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Preface

The manuscript of this book was written in 1998–1999. At that time, I was

invited to give a series of talks at the Morningside Center of Mathematics

on Deligne’s proof of the Weil conjecture. To prepare the talks, I wrote

the book [Fu (2006)] on algebraic geometry covering the main materials in

[EGA] I–III, and the current book covering the main materials in [SGA] 1,

4, 4 1
2 , and 5 related to etale cohomology theory. I hope this book provides

adequate preparation for reading more advanced papers such as [Beilin-

son, Bernstein and Deligne (1982)], [Deligne (1974)], [Deligne (1980)] and

[Laumon (1987)].

The prerequisites for reading this book are [Fu (2006)] and the book

[Matsumura (1970)] on commutative algebra. As [Fu (2006)] may not be

widely available, whenever a result from it is quoted, a corresponding result

in [EGA] or [Hartshorne (1977)] is also indicated. A result used in this

book but not covered in these books is Artin’s approximation theorem

[Artin (1969)]. A nice account can be found in [Bosch, Lütkebohmert and

Raynaud (1990)].

At the beginning of each section, I give a list of references related to

the content of this section. I strongly encourage the reader to go through

these references, especially [SGA], for more general and thorough treatment.

When I was a graduate student, the books [Freitag and Kiehl (1988)] and

[Milne (1980)] on etale cohomology theory gave me great help for reading

[SGA]. It is inevitable that some treatments in this book are influenced by

them.

I would like to thank Jiangxue Fang, Enlin Yang, Takeshi Saito and

Hao Zhang for pointing out errors, misprints, and improvement of an earlier

edition of this book. During the preparation of the book, I am supported

by the Qiu Shi Science & Technologies Foundation and the NSFC.

Lei Fu

Chern Institute of Mathematics
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Chapter 1

Descent Theory

Unless otherwise stated, rings in this book are commutative with the iden-

tity element 1, and homomorphisms of rings map 1 to 1. For any ring

A and any A-module M , we assume 1 · x = x for all x ∈ M . For any

scheme (S,OS) and any s ∈ S, denote the maximal ideal of OS,s by ms,

and denote the residue field of OS,s by k(s). For any nonnegative integer

n, denote by AnS the affine space SpecOS [t1, . . . , tn] over S, and by PnS the

projective space ProjOS [t0, t1, . . . , tn] over S. We identify AnS with the

open subscheme SpecOS [
t1
t0
, . . . , tnt0 ] of P

n
S .

1.1 Flat Modules

([SGA 1] IV 1.)

Let A be a ring. An A-module M is called flat if the functor N �→M ⊗AN
on the category of A-modules is exact. We also say thatM is flat over A, or

A-flat. Let A → B be a homomorphism of rings. If M is a flat A-module,

then B ⊗A M is a flat B-module. If N is a flat B-module, and B is flat

over A, then N is flat over A.

Proposition 1.1.1. Let A be a ring and M an A-module. The following

conditions are equivalent:

(i) M is flat.

(ii) For any A-modules N , we have TorAi (M,N) = 0 for all i ≥ 1.

(iii) For any finitely generated A-module N , we have TorAi (M,N) = 0

for all i ≥ 1.

(iv) For any A-module N , we have TorA1 (M,N) = 0.

(v) For any finitely generated A-module N , we have TorA1 (M,N) = 0.

(vi) For any ideal I of A, we have TorA1 (M,A/I) = 0.

1
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2 Etale Cohomology Theory

(vii) For any finitely generated ideal I of A, we have TorA1 (M,A/I) = 0.

(viii) For any ideal I of A, the canonical homomorphism

I ⊗AM →M, a⊗ x �→ ax

is injective, that is, it induces an isomorphism I ⊗AM ∼= IM .

(ix) For any finitely generated ideal I of A, the canonical homomorphism

I ⊗AM →M, a⊗ x �→ ax

is injective.

Let M be a flat A-module, N an A-module, N ′ and N ′′ submodules

of N . Then M ⊗A N ′ and M ⊗A N ′′ can be regarded as submodules of

M ⊗A N . We have

M ⊗A (N ′ ∩N ′′) ∼= (M ⊗A N ′) ∩ (M ⊗A N ′′),
M ⊗A (N ′ +N ′′) ∼= (M ⊗A N ′) + (M ⊗A N ′′),

where on the right-hand side, we take the intersection and the summation

inside M ⊗A N .

Proposition 1.1.2.

(i) Let A be a ring and let S be a multiplicative subset in A. Then S−1A
is flat over A. If M is a flat A-module, then S−1M is a flat S−1A-module.

(ii) Let A → B be a homomorphism of rings, let S (resp. T ) be a

multiplicative subset in A (resp. B) such that the image of S in B is

contained in T , and let N be a B-module. If N is flat over A, then T−1N
is flat over A and over S−1A.

(iii) Let A→ B be a homomorphism of rings and let N be a B-module.

Suppose for every maximal ideal n of B, Nn is flat over A. Then N is flat

over A.

Proof. Let us prove (ii). For any A-module M , we have

T−1N ⊗AM ∼= T−1(N ⊗AM).

If N is flat over A, the functor T−1(N ⊗A−) on the category of A-modules

is exact. It follows that T−1N is flat over A. By (i), S−1T−1N is flat over

S−1A. We have S−1T−1N ∼= T−1N . �

Proposition 1.1.3.

(i) Let A be a ring and let M be a flat A-module. If a ∈ A is not a zero

divisor, then the canonical homomorphism

M →M, x �→ ax
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Descent Theory 3

is injective. In particular, if A is an integral domain, then M has no

torsion.

(ii) Let A be an integral domain such that Am is a discrete valuation

ring for every maximal ideal m of A. Then an A-module M is flat if and

only if it has no torsion.

Proof. Let us prove the “if” part of (ii). Suppose M has no torsion. To

prove M is A-flat, it suffices to show Mm is Am-flat for any maximal ideal

m of A. Let I be an ideal of Am. By our assumption, I is principal, say

generated by some element r ∈ A. The canonical map

Am → I, a �→ ra

is an isomorphism. So we have an isomorphism

Mm

∼=→ I ⊗Am Mm, x �→ r ⊗ x.

The composite of this isomorphism with the canonical homomorphism

I ⊗Am Mm →Mm, a⊗ x→ ax

is

Mm →Mm, x �→ rx,

which is injective since M has no torsion. We then apply 1.1.1 (viii). �

1.2 Faithfully Flat Modules

([SGA 1] IV 2–4.)

Let C and D be two categories, and let F : C → D be a functor. We say

that F is faithful if for all objects X and Y in C , the map

HomC (X,Y ) → HomD(F (X), F (Y )), f �→ F (f)

is injective. If C and D are additive categories and F is an additive functor,

then the above condition is equivalent to saying that the condition F (u) = 0

implies the condition u = 0 for any u ∈ HomC (X,Y ). In this case, the

condition F (X) = 0 implies the condition X = 0 for any object X in C .

Indeed, we have F (idX) = idF (X) = 0, and hence idX = 0.

A functor F : C → D is called fully faithful if the map

HomC (X,Y ) → HomD(F (X), F (Y )), f �→ F (f)

is bijective for all objects X,Y ∈ obC . F is called essentially surjective if

for any object Z in D , there exists an object X in C such that F (X) ∼= Z.
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4 Etale Cohomology Theory

We say that F is an equivalence of categories if F is fully faithful and

essentially surjective.

Proposition 1.2.1. Let C and D be abelian categories and let F : C → D

be an additive functor. The following conditions are equivalent:

(i) F is exact and faithful.

(ii) A sequence

M ′ →M →M ′′

in C is exact if and only if

F (M ′) → F (M) → F (M ′′)

is exact.

(iii) F is exact and the condition F (X) = 0 implies the condition X = 0.

Suppose furthermore that there exists a family of nonzero objects {Zi} in

C such that for any nonzero object X in C , there exist some Zi and some

object Y in C admitting a monomorphism Y → X and an epimorphism

Y → Zi. Then the above conditions are equivalent to the following:

(iv) F is exact and F (Zi) 	= 0 for all Zi.

Proof.

(i)⇒(ii) Given a sequence

M ′ u→M
v→M ′′

in C , suppose

F (M ′)
F (u)→ F (M)

F (v)→ F (M ′′)

is exact. We have F (vu) = F (v)F (u) = 0. Since F is faithful, we have

vu = 0. Hence imu ⊂ ker v. Since F is exact, we have

F (ker v/imu) ∼= F (ker v)/F (imu) ∼= kerF (v)/imF (u) = 0.

Hence ker v/imu = 0, that is, ker v = imu.

(ii)⇒(iii) If F (X) = 0, then

F (0) → F (X) → F (0)

is exact. Our condition implies that

0 → X → 0

is exact. So X = 0.

(iii)⇒(i) Let u : X → Y be a morphism in C . If F (u) = 0, then

imF (u) = 0. Since F is exact, we have F (im u) ∼= imF (u) = 0. By our

condition, we have imu = 0, that is, u = 0.
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(iii)⇒ (iv) is obvious.

(iv)⇒(iii) For any nonzero object X in C , choose an object Y admitting

a monomorphism Y → X and an epimorphism Y → Zi. Then F (Y ) →
F (Zi) is an epimorphism. As F (Zi) 	= 0, we have F (Y ) 	= 0. The morphism

F (Y ) → F (X) is a monomorphism. It follows that F (X) 	= 0. �

Corollary 1.2.2. Let A be a ring and M an A-module. The following

conditions are equivalent:

(i) The functor N �→ M ⊗A N on the category of A-modules is exact

and faithful.

(ii) A sequence of A-modules

N ′ → N → N ′′

is exact if and only if

M ⊗A N ′ →M ⊗A N →M ⊗A N ′′

is exact.

(iii) M is flat and the condition M ⊗A N = 0 implies the condition

N = 0.

(iv) M is flat and M ⊗A A/m 	= 0 for any maximal ideal m of A.

When M satisfies the above equivalent conditions, we say that M is

faithfully flat.

Corollary 1.2.3. Let (A,m) → (B, n) be a local homomorphism of local

rings and let M be a finitely generated B-module. Then M is faithfully flat

over A if and only if it is flat over A and nonzero.

Indeed, by Nakayama’s lemma, the condition M ⊗A A/m 	= 0 is equiv-

alent to the condition M 	= 0.

Proposition 1.2.4. Let A → B be a homomorphism of rings. If there

exists a B-module M faithfully flat over A, then the map SpecB → SpecA

is onto.

Proof. It suffices to show that for any p ∈ SpecA, the fiber Spec (B ⊗A
Ap/pAp) of the map SpecB → SpecA over p is not empty, or equivalently,

B ⊗A Ap/pAp is nonzero. Indeed, since M is faithfully flat over A, M ⊗A
Ap/pAp is faithfully flat over Ap/pAp. This implies thatM⊗AAp/pAp 	= 0.

But M ⊗A Ap/pAp is a (B ⊗A Ap/pAp)-module. So B ⊗A Ap/pAp 	= 0. �
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Corollary 1.2.5. Let φ : A → B be a homomorphism of rings and let M

be a finitely generated B-module flat over A. Suppose SuppM = SpecB.

Then for any p ∈ SpecA, and any prime ideal q ∈ SpecB which is minimal

among those prime ideals of B containing pB, we have φ−1(q) = p. In

particular, for any minimal prime ideal q of B, φ−1(q) is a minimal prime

ideal of A.

Proof. By 1.2.3, Mq is faithfully flat over Aφ−1(q). By 1.2.4, the map

SpecBq → SpecAφ−1(q) is onto. We have pAφ−1(q) ∈ SpecAφ−1(q). By

the minimality of q, the preimage of pAφ−1(q) in SpecBq must be qBq. It

follows that φ−1(q) = p. �

Proposition 1.2.6. Let φ : A → B be a homomorphism of rings. The

following conditions are equivalent:

(i) B is faithfully flat over A.

(ii) B is flat over A and SpecB → SpecA is onto.

(iii) B is flat over A, and for every maximal ideal m of A, there exists

a maximal ideal n of B such that φ−1(n) = m.

(iv) B is flat over A, and for any A-module M , the canonical homo-

morphism

M →M ⊗A B, x �→ x⊗ 1

is injective.

(v) For every ideal I of A, the canonical homomorphism

I ⊗A B → B, x⊗ b→ bx

is injective and φ−1(IB) = I.

(vi) φ is injective and cokerφ is flat over A.

Proof.

(i)⇒(ii) follows from 1.2.4.

(ii)⇒(iii) Let m be a maximal ideal of A. Suppose SpecB → SpecA is

onto. Then there exists a prime ideal q of B such that φ−1(q) = m. Let n

be a maximal ideal of B containing q. Then φ−1(n) = m.

(iii)⇒(i) For any maximal ideal m of A, let n be a maximal ideal of B

such that φ−1(n) = m. We have B ⊗A A/m ∼= B/mB, and B/mB has a

quotient B/n which is nonzero. It follows that B ⊗A A/m 	= 0. We then

apply 1.2.2.

(i)⇒(iv) Suppose B is faithfully flat over A. To show M → M ⊗A B is

injective, it suffices to show that the homomorphism

M ⊗A B →M ⊗A B ⊗A B, x⊗ b→ x⊗ 1⊗ b
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is injective. Indeed, this homomorphism has a left inverse

M ⊗A B ⊗A B →M ⊗A B, x⊗ b1 ⊗ b2 → x⊗ b1b2.

(iv)⇒(v) Taking M = A/I, we see that the canonical homomorphism

A/I → A/I ⊗A B, ā �→ ā⊗ 1

is injective. This is equivalent to saying that the canonical homomorphism

A/I → B/IB is injective. Hence φ−1(IB) = I. By 1.1.1 (viii), the canoni-

cal homomorphism I ⊗A B → B is injective.

(v)⇒ (iii) By 1.1.1 (viii), B is flat over A. For any maximal ideal m of

A, we have φ−1(mB) = m. In particular, mB is a proper ideal of B. Let n

be a maximal ideal of B containing mB. Then we have φ−1(n) = m.

(iv)⇒(vi) In (iv), if we take M = A, we see φ is injective. We thus have

a short exact sequence

0 → A→ B → cokerφ→ 0.

For any A-module M , we have an exact sequence

0 → TorA1 (M,B) → TorA1 (M, cokerφ) →M →M ⊗A B.
Since B is flat over A, we have TorA1 (M,B) = 0. As M → M ⊗A B is

injective, the above exact sequence shows that TorA1 (M, cokerφ) = 0. By

1.1.1 (iv), cokerφ is flat over A.

(vi)⇒(iv) We have a short exact sequence

0 → A→ B → cokerφ→ 0.

For any A-module M , we have an exact sequence

0 → TorA1 (M,B) → TorA1 (M, cokerφ) →M →M ⊗A B.
Since cokerφ is flat over A, we have TorA1 (M, cokerφ) = 0. The above exact

sequence then shows that M → M ⊗A B is injective and TorA1 (M,B) = 0.

�

Proposition 1.2.7. Let A be a noetherian ring, I an ideal of A, and Â

the I-adic completion of A. Then Â is flat over A. It is faithfully flat over

A if and only if I is contained in the radical of A.

See [Fu (2006)] 2.1.23, or [Matsumura (1970)] (23.L) Corollary 1, and

(24.A) Theorem 56.

Proposition 1.2.8. Let A be a ring, I an ideal of A, and M an A-module.

Suppose one of the following conditions holds:
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(a) I is nilpotent.

(b) A is noetherian, I is contained in the radical of A, and M is finitely

generated.

Then the following conditions are equivalent:

(i) M is free over A.

(ii) M ⊗A A/I is free over A/I and TorA1 (M,A/I) = 0.

(iii) M ⊗A A/I is free over A/I and the canonical homomorphism

M/IM ⊗A/I
( ∞⊕
n=0

In/In+1
)
→

∞⊕
n=0

InM/In+1M

is an isomorphism.

Proof. (i)⇒(ii) and (i)⇒(iii) are obvious.

(ii)⇒(i) Let xλ (λ ∈ Λ) be a family of elements in M such that their

images in M ⊗A A/I form a basis. By Nakayama’s lemma, {xλ} generates

M . Let L be a free A-module with rank |Λ|, let L→M be an epimorphism

mapping a basis of L to {xλ}, and let R be its kernel. We have a short

exact sequence

0 → R→ L→M → 0.

Since TorA1 (M,A/I) = 0, the sequence

0 → R⊗A A/I → L⊗A A/I →M ⊗A A/I → 0

is exact. The homomorphism L ⊗A A/I → M ⊗A A/I is an isomorphism

by the definition of the homomorphism L→M . So R⊗AA/I = 0, that is,

R/IR = 0. This implies that R = 0 by Nakayama’s lemma. Hence L ∼=M

and M is free.

(iii)⇒(i) Keep the notation above. We have a commutative diagram

L/IL⊗A/I
( ∞⊕
n=0

In/In+1
)

→
∞⊕
n=0

InL/In+1L

↓ ↓
M/IM ⊗A/I

( ∞⊕
n=0

In/In+1
)
→

∞⊕
n=0

InM/In+1M.

By the definition of the homomorphism L→M , we have L/IL ∼=M/IM ,

and hence the first vertical arrow is an isomorphism. The two horizontal

arrows are isomorphisms by our assumption and the fact that L is free. It

follows that
∞⊕
n=0

InL/In+1L→
∞⊕
n=0

InM/In+1M
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is an isomorphism. This implies that R ⊂
∞⋂
n=0

InL. Since L is free and

∞⋂
n=0

In = 0 under the condition (a) or (b), we have R = 0. Hence L ∼= M

and M is free. �

Corollary 1.2.9. Let m be a maximal ideal of a ring A and let M be an

A-module. Suppose one of the following conditions holds:

(a) m is nilpotent.

(b) A is noetherian and local, and M is finitely generated.

Then the following conditions are equivalent:

(i) M is free.

(ii) M is projective.

(iii) M is flat.

(iv) TorA1 (M,A/m) = 0.

(v) The canonical homomorphism

M/mM ⊗A/m
( ∞⊕
n=0

mn/mn+1
)
→

∞⊕
n=0

mnM/mn+1M

is an isomorphism.

If (A,m) is a local noetherian integral domain with residue field k and

fraction field K, and M is finitely generated, then the above conditions are

equivalent to

(vi) dimK(M ⊗A K) = dimk(M ⊗A k).
Proof. The equivalence of (i)–(v) follows directly from 1.2.8. (i)⇒(vi)

is obvious. Suppose (vi) holds. Choose xi ∈ M (i = 1, . . . , n) such that

their images in M/mM ∼= M ⊗A k form a basis. By Nakayama’s lemma,

{xi} generates M . Let L be a free A-module of rank n, let L → M be

an epimorphism mapping a basis of L to {xi}, and let R be the kernel of

L→M . Then we have an exact sequence

0 → R⊗A K → L⊗A K →M ⊗A K → 0.

Since M ⊗A K has the same dimension as L⊗A K, we have R ⊗A K = 0.

But R is contained in the free A-module L, and hence has no torsion. It

follows that R = 0. So L ∼=M and M is free. �
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1.3 Local Criteria for Flatness

([SGA 1] IV 5.)

Proposition 1.3.1. Let A be a ring, I be an ideal of A, and M an A-

module. If TorA1 (M,A/In) = 0 for any n ≥ 0, then the canonical homo-

morphism

M/IM ⊗A/I
( ∞⊕
n=0

In/In+1
)
→

∞⊕
n=0

InM/In+1M

is an isomorphism. The converse is true if I is nilpotent.

Proof. Suppose TorA1 (M,A/In) = 0 for any n ≥ 0. Then for each n, we

have an exact sequence

0 →M ⊗A In/In+1 →M ⊗A A/In+1 → M ⊗A A/In → 0.

The homomorphism

M ⊗A A/In+1 →M ⊗A A/In
can be identified with the canonical homomorphism

M/In+1M →M/InM,

and the kernel of the latter is InM/In+1M . It follows that the canonical

homomorphism

M ⊗A In/In+1 → InM/In+1M

is an isomorphism. But

M ⊗A In/In+1 ∼=M/IM ⊗A/I In/In+1.

Hence

M/IM ⊗A/I In/In+1 ∼= InM/In+1M.

In general, we have an exact sequence

TorA1 (M,A/In+1) → TorA1 (M,A/In) →
M ⊗A In/In+1 →M ⊗A A/In+1 →M ⊗A A/In → 0.

If the homomorphism

M/IM ⊗A/I In/In+1 → InM/In+1M

is an isomorphism, then the homomorphism

M ⊗A In/In+1 →M ⊗A A/In+1

is injective, and hence the homomorphism

TorA1 (M,A/In+1) → TorA1 (M,A/In)

is onto. If I is nilpotent, then TorA1 (M,A/In+1) = 0 for large n. This

implies that TorA1 (M,A/In) = 0 for all n ≥ 0. �
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Proposition 1.3.2. Let A → B be a homomorphism of rings and let M

be an A-module. The following conditions are equivalent:

(i) For every B-module N , we have TorA1 (M,N) = 0.

(ii) M ⊗A B is flat over B, and TorA1 (M,B) = 0.

Proof.

(i)⇒(ii) Taking N = B, we see TorA1 (M,B) = 0. Let

0 → N ′ → N → N ′′ → 0

be an exact sequence of B-modules. Since TorA1 (M,N ′′) = 0, the sequence

0 →M ⊗A N ′ →M ⊗A N →M ⊗A N ′′ → 0

is exact, that is, the sequence

0 → (M ⊗A B)⊗B N ′ → (M ⊗A B)⊗B N → (M ⊗A B)⊗B N ′′ → 0

is exact. Hence M ⊗A B is flat over B.

(ii)⇒(i) Let L→ N be an epimorphism such that L is a free B-module,

and let R be the kernel of this epimorphism. We have an exact sequence

TorA1 (M,L) → TorA1 (M,N) → M ⊗A R→M ⊗A L→M ⊗A N → 0.

Since TorA1 (M,B) = 0 and L is free over B, we have TorA1 (M,L) = 0. Since

M ⊗A B is flat over B, the homomorphism

M ⊗A R→M ⊗A L

is injective. So we have TorA1 (M,N) = 0. �

Corollary 1.3.3. Let A be a ring, I an ideal of A, and M an A-module.

The following conditions are equivalent:

(i) TorA1 (M,N) = 0 for any A/I-module N .

(ii) M ⊗A A/I is flat over A/I, and TorA1 (M,A/I) = 0.

(iii) TorA1 (M,N) = 0 for any A-module N annihilated by some power

of I.

If these conditions are satisfied, then the canonical homomorphism

M/IM ⊗A/I
( ∞⊕
n=0

In/In+1
)
→

∞⊕
n=0

InM/In+1M

is an isomorphism.

 E
ta

le
 C

oh
om

ol
og

y 
T

he
or

y 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

O
N

A
SH

 U
N

IV
E

R
SI

T
Y

 o
n 

11
/2

7/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



February 6, 2015 9:48 ws-book9x6 Etale Cohomology Theory... etale page 12

12 Etale Cohomology Theory

Proof.

(i)⇔(ii) follows from 1.3.2.

(iii)⇒(i) is obvious.

(i)⇒(iii) We have TorA1 (M, InN/In+1N) = 0 for any n ≥ 0. By

induction on n and using the long exact sequence for Tor, we see

TorA1 (M,N/In+1N) = 0 for all n ≥ 0. Taking n sufficiently large, we

get TorA1 (M,N) = 0.

The last assertion follows from 1.3.1. �

Proposition 1.3.4. Let A be a ring, I and ideal of A, andM an A-module.

Consider the following conditions:

(i) M is flat over A.

(ii) M ⊗A A/I is flat over A/I and TorA1 (M,A/I) = 0.

(iii) M ⊗A A/I is flat over A/I and the canonical homomorphism

M/IM ⊗A/I
( ∞⊕
n=0

In/In+1
)
→

∞⊕
n=0

InM/In+1M

is an isomorphism.

(iv) For any n ≥ 0, M ⊗A A/In is flat over A/In.

We have (i)⇒(ii)⇒(iii)⇒(iv). Suppose that either I is nilpotent, or A is

noetherian and M ⊗AN is separated with respect to the I-adic topology for

any finitely generated A-module N . Then (iv)⇒(i).

Proof.

(i)⇒(ii) is trivial.

(ii)⇒(iii) follows from 1.3.3.

(iii)⇒(iv) By 1.3.1, we have Tor
A/In

1 (M/InM,A/I) = 0. The condition

1.3.3 (ii) holds if we take A to be A/In and M to be M/InM . It follows

from 1.3.3 (iii) that we have Tor
A/In

1 (M/InM,N) = 0 for any A/In-module

N . Hence M/InM is flat over A/In.

If I is nilpotent, then taking n sufficiently large, we see (iv)⇒(i). Sup-

pose A is noetherian and M ⊗A N is separated with respect to the I-adic

topology for any finitely generated A-module N . Let us prove M is flat

over A under the condition (iv). We need to prove that the canonical

homomorphism

idM ⊗ i :M ⊗A N ′ →M ⊗A N
is injective for any monomorphism i : N ′ ↪→ N between finitely generated

A-modules. It suffices to show that ker(idM ⊗ i) is contained in

In(M ⊗A N ′) = im (M ⊗A InN ′ →M ⊗A N ′)
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for all n ≥ 0, or equivalently, that ker(idM ⊗ i) is contained in

im (M ⊗A V →M ⊗A N ′) = ker (M ⊗A N ′ →M ⊗A N ′/V ),

where V goes over a family of submodules of N ′ which form a base of

neighborhoods of N ′ at 0 with respect to the I-adic topology. By the

Artin–Rees theorem ([Matsumura (1970)] (11.C) Theorem 15), we can take

V = N ′ ∩ InN (n ≥ 0). We have a commutative diagram

M ⊗A N ′ → M ⊗A (N ′/N ′ ∩ InN)

↓ ↓
M ⊗A N → M ⊗A (N/InN).

Since the canonical homomorphism N ′/N ′ ∩ InN → N/InN is injective

and M ⊗AA/In is flat over A/In, the right vertical arrow is injective. This

implies that ker(idM ⊗ i) is contained in ker (M ⊗A N ′ →M ⊗A (N ′/N ′ ∩
InN)) for all n. Our assertion follows. �

Theorem 1.3.5. Let A→ B be a homomorphism of noetherian rings, I an

ideal of A such that IB is contained in the radical of B, and M a finitely

generated B-module. The following conditions are equivalent:

(i) M is flat over A.

(ii) M ⊗A A/I is flat over A/I and TorA1 (M,A/I) = 0.

(iii) M ⊗A A/I is flat over A/I and the canonical homomorphism

M/IM ⊗A/I
( ∞⊕
n=0

In/In+1
)
→

∞⊕
n=0

InM/In+1M

is an isomorphism.

(iv) M ⊗A A/In is flat over A/In for all n ≥ 0.

Proof. We use 1.3.4. Let us check thatM⊗AN is separated with respect

to the I-adic topology for any finitely generated A-module N . Note that

M ⊗A N is a finitely generated B-module. Since IB is contained in the

radical of B, M ⊗AN is separated with respect to the IB-adic topology by

[Fu (2006)] 1.5.8, or [Matsumura (1970)] (11.D) Corollary 1. Our assertion

follows. �

Proposition 1.3.6. Let (A,m) → (B, n) be a local homomorphism between

noetherian local rings, and let u : M ′ → M be a homomorphism between

finitely generated B-modules. Suppose M is flat over A. The following

conditions are equivalent:

(i) u is injective, and cokeru is flat over A.

(ii) u⊗ id : M ′ ⊗A A/m →M ⊗A A/m is injective.

 E
ta

le
 C

oh
om

ol
og

y 
T

he
or

y 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

O
N

A
SH

 U
N

IV
E

R
SI

T
Y

 o
n 

11
/2

7/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



February 6, 2015 9:48 ws-book9x6 Etale Cohomology Theory... etale page 14

14 Etale Cohomology Theory

Proof.

(i)⇒(ii) Since u is injective, we have an exact sequence

0 →M ′ →M → cokeru→ 0.

Since cokeru is flat over A, the sequence

0 →M ′ ⊗A A/m →M ⊗A A/m → cokeru⊗A A/m → 0

is exact. So u⊗ id is injective.

(ii)⇒(i) Consider the commutative diagram

M ′/mM ′ ⊗A/m
( ∞⊕
n=0

mn/mn+1
)
→ M/mM ⊗A/m

( ∞⊕
n=0

mn/mn+1
)

↓ ↓
∞⊕
n=0

mnM ′/mn+1M ′ →
∞⊕
n=0

mnM/mn+1M.

Suppose u⊗id is injective. Then the top horizontal arrow is injective. Since

M is flat over A, the right vertical arrow is an isomorphism by 1.3.1. One

can check the left vertical arrow is surjective. These facts imply that the

bottom horizontal arrow is injective, which then implies that u is injective.

We thus have a short exact sequence

0 →M ′ →M → cokeru→ 0.

It gives rise to an exact sequence

TorA1 (M,A/m) → TorA1 (cokeru,A/m) →M ′ ⊗A A/m u⊗id→ M ⊗A A/m.
SinceM is flat over A, we have TorA1 (M,A/m) = 0. Since u⊗ id is injective,

the above exact sequence shows that TorA1 (cokeru,A/m) = 0. By 1.3.5,

cokeru is flat over A. �

Proposition 1.3.7. Let

(C, l) → (A,m) → (B, n)

be local homomorphisms of noetherian local rings, and let M be a finitely

generated B-module. Suppose A is flat over C. The following conditions

are equivalent:

(i) M is flat over A.

(ii) M is flat over C and M ⊗C C/l is flat over A⊗C C/l.
Proof.

(i)⇒(ii) is obvious.
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(ii)⇒(i) Suppose M is flat over C, and M ⊗C C/l is flat over A⊗C C/l,
that is, M/lM is flat over A/lA. By 1.3.5, to prove M is flat over A, it

suffices to show the canonical homomorphism

M/lM ⊗A/lA
( ∞⊕
n=0

lnA/ln+1A
)
→

∞⊕
n=0

lnM/ln+1M

is an isomorphism. Since A and M are flat over C, the canonical homo-

morphisms

A/lA⊗C/l
( ∞⊕
n=0

ln/ln+1
)
→

∞⊕
n=0

lnA/ln+1A,

M/lM ⊗C/l
( ∞⊕
n=0

ln/ln+1
)
→

∞⊕
n=0

lnM/ln+1M

are isomorphisms by 1.3.1. We thus have the following isomorphisms

M/lM ⊗A/lA
( ∞⊕
n=0

lnA/ln+1A
)

∼= M/lM ⊗A/lA
(
A/lA⊗C/l

( ∞⊕
n=0

ln/ln+1
))

∼= M/lM ⊗C/l
( ∞⊕
n=0

ln/ln+1
)

∼=
∞⊕
n=0

lnM/ln+1M.

Our assertion follows. �

1.4 Constructible Sets

([EGA] 0 9.1–9.2, IV 1.8–1.10.)

Let X be a topological space. A subset of X is called locally closed if it

is the intersection of an open subset and a closed subset. Suppose X is a

noetherian topological space. We say that a subset of X is constructible

if it is a union of finitely many locally closed subsets. If X1 and X2 are

constructible subsets, then X1∪X2, X1∩X2 and X1−X2 are constructible.

Proposition 1.4.1. Let X be a noetherian topological space. A subset Y

of X is constructible if and only if for any irreducible closed subset F of X

such that Y ∩ F is dense in F , the set Y ∩ F contains a nonempty open

subset of F .
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Proof.

(⇒) Suppose Y is constructible, F is irreducible and closed such that

Y ∩ F is dense in F . Note that Y ∩ F is constructible. Write

Y ∩ F = (U1 ∩ F1) ∪ · · · ∪ (Un ∩ Fn),
where each Ui (resp. Fi) is open (resp. closed). Replacing Fi by Fi ∩ F ,
we may assume Fi ⊂ F . We have

F = Y ∩ F = (U1 ∩ F1) ∪ · · · ∪ (Un ∩ Fn).
Since F is irreducible, we have F = Ui ∩ Fi for some i. But Ui ∩ Fi ⊂ Fi.

These facts imply that Fi = F , and Y ∩ F contains the nonempty open

subset Ui ∩ Fi of F .
(⇐) We use noetherian induction. Suppose that for any irreducible

closed subset F of X such that Y ∩ F is dense in F , Y ∩ F contains a

nonempty open subset of F . If Y is not constructible, then the set

S = {Z|Ø 	= Z ⊂ X,Z is closed, and Y ∩ Z is not constructible}
is nonempty. Since X is a noetherian topological space, S contains a

minimal element, say Z0. If Z0 is not irreducible, we can write Z0 = Z1∪Z2,

where Z1 and Z2 are proper closed subsets of Z0. By the minimality of Z0,

we have Z1, Z2 	∈ S . Hence Y ∩ Z1 and Y ∩ Z2 are constructible. But

then Y ∩ Z0 = (Y ∩ Z1) ∪ (Y ∩ Z2) is constructible. This contradicts

Z0 ∈ S . So Z0 must be irreducible. If Y ∩ Z0 is not dense in Z0, then by

the minimality of Z0, Y ∩ (Y ∩ Z0) is constructible. But Y ∩ (Y ∩ Z0) =

Y ∩ Z0. This contradicts Z0 ∈ S . So Y ∩ Z0 is dense in Z0. By our

assumption, there exists a nonempty open subset U of Z0 contained in

Y ∩ Z0. By the minimality of Z0, Y ∩ (Z0 − U) is constructible. We have

Y ∩ Z0 = U ∪ (Y ∩ (Z0 − U)). This shows that Y ∩ Z0 is constructible.

Again this contradicts Z0 ∈ S . So Y must be constructible. �

Theorem 1.4.2 (Chevalley). Let f : X → Y be a morphism of finite

type between noetherian schemes. Then f(X) is constructible.

Proof. Cover Y by finitely many affine open subsets Vi and cover each

f−1(Vi) by finitely many affine open subsets Uij . We have f(X) =

∪i,jf(Uij). It suffices to show that each f(Uij) is a constructible subset

of Vi. Replacing X by Uij and Y by Vi, we are reduced to the case where

X = SpecB and Y = SpecA. Any irreducible closed subset of SpecA is of

the form V (p) = {p′ ∈ SpecA|p ⊂ p′} for some prime idea p of A. The set

V (p) can be identified with SpecA/p, and f(SpecB) ∩ V (p) can be iden-

tified with the image of the morphism SpecB/pB → SpecA/p obtained
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from f by base change. The closure of the image of this morphism consists

of those prime ideals of A/p containing the kernel of the homomorphism

A/p → B/pB. If f(SpecB) ∩ V (p) is dense in V (p), then the homomor-

phism A/p → B/pB is injective. By 1.4.1, to prove the theorem, it suffices

to prove the following statement: Let A be a noetherian integral domain,

and let A → B be an injective homomorphism such that B is a finitely

generated A-algebra. Then there exists a nonzero element a ∈ A such that

every prime ideal of A lying in the set D(a) = {p ∈ SpecA|a 	∈ p} is the

inverse image of a prime ideal of B.

Let us prove this statement. Write B = A[x1, . . . , xn], where x1, . . . , xr
are algebraically independent over A and xj (r + 1 ≤ j ≤ n) are algebraic

over A[x1, . . . , xr]. For each r + 1 ≤ j ≤ n, find a relation

pj0x
dj
j + pj1x

dj−1
j + · · ·+ pjdj = 0,

where pji ∈ A[x1, . . . , xr] (0 ≤ i ≤ dj), dj ≥ 1, and pj0 	= 0. Then
n∏

j=r+1

pj0

is a nonzero polynomial in x1, . . . , xr with coefficients in A. Let a be one

of the nonzero coefficients of this polynomial. For any prime ideal p of A

with a 	∈ p, let p′ = p[x1, . . . , xr], which is a prime ideal of A[x1, . . . , xr].

Then
n∏

j=r+1

pj0 	∈ p′. So Bp′ is integral over A[x1, . . . , xr ]p′ . Hence there

exists a prime ideal q of B whose inverse image in A[x1, . . . , xr] is p
′. The

inverse image of q in A is then p. �

Corollary 1.4.3. Let f : X → Y be a morphism of finite type between

noetherian schemes. If Z is a constructible subset of X, then f(Z) is con-

structible.

Proof. Z is a union of finitely many locally closed subset. It suffices to

consider the case where Z is locally closed. Then there exists a subscheme

structure on Z, and we can apply 1.4.2 to the morphism Z → Y . �

Let X be a topological space and let x, y ∈ X . We say that y is a

generalization of x, and that x is a specialization of y if x ∈ {y}.
Proposition 1.4.4. Suppose X is a noetherian topological space such that

every irreducible closed subset has a generic point. Let U be a constructible

subset of X and let x be a point in U . Then U contains an open neighbor-

hood of x if and only if every generalization y of x lies in U .

Proof. The “only if” part is clear. Let us prove the “if” part. We use

noetherian induction. Suppose U contains every generalization of x. If U
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does not contain any open neighborhood of x, then the set

S = {Z|x ∈ Z ⊂ X,Z is closed, U ∩ Z is not a neighborhood of x in Z}
is not empty. Since X is noetherian, S contains a minimal element, say

Z0. If Z0 is not irreducible, we can write Z0 = Z1 ∪ Z2, where Z1 and Z2

are proper closed subsets of Z0. If x ∈ Z1 ∩ Z2, then by the minimality of

Z0, we can find open neighborhoods Vi (i = 1, 2) of x such that Vi ∩ Zi ⊂
U ∩ Zi. Then U ∩ Z0 contains the neighborhood (V1 ∩ V2) ∩ Z0 of x in

Z0. This contradicts Z0 ∈ S . If x ∈ Z1 − Z2, then we can find an open

neighborhood V1 of x such that V1∩Z1 ⊂ U ∩Z1. But then U ∩Z0 contains

the neighborhood (V1 − Z2) ∩ Z0 of x in Z0. This contradicts Z0 ∈ S .

Similarly, if x ∈ Z2 −Z1, we are again led to contradiction. So Z0 must be

irreducible. Let y be the generic point of Z0. Then y is a generalization of

x. By our assumption, we have y ∈ U . But then U ∩Z0 is dense in Z0. By

1.4.1, U ∩Z0 contains a nonempty open subset V of Z0. Since Z0 	∈ S , we

have x 	∈ V . By the minimality of Z0, we have Z0−V ∈ S . So there exists

an open neighborhoodW of x in X such thatW ∩(Z0−V ) ⊂ U ∩(Z0−V ).

But then W ∩ Z0 is neighborhood of x in Z0 contained in U ∩ Z0. This

contradicts Z0 ∈ S . So U contains an open neighborhood of x. �

Corollary 1.4.5. Let X be a noetherian topological space such that every

irreducible closed subset has a generic point. A subset U of X is open if

and only if the following two conditions hold:

(a) U contains generalizations of points in U .

(b) For every x ∈ U , U ∩ {x} contains a nonempty open subset of {x}.

Proof. The “only if” part is clear. Let us prove the “if” part. Let F

be an irreducible closed subset of X . Then F = {x} for some x ∈ X . If

U ∩F is dense in F , then x ∈ U by condition (a). But then U ∩F contains

a nonempty open subset of F by condition (b). So U is constructible by

1.4.1. By condition (a) and 1.4.4, U is open. �

One can also study constructible sets on non-noetherian schemes. Con-

fer [EGA] 0 9.1–9.2 and IV 1.8–1.10.

1.5 Flat Morphisms

Proposition 1.5.1. Let f : X → Y be a morphism of finite type between

noetherian schemes, x ∈ X, and y = f(x). Then the following conditions

are equivalent:
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(i) f maps every neighborhood of x to a neighborhood of y.

(ii) For any generalization y′ of y, there exists a generalization x′ of x
such that f(x′) = y′.

(iii) The morphism SpecOX,x → SpecOY,y induced by f is surjective

on the underlying topological spaces.

Proof.

(i)⇒(ii) Suppose y ∈ {y′}. Let F be the union of those irreducible

components of f−1({y′}) not containing x. Then X −F is a neighborhood

of x. So f(X − F ) is a neighborhood of y, and hence y′ ∈ f(X − F ). Let

x1 ∈ X−F such that f(x1) = y′. Then x1 lies in an irreducible component

C of f−1({y′}) containing x. Let x′ be the generic point of C. Then x′ is
a generalization of x. We have x1 ∈ {x′}. Hence f(x1) ∈ {f(x′)}, that is,
y′ ∈ {f(x′)}. On the other hand, we have x′ ∈ C ⊂ f−1({y′}), and hence

f(x′) ∈ {y′}. Therefore f(x′) = y′

(ii)⇒(i) Let U be an open neighborhood of x in X . Then U is con-

structible. By 1.4.3, f(U) is a constructible subset in Y . The condition (ii)

implies that f(U) contains every generalization of y. By 1.4.4, f(U) is a

neighborhood of y.

(ii)⇔(iii) is clear. �

Theorem 1.5.2. Let f : X → Y be a morphism of finite type between

noetherian schemes and let F be a coherent OX-module with SuppF = X.

Suppose Fx is flat over OY,f(x) for any x ∈ X. Then f is an open mapping.

Proof. For any x ∈ X , since Fx is flat over OY,f(x) and Fx 	= 0, it is

faithfully flat over OY,f(x) by 1.2.3. By 1.2.4, the morphism SpecOX,x →
SpecOY,y induced by f is surjective. So by 1.5.1, f is an open mapping.�

Lemma 1.5.3. Let A be a noetherian integral domain, B a finitely gener-

ated A-algebra, and M a finitely generated B-module. Then there exists a

nonzero element f ∈ A such that Mf is free over Af .

For a proof, see [Matsumura (1970)] (22.A) Lemma 1.

Lemma 1.5.4. Let A be a noetherian ring, B a finitely generated A-

algebra, M a finitely generated B-module, q a prime ideal of B, and p

the inverse image of q in A. Suppose Mq is flat over Ap. Then there exists

g ∈ B − q such that (M/pM)g is flat over A/p and TorA1 (M,A/p)g = 0.

Proof. By 1.5.3, there exists f ∈ A − p such that (M/pM)f is flat over
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A/p. Since Mq is flat over A, we have

TorA1 (M,A/p)q ∼= TorA1 (Mq, A/p) = 0.

From the exact sequence

0 → TorA1 (M,A/p) →M ⊗A p →M →M ⊗A A/p → 0,

we deduce that TorA1 (M,A/p) is a finitely generated B-module. So there

exists g′ ∈ B − q such that TorA1 (M,A/p)g′ = 0. We then take g = fg′. �

Lemma 1.5.5. Under the condition of 1.5.4, for every prime ideal q′ of B
containing q but not containing g, Mq′ is flat over A.

Proof. We apply 1.3.5 to the homomorphism A → Bq′ , the ideal I = p

of A, and the Bq′ -module Mq′ . �

Theorem 1.5.6. Let f : X → Y be a morphism of finite type between

noetherian schemes and let F be a coherent OX-module.

(i) If Y is integral, then there exists a nonempty open subset V in Y

such that for any x ∈ f−1(V ), Fx is flat over OY,f(x).

(ii) In general, the set U of points x ∈ X such that Fx are flat over

OY,f(x) is open.

Proof.

(i) follows from 1.5.3.

(ii) We may assume that X = SpecB and Y = SpecA are affine, and

F = M∼ for some finitely generated B-module M . By 1.1.2 (ii), the set

U contains generalizations of points in U . Let x ∈ U . By 1.5.5, U ∩ {x}
contains a nonempty open subset of {x}. By 1.4.5, U is open. �

A morphism f : X → Y of schemes is called flat at x ∈ X if OX,x is

flat over OY,f(x). It is called a flat morphism if it is flat at every point of

X . It is called a faithfully flat morphism if it is flat and surjective on the

underlying topological spaces. If f is a morphism of finite type and X and

Y are noetherian schemes, then the set of points in X , where f is flat, is

open by 1.5.6. If f is a flat morphism of finite type between noetherian

schemes, then f is an open mapping by 1.5.2.
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1.6 Descent of Quasi-coherent Sheaves

([SGA 1] VIII 1.)

A morphism of schemes f : X → Y is called quasi-compact if the inverse

image in X of any quasi-compact open subset of Y is quasi-compact. This

is equivalent to saying that there exists a covering {Ui} of Y by affine

open subsets such that each f−1(Ui) is a union of finitely many affine open

subsets in X . Let g1, g2 : B → C be maps of sets. We define

ker(B
g1
⇒
g2
C) = {b ∈ B|g1(b) = g2(b)}.

Let f : A→ B be another map of set. We say the sequence

A
f→ B

g1
⇒
g2
C

is exact if f is injective and im f = ker(B
g1
⇒
g2

C).

Theorem 1.6.1. Let g : S′ → S be a quasi-compact faithfully flat mor-

phism, and let S′′ = S′ ×S S′. For any 1 ≤ i ≤ 2, let

pi : S
′′ = S′ ×S S′ → S′

be the projection to the i-th factor, and for any 1 ≤ i < j ≤ 3, let

pij : S
′ ×S S′ ×S S′ → S′′ = S′ ×S S′

be the projection to the (i, j)-factor.

(i) Let F and G be quasi-coherent OS-modules, and let F ′ and G ′ (resp.
F ′′ and G ′′) be their inverse images on S′ (resp. S′′), respectively. Then

the sequence

HomOS (F ,G )
g∗→ HomOS′ (F

′,G ′)
p∗1
⇒
p∗2

HomOS′′ (F
′′,G ′′)

is exact, that is, if u′ ∈ HomOS′ (F
′,G ′) satisfies p∗1(u) = p∗2(u), then there

exists a unique u ∈ HomOS (F ,G ) such that g∗u = u′.
(ii) For any 1 ≤ i ≤ 3, let

πi : S
′ ×S S′ ×S S′ → S′

be the projection to the i-th factor. Let F ′ be a quasi-coherent sheaf on S′

such that there exists an isomorphism σ : p∗1F
′ ∼=→ p∗2F

′ satisfying

p∗13(σ) = p∗23(σ) ◦ p∗12(σ).

 E
ta

le
 C

oh
om

ol
og

y 
T

he
or

y 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

O
N

A
SH

 U
N

IV
E

R
SI

T
Y

 o
n 

11
/2

7/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



February 6, 2015 9:48 ws-book9x6 Etale Cohomology Theory... etale page 22

22 Etale Cohomology Theory

Here we identify

p∗13(σ) (resp. p
∗
23(σ), resp. p∗12(σ))

with a morphism

π∗1F ′ → π∗3F
′ (resp. π∗2F

′ → π∗3F ′, resp. π∗1F ′ → π∗2F
′)

through the canonical natural transformations

p∗13 ◦ p∗1 ∼= π∗1 , p∗13 ◦ p∗2 ∼= π∗3 ,

p∗23 ◦ p∗1 ∼= π∗2 , p∗23 ◦ p∗2 ∼= π∗3 ,

p∗12 ◦ p∗1 ∼= π∗1 , p∗12 ◦ p∗2 ∼= π∗2 .

Then there exist a quasi-coherent OS-module F and an isomorphism τ :

g∗F
∼=→ F ′ such that the diagram

p∗1g
∗F

p∗1τ→ p∗1F
′

∼= ↓ ∼= ↓ σ
p∗2g
∗F

p∗2τ→ p∗2F
′

commutes, where the left vertical arrow is the canonical isomorphism.

Moreover F is unique up to unique isomorphism.

Any isomorphism σ : p∗1F ′ → p∗2F ′ satisfying p∗13(σ) = p∗23(σ) ◦ p∗12(σ)
is called a descent datum for F ′.

Proof. We leave it for the reader to reduce the proof of the theorem to

the case where S and S′ are affine. So we assume S = SpecA, S′ = SpecA′,
and A′ is a faithfully flat A-algebra.

(i) Let M and N be A-modules such that F = M∼ and G = N∼,
respectively. Set

M ′ = M ⊗A A′, M ′′ =M ⊗A A′ ⊗A A′,
N ′ = N ⊗A A′, N ′′ = N ⊗A A′ ⊗A A′.

We need to show that the sequence

HomA(M,N) → HomA′(M ′, N ′) ⇒ HomA′′(M ′′, N ′′)

is exact. By 1.2.6 (iv), N → N ′ is injective. It follows that

HomA(M,N) → HomA′(M ′, N ′)

is injective. Let

u′ ∈ ker (HomA′(M ′, N ′) ⇒ HomA′′(M ′′, N ′′)).
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To show that

u′ ∈ im (HomA(M,N) → HomA′(M ′, N ′)),

it suffices to show that u′ maps the A-submodule M of M ′ to the A-

submodule N of N ′. For any x ∈ M , u′(x) lies in ker (N ′ ⇒ N ′′). So

it suffices to prove

N → N ′ ⇒ N ′′

is exact, that is,

0 → N
φ→ N ⊗A A′ ψ→ N ⊗A A′ ⊗A A′′

is exact, where

φ(x) = x⊗ 1, ψ(x⊗ a′) = x⊗ a′ ⊗ 1− x⊗ 1⊗ a′

for any x ∈ N and a′ ∈ A′. Since A′ is faithfully flat over A, it suffices to

prove the sequence

0 → N ⊗A A′ φ⊗id→ N ⊗A A′ ⊗A A′ ψ⊗id→ N ⊗A A′ ⊗A A′ ⊗A A′

is exact. Consider the diagram

0 → N ⊗A A′ φ⊗id→ N ⊗A A′ ⊗A A′ ψ⊗id→ N ⊗A A′ ⊗A A′ ⊗A A′,
↙ ↓ id D1 ↙ ↓ id D2 ↙

0 → N ⊗A A′ φ⊗id→ N ⊗A A′ ⊗A A′ ψ⊗id→ N ⊗A A′ ⊗A A′ ⊗A A′,
where

D1(x⊗ a1 ⊗ a2) = x⊗ a1a2, D2(x⊗ a1 ⊗ a2 ⊗ a3) = x⊗ a1 ⊗ a2a3

for any x ∈ N and ai ∈ A′(i = 1, 2, 3). Then

D1 ◦ (φ⊗ id) = id, (φ⊗ id) ◦D1 +D2 ◦ (ψ ⊗ id) = id,

that is, Di (i = 1, 2) define a homotopy between the identity and the zero

chain map. Using these identities, one can verify that the sequence is exact.

(ii) The uniqueness of F follows from (i). Assume F ′ = N ′∼ for some

A′-module N ′. The isomorphism σ : p∗1F
′ ∼=→ p∗2F

′ is induced by an

isomorphism

α : N ′ ⊗A A′
∼=→ A′ ⊗A N ′

of A′ ⊗A A′-modules. Set

N = {x ∈ N ′|α(x⊗ 1) = 1⊗ x}.
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Then N is an A-module and we have an exact sequence

N → N ′
γ

⇒
δ
A′ ⊗A N ′,

where

γ(x′) = α(x′ ⊗ 1), δ(x′) = 1⊗ x′

for any x′ ∈ N ′. Since A′ is faithfully flat over A, the sequence

N ⊗A A′ → N ′ ⊗A A′
γ⊗id
⇒
δ⊗id

A′ ⊗A N ′ ⊗A A′

is exact. The homomorphism

A′ → A′ ⊗A A′, a′ �→ 1⊗ a′

makes A′⊗AA′ a faithfully flat A′-algebra. By the proof of (i), we have an

exact sequence

N ′ → N ′ ⊗A′ (A′ ⊗A A′) ⇒ N ′ ⊗A′ ((A′ ⊗A A′)⊗A′ (A′ ⊗A A′)),
that is,

N ′ → A′ ⊗A N ′
ξ

⇒
η
A′ ⊗A A′ ⊗A N ′

is exact, where

ξ(a′ ⊗ x′) = a′ ⊗ 1⊗ x′, η(a′ ⊗ x′) = 1⊗ a′ ⊗ x′

for any a′ ∈ A′ and x′ ∈ N ′. Consider the diagram

N ⊗A A′ → N ′ ⊗A A′
γ⊗id
⇒
δ⊗id

A′ ⊗A N ′ ⊗A A′

β ↓ α ↓ p∗23(α) ↓
N ′ → A′ ⊗A N ′

ξ

⇒
η

A′ ⊗A A′ ⊗A N ′.
Using the assumption p∗13(σ) = p∗23(σ) ◦ p∗12(σ), one checks that the squares
on the right-hand side commute. So there exists a homomorphism of A′-
modules

β : N ⊗A A′ → N ′

making the square on the left-hand side commute. It induces an isomor-

phism τ : g∗F
∼=→ F ′, where F = N∼. By the commutativity of the

diagram above, we have

1⊗ β(x ⊗ 1) = α(x ⊗ 1)

for any x ∈ N . But α(x⊗ 1) = 1⊗ x for any x ∈ N . So

1⊗ β(x⊗ 1) = 1⊗ x.

The images of 1⊗ β(x ⊗ 1) and 1⊗ x under the map

A′ ⊗A N ′ → N ′, a′ ⊗ x′ → a′x′

are β(x⊗ 1) and x, respectively. So β(x⊗ 1) = x for any x ∈ N . Using this

fact, one checks that σ ◦ p∗1τ is identified with p∗2τ . �
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Corollary 1.6.2. Let g : S′ → S be a quasi-compact faithfully flat mor-

phism, let h : S′ ×S S′ → S be the canonical morphism, and let G be a

quasi-coherent OS-module. Then the sequence

G → g∗g∗G ⇒ h∗h∗G

is exact, where the two morphisms g∗g∗G ⇒ h∗h∗G are the canonical mor-

phisms

g∗g∗G → g∗pi∗p∗i g
∗G ∼= h∗h∗G (i = 1, 2)

induced by the two projections p1, p2 : S
′ ×S S′ → S′.

Proof. For any open subset U of S, the sequence

HomOU (OU ,G |U ) → HomOg−1(U)
(Og−1(U), g

∗G |g−1(U))

⇒ HomO
h−1(U)

(Oh−1(U), h
∗G |h−1(U))

is exact by 1.6.1, that is, the sequence

G (U) → (g∗g∗G )(U) ⇒ (h∗h∗G )(U)

is exact. �

Corollary 1.6.3. Let g : S′ → S be a quasi-compact faithfully flat mor-

phism, let F be a quasi-coherent OS-module, and let F ′ (resp. F ′′) be

the inverse image of F on S′ (resp. S′ ×S S′). Denote by Quot(F ) (resp.

Quot(F ′), resp. Quot(F ′′)) the set of isomorphic classes of quasi-coherent

quotient sheaves of F (resp. F ′, resp. F ′′). Then the sequence

Quot(F )
g∗→ Quot(F ′)

p∗1
⇒
p∗2

Quot(F ′′)

is exact.

Proof. Let G ′ ∈ ker(Quot(F ′) ⇒ Quot(F ′′)). Then we have an isomor-

phism σ : p∗1G
′ ∼=→ p∗2G

′ such that the diagram

p∗1F
′ → p∗1G

′
∼= ↓
F ′′ ↓ σ
∼= ↓
p∗2F

′ → p∗2G
′
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commutes. So the following diagrams commute, where F ′′′ is the inverse

image of F on S′ ×S S′ ×S S′:
p∗12p

∗
1F
′ → p∗12p

∗
1G
′ p∗23p

∗
1F
′ → p∗23p

∗
1G
′ p∗13p

∗
1F
′ → p∗13p

∗
1G
′

∼= ↓ ∼= ↓ ∼= ↓
F ′′′ ↓p∗12(σ) F ′′′ ↓p∗23(σ) F ′′′ ↓p∗13(σ)
∼= ↓ ∼= ↓ ∼= ↓

p∗12p
∗
2F
′ → p∗12p

∗
2G
′, p∗23p

∗
2F
′ → p∗23p

∗
2G
′, p∗13p

∗
2F
′ → p∗13p

∗
2G
′.

Since the horizontal arrows are surjective, this implies that

p∗13(σ) = p∗23(σ) ◦ p∗12(σ).
By 1.6.1 (ii), there exists a quasi-coherent OS-module G whose inverse

image on S′ is isomorphic to G ′. By 1.6.1 (i), there exists a morphism

F → G inducing the epimorphism F ′ → G ′. Since g : S′ → S is faithfully

flat, F → G is surjective. So G is a quotient of F . The uniqueness of G

follows from 1.6.1 (i). �

Corollary 1.6.4. Let g : S′ → S be a quasi-compact faithfully flat mor-

phism, let F be a quasi-coherent OS-module, and let F ′ (resp. F ′′) be

the inverse image of F on S′ (resp. S′ ×S S′). Denote by Sub(F ) (resp.

Sub(F ′), resp. Sub(F ′′)) the set of isomorphic classes of quasi-coherent

subsheaves of F (resp. F ′, resp. F ′′). Then the sequence

Sub(F )
g∗→ Sub(F ′)

p∗1
⇒
p∗2

Sub(F ′′)

is exact.

We leave the proof to the reader.

Corollary 1.6.5. Let g : S′ → S be a quasi-compact faithfully flat mor-

phism, let S′′ = S′ ×S S′, and let Sub(S) (resp. Sub(S′), resp. Sub(S′′))
be the set of isomorphic classes of closed subschemes of S (resp. S′, resp.
S′′). Then the sequence

Sub(S)
g∗→ Sub(S′)

p∗1
⇒
p∗2

Sub(S′′)

is exact, where g∗, p∗i (i = 1, 2) denote base changes of closed subschemes.

Proof. This follows from 1.6.3 or 1.6.4 by taking F = OS . �
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Proposition 1.6.6. Let g : S′ → S be a quasi-compact faithfully flat mor-

phism, and let F be a quasi-coherent OS-module. Then g∗F is locally of

finite type (resp. locally of finite presentation, resp. locally free of finite

rank) if and only if F is so.

Proof. The “if” part is clear. Let us prove the “only if” part. We leave

it to the reader to reduce the proof to the case where S = SpecA and

S′ = SpecA′ are affine and A′ is a faithfully flat A-algebra. Let M be an

A-module. Write M = lim−→λ
Mλ, where Mλ goes over the set of finitely

generated submodules ofM . We haveM ⊗AA′ = lim−→λ
Mλ⊗AA′. Suppose

M ⊗A A′ is a finitely generated A′-module. Then there exists some Mλ

such that Mλ ⊗A A′ → M ⊗A A′ is surjective. Since A′ is faithfully flat

over A, we must have Mλ = M . So M is a finitely generated A-module.

If M ⊗A A′ has finite presentation, then M must be a finitely generated

A-module. So we can find an exact sequence

0 → R → L→M → 0

such that L is a free A-module of finite rank. As A′ is faithfully flat over

A, the sequence

0 → R⊗A A′ → L⊗A A′ →M ⊗A A′ → 0

is exact. Since M ⊗A A′ has finite presentation, R ⊗A A′ is a finitely

generated A′-module. This implies that R is a finitely generated A-module.

So M has finite presentation. The statement about local freeness follows

from 1.6.7 below and the fact that M is flat over A if and only if M ⊗A A′
is flat over A′. �

Lemma 1.6.7. Let M be an A-module. The following conditions are equiv-

alent:

(i) M∼ is a locally free OSpecA-module of finite rank.

(ii) M is a finitely generated projective A-module.

(iii) M is a flat A-module of finite presentation.

Proof.

(i)⇒(ii) SinceM∼ is locally free of finite rank, we can find a finite affine

open covering {Ui} of SpecA such that M∼|Ui are free of finite rank. The

canonical morphism g :
∐
i Ui → S is quasi-compact and faithfully flat, and

g∗M∼ has finite presentation. So M has finite presentation by 1.6.6. For

any A-module N , we then have

H omOX (M
∼, N∼) ∼= (HomA(M,N))∼.
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Since M∼ is locally free, the functor H omOX (M
∼,−) is exact on the

category of OSpecA-modules. So the functor HomA(M,−) is exact on the

category of A-modules. Hence M is a projective A-module.

(ii)⇒(iii) There exists an A-module R such that An ∼=M ⊕R for some

finite n. It follows that M is flat and has finite presentation.

(iii)⇒(i) For any p ∈ SpecA, let us prove M∼ is free in a neighborhood

of p. Mp is a flat Ap-module with finite presentation. This implies that Mp

is a free Ap-module of finite rank. (Confer the proof of (ii)⇒(i) of 1.2.8.)

Choose x1, . . . , xk ∈ M so that their images in Mp form a basis. Consider

the homomorphism φ : Ak → M which maps a basis of Ak to {x1, . . . , xk}.
We have

(kerφ)p = (cokerφ)p = 0.

Since M is finitely generated, so it is with cokerφ. It follows that there

exists an affine open neighborhood of p in SpecA on which (cokerφ)∼ van-

ishes. Replacing SpecA by this neighborhood, we may assume cokerφ = 0.

Then φ is an epimorphism. Since M has finite presentation, kerφ is finitely

generated. There exists an affine open neighborhood of p in SpecA on

which (kerφ)∼ vanishes. Replacing SpecA by this neighborhood, we may

assume kerφ = 0. Then φ is an isomorphism, and M∼ is free. �

1.7 Descent of Properties of Morphisms

([SGA 1] VIII 3, 4)

Let f : X → S be a morphism of schemes. We say that f is surjective (resp.

injective) if f is surjective (resp. injective) on the underlying topological

spaces. f is called radiciel if it is universally injective, that is, for any

morphism S′ → S, the base change f ′ : X ×S S′ → S′ of f is injective.

Proposition 1.7.1. Let f : X → S be a morphism. The following condi-

tions are equivalent:

(i) f is radiciel.

(ii) For any algebraically closed field K, the map X(K) → S(K) in-

duced by f is injective, where X(K) = Hom(SpecK,X) and S(K) =

Hom(SpecK,S) are the sets K-points in X and S, respectively.

(iii) f is injective, and for any x ∈ X, the residue field k(x) of X at x

is a purely inseparable algebraic extension of the residue field k(f(x)) of Y

at f(x).

(iv) The diagonal morphism Δ : X → X ×S X is surjective.
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In particular, any radiciel morphism is separated.

Proof.

(i)⇒(ii) Suppose f is universally injective and t1, t2 : SpecK → X are

two morphisms such that ft1 = ft2. Let us prove t1 = t2. Regard SpecK

as an S-scheme through the morphism ft1 = ft2. Let

Γti : SpecK → X ×S SpecK (i = 1, 2)

be the graphs of ti, and let fK : X×S SpecK → SpecK be the base change

of f . It suffices to show Γt1 = Γt2 . We have

fKΓt1 = fKΓt2 = idSpecK .

Since fK is injective, Γt1 and Γt2 have the same image in X ×Y SpecK.

Let x′ be their common image. Then the composites

K
f�K→ k(x′)

Γ�ti→ K (i = 1, 2)

are the identity, where f K and Γti are the homomorphisms on residue

fields induced by the morphisms fK and Γti , respectively. It follows that

Γti (i = 1, 2) are isomorphisms, and are inverse to f K , and hence they

coincide. So we have Γt1 = Γt2 .

(ii)⇒(i) Let g : S′ → S be a morphism, and let x′1 and x′2 be two

points in X ×S S′ having the same image s′ in S′. The homomorphism

k(s′) → k(x′1) is injective. Since k(x′2) is flat over k(s′), the canonical

homomorphism

k(x′2) → k(x′1)⊗k(s′) k(x′2)
is injective. It follows that 0 	= 1 in k(x′1)⊗k(s′) k(x′2). So k(x′1)⊗k(s′) k(x′2)
has a maximal ideal m. Let K be an algebraic closure of (k(x′1) ⊗k(s′)
k(x′2))/m. Then we have a commutative diagram

k(s′) → k(x′1)
↓ ↓

k(x′2) → K.

For each i ∈ {1, 2}, the homomorphism k(x′i) → K defines a morphism

si : SpecK → X×SS′ having the image x′i inX×SS′. Let g′ : X×SS′ → X

and f ′ : X ×S S′ → S′ be the projections. We have f ′s1 = f ′s2. It follows
that

fg′s1 = gf ′s1 = gf ′s2 = fg′s2.
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By our assumption, we then have g′s1 = g′s2. Together with the identity

f ′s1 = f ′s2, this implies that s1 = s2. In particular, we have x′1 = x′2. So

f is universally injective.

(i)⇔(iii) Suppose f is injective. Let x be a point in X and let s be its

image in S. Then f−1(s) consists of only one point x. Consider a Cartesian

diagram

X ×S S′ g
′

→ X

f ′ ↓ ↓ f
S′

g→ S.

For any point s′ in S′ with image s in S, we have a one-to-one correspon-

dence between the underlying set of f ′−1(s′) and the underlying set of the

scheme Spec (k(x) ⊗k(s) k(s′)). It follows that f is universally injective if

and only if for any field k′ containing k(s), the scheme Spec (k(x)⊗k(s) k′)
contains only one point. Let us prove that this last condition is equivalent

to saying that k(x) is a purely inseparable algebraic extension of k(s). For

convenience, we denote k(s) by k, and k(x) by K.

If K is not algebraic over k, then we can find an element t in K which

is transcendental over k. We have k(t)⊗k k[T ] ∼= k(t)[T ]. Let m = (T − t)

be the prime ideal of k(t)[T ] generated by T − t. By the transcendence of t,

we have m∩ k[T ] = 0. On the other hand, the zero prime ideal p of k(t)[T ]

also has the property p ∩ k[T ] = 0. It follows that there are at least two

points in the fiber of

Spec k(t)[T ] → Spec k[T ]

over the zero prime ideal of k[T ]. Hence Spec (k(t) ⊗k k(T )) contains at

least two points. Since

Spec (K ⊗k k(T )) → Spec (k(t)⊗k k(T ))
is surjective, Spec (K ⊗k k(T )) contains at least two points.

If K is algebraic over k, but not pure inseparable over k, then we can

find a subfield F of K strictly containing k and separable over k. Let k̄

be an algebraic closure of k. Then Spec (F ⊗k k̄) contains more than one

point. As

Spec (K ⊗k k̄) → Spec (F ⊗k k̄)
is surjective, Spec (K ⊗k k̄) contains more than one point.

If K is a purely inseparable algebraic extension of k, then for any t ∈ K,

we have tp
n ∈ k for a large integer n, where p is the characteristic of k.
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For any field k′ containing k, and any t′ ∈ K ⊗k k′, we have t′p
n ∈ k′ for a

large integer n. Let p be a prime ideal of K ⊗k k′. We have p∩ k′ = 0. For

any t′ ∈ p, suppose t′p
n ∈ k′. Then t′p

n ∈ p∩ k′ = 0. So any prime ideal of

K ⊗k k′ is nilpotent. This implies that K ⊗k k′ has only one prime ideal.

(ii)⇒(iv) Given a point z in X ×S X , let K be an algebraic closure

of k(z). We then have a morphism t : SpecK → X ×S X with image z.

Let p1, p2 : X ×S X → X be the projections. We have fp1t = fp2t. So

p1t = p2t by our assumption. Let t′ = p1t = p2t. Then we have

pi(Δt
′) = (piΔ)t′ = t′ = pit (i = 1, 2).

So we have Δt′ = t. In particular, z lies in the image of Δ. So Δ is

surjective.

(iv)⇒(ii) Let t1, t2 : SpecK → X be two morphisms such that ft1 =

ft2. Then there exists a morphism t : SpecK → X×SX such that pit = ti
for i = 1, 2. Let z be the image of t. Since Δ is surjective, there exists a

point x ∈ X such that Δ(x) = z. Since Δ is an immersion, it induces an

isomorphismΔ : k(z)
∼=→ k(x). So there exists a morphism t′ : SpecK → X

such that Δt′ = t. But then

ti = pit = piΔt
′ = t′ (i = 1, 2).

So we have t1 = t2. �

Proposition 1.7.2. Consider a Cartesian diagram

X ×S S′ g
′

→ X

f ′ ↓ ↓ f
S′

g→ S.

Assume g is surjective.

(i) f is surjective if and only if f ′ is so.

(ii) If f ′ is injective, then so is f .

(iii) f is radiciel if and only if f ′ is so.

Proof. For any s′ ∈ S′, we have

f ′−1(s′) ∼= f−1(g(s′))⊗k(g(s′)) k(s′).
The projection f ′−1(s′) → f−1(g(s′)) is surjective by 1.2.4 and the fact

that k(s′) is faithfully flat over k(g(s′)). So f ′−1(s′) 	= Ø if and only if

f−1(g(s′)) 	= Ø. Since g is surjective, this implies (i). If f ′ is injective, then
f ′−1(s′) contains at most one point. So f−1(g(s′)) contains at most one

point, and hence f is injective. This shows (ii). (iii) follows from (ii). �
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Proposition 1.7.3. Consider a Cartesian diagram

X ×S S′ g
′

→ X

f ′ ↓ ↓ f
S′

g→ S.

Assume g is quasi-compact and surjective. Then f is quasi-compact if and

only if f ′ is so.

Proof. Suppose f is quasi-compact. To prove that f ′ is quasi-compact,

it suffices to show that for any affine open subset V ′ of S′ such that g(V ′)
is contained in an affine open subset V of S, f ′−1(V ′) is a union of finitely

many affine open subsets of X ×S S′. We can write f−1(V ) =
⋃n
i=1 Ui for

finitely many affine open subsets Ui in X . Then we have

f ′−1(V ′) =
n⋃
i=1

(V ′ ×V Ui),

where each V ′ ×V Ui is regarded as an affine open subscheme of X ×S S′.
Conversely suppose f ′ is quasi-compact. Let V be a quasi-compact open

subset of S. Since g is surjective, we have V = g(g−1(V )). So

f−1(V ) = f−1(g(g−1(V )) = g′(f ′−1g−1(V )).

Since g and f ′ are quasi-compact, f ′−1g−1(V ) is quasi-compact, and hence

f−1(V ) = g′(f ′−1g−1(V )) is quasi-compact. So f is quasi-compact. �

Proposition 1.7.4. Consider a Cartesian diagram

X ×S S′ g
′

→ X

f ′ ↓ ↓ f
S′

g→ S.

Assume g is quasi-compact and faithfully flat. Then f is of finite type if

and only if so is f ′.

The proof is similar to that of 1.6.6.

Proposition 1.7.5. Let g : Y ′ → Y be a flat morphism and let Z be a

subset of Y . Assume there exists a quasi-compact morphism f : X → Y

such that Z = f(X). Then g−1(Z) = g−1(Z).

Proof. The inclusion g−1(Z) ⊂ g−1(Z) is clear. Let y′ ∈ g−1(Z). We

need to show y′ ∈ g−1(Z). Choose an affine open neighborhood U ′ =
SpecA′ of y′ and an affine open neighborhood U = SpecA of g(y′) such
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that g(U ′) ⊂ U . We have y′ ∈ U ′ ∩ g−1(Z ∩ U ∩U). To prove y′ ∈ g−1(Z),
it suffices to show y′ ∈ g−1(Z ∩ U) ∩ U ′. Moreover, Z ∩ U is the image

of the quasi-compact morphism f−1(U) → U induced by f . We are thus

reduced to the case where Y ′ = SpecA′ and Y = SpecA are affine and A′

is a flat A-algebra. Since f : X → Y is quasi-compact and Y is now affine,

we can cover X by finitely many open affine subsets Vi. Replacing X by∐
i Vi, we may assume X = SpecB for some A-algebra B. Let I be the

kernel of A→ B. We have

g−1(Z) = g−1(f(X)) = g−1(V (I)) = V (IA′).

Let

f ′ : X ′ = Spec (A′ ⊗A B) → Y ′ = SpecA′

be the base change of f . Since A′ is flat over A, the kernel of A′ → A′⊗AB
is IA′. It follows that f ′(X ′) = V (IA′). So we have

g−1(Z) = g−1(f(X)) = f ′(X ′) = V (IA′).

We thus have g−1(Z) = g−1(Z). This proves our assertion. �

Corollary 1.7.6. Let g : Y ′ → Y be a quasi-compact flat morphism,

and let Z ′ be a closed subset of Y ′ satisfying Z ′ = g−1(g(Z ′)). Then

Z ′ = g−1(g(Z ′)). Moreover, the subspace topology on g(Y ′) induced from Y

coincides with the quotient topology induced from Y ′.

Proof. The first assertion follows from 1.7.5. To prove the second asser-

tion, note that since the morphism g : Y ′ → Y is continuous, every subset of

g(Y ′) that is closed with respect to the subspace topology induced from Y is

closed with respect to the quotient topology induced from Y ′. Conversely,
let Z be a subset of g(Y ′) closed with respect to the quotient topology

induced from Y ′. Then g−1(Z) is closed. Applying the first assertion to

Z ′ = g−1(Z), we get g−1(Z) = g−1(g(g−1(Z))), that is, g−1(Z) = g−1(Z).
Hence Z = Z ∩ g(Y ′). So Z is closed with respect to the topology induced

from Y . �

Corollary 1.7.7. Assume g : Y ′ → Y is a quasi-compact faithfully flat

morphism. Then the topology on Y coincides with the quotient topology

induced from Y ′.

Corollary 1.7.8. Let g : S′ → S be a quasi-compact faithfully flat mor-

phism, S′′ = S′ ×S S′, O(S) (resp. O(S′), resp. O(S′′)) the set of open

subsets of S (resp. S′, resp. S′′), and F(S) (resp. F(S′), resp. F(S′′)) the
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set of closed subsets of S (resp. S′, resp. S′′). Then the following sequences

are exact:

O(S) → O(S′)
p−1
1

⇒
p−1
2

O(S′′), F(S) → F(S′)
p−1
1

⇒
p−1
2

F(S′′).

Corollary 1.7.9. Assume g : Y ′ → Y is a quasi-compact faithfully flat

morphism. Let Z be a subset of Y which is the image of a quasi-compact

morphism. (For example, Y is noetherian and Z is constructible.) Then Z

is locally closed if and only if g−1(Z) is so.

Proof. Consider the Cartesian diagram

g−1(Z) → Z

↓ ↓
Y ′

g→ Y,

wherein we put a closed subscheme structure on Z. The morphism

g−1(Z) → Z is quasi-compact and faithfully flat. By 1.7.5, we have

g−1(Z) = g−1(Z). If g−1(Z) is locally closed, then it is open in g−1(Z).
By 1.7.7, Z is open in Z. So Z is locally closed. �

Corollary 1.7.10. Consider a Cartesian diagram

X ×S S′ g
′

→ X

f ′ ↓ ↓ f
S′

g→ S.

Assume g is quasi-compact and faithfully flat. If f ′ is an open mapping

(resp. a closed mapping, resp. a quasi-compact embedding, resp. a homeo-

morphism), then f is so.

Proof. For any subset Z of X , we have g−1(f(Z)) = f ′(g′−1(Z)). If Z

is open (resp. closed) and f ′ is an open mapping (resp. a closed mapping),

then f ′g′−1(Z) is open (resp. closed). So g−1(f(Z)) is open (resp. closed).

By 1.7.7, f(Z) is open (resp. closed). So f is an open (resp. closed)

mapping. Suppose f ′ is a quasi-compact embedding. Then f is injective

by 1.7.2, and quasi-compact by 1.7.3. Let Z be a closed subset of X . By

1.7.5, we have

g−1(f(Z)) = g−1(f(Z)) = f ′(g′−1(Z)).

Since f ′ is an embedding, we have

f ′−1(f ′(g′−1(Z))) = g′−1(Z).
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It follows that

g′−1(f−1(f(Z))) = f ′−1(g−1(f(Z))) = f ′−1(f ′(g′−1(Z))) = g′−1(Z).

Since g′ is surjective, this implies that f−1(f(Z)) = Z. Hence f is an

embedding. If f ′ is a homeomorphism, then f is an embedding by what we

have proved, and f is surjective by 1.7.2. So f is a homeomorphism. �

Corollary 1.7.11. Consider a Cartesian diagram

X ×S S′ g
′

→ X

f ′ ↓ ↓ f
S′

g→ S.

Assume g is quasi-compact and faithfully flat. Then f is universally open,

universally closed, or universally a homeomorphism, if and only if f ′ is so.

Corollary 1.7.12. Consider a Cartesian diagram

X ×S S′ g
′

→ X

f ′ ↓ ↓ f
S′

g→ S.

Assume g is quasi-compact and faithfully flat. Then f is separated or proper

if and only if so is f ′.

Proof. f is separated if and only if the diagonal morphism X → X×SX
is a closed mapping. f is proper if it is of finite type, separated, and

universally closed. Our assertions follow from 1.7.10, 1.7.4, and 1.7.11. �

1.8 Descent of Schemes

([SGA 1] VIII 2, 5.)

Proposition 1.8.1. Let g : S′ → S be a morphism of schemes.

(i) Suppose g is surjective and OS → g∗OS′ is injective. Then g is an

epimorphism in the category of schemes.

(ii) Suppose g is surjective and the topology on S is the quotient topology

induced from S′. Let S′′ = S′ ×S S′, let p1, p2 : S′′ = S′ ×S S′ → S′ be the

projections, and let h : S′′ → S be the canonical morphism. Assume

OS → g∗OS′
p�1
⇒
p�2

h∗OS′′
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is exact. Then for any scheme Z, the sequence

Hom(S,Z)
g∗→ Hom(S′, Z)

p∗1
⇒
p∗2

Hom(S′′, Z)

is exact, where g∗ maps a morphism f : S → Z to fg, and p∗i (i = 1, 2)

map a morphism f : S′ → Z to fpi : S
′′ → Z.

Proof. We leave the proof of (i) to the reader. Let us prove (ii). By (i),

the map g∗ : Hom(S,Z) → Hom(S′, Z) is injective. Let f ′ : S′ → Z be a

morphism of schemes such that f ′p1 = f ′p2. For any s′1, s′2 ∈ S′ such that

g(s′1) = g(s′2), there exists s′′ ∈ S′′ such that pi(s
′′) = s′i (i = 1, 2). We

then have

f ′(s′1) = f ′p1(s′′) = f ′p2(s′′) = f ′(s′2).

As g is surjective, there exists a map f : S → Z on the underlying set such

that fg = f ′. Since the topology on S is the quotient topology induced

from S′, f is continuous. We have a commutative diagram

f ′∗OS′ → f ′∗p1∗OS′′

↗ �‖ �‖
OZ → f∗g∗OS′

p�1
⇒
p�2

f∗h∗OS′′

↘ �‖ �‖
f ′∗OS′ → f ′∗p2∗OS′′ .

Since f ′p1 = f ′p2, the image of the morphism OZ → f∗g∗OS′ lies in the

kernel of f∗g∗OS′ ⇒ f∗h∗OS′′ . By our assumption, we have an exact se-

quence

f∗OS → f∗g∗OS′ ⇒ f∗h∗OS′′ .

So the morphism OZ → f∗g∗OS′ induces a morphism OZ → f∗OS . The pair
formed by the continuous map f : S → Z and the morphism OZ → f∗OS
of sheaves of rings defines a morphism f : S → Z of ringed spaces such that

f ′ = fg. For any s′ ∈ S′, the composite of the homomorphisms

OZ,fg(s′)
f�
g(s′)→ OS,g(s′)

g�
s′→ OS′,s′

coincides with the homomorphism f ′s′ : OZ,fg(s′) → OS′,s′ . Since f ′ and g
are morphisms of schemes, f ′s′ and gs′ are local homomorphisms of local

rings. It follows that f g(s′) is also a local homomorphism. Hence f is a

morphism of schemes. �
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Corollary 1.8.2. Let g : S′ → S be a quasi-compact faithfully flat mor-

phism, and let S′′ = S′ ×S S′. For any scheme Z, the sequence

Hom(S,Z) → Hom(S′, Z) ⇒ Hom(S′′, Z)

is exact.

Proof. Use 1.6.2, 1.7.7, and 1.8.1. �

Corollary 1.8.3. Let g : S′ → S be a quasi-compact faithfully flat

morphism, S′′ = S′ ×S S′, X and Y two S-schemes, X ′ = X ×S S′,
Y ′ = Y ×S S′, X ′′ = X ×S S′′, and Y ′′ = Y ×S S′′. Then the sequence

HomS(X,Y ) → HomS′(X ′, Y ′) ⇒ HomS′′(X ′′, Y ′′)

is exact.

Proof. By 1.8.2, the sequences

Hom(X,Y ) → Hom(X ′, Y ) ⇒ Hom(X ′′, Y )

Hom(X,S) → Hom(X ′, S) ⇒ Hom(X ′′, S)

are exact. It follows that the sequence

HomS(X,Y ) → HomS(X
′, Y ) ⇒ HomS(X

′′, Y )

is exact. The above sequence can be identified with the sequence in the

corollary. �

Corollary 1.8.4. In the notation of 1.8.3, let f : X → Y be an S-

morphism, and let f ′ : X ′ → Y ′ be the base change of f . Then f is

an isomorphism if and only if so is f ′.

Proof. Suppose f ′ is an isomorphism. Let g′ be its inverse. Then g′ lies
in the kernel of HomS′(Y ′, X ′) ⇒ HomS′′(Y ′′, X ′′) since its images under

these two maps are both the inverse of the base change f ′′ : X ′′ → Y ′′ of f .
Thus there exists an S-morphism g : Y → X so that g′ is its base change.

Since g′f ′ = idX′ and the map HomS(X,X) → HomS′(X ′, X ′) is injective,
we have gf = idX . Similarly, we have fg = idY . So f is an isomorphism.

�

Corollary 1.8.5. Under the assumption of 1.8.4, f is a closed immersion,

an open immersion, or a quasi-compact immersion, if and only if f ′ is so.
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Proof. Suppose f ′ is a closed immersion. By 1.6.5, there exists a closed

immersion f0 : X0 → Y such that we have an isomorphism φ′ : X ′
∼=→ X ′0

with the property that f ′0φ
′ = f ′, where f ′0 : X ′0 = X0 ×S S′ → Y ′ is the

base change of f0. Let p∗i (φ
′) (i = 1, 2) be the images of the φ′ under the

maps HomY ′(X ′, X ′0) ⇒ HomY ′′(X ′′, X ′′0 ). We have

f ′′0 p
∗
1(φ
′) = f ′′ = f ′′0 p

∗
2(φ
′),

where f ′′ and f ′′0 are the base changes of f and f0, respectively. Since f
′′
0 is

a closed immersion, this implies that p∗1(φ
′) = p∗2(φ

′). By 1.8.3, there exists

a morphism φ : X → X0 such that φ′ is its base change and f0φ = f . By

1.8.4, φ is an isomorphism. As f0 is a closed immersion, so is f .

Using the same argument and 1.7.8, one can show if f ′ is an open

immersion, then so is f .

Suppose f ′ is a quasi-compact immersion. Then f is quasi-compact by

1.7.3, and f(X) is locally closed in Y by 1.7.9. Let U be an open subset of

Y so that f(X) is closed in U , and let U ′ be the inverse image of U in Y ′.
Then f ′ induces a closed immersion X ′ → U ′. By the above discussion, f

induces a closed immersion X → U . So f is an immersion. �

Proposition 1.8.6. Let g : S′ → S be a quasi-compact faithfully flat

morphism, S′′ = S′ ×S S′, S′′′ = S′ ×S S′ × S′, p1, p2 : S′′ → S′

and p12, p13, p23 : S′′′ → S′′ the projections. Suppose X ′ is an S′-
scheme provided with an S′′-isomorphism σ : p∗1X

′ ∼=→ p∗2X
′ satisfying

p∗13(σ) = p∗23(σ)◦p∗12(σ), where p∗iX ′ (i = 1, 2) are defined by the Cartesian

diagrams

p∗iX
′ → X ′

↓ ↓
S′′

pi→ S′.

If X ′ is affine over S′, then there exist an S-scheme X and an S′-
isomorphism τ : g∗X

∼=→ X ′ such that the diagram

p∗1g∗X
p∗1τ→ p∗1X ′

�‖ ↓ σ
p∗2g
∗X

p∗2τ→ p∗2X
′

commutes, where g∗X = X ×S S′. The S-scheme X is unique up to a

unique isomorphism, and X is affine over S.

Any S′′-isomorphism σ : p∗1X
′ ∼=→ p∗2X

′ satisfying p∗13(σ) = p∗23(σ) ◦
p∗12(σ) is called a descent datum for the S′-scheme X ′.
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Proof. Let f ′ : X ′ → S′ be the structure morphism and let A ′ = f ′∗OX′ .

Then A ′ is a quasi-coherent OS′ -algebra. The descent datum on X ′ defines
a descent datum on A ′. By 1.6.1 (ii), there exist a quasi-coherent OS-

module A and an isomorphism τ : g∗A
∼=→ A ′ such that the diagram

p∗1g
∗A

p∗1τ→ p∗1A
′

�‖ ↓ σ
p∗2g
∗A

p∗2τ→ p∗2A
′

commutes. By 1.6.1 (i), the morphism A ′ ⊗O′
S

A ′ → A ′ defining the

multiplication on A ′ can be descended down to a morphism A ⊗OSA → A ,

and this defines an OS-algebra structure on A . Indeed, the associative law,

the commutative law, and the distributive law for A are equivalent to the

commutativity of some diagrams involving tensor products of A , and these

diagrams commute by 1.6.1 (i) and the commutativity of the corresponding

diagrams for A ′. Set X = SpecA . Then X has the required property. �

Corollary 1.8.7. Under the assumption of 1.8.4, f is affine if and only if

f ′ is affine.

Proof. Suppose f ′ is affine. Then f ′ is quasi-compact and separated. By

1.7.3 and 1.7.12, f is quasi-compact and separated. So f∗OX is a quasi-

coherent OY -module ([Fu (2006)] 1.4.9 (iii), [EGA] I 9.2.1, [Hartshorne

(1977)] II 5.8 (c)). Since the base change is flat, the inverse image of

f∗OX on Y ′ is isomorphic to f ′∗OX′ ([Fu (2006)] 2.4.10, [EGA] III 1.4.15,

[Hartshorne (1977)] III 9.3). The base change of the canonical Y -morphism

X → Spec f∗OX can be identified with the canonical Y ′-morphism X ′ →
Spec f ′∗OX′ . Since f ′ is affine, the morphism X ′ → Spec f ′∗OX′ is an

isomorphism. By 1.8.4, the morphism X → Spec f∗OX is an isomorphism.

So f is affine. �

Corollary 1.8.8. Under the assumption of 1.8.4, f is integral, finite, or

finite and locally free, if and only if f ′ is so.

Proof. We prove the statement about integral morphisms, and leave the

rest to the reader. Suppose f ′ is integral. By 1.8.7, f is affine. To prove

f is integral, we may reduce to the case where X = SpecB, Y = SpecA,

and Y ′ = SpecA′ are affine. We have B = lim−→i
Bi, where Bi are finitely

generated A-subalgebras of B. Since A′ is flat over A, Bi ⊗A A′ are subal-

gebras of B ⊗A A′, and they are finitely generated over A′. Moreover, we

have B⊗AA′ ∼= lim−→i
Bi⊗A A′. Since B⊗A A′ is integral over A′, Bi⊗A A′
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are finitely generated as A′-modules. By 1.6.6, Bi are finitely generated as

A-modules. So B is integral over A. Hence f is integral. �
A scheme is called quasi-affine if it is isomorphic to a quasi-compact

open subscheme of an affine scheme. A morphism f : X → Y is called

quasi-affine if there exists an affine open covering {Vi} of Y such that

f−1(Vi) are quasi-affine. Any quasi-affine morphism is quasi-compact and

separated.

Proposition 1.8.9. A morphism f : X → Y is quasi-affine if and only

if it is quasi-compact, separated, and the canonical Y -morphism X →
Spec f∗OX is an open immersion.

Proof. Note that if f is quasi-compact and separated, then f∗OX
is a quasi-coherent OY -algebra, and we can talk about the Y -scheme

Spec f∗OX . Suppose f is quasi-affine, and let us prove that the Y -

morphism X → Spec f∗OX is an open immersion. We may reduce to

the case where Y is affine, and prove that if X is a quasi-affine scheme,

then the canonical morphism X → Spec Γ(X,OX) is an open immersion.

Suppose X is a quasi-compact open subscheme of an affine scheme SpecA.

We can find a1, . . . , an ∈ A such that X = D(a1) ∪ · · · ∪D(an). We have a

commutative diagram

X ↪→ SpecA,

↓ ↗
Spec Γ(X,OX)

where the morphism Spec Γ(X,OX) → SpecA is the morphism induced by

the homomorphism A → Γ(X,OX). For each i, let a′i ∈ Γ(X,OX) be the

image of ai, and let

Xa′i = {x ∈ X |a′i is a unit in OX,x}.
Restricted to D(ai), the above diagram induces a commutative diagram

Xa′i = D(ai).

↓ ↗
Spec Γ(X,OX)a′i

So Xa′i = D(ai) is affine, and hence we have

Xa′i
∼= Spec Γ(Xa′i ,OX).

On the other hand, we have

Γ(Xa′i ,OX) ∼= Γ(X,OX)a′i .

([Fu (2006)] 1.3.9 (iii), [EGA] I 9.3.3, [Hartshorne (1977)] II 5.14.) It

follows that Xa′i → Spec Γ(X,OX)a′i is an isomorphism. Hence X →
Spec Γ(X,OX) is an open immersion. �
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Corollary 1.8.10. Under the assumption of 1.8.4, f is quasi-affine if and

only if f ′ is so.

Proof. Suppose f ′ is quasi-affine. Then f ′ is quasi-compact and sepa-

rated. This implies that f is quasi-compact and separated. The base change

of the canonical Y -morphism X → Spec f∗OX can be identified with the

canonical Y ′-morphism X ′ → Spec f ′∗OX , which is an open immersion. By

1.8.5, X → Spec f∗OX is an open immersion. So f is quasi-affine. �

Proposition 1.8.11. The same as 1.8.6, except that we assume X ′ is
quasi-affine over S′.

Proof. Using 1.6.1, one can show there exists a quasi-coherent OS-

algebra A such that g∗A ∼= f ′∗OX′ . By 1.7.8, there exists an open im-

mersion X ↪→ SpecA whose base change is the open immersion X ′ ↪→
Spec f ′∗OX′ . Then X has the required property. �

1.9 Quasi-finite Morphisms

([SGA 1] I 2, [EGA] II 6.2.)

Let (A,m) → (B, n) be a local homomorphism of local rings. We say that

B is quasi-finite over A if B/mB is finite dimensional over A/m.

Lemma 1.9.1. Let f : X → Y be a morphism of finite type and let x ∈ X.

The following conditions are equivalent:

(i) x is isolated in f−1(f(x)).
(ii) OX,x is quasi-finite over OY,f(x).

If these conditions hold, we say f is quasi-finite at x.

Proof. Replacing the morphism X → Y by f−1(f(x)) → Spec k(f(x))

does not change OX,x/mf(x)OY,f(x) and OY,f(x)/mf(x)OY,f(x). So we may

assume Y = Spec k for some field k.

(i)⇒(ii) Replacing X by a neighborhood of x, we may assume that X

consists of one point. Since f is of finite type, we haveX = SpecB for some

finitely generated k-algebra B with a single prime ideal n. It follows that

B/n is finite dimensional over k, and n is nilpotent. Suppose nn = 0. Since

B is a noetherian ring, for each 1 ≤ i ≤ n, ni−1/ni is finite dimensional

over B/n, and hence finite dimensional over k. It follows that B is finite

dimensional over k.
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(ii)⇒(i) Replacing X by an affine open neighborhood of x, we may

assume X = SpecB for some finitely generated k-algebra B. Let q be the

prime ideal ofB corresponding to the point x. Then Bq is finite dimensional

over k. This implies that Bq is an artinian ring, and hence q is a minimal

prime ideal of B. Thus x is the generic point of an irreducible component

of X . Moreover, Bq/qBq is finite dimensional over k. Hence B/q is finite

dimensional over k. So B/q is a field, and q is a maximal ideal of B. Thus

x is a closed point of X , and the irreducible component with generic point

x consists of only one point. Therefore x is isolated in X . �

Lemma 1.9.2. Let k be a field and let A be a finitely generated k-algebra.

The following conditions are equivalent:

(i) SpecA is discrete as a topological space.

(ii) SpecA is finite as a set.

(iii) A has only finitely many maximal ideals.

(iv) A is a finite dimensional k-algebra.

Proof.

(i)⇒(ii) SpecA is quasi-compact. If it is discrete, it must be finite.

(ii)⇒(iii) Trivial.

(iii)⇒(i) Let m1, . . . ,mn be all the maximal ideals of A. Since A is a

Jacobson ring, any prime ideal of A is the intersection of some maximal

ideals. Suppose p = ∩jmij is a prime ideal. Then we have p ⊃ ∏j mij .

Hence p ⊃ mij for some j. By the maximality of mij , we have p = mij . So

any prime ideal of A is a maximal ideal. Hence any point in SpecA is a

closed point. As SpecA is finite, it must be discrete.

(i)⇒(iv) We have shown that SpecA is a finite discrete topological

space. Let m1, . . . ,mn be all the maximal ideals of A. We then have

SpecA ∼= SpecAm1

∐
· · ·
∐

SpecAmn .

Hence

A ∼= Am1 × · · · ×Amn .

By the proof of 1.9.1, each Ami is finite dimensional over k. So A is finite

dimensional over k.

(iv)⇒(ii) If A is finite dimensional over k, then it is an artinian ring.

Hence SpecA is finite. �

Proposition 1.9.3. Let f : X → Y be a morphism of finite type. The

following conditions are equivalent:
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(i) For any y ∈ Y , f−1(y) is discrete as a topological space.

(ii) For any x ∈ X, OX,x is quasi-finite over OY,f(x).

(iii) For any y ∈ Y , f−1(y) is a finite set.

If these conditions hold, we say that f is quasi-finite.

Proof.

(i)⇔(ii) follows from 1.9.1.

(i)⇔(iii) follows from 1.9.2. �

Proposition 1.9.4. Consider a Cartesian diagram

X ×Y Y ′ g
′

→ X

f ′ ↓ ↓ f
Y ′

g→ Y.

Suppose g is quasi-compact and faithfully flat. Then f is quasi-finite if and

only if f ′ is so.

Proof. Apply 1.7.4 and 1.9.2. �

Lemma 1.9.5. Let (A,m) be a local noetherian ring, and let M be an

A-module such that M/mM is finite dimensional over A/m. Then M̂ =

lim←−kM/mkM is finitely generated over Â = lim←−k A/m
k.

Proof. Let {x(0)1 , . . . , x
(0)
k } be a family of generators for the A/m-module

M/mM . Choose x
(i)
1 , . . . , x

(i)
k ∈M/mi+1M by induction on i so that their

images in M/miM are x
(i−1)
1 , . . . , x

(i−1)
k , respectively. For each i, consider

the homomorphism

(A/mi+1)k →M/mi+1M, (a1, . . . , ak) �→ a1x
(i)
1 + · · ·+ akx

(i)
k .

It is surjective by Nakayama’s lemma. Let Ri be its kernel. We have an

exact sequence

0 → Ri → (A/mi+1)k →M/mi+1M → 0.

Each Ri is an (A/mi+1)-module of finite length since A/mi+1 is artinian

and Ri is finitely generated. By [Fu (2006)] 1.5.1 or [EGA] 0 13.2.2, the

sequence

0 → lim←−
i

Ri → lim←−
i

(A/mi+1)k → lim←−
i

M/mi+1M → 0

is exact. In particular, we have an epimorphism Âk → M̂ . So M̂ is a

finitely generated Â-module. �
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Lemma 1.9.6. Let (A,m) → (B, n) be a local homomorphism of local

noetherian rings, let Â = lim←−k A/m
k, and let B̂ = lim←−k B/n

k.

(i) B is quasi-finite over A if and only if B/n is finite dimensional over

A/m, and there exists a positive integer n such that nn ⊂ mB ⊂ n.

(ii) If B is quasi-finite over A, then B̂ is finite over Â.

Proof.

(i) Suppose B/mB is finite dimensional over A/m. Then B/n is finite

dimensional over A/m. Moreover B/mB is an artinian ring. So its maximal

ideal n/mB is nilpotent. Hence there exists a natural number n such that

nn ⊂ mB ⊂ n.

Conversely, suppose B/n is finite dimensional overA/m, and there exists

a natural number n such that nn ⊂ mB ⊂ n. To prove that B/mB is finite

dimensional over A/m, it suffices to prove that B/nn is an A-module of

finite length. We are then reduced to proving that ni−1/ni is an A-module

of finite length for each 1 ≤ i ≤ n. Since B is noetherian, each ni−1/ni is
finite dimensional over B/n, and hence finite dimensional over A/m. Our

assertion follows.

(ii) By (i), we have

B̂ = lim←−
k

B/nk ∼= lim←−
k

B/mkB.

We then apply 1.9.5. �

Proposition 1.9.7. Let A be a complete noetherian local ring, Y = SpecA,

f : X → Y a separated quasi-finite morphism, and x ∈ X a point over the

closed point of Y . Then OX,x is finite over A, and the canonical morphism

SpecOX,x → X is an open and closed immersion.

Proof. By 1.9.6, ÔX,x is finite over A. So OX,x is finite over A. Let

g be the canonical morphism SpecOX,x → X . Then fg is finite. Since

f is separated, g is finite. So g(SpecOX,x) is closed in X . On the other

hand, g induces an isomorphism of the local ring of X at x with the local

ring of SpecOX,x at its closed point. By [Fu (2006)] 1.3.13 (iii) or [EGA]

I 6.5.4 (ii), g is an open immersion when restricted to a sufficiently small

open neighborhood of the closed point of SpecOX,x. But SpecOX,x is the

only open neighborhood of the closed point. Hence g is an open and closed

immersion. �

Corollary 1.9.8. Let A be a complete noetherian local ring, Y = SpecA,

and f : X → Y a separated quasi-finite morphism. Then X is the disjoint

union of two open and closed subsets X ′ and X ′′ such that X ′ is finite over

Y , and that the fiber of X ′′ → Y over the closed point of Y is empty.
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1.10 Passage to Limit

([EGA] IV 8, [SGA 1] VIII 6.)

Throughout this section, we fix a scheme S0, a direct set I, and a direct

system (Aλ, φλμ), where Aλ (λ ∈ I) are quasi-coherent OS0 -algebras, and

φλμ : Aλ → Aμ (λ ≤ μ) are morphisms of OS0-algebras. Let A = lim−→λ
Aλ

and let φλ : Aλ → A be the canonical morphisms. Set Sλ = SpecAλ

and S = SpecA . They are S0-schemes. Let uλμ : Sμ → Sλ be the S0-

morphisms induced by φλμ and uλ : S → Sλ the S0-morphisms induced by

φλ. We denote an object over S0 by a symbol with subscript 0, and denote

the corresponding object over Sλ (resp. S) induced by base change by

the same symbol with subscript λ (resp. without subscript). For example,

for any OS0-module F0, let Fλ (resp. F ) be the inverse images of F0

on Sλ (resp. S). For any morphism f0 : F0 → G0 of OS0-modules, let

fλ : Fλ → Gλ and f : F → G be the morphisms induced by f0. For

any S0-scheme X0, let Xλ = X0 ×S0 Sλ and let X = X0 ×S0 S. For any

S0-morphism f0 : X0 → Y0 of S0-schemes, let fλ : Xλ → Yλ and f : X → Y

be the morphisms induced by f0.

In this section, we prove that given an object over S0, if its base change

to S has some property, then its base changes to Sλ have the same property

for sufficiently large λ. We often apply results of this section to the following

two situations:

(a) Let A be a ring and let {Aλ} be the direct system of subalgebras of A

finitely generated by Z. We have A = lim−→λ
Aλ. Using results of this section,

we can often reduce problems over a general base scheme S = SpecA to

problems over a noetherian base schemes Sλ = SpecAλ.

(b) Let S0 be an affine scheme, let x be a point in S0, let {Sλ} be

the inverse system of affine open neighborhoods of x in S0, and let S =

SpecOS0,x. We have OS0,x = lim−→λ
Γ(Sλ,OSλ). Using results in this section,

we can often prove that if the base change to SpecOS0,x of an object over

S0 has some property, then its base change to a neighborhood of x has the

same property.

Proposition 1.10.1.

(i) S is the inverse limit of the inverse system (Sλ, uλμ) in the category

of schemes.

(ii) For any quasi-compact open subset U of S, there exists a quasi-

compact open subset Uλ of Sλ for some λ such that u−1λ (Uλ) = U .

(iii) The underlying topological space of S is the inverse limit of the
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inverse system (Sλ, uλμ) in the category of topological spaces.

(iv) If S0 is quasi-compact and S = Ø, then Sλ = Ø for sufficiently

large λ.

(v) Suppose S0, Sλ, S are noetherian schemes. Let E0 be a constructible

subset of S0 and let Eλ (resp. E) be the inverse images of E0 in Sλ (resp.

S). If E = Ø (resp. E = S), then Eλ = Ø (resp. Eλ = Sλ) for sufficiently

large λ.

Proof.

(i) First we show S is the inverse limit of (Sλ, uλμ) in the category of S0-

schemes. Let f : T → S0 be an S0-scheme. We need to show the canonical

map

HomS0(T, S) → lim←−
λ

HomS0(T, Sλ)

is bijective. We have

HomS0(T, Sλ)
∼= HomOS0

(Aλ, f∗OT ),

HomS0(T, S)
∼= HomOS0

(A , f∗OT ).

Since A = lim−→λ
Aλ, the canonical map

HomOS0
(A , f∗OT ) → lim←−

λ

HomOS0
(Aλ, f∗OT )

is bijective. Our assertion follows.

Next we show that S is the inverse limit of (Sλ, uλμ) in the category of

schemes. Let T be a scheme. We need to show that the canonical map

Hom(T, S) → lim←−
λ

Hom(T, Sλ)

is bijective. Any f ∈ Hom(T, S0) defines an S0-scheme structure on T . Let

Homf (T, Sλ) (resp. Homf (T, S)) be the set of S0-morphisms with respect

to the S0-scheme structure on T defined by f . We have

Hom(T, Sλ) =
⋃

f∈Hom(T,S0)

Homf (T, Sλ),

Hom(T, S) =
⋃

f∈Hom(T,S0)

Homf (T, S).

We have shown that the canonical map

Homf (T, S) → lim←−
λ

Homf (T, Sλ)

is bijective. Our assertion follows.
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(ii) It suffices to show that there exists a base of topology for S consisting

of open subsets of the form u−1λ (Uλ), where Uλ are quasi-compact open

subsets of Sλ. We may reduce to the case where S0 is affine. Let Aλ =

Γ(S0,Aλ) and let A = Γ(S0,A ). Then Sλ ∼= SpecAλ and S ∼= SpecA.

Open subsets of SpecA of the form D(f) (f ∈ A) form a base of topology

for SpecA. Any f ∈ A is the image of some fλ ∈ Aλ for some λ. Then D(f)

is the inverse image of the open subset D(fλ) of SpecAλ. Our assertion

follows.

(iii) The morphisms uλ : S → Sλ induce a map S → lim←−λ Sλ on the

underlying topological spaces. To prove that it is a homeomorphism, we

may reduce to the case where S0 is affine. Keep the notation in the proof

of (ii). The canonical map

SpecA→ lim←−
λ

SpecAλ

is bijective on the underlying sets. Indeed, given any system of prime ideals

pλ of Aλ with φ−1λμ (pμ) = pλ (λ ≤ μ), let p = lim−→λ
pλ. Then p is the unique

prime ideal of A with the property φ−1λ (p) = pλ. We conclude from (ii)

that SpecA→ lim←−λ SpecAλ is a homeomorphism.

(iv) We may reduce to the case where S0 is affine. Keep the above

notation. Since S = Ø, we have 0 = 1 in A. Then we have 0 = 1 in Aλ for

sufficiently large λ. So Sλ = Ø for sufficiently large λ.

(v) Write E0 = ∪ni=1(Ui ∩ Fi), where Ui (resp. Fi) are open (resp.

closed) subsets of S0. Put the reduced subscheme structures on Ui ∩ Fi.

Let X0 =
∐n
i=1(Ui ∩ Fi) and let f0 : X0 → S0 be the canonical morphism.

We have E0 = f(X0) and hence Eλ = fλ(Xλ) and E = f(X). If E = Ø,

then X = Ø. With (iv) applied to the inverse system (Xλ), we get Xλ = Ø

for sufficiently large λ. Then Eλ = Ø for sufficiently large λ. The second

part of (v) follows from the first part applied to the constructible subset

S0 − E0. �

Proposition 1.10.2. Assume S0 is quasi-compact and quasi-separated.

(i) Let F0 and G0 be quasi-coherent OS0-modules. Suppose F0 locally

has finite presentation. Then the canonical map

lim−→
λ

HomOSλ
(Fλ,Gλ) → HomOS(F ,G )

is bijective.

(ii) Suppose F0 and G0 are quasi-coherent OS0-modules locally of fi-

nite presentation. If there exists an isomorphism f : F
∼=→ G , then for a

sufficiently large λ, there exists an isomorphism fλ : Fλ

∼=→ Gλ inducing f .
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(iii) For any quasi-coherent OS-module F locally with finite presenta-

tion, there exists a quasi-coherent OSλ-module Fλ locally with finite pre-

sentation for a sufficiently large λ such that F ∼= u∗λFλ.

We leave the proof to the reader. (Confer the proof of 1.10.9.) Applying

1.10.2 (i) to the case where F = OS0 , we get the following:

Corollary 1.10.3. Assume S0 is quasi-compact and quasi-separated. For

any quasi-coherent OS0-module G0, the canonical map

lim−→
λ

Γ(Sλ,Gλ) → Γ(S,G )

is bijective.

Let A be a ring and let B be an A-algebra. We say that B is an A-

algebra of finite presentation if it is isomorphic to A[t1, . . . , tn]/I for some

nonnegative integer n and some finitely generated ideal I of A[t1, . . . , tn].

Note that for any s ∈ A, As ∼= A[t]/(st − 1) is an A-algebra of finite

presentation.

Lemma 1.10.4. Let A0 be a ring, (Aλ, φλμ) a direct system of A0-algebras,

and A = lim−→λ
Aλ.

(i) Let B0 be an A0-algebra, Bλ = B0 ⊗A0 Aλ, B = B0 ⊗A0 A, (Cλ) a

direct system of A0-algebras such that we have a morphism of direct systems

from (Aλ) to (Cλ), and C = lim−→λ
Cλ. If B0 is an A0-algebra of finite type

(resp. finite presentation), then the canonical map

lim−→
λ

HomAλ(Bλ, Cλ) → HomA(B,C)

is injective (resp. bijective).

(ii) For any A-algebra B with finite presentation, there exists an Aλ-

algebra Bλ with finite presentation for a sufficiently large λ such that B ∼=
Bλ ⊗Aλ A.
Proof.

(i) We have one-to-one correspondences

HomAλ(Bλ, Cλ)
∼= HomA0(B0, Cλ), HomA(B,C) ∼= HomA0(B0, C).

It suffices to show that

lim−→
λ

HomA0(B0, Cλ) → HomA0(B0, C)

is injective (resp. bijective).
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Suppose B0 is of finite type over A0, and let x1, . . . , xn be a finite family

of generators of B0 over A0. If α1, α2 : B0 → Cλ are A0-homomorphisms

inducing the same homomorphism B0 → C, then α1(xi) and α2(xi) have

the same image in C for each i. Since C = lim−→μ≥λ Cμ, there exists μ ≥ λ

such that α1(xi) and α2(xi) have the same image in Cμ for each i. But

then α1 and α2 induce the same homomorphism B0 → Cμ. This proves

that our map is injective.

Suppose B0 is of finite presentation over A0. Then there exists an

epimorphism

π : A0[t1, . . . , tn] → B0

of A0-algebras such that kerπ is a finitely generated ideal of A0[t1, . . . , tn].

Let fj(t1, . . . , tn) (j = 1, . . . ,m) be a finite family of generators of kerπ.

Given an A0-homomorphism α : B0 → C, we have

fj(απ(t1), . . . , απ(tn)) = απ(fj(t1, . . . , tn)) = 0.

Since C = lim−→λ
Cλ, we can find yλ1, . . . , yλn ∈ Cλ for some λ such that

απ(ti) is the image of yλi in C for each i. Choosing λ sufficiently large,

we may assume fj(yλ1, . . . , yλn) = 0 (j = 1, . . . ,m). Define an A0-

homomorphism A0[t1, . . . , tn] → Cλ by mapping ti to yλi for each i. Then

kerπ is contained in the kernel of this homomorphism. So it induces an

A0-homomorphism αλ : B → Cλ. Its composite with Cλ → C is α. This

proves that our map is surjective.

(ii) We have B ∼= A[t1, . . . , tn]/I for some n and some finitely gen-

erated ideal I of A[t1, . . . , tn]. Let fj(t1, . . . , tn) (j = 1, . . . ,m) be a fi-

nite family of generators of I. As A = lim−→λ
Aλ, we can find a sufficiently

large λ and fλj(t1, . . . , tn) ∈ Aλ[t1, . . . , tn] whose images in A[t1, . . . , tn] are

fj(t1, . . . , tn), respectively. Let Bλ = Aλ[t1, . . . , tn]/(fλ1, . . . , fλm). Then

B ∼= Bλ ⊗Aλ A. �

A morphism f : X → Y of schemes is called locally of finite presentation

if for any x ∈ X , there exists an affine open neighborhood V = SpecB of

f(x) in Y , and an affine open neighborhood U = SpecC of x in f−1(V )

such that C is a B-algebra with finite presentation.

Proposition 1.10.5.

(i) Local isomorphisms are locally of finite presentation.

(ii) If two morphisms f : X → Y and g : Y → Z are locally of finite

presentation, then so is gf .
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(iii) If f : X → Y is a morphism locally of finite presentation, then for

any morphism g : Y ′ → Y , the base change f ′ : X ×Y Y ′ → Y ′ of f is

locally of finite presentation.

(iv) Given two morphisms f : X → Y and g : Y → Z, suppose g

is locally of finite type and gf is locally of finite presentation. Then f is

locally of finite presentation.

Proof. (iv) follows from (ii), (iii), and the fact that if g is locally of

finite type, then the diagonal morphism Δ : Y → Y ×Z Y is locally of

finite presentation. Indeed, if B is a finitely generated A-algebra, and

{b1, . . . , bn} ⊂ B is a finite family of generators, then the kernel of the

epimorphism

B ⊗A B → B, b ⊗ b′ �→ bb′

is generated by 1⊗ bi − bi ⊗ 1 (i = 1, . . . , n) as an ideal of B ⊗A B. �

Lemma 1.10.6. Let C be a ring and I an ideal of C. Suppose C/I is a

C-algebra of finite presentation. Then I is a finitely generated ideal of C.

Proof. Let u : C[t1, . . . , tn] → C/I be an epimorphism of C-algebras

so that keru is a finitely generated ideal of C[t1, . . . , tn]. Choose ci ∈ C

(i = 1, . . . , n) such that u(ti) are the images of ci in C/I respectively. Let

v : C[t1, . . . , tn] → C be the C-homomorphism defined by v(ti) = ci and let

p : C → C/I be the projection. We have u = pv, and hence keru = v−1(I).
It is obvious that v is surjective. So we have

I = v(v−1(I)) = v(keru).

Since keru is a finitely generated ideal of C[t1, . . . , tn], I is a finitely gen-

erated ideal of C. �

Corollary 1.10.7. Let A be a ring and B an A-algebra. If SpecB →
SpecA is locally of finite presentation, then B is an A-algebra of finite

presentation. Moreover, for any epimorphism u : A[t1, . . . , tn] → B, keru

is a finitely generated ideal of A[t1, . . . , tn].

Proof. Note that SpecB → SpecA is locally of finite type. This im-

plies that B is an A-algebra of finite type. So we have an epimorphism

A[t1, . . . , tn] → B. Let I be the kernel of this epimorphism. By 1.10.5, the

closed immersion

SpecA[t1, . . . , tn]/I → SpecA[t1, . . . , tn]
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is locally of finite presentation. This implies that there exist si ∈
A[t1, . . . , tn] (i = 1, . . . , k) such that D(si) form an open covering of

SpecA[t1, . . . , tn] and each A[t1, . . . , tn]si/Isi is an A[t1, . . . , tn]si -algebra

of finite presentation. By Lemma 1.10.6, Isi is a finitely generated ideal

of A[t1, . . . , tn]si . This implies that I is a finitely generated ideal of

A[t1, . . . , tn]. So B is an A-algebra of finite presentation. �

Proposition 1.10.8. Let A be a ring and B a finite A-algebra. Then B is

an A-algebra of finite presentation if and only if it is an A-module of finite

presentation.

Proof. Let xi (i = 1, . . . , n) be a finite family of generators of B as an

A-module. For each xi, let fi(t) ∈ A[t] be a monic polynomial such that

fi(xi) = 0. Then we have an epimorphism of A-algebras

u : A[t1, . . . , tn]/(f1(t1), . . . , fn(tn)) → B, ti �→ xi.

Note that

A[t1, . . . , tn]/(f1(t1), . . . , fn(tn)) ∼= A[t1]/(f1(t1))⊗A · · · ⊗A A[tn]/(fn(tn)).
Hence A[t1, . . . , tn]/(f1(t1), . . . , fn(tn)) is a free A-module of finite rank.

If B is an A-module of finite presentation, then keru is a finitely gener-

ated A-module, and hence a finitely generated ideal. It follows that B is

an A-algebra of finite presentation. Conversely, if B is an A-algebra of

finite presentation, then by 1.10.7, keru is a finitely generated ideal. But

A[t1, . . . , tn]/(f1(t1), . . . , fn(tn)) is a finitely generated A-module. So keru

is a finitely generated A-module. Hence B is an A-module of finite presen-

tation. �

A morphism f : X → Y is said to be of finite presentation if it is

quasi-compact, quasi-separated, and locally of finite presentation.

Proposition 1.10.9. Assume S0 is quasi-compact and quasi-separated.

(i) Let X0 and Y0 be S0-schemes such that X0 → S0 is quasi-compact

and quasi-separated, and that Y0 → S0 is locally of finite presentation. Then

the canonical map

lim−→
λ

HomSλ(Xλ, Yλ) → HomS(X,Y )

is bijective.

(ii) Suppose X0 and Y0 are S0-schemes of finite presentation. If there

exists an S-isomorphism f : X
∼=→ Y , then for a sufficiently large λ, there

exists an Sλ-isomorphism fλ : Xλ

∼=→ Yλ inducing f .
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(iii) For any S-scheme X of finite presentation, there exists an Sλ-

scheme Xλ of finite presentation for a sufficiently large λ such that X ∼=
Xλ ×Sλ S.
Proof.

(i) Identifying a morphism with its graph, we get one-to-one correspon-

dences

HomSλ(Xλ, Yλ) ∼= HomXλ(Xλ, Xλ ×Sλ Yλ),
HomS(X,Y ) ∼= HomX(X,X ×S Y ).

It suffices to show that

lim−→
λ

HomXλ(Xλ, Xλ ×Sλ Yλ) → HomX(X,X ×S Y )

is bijective. We are thus reduced to the case where X0 = S0, to prove that

lim−→
λ

HomSλ(Sλ, Yλ) → HomS(S, Y )

is bijective.

To prove that the above map is injective, we may assume S0 is affine

since the problem is local. Let fλ, f
′
λ : Sλ → Yλ be two Sλ-morphisms

inducing the same S-morphism S → Y by base change. Cover fλ(Sλ) ∪
f ′λ(Sλ) by affine open subsets V

(i)
λ (i ∈ I) in Yλ and cover each f−1λ (V

(i)
λ )∩

f ′−1λ (V
(i)
λ ) by affine open subsets U

(ij)
λ (j ∈ Ji) in Sλ. Then U (ij) (i ∈

I, j ∈ Ji) form an open covering of S. By 1.10.1 (iv), U
(ij)
μ (i ∈ I, j ∈ Ji)

form an open covering of Sμ for some μ ≥ λ. Since Sμ is quasi-compact,

this open covering has a finite subcovering. Changing notation, we may

assume that there exist finitely many affine open subsets V
(i)
μ (i = 1, . . . , n)

in Yμ, and affine open subsets U
(i)
μ (i = 1, . . . , n) in Sμ, such that U

(i)
μ cover

Sμ and

U (i)
μ ⊂ f−1μ (V (i)

μ ) ∩ f ′−1μ (V (i)
μ )

for all i. Note that the morphisms fμ|U(i)
μ
, f ′μ|U(i)

μ
: U

(i)
μ → V

(i)
μ induce the

same morphism U (i) → V (i) by base change. Since Sλ and V
(i)
λ are affine,

for any ν ≥ μ, we have

HomSν (U
(i)
ν , V (i)

ν ) ∼= HomΓ(Sν ,OSν )

(
Γ(V (i)

ν ,O
V

(i)
ν

),Γ(U (i)
ν ,O

U
(i)
ν
)
)
,

HomS(U
(i), V (i)) ∼= HomΓ(S,OS)

(
Γ(V (i),OV (i)),Γ(U (i),OU(i))

)
.

Moreover, by 1.10.3, we have

Γ(U (i),OU(i) ) ∼= lim−→
ν≥μ

Γ(U (i)
ν ,O

U
(i)
ν
).

 E
ta

le
 C

oh
om

ol
og

y 
T

he
or

y 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

O
N

A
SH

 U
N

IV
E

R
SI

T
Y

 o
n 

11
/2

7/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



February 6, 2015 9:48 ws-book9x6 Etale Cohomology Theory... etale page 53

Descent Theory 53

So by 1.10.4 (i), the map

lim−→
ν≥μ

HomSν (U
(i)
ν , V (i)

ν ) → HomS(U
(i), V (i))

is injective. Hence there exists some ν ≥ μ such that fν |U(i)
ν

= f ′ν |U(i)
ν

for

all i. Since U
(i)
ν form an open covering of Sν , we have fν = f ′ν . This proves

that our map is injective.

Next we prove that our map is surjective. Let f : S → Y be an S-

morphism. For each s ∈ S, choose an affine open neighborhood V0,s of the

image of f(s) in Y0, and an affine open neighborhood W0,s of the image of

s in S0 such that the image of V0,s in S0 is contained in W0,s. Let Vs and

Ws be the inverse images of V0,s and W0,s in Y and S, respectively. Cover

each f−1(Vs) by quasi-compact open subsets U
(i)
s (i ∈ Is) in S. Then U

(i)
s

(s ∈ S, i ∈ Is) form an open covering of S. Since S is quasi-compact,

this open covering has a finite subcovering. Changing notation, we may

assume that there exist finitely many affine open subsets V
(i)
0 (i = 1, . . . , n)

of Y0, affine open subsetsW
(i)
0 (i = 1, . . . , n) of S0, and quasi-compact open

subsets U (i) of S such that U (i) cover S, f(U (i)) ⊂ V (i), and the images

V
(i)
0 in S0 are respectively contained in W

(i)
0 . By 1.10.1, we can find quasi-

compact open subsets U
(i)
λ of W

(i)
λ for some λ such that U (i) = u−1λ (U

(i)
λ )

and that U
(i)
λ form an open covering of Sλ. By 1.10.3, we have

Γ(U (i),OU(i)) ∼= lim−→
μ≥λ

Γ(U (i)
μ ,O

U
(i)
μ
).

By 1.10.4 (i), there exist W
(i)
μ -morphisms f

(i)
μ : U

(i)
μ → V

(i)
μ for some μ ≥ λ

inducing the morphisms f |U(i) : U (i) → V (i). By the injectivity of our map

that we have already shown, we have f
(i)
μ |

U
(i)
μ ∩U(j)

μ
= f

(j)
μ |

U
(i)
μ ∩U(j)

μ
for all

pairs (i, j) if μ is sufficiently large. So we can glue f
(i)
μ together to get a

morphism fμ : Sμ → Yμ inducing f . This proves that our map is surjective.

(ii) Let g : Y → X be the inverse of f . By (i), for a sufficiently large

λ, we can find Sλ-morphisms fλ : Xλ → Yλ and gλ : Yλ → Xλ inducing

f and g, respectively. We have fg = idY and gf = idX . Choosing λ

sufficiently large, we may assume fλgλ = idYλ and gλfλ = idXλ . Then fλ
is an isomorphism.

(iii) Cover S0 by finitely many affine open subsets. They induce a finite

affine open covering of S. Cover X by finitely many affine open subsets

U (i) (i = 1, . . . , n) so that their images in S are contained in members of

the above affine open covering of S. By 1.10.4 (ii), there exist Sλ-schemes

U
(i)
λ for some λ such that U

(i)
λ ×Sλ S are S-isomorphic to U (i), respectively.
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By 1.10.1 (ii), if λ is sufficiently large, we may find quasi-compact open

subsets U
(ij)
λ of U

(i)
λ such that U

(ij)
λ ×Sλ S are S-isomorphic to U (i) ∩U (j),

respectively. By (ii), if λ is sufficiently large, we have isomorphisms φ
(ij)
λ :

U
(ij)
λ

∼=→ U
(ji)
λ such that φ

(ij)
λ = (φ

(ji)
λ )−1, φ(ij)λ (U

(ij)
λ ∩U (ik)

λ ) = U
(ji)
λ ∩U (jk)

λ ,

and φ
(jk)
λ φ

(ij)
λ = φ

(ik)
λ on U

(ij)
λ ∩ U

(ik)
λ . Gluing U

(i)
λ together using these

isomorphisms, we get an Sλ-scheme Xλ such that Xλ×Sλ S is S-isomorphic

to X . �

Proposition 1.10.10. Assume S0 is quasi-compact and quasi-separated.

Let f0 : X0 → S0 be a morphism of finite presentation. If f is a morphism

of one of the types listed below, then for sufficiently large λ, fλ is of the

same type.

(i) Open immersion.

(ii) Closed immersion.

(iii) Separated.

(iv) Finite.

(v) Affine

(vi) Surjective.

(vii) Radiciel.

(viii) Immersion.

(ix) Quasi-affine.

(x) Quasi-finite.

(xi) Proper.

Proof.

(i) follows from 1.10.1 (ii).

(ii) By 1.10.8, f∗OX is locally of finite presentation as an OS-module,

and f  : OS → f∗OX is surjective. By 1.10.2 (iii), there exists a quasi-

coherent OSλ-module Bλ locally of finite presentation for some λ so that

f∗OX ∼= u∗λBλ. By 1.10.2 (i), the morphism

f∗OX ⊗OS f∗OX → f∗OX

defining the multiplication on f∗OX is induced by a morphism

Bλ ⊗OSλ
Bλ → Bλ

if λ is sufficiently large. We may assume that this morphism defines an OSλ -

algebra structure on Bλ. Indeed, the diagrams expressing the associative

law, the commutative law and the distributive law commute by 1.10.2 (i) if λ

is sufficiently large. Moreover, we can assume that there exists a morphism

OSλ → Bλ of sheaves of rings inducing OS → f∗OX . Let Cλ be the cokernel
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of OSλ → Bλ. Then u∗λCλ is the cokernel of OS → f∗OX , and hence

u∗λCλ = 0. By 1.10.2 (ii), we may assume Cλ = 0. Then SpecBλ → Sλ
is a closed immersion and it induces f : X → S. By 1.10.9 (ii), we may

identify SpecBλ → Sλ with fλ : Xλ → Sλ if λ is sufficiently large. So fλ
is a closed immersion.

(iii) Apply (ii) to the diagonal morphism.

(iv) Use the same argument as the proof of (ii).

(v) The problem is local. We may assume S0 is affine. Then there exists

a closed immersion

i : X → AnS = SpecOS [t1, . . . , tn]

such that πi = f , where π : AnS → S is the projection. By 1.10.9 (i), there

exists an Sλ-morphism iλ : Xλ → AnSλ inducing i for some λ. By (ii), we

may assume that iλ is a closed immersion. Then fλ is affine.

We prove (vi)–(xi) under the extra condition that S0, Sλ and S are

noetherian. The general case is treated in [EGA] IV 8.10.5 and 9.3.3.

(vi) Let Eλ = fλ(Xλ) and let E = f(X). They are constructible by

1.4.2. We have u−1λ (Eλ) = E. If f is surjective, then E = S. By 1.10.1(v),

we have Eλ = Sλ for a sufficiently large λ. Then fλ is surjective.

(vii) Apply (vi) to the diagonal morphisms and use 1.7.1.

(viii) f can be factorized as the composite of a closed immersion and

an open immersion. Under our extra noetherian condition, we can assume

that these two immersions in the factorization are of finite presentation.

We then use 1.10.9, (i) and (ii).

(ix) The problem is local. We may assume S0 is affine. Let

Aλ = Γ(Sλ,OSλ), A = Γ(S,OS), B = Γ(X,OX).

By 1.8.9, the canonical morphism X → SpecB is an open immersion.

Choose b1, . . . , bn ∈ B so that X can be identified with the open sub-

set D(b1) ∪ · · · ∪ D(bn) of SpecB. Since X is of finite type over S, each

Γ(D(bi),OX) ∼= Bbi is a finitely generated A-algebra. Let { bi1

b
ki1
i

, . . . ,
bini

b
kini
i

}
be a finite family of generators for Bbi and let C be the A-subalgebra of B

generated by bi, bij (i = 1, . . . , n, j = 1, . . . , ni). Then Cbi
∼= Bbi . Consider

the canonical morphism g : X → SpecC. The image of g is contained in

the open subset D(b1) ∪ · · · ∪ D(bn) of SpecC. Moreover, for each i, the

homomorphism Γ(D(bi),OSpecC) → Γ(D(bi),OX) is an isomorphism. So

g : X → SpecC is an open immersion. Since C is a finitely generated

A-algebra, there exists a closed immersion from SpecC to some AnS . Com-

posed with g, we get an immersion h : X → AnS which is an S-morphism.
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Using 1.10.9 and (viii), one can show that for a sufficiently large λ, there

exists an Sλ-morphism hλ : Xλ → AnSλ inducing h, and hλ is an immersion.

Then fλ is quasi-affine.

(x) The problem is local. We may assume X0 and S0 are affine. Then

by the Zariski Main Theorem ([Fu (2006)] 2.5.14, [EGA] III 4.4.3), there

exist a finite morphism f̄ : X → S and an open immersion j : X ↪→ X such

that f = f̄ j. By 1.10.9, we can find an Sλ-scheme Xλ and an Sλ-morphism

jλ : Xλ → Xλ inducing j for some λ. By (i) and (iv), we may assume that

Xλ is finite over Sλ and jλ is an open immersion. Then fλ is quasi-finite.

(xi) By Chow’s lemma ([Fu (2006)] 1.4.18, [EGA] II 5.6.1, [Hartshorne

(1977)] Exer. II 4.10), there exists a surjective projective morphism g :

X ′ → X such that fg is projective. By 1.10.9, for some λ, we can find an

Sλ-scheme X ′λ of finite presentation, and an Sλ-morphism gλ : X ′λ → Xλ

such that X ′ and g are induced from X ′λ and gλ by base change. Let

X ′ → PnS = ProjOS [t0, . . . , tn]

be a closed immersion so that its composite with the projection PnS → S

coincides with fg. By 1.10.9 and (ii), if we choose λ sufficiently large, then

we can find a closed immersion

X ′λ → PnSλ = ProjOSλ [t0, . . . , tn]

so that its composite with the projection PnS → S coincides with fλgλ. This

implies that fλgλ is proper. Similarly, we can show that gλ is a projective

morphism and hence proper if λ is sufficiently large. On the other hand,

we may assume that gλ is surjective by (vi). It follows that fλ is proper if

λ is sufficiently large. �

Lemma 1.10.11. Let S be a noetherian scheme, and let f : X → S be a

quasi-affine morphism of finite type. Then there exist a projective morphism

f̄ : X → S and an open immersion j : X ↪→ X such that f = f̄ j.

Proof. By 1.8.9, the canonical S-morphism X → Spec f∗OX is an

open immersion. By [Fu (2006)] 2.5.2 or [EGA] I 9.4.9, or [Hartshorne

(1977)] Exer. II 5.15, we have f∗OX = lim−→i
Ei, where Ei are coher-

ent OS-submodule of f∗OX . Let A (Ei) be the OS-subalgebra of f∗OX
generated by Ei. If S(Ei) =

⊕∞
k=1 Sym

k(Ei) is the symmetric product

of Ei, then Ai is the image of the canonical morphism S(Ei) → f∗OX .

In particular, A (Ei) is quasi-coherent. Using the same argument as the

proof of 1.10.10 (ix), one can show that when Ei is sufficiently large, the

canonical morphism X → SpecA (Ei) is an open immersion. We have
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a closed immersion SpecA (Ei) → SpecS(Ei). So there exists an im-

mersion X → SpecS(Ei). Composed with the canonical open immersion

SpecS(Ei) → ProjS(Ei⊕OS), we get an immersionX → ProjS(Ei⊕OS),

which is an S-morphism. Let X be the scheme theoretic image of this mor-

phism. Then X is projective over S, and X is an open subscheme of X. �

Lemma 1.10.12. Let S be a noetherian scheme, and let f : X → S be a

separated quasi-finite morphism. Then f is quasi-affine.

Proof. We use induction on dimS. To show that f is quasi-affine, it

suffices to show that for any s ∈ S, there exists a neighborhood V of s such

that f−1(V ) → V is quasi-affine. Let {Vi} be the family of affine open

neighborhoods of s in S. We have OS,s ∼= lim−→i
Γ(Vi,OS). If we can show

that

X ×S SpecOS,s → SpecOS,s

is quasi-affine, then by 1.10.10 (ix), there exists some Vi such that

f−1(Vi) → Vi is quasi-affine. So it suffices to treat the case where S =

SpecA for some local noetherian ring A. The morphism Spec Â → SpecA

is quasi-compact and faithfully flat, where Â is the completion of A. By

1.8.10, it suffices to show that

X ×S Spec Â→ Spec Â

is quasi-affine. We are thus reduced to the case where A is a complete

local noetherian ring. By 1.9.8, we have X = X ′
∐
X ′′ such that X ′ → S

is finite, and the fiber of X ′′ → S above the closed point of S is empty.

The image of X ′′ → S is contained in an open subset of S of dimension

≤ dimS − 1. By the induction hypothesis, X ′′ → S is quasi-affine. So

X → S is quasi-affine. �

Theorem 1.10.13 (Zariski Main Theorem). Let S be a noetherian

scheme, and let f : X → S be a separated quasi-finite morphism. Then

there exist a finite morphism f̄ : X → S and an open immersion j : X ↪→ X

such that f = f̄ j.

Proof. Use 1.10.11, 1.10.12 and the Zariski Main Theorem in [Fu (2006)]

2.5.14 or [EGA] III 4.4.3. �

The Zariski Main Theorem 1.10.13 still holds if we only assume S is

quasi-compact and quasi-separated. Confer [EGA] IV 18.12.13.
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Remark 1.10.14. Let (Sλ, uλμ)λ∈I be an inverse system in the category

of schemes such that uλμ : Sμ → Sλ (λ ≤ μ) are affine. Then the inverse

limit S of this system exists, and all the results in this section hold for

such a system. Indeed, fix λ0 ∈ I and take S0 = Sλ0 . We can apply

the results of this section to the inverse system (Sλ, uλμ)λ≥λ0 and we have

lim←−λ∈I Sλ = lim←−λ∈I Sλ.
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Chapter 2

Etale Morphisms and Smooth
Morphisms

2.1 The Sheaf of Relative Differentials

Let A → B be a homomorphism of rings, and let M be a B-module. An

A-derivation is a map D : B →M satisfying

D(b1 + b2) = D(b1) +D(b2), D(b1b2) = b1D(b2) + b2D(b1), D(a) = 0

for any a ∈ A and b1, b2 ∈ B. The module of relative differentials of B over

A is a B-module ΩB/A together with an A-derivation d : B → ΩB/A such

that for any B-module M and any A-derivation D : B → M , there exists

a unique B-module homomorphism φ : ΩB/A → M such that D = φ ◦ d.
Let DerA(B,M) be the set of A-derivations from B to M . The functor

M �→ DerA(B,M) is represented by ΩB/A. Recall that a covariant (resp.

contravariant) functor F : C → (Sets) from a category C to the category

of sets is called representable if there exists an object X in C such that F is

isomorphic to the functor HomC (X,−) (resp. HomC (−, X)). In this case,

we say F is represented by X .

Let I be the kernel of the epimorphism

B ⊗A B → B, b1 ⊗ b2 → b1b2.

We have three ways to put a B-module structure on I/I2.

(a) I/I2 is a (B ⊗A B)/I-module. We have a canonical isomorphism

(B ⊗A B)/I ∼= B. This gives a B-module structure on I/I2.

(b) By multiplication on the left, B ⊗A B is a B-module, and I and I2

are submodules. This induces a B-module structure on I/I2.

(c) By multiplication on the right, B ⊗A B is a B-module, and I and

I2 are submodules. This induces a B-module structure on I/I2.

One verifies that these three B-module structures are the same. Define

d : B → I/I2 by

d(b) = 1⊗ b − b⊗ 1 mod I2.

59
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Then d is an A-derivation.

Proposition 2.1.1. Notation as above. The pair (I/I2, d) is a module of

relative differentials of B over A.

Proposition 2.1.2. Let A be a ring, let A′ and B be A-algebras, and let

B′ = B ⊗A A′. We have

ΩB′/A′ ∼= ΩB/A ⊗B B′.
For any multiplicative subset S of B, we have

ΩS−1B/A
∼= S−1ΩB/A.

Proof. Let us prove the second statement. Let φ : B → S−1B be the

canonical homomorphism. For any S−1B-module N , the canonical map

DerA(S
−1B,N) → DerA(B,N), D �→ D ◦ φ

is bijective. In fact, for any derivation D ∈ DerA(B,N), set

D′
(
b

s

)
=
sD(b)− bD(s)

s2
.

Then D′ ∈ DerA(S
−1B,N) and D �→ D′ defines an inverse of the above

map. We have

DerA(S
−1B,N) ∼= HomS−1B(ΩS−1B/A, N),

DerA(B,N) ∼= HomB(ΩB/A, N) ∼= HomS−1B(S
−1ΩB/A, N).

It follows that we have a one-to-one correspondence

HomS−1B(ΩS−1B/A, N) ∼= HomS−1B(S
−1ΩB/A, N)

which is functorial in N . Hence ΩS−1B/A
∼= S−1ΩB/A. �

Proposition 2.1.3. Let A → B → C be homomorphisms of rings. Then

we have a natural exact sequence of C-modules

ΩB/A ⊗B C → ΩC/A → ΩC/B → 0.

Proof. Denote the homomorphism B → C by φ. For any C-module N ,

the kernel of the homomorphism

DerA(C,N) → DerA(B,N), D �→ D ◦ φ
is exactly DerB(C,N). So we have an exact sequence

0 → DerB(C,N) → DerA(C,N) → DerA(B,N).

Hence we have an exact sequence

0 → HomC(ΩC/B, N) → HomC(ΩC/A, N) → HomC(ΩB/A ⊗B C,N).

This sequence is functorial in N . Our assertion follows. �
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Proposition 2.1.4. Let A → B be a homomorphism of rings, let I be an

ideal of B, and let C = B/I. Then we have a natural exact sequence of

C-modules

I/I2
δ→ ΩB/A ⊗B C → ΩC/A → 0,

where δ is induced by the map

I → ΩB/A ⊗B C, b �→ d(b)⊗ 1.

Proof. Let N be a B/I-module. For any derivation D : B → N , we have

D|I2 = 0 and D induces a B/I-module homomorphism I/I2 → N . We

thus have an exact sequence

0 → DerA(B/I,N) → DerA(B,N) → HomB/I(I/I
2, N).

So we have an exact sequence

0 → HomC(ΩC/A, N) → HomC(ΩB/A ⊗A C,N) → HomC(I/I
2, N).

This sequence is functorial in N . Our assertion follows. �

Proposition 2.1.5. Let k be a field, and let (B, n) be a local k-algebra such

that the homomorphism k → B induces an isomorphism k ∼= B/n. Then

the canonical map

δ : n/n2 → ΩB/k ⊗B B/n
is an isomorphism.

Proof. Since k ∼= B/n, the map δ is surjective by 2.1.4. To show it is

injective, it suffices to show that

δ∗ : Homk(ΩB/k ⊗B B/n, k) → Homk(n/n
2, k)

is surjective, that is,

Derk(B, k) → Homk(n/n
2, k)

is surjective. Let φ : n/n2 → k be a k-homomorphism. For any x ∈ B, we

can find a ∈ k such that x ≡ a mod n. Define D(x) = φ(x − a). Then

D : B → k is a derivation and δ∗(D) = φ. �

Proposition 2.1.6. If B = A[t1, . . . , tn] is a polynomial ring over A, then

ΩB/A is a free B-module of rank n with basis {dt1, . . . , dtn}. Suppose A is

an algebra over a ring K, then the sequence

0 → ΩA/K ⊗A B → ΩB/K → ΩB/A → 0

is split exact.
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Proof. The map

d : B → Bn, d(f) =

(
∂f

∂t1
, . . . ,

∂f

∂tn

)
is a B-derivation. Let us show that the pair (Bn, d) satisfies the universal

property for the module of relative differentials. Let M be a B-module, let

D : B → M be an A-derivation, and let xi = D(ti). Then for any f ∈ B,

we have

D(f) =
n∑
i=1

∂f

∂ti
xi.

The homomorphism

φ : Bn → M, (b1, . . . , bn) �→ b1x1 + · · ·+ bnxn

is the unique homomorphism such that D = φ ◦ d.
To get the required split short exact sequence, it suffices to show that

any K-derivation D0 : A→M can be extended to a K-derivation D : B →
M . Indeed, fix xi ∈M (i = 1, . . . , n). We can define

D

( ∑
i1,...,in

ai1...,int
i1
1 · · · tinn

)

=
∑

i1,...,in

D0(ai1...,in)t
i1
1 · · · tinn +

n∑
i=1

xi
∂

∂ti

( ∑
i1,...,in

ai1...,int
i1
1 · · · tinn

)
for any

∑
i1,...,in

ai1...,in t
i1
1 · · · tinn ∈ B. �

Corollary 2.1.7. Let C be an A-algebra of finite type (resp. of finite pre-

sentation), then ΩC/A is a C-module of finite type (resp. of finite presen-

tation).

Proof. We may assume C = A[t1, . . . , tn]/I for some n and some ideal I

of A[t1, . . . , tn]. Let B = A[t1, . . . , tn]. By 2.1.4, we have an exact sequence

I/I2
δ→ ΩB/A ⊗B C → ΩC/A → 0.

By 2.1.6, ΩB/A ⊗B C is a free C-module of finite rank. When C has finite

presentation over A, I/I2 is a finitely generated C-module. Our assertion

follows. �

Proposition 2.1.8. Let L/K be a finite separable extension of fields. Then

ΩL/K = 0.
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Proof. Let M be an L-module, and let D : L → M be a K-derivation.

For any x ∈ L, let f(t) be the minimal polynomial of x over K. Then we

have f(x) = 0 and f ′(x) 	= 0. On the other hand, we have

0 = D(f(x)) = f ′(x)D(x).

It follows that D(x) = 0. So DerK(L,M) = 0. This is true for any L-

module M . So ΩL/K = 0. �

Let f : X → Y be a morphism of schemes, and let Δ : X → X ×Y X
be the diagonal morphism. There exists an open subset U of X ×Y X

containing the image of Δ such that Δ induces a closed immersion Δ : X →
U . Let I be the ideal sheaf of this closed immersion. We define the sheaf of

relative differentials of X over Y to be the sheaf ΩX/Y = Δ−1(I /I 2). For

all affine open subsets W = SpecB of X and V = SpecA of Y such that

f(W ) ⊂ V , ΩX/Y |W can be identified with Ω∼B/A. ΩX/Y is a quasi-coherent

OX -module. If f is locally of finite type (resp. locally of finite presentation),

then ΩX/Y is an OX -module locally of finite type (resp. locally of finite

presentation).

Proposition 2.1.9. Consider a Cartesian diagram

X ′ = X ×Y Y ′ p1→ X

↓ ↓
Y ′ → Y.

We have p∗1ΩX/Y ∼= ΩX′/Y ′ .

Proposition 2.1.10. Let f : X → Y and Y → Z be morphism of schemes.

We have an exact sequence of OX -modules

f∗ΩY/Z → ΩX/Z → ΩX/Y → 0.

Proposition 2.1.11. Let X → Y be a morphism and let i : Z → X be a

closed immersion with ideal sheaf I . Then we have an exact sequence of

OZ-modules

i∗(I /I 2) → i∗ΩX/Y → ΩZ/Y → 0.

Proposition 2.1.12. Let S be a scheme, and let AnS = SpecOS [t1, . . . , tn].

Then we have ΩAnS/S
∼= On

AnS
.
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2.2 Unramified Morphisms

([SGA 1] I 3, [EGA] IV 17.4.)

Proposition 2.2.1. Let f : X → Y be a morphism locally of finite type, x

a point in X, and y = f(x). The following conditions are equivalent:

(i) myOX,x = mx and the residue field k(x) is a finite separable extension

of the residue field k(y).

(ii) (ΩX/Y )x = 0.

(iii) The diagonal morphism Δ : X → X ×Y X is an open immersion

in a neighborhood of x.

Proof.

(i)⇒(ii) We have

OX,x ⊗OY,y k(y)
∼= OX,x/myOX,x = OX,x/mx = k(x).

By 2.1.2 and 2.1.8, we have

(ΩX/Y )x ⊗OX,x OX,x/myOX,x ∼= Ωk(x)/k(y) = 0.

Since f is locally of finite type, (ΩX/Y )x is a finitely generated OX,x-module

by 2.1.7. We then apply Nakayama’s lemma.

(ii)⇒(iii) Let V be an open subset containing im(Δ) such that Δ induces

a closed immersion X → V , and let I be the ideal sheaf of this closed

immersion. We have

(I /I 2)Δ(x)
∼= (ΩX/Y )x = 0.

Using the assumption that f is locally of finite type, one can verify that

IΔ(x) is a finitely generated OX×YX,Δ(x)-module. (Confer the proof of

1.10.5 (iv).) By Nakayama’s lemma, we have IΔ(x) = 0. But then I van-

ishes in a neighborhood of Δ(x). So Δ is an isomorphism in a neighborhood

of x.

(iii)⇒(i) By the base change Spec k(y) → Y , we are reduced to the case

where Y = Spec k for some field k. Replacing X by a neighborhood of x,

we may assume Δ is an open immersion.

First consider the case where k is algebraically closed. For any closed

point t of X , we have a k-morphism t : Spec k → X with image t. Let Γt
be its graph. We have a Cartesian diagram

Spec k
Γt→ Spec k ×Speck X

↓ ↓
X

Δ→ X ×Speck X.
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Since Δ is an open immersion, Γt is also an open immersion. We have an

isomorphism Spec k ×Speck X ∼= X , and through this isomorphism, Γt is

identified with t : Spec k → X . So t is an open immersion. This shows that

every closed point of X is isolated and Γ(t,OX) = k. This implies that X

is a disjoint union of copies of Spec k.

In general, let k̄ be an algebraic closure of k. The above argument

shows that after shrinking X , X ⊗k k̄ is isomorphic to a disjoint union of

finitely many copies of Spec k̄. So X is finite as a set. Replacing X by a

neighborhood of x, we may assume that X consists of a single point. By

1.9.2, X = SpecA for some finite dimensional k-algebra A. We then have

A ⊗k k̄ ∼= k̄ × · · · × k̄. So A ⊗k k̄ is reduced and hence A is reduced. As

X consists of a single point, A is necessarily a field that is finite separable

over k. �

Let f : X → Y be a morphism locally of finite presentation and let

x ∈ X . If the conditions in 2.2.1 hold, then we say f is unramified at x.

The set of points where f is unramified is open. If f is unramified at every

point, we say f is unramified.

Proposition 2.2.2. In the following, morphisms are assumed to be locally

of finite presentation.

(i) Unramified morphisms are locally quasi-finite.

(ii) Immersions are unramified.

(iii) Composites of unramified morphisms are unramified.

(iv) Base changes of unramified morphisms are unramified.

(v) If the composite X → Y → Z is unramified, then so is X → Y .

Proposition 2.2.3. Let S0 be a quasi-compact quasi-separated scheme,

(Aλ, φλμ) a direct system of quasi-coherent OS0-algebras, A = lim−→λ
Aλ,

Sλ = SpecAλ, S = SpecA , X0 an S0-scheme, Xλ = X0 ×S0 Sλ, and

X = X ×S0 S. Assume that X0 is of finite presentation over S0. If X is

unramified over S, then Xλ is unramified over Sλ for some λ.

Proof. Let uλ : X → Xλ be the canonical morphism. We have

u∗λ(Ω
1
Xλ/Sλ

) ∼= ΩX/S . Since X/S is unramified, we have ΩX/S = 0. By

1.10.2 (ii), we have ΩXλ/Sλ = 0 for some λ. Then Xλ is unramified over

Sλ. �

Proposition 2.2.4. Let X
f→ Y → Z be two morphisms. If Y → Z if

unramified, then the graph Γf : X → X ×Z Y is an open immersion.
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Proof. We have a Cartesian diagram

X
Γf→ X ×Z Y

↓ ↓
Y

Δ→ Y ×Z Y.
We then apply 2.2.1 (iii). �

Proposition 2.2.5. Consider a Cartesian diagram

X ×Y Y ′ g
′

→ X

f ′ ↓ ↓ f
Y ′

g→ Y.

Suppose f : X → Y is locally of finite presentation and g : Y ′ → Y is

faithfully flat. If f ′ is unramified, then so is f .

Proof. We have

g′∗ΩX/Y ∼= ΩX×Y Y ′/Y ′ = 0.

Since g′ is faithfully flat, this implies that ΩX/Y = 0. �

2.3 Etale Morphisms

([SGA 1] I 4, [EGA] IV 17.6–9, 18.1–4.)

Let f : X → Y be a morphism locally of finite presentation and let x be a

point in X . We say f is etale at x if f is flat at x and unramified at x. If

f is etale at every point, we say f is etale.

Proposition 2.3.1. In the following, morphisms are assumed to be locally

of finite presentation.

(i) Open immersions are etale.

(ii) Composites of etale morphisms are etale.

(iii) Base changes of etale morphisms are etale.

(iv) Let f : X → Y and g : Y → Z be two morphisms such that gf is

etale and g is unramified. Then f is etale.

Proof. Let us prove (iv). By 2.2.4, the graph Γf : X → X ×Z Y of f is

an open immersion. By (iii), the projection p2 : X ×Z Y → Y is etale. By

(ii), f = p2Γf is etale. �
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Remark 2.3.2. The same argument as the proof of 2.3.1 (iv) shows that

the following is true: Let f : X → Y and g : Y → Z be two morphisms

such that gf is flat at x ∈ X and g is unramified. Then f is flat at x.

Proposition 2.3.3. Let A be a ring, F (t) ∈ A[t] a monic polynomial, and

B = A[t]/(F (t)). The canonical morphism SpecB → SpecA is etale at a

prime ideal q ∈ SpecB if and only if q does not contain the image of F ′(t)
in B. Hence SpecB → SpecA is etale if and only if the image of F ′(t) in

B is a unit, or equivalently, the ideal generated by F (t) and F ′(t) is A[t].

Proof. Since F (t) is monic, A[t]/(F (t)) is flat over A. By 2.1.4 and 2.1.6,

we have

ΩB/A ∼= A[t]/(F (t), F ′(t)).

It follows that (ΩB/A)q = 0 if and only if q does not contain the image of

F ′(t) in B. �

Lemma 2.3.4. Let (A,m) be a local ring, B′ a finite A-algebra, n′ a max-

imal ideal of B′, u an element of B′ not lying in n′ but lying in all other

maximal ideals of B′ distinct from n′, B = A[u], and n = n′ ∩B. Assume

that B′n′/mB′n′ is generated by the image of u in B′n′/mB′n′ as an A/m-

algebra. Then the canonical homomorphism Bn → B′n′ is an isomorphism.

Proof. Let S = B − n and S′ = B′ − n′. We need to show that

S−1B → S′−1B′ is an isomorphism. First let us show S−1B′ → S′−1B′ is
an isomorphism. It suffices to show that every element in S′ is invertible

in S−1B′, or equivalently, the images in S−1B′ of elements in S′ do not

lie in any maximal ideal of S−1B′. Since S−1B′ is finite over S−1B, any

maximal ideal of S−1B′ lies above the maximal ideal of S−1B = Bn, and

hence above the maximal ideal n of B. But B′ is finite over B. So any

maximal ideal of S−1B′ lies above a maximal ideal of B′, and hence is of

the form S−1n′′ for some maximal ideal n′′ of B′ satisfying n′′ ∩ B = n.

If u ∈ n′′, then u ∈ n′′ ∩ B = n ⊂ n′. This contradicts to our assump-

tion that u 	∈ n′. So u 	∈ n′′. As u lies in maximal ideals of B′ distinct
from n′, we must have n′ = n′′. Hence S−1n′ is the only maximal ideal of

S−1B′. It is clear that the images in S−1B′ of elements in S′ do not lie in

S−1n′. So S−1B′ → S′−1B′ is an isomorphism. Since B is a subring of B′,
S−1B → S−1B′ is injective. Hence S−1B → S′−1B′ is injective. To prove

it is surjective, it suffices to show that Bn/mBn → B′n′/mB′n′ is surjective

by Nakayama’s lemma. This follows from the assumption that the image

of u in B′n′/mB′n′ is a generator over A/m. �
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Theorem 2.3.5 (Chevalley). Let f : X → Y be a morphism locally of

finite presentation, x a point in X, and A = OY,f(x). Then f is etale at x

if and only if we can find a monic polynomial F (t) ∈ A[t], a maximal ideal

n of B = A[t]/(F (t)) not containing the image of F ′(t) in B such that OX,x
is A-isomorphic to Bn.

Proof. The “if” part follows from 2.3.3. To prove the “only if” part, we

make the base change SpecA→ Y to reduce to the case where Y = SpecA.

Let m be the maximal ideal of A. First suppose f is unramified at x. Let

U be an affine open neighborhood of x in X such that f |U : U → SpecA

is unramified. By the Zariski Main Theorem 1.10.13, f |U can be factorized

as a composite

U
j
↪→ SpecB′

f̄→ SpecA

such that j is an open immersion and f̄ is a finite morphism. (We only

prove the Zariski Main Theorem 1.10.13 under the noetherian assumption.

Write A = lim−→λ
Aλ, where Aλ are subalgebras of A finitely generated over

Z. By 1.10.4 (ii) and 2.2.3, we can find an unramified affine morphism

fλ : Uλ → SpecAλ of finite type such that f |U is obtained from fλ by base

change. Applying 1.10.13 to the morphism fλ and taking base change,

we get the above factorization of f |U .) Let n′ be the prime ideal of B′

corresponding to the image of x in SpecB′. Since it is above the maximal

ideal m of A, n′ is a maximal ideal of B′. Note that OX,x is A-isomorphic to

B′n′ . Let n′1, . . . , n
′
r be all the maximal ideals of B′ distinct from n′. Since

B′/n′ is a finite separable extension of A/m, it is generated by a single

element. By the Chinese remainder theorem, we can find u ∈ n′1 ∩ · · · ∩ n′r
such that the image of u in B′/n′ is nonzero and generates B′/n′ over A/m.

Let B = A[u] and let n = n′ ∩ B. By 2.3.4, OX,x is A-isomorphic to Bn.

Let ū be the image of u in B/mB, let f(t) ∈ (A/m)[t] be the minimal

polynomial of ū over A/m, and let d = deg f . We have

B/mB ∼= (A/m)[t]/(f(t)).

By Nakayama’s lemma, B is generated by 1, u, . . . , ud−1 as an A-module. So

there exists a monic polynomial F (t) ∈ A[t] of degree d such that F (u) = 0.

The image of F (t) in (A/m)[t] is necessarily f(t). Since A/m is a field,

SpecB/mB → SpecA/m is etale at n/mB. By 2.3.3, we have f ′(ū) 	∈
n/mB. So we have F ′(u) 	∈ n.

Suppose furthermore that f is flat at x. Then Bn is flat over A. Let n0
be the inverse image of n under the epimorphism

A[t]/(F (t)) → B, t �→ u
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of A-algebras. Then n0 does not contain the image of F ′(t) in A[t]/(F (t)).
By 2.3.3, SpecA[t]/(F (t)) → SpecA is etale at n0, and in particular un-

ramified in a neighborhood of n0. Applying 2.3.2 to the composite

SpecB → SpecA[t]/(F (t)) → SpecA,

we see that the morphism

SpecB → SpecA[t]/(F (t))

is flat at n. So (A[t]/(F (t)))n0 → Bn is faithfully flat and hence injective.

But A[t]/(F (t)) → B is surjective, so we must have (A[t]/(F (t)))n0
∼= Bn.

Hence (A[t]/(F (t)))n0 is A-isomorphic to OX,x. �

Corollary 2.3.6. Let f : X → Y be a morphism locally of finite presenta-

tion. The set of points in X where f is etale is open.

Proof. Suppose f is etale at x ∈ X . By 2.3.5, we can find a monic poly-

nomial F (t) ∈ OY,f(x)[t] and a maximal ideal of n of B = OY,f(x)[t]/(F (t))

not containing the image of F ′(t) in B such that OX,x is OY,f(x)-isomorphic

to Bn. Let V = SpecA be an affine open neighborhood of f(x) in Y such

that F (t) is the image of a monic polynomial in A[t] under the canonical

homomorphism A[t] → OY,f(x)[t], and denote such a monic polynomial in

A[t] also by F (t). Let p be the inverse image of n under the canonical ho-

momorphism A[t]/(F (t)) → OY,f(x)[t]/(F (t)). Then SpecA[t]/(F (t)) → V

is unramified at p, and hence unramified in an open neighborhoodW of p in

SpecA[t]/(F (t)). As A[t]/(F (t)) is a flat A-algebra, SpecA[t]/(F (t)) → V

is etale in W . Note that OX,x is OY,f(x)-isomorphic to (A[t]/(F (t))p. By

[Fu (2006)] 1.3.13 (iii) or [EGA] I 6.5.4 (ii), there exists an open neighbor-

hood U of x in X and an open neighborhood W ′ of p in W such that U

and W ′ are Y -isomorphic. Then f is etale in U . �

Proposition 2.3.7. Let S0 be a quasi-compact quasi-separated scheme,

(Aλ, φλμ) a direct system of quasi-coherent OS0-algebras, A = lim−→λ
Aλ,

Sλ = SpecAλ, S = SpecA , X0 an S0-scheme, Xλ = X0 ×S0 Sλ, and

X = X ×S0 S. Assume that X0 is of finite presentation over S0. If X is

etale over S, then Xλ is etale over Sλ for some λ.

Proof. Let x be a point in X and let s be its image in S. By 2.3.5,

we can find a monic polynomial F (t) ∈ OS,s[t] and a maximal ideal n of

B = OS,s[t]/(F (t)) not containing the image of F ′(t) in B such that OX,x
is OS,s-isomorphic to Bn. Let V = SpecA be an affine open neighborhood

of s in S such that F (t) is the image of a monic polynomial in A[t] under
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the canonical homomorphism A[t] → OS,s[t], and denote such a monic

polynomial in A[t] also by F (t). Let p be the inverse image of n under

the canonical homomorphism A[t]/(F (t)) → OS,s[t]/(F (t)). Then OX,x
is OS,s-isomorphic to (A[t]/(F (t)))p. We can find a quasi-compact open

neighborhood U of x in X whose image in S is contained in V , and a quasi-

compact open neighborhood W of p in SpecA[t]/(F (t)) such that U and

W are V -isomorphic by [Fu (2006)] 1.3.13 (iii) or [EGA] I 6.5.4 (ii). By

1.10.1 (ii), there exists an open subset Vλ of Sλ for some λ whose inverse

image in S is V . Shrinking Vλ and V , we may assume Vλ = SpecAλ is

affine. Taking λ sufficiently large, we may assume F (t) is the image in

A[t] of a monic polynomial Fλ(t) ∈ Aλ[t] such that the inverse image pλ
of p in Aλ[t]/(Fλ(t)) does not contain the image of F ′λ(t) in Aλ[t]/(Fλ(t)).
Again by 1.10.1 (ii), we may assume that U (resp. W ) is the inverse image

of an open subset Uλ (resp. Wλ) of Xλ (resp. SpecAλ[t]/(Fλ(t))) in X

(resp. in SpecA[t]/(F (t))), and by 1.10.9 (ii), we may assume that Uλ is

Vλ-isomorphic to Wλ. But Wλ → Vλ is etale at pλ by 2.3.3. So Xλ is etale

over Sλ at xλ, where xλ is the image of x in Xλ. For each λ, let Oλ be the

largest open subset ofXλ on whichXλ is etale over Sλ, and let uλ : X → Xλ

be the projection. The above discussion shows that X = ∪λu−1λ (Oλ). Since

X is quasi-compact and u−1λ (Oλ) ⊂ u−1μ (Oμ) for any pair λ ≤ μ, we have

X = u−1λ (Oλ) for some λ, that is, u−1λ (Xλ−Oλ) = Ø. By 10.1.1 (iv), there

exists μ ≥ λ such that Xμ −Oμ = Ø. Then Xμ is etale over Sμ. �

Proposition 2.3.8. Etale morphisms are open mappings.

Proof. The problem is local. It suffices to prove that any affine etale

morphism f : SpecB → SpecA is an open mapping. By 1.10.4 (ii) and

2.3.7, we can find a subalgebra A0 of A finitely generated over Z, and an

algebra B0 etale and finitely generated over A0 such that we have an A-

isomorphism B ∼= B0⊗A0 A. Let us prove that the morphism Spec (B0⊗A0

A) → SpecA is an open mapping. Let {Aλ} be the family of subalgebras

of A finitely generated over A0. Fix the notation by the following diagram:

Spec (B0 ⊗A0 A)
vλ→ Spec (B0 ⊗A0 Aλ)

f ↓ ↓ fλ
SpecA

uλ→ SpecAλ.
Each fλ is etale and hence flat. By 1.5.2, fλ is an open mapping. By 1.10.1

(ii), any quasi-compact open subset U of Spec (B0 ⊗A0 A) is of the form

U = v−1λ (Uλ) for a large λ and an open subset Uλ of Spec (B0 ⊗A0 Aλ).

Since fλ(Uλ) is open and

f(U) = fv−1λ (Uλ) = u−1λ fλ(Uλ),
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f(U) is also open. �

Proposition 2.3.9. A morphism f : X → Y is an open immersion if and

only if it is etale and radiciel.

Proof. The “only if” part is clear. Let us prove the “if” part. Since f

is injective, it suffices to show that f is locally an open immersion. So we

may assume that f : X → Y is induced by a base change Y → SpecA0

from an etale morphism f0 : SpecB0 → SpecA0, where A0 is a finitely

generated Z-algebra and B0 is a finitely generated A0-algebra. By the

Zariski Main Theorem 1.10.13, f0 can be factorized as the composite of an

open immersion and a finite morphism. So we have a factorization f = f̄ j

such that j : X ↪→ X is an open immersion and f̄ : X → Y is finite. By

2.3.8, f(X) is open. Replacing Y by f(X) and X by f̄−1(f(X)), we may

assume that f is surjective. Since f is radiciel and etale, it is universally

injective and universally open, and hence universally a homeomorphism. It

follows that f is proper. Then j is proper. Hence j is an open and closed

immersion, and in particular a finite morphism. So f is a finite morphism.

Let us prove this implies that f is an isomorphism. We may reduce to

the case where Y = SpecA is affine. Then X = SpecB for some finite

A-algebra B. Since f is radiciel, for any prime ideal p of A, Bp is local.

Since f is also etale, we have Ap/pAp
∼= Bp/pBp. By Nakayama’s lemma,

Ap → Bp is surjective. It is injective since it is faithfully flat. So Ap
∼= Bp

for any prime ideal p of A. This implies that A ∼= B. �

Corollary 2.3.10. Let f : X → Y be a morphism.

(i) If f is unramified and separated and Y is connected, then there is

a one-to-one correspondence between the set of sections of f and the set

of connected components of X on which f induces an isomorphism. In

particular, a section of f is completely determined by its value at one point

of Y .

(ii) If f is etale, then there is a one-to-one correspondence between the

set of sections of f and the set of open subsets of X on which f is radiciel

and surjective.

Proof. Suppose that f : X → Y is unramified and s : Y → X is a section

of f . We have fs = id. It follows that smust be an immersion and etale. By

2.3.9, s is an open immersion, and hence it induces an isomorphism between

Y and the open subset s(Y ) of X . If f is separated and Y is connected,

then s is an open and closed immersion and it induces an isomorphism

between Y and a connected component of X . �
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Lemma 2.3.11. Let S be a scheme, S0 a subscheme of S, and X0 → S0 an

etale morphism. For any x ∈ X0, there exists an open neighborhood U0 of

x in X0 such that U0 is S0-isomorphic to U ×S S0 for some etale S-scheme

U .

Proof. Let s be the image of x in S0. By 2.3.5, there exists a monic poly-

nomial F0(t) ∈ OS0,s[t] and a maximal ideal n0 of OS0,s[t]/(F0(t)) such that

OX0,x is OS0,s-isomorphic to (OS0,s[t]/(F0(t)))n0 and the image of F ′0(t) in
OS0,y[t]/(F0(t)) does not lie in n0. Let F (t) ∈ OS,s[t] be a monic polynomial

whose image under the homomorphism OS,s[t] → OS0,s[t] is F0(t), and let

n be the inverse image of n0 under this homomorphism. Then

SpecOS,s[t]/(F (t)) → SpecOS,s

is etale at n. We have

(OS,s[t]/(F (t)))n ⊗OS,s OS0,s
∼= (OS0,s[t]/(F0(t)))n0 .

There exists an S-scheme U locally of finite presentation and a point z ∈ U

above s such that OU,z is OS,s-isomorphic to (OS,s[t]/(F (t)))n. We may

assume that U → S is etale. We have an OS0,s-isomorphism OU×SS0,z
∼=

OX0,x. It extends to an isomorphism between a neighborhood U0 of x in

X0 and a neighborhood W0 of z in U ×S S0. Shrinking U , we may assume

W0 = U ×S S0. �

Proposition 2.3.12. Let S be a scheme, and let S0 be a closed subscheme

of S with the same underlying topological space as S. The functor X �→
X ×S S0 from the category of etale S-schemes to the category of etale S0-

schemes is an equivalence of categories.

Proof. Let X and Y be S-schemes. Suppose that Y is etale over S. Let

us prove that the canonical map

HomS(X,Y ) → HomS0(X ×S S0, Y ×S S0)

is bijective. An S-morphism f : X → Y is completely determined by its

graph Γf : X → X×SY , and Γf is a section of the projection p : X×SY →
X . Since S0 is a closed subscheme of S with the same underlying topological

space as S, by 2.3.10 (ii), there is a one-to-one correspondence between the

set of sections of p and the set of sections of the base change p0 of p by

S0 → S. Our assertion follows.

Let X0 → S0 be an etale morphism. By 2.3.11, there exists an open

covering {Uα0} of X0 such that each Uα0 is S0-isomorphic to Uα ×S S0

for some etale S-scheme Uα. Note that each Uα has the same underlying
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topological space as Uα0. By the discussion above, for each pair α, β, the

S-scheme structure on Uα0 ∩ Uβ0 induced from Uα is isomorphic to that

induced from Uβ. We can glue {Uα} together to get an S-scheme X so that

X ×S S0 is S0-isomorphic to X0. �

2.4 Smooth Morphisms

([SGA 1] II 1–3, [EGA] IV 17.5.)

A morphism f : X → Y is called smooth at a point x in X if there exists

an open neighborhood U of x such that f |U can be factorized as a compos-

ite of an etale morphism U → AnY and the projection AnY → Y for some

integer n. Note that n is unique. It is equal to infV dim (f−1f(x) ∩ V ),

where V goes over the family of open neighborhoods of x in X . We call

infV dim (f−1f(x) ∩ V ) the relative dimension of f at x. If the relative

dimension of f is the constant n on X , we say f is pure of relative dimen-

sion n. If f is smooth at every point, we say that f is smooth. Smooth

morphisms are flat.

Proposition 2.4.1.

(i) A morphism is etale if and only if it is smooth and locally quasi-finite.

(ii) Composites of smooth morphisms are smooth.

(iii) Base changes of smooth morphisms are smooth.

(iv) Let f : X → Y and g : Y → Z be morphisms such that g is

unramified and gf is smooth. Then f is smooth.

Proposition 2.4.2. Let S be a noetherian scheme, X and Y two S-

schemes locally of finite type, f : X → Y an S-morphism, x a point in

X, s the image of x in S, Xs = X ⊗OS k(s), Ys = Y ⊗OS k(s), and

fs : Xs → Ys the morphism induced by f .

(i) f is quasi-finite (resp. unramified) at x if and only if fs is quasi-finite

(resp. unramified) at x.

