
a K-split resolution of the left (A ®A')-module A®A'. If X and X' are
relatively free, so is X ®X.

Proof. The hypothesis that X is K-split means, as in Cor.IX.5.3,
that there is a K-module contracting homotopy s of square zero. These
homotopies for X and X combine, as in (V.9.3), to give a K-module
contracting homotopy for a®e': X®X'-.A®A', also of square zero.

If X and X are relatively free, Xp=A®Mp and Xq=A'®M' for
K-modules M. and My, so with
direct sum over p + q = n, is also relatively free.

Applied to the bar resolution this gives

Corollary 7.2. For modules AA, A.A' there is a chain equivalence

B(A, A)®B(A', A') ' B(A®A', A®A') (7.1)

in which the maps are chain transformations of complexes of left A ®A'-
modules commuting with e and s'.

Proof. By Prop. 7.1, both sides are K-split relatively free resolutions
of the left A®A'-module A®A'; apply the comparison theorem.

An explicit chain transformation is given by the following natural
map

/{#®%' [% ®Ai ... )a®a'}
_= a ( ... J +1 ... ®2' Al' ... (. t+l l ... I A] a ;

(7.2)

-0
indeed, the reader may verify that this is the canonical comparison.
Alternatively, / is the Alexander-Whitney map (VIII.8.7) defined on
B(A, A) =YN (A, A) by the simplicial structure of fi(A, A).

For A =A, A' =A', this corollary yields a chain equivalence

B(A,A)®B(A',A').. ' B(A®A',A®A') (7.3)

of A ®A'-bimodules; the map / is again given as in (7.2).

Theorem 7.3. The homology and cohomology products induce homo-
morphisms

PA: Hk(A, A) ®Hm(A', A') -.HR+_(A®A', A(&A'), (7.4)

p'': Hk(A, A) ®H"(A', A') +H*+'"(A®A', A(&A') (7.5)

of K-modules, natural in the bimodules A and A' and commuting with
connecting homomorphisms for K-split short exact sequences of bimodules
A or A'. For k=m=o, these products are induced by the identity map
of A ®A'. The products are associative.
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Proof. The homology Hk(A, A) is defined as Hk(A®o B), where S2
is short for A ®A°P and B short for B (A, A). The homology product
of (VIII.1.2) is the natural map

pH: HA(A(& B)®Hm(A'®v.B')-+H,*+m[(A®A')®n®D,(B®B')].

The right hand side is isomorphic to Hk+n(A®A', A®A') under the
equivalence g, of (7.3), so the product pf of (7.4) is defined as g, pH;
in dimension zero (cf. (4.4)) it carries cls a ®cls a' to cls (a ®a'). If E
is a K-split short exact sequence of A-bimodules, the tensor product
sequence E &A' is also short exact, as a sequence of A-bimodules,
so appropriate connecting homomorphisms are defined. They commute
with pH by Thm. VIII.1.3 and with the natural map g,, and hence
with p,,.

In the above definition of this homology product, the bar resolution
B = B (A, A) may be replaced by any K-split resolution of A by relative
projective A-bimodules.

The cohomology case is analogous. Write Hk(A, A) as Hh(Homo(B, A)),
use the cohomology product

pH: Hk((Hom0 (B, A)) ®H"(HomD. (B', A'))

Hk+"(Homo®D' (B ®B', A®A'))
of (VIII.1.3), and compose with the isomorphism /* induced by the
chain equivalence f of (7.3) to define f'4 as f'/H. Since / is the Alexander-
Whitney map, p4 may be regarded as a simplicial cup product. If
k=m=O, HO (A, A) is the K-submodule AA of A consisting of the
invariant elements of A, as in (3.3). Now aEAA and a'EA'A' imply that
a®a'E (A ®A ')"®e' so the identity induces a K-module homomorphism

A" A®A') .

The formula above for / in dimension zero shows that this map is p".

Theorem 7.4. 1/ A and A' are algebras over the same field, the homo-
logy product for bimodules A and A' yields for each is a natural isomorphism

pe: 2] Hk (A, A) ®Hm(A', A')=H,.(A(&A' A®A')
h+n-"

I/ in addition A and A' are K-modules of finite type the cohomwlogy pro-
duct is a natural isomorphism

PA: Z Hk(A,A)®Hm(A',A')-=H"(A(&A',A®A').
k+n-"

Proof. The first isomorphism is an immediate application of the
Kfinneth tensor formula, as restated in Thm. VIII.1.1. If A is of finite
type, each B. (A, A) is a free A-bimodule of finite type, so the Hom-®
interchange is an isomorphism and Thm. VIII.1.2 applies.
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This theorem was first proved by ROSE [1952] before the techniques
of resolutions were known, so his proof depended essentially upon a
direct construction of the chain equivalence (7.3), using shuffles to
describe the map g.

For algebras over a field, H" (A, A)=Ext*A_A(A, A).
Using bidimA to denote the homological dimension of A as a bi-

module, this theorem shows, for algebras of finite type over a field,
that bidim (A (&A') z bidimA + bidim A'. Similarly, Thm.6.2 above
shows

bidim (IkZ) = Max (bidim I', bidim E) .

This yields a fancier proof of the result (Prop. VII.5.2) that bidim 1'=
0 = bidim E implies bidim (I E) = 0.

Exercises
1. For G a right module and A a left module over A, the k-th relative torsion

product is Hs (G ®n B (&n A), with B short for B (A, A). The external product for
the relative torsion functor is the map

pT : TorV, K) (G, A) ®Tor(('. K) (G', A) -+Tor ®n' K) (G ®G'. A®A')

defined as the composite of the homology product for complexes, the chain trans-
formation

(G (&n B ®n A) ®(G'®n B'®n A') m (G ®G') ®n ®n' (B ®B') ®n ®n (A ®A')

given by two applications of the middle-four interchange, and the chain equi-
valence g of (7.3). Show that pT is natural, commutes with connecting homomor-
phisms in all four arguments, and reduces for k = m = 0 to the middle-four inter-
change.

2. For K a field, show that the relative torsion product of Ex. I gives an iso-
morphism

Tort (G, A) ®Torm (G', A') Tor" (G ®G', A®A') .
k+wo"

3. Show that the product pn of the text is (via (1.4)) a special case of the external
product for the relative torsion product.

4. Construct the analogous external product for the relative Ext functor.

8. The Case of Graded Algebras

If GA and nA are modules over a graded K-algebra A, their tensor
product G ®n A. as described in (V I.5.7), is a graded K-module. More-
over, the functor G ®n A is right exact : Each K-split short exact sequence
A B C of left A-modules yields a right exact sequence

G(&A->GOAB-).
of graded K-modules. To continue this exact sequence to the left requires
the (A-K)-relative torsion products Tore (G, C), each of which, like
G ®n A, must be a graded K-module Tor" = {Tor",aI p = 0, 1, ...}. We
now describe how this comes about.
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The bar resolution applies to any graded K-algebra A, using the
general process of IX.7 for the resolvent pair of categories with .rah
the category of (automatically graded) left A-modules C, X that of
graded K-modules M, F(M) =A ®M, e(m)=1(&m, both categories
with morphisms of degree 0. Note that A= {Ap}, C= {Cp}, and M= {Mr}
are all graded K-modules. The explicit formulas for the bar resolution
in § 2 still apply, with the understanding that each A-module B. (A, C)
is graded; indeed, the degree of a generator of B. is given by

deg A[Al ... I A"] c=deg A+deg A,+-.+deg A"+deg c. (8.1)

This element has also dimension n as an element of B. (A, C) ; in other
words, B (A, C) is bigraded by the submodules B..,, (A, C) of dimension
n and degree p in the sense (8.1).

In consequence, the relative torsion functor Tor(e,K) is bigraded.
Indeed, if G is a right A-module, this torsion functor is calculated as
the homology of the complex X =G ®4 B (A, C), where each X. =
G ®j B. is a graded K-module. Specifically, X. is generated by elements
g[AjI ... IA"] c with the degree given by (8.1) (with A there replaced
by g). The boundary homomorphism a: X"->X"_1 is of degree 0 in
this grading. For each dimension the homology Tor" (G, C) = H. (X)
is therefore a graded K-module, so may be written as a family (H.,,, (X)}
of K-modules: The relative torsion functor is the bigraded K-module

Tor; pK) (G, C) = H._0 (G ®n B (A, C)). (8.2)

The first degree n is the resolution dimension; the second degree p is
the "internal" degree, inherited from the gradings of G and C. The stand-
ard long exact sequences for Tor" have maps which are of degree 0
in the internal grading p, hence may be regarded as a family of exact
sequences in Tor" p, one for each p and variable n.

Similar remarks apply to the relative functor Ext(A,K). It is the
cohomology of the complex HomA(B(A, C), A), which is a complex
of Z-graded K-modules: That is, a family of complexes {HomA (B, A)),
one for each integer p. Therefore

Ext(',& (C, A)=H"(HomP(B(A, C), A))

is a bigraded K-module, in which the second grading (by p) is a Z-
grading.

It suffices to know this functor for all modules C and A and second
grading p=0. This we prove by shifting degrees. For each graded
K-module M we denote by L(M) the same module with all degrees
increased by 1; formally, The identity then induces
an isomorphism 1: M-+L(M) of graded K-modules, of degree 1, with
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inverse 1-1: L(M)--,M. A homomorphism µ: M--),.Ml of degree d is
a family of K-module homomorphismsy,,: M--,M+a; the corresponding
L(u): of the same degree d is defined by
(-1)°µ,,: in other words,

L(,u)lm=(-1) 1`ljum, mEM,,, 1mEL(M)t}1. (8.3)

The sign is the usual one for the commutation of morphisms L(µ) and
l of degrees d and 1. Since L(fc'u)=L(u')L(,u), L is a covariant functor
on the category of graded K-modules with morphisms of degree 0,
while 1: M--EL(M) is a natural transformation. A left A-module A
is a graded K-module with operators so L(A) is also a left
A-module with operators

,.(la)=(-1)°eg'1l(1a), aEA., (8.4)

L is a covariant functor on A-modules to A-modules, 1: A--)..LA is a
homomorphism of A-modules of degree I and a natural transformation
of the identity functor to L. The sign in (8.4) is exactly that required
by the rule l (. a) = (-1)°eg i °es 'A (1 a) for a homomorphism of degree 1.

Composition with I yields a natural isomorphism

Homm(C, A)=Homf 1(C, LA)

and by iteration a natural isomorphism

HomAO (C, A)=Hom°° (C, LEA).

With C replaced by the complex B (A, C), this yields the natural iso-
morphism

Ext',?K)(C, LEA), (8-5)

which for is= 0 includes the previous isomorphism. Similarly

Ext*(A,-e) (C, A) (LE C, A). (8.6)

These functors Ext have proved useful for the Steenrod algebra for a
fixed prime number p; this is the algebra over the field ZE of integers
modulo p consisting of all primary cohomology operations, modulo p -
ADAMS 11960), LIULEVICIUS [1960].

Exercise

1. For A graded, regard the corresponding internally graded algebra A. = A,,
simply as an ungraded K-algebra. Similarly A-modules G and C yield A,-modules
G. and C,. Prove that

K) (G.. C.) a, Torlti p) (G, C).
E
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9. Complexes of Complexes
In any abelian category we may construct complexes; in particular,

there are complexes in the category whose objects are themselves
complexes and whose morphisms are chain transformations. These will
occur in our study of DG-algebras in the next section.

A complex X of complexes may be displayed as a diagram

Xy: ...- Xp.v+1 s' Xp.s Xp.4-1 ->...
1'

dd
XP-1 Xp-i.q, Xp-1.a-1->...

with additional rows below and above. Each row X. is a complex with
boundary d, while the successive rows form a complex under another
boundary a' which is a chain transformation a': Xp-+Xp_1. Hence
a'd=d'. Adjust the sign of d by setting a" zp 9 = (-1)pd xp.q . This
gives two families of boundary operators

a': Xp.a-"'Xp-1,q, a Xp.v 'Xp.v-1
with a'01=o, 0"O"=o, and 8'O"+ 8" a' = 0. These imply formally
that Thus the family X', a' defined by

X,,,,
p+4-w

is a (single) complex. We say that X' is obtained from X by conden-
sation; its degree is the sum of the two given degrees; its boundary
a' the sum of the two given boundaries, with sign adjustment. This
sign adjustment may be made plausible by a more systematic presen-
tation.

Let dal be any abelian category. Recall that a (positive) W-complex
X is a family {Xp} of objects of V with Xp= 0 for p < 0, together with
morphisms a: X,-+Xp_1 of j/ such that a4=0. These X are the objects
of the category & (af) of al-complexes. The morphisms of '(dal) are the
chain trans/ormalions /: they are families {/p: of dal-
morphisms with a/p=/p_18 for all p. A chain homotopy s: /=/': X-*Y
is a family sp: X -+YY+1 of dal-morphisms with 8s+sa=/-/'. We also
use chain maps h: X-sY of degree d; that is, families {hp:X,->Yp+d}
of dal-morphisms with ah=(-1)dha. We do not explicitly introduce
the category with morphisms all such chain "maps" because our dis-
cussion of abelian categories is adapted only to the case of morphisms
of degree 0.

The lifting functor L of § 8 gives a covariant functor on X(,sl) to
"(dal), which assigns to each complex X the complex L(X) with

=X and differential L(a). The identity induces a chain map 1:X-+
L(X) of degree 1; as in (8.3), L(a)1=-la. In brief, L raises all degrees
by I and changes the sign of the boundary operator.
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Theorem 9.1. Condensation is a covariant functor (d)
Proof. Let X be a positive complex of positive complexes, in the

form

0 FXO4--X1<-...E-XP-1 XDE-...

Each X. is a complex, each aP a chain transformation of complexes.
Replace by the diagram X',

0 <-X0+-X1.-... -<--XP_l ' X,_...

where each a; is a chain map of degree - 1. More formally, set Xp=
LP (XP). The chain maps

Xa=LLP-1(Xp) r' LP-1(Xp) Lrn12i1LP-1(XP-1)=XD-1

define aP as l-1 LP (e)=LP-1(ap)1 1. Then aPa;+1=0. Each Xy is an
.Qf-complex with a boundary operator which we denote as a". There-
fore X =2: Xp is an sad-complex with boundary a". On the other hand,
a;: Xy-*XP_1 has degree -1, hence gives another boundary operator
in X'. Now a' is a chain map of degree - I for the boundary a", so
a" F= - a' a". Therefore a'=8'+ a" satisfies a' a' = 0, so (X', a') is
an .sad-complex, called the condensation of X. This description of X'
agrees with the initial description, since the boundary a" of X' is that
of X. with p sign changes due top applications of L. Since Xp a=o
for p>n, only finite direct sums are involved in the construction of X'.

Now let /: X -*Y be a chain transformation. It is a family of chain
transformations {/D: XP .YP} and determines X'-.Y' as the family
/; = LP (/) : X' -.Y''

P PThus /; a" = a" /; and a'/'D - f ' -1 a'. Hence /0 /;P- D D P- P
satisfies a'/' =/'a', so is a chain transformation X' -. Y'. This shows
condensation a functor, as stated.

Proposition 9.2. Each chain homotopy s: I =g: X -. Y in X(&'(d))
determines a chain homotopy s': )*=--g*: X'-s Y' o l the condensed complexes.

Proof. We are given a family {s.: Xy-.Y, ,,,j of morphisms of
X(.V) with aP+1sP-}-sP-lap=/p-gP. Each sP is a chain transformation,
so determines a chain map s': X' _Y,1_11 of degree 1. Specifically, s,, =
I P+1(SP) I =1 LP (sp) : LP (Xp) -> LP+l (YP+1) . Since s' has degree 1, a" sp =
_40". On the other hand, by lifting, a's'+ s' a' = f' - g'. Adding,
s ' = Z sp gives s*: X' ->Y' of degree 1 with 8' s'+ s' a' = f' - g' ; hence
s' is a chain homotopy, as asserted.

We also consider the effect of condensation upon tensor products
of complexes. In the initial category W. assume a tensor product which
is a covariant bifunctor on a to W. A tensor product is introduced
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in the category X'(sat) of rat-complexes X, Y by the usual formulas,
with (X (& Y)"= 2; Xt, (&Y. and

8=(8x®1)+(-1)"1®8r Xp®Y?-'(X ®1')p+a-i (9.1)

In particular, if ..r4' is the category of modules over some commutative
ground ring these formulas introduce tensor products in the category
X(X(.,r4')) of complexes of complexes.

Proposition 9.3. There is a natural isomorphism ,V: (X

Proof. For K and K' single complexes in f(.d), and any p, q there
is a chain isomorphism 1yp,y: L0+4(K(&K')=LPK®L4K', given by

ip l1

Now let X and Y be complexes of complexes The
complex of complexes X ® Y has (X (& Y)" =,E Xp ®Y,,, so the V,,,, for
p + q = n give a chain isomorphism of single complexes

tV": L"((X(gY)") QZ LP(Xp)®Lq(Y,)

The complex (X (& Y)' is the direct sum of the L"((X (& Y).), with bound-
ary 8'+ 8". The complex X' ®Y' is (Z LP XX) ® (2: L4 Y,) with boundary
determined by the usual tensor product formula (9.1) from the bound-
aries 8' = 8'+ 8" in X and in Y. By construction, V. commutes with
the 8" part of the boundary; a straightforward calculation shows
that it commutes with 8', and hence with the total boundary 80.

Note. The notion of a complex of complexes is not usually distinguished
from the closely related notion of a "bicomplex", which will be discussed in XI.6.
The superficial difference is just one of sign, in the formula a"zp'®(- i)pdzp,,.

10. Resolutions and Constructions

From algebras A we now shift to DGA-algebras U. When a U-
module A is resolved, two boundary operators arise: One from that
in A, the other from the resolution. Suitable combination of these
boundaries make the resolution into a single U-module, called a "con-
struction"; in particular, the canonical resolution of the ground ring
yields the "bar construction" B(U). This might be described directly
by the string of formulas (10.4)-(10.8) below, which yield the basic
properties of B(U), as formulated in Thm.10.4, as well as its relation
to the "reduced" bar construction of Cor. 10.5. Instead, we first describe
the bar construction conceptually by condensing the canonical reso-
lution for a suitable relative category.



304 Chapter X. Cohomology of Algebraic Systems

Let U be a DGA-algebra (differential graded augmented algebra)
over the commutative ring K. Each left U-module A (as defined in
(VI.7.3)) is by neglect a DG-module (i.e., a positive complex of K-
modules). It follows that U determines a resolvent pair of categories

sl = all left U-modules A, with morphisms of degree 0,

_f = all DG-modules M, with morphisms of degree 0,

F(M)=U®M, and e(m)=1(& mEF(M). Write e: U--). K for the aug-
mentation of U; by pull-back, K is a left U-module. An augmentation
of A or of M is a morphism

eA: A-s.K, CM: M--*K.

Proposition 10.1. Each left U-module A determines a DG-module

A= K®uA;=-A/JA,

where J is the kernel of s: U-+K. Il A is augmented, so is A.

Proof. Recall (VI.7) that the tensor product of U-modules is a
DG-module. Since j > U --j- K is an exact sequence of right U-modules,

is a right exact sequence of DG-modules. But U®uA-=A, so the module
A on the right is isomorphic to the quotient of A by the image JA of
J®uA. If A is augmented by eA, define an augmentation of A by
ea (k ®a) = k sA (a).

Call A the reduced module of A and p: A-*A=A/JA its projection.
The U-module A is like a "fiber bundle" with "group" U acting on A
and "base" A obtained by "dividing out" the action of U. The corre-
sponding analogue of an acyclic fiber bundle is a "construction". (Warn-
ing: This terminology does not agree with that Of CARTAN [1955].)

A construction for U is an augmented left U-module cc: C ->,K
which has a DG-module contracting homotopy of square zero. This
homotopy may be written as

t_1: K--C, t»: C.-..,C,,+1 nZO;
1_1 is a morphism of DG-modules, S=(t jn Z 0) is a hornomorphism
of graded K-modules, of degree 1, and

sct_1=1, at-i-ta=t-t_1ec, tt_1=0=tt. (10.1)

A construction C is relatively free if there is a graded K-module D
and an isomorphism U®D=C of modules over the graded algebra U.
The definition of the reduced module C then reads

=K.®u(U(&D) =(K. ®v U)®D=K®D=D;
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hence D may be identified with C, so a construction is relatively free
if there is an isomorphism

q : U =C (of modules over the graded algebra U).

To repeat: c commutes with the operators by uE U, but not necessarily
with the differential. Moreover, the projection p: C-Z=C/jC of
Prop.10.1 is given by p cp (u®e) = E (u) c . Hence i (c) = q (1®c 1 is a
monomorphism i : C--)..C of graded K-modules with Pi the identity
CSC. We can and will use i to identify C, as a graded K-module (not
as a DG-module) with a submodule of C.

Theorem 10.2. Condensation is a covariant functor on .4-split reso-
lutions X of ,K by U-modules to constructions X' for U. I/ X is relatively
free, so is X.

Proof. Let EX : X--),.,K be a resolution by U-modules Xp. By neglect
each U-module Xp is a DG-module; that is, a positive complex. By the
same neglect, X is a complex of complexes, so has a condensation
Z LIP (X,,) which is a DG-module under boundary operators a', a",
and a' = a' + a". But if A is a U-module, then L(A) is a U-module
with u (1m) = (-1)"l (um). Hence LP (X,,) is a U-module with differ-
ential a", while F: LP(X) (X,_,) is a map of U-modules of
degree -1, so that, writing au for the differential of uE U,

a"(ux)=(au)x+(-1) "u(a"x), a'(ux)=(-1)`d"*u(a'x). (10.2)

The augmentation ex of X condenses to an augmentation E': X'-,K.
The contracting homotopy of X (present because X is.4-split) condenses
by Prop. 9.2 to a contracting homotopy s' of square zero in X'. This
s satisfies the analogue of (10.1) ; in particular

a'se+s'a'=1-s!,so, a"to+soa"=0. (10.3)

If X is relatively free, each X. has the form U®M" for some DG-
module M.. Thus Lp(Xp)=U®Lp(M,,), so
X' relatively free.

Next we condense the canonical comparison (Thm.IX.6.2).

Theorem 10.3. (Comparison theorem.) If X--;,.,K is a relatively free
resolution and Y-+1K an .4-split resolution, both by U-modules, there
is a unique homomorphism p: X' -; Y' of augmented U-modules with

TX (s',Kvs'Y',
where s is the contracting homotopy of Y'.

The proof is by (IX.6.1); the submodule eM of X is here X'<X'.
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The left bar resolution B (U) is an ..d'-split resolution of K by rela-
tively free left U-modules, so its condensation BO(U) is a construction
called the bar construction. Specifically, BO(U) is the graded K-module

U®Lp((U/K)p); as a tensor product, it is generated by elements
which we write in the usual form as

u[u1l ... 1 up]' = u ®(u1+ K) ®... ®(up- - K)

for u and u;EU. By normalization, this element is zero if any u;EK.
The degree of such an element is

deg(u[ull ... I up]') =p+deg u+deg u1+ ±deg up; (10.4)

an element is multiplied by WE U by multiplying its first factor by u'.
The augmentation is

EB (u e (u) . (10.5)

and the contracting homotopy is determined by s-, (1) =1 []' and

I up]', pro. (10.6)

The normalization insures that s's'=0. The formulas for the two
boundary operators a' and a" are most easily found from that for s'
by recursion on p, using (10.3) and (10.2) ; they are

a,, (u [4yl ... I up]') = au full ... I up]'

i (-1)"-'u [u,I ... I auil ... 1 up]',
i-r

(10.7)

a'(u 1%1... I (-1)4u ui [u$I ... I up]'
p-1

+ (-1)"ufull...luiui+ll...lup]'i-r
(10.8)

+ 1)`au lull ... I up-1]* E (up) .

with the exponents e of the signs given for i = 0, ..., p by

e;=i+degu+degu1+ ...+degui=deg(u[u1l ... Iui]). (10.9)

Except for sign, a" is the boundary of a tensor product, and a' like
that of the bar resolution. Incidentally, the signs in (10.7) and (10.8)
can be read as cases of our usual sign conventions.

Thus Thm. 10.2 gives

Theorem 10.4. For each DGA-algebra U the condensed left bar
construction B'(U)=ZpU®(U/K)O is an augmented left U-module with
augmentation EB, grading given by (10.4), boundary by (10.7)
and (10.8), and contracting homotopy by (10.6).
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This theorem can also be proved directly from the formulas above,
with proofs of (10.2), (10.3), and 8'8"+8"8'=0 en route.

In the sequel we use only the condensed bar construction for a
DGA-algebra, so we shall drop the now superfluous dot. The curious
reader may note that the signs occurring in this boundary formula
are not those arising in the bar resolution of § 2 for an algebra. The
change of signs can be deduced from the lifting operation LO; we have
avoided the meticulous control of this change by deriving the signs from
(10.2) and (10.3).

As for any U-module, the reduced bar construction R (U) has the
form K, ®B (U), and B (U) is regarded as a graded K-submodule of
B(U).

Corollary 10.5. For each DGA-algebra U the reduced bar construc-
tion B(U) is a DG-module over K with B(U)=,E Lt((U/K)r). If elements
are denoted by [uJ ... Iup] for uiE U. the degree of these elements is given
by (10.4) with u omitted, the boundary 8=8'x-8" by (10.7) and (10.8)
with u = I and with it, replaced by E(u,) in the first term on the right of
(10.8).

Note also that the projection p: B(U)->B(U)=B(U)/JB(U) is
given by p (u [uJ ... I up]) = e (u) [uiI ... I up] ; it is a morphism of DG-
modules of degree zero. The isomorphism q>: B (U) -= U ®B (U) is given
by q' (u [u1J ... I u p]) = u ® [u1 ... I up] ; it is an isomorphism of modules
over the graded algebra of U, but does not respect the differential,
because p0'$ 8'ip.

The bar construction has the convenient property

s_1K v sB(U)=B(U); (10.10)

in words, the image of the contracting homotopy is exactly the reduced
bar construction, regarded as a graded submodule of B.

Corollary 10.6. Both B(U) and B(U), the latter with its contracting
Iwmotopy, are covariant /unctors of the DGA-algebra U with values in
the category of DG-modules over K. Moreover, p: B-*B and is B-),.B
are natural transformations of lunctors.

Proof. If u: U- .V is a homomorphism of DGA-algebras, then
B (V) pulled back along p is a U-module, still with a K-module contract-
ing homotopy. Hence the canonical comparison of Thm.10.3 gives a
unique homomorphism

B(µ): B(U)-*,,B(V) (10.11)

of U-modules with e' B (,u) = e. Moreover, J B (U) is mapped into
(J) B (V), so B (,u) induces a homomorphism B (,u) such that p B (,u) _

B (p) p. These maps make B and B functors, as asserted.
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Exercises
1. Describe the bar construction explicitly when K = Zp is the field of integers

modulo p and U=E(x) is the exterior algebra on a generator of odd degree.
2. Obtain a resolution of K when K = Zp, U= P[xlf(x). the ring of polynomials

in an indeterminate x of even degree, modulo 0.

3. (Uniqueness of comparison.) If X-.,K is a relatively free resolution, while
C is any construction for U with contracting bomotopy t, there is at most one homo-
morphism 97: of augmented U-modules with

11. Two-stage Cohomology of DGA-Algebras

The cohomology of a DGA-algebra U with coefficients in a (trivially
graded) K-module G can be defined in two ways or "stages". For stage
zero, regard U, by neglect, as a complex (= a DG-module) ; so that
HomK (U, G) and G ®K U are complexes with (co)homology the K-
modules

HA (U, 0; G)=H"(HorK(U, G)),

Hk (U, 0; G) = H" (G ®K U), k=0, 1, ... .

For stage one, the left bar construction B (U) with its total boundary a'
is a left U-module while G is a U-module by pull-back, so Homu (B(U),.G)
and G,®UB(U) are DG-modules with (co)homology the K-modules

H' (U, 1; G)=H"(Homu(B(U),.G)), (11.1)

Hk(U, f ; G)=Hk(G.®UB(U)), k=0, 1, ... (11.2)

Since B (U) -;,K arises from a resolution, the definition of H" (U, I ; G)
resembles that of the (U, K)-relative torsion product Tork(G.,.K), but
it is not a relative torsion product because it uses the total boundary
operator a' of B(U) and not just the boundary operator 2' arising
from the resolution.

A homomorphism ,u: (U, s)--.(V, e') of two DGA-algebras over a
fixed K is a homomorphism of DG-algebras with s'#=v: U --> K.
Thus B (V) is an augmented U-module by pull-back, and It induces
B (y) : B (U) -MB (V), a homomorphism of augmented U-modules which
commutes with the contracting homotopy. It follows that Hk(U, I; G)
is a covariant bifunctor of U and G and that H" (U, 1 ; G) is a bifunctor
covariant in G and contravariant in U. The reduced (condensed) bar
construction is also a covariant functor of DGA-algebras to DG-modules.

The (co)homology modules of U may be expressed by the reduced
bar construction. Indeed, since G is a K-module, each U-module homo-
morphism B (U) -*,G must annihilate JB(U), where J is the kernel
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of the augmentation e: U-->.K, hence induces a K-module homomor-
phism $ (U) = B (U)/JB (U) -*G. This gives the natural isomorphism

Hk(U, 1; G)=HA(HomK($(U), G)). (11.3)

Similarly G,®uB(U)=(G®K,) ®uB(U)=G®K$(U), so

HA(U, 1; G)=Hk(G®K$(U)). (11.4)

If X -*,K is any 4'-split resolution by relatively free U-modules, stand-
ard comparison arguments give

Hk(U, 1;

and similarly for the functorial behavior and for homology.
"Suspension" maps stage zero homology to that on stage one.

Let S : U --> $ (U) be defined by S (u) = [u); note that S is just the
contracting homotopy restricted to the subcomplex U of B(U). Thus
S is a homomorphism of degree I of graded K-modules with 8 S = - S 8,
hence induces similar maps G ®U -->-G ®B (U) and Hom ($ (U), G) -,,
Hom (U, G) and thus the homomorphisms

S,: H1, (U. 0; G)-Hk}I(U, 1; G), (11.5)

S*: Hk+1(U,1;G)--o-H''(U,O;G), (11.6)

called suspension, and to be used in the next section.
To study the dependence of H(B(U)) on H(U) we use a filtration

of the complex (DG-module) R. Let 1,=F($(U)) denote the sub-
module of $ spanned by all elements w = [u1( ... I uk] with k :!g p ; we
say that such an element w has filtration at most p.

Proposition 11.1. For each DGA-algebra U the associated complex
$ (U) has a canonical family of subcomplexes F,, with Fo (F ( (F (
. . . ( U F = $ (U). The elements in $ (U) of total degree n lie in F» . For
p=0, Fo=K, with trivial grading and differential, while if p>0, there
is a natural isomorphism of chain complexes

F/Fa-1-L(U/K) ®... ®L(UIK) (p factors). (11.7)

Only the last statement needs verification. The "internal" boundary
operator a" of $ carries an element of filtration p to one of filtration p,
while the "external" boundary operator 0' maps one of filtration p
to one of filtration p-1 ; F. is indeed closed under the total boundary
8 = a'+ 8". Moreover, the formation of the quotient F/F,_t drops all
the 8' terms from the total boundary, so the boundary in Fp/Fy_1 is
given by 8" as in the formula (10.7), with u=1. This is exactly the for-
mula for the boundary in the tensor product of p copies of L(U/K),
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for the sign exponent e; is that of the tensor product boundary formula,
and the minus sign in front of the summation is that introduced in
L(U/K) by the definition L(8)lu=-lou.

A chain transformation It: X - Y of complexes is called a homology
isomorphism if, for each dimension n, H,, (u) : H (X) =H (Y).

Theorem 11.2. (EILENBERG-MAC LANE [1953b].) Let Et: U-*V
be a homomorphism of DGA-algebras over K which is a homology isomor-
phism. Moreover, assume that K is a field or that K=Z and each U. and
each V is a free abelian group (i.e., a free K-module). Then the induced
map B (y): B (U) -.B (V) is a homology isomorphism, and for each K-
module G

u : Hk(U, 1; G)=H,t (V, 1; G) ;
j 11.8

µ": H"(V,1;G)=H"(U,1;G). ( )

The proof is an exercise in the use of filtration and the Five Lemma.
First, µ carries lu to ii,, hence induces a chain transformation

U/K -* V/K. We claim that this map is a homology isomorphism. Indeed,
the special assumptions (K a field or K = Z, Uo free) show that I: K-+U
is a monomorphism; hence K >- U-> U/K is an exact sequence of complex-
es, which is mapped by p into the corresponding exact sequence for V.
Therefore p maps the exact homology sequence of the first into that of
the second. For n ? 2, (K) = 0 and the exact homology sequence
reduces to the isomorphism For n=1 it becomes

0 -H1(U) -+H1(U/K) -+Ho (K) -3. Ho (U) -H0 (U/K) -o

with Ho (K) = K. This is mapped by ,u into the corresponding sequence
for V. Two applications of the Five Lemma give H1(U/K)=H1 (V/K),
HO (U f K) =HO (V/K), sop: U/K --> V/K is indeed a homology isomorphism.

