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Preface

Ich sehe jetzt alles mit anderen Augen!
Die Tiefen des Daseins sind unermeßlich!

Mein lieber Freund!
Es gibt manches auf der Welt,

Das läßt sich nicht sagen.

Jedoch, jedoch, jedoch, jedoch, jedoch!
Mut ist in mir, Mut Freund!

Die Welt ist lieblich

Und nicht fürchterlich dem Mutigen.

“Ariadne auf Naxos”, by Richard Strauss,
libretto by Hugo von Hofmannsthal

In 1968, massive political and social upheaval shook the world, most no-
ticeably in Paris. These events influenced a generation to which one of the
authors of this book belongs. A lesser-known event in France that year is the
publication of “Dix exposés sur la cohomologie des schémas” by J. Giraud,
A. Grothendieck, S.L. Kleiman, M. Raynaud and J. Tate. Included there,
with the kind permission of N. Bourbaki, were two talks by Grothendieck
in the Bourbaki seminar, entitled “Le groupe de Brauer I” and “Le groupe
de Brauer II”, followed by the 100-page “Le groupe de Brauer III”. More
than fifty years later, it remains the principal source on Grothendieck’s gen-
eralisation of the Brauer group of fields to the Brauer group of schemes, in
the language of étale cohomology. While masterfully written, with the fresh
appeal of a newly designed theory, Grothendieck’s two seminar talks and a
long paper are hardly a textbook.

Our first motivation for writing this book was to complement Grothen-
dieck’s foundational text with a more accessible modern exposition, and to
give proofs of some results not easily found in the literature. Our second
motivation was to describe recent developments in the theory of the Brauer–
Manin obstruction and local-to-global principles, as well as new geometric
applications of the Brauer group.

v
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What we now call the Brauer group of a field was defined by Richard
Brauer in [Bra32, p. 243]. He showed that this is a torsion abelian group
[Bra32, Sätze 1, 2]. Under the name of “R. Brauersche Algebrenklassen-
gruppe”, the Brauer group of a number field features in the paper by Hasse
[Has33] dedicated to Emmy Noether’s fiftieth birthday. (See [Roq05] for the
early history of the Brauer group.) Precursors of Grothendieck’s work on the
Brauer group of a scheme were the works of Azumaya [Az51] and Auslander
and Goldman [AG60] on the Brauer group of a commutative ring.

Soon after the publication of “Le groupe de Brauer I, II, III” it became
clear that the Brauer group of an algebraic variety is a very useful tool.
In his 1970 ICM address [Man71], Manin defined a natural pairing between
the Brauer group of a variety X over a number field k and the space of its
adelic points X(Ak). He pointed out that this pairing generalises pairings in
the theory of abelian varieties (Cassels–Tate pairing on the Tate–Shafarevich
group, maps in the Cassels–Tate dual sequence) and in the theory of algebraic
tori (Voskresenskĭı). He also showed how several known counter-examples to
the Hasse principle building on reciprocity laws could be interpreted in terms
of this pairing. The Brauer–Manin obstruction revolutionised the theory of
Diophantine equations by enabling one to study local-to-global principles for
rational points beyond the narrow confines of varieties satisfying the Hasse
principle and weak approximation.

In a separate development, Artin and Mumford [AM72] used the birational
invariance of the Brauer group to construct examples of unirational but not
rational varieties over the field of complex numbers. This gave a negative
answer to the Lüroth problem in dimension at least 3, by a method differ-
ent from those of Clemens–Griffiths and Iskovskikh–Manin, found about the
same time. In 1984 the unramified Brauer group was used by Saltman who
found examples of finite subgroups G ⊂ GL(n,C) such that the quotient
GL(n,C)/G is not rational. This gives a negative answer to a problem of
Emmy Noether motivated by the inverse Galois problem.

In the 1970s and 1980s, Colliot-Thélène and Sansuc developed the theory
of descent and universal torsors, and linked it to the Brauer–Manin obstruc-
tion. For geometrically rational surfaces X over a number field k, in 1979 they
asked whether the Brauer–Manin obstruction correctly describes the closure
of the set of rational points X(k) in X(Ak). This was supported by a conjec-
tural argument involving Schinzel’s hypothesis, and also by a theorem about
certain intersections of two quadrics proved jointly with D. Coray. In 1987,
that theorem was vastly generalised in a joint work with Swinnerton-Dyer.

This was the origin of the conjecture that X(k) should be dense in the
Brauer–Manin set X(Ak)Br for arbitrary smooth, projective, rationally con-
nected varieties. In contrast, in 1997 Skorobogatov constructed a bielliptic
surface X over Q which is a counter-example to the Hasse principle that can-
not be explained by the Brauer–Manin obstruction. Stronger versions of the
Brauer–Manin obstruction were soon proposed by Harari and Skorobogatov,
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but a more radical counter-example found by Poonen in 2010 shows that for
general varieties these obstructions are insufficient too.

Also in the 1980s a related question was raised: does a natural analogue
of the Brauer–Manin obstruction control zero-cycles on arbitrary smooth
projective varieties? This question has connections with algebraic K-theory.
Important results were obtained by Salberger for conic bundles.

More recently, the birational invariance of the Brauer group has become
one of the ingredients of the specialisation method discovered by Voisin and
developed by Colliot-Thélène and Pirutka, and later by Schreieder and others.
This method was used by Hassett, Pirutka and Tschinkel to give examples
of algebraic families of smooth projective varieties over the field of complex
numbers, some of which are rational, whereas some others are not even stably
rational.

Contents

Let us give a brief outline of the contents of this book. We refer to the
introductions to individual chapters for more details.

Chapters 1 and 2 contain preliminary material on Galois and étale co-
homology. For obvious reasons many results here are stated without proofs,
though we give a proof of compatibility of two definitions of the residue map
for the Brauer group of a discretely valued field.

Chapter 3 starts with definitions of the two Brauer groups of a scheme:
the Brauer group defined in terms of Azumaya algebras, which we call the
Brauer–Azumaya group, and the cohomological Brauer group, which we call
the Brauer–Grothendieck group. Grothendieck denoted the Brauer–Azumaya
group of a scheme X by Br(X) and the cohomological Brauer group by
Br′(X). This book is mainly concerned with the latter group, which is why we
reserve the notation Br(X) for the cohomological Brauer group (and usually
refer to it as ‘the Brauer group’) and denote the Brauer–Azumaya group by
BrAz(X). We make initial observations towards comparing the two groups.
Other fundamental subjects discussed in this chapter are localisation and the
purity theorem for the Brauer group.

In Chapter 4 we reproduce de Jong’s proof of a theorem of Gabber which
says that a natural homomorphism from BrAz(X) to the torsion subgroup of
Br(X) is an isomorphism for a quasi-projective scheme over an affine scheme.
This requires the use of stacks, to which we give a short introduction.

In Chapters 5, 6, 7 we focus on the Brauer group of a smooth variety over
a field and its behaviour under extension of the ground field. In Chapter 5,
we describe the structure of this group and methods to compute it, both in
the general case and for classes of varieties satisfying additional geometric
conditions. In Chapter 6 we define the unramified Brauer group and prove
that the Brauer group of a smooth and proper variety is a birational invariant.
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Chapter 7 deals with Severi–Brauer varieties and projective quadrics, and
ends with computations of Brauer groups of some affine hypersurfaces.

Chapter 8 contains various results on the Brauer group of singular vari-
eties, which show that properties familiar in the smooth case do not extend
to arbitrary varieties.

In Chapter 9 we collect results on the Brauer group and on the unramified
Brauer group of a variety equipped with an action of a linear algebraic group,
such as a torsor or a homogeneous space. We discuss theorems of Saltman
and of Bogomolov that can be used to give negative answers to Noether’s
problem.

Chapters 10, 11 and 12 are devoted to the Brauer group of a family of
varieties. The subject of Chapter 10 is schemes over a local ring and varieties
over a local field. Here we also discuss split fibres and explore their proper-
ties. In Chapter 11, after defining the vertical Brauer group of a morphism,
we explain how to compute the Brauer group of a conic bundle over a 1- or
2-dimensional base. We present the Artin–Mumford examples from this bira-
tional point of view. Chapter 12 contains an exposition of the specialisation
method with applications to the behaviour of stable rationality in a smooth
family.

The next group of chapters concerns arithmetic applications. The Brauer–
Manin obstruction is introduced and studied in Chapter 13. Chapter 14 con-
tains an exposition of several results stating that for some classes of vari-
eties the Brauer–Manin obstruction precisely describes the closure of the set
of rational points inside the topological space of adelic points. We discuss
Schinzel’s Hypothesis (H), applications of results in additive combinatorics
due to Green, Tao and Ziegler to rational points and sketch a proof of a the-
orem of Harpaz and Wittenberg about families of rationally connected vari-
eties. In the last part of this chapter we also give an overview of the theory
of obstructions to the local-to-global principles for rational points. Chapter
15 deals with zero-cycle analogues of these themes: we explain Salberger’s
method and sketch the general result of Harpaz and Wittenberg.

The last chapter, Chapter 16, concerns finiteness properties of the Brauer
group of abelian varieties, K3 surfaces, and varieties dominated by products
of curves when the ground field is finitely generated over its prime subfield.
We recall Tate’s conjecture and its Brauer group variant over a field finitely
generated over the prime field, in particular over a finite field. The treatment
of K3 surfaces necessitates a detour via an interpretation of their moduli
spaces as Shimura varieties and the Kuga–Satake construction. We give com-
plete proofs of the Tate conjecture and the finiteness of the Brauer group
for K3 surfaces modulo the Brauer group of the ground field in the case of
characteristic zero.

The reader will not fail to notice that the style of this book varies from
chapter to chapter, from a more in-depth treatment to a survey. The authors
are aware of these and other imperfections, as well as omissions of a number
of important subjects. In this book we only fleetingly discuss descent and
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torsors, for which we refer to [Sko01]. Other subjects which could have been
but are not included:

• unramified cohomology in higher degrees;
• the Brauer group and differentials in characteristic p;
• Swinnerton-Dyer’s method for rational points on a pencil of genus 1

curves;
• the integral Brauer–Manin obstruction.

We recommend Poonen’s recent book [Po18] as an extremely helpful and com-
prehensive introduction to rational points. Another book on the Brauer group
of varieties was recently published by Gorchinskiy and Shramov [GSh18].
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Notation

The symbol ' stands for a (not necessarily canonical) isomorphism. The
symbol ∼= denotes a canonical isomorphism.

For an abelian group A we denote by A[n] the n-torsion subgroup of A,
that is, A[n] = {x ∈ A|nx = 0}. If ` is a prime number, we denote by A{`}
the `-primary torsion subgroup of A, i.e. the union of A[`i] for all i ≥ 1. We
write Ators for the torsion subgroup of A, i.e. the union of A[n] for all n ≥ 1.
If p is a prime or p = 1, we write A(p′) for the union of A{`} for all primes
` 6= p.

We denote by R∗ the group of units of a ring R. For a commutative ring
R, an R-module M and an element r ∈ R we often write M/r for M/rM . In
particular, for an integer n we write Z/n instead of Z/nZ.

For a field k we write k̄ for a fixed algebraic closure of k, and ks ⊂ k̄ for the
separable closure of k in k̄. Let Γ = Gal(ks/k) be the absolute Galois group
of k. The characteristic exponent of k is 1 if char(k) = 0 and p if char(k) is
a prime number p.

The p-cohomological dimension cdp(G) of a profinite group G, where p is a
prime, is the smallest integer n such that Hi(G,M){p} = 0 for all G-modules
M such that M = Mtors and all i > n. The cohomological dimension cd(G)
of a profinite group G is the supremum of its p-cohomological dimensions
over all primes p.

The cohomological dimension cd(k) of a perfect field k is the cohomological
dimension of its absolute Galois group Γ .

For a scheme X over a field k, we write X = X ×k k̄ and Xs = X ×k ks.
A variety over k is defined as a separated scheme of finite type over k. In
particular, a variety X over k is quasi-compact (i.e., it is a finite union of
affine open subsets), and the intersection of two affine open subsets of X is
affine.

A scheme X is called quasi-separated if the diagonal morphism X→X×ZX
is quasi-compact; equivalently the intersection of two affine open subsets of
X is a finite union of affine open subsets of X.

1



2

We adopt the convention that an integral scheme is by definition non-
empty, see [Stacks, Def. 01OK].

Given a smooth integral variety U over a field k, by a smooth compactifi-
cation of U we understand a smooth, proper, integral variety X over k, which
contains U as a Zariski open set. If char(k) = 0, then such a variety X exists
by Hironaka’s theorem.

Let X be a scheme. A sheaf F of OX -modules is called finite locally free
if every point x ∈ X has a Zariski open neighbourhood U ⊂ X such that
F|U ∼= O⊕nU for some n.

Notation

https://stacks.math.columbia.edu/tag/01OK


Chapter 1

Galois cohomology

This chapter begins with a brief introduction to quaternion algebras over a
field. After recalling basic facts about central simple algebras, we discuss the
classical definition of the Brauer group of a field as the group of equivalence
classes of such algebras. We state several standard results about Galois coho-
mology and descent, and then give the cohomological definition of the Brauer
group of a field and construct a natural isomorphism between the resulting
groups. For a thorough treatment of central simple algebras and the Brauer
groups of fields we refer to the book by P. Gille and T. Szamuely [GS17] from
which we borrowed some of the material for this chapter. Various aspects of
the theory of simple algebras and the Brauer group can be found in Bourbaki’s
Algèbre, Ch. VIII [BouVIII], and in the books by J-P. Serre [SerCL, SerCG],
A.A. Albert [Alb31], I. Reiner [Rei03] and I.N. Herstein [Her68].

In this chapter we also state several results about cyclic algebras and the
vanishing of the Brauer group for specific fields, such as finite fields, function
fields in one variable over an algebraically closed field, and C1-fields.

In Section 1.4 we discuss the Brauer group of discretely valued fields and
the associated crucial notion of residue. There are several approaches to the
definition of the residue; we explain how two of them are related to each
other. We finish by proving a theorem of D.K. Faddeev which describes the
Brauer group of the field of rational functions k(t), where k is a perfect field.
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4 1 Galois cohomology

1.1 Quaternion algebras and conics

In this section, unless mentioned otherwise, k is a field of characteristic not
equal to 2. Note, however, that many of the results stated here have analogues
over a field of characteristic 2.

1.1.1 Quaternions

To a, b ∈ k∗ one can attach a non-commutative associative k-algebra in the
following way.

Definition 1.1.1 A quaternion algebra over k is a k-algebra isomorphic
to the 4-dimensional associative algebra Qk(a, b) with basis 1, i, j, ij and the
multiplication table

i2 = a, j2 = b, ij = −ji,

where a, b ∈ k∗.

The algebra M2(k) of (2× 2)-matrices with entries in k is spanned by

1 = Id =

(
1 0
0 1

)
, i =

(
1 0
0 −1

)
, j =

(
0 1
1 0

)
, ij =

(
0 1
−1 0

)
,

and so is isomorphic to Qk(1, 1).
Switching i and j shows that Qk(a, b) ' Qk(b, a).
For a field extension k ⊂ K there is a natural isomorphism

Qk(a, b)⊗k K
∼−→ QK(a, b).

Exercise 1.1.2 The map k→Qk(a, b) sending x to x · 1 identifies k with the
centre of Qk(a, b). The two-sided ideals of Qk(a, b) are 0 and Qk(a, b).

The algebra QR(−1,−1) is the algebra of Hamilton’s quaternions H. This
is a division algebra: every non-zero element of H is invertible.

A natural question is: for which a, b ∈ k∗ is Qk(a, b) a division algebra?

Definition 1.1.3 Let Q be a quaternion algebra over the field k. A pure
quaternion in Q is 0 or an element q ∈ Q such that q /∈ k but q2 ∈ k.

If Q ∼= Qk(a, b), then the pure quaternions are precisely the elements of
the form yi+ zj +wij. To see this, square x+ yi+ zj +wij, then there are
some cancellations, and if 2x 6= 0, then y = z = w = 0. Thus each quaternion
q ∈ Q is uniquely written as q = qs + qp, where qs ∈ k is a scalar and qp is a
pure quaternion.

It is an easy exercise to show that the pure quaternions in M2(k) are
precisely the traceless matrices.
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Definition 1.1.4 The conjugate of q = qs + qp ∈ Q is q̄ = qs − qp. The
norm of q is N(q) = qq̄ = q̄q ∈ k. The trace of q is Tr(q) = q + q̄ ∈ k.

For any q1, q2 ∈ Q we have

q1q2 = q̄2 q̄1, N(q1q2) = N(q1)N(q2), Tr(q1 + q2) = Tr(q1) + Tr(q2).

Exercise 1.1.5 If q ∈ Q is a pure quaternion such that q2 is not a square
in k, then 1 and q span a quadratic field extension of k which is a maximal
subfield of Q.

The quaternion k-algebras Qk(a, b) and Qk(c, d) are isomorphic if and
only if there exist anti-commuting pure quaternions I, J ∈ Qk(a, b) such that
I2 = c, J2 = d. Then 1, I, J, IJ is a basis of the k-vector space Qk(a, b). In
particular, for any u, v ∈ k∗ we have Qk(au2, bv2) ' Qk(a, b).

Lemma 1.1.6 If c ∈ k∗ is a norm from k(
√
a)∗, then Qk(a, b) ' Qk(a, bc).

Proof. Write c = x2 − ay2 with x, y ∈ k. Set J = xj + yij ∈ Qk(a, b). One
checks that Ji = −iJ and J2 = −N(J) = bc. �

Lemma 1.1.7 The invertible elements in Qk(a, b) are exactly the elements
with non-zero norm.

Proof. For q ∈ Qk(a, b), we have qq̄ = N(q) ∈ k. If N(q) 6= 0, then qq̄/N(q) = 1
hence q is invertible. If N(q) = 0 and q 6= 0, then q̄ 6= 0 and qq̄ = 0 hence q
is a zero divisor. �

The norm on Qk(a, b) is the diagonal quadratic form 〈1,−a,−b, ab〉. This
leads us to the following criterion.

Proposition 1.1.8 Let Q = Qk(a, b), where a, b ∈ k∗. The following state-
ments are equivalent:

(i) Q is not a division algebra;
(ii) Q is isomorphic to the matrix algebra M2(k);

(iii) the diagonal quadratic form 〈1,−a,−b〉 represents zero in k;
(iv) the norm form N = 〈1,−a,−b, ab〉 represents zero in k;
(v) b is in the image of the norm homomorphism k(

√
a)∗→k∗.

Proof. First assume that a ∈ k∗2. The equivalence of all statements but (ii) is
clear, and these statements hold in this case. To prove the equivalence with
(ii), by Lemma 1.1.6 we can assume that a = 1. The matrix algebra M2(k)
is spanned by

1 = Id =

(
1 0
0 1

)
, i =

(
1 0
0 −1

)
, j =

(
0 b
1 0

)
, ij =

(
0 b
−1 0

)
,

and so is isomorphic to Qk(1, b).



6 1 Galois cohomology

Now assume that a ∈ k∗ is not a square. Then (i) is equivalent to (iv) since
N(q) = qq̄ (see Lemma 1.1.7). Next, (iv) implies (v) because the ratio of two
non-zero norms is a norm. It is clear that (v) implies (iii), which implies (iv)
since N is the diagonal quadratic form 〈1,−a,−b, ab〉. So (iii), (iv) and (v)
are all equivalent to (i). Lemma 1.1.6 shows that under the assumption of
(v) the algebra Qk(a, b) is isomorphic to Qk(a, b2) ∼= Qk(a, 1), so we use the
result of the first part of the proof to prove the equivalence with (ii). �

If the conditions of this proposition are satisfied, then one says that
Qk(a, b) is split. If K is a field extension of k such that the K-algebra
QK(a, b) = Qk(a, b)⊗k K is split, then one says that K splits Qk(a, b).

Since any quaternion algebra Qk(a, b) is split by a separable closure ks of k,
by Proposition 1.1.8 we see that Qk(a, b) is a (ks/k)-form of the 2× 2-matrix
algebra, which means that

Qk(a, b)⊗k ks 'M2(ks).

For example, H⊗R C 'M2(C).

Proposition 1.1.9 Any quaternion algebra Q split by k(
√
a) contains this

field and can be written as Q = Qk(a, c) for some c ∈ k∗. Conversely, if Q
contains k(

√
a), then Q is split by k(

√
a).

Proof. If the algebra Q is split, take c = 1. Assume Q is not split, hence is a
division algebra. In particular, a is not a square in k. There exist q0, q1 ∈ Q,
not both equal to 0, such that N(q0+q1

√
a) = 0. Since Q is a division algebra,

we have q0 6= 0 and q1 6= 0. We have

N(q0 + q1

√
a) = N(q0) + aN(q1) +

√
a(q0q̄1 + q1q̄0) = 0,

hence N(q0) + aN(q1) = 0 and q0q̄1 + q1q̄0 = 0. Set q2 = q0q̄1. We have

q2
2 = q0q̄1q0q̄1 = −q0q̄1q1q̄0 = −N(q0)N(q1) = aN(q1)2.