(ii) Suppose that X and Y are flat over S. Then f is flat (resp. etale,

resp. smooth) at x if and only if fs is flat (resp. etale, resp. smooth) at x.

Proof. (i) is clear since the property of a morphism being quasi-finite or

unramified depends only on fibers of the morphism. The statement for the

flat morphism follows from 1.3.7. The statement for the etale morphism

follows from that for the flat morphism and for the unramified morphism.

The statement for the smooth morphism follows from 2.4.3 below. �
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Lemma 2.4.3. Let f : X → Y be a morphism locally of finite type between

noetherian schemes, x a point in X and y = f(x). Then f is smooth at

x if and only if f is flat at x and fy : Xy = X ⊗OY k(y) → Spec k(y) is

smooth at x.

Proof. The “only if” part is clear. Let us prove the “if” part. Shrinking

X , we may assume there exists an etale k(y)-morphism

Xy → Ank(y) = Spec k(y)[t1, . . . , tn].

Let si (i = 1, . . . , n) be the images of ti in Γ(Xy,OXy ). Shrinking X again,

we may assume that si lie in the image of the canonical homomorphism

Γ(X,OX) → Γ(Xy,OXy ). Choose a preimage s′i ∈ Γ(X,OX) of si for each

i. Consider the Y -morphism

X → AnY = SpecOY [t1, . . . , tn]

corresponding to the OY -algebra morphism OY [t1, . . . , tn] → f∗OX map-

ping ti to s
′
i. By the statement for the etale morphism in 2.4.2 (ii), this

morphism is etale at x. So X → Y is smooth at x. �

Proposition 2.4.4. Let f : X → Y be a morphism locally of finite type

between noetherian schemes, and let x be a point in X. Suppose f is smooth

at x. Then OX,x is reduced (resp. regular, resp. normal) if and only if

OY,f(x) is so.

Proof. The problem is local. We may assume there exists an etale Y -

morphism X → AnY . Let y′ be the image of x in AnY . Note that OAnY ,y
′ is

reduced (resp. regular, resp. normal) if and only if OY,f(x) is so. (Confer

[Matsumura (1970)] (17.B), (17.I) Theorem 40, (21.D) Theorem 51.) We

are thus reduced to the case where f is etale. The statement about regu-

larity follows from [Matsumura (1970)] (21.D) Theorem 51. Recall that a

noetherian ring is reduced (resp. normal) if it satisfies (R0) and (S1) (resp.

(R1) and (S2)). (Confer [Matsumura (1970)] (17.I) Theorem 39.) The

statements about being reduced and being normal follow from [Matsumura

(1970)] (21.C) Corollary 2. �

Proposition 2.4.5. Let S0 be a quasi-compact quasi-separated scheme,

(Aλ, φλμ) a direct system of quasi-coherent OS0-algebras, A = lim−→λ
Aλ,

Sλ = SpecAλ, S = SpecA , X0 an S0-scheme of finite presentation,

Xλ = X0 ×S0 Sλ, and X = X0 ×S0 S. If X is smooth over S, then Xλ is

smooth over Sλ for some λ.
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Proof. The problem is local. We may assume there exists an etale S-

morphism X → AnS . By 1.10.9 (i), this S-morphism is induced by an

Sλ-morphism Xλ → AnS for some λ. If λ is sufficiently large, Xλ → AnS is

etale by 2.3.7. Then Xλ is smooth over Sλ. �

2.5 Jacobian Criterion

([SGA 1] II 4, [EGA] IV 17.11–12.)

Proposition 2.5.1. Let S be a scheme, X and Y two S-schemes, and f :

X → Y an S-morphism locally of finite presentation. Then f is unramified

if and only if the canonical morphism f∗ΩY/S → ΩX/S is surjective.

Proof. Use the exact sequence

f∗ΩY/S → ΩX/S → ΩX/Y → 0. �

Lemma 2.5.2. Let A → B be a local homomorphism of local noetherian

rings, let M be a finitely generated B-module, and let t be an element in

the maximal ideal of A which is not a zero divisor in A. Then M is flat

over A if and only if the homomorphism

t :M →M, x �→ tx

is injective and M/tM is flat over A/tA.

Proof. If M is flat over A, then M/tM is flat over A/tA. Since t is not

a zero divisor, the multiplication by t is injective on A. So t : M → M is

injective.

Conversely, from the short exact sequence

0 → A
t→ A→ A/tA→ 0,

we get a long exact sequence

0 → TorA1 (M,A/tA) →M
t→M →M/tM → 0.

If t :M →M is injective, then we have TorA1 (M,A/tA) = 0. Furthermore,

if M/tM is flat over A/tA, then M is flat over A by 1.3.5. �

Proposition 2.5.3. Let S be a scheme, X and Y two S-schemes, and

f : X → Y an S-morphism locally of finite presentation. If f is etale, then

the canonical morphism f∗ΩY/S → ΩX/S is an isomorphism. The converse

holds if X and Y are smooth over S.
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Proof. Suppose f is etale and let us prove f∗ΩY/S ∼= ΩX/S . The problem

is local. We may assume that X and Y are separated over S. The diagonal

morphisms ΔX/S , ΔY/S and ΔX/Y are closed immersions. We have a

commutative diagram

X
ΔX/Y→ X ×Y X q→ X ×S X
↘ f ↓ p ↓ f×f

Y
ΔY/S→ Y ×S Y,

where the square is Cartesian and qΔX/Y = ΔX/S . Let I be the OY×SY -
ideal defining the closed immersion ΔY/S . Since f × f is flat, the OX×SX -

ideal defining the closed immersion q is (f × f)∗I . Since f is unramified,

ΔX/Y is an open immersion. It follows that

ΩX/S ∼= Δ∗X/Y q
∗((f × f)∗I /(f × f)∗I 2

) ∼= Δ∗X/Y q
∗(f × f)∗(I /I 2)

∼= f∗Δ∗Y/S(I /I 2) ∼= f∗ΩY/S .

Suppose X and Y are smooth over S and f∗ΩY/S ∼= ΩX/S . Let us prove

f is etale. The problem is local. We may reduce to the case where X , Y

and S are affine. Using 1.10.2 (ii), 1.10.4 (ii) and 2.4.5, we can then reduce

to the case where S is noetherian. By 2.5.1, f is unramified. We need to

show that f is flat. By 2.4.2 (ii), it suffices to show fs : Xs → Ys is flat for

any s ∈ S. So we may assume S = Spec k for some field k. By base change

to an algebraic closure of k, we may assume that k is algebraically closed.

Since X and Y are smooth over k, they are regular. Let x be a closed point

of X , and let y = f(x). We need to show OX,x is flat over OY,y. By 2.1.5,

we have canonical isomorphisms

mx/m
2
x
∼= ΩOX,x/k ⊗OX,x OX,x/mx,

my/m
2
y
∼= ΩOY,y/k ⊗OY,y OY,y/my.

As f∗ΩY/S ∼= ΩX/S , we have my/m
2
y
∼= mx/m

2
x. So if t1, . . . , tn ∈ my form

a regular system of parameters of OY,y, then their images in OX,x form a

regular system of parameters of OX,x. Since OX,x/(t1, . . . , tn)OX,x is flat

over OY,y/(t1, . . . , tn) ∼= k, by 2.5.2 and induction on n, OX,x is flat over

OY,y. �

Proposition 2.5.4. Let S be a scheme, X and Y two S-schemes, and

f : X → Y a smooth S-morphism.

(i) ΩX/Y is a locally free OX -module, and its rank is equal to the relative

dimension of f .
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(ii) The sequence

0 → f∗ΩY/S → ΩX/S → ΩX/Y → 0

is exact.

Proof. The problem is local. We may assume that f : X → Y is a

composite

X
g→ AnY

π→ Y,

where g is etale, and π is the projection. By 2.5.3,we have

ΩX/Y ∼= g∗ΩAnY /Y
, ΩX/S ∼= g∗ΩAnY /S

.

The sequence in (ii) can be identified with

0 → g∗π∗ΩY/S → g∗ΩAnY /S
→ g∗ΩAnY /Y

→ 0.

This reduces the proof to the case where f is the morphism π : AnY → Y .

We can then apply 2.1.6. �

Corollary 2.5.5. Let S be a scheme, X and Y two S-schemes locally of

finite presentation, and f : X → Y an etale S-morphism. If X is etale

over S, then f(X) is etale over S.

Proof. By 2.5.4, we have an exact sequence

0 → f∗ΩY/S → ΩX/S → ΩX/Y → 0.

Since X is etale over S, we have ΩX/S = 0. So f∗ΩY/S = 0. But f is flat.

It follows that ΩY/S |f(X) = 0. Hence f(X) is unramified over S. For any

x ∈ X , let y and s be its images in Y and S, respectively. Then OX,x is

faithfully flat both over OY,y and over OS,s. This implies that OY,y is flat

over OS,s. So f(X) is etale over S. �

Lemma 2.5.6. Let X be a scheme, F and G quasi-coherent OX -modules,

x a point in X, and u : F → G a morphism. Suppose that G is free of

finite rank in a neighborhood of x. The following conditions are equivalent:

(i) F has finite presentation in a neighborhood of x, ux : Fx → Gx is

injective and cokerux is a free OX,x-module.

(ii) There exists a neighborhood U of x in X such that u|U induces an

isomorphism between F |U and a direct factor of G |U .
(iii) F has finite presentation in a neighborhood of x and ux is univer-

sally injective, that is, for any OX,x-module M , ux ⊗ id : Fx ⊗OX,x M →
Gx ⊗OX,x M is injective.
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(iv) F has finite presentation in a neighborhood of x and ux ⊗ id :

Fx ⊗OX,x k(x) → Gx ⊗OX,x k(x) is injective.

(v) F is free of finite rank in a neighborhood of x, and the transpose

u∨x : G ∨x → F∨x of ux is surjective, where for any free OX,x-module M of

finite rank, we define M∨ = HomOX,x(M,OX,x).

Proof.

(i)⇒(ii) The short exact sequence

0 → Fx
ux→ Gx → cokerux → 0

is split. So there exists a homomorphism vx : Gx → Fx such that vxux = id.

Since F and G have finite presentation in a neighborhood of x, we can find

an open neighborhood U of x in X and a morphism v : G |U → F |U
extending vx such that v ◦ (u|U ) = id. Then u|U induces an isomorphism

between F |U and a direct factor of G |U .
(ii)⇒(iii) and (iii)⇒(iv) are obvious.

(iv)⇒(v) Choose s1, . . . , sm ∈ Fx so that their images in Fx⊗OX,x k(x)

form a basis of Fx⊗OX,x k(x). By Nakayama’s lemma, s1, . . . , sm generate

Fx as an OX,x-module. Let s′1, . . . , s
′
m ∈ Gx be the images of s1, . . . , sm,

respectively. The images of s′1, . . . , s
′
m in Gx ⊗OX,x k(x) form a part of a

basis of Gx ⊗OX,x k(x) since Fx ⊗OX,x k(x) → Gx ⊗OX,x k(x) is injective.

Choose s′m+1, . . . , s
′
n ∈ Gx so that the images of s′1, . . . , s

′
n in Gx⊗OX,x k(x)

form a basis of Gx ⊗OX,x k(x). By Nakayama’s lemma and the assumption

that Gx is free, s′1, . . . , s
′
n form a basis of Gx. This implies that s1, . . . , sm

are linearly independent. Since s1, . . . , sm generate Fx, they form a basis

of Fx. Hence Fx is a free OX,x-module. Since F is of finite presentation

in a neighborhood of x, F is free in a neighborhood of x.

The homomorphism

(ux ⊗ id)∨ : Hom(Gx ⊗OX,x k(x), k(x)) → Hom(Fx ⊗OX,x k(x), k(x))

is surjective. So the homomorphism

u∨x ⊗ id : G ∨x ⊗OX,x k(x) → F∨x ⊗OX,x k(x)

is surjective. By Nakayama’s lemma, u∨x is surjective.

(v)⇒(i) Since u∨x is surjective, and Fx is a free OX,x-module, the map

Hom(Gx,Fx) → Hom(Fx,Fx) induced by ux is surjective. So there exists

vx : Gx → Fx such that vxux = id. Thus the sequence

0 → Fx
ux→ Gx → cokerux → 0

is exact and split. It follows that ux is injective and cokerux is a direct

factor of Gx. As Gx is a free OX,x-module, so is cokerux. �
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Proposition 2.5.7. Let S be a scheme, X and Y two S-schemes, f : X →
Y an S-morphism, x a point in X, and y and s the images of x in Y

and S, respectively. Suppose that Y is smooth over S at y. The following

conditions are equivalent:

(i) f is smooth at x.

(ii) X is smooth over S at x and the morphism f∗ΩY/S → ΩX/S satisfies

the equivalent conditions in 2.5.6 at x.

Proof.

(i)⇒(ii) follows from 2.4.1 (ii) and 2.5.4.

(ii)⇒(i) The cokernel of f∗ΩY/S → ΩX/S is isomorphic to ΩX/Y . So

ΩX/Y is free in a neighborhood of x. Shrinking X and Y , we may assume

X and Y are smooth over S and ΩX/Y is a free OX -module with basis

dg1, . . . , dgn for some g1, . . . , gn ∈ Γ(X,OX). Let π : AnY → Y be the

projection, and let

g : X → AnY = SpecOY [t1, . . . , tn]

be the Y -morphism defined by the OY -algebra morphism

OY [t1, . . . , tn] → f∗OX , ti �→ gi (i = 1, . . . , n).

By 2.5.4, the sequence

0 → π∗ΩY/S → ΩAnY /S
→ ΩAnY /Y

→ 0

is exact. As ΩAnY /Y
is free, the above sequence is split locally, and hence

the sequence

0 → g∗π∗ΩY/S → g∗ΩAnY /S
→ g∗ΩAnY /Y

→ 0

is also exact. We have a commutative diagram

0 → g∗π∗ΩY/S → g∗ΩAnY /S
→ g∗ΩAnY /Y

→ 0
∼= ↓ ↓ ↓

0 → f∗ΩY/S → ΩX/S → ΩX/Y → 0.

After shrinking X , the sequence on the second line is exact by our assump-

tion. By the choice of g, the last vertical arrow g∗ΩAnY /Y
→ ΩX/Y is an

isomorphism. By the five lemma, we have g∗ΩAnY /S
∼= ΩX/S . By 2.5.3, g is

etale. So f is smooth. �

Theorem 2.5.8. Let S be a scheme, f : X → S a smooth morphism,

i : Y → X a closed immersion defined by a quasi-coherent OX -ideal I

locally of finite type, x a point of Y , n and m the relative dimensions of X

and Y respectively at x, and

k : AmS = SpecOS [t1, . . . , tm] → AnS = SpecOS [t1, . . . , tn]
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the closed immersion defined by the OS-algebra epimorphism

OS [t1, . . . , tn] → OS [t1, . . . , tm], tj �→
{
tj if 1 ≤ j ≤ m,

0 if m+ 1 ≤ j ≤ n.

The following conditions are equivalent:

(i) fi : Y → S is smooth at x.

(ii) There exists an open neighborhood U of x in X admitting an etale

S-morphism g : U → AnS = SpecOS [t1, . . . , tn] such that the closed immer-

sion iU : Y ∩U → U induced by i can be obtained from the closed immersion

k : AmS → AnS by the base change g, that is, we have a Cartesian diagram

Y ∩ U iU→ U

g′ ↓ ↓ g
AmS

k→ AnS .

(iii) There exist generators gm+1, . . . , gn of the ideal Ix of OX,xsuch

that dgm+1, . . . , dgn form a part of a basis of (ΩX/S)x, or equivalently, the

images of dgm+1, . . . , dgn in (ΩX/S)x ⊗OX,x k(x) are linearly independent.

(iv) The canonical morphism

δ : i∗(I /I 2) → i∗ΩX/S

satisfies the equivalent conditions in 2.5.6 at x.

Proof.

(i)⇒(ii) We have an exact sequence

i∗(I /I 2)
δ→ i∗ΩX/S → ΩY/S → 0.

Since X and Y are smooth over S at x, i∗ΩX/S and ΩY/S are free in a neigh-

borhood x. Choose g1, . . . , gm ∈ OX,x so that the images of dg1, . . . , dgm
in (ΩY/S)x ⊗OY,x k(x) form a basis. Choose gm+1, . . . , gn ∈ Ix so that the

images of dg1, . . . , dgn in (ΩX/S)x ⊗OX,x k(x) form a basis. Shrinking X ,

we may assume gm+1, . . . , gn ∈ Γ(X,I ) and g1, . . . , gn ∈ Γ(X,OX). The

OS-algebra morphisms

OS [t1, . . . , tn] → f∗OX , tj �→ gj (1 ≤ j ≤ n),

OS [t1, . . . , tm] → (fi)∗OY , tj �→ gj|Y (1 ≤ j ≤ m),

define S-morphisms g : X → AnS and g′ : Y → AmS such that the diagram

Y
i→ X

g′ ↓ ↓ g
AmS

k→ AnS
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commutes. Since ΩX/S is free in a neighborhood of x and the images of

dg1, . . . , dgn in (ΩX/S)x⊗OX,x k(x) form a basis, the morphism g : X → AnS
is etale at x by 2.5.3. Similarly the morphism g′ : Y → AmS is also etale

at x. Shrinking X , we may assume that these two morphisms are etale.

The morphisms i : Y → X and g′ : Y → AmS induce a morphism i′ : Y →
X ×AnS

AmS such that π1i
′ = i and π2i

′ = g′, where π1 : X ×AnS
AmS → X

and π2 : X ×AnS
AmS → AmS are the projections. Since π1 and i are closed

immersions, i′ is a closed immersion. Since π2 and g′ are etale, i′ is etale by
2.3.1 (iv). By 2.3.9, i′ : Y → X ×AnS

AmS is an open and closed immersion.

Shrinking X again, we may assume that it is an isomorphism.

(ii)⇒(i) is obvious.

(ii)⇒(iv) Let J be the ideal of OS [t1, . . . , tn] generated by tm+1, . . . , tn.

Since g is flat, we have I |U ∼= g∗J . Since g is etale, we have

g∗ΩAnS/S
∼= (ΩX/S)|U , g′∗ΩAmS /S

∼= (ΩY/S)|Y ∩U .
One can check that the following sequence is exact:

0 → k∗(J /J 2) → k∗ΩAnS/S
→ ΩAmS /S

→ 0.

Applying g′∗ to this exact sequence, we get an exact sequence

0 → (i∗(I /I 2))|Y ∩U δ→ (i∗ΩX/S)|Y ∩U → (ΩY/S)|Y ∩U → 0.

The conditions of 2.5.6 thus hold for δ : i∗(I /I 2) → i∗ΩX/S at x.

(iv)⇒(iii) Let gm+1, . . . , gn ∈ Ix so that their images in Ix/I 2
x ⊗OX,x

k(x) form a basis. By Nakayama’s lemma, gm+1, . . . , gn generate Ix. Since

Ix/I
2
x ⊗OX,x k(x) → (ΩX/S)x ⊗OX,x k(x)

is injective, the images of dgm+1, . . . , dgn in (ΩX/S)x ⊗OX,x k(x) form a

basis.

(iii)⇒(ii) Since ΩX/S is free in a neighborhood of x, we can find

g1, . . . , gm ∈ OX,x such that dg1, . . . , dgn form a basis for (ΩX/S)x. Shrink-

ing X , we may assume that g1, . . . , gn ∈ Γ(X,OX), gm+1, . . . , gn ∈
Γ(X,I ), ΩX/S is free with basis dg1, . . . , dgn, and gm+1, . . . , gn generate

I . The family g1, . . . , gn defines an S-morphism g : X → AnS which is etale

by 2.5.3, and i : Y → X is induced from k : AmS → AnS by the base change

g : X → AnS . �

Corollary 2.5.9 (Jacobian Criterion). Let A be a ring, I a finitely gen-

erated ideal of A[t1, . . . , tn], and p a prime ideal of A[t1, . . . , tn] containing

I. If there exist polynomials gm+1, . . . , gn ∈ I (0 ≤ m ≤ n) such that their
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images in the ideal Ip generate Ip and there exists a subset {im+1, . . . , in}
of {1, . . . , n} such that

det

⎛⎜⎜⎝
∂gm+1

∂tim+1
· · · ∂gm+1

∂tin
...

...
∂gn

∂tim+1
· · · ∂gn

∂tin

⎞⎟⎟⎠ 	∈ p,

then Spec (A[t1, . . . , tn]/I) → SpecA is smooth at p/I. Furthermore, if

m = 0, then Spec (A[t1, . . . , tn]/I) → SpecA is etale at p/I.

Proof. Use the equivalence of (i) and (iii) in 2.5.8. �

Proposition 2.5.10. Consider a Cartesian diagram

X ′ = X ×Y Y ′ g
′

→ X

f ′ ↓ ↓ f
Y ′

g→ Y.

Suppose that f : X → Y is locally of finite presentation and g : Y ′ → Y is

faithfully flat. If f ′ is unramified (resp. etale, resp. smooth), then so is f .

Proof. The statement for unramified morphisms is 2.2.5. Suppose f ′ is
smooth. Let us prove f is smooth. The problem is local. We may assume

that X = SpecB and Y = SpecA are affine, and B ∼= A[t1, . . . , tn]/I for

some finitely generated ideal I of A[t1, . . . , tn]. We have a closed immersion

i : X → AnY with ideal sheaf I∼. Since g is flat, we have a closed immersion

i′ : X ′ → AnY ′ with ideal sheaf g′′∗I∼, where g′′ : AnY ′ → AnY is obtained

from g : Y ′ → Y by base change. Since f ′ is smooth, by 2.5.8 (iv), we have

an exact sequence

0 → i′∗g′′∗(I/I2)∼ → i′∗ΩAn
Y ′/Y ′ → ΩX′/Y ′ → 0

and ΩX′/Y ′ is locally free. Since g is faithfully flat, the sequence

0 → i∗(I/I2)∼ → i∗ΩAnY /Y
→ ΩX/Y → 0

is exact. Since f is locally of finite presentation, ΩX/Y is an OX -module

locally of finite presentation. For any x ∈ X , let x′ ∈ X ′ be a preimage of

x. Applying 1.6.6 to the quasi-compact faithfully flat morphism

SpecOX′,x′ → SpecOX,x

and using the fact that (ΩX′/Y ′)x′ is a free OX′,x′-module of finite rank, we

see that (ΩX/Y )x is a free OX,x-module of finite rank. So ΩX/Y is locally

free. By 2.5.8, f is smooth.

The statement about etale morphisms follows from the statements about

unramified morphisms and smooth morphisms since a morphism is etale if

and only if it is unramified and smooth. �
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2.6 Infinitesimal Liftings of Morphisms

([SGA 1] III, [EGA] IV 17.14.)

Lemma 2.6.1. Let B be a ring, A and C two B-algebras, I an ideal of A

with the property I2 = 0, p : A → A/I the projection, and φ : C → A a

B-homomorphism. Then there exists a one-to-one correspondence between

the set

{φ′ : C → A |φ′ is a B-homomorphism satisfying pφ′ = pφ}
and the set HomA/I(ΩC/B⊗CA/I, I), where A/I is regarded as a C-algebra

through the homomorphism pφ : C → A/I.

A/I
pφ← C

p ↑ ↙ φ′ ↑
A ← B

Proof. Since I2 = 0, I can be regarded as an A/I-module and hence a C-

module. Let φ′ : C → A be aB-homomorphism with the property pφ′ = pφ.

Then the image of φ′−φ is contained in I. We claim that φ′−φ : C → I is a

B-derivation. Indeed, since φ and φ′ are B-homomorphisms, the restriction

of φ′ − φ to the image of B in C is 0. For any x1, x2 ∈ C, we have

(φ′ − φ)(x1x2) = φ′(x1)φ′(x2)− φ(x1)φ(x2)

= φ(x1)(φ
′(x2)− φ(x2)) + φ′(x2)(φ′(x1)− φ(x1))

= x1 · (φ′(x2)− φ(x2)) + x2 · (φ′(x1)− φ(x1)).

This proves our claim. Conversely, if D : C → I is a B-derivation, then

one can verify φ + D : C → A is a B-homomorphism with the property

p(φ + C) = pφ. Our assertion then follows from the fact that the set

of B-derivations DerB(C, I) is in one-to-one correspondence with the set

HomC(ΩC/B, I) ∼= HomA/I(ΩC/B ⊗C A/I, I). �

Theorem 2.6.2. Let f : X → S be a morphism locally of finite presenta-

tion. The following conditions are equivalent:

(i) f is unramified (resp. etale, resp. smooth).

(ii) For any S-scheme SpecA and any ideal I of A with the property

I2 = 0, the canonical map

HomS(SpecA,X) → HomS(SpecA/I,X)

is injective (resp. bijective, resp. surjective).
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Proof.

(i)⇒(ii) We have one-to-one correspondences

HomS(SpecA,X) ∼= HomSpecA(SpecA, SpecA×S X),

HomS(SpecA/I,X) ∼= HomSpecA(SpecA/I, SpecA×S X).

It suffices to show that

HomSpecA(SpecA, SpecA×S X) → HomSpecA(SpecA/I, SpecA×S X)

is injective (resp. bijective, resp. surjective). Making the base change

SpecA→ S, we are reduced to prove that if f : X → SpecA is unramified

(resp. etale, resp. smooth), then the canonical map

HomSpecA(SpecA,X) → HomSpecA(SpecA/I,X)

is injective (resp. bijective, resp. surjective).

Suppose f : X → SpecA is unramified. An element g in

HomSpecA(SpecA,X) is a section of f and hence is an open immersion.

(Confer the proof of 2.3.10.) We have g = (f |im g)
−1. So g is completely

determined by im g. Let g′ be the composite

SpecA/I → SpecA
g→ X.

Since I2 = 0, SpecA/I and SpecA have the same underlying topological

space. So g and g′ have the same image in X . It follows that g is completely

determined by g′, and the map

HomSpecA(SpecA,X) → HomSpecA(SpecA/I,X)

is injective.

The statement for etale morphisms follows from 2.3.12.

Suppose f : X → SpecA is smooth. Let {Uα} be a covering of X by

affine open subsets such that we have etale A-morphisms gα : Uα → A
nα
A .

Let i : SpecA/I → SpecA be the closed immersion. Given an A-morphism

g′ : SpecA/I → X ,

SpecA/I
g′→ X

i ↓ ↓
SpecA = SpecA,

regard each g′−1(Uα) as an open subset of SpecA, and cover it by affine open

subschemes Vαβ of SpecA. Let g′αβ : Vαβ ⊗A A/I → Uα be the morphisms

induced by g′, and let i : Vαβ ⊗A A/I → Vαβ be the closed immersions.

We can construct A-morphisms hαβ : Vαβ → AnA such that hαβi = gαg
′
αβ.
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Since gα is etale, by the etale case that we have just treated, there exist

morphisms gαβ : Vαβ → Uα such that the following diagram commutes:

Vαβ ⊗A A/I
g′αβ→ Uα

i ↓
gαβ

↗ ↓ gα
Vαβ

hαβ→ A
nα
A .

For convenience, we change our notation on indices: We have shown that

there exist a covering {Uλ} (resp. {Vλ}) of X (resp. SpecA) by affine open

subsets and A-morphisms gλ : Vλ → Uλ such that g′(Vλ ⊗A A/I) ⊂ Uλ,

and gλi = g′λ, where i : Vλ ⊗A A/I → Vλ are the closed immersions, and

g′λ : Vλ ⊗A A/I → Uλ the morphisms induced by g′. For each pair (λ, μ) of

indices, consider the commutative diagram

(Vλ ∩ Vμ)⊗A A/I
g′λμ→ Uλ ∩ Uμ

i ↓
gλμ

↗ ↓ f
Vλ ∩ Vμ → SpecA,

where

g′λμ = g′λ|(Vλ∩Vμ)⊗AA/I = g′μ|(Vλ∩Vμ)⊗AA/I , gλμ = gλ|Vλ∩Vμ .
If we replace gλμ in this diagram by gμλ = gμ|Vλ∩Vμ , the diagram still

commutes. By 2.6.1, gμλ corresponds to an element

sλμ ∈ Γ((Vλ ∩ Vμ)⊗A A/I,H omOSpecA/I
(g′∗ΩX/SpecA, I∼)).

One can check that on (Vλ ∩ Vμ ∩ Vν)⊗A A/I, we have

sλμ + sμν + sνλ = 0.

Since SpecA/I is affine, we have

Ȟ1(SpecA/I,H omOSpecA/I
(g′∗ΩX/SpecA, I∼)) = 0.

Replacing {Vλ} by a refinement, we may assume there exist

sλ ∈ Γ(Vλ ⊗A A/I,H omOSpecA/I
(g′∗ΩX/SpecA, I∼))

such that sλμ = sλ − sμ. Consider the commutative diagram

Vλ ⊗A A/I g′λ→ Uλ

i ↓
gλ↗ ↓ f

Vλ → SpecA.

By 2.6.1, each sλ corresponds to an A-morphism g̃λ : Vλ → Uλ such that

g̃λi = g′λ. One can check that g̃λ and g̃μ coincide on Vλ ∩ Vμ. So we can
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glue g̃λ together to get an A-morphism g : SpecA → X such that gi = g′.
This proves that the map

HomSpecA(SpecA,X) → HomSpecA(SpecA/I,X)

is surjective.

(ii)⇒(i) The problem is local. We may assume that X = SpecC and

S = SpecB are affine. Suppose that for any B-algebra A and any ideal I

of A satisfying I2 = 0, the canonical map

HomSpecB(SpecA, SpecC) → HomSpecB(SpecA/I, SpecC)

is injective. Then by 2.6.1, we have HomA/I(ΩC/B⊗CA/I, I) = 0 whenever

there exists a B-homomorphism from C to A. Take A = (C ⊗B C)/J2 and

I = J/J2, where J is the kernel of the epimorphism

C ⊗B C → C, x⊗ y �→ xy.

We have a B-algebra homomorphism

C → A, x �→ x⊗ 1 + J2.

So HomA/I(ΩC/B ⊗C A/I, I) = 0, that is, HomC(ΩC/B,ΩC/B) = 0. Hence

ΩC/B = 0 and f is unramified.

Suppose for any B-algebra A and any ideal I of A satisfying I2 = 0, the

canonical map

HomSpecB(SpecA, SpecC) → HomSpecB(SpecA/I, SpecC)

is surjective. We may assume C = B[t1, . . . , tn]/J for some finitely gener-

ated ideal J of B[t1, . . . , tn]. Taking A = B[t1, . . . , tn]/J
2 and I = J/J2,

we see that the map

HomB(B[t1, . . . , tn]/J,B[t1, . . . , tn]/J
2)

→ HomB(B[t1, . . . , tn]/J,B[t1, . . . , tn]/J)

is surjective. So there exists a B-homomorphism

θ : B[t1, . . . , tn]/J → B[t1, . . . , tn]/J
2

which is a section of the projection

p : B[t1, . . . , tn]/J
2 → B[t1, . . . , tn]/J.

Let φ : B[t1, . . . , tn] → B[t1, . . . , tn]/J
2 be the canonical homomorphism

and let φ′ = θpφ. We have pφ′ = pφ. By the proof of Lemma 2.6.1,

φ− φ′ : B[t1, . . . , tn] → J/J2
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is a B-derivation. It corresponds to a (B[t1, . . . , tn]/J)-module homomor-

phism

ψ : ΩB[t1,...,tn]/B ⊗B[t1,...,tn] (B[t1, . . . , tn]/J) → J/J2.

We claim that ψ is a left inverse of the canonical homomorphism

δ : J/J2 → ΩB[t1,...,tn]/B ⊗B[t1,...,tn] (B[t1, . . . , tn]/J).

Indeed, for any x ∈ J , we have

ψδ(x + J2) = ψ(dx⊗ 1) = (φ− φ′)(x) = φ(x) − θpφ(x) = x+ J2

since pφ|J = 0. This proves our claim. So the sequence

0 → J/J2 → ΩB[t1,...,tn]/B ⊗B[t1,...,tn] (B[t1, . . . , tn]/J)

→ Ω(B[t1,...,tn]/J)/B → 0

is split exact. By 2.5.8 (iv), SpecB[t1, . . . , tn]/J → SpecB is smooth.

The statement for the etale morphism follows from that for the unram-

ified and smooth morphism. �

2.7 Direct Limits and Inverse Limits

Let I and C be two categories, and let F : I → C be a covariant (resp.

contravariant) functor. We often write F as (F (i))i∈ob I , or simply (F (i)).

For every object X in C , let CX : I → C be the constant functor that

maps each object in I to X , and each morphism in I to idX . Consider the

covariant (resp. contravariant) functor

C → (Sets), X �→ Hom(F,CX) (resp. C → (Sets), X �→ Hom(CX , F ))

from C to the category of sets. If this functor is representable, we call the

object in C representing this functor the direct limit (resp. inverse limit)

of F , and denote it by lim−→i∈ob I F (i) (resp. lim←−i∈ob I F (i)). We can also

define lim−→i∈ob I F (i) (resp. lim←−i∈ob I F (i)) as an object in C together with

morphisms

φi : F (i) → lim−→
i∈ob I

F (i) (resp. φi : lim←−
i∈ob I

F (i) → F (i))

with the property

φj ◦ F (fij) = φi (resp. F (fij) ◦ φj = φi)

whenever there exists a morphism fij : i → j in I. Moreover, these data

satisfy the following universal property: For any object X in C together
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with morphisms ψi : F (i) → X (resp. ψi : X → F (i)) with the property

ψj ◦F (fij) = ψi (resp. F (fij) ◦ψj = ψi) whenever there exists a morphism

fij : i → j in I, there exists a unique morphism ψ : lim−→i∈ob I F (i) → X

(resp. ψ : X → lim←−i∈ob I F (i)) in C such that ψφi = ψi (resp. φiψ = ψi).

In the following, C is the category of sets, or the category of groups.

Suppose objects in I form a set. Then for any contravariant functor

F : I → C , lim←−i F (i) exists. In fact, lim←−i F (i) is the subspace of
∏
i∈ob I F (i)

consisting of those elements (xi) ∈
∏
i∈ob I F (i) such that F (fij)(xj) = xi

whenever there exists a morphism fij : i → j. The canonical morphisms

φi : lim←−i F (i) → F (i) are induced by the projections
∏
i F (i) → F (i).

Consider the following conditions of the category I:

(I1) Given two morphisms i → j and i → j′ in I, there exist two

morphisms j → k and j′ → k such that the following diagram commutes:

i → j

↓ ↓
j′ → k.

(I2) Given two morphisms i ⇒ j in I, there exists a morphism j → k

so that its composite with these two morphisms are the same.

(I3) Given two objects i and j in I, there exists an object k in I admit-

ting morphisms i→ k and j → k.

Note that (I2) + (I3) ⇒ (I1).

Suppose objects in I form a set and I satisfies (I2) and (I3). For any

covariant functor F : I → C , lim−→i
F (i) exists. It can be defined as the set

(or group) (∐
i∈I

F (i)
)
/R,

where R is the equivalence relation on
∐
i∈I F (i) defined as follows: For

any x ∈ F (i) and y ∈ F (j), we say x ∼ y if there exist morphisms i → k

and j → k in I such that x and y have the same image in F (k). In the case

where C is the category of groups, the group structure on
(∐

i∈I F (i)
)
/R

is defined as follows: For any x ∈ F (i) and y ∈ F (j), let i → k and j → k

be morphisms in I. Then xy is defined to be the product of the images

of x and y in F (k), and passed to the quotient. The canonical morphisms

F (i) → lim−→i
F (i) are induced by the inclusions F (i) → ∐i∈I F (i). Note

 E
ta

le
 C

oh
om

ol
og

y 
T

he
or

y 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

O
N

A
SH

 U
N

IV
E

R
SI

T
Y

 o
n 

11
/2

7/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



February 6, 2015 9:48 ws-book9x6 Etale Cohomology Theory... etale page 89

Etale Morphisms and Smooth Morphisms 89

that lim−→I
is an exact functor, that is, if F → G → H is a sequence of

functors such that

F (i) → G(i) → H(i)

are exact for all i, then

lim−→
i

F (i) → lim−→
i

G(i) → lim−→
i

H(i)

is exact.

Suppose objects in I form a set and I satisfies (I1) and (I2). Define

an equivalence relation on I as follows: We say that i ∼ j if there exists a

sequence of objects

i = i0, i1, . . . , in = j

in I such that for each 0 ≤ m ≤ n− 1, there exists a morphism im → im+1

or a morphism im+1 → im. Let Iλ (λ ∈ Λ) be the equivalence classes of I

with respect to this relation. Then each Iλ satisfies (I2) and (I3). For any

covariant functor F : I → C , lim−→i∈ob I F (i) exists, and

lim−→
i∈ob I

F (i) ∼=
{∐

λ∈Λ
(
lim−→i∈ob Iλ F (i)

)
if C = (Sets),⊕

λ∈Λ
(
lim−→i∈ob Iλ F (i)

)
if C = (Groups).

lim−→I
is an exact functor.

Assume that objects in I form a set. For any covariant functor F : I →
C , lim−→i∈ob I F (i) exists, and

lim−→
i∈ob I

F (i) ∼=
⎧⎨⎩
(∐

i∈ob I F (i)
)
/R if C = (Sets),(⊕

i∈ob I F (i)
)
/R′ if C = (Groups),

where R (resp. R′) is the equivalence relation generated by x ∼ y (resp.

the subgroup generated by x − y), where x ∈ F (i), Y ∈ F (j), and there

exists a morphism i→ j such that the image of x in F (j) is y.

Let J be a full subcategory of I. We say that J is cofinal in I if for any

object i in I, there exists a morphism i → j in I such that j is an object

in J . If I satisfies (I1) (resp. (I2), resp. (I3)) and J is cofinal in I, then

J satisfies the same condition. Suppose I satisfies (I1) and J is cofinal in

I, then for any covariant (resp. contravariant) functor F : I → C and any

object X in C , the canonical map

Hom(F,CX ) → Hom(F |J , CX |J) (resp. Hom(CX , F ) → Hom(CX |J , F |J ))
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is bijective. So we have

lim−→
i∈ob I

F (i) ∼= lim−→
j∈ob J

F (j) (resp. lim←−
i∈ob I

F (i) ∼= lim←−
j∈ob J

F (j)).

If I satisfies (I1) and has a cofinal full subcategory J whose objects

form a set, we can apply our previous descriptions of lim←−j∈ob J F (j) and

lim−→j∈ob J F (j) to get descriptions of lim←−i∈ob I F (i) and lim−→i∈ob I F (i). An

object j in I is called a final object if for any object i in I, there exists one

and only one morphism i → j. In this case, the category J consisting of

only one object j and only one morphism idj is a cofinal full subcategory

of I, and we have

F (j) ∼= lim−→
i∈ob I

F (i) (resp. lim←−
i∈ob I

F (i) ∼= F (j).)

2.8 Henselization

([EGA IV] 18.5–8.)

Lemma 2.8.1.

(i) Let A be a ring. The map

a �→ D(a)

defines a one-to-one correspondence between the set of idempotent elements

in A and the set of open and closed subsets of SpecA.

(ii) Let A be a ring. The map

a �→ (Ann(a),Ann(1 − a))

defines a one-to-one correspondence between the set of idempotent elements

in A and the set of pairs (a1, a2) of ideals of A with the properties

a1 ∩ a2 = 0, a1 + a2 = A.

(iii) Let (R,m) be a local ring, let f(t) ∈ R[t] be a monic polynomial,

and let A = R[t]/(f(t)). Then the map

(g(t), h(t)) �→ (Ag(t), Ah(t))

defines a one-to-one correspondence between the set of pairs of monic poly-

nomials (g(t), h(t)) in R[t] with the properties

f(t) = g(t)h(t), g(t)R[t] + h(t)R[t] = R[t],

and the set of pairs (a1, a2) of ideals of A with the properties

a1 ∩ a2 = 0, a1 + a2 = A.
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Proof.

(i) If a ∈ A is idempotent, then we have

a(1− a) = 0, a+ (1 − a) = 1.

It follows that

D(a) ∩D(1− a) = Ø, D(a) ∪D(1− a) = SpecA.

So D(a) is an open and closed subset of SpecA. Suppose that U is an open

and closed subset of A. Let a ∈ A be the element corresponding to the

section in Γ(SpecA,OSpecA) such that a|U = 1 and a|SpecA−U = 0. Then

a is idempotent and U = D(a). So the map a �→ D(a) is surjective. To

prove it is injective, let a1 and a2 be idempotent elements in A such that

D(a1) = D(a2), and let us prove that a1 = a2. It suffices to show that for

any prime ideal p of A, a1 and a2 have the same image in Ap. So we may

assume that A is a local ring. Then SpecA is connected. It follows that

either

D(a1) = D(a2) = Ø

or

D(a1) = D(a2) = SpecA.

In the first case, a1 and a2 are nilpotent. Since they are idempotent, we

have a1 = a2 = 0. In the second case, we have

D(1− a1) = D(1 − a2) = Ø,

and the same argument shows that 1− a1 = 1− a2 = 0. So we always have

a1 = a2.

(ii) For any a ∈ A, if x ∈ Ann(a) ∩ Ann(1− a), then

x = x · (a+ (1 − a)) = 0.

If a is idempotent, then a(1−a) = 0. So 1−a ∈ Ann(a) and a ∈ Ann(1−a),
and hence

1 = (1− a) + a ∈ Ann(a) + Ann(1− a).

It follows that

Ann(a) ∩ Ann(1− a) = 0, Ann(a) + Ann(1− a) = A.

Suppose that a1 and a2 are idempotent elements in A such that

Ann(a1) = Ann(a2). We have 1 − a1 ∈ Ann(a1). It follows that
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(1 − a1)a2 = 0, that is, a2 = a1a2. Similarly, we have a1 = a1a2. So

a1 = a2. Thus the map a �→ (Ann(a),Ann(1− a)) is injective.

Suppose that (a1, a2) is a pair of ideals of A with the properties a1∩a2 =

0 and a1 + a2 = A. By the Chinese remainder theorem, we have

A ∼= A/a1 ×A/a2.

Note that

Ann(1, 0) = {0} ×A/a2, Ann(0, 1) = A/a1 × {0}.
Let a be the element in A corresponding to the element (1, 0) in A/a1×A/a2.
Then we have

(Ann(a),Ann(1 − a)) = (a1, a2).

So the map a �→ (Ann(a),Ann(1− a)) is surjective.

(iii) Suppose that (g(t), h(t)) is a pair of monic polynomials in R[t] with

the properties f(t) = g(t)h(t) and g(t)R[t] + h(t)R[t] = R[t]. Then

Ag(t) +Ah(t) = A.

Choose polynomials a(t), b(t) ∈ R[t] such that

a(t)g(t) + b(t)h(t) = 1.

If r(t) ∈ g(t)R[t] ∩ h(t)R[t], then we have

r(t) = g(t)p(t) = h(t)q(t)

for some polynomials p(t) and q(t). We then have

r(t) = a(t)g(t)r(t) + b(t)h(t)r(t)

= a(t)g(t)h(t)q(t) + b(t)h(t)g(t)p(t)

= f(t)(a(t)q(t) + b(t)p(t)).

So r(t) ∈ f(t)R[t]. It follows that Ag(t) ∩Ah(t) = 0.

Suppose (g1(t), h1(t)) is another pair of monic polynomials in R[t] with

the properties f(t) = g1(t)h1(t) and g1(t)R[t]+h1(t)R[t] = R[t]. If Ag(t) =

Ag1(t), then g(t)R[t] = g1(t)R[t]. Since g(t) and g1(t) are monic, this

implies that g(t) = g1(t). Similarly h(t) = h1(t).

Given a pair (a1, a2) of ideals of A with the properties a1 ∩ a2 = 0 and

a1 + a2 = A, let A1 = A/a1 and A2 = A/a2. By the Chinese remainder

theorem, we have

R[t]/(f(t)) ∼= A1 ×A2.
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Let u be the image of t in A1. Then A1/mA1 is generated by the image ū of

u in A1/mA1 as a k-algebra, where k = R/m. Let ḡ(t) ∈ k[t] be the minimal

polynomial of ū, and let d = deg ḡ(t). Then {1, ū, . . . , ūd−1} is a basis of

A1/mA1 over k. By Nakayama’s lemma, A1 is generated by 1, u, . . . , ud−1

as an R-algebra. So there exists a monic polynomial g(t) ∈ R[t] of degree d

such that g(u) = 0. g(t) is necessarily a lifting of ḡ(t). Since A1 is a direct

factor of the free R-module R[t]/(f(t)) and R is a local ring, A1 is a free

R-module. As {1, ū, . . . , ūd−1} is a basis of A1/mA1 over k, {1, u, . . . , ud−1}
is a basis of A1 over R. So the R-algebra homomorphism

R[t]/(g(t)) → A1, t �→ u

is an isomorphism. This is equivalent to saying that a1 = Ag(t). Similarly,

there exists a monic polynomial h(t) ∈ R[t] such that a2 = Ah(t). We have

R[t]/(f(t)) ∼= R[t]/(g(t))×R[t]/(h(t)).

The image of g(t)h(t) in R[t]/(g(t)) × R[t]/(h(t)) is 0. So its image in

R[t]/(f(t)) is 0, that is, f(t)|g(t)h(t). On the other hand, we have

deg f(t) = rank
(
R[t]/(f(t))

)
= rank

(
R[t]/(g(t))×R[t]/(h(t))

)
= deg (g(t)h(t)).

As f(t) and g(t)h(t) are monic polynomials, we have f(t) = g(t)h(t). So

we have

R[t]/(g(t)h(t)) ∼= R[t]/(g(t))×R[t]/(h(t)).

It is clear that the kernels of the projections

R[t]/(g(t))×R[t]/(h(t)) → R[t]/(g(t)),

R[t]/(g(t))×R[t]/(h(t)) → R[t]/(h(t))

generate the ideal R[t]/(g(t))×R[t]/(h(t)). So the kernels of the projections
R[t]/(g(t)h(t)) → R[t]/(g(t)),

R[t]/(g(t)h(t)) → R[t]/(h(t))

generate the ideal R[t]/(g(t)h(t)), that is, (g(t))/(g(t)h(t)) and

(h(t))/(g(t)h(t)) generate the ideal R[t]/(g(t)h(t)). This implies that g(t)

and h(t) generate the ideal R[t]. �

Lemma 2.8.2. Let (R,m) be a local ring and let A be an R-algebra which is

free of finite rank as an R-module. For any R-algebra A′, let Idem(A′⊗RA)
be the set of idempotent elements in A′⊗RA. Then there exists an etale R-

algebra B of finite presentation such that the functor A′ �→ Idem(A′ ⊗R A)
is represented by B, that is, we have one-to-one correspondences

Idem(A′ ⊗R A) ∼= HomR(B,A
′)

functorial in A′.
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Proof. Let {e1, . . . , en} be a basis of A over R. We have

eiej =
∑
k

aijkek

for some aijk ∈ R. Let

Pk(t1, . . . , tn) =
∑
i,j

aijktitj − tk (k = 1, . . . , n).

An element
∑

i aiei (ai ∈ R) in A is idempotent if and only if

Pk(a1, . . . , an) = 0 for all k. For any R-algebra A′, {1 ⊗ e1, . . . , 1 ⊗ en}
is a basis of A′ ⊗R A over A′. An element

∑
i a
′
i ⊗ ei (a

′
i ∈ A′) in A′ ⊗R A

is idempotent if and only if Pk(a
′
1, . . . , a

′
n) = 0 for all k. So we have a

one-to-one correspondence

Idem(A′ ⊗R A) ∼= HomR(R[t1, . . . , tn]/(P1, . . . , Pn), A
′).

Let us prove R[t1, . . . , tn]/(P1, . . . , Pn) is etale over R. By 2.6.2, it suffices

to show for any R-algebra A′ and any ideal I of A′ satisfying I2 = 0, that

the canonical map

HomR(R[t1, . . . , tn]/(P1, . . . , Pn), A
′)

→ HomR(R[t1, . . . , tn]/(P1, . . . , Pn), A
′/I)

is bijective, that is, the map

Idem(A′ ⊗R A) → Idem
(
(A′/I)⊗R A

)
is bijective. This is equivalent to saying that we have a one-to-one corre-

spondence between the set of open and closed subsets of Spec (A′⊗RA) and
the set of open and closed subsets of Spec

(
(A′/I)⊗RA

)
. This follows from

the fact that Spec (A′ ⊗R A) has the same underlying topological space as

Spec
(
(A′/I)⊗R A

)
�

Proposition 2.8.3. Let (R,m) be a local ring, k = R/m its residue field,

S = SpecR, and s the closed point of S. The following conditions are

equivalent.

(i) Every finite R-algebra A is a direct product of local rings.

(ii) The condition (i) holds for A = R[t]/(f(t)) for any monic polynomial

f(t) ∈ R[t].

(iii) For any finite R-algebra A, the canonical homomorphism A →
A/mA induces a one-to-one correspondence between the set of idempotent

elements in A and the set of idempotent elements in A/mA.

(iv) The condition (iii) holds for A = R[t]/(f(t)) for any monic polyno-

mial f(t) ∈ R[t].
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(v) For any monic polynomial f(t) ∈ R[t] and any factorization f̄(t) =

ḡ(t)h̄(t), where f̄(t) is the image of f(t) in k[t], and ḡ(t) and h̄(t) are

relatively prime monic polynomials in k[t], there exist uniquely determined

polynomials g(t) and h(t) in R[t] such that f(t) = g(t)h(t), ḡ(t) and h̄(t)

are images of g(t) and h(t) in k[t], respectively, and the ideal generated by

g(t) and h(t) is R[t].

(vi) The condition (v) holds for any factorization f̄(t) = (t− ā)h̄(t) such
that t− ā and h̄(t) are relatively prime monic polynomials in k[t].

(vii) For any etale morphism g : X → S, any section of gs : X ⊗R k →
Spec k is induced by a section g.

When (R,m) satisfies the above equivalent conditions, we say R is

henselian. If R is henselian and k = R/m is separably closed, we say

R is strictly local or strictly henselian.

Proof.

(i)⇒(iii) Let A be a finite R-algebra. Any maximal ideal of A lies over

the maximal ideal m of R. Since A/mA is finite over R/m, it is artinian

and has finitely many maximal ideals. It follows that A has finitely many

maximal ideals. For any maximal ideal n of A, the canonical morphism

SpecAn → SpecA is an embedding of topological spaces and SpecAn is

connected. When n goes over the finite set of maximal ideals of A, the

images of SpecAn → SpecA cover SpecA. So SpecA has finitely many

connected components. Similarly, SpecA/mA has finitely many connected

components. Note that if a topological space has finitely many connected

components, then open and closed subsets are exactly unions of connected

components. By 2.8.1 (i), to prove (iii), it suffices to show that taking

inverse image under the morphism SpecA/mA → SpecA defines a one-to-

one correspondence between the set of open and closed subsets of SpecA

and the set of open and closed subsets of SpecA/mA. By assumption, we

have

A ∼=
∏
n

An.

So we have

SpecA ∼=
∐
n

SpecAn.

Each SpecAn can be regarded as a connected open and closed subset of

SpecA. So any open closed subset of SpecA is a union of some SpecAn.

On the other hand, we have

SpecA/mA ∼= Spec (
∏
n

An/mAn) ∼=
∐
n

SpecAn/mAn,
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and each SpecAn/mAn consists of only one point. Any open and closed

subset of SpecA/mA is a union of some SpecAn/mAn. So taking inverse

image under the morphism SpecA/mA→ SpecA defines a one-to-one cor-

respondence between the set of open and closed subsets of SpecA and the

set of open and closed subsets of SpecA/mA.

(iii)⇒(i) If a topological space has finitely many connected components,

then connected components are exactly minimal open and closed subsets.

So taking inverse images under the morphism SpecA/mA → SpecA de-

fines a one-to-one correspondence between the set of connected compo-

nents of SpecA and the set of connected components of SpecA/mA. Note

that SpecA/mA is discrete and its connected components are of the form

{n/mA} for maximal ideals n of A. So different maximal ideals of A lie in

different connected components of SpecA. Let n1 and n2 be two different

maximal ideals of A. We claim that SpecAn1 and SpecAn2 are disjoint

considered as subsets of SpecA. Indeed, if they have a nonempty inter-

section, then SpecAn1 ∪ SpecAn2 is connected. This contradicts that the

fact that n1 and n2 lie in different connected components. So as a set,

SpecA is a disjoint union of SpecAn. One can show that each SpecAn

is a maximal connected subset of SpecA. So each SpecAn is a connected

component of SpecA. One can verify that SpecAn is the smallest open

neighborhood of n in SpecA and hence OSpecA(SpecAn) ∼= An. It follows

that SpecA =
∐

n SpecAn as schemes. So A =
∏

nAn.

(i)⇒(ii) Trivial.

(ii)⇒(iv) Use the same argument as (i)⇒(iii).

(iv)⇒(iii) Let e1, e2 ∈ A be idempotent elements such that e1 ≡ e2
mod mA. We have

(e1 − e2)
3 = e31 − 3e21e2 + 3e1e

2
2 − e32 = e1 − 3e1e2 + 3e1e2 − e2 = e1 − e2.

So we have

(e1 − e2)((e1 − e2)
2 − 1) = 0.

Since e1−e2 ∈ mA, (e1−e2)2−1 is a unit in A. It follows that e1−e2 = 0.

So the map A → A/mA is always injective when restricted to the set of

idempotent elements in A.

Let ē ∈ A/mA be an idempotent element. We need to show it can be

lifted to an idempotent element in A. Let a ∈ A be an arbitrary lift of ē,

and let A′ = R[a]. We claim that ē is the image of an idempotent element

ē′ in A′/mA′. Let ā be the image of a in A′/mA′ and let

f : SpecA/mA→ SpecA′/mA′
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be the canonical morphism. Then

f−1(D(ā)) = D(ē).

Since SpecA′/mA′ is discrete, D(ā) is open and closed. So there exists an

idempotent element ē′ in A′/mA′ such that D(ē′) = D(ā). We have

f−1(D(ē′)) = D(ē).

This implies that the image of ē′ in A/mA is ē. To prove (ii), it suffices to

show that ē′ can be lifted to an idempotent element in A′. Replacing A by

A′, we are reduced to the case where A = R[a]. Since a is integral over R,

there exists a monic polynomial f(t) ∈ R[t] such that f(a) = 0. We then

have an epimorphism of R-algebras

R[t]/(f(t)) → A, t �→ a.

We claim that ē is the image of an idempotent element in k[t]/(f̄(t)), where

f̄(t) is the image of f(t) in k[t]. Indeed, the homomorphism

k[t]/(f̄(t)) → A/mA

is surjective. The corresponding morphism

SpecA/mA→ Spec k[t]/(f̄(t))

is a closed immersion. Since Spec k[t]/(f̄(t)) is discrete, the open and closed

subset D(ē) of SpecA/mA is also open and closed in Spec k[t]/(f̄(t)). So

there exists an idempotent element ē′′ in k[t]/(f̄(t)) such that D(ē) =

D(ē′′). The image ē′′ in A/mA is ē. If the condition (iv) holds, there

exists an idempotent element e′′ in R[t]/(f(t)) lifting ē′′. Then the image

e of e′′ in A is an idempotent element lifting ē.

(iv)⇒(v) Use 2.8.1 (ii), (iii).

(v)⇒(vi) Trivial.

(vi)⇒(vii) Given a section of gs, let x be its image. By 2.3.5, there exists

a monic polynomial f(t) ∈ R[t] and a maximal ideal n of B = R[t]/(f(t))

not containing the image of f ′(t) in B such that OX,x is R-isomorphic to

Bn. Let f̄(t) be the image of f(t) in k[t]. The given section of gs defines a

k-morphism

Spec k → SpecOX,x/mOX,x.

Composed with the canonical morphisms

SpecOX,x/mOX,x ∼= SpecBn/mBn → SpecB/mB ∼= Spec k[t]/(f̄(t)),

we get a k-morphism

Spec k → Spec k[t]/(f̄(t)).
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It corresponds to a k-algebra homomorphism

k[t]/(f̄(t)) → k.

Let ā be the image of t under this homomorphism. Then f̄(ā) = 0 and

f̄ ′(ā) 	= 0. So ā is a simple root of f̄(t), and we have

f̄(t) = (t− ā)h̄(t)

for some monic polynomial h̄(t) ∈ k[t] relatively prime to t − ā. If the

condition (vi) holds, this factorization can be lifted to a factorization

f(t) = (t− a)h(t)

for some a ∈ R lifting ā and some monic polynomial h(t) ∈ R[t] lifting

h̄(t) such that the ideal generated by t− a and h(t) is R[t]. The R-algebra

homomorphism

R[t]/(f(t)) → R, t �→ a

induces an R-algebra homomorphism

Bn = (R[t]/(f(t)))n → R

and hence an S-morphism

S = SpecR → SpecBn
∼= SpecOX,x.

Composed with the canonical morphism SpecOX,x → X , we get a section

of g : X → S inducing the given section of gs.

(vii)⇒(iv) Let B be the etale R-algebra in 2.8.2 for the free R-algebra

of finite rank A = R[t]/(f(t)). In the proof of (iv)⇒(iii), we have shown

that the map

Idem(A) → Idem(A/mA)

is always injective. We need to show it is surjective. It suffices to show that

the canonical map

HomR(B,R) → HomR(B,R/m)

is surjective. HomR(B,R) (resp. HomR(B,R/m)) can be identified with

the set of sections of the morphism g : SpecB → SpecR (resp. gs :

Spec (B ⊗R k) → Spec k). Since g is etale, our assertion follows if con-

dition (vii) holds. �

Proposition 2.8.4. Suppose (R,m) is a complete local noetherian ring.

Then R is henselian.
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Proof.

First Method: Let us verify that the condition 2.8.3 (i) holds. Let A be

a finite R-algebra. Then A is complete with respect to the m-adic topology.

Any maximal ideal of A lies over the maximal ideal m of R. Since A/mA is

finite over R/m, it is artinian. It follows that A has finitely many maximal

ideals. Let m1, . . . ,mn be all the maximal ideals of A. Then the nilpotent

radical of A/mA is (m1 ∩ · · · ∩ mn)/mA. So there exists a positive integer

k such that

(m1 ∩ · · · ∩mn)
k ⊂ mA ⊂ m1 ∩ · · · ∩mn.

Combined with the Chinese remainder theorem, we get

A ∼= lim←−
i

A/miA ∼= lim←−
i

A/mi1 · · ·min ∼= lim←−
i

(A/mi1×· · ·×A/min) ∼= Âm1×· · ·×Âmn .

So A is a direct product of local rings.

Second Method: Let us verify that the condition 2.8.3 (vi) holds. Let

f(t) ∈ R[t] be a monic polynomial and let

f̄(t) = (t− ā)h̄(t)

be a factorization of the image f̄(t) of f(t) in k[t], where t− ā and h̄(t) are

relatively prime monic polynomials in k[t]. We lift ā to a root of f(t) in R

using a method similar to Newton’s iteration method of finding a root of

a smooth function in calculus. Note that ā is a simple root of f̄(t). So we

have

f̄(ā) = 0, f̄ ′(ā) 	= 0.

Let a0 ∈ R be an arbitrary lift of ā. Then f(a0) ∈ m and f ′(a0) is a unit in

R. Suppose that we have found a lift ai ∈ R of ā such that f(ai) ∈ mi+1.

Then f ′(ai) is a unit in R. Define

ai+1 = ai − f(ai)

f ′(ai)
.

We have

ai+1 − ai = − f(ai)

f ′(ai)
∈ mi+1.

So ai+1 is also a lift of ā. Note that for any a, δ ∈ R, we can find b ∈ R

such that

f(a+ δ) = f(a) + f ′(a)δ + bδ2.
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In particular, we can find bi ∈ R such that

f(ai+1) = f(ai) + f ′(ai) ·
(
− f(ai)

f ′(ai)

)
+ bi

(
− f(ai)

f ′(ai)

)2
= bi

(
− f(ai)

f ′(ai)

)2
∈ m2i+2 ⊂ mi+2.

Since R is complete, the limit

a = lim
i→∞

ai

exists in R. It is a lift of ā, and f(a) = 0. So we have

f(t) = (t− a)h(t)

for some monic polynomial h(t) lifting h̄(t). Since the ideal generated by

t−ā and h̄(t) is k[t], by Nakayama’s lemma applied to the finitely generated

R-module R[t]/(f(t)), we see the ideal generated by t− a and h(t) is R[t].

Finally let us prove that the lift of ā to a root of f(t) in R is unique.

Let a, a′ ∈ R be two roots of f(t) lifting ā. We can find b ∈ R such that

f(a′) = f(a) + f ′(a)(a′ − a) + b(a′ − a)2,

that is,

a′ − a = − b

f ′(a)
(a′ − a)2.

We have a′ − a ∈ m. Together with the above equality, this implies that

a′ − a ∈
∞⋂
i=1

mi.

So we have a′ − a = 0. �

Let A → A′ be a local homomorphism of local rings. We say A′ is
essentially etale over A if there exists an etale A-algebra B and a prime

ideal p of B lying above the maximal ideal of A such that A′ is A-isomorphic

to Bp. Using the fact that SpecB → SpecA is quasi-finite, one can show the

maximal ideal of A′ is the only prime ideal of A′ lying above the maximal

ideal of A. So if A′ and A′′ are two local essentially etale A-algebras, then

any A-homomorphism A′ → A′′ is local. A local homomorphism A → A′

of locally rings is called strictly essentially etale if it is essentially etale and

the homomorphism A → A′ induces an isomorphism on the residue field.

Using 1.10.9 and 2.3.7, one can show if A→ A′ and A′ → A′′ are essentially
etale local homomorphisms, then their composite A→ A′′ is also essentially
etale.

 E
ta

le
 C

oh
om

ol
og

y 
T

he
or

y 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

O
N

A
SH

 U
N

IV
E

R
SI

T
Y

 o
n 

11
/2

7/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



February 6, 2015 9:48 ws-book9x6 Etale Cohomology Theory... etale page 101

Etale Morphisms and Smooth Morphisms 101

Lemma 2.8.5. Let A and A′ be local rings, A → A′ a strictly essentially

etale local homomorphism, and (R,m) a henselian local ring. Then the

canonical map

loc.Hom(A′, R) → loc.Hom(A,R)

is bijective, where loc.Hom denotes the set of local homomorphisms.

Proof. Given a local homomorphism A → R, we need to show it can

be extended uniquely to a local homomorphism A′ → R. Consider SpecR

as a scheme over SpecA. We need to show that there exists a unique A-

morphism SpecR → SpecA′ that maps the closed point of SpecR to the

closed point of SpecA′, or equivalently, that there exists a unique section

for the projection

Spec (A′ ⊗A R) → SpecR

that maps the closed point of SpecR to the point in Spec (A′ ⊗A R) that

is above the closed points in SpecA′ and SpecR. Note that since A → A′

induces an isomorphism of residue fields, there is one and only one point

in Spec (A′ ⊗A R) that is above the closed points in SpecA′ and SpecR.

Let B be an etale A-algebra such that A′ is A-isomorphic to Bp for some

prime ideal p of B. It suffices to show there exists a unique section for the

projection

Spec (B ⊗A R) → SpecR

that maps the closed point of SpecR to the unique point in Spec (B⊗AR)
that is above the closed point in SpecR and the point p in SpecB. This

point has the same residue field as R and hence is the image of a unique

section for the projection

Spec (B ⊗A R/m) → SpecR/m.

By 2.8.3 (vii), this section is induced by a section of the projection

Spec (B⊗AR) → SpecR, which has the required property. The uniqueness

follows from 2.3.10 (i). �

Lemma 2.8.6. Let A be a local ring, and let A1 and A2 be strictly essen-

tially etale local A-algebras.

(i) There exists a strictly essentially etale local A-algebra A3 dominating

A1 and A2, that is, there exist A-homomorphisms (necessarily local) from

Ai (i = 1, 2) to A3.

(ii) There exists at most one A-homomorphism from A1 to A2.
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Proof.

(i) We can find etale A-algebras Bi (i = 1, 2) and prime ideals pi of

Bi such that Ai are A-isomorphic to (Bi)pi , respectively. There exists a

unique prime ideal p of B1 ⊗A B2 lying above p1 and p2. We can take

A3 = (B1 ⊗A B2)p.

(ii) Keep the above notation. It suffices to show that there exists at

most one A-morphism from SpecA2 to SpecB1 that maps the closed point

of SpecA2 to p1, or equivalently, that there exists at most one section for

the projection

Spec (A2 ⊗A B1) → SpecA2

that maps the closed point of SpecA2 to the (unique) point of Spec (A2⊗A
B1) that is above p1 ∈ SpecB1 and the closed point of SpecA2. This follows

from 2.3.10 (i). �

Let A be a local ring. A local homomorphism A → A′ is called es-

sentially of finite type if there exists a finitely generated A-algebra B such

that A′ is A-isomorphic to Bp for some prime ideal p of B lying above the

maximal ideal of A. There exists a set of local A-algebras essentially of

finite type such that every local A-algebra essentially of finite type is iso-

morphic to a member of this set. For example, we can take this set to be

the family of A-algebras of the form (A[t1, . . . , tn]/I)p, where n goes over

the set of nonnegative integers, I goes over the set of ideals of A[t1, . . . , tn],

and p goes over the set of prime ideals of A[t1, . . . , tn]/I lying above the

maximal ideal of A. Therefore there exists a set of strictly essentially etale

local A-algebras such that any strictly essentially etale local A-algebra is

isomorphic to a member of this set. Let S be the category whose objects

are strictly essentially etale local A-algebras and whose morphisms are A-

homomorphisms. By 2.8.6, S satisfies the condition (I2) and (I3) in 2.7.

We define the henselization Ah of A to be

Ah = lim−→
A′∈obS

A′.

Lemma 2.8.7. Let A be a ring, I a finitely generated ideal of A, Â =

lim←−nA/I
n, and Jn = ker (Â→ A/In). Then

(i) The canonical homomorphism A → Â induces isomorphisms Jn =

InÂ, A/In ∼= Â/InÂ, and In/In+1 ∼= InÂ/In+1Â.

(ii) If A/I is noetherian, then Â is noetherian.
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Proof.

(i) It is clear that the projection Â → A/In is surjective. Its kernel is

Jn. It follows that Â/Jn ∼= A/In. Consider the commutative diagram

0 → In/Im+n → A/Im+n → A/In → 0

↓ ↓ ↓
0 → Jn/Jm+n → Â/Jm+n → Â/Jn → 0

↓ ∼= ↓ ∼= ↓
0 → In/Im+n → A/Im+n → A/In → 0,

where the first three vertical arrows are induced by the canonical ho-

momorphism i : A → Â, and the last three vertical arrows are in-

duced by the projection Â → A/Im+n. By the five lemma, the verti-

cal arrowJn/Jm+n → In/Im+n is an isomorphism. It follows that the

vertical arrow In/Im+n → Jn/Jm+n is an isomorphism. So we have

Jn = i(In) + Jm+n. Let x1, . . . , xk ∈ I be a finite family of generators

of I. For any z ∈ Jn, since Jn = i(In) + Jn+1, we have

z = i
( ∑
i1+···+ik=n

a
(0)
i1...ik

xi11 · · ·xikk
)
+ zn+1

for some a
(0)
i1...ik

∈ A and zn+1 ∈ Jn+1. Since Jn+1 = i(In+1) + Jn+2, we

have

zn+1 = i
( ∑
i1+···+ik=n

a
(1)
i1...ik

xi11 · · ·xikk
)
+ zn+2

for some a
(1)
i1...ik

∈ I and zn+2 ∈ Jn+2. Repeating this process, we get a

family a
(m)
i1...ik

∈ Im and zn+m+1 ∈ Jn+m+1 (i1 + · · ·+ ik = n, m = 0, 1, . . .)

such that

z = i
( ∑
i1+···+ik=n

(a
(0)
i1...ik

+ · · ·+ a
(m)
i1...ik

)xi11 · · ·xikk
)
+ zn+m+1

for any m ≥ 0. Taking limits on both sides, we get

z =
∑

i1+···+ik=n
(i(a

(0)
i1...ik

) + i(a
(1)
i1...ik

) + · · · )i(xi11 · · ·xikk ).

So we have z ∈ InÂ. Hence Jn ⊂ InÂ. It is clear that InÂ ⊂
Jn. So we have Jn = InÂ. Since In/Im+n ∼= Jn/Jm+n, we have

In/Im+n ∼= InÂ/Im+nÂ. In particular, we have A/In ∼= Â/InÂ and

In/In+1 ∼= InÂ/In+1Â.

(ii) By [Atiyah and Macdonald (1969)] 10.25, it suffices to show that⊕∞
n=0(I

nÂ/In+1Â) is a noetherian ring, that is,
⊕∞

n=0 I
n/In+1 is a noethe-

rian ring. This follows from [Atiyah and Macdonald (1969)] 10.7. �
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Proposition 2.8.8. Let (Aλ, φλμ) be a direct system of local rings with φλμ
being local homomorphisms. For each λ, let mλ be the maximal ideal of Aλ
and let kλ = Aλ/mλ be the residue field.

(i) A = lim−→λ
Aλ is a local ring with the maximal ideal m = lim−→λ

mλ, and

its residue field A/m is isomorphic to lim−→λ
kλ.

(ii) If mμ = mλAμ for any pair μ ≥ λ, then m = mλA for any λ.

(iii) If Aμ is flat over Aλ for any pair μ ≥ λ, then A is flat over Aλ for

any λ.

(iv) If mμ = mλAμ and Aμ is flat over Aλ for any pair μ ≥ λ, and if

Aλ is noetherian for any λ, then A is noetherian.

Proof. Note that m = lim−→λ
mλ is an ideal of A, and we have

A/m ∼= lim−→
λ

Aλ/mλ = lim−→
λ

kλ,

which is a field. It follows that m is a maximal ideal of A. We have

A−m = lim−→
λ

(Aλ −mλ).

As Aλ − mλ are the groups of units of Aλ, A − m is the group of units of

A. So A is a local ring with the maximal ideal m. If mμ = mλAμ for any

pair μ ≥ λ, then we have

m = lim−→
μ≥λ

mλAμ = mλA

for any λ. If Aμ is flat over Aλ for any pair μ ≥ λ, then A ∼= lim−→μ≥λAμ
is flat over Aλ for any λ. Suppose that all the above conditions hold and

suppose furthermore that each Aλ is noetherian. Then each mλ is finitely

generated. So m = mλA is finitely generated. By 2.8.7, Â = lim←−nA/m
n is

noetherian, and Â/mnÂ ∼= A/mn. Since

A/mn = A/mnλA
∼= Aλ/m

n
λ ⊗Aλ A

and A is flat over Aλ, A/m
n is flat over Aλ/m

n
λ. So Â/mnÂ is flat over

Aλ/m
n
λ. By 1.3.5 (iv), Â is flat over Aλ. Let I be a finitely generated ideal

of A. Then I = IλA for some ideal Iλ of Aλ. Since A is flat over Aλ, we

have Iλ ⊗Aλ A ∼= I. Since Â is flat over Aλ, the canonical homomorphism

Iλ ⊗Aλ Â→ Â is injective, that is,

Iλ ⊗Aλ A⊗A Â→ Â

is injective. So the canonical homomorphism I ⊗A Â → Â is injective. By

1.1.1 (ix), Â is flat over A. Note that Â is local and the canonical homo-

morphism A → Â is local. Indeed, Â/mÂ is a field since it is isomorphic
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to A/mA. For any x ∈ Â − mÂ, the image of x under each projection

lim←−nA/m
n → A/mn is a unit, and hence x is a unit. So Â is faithfully flat

over A. If

I1 ⊂ I2 ⊂ · · ·
is an ascending chain of ideals of A, then the chain

I1Â ⊂ I2Â ⊂ · · ·
is stationary since Â is noetherian. But IiÂ ∩ A = Ii for all i by 1.2.6 (v).

So we have

Ii0 = Ii0+1 = · · ·
for a large i0. Hence A is noetherian. �

Proposition 2.8.9. Let (A,m) be a local ring.

(i) Ah is a henselian local ring, the canonical homomorphism A → Ah

is local and faithfully flat, mAh is the maximal ideal of Ah, and the homo-

morphism A/m → Ah/mAh is an isomorphism.

(ii) For any henselian local ring R, the canonical map

loc.Hom(Ah, R) → loc.Hom(A,R)

is bijective.

(iii) If A is henselian, then A ∼= Ah.

(iv) The canonical homomorphism Â→ Âh is an isomorphism.

(v) If A is noetherian, then so is Ah.

Proof.

(i) For every strictly essentially etale local A-algebra A′, the homomor-

phismA→ A′ is local and faithfully flat, mA′ is the maximal ideal ofA′, and
A/m → A′/mA′ is an isomorphism. By 2.8.8, Ah is a local ring, the canoni-

cal homomorphism A→ Ah is local and faithfully flat, mAh is the maximal

ideal of Ah, and the homomorphism A/m → Ah/mAh is an isomorphism.

Let us verify that the condition 2.8.3 (vii) holds for Ah. Given an etale mor-

phism g : X → SpecAh and a section s : SpecAh/mAh → X ⊗Ah Ah/mAh
of the fiber of g over the closed point of SpecAh, let us prove that this sec-

tion can be lifted to a section of g. Shrinking X , we may assume that g has

finite presentation. By 1.10.9 and 2.3.7, we can find a strictly essentially

etale local A-algebra A′ and an etale morphism g′ : X ′ → SpecA′ inducing
g after base change. Let x′ ∈ X ′ be the image of the composite

SpecAh/mAh
s→ X ⊗Ah Ah/mAh → X → X ′.
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Then OX′,x′ is a strictly essentially etale local A-algebra. So we have an A′-
homomorphism OX′,x′ → Ah. It induces an A′-morphism SpecAh → X ′.
The graph of this morphism is a section of g extending s.

(ii) follows from 2.8.5.

(iii) By 2.8.3 (vii), if A is henselian, then any strictly essentially etale

local A-algebra is isomorphic to A. So A ∼= Ah.

(iv) Since Ah is flat over A, we have

mnAh/mn+1Ah ∼= mn/mn+1 ⊗A Ah
∼= mn/mn+1 ⊗A/m Ah/mAh
∼= mn/mn+1 ⊗A/m A/m
∼= mn/mn+1

for all n. By induction on n, this implies that

A/mn ∼= Ah/mnAh

for all n. So Â ∼= Âh.

(v) follows from 2.8.8. �

Proposition 2.8.10. Let A be a local noetherian ring. Then A is reduced

(resp. regular, resp. normal) if and only if Ah is so.

Proof. Use the same argument as the proof of 2.4.4. �

Proposition 2.8.11. Let (Rλ, φλμ) be a direct system of local rings such

that φλμ are local homomorphisms.

(i) If each Rλ is henselian, so is lim−→λ
Rλ.

(ii) In general, we have

(lim−→
λ

Rλ)
h ∼= lim−→

λ

Rhλ.

Proof.

(i) For each λ, let mλ be the maximal ideal of Rλ, let R = lim−→λ
Rλ and

let m = lim−→λ
mλ. Then R is a local ring with the maximal ideal m. Let

us check that the condition 2.8.3 (iv) holds. Let A = R[t]/(f(t)), where

f(t) ∈ R[t] is a monic polynomial. We need to show that the canonical

homomorphism A → A/mA induces a one-to-one correspondence on the

sets of idempotent elements in A and in A/mA. By the proof of 2.8.3

(iv)⇒(iii), A→ A/mA is injective when restricted to the set of idempotent

elements in A. Let ē be an idempotent element in A/mA. We can find

λ such that there exists a monic polynomial fλ(t) ∈ Rλ[t] whose image
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in R[t] is f(t) and an idempotent element ēλ ∈ Aλ/mλAλ whose image in

A/mA is ē, where Aλ = Rλ[t]/(fλ(t)). Since Rλ is henselian, there exists

an idempotent element eλ in Aλ lifting ēλ. Let e be the image of eλ in A.

Then e is idempotent element lifting ē.

(ii) By 2.8.9 (ii), the canonical homomorphisms Rλ → lim−→λ
Rλ induce

homomorphisms Rhλ → (lim−→λ
Rλ)

h and hence a homomorphism

Φ : lim−→
λ

Rhλ → (lim−→
λ

Rλ)
h.

By (i), lim−→λ
Rhλ is henselian. By 2.8.9 (ii), the canonical homomorphism

lim−→λ
Rλ → lim−→λ

Rhλ induce a homomorphism

Ψ : (lim−→
λ

Rλ)
h → lim−→

λ

Rhλ.

One can verify that Φ and Ψ are inverse to each other. �

Proposition 2.8.12. Let (A,m) be a local ring, B a finite A-algebra, and

n1, . . . , nk all the maximal ideals of B. Then we have

B ⊗A Ah ∼= (Bn1)
h × · · · × (Bnk)

h.

Proof. Since A → Ah induces an isomorphism on residue fields, the

fibers of SpecB → SpecA and Spec (B⊗AAh) → SpecAh above the closed

points of SpecA and SpecAh are isomorphic. Since B (resp. B ⊗A Ah) is
finite over A (resp. Ah), the fiber of SpecB → SpecA (resp. Spec (B ⊗A
Ah) → SpecAh) above the closed point consists of maximal ideals of B

(resp. B ⊗A Ah). So Spec (B ⊗A Ah) → SpecB induces a one-to-one

correspondence between the set of maximal ideals of B ⊗A Ah and the set

of maximal ideals of B. Let n′1, . . . , n
′
k be the maximal ideals of B ⊗A Ah

lying above n1, . . . , nk, respectively. By 2.8.3 (i), we have

B ⊗A Ah ∼= (B ⊗A Ah)n′
1
× · · · × (B ⊗A Ah)n′

k
.

To prove our assertion, it suffices to show (B ⊗A Ah)n′
i

∼= (Bni)
h for all

i. For each i, let ei be the element in B ⊗A Ah so that its projection to

(B ⊗A Ah)n′
j
is 0 if j 	= i and 1 if j = i. We have

e2i = ei, eiej = 0 (i 	= j), e1 + · · ·+ ek = 1.

Since B ⊗A Ah = lim−→A′∈obS
B ⊗A A′, there exists a strictly essentially

etale local A-algebra A′ such that e1, . . . , ek are images of some elements

e′1, . . . , e
′
k ∈ B ⊗A A′ with the property

e′2i = e′i, e′ie
′
j = 0 (i 	= j), e′1 + · · ·+ e′k = 1.
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We then have

B ⊗A A′ ∼= (B ⊗A A′)e′1 × · · · × (B ⊗A A′)e′k.
On the other hand, we have

(B ⊗A A′)e′i ⊗A′ Ah ∼= (B ⊗A Ah)ei ∼= (B ⊗A Ah)n′
i
.

As Spec (B ⊗A A′)e′i → SpecA′ and Spec (B ⊗A A′)e′i ⊗A′ Ah → SpecAh

have the same fiber over the closed point of SpecA′ and SpecAh, it follows

that (B ⊗A A′)e′i is local and its maximal ideal lies above ni. Moreover

(B ⊗A A′)e′i is strictly essentially etale over Bni , so we have

(Bni )
h ∼= ((B ⊗A A′)e′i)h.

We also have Ah ∼= A′h. Replacing A by A′ and B by B ⊗A A′, we are

reduced to the case where B is a product of local rings. It suffices to treat

the case where B is local. In this case, B⊗AAh is local. One can check that

it satisfies the condition 2.8.3 (i). So it is henselian. Moreover, we have

B ⊗A Ah ∼= lim−→A′∈obS
(B ⊗A A′) and each B ⊗A A′ is a strictly essentially

etale local B-algebra. So we have B ⊗A Ah ∼= Bh. �

Proposition 2.8.13. Let R be a henselian local ring, S = SpecR, and s

the closed point of S. For any smooth morphism g : X → S, any section of

gs : Xs = X ⊗R k(s) → Spec k(s) can be lifted to a section of g.

Proof. Let hs : Spec k(s) → Xs be a section of gs, and let x be the

image of hs. Since g is smooth, there exists an open neighborhood U of x

admitting an etale S-morphism

j : U → AnS = SpecR[t1, . . . , tn].

Let y = j(x). We have k(x) ∼= k(y) ∼= k(s). So OX,x and OAnS ,y
have the

same henselization. Denote the common henselization by A. Consider the

commutative diagram

SpecA

↓ ↘
U

j→ AnS .

g|U ↓ ↙
S

It suffices to construct a section for SpecA → S because such a section

composed with the canonical morphism SpecA→ X gives rise to a section

of g inducing hs. Since k(y) ∼= k(s), there exist ā1, . . . , ān ∈ k(s) such that
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the image of y in Ans = Spec k(s)[t1, . . . , tn] corresponds to the maximal

ideal (t1 − ā1, . . . , tn − ān) of k(s)[t1, . . . , tn]. Let ai ∈ R (i = 1, . . . n)

be liftings of āi, respectively. Then y corresponds to the maximal ideal of

R[t1, . . . , tn] generated by the maximal ideal of R and t1 − a1, . . . , tn − an.

The R-homomorphism

R[t1, . . . , tn] → R, ti �→ ai

induces an R-homomorphism A→ R by passing to localization and then to

henselization. The corresponding morphism SpecR → SpecA is a section

for SpecA→ S. �

Proposition 2.8.14. Let (R,m) be a local ring, k = R/m the residue field,

S = SpecR, and s the closed point of S. The following conditions are

equivalent:

(i) R is strictly henselian.

(ii) R is henselian, and any finite etale S-scheme X is isomorphic to a

disjoint union of copies of S.

(iii) For any etale morphism g : X → S and any point x ∈ X lying

above s, there exists a section h : S → X of g such that h(s) = x.

Proof.

(i)⇒(iii) The residue field of X at x is isomorphic to k since it is finite

separable over k and k is separably closed. So there exists a section of

gs : X ⊗R k → Spec k with image x. We then apply 2.8.3 (vii).

(iii)⇒(ii) By 2.8.3, R is henselian. Suppose that X = SpecB for some

finite etale R-algebra B. Then B is a direct product of finitely many local

rings. Without loss of generality, assume B local. The closed point of X

is above the closed point of S. If the condition (iii) holds, then X → S

admits a section. Since X and S are connected, we must have X ∼= S by

2.3.10 (i).

(ii)⇒(i) We need to show that k is separably closed. If this is not true,

then there exists a monic irreducible polynomial f̄(t) ∈ k[t] of degree > 1

such that f̄(t) and f̄ ′(t) generate the ideal k[t]. Let f(t) ∈ R[t] be a monic

polynomial lifting f̄(t). Applying Nakayama’s lemma to R[t]/(f(t)), we see

f(t) and f ′(t) generate the ideal R[t]. By 2.3.3, R[t]/(f(t)) is etale and

finite over R. If the condition (ii) holds, then R[t]/(f(t)) is isomorphic to

a direct product of copies of R as an R-algebra. This implies that f(t) is

a product of linear polynomials. Then f̄(t) has the same property. This

contradicts the fact that f̄(t) is irreducible and has degree > 1. �
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We leave the proof of 2.8.15–19 below to the reader.

Lemma 2.8.15. Let A be a local ring, A′ an essentially etale local A-

algebra, R a henselian local ring, and k(A), k(A′) and k(R) the residue

fields of A, A′ and R, respectively. Given a local homomorphism φ : A→ R

and a k(A)-homomorphism α : k(A′) → k(R), there exists a unique local

A-homomorphism φ′ : A′ → R inducing the homomorphism α on residue

fields.

Lemma 2.8.16. Let A be a local ring, let A1 and A2 be essentially etale

local A-algebras, let k(A), k(A1) and k(A2) be the residue fields of A, A1

and A2 respectively, and let k be a field containing k(A).

(i) For k(A)-homomorphisms βi : k(Ai) → k (i = 1, 2), there ex-

ist an essentially etale local A-algebra A3 and a k(A)-homomorphism

β3 : k(A3) → k such that (A3, β3) dominates (Ai, βi) (i = 1, 2), that is,

there exist A-homomorphisms (necessarily local) φi : Ai → A3 such that

βi = β3φ̄i, where φ̄i are the homomorphisms induced by φi on residue

fields.

(ii) For any k(A)-homomorphism γ : k(A1) → k(A2), there exists at

most one A-homomorphism from A1 to A2 inducing the homomorphism γ

on residue fields.

Let (A,m) be a local ring, k = A/m its residue fields, Ω a separable

closure of k, and i : k → Ω the inclusion. Let T be the category defined as

follows: Objects in T are pairs (A′, βA′), where A′ are essentially etale local

A-algebras and βA′ : k(A′) → Ω are k-homomorphisms from the residue

fields k(A′) of A′ to Ω. A morphism (A1, βA1) → (A2, βA2) in T is an A-

algebra homomorphism φ : A1 → A2 such that βA1 = βA2 φ̄, where φ̄ is the

homomorphism induced by φ on residue fields. By 2.8.16, T satisfies the

condition (I2) and (I3) in 2.7. There exists a full subcategory of T whose

objects form a set such that any object in T is isomorphic to an object in

this subcategory. We define the strict henselization Ahsi of A relative to i

to be

Ahsi = lim−→
(A′,βA′)∈obT

A′.

We also call Ahsi the strict localization of A relative to i. We often denote

Ahsi by Ahs or Ã.

Proposition 2.8.17. Let (A,m) be a local ring, k = A/m the residue field,

Ω a separable closure of k, and i : k → Ω the inclusion.
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(i) Ahsi is a strictly henselian local ring, the canonical homomorphism

A→ Ahsi is local and faithfully flat, mAhsi is the maximal ideal of Ahsi , and

the residue field of Ahsi is k-isomorphic to Ω.

(ii) Let R be a henselian local ring with residue field k(R), φ : A → R

a local homomorphism, and α : Ω → k(R) a homomorphism such that

αi : k → k(R) coincides with the homomorphism induced by φ. Then

there exists a unique local A-homomorphism φ′ : Ahsi → R inducing the

homomorphism α on residue fields.

(iii) If A is strictly henselian, then A ∼= Ahsi .

(iv) If A is noetherian, then so is Ahsi .

(v) Suppose i′ : k → Ω′ is the inclusion of k into another separable clo-

sure of k. Then for any k-isomorphism σ : Ω → Ω′, the A-homomorphism

Ahsi → Ahsi′ defined in (ii) is an isomorphism. We have

Aut(Ahsi /A)
∼= Gal(Ω/k).

Proposition 2.8.18. Let A be a local noetherian ring. Then A is reduced

(resp. regular, resp. normal) if and only if Ahs is so.

Proposition 2.8.19. Let (Rλ, φλμ) be a direct system of local rings such

that φλμ are local homomorphisms.

(i) If each Rλ is strictly henselian, so is lim−→λ
Rλ.

(ii) In general, let i be the inclusion of the residue field of lim−→λ
Rλ in

one of its separable closure Ω, and for each λ, let iλ be the inclusion of the

residue field of Rλ in its separable closure in Ω. Then we have

(lim−→
λ

Rλ)
hs
i

∼= lim−→
λ

(Rλ)
hs
iλ
.

Proposition 2.8.20. Let (A,m) be a local ring, B a finite A-algebra, ñ a

maximal ideal of B ⊗A Ahs, and n the inverse image of ñ in B. Then n is

a maximal ideal of B, the residue field k(ñ) = (B ⊗A Ahs)/ñ is a separable

closure of the residue field k(n) = B/n, and (B ⊗A Ahs)ñ is isomorphic to

the strict henselization of Bn with respect to the separable closure k(ñ) of

k(n).

Proof. Since B⊗A Ahs is finite over Ahs, ñ lies above the maximal ideal

of Ahs, and hence above the maximal ideal of A. So n is above the maximal

ideal of A. As B is finite over A, n is a maximal ideal of B. Note that

k(ñ) is isomorphic to the residue field of k(n)⊗k(A) k(A
hs) at a prime ideal,

where k(A) and k(Ahs) are the residue fields of A and Ahs, respectively.

Since k(n) is finite over k(A) and k(Ahs) is a separable closure of k(A),
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k(ñ) is a separable closure of k(n). Since Ahs is henselian and B ⊗A Ahs is

finite over Ahs, we have

B ⊗A Ahs ∼= (B ⊗A Ahs)ñ1
× · · · × (B ⊗A Ahs)ñk ,

where ñi (i = 1, . . . , k) are all the maximal ideals of B ⊗A Ahs. For each i,
let ei be the element in B ⊗A Ahs so that its projection to (B ⊗A Ahs)ñj is

0 if j 	= i and 1 if j = i. We have

e2i = ei, eiej = 0 (i 	= j), e1 + · · ·+ ek = 1.

Since B ⊗A Ahs = lim−→A′∈obT
B ⊗A A′, there exists an essentially etale

local A-algebra A′ in T such that e1, . . . , ek are images of some elements

e′1, . . . , e
′
k ∈ B ⊗A A′ with the property

e′2i = e′i, e′ie
′
j = 0 (i 	= j), e′1 + · · ·+ e′k = 1.

We then have

B ⊗A A′ ∼= (B ⊗A A′)e′1 × · · · × (B ⊗A A′)e′k.

On the other hand, we have

(B ⊗A A′)e′i ⊗A′ Ahs ∼= (B ⊗A Ahs)ei ∼= (B ⊗A Ahs)ñi .

In particular, (B ⊗A A′)e′i ⊗A′ Ahs is local. Note that the canonical mor-

phism

Spec ((B⊗AA′)e′i⊗A′Ahs)⊗AhsAhs/mAhs → Spec (B⊗AA′)e′i⊗A′A′/mA′

is surjective. It follows that (B ⊗A A′)e′i is local and its maximal ideal

lies above the maximal ideal ni = ñi ∩ B of B. Moreover (B ⊗A A′)e′i is
essentially etale over Bni , so we have

(Bni)
hs ∼= ((B ⊗A A′)e′i)hs.

We also have Ahs ∼= A′hs. Replacing A by A′ and B by (B⊗AA′)e′i, we are
reduced to the case where B andB⊗AAhs are local. In this case, B⊗AAhs is
a strictly henselian local ring. We haveB⊗AAhs ∼= lim−→A′∈obT

(B⊗AA′) and
each B⊗AA′ is an essentially etale local B-algebra. So we have B⊗AAhs ∼=
Bhs. �
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2.9 Etale Morphisms between Normal Schemes

([SGA 1] I 10, [EGA IV] 18.10.)

Proposition 2.9.1. Let f : X → Y be a morphism locally of finite type be-

tween noetherian schemes. Assume that for any y ∈ f(X), OY,y is normal.

The following conditions are equivalent:

(i) f is etale.

(ii) f is unramified and the canonical homomorphism OY,f(x) → OX,x
is injective for any x ∈ X.

(iii) f is unramified and dimOY,f(x) ≤ dimOX,x for any x ∈ X.

Proof.

(i)⇒(iii) is clear.

(iii)⇒(ii) Let I be the kernel of the homomorphism OY,f(x) → OX,x.

Shrinking Y , we may assume I = If(x) for some coherent ideal I of OY .

Let Y1 be the closed subscheme of Y with the ideal sheaf I . Shrinking X

and Y , we may assume that f can be factorized as a composite

X → Y1 → Y.

We have

dimOX,x ≤ dimOY1,f(x) + dimOX,x/mY1,f(x)OX,x

by [Matsumura (1970)] (13.B) Theorem 19 (1). Note that X → Y1 is

unramified and hence dimOX,x/mY1,f(x)OX,x = 0. So we have dimOX,x ≤
dimOY1,f(x), and hence dimOY,f(x) ≤ dimOY1,f(x). Since OY,f(x) is normal

and hence an integral domain, this implies that I = 0. So OY,f(x) → OX,x
is injective.

(ii)⇒(i) For any x ∈ X , let ÕY,f(x) be the strict henselization of OY,f(x)
with respect to a separable closure of k(f(x)), let X̃ = X ×Y Spec ÕY,f(x),

and let x′ ∈ X̃ be a point lying above x ∈ X and the closed point of

Spec ÕY,f(x). We claim that the homomorphism ÕY,f(x) → OX̃,x′ is in-

jective. Indeed, OY,f(x) is normal and hence an integral domain. Let

y1 ∈ Y be the point corresponding to the generic point of SpecOY,f(x).

Since OY,f(x) → OX,x is injective, the ring OX,x ⊗OY,f(x) OY,y1 is nonzero.

Hence there exists x1 ∈ X lying above y1 such that x ∈ {x1}. Since OX̃,x′

is faithfully flat over OX,x, there exists x′1 ∈ X̃ lying above x1 such that

x′ ∈ {x′1}. By 2.8.18, ÕY,f(x) is normal and hence an integral domain. Since

the generic point of Spec ÕY,f(x) is the only point lying above the generic
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point in SpecOY,f(x), and x
′
1 lies above the generic point of SpecOY,f(x),

it follows that x′1 lies above the generic point of Spec ÕY,f(x). This implies

that the homomorphism ÕY,f(x) → OX̃,x′ is injective.

Note that X̃ → Spec ÕY,f(x) is unramified and hence quasi-finite. Let U

be an affine open neighborhood of x′ in X̃. By the Zariski Main Theorem

1.10.13, U → SpecOY,f(x) can be factorized as

U
j
↪→ U → Spec ÕY,f(x)

such that j is an open immersion and U → Spec ÕY,f(x) is finite. By 2.8.3

(i), we have

U =
∐
x̄

SpecOU,x̄,

where x̄ goes over the set of points of U above the closed point of

Spec ÕY,f(x). Note that j(x
′) is such a point. Since j is an open immersion,

we have

OX̃,x′ ∼= OU,x′ ∼= OU,j(x′).

Since U → Spec ÕY,f(x) is finite, OU,j(x′) is finite over ÕY,f(x). So OX̃,x′

is finite over ÕY,f(x). Let m be the maximal ideal of ÕY,f(x). Since

X̃ → Spec ÕY,f(x) is unramified and the residue field of ÕY,f(x) is sepa-

rably closed, we have

ÕY,f(x)/m ∼= OX̃,x′/mOX̃,x′ .

By Nakayama’s lemma, ÕY,f(x) → OX̃,x′ is surjective. We have shown it is

injective. So we have

ÕY,f(x) ∼= OX̃,x′ .

Consider the commutative diagram

OY,f(x) → OX,x
↓ ↓

ÕY,f(x)
∼=→ OX̃,x′ .

Since ÕY,f(x) is faithfully flat over OY,f(x), OX̃,x′ is faithfully flat over

OY,f(x). On the other hand, OX̃,x′ is faithfully flat over OX,x. It follows

that OX,x is faithfully flat over OY,f(x). This is true for all x ∈ X . So

f : X → Y is flat. Since it is unramified, it is etale. �
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Proposition 2.9.2. Let Y be a normal connected noetherian scheme and

let X be an etale separated Y -scheme of finite type. Then each connected

component Xi of X is normal and is an open subscheme of the normaliza-

tion of Y in the function field of Xi. Xi is finite over Y if and only if it is

equal to the this normalization.

Proof. Let Ki and K be the function fields of Xi and Y , respectively,

and let Y ′i be the normalization of Y in Ki. Note that Y ′i is finite over

Y since Ki is finite separable over K. By 2.4.4, X is normal. So we have

a birational Y -morphism Xi → Y ′i . Since Xi is quasi-finite and separated

over Y , Xi → Y ′i is also quasi-finite and separated. By the Zariski Main

Theorem 1.10.13, it can be factorized as a composite

Xi ↪→ X ′i → Y ′i

such that Xi ↪→ X ′i is an open immersion, and X ′i → Y ′i is finite. Replacing

X ′i by the closure of Xi with the reduced closed subscheme structure, we

may assume that X ′i is integral. Note that X ′i → Y ′i is a finite birational

morphism. Since Y ′i is normal, we have X ′i ∼= Y ′i . So Xi → Y ′i is an

open immersion. If Xi is finite over Y , then Xi is finite over Y ′i and hence

Xi
∼= Y ′i . �

Let Y be a normal connected noetherian scheme, K its function field,

and L a finite separable extension of K. We say L is unramified over Y if

the normalization of Y in L is unramified over Y , or equivalently, etale over

Y . By 2.9.2, the category of connected finite etale Y -schemes is equivalent

to the category of finite separable extensions of K(Y ) unramified over Y .

Suppose L = L1 × · · · × Ln for some finite separable extensions Li of K.

We say that L is unramified over Y if each Li is unramified over Y .

Proposition 2.9.3. Let Y be a normal connected noetherian scheme and

let K be its function field.

(i) K is unramified over Y .

(ii) Let L be an extension of K unramified over Y , M an extension of L

unramified over the normalization of Y in L. Then M is unramified over

Y .

(iii) Let Y ′ be a normal connected noetherian Y -scheme dominating Y

and let K ′ be its function field. If L is an extension of K unramified over

Y , then L ⊗K K ′ is unramified over Y ′. If Y = SpecA and Y ′ = SpecA′

are affine and B is the integral closure of A in L, then B ⊗A A′ is the

integral closure of A′ in L⊗K K ′.
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(iv) If L1 and L2 are extensions of K unramified over Y , then L1⊗KL2

is unramified over Y .

Proof. (i) is obvious. (ii) follows from 2.2.2 (iii).

(iii) It suffices to consider the case where Y = SpecA and Y ′ = SpecA′

are affine. Note that Spec (B ⊗A A′) is finite and etale over SpecA′. So

Spec (B ⊗A A′) is normal. It function ring is isomorphic to

B ⊗A A′ ⊗A′ K ′ ∼= B ⊗A K ⊗K K ′ ∼= L⊗K K ′.

So B ⊗A A′ is the integral closure of A′ in L ⊗K K ′, and L ⊗K K ′ is
unramified over SpecA′.

(iv) follows from (ii) and (iii). �
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Chapter 3

Etale Fundamental Groups

3.1 Finite Group Actions on Schemes

([SGA 1] V 1.)

Let X be a scheme on which a finite group G acts on the right. If X =

SpecA, this is equivalent to saying G acts on A on the left. For any scheme

Z, G acts on the left on the set Hom(X,Z). Let Hom(X,Z)G be the subset

of Hom(X,Z) consisting of morphisms invariant under G. A morphism

X → Y invariant under the action of G is called the quotient of X by G if

the canonical map

Hom(Y, Z) → Hom(X,Z)G

is bijective for any scheme Z, that is, Y represents the functor Z �→
Hom(X,Z)G. We often denote Y by X/G.

Proposition 3.1.1. Let A be a ring on which a finite group G acts on the

left, B = AG, X = SpecA, Y = SpecB, and π : X → Y the morphism

corresponding to the homomorphism AG ↪→ A.

(i) X is integral over Y .

(ii) π is surjective. Its fibers are orbits of G, and the topology on Y is

the quotient topology induced from X.

(iii) Given x ∈ X, let y = π(x) and let

Gx = {g ∈ G|gx = x}
be the stabilizer of x. Then the residue field k(x) is a normal algebraic

extension of the residue field k(y), and the canonical homomorphism Gx →
Gal(k(x)/k(y)) is surjective.

(iv) The canonical morphism OY → (π∗OX)G is an isomorphism, and

Y is the quotient of X by G.

117
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Proof.

(i) For any a ∈ A, the polynomial
∏
g∈G(t − ga) in A[t] is invariant

under the action of G. So it lies in B[t]. a is a root of this polynomial. So

A is integral over B.

(ii) By [Atiyah and Macdonald (1969)] 5.10, π is surjective, and

π(V (I)) = V (I ∩ B) for any ideal I of A. So π is a closed map, and

hence the topology on Y is the quotient topology induced from X . Let q

be a prime ideal of B, and let p and p′ be prime ideals of A such that

q = p ∩B = p′ ∩B.
Then for any a ∈ p′, we have∏

g∈G
ga ∈ p′ ∩B = q ⊂ p.

So ga ∈ p for some g ∈ G. It follows that p′ ⊂ ∪g∈Ggp. This implies that

p′ ⊂ gp for some g ∈ G by [Matsumura (1970)] (1.B). We have

gp ∩B = g(p ∩B) = p ∩B = p′ ∩B.
By [Atiyah and Macdonald (1969)] 5.9, we have p′ = gp. So the fibers of π

are orbits of G.

(iii) Let p be the prime ideal of A corresponding to x and let q = p∩B
be the prime ideal corresponding to y. Replacing A and B by A⊗BBq and

Bq, respectively, we may assume B is a local ring with the maximal ideal

q. Then p is a maximal ideal of A. Any a ∈ A is a root of the polynomial

of
∏
g∈G(t− ga) ∈ B[t]. So every element in k(x) is a root of a polynomial

in k(y)[t] splitting in k(x) with degree |G|. Hence k(x)/k(y) is a normal

algebraic extension. Since any finite separable extension is generated by

one element, the separable closure k(y)s of k(y) in k(x) has degree ≤ |G|.
Let a ∈ A so that its image ā in k(x) lies in k(y)s and generates k(y)s over

k(y). For any g ∈ G −Gx, gp is a maximal ideal of A distinct from p. By

the Chinese remainder theorem, there exists a′ ∈ A such that a′ − a ∈ p

and a′ ∈ gp for any g 	∈ G −Gx. Let ga′ be the image of ga′ in k(x), and
let

f(t) =
∏
g∈G

(t− ga′).

We have f(t) ∈ k(y)[t] and f(a′) = 0. Given τ ∈ Gal(k(x)/k(y)), τ(a′) is

a root of f(t). So τ(a′) = ga′ for some g ∈ G. If g 	∈ Gx, we have ga′ ∈ p

and hence ga′ = 0. So τ(a′) = 0 and hence a′ = 0. But a′ = ā generates

k(y)s over k(x). So we have k(y)s = k(y) and Gal(k(x)/k(y)) = {e}. The
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homomorphism Gx → Gal(k(x)/k(y)) is trivially surjective in this case.

If g ∈ Gx, then τ is the image of g under this homomorphism. So this

homomorphism is always surjective.

(iv) For any f ∈ B, we have Bf ∼= (Af )
G, that is,

OY (D(f)) ∼= (π∗OX)G(D(f)).

So OY → (π∗OX)G is an isomorphism. Using this fact and (ii), one checks

that Y is the quotient of X by G. �
Let X be a scheme on which a finite group G acts on the right. We

say the action is admissible if there exists an affine morphism π : X → Y

invariant under G such that OY = (π∗OX)G. Then 3.1.1 still holds and

every open subset U of Y is the quotient of π−1(U) by G.

Proposition 3.1.2. Let X be a scheme on which a finite group G acts on

the right. The following conditions are equivalent:

(i) The action is admissible.

(ii) X is a union of affine open subsets stable under the action of G.

(iii) Each orbit of G is contained in an affine open subset.

Proof.

(i)⇒(iii) Let π : X → X/G be the canonical morphism. It is affine.

Cover X/G by affine open subsets Ui. Then {π−1(Ui)} is an affine open

covering of X . Each orbit of G is contained in one of the affine π−1(Ui).
(iii)⇒(ii) Let S be an orbit of G and let U be an affine open subset of

X containing S. Then S ⊂ ∩g∈GgU ⊂ U . Since U is affine and S is finite,

there exists an affine open subset V such that S ⊂ V ⊂ ∩g∈GgU . Indeed,

suppose U = SpecA, S = {p1, . . . , pn}, and ∩g∈GgU = SpecA − V (a),

where pi are prime ideals, and a is an ideal of A. We have a 	⊂ pi. By

[Matsumura (1970)] (1.B), we have a 	⊂ ∪ipi. Take f ∈ a − ∪ipi. Then

V = D(f) has the required property. Note that gV ⊂ U for all g ∈ G and

gV are affine. It follows that ∩g∈GgV is affine. It is also open, stable under

G, and contains S. Since S is an arbitrary orbit, X is a union of affine open

subsets stable under G.

(ii)⇒(i) Let Y be the quotient topological space of X by G, and let

π : X → Y be the canonical continuous map. Then the ringed space

(Y, (π∗OX)G) is a scheme and is the quotient of X by G. Indeed, if X =

∪iUi, where each Ui = SpecAi is affine open and stable under the action

of G, then Y can be covered by the affine schemes SpecAGi . �

Corollary 3.1.3. Let X be a scheme on which a finite group G acts on the

right.
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(i) If G acts admissibly on X, then any subgroup of G acts admissibly

on X.

(ii) If there exists an affine morphism f : X → Z invariant under G,

then G acts admissibly on X and X/G is Z-isomorphic to Spec (f∗OX)G.

Proposition 3.1.4. Let X be a scheme on which a finite group G acts on

the right and let X → Y a morphism invariant under G. For any morphism

Y ′ → Y , let G act on X ×Y Y ′ by base change.

(i) If G acts admissibly on X, Y ∼= X/G, and Y ′ → Y is flat, then G

acts admissibly on X ×Y Y ′ and Y ′ ∼= (X ×Y Y ′)/G.
(ii) If Y ′ → Y is quasi-compact and faithfully flat, G acts admissibly

on X ×Y Y ′, and Y ′ ∼= (X ×Y Y ′)/G, then G acts admissibly on X and

Y ∼= X/G.

Proof.

(i) We may assume X = SpecA, where A is a ring on which G acts

on the left. Let B = AG. Then Y = SpecB. We may assume that

Y ′ = SpecB′ is affine, where B′ is a flat B-algebra. The sequence

0 → B → A→
∏
g∈G

A

is exact, where the homomorphism A→∏g∈GA is defined by

a �→ (a− ga).

Since B′ is flat over B, the sequence

0 → B′ → A⊗B B′ →
∏
g∈G

(A⊗B B′)

is exact. It follows that B′ ∼= (A⊗BB′)G. So G acts admissibly onX×Y Y ′,
and Y ′ ∼= (X ×Y Y ′)/G.

(ii) We may reduce to the case where Y = SpecB, Y ′ = SpecB′ and B′

is a faithfully flat B-algebra. By 1.8.7, X → Y is affine. Let X = SpecA.

Then the sequence

0 → B′ → A⊗B B′ →
∏
g∈G

(A⊗B B′)

is exact. Since B′ is faithfully flat over B, the sequence

0 → B → A→
∏
g∈G

A

is exact. So B ∼= AG. Hence G acts admissibly on X and Y ∼= X/G. �
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3.2 Etale Covering Spaces and Fundamental Groups

([SGA 1] V 2–5.)

Let X be a scheme. A geometric point of X is a morphism γ : s → X

such that s is the spectrum of a separably closed field. We often write k(s)

for the separably closed field such that s = Spec k(s). Giving a geometric

point γ : s→ X with image x ∈ X is equivalent to giving a separably closed

extension k(s) of the residue field k(x). Let f : X → X ′ be a morphism.

Then fγ : s → X ′ is a geometric point of X ′. A pointed scheme is a pair

(X, γ) such that X is a scheme, and γ : s → X is a geometric point of X .

A morphism f : (X, γ) → (X ′, γ′) between pointed schemes is a morphism

f : X → X ′ such that fγ = γ′.
Let X be a scheme on which a finite group G acts on the right and let

x ∈ X . The stabilizer

Gx = {g ∈ G|gx = x}
of x is called the decomposition subgroup at x and is denoted by Gd(x). This

subgroup acts on the residue field k(x). The subgroup of elements in Gd(x)

acting trivially on k(x) is called the inertia subgroup at x and is denoted

by Gi(x). Let γ : s→ X be a geometric point with image x. G acts on the

set Hom(s,X). Gi(x) is exactly the stabilizer of γ ∈ Hom(s,X):

Gi(x) = {g ∈ G|gγ = γ}.
Using this interpretation of the inertia subgroup, one can prove the follow-

ing:

Proposition 3.2.1. Consider a Cartesian diagram

X ×S S′ → X

↓ ↓
S′ → S.

Suppose a finite group G acts on X on the right, and suppose X → S

is invariant under G. Let G act on X ×S S′ by base change. For any

x′ ∈ X ×S S′ with image x in X, we have Gi(x) = Gi(x
′).

An etale covering space of a scheme S is a finite etale morphism X → S.

The group Aut(X/S) of S-automorphisms on X acts on X on the left. Let

G = Aut(X/S)◦ be the opposite group of Aut(X/S). Its elements are S-

automorphisms of X , and for any S-automorphisms g1 and g2, the product

g1g2 in G is defined to be the composite g2 ◦ g1. Then G acts on X on
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the right. If S = X/G, we say X → S is a galois etale covering space with

galois group G.

Lemma 3.2.2. Let k be a field, and let A be a finite dimensional k-algebra.

Then A ∼= ∏i Li for finitely many fields Li finite separable over k if and

only if the bilinear form

A×A→ k, (x, y) �→ TrA/k(xy)

is nondegenerate.

Proof. Suppose the bilinear form is nondegenerate. If x ∈ A is nilpotent,

then for any y ∈ A, xy is also nilpotent, and hence Tr(xy) = 0. This implies

x = 0. So A is reduced. Let K be any field containing k. Then the bilinear

form

(A⊗k K)× (A⊗k K) → K, (x, y) �→ Tr(xy)

is nondegenerate. So A⊗k K is reduced. As A is a finitely dimensional k-

algebra, it is artinian and hence A =
∏
i Li for finitely many local artinian

ring Li. As A is reduced, each Li must be a field. As A ⊗k K is reduced

for any field K containing k, each Li is a separable extension of k.

To prove the converse, it suffices to show for any field K finite separable

over k, that the bilinear form

K ×K → k, (x, y) �→ Tr(xy)

is nondegenerate. Choose x ∈ K so that K is generated by x over k. Let

f(t) = tn + a1t
n−1 + · · · + an be the minimal polynomial of x, and let

x1, x2, . . . , xn be all the roots of f(t) in an algebraic closure of k. They are

distinct. Since {1, x, . . . , xn−1} is a basis of K over k, to prove that the

above bilinear form is nondegenerate, it suffices to show

det

⎛⎜⎜⎜⎝
Tr(1 · 1) Tr(1 · x) . . . Tr(1 · xn−1)
Tr(x · 1) Tr(x · x) . . . Tr(x · xn−1)

...
...

...

Tr(xn−1 · 1) Tr(xn−1 · x) . . . Tr(xn−1 · xn−1)

⎞⎟⎟⎟⎠ 	= 0.

This determinant is equal to

det

⎛⎜⎜⎜⎝
1 1 . . . 1

x1 x2 . . . xn
...

...
...

xn−11 xn−12 . . . xn−1n

⎞⎟⎟⎟⎠det

⎛⎜⎜⎜⎜⎜⎝
1 x1 . . . x

n−1
1

1 x2 . . . x
n−1
2

...
... . . .

...

1 xn . . . x
n−1
n

⎞⎟⎟⎟⎟⎟⎠ =
∏
i<j

(xi − xj)
2.

Since x1, . . . , xn are distinct, we have
∏
i<j(xi − xj)

2 	= 0. �
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Proposition 3.2.3. Let f : X → S be a finite flat morphism between

noetherian schemes. Then A = f∗OX is a locally free OS-module of finite

rank. f is etale if and only if the bilinear form

A × A → OS , (x, y) �→ Tr(xy)

is nondegenerate.

Proof. We may assume that X = SpecA and S = SpecB are affine.

Then as a B-module, A is finitely generated and flat. By 1.6.7, A = A∼ is

a locally free OS-module of finite rank. As f is known to be flat, it is etale

if and only if for any prime ideal q of B, Aq/qAq can be written as
∏
i Li,

where Li are finitely many fields finite separable over Bq/qBq. By 3.2.2,

the later condition is equivalent to saying that the bilinear form

Aq/qAq ×Aq/qAq → Bq/qBq, (x, y) �→ Tr(xy)

is nondegenerate. One then checks this last condition is equivalent to saying

the bilinear form in the proposition is nondegenerate. �

Proposition 3.2.4. Let (S, γ) be a pointed scheme, and let (Xi, αi) →
(S, γ) (i = 1, 2) be two morphisms of pointed schemes.

(i) If X1 is connected and X2 is unramified and separated over S, then

there exists at most one S-morphism from (X1, α1) to (X2, α2).

(ii) Suppose X1 and X2 are etale covering spaces of S. There exists a

connected pointed etale covering space (X3, α3) of (S, γ) dominating (Xi, αi)

(i = 1, 2), that is, there exist S-morphisms from (X3, α3) to (Xi, αi).

Proof.

(i) An S-morphism f from X1 to X2 is completely determined by its

graph Γf : X1 → X1 ×S X2, which is a section of the projection π1 :

X1×SX2 → X1. If f(α1) = α2, then Γf (α1) = (α1, α2). Such Γf is unique

if it exists by 2.3.10 (i).

(ii) α1 and α2 define a point α3 = (α1, α2) of X1 ×S X2. Let X3 be

the connected component of X1 ×S X2 containing the image of α3. Then

(X3, α3) dominates (Xi, αi) (i = 1, 2). �

Proposition 3.2.5. Let X be a scheme on which a finite group G acts

admissibly on the right and let Y = X/G be the quotient of X by G.

(i) Suppose X is of finite presentation over Y . If the inertia subgroup

Gi(x) is trivial for any x ∈ X, then X is etale over Y .

(ii) Suppose that X is connected, S is a noetherian scheme, X → S is

an etale covering space, and G ⊂ Aut(X/S)◦. Then Gi(x) is trivial for any
x ∈ X, X → Y and Y → S are etale covering spaces, and G = Aut(X/Y )◦.
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Proof.

(i) For any y ∈ Y , let ÕY,ȳ be the strict henselization of OY,y with

respect to a separable closure of k(y). By 2.5.10, it suffices to show X ×Y
Spec ÕY,ȳ is etale over Spec ÕY,ȳ. By 3.1.4, Spec ÕY,ȳ is the quotient of

X ×Y Spec ÕY,ȳ by G. Making the base Spec ÕY,ȳ → Y , we are reduced to

the case where Y = SpecA for some strictly henselian local ring A. Since

X is of finite presentation and integral over Y , we have X = SpecB for

some finite A-algebra B. Let n1, . . . , nk be all the maximal ideals of B.

By 2.8.3, we have B ∼= Bn1 × · · · × Bnk . Let Gd(nj) and Gi(nj) be the

decomposition subgroups and inertia subgroups at nj , respectively. Since

A = BG, and G acts transitively on {n1, . . . , nk} by 3.1.1 (ii), we have

A ∼= (Bnj )
Gd(nj). Since the residue field of A is separably closed, we have

Gd(nj) = Gi(nj) = {e}. So we have A ∼= Bnj . Thus SpecB → SpecA is

etale.

(ii) Let α be a geometric point of X with image x ∈ X . Any g ∈
Gi(x) induces an S-automorphism of (X,α). Since X is connected and

G ⊂ Aut(X/S)◦, we have g = e by 3.2.4 (i). So Gi(x) is trivial. Note

that X → Y and Y → S are finite. To prove this, we may assume that

S = SpecC is affine. Then X = SpecB for some finite C-algebra B and

Y ∼= SpecBG. Since C is noetherian, BG is finite over C. By (i), X → Y

is etale. By 2.5.5, Y → S is etale. Let σ : X → X be a Y -automorphism of

X . Since G acts transitively on the fibers of X → Y , there exists g1 ∈ G

such that g1(x) = σ(x). Let y be the image of x in Y . Then σ and g1 induce

two k(y)-isomorphisms from k(σ(x)) to k(x), which we denote by σ and

g1, respectively. We have σ(g1)
−1 ∈ Gal(k(x)/k(y)). By 3.1.1 (iii), there

exists g2 ∈ Gd(x) such that σ(g1)
−1 is the image of g2 in Gal(k(x)/k(y)).

By 3.2.4 (i), we must have σ = g2g1 ∈ G. Hence G = Aut(X/Y )◦. �

Corollary 3.2.6. Let S be a noetherian scheme, let X → S be an etale

covering space, and let G be a finite group acting on the right of X such

that X → S is invariant under G. Then the action is admissible and the

quotient X/G is an etale covering space of S.

Proof. By 3.1.3 (ii), the action is admissible. G acts on connected com-

ponents of X . Let X1, . . . , Xn be connected components of X so that any

connected component of X is of the form gXj for some g ∈ G and a unique

j ∈ {1, . . . , n}. Let Gj = {g ∈ G|gXj = Xj} be the stabilizer of Xj . Then

we have X/G ∼=∐j Xj/Gj . Working with each Xj and Gj , we are reduced

to the case where X is connected. Replacing G by its image in Aut(X/S)◦,
we may assume G ⊂ Aut(X/S)◦. We then apply 3.2.5 (ii). �
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Proposition 3.2.7. Let (S, γ) be a pointed connected noetherian scheme,

X1 and X2 two etale covering spaces of S, u : X1 → X2 an S-morphism,

and Xi(γ) (i = 1, 2) the sets of geometric points of Xi lying above γ. If the

map X1(γ) → X2(γ) induced by u is bijective, then u is an isomorphism.

Proof. The image of any connected component of X2 in S is both open

and closed. Since S is connected, the image is S. Replacing X2 by its

connected components and X1 by the inverse images of these components,

we are reduced to the case where X2 is connected. Note that u is finite and

etale. So u∗OX1 is a locally free OX2 -module of constant finite rank. Let

s ∈ S be the image of γ and let x2 ∈ X2 be a point above s. Then

X1 ×X2 SpecOX2,x2
∼= SpecA

for some OX2,x2-algebra A which is free of finite rank as an OX2,x2-module.

Since X1(γ) → X2(γ) is bijective, there is one and only one point x1 in X1

lying above x2. So A is a local ring. Since u is etale, mx2A is the maximal

ideal of A and A/mx2A is finite separable over OX2,x2/mx2. Again because

X1(γ) → X2(γ) is bijective, we must have OX2,x2/mx2
∼= A/m2A. It follows

that the rank of u∗OX1 is 1. Let x′2 be an arbitrary point of X2 and let A′

be an OX2,x′
2
-algebra such that

X1 ×X2 SpecOX2,x′
2

∼= SpecA′.

Since rank (u∗OX1) = 1, A′ is a free OX2,x′
2
-module of rank 1. The ho-

momorphism OX2,x′
2
/mx′

2
→ A′/mx′

2
A is a nonzero homomorphism of one

dimensional vectors spaces. It is necessarily surjective. By Nakayama’s

lemma, the homomorphism OX2,x′
2
→ A′ is also surjective. It is injective

since it is faithfully flat. So we have OX2,x′
2

∼= A′. Hence OX2
∼= u∗OX1 ,

and u is an isomorphism. �

Proposition 3.2.8. Let (S, γ) be a pointed connected noetherian scheme,

X a connected etale covering space of S, X(γ) the set of geometric points

in X lying above γ, and G = Aut(X/S)◦. The following conditions are

equivalent:

(i) X/G ∼= S, that is, X is a galois covering of S.

(ii) G acts transitively on X(γ).

(iii) G and X(γ) have the same number of elements.

Proof. Let α be a geometric point of X above γ. For any g1, g2 ∈ G, if

g1α = g2α, then g1 = g2 by 3.2.4 (i). It follows that #G is equal to the

number of orbits of G on α. So (ii) and (iii) are equivalent.

 E
ta

le
 C

oh
om

ol
og

y 
T

he
or

y 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

O
N

A
SH

 U
N

IV
E

R
SI

T
Y

 o
n 

11
/2

7/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



February 6, 2015 9:48 ws-book9x6 Etale Cohomology Theory... etale page 126

126 Etale Cohomology Theory

Let β : s → X/G be a geometric point in X/G lying above γ, let

α1, α2 : s→ X be two geometric points in X lying above β, and let y, x1, x2
be the images of β, α1, α2, respectively. By 3.1.1 (ii), there exists g1 ∈ G

such that g1x1 = x2. Consider the commutative diagram

k(y) → k(x1)

↓ ↘β� ↓α�1
k(x2)

α�2→ k(s),

where β, α1, α

2 are the homomorphisms on residue fields induced by

β, α1, α2, respectively. Let g1 : k(x2) → k(x1) be the k(y)-homomorphism

induced by g1. Since k(x2) is a normal algebraic extension of k(y) by

3.1.1 (iii), α1g

1 and α2 have the same image in k(s). So there exists

τ ∈ Gal(k(x2)/k(y)) such that α1g

1τ = α2. By 3.1.1 (iii), there exists

g2 ∈ Gx2 such that τ = g2. We then have α1(g1g2)
 = α2. Hence g1g2

maps α1 to α2. This shows that G acts transitively on the set X(β) of

geometric points in X lying above β. So (i) implies (ii).

Suppose (ii) holds. Then (X/G)(γ) has only one element since two

distinct elements in (X/G)(γ) can be lifted to two elements in X(γ) that

are not in the same orbit. By 3.2.5 (ii), X/G is an etale covering space of

S. By 3.2.7, we have X/G ∼= S. �

Proposition 3.2.9. let S be a connected noetherian scheme and let X be

a connected etale covering space of S. Then any S-morphism u : X → X

is an isomorphism.

Proof. Note that u is necessarily etale and finite. So u(X) is both open

and closed. As X is connected, we have u(X) = X . Let γ be a geometric

point of S, let α be a geometric point of X lying above γ, and let x be the

image of α. Then there exists x′ ∈ X such that u(x′) = x. Moreover the

residue field k(x′) is a finite separable extension of the residue field k(x).

So there exists a geometric point α′ of X with image x′ such that uα′ = α.

Thus u induces a surjective map X(γ) → X(γ). As X(γ) is finite. This

map is bijective. By 3.2.7, u is an isomorphism. �

Proposition 3.2.10. Let (S, γ) be a pointed connected noetherian scheme,

and let (Y, β) be a pointed etale covering space of (S, γ). There exists a

pointed connected galois etale covering space (X,α) of (S, γ) dominating

(Y, β), that is, there exists an S-morphism from (X,α) to (Y, β).

Proof. Let β1, . . . , βk be all the distinct geometric points of Y lying above

γ. They define a geometric point α of Y k = Y ×S · · · ×S Y such that
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piα = βi (i = 1, . . . , k), where pi : Y
k → Y are the projections. Let X

be the connected component of Y k containing the image of α. It suffices

to show that X is a galois covering of S. By 3.2.8 and 3.2.9, it suffices to

show that for any geometric point α′ of X lying above γ, there exists an

S-morphism u : X → X such that uα = α′. Let j : X ↪→ Y k be the open

immersion. Since pijα = βi (i = 1, . . . , k) are distinct, pijα
′ are distinct by

3.2.4 (i). Let σ be a permutation of {1, . . . , k} such that pijα
′ = pσ(i)jα,

and let v : Y k → Y k be the S-morphism with the property piv = pσ(i). We

have

pivjα = pσ(i)jα = pijα
′.

It follows that vjα = jα′. Since X is the connected component of Y k

containing the images of α and α′, v induces a morphism u : X → X with

the property u(α) = α′. This proves our assertion. �

Let (S, γ) be a pointed connected noetherian scheme, and let Et(S) the

category whose objects are etale covering spaces of S, and whose morphisms

are S-morphisms between these covering spaces. We have a functor F from

Et(S) to the category of finite sets that maps each etale covering spaceX of

S to the setX(γ) of geometric points inX lying above γ. We call F the fiber

functor for (S, γ). Let I be the opposite category of the category of pointed

connected galois etale covering spaces of (S, γ). For any i ∈ ob I, denote

by (Xi, αi) the corresponding pointed connected galois etale covering space

of (S, γ). Given two objects i and j in I, there exists a morphism j → i

in I if there exists a morphism fij : (Xi, αi) → (Xj , αj). Note that such a

morphism is unique if it exists by 3.2.4 (i). By 3.2.4 and 3.2.10, I satisfies

the conditions (I2) and (I3) in 2.7, and for any X ∈ obEt(S), the map

lim−→
i∈ob I

HomS(Xi, X) → F (X), f �→ f(αi) for any f ∈ HomS(Xi, X)

is bijective. So F is pro-represented by lim←−i∈ob I Xi.

Let fij : (Xi, αi) → (Xj , αj) be a morphism in I. We have bijections

Aut(Xv/S) → F (Xv), σ �→ σ(αv) (v = i, j).

Through these bijections, the map

F (Xi) → F (Xj), α �→ fij(α)

is identified with a map

φij : Aut(Xi/S) → Aut(Xj/S).

We have

φij(σ)(αj) = fij(σ(αi))
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for any σ ∈ Aut(Xi/S). By 3.2.4 (i), we have

φij(σ)fij = fijσ,

that is, the following diagram commutes:

Xi
σ→ Xi

fij ↓ ↓ fij
Xj

φij(σ)→ Xj .

One can check that φij is an epimorphism of groups. We thus get an inverse

system of groups (Aut(Xi/S), φij)i∈I . We define the fundamental group of

(S, γ) to be

π1(S, γ) = lim←−
i

Aut(Xi/S)
◦.

Note that Aut(Xi/S)
◦ acts on the left on the set Hom(Xi, X) for any object

X in Et(S). So π1(S, γ) acts on the left on the sets

lim−→
i

HomS(Xi, X) ∼= F (X).

Since F (X) is finite, the map

HomS(Xi, X) → F (X)

is surjective for some i. Then the action of π1(S, γ) on F (X) factors through

the finite quotient Aut(Xi/S)
◦. Put the discrete topology on Aut(Xi/S)

◦,
and put the product topology on π1(S, γ) = lim←−iAut(Xi/S)

◦. Then π1(S, γ)
acts continuously on the discrete finite set F (X).

Proposition 3.2.11. An etale covering space X of a pointed connected

noetherian scheme (S, γ) is connected if and only if π1(S, γ) acts transitively

on F (X).

Proof. Let X1, . . . , Xk be all the connected components of X . Then we

have F (X) =
k∐
v=1

F (Xv). Each F (Xv) is stable under the action of π1(S, γ).

So if X is not connected, then π1(S, γ) does not act transitively on F (X).

Let α and α′ be two geometric points in X lying above γ, and let (Xi, αi)

be a pointed galois etale covering space of (S, γ) dominating (X,α). If X

is connected, then the morphism (Xi, αi) → (X,α) is surjective. So there

exists a geometric point α′i of Xi lying above α′. By 3.2.8, Aut(Xi/S) acts

transitively on F (Xi). Let σ ∈ Aut(Xi/S) such that σ(αi) = α′i. Then

σ(α) = α′. So Aut(Xi/S) acts transitively on F (X). �
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Theorem 3.2.12. Let (S, γ) be a pointed connected noetherian scheme.

Then the fiber functor F : X �→ X(γ) defines an equivalence from the

category Et(S) of etale covering spaces of S to the category of finite sets

on which π1(S, γ) acts continuously on the left.

Proof. Given etale covering spaces X and Y of S, let us prove that

HomS(X,Y ) → Homπ1(S,γ)(F (X), F (Y ))

is bijective. We may assume X and Y are connected. By 3.2.4 (i), this

map is injective. Fix α ∈ F (X) and β ∈ F (Y ). Let (Xi, αi) be a pointed

connected galois etale covering space of (S, γ) dominating both (X,α) and

(Y, β), and let q : Xi → Y be the S-morphism with the property q(αi) = β.

Since Y is connected, q is onto. So for any φ ∈ Homπ1(S,γ)(F (Xi), F (Y )),

there exists α′i ∈ F (Xi) such that q(α′i) = φ(αi). Since Xi is galois over S,

there exists σ ∈ Aut(Xi/S) such that σ(αi) = α′i. Then qσ(αi) = φ(αi).

Since π1(S, γ) acts transitively on F (Xi), qσ is mapped to φ under the map

HomS(Xi, Y ) → Homπ1(S,γ)(F (Xi), F (Y )).

Hence this map is surjective. Let Xi(α) be the set of geometric points in

Xi lying above the geometric point α in X . Given two elements α1 and α2

in Xi(α), since Xi is galois over S, there exists σ ∈ Aut(Xi/S) such that

σ(α1) = α2. By 3.2.4 (i), σ is an X-morphism. So H = Aut(Xi/X)◦

acts transitively on Xi(α). By 3.2.8, we have X = Xi/H . For any

φ ∈ Homπ1(S,γ)(F (X), F (Y )), by the above discussion, there exists an S-

morphism f ′ : Xi → Y such that f ′(αi) = φ(α). For any h ∈ Aut(Xi/X),

we have

(f ′h)(αi) = h(f ′(αi)) = h(φ(α)) = φ(h(α)) = φ(α) = f ′(αi).

By 3.2.4 (i), we must have f ′h = f ′. So there exists a morphism f : X → Y

such that fp = f ′, where p : Xi → X is the S-morphism such that p(αi) =

α. We have

f(α) = fp(αi) = f ′(αi) = φ(α).

Since π1(S, γ) acts transitively on F (X), f is mapped to φ under the map

HomS(X,Y ) → Homπ1(S,γ)(F (X), F (Y )).

So this map is surjective. This proves that the functor F is fully faithful.

Let A be a finite set on which π1(S, γ) acts continuously on the left. Let

us prove there exists an etale covering space X of S such that F (X) ∼= A

as sets with π1(S, γ)-actions. Writing A as a disjoint union of orbits, and
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working with each orbit, we are reduced to the case where π1(S, γ) acts on

A transitively. Let (Xi, αi) be a connected pointed galois covering space

of S such that the action of π1(S, γ) on A factors through Aut(Xi/S)
◦.

Then there exists a subgroup H of Aut(Xi/S)
◦ such that A is isomorphic

to Aut(Xi/S)
◦/H . Let X = Xi/H . Then we have F (X) ∼= A. �

Proposition 3.2.13. Let S be a noetherian scheme and let γ and γ′ be
two geometric points in S. If S is connected, then we have an isomorphism

π1(S, γ
′)
∼=→ π1(S, γ),

and any two such isomorphisms differ by an inner automorphism of

π1(S, γ).

Proof. Keep our previous notation. For each i ∈ ob I, the set of geo-

metric points Xi(γ
′) in Xi lying above γ′ is finite, nonempty, and each fij

induces a surjective map from Xi(γ
′) to Xj(γ

′). We may find α′i ∈ Xi(γ
′)

for each i such that fij(α
′
i) = α′j for each fij . Let (X,α′) be a pointed

etale covering space of (S, γ′) and let X ′ be the connected component of X

containing the image of α′. Since S is connected, the morphism X ′ → S

is surjective. So we can find a geometric point α of X lying above γ so

that the image of α also lies in X ′. We can find some i ∈ ob I such that

(Xi, αi) dominates (X,α). Let p : (Xi, αi) → (X,α) be the morphism with

the property p(αi) = α. Then Xi is mapped onto X ′ and we can find a

geometric point α′′i of Xi over α
′. Since Xi is galois over S, there exists

g ∈ Aut(Xi/S) such that g(α′i) = α′′i . Then pg is a morphism from (Xi, α
′
i)

to (X,α′). Thus any pointed etale covering space of (S, γ′) is dominated

by some (Xi, α
′
i). This implies that the family {(Xi, α

′
i)} is cofinal in the

category of connected pointed galois etale covering spaces of (S, γ′). So we

have

π1(S, γ
′) ∼= lim←−

i

Aut(Xi/S)
◦ ∼= π1(S, γ).

The isomorphism π1(S, γ
′)
∼=→ π1(S, γ) depends on the choice of the family of

geometric points (α′i). Let (α
′′
i ) be another family so that α′′i are geometric

points of Xi lying above γ′ and fij(α
′′
i ) = α′′j . For each i, there exists a

unique S-automorphism gi of Xi such that gi(α
′
i) = α′′i . One can show

φij(gi) = gj . So (gi) is an element in π1(S, γ). Given an element σ ∈
π1(S, γ

′), suppose its image under the isomorphism π1(S, γ
′)
∼=→ π1(S, γ)

defined by the family (α′i) is (σi), where σi ∈ Aut(Xi/S)
◦. Then the image

of σ under the isomorphism φ′′ : π1(S, γ′)
∼=→ π1(S, γ) defined by the family
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(α′′i ) is (g−1i σigi). It follows that the two isomorphisms differ by an inner

automorphism of π1(S, γ). �

Proposition 3.2.14. Let K be a field, Ω a separably closed field contain-

ing K, γ : SpecΩ → SpecK the corresponding geometric point, and Ks the

separable closure of K contained in Ω. Then we have a canonical isomor-

phism

π1(SpecK, γ) ∼= Gal(Ks/K).

Proof. Let {Ki} be the family of finite galois extensions of K contained

in Ω and let αi : SpecΩ → SpecKi be the corresponding geometric points.

Then {(SpecKi, αi)} is cofinal in the category of pointed connected galois

etale covering spaces of (SpecK, γ). We have

Aut(SpecKi/SpecK)◦ = Gal(Ki/K).

So we have

π1(SpecK, γ) ∼= lim←−
i

Gal(Ki/K) ∼= Gal(Ks/K).
�

3.3 Functorial Properties of Fundamental Groups

([SGA 1] V 6.)

Let (S′, γ′) → (S, γ) be a morphism of pointed connected noetherian

schemes, let (Xi, αi) be the family of pointed connected galois etale cov-

ering spaces of (S, γ), and let (αi, γ
′) be the geometric point of Xi ×S S′

lying above αi and γ
′. Then (Xi ×S S′, (αi, γ′)) is a pointed etale covering

space of (S′, γ′). Let F and F ′ be the fiber functors for (S, γ) and (S′, γ′),
respectively. We have a canonical one-to-one correspondence

F ′(Xi ×S S′) ∼= F (Xi),

through which π1(S
′, γ′) acts on F (Xi). We can define a map

φi : π1(S
′, γ′) → Aut(Xi/S)

◦

such that

φi(g
′)(αi) = g′αi

for any g′ ∈ π1(S
′, γ′). Suppose that X ′i is the connected component of

Xi×SS′ containing (αi, γ′). One can check that Aut(X ′i/S) acts transitively
on F ′(X ′i). So X ′i is galois over S′. Let g′i be the image of g′ ∈ π1(S

′, γ′)
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under the homomorphism π1(S
′, γ′) → Aut(X ′i/S

′)◦, and let p : Xi×SS′ →
Xi be the projection. We have

φi(g
′)(αi) = (p|X′

i
)(g′i(αi, γ

′)).

On the other hand, we have

φi(g
′)(αi) = φi(g

′)(p|X′
i
)((αi, γ

′)).

So we have

(p|X′
i
)(g′i(αi, γ

′)) = φi(g
′)(p|X′

i
)((αi, γ

′)).

This implies that

(p|X′
i
)g′i = φi(g

′)(p|X′
i
).

Using this equality, one can check that φi are homomorphisms of groups,

and are compatible with the canonical homomorphisms φij : Aut(Xi/S)
◦ →

Aut(Xj/S)
◦ whenever (Xi, αi) dominates (Xj , αj). So we have a continu-

ous homomorphism

φ = lim←−
i

φi : π1(S
′, γ′) → π1(S, γ).

It follows from the definition that the following holds:

Proposition 3.3.1. Let f : (S′, γ′) → (S, γ) be a morphism of pointed

connected noetherian schemes, and let φ : π1(S
′, γ′) → π1(S, γ) be the

induced homomorphism on fundamental groups. Denote by (π1(S
′, γ′)-sets)

(resp. (π1(S, γ)-sets)) the category of finite sets on which π1(S
′, γ′) (resp.

π1(S, γ)) acts continuously on the left, and by F ′ (resp. F ) the fiber functor
for (S′, γ′) (resp. (S, γ)). Consider the functor

Hf : Et(S) → Et(S′), X �→ X ×S S′

and the functor

Hφ : (π1(S, γ)-sets) → (π1(S
′, γ′)-sets)

induced by the homomorphism φ. The following diagram commutes:

Et(S)
Hf→ Et(S′)

F ↓ ↓ F ′

(π1(S, γ)-sets)
Hφ→ (π1(S

′, γ′)-sets).
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Suppose that (S′, γ′) → (S, γ) is an etale covering space. Let {(Xi, αi)}
be the family of pointed connected galois etale covering spaces of (S, γ)

dominating (S′, γ′). By 3.2.4 and 3.2.10, {(Xi, αi)} is cofinal in the category

of pointed connected galois etale covering spaces of (S, γ). So we have

π1(S, γ) ∼= lim←−
i

Aut(Xi/S)
◦.

One can show that Aut(Xi/S
′)◦ acts transitively on the set Xi(γ

′) of ge-

ometric points in Xi lying above γ′. So Xi are galois over S′. Again by

3.2.4 and 3.2.10, {(Xi, αi)} is cofinal in the category of pointed connected

galois etale covering spaces of (S′, γ′). So we have

π1(S
′, γ′) ∼= lim←−

i

Aut(Xi/S
′)◦.

The homomorphism π1(S
′, γ′) → π1(S, γ) can be identified with the canon-

ical inclusion

lim←−
i

Aut(Xi/S
′)◦ → lim←−

i

Aut(Xi/S)
◦.

In particular, π1(S
′, γ′) → π1(S, γ) is injective.

A topological group π is called a profinite group if it is isomorphic to a

topological group of the form lim←−i∈I Gi, where I is a direct set, and {Gi}
is an inverse system of finite groups with discrete topology, and lim←−i∈I Gi
is provided with the product topology. Confer 4.2 for more properties of

profinite groups.

Lemma 3.3.2. Let φ : π′ → π be a continuous homomorphism of profinite

groups, (π′-sets) (resp. (π-sets)) the category of finite sets on which π

(resp. π′) acts continuously on the left, and Hφ : (π-sets) → (π′-sets) the
functor induced by φ.

(i) φ is surjective if and only if for any A ∈ ob (π-sets) on which π acts

transitively, π′ acts transitively on Hφ(A).

(ii) φ is trivial if and only if for any A ∈ ob (π-sets), π acts trivially

on Hφ(A).

(iii) Let H be an open subgroup of π. Then imφ ⊂ H if and only if the

element eH in Hφ(π/H) is fixed by π′.
(iv) Let H ′ be an open subgroup of π′. Then kerφ ⊂ H ′ if and only if

there exists an object A in (π-sets) on which π acts transitively such that

there exists a π′-morphism from the π′-orbit of an element in Hφ(A) to

π′/H ′. If kerφ ⊂ H ′ and φ is surjective, then there exists an object A in

(π-sets) on which π acts transitively and π′/H ′ ∼= Hφ(A).
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(v) φ is injective if and only if for any A′ ∈ ob (π′-sets), there exists

A ∈ ob (π-sets) on which π acts transitively such that there exists a π′-
morphism from the π′-orbit of an element in Hφ(A) to A′.

Proof.

(i) Let us prove the “if” part. Write π = lim←−i πi, where πi are finite

groups such that π → πi are surjective. Then π acts transitively on πi. If

π′ acts transitively on Hφ(πi), then the composites

π′
φ→ π → πi

are surjective. Hence imφ is dense in π. But φ is a continuous map from a

compact space to a Hausdorff space. So φ is a closed mapping. It follows

that imφ = π.

(ii) and (iii) are obvious.

(iv) Suppose kerφ ⊂ H ′. We have {e} =
⋂
H

H , where H goes over the

set of open subgroups of π. It follows that
⋂
H

φ−1(H) = kerφ ⊂ H ′, that

is, H ′c ⊂ ⋃
H

φ−1(H)c. Since H ′c is compact and φ−1(H)c are open, there

exist finitely many open subgroups H1, . . . , Hk of π such that

H ′c ⊂ φ−1(H1)
c ∪ · · · ∪ φ−1(Hk)

c.

Let H = H1 ∩ · · · ∩ Hk. Then we have φ−1(H) ⊂ H ′. Let A = π/H and

let A′ be the π′-orbit of eH in Hφ(A). Then

A′ → π′/H ′, φ(g′)H �→ g′H ′ for any g′ ∈ π′

is a well-defined π′-morphism.

Suppose that kerφ ⊂ H ′ and φ is surjective. Then we have π′/H ′ ∼=
π/φ(H ′). In particular, φ(H ′) has finite index in π. Since φ(H ′) is compact,

and hence closed in π, it is open. Take A = π/φ(H ′). Then we have

π′/H ′ ∼= Hφ(A).

Suppose that A is an object in ob (π-sets) on which π acts transitively

such that there exists a π′-morphism from the π′-orbit of an element a in

A to π′/H ′. We may choose a so that it is mapped to eH ′ in π′/H ′. Let

H ⊂ π be the stabilizer of a. Then H is an open subgroup of π, and the π′-
orbit of a is isomorphic to π′/φ−1(H) so that a is identified with eφ−1(H).

So we have a π′-morphism π′/φ−1(H) → π′/H ′ mapping eφ−1(H) to eH ′.
This is possible only if φ−1(H) ⊂ H ′. In particular, we have kerφ ⊂ H ′.

(v) follows from (iv). �
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Lemma 3.3.3. Let φ : π′ → π and ψ : π → π′′ be two continuous homo-

morphisms of profinite groups, (π-sets) (resp. (π′-sets), resp. (π′′-sets))
the category of finite sets on which π (resp. π′, resp. π′′) acts continu-

ously on the left, and Hφ : (π-sets) → (π′-sets) (resp. Hψ : (π′′-sets) →
(π-sets)) the functor induced by φ (resp. ψ).

(i) ψφ is trivial if and only if for any object A′′ in (π′′-sets), π′ acts
trivially on HφHψ(A

′′).
(ii) kerψ ⊂ imφ if and only if for any object A in (π-sets) such that π

acts transitively and that there exists an element in A fixed by imφ, there

exists an object A′′ in (π′′-sets) on which π′′ acts transitively such that

there exists a π-morphism from the π-orbit of an element in Hψ(A
′′) to A.

Proof. (i) follows from 3.3.2 (ii). (ii) follows from 3.3.2 (iii) and (iv)

and the fact that kerψ ⊂ imφ if and only if any open subgroup H of π

containing imφ contains kerψ. Indeed, for any closed subgroup C of a

profinite group G, we have C =
⋂

H⊃C
H , where H goes over the family of

open subgroups of G containing C. This can be proved as follows. If we

have x 	∈ C, then by 4.2.6 in the next chapter, there exists a normal open

subgroup N of G such that xN ∩ C = Ø. Then H = NC is an open

subgroup of G containing C and x 	∈ H . �
¿From 3.3.1–3.3.3, we get the following two propositions:

Proposition 3.3.4. Let (S′, γ′) → (S, γ) be a morphism of pointed con-

nected noetherian schemes.

(i) π1(S
′, γ′) → π1(S, γ) is surjective if and only if for any connected

etale covering space X of S, X ×S S′ is connected.

(ii) π1(S
′, γ′) → π1(S, γ) is injective if and only if for any connected

etale covering space X ′ of S′, there exists a connected etale covering space

X of S such that there exists an S′-morphism from a connected component

of X ×S S′ to X ′.
(iii) π1(S

′, γ′) → π1(S, γ) is trivial if and only if for any connected etale

covering space X of S, X ×S S′ is S′-isomorphic to a disjoint union of

copies of S′.

Proposition 3.3.5. Let (S′, γ′) → (S, γ) → (S′′, γ′′) be morphisms of

pointed connected noetherian schemes, and let

π1(S
′, γ′)

φ→ π1(S, γ)
ψ→ π1(S

′′, γ′′)

be the corresponding homomorphisms.

(i) ψφ is trivial if and only if for any connected etale covering space X ′′

of S′′, X ′′ ×S′′ S′ is S′-isomorphic to a disjoint union of copies of S′.
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(ii) kerψ ⊂ imφ if and only if for any connected etale covering space X

of S such that X×SS′ → S′ admits a section, there exists a connected etale

covering space X ′′ of S′′ and an S-morphism from a connected component

of X ′′ ×S′′ S to X.

Proposition 3.3.6. Let S be a normal connected noetherian scheme, K its

function field, Ω a separably closed field containing K, and Ks the separable

closure of K in Ω. Denote by γ both the geometric point Spec Ω → SpecK

and the geometric point defined by the composite SpecΩ → SpecK → S.

Then the canonical homomorphism

π1(SpecK, γ) → π1(S, γ)

is an epimorphism. Through the isomorphism π1(SpecK, γ) ∼= Gal(Ks/K),

the kernel of the above epimorphism is identified with the subgroup

Gal(Ks/Kur), where Kur is the subfield of Ks generated by all finite sep-

arable extensions of K contained in Ks that are unramified over S. In

particular, we have

π1(S, γ) ∼= Gal(Kur/K).

Proof. LetX be a connected etale covering space of S. ThenX is normal

and integral. So X ⊗S K is integral and hence connected. By 3.3.4 (i), the

homomorphism π1(SpecK, γ) → π1(S, γ) is surjective. Let {(Xi, αi)} be

the family of pointed connected galois etale covering spaces of (S, γ), and

let Ki be the function field of Xi. Then Ki are finite galois extensions

of K unramified over S, and Aut(Xi/S)
◦ ∼= Gal(Ki/K) by 3.1.4 (i). The

geometric points αi define embeddings of Ki into Ω. By 2.9.2, Kur is

generated by the images of Ki in Ω, and we have

π1(S, γ) ∼= lim←−
i

Gal(Ki/K) ∼= Gal(Kur/K).

�

Proposition 3.3.7. Let k be a field, ks a separable closure of k, S a con-

nected k-scheme of finite type, α a geometric point of S⊗k ks, and β (resp.

γ) the geometric points in S (resp. Spec k) defined by the composite of α

with S ⊗k ks → S (resp. S ⊗k ks → Spec k). Suppose S ⊗k ks is connected.

Then the following sequence is exact:

1 → π1(S ⊗k ks, α) → π1(S, β) → π1(Spec k, γ) → 1.

Proof. Any connected etale covering space of Spec k is isomorphic to

SpecK → Spec k for some finite separable extension K of k contained in
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ks. Since S ⊗k ks is connected and the projection S ⊗k ks → S ⊗k K is

surjective, S ⊗k K is also connected. By 3.3.4 (i), π1(S, β) → π1(Spec k, γ)

is surjective. We have

(S ⊗k ks)⊗k K ∼= S ⊗k (ks ⊗k K).

Since ks⊗kK is a direct product of finitely many copies of ks, (S⊗kks)⊗kK
is a disjoint union of copies of S ⊗k ks. By 3.3.5 (i), the composite

π1(S ⊗k ks, α) → π1(S, β) → π1(Spec k, γ)

is trivial.

Let X → S be a connected etale covering space such that X ⊗k ks →
S ⊗k ks admits a section. Then by 1.10.9, there exists a finite separable

extension K of k contained in ks such that X ⊗k K → S ⊗k K admits a

section. Taking the composite of this section with the projectionX⊗kK →
X , we get an S-morphism S ⊗k K → X . By 3.3.5, the sequence

π1(S ⊗k ks, α) → π1(S, β) → π1(Spec k, γ)

is exact.

LetX ′ → S⊗kks be a connected etale covering space. By 1.10.9, 1.10.10

and 2.3.7, there exist a finite separable extension K of k contained in ks
and an etale covering space X1 → S ⊗k K inducing X ′ → S ⊗k ks by the

base extension K → ks. Since the projection X ′ → X1 is surjective, X1 is

connected. The composite

X1 → S ⊗k K → S

is an etale covering space of S. The graph

Γ : X1 → X1 ×S (S ⊗k K) ∼= X1 ⊗k K
of the S-morphism X1 → S ⊗k K is a section of the projection X1 ⊗k
K → X1. It induces an isomorphism of X1 with a connected component

of X1 ⊗k K. The inverse of this isomorphism is an (S ⊗k K)-isomorphism

from a connected component of X1 ⊗k K to X1. By the base extension

K → ks, we get an (S ⊗k ks)-morphism from a connected component of

X1 ⊗k ks to X ′. By 3.3.4 (ii), π1(S ⊗k ks, α) → π1(S, β) is injective.

X1
Γ→ X1 ⊗k K → X1

↓
↘ ↓ S ⊗k K

↓
S ⊗k K → S �
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Chapter 4

Group Cohomology and Galois
Cohomology

4.1 Group Cohomology

([Serre (1979)] VII, VIII.)

Let G be a group. An abelian group with a left G-action can be identified

with a Z[G]-module. We also call a Z[G]-module a G-module. A homomor-

phism of G-modules is defined to be a homomorphism of Z[G]-modules. It

is a homomorphism of abelian groups compatible with the G-actions. For

any G-module A, define

AG = {a ∈ A|ga = a for all g ∈ G},
AG = A/the subgroup generated by {ga− a|g ∈ G, a ∈ A}.

We call AG (resp. AG) the group of G-invariants (resp. G-coinvariants) of

A. It is the maximal subgroup (resp. quotient group) of A on which G acts

trivially. The functor A �→ AG on the category of G-modules is denoted by

ΓG. It is left exact, and its i-th derived functor is denoted by Hi(G,−) or

RiΓG. Obviously we have

AG = HomZ[G](Z, A),

where Z is the group of integers with the trivial G-action. We thus have

Hi(G,A) ∼= ExtiZ[G](Z, A).

So if I · (resp. P·) is an injective (resp. projective) resolution of A (resp.

Z) in the category of G-modules, then we have

Hi(G,A) ∼= Hi(I ·G) ∼= Hi(HomG(P·, A)).

Proposition 4.1.1. Let G = Z. For any G-module A, we have

Hi(G,A) ∼=
⎧⎨⎩
AG if i = 0,

AG if i = 1,

0 if i ≥ 2.

139
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Proof. Let T correspond to the canonical generator 1 of the groupG = Z.

We can identify Z[G] with Z[T, T−1]. Consider the exact sequence

0 → Z[T, T−1] T−1→ Z[T, T−1] ε→ Z → 0,

where T − 1 : Z[T, T−1] → Z[T, T−1] is the multiplication by T − 1, and

ε(
∑

i aiT
i) =

∑
i ai. This gives rise to a resolution of Z by free Z[G]-

modules. So Hi(G,A) is the i-th cohomology group of the complex

0 → HomZ[G](Z[G], A)
T−1→ HomZ[G](Z[G], A) → 0.

This complex can be identified with

0 → A
T−1→ A→ 0,

where T −1 : A→ A is the homomorphism defined by (T −1)(a) = Ta−a.
Our assertion follows. �

Proposition 4.1.2. Let G = Z/n for some n ∈ N. For any G-module A,

let T : A→ A be the homomorphism defined by the action of the canonical

generator 1̄ ∈ Z/n. We have

Hi(G,A) ∼=
⎧⎨⎩
AG if i = 0,

ker(T n−1 + · · ·+ T + 1)/im(T − 1) if i = 1, 3, 5, . . . ,

ker(T − 1)/im(T n−1 + · · ·+ T + 1) if i = 2, 4, 6, . . . .

Proof. We can identify Z[G] with Z[T ]/(T n − 1). We have an exact

sequence

· · ·T−1→ Z[G]
Tn−1+···+T+1→ Z[G]

T−1→ Z[G]
Tn−1+···+T+1→ Z[G]

T−1→ Z[G]
ε→Z→0,

where T − 1 : Z[G] → Z[G] (resp. T n−1 + · · ·+ T + 1 : Z[G] → Z[G]) is the

multiplication by T −1 (resp. T n−1+ · · ·+T +1), and ε(
∑

g agg) =
∑
g ag.

This gives rise to a resolution of Z by free Z[G]-modules. We use this

resolution to calculate Hi(G,A) ∼= ExtiZ[G](Z, A). �

Let Li be the free abelian group generated by elements (g0, . . . , gi) in

Gi+1 (i ≥ 0). Define a left G-action on Li by

g(g0, . . . , gi) = (gg0, . . . , ggi).

Then Li is a free Z[G]-module with a basis consisting of elements of the

form (1, g1, g1g2, . . . , g1g2 · · · gi). Define a G-homomorphism ∂i : Li → Li−1
for each i ≥ 1 by

∂i(g0, . . . , gi) =

i∑
j=0

(−1)j(g0, . . . , ĝj, . . . , gi),
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and a G-homomorphism ε : L0 → Z by

ε(g0) = 1.

Then the sequence

· · · → Li
∂i→ Li−1 → · · · → L1

∂1→ L0
ε→ Z → 0

is exact. Indeed, fix an element g ∈ G, then the homomorphisms

hi : Li → Li+1, hi(g0, . . . , gi) = (g, g0, . . . , gi),

h−1 : Z → L0, h−1(1) = (g)

define a homotopy between the identity morphism and the zero morphism

of the above complex. Thus L· is a resolution of Z by free Z[G]-modules,

and for any Z[G]-module A, Hi(G,A) is the i-th cohomology group of the

complex

0 → HomZ[G](L0, A)
d0→ HomZ[G](L1, A)

d1→ · · ·
→ HomZ[G](Li, A)

di→ HomZ[G](Li+1, A) → · · · .
Let Ci(G,A) be the set of all maps from Gi to A. We have isomorphisms

Fi : HomZ[G](Li, A) → Ci(G,A)

defined by

Fi(φ)(g1, . . . , gi) = φ(1, g1, g1g2, . . . , g1g2 · · · gi)
for any φ ∈ HomZ[G](Li, A) and (g1, . . . , gi) ∈ Gi. Through these isomor-

phisms, the homomorphisms di : HomZ[G](Li, A) → HomZ[G](Li+1, A) are

identified with the homomorphisms

di : C
i(G,A) → Ci+1(G,A)

defined by

(dif)(g1, . . . , gi+1)

= g1f(g2, . . . , gi+1) +

i∑
j=1

(−1)jf(g1, . . . , gj−1, gjgj+1, gj+2, . . . , gi+1)

+(−1)i+1f(g1, . . . , gi)

for any f ∈ Ci(G,A) and (g1, . . . , gi+1) ∈ Gi+1. So Hi(G,A) is the i-th

cohomology group of the complex

0 → C0(G,A)
d0→ C1(G,A) → · · · → Ci(G,A)

di→ Ci+1(G,A) → · · · .
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A 1-cocycle of the complex C·(G,A) is a map f : G → A satisfying the

condition

f(g1g2) = g1f(g2) + f(g1)

for any g1, g2 ∈ G. A 1-coboundary of the complex C·(G,A) is a map

f : G→ A such that there exists a ∈ A satisfying the condition

f(g) = ga− a

for any g ∈ G. If G acts trivially on A, we have H1(G,A) = Hom(G,A).

Let f : G′ → G be a homomorphism of groups, A a G-module, A′ a
G′-module, and φ : A → A′ an additive map compatible with the group

actions, that is, we have

φ(f(g′)a) = g′φ(a)

for any g′ ∈ G′ and a ∈ A. Then φ induces a homomorphism AG → A′G
′
.

By the universal property of derived functors, it extends canonically to a

family of homomorphisms Hi(G,A) → Hi(G′, A′).
In particular, if H is a subgroup of G and A is a G-module, we can take

f : G′ → G to be the inclusion H ↪→ G, and φ : A → A′ to be id : A → A.

We thus get the restriction homomorphisms

Res : Hi(G,A) → Hi(H,A).

IfH is normal in G, we can take f : G′ → G to be the projectionG→ G/H ,

and φ : A → A′ to be the inclusion AH ↪→ A. We thus get the inflation

homomorphisms

Inf : Hi(G/H,AH) → Hi(G,A).

Let H be a subgroup of G and let B be an H-module. Define

IndGHB = HomZ[H](Z[G], B).

Note that IndGHB can be identified with the set of maps φ : G → B satis-

fying

φ(hg) = hφ(g)

for any h ∈ H and g ∈ G. Define a G-action on IndGHB by

(gφ)(g′) = φ(g′g)

for any φ ∈ IndGHB and g, g′ ∈ G. Let

θ : IndGHB → B

be the homomorphism defined by θ(φ) = φ(1) for any φ ∈ IndGHB. It is

compatible with the group actions.
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Theorem 4.1.3 (Shapiro). For any H-module B, θ induces isomor-

phisms Hi(G, IndGHB)
∼=→ Hi(H,B) for all i.

Proof. For any G-module A, one can check that the map

HomG(A, Ind
G
HB) → HomH(A,B), f �→ θ ◦ f

is bijective. In other words, the functor B �→ IndGHB from the category of

H-modules to the category of G-modules is right adjoint to the canonical

forgetful functor A �→ A from the category of G-modules to the category of

H-modules. As the forgetful functor is exact, for any injective H-module

B, IndGHB is an injective G-module. But the functor B �→ IndGHB is exact

and θ induces an isomorphism (IndGHB)G ∼= BH . It follows that θ induces

isomorphisms Hi(G, IndGHB) ∼= Hi(H,B) for all i. �

Consider the case where H = {1}. Any abelian group M can be con-

sidered as an H-module. We can form the G-module

IndG{1}M = Hom(Z[G],M).

By 4.1.3, we have

Hi(G, IndG{1}M) = Hi({1},M).

But Hi({1},M) = 0 for any i ≥ 1. So we have Hi(G, IndG{1}M) = 0 for

any i ≥ 1. A G-module is called induced if it is isomorphic to IndG{1}M
for some abelian group M . A G-module is called weakly injective if it is a

direct factor of an induced G-module. For any weakly injective G-module

I, we have Hi(G, I) = 0 for any i ≥ 1. Any G-module A can be embedded

into an induced G-module. Indeed, the homomorphism

ι : A→ IndG{1}A = Hom(Z[G], A), ι(a)(g) = ga

is a G-monomorphism. Injective G-modules are weakly injective. We can

use resolutions of A by weakly injective G-modules to calculate Hi(G,A).

Let H be a subgroup of G. Then any induced G-module is also an

induced H-module. Indeed, for any abelian group M , we have

IndG{1}M = Hom(Z[G],M) = Hom(
⊕

gH∈G/H
Z[gH ],M)

∼=
∏

gH∈G/H
Hom(Z[gH ],M) ∼= Hom(Z[H ],

∏
gH∈G/H

M).
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So any weakly injective G-module is also a weakly injective H-module. In

particular, any injective G-module I is a weakly injective H-module, and

we have Hi(H, I) = 0 for any i ≥ 1. If

0 → I0 → I1 → · · ·
is a resolution of a G-module A by injective G-modules, then

Hi(H,A) = Hi(I ·H).

Suppose H is normal in G. Then for any G-module A, AH is a G/H-module

and we have

(AH)G/H = AG.

If I is an injective G-module, then IH is an injective G/H-module. Using

these facts, one can construct a biregular spectral sequence

Eij2 = Hi(G/H,Hj(H,A)) ⇒ Hi+j(G,A),

which is called the Hochschild–Serre spectral sequence. Note that for any

g ∈ G, the action of gH ∈ G/H on Hj(H,A) is induced by the group

isomorphism

H → H, h �→ g−1hg

and the additive map

A→ A, a �→ ga

which is compatible with the group actions.

Again let H be a subgroup of G. For any G-module A, the G-

homomorphism

ι : A→ IndGHA = HomZ[H](Z[G], A), ι(a)(g) = ga

induces homomorphisms

Hi(G,A) → Hi(G, IndGHA).

Composed with the isomorphisms Hi(G, IndGHA)
∼= Hi(H,A), the resulting

homomorphisms

Hi(G,A) → Hi(H,A)

coincide with the restriction homomorphisms.

Suppose H has finite index in G. We have a G-homomorphism

π : IndGHA = HomZ[H](Z[G], A) → A, f �→
∑

gH∈G/H
gf(g−1).
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(Note that gf(g−1) depends on the left coset gH , not on the choice of g.)

It induces homomorphisms

Hi(G, IndGHA) → Hi(G,A).

Composed with the isomorphisms Hi(G, IndGHA)
∼= Hi(H,A), the resulting

homomorphisms

Cor : Hi(H,A) → Hi(G,A)

are called the corestriction homomorphisms.

Proposition 4.1.4. Suppose H is a subgroup of G with finite index n.

Then we have Cor ◦ Res = n.

Proof. Notation as above. The composite

A
ι→ IndGHA

π→ A

coincides with multiplication by n. Our assertion follows. �

Corollary 4.1.5. Let G be a finite group, p a prime number, Gp a Sylow

p-subgroup of G, and A a G-module. Then Res : Hi(G,A) → Hi(Gp, A)

is injective on the p-primary part of Hi(G,A) for any i. In particular, if

Hi(Gp, A) = 0 for each prime number p, then Hi(G,A) = 0.

Proof. Let x ∈ Hi(G,A) be an element in the kernel of Res. Then we

have

[G : Gp]x = Cor ◦ Res(x) = 0.

If x lies in the p-primary part of Hi(G,A), then pkx = 0 for some natural

number k. As [G : Gp] is relatively prime to p, this implies that x = 0. �

Corollary 4.1.6. Let G be a finite group of order n. Then for any G-

module A and any i ≥ 1, Hi(G,A) is annihilated by n.

Proof. Apply 4.1.4 to the subgroup H = {1}. �

Corollary 4.1.7. Let G be a finite group and let A be a G-module finitely

generated as an abelian group. Then Hi(G,A) are finite for all i ≥ 1.

Proof. Since Hi(G,A) are the cohomology groups of the complex

C·(G,A), they are finitely generated abelian groups. By 4.1.6, Hi(G,A)

are torsion groups for all i ≥ 1. So they are finite. �

 E
ta

le
 C

oh
om

ol
og

y 
T

he
or

y 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

O
N

A
SH

 U
N

IV
E

R
SI

T
Y

 o
n 

11
/2

7/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



February 6, 2015 9:48 ws-book9x6 Etale Cohomology Theory... etale page 146

146 Etale Cohomology Theory

4.2 Profinite Groups

([Serre (1964)] I 1.)

Lemma 4.2.1. Let X be a compact Hausdorff topological space and let

x ∈ X. The connected component of X containing x is ∩λUλ, where {Uλ}
is the family of compact open neighborhoods of x.

Proof. Let C be the connected component of X containing x. Any com-

pact open neighborhood Uλ of x is both open and closed, and hence contains

C. So we have C ⊂ ∩λUλ. To prove our assertion, it suffices to show that

∩λUλ is connected. Let A ⊂ ∩λUλ be open and closed in ∩λUλ. Then A

and ∩λUλ−A are closed in X . We can find disjoint open subsets U and V

in X such that

A ⊂ U, ∩λUλ −A ⊂ V.

We have ∩λUλ ⊂ U ∪ V and hence X − U ∪ V ⊂ ∪λ(X − Uλ). But

X − U ∪ V is compact. So X − U ∪ V ⊂ (X − Uλ1) ∪ · · · ∪ (X − Uλn) for

finitely many compact open neighborhoods Uλi (i = 1, . . . , n) of x. Then

we have Uλ1 ∩ · · · ∩ Uλn ⊂ U ∪ V. So Uλ1 ∩ · · · ∩ Uλn is the disjoint union

of the open subsets Uλ1 ∩ · · · ∩ Uλn ∩ U and Uλ1 ∩ · · · ∩ Uλn ∩ V . Hence

Uλ1 ∩ · · · ∩ Uλn ∩ U and Uλ1 ∩ · · · ∩ Uλn ∩ V are open and closed. As X is

compact, Uλ1 ∩· · ·∩Uλn ∩U and Uλ1 ∩· · ·∩Uλn ∩V are also compact. Only

one of them contains x. If x ∈ Uλ1 ∩· · ·∩Uλn∩U , then Uλ1 ∩· · ·∩Uλn∩U is

a compact open neighborhood of x, and hence ∩λUλ ⊂ Uλ1 ∩ · · · ∩Uλn ∩U .

This implies that ∩λUλ − A ⊂ U . But ∩λUλ − A ⊂ V , and U and V are

disjoint. So we must have ∩λUλ −A = Ø. If x ∈ Uλ1 ∩ · · · ∩Uλn ∩ V , then

∩λUλ ⊂ Uλ1 ∩ · · · ∩ Uλn ∩ V . This implies that A ⊂ V . But A ⊂ U , and

U and V are disjoint. So we must have A = Ø. This shows that ∩λUλ is

connected. �

Lemma 4.2.2. Let G be a compact topological group. Then G is totally

disconnected if and only if ∩λUλ = {1}, where {Uλ} is the family of compact

open neighborhoods of 1.

Recall that a topological space X is called totally disconnected if any

connected subset of X contains only one point.

Proof. Suppose that G is compact and totally disconnected. Since {1}
is connected, we have {1} = {1}. Hence {1} is a closed subset of G. Since
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the diagonal Δ = {(x, x)|x ∈ G} is the inverse image of {1} under the

continuous map

G×G→ G, (x, y) �→ xy−1,

it is closed and hence G is Hausdorff. By 4.2.1, we must have ∩λUλ = {1}.
Conversely, suppose ∩λUλ = {1}. For any g ∈ {1}, as gU−1λ is an open

neighborhood of g, we have 1 ∈ gU−1λ , and hence g ∈ Uλ. So we have

g ∈ ∩λUλ = {1}. This shows that {1} is closed. As above, this implies that

G is Hausdorff. By 4.2.1, G is totally disconnected. �

Lemma 4.2.3. Let G be a Hausdorff topological group and let U be a com-

pact open neighborhood of {1}. Then U contains a compact open subgroup

of G.