Next consider the map B (,u) : rB,(U) -,-B (V), given explicitly as

B(P)[u1` ... (un]=U* u1l ...I1A un].

This map respects the filtration, so carries 1,=F(B(U)) into the
corresponding F,,' =F(B(V)). We claim that the induced map Fp/Fy_1-*
Ft /Fy_1 is a homology isomorphism. Indeed, the quotient Fy/Fy_1 is just
an n-fold tensor product (11.7), and the induced map is u(&... ®µ
(n factors). If K is a field, this is a homology isomorphism by the Ken-
neth tensor formula (Thm.V.10.1). If K=Z and each U. and each V.
is a free group, this is a homology isomorphism by a consequence of the
Kenneth formula for this case (Cor. V.11.2).

Finally, we claim that p : F,,-+F; is a homology isomorphism. The
proof is by induction on p. For p=0 it is obvious, since Fo=K=F.

pJFQ_1 of complexesFor larger p, p maps the exact sequence FP-1 '+1,-*F
into the corresponding exact sequence for F;. The corresponding long
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exact homology sequences give a commutative diagram with the first
row

Hk+t (F/F_t) -+Hh (F-t) -FHA(F) --.Hk (FIF_1) -+Hk_1(F-t)

and vertical maps induced by a. By the induction assumption and
the previous result for FIFp_t, the four outside vertical maps are iso-
morphisms, so the Five Lemma proves Hk (F) (l) an isomorphism
for every k.

Since in each total dimension n, F B gives all of B for p large, it
follows now that B (y): B (U) - B (V) is a homology isomorphism.
The isomorphisms (11.8) then follow by an application of the appropriate
universal coefficient theorem (K a field or K=Z with B free).

Exercises
1. (The contraction theorem of EILENBERG-MAC LANE (1953b, Thm.12.1].)

If ji: v: are homomorphisms of DGA-algebras with µv=I and a
h omotopy t with 01 + 10 = v µ - 1, µ t = 0, tv = 0, show that there is a homotopy
1 with 81 +12=B(v) H(µ) - 1. B(IA)t=o. 19(v)=o.

2. Obtain the filtration of Prop.11.1 for an arbitrary .&-split relatively free
resolution of K by U-modules.

12. Cohomology of Commutative DGA-Algebras

Let U and V be two DGA-algebras over K. Their tensor product
U ® V is also a DGA-algebra, while the tensor product of a U-module
by a V-module is a (U(& V)-module. In particular, the bar constructions
B(U) and B(V) yield an augmented (U(&V)-module B(U)®B(V).
Now B(U)®B(V) is a construction, with a contracting homotopy t
given in dimension -1 bys_1®s_1: and in positive dimen-
sions by the usual formula t = s ®1 + s_ t e ®s for the tensor product
of homotopies. Moreover, B(U)0B(V) is relatively free. Indeed,
B (U) = U ®B (U) is an isomorphism of modules over the graded
algebra of U, so

B(U) ®B(V)=U®B(U) ®V®B(V)=U®V®B(U) ®B(V)
is an isomorphism of modules over the graded algebra of U ® V, and
B(U)®B(V) is relatively free. One may show that its reduced DG-
module is exactly the tensor product B(U)®B(V) of the DG-modules
B (U) and B (V). Finally, by Prop. 9.3, the construction B (U) ®B (V)
could also be obtained as a condensation - specifically, as the condensa-
tion of the tensor product of the original bar resolutions. Hence we can
apply the comparison theorem to obtain homomorphisms of augmented
(U ®V )-modules

B(U(&V) B(U)®B(V). (12.1)
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Let us choose for / and g the canonical comparisons (Thm. 10.3) with

1B(U®V) C 1-1K t(B(U)(&B(V)),

g[B(U) ®B(V)] < s_1K v s B(U(&V).

By the comparison theorem again, there is a homotopy I g f . On the
other hand, by (10.10), s_IK v s B(U(&V)=B(U(&V), so

1g[B(U)®B(V)] (t-1K v t(B(U)®B(V)).

This shows that I g is the canonical comparison of B (U) ®B (V) to
itself, so I g =1. Since f and g, as canonical comparisons, are unique,
they are natural in U and V.

A DGA-algebra U is commutative if uyEU, and ugEU4 have upuq=
(-1)P4uquy; that is, if nr=n: U®U--*U, where r: U®V->V®U
is the usual interchange and n the product map for U. Now the tensor
product U®U is also a DGA-algebra; a diagram shows that when U
is commutative its product mapping n: U® U-+U is a homomorphism
of DGA-algebras. Therefore the "external" product g of (12.1) in this
case gives an internal product in B(U) as the composite

nB: B(U)®B(U)-+ B(U(& U) a- B(U). (12.2)

Here B (U) is a U(& U-module by pull-back along n : U ®U -->. U, while
B (.n) is the canonical map, as in (10.11). Therefore the product nB of
(12.2) can be described as the canonical comparison.

Theorem 12.1. 1/ U is a commutative DGA -algebra, then B (U) is
a commutative DGA-algebra with identity [] unaer the product nB.
Also nB is a homomorphism o t augmented modules over U (&U. This
product induces a product B (U) ®B (U) - .B (U) such that R (U) is a
commutative DGA-algebra, and the Projection B (U) -*B (U) a homo-
morphism of DGA-algebras, while inclusion B(U)--AB(U) is a homo-
morphism o t graded K-algebras.

Proof. The identity element of U is represented by the map
I: K-> U. With B (K) = K, form the composite map of U-modules

B(U)=B(K) ®B(U) B(')' - B(U) ®B(U) !. B(U) .
Here we regard B ® B as a U-module by pall-back along 10 1: K ® U

U ® U and then B (U) as a U-module by pull-back along nu (I (& 1) =1.
Hence the composite map is the canonical comparison of B (U) to itself,
so is the identity map. This shows that B (I) I K= [ ] is the identity
element of B (U) for the product nB. Similarly

nB(1®2B) nB(nB(&1): B(U)®B(U)®B(U)--,B(U)
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are both canonical, so must be equal. This gives associativity, and
makes B(U) a DGA-algebra. There is an analogous proof that the
product is commutative.

By definition, B=BUJB, where J is the kernel of e: U-+K; there-
fore, by Lemma VIII.3.2, the kernel of p®p: B(&B--)-B®B is the
union of the images of J B ®B and B® J B. Since nB is a homomor-
phism of (U(DU)-modules, it carries this union into JB and thus
induces a unique map A : B ®B -,. B with A (p (&p) = p nB. From the
uniqueness of this factorization it follows readily that B is a DG-algebra
under the product n with augmentation given by B0-=K, and that p
is a homomorphism of augmented algebras.

It remains to show that i: B-. B is a homomorphism for the product:

nB(i(&i)=i X: B(U)®B(U)-B(U).

Since nB is canonical, the image of nB (i (&i) lies in B < B ; on this sub-
module ip is the identity, and

as desired. This completes the proof. Note that the products in B and
U determine that in B ; indeed, since nB is a homomorphism of (U ® U)-
modules, we have

nB[(ui®bi)®(us® (12.3)

for any two elements bl, 52EB(U).
Since g is canonical, it can be given by an explicit formula; the for-

mula is (except for signs) just the explicit map g of the EILENBERG-
ZILBER theorem, as given by the simplicial structure of B(U). As in
that case (VIII.8), let i be a (p, q)-shuffle, regarded as a suitable per-
mutation of the integers {1, ..., p+q}. For elements

61 =[%I ... lup], t2=[v,l ... JVq] E B(V),

define a bilinear map (the shuffle product) s: B(q) ®B(V)-+B(U®V)
by labelling the elements ul®1, ..., up®1, 1®vl, ..., i®vq of U®V
in order as w1, ..., wp+q and setting

[uil ... I up]s [vi) ... J vq] _ [Wr-,(1)I ... I Wr.,(p+q)] (12.4)

where the sum is taken over all (p, q)-shuffles t and the sign exponent
e (t) is given in terms of the total degrees as

e(t)=2:(deg[ui])(deg[vf]) t(i)>t(p+l) isp,jSq (12.5)

This sign is exactly that given by the sign conventi&n, since the sum
is taken over all those pairs of indices (i,1) for which u1 of degree
deg [u1] has been shuffled past vi of degree deg [v,].
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Theorem 12.2. The canonical comparison g of (12.1) is given, for
elements bl and b2 o t B (U) and B (V), respectively, by

g [(u bi) ®(v 3s)) = (-1) (dog o) (dg E.) (u ®v) (bl* bs)

Proof. The formula is suggested by (12.3). It is clearly a homo-
morphism of modules over the graded algebra of U ®V, and it carries
B (U) ® B (V) into B (U ® V), so is canonical. The proof is completed
by a verification that 2g=g8. This is straightforward, using the defi-
nition of g and of 2=2'=8'+d" in the bar construction. We leave
the details to the reader, or refer to EILENBERG-MAC LANE [1953b],
where the proof is formulated in terms of a recursive description of the
shuffle product *.

Note that the formula (12.4) together with (12.3), in the form

(1tlbl) * (u232) _ (- 1)(deg".)(degx.)u1us(bl*b!),

completely determines the product in B(U). For example,

[u] * [v] _ [ul v] + (- 1(1+deg r) (l+deg o) [vI U];

again, with an evident "shuffle", /

[u] * [vI w] = [uj vI w] ± [vI uI w] f [vl wl u]

Corollary 12.3. 1/ U is commutative, the algebra B (U) is strictly
commutative.

Proof. For b = [ul1 ... I uy], each term in 6.3 occurs twice for two
shuffles 1, t', where

e (i) + e (t') _ (deg [u.]) (deg [ui]) = (deg 5)2.
id

When deg b is odd, the signs are opposite, so b * b = 0, as required for
strict commutativity.

The essential observation is that each commutative DGA-algebra U
yields a commutative DGA-algebra B(U), so allows an iteration to
form a commutative DGA-algebra B"(U) for each positive n. This
gives an n-th stage cohomology (or homology) of U with coefficients
in the K-module G as

HI (U, n; G)=Hh(Horn (B"(U), G)).

This may be applied when U =Z (17) is the group ring of a commutative
multiplicative group 1I. The n-th stage homology and cohomology
groups of this group IT, with coefficients in the abelian group G, are
thus

Hk(17, n; G)=Hk(G®B"(Z(17))), (12.6)

H"(17, n; G) = HI(Horn (B"(Z(17)), G)); (12.7)
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for is =1, these are the homology and cohomology of 17 as treated in
Chap. IV. Note that the suspension S: R* 27"' of (11.5) gives homo-
morphisms

SO: H"+p (I7, n ; G) ->H"+1+p (n. n+1; G), (12.8)

S": H"+1+p(17,n+1;G)-*H"+p(17,n;G). (12.9)

The direct limit of H"+p(17, n; G) under S, gives another set of "stable"
homology groups Hp (17; G) for the abelian group U. They have been
studied by EILENBERG-MAC LANE [1951, 1955].

For general is, the groups Hk (I7, n; G) have a topological interpreta-
tion in terms of the so-called Eilenberg-Mac Lane spaces K(11, n). Here
K(17, n) is a topological space whose only non-vanishing homotopy
group is ;r. =,U in dimension is. It can be proved (EILENBERG-MAC LANE
[1953b]) that there is a natural isomorphism

Hk(K(II, n), G)=Hk(17, n; G),

with the corresponding result for homology.
Explicit calculations of these groups can be made effectively by

using iterated alternative resolutions X, so chosen that X has an algebra
structure (CARTAN [1955]).

Exercises
1. Show that the image of the contracting homotopy in B (U) ®B (V) properly

contains B(U)®B(V).
2. Prove Thm. 12.1 from the explicit formula for the product .
3. Show that W"(Z(I7)) vanishes in dimensions between 0 and n, and hence

that HP (17, n ; G) = o = Hp (17, a ; G) for 0 < p < n.
4. Show that H" (11, n; G) Hom (17, G) for n Z I and that, for n 2.

H"}1(17, n; G) 95 ExtT(17, G).
5. (The suspension theorem (EILENBERG-MAC LANE 1953b, Thm.20.4).) For

p < n, show that SO and SO in (12.8) and (12.9) are isomorphisms, while for p - n,
S" is a monomorphism and S. an epimorphism. (Hint: Compare the complexes
270+1(U) and P"(U) in the indicated dimensions)

6. For any K-split relatively free resolution X - 1K, written as X - U®X as
in Thm.10.2, let be given by j(u)=u®1 (assume IEU=X0). Show
that the composite psi: with s the contracting homotopy, gives the
suspension.

7. For any X as in Ex.6 find a product 940Z -.X associative up to a homo-
topy.

13. Homology of Algebraic Systems

For groups, monoids, abelian groups, algebras, and graded algebras
we have now defined appropriate homology and cohomology groups.
A leading idea in each case is that the second cohomology group re-
presents a group of extensions (with given operators) for the type of
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system in question : See Thm. IV-4.1 for groups, Ex.12.4 for abelian
groups, and Thm.3.1 for algebras. The third cohomology group has
elements which represent the obstructions to corresponding extension
problems; see Thm.IV.8.7 for groups and HOCHSCHILD [1947] for al-
gebras. The typical complexes used to construct such homology theories
have been described by a notion of "generic acyclicity" (EILENBERG-
MAC LANE [1951]). Here we will mention various other algebraic systems
for which corresponding homology theories have been developed.

The 2-dimensional cohomology theory for rings operates with two
factor sets, one for addition and one for multiplication. Let A be an
abelian group, regarded as a ring (without identity) in which the pro-
duct of any two elements is zero. Let R be a ring. A singular extension
of A by R is thus a short exact sequence A >- S -sR of ring homomor-
phisms x and a, in which S is a ring with identity 1s and a is =1 R. Regard
A as a two-sided ideal in S, with S/A = R. To each xE R choose a represen-
tative u (x) E S, with au (x) = x. Then A is an R-bimodule with operators
x a = u (x) a, a x = a u (x), independent of the choice of u. The addition
and multiplication in S is determined by two factor sets / and g defined
by

(13.1)

(13.2)

These functions / and g satisfy various identities which reflect the asso-
ciative, commutative, and distributive laws in S (EvERETr [1942].
REDEI [1952], SZENDREI [1952]). One can now construct (MACLANE
[1956]) a cohomology theory for a ring R such that H'(R, A) has such
pairs of functions /, g as cocycles, with cohomology classes representing
the extensions of A by R. A part of the corresponding 3-dimensional
cohomology group H3 (R, A) then corresponds exactly (MACLANE [1958])
to the obstructions for the problem of extending a ring T (without
identity, but with product not necessarily zero) by the ring R. The
results also apply to sheaves of rings (GRAY [1961 a, b]).

SHUKLA [1961] has extended this cohomology theory for rings
(Z-algebras) to the case of algebras A over an arbitrary commutative
ring K. The resulting cohomology of algebras is more refined than the
Hochschild cohomology, because the Hochschild cohomology deals
systematically with those extensions which are K-split, while in the
present case the use of a factor set (13.1) for addition reflects exactly
the fact that the extensions concerned do not split additively. SHUKLA'S
theory is also so arranged that every element of H3 corresponds to an
obstruction. HARRISON [1962] has initiated a cohomology theory for
commutative algebras over a field.
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A Lie algebra L over K is a K-module together with a K-module
homomorphism x ®y -+[x, y] of L (&L into L such that always

[x, x]=0, [x,[Y, z]]+[y.[z, x]]+[z,[x. Y]]=0;

a typical example may be constructed by starting with an associative
algebra A and setting [x, y] = x y- y x. Conversely, each Lie algebra L
defines an augmented associative algebra L' as the quotient of the tensor
algebra T(L) of the module L by the ideal generated in T(L) by all
elements x ®y- y ®x- [x, y], for x, y E L. The algebra L' is called the
enveloping (associative) algebra of L. The homology and cohomology
of L are now defined for modules GL. and L'C as

H. (L, G) =Toil.* (G, K), H" (L, C) = ExtL". (K, C),

though, as in the case of algebras, it may be more appropriate to use
the relative Tor and Ext functors for the pair (L', K). This theory is
developed in CARTAN-EILENBERG, Chap.XIII; cf. JACOBSON [1962]. In
case K is a field, the POINCARB`-BIRKHOFF-WITT Theorem may be
used to give an alternative description of these cohomology and homo-
logy groups in terms of a standard complex constructed directly from
the bracket product in L. Indeed, this is the approach originally used
in the first treatment of the cohomology of Lie algebras (CHEVALLEY-
EILENBERG [1948], KoszUL [1950b]). The 2-dimensional cohomology
group H' (L, C) corresponds to K-split extensions for Lie algebras
(CARTAN-EILENBERG, XIV.5) In certain cases the elements of the
3-dimensional cohomology group Hs (L, C) are the obstructions to ex-
tension problems (HOCHSCHILD [1954]). Analogous results apply to
the analytic Lie groups (MACAULEY [1960]), and Lie triple systems
(YAMAGUTI [1960], HARRIS [1961]). Shuffle products have been applied
to Lie algebras by REE [1958].

Just as the cohomology of rings starts with factor sets for both
addition and multiplication, it is possible to construct a cohomology
of Lie rings such that H' will involve factor sets for both addition and
bracket products. Such a theory has been initiated by DIXMIER [1957] ;
it is to be hoped that subsequent investigation might simplify his for-
mulation.

Topologically, the bar construction starts with a "fiber" U. constructs
an acyclic fiber bundle B (U) with the group U and the corresponding
base space B (U). The converse problem of constructing (the homology
of) the fiber from a given base is geometrically important. To this end,
J. F. ADAMS has introduced the cobar construction F(W), where W is
a graded coalgebra over K. This is a formal dual of the bar construc-
tion; for details, see ADAMS [1956], [1960, p. 33].
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Notes. The reduced bar construction B(U) is due to EILENBERG-MAC LANE
[1950b]. CARTAN [1954] made the essential observation that B could be obtained
from the acyclic bar construction B and developed an efficient method of carrying
out calculations by "constructions".

Chapter eleven

Spectral Sequences

If I' is a normal subgroup of the group 17, the homology of 17 can
be calculated by successive approximations from the homology of r
and that of 17/T. These successive approximations are codified in the
notion of a spectral sequence. In this chapter we first formulate the
mechanism of these sequences and then proceed to several applications,
ending with another general theorem (the comparison theorem). Other
applications will appear in the next chapter.

In this chapter, a "module" will mean a left module A over the
fixed ring R - though in most cases it could equally well mean a !-
module or an object of a given abelian category. We deal repeatedly
with subquotients S/K of A, where K < S (A: Recall (II.6.3) that each
module homomorphism a: A-->A' induces for given subquotients S/K
and S'/K' an additive relation a#: S/K-, S'/K' consisting of all those
pairs of cosets (s+K,as+K') with SES, asES'. If S, T, and U are
submodules of A, the modular law asserts that S- (Tv U) _ (S- T),-, U
whenever S) U. It follows that 1e induces an isomorphism (the modular
Noether isomorrhism) :

1t: S1[Uv(S-T)]=(S-7)1(UvT), S)U.
Indeed, S/[Uv (Sr T)] = S/[Sr (T v U)] ; by the Noether isomorphism
(I.2.5), this is isomorphic to (S% Tv 1)/(TvU)=(SvT)/(ULT).

1. Spectral Sequences
A Z-bigraded module is a family E={Ep,4} of modules, one for

each pair of indices p, q = 0, ± 1, ±2, .... A dillerenlial d: E of
bidegree (-r, r-1) is a family of homomorphisms{d: ED q- >Ey_, q+,_,},

one for each p, q, with ds= 0. The homology H(E) = H(E, d) of E under
this differential is the bigraded module {H,,, ,(E)} defined in the usual
way as

H,.,(E) = Ker [d: E9,, (1.1)

If E is made into a (singly) Z-graded module E = with total degree
n by the usual process EN=2] Ep,q, the differential d induces a differ-

a+q
ential d: with the usual degree -1, and d) is the
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singly graded module obtained from the bigraded module H..,, (E) as
H,,=2] Hc,q

O+q-w
A spectral sequence E = {E', d'} is a sequence E_, Es, ... of Z-bigraded

modules, each with a differential

(1.2)

of bidegree (-- r, r-1), and with isomorphisms

H(E', d')=E'+1, r=2,3, .... (1.3)

More briefly, each E'+1 is the bigraded homology module of the pre-
ceding (E', d'). Thus E' and d' determine E'+1, but not necessarily
d't1. The bigraded module E2 is the initial term of the spectral sequence
(occasionally it is convenient to start the spectral sequence with r=1
and initial term El).

If E' is a second spectral sequence, a homomorphism f : E--3,.E' is
a family of homomorphisms

../1: r=2,3,
of bigraded modules, each of bidegree (0, 0), with d'/' f d' and such
that each f"` is the map induced by /' on homology (use the isomor-
phisms (1.3)).

It is instructive to describe a spectral sequence in terms of submodules
of E2 (or of El, if this be present). First identify each E'+1 with H(E', d')
via the given isomorphism (1.3). This makes Es=H(E2, ds) a subquo-
tient C2/B$ of E2, where Cs= Ker ds and Bs= Im ds. In turn, E4=
H (E3, d3) is a subquotient of C2/B2 and so is isomorphic to C3/B3, where
C3/B2= Ker d3, B3/Bs= Im d3, and B3 C C3. Upon iteration, the spectral
sequence is presented as a tower

0-B1(B'<Bs(...(...(Cs(C2(C'=Es (1.4)

of bigraded submodules of Es, with E1}1=C'/B', where

d': C'-1/B'-1--)..C'-1/B'-', r=2, 3, ...

has kernel C'/B'-1 and image B'/B'-1. In informal parlance,

C'-' is the module of elements which live till stage r,
B'-1 is the module of elements which bound by stage r.

The module of elements which "live forever" is

C°° = intersection of all the submodules C', r=2, 3, ... ,
while the module of elements which "eventually bound" is

B°° = union of all the submodules B', r= 2, 3.... .
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Then B°° < C°°, so the spectral sequence determines a bigraded module

E°O-{ q}' (1-5)

We regard the terms E' of the spectral sequence as successive approxi-
mations (via successive formation of subquotients) to E. In this
representation (1.4), a homomorphism /: E--3,.E' of spectral sequences
is a homomorphism /: E2--*E" of bigraded modules, of bidegree (0, 0),
such that /(C'} <C", /(B') (B", and such that all the diagrams

d'+ C_'/B'_'
1. j4

are commutative. Also /: E-sE' induces /°°: E°°-E'°°.
A first quadrant spectral sequence E is one with E,',q=0 when p<0

or q<0. (This condition for r= 2 implies the same condition for higher r.)
It is convenient to display the modules El q at the lattice points of the
first quadrant of the p, q plane:

q

E?

q

The differential d' is then indicated by an arrow. The terms of total
degree n all lie on the 450 line p+q=n; the successive differentials
go from a lattice point on this line to one on the next line below, At
each lattice point of E ,, q the next approximation EyQ1 is formed by
taking the kernel of the arrow from that lattice point modulo the image
of the arrow which ends there, as in

d' d'''yA+F,q-'+1.__*
E'p q E,_,,q+,_i

The outgoing d' ends outside the quadrant if r>p, the incoming d'
starts outside if r>q+ 1, so that

E'+1=E'P.q, oo>r>Max(p,q+1). (1.7)P. q

In words: For fixed degrees p and q, Ey,q is ultimately constant in r.
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The terms Ep,a on the p-axis are called the base terms. Each arrow
d' ending on the base comes from below, hence from 0, so each E'y o
is a submodule of Ep,,, namely the kernel of d': E',,0-s This
gives a sequence of monomorphisms

Eqe=j (1.8)

The terms Ee,q on the q-axis are called the fiber terms. Each arrow
from a fiber term ends to the left at zero, hence Eo.q consists of cycles
and the next fiber term is a quotient of Eo,q (the quotient by the image
of a d'). This gives a sequence of epimorphisms

Eu.q.-;Ee.q-'EO.q-4'...- E 42=Epq (1.9)

These maps (1.8) and (1.9) are known as edge homomorphisms (monic
on the base, epic on the fiber).

A spectral sequence E is said to be bounded below if for each degree
n there is an integer s=s(n) such that Ep,q=0 when p< s and P+q=n.
This amounts to the requirement that on each 45° line (p + q = n) the
terms are eventually zero as p decreases; thus a first quadrant or a
"third quadrant" spectral sequence is bounded below.

Theorem 1.1. (Mapping Theorem.) I/ /: E--s'E' is a homomorphism
of spectral sequences, and 1l f: E';=E" is an isomorphism for some t,
then f : E'=E" is an isomorphism for r?t. If also E and E' are bounded
below, f: EO° EiOO is an isomorphism.

Proof. Since f is a chain isomorphism and E'+' = H(E'. d'), the first
assertion follows by induction. When E and E' are bounded below and
(p, q) are fixed, d': Ep,q-+Ephas image 0 for sufficiently large r.
Hence C',,=,COq and C,,= Cp qq for r large. Thus a'E C,, q lies in C p'q.
so f' an epimorphism makes /°° an epimorphism. If a E C°° has f a E B'm _
U B", then /aE B" for some r. Hence f' a monombrphism for all r implies
that /O0 is a monomorphism.

Exercises

1. Show that a tower (1.4) together with a sequence of isomorphisms 8': C"1/C'
5mB'/B'-1 of bidegrees (- r, r - 1) for r =2.3, ... determines a spectral sequence
with E'- C'-1/B'-1 and d' the composite
and that every spectral sequence is isomorphic to one so obtained.

2. If E' and E" are spectral sequences of vector spaces over a field, construct
a spectral sequence E = E'®E" with E'p,q=2; E'p®E'p where the sum is
taken over all p'+p"- p, q'+q q, and d' is given by the usual tensor product
differential.

3. If E is a spectral sequence of projective left R-modules, C a left R-module
and G a right R-module, construct spectral sequences HomR(E, C) and G®RE
and calculate the terms E00.
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2. Fiber Spaces

Before studying various algebraic examples of spectral sequences
it is illuminating to exhibit some of the formal arguments which can
be made directly from the definition of a spectral sequence. For this
purpose we cite without proof the important topological example of
the spectral sequence of a fibration.

Let I denote the unit interval and P any finite polyhedron; recall
that a homotopy is a continuous map H: P><1-+B. A continuous
map /: E - B of topological spaces with / (E) = B is called a fiber map
if any commutative diagram of the following form

P -+ E
1i it i(x)=(x, 0) for XEP,

PxI
(all maps continuous) can always be filled in at L so as to be commu-
tative. This is the "covering homotopy" property for /: Any homotopy
H of P in B whose initial values H(x, 0) can be "lifted" to a map h : P -*E
with /h (x) = H(x, 0) can itself be lifted to a homotopy L of P in E
with /L = H and h (x) = L(x, 0). If b is any point in B, its inverse image
F = f -1 b is called the fiber of f over b. If B is pathwise connected, it
can be shown that any two such fibers (over different points b) have
isomorphic (singular) homology groups. Hence one may form the singular
homology groups HH(B, Hq(F)) of B with coefficients in the homology
groups H, (F) of "the" fiber. Strictly speaking, we should use "local
coefficients" which display the action of the fundamental group of
B on Hq (F) ; this we avoid by assuming B simply connected. Since B
is pathwise connected, its 0-dimensional singular homology is

HO(B)=Z, HO(B, Hq(F))=Hq(F).

The following spectral sequence has been constructed by SERRE
[1951] following LERAY'S construction [1946, 1950] for the case of
cohomology.

Theorem (LERAY-SERRE). I/ f : E--.B is a fiber map with base B
pathwise connected and simply connected and fiber F pathwise connected,
there is for each n a nested /amity of subgroups of the singular homology
group H. (E),

(2.1)

and a first quadrant spectral sequence such that

P.q=Ho(B, Hq (F)). Ep q=Hc.g/H,,_i,q+1. (2.2)
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I/ eB is the iterated edge homomorphism on the base, the composite

H, (B) .Hp olHp-j,i=Epo2'Epo=Hp (B, HO (F)) -H,, (B)

is the homomorphism induced on homology by the fiber map /: E-->B.
If eF is the iterated edge homomorphism on the fiber, the composite

H4 (F) =Ho (B, H4 (F)) =_ E02.
4
--' E0 4 -*H4 (E)

is the homomorphism induced on homology by the inclusion FCE.
This spectral sequence relates the (singular) homology of the base

and fiber, via El, to the homology of the "total space" E, with E°°
giving the successive factor groups in the "filtration" (2.1) of the homo-
logy of E.

The universal coefficient theorem (Thm. V.11.1) expresses the first
term of (2.2) as an exact sequence

0--3..Hp(B)®H4(F) ±Ep,4-*Tor(Hp_1(B), H4(F))-*0. (2.3)

In particular, if all H,-,(B) are torsion-free,
E,1.4=Hp(B)®H4(F).

Assuming this result, we deduce several consequences so as to
illustrate how information can be extracted from a spectral sequence.

The LERAY-SERRE theorem holds when all homology groups (of B,
F, and E) are interpreted to be homology groups over the field Q of
rational numbers. Write dim V for the dimension of a Q-vector space
V over Q. For any space X the n-th Betti number b (X) and the Euler
characteristic X (X) are defined by

Q), X(X)=E IN. M;
0-0

more precisely, X (X) is defined if each b (X) is finite and there is an
m such that b.(X)=0 for n>m. If X is a finite polyhedron, X(X) is
defined.

Corollary 2.1. It f : E a B is a fiber space with fiber F, with B and
F connected as in the Leray-Serre theorem, then it X (B) and X (F) are
defined, so is X (E) and X (E) =X (B) X (F)

Proof. For any bigraded vector space E', define a characteristic as
X (Es) =Z (-1)p+4dimE¢,4. By (2.3) for vector spaces,p

Ep,4ZHp(B)®H4(F), dimEp.4=bp(B) b, (F)<oo,

and X (Es) = X (B) X (F). Write Cr.,
4

and B'y,
4

for the cycles and the
boundaries of E'p,

4
under d'. The short exact sequences

+1C 4sEV'.4-*, B'0-r.4+r-1, .4
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define C, B', and E'+' = H(E'). In each sequence the dimension of
the middle term is the sum of the dimensions of the end terms, so

dim Ep 4' = dim E' q - di m By, q - dim Br_,, q+.-1

Here the last term has total degree p- r+ q+ r-1= (p+ q) -1, so
X (E+') =x (E') ; by induction X (E') =X (Es). Since Ey, q vanishes for p
and q large, F'D = E' for r large, and X (E°°) = X (E9). Now by (2.1) and
(2.2),

dim H. (E) _ dim (Hp,gIHP-1,q+1) _ dimEp
p+q-% O+q-w

so X(E)=X(E°°)=X(E')=%(Ii)%(F), as asserted.

Theorem 2.2. (The WANG sequence.) If f: E-- Sh is a fiber space
with base a k-sphere (k z 2) and pathwise connected fiber F, there is an
exact sequence

...-H»(E)--'H.-k(F) a' H"-j(F)-+H._,(E)-+..._

Proof. The base S' is simply connected and has homology H. (Sk)
Z=Hk(Sh) and H,, (Sh)=0, for p#0,k; hence by (2.3)

EX.q=Hq(F), Eo,q-H,(F), En,q=0, p$0, k.

The non-zero terms of E,',,, all lie on the vertical lines 0=0 and p = k,
so the only differential d' with r 2-:2 which is not zero has r = k. There-
fore Es = E3 _ ... = Ek, Ek+1 = Ek+s = ... =E"*. The description of
Ek+1=E°° as the homology of (Ek, dk) amounts to the exactness of the
sequence

0->E q+E21,q
64

Eo,q+k-1+Eo q+k-1 -+0. (2.4)

On the other hand, the tower (2.1) has only two non-vanishing quotient
modules, so collapses to 0(Ho.M=Hk_j,,_h+l<Hk. _k=H%. With the
isomorphisms for E°° in (2.2), this amounts to a short exact sequence

$_k-*0 (2.5)

with H,,(E) in the middle. Now set q=n-k in (2.4), put in the values
of Es in terms of H(F) and splice the sequences (2.4) and (2.5) together:

H. (E) 0

1 .Y 1

0-+Ek *-k-+Ha-A (F)-+Ha-1(F)--.Eo _1-0
1 > 1
0 H.-1(E) .

The result is the desired long exact sequence. By LERAY-SERRE, the
homomorphism Hi_ 1(F) - H _ 1(E) is that induced by the inclusion
F(E.
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Spectral sequences may be used to calculate the homology of certain
loop spaces which are used in homotopy theory. Let bo be a fixed point
in the pathwise connected space B. The space L(B) of paths in B has
as points the continuous maps t: I--)..B with t(0)=bo; here I is the
unit interval, and L(B) is given the "compact-open" topology. The map
p : L (B) -. B with p (t) = t (1) projects each path onto its end point in
B ; it can be shown to be a fiber map. The fiber Q (B) = p-1(bo) consists
of the closed paths t [with t (0) = bo = t (1) ] ; it is known as the loop space
of B.