Let I = q2/N(q1). Then I2 = a. Since a is not a square in k, we see that
I /∈ k. The conjugation by I is a k-linear transformation of Q. It preserves
the subspace of pure quaternions, since it preserves the condition z2 ∈ k. The
order of this linear transformation is 2 because I /∈ k, hence I is not in the
centre of Q. Thus the −1-eigenspace is non-zero, so we can find a non-zero
pure quaternion J ∈ Q such that IJ + JI = 0. We have J2 = c ∈ k, since J
is pure. This is enough to conclude that Q ' Qk(a, c).

The converse follows from the fact that k(
√
a) ⊗ k(

√
a) contains zero-

divisors (the norm form x2 − ay2 represents zero in k(
√
a)). Hence the same

is true for Q⊗k k(
√
a). �

Corollary 1.1.10 The quadratic field extensions K of k that split a quater-
nion division algebra over k are exactly the quadratic subfields of this algebra.
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1.1.2 Conics

Definition 1.1.11 Let Q be a quaternion algebra over k. Let Qpure ⊂ Q
be the 3-dimensional subspace of pure quaternions. The norm on Q induces
a non-degenerate quadratic form on the vector space Qpure. The conic at-
tached to Q is defined as the smooth conic given by this quadratic form in the
projective plane P(Qpure) ' P2

k. It is denoted by C(Q).

Thus the conic attached to the quaternion algebra Qk(a, b) is the plane
algebraic curve C(a, b) ⊂ P2

k given by the equation

−ax2 − by2 + abz2 = 0.

Up to a change of variables, this conic is also given by the equation

ax2 + by2 = z2.

By Proposition 1.1.8 the conic C(Q) has a k-point if and only if the quaternion
algebra Q is split.

Remark 1.1.12 (1) Since the characteristic of k is not 2, every smooth
conic can be given by a diagonal quadratic form, and so is attached to some
quaternion algebra.

(2) The projective line is isomorphic to the conic xz− y2 = 0 via the map
(X : Y ) 7→ (X2 : XY : Y 2).

(3) If a smooth conic C has a k-point, then C ∼= P1
k. (The projection

from a k-point gives rise to a rational parameterisation of C, which is an
isomorphism.)

(4) Thus the function field k(C) of a smooth conic C is a purely transcen-
dental extension of k if and only if C has a k-point.

Exercise 1.1.13 (1) Check that Qk(a, 1− a) and Qk(a,−a) are split.
(2) Check that if k = Fq is a finite field, then all quaternion k-algebras are

split. (By assumption q is not a power of 2. Write ax2 = 1 − by2 and use a
counting argument for x and y to prove the existence of a solution in Fq.)

(3) A quaternion k-algebra Q is split if and only if the quaternion k(t)-
algebra Qk(t) is split. (Take a k(t)-point on the associated conic C(Q) ⊂ P2

k

represented by three polynomials not all divisible by t and reduce modulo t.)
(4) Q is split over the function field k(C(Q)) of the associated conic C(Q).

(Consider the generic point of C(Q).)

The following theorem of Max Noether [Noe70] is a special case of Tsen’s
theorem (Theorem 1.2.14 below). It plays an important rôle in the classifica-
tion of complex algebraic surfaces. The proof given here is due to Tsen.

Theorem 1.1.14 (Max Noether) Assume that k is an algebraically closed
field. Then all quaternion k(t)-algebras are split.
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Proof. By Proposition 1.1.8, it is enough to show that any conic over k(t) has a
point (this is Max Noether’s statement). We can assume that the coefficients
of the corresponding quadratic form are polynomials in t of degree at most
m. We look for a solution (X,Y, Z), where X, Y and Z are polynomials in
t (not all of them zero) of degree at most n for some large integer n. The
coefficients of these polynomials can be thought of as points of the projective
space P3n+2. The solutions bijectively correspond to the points of a closed
subset of P3n+2 given by 2n+m+ 1 homogeneous quadratic equations. Since
k is algebraically closed this set is non-empty when 3n+ 2 ≥ 2n+m+ 1, by
a standard result from algebraic geometry. (If an irreducible variety X is not
contained in a hypersurface H, then dim(X ∩H) = dim(X)−1. This implies
that on intersecting X with r hypersurfaces the dimension drops at most by
r, see [Sha74, Ch. 1]). �

The following theorem is due to Witt [Wit35, §2].

Theorem 1.1.15 (Witt) Let k be field of characteristic not equal to 2. Two
quaternion algebras over k are isomorphic if and only if the conics attached
to them are isomorphic.

Proof. We follow the proof of [GS17, Thm. 1.4.2]. Recall that C(Q) denotes
the smooth conic attached to the quaternion algebra Q. An isomorphism of
quaternion algebras Q ∼= Q′ induces an isomorphism of their vector spaces of
pure quaternions respecting the norm form. Hence it induces an isomorphism
C(Q) ∼= C(Q′).

Let us prove that if C(Q) ∼= C(Q′), then Q ∼= Q′. If Q is split, then C(Q)
has a k-point. Thus C(Q′) also has a k-point. But then the norm form of Q′

represents zero, and this implies that Q′ is split.
Assume from now on that neither algebra is split. Write Q = Qk(a, b) and

write C for the conic C(Q′) ∼= C(Q) = C(a, b) given by the equation

ax2 + by2 = z2. (1.1)

Let K = k(
√
a) and let K(C) be the function field of the conic CK = C×kK.

The conic C has a K-point, hence Q′ is split by K. By Proposition 1.1.9 we
can write Q′ = Qk(a, c) for some c ∈ k∗. By Exercise 1.1.13 (4), Q′ is split by
the function field k(C). By Proposition 1.1.8 this implies that c ∈ k∗ ⊂ k(C)∗

is contained in the image of the norm map

c ∈ Im[K(C)∗→k(C)∗].

Let σ ∈ Gal(K/k) ∼= Z/2 be the generator. Then we can write c = fσ(f),
where f is a rational function on the conic CK . One can replace f with
fσ(g)g−1 for any g ∈ K(C)∗ without changing c.

The group Div(CK) of divisors on CK ∼= P1
K is freely generated by the

closed points of CK . This is a module over Z/2 = 〈σ〉 with a σ-stable basis.
The divisors of functions are exactly the divisors of degree 0. The divisor
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D = div(f) is an element of Div(CK) satisfying (1 + σ)D = 0. By comparing
the multiplicities of points in the support of D we deduce that there is a
divisor G ∈ Div(CK) such that D = (1− σ)G. Let P = (1 : 0 :

√
a) ∈ C(K)

(see equation (1.1)). If n = deg(G) the divisor G−nP ∈ Div(CK) has degree
0. Since CK ∼= P1

K , this implies G − nP = div(g) for some g ∈ K(C)∗. We
have

div(fσ(g)g−1) = D+σG−G+n(P−σP ) = n(P−σP ) = n div

(
z −
√
ax

y

)
.

The last equality is readily checked using equation (1.1). It follows that

fσ(g)g−1 = e

(
z −
√
ax

y

)n
∈ K(C)∗

for some e ∈ K∗. Taking norms, we obtain

c = fσ(f) = NK/k(e)

(
z2 − ax2

y2

)n
= NK/k(e)bn ∈ k(C)∗,

hence c = NK/k(e)bn ∈ k∗. Thus Q′ = Qk(a, c) = Qk(a,Nk(
√
a)/k(e)bn) for

some integer n. By Lemma 1.1.6, Q′ is isomorphic to Qk(a, b) or to Qk(a, 1).
Since Q′ is not split, we must have Q′ ∼= Qk(a, b). �

1.2 The language of central simple algebras

In this section k denotes an arbitrary field (possibly of characteristic 2).
Recall that if V and W are vector spaces over k, then V ⊗kW is the linear

span of vectors v ⊗ w, v ∈ V , w ∈W , subject to the axioms

(v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w, v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2,

and
c(v ⊗ w) = (cv)⊗ w = v ⊗ (cw) for any c ∈ k.

This turns V ⊗k W into a k-vector space. If (ei) is a basis of V , and (fj)
is a basis of W , then (ei ⊗ fj) is a basis of V ⊗k W . The vector spaces
(V ⊗k U)⊗k W and V ⊗k (U ⊗k W ) are canonically isomorphic.

Given two k-algebras A and B, one defines the structure of a k-algebra on
A⊗k B by the rule (x⊗ y) · (x′ ⊗ y′) = (xx′)⊗ (yy′).
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1.2.1 Central simple algebras

Quaternion algebras and matrix algebras are particular cases of central simple
algebras.

Definition 1.2.1 An associative k-algebra A is called simple if A 6= 0 and
the only two-sided ideals of A are 0 and A. An associative k-algebra A is called
central if its centre is k. A central simple algebra is a finite-dimensional
k-algebra that is both central and simple.

Remark 1.2.2 (1) Any finite-dimensional central division algebra is a cen-
tral simple algebra.

(2) For any integer n ≥ 1 the algebra of n×n matrices Mn(k) is a central
simple k-algebra. More generally, if D is a finite-dimensional central division
k-algebra, then Mn(D) is a central simple k-algebra [GS17, Example 2.1.2].

(3) We have Mm(k)⊗kMn(k) 'Mmn(k).

Later we shall use the following important property of matrix algebras.

Proposition 1.2.3 Any automorphism of the k-algebra Mn(k) is induced by
conjugation by an invertible matrix. This invertible matrix is well defined up
to multiplication by a scalar matrix.

Proof. [GS17, Lemma 2.4.1, Cor. 2.4.2]. �

The structure of central simple algebras is described by a theorem of Wed-
derburn.

Theorem 1.2.4 (Wedderburn) Let A be a central simple algebra over k.
There exists a finite-dimensional central division algebra D over k such that
A ' D ⊗kMn(k) ∼= Mn(D).

The integer n is well defined, and the algebra D is well defined up to a
non-unique isomorphism. Proofs of this fundamental theorem can be found
in [BouVIII, §5, no. 4, Cor. 2], [Her68, Thm. 2.1.6], [GS17, Thm. 2.1.3].

Corollary 1.2.5 Any central simple algebra over an algebraically closed field
k is isomorphic to a matrix algebra Mn(k).

Proof. We need to prove that a finite-dimensional central division k-algebra
D coincides with its centre k. Choose any x ∈ D. Let I ⊂ k[t] be the ideal
consisting of polynomials vanishing on x. This is a non-zero ideal, generated
by some f(t) ∈ k[t]. Since D is a division algebra, f(t) is irreducible. As k is
algebraically closed, f(t) has degree 1, hence x ∈ k. �

Lemma 1.2.6 Let k be a field and let A be a finite-dimensional k-algebra.
Let K/k be a finite field extension. Then A is a central simple k-algebra if
and only if A⊗k K is a central simple K-algebra.
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Proof. This is [GS17, Lemma 2.2.2]. �

Theorem 1.2.7 Let k be a field and let A be a finite-dimensional k-algebra.
Then A is a central simple k-algebra if and only if there exist a positive integer
n and a finite field extension K/k such that A⊗kK is isomorphic to Mn(K).
Moreover, if this is so, then one can choose K separable over k.

Proof. See [GS17, Thm. 2.2.1, Thm. 2.2.7]. See also [Alb31, Ch. IV, §7,
Thm. 18] and [BouVIII, §10, no. 3, Prop. 4]. �

For a central simple algebra A over a field k, a field extension K/k such
that A⊗kK is isomorphic to Mn(K) is called a splitting field of A. Then one
says that A splits over K.

Theorem 1.2.7 and Remarks 1.2.2 (2) and (3) immediately imply that the
tensor product A⊗kB of two central simple algebras is again a central simple
algebra. It also immediately implies that the dimension of a central simple
algebra over its centre is d2, where d is a positive integer. This integer d is
called the degree of the algebra.

Two central simple algebras A and B are called equivalent if there are
positive integers n and m such that A ⊗k Mn(k) ∼= B ⊗k Mm(k). The rela-
tion is transitive by Remark 1.2.2 (3). The equivalence class of k consists of
the matrix algebras of all sizes (see the comment after Theorem 1.2.4). The
following theorem is [Bra32, Satz 1].

Theorem 1.2.8 (Brauer) The tensor product equips the set of equivalence
classes of central simple algebras over k with the structure of an abelian group.
It is called the Brauer group of k and is denoted by Br(k).

Proof. That the equivalence classes form a set follows from the fact that
a central simple algebra A of degree d over k can be given by a basis of
A over k and the multiplication table. The neutral element of Br(k) is the
class of k. Associativity follows from the associativity of the tensor product.
Commutativity follows from the isomorphisms A⊗k B

∼−→ B ⊗k A given by
x⊗ y 7→ y ⊗ x. The inverse element of the class of A is the equivalence class
of the opposite algebra Aop. Indeed, A⊗kAop is a central simple algebra, and
there is a non-zero homomorphism A ⊗k Aop→Endk(A) that sends a ⊗ b to
x 7→ axb. It is injective since a central simple algebra has no proper two-sided
ideals, and hence is an isomorphism by dimension count. �

We write the group operation in Br(k) additively.
Theorem 1.2.4 implies that any class α ∈ Br(k) is represented by a central

division k-algebra D which is well defined up to a non-unique isomorphism.
In particular, the degree of D is well defined. It is called the index of (any
algebra in) the class α.

The following theorem goes back to the early days and was proved without
Galois cohomology. See [Alb31, Thm. IV.17] and [KMRT, Ch. II, Cor. 10.5].
See also [GS17, Cor. 2.8.5].
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Theorem 1.2.9 For any field k the Brauer group Br(k) is a torsion group.
More precisely, for any central simple k-algebra A of index n, the class of
A⊗n in Br(k) is zero.

The order of the class of A in Br(k) is called the exponent of A.

From Theorem 1.2.4 it follows that two central simple algebras of the
same dimension and the same class in Br(k) are isomorphic. We deduce that
cancellation holds: A⊗k B ∼= A⊗k C implies B ∼= C.

By Corollary 1.2.5, the Brauer group of an algebraically closed field is zero.
By Theorem 1.2.7 this also holds for a separably closed field. Since R, C and H
are the only finite-dimensional division R-algebras (and C is not central), we
see from Theorem 1.2.4 that Br(R) = Z/2. This calculation also immediately
follows from Theorem 1.3.5 below, using that the algebraic closure of R is C.

Given a field extension K/k there is a natural restriction map

resK/k : Br(k) −→ Br(K)

which sends the class of a central simple k-algebra A to the class of A⊗k K.
The kernel of resK/k is denoted by Br(K/k) and is called the relative Brauer
group.

Lemma 1.2.10 Assume char(k) 6= 2. For any a, b, b′ ∈ k∗ we have the fol-
lowing properties:

(i) Qk(a, b)⊗k Qk(a, b′) ∼= Qk(a, bb′)⊗kM2(k).
(ii) Qk(a, b)⊗k Qk(a, b) ∼= M4(k).

Proof (See [GS17, Lemma 1.5.2]) The vector subspace of Qk(a, b)⊗kQk(a, b′)
spanned by 1⊗ 1, i⊗ 1, j ⊗ j′, ij ⊗ j′ is A1 = Qk(a, bb′). Similarly, the span
of 1 ⊗ 1, 1 ⊗ j′, i ⊗ i′j′, −b(i ⊗ i′) is A2 = Qk(b′,−a2b′). The conic associ-
ated to Qk(b′,−a2b′) clearly has a k-point, so A2

∼= M2(k). The canonical
homomorphism

A1 ⊗k A2 −→ Qk(a, b)⊗k Qk(a, b′)

defined by the product in Qk(a, b)⊗k Qk(a, b′) is surjective. By a dimension
count, it is an isomorphism. This proves (i), and (ii) follows. �

We continue to assume that char(k) 6= 2. Given a, b ∈ k∗ we write (a, b) for
the class of Qk(a, b) in Br(k). By Lemma 1.2.10 (ii) we have (a, b) ∈ Br(k)[2].
We have already seen that (au2, bv2) = (a, b) for any u, v ∈ k∗. Lemma 1.2.10
(i) shows that associating to a, b ∈ k∗ the class (a, b) ∈ Br(k)[2] induces a
bilinear map

k∗/k∗2 × k∗/k∗2 −→ Br(k)[2].

By Proposition 1.1.8 we have (a, b) = 0 if and only if the conic ax2 +by2 = z2

has a rational point. In particular, we have (a,−a) = 0, and (a, b) = 0 if
a+ b = 1.
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A deep theorem of Merkurjev says that the 2-torsion subgroup Br(k)[2]
is generated by the classes (a, b); moreover, the kernel of the surjective map
k∗/k∗2 ⊗ k∗/k∗2→Br(k)[2] is generated by the elements (a, 1 − a), where
a ∈ k \ {0, 1}. In other words, Br(k)[2] ' KM

2 (k)/2, where KM
2 (k) is the

second Milnor K-group of the field k, see [GS17, Ch. 8].

1.2.2 Cyclic algebras

Quaternion algebras are a special case of the following construction. Let K/k
be a Galois extension of fields such that the Galois group G = Gal(K/k) is
cyclic of order n. Let σ be a generator of G and let χ : G

∼−→ Z/n be the
character sending σ to 1 ∈ Z/n. Let b ∈ k∗.

The cyclic algebra Dk(χ, b) is the k-algebra generated by the field K and
a symbol y subject to the relations yn = b and λy = yσ(λ) for any λ ∈ K,
cf. [GS17, Prop. 2.5.2]. This is a central simple k-algebra of degree n, which
contains K as a maximal subfield. Conversely, any central simple k-algebra
of degree n with a maximal subfield K which is cyclic of degree n over k is
isomorphic to Dk(χ, b) for some b ∈ k∗, see [GS17, Prop. 2.5.3]. Note that
this construction also works if n is a prime p and char(k) = p > 0, see [GS17,
Cor. 2.5.5]. We write (χ, b) for the class of Dk(χ, b) in Br(k).

When char(k) does not divide n and k contains all n-th roots of 1, one can
describe the cyclic algebra Dk(χ, b) without mentioning the Galois action.
Let ω ∈ µn be a primitive root. For a, b ∈ k∗ let (a, b)ω be the k-algebra with
generators x, y and relations xn = a, yn = b, xy = ωyx. One checks that this
is a central simple k-algebra. Permuting x and y we obtain an isomorphism

(a, b)ω ∼= (b, a)ω−1 .

Assume that K = k[t]/(tn − a) is a field. Then K is a cyclic extension of
k of degree n. Let n

√
a ∈ K be the image of t in K. There is a unique

element σ ∈ G = Gal(K/k) such that σ( n
√
a) = ω n

√
a. If χ : G→Z/n is the

character that sends σ to 1 ∈ Z/n, then the k-algebras (a, b)ω and Dk(χ, b)
are isomorphic [GS17, Cor. 2.5.5].

1.2.3 C1-fields

The point of view of central simple algebras allows one to prove the triviality
of the Brauer group of several types of fields which are fundamental for
arithmetic and geometry.
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Definition 1.2.11 (Lang) A field k is called a C1-field if any homogeneous
form of degree d in n > d variables with coefficients in k has a non-trivial
zero in k.

One easily checks that any finite field extension of a C1-field is a C1-field
[GS17, Lemma 6.2.4].

Theorem 1.2.12 If k is a C1-field, then Br(k) = 0.

Proof. A central simple k-algebra A is equipped with a reduced norm, which
is a multiplicative function NrdA : A→k. Let d be the degree of A. Choosing a
basis of the vector space A over k one can write NrdA as a homogeneous form
of degree d in d2 variables with coefficients in k. (By Theorem 1.2.7, after
extending the ground field from k to ks the algebra A⊗k ks can be identified
with the matrix algebra Md(ks). Under this identification, the reduced norm
becomes the determinant.) Let A = D be a division algebra. If D 6= k, then
Nrd is a homogeneous polynomial of degree d in d2 > d variables. (For all
this, see [GS17, §2.6, §6.2].) Thus if k is a C1-field, then D = k, so that
Br(k) = 0. �

Theorem 1.2.13 If k is a finite field, then k is a C1-field and Br(k) = 0.

Proof. By Wedderburn’s Little Theorem every finite ring with no zero-divisors
is a field. In particular, the only finite-dimensional central division k-algebra
is k itself. This gives Br(k) = 0. The stronger statement that a finite field is
a C1-field is the Chevalley–Warning theorem [GS17, Thm. 6.2.6]. �

Theorem 1.2.14 (Tsen) Let k be a field of transcendence degree 1 over an
algebraically closed field. Then k is a C1-field and Br(k) = 0.