Proof. Let F = (G−U)∩U2. Then F is closed. We have U ·1 ⊂ G−F .
Since U is compact, we can find an open neighborhood V of 1 contained

in U such that UV ⊂ G − F . Replacing V by V ∩ V −1, we may assume

V = V −1. We have UV ⊂ (G− F )∩U2 ⊂ U . From this, we get UV n ⊂ U

for all n ≥ 1. Let H =
∞⋃
n=1

V n. Then H is an open subgroup of G. Any

open subgroup is necessarily closed. As H is contained in U , H must be

compact. �

Lemma 4.2.4. Let G be a totally disconnected group and let U be a compact

neighborhood (not necessarily open) of 1. Then U contains a compact open

subgroup of G.

Proof. Let V be an open neighborhood of 1 contained in U . Since G is

totally disconnected, it is Hausdorff by the proof of 4.2.2. By 4.2.1, we have

{1} = ∩λUλ, where {Uλ} is the family of compact open neighborhoods of

1 in U . We have ∩λUλ = {1} ⊂ V . Hence U − V ⊂ ∪λ(U − Uλ). But

U − V is compact. So U − V ⊂ (U − Uλ1) ∪ · · · ∪ (U − Uλn) for finitely

many compact open neighborhoods Uλi (i = 1, . . . , n) of 1 in U . Then we

have Uλ1 ∩ · · · ∩Uλn ⊂ V. Note that Uλ1 ∩ · · · ∩Uλn is open in V and hence

in G, and it is compact. By 4.2.3, Uλ1 ∩ · · · ∩Uλn contains a compact open

subgroup of G. �

Lemma 4.2.5. Let G be a topological group, K a compact subset of G, and

U a neighborhood of 1. Then there exists a neighborhood V of 1 such that

xV x−1 ⊂ U for any x ∈ K.
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Proof. The continuous map

G×G→ G, (x, y) �→ xyx−1

maps (x, 1) to 1. So for any x ∈ K, there exists a neighborhood Wx of

x and a neighborhood W ′x of 1 such that x′yx′−1 ∈ U for any x′ ∈ Wx

and y ∈ W ′x. Let {Wx1 , . . . ,Wxn} be a finite covering of K. We can take

V =W ′x1
∩ · · · ∩W ′xn . �

Proposition 4.2.6. Let G be a compact totally disconnected group and let

U be a neighborhood of 1. Then U contains a normal open subgroup of G.

Proof. Since G is compact and Hausdorff, U contains a compact neigh-

borhood (not necessarily open) of 1. By 4.2.4, U contains an open subgroup

of V . By 4.2.5, there exists a neighborhood V ′ of 1 such that xV ′x−1 ⊂ V

for any x ∈ G. Then V ′ ⊂ ⋂
x∈G

x−1V x. Note that
⋂
x∈G

x−1V x is an open

normal subgroup of G contained in U . �

Recall that a topological group is called profinite if it is isomorphic to

the inverse limit of an inverse system of finite discrete groups.

Corollary 4.2.7.

(i) A topological group is profinite if and only if it is compact and totally

disconnected.

(ii) A closed subgroup of a profinite group is profinite.

(iii) Direct products of profinite groups are profinite.

(iv) The inverse limit of any inverse system of profinite groups is profi-

nite.

(v) If H is a closed subgroup of a profinite group, then the space of left

cosets G/H with the quotient topology is totally disconnected. If H is a

normal closed subgroup of G, then G/H is profinite.

Proof.

(i) Let G = lim←−iGi be a profinite group, where {Gi} is an inverse system

of finite discrete groups. Note that lim←−iGi is a closed subset of
∏
iGi. By

Tychonoff’s Theorem, G is compact. Let C be a connected subset of G.

Then for each i, the image of C under the projection G→ Gi is connected,

and hence has only one element since Gi is discrete. It follows that C has

only one element. So G is totally disconnected.

Conversely, let G be a compact totally disconnected group. By 4.2.6,

open normal subgroups of G form a base of neighborhoods of 1. For any

open normal subgroup N of G, the group G/N is a compact discrete group
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and hence finite. Consider the profinite group lim←−N G/N , whereN goes over

the family of open normal subgroups of G. The canonical homomorphism

G → lim←−N G/N is continuous and has dense image. As G is compact and

lim←−N G/N is Hausdorff, this homomorphism is a closed map. By 4.2.2, this

homomorphism is injective. These facts imply that G → lim←−N G/N is an

isomorphism of topological groups. So G is profinite.

(ii) and (iii) follow from (i). (iv) follows from (ii) and (iii) since the

inverse limit of an inverse system of topological groups is isomorphic to a

closed subgroup of the product of these topological groups.

(v) By 4.2.1, to show that G/H is totally disconnected, it suffices to

show that for any g ∈ G, we have {gH} = ∩λUλ, where {Uλ} is the family

of compact open neighborhoods of gH in G/H . If xH 	∈ {gH}, that is, if
1 	∈ g−1xH , then there exists an open subgroup U disjoint from g−1xH .

The canonical homomorphism π : G→ G/H is continuous and open. Since

U is an open subgroup, it is necessarily closed and hence compact. It

follows that π(gU) is a compact open neighborhood of gH in G/H . We

have xH 	∈ π(gU). So xH 	∈ ∩λUλ. Our assertion follows. �

A surnatural number is a formal product
∏
p p

np , where p goes over the

set of prime numbers, and np ∈ N ∪ {0,∞}. One defines the product, the

greatest common divisor, and the least common multiple of a family of

surnatural numbers in the obvious way.

Let G be a profinite group and let H be a closed subgroup of G. The

index [G : H ] of H in G is defined to be the least common multiple of

[G/U : H/H ∩U ], where U goes over the family of open normal subgroups

of G. It is a surnatural number. It is also the least common multiple of

[G : V ], where V goes over the family of open subgroups of G containing

H . Indeed, if U is an open normal subgroup, then HU is an open subgroup

containing H , and

[G/U : H/H ∩ U ] = [G : HU ];

if V is an open subgroup containing H = H · 1, then HU ⊂ V for some

open normal subgroup U and

[G : V ]
∣∣ [G : HU ] = [G/U : H/H ∩ U ].

Proposition 4.2.8. Let G be a profinite group.

(i) For all closed subgroups K and H of G such that K ⊂ H, we have

[G : K] = [G : H ][H : K].

(ii) For all closed subgroups K and H of G such that K ⊂ H and K is

normal in G, we have [G/K : H/K] = [G : H ].
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(iii) A closed subgroup H in G is open if and only if [G : H ] is finite.

(iv) If {Hi} is a decreasing filtered family of closed subgroups in G and

H = ∩iHi, then [G : H ] is the least common multiple of [G : Hi].

Proof.

(i) For any open normal subgroup U of G, we have

[G/U : K/K∩U ] = [G/U : H/H∩U ][H/H∩U : K/K∩U ]
∣∣ [G : H ][H : K].

So [G : K]
∣∣ [G : H ][H : K]. Given an open normal subgroup U of G and

an open normal subgroup V of H , let U ′ be an open normal subgroup of

G such that H ∩ U ′ ⊂ V , and let U ′′ = U ∩ U ′. We have

[G : HU ][H : KV ]
∣∣ [G : HU ′′][H : K(H ∩ U ′′)].

But

[G : HU ][H : KV ] = [G/U : H/H ∩ U ][H/V : K/K ∩ V ],

[G : HU ′′][H : K(H ∩ U ′′)] = [G/U ′′ : H/H ∩ U ′′][H/H ∩ U ′′ : K/K ∩ U ′′]
= [G/U ′′ : K/K ∩ U ′′].

It follows that

[G/U : H/H ∩ U ][H/V : K/K ∩ V ]
∣∣ [G/U ′′ : K/K ∩ U ′′],

and hence [G : H ][H : K]
∣∣ [G : K].

(ii) Use the fact that the set of open subgroups of G/K containing

H/K are in one-to-one correspondence with the set of open subgroups of

G containing H .

(iii) Suppose H is an open subgroup of G. Then {gH}g∈G is an open

covering of G. Since G is compact, we have G ⊂ g1H∪· · ·∪gnH for finitely

many g1, . . . , gn ∈ G. It follows that [G : H ] is finite.

Conversely, suppose [G : H ] is finite. We can find an open subgroup V

of G containing H such that [G : V ] = [G : H ]. Suppose V 	= H . Take

x ∈ V −H . We have 1 	∈ xH . As xH is closed, there exists an open normal

subgroup U of G such that U ∩ xH = Ø. Then x 	∈ UH . Hence V ∩ UH
is strictly contained in V . But V ∩UH is an open subgroup containing H .

So we have

[G : H ] ≥ [G : V ∩ UH ] > [G : V ].

This contradicts [G : V ] = [G : H ]. So we must have V = H .

(iv) For any open subgroup V of G, using the fact that G−V is compact,

one can show that ∩iHi ⊂ V if and only if Hi ⊂ V for some i. It follows

that [G : H ] is the least common multiple of [G : V ] for open subgroups

V containing some Hi. Hence [G : H ] is the least common multiple of

[G : Hi]. �
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Fix a prime number p. A profinite group G is called a pro-p-group if

[G : 1] is a power of p, or equivalently, G is the inverse limit of an inverse

system of finite p-groups. Given a profinite group G, a closed subgroup H

of G is called a Sylow p-subgroup if H is a pro-p-group and [G : H ] is prime

to p.

Proposition 4.2.9.

(i) Let G be a profinite group. Any pro-p-subgroup H of G is contained

in a Sylow p-subgroup. In particular, Sylow p-subgroups exist. Any two

Sylow p-subgroups are conjugate in G.

(ii) Let G→ G′ be an epimorphism of profinite groups. Then the image

of a Sylow p-subgroup of G in G′ is a Sylow p-subgroup.

Proof.

(i) For any open normal subgroup U of G, let SU be the set of Sylow

p-subgroups of G/U containing the p-subgroup H/H ∩ U . For any two

normal subgroups V ⊂ U of G, the canonical homomorphism G/V → G/U

induces a map SV → SU . Since SU is finite and nonempty for each open

normal subgroup U , we have lim←−U SU 	= Ø. Let (PU ) ∈ lim←−U SU and let

P = lim←−U PU . Then P is a pro-p-subgroup of G containing H . [G : P ] is

the least common multiple of [G/U : PU ]. Since
|G/U|
|PU | is prime to p, [G : P ]

is prime to p. So P is a Sylow p-subgroup.

Let P and P ′ be Sylow p-subgroups ofG. For any open normal subgroup

U of G, let AU be the set of elements x ∈ G/U such that x−1(PU/U)x =

P ′U/U . Here we regard PU/U and P ′U/U as subgroups of G/U . As they

are Sylow p-subgroups of G/U (confer the proof of (ii)), AU is nonempty.

MoreoverAU is finite. Hence lim←−U AU 	= Ø. Let (xU ) ∈ lim←−U AU and choose

x ∈ G so that its image in G/U is xU for each U . Then x−1Px = P ′.
(ii) Let N be the kernel of G → G′. We have G′ ∼= G/N . Let P be

a Sylow p-subgroup of G. Its image in G′ is identified with the subgroup

PN/N of G/N . We have

[G/N : PN/N ] = [G : PN ]
∣∣ [G : P ].

So [G/N : PN/N ] is prime to p. On the other hand, we have

[PN/N : 1] = [P/P ∩N : 1] = [P : P ∩N ]
∣∣ [P : 1].

So [PN/N : 1] is a power of p. Therefore PN/N is a Sylow p-subgroup. �
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4.3 Cohomology of Profinite Groups

([Serre (1964)] I 2.)

Let G be a profinite group and let A be an abelian group on which G acts

on the left. Put the discrete topology on A. Then the following conditions

are equivalent:

(i) G acts continuously on A, that is, the map

G×A→ A, (g, x) �→ gx

is continuous.

(ii) For any x ∈ A, the stabilizer

Gx = {g ∈ G|gx = x}
is open in G.

(iii) We have A =
⋃
U A

U , where U goes over the set of open subgroups

of G.

From now on, we simply call a discrete abelian group on which G acts

left continuously a G-module. For any G-module A, and any nonnegative

integer n, let Cn(G,A) be the set of continuous maps from Gn to A. Note

that Cn(G,−) is an exact functor on the category of G-modules. Define

dn : Cn(G,A) → Cn+1(G,A)

by

(dnf)(g1, . . . , gn+1)

= g1f(g2, . . . , gn+1) +

n∑
j=1

(−1)jf(g1, . . . , gj−1, gjgj+1, gj+2, . . . , gn+1)

+(−1)n+1f(g1, . . . , gn)

for any f ∈ Cn(G,A) and (g1, . . . , gn+1) ∈ Gn+1. One can verify d ◦ d =

0. We define Hn(G,A) to be the n-th cohomology group of the complex

C·(G,A). We also denote Hn(G,A) by RnΓG(A).

Theorem 4.3.1. Let {Gi}i∈I be an inverse system of profinite groups, and

let {Ai}i∈I be a direct system of abelian groups such that each Ai is a Gi-

module. For each pair i ≤ j, suppose that the homomorphism Ai → Aj is

compatible with the homomorphism Gj → Gi and the group actions of Gi
and Gj on Ai and Aj, respectively. Set G = lim←−iGi and A = lim−→i

Ai. Then

the canonical chain map

lim−→
i

C·(Gi, Ai) → C·(G,A)
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is an isomorphism, and hence

H ·(G,A) ∼= lim−→
i

H ·(Gi, Ai).

Proof. Let f1, f2 : Gni → Ai be two continuous maps. Assume they

induce the same map from Gn to A. Let f ′1, f ′2 : Gni → A be the maps

induced by f1 and f2, respectively, and let

X = {x ∈ Gni |f ′1(x) = f ′2(x)}.
Since A has the discrete topology and f ′1 and f ′2 are continuous, X is open

in Gni . Let

πi : G
n = lim←−

i

Gni → Gni , πji : G
n
j → Gni (j ≥ i)

be the canonical homomorphisms. Note that

imπi =
⋂
j≥i

imπji.

Indeed, given any x ∈ ⋂j≥i imπji and any j1 ≥ j2 ≥ i, let

Aj1j2 = {(xj) ∈
∏
j≥i

Gnj |πj1j2(xj1) = xj2 and πj2i(xj2 ) = x}.

Then Aj1j2 are closed in
∏
j≥iG

n
j , and any intersection of finitely many of

them is nonempty. Since
∏
j≥iG

n
j is compact, we have

⋂
j1≥j2≥iAj1j2 	= Ø.

For any y ∈ ⋂j1≥j2≥iAj1j2 , we have y ∈ Gn = lim←−iG
n
i and πi(y) = x.

So x ∈ imπi. By our assumption, we have imπi ⊂ X . It follows that⋂
j≥i imπji ⊂ X . As Gni − X is compact and Gni − imπji (j ≥ i) form

an open covering of Gni −X , we have imπji ⊂ X for a sufficiently large j.

Then f ′1 ◦ πji = f ′2 ◦ πji. Since Gnj is compact and A is discrete, im(f ′1 ◦
πji) = im(f ′2 ◦ πji) is finite. Taking j sufficiently large, we see that f1 and

f2 induce the same map from Gnj to Aj . This proves the canonical map

lim−→i
Cn(Gi, Ai) → Cn(G,A) is injective.

Given a continuous map f : Gn → A, let im f = {a1, . . . , ak}. For each
aλ, f

−1(aλ) is open and closed. So each f−1(aλ) is a finite union of sets of

the form (∏
i

Ui

)⋂(
lim←−
i

Gni

)
,

where Ui ⊂ Gni are open and Ui = Gni for all but finitely many i. Taking j

sufficiently large so that for any i ≥ j, all Ui appeared above are Gni . Then

for any x, x′ ∈ Gn such that πj(x) = πj(x
′), we have f(x) = f(x′). So f

can be factorized as a composite

Gn
πj→ πj(G

n)
f ′
→ A
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for some continuous map f ′ : πj(Gn) → A. We can find disjoint open and

closed subsets Vλ of Gnj such that f ′−1(aλ) ⊂ Vλ. Taking j sufficiently large,

we may assume that there exist aλj ∈ Aj with images aλ in A, respectively.

Define fj : Gnj → Aj by fj(Vλ) = {aλj} and fj(G
n
j − ∪kλ=1Vλ) = {0}.

Then fj is continuous and induces f . This proves the canonical map

lim−→i
Cn(Gi, Ai) → Cn(G,A) is surjective. �

Corollary 4.3.2. Let G be a profinite group and let A be a G-module.

Then we have

Hi(G,A) ∼= lim−→
U

Hi(G/U,AU ),

where U goes over the set of open normal subgroups of G. For all i ≥ 1,

Hi(G,A) are torsion groups.

Proof. Use 4.3.1 and 4.1.6. �

Corollary 4.3.3. For each i, Hi(G,−) is the i-th derived functor of the

functor A �→ AG on the abelian category of G-modules.

Proof. One can check H0(G,A) = AG. Using the fact that Ci(G,−) are

exact functors, one can show that Hi(G,−) form a δ-functor. The abelian

category of G-modules has enough injective objects. For any injective G-

module I, one can check that IU is an injective G/U -module for any open

normal subgroup U of G. It follows that

Hi(G, I) = lim−→
U

Hi(G/U, IU ) = 0

for any i ≥ 1. Our assertion follows. �

Let f : G′ → G be a continuous homomorphism of profinite groups, A

a G-module, A′ a G′-module, φ : A→ A′ an additive map compatible with

the group actions. Then φ induces a homomorphismAG → A′G
′
. It extends

canonically to a family of homomorphisms Hi(G,A) → Hi(G′, A′). These

homomorphisms are induced by the chain map C·(G,A) → C·(G′, A′) in-

duced by f and φ.

In particular, if H is a closed subgroup of G and A is a G-module, then

we have the restriction homomorphisms

Res : Hi(G,A) → Hi(H,A).

Let H be a closed subgroup of G, let B be an H-module, and let IndGHB

be the group of continuous maps φ : G → B satisfying φ(hg) = hφ(g) for
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any g ∈ G and h ∈ H . Define a G-action on IndGHB by (gφ)(g′) = φ(g′g)
for any φ ∈ IndGHB and g, g′ ∈ G. Note that this action is continuous if we

put the discrete topology on IndGHB. Let

θ : IndGHB → B

be the homomorphism defined by θ(φ) = φ(1) for any φ ∈ IndGHB. It is

compatible with the group actions. We again have the following theorem:

Theorem 4.3.4 (Shapiro). For any H-module B, θ induces isomor-

phisms Hi(G, IndGHB)
∼=→ Hi(H,B) for all i.

Consider the case H = {1}. Any abelian group M can be considered

as an H-module. We can form the G-module IndG{1}M of continuous maps

from G to M . A G-module is called induced if it is isomorphic to IndG{1}M
for some abelian group M . A G-module is called weakly injective if it is a

direct factor of an induced G-module. For any weakly injective G-module I,

we haveHi(G, I) = 0 for any i ≥ 1. Any G-module A can be embedded into

an induced G-module. Injective G-modules are weakly injective. We can

use resolutions of A by weakly injective G-modules to calculate Hi(G,A).

Let H be a closed subgroup of G. Then for any abelian group M , we

have Hi(H, IndG{1}M) = 0 for any i ≥ 1. Indeed, we have

Hi(H, IndG{1}M) = lim−→
U

Hi(H/H ∩ U, (IndG{1}M)U ),

where U goes over the set of open normal subgroups of G. We have

(IndG{1}M)U ∼= Hom(Z[G/U ],M).

So (IndG{1}M)U is an induced G/U -module and thus an induced (H/H∩U)-

module. It follows that Hi(H/H ∩ U, (IndG{1}M)U ) = 0 and hence

Hi(H, IndG{1}M) = 0 for any i ≥ 1. For any weakly injective G-module

A, we also have Hi(H,A) = 0 for any i ≥ 1. Using this fact, we can show

that if H is a normal closed subgroup of G and A is a G-module, then we

have a biregular spectral sequence

Eij2 = Hi(G/H,Hj(H,A)) ⇒ Hi+j(G,A),

which we call the Hochschild–Serre spectral sequence.

For any open subgroup H of G and any G-module A, we can define the

corestriction homomorphisms

Cor : Hi(H,A) → Hi(G,A).

Proposition 4.3.5. Let H be an open subgroup of G with index n. Then

Cor ◦ Res = n.
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Proposition 4.3.6. Let H be a closed subgroup of a profinite group G such

that [G : H ] is relatively prime to a prime number p. Then for any G-module

A and any i, the restriction homomorphism Res : Hi(G,A) → Hi(H,A) is

injective on the p-primary part of Hi(G,A).

Proof. When [G : H ] < ∞, this follows from 4.3.5. In general, we have

Hi(H,A) = lim−→U
Hi(U,A) by 4.3.1, where U goes over the set of open

subgroups of G containing H . For each U , [G : U ] is prime to p. By 4.3.5,

Res : Hi(G,A) → Hi(U,A) is injective on the p-primary part of Hi(G,A).

It follows that Res : Hi(G,A) → Hi(H,A) is injective on the p-primary

part of Hi(G,A). �

Proposition 4.3.7. Let Ẑ = lim←−n∈N Z/n, where the partial order on the

direct set N is defined by n ≤ m if and only if n
∣∣ m and the transition

homomorphism Z/m → Z/n is the canonical one. For any torsion abelian

group A with continuous Ẑ action, we have

Hi(Ẑ, A) ∼=

⎧⎪⎨⎪⎩
AẐ if i = 0,

A
Ẑ

if i = 1,

0 if i 	= 0, 1.

Proof. Let T = (1̄) ∈ lim←−n∈N Z/n be the canonical topological generator

of Ẑ. For any n ∈ N, let

AT
n

= {x ∈ A|T n(x) = x}.
We have

Hi(Ẑ, A) ∼= lim−→
n

Hi(Z/n,AT
n

).

For any m,n ∈ N, consider the following commutative diagram:

0 → AT
n T−1→ AT

n Tn−1+···+T+1→ AT
n T−1→ AT

n →
↓ 1 ↓ 1 ↓ m ↓ m

0 → AT
mn T−1→ AT

mn Tmn−1+···+T+1→ AT
mn T−1→ AT

mn →

Tn−1+···+T+1→ AT
n T−1→ AT

n Tn−1+···+T+1→ AT
n → · · ·

↓ m2 ↓ m2 ↓ m3

Tmn−1+···+T+1→ AT
mn T−1→ AT

mn Tmn−1+···+T+1→ AT
mn → · · · ,

where the vertical arrows are multiplication by powers of m. By the

proof of 4.1.2, the cohomology groups of the two horizontal complexes are
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H ·(Z/n,AT
n

) and H ·(Z/mn,AT
mn

), respectively. Moreover, the vertical

arrows in the above commutative diagram induce the transition homomor-

phisms for the direct limit Hi(Ẑ, A) ∼= lim−→n
Hi(Z/n,AT

n

).

We have

H0(Ẑ, A) ∼= lim−→
n

ker(T − 1|ATn ),

where the transition homomorphism of the direct system are inclusions

ker(T − 1|ATn ) ↪→ ker(T − 1|ATmn ).
It follows that

H0(Ẑ, A) ∼= AẐ.

Of course, this also follows from the definition of H0(Ẑ, A).

Set

A′ = {x ∈ A|T n(x) = x and (T n−1 + · · ·+ T + 1)(x) = 0 for some n ∈ N}.
Using the fact that A =

⋃
n∈NA

Tn , we see that

H1(Ẑ, A) ∼= lim−→
n

H1(Z/n,AT
n

)

∼= lim−→
n

ker(T n−1 + · · ·+ T + 1|ATn )/im(T − 1|ATn )
∼= A′/(T − 1)A.

Since A is a torsion Ẑ-module, for any x ∈ A, there exist m,n ∈ N such

that mx = 0 and x ∈ AT
n

. We then have

(Tmn−1 + · · ·+ T + 1)(x) = m(T n−1 + · · ·+ T + 1)(x) = 0.

Hence x ∈ A′. Therefore A = A′ and

H1(Ẑ, A) ∼= A′/(T − 1)A = A
Ẑ
.

Using the fact that A is a torsion abelian group, one sees that for any i ≥
2 and any x ∈ Hi(Z/n,AT

n

), there exists m ∈ N such that the transition

homomorphism

Hi(Z/n,AT
n

) → Hi(Z/mn,AT
mn

)

for the direct limit Hi(Ẑ, A) = lim−→n
Hi(Z/n,AT

n

) maps x to 0. It follows

that Hi(Ẑ, A) = 0 for any i ≥ 2. �
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Fix a prime number p. Put a topology on Z so that subgroups nZ with

n relatively prime to p form a base of neighborhoods of 0. The completion

of Z with respect to this topology is denoted by Ẑ(p). We have

Ẑ(p) = lim←−
(n,p)=1

Z/n.

Let q be a power of p. Note that multiplication by q induces a continuous

isomorphism of groups

q : Ẑ(p) → Ẑ(p).

Proposition 4.3.8. Let A be a Ẑ(p)-module. Suppose that every element

in A is annihilated by some integer relatively prime to p. Then we have

Hi(Ẑ(p), A) ∼=

⎧⎪⎨⎪⎩
AẐ(p)

if i = 0,

A
Ẑ(p) if i = 1,

0 if i 	= 0, 1.

Let φ : A → A be a homomorphism compatible with the homomorphism

q : Ẑ(p) → Ẑ(p) and the group actions, that is,

φ((qg)x) = gφ(x)

for any g ∈ Ẑ(p) and x ∈ A. Then the homomorphism induced by (q, φ) on

H0(Ẑ(p), A) ∼= AẐ(p)

is the homomorphism

φ : AẐ(p) → AẐ(p)

induced by φ, and the homomorphism induced by (q, φ) on H1(Ẑ(p), A) ∼=
A

Ẑ(p) is the homomorphism

qφ : A
Ẑ(p) → A

Ẑ(p)

induced by qφ.

Proof. The statement about the structure of Hi(Ẑ(p), A) can be proved

by the same method as in the proof of 4.3.7. The determination of the

homomorphism induced by (q, φ) on H0(Ẑ(p), A) can be done using the

definition of H0(Ẑ(p), A).

To determine the homomorphism induced by (q, φ) on H1(Ẑ(p), A), we

first calculate H1(Ẑ(p), A) using its definition. A 1-cocycle is a continuous

map f : Ẑ(p) → A satisfying

f(g1 + g2) = g1f(g2) + f(g1)
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for any g1, g2 ∈ Ẑ(p). Let T = (1̄) ∈ Ẑ(p) = lim←−(n,p)=1
Z/n be the canonical

topological generator of Ẑ(p). Then a 1-cocycle f is completely determined

by the value f(T ) ∈ A. Conversely, given a ∈ A, define f : Z → A by

f(0) = 0,

f(1) = a,

f(n) = T n−1f(1) + f(n− 1),

f(−n) = −T−nf(n)
for any n ∈ N. Note that we have

f(g1 + g2) = g1f(g2) + f(g1)

for any g1, g2 ∈ Z. We claim that f : Z → A is continuous. Indeed, we

can find m,n ∈ N which are relatively prime to p such that ma = 0 and

a ∈ AT
n

. We then have

(Tmn−1 + · · ·+ T + 1)(a) = m(T n−1 + · · ·T + 1)(a) = 0.

It follows that f(mn) = 0. This implies that f(δ) = 0 for any δ ∈ mnZ.

For any g ∈ Z and any δ ∈ mnZ, we then have

f(g + δ) = f(g).

Thus f is continuous. We can then extend f to a 1-cocycle f : Ẑ(p) → A.

Therefore the group of 1-cocycles can be identified with A. A 1-cocycle

f : Ẑ(p) → A is a 1-coboundary if there exists a ∈ A such that f(g) = ga−a
for all g ∈ Ẑ(p). Under the above identification, the group of 1-coboundaries

is identified with the subgroup {Ta− a|a ∈ A} of A. We thus have

H1(Ẑ(p), A) ∼= A/{Ta− a|a ∈ A} = A
Ẑ(p) .

Note that φ induces a homomorphism on A
Ẑ
. To see this, it suffices to

show that the subset {gx− x|g ∈ Ẑ(p), x ∈ A} is invariant under φ. Given

g ∈ Ẑ(p), there exists g′ ∈ Ẑ(p) such that qg′ = g. We then have

φ(gx− x) = φ((qg′)x)− φ(x) = g′φ(x) − φ(x).

This proves our assertion. Let f : Ẑ(p) → A be a 1-cocyle and let a = f(T ).

The homomorphism on H1(Ẑ(p), A) induced by (φ, q) maps the cohomology

class of f to the cohomology class of φ ◦ f ◦ q. We have

φ ◦ f ◦ q(T ) = φ(T q−1(a) + · · ·+ T (a) + a) = qφ(a) + φ

(
q−1∑
i=0

(T i(a)− a)

)
.

As φ

(
q−1∑
i=0

(T i(a)− a)

)
lies in the subgroup generated by gx − x (g ∈

Ẑ(p), x ∈ A), φ ◦ f ◦ q(T ) has the same image in A
Ẑ(p) as qφ(a). There-

fore the homomorphism induced by (q, φ) on H1(Ẑ(p), A) ∼= A
Ẑ(p) is the

homomorphism qφ : A
Ẑ(p) → A

Ẑ(p) induced by qφ. �
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Proposition 4.3.9. Let k be a separably closed field of characteristic p.

For any positive integer n relatively prime to p, let

μn(k) = {ζ ∈ k|ζn = 1}
be the group of n-th roots of unity in k, let G = lim←−(n,p)=1

μn(k), and let A

be a G-module such that every element in A is annihilated by some integer

relatively prime to p. Then we have

Hi(G,A) ∼=

⎧⎪⎨⎪⎩
AG if i = 0,

Hom(lim←−(n,p)=1
μn, AG) if i = 1,

0 if i 	= 0, 1.

Let q be a power of p, let q : G → G be the isomorphism of raising to

q-th power, and let φ : A → A be a homomorphism compatible with the

homomorphism q : G→ G and the group actions, that is,

φ((qg)x) = gφ(x)

for any g ∈ G and x ∈ A. Then the homomorphism induced by (q, φ) on

H0(G,A) ∼= AG is the homomorphism φ : AG → AG induced by φ, and the

homomorphism induced by (q, φ) on H1(G,A) ∼= Hom(lim←−(n,p)=1
μn, AG)

is the homomorphism

Hom( lim←−
(n,p)=1

μn, AG) → Hom( lim←−
(n,p)=1

μn, AG)

that maps any ψ ∈ Hom(lim←−(n,p)=1
μn, AG) to φ ◦ ψ ◦ q.

Proof. For each positive integer n relatively prime to p, choose a prim-

itive n-th root of unity ζn in k such that ζ
n
m
n = ζm whenever m|n. Then

ζ = (ζn) is a topological generator of G = lim←−(n,p)=1
μn(k). We have an

isomorphism

lim←−
(n,p)=1

μn(k) ∼= lim←−
(n,p)=1

Z/n

that maps ζ to the canonical topological generator 1 = (1̄) of lim←−(n,p)=1
Z/n.

By 4.3.8, we have

Hi(G,A) ∼=
⎧⎨⎩
AG if i = 0,

AG if i = 1,

0 if i 	= 0, 1.

By the proof of 4.3.8, in the case i = 1, the isomorphism H1(G,A) ∼= AG
is induced by the map that maps each 1-cocycle f : G → A to f(ζ). This

isomorphism depends on the choice of ζ. Consider the map

H1(G,A)⊗Z(p) ( lim←−
(n,p)=1

μn(k)) → AG

 E
ta

le
 C

oh
om

ol
og

y 
T

he
or

y 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

O
N

A
SH

 U
N

IV
E

R
SI

T
Y

 o
n 

11
/2

7/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



February 6, 2015 9:48 ws-book9x6 Etale Cohomology Theory... etale page 161

Group Cohomology and Galois Cohomology 161

defined by

[f ]⊗ g → f(g),

where [f ] denotes the cohomology class of any 1-cocycle f , and g is any

element in G = lim←−(n,p)=1
μn(k). One can show that it is a well-defined ho-

momorphism. Through the isomorphism lim←−(n,p)=1
μn(k) ∼= lim←−(n,p)=1

Z/n

defined above, this homomorphism is identified with the isomorphism

H1(G,A) ∼= AG defined in the proof of 4.3.8. So we have

H1(G,A) ⊗Z(p) ( lim←−
(n,p)=1

μn(k)) ∼= AG,

and hence we have a canonical isomorphism

H1(G,A) ∼= Hom( lim←−
(n,p)=1

μn(k), AG).

The other statements of the proposition follows directly from 4.3.8. �

4.4 Cohomological Dimensions

([Serre (1964)] I 3.)

Let G be a profinite group. For each prime number p, we define the p-

cohomological dimension cdp(G) (resp. the strict p-cohomological dimen-

sion scdp(G)) of G to be the smallest integer n such that for any tor-

sion G-module (resp. any G-module) A and any i > n, the p-primary

part of Hi(G,A) vanishes. We define the cohomological dimension cd(G)

(resp. the strict cohomological dimension scd(G)) to be supp(cdp(G)) (resp.

supp(scdp(G))).

Proposition 4.4.1. Let G be a profinite group. The following conditions

are equivalent:

(i) cdp(G) ≤ n.

(ii) Hi(G,A) = 0 for any i > n and any p-torsion G-module A.

(iii) Hn+1(G,A) = 0 for any simple p-torsion G-module A.

Proof. For any torsion G-module A, we have A =
⊕

pA(p), where for

each prime p, A(p) is the p-primary part of A. Note that Hi(G,A(p)) is

the p-primary part of Hi(G,A) for each i. So (i)⇔(ii). (i)⇒(iii) is clear.

Suppose that (iii) holds. Any finite p-torsionG-module has a finite filtration

with simple successive quotients, and any torsion G-module is the direct
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limit of its finite G-submodules. So Hn+1(G,A) = 0 for any p-torsion G-

module A. A can be embedded into the induced G-module IndG{1}A. Since
Hi(G, IndG{1}A) = 0 for all i ≥ 1, we have Hi+1(G,A) ∼= Hi(G, IndG{1}A/A)
for any i ≥ 1. IndG{1}A/A is also a p-torsion G-module. By induction on i,

we see that Hi(G,A) = 0 for any i > n and any p-torsion G-module A. So

(ii) holds. �

Proposition 4.4.2. For any profinite group G, we have

cdp(G) ≤ scdp(G) ≤ cdp(G) + 1.

Proof. The first inequality follows from the definition of cdp(G) and

scdp(G). For any G-module A, let Ap = ker(p : A → A). We have ex-

act sequences

0 → Ap → A
p→ pA→ 0,

0 → pA→ A→ A/pA→ 0.

Note that Ap and A/pA are p-torsion G-modules. So Hi(G,Ap) and

Hi−1(G,A/pA) vanish for any i > cdp(G) + 1. Hence

Hi(G,A)
p→ Hi(G, pA), Hi(G, pA) → Hi(G,A)

are injective for any i > cdp(G) + 1. It follows that their composite

Hi(G,A)
p→ Hi(G,A)

is injective. This implies that the p-primary part of Hi(G,A) vanishes for

any i > cdp(G) + 1. So scdp(G) ≤ cdp(G) + 1. �

Proposition 4.4.3. Let H be a closed subgroup of a profinite group G.

Then

cdp(H) ≤ cdp(G), scdp(H) ≤ scdp(G).

If [G : H ] is relatively prime to p, then

cdp(H) = cdp(G), scdp(H) = scdp(G).

Proof. The first statement follows from 4.3.4. The second statement

follows from 4.3.6. �

Corollary 4.4.4. Let Gp be a Sylow p-subgroup of a profinite group G.

Then

cdp(G) = cdp(Gp) = cd(Gp),

scdp(G) = scdp(Gp) = scd(Gp).
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Proof. By 4.4.3, we have cdp(G) = cdp(Gp) and scdp(G) = scdp(Gp).

Moreover, for any prime number � distinct form p, we have

cd�(Gp) = cd�({1}) = 0,

scd�(Gp) = scd�({1}) = 0.

It follows that cdp(Gp) = cd(Gp) and scdp(Gp) = scd(Gp). �

Proposition 4.4.5. Let H be a closed normal subgroup of G. We have

cdp(G) ≤ cdp(H) + cdp(G/H).

Proof. Use the Hochschild–Serre spectral sequence. �

Lemma 4.4.6. Let G be a finite p-group and let A be a nonzero p-torsion

G-module. Then AG 	= 0.

Proof. Replacing A by a subgroup generated by an orbit of a nonzero

element of A, we may assume that A is finite. Since A is a nonzero p-

torsion abelian group, we have |A| = pn for some positive integer n. Take

x1, . . . , xn so that A is the disjoint union of the orbits Gx1, . . . , Gxn. For

any xi, we have a bijection

G/Gxi → Gxi, gGxi �→ gxi,

where Gxi is the stabilizer of xi. Hence |Gxi| = |G/Gxi |. Since G is a finite

p-group, we have |G/Gxi | = pni for some nonnegative integer ni, and we

have ni = 0 if and only if xi ∈ AG. So we have

pn = |A| =
k∑
i=1

|Gxi| =
∑
ni≥1

pni + |AG|.

This implies that p
∣∣ |AG|. But |AG| 	= 0 since 0 ∈ AG. So AG contains at

least p elements. �

Lemma 4.4.7. Let G be a pro-p-group. Any nonzero simple p-torsion G-

module is isomorphic to Z/p with the trivial G-action.

Proof. Let A be a nonzero simple p-torsion G-module. It is necessarily

finite. The action of G on A factors through a finite quotient group. By

4.4.6, we have AG 	= 0. Since A is simple, we must have A = AG. So G

acts trivially on A. A has no nontrivial subgroup. So we have A = Z/p. �

Proposition 4.4.8. Let G be a pro-p-group. Then cd(G) ≤ n if and only

if Hn+1(G,Z/p) = 0.

Proof. By 4.4.4, we have cd(G) = cdp(G). We then apply 4.4.1 (iii) and

4.4.7. �
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4.5 Galois Cohomology

([Serre (1964)] II 1–4, [SGA 4 1
2 ] Arcata III 2.)

In this section, K is a field and we fix a separable closure Ks of K. We

study the cohomology of the profinite group

Gal(Ks/K) = lim←−
L

Gal(L/K),

where L goes over the family of finite galois extensions of K in Ks. For any

Gal(Ks/K)-module A, by 4.3.2, we have

Hi(Gal(Ks/K), A) = lim−→
L

Hi(Gal(L/K), AGal(Ks/L)).

Lemma 4.5.1. Let L be an extension of K and let σ1, . . . , σn be a finite

family of distinct K-automorphisms of L. Then {σ1, . . . , σn} is linearly

independent over L, that is, if {a1, . . . , an} is a family of elements in L

such that
n∑
i=1

aiσi(x) = 0 for all x ∈ L, then ai = 0 for all i.

Proof. Suppose {σ1, . . . , σn} is not linearly independent over L. Let m

be the smallest positive integer such that there exist distinct i1, . . . , im ∈
{1, . . . , n} and nonzero a1, . . . , am ∈ L− {0} satisfying

a1σi1 + · · ·+ amσim = 0.

Note that we must have m ≥ 2. For any x, y ∈ L, we have

a1σi1 (xy) + · · ·+ amσim(xy) = 0,

that is,

a1σi1 (x)σi1 + · · ·+ amσim(x)σim = 0.

From these equations, we get

a2(σi1(x) − σi2(x))σi2 + · · ·+ am(σi1 (x)− σim(x))σim = 0.

Since σi1 	= σi2 , there exists x ∈ L such that σi1(x) 	= σi2 (x). But then

the last equation above contradicts the minimality of m. So {σ1, . . . , σn}
is linearly independent over L. �

Lemma 4.5.2. Let L/K be a finite galois extension and let Gal(L/K) =

{σ1, . . . , σn}. Then there exists x ∈ L such that {σ1(x), . . . , σn(x)} is a

basis of L over K.
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A basis of L over K of the above form is called a normal basis.

Proof. Note that {σ1(x), . . . , σn(x)} is a basis if and only if

det(σiσj(x)) 	= 0. Indeed, suppose that det(σiσj(x)) 	= 0 and
∑

j ajσj(x) =

0 for some aj ∈ K. Then
∑
j ajσiσj(x) = 0 for all i. This implies

that aj = 0. Hence {σ1(x), . . . , σn(x)} is linearly independent. As

n = |Gal(L/K)| = [L : K], {σ1(x), . . . , σn(x)} is a basis of L over K.

Suppose det(σiσj(x)) = 0. Then there exist b1, . . . , bn ∈ L, not all equal to

0, such that
∑

j bjσiσj(x) = 0 for all i. Without loss of generality, assume

b1 	= 0. By 3.2.2, there exists b ∈ L such that TrL/K(b) 	= 0. Replacing bj
by bb−11 bj , we may assume TrL/K(b1) 	= 0. We have

∑
j σ
−1
i (bj)σj(x) = 0.

Summing over i, we get
∑
j TrL/K(bj)σj(x) = 0. So {σ1(x), . . . , σn(x)} is

not linearly independent over K.

Assume K is infinite and let us prove the existence of a normal basis.

Define p(i, j) ∈ {1, . . . , n} by σiσj = σp(i,j). Consider the polynomial

f(X1, . . . , Xn) = det(Xp(i,j)).

We claim f(X1, . . . , Xn) 	= 0. Indeed, if p(i, j) = p(i′, j) for some i, i′, j,
then i = i′; if p(i, j) = p(i, j′) for some i, j, j′, then j = j′. So f(1, 0, . . . , 0)
is the determinant of a matrix with only one nonzero entry on each row and

each column. We have f(1, 0, . . . , 0) = ±1 and hence f(X1, . . . , Xn) 	= 0.

We have

det(σiσj(x)) = f(σ1(x), . . . , σn(x)).

Let {x1, . . . , xn} be a basis of L over K. Any x ∈ L can be written as

x =
∑

j ajxj (aj ∈ K). We have σi(x) =
∑

j ajσi(xj). Let

g(Y1, . . . , Yn) = f

(∑
j

σ1(xj)Yj , . . . ,
∑
j

σn(xj)Yj

)
.

We claim that (σi(xj)) is an invertible matrix. Indeed, if
∑
i biσi(xj) = 0

for some b1, . . . , bn ∈ L and all j, then
∑

i biσi = 0. By 4.5.1, we have

bi = 0 for all i. So (σi(xj)) is an invertible matrix. Let (bij) be its inverse.

Then

f(X1, . . . , Xn) = g

(∑
j

b1jXj , . . . ,
∑
j

bnjXj

)
.

As f(X1, . . . , Xn) 	= 0, we have g(Y1, . . . , Yn) 	= 0. Since K is an infinite

field, there exist a1, . . . , an ∈ K such that g(a1, . . . , an) 	= 0, that is,

f

(
σ1

(∑
j

ajxj

)
, . . . , σn

(∑
j

ajxj

))
	= 0.
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Let x =
∑

j ajxj . Then det(σiσj(x)) 	= 0. Hence {σ1(x), . . . , σn(x)} is a

normal basis.

Assume Gal(L/K) is cyclic. (This holds if K is finite.) Let us prove the

existence of a normal basis. Choose a generator σ of Gal(L/K). Define a

K[T ]-module structure on L by(∑
i

aiT
i

)
· x =

∑
i

aiσ
i(x)

for any
∑
i aiT

i ∈ K[T ] and x ∈ L. Note that σ satisfies the polynomial

equation T n− 1 = 0. By 4.5.1, σ does not satisfy any polynomial equation

of degree < n. So T n−1 is the minimal polynomial of σ. Since [L : K] = n,

we have L ∼= K[T ]/(T n − 1) as K[T ]-modules. (We leave the proof of this

fact to the reader as an exercise in linear algebra.) Let x be the element in

L corresponding to 1 in K[T ]/(T n − 1). Then {x, σ(x), . . . , σn−1(x)} is a

normal basis. �

Theorem 4.5.3. For any finite galois extension L/K, we have

Hi(Gal(L/K), L) =

{
K if i = 0,

0 if i ≥ 1,

and hence

Hi(Gal(Ks/K),Ks) =

{
K if i = 0,

0 if i ≥ 1.

Proof. By 4.5.2, L is an induced Gal(L/K)-module. The first statement

follows. The second statement then follows from the fact that

Hi(Gal(Ks/K),Ks) ∼= lim−→
L

Hi(Gal(L/K), L),

where L goes over the family of finite galois extensions of K contained in

Ks. �

Theorem 4.5.4 (Hilbert 90). For any finite galois extension L/K, we

have H1(Gal(L/K), L∗) = 0, and hence H1(Gal(Ks/K),K∗s ) = 0.

Proof. Let f : Gal(L/K) → L∗ be a 1-cocycle. By Theorem 4.5.1, there

exists x ∈ L such that ∑
σ∈Gal(L/K)

f(σ)σ(x) 	= 0.

Let y =
∑

σ∈Gal(L/K) f(σ)σ(x) ∈ L∗. For any τ ∈ Gal(L/K), we have

f(τσ) = τ(f(σ)) · f(τ),
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and

τ(y) =
∑

σ∈Gal(L/K)

τ(f(σ))τσ(x)

=
∑

σ∈Gal(L/K)

f(τ)−1f(τσ)τσ(x)

= f(τ)−1y.

So we have f(τ) = yτ(y)−1. This shows that f is a 1-coboundary. Therefore

H1(Gal(Ks/K),K∗s ) = 0. �

In 5.7.9, we will give another proof of the Hilbert 90 using the descent

theory and the etale cohomology.

Theorem 4.5.5.

(i) If K is a field of characteristic p, then cdp(Gal(Ks/K)) ≤ 1.

(ii) Assume H2(Gal(Ks/L),K
∗
s ) = 0 for any finite extension L of K

contained in Ks. Then cd(Gal(Ks/K)) ≤ 1, that is, for any torsion

Gal(Ks/K)-module A, we have

Hi(Gal(Ks/K), A) = 0

for any i ≥ 2. Moreover, we have

Hi(Gal(Ks/K),K∗s ) = 0

for any i ≥ 1.

Proof.

(i) Let Gp be the Sylow p-subgroup of Gal(Ks/K) and let M = K
Gp
s .

We have an exact sequence of Gal(Ks/K)-modules

0 → Z/p→ Ks
℘→ Ks → 0,

where ℘(x) = xp − x for any x ∈ Ks. By 4.5.3, we have

Hi(Gp,Ks) = Hi(Gal(Ks/M),Ks) = 0

for any i ≥ 1. The long exact sequence of cohomology groups associated to

the above short exact sequence shows that Hi(Gp,Z/p) = 0 for any i ≥ 2.

By 4.4.8, we have cd(Gp) ≤ 1. By 4.4.4, we have cdp(Gal(Ks/K)) ≤ 1.

(ii) Let � be a prime number distinct from the characteristic of K, let

G� be the Sylow �-subgroup of Gal(Ks/K), and let M = KG�
s . We have

M = lim−→L
L, where L goes over the set of finite extensions of K contained

in M . We have an exact sequence of Gal(Ks/K)-modules

0 → μ�(Ks) → K∗s
x �→x�→ K∗s → 0,
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where μ�(Ks) is the group of �-th roots of unity in K∗s . For any finite

extension L of K contained in M , we have

Hi(Gal(Ks/L),K
∗
s ) = 0

for i = 1, 2 by 4.5.4 and the assumption. The long exact sequence of

cohomology groups associated to the above short exact sequence then shows

that H2(Gal(Ks/L),μ�(Ks)) = 0. By 4.3.1, we have

H2(G�,μ�(Ks)) = lim−→
L

H2(Gal(Ks/L),μ�(Ks)) = 0.

Note that μ�(Ks) has no nontrivial subgroup. So as a G�-module, it is

simple and isomorphic to Z/� with the trivial G�-action. By 4.4.8, we have

cd(G�) ≤ 1. By 4.4.4, we have cd�(Gal(Ks/K)) ≤ 1. Combined with (i), we

get cd(Gal(Ks/K)) ≤ 1. By 4.4.2, we have scd(Gal(Ks/K)) ≤ 2. It follows

that

Hi(Gal(Ks/K),K∗s ) = 0

for any i ≥ 3. �
A field K is called quasi-algebraically closed if for any positive integer n

and any n-variable homogeneous polynomial f(X1, . . . , Xn) of degree < n

with coefficients in K, f(X1, . . . , Xn) = 0 has nonzero solutions in Kn. In

5.7.15, we will prove the following using the descent theory and the etale

cohomology:

Proposition 4.5.6. Suppose K is quasi-algebraically closed. We have

H2(Gal(Ks/K),K∗s ) = 0.

Lemma 4.5.7. If K is quasi-algebraically closed and L is algebraic over

K, then L is quasi-algebraically closed.

Proof. Let F (X1, . . . , Xn) be an n-variable homogeneous polynomial of

degree < n with coefficients in L. Then the coefficients of F (X1, . . . , Xn)

lies in a finite extension of K contained in L. So to prove that

F (X1, . . . , Xn) = 0 has a nonzero solution, we may assume that [L : K] <

∞. Let {e1, . . . , em} be a basis of L over K. Consider the function

f(x11, . . . , x1m, . . . , xn1, . . . , xnm)

= NormL/K(F (x11e1 + · · ·+ x1mem, . . . , xn1e1 + · · ·+ xnmem))

defined on Knm. It is a homogeneous polynomial of degree <

nm with coefficients in K. Since K is quasi-algebraically closed,

f(x11, . . . , x1m, . . . , xn1, . . . , xnm) has a nonzero solution in Knm. Hence

F (X1, . . . , Xn) has a nonzero solution in Ln. �

 E
ta

le
 C

oh
om

ol
og

y 
T

he
or

y 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

O
N

A
SH

 U
N

IV
E

R
SI

T
Y

 o
n 

11
/2

7/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



February 6, 2015 9:48 ws-book9x6 Etale Cohomology Theory... etale page 169

Group Cohomology and Galois Cohomology 169

Theorem 4.5.8 (Tsen). Let k be an algebraically closed field and let K/k

be an extension of transcendental degree 1. Then K is quasi-algebraically

closed.

Proof. By 4.5.7, it suffices to consider the case where K = k(t) is purely

transcendental. Let

f(X1, . . . , Xn) =
∑

i1+···+in=d
ai1...in(t)X

i1
1 · · ·X in

n

be an n-variable homogeneous polynomial of degree d < n with coefficients

ai1...in(t) ∈ k(t). We need to show that f(X1, . . . , Xn) has a nonzero solu-

tion in k(t)n. It suffices to treat the case where ai1...in(t) are polynomials.

Let

δ = max{deg(ai1...in(t))|i1 + · · ·+ in = d}.
SubstitutingXi =

∑N
j=0 aijt

j (i = 1, . . . , n) into f(X1, . . . , Xn), and setting

the coefficients of tk (k = 0, 1, . . . , δ + dN) to zero, we get a system of

δ + dN + 1 homogeneous equations with n(N + 1) unknowns aij . Since

d < n, we have δ+ dN +1 < n(N +1) for sufficiently large N . In this case,

the system of homogeneous equations has a nonzero solution by [Hartshorne

(1977)] I 7.2. So f(X1, . . . , Xn) = 0 has a nonzero solution. �

Theorem 4.5.9. Let K be a quasi-algebraically closed field. Then for any

torsion Gal(Ks/K)-module A, we have Hi(Gal(Ks/K), A) = 0 for any

i ≥ 2. Moreover we have Hi(Gal(Ks/K),K∗s ) = 0 for any i ≥ 1.

Proof. This follows from 4.5.5 (ii), 4.5.6 and 4.5.7. �

Theorem 4.5.10. Let L/K be an extension of fields, and let Ks and Ls
be their separable closures, respectively. For any prime number p, we have

cdp(Gal(Ls/L)) ≤ cdp(Gal(Ks/K)) + tr.deg(L/K),

where tr.deg(L/K) denotes the transcendental degree of L over K.

Proof. It suffices to treat the case where tr.deg(L/K) <∞. There exists

a subextension L′/K of L/K such that L′ ∼= K(t1, . . . , tn) is purely tran-

scendental, and L/L′ is algebraic. Note that Gal(Ls/L) can be regarded as

a closed subgroup of Gal(L′s/L
′), where L′s is a separable closure of L′. By

4.4.3, we have cdp(Gal(Ls/L)) ≤ cdp(Gal(L′s/L
′)). It suffices to prove

cdp(Gal(L′s/L
′)) ≤ cdp(Gal(Ks/K)) + tr.deg(L/K).
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So we may assume that L = K(t1, . . . , tn). By induction on n, we are

reduced to the case where L = K(t). Let K(t)s be a separable closure of

K(t). By 4.4.5, we have

cdp

(
Gal(K(t)s/K(t))

)
≤ cdp

(
Gal(K(t)s/Ks(t))

)
+cdp

(
Gal(Ks(t)/K(t))

)
.

Let K be an algebraic closure of K and let K(t)s be a separable closure of

K(t). We have

Gal(K(t)s/Ks(t)) ∼= Gal(K(t)s/K(t)).

By 4.5.8 and 4.5.9, we have

cdp

(
Gal(K(t)s/K(t))

)
≤ 1.

On the other hand, we have

Gal(Ks(t)/K(t)) ∼= Gal(Ks/K).

It follows that

cdp

(
Gal(K(t)s/K(t))

)
≤ 1 + cdp(Gal(Ks/K)).

This proves our assertion. �

Theorem 4.5.11. Let k be a separably closed field and let K/k be an ex-

tension of transcendental degree 1.

(i) We have Hi(Gal(Ks/K), A) = 0 for any i ≥ 2 and any torsion

Gal(Ks/K)-module A.

(ii) We have Hi(Gal(Ks/K),K∗s ) = 0 for i = 1 and any i ≥ 3. Let p be

the characteristic of K. Then H2(Gal(Ks/K),K∗s ) is a p-torsion group.

Proof.

(i) By 4.5.10, for any prime number p, we have

cdp(Gal(Ks/K)) ≤ cdp(Gal(ks/k)) + 1 = 1.

(ii) By 4.5.4, we have H1(Gal(Ks/K),K∗s ) = 0. By 4.4.2, we have

scd(Gal(Ks/K)) ≤ cd(Gal(Ks/K)) + 1 ≤ 2.

So Hi(Gal(Ks/K),K∗s ) = 0 for any i ≥ 3. For any prime number � distinct

from p, we have an exact sequence of Gal(Ks/K)-modules

0 → μ�(Ks) → K∗s
x �→x�→ K∗s → 0.

By (i), we have H2(Gal(Ks/K),μ�(Ks)) = 0. So

H2(Gal(Ks/K),K∗s )
�→ H2(Gal(Ks/K),K∗s )

is injective. Hence H2(Gal(Ks/K),K∗s ) has no �-torsion, and must be a

p-torsion group. �
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Chapter 5

Etale Cohomology

5.1 Presheaves and Čech Cohomology

Let C be a category. A presheaf of sets (resp. abelian groups, rings, etc.)

is a contravariant functor from C to the category of sets (resp. abelian

groups, rings, etc.). Morphisms of presheaves are defined to be morphisms

of functors. Given a presheaf F on C , an object U in C and a morphism

f : U → V in C , elements in F (U) are called sections of F on U , and the

map F (f) : F (V ) → F (U) is called the restriction induced by f . For any

s ∈ F (V ), we often denote F (f)(s) by s|U .
In the following, we mainly discuss presheaves of abelian groups, and

leave it for the reader to treat presheaves with other structures. We simply

call a presheaf of abelian groups a presheaf.

Denote the category of presheaves on C by PC . It is an abelian cate-

gory. A sequence

F → G → H

of presheaves is exact if and only if for any object U in C , the sequence

F (U) → G (U) → H (U)

is exact.

Let f : C → C ′ be a covariant functor. It induces a covariant functor

fP : PC ′ → PC , fP(F ′)(U) = F ′(f(U)),

where F ′ is any object in PC ′ and U is any object in C . For any object U ′

in C ′, define a category IU ′ as follows: Objects in IU ′ are pairs (U, φ) such

that U are objects in C and φ : U ′ → f(U) are morphisms in C ′. Given

two objects (Ui, φi) (i = 1, 2) in IU ′ , a morphism ξ : (U1, φ1) → (U2, φ2)

in IU ′ is a morphism ξ : U1 → U2 in C such that f(ξ)φ1 = φ2. Let I◦U ′

171
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be the opposite category of IU ′ . For any presheaf F on C , the assignment

(U, φ) �→ F (U) defines a contravariant functor on IU ′ and hence a covariant

functor on I◦U ′ . Suppose for any presheaf F on C , and any object U ′ of
C ′, that lim−→(U,φ)∈ob I◦

U′
F (U) exists. We define

(fPF )(U ′) = lim−→
(U,φ)∈ob I◦

U′

F (U).

Then fPF is a presheaf on C ′. One can show that fP is left adjoint to

the functor fP . That is, for any presheaf F on C and any presheaf F ′ on
C ′, we have a one-to-one correspondence

Hom(fPF ,F ′) ∼= Hom(F , fPF ′)

functorial in F and F ′.
Suppose fiber products exist in C . Let U be an object in C , and let

U = {Uα → U}α∈I be a set of morphisms in C with a common target U .

For any α0, . . . , αn, let

Uα0...αn = Uα0 ×U · · · ×U Uαn .
For any presheaf F on C and any nonnegative integer n, let

Cn(U,F ) =
∏

α0,...,αn

F (Uα0...αn).

Define a homomorphism

d : Cn(U,F ) → Cn+1(U,F )

as follows: For any s = (sα0...αn) ∈ Cn(U,F ), define ds = ((ds)α0...αn+1) ∈
C n+1(U,F ) by

(ds)α0...αn+1 =

n+1∑
i=0

(−1)isα0...α̂i...αn+1 |Uα0...αn+1
,

where sα0...α̂i...αn+1 |Uα0...αn+1
is the image of sα0...α̂i...αn+1 under the re-

striction

F (Uα0...α̂i...αn+1) → F (Uα0...αn+1)

induced by the projection

Uα0 ×U · · · ×U Uαn+1 → Uα0 ×U · · · ×U Ûαi ×U · · · ×U Uαn+1 .

One can check that dd = 0. The complex (C·(U,F ), d) is called the Čech

complex, and its cohomology groups are called the Čech cohomology groups

of F with respect to the family U, and are denoted by Ȟ ·(U,F ).

 E
ta

le
 C

oh
om

ol
og

y 
T

he
or

y 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

O
N

A
SH

 U
N

IV
E

R
SI

T
Y

 o
n 

11
/2

7/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



February 6, 2015 9:48 ws-book9x6 Etale Cohomology Theory... etale page 173

Etale Cohomology 173

Unlike the Čech cohomology for ordinary topological spaces, we cannot

use alternative cochains to calculate the Čech cohomology for presheaves

on categories. For example, if we take C to be the category of open subsets

of a topological space X , U = {Uα → U}α∈I an open covering, U′ =
{∐α∈I Uα → U}, and F a sheaf on X , then

C·(U,F ) ∼= C·(U′,F ).

Since U′ has only one element, alternative n-cochains for U′ and F are

trivial for any n ≥ 1, whereas in general, Ȟn(U,F ) is not trivial.

It is clear that F → Cn(U,F ) is an exact functor on PC . Using this

fact, one checks that Ȟ ·(U,−) is a δ-functor. The following proposition

shows that it is effaceable under mild conditions.

Proposition 5.1.1. Assume that there exists a set Λ of objects in C such

that for any presheaf A and any proper sub-presheaf B of A , there exists

X ∈ Λ such that A (X) 	= B(X). Then the category PC has enough

injective objects, and Ȟn(U,I ) = 0 for any injective presheaf I and any

n ≥ 1.

Proof. For any object X in C , consider the category {X} with only one

object X and only one morphism idX . Let i : {X} → C be the inclusion

functor. For any abelian group M , denote the presheaf X �→ M on {X}
by M , and denote the presheaf iPM on C by MX . For any object U in C ,

we have

MX(U) =
⊕

HomC (U,X)

M.

For any presheaf F on C , we have

Hom(ZX ,F ) ∼= Hom(Z, iPF ) ∼= Hom(Z,F (X)) ∼= F (X).

Taking into account of our assumption, we see that for any presheaf A and

any proper sub-presheaf B of A , there exists X ∈ Λ such that there exists

a morphism ZX → A which does not factor through B. So {ZX |X ∈ Λ}
is a set of generators for PC . By the same argument as in the proof [Fu

(2006)] 2.1.6 or [Grothendieck (1957)] 1.10.1, one can show that PC has

enough injective objects.

Let us prove Ȟn(U ,I ) = 0 for any injective presheaf I and any n ≥ 1.

We need to show that the sequence∏
α0∈I

I (Uα0)
d→
∏

α0,α1∈I
I (Uα0α1)

d→
∏

α0,α1,α2∈I
I (Uα0α1α2)

d→ · · ·
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is exact. This sequence can be identified with

Hom(
⊕
α0∈I ZUα0

,I )→Hom(
⊕
α0,α1∈I ZUα0α1

,I )→Hom(
⊕
α0,α1,α2∈I ZUα0α1α2

,I )→··· .

Since I is an injective presheaf, it suffices to show that the sequence⊕
α0∈I

ZUα0

δ0←
⊕

α0,α1∈I
ZUα0α1

δ1←
⊕

α0,α1,α2∈I
ZUα0α1α2

δ2← · · ·

is an exact sequence of presheaves. We need to show that for any object X

in C , the sequence⊕
α0∈I

ZUα0
(X)

δ0←
⊕

α0,α1∈I
ZUα0α1

(X)
δ1←

⊕
α0,α1,α2∈I

ZUα0α1α2
(X)

δ2← · · ·

is exact, that is, the sequence

⊕
α0∈I

⊕
Hom(X,Uα0 )

Z
δ0← ⊕
α0,α1∈I

⊕
Hom(X,Uα0α1 )

Z
δ1← ⊕
α0,α1,α2∈I

⊕
Hom(X,Uα0α1α2 )

Z
δ2←···

is exact. Let us describe the homomorphisms δn. For any f ∈
Hom(X,Uα0...αn), let ef be the element in

⊕
α0,...,αn∈I

⊕
Hom(X,Uα0...αn )

Z

whose component corresponding to f is 1 and whose other components are

0. Let

pi : Uα0 ×U · · · ×U Uαn+1 → Uα0 ×U · · · ×U Ûαi ×U · · · ×U Uαn+1

be the projections. Then

δn :
⊕

α0,...,αn+1∈I

⊕
Hom(X,Uα0...αn+1

)

Z →
⊕

α0,...,αn∈I

⊕
Hom(X,Uα0...αn )

Z

is defined by

δn(ef ) =

n+1∑
i=0

(−1)iepif .

Let πα (α ∈ I) be the morphisms Uα → U . For any φ ∈ Hom(X,U), let

S(φ) =
∐
α

{g ∈ Hom(X,Uα)|παg = φ}.

The the above sequence can be written as

⊕
φ∈Hom(X,U)

⊕
S(φ)

Z
δ0← ⊕
φ∈Hom(X,U)

⊕
S(φ)×S(φ)

Z
δ1← ⊕
φ∈Hom(X,U)

⊕
S(φ)×S(φ)×S(φ)

Z
δ2←··· .

To prove that this sequence is exact, it suffices to show that for any φ, the

sequence ⊕
S(φ)

Z
δ0←

⊕
S(φ)×S(φ)

Z
δ1←

⊕
S(φ)×S(φ)×S(φ)

Z
δ2← · · ·
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is exact. Here δn can be described as follows: For any (f0, . . . , fn+1) ∈
S(φ)n+2, let e(f0,...,fn+1) be the element in

⊕
S(φ)n+2 Z whose component

corresponding to (f0, . . . , fn+1) is 1 and whose other components are 0.

Then

δn :
⊕

S(φ)n+2

Z →
⊕

S(φ)n+1

Z

is defined by

δn(e(f0,...,fn+1)) =

n+1∑
i=0

(−1)ie(f0,...,f̂i,...,fn+1)
.

Let

δ−1 :
⊕
S(φ)

Z → Z

be the homomorphism defined by δ−1(ef ) = 1 for any f ∈ S(φ). Fix an

element g in S(φ). Consider the homomorphisms

Dn :
⊕

S(φ)n+1

Z →
⊕

S(φ)n+2

Z, Dn(e(f0,...,fn+1)) = e(g,f0,...,fn+1) (n ≥ 0),

D−1 : Z →
⊕
S(φ)

Z, D−1(1) = eg.

Then Dn define a homotopy between the identity and the zero morphism

of the complex

0 ← Z
δ−1←
⊕
S(φ)

Z
δ0←

⊕
S(φ)×S(φ)

Z
δ1←

⊕
S(φ)×S(φ)×S(φ)

Z
δ2← · · · .

Hence this complex is acyclic. �
Let U = {Uα → U}α∈I and U′ = {U ′α′ → U}α′∈I′ be two sets of

morphisms in C with a common target U . A morphism f : U → U′ consists
of a map ε : I → I ′ and a U -morphism fα : Uα → U ′ε(α) in C for each α ∈ I.

Such a morphism induces a morphism of complexes

f∗ : C·(U′,F ) → C·(U,F )

as follows: Given s = (sα′
0...α

′
n
) ∈ Cn(U′,F ), define f∗s = ((f∗s)α0...αn) ∈

Cn(U,F ) by

(f∗s)α0...αn = sε(α0)...ε(αn)|Uα0...αn
,

where sε(α0)...ε(αn)|Uα0...αn
is the image of sε(α0)...ε(αn) under the restriction

induced by the morphism

fα0 × · · · × fαn : Uα0 ×U · · · ×U Uαn → U ′ε(α0)
×U · · · ×U U ′ε(αn).
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Let g : U → U′ be another morphism consisting of a map δ : I → I ′ and
morphisms gα : Uα → U ′δ(α) (α ∈ I). Define homomorphisms

H : Cn(U′,F ) → Cn−1(U,F )

as follows: Given s = (sα′
0...α

′
n
) ∈ Cn(U′,F ), defineHs = ((Hs)α0...αn−1) ∈

Cn−1(U,F ) by

(Hs)α0...αn−1 =

n∑
i=0

(−1)isε(α0)...ε(αi)δ(αi)...δ(αn−1)|Uα0...αn−1
,

where sε(α0)...ε(αi)δ(αi)...δ(αn−1)|Uα0...αn−1
is the image of sε(α0)...ε(αi)δ(αi)...δ(αn−1)

under the restriction induced by the morphism

fα0 × · · · × fαi−1 × (fαi , gαi)× gαi+1 × · · · × gαn−1 :

Uα0 ×U · · · ×U Uαn−1 →U ′ε(α0)
×U · · · ×U U ′ε(αi) ×U U ′δ(αi) ×U · · · ×U U ′δ(αn−1)

.

Then we have

Hd+ dH = g∗ − f∗.

So f∗ and g∗ are homotopic to each other, and hence induce the same

homomorphisms Ȟ ·(U′,F ) → Ȟ ·(U,F ) on Čech cohomology groups. We

say that U is a refinement of U′ if there exists a morphism from U to U′.
So we have canonical homomorphisms Ȟ ·(U′,F ) → Ȟ ·(U,F ) on Čech

cohomology groups whenever U is a refinement of U′.

5.2 Etale Sheaves

([SGA 4] VII 1–2, [SGA 4 1
2 ] Arcata I, II.)

Let X be a scheme. Define a category Xet as follows: Objects in Xet are

X-schemes U so that the structure morphisms U → X are etale. For any

two etale X-schemes U1 and U2, morphisms from U1 to U2 in Xet are X-

morphisms from U1 to U2. Note that morphisms in Xet are etale, and fiber

products exist in Xet. An etale presheaf on X is a presheaf on the category

Xet. The category of etale presheaves on X is denoted by PX . It is an

abelian category.

Let f : X ′ → X be a morphism of schemes. It induces a functor

fet : Xet → X ′et, U �→ U ×X X ′.

For any etale presheaf F ′ on X ′, denote the etale presheaf (fet)
P(F ′) by

fPF ′. We have

(fPF ′)(U) = F ′(U ×X X ′)
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for any U ∈ obXet. For any object U ′ in X ′et, define a category IU ′ as

follows: Object in IU ′ are pairs (U, φ), where U is an object in Xet, and

φ : U ′ → U is an X-morphism. For any two such pairs (Ui, φi) (i = 1, 2),

a morphism ξ : (U1, φ1) → (U2, φ2) in IU ′ is an X-morphism ξ : U1 → U2

such that ξφ1 = φ2. Note that this category is equivalent to the category

defined in 5.1 for the functor fet : Xet → X ′et. We will show shortly that

the opposite category I◦U ′ of IU ′ satisfies the conditions (I2) and (I3) in 2.7,

and that there exists a cofinal subcategory of I◦U ′ whose objects form a set.

For any etale presheaf F on X , denote the etale presheaf (fet)P(F ) on X ′

by fPF . We have

(fPF )(U ′) = lim−→
(U,φ)∈obI◦

U′

F (U)

for any U ′ ∈ obX ′et. The functor fP : PX → PX′ is exact, and is left

adjoint to the functor fP : PX′ → PX , that is, for any etale presheaf

F on X and any etale presheaf F ′ on X ′, we have a canonical one-to-one

correspondence

Hom(fPF ,F ′) ∼= Hom(F , fPF ′)

functorial in F and F ′.
Let us show that I◦U ′ satisfies the conditions (I2) and (I3). Given two

morphisms α, β : (U2, φ2) → (U1, φ1) in IU ′ , consider the Cartesian diagram

K = U2 ×(U2×XU1) U2
p2→ U2

p1 ↓ ↓ Γβ

U2
Γα→ U2 ×X U1,

where Γα and Γβ are the graphs of α and β, respectively. Note that the

schemes in this diagram are etale X-schemes. Let π1 : U2 ×X U1 → U2 be

the projection. We have

p1 = π1Γαp1 = π1Γβp2 = p2.

Denote p1 = p2 by p. One can show that the sequence

K
p→ U2

α

⇒
β
U1

is exact, that is, αp = βp, and that for any morphism ψ : V → U2 of schemes

with the property αψ = βψ, there exists a unique morphism ψ′ : V → K

such that pψ′ = ψ. We have

αφ2 = βφ2 = φ1.
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So there exists a morphism φ : U ′ → K such that pφ = φ2. The morphism

p defines a morphism p : (K,φ) → (U2, φ2) in IU ′ and we have αp = βp.

So I◦U ′ satisfies (I2). Given two objects (Ui, φi) (i = 1, 2) in IU ′ , let pi :

U1×X U2 → Ui be the projections, and let (φ1, φ2) : U
′ → U1×X U2 be the

morphism with the property

pi ◦ (φ1, φ2) = φi.

Then the pair (U1 ×X U2, (φ1, φ2)) is an object in IU ′ , and pi define mor-

phisms pi : (U1 ×X U2, (φ1, φ2)) → (Ui, φi) in IU ′ . So I◦U ′ satisfies (I3).

Next we show I◦U ′ has a cofinal subcategory whose objects form a set.

For any u′ ∈ U ′, choose an affine open subset Xu′ ofX containing the image

of u′ in X . We will construct a set S of X-schemes Y with the following

property (*) so that any X-scheme with the property (*) is isomorphic to

an X-scheme in S :

(*) Y can be covered by affine open subsets Yu′ (u′ ∈ U ′) so that for each

u′, the image of Yu′ in X is contained in Xu′ and that Γ(Yu′ ,OY ) is a

Γ(Xu′ ,OX)-algebra of finite presentation.

Then objects (U, φ) in I◦U ′ with U ∈ S (and φ ∈ HomX(U ′, U)) form a set,

and the full subcategory of I◦U ′ consisting of these objects is cofinal in I◦U ′ .

Let Su′ be the family of affine schemes Spec (Γ(Xu′ ,OX)[t1, . . . , tn]/I) with

n ∈ N and with I being finitely generated ideals of Γ(Xu′ ,OX)[t1, . . . , tn].

Then Su′ is a set. So

Tu′ = {(Z,W )|Z ∈ Su′ ,W is an open subset of Z}
is a set. Hence

{((Zu′ ,Wu′v′ , ψu′v′)u′,v′∈U ′
) | (Zu′ ,Wu′v′) ∈ Tu′ ,

ψu′v′ ∈ HomX(Wu′v′ ,Wv′u′),

Wu′u′ = Zu′ , ψu′u′ = id,

ψu′v′(Wu′w′ ∩Wu′v′) ⊂Wv′w′ ∩Wv′u′ ,

ψv′w′ψu′v′ = ψu′w′ on Wu′v′ ∩Wu′w′}
is a set. This set is nothing but the set of gluing data for X-schemes with

the property (*). We take S to be the set of X-schemes defined by gluing

data in this set.

Let X be a scheme. A set U = {Uα → U}α∈I of morphisms in Xet with

a common target U is called an etale covering of U if U is the union of
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images of Uα. An etale presheaf F on X is called an etale sheaf if for any

etale covering U = {Uα → U}α∈I , the sequence

0 → F (U) →
∏
α∈I

F (Uα) →
∏
α,β∈I

F (Uα ×U Uβ)

is exact, where the homomorphisms in this sequence are defined by

F (U) →
∏
α∈I

F (Uα), s �→ (s|Uα),∏
α∈I

F (Uα) →
∏
α,β∈I

F (Uα ×U Uβ), (sα) �→ (sβ |Uα×UUβ − sα|Uα×UUβ ).

Morphisms between etale sheaves are defined to be morphisms between

them that are considered as presheaves. Denote the category of etale

sheaves on X by SX . It is a full subcategory of the category PX of

etale presheaves on X . Denote by i : SX → PX be the inclusion.

¿From now on, we call etale sheaves and etale presheaves simply sheaves

and presheaves.

Proposition 5.2.1. There exists a functor # : PX → SX that is left

adjoint to i : SX → PX , that is, for any presheaf G on X, there exists a

pair (G #, θ) consisting of a sheaf G # on X and a morphism θ : G → G # of

presheaves such that for any sheaf F on X and any morphism of presheaves

φ : G → F , there exists one and only one morphism ψ : G # → F such

that ψθ = φ. The pair (G #, θ) is unique up to a unique isomorphism.

We call G # the sheaf associated to the presheaf G .

To prove the proposition, we first define a functor + : PX → PX . For

every object U in Xet, let JU be the category defined as follows: Objects

in JU are etale coverings of U . Morphisms in JU are defined in the same

way as in the end of 5.1. We say that an etale covering U is a refinement

of an etale covering U′ and write U′ ≤ U if there exists a morphism U → U′

in JU . One can show that (JU ,≤) is a directed family, and that it has a

cofinal subfamily whose objects form a set. By the discussion at the end of

5.1, we have a well-defined homomorphism

Ȟ0(U′,G ) → Ȟ0(U,G )

for any presheaf G on X . We define

G +(U) = lim−→
U∈ob JU

Ȟ0(U,G ).
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Let V → U be a morphism in Xet, and let U = {Uα → U}α∈I be an etale

covering of U . Then V = {Uα ×U V → V }α∈I is an etale covering of V .

We have a canonical morphism of Čech complexes

C·(U,G ) → C·(V,G ).

It induces a homomorphism

Ȟ0(U,G ) → Ȟ0(V,G )

and hence a homomorphism

G +(U) = lim−→
U∈ob JU

Ȟ0(U,G ) → G +(V ) = lim−→
V∈ob JV

Ȟ0(V,G ).

We thus get a presheaf G + on X . The functor

+ : PX → PX , G �→ G +

is left exact. Note that U0 = {id : U → U} is an etale covering, and that

any etale covering U of U is a refinement of U0. We have

Ȟ0(U0,G ) = G (U).

So we have a canonical homomorphism

G (U) → lim−→
U∈ob JU

Ȟ0(U,G ) = G +(U).

We thus have a morphism of presheaves G → G +. If G is a sheaf, then this

morphism is an isomorphism.

Lemma 5.2.2. For any presheaf G and any sheaf F on X, the canonical

morphism G → G + induces a one-to-one correspondence

Φ : Hom(G +,F ) ∼= Hom(G ,F ).

Proof. Any homomorphism φ : G → F induces a morphism

φ+ : G + → F+ ∼= F .

We thus have a map

Ψ : Hom(G ,F ) → Hom(G +,F ), φ �→ φ+.

It is clear that ΦΨ = id. Let U = {Uα → U}α∈I be an etale covering.

For any α0 ∈ I and any morphism ψ : G + → F , we have a commutative

diagram

G (U) → G +(U)
ψ→ F (U)

↓ ↓ ↓
G (Uα0) → G +(Uα0)

ψ→ F (Uα0).
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Note that the etale covering V0 = {id : Uα0 → Uα0} is a refinement of the

etale coveringV = {Uα×UUα0 → Uα0}α∈I . Indeed, the diagonal morphism

Δ : Uα0 → Uα0 ×U Uα0 defines a morphism V0 → V. Given

ξ = (ξα) ∈ Ȟ0(U,G ) = ker
(∏

α

G (Uα) →
∏
α,β

G (Uα ×U Uβ)
)
,

one can check the image of ξ under the composite

Ȟ0(U,G ) → Ȟ0(V,G ) → Ȟ0(V0,G ) = G (Uα0)

is ξα0 . Let ξ̄ be the image of ξ ∈ Ȟ0(U,G ) in G +(U) = lim−→U∈ob JU Ȟ
0(U,G ).

Then the image of ξ̄ under the homomorphism G +(U) → G +(Uα0) is the

same as the image of ξα0 under the homomorphism G (Uα0) → G +(Uα0).

So ψ(ξ̄)|Uα0
∈ F (Uα0) coincides with the image of ξα0 under the composite

G (Uα0) → G +(Uα0) → F (Uα0).

This is true for any α0 ∈ I. From this fact, one deduces ΨΦ(ψ) = ψ. �

Lemma 5.2.3. We say that a presheaf G on X has the property (+) if for

any etale covering {Uα → U}α∈I in Xet, the canonical homomorphism

G (U) →
∏
α∈I

G (Uα)

is injective.

(i) For any presheaf G , G + has the property (+).

(ii) If a presheaf G has the property (+), then G + is a sheaf.

Proof.

(i) Let {Uα → U}α∈I be an etale covering, and let ξ̄i ∈ G +(U) (i = 1, 2)

such that they have the same image under the homomorphism

G +(U) →
∏
α∈I

G +(Uα).

Choose an etale covering V = {Vβ → U}β∈J such that ξ̄i are the images of

ξi ∈ Ȟ0(V,G ) = ker
( ∏
β∈J

G (Vβ) →
∏

β1,β2∈J
G (Vβ1 ×U Vβ2)

)
under the homomorphism

Ȟ0(V,G ) → lim−→
U∈ob JU

Ȟ0(U,G ) = G +(U).

For each i ∈ {1, 2} and each α ∈ I, the image of ξ̄i under the homomorphism

G +(U) → G +(Uα) is the image of ξi under the composite

Ȟ0(V,G ) → Ȟ0(V×U Uα,G ) → G +(Uα),
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where V×U Uα = {Vβ ×U Uα → Uα}β∈J . Since ξ̄i (i = 1, 2) have the same

image in G +(Uα), there exists an etale covering Wα = {Wαγ → Uα}γ∈Kα
which is a refinement of V×U Uα such that the images of ξi (i = 1, 2) under

the composite

Ȟ0(V,G ) → Ȟ0(V×U Uα,G ) → Ȟ0(Wα,G )

are the same, that is, ξi (i = 1, 2) have the same image in

Ȟ0(Wα,G ) = ker
( ∏
γ∈Kα

G (Wαγ) →
∏

γ1,γ2∈Kα
G (Wαγ1 ×Uα Wαγ2)

)
.

But {Wαγ → Uα → U}α∈I,γ∈Kα is an etale covering of U , which is a

refinement of V. Denote this etale covering by W. Then ξi (i = 1, 2) have

the same image under the map

Ȟ0(V,G ) → Ȟ0(W,G )

= ker
( ∏
α∈I,γ∈Kα

G (Wαγ) →
∏

α1, α2 ∈ I,
γ1 ∈ Kα1 ,
γ2 ∈ Kα2

G (Wα1γ1 ×U Wα2γ2)
)
.

So ξi (i = 1, 2) have the same image in G +(U), that is, ξ̄1 = ξ̄2. This proves

that the homomorphism G +(U) →∏α∈I G +(Uα) is injective.

(ii) We claim that if G has the property (+), then for any etale covering

U = {Uα → U}α∈I of U ∈ obXet and any refinement V = {Vβ → U}β∈J
of U, the canonical homomorphism Ȟ0(U,G ) → Ȟ0(V,G ) is injective.

Let f : V → U be a morphism. Then W = {Uα ×U Vβ → U}α∈I,β∈J is

an etale covering U and the projections Uα×U Vβ → Uα and Uα×U Vβ → Vβ
define morphisms p1 : W → U and p2 : W → V. For each fixed α ∈ I,

{Uα×U Vβ → Uα}β∈J is an etale covering of Uα. Since G has the property

(+), the canonical homomorphism

G (Uα) →
∏
β∈J

G (Uα ×U Vβ)

is injective. So ∏
α∈I

G (Uα) →
∏

α∈I, β∈J
G (Uα ×U Vβ)

is injective, and hence

p∗1 : Ȟ0(U,G ) → Ȟ0(W,G )
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is injective. This last homomorphism coincides with the composite

Ȟ0(U,G )
f∗
→ Ȟ0(V,G )

p∗2→ Ȟ0(W,G ).

It follows that Ȟ0(U,G ) → Ȟ0(V,G ) is injective. This prove our claim.

To prove that G + is a sheaf, we need to show that for any etale covering

{Uα → U}α∈I , the sequence

0 → G +(U) →
∏
α∈I

G +(Uα) →
∏
α,β∈I

G +(Uα ×U Uβ)

is exact. Since G + has the property (+), we only need to show that any

ξ̄ = (ξ̄α) ∈ ker
(∏
α∈I

G +(Uα) →
∏
α,β∈I

G +(Uα ×U Uβ)
)

lies in the image of the homomorphism G +(U) → ∏α∈I G +(Uα). For each

α ∈ I, choose an etale covering {Uαλ → Uα}λ∈Iα such that ξ̄α is the image

in G +(Uα) of

ξα = (ξαλ) ∈ Ȟ0({Uαλ → Uα},G )

= ker
( ∏
λ∈Iα

G (Uαλ) →
∏

λ1,λ2∈Iα
G (Uαλ1 ×Uα Uαλ2)

)
.

For each pair α, β ∈ I, by the base change Uα ×U Uβ → Uα, ξα induces an

element

ξ1αβ = (ξ1αβλ)

∈ ker

(∏
λ∈Iα G (Uαλ×UUβ)→

∏
λ1,λ2∈Iα G ((Uαλ1×UUβ)×(Uα×UUβ)(Uαλ2×UUβ))

)
,

and by the base change Uα ×U Uβ → Uβ , ξβ induces an element

ξ2αβ = (ξ2αβμ)

∈ ker

(∏
μ∈Iβ G (Uα×UUβμ)→

∏
μ1,μ2∈Iβ G ((Uα×UUβμ1 )×(Uα×UUβ)(Uα×UUβμ2 ))

)
,

where ξ1αβλ are the restrictions of ξαλ ∈ G (Uαλ) to Uαλ ×U Uβ , and ξ2αβμ
are the restrictions of ξβμ ∈ G (Uβμ) to Uα ×U Uβμ.

{Uαλ ×U Uβμ}λ∈Iα,μ∈Iβ → {Uαλ ×U Uβ}λ∈Iα → {Uαλ}λ∈Iα
↓ ↓ ↓

{Uα ×U Uβμ}μ∈Iβ → Uα ×U Uβ → Uα
↓ ↓ ↓

{Uβμ}μ∈Iβ → Uβ → U

Since we have

ξ̄ = (ξ̄α) ∈ ker
(∏
α∈I

G +(Uα) →
∏
α,β∈I

G +(Uα ×U Uβ)
)
,
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the images of ξ1αβ and ξ2αβ in G +(Uα ×U Uβ) are the same. So there exists

an etale covering V of Uα×U Uβ which is a common refinement of the etale

coverings {Uαλ×UUβ → Uα×UUβ}λ∈Iα and {Uα×UUβμ → Uα×UUβ}μ∈Iβ
such that ξ1αβ and ξ2αβ have the same image in Ȟ0(V,G ). By the claim at

the beginning of the proof, ξ1αβ and ξ2αβ have the same image in Ȟ0(V,G )

for any common refinement V of the above two etale coverings. Taking

V = {Uαλ ×U Uβμ → Uα ×U Uβ}λ∈Iα, μ∈Iβ ,
we see that ξ1αβλ and ξ2αβμ have the same image in G (Uαλ ×U Uβμ). So

ξαλ ∈ G (Uαλ) and ξβμ ∈ G (Uβμ) have the same image in G (Uαλ ×U Uβμ),
and hence we have

(ξαλ) ∈ ker
( ∏
α∈I,λ∈Iα

G (Uαλ) →
∏

α, β ∈ I,
λ ∈ Iα, μ ∈ Iβ

G (Uαλ ×U Uβμ)
)

= Ȟ0({Uαλ → U}α∈I,λ∈Iα ,G ).

One then checks that the image of (ξαλ) under the homomorphism

Ȟ0({Uαλ → U}α∈I,λ∈Iα ,G ) → G +(U)

is mapped to ξ̄ = (ξ̄α) under G +(U) →∏α∈I G +(Uα). �

Proof of 5.2.1. For any presheaf G on X , the presheaf G ++ is a sheaf

by 5.2.3. We have a canonical morphism G → G ++. By 5.2.2, it induces a

one-to-one correspondence

Hom(G ++,F ) ∼= Hom(G ,F )

for any sheaf F on X . It suffices to take G # = G ++. �

Proposition 5.2.4.

(i) SX is an abelian category with enough injective objects. Let φ : F →
G be a morphism of sheaves on X. Then kerφ is the sheaf defined by

U �→ ker(φ(U) : F (U) → G (U))

for any U ∈ obXet, and cokerφ (resp. imφ, resp. coimφ) is the sheaf

associated to the presheaf defined by

U �→ coker(φ(U)) (resp. U �→ im(φ(U)), resp. U �→ coim(φ(U))).

(ii) The inclusion i : SX → PX is left exact, and # : PX → SX is

exact.
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Proof.

(i) Let φ : F → G be a morphism of sheaves. The kernel of φ in the

category of presheaves is a sheaf, and it is the kernel of φ in the category

of sheaves. Let C be the cokernel of φ in the category of presheaves. One

can verify that C# is the cokernel of φ in the category of sheaves. Let P

be the cokernel of the canonical morphism kerφ → F in the category of

presheaves. We have an exact sequence

0 → P → G → C → 0

in the category of presheaves. Since the functor + : PX → PX is left

exact, and # = + ◦+, the sequence

0 → P# → G # → C #

is exact in the category of presheaves. It follows that

P# ∼= ker (G → C #).

Note that P# is the coimage of φ and ker (G → C #) is the image of φ in

the category of sheaves. So SX is an abelian category.

For every object U in Xet, we have the presheaf ZU on X defined in the

proof of 5.1.1. Denote the sheaf (ZU )
# also by ZU . We can find a set of

objects in Xet such that for any sheaf A and any proper subsheaf B of A ,

there exists an object U in this set such that A (U) 	= B(U). Then {ZU}
is a set of generators for SX . By the same argument as in the proof of [Fu

(2006)] 2.1.6 or [Grothendieck (1957)] 1.10.1, one can show that SX has

enough injective objects.

(ii) We have seen that i and # is left exact in the proof of (i). Given

an exact sequence

0 → G ′ → G → G ′′ → 0

in the category of presheaves, for any sheaf F , the sequence

0 → Hom(G ′′,F ) → Hom(G ,F ) → Hom(G ,F )

is exact. Hence the sequence

0 → Hom(G ′′#,F ) → Hom(G #,F ) → Hom(G #,F )

is exact. It follows that

G ′# → G # → G ′′# → 0

is exact in the category of sheaves. So # is exact.
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Let f : X ′ → X be a morphism of schemes. For any sheaf F ′ on X ′,
the presheaf fPF ′ is a sheaf. We denote it by f∗F ′ and call it the direct

image of F ′. For any object U in Xet, we have

f∗(F ′) = F ′(U ×X X ′).

For any sheaf F on X , define the inverse image f∗F of F on X ′ to be

the sheaf (fPF )#. We often denote f∗F by F |X′ . The functor f∗ is left
adjoint to f∗, that is, we have a one-to-one correspondence

Hom(f∗F ,F ′) ∼= Hom(F , f∗F ′)

functorial in F and F ′.

Proposition 5.2.5.

(i) For any presheaf G on X, we have f∗(G #) ∼= (fPG )#.

(ii) f∗ : SX′ → SX is left exact and f∗ : SX → SX′ is exact.

(iii) Suppose f : X ′ → X is etale. Then for any sheaf F on X, f∗F is

the sheaf defined by

(f∗F )(U ′) = F (U ′)

for any object U ′ in X ′et, where on the right-hand side, we regard U ′ as an

etale X-scheme.

(iv) Let f : X ′ → X and g : X ′′ → X ′ be two morphisms of schemes.

We have (fg)∗ ∼= f∗g∗ and (fg)∗ ∼= g∗f∗.

Proof.

(i) For any sheaf F ′ on X ′, we have one-to-one correspondences

Hom(f∗(G #),F ′) ∼= Hom(G #, f∗F ′)
∼= Hom(G , fPF ′)
∼= Hom(fPG ,F ′)
∼= Hom((fPG )#,F ′).

So we have (fPG )# ∼= f∗(G #).

(ii) The left exactness of f∗ follows from the definition. Let

0 → F1 → F2 → F3 → 0

be an exact sequence of sheaves on X . Let C be cokernel of F2 → F3 in

the category of presheaves. Then the sequence

0 → F1 → F2 → F3 → C → 0
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is exact in the category of presheaves and C # = 0. Since fP is exact, the

sequence

0 → fPF1 → fPF2 → fPF3 → fPC → 0

is exact in the category of presheaves. Since # is exact, the sequence

0 → (fPF1)
# → (fPF2)

# → (fPF3)
# → (fPC )# → 0

is exact in the category of sheaves. By (i), we have

(fPC )# ∼= f∗(C#) = 0.

It follows that

0 → (fPF1)
# → (fPF2)

# → (fPF3)
# → 0

is exact in the category of sheaves. Hence f∗ is exact.
(iii) We have

(fPF )(U ′) = lim−→
(U,φ)∈ob I◦

U′

F (U).

One can show that (U ′, id) is a final object in the category I◦U ′ . So we have

(fPF )(U ′) = F (U ′).

One easily shows that fPF , given by this formula, is a sheaf. So we have

(f∗F )(U ′) = F (U ′).

(iv) We have (fg)∗ ∼= f∗g∗ by definition. This implies that (fg)∗ ∼= g∗f∗

by adjunction. �

Proposition 5.2.6. Let F be a presheaf on a scheme X. Suppose for any

etale covering {Uα → U}α∈I with the property (a) or (b) below, that the

sequence

0 → F (U) →
∏
α∈I

F (Uα) →
∏
α,β∈I

F (Uα ×U Uβ)

is exact:

(a) Uα and U are affine and I is finite.

(b) Uα → U are open immersions for all α.

Then F is a sheaf.
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Proof. Let U = {Uα → U}α∈I be an etale covering of U , let {Vλ}λ∈J be

a covering of U by affine open subsets, and let Uλ = {Uα ×U Vλ → Vλ}α∈I
for each λ ∈ J . There exists a refinement U′λ of Uλ satisfying the condition

(a). By our assumption, we have

F (Vλ) ∼= Ȟ0(U′λ,F ).

This isomorphism coincides with the composite

F (Vλ) → Ȟ0(Uλ,F ) → Ȟ0(U′λ,F ).

So

F (Vλ) → Ȟ0(Uλ,F )

is injective. We have a commutative diagram

F (U) → ∏
α∈I F (Uα)

↓ ↓∏
λ∈I F (Vλ) →

∏
α∈I
∏
λ∈I F (Uα ×U Vλ).

The vertical arrows are injective by (b). We have just shown that the

bottom horizontal arrow is injective. So

F (U) →
∏
α∈I

F (Uα)

is injective. Hence F has the property (+). By the claim at the beginning

of the proof of 5.2.3 (ii),

Ȟ0(Uλ,F ) → Ȟ0(U′λ,F )

is injective. Since the composite

F (Vλ) → Ȟ0(Uλ,F ) → Ȟ0(U′λ,F )

is an isomorphism, we have

F (Vλ) ∼= Ȟ0(Uλ,F ).

Consider the commutative diagram

0 0 0

↓ ↓ ↓
0→ F(U) → ∏

α∈I
F(Uα) → ∏

α,β∈I
F(Uα×UUβ)

↓ ↓ ↓
0→ ∏

λ∈J
F(Vλ) → ∏

λ∈J

∏
α∈I

F(Uα×UVλ) → ∏
λ∈J

∏
α,β∈I

F(Uα×UUβ×UVλ)

↓ ↓ ↓
0→ ∏

λ,μ∈J
F(Vλ∩Vμ)→

∏
λ,μ∈J

∏
α∈I

F(Uα×U (Vλ∩Vμ))→
∏

λ,μ∈J

∏
α,β∈I

F(Uα×UUβ×U (Vλ∩Vμ)).

By (b), the vertical sequences are exact. We have just shown that the

second horizontal sequence is exact. By a diagram chasing, one can show

the first horizontal sequence is exact. So F is a sheaf. �
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Let X be a scheme and let Y be an X-scheme. Consider the presheaf

Ỹ on X defined by

Ỹ (U) = HomX(U, Y )

for any object U in Xet. Let {Uα → U}α∈I be an etale covering. If Uα and

U are affine and I is finite, then
∐
α∈I Uα → U is a quasi-compact faithfully

flat morphism. By 1.8.3, the sequence

HomX(U, Y ) →
∏
α∈I

HomX(Uα, Y ) ⇒
∏
α,β∈I

HomX(Uα ×U Uβ, Y )

is exact. If each Uα → U is an open immersion, then the above sequence

is also exact. By 5.2.6, Ỹ is a sheaf of sets on X . We call it the sheaf

represented by the X-scheme Y .

Proposition 5.2.7. Let Y be an etale X-scheme.

(i) For any sheaf F of sets on X, we have a one-to-one correspondence

Hom(Ỹ ,F ) ∼= F (Y ).

(ii) Any subsheaf of Ỹ is of the form Ũ for some open subset U of Y .

(iii) Let f : X ′ → X be a morphism. We have f∗Ỹ ∼= (Y ×X X ′)∼.

Proof.

(i) Given a morphism of sheaves φ : Ỹ → F , let S(φ) ∈ F (Y ) be the

image of idY under the map

φ(Y ) : Hom(Y, Y ) = Ỹ (Y ) → F (Y ).

Given a section s ∈ F (Y ), define a morphism T (s) : Ỹ → F so that for

any object U in Xet and any t ∈ Ỹ (U), the image of t under the map

T (s)(U) : Ỹ (U) → F (U)

is the image of s under the restriction F (Y ) → F (U) induced by the

morphism t : U → Y . Then S : Hom(Ỹ ,F ) → F (Y ) and T : F (Y ) →
Hom(Ỹ ,F ) are inverses to each other.

(ii) Let F be a subsheaf of Ỹ . Objects in Yet can be considered as

objects in Xet. Let {Uα}α∈I be the family of all objects in Yet such that

the structure morphisms Uα → Y lie in the subset F (Uα) of HomX(Uα, Y ).

Let U be the union of the images of Uα in Y . Then for any object V in

Xet, we have

F (V ) ⊂ HomX(V, U).

So F is a subsheaf of Ũ . By our construction, {Uα → U}α∈I is a covering

and the image of the inclusion iU : U ↪→ Y under the maps Ỹ (U) → Ỹ (Uα)
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lie in F (Uα) for all α ∈ I. So we have iU ∈ F (U). It follows that

idU ∈ Ũ(U) lies in F (U). For any object V in Xet, if Ũ(V ) = Ø, then we

have F (V ) = Ø since F is a subsheaf of Ũ . If Ũ(V ) 	= Ø, then an arbitrary

section s ∈ Ũ(V ) is the image of idU under the restriction Ũ(U) → Ũ(V )

induced by s : V → U . As idU ∈ F (U), we have s ∈ F (V ). We thus have

F (V ) = Ũ(V ), and hence F = Ũ .

A flaw in the above proof is that the family {Uα}α∈I may not be a set.

To avoid this, one fixes an affine open covering {Vj}j∈J of Y with indices

j lying in a set J . For each j ∈ J , one can find a set of objects {Ujβ}β∈Ij
in Yet such that each Ujβ is affine, its image in Y is contained in Vj , and

any affine object in (Vj)et is Y -isomorphic to some Ujβ . Then the above

argument works if we take {Uα}α∈I to be the set consisting of those Ujβ
(j ∈ J, β ∈ Ij) such that the structure morphisms Ujβ → Y lie in F (Ujβ).

(iii) For any sheaf F ′ on X ′, we have

Hom(f∗Ỹ ,F ′) ∼= Hom(Ỹ , f∗F ′)
∼= (f∗F ′)(Y )

∼= F ′(Y ×X X ′)
∼= Hom((Y ×X X ′)∼,F ′).

So we have f∗Ỹ ∼= (Y ×X X ′)∼. �
Let X be a scheme and let M be a quasi-coherent OX -module. By 1.6.2

and 5.2.6, the presheaf on X defined by

U �→ Γ(U, π∗M )

for any object π : U → X in Xet is a sheaf. We denote the sheaf by Met.

Taking M = OX , we get the sheaf OXet . We have

OXet(U) = Γ(U,OU ).

The subsheaf of OXet defined by

OXet(U) = Γ(U,O∗U )

is denoted by O∗Xet
.

Suppose that X is quasi-compact and quasi-separated. Let Xf
et be the

full subcategory of Xet whose objects are etale X-schemes with finite pre-

sentation. Note that fiber products exist in Xf
et. An etale covering in Xf

et is

defined to be a family of morphisms {Uα → U}α∈I such that I is finite and

U is the union of the images of Uα. A presheaf F on Xf
et is called a sheaf

if for any etale covering {Uα → U}α∈I as above, the canonical sequence

0 → F (U) →
∏
α∈I

F (Uα) →
∏
α,β∈I

F (Uα ×U Uβ)
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is exact. Denote the category of presheaves and the category of sheaves on

Xf
et by PXf and SXf , respectively. Let i : X

f
et → Xet be the inclusion. It

induces functors

iP : PX → PXf , iP : PXf → PX .

If F is a sheaf on X , then iPF is a sheaf on Xf
et. Let r : SX → SXf be

the restriction of iP to the category of sheaves.

Proposition 5.2.8. Suppose that X is quasi-compact and quasi-separated.

Then the functor r : SX → SXf defines an equivalence of categories.

Proof. Let F and G be two sheaves on X . Consider the map

HomSX (F ,G ) → HomS
Xf

(F ,G ).

Suppose that φi : F → G (i = 1, 2) are two morphisms which have the

same image in HomS
Xf

(F ,G ). Then for any object U in Xet with finite

presentation, φi (i = 1, 2) induce the same homomorphism F (U) → G (V ).

For a general object U in Xet, let {Uα}α∈I be a covering of U by affine

open subsets. Then each Uα has finite presentation over X . Since

F (U) →
∏
α∈I

F (Uα), G (U) →
∏
α∈I

G (Uα)

are injective and φi (i = 1, 2) induce the same homomorphism F (Uα) →
G (Uα) for each α, φi induce the same homomorphism F (U) → G (U). So

we have φ1 = φ2. This proves that the above map is injective. We leave it

for the reader to prove the map is surjective.

Let F be a sheaf on Xf
et. We claim that

r((iPF )#) ∼= F .

This proves that the functor r is essentially surjective. Let U be an object

in Xf
et. It can also be regarded as an object in Xet. Using the definition

of the functor iP , one can verify that (iPF )(U) = F (U). For any etale

covering of U in Xet, there exists an etale covering of U in Xf
et refining the

given etale covering. As F is a sheaf on Xf
et, we have (iPF )+(U) = F (U)

and hence (iPF )++(U) = F (U). We thus have (iPF )#(U) = F (U). So

r((iPF )#) ∼= F . �

Proposition 5.2.9. Let X be a quasi-compact quasi-separated scheme, and

let Λ be a directed set.

(i) For any direct system (Fλ, φλμ)λ∈Λ of sheaves on Xf
et, the presheaf

defined by

U �→ lim−→λ∈Λ Fλ(U)

on Xf
et is a sheaf.
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(ii) For any set of sheaves {Fi}i∈I on Xf
et, the presheaf

U �→
⊕
i∈I

Fλ(U)

on Xf
et is a sheaf.

Proof.

(i) Let {Uα → U}α∈I be a covering in Xf
et. We have an exact sequence

0 → Fλ(U) →
∏
α∈I

Fλ(Uα) →
∏
α,β∈I

Fλ(Uα ×U Uβ).

So the sequence

0 → lim−→
λ∈Λ

Fλ(U) → lim−→
λ∈Λ

∏
α∈I

Fλ(Uα) → lim−→
λ∈Λ

∏
α,β∈I

Fλ(Uα ×U Uβ)

is exact. Since I is finite, the above sequence can be identified with the

exact sequence

0 → lim−→
λ∈Λ

Fλ(U) →
∏
α∈I

lim−→
λ∈Λ

Fλ(Uα) →
∏
α,β∈I

lim−→
λ∈Λ

Fλ(Uα ×U Uβ).

Hence U �→ lim−→λ∈Λ Fλ(U) is a sheaf on Xf
et.

(ii) follows from (i) and the fact that a direct sum over a set I is the

direct limit of directs sums over finite subsets of I. �

Let C be a category on which fiber products exist. For each object U in

C , suppose we specify a family TU whose elements are sets of morphisms in

C of the form {Uα → U}α∈I . We call the elements in TU the coverings of

U . We say that T is a Grothendieck topology on C if the following axioms

hold:

(GT1) For any isomorphism V
∼=→ U in C , the set {V → U} is a covering

in TU .

(GT2) Let {Uα → U}α∈I be a covering in TU . For any morphism

V → U in C , the set {Uα ×U V → V }α∈I defined by base change is a

covering in TV .

(GT3) Let {Uα → U}α∈I be a covering in TU , and for each α ∈ I, let

{Uαβ → Uα}β∈Iα be a covering in TUα . Then the set {Uαβ → U}α∈I,β∈Iα
defined by taking composites is a covering in TU .

A presheaf F on C is called a sheaf if for any U ∈ obC and any covering

{Uα → U}α∈I in TU , the sequence

0 → F (U) →
∏
α∈I

F (Uα) →
∏
α,β∈I

F (Uα ×U Uβ)
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is exact, where the homomorphisms in this sequence are defined by

F (U) →
∏
α∈I

F (Uα), s �→ (s|Uα),∏
α∈I

F (Uα) →
∏
α,β∈I

F (Uα ×U Uβ), (sα) �→ (sβ |Uα×UUβ − sα|Uα×UUβ ).

Many results in this section hold for sheaves on general Grothendieck

topologies.

5.3 Stalks of Sheaves

([SGA 4] VIII 3, 4, 7.)

Let Ω be a separably closed field. Schemes etale over SpecΩ are disjoint

unions of copies of SpecΩ. So the functor

F → Γ(SpecΩ,F )

defines an equivalence between the category of sheaves of sets on SpecΩ

and the category of sets. Let Ω′ be a separably closed field containing

Ω, and let u : SpecΩ′ → SpecΩ be the canonical morphism. Then the

functor U �→ U ⊗Ω Ω′ defines an equivalence between the category of etale

Ω-schemes and the category of etale Ω′-schemes. So the functor F �→ u∗F
defines an equivalence between the category of sheaves on SpecΩ and the

category of sheaves on SpecΩ′. We have

F (Spec Ω) ∼= (u∗F )(Spec Ω′).

LetX be a scheme, let F be a sheaf onX , and let s→ X be a geometric

point of X , where s = Spec k(s) is the spectrum of a separably closed field

k(s). For convenience, we often denote the geometric point simply by s.

Let F |s be the inverse image of F on s. We define the stalk of F at s to

be Γ(s,F |s) and denote it by Fs. Let x ∈ X . Denote by x̄ the geometric

point Spec k(x) → X , where k(x) is a separable closure of k(x). If x is the

image of s, then we have

Fx̄
∼= Fs.

Let f : X ′ → X be a morphism, let s′ be a geometric point of X ′, and let

f(s′) be the geometric point defined by the composite

s′ → X ′
f→ X.

 E
ta

le
 C

oh
om

ol
og

y 
T

he
or

y 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

O
N

A
SH

 U
N

IV
E

R
SI

T
Y

 o
n 

11
/2

7/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



February 6, 2015 9:48 ws-book9x6 Etale Cohomology Theory... etale page 194

194 Etale Cohomology Theory

Then for any sheaf F on X , we have

(f∗F )s′ ∼= Ff(s′).

Let X be a scheme and let s be a geometric point of X . Define a

category Is as follows: Objects in Is are pairs (U, sU ), where U are objects

in Xet, and sU : s → U are X-morphisms. For any two objects (U1, sU1)

and (U2, sU2) in Is, a morphism f : (U1, sU1) → (U2, sU2) in Is is an X-

morphism f : U1 → U2 such that fsU1 = sU2 . We often denote an object

(U, sU ) in Is simply by U . Objects in Is are called etale neighborhoods of s

in X .

Proposition 5.3.1. Let X be a scheme and let s→ X be a geometric point

of X. For any sheaf (resp. presheaf) F on X, we have

Fs
∼= lim−→

(U,sU )∈ob I◦s
F (U) (resp. F#

s
∼= lim−→

(U,sU )∈ob I◦s
F (U)).

Proof. Note that for any presheaf G on s, we have

Γ(s,G ) ∼= Γ(s,G #).

Let γ : s→ X be the structure morphism. If F is a sheaf on X , we have

Fs = Γ(s, γ∗F ) ∼= Γ(s, γPF ) = lim−→
(U,sU )∈ob I◦s

F (U).

If F is a presheaf on X , we have

F#
s = Γ(s, γ∗(F#)) ∼= Γ(s, (γPF )#) ∼= Γ(s, γPF ) = lim−→

(U,sU )∈ob I◦s
F (U).

�

Notation as above. Given an etale neighborhood (U, sU ) of s and any

section t ∈ F (U), we call the image of t in Fs
∼= lim−→(U,sU )∈ob I◦S

F (U) the

germ of t at s.

Lemma 5.3.2. Let X be a scheme and let F and G be sheaves on X.

(i) Given a morphism u : F → G , if for any point x ∈ X, the map

ux̄ : Fx̄ → Gx̄ induced by u is an isomorphism, then u is an isomorphism.

(ii) Let ui : F → G (i = 1, 2) be two morphisms of sheaves. If for any

x ∈ X, ui induce the same map Fx̄ → Gx̄, then u1 = u2.

Proof. We give a proof of (i) and leave it for the reader to prove (ii). Let

U be an object inXet, and let si ∈ F (U) (i = 1, 2) be two sections such that

u(s1) = u(s2) in G (U). By our assumption, for any point x′ ∈ U , s1 and

s2 have the same image in Fx̄, where x is the image of x′ in X . By 5.3.1,
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there exists an etale neighborhood Ux′ of x̄′ in U such that s1|Ux′ = s2|Ux′ .
When x′ goes over the set of points of U , Ux′ form an etale covering of U .

It follows that s1 = s2. So u : F (U) → G (U) is injective.

Let t ∈ G (U). By our assumption, for any point x′ ∈ U , the image of t

in Gx̄ lies in the image of Fx̄ → Gx̄. So we can find an etale neighborhood

Ux′ of x̄′ and a section sx′ ∈ F (Ux′) such that u(sx′) = t|Ux′ . By the

injectivity that we have shown, for any two points x′1, x
′
2 ∈ U ′, we have

sx′
1
|Ux′1×UUx′2 = sx′

2
|Ux′1×UUx′2 .

So there exists a section s ∈ F (U) such that s|Ux′ = sx′ for all x′ ∈ U . We

then have u(s) = t. So u : F (U) → G (U) is surjective. �

Proposition 5.3.3. Let X be a scheme. A sequence

F → G → H

of morphisms of sheaves on X is exact if and only if for any geometric

point s of X, the sequence

Fs → Gs → Hs

is exact.

Proof. By 5.3.1, we have

(ker (G → H ))s ∼= ker (Gs → Hs), (im (F → G ))s ∼= im (Fs → Gs).

This implies the “only if” part. If Fs → Gs → Hs is exact for all geometric

points s in X , then by 5.3.2, the composite F → G → H is 0, and we

have

im (F → G ) ∼= ker (G → H ).

So F → G → H is exact. �

Let A be a strictly henselian local ring and let s be the closed point of

SpecA. By 2.3.10 (i) and 2.8.3 (vii), SpecA is a final object in I◦s . So we

have

Fs
∼= F (SpecA)

for any sheaf F on SpecA.

Let X be a scheme and let s→ X be a geometric point of X . Consider

the sheaf OXet on X . We have OXet(U) = OU (U) for any object U of Xet.

So we have

OXet,s
∼= lim−→

(U,sU )∈I◦s
OU (U).
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Let x be the image of s in X , and let ÕX,s be the strict henselization of the

local ring OX,x with respect to the separable closure of k(x) in k(s). Then

we have

OXet,s
∼= ÕX,s.

We call Spec ÕX,s the strict localization of X at s and denote it by X̃s. We

have a canonical morphism X̃s → X , and s→ X can be factorized as

s→ X̃s → X.

For any sheaf F on X , we have

Fs
∼= Γ(X̃s,F |X̃s).

Let s and s′ be two geometric points of X . A specialization morphism

is an X-morphism X̃s′ → X̃s. When such a morphism exists, we say that

s′ is a generalization of s, and that s is a specialization of s′.

Proposition 5.3.4. Let X be a scheme.

(i) For any geometric point s′ in X and any etale X-scheme U , the

canonical map

HomX(X̃s′ , U) → HomX(s′, U)

is bijective.

(ii) Let s → X be another geometric point of X. Then the canonical

map

HomX(X̃s′ , X̃s) → HomX(s′, X̃s)

is bijective.

Proof.

(i) Taking graphs of X-morphisms, we get the following one-to-one cor-

respondences:

HomX(X̃s′ , U) ∼= HomX̃s′
(X̃s′ , X̃s′ ×X U),

HomX(s′, U) ∼= Homs′(s
′, s′ ×X U).

To prove our assertion, it suffices to show for any etale X̃s′ -schemeW , that

the canonical map

HomX̃s′
(X̃s′ ,W ) → Homs′(s

′, s′ ×X̃s′ W )

is bijective. This follows from 2.3.10 (i) and 2.8.3 (vii).

(ii) Let U0 be an affine open neighborhood of the image of s in X . Con-

sider the full subcategory Js of Is consisting of those etale neighborhoods
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(U, sU ) of s such that U are affine and that the images of U in X are

contained in U0. Then Js is cofinal in Is. Moreover, Js is equivalent to a

category whose objects form a set. We have

ÕX,s ∼= lim−→
(U,sU )∈ob J◦

s

OU (U).

By 1.10.1 (i), we have

X̃s
∼= lim←−

(U,sU )∈ob J◦
s

U

in the category of schemes. So we have one-on-one correspondences

HomX(X̃s′ , X̃s) ∼= lim←−
(U,sU )∈obJ◦

s

HomX(X̃s′ , U),

HomX(s′, X̃s) ∼= lim←−
(U,sU )∈obJ◦

s

HomX(s′, U).

By (i), we have one-to-one correspondences

HomX(X̃s′ , U) ∼= HomX(s′, U).

Our assertion follows. �

Proposition 5.3.5. Let s and s′ be two geometric points in a scheme X,

and let x and x′ be their images in X, respectively. Then s is a specialization

of s′ if and only if x ∈ {x′}.
Proof. If s is a specialization of s′, then by 5.3.4, HomX(s′, X̃s) is not

empty. Let y′ be the image of an X-morphism s′ → X̃s, and let y be the

closed point of X̃s. We have y ∈ {y′}. The images of y and y′ in X are x

and x′, respectively. So we have x ∈ {x′}.
Conversely, suppose x ∈ {x′}. Let (U, sU ) be an object in the cat-

egory Js defined in the proof of 5.3.4 (ii). The image of U in X is

open and contains x, and hence contains x′. It follows that the set

HomX(s′, U) of geometric points in U above s′ is not empty. This set

is finite. So lim←−(U,sU )∈ob Js HomX(s′, U) is not empty. Hence HomX(s′, X̃s)

is not empty. By 5.3.4 (ii), there exists an X-morphism X̃s′ → X̃s. So s is

a specialization of s′. �

Let s and s′ be two geometric points in a scheme X . Any specialization

morphism X̃s′ → X̃s induces a homomorphism

Fs → Fs′
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for any sheaf F on X . We call it the specialization map. This homomor-

phism can be described as follows: We have

Fs
∼= lim−→

(U,sU )∈ob I◦s
F (U),

Fs′ ∼= lim−→
(U ′,s′

U′)∈ob I◦s′
F (U ′).

Given an object (V, sV ) in Is, the morphism sV : s→ V induces a morphism

X̃s → V . Denote the composite

s′ → X̃s′ → X̃s → V

by s′V . Then (V, s′V ) is an object in Is′ . So we have canonical homomor-

phisms

F (V )
φ(V,sV )→ lim−→

(U,sU )∈ob I◦s
F (U),

F (V )
φ(V,s′

V
)→ lim−→
(U ′,s′

U′ )∈ob I◦s′
F (U).

For any section t ∈ F (V ), the homomorphism Fs → Fs′ maps φ(V,sV )(t)

to φ(V,s′V )(t).

Proposition 5.3.6. Let X be a scheme, s a geometric point in X, and s′

a geometric point of X̃s. Denote the image of s′ in X also by s′. Then X̃s′

is X-isomorphic to the strict localization (X̃s)
∼
s′ of X̃s at s′.

Proof. By 5.3.4, we have a canonical X-morphism X̃s′ → X̃s. From its

construction, one can show this is a flat morphism. Taking strict localiza-

tions at s′ of the following commutative diagram,

X̃s′ → X̃s,

↓ ↙
X

we get the commutative diagram

X̃s′ → (X̃s)
∼
s′ ,

id ↓ ↙
X̃s′

and hence a commutative diagram

ÕX,s′ ← ÕX̃s,s′ .

id ↑ ↗
ÕX,s′

The horizontal arrow in the last diagram is thus surjective. It is also faith-

fully flat and hence injective. So it is an isomorphism. �
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Proposition 5.3.7. Let f : X → Y be a finite morphism, y a point in Y ,

k(y) a separable closure of k(y), and F a sheaf on X. Then

(f∗F )ȳ ∼=
⊕

x∈X⊗OY
k(y)

Fx̄.

The functor f∗ is exact and faithful. In particular, a sequence

F → G → H

is exact if and only if

f∗F → f∗G → f∗H

is exact.

Proof. Let xi (i = 1, . . . , n) be all the points of X ⊗OY k(y). By 2.8.20,

we have

X ×Y Ỹȳ ∼=
n∐
i=1

X̃x̄i.

The argument in the proof of 2.8.20 shows that there exists an etale mor-

phism U → Y such that U is affine, X ×Y U ∼= ∐n
i=1 Vi for some finite

U -schemes Vi, Ỹȳ → Y factors through U , and Vi ×U Ỹȳ ∼= X̃x̄i. Replacing

Y by U and X by each Vi, we are reduced to the case where Y is affine,

X ⊗OY k(y) contains only one point x and X ×Y Ỹȳ ∼= X̃x̄.

Fix an affine open neighborhood U0 of y in Y . By 5.3.4 (i), for any affine

etale neighborhood (V, x̄V ) of x̄ so that the image of V in Y is contained

in U0, the X-morphism x̄V : Spec k(x) → V defines an X-morphism

g : X̃x̄ → V

so that the composite of g with Spec k(x) → X̃x̄ coincides with x̄V . Let Jȳ
be the category of affine etale neighborhoods of ȳ in U0. We have

Ỹȳ ∼= Spec ( lim−→
(U,sU )∈ob J ◦̄

y

OU (U)).

By 1.10.9, there exist an affine etale neighborhood (U, sU ) of ȳ in Y and an

X-morphism

gU : X ×Y U → V

so that the composite

X̃x̄
∼= X ×Y Ỹȳ → X ×Y U gU→ V
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coincides with g : X̃x̄ → V . The composite

Spec k(x) → X̃x̄
∼= X ×Y Ỹȳ → X ×Y U

makes X ×Y U an etale neighborhood of x̄ in X that dominates the etale

neighborhood (V, x̄V ). It follows that

Fx̄
∼= lim−→

(U,sU )∈ob J ◦̄
y

F (X ×Y U).

But we have

(f∗F )ȳ ∼= lim−→
(U,sU )∈ob J ◦̄

y

(f∗F )(U) ∼= lim−→
(U,sU )∈ob J ◦̄

y

F (X ×Y U).

So we have (f∗F )ȳ ∼= Fx̄. This proves the first statement of the proposition.

It implies that f∗ is exact, and that if f∗F = 0, then F = 0. So f∗ is exact
and faithful. �

Corollary 5.3.8. Let f : X → Y be an immersion. Then for any sheaf F

on X, the canonical morphism f∗f∗F → F is an isomorphism.

Proof. The assertion is clear for any open immersion. If f is a closed

immersion, we have

(f∗f∗F )x̄ ∼= (f∗F )f(x̄) ∼= Fx̄

for any x ∈ X by 5.3.7. So f∗f∗F ∼= F for any immersion f . �

Corollary 5.3.9. Consider a Cartesian diagram

X ×Y Y ′ g
′

→ X

f ′ ↓ ↓ f
Y ′

g→ Y.

Suppose f is finite. Then for any sheaf F on X, we have a canonical

isomorphism

g∗f∗F
∼=→ f ′∗g

′∗F .

Proof. The composite of the canonical morphisms

f∗F
f∗(adj)→ f∗g′∗g

′∗F ∼= g∗f ′∗g
′∗F

induces a morphism

g∗f∗F → f ′∗g
′∗F

by adjunction. Using 5.3.7, one proves that this morphism induces isomor-

phisms on stalks. So it is an isomorphism. �
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Corollary 5.3.10. Let f : X → Y be a finite surjective radiciel morphism.

Then for any sheaf F on X and any sheaf G on Y , the canonical morphisms

f∗f∗F → F and G → f∗f∗G are isomorphisms. So the functors f∗ and f∗

define an equivalence between the category of sheaves on X and the category

of sheaves on Y .

Proof. By our assumption, for any y ∈ Y , X⊗OY k(y) consists of only one

point. Using 5.3.7, one proves that the canonical morphisms f∗f∗F → F

and G → f∗f∗G induce isomorphisms on stalks. �

5.4 Recollement of Sheaves

Proposition 5.4.1. Let i : Y → X be a closed immersion, and let j :

X − Y ↪→ X be the complement. The functor i∗ : SY → SX is fully

faithful, and a sheaf F on X is isomorphic to a sheaf of the form i∗G for

some sheaf G on Y if and only if j∗F = 0.

Proof. Let Gk (k = 1, 2) be two sheaves on Y . The canonical morphisms

i∗i∗Gk → Gk

are isomorphisms. One can check the map

Hom(G1,G2) → Hom(i∗G1, i∗G2)

and the composite

Hom(i∗G1, i∗G2) → Hom(i∗(i∗G1), i
∗(i∗G2)) ∼= Hom(G1,G2)

are inverses to each other. So i∗ is fully faithful. It is clear that j∗i∗G = 0

for any sheaf G on Y . If F is a sheaf on X with the property j∗F = 0,

then the canonical morphism F → i∗i∗F induces isomorphisms on stalks,

and hence is an isomorphism. �

Let F be a sheaf on a scheme X . The smallest closed subset F of X

such that F |X−F = 0 is called the support of F . Let U be an object in

Xet, and let s ∈ F (U) be a section. The support of s is the smallest closed

subset F of U such that s|U−F = 0. Let V → U be an etale X-morphism.

Then the support of s|V is the inverse image of the support of s in V .

Let i : Y → X be a closed immersion, j : X − Y ↪→ X the complement,

F a sheaf on X , and K the kernel of the canonical morphism F → j∗j∗F .

Since j∗ is exact, j∗K is the kernel of the morphism j∗F → j∗(j∗j∗F ).

But this morphism is clearly an isomorphism. So j∗K = 0. By 5.4.1, there
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exists a sheaf i!F on Y such that K ∼= i∗i!F . For any etale X-scheme

U , sections in (i∗i!F )(U) are those sections in F (U) whose supports are

contained in the inverse image of Y in U . For any sheaf G on Y , we have

i!i∗G ∼= G . For any morphism φ : i∗G → F , we have a commutative

diagram

i∗G → F

↓ ↓
j∗j∗(i∗G ) → j∗j∗F .

As j∗j∗(i∗G ) = 0, the image of φ is contained in the kernel of F → j∗j∗F .

So we have

Hom(i∗G ,F ) ∼= Hom(i∗G , i∗i!F ) ∼= Hom(G , i!F ).

Hence i∗ is left adjoint to i!.
Let H be a sheaf on X − Y . Define a presheaf P on X as follows: For

any object V in Xet, if the image of V in X is not contained in X − Y , we

let P(V ) = 0; otherwise, we regard V as an object of (X − Y )et and let

P(V ) = H (V ). Define j!H = P#. We have j∗j!H ∼= H . For any sheaf

F on X , we have

Hom(j!H ,F ) ∼= Hom(P ,F ) ∼= Hom(H , j∗F ).

So j! is left adjoint to j
∗.

We summarize the above results as follows:

Proposition 5.4.2. Let i : Y → X be a closed immersion, and let j :

X − Y ↪→ X be the complement.

(i) (i∗, i∗), (j!, j∗), (i∗, i!) and (j∗, j∗) are pairs of adjoint functors.

(ii) i∗, i∗, j∗, j! are exact, and j∗, i! are left exact.

(iii)

i!i∗ ∼= i∗i∗ ∼= id,

j∗j! ∼= j∗j∗ ∼= id,

i∗j! ∼= i!j! ∼= i!j∗ ∼= 0,

j∗i∗ ∼= 0.

(iv) For any sheaf F on X, the following sequences are exact:

0 → i∗i!F → F → j∗j∗F ,

0 → j!j
∗F → F → i∗i∗F → 0.
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Proposition 5.4.3. Let i : Y → X be a closed immersion, and let j :

X − Y ↪→ X be the complement. Define a category as follows: Objects

in C are triples (G ,H , φ), where G is a sheaf on Y , H is a sheaf on

X−Y , and φ : G → i∗j∗H is a morphism. Given two objects (Gk,Hk, φk)

(k = 1, 2) in C , a morphism (ξ, η) : (G1,H1, φ1) → (G2,H2, φ2) in C

consists of morphisms of sheaves ξ : G1 → G2 and η : H1 → H2 such that

the following diagram commutes:

G1
φ1→ i∗j∗H1

ξ ↓ ↓ i∗j∗(η)
G2

φ2→ i∗j∗H2.

Then the functor

SX → C , F �→ (i∗F , j∗F , i∗F → i∗(j∗j∗F ))

defines an equivalence of categories.

Proof. For any sheaf F on X , we have a commutative diagram

F → i∗i∗F
↓ ↓

j∗j∗F → i∗i∗j∗j∗F .

We claim that it is Cartesian. There exists a morphism

F → i∗i∗F ×(i∗i∗j∗j∗F) j∗j∗F

whose composite with the projections are the canonical morphisms F →
i∗i∗F and F → j∗j∗F . Since i∗ and j∗ are exact, we have

i∗(i∗i∗F ×(i∗i∗j∗j∗F) j∗j∗F ) ∼= i∗i∗i∗F ×i∗i∗i∗j∗j∗F i∗j∗j∗F
∼= i∗F ×i∗j∗j∗F i∗j∗j∗F
∼= i∗F ,

j∗(i∗i∗F ×(i∗i∗j∗j∗F) j∗j∗F ) ∼= j∗i∗i∗F ×j∗i∗i∗j∗j∗F j∗j∗j∗F
∼= 0×0 j

∗F
∼= j∗F .

It follows that the restriction of the morphism

F → i∗i∗F ×(i∗i∗j∗j∗F) j∗j∗F

to Y and to X − Y are isomorphisms, and hence the morphism itself is an

isomorphism. This proves our claim.
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Given two sheaves Fi (i = 1, 2) on X , the map

Hom(F1,F2)

→ Hom((i∗F1, j
∗F1, i

∗F1 → i∗(j∗j∗F1)), (i
∗F2, j

∗F2, i
∗F2 → i∗(j∗j∗F2)))

is injective by 5.3.2 (ii). Let

(ξ, η) : (i∗F1, j
∗F1, i

∗F1 → i∗(j∗j∗F1)) → (i∗F2, j
∗F2, i

∗F2 → i∗(j∗j∗F2))

be a morphism in C . By the claim above, there exists a morphism ϕ :

F1 → F2 such that the following diagram commutes:

i∗i∗F1 ← F1 → j∗j∗F1

i∗(ξ) ↓ ϕ ↓ ↓ j∗(η)
i∗i∗F2 ← F2 → j∗j∗F2.

The morphism ϕ ∈ Hom(F1,F2) is thus mapped to (ξ, η). This proves

that our functor is fully faithful.

For any object (G ,H , φ) in C , define a sheaf F on X by the Cartesian

diagram

F → i∗G
↓ ↓ i∗φ

j∗H → i∗i∗j∗H .

Applying i∗ and j∗ to this diagram, we get Cartesian diagrams

i∗F → G j∗F → 0

↓ ↓ φ ↓ ↓
i∗j∗H

id→ i∗j∗H , H → 0.

It follows that i∗F ∼= G and j∗F ∼= H . Moreover, the diagram

i∗F ∼= G

↙ ↓ ↓ φ
i∗j∗j∗F → i∗j∗H

id→ i∗j∗H .

commutes. So

(i∗F , j∗F , i∗F → i∗j∗j∗F ) ∼= (G ,H , φ).

This proves that our functor is essentially surjective. �
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5.5 The Functor f!

([SGA 4] XVII 6.1.)

Let f : X ′ → X be an etale morphism. We have a functor i : X ′et → Xet

by regarding etale X ′-schemes as etale X-schemes. For any sheaf F on

X , we have iPF ∼= f∗F by 5.2.5 (iii). The functor iP has a left adjoint

iP . For any object U in Xet, define a category KU as follows: Objects

of KU are pairs (U ′, φ), where U ′ is an object in X ′et, and φ : U → U ′

is an X-morphism. Given objects (U ′i , φi) (i = 1, 2) in KU , a morphism

ξ : (U ′1, φ1) → (U ′2, φ2) in KU is an X ′-morphism ξ : U ′1 → U ′2 such that

ξφ1 = φ2. The category K◦U satisfies the conditions (I1) and (I2) in 2.7.

For any presheaf F ′ on X ′, we have

(iPF ′)(U) = lim−→
(U ′,φ)∈obK◦

U

F ′(U ′).

Given an X-morphism ψ : U → X ′, which is necessarily etale, denote by Uψ
the etale X ′-scheme U with the structure morphism ψ. The subcategory

of K◦U consisting of objects (Uψ, idU ) (ψ ∈ HomX(U,X ′)) and the identity

morphisms of these objects is a full cofinal subcategory. It follows that

(iPF ′)(U) =
⊕

ψ∈HomX(U,X′)

F ′(Uψ).

When F ′ is a sheaf on X ′, we denote the sheaf (iPF ′)# by f!F ′. If f is

an open immersion j, then f! coincides with the functor j! defined in 5.4.

Proposition 5.5.1. Let f : X ′ → X be an etale morphism.

(i) f! is left adjoint to f∗.
(ii) Let

X ′ ×X Y
g′→ X ′

f ′ ↓ ↓ f
Y

g→ X

be a Cartesian diagram. For any sheaf F ′ on X ′, we have a canonical

isomorphism

f ′! g
′∗F ′

∼=→ g∗f!F ′.
(iii) Let h : X ′′ → X ′ be another etale morphism. We have (fh)! ∼= f!h!.

(iv) For any point x in X, let k(x) be a separable closure of k(x). We

have

(f!F
′)x̄ ∼=

⊕
x′∈X′⊗OX

k(x)

F ′x̄′ .

In particular, the functor f! is exact and faithful.
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Proof.

(i) For sheaves F ′ on X ′ and F on X , we have

Hom(f!F
′,F ) = Hom((iPF ′)#,F )

∼= Hom(iPF ′,F )

∼= Hom(F ′, iPF )

∼= Hom(F ′, f∗F ).

(ii) For any sheaf G on Y , since f is etale, we have a canonical isomor-

phism

f∗g∗G
∼=→ g′∗f

′∗G .

So we have

Hom(g∗f!F ′,G ) ∼= Hom(F ′, f∗g∗G )

∼= Hom(F ′, g′∗f
′∗G )

∼= Hom(f ′! g
′∗F ′,G ).

It follows that f ′! g
′∗F ′ ∼= g∗f!F ′.

(iii) follows from (fh)∗ ∼= h∗f∗ by adjunction.

(iv) follows from (ii) by taking g to be the canonical morphism

Spec k(x) → X . �

Suppose that f : X ′ → X is a separated etale morphism. Given a sheaf

F ′ on X , we construct a morphism

f!F
′ → f∗F ′

by adjunction from a morphism

F ′ → f∗f∗F ′

as follows. Let φ : U ′ → X ′ be an etale morphism. We have

(f∗f∗F ′)(U ′) ∼= F ′(U ′ ×X X ′).

Since f is separated, the graph

Γφ : U ′ → U ′ ×X X ′

of φ is a closed immersion. Since the projection U ′ ×X X ′ → U ′ is etale,

Γφ is etale. So Γφ is an open and closed immersion by 2.3.8. We define a

homomorphism

F ′(U ′) → F ′(U ′ ×X X ′)
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by mapping each section s ∈ F ′(U ′) to the section of F ′(U ′×XX ′) whose
restriction via Γφ is s, and whose restriction to the complement of Γφ is 0.

Recall that f!F ′ is the sheaf associated to the presheaf iPF ′ defined
by

(iPF ′)(U) =
⊕

ψ∈HomX (U,X′)

F ′(Uψ)

for any etale X-scheme U . The morphism f!F ′ → f∗F ′ is induced from

the morphism of presheaves

iPF ′ → f∗F ′

defined by the homomorphism⊕
ψ∈HomX(U,X′)

F ′(Uψ) → F ′(U ×X X ′)

that maps each section s ∈ F ′(Uψ) to the section of F ′(U ×X X ′) whose
restriction via Γψ is s, and whose restriction to the complement of Γψ is 0.

Proposition 5.5.2. Suppose that f : X ′ → X is an etale separated mor-

phism of finite type. Then for any sheaf F ′ on X ′, the canonical morphism

f!F
′ → f∗F ′

is injective. For any object U in Xet, a section s ∈ (f∗F ′)(U) lies in the

image of this morphism if any only if the support of s, considered as a

section in F ′(U ×X X ′), is proper over U .

Here we say that a closed subset of U ×X X ′ is proper over U if any

closed subscheme of U ×X X ′, whose underlying topological space is the

given closed subset, is proper over U .

Proof. Note that the map ψ �→ imΓψ defines a one-to-one correspon-

dence from the set HomX(U,X ′) to the set of open and closed subsets of

U ×X X ′ so that the restriction of the projection U ×X X ′ → U to them

are isomorphisms. (Confer 2.3.10 (ii).) From the above description of the

morphism iPF ′ → f∗F ′, one can verify that the morphism f!F ′ → f∗F ′

is injective. It is clear that any section s ∈ F ′(U ×XX ′) lying in the image

of the morphism iPF ′ → f∗F ′ of presheaves has proper support over U .

Using 1.7.12, one deduces that any section s ∈ F ′(U ×X X ′) lying in the

image of the morphism f!F ′ → f∗F ′ of sheaves has proper support over

U .

Let F be a closed subscheme of U ×X X ′ that is proper over U . Since

f is necessarily quasi-finite, F is finite over U by [Fu (2006)] 2.5.12 or
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[EGA] III 4.4.2. For any x ∈ U , let Ũx̄ be the strict localization of U at x̄.

Then Ũx̄ ×U F is finite over Ũx̄. Regard Ũx̄ ×U F as a closed subscheme of

Ũx̄ ×X X ′. Let x̄′1, . . . , x̄′k be all the points in Ũx̄ ×U F that lie above the

closed point of Ũx̄. By 2.8.14 (iii), there exist sections

Γψ′
i
: Ũx̄ → Ũx̄ ×X X ′ (i = 1, . . . , k)

of the projection Ũx̄ ×X X ′ → Ũx̄ such that Γψ′
i
map the closed point of

Ũx̄ to x̄′i. The images of Γψ′
i
are open and closed connected subsets of

Ũx̄ ×X X ′, and they are disjoint. Moreover, we have

Ũx̄ ×U F ⊂
k⋃
i=1

imΓψ′
i
.

Indeed, Ũx̄ ×U F − ⋃ki=1 imΓψ′
i
is a closed subset of Ũx̄ ×U F . Since F

is proper over U , the image of Ũx̄ ×U F −⋃ki=1 imΓψ′
i
in Ũx̄ is closed. If

it is nonempty, then this image contains the closed point of Ũx̄. This is

impossible since all the preimages x′i of the closed point of Ũx̄ in Ũx̄ ×U F
lie in

⋃k
i=1 imΓψ′

i
. Hence Ũx̄ ×U F −⋃ki=1 imΓψ′

i
is empty. By 1.10.1 (iv)

and 1.10.9, there exist an etale neighborhood Ux̄ of x̄ in U and sections

Γψi : Ux̄ → Ux̄ ×X X ′ (i = 1, . . . , k)

of the projection Ux̄ ×X X ′ → Ux̄ such that imΓψi are disjoint open and

closed subsets of Ux̄ ×X X ′, and

Ux̄ ×U F ⊂
k⋃
i=1

imΓψi .

Let ψi : Ux̄ → X ′ be the composite

Ux̄
Γψi→ Ux̄ ×X X ′ → X ′.

For any section s ∈ F ′(U ×X X ′) with the property s|U×XX′−F = 0, note

that s|Ux̄×XX′ lies in the image of the homomorphism⊕
ψ∈HomX(Ux̄,X′)

F ′(Ux̄,ψ) → F ′(Ux̄ ×X X ′)

described before 5.5.2. As Ux̄ (x ∈ U) form an etale covering of U , s lies in

the image of the morphism of sheaves f!F ′ → f∗F ′. �
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Let f : X ′ → X be a separated morphism of finite type and let F ′ be a

sheaf on X ′. Define a presheaf f!F ′ on X so that for any object U in Xet,

we have

(f!F
′)(U) = {s|s ∈ F ′(U ×X X ′) and the support of s is proper over U}.

Using 1.7.12, one can show that f!F ′ is a sheaf. We have a canonical

monomorphism

f!F
′ ↪→ f∗F ′.

If f is etale, then f! coincides with the functor defined at the beginning of

this section by 5.5.2. If f is proper, we have f! = f∗.

Proposition 5.5.3. Let f : X ′ → X and f ′ : X ′′ → X ′ be two separated

morphisms of finite type and let g = ff ′. Then we have an isomorphism of

functors

g! ∼= f!f
′
!

such that the following diagram commutes:
g! ∼= f!f

′
!

↓ ↓
g∗ ∼= f∗f ′∗.

Proof. Let U be an object in Xet and let F be a sheaf on X ′′. We need

to show that under the identification

(g∗F )(U) ∼= (f∗f ′∗F )(U),

the subset (g!F )(U) of (g∗F )(U) is identified with the subset (f!f
′
!F )(U)

of (f∗f ′∗F )(U). Let s ∈ F (U ×X X ′′) be a section lying in (f!f
′
!F )(U).

Then s lies in

(f∗f ′!F )(U) = (f ′!F )(U ×X X ′).
So the support of s is proper over U ×X X ′. On the other hand, s lies

in (f!f
′
∗F )(U). So if we consider s as a section of (f ′∗F )(U ×X X ′), its

support is proper over U . The support of s considered as a section of

(f ′∗F )(U ×X X ′) is the closure of the image of the support of s under the

morphism U ×X X ′′ → U ×X X ′. One deduces from these facts that the

support of s is proper over U . So s ∈ (g!F )(U).

Let s ∈ F (U ×XX ′′) be a section lying in (g!F )(U). Then the support

of s is proper over U . Since U ×X X ′ → U is separated, the support of s

is also proper over U ×X X ′. Hence s lies in (f ′! F )(U ×X X ′). Moreover,

the image of the support of s in U ×X X ′ is closed. So the support of

s considered as a section of (f ′!F )(U ×X X ′) coincides with image of the

support of s under the morphism U ×X X ′′ → U ×X X ′. Since the support

of s is proper over U , its image in U ×XX ′ is also proper over U . It follows

that s ∈ (f!f
′
!F )(U). �
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5.6 Etale Cohomology

([SGA 4] XVII 4.2.2–4.2.6.)

Let X be a scheme, and let F : SX → A be a left exact functor from the

category SX of sheaves of abelian groups on X to an abelian category A .

By 5.2.4 (i), we can define the right derived functors RiF (i ≥ 0) of F .

For any object U in Xet, the functor F �→ F (U) is left exact. Its

right derived functors are denoted by F �→ Hi(U,F ), or F �→ RiΓ(U,F ).

We call Hi(X,F ) the etale cohomology groups of F . Note that we have

Hi(U,F ) ∼= Hi(U,F |U ).
Let f : X ′ → X be a morphism of schemes. The functor F ′ �→ f∗F ′

is left exact. Its right derived functors are denoted by F ′ �→ Rif∗F ′. We

call Rif∗F ′ the higher direct images of F ′. Each Rif∗F ′ is the sheaf on

X associated to the presheaf U �→ Hi(U ×X X ′,F ′) for any U ∈ obXet.

Let A be a ring. The category of sheaves of A-modules on X has enough

injective objects. For any sheaf of A-modules G on X . The functors

F �→ HomA(G ,F ), F �→ H omA(G ,F )

are left exact. Their derived functors are denoted by

F �→ ExtiA(G ,F ), F �→ E xtiA(G ,F )

respectively. We often denote ExtiA(F ,G ) and E xtiA(F ,G ) by Exti(F ,G )

and E xti(F ,G ), respectively.

Lemma 5.6.1. Let F be a sheaf on a scheme X and let H i(F ) be the

presheaf defined by H i(F )(U) = Hi(U,F ) for any object U in Xet. Then

H i(F )+ = 0 for all i ≥ 1.

Proof. Let I · be an injective resolution of F . Then H i(F )(U) is the

i-th cohomology group of the complex I ·(U). So H i(F )# is the i-th

cohomology sheaf of the complex I ·. Hence H i(F )# = 0 for all i ≥ 1.

Since H i(F )+ are subsheaves of H i(F )#, we have H i(F )+ = 0 for all

i ≥ 1. �

Proposition 5.6.2. Let X be a scheme and let U = {Uα → U}α∈I be an

etale covering in Xet. For any sheaf F on X, we have biregular spectral

sequences

Eij2 = Ȟi(U,H j(F )) ⇒ Hi+j(U,F ),

Eij2 = Ȟi(U,H j(F )) ⇒ Hi+j(U,F ),
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where

Ȟi(U,−) = lim−→
U∈ob JU

Ȟi(U,−).

(See the discussion after 5.2.1 for the definition of JU ).

Proof. If I is an injective sheaf, then one can show that it is an injective

object in the category of presheaves. So we have Ȟj(U,I ) = 0 for all j ≥ 1

by 5.1.1. Let I · be an injective resolution of F . Consider the bicomplex

C·(U,I ·). We have

Hj(C·(U,I i)) = Ȟj(U,I i) =

{
Γ(U,I i) if j = 0,

0 if j ≥ 1.

So the spectral sequence

Eij2 = Hi
IIH

j
I (C

·(U,I ·)) ⇒ Hi+j(C·(U,I ·))

degenerates and we have

Hi(C·(U,I ·)) ∼= Hi(Γ(U,I ·)) ∼= Hi(U,F ).

The spectral sequence

Eij2 = Hi
IH

j
II(C

·(U,I ·)) ⇒ Hi+j(C·(U,I ·))

can be identified with

Eij2 = Ȟi(U,H j(F )) ⇒ Hi+j(U,F ).

Taking direct limit, we get the spectral sequence

Eij2 = Ȟi(U,H j(F )) ⇒ Hi+j(U,F ).
�

Corollary 5.6.3. We have a canonical isomorphism Ȟ1(U,F ) ∼=
H1(U,F ) and a canonical monomorphism Ȟ2(U,F ) ↪→ H2(U,F ).

Proof. We have

Ȟ0(U,H j(F )) ∼= H j(F )+(U) = 0

for all j ≥ 1 by 5.6.1. We then use the exact sequence

0 → E10
2 → H1(U,F ) → E01

2 → E20
2 → H2(U,F )

in [Fu (2006)] 2.2.3 deduced from the second spectral sequence in 5.6.2. �
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A sheaf F on a scheme X is called flasque if for any etale covering

U = {Uα → U}α∈I in Xet, we have Ȟi(U,F ) = 0 for all i ≥ 1. By 5.6.3,

we have

H1(U,F ) ∼= Ȟ1(UF ) ∼= lim−→
U∈ob JU

Ȟ1(U,F ) = 0

for any U ∈ obXet and any flasque sheaf F on X .

Proposition 5.6.4. Let

0 → F ′ → F → F ′′ → 0

be an exact sequence of sheaves on a scheme X.

(i) If F ′ is flasque, then the sequence is exact in the category of

presheaves.

(ii) If F ′ and F are flasque, then F ′′ is flasque.

(iii) If the sequence splits and F is flasque, then F ′ and F ′′ are flasque.
(iv) Injective sheaves are flasque.

Proof. We prove (i) and leave the rest to the reader. For any object U

in Xet, we have a long exact sequence

0 → F ′(U) → F (U) → F ′′(U) → H1(U,F ′) → · · · .
If F ′ is flasque, then H1(U,F ′) = 0 and hence the sequence

0 → F ′(U) → F (U) → F ′′(U) → 0

is exact. �

Proposition 5.6.5. Let f : X ′ → X be a morphism of schemes.

(i) If F ′ is a flasque sheaf on X ′, then f∗F ′ is flasque.

(ii) Let

0 → F ′ → F → F ′′ → 0

be an exact sequence of sheaves on X ′. If F ′ is flasque, then

0 → f∗F ′ → f∗F → f∗F ′′ → 0

is exact.

Proof.

(i) Let U = {Uα → U} be an etale covering in Xet. Then f∗U =

{Uα ×X X ′ → U ×X X ′} is an etale covering in X ′et. We have

Ȟi(U, f∗F ′) ∼= Ȟi(f∗U,F ′).

 E
ta

le
 C

oh
om

ol
og

y 
T

he
or

y 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

O
N

A
SH

 U
N

IV
E

R
SI

T
Y

 o
n 

11
/2

7/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



February 6, 2015 9:48 ws-book9x6 Etale Cohomology Theory... etale page 213

Etale Cohomology 213

If F ′ is flasque, we have Ȟi(f∗U,F ′) = 0 for all i ≥ 1. So Ȟi(U, f∗F ′) = 0

for all i ≥ 1. Hence f∗F ′ is flasque.
(ii) By 5.6.4 (i), the sequence

0 → F ′ → F → F ′′ → 0

is exact in the category of presheaves. So

0 → f∗F ′ → f∗F → f∗F ′′ → 0

is exact in the category of presheaves and hence exact in the category of

sheaves. �

Corollary 5.6.6.

(i) If F is a flasque sheaf on a scheme X, then Hi(U,F ) = 0 for all

i ≥ 1 and all objects U in Xet. So we can use flasque resolutions to calculate

Hi(U,−).

(ii) Let f : X ′ → X be a morphism of schemes. For all flasque sheaves

F ′ on X ′, we have Rif∗F ′ = 0 for all i ≥ 1. So we can use flasque

resolutions to calculate Rif∗.

Proof. We prove (i) and leave it for the reader to prove (ii). Let I · be
an injective resolution of F , and let

Z i = ker (I i → I i+1).

Then we have short exact sequences

0 → F → I 0 → Z 1 → 0,

0 → Z 1 → I 1 → Z 2 → 0,
...

Using 5.6.4 (ii) and (iv), one can show that F = Z 0, Z 1, · · · are flasque.

By 5.6.4 (i), the following sequences are exact:

0 → F (U) → I 0(U) → Z 1(U) → 0,

0 → Z 1(U) → I 1(U) → Z 2(U) → 0,
...

So the sequence

I 0(U) → I 1(U) → · · ·
is exact. Hence Hi(U,F ) = 0 for all i ≥ 1. �
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Proposition 5.6.7. Let F be a sheaf on a scheme X. The following con-

ditions are equivalent:

(i) For any object U in Xet, we have Hi(U,F ) = 0 for all i ≥ 1.

(ii) For any object U in Xet, we have Ȟi(U,F ) = 0 for all i ≥ 1.

(iii) For any etale covering U = {Uα → U}α∈I in Xet, we have

Ȟi(U,F ) = 0 for all i ≥ 1, that is, F is flasque.

Proof.

(i)⇒(iii) Suppose Hj(U,F ) = 0 for all U ∈ obXet and all j ≥ 1. Then

H j(F ) = 0 for all j ≥ 1. The spectral sequence

Eij2 = Ȟi(U,H j(F )) ⇒ Hi+j(U,F )

degenerates and we have

Ȟi(U,F ) ∼= Ȟi(U,H 0(F )) ∼= Hi(U,F ) = 0

for all i ≥ 1.

(iii)⇒(ii) is clear.

(ii)⇒(i) Let us prove H j(F ) = 0 for all j ≥ 1 by induction on j. For

any object V in Xet, by 5.6.3, we have

H 1(F )(V ) = H1(V,F ) ∼= Ȟ1(V,F ) = 0.

Suppose we have shown H j(F ) = 0 for all 1 ≤ j ≤ n. Consider the

spectral sequence

Eij2 = Ȟi(U,H j(F )) ⇒ Hi+j(U,F ).

We have

E0j
2 = H j(F )+(U) = 0

for all j ≥ 1 by 5.6.1 and Eij2 = 0 for all 1 ≤ j ≤ n. This implies that

Ȟn+1(U,F ) ∼= Hn+1(U,F )

by [Fu (2006)] 2.2.3. So Hn+1(U,F ) = 0 and hence H n+1(F ) = 0. �

Let X be a scheme and let A be a ring. Injective objects in the category

of sheaves of A-modules on X are called injective sheaves of A-modules.

Using the same argument as in the proof of 5.1.1 by replacing Z by A,

one can show that injective sheaves of A-modules are flasque. So for any

sheaf F of A-modules on X , we can also use resolutions of F by injective

sheaves of A-modules to calculate Hi(U,F ) and Rif∗F for any U ∈ obXet

and any morphism f : X → Y . We can define A-module structures on the

groups Hi(U,F ) and the sheaves Rif∗F .
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We say that a sheaf F of A-modules on X is flat if the stalks of F at

all geometric points of X are flat A-modules. This is equivalent to saying

that the functor F ⊗A − is exact in the category of sheaves of A-modules.

Lemma 5.6.8. Let X be a scheme, A a ring, F a sheaf of A-modules,

and I an injective sheaf of A-modules. If F is flat, then H omA(F ,I )

is injective. In general, H omA(F ,I ) is flasque.

Proof. We have

HomA(−,H omA(F ,I )) ∼= HomA(F ⊗A −,I ).

If F is flat and I is injective, then the functor HomA(F ⊗A−,I ) is exact.

So the functor HomA(−,H omA(F ,I )) is exact, and hence H omA(F ,I )

is an injective sheaf of A-modules. This implies that H omA(F ,I ) is

flasque.

For any etale morphism f : U → X , let AU = f!A, where A on the

right-hand side denotes the constant sheaf on U associated to A, that is,

the sheaf associated to the constant presheaf V �→ A for any etale U -scheme

V . Let U = {Uα → U} be an etale covering of U . As in the proof of 5.1.1,

we have an exact sequence

0 ← AU
δ−1←
⊕
α0

AUα0

δ0←
⊕
α0,α1

AUα0α1

δ1← · · · .

For convenience, we write the above sequence as

A·U → AU → 0.

Since I is an injective sheaf of A-modules, the sequence

0 → H omA(AU ,I ) → H omA(A
·
U,I )

is exact. Since AU and AUα0...αi
are flat sheaves, H omA(A

·
U,I ) is an

injective resolution of the injective sheaf H omA(AU ,I ) in the category of

sheaves of A-modules. So we have

Hi(HomA(F ,H omA(A
·
U,I ))) ∼= Exti(F ,H omA(AU ,I )) = 0

for all i ≥ 1. On the other hand, we have

Hi(HomA(F ,H omA(A
·
U,I ))) ∼= Hi(HomA(A

·
U,H omA(F ,I )))

∼= Hi(C·(U,H omA(F ,I )))

∼= Ȟi(U,H omA(F ,I )).

So we have Ȟi(U,H omA(F ,I )) = 0 for all i ≥ 1. Hence H omA(F ,I )

is flasque. �
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Corollary 5.6.9.

(i) Let f : X ′ → X be a morphism of schemes and let F ′ be a sheaf on

X ′. We have a biregular spectral sequence

Epq2 = Hi(X,Rjf∗F ′) ⇒ Hi+j(X ′,F ′).

(ii) Let f ′ : X ′′ → X ′ and f : X ′ → X be morphisms of schemes and

let F ′′ be a sheaf on X ′′. We have a biregular spectral sequence

Eij2 = Rif∗Rjf ′∗F
′′ ⇒ Ri+j(ff ′)∗F ′′.

(iii) Let F and G be sheaves of A-modules on a scheme X. We have a

biregular spectral sequence

Eij2 = Hi(X, E xtiA(F ,G )) ⇒ Exti+jA (F ,G ).

Proof. This follows from 5.6.5, 5.6.6, 5.6.8, [Fu (2006)] 2.2.10 or

[Grothendieck (1957)] 2.4.1. �

Let X be a scheme and let {Uα → X} be an etale covering of X . If I

is an injective sheaf, the proof of 5.6.8 shows that

0 → H om(
⊕
α0

ZUα0
,I ) → H om(

⊕
α0,α1

ZUα0α1
,I ) → · · ·

is an injective resolution of H om(ZX ,I ). Denote by πα0...αn the canonical

morphism

Uα0...αn = Uα0 ×X · · · ×X Uαn → X.

This shows that

0 →
∏
α0

πα0∗π
∗
α0

I →
∏
α0,α1

πα0α1∗π
∗
α0α1

I → · · ·

is an injective resolution of I .

Let f : X → Y be a morphism, let F be a sheaf on X , and let I · be
an injective resolution of F . Consider the bicomplex

...
...

↑ ↑
0 → ∏α0

πα0∗π∗α0
I1 → ∏α0,α1

πα0α1∗π∗α0α1
I1 → · · ·

↑ ↑
0 → ∏α0

πα0∗π∗α0
I0 → ∏α0,α1

πα0α1∗π∗α0α1
I0 → · · ·

↑ ↑
0 0
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Applying f∗ to this bicomplex and analyzing the spectral sequences associ-

ated to the resulting bicomplex, we get the following.

Proposition 5.6.10. Notation as above. We have a biregular spectral se-

quence

Eij2 ⇒ Ri+jf∗F ,

where Eij2 is the i-th cohomology sheaf of the complex

0 →
∏
α0

Rj(fπα0)∗π
∗
α0

F →
∏
α0,α1

Rj(fπα0α1)∗π
∗
α0α1

F · · · .

Let i : Y → X be a closed immersion and let j : U = X − Y ↪→ X be

its complement. For any sheaf F on X , let

ΓY (X,F ) = {s ∈ Γ(X,F )| the support of s is contained in Y }.
The functor ΓY (X,−) is left exact. Denote its right derived functors by

Hq
Y (X,−) or RqΓY (X,−). Let Rqi! be the right derived functors of i!.

Proposition 5.6.11. Notation as above.

(i) We have a long exact sequence

· · · → Hq
Y (X,F ) → Hq(X,F ) → Hq(U,F ) → · · · .

(ii) We have an exact sequence

0 → i∗i!F → F → j∗j∗F → i∗R1i!F → 0

and isomorphisms

Rqj∗(j∗F ) ∼= i∗(Rq+1i!F ) (q ≥ 1).

(iii) We have a biregular spectral sequence

Epq2 = Hp(Y,Rqi!F ) ⇒ Hp+q
Y (X,F ).

Proof. Denote the constant sheaves on U and on X associated to Z both

by Z. Note that j!Z is a subsheaf of Z. For any injective sheaf I on X ,

the canonical homomorphism

Hom(Z,I ) → Hom(j!Z,I )

is surjective. So the restriction

Γ(X,I ) → Γ(U,I )

is surjective. Similarly, for any etale X-scheme V , the restriction

I (V ) → I (U ×X V )
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is surjective. So the morphism

I → j∗j∗I

is surjective. Let I · be an injective resolution of F . We have a short exact

sequence of complexes

0 → ΓY (X,I
·) → Γ(X,I ·) → Γ(U,I ·) → 0.

Taking the long exact sequence of cohomology groups associated to this

short exact sequence, we get (i). We have a short exact sequence of com-

plexes

0 → i∗i!I · → I · → j∗j∗I · → 0.

Taking the long exact sequence of cohomology sheaves associated to this

short exact sequence, we get (ii). Since the functor i∗ is exact and is left

adjoint to i!, the functor i! maps injective sheaves to injective sheaves.

Moreover, we have

Γ(Y, i!−) = ΓY (X,−).

By [Fu (2006)] 2.2.10 or [Grothendieck (1957)] 2.4.1, we have a biregular

spectral sequence

Epq2 = Hp(Y,Rqi!F ) ⇒ Hp+q
Y (X,F ). �

Proposition 5.6.12 (Excision Theorem). Let f : X ′ → X be an etale

morphism, Y → X a closed immersion, Y ′ = X ′ ×X Y , and F a sheaf on

X. Suppose that the projection Y ′ → Y is an isomorphism. Then we have

Hq
Y (X,F ) ∼= Hq

Y ′(X
′, f∗F )

for all q.

Proof. Since f! is left adjoint to f
∗ and is exact, f∗ maps injective sheaves

to injective sheaves. Moreover f∗ is exact. To prove our assertion, it suffices

to prove that the canonical homomorphism

ΓY (X,F ) → ΓY ′(X ′, f∗F )

is bijective for any sheaf F on X . Suppose s ∈ ΓY (X,F ) and s|X′ = 0. We

have s|X−Y = 0. Since X − Y ↪→ X and X ′ → X form an etale covering

of X , we have s = 0 and hence the above homomorphism is injective.

Suppose s′ ∈ ΓY ′(X ′, f∗F ). Let us prove that (s′, 0) lies in the kernel of

the homomorphism

F (X ′) × F (X − Y )
d0→ F (X ′ ×X X ′)× F (X ′ ×X (X − Y ))

× F ((X − Y )×X X ′)× F ((X − Y )×X (X − Y ))
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in the Čech complex for the etale covering {X − Y ↪→ X, X ′ → X}, and
hence there exists s ∈ Γ(X,F ) such that s|X′ = s′ and s|X−Y = 0. This

shows that the above homomorphism is surjective. The nontrivial part is

to verify that s′ is mapped to the same section under the restrictions

p∗i : F (X ′) → F (X ′ ×X X ′) (i = 1, 2)

defined by the projections pi : X
′×XX ′ → X ′. Note that X ′×XX ′ can be

covered by the open subscheme (X ′− Y ′)×(X−Y ) (X
′− Y ′) and the closed

subscheme Y ′×Y Y ′. It is clear that p∗i (s′) vanish on (X ′−Y ′)×(X−Y )(X
′−

Y ′). Since Y ′ → Y is an isomorphism, the two projections Y ′ ×Y Y ′ → Y ′

are the same. So p∗1(s′) and p∗2(s′) have the same germ at every geometric

point of Y ′ ×Y Y ′. We thus have p∗1(s
′) = p∗2(s

′). �
Let X be a scheme and let P = {γs : s → X} be a set of geometric

points of X such that for every point x in X , there exists a geometric point

γs in P with image x, where s are spectra of separably closed fields. For

any sheaf F on X , let

C 0(F ) =
∏
s∈P

γs∗γ∗sF .

The canonical morphism F → C 0(F ) is injective. Let C−1(F ) = F and

let d−1 : C−1(F ) → C 0(F ) be this monomorphism. Suppose we have

defined an exact sequence

0 → F
d−1→ C 0(F )

d0→ · · · dn−1→ C n(F )

for some n ≥ 0. We define

C n+1(F ) = C 0(coker (C n−1(F )
dn−1→ C n(F )))

and define dn+1 : C n(F ) → C n+1(F ) to be the composite

C n(F ) → coker (C n−1(F )
dn−1→ C n(F )) → C 0(coker (C n−1(F )

dn−1→ C n(F ))).

Then we get a resolution

0 → C 0(F )
d0→ · · · dn−1→ C n(F )

dn→ C n+1(F )
dn+1→ · · ·

of F . We denote it by C ·(F ) and call it the Godement resolution of F .

Let A be a ring,

K · = (· · · → Ki d
i→ Ki+1 → · · · )

an acyclic complex of A-modules, and Zi = ker di. Then we have short

exact sequences

0 → Zi → Ki → Zi+1 → 0.
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We say K · is split if all these short exact sequences are split.

Proposition 5.6.13.

(i) The functors F �→ C n(F ) and F �→ im (C n−1(F )
dn−1→ C n(F ))

are exact for all n ≥ 0.

(ii) C n(F ) (n ≥ 0) are flasque.

(iii) The stalk of the complex

0 → F → C ·(F )

at every geometric point s in P is split.

Proof.

(i) For any object U in Xet and any geometric point s in P , s×X U is

a disjoint union of copies of s, and we have

(γs∗γ∗sF )(U) = (γ∗sF )(s×X U).

It follows that γs∗γ∗s is an exact functor and hence C 0(−) is an exact

functor. Suppose that

0 → F → G → H → 0

is an exact sequence. Applying the snake lemma to the commutative dia-

gram

0 → F → G → H → 0

↓ ↓ ↓
0 → C 0(F ) → C 0(G ) → C 0(H ) → 0,

and using the fact that the vertical arrows are monomorphisms, we get an

exact sequence

0→coker (F→C 0(F))→coker (G→C 0(G ))→coker (H→C 0(H ))→0.

Suppose we have proved that

0→Cn(F)→Cn(G )→Cn(H )→0,

0→coker (Cn−1(F)→Cn(F))→coker (Cn−1(G )→Cn(G ))→coker (Cn−1(H )→Cn(H ))→0

are exact. Applying C 0(−) to the second exact sequence, we get an exact

sequence

0 → C n+1(F ) → C n+1(G ) → C n+1(H ) → 0.

Applying the snake lemma to the commutative diagram

0→ coker(Cn−1(F)→Cn(F)) → coker(Cn−1(G )→Cn(G )) → coker(Cn−1(H )→Cn(H )) → 0

↓ ↓ ↓
0→ Cn+1(F) → Cn+1(G ) → Cn+1(H ) → 0
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and using the fact that vertical arrows are monomorphisms, we get an exact

sequence

0→coker (Cn(F)→Cn+1(F))→coker (Cn(G )→Cn+1(G ))→coker (Cn(H )→Cn+1(H ))→0.

So the functors F �→ C n(F ) and F �→ coker (C n−1(F ) → C n(F )) are

exact for all n ≥ 0. We have

coker (C n−1(F ) → C n(F )) ∼= im (C n(F ) → C n+1(F )).

So the functors F �→ im (C n(F ) → C n+1(F )) are exact for all n ≥ 0. For

n = −1, this functor can be identified with the identity functor and hence

is exact.

(ii) It is enough to show that C 0(F ) is flasque. For any s ∈ P , the

functor Γ(s,−) is exact and hence Hi(s,−) = 0 for all i ≥ 1. So any

sheaf on s is flasque. By 5.6.5 (i), γs∗γ∗sF is flasque. This implies that

C 0(F ) =
∏
s∈P γs∗γ

∗
sF is flasque.

(iii) We first prove the following fact: For any morphism f : X → Y

and any sheaf F on Y , the diagram

f∗F → f∗(f∗f∗F )

id‖ ‖id
f∗F ← (f∗f∗)f∗F

commutes, where the horizontal arrows are induced by the canonical mor-

phisms id
adj→ f∗f∗ and f∗f∗

adj→ id, respectively. Indeed, the composite

f∗F → f∗(f∗f∗F ) = (f∗f∗)f∗F → f∗F

is induced by the composite

F
adj→ f∗f∗F

id→ f∗f∗F

by adjunction. It is clear that id : f∗F → f∗F is also induced by the

morphism F
adj→ f∗f∗F by adjunction. So the above diagram commutes.

Let t ∈ P . Consider the morphism γ∗t C
0(F ) → γ∗tF defined by com-

posing the projection

γ∗t C
0(F ) = γ∗t

( ∏
s∈P

γs∗γ∗sF
)
→ γ∗t (γt∗γ

∗
tF )

with the canonical morphism

γ∗t (γt∗γ
∗
t F ) = (γ∗t γt∗)γ

∗
t F → γ∗t F .

By the above discussion, this morphism is a left inverse of the stalk at t of

the morphism F → C 0(F ). It follows that the short exact sequence

0 → Ft → C 0(F )t → ker (C 1(F ) → C 2(F ))t → 0
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is split. Applying this result to coker (C n−2(F ) → C n−1(F )), we see that

the short exact sequences

0→ker(Cn(F)→Cn+1(F))t→Cn(F)t→ker (Cn+1(F)→Cn+2(F))t→0

are split for all n. �

Let S be a scheme. For every s ∈ S, fix an algebraic closure k(s) of the

residue field k(s). For every S-scheme X locally of finite type, let

PX =
⋃
s∈S

HomS(Spec k(s), X)

be the set of geometric points above the geometric points Spec k(s) → S

in S. For every sheaf F on X , we define a complex of sheaves C ·(F ) and

a morphism F → C 0(F ) as before using PX instead of P . Then C ·(F )

is resolution of F (see the discussion below) and 5.6.13 still holds. We

also call C ·(F ) the Godement resolution of F . This resolution has the

advantage that it is functorial, that is, if f : X ′ → X is an S-morphism

between S-schemes locally of finite type, then for any sheaf F on X , we

have a canonical morphism of complexes

C ·(F ) → f∗C ·(f∗F ).

Let us prove that the morphism F → C 0(F ) is injective. Let π : U →
X be an object inXet, and let ξ ∈ F (U) such that its image in C 0(F )(U) is

0. We need to show ξ = 0. Let f : X → S be the structure morphism. For

every u ∈ U such that u is closed in the fiber (fπ)−1(fπ(u)), k(u) is a finite

extension of k(f(π(u))). So there exists an S-morphism Spec k(fπ(u)) → U

whose image is u. Composing this morphism with π, we get a geometric

point in PX . Since the image of ξ in

C 0(F )(U) =
∏
t∈PX

(γt∗γ∗t F )(U)

is 0, the germ of ξ at the geometric point ū is 0. So there exists an open

neighborhood Vu of u in U such that ξ|Vu = 0. Let V =
⋃
u∈U Vu, where

u goes over all points in U which are closed in the fibers (fπ)−1(fπ(u)).
Then V is an open subset of U and ξ|V = 0. To prove ξ = 0, it suffices to

show V = U . For any s ∈ S, (fπ)−1(s) is a k(s)-scheme locally of finite

type, and V ∩ (fπ)−1(s) is an open subset containing all the closed points

of (fπ)−1(s). It follows that V ∩ (fπ)−1(s) = (fπ)−1(s).
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5.7 Calculation of Etale Cohomology

([SGA 4] VII 4, VIII 1, 2, [SGA 4 1
2 ] Arcata I 5, III 1.)

Proposition 5.7.1. Let f : X → Y be a finite surjective radiciel mor-

phism. For any sheaf F on Y , we have Hi(Y,F ) ∼= Hi(X, f∗F ).

Proof. Use 5.3.10. �

Corollary 5.7.2.

(i) Let X be a scheme. Then Hi(X,F ) ∼= Hi(Xred,F |Xred
) for any

sheaf F on X.

(ii) Let X be a scheme over a field K and let L be a finite purely insep-

arable extension of K. Then Hi(X,F ) ∼= Hi(X ⊗K L,F |X⊗KL) for any

sheaf F on X.