Corollary 2.3. The loop space Q Sk of a k-sphere, k 2, has homo-
logy

H.(QSk)-:;.,Z, n= 0 (mod k-1),

=0, n*0 (modk-1), nZ0.

Proof. Since k>1, Sk is simply connected, so each loop can be
contracted to zero ; this implies that Q (Sk) is pathwise connected, so
that H. (Q Sk) = Z. The space E = L(B) of paths is contractible, as one
may see by "pulling" each path back along itself to the origin. Hence
E is acyclic (Ex. 11.8.1). Thus every third term H (E) in the WANG
sequence is zero, except for Ho (E), so the sequence gives isomorphisms

With the given initial value Ho=Z this
gives the values stated above.

It is instructive to exhibit the
diagram of this spectral sequence for
k=3. (See the attached diagram.)
The heavy dots denote the terms

qA,

E9,a=Z, and all others are zero. The f)Sa
a Ronly non-zero dlfferentlal is a ; these

3

differentials applied to the elements d

on the line P=3 "kill" the successive
elements in the homology of the fiber.
This diagram may be constructed
directly, without using the WANG
sequence. We are given the base with
generators 1 E Es, 0 and x E Es. o; all ele-
ments lie on the vertical lines p=0
and p = 3. Since E'=O, every element
must be killed (i. e., become a boundary or have non-zero boundary) by
some differential. But d3 is the only non-zero differential. Therefore d3 x
y $ 0 in Eo, 2 on the fiber. The element x ®y E E;., must then also have a
non-zero boundary d3 (x (& y) = y' in Eo_ 4 on the fiber, and so on.
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Theorem 2.4. (The GYSIN sequence.) I/ f: E--.B is a fiber space
with simply connected base B and with fiber F the k-sphere SR with k 1.
there is an exact sequence

-> H. (E) a' H. (B) -i HN-R-3L (B) (E) ->... ,

Proof. Since H. (F) = Hq (SR) = 0 for q$ 0, k, the term E' is

Ep,,-Hp(B), q=0, q=k; Ep,q=O q+0, k.
The spectral sequence then lies on the two horizontal lines q=0 and
q=k; the only non-zero differential is dR+l, and we obtain two exact
sequences

0-*E*
0 R+i -'H (E) --o.E o-*0

which splice together to give the sequence of the Theorem.

Exercises
1. If /: is a fiber map with h 2 and with fiber a sphere Si prove

that one must have m = 2k - 1 and I = k - I. (For k = 2, 4, and 8 there are indeed
such fiber maps; they are the Hop/ HOPF [1931, 1935]. STEENROD
(1951]. Hu (1959. P-64)

In the following three exercises, /: E - B is a fiber space with B pathwise
connected and simply connected and fiber F pathwise connected.

2. If H,(F)=0 for 0<j<t and H1(B)=0 for 0<i<s, obtain the exact
sequence

H,+,-i (F) -.H,+t-I (E) -H,+l-l (B) -'H,+*_,(fl -'...

-H,(B) -H,(F) -.H1(E) -+H,(B) 0.

3. I f H, (B) = 0 for all i > 0, prove that H. (F) gm H,, (E) for all n.
4. If Hi(F) = 0 for all j > 0, prove that H. (E) w H. (B) for all n.
5. Given the LERAY-SERRE spectral sequence E and Q the field of rational

numbers, define a spectral sequence E'= Q®E of vector spaces over Q and show
that E =H.,(B, Q)®H (F, Q) and Epgq-HDq/H,_ ,q+1, where theH'appear
in a tower like (2.1) with 4. (E) replaced by H,, (E, Q).

3. Filtered Modules
A filtration F of a module A is a family of submodules FDA, one for

each PEZ, with
... <FD-IACFA<F+IAC ... (31)

Each filtration F of A determines an associated graded module GFA=
{(GFA).,=FDAIFD_1A), consisting of the successive factor modules in
the tower (3.1). If F and F' are filtrations of A and A', respectively,
a homomorphism a: A-*A' of filtered modules is a module homomor-
phism with a (F,,A) <1 A'. A filtration F of a differential Z-graded
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module A is a family of sub-DGVmodules FA, as in (3.1), with the
corresponding definition of a homomorphism. This filtration induces a
filtration on the Z-graded homology module H(A), with F. (H(A)) defined
as the image of H(FA) under the injection FA-+A. Since A itself is
Z-graded by degrees is, the filtration F of A determines a filtration
F.A of each A,,, and the differential of A induces homomorphisms
a: for each p and each n. The family {FA.) is a Z-
bigraded module; it is convenient and customary to write the indices
of the grading as (p, q), where p is the filtration degree and q=n- p
the complementary degree; the Z-bigraded module then has the form
{FFAp+q}. We use "FDG2-module" to abbreviate "filtered differential
Z-graded module".

A filtration F of a DGz-module A is said to be bounded if for each
degree there are integers s=s(n)<t=t(n) such that FA,=0 and

This amounts to the requirement that the filtration of each
A. has "finite length":

A spectral sequence {E,' , d'} is said to converge to a graded module H
(in symbols, Ey4H) if there is a filtration F of H and for each p iso-
morphisms=F,H/F¢_1H of graded modules. Here, for given r and
p, Ep denotes the Z-graded module E,={Ep.q, q = 0, f 1, ...} (graded
by the complementary degree q).

The associated spectral sequence of a filtration may now be defined.

Theorem 3.1. Each filtration F of a differential Z-graded module A
determines a spectral sequence (E', d'), r=1, 2, ..., which is a covariant
functor of (F, A), together with natural isomorphisms

E,1=H(FFA/F_1A); i.e., E.1,,q=Hy+q(FA/F-1A) (3.2)

If F is bounded, E,,=H(A); more explicitly, there are natural isomor-
phisms

ED -F(HA)/F-1(HA); i.e., Epq-F,,(H,,+,A)IF-1(HP+qA) (3.3)

For the proof we introduce the submodules

Z=[a1 aEFIA, 0aEFy_,A], r=0, 1, ... (3.4)

of F,A. An element of Z,, may be regarded as an "approximate cycle
of level Y"; its boundary need not be zero, but lies r stages lower down
in the filtration. In particular, Z°,,= FA. Each Z, is Z-graded by degrees
from A, so we may regard Z' as the bigraded module with

Z. q=[al aEF.A,+q, 0aEFp_,A,,+q-1]- (3.5)

Given this notation, the spectral sequence of the filtration F of A
is defined by taking

E'p= (2 ' -Fy_1A)/(8Z't+:-1,jFo_1A) . r=1, 2....
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while d': E'P-.EP-, is the homomorphism induced on these subquotients
by the differential a: A-*A. From these definitions the proof of the
theorem is fussy but straightforward. In detail:

Set ED=FA/F,,-1A and let rip: F,,A-*E°° be the canonical projec-
tion. Consider the additive relations

Ep+, ej
Epa,_Ep-,

induced on these subquotients by a: A--*.A. Thus a$ consists of the
pairs (r7Pa, r1P_,aa) for aEZ' (indeed, this is exactly why we need
Zp). Moreover t7 a lies in the kernel of 0. if aaEFP_,_1A, so (where
"Def" means the "domain of definition")

D e f 04=rJPZp, Ker

Next, a1 consists of the pairs (rqP+, b, rJP ab) for bEZp+, , while 17,+, b = 0
if also bEFP_,_IA; that is, if bEZp+;_l. Hence (where "Ind" means
the "indeterminacy")

Im a1=17P(aZZ+,) Ind a1=r1P(aZ9+!-1)

In view of the inclusions aZP+:-1 c azp+, <Z'y ' <Zp we can introduce
for each p and r a subquotient of E°P as

Ep=(rIPr)lr1P(aZ +:-1), r=0, 1, 2, ...; (5.6)

the formulas above show that a induces homomorphisms

Ep+,!L E .* Ep_,
with image and kernel

Im dl =170 (az,+,)l?1P (azp+1-1)

Ker4 =r7P(Z; 1)/rlP(az; _1).

Therefore (dropping the subscripts I and 2) d'd'=0 and

HP (El, d) (aZp+,) = Ep

Thus we have a spectral sequence. When r = 0, Zq = F A and d° : E°P - Ep
is just the differential of the quotient complex Ep=FPAIFP_lA. This
gives (3.2).

This spectral sequence can also be derived from the towers

aZp 11 <azp <aZ,+1 <... <Zp <Zp <Zp = FP A
00

Bp < BQ < Bp <...<Cp<Cy<Cp= Ep.

The tower on the first line, taken modulo F,,-,A, gives that on the
second line, with Bp=, aZ,; _1 and By 11.6 the additive
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relation 81: FpAJFp_1A-FP_,A/Fp_,_1A amounts to an isomorphism

Def 2,/Ker 8, -. Im a,/Ind 8,.

But this isomorphism is just C/Cp+lia B,` ,11B'_,. This gives d' as the
composite

Ep=C/Bc A' Cp-,/B ,=Ep

with n the projection, c the injection. This yields the spectral sequence,
much as in Ex. 1.1 (except that C' there is C+' here).

To describe FH/FP_1H, write C=KerO and B=BA for the cycles
and boundaries, respectively, in A. Then F induces on C and B filtrations
FPC=CcFPA, FB=BnFPA. By definition, F,(HA)=(FPCwB)/B.
Hence

Fp(HA)IFA-,(HA)(FPC-B)l(FP_1CuB)-FpCI(Fy_1CvFpB),

by a modular Noether isomorphism. Another such,

Fp(HA)IFp-1(HA)=(FCjFp_lA)/(FPB%.jFp_lA) (3.7)

represents FH/Fp_1H as a subquotient of FpAJFp,_IA.
The numerator of E, in (3.6) is (Z'pjFp_iA)fFp_1A<FpA/Fp_1A;

the denominator is (BZp+,_1tFp_1A)/Fp_1A, so

Ep=(Z' Fp_1A)I(2ZD+1,_1-Fp_1A),
E' -F (3 8)

P. 4 - -(Z'P. 4 P 1 P+4)I ( P+. p l P+4)

Now suppose F bounded, and consider a fixed (P, q) corresponding
to a total degree n=¢+q. In the numerator of E.,q, an element aEZp,q
for r large has BaEFp_,Ap+q_1=0, hence aEFpCp+g. Thereafter the
numerators are F.OCp+,_Fp_lAp+q. As for the denominator, for r large
every element in FP BP+q is the boundary of an element in F,,+,-,A;
that is, of an element in+;_ Thereafter the denominators equal
FpBp+gJFp_iAp+q. But E°D is defined as intersection of numerators
divided by union of denominators, so

q=(FC0+4vF_1Ap+g)I(FpBp+gLFP_1Ap+4), (3.9)

which is exactly F,,H/Fp_IH as given in (3.7). This proves (3.3).
In the literature, E00 is usually defined from H(A) by the formula

(3.9), so the "convergence" isomorphism (3.3) asserts that this defini-
tion agrees with ours.

The convergence (3.3) holds under weaker conditions than bounded-
ness (for a thorough study, see EILENBERG-MOORE [1962]). For example,
call a filtration F of the DG2-module A convergent above if A is the
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union of all FA and bounded below if for each degree n there is an
integer s=s(n) such that FA.=0.

Proposition 3.2. If F is bounded below and convergent above, then
(3.3) holds and the spectral sequence of F is bounded below.

Proof. Since F is bounded below, the intersection of the numera-
tors of E, is FQC JFp_lA. Each element of FFB is a boundary 8a for
some aEA=UFA, hence aEFA for some t. Then aEZy+;_1 for r=
t- p+1, so FB,- Fr_1A again is the union of the denominators
8Zy+;_1uFp_.1A, and we have (3.3).

In the formula (3.8) the numerator term Zr gives "approximate"
cycles of level r; while 8Z'y+;_1 in the denominator is a submodule
of the boundaries (boundaries from r levels up). The proof has so chosen
these approximations in this quotient that each has the next as its
homology. An alternative formula (for the same spectral sequence)
appears in Ex. 1.

The filtration F of a DG-module A is canonically bounded if F..1 A =0
and in each degree n.

Theorem 3.3. 1/ F is a canonically bounded filtration of a (positively
graded) DG-module A, the spectral sequence of F lies in the first quadrant
and the induced filtration of HA is finite, of the form

with successive quotients Fn under isomorphisms
induced by 1A . For example, the LERAY-SERRE theorem arises from a
canonically bounded filtration of the singular chains of a fiber space.

Proof. Since F 1A=0, Ep=H(F,A/Fp_1A)=0 for p<0. Since
q<0 implies FPAy+q=FQ_1AD+q and hence El q=0 for q<0.

Therefore all non-zero El, lie in the first quadrant of the (p, q)-plane,
and the induced filtration of H. (A) is finite as displayed.

For n =1 the filtration of H1 amounts to a description of H1 as the
middle term of a short exact sequence

It0 .Eo,l-' H1-' E1.0->0.

For each n, the filtration of H. yields a monomorphism Eo * H. (A)
and an epimorphism Combined with the edge homomor-
phisms we get maps

Eo H. (A) -+E',,0, (3.10)

each induced by 1,1. In general, the spectral sequence of F determines
not H(A) but its subquotients F,H/Fp_1H, asserting that each is in
its turn a subquotient of E,=H(F,,A/Fp_1A).
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Theorem 3.4. (The mapping theorem.) Let A. A' be DGz-modules
with f iltrations F and F bounded below and convergent above. If a: (F, A) --
(F', A') is a homomorphism such that for some t the induced map

a' : El (F, A) ;-.E" (F', A')

is an isomorphism, then a' is an isomorphism /or no z r z t and moreover
a.: H(.4)-->-H(A') is an isomorphism.

Proof. Since both spectral sequences are bounded below, the previous
mapping theorem (Thm.1.1) shows a' and a°°: F'° -+E'° isomorphisms.
Consider the induced map a,,: on homology for a fixed
degree n, and the corresponding ap ,,: Since both filtra-
tions are bounded below there is an s with F, H.=O=F'H;,. The con-
vergence isomorphisms (3.3) give the horizontal sequences in the com-
mutative diagram

0->FpH,(A) -- FpH.(A) - E°° _p--O
lap-t. w iZJ, P

0-->FP-iH.(A') --sF;HA(A')-, E'-5_j> -->0.

Since a°° is an isomorphism, induction on p and the Five Lemma show
ap an isomorphism. Now the filtration F is convergent above, so
H (A) = U FpH (A) ; it follows that a., is an isomorphism, as required.

For 1=1 the hypothesis of this theorem requires that the induced
map A'/Fy_1A') be an isomorphism for all n
and p. This special case of the theorem was proved in Thm.V.9.3 and
again in Thm. X.11.2.

Let at, P: (F, A) -(F', A') be homomorphisms of FDGz-modules.
A chain homotopy s: a- fl is said to have order I if s(FpA)<Fy+, A'
for all p.

Proposition 3.5. I l s : a= fl is a homotopy of order S t, then

a'=fl': E'(F,A)-.E"(F',A')
for r>t, and a.=#,: H(A) -+H(A').

Proof. The result a,=#, follows from the existence of the chain
homotopy (irrespective of its "order"). For the rest, it suffices to consider
y=a-,a, s: y-0 and prove y'=0. Write Ep.q as the subquotient (3.8).
If aEZ, then ya=asa+saa, where aaEF,_,A, so saaEF ,1A'
since t<r, whilesaE Fp+,_1A', asa=ya-saaEFy A' so saEZ'y+;_1(A').
Thus yaEaZp+;_1vFp'_1A' is in the denominator of E,', so determines
zero there.

Exercises
1. Show that Ep-Zp/(aZ'p+;_1.iZ'p=11). with d': induced by 2: A -+

A, gives a spectral sequence isomorphic to that of Thm.3.1. (These formulas are
often used as the definition.)
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2. If the filtration F of the differential graded module A is canonically bounded,
show that its spectral sequence yields an exact sequence

H.(A) E2,o '' Eo.1 ;' H, (A) !4

If Ep,o=0 for 0<q<9 and all p, show that sB: HP(A)wEp,o for and
establish the exact sequence

Hr+i(A)' Ee+1.o--' HH(A) `-a E,

3. (The exact sequence of "terms of low degree"; cf. Ex.2.2.) In Ex.2 suppose

Ep.,=0 wheneither 0<q<f or O<p<s.
Establish an exact sequence, with Hi short for H1(A).

a J"' s e
2E;+t,0--' Eo,3+t-1-' Hs+t-1-+E,+t-1,o';

4. (The two-row exact sequence.) In Thm.3.3 suppose there are two indices
0 a <b such that Ep, = 0 for q * a, b and all p. Derive the exact sequence

r
_0.a--r

with r - b - a + 1. (Hint: cf. the WANG sequence of Thm. 2.1.)
5. Establish a "two-column" exact sequence analogous to Ex.4.
6. If A' and A" are FDG-vector spaces over afield, and if a filtration of A'®A"

is defined by FP (A'®A ") _ FP, (A') ®.E. (A") for p'+ p"- p, prove for the
associated spectral sequences that E(A'®A'1 E(A')®E(A").

7. In the spectral sequence of a filtration F of A, show isomorphic to
the image of the homomorphism

HP+v(FPA/FP_,A) ra:1
induced by the identity. (This description may be used to define the spectral
sequence of a filtration; see FADHU-HURawicz (1958, p.318).)

4. Transgression

In a first quadrant spectral sequence E the last possibly non-zero
differential on a term EP o in the base is the differential dP: P-1
which goes from the base all the way to the fiber. With the edge homo-
morphisms eB, e1 this yields a diagram

0 E;1P-1

0- -iEp P-1->0
1

EP,0 0

with exact row and columns. When (as we have assumed here) the
spectral sequence starts with r=1, the additive relation

1 -1 1:=ep dP6B E,0-E,_1, =2, 3, ...
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is called the transgression. Any additive relation (Prop. 11.6.1) is a homo-
morphism from a submodule of its domain (here called the module of
transgressive elements) to a quotient module of its range; in this case,
(4.1) represents r as the homomorphism d" from the submodule El,,'.,
of E,2,, o to the quotient module Eo p-t of E01.0-1. Replacing E' by E2
in this definition of r gives an additive relation t': Ep,0-EE,p-1, also
called transgression. Each transgression uniquely determines the other
via the edge homomorphism e: Eo,p_1-+Eo,p_1, for T=e-lr'; since e
is an epimorphism, ee-'=1, co r'=er.

Proposition 4.1. The transgression in the spectral sequence E of a
canonically bounded filtration of A is the additive relation

tr: Eps,o-Eo.p-1
induced by a: A--3.A.

Proof. Here E is a first quadrant spectral sequence. Its edge terms
can be written explicitly from (3.8). Since 8Apt1<Ap=FAp, Ap+.1=
Zp+:-t, -.+s for any r 2, so, on the base, (3.8) becomes

E'p.o=(Zp.o-Fp-,Ap)'(8Ap+1,.Fp-,Ap), r=2, 3, .... (4.2)

The denominator is independent of r; this verifies the fact that the edge
homomorphisms eB are monic. Also Zo',4 is F0C, when r z i and C is
the kernel of a. Hence on the fiber (3.8) is

Eo.v=FoCaI2Z;-i, r=1, 2, .... (4.3)

The numerator is independent of r (edge homomorphisms eF are epic).
The transgression is the composite relation r=eF'dpeB1, where eFt

and eBt are induced by 1A and dp is induced by a. The composite t is
then the additive relation induced by 8, as one sees by calculating r
as the set of all pairs of cosets (a+Dp,o, 8a+Do, p_1) for aEZ4.o and
D'P' a the denominator of E'A ., or by applying the composition principle
for additive relations (Prop.II.6.3).

The edge maps (3.10) and the transgression can be computed directly
from A and two subcomplexes defined by the filtration, without using
the whole spectral sequence, but using a generalization of the familiar
homology connecting homomorphisms.

If L and M are subcomplexes of a (not necessarily positive) complex
K, the connecting relation

P=0 (K; L, M): H (KIM)-H,.-t (L) (4.4)

is defined to be the additive relation induced by 8: K--*.K. Here each
homology group is to be regarded as a subquotient of K; for example,

H. (KIM) = C. (K, M)I(aK+t"M) ,
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where M) is the module of relative cycles (all kEK,, with akE
M.J. Thus a consists of the pairs of homology classes (k+

for all kEC.(K, L-M). If M=L, the connecting relation e
is just the usual connecting homomorphism aL for the short exact
sequence L >.* K -s K/L of complexes. More generally,

Proposition 4.2. If L and M are subcomplexes of the complex K,
with L (M,, , then a = e (K ; L, M) can be described via
connecting homomorphisms as the composite relation

e(K; L, M)=y1k =aL#-1: H,,(KIM)--HM-1(L)

where fi and y are induced by the identity in the commutative diagram

H. (K)

11

s r

II(KIM)

Proof. The hypotheses and show that the
identity induces homomorphisms fi and y as displayed. By the equi-
valence principle (Prop.II.6.2), P-1 and y-1 are the additive relations
induced by 1. By the composition principle (Prop.II.6.3), each of
aL R-1 and y-1 aM turns out to be the additive relation induced by a 1 =1 a;
hence the result.

This result shows that Def Im P and Ind e = Ker y.
In § 10 we need information as to the effect of a chain equivalence

on the connecting relations, as follows.

Lemma 4.3. Let l: K-->K' be a chain transformation which induces
homology isomorphisms /*: while L, M are subeom-
plexes of K and L', M' subcomplexes of K' with I(L)<L', / (M) < M',
so that f induces chain transformations g: L-*L', h: KIM->.K'/M'.
Assume that g, and h, are homology isomorphisms and that L,< Mk,
L; < MA' for k = n - 1, n, as in Prop. 4.2. Then the diagram

e = e (K; L, M): H. (K/M) ! H»-1(L)
IA, jc.

e'=e(K'; L', M'): H.(K'IM')- (L')

is commutative.

This result computes e' from a as e'=gseh;l, or conversely.

Proof. Since f, and g, are homology isomorphisms, the exact
homology sequences for L, K, K/L and L', K', K'/L' show that / induces
a homology isomorphism T: K/L->K'/L'. By Prop. 4.2 we may compute
the connecting relations e = aL fi-1 and e' = aL fl' -1 from the rows of
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the commutative diagram

H,, (KIM) 2-
1h. 1.. 1K.

H. (K'IM').. H. (K'/L') eL".

Since the diagram commutes, #'p. =h,#, or But h,
and p, are isomorphisms, so Now g,

pF'=
g, BL f -1=

as desired.

Theorem 4.4. I/ F is a canonically bounded filtration of a DG-module
A the "edge effects" in the spectral sequence of F can be computed /rom A
and its subcomplexes L=FoA and M, where
Specifically, the edge homomorphisms

are induced by the injection FoA-->.A and the projection A-*A/M, respec-
tively, while the transgression r is the connecting relation Lo (A; FO A, M).

Proof. By (4.3),

E01,

By (4.2) and the definition of by relative cycles,

E,1,0= 1A,,)

=C (A,
But the maps eB and eF are induced by the identity, whence the first
result. Similarly, each of z and a is the additive relation Ew,o Eo.,._1
induced by 8, so r = e, as desired.

The situation may be visualized in terms of the complexes

FoA-->A

I
AIM.

Since (FO A). for n z 1, the transgression can also be described in
terms of ordinary connecting homomorphisms, as in Prop.4.2. This
theorem shows how additive relations clarify a result of SERRE (loc. Cit.,
1.3; his notation R= EOA, S = AIM). In the case of a fiber map /: E - B,
H(A)=H(E), H(F0A) is the homology of the fiber, HD(A/M)=E9.o=
H,,(B, Z) that of the base. Thus Prop.4.2 gives for transgression the
following "geometric" description (in which it originated) : A homology
class of the base is transgressive if it can be represented by a cycle z
such that z= /c, for c a chain of the total space with 8c in the fiber.
An image of cls z under transgression is then the homology class, in
the fiber, of any such 8c.
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5. Exact Couples
An alternative description of spectral sequences can be given via

exact couples" (MASSEY [1952]). Though not necessary to the sequel,
they throw some light on the origin and nature of spectral sequences.

An exact couple L = {D, E ; i, j, k} is a pair of modules D, E together
with three homomorphisms i, j, k,

D ' 'D
L \ f . (5.1)

E

which form an exact triangle in the sense that kernel = image at each
vertex. The modules D and E in an exact couple may be graded or
Z-bigraded; in the latter case each of i, j, k has some bidegree.

The exactness of L shows that the composite jk: E-.E has square
zero, hence is a differential on E. Form the homology module H(E, jk)
for this differential. Construct the triangle

iD iiD
L' lee / (5.2)

H(E, j k)

where i' is induced by i and j' and k' are given by
j'(id) =jd+jkE, k'(e-}-jkE)=ke, eEE, jke=0.

Observe that id=0 implies dEkE, so jdEjkE and j' is well defined.
Similarly jke = 0 implies k e E i D, so k' is well defined. Call W the
derived couple of S; it is a functor of (E under the evident definition
of homomorphisms for exact couples. A diagram chase proves

Theorem 5.1. The derived couple of an exact couple is exact.
There is a whole sequence of derived couples. Iterate i (r- 1)-times

i'-': D

EI D.
Here i'-': D- D and j i1-' are additive relations, with

Ind(ji'-')=j(Keri' '), Im(jil-')=k-i0(k-'(i'-'D).

Set

D'=i'-'D, E'=k-1(i'-1D)fj(Keri'-1) (5.3)

Then if j tip-', and k induce homomorphisms i, , j, , k, in the triangle
D' D'\ A ' r =1, 2. .. .

E'
called the r-th derived couple of L.
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Theorem 5.2. The r-th derived couple W is exact with V=(',
and ('+1 is the derived couple of W.

Proof. For r=1, E'=E. For r=2, exactness of ( gives iD=j-10,
ker i=kE, hence E'=k-'j-'O/jkE= H(E, jk) and thus is' the derived
couple of (9. For r>2, D'+1=iD'=i,D'; we need only show that
E'}1 is the homology of E' under the differential j,k,: E'- .E'. To ex-
hibit this differential, write the definition (5.3) of E' as

E'=C/B, C=k-'(i"-1D),
B=j(Keri'-1).

An element of E' is a coset c+B, where kc=i'-'d for some d, and
j,k,(c+B)=j,(kc)=jd+B, kc=i'-'d. (5.4)

It will suffice to prove

Ker(j,k,)=k-1(i'D)/B, Im(j,k,)=j(Kert')/B.
First j, k, (c+ B) =0 gives j d = j a for some a E D with i'-' a = 0. By the
exactness of (9, d-a=id' for some d', so ke=i'd' and cEk-'(i'D).
Conversely, k c = i' d' gives j, k, (c+ B) = 0; the kernel is as stated.
Similarly Im (j, k,) consists by (5.4) of elements j d+ B with I'd = i k c = 0,
and conversely I'd=0 implies i'-ld=kc for some c; this gives the
stated image. Since (E'+1 is the derived couple of W, it is exact by
Thm. 5.1.

Corollary 5.3. An exact couple of Z-bigraded modules D, E with
maps o l bidegrees

degi=(1, -1), degj=(0,0), degk=(-1,0) (5.5)

determines a spectral sequence (E', d') with d'=j,k r=1, 2, ... .
Proof. Given (5.5), the couple (' has maps of the following bide-

grees
degi,=(1, degj,=(-r+1,r-1), degk,=(-1,0).

It follows that deg (j, k,) = (- r, r -1), so each E1+1 is the homology
of E' with respect to a differential d' of the bidegree appropriate to a
spectral sequence.

An exact couple (F with bidegrees (5.5) may be displayed as

s i
.,Ep.e+l -' Dp-1.q+1 Ep-1.q+1 -' Dp-=.q+i--' ...

M

i k ii

Ep+l,q ' DP,1 EM Dp-1.4

-) E.ED+2,q-1 Dp+1.9-1~ Ep+1.4-1--4 +DP.9-1
1



338 Chapter XI. Spectral Sequences

Each sequence consisting of a vertical step i, followed by two horizontal
steps j and k, followed by a vertical step i, ... is exact; indeed the dia-
gram may be regarded as the intercalation of these various exact se-
quences, which have the terms D in common. The description of the
r-th derived couple at indices (p, q) is visible in the diagram: Form
E'p,q as a subquotient of Ep.gwith numerator obtained by pulling back
(along k) the image of the composite vertical map 0-1, and denominator
obtained by pulling forward (along j) the kernel of the corresponding
i'-1 (see (5.3)).

Each filtration F of a Z-graded differential module A determines
an exact couple as follows. The short exact sequence of complexes
Fp_1 yields the usual exact homology sequence

...-->.H.(Fp-1A) ' H,,(FpA)-i H.(FFA/Fp_1A)- H.-1(Fp-1A) -...

where i is induced by the injection, j by the projection, and k is the
homology connecting homomorphism. These sequences for all p com-
bine to give an exact couple with

Dp.q-Hp+q(FpA), Ep.q=Hp+q(F,A/Fp_1A), (5.6)

and with degrees of i, j, k as in (5.5). Call this the exact couple of the
filtration F.

Theorem 5.4. The spectral sequence of F is isomorphic to that of the
exact couple of F.

Proof. The spectral sequence of the exact couple (5.6) of F has

E'=k-1(Imi'-1)fj(Keri'-1), is

Regard E p = EP = H(Fp/Fp _ 1) and hence also each E.' as a subquotient
module of Fp/F,_1. Consider the numerator of E'. Each homology class
of Ell is represented by a "relative cycle" CEFp with BcEFp_1, while
k (cls c) = cls (8c)EH(Fp_1) lies in i' 'H(F,_,) (H(Fp_1) if 8c=a+ 8b for
some bEFp_1 and some aEFp_,. Then c-b is in the module Zp of (3.5)
and c = (c-b)+ b E A. This is the numerator of (3.8).

On the other hand, the denominator of E' is given by j (Ker i'-1).
The kernel of i'-1: H(FpA)->H(F,+i_1A) consists of the homology
classes of those cycles cEF,A with c=8b for some bEF,+,_1A, hence
for bEZp+;1. Then j(clsc)=cls(8b) has 8bE8Z; +1,_1 F,_1. This is the
denominator of (3.8). All told, El., is given by the formula (3.8) used to
define the spectral sequence directly from the filtration. In both cases,
d' is induced by 8: A-*A.

Corollary 5.5. In the spectral sequence of an FDG-module the first
differential d' may be described in terms of the maps j and k of the exact
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homology sequence for FFA/Fp_IA as the composite dl=jk:

Ep.q=Hp+q(FpA/Fp-1A) " H,+,-,(F,,-aA)=En-i.4
Note that the sequence of derived couples contains more information

than the spectral sequence alone, since it involves not only the ', but
also the D' and the maps i, j,, k, which determine the successive differ-
entials d'.

An exact couple need not arise from a filtration. An example is the
Bockstein exact couple (BROWDER [1961]; cf. also Ex. 11-4.2) for a
complex K of torsion-free abelian groups. Let I be a prime number,
Zf the additive group of integers modulo 1, and the corre-
sponding exact sequence of abelian groups. Since each K. is torsion free,
K >+ K - K ®Z, is a short exact sequence of complexes. The usual exact
homology sequence is an exact couple

H(K) - H(K)

H(K (&Z1)

of Z-graded (not bigraded) abelian groups.
Another instance arises from tensor products. The tensor product

applied to a long exact sequence yields an exact couple and hence a
spectral sequence. Indeed, factor the long exact sequence

... --)..Ap+i-).Ap-sAp_1--*Ap-s-a...

of left R-modules into short exact sequences

..., Kp>.*Ap-sKp-l,

For a right R-module G and each p we obtain the usual long exact
sequence

Torq(G, Kp) -> Torq(G, Ap) Torq(G, Kp_1) Torq_1(G, Kp)

with connecting homomorphisms i. These assemble into an exact couple
with

Dt. q =Torq (G, Kp) , Ep, q = Torq (G, A,,)

with the degrees of i, j, k as in (5-5); moreover d = j k : Torq (G, A p)
-->Torq(G, Ap_1) is the homomorphism induced by the given mapping
A p-i.Ap_1. Similarly, if C is a left R-module we obtain an exact couple
with

Kp), Ep.q=Ext-q(C, Ad

and with the degrees of i, j, and k as in (5.5).
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Exercises
1. For an exact couple % with "first quadrant" term E, show that Dp-r.qa

D p q _ 1 for p < 0 and q < 0. Describe the upper and lower edges of the corresponding
diagram for %.

2. Show that the exactness of the derived couple (' can be deduced from

the Ker-coker sequence for the diagram

E/jkE- D '0.iD-.0
Jul'). ji. j

0.

The following sequence of exercises describe spectral sequences in terms of
additive relations and is due to D. PuPPB [1962].

3. A differential relation d on a module E is an additive relation d: E- E
with Ker d)im d. Define H(E, d).

4. Show that a spectral sequence can be described as a module E together
with a sequence of differential relations d,, r = 2, 3, ... such that d,+l o = d,E,
d,-+',E =d; 10. (Hint: define Ei}1=H(E,d,).)

5. Show that the spectral sequence of an exact couple % is E together with
the differential relations d,=ji-'+lk, r=2, 3. ... .