Proof. This is proved in [GS17, Thm. 6.2.8]. The proof is an extension of the
proof of Theorem 1.1.14. �

For fields of transcendence degree 1 over a separably closed field, see Propo-
sition 3.8.2.

A local ring R with maximal ideal m and residue field k is henselian if
it satisfies the following property: for any monic polynomial P (t) ∈ R[t]
whose reduction modulo m is a product P (t) = q(t)s(t) of coprime monic
polynomials q(t), s(t) ∈ k[t], there exist monic polynomials Q(t), S(t) ∈ R[t]
such that Q(t) = q(t), S(t) = s(t) and P (t) = Q(t)S(t).

There are several equivalent definitions of a henselian local ring, see
[Ray70b, Ch. I, §1], [Ray70b, Ch. VII, Prop. 3], [BLR90, §2.3] and [Stacks,
Section 09XI]. In particular, a local ring R is henselian if for every monic
polynomial P (t) ∈ R[t] every simple root in k of the reduction of P (t) mod-
ulo m lifts to a root of P (t) in R. Using Newton’s approximation one proves
that any complete local ring is henselian. (See [Stacks, Section 04GE].)

Define the completion of R at m as R̂ = lim←−(R/mn). A local ring R is

m-adically complete if the canonical map R→R̂ is an isomorphism. If m is

https://stacks.math.columbia.edu/tag/09XI
https://stacks.math.columbia.edu/tag/04GE


1.3 The language of Galois cohomology 15

finitely generated, then the completion R̂ of R at m is a complete local ring
with maximal ideal mR̂ and residue field k, see [Stacks, Section 00M9].

See Section 2.6 for the definition and basic properties of excellent rings.

Theorem 1.2.15 Let R be a henselian discrete valuation ring with alge-
braically closed residue field k. Let K be the fraction field of R.

(i) If R is excellent, for example if char(K) = 0 or if R is complete, then K
is a C1-field, and hence Br(K) = 0.

(ii) In general, we have Br(K) = 0.

Proof. (i) See Lang’s thesis [Lang52], see also [Shatz, Thm. 27, p. 116]. The

excellence property is needed to ensure that the field of fractions K̂ of the
completion R̂ is a separable extension of K.

(ii) There are several other ways to establish Br(K) = 0 under the assump-
tion that R is complete [SerCL, Ch. XII, §1, §2]. As pointed out in [Mil80,
Ch. III, Example 2.22 (a)], these proofs also give Br(K) = 0 for R henselian
with algebraically closed residue field. �

See Proposition 1.4.5 for the case when the residue field is separably closed
but not algebraically closed.

Corollary 1.2.16 Let R be a henselian discrete valuation ring with perfect
residue field k and field of fractions K of characteristic zero. Let Knr be the
maximal unramified extension of K. Then Knr is a C1-field.

Proof. The field Knr is the field of fractions of the strict henselisation of R,
which is a henselian discrete valuation ring with algebraically closed residue
field. Since char(K) = 0, the result is a special case of Theorem 1.2.15. �

Remark 1.2.17 LetK be a henselian discretely valued field and let K̂ be the
completion of K. Then the natural map Br(K)→Br(K̂) is an isomorphism.
For a proof see Proposition 7.1.8.

1.3 The language of Galois cohomology

1.3.1 Group cohomology and Galois cohomology

We now assume that the reader is familiar with the cohomology theory of
abstract groups, which can be found in many places in the literature, for
example in [AW65], [SerCG], [SerCL], [GS17], [Wei94] and [Har17].

Let G be a group and let M be a G-module. The group H0(G,M) := MG

is the subgroup of G-invariant elements of M . Higher cohomology groups
Hn(G,M), n ≥ 1, are the right derived functors of the functor from the
category of G-modules to the category of abelian groups that sends M to MG.

https://stacks.math.columbia.edu/tag/00M9
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They can be computed using the standard projective resolution P•→Z of the
trivial G-module Z, as the cohomology groups of the complex HomG(P•,M).
This leads to the definition in terms of homogeneous cocycles, which can be
restated as a definition in terms of inhomogeneous cocycles.

We refer to the books mentioned above for the following aspects of the
cohomology of groups:

• its relation with the cohomology of subgroups: restriction, inflation, and
corestriction in the case of a subgroup H ⊂ G of finite index, Shapiro’s
lemma;
• long exact sequences coming from the Hochschild–Serre spectral se-

quence;
• cup-products and their properties with respect to boundary maps in exact

cohomology sequences;
• cohomology of cyclic groups, Herbrand’s quotient theorem.

Let G be a group that acts on a (not necessarily commutative) group A
preserving the group structure. In this case we call A a G-group. We denote
the result of applying g ∈ G to a ∈ A by ga. A 1-cocycle is a function
a = {ag} : G→A which satisfies the condition

agh = ag · gah

for all g, h ∈ G. Two cocycles {ag} and {bg} are called equivalent if there
exists an element c ∈ A such that for any g ∈ G one has

ag = c−1 · bg · gc.

The 1-cohomology set H1(G,A) is defined as the set of equivalence classes
of 1-cocycles G→A. A cocycle c−1 · gc, where c ∈ A, is called trivial. The
class of trivial cocycles is the distinguished point of H1(G,A), so H1(G,A) is
naturally a pointed set.

Now suppose that G is a profinite group and the action of G on A is
continuous when A is given the discrete topology. Equivalently, the stabilisers
of elements of A are open subgroups of G, i.e. closed subgroups of G of
finite index. One defines the continuous cohomology pointed set H1(G,A)
as the direct limit of the pointed sets H1(G/U,AU ), where U ⊂ G ranges
over all open normal subgroups – any such subgroup being of finite index
in G. Alternatively, one defines H1(G,A) as the set of equivalence classes of
continuous cocycles G→A. Note that for a profinite group G the continuous
cohomology set does not necessarily coincide with the abstract cohomology
set. Unless otherwise mentioned, we shall only use continuous cohomology
sets in this book.

If M is a continuous discrete G-module, then the continuous cohomology
group Hi(G,M) is defined for all i ≥ 0 as the direct limit of Hi(G/U,MU )
over the set of open normal subgroups U ⊂ G.
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A short exact sequence of continuous discrete G-groups

1 −→ A −→ B −→ C −→ 1,

where A is normal in B, gives rise to an exact sequence of pointed sets

1→AG→BG→CG→H1(G,A)→H1(G,B)→H1(G,C).

If A is central in B, it extends to an exact sequence of pointed sets

1→AG→BG→CG→H1(G,A)→H1(G,B)→H1(G,C)→H2(G,A).

If B is abelian, it can be continued to the usual long exact sequence.
An important particular case is when k is a field with separable closure ks

and the absolute Galois group Γ = Gal(ks/k) acts on the group of ks-points
of an algebraic group A over k. The pointed set H1(Γ,A(ks)) does not depend
on the choice of ks; it is well defined up to a canonical isomorphism [SerCG,
Ch. II, §1, 1.1] and is denoted by H1(k,A). The map K 7→ H1(K,A ×k K)
defines a functor from the category of field extensions of k to the category of
pointed sets.

If A is a commutative algebraic group over k and Γ = Gal(ks/k), the
abelian group Hi(Γ,A(ks)) is well defined for any integer i ≥ 0, up to canon-
ical isomorphism [SerCG, Ch. II, §1, 1.1]; it is denoted by Hi(k,A). The map
K 7→ Hi(K,A ×k K) is a functor from the category of field extensions K of
k to the category of abelian groups.

We shall mostly deal with the case of the projective linear group, so let us
recall its definition. The group PGLn(k) is defined by the exact sequence of
groups

1 −→ k∗ −→ GLn(k) −→ PGLn(k) −→ 1,

where the second map is the embedding of the central subgroup of scalar
matrices. The multiplicative group Gm,k represents the functor associating to
a commutative k-algebra R the group of invertible elements R∗. The algebraic
group GLn,k represents the functor associating to a commutative k-algebra
R the group GLn(R). (In particular, Gm,k = GL1,k.) Finally, the algebraic
group PGLn,k is defined by the exact sequence of algebraic k-groups

1 −→ Gm,k −→ GLn,k −→ PGLn,k −→ 1. (1.2)

1.3.2 Galois descent

A general reference for Galois descent is [BLR90, §6.2, Example B], see also
[SerCL, Ch. X], [PR94, Section 2.2], [Sko01, Ch. 2], [GS17, Ch. 2.3], [Ols16,
Ch. 4] and [Po18, Ch. 4].
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Let K/k be a finite Galois extension of fields with Galois group Gal(K/k).
The descent problem deals with the following question: when can a scheme
X ′ over K be descended to k, that is, does there exist a scheme X over
k such that X ′ ∼= X ×k K? Grothendieck explored the analogy with the
classical case, where a topological space or a differentiable manifold can be
constructed by glueing together open subsets via transition functions which
satisfy a compatibility condition on triple intersections. A ‘descent datum’ is
an analogue of this for schemes. (Descent data can be defined more generally
for any category fibred over a category with finite fibred products, see [Ols16,
§4.2] or Section 4.1.2 below.) In [BLR90, pp. 140–141] it is shown that giving a
‘descent datum’ on a K-scheme X ′ with respect to K/k is equivalent to giving
an action of Gal(K/k) on X ′ that is compatible with the action of Gal(K/k)
on K by automorphisms. This descent problem is ‘effective’ (that is, there is
a scheme X over k such that X ′ ∼= X ×kK) when X ′ is quasi-separated and
the Gal(K/k)-orbit of every point of X ′ is contained in a quasi-affine open
subscheme of X ′. In particular, Galois descent is effective for quasi-projective
varieties over a field.

Let X be a variety over k. Let K/k be a Galois extension (not necessarily
finite) with Galois group Gal(K/k). A k-variety Y is called a (K/k)-form
of X if there is an isomorphism Y ×k K ∼= X ×k K of K-varieties. Using
effectivity of Galois descent one shows that if X is a quasi-projective variety
over k, then the (K/k)-forms of X are classified, up to isomorphism, by the
elements of the Galois cohomology set H1(Gal(K/k),Aut(X×kK)) in such a
way that the isomorphism class of X corresponds to the distinguished point.
See [Po18, §4.4, §4.5] for a detailed proof of this classical result.

For example, (ks/k)-forms of a projective space are called Severi–Brauer
varieties. It is not hard to see that the Severi–Brauer varieties of dimension 1
are precisely the smooth projective conics. Indeed, the linear system attached
to the anticanonical sheaf on such a curve embeds it as a conic in P2

k.
By a theorem of Châtelet, a Severi–Brauer variety is isomorphic to Pn−1

k

if and only if it has a k-point, see Section 7.1 for this and other results
on Severi–Brauer varieties. Note that the automorphism functor of Pn−1

k is
represented by the group k-scheme PGLn,k.

More generally, suppose that we have a quasi-projective variety X over k
endowed with an action of a group k-scheme A. By definition, each cohomol-
ogy class in H1(k,A) contains a 1-cocycle c : Γ = Gal(ks/k)→A(ks); it comes
from a 1-cocycle c : Gal(K/k)→A(K) for some finite Galois extension k ⊂ K.
The cocycle c defines a twisted action of Gal(K/k) on X ×k K which is the
composition of the action on X×kK via the second factor with the action of
c(g) ∈ A(K). The cocycle condition is equivalent to this being an action of
Gal(K/k) on X ×k K compatible with the action of Gal(K/k) on K by au-
tomorphisms. By effectivity of Galois descent, there exists a quasi-projective
variety Xc over k such that the K-varieties X ×k K and Xc ×k K are iso-
morphic; this isomorphism identifies the action of Gal(K/k) on Xc×kK via
the second factor with the twisted by c action of Gal(K/k) on X ×k K. The
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variety Xc is called the twist of X by c. By construction, it is a (ks/k)-form
of X. Replacing c by an equivalent cocycle gives rise to a variety isomorphic
to Xc. Particular cases of this situation include the following (see [Sko01,
pp. 12–13], [Po18, §4.5]).

(a) Twists of the vector space kn by a 1-cocycle with coefficients in A =
GLn,k are isomorphic to kn, cf. [Po18, §1.3].

(b) Twists of the matrix algebra Mn(k) by a 1-cocycle with coefficients in
A = PGLn,k are central simple algebras of degree n. Moreover, by [SerCL,
Ch. X, §5, Prop. 8], this gives a bijection between the isomorphism classes
of central simple algebras of degree n and the pointed set H1(k,PGLn,k).

(c) Torsors of an algebraic k-group A are obtained by twisting A by a 1-
cocycle with coefficients in A acting on itself by left translations. In this
case A represents the automorphism functor of A considered together
with its right action on itself, i.e., of A as a right A-torsor. Using effec-
tivity of Galois descent one shows that the isomorphism classes of right
A-torsors over k bijectively correspond to the elements of H1(k,A). (This
is the easy case of [BLR90, §6.5, Thm. 1], see also [Sko01, p. 13].) For
example, the affine conic x2 − ay2 = c is a torsor for the norm 1 torus
given by x2 − ay2 = 1. Also, a smooth projective curve of genus 1 is a
torsor for its Jacobian.

(d) Suppose that an algebraic k-group A acts on an algebraic k-group G by
automorphisms. Twisting G by a 1-cocycle Γ→A one obtains a (ks/k)-
form of G. For example, the group of invertible elements of a central
simple k-algebra of degree n is the group of k-points of a twist of GLn,k
by a 1-cocycle with values in A = PGLn,k. For any commutative algebraic
group one defines quadratic twists by taking A = {±1}, where −1 sends
x to x−1. For example, the quadratic twists of Gm,k are the norm tori
x2 − ay2 = 1, where a ∈ k∗. The quadratic twists of an elliptic curve
y2 = x3 + ax+ b are the elliptic curves cy2 = x3 + ax+ b, where c ∈ k∗.

Looking closer at the case of vector spaces one deduces the triviality of
1-cocycles with coefficients in GLn,k.

Theorem 1.3.1 (Speiser) For any Galois extension of fields K/k with Ga-
lois group G we have H1(G,GLn,k(K)) = {1}.

Proof. Let us show that every 1-cocycle c : G→GLn,k(K) is trivial.
Let V be a k-vector space of dimension n. The twist of V by c is a vector

space V c over k of dimension n such that there is an isomorphism of K-vector
spaces ψ : V ⊗kK

∼−→ V c⊗kK which identifies the action of an element g ∈ G
on V ⊗k K which sends v ⊗ x to cg(v ⊗ gx) with the action on V c ⊗k K via
the second factor. All k-vector spaces of dimension n are isomorphic, so we
can choose an isomorphism of k-vector spaces ϕ : V c→V .
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We obtain the following commutative diagram where the horizontal arrows
are isomorphisms of K-vector spaces and the vertical arrows describe the
action of g ∈ G:

V ⊗k K
∼
ψ

//

cg(id⊗g)

��

V c ⊗k K
∼

ϕ⊗id
//

id⊗g
��

V ⊗k K

id⊗g
��

V ⊗k K
∼
ψ

// V c ⊗k K
∼

ϕ⊗id
// V ⊗k K

Let σ be the composition of horizontal arrows. The commutativity of the
diagram gives cg = σ−1(gσg−1) = σ−1 · gσ for any g ∈ G, so c is trivial. �

This theorem is often proved by a direct cocycle computation, see [SerCL,
Ch. X, Prop. 3]. See also [GS17, Example 2.3.4] and [Po18, Prop. 1.3.15].

Theorem 1.3.2 (Hilbert’s theorem 90) For any Galois extension of
fields K/k with Galois group G we have H1(G,K∗) = 0.

This is a particular case of Speiser’s theorem for n = 1. For later use let
us record a corollary of this theorem: given field extensions k ⊂ K ⊂ L with
L/k and K/k Galois, there is a short exact sequence

0→H2(Gal(K/k),K∗) −→ H2(Gal(L/k), L∗) −→ H2(Gal(L/K), L∗) (1.3)

where the first arrow is inflation and the second arrow is restriction.

Applying Hilbert’s theorem 90 to (1.2) we see that for any field extension
K/k the group of K-points of PGLn,k is precisely PGLn(K). Proposition
1.2.3 then shows that the natural map

PGLn(K) −→ AutK-alg(Mn(K))

is an isomorphism of groups, where K-alg is the category of K-algebras. When
K is a Galois extension of k, this isomorphism respects the Galois action on
both sides. This shows that the automorphism functor of the matrix algebra
Mn(k) (which is a functor from the category of field extensions of k to the
category of groups) is represented by the algebraic group PGLn,k.

Theorem 1.3.3 (Skolem–Noether) All automorphisms of a central sim-
ple algebra over a field are inner automorphisms.

Proof. Let A be a central simple algebra over a field k. Choose a finite Ga-
lois extension K/k that splits A (see Theorem 1.2.7). The homomorphism
A∗→Autk-alg(A) sending an element to the conjugation by this element ex-
tends to a similar map over K. Let G = Gal(K/k). We then have the exact
sequence of G-groups

1 −→ K∗ −→ (A⊗k K)∗ −→ AutK-alg(A⊗k K) −→ 1,
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where surjectivity of the third map follows from Proposition 1.2.3. The long
exact cohomology sequence gives an exact sequence of pointed sets

1 −→ k∗ −→ A∗ −→ Autk-alg(A) −→ H1(G,K∗).

Since H1(G,K∗) = 0 by Hilbert’s theorem 90, the homomorphism

A∗ −→ Autk-alg(A)

is surjective. �

There is actually a more general result.

Theorem 1.3.4 (Skolem–Noether) Let k be a field, let B be a simple
k-algebra and let A be a central simple algebra over k. Then all non-zero
k-homomorphisms B→A are injective and can be obtained from one another
by conjugations in A.

Proof. See [Rei03, Thm. 7.21]. �

1.3.3 Cohomological description of the Brauer group

Let K/k be a finite Galois extension of fields with Galois group G. Recall
that a central simple algebra of degree n over k is split by K, i.e., is a (K/k)-
form of Mn(k), if and only if there exists an isomorphism of K-algebras
A⊗k K ∼= Mn(K). Let us denote by Azn,K the set of isomorphism classes of
central simple algebras of degree n over k which are split by K. As discussed
in the previous section, we have a bijection of pointed sets

Azn,K
∼−→ H1(G,PGLn(K)).

Since H1(G,GLn(K)) = {1} by Theorem 1.3.1, the exact sequence of pointed
cohomology sets attached to (1.2),

H1(G,GLn(K)) −→ H1(G,PGLn(K)) −→ H2(G,K∗),

gives rise to maps
Azn,K −→ H2(G,K∗)

with trivial kernel. One easily checks that for given n and m there is a com-
mutative diagram

1 → k∗ → GLn(k) → PGLn(k) → 1
|| ↓ ↓

1 → k∗ → GLnm(k) → PGLnm(k) → 1
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where the middle vertical map sends a matrix M to the matrix with m
diagonal blocks equal to M and zero elsewhere. Replacing k by K and taking
Galois cohomology we obtain commutative diagrams

H1(G,PGLn(K)) → H2(G,K∗)
↓ ||

H1(G,PGLnm(K)) → H2(G,K∗)

The left vertical map can be identified with the map Azn,K→Aznm,K sending
A to A ⊗k Mm(k). Passing to the limit over n we obtain a map of pointed
sets

Br(K/k) −→ H2(G,K∗)

with trivial kernel. Using Theorem 1.2.7 and passing to the limit over finite
Galois extensions K/k, we get a map of pointed sets

Br(k) −→ H2(k, k∗s )

with trivial kernel. One then establishes the following properties.

• These maps are homomorphisms of groups, hence they are injective. See
[GS17, Prop. 2.7.9].
• These maps are surjective. This is proved by a cocycle computation using

the classical construction of crossed products, see [SerCL, Ch. X, §5,
Prop. 9]. An elegant cocycle-free proof is given in [GS17, Thm. 4.4.1].

We summarise this as the following theorem.

Theorem 1.3.5 For a field k and a Galois extension of fields K/k there are
natural isomorphisms of abelian groups

Br(K/k)
∼−→ H2(Gal(K/k),K∗)

and
Br(k)

∼−→ H2(k, k∗s ).

The second isomorphism is functorial with respect to arbitrary field ex-
tensions of k, see [SerCL, Ch. 10, §4].

The cohomological description of the Brauer group is very useful. For
example, it gives a quick proof of Theorem 1.2.9.

Corollary 1.3.6 For any field k the Brauer group Br(k) is a torsion group.

Proof. The group Br(k) is the direct limit of Br(K/k) = H2(Gal(K/k),K∗),
whereK/k is a finite Galois extension. But if G is finite, then Hi(G,M), where
M is any G-module and i ≥ 1, is annihilated by the order of G. (Indeed, the
composition of the restriction to a subgroup H ⊂ G with the corestriction is
the multiplication by the index [G : H]. One applies this to the case when H
consists of the identity element of G.) �
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Theorem 1.3.7 If k is a field of characteristic p > 0, then the group Br(k)
is p-divisible. Moreover, if k is perfect, then Br(k){p} = 0.