Proposition 5.7.3. Let A be a strict henselian local ring. For any sheaf

F on X = SpecA, we have Hi(X,F ) = 0 for all i ≥ 1.

Proof. Let s be the closed point of X . We have Γ(X,F ) = Fs. Hence

Γ(X,−) is an exact functor. Our assertion follows. �

Proposition 5.7.4. Let f : X → Y be a finite morphism and let F be

a sheaf on X. We have Rif∗F = 0 for all i ≥ 1, and Hi(Y, f∗F ) ∼=
Hi(X,F ) for all i.

Proof. The first assertion follows from the fact that f∗ is exact (5.3.7),

and the second assertion follows from the first one and 5.6.9 (i). �
Let X be a scheme. For any etale sheaf F on X , define a sheaf i∗F

with respect to the Zariski topology by

(i∗F )(V ) = F (V )

for any open subset V of X . It is clear that i∗ is left exact. For every

Zariski presheaf G on X , define an etale presheaf iPG by

(iPG )(U) = G (im (U → X))

for any object U in Xet. Let i∗G = (iPG )# be the sheaf associated to

iPG . We have a one-to-one correspondence

Hom(G , i∗F ) ∼= Hom(i∗G ,F ).

So i∗ is left adjoint to i∗. Let us prove i∗ is exact. Given an exact sequence

of Zariski sheaves

0 → G ′ → G → G ′′ → 0,
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let C be the Zariski presheaf defined by

C (U) = coker(G (U) → G ′′(U)).

Then

0 → iPG ′ → iPG → iPG ′′ → iPC → 0

is an exact sequence of presheaves. So

0 → i∗G ′ → i∗G → i∗G ′′ → i∗C → 0

is an exact sequence of sheaves. To prove that i∗ is exact, it suffices to show

(iPC )# = 0. This follows from the fact that the Zariski sheaf associated to

the Zariski presheaf C is 0. So i∗ maps injective etale sheaves to injective

Zariski sheaves. For any etale sheaf F on X , we have a biregular spectral

sequence

Epq2 = Hp
Zar(X,R

qi∗F ) ⇒ Hp+q
et (X,F ).

Proposition 5.7.5. Let X be a scheme, M a quasi-coherent OX -module,

and Met the etale sheaf defined by U �→ Γ(U, π∗M) for any object π : U →
X in Xet. We have Hq

Zar(X,M ) ∼= Hq
et(X,Met) for all q.

Proof. It suffices to show that Rqi∗Met = 0 for any q ≥ 1. Note

that Rqi∗Met is the Zariski sheaf associated to the Zariski presheaf de-

fined by U �→ Hq
et(U,Met) for open subsets U of X . So it suffices to

show Hq
et(U,Met) = 0 for any q ≥ 1, any affine scheme U , and any

quasi-coherent OU -module M . By 5.7.6 below, for any etale covering

U = {Uα → U}α∈I with I being finite and with U and each Uα being

affine, we have Ȟq(U,Met) = 0 for all q ≥ 1. So we have

Ȟq(U,Met) ∼= lim−→
U

Ȟq(U,Met) = 0

for all q ≥ 1. We have

H1
et(U,Met) ∼= Ȟ1(U,Met)

by 5.6.3. So we have H1
et(U,Met) = 0. Suppose we have shown that

Hq
et(U,Met) = 0 for any 1 ≤ q ≤ n. Consider the biregular spectral

sequence

Epq2 = Ȟp
et(U,H

q(Met)) ⇒ Hp+q
et (U,Met)

in 5.6.2. We have

Ȟp
et(U,H

q(Met)) = lim−→
U

Ȟp(U,H q(Met)),
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where U goes over etale coverings U = {Uα → U}α∈I of U with I being

finite and with each Uα being affine. Each Uα0...αn is affine. So

H q(Met)(Uα0...αn) = Hq
et(Uα0...αn ,Met) = 0

for any 1 ≤ q ≤ n. Hence Ȟp(U,H q(Met)) = 0 and Epq2 = 0 for any p and

1 ≤ q ≤ n. We have an exact sequence

0 → En+1,0
2 → Hn+1

et (U,Met) → E0,n+1
2

by [Fu (2006)] 2.2.3. Moreover, we have

E0,n+1
2 = Ȟ0

et(U,H
n+1(Met)) = H n+1(Met)

+(U) = 0

by 5.6.1. So we have

Hn+1
et (U,Met) ∼= En+1,0

2 = Ȟn+1
et (U,Met) = 0. �

Lemma 5.7.6. Let A→ B be a faithfully flat homomorphism of rings and

let M be an A-module. Then the sequence

0 →M
d−1→ M ⊗A B d0→M ⊗A B ⊗A B d1→M ⊗A B ⊗A B ⊗A B d2→ · · ·

is exact, where

dn(x ⊗ b0 ⊗ · · · ⊗ bn) =

n+1∑
i=0

(−1)ix⊗ b0 ⊗ · · · ⊗ bi−1 ⊗ 1⊗ bi ⊗ · · · ⊗ bn.

Proof. Since B is faithfully flat over A, it suffices to prove that the

sequence is exact after tensoring with B, that is, the sequence

0→M⊗AB
d−1→ M⊗AB⊗ABd0→M⊗AB⊗AB⊗ABd1→M⊗AB⊗AB⊗AB⊗ABd2→···

is exact, where

dn(x⊗ b0⊗· · ·⊗ bn⊗ b) =
n+1∑
i=0

(−1)ix⊗ b0⊗· · ·⊗ bi−1⊗ 1⊗ bi⊗· · ·⊗ bn⊗ b.

Define

Dn :M ⊗A B⊗(n+2) →M ⊗A B⊗(n+1)

by

Dn(x⊗ b0 ⊗ · · · ⊗ bn ⊗ b) = x⊗ b1 ⊗ · · · ⊗ bn ⊗ b0b.

Then

dn−1Dn +Dn+1dn = id.

Our assertion follows. �
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Proposition 5.7.7. Let X be a scheme and let O∗Xet
be the etale sheaf

defined by U �→ OU (U)∗ for any object U in Xet. We have

H1
et(X,O

∗
Xet

) ∼= H1
Zar(X,O

∗
X) ∼= Pic (X).

Proof. It is known that H1
Zar(X,O

∗
X) ∼= Pic (X) ([Fu (2006)] 2.3.12). By

[Fu (2006)] 2.2.3 applied to the spectral sequence

Epq2 = Hp
Zar(X,R

qi∗O∗Xet
) ⇒ Hp+q

et (X,O∗Xet
),

we have an exact sequence

0 → H1
Zar(X,O

∗
X) → H1

et(X,O
∗
Xet

) → H0
Zar(X,R

1i∗O∗Xet
).

To prove our assertion, it suffices to show that the homomorphism

H1
et(X,O

∗
Xet

) → H0
Zar(X,R

1i∗O∗Xet
)

is 0. Since R1i∗O∗Xet
is the Zariski sheaf associated to the Zariski presheaf

V �→ H1
et(V,O

∗
Xet

) for any open subset V of X , it suffices to show that for

any element ξ ∈ H1
et(X,O

∗
Xet

), there exists an open covering {Vλ} of X

such that the image of ξ under the canonical homomorphism

H1
et(X,O

∗
Xet

) → H1
et(Vλ,O

∗
Xet

)

is 0 for every λ. The problem is local. So we may assume that X is affine.

We have

H1
et(X,O

∗
Xet

) ∼= Ȟ1
et(X,O

∗
Xet

) ∼= lim−→
U

Ȟ1
et(U,O

∗
Xet

),

where U goes over the family of etale coverings of the form U = {Uα →
X}α∈I such that I is finite and Uα are affine. Suppose that an element

ξ ∈ H1
et(X,O

∗
Xet

) is represented by the image of an element

(ξαβ) ∈ ker
(∏
α,β

O∗(Uαβ) →
∏
α,β,γ

O∗(Uαβγ)
)
= Ȟ1(U,O∗Xet

).

The X-scheme U =
∐
α∈I Uα is quasi-compact and faithfully flat over X .

Let

p : U → X, pi : U ×X U → U (i = 1, 2),

pij : U ×X U ×X U → U ×X U (1 ≤ i < j ≤ 3)

be the projections. We have

U ×X U =
∐
α,β

Uαβ , U ×X U ×X U =
∐
α,β,γ

Uαβγ .
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Define an isomorphism σ : p∗1OU
∼=→ p∗2OU so that on each Uαβ, the following

diagram commutes:

p∗1OU |Uαβ σ→ p∗2OU |Uαβ
∼= ↓ ↓ ∼=

OUαβ
ξαβ→ OUαβ ,

where the vertical arrows are the canonical isomorphisms, and the bottom

horizontal arrow is the multiplication by ξαβ ∈ O∗(Uαβ). Since (ξαβ) lies

in the kernel of the homomorphism
∏
α,β O∗(Uαβ) →

∏
α,β,γ O∗(Uαβγ) in

the Čech complex, we have

p∗13(σ) ∼= p∗23(σ) ◦ p∗12(σ).
By 1.6.1 (ii), there exist a quasi-coherent OX -module L and an isomor-

phism τ : p∗L
∼=→ OU such that σ ◦ p∗1τ = p∗2τ . By 1.6.6, L is an invertible

OX -module. So there exists an open covering {Vλ} of X such that L |Vλ is

isomorphic to the trivial invertible OVλ -module for each λ. One can check

that the image of ξ in each Ȟ1
et(Vλ,O

∗
Xet

) is 0. �

Let K be a field. Choose a separable closure Ks of K. It defines a

geometric point s : SpecKs → SpecK. The galois group Gal(Ks/K) acts

on Ks on the left, and hence on SpecKs on the right. For any sheaf F

on SpecK, Gal(Ks/K) acts on the stalk Fs on the left. The action is

continuous with respect to the discrete topology on Fs. Indeed, we have

Fs = lim−→
K′

F (SpecK ′),

whereK ′ goes over the set of finite extensions ofK contained inKs, and the

open subgroup Gal(Ks/K
′) of Gal(Ks/K) acts trivially on F (SpecK ′).

Proposition 5.7.8. Notation as above. The functor F �→ Fs defines an

equivalence between the category of etale sheaves on SpecK and the category

of Gal(Ks/K)-modules. We have

Hq(SpecK,F ) ∼= Hq(Gal(Ks/K),Fs)

for all q.

Proof. Let K ′ be a finite separable extension of K contained in Ks. We

claim that

F (SpecK ′) ∼= FGal(Ks/K
′)

s
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for any sheaf F on SpecK. We have

Fs = lim−→
L

F (SpecL), Gal(Ks/K
′) = lim←−

L

Gal(L/K ′),

where L goes over the set of finite galois extensions of K ′ contained in Ks.

Given α ∈ F
Gal(Ks/K

′)
s , let L be a finite galois extension of K ′ contained

in Ks such that α ∈ F (SpecL). Note that Gal(Ks/K
′) acts on F (SpecL)

via the finite quotient Gal(L/K ′) and α is invariant under the action of

Gal(L/K ′). It follows that α lies in the kernel of the homomorphism

F (SpecL)
d0→ F (Spec (L⊗K′ L))

in the Čech complex. Since the sequence

0 → F (SpecK ′) → F (SpecL)
d0→ F (Spec (L ⊗K′ L))

is exact, we have α ∈ F (SpecK ′). So we have F
Gal(Ks/K

′)
s ⊂ F (SpecK ′).

It is clear that F (SpecK ′) ⊂ F
Gal(Ks/K

′)
s . So F (SpecK ′) = F

Gal(Ks/K
′)

s .

Using this fact, one can show that for all sheaves F1 and F2 on SpecK,

the canonical map

Hom(F1,F2) → HomGal(Ks/K)(F1s,F2s)

is bijective.

Let M be a Gal(Ks/K)-module. For any finite extension K ′ of K
contained in Ks, define F (SpecK ′) =MGal(Ks/K

′). Every etale K-scheme

is isomorphic to a disjoint union of K-schemes of the form SpecK ′. We

define

F (
∐
i

SpecKi) =
∏
i

F (SpecKi)

for all finite extensions Ki of K contained in Ks. Let K1 and K2 be two

finite extensions of K contained in Ks, and let

f : SpecK1 → SpecK2

be a K-morphism. Then f is induced by a K-homomorphism σ : K2 → K1.

We can extend σ to an element σ̄ : Ks → Ks in Gal(Ks/K). Define the

restriction

F (SpecK2) → F (SpecK1)

to be the homomorphism

MGal(Ks/K2) →MGal(Ks/K1), x �→ σ̄(x).
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This definition is independent of the choice of σ̄. In this way, we get a

presheaf F on SpecK. For any finite galois extension L of K ′ contained
in Ks, the sequence

0 → F (SpecK ′) → F (SpecL)
d0→ F (Spec (L ⊗K′ L))

is exact by our construction. So we have

F (SpecK ′) ∼= Ȟ0({SpecL→ SpecK ′},F ).

Any etale covering U of SpecK ′ has a refinement of the form {SpecL →
SpecK ′}, and the above isomorphism coincides with the composite

F (SpecK ′) → Ȟ0(U,F ) → Ȟ0({SpecL→ SpecK ′},F ).

So the homomorphism

F (SpecK ′) → Ȟ0(U,F )

is injective, that is, F has the property (+) in 5.2.3. By the claim in the

proof of 5.2.3 (ii), the homomorphism

Ȟ0(U,F ) → Ȟ0({SpecL→ SpecK ′},F )

is injective. This implies that the homomorphism

F (SpecK ′) → Ȟ0(U,F )

is bijective. So F is a sheaf. We have Fs
∼=M . �

The following corollary also follows from 4.5.4.

Corollary 5.7.9 (Hilbert 90). We have H1(Gal(Ks/K),K∗s ) = 0 for

any field K.

Proof. Use 5.7.7, 5.7.8, and the fact that Pic(SpecK) = 0. �

Let X be a scheme and let G be a sheaf of groups (not necessarily

commutative) on X . Given an etale covering U = {Uα → X}α∈I of X , an

element (gα0α1) ∈
∏
α0,α1∈I G (Uα0α1) is called a 1-cocycle if

gα1α2 |Uα0α1α2
· gα0α1 |Uα0α1α2

= gα0α2 |Uα0α1α2

for any αj ∈ I (j = 0, 1, 2). Two 1-cocycles (gα0α1) and (g′α0α1
) are called

equivalent if there exists (hα0) ∈
∏
α0∈I G (Uα0) such that

g′α0α1
= hα1 |Uα0α1

· gα0α1 · h−1α0
|Uα0α1

.

One checks this defines an equivalence relation on the set of 1-cocyles. We

define Ȟ1(U,G ) to be the set of equivalent classes of 1-cocyles. In general,
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Ȟ1(U,G ) is not a group. But it has a distinguished element corresponding

to the equivalent class containing the 1-cocycle (gα0α1) defined by gα0α1 = 1

for all αj ∈ I (j = 0, 1). We denote this element also by 1. Define

Ȟ1(X,G ) = lim−→
U∈JX

Ȟ1(U,G ).

(See the discussion after 5.2.1 for the definition of JX). Again Ȟ1(X,G ) is

not necessarily a group. It has a distinguished element 1.

Let (A, a) and (A′, a′) be two sets with a distinguished element. A

morphism φ : (A, a) → (A′, a′) between them is a map φ : A → A′ such
that φ(a) = a′. We define its kernel kerφ to be the subset φ−1(a′) of A. A
sequence

(A′′, a′′)
ψ→ (A, a)

φ→ (A′, a′)

is called exact if kerφ = imψ.

Proposition 5.7.10. Let

1 → G1 → G2 → G3 → 1

be an exact sequence of sheaves of groups (not necessarily commutative) on

a scheme X. Then we have an exact sequence of distinguished sets

0 → Γ(X,G1) → Γ(X,G2) → Γ(X,G3)
δ0→ Ȟ1(X,G1) → Ȟ1(X,G2) → Ȟ1(X,G3).

Suppose for any U ∈ obXet, G1(U) is mapped to the center of G2(U).

Then G1 is a sheaf of abelian groups and we have an exact sequence of

distinguished sets

0 → Γ(X,G1) → Γ(X,G2) → Γ(X,G3)
δ0→ Ȟ1(X,G1) → Ȟ1(X,G2) → Ȟ1(X,G3)

δ1→ H2(X,G1).

Proof. We define maps of distinguished sets

δ0 : Γ(X,G3) → Ȟ1(X,G1), δ1 : Ȟ1(X,G3) → Ȟ2(X,G1)

and leave it for the reader to verify that the above sequences are exact.

Given a section s ∈ Γ(X,G3), there exist an etale covering {Ui → X}i∈I
and sections ti ∈ G2(Ui) lifting s|Ui . The sections tj |Uij · t−1i |Uij in G2(Uij)

are liftings of 1. So they can be lifted to sections tij ∈ G1(Uij). Note that

(tij) is a 1-cocycle. We define δ0(s) to be its image in Ȟ1(X,G1). One can

check δ0 is well-defined.
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Regard each G1(U) as a subgroup of G2(U), and suppose that it lies in

the center. Given an element s ∈ Ȟ1(X,G3), let U = {Ui → X}i∈I be an

etale covering of X such that s is represented by a 1-cocycle

(sij) ∈ ker
( ∏
i,j∈I

G3(Uij) →
∏

i,j,k∈I
G3(Uijk)

)
.

Replacing the etale covering by a refinement, we may assume that sij can

be lifted to sections tij ∈ G2(Uij). Since

sjk|Uijk · sij |Uijk = sik|Uijk ,
there exist tijk ∈ G1(Uijk) such that

tjk|Uijk · tij |Uijk · t−1ik |Uijk = tijk.

We claim that

tjkl|Uijkl · t−1ikl |Uijkl · tijl|Uijkl · t−1ijk|Uijkl = 1.

For convenience, we omit mentioning the restriction to Uijkl. We have

tjklt
−1
ikl tijlt

−1
ijk = t−1ikl tjkltijlt

−1
ijk

= (tilt
−1
ik t
−1
kl )(tkltjkt

−1
jl )(tjltijt

−1
il )t−1ijk

= (tilt
−1
ik )(tjktijt

−1
il )t−1ijk

= (tilt
−1
ik )t−1ijk(tjktijt

−1
il )

= (tilt
−1
ik )(tikt

−1
ij t
−1
jk )(tjktijt

−1
il )

= 1.

Here we use the fact that t−1ijk lies in the center. This proves our claim. So

(tijk) defines an element in Ȟ2(U,G1) and hence an element in Ȟ2(X,G1).

By 5.6.3, we have a monomorphism Ȟ2(X,G1) ↪→ H2(X,G2). We define

δ1(s) to be the image of (tijk) in H
2(X,G2). �

Let K be a field. Define an etale sheaf of groups GL(n,OSpecK,et) on

SpecK by setting

GL(n,OSpecK,et)(SpecL) = GL(n, L)

for any finite separable extension L of K. We have a monomorphism

O∗SpecK,et → GL(n,OSpecK,et)

which maps each section α ∈ L∗ = O∗SpecK,et(SpecL) to the diagonal matrix

αI in GL(n, L). Let PGL(n,OSpecK,et) be the cokernel of this monomor-

phism. We have a short exact sequence

1 → O∗SpecK,et → GL(n,OSpecK,et) → PGL(n,OSpecK,et) → 1.

 E
ta

le
 C

oh
om

ol
og

y 
T

he
or

y 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

O
N

A
SH

 U
N

IV
E

R
SI

T
Y

 o
n 

11
/2

7/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



February 6, 2015 9:48 ws-book9x6 Etale Cohomology Theory... etale page 232

232 Etale Cohomology Theory

By 5.7.10, we have a canonical map

δ1 : Ȟ1(SpecK,PGL(n,OSpecK,et)) → H2(SpecK,O∗SpecK,et).

Lemma 5.7.11. Let K ′/K be a finite separable extension of degree n,

f : SpecK ′ → SpecK the corresponding morphism of schemes, and α

an element in the kernel of the homomorphism

H2(SpecK,O∗SpecK,et) → H2(SpecK ′, f∗O∗SpecK,et).

Then α lies in the image of the map

δ1 : Ȟ1(SpecK,PGL(n,OSpecK,et)) → H2(SpecK,O∗SpecK,et).

Proof. Note that f is a finite etale morphism. Fix a basis {e1, . . . , en}
of K ′ over K. Define a morphism

f∗f∗O∗SpecK,et → GL(n,OSpecK,et)

by mapping each section

s ∈ (f∗f∗O∗SpecK,et)(SpecL) = (K ′ ⊗K L)∗

to the section

(aij) ∈ GL(n, L) = GL(n,OSpecK,et)(SpecL)

defined by

s · (ei ⊗ 1) =

n∑
j=1

ej ⊗ aij .

We have a commutative diagram

0 → O∗SpecK,et → f∗f∗O∗SpecK,et → f∗f∗O∗SpecK,et/O
∗
SpecK,et → 0

‖ ↓ ↓
0 → O∗SpecK,et → GL(n,OSpecK,et) → PGL(n,OSpecK,et) → 0.

It induces a commutative diagram

Ȟ1(SpecK, f∗f∗O∗
SpecK,et/O

∗
SpecK,et)→ H2(SpecK,O∗

SpecK,et) → H2(SpecK,

↓ ‖ f∗f∗O∗
SpecK,et)

Ȟ1(SpecK,PGL(n,OSpecK,et))
δ1→ H2(SpecK,O∗

SpecK,et).

Our assertion follows by a diagram chasing. �
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Let K be a field and A a finite dimensional algebra (not necessarily

commutative) such that K is contained in the center of A. A is called a

division algebra if any nonzero element in A is invertible. The opposite

algebra A◦ of A has the same underlying addition group structure as A and

its multiplication is defined by (a1, a2) �→ a2a1. We require that for any

left A-module M , multiplication by 1 is the identity. A left A-module M

is called simple if it is nonzero and it has no nontrivial submodule. M is

called semisimple if it is a direct sum of simple modules. A is called simple

if A has no nontrivial two-sided ideals. A is called a central K-algebra if K

is the center of A.

Lemma 5.7.12. Notation as above. Suppose M is semisimple. Then for

any submodule N of M , there exists a submodule N ′ of M such that M =

N ⊕N ′.

Proof. Suppose M =
⊕

i∈IMi for some simple submodules Mi of M .

We have either N ∩ Mi = Mi or N ∩ Mi = 0. If N ∩ Mi = Mi for

all i, then M = N ⊕ 0. Otherwise, we can use Zorn’s lemma to find

a nonempty subset J of I which is maximal with respect to the prop-

erty N ∩
(⊕

j∈J Mj

)
= 0. We claim that M = N

⊕(⊕
j∈J Mj

)
.

It suffices to show Mi ⊂ N
⊕(⊕

j∈J Mj

)
for all i ∈ I. If i ∈ J ,

this is obvious. Suppose i 	∈ J but Mi 	⊂ N
⊕(⊕

j∈J Mj

)
. Since

Mi is simple, we have Mi

⋂(
N
⊕(⊕

j∈J Mj

))
= 0. This implies that

N ∩
(
Mi

⊕(⊕
j∈JMj

))
= 0 which contradicts the maximality of J . �

Lemma 5.7.13 (Jacobson density theorem). Notation as above. Sup-

pose M is a semisimple A-module. Let D = EndA(M). Then M is a D-

module. For any D-linear homomorphism f : M → M and any finitely

many elements x1, . . . , xn ∈ M , there exists a ∈ A such that f(xi) = axi
for all i.

Proof. First consider the case n = 1. By 5.7.12, there exists a submodule

N of M such that M = Ax1 ⊕ N . Let π : M → Ax1 be the projection.

Then π ∈ D. Since f is D-linear, we have

f(x1) = f(π · x1) = π · f(x1) = π(f(x1)) ∈ Ax1.

So f(x1) = ax1 for some a ∈ A.

In general, consider the homomorphism

fn :Mn →Mn, (y1, . . . , yn) �→ (f(y1), . . . , f(yn)).
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Let D′ = EndA(M
n). One can check fn is D′-linear. By the n = 1 case

treated above, there exists a ∈ A such that fn(x1, . . . , xn) = a(x1, . . . , xn).

Then f(xi) = axi for all i. �

Lemma 5.7.14. Let K be a field and let A be a finite dimensional K-

algebra (not necessarily commutative) such that K is contained in the center

of A.

(i) Let M be a simple left A-module such that AnnA(M) = 0. Then D =

EndA(M) is a finite dimensional division K-algebra and A is isomorphic

to the algebra Mn(D
◦) of n×n matrices with entries in D◦ for n = dimKM

dimKD
.

(ii) A is a simple K-algebra if and only if A is K-isomorphic to some

matrix algebra Mn(D) for some finite dimensional division K-algebra D.

The integer n is uniquely determined, and D is uniquely determined up to

isomorphism. D and A have the same center.

(iii) Suppose A is a central K-algebra. Consider the K-linear map

F : A⊗K A◦ → EndK(A)

defined by

F (a1 ⊗ a2)(x) = a1xa2.

Then A is simple if and only if F is an isomorphism.

(iv) Let L be a field containing K. Then K is the center of A if and

only if L is the center of A ⊗K L. A is a central simple K-algebra if and

only if A⊗K L is a central simple L-algebra.

(v) Suppose A is a central simple K-algebra. Let A∗ be the group of

units of A and let AutK(A) be the group of K-algebra automorphisms of

A. Then the homomorphism

A∗ → AutK(A)

defined by mapping each a ∈ A∗ to the automorphism x �→ axa−1 induces

an isomorphism A∗/K∗ ∼= AutK(A).

(vi) Suppose K is separably closed. Then any finite dimensional central

division K-algebra is isomorphic to K.

(vii) Suppose K is quasi-algebraically closed. Then any finite dimen-

sional central K-division algebra is isomorphic to K.

Proof.

(i) Since M is simple, for any nonzero element x1 ∈ M , we have M =

Ax1. In particular,M is finite dimensional over K. Let f ∈ D = EndA(M)

be a nonzero element. We have ker f 	= M . Since M is simple, we must
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have ker f = 0. As M is finite dimensional, f must be an isomorphism. So

D is a finite dimensional division K-algebra. Consider the homomorphism

A → EndD(M) that maps each a ∈ A to the endomorphism of M defined

by the multiplication by a. By 5.7.13, this homomorphism is surjective.

Since AnnA(M) = 0, it is injective. So A ∼= EndD(M). Let n = dimDM =
dimKM
dimKD

. Then EndD(M) is isomorphic to the matrix algebra Mn(D
◦).

(ii) Suppose A is a simple algebra. Note that simple A-modules exist.

In fact, any nonzero left ideal of A with minimal dimension is a simple

A-module. For any simple A-module M , AnnA(M) is a two-sided ideal of

A and hence is 0. By (i), A is isomorphic to a matrix algebra Mn(D) for

some finite dimensional division K-algebra D.

Let I be a nonzero two-sided ideal of Mn(D). For any 1 ≤ i, j ≤ n,

denote by Eij the matrix whose (i, j)-entry is 1 and whose other entries

are 0. Let (aij) be a nonzero element in I and suppose ai0j0 	= 0. Then we

have

Eij = a−1i0j0Eii0 · (aij) · Ej0j ∈ I

for any 1 ≤ i, j ≤ n. It follows that I = Mn(D) and hence Mn(D) is a

simple algebra.

For each 1 ≤ j ≤ n, let Jj be the left ideal of Mn(D) consisting of

matrices whose nonzero entries are on the j-th column. Note that Jj are

isomorphic to each other as left Mn(D)-modules since they are all isomor-

phic to the space of column vectors with n-entries. Let (aij) be an arbitrary

nonzero element in J1. Suppose ai01 	= 0. Then we have

Ei1 = a−1i01Eii0 · (aij) ∈ J1

for any i. It follows that J1 is generated by any nonzero element in it,

and hence is a simple left Mn(D)-module. Any simple left Mn(D)-module

M is isomorphic to J1. Indeed, let x be a nonzero element in M . For

each 1 ≤ j ≤ n, Ann(x) ∩ Jj is a left-submodule of Jj . We have either

Ann(x) ∩ Jj = 0 or Ann(x) ∩ Jj = Jj . If Ann(x) ∩ Jj = Jj for all j, then

Mn(D) = J1 + · · ·+ Jn ⊂ Ann(x).

This is impossible since x 	= 0. So we have Ann(x) ∩ Jj = 0 for some j.

Let us prove that M is then isomorphic to Jj , and hence isomorphic to J1.

Consider the homomorphism

φ : Jj → M, a �→ ax.

We have kerφ = 0. The image of φ is a nonzero submodule of M . Since M

is simple, we have imφ =M . So φ is an isomorphism.
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We claim that D◦ ∼= EndMn(D)(M) for any simple left Mn(D)-module

M . So D is uniquely determined up to isomorphism by the algebraMn(D).

We can take M = J1. For any matrix X in J1, we have X = XE11. For

any f ∈ EndMn(D)(J1), we have

f(X) = f(XE11) = Xf(E11) = X(E11f(E11)).

Note that the only nonzero entry of E11f(E11) is the (1, 1)-entry. We get

an isomorphism between EndMn(D)(J1) and D
◦ by mapping f to the (1, 1)-

entry of E11f(E11).

We leave it for the reader to prove that Mn(D) and D have the same

center.

(iii) If A has a nontrivial two-sided ideal I, then for any element α ∈
A⊗K A◦, we have F (α)(I) ⊂ I. But there are K-endomorphisms of A not

mapping I to I. So F cannot be an isomorphism.

Suppose A is simple. Let M be the left (A ⊗K A◦)-module whose un-

derlying addition group is A and whose scalar multiplication is given by

α · x = F (α)(x)

for any α ∈ A⊗KA◦ and x ∈M . Note that submodules ofM are two-sided

ideals of A. So M is a simple left (A ⊗K A◦)-module. Let φ : M → M

be an (A⊗K A◦)-module homomorphism, that is, φ : A→ A is a K-linear

map such that

φ(axb) = aφ(x)b

for any a, b, x ∈ A. Taking x = b = 1, we get

φ(a) = aφ(1).

Taking a = x = 1, we get

φ(b) = φ(1)b.

So we have

aφ(1) = φ(1)a,

and hence φ(1) lies in the center K of A. We can thus identify

EndA⊗KA◦(M) with K. So M is a simple left module with trivial an-

nihilator over (A⊗K A◦)/AnnA⊗KA◦(M), and we have

End(A⊗KA◦)/AnnA⊗KA◦ (M)(M) ∼= EndA⊗KA◦(M) ∼= K.

By (i), we have

(A⊗K A◦)/AnnA⊗KA◦(M) ∼=Mn(K)
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for n = dimKM = dimKA. So dimK((A ⊗K A◦)/AnnA⊗KA◦(M)) = n2.

But dimK(A ⊗K A◦) = n2. It follows that AnnA⊗KA◦(M) = 0, that is,

kerF = 0. As A ⊗K A◦ and EndK(A) have the same dimension, F is an

isomorphism.

(iv) Let C be the center of A. Fix a basis {a1, . . . , an} of A over K.

Consider the K-linear map

φ : A→ An, φ(a) = (aa1 − a1a, . . . , aan − ana).

Then C = kerφ and hence C ⊗K L ∼= ker (φ ⊗ idL). As ker (φ ⊗ idL) is

the center of A ⊗K L, this shows that C ⊗K L can be identified with the

center of A ⊗K L. So K is the center of A if and only if L is the center of

A ⊗K L. Using (iii), one can show A is a central simple K-algebra if and

only if A⊗K L is a central simple L-algebra.

(v) Fix a basis {a1, . . . , an} of A over K. Let σ be an element in

AutK(A). By (iii), σ is of the form

x �→
n∑
i=1

aixbi

for some bi ∈ A. From σ(xy) = σ(x)σ(y), we get
n∑
i=1

aix(ybi − biσ(y)) = 0.

By (iii) again, this implies that

ybi − biσ(y) = 0

for all i and all y ∈ A. So each biA is a two-sided ideal of A. Hence biA = 0

or biA = A, that is, bi = 0 or bi is invertible. If some bi is invertible, then

we have

σ(y) = b−1i ybi.

If no bi is invertible, all bi vanish and σ = 0. This is impossible since σ is

an automorphism. So σ is of the form x �→ axa−1 for some unit a in A.

If a is a unit in A such that axa−1 = x for all x ∈ A, then a lies in the

center of A. Hence a ∈ K∗. We thus have A∗/K∗ ∼= AutK(A).

(vi) LetD be a finite dimensional central divisionK-algebra. SupposeK

is algebraically closed. For any α ∈ D, the subalgebra K[α] of D generated

by K and α is commutative and finite dimensional over K. It is a field.

Since K is algebraically closed, we have K[α] = K. So α ∈ K. We thus

have K = D. By (ii), any finite dimensional central simple K-algebra is

isomorphic to the matrix algebra Mn(K) for some n.
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Now suppose K is separably closed. For any element α ∈ D, K[α] is

field finite and purely inseparable overK. Let p = charK. Then the degree

of α over K is pm for some positive integer m and αp
m ∈ K. Let q be the

largest power of p dividing dimKD. Then pm|q and hence αq ∈ K. Fix

a decomposition D = K ⊕ E as K-vector spaces. Let K be an algebraic

closure of K. This decomposition induces a decomposition

D ⊗K K = K ⊕ (E ⊗K K).

Let π : D ⊗K K → E ⊗K K be the projection. The map

φ : D ⊗K K → E ⊗K K,

x �→ π(xq)

is a polynomial map defined over K, that is, if we fix bases for D and

E over K and express this map in terms of coordinates, then we get a

polynomial map defined by polynomials with coefficients in K. By the

above discussion, we have φ(x) = 0 for any x ∈ D. As K is necessarily

an infinite field, this implies that φ(x) = 0 for any x ∈ D ⊗K K, that is,

xq ∈ K for any x ∈ D⊗K K. On the other hand, by the discussion for the

algebraically closed field case, we have D ⊗K K ∼=Mn(K) for some n ≥ 1.

For the matrix E11 inMn(K), Eq11 does not lie in the image of K inMn(K)

if n ≥ 2. So we have n = 1 and hence D = K.

(vii) We first introduce the reduced norm. Let K be a field, let Ks be

a separable closure of K, and let A be a finite dimensional central simple

K-algebra. By (ii), (iv) and (vi), we have an isomorphism of Ks-algebras

φ : A⊗K Ks
∼=Mn(Ks)

for some integer n. In particular, dimKA is the square of an integer. For

any a ∈ A, we defined the reduced norm Nrd(a) of a to be the determinant

of φ(a⊗ 1). By (v), if

φ′ : A⊗K Ks
∼=Mn(Ks)

is another isomorphism of Ks-algebras, then there exists an invertible ma-

trix P such that φ′ = P−1φP. It follows that

det (φ(a ⊗ 1)) = det (φ′(a⊗ 1)).

So Nrd(a) is independent of the choice of the isomorphism φ. We will prove

shortly that Nrd(a) ∈ K for any a ∈ A. As Nrd : A→ K is the restriction

to A of the map

A⊗K Ks
∼=Mn(Ks)

det→ Ks,
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it is given by a homogeneous polynomial of degree
√
dimKA.

Let us prove that Nrd takes values in K. There exists a finite galois

extension K ′ of K contained in Ks such that we have an isomorphism of

K ′-algebras.

φ : A⊗K K ′ ∼=Mn(K
′).

For any σ ∈ Gal(K ′/K), let id ⊗ σ and Mn(σ) be the automorphisms

induced by σ on A⊗K K ′ and Mn(K
′) respectively. Then

Mn(σ) ◦ φ ◦ (id⊗ σ−1) : A⊗K K ′ →Mn(K
′)

is also an isomorphism of K ′-algebras. By (v), there is an invertible matrix

P in Mn(K
′) such that

Mn(σ) ◦ φ ◦ (id⊗ σ−1) = PφP−1.

For any a ∈ A, we have

det(Mn(σ) ◦ φ ◦ (id⊗ σ−1)(a⊗ 1)) = σ(det(φ(a⊗ 1))).

It follows that

σ(det(φ(a⊗ 1))) = det(Pφ(a⊗ 1)P−1) = det(φ(a⊗ 1)),

that is, σ(Nrd(a)) = Nrd(a). So we have Nrd(a) ∈ K.

Now let us prove (vii). Suppose K is quasi-algebraically closed. Let D

be a finite dimensional central division K-algebra, and let n =
√
dimKD.

The reduced norm Nrd : D → K is given by a homogeneous polynomial

of degree n with n2 variables. First consider the case where K is infinite.

Then the coefficients of the polynomial expressing the map Nrd lie in K.

For any x ∈ D − {0}, we have

Nrd(x) ·Nrd(x−1) = 1.

So Nrd(x) has no nontrivial zero inD. SinceK is quasi-algebraically closed,

the number of variables of the polynomial expressing Nrd does not exceed

the degree, that is, n2 ≤ n. So n = 1 and hence D = K. In the case where

K is finite, D is a finite division algebra. A theorem of Wedderburn says

that D must be a field. Since K is the center of D, we have K = D. �

The following is 4.5.6.

Proposition 5.7.15. Suppose that K is a quasi-algebraically closed field.

We have H2(Gal(Ks/K),K∗s ) = 0.
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Proof. By 5.7.8, we need to show

H2(SpecK,O∗SpecK,et) = 0.

Let α ∈ H2(SpecK,O∗SpecK,et). Choose an injective resolution I · of
O∗SpecK,et and suppose that α is given by the cohomology class of a section

s ∈ Γ(SpecK,I 2) whose image in Γ(SpecK,I 3) is 0. There exists a finite

separable extension K ′ of K such that the restriction of s to SpecK ′ can be

lifted to a section in Γ(SpecK ′,I 1). The image of α under the canonical

homomorphism

H2(SpecK,O∗SpecK,et) → H2(SpecK ′,O∗SpecK′,et)

is then 0. By 5.7.11, α lies in the image of the canonical homomorphism

Ȟ1(SpecK,PGL(n,OSpecK,et)) → H2(SpecK,O∗SpecK,et),

where n = [K ′ : K]. To prove our assertion, it suffices to show

Ȟ1(SpecK,PGL(n,OSpecK,et)) = 0.

Let L be a finite separable extension of K. Then {SpecL→ SpecK} is an

etale covering of SpecK, and any etale covering of SpecK has a refinement

of this form. Let σ ∈ PGL(n, L⊗K L) be a 1-cocyle for this etale covering

and the sheaf PGL(n,OSpecK,et). Consider the sheaf of matrix algebra

Mn(OSpecL) over OSpecL. Let

pi : Spec (L⊗K L) → SpecL (i = 1, 2),

pij : Spec (L⊗K ⊗KL) → Spec (L⊗K L) (1 ≤ i < j ≤ 3)

be the projections. Then the conjugation by σ ∈ PGL(n, L ⊗K L) defines

an automorphism

σ : p∗1Mn(OSpecL) → p∗2Mn(OSpecL)

such that

p∗13(σ) = p∗23(σ) ◦ p∗12(σ).
So σ defines a descent datum for the matrix algebra Mn(L) over L. By

1.6.1, 5.7.14 (iv) and (v), this matrix algebra can be descended down

to a central simple K-algebra A. By 5.7.14 (ii) and (vii), A is isomor-

phic to Mn(K). So the descent datum is isomorphic to the trivial one

and the 1-cocycle is equivalent to the distinguished 1-cocycle. Hence

Ȟ1(SpecK,PGL(n,OSpecK,et)) = 0. �
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Let X be a scheme. An X-scheme G is called a group scheme if for

any X-scheme Y , the set HomX(Y,G) has a group structure, and for any

X-morphism of X-schemes f : Y1 → Y2, the map

HomX(Y2, G) → HomX(Y1, G), g �→ gf

is a homomorphism of groups. A right action of G on an X-scheme P is an

X-morphism P×XG→ P such that for anyX-scheme Y , this X-morphism

induces a group action

HomX(Y, P )×HomX(Y,G) → HomX(Y, P ).

We often denote this X-morphism by

P ×X G→ P, (p, g) �→ pg.

We say that G is an etale (resp. flat, resp. smooth) group scheme if the

structure morphism G→ X is etale (resp. flat, resp. smooth).

Proposition 5.7.16. Let G be an etale group scheme over X, let P be an

X-scheme on which G acts on the right, and let

F : P ×X G→ P ×X P, (p, g) �→ (p, pg)

be the morphism so that π1F is the projection

P ×X G→ P, (p, g) �→ p

to the first factor, and π2F is the group action

P ×X G→ P, (p, g) �→ pg,

where

π1, π2 : P ×X P → P

are the two projections. The following conditions are equivalent:

(i) The structure morphism P → X is surjective and etale, and the

morphism F : P ×X G→ P ×X P is an isomorphism.

(ii) There exists an etale covering {Ui → X}i∈I such that for any i ∈ I,

there exists a Ui-isomorphism

Ui ×X G ∼= Ui ×X P

which is compatible with the canonical right actions of Ui ×X G on itself

and on Ui ×X P .

(iii) The structure morphism P → X is surjective and etale, and for

any X-scheme Y , the action of the group HomX(Y,G) on HomX(Y, P ) is

transitive, and the stabilizer of any element in HomX(Y, P ) is trivial.
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Proof.

(i)⇒(ii) Use the etale covering {P → X}.
(ii)⇒(i) The problem is local and we may assume that X is affine, I

is finite, and each Ui → X has finite presentation. Let U =
∐
i∈i Ui.

Then U → X is faithfully flat and quasi-compact. The unit in the group

HomX(U,G) defines a section for the projection U×XG→ U . In particular,

this projection is surjective. Since G is etale overX , this projection is etale.

But U ×X G ∼= U ×X P as U -schemes. So U ×X P → U is surjective and

etale. By 1.7.2 and 2.5.10, P → X is surjective and etale. It is clear that

G×X G→ G×X G, (g′, g) �→ (g′, g′g)

is an isomorphism. Since U ×X G ∼= U ×X P as U -schemes with group

actions, the base change of the morphism

P ×X G→ P ×X P, (p, g) �→ (p, pg)

by U → X is an isomorphism. So this morphism is an isomorphism by

1.8.4.

(i)⇔(iii) The condition that the action of the group HomX(Y,G)

on HomX(Y, P ) is transitive, and that the stabilizer of any element in

HomX(Y, P ) is trivial is equivalent to the condition that the map

HomX(Y, P )×HomX(Y,G) → HomX(Y, P )×HomX(Y, P )

induced by the morphism

P ×X G→ P ×X P, (p, g) �→ (p, pg)

is an isomorphism. �
When P satisfies the equivalent conditions of 5.7.16, we say that P is a

G-torsor. We say that P is a trivial G-torsor if P is X-isomorphic to G.

Proposition 5.7.17. Let G be an etale group scheme over X. A G-torsor

P is trivial if and only if the structure morphism P → X has a section.

Proof. The unit in the group HomX(X,G) defines a section for the struc-

ture morphism G → X . Suppose P → X has a section s. Consider the

composite

G ∼= X ×X G
s×id→ P ×X G→ P,

where the second morphism is the group action. Using condition (iii) in

5.7.16, one verifies that this morphism induces a bijection

HomX(Y,G) → HomX(Y, P )

for any X-scheme Y . It follows that it is an isomorphism. �
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Let G be an etale group scheme over X , and let G̃ be the sheaf on X

represented by G. Let F be a sheaf of sets on X . A right action of G̃ on

F is a morphism

F × G̃→ F

such that for any object U in Xet, the map

F (U) × G̃(U) → F (U)

defines a right action of G̃(U) on F (U). We say that F is a G̃-torsor if

there exists an etale covering {Ui → X} of X such that for each i, we have

an isomorphism G̃|Ui ∼= F |Ui compatible with the actions of G̃|Ui on itself

and on F |Ui . Note that if P is a G-torsor, then the sheaf P̃ represented

by P is a G̃-torsor.

Proposition 5.7.18. Suppose G is a separated etale group scheme with

finite presentation over a scheme X. Then the functor P �→ P̃ from

the category of G-torsors to the category of G̃-torsors is an equivalence of

categories.

Proof. Let P1 and P2 be G-torsors. Define a map

T : Hom(P̃1, P̃2) → HomX(P1, P2)

as follows. Let φ : P̃1 → P̃2 be a morphism of sheaves. idP1 is a section of

P̃1 over P1 ∈ obXet. We define the X-morphism T (φ) : P1 → P2 to be the

image of idP1 under the map φ(P1) : P̃1(P1) → P̃2(P1). One checks that T

is the inverse of the canonical map

HomX(P1, P2) → Hom(P̃1, P̃2).

Hence the functor P �→ P̃ from the category of G-torsors to the category

of G̃-torsors is fully faithful.

Let F be a G̃-torsor. Let us prove there exists a G-torsor P such that

F ∼= P̃ . Let {Vi}i∈I be an affine open covering of X . If we can find G-

torsors Pi on Vi such that we have isomorphisms φi : F |Vi
∼=→ P̃i, then by

the discussion above, the isomorphisms φj ◦ φ−1i define isomorphisms

φij : Pi|Vi∩Vj ∼= Pj |Vi∩Vj
such that

φjkφij ∼= φik

on Vi∩Vj∩Vk. We can glue Pi together to get a G-torsor P on X such that

F ∼= P̃ . We are thus reduced to the case where X is affine. By 1.10.12 and
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2.3.7, G is quasi-affine over X . We can find an etale covering {Uj → X}j∈J
such that J is finite, each Uj → X has finite presentation and F |Uj is

isomorphic to the trivial G̃|Uj -torsor. Let U =
∐
j∈J Uj . Then U → X

is quasi-compact and faithfully flat, and F |U is represented by the trivial

G|U -torsor P ′. The descent datum on F |U defining the sheaf F defines a

descent datum for the G-torsor P ′. By 1.8.11, P ′ can be descended down

to a G-torsor P on X . We then have F ∼= P̃ . �

Proposition 5.7.19. Let G be a separated etale group scheme (not nec-

essarily commutative) with finite presentation over X. Then the set of

isomorphic classes of G-torsors is isomorphic to Ȟ1(X, G̃).

Proof. By 5.7.18, it suffices to show that the isomorphic classes of G̃-

torsors is isomorphic to Ȟ1(X, G̃). Let F be a G̃-torsor and let {Ui →
X}i∈i be an etale covering such that we have isomorphisms

φi : F |Ui
∼=→ G̃|Ui

of G̃|Ui-torsors. For each pair (i, j), φj ◦ φ−1i |Ui×XUj is an isomorphism of

the trivial G̃|Ui×XUj -torsor. So there exists a section sij ∈ G̃(Ui ×X Uj)

such that φj ◦φ−1i |Ui×XUj is induced by left multiplication by sij . One can

verify that (sij) is a 1-cocycle. We define a map from the set of isomorphic

classes of G̃-torsors to the set Ȟ1(X, G̃) by assigning the image of the 1-

cocyle (sij) in Ȟ
1(X, G̃) to F . One checks that this map is bijective. �

Let G be a finite group (not necessarily commutative). For any scheme

X , let GX =
∐
g∈GXg, where each Xg is a copy of X . For any connected

X-scheme Y , we have

HomX(Y,GX) =
∐
g∈G

HomX(Y,Xg).

But HomX(Y,Xg) has only one element. So
∐
g∈GHomX(Y,Xg) can be

identified with G and GX is a group scheme over X .

Assume that X is a connected noetherian scheme and γ : s → X is

a geometric point of X . For every X-scheme X ′, let X ′(γ) be the set of

geometric points of X ′ lying above γ. By 3.2.12, the functor X ′ �→ X ′(γ)
is an equivalence from the category of etale covering spaces of X to the

category of finite sets on which π1(X, γ) acts continuously on the left.

Let P be a GX -torsor. Then P is an etale covering spaces of X . So

π1(X, γ) acts continuously on P (γ) on the left. On the other hand, G acts

on P (γ) on the right. Note that these two actions on P (γ) commute with

each other, and the map

P (γ)×G→ P (γ)× P (γ), (p, g) �→ (p, pg)
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is bijective, that is, the action of G on P (γ) is transitive and stabilizers of

points in P (γ) are trivial.

Conversely, let A be a finite set on which π1(X, γ) acts continuously on

the left and G acts on the right such that these two actions commute with

each other, G acts transitively, and stabilizers of points in A are trivial.

Then there exists an etale covering space P of X such that P (γ) is isomor-

phic to A as π1(X, γ)-sets. The action of G on A induces a homomorphism

G→ Aut(P/X)◦, and hence a morphism

P ×X GX → P.

Since the map

A×G→ A×A, (a, g) �→ (a, ag)

is bijective, the morphism

P ×X GX → P ×X P, (p, g) �→ (p, pg)

is an isomorphism. So P is a GX -torsor.

The set of isomorphic classes of GX -torsors is thus isomorphic to the

isomorphic classes of finite sets on which π1(X, γ) acts continuously on the

left and G acts on the right, such that these two actions commute with

each other, G acts transitively, and stabilizers of points in A are trivial.

Any finite set A on which G acts transitively on the right such that

stabilizers of points in A are trivial is isomorphic to G with G acting on it

by right multiplication. Suppose π1(X, γ) acts on G on the left such that

this action commutes with the right multiplication on G. It is completely

determined by the map

π1(X, γ) → G, σ �→ σe.

Indeed, for any g ∈ G and σ ∈ π1(X, γ), we have

σ(g) = σ(eg) = (σe)g.

This map is a continuous homomorphism. Indeed, for any σ1, σ2 ∈ π1(X, γ),

we have

(σ1σ2)e = σ1(σ2e) = (σ1e)(σ2e).

Conversely, any continuous homomorphism from π1(X, γ) to G defines a

continuous left action of π1(X, γ) on G which commutes with the right

multiplication on G. The two sets G with G acting by right multiplication

and with π1(X, γ) acting on the left through two continuous homomor-

phisms φi : π1(X, γ) → G (i = 1, 2) are isomorphic if and only if there
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exists g ∈ G such that g−1φ1(σ)g = φ2(σ) for any σ ∈ π1(X, γ). We thus

prove the following.

Proposition 5.7.20. Let X be a connected noetherian scheme, γ a ge-

ometric point in X, G a finite group, and cont.Hom(π1(X, γ), G) the set

of continuous homomorphisms from π1(X, γ) to G. Define an equivalence

relation on cont.Hom(π1(X, γ), G) so that two continuous homomorphisms

φi : π1(X, γ) → G (i = 1, 2) are equivalent if there exists g ∈ G such that

g−1φ1(σ)g = φ2(σ) for any σ ∈ π1(X, γ). Then Ȟ1(X, G̃X) is isomorphic

to the set of equivalent classes of cont.Hom(π1(X, γ), G).

5.8 Constructible Sheaves

([SGA 4] IX 2.)

Let X be a scheme. For any set G, the constant sheaf on X associated to G

is the sheaf associated to the constant presheaf U �→ G for any U ∈ obXet.

We denote this sheaf also by G. For any connected object U in Xet, we have

G(U) = G. The sheaf G is represented by the X-scheme GX =
∐
g∈GXg,

where each Xg is a copy of X . A sheaf F is called locally constant if there

exists an etale covering {Ui → X}i∈I such that F |Ui are constant sheaves.
Proposition 5.8.1. Let X be a noetherian scheme and let F be a sheaf of

sets on X.

(i) Suppose that the stalks of F are finite. Then F is locally constant

if and only if it is represented by an etale covering space of X. Moreover,

if F is locally constant and has finite stalks, then there exists a surjective

finite etale morphism π : Y → X such that π∗F is constant.

(ii) If F is locally constant, then there exist a dense open subset V of

X and a surjective finite etale morphism π : V ′ → V such that π∗(F |V ) is
constant.

Proof.

(i) Let F be a locally constant sheaf with finite stalks. Let us prove

that there exists an etale covering space X ′ → X such that F ∼= X̃ ′. Let

{Vi}i∈I be an affine open covering of X . If we can find etale covering spaces

πi : V
′
i → Vi such that we have isomorphisms

φi : F |Vi ∼= Ṽ ′i ,

then φj ◦ φ−1i |Vi∩Vj induce isomorphisms

φij : π
−1
i (Vi ∩ Vj)

∼=→ π−1j (Vi ∩ Vj)
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and φjkφij ∼= φik over Vi ∩ Vj ∩ Vk. We can glue V ′i together to get an

etale covering space X ′ of X such that F ∼= X̃ ′. We are thus reduced to

the case where X is affine. We can find an etale covering {Uj → X}j∈J
such that J is finite, each Uj → X has finite presentation and each F |Uj
is a constant sheaf with finite stalks. Let U =

∐
j∈J Uj . Then U → X is

quasi-compact and faithfully flat, and F |U is represented by a trivial etale

covering space U ′ of U . The descent datum on F |U defining the sheaf F

defines a descent datum for U ′. By 1.8.6, U ′ can be descended down to an

X-scheme X ′. By 1.8.8 and 2.5.10, X ′ is an etale covering space of X . We

then have F ∼= X̃ ′.
Conversely, let f : X ′ → X be an etale covering space. By 5.2.7 (iii),

the stalk of X̃ ′ at a geometric point γ : s→ X can be identified with the set

X ′(γ) of geometric points of X ′ lying above γ. So it is finite. Let us prove

that X̃ ′ is locally constant, and that there exists a finite surjective etale

morphism π : Y → X such that π∗X̃ ′ is constant. We may assume that X ′

and X are connected. It suffices to show that there exists a surjective finite

etale morphism π : Y → X such that as a Y -scheme, X ′×X Y is a disjoint

union of copies of Y . Note that im f is an open and closed subset of X

and hence coincides with X . So f is surjective. The diagonal morphism

Δ : X ′ → X ′×X X ′ is an open and closed immersion. By induction on the

number of elements of the set X ′(γ) and applying the induction hypothesis

to the etale covering space

X ′ ×X X ′ − imΔ → X ′

induced by the projection X ′ ×X X ′ → X ′ to the first factor, we may

assume that there exists a surjective finite etale morphism Y → X ′ such
that (X ′ ×X X ′ − imΔ) ×X′ Y is a disjoint union of copies of Y . Then

the composite Y → X ′ → X is a finite surjective etale morphism with the

required property.

(ii) Let η1, . . . , ηm be all the generic points of X . For each ηi, let Vi
be an affine open neighborhood of ηi in X such that Vi ∩ Vj = Ø for

i 	= j. Choose an etale morphism πi : V
′
i → Vi of finite presentation such

that π∗i (F |Vi) is constant. The generic fiber π−1i (ηi) → ηi of πi is finite,

surjective, and etale. By 1.10.10 (iv) and (vi) and 2.3.7, after shrinking

Vi, we may assume that πi is finite, surjective, and etale. Let π be the

morphism
∐
πi : V

′ =
∐
V ′i → V =

∐
Vi. Then π is a surjective finite etale

morphism and π∗(F |V ) is constant. �
Let X be a noetherian scheme and A a noetherian ring. A sheaf F of

sets (resp. A-modules) is called constructible if there exists a decomposition
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X =
⋃n
i=1Xi of X into finitely many locally closed subsets Xi such that

each F |Xi is locally constant and the stalks of F are finite (resp. finitely

generated A-modules). A sheaf of abelian groups F on X is called a torsion

sheaf if F (U) are torsion abelian groups of all U ∈ obXet. A sheaf of

abelian groups on X is called constructible if it is constructible as a sheaf

of sets. Any constructible sheaf of abelian group F on X is a torsion sheaf,

and there exists a nonzero integer n such that nF = 0. Note that a sheaf

of Z-modules is constructible as a sheaf of abelian groups if and only if it is

a torsion sheaf and is constructible as a sheaf of Z-modules. The constant

sheaf Z is a constructible sheaf of Z-modules, but not a constructible sheaf

of abelian groups.

Proposition 5.8.2. Let f : X ′ → X be a morphism of noetherian schemes,

A a noetherian ring, and F a sheaf of sets (resp. abelian groups, resp. A-

modules). If F is constructible, then so is f∗F .

Proposition 5.8.3. Let X be a noetherian scheme, A a noetherian ring,

and F a sheaf of sets (resp. abelian groups, resp. A-modules). F is

constructible if and only if for any irreducible closed subset Y of X, there

exists a nonempty open subset V of Y such that F |V is locally constant

with finite (resp. finite, resp. finitely generated) stalks.

Proof. Suppose F is constructible. For any irreducible closed subset

Y , F |Y is constructible. So there exists a decomposition Y =
⋃n
i=1 Yi of

Y into finitely many locally closed subsets Yi such that F |Yi are locally

constant. Let Yi0 be a locally closed subset containing the generic point of

Y . Then Yi0 is a nonempty open subset of Y and F |Yi0 is locally constant.

Conversely, suppose for any irreducible closed subset Y of X , that there

exists a nonempty open subset V of Y such that F |V is locally constant

with finite (resp. finite, resp. finitely generated) stalks. Let

S = {Y |Y ⊂ X is nonemtpy and closed and F |Y is not constructible}.
If S 	= Ø, then since X is noetherian, S has a minimal element Y . If

Y is not irreducible, then Y = Y1 ∪ Y2 for two proper closed subsets Yi
(i = 1, 2). By the minimality of Y , F |Yi are constructible, and hence F |Y
is constructible. This contradicts the fact that Y ∈ S . So Y is irreducible.

By our assumption, there exists a nonempty open subset V of Y such that

F |V is constructible. By the minimality of Y , F |Y−V is constructible. It

follows that F |Y is constructible. Contradiction. So S = Ø. Hence F is

constructible. �
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Proposition 5.8.4. Let X be a noetherian scheme, f : U → X an etale

morphism of finite type, and A a noetherian ring.

(i) The sheaf Ũ represented by U is a constructible sheaf of sets.

(ii) The sheaf AU = f!A is a constructible sheaf of A-modules.

Proof. Let Y be an integral closed subscheme of X and let K be its

function field. Then

U ×X SpecK ∼=
n∐
i=1

SpecLi

for some finite separable extensions Li of K. By 1.10.10 (iv) and 2.3.7,

there exists a nonempty open subset V of Y such that U ×X V is finite

etale over V . Note that Ũ |V is represented by the V -scheme U ×X V by

5.2.7 (iii). By 5.8.1 (i), Ũ |V is locally constant with finite stalks. So by

5.8.3, Ũ is constructible. Let f ′ : U ×X V → V be the base change of f .

By 5.5.1 (ii), we have

(f!A)|V ∼= f ′!A.

By the proof of 5.8.1 (i), there exists an etale covering {Vi → V }i∈i such
that Vi are connected and U ×X Vi are disjoint union of copies of Vi. It

follows that (f ′!A)|Vi are constant sheaves of free A-modules with finite

rank, and hence f ′!A is locally constant. By 5.8.3, f!A is constructible. �
Let X be a noetherian scheme and A a noetherian ring. A sheaf F

of sets (resp. abelian groups, resp. A-modules) is called noetherian if

any ascending chain of subsheaves of sets (resp. abelian groups, resp. A-

modules)

F1 ⊂ F2 ⊂ · · · ⊂ F

in F is stationary, that is, Fi = Fi+1 = · · · for large i.

Proposition 5.8.5. Let X be a noetherian scheme and A a noetherian

ring.

(i) For any sheaf of A-modules F on X, the following conditions are

equivalent:

(a) F is a constructible sheaf of A-modules.

(b) F is noetherian.

(c) There exists an exact sequence of the form

AV → AU → F → 0,

where AU = f!A and AV = g!A for some etale morphisms f : U → X and

g : V → X of finite type.
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(ii) For any sheaf of abelian groups F on X, the following conditions

are equivalent:

(a) F is a constructible sheaf of abelian groups.

(b) F is a torsion sheaf and noetherian.

(c) F is a constructible sheaf of Z/n-modules for some nonzero integer

n.

Proof.

(i) (a)⇒(b) Let

F1 ⊂ F2 ⊂ · · ·
be an ascending chain of subsheaves of F and let

S = {Y | Y ⊂ X is nonempty and closed and

F1|Y ⊂ F2|Y ⊂ · · · is not stationary}.
If S 	= Ø, then S has a minimal element Y , and Y is necessarily ir-

reducible. By 5.8.3, there exists a nonempty open subset V of Y such

that F |V is locally constant with finitely generated stalks. Let η ∈ V be

the generic point of Y and let s1η̄, . . . , snη̄ be a finite family of generators

for the A-module
⋃∞
i=1 Fiη̄. Choose i0 sufficiently large, we may assume

s1η̄, . . . , snη̄ ∈ Fi0η̄. We may find an etale neighborhood U of η̄ in V such

that s1η̄, . . . , snη̄ are germs at η̄ of sections s1, . . . , sn ∈ Fi0 (U), respec-

tively. It follows that if x lies in the image of U in V and i ≥ i0, then

s1η̄, . . . , snη̄ lie in the image of specialization homomorphism Fix̄ → Fiη̄,

and hence the specialization homomorphism is surjective for any i ≥ i0 and

any x ∈ im (U → V ). Since F |V is locally constant, the specialization

homomorphism Fx̄ → Fη̄ is bijective, and hence the specialization homo-

morphism Fix̄ → Fiη̄ is injective for any i. So the specialization homo-

morphism Fix̄ → Fiη̄ is bijective for any i ≥ i0 and any x ∈ im (U → V ).

We have

(Fi0 )η̄ = (Fi0+1)η̄ = · · · .
So we have

(Fi0 )x̄ = (Fi0+1)x̄ = · · ·
for any x ∈ im (U → V ). By the minimality of Y , the chain F1 ⊂ F2 ⊂ · · ·
is stationary on Y − im (U → V ). Hence the chain is stationary on Y . This

contradicts the fact that Y ∈ S . So S = Ø and the chain is stationary.

(b)⇒(c) For any etale X-scheme U , we have canonical one-to-one cor-

respondences

Hom(AU ,F ) ∼= Hom(A,F |U ) ∼= F (U).
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For any section s ∈ F (U), let φs : AU → F be the morphism corresponding

to s. It maps the section 1 in AU (U) to s. We can find a set {Uα} of objects

Uα in Xet with the property that Uα are affine and the images of Uα in X

are contained in affine open subsets of X such that any object in Xet with

this property is isomorphic to some Uα. Then we have an epimorphism⊕
α,s∈F(Uα)

AUα
⊕φs→ F .

Since F is noetherian, we can find finitely many objects Ui (i = 1, . . . , n)

in {Uα} and sections si ∈ F (Ui) such that
n⊕
i=1

AUi
⊕φsi→ F

is an epimorphism. Let U =
∐n
i=1 Ui. We then have an epimorphism

φ : AU → F . By 5.8.4, AU is constructible and hence noetherian. So

kerφ is noetherian. The above argument then shows that there exists an

epimorphism AV → kerφ for some etale X-scheme V of finite type. We

then have an exact sequence

AV → AU → F → 0.

(c)⇒(a) By 5.8.4, AU and AV are constructible. So there exists a de-

composition X =
⋃n
i=1Xi of X into finitely many locally closed subsets

such that AU |Xi and AV |Xi are locally constant. Let X ′i → Xi be surjec-

tive etale morphisms such that AU |X′
i
and AV |X′

i
are constant. Then the

inverse image of F on each connected component of X ′i is constant. So F

is constructible.

(ii) (a)⇒(c) Let X =
⋃n
i=1Xi be a decomposition of X into finitely

many locally closed subsets such that F |Xi are locally constant sheaves

with finite stalks. We can find a nonzero integer n such that each F |Xi is
a sheaf of Z/n-modules. Then F is a constructible sheaf of Z/n-modules.

(c)⇒(b) follows from (i) (a)⇒(b).

(b)⇒(a) Since F is a torsion sheaf, we have

F =
⋃
n∈N

ker (n : F → F ).

Since F is noetherian, there exists a nonzero integer n such that

F = ker (n : F → F ).

Then F is a sheaf of Z/n-modules. By (i) (b)⇒(a), F is a constructible

sheaf of Z/n-modules. This implies that F is a constructible sheaf of

abelian groups. �
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Proposition 5.8.6. Let X be a noetherian scheme and A a noetherian

ring.

(i) Subsheaves and quotient sheaves of a constructible sheaf of abelian

groups (resp. A-modules) are constructible.

(ii) Let φ : F → G be a morphism of constructible sheaves of abelian

groups (resp. A-modules). Then kerφ, cokerφ and imφ are constructible.

(iii) The category of constructible sheaves of abelian groups (resp. A-

modules) is an abelian category.

Proof. Use 5.8.5 and the fact that subsheaves and quotient sheaves of a

noetherian sheaf are noetherian. �

Proposition 5.8.7. Let X be a noetherian scheme, A a noetherian ring,

and

0 → F ′ → F → F ′′ → 0

an exact sequence of sheaves of abelian groups or A-modules. If F ′ and
F ′′ are constructible (resp. locally constant), then so is F .

Proof. By 5.8.5, it suffices to treat the case of sheaves of A-modules.

Suppose that F ′ and F ′′ are constructible sheaves of A-modules. We

can find a decomposition X =
⋃n
i=1Xi of X into finitely many locally

closed subsets Xi and surjective etale morphisms X ′i → Xi such that F ′|X′
i

and F ′′|X′
i
are constant sheaves associated to A-modules M ′i and M ′′i ,

respectively. It suffices to show that each F |X′
i
is locally constant. Let

s′′1 , . . . , s
′′
n ∈ M ′′i be a finite family of generators for M ′′i . We can find

an etale covering {Uiα → X ′i}α∈Iα of X ′i such that each Uiα is connected

and each s′′j can be lifted to a section in F (Uiα). We claim that F |Uiα
is a constant sheaf. For any connected etale Uiα-scheme V , consider the

commutative diagram

0 → F ′(Uiα) → F (Uiα) → F ′′(Uiα) → 0

↓ ↓ ↓
0 → F ′(V ) → F (V ) → F ′′(V ) → 0.

The horizontal lines are exact. Since F ′|X′
i
and F ′′|X′

i
are constant,

the first and the last vertical arrows are isomorphisms. It follows that

F (Uiα) → F (V ) is an isomorphism. So F |Uiα is constant. Therefore

F |X′
i
is locally constant and F is constructible. �

Proposition 5.8.8. Let X be a noetherian scheme, A a noetherian ring,

and F a torsion sheaf of abelian groups (resp. a sheaf of A-modules). Then
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constructible subsheaves of abelian groups (resp. A-modules) of F form a

direct system and F is the direct limit of this system.

Proof. If F1 and F2 are two constructible subsheaves of F , then so

is F1 + F2 by 5.8.6 (ii). So constructible subsheaves of F form a direct

system. If F is a torsion sheaf, then F =
⋃
n∈N ker (n : F → F ). Since

ker (n : F → F ) are sheaves of Z/n-modules, to prove the proposition, it

suffices to treat sheaves of A-modules. For any etale X-scheme U of finite

type and any section s ∈ F (U), we have a canonical morphism AU → F

which maps the section 1 ∈ AU (U) to s. The image of this morphism is a

constructible subsheaf of F by 5.8.6 (i), and s is a section of it. So F is

the direct limit of its constructible subsheaves. �

Proposition 5.8.9. Let X be a noetherian scheme, A a noetherian ring,

F a sheaf of sets (resp. abelian groups, resp. A-modules) with finite (resp.

finite, resp. finitely generated) stalks. Then F is locally constant if and

only if for any x, y ∈ X with x ∈ {y} and any specialization morphism

X̃ȳ → X̃x̄, the specialization map Fx̄ → Fȳ is bijective.

Proof. The “only if” part is clear. Let us prove the “if” part. We say that

two points x, y ∈ X can be connected by a path if there exists a sequence

of points x1 = x, x2, . . . , xn = y such that for any i ∈ {1, . . . , n − 1}, we
have either xi ∈ {xi+1}, or xi+1 ∈ {xi}. A subset Y of X is called path

connected if any two points in Y can be connected by a path formed by a

sequence of points in Y . Any irreducible component of X is path connected

since any point in it can be connected to the generic point. If X1 and X2

are path connected subsets of X with nonempty intersection, then X1∪X2

is path connected. It follows that connected components of X are path

connected.

Let x ∈ X , let s1x̄, . . . , snx̄ ∈ Fx̄ be all the elements of Fx̄ (resp.

all elements of Fx̄, resp. a finite family of generators of Fx̄), and let U

be a connected quasi-compact etale neighborhood of x̄ so that there exist

sections s1, . . . , sn ∈ F (U) whose germs at x̄ are s1x̄, . . . , snx̄, respectively.

Let G be the set {s1, . . . , sn} (resp. the subgroup of F (U) generated by

{s1, . . . , sn}, resp. the submodule of F (U) generated by {s1, . . . , sn}). We

claim that when U is sufficiently small, the canonical map G → Fx̄ is

bijective. In the case of sheaf of sets, this is clear. In the case of sheaf

of abelian groups, {s1x̄, . . . , snx̄} = Fx̄ is a group. So for any pair i, j ∈
{1, . . . , n}, there exists k(i, j) ∈ {1, . . . , n} such that

six̄ − sjx̄ = sk(i,j),x̄.
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Replacing U by a sufficiently small connected quasi-compact etale neigh-

borhood of x̄ in U , we may assume

si − sj = sk(i,j).

Then {s1, . . . , sn} is a group. We have G = {s1, . . . , sn} and G → Fx̄ is

bijective. In the case of sheaf of A-modules, let (ai1, . . . , ain) (i = 1, . . . ,m)

be a finite family of generators for the kernel of the homomorphism

An → Fx̄, (a1, . . . , an) �→ a1s1x̄ + · · ·+ ansnx̄.

We have

ai1s1x̄ + · · ·+ ainsnx̄ = 0 (i = 1, . . . ,m).

Replacing U by a sufficiently small connected quasi-compact etale neigh-

borhood of x̄ in U , we may assume

ai1s1 + · · ·+ ainsn = 0 (i = 1, . . . ,m).

Then the kernel of the homomorphism

An → F (U), (a1, . . . , an) �→ a1s1 + · · ·+ ansn

is also generated by (ai1, . . . , ain) (i = 1, . . . ,m). This implies that G ∼= Fx̄.

We have a canonical morphism of sheavesG→ F |U . By our choice ofG,

the map Gx̄ → (F |U )x̄ is bijective. Specialization maps for G are bijective.

By assumption, specialization maps for F are also bijective. Moreover U is

connected and hence path connected. These facts imply that Gȳ → (F |U )ȳ
is bijective for any y ∈ U . So G ∼= F |U . Hence F is locally constant. �

Corollary 5.8.10. Let f : X → Y be a finite surjective radiciel morphism

between noetherian schemes. Then the functor Y ′ �→ X ×Y Y ′ defines an

equivalence from the category of etale covering spaces of Y to the category of

etale covering spaces of X. In particular, if X is connected, and γ : s→ X

is a geometric point of X, then f induces an isomorphism

f∗ : π1(X, γ)
∼=→ π1(Y, f ◦ γ).

Proof. By 5.8.1 (i) and 5.2.7 (iii), it suffices to show that the functor

F → f∗F defines an equivalence from the category of locally constant

sheaves of sets with finite stalks on Y to that on X . By 5.3.10, f∗ defines
an equivalence from the category of sheaves of sets on Y to that on X .

Using 5.8.9, one shows that F is locally constant with finite stalks if and

only if f∗F has the same property. Our assertions follows. �
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Proposition 5.8.11.

(i) Let f : X → Y be a finite morphism between noetherian schemes,

A a noetherian ring, and F a sheaf of A-modules on X. Then F is con-

structible if and only if f∗F is constructible.

(ii) Suppose that X is a scheme of finite type over a field or over Z.

Let A be a noetherian ring and let F be a constructible sheaf of A-modules

on X. There exist noetherian integral schemes Xi (i = 1, . . . ,m), finite

morphisms pi : Xi → X, and finitely generated A-modules Mi such that we

have a monomorphism

F ↪→
m⊕
i=1

pi∗Mi.

When A = Z/n, we can take Mi = Z/n.

Proof.

(i) Using 5.3.7, one can check that the canonical morphism f∗f∗F → F

is surjective. If f∗F is constructible, then by 5.8.2 and 5.8.6 (i), F is

constructible.

Suppose F is constructible. By 5.8.3, to prove that f∗F is con-

structible, it suffices to show that for any irreducible closed subset F of

Y , there exists a nonempty open subset V of F such that (f∗F )|V is lo-

cally constant. By 5.3.9, we have

(f∗F )|V ∼= ((fF )∗(F |f−1(F ))
)|V ,

where we put the reduced closed subscheme structure on F and fF :

f−1(F ) → F is the base change of f . Replacing f by fF , we may as-

sume that Y is an integral scheme and prove that there exists a nonempty

open subset V of Y such that (f∗F )|V is locally constant. First consider the

case where f is finite surjective and radiciel. Then f is a homeomorphism.

There exists a nonempty open subset V of Y such that F |f−1(V ) is locally

constant. Using 5.8.9, one can check that (f∗F )|V is locally constant. This

proves our assertion under the assumption that f is finite surjective and

radiciel. Now suppose that f is a finite morphism. Let K be the function

field of Y . Then the base change X ×Y SpecK → SpecK of f is finite. So

X ×Y SpecK is artinian, and hence

(X ×Y SpecK)red ∼=
n∐
i=1

SpecLi,

where Li are the residue fields of X ×Y SpecK at its generic points. For

each i, let Ki be the separable closure of K in Li. We have a commutative
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diagram ∐n
i=1 SpecLi

∼= (X ×Y SpecK)red → X ×Y SpecK

↓ ↓∐n
i=1 SpecKi → SpecK.

By 1.10.10 (iv), (vi), (vii) and 2.3.7, there exists a nonempty open subset

W in Y such that we have a commutative diagram

U ′
p→ f−1(W )

q ↓ ↓ fW
W ′ r→ W

with p and q being finite surjective and radiciel, and r being finite etale,

where fW is the base change of f . We have

(f∗F )|W ∼= fW∗(F |f−1(W )) ∼= fW∗p∗(F |U ′ ) = r∗q∗(F |U ′ ) ∼= r!q∗(F |U ′ ).

We have shown that q∗(F |U ′ ) is constructible. Using 5.8.5 (i) (c) and

the fact that r! is an exact functor, one can show that r!q∗(F |U ′ ) is con-

structible. So (f∗F )|W is constructible. Hence there exists a nonempty

open subset V of W such that (f∗F )|V is locally constant.

(ii) Since F is constructible, there exists a decomposition X =
⋃n
i=1Xi

of X into finitely many locally closed subsets such that F |Xi are locally

constant. Let ki : Xi → X be the immersions. For each i, there exists a

surjective separated etale morphism of finite type fi : X
′
i → Xi such that

f∗i k
∗
iF is the constant sheaf associated to some A-module Mi. Let X

′
ij be

the irreducible components ofX ′i with the reduced subscheme structures, let

lij : X
′
ij → X ′i be the closed immersions, and let X̃ ′ij be the normalizations

of X ′ij . Since X is a scheme of finite type over a field or over Z, the

canonical morphisms πij : X̃
′
ij → X ′ij are finite ([Matsumura (1970)] (31 H)

Theorem 72) and surjective. Note that kifilijπij are quasi-finite separated

morphisms and we have monomorphisms

F ↪→
⊕
i

ki∗fi∗f∗i k
∗
iF ∼=

⊕
i

ki∗fi∗Mi ↪→
⊕
i,j

(kifilijπij)∗Mi.

By the Zariski Main Theorem 1.10.13, there exist finite morphisms pij :

Xij → X and open immersions gij : X̃ ′ij ↪→ Xij such that pijgij =

kifilijπij . Replacing Xij by the closures of im (gij) with the reduced closed

subscheme structures, we may assume that Xij are integral schemes. Let

X̃ij be the normalizations of Xij . Then X̃ij are finite over Xij , and X̃ ′ij
can be regarded as open subschemes of X̃ij . Replacing Xij by X̃ij , we may

assume that Xij are normal integral schemes. We claim that we then have
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gij∗(Mi) = Mi. Indeed, any connected object U of (Xij)et is normal and

hence integral. X̃ ′ij ×Xij U is a nonempty open subscheme of U and hence

is irreducible and connected. It follows that

(gij∗(Mi))(U) =Mi(X̃
′
ij ×Xij U) =Mi =Mi(U).

This proves our claim. We thus have

F ↪→
⊕
i,j

(kifilijπij)∗Mi
∼=
⊕
i,j

pij∗gij∗Mi =
⊕
i,j

pij∗Mi.

So we have a monomorphism F ↪→ ⊕i,j pij∗Mi. When A = Z/n, any

finitely generated A-module can be embedded into a free Z/n-module of

finite rank. So we can take Mi = Z/n in our conclusion. �

One can also study constructible sheaves on non-noetherian schemes.

Confer [SGA 4] IX 2.

5.9 Passage to Limit

([SGA 4] VII 5, IX 2.)

We use the same notation as in 1.10. We assume S0 is quasi-compact

and quasi-separated. Then Sλ and S are also quasi-compact and quasi-

separated. By 5.2.8, we can work with sheaves on (Sλ)
f
et and S

f
et instead of

sheaves on (Sλ)et and Set.

Define the category S of sheaves on (Sλ, uλμ) as follows: An object

in S is a family (Fλ, ψλμ)λ∈I , where Fλ is a sheaf of abelian groups on

(Sλ)
f
et for each λ ∈ I,

ψλμ : u∗λμ(Fλ) → Fμ

is a morphism of sheaves for each pair λ ≤ μ, and

ψλν = ψμν ◦ u∗μν(ψλμ)
for each triple λ ≤ μ ≤ ν. We call such an object a sheaf on (Sλ, uλμ). We

often denote it by (Fλ) for simplicity. A morphism from a sheaf (Fλ, ψλμ)

to another sheaf (F ′λ, ψ
′
λμ) on (Sλ, uλμ) is a family (θλ), where θλ : Fλ →

F ′λ are morphisms of sheaves such that for any pair λ ≤ μ, we have

θμ ◦ ψλμ = ψ′λμ ◦ u∗λμ(θλ).
One can show that S is an abelian category.
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We can also define the category P of presheaves on (Sλ, uλμ). A

presheaf on (Sλ, uλμ) is a family (Fλ, ψλμ)λ∈I , where Fλ is a presheaf

of abelian groups on (Sλ)
f
et for each λ ∈ I,

ψλμ : uP
λμ(Fλ) → Fμ

is a morphism of presheaves for each pair λ ≤ μ, and

ψλν = ψμν ◦ uP
μν(ψλμ)

for each triple λ ≤ μ ≤ ν.

For any λ and any sheaf Fλ on Xλ, let Fλ = ((Fλ)μ, ψμν)μ∈I be the

sheaf on (Sλ, uλμ) defined as follows: If μ ≥ λ, we define the μ-component

(Fλ)μ of Fλ to be u∗λμFλ. Otherwise, we define the (Fλ)μ to be 0. For

any μ ≤ ν, we define ψμν : u∗μν(Fλ)μ → (Fλ)ν to be 0 if (Fλ)μ = 0,

and we define it to be the canonical isomorphism u∗μν(u
∗
λμFλ) ∼= u∗λνFλ

if μ ≥ λ. For any sheaf G = (Gλ) on (Sλ, uλμ), we have a one-to-one

correspondence

Hom(Fλ,G ) = Hom(Fλ,Gλ).

So the functor

SSλ → S , Fλ �→ Fλ

is left adjoint to the functor

S → SSλ , (Gλ) �→ Gλ.

For each λ ∈ I, let Jλ be a set of objects πλ : Uλ → Sλ in (Sλ)
f
et with

the property that Uλ are affine and their images in Sλ are also affine, and

any object in (Sλ)
f
et with this property is isomorphic to an object in Jλ.

When λ goes over I and πλ goes over Jλ, πλ!Z form a set of generators for

the category S . By the same argument as the proof of [Fu (2006)] 2.1.6

or [Grothendieck (1957)] 1.10.1, S has enough injective objects. Since the

functor Fλ �→ Fλ is exact, if (Iλ) is an injective sheaf on (Sλ, uλμ), then

Iλ is an injective sheaf on Sλ for each λ.

Given a presheaf (Fλ) on (Sλ, uλμ), define a presheaf F on S as follows.

For any object U in Sfet, by 1.10.9 (iii) and 2.3.7, we can find λU ∈ I and an

object UλU in (SλU )
f
et such that we have an S-isomorphismU ∼= UλU×SλU S.

Define

F (U) = lim−→
λ≥λU

Fλ(Uλ),

where Uλ = UλU ×SλU Sλ for any λ ≥ λU . Given a morphism U → V in

Sfet, we can find λ0 ≥ λU , λV and an Sλ0 -morphism Uλ0 → Vλ0 inducing
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the given S-morphism U → V . We define the restriction F (V ) → F (U)

to be the direct limit of the restrictions Fλ(Vλ) → Fλ(Uλ) for λ ≥ λ0. We

thus get a presheaf F . Suppose that (Fλ) is a sheaf on (Sλ, uλμ), then F

is a sheaf on Sfet. Indeed, for any etale covering U = {Ui → U}i∈I in Sfet, we
can find λU ≥ λU , λUi and an etale covering {UiλU

→ UλU
}i∈I in (SλU

)fet
inducing the etale covering U. For any λ ≥ λU, we have the canonical exact

sequence

0 → Fλ(Uλ) →
∏
i

Fλ(Uiλ) →
∏
i,j

Fλ(Uiλ ×Uλ Ujλ).

Taking direct limit, we get an exact sequence

0 → F (U) →
∏
i

F (Ui) →
∏
i,j

F (Ui ×U Uj).

So F is a sheaf.

Lemma 5.9.1. Let (Pλ) be a presheaf on (Sλ, uλμ). Then (P#
λ ) is a

sheaf on (Sλ, uλμ). Let P (resp. F ) be the presheaf (resp. sheaf) on S

corresponding to (Pλ) (resp. (P#
λ )) defined as above. We have P# ∼= F .

Proof. For any sheaf G on Sfet, we have

Hom(P#,G ) ∼= Hom(P ,G )

∼= lim←−
λ

Hom(Pλ, uλ∗G )

∼= lim←−
λ

Hom(P#
λ , uλ∗G )

∼= Hom(F ,G ). �

Proposition 5.9.2. Given a sheaf (Fλ) on (Sλ, uλμ), define the sheaf F

on S as above.

(i) We have F ∼= lim−→λ
u∗λFλ.

(ii) If each Fλ is flasque, then F is flasque.

(iii) We have Hq(S,F ) ∼= lim−→λ
Hq(Sλ,Fλ) for all q.

Proof.

(i) For any sheaf G on Sfet, we have

Hom(F ,G ) ∼= lim←−
λ

Hom(Fλ, uλ∗G )

∼= lim←−
λ

Hom(u∗λFλ,G )

∼= Hom(lim−→
λ

u∗λFλ,G ).
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(ii) Let U = {Ui → U}i∈I be an etale covering in Sfet. We can find

λ ≥ λU , λUi such that there exists an etale covering Uλ = {Uiλ → Uλ}i∈I
in (Sλ)

f
et inducing U. It is clear that

Ȟq(U,F ) ∼= lim−→
λ≥λU

Ȟq(Uλ,Fλ).

Since Fλ are flasque, we have Ȟq(Uλ,Fλ) = 0 for all q ≥ 1. It follows that

Ȟq(U,F ) = 0 for all q ≥ 1. So F is flasque.

(iii) Let

0 → (I 0
λ ) → (I 1

λ ) → · · ·
be an injective resolution of (Fλ) in the category of sheaves on (Sλ, uλμ).

Then for each λ, I ·λ is an injective resolution of Fλ. By (i) and (ii),

lim−→λ
u∗λI

·
λ is a flasque resolution of F . So we have

Hq(S,F ) ∼= Hq(Γ(S, lim−→
λ

u∗λI
·
λ))

∼= Hq(lim−→
λ

Γ(Sλ,I
·
λ))

∼= lim−→
λ

Hq(Γ(Sλ,I
·
λ))

∼= lim−→
λ

Hq(Sλ,Fλ).
�

Corollary 5.9.3. Let F0 be a sheaf on S0, and let Fλ and F be the

inverse images of F0 on Sλ and S, respectively. We have Hq(S,F ) ∼=
lim−→λ

Hq(Sλ,Fλ) for all q.

Corollary 5.9.4. Let F be a sheaf on S and let Fλ = uλ∗F . We have

Hq(S,F ) ∼= lim−→λ
Hq(Sλ,Fλ) for all q.

Corollary 5.9.5. Let f : X → Y be a quasi-compact and quasi-separated

morphism, F a sheaf on X, y a point on Y , and Ỹȳ the strict localization

of Y at ȳ. Then for all q, we have

(Rqf∗F )ȳ ∼= Hq(X ×Y Ỹȳ,F |X×Y Ỹȳ ).
Proof. Let {Vλ} be the family of affine etale neighborhood of ȳ in Y . We

have

Ỹȳ = Spec (lim−→
λ

Γ(Vλ,OVλ)).

For each q, Rqf∗F is the sheaf associated to the presheaf

V �→ Hq(X ×Y V,F |X×Y V )

 E
ta

le
 C

oh
om

ol
og

y 
T

he
or

y 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

O
N

A
SH

 U
N

IV
E

R
SI

T
Y

 o
n 

11
/2

7/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



February 6, 2015 9:48 ws-book9x6 Etale Cohomology Theory... etale page 261

Etale Cohomology 261

for any V ∈ obYet. So we have

(Rqf∗F )ȳ ∼= lim−→
λ

Hq(X ×Y Vλ,F |X×Y Vλ).

By 5.9.3, we have

lim−→
λ

Hq(X ×Y Vλ,F |X×Y Vλ) ∼= Hq(X ×Y Ỹȳ,F |X×Y Ỹȳ ).

Our assertion follows. �

Corollary 5.9.6. Let X0 be an S0-scheme, (Xλ, vλμ) another inverse

system of X0-schemes such that Xλ are affine over X0 for all λ ∈ I,

X = lim←−λXλ, vλ : X → Xλ and vλμ : Xμ → Xλ (λ ≤ μ) the projec-

tions, fλ : Xλ → Sλ quasi-compact quasi-separated S0-morphisms satisfy-

ing fλvλμ = uλμfμ for any λ ≤ μ, and f : X → S the morphism induced

by (fλ) by passing to limit.

(i) Let (Fλ) be a sheaf on (Xλ, vλμ), and let F = lim−→λ
v∗λFλ. Then we

have

Rqf∗F ∼= lim−→
λ

u∗λR
qfλ∗Fλ

for all q.

(ii) Let (Gλ) be a sheaf on (Sλ, vλμ), and let G = lim−→λ
u∗λGλ. Then we

have

f∗G ∼= lim−→
λ

v∗λf
∗
λGλ.

Proof.

(i) For each q, Rqf∗F (resp. Rqfλ∗Fλ) is the sheaf on S
f
et (resp. (Sλ)

f
et)

associated to the presheaf

V �→ Hq(X ×S V,F ) (resp. Vλ �→ Hq(Xλ ×Sλ Vλ,Fλ))

for any V ∈ obSfet (resp. Vλ ∈ ob (Sλ)
f
et). By 5.9.2 (iii), we have

Hq(X ×S V,F ) ∼= lim−→
λ≥λV

Hq(Xλ ×Sλ Vλ,Fλ).

Our assertion then follows from 5.9.1.

(ii) We have

f∗G ∼= f∗(lim−→
λ

u∗λGλ)

∼= lim−→
λ

f∗u∗λGλ

∼= lim−→
λ

v∗λf
∗
λGλ.

�
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Corollary 5.9.7. Let f : X → S be an integral morphism and let F be a

sheaf on X. Then Rqf∗F = 0 for any q ≥ 1. Moreover, for any Cartesian

diagram

X ×S S′ g
′

→ X

f ′ ↓ ↓ f
S′

g→ S,

we have a canonical isomorphism

g∗f∗F
∼=→ f ′∗g

′∗F .

Proof. The canonical morphism g∗f∗F → f ′∗g∗F is obtained by adjunc-

tion from the composite of the canonical morphisms

f∗F
f∗(adj)→ f∗g′∗g

′∗F ∼= g∗f ′∗g
′∗F .

By 5.3.9, we have g∗f∗F ∼= f ′∗g
∗F if f is a finite morphism.

To prove 5.9.7, the problem is local on S, and we may assume S =

SpecA is affine. Since X is integral over S, it is also affine. Let {Aλ} be the

family subalgebras of Γ(X,OX) finitely generated over A, let Sλ = SpecAλ,

and let uλ : X → Sλ and fλ : Sλ → S be the canonical morphisms. Using

5.9.2 (i), one can show F ∼= lim−→λ
u∗λuλ∗F . Applying 5.9.6 to the morphism

(fλ) from the inverse system (Sλ) to the constant inverse system (S), we

get

Rqf∗F ∼= lim−→
λ

Rqfλ∗(uλ∗F ).

Each fλ is a finite morphism. By 5.7.4, we have

Rqfλ∗(uλ∗F ) = 0

for any q ≥ 1. So we have

Rqf∗F = 0

for any q ≥ 1. In the case q = 0, we get

f∗F ∼= lim−→
λ

fλ∗uλ∗F .

Fix notation by the following commutative diagram:

X ×S S′ u
′
λ→ Sλ ×S S′ f

′
λ→ S′

g′ ↓ gλ ↓ g ↓
X

uλ→ Sλ
fλ→ S.
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Since F ∼= lim−→λ
u∗λuλ∗F , we have

g′∗F ∼= lim−→
λ

u′∗λ g
∗
λuλ∗F .

Applying 5.9.6 to the morphism (f ′λ) from the inverse system (Sλ×S S′) to
the constant inverse system (S′), we get

f ′∗g
′∗F ∼= lim−→

λ

f ′λ∗g
∗
λuλ∗F .

So we have

g∗f∗F ∼= g∗(lim−→
λ

fλ∗uλ∗F )

∼= lim−→
λ

g∗fλ∗uλ∗F

∼= lim−→
λ

f ′λ∗g
∗
λuλ∗F

∼= f ′∗g
′∗F ,

where for the third isomorphism, we apply 5.3.9 to the finite morphisms

fλ. �

Lemma 5.9.8. Suppose that S0, Sλ, and S are noetherian schemes, and

A is a noetherian ring.

(i) Let F0 be a sheaf of A-modules on S0, Fλ and F its inverse images

on Sλ and S, respectively. If F0 is a constructible sheaf of A-modules,

then for any sheaf of A-modules (Gλ) on (Sλ, uλμ), we have a one-to-one

correspondence

lim−→
λ

HomA(Fλ,Gλ) → HomA(F ,G ),

where G = lim−→λ
u∗λGλ.

(ii) Let F0 and G0 be constructible sheaves of A-modules on S0, Fλ and

Gλ (resp. F and G ) their inverse images on Sλ (resp. S), φ0 : F0 → G0

a morphism, and φλ : Fλ → Gλ and φ : F → G the morphisms induced by

φ0. If φ is an isomorphism, then φλ are isomorphisms for sufficiently large

λ.

(iii) For any constructible sheaf of A-modules F on S, we can find a

sufficiently large λ and a constructible sheaf of A-modules Fλ on Sλ such

that F ∼= u∗λF .

(iv) Let

F0
φ0→ G0

ψ0→ H0
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be a sequence of constructible sheaves on S0. If its inverse image

F
φ→ G

ψ→ H

on S is exact, then for sufficiently large λ, its inverse image

Fλ
φλ→ Gλ

ψλ→ Hλ

on Sλ is exact.

Proof.

(i) Any morphism φλ : Fλ → Gλ induces a morphism F → G by taking

the composite

F = u∗λFλ
u∗
λ(φλ)→ u∗λGλ → lim−→

λ

u∗λGλ=G .

We thus get maps

HomA(Fλ,Gλ) → HomA(F ,G ).

They are compatible with each other and induce a map

lim−→
λ

HomA(Fλ,Gλ) → HomA(F ,G ).

Let us prove that the last map is bijective.

For any etale S0-scheme U0 of finite type, let Uλ = U0 ×S0 Sλ and

U = U0 ×S0 S. We have

lim−→
λ

HomA(AUλ ,Gλ)
∼= lim−→

λ

Gλ(Uλ)

∼= G (U)

∼= HomA(AU ,G ).

In general, by 5.8.5, we have an exact sequence

AU0 → AV0 → F0 → 0

for some etale S0-schemes U0 and V0 of finite type. Consider the commu-

tative diagram

0 → lim−→λ
HomA(Fλ,Gλ) → lim−→λ

HomA(AVλ ,Gλ) → HomA(AUλ ,Gλ)

↓ ↓ ↓
0 → HomA(F ,G ) → HomA(AV ,G ) → HomA(AU ,G ).

The horizontal lines are exact. The last two vertical arrows are bijective.

It follows that the first vertical arrow is bijective.

(ii) follows from (i).
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(iii) We can find an exact sequence

AU → AV → F → 0

for some etale S-schemes U and V of finite type. We can find λ and

etale Sλ-schemes Uλ and Vλ of finite type such that U ∼= Uλ ×Sλ S and

V ∼= Vλ ×Sλ S. By (i), taking λ sufficiently large, we can find a morphism

AUλ → AVλ inducing the morphism AU → AV . Let Fλ be the cokernel of

AUλ → AVλ . Then F ∼= u∗λFλ.

(iv) We have ψφ = 0. By (i), we have ψλφλ = 0 for sufficiently large λ.

Let Kλ (resp. K ) be the kernel of ψλ (resp. ψ), and let Lλ (resp. L ) be

the image of φλ (resp. φ). We have L ∼= K . By (ii), we have Lλ
∼= Kλ

for sufficiently large λ. �

Lemma 5.9.9. Suppose that S0, Sλ and S are noetherian schemes, and

A is a noetherian ring. Let (Iλ) be an injective sheaf of A-modules on

(Sλ, uλμ), and let I = lim−→λ
u∗λIλ. Then I is an injective of A-modules

on S.

Proof. Sheaves of the form AU with U being etale S-schemes of finite

type form a family of generators for the category of sheaves of A-modules

on S. To prove that I is injective, it suffices to show that for any subsheaf

F of AU , any morphism F → I can be extended to a morphism AU → I .

By 5.8.6, F is constructible. By 5.9.8, for sufficiently large λ, we can find

an etale Sλ-scheme Uλ of finite type such that U ∼= Uλ ×Sλ S, a subsheaf

Fλ of AUλ such that F ∼= u∗λFλ, and a morphism Fλ → Iλ inducing the

given morphism F → I . Since Iλ is necessarily injective, the morphism

Fλ → Iλ can be extended to a morphism AUλ → Iλ. It follows that

F → I can be extended to a morphism AU → I . �

Proposition 5.9.10. Suppose that S0, Sλ and S are noetherian schemes,

and A is a noetherian ring. Let F0 be a sheaf of A-modules on S0, Fλ and

F its inverse images on Sλ and S, respectively. If F is constructible, then

for any sheaf of A-modules (Gλ) on (Sλ, uλμ), we have

ExtqA(F ,G ) ∼= lim−→
λ

ExtqA(Fλ,Gλ),

E xtqA(F ,G ) ∼= lim−→
λ

u∗λE xt
q
A(Fλ,Gλ)

for all q, where G = lim−→λ
u∗λGλ.

Proof. Let

0 → (I 0
λ ) → (I 1

λ ) → · · ·
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be a resolution of (Gλ) by injective sheaves of A-modules on (Sλ, uλμ). By

5.9.9, lim−→λ
u∗λI

·
λ is an injective resolution of G , and each I ·λ is an injective

resolution of Gλ. By 5.9.8, we have

HomA(F , lim−→
λ

u∗λI
·
λ)

∼= lim−→
λ

HomA(Fλ,I
·
λ).

So we have

ExtqA(F ,G ) ∼= Hq(HomA(F , lim−→
λ

u∗λI
·
λ))

∼= Hq(lim−→
λ

HomA(Fλ,I
·
λ))

∼= lim−→
λ

Hq(HomA(Fλ,I
·
λ))

∼= lim−→
λ

ExtqA(Fλ,Gλ).

Note that E xtq(F ,G ) is the sheaf associated to the presheaf U �→
ExtqA(F |U ,G |U ) for any U ∈ obSfet. We have

ExtqA(F |U ,G |U ) ∼= lim−→
λ≥λU

ExtqA(Fλ|Uλ ,Gλ|Uλ).

Since E xtq(Fλ,Gλ) is the sheaf associated to the presheaf Uλ �→
ExtqA(Fλ|Uλ ,Gλ|Uλ) for any Uλ ∈ ob (Sλ)

f
et, we have

E xtqA(F ,G ) ∼= lim−→
λ

u∗λE xt
q
A(Fλ,Gλ)

by 5.9.1 and 5.9.2. �

Corollary 5.9.11. Let S be a noetherian scheme, A a noetherian ring,

s ∈ S, S̃s̄ the strict henselization of S at s̄, and F and G sheaves of A-

modules on S. If F is constructible, then

(E xtqA(F ,G ))s̄ ∼= ExtqA(F |S̃s̄ ,G |S̃s̄).
Proof. Let (Vλ) be the family of affine etale neighborhoods of s̄ in S. We

have

S̃s̄ = Spec (lim−→
λ

Γ(Vλ,OVλ)).

Since E xtqA(F ,G ) is the sheaf associated to the presheaf V �→
ExtqA(F |V ,G |V ), we have

(E xtqA(F ,G ))s̄ ∼= lim−→
λ

ExtqA(F |Vλ ,G |Vλ).

By 5.9.10, we have

lim−→
λ

ExtqA(F |Vλ ,G |Vλ) ∼= ExtqA(F |S̃s̄ ,G |S̃s̄).

Our assertion follows. �

 E
ta

le
 C

oh
om

ol
og

y 
T

he
or

y 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

O
N

A
SH

 U
N

IV
E

R
SI

T
Y

 o
n 

11
/2

7/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



February 6, 2015 9:48 ws-book9x6 Etale Cohomology Theory... etale page 267

Chapter 6

Derived Categories and Derived
Functors

In this chapter, covariant functors between categories are simply called

functors.

6.1 Triangulated Categories

([Beilinson, Bernstein and Deligne (1982)] 1.1, [Hartshorne (1966)] I 0–2,

[SGA 4] XVII 1.1, [SGA 4 1
2 ] C.D. I 1.)

A triangulated category C is an additive category provided with an auto-

morphism T : C → C , called the translation functor, and a collection of

sextuples (X,Y, Z, u, v, w), called distinguished triangles and also denoted

by

X
u→ Y

v→ Z
w→,

where X , Y and Z are objects in C , u : X → Y , v : Y → Z and w : Z →
T (X) are morphisms in C , such that the following axioms hold:

(TR1) Any morphism u : X → Y in C can be extended to a distin-

guished triangle

X
u→ Y → Z → .

The sextuple (X,X, 0, idX , 0, 0) is a distinguished triangle for any object X

in C . Any sextuple isomorphic to a distinguished triangle is a distinguished

triangle. Here a morphism from a sextuple (X,Y, Z, u, v, w) to another

sextuple (X ′, Y ′, Z ′, u′, v′, w′) is a triple (X
f→ X ′, Y

g→ Y ′, Z h→ Z ′) of

morphisms in C such that the following diagram commutes:

X
u→ Y

v→ Z
w→ T (X)

f ↓ g ↓ h ↓ ↓ T (f)

X ′ u
′→ Y ′ v

′→ Z ′ w
′→ T (X ′).

267
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We define composites of morphisms of sextuples in the obvious way. An

isomorphism of sextuples is a morphism with a two-sided inverse.

(TR2) A sextuple (X,Y, Z, u, v, w) is a distinguished triangle if and only

if (Y, Z, T (X), v, w,−T (u)) is a distinguished triangle.

(TR3) Given two distinguished triangles

X → Y → Z → and X ′ → Y ′ → Z ′ →,

and two morphisms f : X → X ′ and g : Y → Y ′ such that the diagram

X → Y

f ↓ ↓ g
X ′ → Y ′

commutes, there exists a morphism h : Z → Z ′ such that (f, g, h) is a

morphism of distinguished triangles.

(TR4) Given two morphisms u : X → Y and v : Y → Z, and three

triangles

X
u→ Y

j→ Z ′ →, Y
v→ Z → X ′ i→, X

vu→ Z → Y ′ →,

there exist morphisms f : Z ′ → Y ′ and g : Y ′ → X ′ such that (idX , v, f)

and (u, idZ , g) are morphisms of distinguished triangles, and the sextuple

(Z ′, Y ′, X ′, f, g, T (j) ◦ i) is a distinguished triangle.

Let C ′ and C be triangulated categories with the translation functors

T ′ and T , respectively. An additive covariant (resp. contravariant) functor

F : C ′ → C is called exact if there exists an isomorphism of functors

φ : F ◦ T ′ ∼=→ T ◦ F (resp. φ : F ◦ T ′−1 ∼=→ T ◦ F ) such that for any

distinguished triangle (X ′, Y ′, Z ′, u′, v′, w′) in C ′, the sextuple

(F (X ′), F (Y ′), F (Z ′), F (u′), F (v′), φX′ ◦ F (w′))
(resp. (F (Z ′), F (Y ′), F (X ′), F (v′), F (u′), φZ′ ◦ F (T−1(w′))))

is a distinguished triangle in C .

Let I be a finite set, ε : I → {±1} a map, C a triangulated category with

the translation functor T , and Ci (i ∈ I) triangulated categories with the

translation functors Ti, and F :
∏
i Ci → C an additive functor covariant

(resp. contravariant) in the i-th component if ε(i) = 1 (resp. ε(i) = −1).

For any i ∈ I, denote by (T
ε(i)
i ) the functor

∏
i Ci → ∏i Ci induced by

T
ε(i)
i and idCj for j 	= i. We say that F is an exact functor if the following

conditions hold:
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(a) There exist isomorphisms of functors φi : F ◦ (T ε(i)i )
∼=→ T ◦F (i ∈ I)

such that for any i 	= j, the diagram

F ◦ (T ε(i)i ) ◦ (T ε(j)j ) = F ◦ (T ε(j)j ) ◦ (T ε(i)i )
φj→ T ◦ F ◦ (T ε(i)i )

φi ↓ ↓ φi
T ◦ F ◦ (T ε(j)j )

φj→ T ◦ T ◦ F
is anti-commutative, that is, φiφj = −φjφi.

(b) With respect to each component of
∏
i Ci, F is an exact functor.

Proposition 6.1.1. Let C be a triangulated category.

(i) For any distinguished triangle X
u→ Y

v→ Z
w→ in C , we have vu = 0

and wv = 0.

(ii) For any distinguished triangle X
u→ Y

v→ Z
w→ and any object W in

C , the following sequences are exact

· · ·→Hom(W,T iX)→Hom(W,T iY)→Hom(W,T iZ)→Hom(W,T i+1X)→· · · ,
· · ·←Hom(T iX,W)←Hom(T iY,W)←Hom(T iZ,W)←Hom(T i+1X,W)←· · · .

(iii) In the axiom (TR3), if f and g are isomorphisms, then so is h.

Proof.

(i) The pair of morphisms (idX , u) gives rise to a commutative diagram

X
idX→ X

idX ↓ ↓ u
X

u→ Y.

By (TR3), it can be extended to a morphism from the distinguished triangle

X
idX→ X → 0 →

to the distinguished triangle

X
u→ Y

v→ Z
w→ .

So we have a commutative diagram

X
idX→ X → 0 → T (X)

idX ↓ ↓ u ↓ ↓idT (X)

X
u→ Y

v→ Z
w→ T (X).

It follows that vu = 0. By (TR2),

Y
v→ Z

w→ T (X)
−T (u)→
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is also a distinguished triangle. It follows that wv = 0 from the discussion

above.

(ii) It suffices to prove that

Hom(W,X) → Hom(W,Y ) → Hom(W,Z),

Hom(X,W ) ← Hom(Y,W ) ← Hom(Z,W )

are exact and then apply (TR2) repeatedly. By (i), the composites of

morphisms in these two sequences are zero. Suppose that f lies in the

kernel of Hom(W,Y ) → Hom(W,Z). We have a commutative diagram

W → 0

f ↓ ↓
Y

v→ Z.

By (TR2) and (TR3), there exists h ∈ Hom(W,X) making the following

diagram commute:

W
id→ W → 0 →

h ↓ f ↓ ↓
X

u→ Y
v→ Z

w→ .

We then have f = uh, and f lies in the image of Hom(W,X) → Hom(W,Y ).

This proves that the first sequence is exact. Similarly, one can prove that

the second sequence is exact.

(iii) Consider the commutative diagram

Hom(Z′,X) → Hom(Z′,Y ) → Hom(Z′,Z) → Hom(Z′,T (X)) → Hom(Z′,T (Y ))

↓ ↓ ↓ ↓ ↓
Hom(Z′,X′) → Hom(Z′,Y ′) → Hom(Z′,Z′) → Hom(Z′,T (X′)) → Hom(Z′,T (Y ′)),

where the vertical arrows are induced by f, g, h, T (f), T (g), respectively.

By (ii), the horizontal lines are exact. If f and g are isomorphisms, then

by the five lemma, the morphism

Hom(Z ′, Z) → Hom(Z ′, Z ′)

induced by h is an isomorphism. So there exists h′ : Z ′ → Z such that

hh′ = idZ′ . Similarly one can prove that h has a left inverse. Hence h is

an isomorphism. �

Let A be an additive category and let K(A ) be the category whose

objects are complexes of objects in A , and whose morphisms are homotopy

classes of morphisms of complexes. A complex X · is bounded below (resp.

bounded above, resp. bounded) if Xn = 0 for n � 0 (resp. n � 0, resp.
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n � 0 and n � 0). Denote by K+(A ), K−(A ) and Kb(A ) the full

subcategories of K(A ) consisting of bounded below, bounded above, and

bounded complexes, respectively.

Define the translation functor T : K(A ) → K(A ) as follows. For any

complex X · ∈ obK(A ), T (X ·) is the complex defined by

T (X ·)i = X i+1, diT (X·) = −di+1
X· .

For any morphism u· : X · → Y ·, define T (u·) : T (X ·) → T (Y ·) by

T (u·)i = ui+1.

We also write X ·[1] for T (X ·) and write X ·[n] for T n(X) for any integer n.

For any morphism of complexes u : X · → Y · in K(A ), define the

mapping cone C(u)· of u to be the complex defined by

C(u)p = Xp+1 ⊕ Y p,

d : C(u)p → C(u)p+1, (xp+1, yp) �→ (−dxp+1, u(xp+1) + dyp).

One can check that dd = 0. We have canonical morphisms Y · → C(u)· and
C(u)· → X ·[1]. Any sextuple isomorphic to

X · u→ Y · → C(u)· →
is called a distinguished triangle in K(A ). One can show that K(A ) is a

triangulated category, and the subcategories K+(A ), K−(A ) and Kb(A )

are also triangulated categories. Moreover, we have the following.

Proposition 6.1.2. Suppose that A is an abelian category. Let

X · → Y · → Z · →
be a distinguished triangle in K(A ). Then the sequence

· · · → Hi(X ·) → Hi(Y ·) → Hi(Z ·) → Hi+1(X ·) → · · ·
is exact.

Suppose that A is an abelian category. An abelian subcategory A ′ of
A is called thick if for any exact sequence

0 → X ′ → X → X ′′ → 0

in A with X ′, X ′′ ∈ obA ′, we have X ∈ obA ′. For any thick abelian

subcategory A ′ of A , we defined KA ′(A ) to be the full subcategory of

K(A ) consisting of the complexes X · in K(A ) such that H q(X ·) are

objects in A ′ for all q. By 6.1.2, KA ′(A ) is a triangulated subcategory

of K(A ). Similarly, we can define triangulated subcategories K+
A ′(A ),

K−A ′(A ) and Kb
A ′(A ).

 E
ta

le
 C

oh
om

ol
og

y 
T

he
or

y 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

O
N

A
SH

 U
N

IV
E

R
SI

T
Y

 o
n 

11
/2

7/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



February 6, 2015 9:48 ws-book9x6 Etale Cohomology Theory... etale page 272

272 Etale Cohomology Theory

6.2 Derived Categories

([Hartshorne (1966)] I 3–4, [SGA 4 1
2 ] C.D. I 2, II 1.)

Let C be a category. A family S of morphisms in C is called a multiplicative

system if it satisfies the following conditions:

(a) For any f, g ∈ S, we have fg ∈ S whenever the composite fg is

defined. Identity morphisms are in S.

(b) Any diagram

X → Y (resp. Y

s ↓ ↓ t
Z Z → W )

with s ∈ S (resp. t ∈ S) can be completed to a commutative diagram

X → Y

s ↓ ↓ t
Z → W

with t ∈ S (resp. s ∈ S).

(c) Let f, g : X → Y be two morphisms. There exists s ∈ S such that

sf = sg if and only if there exists t ∈ S such that ft = gt.

Let C be a category and let S be a multiplicative system of morphisms

in C . For any X ∈ obC , define a category X− (resp. X+) as follows:

Objects of X− (resp. X+) are morphisms X ′ s→ X (resp. X
s→ X ′) in

S. We also denote these objects by X ′ for simplicity. Given two objects

X ′i
si→ X (resp. X

si→ X ′i) (i = 1, 2) in X− (resp. X+), morphisms from s1
to s2 are morphisms f : X ′1 → X ′2 in C such that s2f = s1 (resp. fs1 = s2).

One can verify (X−)◦ and X+ satisfy the conditions (I2) and (I3) in 2.7,

where (X−)◦ is the opposite category of X−.
Define a category S−1C as follows: S−1C has the same family of objects

as C . For any X,Y ∈ obS−1C , HomC (−, Y ) is a contravariant functor on

X−, and we define

HomS−1C (X,Y ) = lim−→
X′∈ob (X−)◦

HomC (X ′, Y ).

If an element in HomS−1C (X,Y ) is represented by an element in f : X ′ → Y

in HomC (X ′, Y ) for some object s : X ′ → X in X−, we denote this element

by the diagram

X ′

s ↓ f ↘
X Y.
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Given two morphisms

X ′ Y ′

s ↓ f ↘ t ↓ g ↘
X Y, Y Z

in S−1C , find a commutative diagram

X ′′

t′ ↓ f ′ ↘
X ′ Y ′

f ↘ ↓ t
Y

such that t′ : X ′′ → X ′ lies in S. The composite of the above two morphisms

is defined to be the morphism represented by the diagram

X ′′

st′ ↓ gf ′ ↘
X Z.

One can verify that the composite of morphisms in S−1C is well-defined,

that is, independent of the choice of diagrams representing morphisms. We

have

HomS−1C (X,Y ) = lim−→
X′∈ob (X−)◦

HomC (X ′, Y )

= lim−→
Y ′∈obY +

HomC (X,Y ′)

= lim−→
X′ ∈ ob (X−)◦,
Y ′ ∈ obY +

HomC (X ′, Y ′).

We call S−1C the localization of C with respect to S. We have a canonical

functor Q : C → S−1C . It transforms morphisms of C in S into isomor-

phisms in S−1C .

Proposition 6.2.1. Let C and D be categories, S a multiplicative system

of morphisms in C , F : C → D a functor that transforms morphisms of

C lying in S into isomorphisms in D , and Q : C → S−1C the canonical

functor. Then there exists a unique functor G : S−1C → D such that

F = G ◦Q.

Proposition 6.2.2. Let C be a triangulated category with the translation

functor T and let S be a multiplicative system of morphisms in C . Suppose

the following two conditions hold:
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(a) We have s ∈ S if and only if T (s) ∈ S.

(b) In the axiom (TR3), if f, g ∈ S, then h ∈ S.

By (a), T induces an automorphism on S−1C . A sextuple in S−1C is called

a distinguished triangle if it is isomorphic in S−1C to a sextuple coming

from a distinguished triangle in C . Then S−1C is a triangulated category,

and the canonical functor Q : C → S−1C is exact.

Let A be an abelian category, and let X · and Y · be two complexes

of objects in A . A morphism u : X · → Y · in K(A ) is called a quasi-

isomorphism if u induces isomorphisms Hi(X ·) → Hi(Y ·) for all i. By

6.1.2, this is equivalent to saying that the mapping cone C(u)· is acyclic,

that is, Hi(C(u)·) = 0 for all i.

Proposition 6.2.3. Let A be an abelian category, let A ′ be a thick abelian

subcategory of A , and let S be the family of quasi-isomorphisms in K(A )

(resp. K+(A ), K−(A ), Kb(A ), KA ′(A ), K+
A ′(A ), K−A ′(A ), Kb

A ′(A )).

Then S is a multiplicative system satisfying the conditions (a) and (b) in

6.2.2.

Proof. It is clear that if s : Y → Z and t : X → Y are quasi-

isomorphisms, then so is st.

Given a diagram

X
u→ Y

s ↓
Z

with s ∈ S, by (TR1) and (TR2), we can choose a distinguished triangle

C
v→ X

s→ Z → .

Since s is a quasi-isomorphism, C is acyclic by 6.1.2. By (TR1), we can

choose a distinguished triangle

C
uv→ Y

t→W → .

Then t is a quasi-isomorphism. By (TR3), the pair (idC , u) can be extended

to a morphism of triangles (idC , u, g) from C
v→ X

s→ Z → to C
uv→ Y

t→
W →. Then we have a commutative diagram

X
u→ Y

s ↓ ↓ t
Z

g→ W

with t ∈ S. Similarly any diagram

Y

↓ t
Z → W
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with t ∈ S can be completed to a commutative diagram

X → Y

s ↓ ↓ t
Z → W

with s ∈ S.

Let f : X → Y be a morphism and let s : Y → Y ′ be a quasi-

isomorphism such that sf = 0. By (TR1) and (TR2), we can choose a

distinguished triangle

C
u→ Y

s→ Y ′ → .

Since s is a quasi-isomorphism, C is acyclic. Since sf = 0, by 6.1.1 (ii),

there exists a morphism v : X → C such that f = uv. By (TR1) and

(TR2), we can choose a distinguished triangle

X ′ t→ X
v→ C → .

Since C is acyclic, t is a quasi-isomorphism. We have ft = uvt = 0.

Similarly, one can prove that if there exists a quasi-isomorphism t such

that ft = 0, then there exists a quasi-isomorphism s such that sf = 0.

It is clear that S satisfies the condition (a) in 6.2.2. It follows from 6.1.2

and the five lemma that S satisfies the condition (b). �
Let A be an abelian category, A ′ a thick abelian subcategory of A ,

and S the family of quasi-isomorphisms in

K(A ) (resp. K+(A ),K−(A ),Kb(A ),

KA ′(A ),K+
A ′(A ),K−A ′(A ),Kb

A ′(A )).

The category

S−1K(A ) (resp. S−1K+(A ), S−1K−(A ), S−1Kb(A ),

S−1KA ′(A ), S−1K+
A ′(A ), S−1K−A ′(A ), S−1Kb

A ′(A ))

is called a derived category of A , and is denoted by

D(A ) (resp. D+(A ), D−(A ), Db(A ),

DA ′(A ), D+
A ′(A ), D−A ′(A ), Db

A ′(A )).

We have a commutative diagram

Db
A ′(A ) → Db(A )

↓ ↓
D±A ′(A ) → D±(A )

↓ ↓
DA ′(A ) → D(A ),
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where all arrows are fully faithful exact functors. We have a canonical

exact functor D(A ′) → DA ′(A ) which in general is neither fully faithful

nor essentially surjective.

Proposition 6.2.4. Let A be an abelian category. For any object A in A ,

denote also by A the complex

· · · → 0 → A→ 0 → · · ·
whose 0-th component is A and whose other components are 0. The functor

A → D(A ), A �→ A

defines an equivalence between the category A and the full subcategory of

D(A ) consisting of complexes X · satisfying Hi(X ·) = 0 for all i 	= 0.

Proposition 6.2.5. Let A be an abelian category, and let

0 → X · u→ Y · v→ Z · → 0

be a short exact sequence of complexes of objects in A .

(i) There are canonical morphisms δi : Hi(Z ·) → Hi+1(X ·) such that

we have a long exact sequence

· · · → Hi(X ·) u→ Hi(Y ·) v→ Hi(Z ·) δ→ Hi+1(X ·) → · · · .
(ii) There exists a morphism w : Z · → X ·[1] in D(A ) such that

X · u→ Y · v→ Z · w→
is a distinguished triangle.

Proof. (i) is well-known. Let us prove (ii). We have a distinguished

triangle

X · u→ Y · v
′→ C(u)· w

′→
in K(A ). Since vu = 0, there exists a morphism f : C(u)· → Z · in K(A )

such that v = fv′ by 6.1.1 (ii). One can check that the following diagram

commutes:

· · · → Hi(X ·) u→ Hi(Y ·) v′→ Hi(C(u)·) w
′→ Hi+1(X ·) → · · ·

‖ ‖ ↓ f ‖
· · · → Hi(X ·) u→ Hi(Y ·) v→ Hi(Z ·) −δ→ Hi+1(X ·) → · · · .

By (i), 6.1.2, and the five lemma, f : C(u)· → Z · is a quasi-isomorphism.

So f induces an isomorphism in D(A ). Define w = w′ ◦ f−1. Then
X · u→ Y · v→ Z · w→

is a distinguished triangle in D(A ). �
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Lemma 6.2.6. Let f : Z · → I · be a morphism of complexes in an abelian

category A . Suppose that Z · is acyclic, and I · is a bounded below complex

of injective objects in A . Then f is homotopic to 0.

Proof. We leave the proof to the reader. Confer [Fu (2006)] 2.1.1 (ii).�

Lemma 6.2.7. Let s : I · → X · be a quasi-isomorphism of complexes in

an abelian category A . Suppose I · is a bounded below complex of injective

objects. Then there exists a quasi-isomorphism t : X · → I · such that ts is

homotopic to idI· .

Proof. Choose a distinguished triangle

C· → I · s→ X · → .

Since s is a quasi-isomorphism, C· is acyclic. By 6.2.6, C· → I · is homotopic

to 0. So we have a commutative diagram

C· → I ·

↓ ↓ idI·

0 → I ·

in K(A ). By (TR3), there exists t : X · → I · such that (0, idI· , t) is a

morphism of triangles.

C· → I · s→ X · →
↓ ↓ idI· ↓ t
0 → I ·

idI·→ I · → .

Then ts is homotopic to idI· , and t is a quasi-isomorphism. �

Lemma 6.2.8. Let A be an abelian category, X ·, Y · ∈ obK(A ), I · a
bounded below complex of injective objects in A , and s : Y · → I · a quasi-

isomorphism. Then we have

HomK(A )(X
·, I ·) ∼= HomD(A )(X

·, Y ·).

Proof. Let Y ·+ be the category so that objects in Y ·+ are quasi-

isomorphisms Y · → Y ′·, and morphisms in Y ·+ from an object Y · s1→ Y ′·1
to an object Y · s2→ Y ′·2 are morphisms f : Y ′·1 → Y ′·2 in K(A ) with the

property fs1 = s2. We claim that Y · s→ I · is a final object in Y ·+ and

hence we have

HomD(A )(X
·, Y ·) ∼= lim−→

Y ′·∈obY ·+
HomK(A )(X

·, Y ′·) ∼= HomK(A )(X
·, I ·).
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Given an arbitrary object Y · s
′

→ Y ′· in Y ·+, by 6.2.3, we can find a com-

mutative diagram

Y · s→ I ·

s′ ↓ ↓ s′′
Y ′·

f→ J ·

in K(A ) such that s′′ is a quasi-isomorphism. By 6.2.7, there exists a

morphism t : J · → I · such that ts′′ = idI· in K(A ). Then tf is a morphism

in Y ·+ from Y · s′→ Y ′· to Y · s→ I ·. Suppose f1, f2 : Y ′· → I · are two

morphisms in Y ·+ from Y · s
′→ Y ′· to Y · s→ I ·. We then have

f1s
′ = s = f2s

′.

By 6.2.3, there exists a quasi-isomorphism s′′′ : I · → J · such that s′′′f1 =

s′′′f2. By 6.2.7, there exists a morphism t′ : J · → I · such that t′s′′′ = idI·

in K(A ). Then we have

f1 = t′s′′′f1 = t′s′′′f2 = f2.

So there exists one and only one morphism in Y ·+ from Y · s
′→ Y ′· to Y · s→

I ·. �

Lemma 6.2.9. Let I be a family of objects in an abelian category A such

that every object in A can be embedded into an object in I . Then for

any X · ∈ obK(A ) such that Hi(X) = 0 for i � 0, there exists a quasi-

isomorphism X · → I · such that I · is a bounded below complex of objects in

I .

Proof. Define Ii = 0 for i � 0. Suppose that we have defined Ii and

morphisms si : X i → Ii for all i < n such that Hi(X ·) ∼= Hi(I ·) for all

i < n− 1 and such that Hn−1(X ·) → In−1/im dn−2I· is injective. Consider

the diagram

Xn−1/imdn−2X·
dn−1→ ker dnX·

i→ Xn

sn−1 ↓ ↓ ↓
In−1/im dn−2I·

α→ A
β→ B,

where on the first line the morphisms are uniquely determined by the prop-

erty that i is the inclusion and i ◦ dn−1 is the morphism Xn−1/imdn−2X· →
Xn induced by dn−1X· , and on the second line, we have

A = coker(Xn−1/imdn−2X·
(sn−1,−dn−1)→ In−1/im dn−2I· ⊕ ker dnX·),

B = coker(Xn−1/imdn−2X·
(sn−1,−dn−1

X· )→ In−1/im dn−2I· ⊕Xn),
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and all arrows in the diagram are the canonical morphisms. The first ver-

tical arrow induces an epimorphism Hn−1(X ·) → kerα. Combined with

the hypothesis that Hn−1(X ·) → In−1/im dn−2I· is injective, we see that

it induces an isomorphism Hn−1(X ·) ∼= kerα. The middle vertical arrow

induces an isomorphism Hn(X ·) ∼= A/imα, and β is injective. Embed B

into an object In in I . Define dn−1I· : In−1 → In to be the composite

In−1 → In−1/imdn−2I·
α→ A

β→ B → In,

and define Xn → In to be the composite

Xn → B → In.

Then we have Hi(X ·) ∼= Hi(I ·) for all i < n and Hn(X ·) → In/imdn−1I· is

injective. �

Corollary 6.2.10. Let A be an abelian category and let I be the full

subcategory consisting of injective objects. Then the canonical functor

K+(I ) → D+(A ) is fully faithful. If A has enough injective objects,

then K+(I ) → D+(A ) is an equivalence of categories.

Proof. Let I and J be objects in K+(I ). By 6.2.8, we have

HomK(A )(I, J) ∼= HomD(A )(I, J).

So the functor K+(I ) → D+(A ) is fully faithful. If A has enough in-

jective objects, then by 6.2.9, any object in D+(A ) is quasi-isomorphic

to a complex of injective objects. The above functor is then essentially

surjective. �

6.3 Derived Functors

([Hartshorne (1966)] I 5, [SGA 4] XVII 1.2, [SGA 4 1
2 ] C.D. II 2.)

Let A and B be abelian categories, A ′ a thick abelian subcategory of A ,

K∗(A ) one of the categories

K(A ),K+(A ),K−(A ),Kb(A ),KA ′(A ),K+
A ′(A ),K−A ′(A ),Kb

A ′(A ),

D∗(A ) the corresponding derived category, and F : K∗(A ) → K(B) an

exact functor. For any X ∈ obK∗(A ), let

F ′(X) : D(B) → (Sets)

be the contravariant functor from D(B) to the category of sets defined by

F ′(X)(Y ) = lim−→
X′∈obX+

HomD(B)(Y, F (X
′))
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for any Y ∈ obD(B), where X+ is the category so that objects in X+

are quasi-isomorphisms X → X ′, and morphisms in X+ from an object

X
s1→ X ′1 to an object X

s2→ X ′2 are morphisms f : X ′1 → X ′2 in K∗(A )

with the property fs1 = s2. Given a morphism X1 → X2 in K∗(A ),

define a morphism of functors F ′(X1) → F ′(X2) as follows: For any object

X1 → X ′1 in X+
1 , we can find a commutative diagram

X1 → X2

↓ ↓
X ′1 → X ′2

such that X2 → X ′2 is an object in X+
2 . The morphism X ′1 → X ′2 induces

a map

HomD(B)(Y, F (X
′
1)) → HomD(B)(Y, F (X

′
2))

for any Y ∈ obD(B). We can take the limit of these maps and get a map

F ′(X1)(Y ) → F ′(X2)(Y ). We thus get a functor

F ′ : K∗(A ) → Hom(D(B)◦, (Sets)),

where Hom(D(B)◦, (Sets)) denotes the category of contravariant functors

from D(B) to the category of sets. One can check that F ′ transforms quasi-

isomorphisms inK∗(A ) to isomorphisms inHom(D(B)◦, (Sets)). So there

exists a unique functor

RF : D∗(A ) → Hom(D(B)◦, (Sets)),

such that F ′ = RF ◦ Q, where Q : K∗(A ) → D∗(A ) is the canonical

functor. We call RF the right derived functor of F . We say that RF is

defined at X ∈ obD∗(A ) if the functor RF (X) is representable, that is,

F ′(X) ∼= HomD(B)(−, Z)
for some object Z ∈ D(B). Suppose that RF is defined everywhere on

D∗(A ). Then there exists a functor D∗(A ) → D(B) that maps each

X ∈ obD∗(A ) to an object in D(B) representing F ′(X). We also call this

functor the right derived functor of F and denote it by

RF : D∗(A ) → D(B).

It it uniquely determined up to isomorphism. For any integer i, we define

RiF (X) = Hi(RF (X)).

Similarly, for any X ∈ obK∗(A ), let

′F (X) : D(B) → (Sets)
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be the covariant functor from D(B) to the category of sets defined by

′F (X)(Y ) = lim−→
X′∈ob (X−)◦

HomD(B)(F (X
′), Y )

for any Y ∈ obD(B), where X− is the category such that objects in X−

are quasi-isomorphisms X ′ → X , and morphisms in X− from an object

X ′1
s1→ X to an object X ′2

s2→ X are morphisms f : X ′1 → X ′2 in K∗(A ) with

the property s2f = s1. It defines a contravariant functor

′F : K∗(A ) → Hom(D(B), (Sets)),

where Hom(D(B), (Sets)) denotes the category of covariant functors from

D(B) to the category of sets. One can check that ′F transforms quasi-

isomorphisms in K∗(A ) to isomorphisms in Hom(D(B), (Sets)). So there

exists a unique functor

LF : D∗(A ) → Hom(D(B), (Sets)),

such that ′F = LF ◦Q. We call LF the left derived functor of F . We say

that LF is defined at X ∈ obD∗(A ) if the functor LF (X) is representable,

that is,

′F (X) ∼= HomD(B)(Z,−)

for some object Z ∈ D(B). Suppose that LF is defined everywhere on

D∗(A ). Then there exists a functor D∗(A ) → D(B) that maps each

X ∈ obD∗(A ) to an object in D(B) representing ′F (X). We also call this

functor the left derived functor of F and denote it by

LF : D∗(A ) → D(B).

It is uniquely determined up to isomorphism. For any integer i, we define

LiF (X) = Hi(LF (X)).

We leave it for the reader to define left derived functors and right derived

functors for contravariant functors. In the following, we state results only

for right derived functors of covariant functors. We leave it for the reader

to extend them to other derived functors.

Proposition 6.3.1. Notation as above. Suppose that there exists a family

of objects L of K∗(A ) satisfying the following conditions:

(a) Any object X in K∗(A ) admits a quasi-isomorphism X → X ′ such
that X ′ is an object in L .

(b) The exact functor F : K∗(A ) → K(B) transforms quasi-

isomorphisms between objects in L to quasi-isomorphisms in K(B).
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(c) For any morphism X ′ → X ′′ in K∗(A ) such that X ′ and X ′′ are
objects in L , there exists a distinguished triangle

X ′ → X ′′ → X ′′′ →
in K∗(A ) such that X ′′′ is also an object in L .

Then RF is everywhere defined and RF : D∗(A ) → D(B) is an exact

functor. For any X ∈ obD∗(A ), let X → X ′ be a quasi-isomorphism such

that X ′ is an object in L . We have RF (X) ∼= F (X ′).

Proof. Let X → X ′ be a quasi-isomorphism such that X ′ is an object in

L . For any object X → X ′′ in X+, we can find a commutative diagram

X → X ′

↓ ↓
X ′′ → X ′′′

such that all arrows are quasi-isomorphisms. By condition (a), we may

assume that X ′′′ is an object in L . By condition (b), X ′ → X ′′′ induces
an isomorphism

F (X ′)
∼=→ F (X ′′′)

in D(B). So we have a one-to-one correspondence

HomD(B)(Y, F (X
′)) ∼= HomD(B)(Y, F (X

′′′))

for any Y ∈ obD(B). It follows that

F ′(X)(Y ) = lim−→
X′′∈obX+

HomD(B)(Y, F (X
′′)) ∼= HomD(B)(Y, F (X

′)).

So the functor F ′(X) is represented by F (X ′). It follows that RF is defined

at X and RF (X) ∼= F (X ′). To prove that RF is an exact functor, we

use the condition that F is exact, and that any distinguished triangle in

D∗(A ) is isomorphic to a distinguished triangle in K∗(A ) whose vertices

are objects in L . �

Corollary 6.3.2. Let K�(A ) be one of the categories

K(A ),K+(A ),K−(A ),Kb(A ),KA ′(A ),K+
A ′(A ),K−A ′(A ),Kb

A ′(A )

contained in K∗(A ) and let D�(A ) be the corresponding derived category.

Suppose that the conditions of 6.3.1 hold, and suppose furthermore that

any object X in K�(A ) admits a quasi-isomorphism from X to an object

in L ∩ obK�(A ). Then R(F |K�(A )) is defined everywhere on D�(A ) and

R(F |K�(A )) ∼= (RF )|D�(A ).
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Corollary 6.3.3. Let A , B and C be abelian categories, A ′ (resp. B′)
a thick abelian subcategory of A (resp. B), K∗(A ) (resp. K�(B)) one of

the categories

K(A ),K+(A ),K−(A ),Kb(A ),KA ′(A ),K+
A ′(A ),K−A ′(A ),Kb

A ′(A )

(resp.K(B),K+(B),K−(B),Kb(B),KB′ (B),K+
B′ (B),K−B′(B),Kb

B′ (B)),

D∗(A ) (resp. D�(B)) the corresponding derived category, F : K∗(A ) →
K�(B) and G : K�(B) → K(C ) exact functors. Suppose that the following

conditions hold:

(a) There exists a family L (resp. M ) of objects in K∗(A ) (resp.

K�(B)) such that any object X in K∗(A ) (resp. K�(B)) admits a quasi-

isomorphism from X to an object X ′ in L (resp. M ), and for any mor-

phism X ′ → X ′′ in K∗(A ) (resp. K�(B)) such that X ′ and X ′′ are objects

in L (resp. M ), there exists a distinguished triangle

X ′ → X ′′ → X ′′′ →
in K∗(A ) (resp. K�(B)) such that X ′′′ is also an object in L (resp. M ).

(b) F (resp. G) transforms quasi-isomorphisms between objects in L

(resp. M ) to quasi-isomorphisms in K�(B) (resp. K(C )).

(c) F (L ) ⊂ M .

Then RF , RG and R(GF ) are everywhere defined, and R(GF ) ∼= RG◦RF .
Proposition 6.3.4. Let A and B be abelian categories. Suppose that A

has enough injective objects.

(i) For any exact functor F : K+(A ) → K(B), RF is everywhere

defined on D+(A ). For any object X in K+(A ), we can find a quasi-

isomorphism X → I such that I is a bounded below complex of injective

objects in A , and we have RF (X) ∼= F (I).

(ii) Let F : A → B be a left exact functor. Denote the functor

K(A ) → K(B) induced by F also by F . By (i), RF is everywhere de-

fined on D+(A ). Suppose that RF has finite cohomological dimension.

Then RF is everywhere defined on D(A ).

Here we say RF has finite cohomological dimension if there exists a

nonnegative integer n such that RiF (X) = 0 for any i > n and any X ∈
obA .

Proof.

(i) Let L be the family of objects in K+(A ) consisting of bounded be-

low complexes of injective objects in A . Since A has enough injective ob-

jects, by 6.2.9, for any objectX inK+(A ), we can find a quasi-isomorphism
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X → I so that I is an object in L . If s : I1 → I2 is a quasi-isomorphism of

objects in L , then by 6.2.7, s is an isomorphism in K+(A ). Hence F (s)

is an isomorphism in K(B). Our assertion then follows from 6.3.1.

(ii) An object X in A is called RF -acyclic if RiF (X) = 0 for all i > 0.

Injective objects are RF -acyclic. If

0 → X ′ → X → X ′′ → 0

is an exact sequence of objects in A , and X ′ and X ′′ are RF -acyclic, then
X is also RF -acyclic, and the sequence

0 → F (X ′) → F (X) → F (X ′′) → 0

is exact. Take L to be the family of objects in K(A ) consisting of com-

plexes of RF -acyclic objects. Let n be an integer such that RiF (X) = 0

for any i > n and any X ∈ obA , and let

0 → I0
d0→ I1

d1→ · · ·
be an injective resolution of an object X in A . Then

0 → In
dn→ In+1 d

n+1→ · · ·
is an injective resolution of ker dn. For any i > 0, we have

RiF (ker dn) ∼= Hi(F (I ·[n])) ∼= Ri+nF (X) = 0.

So kerdn is RF -acyclic. Hence

0 → I0 → · · · → In−1 → kerdnI· → 0

is an RF -acyclic resolution of X . Let X · be a complex in K(A ), and let

I ·· be the Cartan–Eilenberg resolution of X ·. For each j,

0 → I0j → I1j → · · ·
is an injective resolution of Xj. We have a quasi-isomorphism from X · to
the complex associated to the truncated bicomplex

0 0

↑ ↑
· · · → ker dn,j1 → kerdn,j+1

1 → · · ·
↑ ↑

· · · → In−1,j → In−1,j+1 → · · ·
↑ ↑
...

...

↑ ↑
· · · → I0,j → I0,j+1 → · · ·

↑ ↑
0 0
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and this is a complex of RF -acyclic objects. Hence every objectX in K(A )

admits a quasi-isomorphism from X to an object in L . Next we show that

F transforms quasi-isomorphisms of objects in L into quasi-isomorphisms

in K(B). Then (ii) follows from 6.3.1. It suffices to show that F transforms

acyclic complexes in L to acyclic complexes. Let X · be an acyclic complex

of RF -acyclic objects, and let Zi = kerdiX· . We have short exact sequences

0 → Zi−1 → X i−1 → Zi → 0.

Since X i are RF -acyclic, for any q > 0, we have

RqF (Zi) ∼= Rq+1F (Zi−1) ∼= · · · ∼= Rq+nF (Zi−n) = 0.

So Zi are RF -acyclic. It follows that

0 → F (Zi−1) → F (X i−1) → F (Zi) → 0

are exact, and hence F (X ·) is acyclic. �

Proposition 6.3.5. Let A and B be abelian categories and let F : A → B

be a left exact functor. Suppose that A has enough injective objects. Then

for any K · ∈ obD+(A ), we have two biregular spectral sequences

Epq2 = RpF (Hq(K ·)) ⇒ Rp+qF (K ·),

Epq1 = RqF (Kp) ⇒ Rp+qF (K ·).

Suppose furthermore that RF has finite cohomological dimension. Then we

have the same result for any K · ∈ obD(A ).

Proof. Let us prove the second part of the proposition. Let n be an

integer such that RiF (X) = 0 for any object X in A and any i > n. Given

an object X · in K(A ), let

Zj = kerdjX· , Bj = im dj−1X· , Hj = Zj/Bj.

Choose a Cartan–Eilenberg resolution I ·· of X ·. Then for each j,

(I ·,j, d·,j1 ), (ker d·,j2 , d·,j1 ), (im d·,j−12 , d·,j1 ), (ker d·,j2 /im d·,j−12 , d·,j1 )

are injective resolutions of Xj, Zj , Bj , Hj, respectively. For any complex

Y ·, let τ≤nY · be the truncated complex

· · · → Y n−1 → ker dnY · → 0.

Then

(τ≤n(I ·,j), d
·,j
1 ), (τ≤n(ker d

·,j
2 ), d·,j1 ), (τ≤n(im d·,j−12 ), d·,j1 ),

(τ≤n(ker d
·,j
2 /im d·,j−12 ), d·,j1 )
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are resolutions by RF -acyclic objects ofXj , Zj, Bj , Hj , respectively. More-

over, we have short exact sequences of complexes

0 → τ≤n(im d·,j−12 ) → τ≤n(ker d
·,j
2 ) → τ≤n(ker d

·,j
2 /im d·,j−12 ) → 0,

0 → τ≤n(ker d
·,j
2 ) → τ≤n(I ·,j) → τ≤n(im d·,j2 ) → 0.

Let I ′·· be the truncated bicomplex

0 0

↑ ↑
· · · → ker dn,j1 → kerdn,j+1

1 → · · ·
↑ ↑

· · · → In−1,j → In−1,j+1 → · · ·
↑ ↑
...

...

↑ ↑
· · · → I0,j → I0,j+1 → · · ·

↑ ↑
0 0

and denote objects associated to this complex by putting the supscript ′.
Then the complexes

(I ′·,j , d′·,j1 ), (ker d′·,j2 , d′·,j1 ), (im d′·,j−12 , d′·,j1 ), (ker d′·,j2 /imd′·,j−12 , d′·,j1 )

can be identified with

(τ≤n(I ·,j), d
·,j
1 ), (τ≤n(ker d

·,j
2 ), d·,j1 ), (τ≤n(im d·,j−12 ), d·,j1 ),

(τ≤n(ker d
·,j
2 /im d·,j−12 ), d·,j1 )

respectively, and hence are resolutions by RF -acyclic objects of

Xj , Zj, Bj , Hj , respectively. The two spectral sequences are those asso-

ciated to the bicomplex F (I ′··). �

Let X be a scheme and let A be the abelian category of sheaves of

abelian groups on X . Denote the derived category D(A ) by D(X). Let

A ′ be the thick abelian subcategory consisting of torsion sheaves (resp.

constructible sheaves). Denote the derived category DA ′(A ) by Dtor(X)

(resp. Dc(X)). Let A be a ring, let A be the abelian category of sheaves

of A-modules on X , and let A ′ be the thick abelian subcategory consisting

of constructible sheaves of A-modules. Denote the derived category D(A )

(resp. DA ′(A )) by D(X,A) (resp. Dc(X,A)). We get the full subcate-

gories D∗(X), D∗tor(X), D∗c (X), D∗(X,A), D∗c (X,A) by taking ∗ = +,−, b.
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The category of sheaves of abelian groups has enough injective objects.

We can define the right derived functor

RΓ(X,−) : D+(X) → D+((Ab. gps))

of the functor Γ(X,−) of taking global sections, where (Ab. gps) is the

category of abelian groups. If RΓ(X,−) has finite cohomological dimension,

we can extend RΓ(X,−) to

RΓ(X,−) : D(X) → D((Ab. gps)).

For any sheaf of abelian groups F on X and any i, we have

Hi(RΓ(X,F )) = Hi(X,F ).

Let f : X → Y be a morphism of schemes. We can define the right

derived functor

Rf∗ : D+(X) → D+(Y )

of f∗. If Rf∗ has finite cohomological dimension, we can then define

Rf∗ : D(X) → D(Y ).

For any sheaf of abelian groups F on X and any i, we have

H i(Rf∗F ) = Rif∗F .

6.4 RHom(−,−) and − ⊗L
A −

([Hartshorne (1966)] I 6, [SGA 4] XVII 1.1, [SGA 4 1
2 ] C.D. II 3.)

Let A be an abelian category. For all complexes X · and Y · of objects in

A , define a complex Hom·(X ·, Y ·) of abelian groups as follows: Take

Homn(X ·, Y ·) =
∏
i

HomA (X i, Y i+n).

For any

f = (fi) ∈ Homn(X ·, Y ·) =
∏
i

HomA (X i, Y i+n),

define

df = ((df)i) ∈ Homn+1(X ·, Y ·) =
∏
i

HomA (X i, Y i+n+1)

by

(df)i = di+nY · ◦ fi − (−1)nfi+1 ◦ diX· .
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We have dd = 0. Note that the kernel of

d : Homn(X ·, Y ·) → Homn+1(X ·, Y ·)

can be identified with the group of morphisms of complexes from X · to
Y ·[n], and the image of

d : Homn−1(X ·, Y ·) → Homn(X ·, Y ·)

can be identified with the subgroup of morphisms of complexes from X · to
Y ·[n] homotopic to 0. So we have

Hn(Hom·(X ·, Y ·)) ∼= HomK(A )(X
·, Y ·[n]).

Define

Hom·(X ·, Y ·[1])
∼=→ Hom·(X ·, Y ·)[1]

so that it is the identity through the identification

Homn(X ·, Y ·[1]) =
∏
i

HomA (X i, Y i+n+1) = (Hom·(X ·, Y ·)[1])n.

Define

Hom·(X ·[−1], Y ·)
∼=→ Hom·(X ·, Y ·)[1]

so that it is (−1)n+1id through the identification

Homn(X ·[−1], Y ·) =
∏
i

HomA (X i, Y i+n+1) = (Hom·(X ·, Y ·)[1])n.

One can check they are morphisms of complexes. Moreover, the following

diagram is anti-commutative:

Hom·(X ·[−1], Y ·[1])
∼=→ Hom·(X ·[−1], Y ·)[1].

∼= ↓ ↓ ∼=
Hom·(X ·, Y ·[1])[1]

∼=→ Hom·(X ·, Y ·)[1][1].

Fix an object X · (resp. Y ·) in K(A ). Then Hom·(X ·,−) (resp.

Hom·(−, Y ·)) transforms distinguished triangles to distinguished triangles,

and hence

Hom·(−,−) : K(A )×K(A ) → K((Ab.gps))

is an exact functor contravariant in the first variable, and covariant in the

second variable. As an example, given a distinguished triangle

X ·1
u→ X ·2

v→ C(u)
w→,
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where C(u) is the mapping cone of u, let us verify that

Hom·(C(u), Y ·) v
∗→ Hom·(X ·2, Y

·) u
∗→ Hom·(X ·1, Y

·) w
′→

is a distinguished triangle, where w′ is defined by the commutative diagram

Hom·(X ·1, Y
·) w′→ Hom·(C(u), Y ·)[1]

‖ ↑
Hom·(X ·1, Y

·)
(w[−1])∗→ Hom·(C(u)[−1], Y ·).

It suffices to show that

Hom·(X ·2, Y
·) u

∗→ Hom·(X ·1, Y
·) w

′→ Hom·(C(u), Y ·)[1]
−v∗[1]→

is a distinguished triangle. We need to define an isomorphism

Hom·(C(u), Y ·)[1] ∼= C(u∗)

so that the following diagram commutes:

Hom·(X ·1, Y
·) w

′→ Hom·(C(u), Y ·)[1]
−v∗[1]→ Hom·(X ·2, Y

·)[1]
‖ ↓ ∼= ‖

Hom·(X ·1, Y
·) → C(u∗) → Hom·(X ·2, Y

·)[1].

For each integer n, the isomorphism

(Hom·(C(u), Y ·)[1])n → (C(u∗))n

is defined to be the composite of the following isomorphisms:

(Hom·(C(u), Y ·)[1])n

=
∏
i

Hom(C(u)i, Y i+n+1)

=
∏
i

Hom(X i+1
1 ⊕X i

2, Y
i+n+1)

∼=
∏
i

Hom(X i+1
1 , Y i+n+1)

⊕∏
i

Hom(X i
2, Y

i+n+1)

((−1)n+1id,−id)→
∏
i

Hom(X i+1
1 , Y i+n+1)

⊕∏
i

Hom(X i
2, Y

i+n+1)

= Homn(X ·1, Y
·)
⊕

Homn+1(X ·2, Y
·)

= (C(u∗))n.

Lemma 6.4.1. Let X · be an acyclic complex of objects in A and let Y · be
a bounded below complex of injective objects in A . Then Hom·(X ·, Y ·) is

acyclic.
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Proof. We have

Hn(Hom·(X ·, Y ·)) ∼= HomK(A )(X
·, Y ·[n]).

By 6.2.6, we have HomK(A )(X
·, Y ·[n]) = 0. Our assertion follows. �

Suppose that A is an abelian category with enough injective objects.

For any fixed X · ∈ obK(A ), the right derived functor of

Hom·(X ·,−) : K+(A ) → K((Ab. gps))

is defined everywhere on D+(A ) by 6.3.4 (i). Denote it by

RIIHom
·(X ·,−) : D+(A ) → D((Ab. gps)).

We thus get a functor

RIIHom
·(−,−) : K(A )×D+(A ) → D((Ab. gps)).

By 6.4.1, the functor RIIHom
·(−, Y ) transforms quasi-isomorphisms in

K(A ) to isomorphisms in D((Ab. gps)). So it factors through D(A ) ×
D+(A ) and defines a functor

D(A )×D+(A ) → D((Ab. gps)),

which we denote by RIRIIHom
·(−,−), or simply RHom(−,−). Define

Exti(X ·, Y ·) = Hi(RHom·(X ·, Y ·))

for any X ∈ obD(A ) and Y ∈ obD+(A ).

Proposition 6.4.2. Let A be an abelian category with enough injective

objects. For any X ∈ obD(A ) and Y ∈ obD+(A ), we have

Exti(X ·, Y ·) ∼= HomD(A )(X
·, Y ·[i]).

Proof. Let Y · → I · be a quasi-isomorphism so that I · is a bounded below

complex of injective objects in A . We have

Exti(X ·, Y ·)=Hi(RHom·(X ·, Y ·))∼=Hi(Hom·(X ·, I ·))∼=HomK(A )(X
·, I ·[i]).

Our assertion follows from 6.2.8. �

For any X ·, Y · ∈ obD(A ), define

Exti(X ·, Y ·) ∼= HomD(A )(X
·, Y ·[i]).

By 6.4.2, this coincides with our previous definition of Exti(X ·, Y ·) if A

has enough injective objects, X ∈ obD(A ) and Y ∈ obD+(A ). By 6.1.1

(ii) and 6.2.5 (ii), we have the following.
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Proposition 6.4.3. Let A be an abelian category and let

0 → X · → Y · → Z · → 0

be an exact sequence of complexes of objects in A . For any W · ∈ obD(A ),

we have the following exact sequences

· · ·→Exti(W ·, X ·)→Exti(W ·, Y ·)→Exti(W ·, Z ·)→Exti+1(W ·, X ·)→· · · ,
· · ·←Exti(X ·,W ·)←Exti(Y ·,W ·)←Exti(Z ·,W ·)←Exti−1(X ·,W ·)←· · · .
Let X be a scheme and let A be a ring. Taking A to be the abelian

category of sheaves of A-modules on X , we get the functors

RHom : D(X,A)×D+(X,A) → D(Ab gps)

and

ExtiA(−,−) : D(X,A)×D(X,A) → (Ab. gps).

Given two complexes of sheaves of A-modules F · and G ·, we can define a

complex of sheaves of A-modules H om·(F ·,G ·) in the same way as above

by replacing Hom by the sheafified H om. We can then define the functors

RH om : D(X,A)×D+(X,A) → D(X,A)

and

E xtiA(−,−) = H i(RH om(−,−)).

Given two complexes F · and G · of sheaves of A-modules on X , define

a complex F · ⊗A G · as follows: Take

(F · ⊗A G ·)n =
⊕
i

F i ⊗A G n−i.

Define

d : (F · ⊗A G ·)n → (F · ⊗A G ·)n+1

by

d|Fi⊗AGn−i = diF · ⊗ idGn−i + (−1)iidFi ⊗ dn−iG · .

Define

(F ·[1])⊗A G · → (F · ⊗A G ·)[1]

so that its restriction to F i ⊗A G n−i+1 is the identity, and define

F · ⊗A (G ·[1]) → (F · ⊗A G ·)[1]
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so that its restriction to F i ⊗A G n−i+1 is (−1)iid. One checks that the

diagram

(F ·[1])⊗A (G ·[1]) → (F · ⊗A (G ·[1]))[1]
↓ ↓

((F ·[1])⊗A G ·)[1] → (F · ⊗A G ·)[1][1]

is anti-commutative, and

−⊗A − : K(X,A)×K(X,A) → K(X,A)

is an exact functor, where K(X,A) is the triangulated category of com-

plexes of sheaves of A-modules on X . We have an isomorphism of com-

plexes

F · ⊗A G · → G · ⊗A F ·

defined by

xi ⊗ yj �→ (−1)ijyj ⊗ xi

for any xi ∈ F i and yj ∈ G j .

Lemma 6.4.4. Let X be a scheme, A a ring, F · and G · complexes of

sheaves of A-modules on X. Suppose that the following conditions hold:

(a) All components of G are flat sheaves of A-modules.

(b) Either F · or G · is acyclic.

(c) Either both F · and G · are bounded above, or G · is bounded.

Then F · ⊗A G · is acyclic.

Proof. By the condition (c), the two spectral sequences

′Epq2 = Hp
IH

q
II(F

· ⊗A G ·) ⇒ Hp+q(F · ⊗A G ·),
′′Epq2 = Hp

IIH
q
I (F

· ⊗A G ·) ⇒ Hp+q(F · ⊗A G ·)

associated to the bicomplex F · ⊗A G · are biregular. If F · is acyclic, then
by condition (a), we have Hq

I (F
· ⊗A G ·) = 0 for all q. So ′′Epq2 = 0 for all

p and q, and hence Hn(F · ⊗A G ·) = 0 for all n. Suppose G · is acyclic. By
condition (c), G · is bounded above, say of the form

· · · dm−2→ Gm−1 dm−1→ Gm → 0.

Then we have short exact sequences

0 → ker dm−1G · → Gm−1 → Gm → 0,

0 → ker dm−2G · → Gm−2 → ker dm−1G · → 0,
...
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Since G q are flat, it follows from the above exact sequences that ker dqG · are

all flat. Hence we have short exact sequences

0 → F p ⊗A kerdm−1G · → F p ⊗A Gm−1 → F p ⊗A Gm → 0,

0 → F p ⊗A kerdm−2G · → F p ⊗A Gm−2 → F p ⊗A kerdm−1G · → 0,
...

It follows that

· · · → F p ⊗A G q → F p ⊗A G q+1 → · · ·
are exact. So ′Epq2 = 0 for all p and q, and hence Hn(F ·⊗A G ·) = 0 for all

n. �

Let L be the family of objects in K−(X,A) consisting of bounded

above complexes of flat sheaves A-modules. For each fixed object F · in
K−(X,A), by 6.4.4, the functor F · ⊗A − transforms quasi-isomorphisms

in L to quasi-isomorphisms. On the other hand, any sheaf of A-modules

on X is a quotient of a flat sheaf. Indeed, any sheaf of A-modules is a

quotient of a sheaf of the form
⊕

U AU , where U
fU→ X are etale X-schemes

and AU = fU !A. By the dual version of 6.2.9, for any G · ∈ obK−(X,A),
there exists a quasi-isomorphism from an object in L to G ·. (Confer 6.4.5
below.) By the dual version of 6.3.1, the left derived functor of F ·⊗A− is

defined everywhere on D−(X,A). Denote the derived functor by

LII(F
· ⊗A −) : D−(X,A) → D−(X,A).

So we get a functor

LII(−⊗A −) : K−(X,A)×D−(X,A) → D−(X,A).

By 6.4.4, the functor LII(− ⊗A G ·) transforms quasi-isomorphisms in

K−(X,A) to isomorphisms in D−(X,A). So it factors through D−(X,A)
and defines a functor

D−(X,A)×D−(X,A) → D−(X,A),

which we denote by LILII(−⊗A−). Similarly we can define LIILI(−⊗A−),

and we have

LIILI(−⊗A −) ∼= LILII(− ⊗A −).

We denote LILII(−⊗A−) by −⊗LA−. For any F ·,G · ∈ obD−(X,A), we
define

Tori(F
·,G ·) = H −i(F · ⊗LA G ·).
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Lemma 6.4.5. Let X be a noetherian scheme, A a noetherian ring, and F ·

a complex of sheaves of A-modules on X such that H i(F ·) are constructible
sheaves of A-modules for all i and H i(F ·) = 0 for i� 0. Then there exists

a quasi-isomorphism F ′· → F · such that F ′· is a bounded above complex

of flat constructible sheaves of A-modules.

Proof. We use the dual argument of the proof of 6.2.9. Define F ′i = 0 for

i� 0. Suppose that we have defined constructible flat sheaves ofA-modules

F ′i and morphisms F ′i → F i for all i > n such that H i(F ′·) ∼= H i(F ·)
for all i > n+1 and such that ker dn+1

F ′· → H n+1(F ·) is surjective. Consider
the diagram

A
α→ B

β→ ker dn+1
F ′·

↓ ↓ ↓
Fn p→ Fn/imdn−1F ·

dn→ ker dn+1
F · ,

where on the second line the morphisms are uniquely determined by the

property that p is the projection and dn◦p is the morphism Fn → ker dn+1
F ·

induced by dnF · , and on the first line, we have

A = Fn ×kerdn+1
F·

ker dn+1
F ′· ,

B = Fn/im dn−1F · ×kerdn+1
F·

ker dn+1
F ′· ,

and all arrows in the diagram are the canonical morphisms. The last vertical

arrow induces a monomorphism cokerβ → H n+1(F ·). Combined with the

hypothesis that ker dn+1
F ′· → H n+1(F ·) is surjective, we see that it induces

an isomorphism cokerβ ∼= H n+1(F ·). The middle vertical arrow induces

an isomorphism kerβ ∼= H n(F ·). So we have an exact sequence

0 → H n(F ·) → B
β→ ker dn+1

F ′· → H n+1(F ·) → 0.

Since H n(F ·), H n+1(F ·) and ker dn+1
F ′· are constructible, B is also con-

structible. We will construct a constructible flat sheaf of A-modules F ′n

and a morphism γ : F ′n → A such that αγ is surjective. Define

dnF ′· : F ′n → F ′n+1 to be the composite

F ′n
γ→ A

α→ B
β→ ker dn+1

F ′· → F ′n+1,

and define F ′n → Fn to be the composite

F ′n α→ A → Fn.

Then H i(F ′·) ∼= H i(F ·) for all i > n and ker dnF ′· → H n(F ·) is sur-

jective. To construct F ′n, choose an epimorphism
⊕

U AU → A , where
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U
fU→ X are some etale X-schemes and AU = fU !A. Since α is necessarily

surjective, the composite
⊕

U AU → A → B is surjective. Since B is con-

structible, there exists a finite family U1, . . . , Uk such that
⊕k

i=1AUi → B

is surjective. We then take F ′n =
⊕k

i=1 AUi . �

Let F · be a bounded complex of sheaves of A-modules on X . We say

that F · has finite Tor-dimension if there exists an integer n such that

Tori(F ·,M) = 0 for any i > n and any constant sheaf of A-modules M on

X .

Proposition 6.4.6. Let X be a noetherian scheme, A a noetherian ring,

and F · a bounded complex of sheaves of A-modules. The following condi-

tions are equivalent:

(i) There exists a quasi-isomorphism F ′· → F · such that F ′· is a

bounded complex of constructible flat sheaves of A-modules.

(ii) F · has finite Tor-dimension and H i(F ) are constructible for all i.

Proof. (i)⇒(ii) is clear. Suppose (ii) holds. Let n be an integer such

that Tori(F ·,M) = 0 for any i > n and any constant sheaf of A-modules

M on X . TakingM = A, we get H i(F ·) = 0 for all i < −n. Let F ′· → F

be the quasi-isomorphism constructed in 6.4.5. Then

· · · → F ′−n−1 → F ′−n → 0

is a flat resolution of cokerd−n−1F ′· . So we have

Tori(cokerd
−n−1
F ′· ,M) ∼= H −i(F ′·[−n]⊗AM) ∼= H −i−n(F ′· ⊗AM)

∼= Tori+n(F
·,M) = 0

for all i > 0. Hence coker d−n−1F ′· is a flat sheaf of A-modules. It is also

constructible. Let τ≥−nF ′· be the truncated complex

0 → cokerd−n−1F ′· → F ′−n+1 → F ′−n+2 → · · · .
It is a complex of constructible flat sheaves of A-modules. Moreover,

τ≥−nF ′· → τ≥−nF · is a quasi-isomorphism. Since F · is bounded, we

have τ≥−nF · = F · if we take n sufficiently large. �

LetX be a scheme and let A be a ring. Denote byDb
tf(X,A) the full sub-

category of Db(X,A) consisting of objects with finite Tor-dimension. Then

Db
tf(X,A) is a triangulated subcategory of Db(X,A). Suppose that X is a

noetherian scheme and A a noetherian ring. Denote by Db
ctf(X,A) the full

subcategory ofDb(X,A) consisting of objects F · with finite Tor-dimension,
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and such that H i(F ) are constructible for all i. Then Db
ctf(X,A) is a tri-

angulated subcategory of Db(X,A). By 6.4.6, any object in Db
ctf(X,A) is

isomorphic to a bounded complex of constructible flat sheaves of A-modules

on X .

Let L be the family of objects in Kb(X,A) consisting of bounded com-

plexes of flat sheaves of A-modules. For each fixed object F · in K(X,A),

by 6.4.4, the functor F · ⊗A − transforms quasi-isomorphisms in L to

quasi-isomorphisms. On the other hand, using an argument similar to the

proof of 6.4.6, one can show that for any G · ∈ obKb(X,A) with finite Tor-

dimension, there exists a quasi-isomorphism from an object in L to G ·.
By the dual version of 6.3.1, the left derived functor of F · ⊗A − is defined

everywhere on Db
tf(X,A). Denote the derived functor by

LII(F
· ⊗A −) : Db

tf(X,A) → D(X,A).

So we get a functor

LII(−⊗A −) : K(X,A)×Db
tf(X,A) → D(X,A).

By 6.4.4, the functor LII(− ⊗A G ·) transforms quasi-isomorphisms in

K(X,A) to isomorphisms in D(X,A). So it factors through D(X,A) and

defines a functor

−⊗LA − : D(X,A)×Db
tf(X,A) → D(X,A).

For any F ·,G · ∈ obK(X,A), the canonical evaluation morphism

F · ⊗A H om·(F ·,G ·) → G ·

is not a morphism of complexes, but the evaluation morphism

H om·(F ·,G ·)⊗A F · → G ·

is a morphism of complexes. If F · ∈ obDb
tf(X,A) and G · ∈ obD+(X,A),

then the second evaluation morphism induces a morphism

Ev : RH om(F ·,G ·)⊗LA F · → G ·

in D(X,A). Let F ′· → F · and G · → I · be quasi-isomorphisms such that

F ′· is a bounded complex of flat sheaves of A-modules, and I · is a bounded
below complex of injective sheaves of A-modules. Ev is the composite

RH om(F ·,G ·)⊗LA F · ∼= H om(F ·,I ·)⊗A F ′·

→ H om(F ·,I ·)⊗A F ·

Ev→ I · ∼= G ·.
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Proposition 6.4.7. Let X be a scheme, A a ring, F · ∈ obDb
tf(X,A),

and G · ∈ obD+(X,A). For any H · ∈ obD(X,A) and any morphism

φ : H · → RH om(F ·,G ·), let F (φ) : H · ⊗LA F · → G · be the composite

H · ⊗LA F ·
φ⊗LAid→ RH om(F ·,G ·)⊗LA F · Ev→ G ·.

Then F defines a one-to-one correspondence

F : HomD(X,A)(H
·, RH om(F ·,G ·))

∼=→ HomD(X,A)(H
· ⊗LA F ·,G ·).

Proof. We may assume that F · is a bounded complex of flat sheaves and

G · is a bounded below complex of injective sheaves. Then Hom·(F ·,G ·) is
a bounded below complex of injective sheaves by 5.6.8. We have

HomD(X,A)(H
· ⊗LA F ·,G ·) ∼= H0(Hom·(H · ⊗A F ·,G ·))

∼= H0(Hom·(H ·,H om(F ·,G ·))
∼= HomD(X,A)(H

·, RH om(F ·,G ·)). �

Lemma 6.4.8. Let A be a ring, let

· · · → Ki d
i→ Ki+1 → · · ·

be a complex of A-modules, let

...
...

↑ ↑
· · · → Ci,j+1 di,j+1

1→ Ci+1,j+1 → · · ·
di,j2 ↑ ↑ di+1,j

2

· · · → Cij
dij1→ Ci+1,j → · · ·

↑ ↑
...

...

↑ ↑
· · · → Ci0

di01→ Ci+1,0 → · · ·
↑ ↑
0 0

be a bicomplex of A-modules, and let f · : (K ·, d·) → (C·0, d·01 ) be a mor-

phism of complexes. Suppose for each i, the sequence

0 → Ki → Ci0
di02→ Ci1 → · · ·

 E
ta

le
 C

oh
om

ol
og

y 
T

he
or

y 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

O
N

A
SH

 U
N

IV
E

R
SI

T
Y

 o
n 

11
/2

7/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



February 6, 2015 9:48 ws-book9x6 Etale Cohomology Theory... etale page 298

298 Etale Cohomology Theory

is exact. Let

Zij = ker(Cij
dij2→ Ci,j+1).

Suppose for each pair (i, j), there exists a left inverse pij : Cij → Zij of

the inclusion Zij ↪→ Cij such that the following diagram commutes:

Cij
dij1→ Ci+1,j

pij ↓ ↓ pi+1,j

Zij
dij1 |Zij→ Zi+1,j

Then K · is homotopically equivalent to the complex associated to the bi-

complex C··.

Proof. Let Dij = Zij
⊕
Zi,j+1. Define

dij1 : Dij → Di+1,j

to be the homomorphisms induced by the restrictions of dij1 : Cij → Ci+1,j

and di,j+1
1 : Ci,j+1 → Ci+1,j+1 to Zij and Zi,j+1, respectively, and define

dij2 : Dij → Di,j+1

by

dij2 (x1, x2) = (x2, 0)

for any (x1, x2) ∈ Zij
⊕
Zi,j+1. Then D·· is a bicomplex, and the homo-

morphisms

Cij → Dij , x �→ (pij(x), dij2 (x))

define an isomorphism of bicomplexes. For each n, let

Dn =
⊕

i+j=n,j≥0
Dij =

⊕
i+j=n,j≥0

(Zij ⊕ Zi,j+1)

and define

dn : Dn → Dn+1

to be
⊕

i+j=n,j≥0(d
ij
1

⊕
(−1)idij2 ). To prove the lemma, it suffices to prove

that the complex K · is homotopically equivalent to the complex D·. Note
that for each n, the homomorphism fn : Kn → Cn0 induces an isomorphism

of Kn with Zn0. Define

φn : Kn → Dn
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so that any element x in Kn is mapped to(
(fn(x), 0), (0, 0), . . .

)
∈ Dn = (Zn0 ⊕ Zn1)

⊕
(Zn−1,1 ⊕ Zn−1,2)

⊕
· · · ,

and define

ψn : Dn → Kn

so that any element(
(xn0, yn1), (xn−1,1, yn−1,2), . . .

)
∈ Dn = (Zn0 ⊕ Zn1)

⊕
(Zn−1,1 ⊕ Zn−1,2)

⊕
· · ·

is mapped to the preimage of xn0 ∈ im fn in Kn. Then φ· : K · → D· and
ψ· : D· → K · are morphisms of complexes, and ψ· ◦ φ· = idK· . Define

Hn : Dn → Dn−1

so that any element(
(xn0, yn1), (xn−1,1, yn−1,2), . . .

)
∈ Dn = (Zn0 ⊕ Zn1)

⊕
(Zn−1,1 ⊕ Zn−1,2)

⊕
· · ·

is mapped to(
(0, (−1)n−1xn−1,1), (0, (−1)n−2xn−2,2), . . .

)
∈ Dn−1 = (Zn−1,0 ⊕ Zn−1,1)

⊕
(Zn−2,1 ⊕ Zn−2,2)

⊕
· · · .

Then we have

dn−1Hn +Hn+1dn = idDn − φnψn.