6. Show that the spectral sequence of a filtration F is that of the module
E°=E° with Ep00=FlFp_1 and differentials the additive relations d': FIFp_1
Fp_,fFp_,_1 induced by a (r=0, 1, ...).

6. Bicomplexes

Many useful filtrations arise from bicomplexes. A bicomplex (or, a
"double complex") K is a family (Kp.q) of modules with two families

a': a": (6.1)

of module homomorphisms, defined for all integers p and q and such that

a'a'=0, a,a"+a"a'=0, a"a"=0. (6.2)

Thus K is a Z-bigraded module and a', a" are homomorphisms of bi-
degrees (-1, 0) and (0, -1), respectively. A bicomplex is positive if
it lies in the first quadrant (KA q = 0 unless p ? 0, q ? 0). A homomor-
phism f : K-+L of bicomplexes is a homomorphism of bigraded modules,
of degree 0, with /a'= F1 and /a"= a" /. The objects Kp,q in a bicom-
plex may be R-modules, Al-modules, graded modules, or objects from
some abelian category. The second homology H" of K is formed with
respect to a" in the usual way as

HJ,'q(K)=Ker(a": Kp.q (6.3)

it is a bigraded object with a differential a': Hp q +Hy_1,, induced
by the original X. In turn, its homology

Hp H4 (K)=Ker(0': l,q)/a'Hp+i.q (6.4)
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is a bigraded object. The first homology H'(K) and the iterated homology
H"H'K are defined analogously.

Each bicomplex K determines a single complex X=Tot(K) as

Kp.q, (6.5)
0+q-

The assumptions (6.2) imply that 83=0; if K is positive, so is X, and
in this case each direct sum in (6.5) is finite. This totalization operator
has already been used. Thus, if X and Y are complexes of K-modules
with boundary operators 8' and 8", respectively, X®Y is naturally
a bicomplex {X,(&Y.) with two boundaries

a'(x(&y)=(a'x) ®y. a"(x®y)=(- 1)degxx®a..y

which satisfy (6.2) ; the tensor product of complexes, as defined in
Chap. V, is Tot (X (& Y). Similarly Hom (X, Y) is a bicomplex.

The first filtration F' of X= Tot (K) is defined by the subcomplexes
Fp with

(17p' X). Z (6.6)
lisp

The associated spectral sequence of F is called the first spectral sequence
E' of the bicomplex.

Theorem 6.1. For the first spectral sequence E' of a bicomplex K
with associated total complex X there are natural isomorphisms

E129-H,HQ (K) . (6.7)

If Kp.q=O for p<O, E'2=H(X). If K is positive, E lies in the first
quadrant.

In other words, this spectral sequence shows how the iterated
homology H'H" approximates the total homology of X.

Proof. Let E=E' be the first spectral sequence. As in (3.2), E'p,q=
HP+q (Fa X/Fp_1 X). But the definition (6.6) of the filtration F' shows that
(Fp X/Fy_1X)p+q=Kp,q. Therefore Ep,q=Hp q(K). Moreover, d':
is induced by which under the isomorphism E'=H"K
corresponds to 8'. Therefore Es=H(E', d')=H'H"K, as asserted in
(6.7).

Since each X. is the union of all F;X,,, the first filtration is conver-
gent above. When Kp.q=O for p<O, F_1X=O, and the filtration is
bounded below. This gives the convergence E'2 =:, H (X). For K positive,
(6.7) shows that E lies in the first quadrant.

It is instructive to give a proof of the theorem directly from the
definition

Ep,,=(ZD.q-Fp-1Xn)I(aZp+,.q-Fp-1X.). n=p+q.
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An element aE FPX has the form
a-ap.4+ap-1,4+1+ap-s.4+s+...

ap.4EKP.4,
aa=a"ap.4+(a-ap.4+a"ap-,.4+i)-I-(a'aP-,.4+1-f

where we have grouped terms of the same bidegree. Hence aEZp 4 if
a"aP,4=0 and aEZ,4 if

a"ap.4-0, a'aP.4+a"aP-1.4+,=0.

Therefore Ep,=Lp,,1M,,4, where
LP.4=[ap,4Ja"ap,4=0 and for some aP-1,4+1],

MP.4

In L the first condition on aP,4 makes it a a"-cycle, so that it determines
cls"ap 4EHy 4; the second condition asserts that this homology class
lies in the kernel of a': HP, q--).Hp"- ... The term a"bp,4+1 in M can vary
ap 4

by a a"-boundary, leaving cls"ap
4

unchanged; the term a'bp71,4
can vary cls"aP,4 by a'(cls"bP+1,4). Hence the correspondence given
by a,,4 -+cls'(cls"aP 4) provides the desired isomorphism ES 4=H,HQ .

The second filtration F" and spectral sequence E" are defined
similarly. To keep p as notation for the filtration degree, write the
bicomplex as K={K4.}, so that a': Kq,p +K4_1. P: Then F" is defined
by (F'p X) K._w for h S p and has an associated spectral sequence
E" with E;: H" HQ({K4 P}). When K4 P=0 for p<0, this converges
to the filtration F" of H(X). If K is positive, both spectral sequences
lie in the first quadrant and converge to different filtrations F and F"
of the same graded module H(X).

Exercises
1. Let X and Y be complexes of abelian groups, with each X. a free group.

In the first spectral sequence of the bicomplex K = X ®Y, show that EP q =-
HP(X ®H4(Y)). Use the K11NNETx formula, with the explicit generators of V.6
for Tor, applied as in Prop. V.10.6. to show that d2 = d3 0 and hence that
El = EOO in this case.

2. Describe Ep,4 by a quotient L/M, as in the second proof of the text.

7. The Spectral Sequence of a Covering
If a group 17 operates properly, as in IV.11, on the right on a path-

wise connected space X, then X is a "regular covering" of the quotient
space (= orbit space) X/17 under the canonical projection

/: X-+X/17.
Each u in IT carries singular simplices of X into such, so the total singular
complex S(X) and its homology H(S(X), C) are both right II-modules.
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Theorem 7.1. I/ 17 operates properly on the pathwise connected space
X While C is any abelian group, there is a first quadrant spectral sequence
E with

E2t.q=Hp(I7, Hq(X, C)) H(X/II, C). (7.1)

As always, the convergence means that there is a filtration F of
the graded group H. (X/II, C) and an isomorphism of E7, to the associ-
ated (bi)-graded group GFHp+q (XIII, C).

For the proof, first recall how the various homologies are computed.
The singular homology H(X, C) is that of the complex C OS (X). For
any right H-module A, such as H(X, C), the homology H,, (17, A) is
that of A01B(II), where B(II) is the bar resolution for 17 - any
other projective resolution of the trivial 17-module Z would do as well.
Finally the homology of the orbit space XIII is computed from its
singular complex S (X/II). There is an isomorphism of complexes

q : S (X) ®1Z= S (X/17) (7.2)

defined as ip (T'®1)=/T' for each singular simplex T' in X. Indeed,
since Z is a trivial II-module, T'u®1=T'®1 for each uEI7, so q' is
well defined on ®n. By Lemma IV.11.3, each singular n-simplex T
in X117 can be lifted to a singular n-simplex T' in X and these T', one
for each T, are free H-module generators of S (X), Thus S,, (X) ®nZ
is the free abelian group with generators T'017 1, / T'= T, and p is an
isomorphism. The bicomplex

Kp.q = (C ®Sp (X)) ®n Bq (n)
has two filtrations F' and F" and the corresponding spectral sequences

E q=Hp HQ (K), E9 q=HpH4(K),

each converging to the associated graded group of H(Tot K) under
the corresponding filtration F' or F".

For the first spectral sequence, Hp
q (K) = He (C ®Sp (X) ®n B (II))

is the homology H.(H, C®Sp(X)) of H. If C=Z, this is just the homo-
logy of 17 with coefficients in the free 17-module S.. (X), which has been
calculated to be S. (X) ®Z for q=0 and zero for q>0. Since Sp®nB
is a complex of torsion free abelian groups, the universal coefficient
theorem gives

H,' (K) =C ®Sp(X) ®1Z, q=0,
=0, q>0.

By (7.2), the complex on the right is C ®S (X/II). Therefore

Eyq H,Hq'(K)=Hp(X/I7, C), q=0,
=0, q>0.
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Hence the spectral sequence "collapses" - it lies on the horizontal
axis q=0, has all differentials zero, so is equal to its limit with

H.(Tot Q. (7.3)

In the second spectral sequence we write the indices of K as Kq,p=
C ®Sq (&,a B,,, so that p will still denote the filtration degree. The first
homology Hq uses only the boundary in Sq (X) ; since each By is a free
17-module, this gives

H;.q(K)=H;,q((C®Sq®RBp}) =Hq(X, C) ®fBp(TI).

The second homology HQ is then the homology of the group 17 with
coefficients in Hq (X, C), so that

E'" o=Hp H' (K) =Hp (17, Hq (X, C)). (7.4)

This gives the spectral sequence of the theorem. As for any canonically
bounded filtration, it converges to H(Tot K) as given in (7.3) by the
first spectral sequence. Hence the conclusion (7.1).

This proof is a typical case of two spectral sequences, one of which
collapses so as to determine the limit of the second.

Corollary 7.2. I l 17 operates properly on the pathwise connected
acyclic space X there is a natural isomorphism Hp (IT, C) =Hp (X117, C)
for each p, where C is any abelian group regarded as a trivial 17-module.

Proof. Since X is acyclic, H, (X, C) = 0 for qr 0 and is C for q0,
so the (second) spectral sequence collapses, so has Es isomorphic to the
limit, as asserted.

This result is the homology parallel of Thm.IV.11.5 on the cohomo-
logy of X fll. As in that case, this corollary could be proved directly
without the use of spectral sequences. Put differently, the spectral
sequences allow us to generalize Thm.IV.11.5 to apply to spaces which
are not acyclic. For example:

Corollary 7.3. I l the space X has Ho (X) -.Z and Hq (X) = 0 for
O<q<t and if 17 operates properly on X, then

H. (X117, C)= C), 05n<t.
For n =I there is an exact sequence

H,+j(XII7, C)-+H,+,(TI, C).+HH(X, C)®7Z-,-HH(X1I1,C)-).H,(II,C)-+0.

Proof. The universal coefficient theorem gives H. (Y, C) =C and
Hq(X, C)=0 for 0< q< 1. The spectral sequence of the theorem then
has Ey,q=0 for 0<q<t, and hence E, o=Ego=H,(17, C). The filtration
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of H, (XIII, C) amounts to the exact sequence

0--E07,->H, (XIII, C) -+E, o=H: (17, C) -s0,

while the description of Eo , as the homology of E,*,, under d'+I is the
exact sequence

H,+1. (XIH, C) ' E$+1,0
W+I

Replacing Ea+1,o by its value H,,,, (H, C), using (X.5.2) to calculate
Eo,,=Ho (II, H, (X, C)) =H, (X, C) ®nZ, and splicing these sequences
gives the result. This exact sequence is a particular case of the "exact
sequence of terms of low degree" (Ex.3.3)

This result determines H. (XII7) for n<t and H, (XIII) up to a certain
group extension. A complete determination of H, (XII7) in terms of
H(I7) and H(X) requires an additional invariant, a cohomology class
k E H'+I (II, H (X)), as introduced by EILENSERC-MAC LANE [1949,1950].

The spectral sequence of a covering is due to CARTAN-LERAY [1949] and to
CARTAN [1948]. For further applications, see CARTAN-EILENBERG, P.356; Hu
[1959]. p.287ff.; HILTON-WYLIE [1960], p.467.

Exercise
1. Show that the use of the first spectral sequence in the proof above may

be replaced by proving that 1®e: is a homo-
logy isomorphism, where e: is the augmentation (use the first filtration
and Thm.3.4).

8. Cohomology Spectral Sequences

For cohomology it is customary and convenient to write a spectral
sequence with upper indices and the usual change of signs as
E'_,,, _4 (the sign of r is not changed). The same spectral sequence E
then appears as a family E, of bigraded modules, r=2, 3, ..., with
differentials

d,: (8.1)

of bidegree (r, 1- r) and with H(E d,) -E,+,. Comparing this with
the previous d': q, we see that the formulas for spectral
sequences in the upper indices are obtained from those in the lower
indices by reversing all arrows and moving each index up - or down,
as the case may be - without a sign change. The limit, E,,, is defined
as before.

A third quadrant spectral sequence E is one with El
4
= 0 when

P >O or q>0; equivalently, all non-zero terms lie in the first quadrant
of the upper indices, and the diagram is simply (1.6) with arrows re-
versed (differential from fiber toward base, increasing the total degree
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by 1). The edge homomorphisms on the base are epimorphisms

Ep.o--)--Ef.o-*... --),-Ey+1=Ep ,

on the fiber are monomorphisms

Eo.6°=Ev°+:-*,g ... .v

The transgression r: Eo,q_-EQ,o is the additive relation (fiber to base)
induced by dq, and defined by (4.1) with all arrows reversed.

Let A be a DGz-module, written with upper indices (A"=A_")
and a boundary operation 8: A filtration F of A, written
with upper indices FO=F_p, appears as a tower of differential Z-graded
submodules

...)FP-'A:)FpA> Fp+1A`)... (8.2)

- often called a descending filtration, though it's really the same fil-
tration in a different notation. Thm.3.1 applies directly (only the nota-
tion is changed) : Each such F yields a spectral sequence {E,, d,} with
Ei = H(FPA/Fp+1A) and

Epq, (Zr.q Fp+IA

where Zp q=[al aEFpAp+q, and d, is induced by 8.
If F is bounded, there are natural isomorphisms
where FpH denotes the filtration of HA induced by F. These isomor-
phisms also hold if F is convergent above (U PA =A) and bounded
below (for each n there is an s with PAM=O). Note that bounded
"below" appears as a bound at the right in the descending filtration (8.2).

The filtration F is canonically cobounded if F°A = A and F"+1A"= 0
(note that this is not the same as canonically bounded). This implies
that the complex A is positive in upper indices (A"=0 for n<0). An
argument like that for Thm.4.4 proves

Theorem 8.1. A canonically cobounded filtration o/ a DG -nodule
A yields a "third quadrant" spectral sequence. The initial edge terms
are given in terms o/ the subcomplexes F'A and L, where as
Ei-" = H" (A/F'A) and Es'O = H" (L), and the edge homomorphisms H" (A)
-->Eo-" and E9'0-+H" (A) are induced by the identity 1A. The transgression
r: El'"-1--Ee'0 for nz2 is the additive relation induced by a, and is
also the connecting relation e = e (A; L, FPA)

e (A ; L, F1A) : H"-1(A/F1A) - H" (L) , n z 2.

Explicitly, the edge terms are given for r? 2 by

C=Ker[5: A.-.A],
Eo.q_ (Zo,qF1Aq)l(8Aq-1 F1Aq) .
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Similarly, exact couples and bicomplexes may be written in upper
indices. Many cohomology spectral sequences have an (exceedingly
useful) product structure, arising from the cup product in cohomology.

Exercises
i. Under the hypotheses of Thm. 7.1, obtain a third quadrant spectral sequence

Ei.Q- HP(11, HQ (X, C))pH"(XfI1, C).

2. Prove Thm. 8.1.

3. If El, q
is a spectral sequence of vector spaces over some field, and V is

a vector space, describe Hom (Ey, y, V) as a spectral sequence with upper indices.

9. Restriction, Inflation, and Connection

Our next example of a spectral sequence deals with the cohomology
of a group 17 with a given normal subgroup r. Certain preliminary
concepts relating the cohomology groups of 17 and r are needed.

If r is a subgroup of 17 and A a left 11-module the injection x: 1'-*17
gives a change of groups (x, 1A) which induces a homomorphism

res,r: H"(17, A)-->H"(T, A), (9.1)

called restriction, which is natural in A. Also A<1'<17 gives resa res°=
resa . Let Ar denote, as usual, the subgroup of those elements a in A
with t a = a for every t ET. If 1' is a normal subgroup of 17, Ar is a left
(17/1l-module. The projection a: I1-*17/1' and the injection j: Ar-+A
give a change of groups (a, j): (17, A) -.- (II/1', Ar) which induces a
homomorphism

infrrirr: H" (17/1', Ar) -3-H" (H, A) (9.2)

called inflation, which is natural in A. Moreover, there is an additive
relation

Pnr: H"(1', A)-H"+' (17/1', Ar), n>0 (9.3)

called connection, and to be defined below.
Recall that H" (17, A) = H"(Homn (B(17), A)), where B (17) = B (Z (11))

is the bar resolution. Each /E Homn(B"(17), A) can be written as a
homogeneous cochain; that is, as a function /(xo, ... , x") E A of n + I
arguments x,El7 with /(xx0, ..., xx")=x/(xo, ..., x"), normalized by
the condition that /(x0..... x.)=0 if x; = xi+1 for any i. Moreover

"+i
8/(x0...., x"+i)=(-1)"+i2i (-1)'/(x0, ...,z;, ..., x"+i)

i-O

Then restriction is induced by the chain transformation vp given by

(,p f) (to,...,t")=f(10,...,t"). t;Er. (9.4)
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For gEHomnlr(B"(17/1'), A), inflation is induced by the cochain trans-
formation a* with

(a*g)(xe,...,x")=g(axe,..., ax"), xiE17, a x;E17/T. (9.5)

These transformations a* and ip may be recorded in the diagram
of chain transformations

L K

11 II

Hom17 (B(II/1l, A) -)- Homn(B(II), A)

1$ \',
Homr(B(11), A) 8'1L Homr(B(1'), A)

II 1

S' S

(9.6)

of complexes denoted as L, K, S', S. Note that the (17/1)-module
B (11/1') is also a 17-module by pull-back along a, so the complex L
at the left is canonically isomorphic to Homnr(B(11/I), Ar) with
cohomology H" (17/T, A1) and a* is B (a) * where B (a) : B (11) --).. B (17/1').
Each 17-module is also a I'-module, by pull-back along the injection
x : T-)-11, so each 17-module homomorphism is a r -module homomor-
phism. This monomorphism i : Homn -> Homr gives the vertical chain
transformation i : K -> S' in the diagram (9.6), while x induces
B (x) * : S'-> S there. Clearly vp = B (x) * i.

The chain transformation B(x)* is a cohomology isomorphism

B(x)*: H"(Homr(B(I7), A))=H"(Homr(B(1'), A))=H"(1', A). (9.7)

Indeed, since 17 is a union of cosets Ty of r, the free 17-module Z (17)
on one generator is the direct sum of the free 1-modules Z (I') y. Hence
any free 17-module is also a free T-module, so e: B(17)-*Z is also a
free 1-resolution of the trivial 1-module Z. The map B (x) : B (1) -> B (17)
is a chain transformation lifting the identity 1Z , hence by the comparison
theorem gives an isomorphism (9.7).

Next, if 1' is a normal subgroup of 17 and A a 17-module, each H" (I', A)
is a (17/T)-module. First, for any aB, Homr(B, A) is a (11/1l-module
under the definition (Hopf algebra structurel)

(x/)(b)=x/(x-'b) for/: B-->A, xE17, bEB. (9.8)

Indeed, x / so defined is a I'-module homomorphism when / is, for,
with tEl', (xf)(tb)=x/(x-'tb)=x(x-'tx)/(x-'b)=t[(xf)b] by the
normality of T. This makes Homr a 17-module, but since t /=/ for
£El', it may be regarded as a (17/1')-module. This module structure is
natural in B, so Homr(B(17), A) is a (17/1'}-module. By the isomor-
phism B(x)* of (9.7). H"(I', A) becomes a (17/1')-module, as asserted.
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An explicit formula for this (17/1l-module structure in terms of cocycles
of B(l is given in Ex.3-5 below.

Lemma 9.1. For r normal in 17, the image o/ the restriction lies in
H" (I', A)n.

Proof. By (9.6), restriction is the composite 1p=B(x)*i. For each
17-module homomorphism /: B (Il) --A, (9.8) gives x /=/ for each
xE17. Hence, if / is a cocycle, cls/ in H" (r, A) is invariant under each
operator of 17.

In the diagram (9.6), the definitions (9.5) and (9.4) show a*: L--),.K
a monomorphism and V: K-+S an epimorphism, with composite *pa*
zero in dimensions greater than 0. Hence we are in the situation of
a complex K with two given subcomplexes a* L and M = Ker p, with
(a*L)"(M" for n>0 and SDK/M; in this situation (4.4) defines a
homology connecting relation

e=e(K;a*L, Kerip): H"(S)-
Take this to be the connection erijr of (9.3). Explicitly, a is the additive
relation consisting of all pairs of cohomology classes

(Clssy,/, clsLg), /EK", gEL"+1. 8f=a*g
The last condition implies that 8g=0 and 6p/=0.

Lemma 9.2. The module Def a for the connection a lies in H" (1', A)".

Proof. Take (clssVf, clsL g) E e as above, and define a cochain
hE S'" for x;E17 by

h(xo, ..., x")=/(x0, ..., x")+(-1)"g(1, a xo, ..., a x"),

where the second term on the right in effect implicitly uses the contracting
homotopy in B (17/1'). Since the values of g lie in At, this function h
is indeed a r -module homomorphism h: B"(17) -->,A. A calculation
with the boundary formula in B(!1), using 8/=a*g and 6g=0, shows
6h=o. Moreover, B (x) : B (I') ->-B (Il) carries h in S' into V/ in S,
so any clss p f in Def a is represented by clss.h in H" (S'). In this complex
S' we can compute the action of any xE17. Let k, be the cochain with
k1(x0, ..., x"_1)=g(a x, 1, a x0, ..., a x"_1). The coboundary formula
and the definition (9.8) show that

(xh-h-6k,)(xo,..., x")=8g(ax, 1,axo,...,ax")=0.
Hence x h-h is the coboundary of k, so the cohomology class of h
in S' is invariant under x, as asserted.

By Lemmas 9.1 and 9.2 we may rewrite restriction and connection as

res: H"(17, A)-+H"(T, A)° and Q: H"(T, A)°--H"+1(II/1', A).
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Two minor observations will be needed in the next section. For
modules RB, and HA there is a natural isomorphism

Homnjr(C, Homr(B, A))=Homn(C(DB, A), (9.9)

where Homr has operators as in (9.8) and C ®B has "diagonal" opera-
tors z(cob) =(x c &x b). The map in (9.9) is given by adjoint associa-
tivity. To check that it respects the operators indicated, consider any
group homomorphism /: COB-->.A. This lies in Homn on the right if

/(xc®xb)=xf (c®b), cEC, bEB, xEll. (9.10)

For fixed c, /(c ®-) lies in Homr on the left if

f (c®tb)=t/(c®b), tET, (9.11)

while the condition that / yield a map in Homn1r is

/(xc®b')=x/(c®x -1b'), b'EB. (9.12)

Now (9.12) with Y= x b is (9.10) , while (9.10) with x = t E I' has t c = c,
hence gives (9.11). Thus the conditions left and right on / are equivalent.

Lemma 9.3. For any tree 17-module F and any 17-module A,

H* (91r, Homr(F, A))=0, n>0.

Proof. (Cf. Ex.6.) It suffices to take for F the free 17-module Z(17)
on one generator. The cohomology in question is that of the complex

Hom,7r(B(17/I'), Homr(Z(17), A))=Homa(B(17/Il ®Z(I1), A).

An n-cocycle / of this complex has /((uo, ..., u") ®x)eA for u;E17/I'.
Define an (n-1)-cochain h, using a:17- .17/1', by h((uo, ..., u"_1) ®x) =
/((uo, ..., u"ax) ®x). Then h is a 17-homomorphism and the condi-
tion 8/ ((uo , ... , u., ax) ®x) =0, when expanded, gives 1=6h. Hence
every cocycle of positive dimension n is a coboundary, q. e. d.

Exercises
1. Show how the restriction homomorphism may be calculated from any free

17-module resolution of Z.

2. If 17=1'xd, identify 17/d with r and show that infIdresr=0.
3. For a change of groups e = (t, cc): (P. A, 4p) -. (T', A', T) show that the

homomorphism e*: H" (I", A') -. H" (T A) of (IV.5.9) may be calculated from
free resolutions e: X--.Z and e': X'-.Z of Z as a trivial I'- or r'-module, respec-
tively, as the composite

H"(Homl-(X', A))-.H"(Homr(X, A)).

where /: X -X' is a P-module chain transformation lifting 1Z.
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4. For I' normal in I7, each fl-module A is a r -module under the induced
q':1'-+AutA. For each xEII. show that the definitions Cxt=x'ltx for tEr and
a.a = xa yield a change of groups

e, = (C., a,): (r, A. 9'') - (r A. 9'1

with elrY= eyes. For X -..Z a 11-module resolution and f as in Ex.3 show that
a,/ : Iiomr(X, A) -+Homr(X, A) is the module operation of x on Homr, as
defined in the text.

5. Use Exs.3, 4 to prove that the module operation of xEfl on H* (r, A) is
given on a (non-homogeneous) cocycle hEHom(B*(fl,A) by clsh-+clsh', where
h' is defined by conjugation as

h'(fi, .... tA) = x1(x ltix...., x-ltx), tiEF xElf.
6. Using (9.9), show that RF free implies Homr(F, A) relatively injective,

for the pair of rings Z (II/fl, Z. Hence give a second proof of Lemma 9.3.

10. The Lyndon Spectral Sequence

Theorem 10.1. For r a normal subgroup of 17 and A a 17-module
there is a third quadrant spectral sequence {E,, Q, natural in A, with
natural isomorphisms

Eg,q_HP(II/1', Ha (1', A)) Q HP+a(U. A);

converging as shown to the cohomology of 17.
Here Ho (I', A) is a (17/11-module with operators as described in

§ 9. This spectral sequence thus relates the cohomology of the subgroup
1' and of the factor group 17/1' to that of the whole group 17.

Proof. Using the bar resolutions, form the bicomplex K with

KD'9=Hommr(By(TI/Il, Homr(Bq(11). A))

Homn(Bp (171n ®B9 (M. A),

as by (9.9), and with two differentials given, with the standard signs
for a coboundary and a differential in B, (&B., for f E K""q by

(a'/)(b'(&b")=(-1)D+q+if(0b'(&b"), b'EB,+i, b"EBQ.
(b..f) (b'(&b") = (- 1)1+1/ (b'08b") . b'E By, b"E Bq+1

The condition 8'd"-}-S"6'=0 is readily verified. The first and second
filtrations of this bicomplex yield corresponding spectral sequences E'
and E", both converging to H(Tot K).

For the second spectral sequence E" the filtration index is still to
be denoted as p, so we write Kq.P=Homp1r(Bq, HOmr (Bp, A)) for the
terms of K, with second degree labelled as p. As for any bicomplex,
E"P'q=H"PH'q(K). But H'9(K) is the cohomology of 17/1' with co-
efficients in Homr(Bp, A). By Lemma 9.3, this is zero for q>0; it is
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[Homr(Bp, A)]'7tr=Homn(Bp, A) for q=0, this because any H°(17, M)
is the group Mn of 17-invariant elements of the UI-module M. Next,
calculating H"p of Hom1(B., A) gives the cohomology of IT, so that

E'ap,vHP(17, A), q=0,
= 0, q>0.

The non-zero terms all lie in the base q=0, so the spectral sequence
collapses. For each total degree n there is only one non-zero quotient
in the filtration of H" (Tot K), hence an isomorphism

H"(I7, A)-H"(Tot K). (10.1)

The proof shows that this isomorphism is induced by the chain trans-
formation

C: Homn (B (17), A)--Tot K

which assigns to each /: B. (17) -+ A the element C /E defined by

(C f) ((u)®b)= f (b), uEI7/I, bEB"(II).

For the first spectral sequence, E2p,v-H'PH"4(K). Let S' denote
the complex Homr(B(17), A), as in (9.6); the cohomology of S' is
H(I', A). Now Kp = Homnjr(B p (II/I'), S'), with B. (II/Il a free (II/1l -
module, is exact as a functor of S', so

H"Q(K")-Homu1r(Bp(II/17, H4(S'))=Homnr(Bp(17/T), H°(I', A)).

Taking H' P gives the cohomology of 17/f, hence an isomorphism

0: E$p.a=HP(17/1', H9 (r, A)). (10.2)

This spectral sequence converges, as for any positive bicomplex, to
H(Tot K), which by (10.1) just above is H' (17, A), q. e. d.

Proposition 10.2. In the Lyndon spectral sequence E = E' the edge
terms are

Et.o_HP(II/1', Ar), EZ.9-H#(T, A)n1r=H4(I', A)n (10.3)

and Ei-Q-HQ(r, A). The edge homomorphism

H"(17, A) (I', A)

on the /iber is the restriction homomorphism res°. The edge hotnomorphism

H" (17/F, A =Ey.° -+H" (17, A)

on the base is the inflation infnlr. The transgression r is the connecting
relation N of (9.3),

r=enr: H"-1(I', A).-H"(17/T, Ar), n>1. (10.4)
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The isomorphisms (10.3) are special cases of (10.2). Note that the
edge homomorphism on the fiber has its image in E_-"= H" (T, A)°,
exactly as for the restriction map (Lemma 9.1) and that the transgression
s has its domain of definition contained in H"-' (I', A)°, exactly as for
the connecting relation e (Lemma 9.2).

Proof. For the spectral sequence E of the first filtration the edge
effects are calculated by Thm.8.1 from the subcomplexes F'K and L
of Tot K, where LP=Zt,O, using the injection c: L-*Tot K and the
projection is Tot K->,Tot K/F1 K. This gives the first line of the follow-
ing diagram, in which the second line presents the complexes used in
§ 9 in the calculation of res, inf, and e:

L Tot K (Tot K)/F1 K
lz !n jv (10.5)

Hom17 (B(17/I'), A)-°>Homn(B(17),A) A).

The maps A, 77, p comparing these two lines will be defined in terms
of the homogeneous generators (x°, ..., x") of B(II). Specifically,
Lp=Z -0<F1'K consists of all gEKp'O with bgEKp+i.O; that is, with
6"g=o. Since Br (17) is the free abelian group on generators (x, y) with

(x, Y) _ (Y) - (x),

0 =±d"g(b'®(x, Y))=g(b'(& (Y))-g(b'®(x)), b'EBp(17/Il.

Therefore g(b'(&(x)) is independent of xEH, and (2g) b'=g(b'(&(1))
defines a chain isomorphism A: L=Homn (B (17/Il, A). An element of
degree n in Tot K is an (n+ 1)-tuple h=(h°, h', ..., h") with hpEKp'"''.
It lies in F'K if h°=0. But BO(II/1l=Z(17/Il, so

h°EHomn/r(BO(17/T), Homr(B"(1l, A))=Homr(B"(I'), A).

Thus (,p h) (b") = h° ((1) (& b") defines a chain isomorphism q' on the right
in (10.5). Finally, a straightforward calculation shows that the definition

(,h)(x°, ..., X.) =j hp((ax°, ..., axp) ®(xp, ...,x"))
p-O

with a: II--,.17/I', h=(h°, ..., h"), gives 17: TotK-.Homn(B(17), A), a
chain transformation which makes the diagram (10.5) commutative.
Now C : Homn (B (17), A) -*Tot K as described under (10.1) has rl =1;
since C induces a cohomology isomorphism (10.1), so does 77.

The vertical maps in (10.5) are thus all cohomology isomorphisms.
In the spectral sequence, the edge homomorphisms on base and fiber
are (Thm. 8.1) induced by i and n respectively; under these isomor-
phisms they correspond to the inflation, as induced by at, and the
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restriction induced by W. Similarly, Lemma 4.3 shows that the trans-
gression, regarded as the connecting relation for the top line, agrees
with the group-theoretic transgression computed (as in § 9) from the
bottom line.

The terms of low degree in this spectral sequence yield an exact
sequence

0 iH1(H/r, Ark "-* H, (I7, A) Hi (r, A)n

°+ H' (17/r, Az) -'H' (II, A).

In higher degrees the spectral sequence provides a more refined analysis
of the kernels and images of the maps inf and res, in terms of a whole
sequence of functors EQ' (H, T, A) which may be regarded as "mixed"
cohomology groups of the two groups 17 and F.

As an application, we prove

Corollary 10.3. it r is a normal subgroup of a linite group 17 with
index k= [17: r] prime to its order h= [r: f], then for each 17-module A
and each n>O, there is a split exact sequence

o--i-, H"(17/r, A")
inf

H- (II, A) H- (r, A)" --*0 (10.7)

which thus gives an isomorphism H" (11, A) =H" (17/r, A ® H" (r, A)'.

Proof. By Prop.IV.5.3 we know that each element of HQ (r, A)
for q>0 has order dividing h, while each element of H9 (17/T, M),
for p>0 and M any (17/r)-module, has order dividing k. Therefore
Ef.9_HP(17fr, HQ(r, A)) for p>0 and q>0 consists of elements with
order dividing both h and k, hence is zero. The non-zero terms of the
spectral sequence thus lie on the edges (p = 0 or q = 0), and the only
non-zero differential is the transgression (fiber to base)

d": H"-1(r, A}°=E "-i->E °=H"(17/r, A").