Proof. Let ks be a separable closure of k. The map x 7→ xp gives rise to the
exact sequence of Γ -modules

0 −→ k∗s −→ k∗s −→M −→ 1,

where pM = 0. The p-cohomological dimension of a field of characteristic
p > 0 is at most 1 [SerCG, Ch. II, §2.2, Prop. 3], hence H2(k,M) = 0. This
implies that pBr(k) = Br(k). If k is perfect, then M = 0 and the map x 7→ xp

is an automorphism of the Galois module k∗s . Thus multiplication by p is an
automorphism of the group Br(k), hence Br(k){p} = 0. �

Let k ⊂ K be an arbitrary field extension. The map

resK/k : Br(k) −→ Br(K)

defined by associating to a central simple k-algebra A the central simple
K-algebra A⊗k K coincides with the cohomological restriction map

H2(k, k∗s ) −→ H2(K,K∗s ).

Let us spell out the formalism of corestriction in the special case of the Brauer
group and finite separable extensions of fields. For a more general context,
which includes not necessarily separable field extensions, see Section 3.8. Let
K ⊂ ks be a separable finite field extension of k. We have an isomorphism

Br(K) ∼= H2(K, k∗s ) ∼= H2(k, (ks ⊗k K)∗)

obtained using Shapiro’s lemma and the fact that (ks ⊗k K)∗ is the di-
rect product of finitely many copies of k∗s indexed by the embeddings of
K ↪→ ks, so the Gal(ks/k)-module (ks⊗kK)∗ is induced from the Gal(ks/K)-
module k∗s . The norm NK/k : K→k gives rise to a map of Galois modules
(ks ⊗k K)∗→k∗s , hence to a homomorphism H2(k, (ks ⊗k K)∗)→H2(k, k∗s ).
This defines a corestriction (or transfer) map

coresK/k : Br(K) ∼= H2(K, k∗s ) ∼= H2(k, (ks ⊗k K)∗) −→ H2(k, k∗s ) = Br(k).

Since NK/k(x) = xn for x ∈ k, where n = [K : k], the composition

coresK/k ◦ resK/k : Br(k) −→ Br(K) −→ Br(k)

is the multiplication by the degree [K : k].
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1.3.4 Cyclic algebras, cup-products and the Kummer
sequence

Let G be a cyclic group of order n. Fix a generator σ of G. Let

χ ∈ Hom(G,Z/n) ∼= H1(G,Z/n)

be the homomorphism sending σ to 1 ∈ Z/n. The exact sequence

0 −→ Z [n]−→ Z −→ Z/n −→ 0

induced by multiplication by n on Z gives rise to an isomorphism

d : H1(G,Z/n)
∼−→ H2(G,Z)[n],

and so defines the class d(χ) ∈ H2(G,Z)[n]. For any G-module A the cup-
product with d(χ) ∈ H2(G,Z) induces an isomorphism

Hi(G,A)
∼−→ Hi+2(G,A)

for i ≥ 1. For i = 0 it induces an isomorphism

AG/NGA = Ĥ0(G,A)
∼−→ H2(G,A),

where NG =
∑
g∈G g ∈ Z[G]. The first identification here is the definition of

the Tate cohomology group Ĥ0(G,A). For all this, see [GS17, Prop. 3.4.11].
For a Galois field extension K/k with cyclic Galois group Gal(K/k) ' Z/n

with generator σ, the previous considerations give an isomorphism

k∗/NK/k(K∗)
∼−→ H2(G,K∗) = Ker[Br(k)→Br(K)]. (1.4)

The map here is the cup-product with d(χ) ∈ H2(G,Z), so it depends on the
choice of a generator σ ∈ G.

Recall that for an element a ∈ k∗ we denote by (χ, a) ∈ Br(k) the class
of the cyclic algebra Dk(χ, a), see Section 1.2.2. By [GS17, Prop. 4.7.3,
Cor. 4.7.4] we have

(χ, a) = a ∪ d(χ) = d(χ) ∪ a ∈ Br(k). (1.5)

The second equality is due to the fact that a and d(χ) are elements of coho-
mology groups of even degree.

Proposition 1.3.8 Let k be a field, let a ∈ k∗ and let χ : Γ→Z/n be a
homomorphism. Let K ⊂ ks be the invariant subfield of the kernel of χ. The
class (χ, a) ∈ Br(k) of the cyclic algebra Dk(χ, a) is zero if and only if a ∈ k∗
is a norm for the extension K/k.
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Proof. This follows from (1.4) and (1.5). �

Let n be a positive integer invertible in k. Then the map x 7→ xn on k∗s is
surjective and hence gives rise to an exact sequence of Galois modules

1 −→ µn −→ k∗s −→ k∗s −→ 1, (1.6)

called the Kummer exact sequence. Taking Galois cohomology, and using
Hilbert’s theorem 90, we obtain isomorphisms

k∗/k∗n
∼−→ H1(k, µn) and H2(k, µn)

∼−→ Br(k)[n].

The first of these isomorphisms (the connecting map in the long exact se-
quence of Galois cohomology) associates to an element a ∈ k∗ the class of
the 1-cocycle which sends g ∈ Γ to g(b)b−1 ∈ µn(ks), where b ∈ k∗s is such
that bn = a. We shall denote this class by (a)n.

The cup-product gives rise to the pairing

H1(k,Z/n)×H1(k, µn) −→ H2(k, µn) ∼= Br(k)[n].

In Section 1.4.4 we shall prove an important formula

(χ, a) = χ ∪ (a)n ∈ Br(k). (1.7)

Continue to assume that n is invertible in k and also assume that µn(ks) ⊂ k,
so that µn is isomorphic to Z/n as a Γ -module. Since H1(k, µn) ∼= k∗/k∗n we
see that every cyclic field extension of k of degree n is of the form k( n

√
a) for

some a ∈ k∗. The cup-product pairing

∪ : k∗/k∗n × k∗/k∗n = H1(k, µn)×H1(k, µn) −→ H2(k, µ⊗2
n )

is anticommutative, that is, we have a ∪ b = −b ∪ a. Choose an isomorphism
µn

∼−→ Z/n, which is equivalent to choosing a primitive root of unity ω ∈ k
(sent to 1 ∈ Z/n). This induces an isomorphism µ⊗2

n
∼−→ µn, hence an

isomorphism

H2(k, µ⊗2
n ) = H2(k, µn)⊗ µn

∼−→ H2(k, µn) = Br(k)[n].

The inverse map sends a class α ∈ H2(k, µn) to α⊗ω. For a, b ∈ k∗ we denote
the image of (a, b) under the composite map

k∗ × k∗ −→ k∗/k∗n × k∗/k∗n −→ H2(k, µ⊗2
n ) −→ H2(k, µn) = Br(k)[n]

by (a, b)ω. Under the isomorphism H2(k, µ⊗2
n ) = H2(k, µn)⊗µn the class a∪b

corresponds to (a, b)ω ⊗ ω.
The class of (a, b)ω is the class of the algebra defined in Section 1.2.2, see

[GS17, Prop. 4.7.1]. The equality (a, b)ω = −(b, a)ω follows from the equality
a ∪ b = −b ∪ a.
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For any integer n > 1, by treating odd and even integers separately one
checks that both −a and 1− a are norms for the extension k[t]/(tn− a) of k.
Thus a ∪ (−a) = 0 and a ∪ (1− a) = 0.

When n = 2 is invertible in k we recover the case of quaternion alge-
bras. The bilinearity of the cup-product then gives various properties that
we proved in a more explicit way in Section 1.1.

1.4 Galois cohomology of discretely valued fields

Let R be a discrete valuation ring with field of fractions K and residue field
k. Let ` be a prime number invertible in R. The literature contains various
constructions of residue maps

Br(K){`} −→ H1(k,Q`/Z`).

When k is perfect of characteristic p > 0, there are constructions of a residue
map

Br(K) −→ H1(k,Q/Z)

which also take care of the p-primary subgroup of Br(K).
One approach that we do not pursue here is via the Merkurjev–Suslin

theorem, which gives an isomorphism K2(F )/n ∼= H2(F, µ⊗2
n ) valid for any

field F and any integer n invertible in F (see, e.g., [GS17, Ch. 8]). When,
moreover, µn ⊂ F , we obtain an isomorphism K2(F )/n

∼−→ Br(F )[n], which
depends on the choice of a primitive n-th root of unity in F . Thus if µn ⊂ K
and (char(K), n) = 1 we can combine the Merkurjev–Suslin isomorphism
with the tame symbol K2(K)/n→k∗/k∗n to obtain a composite map

Br(K)[n] ∼= K2(K)/n
tame−−−−−→ k∗/k∗n

without assuming that k is perfect or has characteristic coprime to n.
The classical case is that of local fields, i.e. complete discretely valued

fields K with finite (hence perfect) residue field k. Then either K is a finite
extension of the p-adic field Qp, or K is the field of formal power series in
one variable over a finite field. In these cases local class field theory gives
an isomorphism often called the local invariant. Its construction goes back
to the 1930s and is due to Hasse and Witt [Wit37], and so predates Galois
cohomology. This approach uses Brauer classes of central simple algebras over
local fields and maximal orders in such algebras; the key fact is that a central
division ring over K contains a maximal subfield which is unramified over K,
see [SerCL, Ch. XII, §2] and [Rei03, Ch. 8]. We do not go in this direction here
but concentrate instead on the cohomological constructions with finite and
infinite coefficients. We discuss the existence and give precise definitions of
residue maps Br(K)→H1(k,Q/Z) for complete, or at least henselian discrete
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valuation rings R with field of fractions K and residue field k. Once a residue
map of a given kind is defined for complete discretely valued fields, we can
define it for any field K with a discrete valuation v : K∗→Z and the associated
residue field k. Namely, if K̂v is the completion of K in the v-adic topology,
we define the residue for K at v as the composition

Br(K) −→ Br(K̂v) −→ H1(k,Q/Z),

where the first arrow is the restriction map. The resulting residue map has
the same functoriality properties as the residue map for K̂v. Here, completion
can be replaced by henselisation.

Our exposition in this section is based on Chapters 6 and 7 of [GS17] and
Chapters II and III of Serre’s lectures [Ser03]. As mentioned in [Ser03, §7.13],
the properties discussed there for complete local fields also hold for henselian
discretely valued fields.

1.4.1 Serre residue

Let K be a henselian discretely valued field with residue field k. Let n be
a positive integer not divisible by char(k). We shall define a residue map
r : Br(K)[n]→H1(k,Z/n) as the composition

Br(K)[n]
∼−→ H2(K,µn)

r−→ H1(k,Z/n),

where the first map is the inverse of the isomorphism H2(K,µn)
∼−→ Br(K)[n]

provided by the Kummer sequence (1.6). Thus our task is to define a residue
map r : H2(K,µn) −→ H1(k,Z/n). We shall actually define this map in a
more general situation.

Theorem 1.4.1 Let G be a profinite group and let N be a closed normal
subgroup of G. Let C be a discrete G-module. Define Γ = G/N .

(i) Suppose that Hi(N,C) = 0 for i > 1. Then there is a long exact se-
quence

. . .→Hi(Γ,CN )→Hi(G,C)→Hi−1(Γ,H1(N,C))→Hi+1(Γ,CN )→ . . . (1.8)

(ii) In addition to the assumptions of (i) assume that N acts trivially on C,
so that C can be considered as a Γ -module. If, moreover, the exact sequence

1 −→ N −→ G −→ Γ −→ 1 (1.9)

is split, then for each i ≥ 1 there is a split exact sequence

0 −→ Hi(Γ,C) −→ Hi(G,C) −→ Hi−1(Γ,Hom(N,C)) −→ 0. (1.10)
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Here Hom(N,C) denotes the group of continuous homomorphisms N→C,
i.e. homomorphisms with finite image and open kernel.

Proof. (i) We have the Hochschild–Serre spectral sequence

Epq2 = Hp(Γ,Hq(N,C))⇒ Hp+q(G,C).

The assumption of (i) implies that this spectral sequence gives rises to the
exact sequence (1.8).

(ii) We have CN = C. Let σ : Γ→G be a homomorphism such that the
composition Γ→G→Γ is the identity map. The composition of the inflation
Hi(Γ,C)→Hi(G,C) with restriction σ∗ : Hi(G,C)→Hi(Γ,C) is the identity.
This implies the injectivity of Hi(Γ,C)→Hi(G,C) for i ≥ 0. Thus we obtain
the exact sequences (1.10). The same argument gives that these sequences
are split. �

Let R be a henselian discrete valuation ring with field of fractions K and
residue field k. We denote the characteristic exponent of k by p (so p = 1
when char(k) = 0). We have a chain of field extensions

K ⊂ Knr ⊂ Kt ⊂ Ks,

where Ks is a separable closure of K, Knr is the maximal unramified ex-
tension of K, and Kt is the maximal tamely ramified extension of K. Let
G = Gal(Ks/K) and Γ = Gal(Knr/K) ∼= Gal(ks/k). Let I = Gal(Ks/Knr)
be the inertia group and let N = Gal(Kt/Knr) be the tame inertia group.
By Hensel’s lemma, the field Knr contains all n-th roots of 1, for n coprime
to p.

The field Kt is obtained from Knr by adjoining the n-th roots of a fixed
uniformiser π ∈ K for all n coprime to p. Indeed, let L be a finite tame
extension of Knr and let e = [L : Knr] be its degree, which is prime to p.
Let π1 ∈ L be a uniformiser. We have π = uπe1, where u is a unit in L. By
Hensel’s lemma, any unit in L is an e-th power. Thus we can find an element
π1 such that π = πe1. By Eisenstein’s criterion, L = Knr(π

1/e).

Hence the profinite group N is isomorphic to Ẑ if p = 1, and to the quotient
of Ẑ by its maximal pro-p-subgroup if p > 1. It follows that cd(N) ≤ 1, that
is, for any discrete torsion Galois module C we have Hi(N,C) = 0 for any
i ≥ 2. The wild inertia subgroup Gal(Ks/Kt) is trivial if p = 1, otherwise it
is a pro-p-group. Thus for any continuous discrete torsion G-module C with
trivial p-torsion, one has Hi(Gal(Ks/Kt), C) = 0 for i > 0. The Hochschild–
Serre spectral sequence then gives that Hi(I, C) = 0 for all i ≥ 2.

For each n > 1 coprime to p choose an n-th root πn of π in Ks in such
a way that (πmn)m = πn for all m and n. Let K ′ be the extension of K
generated by all the roots πn. It is clear that Knr and K ′ are linearly disjoint
over K, and Kt = KnrK

′. This implies that the exact sequence

0 −→ N −→ Gal(Kt/K) −→ Γ −→ 1
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is split, where we have Gal(Kt/K) = G/Gal(Ks/Kt). The action of
Gal(Kt/K) on the abelian group N by conjugations gives rise to an ac-
tion of Γ ∼= Gal(Kt/K

′), hence to a G-module structure on N . We have an
isomorphism of Γ -modules N ∼= lim←−µn, where the limit is over the positive
integers n coprime to p. Here the map N→µn sends h ∈ N to h(πn)/πn.

For p > 1, the p-cohomological dimension of Γ is at most 1 [SerCG, Ch. 2,
§2, Prop. 3]. Thus every homomorphism Γ→G/Gal(Ks/Kt) lifts to a homo-
morphism Γ→G, see [SerCG, Ch. 1, §3, Prop. 16]. Hence the following exact
sequence is also split:

1 −→ I −→ G −→ Γ −→ 1.

We conclude that for every discrete, torsion Γ -module C with trivial p-
torsion, Theorem 1.4.1(ii) gives rise to split exact sequences for all i ≥ 1

0 −→ Hi(k, C) −→ Hi(K,C)
r−→ Hi−1(k, C(−1)) −→ 0. (1.11)

Here C(−1) := Hom(N,C) = H1(N,C) with its natural Γ -action.

Remark 1.4.2 By construction, for i = 1 the map r is the restriction map

resKnr/K : H1(K,C) −→ H1(Knr, C)Γ .

Definition 1.4.3 (i) Let K be a henselian discretely valued field with residue
field k. Let p be the characteristic exponent of k. Let Γ = Gal(Knr/K) =
Gal(ks/k). Let C be a continuous, discrete, torsion Γ -module with trivial
p-torsion. For i ≥ 1 the map

r : Hi(K,C) −→ Hi−1(k, C(−1))

in the exact sequence (1.11) is called the Serre residue. An element x of
Hi(K,C) is called unramified if r(x) = 0.

(ii) Let F be a field with a discrete valuation v : F ∗→Z and the associated
residue field k. Let K be the completion of F in the v-adic topology. Let ` be
a prime invertible in k. The Serre residue with coefficients Q`/Z` attached
to the valuation v is the composition

Br(F ){`} −→ Br(K){`} r−→ H1(k,Q`/Z`),

where the first arrow is the restriction map.

Similarly, one defines the Serre residue with coefficients Z/`n for any pos-
itive integer n. These residue maps satisfy obvious compatibility properties.

Suppose we have nC = 0, where n is a positive integer not divisible by
char(k). We have a cup-product pairing of Galois cohomology groups of K

∪ : H1(K,µn)×Hi−1(K,C(−1)) −→ Hi(K,C). (1.12)
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The exact sequence (1.11) allows one to identify Hi−1(k, C(−1)) with a sub-
group of Hi−1(K,C(−1)). This gives rise to the pairing

∪ : H1(K,µn)×Hi−1(k, C(−1)) −→ Hi(K,C). (1.13)

The pairing (1.12) is functorial in K, so (1.13) is too (see [Ser03, Prop. 8.2]).

Let us discuss the case C = µn, where (n, p) = 1.

For i = 1 one obtains a split exact sequence

0 −→ k∗/k∗n −→ K∗/K∗n
r−→ Z/n −→ 0. (1.14)

Proposition 1.4.4 The Serre residue r in this sequence is induced by the
valuation v : K∗→Z.

Proof. By Remark 1.4.2, this map is the natural map K∗/K∗n→K∗nr/K
∗n
nr .

The identification of K∗nr/K
∗n
nr with

Z/n ∼= Hom(µn, µn) ∼= Hom(N,µn) ∼= Hom(I, µn)

is such that the image of π corresponds to the homomorphism N→µn by
which N acts on the n-th roots of π. This is exactly the isomorphism used in
the identification of N with the inverse limit of µn, for n coprime to char(k),
so the image of π in K∗nr/K

∗n
nr corresponds to 1 ∈ Z/n. �

For i = 2 one obtains a split exact sequence

0 −→ H2(k, µn) −→ H2(K,µn)
r−→ H1(k,Z/n) −→ 0, (1.15)

which, in view of the Kummer exact sequence (1.6), can be rewritten as
follows:

0 −→ Br(k)[n] −→ Br(K)[n]
r−→ H1(k,Z/n) −→ 0. (1.16)

Proposition 1.4.5 Let R be a strictly henselian discrete valuation ring with
fraction field K and (separably closed) residue field k. Let G = Gal(Ks/K).
Let p be the characteristic exponent of k. Then we have the following state-
ments.

(i) For any prime ` 6= p, any `-primary torsion G-module C and any integer
i ≥ 2, we have Hi(K,C) = 0. In other words, cd`(K) ≤ 1.

(ii) For any i ≥ 1 the group Hi(K,Gm) is a p-primary torsion group (so the
group is trivial when p = 1).

(iii) The Brauer group Br(K) is a p-primary torsion group.
(iv) If k is algebraically closed, then cd(K) ≤ 1 and Hi(K,K∗s ) = 0 for i ≥ 1.

Proof. Part (i) is an immediate consequence of the exact sequence (1.11).
Statement (ii) then follows from the Kummer sequence (1.6) and statement
(iii) is just the special case i = 2.
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We owe the following proof of (iv) to L. Moret-Bailly. Quite generally, let R
be a discrete valuation ring with field of fractions K. Let L/K be an arbitrary
finite field extension, and let S be the integral closure of R in L. (Note that
if R is not excellent and L/K is not separable, then S is not necessarily a
finitely generated R-module.) The ring S is a semilocal Dedekind domain,
and for each maximal ideal q ⊂ S, the quotient S/q is finite over R/(q ∩R).
This is a special case of the Krull–Akizuki theorem [BouAC, Ch. 7, §2, no. 5].
If, moreover, R is henselian, then since S is integral over R and has no zero-
divisors, a limit argument shows that it is a henselian local ring [Ray70b,
Ch. I, §2, Prop. 2, p. 7]. In the case considered in (iv), the residue fields
of R and hence of S are algebraically closed. By Theorem 1.2.15 we thus
have Br(L) = 0 for any finite field extension L/K. By [SerCG, Ch. II, §3.1,
Prop. 5], this implies cd(K) ≤ 1, which in turn implies Hi(K,K∗s ) = 0 for all
i ≥ 1. �

Proposition 1.4.6 Let R be a henselian discrete valuation ring with field
of fractions K and residue field k. Let Γ = Gal(Knr/K) and let C be a Γ -
module of exponent n invertible in R. Let π be a uniformiser of R and let
(π)n be the image of π under the map K∗→H1(K,µn) given by the Kummer
sequence (1.6). Any α ∈ Hi(K,C) is uniquely written as

α = α0 + (π)n ∪ α1,

where α0 ∈ Hi(k, C) and α1 ∈ Hi−1(k, C(−1)). Moreover, α1 = r(α).