So K · is homotopically equivalent to D·. �

Corollary 6.4.9. Let X be a scheme, A a ring, F · a complex of sheaves

of A-modules on X, C ·(F i) the Godement resolution of F i for any i,

τ≤nC ·(F i) the truncated Godement resolution

0 → C 0(Fi) → · · · → C n−1(Fi) → ker
(
C n(F i) → C n+1(F i)

)
→ 0

for any i and any n ≥ 0, and P the set of geometric points of X in the

definition of the Godement resolution. Then for any geometric point t ∈ P ,

F ·t is homotopically equivalent to the complex associated to the bicomplex

(C ·(F ·))t, and to the complex associated to the bicomplex (τ≤nC ·(F ·))t.
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Proof. This follows from 6.4.8, the fact that the complexes

0 → Fit → (C ·(F i))t,

0 → Fit → (τ≤nC ·(F i))t

are split, and the splitting is functorial with respect to Fi. Confer the proof

of 5.6.13 (iii). �

Corollary 6.4.10. Let X be a scheme, A a ring, F · and G · bounded
above complexes of sheaves of A-modules on X, and G ′· → G · a quasi-

isomorphism such that G ′· is a bounded above complex of flat sheaves of

A-modules on X. Denote the complex associated to the bicomplex C ·(G ′·)
(resp. τ≤nC ·(G ′·)) of Godement resolutions (resp. truncated Godement

resolutions) by the same notation. Then we have

F · ⊗LA G · ∼= F · ⊗A C ·(G ′·),

F · ⊗LA G · ∼= F · ⊗A τ≤nC ·(G ′·).
Suppose that G · has finite Tor-dimension, and G ′· is a bounded complex of

flat sheaves of A-modules quasi-isomorphic to G ·. Then the above results

hold for any complex F · of sheaves of A-modules.

Proof. Let P be the set of geometric points of X in the definition of the

Godement resolution. By 6.4.9, for any t ∈ P , the canonical morphisms

G ′·t → (C ·(G ′·))t,

G ′·t → (τ≤nC ·(G ′·))t

are homotopically invertible. It follows that

(F · ⊗A G ′·)t → (F · ⊗A C ·(G ′·))t,

(F · ⊗A G ′·)t → (F · ⊗A τ≤nC ·(G ′·))t
are homotopically invertible. Hence

F · ⊗A G ′· → F · ⊗A C ·(G ′·),

F · ⊗A G ′· → F · ⊗A τ≤nC ·(G ′·)

are quasi-isomorphisms. We have F · ⊗A G ′· ∼= F · ⊗LA G ·. Our assertion

follows. �

Let A be a ring, let

· · · → Ci
di→ Ci+1 → · · ·
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be a complex of A modules, and let

Zi = kerdi, Bi = im di−1, Hi = Zi/Bi.

We have short exact sequences

0 → Zi → Ci → Bi+1 → 0,

0 → Bi → Zi → Hi → 0.

We say that the complex C· is split if the above short exact sequences are

split for all i.

Lemma 6.4.11. Let A be a ring, and let C· be a split complex of A modules.

Then C· is homotopically equivalent to the complex

· · · → Hi(C·) 0→ Hi+1(C·) → · · · .
Proof. Notation as above. We have isomorphisms

Ci ∼= Zi ⊕Bi+1 ∼= Hi ⊕Bi ⊕Bi+1.

Through these isomorphisms, di : Ci → Ci+1 can be identified with the

homomorphisms

di : Hi ⊕Bi ⊕Bi+1 → Hi+1 ⊕Bi+1 ⊕Bi+2, (hi, bi, bi+1) �→ (0, bi+1, 0).

The homomorphisms

φi : Hi → Hi ⊕Bi ⊕Bi+1, hi �→ (hi, 0, 0),

ψi : Hi ⊕Bi ⊕Bi+1 → Hi, (hi, bi, bi+1) �→ hi

define morphisms of complexes φ· and ψ· between the complex

· · · → Hi 0→ Hi+1 → · · ·
and the complex

· · · → Hi ⊕Bi ⊕Bi+1 di→ Hi+1 ⊕Bi+1 ⊕Bi+2 → · · · .
We have ψ·φ· = id. Consider the homomorphisms

Gi : Hi ⊕Bi ⊕Bi+1 → Hi−1 ⊕Bi−1 ⊕Bi, (hi, bi, bi+1) �→ (0, 0, bi).

We have

di−1Gi +Gi+1di = id− φiψi.

Our assertion follows. �
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Proposition 6.4.12. Let A be a ring, and let K · and L· be two bounded

above complexes of A-modules. Then we have a biregular spectral sequence

Epq2 =
⊕
i+j=q

TorA−p(H
i(K ·), Hj(L·)) ⇒ Hp+q(K · ⊗L L·).

Proof. Choose a projective Cartan–Eilenberg resolution P ·· of K ·. For

each i,

(P ·,i, d·,i1 ), (ker d·,i2 , d
·,i
1 ), (im d·,i−12 , d·,i1 ), (ker d·,i2 /imd·,i−12 , d·,i1 )

are projective resolutions of

Ki, kerdiK· , im di−1K· , ker d
i
K·/imdi−1K· ,

respectively. Moreover, the short exact sequences

0 → ker d·,i2 → P ·,i → im d·,i2 → 0,

0 → im d·,i−12 → ker d·,i2 → kerd·,i2 /imd·,i−12 → 0

are split. Choose a projective Cartan–Eilenberg resolution Q·· for L·. Con-
sider the bicomplex

Cpq =
⊕

k+l=p, i+j=q

P ki ⊗A Qlj .

We have a biregular spectral sequence

Epq2 = Hp
IH

q
II(C

··) ⇒ Hp+q(K · ⊗L L·).
By Lemma 6.4.11, for each fixed k, the complex

· · · → P ki → P k,i+1 → · · ·
is homotopically equivalent to the complex

· · · → Hi
II(P

k·) 0→ Hi+1
II (P k·) → · · · ,

and for each fixed l, the complex

· · · → Qlj → Ql,j+1 → · · ·
is homotopically equivalent to the complex

· · · → Hj
II(Q

l·) 0→ Hj+1
II (Ql·) → · · · .

So we have

Hq(P k· ⊗A Ql·) ∼=
⊕
i+j=q

Hi
II(P

k·)⊗A Hj
II(Q

l·).

ButHi
II(P

··) andHj
II(Q

··) are projective resolutions ofHi(K ·) andHj(L·),
respectively. It follows that

Hp
IH

q
II(C

··) ∼=
⊕
i+j=q

TorA−p(H
i(K ·), Hj(L·)).

Our assertion follows. �
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6.5 Way-out Functors

([Hartshorne (1966)] I 7.)

Let A and B be abelian categories, A ′ a thick abelian subcategory of A ,

D∗(A ) one of the following derived categories

D(A ), D+(A ), D−(A ), Db(A ), DA ′(A ), D+
A ′(A ), D−A ′(A ), Db

A ′(A ),

and F : D∗(A ) → D(B) a covariant (resp. contravariant) exact functor.

We say F is way-out right if for any integer N , there exists an integer M

such that for any X · ∈ obD∗(A ) with Hi(X ·) = 0 for all i < M (resp.

i > M), we haveHi(F (X ·)) = 0 for all i < N . We say F is way-out left if for

any integer N , there exists an integer M such that for any X · ∈ obD∗(A )

with Hi(X ·) = 0 for all i > M (resp. i < M), we have Hi(F (X ·)) = 0 for

all i > N .

Proposition 6.5.1. Let F : A → B be a left exact functor. Suppose that

A has enough injective objects. Then RF : D+(A ) → D(B) is way-out

right. If RF has finite cohomological dimension, then RF is also way-out

left.

Proof. For any integer N , let X · be an object in D+(A ) such that

Hi(X ·) = 0 for all i < N , then we can find a complex I · of injective objects
in A with Ii = 0 for all i < N such that I · is isomorphic to X · in D+(A ).

We have

RiF (X ·) ∼= Hi(F (I ·)) = 0

for all i < N . So RF is way-out right. Suppose that RF has finite cohomo-

logical dimension, and let n be a nonnegative integer such that RiF (X) = 0

for any i > n and any X ∈ obA . For any object X · in D(A ), let X · → X ′·

be a quasi-isomorphism such that X ′· is a complex of RF -acyclic objects

in A . Given an integer N , if Hi(X ·) = 0 for all i > N − n, then

0 → X ′N−n → X ′N−n+1 → · · ·
is an RF -acyclic resolution of ker dN−nX′· . So we have

RiF (ker dN−nX′· ) ∼= Hi(F (X ′·)[N − n]) ∼= Hi+N−n(F (X ′·)) ∼= Ri+N−nF (X ·)

for all i > 0. Since RiF (ker dN−nX′· ) = 0 for all i > n, we have RiF (X ·) = 0

for all i > N . Hence RF is way-out left. �

 E
ta

le
 C

oh
om

ol
og

y 
T

he
or

y 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

O
N

A
SH

 U
N

IV
E

R
SI

T
Y

 o
n 

11
/2

7/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



February 6, 2015 9:48 ws-book9x6 Etale Cohomology Theory... etale page 304

304 Etale Cohomology Theory

Given a complex X · of objects in A , consider the following truncated

complexes:

τ≤nX · = (· · · → Xn−2 → Xn−1 → ker dnX· → 0),

τ≥nX · = (0 → Xn/imdn−1X· → Xn+1 → Xn+2 → · · · ),
τ ′≤nX

· = (· · · → Xn−1 → Xn → im dnX· → 0),

τ ′≥nX
· = (0 → im dn−1X· → Xn → Xn+1 → · · · ).

We have quasi-isomorphisms

τ≤nX · → τ ′≤nX
·, τ ′≥nX

· → τ≥nX ·,

and the following short exact sequences of complexes

0 → τ≤nX · → X · → τ ′≥n+1X
· → 0,

0 → Hn(X ·)[−n] → τ≥nX · → τ ′≥n+1X
· → 0,

0 → τ ′≤n−1X
· → τ≤nX · → Hn(X ·)[−n] → 0.

Note that τ≤n and τ≥n transform quasi-isomorphisms to quasi-

isomorphisms. So they can be defined on D(A ). We have the following

distinguished triangles in D(A ):

τ≤nX · → X · → τ≥n+1X
· →,

Hn(X ·)[−n] → τ≥nX · → τ≥n+1X
· →,

τ≤n−1X · → τ≤nX · → Hn(X ·)[−n] → .

Sometimes we also consider the following truncated complexes:

σ≤nX · = (· · · → Xn−2 → Xn−1 → Xn → 0),

σ≥nX · = (0 → Xn → Xn+1 → Xn+2 → · · · ).
But σ≤n and σ≥n do not transform quasi-isomorphisms to quasi-

isomorphisms, and are not defined on D(A ).

Proposition 6.5.2. Let A and B be abelian categories, A ′ a thick abelian

subcategory of A , F and G exact functors from DA ′(A ), or D+
A ′(A ), or

D−A ′(A ) to D(B), and ξ : F → G a morphism of functors.

(i) If ξ(X) : F (X) → G(X) is an isomorphism for any X ∈ obA ′, then
ξ(X ·) : F (X ·) → G(X ·) is an isomorphism for any X · ∈ obDb

A ′(A ).

(ii) If ξ(X) : F (X) → G(X) is an isomorphism for any X ∈ obA ′, and
F and G are way-out right (resp. left), then ξ(X ·) : F (X ·) → G(X ·) is an

isomorphism for any X · ∈ obD+
A ′(A ) (resp. obD−A ′(A )).

(iii) If ξ(X) : F (X) → G(X) is an isomorphism for any X ∈ obA ′,
and F and G are way-out in both directions, then ξ(X ·) : F (X ·) → G(X ·)
is an isomorphism for any X · ∈ obDA ′(A ).
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Proof.

(i) For any X · ∈ obDb
A ′(A ), we have τ≥nX · = 0 for sufficiently large

n. So ξ(τ≥nX ·) is an isomorphism for large n. ξ induces a morphism of

distinguished triangles

F (Hn−1(X ·)[−(n− 1)]) → F (τ≥n−1X ·) → F (τ≥nX ·) →
ξ ↓ ξ ↓ ξ ↓

G(Hn−1(X ·)[−(n− 1)]) → G(τ≥n−1X ·) → G(τ≥nX ·) → .

Since Hn−1(X ·) ∈ obA ′, ξ(Hn−1(X ·)[−(n − 1)]) is an isomorphism by

our assumption. Suppose we have shown that ξ(τ≥nX ·) is an isomorphism.

Then by 6.1.1 (iii) and (TR 2), ξ(τ≥n−1X ·) is also an isomorphism. It

follows that ξ(τ≥nX ·) are isomorphisms for all n. We have τ≥nX · ∼= X · for
n� 0. So ξ(X ·) is an isomorphism.

(ii) Suppose that F and G are way-out right. Given X · ∈ obD+
A ′(A )

and an integer j, let us prove that

Hj(ξ(X ·)) : Hj(F (X)) → Hj(G(X))

is an isomorphism. There exists an integer M such that for any Y · ∈
obD+

A ′(A ) with Hi(Y ·) = 0 for all i < M , we have Hi(F (Y ·)) =

Hi(G(Y ·)) = 0 for all i < j + 1. In particular, we have

Hi(F (τ≥MX ·)) = Hi(G(τ≥MX ·)) = 0

for i = j − 1, j. We have a distinguished triangle

F (τ≤M−1X ·) → F (X ·) → F (τ≥MX ·) → .

From the long exact sequence of cohomology objects associated to this

distinguished triangle, we get

Hj(F (τ≤M−1X ·)) ∼= Hj(F (X ·)).

Similarly, we have

Hj(G(τ≤M−1X ·)) ∼= Hj(G(X ·)).

By (i), ξ induces an isomorphism Hj(F (τ≤M−1X ·)) ∼= Hj(G(τ≤M−1X ·)).
So ξ induces an isomorphism Hj(F (X ·)) ∼= Hj(G(X ·)).

(iii) For any X · ∈ obDA ′(A ), ξ induces a morphism of distinguished

triangles

F (τ≤0X ·) → F (X ·) → F (τ≥1X ·) →
ξ ↓ ξ ↓ ξ ↓

G(τ≤0X ·) → G(X ·) → G(τ≥1X ·) →
By (ii), ξ(τ≤0X ·) and ξ(τ≥1X ·) are isomorphisms. It follows that ξ(X ·) is
an isomorphism. �
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Proposition 6.5.3. Let A and B be abelian categories, A ′ and B′ thick
abelian subcategories of A and B, respectively, F an exact functor from

DA ′(A ), or D+
A ′(A ), or D−A ′(A ) to D(B).

(i) If F (X) ∈ obDB′(B) for any X ∈ obA ′, then F (X ·) ∈ obDB′(B)

for any X · ∈ obDb
A ′(A ).

(ii) If F (X) ∈ obDB′(B) for any X ∈ obA ′ and F is way-out right

(resp. left), then F (X ·) ∈ obDB′(B) for any X · ∈ obD+
A ′(A ) (resp.

X · ∈ obD−A ′(A )).

(iii) If F (X) ∈ obDB′(B) for any X ∈ obA ′ and F is way-out in both

directions, then F (X ·) ∈ obDB′(B) for any X · ∈ obDA ′(A ).

Proposition 6.5.4. Let X be a scheme, A a ring, and F · a bounded com-

plex of sheaves of A-modules on X. The following conditions are equivalent:

(i) There exists a quasi-isomorphism F ′· → F · such that F ′· is a

bounded complex of flat sheaves of A-modules.

(ii) The functor F · ⊗LA − : D−(X,A) → D−(X,A) is way-out in both

directions.

(iii) There exists an integer n such that Tori(F ·,G ) = 0 for any i > n

and any sheaf of A-modules G on X.

(iv) F · has finite Tor-dimension.

Let f : X → Y be a morphism of schemes, F a sheaf of A-modules on

X , and G a sheaf of A-modules on Y . We have a canonical morphism

G ⊗A f∗F → f∗(f∗G ⊗ F ).

Suppose one of the following conditions hold:

(a) Rf∗ has finite cohomological dimension, F · ∈ obD−(X,A) and

G · ∈ obD−(Y,A).
(b) G · ∈ obDb(Y,A) has finite Tor-dimension, and F · ∈ obD+(X,A).

(c) Rf∗ has finite cohomological dimension, F · ∈ obD(X,A), and G · ∈
obDb(Y,A) has finite Tor-dimension.

Then we have a canonical morphism

G · ⊗LA Rf∗F · → Rf∗(f∗G · ⊗LA F ·).

For example, under the condition (a), let F · → I · (resp. P · → G ·, resp.
f∗P ·⊗AI · → J ·) be a quasi-isomorphism such that I · (resp. P ·, resp.
J ·) is a bounded above complex of Rf∗-acyclic sheaves (resp. flat sheaves,
resp. Rf∗-acyclic sheaves) of A-modules on X (resp. on Y , resp. on X).

 E
ta

le
 C

oh
om

ol
og

y 
T

he
or

y 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

O
N

A
SH

 U
N

IV
E

R
SI

T
Y

 o
n 

11
/2

7/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



February 6, 2015 9:48 ws-book9x6 Etale Cohomology Theory... etale page 307

Derived Categories and Derived Functors 307

The above canonical morphism is the composite

G · ⊗LA Rf∗F · ∼= P · ⊗A f∗I ·
→ f∗(f∗P ⊗A I ·)

→ f∗J ·

∼= Rf∗(f∗G ⊗LA F ·).

Proposition 6.5.5. Let A be a ring and let f : X → Y be a morphism

of schemes. Suppose Rf∗ has finite cohomological dimension. For any

F · ∈ obD−(X,A) and any G · ∈ obD−(Y,A) such that H i(G ·) are locally

constant sheaves, we have a canonical isomorphism

G · ⊗LA Rf∗F ·
∼=→ Rf∗(f∗G · ⊗LA F ·).

Proof. One can verify − ⊗LA Rf∗F · and Rf∗(f∗ − ⊗LAF ·) are way-out

left functors. So it suffices to prove

G ⊗LA Rf∗F · ∼= Rf∗(f∗G ⊗LA F ·)

for any locally constant sheaf G of A-modules. The problem is local with

respect to the etale topology on Y . We may assume that G is a constant

sheaf, say associated to an A-module M . Let

· · · → L−1 → L0 → 0

be a resolution of M by free A-modules, and let F · → F ′· be a quasi-

isomorphism such that F ′· is a bounded above complex of Rf∗-acyclic
sheaves. We have

G ⊗LA Rf∗F · ∼= L· ⊗A f∗F ′·,
f∗G ⊗LA F · ∼= f∗L· ⊗A F ′·.

Since each Li is free and each F ′j is Rf∗-acyclic, each f∗Li ⊗A F ′j is

Rf∗-acyclic. So we have

Rf∗(f∗G ⊗LA F ·) ∼= f∗(f∗L· ⊗A F ′·).

Since Li are free, the canonical morphism

L· ⊗A f∗F ′· → f∗(f∗L· ⊗A F ′·)

is an isomorphism. Hence

L· ⊗LA Rf∗F · ∼= Rf∗(f∗L· ⊗LA F ·). �
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Corollary 6.5.6. Let A be a ring and let f : X → Y be a morphism

of schemes such that Rf∗ has finite cohomological dimension. Then for

any complex F · of sheaves of A-modules on X with finite Tor-dimension,

Rf∗F · also has finite Tor-dimension. Moreover, for any G · ∈ obD(Y,A)

such that H i(G ·) are locally constant sheaves, we have

G · ⊗LA Rf∗F · ∼= Rf∗(f∗G · ⊗LA F ·).

Proof. Let G be a constant sheaf of A-modules on Y . Since F · has
finite Tor-dimension, there exists an integer n such that Tori(f

∗G ,F ·) =
0 for all i > n, that is, H j(f∗G ⊗LA F ·) = 0 for all j < −n. Thus

Rjf∗(f∗G ⊗LA F ·) = 0 for all j < −n. By 6.5.5, we have

Rjf∗(f∗G ⊗LA F ·) ∼= H j(G ⊗L Rf∗F ·) ∼= Tor−j(G , Rf∗F ·).

So Tori(G , Rf∗F ·) = 0 for all i > n. Hence Rf∗F · has finite Tor-

dimension. The functors − ⊗LA Rf∗F · and Rf∗(f∗ − ⊗LAF ·) are way-out

in both directions. By 6.5.2 (ii) and 6.5.5, we have

G · ⊗LA Rf∗F · ∼= Rf∗(f∗G · ⊗LA F ·)

for any G · ∈ obD(Y,A) such that H i(G ·) are locally constant sheaves. �

Corollary 6.5.7. Let f : X → Y be a morphism such that Rf∗ has finite

cohomological dimension, and let A→ B be a homomorphism of rings. For

any F · ∈ obD−(X,A) and any object M · in the derived category D−(B)

of the category of B-modules, we have a canonical isomorphism

M · ⊗LA Rf∗F ·
∼=→ Rf∗(M · ⊗LA F ·)

in D−(Y,B).

Proof. (We cannot apply 6.5.5 directly since it gives an isomorphism

in D−(Y,A), and not in D−(Y,B).) Let F ′· be a bounded above com-

plex of flat sheaves of A-modules on X quasi-isomorphic to F · and let

C ·(F ′i) be the Godement resolution of F ′i. Choose an integer d such that

Rif∗F = 0 for all i > d and all sheaves F on X . Then τ≤dC ·(F ′i) is a

resolution of F ′i by Rf∗-acyclic sheaves. The complex associated to the

bicomplex τ≤dC ·(F ′·) is a bounded above complex of Rf∗-acyclic sheaves

quasi-isomorphic to F ·. Denote this complex by F ′′·. We define a mor-

phism

M · ⊗LA Rf∗F · → Rf∗(M · ⊗LA F ·)
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in D−(Y,B) to be the composite

M · ⊗LA Rf∗F · ∼= M · ⊗LA f∗F ′′·
→ M · ⊗A f∗F ′′·
→ f∗(f∗M · ⊗A F ′′·)

→ Rf∗(f∗M · ⊗A F ′′·)
∼= Rf∗(M · ⊗LA F ·).

To prove that it is an isomorphism, it suffices to show that it coincides with

the morphism defined in 6.5.5. This follows from the commutativity of the

following diagram, where L· is a bounded above complex of free A-modules

such that we have a quasi-isomorphism L· →M ·:

M ·⊗LARf∗F · ∼= L·⊗Af∗F ′′· ∼=→ f∗(f∗L·⊗AF ′′·) ∼= Rf∗(f∗L·⊗AF ′′·) ∼= Rf∗(M ·⊗LAF ·)

‖ ↓ ↓ ↓ ‖
M·⊗LARf∗F · → M ·⊗Af∗F ′′· → f∗(f∗M ·⊗AF ′′·) → Rf∗(f∗M ·⊗AF ′′·) ∼= Rf∗(M ·⊗LAF ·).

�
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Chapter 7

Base Change Theorems

7.1 Divisors

Let X be a noetherian scheme. We define the dimension dimX of X to be

the supremum of all integers n so that there exists a chain

Z0 ⊂ Z1 ⊂ · · · ⊂ Zn

of distinct irreducible closed subsets in X . If X = SpecA for a noetherian

ring A, then dimX coincides with the Krull dimension dimA of A. If Z is

an irreducible closed subset of X , we define the codimension codim (Z,X)

of Z in X to be the supremum of all integers n so that there exists a chain

Z0 ⊂ Z1 ⊂ · · · ⊂ Zn

of distinct irreducible closed subsets in X with Z0 = Z. For any closed

subset Y in X , we define the codimension codim(Y,X) of Y in X to be

codim(Y,X) = infZ⊂Y codim(Z,X),

where Z goes over the set of irreducible closed subset of Y . If X = SpecA

and Y = V (p) for some prime ideal p of A, then codim(Y,X) coincides with

the height ht p of p.

A noetherian scheme X is called regular in codimension one if for any

x ∈ X with dimOX,x = 1, OX,x is regular. Recall that a local noetherian

integral domain of dimension 1 is regular if and only if it is normal ([Atiyah

and Macdonald (1969)] 9.2). So any normal noetherian scheme is regular

in codimension 1.

Suppose that X is an integral noetherian scheme regular in codimen-

sion one. A prime divisor on X is an integral closed subscheme of X of

codimension 1. A Weil divisor on X is an element in the free abelian group

Div(X) generated by prime divisors. We write a divisor as D =
∑
i niYi,

311
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where Yi are prime divisors, ni are integers, and ni are nonzero only for

finitely many i. If ni ≥ 0 for all i, we say that D is an effective divisor.

Let Y be a prime divisor, and let η be its generic point. Then

dimOX,η = 1. Since X is regular in codimension 1, OX,η is a discrete

valuation ring. It defines a discrete valuation vY on the function field K of

X .

Lemma 7.1.1. Let X be an integral noetherian scheme regular in codimen-

sion one, and let K be the function field of X. For any f ∈ K∗, there are

only finitely many prime divisors Y such that vY (f) 	= 0.

Proof. Let U = SpecA be a nonempty affine open subscheme of X so

that f ∈ OX(U) = A, let Y be a prime divisor of X , and let η be the

generic point of Y . If η 	∈ U , then Y ⊂ X − U . Since Y has codimension

1, Y must be an irreducible component of X − U . Since X − U has only

finitely many irreducible components, there are only finitely many prime

divisors Y with η 	∈ U . Suppose η ∈ U and vY (f) 	= 0. Let p be the prime

ideal of A corresponding to η. Since vY (f) 	= 0 and f ∈ A, we have f ∈ p.

It follows that Y ∩ U = V (p) ⊂ V (f). As Y ∩ U has codimension 1 in

U , Y ∩ U must be an irreducible component of V (f). Since V (f) has only

finitely many irreducible components, there are only finitely many prime

divisors Y such that vY (f) 	= 0. �

Let X be an integral noetherian scheme regular in codimension one and

let K be its function field. For any f ∈ K∗, we define the divisor (f) of f

to be

(f) =
∑
Y

vY (f)Y,

where Y goes over the set of prime divisors of X . For any f, g ∈ K∗, we
have

(fg) = (f) + (g).

A divisor on X is called principal if it is of the form (f) for some f ∈ K∗.
Principal divisors form a subgroup of the group of divisors Div(X). The

quotient group Cl(X) is called the divisor class group of X .

Proposition 7.1.2. Let A be a normal noetherian integral domain, and let

X = SpecA. Then Cl(X) = 0 if and only if A is a unique factorization

domain.
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Proof. Suppose A is a unique factorization domain. Let Y be a prime

divisor of X , and let p be the prime ideal of A corresponding to the generic

point of Y . Then ht p = 1. By [Matsumura (1970)] (19.A) Theorem 47, we

have p = fA for some f ∈ A. For any prime ideal q of A with ht q = 1,

denote by vq the valuation defined by q. If vq(f) 	= 0, then we have f ∈ q,

and hence p ⊂ q. We then must have p = q. It follows that the principal

divisor (f) coincides with the prime divisor Y . So every prime divisor of X

is principal and Cl(X) = 0.

Conversely, suppose Cl(X) = 0. For any prime ideal p with ht p = 1, let

Y be the prime divisor with generic point p. Then Y is a principal divisor,

say Y = (f) for some nonzero element f in the fraction field K of A. For

any prime ideal q with ht q = 1, we have

vq(f) =

{
1 if q = p,

0 if q 	= p.

In particular, we have

f ∈
⋂

ht q=1

Aq,

and hence f ∈ A by [Matsumura (1970)] (17.H) Theorem 38. As vp(f) = 1,

we have f ∈ p. For any g ∈ p, we have vp(g) ≥ 1 and vq(g) ≥ 0 for any q

with ht q = 1. It follows that vq(
g
f ) ≥ 0 for any q with ht q = 1. So we have

g

f
∈
⋂

ht q=1

Aq = A.

Hence g ∈ fA. We thus have p = fA. So every prime ideal of height

1 is principal. By [Matsumura (1970)] (19.A) Theorem 47, A is a unique

factorization domain. �

Let X be an integral scheme, and let K be its function field. Denote

by KX the constant Zariski sheaf on X associated to K, and by K ∗
X the

constant Zariski sheaf associated to K∗. Any nonempty open subset U

of X is irreducible and hence connected. So we have K ∗
X(U) = K∗. In

particular, K ∗
X(X) → K ∗

X(U) is surjective. Hence K ∗
X is a flasque sheaf

(with respect to the Zariski topology) and we have

Hq(X,K ∗
X) = 0

for all q ≥ 1.

We have a monomorphism

O∗X → K ∗
X .
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A Cartier divisor on X is an element in Γ(X,K ∗
X/O

∗
X). A Cartier divisor

can be represented as (fi, Ui), where {Ui} is an open covering of X , fi ∈
Γ(Ui,K ∗

X), and fi
fj

∈ Γ(Ui ∩ Uj ,O∗X) for all i and j. If fi can be chosen

to lie in Γ(Ui,OX), then we say that the Cartier divisor is effective. A

Cartier divisor is called principal if it lies in the image of the canonical

homomorphism

Γ(X,K ∗
X) → Γ(X,K ∗

X/O
∗
X).

The cokernel of this homomorphism is called the Cartier divisor class group,

and is denoted by CaCl(X).

Proposition 7.1.3. Let X be an integral noetherian scheme. Suppose OX,x
are unique factorization domains for all x ∈ X. Then we have an isomor-

phism

Γ(X,K ∗
X/O

∗
X)

∼=→ Div(X),

and it induces an isomorphism between the group of principal Cartier divi-

sors and the group of principal Weil divisors. So it induces an isomorphism

CaCl(X)
∼=→ Cl(X)

between the Cartier divisor class group and the Weil divisor class group.

Proof. Let D = {(fi, Ui)} be a Cartier divisor, where {Ui} is an open

covering of X , fi ∈ Γ(Ui,K ∗
X), and fi

fj
∈ Γ(Ui∩Uj ,O∗X) for all i and j. For

any prime divisor Y , let Ui be an open subset such that Ui ∩ Y 	= Ø. We

define

vY (D) = vY (fi).

Note that vY (D) is independent of the choice of the open subset Ui with

nonempty intersection with Y . Define the Weil divisor associated to D to

be
∑

Y vY (D)Y . We thus get a homomorphism

Γ(X,K ∗
X/O

∗
X) → Div(X).

First let us prove that it is injective. Suppose D = {(fi, Ui)} is mapped

to the trivial Weil divisor. We need to show that D is the trivial Cartier

divisor. We may assume that each Ui = SpecAi is affine. Then for any

prime ideal p of Ai with ht p = 1, we have vp(fi) = 0. By [Matsumura

(1970)] (17.H) Theorem 38, we have fi ∈ O∗X(Ui). Hence D is trivial. Next

we prove that the homomorphism Γ(X,K ∗
X/O

∗
X) → Div(X) is surjective

under the assumption that OX,x is a unique factorization domain for any

x ∈ X . For any Weil divisor D =
∑
Y nY Y on X , let

Dx =
∑
Y

nY (Y ⊗OX OX,x)
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be the divisor on SpecOX,x induced by D. By 7.1.2, we have Dx = (fx) for

some fx ∈ OX,x. Let Ux be an open neighborhood of x so that fx can be

extended to a section in Γ(Ux,OX), which we still denote by fx. There are

only finitely many prime divisors Y with nonempty intersection with Ux
such that both vY (fx) and nY are nonzero. Shrinking Ux, we may assume∑

Y

nY (Ux ∩ Y ) = (fx).

For any prime divisor Y with nonempty intersection with Ux∩Ux′ , we have

vY

( fx
fx′

)
= 0.

So we have

fx
fx′

∈ O∗X(Ux ∩ Ux′)

by [Matsumura (1970)] (17.H) Theorem 38. Thus {(fx, Ux)} is a Cartier

divisor. This Cartier divisor is mapped to D under the homomorphism

Γ(X,K ∗
X/O

∗
X) → Div(X). Hence the homomorphism is surjective. �

Remark 7.1.4. LetX be an integral noetherian scheme. Suppose OX,x are

regular for all x ∈ X , that is, X is a regular scheme. Then OX,x are unique

factorization domains for all x by [Matsumura (1970)] (19.B) Theorem 48.

By 7.1.3, we have an isomorphism CaCl(X) ∼= Cl(X).

Proposition 7.1.5. Let X be an integral scheme. We have a canonical

isomorphism

CaCl(X)
∼=→ Pic(X).

Proof. We have an exact sequence

0 → O∗X → K ∗
X → K ∗

X/O
∗
X → 0.

Since H1(X,K ∗
X) = 0, we have an exact sequence

Γ(X,K ∗
X) → Γ(X,K ∗

X/O
∗
X) → H1(X,O∗X) → 0.

So we have an isomorphism

CaCl(X) ∼= H1(X,O∗X).

But

H1(X,O∗X) ∼= Pic(X).

So we have

CaCl(X) ∼= Pic(X).
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A more direct proof is as follows. Let D = {(fi, Ui)} be a Cartier

divisor, where {Ui} is an open covering of X , fi ∈ Γ(Ui,K ∗
X), and fi

fj
∈

Γ(Ui ∩ Uj ,O∗X) for all i and j. We have

f−1i OUi∩Uj = f−1j OUi∩Uj .

So we have an OX -submodule L (D) of K so that

L (D)|Ui = f−1i OUi .

L (D) is an invertible OX -module, and

L (D1 +D2) ∼= L (D1)⊗OX L (D2)

for all Cartier divisors D1 and D2. So D → L (D) defines a homomorphism

Γ(X,K ∗
X/O

∗
X) → Pic(X).

One can check that L (D) is isomorphic to OX if and only if D is a principal

Cartier divisor. We thus have a monomorphism

CaCl(X) ↪→ Pic(X).

For any invertible OX -module L , we can find an open covering {Ui} of X

and ei ∈ Γ(Ui,L ) so that we have isomorphisms

OX |Ui
∼=→ L |Ui , s �→ sei.

We have

ei|Ui∩Uj = fijej|Ui∩Uj
for some fij ∈ Γ(Ui∩Uj ,O∗X). Fix a nonempty open subset Ui0 in the open

covering. Let D be the Cartier divisor D = {(fi, Ui)} defined by

fi = fi0i.

Here we regard fi0i as a section of K ∗
X over Ui. Then L ∼= L (D). This

proves that the homomorphism Γ(X,K ∗
X/O

∗
X) → Pic(X) is surjective. �

Let X be a smooth algebraic curve over a field k. Then a prime Weil

divisor on X is a Zariski closed point of X with the reduced closed sub-

scheme structure. Let |X | be the set of all Zariski closed points of X . For

any x ∈ X , let k(x) be the residue field of OX,x. We define the degree of x

to be

deg(x) = [k(x) : k].
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For any Weil divisor D =
∑

x∈|X| nxx, we define the degree of D to be

deg(D) =
∑
x∈|X|

nxdeg(x).

At the end of 8.1, we give a proof of the following fact.

Proposition 7.1.6. Let X be a smooth proper algebraic curve over a field

k, and let K(X) be the function field of X. For any nonzero f ∈ K(X),

we have

deg(f) = 0,

where (f) is the principal divisor defined by f .

Suppose thatX is a smooth proper algebraic curve over a field k. Taking

degree defines a homomorphism

deg : Div(X) → Z,

and it induces a homomorphism

deg : Cl(X) → Z.

For any invertible OX -module L , choose a Weil divisor D on X such that

L ∼= L (D), where L (D) is the invertible OX -module defined in the proof

of 7.1.5 using the Cartier divisor corresponding to the Weil divisor D. We

define the degree of L to be

deg(L ) = deg(D).

Then taking degree defines a homomorphism

deg : Pic(X) → Z.

7.2 Cohomology of Curves

([SGA 4] IX 4.)

Proposition 7.2.1 (Kummer’s theory). Let X be a scheme and let n

be a positive integer invertible on X. Then the morphism of etale sheaves

n : O∗Xet
→ O∗Xet

, s �→ sn

is surjective. Let μn,X be its kernel. We thus have a short exact sequence

0 → μn,X → O∗Xet

n→ O∗Xet
→ 0.
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Proof. Let U = SpecA be an affine etale X-scheme and let a ∈
O∗Xet

(U) = A∗ be a section. The canonical morphism

V = SpecA[t]/(tn − a) → U = SpecA

is etale by 2.3.3 since tn − a and its derivative ntn−1 generate A[t]. One

can show that the fibers of V → U are nonempty and hence V → U is

surjective. So {V → U} is an etale covering of U . The restriction of the

section a to V has an n-th root t. So n : O∗Xet
→ O∗Xet

is surjective. �

Proposition 7.2.2. Let X be a scheme and let n be a positive integer

invertible on X. The sheaf μn,X is locally constant. When X is a scheme

over a strictly local ring A such that n is invertible in A, μn,X is isomorphic

to the constant sheaf Z/n.

Proof. Note that for any etale X-scheme U , we have a one-to-one corre-

spondence

{s ∈ OU (U)∗|sn = 1} ∼= HomX(U,SpecOX [t]/(tn − 1)).

So μn,X is represented by the X-scheme SpecOX [t]/(tn− 1). This scheme

is finite and etale over X . So μn,X is locally constant by 5.8.1 (i). If

A is strictly henselian and n is invertible in A, then tn − 1 splits into a

product of linear polynomials in A[t] by 2.8.3 (v). For any A-scheme X ,

SpecOX [t]/(tn− 1) is then a trivial etale covering of X of degree n. Hence

μn,X is isomorphic to the constant sheaf Z/n. �

Proposition 7.2.3 (Artin–Schreier’s theory). Let p be a prime num-

ber and let X be a scheme such that p · 1 = 0 in Γ(X,OX). Then the

morphism of etale sheaves

℘ : OXet → OXet , s �→ sp − s

is surjective. Its kernel is isomorphic to Z/p. We thus have a short exact

sequence

0 → Z/p→ OXet

℘→ OXet → 0.

Proof. Let U = SpecA be an affine etale X-scheme and let a ∈
OXet(U) = A be a section. The canonical morphism

V = SpecA[t]/(tp − t− a) → U = SpecA

is etale by 2.3.3 since the derivative −1 of tp− t− a generate A[t]. One can

show the fibers of V → U are nonempty and hence V → U is surjective.
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So {V → U} is an etale covering of U . The restriction of the section a to

V is the image of t under the homomorphism

℘ : OXet(V ) = A[t]/(tp − t− a) → OXet(V ) = A[t]/(tp − t− a).

So ℘ : OXet → OXet is surjective. Note that for any etale X-scheme U , we

have a one-to-one correspondence

{s ∈ OU (U)|sp − s = 0} ∼= HomX(U,SpecOX [t]/(tp − t)),

that is, ker℘ is represented by the X-scheme SpecOX [t]/(tp− t). We have

tp − t =
∏
i∈Z/p

(t− i)

on X . It follows that ker℘ ∼= Z/p. �

Lemma 7.2.4. Let X be a noetherian scheme and let F be a sheaf on X.

The following conditions are equivalent:

(i) For every non-closed point y in X, we have Fȳ = 0.

(ii) The canonical morphism

F →
∏
x∈|X|

ix∗i
∗
xF

induces an isomorphism

F ∼=
⊕
x∈|X|

ix∗i
∗
xF ,

where |X | is the set of Zariski closed points in X, and ix : Spec k(x) → X

are the closed immersions.

When F satisfies these conditions, we say that F is a skyscraper sheaf.

Proof. Suppose (i) holds. Let f : U → X be an etale morphism of finite

type. For any s ∈ F (U), if u ∈ U is a point in the support of s, then

f(u) must be a closed point of X . Since f is quasi-finite, u is closed in

f−1(f(u)). Hence u is a closed point of U . Since U is noetherian, the

support of s consists of finitely many closed points of U . It follows that the

image of the canonical morphism

F →
∏
x∈|X|

ix∗i
∗
xF

is contained in
⊕

x∈|X| ix∗i
∗
xF . One shows that under the condition (i),

the morphism

F →
⊕
x∈|X|

ix∗i
∗
xF
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induces an isomorphism on stalks at every point of X , and hence it is an

isomorphism. Here we use the formula

(ix∗i
∗
xF )ȳ ∼=

{
Fx̄ if y = x,

0 if y 	= x

for any x ∈ |X | and any y ∈ X . This proves (i)⇒(ii). It is clear that

(ii)⇒(i). �

Lemma 7.2.5. Let X be a noetherian scheme with dimX ≤ 1, let

η1, . . . , ηm be all the points in X satisfying dim {ηi} = 1 (i = 1, . . . ,m),

let R =
∏m
i=1 OX,ηi , and let j : SpecR → X be the canonical morphism.

(i) For any sheaf G on SpecR and any q ≥ 1, Rqj∗G is a skyscraper

sheaf.

(ii) For any sheaf F on X, the kernel and cokernel of the canonical

morphism F → j∗j∗F are skyscraper sheaves.

Proof.

(i) For each i, let ÕX,η̄i be the strict henselization of OX,ηi . By 5.9.5,

we have

(Rqj∗G )η̄i
∼= Hq(Spec (R ⊗OX ÕX,η̄i),G ).

One can show

R⊗OX ÕX,η̄i ∼= ÕX,η̄i .

By 5.7.3, we have

Hq(Spec ÕX,η̄i ,G ) = 0

for any q ≥ 1. So (Rqj∗G )η̄i = 0 for any q ≥ 1. But ηi (i = 1, . . . ,m) are all

the non-closed points of X . So Rqj∗G is a skyscraper sheaf for any q ≥ 1.

(ii) We have

(j∗j∗F )η̄i
∼= H0(Spec (R⊗OX ÕX,η̄i), j

∗F ) ∼= H0(Spec ÕX,η̄i , j
∗F ) ∼= Fη̄i .

So the canonical morphism F → j∗j∗F induces isomorphisms on stalks at

η̄i. It follows that its kernel and cokernel are skyscraper sheaves. �

Lemma 7.2.6. Let X be a scheme of finite type over a separably closed

field k. Then for any skyscraper sheaf F on X, we have Hq(X,F ) = 0 for

any q ≥ 1.
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Proof. We have

Hq(X,F ) ∼= Hq(X,
⊕
x∈|X|

ix∗i
∗
xF )

∼=
⊕
x∈|X|

Hq(X, ix∗i
∗
xF )

∼=
⊕
x∈|X|

Hq(Spec k(x), i∗xF ).

For any closed point x, the residue field k(x) is separably closed. So

Hq(Spec k(x), i∗xF ) = 0 for any q ≥ 1. Our assertion follows. �

Theorem 7.2.7. Let X be a reduced scheme of finite type over a separably

closed field k of characteristic p with dimX ≤ 1.

(i) For any torsion sheaf F on X, we have Hq(X,F ) = 0 for any

q ≥ 3.

(ii) H2(X,O∗Xet
) and H3(X,O∗Xet

) are p-torsion groups, and

Hq(X,O∗Xet
) = 0 for any q ≥ 4. If k is algebraically closed, then

Hq(X,O∗Xet
) = 0 for any q ≥ 2.

Proof. Let η1, . . . , ηm be all the points in X satisfying dim {ηi} = 1 (i =

1, . . . ,m), R =
∏m
i=1 OX,ηi , j : SpecR → X be the canonical morphism, F

a sheaf on X , F → Rj∗j∗F the canonical morphism, and

F → Rj∗j∗F → Δ →
a distinguished triangle. We have an exact sequence

0 → H −1(Δ) → F → j∗j∗F → H 0(Δ) → 0

and

Rqj∗j∗F ∼= H q(Δ)

for any q ≥ 1. By 7.2.5, H q(Δ) are skyscraper sheaves for any q. By 7.2.6,

the biregular spectral sequence

Epq2 = Hp(X,H q(Δ)) ⇒ Hp+q(X,Δ)

degenerates and we have

Hq(X,Δ) ∼= H0(X,H q(Δ))

for any q. Moreover, we have

Hq(X,Rj∗j∗F ) ∼= Hq(SpecR, j∗F ).
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The long exact sequence of H ·(X,−) associated to the above distinguished

triangle is

· · ·→Hq(X,F )→Hq(SpecR,j∗F )→H0(X,H q(Δ))→Hq+1(X,F )→· · · .
Since X is reduced, each OX,ηi is a field of transcendental degree 1 over k.

Suppose that F is a torsion sheaf. We have Hq(SpecR, j∗F ) = 0 for

any q ≥ 2 by 5.7.8 and 4.5.11 (i). So we have

Hq(X,F ) ∼= H0(X,H q−1(Δ))

for any q ≥ 3. On the other hand, Rqj∗j∗F is the sheaf associated to the

presheaf

V �→ Hq((SpecR)×X V, j∗F )

for any etale X-scheme V . Note that (SpecR)×X V is a disjoint union of

the spectra of some fields finite separable over some OX,ηi . Again by 5.7.8

and 4.5.11 (i), we have

Hq((SpecR)×X V, j∗F ) = 0

for any q ≥ 2. So Rqj∗j∗F = 0 for any q ≥ 2, and hence H q(Δ) = 0 for

any q ≥ 2. Therefore

Hq(X,F ) ∼= H0(X,H q−1(Δ)) = 0

for any q ≥ 3. This proves (i).

Suppose F = O∗Xet
(resp. F = O∗Xet

and k is algebraically closed). We

have j∗O∗Xet

∼= O∗(SpecR)et
. By 5.7.8 and 4.5.11 (ii) (resp. 4.5.8 and 4.5.9),

we have

Hq(SpecR, j∗O∗Xet
) = 0

for q = 1 and any q ≥ 3 (resp. q ≥ 1). So we have

Hq(X,O∗Xet
) ∼= H0(X,H q−1(Δ))

for any q ≥ 4 (resp. q ≥ 2.) On the other hand, Rqj∗j∗O∗Xet
is the sheaf

associated to the presheaf

V �→ Hq((SpecR)×X V,O∗(SpecR)et
)

for any etale X-scheme V . Again by 5.7.8 and 4.5.11 (ii) (resp. 4.5.8 and

4.5.9), we have

Hq((SpecR)×X V,O∗(SpecR)et
) = 0
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for q = 1 and any q ≥ 3 (resp. q ≥ 1). So Rqj∗j∗O∗Xet
= 0 for q = 1 and

any q ≥ 3 (resp. q ≥ 1), and hence H q(Δ) = 0 for q = 1 and any q ≥ 3

(resp. q ≥ 1). Therefore

Hq(X,O∗Xet
) ∼= H0(X,H q−1(Δ)) = 0

for any q ≥ 4 (resp. q ≥ 2).

Since H0(X,H 1(Δ)) = 0 and H3(SpecR, j∗O∗Xet
) = 0, part of the

above long exact sequence is

0→H2(X,O∗Xet
)→H2(SpecR,j∗O∗Xet

)→H0(X,H 2(Δ))→H3(X,O∗Xet
)→0.

By 4.5.11 (ii), H2(SpecR, j∗O∗Xet
) is a p-torsion group and R2j∗j∗O∗Xet

is a p-torsion sheaf. Hence H 2(Δ) is a p-torsion sheaf. It follows that

H2(X,O∗Xet
) and H3(X,O∗Xet

) are p-torsion groups. �

Remark 7.2.8. Let X be a regular integral scheme of dimension 1, η the

generic points, K = OX,η the function field of X , and j : SpecK → X the

canonical morphism. Define a morphism

j∗O∗(SpecK)et
→
⊕
x∈|X|

ix∗Z

as follows: For any connected etale X-scheme V of finite type, let η′ be the
generic point of V and let K ′ = OV,η′ . We have

(j∗O∗(SpecK)et
)(V ) = K ′∗,(⊕

x∈|X|
ix∗Z
)
(V ) =

⊕
x∈|V |

Z.

Define

(j∗O∗(SpecK)et
)(V ) →

(⊕
x∈|X|

ix∗Z
)
(V )

to be

K ′∗ →
⊕
x∈|V |

Z, f �→ (vx(f)),

where vx : K ′∗ → Z is the valuation at x. We can identify the sheaf⊕
x∈|X| ix∗Z with the sheaf of Weil divisors D defined by setting D(V )

to be the group of Weil divisors on V . The morphism j∗O∗(SpecK)et
→⊕

x∈|X| ix∗Z is simply the morphism mapping each rational function to the

principal Weil divisor associated to it. This morphism is surjective and its

kernel is exactly O∗Xet
. We thus have an exact sequence

0 → O∗Xet
→ j∗O∗(SpecK)et

→
⊕
x∈|X|

ix∗Z → 0.
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Theorem 7.2.9.

(i) Let X be a reduced scheme of finite type over a separably closed field

k with dimX ≤ 1, and let n be a positive integer invertible in k. Then

Hq(X,μn,X) = 0 for any q ≥ 3 and we have an exact sequence

0 → H0(X,μn,X) → Γ(X,O∗X)
n→ Γ(X,O∗X) →

→ H1(X,μn,X) → Pic(X)
n→ Pic(X) → H2(X,μn,X) → 0.

(ii) Let X be a smooth projective irreducible curve of genus g over an

algebraically closed field k, and let n be a positive integer invertible in k.

Then we have

Hq(X,Z/n) ∼=

⎧⎪⎪⎨⎪⎪⎩
Z/n if q = 0,

(Z/n)2g if q = 1,

Z/n if q = 2,

0 if q ≥ 3.

Moreover, we have canonical isomorphisms

Hq(X,μn,X) ∼=

⎧⎪⎪⎨⎪⎪⎩
{x ∈ k|xn = 1} if q = 0,

{L ∈ Pic(X)|nL = 0} if q = 1,

Z/n if q = 2,

0 if q ≥ 3.

Proof.

(i) By Kummer’s theory 7.2.1, we have a long exact sequence

0 → H0(X,μn,X) → H0(X,O∗X)
n→ H0(X,O∗X) → H1(X,μn,X)

→ H1(X,O∗X)
n→ H1(X,O∗X) → H2(X,μn,X) → H2(X,O∗et) → · · · .

We have

H0(X,O∗X) = Γ(X,O∗X), H1(X,O∗X) = Pic(X).

Moreover, if p = chark, then Hq(X,O∗X) are p-torsion groups for any q ≥ 2

by 7.2.7, whereas Hq(X,μn,X) are Z/n-modules. Since n is invertible in k,

n is relatively prime to p. Our assertion follows.

(ii) Since X is projective and integral, and k is algebraically closed, we

have Γ(X,O∗X) = k∗, and the homomorphism

n : k∗ → k∗, x �→ xn

is surjective. It follows from the long exact sequence in (i) that

H0(X,μn,X) ∼= {x ∈ k|xn = 1},
H1(X,μn,X) ∼= Pic(X)n,

H2(X,μn,X) ∼= Pic(X)/nPic(X),
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where for any abelian group A, we set An = ker(n : A→ A). Let

deg : Pic(X) → Z

be the homomorphism mapping an invertible OX -module to its degree. It

is surjective. Let Pic0(X) be its kernel. We have a commutative diagram

of short exact sequences

0 → Pic0(X) → Pic(X)
deg→ Z → 0

n ↓ n ↓ n ↓
0 → Pic0(X) → Pic(X)

deg→ Z → 0,

where all the vertical arrows are multiplication by n. By the snake lemma,

we have an exact sequence

0 → Pic0(X)n → Pic(X)n → 0

→ Pic0(X)/nPic0(X) → Pic(X)/nPic(X) → Z/n→ 0.

Pic0(X) is isomorphic to the group of k-points JacX(k) of the Jacobian

JacX of X . Moreover the homomorphism n : JacX(k) → JacX(k) is surjec-

tive, and its kernel is isomorphic to (Z/n)2g. So we have

H1(X,μn,X) ∼= Pic(X)n ∼= Pic0(X)n ∼= JacX(k)n ∼= (Z/n)2g,

and

H2(X,μn,X) ∼= Pic(X)/nPic(X) ∼= Z/n.

By (i), we have Hq(X,μn,X) = 0 for any q ≥ 3. This proves the second

part of (ii). By 7.2.2, we have Z/n ∼= μn,X . The first part of (ii) follows.�

Proposition 7.2.10. Let X be a smooth irreducible curve over a sepa-

rably closed field k, and let n be a positive integer invertible in k. Then

Hq(X,Z/n) are finite for all q and vanish for all q ≥ 3. If X is not pro-

jective, then Hq(X,Z/n) vanish for all q ≥ 2.

Proof. Let k̄ be an algebraic closure of k. Then k̄ = lim−→i
ki, where ki

goes over the family of finite purely inseparable extensions of k in k̄. By

5.7.2, we have

Hq(X,Z/n) ∼= Hq(X ⊗k ki,Z/n),
and by 5.9.3, we have

Hq(X ⊗k k̄,Z/n) ∼= lim−→
i

Hq(X ⊗k ki,Z/n).
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It follows that

Hq(X,Z/n) ∼= Hq(X ⊗k k̄,Z/n).
So to prove our assertion, we may assume that k is algebraically closed. We

have Z/n ∼= μn,X by 7.2.2. So we may replace Z/n by μn,X . By 7.2.9 (i),

we have Hq(X,μn,X) = 0 for any q ≥ 3.

SinceX is irreducible and hence connected, we haveH0(X,Z/n) ∼= Z/n.

In particular, H0(X,Z/n) is finite.

Let X be the smooth compactification of X and let X − X =

{x1, . . . , xm}. Then Γ(X,O∗X) consists of nonzero rational functions on

X regular and invertible on X . Consider the homomorphism

Γ(X,O∗X) → Zm, f �→ (vx1(f), . . . , vxm(f)),

where vxi (i = 1, . . . ,m) denote the valuation at xi. The kernel of this

homomorphism consists of rational functions on X regular everywhere, and

hence is isomorphic to k∗. Let A be the image of this homomorphism. We

have an exact sequence

0 → k∗ → Γ(X,O∗X) → A→ 0.

By the snake lemma, we have an exact sequence

k∗/k∗n → Γ(X,O∗X)/Γ(X,O∗X)n → A/nA→ 0.

Since A is a subgroup of Zm, A/nA is finite. Since k is algebraically closed,

we have k∗/k∗n = 0. It follows that Γ(X,O∗X)/Γ(X,O∗X)n is finite.

The canonical restriction homomorphism

Pic(X) → Pic(X), L → L |X
is surjective. Let B be the kernel of this homomorphism. By the snake

lemma, we have an exact sequence

Pic(X)n → Pic(X)n → B/nB → Pic(X)/nPic(X) → Pic(X)/nPic(X) → 0.

In the proof of 7.2.9, we have seen

Pic(X)n ∼= (Z/n)2g, Pic(X)/nPic(X) ∼= Z/n,

where g is the genus of X. In particular, Pic(X)n and Pic(X)/nPic(X) are

finite. We will show in a moment that B/nB is finite. The above exact

sequence then shows that Pic(X)n and Pic(X)/nPic(X) ∼= H2(X,μn,X)

are finite.

To prove that B/nB is finite, consider the homomorphism Zm → B

mapping (n1, . . . , nm) to the isomorphic class of the invertible OX -module
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associated to the Weil divisor n1x1 + · · ·+ nmxm. It is surjective. Indeed,

for any L ∈ B, we have L |X ∼= OX . Let D be a Weil divisor on X so

that L ∼= L (D). Then D|X is a principle divisor, say D|X = (f)|X for

some rational function f . Then D − (f) is a Weil divisor on X supported

on {x1, . . . , xm} and L ∼= L (D− (f)). So L lies in the image of Zm → B.

Thus the homomorphism Zm → B is surjective. This implies that B/nB

is finite.

By 7.2.9 (i), we have an exact sequence

Γ(X,O∗X)
n→ Γ(X,O∗X) → H1(X,μn,X) → Pic(X)

n→ Pic(X).

Combined with the finiteness of Γ(X,O∗X)/Γ(X,O∗X)n and Pic(X)n, we see

that H1(X,μn) is finite.

If X is not projective, then X −X 	= Ø, and every Weil divisor on X

is the restriction of a Weil divisor of degree 0 on X . So the restriction

homomorphism

Pic0(X) → Pic(X), L → L |X
is surjective. We have seen in the proof of 7.2.9 that n : Pic0(X) → Pic0(X)

is surjective. It follows that n : Pic(X) → Pic(X) is surjective. So

H2(X,μn,X) ∼= Pic(X)/nPic(X) = 0. �

Theorem 7.2.11. Let X be a scheme of finite type over a separably closed

field k of characteristic p. If X is affine, then Hq(X,Z/p) = 0 for any

q ≥ 2. If X is proper, then Hq(X,Z/p) = 0 for any q > dimX, and we

have an exact sequence

0 → Hq(X,Z/p) → Hq
Zar(X,OX)

℘→ Hq
Zar(X,OX) → 0

for every q, where ℘ : Hq
Zar(X,OX) → Hq

Zar(X,OX) is the homomorphism

induced by

℘ : OX → OX , s �→ sp − s.

Proof. Wemay assume that k is algebraically closed. By Artin–Schreier’s

theory 7.2.3, we have an exact sequence

0 → H0(X,Z/p) → H0(X,OXet)
℘→ H0(X,OXet) → · · ·

→ Hq(X,Z/p) → Hq(X,OXet)
℘→ Hq(X,OXet) → · · ·

By 5.7.5, we have

Hq(X,OXet)
∼= Hq

Zar(X,OX)
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for all q. If X is affine, we have Hq
Zar(X,OX) = 0 for any q ≥ 1. So

Hq(X,Z/p) = 0 for any q ≥ 2. If X is proper, each Hq
Zar(X,OX) is a finite

dimensional k-vector space. The homomorphism

℘ : Hq
Zar(X,OX) → Hq

Zar(X,OX)

is of the form φ− id, where

φ : Hq
Zar(X,OX) → Hq

Zar(X,OX)

is the homomorphism induced by

OX → OX , s �→ sp.

We have

φ(x1 + x2) = φ(x1) + φ(x2), φ(λx) = λpφ(x)

for any x1, x2, x ∈ Hq
Zar(X,OX) and λ ∈ k. By 7.2.12 below, the homo-

morphism ℘ : Hq
Zar(X,OX) → Hq

Zar(X,OX) is surjective for each q. So we

have an exact sequence

0 → Hq(X,Z/p) → Hq
Zar(X,OX)

℘→ Hq
Zar(X,OX) → 0.

If q > dimX , we have Hq
Zar(X,OX) = 0, and hence Hq(X,Z/p) = 0. �

Lemma 7.2.12. Let k be an algebraically closed field of characteristic p,

let V be a finite dimensional vector space over k, and let φ : V → V be a

map satisfying

φ(x1 + x2) = φ(x1) + φ(x2), φ(λx) = λpφ(x)

for any x1, x2, x ∈ V and λ ∈ k. Then φ− id is surjective.

Proof. We identify V with the vector space kn. Then φ is of the form

φ(λ1, . . . , λn) = (a11λ
p
1 + · · ·+ an1λ

p
n, . . . , a1nλ

p
1 + · · ·+ annλ

p
n)

for some aij ∈ k. So

(φ−id)(λ1, . . . , λn) = (a11λ
p
1+· · ·+an1λpn−λ1, . . . , a1nλp1+· · ·+annλpn−λn).

Consider the k-algebra homomorphism

ψ : k[x1, . . . , xn] → k[x1, . . . , xn], xi �→ a1ix
p
1 + · · ·+ anix

p
n − xi.

It induces a k-morphism

f : Spec k[x1, . . . , xn] → Spec k[x1, . . . , xn].
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The homomorphism

Ωk[x1,...,xn]/k → Ωk[x1,...,xn]/k

induced by ψ maps dxi to

d(a1ix
p
1 + · · ·+ anix

p
n − xi) = −dxi.

Since Ωk[x1,...,xn]/k is a free k[x1, . . . , xn]-module with basis {dx1, . . . , dxn},
the homomorphism of k[x1, . . . , xn]-modules

Ωk[x1,...,xn]/k ⊗ψ k[x1, . . . , xn] → Ωk[x1,...,xn]/k

induced by ψ is an isomorphism. By 2.5.3, f is etale. Hence im (f) is open

in Spec k[x1, . . . , xn]. The set of closed points in Spec k[x1, . . . , xn] can be

identified with kn, and the restriction of f to this set can be identified with

φ − id : kn → kn. So im (φ − id) is Zariski open in kn. But kn is an

algebraic group, and im (φ − id) is an open subgroup. So we must have

im (φ − id) = kn. �

Theorem 7.2.13. Let X be a scheme of finite type over a separably

closed field k with dimX ≤ 1. For any torsion sheaf F on X, we have

Hq(X,F ) = 0 for all q ≥ 3. If X is affine, we have Hq(X,F ) = 0 for all

q ≥ 2.

Proof. By 5.7.2 and 5.9.3, we may assume that k is algebraically closed

and X is reduced. By 7.2.7, we have Hq(X,F ) = 0 for any torsion sheaf

F and any q ≥ 3. Suppose X is affine. To prove H2(X,F ) = 0 for a

torsion sheaf F , we may assume that F is a constructible sheaf by 5.8.8

and 5.9.2. By 5.8.5 (ii), F is a constructible sheaf of Z/n-modules for

some n. By 5.8.5 (i), there exists an epimorphism f!Z/n → F for some

separated etale morphism f : U → X of finite type. Let K be the kernel

of this epimorphism. We have H3(X,K ) = 0. It follows that

H2(X, f!Z/n) → H2(X,F )

is onto. To prove H2(X,F ) = 0, it suffices to prove H2(X, f!Z/n) = 0.

Let ηi (i = 1, . . . ,m) be the generic points of X . Since f is etale,

fηi : U ⊗OX OX,ηi → SpecOX,ηi

are finite morphisms. By 1.10.10 (iv), for each i, there exists an open

neighborhood Vi of ηi such that fVi : f
−1(Vi) → Vi is finite. Let V = ∪iVi

and let j : V → X be the open immersion. Then the canonical morphism

f!Z/n→ j∗j∗f!Z/n
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is an isomorphism when restricted to V . Since X − V is finite over Spec k,

the q-th cohomology groups of the kernel and the cokernel of f!Z/n →
j∗j∗f!Z/n vanish for all q ≥ 1. So

H2(X, f!Z/n) ∼= H2(X, j∗j∗f!Z/n).

We are thus reduced to prove H2(X, j∗j∗f!Z/n) = 0. We have

j∗j∗f!Z/n ∼= j∗fV !Z/n.

Since fV is finite, we have

fV !Z/n ∼= fV ∗Z/n

by 5.5.2. It follows that

j∗j∗f!Z/n ∼= (j ◦ fV )∗Z/n.
Note that j◦fV is etale. We are thus reduced to prove thatH2(X, f∗Z/n) =
0 for any separated etale morphism f : U → X of finite type. By the Zariski

Main Theorem 1.10.13, we have a commutative diagram

U
i
↪→ U

f ↓ ↙f

X

such that i is a dominant open immersion and f is finite. We have

H2(X, f∗Z/n) ∼= H2(X, f∗i∗Z/n) ∼= H2(U, i∗Z/n).

Note that U is affine and dimU ≤ 1. Since i is dominant, U−U is finite over

Spec k. The kernel and cokernel of the canonical morphism Z/n → i∗Z/n
are supported on U − U . So we have

H2(U, i∗Z/n) ∼= H2(U,Z/n),

and we are reduced to prove H2(U,Z/n) = 0. We may assume that U is

reduced. Let Ũ be the normalization of U and let π : Ũ → U be the canon-

ical morphism. Then π is finite. It induces isomorphisms above generic

points of U , and hence induces an isomorphism above a dense open subset

of U by 1.10.9 (ii). So the kernel and cokernel of the canonical morphism

Z/n→ π∗Z/n are supported on a closed subscheme of U finite over Spec k.

It follows that

H2(U,Z/n) ∼= H2(U, π∗Z/n) ∼= H2(Ũ ,Z/n).

But Ũ is a smooth affine curve. By 7.2.10, we have H2(Ũ ,Z/n) = 0 if n

is relatively prime to p = char k. By 7.2.11, we have H2(Ũ ,Z/p) = 0. It

follows that H2(Ũ ,Z/pr) = 0 for any r ≥ 1 since Z/pr has a finite filtration

with successive quotients isomorphic to Z/p. Therefore H2(Ũ ,Z/n) = 0

for all n. �
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7.3 Proper Base Change Theorem

([SGA 4] XII, XIII, [SGA 4 1
2 ] Arcata IV 1–4.)

Consider a Cartesian square

X ×Y Y ′ g
′

→ X

f ′ ↓ ↓ f
Y ′

g→ Y.

For any sheaf F on X , applying f∗ to the canonical morphism F →
g′∗g
′∗F , we get

f∗F → f∗g′∗g
′∗F ∼= g∗f ′∗g

′∗F .

From the adjointness of the functors (g∗, g∗), we get a morphism

g∗f∗F → f ′∗g
′∗F .

Another way to get such a morphism is as follows: Apply g′∗ to the canon-

ical morphism f∗f∗F → F , we get

f ′∗g∗f∗F ∼= g′∗f∗f∗F → g′∗F .

From the adjointness of the functors (f ′∗, f ′∗), we get a morphism g∗f∗F →
f ′∗g′∗F again. At the end of this section, we show that these two ways define

the same morphism g∗f∗F → f ′∗g′∗F .

For any bounded below complex K · of sheaves on X , let K · → I ·

and g′∗I · → J · be quasi-isomorphisms so that I · and J · respectively are

bounded below complexes of injective sheaves on X and X×Y Y ′. We have

morphisms

g∗Rf∗K · ∼= g∗f∗I · → f ′∗g
′∗I · → f ′∗J

· ∼= Rf ′∗g
′∗K ·.

In this way, we get a morphism

g∗Rf∗K · → Rf ′∗g
′∗K ·

for any object K · in D+(X). In particular, we have a morphism

g∗Rqf∗K · → Rqf ′∗g
′∗K ·

for each q.

Theorem 7.3.1 (Proper base change theorem). Let

X ×Y Y ′ g
′

→ X

f ′ ↓ ↓ f
Y ′

g→ Y
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be a Cartesian square. Suppose that f is a proper morphism. Then for any

torsion sheaf F on X, the canonical morphisms

g∗Rqf∗F → Rqf ′∗g
′∗F

are isomorphisms for all q. For any object K · in D+
tor(X), the canonical

morphism

g∗Rf∗K · → Rf ′∗g
′∗K ·

is an isomorphism. If Rf∗ and Rf ′∗ have finite cohomological dimensions,

the same assertion holds for any object K · in Dtor(X).

Corollary 7.3.2. Let f : X → Y be a proper morphism, let F be a torsion

sheaf on X, and let s→ Y be a geometric point of Y , where s is the spectrum

of a separably closed field. Then

(Rqf∗F )s ∼= Hq(X ×Y s,F |X×Y s)
for all q.

Corollary 7.3.3. Let A be a strictly local ring, Y = SpecA, f : X → Y

a proper morphism, and X0 the fiber of f above the closed point of Y . For

any torsion sheaf F on X, the canonical homomorphisms

Hq(X,F ) → Hq(X0,F |X0 )

are isomorphisms for all q.

7.3.2 is a special case of 7.3.1 by taking Y ′ = s.

7.3.2 implies 7.3.3. Indeed, in the notation of 7.3.3, taking s to be the

closed point of Y , we have

(Rqf∗F )s ∼= Hq(X0,F |X0 )

by 7.3.2. But we have

(Rqf∗F )s ∼= Hq(X,F )

by 5.9.5. So Hq(X,F ) ∼= Hq(X0,F |X0 ).

7.3.3 implies 7.3.1. Note that the first assertion of 7.3.1 implies the rest

by 6.5.1 and 6.5.2. To prove the first statement, we may reduce to the case

where Y = SpecA and Y ′ = SpecA′ are affine. Writing A′ as a direct limit

of finitely generated A-algebras and applying 5.9.6, we may reduce to the

case where Y ′ is of finite type over Y . To prove that g∗Rqf∗F → Rqf ′∗g′∗F
is an isomorphism for each q, it suffices to show that for any point y′ in Y ′

which is a closed point in the fiber g−1(g(y′)), the homomorphism on stalks

(g∗Rqf∗F )ȳ′ → (Rqf ′∗g
′∗F )ȳ′
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is an isomorphism. Indeed, if π : U → Y ′ is an etale morphism and

s is a section over U of the kernel (resp. cokernel) of the morphism

g∗Rqf∗F → Rqf ′∗g
′∗F , then for any point u ∈ U which is closed in the

fiber (gπ)−1(gπ(u)), there exists an etale neighborhood Wu of ū over U

such that s|Wu = 0. One can show that as u goes over the set of points

in U which is closed in (gπ)−1(gπ(u)), Wu form an etale covering of U . It

follows that s = 0. Hence g∗Rqf∗F → Rqf ′∗g
′∗F is an isomorphism. Let

us use 7.3.3 to verify

(g∗Rqf∗F )ȳ′ → (Rqf ′∗g
′∗F )ȳ′

is an isomorphism for any q and any point y′ in Y ′ which is closed in the

fiber g−1(g(y′)). Let A (resp. A′) be the strict henselization of OY,g(y′)
(resp. OY ′,y′). By 5.9.5, we have

(g∗Rqf∗F )ȳ′ ∼= (Rqf∗F )
g(y′)

∼= Hq(X ⊗OY A,F |X⊗OY
A),

(Rqf ′∗g
′∗F )ȳ′ ∼= Hq(X ⊗OY A

′,F |X⊗OY
A′).

By 7.3.3, we have

Hq(X ⊗OY A,F |X⊗OY
A) ∼= Hq(X ⊗OY k(g(y

′)),F |X⊗OY
k(g(y′))),

Hq(X ⊗OY A
′,F |X⊗OY

A′) ∼= Hq(X ⊗OY k(y
′),F |X⊗OY

k(y′)),

where k(g(y′)) (resp. k(y′)) is a separable closure of k(g(y′)) (resp. k(y′)).
Since y′ is closed in the fiber g−1(g(y′)), k(y′) is algebraic over k(y), and

hence k(y′) and k(y) have the same algebraic closure. It follows from 5.7.2

and 5.9.3 that we have

Hq(X ⊗OY k(g(y
′)),F |X⊗OY

k(g(y′)))
∼= Hq(X ⊗OY k(y

′),F |X⊗OY
k(y′)).

Thus

(g∗Rqf∗F )ȳ′ ∼= (Rqf ′∗g
′∗F )ȳ′ ,

and 7.3.1 holds.

We will prove 7.3.3 under the extra condition that A is noetherian. It

implies that 7.3.1 and 7.3.2 hold under the extra condition that Y and Y ′

are locally noetherian. This is enough for applications.

Lemma 7.3.4. Let X0 → X be a morphism. For every torsion sheaf F

on X, assume that the canonical homomorphism

Hi(X,F ) → Hi(X0,F |X0 )
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is an isomorphism for each i < n and a monomorphism for i = n. Then

for every complex K · satisfying Hi(K ·) = 0 for all i < 0, the canonical

homomorphism

Hi(X,K ·) → Hi(X0,K
·|X0)

is an isomorphism for each i < n and a monomorphism for i = n.

Proof. Let m ≥ 0 be an integer such that H i(K ·) = 0 for all i < m.

Such m exists since H i(K ·) = 0 for all i < 0. We prove the lemma by

descending induction on m. We have a biregular spectral sequence

Epq2 = Hp(X,H q(K ·)) ⇒ Hp+q(X,K ·).

If p + q < m, we have either p < 0 or q < m, and hence we have

Hp(X,H q(K ·)) = 0. It follows that Hi(X,K ·) = 0 for any i < m. Sim-

ilarly, we have Hi(X0,K
·|X0) = 0 for any i < m. Hence the lemma holds

for those K · with H i(K ·) = 0 for all i < n+ 1. Suppose that the lemma

holds for those K · with H i(K ·) = 0 for all i < m+1. Let K be a complex

with H i(K ·) = 0 for all i < m. We have a distinguished triangle

H m(K ·)[−m] → K · → τ≥m+1K
· →,

where τ≥m+1K
· is the complex

· · · → 0 → Km+1/imdm → Km+2 → · · · .
Consider the commutative diagram

Hi−1(X, τ≥m+1K
·) → Hi−m(X,H m(K ·)) → Hi(X,K ·) →

↓ ↓ ↓
Hi−1(X0, τ≥m+1K

·|X0) → Hi−m(X0,H m(K ·)|X0 ) → Hi(X0,K
·|X0) →

→ Hi(X, τ≥m+1K
·) → Hi+1−m(X,H m(K ·))

↓ ↓
→ Hi(X0, τ≥m+1K

·|X0) → Hi+1−m(X0,H m(K ·)|X0 ).

If i < n, the second vertical arrow is bijective and the fifth is injective

by assumption, and the first and the fourth are bijective by the induction

hypothesis. By the five lemma, the third vertical arrow is bijective. If i = n,

the second vertical arrow is injective by assumption, the first is bijective

and the fourth is injective by the induction hypothesis. By the five lemma,

the third vertical arrow is injective. This proves our assertion. �
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Lemma 7.3.5. Consider a Cartesian square

X ′0
i′→ X ′

f ′ ↓ ↓ f
X0

i→ X

.

Assume that f is surjective, and the canonical morphism

i∗Rqf∗F ′ → Rqf ′∗i
′∗F ′

is an isomorphism for any torsion sheaf F ′ on X ′ and any q. Then the

following conditions are equivalent:

(i) For any torsion sheaf F ′ on X ′ and any q, the canonical homomor-

phism

Hq(X ′,F ′) → Hq(X ′0, i
′∗F ′)

is an isomorphism.

(ii) For any torsion sheaf F on X and any q, the canonical homomor-

phism

Hq(X,F ) → Hq(X0, i
∗F )

is an isomorphism.

Proof.

(i)⇒(ii) Let F → Rf∗f∗F be the canonical morphism, and let

F → Rf∗f∗F → Δ →
be a distinguished triangle. Since f is surjective, the canonical morphism

F → f∗f∗F

is injective. It follows that H i(Δ) = 0 for all i < 0. We have

Hq(X,Rf∗f∗F ) ∼= Hq(X ′, f∗F )

∼= Hq(X ′0, i
′∗f∗F )

∼= Hq(X0, Rf
′
∗i
′∗f∗F )

∼= Hq(X0, i
∗Rf∗f∗F ).

Hence the canonical homomorphism

Hq(X,Rf∗f∗F ) → Hq(X0, i
∗Rf∗f∗F )

is an isomorphism for any q. Consider the commutative diagram

0 → H0(X,F ) → H0(X,Rf∗f∗F ) → H0(X,Δ)

↓ ↓ ↓
0 → H0(X0, i

∗F ) → H0(X0, i
∗Rf∗f∗F ) → H0(X0, i

∗Δ).
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The second vertical arrow is an isomorphism. It follows that the first

vertical arrow is injective. Then by 7.3.4, the third vertical arrow is

injective. This then implies that the first vertical arrow is an isomor-

phism. Suppose that we have shown that the canonical homomorphism

Hq(X,F ) → Hq(X0, i
∗F ) is an isomorphism for any torsion sheaf F and

any q < n. Consider the commutative diagram

Hn−1(X,Rf∗f∗F ) → Hn−1(X,Δ) → Hn(X,F ) →
↓ ↓ ↓

Hn−1(X0, Rf∗f∗F |X0 ) → Hn−1(X0,Δ|X0) → Hn(X0,F |X0 ) →

→ Hn(X,Rf∗f∗F ) → Hn(X,Δ)

↓ ↓
→ Hn(X0, Rf∗f∗F |X0) → Hn(X0,Δ|X0).

We have shown that the first and the fourth vertical arrows are bijective. By

the induction hypothesis and 7.3.4, the second vertical arrow is injective.

By the five lemma, the third vertical arrow is injective. Then by 7.3.4,

the fifth vertical arrow is injective and the second is bijective. By the five

lemma, the third vertical arrow is bijective.

(ii)⇒(i) We have

Hq(X ′,F ′) ∼= Hq(X,Rf∗F ′)
∼= Hq(X0, i

∗Rf∗F ′)
∼= Hq(X0, Rf

′
∗i
′∗F ′)

∼= Hq(X ′0, i
′∗F ′). �

Lemma 7.3.6. Suppose that A is a strictly local noetherian ring. If 7.3.3

holds for any projective morphism f , then it holds for any proper morphism

f .

Proof. By Chow’s lemma ([Fu (2006)] 1.4.18, [EGA] II 5.6.1, [Hartshorne

(1977)] Exer. II 4.10), for any proper morphism f : X → Y , there exists a

surjective projective morphism g : X ′ → X such that fg is projective. We

then apply 7.3.5 and the equivalence of 7.3.1 and 7.3.3. �

Lemma 7.3.7. Let A be a strictly local noetherian ring and let k be the

residue field of A. Suppose for any nonnegative integer n and any torsion

sheaf F on PnA, that the canonical homomorphisms

Hq(PnA,F ) → Hq(Pnk ,F |Pnk )
are isomorphisms for all q. Then 7.3.3 holds.
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Proof. By 7.3.6, it suffices to prove 7.3.3 for any projective morphism f .

Let

X
i→ PnA

f ↓ ↙
SpecA

be a commutative diagram such that i is a closed immersion, and let i0 :

X0 → Pnk be the morphism induced from i by base change. For any torsion

sheaf F on X , the canonical morphism

(i∗F )|Pn
k
→ i0∗(F |X0 )

is an isomorphism by 5.3.9. We have canonical isomorphisms

Hq(X,F ) ∼= Hq(PnA, i∗F ),

Hq(X0,F |X0)
∼= Hq(Pnk , i0∗(F |X0 )).

By our assumption, we have

Hq(PnA, i∗F ) ∼= Hq(Pnk , (i∗F )|Pn
k
).

It follows that

Hq(X,F ) ∼= Hq(X0,F |X0 ). �

Lemma 7.3.8. Suppose that A is a strictly local noetherian ring. If 7.3.3

holds in the case where dimX0 ≤ 1, then it holds in general.

Proof. By 7.3.7, it suffices to prove 7.3.3 for X = PnA. We use induction

on n. When n = 0, this is clear. When n = 1, this follows from our

assumption. Suppose that 7.3.3 holds for X = Pn−1A . Let P be the closed

subscheme of PnA ×A P1
A defined by

P = {([x0 : . . . : xn], [t0 : t1]) ∈ PnA ×A P1
A|t0x0 + t1x1 = 0}.

Let

i : P → PnA ×A P1
A, p1 : PnA ×A P1

A → PnA, p2 : PnA ×A P1
A → P1

A

be the closed immersion and the projections, respectively. Note that

p1i : P → PnA is surjective and its fibers have dimensions ≤ 1. By our

assumption, the equivalence of 7.3.3 and 7.3.1, and 7.3.5, to prove that

7.3.3 holds for X = PnA, it suffices to show that it holds for X = P . The

fibers of p2i : P → P1
A are (n − 1)-dimensional projective spaces. 7.3.3

follows from 7.3.5 applied to the morphism p2i. The conditions of 7.3.5

hold by our assumption, the induction hypothesis, and the equivalence of

7.3.1 and 7.3.3. �
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Lemma 7.3.9. Suppose that A is a strictly local noetherian ring. In the

notation of 7.3.3, if for any finite morphism X ′ → X and any positive

integer n, the canonical homomorphism

Hq(X ′,Z/n) → Hq(X ′ ×X X0,Z/n)

is bijective for q = 0 and surjective for any q ≥ 1, then for any torsion

sheaf F on X, the canonical homomorphism

Hq(X,F ) → Hq(X0,F |X0 )

is an isomorphism for any q.

Proof. Suppose that F is a constructible sheaf of Z/n-modules. By

5.8.11 (ii), we can find a monomorphism F ↪→ f∗Z/n for some finite mor-

phism f : X ′ → X . (In 5.8.11 (ii), the scheme is assumed to be of finite type

over a field or over Z. To make it adapted to our case, we write A = lim−→i
Ai,

where Ai are subalgebras of A finitely generated over Z. By 1.10.9 and 5.9.8

(iii), we can find an Ai-scheme Xi and a constructible sheaf of Z/n-modules

Fi on Xi for some large i such that the pair (X,F ) is induced from the

pair (Xi,Fi) by base change. We can apply 5.8.11 (ii) to Fi and then take

base change.) Let f0 : X0 ×X X ′ → X0 be the base change of f . We have

Hq(X, f∗Z/n) ∼= Hq(X ′,Z/n),

Hq(X0, (f∗Z/n)|X0)
∼= Hq(X0, f0∗Z/n) ∼= Hq(X0 ×X X ′,Z/n).

So the canonical homomorphism

Hq(X, f∗Z/n) → Hq(X0, (f∗Z/n)|X0)

is bijective for q = 0 and surjective for any q > 0. Let C be the cokernel of

the monomorphism F ↪→ f∗Z/n. Consider the commutative diagram

0 → H0(X,F ) → H0(X, f∗Z/n) → H0(X,C )

↓ ↓ ↓
0 → H0(X0,F |X0 ) → H0(X0, (f∗Z/n)|X0) → H0(X0,C |X0).

We have seen that the second vertical arrow is bijective. It follows that

the first vertical arrow is injective. This is true for any constructible sheaf

F of Z/n-modules. In particular, the last vertical arrow is injective. This

implies that the first vertical arrow is bijective for any constructible sheaf F

of Z/n-modules. By 5.8.5 (ii), 5.8.8 and 5.9.2, the canonical homomorphism

H0(X,F ) → H0(X0,F |X0)

is bijective for any torsion sheaf F .
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Suppose that Hi(X,F ) → Hi(X0,F |X0) is bijective for any i < q

(q ≥ 1) and any torsion sheaf F . Let F be a constructible sheaf of Z/n-

modules. Embed F into f∗Z/n for some finite morphism f : X ′ → X ,

and embed f∗Z/n into a flasque sheaf G of Z/n-modules. Let C1 be the

cokernel of f∗Z/n ↪→ G . Consider the commutative diagram

Hq−1(X,G ) → Hq−1(X,C1) → Hq(X, f∗Z/n) → 0

↓ ↓ ↓ ↓
Hq−1(X0,G |X0) →Hq−1(X0,C1|X0)→Hq(X0,(f∗Z/n)|X0) →Hq(X0,G |X0).

By the induction hypothesis, the first two vertical arrows are bijective. It

follows that the third vertical arrow is injective. We have shown that it is

surjective at the beginning. So it is bijective. Let C2 be the cokernel of

F ↪→ f∗Z/n. Consider the commutative diagram

Hq−1(X, f∗Z/n) → Hq−1(X,C2) → Hq(X,F ) →
↓ ↓ ↓

Hq−1(X0, (f∗Z/n)|X0) → Hq−1(X0,C2|X0 ) → Hq(X0,F |X0 ) →

→ Hq(X, f∗Z/n) → Hq(X,C2)

↓ ↓
→ Hq(X0, (f∗Z/n)|X0) → Hq(X0,C2|X0).

By the induction hypothesis, the first two vertical arrows are bijective. We

have just shown the fourth vertical arrow is bijective. So the third vertical

arrow is injective. This is true for any constructible sheaf of Z/n-modules

F . In particular, the last vertical arrow is injective. It then follows that

the third vertical arrow is bijective for any constructible sheaf of Z/n-

modules F . By 5.8.5 (ii), 5.8.8 and 5.9.2, the canonical homomorphism

Hq(X,F ) → Hq(X0,F |X0 ) is bijective for any torsion sheaf F . �

By 7.3.8 and 7.3.9, to prove 7.3.3 in the case where A is noetherian, it

suffices to prove the following:

Lemma 7.3.10. Let A be a strictly local noetherian ring, f : X → SpecA

a proper morphism, and X0 the fiber of f over the closed point of SpecA.

Suppose dimX0 ≤ 1. Then the canonical homomorphism

Hq(X,Z/n) → Hq(X0,Z/n)

is bijective for q = 0 and surjective for any q ≥ 1.
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Proof. By 7.2.13, we have Hq(X0,Z/n) = 0 for any q ≥ 3. So it suffices

to treat the cases where q = 0, 1, 2.

To prove that H0(X,Z/n) → H0(X0,Z/n) is bijective, it suffices to

show that the set of connected components of X is in one-to-one correspon-

dence with the set of connected components of X0. Connected components

of a noetherian scheme are minimal open and closed subsets. It suffices to

show that the set of open and closed subsets ofX is in one-to-one correspon-

dence with the set of open and closed subsets of X0. But the set of open

and closed subsets of X (resp. X0) is in one-to-one correspondence with

the set IdemΓ(X,OX) (resp. IdemΓ(X0,OX0)) of idempotent elements in

Γ(X,OX) (resp. Γ(X0,OX0)). So it suffices to show that the canonical map

IdemΓ(X,OX) → IdemΓ(X0,OX0 )

is bijective. Since X is proper over SpecA, Γ(X,OX) is a finite A-algebra

by [Fu (2006)] 2.5.3 or [EGA] III 3.2.3. By 2.8.3 (iii), the canonical map

IdemΓ(X,OX) → IdemΓ(X,OX)/mΓ(X,OX)

is bijective, where m is the maximal ideal of A. For any positive integer

n, since Spec (Γ(X,OX)/mnΓ(X,OX)) has the same underlying topological

space as Spec (Γ(X,OX)/mΓ(X,OX)), the canonical map

IdemΓ(X,OX)/mnΓ(X,OX) → IdemΓ(X,OX)/mΓ(X,OX)

is bijective. It follows that the canonical map

IdemΓ(X,OX) → IdemΓ(X,OX)∧

is bijective, where

Γ(X,OX)∧ = lim←−
n

Γ(X,OX)/mnΓ(X,OX).

By [Fu (2006)] 2.5.6 or [EGA] III 4.1.7, we have

Γ(X,OX)∧ ∼= lim←−
n

Γ(Xn,OXn),

where Xn = X ⊗A A/mn for any n. It follows that

IdemΓ(X,OX)∧ ∼= lim←−
n

IdemΓ(Xn,OXn).

But Xn has the same underlying topological space as X0. So we have

IdemΓ(Xn,OXn)
∼= IdemΓ(X0,OX0)

and hence

lim←−
n

IdemΓ(Xn,OXn) ∼= IdemΓ(X0,OX0).
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It follows that

IdemΓ(X,OX) ∼= IdemΓ(X0,OX0).

This proves our assertion.

To prove that H1(X,Z/n) → H1(X0,Z/n) is surjective, we may assume

that X and X0 are connected by the above discussion. By 5.7.20, we have

H1(X,Z/n) ∼= cont.Hom(π1(X),Z/n),

H1(X0,Z/n) ∼= cont.Hom(π1(X0),Z/n).

So it suffices to show that the canonical homomorphism π1(X0) → π1(X)

is bijective. This follows from 7.3.13 below.

Finally we prove that H2(X,Z/n) → H2(X0,Z/n) is surjective. Let

p be the characteristic of the residue field of A. By 7.2.11, we have

H2(X0,Z/p) = 0. For any positive integer r, Z/pr has a finite filtration with

successive quotients Z/p. It follows that H2(X0,Z/p
r) = 0 for any r. So to

prove that H2(X,Z/n) → H2(X0,Z/n) is surjective, we may assume that

n is relatively prime to p, and prove that H2(X,μn,X) → H2(X0,μn,X0) is

surjective. We have a commutative diagram

· · · → Pic(X) → H2(X,μn,X) → H2(X,O∗Xet
) → · · ·

↓ ↓ ↓
· · · → Pic(X0) → H2(X0,μn,X0) → H2(X0,O∗X0,et

) → · · · .
So it suffices to show the canonical homomorphisms

Pic(X) → Pic(X0), Pic(X0) → H2(X0,μn,X0)

are surjective. The first homomorphism is surjective by 7.3.15 below. By

7.2.9 (i), Pic(X0red) → H2(X0red,μXn,0red ) is surjective. By 5.7.2 (i), we

have

H2(X0,μn,X0)
∼= H2(X0red,μn,X0red

).

So to prove that Pic(X0) → H2(X0,μn,X0) is surjective, it suffices to prove

that Pic(X0) → Pic(X0,red) is surjective. This follows from 7.3.14 below.�

Proposition 7.3.11. Let A be a noetherian ring, I an ideal of A such that

A is complete with respect to the I-adic topology, A0 = A/I, S = SpecA,

S0 = SpecA0, X a proper S-scheme, and X0 = X×S S0. Then the functor

Y �→ Y ×XX0 from the category of etale covering spaces of X to the category

of etale covering spaces of X0 is an equivalence of categories.
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Proof. Let Y and Y ′ be two etale covering spaces of X , and let

Sn = SpecA/In+1, Xn = X ×S Sn, Yn = Y ×S Sn, Y ′n = Y ′ ×S Sn.
By [Fu (2006)] 2.7.20 or [EGA] III 5.4.1, we have

HomX(Y, Y ′) ∼= lim←−
n

HomXn(Yn, Y
′
n).

By 2.3.12, the canonical maps

HomXn+1(Yn+1, Y
′
n+1) → HomXn(Yn, Y

′
n)

are bijective for all n. So

HomX(Y, Y ′) ∼= HomX0(Y0, Y
′
0)

and the functor Y �→ Y ×X X0 is fully faithful. Let f0 : Y0 → X0 be an

etale covering space. By 2.3.12, there exist etale morphisms fn : Yn → Xn

such that

Yn ∼= Yn+1 ×Xn+1 Xn

for all n. Since X0 and Xn have the same underlying topological spaces

and f0 is proper, fn is also proper. Since fn is etale, it is quasi-finite. By

[Fu (2006)] 2.5.12 or [EGA] III 4.4.2, fn is finite. Let Bn = fn∗OYn . Then
Bn is a coherent OXn -algebra and Yn = SpecBn. We have

Bn+1 ⊗OXn+1
OXn ∼= Bn.

By Grothendieck Existence Theorem ([Fu (2006)] 2.7.11 or [EGA] III 5.1.4),

there exists a coherent OX -module B such that

Bn
∼= B ⊗OX OXn .

Defining an OX -algebra structure on B is equivalent to defining a morphism

B ⊗OX B → B

which makes various diagrams expressing the associative law, the commu-

tative law and the distributive law to commute, and that these diagrams

involve only tensor products of B. Using [Fu (2006)] 1.5.19 and 2.7.9, or

[EGA] I 10.11.4 and III 5.1.3, one can show that B has an OX -algebra

structure such that Bn
∼= B ⊗OX OXn are isomorphisms of OXn -algebras.

For any closed point x in X , since X is proper over S, x is above the closed

point of S. Since f0 : SpecB0 → X0 is etale, B0 ⊗OX0
k(x) is a direct

product of finite separable extensions of k(x). We have

B ⊗OX k(x)
∼= B0 ⊗OX0

k(x).
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We will prove in a moment that B is locally free as an OX -module. So the

morphism SpecB → X is etale. It is an etale covering space of X inducing

f0 : Y0 → X0. So the functor Y �→ Y ×X X0 is essentially surjective.

Finally let us prove that B is locally free as an OX -module. It suffices

to show that the functor

G �→ H omOX (B,G )

is exact on the category of coherent OX -modules. Let X̂ be the formal

completion of X with respect to I∼OX . For any coherent OX -module G ,

let Ĝ be the formal completion of G with respect to I∼OX . By [Fu (2006)]

1.5.13 (i) and 2.7.9, or [EGA] I 10.8.8 (i) and III 5.1.3, the functor

G �→ Ĝ

is exact and faithful. So to prove that the functor G �→ H omOX (B,G ) is

exact, it suffices to show that the functor

G �→ H omOX (B,G )∧

is exact. By [Fu (2006)] 1.5.13 (iii) and 1.5.19, or [EGA] I 10.8.10 and

10.11.7, we have

H omOX (B,G )∧ ∼= H omO
X̂
(B̂, Ĝ )

∼= lim←−
n

H omOXn (Bn,Gn),

where Gn is the inverse image of G on Xn. By our construction, each Bn is

locally free. Moreover, we can find an open covering {Uλ} of X0 such that

Bn|Uλ is free for each λ. Here we regard each Uλ as an open subset of Xn.

Using this fact, one can prove that the functor

G �→ lim←−
n

H omOXn (Bn,Gn)

is exact. This proves our assertion. �

Theorem 7.3.12 (Artin’s Approximation Theorem). Let A be the

henselization at a prime ideal of a finitely generated algebra over a field

or over an excellent discrete valuation ring, let m be the maximal ideal of

A, let Â be the m-adic completion of A, and let

f1(Y1, . . . , Yn), . . . , fm(Y1, . . . , Yn) ∈ A[Y1, . . . , Yn].

If there exist ŷ1, . . . , ŷn ∈ Â such that

f1(ŷ1, . . . , ŷn) = · · · = fm(ŷ1, . . . , ŷn) = 0,

then for any given positive integer N , there exist y1, . . . , yn ∈ A such that

yi ≡ ŷimodmN Â,

f1(y1, . . . , yn) = · · · = fm(y1, . . . , yn) = 0.
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For a proof of Artin’s approximation theorem, confer [Artin (1969)] or

[Bosch, Lütkebohmert and Raynaud (1990)] 3.6.

Lemma 7.3.13. Let A be a noetherian henselian local ring, f : X →
SpecA a proper morphism, and X0 the fiber of f over the closed point of

SpecA. The functor Y �→ Y ×X X0 from the category of etale covering

spaces of X to the category of etale covering spaces of X0 is an equivalence

of categories.

Proof. We can write A = lim−→λ
Bλ, where each Bλ is a henselization at a

prime ideal of an algebra finitely generated over Z. By 1.10.9 and 1.10.10

(xi), we may assume that f : X → SpecA can be descended down to an

inverse system of proper morphisms fλ : Xλ → SpecBλ. For each λ, let

Xλ0 be the fiber of fλ over the closed point of SpecBλ. By 2.3.7 and 1.10.10

(iv), any etale covering space of X (resp. X0) can be descended down to an

etale covering space of Xλ (resp. Xλ0) for sufficiently large λ. Moreover, if

Y and Y ′ are two etale covering spaces of X which can be descended down

to etale covering spaces Yλ and Y ′λ of Xλ, respectively, we have

HomX(Y, Y ′) ∼= lim−→
μ≥λ

HomXμ(Yμ, Y
′
μ),

HomX0(Y0, Y
′
0)

∼= lim−→
μ≥λ

HomXμ0(Yμ0, Y
′
μ0),

where Yμ (resp. Y ′μ) are induced by Yλ (resp. Y ′λ) by the base changes

Xμ → Xλ, Y0 and Y ′0 (resp. Yμ0 and Y ′μ0) are the fibers of Y and Y ′ (resp.
Yμ and Y ′μ) over the closed point of SpecA (resp. SpecBμ). It follows

that to prove the lemma for A, it suffices to prove the lemma for each

Bλ. We may thus assume that A is the henselization at a prime ideal of a

finitely generated algebra over Z so that Artin’s Approximation Theorem

is applicable.

Let Y and Y ′ be two etale covering spaces of X . Let us prove that

HomX(Y, Y ′) → HomX0(Y0, Y
′
0)

is injective. Supppose g1, g2 ∈ HomX(Y, Y ′) induce the same element in

HomX0(Y0, Y
′
0). Denote by m the maximal ideal of A, and by Â the m-

adic completion of A. By 7.3.11, g1 and g2 induce the same element in

HomX(Y , Y
′
), where

X = X ⊗A Â, Y = Y ⊗A Â, Y
′
= Y ′ ⊗A Â.

Write Â = lim−→α
Aα, where {Aα} is the family of subalgebras of Â

finitely generated over A. Then g1 and g2 induce the same element in
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HomXα(Yα, Y
′
α) for a sufficiently large Aα, where

Xα = X ⊗A Aα, Yα = Y ⊗A Aα, Y ′α = Y ′ ⊗A Aα.
Fix an isomorphism of A-algebras

A[Y1, . . . , Yn]/(f1, . . . , fm) ∼= Aα

for some f1, . . . , fm ∈ A[Y1, . . . , Yn]. The inclusion Aα ↪→ Â induces an

A-homomorphism

A[Y1, . . . , Yn]/(f1, . . . , fm) → Â.

Let ŷ1, . . . , ŷn ∈ Â be the images of Y1, . . . , Yn under this homomorphism,

respectively. Then

f1(ŷ1, . . . , ŷn) = · · · = fm(ŷ1, . . . , ŷn) = 0.

By Artin’s Approximation Theorem, there exist y1, . . . , yn ∈ A such that

yi ≡ ŷimodmÂ,

f1(y1, . . . , yn) = · · · = fm(y1, . . . , yn) = 0.

We have a homomorphism of A-algebras

A[Y1, . . . , Yn]/(f1, . . . , fm) → A

which maps Yi to yi. It induces a homomorphism of A-algebras

φ : Aα → A.

We have

X ∼= Xα ⊗Aα,φ A, Y ∼= Yα ⊗Aα,φ A, Y ′ ∼= Y ′α ⊗Aα,φ A.
Since g1 and g2 induce the same element in HomXα(Yα, Y

′
α), it follows that

g1 and g2 are the same in HomX(Y, Y ′).
Next we show that HomX(Y, Y ′) → HomX0(Y0, Y

′
0) is surjective. Let

g0 ∈ HomX0(Y0, Y
′
0). By 7.3.11, there exists ḡ ∈ HomX(Y , Y

′
) inducing g0.

By 1.10.9, ḡ can be descended down to a morphism gα ∈ HomXα(Yα, Y
′
α)

for a sufficiently large Aα. Let g ∈ HomX(Y, Y ′) be the morphism induced

by gα by the base change φ : Aα → A. Then g is the preimage of g0.

Finally let Y0 be an etale covering space of X0. By 7.3.11, it is induced

by an etale covering space Y of X. By 1.10.9, 1.10.10 (iv) and 2.3.7, we

may descend Y down to an etale covering space Yα of Xα for a sufficiently

large Aα. Let Y be the etale covering space of X induced by Yα by base

change φ : Aα → A. Then Y0 is induced by Y . �
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Lemma 7.3.14. Let X be a noetherian scheme of dimension ≤ 1, and let

I be a coherent OX-ideal satisfying I n = 0 for some nonnegative integer

n. Then the canonical homomorphism Pic (X) → Pic (Spec (OX/I )) is

surjective.

Proof. First consider the case where I 2 = 0. We have a short exact

sequence

0 → I
1+id→ O∗X → (OX/I )∗ → 0,

where

1 + id : I → O∗X

is defined by (1+ id)(s) = 1+ s for any section s of I . This is a morphism

of sheaves of abelian groups since I 2 = 0. The above short exact sequence

induces a long exact sequence

· · · → H1
Zar(X,O

∗
X) → H1

Zar(X, (OX/I )∗) → H2
Zar(X,I ) → · · · .

We have

H1
Zar(X,O

∗
X) ∼= Pic (X), H1

Zar(X, (OX/I )∗) ∼= Pic (Spec (OX/I )).

Since dimX ≤ 1, we have H2
Zar(X,I ) = 0 by [Hartshorne (1977)] III 2.7.

So Pic (X) → Pic (Spec (OX/I )) is surjective.

In general, Pic (Spec (OX/I k+1)) → Pic (Spec (OX/I k)) is surjective

for all k. It follows that Pic (X) → Pic (Spec (OX/I )) is surjective if

I n = 0 for some nonnegative integer n. �

Lemma 7.3.15. Let A be a noetherian henselian local ring, f : X →
SpecA a proper morphism, and X0 the fiber of f over the closed point

of SpecA. Suppose dimX0 ≤ 1. Then the canonical homomorphism

Pic(X) → Pic(X0) is surjective.

Proof. As in the proof of 7.3.13, we may assume that A is the henseliza-

tion at a prime ideal of an algebra finitely generated over Z so that Artin’s

Approximation Theorem is applicable. Let m be the maximal ideal of A,

let Â be the m-adic completion of A, let Xn = X ⊗A A/mn+1, and let

X = X ⊗A Â. Given an invertible OX0 -module L0, by 7.3.14, for each n,

we may find an invertible OXn -module Ln such that its inverse image in

Xn+1 is isomorphic to Ln+1. By Grothendieck’s Existence Theorem ([Fu

(2006)] 2.7.11 or [EGA] III 5.1.4), there exists a coherent OX -module L

such that its inverse image on Xn is isomorphic to Ln for each n. As in

the proof of 7.3.11, one can show the functor H omOX
(L ,−) is exact on
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the category of coherent OX -modules. So L is an invertible OX -module.

As in the proof of 7.3.13, write Â = lim−→α
Aα, where {Aα} is the family of

subalgebras of Â finitely generated over A. Let Xα = X ⊗AAα. By 1.10.2,

we may descend L to an invertible OXα -module Lα for a sufficiently large

Aα. Let L be the invertible OX -module induced by Lα by the base change

φ : Aα → A constructed in the proof of 7.3.13. Then L is a preimage of

L0 under the canonical homomorphism Pic(X) → Pic(X0). �

Finally, we prove that the two ways of defining the base change mor-

phism at the beginning of this section are the same.

Proposition 7.3.16. Let

X ′
g′→ X

f ′↓ ↓f
Y ′

g→ Y

be a commutative diagram, and let F be a sheaf on X. Then the morphisms

g∗f∗F → f ′∗g
′∗F

defined by the following two ways are the same:

(i) Take the composite

f∗F
f∗(adj)→ f∗g′∗g

′∗F ∼= g∗f ′∗g
′∗F ,

and define g∗f∗F → f ′∗g′∗F to be the morphism induced by the composite

by adjunction.

(ii) Take the composite

f ′∗g∗f∗F ∼= g′∗f∗f∗F
g′∗(adj)→ g′∗F ,

and define g∗f∗F → f ′∗g
′∗F to be the morphism induced by the composite

by adjunction.

Proof. The canonical isomorphisms

Hom(f∗F , f∗g′∗g
′∗F ) ∼= Hom(f∗f∗F , g′∗g

′∗F ),

Hom(g′∗f∗f∗F , g′∗F ) ∼= Hom(f∗f∗F , g′∗g
′∗F )

map f∗(adj) ∈ Hom(f∗F , f∗g′∗g
′∗F ) and g′∗(adj) ∈ Hom(g′∗f∗f∗F , g′∗F )

to the same element in Hom(f∗f∗F , g′∗g
′∗F ) defined by the composite

f∗f∗F
adj→ F

adj→ g′∗g
′∗F .
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Let h = gf ′ = fg′. Our assertion follows from the commutativity of the
following diagram:

Hom(f∗F , g∗f ′
∗g

′∗F ) ∼= Hom(g∗f∗F , f ′
∗g

′∗F ) ∼= Hom(f ′∗g∗f∗F , g′∗F )
∼= ↓ ∼= ↓

Hom(f∗F , h∗g′∗F ) ∼= Hom(h∗f∗F , g′∗F )
∼= ↓ ∼= ↓

Hom(f∗F , f∗g′∗g
′∗F ) ∼= Hom(f∗f∗F , g′∗g

′∗F ) ∼= Hom(g′∗f∗f∗F , g′∗F )

�

7.4 Cohomology with Proper Support

([SGA 4] XVII 3–6, [SGA 4 1
2 ] Arcata IV 5, 6.)

Throughout this section, we fix a scheme S. Let X and Y be S-schemes.

An S-morphism f : X → Y is called S-compactifiable if Y is quasi-compact

and quasi-separated and there exists a proper S-scheme P such that f is

the composite of a separated quasi-finite morphism X → Y ×S P and the

projection p1 : Y ×SP → Y . Note that f is then a quasi-compact separated

morphism, and X is a quasi-compact quasi-separated scheme. We say that

an S-scheme X is compactifiable if the structure morphism X → S is S-

compactifiable.

X → Y ×S P p2→ P

f ↘ p1 ↓ ↓
Y → S

A theorem of Nagata says that any separated morphism of finite type be-

tween noetherian schemes is compactifiable.

Proposition 7.4.1.

(i) S-compactifiable morphisms are separated and of finite type.

(ii) Let f : X → Y be a separated quasi-finite S-morphism such that Y

is quasi-compact and quasi-separated. Then f is S-compactifiable.

(iii) Let f : X → Y and g : Y → Z be two S-compactifiable morphisms.

Then gf is S-compactifiable.

(iv) Let f : X → Y be an S-compactifiable morphism. For any mor-

phism Y ′ → Y such that Y ′ is quasi-compact and quasi-separated, the base

change f ′ : X ×Y Y ′ → Y ′ is S-compactifiable.

(v) Let f : X → Y and g : Y → Z be two S-morphisms. Suppose g is

quasi-compact and quasi-separated and gf is S-compactifiable. Then f is

S-compactifiable.

 E
ta

le
 C

oh
om

ol
og

y 
T

he
or

y 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 U
N

IV
E

R
SI

T
Y

 O
F 

SI
N

G
A

PO
R

E
 o

n 
11

/2
7/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



February 6, 2015 9:48 ws-book9x6 Etale Cohomology Theory... etale page 349

Base Change Theorems 349

Proof. (i), (ii) and (iv) are clear. (v) follows from (iii) and (iv).

(iii) We can find proper S-schemes P and Q, and separated quasi-finite

morphisms X → Y ×S P and Y → Z ×S Q, so that their composites with

the projections to the first components are f and g, respectively. Consider

the commutative diagram
X → Y ×S P → Z ×S P ×S Q

↘ ↓ ↓
Y → Z ×S Q

↘ ↓
Z.

Note that the square in the above diagram is Cartesian. All horizontal

arrows are separated and quasi-finite, and all vertical arrows are projections.

As P ×S Q is proper over S, gf is S-compactifiable. �
Let f : X → Y be an S-compactifiable morphism. Then we can find a

proper S-scheme P and a separated quasi-finite morphism g : X → Y ×S P
such that f = p1g. By the Zariski Main Theorem in [EGA] IV 18.12.13, (we

treat the noetherian case in 1.10.13), we can find a finite morphism ḡ and

an open immersion j such that g = ḡj. By 7.4.1 (ii), ḡ is S-compactifiable,

and by 7.4.1 (iii), p1ḡ is S-compactifiable. We have f = (p1ḡ)j. So any

S-compactifiable morphism is the composite of an open immersion and a

proper S-compactifiable morphism.

Let X
f→ Y be a compactifiable S-morphism. A compactification of f

is a factorization of f as a composite

X
j
↪→ X

f̄→ Y

such that j is an open immersion, and f̄ is a proper S-compactifiable mor-

phism. Note that j is necessarily an S-compactifiable morphism. A mor-

phism from the above compactification of f to another compactification

X
j′
↪→ X

′ f̄ ′
→ Y

is a morphism φ : X → X
′
such that φj = j′ and f̄ ′φ = f̄ . If such a

morphism exists, we say the first compactification dominates the second

one.

Let X
f→ Y

g→ Z be S-compactifiable morphisms. A compactification

of (f, g) is a commutative diagram

X ↪→ X ↪→ X
′

↘ ↓ ↓
Y ↪→ Y

↘ ↓
Z
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such that horizontal arrows are open immersions, and vertical arrows are

proper S-compactifiable morphisms. Note that all arrows in the above

diagram are necessarily S-compactifiable morphisms. We leave it for the

reader to define morphisms between compactifications of (f, g).

Proposition 7.4.2. Let X
f→ Y (resp. X

f→ Y
g→ Z) be S-compactifiable

morphism(s).

(i) There exists a compactification for f (resp. (f, g)).

(ii) Given two compactifications of f , there exists a compactification

dominating both of them.

(iii) Given two compactifications

X
ji
↪→ X i

f̄i→ Y (i = 1, 2)

of f , let φ′, φ′′ : X1 → X2 be two morphisms between these compactifica-

tions. There exists a compactification

X ↪→ X → Y

and a morphism φ : X → X1 of compactifications such that φ′ ◦φ = φ′′ ◦φ.
(iv) Given two compactifications of (f, g), there exists a compactification

dominating both of them.

Proof.

(i) We have seen that f has a compactification. Choose compactifica-

tions

X ↪→ X → Y and Y ↪→ Y → Z

of f and g, respectively. By 7.4.1 (iii), the composite X → Y ↪→ Y is

S-compactifiable. Choose a compactification X ↪→ X
′ → Y for this com-

posite. We then get a commutative diagram

X ↪→ X ↪→ X
′

↘ ↓ ↓
Y ↪→ Y

↘ ↓
Z,

which is a compactification of (f, g).

(ii) Given two compactifications

X ↪→ X i → Y (i = 1, 2)

for f , the morphism X1 ×Y X2 → Y is S-compactifiable by 7.4.1 (iii) and

(iv). The morphism X → X1 ×Y X2 defined by X ↪→ X i (i = 1, 2) is

 E
ta

le
 C

oh
om

ol
og

y 
T

he
or

y 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 U
N

IV
E

R
SI

T
Y

 O
F 

SI
N

G
A

PO
R

E
 o

n 
11

/2
7/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



February 6, 2015 9:48 ws-book9x6 Etale Cohomology Theory... etale page 351

Base Change Theorems 351

an immersion. It is S-compactifiable by 7.4.1 (v). So we can factorize it

as the composite of an open immersion X ↪→ X and a closed immersion

X → X1 ×Y X2. The composite X → X1 ×Y X2 → Y is S-compactifiable

by 7.4.1 (ii) and (iii), and it is proper. SoX ↪→ X → Y is a compactification

of f , and it dominates the given two compactifications.

(iii) Define K by the Cartesian square

K
p2→ X1

p1 ↓ ↓ Γφ′′

X1

Γφ′→ X1 ×Y X2,

where Γφ′ ,Γφ′′ : X1 → X1×Y X2 are the graphs of φ′ and φ′′, respectively.
Let πi : X1 ×Y X2 → X i (i = 1, 2) be the projections. We have

p1 = id ◦ p1 = π1Γφ′p1 = π1Γφ′′p2 = id ◦ p2 = p2.

Denote p1 = p2 by p. Note that p is a closed immersion. One can show

that the sequence

K
p→ X1

φ′

⇒
φ′′
X2

is exact, that is, φ′p = φ′′p, and for any morphism ψ : K ′ → X1 with the

property φ′ψ = φ′′ψ, there exists a unique morphism ψ′ : K ′ → K such

that pψ′ = ψ. We have

φ′j1 = j2 = φ′′j1.

So there exists a morphism j : X → K such that pj = j1. j is necessarily

an open immersion. The morphism f̄1p : K → Y is S-compactifiable by

7.4.1 (ii) and (iii), and it is proper. So

X
j
↪→ K

f̄1p→ Y

is a compactification of f , and p is a morphism between compactifications

such that φ′φ = φ′′φ.

X = X = X

j ↓ j1 ↓ ↓ j2
K

p→ X1

φ′

⇒
φ′′
X2

f1 ↓ ↓ f2

Y = Y
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(iv) Given two compactifications

X ↪→ Xi ↪→ X
′
i (i = 1, 2)

↘ ↓ ↓
Y ↪→ Y i

↘ ↓
Z

of (f, g), find a compactification

X ↪→ X → Y (resp. Y ↪→ Y → Z)

dominating

X ↪→ X i → Y (resp. Y ↪→ Y i → Z)

for i = 1, 2. For each i, we have a commutative diagram

Xi ↪→ X
′
i

↗ ↓ ↓
X Y ↪→ Y i.

↓ ↗ ↗
Y ↪→ Y

Let

X → X
′
i ×Y i Y

be the Y i-morphism with components given by the composites

X → Xi → X
′
i, X → Y → Y .

It is S-compactifiable by 7.4.1 (v). Let

X ↪→ T i → X
′
i ×Y i Y

be a compactification. Then the diagram

X ↪→ T i
↓ ↓
Y ↪→ Y

dominates the diagram

Xi ↪→ X
′
i

↓ ↓
Y ↪→ Y i.

The morphism T i → Y is S-compactifiable and proper. It follows that

X ↪→ T i → Y
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is a compactification of the composite X → Y → Y . Choose a compactifi-

cation

X ↪→ X
′ → Y

of X → Y → Y dominating X ↪→ T i → Y for i = 1, 2. Then the diagram

X ↪→ X ↪→ X
′

↘ ↓ ↓
Y ↪→ Y

↘ ↓
Z

is a compactification of (f, g) dominating the given compactifications. �

Lemma 7.4.3. Consider a commutative diagram

X
k
↪→ X

f ↓ ↓ f̄
Y

j
↪→ Y ,

where k and j are open immersions, and f and f̄ are proper morphisms.

Then for any K ∈ obD+
tor(X), we have a canonical isomorphism

j!Rf∗K
∼=→ Rf̄∗k!K.

Proof. Fix notation by the commutative diagram

X
l
↪→ X ×Y Y

j′
↪→ X

i′← X ×Y (Y − Y )

f ↘ f̄ ′ ↓ ↓ f̄ ↓ f̄ ′′

Y
j
↪→ Y

i← Y − Y,

where the squares are Cartesian, i : Y − Y → Y is a closed immersion,

and l is the morphism such that j′ι = k and f̄ ′l = f . Since j is an open

immersion, we have a canonical isomorphism

j∗Rf̄∗k!K
∼=→ Rf̄ ′∗l!K.

Since f and f̄ ′ are proper, l is also proper. Since j′ and k are open immer-

sions, l is also an open immersion. It follows that l is an open and closed

immersion and hence l!K ∼= Rl∗K. So we have

Rf̄ ′∗l!K ∼= Rf̄ ′∗Rl∗K ∼= Rf∗K.

We thus have an isomorphism

j∗Rf̄∗k!K ∼= Rf∗K.
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The inverse of this isomorphism induces a morphism

j!Rf∗K → Rf̄∗k!K,

and its restriction to Y is an isomorphism. To show that it is an isomor-

phism, it suffices to show i∗Rf̄∗k!K = 0. We have i′∗k!K = 0, and by the

proper base change theorem 7.3.1, we have

i∗Rf̄∗k!K ∼= Rf̄ ′′∗ i
′∗k!K = 0. �

Let f : X → Y be an S-compactifiable morphism, and let

X
ji
↪→ X i

f̄i→ Y (i = 1, 2)

be two compactifications of f . Choose a compactification

X
j3
↪→ X3

f̄3→ Y

dominating both of them, and let φi : X3 → X i (i = 1, 2) be morphisms

making the following diagrams commute:

X
j3
↪→ X3

f̄3→ Y (i = 1, 2)

‖ φi ↓ ‖
X

ji
↪→ X i

f̄i→ Y.

Then φi are proper, and by 7.4.3, we have isomorphisms

ji!K
∼=→ Rφi∗j3!K

for any K ∈ obD+
tor(X). So we have isomorphisms

Rf̄i∗ji!K
∼=→ Rf̄i∗Rφi∗j3!K ∼= Rf̄3∗j3!K.

We thus have an isomorphism

Rf̄1∗j1!K ∼= Rf̄2∗j2!K.

This isomorphism is independent of the choice of the third compactification

of f dominating the first two compactifications. Indeed, given a fourth

compactification dominating the first two, by 7.4.2 (ii) and (iii), we can

find a fifth compactification dominating the third and the fourth such that

for each i = 1, 2, the composite of the morphism from the fifth to the third

and the morphism from the third to the i-th coincides with the composite

of the morphism from the fifth to the fourth and the morphism from the

fourth to the i-th. It is clear that the isomorphisms Rf̄1∗j1!K ∼= Rf̄2∗j2!K
constructed from both the third and the fourth compactifications coincide

with the isomorphism constructed from the fifth compactification. So the
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isomorphism Rf̄1∗j1!K ∼= Rf̄2∗j2!K is independent of the choice of the

compactification dominating the first two compactifications.

For any S-compactifiable morphism f : X → Y , choose a compactifica-

tion

X
j
↪→ X

f̄→ Y.

For any K ∈ obD+
tor(X), we define

Rf!K = Rf̄∗j!K.

By the above discussion, the isomorphic class of the functor Rf! is inde-

pendent of the choice of the compactification. Define

Rqf!K = H q(Rf!K).

Let F be a torsion sheaf on X , we define

f!F = R0f!F = f̄∗j!F .

Note that f! coincides with the functor defined in 5.5.

Suppose that f : X → Y is a separated quasi-finite S-morphism such

that Y is quasi-compact and quasi-separated. By the Zariski Main Theo-

rem, we have a compactification

X
j
↪→ X

f̄→ Y

such that f̄ is finite. We then have

Rf! = Rf̄∗j! = f̄∗j! = f!.

Suppose that S = Spec k is the spectrum of a separably closed field k.

Let f : X → S be an S-compactifiable morphism, and let

X
j
↪→ X

f̄→ Spec k

be a compactification. For any K ∈ obD+
tor(X), we define

RΓc(X,K) = Γ(Spec k,Rf!K) ∼= RΓ(X, j!K),

Hq
c (X,K) = H q(RΓc(X,K)) ∼= Hq(X, j!K).

For any torsion sheaf F on X , we define

Γc(X,F ) = H0
c (X,F ) ∼= Γ(X, j!F ).

Note that Γc(X,F ) consists of those sections in Γ(X,F ) with support

proper over Spec k.
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In general, Rf! is not the right derived functor of f!. For example, in

the case where S = Spec k is the spectrum of a separably closed field k and

X is a smooth affine algebraic curve over k, we have

Γc(X,F ) ∼=
⊕
x∈|X|

Γx(X,F ),

where |X | is the set of Zariski closed points in X . It follows that the right

derived functor of Γc(X,−) is isomorphic to
⊕

x∈|X|RΓx(X,−). Later we

will show H1
x(X,Z/n)

∼= Z/n. Thus
⊕

x∈|X|H
1
x(X,Z/n) is infinite. But we

will see that H1
c (X,Z/n) is finite.

Theorem 7.4.4.

(i) Consider a Cartesian diagram

X ×Y Y ′ g
′

→ X

f ′ ↓ ↓ f
Y ′

g→ Y.

Suppose that f is S-compactifiable, and Y ′ is quasi-compact and quasi-

separated. Then for any K ∈ obD+
tor(X), we have a canonical isomorphism

g∗Rf!K
∼=→ Rf ′! g

′∗K.

(ii) Let X
f→ Y

g→ Z be two S-compactifiable morphisms. For any

K ∈ obD+
tor(X), we have a canonical isomorphism

Rg!Rf!K
∼=→ R(gf)!K,

and we have a biregular spectral sequence

Epq2 = Rpg!R
qf!K ⇒ Rp+q(gf)!K.

(iii) Let f : X → Y be an S-compactifiable morphism, j : U ↪→ X an

S-compactifiable open immersion, and i : A → X a closed immersion with

A = X − U . For any K ∈ obD+
tor(X), we have a distinguished triangle

R(fj)!j
∗K → Rf!K → R(fi)!i

∗K →
and a long exact sequence

· · · → Rq(fj)!j
∗K → Rqf!K → Rq(fi)!i

∗K → Rp+1(fj)!j
∗K → · · · .

Proof.

(i) Let

X
j
↪→ X

f̄→ Y
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be a compactification of f . Fix notation by the following commutative

diagram

X ×Y Y ′ g
′

→ X

j′ ↓ ↓ j
X ×Y Y ′ ḡ→ X

f̄ ′ ↓ ↓ f̄
Y ′

g→ Y.

We have

j′!g
′∗K ∼= ḡ∗j!K,

and by the proper base change theorem 7.3.1, we have

g∗Rf̄∗j!K ∼= Rf̄ ′∗ḡ
∗j!K.

It follows that

g∗Rf̄∗j!K ∼= Rf̄ ′∗j
′
!g
′∗K,

that is,

g∗Rf!K ∼= Rf ′! g
′∗K.

One can verify that this isomorphism is independent of the choice of the

compactification of f .

(ii) Let

X
j1
↪→ X

j2
↪→ X

′

f ↘ f̄ ↓ ↓ f̄ ′

Y
k
↪→ Y

g ↘ ↓ ḡ
Z

be a compactification of (f, g). By 7.4.3, we have

k!Rf̄∗j1!K ∼= Rf̄ ′∗j2!j1!K.

So we have

Rg!Rf!K ∼= Rḡ∗k!Rf̄∗j1!K ∼= Rḡ∗Rf̄ ′∗j2!j1!K ∼= R(ḡf̄ ′)∗(j2j1)!K ∼= R(gf)!K,

that is, Rg!Rf!K ∼= R(gf)!K. This isomorphism is independent of the

choice of the compactification of (f, g).

For any L ∈ obD+
tor(Y ), we have a biregular spectral sequence

Epq2 = Rpḡ∗(H q(k!L)) ⇒ Rp+qḡ∗k!L.
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Taking L = Rf!K, we get the spectral sequence

Epq2 = Rpg!R
qf!K ⇒ Rp+q(gf)!K.

(iii) By 5.4.2 (iv), we have a distinguished triangle

j!j
∗K → K → i∗i∗K →,

and hence a distinguished triangle

Rf!j!j
∗K → Rf!K → Rf!i∗i∗K → .

We have Rf!j!j
∗K ∼= R(fj)!j

∗K and Rf!i∗i∗K ∼= R(fi)!i
∗K. So we have a

distinguished triangle

R(fj)!j
∗K → Rf!K → R(fi)!i

∗K → . �

Theorem 7.4.5. Let f : X → Y be an S-compactifiable morphism and let

n be the supremum of dimensions of fibers of f . Then for any torsion sheaf

F on X, we have Rqf!F = 0 for all q > 2n.

Proof. By 7.4.4 (i), for any y ∈ Y , we have

(Rqf!F )ȳ ∼= Hq
c (X ⊗OY k(y),F |X⊗OY

k(y)),

where k(y) is a separable closure of the residue field k(y). So it suffices

to prove that for any separably closed field k and any S-compactifiable

morphismX → Spec k, we haveHq
c (X,F ) = 0 for any q > 2 dimX and any

torsion sheaf F on X . We prove this by induction on dimX . If dimX = 0,

Γ(X,−) is an exact functor on the category of sheaves on X , our assertion

is clear. Suppose that dimX = n ≥ 1 and our assertion holds for those

schemes over k of dimensions < n. We may assume that X is reduced. Let

η1, . . . , ηn be those generic points of X so that tr.deg(k(ηi)/k) = n, where

tr.deg denotes the transcendental degree. Since n ≥ 1, for each i, we can

choose ti ∈ k(ηi) which is transcendental over k. Choose an irreducible

open affine neighborhood Ui of ηi such that ti can be extended to a section

in OX(Ui), which we still denote by ti. The k-algebra homomorphism

k[t] → OX(Ui), t �→ ti

defines a k-morphism

Ui → A1
k.

By 1.5.6 (i), we may assume that the morphism is flat by shrinking Ui. Since

tr.deg(k(ηi)/k(ti)) = n − 1, the generic fiber of Ui → A1
k has dimension
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≤ n − 1. If x ∈ Ui lies above a closed point y in A1
k, then by [Matsumura

(1970)] (13.B) Theorem 19 (2), we have

dim(OUi,x ⊗O
A1
k
,y
k(y)) = dimOUi,x − dimOA1

k,y
≤ n− 1.

So the fibers of Ui → A1
k above closed points of A1

k have dimensions ≤ n−1.

Shrinking Ui again, we may assume that they are disjoint. Let U = ∪iUi.
Then we have a morphism f : U → A1

k whose fibers have dimensions ≤ n−1.

By the induction hypothesis, we have

Rqf!(F |U ) = 0

for any q > 2n− 2. By our construction, we have dim(X − U) ≤ n− 1. So

by the induction hypothesis, we have

Hq
c (X − U,F |X−U ) = 0

for any q > 2n− 2. We have a long exact sequence

· · · → Hq
c (U,F |U ) → Hq

c (X,F ) → Hq
c (X − U,F |X−U ) → · · · .

To prove Hq
c (X,F ) = 0 for all q > 2n, it suffices to prove

Hq
c (U,F |U ) = 0

for any q > 2n. We have a biregular spectral sequence

Epq2 = Hp
c (A

1
k, R

qf!(F |U )) ⇒ Hp+q
c (U,F |U ).

Since Rqf!(F |U ) = 0 for any q > 2n− 2, to prove Hq
c (U,F |U ) = 0 for any

q > 2n, it suffices to prove

Hp
c (A

1
k,G ) = 0

for any p > 2 and any torsion sheaf G on A1
k. Let j : A

1
k ↪→ P1

k be the open

immersion. We have

Hp
c (A

1
k,G ) ∼= Hp(P1

k, j!G ).

Our assertion follows from 7.2.7. �

Remark 7.4.6. Suppose that f : X → Y is an S-compactifiable morphism.

Then the fibers of f have bounded dimensions. By 7.4.5, Rf∗ has finite

cohomological dimension if f is proper. So we can define Rf∗ : Dtor(X) →
Dtor(Y ) if f is proper, and Rf! : Dtor(X) → Dtor(Y ) in general.
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Theorem 7.4.7 (Projection formula). Let f : X → Y be an S-

compactifiable morphism, and let A be a torsion ring.

(i) For any K ∈ obD−(X,A) and L ∈ obD−(Y,A), we have a canonical

isomorphism

L⊗LA Rf!K
∼=→ Rf!(f

∗L⊗LA K).

(ii) For any K ∈ obDb
tf(X,A), we have Rf!K ∈ obDb

tf(Y,A), and we

have a canonical isomorphism

L⊗LA Rf!K
∼=→ Rf!(f

∗L⊗LA K)

for any L ∈ obD(Y,A).

(iii) Let A → B be a homomorphism of torsion rings. For any K ∈
obD−(X,A) and M ∈ obD−(Y,B), we have a canonical isomorphism

M ⊗LA Rf!K
∼=→ Rf!(f

∗M ⊗LA K)

in D−(Y,B).

Proof. We prove (i) and leave it for the reader to prove the rest. (Confer

6.5.6 and 6.6.7.) Let

X
j
↪→ X

f̄→ Y

be a compactification of f . For any complexes of sheaves of A-modules M ·

on X and N · on X, we have a canonical isomorphism

j!(j
∗N · ⊗AM ·) ∼= N · ⊗A j!M ·.

Taking M · to be a complex of flat sheaves of A-modules quasi-isomorphic

to K and N · a complex quasi-isomorphic to f̄∗L, we get an isomorphism

j!(j
∗f̄∗L⊗LA K) ∼= f̄∗L⊗LA j!K.

We have

L⊗LA Rf!K ∼= L⊗LA Rf̄∗j!K,
Rf!(f

∗L⊗LA K) ∼= Rf̄∗j!(j∗f̄∗L⊗LA K) ∼= Rf̄∗(f̄∗L⊗LA j!K).

To prove (i), it suffices to show that the canonical morphism

L⊗LA Rf̄∗j!K → Rf̄∗(f̄∗L⊗LA j!K)

is an isomorphism. For any geometric point s→ Y , where s is the spectrum

of a separably closed field, we need to show that the induced morphism

(L ⊗LA Rf̄∗j!K)s → (Rf̄∗(f̄∗L⊗LA j!K))s
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on stalks is an isomorphism. Let

f̄s : Xs = X ×Y s→ s

be the base change of f̄ . By the proper base change theorem 7.3.2, we have

(L⊗LA Rf̄∗j!K)s ∼= Ls ⊗LA Rf̄s∗((j!K)|Xs),
(Rf̄∗(f̄∗L⊗LA j!K))s ∼= Rf̄s∗(f̄∗sLs ⊗LA (j!K)|Xs).

So it suffices to prove that the canonical morphism

Ls ⊗LA Rf̄s∗((j!K)|Xs) → Rf̄s∗(f̄∗sLs ⊗LA (j!K)|Xs)
is an isomorphism. This follows from 6.5.5 since H i(Ls) are constant

sheaves on s for all i. �

Corollary 7.4.8. Consider a Cartesian diagram of S-schemes

X ×Z Y g′→ X

f ′ ↓ ↓ f
Y

g→ Z.

Suppose that g is S-compactifiable and X is quasi-compact and quasi-

separated. Let A be a torsion ring. For any K ∈ obD−(X,A) and

L ∈ obD−(Y,A), we have a canonical isomorphism

K ⊗LA f∗Rg!L
∼=→ Rg′!(g

′∗K ⊗LA f ′∗L).
Proof. By 7.4.4 (i) and 7.4.7 (i), we have

K ⊗LA f∗Rg!L ∼= K ⊗LA Rg′!f ′∗L ∼= Rg′!(g
′∗K ⊗LA f ′∗L). �

Corollary 7.4.9 (Künneth formula). Let Xi, Yi (i = 1, 2) and Z be S-

schemes, let fi : Xi → Yi and Yi → Z be S-compactifiable morphisms, and

let pi : X1 ×Z X2 → Xi and qi : Y1 ×Z Y2 → Yi be the projections. For any

Ki ∈ obD−(Xi, A), we have

q∗1Rf1!K1 ⊗LA q∗2Rf2!K2
∼= R(f1 × f2)!(p

∗
1K1 ⊗LA p∗2K2).

Proof. Fix notation by the following commutative diagram of Cartesian

squares:

X1 ×Z X2
f ′′
1→ Y1 ×Z X2

b′′1→ X2

f ′′
2 ↓ f ′

2 ↓ ↓ f2
X1 ×Z Y2 f ′

1→ Y1 ×Z Y2 q2→ Y2
b′′2 ↓ q1 ↓ ↓ b2
X1

f1→ Y1
b1→ Z.
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By 7.4.8, we have isomorphisms

q∗1Rf1!K1 ⊗LA q∗2Rf2!K2
∼= Rf ′2!(f

′∗
2 q
∗
1Rf1!K1 ⊗LA b′′∗1 K2)

∼= Rf ′2!Rf
′′
1!(f

′′∗
2 b′′∗2 K1 ⊗LA f ′′∗1 b′′∗1 K2).

Our assertion follows. �
Let X be a scheme, A a ring, F and G sheaves of A-modules on X ,

C ·(F ) and C ·(G ) the Godement resolutions of F and G , respectively. By

6.4.9, we have a quasi-isomorphism

F ⊗A G → C ·(F )⊗A C ·(G ).

Let

C ·(F )⊗A C ·(G ) → I ·

be a quasi-isomorphism so that I · is a complex of injective sheaves of A-

modules. Suppose that RΓ(X,−) has finite cohomological dimension. We

define the cup product

RΓ(X,F )⊗LA RΓ(X,G ) → RΓ(X,F ⊗A G )

to be the composite of the following morphisms

RΓ(X,F )⊗LA RΓ(X,G ) ∼= Γ(X,C ·(F )) ⊗LA Γ(X,C ·(G ))

→ Γ(X,C ·(F )) ⊗A Γ(X,C ·(G ))

→ Γ(X,C ·(F )⊗A C ·(G ))

→ Γ(X,I ·)
∼= RΓ(X,F ⊗A G ).

The cup product induces homomorphisms

Hi(X,F )⊗A Hj(X,G ) → Hi+j(X,F ⊗A G ).

For any s ∈ Hi(X,F ) and t ∈ Hj(X,G ), denote by s∪t ∈ Hi+j(X,F⊗AG )

the image of s⊗ t under the above homomorphism.

Proposition 7.4.10. Let X be a scheme, let A be a ring, and let F a sheaf

of A-modules on X. Denote by

τ : Hn(X,F ⊗A F ) → Hn(X,F ⊗A F )

the homomorphisms induced by

τ : F ⊗A F → F ⊗A F , s1 ⊗ s2 �→ s2 ⊗ s1

for all n. For any s ∈ Hi(X,F ) and t ∈ Hj(X,F ), we have

s ∪ t = (−1)ijτ(t ∪ s)
in Hi+j(X,F ⊗A F ).
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Proof. First note that if K · and L· are two complexes of sheaves of A-

modules, then the morphisms

σ : Ki ⊗A Lj → Lj ⊗A Ki, x⊗ y �→ (−1)ijy ⊗ x

induce a morphism between the complexes associated to the bicomplexes

K · ⊗A L· and L· ⊗A K ·. Let C ·(F ) be the Godement resolution of F

and let I · be an injective resolution of C ·(F ) ⊗A C ·(F ). Consider the

following diagram

F ⊗A F → C ·(F )⊗A C ·(F ) → I ·

τ ↓ ↓ σ ρ ↓
F ⊗A F → C ·(F )⊗A C ·(F ) → I ·,

where the middle vertical arrow σ is the morphism defined above by taking

K · = L· = C ·(F ), and ρ : I → I is chosen to make the square on the

right commute (up to homotopy). One can show that such ρ exists. (Confer

the proof of 6.2.8.) So we have a commutative diagram

Hi+j(Γ(X,C ·(F ) ⊗A C ·(F ))) → Hi+j(Γ(X,I ·))
σ ↓ ρ ↓

Hi+j(Γ(X,C ·(F ) ⊗A C ·(F ))) → Hi+j(Γ(X,I ·)).

On the other hand, one can check the following diagram commutes

Hi(Γ(X,C ·(F ))) ⊗A Hj(Γ(X,C ·(F ))) → Hi+j(Γ(X,C ·(F ) ⊗A C ·(F )))

σ ↓ ↓ σ
Hj(Γ(X,C ·(F ))) ⊗A Hi(Γ(X,C ·(F ))) → Hi+j(Γ(X,C ·(F ) ⊗A C ·(F ))),

where the first vertical arrow is the homomorphism s⊗ t �→ (−1)ijt⊗ s. So

we have a commutative diagram

Hi(Γ(X,C ·(F ))) ⊗A Hj(Γ(X,C ·(F ))) → Hi+j(Γ(X,I ·))
σ ↓ ρ ↓

Hj(Γ(X,C ·(F ))) ⊗A Hi(Γ(X,C ·(F ))) → Hi+j(Γ(X,I ·)).

This diagram can be identified with

Hi(X,F )⊗A Hj(X,F ) → Hi+j(X,F ⊗A F )

σ ↓ τ ↓
Hj(X,F ) ⊗A Hi(X,F ) → Hi+j(X,F ⊗A F ).

Our assertion follows. �

Proposition 7.4.11. Let X and Y be proper schemes over a separably

closed field k, A a torsion ring, F a flat sheaf of A-modules on X, and G a
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sheaf of A-modules on Y . Denote by p : X ×k Y → X and q : X ×k Y → Y

the projections. Then the homomorphism

H2dimX(X,F )⊗A H2dimY (Y,G ) → H2(dimX+dimY )(X ×k Y, p∗F ⊗A q∗G ),

s⊗ t �→ p∗s ∪ q∗t

is an isomorphism. Suppose that either Hi(X,F ) are flat A-modules for

all i, or Hi(Y,G ) are flat A-modules for all i. Then the homomorphisms⊕
i+j=v

(Hi(X,F )⊗A Hj(Y,G )) → Hv(X ×k Y, p∗F ⊗A q∗G ),

s⊗ t �→ p∗s ∪ q∗t
are isomorphisms for all v.

Proof. By the Künneth formula 7.4.9, we have

RΓ(X,F )⊗LA RΓ(Y,G ) ∼= RΓ(X ×k Y, p∗F ⊗LA q∗G ).

Since F is flat, we have

p∗F ⊗LA q∗G ∼= p∗F ⊗A q∗G .
By 6.4.12, we have a biregular spectral sequence

Euv2 =
⊕
i+j=v

Tor−u(Hi(X,F ), Hj(Y,G )) ⇒ Hu+v(RΓ(X,F )⊗LARΓ(Y,G )).

By 7.4.5, we have Hi(X,F ) = 0 for any i > 2 dimX , and Hj(Y,G ) = 0 for

any j > 2 dimY . It follows that Euv2 = 0 for u > 0 or v > 2(dimX+dimY ).

So we have

H2dimX(X,F )⊗A H2dimY (Y,G ) ∼= H2(dimX+dimY )(RΓ(X,F )⊗L
A RΓ(Y,G )).

Hence

H2 dimX(X,F )⊗AH2 dimY (Y,G ) ∼= H2(dimX+dimY )(X×kY, p∗F ⊗Aq∗G ).

If either Hi(X,F ) are flat A-modules for all i, or Hi(Y,G ) are flat A-

modules for all i, then the above spectral sequence degenerates, and we

have ⊕
i+j=v

(Hi(X,F )⊗A Hj(Y,G )) ∼= Hv(RΓ(X,F ) ⊗LA RΓ(Y,G ))

∼= Hv(X ×k Y, p∗F ⊗A q∗G ).
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To prove our assertion, it suffices to show that these isomorphisms are

induced by cup products.

By 6.4.10, we have quasi-isomorphisms

p∗F ⊗A q∗G → p∗C ·(F ) ⊗A q∗C ·(G ) → C ·(p∗F )⊗A C ·(q∗G ).

Here we use the functorial Godement resolutions constructed in the end of

5.6. Let f : X → Spec k and g : Y → Spec k be the structure morphisms.

The isomorphism

RΓ(X,F )⊗LA RΓ(Y,G ) ∼= RΓ(X ×k Y, p∗F ⊗LA q∗G )

defined by the Künneth formula is the composite of the following

morphisms:

RΓ(X,F )⊗LA RΓ(Y,G ) ∼= Γ(X,C ·(F )) ⊗LA Γ(Y,C ·(G ))

→ Γ(X,C ·(F )) ⊗A Γ(Y,C ·(G ))

→ Γ(Y, g∗f∗C ·(F )) ⊗A Γ(Y,C ·(G ))

→ Γ(Y, g∗f∗C ·(F )⊗A C ·(G ))

→ Γ(Y, q∗p∗C ·(F ) ⊗A C ·(G ))

→ Γ(Y, q∗(p∗C ·(F ) ⊗A q∗C ·(G )))

= Γ(X ×k Y, p∗C ·(F )⊗A q∗C ·(G ))

→ RΓ(X ×k Y, p∗C ·(F ) ⊗A q∗C ·(G ))

∼= RΓ(X ×k Y, p∗F ⊗LA q∗G ).

The composite of the above arrows from the third to the seventh coincide

with the composite

Γ(X,C ·(F )) ⊗A Γ(Y,C ·(G ))

→ Γ(X ×k Y, p∗C ·(F )) ⊗A Γ(X ×k Y, q∗C ·(G ))

→ Γ(X ×k Y, p∗C ·(F )⊗A q∗C ·(G )).

So the isomorphism defined by the Künneth formula is the composite of

the following morphisms:

RΓ(X,F )⊗LA RΓ(Y,G ) ∼= Γ(X,C ·(F )) ⊗LA Γ(Y,C ·(G ))

→ Γ(X,C ·(F )) ⊗A Γ(Y,C ·(G ))

→ Γ(X ×k Y, p∗C ·(F ))⊗A Γ(X ×k Y, q∗C ·(G ))

→ Γ(X ×k Y, p∗C ·(F )⊗A q∗C ·(G ))

→ RΓ(X ×k Y, p∗C ·(F ) ⊗A q∗C ·(G ))

∼= RΓ(X ×k Y, p∗F ⊗LA q∗G ).
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The morphism defined via the cup product

RΓ(X,F )⊗LA RΓ(Y,G )
p∗⊗q∗→ RΓ(X ×k Y, p∗F )⊗LA RΓ(X ×k Y, p∗G )
∪→ RΓ(X ×k Y, p∗F ⊗LA q∗G )

is the composite of the following morphisms:

RΓ(X,F )⊗LA RΓ(Y,G ) ∼= Γ(X,C ·(F )) ⊗LA Γ(Y,C ·(G ))

→ Γ(X,C ·(F )) ⊗A Γ(Y,C ·(G ))

→ Γ(X ×k Y, p∗C ·(F ))⊗A Γ(X ×k Y, q∗C ·(G ))

→ Γ(X ×k Y,C ·(p∗F ))⊗A Γ(X ×k Y,C ·(q∗G ))

→ Γ(X ×k Y,C ·(p∗F )⊗A C ·(q∗G ))

→ RΓ(X ×k Y,C ·(p∗F ) ⊗A C ·(q∗G ))

∼= RΓ(X ×k Y, p∗F ⊗LA q∗G ).

The coincidence of the isomorphism defined by the Künneth formula and

the morphism defined via the cup product follows from the commutativity

of the following diagram:

Γ(X ×k Y, p∗C ·(F ))⊗AΓ(X ×k Y, q∗C ·(G )) →Γ(X ×k Y, p∗C ·(F )⊗A q∗C ·(G ))
↓ ↓

Γ(X ×k Y,C ·(p∗F ))⊗A Γ(X ×k Y,C ·(q∗G )) →Γ(X×k Y,C ·(p∗F )⊗A C ·(q∗G )).

�

7.5 Cohomological Dimension of Rf∗

([SGA 4] XIV 2–4.)

Theorem 7.5.1. Let X and Y be schemes of finite type over a field k,

f : X → Y an affine k-morphism, F a torsion sheaf on X, and n an

integer. Suppose for any point a ∈ X with the property dim {a} > n, we

have Fā = 0. Then for any point b ∈ Y with the property dim {b} > n− q,

we have (Rqf∗F )b̄ = 0.

Taking Y to be the spectrum of a separably closed field, we get the

following:

Corollary 7.5.2. Let X be an affine scheme of finite type over a separably

closed field k, F a torsion sheaf on X, and n an integer. Suppose for

any point a ∈ X with the property dim {a} > n, we have Fā = 0. Then

Hq(X,F ) = 0 for any q > n. In particular, we have Hq(X,F ) = 0 for

any q > dimX and any torsion sheaf F on X.
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To prove 7.5.1, we need the following lemma.

Lemma 7.5.3. Let k be a field, X → Spec k[t1, . . . , td] a morphism of finite

type, K an algebraic extension of k(t1, . . . , td), and XK = X ⊗k[t1,...,kd] K.
For any point a′ ∈ XK , let a be its image in X. We have

dim {a} = dim {a′}+ d,

where {a} (resp. {a′}) denotes the closure of {a} (resp. {a′}) in X (resp.

XK). Moreover, we have dimXK ≤ dimX − d.

XK = X ⊗k[t1,...,td] K → SpecK

↓ ↓
X → Spec k[t1, . . . , td] → Spec k.

Proof. We have

dim {a′} = tr.deg(k(a′)/K), dim {a} = tr.deg(k(a)/k),

where tr.deg denotes the transcendental degree. Note that k(a′) is algebraic
over k(a). So we have

tr.deg(k(a)/k) = tr.deg(k(a′)/k)

= tr.deg(k(a′)/K) + tr.deg(K/k)

= tr.deg(k(a′)/K) + d,

and hence

dim {a} = dim {a′}+ d.

Let η′i be all the generic points of XK , and let ηi be their images in X . We

have

dimXK = max
i

dim {η′i} = max
i

dim {ηi} − d ≤ dimX − d.
�

Proof of 7.5.1. Making the base change from k to its algebraic closure,

we may assume that k is algebraically closed. Replacing X and Y by Xred

and Yred, we may assume that X and Y are reduced. The problem is local

with respect to Y . We may assume that Y is affine. Then X is also affine.

We have F = lim−→λ
Fλ, where Fλ are constructible subsheaves of F . Fλ

satisfy the same condition as F , and

Rqf∗F = lim−→
λ

Rqf∗Fλ.

So we may assume that F is constructible. There is a decomposition X =

∪iXi such that Xi are finitely many irreducible locally closed subschemes
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of X and F |Xi are locally constant. If Fx̄ 	= 0 for one x ∈ Xi, then Fx̄ 	= 0

for all x ∈ Xi. We then have dimXi ≤ n by our assumption. This shows

that dim(suppF ) ≤ n, where suppF is the support of F .

We use induction on n. Suppose n = 0. Then suppF consists of finitely

many closed points in X . Put the reduced closed subscheme structure on

suppF , and let i : suppF → X be the closed immersion. We have

Rqf∗F ∼= Rq(fi)∗i∗F .

But fi is a finite morphism. So Rq(fi)∗i∗F = 0 for all q ≥ 1 and (fi)∗i∗F
is supported on finitely many closed points of Y . In particular, we have

(Rqf∗F )b̄ = 0 for any b ∈ Y satisfying dim {b} > −q.
Suppose n = 1. Replacing X by suppF , we may assume dimX = 1.

We have

(Rqf∗F )b̄
∼= lim−→

U

Hq(X ×Y U,F |X×Y U ),

where U → Y goes over the family of affine etale neighborhood of b̄. Since

f is affine, each X ×Y U is affine. We have dim (X ×Y U) ≤ 1. By 7.2.13,

we have

Hq(X ×Y U,F |X×Y U ) = 0

for any q ≥ 2. So (Rqf∗F )b̄ = 0 for any q > 1 − dim {b} if dim {b} = 0.

We have

supp(Rqf∗F ) ⊂ f(X).

Note that

dim f(X) ≤ 1.

To prove this, let Xi be an arbitrary irreducible component of X . Then

f(Xi) is also irreducible. The generic point ξi of Xi is mapped to the

generic point of f(Xi). It follows that

dim f(Xi) = tr.deg(k(f(ξi))/k) ≤ tr.deg(k(ξi)/k) = dimXi ≤ 1.

So we have dim f(X) ≤ 1. If dim f(X) = 0, we have (Rqf∗F )b̄ = 0 for all q

and those b with dim {b} > 0. Suppose dim f(X) = 1. Then (Rqf∗F )b̄ = 0

for all q if dim {b} > 1. It remains to show that for any b ∈ f(X) with

dim {b} = 1, we have (R1f∗F )b̄ = 0. Put the reduced closed subscheme

structure on f(X). Let g : X → f(X) be the morphism induced by f and

let i : f(X) → Y be the closed immersion. We have

R1f∗F = i∗R1g∗F .
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We claim that there exists an open subset U of f(X) such that f(X)− U

consists of finitely many closed points and that gU : g−1(U) → U is finite.

Then (R1g∗F )|U = 0. For any b ∈ f(X) with dim {b} = 1, we have b ∈ U

and hence (R1f∗F )b̄ = 0. Let η1, . . . , ηm be all the generic points of f(X)

with dim{ηj} = 1. By 1.10.10 (iv), to prove our claim, it suffices to show

that g−1(ηj) → ηj is finite for each j. Since g maps closed points of X

to closed points of f(X) and none of the ηj is a closed point, points in

g−1(ηj) are generic points of irreducible components of X of dimension 1.

The residue fields of X at such kind of generic points and the residue field

of Y at ηj have transcendental degree 1 over k. It follows that the residue

field of X at any point in g−1(ηj) is algebraic and hence finite over the

residue field of Y at ηj . So g
−1(ηj) → ηj is finite. This proves the theorem

for the case n = 1.

Suppose n ≥ 2, and suppose that the theorem holds if n is replaced by

any integer strictly lesser than n. Since X and Y are affine, f : X → Y can

be factorized as a composite

X
i→ AmY

π→ Y

such that i is a closed immersion and π is the projection. We have

Rqf∗F ∼= Rqπ∗(i∗F )

and i∗F satisfies the same condition as F . We are thus reduced to the

case where f is the projection π : AnY → Y . Note that if f = gh and if the

theorem holds for g and h, then it holds for f . Indeed, we have a biregular

spectral sequence

Epq2 = Rpg∗Rqh∗F ⇒ Rp+qf∗F .

To prove (Rqf∗F )b̄ = 0 for any b with dim {b} > n− q, it suffices to prove

(Rpg∗Rqh∗F )b̄ = 0

for any b with dim {b} > n − (p + q). Since the theorem holds for h, we

have (Rqh∗F )c̄ = 0 for any c with dim {c} > n − q. Since the theorem

holds for g, we have (Rpg∗Rqh∗F )b̄ = 0 for any b with dim {b} > n− q−p.
This proves our assertion. The projection π : AmY → Y is the composite of

projections

AmY → Am−1Y → · · · → A1
Y → Y.

So it suffices to consider the case where f is the projection A1
Y → Y .

Let Y = SpecB for some finitely generated k-algebra B, let b ∈ Y ,

and let q be the prime ideal of B corresponding to b. We need to show
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that (Rqf∗F )b̄ = 0 for any q > n− dim {b}. First consider the case where

dim {b} > 0. We have

dim {b} = tr.degk(Bq/qBq),

where tr.degk denotes the transcendental degree over k. Replacing Y by an

affine open neighborhood of b, we may assume that there exist t1, . . . , td ∈ B

such that their images in Bq/qBq form a separating transcendental basis

for Bq/qBq over k, where d = dim {b} > 0. (We have reduced to the case

where k is algebraically closed. Hence a separating transcendental basis

exists.) We have

q ∩ k[t1, . . . , td] = 0.

Let K be a separable closure of Bq/qBq and let Y ′ = Spec (B⊗k[t1,...,td]K).

There exists a point b′ ∈ Y ′ lying above b. Let X ′ = A1
Y ′ , let f ′ : X ′ → Y ′

be the projection, and let F ′ be the inverse image of F in X ′.

X ′ = A1
Y ′

f ′
→ Y ′ = Spec(B ⊗k[t1,...,td] K) → SpecK

↓ ↓ ↓
X = A1

Y

f→ Y = SpecB → Spec k[t1, . . . , td] → Spec k.

Since K is separable over k(t1, . . . , td), the strict localization of Y ′ at b̄′ is
isomorphic to the strict localization of Y at b̄. So by 5.9.5, we have

(Rqf∗F )b̄
∼= (Rqf ′∗F

′)b̄′ .

For any a′ ∈ X ′, let a be its image in X . We have

dim {a} = dim {a′}+ d

by 7.5.3. Since Fā = 0 for any a ∈ X with dim {a} > n, we have F ′ā′ = 0

for any a′ ∈ X ′ with dim {a′} > n− d. But n− d ≤ n− 1. So we can apply

the induction hypothesis to F ′ and to the morphism f ′ : X ′ → Y ′, and we

get (Rqf ′∗F
′)b̄′ = 0 if dim {b′} > n − d − q. So we have (Rqf∗F )b̄ = 0 if

dim {b} > n− q.

Next we consider the case where dim {b} = 0. We need to show that

(Rqf∗F )b̄ = 0 for any q > n. Let j : X = A1
Y ↪→ P1

Y be the open

immersion and let f̄ : P1
Y → Y be the projection. We have a biregular

spectral sequence

Epq2 = Rpf̄∗Rqj∗F ⇒ Rp+qf∗F .

It suffices to show that

(Rpf̄∗Rqj∗F )b̄ = 0
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for any p+ q > n. Recall that n ≥ 2. If q = 0, we have

Rpf̄∗Rqj∗F = Rpf̄∗j∗F = 0

for any p > 2 by 7.4.5. For any q > 0, we have

(Rqj∗F )|A1
Y
= 0.

Since f̄ |P1
Y−A1

Y
is an isomorphism, we have

Rpf̄∗Rqj∗F = 0

for any p, q > 0, and f̄∗Rqj∗F can be identified with (Rqj∗F )|P1
Y −A1

Y
for

any q > 0. To prove our assertion, it suffices to prove (Rqj∗F )ā = 0 for

any q > n and any point a in P1
Y − A1

Y .

Put the reduced closed subscheme structure on the closure suppF of

suppF in P1
Y , and let j′ : suppF ∩ A1

Y ↪→ suppF be the base change of

j. If a 	∈ suppF , we have (Rqj∗F )ā = 0 for all q. If a ∈ suppF , we have

(Rqj∗F )ā ∼= (Rqj′∗(F |supp F∩A1
Y
))ā.

Let R be the strict henselization of OsuppF ,a. We have

(Rqj∗F )ā ∼= Hq(A1
Y ×P1

Y
SpecR,F ) ∼= Hq(A1

k ×P1
k
SpecR,F ).

Here we denote also by F the inverse images of F on A1
Y ×P1

Y
SpecR and

on A1
k ×P1

k
SpecR. We need to prove that Hq(A1

k ×P1
k
SpecR,F ) = 0 for

any q > n.

Choose an inverse system {Uα} of a sufficiently small affine etale neigh-

borhood of ā in suppF such that R = lim−→α
Γ(Uα,OUα). We have

Hq(A1
k ×P1

k
SpecR,F ) ∼= lim−→

α

Hq(A1
k ×P1

k
Uα,F ).

The point a is above the point ∞ of P1
k. Let P̃

1
k∞ be the strict localization

of P1
k at∞, and let η̃∞ be the generic point of P̃1

k∞. We have a commutative

diagram

SpecR → P̃1
k∞

↓ ↓
Uα → P1

k.

Making the base change A1
k → P1

k, we obtain a commutative diagram

A1
k ×P1

k
SpecR → η̃∞
↓ ↓

A1
k ×P1

k
Uα → A1

k.
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The homomorphism

Hq(A1
k ×P1

k
Uα,F ) → Hq(A1

k ×P1
k
SpecR,F )

factors through

Hq(η̃∞ ×A1
k
(A1

k ×P1
k
Uα),F ) → Hq(A1

k ×P1
k
SpecR,F )

To prove our assertion, it suffices to show Hq(η̃∞ ×A1
k
(A1

k ×P1
k
Uα),F ) = 0

for all q > n.

Since dim suppF ≤ n, we have dimUα ≤ n, and hence dim(A1
k ×P1

k

Uα) ≤ n. By 7.5.3, we have

dim(η̃∞ ×A1
k
(A1

k ×P1
k
Uα)) ≤ n− 1.

Let

g : η̃∞ ×A1
k
(A1

k ×P1
k
Uα) → η̃∞

be the projection. Note that g is an affine morphism. Indeed, A1
k → P1

k

is an affine morphism. So the projection A1
k ×P1

k
Uα → Uα is an affine

morphism. Since Uα is affine, A1
k ×P1

k
Uα is also affine. So the morphism

A1
k×P1

k
Uα → A1

k is affine, and hence g is affine. By the induction hypothesis,

we have

Rqg∗(F |η̃∞×A1
k
(A1
k×P1

k
Uα)) = 0

for all q > n− 1. Since the residue field of η̃∞ has transcendental degree 1

over the algebraically closed field k, by 4.5.11, we have

Hp(η̃∞, Rqg∗(F |η̃∞×A1
k
(A1
k×P1

k
Uα))) = 0

for all p > 1. We have a biregular spectral sequence

Epq2 = Hp(η̃∞, Rqg∗(F |η̃∞×A1
k
(A1
k
×

P1
k
Uα))) ⇒ Hp+q(η̃∞×A1

k
(A1

k×P1
k
Uα),F ).

It follows that Hq(η̃∞ ×A1
k
(A1

k ×P1
k
Uα),F ) = 0 for all q > n. This proves

our assertion. �

Lemma 7.5.4. Let k be an algebraically closed field, X an integral scheme

of finite type over k, n = dimX, η the generic point of X, F a torsion sheaf

on η, and j : η → X the canonical morphism. Then we have (Rqj∗F )ā = 0

for any a ∈ X with dim {a} > n− q.
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Proof. Replacing X by an open affine neighborhood of a does not change

(Rqj∗F )ā. So we may assume that X = SpecA for some finitely generated

k-algebra A. Let p be the prime ideal of A corresponding to a, and let

d = dim {a}. We have tr.degk(Ap/pAp) = d. Shrinking X , we may assume

that there exist t1, . . . , td ∈ A such that their images in Ap/pAp form a

separating transcendental basis for Ap/pAq over k. We have

p ∩ k[t1, . . . , td] = 0.

Let K be a separable closure of Ap/pAp and let X ′ = Spec (A⊗k[t1,...,td]K).

There exists a point a′ ∈ X ′ lying above a. Since K is separable over

k(t1, . . . , td), the strict localization X̃ ′ā′ of X ′ at ā′ is isomorphic to the

strict localization X̃ā of X at ā. By 5.9.5, we have

(Rqj∗F )ā ∼= Hq(η ×X X̃ā,F ) ∼= Hq(η ×X X̃ ′ā′ ,F ).

Let K1, . . . ,Km be the residue fields of X̃ ′ā′ at its generic points. We have

η ×X X̃ ′ā′ ∼= SpecK1

∐
· · ·
∐

SpecKm,

and

tr.deg(Ki/K) = tr.deg(Ki/k)− tr.deg(K/k)

= tr.deg(k(η)/k)− tr.deg(K/k)

= n− d.

By 4.5.10, we have

Hq(SpecKi,F ) = 0

for all q > n− d. So we have (Rqj∗F )ā = 0 for all q > n− d.

Theorem 7.5.5. Let k be a separably closed field, X a scheme of finite

type over k, n an integer, F a torsion sheaf on X such that Fā = 0 for

any a ∈ X with dim {a} > n. Then Hq(X,F ) = 0 for any q > 2n. In

particular, we have Hq(X,F ) = 0 for any q > 2 dimX and any torsion

sheaf F on X.

Proof. We may assume that k is algebraically closed and F is con-

structible. We use induction on n. If n = 0, then suppF consists of

finitely many closed point of X , and we have Hq(X,F ) = 0 for all q > 0.

Suppose that the theorem holds if n is replaced by any integer strictly

less than n. Let ηv be those points in suppF with dim {ηv} = n, let

jv : Spec k(ηv) → X be the canonical morphisms, and let K (resp. C ) be

the kernel (resp. cokernel) of the canonical morphism

F →
∏
v

jv∗j∗vF .
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We have

Kā = Cā = 0

for any a in X with dim {a} > n− 1. Applying the induction hypothesis to

K and C , we see that Hq(X,K ) andHq(X,C ) vanish for any q > 2(n−1).

To prove Hq(X,F ) = 0 for any q > 2n, it suffices to show that

Hq(X, jv∗j∗vF ) = 0

for any q > 2n. Replacing X by the reduced closed subscheme {ηv}, we are
reduced to prove the following statement: Let X be an integral scheme of

finite type over an algebraically closed field k of dimension n, let η be the

generic point of X , and let j : η → X be the canonical morphism. Then

for any torsion sheaf F on η, we have Hq(X, j∗F ) = 0 for any q > 2n. We

have a biregular spectral sequence

Epq2 = Hp(X,Rqj∗F ) ⇒ Hp+q(η,F ).

By 7.5.4, we have (Rqj∗F )ā = 0 if dim {a} > n − q. For each q > 0, we

can apply the induction hypothesis to Rqj∗F , and we get

Epq2 = Hp(X,Rqj∗F ) = 0

if q > 0 and p > 2(n− q). This implies that

Ep02
∼= Hp(η,F )

for any p > 2n. We have tr.deg(k(η)/k) = n. By 4.5.10, we have

Hp(η,F ) = 0

for any p > n. So we have

Hp(X, j∗F ) = Ep02 = 0

for any p > 2n. �

Corollary 7.5.6. Let k be a field, X and Y schemes of finite type over k,

and f : X → Y a k-morphism. Then Rqf∗F = 0 for any q > 2 dimX

and any torsion sheaf F on X. In particular, Rf∗ has finite cohomological

dimension on the category of torsion sheaves.

Proof. We may assume that k is algebraically closed. Rqf∗F is the sheaf

associated to the presheaf

V �→ Hq(V ×Y X,F )

for any etale Y -scheme V . By 7.5.5, we have

Hq(V ×Y X,F ) = 0

for any q > 2 dimX . �
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Corollary 7.5.7. Let f : X → S be a morphism of finite type, x ∈ X, S̃f(x̄)

the strict localization of S at f(x̄), j : t → S̃f(x̄) a geometric point, and

j̃ : X ×S t→ X ×S S̃f(x̄) the morphism induced by j by base change. Then

Rq j̃∗F = 0 for any q > dim(X ×S t) and any torsion sheaf F on X ×S t.
In particular, Rj̃∗ has finite cohomological dimension on the category of

torsion sheaves.

Proof. For each q, Rq j̃∗F is the sheaf associated to the presheaf

V �→ Hq(V ×S̃f(x̄) t,F )

for any etale X ×S S̃f(x̄)-scheme V . We have

dim(V ×S̃f(x̄) t) ≤ dim(X ×S t).
If V is affine, V ×S̃f(x̄) t is also affine, and we have

Hq(V ×S̃f(x̄) t,F ) = 0

for any q > dim(X ×S t) by 7.5.1. So we have Rq j̃∗F = 0 for any q >

dim(X ×S t). �

7.6 Local Acyclicity

([SGA 4 1
2 ] Arcata V 1, Th. finitude 2.12–2.16, Appendice 2.9, 2.10.)

Consider a Cartesian diagram

X ×S S′ g
′

→ X

f ′ ↓ ↓ f
S′

g→ S.

Let A be a ring. Suppose that one of the following conditions holds:

(a) Rg∗ and Rg′∗ have finite cohomological dimension, K ∈ obD−(X,A)
and L ∈ obD−(S′, A).

(b) K ∈ obDb
tf(X,A) has finite Tor-dimension and L ∈ obD+(S′, A).

(c) Rg∗ and Rg′∗ have finite cohomological dimension, K ∈ obDb
tf(X,A)

has finite Tor-dimension and L ∈ obD(S′, A).
Then we define a canonical morphism

K ⊗LA f∗Rg∗L→ Rg′∗(g
′∗K ⊗LA f ′∗L)

as the composite of canonical morphisms

K ⊗LA f∗Rg∗L→ K ⊗LA Rg′∗f ′∗L→ Rg′∗(g
′∗K ⊗LA f ′∗L).
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By 7.4.8, this canonical morphism is an isomorphism if g is proper. In this

section, we give conditions on f under which this canonical morphism is an

isomorphism.

Let X be a scheme and let t → X be a geometric point in X , where

t is the spectrum of a separably closed field. We often denote by k(t) the

separably closed field such that t = Spec k(t). Let x be the image of t in

X . We say that t is an algebraic geometric point if k(t) is algebraic over

the residue field k(x).

Let f : X → S be a morphism. For any x ∈ X (resp. s ∈ S), let X̃x̄

(resp. S̃s̄) be the strict localization of X (resp. S) at x̄ (resp. s̄). Let

K ∈ obD+(X). We say that f is locally acyclic at x ∈ X relative to K if

for any algebraic geometric point t of S̃f(x̄), the canonical morphism

Kx̄ = RΓ(X̃x̄,K) → RΓ(X̃x̄ ×S̃f(x̄) t,K)

is an isomorphism. By 5.7.2 (ii), this is equivalent to saying that the above

canonical morphism is an isomorphism if t is of the form ȳ for any y ∈ S̃f(x̄).

We say f is locally acyclic relative to K if it is locally acyclic relative to K

at every point of X . Let s ∈ S and let t be an algebraic geometric point of

S̃s̄. Fix notation by the following diagram:

Xt = X ×S t j̃→ X ×S S̃s̄ ĩ← Xs̄ = X ×S s̄
ft ↓ f̃ ↓ ↓ fs̄
t
j→ S̃s̄

i← s̄.

where all vertical arrows are induced by f by base change. Let K̃ be the

inverse image of K on X ×S S̃s̄. For any x ∈ f−1(s), the strict localization

of X ×S S̃s̄ at x̄ is isomorphic to the strict localization of X at x̄, and we

have

(̃i∗K̃)x̄ ∼= Kx̄,

(̃i∗Rj̃∗j̃∗K̃)x̄ ∼= (Rj̃∗j̃∗K̃)x̄ ∼= RΓ(X̃x̄ ×S̃f(x̄) t,K).

So f is locally acyclic relative to K if and only if for any s ∈ S and any

algebraic geometric point t of S̃s̄, the canonical morphism

ĩ∗K̃ → ĩ∗Rj̃∗j̃∗K̃

is an isomorphism. We say that f is universally locally acyclic relative to K

if for any morphism S′ → S, the base change X ×S S′ → S′ of f is locally

acyclic relative to the inverse image K|X×SS′ of K. By 5.9.3 or 5.9.6, f

is universally locally acyclic relative to K if and only if for any morphism
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S′ → S locally of finite type, the base change X ×S S′ → S′ of f is locally

acyclic relative to the inverse image K|X×SS′ of K.

Let A be a ring, and let K ∈ obDb
tf(X,A). We say that f is strongly

locally acyclic at x relative to K if for any algebraic geometric point t of

S̃f(x̄) and any A-module M , the canonical morphism

Kx̄ ⊗LAM = RΓ(X̃x,K)⊗LAM → RΓ(X̃x ×S̃f(x) t,K ⊗LAM)

is an isomorphism. We say that f is strongly locally acyclic relative to K if

it is strongly locally acyclic relative to K at every point ofX . For any s ∈ S

and any algebraic geometric point t of S̃s̄, define a canonical morphism

ĩ∗(K̃ ⊗LA f̃∗Rj∗M) → ĩ∗Rj̃∗(j̃∗K̃ ⊗LA f∗tM)

to be the composite of canonical morphisms

ĩ∗(K̃ ⊗LA f̃∗Rj∗M) → ĩ∗(K̃ ⊗LA Rj̃∗f∗tM) → ĩ∗Rj̃∗(j̃∗K̃ ⊗LA f∗tM).

Lemma 7.6.1. In the above notation, f is strongly locally acyclic relative

to K if and only if for any s ∈ S and any algebraic geometric point t of S̃s̄,

the canonical morphism

ĩ∗(K̃ ⊗LA f̃∗Rj∗M) → ĩ∗Rj̃∗(j̃∗K̃ ⊗LA f∗tM)

is an isomorphism.

Proof. In the following, we denote also by M the constant sheaf associ-

ated to M on any scheme. Note that the canonical morphism

i∗M → i∗Rj∗j∗M

is an isomorphism. Indeed, for any q, Rqj∗j∗M is the sheaf associated to

the presheaf

V �→ Hq(V ×S̃s̄ t,M)

for any etale S̃s̄-scheme V . Since t is the spectrum of a separably closed

field, V ×S̃s̄ t is a disjoint union of copies of t and hence

Hq(V ×S̃s̄ t,M) = 0

for any q ≥ 1. So

Rqj∗j∗M = 0

for any q ≥ 1. Moreover, we have

(i∗j∗j∗M)s̄ ∼= Γ(S̃s̄, j∗j∗M) ∼=M.
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So we have

i∗M ∼= i∗Rj∗j∗M.

This implies that the canonical morphism

ĩ∗(K̃ ⊗LA f̃∗M) → ĩ∗(K̃ ⊗LA f̃∗Rj∗j∗M)

is an isomorphism.