This is a homomorphism of an abelian group with elements of orders
dividing h into one with elements of orders dividing k, where (h, k) =1;
hence d" is zero. Thus all differentials in the spectral sequence are zero,
Es=E,", and there are only two terms (those on the edges) in each
total degree n. The filtration of H"(17, A) thus amounts to the exact
sequence stated. This sequence splits; indeed, a standard argument
using the Euclidean algorithm will show that any exact sequence
B >-' C -i. D of abelian groups with k B = 0, h D = 0, and (h, k) =1 must
split.
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Exercises
(All the exercises refer to the Lyndon spectral sequence)

1. In the filtration of H"(17, A) show that F"H" may be characterized as
the image of the inflation map, and F'H" as the kernel of the restriction.

2. Establish the exact sequence

0-' F'H2/FPH2-,.

3. (HOCHSCHILD-SERRE [1953).) Suppose m 1 and H" (I', A) = 0 for o < n < m.
Show that inf: H" (17/T, Al) es H" (II, A) is an isomorphism for n < m, that the
transgression r in dimension m is a homomorphism r: Hm (I. A)17 ->H'l+'(17/1, A1).
and that the following sequence is exact

o-->Hm(f1/1', A1) -i-nf., H"'(17, A) res Hm(r, A)17 Hm+1 (fl/1+, A'
HM+1(H.A)

4. (HOCHSCHILD-SERRE [1953); HArroRI [1960].) Suppose m and H"(1; A)
0 for 1 < n < m. For 0 < n < m establish the exact sequence

H"(I1/I; AI) inf, H"(II,A)-+H"-1(n/I H, (r, A))
-.H"+1(17/T A1) -.H"+1(I1.

5. For C a right II-module, establish a first quadrant spectral sequence con-
verging to the homology of II,

H. (171r. H. (r, C)) e5 Ep,o p H(fl. C).

11. The Comparison Theorem

In the manipulation of spectral sequences it is useful to be able to
conclude from limited data that two spectral sequences are isomorphic.
The comparison theorem now to be established does this for first
quadrant spectral sequences E of modules over a commutative ring,
provided there is a short exact sequence

O->Ey,o®Eo,q-'EpTorl(EA_1,0, Eu,q)- 0 (11.1)

for the term E2. This hypothesis frequently holds. For example, in the
LERAY-SERRE spectral sequence of a fiber space with simply connected
base space, (2.2) gives E'p,q=Hp(B, Hq(F)), which by the universal
coefficient theorem yields the exact sequence

0 -*Hp (B) (&H, (F) --+Epp, q --Tor (Hp_, (B), Ht (F)) -*0.

Since B and F are both pathwise connected, Ep,0 Hp (B, Z) =Hp (B)
and Eo,q=Ho(B, Hq(F))=Hq(F), and the sequence reduces to (11.1).

Theorem 11.1. (Comparison Theorem.) Let f : E--)..E' be a homo-
morphism of first quadrant spectral sequences of modules over a commutative
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ring, each of which satisfies (11.1), such that / commutes with the maps
x, a, x', a' in (11.1). Write f y,q: E,,q-*Ep q. Then any two of the following
conditions imply the third (and hence that / is an isomorphism) :

(i) /,2,,o: Eq,o-*Eyea is an isomorphism for all p?0,

(ii) 120,q: Eo.q _+Eo=q is an isomorphism for all q z 0,

(iii) / q: E q+E'' is an isomorphism for all p, q.

In view of the geometric applications, we read (i) as "f is an iso-
morphism on the base", while (ii) is "f is an isomorphism on the fiber",
and (iii) is "f is an isomorphism on the total space".

Proof. That the first two conditions imply (iii) is elementary. By
hypothesis, the diagram

o--+E2p,o®Eo.q+E=.q-*Tor, (E,-i,o, Eo.q)-+0
1!®V -f;, (11.2)

0-). Ep,o®Eo,q-+Ep,q-*Torl(E' j,o,Eosq)-*0

has exact rows and is commutative. Conditions (i) and (ii) imply that
the outside vertical maps are isomorphisms. By the short Five Lemma,
so is the middle vertical map /02, q. This isomorphism of the complexes
(E2, d'), (E'2. d' 2) implies that of their homologies E3, E'3, and so on
by induction to give (iii), since each E,,,q is ultimately constant.

The other cases of the proof exploit the fact that a spectral sequence
can be regarded as an elaborate congeries of exact sequences in the
bigraded modules

E', C=kerd', B'=imd' and C=E'/B'.

In the application of the Five Lemma (in its refined form, Lemma I.3.3)
we shall write down only the first row of commutative diagrams like
(11.2).

To prove that (i) and (iii) imply (ii), consider the property

(ii,) / q: Eo,q-->Ep q is an isomorphism for 0SgSm.

Since E0,0=Eo0, (iii) implies (iio). Hence it will suffice to prove
by induction on m that (i), (iii), and (ii,,,) imply (iiiiit1). Given (ii,,,), the
diagram (11.2) shows that /.2.q is an isomorphism for q5m. By a sub-
sidiary induction on r;->2, we prove that

a monomorphism for qSm and all p,
1 11.

rp' q is i an isomorphism for qSm - r+ 2 and all P. J ( 3 )
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This holds for r = 2; assume it for some r. The Five Lemma for the
commutative diagram on the exact sequence

0-1. C.q-* Ep.q P-r.q+r-1
which defines the kernel C' of d' shows for the map c' induced by /' that

a monomorphism for q S m,
cr q: C. q -'Cc. q

is
an isomorphism for qS m- r+ 1.

(11.4)

Now d' gives an epimorphism If qSm, p,+r,q-r+1
is also an epimorphism, hence so is the map b induced by

by q: By,q-+By,q is an epimorphism for q:9 m. (11.5)

Next, E'+1 is defined by the short exact sequence

q --O. (11.6)

Form the corresponding two-row diagram. For qSm the first vertical
map is an epimorphism by (11.5), and the second a monomorphism by
(11.4) ; hence by the Five Lemma the third vertical map P a is a mono-
morphism. If, moreover, qSm-(r+i)+2=m-r+1, the second
vertical map is an isomorphism by (11.4), hence so is This completes
the inductive proof of (11.3).

Next we claim that

cp ,,_r+2 is an epimorphism for r 2. (11.7)

For r>p, d': E'y-+ Ep_, has image zero, so Ep=C, p=cp. For r large,
r'a, q

=1 y q, so cp, q in (11.7) is an isomorphism by the hypothesis (iii).
We may then prove (11.7) by descent on r. Assume (11.7) for r+ I
and take the diagram on (11.6) with q=m-p+2. The first vertical
map is epic by (11.5); since Ep 41=C 41, the third is epic by the case
of (11.7) assumed. Hence, by the short Five Lemma, c,

q
is epic, proving

(11.7).
Finally, we prove by descent on r that P,.+1 is an isomorphism for

r z 2. It holds for large r by (iii) ; assume it for r+ I and consider the
two-row diagram with first line

Eo.a+1-)E0,06+1->0.

The first vertical map is an epimorphism by (11.7) for r=p, the second
is an isomorphism by (11.3), and the fourth is an isomorphism by the
assumption of descent. Hence the third p,.+1 is an isomorphism. For
r=2, this completes the induction on m in the proof of (ii,,,).

The proof that (ii) and (iii) imply (i) is analogous.
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Notes. Spectral sequences were discovered by LERAY (1946, 1950] for the
case of cohomology; their essential features were noted independently by LYNDON
[1946, 1948) in the case of the spectral sequence for the cohomology of a group.
The algebraic properties of spectral sequences were effectively codified by KOSZUL
[1947). Their utility in calculations for the homotopy groups of spheres was deci-
sively demonstrated by SERRE [1951). The equivalent formulation by exact
couples is due to MASSEY [1952]; for still another formulation am CARTAN-EILEN-
BERG, XV.7. The LERAY-SERRE theorem has been proved by acyclic models
[GUGENHEIM-MOORE 1957]; for other proofs see Hu (1959, Chap.IX], HILTON-
WYLIE [ 1960, Chap. X] and, with a slightly different notion of fiber space, FADELL-
HIIREWICZ (1958]. LYNDON's spectral sequence was originally defined by a fil-
tration of Hom(B(17), A); his sequence satisfies Thm.10.1, but it is at present
not known whether it is isomorphic to the spectral sequence we define, which
uses a filtration due to HOCHSCHILD-SERRE [1953]. These authors established the
edge effects (Prop. 10.2) only for the Lyndon filtration; our proof direct from the
Hochschild-Serre filtration depends upon our description of connecting relations,
which was concocted for this purpose. The LYNDON spectral sequence has been
used by GREEN [1956] to prove for a finite p-group H of order p" that H1(H, Z)
has order pk with k & n (n - 1)/2. For H finite, VENKOV [t959] proved topologically
that the cohomology ring H(I7, Z) is finitely generated as a ring; the algebraic
proof of this result by EvENs [1961) uses the product structure of the LYNDON
spectral sequence. Among many other applications of spectral sequences, we
note BoREL's [1955] proof of the SMITH fixed point theorem and FEDERER'S
application to function spaces [1956). In the comparison theorem, due to MOORE
[CARTAN seminar 1954-1955], we follow the proof of KuDo and ARAKI [1956];
a closely related proof by ZEEMAN [1957] includes the case where the given iso-
morphisms are assumed only up to specified dimensions. EILENBERG-MooRE (1962)
study convergence and duality properties of spectral sequences in an abelian
category.

Chapter twelve

Derived Functors

This chapter will place our previous developments in a more general
setting. Fitrs, we have already noted that modules may be replaced
by objects in an abelian category; our first three sections develop this
technique and show how those ideas of homological algebra which do
not involve tensor products can be carried over to any abelian category.
Second, the relative and the absolute Ext functors can be treated to-
gether, as cases of the general theory of "proper" exact sequences
developed here in §§ 4-7. The next sections describe the process of
forming "derived" functors: HomR leads to the functors Exta, ®R
to the Tor and any additive functor T to a sequence of "satellite"
functors. Finally, an application of these ideas to the category of com-
plexes yields a generalized KUNNETH formula in which the usual exact
sequence is replaced by a spectral sequence.
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1. Squares

Many manipulations in an abelian category depend on a construction
of "squares". Let a and fi be two coterminal morphisms and consider
commutative square diagrams

D B D" -B
,rl lp p"! !p (1.1)

A 'C, A

formed with the given edges at and P. Call the left hand square couni-
versal, for given a and f, if to each right hand square there exists a
unique morphism y : D"-*D with fl" _ iI' y, a" = a'y. A couniversal
square (also called a "pull-back" diagram), if it exists, is unique up
to an equivalence of D, so that a and fi together determine a' and fi'
up to a right equivalence. GABRIEL [1962] calls D a fibred product.

Such couniversal squares are familiar in many branches of Mathe-
matics and under more general assumptions (than those made in an
abelian category). In the category of sets, if a and fi are injections,
D is just the intersection of the subsets A and B of C. In the category
of topological spaces, if ft is a fiber map and a: A-*C a continuous
map into the base space of ft, then fl' is the so-called "induced" fiber
map. In any abelian category, the couniversal square for C=0 is

A®ByB
lx' I

A -- 0.
Theorem 1.1. (Square Construction.) To given coterminal mor-

phisms a, ft in an abelian category there exists a couniversal square (1.1).
In terms of the direct sum A ®B with its projections and n=, D may
be described as the domain of vEker(a ni-ft ns), with a'=nsv, ft'=n1 v.

Proof. For D, v, a', and fi' as described, consider

B

D" . Y+ D C. (1.2)

I X,
A

The two triangles are commutative, by definition of a' and fi'. The
square (better, the diamond) on D is commutative, for

a fl'=aniv=(ani-f n.Jv+flsr v=0+fta'.
Moreover, for any second commutative square on at and fi, with upper
corner D" as in (1.1), the couniversality of A® B provides : D"-*A®B
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with n1 %i;= at". Therefore 0=a #"-Pat" =(anl-fin.) , so
factors through vE ker (a nl- fl n2) as =v y for some y (see (1.2)). Then
"=rely and a"=a'y. If y,: D"-sD is another morphism with
RR" fl'yo, a"=a'y0, then n,vyO=n,vy for j=1,2, so vyo=vy. But
v is monic, so yo=y, and y is unique, as required for couniversality.

For modules A, B, C, the corner D might have been described as
the module of all pairs (a, b) with a a=# b; our argument has shown
how to replace the use of the elements a, b by the difference a nl-# n=
and the formation of kernels.

Theorem 1.2. In a couniversal square, fi monic implies j9' monic,
ig epic implies ft' epic, and symmetrically for at.

The proof uses the direct sum A® B, with projections r1 and in-
jections t,. First take fi monic. Suppose fi'w=0 for some w. Then
f n=vw=la'w=a fl'w=0; as # is monic, n$vw=0. But also nlvw=
fl'w=0, so vw=0 and v monic gives w=0. Therefore #' is left cancel-
lable and thus monic.

Next take P epic. Suppose w (a al - f a,) = 0 for some w. Then
0=0) (a nl-# r) 12=-w f na!'=--w fi, so w=0. Hence cc 7r,-fl x2 is
epic, thus is the cokernel of its kernel v. Now suppose that t fi' = 0
for some . Then 0=f fi'= nlv, so n1 factors through at nl-f n2E
coker v as n1- ft n$). Therefore 0=4 r =-$'fi n2 c2=- 'fl,
so fi epic gives ' = 0, hence n1= 0, = 0, and P' is epic.

Under duality (reverse arrows, interchange "monic" and "epic",
etc.) the axioms of an abelian category are preserved. The dual square
construction starts with coinitial morphisms a, fi and constructs the
commutative square on the left in

C 'A

B....,D, B....,D"

so as to be universal (or a "push-out" diagram). Here, universal means
that to any other such commutative square with a lower right corner
D" there exists a unique y: D-+D" with .... For instance, in the
category of groups (not an abelian category) with a and fi monic, such
a universal square exists with comer D the free product of the groups
A and B with amalgamated subgroup C (NEUMANN [1954], SPECHT
[1956]).

Exercises
1. It ra is defined with r, a epic, then rEcoker[a(ker r a)].
2. For x monic, a epic, and x, a coterminal, prove that x' and a' in the square

construction are determined by the explicit formulas x 'E ker e. a'Ecoim (a x'),
with Q = (coker x) a. (Use Ex. 1.)
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3. If a (ker a) - 0 with p epic, show that there is a monic.U and an epic a with
i e=a a.

4. In a commutative diagram

let both squares be couniversal. Show that the square with top and bottom edges
q 13 y is also couniversal.

5. Construct a couniversal diagram to is given coterminal morphisms.

2. Subobjects and Quotient Objects

A subobject of A is determined by a monic x: -+A, and is the right
equivalence class (all x e10 an equivalence) of this x. The class A. of all
subobjects of A may be treated as a set (axiom at end of IX.1).

The ordinary inclusion relation for submodules is matched by the
definition that cls xl S cls x, if and only if there is a morphism co with
x1=x,w; this as is necessarily monic. The set A, is partly ordered by
this relation S and has a zero 0A with 0A 5 cls x for each x ; namely, OA is
the class of any zero morphism 0: o'-->A, where 0' is any zero object
of the category.

In an abelian category, each morphism a with range A has a stand-
ard factorization a = A a (A monic, a epic) and im a = cls A E A, . We
may thus describe A, as the set of all images of morphisms a with
range A ; then equality and inclusion are given by

Proposition 2.1. In an abelian category, mor/hisms al, a' with the
same range A have (when "4*- stands for "i f and only i j")

im a1=im a, 4* alai=a2a2 for some epics a1, or,;

im alSim as 4* a1a=a,w for some epic a and some w;

im a=0e 4* a=0.
Proof. The standard factorization of a1al=a,o, gives im a1=im aloi

= im as. Conversely, if al and a= both have image cls x, they have
standard factorizations al = x el , a,= x e, with pl and LO, epic. The
square construction on Lol and es yields, by Thm.1.2, epics al and a2
with elo1=e,0,, hence a1o1=a,a2. The rest of the proof is similar.

An element of A, will be written as aEA, or as im a for some a
with range A, according to convenience.

Each morphism E: A -> B gives a map , : A, -* B, of sets, defined by

,(im a)=im(E a), range a= A.

The correspondence A --.>.A,, E -, provides a "representation" of each
abelian category by partly ordered sets with zero. We may also treat
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A, as a "pointed set". By a pointed set U is meant a set with a distin-
guished element, say O0 E U. A map /: U --* V of pointed sets is a function
on U to V with f Ou=ov; in particular, /=0 means that / u=Oy for
every u E U. Pointed sets with all these maps / as morphisms constitute
a category, in which we can define many familiar notions as follows:
For every f : U -+ V :

Kernel f= [all ul uEU, f u= 0V].

Image /= [all vj / a= v for some u E U],

f is surjective if and only if Image f= V,

/ is injective if and only if / u1=/ u2 implies u1=u2.

If (f, g): W, call (f, g) exact if Image f=Kernel g. As in abelian
categories, (f, g) is exact if and only if g f =0 and Kernel g< Image /,
where "(" denotes set-theoretic inclusion.

The fundamental properties of the subobject representation can be
formulated in these terms:

Theorem 2.2. If : A-* B is a morphism in an abelian category,
then , : A, --* B, is a map of partly ordered sets with zero; that is , 0A = OB
and a S a' in A, implies, Also

(i) = 0 G ,=0;
(ii) $ is epic q Z, is surjective;

(iii) is monic q , is injective q Kernel ,=0.
If the composite ' E is defined, (rt e), =rl, 4, and

(iv) rl) is exact q (i r/,) is exact.

Proof. If im a15 im a$ in A, then by Prop.2.1 ala=a2w for some
to and some epic o, so $ a,a= f a2w and im ( al) 5 im ( a2). Hence
respects the partial order. Property (i) is immediate.

If f is epic and im fiE B, , the square construction provides ' and
fl' with J' epic and a #' =# $', whence , im #'= im fi and , is surjective.
Conversely, if e, is surjective there is an at with range A and im ($ a) _
im 1B, so a Ql=v2 for epics a, and o2, whence t is epic.

If is monic, ,ima=t,ima'implies ao=fa'a',hence aa=a'a'and
im a = im a', so is injective. If e, is injective, Kernel ., is evidently
zero. Finally, if Kernel , = 0, $ a= 0 implies im (¢ a) =E, (im a) = 0,
hence im a = 0 and a = 0, so a is monic. This proves (iii).

For rj : B -> C, the definition of ker ?I E B, shows that

Kernel r7, = [bjb E B, and b S ker rt) ; (2.1)
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in other words, ker rj is the maximal element of the subset Kernel, ;
note that we write "ker" for a morphism in an abelian category, "Ker"
for module homomorphisms, and "Kernel" for pointed sets. Similarly,
for E: A-+B,

Image E,= [bl b E B, and b S im E]. (2.2)

Indeed, if a has range A, , im a = im ( a);5 im E ; conversely im fl S im
implies f a = se a for some epic a and some at with range A, so et, im a =
im (E a) = im ft. This proves (2.2).

For rj defined, follows by definition, and (2.1) and
(2.2) give part (iv) of the theorem.

Quotients are dual to subobjects. In detail, let Bf denote the set
of all quotients of the object B; that is, the set of all left equivalence
classes of epics a with domain B. The set B4 is a partly ordered set
with zero; the zero is the class of 0: B-->0'; the inclusion cls a? cls r
is defined to mean t=# a for some f, necessarily epic. For modules,
this inclusion has its expected meaning: If a: A-->A/S, rr: A-->A/T,
then cls a z cls r means S( T, and hence A/TT (A/S)/(T/S).

Each : A---,.B induces e: (reverse directionl) by V (cls a) _
coim (a 9). By the duality principle we do not need to prove the dual
of Thm. 2.2. Recall that the dual of a theorem is formulated by reversing
all arrows and leaving unchanged the logical structure of the theorem.
Thus "domain" becomes "range", and $, becomes'. The set-theoretic
notions are part of the logical structure of the theorem, so -$, injective"
becomes "V injective".

Theorem 2.3. If g: A-.B is a morphism in an abelian category,
then V : BQ --).A9 is a map o l partly ordered sets with zero. Also

(i) $=0 a v=0;
(ii) $ is monic q e;4 is surjeciive;

(iii) is epic p $9 is injective q Kernel E' = 0.
I l the composite $ tj is defined, (E r))f =rf tt and

(iv) 77) is exact q (rf, t;°) is exact.

These properties have a more familiar form when stated in terms
of the "inverse image" of subobjects (Ex. 5, 6).

Exercises
1. Verify directly that each of the assertions of Thm.2.3 holds in the abelian

category of all R-modules.

2. If , is defined, show that im $ S ker sj if and only if coker $a coim sf
and that ker, S im a if and only if coim sf g coker ¢.
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3. An anti-isomorphism c: S-b. T of partly ordered sets S and T is a 1-1 cor-
respondence such that s Ss' implies q s ;gc s'. Prove A, anti-isomorphic to A9
under the correspondence cis x -+coker x.

4. Prove that As is a lattice (I.8), with (cls x)n(clsu) given in the notation
of the square construction by cls (1 µ') = cls (p 1'), and with (cis a)v (cls ls) given
by duality.

5. For e:A-.Bdefine ¢':Bs - A,by$'imfl=ker(4(cokerfl)](inthenotation
of Ex. 3. $' = 40 EA 9;) Prove that ¢' is characterized by the properties ¢s (¢' im fi) S
imp, $, im a im fi implies im a ;Srimp. For modules, conclude that 68(imp)
is the inverse image of the submodule imp under f.

6. Restate Thm.2.3 in terms of the maps $'.
7. Show that im a is the greatest lower bound of the monic left factors of at.

3. Diagram Chasing

Various lemmas about diagrams (Five Lemma, 3x3 Lemma, etc.)
hold in abelian categories. The usual proofs by chasing elements can
be often carried out by chasing subobjects or quotient objects instead.
We give three examples.

Lemma 3.1. (The Weak Four Lemma.) In any abelian category
a commutative 2>c4 diagram

A -o.B --o-C -+D

It In lC 1°
A'-s.

B'-°

C'-D'

with exact rows (i.e.. with rows exact at B, C, B', and C') satisfies

(i) J epic, ri and w monic imply C monic,

(ii) w monic, a and l; epic imply,i epic.

Proof. Consider the corresponding diagram for the sets of subobjects
and write a E A, , b'E B,, etc. To prove (i), consider c E C, with C, c = 0
(or, more briefly, take c which goes to 0 in C,). Let c go to d in D,.
Then c and hence d go to 0 in D,; since w, is injective, d = 0. By exactness,
there is a b which maps to c; this b maps to some b'E B. Both b' and
c map to 0 in C,, so, by exactness, there is an a' which maps to Y.
Since f, is epic, there is an a which maps to a' and thus to b'. Let a map
to b, in B. But b and b, in B, have the same image in B; since rl, is
injective, b= b1. Then a maps to b to c, which is zero by exactness of
A-s.B--.C. We have shown that KernelC, is 0; by Thm.2.2, part (iii),
C is monic.

This proof of (i) is exactly like a chase of elements in a diagram
of modules. The dual proof, using quotient objects, gives (ii).
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There is a proof of (ii) by subobjects. Given any b'E B,, a simple
chase gives a b E B, with the same image in C, as Y; thus qi, rl, b = 97, b'.
With elements, we could subtract, forming rl,b- b' in Ker q,. Instead,
write b = im fi, Y= irn #'; then im (q7 rl fl) = im (T P'). By Prop. 2.1, there
are epics a1, as with q'rl flo1= pf'as, and hence q7, im (rl flol-P'as) =0.
Exactness at B' and epic yield a new element b1= im Nl E B, which
maps to im (rl fl a1- fl'o=) in B,. Prop. 2.1 again yields epics as, a, with
rl Alas=rj P a,a4- X a204, so

b'=im (#'asas) =r1: (im (0 a,a4-PL as))

shows b'Ef,B so rj is epic. In this fashion, Prop.2.t can be used to
"subtract" two subobjects with the same image, much as if they were
elements of a module.

The weak Four Lemma also gives the Five Lemma (Lemma I.3.3).
Recall that x I a means that (x, a) is a short exact sequence.

Lemma 3.2. (The 3x3 Lemma.) A 3x3 commutative diagram in
an abelian category with all three columns and the last two rows short
exact sequences has its first row a short exact sequence.

We prove a little more. Call a sequence (a,& A--* B-sC left exact
if 0'->A-).. B->C is exact (i.e., exact at A and B). Thus (a, P) left exact
means that aEkerP.

Lemma 3.3. (The sharp 3x3 Lemma.) A 3x3 commutative diagram
with all three columns and the last two rows left exact has its first row
left exact. If in addition the first column and the middle row are short
exact, then the first row is short exact.

Proof. Consider the diagram (zeros on the top and sides omitted)

A'-*- B' C'

1 , 1A -B -C
A"- B"--- C".

By assumption, A'->B is monic and has a: A'--).B' as right factor;
hence a is monic. Since A'->C'->C is zero and C'->C is monic, /5 a=0.
To prove exactness at B', take b' in B,' with image 0 in C,, and let b'
map to b in B,. Then b' and b map to 0 in C,; by left exactness of the
row at B, there is an a which maps to b. Then a maps to 0 in B;' and
hence to 0 in A;'. By left exactness of the first column, there is an a'
which maps to a. Then a, a' and b' have the same image in B,; since
B'-->B is monic, a,a'=b'. This shows the row exact at B'. Again the
proof is like a chase of elements.
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Now make the added assumptions and use the diagram of the
corresponding sets of quotient objects, with all mappings reversed. To
prove 0 epic, by Thm. 2.3 part (iii), consider c'E C'Q with image 0 in B'4.
By (ii) of the same theorem, there is a c which maps to c'. Let c also map
to b E B. Since b then maps to 0 in B's, exactness of the middle column
at B gives a b" with image b. But b and hence b" go to 0 in A. By the
short exactness of the first column, b" already goes to 0 in A". Exact-
ness of the row at B" gives a c" with image b". Let c" map to cq in C.
Then c and c1 have the same image in BQ, so cI = c by exactness. The
original c', as the image of c", is now zero, so P is epic as desired.

Again, the proof uses quotients to avoid subtraction. For complete-
ness, we adjoin

Lemma 3.4. (The symmetric 3x3 Lemma.) If a commutative 3x3
diagram has middle row and middle column short exact, then when three
o l the remaining four rows and columns are short exact, so is the fourth.

Proof. Use duality and row-column symmetry of Lemma 3.2.

Note. There are several other ways of establishing these and similar lemmas
in an abelian category.

The representation theorem (LUBKIN [1960]) asserts that for every small abelian
category .d there is a covariant additive functor T on Jeto the category of abelian
groups which is an exact embedding - embedding means that distinct objects or
morphisms go to distinct groups or homomorpbisms; exact, that a sequence
is exact in .d if and only if its image under T is an exact sequence of abelian groups.
FREYD'S proof [1960] of this theorem studies the category of all functors T and
embeds a suitable functor in its injective envelope, as constructed by MITCHELL
(1962] following the methods of EcKHANN-SCHOPF. Using this important represen-
tation theorem, the usual diagram lemmas can be transferred from the category
of abelian groups (where they are known) to the small abelian category .d.

An additive relation r: A- B in an abelian category can be defined to be a sub-
object of A e B, much as in 11.6. Under the natural definition of composition,
the additive relations in a constitute a category with an involution PUPPE
[1962] has developed an efficient method of proving the diagram lemmas by means
of such relations (which he calls correspondences) ; moreover, this provides the
natural definition of the connecting homomorphisms for exact sequences of com-
plexes in .d. Also, PuPPE has achieved a characterization of the category of addi-
tive relations in if by a set of axioms, such that any category satisfying these
axioms is the category of additive relations of a uniquely determined abelian
category.

Exercises
The first two exercises use the "subtraction" device noted in the proof of

the Four Lemma.

t. Prove the strong Four Lemma (Lemma 1.3.2) in an abelian category.
2. Prove the middle 3x3 Lemma: If a commutative 3x3 diagram has all

three columns and the first and third rows short exact, while the composite of the
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two non-zero morphisms in the middle row is zero, then the middle row is short
exact (cf. Ex.II.5.2).

Note. Unpublished ideas of R. G. SWAN give a method of chasing diagrams
using morphisms a: with projective domain in place of the elements of A.
This method applies to an abelian category which has barely enough projectives,
in the sense that for each non-zero object A there is an a: P-+A with projective
domain P and a$ 0. Let A. denote the class of all such a (including zero); each
E : A -+ B induces a map 4: A p - B,, of pointed sets defined by 4P (a) = E a: P- B.
The method is fomulated in terms of these maps 4. as in Exercises 3-9 below.

3. An epic t is zero if and only if its range is 0', and dually.

4. Form, A monic, y x = 0 and y h - 0 imply y (x v A) = 0.
The remaining exercises use Ex. 3 and 4 and chase diagrams in an abelian category
.af which is assumed, as in the note, to have "barely enough" projectives.

5. Prove: E: A-+B is epic if and only if 4¢(At)=B0.

6. Prove: A-+B is monic if and only if Kernel 4y=0.

7. If r/ E = 0, then ker q = im E if and only if Kernel 17,, = Image Er.

8. Using the principles of 5 - 7, prove the weak Four Lemma.

9. By the same methods, prove the 3x3 Lemma.

4. Proper Exact Sequences

In a number of cases we have dealt with a special class of exact
sequences in an abelian category and with the corresponding Ext
functor; for example, in the category of modules over a K-algebra A,
Ext(A, K) uses those exact sequences of A-modules which split as sequences
of K-modules.

Another example arises in the category of abelian groups. An abelian
group A is said to be a pure subgroup of the abelian group B if a= in b
for an integer m implies a=ma' for some a'EA; that is, if mA=mB-A.
Equivalently, A is pure in B if and only if each element c of finite
order in the quotient group C = BMA has a representative in B of the
same order. By Extl(C, A) we denote the set of (congruence classes of)
pure extensions of A by C. Topological applications of Ext/ appear
in EILENBERG-MAC LANE [1942], algebraic applications in HARRISON
[1959], NUNKE [1959], FUCxs [1958], and MAC LANE [i960]. That
Ext1 is a bifunctor to abelian groups, entering in suitable exact sequences,
will be a consequence of our subsequent theory.

In any abelian category d let 90 be a class of short exact sequences;
we write x 9a to mean that (x, a) is one of the short exact sequences
of 9, to mean that x9a for some a, and aE9, to mean that x9a
for some x. Call 9 a proper class (and any one of its elements a proper
short exact sequence) if it satisfies the following self-dual axioms.
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(P-1) If x9a, any isomorphic short exact sequence is in 9;
(P-2) For any objects A and C, A >. A®C --s C is proper;
(P-3) If r.A is defined with xE9m, AE9,,, then xAE9m;
(P-3') If at is defined with aE9 rE9 then arE9,;
(P-4) If x and A are monic with xAE9., then AE9M;
(P-4') If a and r are epic with arE9 then aE9,.
These axioms hold in all of the examples adduced above. They hold

if 9 is the class of all -split short exact sequences of a relative abelian
category or if 9 is the class of all short exact sequences
of the given abelian category.

Note some elementary consequences. The first two axioms imply
that 9 is an allowable class in the sense of IX.4, so 9 is determined
by 9A or 9,. Also, any left or right equivalent of a proper x is proper;
when x has range A, cls x consists of proper monics and is called a
proper subobject of A. By (P-2), A-s.A is a proper short exact
sequence, and dually; hence 1A and 0: 0'-A are proper monic, 1A and
0: A-+0' proper epic. A morphism a: A--.B is called proper if kera
and coker a are proper; as in Prop.IX.4.1, this amounts to the require-
ment that im a and coim a be proper. Any equivalence 0 has both
ker 0 and coker 0 proper, hence is proper and in both 9m and 9,.

Proposition 4.1. The direct sum o/ two proper short exact sequences
is proper exact.

Proof. Morphisms a; : A; -. Bi have a direct sum

a1®a2=t1a1n1+i2a$n2: Al®A'-.B1 B2, (4.1)

where n;: A1®A,-.A; and tf: B.-.B1 B=. If xUa and Al-r, an easy
argument shows (x®A)I (a®r). Hence it is enough to show that

imply x®AE9.. Since x®A=(x®1)(1®A), it suffices by
(P-3) to prove x ®1 E P... Thus we wish to prove for each D that
(x, a) : A " B -a-C proper exact implies (x (D 1, a') : A® D > BED D -+C
proper exact. Here we have a' = a a, where n: B ® D -. B is a pro-
jection of the direct sum, hence proper by (P-2). Therefore a'=a n
is proper by (P-3'), hence x ®I E kera' proper, as required.

Two proper short exact sequences E = (x, a) and E' = (x', a') from
A to C are called congruent if there is a morphism 0 with 0 x=x', a'0=a.
By the short Five Lemma, any such 0 is necessarily an equivalence.

Proposition 4.2. It the proper short exact sequence E = (x, a) : A >
B - C splits by a morphism a : C -. B with a s =1c , then a is a proper
monic and E is congruent to the direct sum. Conversely, any sequence
congruent to the direct sum splits.
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Proof. Since a (1- a a) = 0, 1-a a factors through x E ker a as
1- a a = x A, and fi a = 0, fi x =1,, . The resulting diagram A4 B ; C
may be compared with the direct sum diagram by the usual equivalence
0: A® C --*B with a= 0 1, and t, the injection C -* Ad) C. Now 0 is an
equivalence and hence proper. Also a=0 t2 is the composite of proper
monics, hence is a proper more. The converse proof is easier.