Proof. See [Ser03, Ch. II, Prop. 7.11, p. 18]. �

Using this, one proves the following general formula [Ser03, II.6.5, Exercise
7.12]. Let A,B,C be n-torsion Γ -modules such that there is a Γ -equivariant
pairing A×B→C. It induces the pairing

∪ : Hp(K,A)×Hq(K,B) −→ Hp+q(K,C).

For α ∈ Hp(K,A) and β ∈ Hq(K,B), one has

r(α∪β) = r(α)∪β+(−1)pα∪r(β)+r(α)∪r(β)∪(−1)n ∈ Hp+q−1(K,C(−1)),

where (−1)n ∈ H1(K,µn) denotes the class of −1 in K∗/K∗n ∼= H1(K,µn).
All terms of this formula are elements of Hp+q−1(K,C(−1)) with the conven-
tion that the Serre residue r is composed with the injective map in (1.11),
and similarly for A and B in place of C.

Here are some applications of this formula to residues for an arbitrary (not
necessarily henselian) discrete valuation ring R with field of fractions K and
residue field k, where n > 1 is an integer invertible in R.

• The cup-product followed by the Serre residue

H1(K,µn)×H1(K,µn)
∪−→ H2(K,µ⊗2

n )
r−→ H1(k, µn)
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gives rise to the skew-symmetric pairing

K∗/K∗n ×K∗/K∗n −→ k∗/k∗n. (1.17)

The above formula for the Serre residue of the cup-product shows that
the value of this pairing on the classes of a, b ∈ K∗ is the image in k∗/k∗n

of the following element of R∗:

(−1)v(a)v(b)bv(a)/av(b) ∈ R∗. (1.18)

• If we consider

H1(K,Z/n)×H1(K,µn)
∪−→ H2(K,µn)

r−→ H1(k,Z/n),

then for any χ ∈ H1(k,Z/n) ⊂ H1(K,Z/n) and any a ∈ K∗ we obtain

r(χ ∪ (a)n) = −v(a)χ ∈ H1(k,Z/n), (1.19)

where (a)n is the image of a in K∗/K∗n.
• However, if we consider

H1(K,µn)×H1(K,Z/n)
∪−→ H2(K,µn)

r−→ H1(k,Z/n),

then for any χ ∈ H1(k,Z/n) ⊂ H1(K,Z/n) and any a ∈ K∗ we obtain

r((a)n ∪ χ) = v(a)χ ∈ H1(k,Z/n). (1.20)

This implies that the map s : H1(k,Z/n)→H2(K,µn) given by

s(χ) = (π)n ∪ χ, (1.21)

where (π)n is the image of π in K∗/K∗n, is a section of r.

1.4.2 Extensions of rings

Let R be a discrete valuation ring with field of fractions K and residue field k.
Let L be a finite separable extension of K. Then the integral closure B of R
in L is a semilocal Dedekind domain which is a finitely generated R-module
[SerCL, Ch. I, §4, Prop. 8]. Let mi, for i = 1, . . . , n, be the maximal ideals of
B. Let ki = B/mi be the residue field at mi. Let ei be the ramification index
of mi over K.
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Proposition 1.4.7 Let ` be a prime invertible in R. Then one has commu-
tative diagrams

Br(L){`} r // H1(ki,Q`/Z`)

Br(K){`} r //

resK/L

OO

H1(k,Q`/Z`)

eiresk/ki

OO
Br(L){`} r //

coresK/L

��

⊕n
i=1 H1(ki,Q`/Z`)∑

coresk/ki
��

Br(K){`} r // H1(k,Q`/Z`)

These diagrams are compatible with similar commutative diagrams for the
Serre residue with finite coefficients r : Br(K)[`n]→H1(k,Z/`n), for n ≥ 1.

The corestriction map coresk′/k : Hi(k′, C)→Hi(k,C) is defined for any
finite extension of fields k′/k and any torsion Galois module C with trivial
p-torsion, where p is the characteristic exponent of k, as the composition of
Galois corestriction and multiplication by the degree of inseparability of k′/k.
See [Ser03, Ch. II, 8.5] or [GS17, Remark 6.9.2].

Proof of Proposition 1.4.7. We give a sketch and refer to [Ser03, §8] for details.

Let R̂ be the completion of R and let K̂ be the completion of K. Let
B̂i be the completion of B with respect to the discrete valuation defined by
mi. Similarly, let L̂i be the completion of L at mi. Clearly, K̂ is the field of
fractions of R̂ and L̂i is the field of fractions of B̂i. By [SerCL, Ch. II, §3] we
have

L⊗K K̂
∼−→

n∏
i=1

L̂i, B ⊗R R̂
∼−→

n∏
i=1

B̂i.

It is enough to prove the proposition in the case when R is complete. For the
first diagram, using Proposition 1.4.6, it suffices to check commutativity for
(πR)`n ∪ χ ∈ Br(K)[`n], where χ ∈ H1(k,Z/`n) and πR is a uniformiser of
R. This follows from the functoriality of the pairing (1.13) with respect to
extensions of the field K.

Checking the commutativity of the second diagram reduces to the following
two cases: unramified extensions L/K (that is, e(L/K) = 1 and the residue
field extension kL/k is separable), and extensions L/K with kL/k purely in-
separable. In the first case, one considers (πR)`n∪χ, where χ ∈ H1(kL,Z/`n).
In the second case it is enough to consider the elements of Br(L)[`n] of the
form (πB)`n ∪ χ, where χ ∈ H1(k,Z/`n). The result then follows from the
standard “projection formulae”. �

Proposition 1.4.8 Let K ⊂ L be an unramified extension of henselian dis-
cretely valued fields with residue fields k ⊂ kL. Let α ∈ Br(K){`}, where
` is invertible in k. Suppose that resL/K(α) ∈ Br(L) is unramified, so that
resL/K(α) is the image of an element β ∈ Br(kL) under the injective map
Br(kL){`}→Br(L){`} from the exact sequence (1.16). Then β is contained in
the image of the restriction map reskL/k : Br(k)→Br(kL).
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Proof. Take any n such that `nα = 0. By Proposition 1.4.6, α is uniquely
written as

α = α0 + (π)`n ∪ α1,

where π ∈ K is a uniformiser, (π)`n ∈ H1(K,µ`n) is the image of π ∈ K∗
under the connecting map in the Kummer exact sequence, α0 ∈ Br(k)[`n]
and α1 ∈ H1(k,Z/`n). Moreover, α1 = rK(α) is the residue of α. By the
compatibility of pairings for K and L (see (1.13)) the image of (π)`n ∪ α1 in
Br(L) is (π)`n ∪ reskL/k(α1), where π is understood as an element of L.

Since resL/K(α0) and resL/K(α) are unramified, (π)`n ∪ reskL/k(α1) is also
unramified. As L is unramified over K, the uniformiser π ∈ K is also a
uniformiser of L. Therefore, the residue map rL : Br(L)[`n]→H1(kL,Z/`n)
sends (π)`n ∪ reskL/k(α1) to reskL/k(α1) ∈ H1(kL,Z/`n), so this last element
is zero. Hence (π)`n∪α1 goes to zero in Br(L), so that resL/K(α) is the image
of reskL/k(α0). �

Corollary 1.4.9 Let R ⊂ B be an unramified extension of (not necessarily
henselian) discrete valuation rings with fraction fields K ⊂ L and residue
fields κ ⊂ λ. Let α ∈ Br(K){`}, where ` is a prime invertible in R. Suppose
that the image of α in Br(L) is unramified, so it is the image of a (well
defined) element β ∈ Br(B). Then the image of β under the natural map
Br(B)→Br(λ) is contained in the image of the restriction map Br(κ)→Br(λ).

Proof. The statement only concerns the value of β at the closed point Spec(λ)
of Spec(B), so we can assume without loss of generality that R and B are
henselian. In this case the statement follows from Proposition 1.4.8. �

1.4.3 Witt residue

Let R be a henselian discrete valuation ring with fraction field K and residue
field k. Let p be the characteristic exponent of k. As in Section 1.4.1 we have
inclusions of discretely valued fields

K ⊂ Knr ⊂ Kt ⊂ Ks.

The residue field of both Knr and Kt is the separable closure ks of k. We
have Γ = Gal(Knr/K) ∼= Gal(ks/k).

By Proposition 1.4.5, both Br(Knr) and Br(Kt) are p-primary torsion
groups. (Note that Br(Knr) = 0 if k is perfect by Theorem 1.2.15.) Since
N = Gal(Kt/Knr) is the inverse limit of Z/n, where (n, p) = 1, we have
H2(N,K∗t ){p} = 0. Thus by Hilbert’s theorem 90 the Hochschild–Serre spec-
tral sequence

Hp(N,Hq(Kt,K
∗
s ))⇒ Hp+q(Knr,K

∗
s )

shows that the restriction map Br(Knr)→Br(Kt) is injective.
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Definition 1.4.10 Define the tame (or tamely ramified) subgroup of the
Brauer group as

Brt(K) := Ker[Br(K)→Br(Knr)] = Ker[Br(K)→Br(Kt)].

We have Brt(K){`} = Br(K){`} for any prime ` 6= p, and Brt(K) =
Br(K) if k is perfect. By Hilbert’s theorem 90, the Hochschild–Serre spectral
sequence

Hp(Γ,Hq(Knr,K
∗
s ))⇒ Hp+q(K,K∗s ) (1.22)

gives an isomorphism H2(Γ,K∗nr)
∼−→ Brt(K). Composing it with the Galois

equivariant map v : K∗nr→Z given by the valuation we obtain

Brt(K)
∼←− H2(Γ,K∗nr)

v∗−→ H2(Γ,Z)
∼←− H1(Γ,Q/Z), (1.23)

where the isomorphism H1(Γ,Q/Z)
∼−→ H2(Γ,Z) comes from Galois coho-

mology of the exact sequence

0 −→ Z −→ Q −→ Q/Z −→ 0. (1.24)

We have a canonical isomorphism H1(Γ,Q/Z) ∼= Homcont(Γ,Q/Z).

Definition 1.4.11 (i) Let K be a henselian discretely valued field with
residue field k. The composed map in (1.23)

rW : Brt(K) −→ H1(k,Q/Z)

is called the Witt residue. For any prime ` invertible in k it defines a map

rW : Br(K){`} −→ H1(k,Q`/Z`). (1.25)

When k is perfect, it defines a map

rW : Br(K) −→ H1(k,Q/Z). (1.26)

(ii) Let F be a field with a discrete valuation v : F ∗→Z and the associated
residue field k. Let K be the completion of F in the v-adic topology. If ` is a
prime invertible in k, we define the Witt residue

rW : Br(F ){`} −→ H1(k,Q`/Z`)

as the composition of the restriction map Br(F ){`}→Br(K){`} with (1.25).
If k is perfect, we define the Witt residue rW : Br(K)→H1(k,Q/Z) as the
composition of the restriction map Br(F )→Br(K) with (1.26).

We note that the choice of a uniformiser gives a section of the homomor-
phism v : K∗nr→Z, and hence of rW . In particular, the Witt residue map rW
is surjective (for the kernel of the Witt residue, see Theorem 3.6.2). This
section can be described in terms of the cup-product. Since Γ is a quotient of
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Gal(Ks/K), we can view a continuous character χ : Γ→Q/Z as a character
of Gal(Ks/K). Applying the connecting homomorphism in the long exact
sequence attached to the exact sequence of Gal(Ks/K)-modules (1.24) we
obtain d(χ) ∈ H2(K,Z). For any a ∈ K∗ the cup-product d(χ)∪ a under the
pairing

H2(K,Z)×H0(K,K∗s ) −→ Br(K) (1.27)

is an element of Br(K), see also [SerCL, Ch. XIV, §1]. In Section 1.3.4 this
element was denoted by (χ, a), see (1.5). By (1.7), if nχ = 0 for a positive
integer n, we have d(χ) ∪ a = χ ∪ (a)n. Using (1.19) we obtain

rW
(
d(χ) ∪ a

)
= v(a)χ. (1.28)

Thus if π ∈ R is a uniformiser, then the map

sW (χ) = d(χ) ∪ π (1.29)

is a section of rW .

We refer to [SerCL, Ch. XII, Exercise 3] for the following result.

Theorem 1.4.12 Let R be a complete discrete valuation ring with fraction
field K and residue field k. There is a split exact sequence

0 −→ Br(k) −→ Brt(K) −→ H1(k,Q/Z) −→ 0,

where the third arrow is the Witt residue.

Remark 1.4.13 Let R be a complete discrete valuation ring with fraction
field K of characteristic zero and residue field k of characteristic p > 0.
Assuming that K contains the p-th roots of 1, Kato [Kat82] constructed a
filtration on Br(K)[p] whose smallest term is identified with the direct sum
Br(k)[p]⊕H1(k,Z/p). The higher quotients of the filtration involve the group
of absolute differentials Ω1

k/Z of k, i.e. the group of differentials Ω1
k/kp , which

vanishes if k is perfect. See also [CT99a, Thm. 4.3.1]. The group Br(k)[p] also
features as the Galois cohomology group H1(k, ν(1)), cf. [CT99a, §1].

Similarly, for a complete discrete valuation ring R with fraction field K
and residue field k both of characteristic p > 0, Izhboldin [Izh96, Thm. 2.5,
Cor. 2.6] constructed a filtration on Br(K)[p] whose lowest term is identified
with Br(k)[p]⊕H1(k,Z/p). The higher quotients of the filtration involve the
group Ω1

k/Z = Ω1
k/kp , which vanishes if k is perfect.

In both cases, the lowest term of these filtrations is the p-torsion subgroup
of Brt(K).
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1.4.4 Compatibility of residues

In this section we compare the Serre residue with the Witt residue.

Theorem 1.4.14 Let R be a henselian discrete valuation ring with fraction
field K and residue field k. Let n be an integer invertible in R. The compo-
sition

H2(K,µn)
∼−→ Br(K)[n]

rW−→ H1(k,Z/n),

where the first arrow is given by the Kummer sequence (1.6), is equal to the
negative of the Serre residue r : H2(K,µn)→H1(k,Z/n).

Proof. This was proved by Serre in his 1991–1992 course at Collège de France,
cf. the appendix to the thesis of E. Frossard [Fro95, Lemme A.3.2]. See also
[GS17, Prop. 6.8.9].

The idea is to use explicit splittings of the residue maps r and rW
given by their respective sections s and sW , see (1.21) and (1.29). Let
χ ∈ H1(k,Z/n) = Hom(Γ,Z/n). We need to show that the Brauer class given
by s(χ) = (π)n∪χ is the negative of sW (χ) = d(χ)∪π. The proof of this prop-
erty works more generally for any field K of characteristic coprime to n. Let
G = Gal(Ks/K). We shall show that for any character χ ∈ Hom(G,Z/n) and
any a ∈ K∗ the image of (a)n∪χ ∈ H2(G,µn) in H2(G,K∗s ) equals −d(χ)∪a.
Recall that we denote by (a)n the image of a ∈ K∗ in H1(K,µn) = K∗/K∗n

under the connecting map of the Kummer sequence. In particular, this will
prove formula (1.7), which is the equality χ ∪ (a)n = d(χ) ∪ a.

We refer the reader to [BouX, Ch. 7] for a careful exposition of Ext-groups
of modules over a ring and their relations to exact sequences of modules.
By [BouX, §7.4, Prop. 3] the canonical pairing between Ext-groups can be
computed by splicing extensions, which is also known as Yoneda pairing. We
shall use the following well-known properties, see [HS70, Ch. IV, §9] or [BouX,
§7.6, Prop. 5]. Suppose we are given a G-module M , an integer m ≥ 0, and
an exact sequence of G-modules

θ : 0 −→ A −→ B −→ C −→ 0.

Let [θ] be the class of this extension in Ext1
G(C,A).

(a) The connecting homomorphism ExtmG (M,C)→Extm+1
G (M,A) in the

second argument is the product with [θ] ∈ Ext1
G(C,A). For m ≥ 1 this

homomorphism sends the class of an m-fold extension of M by C to the class
of the splicing of this extension with θ. For m = 0 it sends a homomorphism
of G-modules f : M→C to the class of the pullback of θ by f .

(b) The connecting homomorphism ExtmG (A,M)→Extm+1
G (C,M) in the

first argument is the product with (−1)m+1[θ]. For m ≥ 1 it sends the class
of an m-fold extension of A by M to the class of its splicing with θ, multiplied
by (−1)m+1. For m = 0 it sends a homomorphism of G-modules g : A→M to
the negative of the class of the push-forward of θ by g.
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We have a canonical isomorphism of functors ExtnG(Z, ·) = Hn(K, ·). By
[BouX, §7.5, Thm. 1 (a)] any class in Ext1

G(Z,Z/n) is the class of an extension
of G-modules Z by Z/n. Let the first short exact sequence in

0→Z/n→Eχ→Z→0, 0→Z→Z→Z/n→0 (1.30)

be an extension with class

χ ∈ Homcont(G,Z/n) = H1(K,Z/n) = Ext1
G(Z,Z/n).

The second short exact sequence is obtained from the multiplication by n
map [n] : Z→Z. We denote it by Mn, and write [Mn] for the class of Mn in
Ext1

G(Z/n,Z). Given a ∈ K∗, we let fa : Z→K∗s be the map of G-modules
sending 1 to a.

We write Mn ∪Eχ for the 2-fold extension of Z by Z obtained by splicing
the short exact sequences in (1.30). We write fa∗Mn for the extension of Z/n
by K∗s , which is the push-forward of Mn via fa. Similarly, fa∗(Mn ∪ Eχ) =
fa∗Mn ∪ Eχ is the push-forward of Mn ∪ Eχ by fa. We use square brackets
to denote the classes of these extensions in the relevant Ext-groups.

The first two rows in the following diagram of pairings are Yoneda pairings:

Ext1
G(Z/n,Z) × Ext1

G(Z,Z/n) −→ Ext2
G(Z,Z) ∼= H2(G,Z)

↓ || ↓ ↓
Ext1

G(Z/n,K∗s ) × Ext1
G(Z,Z/n) −→ Ext2

G(Z,K∗s ) ∼= H2(G,K∗s )
ε ↑' || ↑

H1(G,µn) × H1(G,Z/n)
∪−→ H2(G,µn)

The upper vertical maps denoted by arrows are given by the push-forward
via fa : Z→K∗s . It is thus clear that the upper part of this diagram commutes.
The map ε is the edge map H1(G,Hom(Z/n,K∗s ))→Ext1

G(Z/n,K∗s ) from the
spectral sequence

Hp(G,Extq(Z/n,K∗s ))⇒ Extp+qG (Z/n,K∗s ).

In the category of abelian groups we have Extq(Z/n,K∗s ) = 0 for q ≥ 1
since K∗s is divisible by n, hence ε is an isomorphism. The pairing in the
bottom row is the cup-product pairing, which is defined via the tensor product
µn⊗Z Z/n

∼−→ µn. The commutativity of the lower part of the diagram, i.e.,
the equality of the ‘internal product’ to the ‘Yoneda-edge-product’, is proved
in [GH70, Prop. 4.5] and in [Mil80, Prop. V.1.20].

The upper pairing of the diagram applied to [Mn] ∈ Ext1
G(Z/n,Z) and

[Eχ] ∈ Ext1
G(Z,Z/n) gives [Mn∪Eχ] ∈ Ext2

G(Z,Z), by [BouX, §7.4, Prop. 3].
By property (a) above applied in the case m = 1, this equals the image
of [Eχ] under the connecting homomorphism in the long exact sequence of
ExtnG(Z, ·)’s in the second argument. This sequence is the same as the long
exact sequence of Hn(G, ·), so we conclude that [Mn ∪Eχ] = d(χ). It follows
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that the middle pairing of the diagram sends [fa∗Mn] and [Eχ] to

[fa∗Mn ∪ Eχ] = fa∗(d(χ)) = d(χ) ∪ a = a ∪ d(χ).

The bottom pairing sends (a)n and χ to (a)n ∪ χ. By definition χ goes to
[Eχ], so to prove that d(χ) ∪ a is the image of −(a)n ∪ χ it remains to show
that the edge map ε sends (a)n to −[fa∗Mn].