We have a commutative diagram

ĩ∗(Rj̃∗j̃∗K̃ ⊗LA f̃∗M)

↗ ↘
ĩ∗(K̃ ⊗LA f̃∗M) → ĩ∗(K̃ ⊗LA Rj̃∗j̃∗f̃∗M) → ĩ∗Rj̃∗(j̃∗K̃ ⊗LA j̃∗f̃∗M)

∼= ↓ ∼= ↓ ∼= ↓
ĩ∗(K̃ ⊗LA f̃∗Rj∗j∗M) → ĩ∗(K̃ ⊗LA Rj̃∗f∗t j∗M) → ĩ∗Rj̃∗(j̃∗K̃ ⊗LA f∗t j∗M),

where all vertical arrows are isomorphisms. By definition, f is strongly

locally acyclic relative to K if and only if the composite

ĩ∗(K̃ ⊗LA f̃∗M) → ĩ∗(Rj̃∗j̃∗K̃ ⊗LA f̃∗M) → ĩ∗Rj̃∗(j̃∗K̃ ⊗LA j̃∗f̃∗M)

on the upper part of the above diagram defines an isomorphism

ĩ∗(K̃ ⊗LA f̃∗M) → ĩ∗Rj̃∗(j̃∗K̃ ⊗LA j̃∗f̃∗M).

By the commutativity of the above diagram, this condition is equivalent to

saying that the composite

ĩ∗(K̃ ⊗LA f̃∗Rj∗j∗M) → ĩ∗(K̃ ⊗LA Rj̃∗f∗t j∗M) → ĩ∗Rj̃∗(j̃∗K̃ ⊗LA f∗t j∗M)

on the lower part of the above diagram defines an isomorphism

ĩ∗(K̃ ⊗LA f̃∗Rj∗j∗M) → ĩ∗Rj̃∗(j̃∗K̃ ⊗LA f∗t j∗M).

This proves our assertion. �

If Rj̃∗ has finite cohomological dimension for any s ∈ S and any alge-

braic geometric point j : t → S̃s̄, then in the above discussion, we do not

need to assume that K has finite Tor-dimension and can talk about the

strong local acyclicity of f relative to K for any K ∈ D−(X,A). Many

results in this section also hold under this assumption.

We say that f is universally strongly locally acyclic relative to K if for

any morphism S′ → S, the base change X ×S S′ → S′ of f is strongly

locally acyclic relative to the inverse image K|X×SS′ of K. By 5.9.3 or

5.9.6, f is universally strongly locally acyclic relative to K if and only if for

any morphism S′ → S locally of finite type, the base change X ×S S′ → S′

of f is strongly locally acyclic relative to the inverse image K|X×SS′ of K.
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Proposition 7.6.2. Let f : X → S be a morphism, A a ring and K ∈
obD−(X,A). Suppose for any x ∈ X and any algebraic geometric point

j : t → S̃f(x̄), that the functor Rj̃∗ has finite cohomological dimension,

where j̃ : X×S t → X×S S̃f̄(x) is the morphism induced by j by base change.

If f is locally acyclic relative to K, then f is strongly locally acyclic relative

to K.

Note that if f is of finite type and A is a torsion ring, then Rj̃∗ has

finite cohomological dimension by 7.5.7.

Proof. Keep the notation in the proof of 7.6.1. If f is locally acyclic

relative to K, we have

ĩ∗K̃ ∼= ĩ∗Rj̃∗j̃∗K̃.

So for any A-module M , we have

ĩ∗(K̃ ⊗LA f̃∗M) ∼= ĩ∗(Rj̃∗j̃∗K̃ ⊗LA f̃∗M).

By 6.5.5, we have

Rj̃∗j̃∗K̃ ⊗LA f̃∗M ∼= Rj̃∗(j̃∗K̃ ⊗LA j̃∗f̃∗M).

It follows that

ĩ∗(K̃ ⊗LA f̃∗M) ∼= ĩ∗Rj̃∗(j̃∗K̃ ⊗LA j̃∗f̃∗M).

So f is strongly locally acyclic relative to K. �

Proposition 7.6.3. Let A be a ring, let f : X → S be a morphism, and let

K ∈ obDb
tf(X,A). Suppose that f is locally acyclic (resp. strongly locally

acyclic) relative to K. Then for any quasi-finite morphism g : S′ → S, the

base change f ′ : X ′ = X ×S S′ → S′ of f is locally acyclic (resp. strongly

locally acyclic) relative to the inverse image K ′ = K|X′ of K. Conversely,

if f ′ is locally acyclic (resp. strongly locally acyclic) relative to K ′ and g
is faithfully flat, then f is locally acyclic (resp. strongly locally acyclic)

relative to K.

Proof. We prove the statements for local acyclicity. The problem is local

with respect to S′. So we may assume that g is separated and S is quasi-

compact and quasi-separated. By the Zariski Main Theorem in [EGA] IV

18.12.13, g is the composite of an open immersion and a finite morphism.

Let x′ ∈ X ′ and let x, s′, s be its images in X,S′, S, respectively. By

2.8.20, S̃′s̄′ is a connected component of S′ ×S S̃s̄ and S̃′s̄′ → S̃s̄ is finite.

Similarly X̃ ′x̄′ is a connected component of X̃x̄×S̃s̄ S̃′s̄′ . But k(s̄′) is a purely
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inseparable extension of k(s̄), so there exists only one point in X̃x̄ ×S̃s̄ S̃′s̄′
above the closed point of X̃x̄. Hence we must have

X̃ ′x̄′ ∼= X̃x̄ ×S̃s̄ S̃′s̄′ .

For any algebraic geometric point t→ S̃′s̄′ , t is also an algebraic geometric

point of S̃s̄, and we have

X̃ ′x̄′ ×S̃′
s̄′
t ∼= X̃x̄ ×S̃s̄ t.

If f is locally acyclic relative to K at x, then we have an isomorphism

Kx̄
∼= RΓ(X̃x̄ ×S̃s̄ t,K).

It follows that

K ′x̄′ ∼= RΓ(X̃ ′x̄′ ×S̃′
s̄′
t,K ′).

So f ′ is locally acyclic relative to K ′ at x′. The same argument also shows

that if f ′ is locally acyclic relative to K ′ at x′, then f is locally acyclic

relative to K at x. If g is flat, then the morphism S̃′s̄′ → S̃s̄ is surjective.

Our assertion follows. �

Corollary 7.6.4. Let f : X → S be a morphism, A a ring, K ∈
obDb

tf(X,A), (Sλ, uλμ) an inverse system of schemes affine and quasi-finite

over S, S′ = lim←−λ Sλ, f
′ : X ′ = X ×S S′ → S′ and K ′ = K|X′ the base

changes of f and K, respectively. If f is locally acyclic (resp. strongly lo-

cally acyclic) relative to K, then f ′ is locally acyclic (resp. strongly locally

acyclic) relative to K ′. Conversely, if f ′ is locally acyclic (resp. strongly

locally acyclic) relative to K ′ and S′ → S is faithfully flat, then is f locally

acyclic (resp. strongly locally acyclic) relative to K.

Proof. We prove the statements for local acyclicity. Let x′ ∈ X ′ and
let s′, xλ, sλ, x, s be its images in S′, Xλ = X ×S Sλ, Sλ, X, S, respectively.
Then we have

S̃′s̄′ ∼= lim←−
λ

S̃λ,s̄λ , X̃λ,x̄λ
∼= X̃x̄ ×S̃s̄ S̃λ,s̄λ , X̃ ′x̄′ ∼= lim←−

λ

X̃λ,x̄λ
∼= X̃x̄ ×S̃s̄ S̃′s̄′ .

Any algebraic geometric point t of S̃′s̄′ is also an algebraic geometric point

of S̃s̄. We then use the same argument as in the proof of 7.6.3. �

Lemma 7.6.5. Let (A,m) be a normal local integral domain, K its fraction

field, and k = A/m. If K is separably closed, then A is strictly local.
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Proof. Let K be an algebraic closure of K, let A be the integral closure

of A in K, let m be a maximal ideal of A, and let k̄ = A/m. Then m is

above the maximal ideal m of A, and hence k̄ is an algebraic extension of

k. First let us prove k is separably closed. Let f(t) ∈ k[t] be a monic

polynomial and let F (t) ∈ A[t] be a monic polynomial lifting f(t). Then

we have

F (t) = (t− a1) · · · (t− an)

for some a1, . . . , an ∈ A, and hence

f(t) = (t− ā1) · · · (t− ān),

where for each i, āi is the image of ai in k. If āi is a simple root of f(t),

then ai is a simple root of F (t). Since K is separably closed, we must have

ai ∈ K. Since A is normal, we must have ai ∈ A. So we have āi ∈ k. Thus

any simple root of f(t) lies in k, and hence k is separably closed.

Next we show that A is henselian. Let F (t) ∈ A[t] be a monic polyno-

mial, f(t) ∈ k[t] the reduction of F (t) mod m, and

f(t) = (t− ā)g(t)

a factorization of f(t) in k[t] such that g(t) is monic and relatively prime

to t− ā. Again let

F (t) = (t− a1) · · · (t− an)

be a factorization of F (t) in A[t]. It induces a factorization

f(t) = (t− ā1) · · · (t− ān)

of f(t) in k̄[t]. Without loss of generality, assume ā = ā1. Since g(t) is

relatively prime to t− ā, ā1 is a simple root of f(t). As before, this implies

that a1 ∈ A. We thus have a factorization

F (t) = (t− a1)G(t)

in A[t] lifting the factorization f(t) = (t − a)g(t). By Nakayama’s lemma,

the ideal of A[t] generated by t − a1 and G(t) is A[t]. By 2.8.3 (vi), A is

henselian. �

Lemma 7.6.6. Let f : X → S be a morphism, A a ring, K ∈ obDb
tf(X,A),

and γ : t → S an algebraic geometric point. Fix notation by the following

Cartesian diagram:

X ×S t γ
′

→ X

ft ↓ ↓ f
t
γ→ S.
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(i) If f is locally acyclic relative to K, then we have a canonical iso-

morphism

K ⊗LA f∗Rγ∗A
∼=→ Rγ′∗γ

′∗K.

(ii) If f is strongly locally acyclic relative to K, then for any A-module

M , we have a canonical isomorphism

K ⊗LA f∗Rγ∗M
∼=→ Rγ′∗(γ

′∗K ⊗LA f∗tM).

Proof. We prove (ii). Let S′ be the normalization in t of {γ(t)} with

the reduced closed subscheme structure. Fix notation by the following

commutative diagram:

Xt
β′
→ X ×S S′ α

′→ X

ft ↓ f ′ ↓ f ↓
t
β→ S′ α→ S,

where αβ = γ. Note that α : S′ → S is an integral morphism. Using 5.9.7

and the same argument as the proof of 7.4.7, one can show that

K ⊗LA f∗Rα∗Rβ∗M ∼= Rα′∗(α
′∗K ⊗LA f ′∗Rβ∗M).

We have

K ⊗LA f∗Rγ∗M ∼= K ⊗LA f∗Rα∗Rβ∗M
∼= Rα′∗(α

′∗K ⊗LA f ′∗Rβ∗M)

Rγ′∗(γ
′∗K ⊗LA f∗tM) ∼= Rα′∗Rβ

′
∗(β
′∗α′∗K ⊗LA f∗tM).

To prove our assertion, it suffices to show

α′∗K ⊗LA f ′∗Rβ∗M ∼= Rβ′∗(β
′∗α′∗K ⊗LA f∗tM).

For any s′ ∈ S′, OS′,s′ is a normal local integral domain, and its fraction

field is k(t), which is separably closed. By 7.6.5, OS′,s′ is strictly local. So

the strict localization S̃′s̄′ of S
′ at s̄′ can be identified with SpecOS′,s′ . It

follows that the squares in the following commutative diagram are Carte-

sian:

t
j→ S̃′s̄′ ← s̄′

‖ ↓ ‖
t
β→ S′ ← s̄′.

So the squares in the following commutative diagram are Cartesian:

Xt
j̃→ X ×S S̃′s̄′ ĩ← Xs̄′

‖ ↓ ‖
Xt

β′
→ X ×S S′ i′← Xs̄′ .
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Let

f̃ : X ×S S̃′s̄′ → S̃′s̄′

be the base change of f . We then have

i′∗(α′∗K ⊗LA f ′∗Rβ∗M) ∼= ĩ∗((K|X×S S̃′
s̄′
)⊗LA f̃∗Rj∗M),

i′∗Rβ′∗(β
′∗α′∗K ⊗LA f∗tM) ∼= ĩ∗Rj̃∗(j̃∗(K|X×S S̃′

s̄′
)⊗LA f∗tM).

By 7.6.4, f ′ is strongly locally acyclic relative to α′∗K. So we have

ĩ∗((K|X×S S̃′
s̄′
)⊗LA f̃∗Rj∗M) ∼= ĩ∗Rj̃∗(j̃∗(K|X×SS̃′

s̄′
)⊗LA f∗tM).

It follows that

i′∗(α′∗K ⊗LA f ′∗Rβ∗M) ∼= i′∗Rβ′∗(β
′∗α′∗K ⊗LA f∗tM).

This is true for any s′ ∈ S′. So we have

α′∗K ⊗LA f ′∗Rβ∗M ∼= Rβ′∗(β
′∗α′∗K ⊗LA f∗tM).

�

Lemma 7.6.7. Consider a Cartesian diagram

X ×S S′ g
′

→ X

f ′ ↓ ↓ f
S′

g→ S.

Let A be a noetherian ring and let K ∈ obDb
tf(X,A). Suppose that S is

a noetherian scheme, g is an open immersion, and one of the following

conditions holds:

(a) f is locally acyclic relative to K, and every finitely generated A-

module can be embedded into a free A-module.

(b) f is strongly locally acyclic relative to K.

Then for any L ∈ obD+(S′, A), we have a canonical isomorphism

K ⊗LA f∗Rg∗L
∼=→ Rg′∗(g

′∗K ⊗LA f ′∗L).

Remark 7.6.8. Note that if A = R/I for a discrete valuation ring R

and a nonzero ideal I of R, then every finitely generated A-module can

be embedded into a free A-module. Every finitely generated Z/n-module

can also be embedded into a free Z/n-module. Such coefficient rings A are

enough for application.
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Proof. First we prove that under the condition (b) (resp. (a)), we have

K ⊗LA f∗Rg∗γ∗M ∼= Rg′∗(g
′∗K ⊗LA f ′∗γ∗M)

for any algebraic geometric point γ : t → S′ and any A-module M (resp.

M = A). We have

γ∗M ∼= Rγ∗M.

If f is strongly locally acyclic relative to K, then f ′ is strongly locally

acyclic relative to g′∗K since g is an open immersion. Fix notation by the

following commutative diagram:

Xt
γ′
→ X ×S S′ g

′
→ X

ft ↓ f ′ ↓ f ↓
t
γ→ S′

g→ S.

By 7.6.6, we have isomorphisms

K ⊗LA f∗R(gγ)∗M ∼= R(g′γ′)∗((g′γ′)∗K ⊗LA f∗tM),

g′∗K ⊗LA f ′∗Rγ∗M ∼= Rγ′∗(γ
′∗g′∗K ⊗LA f∗tM).

It follows that

K ⊗LA f∗Rg∗γ∗M ∼= K ⊗LA f∗Rg∗Rγ∗M
∼= Rg′∗Rγ

′
∗(γ
′∗g′∗K ⊗LA f∗tM)

∼= Rg′∗(g
′∗K ⊗LA f ′∗Rγ∗M)

∼= Rg′∗(g
′∗K ⊗LA f ′∗γ∗M).

This proves our assertion. If f is locally acyclic, the above argument works

for M = A.

By 6.5.2, to prove K ⊗LA f∗Rg∗L ∼= Rg′∗(g′∗K ⊗LA f ′∗L) for any L ∈
obD+(S′, A), it suffices to treat the case where L = F for a sheaf F of

A-modules on S′. For convenience, let

Sq(F ) = H q(K ⊗LA f∗Rg∗F ), T q(F ) = Rqg′∗(g
′∗K ⊗LA f ′∗F ),

and let φqF : Sq(F ) → T q(F ) be the homomorphisms induced by the

canonical morphism K ⊗LA f∗Rg∗F → Rg′∗(g′∗K ⊗LA f ′∗F ). Let us prove

that φqF are isomorphisms by induction on q. If K can be represented by

a bounded complex of flat sheaves of A-modules such that Ki = 0 for any

i 	∈ [a, b], then both Sq(F ) and T q(F ) vanish for any q < a. So φqF is

an isomorphism for any q < a. Suppose we have shown that φqF is an

isomorphism for any q < n, and let us prove that φnF is an isomorphism.

By 5.8.8 and 5.9.6, it suffices to prove that φnF is an isomorphism for any
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constructible F . In this case, there exists a decomposition S′ = ∪λUλ of

S′ by finitely many irreducible locally closed subsets such that F |Uλ are

locally constant. For each λ, let γλ : tλ → S′ be an algebraic geometric

point lying above the generic point of Uλ, and let Mλ = Ftλ . Note that

the canonical morphism F |Uλ → (γλ∗Mλ)|Uλ is injective. So the canonical

morphism

F →
∏
λ

γλ∗Mλ

is injective. Thus we can find a short exact sequence of the form

0 → F → G → H → 0

such that G =
⊕
γ∗M for some algebraic geometric points γ : t → S′ and

some finitely generated A-modules M , and we can take M = A under the

condition (a). We have a commutative diagram

Sn−1(G ) → Sn−1(H ) → Sn(F ) → Sn(G ) → Sn(H )

φn−1
G ↓ φn−1

H ↓ φnF ↓ φnG ↓ φnH ↓
T n−1(G ) → T n−1(H ) → T n(F ) → T n(G ) → T n(H ),

where the horizontal lines are exact. By the induction hypothesis, φn−1G

and φn−1H are bijective. By what we have shown at the beginning, φnG is

bijective. These facts imply that φnF is injective for any constructible sheaf

F , and hence for any sheaf F . In particular, φnH is injective. These facts

imply that φnF is bijective for any constructible sheaf F , and hence for any

sheaf F . �

Theorem 7.6.9. Let A be a noetherian ring, S a noetherian scheme, f :

X → S a morphism, and K ∈ obDb
tf(X,A). The following conditions are

equivalent:

(i) f is universally strongly locally acyclic relative to K.

(ii) For any Cartesian diagram

X ×S S′ g
′

→ X

f ′ ↓ ↓ f
S′

g→ S

such that g is quasi-compact and quasi-separated, and for any L ∈
obD+(S′, A), we have a canonical isomorphism

K ⊗LA f∗Rg∗L
∼=→ Rg′∗(g

′∗K ⊗LA f ′∗L).
This remains true if we replace f by fT : X ×S T → T for any base change

T → S with T noetherian.
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Suppose furthermore that every finitely generated A-module can be em-

bedded into a free A-module. Then the above two conditions are equivalent

to the following:

(iii) f is universally locally acyclic relative to K.

Proof.

(i)⇒ (ii) The second statement follows from the first one. Let us prove

the first statement. The problem is local with respect to S, so we may

assume that S is affine. Cover S′ by finitely many affine open subsets Uα.

Similar to 5.6.10, we have spectral sequences

Epq1 =
∏

α0,...,αp

H q
(
K ⊗LA f∗R(g|Uα0×S′ ···×S′Uαp )∗(L|Uα0×S′ ···×S′Uαp )

)
⇒ H p+q(K ⊗LA f∗Rg∗L)

Epq1 =
∏

α0,...,αp

Rq(g′|Uα0×S′ ···×S′Uαp×SX)∗

((g′∗K ⊗LA f ′∗L)|Uα0×S′ ···×S′Uαp×SX)

⇒ Rp+qg′∗(g
′∗K ⊗LA f ′∗L).

It suffices to prove

K ⊗LAf∗R(g|Uα0×S′ ···×S′Uαp )∗(L|Uα0×S′ ···×S′Uαp )

∼= R(g′|Uα0×S′ ···×S′Uαp×SX)∗((g′∗K ⊗LA f ′∗L)|Uα0×S′ ···×S′Uαp×SX).

We are thus reduced first to the case where S′ → S is separated, and

then to the case where S = SpecB and S′ = SpecB′ are affine. Write

B′ = lim−→λ
Bλ, where Bλ goes over the family of subalgebras of B′ finitely

generated over B. Let Sλ = SpecBλ, and fix notation by the following

diagram:

X ×S S′ π
′
λ→ X ×S Sλ g′λ→ X

f ′ ↓ fλ ↓ f ↓
S′ πλ→ Sλ

gλ→ S.

By 5.9.6, we have

L ∼= lim−→
λ

π∗λRπλ∗L.

Hence

g′∗K ⊗LA f ′∗L ∼= lim−→
λ

(g′∗K ⊗LA f ′∗π∗λRπλ∗L)

∼= lim−→
λ

(g′∗K ⊗LA π′∗λ f∗λRπλ∗L)

∼= lim−→
λ

π′∗λ (g
′∗
λ K ⊗LA f∗λRπλ∗L).
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By 5.9.6 again, we have

Rg′∗(g
′∗K ⊗LA f ′∗L) ∼= lim−→

λ

Rg′λ∗(g
′∗
λK ⊗LA f∗λRπλ∗L).

If (ii) holds in the case where g is affine of finite type, then we have

K ⊗LA f∗Rg∗L ∼= K ⊗LA f∗Rgλ∗Rπλ∗L ∼= Rg′λ∗(g
′∗
λ K ⊗LA f∗λRπλ∗L)

for all λ, and hence

K ⊗LA f∗Rg∗L ∼= Rg′∗(g
′∗K ⊗LA f ′∗L).

We are thus reduced to the case where B′ is a finitely generated B-algebra.

We then have an epimorphism

B[T1, . . . , Tn] → B′.

It defines a closed immersion

i : S′ → AnS = SpecB[T1, . . . , Tn].

Let

j : AnS ↪→ PnS = ProjB[T0, . . . , Tn]

be the canonical open immersion and let π : PnS → S be the projection.

We have g = πji. Fix notation by the following commutative diagram of

Cartesian squares:

X ×S S′ i
′→ AnX

j′→ PnX
π′→ X

f ′ ↓ f1 ↓ f2 ↓ f ↓
S′ i→ AnS

j→ PnS
π→ S.

Since π and i are proper, by 7.4.8, we have

K ⊗LA f∗Rπ∗Rj∗Ri∗L ∼= Rπ′∗(π
′∗K ⊗LA f∗2Rj∗Ri∗L),

j′∗π′∗K ⊗LA f∗1Ri∗L ∼= Ri′∗(i
′∗j′∗π′∗K ⊗LA f ′∗L).

Since f is universally strongly locally acyclic relative to K, f2 is strongly

locally acyclic relative to π′∗K. Applying 7.6.7 to the middle Cartesian

square in the above diagram, we get

π′∗K ⊗LA f∗2Rj∗Ri∗L ∼= Rj′∗(j
′∗π′∗K ⊗LA f∗1Ri∗L).

So we have

K ⊗LA f∗Rg∗L ∼= K ⊗LA f∗Rπ∗Rj∗Ri∗L
∼= Rπ′∗(π

′∗K ⊗LA f∗2Rj∗Ri∗L)
∼= Rπ′∗Rj

′
∗(j
′∗π′∗K ⊗LA f∗1Ri∗L)

∼= Rπ′∗Rj
′
∗Ri
′
∗(i
′∗j′∗π′∗K ⊗LA f ′∗L)

∼= Rg′∗(g
′∗K ⊗LA f ′∗L).
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This proves (ii).

(ii)⇒(i) Let S′ → S be a base change with S′ being noetherian and

let s′ ∈ S′. Then the strict localization S̃′s̄′ of S′ at s̄′ is noetherian. For

any algebraic geometric point γ : t → S̃′s̄′ , applying (ii) to the Cartesian

diagram

X ×S t γ
′

→ X ×S S̃′s̄′
ft ↓ ↓ f̃
t

γ→ S̃′s̄′ ,

we get a canonical isomorphism

K|X×SS̃′
s̄′
⊗LA f̃∗Rγ∗M ∼= Rγ′∗(γ

′∗(K|X×SS̃′
s̄′
)⊗LA f∗tM)

for any A-module M . Taking the restriction to the closed fiber Xs̄′ of

X ×S S̃′s̄′ , we get

K|Xs̄′ ⊗LAM ∼= (Rγ′∗(γ
′∗(K|X×S S̃′

s̄′
)⊗LAM))|Xs̄′ .

Hence X ×S S′ → S′ is strongly locally acyclic relative to K|X×SS′ .

Now suppose that every finitely generated A-module can be embedded

into a free A-module. (i)⇒(iii) is trivial. (iii)⇒(ii) can be proved by the

same argument as (i)⇒(ii). �

Suppose that f : X → S is locally acyclic relative to K ∈ obD+(X).

For any q, any s ∈ S and any algebraic geometric point j : t → S̃s̄, we

define the cospecialization homomorphism to be the composite

Hq(Xt,K|Xt) ∼= Hq(X ×S S̃s̄, Rj̃∗j̃∗K̃)

→ Hq(Xs̄, ĩ
∗Rj̃∗j̃∗K̃)

∼= Hq(Xs̄,K|Xs̄).
Proposition 7.6.10. Let A be a noetherian ring, S a noetherian scheme,

and f : X → S a morphism locally acyclic relative to A. Suppose that

every finitely generated A-module can be embedded into a free A-module,

and for any s ∈ S and any geometric point j : t → S̃s̄, cospecialization

homomorphisms

Hq(Xt, A) → Hq(Xs̄, A)

are bijective for all q. Then for any sheaf F of A-modules on S, the canon-

ical morphism

(Rf∗f∗F )s̄ → RΓ(Xs̄, (f
∗F )|Xs̄ )

is an isomorphism.
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Proof. It suffices to prove that the canonical morphism

(Rf̃∗f̃∗F̃ )s̄ → RΓ(Xs̄, (f̃
∗F̃ )|Xs̄)

is an isomorphism for any sheaf of A-modules F̃ on S̃s̄. We have

f̃∗j∗A ∼= f̃∗Rj∗A ∼= Rj̃∗A

by 7.6.6. Since cospecialization homomorphisms are isomorphisms, the

canonical morphism

RΓ(X ×S S̃s̄, Rj̃∗A) → RΓ(Xs̄, ĩ
∗Rj̃∗A)

is an isomorphism. So the canonical morphism

(Rf̃∗f̃∗F̃ )s̄ → RΓ(Xs̄, (f̃
∗F̃ )|Xs̄)

is an isomorphism for F̃ = j∗A. Since any sheaf of A-modules on S̃s̄ is

a direct limit of constructible sheaves of A-modules, and any constructible

sheaf of A-modules can be embedded into a sheaf of the form
⊕

j j∗A, we
have

(Rf̃∗f̃∗F̃ )s̄ ∼= RΓ(Xs̄, (f̃
∗F̃ )|Xs̄)

for any sheaf of A-modules F̃ on S̃s̄. (Confer the proof of 7.6.7.) �

7.7 Smooth Base Change Theorem

([SGA 4] XVI, [SGA 4 1
2 ] Arcata V 2, 3)

The main result of this section is the following.

Theorem 7.7.1. Let f : X → S be a smooth morphism, and let n be an

integer invertible on S. Then f is universally locally acyclic relative to Z/n.

Before proving this theorem, we give several applications.

Theorem 7.7.2 (Smooth base change theorem). Consider a Carte-

sian diagram

X ×S S′ g
′

→ X

f ′ ↓ ↓ f
S′

g→ S.

If f is smooth and g is quasi-compact and quasi-separated, then for any

integer n invertible on S and any L ∈ D+(S′, Z/n), we have

f∗Rg∗L ∼= Rg′∗f
′∗L.
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Proof. The problem is local with respect to S and X . We may assume

that X and S are affine. As in the beginning of the proof of 7.6.9, we may

assume that S′ is also affine. We can find an inverse system of noetherian

affine schemes {Sλ} such that S = lim←−λ Sλ and f : X → S can be descended

down to an inverse system of smooth morphisms fλ : Xλ → Sλ. Fix

notation by the following commutative diagram of Cartesian squares:

X ×S S′ g
′

→ X
u′
λ→ Xλ

f ′ ↓ ↓ f ↓ fλ
S′

g→ S
uλ→ Sλ.

By 7.7.1, each fλ is universally locally acyclic relative to Z/n. Note that

every finitely generated Z/n-module can be embedded into a free Z/n-

module. By 7.6.9, we have

f∗λR(uλg)∗L ∼= R(u′λg
′)∗f ′∗L.

By 5.9.6, we have

f∗Rg∗L ∼= f∗(lim−→
λ

u∗λR(uλg)∗L)

∼= lim−→
λ

f∗u∗λR(uλg)∗L

∼= lim−→
λ

u′∗λ f
∗
λR(uλg)∗L,

Rg′∗f
′∗L ∼= lim−→

λ

u′∗λR(u
′
λg
′)∗f ′∗L.

It follows that f∗Rg∗L ∼= Rg′∗f ′∗L. �

Corollary 7.7.3. Let K/k be an extension of a separably closed field, X

a quasi-compact quasi-separated k-scheme, n an integer relatively prime to

the characteristic of k, and F a sheaf of Z/n-modules on X. Then the

canonical homomorphisms

Hq(X,F ) → Hq(X ⊗k K,F |X⊗kK)

are isomorphisms.

Proof. By 5.7.2 (ii) and 5.9.2, we may assume that k and K are al-

gebraically closed. We have K = lim−→λ
Kλ, where Kλ are subfields of K

finitely generated over k. For each λ, choose a separating transcendental

basis {x1, . . . , xnλ} for Kλ over k. Then Kλ is finite and separable over

k(x1, . . . , xnλ). Fix notation by the following commutative diagram

X ⊗k K e′λ→ X ⊗k Kλ
g′λ→ X ⊗k k(x1, . . . , xnλ)

h′
U→ X ×k U g′U→ X

f ′ ↓ f ′
λ ↓ fλ ↓ fU ↓ f ↓

SpecK
eλ→ SpecKλ

gλ→ Spec k(x1, . . . , xnλ)
hU→ U

gU→ Spec k,
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where U goes over the set of nonempty affine open subsets of

Spec k[x1, . . . , xnλ ]. By the smooth base change theorem 7.7.2, we have

g∗UR
qf∗F ∼= RqfU∗g′∗UF .

By 5.9.6, we have

Rqfλ∗h′∗Ug
′∗
UF ∼= lim−→

U

h∗UR
qfU∗g′∗UF .

Since gλ is etale, we have

g∗λR
qfλ∗h′∗U g

′∗
UF ∼= Rqf ′λ∗g

′∗
λ h
′∗
Ug
′∗
UF .

Denote by g the morphism SpecK → Spec k and by g′ : X ⊗k K → X its

base change. By 5.9.6, we have

Rqf ′∗g
′∗F ∼= lim−→

λ

e∗λR
qf ′λ∗g

′∗
λ h
′∗
Ug
′∗
UF

∼= lim−→
λ

e∗λg
∗
λR

qfλ∗h′∗Ug
′∗
UF

∼= lim−→
λ

lim−→
U

e∗λg
∗
λh
∗
UR

qfU∗g′∗UF

∼= lim−→
λ

lim−→
U

e∗λg
∗
λh
∗
Ug
∗
UR

qf∗F

∼= g∗Rqf∗F .

Since k and K are algebraically closed, this is equivalent to saying that

Hq(X ⊗k K,F |X⊗kK) ∼= Hq(X,F ). �

Corollary 7.7.4. Let S be a scheme, π : AkS = SpecOS [T1, . . . , Tk] →
S the canonical morphism, n an integer invertible on S, and K ∈
obD+(S,Z/n). Then the canonical morphism

K → Rπ∗π∗K

is an isomorphism.

Proof. It suffices to treat the case where k = 1 by applying this special

case to each projection in the sequence

AkS → Ak−1S → · · · → A1
S → S.

For any s ∈ S, let k(s) be a separable closure of the residue field k(s). We

have Pic(A1
k(s)

) = 0 since k(s)[T ] is a unique factorization domain. By 7.2.9

(i), we have

Hq(A1
k(s)

,Z/n) ∼= Hq(A1
k(s)

,μn) ∼=
{
Z/n if q = 0,

0 if q ≥ 1.
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By 7.7.1, π is universally locally acyclic relative to Z/n. The cospecializa-

tion homomorphisms for Z/n are isomorphisms. By 7.6.10, for any sheaf

of Z/n-modules F on S, we have an isomorphism

(Rπ∗π∗F )s̄ → RΓ(A1
k(s)

, π∗F |A1

k(s)
).

But

Hq(A1
k(s)

, π∗F |A1

k(s)
) ∼=
{

Fs̄ if q = 0,

0 if q ≥ 1.

It follows that

F ∼= Rπ∗π∗F .

Hence

K ∼= Rπ∗π∗K

for any K ∈ obD+(S,Z/n). �

Corollary 7.7.5. Let f : X → S be a smooth morphism and let n be an

integer invertible on S. Then for any locally constant sheaf of Z/n-modules

F on X, f is universally strongly locally acyclic relative to F .

Proof. By 7.5.7 and 7.6.2, it suffices to show that f is universally locally

acyclic relative to F . Since base changes of smooth morphisms are smooth,

it suffices to prove that f is locally acyclic relative to F . For any s ∈ S,

and any algebraic geometric point j : t→ S̃s̄, fix notation by the following

diagram:

Vt = V ×S̃s̄ t
j′→ V

i′← Vs̄ = V ×S̃s̄ s̄
pt ↓ p ↓ ↓ ps̄

Xt = X ×S t j̃→ X ×S S̃s̄ ĩ← Xs̄ = X ×S s̄
ft ↓ f̃ ↓ ↓ fs̄
t
j→ S̃s̄

i← s̄.

where p : V → X ×S S̃s̄ is a morphism that will be used later. Set F̃ =

F |X×S S̃s̄ . We need to show that the canonical morphism

ĩ∗F̃ → ĩ∗Rj̃∗j̃∗F̃

is an isomorphism. For any x ∈ Xs̄, we need to check

(̃i∗F̃ )x̄ → (̃i∗Rj̃∗j̃∗F̃ )x̄
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is an isomorphism. Since F is locally constant, we can find an etale mor-

phism p : V → X ×S S̃s̄ whose image contains the point x so that F̃ |V is a

constant sheaf, say associated to a Z/n-module M . It suffices to show that

p∗s̄ ĩ
∗F̃ → p∗s̄ ĩ

∗Rj̃∗j̃∗F̃

is an isomorphism. We have

p∗s̄ ĩ
∗F̃ ∼= i′∗M,

p∗s̄ ĩ
∗Rj̃∗j̃∗F̃ ∼= i′∗p∗Rj̃∗j̃∗F̃

∼= i′∗Rj′∗p
∗
t j̃
∗F̃

∼= i′∗Rj′∗M.

So it suffices to show that the canonical morphism

i′∗M → i′∗Rj′∗M

is an isomorphism. Applying the smooth base change theorem 7.7.2 to the

smooth morphism f̃p, we get isomorphisms

(f̃ p)∗Rj∗M ∼= Rj′∗(ftpt)
∗M ∼= Rj′∗M.

So we have

(f̃s̄ps̄)
∗i∗Rj∗M ∼= i′∗(f̃ p)∗Rj∗M ∼= i′∗Rj′∗M.

Our assertion then follows from the fact that

M ∼= i∗Rj∗M.
�

We now prepare to prove 7.7.1.

Lemma 7.7.6. Let X
f1→ Y

f2→ S be morphisms of noetherian schemes,

let A be a noetherian ring, and let K ∈ obDb
tf(X,A). Suppose that f1

is universally strongly locally acyclic relative to K, and f2 is universally

strongly locally acyclic relative to A. Then f2f1 is universally strongly

locally acyclic relative to K. If either both f1 and f2 are of finite type, or

any finitely generated A-module can be embedded into a free A-module, then

we have the same conclusion under the assumption that f1 is universally

locally acyclic relative to K, and f2 is universally locally acyclic relative to

A.
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Proof. The second part follows from the first part by 7.6.2 and 7.6.9.

Consider a commutative diagram of Cartesian squares

X ×S S′ g
′

→ X

f ′
1 ↓ ↓ f1

Y ×S S′ g
′′
→ Y

f ′
2 ↓ ↓ f2
S′

g→ S

such that g is quasi-compact and quasi-separated. Since f1 is universally

strongly locally acyclic relative to K and f2 is universally strongly locally

acyclic relative to A, we have

K ⊗LA f∗1Rg′′∗f ′∗2 L ∼= Rg′∗(g
′∗K ⊗LA f ′∗1 f ′∗2 L),

f∗2Rg∗L ∼= Rg′′∗f
′∗
2 L

for any L ∈ obD+(S′, A) by 7.6.9. So we have

K ⊗LA f∗1 f∗2Rg∗L ∼= K ⊗LA f∗1Rg′′∗f ′∗2 L
∼= Rg′∗(g

′∗K ⊗LA f ′∗1 f ′∗2 L).
This remains true if we replace f1 and f2 by their base changes with respect

to any T → S with T noetherian. So f2f1 is universally strongly locally

acyclic relative to K by 7.6.9. �

Lemma 7.7.7. Let (A,m) be a local ring, k = A/m, and K a finite exten-

sion of k. Then there exists a local ring (B, n) and a local homomorphism

A → B such that B is finite and faithfully flat over A, and B/n is k-

isomorphic to K.

Proof. We may reduce to the case where K is a simple extension of k.

ThenK is k-isomorphic to k[t]/(f(t)) for some monic irreducible polynomial

f(t). Let F (t) ∈ A[t] be a monic polynomial whose reduction mod m is

f(t) and let B = A[t]/(F (t)). Then B is finite and faithfully flat over A.

Moreover, we have

B/mB ∼= k[t]/(f(t)) ∼= K.

So mB is a maximal ideal of B. Since B is finite over A, any maximal ideal

of B is above the unique maximal ideal m of A. So any maximal ideal of

B contains mB. It follows that mB is the only maximal ideal of B. So B

is local and its residue field is k-isomorphic to K. �
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Let f : X → S be a smooth morphism. Let us prove that f is universally

locally acyclic relative to Z/n, where n is an integer invertible on S. The

problem is local on S and on X . We may assume that S = SpecA is affine.

We have A = lim−→λ
Aλ, where Aλ are subrings of A finitely generated over

Z. We may assume that f can be descended down to a smooth morphism

fλ : Xλ → Sλ for some λ. It suffices to prove that fλ is universally locally

acyclic relative to Z/n. We are thus reduced to the case where S = SpecA

for some finitely generated Z-algebra A. We may assume that f can be

factorized as

X
j→ AkS → S,

where j is an etale morphism. It suffices to prove that AkS → S is universally

locally acyclic relative to Z/n. By induction on k and 7.7.6, we are reduced

to the case where k = 1. Let s ∈ S and let j : t → S̃s̄ be an algebraic

geometric point. Fix notation by the following diagram:

A1
k(t)

j̃→ A1
S̃s̄

ĩ← A1
k(s̄)

↓ ↓ ↓
t

j→ S̃s̄
i← s̄.

Let us prove that the canonical morphism

Z/n→ ĩ∗Rj̃∗Z/n

is an isomorphism, and note that this remains to be true if S is replaced

by a base S′ of finite type over S. It suffices to prove that for any Zariski

closed point x in A1
k(s̄), we have

Z/n ∼= (̃i∗Rj̃∗Z/n)x̄,

that is,

Hq(Ã1
S̃s̄,x̄

×S̃s̄ t,Z/n) ∼=
{
Z/n if q = 0,

0 if q ≥ 1,

where Ã1
S̃s̄,x̄

is the strict localization of A1
S̃s̄

at x̄. The residue field k(x) of

x in A1
k(s̄) is finite over k(s̄). By 7.7.7, there exists a local ring (B, n) finite

and faithfully flat over OS̃s̄,s̄ such that B/n is k(s̄)-isomorphic to k(x). B

is strictly henselian and isomorphic to the strict henselization at a point

of a scheme of finite type over Z. Replacing k(t) by a purely inseparable

algebraic extension, we may assume that the algebraic geometric point j :

t → S̃s̄ can be lifted to an algebraic geometric point t → SpecB. The

k(s̄)-isomorphism k(x) ∼= B/n defines an s̄-morphism

SpecB/n → A1
k(s̄)
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with image x. The composite

SpecB/n → A1
k(s̄) → A1

S̃s̄

and the morphism

SpecB/n → SpecB

induce a morphism

SpecB/n → A1
S̃s̄

×S̃s̄ SpecB = A1
B.

Let y ∈ A1
B be the image of this morphism. Then y lies above x, and

k(y) ∼= B/n. Note that B/n is a separably closed field and finite purely

inseparable over the separable closed field k(s̄). By 2.8.20, we have

Ã1
S̃s̄,x̄

×S̃s̄ SpecB ∼= Ã1
B,ȳ.

Hence

Ã1
S̃s̄,x̄

×S̃s̄ t ∼= Ã1
B,ȳ ×SpecB t.

We are thus reduced to proving

Hq(Ã1
B,ȳ ×SpecB t,Z/n) ∼=

{
Z/n if q = 0,

0 if q ≥ 1.

Since y ∈ A1
B lies above the closed point of SpecB, it lies in the closed

subscheme Spec (B/n)[T ] of A1
B = SpecB[T ]. Since k(y) ∼= B/n, y corre-

sponds to a prime ideal of (B/n)[T ] of the form (T − b̄) for some b̄ ∈ B/n.

Let b ∈ B be a lifting of b̄. Then y corresponds to the prime ideal of B[T ]

generated by n and T − b. Making the change of variable T �→ T − b, we

may assume that y corresponds to the prime ideal of B[T ] generated by n

and T . We are thus reduced to proving the following lemma.

Lemma 7.7.8. Let (B, n) be the strict henselization at a point of a scheme

of finite type over Z, n an integer invertible in B, S = SpecB, B{T }
the strict henselization of B[T ] at the prime ideal generated by n and T ,

X = SpecB{T }, and j : t→ S an algebraic geometric point. Then

Hq(Xt,Z/n) ∼=
{
Z/n if q = 0,

0 if q ≥ 1.

Proof. Let S′ be the normalization of {j(t)} with the reduced closed

subscheme structure. By [Matsumura (1970)] (31.H) Theorem 72, S′ is
finite over S, and hence is strictly local. It is also the strict localization at

a point of a scheme of finite type over Z. Replacing S by S′, we are reduced
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to the case where S is normal and t lies above the generic point of S. Then

X is also normal.

Xt is the inverse limit of an inverse system of smooth affine curves over

k(t). By 5.9.3 and 7.2.10, we have

Hq(Xt,Z/n) = 0

for any q ≥ 2. It remains to prove

H0(Xt,Z/n) ∼= Z/n, H1(Xt,Z/n) = 0.

As Z/n ∼= μn,Xt on Xt, it suffices to prove

H0(Xt,Z/n) ∼= Z/n, H1(Xt,μn,Xt) = 0.

We have k(t) = lim−→L
L, where L goes over the family of subfields of k(t)

finite over the fraction field of B. By 5.9.3, it suffices to prove

lim−→
L

H0(XL,Z/n) ∼= Z/n, lim−→
L

H1(XL,μn,XL) = 0,

where XL = X ⊗B L. By Kummer’s theory 7.2.1, we have a short exact

sequence

0 → Γ(XL,O
∗
XL)/Γ(XL,O

∗
XL)

n → H1(XL,μn,XL)

→ Ker (n : Pic(XL) → Pic(XL)) → 0.

For each L, let BL be the integral closure of B in L. It is also the strict

henselization at a point of a scheme of finite type over Z. We have

XL
∼= Spec (BL{T } ⊗BL L).

It suffices to prove the following:

(i) XL is connected and nonempty for each L.

(ii) lim−→L
(BL{T }⊗BL L)∗/((BL{T }⊗BL L)∗)n = 0, where (BL{T }⊗BL

L)∗ is the group of units of BL{T } ⊗BL L.
(iii) Ker (n : Pic(XL) → Pic(XL)) = 0 for each L.

Note that if A is a strictly henselian local ring, then A[T ]/TmA[T ] and

A{T }/TmA{T } are strictly henselian. We have

A{T }/TmA{T } ∼= (A[T ]/TmA[T ])⊗A[T ] A{T }.
By 2.8.20, A{T }/TmA{T } is isomorphic to the strict henselization of

A[T ]/TmA[T ]. It follows that

A[T ]/TmA[T ] ∼= A{T }/TmA{T },
and hence

lim←−
m

A{T }/TmA{T } ∼= A[[T ]].
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Since A{T } is noetherian and T lies in the maximal ideal of A{T }, the
canonical homomorphism

A{T } → lim←−
m

A{T }/TmA{T }

is injective. If A is an integral domain, then so are A[[T ]] and A{T }.
Since BL is an integral domain, BL{T } and hence BL{T } ⊗B L are

integral domains. In particular, XL = Spec (BL{T }⊗B L) is connected. It
is clear that BL{T } ⊗B L is a nontrivial ring. So XL is nonempty. This

proves (i).

To prove (ii), it suffices to show every unit of BL{T }⊗BLL is a product

of a unit in BL{T } and a nonzero element in L. This is because every unit

of the strictly local ring BL{T } has an n-th root by 2.8.3 (v), and every

nonzero element α in L has an n-th root in L[ n
√
α] ⊂ k(t).

Let f be a unit of BL{T } ⊗BL L. Then f is a product of an element

in BL{T } and a nonzero element in L. To prove that f is a product of a

unit in BL{T } and a nonzero element in L, it suffices to consider the case

where f ∈ BL{T } ∩ (BL{T } ⊗BL L)∗.
Let V be the subset of SpecBL of regular points. Since BL is the strict

henselization at a point of a scheme of finite type over Z, V is an open

subset of SpecBL ([Matsumura (1970)] Chapter 13). Since BL is normal,

V contains all the prime ideals of BL of height 1. Let U be the inverse

image of V under the canonical morphism

πL : SpecBL{T } → SpecBL.

Then U is regular. Let q be a prime ideal of BL{T } and let p = q ∩ BL.
By [Matsumura (1970)] (13.B) Theorem 19 (2), we have

ht q = ht p+ ht(q/pBL{T }).
In particular, we have ht q ≥ ht p. If ht q = 1, then ht p ≤ 1, and hence p

lies in V . So U contains all prime ideals of BL{T } of height 1. Let (f) be

the principle Weil divisor on U defined by f ∈ BL{T }, and let q be a prime

ideal of BL{T } of height 1 such that vq(f) 	= 0, where vq is the valuation

defined by q. As f is a unit in BL{T } ⊗BL L, q does not lie in the generic

fiber of πL : SpecBL{T } → SpecBL. So p 	= 0, and hence ht p = 1. Note

that pBL{T } is a prime ideal of BL{T } since

BL{T }/pBL{T } ∼= (BL/p){T }
and (BL/p){T } is an integral domain. So we must have q = pBL{T }. So

the divisor (f) is of the form

(f) =
∑

ht p=1

np{pBL{T }}.
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Let D be the Weil divisor
∑

ht p=1 np{p} on V , and let L (D) be the in-

vertible OV -module corresponding to D. Then π∗LL (D) is isomorphic to

the invertible OU -module corresponding to the divisor (f). So we have

π∗LL (D) ∼= OU . Let

iL : SpecBL → SpecBL{T }
be the morphism corresponding to the BL-algebra homomorphism

BL{T } → BL, T �→ 0.

We have πL ◦ iL = id. It follows that

L (D) ∼= i∗Lπ
∗
LL (D) ∼= i∗LOU ∼= OV .

So D is a principle divisor. Let f0 ∈ L∗ such that D = (f0). For any prime

ideal q of BL{T } of height 1, if p = q ∩BL 	= 0, then we have

vq(f) = vq(f0) = np.

If q ∩BL = 0, we have

vq(f) = vq(f0) = 0.

So vq(f) = vq(f0) for all prime ideals q of BL{T } of height 1. It follows

that

f

f0
,
f0
f

∈
⋂

ht q=1

(BL{T })q.

Since BL{T } is normal, we have

BL{T } =
⋂

ht q=1

(BL{T })q

by [Matsumura (1970)] (17.H) Theorem 38. So f
f0
, f0f ∈ BL{T }, and hence

f
f0

is a unit in BL{T }. We have f = f
f0

· f0 and f0 ∈ L∗. This proves (ii).
To prove (iii), let L be an invertible OXL -module satisfying L n ∼= OXL .

We need to show L ∼= OXL . We have

XL
∼= U ×V SpecL.

Since every Weil divisor on XL can be extended to a Weil divisor on U ,

the invertible OXL -module L can be extended to an invertible OU -module

LU . Replacing LU by LU ⊗ π∗Li
∗
L(L

−1
U ), we may assume

i∗LLU
∼= OV .
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Let DU be a divisor on U defining L n
U . Since L n ∼= OXL , the restriction

DU |XL of DU to XL is a principle divisor. So

DU |XL = (f)|XL
for some f in the fraction field of BL{T }. Replacing DU by DU − (f), we

may assume that L n
U is defined by a divisor DU satisfying DU |XL = 0.

Using the argument in the proof of (ii), we see that DU is of the form

DU =
∑

ht p=1

np{pBL{T }}.

Let MV be the invertible OV -module defined by the divisor
∑

ht p=1 np{p}.
Then

π∗LMV
∼= L n

U .

Since i∗LLU
∼= OV , we have

MV
∼= i∗Lπ

∗
LMV

∼= i∗LL n
U

∼= OV .

So

L n
U

∼= OU .

Let us prove that the conditions i∗LLU
∼= OV and L n

U
∼= OU imply that

LU
∼= OU .

For each nonnegative integer m, let

im : Spec(BL{T }/Tm+1BL{T }) → SpecBL{T }
be the canonical morphism and let Um = i−1m (U). We have seen that

BL{T }/Tm+1BL{T } ∼= BL[T ]/T
m+1BL[T ].

In particular, BL{T }/Tm+1BL{T } is a free BL-module of finite rank. Let

πm : Spec(BL{T }/Tm+1BL{T }) → SpecBL

be the canonical morphism. We have

Γ(Um,OUm) ∼= Γ(V, πm∗OSpec(BL{T}/Tm+1BL{T}))
∼= Γ(V, (BL{T }/Tm+1BL{T })∼).

Since BL is normal, we have

BL =
⋂

ht p=1

(BL)p
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by [Matsumura (1970)] (17.H) Theorem 38. Since V contains all prime

ideals of BL of height 1, we have

Γ(V,OSpecBL)
∼= Γ(SpecBL,OSpecBL).

Since (BL{T }/Tm+1BL{T })∼ is a free OSpecBL -module of finite rank, we

also have

Γ(V, (BL{T }/Tm+1BL{T })∼) ∼= Γ(SpecBL, (BL{T }/Tm+1BL{T })∼)
∼= BL{T }/Tm+1BL{T }.

We thus have

Γ(Um,OUm) ∼= BL{T }/Tm+1BL{T }.
Hence

H0(Um,O
∗
Um)

∼= (BL{T }/Tm+1BL{T })∗.
As BL{T }/Tm+1BL{T } is strictly henselian, units in BL{T }/Tm+1BL{T }
have n-th roots. Using the long exact sequence of cohomology groups as-

sociated to the Kummer short exact sequence in 7.2.1, we see that

H1(Um,μn,Um)
∼= ker(n : Pic(Um) → Pic(Um)).

On the other hand, U contains all prime ideals of BL{T } of height 1, and

BL{T } is normal. So we have

Γ(U,OU ) = BL{T }, H0(U,O∗U ) = BL{T }∗.
As BL{T } is strictly henselian, all units in BL{T } have n-th roots. It

follows that

H1(U,μn,U ) ∼= ker(n : Pic(U) → Pic(U)).

Note that i0 : Spec(BL{T }/TBL{T }) → SpecBL{T } can be identified

with iL : SpecBL → SpecBL{T }. As LU is an element in ker(n :

Pic(U) → Pic(U)) satisfying i∗0LU
∼= OU0 , it corresponds to an element

c ∈ H1(U,μn,U ) whose image under the canonical homomorphism

H1(U,μn,U ) → H1(U0,μn,U0)

is 0. Since

H1(Um,μn,Um)
∼= H1(U0,μn,U0)

by 5.7.2 (i), the image of c under the canonical homomorphism

H1(U,μn,U) → H1(Um,μn,Um)

is also 0. To prove LU
∼= OU , it suffices to prove c = 0. Taking into account

of 5.7.19, this follows from 7.7.9 below. �
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Lemma 7.7.9. Let B be a normal strictly henselian noetherian local ring,

V an open subset of SpecB containing all prime ideals of height 1, U

the inverse image of V under the canonical morphism π : SpecB{T } →
SpecB, Um the inverse images of U under the canonical closed immersions

SpecB[T ]/Tm+1B[T ] → SpecB{T }, and f : U ′ → U an etale covering

space. If the morphisms fm : U ′m → Um induced by f by base change are

trivial etale covering spaces for all m, then f : U ′ → U is a trivial etale

covering space.

Proof. Let j : U ↪→ SpecB{T } be the open immersion. By [Fu (2006)]

1.4.9 (iii), or [Hartshorne (1977)] II 5.8, or [EGA] I 9.2.1, j∗f∗OU ′ is a

quasi-coherent OSpecB{T}-module. Let

C = Γ(SpecB{T }, j∗f∗OU ′) = Γ(U ′,OU ′).

We then have

j∗f∗OU ′ ∼= C∼.

Since f is affine, we have

U ′ ∼= Spec f∗OU ′ ∼= Spec j∗j∗f∗OU ′ .

It follows that

U ′ ∼= U ×SpecB{T} SpecC.

To prove that f : U ′ → U is a trivial etale covering space, it suffices to

prove that SpecC → SpecB{T } is a trivial etale covering space. Since

B{T } is strictly henselian, it suffices to prove that C is finite and etale

over B{T }. As B[[T ]] is faithfully flat over B{T }, it suffices to prove that

C⊗B{T}B[[T ]] is finite and etale over B[[T ]]. Fix notation by the following

commutative diagram, where all squares are Cartesian:

U ′m
fm→ Um ↪→ SpecB[T ]/Tm+1B[T ]

↓ ↓ ↓
Û ′

f̂→ Û
ĵ
↪→ SpecB[[T ]]

g′ ↓ ↓ ↓ g
U ′

f→ U
j
↪→ SpecB{T }

↓ ↓
V ↪→ SpecB.

Since g : SpecB[[T ]] → SpecB{T } is flat, we have

g∗j∗f∗OU ′ ∼= ĵ∗f̂∗g′∗OU ′ ∼= ĵ∗f̂∗OÛ ′
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by [Fu (2006)] 2.4.10, or [Hartshorne (1977)] III 9.3, or [EGA] III 1.4.15.

Hence

g∗C∼ ∼= ĵ∗f̂∗OÛ ′ .

We thus have

Γ(SpecB[[T ]], g∗C∼) ∼= Γ(SpecB[[T ]], ĵ∗f̂∗OÛ ′),

that is,

C ⊗B{T} B[[T ]] ∼= Γ(Û ′,OÛ ′).

Similarly, we have

Γ(Û ,OÛ )
∼= B[[T ]].

Since fm are trivial etale covering spaces, we have canonical isomorphisms

Γ(U ′m,OU ′
m
) ∼= Γ(Um,OUm)

k,

where k is the degree of the finite etale morphism f . The canonical ho-

momorphisms Γ(Û ′,OÛ ′) → Γ(U ′m,OU ′
m
) thus induce a homomorphism of

B[[T ]]-algebras

Γ(Û ′,OÛ ′) → lim←−
k

Γ(Um,OUm)
k.

Let h : SpecB[T ]/Tm+1B[T ] → SpecB be the canonical morphism. Note

that

h∗OSpecB[T ]/Tm+1B[T ]
∼= (B[T ]/Tm+1B[T ])∼

is a free OSpecB-module. Since B is normal and V contains all prime ideals

of height 1, we have

Γ(V, h∗OSpecB[T ]/Tm+1B[T ]) ∼= Γ(SpecB, h∗OSpecB[T ]/Tm+1B[T ])

by [Matsumura (1970)] (17.H) Theorem 38. So we have

Γ(Um,OUm) ∼= B[T ]/Tm+1B[T ].

We thus have a homomorphism of B[[T ]]-algebras

Γ(Û ′,OÛ ′) → lim←−
k

(B[T ]/Tm+1B[T ])k = B[[T ]]k.

The sheaves ĵ∗f̂∗OÛ ′ and ĵ∗OÛ are quasi-coherent OSpecB[[T ]]-modules. We

have

ĵ∗f̂∗OÛ ′ ∼= Γ(SpecB[[T ]], ĵ∗f̂∗OÛ ′ )
∼ ∼= Γ(Û ′,OÛ ′)

∼,

ĵ∗OÛ ∼= Γ(SpecB[[T ]], ĵ∗OÛ )
∼ ∼= Γ(Û ,OÛ )

∼.
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The homomorphism of B[[T ]]-algebras Γ(Û ′,OÛ ′) → B[[T ]]k constructed

above thus defines a morphism of OSpecB[[T ]]-algebras

ĵ∗f̂∗OÛ ′ → (ĵ∗OÛ )
k.

Taking its restriction to the open subscheme Û of SpecB[[T ]], we get a

morphism of OÛ -algebras

f̂∗OÛ ′ → Ok
Û
.

Since f̂ is affine, we have

Û ′ ∼= Spec f̂∗OÛ ′ .

The above morphism thus defines k sections of the morphism f̂ : Û ′ → Û ,

and these sections are different since they induce different sections for fm :

U ′m → Um. It follows that f̂ is a trivial etale covering space and

Γ(Û ′,OÛ ′) ∼= Γ(Û ,OÛ )
k ∼= B[[T ]]k.

So we have

C ⊗B{T} B[[T ]] ∼= Γ(Û ′,OÛ ′) ∼= B[[T ]]k.

In particular, C ⊗B{T} B[[T ]] is finite and etale over B[[T ]]. This proves

our assertion. �

7.8 Finiteness of Rf!

([SGA 4] XIV 1, XVI 2, [SGA 4 1
2 ] Arcata IV 6, V 3.)

The main result of this section is the following.

Theorem 7.8.1. Let A be a torsion noetherian ring, S a scheme, and

f : X → Y an S-compactifiable morphism between noetherian schemes. For

any constructible sheaf of A-modules F on X, Rqf!F are constructible for

all q.

Proof. We only treat the case where nA = 0 for some integer n invertible

in S. This is enough for our application. The problem is local on Y . We

may assume that Y is affine. Let

S = {Z|Z ⊂ X, Z is closed, Rq(f |Z)!(F |Z) is not constructible for some q}.
If S is not empty, then there exists a minimal member Z in S . Put the

reduced closed subscheme structure on Z. Let U be an affine open subset

of Z. By 7.4.4 (iii), we have an exact sequence

· · · → Rq(f |U )!(F |U ) → Rq(f |Z)!(F |Z ) → Rq(f |Z−U )!(F |Z−U ) → · · · .
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By the minimality of Z, Rq(f |Z−U )!(F |Z−U ) are constructible for all q. If

we can prove Rq(f |U )!(F |U ) are constructible for all q, then Rq(f |Z)!(F |Z)
are constructible, which contradicts Z ∈ S . Thus S is empty and Rqf!F

are constructible. Therefore it suffices to treat the case where X and Y

are affine. Then f : X → Y can be factorized as the composite of a closed

immersion i : X → AnY and the projection π : AnY → Y . We have

Rqf!F ∼= Rqπ!i∗F .

Note that i∗F is constructible. So it suffices to consider the case where

f = π. Factorizing π as the composites of projections

AnY → An−1Y → · · · → A1
Y → Y

and applying 7.4.4 (ii), we are reduced to the case where f is the projection

π : A1
Y → Y .

Let F be a constructible sheaf of A-modules on A1
Y . By 5.8.5, we can

find a resolution

· · · → F−1 → F 0 → 0

of F such that each F i is of the form pi!A for some affine etale morphism

pi : Ui → A1
Y . By 7.4.6, we have a biregular spectral sequence

Epq1 = Rqπ!F
p ⇒ Rp+qπ!F .

To prove that Rqπ!F are constructible, it suffices to prove that Rqπ!F i

are constructible. We have

Rqπ!F
i = Rq(πpi)!A.

On the other hand, we have

R(πpi)!A ∼= A⊗LZ/n R(πpi)!Z/n.
We are thus reduced to prove that Rqf!Z/n are constructible for f = πp,

where p : U → A1
Y is an affine etale morphism. By 5.8.3, it suffices to

show that for any irreducible closed subset Z of Y , there exists a nonempty

open subset V of Z such that (Rqf!Z/n)|V are locally constant with finite

stalks. Put the reduced closed subscheme structure on Z. By the proper

base change theorem 7.4.4 (i), we have

(Rqf!Z/n)|Z ∼= RqfZ!Z/n, (Rqf!Z/n)|V ∼= RqfV !Z/n,

where fZ : f−1(Z) → Z and fV : f−1(V ) → V are the base changes of f .

Replacing Y by Z, we may assume that Y is an integral scheme and we

 E
ta

le
 C

oh
om

ol
og

y 
T

he
or

y 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 U
N

IV
E

R
SI

T
Y

 O
F 

SI
N

G
A

PO
R

E
 o

n 
11

/2
7/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



February 6, 2015 9:48 ws-book9x6 Etale Cohomology Theory... etale page 406

406 Etale Cohomology Theory

need to prove that there exists a nonempty open subset V of Y such that

(Rqf!Z/n)|V are locally constant with finite stalks.

Let K be the perfect closure of the function field of Y . Then UK =

U ×Y SpecK is a smooth curve over K. We can find a compactification

UK ↪→ UK → SpecK

of UK such that UK is a smooth projective curve over K, and UK −UK is

finite over K. By 1.10.9, 1.10.10 and 2.4.5, there exists an open subset V0
of Y , a finite surjective radiciel morphism W → V0, and a compactification

UW =W ×Y U ↪→ UW
g→W

of the base change fW : UW → W of f : U → Y inducing the above com-

pactification of UK such that g|UW−UW is finite and g is smooth projective

and pure of relative dimension 1. We have

Rq(g|UW−UW )!Z/n =

{
(g|UW−UW )∗Z/n if q = 0,

0 if q 	= 0.

By 5.8.11 (i), (g|UW−UW )∗Z/n is constructible. By 7.4.4 (iii), we have an

exact sequence

· · · → Rq−1(g|UW−UW )!Z/n→ RqfW !Z/n→ Rqg∗Z/n→ · · · .
If we can prove that Rqg∗Z/n are constructible, then RqfW !Z/n are con-

structible, that is, (Rqf!Z/n)|W are constructible. By 5.3.10 and 5.8.3,

there exists an open subset V of V0 such that (Rqf!Z/n)|V are locally con-

stant with finite stalks.

It remains to show that Rqg∗Z/n are constructible. First note that the

stalks of Rqg∗Z/n are finite. Indeed, for any t ∈W , we have

(Rqg∗Z/n)t̄ ∼= Hq(UW ⊗OW k(t),Z/n)

by the proper base change theorem 7.3.1. The groups Hq(UW ⊗OW

k(t),Z/n) are finite by 7.2.9 (ii). By 7.8.2 below and 5.8.9, Rqg∗Z/n are

locally constant, and hence constructible. �

Lemma 7.8.2. Let f : X → Y be a smooth proper morphism, and let

F be a locally constant sheaf of Z/n-modules on X for some n invertible

on Y . Then for all points s, t ∈ Y such that s ∈ {t}, the specialization

homomorphisms

(Rqf∗F )s̄ → (Rqf∗F )t̄

are isomorphisms for all q.
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Proof. Let Ỹs̄ be the strict localization of Y at s̄. Fix notation by the

following commutative diagram

Xt̄ = X ×Y t̄ j̃→ X ×Y Ỹs̄ ĩ← Xs̄ = X ×Y s̄
ft̄ ↓ f̃ ↓ ↓ fs̄
t̄
j→ Ỹs̄

i← s̄,

where vertical arrows are base changes of f . Let F̃ = F |X×Y Ỹs̄ . For each
q, we have a commutative diagram of canonical morphisms

Hq(Xt̄, j̃
∗F̃ ) ← Hq(X ×Y Ỹs̄, Rj̃∗j̃∗F̃ ) → Hq(Xs̄, ĩ

∗Rj̃∗j̃∗F̃ )

‖ ↑ ↑
Hq(Xt̄, j̃

∗F̃ ) ← Hq(X ×Y Ỹs̄, F̃ ) → Hq(Xs̄, ĩ
∗F̃ ).

By 7.7.5, we have an isomorphism

ĩ∗F̃
∼=→ ĩ∗Rj̃∗j̃∗F̃ .

So the rightmost vertical arrow is an isomorphism. By the proper base

change theorem 7.3.3, the two horizontal arrows in the square on the right

of the diagram are isomorphisms. The canonical morphism

Hq(X ×Y Ỹs̄, Rj̃∗j̃∗F̃ ) → Hq(Xt̄, j̃
∗F̃ )

is also an isomorphism. It follows that all arrows in the above diagram are

isomorphisms. By 5.9.5, we have

(Rqf∗F )s̄ ∼= Hq(X ×Y Ỹs̄, F̃ ),

and by the proper base change theorem 7.3.1, we have

(Rqf∗F )t̄ ∼= Hq(Xt̄, j̃
∗F̃ ).

Through these isomorphisms, the specialization homomorphism

(Rqf∗F )s̄ → (Rqf∗F )t̄

is identified with the canonical morphism

Hq(X ×Y Ỹs̄, F̃ ) → Hq(Xt̄, j̃
∗F̃ )

in the above diagram. So the specialization homomorphism is an isomor-

phism. �

Corollary 7.8.3. Let f : X → Y be a smooth proper morphism between

noetherian schemes, and let F be a constructible locally constant sheaf of

A-modules on X for some noetherian ring A such that nA = 0 for some

integer n invertible on Y . Then Rqf∗F are locally constant for all q.

Proof. Apply 7.8.1, 7.8.2 and 5.8.9. �
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Chapter 8

Duality

8.1 Extensions of Henselian Discrete Valuation Rings

Let R be a henselian discrete valuation ring, K its fraction field, m its

maximal ideal, and k = R/m its residue field. Denote by v : K∗ → Z the

valuation on K defined by R. Any element π in R with valuation 1 is called

a uniformizer. It is a generator of m. Elements with valuation 0 are units

of R. Every element in R can be uniquely written as uπn for some unit u

and some nonnegative integer n. So R is a unique factorization domain. In

particular, R is normal.

Let K ′ be a finite separable extension of K. Then the integral closure

R′ of R in K ′ is finite over R. It is also a henselian discrete valuation ring.

Denote by m′, k′, v′ the maximal ideal, the residue field, and the valuation of

R′. Define the ramification index of the extension K ′/K to be the integer

e such that mR′ = m′e. We have e = v′(π) for any uniformizer π of R.

Define the degree of inertia of the extension K ′/K to be f = [k′ : k].

Proposition 8.1.1. Notation as above. We have

(i) ef = [K ′ : K].

(ii) For any a′ ∈ K ′∗, we have v(NK′/K(a′)) = fv′(a′).

Proof.

(i) Using 1.1.3 (ii) and 1.2.9, one can show that R′ is free of finite rank

as an R-module. We have

R′ ⊗R K ∼= K ′.

So the rank of R′ as an R-module is [K ′ : K]. We have

R′ ⊗R R/m ∼= R′/m′e.

409
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The rank of R′/m′e as an R/m-module is equal to

e∑
i=1

rank(m′i−1/m′i) =
e∑
i=1

rank(R′/m′) = ef.

So we have [K ′ : K] = ef .

(ii) Both sides of the equality define homomorphisms of groups from

K ′∗ to Z. If a′ is a unit in R′, then NK′/K(a) is a unit in R, and both sides

are zero. Let π be a uniformizer of K. We have

v(NK′/K(π)) = v(π[K′:K]) = [K ′ : K] = ef = fv′(π).

Let π′ be a uniformizer K ′. We have π = u′π′e for some unit u′. The

equality holds for a′ = u′ and for a′ = π. So it holds for a′ = π′e and hence

for a′ = π′. As K ′∗ is generated by π′ and units in R′, the equality holds

for any a′ ∈ K ′∗. �

We say that the finite separable extension K ′/K is unramified if e = 1

and k′ is separable over k. This is equivalent to saying that SpecR′ →
SpecR is unramified. Note that SpecR′ → SpecR is always flat. So K ′/K
is unramified if and only if SpecR′ → SpecR is etale. We say K ′/K is

totally ramified if e = [K ′ : K]. This is equivalent to saying that f = 1,

that is, k′ = k. Let p be the characteristic of k. We say that K ′/K is

tamely ramified if e is relatively prime to p, and k′ is separable over k.

Lemma 8.1.2. Suppose R is a henselian discrete valuation ring with frac-

tion field K and residue field k.

(i) Let K ′/K be a finite unramified extension, K ′′/K a finite separable

extension, R′ (resp. R′′) the integral closure of R in K ′ (resp. K ′′), and
k′ (resp. k′′) the residue field of R′ (resp. R′′). Then the canonical map

HomR(R
′, R′′) → Homk(k

′, k′′)

is bijective.

(ii) For any finite separable extension k′ of k, there exists a finite un-

ramified extension K ′/K such that the residue field of the integral closure

R′ of R in K ′ is isomorphic to k′.

Proof.

(i) The set HomR(R
′, R′′) can be identified with the set of R-morphisms

HomSpecR(SpecR
′′, SpecR′). Identifying an R-morphism with its graph,

the set HomSpecR(SpecR
′′, SpecR′) can be identified with the set of sec-

tions of the projection Spec (R′ ⊗R R′′) → SpecR′′. Since K ′/K is un-

ramified, this projection is etale. Since R′′ is henselian, by 2.8.3 (vii) and
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2.3.10 (i), the set of sections of the projection Spec (R′ ⊗R R′′) → SpecR′′

is in one-to-one correspondence with the set of sections of the projec-

tion Spec (k′ ⊗k k′′) → Spec k′′. The set of sections of the projection

Spec (k′ ⊗k k′′) → Spec k′′ can be identified with the set Homk(k
′, k′′).

Our assertion follows.

(ii) We have k′ ∼= k[t]/(f0(t)) for some monic irreducible polynomial

f0(t) ∈ k[t] such that f0(t) and f ′0(t) are relatively prime. Let f(t) ∈ R[t]

be a monic polynomial lifting f0(t). Applying Nakayama’s lemma to the

R-module R[t]/(f(t)), one can show that the ideal generated by f(t) and

f ′(t) is R[t]. By 2.3.3, R[t]/(f(t)) is etale over R. Since f0(t) is irreducible,

f(t) is irreducible as a polynomial in R[t]. By the Gauss lemma, f(t) is

irreducible as a polynomial in K[t]. Let K ′ = K[t]/(f(t)), let R′ be the

integral closure of R in K, and let k(R′) be the residue field of R′. Then

K ′ is a field finite and separable over K. The R-algebra homomorphism

R[t]/(f(t)) → R′

induces a k-homomorphism

k[t]/(f0(t)) → k(R′).

It follows that

[k[t]/(f0(t)) : k] ≤ [k(R′) : k].

But we have

[K ′ : K] = deg(f) = [k[t]/(f0(t)) : k].

So we have

[K ′ : K] ≤ [k(R′) : k].

Combined with 8.1.1 (i), we see thatK ′/K must be an unramified extension

and [K ′ : K] = [k(R′) : k]. It has the required property. �

Let R be a henselian discrete valuation ring with fraction field K and

residue field k. Fix a separable closure K of K. By 8.1.2, for any finite

separable extension k′/k, there exists a finite unramified extension K ′ of
K contained in K such that the residue field of the integral closure R′ of
R in K ′ is k-isomorphic to k′. Let

K̃ = lim−→
K′/K

K ′, R̃ = lim−→
K′/K

R′,

whereK ′ goes over the set of all finite unramified extensions ofK contained

in K. Then the valuation v : K∗ → Z can be uniquely extended to a
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valuation v : K̃∗ → Z, R̃ is the corresponding discrete valuation ring, and

the residue field k̃ of R̃ is a separable closure of k. Moreover, K̃ is an

(infinite) galois extension of K, and we have a canonical isomorphism

Gal(K̃/K) ∼= Gal(k̃/k).

We call I = Gal(K/K̃) the inertia subgroup of Gal(K/K). It is the kernel

of the canonical epimorphism

Gal(K/K) → Gal(k̃/k).

Suppose that U → SpecR is a separated etale morphism of finite type

such that U is connected. Then by 2.9.2, U is an open subscheme of SpecR′,
where R′ is the integral closure of R in the function field of U . As SpecR′

consists of only two points, if U → SpecR is surjective, then the open

immersion U ↪→ SpecR′ is also surjective, and hence U ∼= SpecR′. Suppose
that A is a local essentially etale R-algebra. The above discussion shows

that the fraction field K(A) of A is a finite unramified extension of K and

A is the integral closure of R in K(A). So R̃ = lim−→K′/K
R′ is the strict

henselization of R with respect to the separable closure k̃ of k.

Proposition 8.1.3. Suppose that R is a strictly henselian discrete valua-

tion ring with fraction field K. Let π be a uniformizer of K, and let p be

the characteristic of the residue field of R.

(i) For any positive integer n relatively prime to p, K[t]/(tn − π) is a

finite tamely ramified extension of K. Any finite tamely ramified extension

of K is isomorphic to K[t]/(tn − π) for some positive integer n relatively

prime to p.

(ii) Let K ′/K be a finite separable extension. There exists an extension

K ′′ of K contained in K ′ such that K ′′/K is tamely ramified and [K ′ : K ′′]
is a power of p.

Proof.

(i) By the Eisenstein criterion, tn−π is an irreducible polynomial inK[t].

So K[t]/(tn−π) is a field. One can verify that the canonical homomorphism

R[t]/(tn − π) → K[t]/(tn − π)

is injective. Hence R[t]/(tn − π) is an integral domain. It is finite over R.

If m′ is a maximal ideal of R[t]/(tn − π), then m′ lies above the maximal

ideal of R. Hence π ∈ m′. Since tn = π in R[t]/(tn − π), we have t ∈ m′.
On the other hand, we have

R[t]/(tn − π, t) ∼= R[t]/(π, t) ∼= R/πR.
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Hence R[t]/(tn − π) is a local integral domain and its maximal ideal is

generated by t. This implies that R[t]/(tn − π) is a discrete valuation ring

and hence integrally closed. It is the integral closure of R in K[t]/(tn− π).

It has the same residue field as R, and the ramification index is n. So

K[t]/(tn − π) is a tamely ramified extension of K.

Suppose that K ′/K is a finite tamely ramified extension. Since the

residue field of R is separably closed, K ′/K is a totally ramified extension.

Let n = [K ′ : K], let R′ be the integral closure of R in K ′, and let π′ be
a uniformizer of R′. The valuation of π in K ′ is n. We have π = uπ′n for

some unit u in R′. Since K ′/K is tamely ramified, n is relatively prime

to p. Let m′ be the maximal ideal of R′ and let k′ = R′/m′. Then k′ is
isomorphic to the residue field of R and hence is separably closed. So tn−u
mod m′ is a product of distinct linear polynomials in k′[t]. By 2.8.3 (v),

tn − u is a product of linear polynomials in R′[t]. So u has an n-th root
n
√
u in R′. Replacing π′ by π′ n

√
u, we may assume π = π′n. Since tn − π is

an irreducible polynomial in K[t], it is the minimal polynomial of π′. We

thus have [K[π′] : K] = n. Hence

K ′ = K[π′] ∼= K[t]/(tn − π).

(ii) Let R′ be the integral closure of R in K ′, let k and k′ be the residue
fields of R and R′, respectively, let e be the ramification index and let

f be the degree of inertia. Since k is separably closed, k′/k is a purely

inseparable extension. Hence f = [k′ : k] is a power of p. Write e = e′pi

for some nonnegative integer i and some integer e′ relatively prime to p.

Let π′ be a uniformizer of R′. We have π = uπ′e for some unit u in R′.
As k′ is separably closed, the same argument as the proof of (i) shows that
e′√u exists in R′. We have π = ( e

′√
uπ′p

i

)e
′
. So e′√π exists in R′. Let

K ′′ = K[ e
′√
π]. Then K ′′/K is tamely ramified. We have

[K ′ : K ′′] =
[K ′ : K]

e′
=
ef

e′
= pif.

So [K ′ : K ′′] is a power of p. �

Let R be a strictly henselian discrete valuation ring, K its fraction field,

K a separable closure of K, π a uniformizer of R, and p the characteristic

of the residue field of R. For each positive integer n relatively prime to p,

choose an n-th root n
√
π of π in K. Let

Kt =
⋃

(n,p)=1

K[ n
√
π].
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Then by 8.1.3, P = Gal(K/Kt) is a pro-p-group. We call P the wild inertia

subgroup of I. Let I = Gal(K/K). The canonical homomorphism

I → lim←−
(n,p)=1

μn(K), σ �→
(
σ( n

√
π)

n
√
π

)
induces an isomorphism

I/P ∼= lim←−
(n,p)=1

μn(K),

where

μn(K) = {ζ ∈ K|ζn = 1}
is the group of n-th roots of unity in K. Note that by 2.8.3 (v), μn(K) is

isomorphic to the group μn(k) = {ζ ∈ k|ζn = 1} of n-th roots of unity in

k.

Proposition 8.1.4. Let R be a strictly henselian discrete valuation ring

with fraction field K and residue field k, let K be a separable closure of K,

and let I = Gal(K/K). For any torsion I-module M with torsion relatively

prime to p = char k, we have canonical isomorphisms

Hq(I,M) ∼=
⎧⎨⎩
M I if q = 0,

MI(−1) if q = 1,

0 if q 	= 0, 1

where for any torsion abelian group A with torsion relatively prime to p,

we set

A(−1) = Hom( lim←−
(n,p)=1

μn(k), A).

Proof. Let P be the wild inertia subgroup. Taking P -invariant is an

exact functor in the category of P -modules with torsion prime to p, and we

have

MP ∼=MP

for any module M in this category. Indeed, suppose that

0 →M ′ →M →M ′′ → 0

is an exact sequence in this category. For any x′′ ∈ M ′′P , let x ∈ M be a

preimage of x′′ in M . Then

1

#(P/Px)

∑
gPx∈P/Px

gx
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is a preimage of x′′ in MP , where Px is the stabilizer of x in P . Here

multiplication by 1
#(P/Px)

makes sense sinceM has torsion relatively prime

to p so that multiplication by p induces an isomorphism on M . It follows

that the sequence

0 →M ′P →MP →M ′′P → 0

is exact. The homomorphism

M →M, x �→ 1

#(P/Px)

∑
gPx∈P/Px

gx

induces a homomorphism

MP →MP .

One can show it is the inverse of the homomorphism MP → MP induced

by idM . So MP ∼=MP . Therefore the Hochschild–Serre spectral sequence

Euv2 = Hu(I/P,Hv(P,M)) ⇒ Hu+v(I,M)

degenerates, and we have

Hq(I,M) ∼= Hq(I/P,MP ) ∼= Hq(I/P,MP ).

By 4.3.9, we have

H0(I/P,MP ) ∼= (MP )I/P ∼=M I ,

H1(I/P,MP ) ∼= (MP )I/P (−1) ∼=MI(−1),

Hq(I/P,MP ) = 0 for q 	= 0, 1. �

At the end of this section, we give a proof of 7.1.6, which relies only on

8.1.1.

Proof of 7.1.6. Since X is smooth over k, the function field K(X) is

separably generated over k. So K(X) can be regarded as a finite separable

extension of the rational function field k(t). SinceX is proper, the extension

k(t) ↪→ K(X) defines a finite k-morphism

φ : X → P1
k,

and X can be identified with the normalization of P1
k in K(X). For any

Zariski closed point s ∈ |P1
k| in P1

k, choose an affine open neighborhood

V = SpecA of s in P1
k. Then φ−1(V ) ∼= SpecB for some finite A-algebra

B. For any Zariski closed point x ∈ |X | in X , denote by vx (resp. vs)

the valuation of K(X) (resp. k(t)) corresponding to the point x (resp. s),

denote by k(x) (resp. k(s)) the residue field of OX,x (resp. OP1
k,s

), denote
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by ÕX,x (resp. ÕP1
k,s

) the henselization of OX,x (resp. OP1
k,s

), and denote

by K(ÕX,x) (resp. K(ÕP1
k
,s)) the fraction field of ÕX,x (resp. ÕP1

k
,s). By

2.8.12, we have

B ⊗A ÕP1
k,s

∼=
∏

x ∈ |X|
φ(x) = s

ÕX,x.

So we have

K(X)⊗k(t) K(ÕP1
k,s

) ∼=
∏

x ∈ |X|
φ(x) = s

K(ÕX,x).

For any g ∈ K(X), we thus have

NK(X)/k(t)(g) =
∏

x ∈ |X|
φ(x) = s

NK(ÕX,x)/K(Õ
P1
k
,s
)(g).

By 8.1.1 (ii), we have

vs(NK(X)/k(t)(g)) =
∑

x ∈ |X|
φ(x) = s

[k(x) : k(s)]vx(g).

It follows that

deg(g) = deg
( ∑
x∈|X|

vx(g)x
)

=
∑
x∈|X|

[k(x) : k]vx(g)

=
∑
s∈|P1

k|

∑
x ∈ |X|
φ(x) = s

[k(s) : k][k(x) : k(s)]vx(g)

=
∑
s∈|P1

k|
[k(s) : k]vs(NK(X)/k(t)(g))

= deg(NK(X)/k(t)(g)).

To prove deg(g) = 0, it suffices to show deg(NK(X)/k(t)(g)) = 0. We are

thus reduced to the case where X = P1
k. In this case, any nonzero g ∈ k(t)

can be uniquely written as

g = λ

n∏
i=1

qkii ,

where λ ∈ k, qi ∈ k[t] are monic irreducible polynomials, and ki are nonzero

integers. Let di be the degrees of the polynomials qi. A Zariski closed point

 E
ta

le
 C

oh
om

ol
og

y 
T

he
or

y 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 C

H
IN

E
SE

 U
N

IV
E

R
SI

T
Y

 O
F 

H
O

N
G

 K
O

N
G

 o
n 

10
/1

9/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



February 6, 2015 9:48 ws-book9x6 Etale Cohomology Theory... etale page 417

Duality 417

s in P1
k is either the point ∞, in which case −v∞(g) is the degree of the

polynomial g, or a Zariski closed point in A1
k corresponding to the maximal

ideal defined by a monic irreducible polynomial q, in which case we have

vs(g) =

{
0 if q 	= qi for all i,

ki if q = qi.

It follows that

deg(g) =
∑
s∈|P1

k|
[k(s) : k]vs(g)

=

k∑
i=1

diki + v∞(g)

= 0.

This proves our assertion. �

8.2 Trace Morphisms

([SGA 4] XVIII 1.1, 2.)

In this section, we fix a scheme S and an integer n invertible on S. For any

S-scheme X , we denote the sheaf μn,X defined in 7.2.1 by μn for simplicity.

For any integer d and any sheaf F of Z/n-modules on X , define

Z/n(d) =

{
μ⊗dn if d ≥ 0,

H om
(
μ
⊗(−d)
n ,Z/n

)
if d ≤ 0,

F (d) = F ⊗ Z/n(d).

Let f : X → Y be a smooth S-compactifiable morphism pure of relative

dimension d for some integer d. In this section, we define a canonical

morphism

R2df!f
∗F (d) → F ,

called the trace morphism denoted by TrX/Y or Trf .

Suppose that f : X → Y is etale. Then f! is left adjoint to f∗. We

define Trf : f!f
∗F → F to be the adjunction morphism.

Suppose that X is a smooth irreducible projective curve over an alge-

braically closed field k. By 7.2.9, we have a canonical isomorphism

H2(X,μn) ∼= Pic(X)/nPic(X).

The homomorphism deg : Pic(X) → Z induces an isomorphism

Pic(X)/nPic(X) ∼= Z/n.
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We define TrX/k : H2(X,μn) → Z/n to be the composite

H2(X,μn) ∼= Pic(X)/nPic(X)
deg→ Z/n.

Suppose that X is a smooth irreducible curve over an algebraically

closed field, and let X be its smooth compactification. We have an ex-

act sequence

· · · → H1
c (X−X,μn) → H2

c (X,μn) → H2(X,μn) → H2
c (X−X,μn) → · · · .

Since X −X is finite, we have

H1
c (X −X,μn) = H2

c (X −X,μn) = 0.

So we have an isomorphism

H2
c (X,μn)

∼= H2(X,μn).

We define TrX/k : H2
c (X,μ) → Z/n to be the composite of this isomorphism

and TrX/k.

Suppose that X is a smooth curve over an algebraically closed field. Let

X1, . . . , Xm be its irreducible components. We have

H2
c (X,μn) =

⊕
i

H2
c (Xi,μn)

We defined TrX/k : H2
c (X,μn) → Z/n to be the sum of TrXi/k.

Let Y be a smooth curve over an algebraically closed field k and let

f : X → Y be an etale morphism. TrX/Y : f!μn → μn induces a homo-

morphism H2
c (Y, f!μn) → H2

c (Y,μn). Let SX/Y be the composite

H2
c (X,μn)

∼= H2
c (Y, f!μn) → H2

c (Y,μn).

Lemma 8.2.1. Let Y be a smooth curve over an algebraically closed field k

and let f : X → Y be an etale morphism. We have TrY/k ◦ SX/Y = TrX/k.

Proof. We may reduce to the case where X and Y are irreducible. Let

X and Y be the smooth compactifications of X and Y , respectively, and

let f̄ : X → Y be the morphism induced by f . Then f̄ is finite and flat.

(The flatness can be proved using 1.1.3 (ii).) So f̄∗OX is a locally free OY -

module of finite rank. If V is an open subset of Y such that (f̄∗OX)|V is a

free OY |V -module, then multiplication by a section s ∈ (f̄∗OX)(V ) defines

an endomorphism on the free OY (V )-module (f̄∗OX)(V ). Its determinant

det(s) is a section in OY (V ). We thus get a morphism of sheaves

det : f̄∗O∗X → O∗
Y
.
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Applying this construction after etale base changes, we can define a mor-

phism of etale sheaves

det : f̄∗O∗Xet
→ O∗

Y et
.

Consider the diagram

0 → f̄∗μn → f̄∗O∗Xet

n→ f̄∗O∗Xet
→ 0

TrX/Y ↓ ↓ det ↓ det

0 → μn → O∗
Y et

n→ O∗
Y et

→ 0,

where the horizontal lines are exact by Kummer’s theory and the fact that

f̄ is finite, and the morphism

TrX/Y : f̄∗μn → μn

is defined to be the morphism that makes the diagram commute. More

explicitly, for any y ∈ Y , choose a separable closure k(y) of k(y). For any

x ∈ X ⊗OY
k(y), let ÕX,x̄ (resp. ÕY ,ȳ) be the strict henselization of X

(resp. Y ) at x̄ (resp. ȳ). We have

(f̄∗μn)ȳ ∼= Γ(X ⊗OY
ÕY ,ȳ,μn)

∼=
⊕

x∈X⊗O
Y
k(y)

Γ(Spec ÕX,x̄,μn).

For any (λx) ∈
⊕

x∈X⊗O
Y
k(y) Γ(Spec ÕX,x̄,μn), we have

TrX/Y ((λx)) =
∏

x∈X⊗O
Y
k(y)

λnxx ,

where nx = rankÕY ,ȳ
ÕX,x̄. Let i : X ↪→ X and j : Y ↪→ Y be the open

immersions. One can show the diagram

j!f!μn ∼= f̄∗i!μn
f̄∗(Tri)→ f̄∗μn

j!(TrX/Y ) ↘ ↓ ↓ TrX/Y

j!μn
Trj→ μn

commutes by showing it commutes on stalks. Applying H2(Y ,−) to this

diagram, we get a commutative diagram

H2(Y , j!f!μn) ∼= H2(Y , f̄∗i!μn) → H2(Y , f̄∗μn)
↘ ↓ ↓

H2(Y , j!μn) → H2(Y ,μn).

So we have a commutative diagram

H2
c (X,μn)

∼=→ H2(X,μn)

SX/Y ↓ ↓ SX/Y
H2
c (Y,μn)

∼=→ H2(Y ,μn),
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where SX/Y is the composite

H2(X,μn) ∼= H2(Y , f̄∗μn)
H2(Y ,TrX/Y )→ H2(Y ,μn).

Consider the diagram

H2
c (X,μn)

∼=→ H2(X,μn)

TrX/k ↘ ↙ TrX/k

SX/Y ↓ Z/n ↓ SX/Y
TrY/k ↗ ↖ TrY /k

H2
c (Y,μn)

∼=→ H2(Y ,μn).

We need to prove that the triangle on the left commutes. We have seen

that the outer loop commutes. So it suffices to show that the triangle on

the right commutes. By the definition of SX/Y and Kummer’s theory, we

have a commutative diagram

· · · → Pic(X) → H2(X,μn) → 0

det ↓ ↓ SX/Y
· · · → Pic(Y ) → H2(Y ,μn) → 0,

where det : Pic(X) → Pic(Y ) coincides with the homomorphism

H1(Y , f̄∗O∗Xet
)
H1(Y ,det)→ H1(Y ,O∗

Y et
)

through the identifications

Pic(X) ∼= H1(Y , f̄∗O∗Xet
), Pic(Y ) ∼= H1(Y ,O∗

Y et
).

So it suffices to prove that the following diagram commutes:

Pic(X)

↘ deg

det ↓ Z.

↗ deg

Pic(Y )

Let L be an invertible OX -module. We claim that L is defined by a

Cartier divisor of the form (si, f̄
−1(Vi)), where si are nonzero elements in

the function field K(X) of X, {Vi} is an open covering of Y , and si
sj

∈
O∗
X
(f̄−1(Vi)∩ f̄−1(Vj)). To see that such a Cartier divisor exists, it suffices

to find an open covering {Vi} of Y such that L |f̄−1(Vi) is free for each i. Let

us prove that for any closed point y in Y , there exists an open neighborhood

V of y in Y such that L |f̄−1(V ) is free. Let W = SpecA be an affine open

neighborhood of y in Y . Then

f̄−1(W ) = SpecB
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for some finite A-algebra B. Let L be a B-module such that

L |f̄−1(W )
∼= L∼,

and let m be the maximal ideal of A corresponding to y. Since L∼ is invert-

ible and f̄−1(y) ∼= Spec (B⊗AA/m) is discrete, we can find an isomorphism

of (B ⊗A A/m)-modules

B ⊗A A/m
∼=→ L⊗A A/m.

Choose t ∈ L so that t ⊗ 1 ∈ L ⊗A A/m is the image of 1 in B ⊗A A/m.

Let φ : B → L be the B-module homomorphism mapping 1 to t. By

Nakayama’s lemma, the homomorphism

φ⊗ idAm : B ⊗A Am → L⊗A Am

is surjective. So there exists s ∈ A−m such that the homomorphism

φ⊗ idAs : B ⊗A As → L⊗A As
is surjective. Let V = D(s). Then φ induces an epimorphism

Of̄−1(V ) → L |f̄−1(V ).

It is necessarily an isomorphism since its kernel is torsion free and the rank

of the stalk of the kernel at the generic point of f̄−1(V ) is 0. This proves

our assertion.

Let (si, f̄
−1(Vi)) be a Cartier divisor as above. det(L ) is defined by the

Cartier divisor (det(si), Vi). To prove deg(det(L )) = deg(L ), it suffices to

show

vy(det(s)) =
∑

x∈f̄−1(y)

vx(s)

for any s ∈ K(X)∗ and any closed point y of Y , where vy (resp. vx) is

the valuation of the function field K(Y ) (resp. K(X)) of Y (resp. X) at

y (resp. x). Making the base change Spec ÔY,y → Y , our assertion follows

from 8.1.1 (ii).

Given an invertible OX -module L on a scheme X , denote by c1(L ) the

image of L under the canonical homomorphism

Pic(X) → H2(X,μn)

defined via Kummer’s theory. For any morphism f : X → Y , denote by

c1X/Y (L ) the image of c1(L ) under the canonical homomorphism

H2(X,μn) → Γ(Y,R2f∗μn).

Lemma 8.2.2. Let f̄ : P1
Y → Y be the projection. The morphism

Z/n→ R2f̄∗μn
mapping 1 to c1

P1
Y
/Y

(OP1
Y /Y

(1)) is an isomorphism.
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Proof. Using the proper base change theorem 7.3.1, we may reduce to

the case where Y = Spec k for an algebraically closed field k. We have a

canonical isomorphism

Pic(P1
k)/nPic(P

1
k)

∼= H2(P1
k,μn)

and deg : Pic(P1
k) → Z induces an isomorphism

Pic(P1
k)/nPic(P

1
k)

∼= Z/n.

Our assertion follows from the fact that OP1
k
(1) has degree 1. �

We define TrP1
Y /Y

: R2f̄∗μn → Z/n to be the inverse of the isomorphism

in 8.2.2. Let j : A1
Y → P1

Y be the open immersion and let f : A1
Y → Y be

the projection. Define TrA1
Y /Y

: R2f!μn → Z/n to be the composite

R2f!μn ∼= R2f̄∗j!μn
R2f̄∗(Trj)→ R2f̄∗μn

Tr
P1
Y
/Y→ Z/n.

Note that TrA1
Y /Y

commutes with any base change.

Let g : X → Y and h : Y → Z be two smooth and S-compactifiable

morphisms pure of relative dimensions d and e, respectively. Then f = hg is

smooth, S-compactifiable, and pure of relative dimension d+e. By 7.4.5, we

have Rqf!F = 0 (resp. Rqg!F = 0, resp. Rqh!F = 0) for any q > 2(d+ e)

(resp. q > 2d, resp. q > 2e) and any torsion sheaf F on X (resp. X , resp.

Y ). Suppose that we have defined

TrX/Y : R2dg!Z/n(d) → Z/n, TrY/Z : R2eh!Z/n(e) → Z/n.

They induce morphisms

TrX/Y : Rg!Z/n(d)[2d] → Z/n, TrY/Z : Rh!Z/n(e)[2e] → Z/n

in the derived categories D(Y,Z/n) and D(Z,Z/n), respectively. We have

Z/n(d+ e) ∼= Z/n(d)⊗LZ/n g∗Z/n(e).
By the projection formula 7.4.7, we have

Rg!
(
Z/n(d)⊗LZ/n g∗Z/n(e)

) ∼= Rg!Z/n(d)⊗LZ/n Z/n(e).

We define

TrX/Z : Rf!Z/n(d+ e)[2(d+ e)] → Z/n

to be the composite

Rf!Z/n(d+ e)[2(d+ e)] ∼= Rh!Rg!
(
Z/n(d)⊗LZ/n g∗Z/n(e)

)
[2(d+ e)]

∼= Rh!
(
Rg!Z/n(d)[2d]⊗LZ/n Z/n(e)[2e]

)
TrX/Y→ Rh!

(
Z/n⊗LZ/n Z/n(e)[2e]

)
∼= Rh!Z/n(e)[2e]

TrY/Z→ Z/n.
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We define

TrX/Z : Rf
2(d+e)
! Z/n(d+ e) → Z/n

to be the morphism induced by TrX/Z : Rf!Z/n(d + e)[2(d + e)] → Z/n.

We denote the above way of defining TrX/Z by

TrX/Z = TrY/Z " TrX/Y .
Next we define TrAdY /Y . This has been done for d = 0, 1. We can

factorize the projection AdY → Y as the composite of projections

AdY → Ad−1Y → · · · → A1
Y → Y,

where for each i, AiY → Ai−1Y is the projection

SpecOY [t1, . . . , ti] → SpecOY [t1, . . . , ti−1]

to the first i− 1 coordinates. We define

TrAdY /Y = TrA1
Y /Y

" · · · " Tr
AdY /A

d−1
Y

,

where for each i, we define

Tr
AiY /A

i−1
Y

= Tr
A1

A
i−1
Y

/Ai−1
Y
.

If an S-compactifiable morphism f : X → Y can be factorized as

X
g→ AdY → Y

with g being an etale Y -morphism, then we define

TrX/Y = TrAdY /Y " Trg.
The following lemma shows that TrX/Y is independent of the choice of the

factorization.

Lemma 8.2.3. Let f : X → Y be an S-compactifiable morphism, let

x1, . . . , xd ∈ Γ(X,OX) be a sequence such that the Y -morphism

g : X → AdY = SpecOY [t1, . . . , td]

corresponding to the OY -algebra homomorphism

g : OY [t1, . . . , tn] → f∗OX , ti �→ xi

is etale, and let

T(x1,...,xd) = TrAdY /Y " Trg.
Then T(x1,...,xd) is independent of the choice of the sequence x1, . . . , xd such

that the corresponding morphism g : X → AnY is etale.

 E
ta

le
 C

oh
om

ol
og

y 
T

he
or

y 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 C

H
IN

E
SE

 U
N

IV
E

R
SI

T
Y

 O
F 

H
O

N
G

 K
O

N
G

 o
n 

10
/1

9/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



February 6, 2015 9:48 ws-book9x6 Etale Cohomology Theory... etale page 424

424 Etale Cohomology Theory

Proof. By base change, we may assume that Y = Spec k for some alge-

braically closed field k. If d = 1, then X is a smooth curve over k. By

8.2.1, Tx1 coincides with TrX/k and hence does not depend on the choice

of x1. In general, we may assume that X is irreducible. For any nonempty

open subset U of X , we have

Hq
c (X − U,Z/n(d)) = 0

for all q > 2(d− 1) by 7.4.5. It follows that the canonical homomorphism

H2d
c (U,Z/n(d)) → H2d

c (X,Z/n(d))

is an isomorphism. To prove our assertion, we may replace X by its

nonempty open subset.

First we prove that T(x1,...,xd) is independent of the order of x1, . . . , xd.

In fact, we prove that, more generally, for any matrix (aij) ∈ GLd(k), we

have

T(x1,...,xd) = T(
∑
i ai1xi,...,

∑
i aidxi)

.

Let g : X → Adk (resp. g′ : X → Adk) be the k-morphism defined by the

sections x1, . . . , xd (resp.
∑

i ai1xi, . . . ,
∑
i aidxi), and let φ : Adk → Adk be

the k-isomorphism corresponding to the k-algebra isomorphism

k[t1, . . . , tn] → k[t1, . . . , tn], tj �→
∑
i

aijti.

By definition, we have

T(x1,...,xd) = TrAdk/k ◦R
2dπ!(Trg),

T(
∑
i ai1xi,...,

∑
i aidxi)

= TrAdk/k ◦R
2dπ!(Trg′),

where π : Adk → Spec k is the projection. To prove our assertion, it suffices

to show

R2dπ!(Trg) = R2dπ!(Trg′).

We have g′ = φg. So Trg′ is the composite

g′!Z/n ∼= φ!g!Z/n
φ!(Trg)→ φ!Z/n

Trφ→ Z/n.

We have πφ = π. To prove R2dπ!(Trg) = R2dπ!(Trg′), it suffices to show

that the composite

R2dπ!Z/n ∼= R2dπ!φ!Z/n
R2dπ!(Trφ)→ R2dπ!Z/n

is the identity. Indeed, let Φ be the isomorphism

Φ : GLd(k)×k Adk → GLd(k)×k Adk,
(
(xij), (xj)

) �→ ((xij), (∑
i

xijxi)
)
.
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Fix notation by the following commutative diagram:

GLd(k)×k Adk Φ→ GLd(k)×k Adk
p2→ Adk

p1 ↘ p1 ↓ π ↓
GLd(k) → Spec k.

The above composite is the stalk at the geometric point of GLd(k) defined

by (aij) of the following composite:

R2dp1!Z/n ∼= R2dp1!Φ!Z/n
R2dp1!(TrΦ)→ R2dp1!Z/n.

But R2dp1!Z/n is isomorphic to the inverse image of R2dπ!Z/n under the

morphism GLd(k) → Spec k, and hence is a constant sheaf. As GLd(k) is

connected, the stalk of the last composite at the geometric point defined

by (aij) can be identified with the stalk at the geometric point defined by

the identity matrix. Our assertion follows.

Let x be a closed point of X and let m be the maximal ideal of OX,x.

For any two sequences (x1, . . . , xd) and (y1, . . . , yd) of Γ(X,OX) such that

the k-morphisms X → Adk are etale, we claim that after replacing X by an

open neighborhood of x, there exists a finite chain of sequences

(x1, . . . , xd) = (x01, . . . , x
0
d), (x

1
1, . . . , x

1
d), · · · , (xm1 , . . . , xmd ) = (y1, . . . , yn)

such that the k-morphisms X → Adk defined by these sequences are etale,

and for each v ∈ {0, 1, . . . ,m − 1}, the sequence (xv1 , . . . , x
v
d) differs from

(xv+1
1 , . . . , xv+1

d ) by only one element. We may assume that x1, . . . , xd lie

in m by replacing xi by xi − ai for some ai ∈ k with xi ≡ aimodm. Then

(x1, . . . , xd) is a regular system of parameters for the regular local ring OX,x.

Indeed, since the morphism X → Adk is etale, dx1, . . . , dxd form a basis for

the free OX,x-module ΩOX,x/k. By 2.1.5, the canonical homomorphism

m/m2 → ΩOX,x/k ⊗OX,x OX,x/m

is an isomorphism since OX,x/m ∼= k. It follows that the images of

x1, . . . , xd in m/m2 form a basis for the (OX,x/m)-vector space m/m2. Sim-

ilarly, we may assume that y1, . . . , yn lie in m and form a regular system of

parameters for OX,x. Any basis of m/m2 can be changed to another basis

by a chain of bases so that each successive pair of bases differ only by one

element. So we have a chain of regular system of parameters

(x1, . . . , xd) = (x01, . . . , x
0
d), (x

1
1, . . . , x

1
d), · · · , (xm1 , . . . , xmd ) = (y1, . . . , yn)

of OX,x such that for each v ∈ {0, 1, . . . ,m− 1}, the sequence (xv1 , . . . , x
v
d)

differs from (xv+1
1 , . . . , xv+1

d ) by just one element. Replacing X by an open
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neighborhood of x, we may assume that elements of these sequences can

be extended to sections in Γ(X,OX), such that the k-morphisms X → Ank
defined by them are etale. This proves our claim.

By the above discussion, to prove that T(x1,...,xd) is independent of the

choice of (x1, . . . , xd), it suffices to show that T(x1,...,xd) remains unchanged

if we change xd but keep x1, . . . , xd−1 unchanged. Consider the commuta-

tive diagram

AdY
∼= A1

A
d−1
Y

g

↗ ↓
X

h→ Ad−1Y

↘
f

↓
Y,

where g : X → AdY (resp. h : X → Ad−1Y ) is the Y -morphism defined by

the sections x1, . . . , xd (resp. x1, . . . , xd−1). By our discussion in the d = 1

case, Tr
AdY /A

d−1
Y

" Trg is unchanged if we only change xd. We have

T(x1,...,xd) = TrAdY /Y " Trg
= Tr

A
d−1
Y /Y " TrAdY /Ad−1

Y
" Trg.

The last expression is independent of xd. So T(x1,...,xd) is independent of

the choice of xd. �

Finally, let f : X → Y be a smooth S-compactifiable morphism pure of

relative dimension d. There exists an open covering {Uα} of X such that

f |Uα : Uα → Y can be factorized as

Uα
gα→ AdY → Y,

with gα being etale Y -morphisms. Let jα : Uα ↪→ X and jαβ : Uα∩Uβ → X

be the open immersions. For any sheaf of Z/n-modules F on X , we have

a canonical exact sequence⊕
α,β

jαβ!(F |Uα∩Uβ ) →
⊕
α

jα!(F |Uα ) → F → 0.

This follows from the fact that for any sheaf of Z/n-modules G on X , we

have an exact sequence

0→Hom(F ,G )→Hom
(⊕

α

jα!(F |Uα),G
)
→Hom

(⊕
α,β

jαβ!(F |Uα∩Uβ ),G
)
,
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which can be identified with the canonical exact sequence

0 → Hom(F ,G ) →
∏
α

Hom(F |Uα ,G |Uα) →
∏
α,β

Hom(F |Uα∩Uβ ,G |Uα∩Uβ ).

By 7.4.5, we have Rqf! = 0 for all q > 2d. So R2df! is right exact. So we

have an exact sequence⊕
α,β

R2d(f |Uα∩Uβ )!(F |Uα∩Uβ ) →
⊕
α

R2d(f |Uα)!(F |Uα) → R2df!F → 0.

We have defined

TrUα/Y : R2d(f |Uα)!Z/n(d) → Z/n.

By 8.2.3, TrUα/Y and TrUβ/Y both induce TrUα∩Uβ/Y . Using the above

exact sequence, we can define

TrX/Y : R2df!Z/n(d) → Z/n

so that it induces TrUα/Y for each α. The definition of TrX/Y is independent

of the choice of the open covering {Uα} of X .

Since Rif! = 0 for i > 2d, TrX/Y induces a morphism

Rf!Z/n(d)[2d] → Z/n

in the derived category D(Y,Z/n). For any K ∈ obD(Y,Z/n), we have

Rf!Z/n(d)[2d]⊗LZ/n K ∼= Rf!(f
∗K(d)[2d])

by the projection formula 7.4.7. So TrX/Y induces a morphism

Rf!f
∗K(d)[2d] → K,

which we also denote by TrX/Y or Trf . It is functorial in K.

Proposition 8.2.4. Let S be a scheme and let n be an integer invertible

on S.

(i) Consider a Cartesian diagram

X ×Y Y ′ g
′

→ X

f ′ ↓ ↓ f
Y ′

g→ Y.

Suppose that f is a smooth S-compactifiable morphism pure of relative di-

mension d, and Y ′ is quasi-compact and quasi-separated. For any K ∈
obD(Y,Z/n), the following diagram commutes:

g∗Rf!f∗K(d)[2d] ∼= Rf ′! g
′∗f∗K(d)[2d] ∼= Rf ′! f

′∗g∗K(d)[2d]

g∗(Trf ) ↘ ↙ Trf′

g∗K.
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(ii) Let g : X → Y and h : Y → Z be two smooth S-compactifiable

morphisms pure of relative dimensions d and e, respectively and let f = hg.

For any K ∈ obD(Z,Z/n), the following diagram commutes:

Rh!Rg!g
∗h∗K(d+ e)[2(d+ e)]

Rh!(Trg)→ Rh!h
∗K(e)[2e]

∼= ↓ ↓ Trh

Rf!f
∗K(d+ e)[2(d+ e)]

Trf→ K.

(iii) Consider a Cartesian diagram

X ×Z Y p→ X

q ↓ ↓ f
Y

g→ Z.

Let h = fp = gq. Suppose that f and g are smooth S-compactifiable

morphisms pure of relative dimensions d and e, respectively. For any

K,L ∈ obD−(Z,Z/n), the following diagram commutes:

Rf!f
∗K(d)[2d]⊗L

Z/n Rg!g
∗L(e)[2e] ∼= Rh!h

∗(K ⊗L
Z/n L)(d+ e)[2(d+ e)]

Trf⊗LTrg ↘ ↙ Trh

K ⊗L
Z/n L,

where the top line is given by the Künneth formula.

(iv) Suppose that S = Spec k for an algebraically closed field k, X and Y

are proper smooth schemes over k pure of dimensions d and e, respectively.

Then for any s ∈ H2d(X,Z/n(d)) and t ∈ H2e(Y,Z/n(e)), we have

TrX×kY/k(p
∗s ∪ q∗t) = TrX/k(s)TrY/k(t),

where p : X ×k Y → X and q : X ×k Y → Y are projections.

Proof. (i) follows from the definition of Tr. (iv) follows from (iii) and the

fact that the isomorphism defined by the Künneth formula can be defined

via the cup product. (Confer the proof of 7.4.11.)

(ii) We can reduce to the case where we have a commutative diagram

X
a→ AdY

b′→ Ad+eZ

g ↘ π′′ ↓ ↓ π′

Y
b→ AeZ

h ↘ ↓ π
Z
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such that the square in the diagram is Cartesian, a, b, b′ are etale, and

π, π′, π′′ are the projections. Consider the diagram

Rπ!b!Rπ
′′
! a!Z/n(d+ e)[2(d+ e)] ∼= Rπ!Rπ

′
!b
′
!a!Z/n(d+ e)[2(d+ e)]

Tra ↓ ↓ Tra

Rπ!b!Rπ
′′
! Z/n(d+ e)[2(d+ e)] ∼= Rπ!Rπ

′
!b
′
!Z/n(d+ e)[2(d+ e)]

↓ Trb′

Trπ′′ ↓ (1) Rπ!Rπ
′
!Z/n(d+ e)[2(d+ e)]

↓ Trπ′

Rπ!b!Z/n(e)[2e]
Trb→ Rπ!Z/n(e)[2e]

Trπ→ Z/n.

To prove that the square (1) commutes, it suffices to prove that the diagram

b!Rπ
′′
! Z/n(d)[2d)]

∼= Rπ′!b
′
!Z/n(d)[2d]

↓ Trb′

Trπ′′ ↓ (2) Rπ′!Z/n(d)[2d]
↓ Trπ′

b!Z/n
Trb→ Z/n

commutes if b, b′, π′, π′′ come from the following Cartesian diagram

AdY
b′→ AdW

π′′ ↓ ↓ π′

Y
b→ W

in which b is etale. Let us check that (2) gives rise to a commutative

diagram on stalks at each geometric point s → W of W . Making the base

change s → W , we are reduced to the case where W is the spectrum of

a separably closed field. We are then reduced to the case where b is the

identity morphism. In this case the diagram (2) trivially commutes.

(iii) follows from the commutativity of the following diagram:

Rf!f
∗K(d)[2d]⊗L

Z/n Rg!g
∗L(e)[2e]

Trf⊗Lid→ K ⊗L
Z/n Rg!g

∗L(e)[2e]
�‖ �‖

Rg!(g
∗Rf!f

∗K(d)[2d]⊗L
Z/n g∗L(e)[2e])

Rg!(g
∗Trf⊗Lid)→ Rg!(g

∗K ⊗L
Z/n g∗L(e)[2e])

�‖
Rg!(Rq!p

∗f∗K(d)[2d]⊗L
Z/n g∗L(e)[2e]) ‖

�‖
Rg!(Rq!q

∗g∗K(d)[2d]⊗L
Z/n g∗L(e)[2e])

Rg!(Trq⊗Lid)→ Rg!(g
∗K ⊗L

Z/n g∗L(e)[2e])
�‖ �‖

Rg!Rq!q
∗g∗(K(d)[2d]⊗L

Z/n L(e)[2e])
Rg!(Trq)→ Rg!g

∗(K ⊗L
Z/n L(e)[2e])

�‖ ↓ Trg

Rh!h
∗(K ⊗L

Z/n L)(d+ e)[2(d+ e)]
Trh→ K ⊗L

Z/n L.

�
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8.3 Duality for Curves

([SGA 4 1
2 ] Dualité.)

In this section, we fix an integer n invertible in all schemes that we con-

sider, and we denote ExtZ/n(−,−) and E xtZ/n(−,−) by Ext(−,−) and

E xt(−,−), respectively. Let X be a scheme over an algebraically closed

field k. For any sheaves of Z/n-modules F and G on X , we have canonical

homomorphisms

Exti(F ,G ) ∼= HomD(X,Z/n)(F ,G [i])

→ HomD(Z/n)

(
RΓc(X,F ), RΓc(X,G [i])

)
→ Hom

(
Hj
c (X,F ), Hi+j

c (X,G )
)
.

We thus get a pairing

Hj
c (X,F )× Exti(F ,G ) → Hi+j

c (X,G ).

Suppose that X is smooth pure of dimension d. We have a pairing

Hr
c (X,F ) × Ext2d−r(F ,Z/n(d)) → H2d

c (X,Z/n(d)).

Taking its composite with

TrX/k : H2d
c (X,Z/n(d)) → Z/n,

we get a pairing

Hr
c (X,F )× Ext2d−r(F ,Z/n(d)) → Z/n.

In 8.5.3, we prove that this last pairing is perfect. In this section, we

prove this result in the case where X is a smooth curve over k and F is

constructible.

Theorem 8.3.1. Let X be a smooth curve over an algebraically closed field

k, and let F be a constructible sheaf of Z/n-modules on X. The canonical

pairing

Hr
c (X,F ) × Ext2−r(F ,μn) → Z/n

is perfect for each r.

A direct consequence of 8.3.1 is the following:

Corollary 8.3.2. Let X be a smooth curve over an algebraically closed field

k, let F be a locally constant constructible sheaf of Z/n-modules on X, and

let F∨ = H om(F ,Z/n). Then we have a perfect pairing

Hr
c (X,F )×H2−r(X,F∨(1)) → Z/n

for each r.
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Proof. It suffices to show

Ext2−r(F ,μn) ∼= H2−r(X,H om(F ,μn)).

We have a biregular spectral sequence

Epq2 = Hp(X, E xtq(F ,μn)) ⇒ Extp+q(F ,μn).

By 8.3.3 below, we have

E xtq(F ,μn) = 0

for all q ≥ 1. The spectral sequence degenerates. Our assertion follows. �

Lemma 8.3.3. Let X be a noetherian scheme, let A be a ring such that A

is an injective A-module, and let F be a locally constant sheaf of A-modules

on X. Then E xtqA(F , A) = 0 for all q ≥ 1.

Remark 8.3.4. Note that Z/n is an injective Z/n-module. To prove this,

it suffices to show that any homomorphism from an ideal I of Z/n to Z/n

can be extended to an endomorphism of Z/n. This follows from the fact

that I is generated by an element ī for some integer i dividing n. Similarly,

one can show that if A = R/I for a discrete valuation ring R and a nonzero

ideal I of R, then A is an injective A-module.

Proof of 8.3.3. The problem is local with respect to the etale topology.

We may assume that F is a constant constructible sheaf associated to some

A-module M . Let

· · · → L1 → L0 → 0

be a resolution of M by free A-modules. Denote the constant sheaf on X

associated to Li also by Li. Then

E xtqA(Li,G ) = 0

for any q ≥ 1 and any sheaf of A-modules G on X . It follows that

E xtqA(F , A) is the q-th cohomology sheaf of the complex

0 → H omA(L0, A) → H omA(L1, A) → · · ·
for each q. The q-th cohomology sheaf of this complex is the constant sheaf

associated to the q-th cohomology of the complex of A-modules

0 → HomA(L0, A) → HomA(L1, A) → · · · .
Since A is an injective A-module, for any q ≥ 1, the q-th cohomology of

this complex is 0. Our assertion follows. �
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A scheme is called a trait (resp. strictly local trait) if it is isomorphic to

the spectrum of a henselian discrete valuation ring (resp. strictly henselian

discrete valuation ring).

Lemma 8.3.5. Let S be a strictly local trait, s its closed point, η its generic

point, I = Gal(η̄/η), i : s → S and j : η → S the immersions. For any

sheaf of Z/n-modules F on η, we have canonical isomorphisms

(Rqj∗F )s =

⎧⎨⎩
(Fη̄)

I if q = 0,

(Fη̄)I(−1) if q = 1,

0 if q 	= 0, 1.

Proof. Since S is strictly local, we have

(Rj∗F )s ∼= RΓ(S,Rj∗F ) ∼= RΓ(η,F ).

It follows that

(Rqj∗F )s = Hq(I,Fη̄).

We then apply 8.1.4.

Lemma 8.3.6. Let X be a noetherian regular scheme pure of dimension 1,

x a closed point of X, and i : Spec k(x) → X the closed immersion. For any

constant sheaf of Z/n-module M on X, we have canonical isomorphisms

Rqi!M ∼=
{
M(−1) if q = 2,

0 if q 	= 2.

Proof. Let X̃x̄ be the strict localization of X at x̄, and let

j : X − {x} → X, j̃ : X̃x̄ ×X (X − {x}) → X̃x̄

be the open immersions. Note that X̃x̄ is a strictly local trait, and X̃x̄ ×X
(X − {x}) is the generic point of X̃x̄. By 8.3.5, we have

(Rqj∗j∗M)x̄ ∼= (Rq j̃∗j̃∗M)x̄ =

⎧⎨⎩
M if q = 0,

M(−1) if q = 1,

0 if q 	= 0, 1.

Note that the canonical morphism

M → j∗j∗M

is an isomorphism. This is clear when restricted to X−x. At x, this follows
from the above formula for (j∗j∗M)x̄. We have an exact sequence

0 → i∗i!M →M → j∗j∗M → i∗R1i!M → 0

and isomorphisms

i∗Rq+1i!M ∼= Rqj∗j∗M

for all q ≥ 1. Our assertion follows. �
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Lemma 8.3.7. Let X be a smooth curve over an algebraically closed field

k, let π : X ′ → X be an etale morphism and let F ′ be a constructible sheaf

of Z/n-modules on X ′. For each r, the pairing

Hr
c (X

′,F ′)× Ext2−r(F ′,μn) → Z/n

is perfect if and only if the pairing

Hr
c (X, π!F

′)× Ext2−r(π!F ′,μn) → Z/n

is perfect.

Proof. Since π is etale, we have

Hr
c (X, π!F

′) ∼= Hr
c (X

′,F ′),

Ext2−r(F ′,μn) ∼= HomD(X′,Z/n)(F
′, π∗μn[2− r])

∼= HomD(X′,Z/n)(π!F
′,μn[2− r])

∼= Ext2−r(π!F ′,μn).

Our assertion follows from the commutativity of the following diagram:

Hr
c (X

′,F ′) × Ext2−r(F ′,μn) → H2
c (X

′,μn)
�‖ ↓ �‖ TrX′/k ↘

Hr
c (X, π!F

′) × Ext2−r(π!F ′, π!μn) → H2
c (X, π!μn) Z/n.

‖ ↓ Trπ ↓ Trπ TrX/k ↗
Hr
c (X, π!F

′) × Ext2−r(π!F ′,μn) → H2
c (X,μn) �

Lemma 8.3.8. 8.3.1 holds if F is supported on a finite closed subset of

X.

Proof. Working with each irreducible component of X , we may assume

that X is irreducible. If F is supported on a finite closed subset, then F

is a direct sum of sheaves supported on a single point. So it suffices to

consider the case where F = i∗M for some finite Z/n-module M and some

closed immersion i : {x} → X . By 8.3.7, we may replace X by its smooth

compactification. So we may assume that X is projective. We have

Hr(X, i∗M) ∼=
{
M if r = 0,

0 if r 	= 0,

and

Ext2−r(i∗M,μn) ∼= HomD(X,Z/n)(i∗M,μn[2− r])

∼= HomD(Z/n)(M,Ri!μn[2 − r])

∼= HomD(Z/n)(M,Z/n[−r])
∼=
{
Hom(M,Z/n) if r = 0,

0 if r 	= 0.
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Here we use 8.3.6 and the fact that Z/n is an injective Z/n-module. Since

the canonical pairing

M ×Hom(M,Z/n) → Z/n

is perfect, the pairing

H0(x,M)× Ext2(M,Ri!μn) → H2(x,Ri!μn)

is perfect. We claim that each morphism in the composite

H2(x,Ri!μn)
∼=→ H2(X, i∗Ri!μn) ∼= H2

x(X,μn) → H2(X,μn)
TrX/k→ Z/n

is an isomorphism. Indeed, since X is smooth projective and irreducible,

the homomorphism

TrX/k : H2(X,μn) → Z/n

is an isomorphism. We have a long exact sequence

· · · → H1(X−{x},μn) → H2
x(X,μn) → H2(X,μn) → H2(X−{x},μn) → · · · .

By 7.2.13, we have

H2(X − {x},μn) = 0.

So the canonical homomorphism

H2
x(X,μn) → H2(X,μn)

is surjective. Since both H2
x(X,μn) and H2(X,μn) are free Z/n-modules

of rank 1, this homomorphism is an isomorphism. Our claim follows. 8.3.1

then follows from the commutativity of the following diagram:

H0(X, i∗M) × Ext2(i∗M,μn) → H2(X,μn)

‖ ↑ ↑ TrX/k ↘
H0(X, i∗M) × Ext2(i∗M, i∗Ri!μn) → H2(X, i∗Ri!μn) Z/n.

�‖ ↑ �‖ ∼= ↗
H0(x,M) × Ext2(M,Ri!μn) → H2(x,Ri!μn) �

Lemma 8.3.9. 8.3.1 holds for F = Z/n.

Proof. Working with each irreducible component of X , we may assume

that X is irreducible. Let X be a smooth compactification of X , and let

j : X ↪→ X and i : X −X → X be the immersions. By 8.3.7, it suffices to

prove that the pairing

Hr(X, j!Z/n)× Ext2−r(j!Z/n,μn) → Z/n
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is perfect for each r. We have an exact sequence

0 → j!Z/n→ Z/n→ i∗Z/n→ 0.

For any Z/n-module M , let

M∨ = Hom(M,Z/n).

Since Z/n is an injective Z/n-module, the functor M �→ M∨ is exact.

Consider the commutative diagram

0 → H0(X, j!Z/n) → H0(X,Z/n) → H0(X, i∗Z/n) →
↓ ↓ ↓

· · · → (Ext2(j!Z/n,μn))
∨ → (Ext2(Z/n,μn))

∨ → (Ext2(i∗Z/n,μn))∨ →

→ H1(X, j!Z/n) → H1(X,Z/n) → H1(X, i∗Z/n) → · · ·
↓ ↓ ↓

→ (Ext1(j!Z/n,μn))
∨ → (Ext1(Z/n,μn))

∨ → (Ext1(i∗Z/n,μn))∨ → · · ·
where the vertical arrows are induced by the pairings, and the horizontal

lines are exact. By 8.3.8, the homomorphisms

Hr(X, i∗Z/n) → (Ext2−r(i∗Z/n,μn))∨

are bijective. To prove our assertion, it suffices to show that the homomor-

phisms

Hr(X,Z/n) → (Ext2−r(Z/n,μn))∨

are bijective. We are thus reduced to the case where X is projective over

k.

We have seen in the proof of 8.3.2 that we have

Ext2−r(Z/n,μn) ∼= H2−r(X,H om(Z/n,μn)) ∼= H2−r(X,μn).

So we have

Ext2−r(Z/n,μn) = 0

for r 	= 0, 1, 2.Moreover, combined with 7.2.9, we see that Ext2−r(Z/n,μn)
has the same number of elements as Hr(X,Z/n) for each r.

Consider the commutative diagram

HomD(X,Z/n)(Z/n,Z/n) ×HomD(X,Z/n)(Z/n,µn[2]) → HomD(X,Z/n)(Z/n,µn[2])
∼= ↓ ∼= ↓

H0(RΓ(X,Z/n))× Ext2(Z/n,µn) → H0(RΓ(X,µn[2]))
∼= ↓ ∼= ↓

H0(X,Z/n) × Ext2(Z/n,µn) → H2(X,µn)
∼= ↓ TrX/k

Z/n,
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where the pairing on the top line is

(φ, ψ) �→ ψφ.

For any ψ ∈ HomD(X,Z/n)(Z/n,μn[2]), if ψφ = 0 for all φ ∈
HomD(X,Z/n)(Z/n,Z/n), then we have ψ = 0 by taking φ = id. Since

H0(X,Z/n) and Ext2(Z/n,μn) have the same number of elements, the

pairing

H0(X,Z/n)× Ext2(Z/n,μn) → Z/n

is perfect.

Since H1(X,Z/n) and Ext1(Z/n,μn) have the same number of ele-

ments, to prove that the pairing

H1(X,Z/n)× Ext1(Z/n,μn) → Z/n

is perfect, it suffices to show that the homomorphism

H1(X,Z/n) → (Ext1(Z/n,μn))
∨

induced by the pairing is a monomorphism. Given α ∈ H1(X,Z/n), let

π : X ′ → X be the Z/n-torsor defined by α. The image of α under the

canonical homomorphism

H1(X,Z/n) → H1(X ′,Z/n)

is 0 since the base change of the above torsor byX ′ → X has a global section

and is hence trivial. It follows that the image of α under the canonical

homomorphism

H1(X,Z/n) → H1(X, π∗π∗Z/n) ∼= H1(X, π∗Z/n)

is 0. Since π is surjective, the canonical morphism Z/n → π∗Z/n is injec-

tive. Let F be its cokernel. Consider the commutative diagram

H0(X,π∗Z/n)→ H0(X,F)→ H1(X,Z/n)→ H1(X,π∗Z/n)

↓ ↓ ↓ ↓
(Ext2(π∗Z/n,μn))∨→ (Ext2(F ,μn))

∨→ (Ext1(Z/n,μn))
∨→ (Ext1(π∗Z/n,μn))∨

We have proved that the pairing

H0(X,Z/n)× Ext2(Z/n,μn) → Z/n

is perfect for any smooth projective curve X . In particular, the pairing

H0(X ′,Z/n)× Ext2(Z/n,μn) → Z/n

is perfect. By 8.3.7, the pairing

H0(X, π∗Z/n)× Ext2(π∗Z/n,μn) → Z/n
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is perfect. So the first vertical arrow in the above diagram is an isomor-

phism. Suppose α lies in the kernel of H1(X,Z/n) → (Ext1(Z/n,μn))
∨.

If we can show that H0(X,F )) → (Ext2(F ,μn))
∨ is injective, then by

diagram chasing and taking into account the fact that α lies in the kernel

of H1(X,Z/n) → H1(X, π∗Z/n), we can show α = 0. Hence to show that

H1(X,Z/n) → (Ext1(Z/n,μn))
∨

is injective, it suffices to show that

H0(X,F ) → (Ext2(F ,μn))
∨

is injective.

Since π is finite and etale, π∗Z/n is locally constant by 7.8.3. So F

is locally constant. It is constructible by 5.8.11. Using 5.8.1 (i), one can

show that there exists a finite surjective etale morphism π′ : X ′′ → X such

that π′∗F is constant. Since every finitely generated Z/n-module can be

embedded into a free Z/n-module of finite rank, there exists a free Z/n-

module L of finite rank such that we have a monomorphism π′∗F → L. As

F → π′∗π
′∗F is injective, we have a monomorphism F → π′∗L. Let G be

its cokernel. Consider the commutative diagram

0 → H0(X,F ) → H0(X, π′∗L) → H0(X,G ) → · · ·
↓ ↓ ↓

· · · → (Ext2(F ,μn))
∨ → (Ext2(π′∗L,μn))∨ → (Ext2(G ,μn))∨ → · · · .

By our previous discussion, the pairing

H0(X ′′,Z/n)× Ext2(Z/n,μn) → Z/n

is perfect. By 8.3.7, this implies that the homomorphism

H0(X, π′∗L) → (Ext2(π′∗L,μn))
∨

is bijective. It follows from the above commutative diagram that

H0(X,F ) → (Ext2(F ,μn))
∨

is injective.

Finally we prove that the homomorphism

H2(X,Z/n) → (Hom(Z/n,μn))
∨,

induced by the paring

H2(X,Z/n)×Hom(Z/n,μn) → Z/n,
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is injective. Let α ∈ H2(X,Z/n) be an element in the kernel of the above

homomorphism. For any morphism φ : Z/n → μn, denote by [φ](α) ∈
H2(X,μn) the image of α under the homomorphism

[φ] : H2(X,Z/n) → H2(X,μn)

induced by φ. Then we have TrX/k([φ](α)) = 0. As X is smooth projective

and irreducible, TrX/k is an isomorphism. So we have [φ](α) = 0. If we

take φ to be an isomorphism from Z/n to μn, we get α = 0. �
Proof of 8.3.1. Since F is constructible, we can find an etale morphism

π : X ′ → X together with an epimorphism π!Z/n→ F . Let G be the kernel

of this epimorphism. It is also constructible. Consider the commutative

diagram

0 → Ext0(F ,μn) → Ext0(π!Z/n,μn) → Ext0(G ,μn) →
↓ (1) ↓ (2) ↓ (3)

0 → H2
c (X,F )∨ → H2

c (X, π!Z/n)
∨ → H2

c (X,G )∨ →

→ Ext1(F ,μn) → Ext1(π!Z/n,μn) → Ext1(G ,μn) → · · ·
↓ (4) ↓ (5) ↓ (6)

→ H1
c (X,F )∨ → H1

c (X, π!Z/n)
∨ → H1

c (X,G )∨ → · · ·
By 8.3.7 and 8.3.9, (2) is bijective. So (1) is injective. This is true for

any constructible sheaf F . So (3) is injective. It then follows that (1) is

bijective. This is true for any constructible sheaf F . So (3) is bijective.

By 8.3.7 and 8.3.9, (5) is bijective. So (4) is injective. This is true for

any constructible sheaf F . So (6) is injective. It then follows that (4) is

bijective. This is true for any constructible sheaf F . So (6) is bijective.

Using this argument repeatedly, we can prove that the homomorphism

Ext2−r(F ,μn) → Hr(X,F )∨

is bijective for each r. �

Lemma 8.3.10. Let S be a regular scheme pure of dimension 1, U a dense

open subset of S, j : U ↪→ S the open immersion, A a noetherian ring such

that nA = 0 and A is an injective A-module, and F a locally constant

constructible sheaf of A-modules on U . Then we have

H om(j∗F , A) ∼= j∗H om(F , A)

and

E xtq(j∗F , A) = 0

for any q ≥ 1.
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Proof. By 8.3.3, we have

j∗E xtq(j∗F , A) ∼= E xtq(F , A) = 0

for all q ≥ 1. The isomorphism

j∗H om(j∗F , A)) ∼= H om(F , A)

induces a morphism

H om(j∗F , A) → j∗H om(F , A)

whose restriction to U is an isomorphism. To prove the lemma, we need to

show that for any s ∈ S − U , we have (E xtq(j∗F , A))s̄ = 0 for all q ≥ 1,

and

(H om(j∗F , A))s̄ → (j∗H om(F , A))s̄

is an isomorphism. Since S is pure of dimension 1 and U is dense, s is a

closed point of X . By 5.9.11, we may replace S by the strict localization

of S at s. So we may assume that S is a strictly local trait, s is the closed

point of S, and U = {η} is the generic point of S. Let i : s → S and

j : η → S be the immersions, and let I = Gal(η̄/η). We have an exact

sequence

0 → j!F → j∗F → i∗F I
η̄ → 0.

It gives rise to a distinguished triangle(
RH om(i∗F I

η̄ , A)
)
s̄
→ (RH om(j∗F , A)

)
s̄
→ (RH om(j!F , A)

)
s̄
→ .

One can verify

RH om(i∗F I
η̄ , A)

∼= i∗RH om(F I
η̄ , Ri

!A).

By 8.3.6, we have

Ri!A ∼= A(−1)[−2].

As A is an injective A-module, we have

RH om(F I
η̄ , Ri

!A) ∼= H om(F I
η̄ , A(−1)[−2]) = (F I

η̄ )
∨(−1)[−2],

where for any A-module M , we set

M∨ = HomA(M,A).

We thus have

RH om(i∗F I
η̄ , A)

∼= i∗(F I
η̄ )
∨(−1)[−2].
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One can verify

RH om(j!F , A) ∼= Rj∗RH om(F , A).

By 8.3.3, we have

RH om(F , A) = H om(F , A).

So we have

RH om(j!F , A) ∼= Rj∗H om(F , A).

We thus have a distinguished triangle

(F I
η̄ )
∨(−1)[−2] → (RH om(j∗F , A)

)
s̄
→ (Rj∗H om(F , A)

)
s̄
→ .

Taking the long exact sequence of cohomology associated to this triangle,

we get an exact sequence

0 → (E xt1(j∗F , A))s̄ → (R1j∗H om(F , A))s̄ → (F I
η̄ )
∨(−1) →

→ (E xt2(j∗F , A))s̄ → (R2j∗H om(F , A))s̄ → 0

and isomorphisms

(E xtq(j∗F , A))s̄ ∼= (Rqj∗Hom(F , A))s̄

for all q 	= 1, 2. By 8.3.5, we have

(Rqj∗H om(F , A))s̄ ∼=
⎧⎨⎩

(F ∨̄η )I if q = 0,

(F ∨̄η )I(−1) if q = 1,

0 if q 	= 0, 1.

It follows that

(E xtq(j∗F , A))s̄ = 0

for any q ≥ 3 and

(H om(j∗F , A))s̄ ∼= (j∗H om(F , A))s̄.

In the above discussion, we can replace F by its constant subsheaf F I
η̄ .

Note that j∗F I
η̄ is a constant sheaf on S. So we have

E xtq(j∗F I
η̄ , A) = 0

for all q ≥ 1 by 8.3.3. Moreover, we have a commutative diagram

(F∨
η̄ )I(−1)
�‖

0→ (Ext1(j∗F ,A))s̄ → (R1j∗H om(F ,A))s̄ → (FI
η̄ )

∨(−1) → (Ext2(j∗F ,A))s̄ →0

↓ ↓ ↓ ↓
0→ (Ext1(j∗FI

η̄ ,A))s̄ → (R1j∗H om(FI
η̄ ,A))s̄ → (FI

η̄ )
∨(−1) → (Ext2(j∗FI

η̄ ,A))s̄ →0

‖ �‖ ‖
0 (F∨

η̄ )I(−1) 0

It follows that the homomorphism

(R1j∗H om(F , A))s̄ → (F I
η̄ )
∨(−1)

is an isomorphism. So

(E xtq(j∗F , A))s̄ = 0

for q = 0, 1. �
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Theorem 8.3.11. Let X be a smooth curve over an algebraically closed

field k, U a dense open subset of X, j : U → X the open immersion,

F a locally constant constructible sheaf of Z/n-modules on U , and F∨ =

H om(F ,Z/n). Then we have a perfect pairing

Hr
c (X, j∗F )×H2−r(X, j∗F∨(1)) → Z/n

for each r.

Proof. By 8.3.10, the spectral sequence

Epq2 = Hp(X, E xtq(j∗F ,Z/n)) ⇒ Extp+q(j∗F ,Z/n)

degenerates and

H om(j∗F ,Z/n) ∼= j∗F∨.

So we have

Extp(j∗F ,Z/n) ∼= Hp(X,H om(j∗F ,Z/n)) ∼= Hp(X, j∗F∨).

Our assertion then follows from 8.3.1. �

8.4 The Functor Rf !

([SGA 4] XVIII 3.1.)

Fix a noetherian scheme S. In this section, all schemes are of finite type over

S. Let f : X → Y be an S-compactifiable morphism between S-schemes

of finite type, and let A be a noetherian torsion ring. In this section, we

construct a functor Rf ! : D+(Y,A) → D+(X,A) that is right adjoint to

the functor Rf! : D(X,A) → D(Y,A).

For any sheaf of A-modules F on X , we can write

F = lim−→
i∈I

Fi,

where (Fi)i∈I is a direct system of constructible sheaves of A-modules on

X . Define

C ·l (F ) = lim−→
i∈I

C ·(Fi),

where C ·(−) denotes the functorial Godement resolution constructed at

the end of 5.6. Note that C ·l (F ) is independent of the choice of the di-

rect system (Fi)i∈I . Indeed, suppose F = lim−→j∈J Gj , where Gj are con-

structible. Let F ′i (resp. G ′j) be the images of the morphisms Fi → F
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(resp. Gj → F ), and let Ki (resp. Lj) be the kernels of the morphisms

Fi → F (resp. Gj → F ). These sheaves are constructible. Using 5.9.8,

one can show that for each i (resp. j), there exists i′ ≥ i (resp. j′ ≥ j) such

that the morphism Ki → Ki′ (resp. Lj → Lj′) is zero. It follows that

lim−→
i

C ·(Ki) = 0, lim−→
j

C ·(Lj) = 0.

So we have

lim−→
i

C ·(Fi) ∼= lim−→
i

C ·(F ′i ), lim−→
j

C ·(Gj) ∼= lim−→
j

C ·(G ′j).

To prove that C ·l (F ) is independent of the choice of the direct system

(Fi)i∈I , it suffices to show

lim−→
i

C ·(F ′i ) ∼= lim−→
j

C ·(G ′j).

For each i, we have F ′i = ∪j(F ′i ∩ G ′j). It follows that F ′i = F ′i ∩ G ′j for

some j, that is, F ′i ⊂ G ′j . Similarly, for each j, we can find i such that

G ′j ⊂ F ′i . Our assertion follows.

Lemma 8.4.1.

(i) C ·l (F ) is a resolution of F .

(ii) For each q, C q
l (−) is an exact functor and commutes with the direct

limit.

(iii) If f : X ′ → X is etale, we have a canonical isomorphism

f∗C ·l (F )
∼=→ C ·l (f

∗F ).

Proof. It follows from the definition that C ·l (F ) is a resolution of F ,

and C q
l (−) commutes with the direct limit. Let

0 → F → G → H → 0

be a short exact sequence of sheaves of A-modules. Write G = lim−→i
Gi,

where Gi are constructible subsheaves of G . We have F = lim−→i
F ∩ Gi,

H = lim−→i
Gi/F ∩ Gi, and F ∩ Gi, Gi/F ∩ Gi are constructible. We have a

short exact sequence

0 → C q(F ∩ Gi) → C q(Gi) → C q(Gi/F ∩ Gi) → 0.

Taking direct limit, we get an exact sequence

0 → C q
l (F ) → C q

l (G ) → C q
l (H ) → 0.

So C q
l (−) is an exact functor.

For any S-morphism f : X ′ → X between S-schemes of finite type and

any sheaf F on X , we have a canonical morphism

f∗C ·(F ) → C ·(f∗F ).

If f is etale, this is an isomorphism. Using this fact, one proves (iii). �

 E
ta

le
 C

oh
om

ol
og

y 
T

he
or

y 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 C

H
IN

E
SE

 U
N

IV
E

R
SI

T
Y

 O
F 

H
O

N
G

 K
O

N
G

 o
n 

10
/1

9/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



February 6, 2015 9:48 ws-book9x6 Etale Cohomology Theory... etale page 443

Duality 443

Let f : X → Y be an S-compactifiable morphism. Fix a compactifica-

tion

X
j
↪→ X

f̄→ Y,

where j is an open immersion and f̄ is a proper S-compactifiable morphism.

Let d be an integer such that all the fibers of f̄ have dimensions ≤ d. For

any sheaf of A-modules F on X , the complex τ≤2dC ·l (j!F ) is a resolu-

tion of j!F by Rf̄∗-acyclic objects. Indeed, let Fq be the q-th component

of τ≤2dC ·l (j!F ). When q 	= 2d, Fq is a direct limit of flasque sheaves.

Moreover, we have

Rpf̄∗F2d
∼= Rp+2df̄∗j!F ∼= Rp+2df!F = 0

for any p ≥ 1 by 7.4.5. For any complex K of sheaves of A-modules on X ,

denote the complex associated to the bicomplex
((
τ≤2dC ·l (j!K

p)
)q)

p,q
by

τ≤2dC ·l (j!K). We then have

Rf!K ∼= f̄∗τ≤2dC ·l (j!K)

in D(Y,A). Define a functor f ·! from the category of complex of sheaves of

A-modules on X to the category of complexes of sheaves of A-modules on

Y by

f ·! (K) = f̄∗τ≤2dC ·l (j!K).

For any sheaf of A-modules F on X , let f q! (F ) be the q-th component of

the complex f ·! (F ). Then f q! is a functor from the category of sheaves of

A-modules on X to the category of sheaves of A-modules on Y .

Lemma 8.4.2.

(i) For each q, the functor F → f q! (F ) is exact and commutes with the

direct limit. We have f q! (F ) = 0 for q 	∈ [0, 2d].

(ii) The functor f ·! induces a functor Rf ·! : D(X,A) → D(Y,A), and we

have a canonical isomorphism Rf ·! ∼= Rf!.

Proof. (i) follows from the definition of f ·! . As each f q! is exact, the

functor f ·! maps acyclic complexes to acyclic complexes, and hence defines

a functor on the derived category. �

Lemma 8.4.3. For each q, the functor f q! has a right adjoint functor f !−q.
The functor f !

−q is left exact, transforms injective objects to injective ob-

jects, and vanishes if −q 	∈ [−2d, 0].
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Proof. Given a sheaf of A-modules G on Y , define a presheaf f !
−qG on

X as follows: For any etale X-scheme φ : U → X , let

(f !
−qG )(U) = Hom(f q! AU ,G ),

where AU = φ!A. For any etale morphism ψ : V → U , define the restriction

(f !
−qG )(U) → (f !

−qG )(V )

to be the map

Hom(f q! AU ,G ) → Hom(f q! AV ,G )

induced by the canonical morphism

AV = φ!ψ!A→ φ!A = AU .

We claim that f !
−qG is a sheaf. Indeed, if {Uα → U}α is an etale covering

of U , then for any sheaf F on X , we have the canonical exact sequence

0 → F (U) →
∏
α

F (Uα) →
∏
α,β

F (Uα ×U Uβ).

This can be identified with an exact sequence

0 → Hom(AU ,F ) → Hom
(⊕

α

AUα ,F
)
→ Hom

(⊕
α,β

AUα×UUβ ,F
)
.

We thus have an exact sequence⊕
α,β

AUα×UUβ →
⊕
α

AUα → AU → 0.

Since f q! is exact, we have an exact sequence⊕
α,β

f q! AUα×UUβ →
⊕
α

f q! AUα → f q! AU → 0,

and hence an exact sequence

0 → Hom(f q! AU ,G ) →
∏
α

Hom(f q! AUα ,G ) →
∏
α,β

Hom(f q! AUα×UUβ ,G ).

So the sequence

0 → (f !
−qG )(U) →

∏
α

(f !
−qG )(Uα) →

∏
α,β

(f !
−qG )(Uα ×U Uβ)

is exact. This proves f !
−qG is a sheaf.

Next we define a morphism F → f !
−qf

q
! F for any sheaf of A-modules

F on X . It suffices to define a homomorphism

F (U) → (f !
−qf

q
! F )(U) = Hom(f q! AU , f

q
! F )
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functorial in U for any etale X-scheme U . Given s ∈ F (U), it defines a

morphism AU → F and hence a morphism f q! AU → f q! F . We assign this

last morphism to s. The morphism F → f !
−qf

q
! F defines a map

Hom(f q! F ,G ) → Hom(F , f !
−qG ).

By our construction, we have

Hom(f q! AU ,G ) ∼= Hom(AU , f
!
−qG )

for any etale X-scheme U . If F is constructible, then we can find an exact

sequence of the form

AV → AU → F → 0

for some etale X-schemes U and V . Since f q! is exact, the sequence

f q! AV → f q! AU → f q! F → 0

is exact. We have a commutative diagram

0 → Hom(f q! F ,G ) → Hom(f q! AU ,G ) → Hom(f q! AV ,G )

↓ ↓ ↓
0 → Hom(F , f !

−qG ) → Hom(AU , f
!
−qG ) → Hom(AV , f

!
−qG ).

By the above discussion, the last two vertical arrows are bijective. It follows

from the five lemma that

Hom(f q! F ,G ) ∼= Hom(F , f !
−qG )

if F is constructible. In general, we can write F = lim−→i
Fi, where Fi are

constructible. Since f q! commutes with the direct limit, we have

Hom(f q! F ,G ) ∼= Hom(f q! (lim−→
i

Fi),G )

∼= Hom(lim−→
i

(f q! Fi),G )

∼= lim←−
i

Hom(f q! Fi,G )

∼= lim←−
i

Hom(Fi, f
!
−qG )

∼= Hom(lim−→
i

Fi, f
!
−qG )

∼= Hom(F , f !
−qG ).

So

Hom(f q! F ,G ) ∼= Hom(F , f !
−qG )

for any sheaf of A-modules F on X . Therefore f !
−q is right adjoint to f q! .

Since f q! is exact, f !
−q transforms injective objects to injective objects. As

a right adjoint functor, it is left exact. �
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Let dq∗ : f !
−q−1 → f !

−q be the functor induced by dq : f q! → f q+1
! by

adjunction. We then get a complex of functors f !
· with differentials

(−1)qdq∗ : f !
−q−1 → f !

−q.

For any complex of sheaves of A-modules L on Y , denote the complex asso-

ciated to the bicomplex (f !
qL

p)p,q by f
!
·L
·. Then for any complex of sheaves

of A-modules K on X , we have a canonical isomorphism of complexes of

A-modules

Hom·(f ·!K,L) ∼= Hom·(K, f !
·L).

One can show that f !
· : K(Y,A) → K(X,A) is an exact functor. Let

Rf ! : D+(Y,A) → D+(X,A)

be its right derived functor. Then Rf ! is right adjoint to Rf!. Indeed, if L

is a bounded below complex of injective sheaves of A-modules on Y , then

we have

Hom(Rf!K,L) ∼= Hom(f ·!K,L) ∼= H0(Hom·(f ·!K,L)) ∼= H0(Hom·(K, f !
·L)).

But f !·L is a complex of injective sheaves of A-modules on X , so we have

H0(Hom·(K, f !
·L)) ∼= Hom(K, f !

·L) ∼= Hom(K,Rf !L).

Hence

Hom(Rf!K,L) ∼= Hom(K,Rf !L).

We thus have the following:

Theorem 8.4.4. Let S be a noetherian scheme, let f : X → Y be an S-

compactifiable morphism between S-schemes of finite type, and let A be a

noetherian torsion ring. Then the functor Rf ! : D+(Y,A) → D+(X,A) is

right adjoint to the functor Rf! : D(X,A) → D(Y,A), that is, for any K ∈
obD(X,A) and L ∈ obD+(Y,A), we have a one-to-one correspondence

Hom(Rf!K,L) ∼= Hom(K,Rf !L)

functorial in K and L. Moreover, Rf ! is an exact functor and the following

diagram commutes:

Hom(Rf!(K[1]), L) ∼= Hom(K[1], Rf !L) ∼= Hom(K, (Rf !L)[−1])
∼= ↓ ↓ ∼=

Hom((Rf!K)[1], L) ∼= Hom(Rf!K,L[−1]) ∼= Hom(K,Rf !(L[−1])).

 E
ta

le
 C

oh
om

ol
og

y 
T

he
or

y 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 C

H
IN

E
SE

 U
N

IV
E

R
SI

T
Y

 O
F 

H
O

N
G

 K
O

N
G

 o
n 

10
/1

9/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



February 6, 2015 9:48 ws-book9x6 Etale Cohomology Theory... etale page 447

Duality 447

Proposition 8.4.5. Let S be a noetherian scheme, and let f : X → Y be

a separated quasi-finite morphism between S-schemes of finite type.

(i) The functor f! from the category of sheaves of A-modules on X to

the category of sheaves of A-modules on Y has a right adjoint f !, and Rf !

can be identified with the right derived functor of f !.

(ii) If f is a closed immersion, then f ! can be identified with the functor

defined in 5.4.

(iii) If f is etale, then f ! can be identified with f∗.

Proof. (i) follows from the construction of f ! in the case d = 0. (ii)

follows from (i) since if f is a closed immersion, then f! = f∗, and the

functor f ! constructed in 5.4 is right adjoint to f∗. (iii) follows from (i)

since if f is etale, then f∗ is right adjoint to f!. �

Let f : X → Y be an S-compactifiable morphism between S-schemes of

finite type, K ∈ obD−(X,A) and L ∈ obD+(X,A). We define a canonical

morphism

Rf∗RH om(K,L) → RH om(Rf!K,Rf!L)

as follows. Represent L by a bounded below complex of injective sheaves

of A-modules. Then

RH om(K,L) ∼= H om·(K,L).

By 5.6.8, H om·(K,L) is a complex of flasque sheaves. So we have

Rf∗RH om(K,L) = f∗H om·(K,L).

Fix a compactification

X
j
↪→ X

f̄→ Y

of f and an upper bound d of dimensions of fibers of f̄ . For each etale

Y -scheme k : V → Y , fix notation by the following commutative diagram

XV
jV→ XV

f̄V→ V

kX ↓ kX ↓ k ↓
X

j→ X
f̄→ Y,

and let fV = f̄V jV be the base change of f . By 8.4.1 (iii), we have an

isomorphism of complexes of functors

k∗f ·!
∼=→ f ·V !k

∗
X .
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It follows that

H om·(f ·!K, f
·
!L)(V ) = Hom(k∗f ·!K, k

∗f ·!L)
∼= Hom(f ·V !k

∗
XK, f

·
V !k
∗
XL).

We have a canonical morphism

H om·(K,L)(XV ) = Hom·(k∗XK, k
∗
XL) → Hom·(f ·V !k

∗
XK, f

·
V !k
∗
XL).

We thus have a morphism of complexes of sheaves

f∗H om·(K,L) → H om·(f ·!K, f
·
!L).

It induces a morphism

Rf∗RH om(K,L) → RH om(Rf!K,Rf!L)

in the derived category. Now assume that K ∈ obD−(X,A) and L ∈
obD+(Y,A). Taking the composite of the morphism

Rf∗RH om(K,Rf !L) → RH om(Rf!K,Rf!Rf
!L)

and the morphism

RH om(Rf!K,Rf!Rf
!L) → RH om(Rf!K,L)

induced by the canonical morphism Rf!Rf
!L→ L, we get a morphism

Rf∗RH om(K,Rf !L) → RH om(Rf!K,L).

Theorem 8.4.6. Let S be a noetherian scheme, let f : X → Y be an

S-compactifiable morphism between S-schemes of finite type, let A be a

noetherian torsion ring, and let K ∈ obD−(X,A) and L ∈ obD+(Y,A).

The morphism

Rf∗RH om(K,Rf !L) → RH om(Rf!K,L)

defined above is an isomorphism.

Proof. Represent L by a bounded below complex of injective sheaves of

A-modules on Y . We have

Rf∗RH om(K,Rf !L) ∼= f∗H om·(K, f !
·L),

RH om(Rf!K,L) ∼= H om·(f ·!K,L).

Let us prove that for any etale Y -scheme k : V → Y , that the morphism(
H om·(K, f !

·L)
)
(XV ) →

(
H om·(f ·!K,L)

)
(V )

is a quasi-isomorphism, that is, the morphism

Hom·(k∗XK, k
∗
Xf

!
·L) → Hom·(k∗f ·!K, k

∗L)
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is a quasi-isomorphism. Without loss of generality, let us prove that

H0
(
Hom·(k∗XK, k

∗
Xf

!
·L)
)→ H0

(
Hom·(k∗f ·!K, k

∗L)
)

is an isomorphism, that is,

Hom(k∗XK, k
∗
Xf

!
·L) ∼= Hom(k∗f ·!K, k

∗L).

Here Hom(−,−) denotes the spaces of homotopy classes of morphisms of

complexes. When V = Y , this follows from the adjointness of f ·! and f !· .
For general V , we need to introduce a morphism k∗Xf

!· → f !
V ·k
∗. We have

an isomorphism of complexes of functors

k∗f ·!
∼=→ f ·V !k

∗
X .

For any q, we get a morphism

k!f
q
V ! → f q! kX!

by taking the composite

k!f
q
V ! → k!f

q
V !k
∗
XkX!

∼=→ k!k
∗f q! kX! → f q! kX!.

By the adjointness of the pairs of functors (k!, k
∗), (kX!, k

∗
X), (f qV !, f

!
V,−q)

and (f q! , f
!−q), it induces a morphism

k∗Xf
!
−q → f !

V,−qk
∗.

In this way, we get a morphism of complex of functors

k∗Xf
!
· → f !

V ·k
∗.

It induces an isomorphism in the derived category since k!f
·
V ! → f ·! kX!

induces an isomorphism in the derived category. Since L is a bounded

below complex of injective sheaves,

k∗Xf
!
·L→ f !

V ·k
∗L

is an isomorphism in K(XV , A) by 6.2.7. Consider the diagram

Hom(k∗XK,k
∗
Xf

!
·L)

∼=→ Hom(k∗XK,f
!
V ·k

∗L)

↓ (1) ↓ (2)↘∼=

Hom(f ·
V !k

∗
XK,f

·
V !k

∗
Xf

!
·L)

∼=→ Hom(f ·
V !k

∗
XK,f

·
V !f

!
V ·k

∗L) → Hom(f ·
V !k

∗
XK,k

∗L)

∼=↓ (3) ↓∼= (4) ↓∼=
Hom(k∗f ·

!K,f
·
V !k

∗
Xf

!
·L)

∼=→ Hom(k∗f ·
!K,f

·
V !f

!
V ·k

∗L) → Hom(k∗f ·
!K,k

∗L),

↖∼= (5) ↗
Hom(k∗f ·

!K,k
∗f ·

! f
!
·L)

where Hom(−,−) denotes the space of homotopy classes of morphisms of

complexes, the horizontal arrows in the squares (1) and (3) are induced
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by the isomorphism k∗Xf
!·L
∼=→ f !

V ·k
∗L, the vertical arrows in the squares

(3) and (4) and the left slant arrow in the triangle (5) are induced by the

isomorphism k∗f ·!K
∼=→ f ·V !k

∗
XK, the horizontal arrows in the square (4)

and the right slant arrow in the triangle (5) are induced by the canonical

morphisms f ·V !f
!
V · → id and f ·! f

!
· → id, respectively. By the adjointness

of (f ·V !, f
!
V ·), the slant arrow in the triangle (2) is an isomorphism. The

morphism

Hom(k∗XK, k
∗
Xf

!
·L) → Hom(k∗f ·!K, k

∗L)

defined at the beginning is the composite of those morphisms on the left and

the bottom part of the boundary of the above diagram. (In the composite,

we take the inverse of the left slant arrow in the triangle (5).) On the other

hand, the morphisms on the top and the right part of the boundary of the

above diagram are isomorphisms. So to prove that Hom(k∗XK, k
∗
Xf

!
·L) →

Hom(k∗f ·!K, k
∗L) is an isomorphism, it suffices to show that the above

diagram commutes. It is clear that (1), (2), (3) and (4) commute. To prove

that (5) commutes, it suffices to show that the following diagram commutes:

k∗f ·! f
!
·L

k∗(adj)→ k∗L
∼= ↓ (6) ↑adj

f ·V !k
∗
Xf

!
·L

∼=→ f ·V !f
!
V ·k
∗L.

Recall that we define k!f
·
V ! → f ·! kX! as the composite

k!f
·
V ! → k!f

·
V!
k∗XkX!

∼=→ k!k
∗f ·! kX! → f ·! kX!

.

We then define the morphism k∗Xf
!· → f !

V ·k
∗ as the composite

k∗Xf
!
· → f !

V ·k
∗k!f ·V !k

∗
Xf

!
· → f !

V k
∗f ·! kX!k

∗
Xf

!
· → f !

V k
∗.

It follows that k∗Xf
!
· → f !

V ·k
∗ is the composite of those morphisms on the

left part of the boundary of the following diagram.

k∗Xf
!
·

↙ (7) ↓ ↘
f !
V ·k
∗k!f ·V !k

∗
XkX!k

∗
Xf

!
· → f !

V ·k
∗k!f ·V !k

∗
Xf

!
· ← f !

V ·f
·
V !k
∗
Xf

!
·

↓ ↓ ↓
f !
V ·k
∗k!k∗f ·! kX!k

∗
Xf

!
· → f !

V ·k
∗k!k∗f ·! f

!
· ← f !

V ·k
∗f ·! f

!
·

↘ ↓ (8) ↙
f !
V ·k
∗ .
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In the above diagram, the triangles (7) and (8) commute because the fol-

lowing two diagrams commute.

k∗X
adj→ (k∗XkX!)k

∗
X k∗

adj→ (k∗k!)k∗

‖ (9) ‖ ‖ (10) ‖
k∗X

k∗X (adj)← k∗X(kX!k
∗
X), k∗

k∗(adj)← k∗(k!k∗).

(The commutativity of (9) can be seen as follows: By the adjointness of the

pair (kX!, k
∗
X), the composite of the morphisms

k∗X
adj→ (k∗XkX!)k

∗
X = k∗X(kX!k

∗
X)

k∗X (adj)→ k∗X

corresponds to the composite of the morphisms

kX!k
∗
X

id→ kX!k
∗
X

adj→ id.

The second composite is adj : kX!k
∗
X → id, and it corresponds to id : k∗X →

k∗X by the adjointness of (kX!, k
∗
X). Similarly (10) commutes.) It is clear

that the other parts of the above diagram commute. So the morphism

k∗Xf
!· → f !

V ·k
∗ is also the composite

k∗Xf
! → f !

V ·f
·
V !k
∗
Xf

!
·
∼=→ f !

V ·k
∗f ·! f

!
· → f !

V ·k
∗.

The commutativity of (6) then follows from the commutativity of the fol-

lowing diagram:

k∗f ·! f
!
· → k∗

↙ ∼= ↑ ↖
f ·V !k

∗
Xf

!
·

id→ f ·V !k
∗
Xf

!
·

∼=→ k∗f ·! f
!
· f ·V !f

!
V ·k
∗.

↘ (11) ↑ ↑ ↗
f ·V !f

!
V ·f
·
V !k
∗
Xf

!· → f ·V !f
!
V ·k
∗f ·! f

!·
In this last diagram, the triangle (11) commutes because the following di-

agram commutes

f ·V !

f ·
V!

(adj)→ f ·V !(f
!
V ·f
·
V !)

‖ ‖
f ·V !

adj← (f ·V !f
!
V ·)f

·
V !. �

Theorem 8.4.7. Let S be a noetherian scheme, f : X → Y an S-

compactifiable morphism between S-schemes of finite type, A a noetherian

torsion ring, K ∈ obD−(Y,A) and L ∈ obD+(Y,A). Then we have a

canonical isomorphism

RH om(f∗K,Rf !L)
∼=→ Rf !RH om(K,L).
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Proof. Roughly speaking, the proof goes as follows. For any M ∈
obD−(X,A), by the projection formula 7.4.7, we have

Rf!M ⊗LA K
∼=→ Rf!(M ⊗ f∗K).

Hence

Hom(Rf!(M ⊗LA f∗K), L)
∼=→ Hom(Rf!M ⊗LA K,L).

By the proof of 6.4.7, we have

Hom(Rf!(M ⊗LA f∗K), L) ∼= Hom(M ⊗LA f∗K,Rf !L)

∼= Hom(M,RH om(f∗K,Rf !L)),

Hom(Rf!M ⊗LA K,L) ∼= Hom(Rf!M,RH om(K,L))

∼= Hom(M,Rf !RH om(K,L)).

So we have a one-to-one correspondence

Hom(M,RH om(f∗K,Rf !L))
∼=→ Hom(M,Rf !RH om(K,L)).

It induces an isomorphism RH om(f∗K,Rf !L)
∼=→ Rf !RH om(K,L).

More explicitly, we construct the isomorphism as follows. Represent K

by a bounded above complex of flat sheaves. We have

Rf!M ⊗LA K = f ·!M ⊗A K, Rf!(M ⊗LA f∗K) ∼= f ·! (M ⊗A f∗K).

We first construct a functorial morphism of complexes

f ·!M ⊗A K → f ·! (M ⊗A f∗K).

Let

X
j
↪→ X

f̄→ Y

be a compactification of f , where j is an open immersion and f̄ is a proper

S-compactifiable morphism. For sheaves of A-modules H1 and H2 on X,

we construct a morphism

C ·(H1)⊗A H2 → C ·(H1 ⊗A H2)

as follows. Let PX be the set of geometric points in X that we use to

construct the Godement resolution. For any geometric point t : Spec k → X

in PX , we have a canonical morphism

t∗t∗H1 ⊗A H2 → t∗(t∗H1 ⊗A t∗H2).

Taking direct product over all t ∈ PX , we can define a morphism

C 0(H1)⊗A H2 → C 0(H1 ⊗A H2).
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Note that the following diagram commutes:

H1 ⊗A H2 → C 0(H1)⊗A H2

‖ ↓
H1 ⊗A H2 → C 0(H1 ⊗A H2).

Suppose we have defined C q(H1) ⊗A H2 → C q(H1 ⊗A H2) for all q ≤ n

such that the following diagram commute:

C q−1(H1)⊗A H2 → C q(H1)⊗A H2

↓ ↓
C q−1(H1 ⊗A H2) → C q(H1 ⊗A H2).

These morphisms induce a morphism

coker (C n−1(H1) → C n(H1))⊗A H2

→ coker (C n−1(H1 ⊗A H2) → C n(H1 ⊗A H2)).

We define C n+1(H1)⊗A H2 → C n+1(H1 ⊗A H2) as the composite of the

following morphisms:

C n+1(H1)⊗A H2 = C 0(coker (C n−1(H1) → C n(H1)))⊗A H2

→ C 0(coker (C n−1(H1) → C n(H1))⊗A H2)

→ C 0(coker (C n−1(H1 ⊗A H2) → C n(H1 ⊗A H2)))

= C n+1(H1 ⊗A H2).

For any sheaf of A-modules F on X and any sheaf of A-modules G on Y ,

write F = lim−→i
Fi and G = lim−→j

Gj , where Fi and Gj are constructible

sheaves of A-modules. We define a morphism of complexes

f ·!F ⊗A G → f ·! (F ⊗A f∗G )

as the composite of the following morphisms:

f ·!F ⊗A G ∼= f̄∗τ≤2d(lim−→
i

C ·(j!Fi))⊗A lim−→
j

Gj

→ f̄∗

(
τ≤2d(lim−→

i

C ·(j!Fi))⊗A f̄∗(lim−→
j

Gj)

)
→ f̄∗τ≤2d

(
lim−→
i

C ·(j!Fi)⊗A f̄∗(lim−→
j

Gj)

)
∼= f̄∗τ≤2d lim−→

i,j

(C ·(j!Fi)⊗A f̄∗Gj)

→ f̄∗τ≤2d lim−→
i,j

C ·(j!Fi ⊗A f̄∗Gj)

→ f̄∗τ≤2d lim−→
i,j

C ·(j!(Fi ⊗A f∗Gj))
∼= f ·! (F ⊗A f∗G ),
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where d is an upper bound for the dimensions of fibers of f̄ . We then use

this morphism to define f ·!M ⊗A K → f ·! (M ⊗A f∗K).

For any q and any sheaf of A-modules H on S, the morphism

f q! F ⊗A G → f q! (F ⊗A f∗G )

induces a homomorphism

Hom(f q! (F ⊗ f∗G ),H ) → Hom(f q! F ⊗ G ,H ).

We have

Hom(f q! (F ⊗A f∗G ),H ) ∼= Hom(F ⊗A f∗G , f !
−qH )

∼= Hom(F ,H om(f∗G , f !
−qH )),

Hom(f q! F ⊗A G ,H ) ∼= Hom(f q! F ,H om(G ,H ))

∼= Hom(F , f !
−qH om(G ,H )).

So we have a homomorphism

Hom(F ,H om(f∗G , f !
−qH )) → Hom(F , f !

−qH om(G ,H )).

It gives rise to a morphism

H om(f∗G , f !
−qH ) → f !

−qH om(G ,H ).

From this, we can define a morphism of complexes

H om·(f∗K, f !
·L) → f !

·H om·(K,L).

Represent K by a bounded above complex of flat sheaves, and L by a

bounded below complex of injective sheaves. We have

Rf!M ⊗LA K ∼= f ·!M ⊗A K,
Rf!(M ⊗LA f∗K) ∼= f ·! (M ⊗A f∗K),

RH om(f∗K,Rf !L) ∼= H om·(f∗K, f !
·L),

Rf !RH om(K,L) ∼= f !
·H om·(K,L).

We thus get a morphism

RH om(f∗K,Rf !L) → Rf !RH om(K,L)

in the derived category. The following diagram commutes:

Hom(Rf!M ⊗LA K,L) ∼= Hom(M,Rf !RH om(K,L))

�‖ �‖
H0(Hom·(f ·!M ⊗A K,L)) ∼= H0(Hom·(M, f !

·H om·(K,L)))
↑ ↑

H0(Hom·(f ·! (M ⊗A f∗K), L)) ∼= H0(Hom·(M,H om·(f∗K, f !
·L)))

�‖ �‖
Hom(Rf!(M ⊗LA f∗K), L) ∼= Hom(M,RH om(f∗K,Rf !L)).
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Since Rf!M ⊗LA K ∼= Rf!(M ⊗A f∗K), the left vertical arrow in the above

diagram is bijective. So we have an isomorphism

Hom(M,RH om(f∗K,Rf !L))
∼=→ Hom(M,Rf !RH om(K,L)).