For any objects C and A, Ext1,(C, A) is now defined as the set of
all congruence classes of proper short exact sequences E: A B--D,. C;

by the axiom (IX.1) on sets of extensions, we may take Ext. to be a
set. Now Ext , has all the formal properties found for Ext" with R a
ring:

Theorem 4.3. For each proper class -0 o l short exact sequences in
an abelian category d, Extg(C, A) is a bifunctor on sd. The addition
El+ E,= P,, (E1 E2) do makes it a bi/unctor to abelian groups.

The proof is like that for R-modules. The essential step is the de-
monstration that Ext' is a contravariant functor of C; as in Lemma
III.1.2, we must construct to each proper E and each morphism y : C'- C
of sat a unique commutative diagram

E': 0A DC'-,0
II 0 lr (4.2)

E: 0 -* A "-+ B °i C --s 0

with first row E' proper exact (here 0 is the zero object 0'). First build
the right-hand square by the square construction of Thm.1.1. By
Thm.1.2, a' is epic. Form a second square

A-f' C'
Ix-°

CB ' C.

The couniversal property of the first square provides x': A-*D with
fi W= x and a'x'= 0. The diagram (4.2) is now constructed and is
commutative.

To prove E' exact, consider any 4 with 0. Thus o f ¢ =y
so f $ factors through x E ker a as f $ = x at =# x'a for some a. But also
al = 0 = a' x' a, so the couniversality of D for the coinitial maps and
x'a with range D gives = x'a. Since any J with a' = 0 factors through
x', and a'x'= 0, we have x' E ker a'.

The proof that E' is proper uses a direct sum. By the square
construction, D, fi, and a' are defined by the left exact sequence

0-i,D
B®Co'-yx.'

C, y=fi,
32v=a,

Mac Lane, Homology 24
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This v need not be proper, but

vX =(h al+ts7r2)Vx'=t11x'+tza'x'=t1x.

By axiom P-2, h E then axiom (P-4) shows x'E Y., and thus E'
proper.

From the couniversality of the square on D it now follows that the
morphism (I,#, y) : E'-+E of proper short exact sequences is couni-
versal for morphisms (al , #I, y) : El-->E, exactly as stated in Lemma
III.1.3.

Now define E y to be E': This gives a right operation by y on E;
from the couniversality of E' it follows that Ext , is a contravariant
functor of C. The proof that Ext'(C, A) is covariant in A is dual, so
need not be given; the proof that it is a bifunctor can be repeated
verbatim (Lemma 111.1.6); a similar repetition, using Prop. 4.1, shows
that Ext'(C, A) is an abelian group.

A long exact sequence is proper if each of its morphisms is proper.
An n-fold exact sequence S starting at A and ending at C can be written
(via standard factorization of its morphisms) as S = E o o E1, a com-
posite of n short exact sequences. By Prop.IX.4.1, S is proper if and
only if each of its factors E. is a proper short exact sequence. Call two
n-fold sequences S and S' from A to C congruent if the second can be
obtained from the first by a finite number of replacements of an E{ by a
congruent E; or of two successive factors by the rule (E a) o F- E o (a F)
or E o (a F) = (E a) o F, where E and F are both proper and a is any
matching morphism. Now the set Ext;.(C, A) has as elements these
congruence classes of such n-fold sequences S, with addition and zero
as before. The properties of Ext;, are exactly those summarized in
Thm.1I1.5.3

These properties may be restated in different language. A graded
additive category OF is a category in which each homq (C, A) is the set
union of a family of abelian groups (hom" (C, A), n=0, 1, ...) in which
composition induces a homomorphism horn (B, C) ®hom (A, B) ->
horn (A, C) of degree 0 of graded abelian groups, and such that becomes
an additive category when only the morphisms hom° (C, A) are con-
sidered. In particular, each morphism of a graded additive category
has a degree. Now regard a proper n-fold exact sequence S starting
at A and ending at C as a morphism of degree n from C to A, while
the original morphisms from C to A are taken to have degree 0. The
properties of Exto, may now be summarized by

Theorem 4.4. Each proper class _9 of short exact sequences in an
abelian category sat determines a graded additive category 4f,9(j1) with
objects the objects of 0 and hom; (A, B) =Ext;,(A, B); in particular, with
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hom4 (A, B) = homd(A, B). In ep composition is given by Yoneda
composition o/ proper long sequences and of homomorphisms with long
sequences, while addition is de/ined by cls (SI+ S$) = els (PB (SI ® Ss) AA)

If i is any proper class of short exact sequences in the abelian
category sat, then congruent proper long exact sequences S and S' are
also congruent as improper long exact sequences. This gives a natural
transformation Ext ,(C, A) A) of bifunctors. Prop.4.2 asserts
that this transformation is a monomorphism for n=1. This may not
be the case when n>1; in any event, in an elementary congruence
(E a) o F- E o (a F) in a, a F is proper does not imply F proper.

Note. The idea of systematically studying exact sequences of R-modules
which S-split is due to HOCHSCHILD [1956], with hints in CARTAN-EILENBERG
[1956]. Homological aspects of the case of pure extensions of abelian groups were
noted by HARRISON ((1959] and in an unpublished manuscript). Possible axioms
for proper exact sequences were formulated by BUCHSBAUM (1959, 1960], HELLER
(1958], and YONEDA [1960]. Our axioms are equivalent to those of BUCHSBAUM.
BUTLER-HORROCKS (1961) consider the interrelations of several proper classes in
the same category; instead of the proper class S they treat the subfunctor
Extl<Ext'. The functors Ext for the category ..i[=Morph(a/) of morphisms
of a/ appear to have a close relation with those for J/ [MAC LANE 1960b].

Exercises

1. [I3UCHSBAUM.] Show that (P-2) may be replaced by the requirement that
a.# a 1A implies flE 9,".

2. [HELLER.] If ME 0. and mat is a proper morphism, at is proper.

3. Construct an example of two pure subgroups in Z4 ®Zs to show that x, AE9_
need not imply x + AE 00. .

4. Construct an example of an impure extension F of abelian groups and an
a with a F pure.

5. If 9 and 9' are proper classes of short exact sequences, so is 9r.9'.

6. (HARRISON.] If S is a fixed module, show that the class of all short exact
A >` B C with Hom (S, B) -r Hom (S, C) an epimorphism is a proper class.

5. Ext without Projectives

If a has enough proper projectives for the given proper class Y,
each object C has a proper projective resolution e: X-+C. Then the
natural isomorphism Extl,(C, A) esH"(Homr(X, A)) holds, just as for
modules (Thm.III.6.4). As in that case, we can establish the standard
long exact sequences for Ext. Instead, we give a direct proof, using
neither projectives nor injectives.
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Theorem 5.1. For 9 a proper class of short exact sequences in an
abelian category V, E = (x, a) : A '- B -I- C a proper short exact sequence,
and G any object there is an exact sequence of abelian groups

->Ext; 1(A, G) -Z Ext ,(C, G) Exts(B, G) '*Ext ,(A, G)

with maps given by composition; in particular, E" (els S) _ (- 1)" eis (S o E).

The dual of this theorem asserts the exactness of the usual long
sequence with E placed in the second argument, as in Thm.III.9.1.

Proof. It is immediate that a"E"-1=0, m"a"=0, and E"x"=0.
Write "a"I x"" for "(a", x")" is exact. We must prove

E"-1la", a"Ix", x"IE", n=0, 1, .. ; E-1=0.

For n=0 and for E01 al, the proof is that for modules, with minor va-
riants.

To show a11x1, consider E'EExt'(B, G) with E'x-0. This states
that E'x splits, so the definition (4.2) of E'x amounts to a commutative
diagram

E'x: G®A-_'
II ,r 1" ce

I.
E': 0 -*G--+ -' B ->.0

iQ s

e
E°: G ...y , C'

with u monic by the square construction (Thm.1.2). Moreover, a a' E
coker,u, for a a'µ = a x n2 = 0, while if p = 0 for some , then x' =
,u t,=0, whence =rl a' for some rl with 0=n a'µ=r) x n2. Since nQ
is epic, 7 x = 0, and ri thus factors through a as 77 =Ca. Hence factors
through a a', so u E ker (a a') is proper by (P-3').

To fill in the dotted portion of the diagram, use the proper injection
y: A-sG®A, take eEcoker(,u t1) and a=0 x'. Since or a 'JA cs=a x njt2=
0 1A = 0, a a' factors through P as a a' = r e with r proper epic by (P-4').
Now replace both G's in the top row by 0, n2 by 1A and ,u by u t3. The
resulting 3 x3 diagram has proper exact columns and the first two
rows exact; by the 3x3 Lemma the third row is exact, and proper
as r is proper. This row is therefore an E°E Ext'(C, G) ; the diagram
states that E°a- E'. Hence all x1.

Lemma 5.2. If x"I E" for all proper E, then E"I a"+1 and a" +1I x"+1.

In the proof, we omit the subscript 9 on Ext, and write xE and
aE for the two non-zero morphisms of a short exact sequence E=
(xe, aE). This gives the convenient congruences (Prop.III.1.7)

xEE-O, E aE-0.
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First suppose that SEE Ext"+' (C, G) has a+' S- 0. Write S as a
composite S = T o F for TEE Ext". Hence O = S am T(Fa) ; the hypo-
thesis (with E replaced by Fo) gives UE Ext" with T- U xFQ, hence
S= U(xF,F). But (xF, F) a m xFa (Fa) = 0, so the assertion E°1 a' pre-
viously proved gives a morphism a with xF,Fm a E. Thus S m U(xF,F)
(U a) E-± E" (U a), as desired.

Second, we wish to prove that SEE Ext"+' (B, G) with S xm 0 can
be written as S- Va for some VE E Ext"+'. The proof is similar, using
all x' instead of E°1 a'.

The proof of the theorem is now reduced to showing xi E" for all
nZ1.

Next consider x'l E', which asserts that if FE E Ext' (A, G) has F E= 0,
then F-F'XE for some F'. To deal with this we must enter into the
several-step definition of the congruence relation FE-O. We actually
prove a little more :

Lemma 5.3. For FE Ext' (A, G) and E E Ext' (C, A), the /ollowing
three properties are equivalent:

(i) FmF'xE for some F'EExt';
(ii) E-aFE' /or some E'EExt';
(iii) FE-O.
To prove that (i) implies (ii), write the commutative diagram for

the morphism F--.F' defining F'XE as

F: 0 A--> 0

it 1"d !",
F': IB-0

°si

C=C
with last column E. Here ,u is monic by the square construction for
F'xE. Insert aEa' at the dotted arrow. This morphism is proper epic and
also in coker y, by a proof like that for ao' in the previous diagram. The
middle column is now a proper short exact sequence E', and the
diagram states that aF E' = E, as required. The proof that (ii) implies
(i) is dual to this one.

The hypotheses of the lemma insure that FEEEExt'(C, G) is de-
fined, and (i) implies that FEm (F'xE)EmF'(xEE)mF'0=0, which is
(iii). Dually, (ii) implies (iii). To prove the converse, let F*E denote
the property of F and E given by the equivalent statements (i) and (ii).
Now the zero of Exts(C, G) has the factorization O=F°E°, with

F°: G A. G- O, E°: 0 » C'* C,
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and FO*EO, since Fo=x,,F' with F': Assume FE-O
as in (iii) ; this congruence is obtained by a finite number k of applica-
tions of the associative law F'(y E')- (F'y)E' to FE,=O. We now
show that F* E, by induction on the number k of such applications.
Since Fo* E0, we need only show that Fy* E' implies F* y E', and
conversely by duality. Now, by (ii), Fy* E' states that E'-= aF,, E"
for some E". The diagram defining Fy,

Fy: -a-F--Y+

II dso 1

F: .-'
yields y aF,,=aFP for some P. Therefore y E'- (y oF1) E"-aF(8 E");
by (ii), this states that F* y E'. The converse proof uses (i) in place
of (ii) for the relation $)_. We have completed the proof that (iii) implies
(i) and (ii).

Lemma 5.4. Condition (ii) of Lemma 5.3 is equivalent to:
(ii') For some morphism a and some E', Fa- 0 and E- a E'.

Proof. Since FaF = 0, (ii) implies (ii'). To prove the converse, write
F as G H DMA. For any object L, the dual sequence induced by F
begins

0 -hom (L, G) --whom (L, D) hom (L, A) f! Ext',(L, G) ;

we already know this portion to be exact. Therefore Fay 0 with
a: L-*A gives a=aFf for some fl: L-+D. Thus, given (ii'), we get
E= a E'= a.,(#E'), which is (ii) of the Lemma.

These lemmas are the first step of an inductive proof of

Lemma 5.5. For n>0, SEEExt"(A, G), and EEExt'(C, A) the
following three properties are equivalent

(i) For some S'EEExt`, S= S'xE;
(ii) For some morphism a and some E', S a - 0 and E - a E';
(iii) SEm O.

The implication (iii) = (i) will show x"J E" and complete the proof
of the theorem.

To prove that (i) implies (ii), write S' as a composite TF', with
F'EExt'. This gives Sm S'xE- T(F'xE). Apply Lemma 5.3 to F-F'xE
and E; it proves E- aFE' with S aF- T(FaF) - 0, which is (ii).

To prove that (ii) implies (i), use the induction assumption. Given
E - a E' and Sam 0, write S as a composite T F with TE E Ext"''.
Now T(Fa) - O, so by induction [(iii) implies (i)] there is a T'E E Ext"-'
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with Tu T'XF5. Thus S=TF-T'(xFeF) and (xFaF)a-xFa(Fa)=0,
so (XFSF)E-0. By Lemma 5.3 [(iii) implies (i)], this gives
for some F', so S- (T'F') xE, which is (i).

Both (i) and (ii) imply (iii) ; to get the converse implications, let
S# E again stand for the relation between S and E given by the equi-
valent statements (i) and (ii). Then SE-O implies S*E, by induction
on the number of steps in the congruence SE-O, just as in the proof
of Lemma 5.3.

Note that the condition (ii) of this lemma may be interpreted to
say that the congruence SE-0 may be established by one associativity
S E = S ((x E') - (S a) E' involving E, with the remaining associativities
all applied within S at.

Note. The theorem thus proved was established by BUCHSBAUM [19591; the
above arrangement of the proof is wholly due to STEPHEN SCHANUEL (unpublished).

6. The Category of Short Exact Sequences

Let £ be a proper class of short exact sequences in an abelian cate-
gory .sad. Construct the category Ses v(d) (brief for short exact sequence
of d) with

Objects: All proper short exact sequences E_ (x, a) of sad,

Morphisms T: E - . E': All triples r= (a, p, y) of morphisms of sl'
which yield a commutative diagram

E: _ _ 0

I.- la ly
E': 0 A'- B'- C' 0.

Under the evident composition and addition of morphisms, Seso,(d)
is an additive category. However, Ses,(si) is never an abelian category.
To see this, note that a morphism (a, fi, y) with a=#=0 necessarily
has y=0, for y a=a'#=a'0=0 with a epic implies y=0. The composi-
tion rule (a, P, y) (a', P', y') = ((x a', ft P', y y') shows that a and P monic
in d imply (a, fl, y) monic in Seso,(d). Dually, fi and y epic in sad imply
(a, P, y) epic in Seso,(d). For the zero object 0' and any object
G+ 0' in sad construct the morphism r= (0, 1, 0),

0 -- o'--)- G - G --r o

1° 11 1°

0 and I are monic, 1' is monic; since
I and 0 are epic, r is epic. But 1' is not an equivalence, as it must be
in an abelian category.
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The cause of this phenomenon is not difficult to see. If we take
the "termwise" kernel of this morphism 1, we get the short sequence
0'-- O'-*G which is not exact; the same applies to the "termwise"
cokernel G-)-0'-s0'. Indeed, the Ker-Coker sequence of Lemma 11. 5.2
indicates that these two sequences must be put together with lo: GAG
to get an exact sequence. (Using additive relations, one may obtain
the ker-coker sequence in any abelian category.)

Now embed Sesa,(d) in the category .9'(d) with

Objects: All diagrams D: A-->B--),.C in d (no exactness re-
quired).

Morphisms r: D -*D' : All triples T= (a, fi, y) of morphisms of d
which yield a commutative 2x3 diagram, as above.

Since .9'(d) is a category of diagrams in an abelian category, it is
abelian; moreover, (a, fi, y) is epic in .9'(d) if and only if a, ft, and y
are all epic in rd, and likewise.for monics. A short exact sequence
D' D -+D" in 9(d) then corresponds to a commutative 3><3 diagram

Y: A' - B' -> C'
1 1 1

D: A

1 I I
D": A"->-B"-+C-

in d, with columns exact in d. Call D' >- D allowable in .9'(d)
if all rows and columns in this diagram are proper short exact sequences
of W. This defines an allowable class of short exact sequences in So(d),
in the sense of IX.4, and hence defines allowable morphisms of ,9'(d).

Proposition 6.1. A morphism 1'= (a, fi, y) : D - * D" of So(d) is an
allowable epic [an allowable monic] of So(d) if and only if D and D"
are proper short exact sequences of d and a, P, and y are proper epics
of d [respectively, proper monics of ,rat'].

Proof. The condition is clearly necessary. Conversely, given a,
and y proper epic, form the 3x3 diagram with second and third rows
D and D", first row the kernels of a, fi, and y with morphisms induced
by those of D. By the 3x3 lemma, the first row is short exact; by the
axiom (P-4), the first row is proper. Hence all rows and columns are proper
exact, so 1' is allowable.

Now "proper" projectives are defined as were "allowable" projec-
tives (IX.4). Given a proper class 9, an object P of d is called a proper
projective for 9if it has the usual lifting properties for the proper epics;
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that is, if each proper epic a : B -> C induces an epimorphism Hom (P, B)
--> Horn (P, C). We say that there are enough proper projectives if to
each object A there is a proper epic z: P->A with P proper projective.

Theorem 6.2. If P and Q are proper projective objects of the abelian
category d, then F : P -* P ® Q --.>. Q is an allowable projective object in
.V(-d).

Proof. Given any commutative diagram in d,

F: O->. P-"4.
z 1 1E In It

El: 0 --*A I '--+ B' d
C'-> 0

r I Tax 1o tr
E: O-+A- B ->C-* 0

with exact rows and r: E->E' allowable epic, we are required to find
a morphism Z': F-->E of the first row to the third so that rZ'=Z:
F-*E'. By Prop.6.1, a, fl, and y are proper epic in d; thus yo is proper
epic. Since P and Q are proper projectives in d, f can be lifted to
V: P->A with and C to w: Q-+B with yaw=C. Take c': Q->
P® Q. Now a'(fl w- tj ¼)'V aw- C n,2 y=C-C= O, so fi w-i y factors
through x'E ker a' as fi w - r) i2 = x' w', for some w': Q ->A'. Since a is
proper epic and Q proper projective in d, w' lifts to V: Q-*A with
a tp=co', and

flw-t7 c=x'a+p=flxip.

Define rl': P® Q-+ B and C': Q--* C, using n1: P® Q -->. P, by

rl'=x 'c +(w-xyr)n', C'=aw.

Then Z ' = ( ' , , 7' , ' ) :) F -> E is the required morphism.

We now show that there are enough allowable projectives, not for
all the objects of .So(d), but for the objects in Ses,(d) <.9"(d).

Theorem 6.3. If the abelian category rat' has enough proper projec-
tives, then to each proper short exact sequence E: A >- B-sC of d there
is an allowable projective F and an allowable epic F --*E
Of

We will construct an F of the form given by Thm.6.2. Since d has
enough proper projectives, we can find proper projectives P and Q
and proper epics : P -> A , w : Q -> B. The composite C = a w : Q - C
is proper epic, while v=x nl+w ni: P® Q--).B provides a morphism
Z = rl, C) : F -- . E. But and C epic, by the short Five Lemma, imply
rl epic. Hence Z is allowable by Prop. 6.1, provided only that q is proper.
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But ti is determined by q h=x , r) cs=w, so may be written as the
composite

P®Q A®B " BB®B V°' B.
Both factors ® w and PB (x ®1) are proper epics, the latter because
it is equivalent to the (proper) projection xi of a direct sum, as in the
diagram

Ae B P"(`m B
r1 I!A®B- B

with p and 'Y automorphisms of A ® B defined by

x197h=1, x1712=0, xs97h=-x, xg9292=1:

ri h=1, x1Wh=0, x:Wh=x, z p12=1;
(with elements, q' (a, b) is (a, b - x a) and tp(a, b) = (a, b + x a)). The
proof is complete.

This theorem constructs allowable projective resolutions:

Theorem 6.4. Let 9 be a proper class of short exact sequences in the
abelian category W. To each proper short exact sequence E of d there
is an allowable projective resolution e: K-*E in 9(d), represented by a
commutative diagram

... -> A -+0

... --).W -3-.W.-, .... --sW0 -s B -*0

...-0. Y. -0. Y.-1-* ...-> Yo ->C->0

in .ad, with each row a proper projective resolution in d, each column
of K a proper short exact sequence (of proper projective objects) in d,
and each W"=XK®Y".

Proof. Thm.6.3 constructs e: K-i-E by recursion, with each K.
an allowable projective of 9(d) of the form F of Thm.6.2. Thus K.
is a proper short exact sequence with X,,, W", and Y.
proper projective (and Each a: and e: K0-*E
is an allowable morphism of 9(.W), so the rows of the diagram above
are exact and proper in .rd. Observe that K may be regarded either
as a complex of short exact sequences, or as a short exact sequence
X - W-i.Y of complexes of xV. Observe also that X >- W-o- Y, though
split as a sequence of graded objects, need not be split as a sequence
of complexes (= graded objects with boundary 8).
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Exercises
1. If 4 is the category of all left R-modules, show that every monic in Ses (A

has a cokernel in Ses (4'). and dually. (Use the Ker-coker sequence.)

2. A morphism r= (a, P, y) : D -* D' is allowable in .9'(4) if and only if D
and D' are proper short exact sequences of .d and the induced map ker fi -. ker y
is proper epic in .d (or, dually, the induced map coker a -. coker p is proper
monic in .d).

7. Connected Pairs of Additive Functors

The systematic treatment of functors T: d-.g in the next sec-
tions (§§ 7-9) will assume

(i) W is an abelian category,
(ii) 9 is a proper class of short exact sequences in saf,

(iii) 9 is a selective abelian category (IX.2).

This formulation includes both relative homological algebra (e.g., with
9 the class of suitably split exact sequences) and "absolute" homological
algebra, with 9 all short exact sequences in V. In 9 we use the class
of all short exact sequences. For the applications intended, 9 might as
well be the category of all modules over some ring or algebra.

An additive functor T: d-.9 is a functor (covariant or contra-
variant) with T(a+ fl) = T(a)+ T(ft) whenever a+p is defined. This con-
dition implies T(0) =0, T(- (x) =- T(a), and T(A® B) a5 T(A)® T(B).
Henceforth we assume: all functors are additive.

Study the effect of a covariant T upon all the proper short exact
sequences (x, a) : A - B -sC of W. Call T

9-exact if every 0 - .T(A) -> T(B)-FT(C) -*0 is exact in Sir,

right 9-exact if every T(A) -. T(B) --.T(C) -*o is exact,

left 9-exact if every is exact,

half 9-exact if every T(A) -> T(B) FT(C) is exact.

If T is 91-exact, it carries proper monics to monics, proper epics
to epics, and proper long exact sequences to long exact sequences.
Moreover, for any proper morphism a, a 9-exact functor has

T(ker a) = ker (T a), T(im a) = im (Ta) ,
(7-1)

T(coker a) = coker (Tot), T(coim a) = coim (T a) . I

Right exact functors can be described in several equivalent ways.
By a proper right exact sequence in the category .W we mean a sequence
(a, a) : D -->B --> C exact at B and C with a and a proper.
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Lemma 7.1. A covariant additive functor T is right 9-exact if and
only i f either

(i) T carries proper right exact sequences in W to right exact sequences
in 9, or

(ii) T(cokera)=coker(T a) for every proper a in .rah.

Proof. Since coker a=a states that (a, a) is a right exact sequence,
(i) and (ii) are equivalent, and imply T right 9-exact. Conversely,
let T be right 9-exact. Each proper right exact sequence D B --> C -.0
in .r:t' yields two proper short exact sequences

K
I
D
4,

0-->A-+ B-+ C-* O;

T carries each to a right exact sequence in 9, so T(D) --> T(B) -* T(C)
is right-exact.

Similarly, T is left 9-exact if and only if T(ker a) = ker (T a) for
a proper.

If T: W-->M is a contravariant functor, then, for all proper short
exact sequences A >+ B -. C of .rat, T is

9-exact if every o--FT(C) ->T(B) -,T(A) -+0 is exact in 9,

right 91-exact if every T(C) -aT(B) -.T(A) - .O is exact,

left 9-exact if every 0 -->.T(C) -->T(B) -ET(A) is exact,

half 9-exact if every T(C) ->T(B) -.T(A) is exact.

The analogue of Lemma 7.1 holds; in particular, T is right 9-exact
if and only if it carries each proper left exact sequence in ,rat into a
right exact sequence in R.

A -0-connected pair (S, E,, T) of covariant functors is a pair of
functors S, T: d-+ together with a function which assigns to each
proper exact E : A >-. B i C in d a morphism E,: S (C) -+T (A) of 9
such that each morphism (a,#, y) : E-->.E' of proper short exact se-
quences yields a commutative diagram

S(C) E T(A)
is(v) IT(M) (7.2)

S(C') E T(A'), 9
(in the indicated category 9). Call E, the connecting morphism of the
pair. The condition (7.2) states that E, is a natural transformation of
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functors of E. This condition may be replaced by three separate
requirements :

If E is congruent to E', E,=E, (7.2 a)

If y: C'--o- C, then (EY).=E.Y., (7.2b)

If a: A--i.,A', then (a E)*=a*E*, a,=T((X). (7.2c)

Indeed, (7.2) with a =1 and y =1 gives (a). If (1, fl, y) : E --*E', then
E'y is by definition E, so (7.2) gives (b). Dually, (7.2) with y =1 gives (c).
Conversely, given (a), (b), and (c) with (a, fi, V): E -*E', the congruence
aE=E'y of Prop.III.1.8 gives (7.2).

If E. splits, then (E0)*=0. For, if E. splits, the morphism (1A, a,, 0)
maps Eo to the sequence A 0 . Since S is additive, S(O)=O, so
(7.2) gives 0 = S (0) = T(1) (E0)+ = (E0), .

For each proper E : A >- B - C, the long sequence

S(A)
S(M)'

S(B)
SW'

S(C) T(A) '() i T(B) ""' T(C) (7.3)

is a complex in 9 (the composite of any two successive maps is zero)
and a functor of E. Indeed, write E= (x, a); both xE and Ea split,
so T (m) E , = 0 and E, S (a) = 0, while S (a) S (x) = S(ax) =S(O)=O.

For example, if d is the category of R-modules, with 9 all short
exact sequences, the functors S (A) =Tori}1 (G, A) and T(A) =Tore (G, A)
for fixed G and n constitute a connected pair with the usual connecting
homomorphism.

A morphism (/, g) : (S', E#, T') -.(S, E*, T) of connected pairs is
a pair of natural transformations /: S'-* S, g: T'->T of functors on V
such that the diagram

S'(C) T'(A)
,I(C) 11(A)

S(C) -s-' T(A), 5ft,

is commutative for each proper E. In other words, a morphism (/, g)
assigns to each A morphisms / (A) : S'(A) -+S(A) and g (A) : T'(A)->T(A)
of . which taken together form a chain transformation of the com-
plexes (7.3). These conditions on f and g may be summarized as

la#=a*f. gE#=E.f, ga#=a.g, (7.4a)

where a# is short for S'(a) or T'(a), a, short for S(a) or T(a).
A connected pair (S, E*, T) is left 9-couniversal if to each connected

pair (S', E#,T') and each natural g: there is a unique /: S'--.S
such that (/, g) is a morphism of connected pairs. Briefly, (S, E,, T)
left-couniversal means: Given g, (7.4) can be filled in with a unique
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natural f. Similarly, (S, E., T) right 9-couniversal means that to a given
f there is a unique g ; then T = Ei, = 0. Also, (S', E#, T') is right 9-univer-
sal if, given (S, E*, T) and f, there is a unique g which satisfies (7.4).

Given T, the usual argument shows that there is at most one left
couniversal pair (S, E*, T) up to a natural equivalence of S. This
pair - and, by abuse of language, this functor S - is called the left
satellite of T. Note the curious fact that if (S, E*, T) is the left satellite,
so is (S, - E*, T) - just change the signs of every E* and f in (7.4).

Theorem 7.2. It .sat has enough proper projectives, the following con-
ditions on a 9-connected pair (S, E*, T) of covariant /unctors are
equivalent:

(i) (S, E*, T) is left 9-couniversal,

(ii) For each proper short exact sequence K >- P ->C the sequence

0 9P, (7.5)

is left exact whenever P is proper projective.
Since there are enough projectives, there is for each object C of W

a proper epic a: P-+C with P a proper projective; this gives a proper
exact sequence

Ec: 0-,. x=XC.

It is the first step in the construction of a proper projective resolution
of C; we call it a short projective resolution.

To prove that (ii) implies (i) we must construct / to a given g in
(7.4). For E=Ec the commutative diagram:

S'(P) -- S'(C) * T'(K) r("), T'(P)
/(C) t(K) t(P)EjT(x) j (7,7)

0 -> S(C) - T(K) -; T(P), 9P,

with top row a complex, has its bottom row exact, by hypothesis.
Hence E* is monic, so that f (C), if it exists, is unique. On the other
hand, T(x) g(K) E#=g(P) T'(x) E#=0, so g(K) E# factors through
E*Eker(T(x)) as g(K)E#=E* for some unique : S'(C)>S(C). Take
f (C) This fills in the dotted arrow to make the diagram commute.

Now take any proper short exact sequence E'= (x', a') : A'FB'-.C'
and any morphism y: C-->C' of .sad. The diagram

E: O P
IV (7.8)

E': 0 - A'--),. B'--s C'--> 0. ..
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in ad has P proper projective, so may be filled in (comparison theorem!)
to give a morphism (a, #, y) : E --- E'. We claim that

E .'S (y)1(C) E#S'(y) : S'(C) -.T(A'), R. (7.9)

Indeed, aE- E'y and, in the notation (7.4a), E;y,/=a,E,/=a.gF_#=
g01#E#=g E#y# We specialize this result (7.9) in two ways.

First, let y : C -* C' be any morphism of V. Choose for E' the short
projective resolution Ec, used to define /(C') by g(K')E#=E,/(C'),
as in (7-7). Then A'= K' and E' is monic, so (7.9) gives S (y) / (C) =
f (C') S'(y). This asserts that f : S'->S is natural. With C=C' and
y =1, it shows that / (C) is independent of the choice of Ec.

Second, let E' be any proper short exact sequence ending in C' = C.
Take y=1. Then (7.9) becomes E} f (C) = g (A') E#, which states that
/ and g commute with the connecting homomorphisms and hence, as
in (7.4), constitute a morphism (S', E#, T') -- (S, E., T) of pairs

Before proving the converse, note that (7.7) suggests that S (C)
might be defined as the kernel of T(K) -+T(P). Regard each proper
short exact sequence E: A *+ B -s C as a complex in V, say in dimensions
1, 0, and -1. Then T(E): .T(C) is a complex in 9;
its one dimensional homology H, (T(E)) is the (selected) object of 5Tt
which makes

0->H1(T(E))4T(A)-*T(B), 9, (7.10)

exact. Each morphism T= (a, fi, y) : E -*E' of proper short exact
sequences in .rah gives a chain transformation T(1): T(E)-*T(E') and
hence induces a morphism

H,(I'): H1(T(E))--*.H1(T(E')), a,
which is characterized by µ'H1(1') =T(a) µ. Moreover H1(F) depends
only on y, E, and E', and not on a and ft. For, let TO = (a0 , ft0, y) : F. --> E'
be any other morphism with the same V. In the diagram

0->A x' B ---pC
Ia-a. 10

A B ' - - - + sa/,

o'(fl-fl0)=0, so fl-f0=m's for some s: B-*A'. Also x'(a-a0)=
(fl-ft0) x= x's x, so all told s x=a-ao, x's-ft-fl0. Thus s is a homo-
topy I'-J'0. Since T is additive, T(s) is a homotopy T(I) - T(I'o) :
T(E)-+T(E'), so H,(F)=H1(To). Now there exists:

To each object C ofd a short projective resolution Ec,
To each y: C--,C' in W a morphism 1',,=(-, -, y): Ec->Ec.,
To each proper exact E in af a morphism A& = (-, -, 1) : Ec ->E.
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We now have

Lemma 7.3. Given T: jW--3,.9 covariant and the data above,

S(C)=H1(T(Ec)), S(y)=H1(T,): S(C)-* S(C')

define a covariant additive functor S: while, for u as in (7.10),

E. =,u HI (AE) : S (C) -ET(A)

defines a natural transformation which makes (S, E., T) a &-connected
Pair satisfying (ii) of Thm.7.2.