To check this consider the following diagram:

HomG(Z,K∗s ) −→ Ext1
G(Z/n,K∗s )

|| ε ↑'
H0(G,Hom(Z,K∗s )) −→ H1(G,Hom(Z/n,K∗s ))

Here the upper horizontal arrow is the connecting homomorphism in the long
exact sequence of Ext’s in the first argument associated to the exact sequence
Mn. The lower horizontal arrow is the connecting homomorphism in the
long exact sequence of cohomology attached to the Kummer exact sequence
(1.6). The commutativity of the last diagram is proved by a standard derived
category argument based on the representation of the left derived functor
RHomG(·,K∗s ) from the bounded derived category of continuous discrete
G-modules to abelian groups as the composition of the derived functors of
Hom(·,K∗s ) and M 7→MG. By property (b) above applied in the case m = 0,
the upper arrow sends a to −[fa∗Mn].

We conclude that ε((a)n) = −[fa∗Mn]. �

1.5 The Faddeev exact sequences

Let k be a perfect field with algebraic closure ks = k̄ and Galois group Γ =
Γk = Gal(k̄/k). To a monic irreducible polynomial P (t) ∈ k[t] we attach a free
Z-module ZP generated by the roots of P (t) in k̄ with a natural action of Γ
permuting these generators. It is clear that the Γ -module ZP is induced from
the trivial Gal(k̄/k(P ))-module Z, where k(P ) = k[t]/(P (t)). In particular,
by Shapiro’s lemma, we have Hn(Γk,ZP ) ∼= Hn(Γk(P ),Z) for all n ≥ 0. For
n = 2 we have a canonical isomorphism

H2(Γk,ZP ) ∼= Homcont(Γk(P ),Q/Z).

The valuations attached to the roots of P (t) give rise to a map of Γ -modules
k̄(t)∗→ZP , which has a section sending the generator of ZP corresponding
to a root ε ∈ k̄ to t − ε. Using this notation we rewrite the natural exact
sequence of Γ -modules

0 −→ k̄∗ −→ k̄(t)∗ −→ Div(A1
k̄) −→ 0 (1.31)
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as a split exact sequence of Γ -modules

0 −→ k̄∗ −→ k̄(t)∗ −→
⊕
P (t)

ZP −→ 0, (1.32)

where the sum is over all monic irreducible polynomials P (t) ∈ k[t].

Proposition 1.5.1 (D.K. Faddeev) Let k be a perfect field. There is a
split exact sequence

0 −→ Br(k) −→ Br(k(t)) −→
⊕
P (t)

Homcont(Γk(P ),Q/Z) −→ 0, (1.33)

where the direct sum is over all monic irreducible polynomials P (t) ∈ k[t].
The second arrow is given by the inclusion of fields k ⊂ k(t). For each P (t),
the map Br(k(t))→Homcont(Γk(P ),Q/Z) is the Witt residue attached to the
valuation of k(t) for which P (t) is a uniformiser.

Proof. Applying H2(Γk, ·) to (1.32) we obtain (1.33), once we identify the
middle term with Br(k(t)). The natural isomorphism Γk ∼= Gal(k̄(t)/k(t))
gives rise to the inflation map

inf : H2(Γk, k̄(t)∗) −→ H2(Gal(k(t)/k(t)), k(t)
∗
) ∼= Br(k(t)).

It is enough to prove that this map is an isomorphism. Indeed, inf fits into
the Hochschild–Serre spectral sequence

Hp(Γk,H
q(Gal(k(t)/k̄(t), k(t)

∗
))⇒ Hp+q(Gal(k(t)/k(t)), k(t)

∗
).

We have H1(Gal(k(t)/k̄(t)), k(t)
∗
) = 0 (Theorem 1.3.2, Hilbert’s theorem

90) and H2(Gal(k(t)/k̄(t)), k(t)
∗
) ∼= Br(k̄(t)) = 0 (Theorem 1.2.14, Tsen’s

theorem). The spectral sequence now implies that inf is an isomorphism.
It remains to check the compatibility with the Witt residue. Let k[t]P be

the localisation of k[t] at the principal prime ideal (P (t)), let k[t]hP be the
henselisation of k[t]P . It is a henselian discrete valuation ring with residue
field k(P ). The integral closure of k in k[t]hP is a field of representatives for
k(P ) inside k[t]hP , that is, the reduction map induces an isomorphism between
this field and the residue field k(P ). Henceforth we denote this field by k(P ).

Let K ⊂ k(t) be the fraction field of k[t]hP . Let Knr be the maximal unram-
ified extension of K. We note that Knr = K⊗k(P ) k̄ and Gal(Knr/K) = Γk(P ).
The map

Br(k(t)) −→ Homcont(Γk(P ),Q/Z)

comes from H2(Γk, k̄(t)∗)→H2(Γk,ZP ) which factors as

H2(Γk, k̄(t)∗) −→ H2(Γk, (K ⊗k k̄)∗) −→ H2(Γk,ZP ).
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Since H2(Γk, (K ⊗k k̄)∗) ∼= H2(Γk(P ), (K ⊗k(P ) k̄)∗) ∼= H2(Γk(P ),K
∗
nr) by

Shapiro’s lemma, our map can also be written as

H2(Γk, k̄(t)∗) −→ H2(Γk(P ),K
∗
nr) −→ H2(Γk(P ),Z).

Here the second map is induced by the valuation, so, by definition, it is the
Witt residue. �

Theorem 1.5.2 Let k be a perfect field. There is an exact sequence

0→Br(k)→Br(k(t))→
⊕

x∈(P1
k)(1)

H1(k(x),Q/Z)→H1(k,Q/Z)→0, (1.34)

where the direct sum is over all closed points of P1
k. The third map is the direct

sum of Witt residues. The fourth map is the sum of corestrictions coresk(x)/k

over all closed points of P1
k.

Proof. Instead of (1.31) we now consider the exact sequence of Γ -modules

0 −→ k̄∗ −→ k̄(t)∗ −→ Div(P1
k̄) −→ Z −→ 0, (1.35)

where the fourth arrow is given by the degree. This sequence can be obtained
by splicing two exact sequences of Γ -modules, both of which are split:

0 −→ k̄∗ −→ k̄(t)∗ −→ Div0(P1
k̄) −→ 0,

where Div0(P1
k̄
) is the degree 0 subgroup of Div(P1

k̄
), and

0 −→ Div0(P1
k̄) −→ Div(P1

k̄) −→ Z −→ 0.

Applying H2(Γk,−) to (1.35) we obtain (1.34). The identification of the third
arrow of (1.34) with the Witt residues follows from the last sentence of The-
orem 1.5.1. The fourth map in (1.34) is the sum of maps

H2(Γk,Zk(x)) −→ H2(Γk,Z),

each of which is induced by the summation map Zk(x)→Z. This implies the
last statement of the theorem. �

The exact sequence (1.33) is split and it is instructive to write down an
element of Br(k(t)) that lifts a character χ ∈ Homcont(Γk(P ),Q/Z) for a given
monic irreducible polynomial P (t).

Let τP be the image of t in k(P ) = k[t]/(P (t)). Then t − τP ∈ k(P )(t).
The character χ gives rise to a character of Gal

(
k(P )(t)/k(P )(t)

)
. Let Aχ

in Br(k(P )(t)) be the class of the cyclic algebra associated to this character
and t− τP ∈ k(P )(t). By (1.5) this class can also be described as follows. Let
d(χ) ∈ H2(k(P ),Z) be the image of χ under the connecting homomorphism
d in the long exact sequence of cohomology groups attached to the exact
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sequence of Γk(P )-modules (1.24). We also denote by d(χ) the image of this
element in H2(k(P )(t),Z) under the restriction from k(P ) to k(P )(t). Then
Aχ ∈ Br(k(P )(t)) is the cup-product d(χ) ∪ (t − τP ) with respect to the
pairing (1.27):

H2(k(P )(t),Z)×H0(k(P )(t), k(P )(t)
∗
) −→ Br(k(P )(t)).

It is clear that Aχ is unramified on P1
k(P ) away from the k(P )-point t = τP

and the point at infinity, i.e., the residues of Aχ at all other closed points of
P1
k(P ) are trivial. By (1.28), the Witt residue of Aχ at t = τP is

rW (Aχ) = v(t− τP )χ = χ ∈ H1(k(P ),Z/n).

A similar formula shows that the Witt residue of Aχ ∈ Br(k(P )(t)) at the
point at infinity of P1

k(P ) is −χ.

Let us abbreviate the notation for the corestriction map from k(P )(t)
to k(t) as coreskP /k. Using Proposition 1.4.7 we see that coreskP /k(Aχ) is
an element of Br(k(t)) unramified away from the closed point P , which is
the zero set of P (t), and possibly the point at infinity. More precisely, the
Witt residue of coresk(P )/k(Aχ) at P is χ and the Witt residue at ∞ is
−coresk(P )/k(χ).

Let A ∈ Br(k(t)) be an arbitrary element. Let χP be the Witt residue of
A at the closed point P of P1

k. Let S be the set of closed points P ∈ A1
k

for which χP 6= 0. Then A −
∑
P∈S coresk(P )/k(AχP ) is unramified over A1

k.
Faddeev’s exact sequence (1.33) now shows that

A =
∑
P∈S

coresk(P )/k(AχP ) +A0,

for some A0 ∈ Br(k).

Remark 1.5.3 Izhboldin computed the group Br(k(t))[p] for any field k of
characteristic p > 0, not necessarily perfect, see [Izh96, Thm. 4.5].



Chapter 2

Étale cohomology

The étale topology and étale cohomology were invented by A. Grothendieck in
the beginning of the 1960s, after Serre’s discussion of local triviality for princi-
pal homogeneous spaces in algebraic geometry [Ser58]. More general “topolo-
gies” and associated cohomology theories were developed by A. Grothendieck,
M. Artin and J.-L. Verdier.

Original references for this material are Artin’s Harvard seminar [Art62]
and the Artin–Grothendieck–Verdier seminar [SGA4]. There is a gentle in-
troduction by Deligne in [SGA4 1

2 , Arcata]. See also [Tam94]. A basic book
on the subject, written by J.S. Milne, is [Mil80]. For a thorough, modern
treatment we refer to the Stacks project [Stacks]; it follows the same line of
exposition as [Art62], which remains an excellent reference. A concise and
very readable introduction can be found in [Po18, Ch. 6].

In the first two sections of this chapter we introduce notation and ter-
minology, and state basic results about étale sheaves and étale cohomology.
It would not be realistic to give proofs; instead, we try to help the reader
navigate through some of the above references.

The third section reports on purity results for étale cohomology with tor-
sion coefficients and on residues in the étale cohomological context.

In the next two sections we discuss the first cohomology group of the
multiplicative group, which is the Picard group, and then the relative Picard
group and the Picard scheme. The Brauer group of a field k naturally appears
when one considers the obstruction for a Galois invariant element of the
geometric Picard group of a smooth projective variety X over k to come
from an element of the Picard group of X.
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2.1 Topologies, sites, sheaves

2.1.1 Grothendieck topologies

Let C be a small category. Consider the set of all families of morphisms in C
with a common target {Ui→U}i∈I . A Grothendieck topology on C is a subset
T of this set satisfying the following axioms. The elements of T are referred
to as “coverings”.

(i) If V→U is an isomorphism, then {V→U} is a covering.
(ii) If {Ui→U}i∈I is a covering and for each i ∈ I we have a covering
{Vij→Ui} for j in a set Ii, then {Vij→U} is a covering, where Vij→U is
the composition Vij→Ui→U .

(iii) For an arbitrary morphism V→U in C and a covering {Ui→U}i∈I , the
fibred products Ui ×U V exist in C and {Ui ×U V→V }i∈I is a covering.

The pair consisting of a small category C together with a set T of coverings
satisfying the above axioms is called a site. The category C is referred to
as the underlying category of the site. This is the general presentation of
[Art62, SGA4, Stacks, Po18].

Milne [Mil80] discusses the following construction of a site, which is also
enough for our purposes. Consider a scheme X and a full subcategory CX
of the category Sch/X of schemes over X. In particular, the morphisms in
CX are morphisms of X-schemes. Consider a subclass E of morphisms in
CX satisfying the following properties. The elements of E are referred to as
“open sets”.

(i) Every isomorphism is in E.
(ii) A composition of morphisms in E is in E.

(iii) If V→U is in E and W→U is an arbitrary morphism in CX , then V ×U
W→W is in E.

By definition, a family of morphisms {fi : Ui→U}i∈I in CX is a covering
if each fi is in E and ∪i∈Ifi(Ui) = U . Such families define a Grothendieck
topology on CX . The pair consisting of CX and the family of all such coverings
for all U in CX is a site denoted by XE . The category CX is the underlying
category of the site XE .

The property of a morphism f : V→U to be étale is local on V . In par-
ticular, although every étale morphism is locally of finite presentation, hence
locally of finite type, one does not assume it to be quasi-compact, so it is not
necessarily of finite type. See [Stacks, Section 02GH] for properties of étale
morphisms.

In this book the following sites XE will be used.

Xzar is the small Zariski site of X, that is, CX is the category of open
subschemes of X, and E is the class of open embeddings.

https://stacks.math.columbia.edu/tag/02GH
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XZar is the big Zariski site, that is, CX is the category Sch/X of all schemes
over X, and E is the class of open embeddings.

Xét is the small étale site, that is, CX is the category of schemes that are
étale over X, and E is the class of étale maps. Note that in the case of
Xét all maps in CX are automatically étale (unlike for XÉt or Xfppf).

XÉt is the big étale site, that is, CX is the category Sch/X of all schemes
over X, and E is the class of étale maps.

Xfppf is the big flat site, that is, CX is the category Sch/X of all schemes
over X, and E is the class of flat morphisms that are locally of finite
presentation.

We shall only consider sites XE of one the above types (although the
fpqc site will be fleetingly mentioned in Chapter 4). We write CX for the
underlying category of X-schemes of the site XE .

Let π : X ′→X be a morphism of schemes. Let XE and X ′E′ be sites. One
says that π induces a continuous map of sites X ′E′→XE , sometimes also
denoted by π, if the following properties are satisfied:

(i) For any Y ∈ CX , Y ×X X ′ is in CX′ .
(ii) For any covering {Ui→Y }i∈I in XE , the family {Ui×XX ′→Y ×XX ′}i∈I

is a covering in X ′E′ .

Such a definition makes sense for more general sites (C, T ) and (C′, T ′),
when one is given a functor C→C′, see [Po18, Def. 6.2.7].

For the sites listed above (whose underlying categories are categories of
schemes over a base scheme X) the second condition reduces to the condition
that for any “open set” V→U in XE , the fibred product V ×X X ′→U ×X X ′
is an “open set” in X ′E′ .

For example, the identity map on a scheme X defines continuous maps of
sites

Xfppf −→ XÉt −→ Xét −→ Xzar.

Here is another basic example. Any morphism of schemes X ′→X induces a
continuous map of sites X ′E→XE where E is any one of zar, Zar, ét, Ét, fppf.

2.1.2 Presheaves and sheaves

Let X be a scheme. A presheaf of sets on a site XE with underlying category
CX is by definition a presheaf of sets on CX , i.e. a contravariant functor P
from CX to the category of sets. For Y in CX , we refer to P(Y ) as the set of
sections of P over Y .

Presheaves of abelian groups on XE form an abelian category, where a
sequence of presheaves is exact if and only if the corresponding sequence of
sections over Y is an exact sequence of abelian groups, for any Y in CX . We
denote this abelian category by P(XE). For example,
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Ga,X is the presheaf such that Ga,X(Y ) = H0(Y,OY ),
Gm,X is the presheaf such that Gm,X(Y ) = H0(Y,O∗Y ).
µn,X , for n ≥ 1, is the presheaf such that µn(Y ) = {x ∈ H0(Y,O∗Y )|xn = 1}.

A presheaf P of sets on XE is called a sheaf on XE if for any scheme Y in
CX and any covering {Ui→Y }i∈I , any section over Y is uniquely determined
by its restrictions to the Ui, and any family of sections over the Ui which
agree on Ui ×Y Uj comes from a section over Y .

Given a presheaf of sets P on XE , there is a sheaf of sets aP on XE

associated to the presheaf P. The construction of this sheaf is non-trivial
[Art62, Ch. II], [Mil80, Thm. II.2.11], [Stacks, Section 00W1]. One can give
an explicit construction of aP in terms of the 0-th Čech cohomology presheaf
Ȟ0(P), namely, aP = Ȟ0(Ȟ0(P)). (Applying Ȟ0 to a presheaf produces a
separated presheaf, that is, a presheaf whose sections are uniquely determined
by their restrictions to the Ui. Applying Ȟ0 to a separated presheaf produces
a sheaf, see [Mil80, Remark III.2.2 (c)].)

One defines the category S(XE) of sheaves of abelian groups on XE as the
full subcategory of P(XE): a homomorphism between two sheaves on XE is
just a homomorphism of the underlying presheaves on XE .

Let F and G be sheaves of abelian groups on X and ϕ : F→G be a mor-
phism in S(XE). The kernel Ker(ϕ) in S(XE) is the same as the kernel of
the morphism of presheaves ϕ : F→G (which is a sheaf). However, the cok-
ernel presheaf Coker(ϕ) is not always a sheaf (for example, the cokernel
of the differentiation on the sheaf of holomorphic functions on C r {0} is
not a sheaf). The cokernel in S(XE) is the sheaf associated to the presheaf
Coker(ϕ). This makes S(XE) into an abelian category.1 The inclusion functor
i : S(XE)→P(XE) is left exact, and a : P(X)→S(XE) is the left adjoint of i.
We have an isomorphism of (bi-)functors

HomS(XE)(aP,F) = HomP(XE)(P, iF),

see [Mil80], Remark II.2.14 (a) and Thm. II.2.15. The functor

a : P(XE)→S(XE)

is exact [Mil80, Thm. II.2.15 (a)].

If G is a commutative group scheme over X, then the functor represented
by G, that is, the functor associating to a scheme Y in CX the abelian group
HomX(Y,G), is not only a presheaf but is actually a sheaf for each of the sites
XE mentioned above, by [Mil80, Cor. II.1.7]. In particular, the presheaves
Ga,X and Gm,X are sheaves because they are represented by the pullbacks
to X of the additive group Z-scheme Ga = Spec(Z[x]) and the multiplicative
group Z-scheme Gm = Spec(Z[x, x−1]), respectively. This also holds for µn,X .

1 Thus S(XE) is an abelian category and is also a full subcategory of P(XE), but S(XE)
is not an abelian subcategory of P(XE), because the notion of cokernel is not the same.

https://stacks.math.columbia.edu/tag/00W1
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When this causes no confusion, for a commutative group Z-scheme G we
sometimes write G for the sheaf represented by the pullback of G to X.

A sheaf of abelian groups F on Xét is called a torsion sheaf if for any étale
morphism U→X, where U is quasi-compact, the group F(U) is a torsion
group [Mil80, Ch. VI, §1].

2.1.3 Direct and inverse images

A continuous map of sites π : X ′E′→XE defines a functor πp : P(X ′E′)→P(XE)
which associates to a presheaf P on X ′E′ the presheaf on XE which sends
Y ∈ CX to P(Y ×X X ′) ∈ CX′ . It is obvious that πp is an exact functor.

For a presheaf P on XE and an object Y ′ ∈ CX′ , define

πp(P)(Y ′) = lim−→P(Y ),

where the limit is over all commutative diagrams

Y ′ //

��

Y

��
X ′ // X

where Y ∈ CX . One then proves [Art62, Ch. I, Thm. (2.1)], [Mil80, Ch. II,
§2] that πp is a functor P(XE)→P(X ′E′) which is left adjoint to πp:

HomP(XE)(P1, πpP2) = HomP(X′
E′ )

(πpP1,P2).

The functor πp is exact. The functor πp is right exact. If π : X ′→X belongs
to the category CX , then πp(P) is the restriction of P to CX′ .

For each of the five sites in Section 2.1.1, the functor πp is left exact, hence
πp is exact. See [Mil80, Prop. II.2.6]. For Xét, see [Art62, Thm. II.4.14] and
[Art62, Cor. III.1.6]. The key point is that finite inverse limits exist in CX .
In particular, if U→W and V→W are in CX , then U ×W V is in CX . This
would not hold for the small flat site (which is why this site is not used so we
did not define it). Indeed, if U→X, V→X and W→X are flat, and we have
morphisms U→W and V→W in CX (which need not be “open sets”), then
the fibred product U ×W V may not be flat over X.

It is easy to see that πp sends sheaves to sheaves [Mil80, Prop. II.2.7]. In
general, this does not hold for πp.