We need to prove that RH om(f∗K,Rf !L) → Rf !RH om(K,L) is an iso-

morphism. Let

RH om(f∗K,Rf !L) → Rf !RH om(K,L) → Δ →
be a distinguished triangle. It suffices to show that Δ is acyclic. By 6.1.1

(ii), we have

Hom(M,Δ) = 0

for anyM ∈ obD−(X,A). Representing Δ by a bounded below complex of

injective sheaves and take M = G [q] for any q and any sheaf of A-modules

G on X , we see that the complex Hom·(G ,Δ) is acyclic. By 8.4.8 below,

Δ is acyclic. �

Lemma 8.4.8. Let F ′ d
′

→ F
d→ F ′′ be morphisms of sheaves. If for any

sheaf G , the sequence

Hom(G ,F ′) → Hom(G ,F ) → Hom(G ,F ′′)

is exact, then F ′ d
′→ F

d→ F ′′ is exact.

Proof. The sequence

Hom(F ′,F ′) → Hom(F ′,F ) → Hom(F ′,F ′′)

is exact. The morphism idF ′ is mapped to 0 in Hom(F ′,F ′′) under the

composite of the above homomorphisms. So we have dd′ = 0. The sequence

Hom(ker d,F ′) → Hom(ker d,F ) → Hom(ker d,F ′′)

is exact. The inclusion i : ker d ↪→ F is mapped to 0 in Hom(ker d,F ′′).
So there exists a morphism φ : ker d→ F ′ such that d′φ = i. This implies

that ker d ∼= im d′. �

Proposition 8.4.9. Let S be a noetherian scheme. Consider a Cartesian

diagram

X ×Y Y ′ g
′

→ X

f ′ ↓ ↓ f
Y ′

g→ Y.

Suppose that X, Y , and Y ′ are S-schemes of finite type, and f is S-

compactifiable. For any K ∈ obD+(Y ′, A), there exists a canonical iso-

morphism

Rg′∗Rf
′!K

∼=→ Rf !Rg∗K.
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Proof. For any L ∈ obD(X,A), we have a canonical morphism

g∗Rf!L
∼=→ Rf ′! g

′∗L.

It induces a one-to-one correspondence

Hom(Rf ′! g
′∗L,K)

∼=→ Hom(g∗Rf!L,K).

We have

Hom(Rf ′! g
′∗L,K) ∼= Hom(g′∗L,Rf ′!K) ∼= Hom(L,Rg′∗Rf

′!K),

Hom(g∗Rf!L,K) ∼= Hom(Rf!L,Rg∗K) ∼= Hom(L,Rf !Rg∗K).

So we have a one-to-one correspondence

Hom(L,Rg′∗Rf
′!K)

∼=→ Hom(L,Rf !Rg∗K).

It gives rise to an isomorphism

Rg′∗Rf
′!K

∼=→ Rf !Rg∗K. �

Corollary 8.4.10. Let S be a noetherian scheme. Consider a Cartesian

diagram

X ×Y Y ′ g
′

→ X

f ′ ↓ ↓ f
Y ′

g→ Y.

Suppose that X, Y , and Y ′ are S-schemes of finite type, and f is S-

compactifiable. For any K ∈ obD−(Y ′, A) and L ∈ obD+(Y ′, A), we

have a canonical isomorphism

Rg′∗RH om(f ′∗K,Rf ′!L)
∼=→ Rf !Rg∗RH om(K,L).

Proof. Follows from 8.4.7 and 8.4.9. �

Lemma 8.4.11. Let X be a scheme and let A be a ring. Suppose F =⊕
j j!A, where j goes over a set of etale morphisms j : U → X. Then

for any flasque sheaf of A-modules G on X, we have ExtqA(F ,G ) = 0 and

E xtqA(F ,G ) = 0 for all q ≥ 1.

Proof. Since E xtqA(F ,G ) is the sheaf associated to the presheaf V �→
ExtqA(F |V ,G |V ), it suffices to treat Ext. Let I · be a resolution of G by
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injective sheaves of A-modules. For any q ≥ 1, we have

ExtqA(F ,G ) ∼= Hq

(
HomA

(⊕
j

j!A,I
·))

∼= Hq

(∏
j

HomA(j!A,I
·)
)

∼= Hq

(∏
j

Γ(U,I ·)
)

∼=
∏
j

Hq(U,G )

= 0. �

Let X be a scheme, let A be a ring, and let B be an A-algebra. Consider

the functor

ρ : K(X,B) → K(X,A)

that maps each complex of sheaves of B-modules on X to the same complex

considered as a complex of sheaves of A-modules on X . Then ρ transforms

quasi-isomorphisms to quasi-isomorphisms. So it induces a functor

ρ : D(X,B) → D(X,A)

on the derived categories.

Lemma 8.4.12. Let X be a scheme, A a ring, B an A-algebra, and ρ :

D(X,B) → D(X,A) the functor defined above. For any K ∈ obD−(X,A)
and L ∈ obD+(X,B), we have

HomD(X,B)(K ⊗LA B,L) ∼= HomD(X,A)(K, ρ(L)).

Proof. We may assume that L is a bounded below complex of injective

sheaves of B-modules, and K is a bounded above complex whose compo-

nents are of the form
⊕

j j!A, where j goes over a set of etale morphisms

to X . We then have

HomD(X,B)(K ⊗LA B,L) ∼= H0(Hom·(K ⊗A B,L))
∼= H0(Hom·(K, ρ(L))).

To prove our assertion, it suffices to show

H0(Hom·(K, ρ(L))) ∼= HomD(X,A)(K, ρ(L)).
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Let I ·· be a Cartan–Eilenberg resolution of ρ(L). For each q, I ·q is a

resolution of ρ(Lq) by injective sheaves of A-modules. By 8.4.11, we have

Extv(K−u, ρ(Lq)) = 0

for all v ≥ 1 and all u, q. It follows that

Hv
(
Hom(K−u, I ·q)

)
=

{
Hom(K−u, ρ(Lq)) if v = 0,

0 if v 	= 0.

So the biregular spectral sequence

Euv1 = Hv(Hom(K−u, I ·q)) ⇒ Hu+v(Hom(K ·, I ·q))

degenerates at the level E··1 , and we have

Hu(Hom(K ·, ρ(Lq))) ∼= Hu(Hom(K ·, I ·q)).

Consider the bicomplexes C··1 and C··2 defined by

Cpq1 = Hom(K−p, ρ(Lq)),

Cpq2 =
⊕
u+v=p

Hom(K−u, Ivq).

We have a morphism of bicomplexes C··1 → C··2 . It induces a morphism

between the following two spectral sequences

Epq1 = Hq(C·p1 ) ⇒ Hp+q(C··1 ),

Epq1 = Hq(C·p2 ) ⇒ Hp+q(C··2 ).

We have just shown that

Hq(C·p1 ) ∼= Hq(C·p2 ).

It follows that

Hp(C··1 ) ∼= Hp(C··2 )

for all p. We have

H0(C··1 ) = H0(Hom·(K, ρ(L))),

H0(C··2 ) = HomD(X,A)(K, ρ(L)).

We thus have

H0(Hom·(K, ρ(L))) ∼= HomD(X,A)(K, ρ(L)). �
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Proposition 8.4.13. Let S be a noetherian ring, f : X → Y an S-

compactifiable morphism between S-schemes of finite type, A a noetherian

ring, B a noetherian A-algebra, L ∈ obD+(Y,B), ρ : D(X,B) → D(X,A)

and ρ : D(Y,B) → D(Y,A) the functors defined above. Then we have a

canonical isomorphism

ρRf !L
∼=→ Rf !ρL.

Proof. By 7.4.7, we have

Rf!K ⊗LA B ∼= Rf!(K ⊗LA B)

for any K ∈ obD−(X,A). Combined with 8.4.12, we have

HomD(X,A)(K, ρRf
!L) ∼= HomD(X,B)(K ⊗LA B,Rf !L)

∼= HomD(Y,B)(Rf!(K ⊗LA B), L)

∼= HomD(Y,B)(Rf!K ⊗LA B,L)
∼= HomD(Y,A)(Rf!K, ρL)

∼= HomD(X,A)(K,Rf
!ρL).

It follows that we have an isomorphism ρRf !L ∼= Rf !ρL.

More explicitly, we construct the isomorphism as follows. As in the

proof of 8.4.7, we can construct a morphism of complexes

f ·!F ⊗A B → f ·! (F ⊗A B)

for any sheaf of A-modules F on X . We then use this morphism to define

f ·!K ⊗B → f ·! (K ⊗B)

for any complex K of sheaves of A-modules on X . Moreover, for any q and

any sheaf of B-modules H on Y , the morphism

f q! F ⊗A B → f q! (F ⊗A B)

induces a homomorphism

Hom(f q! (F ⊗A B),H ) → Hom(f q! F ⊗A B,H ).

We have

Hom(f q! (F ⊗A B),H ) ∼= Hom(F ⊗A B, f !
−qH )

∼= Hom(F , ρf !
−qH ),

Hom(f q! F ⊗A B,H ) ∼= Hom(f q! F , ρH )

∼= Hom(F , f !
−qρH ).
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So we have a homomorphism

Hom(F , ρf !
−qH ) → Hom(F , f !

−qρH ).

It gives rise to a morphism

ρf !
−qH → f !

−qρH .

For any L ∈ obD+(Y,B), let L → I and ρI → J be quasi-isomorphisms

such that I (resp. J) is a bounded below complex of injective sheaves of

B-modules (resp. A-modules) on Y . We define a morphism

ρRf !L→ Rf !ρL

in the derived category to be the composite

ρRf !L ∼= ρf !
· I → f !

·ρI → f !
·J ∼= Rf !ρL.

Represent K by a bounded above complex whose components are of the

form
⊕

j j!A, where j goes over a set of etale morphisms toX . The following

diagram commutes:

Hom(Rf!K ⊗LA B,L) ∼= Hom(K,Rf !ρL)

↑ ↑
H0(Hom·(f ·!K ⊗A B, I)) ∼= H0(Hom·(K, f !

·ρI))
↑ ↑

H0(Hom·(f ·! (K ⊗A B), I)) ∼= H0(Hom·(K, ρf !
· I))

�‖ �‖
Hom(Rf!(K ⊗LA B), L) ∼= Hom(K, ρRf !L).

Since Rf!K ⊗LA B ∼= Rf!(K ⊗A B), the composite of vertical arrows on the

left in the above diagram is bijective. So the morphism ρRf !L → Rf !ρL

induces a bijection

Hom(K, ρRf !L)
∼=→ Hom(K,Rf !ρL)

for any K ∈ obD−(X,A). As in the proof of 8.4.7, this implies that

ρRf !L ∼= Rf !ρL. �

8.5 Poincaré Duality

([SGA 4] XVIII 3.2.)

Let S be a noetherian scheme, n an integer invertible on S, A a noetherian

ring with nA = 0, and f : X → Y a smooth S-compactifiable morphism
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pure of relative dimension d between S-schemes of finite type. Fix a com-

pactification

X ↪→ X
f̄→ Y

of f . Consider a commutative diagram

U
k→ X

g ↓ ↓ f
V

j→ Y

such that j and k are etale. We have morphisms of complexes

f ·! (k!Z/n) → H 2d(f ·! (k!Z/n))[−2d]

∼= R2df!k!Z/n[−2d]

∼= j!R
2dg!Z/n[−2d]

j!(Trg)→ j!Z/n(−d)[−2d].

For any bounded below complex of sheaves of A-modules K on Y , the

composite of the above morphisms induces a morphism

Hom·(j!Z/n(−d)[−2d],K) → Hom·(f ·! k!Z/n,K).

We thus get a morphism of complexes

K(V )(d)[2d] → (f !
·K)(U).

It induces a morphism

tf : f∗K(d)[2d] → Rf !K

in the derived category D(X,A).

Lemma 8.5.1. Notations as above. The following diagram commutes:

Rf!f
∗K(d)[2d]

Rf!(tf )→ Rf!Rf
!K.

Trf ↘ ↙ adj

K

Proof. Represent K by a bounded below complex of injective sheaves of

A-modules on Y . Consider a Cartesian diagram

U = V ×Y X j′→ X

f ′ ↓ ↓ f
V

j→ Y,
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where j is etale. By 8.2.4 (i), the following diagram commutes:

R2df!f
∗j!Z/n(d)

∼=→ R2df!Z/n(d) ⊗Z/n j!Z/n
∼=→ j!j

∗R2df!Z/n(d)
∼=→ j!R

2df ′
!Z/n(d)

Trf ↓ Trf ⊗ id ↓ j!j
∗(Trf ) ↓ j!(Trf ′) ↓

j!Z/n
∼=→ Z/n⊗Z/n j!Z/n

∼=→ j!j
∗Z/n(d)

∼=→ j!Z/n.

It follows that the top square in the following diagram commutes:

Hom·(j!Z/n,K)
Trf→ Hom·(f ·! f

∗j!Z/n(d)[2d],K)

‖ ‖
Hom·(j!Z/n,K)

Trf′→ Hom·(f ·! f
∗j!Z/n(d)[2d],K)

↓ �‖
Hom·(f∗j!Z/n, f∗K)

tf→ Hom·(f∗j!Z/n(d)[2d], f !·K),

where the first horizontal arrow is induced by the composite

f ·! f
∗j!Z/n(d)[2d] → R2df!f

∗j!Z/n(d)
Trf→ j!Z/n,

and the second horizontal arrow is induced by the composite

f ·! f
∗j!Z/n(d)[2d] → R2df!f

∗j!Z/n(d) ∼= j!R
2df ′!Z/n(d)

j!(Trf′ )→ j!Z/n.

One can verify that the bottom square in the above diagram commutes. So

we have a commutative diagram

Hom·(j!Z/n,K)
Trf→ Hom·(f ·! f

∗j!Z/n(d)[2d],K)

↓ ↓
Hom·(f∗j!Z/n, f∗K)

tf→ Hom·(f∗j!Z/n(d)[2d], f !·K).

This is true for any etale Y -scheme j : V → Y . One deduces from this first

for any sheaf of A-modules L on Y , and then for any complex of sheaves of

A-modules L on Y , that the following diagram commutes:

Hom·(L,K)
Trf→ Hom·(f ·! f

∗L(d)[2d],K)

↓ ↓
Hom·(f∗L, f∗K)

tf→ Hom·(f∗L(d)[2d], f !
·K).

Taking L = K and calculating the images of id ∈ Hom(L,K) under mor-

phisms in the above commutative diagram, we see that Trf corresponds to

tf by the adjointness of (Rf!, Rf
!). �

The main result of this section is the following theorem:
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Theorem 8.5.2. Let S be a noetherian scheme, n an integer invertible on

S, A a noetherian ring such that nA = 0, and f : X → Y a smooth S-

compactifiable morphism pure of relative dimension d between S-schemes

of finite type. Then the morphism

tf : f∗L(d)[2d] → Rf !L

is an isomorphism for any L ∈ obD+(Y,A). For any K ∈ obD(X,A), the

morphism

Trf : Rf!f
∗L(d)[2d] → L

induces a one-to-one correspondence

Hom(K, f∗L(d)[2d])
∼=→ Hom(Rf!K,L), φ �→ Trf ◦Rf!(φ).

Before proving the theorem, we deduce some of its consequences.

Corollary 8.5.3 (Poincaré Duality). Let X be a smooth compactifiable

scheme pure of dimension d over a separably closed field, let n be an integer

invertible on X, and let A be a noetherian ring such that nA = 0 and A is

an injective A-module. For any sheaf of A-modules F on X, we have an

isomorphism

Ext2d−qA (F , A(d)) ∼= HomA(H
q
c (X,F ), A)

for any q. If F is locally constant, then we have an isomorphism

H2d−q(X,H omA(F , A(d))) ∼= HomA(H
q
c (X,F ), A).

Proof. We have

Hom(F , f∗A(d)[2d− i]) ∼= Ext2d−iA (F , A(d)),

Hom(Rf!F , A[−i]) = Ext−iA (RΓc(X,F ), A) ∼= HomA(H
i
c(X,F ), A).

Here for the second equation, we use the assumption that A is an injective

A-module. By 8.5.2, we have

Hom(F , f∗A(d)[2d− i]) ∼= Hom(Rf!F , A[−i]).
Our assertion follows. If F is locally constant, then by 8.3.3, we have

E xtqA(F , A) = 0

for any q ≥ 1. It follows that

ExtqA(F , A) ∼= Hq(X,H omA(F , A)). �
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Lemma 8.5.4. Let A be a ring. For any A-module M , let M∨ =

HomA(M,A). If A is an injective A-module and M has finite presenta-

tion, then the canonical homomorphism M →M∨∨ is an isomorphism.

Proof. Since A is an injective A-module, the functor M → M∨ is an

exact functor. Suppose M has finite presentation. Then we can find an

exact sequence

Am → An →M → 0.

The following diagram commutes:

Am → An → M → 0

↓ ↓ ↓
(Am)∨∨ → (An)∨∨ → M∨∨ → 0.

The first two vertical arrows are isomorphisms. By the five lemma, M →
M∨∨ is an isomorphism. �

Proposition 8.5.5 (Weak Lefschetz Theorem). Let k be a separably

closed field, n an integer relatively prime to the characteristic of k, A a

noetherian ring such that nA = 0 and A is an injective A-module, X a

closed subscheme of PNk , and H a hyperplane of PNk . Suppose that X−X∩H
is smooth. For any sheaf of A-modules F on X such that F |X−X∩H is

locally constant and constructible, the canonical homomorphism

Hq(X,F ) → Hq(X ∩H,F |X∩H )

is bijective for q < dimX − 1 and injective for q = dimX − 1.

Proof. By 7.5.2, we have

Hq(X −X ∩H,H omA(F , A(d))) = 0

for any q > dimX . By 8.5.3 and 8.5.4, we have Hq
c (X −X ∩H,F ) = 0 for

any q < dimX . Our assertion follows from the long exact sequence

· · · → Hi
c(X −X ∩H,F ) → Hi(X,F ) → Hi(X ∩H,F |X∩H ) → · · · .�

Corollary 8.5.6 (Relative Purity Theorem). Consider a commuta-

tive diagram

U
j
↪→ X

i← Z,

f |U ↘ ↓ f ↙ f |Z
Y
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where i is a closed immersion and U = X − Z. Let c = codim(Z,X), let

A be a noetherian ring such that nA = 0 for some integer n invertible on

S, and let F be a sheaf of A-modules on X. Suppose that S is noetherian,

f and f |Z are smooth S-compactifiable morphisms between S-schemes of

finite type, c ≥ 1, and locally with respect to the etale topology, and F is

isomorphic to f∗G for some sheaf of A-modules G on Y . Then we have

Rqi!F ∼=
{
i∗F (−c) if q = 2c,

0 if q 	= 2c,

Rqj∗j∗F ∼=
⎧⎨⎩

F if q = 0,

i∗i∗F (−c) if q = 2c− 1,

0 if q 	= 0, 2c− 1,

Rqf∗F ∼= Rq(f |U )∗(j∗F ) if 0 ≤ q ≤ 2c− 2

and we have a long exact sequence

0 → R2c−1f∗F → R2c−1(f |U )∗j∗F → (f |Z)∗i∗F (−c) → · · ·
→ Rq−1f∗F → Rq−1(f |U )∗j∗F → Rq−2c(f |Z)∗i∗F (−c) → · · · .

Proof. The problem is local with respect to the etale topology on X . We

may assume F = f∗G . We have

Rf!Ri! ∼= R(f |Z)!.
It follows that

R(f |Z)! ∼= Ri!Rf !.

Let d1 and d2 be the relative dimensions of f and f |Z , respectively. We

have c = d1 − d2, and by 8.5.2, we have

Rf !G ∼= f∗G (d1)[2d1], R(f |Z)!G ∼= (f |Z)∗G (d2)[2d2].

So we have

Ri!f∗G (d1)[2d1] ∼= (f |Z)∗G (d2)[2d2].

Hence we have an isomorphism

Ri!F ∼= i∗F (−c)[−2c].

We have an exact sequence

0 → i∗i!F → F → j∗j∗F → i∗R1i!F → 0

and Rqj∗j∗F = i∗Rq+1i!F for any q ≥ 1. This implies the equations in

the corollary. The long exact sequence comes from the spectral sequence

Epq2 = Rpf∗Rqj∗(j∗F ) ⇒ Rp+q(f |U )∗j∗F . �
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To prove 8.5.2, we need the following lemma.

Lemma 8.5.7. Let S be a noetherian scheme, let f : X → Y be a smooth

S-compactifiable morphism pure of relative dimension d, and let n be an

integer invertible on S. Then for any x ∈ X, there exists an etale neigh-

borhood V of f(x̄) in Y and an etale neighborhood U of x̄ in X ×Y V such

that the canonical morphism

Rqf ′V !Z/n→ RqfV !Z/n

vanishes for any q < 2d and the restriction of

TrfV : R2dfV!
Z/n(d) → Z/n

to the image of the canonical morphism

R2df ′V !Z/n→ R2dfV !Z/n

is an isomorphism, where the notation is given by the following commutative

diagram:

U
j→ X ×Y V → X

f ′
V ↘ fV ↓ ↓ f

V → Y.

We give the proof of 8.5.7 after the proof of 8.5.2.

Proof of 8.5.2. It suffices to show that tf is an isomorphism. By 8.4.13,

we may assume A = Z/n. For any x ∈ X , let S be the category defined

as follows: Objects in S are triples (U, V, g), where k : U → X is an

etale neighborhood of x̄, j : V → Y is an etale neighborhood of f(x̄), and

g : U → V is a morphism satisfying fk = jg; morphisms in S from an

object (U, V, g) to an object (U ′, V ′, g′) is a pair (φ, ψ) such that φ : U → U ′

is an X-morphism, ψ : V → V ′ is a Y -morphism, and g′φ = ψg. For any

K ∈ obD+(Y,Z/n), we have

H q(f∗K(d)[2d])x̄ ∼= lim−→
(U,V,g)∈obS ◦

Extq(j!Z/n(−d)[−2d],K),

H q(Rf !K)x̄ ∼= lim−→
(U,V,g)∈obS ◦

Extq(f ·! k!Z/n,K).

So we have biregular spectral sequences

Epq2 = lim−→
(U,V,g)∈obS ◦

Extp(H −q(j!Z/n(−d)[−2d]),K)⇒H p+q(f∗K(d)[2d])x̄,

Epq2 = lim−→
(U,V,g)∈obS ◦

Extp(R−qf!k!Z/n,K) ⇒ H p+q(Rf !K)x̄,

 E
ta

le
 C

oh
om

ol
og

y 
T

he
or

y 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 C

H
IN

E
SE

 U
N

IV
E

R
SI

T
Y

 O
F 

H
O

N
G

 K
O

N
G

 o
n 

10
/1

9/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



February 6, 2015 9:48 ws-book9x6 Etale Cohomology Theory... etale page 467

Duality 467

and the morphism of complexes

f ·! k!Z/n→ j!Z/n(−d)[−2d]

introduced at the beginning of this section defines a morphism from the

first spectral sequence to the second one. To prove the theorem, it suffices

to show that the induced homomorphism

lim−→
(U,V,g)∈obS ◦

Extp(H −q(j!Z/n(−d)[−2d]),K)

→ lim−→
(U,V,g)∈obS ◦

Extp(R−qf!k!Z/n,K)

is an isomorphism for any pair p, q. Given (U, V, g) ∈ obS , by 8.5.7, we

can find a commutative diagram

U ′ k′′→ U ×V V ′ k
′

→ U
k→ X

g′′ ↘ ↓ g′ g ↓ f ↓
V ′

j′→ V
j→ Y

such that U ′ and V ′ are etale neighborhoods of x̄ and f(x̄), respectively, the

canonical morphisms Rqg′′! Z/n→ Rqg′!Z/n vanishes for any q < 2d, and the

restriction of Trg′ : R2dg′!Z/n(d) → Z/n to the image of R2dg′′! Z/n(d) →
R2dg′!Z/n(d) is an isomorphism. So we can find a morphism

α : Z/n→ R2dg′!Z/n(d)

which is a section of Trg′ such that its composite with Trg′′ coincides with

R2dg′′! Z/n(d) → R2dg′!Z/n(d).

R2dg′′! Z/n(d)
Trg′′→ Z/n

↓ ‖
R2dg′!Z/n(d)

α
�
Trg′

Z/n.

We have a commutative diagram

Rqf!(kk
′k′′)!Z/n ∼= (jj′)!Rqg′′! Z/n

↓ 0

↓ (jj′)!Rqg′!Z/n
↓

Rqf!k!Z/n ∼= j!R
qg!Z/n

 E
ta

le
 C

oh
om

ol
og

y 
T

he
or

y 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 C

H
IN

E
SE

 U
N

IV
E

R
SI

T
Y

 O
F 

H
O

N
G

 K
O

N
G

 o
n 

10
/1

9/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



February 6, 2015 9:48 ws-book9x6 Etale Cohomology Theory... etale page 468

468 Etale Cohomology Theory

for any q < 2d, and a commutative diagram

R2df!(kk
′k′′)!Z/n ∼= (jj′)!R2dg′′! Z/n

(jj′)!(Trg′′ )→ (jj′)!Z/n(−d)
↓ ‖

↓ (jj′)!R2dg′!Z/n
(jj′)!(α)

�
(jj′)!(Trg′ )

(jj′)!Z/n(−d)
↓ ↓

R2df!k!Z/n ∼= j!R
2dg!Z/n

j!(Trg)→ j!Z/n(−d).
These facts imply that the homomorphism

lim−→
(U,V,g)∈obS ◦

Extp(H −q(j!Z/n(−d)[−2d]),K)

→ lim−→
(U,V,g)∈obS ◦

Extp(R−qf!k!Z/n,K)

is an isomorphism for any p, q. Indeed, when q 	= −2d, both sides are 0.

When q = −2d, we have a commutative diagram

Extp((jj′)!R2dg′′! Z/n,K)
(jj′)!(Trg′′ )← Extp((jj′)!Z/n(−d),K)

↑ ‖
Extp((jj′)!R2dg′!Z/n,K)

(jj′)!(α)
�

(jj′)!(Trg′ )
Extp((jj′)!Z/n(−d),K)

↑ ↑
Extp(j!R

2dg!Z/n,K)
j!(Trg)← Extp(j!Z/n(−d),K).

If e ∈ Extp(j!Z/n(−d),K) is mapped to 0 in

Extp(j!R
2dg!Z/n,K) ∼= Extp(R2df!k!Z/n,K),

the above commutative diagram shows that it is mapped to 0 in

Extp((jj′)!Z/n(−d),K). This proves the homomorphism

lim−→
(U,V,g)∈obS ◦

Extp(j!Z/n(−d),K) → lim−→
(U,V,g)∈obS ◦

Extp(R2df!k!Z/n,K)

is injective. For any

e′ ∈ Extp(j!R
2dg!Z/n,K) ∼= Extp(R2df!k!Z/n,K),

let e ∈ Extp((jj′)!Z/n(−d),K) be the image of e′ under the composite

Extp(j!R
2dg!Z/n,K) → Extp((jj′)!R2dg′!Z/n,K)

(jj′)!(α)→ Extp((jj′)!Z/n(−d),K).
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Then e and e′ have the same image in

Extp((jj′)!R2dg′′! Z/n,K) ∼= Extp(R2df!(kk
′k′′)!Z/n,K).

This proves that the homomorphism

lim−→
(U,V,g)∈obS ◦

Extp(j!Z/n(−d),K) → lim−→
(U,V,g)∈obS ◦

Extp(R2df!k!Z/n,K)

is surjective. �

Proof of 8.5.7. We use induction on d. Let y = f(x). If d = 0, then f is

etale and separated. Let Ỹȳ be the strict localization of Y at ȳ. By 2.8.14,

there exists a section j̃ : Ỹȳ → X×Y Ỹȳ of the base change fỸȳ : X×Y Ỹȳ →
Ỹȳ of f that maps ȳ to x̄. By 1.10.9, we can find an etale neighborhood V of

ȳ in Y and a section j : V → X×Y V of the base change fV : X×Y V → V

that maps ȳ to x̄. By 2.3.9, j is an open and closed immersion. Taking

U = V , this proves the lemma for the case d = 0.

Suppose d = 1. By 7.7.1, f is locally acyclic relative to Z/n. So for any

algebraic geometric point t→ Ỹȳ , we have

Hq(X̃x̄ ×Ỹȳ t,Z/n) ∼=
{
Z/n if q = 0,

0 if q 	= 0.

We thus have

lim−→̃
U

Hq(Ũ ×Ỹȳ t,Z/n) ∼=
{
Z/n if q = 0,

0 if q 	= 0,

where Ũ goes over the family of etale neighborhoods of x̄ in X ×Y Ỹȳ.

By 7.2.10, Hq(Xt,Z/n) is finite for any q, where Xt = X ×Y t. So there

exists an etale neighborhood Ũ of x̄ in X ×Y Ỹȳ such that the canonical

homomorphisms

Hq(Xt,Z/n) → Hq(Ũ ×Ỹȳ t,Z/n)
are 0 for q = 1, 2. Let W̃ ′ → W̃ be a Ũ -morphism between etale neighbor-

hoods of x̄ in Ũ , and let K
W̃

(resp. K
W̃ ′) be the kernel of the canonical

homomorphism

H0(Xt,Z/n) → H0(W̃×Ỹȳ t,Z/n) (resp. H0(Xt,Z/n) → H0(W̃ ′×Ỹȳ t,Z/n)).
We have K

W̃
⊂ K

W̃ ′ . Since H0(Xt,Z/n) is finite, there exists an etale

neighborhood W̃ of x̄ in Ũ such that for any etale neighborhood W̃ ′ of x̄ in

W̃ , we have K
W̃

= K
W̃ ′ . As lim−→W̃ ′ H

0(W̃ ′ ×Ỹȳ t,Z/n) ∼= Z/n, this implies

that the composite

Z/n→ H0(Xt,Z/n) → H0(Xt,Z/n)/KW̃
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is an isomorphism. Since W̃ is an etale neighborhood of x̄ in Ũ , the canon-

ical homomorphisms

Hq(Xt,Z/n) → Hq(W̃ ×Ỹȳ t,Z/n)
are 0 for q = 1, 2. By 8.3.2, the canonical homomorphisms

Hq
c (W̃ ×Ỹȳ t,μn) → Hq

c (Xt,μn)

are 0 for q = 0, 1, and the restriction of

TrXt/t : H
2
c (Xt,μn) → Z/n

to the image of

H2
c (W̃ ×Ỹȳ t,μn) → H2

c (Xt,μn)

is an isomorphism. Here we use the fact that for any etale k-morphism

π : U ′ → U between smooth algebraic curves over a separably closed field

k, the transposes of the canonical homomorphisms

Hq(U,Z/n) → Hq(U ′,Z/n)

through the pairing in 8.3.2 are the canonical homomorphisms

H2−q
c (U ′,μn) → H2−q

c (U,μn).

This follows from the commutativity of the following diagram

H2−q
c (U ′,μn) × ExtqU ′(μn,μn) → H2

c (U
′,μn)

�‖ ↓ �‖ TrU′/k ↘
H2−q
c (U, π!μn) × ExtqU (π!μn, π!μn) → H2

c (U, π!μn) Z/n,

‖ ↓ Trπ ↓ Trπ TrU/k ↗
H2−q
c (U, π!μn) × ExtqU (π!μn,μn) → H2

c (U,μn)

Trπ ↓ ↑ Tr∗π ‖
H2−q
c (U,μn) × ExtqU (μn,μn) → H2

c (U,μn)

the fact that the composite φ : ExtqU ′(μn,μn) → ExtqU (π!μn,μn) of

ExtqU ′(μn,μn) → ExtqU (π!μn, π!μn)
Trπ→ ExtqU (π!μn,μn)

is an isomorphism, and the fact that the composite

ExtqU (μn,μn)
Tr∗π→ ExtqU (π!μn,μn)

φ−1

→ ExtqU ′ (μn,μn)

can be identified with the canonical homomorphism Hq(U,Z/n) →
Hq(U ′,Z/n).
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For any etale neighborhood Ũ of x̄ in X×Y Ỹȳ, denote by F q

Ũ
the images

of the canonical morphisms

Rq(f̃ |Ũ )!μn → Rq f̃!μn,

where f̃ : X ×Y Ỹȳ → Ỹȳ is the base change of f . We use noetherian

induction to show that there exists an etale neighborhood Ũ such that

F q

Ũ
= 0 for q = 0, 1 and the restriction of

Trf̃ : R2f̃!μn → Z/n

to F 2
Ũ
is an isomorphism. Let S be the set of those closed subsets A of Ỹȳ

such that for any etale neighborhood Ũ of x̄ in X ×Y Ỹȳ, either F 0
Ũ
|A 	= 0,

or F 1
Ũ
|A 	= 0, or the restriction of Trf̃ |A to F 2

Ũ
|A is not an isomorphism.

If S is not empty, then there exists a minimal element A in S , and A

must be irreducible. Let t be an algebraic geometric point lying above

the generic point of A. By our previous discussion, there exists an etale

neighborhood W̃ of x̄ in X×Y Ỹȳ such that Hq
c (W̃ ×Ỹȳ t,μn) → Hq

c (Xt,μn)

are 0 for q = 0, 1, and the restriction of TrXt/t : H
2
c (Xt,μn) → Z/n to the

image of the canonical homomorphism H2
c (W̃ ×Ỹȳ t,μn) → H2

c (Xt,μn) is

an isomorphism. So we have (F q

W̃
)t = 0 for q = 0, 1, and the restriction

of (Trf̃ )t : (R2f̃!μn)t → Z/n to (F 2
W̃
)t is an isomorphism. Since F q

W̃
(q = 0, 1), ker (Trf̃ |F2

W̃
) and coker (Trf̃ |F2

W̃
) are constructible by 7.8.1,

there exists a nonempty open subset O of A such that F q

W̃
|O (q = 0, 1),

(ker (Trf̃ |F2

W̃
))|O and (coker (Trf̃ |F2

W̃
))|O are locally constant. As t lies in

O, all these locally constant sheaves are 0. By the minimality of A, there

exists an etale neighborhood W̃ ′ of x̄ in X ×Y Ỹȳ such that F q

W̃ ′ |A−O = 0

for q = 0, 1 and the restriction of Trf̃ |A−O to F 2
W̃ ′ |A−O is an isomorphism.

Let W̃ ′′ = W̃ ×(X×Y Ỹȳ) W̃
′. We have F q

W̃ ′′ ⊂ F q

W̃
∩ F q

W̃ ′ for all q. So

F q

W̃ ′′ |A (q = 0, 1), (ker (Trf̃ |F2

W̃ ′′
))|A and (coker (Trf̃ |F2

W̃ ′′
))|A are all 0.

This contradicts A ∈ S . So S is empty. Therefore there exists an etale

neighborhood Ũ of x̄ in X ×Y Ỹȳ such that F q

Ũ
= 0 for q = 0, 1 and the

restriction of Trf̃ : R2f̃!μn → Z/n to F 2
Ũ

is an isomorphism. By 5.9.8,

there exists an etale neighborhood V of ȳ in Y and an etale neighborhood

U of x̄ in X ×Y V such that Ũ ∼= U ×V Ỹȳ and such that the assertions in

8.5.7 hold. This proves 8.5.7 in the case where d = 1.

Suppose that 8.5.7 holds for smooth morphisms of relative dimensions

< d, and let us prove that it holds for any smooth morphism f : X → Y

pure of relative dimension d. Note that if we can find an etale neighborhood
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X ′ of x̄ inX such that 8.5.7 holds for the morphism f |X′ , then it holds for f .

So to prove our assertion, we may assume there exists an etale Y -morphism

X → AnY = SpecOY [t1, . . . , tn].

Let Y ′ = A1
Y = SpecOY [t1]. We can factorize f as a composite

X
h→ Y ′

g→ Y

such that h and g are smooth pure of relative dimensions d′ = d − 1 and

1, respectively. By the induction hypothesis, we can find a commutative

diagram

U → X ×Y ′ V → X

h′
0 ↘ ↓ h0 ↓ h

V → Y ′

such that V is an etale neighborhood of h(x̄) in Y ′, U is an etale neighbor-

hood of x̄ in X ×Y ′ V , the canonical morphisms

Rqh′0!Z/n→ Rqh0!Z/n

are 0 for q 	= 2d′, and the restriction of

Trh0 : R2d′h0!Z/n(d
′) → Z/n

to the image of the canonical morphism

R2d′h′0!Z/n(d
′) → R2d′h0!Z/n(d

′)

is an isomorphism. Let g1 : V → Y be the composite of V → Y ′ and
g : Y ′ → Y . Applying the d = 1 case to g1, we get a commutative diagram

Z
j→ V ×Y W → V

g′′1 ↘ ↓ g′1 ↓ g1
W → Y

such that W is an etale neighborhood of ȳ in Y , Z is an etale neighborhood

of h0(x̄) in V ×Y W , the canonical morphisms

Rqg′′1!Z/n→ Rqg′1!Z/n

are 0 for q 	= 2, and the restriction of

Trg′1 : R2g′1!Z/n(1) → Z/n

to the image of the canonical morphism

R2g′′1!Z/n(1) → R2g′1!Z/n(1)
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is an isomorphism. Consider the following commutative diagram:

U → X ×Y ′ V

↗ ↗ ↓ h0

U ×Y W → X ×Y ′ V ×Y W V

↗ ↗ ↓ h1 ↗ ↓ g1
U ×V Z → X ×Y ′ V ×V Z V ×Y W Y

h′
2 ↘ ↓ h2

j

↗ ↓ g′1 ↗
Z →

g′′1
W ,

where h1 and h2 are the base changes of h0, and h
′
2 is the base change of

h′0. When q 	= 2d′, the canonical morphisms

Rpg′′1!R
qh′2!Z/n(d

′) → Rpg′1!R
qh1!Z/n(d

′)

are 0 since they are the composites of the canonical morphisms

Rpg′′1!R
qh′2!Z/n(d

′) → Rpg′′1!R
qh2!Z/n(d

′) → Rpg′1!R
qh1!Z/n(d

′)

and the canonical morphisms

Rqh′2!Z/n(d
′) → Rqh2!Z/n(d

′)

are 0. When p 	= 2, the canonical morphisms

Rpg′′1!R
2d′h′2!Z/n(d

′) → Rpg′1!R
2d′h1!Z/n(d

′)

are 0. To prove this, let h′1 : U ×Y W → V ×Y W be the base change of h′0.
The restrictions of Trhi (i = 1, 2) to the images of the canonical morphisms

R2d′h′i!Z/n(d
′) → R2d′hi!Z/n(d

′)

are isomorphisms. Denote the inverses of these isomorphisms by Tr−1hi .
Then these canonical morphisms can be factorized as

R2d′h′i!Z/n(d
′)

Trh′
i→ Z/n

Tr−1
hi→ R2d′hi!Z/n(d

′).

The following diagram commutes:

Rpg′′1!R
2d′h′2!Z/n(d

′)
Trh′

2→ Rpg′′1!Z/n
Tr−1
h2→ Rpg′′1!R

2d′h2!Z/n(d
′)

�‖ �‖ �‖
Rpg′1!j!j

∗R2d′h′1!Z/n(d
′)

Trh′
1→ Rpg′1!j!j

∗Z/n
Tr−1
h1→ Rpg′1!j!j

∗R2d′h1!Z/n(d
′)

Trj ↓ Trj ↓ Trj ↓
Rpg′1!R

2d′h′1!Z/n(d
′)

Trh′1→ Rpg′1!Z/n
Tr−1
h1→ Rpg′1!R

2d′h1!Z/n(d
′).
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When p 	= 2, the canonical morphisms Rpg′′1!Z/n → Rpg′1!Z/n are 0. So

the canonical morphisms Rpg′′1!R
2d′h′2!Z/n(d

′) → Rpg′1!R
2d′h1!Z/n(d

′) are

0. Hence when p+ q 	= 2d, the canonical morphisms

Rpg′′1!R
qh′2!Z/n(d

′) → Rpg′1!R
qh1!Z/n(d

′)

are 0. We have biregular spectral sequences

Epq2 = Rpg′′1!R
qh′2!Z/n(d

′) ⇒ Rp+q(g′′1h
′
2)!Z/n(d

′),

Epq2 = Rpg′1!R
qh1!Z/n(d

′) ⇒ Rp+q(g′1h1)!Z/n(d
′).

It follows that the canonical morphisms

Rq(g′′1h
′
2)!Z/n(d

′) → Rq(g′1h1)!Z/n(d
′)

are 0 when q 	= 2d.

Let F
φ→ G

ψ→ H be morphisms of sheaves. One can verify that the

following three statements are equivalent:

(a) ψ induces an isomorphism from imφ to H .

(b) ψφ is surjective and ker (ψφ) ⊂ kerφ.

(c) ψφ is surjective and there exists a morphism θ : H → G such that

ψθ = idH and φ = θψφ.

If these conditions holds, then for any right exact additive functor F , F (ψ)

induces an isomorphism from im (F (φ)) to F (H ). Since the restriction of

Trh2 : R2d′h2!Z/n(d
′) → Z/n

to the image of the canonical morphism

R2d′h′2!Z/n(d
′) → R2d′h2!Z/n(d

′)

is an isomorphism and the functor R2g′′1! is right exact, the restriction of

the morphism

R2g′′1!R
2d′h2!Z/n(d

′) → R2g′′1!Z/n

induced by Trh2 to the image of the canonical morphism

R2g′′1!R
2d′h′2!Z/n(d

′) → R2g′′1!R
2d′h2!Z/n(d

′)

is an isomorphism. Moreover, the restriction of

Trg′1 : R2g′1!Z/n(1) → Z/n

to the image of the canonical morphism

R2g′′1!Z/n(1) → R2g′1!Z/n(1)
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is an isomorphism. Using these facts and the following commutative dia-

gram,

R2g′′1!R
2d′h′

2!Z/n(d) → R2g′′1!R
2d′h2!Z/n(d)

Trh2→ R2g′′1!Z/n(1)

�‖ �‖ �‖ Tr
g′′1
↘

R2g′1!j!j
∗R2d′h′

1!Z/n(d) → R2g′1!j!j
∗R2d′h1!Z/n(d)

Trh1→ R2g′1!j!j
∗Z/n(1) Z/n,

Trj↓ Trj↓ Trj↓ Tr
g′
1
↗

R2g′1!R
2d′h′

1!Z/n(d) → R2g′1!R
2d′h1!Z/n(d)

Trh1→ R2g′1!Z/n(1)

one can check that the morphism

R2g′′1!R
2d′h′2!Z/n(d) → Z/n

is surjective, and its kernel is contained in the kernel of the morphism

R2g′′1!R
2d′h′2!Z/n(d) → R2g′1!R

2d′h1!Z/n(d).

So the restriction of

R2g′1!R
2d′h1!Z/n(d) → Z/n

to the image of R2g′′1!R
2d′h′2!Z/n(d) → R2g′1!R

2d′h1!Z/n(d) is an isomor-

phism. We have

R2d(g′′1h
′
2)!Z/n(d)

∼= R2g′′1!R
2d′h′2!Z/n(d),

R2d(g′1h1)!Z/n(d) ∼= R2g′1!R
2d′h1!Z/n(d).

It follows that the restriction of

Trg′1h1
: R2d(g′1h1)!Z/n(d) → Z/n

to the image of the canonical morphism

R2d(g′′1h
′
2)!Z/n(d) → R2d(g′1h1)!Z/n(d)

is an isomorphism. Recall that we have shown the canonical morphisms

Rq(g′′1h
′
2)!Z/n(d) → Rq(g′1h1)!Z/n(d)

are 0 for q 	= 2d. Let gW : Y ′ ×Y W → W and hW : X ×Y W → Y ′ ×Y W
be the base changes of g and h, respectively. The above facts imply that

the canonical morphisms

Rq(g′′1h
′
2)!Z/n(d) → Rq(gWhW )!Z/n(d)

are 0 for any q 	= 2d, and the restriction of

TrgW hW : R2d(gWhW )!Z/n(d) → Z/n

to the image of the canonical morphism

R2d(g′′1h
′
2)!Z/n(d) → R2d(gWhW )!Z/n(d)

is an isomorphism. This finishes the proof of the lemma.

U ×V Z → X ×Y ′ V ×Y W → X ×Y W
h′
2 ↓ h1 ↓ ↓ hW
Z → V ×Y W → Y ′ ×Y W

g′′1↘ g′1 ↓
gW↙

W �
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8.6 Cohomology Classes of Algebraic Cycles

([SGA 4 1
2 ] Cycle.)

Throughout this section, we fix a noetherian ring A such that A is an

injective A-module, and nA = 0 for some integer n invertible on schemes

we consider. Let S be a noetherian scheme, and let f : Y → Z be a smooth

S-compactifiable morphism pure of relative dimension d between S-schemes

of finite type. We have the trace morphism

Trf : R2df!A(d) → A.

On the other hand, we haveRqf!A(d) = 0 for all q > 2d and Rqf !A(−d) = 0

for all q < −2d. So we have

HomA(R
2df!A(d), A) ∼= HomD(Z,A)(Rf!A(d), A[−2d])

∼= HomD(Y,A)(A(d), Rf
!A[−2d])

∼= H0(Y,Rf !A(−d)[−2d])

∼= H0(Y,R−2df !A(−d)).
Hence Trf :R

2df!A(d)→A corresponds to an element in H0(Y,Rf !A(−d)
[−2d]). Suppose that we have a smooth S-compactifiable morphism

g : X → Z pure of relative dimension N and an immersion i : Y → X

such that gi = f . Let c = N − d be the codimension of Y in X . We have

Rf !A ∼= Ri!Rg!A ∼= Ri!A(N)[2N ].

So we have

Rf !A(−d)[−2d] ∼= Ri!A(c)[2c].

It follows that Rqi!A = 0 for any q < 2c and

H0(Y,Rf !A(−d)[−2d]) ∼= H0(Y,Ri!A(c)[2c]) ∼= H2c
Y (X,A(c)).

The element in H2c
Y (X,A(c)) corresponding to Trf is called the cohomology

class associated to Y and is denoted by cl′(Y ). The image of cl′(Y ) under

the canonical homomorphism

H2c
Y (X,A(c)) → H2c(X,A(c))

is also called the cohomology class of Y and is denoted by cl(Y ).

The functors Hq
Y (X,−) that we used above are defined as follows.

Choose an open subset U of X containing i(Y ) as a closed subset. We

define

ΓY (X,F ) = ΓY (U,F |U )
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for any sheaf F on X . The functor ΓY (X,−) is independent of the choice

of U and is left exact. Let RΓY (X,−) be the right derived functor of

ΓY (X,−). We define

Hq
Y (X,F ) = Hq(RΓY (X,F )) = Hq

Y (U,F ).

Let k : Y → U and j : U → X be the immersions such that i = jk. We

have

ΓY (X,F ) = Γ(Y, k!j∗F ).

So we have

RΓY (X,F ) = RΓ(Y,R(k!j∗)F ) ∼= RΓ(Y,Ri!F ).

The next proposition shows that cl′(Y ) ∈ H2c
Y (X,A(c)) depends only

on i : Y → X and not on the base Z.

Proposition 8.6.1. Let S be a noetherian scheme. Consider a commuta-

tive diagram

X
i

↗ ↓ g′
Y

f ′
→ Z ′

↘
f

↓ h
Z,

where i is an immersion, f , f ′, g = hg′, g′ and h are smooth S-

compactifiable morphisms between S-schemes of finite type pure of relative

dimensions d, d′, N , N ′ and N −N ′, respectively. Let

c = N − d = N ′ − d′.

The element in H2c
Y (X,A(c)) corresponding to Trf ∈ Hom(R2df!A(d), A)

coincides with the element corresponding to Trf ′ ∈ Hom(R2d′f ′!A(d
′), A).

Proof. Use the commutativity of the following diagram:

Hom(Rf′!A(d′), A[−2d′]) → Hom(Rh!Rf
′
!A(d′), Rh!A[−2d′]) Trh→ Hom(Rf!A(d), A[−2d])

∼= ↓ (1) ∼= ↓ ∼= ↓

Hom(A(d′), Rf′!A[−2d′]) → Hom(A(d′), Rf′!Rh!Rh!A[−2d′]) Trh→ Hom(A(d), Rf!A[−2d])

∼= ↓ ∼= ↓ ∼= ↓

Hom(A,Ri!Rg′!A(−d′)[−2d′]) → Hom(A,Ri!Rg′!Rh!Rh!A(−d′)[−2d′]) Trh→ Hom(A,Ri!Rg!A(−d)[−2d])

↘∼=
(2) ↙∼=

Hom(A,Ri!A(c)[2c]),
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where (1) commutes because for any φ ∈ Hom(Rf ′!A(d
′), A[−2d′]), the

following diagram commutes:

A(d′) → Rf ′!Rf ′!A(d
′)

Rf ′!(φ)→ Rf ′!A[−2d′]
↘ ↓ ↓
Rf ′!Rh!Rh!Rf ′!A(d

′)
Rf ′!Rh!Rh!(φ)→ Rf ′!Rh!Rh!A[−2d′],

and (2) commutes because

A(−d′)[−2d′] ∼= Rh!A(−d)[−2d]

and the following diagram commutes:

Rh!A(−d)[−2d] = Rh!A(−d)[−2d]

adj ↓ ↑ adj

(Rh!Rh!)Rh
!A(−d)[−2d] = Rh!(Rh!Rh

!)A(−d)[−2d].

Proposition 8.6.2. Let S be a noetherian scheme, g : X → Z and f :

Y → Z smooth S-compactifiable morphisms between S-schemes of finite

type pure of relative dimensions N and d, respectively, i : Y → X a closed

immersion such that f = gi, and c = N − d. Then Trf : R2df!A(d) → A

is mapped to cl(Y ) ∈ H2c(X,A(c)) under the composite of the following

homomorphisms:

Hom(R2df!A(d), A) ∼= Hom(Rf!A(d), A[−2d])

∼= Hom(Rg!i∗i∗A(d), A[−2d])

→ Hom(Rg!A(d), A[−2d])

∼= Hom(A,Rg!A(−d)[−2d])

∼= Hom(A,A(c)[2c])

∼= H2c(X,A(c)).

Equivalently, through the isomorphisms

Hom(Rg!A(d), A[−2d]) ∼= Hom(A,Rg!A(−d)[−2d]) ∼= H2c(X,A(c)),

cl(Y ) ∈ H2c(X,A(c)) corresponds to the composite

Rg!A(d) → Rf!A(d)
Trf→ A[−2d].
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Proof. Use the commutativity of the following diagram:

Hom(Rf!A(d),A[−2d])
∼=↓

Hom(Rg!i∗i∗A(d),A[−2d]) = Hom(Rg!i∗i∗A(d),A[−2d]) → Hom(Rg!A(d),A[−2d])
∼=↓ ∼=↓ (1) ∼=↓

Hom(i∗A(d),Ri!Rg!A[−2d]) ∼= Hom(A(d),i∗Ri!Rg!A[−2d]) → Hom(A(d),Rg!A[−2d])
∼=↓ ∼=↓ ∼=↓

Hom(i∗A,Ri!A(c)[2c]) ∼= Hom(A,i∗Ri!A(c)[2c]) → Hom(A,A(c)[2c])

∼=↓ ∼=↓
H2c
Y (X,A(c)) → H2c(X,A(c)).

The commutativity of (1) follows from the adjointness of (Rg!, Rg
!) and the

following fact: For any sheaves F and G on X and any morphism

ψ : i∗i∗F → G ,

if

ψ′ : F → i∗i!G

is the morphism induced by ψ by adjunction, then the composite

F
adj→ i∗i∗F

ψ→ G

coincides with the composite

F
ψ′
→ i∗i!G

adj→ G .

To prove this fact, note that ψ induces a morphism

φ : i∗F → i!G

by adjunction such that ψ coincides with the composite

i∗i∗F
i∗φ→ i∗i!G

adj→ G ,

and ψ′ coincides with the composite

F
adj→ i∗i∗F

i∗φ→ i∗i!G .

Our assertion follows. �

Let X be a smooth compactifiable scheme pure of dimension N over an

algebraically closed field k, let Y be an integral closed subscheme of X pure

of dimension d, and let c = N − d. There exists an open subset U of Y

smooth over k. We can define cl′(U) ∈ H2c
U (X,A(c)) as above. We claim

that

H2c
U (X,A(c)) ∼= H2c

Y (X,A(c)).
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We call the element inH2c
Y (X,A(c)) corresponding to cl′(U) the cohomology

class associated to Y and denote it by cl′(Y ).

Let us prove our claim. Let Z = Y −U , and fix notation by the following

commutative diagram

Z

↓ l ↘ h

U
j→ Y

i→ X,

where h, i, j, l are all immersions. We have a long exact sequence

· · · → Hq
Z(Y,Ri

!A(c)) → Hq(Y,Ri!A(c)) → Hq(U, j∗Ri!A(c)) → · · · .
Moreover, we have

Hq
Z(Y,Ri

!A(c)) ∼= Hq(Z,Rl!Ri!A(c)) ∼= Hq(Z,Rh!A(c)),

Hq(Y,Ri!A(c)) ∼= Hq
Y (X,A(c)),

Hq(U, j∗Ri!A(c)) ∼= Hq
U (X,A(c)).

To prove our claim, it suffices to show

Rqh!A(c) = 0

for any q < 2(c + 1). Let g : X → Spec k be the structure morphism. We

have

Rh!A(c) ∼= Rh!Rg!A(c−N)[−2N ] ∼= R(gh)!A(c−N)[−2N ].

Since dimZ ≤ d− 1, we have

Rq(gh)!A(c−N) = 0

for any q < −2(d− 1). Hence

Rqh!A(c) ∼= Rq−2N (gh)!A(c−N) = 0

for any q − 2N < −2(d− 1), or equivalently, q < 2(c+ 1).

Next suppose that Y is a closed subscheme of X pure of dimension d,

and let Y1, . . . , Ym be all the irreducible components of Y with the reduced

closed subscheme structure. We can define cl′(Yi) ∈ H2c
Yi
(X,A(c)) as above.

Denote their images in H2c
Y (X,A(c)) also by cl′(Yi). Let ηi be the generic

point of Yi. We define the cohomology class associated to Y to be

cl′(Y ) =

m∑
i=1

length(OY,ηi) cl
′(Yi) ∈ H2c

Y (X,A(c)).

The image of cl′(Y ) in H2c(X,A(c)) is also called the cohomology class

associated to Y and is denoted by cl(Y ).
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Finally, let γ =
∑
i niYi be an algebraic cycle of codimension c. We

define the cohomology class associated to γ to be

cl(γ) =
∑
i

nicl(Yi) ∈ H2c(X,A(c)).

Lemma 8.6.3. Consider a commutative diagram

Y ′ i′→ X ′

j′ ↓ ↓ j
Y

i→ X

f ↘ ↓ g
Spec k,

where k is an algebraically closed field, X and Y are smooth compactifiable

k-schemes pure of dimensions N and d, respectively, i is a closed immer-

sion, j is etale, and the square in the diagram is Cartesian. Let c = N − d.

Then the image of cl′(Y ) under the canonical homomorphism

H2c
Y (X,A(c)) → H2c

Y ′(X ′, A(c))

is cl′(Y ′).

Proof. Let f ′ = fj′ and g′ = gj. We use the commutativity of the

following diagram:

Hom(Rf!A(d),A[−2d]) → Hom(Rf!j
′
! j

′∗A(d),A[−2d]) ∼= Hom(Rf ′
!A(d),A[−2d])

∼=↓ (1) ∼=↓ ∼=↓
Hom(A,Rf !A(−d)[−2d]) → Hom(j′∗A(d),j′∗Rf !A[−2d]) ∼= Hom(A,Rf ′!A(−d)[−2d])

∼=↓ ∼=↓ ∼=↓
Hom(A,Ri!A(c)[2c]) → Hom(j′∗A,j′∗Ri!A(c)[2c]) ∼= Hom(A,Ri′!A(c)[2c]).

The commutativity of (1) follows from the fact that for any φ ∈
Hom(Rf!A,A(−d)[−2d]), the following diagram commutes:

j′∗A
adj→ (j′∗Rf !Rf!j

′
!)j
′∗A

j′∗(adj) ↓ (2) ‖
j′∗Rf !A(−d)[−2d]

j′∗Rf !(φ)← j′∗Rf !Rf!A
j′∗Rf !Rf!(adj)← j′∗Rf !Rf!(j

′
!j
′∗A).

To prove that (2) commutes, we use the adjointness of (j′! , j
′∗) to reduce it

to the commutativity of the following diagram:

j′!j
′∗A

adj→ Rf !Rf!j
′
!j
′∗A

adj ↓ ↓ Rf !Rf!(adj)

A
adj→ Rf !Rf!A. �
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Lemma 8.6.4. Let S be a noetherian scheme. Consider a commutative

diagram of Cartesian squares

Y ′ i′→ X ′
g′→ Z ′

h′′ ↓ h′ ↓ h ↓
Y

i→ X
g→ Z.

Suppose all the schemes in the diagram are S-schemes of finite type, f = gi

and g are smooth S-compactifiable morphisms pure of relative dimensions

d and N , respectively, and i is a closed immersion. Let c = N − d. Then

the image of cl′(Y ) under the canonical homomorphism

H2c
Y (X,A(c)) → H2c

Y ′(X ′, A(c))

is cl′(Y ′).

Proof. Let f ′ = g′i′. The following diagram commutes:

Hom(Rf!A(d), A[−2d]) ∼= Hom(A,Rf!A(−d)[−2d]) ∼= Hom(A,Ri!Rg!A(−d)[−2d])

↓ ↓ ↓

Hom(h∗Rf!A(d), h∗A[−2d]) ∼= Hom(A,Rf!Rh∗h∗A(−d)[−2d]) ∼= Hom(A,Ri!Rg!Rh∗h∗A(−d)[−2d])

∼= ↓ ∼= ↓ ∼= ↓

Hom(Rf′! h
′′∗A(d), h∗A[−2d]) ∼= Hom(A,Rh′′∗Rf′!h∗A(−d)[−2d]) ∼= Hom(A,Rh′′∗Ri′!Rg′!h∗A(−d)[−2d])

∼= ↓ ∼= ↓ ∼= ↓

Hom(Rf′!A(d), A[−2d]) ∼= Hom(A,Rf′!A(−d)[−2d]) ∼= Hom(A,Ri′!Rg′!A(−d)[−2d]).

To prove our assertion, we need to show that the composite of the right-

most vertical arrows can be identified with the canonical homomorphism

H2c
Y (X,A(c)) → H2c

Y ′(X ′, A(c)).

It suffices to show that the following diagram commutes:

Ri!Rg!A(−d)[−2d]

↓ ↘
Ri!Rg!Rh∗h∗A(−d)[2d] (1) Ri!Rh′∗h

′∗Rg!A(−d)[−2d]

�‖ ↗ ↓
Ri!Rh′∗Rg

′!h∗A(−d)[−2d] Rh′′∗Ri
′!h′∗Rg!A(−d)[−2d],

↓ ↗
Rh′′∗Ri

′!Rg′!h∗A(−d)[−2d]

where the slant arrows in the parallelogram in the lower part of the diagram

is induced by the composite of the following isomorphisms

Rg′!h∗
t−1

g′→ g′∗h∗(N)[2N ] ∼= h′∗g∗(N)[2N ]
tg→ h′∗Rg!.
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Here

tg : g
∗(N)[2N ]

∼=→ Rg!, tg′ : g
′∗(N)[2N ]

∼=→ Rg′!

are the isomorphisms in 8.5.2. The difficulty is to prove that the diagram

(1) commutes. We will show in a moment that for any K ∈ obD+(Z ′, A),
the following diagram commutes:

g∗Rh∗K(N)[2N ]
tg→∼= Rg!Rh∗K

∼= ↓ ↑ ∼=
Rh′∗g

′∗K(N)[2N ]
Rh′

∗(tg′ )→∼= Rh′∗Rg
′!K,

(2)

where the vertical arrows are the canonical isomorphisms in 7.7.2 and 8.4.9,

respectively. Thus through the isomorphisms tg and tg′ , the canonical mor-

phism

g∗Rh∗(N)[2N ] → Rh′∗g
′∗(N)[2N ]

can be identified with the inverse of the canonical morphism

Rh′∗Rg
′! ∼=→ Rg!Rh∗.

The commutativity of the diagram (1) then follows from the commutativity

of the following diagram:

g∗ → Rh′∗h
′∗g∗

↓ �‖
g∗Rh∗h∗ → Rh′∗g

′∗h∗.

Let us prove that the diagram (2) commutes. By the adjointness of the

functors (g∗, Rg∗), it suffices to show that the following diagram commutes:

Rh∗K(N)[2N ] → Rg∗Rg!Rh∗K
↓ ↘

Rh∗Rg′∗g′∗K(N)[2N ]
Rh∗Rg′∗(tg′ )→ Rh∗Rg′∗Rg′!K ‖

�‖ �‖
Rg∗Rh′∗g

′∗K(N)[2N ]
Rg∗Rh′

∗(tg′ )→ Rg∗Rh′∗Rg
′!K

∼=→ Rg∗Rg!Rh∗K,

where the horizontal arrow on the top of the diagram is obtained from

tg : g
∗Rh∗K(N)[2N ] → Rg!Rh∗K

through the adjoint functors (g∗, Rg∗), and the slant arrow is induced by

the morphism

K(N)[2N ] → Rg′∗Rg
′!K
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obtained from tg′ through the adjoint functors (g′∗, Rg′∗). It is clear that

the triangle and the square in this diagram commute. We are thus reduced

to show the right part of the above diagram, that is, the following diagram,

commutes:
Rh∗K(N)[2N ] → Rg∗Rg!Rh∗K

↓ ↑ ∼=
Rh∗Rg′∗Rg′!K ∼= Rg∗Rh′∗Rg′!K.

(3)

Let

U
k→ X

g1 ↓ ↓ g
V

j→ Z

be a Cartesian diagram such that j is etale. Taking its base change with

respect to h : Z ′ → Z, and denote the resulting Cartesian diagram by

U ′ k
′→ X ′

g′1 ↓ ↓ g′
V ′

j′→ Z ′.
Represent K by a bounded below complex of injective sheaves. By the def-

inition of the isomorphisms tg and tg′ at the beginning of 8.5, to prove that

the diagram (3) commutes, it suffices to show that the following diagram

commutes:
Hom·(j!Z/n(−N)[−2N ], h∗K) → Hom·(g·!k!Z/n, h∗K)

�‖ ↑
Hom·(j′!Z/n(−N)[−2N ],K) → Hom·(g′·!k

′
!Z/n,K),

(4)

where the first horizontal arrow is induced by the composite

g·!k!Z/n → H 2N (g·!k!Z/n)[−2N ]

∼= R2Ng!k!Z/n[−2N ]

∼= j!R
2Ng1!Z/n[−2N ]

j!(Trg1)→ j!Z/n(−N)[−2N ],

the second horizontal arrow is induced by the composite defined in the

same way with g, k, j, g1 replaced by g′, k′, j′, g′1, respectively, and the right

vertical arrow is induced by the canonical morphism

h∗g·!k!Z/n→ g′·!k
′
!Z/n.

The commutativity of the diagram (4) follows from 8.2.4 (i) applied to the

Cartesian diagram

U ′ → U

g′1 ↓ ↓ g1
V ′ → V. �
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Suppose that X is a smooth compactifiable scheme pure of dimension

N over an algebraically closed field k. Any Weil divisor D on X defines an

element in H1(X,O∗Xet
) represented by the invertible OX -module L (D) by

7.1.4 and 7.1.5. Kummer’s theory defines a homomorphism

H1(X,O∗Xet
) → H2(X,μn).

Let cl(L (D)) ∈ H2(X,μn) be the image of L (D) under this homomor-

phism.

Proposition 8.6.5. Under the above assumption, we have cl(D) =

cl(L (D)) in H2(X,μn).

Proof. It suffices to treat the case where D = Y is an integral closed

subscheme of X of codimension 1. Let K ∗ be the etale sheaf on X so

that K ∗(U) is the multiplicative group of the function field of U for any

etale X-scheme U , and let O∗ be the etale sheaf O∗Xet
. The Weil divisor D

defines a Cartier divisor, that is, a section fD ∈ Γ(X,K ∗/O∗). It is clear

that fD lies in ΓY (X,K ∗/O∗). Let

δ : ΓY (X,K
∗/O∗) → H1

Y (X,O
∗)

be the homomorphism on cohomology groups arising from the short exact

sequence

0 → O∗ → K ∗ → K ∗/O∗ → 0.

Then the image of δ
(

1
fD

) ∈ H1
Y (X,O

∗) under the canonical homomorphism

H1
Y (X,O

∗) → H1(X,O∗)

is L (D). Kummer’s theory defines a homomorphism

H1
Y (X,O

∗) → H2
Y (X,μn).

Let cl′(L (D)) ∈ H2
Y (X,μn) be the image of δ

(
1
fD

)
under this homomor-

phism. Then the image of cl′(L (D)) under the canonical homomorphism

H2
Y (X,μn) → H2(X,μn)

is cl(L (D)). To prove the proposition, it suffices to show cl′(D) =

cl′(L (D)) in H2
Y (X,μn).

Let U be an open subset of X so that U ∩ Y is nonempty and smooth.

Taking U sufficiently small, we may assume that there exists an etale mor-

phism

U → ANk = Spec k[t1, . . . , tN ]
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such that

U ∩ Y ∼= U ⊗k[t1,...,tN ] k[t1, . . . , tN−1].

On the other hand, we have

H2
Y (X,μn)

∼= H2
Y ∩U (X,μn) ∼= H2

Y ∩U (U,μn).

So we may replace X by U . We then have a Cartesian diagram

Y → X

↓ ↓
AN−1k

i→ ANk ,

where i : AN−1k → ANk is the closed immersion corresponding to the coor-

dinate plane tN = 0, and X → ANk is etale. Regard AN−1k as a Weil divisor

of ANk through this closed immersion. One can verify that cl′(L (D)) is the

image of cl′(L (AN−1k )) under the canonical homomorphism

H2
A
N−1
k

(ANk ,μn) → H2
Y (X,μn).

By 8.6.3, cl′(D) is also the image of cl′(AN−1k ) under this homomorphism.

So we are reduced to the case where Y → X is AN−1k → ANk . We have a

commutative diagram

AN−1k
i→ ANk

id↘ ↓ π
AN−1k ,

where π : ANk → AN−1k is the projection to the first N − 1 coordinates. By

8.6.1, when we define cl′(Y ), we may use AN−1k as the base scheme instead

of Spec k. The above commutative diagram can be obtained by base change

from the diagram

{0} → A1
k

∼= ↘ ↓
Spec k.

Using 8.6.4, we are reduced to the case where Y → X is the closed immer-

sion {0} → A1
k, and then to the case where Y → X is the closed immersion

{0} → P1
k. We have a long exact sequence

· · · → H1(A1
k,μn) → H2

{0}(P
1
k,μn) → H2(P1

k,μn) → · · · .
One can show H1(A1

k,μn) = 0. (Use 7.7.4, or Kummer’s theory and 7.1.2–

5.) So

H2
{0}(P

1
k,μn) → H2(P1

k,μn)
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is injective. To prove the proposition, it suffices to show cl(D) = cl(L (D)).

Since

TrP1
k
/k : H2(P1

k,μn) → Z/n

is an isomorphism, it suffices to show

TrP1
k
/k(cl(D)) = TrP1

k
/k(cl(L (D))).

We have

TrP1
k/k

(cl(L (D))) = deg(L (D)) = 1.

By 8.6.2, through the Poincaré duality

Hom(H0(P1
k,Z/n),Z/n)

∼= H2(P1
k,μn),

cl(D) corresponds to the composite

H0(P1
k,Z/n) → H0({0},Z/n) Tr{0}/k→ Z/n.

On the other hand, the homomorphism φ : H0(P1
k,Z/n) → Z/n corre-

sponding to cl(D) ∈ H2(P1
k,μn) has the property φ(1) = TrP1

k/k
(cl(D)).

Using these facts, one proves TrP1
k/k

(cl(D)) = 1. �

Lemma 8.6.6. Let X be a smooth proper scheme of dimension d over an

algebraically closed field k. The perfect pairing

Hq(X,Z/n)×H2d−q(X,Z/n(d)) → Z/n

defined by 8.5.3 coincides with the pairing

Hq(X,Z/n)×H2d−q(X,Z/n(d)) → Z/n, (s, t) �→ TrX/k(t ∪ s).
Proof. Let C ·(Z/n) be the Godement resolution of Z/n on X , and let

I · be a resolution of Z/n(d) by injective sheaves of Z/n-modules on X .

The canonical quasi-isomorphism

Z/n→ C ·(Z/n)

induces a quasi-isomorphism

H om·(C ·(Z/n),I ·) → H om·(Z/n,I ·).

By 6.4.9, the stalk of C ·(Z/n) at each geometric point is homotopically

equivalent to Z/n. So the above quasi-isomorphism induces a quasi-

isomorphism

H om·(C ·(Z/n),I ·)⊗Z/n C ·(Z/n) → H om·(Z/n,I ·)⊗Z/n C ·(Z/n),
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and the stalkwise homotopic equivalence Z/n → C ·(Z/n) induces a quasi-

isomorphism

K · ⊗Z/n Z/n→ K · ⊗Z/n C ·(Z/n)
for any complex of sheaves K . One can verify that the following diagram

commutes:

H om·(C ·(Z/n),I ·)⊗Z/nZ/n → H om·(C ·(Z/n),I ·)⊗Z/nC ·(Z/n) Ev→ I ·

↓ ‖
H om·(Z/n,I ·)⊗Z/n Z/n

Ev→ I ·,
where Ev are the evaluation morphisms. The evaluation morphism on the

second line is an isomorphism. It follows that the evaluation morphism on

the first line is a quasi-isomorphism since all other morphisms in the above

diagram are quasi-isomorphisms. We can find a commutative diagram (up

to homotopy)

H om·(C ·(Z/n),I ·)⊗Z/n C ·(Z/n) Ev→ I ·

↓
H om·(Z/n,I ·)⊗Z/n C ·(Z/n) ↓

�‖
I · ∼= I · ⊗Z/n Z/n → I · ⊗Z/n C ·(Z/n) → J ·

such that J · is a complex of injective sheaves of Z/n-modules, and all

arrows in the diagram are quasi-isomorphisms. The cup product

RΓ(X,Z/n(d))⊗LZ/n RΓ(X,Z/n) → RΓ(X,Z/n(d))

is the composite of the following morphisms

RΓ(X,Z/n(d))⊗LZ/n RΓ(X,Z/n)
∼= Γ(X,I ·)⊗LZ/n Γ(X,C ·(Z/n))

→ Γ(X,I ·)⊗Z/n Γ(X,C ·(Z/n))

→ Γ(X,I · ⊗Z/n C ·(Z/n))

→ Γ(X,J ·)
∼= RΓ(X,Z/n(d)).

The pairing in 8.5.3 is the composite

Hq(X,Z/n)×H2d−q(X,Z/n(d))

∼= Hq
(
Γ(X,C ·(Z/n))

) ×H2d−q
(
Γ
(
X,H om·(C ·(Z/n),I ·)

))
→ H2d

(
Γ
(
X,H om·(C ·(Z/n),I ·)⊗Z/n C ·(Z/n)

))
Ev→ H2d

(
Γ(X,I ·)

)
∼= H2d(X,Z/n(d))

TrX/k→ Z/n.
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Our assertion follows from the commutativity of the following diagram:

H2d−q(Γ(X,H om·(C ·(Z/n),I ·)))
×Hq(Γ(X,C ·(Z/n)))

→H2d
(
Γ(X,H om·(C ·(Z/n),I ·)

⊗Z/nC ·(Z/n))
) Ev→ H2d(Γ(X,I ·))

∼= ↓ ↓ ∼=
H2d−q(Γ(X,H om·(Z/n,I ·)))

×Hq(Γ(X,C ·(Z/n)))
→ H2d

(
Γ(X,H om·(Z/n,I ·)

⊗Z/nC ·(Z/n))
) ↓

∼= ↓ ↓ ∼=
H2d−q(Γ(X,I ·))

×Hq(Γ(X,C ·(Z/n)))
→ H2d(Γ(X,I · ⊗Z/n C ·(Z/n))) →H2d(Γ(X,J ·)).

�

Proposition 8.6.7 (Lefschetz Fixed Point Formula). Let X be a

smooth projective curve over an algebraically closed field k, h : X → X

a k-morphism, Γh : X → X ×k X the graph of h, Δ the divisor of X ×k X
defined by the diagonal morphism Δ : X → X×kX, and Γ∗h(Δ) the pulling

back of the divisor Δ. Then we have

2∑
q=0

(−1)qTr(h∗, Hq(X,Z/n)) ≡ deg(Γ∗h(Δ)) mod n.

Note that by 7.2.9 (ii), Hq(X,Z/n) are free Z/n-modules for all q so

that we can talk about Tr(h∗, Hq(X,Z/n)).

Proof. Fix a primitive n-th root of unity and use it to define isomor-

phisms μn ∼= Z/n and Z/n(d) ∼= Z/n for all d. The homomorphism

TrX/k : H2(X,Z/n(1)) → Z/n

can be identified with a homomorphism

H2(X,Z/n) → Z/n

which we still denote by TrX/k. Similarly we have a homomorphism

TrX×kX/k : H4(X ×k X,Z/n) → Z/n.

For any s, t ∈ H2(X,Z/n), we have

TrX×kX/k(π
∗
1s ∪ π∗2t) = TrX/k(s)TrX/k(t)

by 8.2.4 (iv), where π1, π2 : X×kX → X are the projections. By 8.5.3 and

8.6.6, we have perfect pairings

Hq(X,Z/n)×H2−q(X,Z/n) → Z/n, (s, t) �→ TrX/k(s ∪ t),
Hq(X ×k X,Z/n)×H4−q(X ×k X,Z/n) → Z/n, (s, t) �→ TrX×kX/k(s ∪ t).
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By 7.4.11, we have isomorphisms⊕
u+v=q

Hu(X,Z/n)⊗Hv(X,Z/n) → Hq(X ×k X,Z/n),

s⊗ t �→ π∗1s ∪ π∗2t.
For each u, choose a basis {eu1, . . . , eubu} for the free Z/n-module

Hu(X,Z/n). Let {fu1, . . . , fubu} be the basis of H2−u(X,Z/n) so that

TrX/k(euα ∪ fuβ) = δαβ .

Then {π∗1euα ∪ π∗2fuβ}u,α,β is a basis of H2(X ×k X,Z/n). We claim that

cl(Δ) =
∑
v,γ

π∗1fvγ ∪ π∗2evγ .

Indeed, by 8.6.2, through the isomorphism

Hom(H2(X ×k X,Z/n),Z/n) ∼= H2(X ×k X,Z/n)
induced by the perfect pairing

H2(X ×k X,Z/n)×H2(X ×k X,Z/n) → Z/n, (s, t) �→ TrX×kX/k(s ∪ t),
cl(Δ) ∈ H2(X ×k X,Z/n) corresponds to the composite

H2(X ×k X,Z/n) Δ∗
→ H2(X,Z/n)

TrX/k→ Z/n.

So for any s ∈ H2(X ×k X,Z/n), we have

TrX×kX/k(cl(Δ) ∪ s) = TrX/k(Δ
∗(s)).

In particular, we have

TrX×kX/k
(
cl(Δ) ∪ (π∗1euα ∪ π∗2fuβ)

)
= TrX/k

(
Δ∗(π∗1euα ∪ π∗2fuβ)

)
= TrX/k(Δ

∗π∗1euα ∪Δ∗π∗2fuβ)

= TrX/k(euα ∪ fuβ)
= δαβ .

On the other hand, we have

TrX×kX/k
((∑

v,γ

π∗1fvγ ∪ π∗2evγ
)
∪ (π∗1euα ∪ π∗2fuβ)

)
= TrX×kX/k

(∑
v,γ

π∗1fvγ ∪ π∗2evγ ∪ π∗1euα ∪ π∗2fuβ
)

= TrX×kX/k
(∑
v,γ

(−1)u(2−v+v)π∗1euα ∪ π∗1fvγ ∪ π∗2evγ ∪ π∗2fuβ
)

= TrX×kX/k
(∑
v,γ

π∗1(euα ∪ fvγ) ∪ π∗2(evγ ∪ fuβ)
)
.
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When u 	= v, we have either u + 2 − v ≥ 3 or v + 2 − u ≥ 3. So we have

either euα ∪ fvγ = 0 or evγ ∪ fuβ = 0. Hence

TrX×kX/k
((∑

v,γ

π∗1fvγ ∪ π∗2evγ
)
∪ (π∗1euα ∪ π∗2fuβ)

)
= TrX×kX/k

(∑
γ

π∗1(euα ∪ fuγ) ∪ π∗2(euγ ∪ fuβ)
)

=
∑
γ

TrX/k(euα ∪ fuγ)TrX/k(euγ ∪ fuβ)

=
∑
γ

δαγδβγ

= δαβ .

Therefore

TrX×kX/k(cl(Δ) ∪ (π∗1euα ∪ π∗2fuβ))
= TrX×kX/k

((∑
v,γ

π∗1fvγ ∪ π∗2evγ
)
∪ (π∗1euα ∪ π∗2fuβ)

)
.

So we have cl(Δ) =
∑
v,γ π

∗
1fvγ ∪ π∗2evγ . This proves our claim. Write

h∗(evγ) =
∑
δ

avγδevδ,

where avγδ ∈ Z/n. Then we have

Γ∗h(cl(Δ)) = Γ∗h
(∑
v,γ

π∗1fvγ ∪ π∗2evγ
)

=
∑
v,γ

Γ∗hπ
∗
1fvγ ∪ Γ∗hπ

∗
2evγ

=
∑
v,γ

fvγ ∪ h∗evγ

=
∑
v,γ,δ

avγδfvγ ∪ evδ.

So we have

TrX/k

(
Γ∗h(cl(Δ))

)
=
∑
v,γ,δ

avγδTrX/k(fvγ ∪ evδ)

=
∑
v,γ,δ

(−1)v(2−v)avγδTrX/k(evδ ∪ fvγ)

=
∑
v,γ,δ

(−1)vavγδδγδ

=
∑
v,γ

(−1)vavγγ

=
∑
v

(−1)vTr(h∗, Hv(X,Z/n)).
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On the other hand, we have

Γ∗h(cl(Δ)) = Γ∗h
(
cl(L (Δ))

)
= cl
(
L (Γ∗h(Δ))

)
.

So

TrX/k

(
Γ∗h(cl(Δ))

)
≡ deg(Γ∗h(Δ)) mod n.

Therefore ∑
v

(−1)vTr(h∗, Hv(X,Z/n)) ≡ deg(Γ∗h(Δ)) mod n.
�

Corollary 8.6.8. Let X be a smooth projective curve over an algebraically

closed field k and let h : X → X be a k-morphism with isolated fixed points

x1, . . . , xm. For each xi, let vxi be the valuation on the function field of X

defined by xi, and let πxi ∈ OX,xi be a uniformizer for vxi . Then we have

2∑
j=0

(−1)jTr(h∗, Hj(X,Z/n)) ≡
m∑
i=1

vxi(πxi − h∗(πxi)) mod n.

Remark 8.6.9. Note that the number vxi(πxi − h∗(πxi)) is independent

of the choice of the uniformizer πxi of vxi . In fact, it is the largest integer

j so that h is the identity on OX,xi/m
j
xi . We call vxi(πxi − h∗(πxi)) the

multiplicity of the fixed point xi.

Proof. Let x be a closed point of X . Let us calculate the multiplicity of

the divisor Γ∗h(Δ) at x. If x is not a fixed point of h, then (x, h(x)) does

not lie in Δ, and hence the multiplicity of Γ∗h(Δ) at x is 0. Suppose that

x is one of the isolated fixed point xi. Since X is smooth, we can find an

open neighborhood U of x in X admitting an etale morphism f : U → A1
k

that maps x to the origin of A1
k. Let ΔU and ΔA1

k
be the diagonal divisors

of U ×k U and A1
k ×k A1

k, respectively. Consider the commutative diagram

U
Δf→ U ×A1

k
U → U ×k U

f ↘ ↓ ↓ f×f
A1
k

Δ
A1
k→ A1

k ×k A1
k.

The square in the diagram is Cartesian, and the diagonal morphism Δf is

an open immersion by 2.3.9. ΔU coincides with the composite

U
Δf→ U ×A1

k
U → U ×k U.

It follows that the divisors ΔU and (f×f)∗(ΔA1
k
) coincide in a neighborhood

of (x, x) in U×kU . Hence the divisors Γ∗h(Δ) and (f, fh)−1(ΔA1
k
) coincide in
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a neighborhood of x in X . The divisor ΔA1
k
on A1

k×kA1
k
∼= Spec (k[t]⊗kk[t])

is the principle divisor defined by t⊗ 1− 1 ⊗ t. So in a neighborhood of x

in X , Γ∗h(Δ) is the principle divisor defined by f∗(t) − h∗f∗(t). Since f is

etale, f∗(t) is a uniformizer for vx. For any uniformizer πx of vx, we have

vx(f
∗(t)− h∗f∗(t)) = vx(πx − h∗(πx)).

So we have

deg(Γ∗h(Δ)) =

m∑
i=1

vxi(πxi − h∗(πxi)).

We then apply 8.6.7. �
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Chapter 9

Finiteness Theorems

9.1 Sheaves with Group Actions

LetG be a group acting on a schemeX on the right. For any etaleX-scheme

p : V → X , and any σ ∈ G, let Vσ be the etale X-scheme σ−1p : V → X ,

and let V ×X,σ X be the etale X-scheme obtained from p : V → X by

the base change σ : X → X . Then the projection V ×X,σ X → Vσ is an

isomorphism of etale X-schemes.

Let F be a sheaf on X . An action of G on F compatible with the

action of G on X is a family of isomorphisms

φσ : F → σ∗F (σ ∈ G)

such that φe = id and for any σ, τ ∈ G, the following diagram commutes:

F
φσ→ σ∗F

φτσ ↓ ↓ σ∗(φτ )

(τσ)∗F ∼= σ∗(τ∗F ).

Equivalently, an action of G on F is a family of isomorphisms

φσ,V : F (V ) → F (Vσ)

for any σ ∈ G and any etale X-scheme V such that for any X-morphism

V ′ → V of etale X-schemes and any σ, τ ∈ G, the following diagrams

commute:

F (V )
φσ,V→ F (Vσ) F (V )

φσ,V→ F (Vσ)

↓ ↓ φτσ,V ↓ ↓ φτ,Vσ
F (V ′)

φσ,V ′→ F (V ′σ), F (Vτσ) = F ((Vσ)τ ).

We can also define an action of G on F to be a family of isomorphisms

ψσ : σ∗F → F (σ ∈ G)

495
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such that ψe = id and for any σ, τ ∈ G, the following diagram commutes:

τ∗(σ∗F )
τ∗(ψσ)→ τ∗F

�‖ ↓ ψτ
(τσ)∗F

ψτσ→ F .

A sheaf F on X with an action of G is called a G-sheaf. We define mor-

phisms of G-sheaves to be morphisms of sheaves commuting with the group

actions. For all G-sheaves F and G on X , denote by HomG(F ,G ) the set

of G-morphisms from F to G .

Let F be a sheaf on X . Define a G-sheaf F [G] by

F [G] =
⊕
σ∈G

σ∗F ,

where for any τ ∈ G,

φτ : F [G] → τ∗(F [G])

is the composite

F [G] ∼=
⊕
σ∈G

(στ)∗F ∼=
⊕
σ∈G

τ∗(σ∗F ) ∼= τ∗(F [G]).

For any G-sheaf G on X , we have a one-to-one correspondence

Hom(F ,G ) ∼= HomG(F [G],G )

which is functorial in F and G . So the functor F → F [G] from the cate-

gory of sheaves to the category of G-sheaves is left adjoint to the forgetful

functor from the category of G-sheaves to the category of sheaves. As the

functor F → F [G] is exact, if G is injective in the category of G-sheaves,

then it is injective in the category of sheaves.

For any etale X-scheme p : V → X , let ZV = p!Z. We have

HomG(ZV [G],G ) ∼= Hom(ZV ,G ) ∼= G (V ).

It follows that ZV [G] form a family of generators for the category of G-

sheaves. Using this fact, one proves that the category of G-sheaves has

enough injective objects. (Confer [Grothendieck (1957)] 1.10.1, or [Fu

(2006)] 2.1.6.)

Let Y be another scheme on which G acts on the right, and let f : X →
Y be a G-equivariant morphism. For any G-sheaf F on X and G-sheaf

G on Y , f∗F and f∗G are G-sheaves on Y and on X , respectively, and
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the canonical morphisms G → f∗f∗G and f∗f∗F → F are G-morphisms.

This follows from the commutativity of the following diagrams:

G → f∗f∗G → f∗σ∗σ∗f∗G ∼= f∗σ∗f∗σ∗G
↓ ↓

σ∗G → σ∗f∗f∗G ∼= f∗σ∗f∗G ,

f∗σ∗f∗F ∼= σ∗f∗f∗F → σ∗F
↓ ↓

f∗σ∗f∗σ∗F ∼= f∗σ∗σ∗f∗F → f∗f∗F → F .

To prove the commutativity of these diagrams, note that they are the outer

loops of the following diagrams:

G → f∗f∗G → f∗σ∗σ∗f∗G ∼= f∗σ∗f∗σ∗G
↓ ↓ ↓ ↓

σ∗G → f∗f∗σ∗G → f∗σ∗σ∗f∗σ∗G ∼= f∗σ∗f∗σ∗σ∗G
‖ (1) ↓

σ∗G → σ∗f∗f∗G ∼= f∗σ∗f∗G ,

f∗σ∗f∗F ∼= σ∗f∗f∗F → σ∗F
↓ (2) ‖

f∗σ∗f∗σ∗σ∗F ∼= f∗σ∗σ∗f∗σ∗F → f∗f∗σ∗F → σ∗F
↓ ↓ ↓ ↓

f∗σ∗f∗σ∗F ∼= f∗σ∗σ∗f∗F → f∗f∗F → F .

The diagrams (1) and (2) commute by 7.3.16. Since f∗ is an exact functor,

f∗ maps injective G-sheaves on X to injective G-sheaves on Y .

If f : X → Y is an etale G-equivariant morphism, and F a G-sheaf on

X , then f!F is a G-sheaf on Y , and the canonical morphism F → f∗f!F
is a morphism of G-sheaves. This follows from the commutativity of the

following diagram:

σ∗F = σ∗F → F

↓ ↓ ↓
σ∗f∗f!F → f∗σ∗f!F

∼=→ f∗f!σ∗F → f∗f!F .

.

For any G-sheaf G on Y , the canonical morphism f!f
∗G → G is a morphism

ofG-sheaves. This follows from the commutativity of the following diagram:

σ∗f!f∗G
∼=→ f!σ

∗f∗G → f!f
∗σ∗G → f!f

∗G
↓ ↓ ↓

σ∗G = σ∗G → G .
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f! is left adjoint to f∗. Since f! is an exact functor, f∗ maps injective

G-sheaves on Y to injective G-sheaves on X .

Suppose G acts trivially on a scheme X . For any G-sheaf F on X , let

FG be the subsheaf formed by G-invariant sections. Let G be a sheaf on

X . Put the trivial G-action on G . Then we have

HomG(G ,F ) ∼= Hom(G ,FG).

So the functor that maps G to the G-sheaf G with the trivial G-action is

left adjoint to the functor F �→ FG, and it is exact. If F is injective in the

category of G-sheaves, then FG is injective in the category of sheaves. We

denote the q-th right derived functor of F �→ FG by H q(G,−) or RqΓG.

Let X be a scheme with the trivial G-action, and let A be a ring.

We define Ext·A[G](−,−) and E xt·A[G](−,−) to be the derived functors of

HomA[G](−,−) and H omA[G](−,−) on the category of G-sheaves of A-

modules on X , respectively. Suppose that F is a G-sheaf on X . We have

FG = H omZ[G](Z,F ),

where Z is the constant sheaf on which G acts trivially. So we have

H p(G,F ) = E xtp
Z[G](Z,F ).

Let

· · · → L−1 → L0 → 0

be a resolution of Z by free Z[G]-modules of finite rank. Then we have

H p(G,F ) = H p(H omG(L
·,F )).

Using this fact, one can show that if F is locally constant, then H p(G,F )

are locally constant, and that if f : X ′ → X is a morphism of schemes and

G acts trivially on X ′, then

f∗H p(G,F ) ∼= H p(G, f∗F ).

In particular, we have

H p(G,F )x̄ ∼= Hp(G,Fx̄)

for any x ∈ X .

Let X be a scheme on which G acts on the right, let Y be a scheme

with the trivial G-action, and let f : X → Y be a G-equivariant morphism.

For any G-sheaf F on X , let

fG∗ F = (f∗F )G.
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The functor fG∗ is left exact. Since f∗ maps injective G-sheaves on X to

injective G-sheaves on Y , we have a biregular spectral sequence

Epq2 = H p(G,Rqf∗F ) ⇒ Rp+qfG∗ F .

Let S be a scheme with the trivial G-action, let g : Y → S be a morphism,

and let h = gf . We have

hG∗F = g∗fG∗ F .

Since fG∗ maps injective G-sheaves on X to injective sheaves on Y , we have

a biregular spectral sequence

Epq2 = Rpg∗RqfG∗ F ⇒ Rp+qhG∗F .

Consider the case where f : X → Y is a galois etale covering with galois

group G = Aut(X/Y )◦. G acts on the right of X , and acts trivially on

Y . For any sheaf G on Y , the canonical morphism G → f∗f∗G induces an

isomorphism

G ∼= fG∗ f
∗G .

To prove this, we choose a surjective etale morphism Y ′ → Y such that

X ×Y Y ′ → Y ′ is a trivial etale covering space. We then use the fact that

G |Y ′ ∼= (f∗f∗G )G|Y ′ .

We have a biregular spectral sequence

Epq2 = H p(G,Rqf∗f∗G ) ⇒ Rp+qfG∗ (f
∗G ).

As Rqf∗f∗G = 0 for q ≥ 1, the spectral sequence degenerates and we have

H p(G, f∗f∗G ) ∼= RpfG∗ (f
∗G ).

Each stalk of f∗f∗G is an induced G-module. So we have

H p(G, f∗f∗G ) =

{
(f∗f∗G )G if p = 0,

0 if p ≥ 1.

If follows that

RqfG∗ (f
∗G ) =

{
G if q = 0,

0 if q ≥ 1.

Let g : Y → S be a morphism of schemes with trivial G-actions, and let

h = gf . The biregular spectral sequence

Epq2 = Rpg∗RqfG∗ (f
∗G ) ⇒ Rp+qhG∗ (f

∗G )

degenerates, and we have

Rpg∗G ∼= RphG∗ (f
∗G ).

The biregular spectral sequence

Epq2 = H p(G,Rqh∗(f∗G )) ⇒ Rp+qhG∗ (f
∗G )

can be identified with a biregular spectral sequence

Epq2 = H p(G,Rqh∗(f∗G )) ⇒ Rp+qg∗G ,
which is called the Hochschild–Serre spectral sequence.
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9.2 Nearby Cycle and Vanishing Cycle

([SGA 7] I 2, XIII.)

Let k be a field, k̄ a separable closure of k, Y a scheme over k, and Y =

Y ⊗k k̄. Then Gal(k̄/k) acts on Y . Let F be a Gal(k̄/k)-sheaf on Y . For

any finite galois extension k′ of k contained in k̄, let Y ′ = Y ⊗k k′. Then

for any etale morphism U ′ → Y ′, Gal(k̄/k′) acts on F (U ′ ×Y ′ Y ). If this

action is continuous with respect to the discrete topology on F (U ′ ×Y ′ Y )

for any finite extension k′ of k contained in k̄ and any quasi-compact scheme

U ′ etale over Y ′, we say that Gal(k̄/k) acts continuously on F . To check

Gal(k̄/k) acts continuously on F , it suffices to check that Gal(k̄/k) acts

continuously on F (U ′ ×Y ′ Y ) for any etale Y ′-scheme U ′ such that U ′ is
affine and its image in Y ′ is contained in the inverse image in Y ′ of an affine

open subset of Y .

Proposition 9.2.1. Let k be a field, k̄ a separable closure of k, Y a scheme

over k, F a sheaf on Y , Y = Y ⊗k k̄, and F the inverse image of F on

Y . Then Gal(k̄/k) acts on F .

(i) The action of Gal(k̄/k) on F is continuous.

(ii) The functor F �→ F is an equivalence from the category of sheaves

on Y to the category of sheaves on Y with continuous Gal(k̄/k)-action.

Proof.

(i) Let k′ be a finite extension of k, let Y ′ = Y ⊗k k′, and let U ′ be an

affine etale Y ′-scheme such that its image in Y ′ is contained in an affine

open subset of Y ′. We have k̄ = lim−→ kλ, where kλ are finite extensions of k

containing k′ and contained in k̄. For each λ, let Fλ be the inverse image

of F on Y ⊗k kλ. By 5.9.3, we have

F (U ′ ×Y ′ Y ) = lim−→
λ

Fλ(U
′ ⊗k′ kλ).

For each λ, Gal(k̄/kλ) acts trivially on Fλ(U
′ ⊗k′ kλ). It follows that

Gal(k̄/k′) acts continuously on F (U ′ ×Y ′ Y ).

(ii) We have k̄ = lim−→ kλ, where kλ are finite galois extensions of k con-

tained in k̄. Let Yλ = Y ⊗k kλ, and let π : Y → Y , πλ : Yλ → Y and

π̄λ : Y → Yλ and be the projections. Denote the functor F �→ F by S,

and define a functor T from the category of sheaves on Y with continuous

Gal(k̄/k)-action to the category of sheaves on Y by

T (F ) = (π∗F )Gal(k̄/k).
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To prove that S is an equivalence of categories, it suffices to show that the

canonical morphisms

F → (π∗π∗F )Gal(k̄/k), π∗
(
(π∗F )Gal(k̄/k)

)
→ F

are isomorphisms for any sheaf F on Y , and any sheaf F on Y with

continuous Gal(k̄/k)-action. By 5.9.6, we have

(π∗π∗F )Gal(k̄/k) = lim−→(πλ∗π∗λF )Gal(kλ/k).

Note that F → (πλ∗π∗λF )Gal(kλ/k) is an isomorphism for each λ. This

can be seen by taking the base change from k to kλ. It follows that F →
(π∗π∗F )Gal(k̄/k) is an isomorphism.

To prove that the morphism π∗
(
(π∗F )Gal(k̄/k)

)
→ F is an isomor-

phism for any sheaf F on Y with continuous Gal(k̄/k)-action, it suffices to

prove that the above morphism is surjective for any F . Indeed, suppose

that this can be done and let K be the kernel of the above morphism.

Since T is left exact, we have an exact sequence

0 → T (K ) → T (ST (F )) → T (F ).

We have shown that the canonical morphism T (F ) → (TS)T (F ) is an

isomorphism. One can show that it is a right inverse of the canonical mor-

phism T (ST (F )) → T (F ). It follows that T (K ) = 0. But the canonical

morphism ST (K ) → K is surjective. So we have K = 0 and hence the

canonical morphism ST (F ) → F is an isomorphism.

First let us show that the canonical morphism

lim−→ π̄∗λ

(
(π̄λ∗F )Gal(k̄/kλ)

)
→ F

is surjective. Let U be an affine etale Y -scheme so that its image in Y is

contained in the inverse image in Y of an affine open subset of Y . We

can find λ0 and a quasi-compact etale Yλ0 -scheme Uλ0 such that U ∼=
Y ×Yλ0 Uλ0 . For any λ ≥ λ0, let Uλ = Yλ ×Yλ0 Uλ0 . Given s ∈ F (U),

there exists λ1 ≥ λ0 such that s is fixed by Gal(k̄/kλ1). Then s lies in the

image of

π̄∗λ1

(
(π̄λ1∗F )Gal(k̄/kλ1 )

)
(U) → F (U).

This proves our assertion. We have

π∗
(
(π∗F )Gal(k̄/k)

)
∼= π̄∗λπ

∗
λ

(
(πλ∗π̄λ∗F )Gal(k̄/k)

)
∼= π̄∗λπ

∗
λ

((
πλ∗
(
(π̄λ∗F )Gal(k̄/kλ)

))Gal(kλ/k)
)
.
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For any sheaf Fλ on Yλ provided with a Gal(kλ/k)-action, the canonical

morphism

π∗λ

(
(πλ∗Fλ)

Gal(kλ/k)

)
→ Fλ

is an isomorphism. This can be seen by taking the base change from k to

kλ. So we have

π∗
(
(π∗F )Gal(k̄/k)

)
∼= π̄∗λ

(
(π̄λ∗F )Gal(k̄/kλ)

)
.

Since lim−→ π̄∗λ

(
(π̄λ∗F )Gal(k̄/kλ)

)
→ F is surjective, π∗

(
(π∗F )Gal(k̄/k)

)
→

F is also surjective. �

Let S be a trait, s its closed point, η its generic point, S̃ the strict

localization of S at s̄, and η̃ the generic point of S̃. We have an exact

sequence

0 → I → Gal(η̄/η) → Gal(s̄/s) → 0,

where I = Gal(η̄/η̃) is the inertia subgroup. We have a commutative dia-

gram

η̄ → S̃ ← s̄

↓ ↓ ↓
η → S ← s.

For any S-scheme X , taking the base change X → S to the above diagram,

we get

Xη̄
j̃→ X̃ = X ×S S̃ ĩ← Xs̄

↓ ↓ ↓
Xη → X ← Xs.

For any sheaf Fη on Xη, denote its inverse image in Xη̄ by Fη̄. By 9.2.1,

Fη is completely determined by the sheaf Fη̄ with Gal(η̄/η)-action. The

group Gal(η̄/η) acts on the scheme Xs̄ though its quotient group Gal(s̄/s).

The sheaf ĩ∗j̃∗Fη̄ is a Gal(η̄/η)-sheaf on Xs̄. Indeed, given σ ∈ Gal(η̄/η),

it gives rise to an element in Aut(S̃/S) and an element in Gal(s̄/s). So it

gives rise to elements in Aut(Xη̄/Xη), Aut(X̃/X), and Aut(Xs̄/Xs), which

we still denote by σ. The action of σ on ĩ∗j̃∗Fη̄ is given by the isomorphism

σ∗ĩ∗j̃∗Fη̄ → ĩ∗j̃∗Fη̄

defined by the composite

σ∗ĩ∗j̃∗Fη̄
∼= ĩ∗σ∗j̃∗Fη̄ → ĩ∗j̃∗σ∗Fη̄ → ĩ∗j̃∗Fη̄.
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Define

Ψη(Fη) = ĩ∗j̃∗Fη̄.

Ψη is a functor from the category of sheaves on Xη to the category of

sheaves on Xs̄ with Gal(η̄/η)-action. Its derived functor RΨη is called the

nearby cycle functor. We have

RΨη(Kη) = ĩ∗Rj̃∗Kη̄

for any Kη ∈ obD+(Xη).

Proposition 9.2.2. Keep the above notation.

(i) For any x ∈ Xs̄, let X̃x̄ be the strict localization of X at x̄. It is a

scheme over S̃. We have (RqΨηFη)x̄ ∼= Hq(X̃x̄ ×S̃ η̄,Fη̄).

(ii) If f : X → S is of finite type, then RΨη has finite cohomological

dimension on D+
tor(Xη). More precisely, we have RqΨη(Fη) = 0 for any

q > dimXη and any torsion sheaf Fη on Xη.

(iii) If X = S, then we have RΨη(Kη) = Kη̄, where on the right-hand

side, Kη̄ is considered as a complex of sheaves on s̄ with Gal(η̄/η) action.

Proof.

(i) We have

(RqΨηFη)x̄ = (̃i∗Rq j̃∗Fη̄)x̄ ∼= (Rq j̃∗Fη̄)x̄ ∼= Hq(X̃x̄ ×S̃ η̄,Fη̄).

(ii) Use 7.5.7.

(iii) This has been noted in the proof of 7.6.1. Let i : s̄ → S̃ and

j : η̄ → S̃ be the canonical morphisms. We have Rj∗Kη̄ = j∗Kη̄, and

i∗j∗Kη̄ = Kη̄. �
Let F be a sheaf on X . Denote its inverse images on Xs, Xs̄, Xη, Xη̄,

and X̃ by Fs, Fs̄, Fη, Fη̄, and F̃ , respectively. By 9.2.1, Fs is completely

determined by Fs̄ with Gal(s̄/s)-action. Let Gal(η̄/η) act on Fs̄ though

its quotient Gal(s̄/s). Then the canonical morphism

Fs̄ = ĩ∗F̃ → ĩ∗j̃∗j̃∗F̃ = ĩ∗j̃∗Fη̄

is a morphism of Gal(η̄/η)-sheaves on Xs̄. If F is an injective sheaf, then

RqΨη(Fη) = 0 for all q > 0. This follows from 5.9.9 and the fact that Xη̄

is the inverse limit of an inverse system of etale X-schemes.

For any complex of sheaves K on X , let Ks, Ks̄, Kη, Kη̄, and K̃ be its

inverse images on Xs, Xs̄, Xη, Xη̄, and X̃ respectively. Suppose that K

is bounded below and let K → J be a quasi-isomorphism such that J is a

bounded below complex of injective sheaves. We have

RΨη(Kη) ∼= ĩ∗j̃∗j̃∗J̃ .
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We have a canonical morphism of complexes of Gal(η̄/η)-sheaves on Xs̄:

Js̄ → ĩ∗j̃∗j̃∗J̃ .

Let RΦ(K) be its mapping cone. Then RΦ defines a functor from D+(X)

to the derived category of Gal(η̄/η)-sheaves onXs̄. It is called the vanishing

cycle functor. We have a distinguished triangle

Ks̄ → RΨη(Kη) → RΦ(K) →
for any K ∈ obD+(X). Suppose that σ ∈ Gal(η̄/η) lies in the inertia

subgroup I. Then σ acts trivially on Ks̄. There exists a morphism

var(σ) : RΦ(K) → RΨη(Kη),

which we call the variation, such that the following diagram commute:

RΨη(Kη)
σ−id→ RΨη(Kη)

↓ ↗ var(σ) ↓
RΦ(K)

σ−id→ RΦ(K).

For each q, the composite of the canonical homomorphisms

Hq(Xη̄,Kη̄) ∼= Hq(X̃, Rj̃∗Kη̄) → Hq(Xs̄, ĩ
∗Rj̃∗Kη̄) = Hq(Xs̄, RΨη(Kη))

defines a homomorphism

Hq(Xη̄,Kη̄) → Hq(Xs̄, RΨη(Kη)),

which is an isomorphism if X is proper over S and K ∈ obD+
tor(X) by the

proper base change theorem 7.3.3. We have a long exact sequence

· · · → Hq(Xs̄,Ks̄) → Hq(Xs̄, RΨη(Kη)) → Hq(Xs̄, RΦ(K)) → · · · .
If X is proper over S and K ∈ obD+

tor(X), we then have a long exact

sequence

· · · → Hq(Xs̄,Ks̄) → Hq(Xη̄,Kη̄) → Hq(Xs̄, RΦ(K)) → · · · .
So H ·(Xs̄, RΦ(K)) measures the difference between H ·(Xs̄,Ks̄) and

H ·(Xη̄,Kη̄) if X is proper over S.

Let f : X → X ′ be an S-morphism of S-schemes. Fix notation by the

following commutative diagram:

Xη̄
j̃→ X̃ = X ×S S̃ ĩ← Xs̄

fη̄ ↓ ↓ f̃ ↓ fs̄
X ′η̄

j̃′→ X̃ ′ = X ′ ×S S̃ ĩ′← X ′s̄.
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For any K ∈ obD+(X,A), we define a morphism

RΨη((Rf∗K)η) → Rfs̄∗RΨη(Kη)

to be the composite of the canonical morphisms

RΨη((Rf∗K)η) ∼= ĩ′∗Rj̃′∗j̃
′∗Rf̃∗K̃

→ ĩ′∗Rj̃′∗Rfη̄∗j̃
∗K̃

∼= ĩ′∗Rf̃∗Rj̃∗j̃∗K̃

→ Rfs̄∗ĩ∗Rj̃∗j̃∗K̃

= Rfs̄∗RΨη(Kη).

When f is proper and K ∈ obD+
tor(X), this is an isomorphism by the

proper base change theorem 7.3.1.

Suppose that f : X → X ′ is an open immersion. Define a morphism

fs̄!RΨη(Kη) → RΨη((f!K)η)

to be the composite of the canonical morphisms

fs̄!RΨη(Kη) ∼= fs̄!ĩ
∗Rj̃∗j̃∗K̃

∼= ĩ′∗f̃!Rj̃∗j̃∗K̃

→ ĩ′∗Rj̃′∗fη̄!j̃
∗K̃

∼= ĩ′∗Rj̃′∗j̃
′∗f̃!K̃

∼= RΨη((f!K)η).

Suppose that K ∈ obD+
tor(X), f : X → X ′ is an S-compactifiable mor-

phism, and

X
k
↪→ X

f̄→ X ′

is a compactification for f , where k is an open immersion, and f̄ is a proper

S-compactifiable morphism. Define a morphism

Rfs̄!RΨη(Kη) → RΨη((Rf!K)η)

to be the composite of

Rfs̄!RΨη(Kη) ∼= Rf̄s̄∗ks̄!RΨη(Kη)

→ Rf̄s̄∗RΨη((k!K)η)

∼= RΨη((Rf̄∗k!K)η)

∼= RΨη((Rf!K)η).

If f is proper, this is the inverse of the morphism

RΨη((Rf∗K)η) → Rfs̄∗RΨη(Kη)
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defined above.

Suppose that X → S is compactifiable. Applying the above construc-

tion to the structure morphism X → S, we get a homomorphism

Hq
c (Xs̄, RΨη(Kη)) → Hq

c (Xη̄,Kη̄)

for each q. If X is proper over S, it is the inverse of the canonical isomor-

phism

Hq(Xη̄,Kη̄) → Hq(Xs̄, RΨη(Kη)).

For any σ ∈ I in the inertia group, we have commutative diagrams

Hq(Xη̄,Kη̄)
σ−id→ Hi(Xη̄,Kη̄)

↓ ↓
Hq(Xs̄, RΨη(Kη)) → Hq(Xs̄, RΦ(K))

var(σ)→ Hq(Xs̄, RΨη(Kη)),

Hq
c (Xη̄,Kη̄)

σ−id→ Hi
c(Xη̄,Kη̄)

↑ ↑
Hq
c (Xs̄, RΨη(Kη)) → Hq

c (Xs̄, RΦ(K))
var(σ)→ Hq

c (Xs̄, RΨη(Kη)).

For any L ∈ D+(X ′), define a morphism

f∗s̄RΨη(Lη) → RΨη((f
∗L)η)

to be the composite of the canonical morphisms

f∗s̄RΨη(Lη) = f∗s̄ ĩ
′∗Rj̃′∗j̃

′∗L̃
∼= ĩ∗f̃∗Rj̃′∗j̃

′∗L̃

→ ĩ∗Rj̃∗f∗η̄ j̃
′∗L̃

∼= ĩ∗Rj̃∗j̃∗f̃∗L̃
∼= RΨη((f

∗L)η).

If f is smooth and L ∈ D+(X ′,Z/n) for some n invertible on S, this is an

isomorphism by the smooth base change theorem 7.7.2.

Proposition 9.2.3. Suppose that X is smooth over S, and H q(K) are

locally constant sheaves of Z/n-modules for some n invertible on S. Then

RΦ(K) = 0.

Proof. We need to show that Ks̄ → RΨη(Kη) is an isomorphism. The

problem is local with respect to the etale topology onX . So we may assume
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that K is a constant sheaf associated to a Z/n-module M . Fix notation by

the following diagram

Xη̄
j̃→ X̃ = X ×S S̃ ĩ← Xs̄

fη̄ ↓ f̃ ↓ ↓ fs̄
η̄

j→ S̃
i← s̄.

Denote by M the constant sheaf on S̃. We have a commutative diagram

f∗s̄ i
∗M → f∗s̄RΨη(M)
∼= ↓ ↓

ĩ∗f̃∗M → RΨη(f̃
∗M).

The top horizontal arrow is an isomorphism by 9.2.2 (iii). The right vertical

arrow is an isomorphism by the smooth base change theorem 7.7.2. So

ĩ∗f̃∗M → RΨη(f̃
∗M)

is an isomorphism. �

9.3 Generic Base Change Theorem and Generic Local

Acyclicity

([SGA 4 1
2 ] Th. finitude 2.)

Throughout this section, A is a noetherian ring such that nA = 0 for some

integer n invertible on a base scheme S. The main results of this section

are the following theorems.

Theorem 9.3.1. Let S be a noetherian scheme, X and Y two S-schemes

of finite type, f : X → Y an S-morphism, and F a constructible sheaf of

A-modules on X. Then there exists a dense open subset U of S such that

the following conditions hold:

(i) (Rqf∗F )|YU are constructible and are nonzero only for finitely many

q, where YU is the inverse image of U in Y .

(ii) The formation of Rqf∗F commutes with any base change S′ →
U ⊂ S, or equivalently, the formation of RqfU∗(F |XU ) commutes with

any base change S′ → S, where XU is the inverse image of U in X, and

fU : XU → YU is the morphism induced by f .

Theorem 9.3.2. Let S be a noetherian scheme, f : X → S a morphism of

finite type, and K ∈ obDb
ctf(X,A). Then there exists a dense open subset U

of S such that f |f−1(U) : f
−1(U) → U is universally locally acyclic relative

to K|f−1(U).
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When S is the spectrum of a field, we must have U = S. So we have

the following:

Corollary 9.3.3. Let X and Y be schemes of finite type over a field k,

let f : X → Y be a k-morphism, and let F be a constructible sheaf of

A-modules on X. Then Rqf∗F are constructible for all q. If k is separably

closed, then Hq(X,F ) are finitely generated A-modules.

Corollary 9.3.4. Let k be a field, and let f : X → Spec k be a morphism

of finite type. Then f is universally strongly locally acyclic relative to any

K ∈ obDb
ctf(X,A).

Corollary 9.3.5 (Künneth formula). Let k be a field, let Xi and Yi (i =

1, 2) be k-schemes of finite type, let fi : Xi → Yi be k-morphisms, and let

pi : X1 ×k X2 → Xi and qi : Y1 ×k Y2 → Yi be projections. For any

Ki ∈ obDb
ctf(Xi, A), we have

q∗1Rf1∗K1 ⊗LA q∗2Rf2∗K2
∼= R(f1 × f2)∗(p∗1K1 ⊗LA p∗2K2).

Proof. Fix notation by the following commutative diagram of Cartesian

squares:

X1 ×k X2
f ′′
1→ Y1 ×k X2

b′′1→ X2

f ′′
2 ↓ f ′

2 ↓ ↓ f2
X1 ×k Y2 f ′

1→ Y1 ×k Y2 q2→ Y2
b′′2 ↓ q1 ↓ ↓ b2
X1

f1→ Y1
b1→ Spec k.

By 6.5.6, 7.5.6 and 9.3.3, we have Rf1∗K1 ∈ obDb
ctf(Y1, A). By 7.5.7 and

7.6.2 and 9.3.4, b1 is universally strongly locally acyclic relative to Rf1∗K.

By 7.6.9, we have an isomorphism

q∗1Rf1∗K1 ⊗LA q∗2Rf2∗K2
∼= Rf ′2∗(f

′∗
2 q
∗
1Rf1∗K1 ⊗LA b′′∗1 K2).

Similarly, b2f2 is universally strongly locally acyclic relative to K2 and we

have an isomorphism

f ′∗2 q
∗
1Rf1∗K1 ⊗LA b′′∗1 K2

∼= Rf ′′1∗(f
′′∗
2 b′′∗2 K1 ⊗LA f ′′∗1 b′′∗1 K2),

and hence

Rf ′2∗(f
′∗
2 q
∗
1Rf1∗K1 ⊗LA b′′∗1 K2) ∼= Rf ′2∗Rf

′′
1∗(f

′′∗
2 b′′∗2 K1 ⊗LA f ′′∗1 b′′∗1 K2).

It follows that

q∗1Rf1∗K1 ⊗LA q∗2Rf2∗K2
∼= Rf ′2∗Rf

′′
1∗(f

′′∗
2 b′′∗2 K1 ⊗LA f ′′∗1 b′′∗1 K2). �
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Proof of 9.3.1. Working with each irreducible component of S, we may

assume that S is an integral scheme. Let η be its generic point. First

consider the case where X is smooth over S pure of relative dimension d,

A = Z/m for some integer m invertible on S, F and Rqf!F∨ are locally

constant for all q, and Y = S, where F∨ = H om(F ,Z/m). By the

Poincaré duality (8.4.6 and 8.5.2), we have

Rf∗RH om(F∨,Z/m(d)[2d]) ∼= RH om(Rf!F
∨,Z/m).

Since F and Rqf!F∨ are locally constant, and Z/m is an injective Z/m-

module, we have

RH om(F∨,Z/m(d)[2d]) ∼= H om·(F∨,Z/m(d)[2d]) ∼= F (d)[2d],

R−qH om(Rf!F
∨,Z/m) ∼= H om(Rqf!F

∨,Z/m).

It follows that

R2d−qf∗F ∼= H om(Rqf!F
∨,Z/m)(−d).

For each q, the right-hand side is locally constant and constructible (7.8.1),

commutes with any base change (7.4.4), and is nonzero only for finitely

many q (7.4.5). So 9.3.1 holds for U = S.

Next we consider the case whereX is smooth over S, Y = S, F is locally

constant, and there exists a galois etale covering space X1 → X such that

the inverse image F1 of F in X1 is a constant sheaf, say associated to

an A-module F . Working with each connected component of X , we may

assume that X is pure of relative dimension d over S. We have

F =
⊕
�

F�,

where � goes over the set of prime numbers invertible on S, and F� is the

�-torsion part of F . Working with each direct factor F�, we may assume

that �kF = 0 for some integer k and some prime number � invertible on

S. Filtrating F by liF (i ∈ N ∪ {0}) and working with each successive

quotient �iF/�i+1F , we may assume �F = 0. Replacing A by A/�A, we

may assume �A = 0. Let f1 : X1 → S be the composite of X1 → X and f .

By 6.5.5, we have

Rqf1∗F1
∼= Rqf1∗(Z/�⊗LZ/� f∗1F ) ∼= Rqf1∗Z/�⊗LZ/� F ∼= Rqf1∗Z/�⊗Z/� F.

Since Rqf1!Z/� are constructible, and are nonzero only for finitely many

q, by shrinking S, we may assume they are locally constant. By our pre-

vious discussion, Rqf1∗Z/� are locally constant, constructible, nonzero for

only finitely many q, and commute with any base change. Rqf1∗F1 have
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the same property. Let G = Aut(X1/X). We have the Hochschild–Serre

spectral sequence

Epq2 = H p(G,Rqf1∗F1) ⇒ Rp+qf∗F .

So Rqf∗F are locally constant, constructible, and commute with any base

change. In particular, we have

(Rqf∗F )η̄ ∼= Hq(Xη̄,F ).

Since Hq(Xη̄,F ) are nonzero only for finitely many q (7.5.5), Rqf∗F have

the same property.

To prove 9.3.1 in the general case, the problem is local on Y and we

may assume that Y is affine. Covering X by finitely many affine open

subsets and applying 5.6.10, we are reduced to the case where X is also

affine. Then we can write f = f̄ j with j being an open immersion and f̄

being proper. 9.3.1 holds for the proper morphism f̄ . So it suffices to prove

9.3.1 for any open immersion f . As 9.3.1 holds for any closed immersion,

it suffices to consider the case where f is an open immersion with dense

image. We prove this by induction on dimXη.

Suppose that dimXη ≤ 0 and f is an open immersion with dense im-

age. We then have Xη = Yη. Indeed, let Y1, . . . , Ym be the irreducible

components of Y , and let η1, . . . , ηm be the corresponding generic points.

Since X is dense in Y , η1, . . . , ηm all lie in X . If Yiη 	= Ø, then ηi must

lie in Yiη . Note that ηi is the generic point of Yiη. As ηi ∈ X , the mor-

phism (X ∩ Yi)η → Yiη is an open immersion with dense image. But

dim (X ∩ Yi)η = 0. So we must have (X ∩ Yi)η = Yiη. It follows that

Xη = Yη. Shrinking S, we may assume X = Y . 9.3.1 holds trivially in this

case.

Suppose that 9.3.1 holds for any immersion so that the fiber over η

of its domain has dimension ≤ d − 1. Let us prove that it holds for any

immersion f : X → Y with dimXη ≤ d. We first show that after shrinking

S, there exists an open subset V ⊂ Y such that Y − V → S is finite,

and that RqfV ∗F are constructible, nonzero only for finitely many q, and

commute with any base change S′ → S, where fV : f−1(V ) → V is the

morphism induced by f . Cover Y by finitely many affine open subsets

Yi. Choose immersions Yi ↪→ AkS . Let πj : AkS → A1
S (j = 1, . . . , k) be

the projections. By 7.5.3, the generic fiber of (πj |Yi) ◦ (fYi) has dimension

≤ d − 1 for each pair (i, j), and we can apply the induction hypothesis to

the morphism fYi : f
−1(Yi) → Yi over the base A1

S , where Yi is considered

as an A1
S-scheme through the morphism πj |Yi . We can find dense open
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subsets Uij of A1
S so that (Rqf∗F )|Yi∩π−1

j (Uij)
are constructible, nonzero

only for finitely many q, and commute with any base change S′ → A1
S . Let

V =
⋃
i,j(Yi ∩ π−1j (Uij)). Then RqfV ∗F are constructible, nonzero only

for finitely many q, and commute with any base change S′ → S. We have

Y − V ⊂
⋃
i

(
Yi ∩ (AkS − ∪jπ−1j (Uij))

)
=
⋃
i

(
Yi ∩ ((A1

S − Ui1)×S · · · ×S (A1
S − Uik))

)
.

As the fiber of (A1
S−Ui1)×S · · ·×S (A1

S−Uik) → S over η is finite, we may

assume that Y − V → S is finite by shrinking S.

Let us prove that 9.3.1 holds for the immersion f : X → Y under

the extra condition that X is smooth over S, F is locally constant, and

there exists a galois etale covering space X1 → X such that the inverse

image of F in X1 is a constant sheaf. The problem is local with respect

to Y . We may assume that Y is affine. Then Y is an open subscheme of

a scheme projective over S. We are thus reduced to the case where Y is

projective over S. Shrinking S, we may find an open subset V of Y such

that Y − V → S is finite, and RqfV ∗F are constructible, nonzero only for

finitely many q, and commute with any base change S′ → S. Fix notation

by the following commutative diagram:

V

j ↓
X

f→ Y
i← Y − V,

a ↘ b ↓ ↙ c

S

where i and j are immersions, and a, b, c are the structure morphisms. By

the discussion at the beginning of the proof, under our extra condition,

after shrinking S, Rqa∗F are constructible, nonzero only for finitely many

q, and commute with any base change. By the choice of V , the proper base

change theorem 7.3.1, 7.4.5, and 7.8.1, after shrinking S, Rqb∗j!j∗Rf∗F
are constructible, nonzero only for finitely many q, and commute with any

base change. Applying Rb∗ to the distinguished triangle

j!j
∗Rf∗F → Rf∗F → i∗i∗Rf∗F →,

we get a distinguished triangle

Rb∗j!j∗Rf∗F → Ra∗F → c∗i∗Rf∗F → .

 E
ta

le
 C

oh
om

ol
og

y 
T

he
or

y 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 U
N

IV
E

R
SI

T
Y

 O
F 

SI
N

G
A

PO
R

E
 o

n 
11

/2
7/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



February 6, 2015 9:48 ws-book9x6 Etale Cohomology Theory... etale page 512

512 Etale Cohomology Theory

It follows that after shrinking S, c∗i∗Rqf∗F are constructible, nonzero

only for finitely many q, and commute with any base change. As c is finite,

i∗Rqf∗F have the same properties. By our choice of V , j!j
∗Rqf∗F also

have these properties. So Rqf∗F have these properties. This proves that

the theorem holds for f under our extra condition.

Finally we prove that 9.3.1 holds for the immersion f : X → Y uncon-

ditionally. We may assume that there exists an open dense subset W of X

smooth over S. Indeed, if S is the spectrum of a perfect field, it suffices to

replaceX byXred. In general, we use the passage to limit argument, and we

need to shrink S, make a finite radiciel surjective base change, and replace

X by a closed subscheme defined by a nilpotent ideal. These changes have

no effect on etale cohomology. Shrinking W , we may assume that F |W is

locally constant, and there exists a galois etale covering space W1 → W

such that the inverse image of F in W1 is a constant sheaf (5.8.1 (ii)). Let

j :W ↪→ X be the open immersion. Choose a distinguished triangle

F → Rj∗j∗F → Δ → .

The cohomology sheaves of Δ are supported in X−W . We have shown that

the theorem holds for the open immersion j : W → X . So after shrinking

S, we may assume that Rqj∗j∗F are constructible, nonzero only for finitely

many q, and commutes with any base change. It follows that H q(Δ) have

the same property. Since dim (X−W )η ≤ d−1, by the induction hypothesis

applied to X −W → Y and Δ|X−W , we see that Rqf∗Δ are constructible,

nonzero only for finitely many q, and commute with any base change. We

have a distinguished triangle

Rf∗F → R(fj)∗j∗F → Rf∗Δ → .

We have shown that the theorem holds for the immersion fj :W → Y . So

after shrinking S, Rq(fj)∗j∗F are constructible, nonzero only for finitely

many q, and commute with any base change. It follows that Rqf∗F have

the same property. So 9.3.1 holds for f . �

Lemma 9.3.6. Let f : X → S be a proper morphism of noetherian

schemes, let K be an object in Db
ctf(X,A) such that Rqf∗K are locally con-

stant for all q, and let W be an open subset of X such that f |W : W → S

is locally acyclic relative to K and such that X −W is finite over S. Then

f is locally acyclic relative to K.

Proof. Let s ∈ S, let S̃s̄ be the strict localization of S at s̄, and let

j : t → S̃s̄ be an algebraic geometric point. Fix notation by the following
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diagram

Xt = X ×S t j̃→ X ×S S̃s̄ ĩ← Xs̄ = X ×S s̄
ft ↓ f̃ ↓ ↓ fs̄
t
j→ S̃s̄

i← s̄,

where vertical arrows are base changes of f . Denote the inverse image

of K on X ×S S̃s̄ by K̃. We need to show that ĩ∗K̃ → ĩ∗Rj̃∗j̃∗K̃ is an

isomorphism. Let

ĩ∗K̃ → ĩ∗Rj̃∗j̃∗K̃ → Δ →
be a distinguished triangle. We need to show that Δ is acyclic. Since f

is locally acyclic relative to K on W , the cohomology sheaves of Δ are

supported on (X −W )s̄, which is a finite set. To prove that Δ is acyclic, it

suffices to show that RΓ(Xs̄,Δ) is acyclic. We have a distinguished triangle

RΓ(Xs̄, ĩ
∗K̃) → RΓ(Xs̄, ĩ

∗Rj̃∗j̃∗K̃) → RΓ(Xs̄,Δ) → .

It suffices to show that the canonical morphism

RΓ(Xs̄, ĩ
∗K̃) → RΓ(Xs̄, ĩ

∗Rj̃∗j̃∗K̃)

is an isomorphism. For each q, since Rqf∗K is locally constant, the spe-

cialization homomorphism

(Rqf∗K)s̄ → (Rqf∗K)t̄

is an isomorphism. By 5.9.5, we have

(Rqf∗K)s̄ ∼= Hq(X ×S S̃s̄, K̃),

and by the proper base change theorem 7.3.1, we have

(Rqf∗K)t̄ ∼= Hq(Xt̄, j̃
∗K̃).

Through these isomorphisms, the specialization homomorphism is identified

with the canonical homomorphism

Hq(X ×S S̃s̄, K̃) → Hq(Xt̄, j̃
∗K̃).

Since the specialization homomorphism is an isomorphism, we have

Hq(X ×S S̃s̄, K̃) ∼= Hq(Xt̄, j̃
∗K̃).

We have a commutative diagram of canonical morphisms

Hq(Xt̄, j̃
∗K̃) ← Hq(X ×S S̃s̄, Rj̃∗j̃∗K̃) → Hq(Xs̄, ĩ

∗Rj̃∗j̃∗K̃)

‖ ↑ ↑
Hq(Xt̄, j̃

∗K̃) ← Hq(X ×S S̃s̄, K̃) → Hq(Xs̄, ĩ
∗K̃).
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We have just shown that the lower horizontal arrow in the square on the

left of the diagram is an isomorphism. By the proper base change theorem

7.3.3, the two horizontal arrows in the square on the right of the diagram

are isomorphisms. The canonical morphism

Hq(X ×S S̃s̄, Rj̃∗j̃∗K̃) → Hq(Xt̄, j̃
∗K̃)

is also an isomorphism. It follows that all arrows in the above diagram are

isomorphisms. So

Hq(Xs̄, ĩ
∗K̃) → Hq(Xs̄, ĩ

∗Rj̃∗j̃∗K̃)

is an isomorphism. Hence

RΓ(Xs̄, ĩ
∗K̃) → RΓ(Xs̄, ĩ

∗Rj̃∗j̃∗K̃)

is an isomorphism.

Proof of Theorem 9.3.2. We may assume that S is an integral scheme

with generic point η, and we use induction on dimXη. First we use the

induction hypothesis to prove the following statement:

(*) After shrinking S, we can find an open subset W of X such that

f |W :W → S is universally locally acyclic relative to K|W and X−W → S

is finite.

Cover X by finitely many affine open subsets Xi (i = 1, . . . ,m) so that

there exist immersions Xi ↪→ AkS . Let πj : A
k
S → A1

S (j = 1, . . . , k) be the

projections. For each pair (i, j), the generic fiber of πj |Xi has dimension

≤ dimXη − 1 by 7.5.3. By the induction hypothesis, we can find a dense

open subset Vij of A1
S such that πj : Xi ∩ π−1j (Vij) → Vij is universally

locally acyclic relative to K. The projection Vij → S is smooth and hence

universally strongly locally acyclic relative to A by 7.7.5. So by 7.7.6,

f : Xi ∩ π−1j (Vij) → S is universally locally acyclic relative to K. Let

W =
⋃
i,j(Xi ∩ π−1j (Vij)). We have

X −W ⊂
⋃
i

(
Xi ∩

(
AkS − ∪jπ−1j (Vij)

))
=
⋃
i

(
Xi ∩

(
(A1

S − Vi1)×S · · · ×S (A1
S − Vik)

))
.

As the generic fiber of (A1
S−Vi1)×S · · ·×S (A1

S−Vik) → S is finite, we may

assume that X −W → S is finite by shrinking S. This proves (*) under

the induction hypothesis.

Now let us prove the theorem. The problem is local. We may assume

that S is affine. Covering X by finitely many affine open subsets, and
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working with each of them, we may assume that X is affine. Then X is

an open subscheme of a proper S-scheme. So it suffices prove the theorem

for any proper S-scheme X . By 7.4.5 and 7.8.1, after shrinking S, we

may assume that Rqf∗K are locally constant for all q. By (*), we may

assume that there exists an open subset W of X such that f |W : W → S

is universally locally acyclic relative to K, and X −W → S is finite. We

then apply 9.3.6. �

9.4 Finiteness of RΨη

([SGA 4 1
2 ] Th. finitude 3.)

The main result of this section is the following:

Theorem 9.4.1. Let S be a strictly local trait, s its closed point, η its

generic point, and A a noetherian ring such that nA = 0 for some integer

n invertible on S. For any S-scheme X of finite type and any constructible

sheaf of A-modules F on Xη, R
qΨηF are constructible for all q.

Before proving the theorem, we make some preparations. Let S =

SpecR, where R is a strictly henselian discrete valuation ring with maximal

ideal m. Let s′ be the generic point of A1
s = Spec (R/m)[t], and denote the

image of s′ in A1
S = SpecR[t] also by s′. It corresponds to the prime ideal

m[t] of R[t]. Let S′ be the strict localization of A1
S at s̄′. Then S′ = SpecR′

for a strictly henselian discrete valuation ring R′, and any uniformizer of R

is also a uniformizer of R′. Let η′ be the generic point of S′. We have

Spec k(η′) ∼= Spec k(η)×S S′.
Let K ′ = k(η̄) ⊗k(η) k(η′). Then K ′ is a field. To show this, it suffices

to show that for any finite galois extension K1 of k(η) contained in k(η̄),

K1 ⊗k(η) k(η′) is a field. Let R1 be the integral closure of R in K1 and let

S1 = SpecR1. Then R1 is a strictly henselian discrete valuation ring with

fraction field K1. Since the residue field of R1 is purely inseparable over

the residue field of R, there exists one and only one point in S1 ×S S′ lying
above the closed point of S′. On the other hand, S1 ×S S′ is finite over S′.
It follows that S1 ×S S′ is strictly local, and it is the strict localization of

A1
S1

at the generic point of the special fiber of A1
S1

→ S1. We have

Spec (K1 ⊗k(η) k(η′)) ∼= SpecK1 ×Speck(η) (Spec k(η) ×S S′)
∼= SpecK1 ×S1 (S1 ×S S′).

So K1 ⊗k(η) k(η′) is the function field of S1 ×S S′. We have

Gal(K1 ⊗k(η) k(η′)/k(η′)) ∼= Gal(K1/k(η)).
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It follows that K ′ = k(η̄)⊗k(η) k(η′) is a field and

Gal(K ′/k(η′)) ∼= Gal(k(η̄)/k(η)).

Let K
′
be a separable closure of K ′ and let η̄′ = SpecK

′
. Note that

Gal(K
′
/K ′) is a pro-p-group, where p is the characteristic of the residue

field of R. To see this, we need to show that any finite tamely ramified

extension L of k(η′) is contained in K ′. Let π be a uniformizer of R.

It is also a uniformizer of R′. By 8.1.3, we have L = k(η′)[ n
√
π], where

n = [L : k(η′)]. Since n
√
π ∈ k(η̄), we have L ⊂ K ′.

Lemma 9.4.2. Notation as above. Let X ′ be an S′-scheme, let F be a

sheaf of Z/n-modules on X ′η′ ∼= X ′η for some integer n invertible on S, and

let RΨη′(F ) and RΨη(F ) be the nearby cycles of F with respect to X ′/S′

and X ′/S, respectively. We have

RqΨη(F ) ∼= RqΨη′(F )Gal(K
′
/K′).

Proof. Fix notation by the following commutative diagram

X ′η̄′
j1→ X ′̄η

j2→ X ′η ∼= X ′η′
j3→ X ′ i← X ′s ∼= X ′s′

↓ ↓ ↓ ↓ ↓
η̄′ → SpecK ′ → η′ → S′ ← S′ ×S s ∼= s′

↓ ↓ ↓ ↓
η̄ → η → S ← s.

We have

RuΨη(F ) = i∗Ru(j3j2)∗j∗2F , RuΨη′(F ) = i∗Ru(j3j2j1)∗j∗1j
∗
2F .

We have the Hochschild–Serre spectral sequence

Euv2 = H u(Gal(K
′
/K ′), RvΨη′(F )) ⇒ Ru+vΨη(F ).

Since Gal(K
′
/K ′) is a pro-p-group and RvΨη′(F ) are n-torsion sheaves

and n is relatively prime to p, we have

H u(Gal(K ′/K ′), RvΨη′(F )) = 0

for all u ≥ 1. (The functor G → G Gal(K
′
/K′) is exact in the category of

torsion sheaves with continuous Gal(K
′
/K ′)-action and with torsion prime

to p.) So the spectral sequence degenerates, and we have

RqΨη(F ) ∼= RqΨη′(F )Gal(K
′
/K′).
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Lemma 9.4.3. Let k be a field, πi : Amk → A1
k (i = 1, . . . ,m) the pro-

jections, η̄ an algebraic geometric point over the generic point of A1
k, X a

subscheme of Amk , and F a sheaf of A-modules on X. For each i, let Xiη̄

be the fiber of πi|X over η̄, and let Fiη̄ be the inverse image of F on Xiη̄.

Suppose Fiη̄ are constructible. Then there exists a constructible subsheaf

F ′ of F such that every section of the sheaf F/F ′ has finite support.

Proof. By 5.9.8, for each i, we can find an etale neighborhood U of η̄ in

A1
k, a constructible sheaf GiU on XiU = X ×πi|X ,A1

k
U such that the inverse

image Giη̄ of GiU on Xiη̄ is isomorphic to Fiη̄ . Moreover, we may assume

that the isomorphism is induced by a morphism

GiU → FiU ,

where FiU is the inverse image of F on XiU . Let φ : XiU → X be the

projection. Then the above morphism induces a morphism

φ!GiU → F .

Let F ′i be the image of this morphism. It is constructible. The image of

the morphism

φ∗φ!GiU → FiU

is φ∗F ′i . Since the morphism GiU → FiU can be factorized as the composite

GiU → φ∗φ!GiU → FiU ,

φ∗F ′i contains the image of GiU → FiU . As Giη̄ → Fiη̄ is an isomorphism,

the inverse image of F/F ′i onXiη is 0. Let F ′ be the image of the canonical

morphism

n⊕
i=1

F ′i → F .

Then F ′ is constructible, and the inverse image of F/F ′ on Xiη is 0 for

each i. Any section of the sheaf F/F ′ has finite support. Indeed, let

f : V → X be an etale X-scheme of finite type and let s ∈ (F/F ′)(V ). By

5.9.3, for each i, we can find a nonempty open subset Ui of A
1
k such that

the restriction of s to (πi|X ◦ f)−1(Ui) is 0. We have

V −
m⋃
i=1

(πi|X ◦ f)−1(Ui) = f−1
(
X ∩ ((A1

k − U1)×k · · · ×k (A1
k − Un)

))
.

As (A1
k − U1)×k · · · ×k (A1

k − Un) is finite, the support of s is finite. �
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Proof of 9.4.1. We use induction on dimXη. When dimXη < 0, we

have Xη = Ø. Then RqΨη(F ) = 0 for all q. Suppose that the theorem

holds for those S-schemes whose generic fibers have dimensions < d. Let

X be an S-scheme with dimXη = d. We first prove that for each q, there

exists a constructible subsheaf Gq of RqΨη(F ) such that the support of

any section of RqΨη(F )/G is finite. Cover X by finitely many affine open

subsets Xi, and let ji : Xis → Xs be the open immersion. If we can

find constructible subsheaves Gqi of RqΨη(F )|Xis such that the sections

of
(
RqΨη(F )|Xis

)
/Gqi have finite support, then we can take Gq to be the

image of the canonical morphism⊕
i

ji!Gqi → RiΨη(F ).

So we may assume that X is affine. Then we have an immersion X ↪→ AmS .

Let π be one of the projections πi|X : X ↪→ AmS → A1
S , let S

′ be the strict

localization of A1
S at the generic point of the special fiber of A1

S → S, let

X ′ = X ×π,A1
S
S′, let λ : X ′ → X be the projection, and let F ′ be the

inverse image of F on X ′.

X ′ → S′

λ ↓ ↓ ↘
X

π→ A1
S → S.

Since X ′ is the inverse limit of an inverse system of etale X-schemes, we

have

λ∗sR
qΨη(F ) = RqΨη(F

′).

By 9.4.2, we have

RqΨη(F
′) = RqΨη′(F

′)Gal(K
′
/K′).

By the induction hypothesis, RqΨη′(F ′) are constructible. So λ∗sR
qΨη(F )

are constructible. By 9.4.3, there exists a constructible subsheaf Gq of

RqΨη(F ) such that the support of any section of RqΨη(F )/Gq is finite.

Let us prove that RqΨη(F ) are constructible. The problem is local

on X . We may assume that X is affine. Then X is an open subscheme

of a proper S-scheme. So it suffices to prove the theorem for any proper

S-scheme X . We then have a biregular spectral sequence

Epq2 = Hp(Xs, R
qΨη(F )) ⇒ Hp+q(Xη̄,Fη̄).

Let Hq = RqΨη(F )/Gq. Since sections of Hq have finite support, we

have Hp(Xs,Hq) = 0 for all p ≥ 1 by 7.2.4. To prove that RqΨη(F ) are
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constructible, it suffices to show that H0(Xs,Hq) are finitely generated A-

modules. For any two A-modulesM and N , we writeM ∼ N if there exists

a finite family of A-modules M0, . . . ,Mk such that M0 =M , Mk = N , and

for each i ∈ {0, . . . , k − 1}, there exists a homomorphism Mi → Mi+1 or

a homomorphism Mi+1 → Mi with finite kernel and finite cokernel. Since

Gq are constructible, Hp(Xs,Gq) are finitely generated A-modules by 7.8.1.

From the long exact sequences of cohomology groups associated to the short

exact sequence

0 → Gq → RqΨη(F ) → Hq → 0,

we get Epq2 ∼ Hp(X,Hq). In particular, Epq2 ∼ 0 for all p 	= 0, that is, the

spectral sequence degenerates modulo the equivalence relation ∼. So we

have E0q
2 ∼ Hq(Xη̄,Fη̄). By 7.8.1, we have Hq(Xη̄,Fη̄) ∼ 0. So we have

H0(Xs,Hq) ∼ E0q
2 ∼ 0.

This proves our assertion. �

9.5 Finiteness Theorems

([SGA 4 1
2 ] Th. finitude 1, 3.)

Throughout this section, A is a noetherian ring such that nA = 0 for some

integer n invertible on a base scheme S.

Theorem 9.5.1. Suppose that S is a regular noetherian scheme of dimen-

sion ≤ 1. Let X and Y be S-schemes of finite type, f : X → Y an S-

morphism, and F a constructible sheaf of A-modules on X. Then Rqf∗F
are constructible for all q, and are nonzero only for finitely many q.

Proof. First suppose that S is a strictly local trait. Let η and s be the

generic point and the closed point of S, respectively. We first prove that

for any S-scheme X of finite type and any constructible sheaf of A-modules

Fη on Xη, the sheaves i
∗Rqj∗Fη are constructible for all q and are nonzero

only for finitely many q, where i : Xs → X and j : Xη → X are immersions.

We have the Hochschild–Serre spectral sequence

Euv2 = H u(Gal(η̄/η), RvΨη(Fη)) ⇒ i∗Ru+vj∗Fη.

It suffices to show that H u(Gal(η̄/η), RvΨη(Fη)) are constructible for all

u, v and are nonzero only for finitely many pairs (u, v). Let P be the wild

inertia subgroup of Gal(η̄/η). It is a pro-p-subgroup of Gal(η̄/η) and

Gal(η̄/η)/P ∼= lim←−
(n,p)=1

μn(k(η)),
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where p is the characteristic of the residue field of S. Let σ ∈ Gal(η̄/η)/P

be a topological generator so that its components in each μn(k(η)) is a

primitive n-th root of unity. Since RqΨη(Fη) are n-torsion sheaves and n

is relatively prime to p, we have

H v(P,RqΨη(Fη)) = 0

for any v 	= 0. (The functor G → G P is exact in the category of torsion

sheaves with continuous P -action and with torsion prime to p.) So the

Hochschild–Serre spectral sequence

Euv2 =H u(Gal(η̄/η)/P,H v(P,RqΨη(Fη)))⇒H u+v(Gal(η̄/η), RqΨη(Fη))

degenerates, and we have

H u(Gal(η̄/η), RqΨη(Fη)) ∼= H u(Gal(η̄/η)/P, (RqΨη(Fη))
P ).

By 4.3.9, we have

H u(Gal(η̄/η)/P, (RqΨη(Fη))
P )∼=
⎧⎨⎩
ker(σ − 1, (RqΨη(Fη))

P ) if u= 0,

coker(σ − 1, (RqΨη(Fη))
P ) if u= 1,

0 if u 	= 0, 1.

By 9.4.1 and 9.2.2 (ii), RqΨη(Fη) are constructible for all q, and are nonzero

only for finite many q. Hence ker(σ − 1, (RqΨη(Fη))
P ) and coker(σ −

1, (RqΨη(Fη))
P ) are constructible for all q, and are nonzero only for finitely

many q. This proves our assertion.

To prove the theorem, we may assume that S is connected and hence

integral. If dimS = 0, the theorem follows from 9.3.3. Suppose dimS = 1.

Then by 9.3.1, there exists a finite closed subset T of S such that over S−T ,
Rqf∗F are constructible for all q and are nonzero only for finitely many q.

To prove the theorem, it suffices to show that Rqf∗F |Ys are constructible

for all q and are nonzero only for finitely many q for all s ∈ T . The problem

is local on S. Replacing S by the strict localization of S at s, we may assume

that S is a strictly local trait. Fix notation by the following commutative

diagram.

Xη
j1→ X

i1← Xs

fη ↓ f ↓ ↓ fs
Yη

j2→ Y
i2← Ys

↓ ↓ ↓
η → S ← s.

We need to show that i∗2Rqf∗F are constructible for all q and are nonzero

only for finitely many q. Choose a distinguished triangle

F → Rj1∗j∗1F → Δ → .

 E
ta

le
 C

oh
om

ol
og

y 
T

he
or

y 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 U
N

IV
E

R
SI

T
Y

 O
F 

SI
N

G
A

PO
R

E
 o

n 
11

/2
7/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



February 6, 2015 9:48 ws-book9x6 Etale Cohomology Theory... etale page 521

Finiteness Theorems 521

We then have a distinguished triangle

i∗2Rf∗F → i∗2Rf∗Rj1∗j
∗
1F → i∗2Rf∗Δ → .

To prove our assertion, it suffices to prove that i∗2Rqf∗Δ and

i∗2Rqf∗Rj1∗j∗1F are constructible for all q and are nonzero only for finitely

many q. We have shown that i∗1R
qj1∗j∗1F have these properties. So the

cohomology sheaves of i∗1Δ are all constructible and only finite many of

them are nonzero. By 9.3.3, Rqfs∗i∗1Δ are constructible for all q and are

nonzero only for finite many q. The cohomology sheaves of Δ are supported

on Xs. So we have

i∗2Rf∗Δ ∼= i∗2Rf∗i1∗i
∗
1Δ

∼= i∗2i2∗Rfs∗i
∗
1Δ

∼= Rfs∗i∗1Δ.
Hence i∗2Rqf∗Δ are constructible for all q and are nonzero only for finitely

many q. We have

i∗2Rf∗Rj1∗j
∗
1F ∼= i∗2Rj2∗Rfη∗j

∗
1F .

By 9.3.3, the cohomology sheaves of Rfη∗j∗1F are all constructible and

only finitely many of them are nonzero. By our previous discussion,

i∗2R
qj2∗Rfη∗j∗1F are constructible for all q and are nonzero only for finitely

many q. This proves our assertion.

Theorem 9.5.2. Suppose that S is a regular noetherian scheme of dimen-

sion ≤ 1. Let X and Y be S-schemes of finite type and let f : X → Y be an

S-morphism. Then Rf∗, Rf!, f∗, Rf ! have finite cohomological dimensions,

Rf∗ and Rf! map objects in Dc(X,A) (resp. D
b
tf(X,A), resp. D

b
ctf(X,A))

to objects in Dc(Y,A) (resp. D
b
tf(Y,A), resp. D

b
ctf(Y,A)), and f

∗ and Rf !

map objects in Dc(Y,A) (resp. Db
tf(Y,A), resp. Db

ctf(Y,A)) to objects in

Dc(X,A) (resp. D
b
tf(X,A), resp. D

b
ctf(X,A)).

Proof. Using 7.5.6, 9.2.2 (ii) and the same argument as in the proof of

9.5.1, one can show that Rf∗ has finite cohomological dimension. Combined

with 9.5.1 and 6.5.3, we see that Rf∗ maps objects in Dc(X,A) to objects

in Dc(Y,A). By 6.5.6, it maps objects in Db
tf(X,A) to objects in Db

tf(Y,A).

It follows that it maps objects in Db
ctf(X,A) to objects in Db

ctf(Y,A). The

assertions for Rf! follows from 7.4.5, 7.4.7 (ii) and 7.8.1. The assertions for

f∗ are clear. To prove the assertions for Rf !, the problem is local. We may

assume that f can be factorized as the composite X
i→ AdY

π→ Y , where i

is a closed immersion and π is the projection. We have

Rf !K ∼= Ri!Rπ!K = Ri!π∗K(d)[2d].

So it suffices to prove the assertions for Ri!. Let j : AdY −X ↪→ AdY be the

open immersion. We have a distinguished triangle

i∗Ri!K → K → Rj∗j∗K → .

The assertions for Ri! follows from those for Rj∗. �
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Theorem 9.5.3.

(i) For any scheme X, the functor −⊗LA− maps objects in D−c (X,A)×
D−c (X,A) (resp. D

b
tf(X,A)×Db

tf(X,A), resp. D
b
ctf(X,A)×Db

ctf(X,A)) to

objects in D−c (X,A) (resp. Db
tf(X,A), resp. D

b
ctf(X,A)).

(ii) Suppose that S is a regular noetherian scheme of dimension ≤ 1.

For any scheme X of finite type over S, the functor RH omA(−,−) maps

objects in D−c (X,A) × D+
c (X,A) (resp. Db

ctf(X,A) × Db
tf(X,A), resp.

Db
ctf(X,A) × Db

ctf(X,A)) to objects in D+
c (X,A) (resp. Db

tf(X,A), resp.

Db
ctf(X,A)).

Proof.

(i) Use 6.4.5, 6.4.6 and 6.5.4.

(ii) By 6.5.3, to show that RH om maps objects in D−c (X,A) ×
D+
c (X,A) to objects in D+

c (X,A), it suffices to show that for any con-

structible sheaves of A-modules F and G on X , E xtq(F ,G ) are con-

structible for all q. First we prove that F has a filtration

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fk = F

such that Fi/Fi−1 are of the form j!F ′ for some immersion j : Y → X and

some locally constant constructible sheaf of A-modules F ′ on Y . We use

induction on dimX . This is clear if dimX ≤ 0. Suppose that dimX = d

and the assertion holds for schemes of dimension < d. Let η1, . . . , ηm be all

the generic points of X . For each i, there exists an open neighborhood Ui of

ηi such that F |Ui is locally constant. Let U =
⋃m
i=1 Ui and let j : U ↪→ X

be the open immersion. F |U is locally constant, and j!(F |U ) is a subsheaf

F . The quotient F/j!(F |U ) is supported on X − U which has dimension

< d. We then apply the induction hypothesis to F/j!(F |U ). To prove

our assertion, it suffices to show that E xtq(j!F ′,G ) are constructible for

any immersion j : Y → X , any locally constant constructible sheaf of A-

modules F ′ on Y , and any constructible sheaf of A-modules G on X . We

have

RH om(j!F
′,G ) ∼= Rj∗RH om(F ′, Rj!G ).

By 9.5.2 applied to Rj∗ and Rj!, we are reduced to proving that

E xtq(F ′,G ′) are constructible for any locally constant constructible sheaf

of A-modules F ′, and any constructible sheaf of A-modules G ′ on Y . The

problem is local with respect to the etale topology on Y . So we may assume

that F ′ is a constant constructible sheaf of A-modules, say associated to

some finitely generated A-module M . Let

· · · → L1 → L0 → 0
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be a resolution of M by free A-modules of finite rank. Then E xtq(F ′,G ′)
is the q-th cohomology sheaf of the complex

0 → H omA(L0,G
′) → H omA(L1,G

′) → · · · .
It is clear that it is constructible.

Next we show that RH om(−,−) maps objects in Db
ctf(X,A) ×

Db
tf(X,A) to objects in Db

tf(X,A). Let K be a bounded complex of flat

constructible sheaves of A-modules. There exists a filtration

0 = K0 ⊂ K1 ⊂ · · · ⊂ Kk = K

such that Ki/Ki−1 are of the form j!K
′ for some immersion j : Y → X and

some complex of locally constant flat constructible sheaves of A-modules

K ′. We have

RH om(j!K
′, L) ∼= Rj∗RH om(K ′, Rj!L).

By 9.5.2, we are reduced to proving that RH om(K,L) has finite Tor-

dimension for any bounded complex K of locally constant flat constructible

sheaves of A-modules and any L ∈ obDb
tf(X,A). The problem is local, we

may assume that the components of K are constant sheaves. By 1.6.7, the

components of K are constant sheaves of projective A-modules. We then

have RH om(K,L) = H om·(K,L). As L has finite Tor-dimension, we may

assume that L is a bounded complex of flat sheaves of A-modules. Then

H om·(K,L) is a bounded complex of flat sheaves of A-modules. Hence

RH om(K,L) has finite Tor-dimension. �
Using 9.3.1 and the same argument as above, one can prove the following

propositions.

Proposition 9.5.4. Let S be a noetherian scheme, X and Y two S-

schemes of finite type, f : X → Y an S-morphism, and L ∈ obDb
c(Y,A).

Then there exists a dense open subset U of S such that the following con-

ditions hold:

(i) (Rf !L)|XU is an object in Db
c(XU , A), where XU is the inverse image

of U in X.

(ii) The formation of Rf !L commutes with any base change S′ → U ⊂
S, or equivalently, the formation of Rf !

U (L|YU ) commutes with any base

change S′ → S, where YU is the inverse image of U in Y , and fU : XU →
YU is the restriction of f .

Proposition 9.5.5. Let S be a noetherian scheme, X an S-scheme of finite

type, K ∈ obDb
ctf(X,A) and L ∈ obDb

c(Y,A). Then there exists a dense

open subset U of S such that the following conditions hold:
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(i) (RH omA(K,L))|XU is an object in Db
c(XU , A), where XU is the

inverse image of U in X.

(ii) The formation of RH omA(K,L) commutes with any base change

S′ → U ⊂ S, or equivalently, the formation of (RH omA(K,L))|XU com-

mutes with any base change S′ → S.

9.6 Biduality

([SGA 4 1
2 ] Th. finitude 4.)

The main result of this section is the following:

Theorem 9.6.1. Let S be a regular noetherian scheme of dimension ≤ 1

and let A be a noetherian ring such that A is an injective A-module, and

nA = 0 for some integer n invertible on S. For any S-scheme f : X → S

of finite type, define KX = Rf !A, and for any K ∈ obDb
ctf(X,A), define

DK = RH omA(K,KX). Then DK ∈ obDb
ctf(X,A) and the morphism

K → DDK = RH omA(DK,KX)

corresponding to the canonical morphism

K ⊗LA DK ∼= DK ⊗LA K = RH omA(K,KX)⊗LA K Ev→ KX

is an isomorphism.

Lemma 9.6.2. 9.6.1 holds if X = S.

Proof. By definition, we have KS = A. To prove K ∼= DDK, the

problem is local with respect to the etale topology. If dimS = 0, any

constructible sheaf of A-modules F on S is locally constant. So to prove

the lemma in this case, we may assume that K is a bounded complex of

finitely generated flat A-modules. By 1.6.7, all components ofK are finitely

generated projective A-modules. So we have

DK = H om·(K,A), DDK = H om·(H om·(K,A), A).

It is then clear that DK ∈ obDb
ctf(S,A) and K

∼= DDK.

Suppose that S is a connected regular scheme of dimension 1. Given a

constructible sheaf of A-modules F on S, let U be an open dense subset of

S such that F |U is locally constant, and let j : U ↪→ S and i : S − U → S
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be the immersions. By 8.3.10, we have

D(j∗j∗F ) = RH om(j∗j∗F , A)

∼= j∗H om(j∗F , A),

DD(j∗j∗F ) ∼= RH om(j∗H om(j∗F , A), A)

∼= j∗H om(H om(j∗F , A), A).

It follows that D(j∗j∗F ) ∈ obDb
ctf(S,A) and j∗j∗F ∼= DD(j∗j∗F ). Any

constructible sheaf of A-modules on S supported on S − U is of the form

i∗G for a constructible sheaf of A-modules G on S − U . By 8.3.6 and the

dimS = 0 case treated above, we have

D(i∗G ) = RH om(i∗G , A)
∼= i∗RH om(G , Ri!A)

∼= i∗RH om(G , A(−1)[−2])

∼= i∗H om·(G , A(−1)[−2]).

Using this formula, one can verify that D(i∗G ) ∈ obDb
ctf(S,A) and i∗G ∼=

DD(i∗G ). Since the kernel and cokernel of the canonical morphism F →
j∗j∗F are supported on S − U , it follows that D(F ) ∈ obDb

ctf(S,A) and

F ∼= DDF . We then conclude that for any K ∈ obDb
ctf(S,A), we have

DK ∈ obDb
ctf(S,A) and K

∼= DDK. �

Lemma 9.6.3. Under the assumption of 9.6.1, if f is proper, then we have

Rf∗K ∼= Rf∗DDK.

Proof. Since f is proper, we have Rf! = Rf∗, and hence

Rf∗DK = Rf∗RH om(K,Rf !A) ∼= RH om(Rf∗K,A) = DRf∗K.

We thus have a canonical isomorphism

Rf∗DK
∼=→ DRf∗K.

It follows that we have canonical isomorphisms

Rf∗DDK
∼=→ DRf∗DK, DDRf∗K

∼=→ DRf∗DK.

By 9.6.2, we have

Rf∗K ∼= DDRf∗K.

To prove Rf∗K ∼= Rf∗DDK, it suffices to show that the following diagram

commutes:

Rf∗K → Rf∗DDK
∼= ↓ ↓ ∼=

DDRf∗K
∼=→ DRf∗DK.
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Note that via 6.4.7, the composite

Rf∗K → DDRf∗K → DRf∗DK

corresponds to the composite

Rf∗K ⊗LA Rf∗DK → (Rf∗K)⊗LA D(Rf∗K) ∼= D(Rf∗K)⊗LA (Rf∗K) → A,

and the composite

Rf∗K → Rf∗DDK → DRf∗DK

corresponds to the composite

Rf∗K⊗LARf∗DK → Rf∗DDK⊗LARf∗DK → D(Rf∗DK)⊗LA(Rf∗DK)
Ev→ A.

So it suffices to prove the outer loop of the following diagram commutes:

(Rf∗K)⊗LAD(Rf∗K)← Rf∗K⊗LARf∗DK → Rf∗DDK⊗LARf∗DK →D(Rf∗DK)⊗LA(Rf∗DK)

↓ (1) ↓
�‖ Rf∗(K⊗LADK) → Rf∗(DDK⊗LADK)

↓
D(Rf∗K)⊗LARf∗K Rf∗(DK⊗LAK) (2) ↓ ↓ Ev

↓
Ev ↓ Rf∗Rf !A = Rf∗Rf !A

↓ (3) ↓
A = A = A = A.

The commutativity of (1) and (3) is clear. The commutativity of (2) follows

from the commutativity of the diagram

K ⊗LA DK → DDK ⊗LA DK
↓ ↓ Ev

DK ⊗LA K Ev→ Rf !A.

The leftmost square is of the same type as the rightmost square. Their

commutativity follows from the commutativity of the outer loop of the

following diagram:

Rf∗RH om(K,Rf !A)⊗LA Rf∗K → Rf∗(RH om(K,Rf !A)⊗LA K)

↓ (4) ↓
RH om(Rf∗K,Rf∗Rf !A)⊗LA Rf∗K → Rf∗Rf !A

↓ (5) ↓
RH om(Rf∗K,A)⊗LA Rf∗K → A.

In this diagram, the commutativity of (5) is clear. To prove the com-

mutativity of (4), let I · be a complex of injective sheaves of A-modules
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quasi-isomorphic to Rf !A, represent K by a complex of bounded complex

of flat sheaves of A-modules, and let C ·(K) be the Godement resolution.

One can check directly that the following diagram commutes:

f∗H om·(C ·(K), I ·)⊗A f∗C ·(K) → f∗(H om·(C ·(K), I ·)⊗A C ·(K))

↓ ↓
H om·(f∗C ·(K), f∗I ·)⊗A f∗C ·(K) → f∗I ·. �

Proof of 9.6.1. By 9.5.2 and 9.5.3, we have DK ∈ obDb
ctf(X,A). To

prove K ∼= DDK, the problem is local. By 5.9.10, we may assume that S

is strictly local.

Suppose that S is the spectrum of a separably closed field. We prove

K ∼= DDK by induction on dimX . The problem is local. We may assume

that X is affine. Then X is a subscheme of a scheme projective over S. We

are thus reduced to the case where X is proper over S. Let

K → DDK → Δ →
be a distinguished triangle. We need to show that Δ is acyclic. Cover

X by finitely many affine open subsets Xi so that we have immersions

Xi → AmS . Let η be the generic point of A1
S and let πj : AmS → A1

S

(j = 1, . . . ,m) be the projections. Applying the induction hypothesis to

the generic fiber of πj |Xi , we see that Δ|Xi∩π−1
j (η) is acyclic for each pair

(i, j). Since Δ ∈ obDb
c(X,A), there exists a nonempty open subset Vj ⊂ A1

S

such that Δ|Xi∩π−1
j (Vj)

is acyclic for each i by 5.9.8. We have

Xi −
n⋃
j=1

(Xi ∩ π−1j (Vj)) = Xi

⋂(
(A1

S − V1)×S · · · ×S (A1
S − Vn)

)
,

which is finite over S. It follows that the cohomology sheaves of Δ have

finite support. On the other hand, we have Rf∗Δ = 0 by 9.6.3. So we have

Δ = 0.

Suppose that S is a trait. Let s be the closed point of S. Let us prove

that K ∼= DDK by induction on dimXs. Again we may assume that X is

proper over S. Let

K → DDK → Δ →
be a distinguished triangle. By the above discussion applied to the generic

fiber Xη, the cohomology sheaves of Δ are supported on Xs. Cover X by

finitely many affine open subsets Xi ⊂ AmS . Let S′ be the strict localiza-

tion of A1
S at the generic point s′ of the special fiber of A1

S → S. Then
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S′ is a strictly local trait. Applying the induction hypothesis to the mor-

phisms Xi×πj|Xi ,A1
S
S′ → S′, we see that Δ|Xi×πj|Xi ,A1SS′ are acyclic. Then

there exist open neighborhoods Vi of s
′ in A1

S such that Δ|Xi×πj |Xi ,A1SVi are
acyclic. Together with the fact that the cohomology sheaves of Δ are sup-

ported on Xs, this implies that the cohomology sheaves are supported on

finitely many points in Xs. Since Rf∗Δ = 0 by 9.6.3, we have Δ = 0.

�
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Chapter 10

�-adic Cohomology

10.1 Adic Formalism

([SGA 5] V, VI, [Deligne (1980)] 1.1.)

Let � be a prime number, Z� = lim←−n Z/�
n+1 the ring of �-adic integers, Q�

its fraction field, E a finite extension of Q�, and R the integral closure of

Z� in E. Then R is a complete discrete valuation ring. Fix a uniformizer

λ of R. Then R/(λn+1) are finite and R/(λ) is a field of characteristic �.

Throughout this chapter, we assume that � is invertible in all schemes we

consider.

Let X be a noetherian scheme. A sheaf F of R-modules on X is called

a λ-torsion sheaf if

F =
⋃
v≥0

ker (λv : F → F ).

Consider the category of inverse systems of λ-torsion sheaves the form

F = (Fn, un)n∈Z, un : Fn → Fn−1

so that Fn = 0 for all n ≤ n0 for some integer n0. This is an abelian

category. Given an integer r, we define F [r] to be the inverse system

defined by

(F [r])n = Fn+r

with the transition morphisms given by

un+r : (F [r])n → (F [r])n−1.

When r ≥ 0, we have a canonical morphism F [r] → F whose n-th com-

ponent is

un+1 · · ·un+r : Fn+r → Fn.

529
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Similarly, we have a canonical morphism F → F [r] for any r ≤ 0. We say

that a system F = (Fn) satisfies the Mittag–Leffler condition (ML) if for

any integer n, there exists an integer r ≥ n such that

im(Fr → Fn) = im(Ft → Fn)

for all t ≥ r. We say that it satisfies the Artin–Rees–Mittag–Leffler condi-

tion (ARML) if there exists an integer r such that

im(F [r] → F ) = im(F [t] → F )

for all t ≥ r. We say that it is a null system if there exists an integer r ≥ 0

such that F [r] → F is 0.

In the category of inverse systems of λ-torsion sheaves, the family of

morphisms of the form F [r] → F is multiplicative. By 6.2.1, there exists

a category, which we call the A-R category of inverse systems of λ-torsion

sheaves, so that its objects are inverse systems of λ-torsion sheaves, and for

any objects F and G , we have

HomAR(F ,G ) = lim−→
r≥0

Hom(F [r],G ).

A morphism F → G in the A-R category is represented by a morphism

F [r] → G of inverse systems for some r ≥ 0, and the kernel and cokernel

of F [r] → G are the kernel and cokernel of F → G in the A-R category,

respectively. The A-R category of inverse systems of λ-torsion sheaves is

an abelian category. A system F is a zero object in the A-R category if

and only if it is a null system.

An inverse system F = (Fn, un)n∈Z of λ-torsion sheaves is called a λ-

adic sheaf if Fn are constructible for all n, Fn = 0 for all n < 0, λn+1Fn=0

for all n ≥ 0, and the morphisms un+1 : Fn+1 → Fn induce isomorphisms

Fn+1/λ
n+1Fn+1

∼= Fn

for all n ≥ 0. A λ-adic sheaf F is called lisse if Fn are locally constant for

all n. An object F in the A-R category is called an A-R λ-adic sheaf if it

is A-R isomorphic to a λ-adic sheaf, that is, we can find a λ-adic sheaf G

and a morphism G [r] → F for some r ≥ 0 whose kernel and cokernel are

null systems.

Let G be a λ-adic sheaf and let F be an inverse system of λ-torsion

sheaves such that λn+1Fn = 0 for all n. Then we have

Hom(G ,F ) ∼= HomAR(G ,F ).

So the category of λ-adic sheaves is equivalent to the category of A-R λ-adic

sheaves.
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Examples.

1. Let M be a finitely generated R-module and let M/λn+1M be the

constant sheaf on X associated M/λn+1M . Then M = (M/λn+1M) is a

λ-adic sheaf.

2. Let un : μ�n+1,X → μ�n,X be the morphism s �→ sl. Then (μ�n+1,X)

is an �-adic sheaf. We denote it by Z�(1). Similarly, we have the �-adic

sheaf Z�(m) = (Z/�n+1(m)) for any integer m.

3. Let F be a constructible λ-torsion sheaf on X . Then (F/λn+1F )

is a λ-adic sheaf. We have λm+1F = 0 for a sufficiently large m and

F/λn+1F = F for all n ≥ m. The functor F → (F/λn+1F ) identifies

the category of λ-torsion sheaves with a full subcategory of the category of

λ-adic sheaves.

4. If F = (Fn) and G = (Gn) are λ-adic sheaves, then

F ⊗R G = (Fn ⊗R/(λn+1) Gn)

is a λ-adic sheaf.

5. If F = (Fn) and G = (Gn) are λ-adic sheaves, and each Fn is a

locally free sheaf of R/(λn+1)-modules of finite rank, then

H omR(F ,G ) = (H omR/λn+1(Fn,Gn))

is a λ-adic sheaf. This follows from the fact that for each nonnegative

integer n, we have an exact sequence

H omR/(λn+2)(Fn+1,Gn+1)
λn+1

→ H omR/(λn+2)(Fn+1,Gn+1)

→ H omR/(λn+2)(Fn+1,Gn) → 0

and an isomorphism

H omR/(λn+2)(Fn+1,Gn) ∼= H omR/(λn+1)(Fn,Gn).

Proposition 10.1.1. Let F = (Fn) be an inverse system of λ-torsion

sheaves on a noetherian scheme X. Suppose that Fn are constructible for

all n, λn+1Fn = 0 for all n ≥ 0 and Fn = 0 for all n < 0. Then F is an

A-R λ-adic sheaf if and only if the following two conditions hold:

(a) F satisfies ARML.

(b) Let r ≥ 0 be an integer such that

im (F [t] → F ) = im (F [r] → F )

for all t ≥ r. Such an integer exists by (a). Let

Fn = im (Fn+t → Fn)
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for any n and any t ≥ r. Then there exists an integer s ≥ 0 such that for

any t ≥ s, the canonical morphisms Fn+t → Fn+s induce isomorphisms

Fn+t/λ
n+1Fn+t

∼= Fn+s/λ
n+1Fn+s

for all n ≥ 0 and all t ≥ s.

If these conditions hold, then (Fn+s/λ
n+1Fn+s) is a λ-adic sheaf A-R

isomorphic to F .

Proof.

(⇒) Let G = (Gn) be a λ-adic sheaf A-R isomorphic to F = (Fn).

Since we have

Hom(G ,F ) = HomAR(G ,F ),

there exists a morphism G → F whose kernel and cokernel are null systems.