Proof. By the observation on H1(I'), S (C) is independent of the
choice of Ec. Also S (1) =1; by composition, S (yl y$) = S (yr) S (y,).
If r= (a, #, y) : E -* E' is a morphism of proper short exact sequences,
TAE and AE.I,,: Ec --,E' agree at y, so E. is natural. Property (ii)
holds by construction.

This proves that (i) implies (ii) in the theorem, for any left couni-
versal (So, E#, T) must agree with the one so constructed, which does
satisfy (ii). This construction also gives an existence theorem:

Theorem 7.4. I l At has enough proper projectives, each covariant
additive functor T: da . has a left satellite (S, E., T).

Corollary 7.5. Let (S, E,,, T) be a 9-connected pair. I l to each 9-
connected pair (S', E#, T) with the same T there is a unique natural
transformation /: S'-.S such that (f, 1): (S', E#, T)-.(S, E., T) is a
morphism of pairs, then (S, E., T) is left-. -eouniversal.

Proof. Use the hypotheses to compare (S, E., T) to the left satel-
lite of T, which is known to exist and to be couniversal.

The dual of Thm. 7.2 is

Theorem 7.6. If rat has enough Proper injectives, then a 9-connected
Pair (T, E., S) of covariant functors is right 9-universal if and only if
each Proper short exact sequence

with j proper injective induces a right exact sequence

T(J)-->T(K)-*S(C)-*0, R.

Moreover, given T, the S with this property is uniquely determined;
it is called the right satellite of T. Each T thus has a left satellite (co-
universal) and a right satellite (universal).



7. Connected Pairs of Additive Functors 385

Proof. Dualization reverses all arrows, both in .ad and in 9, replaces
"projective" by "injective", gives E* from T to S, and leaves T and S
covariant.

A .9-connected pair (T, E*, S) of contravariant functors consists
of two such functors T, S: d ->R and a function which assigns to
each proper short exact E: A >- B -.C in .oaf a complex

+S(C)-,.S(B)-s-S(A), a,
which is a functor of E. The pair is right universal if and only if to each
natural f : T--),.T' and each connected pair (T', E#, S'), there is a unique
g: S->S' such that (f, g) is a morphism of pairs.

Theorem 7.7. In the presence of enough proper projectives, the contra-
variant pair (T, E*, S) is right .9-universal if and only if each proper
K >- P -r C with P proper projective induces an exact sequence

T(P)-+T(K)-CS(C)--*0, a.
Example : For D a fixed module, T(C) = Ext" (C, D), S(C)=

Ext"+1 (C, D).

Proof. This reduces to the previous result if we replace W by the
opposite category jif'O". Recall (1.7) that d°p has an object A* for each
object A of a and a morphism a*: B*-o.A* for each a: A-i,.B in rah,
with Thus monics in .W become epic in sad", the opposite
of an abelian category is abelian, and the opposites of a proper class
01 of short exact sequences of W constitute a proper class in ,ral°p.
Each covariant T: .sat - gives a contravariant T*: AM--).a with
T* (A *) = T(A). Moreover, "enough injectives" becomes "enough pro-
jectives". All arrows in V-diagrams are reversed, those in s-diagrams
stay put, and Thm. 7.6 becomes Thm. 7.7.

A similar replacement in Thm. 7.2 shows that a contravariant pair
(S, E*, T) is left couniversal if and only if 0-+S(C)-*T(K)--*T(J) is
exact for each C >- J -sK. Then S is a left satellite of T.

Exercises
1. Call a diagram Al; B-1--l. As "cartesian" if it satisfies the usual direct sum

identities xttr - 1= a, is and y nt + y ns = 1. Prove that an additive functor takes
every cartesian diagram into a cartesian diagram, and, conversely, that any functor
with this property is additive.

2. Let T : if--* A, not assumed to be additive, be half 9-exact. Prove it addi-
tive (cf. Ex. I and Prop. 1.4.2).

3. If T is covariant and left 9-exact, show its left satellite zero.
4. If (S, E., T) is left couniversal and T half 9-exact and covariant, prove

(7.3) exact, provided has .sf enough proper projectives.
5. Derive Thm. 7.6 from Thm. 7.2 by replacing both if and ST by their opposites.
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8. Connected Sequences of Functors

A I-connected sequence {T,,, of covariant functors is a sequence
(..., T, E, Tn_1, E,,_1....) of functors T.: in which each pair
(T., E,, T,,--,) is 9-connected; in other words, such a sequence assigns
to each proper short exact E of d a complex

..._T»+1(C) E.+1 T.(B)-+T.(C)

E.T*_1(A)-->... (8.1)

which is a covariant functor of E. The sequence is positive if for
n<0 or negative if for n>0; in the latter case we usually use
upper indices.

Positive connected sequences may be described more directly in
terms of graded additive categories. Recall (Thm.4.4) that sd can be
enlarged to a graded additive category d'',(saf) with the same objects
and with the elements of Ext9(C, A) regarded as the morphisms of
degree n from C to A. From the range category 9 we can construct
the category .' of graded objects of .9, with morphisms of negative
degrees. In detail, an object 8t of 9+ is a family of objects of b@,
with for n<0; while an element of hom"(fit, 8't') is a morphism
u: 9t-- 91' of degree -k; that is, a family of morphisms {u,,:
of ., with the evident composition. Then .+ is a graded additive
category. If .9 is the category of modules over some ring, .+ is the
category of graded modules over the same ring, with morphisms of
negative degrees.

For graded categories, functors are defined as usual, with supple-
mentary attention to the degrees of morphisms. Thus if 9F and J° are
graded additive categories, a covariant functor Z: 91 -*.W assigns to each
object G of l an object Z(G) of Jr and to each morphism y: G, I-o-G2
of degree d in 9F a morphism Z (y) : X (GI) -* Z (G=) of the same degree
in W, with the usual conditions `Z (10) =17(6) and $ (Yi'2) = T. (yl) T (Yz)
whenever ylys is defined. The functor T is additive if 2 (yl+yz) =

(ye) whenever Yt+yE is defined. A natural transformation
f : of degree d is a function which assigns to each G: # a morphism
f (G) : V (G)(G) -- Z (G) of degree d in Jr such that

¶ (Y) f (G1) _ (-1)(des v) (des f) f (Gt) %'(y)

for each y: G1 -+G$ in 9F.

In particular, consider such functors on d,(sit) to A9+.

Proposition 8.1. There is a 1-1 correspondence between covariant
additive /unctors Z: di(d) and positive '-connected sequences
{T., of covariant additive functors T,,: W- .9.



8. Connected Sequences of Functors 387

Proof. Let Z: 8,(sd) ->R' be given. The object function of Z assigns
to each object A an object {T (A)} of gt'. The mapping function of 2
assigns to each morphism of d,(sd) a morphism of R'. In particular,
each morphism a: A-->.A' of V is a morphism of degree 0 in
so Z assigns a family of morphisms {T (a) : T. (A) (A')) of 9; these
make each T. an additive functor T.:.rd-s5it'. Moreover, each proper
E : A >- B-. C in d is a morphism E: of degree I in so
the mapping function of assigns to E a morphism of degree 1 in £';
that is, a family of morphisms in Al.
The composition rules $ (E y) = Z (E) T (y) and T (a E) _ X (a) Z (E) show
that these morphisms E. satisfy the conditions (7.2a), (7.2b), (7.2c)
which make (T,,, E., Ti_1) a connected pair. Thus `. determines a posi-
tive 9-connected sequence of functors {T,,: W-R`}.

Conversely, each such connected sequence of functors determines
the object function Z (A) = {T. (A)} and the mapping functions Z (a),
2 (E) for morphisms of degree 0 and I in d,. Now a morphism of higher
degree in dO, is just a congruence class of long exact sequences S. Each
such is the Yoneda composite of short exact sequences E, so the X (E)
determine each %(S); the rules (7.2b) and (7.2c) show that two con-
gruent long exact sequences have the same X(S); indeed, this X (S)
is the "iterated connecting homomorphism" determined by the long
exact sequence S. Finally, to show this functor Z additive we must
prove that T (E+ E') = Z(E) + % (E'). This follows from the definition
E+E'=I7 (E(DE') do of addition and the rule
for connecting morphisms, which is a consequence of the condition
(7.2) for a connected pair.

This gives the asserted 1-1 correspondence. The same applies to
maps:

Proposition 8.2. If V. X: d,(sd) -).R` are two covariant funetors,
a natural transformation f : V' -*Z o l degree d is a family of natural
transformations {/.: T. --*T,,, d : W -* R} which commute with all connecting
morphisms:

T$-d(E) Y' (E), E: A B-C. (8.2)

In other words, for d=0, f is a chain transformation of the complex
(8.1) for V' to that for Z.

A covariant functor Z: -* is called couniversal if to each
covariant V : and each natural transformation /o: r--i.T0
in at of the components of degree 0, there exists a unique natural
transformation f : V'- *% of degree 0 extending /o. In other words, a
couniversal positive connected sequence of covariant functors is such
a sequence starting at To, extended to the left, and couniversal for all
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such connected sequences. Thus To uniquely determines Z, up to a
natural isomorphism.

Theorem 8.3. Let sad have enough proper projectives. A covariant
functor Z: f,(. d) -+-R+ is couniversal if and only if, for each proper
short exact sequence K ,-. P -C o l sad with P proper projective, the sequence

0-sT.(C)->T.-r(K) -,.T.-i(P), a. (8.3)

is exact for every n>0.
Proof. Given this condition, some other Z': d',(sad)and some

/0: 7'0-1,. To we construct by recursion on n the requisite natural trans-
formations /,,: If /e, ..., are already constructed to commute
with the connecting homomorphisms, the condition (8.3) shows by
Thm.7.2 that (T., E,,, Th_1) is left couniversal, so will construct a unique
fN: 7'->T. with Hence Z is couniversal.

Conversely, suppose that Z is couniversal. From T. we construct
the left satellite S1, and construct in turn each S,,: sad--i-. as the left
satellite of S.-,. The resulting connected sequence satisfies (8.3), hence
is couniversal, so must agree with the unique couniversal Z for the
given To. Therefore any couniversal 2 satisfies (8.3). This argument
also proves an existence theorem :

Theorem 8.4. Let sad have enough proper projeetives. Each covariant
lunctor T.: sad -).R is the component of degree 0 for a couniversal functor
Z: 4',(d)--*R+ in which the n-th component T. is the n-th iterated left
satellite of To.

Since 0'- P-.P is exact for each proper projective, condition (8.3)
implies that T. (P) = 0 for each n >0. Thm. 8.3 includes the weaker result:

Corollary B.S. I/ % satisfies T(P) = 0 for each projective P and
for each n>0, and i/ the long sequence (8.1) is exact for each proper exact
E of sad, then Z is couniversal.

In particular, if sad is the category of all left modules over some ring
R and G is a fixed right R-module, Thm. V.8.5 asserts that the functors
T. (A) = Tort; (G, A) satisfy this condition.

Corollary 8.6. 1/ U: . is exact and covariant, while (T,,, E.)
is a couniversal positive connected sequence, so is {UT.,

Proof. Since T. (C) (A) is a morphism of gt while U is a
functor, UE : U T. (C) -* U T. _1(A) is a morphism of A'. Since U preserves
exactness, condition (8.3) for couniversality is preserved.

Note. If U is not exact, the description of the left satellite of the functor U To
in terms of U and T. involves an important spectral sequence [CARTAN-EILENaERG,
XVI, 13; GROTHENDIECK 1957, p.147].
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To handle negative connected sequences

... ->?' (C) (A) (B) ->Tl (C) ->T s (A) -.. .

of covariant functors T: sat use the graded additive category 6-;
its objects {R"} are families of objects of M, with R"=0 for n<0; its
morphisms p of degree k ? 0 are the families Cu,,: R"- .R'+"} of mor-
phisms of R. A covariant functor `Z: is then a negative
connected sequence of functors P:.d-+M, much as in Prop. 8.1.

Contravariant functors require attention as to sign. Thus if OF and
A' are graded additive categories, a contravariant Z: 9-+.W assigns
to each object G an object `.r; (G) in Jr, and to each morphism y: G, -*G2
of 9 a morphism T (y) : %(G2) -* T (G,) of the same degree in W, with
Z(1G)=1x(G) and

T(,'v)=(-1)(desy,)(esyd¶(ys) X(yi), (8.4)

in accord with the sign conventions. A natural transformation f : %'-*Z
of degree d is a function which assigns to each object G of 9a morphism
f (G): (G) of degree din Win such wise that

Z(y) f(G2)=(-1)(degy)(d'enf(G1)
Z'(y)

- just as usual, except for sign.

Exercises
f. Show that the condition T"(P)=0 cannot be dropped from Cor.8.5: Use

V. (A) sT"(A) ®T"_r(A)

2. Describe a contravariant additive functor (IS: de(al) X41+ as a suitably
connected sequence of functors on .d to R.

9. Derived Functors

A standard method is: Take a resolution, apply a covariant functor
T: .at take the homology of the resulting complex. This gives a
connected sequence of functors, called the derived functors of T.

In detail, let sat have enough proper projectives. Each object A thus
has a proper projective resolution r: X-*A. If e': X'--.A' is a second
such, the comparison theorem lifts each a: A--A' to a chain transfor-
mation f: X--,X', and any two such are homotopic. Since T is additive,
it carries homotopies to homotopies, and so the induced chain transfor-
mation T (f) : T (X) --),.T (X') in 9 is determined up to a homotopy. There-
fore L"(A)=H"(T(X)) defines a function of A, independent of the
choice of X, and L"(A)-*L"(A') makes each L.
a covariant functor It is the n-th left derived functor of T.
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Now let E: A >-+ B -1 C be any proper short exact sequence in d.
Take an allowable pro ctive resolution e: K--).E in the category of
short exact sequences of 0, as in Thm.6.4; this amounts to a short
exact sequence X>-. WAY of complexes in .ad with X--*A, WEB,
and Y-->C proper projective resolutions; moreover, Y for
each n. As T is additive, this last shows that T(X) T(W) --b-T(Y) is
a short exact sequence of complexes in 5@, so gives connecting homo-
morphisms for n>0. Since X is a resolution
of A and Y one of C, this is a homomorphism E. = L. (E) : L. (C) -+
Lii_1(A). The general comparison theorem for allowable resolutions
(Thm.IX.4.3) shows this independent of the choice of the resolution K
and shows that L (E) is a natural transformation of functors of E.

Theorem 9.1. For each additive covariant functor T:the left
derived functors d ->9P and the connecting homomorphisms L,,(E)
constitute a positive connected sequence of functors with Lo right 9-exact.
This sequence is couniversal for the initial component Lo. If T is right
9-exact, LO= T.

Proof. If P is proper projective, the resolution P--.>.P shows
L. (P) = 0 for n >0. For each proper exact E, the exactness of the long
sequence (8.1) for L.=T. follows from the usual long exact sequence
for the homology of T(X) T(W) -QT(Y). In particular, Lo is right
exact. The connected sequence {L,,, satisfies the conditions of
Cor.8.5, hence is couniversal.

Suppose that the original T is right 9-exact. In any resolution,
the portion X1--).Xa--.A->o is right exact; hence so is T(X1)-O.T(X0)
-->T(A) -->0. This gives L0(A) =H0(T(X)) _ T(A), a natural isomor-
phism.

This theorem is of interest when T is right exact. It can then be
read either as a characterization of the sequence of left derived functors
of T as the couniversal sequence for Lo= T, or as the statement that
the left satellites of T and their connecting homomorphisms can be
calculated from resolutions.

To have a definite derived functor L. one must choose a resolution
X for each A. This sweeping use of the axiom of choice is legal in small
categories sl and possible in all those relevant examples of categories
in which there is a canonical way of choosing a projective resolution.
If the range category 5* is not a category of modules, but any abelian
category, the proof above requires that we know the exact homology
sequence, with its connecting homomorphisms, for an abelian category.
We have indicated only too briefly in § 3 how this could be accomplished,
using additive relations.
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Let us summarize the properties of the derived functors in this case.
I. A covariant functor T: is a positive connected

sequence {T., consisting of covariant functors T,,: d->9! and homo-
morphisms E,,: natural in E. It assigns to each proper
E: A >- B a complex

... -->.T. (A) -
E. T.-1(A)-... (9.1)

in M. Suppose that W has enough proper projectives. Each right 9-exact
covariant T: d-.9 has a left derived functor %: dp(d) -*..*+ which is
determined by T, up to natural isomorphism, by any one of the following
three conditions:

(I a) T° = T and Z is couniversal,

(Ib) T°=T, (9.1) is exact, and for n>0 and P proper
projective,

(I c) T. (A) = for some proper projective resolution e: X -*A,
while E. is similarly calculated from short exact sequences of such
resolutions.

These considerations may be dualized : Replace one or both of the
categories .sat and 5l by its opposite. For example, replacing sad by
d°p gives

II. Let T: d--+9t be a right 9-exact contravariant functor and
suppose that At has enough proper injectives. For each object A take
a proper injective coresolution e: A-+Y. This Y is a negative complex
Y° -; Y1-, ; application of the contravariant T yields a positive com-
plex T(Y): T(YO)E--T(Y1)<- ; that is Its homology
H (T(Y)) is the n-th left derived functor T. of T. For each
proper E, coresolutions of E give a corresponding connecting homo-
morphism En: natural in E. They constitute a posi-
tive connected sequence {T,,, of contravariant functors which assigns
to each proper E : A >- B -s C a complex

... __*T (C) -sT (B) -T (A)
Ex (9,2)

in M. This sequence {T,,, may also be described as a contravariant
functor T: d,(d) -->c+. Given the right exact functor T: its
left derived functors may be characterized by their construction from
injective coresolutions or by either of the properties:

(II a) T. = T and Z is couniversal ; that is, given V:
each natural /0: To--PTO extends to a unique natural f :

(I I b) TO = T, (9.2) is always exact, and T. (J) = 0 for n >0 and each
proper injective J.
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The categorical dual of I (replace 0 by s1w, 9 by Mw) is
III. Let T : at --*. be left 9-exact and covariant (sample, T (A) _

HomR(G, A)). Its right derived functors are T"(A)=H"(T(Y)), where
e: is a proper injective coresolution (assume enough injectives).
With the corresponding connecting homomorphisms they constitute a
negative connected sequence of covariant T": d--* which assigns to
each E a complex,

... -->T" -1 (C) -' T" (A) -+T" (B) -rT" (C) - (9.3)

in 9; that is, a covariant T : 4 (d) -*R-. The T" are characterized
in terms of T by either of the properties

(IIla) T°=T and Z is universal; that is, given Z': 4(d)-*9-,
each natural /0: T° --3..T' O extends to a unique natural f :

(IIIb) T°=T, (9.3) is exact, and 7"(J)=0 for n>0 and each
injective J.

Finally, replace 9T in case I by 9°p

IV. Let T: jV-->9 be left 9-exact and contravariant (sample:
T(A) = HomR (A, G)). Suppose that sat has enough proper projectives.
A projective resolution e: X -+A gives a negative complex T(X) in M,
hence derived functors T"(A)=H"(T(X)) and connecting homomor-
phisms which constitute a negative connected sequence (T", E") and for
each E a complex

... -a,T"-1(A) (9.4)

that is, a contravariant %: characterized by either

(IV a) T°= T and Z is universal, or
(IVb) T°=T, (9.4) is exact, and 7'"(P)=0 for n>0 and each pro-

jective P.
To summarize (examples with G a fixed module) :

To Variance Derived T Resolution Type. T, (A)

I Right exact Co Left couniversal projective Tor, (G, A)
II Right exact Contra Left couniversal injective ?

III Left exact Co Right universal injective Ext"(G, A)
IV Left exact Contra Right universal projective Ext"(A, G)

Thus a change in variance or a change from left to right switches the
type of resolution used.

For example, if A is a K-algebra, d the category of left A-modules,
9 the class of K-split short exact sequences of A-modules, and 9 the
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category of K-modules, then HomA(C, A) is left exact. As a functor
of C it is contravariant (case IV); its right 9-derived functors are
Ext(A.K)(C, A). As a functor of A, HomA is covariant (case III); its
right 9-derived functor is again given by the sequence of functors
Ext*(A, K) (C. A), this time with the connecting homomorphisms in the
second argument A.

Notes. Characterization of functors. For categories of modules, right or left
exact additive functors are often given just by the usual functors ® and Hom.
Specifically (WATTS (1960), EILENBERG (1960)), if C is a fixed S-R-bimodule,
the tensor product with C gives a covariant functor TC (A) = C ®RA of RA which
is right exact and carries (infinite) direct sums to direct sums. Any functor T
on the category of R-modules to the category of S-modules with these properties
has this form for some C; namely, for C = T(R). Again, any left exact contravariant
functor T on R-modules to S-modules which converts (infinite) direct sums into
direct products is naturally equivalent to the functor T(A) = HomR(A. C) for
some left (R®S)-module C (to wit, C=T(R)). Finally (WATTS [1960]) any co-
variant left exact functor from R-modules to abelian groups which commutes with
inverse limits has the form T(A) = HomR(C, A) for a suitable C. MITCHELL [1962)
has generalized these theorems to suitable abelian categories.

Bifunctors. Let T, (C, A) be a bifunctor, additive and right exact in each
variable separately. Replacing both arguments by projective resolutions, taking
the total complex of the resulting bicomplex and its homology gives the left derived
functors T. (C, A) - as for example for Tor" (C, A) as a bifunctor (Thm. V.9.3)
This and related cases, with difference in variance, are treated in detail in CARTAN-
EILENBERG. This theory is not needed for C®A, because this bifunctor becomes
exact when either of the variables is replaced by a projective, so the derived func-
tors can be constructed by the one-variable case. A relevant example is the tri-
functor C®B®A for three modules over a commutative ring, which must be
treated as a functor of at least two variables. Its derived functors, called Trip,,,
occur in the KUNNETH formulas for the homology of the tensor product of three
complexes (MAC LANE [1960)). At present, there appears to be no way of charac-
terizing derived functors of two or more variables by "universal" properties or
by "axioms". For example, a suitable definition of a tensor product of two abelian
categories would allow the reduction of bifunctors to functors of one variable.

Other constructions of derived functors. If To is right exact and covariant on
the category of all modules, each SEEExt"(C, rl) gives an iterated connecting
homomorphism S.: T (C) -+T, (A), so each tET" (C) yields a natural transformation
Ext" (C, A) -..7 (A) of functors of A. Indeed, T,,(C) may be defined [YONEDA
1960, HILTON-REES 1961] as

T,, (C) - Nat homA (Ext" (C, A), T(A)).

This provides another definition of the torsion products. We have already remarked
that an additive category Af is a "ringoid" (usual ring axioms, but compositions
not everywhere defined). In the same sense, each covariant additive functor T
on a' to the category of abelian groups is a left "d-moduloid" (axioms for a left
module over a ring; compositions not always defined), while a contravariant S
is a right a(-moduloid. YONEDA [1960] has defined a corresponding tensor product
S®aT and used it to construct satellites. Again, let T be a contravariant additive
functor. The short exact sequences E: A>-* B+ C ending in a fixed C may be
partly ordered by E';z E if there is a morphism (a, ft, 1C) : E'--m.E; these E then from
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a "directed" class; the direct limit of the kernels of T(A) -. T(B) taken over the
directed class gives the right satellite of T [BUCHSBAUM 1960], defined in this
way without assuming that there are enough projectives. This construction has
been studied further by AMITSUR [1961]; RbunL [1962] gives an existence theorem
for satellites of half exact functors, with applications to the theory of sheaves.
For any additive functor which is not half-exact one must distinguish the derived
functors, the satellites, and the cosatellites; their interrelations are studied in
BUTLER-HORROCKS (1961).

Derived functors of non-additive functors have been studied by Dotn-PuppE
[1961) using iterated bar constructions. Indeed, the homology groups )l,+R (II, n; G)
of II provide many examples of non-additive functors (EILENBERC-MAC LANE
( 1954 a)). The classical example is the functor r of J. H. C. WHITEHEAD [1950].
For each abelian group A. F(A) is the abelian group with generators [y(a) I aEA ],
relations y(-a)-y(a) and

y(a+ b+ c)-y(a+ b) -y(a+ c) -y(b+ c)+ y(a)+y(b)+y(c)- 0.
These are the relations valid for a "square" y (a) - as.

10. Products by Universality

The universal properties of derived functors may often be used to
construct homomorphisms, such as the cup product for the cohomology
of a group 17. In the notational scheme of § 7, take 9 to be the category
of abelian groups, at the category of all left II-modules, and 9' the
class of Z-split short exact sequences of II-modules. We first show that
there are enough proper injectives in .sal.

To each abelian group M construct the IT-module J = Homz(Z(II), M)
with left operators defined for each f EJM by (x f) r=/(r x), with xEH,
rEZ(H). These are the left operators induced by the right 17-module
structure of the group ring Z (17). Define a homomorphism e = eM : J.; -- M
of abelian groups by setting a (f) = f (1) for each f : Z (II) M. This has
the usual couniversal property, dual to that of Prop. VI.8.2:

Lemma 10.1. If A is a left 17-module and h: A----M a homomorphism
of abelian groups, there exists a unique H-module homomorphism y: A-*JM
with a y= h.

Proof. Consider A.
r.

M., .- JM . The condition e y = Is requires for
each aEA and xE17 that

h(xa)=e[y(xa)]=[Y(xa)] 1=[x(ya)] 1=(ya)x.
Conversely, if one defines y by (y a) x = h (x a), y is a 17-map and satisfies
ey=h.

A standard argument now shows that each JM is relatively injective.
Moreover, if A is any 17-module, the Lemma gives a unique 17-module
homomorphism y: A->Homz(Z(H), A)=J with ey=14. Hence y is
proper monic and y: A-sJ embeds each A into a proper injective.
Therefore there are enough proper injectives.
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For each H-module C let C° denote the subgroup of 11-invariant
elements of C. The covariant functors

HQ (C) = HP (17, C) = Exti (g), z (Z, C)

have connecting homomorphisms for each proper E,

E,: HP(C)-*HP+1(A), E: A>+B-.C,

defined (say) by Yoneda composition, and giving the usual long exact
sequence. Moreover, HP(J)=0 for p>0 and j proper injective (any
extension of a proper injective splits). Hence the HP (C) are the right
derived functors of H° (C) = C°.

Lemma 10.2. For each fixed integer q and each fixed II-module C',
the /unctors HP (C) ®HQ (C) constitute the components of a universal
sequence of f unctors with 9-connecting homomorphisms E, ®1.

Proof. Let E°: A J-nK be any Z-split short exact sequence with
J proper injective. For p >0, HP-1 (J) ->HP-1 (K) -+HP (A) -*O(= HP (J))
is exact. As the tensor product over Z is right exact, so is the sequence

HP-1(J) ®HQ (C') -* HP-1(K) ®HQ (C) _HP (A) ®HQ (C) -+0

This is the condition parallel to (8.3) in the dual of Thm. 8.3 ; hence
HP(C) ®HQ(C') is the universal sequence for its given initial component
H°(C) ®HQ(C')

Lemma 10.3. I/ C ®C' has the diagonal II-module structure [x (c ®c')
=X C ox c' for x E 17], then for fixed q and C' the f unctors HP+Q (C (&C')

of C constitute a 9-connected sequence of functors with connecting homo-
morphisms (E (&C'),,.

Proof. Since E is Z-split and exact, the tensor product

E®C': A®C'"B®C'-C®C'
is exact and Z-split, hence gives the required (natural) connecting maps.

Similarly, for p and C fixed, the functors HP(C) ®HQ(C') constitute
a universal 9-connected sequence, when the connecting homomorphisms
1®E` are defined with the usual sign :

aEHP(C), a'EHQ(C'). (10.1)

Moreover, the HP+Q (C ®C') constitute a 9-connected sequence of func-
tors of C' with connecting homomorphisms (C (&E'),,.

For p = 0, H° (C) = C" is the subgroup of 17-invariant elements of C.
Now C E C" and c'E C'° give c ®c'E (C ®C')°, so the identity induces
a homomorphism C" ®C'° -s (C ®C')".
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Theorem 10.4. There exists a unique family of group homomorphisms

IM: (10.2)

defined for all p z 0, q 0 and all 17-modules C and C', such that

(i) f°,0 is the map induced by the identity, as above,

(ii) f P. a is natural in C and C', p ? 0, q ? 0,
(iu)+r,a(E.®1)=(E®C')*/n,q, pro, qz0,

(iv) ft,q+l(1®Es)_(C(&E').fP.1?, p?O, q?0;
the latter two for all Z-split short exact sequences E and E'.

The last two conditions assert that the maps / commute with the
connecting homomorphisms.

Proof. We are given /0.0. For q=0 and C' fixed, the left hand
side of (10.2) is 9-universal, while the right hand side is 9-connected.
Hence the maps natural in C, exist and are unique subject to (iii)
for q=0. These maps are also natural in C'. For consider y: C'--D'.
Then y/P,0 and f'-°y are two natural transformations of the 9-universal
functor H' (C) ®H°(C') to the 9-connected functor HP (C (& D') which
agree for p = 0 and hence for all p.

Now hold p and C fixed. In (10.2), /p,v is given for q=0, and by
(iv) must be a natural transformation of a universal to a connected
sequence. Hence it exists and is unique; as before it is also natural
in C.

Our construction gives (iii) only for q=0; it remains to prove it
for q>0. For p fixed, let 90 be the left-hand side and Vf be the right-
hand side of (iii). Both are maps

qR, VF: H¢ (C) ®H° (C') -.Hp+9+1(A®C')

of a universal to a connected sequence of functors of C'. They both
anticommute with the connecting homomorphisms given by E'. Indeed,
by (iv),

(A ®E'). 9l = (A ®E'). fp+1, 9(E. a i) = f +i, a+I (1®Es) (E. (&I),

V+i(1(&Es)=/p+i,v+1(E,(&1)(1(&E,),

and (1(&E») (E. (&I)=- (E, (&i) (1(DE;) by the definition (10.1). Also

(A(&E').yfl = (A(&E'). (E (&C').1M,

V+1(1(&E'4) = (E (&A'). / .*+i (1®E'a) = (E (&A')s (C (&E').1P.°,

and (A (&E') o (E (&C') is congruent to - (E (gA') o (C (&E') by the
3x3 splice lemma (VIII.3.1). Since yP=Vi°, the uniqueness of the maps
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on a universal sequence gives ryq=yd in all dimensions. This completes
the proof.

Now the cup product (as defined - say - by Yoneda composites
of long exact sequences) for the cohomology of groups satisfies exactly
the conditions for the maps /11-9 of our theorem. Thus we have still
another construction of these cup products (VIII.9). This construction
may be used to "calculate" these products for 17 cyclic.

A similar argument in H. (17, C) =Tor a(" (Z, C) will construct a
product which agrees with the internal product for the relative torsion
functor. If 17 is finite, these two products can be combined in a single
product [CARTAN-EILHNBERG, Chap. XII].

11. Proper Projective Complexes

Let 7t" be the abelian category of positive complexes K (of left mo-
dules over some ring), with morphisms all chain transformations
f : K -, L. Call a short sequence of complexes K I L- M proper exact
if, for all n,

is exact, and
(ii) 0 --*C,, (K) -+C (L) (M) -*0 is exact,

where C (K) denotes the module of n-cycles of K. Since (i) implies
that (ii) is left exact, (ii) may be replaced by

(ii') C. (L) -+ C. (M) is an epimorphism for all is.

In other words, a chain epimorphism g: L -+M is proper if to each
mEM with 8m=0 there exists an 1EL with gl=m and 81=0. Equi-
valently, a chain monomorphism f: K-+L is proper if to each 1EL
with 8l E f K there is a k E K with 01 = a f k. With these characterizations,
the reader may verify that this class of proper short exact sequences
satisfies the axioms of § 4 for propriety. Since a long exact sequence
is a Yoneda composite of short exact sequences, we have

Lemma 11.1. A sequence o l complexes -o-K -L -+M -+N -+... is
proper exact i f and only if, for every dimension is z 0, both -sKK -+

and are
exact.

Proposition 11.2. If K L -s M is a proper short exact sequence
o l complexes, then each o l the f ollowing sequences is exact for all n:

(iii)

0 -H (K) --)-H,, (L) --,.H. (M) --*0,
(v) 0 (K) B (L) --).M, f B (M) -r0,

(vi) 0 ->K,,JC (K) (L) -*M,JC (M) -*0.
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Proof. The modules B,,_1 (K) = 8K of boundaries are defined by
the exactness of the short sequence C (K) >-.. K -s These
sequences for K, L, and M form a 3x3 diagram with rows (ii), (i),
and (iii), so the 3x3 lemma gives (iii). The homology H,(K) is defined
by the exactness of B (K) -C (K) -.H (K) ; the 3x3 lemma gives (iv).
The proofs of (v) and (vi) are similar, via B ,- K,-. K./B (K) and
the dual description of the homology modules by the exact sequences
H. (K)

Next construct proper projective complexes. To each module A and
each integer n introduce the special complex U =U(A, n) with
and U,,,=0 for m+n. If K is any complex, each module homomorphism
a: A--.C,,(K) defines a chain transformation h=h(a): U(A, n)-.K
with h the composite all chain transformations
h: U->K have this form.