For π : X ′E′→XE a continuous map of sites, and F a sheaf on X ′E′ , the
direct image sheaf π∗F is defined as πpF , that is, π∗F(Y ) = F(Y ×X X ′),
where Y is in CX . Note that since the cokernels in P(XE) and S(XE) are not
the same, π∗ is not in general an exact functor.
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The inverse image π∗G of a sheaf G on XE is defined as aπpG, so one can
write π∗ = aπpi. For each of the five sites XE listed in Section 2.1.1, the
functor π∗ on S(XE) is exact, since πp is exact on P(XE).

If E′ = E and the morphism π : X ′→X is in CX , then π∗ is the restriction
of F to X ′E .

In particular, if GX is the sheaf on XE represented by a commutative
group scheme G over X, then π∗GX = GX′ when π : X ′→X is in CX . For
example, this holds for the big étale site. (But π∗GX in general differs from
GX′ for the small étale site, unless π is étale or G is a commutative étale
group X-scheme. For example, take X = Spec(k), where k is an algebraically
closed field. Let X ′ = A1

k and let π : X ′→X be the structure morphism. The
sheaf Gm,k on Xét is the constant sheaf associated to k∗, so π∗Gm,k is also a
constant sheaf, hence π∗Gm,k and Gm,X′ are not isomorphic.)

The functors π∗ and π∗ are adjoint:

HomS(XE)(F , π∗F ′) = HomS(X′
E′ )

(π∗F ,F ′).

Torsors

Let G be a sheaf of groups on XE . A sheaf of sets F on XE with a right
action F × G→F is called a right G-torsor if every Y in CX has a covering
{Ui→Y }i∈I such that F(Ui) 6= ∅ for all i ∈ I, and the right action of G(Y )
on F(Y ) is simply transitive whenever F(Y ) 6= ∅. A torsor F is trivial if
F(X) 6= ∅.

Let G be a group X-scheme. An X-scheme T with a right action of G

m : T ×X G −→ T

is called a right G-torsor over XE , or an XE-torsor for G, or a principal
homogeneous set of G, if the morphism

T ×X G −→ T ×X T

given by (t, g) 7→ (t,m(t, g)) is an isomorphism of X-schemes and there is a
covering {Ui→X}i∈I with a G-equivariant isomorphism

G×X Ui
∼−→ T ×X Ui

for each i ∈ I. The last condition is equivalent to the existence of a section of
T ×X Ui→Ui. A torsor with a section is called trivial. For more on torsors see
[Gir71, Ch. III, §1], [SGA3, IV], [Mil80, Ch. III, §4], [Stacks, Section 0497],
and [Sko01, Ch. 2].

Assume that the group X-scheme G is flat and locally of finite presen-
tation over X. Let G be the sheaf of groups on XE defined by G. If G is
an affine group X-scheme, then, by flat descent, any G-torsor over Xfppf is

https://stacks.math.columbia.edu/tag/0497
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representable by an X-scheme which is a G-torsor over Xfppf , see [Mil80,
Thm. III.4.3 (a)].

If G is smooth over X, then any Xfppf -torsor is an Xét-torsor, that is, it is
locally trivial for the étale topology on X, see [Mil80, Ch. III, §4].

2.1.4 Sheaves on the small étale site

Let x = Spec(k(x)) be a point of a scheme X. The local ring of X at x is
denoted by OX,x. We have

OX,x = lim−→O(U),

where the injective limit is taken over all open subsets U ⊂ X containing x.
We let

Oh
X,x = lim−→O(U),

where U is an étale X-scheme equipped with a lifting x ↪→ U of x ↪→ X. The
superscript h says that Oh

X,x is the henselisation of the local ring OX,x. The

residue field of the local ring Oh
X,x is k(x).

Now let x̄→X be a geometric point, i.e. a morphism Spec(k(x̄))→X, where
k(x̄) is algebraically closed. One says that x̄ lies over the point x and one
writes x̄ 7→ x ∈ X if x is the image of x̄ in X; then k(x) ⊂ k(x̄). Define

Osh
X,x = lim−→O(U),

where U is an étale X-scheme equipped with a lifting x̄→U of x̄→X. This
is the analogue for the étale topology of the local ring for the Zariski topol-
ogy. The superscript sh says that Osh

X,x is strictly henselian; it is the strict

henselisation of the local ring OX,x. The residue field of the local ring Osh
X,x

is the separable closure of k(x) in k(x̄). Speaking of “the” strict henselisation
is a common abuse of language, which we shall keep in this book. If k(x) is
not separably closed, the ring extension Osh

X,x of OX,x is defined up to a non-
unique isomorphism. Replacing x̄→X by a different geometric point over x
produces a local ring isomorphic to Osh

X,x; this isomorphism is determined by
the induced isomorphism of residue fields, which are two separable closures
of k(x), hence they are isomorphic but in a non-unique way.

For more on henselisation and strict henselisation see [Ray70b, Ch. VIII],
[BLR90, §2.3] and [Stacks, Section 0BSK].

The stalk of a presheaf P on Xét at a geometric point u : x̄ 7→ x ∈ X is
defined as

Px̄ = lim−→P(U),
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where U is étale over X such that u factors through U→X, see [Mil80, Ch. II,
§2, pp. 59–60]. The stalk of P is canonically isomorphic to the stalk of the
sheafification Px̄ = (aP)x̄.

For example, it is clear from the definition that we have

(Ga,X)x̄ = Osh
X,x, (Gm,X)x̄ = (Osh

X,x)∗.

Let F be sheaf on Xét. A section s ∈ F(X) is non-zero if and only if there
is a geometric point x̄ 7→ x ∈ X such that the image of s in Fx̄ is non-zero
[Art62, Prop. III.1.6], [Mil80, Prop. II.2.10]. Similarly, a sequence of sheaves
on Xét is exact if and only if the corresponding sequence of stalks is exact
for each geometric point x̄ 7→ x ∈ X [Mil80, Thm. II.2.15].

Proposition 2.1.1 Let π : X ′→X be a finite morphism of schemes. The di-
rect image functor π∗ : S(X ′ét)→S(Xét) is exact.

Proof. See [Mil80, Cor. II.3.6] and [Art62, Cor. III.4.11]. �

Let π : X ′→X be a morphism, and let F be a sheaf on Xét. If x′ is a point
of X ′ that maps to x ∈ X, then we can choose a geometric point over x′ to
be also a geometric point over x, that is, x̄ = x̄′. This formally implies that
we have (π∗F)x̄′ = Fx̄ (see also [Mil80, Thm. II.3.2 (a)]).

Now let π : X ′→X be quasi-compact and quasi-separated. Let F be a
sheaf on X ′ét. Then the stalk of π∗F at a geometric point x̄ 7→ x ∈ X can be
computed at the strict henselisation of X at x:

(π∗F)x̄ = F̃(X ′ ×X Spec(Osh
X,x)), (2.1)

where F̃ is the inverse image of F with respect to the first projection

X ′ ×X Spec(Osh
X,x) −→ X ′,

see [Mil80, Thm. II.3.2 (b)], [SGA4, Thm. VIII.5.2].

2.2 Cohomology

2.2.1 Definition and basic properties

Let X be a scheme and let XE be one of the sites mentioned in Section
2.1.1. The abelian category S(XE) of sheaves of abelian groups on XE has
enough injectives [Mil80, Prop. III.1.1], [Stacks, Thm. 01DP], which makes
it possible to define the cohomology groups Hn

E(X,F) as the right derived
functors of the left exact sections functor F 7→ F(X), see [Mil80, Def. III.1.5].
If π : X ′E′→XE is a continuous map of sites, then the higher derived image

https://stacks.math.columbia.edu/tag/01DP
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sheaves (Rnπ∗)(F) are the right derived functors of the left exact functor
π∗ : S(X ′E′)→S(XE).

One proves [Mil80, Prop. III.1.13] that (Rnπ∗)(F) is the sheaf on XE

associated to the presheaf that sends U ∈ CX to the group Hn
E(U ×X X ′,F).

If G is a sheaf on XE , then the functor HomX(G, ·) on S(XE) is left ex-
act; so one defines ExtnX(G, ·) as its right derived functors. Since F(X) =
HomX(ZX ,F), where ZX is the constant sheaf associated to the constant
presheaf Z, one has ExtnX(ZX ,F) = Hn

E(X,F).

Let us consider the small étale site Xét. For a commutative ring R we shall
sometimes write Hi(R,−) for Hi

ét(Spec(R),−).

If π : X ′→X is a quasi-compact and quasi-separated morphism of schemes
with associated continuous map of sites X ′ét→Xét, then the stalk of (Rnπ∗)(F)
at a geometric point x̄ 7→ x ∈ X can be described in the same way as we
described (π∗F)x̄ in (2.1):

(Rnπ∗)(F)x̄ = Hn
ét(X

′ ×X Spec(Osh
X,x), F̃),

where F̃ is as in the end of the previous section. See [Stacks, Thm. 03Q9].
If π : X ′→X is a proper morphism, then a corollary of the proper base

change theorem says that for a torsion sheaf F on X ′ét, the stalk of (Rnπ∗)(F)
at a geometric point x̄ 7→ x ∈ X is Hn

ét(X
′
x̄,F), where

X ′x̄ = π−1(x̄) = X ′ ×X Spec(k(x̄))

is the geometric fibre of π at x̄. See [Stacks, Lemma 0DDF] and [Mil80,
Cor. VI.2.5].

By a corollary of the smooth base change theorem [Mil80, Cor. VI.4.2], if
π : X ′→X is a smooth and proper morphism, and m is prime to the resid-
ual characteristics of X, then the sheaf (Rnπ∗)(Z/m) is locally constant for
every n ≥ 0. Since the stalk of this sheaf at a geometric point x̄ is natu-
rally identified with Hn

ét(X
′
x̄,Z/m), we see that if X is connected, the groups

Hn
ét(X

′
x̄,Z/m) are isomorphic for all geometric points x̄. These results have

many applications. For example, if π : X→Spec(R) is a smooth and proper
morphism, where R is a discrete valuation ring with fraction field K and
residue field k, and m is prime to char(k) and char(K), then the restriction
of the representation of Gal(Ks/K) in Hn

ét(X
s,Z/m) to the inertia group is

trivial.

Non-abelian cohomology

Let X be a scheme. Let G be a flat group X-scheme which is locally of finite
type. We do not assume that G is abelian. Let G be the sheaf of groups on
Xfppf defined by G. By [Mil80, Prop. III.4.6] the isomorphism classes of G-
torsors over Xfppf are in a natural bijection with the pointed Čech cohomology

https://stacks.math.columbia.edu/tag/03Q9
https://stacks.math.columbia.edu/tag/0DDF
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set Ȟ1
fppf(X,G). If, moreover, G/X is affine and smooth, then G-torsors over

Xét, up to isomorphism, are classified by the elements of Ȟ1
ét(X,G). If G

is abelian, then H1
ét(X,G) ∼= Ȟ1

ét(X,G) by [Mil80, Cor. III.2.10]. We shall
sometimes use the notation H1

ét(X,G) for the pointed set of isomorphism
classes of étale G-torsors over X, whether G is abelian or not. (This agrees
with the use of this notation in Giraud’s book, see [Gir71, Déf. 2.4.2].)

2.2.2 Passing to the limit

Let I be an increasing filtering ordered set. Choose an element 0 ∈ I. Sup-
pose that we have a projective system {Xi}i∈I of quasi-compact and quasi-
separated schemes Xi with affine transition morphisms Xi→Xj for all i, j ∈ I
such that i ≥ j. Then there is a projective limit scheme X = lim←−Xi [SGA4,
VII.5.1], [Stacks, Lemma 01YX].

The following statements are proved in [EGA, IV3, §8], [SGA4, VII,
Cor. 5.9, Cor. 5.10], see also [Mil80, Lemma III.1.16, Remark III.1.17 (a)].

(i) Let F0 be a sheaf on X0,ét. For each i ∈ I such that i ≥ 0 let Fi be the
inverse image of F0 on Xi,ét. Let F be the inverse image of F0 on Xét. Then
for any n ≥ 0 the natural homomorphism

lim−→Hn
ét(Xi,Fi)

∼−→ Hn
ét(X,F)

is an isomorphism.

(ii) Let G0 be a commutative group scheme locally of finite presentation
over X0. For each i ∈ I such that i ≥ 0 define Gi = G0 ×X0

Xi. Let G =
G0 ×X0

X. Then for any n ≥ 0 the natural homomorphism

lim−→Hn
ét(Xi, Gi)

∼−→ Hn
ét(X,G)

is an isomorphism. In particular, we have natural isomorphisms

lim−→Hn
ét(Xi,Gm,Xi)

∼−→ Hn
ét(X,Gm,X).

Note that (ii) is not an instance of (i), since the pullback of the étale sheaf
represented by a non-étale group scheme is not computed by base change.
(See the example at the end of Section 2.1.3.)

https://stacks.math.columbia.edu/tag/01YX
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2.2.3 Étale and Galois cohomology

Let k be a field. Consider the small étale site Spec(k)ét. The underlying
category of Spec(k)ét consists of étale schemes over k, that is, disjoint unions
of Spec(K), where K is a finite separable field extension of k.

There is an equivalence of categories between the category of sheaves
of abelian groups on Spec(k)ét and the category of continuous discrete Γ -
modules. See [Stacks, Theorem 03QT]. Let us describe the relevant functors.

To a sheaf F on Spec(k)ét one associates its stalk. It is the continuous
discrete Γ -module

MF = lim−→F(k′),

where k′ runs through the finite separable field extensions of k and the limit
is taken over compatible k-embeddings into ks. Indeed, we can assume that k′

is Galois over k, so that Γ acts on each F(k′), and thus on MF . This module
is discrete because MF is the union of the invariants with respect to all open
subgroups of Γ .

In the opposite direction, a continuous discrete Γ -module M defines a
presheaf FM on Spec(k)ét by the formula

FM (
∐
i∈I

Spec(ki)) =
∏
i∈I

MGal(ks/ki),

where the fields ki ⊂ ks are finite extensions of k. One checks that FM is a
sheaf [Mil80, Lemma II.1.8].

For a discrete Γ -module M the cohomology group Hn(Γ,M) for n ≥ 0 is
the inductive limit of Hn(Γ/U,MU ), where U ranges over all open normal
subgroups of Γ , see [SerCG, Ch. I, §2]. By [SerCG, II, §1, 1.1], the group
Hn(Γ,MF ) does not depend on the choice of ks up to a unique isomorphism;
it is called the Galois cohomology group and is denoted by Hn(k,MF ).

There is a canonical isomorphism

Hn
ét(Spec(k),F) ∼= Hn(k,MF ),

since these groups are the right derived functors of M 7→MΓ . Similarly, the
Ext group ExtnSpec(k)(F ,F ′) in the category of étale sheaves on Spec(k) is
canonically identified with the Ext group Extnk (MF ,MF ′) in the category of
discrete Γ -modules.

Now assume that π : X→Spec(k) is a quasi-compact and quasi-separated
scheme over a field k. Define Xs = X ×k ks. Let F be a sheaf on Xét, and let
F̃ be the inverse image of F with respect to the morphism Xs

ét→Xét. The
sheaf π∗F on Spec(k)ét corresponds to the Γ -module

(π∗F)ks = lim−→F(X ×k k′) ∼= F̃(Xs),

https://stacks.math.columbia.edu/tag/03QT
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where k′/k ranges over finite subextensions of ks/k. In the same way, the
sheaf (Rnπ∗)(F) corresponds to the Γ -module

(Rnπ∗)(F)ks
= lim−→Hn

ét(X ×k k′,F) ∼= Hn
ét(X

s, F̃).

For the two isomorphisms, see [Mil80, Thm. III.1.15]. If F is defined by a
commutative group scheme G which is locally of finite presentation over X,
then F̃ is defined by the group scheme G×X Xs over Xs [Mil80, III.1.17].

2.2.4 Standard spectral sequences

Recall that when we have three abelian categories A, B and C such that A
and B have enough injectives, and left exact functors F : A→B and G : B→C
such that F sends injective objects in A to G-acyclic objects in B, then there
is a convergent first quadrant Grothendieck spectral sequence of composed
functors

Ep,q2 = (RpG)(RqF )A⇒ Rp+q(GF )A, (2.2)

where A ∈ Ob(A), see [Wei94, Thm. 5.8.3], [Mil80, Appendix B]. Let D+(A)
denote the derived category of bounded below complexes in the abelian cat-
egory A (for which we refer to [Wei94, Ch. X]). The above spectral sequence
can be viewed as the spectral sequence of composed functors between derived
categories RF : D+(A)→D+(B) and RG : D+(B)→D+(C). In this interpre-
tation (2.2) comes from the fact that R(GF ) is the composition RG ◦RF ,
see [Wei94, Thm. 10.8.3].

Suppose that we have continuous maps of sites

X ′′E′′
π′−→ X ′E′

π−→ XE ,

and A, B and C are the categories of sheaves of abelian groups on X ′′E′′ ,
X ′E′ , XE , respectively. Then one has the Leray spectral sequence [Mil80,
Thm. III.1.18 (b)]

Ep,q2 = (Rpπ∗)(R
qπ′∗)F ⇒ Rp+q(ππ′)∗F . (2.3)

Similarly, for a continuous map of sites π : X ′E′→XE we obtain the spectral
sequence [Mil80, Thm. III.1.18 (a)]

Ep,q2 = Hp
E(X, (Rqπ∗)(F))⇒ Hp+q

E (X ′,F), (2.4)

where F is a sheaf on X ′E′ .
This is proved by showing that for any continuous map of sites π, the direct

image map π∗ sends flabby sheaves to flabby sheaves [Mil80, Cor. III.2.13 (b)].
As also mentioned in [Mil80, Remark III.1.20], when π∗ is exact on sheaves,
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which is the case for the five sites XE under consideration here (Section
2.1.1), then π∗ has an exact left adjoint functor hence π∗ sends injectives to
injectives, and this gives the spectral sequences.

Applications of these spectral sequences are many.

(1) Assume that X is a quasi-compact and quasi-separated scheme over
a field k. Let Γ = Gal(ks/k). Let us apply (2.4) to π : Xét→Spec(k)ét and a

sheaf F on Xét. Let F̃ be the inverse image of F with respect to the morphism
Xs

ét→Xét. As we have seen in Section 2.2.3, the sheaf (Rnπ∗)(F) on Spec(k)ét

corresponds to the Γ -module Hn
ét(X

s, F̃). Therefore, we obtain the spectral
sequence

Ep,q2 = Hp(k,Hq
ét(X

s, F̃))⇒ Hp+q
ét (X,F).

If the sheaf F on Xét is defined by a commutative group X-scheme G which
is locally of finite presentation, then we obtain the spectral sequence

Ep,q2 = Hp(k,Hq
ét(X

s, G×X Xs))⇒ Hp+q
ét (X,G). (2.5)

(2) Let π : XÉt→Xét be the continuous map of sites induced by the identity
on X. For a sheaf F on Xét there is a canonical isomorphism Hn

ét(X,F) =
Hn

Ét
(X,π∗F), see [Tam94, Thm. II. 3.3.1] or [Mil80, Prop. III.3.1]. Since π is

induced by the identity on X, the functor π∗ is clearly exact. Thus for any
sheaf G on XÉt the spectral sequence (2.4) gives a canonical isomorphism

Hn
ét(X,π∗G)

∼−→ Hn
Ét

(X,G).

In particular, if G is a sheaf on XÉt represented by a commutative group
scheme G over X, then π∗G is the sheaf on Xét obtained by restricting G from
the category of all X-schemes to the category of étale X-schemes, so π∗G is
the sheaf on Xét represented by G. Thus we obtain a canonical isomorphism

Hn
ét(X,GX)

∼−→ Hn
Ét

(X,GX). (2.6)

For for any morphism f : X→Y and any commutative group scheme G over
Y this allows one to define a natural map

f∗ : Hi
ét(Y,GY ) −→ Hi

ét(X,GX), (2.7)

where GX is the sheaf defined by the group scheme G×Y X over X. Indeed,
in view of the canonical isomorphism (2.6) we can replace the small étale site
by the big étale site. Then f : X→Y is in the underlying category of Y , so
f∗GY = GX , see Section 2.1.3. The adjunction morphism GY→f∗f∗GY =
f∗GX gives rise to the first arrow in

Hi
Ét

(Y,GY ) −→ Hi
Ét

(Y, f∗GX) −→ Hi
Ét

(X,GX),
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where the second arrow comes from the spectral sequence (2.4) attached to
f : X→Y . The map in (2.7) is defined as the composition of these two maps.

(3) Now let π : Xfppf→Xét be the continuous map of sites induced by the
identity on X. We refer to [Gro68, Thm. 11.7] (see also [Mil80, Thm. III.3.9]
and [Mil80, Rem. 3.11 (b)]) for the following fact. If G is a smooth commuta-
tive group scheme over X, then (Riπ∗)(G) = 0 for i > 0. The Leray spectral
sequence then gives isomorphisms

Hn
ét(X,GX)

∼−→ Hn
fppf(X,GX). (2.8)

2.3 Cohomological purity

In this section we are concerned with the small étale site on a scheme and
Galois cohomology over a field. We often drop the subscript ét.