So there exists an integer r ≥ 0 such that

ker (Gn+r → Fn+r) ⊂ ker (Gn+r → Gn), im (Fn+r → Fn) ⊂ im (Gn → Fn)

for all n ≥ 0. Since G is a λ-adic sheaf, we have Gn = im (Gm → Gn) for all

m ≥ n. It follows that

im (Fn+r → Fn) ⊂ im (Gn+t → Gn → Fn)

for all t ≥ r and hence

im (Fn+r → Fn) ⊂ im (Fn+t → Fn)

for all t ≥ r. This proves (a).

Note that the morphisms Fn+t → Fn+r (t ≥ r) induce epimorphisms

Fn+t → Fn+r. Let x be a section of Fn+t such that its image in Fn+r

is 0. Since

im (Fn+t+r → Fn+t) ⊂ im (Gn+t → Fn+t),

locally with respect to the etale topology, we can lift x to a section y of

Gn+t. As

ker (Gn+r → Fn+r) ⊂ ker (Gn+r → Gn),

the image of y in Gn is 0, and hence y is a section of λn+1Gn+t. Thus x is

a section of λn+1Fn+t. This implies (b) by taking s = r.

(⇐) Suppose conditions (a) and (b) hold. Let F = (Fn). The

canonical morphism F [r] → F defines the A-R inverse of the inclu-

sion F ↪→ F . Hence F is A-R isomorphic to F . The canonical mor-

phism F [s] → (Fn+s/λ
n+1Fn+s) defines the A-R inverse of the canon-

ical morphism (Fn+s/λ
n+1Fn+s) → F . So F is A-R isomorphic to
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(Fn+s/λ
n+1Fn+s). We have

(Fn+1+s/λ
n+2Fn+1+s)

/
λn+1(Fn+1+s/λ

n+2Fn+1+s)

∼= Fn+1+s/λ
n+1Fn+1+s

∼= Fn+s/λ
n+1Fn+s.

So (Fn+s/λ
n+1Fn+s) is a λ-adic sheaf A-R isomorphic to F .

Corollary 10.1.2. Let F = (Fn) be an inverse system of λ-torsion

sheaves on a noetherian scheme X. Suppose that Fn are constructible for

all n, λn+1Fn = 0 for all n ≥ 0 and Fn = 0 for all n < 0.

(i) If F is A-R λ-adic, then so is f∗F for any morphism f : X ′ → X

of schemes.

(ii) Let {Ui → X}i be a finite etale covering of X. If each F |Ui is A-R

λ-adic, then so is F .

(iii) Let (Xi) be a finite covering of X by locally closed subsets. If each

F |Xi is A-R λ-adic, then so is F .

Similarly, one can define the A-R category of inverse systems of λ-torsion

R-modules, the λ-adic system of R-modules, and the A-R λ-adic system of

R-modules. For example, a λ-adic system of R-modules is an inverse system

F = (Fn) such that Fn are finitely generated R-modules for all n, Fn = 0 for

all n < 0, λn+1Fn = 0 for all n ≥ 0, and the homomorphisms Fn+1 → Fn
induce isomorphisms Fn+1/λ

n+1Fn+1
∼= Fn. The functor

F = (Fn) �→ lim←−
n

Fn

is well-defined in the A-R category of inverse system of λ-torsion R-

modules since the canonical morphism F [r] → F induces an isomorphism

lim←−n Fn+r ∼= lim←−n Fn for any r ≥ 0.

Lemma 10.1.3. Let

0 → (Fn) → (Gn) → (Hn) → 0

be a short exact sequence of inverse system of R-modules. Suppose Fn is

finite for all n. Then the sequence

0 → lim←−
n

Fn → lim←−
n

Gn → lim←−
n

Hn → 0

is exact.
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Proof. It is clear that

0 → lim←−
n

Fn → lim←−
n

Gn → lim←−
n

Hn

is exact. Let us prove that lim←−nGn → lim←−nHn is onto. Given an element

(hn) ∈ lim←−nHn, let En be the inverse images of hn in Gn. Then En are

finite. This implies that lim←−nEn 	= Ø. Let (en) ∈ lim←−nEn. Then (en) is an

element in lim←−nGn that is mapped to (hn). �

Proposition 10.1.4.

(i) If F = (Fn) is a λ-adic system of R-modules, then M = lim←−n Fn is

a finitely generated R-module, and the projections M → Fn induce isomor-

phisms M/λn+1M ∼= Fn.

(ii) The functor (Fn) �→ lim←−n Fn defines an equivalence between the

category of A-R λ-adic systems of R-modules and the category of finitely

generated R-modules.

(iii) Let f : (Fn) → (Gn) be an A-R morphism of A-R λ-adic systems

of R-modules. Then ker f and coker f are A-R λ-adic.

Proof.

(i) Let {x(0)1 , . . . , x
(0)
m } be a finite family of generators of F0 as an R-

module. Choose x
(n)
i ∈ Fn (i = 1, . . . ,m) by induction on n so that they

are mapped to x
(n−1)
i under the canonical homomorphisms Fn → Fn−1.

By Nakayama’s lemma, {x(n)1 , . . . , x
(n)
m } is a family of generators of Fn as

an R-module. We have a family of epimorphisms

(R/(λn+1))m → Fn, (a1, . . . , am) �→
m∑
i=1

aix
(n)
i .

By 10.1.3, we have an epimorphism

Rm ∼= lim←−
n

(R/(λn+1))m → lim←−
n

Fn.

It follows that M = lim←−n Fn is a finitely generated R-module. For all

nonnegative integers m and n, we have an exact sequence

Fn+m
λn+1→ Fn+m → Fn → 0.

Using 10.1.3, one verifies that the sequence

lim←−
m

Fn+m
λn+1→ lim←−

m

Fn+m → Fn → 0

is exact. So we have M/λn+1M ∼= Fn.
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(ii) Let us show that the functor is fully faithful. Let F = (Fn) and G =

(Gn) be λ-adic systems of R-modules, let M = lim←−n Fn and N = lim←−nGn.
We have

HomAR(F,G) ∼= Hom(F,G)

= lim←−
n

HomR/(λn+1)(Fn, Gn)

∼= lim←−
n

HomR/(λn+1)(M/λn+1M,N/λn+1N).

To prove that the functor is fully faithful, it suffices to show

HomR(M,N) ∼= lim←−
n

HomR/(λn+1)(M/λn+1M,N/λn+1N).

We can find an exact sequence

Rv → Ru →M → 0.

It gives rise to a commutative diagram

0 → HomR(M,N) → HomR(R
u, N) → HomR(R

v, N)

↓ ↓ ↓

0 →
lim←−
n

Hom(M/λn+1M,

N/λn+1N)
→

lim←−
n

Hom((R/(λn+1))u,

N/λn+1N)
→

lim←−
n

Hom((R/(λn+1))v,

N/λn+1N).

By the five lemma, to prove that the functor is fully faithful, it suffices to

show that the last two vertical arrows are bijective. We are thus reduced

to proving

HomR(R,N) ∼= lim←−
n

HomR/(λn+1)(R/(λ
n+1), N/λn+1N),

or equivalently, N ∼= lim←−nN/λ
n+1N . This follows from (i).

For any finitely generated R-moduleM , (M/λn+1M) is a λ-adic system,

and M ∼= lim←−nM/λn+1M . So the functor is essentially surjective.

(iii) We may assume (Fn) and (Gn) are λ-adic systems of R-modules.

Then f is given by an element (fn) in lim←−nHom(Fn, Gn). LetM = lim←−n Fn
and N = lim←−nGn. Then M and N are finitely generated R-modules,

M/λn+1M ∼= Fn, and N/λn+1N ∼= Gn. Denote also by f the homomor-

phism M → N induced by fn :Mn → Nn by passing to limit. We have an

exact sequence

M
f→ N → coker f → 0.

It induces exact sequences

M/λn+1M → N/λn+1N → coker f/λn+1coker f → 0.
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These sequences can be identified with

Fn
fn→ Gn → coker f/λn+1coker f → 0.

So we have coker fn ∼= coker f/λn+1coker f . Hence coker f = (coker fn) is

λ-adic.

We have canonical homomorphisms

ker f/λn+1ker f → ker fn.

Let us show that their kernels and cokernels form null systems. This implies

that ker f = (ker fn) is A-R isomorphic to (ker f/λn+1ker f) and hence is A-

R λ-adic. By the Artin–Rees theorem ([Matsumura (1970)] (11.C) Theorem

15), there exists an integer r ≥ 0 such that

im f ∩ λnN = λn−r(im f ∩ λrN)

for all n ≥ r. Suppose

x+ λn+1M ∈ ker (M/λn+1M → N/λn+1N),

where x ∈M . We have

f(x) ∈ im f ∩ λn+1N = λn+1−r(im f ∩ λrN).

So f(x) = λn+1−rf(x′) for some x′ ∈ M . Then x− λn+1−rx′ ∈ ker f , and

the image of x + λn+1M in ker (M/λn+1−rM → N/λn+1−rN) is equal to

the image of

(x− λn+1−rx′) + λn+1−rker f ∈ ker f/λn+1−rker f
in ker (M/λn+1−rM → N/λn+1−rN). It follows that the cokernels of

ker f/λn+1ker f → ker fn form a null system.

By the Artin–Rees theorem, there exists an integer r ≥ 0 such that

ker f ∩ λnM = λn−r(ker f ∩ λrM)

for all n ≥ r. Let x + λn+1ker f be an element in the kernel of

ker f/λn+1ker f → ker fn, where x ∈ ker f . Then

x ∈ ker f ∩ λn+1M = λn+1−r(ker f ∩ λrM).

So x = λn+1−rx′ for some x′ ∈ ker f . The image of x + λn+1ker f in

ker f/λn+1−rker f is 0. So the kernels of ker f/λn+1ker f → ker fn form a

null system. �
Let X be a scheme and let s → X be a geometric point of X . For any

A-R λ-adic sheaf F = (Fn) on X , the stalks (Fn,s) form an A-R λ-adic

system of R-modules. We define the stalk of F at s to be

Fs = lim←−
n

Fn,s.

Proposition 10.1.5. Let F = (Fn) be a λ-adic sheaf on a noetherian

scheme X. There exists a dense open subset U of X such that Fn|U are

locally constant for all n.
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Proof. For each n, the epimorphism λn+1 : Fn+1 → λn+1Fn+1 van-

ishes on λFn+1. Since Fn+1/λFn+1
∼= F0, it induces an epimorphism

F0 → λn+1Fn+1. Let Kn be the kernel of this epimorphism. Since F0 is

constructible, the ascending chain

· · · ⊂ Kn ⊂ Kn+1 ⊂ · · ·
in F0 is stationary by 5.8.5 (i). So we can find a dense open subset U of X

such that F0|U and Kn|U are locally constant for all n. Then F0|U and

λn+1Fn+1|U are locally constant for all n. Using induction on m and the

fact that Fm+1/λ
m+1Fm+1

∼= Fm, one can show Fm+1|U that are locally

constant for all m. �

Remark 10.1.6. The same argument as in the proof of 10.1.5 shows that

in the definition of an λ-adic sheaf F = (Fn), we may replace the condition

that Fn are constructible for all n by the condition that F0 is constructible.

Proposition 10.1.7.

(i) Let f : F → G be an A-R morphism between A-R λ-adic sheaves

on a noetherian scheme X. Then ker f and coker f are A-R λ-adic. The

category of A-R λ-adic sheaves form an abelian subcategory of the abelian

A-R category of inverse system of λ-torsion sheaves. The category of λ-adic

sheaves is an abelian category.

(ii) Let

F
f→ G

g→ H

be a sequence of A-R λ-adic sheaves on a noetherian scheme X. It is exact

if and only if for any x ∈ X, the sequence

Fx̄
fx̄→ Gx̄

gx̄→ Hx̄

is exact.

(iii) Let

0 → F
f→ G

g→ H → 0

be a short exact sequence in the A-R category of inverse systems of λ-torsion

sheaves on a noetherian scheme X. Suppose that Gn are constructible and

there exists an integer t such that λn+tGn = 0 for all n. If F and H are

A-R λ-adic, so is G .

Proof.

(i) We may assume that F = (Fn) and G = (Gn) are λ-adic sheaves.

Then f : F → G is given by an element (fn) ∈ lim←−nHom(Fn,Gn). To prove
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that ker f and coker f are A-R λ-adic, we may use noetherian induction and

10.1.2 (iii) to reduce to the case where X is irreducible and prove that there

exists a nonempty open subset U of X such that (ker fn|U ) and (coker fn|U )
are A-R λ-adic. By 10.1.5, there exists a nonempty open subset U of X

such that Fn|U and Gn|U are locally constant. By 5.8.9, 10.1.1 and 10.1.4

(iii), (ker fn|U ) and (coker fn|U ) are A-R λ-adic.

(ii) We may assume that F = (Fn), G = (Gn) and H = (Hn)

are λ-adic sheaves. Then f and g are given by the elements (fn) ∈
lim←−nHom(Fn,Gn) and (gn) ∈ lim←−nHom(Gn,Hn), respectively.

Suppose F
f→ G

g→ H is exact. Then gf = 0 in the A-R category. As

HomAR(F ,H ) ∼= Hom(F ,H ),

we have (gnfn) = 0. Hence gx̄fx̄ = 0. The inclusion (im fn) → (ker gn)

induces an isomorphism in the A-R category. Its cokernel is a null system.

Hence the cokernel of (im fn,x̄) → (ker gn,x̄) is a null system. By 10.1.3, we

have

lim←−
n

im fn,x̄ ∼= lim←−
n

ker gn,x̄,

lim←−
n

im fn,x̄ ∼= im fx̄,

lim←−
n

ker gn,x̄ ∼= ker gx̄,

So we have im fx̄ ∼= ker gx̄ and the sequence Fx̄
fx̄→ Gx̄

gx̄→ Hx̄ is exact.

Conversely suppose that Fx̄
fx̄→ Gx̄

gx̄→ Hx̄ is exact for all x ∈ X . To

prove that F
f→ G

g→ H is exact, we may use noetherian induction to

reduce to the case where X is irreducible and prove that there exists a

nonempty open subset U of X such that F |U → G |U → H |U is exact. By

10.1.5, there exists a nonempty open subset U of X such that Fn|U , Gn|U
and Hn|U are locally constant. Let x be a point in U . As Fx̄

fx̄→ Gx̄
gx̄→ Hx̄

is exact, (Fn,x̄) → (Gn,x̄) → (Hn,x̄) is A-R exact by 10.1.4 (ii). This implies

that F |U → G |U → H |U is A-R exact.

(iii) Replacing G by G [−t + 1], we may assume that λn+1Gn = 0 for

all n. We may assume that F = (Fn) is λ-adic. Then f : F → G is

given by an element (fn) ∈ lim←−nHom(Fn,Gn). Let Hn = coker fn. By

our assumption, H = (Hn) is an A-R λ-adic sheaf. So there exist integers

r, s ≥ 0 such that the conditions (a) and (b) in 10.1.1 hold for H . Chasing
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the following commutative diagram

Fn+t → Gn+t → Hn+t → 0

↓ ↓ ↓
Fn+r → Gn+r → Hn+r → 0

↓ ↓ ↓
Fn → Gn → Hn → 0,

one gets

im (G [t] → G ) = im (G [r] → G )

for all t ≥ r. So condition (a) in 10.1.1 holds for G . Replacing G by

G = (G n), where G n = im (Gn+t → Gn) for all t ≥ r and all n, we may

assume that Gn+1 → Gn are surjective. By our assumption, ker (Fn → Gn)

forms a null system. We may choose the integer s such that condition (b)

in 10.1.1 holds for H and

ker (Fn → Gn) ⊂ ker (Fn → Fn−s)

for all n ≥ s. Let us prove

Gn+t/λ
n+1Gn+t ∼= Gn+2s/λ

n+1Gn+2s

for all n and all t ≥ 2s. Thus the condition (b) in 10.1.1 holds for G , and G

is A-R λ-adic. Let y be a section in ker (Gn+t → Gn+2s). Then the image

of y in Hn+t lies in ker (Hn+t → Hn+2s). Since H satisfies the conditions

in 10.1.1, we have

ker (Hn+t → Hn+2s) ⊂ λn+s+1Hn+t.

So locally for the etale topology, there exists a section y′ of Gn+t such that

y − λn+s+1y′ = fn+t(x)

for some section x of Fn+t. Since y is a section of ker (Gn+t → Gn+2s) and

λn+s+1y′ is a section of ker (Gn+t → Gn+s), the image of x in Fn+s is a

section of ker (Fn+s → Gn+s). By our choice of s, we have

ker (Fn+s → Gn+s) ⊂ ker (Fn+s → Fn).

So x is a section of ker (Fn+t → Fn) = λn+1Fn+t. It follows that

y = λn+s+1y′ + fn+t(x) is a section of λn+1Gn+t. This implies that

Gn+t/λn+1Gn+t ∼= Gn+2s/λ
n+1Gn+2s. �
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Proposition 10.1.8. Let X be a noetherian scheme, F an A-R λ-adic

sheaf, and

F (0) ⊂ F (1) ⊂ · · ·
an ascending chain of A-R λ-adic subsheaves in F . We have

F (m) = F (m+1) = · · ·
for sufficiently large m.

Proof. Using noetherian induction, to show the chain is stationary, we

may assume that X is irreducible and prove that there exists a nonempty

open subset U of X such that the chain

F (0)|U ⊂ F (1)|U ⊂ · · ·
is stationary. Let η be the generic point of X . We have a chain of finitely

generated R-modules

F
(0)
η̄ ⊂ F

(1)
η̄ ⊂ · · · .

This chain is stationary. Let m ≥ 0 be an integer such that

F
(m)
η̄ = F

(m+1)
η̄ = · · · .

By 10.1.5, there exists a nonempty open subset U of X such that

(F/F (m))|U is A-R isomorphic to a lisse λ-adic sheaf on U . For any

x ∈ U , the specialization homomorphism Fx̄/F
(m)
x̄ → Fη̄/F

(m)
η̄ is an iso-

morphism. So the specialization homomorphism F
(i)
x̄ /F

(m)
x̄ → F

(i)
η̄ /F

(m)
η̄

is injective for any i ≥ m. We have F
(i)
η̄ /F

(m)
η̄ = 0. So F

(i)
x̄ /F

(m)
x̄ = 0

for any i ≥ m and any x ∈ U . It follows that (F (i)/F (m))|U = 0 for any

i ≥ m, and hence the chain is stationary when restricted to U . �

Corollary 10.1.9. For any λ-adic sheaf F on a noetherian scheme X,

there exist λ-adic sheaves F ′ and F ′′ and a short exact sequence

0 → F ′ → F → F ′′ → 0

in the A-R category such that the following conditions hold:

(a) F ′ = (F ′n) is a torsion sheaf, that is, there exists an integer m ≥ 0

such that F ′n = F ′m for all n ≥ m.

(b) F ′′ = (F ′′n ) is torsion free, that is, the morphism λ : F ′′ → F ′′ is
A-R injective. F ′′n are flat sheaves of R/(λn+1)-modules for all n.
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Proof. Let K (n) be the kernel of λn : F → F . Then K (n) form an

ascending chain of A-R λ-adic subsheaves of F . By 10.1.8, there exists an

integer m ≥ 0 such that

K (m) = K (m+1) = · · · .
Let F ′ and F ′′ be the λ-adic sheaves A-R isomorphic to K (m) and

F/K (m), respectively. Then λm : F ′ → F ′ is 0 in the A-R category. So

there exists an integer r ≥ 0 such that the composite F ′[r] → F ′ λ
m→ F ′ is

0. As F ′n+r → F ′n is onto for all n, λm : F ′ → F ′ is 0, that is, λmF ′n = 0

for all n. It follows that for any n ≥ m, we have

F ′n = F ′n/λ
m+1F ′n ∼= F ′m.

So the condition (a) holds. The kernel of the composite

F
λ→ F → F/K (m)

is K (m+1). So we have an A-R monomorphism

λ : F/K (m+1) → F/K (m).

But K (m) = K (m+1). So λ : F/K (m) → F/K (m) is A-R injective.

Hence λ : F ′′ → F ′′ is A-R injective. For any x ∈ X , the homomorphism

λ : F ′′x̄ → F ′′x̄ is injective. So F ′′x̄ is a finitely generated torsion free R-

module. As R is a discrete valuation ring, this implies that F ′′x̄ is free of

finite rank. Then F ′′n,x̄ = F ′′x̄ /λ
n+1F ′′x̄ are free of finite rank for all n.

Hence F ′′n are flat sheaves of R/(λn+1)-modules. �
In the following (10.1.10–12), we fix a local noetherian ring A and a

proper ideal I of A. Let A0 = A/I. For any A-module M , let M0 =M ⊗A
A0. For all free A-modulesM andN of finite ranks and any homomorphism

φ0 : M0 → N0, there exists a homomorphism φ : M → N such that

φ0 = φ ⊗ idA0 . Moreover, φ identifies M with a direct factor of N if and

only if φ0 identifies M0 with a direct factor of N0. The “only if” part is

clear. To prove the “if” part, let ψ0 : N0 → M0 be a homomorphism such

that ψ0φ0 = id, and let ψ : N →M be any lift of ψ0. Then

det (ψφ) ≡ det (ψ0φ0) ≡ 1 mod I.

It follows that det (ψφ) is a unit, and hence ψφ is invertible. Let δ :M →M

be the inverse of ψφ. Then (δψ)φ = id. So φ identifies M with a direct

factor of N .

Lemma 10.1.10. Let M ·0 be a bounded acyclic complex of free A0-modules

of finite ranks. There exists a bounded acyclic complexM · of free A-modules

of finite ranks such that M · ⊗A A0
∼=M ·0.
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Proof. Without loss of generality, suppose that M ·0 is of the form

0 →M0
0

d00→M1
0 → · · · d

n−1
0→ Mn

0 → 0.

Let Zi0 = kerdi0. We have short exact sequences

0 → Zn−10 → Mn−1
0 → Mn

0 → 0,

0 → Zn−20 → Mn−2
0 → Zn−10 → 0,
...

0 → M0
0 → M1

0 → Z2
0 → 0.

Choose free A-modules of finite rankM i such thatM i⊗AA0
∼=M i

0 for all i.

Lift the homomorphism Mn−1
0 → Mn

0 to a homomorphism Mn−1 → Mn.

By Nakayama’s lemma, the lifting is surjective. Let Zn−1 be its kernel.

The short exact sequence

0 → Zn−1 →Mn−1 →Mn → 0

splits. So Zn−1 is free of finite rank and Zn−1 ⊗A A0
∼= Zn−10 . Lift the

homomorphism Mn−2
0 → Zn−10 to Mn−2 → Zn−1 and let Zn−2 be its

kernel. Then we have a split short exact sequence

0 → Zn−2 →Mn−2 → Zn−1 → 0,

Zn−2 is free of finite rank, and Zn−2 ⊗A A0
∼= Zn−20 . In this way, we get

split short exact sequences

0 → Zn−1 → Mn−1 → Mn → 0,

0 → Zn−2 → Mn−2 → Zn−1 → 0,
...

0 → Z1 → M1 → Z2 → 0.

Finally we take M0 = Z1. Then the complex

0 →M0 →M1 → · · · →Mn → 0

has the required property. �

Lemma 10.1.11. Let φ : M · → N · be a morphism of bounded complexes

of free A-modules of finite ranks, and let φ′0 : M ·0 → N ·0 be a morphism of

complexes homotopic to φ0 : M ·0 → N ·0. Then there exists a morphism of

complexes φ′ :M · → N · such that φ′0 = φ′⊗ idA0 and φ′ is homotopic to φ.
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Proof. Let k0 : M ·0 → N ·0[−1] be a homotopy between φ0 and φ′0, that
is,

dk0 + k0d = φ0 − φ′0.

Let k : M · → N ·[−1] be a lift of k0 and define φ′ = φ − dk − kd. Then

dφ′ = φ′d. So φ′ :M · → N · is a morphism of complex. It has the required

property. �

Lemma 10.1.12. Let M · (resp. N ·0) be a bounded complex of free A-

modules (resp. free A0-modules) of finite ranks and let φ0 : M ·0 → N ·0 be

a quasi-isomorphism. Then there exists a bounded complex N · of free A-
modules of finite ranks and a quasi-isomorphism φ : M · → N · such that

N · ⊗A A0
∼= N ·0 and φ⊗ idA0 = φ0.

Proof. Let C·0 be the mapping cone of id : N ·0 → N ·0. It is a bounded

acyclic complex of free A0-modules of finite rank. By 10.1.10, we can lift it

to a bounded acyclic complex C· of free A-modules of finite rank. Replacing

M · by M ·⊕C·[−1] and replacing φ0 by the morphism M ·0 ⊕C·0[−1] → N ·0
defined by the homomorphisms

Mp
0 ⊕Np

0 ⊕Np−1
0 → Np

0 , (x, y, z) �→ φ0(x) + y,

we may assume φ0 is surjective. Let K ·0 = kerφ0. Then K ·0 is a bounded

acyclic complex of free A0-modules. By 10.1.10, it can be lifted to a

bounded acyclic complexK · of freeA-modules. The complexK0 is split. By

6.4.11,K0 is homotopic to the zero complex. So the inclusion i0 : K ·0 ↪→ M ·0
is homotopic to 0. By 10.1.11, there exists a morphism of complexes

i : K · → M · homotopic to 0 such that i ⊗ idA0 = i0. Since i0 identi-

fies each Kn
0 with a direct factor Mn

0 , i identifies each Kn with a direct

factor Mn. Set N · =M ·/K ·. Then N · has the required property. �

Lemma 10.1.13. Let A be a ring, L· and N · complexes of A-modules, and

π : N · → L· a quasi-isomorphism. Then for any bounded above complex

of projective A-modules M ·, and any morphism of complexes φ : M · →
L·, there exists a morphism of complexes ψ : M · → N · such that πψ is

homotopic to φ.

Proof. Let C· be the mapping cone of id : L· → L·. Then C· is homotopic

to 0. Hence N · is homotopic to N · ⊕ C·[−1]. Let

π′ : N · ⊕ C·[−1] → L·, π′′ : N · ⊕ C·[−1] → N ·, i : N · → N · ⊕ C·[−1]
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be the morphisms of complexes defined by the homomorphisms

Np ⊕ Lp ⊕ Lp−1 → Lp, (x, y, z) �→ π(x) + y,

Np ⊕ Lp ⊕ Lp−1 → Np, (x, y, z) �→ x,

Np → Np ⊕ Lp ⊕ Lp−1, x �→ (x, 0, 0),

respectively. Then we have π′i = π, and iπ′′ is homotopic to idN ·⊕C·[−1].
So ππ′′ = π′iπ′′ is homotopic to π′. Suppose we can find a morphism of

complexes ψ′ :M · → N ·⊕C·[−1] such that π′ψ′ is homotopic to φ. Taking

ψ = π′′ψ′, then πψ is homotopic to φ. Replacing N · by N · ⊕ C·[−1] and

replacing π by π′, we are reduced to the case where π is surjective.

Let us prove that under the assumption that π is surjective, we can find

a morphism of complexes ψ : M · → N · such that πψ = φ. Let K · = kerπ.

It is acyclic. Define ψq :M q → N q to be 0 for those q such that M i = 0 for

all i ≥ q. Suppose we have defined ψq for all q > r. Since M r is projective

and πr : N r → Lr is onto, there exists a homomorphism ψr1 : M r → N r

such that πrψr1 = φr. We have

πr+1(drN ·ψr1 − ψr+1drM ·) = drL·πrψr1 − φr+1drM · = drL·φr − φr+1drM · = 0.

So drN ·ψr1 − ψr+1drM · maps M r to Kr+1. We have

dr+1
N · (drN ·ψr1 − ψr+1drM ·) = dr+1

N · d
r
N ·ψr1 − ψr+2dr+1

M · d
r
M · = 0.

So drN ·ψr1 − ψr+1drM · maps M r to ker (d : Kr+1 → Kr+2). Since K · is
acyclic and M r is projective, there exists a homomorphism ψr2 : M r → Kr

such that

drN ·ψr2 = drN ·ψr1 − ψr+1drM · .

We then define ψr = ψr1 − ψr2 . �

Lemma 10.1.14. Let A be a noetherian local ring.

(i) Let M · be a bounded above complex of A-modules such that Hi(M ·)
are finitely generated A-modules. Then there exists a quasi-isomorphism

s : M ′· → M · such that M ′· is a bounded above complex of free A-modules

of finite ranks.

(ii) Let M · be a bounded complex of flat A-modules such that Hi(M ·)
are finitely generated A-modules and that M i = 0 for i 	∈ [a, b] for some

integers a and b. Then there exists a quasi-isomorphism s : M ′· → M ·

such that M · is a bounded complex of free A-modules of finite ranks, and

M ′i = 0 for i 	∈ [a, b].
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Proof. Since A is a noetherian local ring, a finitely generated A-module

is free if and only if it is flat. Using the same method as the proof of 6.4.5,

one can prove (i), and under the assumption of (ii), one can construct a

quasi-isomorphism F · → M · such that F i are finitely generated flat A-

modules, and F i = 0 for all i > b. Since M · is a bounded above complex

of flat A-modules, by 6.4.4, we have

Hi(F · ⊗A N) ∼= Hi(M · ⊗A N)

for any A-module N . Since M i = 0 for all i < a, we have Hi(F ·⊗AN) = 0

for all i < a. Note that

· · · → F a−1 → F a → 0

is a flat resolution of coker (F a−1 → F a). It follows that

TorAi (coker (F
a−1 → F a), N) ∼= Ha−i(F · ⊗A N) = 0

for all i > 0. So coker (F a−1 → F a) is flat. Let M ′· be the complex

0 → coker (F a−1 → F a) → F a+1 → · · · → F b → 0.

Then the quasi-isomorphism F · →M · induces a quasi-isomorphismM ′· →
M ·, and M ′· is a complex of free A-modules of finite ranks. �

Proposition 10.1.15. Let (K ·n)n∈Z be an inverse system of complexes of

R-modules and let a ≤ b be integers. Suppose the following conditions hold:

(a) K ·n = 0 for n < 0, and Ki
n = 0 for i 	∈ [a, b].

(b) λn+1Ki
n = 0 and Ki

n are flat R/(λn+1)-modules for all n ≥ 0 and i.

(c) Hi(K ·n) are finite.

(d) The morphisms

K ·n+1 ⊗R/(λn+2) R/(λ
n+1) → K ·n

induced by K ·n+1 → K ·n are quasi-isomorphism for all n ≥ 0.

Then we can find a bounded complex K · of free R-modules of finite ranks

and quasi-isomorphisms K ·/λn+1K · → K ·n such that the diagrams

K ·/λn+2K · → K ·n+1

↓ ↓
K ·/λn+1K · → K ·n

commute up to homotopy. The inverse systems (Hi(K ·n))n∈Z are A-R λ-

adic, and Hi(K ·) ∼= lim←−nH
i(K ·n).
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Proof. By 10.1.14, we can find quasi-isomorphisms K ′·n → K ·n (n ≥ 0)

such that K ′·n are complexes of free R/(λn+1)-modules of finite ranks and

K ′in = 0 for i 	∈ [a, b]. Let K ′′·0 = K ′·0 . By 10.1.13, we can find a morphism

K ′·1 ⊗R/(λ2) R/(λ) → K ′′·0

such that the following diagram commutes up to homotopy:

K ′·1 ⊗R/(λ2) R/(λ) → K ·1 ⊗R/(λ2) R/(λ)

↓ ↓
K ′′·0 → K ·0.

Note that K ′·1 ⊗R/(λ2) R/(λ) → K ′′·0 is necessarily a quasi-isomorphism.

By 10.1.12, we can find a bounded complex K ′′·1 of free R/(λ2)-modules of

finite rank and a quasi-isomorphism K ′·1 → K ′′·1 such that

K ′′·1 ⊗R/(λ2) R/(λ) ∼= K ′′·0

and that the morphism K ′·1 ⊗R/(λ2) R/(λ) → K ′′·0 is induced by the mor-

phism K ′·1 → K ′′·1 . By the dual version of 6.2.7 for complexes of projective

objects, the quasi-isomorphism K ′·1 → K ′′·1 is homotopically invertible. Let

K ′′·1 → K ·1 be the composite of a homotopic inverse of K ′·1 → K ′′·1 with the

quasi-isomorphism K ′·1 → K ·1. Then K ′′·1 → K ·1 is a quasi-isomorphism,

and the following diagram commutes up to homotopy:

K ′′·1 → K ·1
↓ ↓
K ′′·0 → K ·0.

Similarly, we can find a quasi-morphism

K ′·2 ⊗R/(λ3) R/(λ
2) → K ′′·1

such that the diagram

K ′·2 ⊗R/(λ3) R/(λ
2) → K ·2 ⊗R/(λ3) R/(λ

2)

↓ ↓
K ′′·1 → K ·1

commutes up to homotopy, and we can find a bounded complex K ′′·2 of free

R/(λ3)-modules of finite ranks and a quasi-isomorphism K ′·2 → K ′′·2 such

that

K ′′·2 ⊗R/(λ3) R/(λ
2) ∼= K ′′·1

and that the morphism K ′·2 ⊗R/(λ3) R/(λ
2) → K ′′·1 is induced by the mor-

phism K ′·2 → K ′′·2 . Let K ′′·2 → K ·2 be the composite of a homotopic inverse
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of K ′·2 → K ′′·2 with the quasi-isomorphism K ′·2 → K ·2. Then K
′′·
2 → K ·2 is a

quasi-isomorphism, and the following diagram commutes up to homotopy:

K ′′·2 → K ·2
↓ ↓
K ′′·1 → K ·1.

In this way, we can construct a family of bounded complexes of free

R/(λn+1)-modules of finite ranks K ′′·n and quasi-isomorphisms K ′′·n → Kn

such that

K ′′·n+1 ⊗R/(λn+2) R/(λ
n+1) ∼= K ′′·n

and the diagrams

K ′′·n+1 → K ·n+1

↓ ↓
K ′′·n → K ·n

commute up to homotopy. Since K ′′i0 = 0 for i 	∈ [a, b], we have K ′′in = 0

for i 	∈ [a, b] by Nakayama’s lemma. Set K · = lim←−nK
′′·
n . Then K · has the

required property. By 10.1.4 (iii), (Hi(K ′′·n ))n∈Z are A-R λ-adic, and by

10.1.3, we have Hi(K ·) ∼= lim←−nH
i(K ′′·n ). It follows that (Hi(K ·n))n∈Z are

A-R λ-adic, and Hi(K ·) ∼= lim←−nH
i(K ·n). �

Proposition 10.1.16. Let X be a noetherian scheme, and let K =

(Kn, un)n≥0 be a family consisting of bounded above complexes of sheaves

of R/(λn+1)-modules Kn on X and isomorphisms

un : Kn+1 ⊗LR/(λn+2) R/(λ
n+1) ∼= Kn

in D−(X,R/(λn+1)). If H i(K0) are constructible sheaves of R/(λ)-

modules and are nonzero for only finitely many i, then Kn ∈
obDb

ctf(X,R/(λ
n+1)) for all n, and the inverse systems (H i(Kn))n∈Z are

A-R λ-adic.

Proof. Represent each Kn by a bounded above complex of sheaves of flat

R/(λn+1)-modules. We have

Kn⊗R/(λn+1)R/(λ) ∼= Kn⊗LR/(λn+1)R/(λ
n)⊗LR/(λn) · · ·⊗LR/(λ2)R/(λ)

∼= K0.

On the other hand, we have

λiKn/λ
i+1Kn

∼= Kn ⊗R/(λn+1) (λ
i)/(λi+1) ∼= Kn ⊗R/(λn+1) R/(λ) ∼= K0.

So each Kn has a finite filtration

0 = λn+1Kn ⊂ λnKn ⊂ · · · ⊂ λKn ⊂ Kn
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such that the successive quotients λiKn/λ
i+1Kn are isomorphic to K0. As

H i(K0) are constructible, so are H i(Kn). Suppose that H i(K0) = 0 for

i 	∈ [a, b]. Then we have H i(Kn) = 0 for i 	∈ [a, b]. The complex

· · · → Ka−1
n → Ka

n → 0

is a resolution of coker (Ka−1
n → Ka

n) by flat sheaves of R/(λn+1)-modules.

So

Tor
R/(λn+1)
i (coker (Ka−1

n → Ka
n), R/(λ))

∼= H a−i(Kn ⊗R/(λn+1) R/(λ))

∼= H a−i(K0).

We have H a−i(K0) = 0 for all i > 0. So

Tor
R/(λn+1)
i (coker (Ka−1

n → Ka
n), R/(λ)) = 0

for all i > 0. By 1.2.8, coker (Ka−1
n → Ka

n) is a flat sheaf of R/(λn+1)-

modules. The complex Kn is quasi-isomorphic to

0 → coker (Ka−1
n → Ka

n) → Ka+1
n → · · · ,

and the latter is a bounded complex of flat sheaves of R/(λn+1)-modules.

SoKn has finite Tor-dimension. It follows thatKn ∈ obDb
ctf(X,R/(λ

n+1)).

To prove that the inverse systems (H i(Kn))n∈Z are A-R λ-adic, we use

noetherian induction, and we may assume that X is irreducible and prove

that there exists a nonempty open subset U of X such that (H i(Kn)|U )n∈Z
are A-R λ-adic. There exists a nonempty open subset U such that

H i(K0)|U are locally constant for all i. This implies that H i(Kn)|U are

locally constant for all i and n. Let x be an arbitrary point in U . To prove

our assertion, it suffices to show that (H i(Kn,x̄))n∈Z are A-R λ-adic.

By 10.1.14, eachKn,x̄ is isomorphic in the derived category to a complex

L·n of free R/(λn+1)-modules of finite ranks with Lvn = 0 for v 	∈ [a, b]. The

isomorphism

Kn+1 ⊗LR/(λn+2) R/(λ
n+1) ∼= Kn

induces an isomorphism

L·n+1 ⊗R/(λn+2) R/(λ
n+1) ∼= L·n

in the derived category. By 10.1.13, the latter isomorphism is induced by

a quasi-isomorphism L·n+1 ⊗R/(λn+2) R/(λ
n+1) ∼= L·n of complexes. Ap-

plying 10.1.15 to the inverse system of complexes (L·n)n∈Z, we see that

(H i(L·n))n∈Z are A-R λ-adic. So (H i(Kn,x̄))n∈Z are A-R λ-adic. �
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Let X be a noetherian scheme. Define a category Db
c(X,R) as follows:

Objects in Db
c(X,R) are families K = (Kn, un)n≥0 consisting of objects Kn

in D−(X,R/(λn+1)) and isomorphisms

un : Kn+1 ⊗LR/(λn+2) R/(λ
n+1) ∼= Kn

in D−(X,R/(λn+1)) such that K0 ∈ obDb
c(X,R/(λ)). Let K =

(Kn, un)n≥0 and K ′ = (K ′n, u′n)n≥0 be two objects in Db
c(X,R). A mor-

phism f : K → K ′ inDb
c(X,R) is a family (fn) of morphisms fn : Kn → K ′n

in D(X,R/(λn+1)) such that

fnun = u′n(fn+1 ⊗LR/(λn+2) idR/(λn+1)).

If F = (Fn) is a torsion free λ-adic sheaf, then F defines an object in

Db
c(X,R).

Proposition 10.1.17.

(i) Let f : X → Y be a morphism between noetherian schemes. For any

K = (Kn) ∈ obDb
c(Y,R), we have f∗K = (f∗Kn) ∈ obDb

c(X,R).

(ii) Let f : X → Y be an S-compactifiable morphism between noetherian

schemes. For any K = (Kn) ∈ obDb
c(X,R), we have Rf!K = (Rf!Kn) ∈

obDb
c(Y,R).

(iii) Let S be a noetherian regular scheme of dimension ≤ 1, X and Y

two S-schemes of finite type, f : X → Y an S-compactifiable morphism,

K = (Kn) and L = (Ln) objects in Db
c(X,R), and M = (Mn) an object in

Db
c(Y,R). Define

Rf∗K = (Rf∗Kn),

f∗M = (f∗Mn),

Rf!K = (Rf!Kn),

Rf !M = (Rf !Mn),

K ⊗LR L = (Kn ⊗LR/(λn+1) Ln),

RH om(K,L) = (RH om(Kn, Ln)).

Then Rf∗K and Rf!K are objects in Db
c(Y,R), while f

∗M , Rf !M , K⊗LRL
and RH om(K,L) are objects in Db

c(X,R).

(iv) Let S be a trait, X an S-scheme of finite type, η the generic point

of S, s the closed point of S, K = (Kn) ∈ obDb
c(Xη, R), and L = (Ln) ∈

obDb
c(X,R). Define

RΨη(K) = (RΨη(Kn)), RΦ(L) = (RΦ(Ln)).

Then RΨη(K) and RΦ(L) are objects in Db
c(Xs̄, R).
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(v) Let S be a noetherian regular scheme of dimension ≤ 1 and let f :

X → S be an S-scheme of finite type. For any K = (Kn) ∈ obDb
c(X,R),

define

DK =

(
RH om

(
Kn, Rf

!(R/(λn+1))
))
.

Then the canonical morphism K → DDK is an isomorphism.

Proof. We prove (iii) and leave the rest to the reader. By 10.1.16, we

have Kn ∈ obDb
ctf(X,R/(λ

n+1)). By 7.4.7 (ii) and 7.8.1, we have Rf!Kn ∈
obDb

ctf(Y,R/(λ
n+1)). By 7.4.7 (iii), we have

Rf!Kn+1 ⊗LR/(λn+2) R/(λ
n+1) ∼= Rf!(Kn+1 ⊗LR/(λn+2) R/(λ

n+1)) ∼= Rf!Kn.

So Rf!K ∈ obDb
c(Y,R). Similarly, using 6.5.7 and 9.5.2, one can show

Rf∗K ∈ obDb
c(Y,R). One can easily show that f∗M and K ⊗LR L are

objects in Db
c(X,R). By 9.5.2, we have Rf !Mn ∈ obDb

ctf(X,R/(λ
n+1)).

To prove Rf !M ∈ obDb
c(X,R), it suffices to show

Rf !Mn+1 ⊗LR/(λn+2) R/(λ
n+1) ∼= Rf !(Mn+1 ⊗LR/(λn+2) R/(λ

n+1)).

Let A be a noetherian ring and let B be a noetherian A-algebra. Let us

prove more generally that for any M ∈ obDb
ctf(Y,A), we have an isomor-

phism

Rf !M ⊗LA B ∼= Rf !(M ⊗LA B)

in D(X,B). First we construct a morphism

Rf !M ⊗LA B → Rf !(M ⊗LA B)

in D(X,B). Let ρ : D(X,B) → D(X,A) and ρ : D(Y,B) → D(Y,A) be

the functors in 8.4.12. It suffices to construct a morphism

Rf !M → ρRf !(M ⊗LA B)

in D(X,A). By 8.4.13, we have a canonical isomorphism

ρRf !(M ⊗LA B) ∼= Rf !ρ(M ⊗LA B).

So we need to construct a morphism

Rf !M → Rf !ρ(M ⊗LA B).

We define it to be the morphism induced by the canonical morphism

M → ρ(M ⊗LA B).

To prove that the morphismRf !M⊗LAB → Rf !(M⊗LAB) is an isomorphism

is a local problem. So we may assume that f is a composite

X
i→ AdY

π→ Y,
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so that i is a closed immersion and π is the projection. We have

Rf !M ⊗LA B ∼= Ri!π∗M(d)[2d]⊗LA B,
Rf !(M ⊗LA B) ∼= Ri!π∗(M ⊗LA B)(d)[2d] ∼= Ri!(π∗M(d)[2d]⊗LA B).

To prove our assertion, it suffices to show that

Ri!M ⊗LA B ∼= Ri!(M ⊗LA B)

for any M ∈ obDb
ctf(A

d
Y , A). Let j : A

n
Y − i(X) → AnY be the open immer-

sion. We have a morphism of distinguished triangles

i∗Ri!M ⊗LA B → M ⊗LA B → Rj∗j∗M ⊗LA B →
↓ ↓ ↓

i∗Ri!(M ⊗LA B) → M ⊗LA B → Rj∗j∗(M ⊗LA B) → .

The second and the third vertical arrows are isomorphisms. So the first

arrow is also an isomorphism. Our assertion follows.

By 9.5.3 (ii), we have RH om(Kn, Ln) ∈ obDb
ctf(X,R/(λ

n+1)). To

prove RH om(K,L) ∈ obDb
c(X,R), we need to show

RH om(Kn+1, Ln+1)⊗LR/(λn+2) R/(λ
n+1)

∼= RH om(Kn+1 ⊗LR/(λn+2) R/(λ
n+1), Ln+1 ⊗LR/(λn+2) R/(λ

n+1)).

Let A be a noetherian ring and let B be a noetherian A-algebra. Let

us prove more generally that for any K,L ∈ obDb
ctf(X,A), we have an

isomorphism

RH om(K,L)⊗LA B ∼= RH om(K ⊗LA B,L⊗LA B).

We have a canonical morphism

RH om(K,L)⊗LA K Ev→ L.

It induces a morphism

(RH om(K,L)⊗LA B)⊗LB (K ⊗LA B)
Ev→ L⊗LA B.

By 6.4.7, this gives rise to a morphism

RH om(K,L)⊗LA B → RH om(K ⊗LA B,L⊗LA B).

To prove that it is an isomorphism, we may assume K = j!F such that

j : Y → X is an immersion, and F is a locally constant constructible sheaf

of A-modules on Y . This is because K can be represented by a bounded

complex of constructible sheaves of A-modules, and any constructible sheaf
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of A-modules has a finite filtration such that the successive quotients are

of the form j!F . We have

RH om(j!F , L)⊗LA B ∼= Rj∗RH om(F , Rj!L)⊗LA B
∼= Rj∗(RH om(F , Rj!L)⊗LA B).

RH om(j!F ⊗LA B,L⊗LA B) ∼= RH om(j!(F ⊗LA B), L⊗LA B)

∼= Rj∗RH om(F ⊗LA B,Rj!L⊗LA B).

To prove our assertion, it suffices to show that the canonical morphism

RH om(F ,M)⊗LA B → RH om(F ⊗LA B,M ⊗LA B)

is an isomorphism for any M ∈ obDb
tf(Y,A). The problem is local with

respect to the etale topology. We may assume that F is a constant sheaf.

When F is the constant sheaf associated to A, the above morphism is

clearly an isomorphism. It follows that it is an isomorphism if F is a

constant sheaf associated to a free A-module of finite rank. In general, F

has a resolution by constant sheaves associated to free A-modules of finite

rank. So the above morphism is an isomorphism. �

Proposition 10.1.18.

(i) Let f : X → Y be a morphism between noetherian schemes. For any

λ-adic sheaf F = (Fn) on Y , f∗F = (f∗Fn) is a λ-adic sheaf on X.

(ii) Let f : X → Y be an S-compactifiable morphism between noetherian

schemes. For any λ-adic sheaf F = (Fn) on X, Rif!F = (Rif!Fn) are

A-R λ-adic sheaves on Y for all i.

(iii) Let S be a noetherian regular scheme of dimension ≤ 1, X and Y

two S-schemes of finite type, f : X → Y an S-compactifiable morphism,

F = (Fn) and G = (Gn) λ-adic sheaves on X, and H = (Hn) a λ-adic

sheaf on Y . Define

Rif∗F = (Rif∗Fn),

Rif!F = (Rif!Fn),

f∗H = (f∗Hn),

Rif !H = (Rif !Hn),

TorRi (F ,G ) = (Tor
R/(λn+1)
i (Fn,Gn)),

E xtiR(F ,G ) = (E xtiR/(λn+1)(Fn,Gn)).

Then Rif∗F and Rif!F are A-R λ-adic sheaves on Y , and f∗H , Rif !H ,

TorRi (F ,G ) and E xtiR(F ,G ) are A-R λ-adic sheaves on X.

 E
ta

le
 C

oh
om

ol
og

y 
T

he
or

y 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 C

H
IN

E
SE

 U
N

IV
E

R
SI

T
Y

 O
F 

H
O

N
G

 K
O

N
G

 o
n 

10
/2

0/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



February 6, 2015 9:48 ws-book9x6 Etale Cohomology Theory... etale page 553

�-adic Cohomology 553

(iv) Let S be a trait, X an S-scheme of finite type, η the generic point of

S, s the closed point of S, F = (Fn) a λ-adic sheaf on Xη, and G = (Gn)

a λ-adic sheaf on X. Define

RiΨη(F ) = (RiΨη(Fn)), RiΦ(G ) = (RiΦ(Gn)).

Then RiΨη(F ) and RiΦ(G ) are A-R λ-adic sheaves on Xs̄.

Proof. We prove (ii) and leave the rest to the reader. By 10.1.9, there

exists an A-R exact sequence

0 → F ′
φ→ F

ψ→ F ′′ → 0

such that F ′ is a torsion λ-adic sheaf, and F ′′ is a torsion free λ-adic sheaf.

We have short exact sequences

0 → kerφn → F ′n → imφn → 0,

0 → imφn → kerψn → kerψn/imφn → 0,

0 → kerψn → Fn → imψn → 0,

0 → imψn → F ′′n → F ′′n /imψn → 0.

Moreover, (kerφn), (kerψn/imφn), and (F ′′n /imψn) are null systems.

Hence (Rif!kerφn), (R
if!(kerψn/imφn)), and (Rif!(F ′′n /imψn)) are null

systems. In particular, they are A-R λ-adic. Since F ′ is a torsion λ-adic

sheaf, (Rif!F ′n) are also A-R λ-adic. By 10.1.7 (iii) and the long exact

sequences for R·f!, we see that to prove that (Rif!Fn) are A-R λ-adic, it

suffices to prove that (Rif!F ′′n ) are A-R λ-adic. But (F ′′n ) ∈ obDb
c(X,R).

By 10.1.17, we have (Rf!F ′′n ) ∈ obDb
c(Y,R). By 10.1.16, (Rif!F ′′n ) are

A-R λ-adic. �

Suppose X is a compactifiable k-scheme for some separably closed field

k, and let K ∈ obDb
c(X,R). Then (Hi(X,Kn)) and (Hi

c(X,Kn)) are A-R

λ-adic. We define

Hi(X,K) = lim←−
n

Hi(X,Kn), Hi
c(X,K) = lim←−

n

Hi
c(X,Kn).

If F = (Fn) is a λ-adic sheaf, then (Hi(X,Fn)) and (Hi
c(X,Fn)) are A-R

λ-adic. We define

Hi(X,F ) = lim←−
n

Hi(X,Fn), Hi
c(X,F ) = lim←−

n

Hi
c(X,Fn).

Let (Dn, Tn+1)n≥0 be a family such that Dn are triangulated categories,

and Tn+1 : Dn+1 → Dn are exact functors. Define the inverse limit D

of (Dn, Tn)n≥0 as follows: Objects in D are families (Kn, un)n≥0, where
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Kn ∈ obDn, and un are isomorphisms Tn(Kn)
∼=→ Kn−1 in Dn−1. Given ob-

jects K = (Kn, un) and L = (Ln, vn) in D , a morphism f = (fn) : K → L

consists of morphisms fn : Kn → Ln in Dn such that the diagrams

Tn(Kn)
Tn(fn)→ T (Ln)

un ↓ ↓ vn
Kn−1

fn−1→ Ln−1

commute for all n. A distinguished triangle in D is a sextuple

((Kn, un), (Ln, vn), (Mn, wn), (φn), (ψn), (δn))

such that

(Kn, un), (Ln, vn), (Mn, wn)

are objects in D ,

(φn) : (Kn) → (Ln), (ψn) : (Ln) → (Mn), (δn) : (Mn) → (Kn[1])

are morphisms in D , and

(Kn, Ln,Mn, φn, ψn, δn)

are distinguished triangles in Dn for all n.

Lemma 10.1.19. Notation as above. If for any n ≥ 0 and any K,L ∈ Dn,

Hom(K,L) is finite, then D is a triangulated category.

Proof. Let K = (Kn) and L = (Ln) be objects in D , and let φ = (φn) :

K → L be a morphism in D . For each n, by (TR1) for Dn, we have a

distinguished triangle

Kn
φn→ Ln →Mn →

in Dn, and by (TR3) for Dn−1, we have an isomorphism of distinguished

triangles

Tn(Kn)
T (φn)→ Tn(Ln) → Tn(Mn) →

∼= ↓ ∼= ↓ ∼= ↓
Kn−1

φn−1→ Ln−1 → Mn−1 →
in Dn−1. Then

(Kn)
φ→ (Ln) → (Mn) →
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is a distinguished triangle in D . This proves (TR1) for D . One can easily

verify (TR2) for D . Given a commutative diagram

(Kn) → (Ln) → (Mn) →
(fn) ↓ (gn) ↓
(K ′n) → (L′n) → (M ′n) →

in D , where the horizontal lines are distinguished triangles in D , let Sn
(n ≥ 0) be the sets of morphisms hn :Mn →M ′n such that (fn, gn, hn) are

morphisms of triangles in Dn:

Kn → Ln → Mn →
fn ↓ gn ↓ hn ↓
K ′n → L′n → M ′n → .

For each hn ∈ Sn, let πn(hn) be the element in Sn−1 so that the following

diagram commutes:

Tn(Mn)
Tn(hn)→ T (M ′n)

∼= ↓ ↓ ∼=
Mn−1

πn(hn)→ M ′n−1.

By our assumption and (TR3) for Dn, Sn are nonempty finite sets. So

lim←−n(Sn, πn) is nonempty. Let (hn) be an element in lim←−n(Sn, πn). Then

((fn), (gn), (hn)) is a morphism of triangles. This proves (TR3) for D .

Similarly, one can verify (TR4) for D . �

Lemma 10.1.20. Let X be a scheme of finite type over a field k. Sup-

pose that k is either separably closed or finite. Then for any K,L ∈
obDb

ctf(X,R/(λ
n+1)), Hom(K,L) is finite.

Proof. Let f : X → Spec k be the structure morphism. We have

Hom(K,L) ∼= R0Γ(Spec k,Rf∗RH om(K,L)).

By 9.5.2 and 9.5.3, we have Rf∗RH om(K,L) ∈ obDb
ctf(Spec k,R/(λ

n+1)).

When k is separably closed, we have

R0Γ(Spec k,Rf∗RH om(K,L)) ∼= Γ(Spec k,R0f∗RH om(K,L))

which is finite. When k is a finite field, we have Gal(k̄/k) ∼= Ẑ. By 4.3.7,

R0Γ(Spec k,Rf∗RH om(K,L)) ∼= H0(Gal(k̄/k), Rf∗RH om(K,L))

is finite. �

Corollary 10.1.21. Let X be a scheme of finite type over a field k which is

either separably closed or finite. Then Db
c(X,R) is a triangulated category.
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Let k be a separably closed field or a finite field, X and Y two k-schemes

of finite type, and f : X → Y a k-compactifiable morphism. Then

Rf∗, Rf! : Db
c(X,R) → Db

c(Y,R),

f∗, Rf ! : Db
c(Y,R) → Db

c(X,R),

−⊗LR −, RH om(−,−) : Db
c(X,R)×Db

c(X,R) → Db
c(X,R)

are exact functors. Given a distinguished triangle

(Kn) → (Ln) → (Mn) →
in Db

c(Y,R), we have a long A-R exact sequence

· · · → (H i(Kn)) → (H i(Ln)) → (H i(Mn)) → · · ·
of A-R λ-adic sheaves. Using these facts, one easily gets the long exact se-

quences for R·f∗ and R·f! associated to distinguished triangles in Db
c(X,R).

LetX be a noetherian scheme. Recall that E is the fraction field ofR. In

the category A-R λ-adic sheaves onX , morphisms defined by multiplication

by λm (m ≥ 0) form a multiplicative system. By 6.2.1, we can construct a

category so that its objects are A-R λ-adic sheaves, and for any two objects

F and G , morphisms from F to G are diagrams of the form

F

λm ↓ f ↘
F G

such that m ≥ 0 and f : F → G are morphisms of A-R λ-adic sheaves.

We call this category the category of E-sheaves. Objects in this category

are called E-sheaves. Denote the space of morphisms from F to G in this

category by HomE(F ,G ). Then we have

HomAR(F ,G )⊗R E ∼= HomE(F ,G ).

Indeed, assign

f ⊗ 1

λm
∈ HomAR(F ,G )⊗R E

to the morphism in HomE(F ,G ) defined by the above diagram. This as-

signment is well-defined and surjective. If f1⊗ 1
λm1

and f2⊗ 1
λm2

are mapped

to the same morphism in HomE(F ,G ), where f1, f2 ∈ HomAR(F ,G ) and

m1,m2 ≥ 0, then there exist f3 ∈ HomAR(F ,G ), m3 ≥ 0 and A-R mor-

phisms φ1, φ2 : F → F such that

λm1φ1 = λm2φ2 = λm3 ,

f1φ1 = f2φ2 = f3.
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We have

φ1λ
m1 = φ2λ

m2 = λm3 .

So we have

f1 ⊗ 1

λm1
= f1λ

m3 ⊗ 1

λm1+m3

= f1φ1λ
m1 ⊗ 1

λm1+m3

= f3λ
m1 ⊗ 1

λm1+m3

= f3 ⊗ 1

λm3
.

Similarly, we have

f2 ⊗ 1

λm2
= f3 ⊗ 1

λm3
.

So we have

f1 ⊗ 1

λm1
= f2 ⊗ 1

λm2
.

Hence the above assignment is injective.

The category of E-sheaves is abelian. In this category, multiplications

by λm (m ≥ 0) are isomorphisms. Since on a torsion sheaf, multiplication

by some λm is 0, any torsion sheaf becomes a zero object in this category.

Conversely, if an A-R λ-adic sheaf F is a zero object in the category of

E-sheaves, then idF = 0 in this category. This means that multiplication

on F by some λm is 0. So F is a torsion sheaf. By 10.1.9, any E-sheaf

is isomorphic to a torsion free λ-adic sheaf in the category of E-sheaves.

An E-sheaf is called lisse if it is isomorphic to a lisse λ-adic sheaf in the

category of E-sheaves.

If k is a separably closed field, then the A-R category of λ-adic sheaves

on Spec k is equivalent to the category of finitely generated R-modules. For

any finitely generated R-modules M and N , we have

HomR(M,N)⊗R E ∼= HomE(M ⊗R E,N ⊗R E).

It follows that the functor M �→ M ⊗R E defines an equivalence between

the category of E-sheaves on Spec k and the category of finite dimensional

E-vector spaces.

Let X be a noetherian scheme, F an E-sheaf on X , and s → X a

geometric point on X . Choose a λ-adic sheaf F ′ representing F . We

define the stalk of F at s to be Fs = F ′s ⊗R E. A sequence

F → G → H
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in the category of E-sheaves is exact if and only if

Fx̄ → Gx̄ → Hx̄

is exact for any x ∈ X .

Let F = (Fn) be a λ-adic sheaf on X . Consider the functor from the

category of λ-adic sheaves to the category of E-sheaves that maps each λ-

adic sheaf G = (Gn) to F ⊗G = (Fn⊗R/(λn+1)Gn) regarded as an E-sheaf.

This functor transforms multiplications by λm on G to isomorphisms in the

category of E-sheaves. So it induces a functor on the category of E-sheaves.

Applying the same argument to the first variable, we get the tensor product

functor on the category of E-sheaves which maps E-sheaves represented by

λ-adic sheaves F = (Fn) and G = (Gn) to the E-sheaf represented by the

λ-adic sheaf F ⊗ G = (Fn ⊗R/(λn+1) Gn).

Let F = (Fn) be a λ-adic sheaf such that Fn are locally free sheaves of

R/(λn+1)-modules of finite rank. Consider the functor from the category

of λ-adic sheaves to the category of E-sheaves that maps each λ-adic sheaf

G = (Gn) to H om(F ,G ) = (H om(Fn,Gn)) regarded as an E-sheaf.

This functor transforms multiplications by λm on G to isomorphisms in

the category of E-sheaves. So it induces a functor on the category of E-

sheaves. If F ′ = (F ′n) is another λ-adic sheaf such that F ′n are locally

free sheaves of R/(λn+1)-modules of finite ranks, and if F ′ → F is an

isomorphism in the category of E-sheaves, then we have an isomorphism

H om(F ,G ) → H om(F ′,G )

in the category of E-sheaves.

On the category Db
c(X,R), morphisms defined by multiplications by

λm (m ≥ 0) form a multiplicative system. By 6.2.1, we can construct a

category Db
c(X,E) so that its objects are objects in Db

c(X,R), and for any

two objects K and L, morphisms from K to L are diagrams of the form

K

λm ↓ f ↘
K L

such that m ≥ 0 and f : K → L are morphisms in Db
c(X,R). For any

K,L ∈ obDb
c(X,E), we have

HomDbc(X,R)(K,L)⊗R E ∼= HomDbc(X,E)(K,L).

Let S be a noetherian regular scheme of dimension ≤ 1, X and Y two

S-schemes of finite type, and f : X → Y an S-compactifiable morphism.
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Then we have functors

Rf∗, Rf! : Db
c(X,E) → Db

c(Y,E),

f∗, Rf ! : Db
c(Y,E) → Db

c(X,E),

−⊗LE −, RH om(−,−) : Db
c(X,E)×Db

c(X,E) → Db
c(X,E).

If S = Spec k for a separably closed field or a finite field k, then Db
c(X,E)

and Db
c(Y,E) are triangulated categories, and the above functors are exact.

If X is a scheme of finite type over a trait S with generic point η and closed

point s, then we have functors

RΨη : Db
c(Xη, E) → Db

c(Xs̄, E), RΦ : Db
c(X,E) → Db

c(Xs̄, E).

Let E′ be a finite extension of E, let R′ be the integral closure of R in

E′, and let λ′ be a uniformizer of R′. For any λ-adic sheaf F = (Fn) on a

noetherian scheme X , define an inverse system F ⊗RR′ = (F ′n) as follows:
Let e be the ramification index of R′ over R. For any pair n, i ≥ 0 such

that

ie < n+ 1 ≤ (i+ 1)e,

we have

λ′n+1R′ ∩R = λi+1R.

We define

F ′n = Fi ⊗R/(λi+1) R
′/(λ′n+1).

Then F ⊗R R′ is a λ′-adic sheaf. We thus get a functor

F �→ F ⊗R R′

from the category of λ-adic sheaves to the category of λ′-adic sheaves. This
functor transforms multiplications by λm (m ≥ 0) to composites of mul-

tiplications by λ′me with isomorphisms in the category of λ′-adic sheaves.

So it induces a functor

F �→ F ⊗E E′

from the category of E-sheaves to the category of E′-sheaves.
Let K = (Kn) be an object in Db

c(X,R). Define K ⊗LR R′ = (K ′n) by

K ′n = Ki ⊗LR/(λi+1) R
′/(λ′n+1)

for any pair n, i ≥ 0 such that

ie < n+ 1 ≤ (i+ 1)e.
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Then K ⊗LR R′ is an object in Db
c(X,R

′). We thus get a functor

Db
c(X,R) → Db

c(X,R
′), K �→ K ⊗LR R′.

It induces a functor

Db
c(X,E) → Db

c(X,E
′), K �→ K ⊗LE E′.

Fix an algebraic closure of Q� of Q�. The direct limit of the categories

of E-sheaves on a noetherian scheme X as E goes over the family of finite

extensions of Q� in Q� is called the category of Q�-sheaves. Objects in this

category are called Q�-sheaves. Each Q�-sheaf is represented by an E-sheaf

for some finite extension E of Q� in Q�. Given two Q�-sheaves represented

by an E1-sheaf F1 and an E2-sheaf F2, the space of morphisms from F1

to F2 in the category of Q�-sheaves is

Hom
Q�
(F1,F2) = lim−→

E

Hom(F1 ⊗E1 E,F2 ⊗E2 E),

where the direct limit is taken over those finite extensions E of Q� in Q�
containing both E1 and E2. A Q�-sheaf is called lisse if it is represented by

a lisse E-sheaf for some finite extension E of Q� in Q�. Let F be a Q�-sheaf

on X and let s be a geometric point. Choose an E-sheaf F ′ representing
F . We define the stalk of F at s to be Fs = F ′s ⊗E Q�.

The direct limit of the categories Db
c(X,E) as E goes over the family

of finite extensions of Q� in Q� is denoted by Db
c(X,Q�). Each object

in this category is represented by an object in Db
c(X,E) for some finite

extension E of Q� in Q�. Given two objects in this category, represented

by K1 ∈ obDb
c(X,E1) and K2 ∈ obDb

c(X,E2), we have

HomDbc(X,Q�)
(K1,K2) = lim−→

E

Hom(K1 ⊗LE1
E,K2 ⊗LE2

E),

where the direct limit is taken over those finite extensions E of Q� in Q�
containing both E1 and E2. Let S be a noetherian regular scheme of

dimension ≤ 1, X and Y two S-schemes of finite type, and f : X → Y

an S-compactifiable morphism. Then we have functors

Rf∗, Rf! : Db
c(X,Q�) → Db

c(Y,Q�),

f∗, Rf ! : Db
c(Y,Q�) → Db

c(X,Q�),

−⊗L
Q�

−, RH om(−,−) : Db
c(X,Q�)×Db

c(X,Q�) → Db
c(X,Q�).

If S = Spec k for a separably closed field or a finite field k, then Db
c(X,Q�)

andDb
c(Y,Q�) are triangulated categories, and the above functors are exact.
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If X is a scheme of finite type over a trait S with generic point η and closed

point s, then we have functors

RΨη : Db
c(Xη,Q�) → Db

c(Xs̄,Q�), RΦ : Db
c(X,Q�) → Db

c(Xs̄,Q�).

Let M be a finitely generated R-module provided with the λ-adic

topology. Any R-endomorphism φ : M → M is continuous. We have

M ∼= lim←−nM/λn+1M . So we have

AutR(M) ∼= lim←−
n

AutR/(λn+1)(M/λn+1M).

Put the discrete topology on AutR/(λn+1)(M/λn+1M), and put the inverse

limit topology on AutR(M). In the case where M = Rk, there is an-

other way to define a topology on AutR(R
k). Representing each element in

AutR(R
k) by the matrix with respect to the standard basis of Rk, we can

embed AutR(R
k) into Rk

2

. Put on AutR(R
k) the topology induced from

the product topology on Rk
2

. These two topologies on AutR(R
k) are the

same since the family

{A|A ∈ AutR(R
k), A ≡ I mod λn+1} (n ∈ N)

are base of neighborhoods at the identity for both topologies.

Lemma 10.1.22.

(i) Let M be a finitely generated R-module and let G be a topological

group acting linearly on M . Then the homomorphism G → AutR(M) is

continuous if and only if the action G×M →M is continuous.

(ii) Let G be a topological group acting linearly on Ek. Then the homo-

morphism G→ GL(Ek) is continuous if and only if the action G×Ek → Ek

is continuous.

Proof.

(i) The canonical maps

AutR/(λn+1)(M/λn+1M)×M/λn+1M →M/λn+1M

are continuous with respect to the discrete topology for all n. It follows

that

lim←−
n

AutR/(λn+1)(M/λn+1M)× lim←−
n

M/λn+1M → lim←−
n

M/λn+1M

is continuous, that is, AutR(M)×M →M is continuous. If G→ AutR(M)

is continuous, then the action G×M →M is continuous.
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We have commutative diagrams

G×M → M

↓ ↓
G×M/λn+1M → M/λn+1M.

The vertical arrows are surjective open maps. If G×M → M is continuous,

then G ×M/λn+1M → M/λn+1M are continuous. Since M/λn+1M are

finite and discrete, the homomorphisms G → AutR/(λn+1)(M/λn+1M) are

continuous. So G→ AutR(M) is continuous.

(ii) The canonical map GL(Ek) × Ek → Ek is continuous. If G →
GL(Ek) is continuous, then G× Ek → Ek is continuous.

Let {e1, . . . , en} be the standard basis of Ek, let g ∈ G, let (aij) ∈
GL(Ek) be the matrix of g with respect to the standard basis, and let Uij
be a neighborhood of aij in E for each pair (i, j). If G × Ek → Ek is

continuous. then the set

Gi = {h ∈ G|hei ∈ U1i × · · · × Uki}
is open in G and contains g. The map G → GL(Ek) maps the open

neighborhood G1 ∩ · · · ∩ Gk of g in G to the set GL(Ek) ∩∏(i,j) Uij . So

G→ GL(Ek) is continuous. �

Proposition 10.1.23. Let X be a connected noetherian scheme and let x

be a point in X. The functor F �→ Fx̄ defines an equivalence between

the category of lisse λ-adic sheaves (resp. lisse E-sheaves) on X and the

category of finitely generated R-modules (resp. finite dimensional E-vector

spaces) with continuous π1(X, x̄)-actions.

Proof. Let F = (Fn) be a lisse λ-adic sheaf. Each Fn gives rise to a

continuous homomorphism

π1(X, x̄) → AutR/(λn+1)(Fn,x̄).

We have Fn,x̄
∼= Fx̄/λ

n+1Fx̄. So we have a continuous homomorphism

π1(X, x̄) → lim←−
n

AutR/(λn+1)(Fx̄/λ
n+1Fx̄) ∼= AutR(Fx̄).

Conversely, if M is a finitely generated R-module and

π1(X, x̄) → AutR(M) ∼= lim←−
n

AutR/(λn+1)(M/λn+1M)

is a continuous homomorphism, then the continuous representations

π1(X, x̄) → AutR/(λn+1)(M/λn+1M)
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define locally constant constructible sheaves of R/(λn+1)-modules Fn on

X , and F = (Fn) is a λ-adic sheaf with Fx̄
∼= M . This proves that

the category of lisse λ-adic sheaves is equivalent to the category of finitely

generated R-modules with continuous π1(X, x̄)-actions.

LetRepR (resp. RepE) be the category of finitely generatedR-modules

(resp. finite dimensionalE-vector spaces) with continuous π1(X, x̄)-actions,

and let S be the multiplicative system inRepR consisting of multiplications

by λm (m ≥ 0) on objects in RepR. Then the category S−1RepR is

equivalent to the category of lisse E-sheaves on X . Note that if M is a

finitely generated R-module with a continuous π1(X, x̄)-action, then M ⊗R
E is a finite dimensional E-vector space with a continuous π1(X, x̄)-action.

Indeed, let

Mt = {z ∈M |λnz = 0 for some n ≥ 0}
be the torsion submodule of M . Then Mt is stable under the action of

π1(X, x̄). On the other hand, the canonical homomorphism

AutR(M) → AutR(M/Mt)

is continuous. It follows that M/Mt is a free R-module of finite rank with

a continuous π1(X, x̄)-action. We have

M ⊗R E ∼=M/Mt ⊗R E.
Choose a basis for M/Mt. It induces a basis for M ⊗R E. Let k

be the rank of M/Mt. The composite of the canonical homomorphism

GL(Rk) → GL(Ek) and the homomorphism π1(X, x̄) → GL(Rk) which is

defined by the action of π1(X, x̄) onM/Mt using the chosen basis ofM/Mt,

coincides with the homomorphism π1(X, x̄) → GL(Ek) defined by the ac-

tion of π1(X, x̄) on M ⊗R E using the corresponding basis on M ⊗R E.

It follows that π1(X, x̄) → GL(Ek) is continuous and hence the action of

π1(X, x̄) on M ⊗R E is continuous. We thus get a functor

RepR → RepE , M �→ M ⊗R E.
It transforms multiplications by λm (m ≥ 0) to isomorphisms in RepE . So

it induces a functor S−1RepR → RepE . To prove that the category of

lisse E-sheaves is equivalent to the category of finite dimensional E-vector

spaces with continuous π1(X, x̄)-actions, it suffices to show that the functor

S−1RepR → RepE is an equivalence of categories.

Note that any finitely generated R-module M with a continuous

π1(X, x̄)-action is isomorphic to M/Mt in S−1RepR. Indeed, there ex-

ists an integer m ≥ 0 such that λmMt = 0. The canonical projection
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M →M/Mt and the homomorphismM/Mt → M induced by λm :M →M

define an isomorphismM ∼=M/Mt in S
−1RepR. So to prove that the func-

tor S−1RepR → RepE is fully faithful, it suffices to show that for any free

R-modules M and N of finite ranks with continuous π1(X, x̄)-actions, we

have

HomRepR(M,N)⊗R E ∼= HomRepE (M ⊗R E,N ⊗R E).

Note that the canonical homomorphisms M →M ⊗RE and N → N ⊗RE
are injective. Regard M and N as subspaces of M ⊗R E and N ⊗R E

respectively through these monomorphisms. For any morphism

φ :M ⊗R E → N ⊗R E
in RepE , there exists an integer m ≥ 0 such that λmφ(M) ⊂ N . Then

φ is the image of λmφ ⊗ 1
λm ∈ HomRepR(M,N) ⊗R E. If a morphism

ψ : M → N in HomRepR(M,N) has the property ψ⊗ idE = 0, then ψ = 0.

This proves that the functor is fully faithful.

Let V be a finite dimensional E-vector space with a continuous π1(X, x̄)-

action. Fix a basis {e1, . . . , ek} of V and let L = Re1 + · · · + Rek. If

we identify GL(V ) with GL(Ek) through this basis, then the subgroup

{g ∈ GL(V )|gL = L} of GL(V ) is identified with GL(Rk) and hence is an

open subgroup. So the subgroup H = {g ∈ π1(X, x̄)|gL = L} is open in

π1(X, x̄), and hence the set π1(X, x̄)/H is finite. Let g1, . . . , gm ∈ π1(X, x̄)

so that

π1(X, x̄)/H = {g1H, . . . , gmH},
and letM = g1L+ · · ·+gmL. For any g ∈ π1(X, x̄) and any i ∈ {1, . . . ,m},
there exist j ∈ {1, . . . ,m} and h ∈ H such that ggi = gjh. We then have

ggiL = gjL. Hence M is stable under the action of π1(X, x̄). It is a free R-

module of finite rank with a continuous π1(X, x̄)-action and M ⊗R E ∼= V .

So the functor S−1RepR → RepE is essentially surjective. �
AQ�-representation for π1(X, x̄) is a homomorphism π1(X, x̄) → GL(V )

for some finite dimensional Q�-vector space V such that we can find a finite

extension E of Q� in Q� and a finite dimensional E-vector space VE with a

continuous π1(X, x̄)-action with the property that V ∼= V ⊗E Q� and that

the homomorphism π1(X, x̄) → GL(V ) is the composite

π1(X, x̄) → GL(VE) → GL(VE ⊗E Q�) ∼= GL(V ).

Corollary 10.1.24. Let X be a noetherian connected scheme and let x

be a point in X. The functor F → Fx̄ defines an equivalence between

the category of lisse Q�-sheaves and the category of Q�-representations of

π1(X, x̄).
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10.2 Grothendieck Ogg Shafarevich Formula

([SGA 5] VIII, X, [SGA 4 1
2 ] Rapport 4.1–4.4.)

Suppose that Λ is a ring with the identity element 1 but not necessarily

commutative. Let Λ be the quotient of the additive group (Λ,+) by the

subgroup generated by elements of the form ab − ba (a, b ∈ Λ). For any

endomorphism f : Λn → Λn on a free (left) Λ-module Λn, if f is represented

by the matrix (aij) with respect to the standard basis of Λn, we define the

trace Tr(f) ∈ Λ of f to be the image of
n∑
i=1

aii in Λ. If f : Λn → Λm and

g : Λm → Λn are two homomorphisms between free Λ-modules, we have

Tr(fg) = Tr(gf).

Let f : P → P be an endomorphism on a finitely generated projective

Λ-module P . We can find an integer n ≥ 0 and homomorphisms a : P → Λn

and b : Λn → P such that ba = id. We define Tr(f) to be Tr(afb). This

definition does not depend on the choices of a and b. Indeed, if c : P → Λm

and d : Λm → P are homomorphisms such that dc = id. Then we have

Tr(afb) = Tr(adcfb) = Tr(cfbad) = Tr(cfd).

Let P and Q be two finitely generated projective Λ-modules and let f : P →
Q and g : Q→ P be two homomorphisms. Then we have Tr(fg) = Tr(gf).

Let P · be a bounded complex of finitely generated projective Λ-modules,

and let f = (f i) : P · → P · be a morphism of complexes. We define

Tr(f) =
∑
i

(−1)iTr(f i).

If f is homotopic to 0, then Tr(f) = 0. Indeed, if hi : P i → P i−1 are

homomorphisms such that hi+1di + di−1hi = f i, then we have

Tr(f) =
∑
i

(−1)iTr(f i)

=
∑
i

(−1)iTr(hi+1di + di−1hi)

=
∑
i

(−1)iTr(hi+1di) +
∑
i

(−1)iTr(di−1hi)

=
∑
i

(−1)iTr(dihi+1) +
∑
i

(−1)iTr(di−1hi)

= 0.

Any bounded complex of finitely generated projective Λ-modules is

called perfect. Let Kperf(Λ) be the category whose objects are perfect com-

plexes and whose morphisms are homotopy classes of morphisms between
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complexes. By the dual version of 6.2.8, the functor Kperf(Λ) → Db(Λ) is

fully faithful, where Db(Λ) is the derived category of bounded complexes

of Λ-modules. Let Db
perf(Λ) be the essential image of this functor. By the

above discussion, for any endomorphism f : K → K in Db
perf(Λ), we can

define Tr(f).

Proposition 10.2.1. Let Λ be a left noetherian ring with the identity ele-

ment and let K be an object in D−(Λ). Then K ∈ obDb
perf(Λ) if and only

if Hi(K) are finitely generated Λ-modules and K has finite Tor-dimension.

Proof. Use the same argument as 6.4.6 and 10.2.2 below. �

Lemma 10.2.2. Let Λ be a ring with the identity element, and let P be a

flat Λ-module with finite presentation. Then P is projective.

Proof. Let M → N be an epimorphism of Λ-modules. We need to show

the map

HomΛ(P,M) → HomΛ(P,N)

is surjective. Suppose this is not true. Embed the cokernel of this homo-

morphism into an injective Z-module I. Then the homomorphism

HomZ(HomΛ(P,N), I) → HomZ(HomΛ(P,M), I)

is not injective. We have a commutative diagram

HomZ(N, I)⊗Λ P → HomZ(M, I)⊗Λ P

↓ ↓
HomZ(HomΛ(P,N), I) → HomZ(HomΛ(P,M), I).

The lower horizontal arrow is not injective. Since M → N is surjective

and P is flat, the top horizontal arrow is injective. We will show that the

vertical arrows are isomorphisms. We thus get a contradiction. Choose an

exact sequence

Λm → Λn → P → 0.

Consider the commutative diagram

HomZ(M,I)⊗ΛΛ
m → HomZ(M,I)⊗ΛΛ

n → HomZ(M,I)⊗ΛP →0

↓ ↓ ↓
HomZ(HomΛ(Λm,M),I) → HomZ(HomΛ(Λn,M),I) → HomZ(HomΛ(P,M),I) →0.

The two horizontal lines are exact. The first two vertical arrows are iso-

morphisms. So

HomZ(M, I)⊗Λ P → HomZ(HomΛ(P,M), I)

is an isomorphism. �
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Let A be an abelian category. Define the category F (A ) of finitely

filtered objects as follows: Objects in F (A ) are objects A in A provided

with decreasing filtrations

· · · ⊃ F iA ⊃ F i+1A ⊃ · · ·
such that F iA = A for i � 0 and F iA = 0 for i � 0. Given two objects

(A,F ·A) and (B,F ·B) in F (A ), a morphism f : (A,F ·A) → (B,F ·B) in

F (A ) is a morphism f : A → B in A such that f(F iA) ⊂ F iB for all

i. Then F (A ) is an additive category. Taking the i-th successive quotient

defines a functor

Gri : F (A ) → A , (A,F ·A) �→ Gri(A) = F iA/F i+1A.

Define the category KF (A ) of finitely filtered complexes as follows: Ob-

jects inKF (A ) are complexes (K,F ) of objects in F (A ) so that there exist

i0 and i1 with the property that F iKj = Kj for all i ≤ i0 and all j, and

F iKj = 0 for all i ≥ i1 and all j. Morphisms in KF (A ) are morphisms

of complexes preserving filtrations, and two morphisms of complexes are

considered to be the same morphism in KF (A ) if there exists a homotopy

that preserves filtrations between these two morphisms. Then KF (A ) is a

triangulated category. Let f : K → L be a morphism in KF (A ). We say

that f is a quasi-isomorphism if f induces quasi-isomorphisms

Gri(f) : Gri(K) → Gri(L)

for all i. Let S be the family of all quasi-isomorphisms in KF (A ). We

define the derived category of finitely filtered complexes DF (A ) to be

S−1(KF (A )).

Take A to be the category of Λ-modules. LetKFperf(Λ) be the full sub-

category of KF (A ) consisting of those finitely filtered bounded complexes

(K,F ) such that Gri(Kj) are finitely generated projective A-modules for

all i and all j. Denote DF (A ) by DF (Λ). Then the canonical functor

KFperf(Λ) → DF (Λ)

is fully faithful. Denote its essential image by DFperf(Λ). An object (K,F )

in DF (Λ) lies in DFperf(Λ) if and only if Gri(K) are objects in Db
perf(Λ) for

all i. If (K,F ) is an object in DFperf(Λ), then K is an object in Db
perf(Λ).

Let f : (K,F ) → (K,F ) be an endomorphism of an object (K,F ) in

DFperf(Λ), then we have

Tr(f,K) =
∑
i

Tr(f,Gri(K)).
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Let X be a scheme and let A be a commutative noetherian ring such

that nA = 0 for some integer n. Take A to be the category of sheaves of A-

modules on X , and denote DF (A ) by DF (X,A). For any bounded below

finitely filtered complex K of sheaves of A-modules on X , the complex

C ·(K) defined by the Godement resolution is a bounded below finitely

filtered complex of flasque sheaves of A-modules and each Gri(C ·(K)) is

isomorphic to the Godement resolution of Gri(K). We can define the right

derived functor

RΓ(X,−) : D+F (X,A) → DF (A)

of the functor Γ(X,−) and we have

RΓ(X,K) ∼= Γ(X,C ·(K)),

GriRΓ(X,K) ∼= RΓ(X,Gri(K)).

If X is a compactifiable scheme over an algebraically closed field, and let

j : X ↪→ X be a compactification of X , then we have a functor

RΓc(X,−) : D+F (X,A) → DF (A)

defined by

RΓc(X,−) = RΓ(X, j!−).

Suppose that X is a compactifiable scheme over an algebraically closed

field k. Let j : U → X an open immersion, l : X − U → X a closed

immersion, and K ∈ obDb
ctf(X,A). Provide K with the following filtration

F iK =

⎧⎨⎩
K if i ≤ 0,

j!j
∗K if i = 1,

0 if i ≥ 2.

Then K can be considered as an object in D+F (X,A), and we have

Gri(K) ∼=
⎧⎨⎩
l∗l∗K if i = 0,

j!j
∗K if i = 1,

0 if i 	= 0, 1.

So we have

GriRΓc(X,K) ∼= RΓc(X,Gri(K)) ∼=
⎧⎨⎩
RΓc(X − U,K|X−U) if i = 0,

RΓc(U,K|U ) if i = 1,

0 if i 	= 0, 1.

By 10.2.1, 7.4.7 (ii) and 7.8.1, RΓc(X−U,K|X−U) and RΓc(U,K|U ) are ob-
jects in Db

perf(A). So RΓc(X,K) is an object in DFperf(A). Let f : X → X
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be a finite k-morphism such that f−1(U) = U , and let f∗ : f∗K → K

be a morphism of complexes. Then f induces a morphism f∗K → K in

DF (X,A) and hence an endomorphism

f∗ : RΓc(X,K) → RΓc(X,K)

in DFperf(A). We have

Tr(f∗, RΓc(X,K)) =
∑
i

Tr(f∗,GriRΓc(X,K))

= Tr(f∗, RΓc(U,K|U )) + Tr(f∗, RΓc(X − U,K|X−U )).
Suppose that D is a triangulated category so that isomorphic classes

of objects in D form a set. Let L be the free abelian group generated by

isomorphic classes of objects in D . For any object X in D , let (X) be the

element in L corresponding to the isomorphic class of X . Let R be the

subgroup of L generated by elements of the form (X)− (Y )+(Z) whenever

there exists a distinguished triangle

X → Y → Z → .

Define the K-group of D to be K(D) = L/R. For any X ∈ obD , denote

by [X ] the image of (X) in K(D). For any abelian group G and any map

φ : {isomorphic classes of objects in D} → G

with the property

φ
(
(X)
)− φ

(
(Y )
)
+ φ
(
(Z)
)
= 0

for any distinguished triangle

X → Y → Z →,

there exists a unique homomorphism ψ : K(D) → G such that ψ([X ]) =

φ
(
(X)
)
. If

D → D ′, D × D ′ → D ′′

are exact functors for some triangulated categories D , D ′ and D ′′ so that

isomorphic classes of objects in these categories form sets, then these func-

tors induce homomorphisms

K(D) → K(D ′), K(D)×K(D ′) → K(D ′′).

Let Λ be a ring with the identity element and let L′ be the free abelian

group generated by isomorphic classes of finitely generated projective Λ-

modules. For any finitely generated projective Λ-module M , let (M) be

 E
ta

le
 C

oh
om

ol
og

y 
T

he
or

y 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 C

H
IN

E
SE

 U
N

IV
E

R
SI

T
Y

 O
F 

H
O

N
G

 K
O

N
G

 o
n 

10
/2

0/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



February 6, 2015 9:48 ws-book9x6 Etale Cohomology Theory... etale page 570

570 Etale Cohomology Theory

the element in L′ corresponding to the isomorphic class of M . Let R′ be
the subgroup of L′ generated by elements of the form (M ′)− (M) + (M ′′)
whenever there exists a short exact sequence of finitely generated projective

Λ-modules

0 →M ′ →M →M ′′ → 0.

Define the K-group of Λ to be K(Λ) = L′/R′. For any finitely generated

projective Λ-module M , denote by [M ] the image of (M) in K(Λ).

Proposition 10.2.3. Let Λ be a ring with the identity element. We have

an isomorphism K(Db
perf(Λ))

∼= K(Λ).

Proof. We know Db
perf(Λ) is equivalent to the category Kperf(Λ) of per-

fect complexes. It suffices to show that K(Kperf(Λ)) ∼= K(Λ). For any

perfect complex

P · = (· · · → P i → P i+1 → · · · ),
let φ(P ·) =

∑
i

(−1)i[P i] ∈ K(Λ). We claim that φ(P ·) only depends on the

isomorphic class of P · in Kperf(Λ). Let f : P · → Q· be an isomorphism in

Kperf(Λ) and let C· be the mapping cone of f . We have Ci = P i ⊕ Qi+1

for all i. It follows that φ(P ·) − φ(Q·) = φ(C·). To prove our assertion, it

suffices to show φ(C·) = 0. Note that C· is a bounded acyclic complex of

projective Λ-modules. Suppose that it is of the form

0 → Ca → Ca+1 → · · · → Ca+m → 0.

Let Zi = Ker (Ci → Ci+1). We have short exact sequences

0 → Za+m−1 → Ca+m−1 → Ca+m → 0,

0 → Za+m−2 → Ca+m−2 → Za+m−1 → 0,
...

0 → Za+2 → Ca+2 → Za+3 → 0,

0 → Ca → Ca+1 → Za+2 → 0.

One can show that Zi are finitely generated projective Λ-modules. We have

φ(C·) =
∑
i

(−1)i[Ci]

=
∑
i

(−1)i([Zi] + [Zi+1])

=
∑
i

(−1)i[Zi] +
∑
i

(−1)i[Zi+1]

= 0.
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This proves our assertion. So φ defines a map on the set of isomorphic

classes of objects in Kperf(Λ). Any distinguished triangle in Kperf(Λ) is

isomorphic to a distinguished triangle

P ·1 → P ·2 → P ·3 →
such that P ·3 is the mapping cone of the morphism P ·1 → P ·2. We have

P i3 = P i1 ⊕ P i+1
2 for all i. It follows that φ(P ·1)− φ(P ·2) + φ(P ·3) = 0. So φ

induces a homomorphism

Φ : K(Kperf(Λ)) → K(Λ).

For any finitely generated projective Λ-module P , let ψ(P ) be the element

in K(Kperf(Λ)) corresponding to the isomorphic class of the complex

· · · → 0 → P → 0 → · · · .
ψ(P ) depends only on the isomorphic class of P and ψ induces a homo-

morphism

Ψ : K(Λ) → K(Kperf(Λ)).

One can easily verify ΦΨ = id. Let us prove ΨΦ = id, that is, for any

perfect complex P ·, we have the equality

[P ·] =
∑
i

(−1)iψ(P i)

in K(Kperf(Λ)). We say that P · has length ≤ m if the exists an integer a

such that P i = 0 for i 	∈ [a, a+m], that is, P · is of the form

0 → P a → P a+1 → · · · → P a+m → 0.

We prove the above equality using induction on m. First note that we have

a distinguished triangle of the form

P · → 0 → P ·[1] → .

It follows that

[P ·[1]] = −[P ·].

Suppose m = 0. Then P · coincides with the complex

(· · · → 0 → P a → 0 → · · · )[a],
where P a sits in the 0-th components. It follows that [P ·] = (−1)aψ(P a).

Suppose that we have shown the above equality for perfect complexes of

length ≤ m− 1. Let σ≥a+1(P
·) be the truncated complex

0 → P a+1 → · · · → P a+m → 0.
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We have a morphism of complex

P a[−(a+ 1)] → σ≥a+1(P
·)

whose (a + 1)-th component is the morphism daP · : P a → P a+1. The

mapping cone of this morphism is isomorphic to P ·, and σ≥a+1(P
·) has

length ≤ m− 1. So we have

[P ·] = −[P a(−(a+ 1))] + [σ≥a+1(P
·)] =

∑
i

(−1)iψ(P i).
�

Let X be a smooth irreducible projective curve over an algebraically

closed field k, let K be its function field, and let K ′ be a finite galois

extension of K with galois group G. Denote by X ′ the normalization of X

in K, and by p : X ′ → X the canonical morphism. Then G acts on X ′

on the right. For any closed point x′ in X ′, let Gx′ be the stabilizer of x′

in G, let π be a uniformizer of OX′,x′ , and let vx′ be the valuation on K ′

corresponding to the point x′. The Swan character on Gx′ is defined to be

bx′(g) =

⎧⎨⎩ 1− vx′(gπ − π) if g 	= e,

− ∑
g∈Gx′−{e}

(1− vx′(gπ − π)) if g = e.

By [Serre (1979)] VI 2 and [Serre (1977)] 19.2 Theorem 44, there exists a

projective Z�[Gx′ ]-module Swx′ determined up to isomorphism such that b

is its character. The Artin character of Gx′ is defined to be

ax′ = bx′ + rGx′ − 1 = bx′ + uGx′ ,

where rGx′ is the character of the regular representation Q�[Gx′ ] of Gx′ ,

and uGx′ is the character of the kernel of the homomorphism

Q�[Gx′ ] → Q�,
∑
g∈Gx′

agg �→
∑
g∈Gx′

ag.

We have

ax′(g) =

⎧⎨⎩ −vx′(gπ − π) if g 	= e,∑
g∈Gx′−{e}

vx′(gπ − π) if g = e.

The Artin character is the character of a Q�[Gx′ ]-module. Let x = p(x′).
Define

Swx = Z�[G]⊗Z�[Gx′ ] Swx′ .

Choose g1, . . . , gm ∈ G such that G/Gx′ = {g1Gx′ , . . . , gmGx′}. The char-

acter of Swx is

bx(g) =
∑

g−1
i ggi∈Gx′

bx′(g−1i ggi).
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We have

p−1(x) = {x′g−11 , . . . , x′g−1m }.
Set x′i = x′g−1i . We have Gx′

i
= giGx′g−1i , and vx′

i
(α) = vx′(g−1i α) for any

α ∈ K. It follows that bx′
i
(g) = bx′(g−1i ggi) for any g ∈ Gx′

i
. Therefore

bx(g) =
∑
g∈Gx′

i

bx′
i
(g) =

∑
p(x′)=x, gx′=x′

bx′(g).

This shows that Swx = Z�[G]⊗Z�[Gx′ ] Swx′ depends only on x, and not on

the choice of x′ ∈ p−1(x).

Lemma 10.2.4. Let X be a smooth irreducible projective curve of genus g

over an algebraically closed field k, K its function field, K ′ a finite galois

extension of K with galois group G, X ′ the normalization of X in K ′,
p : X ′ → X the canonical morphism, U a dense open subset of X such that

U ′ = p−1(U) is etale over U , and j′ : U ′ → X ′ the open immersion. Then

RΓ(X ′, j′!Z/�
n) ∈ obDb

perf(Z/�
n[G]) and[

RΓ(X ′, j′!Z/�
n)
]

= (2− 2g)
[
Z/�n[G]

]− ∑
x∈X−U

([
Z/�n[G]⊗Z�[G] Swx

]
+
[
Z/�n[G]

])
in K(Db

perf(Z/�
n[G])).

Proof. We have RΓ(X ′, j′!Z/�
n) = RΓ(X, p∗j′!Z/�

n). By 10.2.1, 7.4.7

(ii) and 7.8.1 applied to RΓ(X, p∗j′!Z/�
n), to prove RΓ(X ′, j′!Z/�

n) ∈
obDb

perf(Z/�
n[G]), it suffices to prove p∗j′!Z/�

n ∈ obDb
ctf(X,Z/�

n[G]).

There exists an etale covering {Vi → U}i such that each U ′ ×U Vi → Vi is

a trivial etale covering space. We have

(p∗j′!Z/�
n)|Vi ∼= Z/�n[G].

In particular, (p∗j′!Z/�
n)|U is locally constant. Moreover, we have

(p∗j′!Z/�
n)|X−U = 0. It follows that p∗j′!Z/�

n ∈ obDb
ctf(X,Z/�

n[G]).

By [Serre (1977)] 14.4, we have a canonical isomorphism

K(Db
perf(Z�[G]))

∼=→ K(Db
perf(Z/�

n[G])).

Denote by S the inverse of this isomorphism. By [Serre (1977)] 14.1 and 16.1

Corollary 2 of Theorem 34, two objects in Db
perf(Z�[G]) have the same image

in K(Db
perf(Z�[G])) if and only if they have the same character. Denote the

left-hand and the right-hand sides of the equality in the lemma by Ln and
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Rn, respectively. To prove the lemma, it suffices to show that S(Ln) and

S(Rn) have the same character. Obviously S(Rn) has character

(2− 2g)rG −
∑

x∈X−U
(bx + rG),

where rG is the character of the regular representation Q�[G] of G. Since

RΓ(X ′, j′!Z/�
m)⊗LZ/�m Z/�n ∼= RΓ(X ′, j′!Z/�

n)

for all m ≥ n, the character of S(Ln) is the map

G→ Z� = lim←−
n

Z/�n, g �→
(
Tr
(
g,RΓ(X ′, j′!Z/�

n)
))
.

So to prove the lemma, it suffices to show

Tr
(
g,RΓ(X ′, j′!Z/�

n)
) ≡ ((2 − 2g)rG −

∑
x∈X−U

(bx + rG)
)
(g) mod �n

for all n ≥ 0 and all g ∈ G. By 10.2.1, and 7.4.7 (ii) and 7.8.1, the

complexesRΓ(X ′, j′!Z/�
n), RΓ(X ′,Z/�n) and RΓ(X ′−U ′,Z/�n) are objects

in Db
perf(Z/�

n). We have

Tr
(
g,RΓ(X ′, j′!Z/�

n)
)
= Tr
(
g,RΓ(X ′, Z/�n)

)− Tr
(
g,RΓ(X ′ − U ′, Z/�n)

)
for any g ∈ G. It is clear that

Tr
(
g,RΓ(X ′ − U ′, Z/�n)

)
=

∑
x′∈X′−U ′, gx′=x′

1.

Since U ′ is etale over U , any g 	= e has no fixed point on U ′. So by 8.6.8,

if g 	= e, we have

Tr
(
g,RΓ(X ′, Z/�n)

) ≡ ∑
gx′=x′

(1 − bx′(g)) mod �n

≡
∑

x′∈X′−U ′, gx′=x′
(1− bx′(g)) mod �n.

So for any g 	= e, we have

Tr
(
g,RΓ(X ′, j′!Z/�

n)
)

≡
∑

x′∈X′−U ′, gx′=x′
(1− bx′(g))−

∑
x′∈X′−U ′, gx′=x′

1 mod �n

≡ −
∑

x′∈X′−U ′, gx′=x′
bx′(g) mod �n

≡
(
(2− 2g)rG −

∑
x∈X−U

(bx + rG)
)
(g) mod �n.
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Let g′ be the genus of X ′. By 7.2.9 (ii), we have

Tr(e,RΓ(X ′,Z/�n))

= rankH0(X ′,Z/�n)− rankH1(X ′,Z/�n) + rankH2(X ′,Z/�n)

≡ 2− 2g′ mod �n.

It is clear that

Tr(e,RΓ(X ′ − U ′,Z/�n)) =
∑

x′∈X′−U ′
1.

So we have

Tr(e,RΓ(X ′, j!Z/�n)) ≡ 2− 2g′ −
∑

x′∈X′−U ′
1 mod �n.

On the other hand, we have(
(2− 2g)rG −

∑
x∈X−U

(bx + rG)
)
(e)

= (2− 2g)[K ′ : K]−
∑

x∈X−U
(bx(e) + [K ′ : K])

= (2− 2g)[K ′ : K]−
∑

x∈X−U

∑
p(x′)=x

(bx′(e) + #Gx′)

= (2− 2g)[K ′ : K]−
∑

x∈X−U

∑
p(x′)=x

(ax′(e) + 1)

= (2− 2g)[K ′ : K]−
∑

x′∈X′−U ′
ax′(e)−

∑
x′∈X′−U ′

1.

By [Serre (1979)] IV §1 Proposition 4 and III §7, we have∑
x′∈X′−U ′

ax′(e) =
∑
x∈|X′|

length(ΩX′/X)x.

We thus have(
(2− 2g)rG −

∑
x∈X−U

(bx + rG)
)
(e)

= (2− 2g)[K ′ : K]−
∑
x∈|X′|

length(ΩX′/X)x −
∑

x′∈X′−U ′
1.

To prove the lemma, it remains to show

2− 2g′ = (2− 2g)[K ′ : K]−
∑
x∈|X′|

length(ΩX′/X)x.
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This is the Hurwitz formula, which can be proved as follows: We have an

exact sequence

p∗ΩX/k → ΩX′/k → ΩX′/X → 0.

Note that p∗ΩX/k and ΩX′/k are invertible OX′ -modules. Since U ′ is etale
over U , p∗ΩX/k → ΩX′/k induces an isomorphism on stalks at the generic

point of X ′. Since the kernel of this morphism is torsion free as a subsheaf

of p∗ΩX/k, this morphism is injective. So we have an exact sequence

0 → p∗ΩX/k → ΩX′/k → ΩX′/X → 0.

Hence

χ(X ′,ΩX′/k) = χ(X ′, p∗ΩX/k) + χ(X ′,ΩX′/X).

By the Riemann-Roch formula, we have

χ(X ′,ΩX′/k) = 1− g′ + deg(ΩX′/k) = g′ − 1,

χ(X ′, p∗ΩX/k) = 1− g′ + deg(p∗ΩX/k) = 1− g′ + (2g − 2)[K ′ : K].

Moreover, since ΩX′/X is a sky-scrapper sheaf, we have

χ(X ′,ΩX′/X) =
∑
x∈|X′|

length(ΩX′/X)x.

We thus get

g′ − 1 = 1− g′ + (2g − 2)[K ′ : K] +
∑
x∈|X′|

length(ΩX′/X)x.

Our assertion follows. �

Let X be a smooth irreducible curve over an algebraically closed field

k, let A be a noetherian Z/�n-algebra, and let K ∈ obDb
ctf(X,A). We

can represent K by a bounded complex of flat constructible sheaves of

A-modules on X . Let K(X) be the function field of X , let K(X) be

a separable closure of K(X), and let η be the generic point of X . There

exists a finite galois extension K ′ of K(X) contained in K(X) such that the

action of Gal(K(X)/K(X)) on Kη̄ factors through G = Gal(K ′/K(X)).

Let X ′ be the normalization of X in K ′, let p : X ′ → X be the canonical

morphism, and let x be a closed point of X . One can check that

Hom·Z/�n[G](Z/�
n[G]⊗Z�[G] Swx,Kη̄)

is a perfect complex of A-modules. This complex is independent of the

choice of the galois extension K ′/K(X). Indeed, let K ′′/K(X) be a finite
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galois extension with galois group G′ containing K ′, and let X ′′ be the

normalization of X in K ′′. Then we have

SwX′/X,x
∼= Z�[G]⊗Z�[G′] SwX′′/X,x.

One can show this by checking that both sides have the same character by

using [Serre (1979)] IV §1 Proposition 3. So we have

Hom·Z/�n[G](Z/�
n[G]⊗Z�[G] SwX′/X,x,Kη̄)

∼= Hom·Z/�n[G′](Z/�
n[G′]⊗Z�[G′] SwX′′/X,x,Kη̄).

Consider the following elements in K(Db
perf(A)):

αx(K) =
[
Hom·Z/�n[G](Z/�

n[G]⊗Z�[G] Swx,Kη̄)
]
,

εx(K) = αx(K) + [Kη̄]− [Kx̄].

By 5.8.1 (ii), we may find a dense open subset U of X and a finite surjective

etale morphism U ′ → U such that U ′ is connected and the components of

K|U ′ are constant sheaves. Moreover, we can choose U ′ so that it is galois

over U . In the above discussion, taking K ′ to be the function field of U ′,
we can identify U ′ with p−1(U). If x is a closed point of U , then αx(K) = 0

and Kx̄
∼= Kη̄, and hence εx(K) = 0. In particular, εx(K) is nonzero only

for finitely many closed point x in X .

Theorem 10.2.5. Let X be a smooth irreducible projective curve of genus

g over an algebraically closed field, η its generic point, A a noetherian

Z/�n-algebra, and K ∈ obDb
ctf(X,A). Then RΓ(X,K) ∈ obDb

perf(A) and[
RΓ(X,K)

]
= (2− 2g)[Kη̄]−

∑
x∈|X|

εx(K)

in K(Db
perf(A)), where |X | is the set of closed points in X.

Proof. By 10.2.1, 7.4.7 (ii) and 7.8.1, we have RΓ(X,K) ∈ obDb
perf(A).

Represent K by a bounded complex of flat constructible sheaves of A-

modules. Choose a finite galois extension K ′ of the function field of X and

a dense open subset U of X so that if X ′ is the normalization of X in K ′

and p : X ′ → X is the canonical morphism, then p is etale on U ′ = p−1(U)

and the components of K|U ′ are constant sheaves. Let j : U ↪→ X be the

open immersion. We claim that

j!(K|U ) = RΓG(p∗p∗j!(K|U )),
where ΓG is the functor F �→ FG on the category of G-sheaves. Indeed,

by the discussion at the end of §9.1, for any x ∈ X , we have(
RΓG(p∗p∗j!(K|U ))

)
x̄
∼= RΓG

(
(p∗p∗j!(K|U ))x̄

)
,
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where ΓG is the functor M → MG on the category of G-modules. When

x ∈ X − U , we have
(
p∗p∗j!(K|U )

)
x̄
= 0. Hence

RΓG(p∗p∗j!(K|U ))
∣∣
X−U = 0.

When x ∈ U , since p : U ′ → U is a galois etale covering, components of(
p∗p∗j!(K|U )

)
x̄
are induced G-modules and hence(
RΓG(p∗p∗j!(K|U ))

)
x̄
∼= (p∗p∗j!(K|U )

)G
x̄
∼= Kx̄.

Our claim follows. By the discussion in §9.1 and 6.3.3, we have

RΓ(X,RΓG(−)) ∼= R
(
Γ(X,ΓG(−))

)
= R
(
ΓGΓ(X,−)

)
= RΓGRΓ(X,−).

We thus have

RΓ(X, j!(K|U )) ∼= RΓ(X,RΓG(p∗p∗j!(K|U )))
∼= RΓGRΓ(X, p∗p∗j!(K|U )).

Let j′ : U ′ ↪→ X ′ be the open immersion. By 7.4.7, we have

RΓ(X, p∗p∗j!(K|U )) ∼= RΓ(X, p∗j′! (K|U ′))

∼= RΓc(U
′,K|U ′)

∼= Kη̄ ⊗LZ/�n RΓc(U ′,Z/�n)
∼= Kη̄ ⊗LZ/�n RΓ(X ′, j′!Z/�n).

Here the action of G on Kη̄ ⊗L
Z/�n RΓ(X

′, j′!Z/�
n) is the diagonal action.

So we have

RΓ(X, j!(K|U )) ∼= RΓG
(
Kη̄ ⊗LZ/�n RΓ(X ′, j′!Z/�n)

)
. (10.1)

By 10.2.4, we have RΓ(X ′, j′!Z/�
n) ∈ obDb

perf(Z/�
n[G]). Represent

RΓ(X ′, j′!Z/�
n) by a bounded complex P of finitely generated projec-

tive (Z/�n[G])-modules. We claim that the components of the complex

Kη̄ ⊗Z/�n P are weakly injective G-modules. Indeed, since the components

of P are direct factors of free (Z/�n[G])-modules, it suffices to show that

M ⊗Z/�n Z/�
n[G] is an induced G-module for any G-module M , where the

G-module structure on M ⊗Z/�n Z/�n[G] is defined by

g(x⊗ y) = gx⊗ gy

for any x ∈M and y ∈ Z/�n[G]. One easily checks

M ⊗Z/�n Z/�n[G] →M [G], x⊗ g → (g−1(x))g
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is an isomorphism of G-modules. On the other hand, we have an isomor-

phism of G-modules

M [G] ∼= Hom(Z[G],M),
∑
g∈G

xgg �→ (g �→ xg−1 ).

This proves our claim. So we have

RΓG
(
Kη̄ ⊗LZ/�n RΓ(X ′, j′!Z/�n)

) ∼= (Kη̄ ⊗Z/�n P )
G, (10.2)

Let P∨ = Hom·Z/�n(P,Z/�n), where the action of G on the i-th component

HomZ/�n(P
−i,Z/�n) of P∨ is given by

(gφ)(x) = φ(g−1x)

for any g ∈ G, φ ∈ HomZ/�n(P
−i,Z/�n) and x ∈ P−i. We have an isomor-

phism of complexes

Kη̄ ⊗Z/�n P ∼= Hom·Z/�n(P
∨,Kη̄). (10.3)

¿From the isomorphisms (10.1)–(10.3), we get

RΓ(X, j!(K|U )) ∼= Hom·Z/�n[G](P
∨,Kη̄).

By 10.2.4, in K(Db
perf(Z/�

n[G])), we have

[P ] =
[
RΓ(X ′, j′!Z/�

n[G])]

= (2 − 2g)
[
Z/�n[G]

] − ∑
x∈X−U

([
Z/�n[G]⊗Z�[G] Swx

]
+
[
Z/�n[G]

])
.

This implies that

[P∨] = (2− 2g)
[
Z/�n[G]

]− ∑
x∈X−U

([
Z/�n[G]⊗Z�[G] Swx

]
+
[
Z/�n[G]

])
.

This can be seen by calculating the characters on both sides, and by noting

that Swx and Sw∨x have the same character. So we have[
RΓ(X, j!(K|U ))

]
=
[
Hom·Z/�n[G](P

∨,Kη̄)
]

= (2− 2g)
[
Hom·Z/�n[G](Z/�

n[G],Kη̄)
]

−
∑

x∈X−U

([
Hom·Z/�n[G](Z/�

n[G]⊗Z�[G] Swx,Kη̄)
]

+
[
Hom·Z/�n[G](Z/�

n[G],Kη̄)
])

= (2− 2g)[Kη̄]−
∑

x∈X−U

([
Hom·Z/�n[G](Z/�

n[G]⊗Z�[G] Swx,Kη̄)
]
+ [Kη̄]

)
.
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We have a distinguished triangle

RΓ(X, j!(K|U )) → RΓ(X,K) → RΓ(X − U,K|X−U ) → .

Again by 10.2.1, and 7.4.7 (ii) and 7.8.1, all the complexes in this triangle

are objects in Db
perf(A). It is clear that[

RΓ(X − U,K|X−U )
]
=
∑

x∈X−U
[Kx̄].

So we have[
RΓ(X,K)

]
=
[
RΓ(X, j!(K|U ))

]
+
[
RΓ(X − U,K|X−U )

]
= (2− 2g)[Kη̄]−

∑
x∈X−U

([
Hom·Z/�n[G](Z/�

n[G]⊗Z�[G] Swx,Kη̄)
]
+ [Kη̄]

)
+
∑

x∈X−U
[Kx̄]

= (2− 2g)[Kη̄]−
∑

x∈X−U

([
Hom·Z/�n[G](Z/�

n[G]⊗Z�[G] Swx,Kη̄)
]

+ [Kη̄]− [Kx̄]

)
= (2− 2g)[Kη̄]−

∑
x∈X−U

εx(K)

= (2− 2g)[Kη̄]−
∑
x∈|X|

εx(K).

�

Theorem 10.2.6. Let X be a smooth irreducible projective curve of genus

g over an algebraically closed field, η its generic point, A a noetherian

Z/�n-algebra, U a dense open subset of X, and K ∈ obDb
ctf(U,A). Then

RΓc(U,K) and RΓ(U,K) are objects in Db
perf(A), and[

RΓc(U,K)
]
=
[
RΓ(U,K)

]
= (2− 2g −#(X − U))[Kη̄]−

∑
x∈|U|

εx(K)−
∑

x∈X−U
αx(K).

in K(Db
perf(A)), where |U | is the set of closed points in U .
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Proof. Let j : U ↪→ X be the open immersion. By 10.2.5, we have

RΓc(U,K) = RΓ(X, j!K) ∈ obDb
perf(A) and[

RΓc(U,K)
]
=
[
RΓ(X, j!K)

]
= (2− 2g)[Kη̄]−

∑
x∈|U|

εx(j!K)−
∑

x∈X−U
εx(j!K)

= (2− 2g)[Kη̄]−
∑
x∈|U|

εx(j!K)−
∑

x∈X−U

(
αx(j!K) + [Kη̄]

)
= (2− 2g −#(X − U))[Kη̄]−

∑
x∈|U|

εx(K)−
∑

x∈X−U
αx(K).

It remains to prove RΓ(U,K) ∈ obDb
perf(A) and

[
RΓc(U,K)

]
=[

RΓ(U,K)
]
. Choose a distinguished triangle

j!K → Rj∗K → C →,

where j!K → Rj∗K ∼= Rj∗j∗(j!K) is the canonical morphism. We have a

distinguished triangle

RΓ(X, j!K) → RΓ(X,Rj∗K) → RΓ(X,C) →,

which can be identified with a distinguished triangle

RΓc(U,K) → RΓ(U,K) → RΓ(X,C) → .

To prove our assertion, it suffices to show that RΓ(X,C) ∈ obDb
perf(A) and[

RΓ(X,C)
]
= 0. The cohomology sheaves of C are supported on X − U ,

so we have [
RΓ(X,C)

]
=
∑

x∈X−U
[Cx̄].

We are reduced to show that Cx̄ ∈ obDb
perf(A) and [Cx̄] = 0 for any

x ∈ X −U . Let η̃ be the generic point of the strict localization X̃x̄ of X at

x̄. By 5.9.5, we have

Cx̄ = RΓ(U ×X X̃x̄,K) = RΓ(η̃, K) = RΓGal(η̄/η̃)(Kη̄).

Let P be the wild inertia subgroup of Gal(η̄/η̃). Then P is a pro-p-group

for p = chark, and we have

Gal(η̄/η̃)/P ∼= lim←−
(m,p)=1

Z/m,

RΓGal(η̄/η̃)(Kη̄) ∼= RΓGal(η̄/η̃)/P (KP
η̄ ).
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We have KP
η̄ ∈ obDb

perf(A) since KP
η̄ is a direct factor of Kη̄. Indeed, for

any A-module M with continuous P -action, the inclusion MP ↪→ M has a

left inverse M →MP defined by

x �→ 1

#(P/Px)

∑
gPx∈P/Px

gx,

where Px is the stabilizer of x in P . Here multiplication by 1
#(P/Px)

makes

sense since p is invertible in A. To prove our assertion, it suffices to show

that for G = lim←−(m,p)=1
Z/m and for any complex L· of A[G]-modules

which lies in Db
perf(A) considered as a complex of A-modules, we have

RΓG(L·) ∈ obDb
perf(A) and

[
RΓG(L·)

]
= 0 in K(Db

perf(A)). Represent L·

by a bounded below complex of RΓG-acyclic A-modules with continuous

G-action, and let σ be the element in G so that its image in each Z/m is

1. We have

RΓG(L·) = ker (σ − 1, L·).

On the other hand, for each component Li of L·, we have

coker (σ − 1, Li) = H1(G,Li) = 0.

by 4.3.8. So σ : Li → Li is onto. We thus have a distinguished triangle

RΓG(L·) → L· σ−1→ L· → .

It follows that RΓG(L·) ∈ obDb
perf(A) and

[
RΓG(L·)

]
= 0. �

Assume A is a local ring. Then every projective A-module of finite type

is free and we may talk about its rank. It defines a homomorphism

rank : K(A) → Z.

By 10.2.3, we can define a homomorphism

rank : K(Db
perf(A)) → Z.

Representing an object in Db
perf(A) by a bounded complex of projective

A-modules K, we have

rankK =
∑
i

(−1)irankKi.

Corollary 10.2.7 (Grothendieck Ogg Shafarevich Formula). Let

X be a smooth irreducible projective curve of genus g over an algebraically
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closed field, η its generic point, U an open dense subset, K ∈ obDb
c(U,Q�),

and x any closed point in X. Define

χc(U,K) =
∑
i

(−1)idimHi
c(U,K),

χ(U,K) =
∑
i

(−1)idimHi(U,K),

dimKη̄ =
∑
i

(−1)idim (H i(K))η̄,

dimKx̄ =
∑
i

(−1)idim (H i(K))x̄,

αx(K) =
∑
i

(−1)iSwx(H
i(K)η̄),

εx(K) = αx(K) + dimKη̄ − dimKx̄.

See [Laumon (1987)] 2.1.1 and 2.1.2 for the definition of the Swan con-

ductor Swx(H i(K)η̄) at x of the Q�-representation H i(K)η̄ of Gal(η̄/η).

Then we have

χc(U,K) = χ(U,K) = (2−2g−#(X−U))dimKη̄−
∑
x∈|U|

εx(K)−
∑

x∈X−U
αx(K).

Proof. Let E be a finite extension of Q� such that K is represented by

an object in Db
c(U,E), let R be the integral closure of Z� in E, and let λ

be a uniformizer of R. Represent K by an object (Kn) in D
b
c(X,R), where

Kn ∈ obDb
ctf(U,R/(λ

n+1)) and

Kn+1 ⊗LR/(λn+2) R/(λ
n+1) ∼= Kn.

We have RΓc(U,Kn) ∈ obDb
perf(R/(λ

n+1)) and

RΓc(U,Kn+1)⊗LR/(λn+2) R/(λ
n+1) ∼= RΓc(U,Kn).

Representing each RΓc(U,Kn) by a bounded complex Ln of free R/(λn+1)-

modules of finite rank, we have quasi-isomorphisms

Ln+1 ⊗R/(λn+2) R/(λ
n+1) ∼= Ln.

By 10.1.15, we may find a bounded complex L of free R-modules of finite

ranks and quasi-isomorphisms L/λn+1L→ Ln such that the diagrams

L/λn+2L → Ln+1

↓ ↓
L/λn+1L → Ln
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commute up to homotopy. Then we have

χc(U,K) =
∑
i

(−1)idim (Li ⊗R E)

=
∑
i

(−1)irank (Li/λn+1Li)

= rankRΓc(U,Kn)

for all n. Similarly, we have

χ(U,K) = rankRΓ(U,Kn),

dimKη̄ = rankKn,η̄,

αx(K) = rankαx(Kn),

εx(K) = rank εx(Kn).

We then apply 10.2.6 to Kn. �

10.3 Frobenius Correspondences

([SGA 5] XIV=XV.)

Let p be a prime number. A scheme X is called to be of characteristic p if

p ·1 = 0 in Γ(X,OX), or equivalently, the canonical morphism X → SpecZ

factors through a morphism X → SpecZ/p. Fix a power q of p. Then

the morphism φ : OX → OX that maps each section s of OX to sq is a

morphism of sheaves of rings. The pair (id, φ) : (X,OX) → (X,OX) is a

morphism of schemes. We call it the Frobenius morphism on X , and denote

it by frX .

Let X be a scheme of characteristic p. Then every X-scheme is also of

characteristic p. For any X-scheme Y , let Y (q/X) = Y ×X,frX X . We have

a Cartesian diagram

Y (q/X) π1→ Y

π2 ↓ ↓
X

frX→ X,

where π1 and π2 are the projections. We have a commutative diagram

Y
frY→ Y

↓ ↓
X

frX→ X,
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We define the Frobenius morphism FrY/X of Y relative to X to be the

X-morphism FrY/X : Y → Y (q/X) such that π1FrY/X = frY .

Proposition 10.3.1. Let X be a scheme of characteristic p and let Y be

an X-scheme. The relative Frobenius morphism FrY/X : Y → Y (q/X) is

integral, radiciel, and surjective. If Y is etale over X, then FrY/X is an

isomorphism.

Proof. It is clear that frX and frY and π1 are integral, radiciel and sur-

jective. It follows that FrY/X has the same property. If Y is etale over X ,

then Y (q/X) is also etale over X and hence FrY/X is etale. By 2.3.9, FrY/X
is an isomorphism. �

Let X be a scheme of characteristic p and let F be a sheaf on X . For

any etale X-scheme U , since FrU/X is an isomorphism, the restriction map

F (U (q/X)) → F (U) is an isomorphism. We thus have an isomorphism

frX∗F → F . Its inverse F → frX∗F defines a morphism

Fr∗F : fr∗XF → F .

The pair (frX ,Fr
∗
F ) is called the Frobenius correspondence on (X,F ). We

can also define a morphism Fr∗K : fr∗XK → K for any object K in the

derived category D(X) = D(X,Z) of sheaves of abelian groups on X .

Proposition 10.3.2. Let X and Y be schemes of characteristic p, and let

f : Y → X be a morphism.

(i) For any sheaf G on Y , the composite

f∗G → f∗frY ∗fr∗Y G
f∗frY ∗(Fr∗G )→ f∗frY ∗G ∼= frX∗f∗G

induces the morphism Fr∗f∗G : fr∗Xf∗G → f∗G by adjunction.

(ii) For any sheaf F on X, the composite

fr∗Y f
∗F ∼= f∗fr∗XF

f∗(Fr∗F )→ f∗F
coincides with Fr∗f∗F : fr∗Y f∗F → f∗F .

Proof. We leave it for the reader to prove (i). Let us prove (ii). Consider

the diagram

frX∗fr∗XF
adj→ frX∗f∗f∗fr∗XF

adj ↗ frX∗(Fr∗F )↓ ↓frX∗f∗f∗(Fr∗F )

F → frX∗F
adj→ frX∗f∗f∗F

adj ↘ (1) �‖
f∗f∗F → f∗frY ∗f∗F

adj ↘ ↑f∗frY ∗(Fr∗f∗F )

f∗frY ∗fr∗Y f
∗F .
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Using the definition of the Frobenius correspondence, one can check that

(1) commutes. It is clear that the other parts of the diagram commute. It

follows that the composite in the proposition induces the same morphism

F → f∗frY ∗f∗F as Fr∗f∗F , and hence they coincide. �

Proposition 10.3.3. Let X be a scheme of characteristic p, and let K ∈
obD+(X). The composite

Hi(X,K) → Hi(X, fr∗XK)
Fr∗K→ Hi(X,K)

is the identity for each i, where the first homomorphism is the composite

Hi(X,K)
adj→ Hi(X,RfrX∗fr∗XK) ∼= Hi(X, fr∗XK).

Proof. Let I and J be bounded below complexes of injective sheaves on

X so that we have quasi-isomorphisms K → I and fr∗XI → J . We can find

a diagram

fr∗XI
Fr∗I→ I

↓ ↓
J → J ′

such that J ′ is a bounded below complex of injective sheaves, I → J ′ is
a quasi-isomorphism, and the diagram commutes up to homotopy. So we

have a diagram

Γ(X, I) → Γ(X, fr∗XI)
Fr∗I→ Γ(X, I)

↓ ↓
Γ(X, J) → Γ(X, J ′)

which commutes up to homotopy. The composite of the morphisms

RΓ(X,K) → RΓ(X, fr∗XK)
Fr∗K→ RΓ(X,K)

can be identified with the composite

Γ(X, I) → Γ(X, fr∗XI) → Γ(X, J) → Γ(X, J ′).

It is homotopic to the composite

Γ(X, I) → Γ(X, fr∗XI)
Fr∗I→ Γ(X, I) → Γ(X, J ′).

We claim that the composite

Γ(X, I) → Γ(X, fr∗XI)
Fr∗I→ Γ(X, I)
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is the identity. Our assertion then follows. To prove the claim, note that

the composite

I → frX∗fr∗XI
fr∗(Fr∗I )→ frX∗I

is the inverse of the morphism frX∗(I) → I defined by the restriction

(frX∗(I))(U) = I(U (q/X)) → I(U)

for any etale X-scheme U . If U = X , the restriction I(U (q/X)) → I(U) is

the identity. So the composite

Γ(X, I) → Γ(X, frX∗fr∗XI)
Fr∗I→ Γ(X, frX∗I)

is the identity. This proves the claim. �

Let Fq be a finite field of characteristic p with q elements, and let F be

an algebraic closure of Fq. Denote the Frobenius morphism on SpecF by

frF. Let X0 be a scheme over SpecFq and let X = X0 ⊗Fq F. Denote the

F-morphism

frX0 ⊗ id : X0 ⊗Fq F → X0 ⊗Fq F

by FX : X → X or simply F . If X0 = AnFq , we have X = AnF , and

F : AnF → AnF corresponds to the F-algebra homomorphism

F[t1, . . . , tn] → F[t1, . . . , tn], ti �→ tqi .

So F maps a point in AnF with coordinate (a1, . . . , an) to the point with

coordinate (aq1, . . . , a
q
n).

For any scheme Y over a field k, and any extension K of k, a K-point

of Y is a k-morphism SpecK → Y . The set of K-points in Y is denoted

by Y (K). We have a canonical bijection X(F) ∼= X0(F). For any F-point

t : SpecF → X0, since frX0 ◦ t = t ◦ frF, the morphism frX0 maps t to the

F-point t ◦ frF. So t is fixed by frX0 if and only if there exists an Fq-point

t0 : SpecFq → X0 such that t is the composite

SpecF → SpecFq
t0→ X0.

It follows that the set of fixed points of F on X(F) can be identified with

X0(Fq).

Let F0 be a sheaf on X0, let π : X → X0 be the projection, and let

F = π∗F0 be the inverse image of F0. Define

F ∗F0
: F ∗F → F
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to be the morphism induced from Fr∗F0
: fr∗X0

F0 → F0 by base change,

that is, the composite

F ∗F = F ∗π∗F0
∼= π∗fr∗X0

F0

π∗(Fr∗F0
)→ π∗F0 = F .

We call the pair (F, F ∗F0
) the geometric Frobenius correspondence. Simi-

larly, for any K0 ∈ obD(X0), we can define a morphism F ∗K0
: F ∗K → K

in D(X), where K = π∗K0. On the other hand, we have an isomorphism

(idX0 × frF)
∗F ∼= F defined as the composite

(idX0 × frF)
∗F = (idX0 × frF)

∗π∗F0
∼= (π ◦ (idX0 × frF))

∗F0 = π∗F0 = F .

Proposition 10.3.4. Notation as above. The composite

fr∗XF ∼= F ∗(idX0 × frF)
∗F ∼= F ∗F

F∗
F0→ F

coincides with Fr∗F : fr∗XF → F .

Proof. We have a commutative diagram

fr∗XF ∼= F ∗(id× frF)
∗F ∼= F ∗F

F∗
F0→ π∗F0 = F

‖ ‖ ‖ ↑ π∗(Fr∗F0
)

fr∗Xπ
∗F0

∼= F ∗(id× frF)
∗π∗F0

∼= F ∗π∗F0
∼= π∗fr∗X0

F0

�‖ �‖ �‖ �‖
(π ◦ frX)∗F0 = (π ◦ (id× frF) ◦ F )∗F0 = (πF )∗F0 = (frX0 ◦ π)∗F0.

So the composite in the proposition coincides with the composite

fr∗XF = fr∗Xπ
∗F0

∼= π∗fr∗X0
F0

π∗(Fr∗F0
)→ π∗F0 = F .

By 10.3.2 (ii), this last composite coincides with Fr∗F : fr∗XF → F . �

Corollary 10.3.5. Notation as above. For any K0 ∈ obD+(X0), the com-

posite

Hi(X,K) → Hi(X,F ∗K)
F∗
K0→ Hi(X,K)

and the composite

Hi(X,K) → Hi(X, (idX0 × frF)
∗K) ∼= Hi(X,K)

are inverse to each other.
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Proof. Denote the homomorphisms defined by the composites in the

corollary by φ and ψ, respectively. Consider the diagram

Hi(X,K) → Hi(X, (idX0 × frF)
∗K) ∼= Hi(X,K)

↓ ↓ ↓
Hi(X, fr∗XK) ∼= Hi(X,F ∗(idX0 × frF)

∗K) ∼= Hi(X,F ∗K)

Fr∗K ↓ ↓ F∗
K0

Hi(X,K) = Hi(X,K).

By 10.3.4, the lower rectangle in the diagram commutes. It is clear that

the other parts of the diagram commute. By 10.3.3, the composite of the

vertical arrows on the left is the identity. It follows that φψ = id. It is clear

that ψ is an isomorphism. So φ and ψ are inverse to each other. �

Proposition 10.3.6. Let n be a positive integer, let Fqn be the extension of

Fq of degree n contained in F, let X1 = X0⊗FqFqn , and let F1 be the inverse

image on X1 of a sheaf F0 on X0. Define frX1 : X1 → X1 so that it is the

identity on the underlying topological spaces, and that it maps each section

of OX1 to its qn-th power. Define Fr∗F1
: fr∗X1

F1 → F1 as before using qn

in place of q. If we iterate n times the correspondence (frX0 ,Fr
∗
F0

) and take

the base change of the iteration under Fqn → F, we get the correspondence

(frX1 ,Fr
∗
F1

). Let F1 = frX1 ⊗ idF and let F ∗F1
: F ∗1 F → F be the morphism

deduced from Fr∗F1
by the base change Fqn → F. Then the correspondence

(F1, F
∗
F1

) is the n-th iteration of the correspondence (F, F ∗F0
).

Proof. Let π1 : X1 → X0 be the projection. Denote by (frnX0
,Frn∗F0

) the

n-th iteration of (frX0 ,Fr
∗
F0

). By 10.3.2 (ii), the composite

fr∗X1
π∗1F0

∼= π∗1(fr
n
X0

)∗F0

π∗
1(Fr

n∗
F0

)→ π∗1F0

coincides with Fr∗F1
. Our assertion follows. �

Let x be a closed point of X0 with [k(x) : Fq] = n and let x̄ ∈ X(F) be

an F-point of X whose image in X0 is x. Then x̄ is a fixed point of Fn = F1.

The n-th iteration of the correspondence (F, F ∗F0
) induces a homomorphism

Fn∗x̄ : Fx̄ → Fx̄. Denote the closed immersion Spec k(x) → X0 by i. Then

i∗F0 is completely determined by the galois action of Gal(k(x)/k(x)) on

Fx̄. Let fx : Fx̄ → Fx̄ be the action on Fx̄ of the Frobenius substitution

α �→ αq
n

in Gal(k(x)/k(x)).

Proposition 10.3.7. With the above notation, the homomorphisms Fn∗x̄ :

Fx̄ → Fx̄ and fx : Fx̄ → Fx̄ are inverse to each other.
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Proof. Without loss of generality, assume n = 1 and hence k(x) = Fq.

Denote the image of x̄ in X0(F) also by x̄. Then x̄ is a fixed point of frX0 ,

and F ∗x̄ is the homomorphism induced by Fr∗F0
: fr∗X0

F0 → F0 on stalks at

x̄. By 10.3.2 (ii), we have a commutative diagram

fr∗Fq i
∗F0

∼= i∗fr∗X0
F0

Fri∗F0
↓ ↓ i∗(Fr∗F0

)

i∗F0 = i∗F0.

We are thus reduced to the case where X0 = SpecFq. One checks F ∗x = f−1x
directly in this case, or use 10.3.5. (Even though frFq is the identity, Fri∗F0

may be nontrivial.) �

Remark 10.3.8. Note that 10.3.5 also follows from 10.3.7 applied to the

sheaf F0 = Rif0∗K0 on SpecFq, where f0 : X0 → SpecFq is the structure

morphism. Let x̄ be the geometric point SpecF → SpecFq, and let f =

f0⊗idF. Using 10.3.2 (i) and taking base change, we find that the composite

Rf∗K → Rf∗RF∗F ∗K
F∗
K0→ Rf∗RF∗K ∼= RF∗Rf∗K

induces the morphism

F ∗Rf0∗K0
: F ∗Rf∗K → Rf∗K

by adjunction. But frFq is the identity morphism. So the above composite

can be written as

Rf∗K → Rf∗RF∗F ∗K
F∗
K0→ Rf∗RF∗K ∼= Rf∗K.

It follows that the composite

Hi(X,K) → Hi(X,F ∗K)
F∗
K0→ Hi(X,K)

can be identified with the homomorphism Fx̄ : (Rif∗K)x̄ → (Rif∗K)x̄.

The composite

Hi(X,K) → Hi(X, (idX0 × frF)
∗K) ∼= Hi(X,K)

can be identified with the action of the Frobenius substitution on

(Rif0∗F0)x̄. So 10.3.7 implies 10.3.5.
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10.4 Lefschetz Trace Formula

([SGA 4 1
2 ] Rapport 4–6.)

Let A be a commutative noetherian ring, let G be a finite group, and let

A[G] be the quotient of the additive group (A[G],+) by the subgroup

generated by elements of the form xy − yx (x, y ∈ A[G]). Then A[G] has

an A-module structure, and it is the quotient of the A-module A[G] by the

submodule generated by elements of the form h−1gh−g (g, h ∈ G). For any

g ∈ G, let [g] be the subset of G consisting of those elements conjugate to

g. Elements in [g] have the same image ḡ in A[G]. Choose g1, . . . , gk ∈ G

so that G is the disjoint union of the conjugacy classes [gj] (j = 1, . . . , k).

Then A[G] is the free A-module with basis ḡj (j = 1, . . . , k). For any

g ∈ G, the map

A[G] → A,
∑
h∈G

ahh �→
∑
h∈[g]

ah

is anA-module homomorphism, and it vanishes on the submodule generated

by h′−1hh′ − h (h, h′ ∈ G). So it induces a homomorphism

θg : A[G]
 → A.

Proposition 10.4.1. Let P be a finitely generated projective A[G]-module

and let v : P → P be an A[G]-module endomorphism. For any g ∈ G,

let TrA(g
−1v, P ) (resp, TrA[G](v, P )) be the trace of g−1v (resp. v) consid-

ered as an A-module endomorphism (resp. A[G]-module endomorphism).

Choose gj ∈ G (j = 1, . . . , k) so that G is the disjoint union of the conjugacy

classes [gj ]. Denote the images of gj in A[G] by ḡj. Then we have

TrA[G](v, P ) =

k∑
j=1

θgj (TrA[G](v, P ))ḡj ,

TrA(g
−1v, P ) = #C(g)θg(TrA[G](v, P )),

where C(g) = {h ∈ G|gh = hg} is the center of g.

Proof. Let φ : P → A[G]m and ψ : A[G]m → P be A[G]-module homo-

morphisms such that ψφ = id. We have

TrA(g
−1v, P ) = TrA(φg

−1vψ,A[G]m) = TrA(g
−1φvψ,A[G]m),

TrA[G](v, P ) = TrA[G](φvψ,A[G]
m).
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To prove the proposition, we may assume P = A[G]m. For each i ∈
{1, . . . ,m}, Let ei be the element in A[G]m whose i-th component is 1

and whose other components are 0. Write

v(ei) =

m∑
j=1

( ∑
h′∈G

ah
′
ij h
′
)
ej

with ah
′
ij ∈ A. Then TrA[G](v, P ) is the image of

∑m
i=1

∑
h∈G a

h
iih in A[G].

Elements in [gj ] have the same image in A[G]. So we have

TrA[G](v, P ) =
m∑
i=1

k∑
j=1

∑
h∈[gj ]

ahiiḡj =
k∑
j=1

( m∑
i=1

∑
h∈[gj ]

ahii

)
ḡj ,

θg(TrA[G](v, P )) =
m∑
i=1

∑
h∈[g]

ahii.

Hence

TrA[G](v, P ) =

k∑
j=1

θgj (TrA[G](v, P ))ḡj .

(Actually we have x =
∑k

j=1 θgj (x)ḡj for any x ∈ A[G].) On the other

hand, we have

(g−1v)(hei) = g−1hv(ei) =
m∑
j=1

∑
h′∈G

ah
′
ij g
−1hh′ej =

m∑
j=1

∑
h′∈G

ah
−1gh′
ij h′ej.

So we have

TrA(g
−1v, P ) =

m∑
i=1

∑
h∈G

ah
−1gh
ii

= #C(g)

m∑
i=1

∑
h∈[g]

ahii

= #C(g)θg(TrA[G](v, P )). �

Proposition 10.4.2. Let Λ be a commutative ring, A a commutative Λ-

algebra, P a finitely generated projective Λ[G]-module, and M a finitely

generated A[G]-module which is projective as an A-module. Then the A[G]-

module M ⊗Λ P is a finitely generated projective A[G]-module, where the

G-action onM⊗ΛP is given by g(x⊗y) = gx⊗gy for any x ∈M and y ∈ P .

Let v : P → P be a Λ[G]-module endomorphism. If TrΛ[G](v, P ) = 0, then

TrA[G](idM ⊗ v,M ⊗Λ P ) = 0.
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Proof. We may reduce to the case where P = Λ[G]m. Let (M ⊗Λ P )
′ be

the A[G]-module M⊗ΛP so that the G-action is given by g(x⊗y) = x⊗gy
for any x ∈M and y ∈ P . It is clear that (M ⊗Λ P )

′ is a finitely generated

projective A[G]-module. One can check that

φ :M ⊗Λ Λ[G]m → (M ⊗Λ Λ[G]m)′, x⊗ gei �→ g−1x⊗ gei

is an A[G]-module isomorphism, where ei (i = 1, . . . ,m) is the element in

Λ[G]m whose i-th component is 1 and whose other components are 0. So

M ⊗Λ P is a finitely generated projective A[G]-module.

Write

v(ei) =

m∑
j=1

∑
g∈G

agijgej

with agij ∈ Λ. We have

(φ ◦ (idM ⊗ v) ◦ φ−1)(x ⊗ ei) = φ((idM ⊗ v)(x ⊗ ei))

= φ
(
x⊗

m∑
j=1

∑
g∈G

agijgej

)
=

m∑
j=1

∑
g∈G

agijg
−1x⊗ gej .

Hence TrA[G](idM ⊗ v,M ⊗Λ P ) is the image of
m∑
i=1

∑
g∈G

agiiTrA(g
−1,M)g in

A[G]. Let g1, . . . , gk ∈ G such that G is the disjoint union of the conjugacy

classes [g1], . . . , [gn], and let ḡj be the image of gj in A[G]
. Then we have

TrA[G](idM ⊗ v,M ⊗Λ P ) =

k∑
j=1

m∑
i=1

∑
g∈[gj ]

agiiTrA(g
−1,M)ḡj

=
k∑
j=1

( m∑
i=1

∑
g∈[gj ]

agii

)
TrA(g

−1
j ,M)ḡj.

On the other hand, we have

0 = TrΛ[G](v, P ) =

m∑
i=1

∑
g∈G

agiiḡ =

k∑
j=1

( m∑
i=1

∑
g∈[gj ]

agii

)
ḡj .

Since {ḡ1, . . . , ḡk} is a basis of Λ[G], this implies that
m∑
i=1

∑
g∈[gj ]

agii = 0.

So we have TrA[G](idM ⊗ v,M ⊗Λ P ) = 0. �
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The kernel of the homomorphism

ε : A[G] → A,
∑
g∈G

agg �→
∑
g∈G

ag

is generated by g−e (g ∈ G) as an A-module. If we put the trivial G-action

on A, then ε is a homomorphism of A[G]-modules. For any A[G]-module

P , we have

A⊗A[G] P ∼= PG,

where PG is the space of G-coinvariants, that is, the quotient of G by

the A-submodule generated by gx − x (g ∈ G, x ∈ P ). If P is a finitely

generated projectiveA[G]-module, then PG is a finitely generated projective

A-module. The homomorphism ε induces a homomorphism

δ : A[G] → A.

Proposition 10.4.3. Let P be a finitely generated projective A[G]-module,

let u : P → P be an A[G]-module endomorphism, and let u′ : PG → PG be

the endomorphism induced by u. Then TrA(u
′, PG) = δ(TrA[G](u, P )).

Proof. We may reduce to the case where P = A[G]m. For each i ∈
{1, . . . ,m}, let ei (resp. e′i) be the element in A[G]m (resp. Am) whose i-th

component is 1 and whose other components are 0. Write

u(ei) =

m∑
j=1

(∑
g∈G

agijg
)
ej

with agij ∈ A. We have

δ(TrA[G](u, P )) =
∑
i

∑
g∈G

agii.

Since PG ∼= A⊗A[G] P ∼= Am, we have

u′(e′i) =
∑
j

(∑
g∈G

agij

)
e′j .

So

TrA(u
′, PG) =

∑
i

∑
g∈G

agii = δ(TrA[G](u, P )).

�
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Let X0 be a compactifiable scheme over a finite field Fq of characteristic

p with q elements, A a noetherian Z/�n-algebra with (�, p) = 1, K0 ∈
obDb

ctf(X0, A), F an algebraic closure of Fq, X = X0 ⊗Fq F, K the inverse

image of K0 on X , and F : X → X and F ∗K0
: F ∗K → K the morphisms

induced by frX0 : X0 → X0 and Fr∗K0
: fr∗X0

K0 → K0 respectively by base

change. Choose a compactification X0 of X0, let X = X0⊗Fq F, and let j :

X ↪→ X be the open immersion. Denote by F ∗ : RΓc(X,K) → RΓc(X,K)

the composite

RΓc(X,K) ∼= RΓ(X, j!K)

→ RΓ(X,F ∗j!K)

∼= RΓ(X, j!F
∗K)

F∗
K0→ RΓ(X, j!K)

∼= RΓc(X,K).

This morphism is independent of the choice of the compactification. By

10.2.1, 7.4.7 and 7.8.1, we have RΓc(X,K) ∈ obDb
perf(A), and for any

geometric point x̄ of X0, we have Kx̄ ∈ obDb
perf(A). If x̄ is an F-point of

X fixed by F , then F ∗K0
: F ∗K → K induces a morphism F ∗x̄ : Kx̄ → Kx̄.

The main result of this section is the following:

Theorem 10.4.4 (Lefschetz trace formula). Notation as above. Let

XF ∼= X0(Fq) be the set of fixed points of F on X(F) ∼= X0(F). We have∑
x̄∈XF

Tr(F ∗x̄ ,Kx̄) = Tr(F ∗, RΓc(X,K)).

We first prove the following corollary of this theorem.

Theorem 10.4.5. Let X0 be a compactifiable scheme over SpecFq and let

K ∈ obDb
c(X0,Q�). We have∑

x̄∈XF
Tr(F ∗x̄ ,Kx̄) = Tr(F ∗, RΓc(X,K)).

Proof. Let E be a finite extension of Q� such that K is represented by

an object in Db
c(X,E), let R be the integral closure of Z� in E, and let λ

be a uniformizer of R. Represent K by an object (Kn) in D
b
c(X,R), where

Kn ∈ obDb
ctf(X,R/(λ

n+1)) and

Kn+1 ⊗LR/(λn+2) R/(λ
n+1) ∼= Kn.
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We have RΓc(X,Kn) ∈ obDb
perf(R/(λ

n+1)) and

RΓc(X,Kn+1)⊗LR/(λn+2) R/(λ
n+1) ∼= RΓc(X,Kn).

Representing each RΓc(X,Kn) by a bounded complex Ln of free R/(λn+1)-

modules of finite rank. Then we have quasi-isomorphisms

Ln+1 ⊗R/(λn+2) R/(λ
n+1) ∼= Ln.

By 10.1.15, we can find a bounded complex L of free R-modules of finite

rank and quasi-isomorphisms L/λn+1L→ Ln such that the diagrams

L/λn+2L → Ln+1

↓ ↓
L/λn+1L → Ln

commute up to homotopy. The morphism F ∗ on RΓc(X,Kn) can be rep-

resented by a morphism of complexes F ∗n on L/λn+1L. By 10.1.11, we may

assume

F ∗n = F ∗n+1 ⊗ idR/(λn+1).

So the family (
Tr
(
F ∗, RΓc(X,Kn)

))
=
(
Tr(F ∗n , L/λ

n+1L)
)

defines an element in R = lim←−nR/(λ
n+1), and this element is

Tr(F ∗, RΓc(X,K)). Similarly, for any x̄ ∈ XF , the family (Tr(F ∗x̄ ,Knx̄))

defines an element in R = lim←−nR/(λ
n+1), and this element is Tr(F ∗x̄ ,Kx̄).

By 10.4.4, we have∑
x̄∈XF

Tr(F ∗x̄ ,Knx̄) = Tr(F ∗, RΓc(X,Kn))

for all n. So we have∑
x̄∈XF

Tr(F ∗x̄ ,Kx̄) = Tr(F ∗, RΓc(X,Kn)).
�

To prove 10.4.4, we first consider the special case where dimX ≤ 1, and

then reduce the general case to the special case.

Lemma 10.4.6. Let X be a scheme of finite type over an algebraically

closed field k, f : X → X a k-morphism, K ∈ obDb
ctf(X,A), f

∗ : f∗K →
K a morphism, and Xf the set of fixed points of f in X(k). If dimX = 0,

then we have ∑
x̄∈Xf

Tr(f∗,Kx̄) = Tr(f∗, RΓc(X,K)).

In particular, 10.4.4 holds if dimX0 = 0.
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Proof. Use the fact that

RΓc(X,K) =
⊕

x̄∈X(k)

Kx̄.

�

Lemma 10.4.7. Let X be an irreducible smooth projective curve over an

algebraically closed field k, f : X → X a k-morphism with isolated fixed

points, and U a dense open subset of X such that f−1(U) = U . For

any fixed point x of f on X(k), the multiplicity of f at x is defined to be

vx(f
∗(πx)−πx), where vx is the valuation of the function field of X defined

by x and πx is a uniformizer for this valuation. Suppose that fixed points

of f in X −U have multiplicity 1. Let vU(f) be the sum of multiplicities of

fixed points of f in U . Then we have

2∑
i=0

(−1)iTr(f∗, Hi
c(U,Q�)) = vU (f).

Proof. We have

2∑
i=0

(−1)iTr(f∗, Hi
c(U,Q�))

=
2∑
i=0

(−1)iTr(f∗, Hi(X,Q�))−
2∑
i=0

(−1)iTr(f∗, Hi(X − U,Q�)).

By 8.6.8,
∑2
i=0(−1)iTr(f∗, Hi(X,Q�)) is the sum of multiplicities of fixed

points of f in X . By 10.4.6,
∑2

i=0(−1)iTr(f∗, Hi(X−U,Q�)) is the number

of fixed points of f in X − U . Since fixed points of f in X − U have

multiplicity 1,
∑2
i=0(−1)iTr(f∗, Hi

c(U,Q�)) is the sum of multiplicities of

fixed points of f in U . �

Lemma 10.4.8. Let X0 be a smooth irreducible curve on Fq, and let F0 be

a locally constant sheaf of A-modules on X0 such that there exists a galois

etale covering space f : X ′0 → X0 with the property that f∗F0 is a constant

sheaf associated to a finitely generated projective A-module. Then we have∑
x̄∈XF

Tr(F ∗x̄ ,Fx̄) = Tr(F ∗, RΓc(X,F )),

where F is the inverse image of F0 in X.

Proof. Let M = Γ(X ′0, f
∗F0) and let G be the galois group of the etale

covering space f : X ′0 → X0. Then M is a finitely generated projective

A-module with a G-action. The sheaf f∗Z/�n on X0 is a locally free sheaf
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of Z/�n[G]-modules. By 10.2.1, 7.4.7 and 7.8.1, we have RΓc(X, f∗Z/�n) ∈
obDb

perf(Z/�
n[G]). The canonical morphism

adj : f∗f∗F0 = f!f
∗F0 → F0

is a morphism of G-sheaves, where F0 is provided with the trivial G-action.

It induces an isomorphism

(f∗f∗F0)G
∼=→ F0.

Consider the morphism of sheaves

M ⊗Z/�n f∗Z/�n → f∗f∗F0

induced by the morphism of presheaves

M ⊗Z/�n (f∗Z/�n)(U) → (f∗f∗F0)(U) = (f∗F )(U ×X0 X
′
0),

s⊗ a �→ a(s|U×X0X
′
0
)

for any etale X0-scheme U , any a ∈ (f∗Z/�n)(U) = Z/�n(U ×X0 X
′
0), and

any s ∈ M = Γ(X ′0, f
∗F0). Since f∗F0

∼= M , this is an isomorphism of

sheaves by 7.4.7. Note that this is an isomorphism of G-sheaves, where the

action of G on M ⊗Z/�n (f∗Z/�n) is given by

g(s⊗ a) = gs⊗ ga.

We thus have

F0
∼= (M ⊗Z/�n f∗Z/�n)G ∼= A⊗A[G] (M ⊗Z/�n f∗Z/�n).

So we have

RΓc(X,F ) ∼= A⊗LA[G] (M ⊗LZ/�n RΓc(X, f∗Z/�n)).
Representing RΓc(X, f∗Z/�n) by a perfect complex of Z/�n[G]-modules P .

We then have

RΓc(X,F ) ∼= (M ⊗Z/�n P )G.

Through this isomorphism, the action of F ∗ on RΓc(X,F ) is induced by the

action of F ∗ on RΓc(X, f∗Z/�n) ∼= RΓc(X
′,Z/�n), where X ′ = X ′0 ⊗Fq F.

Suppose that F has no fixed point in X(F) and let us prove

Tr(F ∗, RΓc(X,F )) = 0,

that is,

TrA(F
∗, (M ⊗Z/�n P )G) = 0.

By 10.4.3, it suffices to prove

TrA[G](F
∗,M ⊗Z/�n P ) = 0.
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By 10.4.2, it suffices to prove

TrZ/�n[G](F
∗, P ) = 0.

By 10.4.1, it suffices to prove

θg(TrZ/�n[G](F
∗, P )) = 0

for any g ∈ G, that is,

θg(TrZ/�n[G](F
∗, RΓc(X ′,Z/�n))) = 0.

By 10.4.1, we have

#C(g)θg(TrZ/�n[G](F
∗, RΓc(X ′,Z/�n))) = TrZ/�n((Fg

−1)∗, RΓc(X ′,Z/�n)).

This formula is true for any n. It follows that

θg(TrZ/�n[G](F
∗, RΓc(X ′,Z/�n))

≡ 1

#C(g)

2∑
i=0

(−1)iTr((Fg−1)∗, Hi
c(X

′,Q�)) mod �n.

To prove our assertion, it suffices to show

2∑
i=0

(−1)iTr((Fg−1)∗, Hi
c(X

′,Q�)) = 0

if F has no fixed points in X(F). Let X
′
0 be the smooth compactification

of X ′0, let X
′
= X

′
0 ⊗Fq F, let x̄ be a fixed point of Fg−1 in X

′
(F), and let

x0 ∈ X
′
0 be the image of x̄ in X ′0. Then we have g(x0) = x0. Choose a

uniformizer πx0 for OX′
0,x0

. Then πx0 is also a uniformizer for OX′
,x̄. We

have

vx̄((Fg
−1)∗(πx0)− πx0) = vx(g

−1(πx0)
q − πx0) = 1.

So the multiplicity of Fg−1 at x̄ is 1. Moreover, if x̄ is a fixed point of Fg−1

in X ′(F), then its image in X is a fixed point of F in X(F). But F has no

fixed point in X(F). So Fg−1 has no fixed point in X ′(F). We thus have

2∑
i=0

(−1)iTr((Fg−1)∗, Hi
c(X

′,Q�)) = 0

by 10.4.7. This proves Tr(F ∗, RΓc(X,F )) = 0 under the assumption that

F has no fixed point in X .

In general, we have

Tr(F ∗, RΓc(X −XF ,F |X−XF )) = 0
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by the above discussion. By 10.4.6, we have

Tr(F ∗, RΓc(XF ,F |XF )) =
∑
x̄∈XF

Tr(F ∗x̄ ,Fx̄).

So we have

Tr(F ∗, RΓc(X,F ))

= Tr(F ∗, RΓc(X −XF ,F |X−XF )) + Tr(F ∗, RΓc(XF ,F |XF ))
=
∑
x̄∈XF

Tr(F ∗x̄ ,Fx̄).

�

Lemma 10.4.9. Let X0 be a smooth irreducible curve over Fq, and let

K ∈ obDb
ctf(X0, A). We have∑

x̄∈XF
Tr(F ∗x̄ ,Kx̄) = Tr(F ∗, RΓc(X,K)).

Proof. Represent K by a bounded complex of flat constructible sheaves

of A-modules. By 5.8.1 (ii), we can find an open dense subset U0 of X0, and

an etale covering space U ′0 → U0 such that K|U ′
0
is a complex of constant

sheaves. By 10.4.8, we have∑
x̄∈UF

Tr(F ∗x̄ ,Kx̄) = Tr(F ∗, RΓc(U,K|U )),

where U = U0 ⊗Fq F. By 10.4.6, we have∑
x̄∈(X−U)F

Tr(F ∗x̄ ,Kx̄) = Tr(F ∗, RΓc(X − U,K|X−U )).

So we have

Tr(F ∗, RΓc(X,K))

= Tr(F ∗, RΓc(U,K|U)) + Tr(F ∗, RΓc(X − U,K|X−U))
=
∑
x̄∈UF

Tr(F ∗x̄ ,Kx̄) +
∑

x̄∈(X−U)F

Tr(F ∗x̄ ,Kx̄)

=
∑
x̄∈XF

Tr(F ∗x̄ ,Kx̄).

�

Proof of 10.4.4. For every locally closed subset Y of X , let

T1(Y,K|Y ) =
∑
x̄∈Y F

Tr(F ∗x̄ ,Kx̄),

T2(Y,K|Y ) = Tr(F ∗, RΓc(Y,K|Y )),
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and let

S = {Y |Y is closed in X such that T1(Y,K|Y ) 	= T2(Y,K|Y )}.
To prove 10.4.4, it suffices to show that S is empty. If S is not empty,

then we can choose a minimal element Y in S . Let U be an affine open

subset of Y . By the minimality of Y , we have

T1(Y − U,K|Y−U ) = T2(Y − U,K|Y−U ).
We have

Tk(Y,K|Y ) = Tk(Y − U,K|Y−U ) + Tk(U,K|U ) (k = 1, 2).

Since T1(Y,K|Y ) 	= T2(Y,K|Y ), we have

T1(U,K|U ) 	= T2(U,K|U ).
Since U is affine, we can find a closed immersion i : U → AmFq for some m.

We have

Tk(U,K|U) = Tk(A
m
Fq
, i∗(K|U )) (k = 1, 2).

Denote i∗(K|U ) also by K. We thus find a complex K ∈ obDb
ctf(A

m
Fq
, A)

such that T1(A
m
Fq
,K) 	= T2(A

m
Fq
,K).

Let π : AmFq → Am−1Fq
be the projection. We have

T1(A
m−1
Fq

, Rπ!K) =
∑

x∈Am−1
Fq

(Fq)

Tr(Fx̄, (Rπ!K)x̄)

=
∑

x∈Am−1
Fq

(Fq)

Tr
(
Fx̄, RΓc

(
π−1(x)⊗Fq F,K|π−1(x)⊗FqF

))
.

By 10.4.9, we have

Tr
(
Fx̄, RΓc

(
π−1(x) ⊗Fq F,K|π−1(x)⊗FqF

))
=

∑
y∈π−1(x)(Fq)

Tr(Fȳ ,Kȳ).

So we have

T1(A
m−1
Fq

, Rπ!K) =
∑

x∈Am−1
Fq

(Fq)

∑
y∈π−1(x)(Fq)

Tr(Fȳ ,Kȳ)

= T1(A
m
Fq
,K).

On the other hand, we have

T2(A
m
Fq
,K) = Tr(F ∗, RΓc(AmF ,K))

= Tr(F ∗, RΓc(Am−1F , Rπ!K))

= T2(A
m−1
Fq

, Rπ!K).
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So we have

Tk(A
m
Fq
,K) = Tk(A

m−1
Fq

, Rπ!K) (k = 1, 2).

We thus have T1(A
m−1
Fq

, Rπ!K) 	= T2(A
m−1
Fq

, Rπ!K). Denote Rπ!K also

by K. We thus find K ∈ obDb
ctf(A

m−1
Fq

, A) such that T1(A
m−1
Fq

,K) 	=
T2(A

m−1
Fq

,K). Using this argument repeatedly, we can find K ∈
obDb

ctf(A
1
Fq
, A) such that T1(A

1
Fq
,K) 	= T2(A

1
Fq
,K). This contradicts

10.4.9. So S is empty. �

10.5 Grothendieck’s Formula of L-functions

([SGA 4 1
2 ] Rapport 3.)

Let X0 be a compactifiable scheme over Fq, let X = X0 ⊗Fq F, let K0 ∈
obDb

c(X0,Q�), and let K be the inverse image of K0 in X . Denote by

|X0| the set of closed point in X0. For any x ∈ |X0|, let N(x) be the

number of elements of the residue field k(x), and let deg(x) = [k(x) :

Fq]. We have N(x) = qdeg(x). Let i : Spec k(x) → X0 be the closed

immersion. The complex i∗K0 is completely determined by the galois action

of Gal(k(x)/k(x)) on Kx̄. Let fx : Kx̄ → Kx̄ be the action of the Frobenius

substitution α �→ αq
deg(x)

in Gal(k(x)/k(x)).Define the L-function of K0 to

be

L(X0,K0, s) =
∏

x∈|X0|

1

det
(
1− 1

N(x)s f
−1
x ,Kx̄

) ,
where

det
(
1− 1

N(x)s
f−1x ,Kx̄

)
=
∏
i

det
(
1− 1

N(x)s
f−1x ,H i(Kx̄)

)(−1)i
.

Making the change of variable t = q−s, we can also define the L-function

as

L(X0,K0, t) =
∏

x∈|X0|

1

det(1− tdeg(x)f−1x ,Kx̄)
.

Let F : X → X be the base change of frX0 : X0 → X0. For any x ∈ |X0|
with deg(x) = n, any F-point of X with image x is a fixed point of Fn.

Iterating n times the Frobenius correspondence F ∗K0
: F ∗K → K induces a

morphism Fn∗x̄ : Kx̄ → Kx̄. By 10.3.5, we have Fn∗x̄ = f−1x . So we have

L(X0,K0, t) =
∏

x∈|X0|

1

det(1− tdeg(x)F
deg(x)∗
x̄ ,Kx̄)

.
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Theorem 10.5.1 (Grothendieck). Notation as above, we have

L(X0,K0, t) =
∏
i

det(1− F ∗t,Hi
c(X,K))(−1)

i+1

as a formal power series in Q�[[t]].

Remark 10.5.2. Since Hi
c(X,K) is nonzero only for finitely many i, this

formula shows that L(X0,K0, t) is a rational function.

Proof of 10.5.1. Since both sides of the equation are formal power series

with constant term 1, it suffices to show

t
d

dt
lnL(X0,K0, t) = t

d

dt
ln
∏
i

det(1− F ∗t,Hi
c(X,K))(−1)

i+1

.

Note that for any endomorphism φ : V → V on a finite dimensional Q�-

vector space V , we have

t
d

dt
ln det(1− φtk)−1 =

∞∑
n=1

kTr(φn)tkn.

Indeed, let λ1, . . . , λd be the eigenvalues of φ, where d = dimV . We have

t
d

dt
ln det(1− φtk)−1 = t

d

dt
ln

d∏
i=1

(1− λit
k)−1

= −
d∑
i=1

t
d

dt
ln(1− λit

k)

=

d∑
i=1

kλit
k

1− λitk

=

d∑
i=1

∞∑
n=1

kλni t
kn

=

∞∑
n=1

k(

d∑
i=1

λni )t
kn

=

∞∑
n=1

kTr(φn)tkn.
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So we have

t
d

dt
lnL(X0,K0, t)

= t
d

dt
ln
∏

x∈|X0|
det(1− tdeg(x)F

deg(x)∗
x̄ ,Kx̄)

−1

=
∑

x∈|X0|
t
d

dt
ln det(1− tdeg(x)F

deg(x)∗
x̄ ,Kx̄)

−1

=
∑

x∈|X0|

∞∑
n=1

deg(x)Tr(F
ndeg(x)∗
x̄ ,Kx̄)t

ndeg(x)

=

∞∑
m=1

∑
x ∈ |X0|
deg(x)|m

deg(x)Tr(Fm∗x̄ ,Kx̄)t
m

=

∞∑
m=1

∑
x̄∈XFm

Tr(Fm∗x̄ ,Kx̄)t
m.

Here for the last equality, we use the fact that there are exactly deg(x)

F-points fixed by Fm with image x for any x ∈ |X0| satisfying deg(x)|m.

Applying 10.4.5 to the scheme X0 ⊗Fq Fqm , we get∑
x̄∈XFm

Tr(Fm∗x̄ ,Kx̄) =
∑
i

(−1)iTr(F ∗m, Hi
c(X,K)).

So we have

t
d

dt
lnL(X0,K0, t) =

∞∑
m=1

∑
i

(−1)iTr(F ∗m, Hi
c(X,K))tm.

On the other hand, we have

t
d

dt
ln
∏
i

det(1− F ∗t,Hi
c(X,K))(−1)

i+1

=
∑
i

(−1)it
d

dt
ln det(1− F ∗t,Hi

c(X,K))−1

=
∑
i

∞∑
m=1

(−1)iTr(F ∗m, Hi
c(X,K))tm.

So we have

t
d

dt
lnL(X0,K0, t) = t

d

dt
ln
∏
i

det(1− F ∗t,Hi
c(X,K))(−1)

i+1

.

�
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Corollary 10.5.3. Let X0 and Y0 be Fq-schemes of finite type, and let f :

X0 → Y0 be a compactifiable Fq-morphism. For any K0 ∈ obDb
c(X0,Q�),

we have

L(X0,K0, t) = L(Y0, Rf!K0, t).

Proof. We have

L(Y0, Rf!K0, t)

=
∏
y∈|Y0|

det(1 − tdeg(y)f−1y , (Rf!K)ȳ)
−1

=
∏
y∈|Y0|

∏
i

det(1 − tdeg(y)f−1y , Hi
c(f
−1(ȳ),K|f−1(ȳ)))

(−1)i+1

=
∏
y∈|Y0|

∏
x∈|f−1(y)|

det(1− tdeg(y)[k(x):k(y)]f−1x ,Kx̄)

=
∏

x∈|X0|
det(1− tdeg(x)f−1x ,Kx̄)

= L(X0,K0, t),

where the third equality follows from 10.3.5 and 10.5.1 applied to the k(y)-

scheme f−1(y). This proves our assertion.
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Cartier divisor, 314

Cartier divisor class group, 314

central K-algebra, 233

codimension, 311

cofinal, 89

cohomological dimension, 161

cohomology class associated to an

algebraic cycle, 476, 480, 481

compactifiable morphism, 348

compactifiable scheme, 348

compactification, 349

constant sheaf, 246

constructible set, 15

constructible sheaf, 247

corestriction homomorphism, 145, 155

cospecialization homomorphism, 388

cup product, 362

decomposition subgroup, 121

degree of a divisor, 317

degree of an invertible OX -module,

317

degree of inertia, 409

derived category, 275

descent datum for a quasi-coherent

sheaf, 22

descent datum for a scheme, 38

dimension of a scheme, 311

direct image, 186

direct limit, 87

distinguished triangle, 267

division algebra, 233

divisor class group, 312

effective Cartier divisor, 314

effective divisor, 312

equivalence of categories, 4

essentially etale homomorphism, 100

essentially surjective functor, 3

etale cohomology group, 210

etale covering, 178

etale covering space, 121

etale morphism, 66
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610 Etale Cohomology Theory

etale neighborhood, 194

etale presheaf, 176

etale sheaf, 179

exact functor, 268

faithful functor, 3

faithfully flat module, 5

faithfully flat morphism, 20

final object, 90

finite cohomological dimension, 283

finite Tor-dimension, 295

flasque sheaf, 212

flat module, 1

flat morphism, 20

flat sheaf, 215

Frobenius correspondence, 585

Frobenius morphism, 584

fully faithful functor, 3

fundamental group, 128

galois etale covering space, 122

generalization of a geometric point,

196

generalization of a point, 17

geometric Frobenius correspondence,

588

geometric point, 121

germ, 194

Godement resolution, 219

Grothendieck topology, 192

group scheme, 241

henselian local ring, 95

henselization of a local ring, 102

higher direct image, 210

Hochschild–Serre spectral sequence,

144, 155, 499

induced G-module, 143, 155

inertia subgroup, 121, 412

inflation homomorphism, 142

inverse image, 186

inverse limit, 87

Künneth formula, 361, 508

Kummer’s theory, 317

left derived functor, 281

lisse λ-adic sheaf, 530

lisse Q�-sheaf, 560

lisse E-sheaf, 557

localization of category, 273

locally acyclic morphism, 376

locally closed subset, 15

locally constant sheaf, 246

mapping cone, 271

Mittag–Leffler condition (ML), 530

module of relative differentials, 59

morphism locally of finite

presentation, 49

morphism of finite presentation, 51

multiplicity of a fixed point, 492

nearby cycle functor, 503

noetherian sheaf, 249

normal basis, 165

null system, 530

perfect complex, 565

presheaf, 171

prime divisor, 311

principal Cartier divisor, 314

principal divisor, 312

pro-p-group, 151

profinite group, 133

projection formula, 360

proper base change theorem, 331

quasi-affine morphism, 40

quasi-affine scheme, 40

quasi-algebraically closed field, 168

quasi-compact morphism, 21

quasi-finite homomorphism, 41

quasi-finite morphism, 43

quasi-isomorphism, 274

quotient of a scheme, 117
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radiciel morphism, 28

ramification index, 409

reduced norm, 238

refinement of an etale covering, 179

regular in codimension one, 311

relative dimension, 73

relative Frobenius morphism, 585

representable functor, 59

restriction, 171

restriction homomorphism, 142

right derived functor, 280

sheaf associated to a presheaf, 179

sheaf of relative differentials, 63

sheaf represented by a scheme, 189

simple algebra, 233

simple module, 233

skyscraper sheaf, 319

smooth base change theorem, 389

smooth morphism, 73

specialization map, 198

specialization morphism, 196

specialization of a geometric point,

196

specialization of a point, 17

split complex, 220, 301

stalk, 193

strict p-cohomological dimension, 161

strict cohomological dimension, 161

strict henselization of a local ring, 110

strict localization of a local ring, 110

strict localization of a scheme, 196

strictly essentially etale

homomorphism, 100

strictly henselian local ring, 95

strictly local ring, 95

strictly local trait, 432

strongly locally acyclic morphism, 377

support of a section, 201

support of a sheaf, 201

Swan character, 572

Sylow p-subgroup of a profinite

group, 151

tamely ramified extension, 410

thick subcategory of an abelian

category, 271

totally ramified extension, 410

trace, 565

trait, 432

triangulated category, 267

uniformizer, 409

universally locally acyclic morphism,

376

universally strongly locally acyclic

morphism, 378

unramified extension, 410

unramified morphism, 65

vanishing cycle functor, 504

variation, 504

way-out left functor, 303

way-out right functor, 303

weakly injective G-module, 143, 155

Weil divisor, 311

wild inertia subgroup, 414
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