To each module A and each integer n introduce the special complex
V= V (A, n) with V.=V.,,=A, all other chain groups zero, and
8: Vi+1-+V, the identity 1A . Then Hm (V) = 0 for all m. If K is a complex,
each module homomorphism y: A-*Kn+1 defines a chain transformation
h=h(y): V(A,n)-,K with hn+1=y, all h: V-*K have this
form.

Lemma 11.3. For a projective module P, the special complexes
U(P, n) and V(P, n) are proper projective complexes.

Proof. Let g: L -sM be a proper epimorphism of complexes and
h= h (y) : V(P, n) -*M any chain transformation. Now
is epic, so y: P-+Mn+1 lifts to fl: with gn+1fl=y Therefore
h(y) lifts to h(i): V-->L. The corresponding argument for U uses the
fact that C.(L)-*C.(M) is epic. We then have

Lemma 11.4. 1/ P. and Qn are projective modules, then

00 0[0 /

S= E U(P,,, n) ® V (Qn, n) (11.1)
n-0 n-0

is a proper projective complex with H. (S) E-_ P., B. (S) m Q,,. Any complex
K with all H. (K) and B. (K) projective has this form.

Proof. The direct sum of proper projectives is proper projective.

Set Q-1=0. The complex S has the form

... -Qn,i®P. iIG Q.- Q»®PR®

with 8 induced by the identity Q. -> Q., so H(S) and B (S) are as stated.
The last assertion follows by induction from the fact that every ex-
tension by a projective module splits.
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We can now prove that there are enough proper projective complexes.

Lemma 11.5. For each complex K there exists a proper projective
complex S of the form (11.1) and a proper epimorphism h: S-sK of
complexes.

Proof. For each is, there is a projective module P. and an epimor-
phism P (K) ; lift e to a homomorphism a,,: P, -.C (K). This
a determines h (cc.): U(P,,, n) .-*K. For each n, there is a projective
module Q. and an epimorphism a.: Q -* B,, (K) ; since K.+1-'B. is
epic, lift a to a homomorphism y,,: This y determines
h (y.): V (Q., n) -K. For S as in (11.1), these chain transformations
h (a.) and h (y.) combine to give h: S->K. If S,,,
then h so h is epic. To show it proper
epic, we must show that ah s with
h s,=0. But Oh s. is Since is a cycle of
while a, and e are epic, there are p,; in P. and q in Q. with

Then has
as required.

These results combine to give

Proposition 11.6. For each (positive) complex L there exists a proper
projective resolution y v-1->...-->Yl (11.2)

in which each a is a proper projective complex of the form (11.1).

Here Y= (Y,,) is a complex of complexes; each Y. is a graded module
{ Y ,} with a boundary homomorphism 0": with a"a"=0.
The resolution itself provides chain transformations a with a"a= 0 0".
Change the sign of a (just as in the process of condensation, X.9) by
setting a'=(-1)°a: Y ,- Y.._, ,. Then (Y, a', 0") is a positive bi-
complex.

For positive complexes K and L of right and left R-modules, re-
spectively, we now introduce certain "hyperhomology" modules. Take
a resolution Y of L, as above, and form K ®Y, where ® is ®x . This is
a trigraded module (KP ®Y,,,) , with three boundary operators given
by 0,=0,(: Ky® Y,,->Ky_1® Y,,,

0,,(k®y)=(-1)°'°'"h®a'y, ara(k®Y)=(-1)a1mhk®a1y; (11.3)

it is a tricomplex (each 0 of square zero, each pair of 0's anticommutative).
The corresponding total complex T =Tot (K®Y) has T _2:Kp ® 4.,
for p + q+ r = n, a = ar + arr - arrr An application of the comparison
theorem for proper projective resolutions shows H (T) independent of
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the choice of the resolution Y. We define the hyperhomology modules
of K and L to be

}R. (K, L) = (K ®Y)) . (11.4)

Remark. The often used fact that the tensor product of two complexes
is a bicomplex applies to functors other than the tensor product. Let
T(A, B) be a covariant bifunctor of modules A and B with values in
some additive category W. If K and L are positive complexes of modules,
T applies to give a bigraded object T(K,,, L4) in W and the boundary
homomorphisms of K and L induce morphisms

T(Kp,La)--sT(Kp-,,L4),

T(K,,Lq)----T(KO,L,-1)
which satisfy a' 2' = 0, 2" a" = 0, and a' 8" = - 2" 8', the latter because
T is a bifunctor. Therefore T(K, L) = {T(KK, Lo), 2', a") is a bicomplex
in W with an associated total complex Tot [T(K, L)]. If homotopies
are to be treated, one assumes T biadditive; that is, additive in each
variable separately. When T is the tensor product, T(K, L) is the fami-
liar bicomplex K®L.

Exercises
1. Let K-'I L a. M be a sequence of complexes with g/ - 0. Show that it is

a proper short exact sequence if an only if both (iii) and (iv) of Prop. 11.2 hold,
and also if and only if both (ii) and (iii) hold. Find other sufficient pairs of conditions.

2. Show that every proper projective positive complex has the form given in
Lemma 11.4.

3. Show that k (K,(K, L) is independent of the choice of the resolution of L,
and prove that it can also be computed from a proper projective resolution of K,
or from resolutions of both K and L.

4. Study proper exact sequences for complexes not necessarily positive.
5. Let 9 be a proper class of short exact sequences in an abelian category d/.

Study the corresponding proper class in the abelian category of positive complexes
in 0.

6. Each additive functor T : d/- A induces a functor T on A(-complexes K
to A-complexes. For S left exact and T right exact, construct natural maps

TH.K-+HNTK.
Extend to bifunctors, and obtain the homology product as a special case for T.s ®.

12. The Spectral Kenneth Formula
Spectral sequences provide a generalization of the Kt1NNETH formula.

Theorem 12.1. 1/ K and L are positive complexes of right and left
R-modules, respectively, and if

H(Tot [Tor. (K, L)])=0 for all m>O, (12.1)
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there is a first quadrant spectral sequence {Ep,Q, d,; with

E*t.v= Tor,,(H,(K), H,(L)), Ep,vi H(K®L). (12.2)
S+8-q

The hypothesis (12.1) for this theorem requires that each of the
complexes Tor. (K, L), defined as in the remark of § 11, has zero homo-
logy for m>0. The stronger hypothesis that each K is flat would
imply that each Tor.(K,L)=0 for m>0, hence (12.1).

For positive complexes, the previous KONNETH Theorem (Thm. V.10.2)
is included in this one. In detail, the hypotheses of that theorem required
that C. (K) and B. (K) be flat ; i. e., that Tor, (C,,, G) = 0 =Tor,, (B,,, G)
for all G and p >0. Since C. (K) '-. K. - - (K) is exact, the following
portion of the standard exact sequence for the torsion product

Tor1(C,,, G) -Tor1(K,,, G) G)

is exact, so each Tor1(K,, , G) = 0, K. is flat, and (12.1) holds. Moreover,
B (K) >- C (K) . H,, (K) is exact, so Tort (C,, , G) -Torp (H,,, G) -*
Tort_1(B,,, G) is exact, and therefore G)=0 for p>1.
The spectral sequence (12.2) thus has Ep, =0 for p$ 0, 1, hence con-
sists of two columns only, and so has zero differential. The filtration
of H (K (&L) amounts to an exact sequence with EA,,, and as
follows :

0--o. H, (K) ®H, (L) -+H (K (&L) -* Tor1(H, (K), H, (L)) .- O.

This is the usual KUNNETH exact sequence. In other words, the present
theorem shows that higher torsion products of H(K), H(L) affect
H(K (&L) via a suitable spectral sequence.

This theorem will be derived from a more general result.

Theorem 12.2. If K and L are positive complexes of right and left
R-modules, respectively, with hyperhomology 91. (K, L) defined as in § 11,
there are two first quadrant spectral sequences

E4,Z91(K,L)SE;';, (12.3)

E's eiHt (Tot [Tor, (K, L) ]) , Ep v al Z Tort (H, (K), H, (L)) . (12.4)
t+t-q

Under the previous hypothesis (12.1), the first sequence collapses
to the base, gives 1R m E? es H. (K ®L), hence yields the result of the
first theorem.

Proof. Choose a proper projective resolution Y of L and form the
triple complex K ®Y of (11.3) with three boundary operators 81, 8ft,

Mac Lane, Homology 26
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By totalizing the first and third indices, construct a double complex with

XP.q= E K,®Yy,,, 8'=01+01,,, a"=a,r
,+t-P

Then Tot X =Tot (K ®Y) has homology 3l (K, L). The two spectral
sequences of this double complex will yield the result.

In the first spectral sequence, E. s (X). In each dimension 1,
is a projective resolution of Ls, so the

torsion product Tore (K, , L,) may be calculated from this resolution
as H4'(K ®Y); the remaining boundary a'= 8f+ 8,,, is then the bound-
ary operator of the complex Torq (K, L). Hence E's is as stated.

For the second spectral sequence, write X with renamed indices
as X,, ,, so that p is the filtration index for the (second) filtration, and
E'P 4=For fixed p, Xq,P=z K,®Y.., with s+t=q is just
the complex Tot (K ®Y,) with boundary 8' = a,+ 0,,, . In each complex
YP the modules of cycles and of homologies are projective, by construction,
so the KONNETH tensor formula (Thm. V.10.1), with hypotheses on the
second factor, applies to give

HQ(XP)=Hq(K(&YP)g- E H,(K)®H,(YP).
s+S-q

Now each YP has the form S of (11.1), so each is projective,
while the definition of proper exact sequences of complexes shows that
for each t

...--).Hi(Yo)-H,(L)-0

is a projective resolution of H, (L). Taking the tensor product with
If, (K) and the homology with respect to 8" is the standard method of
computation for Tor (H, (K), H, (L)). Therefore we get the formula of
(12.4) for E,",',.

This theorem can be regarded as the formation from K and L of
a large collection of "hyperhomology invariants": The modules 91 (K, L),
the two filtrations of R, and the two spectral sequences converging, as
above, to the graded modules associated with these filtrations. For
example, if the ground ring R is the ring of integers, the result becomes:

Corollary 12.3. If K and L are positive complexes of abelian groups
with hyperhomology groups R (K, L), there is a diagram

Z HP(K)®Hq(L) Hp(K)®Hq(L)
P+y- P+q-n-1

... --o-H _1(Tor1(K, L)) --> 91. -,H. (K (& L) -'H.- s(Tor, (K, L))- 91n_1 ...
i i

Tor1(HP (K), Hq (L)) Tor, (HP (K), Hq (L))
P+q-n-1 P+q=n-2

with (long) exact row and short exact columns.
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Here Tori (K, L) is short for Tot [Tori (K, L)].

Proof. Over Z, Tory vanishes for p>1, so the first spectral sequence
has only two non-vanishing rows (q=0, q = 1) and only one non-zero
differential d1: E;,0--). E'_21; hence the exact sequence

0-0. E;,,o-a H. (K(& L)) -+. E'_°=,1-+.0.

Spliced with the exact sequences expressing the filtration of 91,,, this
yields the long horizontal exact sequence above. The second spectral
sequence has only two non-vanishing columns (p-_-:0, P= I), hence has
all differentials ds=d3=. =0; this yields the vertical exact sequences.

The reader may show that the composite map

H p ( K )

in this diagram is the homology product; the composite map

L)) -- 91,,-->2:Tor1(Hp(K), HH(L))

is a corresponding "product" for the left exact functor Tori, as defined
in Ex.11.6.

Note. The hyperhomology modules are due to CARTAN-EILBNHSRG; the treat-
ment in terms of proper exact sequences is due to EILENBERG (unpublished).
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some structure (IX.5.2) or algebra

Homomorphism to be constructed 1, 1A Identity mapping A -A
Additive relation (11.6)
Implies; convergence of a spectral .W, T, 9 Category
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q If and only if -4t'R Category of right R-modules
3 There exists
& And
a Boundary E Exact sequence; exterior algebra

d Coboundary (II.3.1) EK Exterior algebra over K
s, * Induced homomorphism (subscript F Free module; Field

or superscript); (I.2.4); (1.6.1);
H Homology or cohomology
I "Identit element" ma

(111.6.8)
y p

Homologous (11.1.2); (11.2) K Complex
L Complex; projective module; LeftHomotopic (11.2.3)

Isomorphic ideal (1.2)

S Contained in (XII.2) P Projective module
PK Polynomial algebra over KCongruent (of extensions) ;

(III.5.2) Q Field of rational numbers

o Composition R Ring
posite ringR°P O

E Member of p

0 Null set S Long exact sequence; Ring

Inclusion
S (X) Singular complex of X

[] Base element of bar resolution T Functor; Singular simplex; Ring
(IV.5.1): (X.2) U DGA-algebra

fl Intersection V Vector space; Hopi algebra

v U Union X, Y Complex; Topological space
,

Z Ring of integersCup product (VIII.9.5)
V Wedge product (VIII.4.1)
X Cartesian product a, r Elements aEA, rER, etc.
® Tensor product di Face operator (simplicial set) ;

® Direct sum (1.4) (VIII.5)
J7 Direct product (1.4)
11 Short exact sequence (IX.1.12)
Cl Functor neglecting some structure

(IX.5)

P, PA, pH Homology products (VIII.1)
s, I Homotopy
si Degeneracy operator (simplicial

set); (VIII.5)

Abbreviations (Caps for modules, lower case for categories)

bidim Dimension as a bimodule
(VII.5)

cls (Homology) class of
Coim, coim Coimage
Coker, coker Cokernel

Def Domain of definition (of an
additive relation); (11.6)

deg Degree of an element or mor-
phism

Ext, ext Group of extensions
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h. dim Homological dimension
(VII.1)

Ker, ker Kernel
I.gi.dim. Left global dimension of a

Horn, horn Group of homomorphisms ring (VII.i)
Im, im
Ind

Image
Indeterminacy (of an addi-
tive relation); (11.6)

Tor Torsion product

I' Morphism of diagrams (1-7); 0 Isomorphism; Equivalence in a
(XI I.6) category (IX.t)

J, A" Simplex, n-dimensional (affine) i Injection of direct sum (I.4.1)
simplex (11.7) X Monomorphism

A,A4 Diagonal map (111.2.1); (IX.1.6) A Monomorphism
K Commutative ground ring n; Projection of a direct sum (1.4.1)
A Algebra n, n,1 Product map of an algebra (V I.1.2)
II Multiplicative group

LO
Epimorphism

X Algebra a, : Epimorphism
S? Algebra T Middle four exchange ('I.2.4);

(VI.8.4)
oc Associative map for tensor pro- V Codiagonal map of coalgebra or

duct (VI.2.3); (VI.8.3) Hopf algebra (VI.9)
7 Adjoint associativity (V.3.5);

(VI.8.7)
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Abelian category 254
Relative - - 263
Selective - - 256

Abelian group IQ
Divisible - - 93

Acyclic space 51
Additive
- category 249

- functor 231 7j 263, 379
- relation 5j 366 (Note)
Adjoint associativity 21 144. 194
Adjoint, left 266, 269 (Note)
Affine independence 54
- simplex 54
- transformation 54
Alexander-Whitney map 241
Algebra 113

Augmented - 1.811
Bigraded - 1$11
Exterior - 129. 183
Graded - 121
Hopf - 198
Opposite - 182
Polynomial -- 1Z9. 182
Separable - 214
Symmetric - 184 (Ex.)
Tensor - 112
Total matrix - 214
Ungraded - 180

Allowable class (in a category) 264
Analysis (of a morphism) 254
Annihilator 146
Anti-isomorphism 364 (Ex.)
Associative law 173
- - for diagonal map 191
- - for tensor product 142. 141 194
Associativity 25, 249

Adjoint - 951 14-,4 L94
Middle - 138 186
Outside -- 187

Augmentation 1$11
- of DG-algebra 192
- of DG-module 344
- of graded algebra 180
- of group ring 1114

Augmentation
- of singular complex 57
Automorphism 104

Inner - 124
Outer - 124
- class !24

Axioms
- for cohomology of algebras g
- for cohomology of groups t1
- for Ext 99, 101. 2269
- for homology of algebras 289
- for Tor 162 2Z5

Baer Sum 62 1 (Ex.)
Bar construction 306
Bar resolution t1& 280

Bimodule - 282
Categorical - 268.271
Left - 282
Reduced -
Un-normalized - 1! 282

Barycentric coordinates 54
Base (of spectral sequence) 321
Betti number 42 323
Biadditive
- function 13$
- functor 400

Bidegree 176

Bifunctor 311 393 (Notes)
Additive - 711

Bigraded
- algebra 1$4
- module j76
Bilinear function 141
Bimodule 143
- bar resolution 282
- tensor product 1$1
Binomial coefficient 183
Bockstein cohomology operator 44.334
Boundary 35139, 5.6

Invariant - 431 61
Relative - 61

Bounded below (spectral sequence) 321
Bounded filtration 321

Canonically - 130 346
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Canonical map i i
- comparison 21
Cartesian product 1$
- - of modules 1$
- - of sets 8
- - of simplicial sets
Category 5

Abelian -
Abstract - 2$ (Ex.)
Additive - 249
Graded additive - 310
Opposite - 2$
Preadditive - 250
Selective - 256
Small - 26

Cauchy's Theorem 133
Center of a group 1224
Chain 33
- complex 39
- equivalence 44
- homotopy 40
- transformation 411
Change
- of algebras 289
- of groups 19$
- of rings 90 !Z& 293
Class 26

Automorphism - 124
Characteristic - 1211
Conjugation - 124

Cleft extension 284
Coalgebra 197
Coboundary 42. 41 11.6
Cochain 42
Cocycle 43
Codiagonal map 6$, 251
Codimension 218 (Note)
Cohomology 42

Equivariant - 136
- of a group f 15
- product 222. 296

Coimage 12. 41.,
Coinitial maps 1Z
Cobounded filtration 346
Cokernel 12 41. 252
Commutation rule for signs 164
Commutative

Skew and anti - 178
Strictly - I Z2
- coalgebra 119
- DGA-algebra 312
-- diagram 13

Commutator subgroup 290

Index

Comodule 191
Comparison Theorem $7, 35S

Allowable - - 261
Canonical - - 267
Condensed canonical - - 305

Complex J- 39
Chain - 39
Cochain - 42
Complete semi-simplicial - Q6

(Note)
Elementary special - 42 (Ex.)
Free - 1
Injective - 95
Negative - 41
Positive - 41
Projective - Z 261
Quotient - 41
Singular - 56
Special - 42 (Ex.)
- of complexes 3Q1
- over a module 1
- under a module 95

Composite
Yoneda - 22
- extension 65, 82
- function 9
- homomorphism 10. 195
- morphism 2-ri, 249
- relation 52
- sequence 82

Composition principle 53
Condensation 302
Congruence
- of extensions 64, 109. 285, 368
- of n-fold sequences 813.7-02
Conjugate module 146
Conjugation 124. 131
Connected
- DG-algebra 122
- pair of functors 380
- sequence of functors 386
Connecting homomorphism 41 51 46.

162
Iterated - - 97

Connecting relation (for complexes) 333
Connection (cohomology of groups) 3AL

342
Construction 3Q4

Relatively free - 304
Contractible space 5$
Contravariant functor 22 29
Convergence (of spectral sequence) 321
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Converse (of a relation) 52
Convex hull 54
Coresolution 95
Correspondence (additive relation)

366 (Note)
Coset (of a subgroup) I i
Coterminal homomorphisms 16. 359
Counit of coalgebra 19I
Couniversal 12
- functor 381, 3 7
- square 3.54
Couple, exact 336
Covariant functor 228, 3$6
Cycle 3132

Relative - 61
Cyclic module 20
Cylinder 59

DG-Algebra 190
DGA-Algebra 1922
Degeneracy operator 235

Degree
Complementary - 327
Filtration - 322
Total - 176, 318

Derived
- couple 336
- functor 3$54 3,93 (Note)
Diagonal

Simplicial - 244
- homomorphism 6$
- map 197
- morphism 251

Diagram 33
Category of - 231
Commutative - 11
direct product - 21
direct sum - 27
Schematic - 263

Diagram chasing 14, 364
Differential 31318
- graded algebra j
- graded augmented algebra 192

- graded module i$9
group 35
module in

-- on Horn (K, L) 43, 199
-- on Homp 2
Dimension 39

Finitistic - 203

Homological - 2Qi
Krull - 220
Left global - 202

Dimension
Left injective - 293
Right - 203
Weak - 203

Direct product 21, 32
Semi - - 195
- - of algebras 212, 295
- - of morphisms 33

Direct sum 1L 27
External - - 13, i$
Internal - - 12
Semi - - 286

Divisible abelian group 93
Domain
- of definition of relation 52

- of function 2
- of homomorphism 10
- of morphism 23
Dual 2Z
- basis L4Z
- module 1.46
- statement 27

Edge homomorphisms 321. 335
Eilenberg-Zilber Theorem 2352 241
Endomorphism 10. 143

Ring of - 21, 143
Enough projectives 261. 367 (Ex.),

327
Envelope, injective >
Enveloping algebra 341
Epic 252
Epimorphism 10.23.1
Equivalence 21252

Chain - 4Q
Left - 252
Right - 252
- principle 53

Equivariant cohomology 1 36
Essential extension 102
Euler characteristic 323
Exact

- couple 336
- functor 263, 379

- homology sequence 45
- sequence 11 25,6
- triangle 193 (Ex.), 336
Half - functor 379
Left - functor 379
Left - sequence 23, 365

Proper - sequence 36L
370

Right - sequence 213 79
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Excision axiom 62
Extension

Algebra - 284
Central group - 112
Cleft - 284
Crossed product - 124
Essential - 142
Ground ring - 213, 2944
Group - to8
Module - j
Morphism of - 1 9
Operator - 108
Singular - 284

Exterior algebra 1 Z4, 179, in

Face operator 235
Factor set 1111 285
Factor system 62
Factorization, standard 254
- through 12. 66 252
Fiber
- map 322
- terms (of spectral sequence) 321
Fibred product 359
Filtration t65, 309, 326

Bounded - 31L 330
Canonically bounded - 330

Convergent - 324
Descending - 346
First - 341
Second - 342
- of bar construction 309
- of bicomplex 341
- of tensor product 165

Finite type (module) Q. 219
First quadrant spectral sequence 320
Five Lemma 1 4 1 3
Flat module 163
Four Lemma 14. 364
Free
- graded module 195
- group 1.22
- module tj
- ring (over a group) 104

Relatively - module 126
Function 8

Mapping - 291 31
Object - 2$, 31

Functor 28
Additive - 231 Z, 263, 379
Contravariant - 22 22
Covariant - 22, 29, 379. 386
Exact - 263, 379

Index

Functor
Faithful - 263
Forgetful - 262
Half exact - 379
Left derived - 389
Left exact - 379
Normalized - 259
Right exact - 379

Generators (of a module) 2L
Graded algebras >12

Internally - 180 2t
Tensor product of - 181

Graded modules 113
Associated - 326
Internally - >12
Positively - 17S
Trivially - 1L

Graded object M (Note)
Graded set 171 (Note)
Graph of homomorphism 52
Group

Change of - 108
Cohomology - 11
Differential - 35
Free - 122. 123
Relative homology - 61
Singular cohomology - 51
- algebra 199. 295 (Ex.)
- ring 134

Group extension to&

Pure - - 3¢Z
Gysin sequence -

Hilbert Syzygy theorem 217
Hochschild (co)homology modules 283,

288
Holomorph of a group 110 (Ex.)
Homogeneous
- elements
- generator 112
- ideals 118

non - generator 11 t9. 119
Homological dimension 201
Homologous cycles 33, 4i
Homology 33
- classes 351 39

- group 35. 51
- isomorphism 310
- modules 39
- product 166, 221. 296
Homomorphism in

Boundary - 3S, S. 235
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Homomorphism
Composition of - 11 195
Connecting - 45, 51. 26
Crossed - 10 S. 284
Diagonal - 68
Edge - 321
Induced - LL 36
Principal crossed - 186 284
- of algebras 177
- of bimodules 143
- of coalgebras 127
- of DG-algebras 190
- of differential groups 36
- of graded algebras M
- of graded modules M
- of Hopf algebras 19$
- of A-modules 1$4
- of modules in
- of spectral sequences 3_L2

Homotopy 32 51
Chain - 40
Contracting - 41. 265. 2-1

Homotopy classification theorem
Hyperhomology groups 400. 402

Ideal in

Graded (two-sided) - >Z
Graded left - f 78
Graded right - 17$
Homogeneous - 1BD
Nilpotent - 286
Prime - 218
Proper - 218

Identity
- element 9
- function 9, 1Q
- morphism as. 249
Image 10. 25.5

Inverse - >3 363
- of morphism 255

Indeterminacy 52

Induced

- additive relation 53
- homomorphism 13s 3¢, 25.5
- relation 53
Inessential extension 142
Inflation homomorphism 341
Injection (identity) 9
Injective

Allowable - 261
- complex 95
- envelope 103
- function 2_rtL 362

Injective

- module 92
- object (in a category) 261
- resolution 95

Interchange

Hom-®- 125
Middle four - 194

Internal
- direct sum 12
- grading 127, 180 215
- homology product 221
Intersection f3 8 364 (Ex.)
Invariant element 182 284
Inverse t t 23

Left - if
- image 13

Isomorphism IQ
Modular Noether - 318
Natural - 29
Noether - 13

Iterated connecting homomorphism

78 Ker-coker sequence 54
Kernel 10. 252, 362 3

Abstract - f24
Koszul Resolution 2115, 21$ (Ex.)
Kronecker product 182
Kiinneth
- Formula 166
- Formula for abelian groups 168
- spectral sequence 400

47

Left
- derived functor 389

- equivalence 252

- exact functor 379

- exact sequence 21 265
- module 9
- satellite 3$2
- universal pair 381
Leray-Serre Theorem 322
Lie algebra M
Lifted map 211, 81
Lifting functor 301
Line segment 54
Loop space 323
Lyndon spectral sequence 3-U ff.. 358

Map
Alexander-Whitney - 241
Diagonal - 197, 244
Monotonic - 233
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Map
Simplicial - 233,

Mapping
- cone 46,47
- cylinder 46
- function 29, 31
- theorem 321
Middle
- associative 138
- four interchange LgA
- linear 138
Module 2

Bigraded - 176
Cyclic - 24
Differential graded -
Flat - 163
Free - 14. 195

Relatively - -
Free graded - 215
Graded K- - 11_5
Graded U- - 191
Injective - 92

189

196

Internally graded - >u
Left A- - 1-84
Left R- - 2
Monogenic - 2a
Projective - 24
Quotient - 11
Reduced - 3Q¢
Relative projective - gL61 2y3
Right - 2 138
Semi-simple - 203
Simple - 203
Simplicial - 233
Submodule - in
Trigraded - 1766
Trivial - 145
Trivially graded - 179
Unitary - 9

Monic 251
Monogenic module 24
Monoid 290
Monomorphism 1Q, 231
Monotonic maps 23.3
Morphism 21249

Allowable - 26_0
Connecting - 382

Null - 239
Proper - 368

- of connected pairs 381
- of exact sequence 6,. 83
- of group extension 199

Multiplicator 131 (Note)

Index

Natural
-- isomorphism 29
- transformation 29, 30 32 186
Negative complex 41
n-fold exact sequence 82 81
Nilpotent ideal 286
Noether, Emmy 63 (Note)
Noether isomorphism 13. 318
Noetherian module 219
Norm 114
Normalization 114
- Theorem 236 282
Normalized
- function 221, ZU
- functor 252
- simplicial complex 236
Null
- morphism 254
- object 258

Object 25
Allowable projective - 2L t
Null - 258
Quotient - 252, 363
Relatively projective - 2L
Simplicial - 233
- Function 22i, 31

Obstruction
of abstract kernel 126

- of homomorphisms L 74
Opposite
- algebra 182
- category 28
- ring
Orbit 131
Order (of homotopy) 331

p-Group 132
Pair of spaces 6]
Pairing 148 (Ex.), 247
Partly ordered set 31 3¢2
Pathwise connected space 5_2 (Ex.)
Poincar4 3 (Note)
Pointed set 362
Positive
- bicomplex 349
- complex 41
- grading 1Z5
Preadditive category 250
Product 1

Crossed - 115
Cup - 24-L 394ff.
External - 220. 221
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Product
Fibred - 359
Homology - 166, 221, 296
Hopi wedge - 23i
Internal - 221, 232
Kronecker - 112
Relative torsion - 274. 275
Semi-direct - 10
Simplicial cup - 243
Tensor - 138
Torsion - 154, t 5A
Wedge - 228

Projection
- of cartesian product iS
- on quotient if
Projective

Allowable - object 261
Relative - 2 223
- equivalence 101 (Ex.)
- module 24

Proper
- class 3.61
- long exact sequence

- morphism 368
- open set 134
- operators 134

370

- projective object 3.76
- right exact sequence 379
-- sequence of complexes 39Z
- short exact sequence 362. 379
- subobject 368
Pull-back 20 L43
- Lemma 149
Pure subgroup 361

Quotient
- algebra 178
- group 11
- module 1i
- object 252, 363
- space 134

Range
- of a function q

- of a homomorphism in
- of a morphism 25
Reduced
- bar resolution 2-3
- module 3004
Relative
- abelian category 263
- boundary 61

Relative

- cycle 61
- ext functor 264

- homology group 61
- projective object 265
- torsion product 274, 299
Relatively free
- - complex 267
- - module 1266
Residue field (of a local ring) 219
Resolution 61

Allowable - 261
Allowable projective - 261, 378
Bar - 175. 268k 271. 280
Free - $Z
Injective - 95
Koszul - 203 218 (Ex.)
Minimal 217
Projective - 1
Short projective - 3$2

Resolvent pair (of categories) 26j
Restriction homomorphism 341
Right
- equivalent 252
- exact functor 379
- exact sequence 23, 379
- module 9, 138
- satellite 3-94
Ring

Change of - 2Z
Integral group - 1.04
Local - 219
Opposite - 151
Regular - 220
Semi-simple - 293
- of quotients 219

Ringoid 250

Satellite
Left - 382
Right - 384

Selective abelian category 256
Semi-direct product 10
Sequence

Allowable exact - 261
Left exact - 2L 365
Negative and positive - 386
Proper exact - 3.70 1
Right exact - 21. 379
S-split - 225
Short exact - 12. 16
Split exact - 16. 260
Weakly split - 260
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Sets
Category of - 26
Pointed - 362
Simplicial - 233

Sheets of a covering 134
Short Five Lemma 11 2S6
Short projective resolution 382
Shuffle 243. 335
Signature (of a shuffle) 243
Signs (commutation rule) 164
Simplex 54
Simplicial
- cup product 245
- map 235
- module 233
- object 233
- set 233
Singular
- complex (of a space) 56
- extension (of an algebra) 284
- homology 51
Space

Acyclic - 51
Contractible - 5$
Covering - i34
Pathwise connected - 51 (Ex.)
- with operators 134

Spanned 181 (Ex.)
Spectral sequence 318 ff.

Cohomology - 345
Convergent - 3.2L 322
First - of a bicomplex 341
First quadrant - 320
Second - of a bicomplex 342
Third quadrant - 345
- - of a covering 343
- - of a filtration 321
- - of an exact couple

Split
Relatively - 263
S - 213
Weakly - 26Q
- extension 61z 148

331

- sequence of complexes 41
- short exact sequence 16, 264

Squares 35.9
Standard affine simplex 54
Strong Four Lemma 14, 3M (Ex.)
Subalgebra 128
Subcomplex 41
Submodule 14

Graded - 115,
Subobject 252,361

Index

Subobjekt

Proper - 368
Subquotient 13

Subring
Summands (direct) 18
Surjective function ?5_t 362
Suspension homomorphism 309,

315 (Ex.)
Switchback 45, 52: 28
Symmetric algebra 184 (Ex.)
Syzygy, Hilvert Theorem 217
Tensor product 138 ff.
- - of algebras 295
- - of bimodules L41 187
- - of complexes i 63
- - of DG-algebras 190
- - of graded algebras 181
- - of graded modules J Z6
- - of modules 13$. 186
3X3 Lemma 4Q,. 365, 366
3>C3 splice 227
Torsion coefficients 42
Torsion product 150, 154, 224

Relative - 274,
Transformation

Chain - 4Q
Natural - 24. 3$6
- of bifunctors L2

Transgression 333
Tricomplex 399
Trilinear function 142
Union of submodules 11 18
Unitary module 9
Universal
- Coefficient Theorem 7j 17off.
- covering space 135
- diagram 1¢, 21
- pair of functors 382. 384
- square 36Q
Vertices of simplex 54, 51 (Ex.)

Wang Sequence Theorem 324
Weak Four Lemma 14, 364
Weakly split sequence 260
Word (in free group) 122
Yoneda composite 82
Z-graded
- algebra !$4
- module 113
Zero
- object 2249. 250
- in partly odered set 33
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