2.3.1 Absolute purity with torsion coefficients

Let X be a scheme. We write D+(Xét) for the derived category of bounded
below complexes of étale sheaves of abelian groups on X. Similarly, for a
positive integer n we write D+(Xét,Z/n) for the derived category of bounded
below complexes of étale Z/n-sheaves on X (for the isomorphism between the
corresponding derived functors see [Mil80, Ex. III.2.25]). A standard reference
for derived categories is the book [Wei94].

Let F be a sheaf of abelian groups on X. Suppose that we have a closed
immersion i : Z→X. Let U ⊂ X be the complement to Z. To an étale mor-
phism V→X one associates the abelian group Ker[F(V )→F(VU )] of sections
supported in Z. The associated sheaf vanishes on U . It is the image under
i∗ of a sheaf on Z which is denoted by i!F . The functor from X-sheaves to
abelian groups that sends F to

(i!F)(Z) = Ker[F(X)→F(U)]

is left exact. Its derived functors are denoted by Hn
Z(X,F) and called the

cohomology groups with support in Z. This gives rise to a long exact sequence

. . .→Hi
Z(X,F) −→ Hi

ét(X,F) −→ Hi
ét(U,F) −→ Hi+1

Z (X,F)→ . . . (2.9)

At the level of sheaves we get the functor Ri! : D+(Xét)→D+(Zét). The
cohomology sheaves (Rni!)(F) of (Ri!)F are denoted by HnZ(X,F). Note
that i∗HnZ(X,F) is the sheaf associated to the presheaf sending V to
Hn
Z×XV (V,F|V ). By definition, the sheaves HnZ(X,F) are the derived func-

tors of the functor from X-sheaves to Z-sheaves sending F to i!F . There is a
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Grothendieck spectral sequence of composed functors involving Ri! and the
derived functor of the sections functor Γ (Z, ·):

Epq2 = Hp
ét(Z,H

q
Z(X,F))⇒ Hp+q

Z (X,F), (2.10)

see [SGA4, V, Prop. 4.4], [Art62, Ch. III.2], [Mil80, pp. 73, 91, 241].

Assume that n is invertible on X. Write (Z/n)(0)X = (Z/n)X .
For c > 0 one defines the sheaf (Z/n)(c)X : = µ⊗cn,X .
For c < 0 one defines (Z/n)(c)X as the sheaf which associates to an étale

Y→X the group HomY ((Z/n)(−c)Y , (Z/n)Y ).
For a sheaf F of Z/n-modules, one defines F(c) : = F ⊗Z/n (Z/n)(c).
See [Mil80, Ch. II, §3, pp. 78–79] for a general definition of Hom sheaves

and tensor product sheaves.

Theorem 2.3.1 (Gabber) Let X be a regular scheme, let i : Z ↪→ X be
a closed regular subscheme of codimension c everywhere, let ` be a prime
different from the residual characteristics of X and let m be a positive integer.
In D+(Zét,Z/`m) we have an isomorphism Z/`m ∼−→ (Ri!)(Z/`m)(c)[2c]. In
particular, we have

HnZ(X,Z/`m) = 0 for n 6= 2c, (Z/`m)(−c)Z
∼−→ H2c

Z (X,Z/`m).

Proof. See [Rio14, Thm. 3.1.1, p. 323]. For schemes locally of finite type over
a perfect field, the theorem was proved in [SGA4, XVI, Cor. 3.9]. In [Mil80,
Thm. VI.5.1] it is proved for schemes smooth over a base scheme. �

Remark 2.3.2 In the case c = 1 the isomorphism in this theorem can be
described as follows [Mil80, Ch. VI, §6]. Assume that Z ⊂ X is an integral
regular divisor. Let U = X r Z. Then (2.9) for F = Gm,X gives an exact
sequence

H0
ét(U,Gm) −→ H1

Z(X,Gm) −→ H1
ét(X,Gm) −→ H1

ét(U,Gm),

where H1
Z(X,Gm) is identified with Z so that the first arrow is the valuation

defined by the local ring OX,Z , the second arrow is the map that ‘forgets the
support’, and the third arrow is the restriction to U . The image of 1 ∈ Z
under the map induced by the Kummer sequence

H1
Z(X,Gm) −→ H2

Z(X,µ`m)

is called the fundamental class sZ/X . The order of sZ/X is `m, hence sZ/X
generates H2

Z(X,µ`m). The isomorphism in Theorem 2.3.1 is obtained as
the Tate twist of the map (Z/`m)Z→H2

Z(X,µ`m) that sends 1 to the image
of sZ/X .
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The following diagram is anticommutative:

H0
ét(U,Gm) //

��

H1
Z(X,Gm)

��
H1

ét(U, µ`m) // H2
Z(X,µ`m)

(2.11)

see [SGA4 1
2 , Cycle, §2.1]. Here the vertical arrows come from the Kummer

sequence, and the horizontal arrows come from (2.9). Assume that Z ⊂ X
is given by the equation f = 0, where f ∈ H0

ét(U,Gm). The image of f in
H1

ét(U, µ`m) is the class of the µ`m -torsor t`
m

= f . The anticommutativity
of (2.11) implies that sZ/X is the negative of the image of this torsor in
H2
Z(X,µ`m).

We record a useful corollary of Theorem 2.3.1. By a strict normal crossing
divisor we understand an effective divisor D = D1 + . . . + Dr in a regular
scheme X such that each divisor Di is irreducible and regular and all multiple
intersections are transversal. Transversality means that at each point x ∈ D
the local equations of the components Di containing x form a part of a
regular system of parameters for the local ring OX,x. The following corollary
of Gabber’s absolute purity theorem is proved in [Rio14, Cor. 3.1.4, p. 324].

Corollary 2.3.3 (Gabber) Let X be a regular scheme and j : U→X be an
open immersion such that X r U is a strict normal crossing divisor with
the irreducible components D1, . . . , Dr. Let ` be a prime different from the
residual characteristics of X. For n ≥ 1 we have canonical isomorphisms of
X-sheaves

(Rnj∗)(Z/`m) =
n∧

(R1j∗)(Z/`m) =
n∧( r⊕

i=1

(Z/`m)(−1)Di
)
.

2.3.2 The Gysin exact sequence

Let ` be a prime invertible on X. Let i : Z ↪→ X be a closed subscheme, let
U = X rZ and let j : U→X be the natural open immersion. The functor j∗

has a left adjoint functor j! which is exact [Mil80, p. 78]. This implies that
we have an exact sequence of étale sheaves on X:

0 −→ ZU −→ ZX −→ ZZ −→ 0, (2.12)

where ZU = j!j
∗Z and ZZ = i∗i

∗Z, see [Mil80, p. 92].
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Applying the functor Ext(·,F), defined as the derived functor of the in-
ternal Hom, to (2.12), gives rise to a long exact sequence which breaks down
into isomorphisms

(Rn−1j∗)(j
∗F)

∼−→ HnZ(X,F), n ≥ 2, (2.13)

see [Mil80, p. 242].
Assume that X is a regular scheme and i : Z ↪→ X is a closed regular

subscheme of codimension c ≥ 1 everywhere. We have

j∗(Z/`m) ∼= Z/`m.

From Theorem 2.3.1 and from (2.13) we obtain canonical isomorphisms

(R2c−1j∗)(Z/`m) ∼= (Z/`m)(−c)Z (2.14)

and
(Rnj∗)(Z/`m) = 0 for n 6= 0, 2c− 1.

In view of these isomorphisms the spectral sequence

Epq2 = Hp
ét(X, (R

qj∗)(Z/`m))⇒ Hp+q
ét (U,Z/`m) (2.15)

gives rise to the Gysin exact sequence

. . . −→ Hn−2c
ét (Z, (Z/`m)(−c)) −→ Hn

ét(X,Z/`m) −→ Hn
ét(U,Z/`m)

−→ Hn−2c+1
ét (Z, (Z/`m)(−c)) −→ . . .

(2.16)

Here we used the canonical isomorphism

Hn
ét(X, (Z/`m)Z) ∼= Hn

ét(X, i∗(Z/`m)) ∼= Hn
ét(Z,Z/`m)

coming from the spectral sequence Hp
ét(X,R

qi∗(Z/`m)) ⇒ Hp+q
ét (Z,Z/`m).

Indeed, i∗ is an exact functor, because the closed immersion i : Z→X is a
finite morphism.

Alternatively, the Gysin sequence can be obtained as follows. Consider the
long exact sequence (2.9)

. . .→Hn
Z(X,Z/`m)→Hn

ét(X,Z/`m)→Hn
ét(U,Z/`m)→Hn+1

Z (X,Z/`m)→ . . . .

Then the spectral sequence (2.10) in view of Theorem 2.3.1 gives a canonical
isomorphism

Hn−2c
ét (Z,Z/`m(−c)) ∼−→ Hn

Z(X,Z/`m). (2.17)
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2.3.3 Cohomology of henselian discrete valuation rings

Let A be a henselian discrete valuation ring with fraction field K and residue
field k. If we set

X = Spec(A), Z = Spec(k), U = Spec(K),

then i : Spec(k)→Spec(A) is a closed immersion of regular schemes of codi-
mension c = 1, so this is a particular case of the situation considered in the
previous section. By Section 2.2.3 the étale cohomology groups of Spec(k)
and Spec(K) coincide with Galois cohomology groups of k and K, respec-
tively. We now describe how to interpret the étale cohomology of Spec(A) in
terms of Galois cohomology.

As before, let G = Gal(Ks/K), I = Gal(Ks/Knr), Γ = Gal(Knr/K) ∼=
G/I, where Knr ⊂ Ks is the maximal unramified extension of K, so Knr is
the field of fractions of the strict henselisation Ash. The category of étale
sheaves on Spec(A) is equivalent to the category of triples (M,N,ϕ), where
M is a Γ -module, N is a G-module, and ϕ : M→N I is a homomorphism of
Γ -modules [Mil80, Example II.3.12]. A morphism of triples

(M,N,ϕ) −→ (M ′, N ′, ϕ′)

is a pair consisting of a map of Γ -modules M→M ′ and a map of G-modules
N→N ′ such that the obvious resulting diagram is commutative. To a sheaf
F on Spec(A) one associates the triple (i∗F , j∗F , ϕ), where ϕ is the natural
morphism i∗F→i∗j∗j∗F . This agrees with the definition of triples, because
the stalk of the Spec(A)-sheaf j∗N at Spec(ks) is computed at the strict
henselisation, see (2.1), thus the Spec(k)-sheaf i∗j∗N corresponds to the Γ -
module N I . In particular, the Spec(A)-sheaf j∗M , where M is a G-module,
corresponds to the triple (M I ,M, id).

Let F(M,N,ϕ) be the sheaf on Spec(A) corresponding to the triple
(M,N,ϕ). It can be constructed as the fibred product of i∗M and j∗N over
i∗i
∗j∗N , see [Mil80, Thm. II.3.10]. The constant Spec(A)-sheaf Z corresponds

to the triple (Z,Z, id), thus the group of sections of F(M,N,ϕ) is MΓ . It
follows that

Hi(Spec(A),F(M,N,ϕ)) ∼= Hi(k,M). (2.18)

2.3.4 Gysin residue and functoriality

We continue the discussion of the previous section and keep the same nota-
tion.

Let ` be a prime not equal to char(k). Then µ`m , where m is a positive
integer, is an étale sheaf on Spec(A). By (2.18), for any n ≥ 1 we have an
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isomorphism
Hn

ét(Spec(A), µ`m) ∼= Hn(k, µ`m).

Thus, after twisting, the Gysin sequence (2.16) becomes the exact sequence

. . .→Hn(k, µ`m)→Hn(K,µ`m)
∂A−→ Hn−1(k,Z/`m)→Hn+1(k, µ`m)→ . . .

(2.19)

Definition 2.3.4 (i) The maps ∂A : Hn(K,µ`m)→Hn−1(k,Z/`m) in the ex-
act sequence (2.19), for positive integers m and n, are called the Gysin
residue maps. We write ∂ = ∂A when the context is clear.

(ii) Let F be a field with a discrete valuation v : F ∗→Z and associated
residue field k. For any prime ` invertible in k we define the Gysin residue
∂v : Hn(F, µ`m)→Hn−1(k,Z/`m) by precomposing the Gysin residue for the
completion K of F at v with the restriction map Hn(F, µ`m)→Hn(K,µ`m).

Theorem 2.3.5 Let A be a henselian discrete valuation ring with fraction
field K and residue field k, and let ` be a prime invertible in A. For each n
and m, the Gysin residue ∂ : Hn(K,µ`m)→Hn−1(k,Z/`m) is the negative of
the Serre residue r.

Proof. We check that the sequences (2.19) and (1.11) come from identical
spectral sequences. In our case the spectral sequence (2.15) has the form

Hp
ét(Spec(A), (Rqj∗)(µ`m))⇒ Hp+q(K,µ`m) (2.20)

whereas the Hochschild–Serre spectral sequence is

Hp(Γ,Hq(I, µ`m))⇒ Hp+q(G,µ`m).

On the one hand, the Hochschild–Serre spectral sequence is the spectral se-
quence of composed functors: the functor M 7→ M I from continuous G-
modules to continuous Γ -modules, followed by the functor of Γ -invariants.
On the other hand, the spectral sequence (2.20) is the spectral sequence of
composed functors j∗ from Spec(K)-sheaves to Spec(A)-sheaves, followed by
the functor of sections from Spec(A)-sheaves to abelian groups. As we have
seen in the previous section, the dictionary between étale Spec(A)-sheaves
and triples interprets the first of these as the functor sending a G-module M
to the triple (M I ,M, id). The functor of sections sends this to MG, which
shows that the spectral sequences are indeed identical. We obtain a commu-
tative diagram with exact rows:

0→ Hi(Γ, µ`m) → Hi(G,µ`m)
r−→ Hi−1(Γ,Hom(I, µ`m)) → 0

|| || ||
0→ Hi(k, µ`m) → Hi(K,µ`m) −→ Hi−1(k, (R1j∗)(µ`m)) → 0

Thus, to compare the Serre residue r with the Gysin residue ∂ it remains
to compare the isomorphism Hom(I, µ`m) ∼= Z/`m from Section 1.4.1 with
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the isomorphism (R1j∗)(µ`m) ∼= (Z/`m)Spec(k) in (2.14). This can be done
over the strict henselisation As of A, which is a henselian discrete valua-
tion ring with residue field ks and fraction field Knr. We have a diagram of
isomorphisms

H1(Knr, µ`m)
r−→ Hom(I, µ`m)

∼−→ Z/`n
|| || ||

H1(Knr, µ`m) −→ (R1j∗)(µ`m)
∼−→ Z/`n

whose left-hand square commutes. We need to show that the right-hand
square anticommutes.

Recall that (`, char(k)) = 1, so Knr contains the roots of unity of degree
`m. The isomorphism Hom(I, µ`m) ∼= Z/`m from Section 1.4.1 is such that
1 ∈ Z/`m corresponds to the homomorphism

I = Gal(Ks/Knr) −→ Gal(Knr(π
1/`m)/Knr) ∼= µ`m

given by the action of I on the Ks-points of the µ`m -torsor t`
m

= π, where π
is a uniformiser. As explained in Remark 2.3.2, the Gysin map

H1(Knr, µ`m) −→ H2
Spec(ks)

(Spec(As), µ`m) ∼= H0(ks,Z/`m) ∼= Z/`m

sends the negative of the class of the torsor t`
m

= π to the fundamental class
of Spec(ks) ⊂ Spec(As), which gives 1 ∈ Z/`m. This proves our claim. See
also [Rio14, p. 324]. �

We now make some observations regarding the functoriality of the Gysin
sequence.

Let f : X ′→X be a morphism of integral regular schemes. Let Z ⊂ X and
Z ′ ⊂ X ′ be regular, integral, closed subschemes of codimension 1 such that
f(Z ′) ⊂ Z. Let U = X r Z and U ′ = X ′ r Z ′. Assume that f(U ′) ⊂ U , so
that there is a commutative diagram

U ′
j′ //

f

��

X ′

f

��

Z ′
i′oo

f

��
U

j // X Z
ioo

Since f(X ′) is not contained in Z, we have a well-defined divisor f−1(Z) ⊂ X ′
supported on Z ′. Thus we can write f−1(Z) = dZ ′, where d is a positive
integer. Explicitly, since X is regular, any point of Z has an affine open
neighbourhood V ⊂ X such that Z ∩ V is the zero set of a regular function
on V . If π is a local equation of Z ⊂ X in such an open set V , where
V ∩ f(X ′) 6= ∅, then π gives rise to a non-zero rational function on X ′;
moreover, vZ′(π) = d, where vZ′ is the valuation of the discrete valuation
ring OX′,Z′ .
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Lemma 2.3.6 Let ` be a prime invertible on X. There is a commutative
diagram

. . . // Hn
ét(X

′, µ`m) // Hn
ét(U

′, µ`m) // Hn−1
ét (Z ′,Z/`m) // . . .

. . . // Hn
ét(X,µ`m) //

f∗

OO

Hn
ét(U, µ`m) //

f∗

OO

Hn−1
ét (Z,Z/`m) //

[d]f∗

OO

. . .

Proof. By the construction of the Gysin sequence, the bottom row comes
from the spectral sequence of composed functors Rj∗ : D+(Uét)→D+(Xét)
and the sections functor RΓ : D+(Xét)→D+(Ab), where Ab is the category
of abelian groups (and similarly for the top row). From the functoriality of the
spectral sequence and the purity theorem we obtain the commutative diagram
as above, where we only need to identify the map from Hn−1

ét (Z,Z/`m) to
Hn−1

ét (Z ′,Z/`m).
The canonical isomorphism

Hn−1
ét (Z,Z/`m)

∼−→ Hn+1
Z (X,µ`m),

see (2.17), is obtained by applying Hn−1
ét (Z,−) to the isomorphism

(Z/`m)Z
∼−→ H2

Z(X,µ`m)

that sends 1 to the image of the fundamental class sZ/X ∈ H2
Z(X,µ`m). By

Remark 2.3.2 we have a commutative diagram, where the arrows pointing
right come from the Kummer sequence:

H1
ét(X

′,Gm) H1
Z′(X

′,Gm)oo // H2
Z′(X

′, µ`m)

H1
ét(X,Gm)

f∗

OO

H1
Z(X,Gm)oo //

f∗

OO

H2
Z(X,µ`m)

f∗

OO

We have an isomorphism H1
Z(X,Gm) ∼= Z identifying 1 ∈ Z with the element

clZ ∈ H1
Z(X,Gm) which is locally given by the image of a local equation of Z

in X under the natural map H0
ét(U,Gm)→H1

Z(X,Gm), see Remark 2.3.2. By
definition, sZ/X is the image of clZ . Since f∗(clZ) = d clZ′ , our claim follows
from the commutativity of the last diagram. �
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2.4 H1 with coefficients Z and Gm

Let X be a scheme. Recall that ZX is the étale sheaf on X associated to the
constant presheaf Z.

Lemma 2.4.1 Let X be a scheme. Let L be a field and let f : Spec(L)→X
be a morphism. We have the following properties:

(i) H1
ét(X, f∗ZL) = 0;

(ii) H1
ét(X, f∗Gm,L) = 0;

(iii) R1f∗ZL = 0;
(iv) R1f∗Gm,L = 0.

If F is a sheaf on Spec(L)ét, then, for any i ≥ 1,

(v) the sheaf Rif∗F is a torsion sheaf;
(vi) if, in addition, X is quasi-compact and quasi-separated, then the group

Hi
ét(X, f∗F) is a torsion group.

Proof. The spectral sequence (2.4) gives an injective map

H1
ét(X, f∗(F)) ↪→ H1

ét(Spec(L),F).

Statements (i) and (ii) then follow since H1(L,ZL) = 0 and H1(L,Gm,L) = 0
(Hilbert’s theorem 90).

The sheaf R1f∗ZL is associated to the presheaf sending an étale U→X
to H1

ét(U ×X Spec(L),ZL). But this group is zero, because U ×X Spec(L) is
either empty or the disjoint union of spectra of fields, and H1

ét(E,ZE) = 0
when E is a field. This proves (iii). A similar argument, which uses Hilbert’s
theorem 90, proves (iv).

Let us prove that the stalk of Rif∗F at each geometric point s : x̄ 7→ x ∈ X
is a torsion abelian group. By passing to an affine open neighbourhood of x we
can assume that X is affine. The sheaf Rif∗F is associated to the presheaf P
which sends an étale morphism U→X to Hi

ét(U ×X Spec(L),F). Recall that
the sheafification aP = Rif∗F has the same stalks as P, so it is enough to
prove that Px̄ is a torsion abelian group. By definition, the stalk Px̄ is the
direct limit of Hi

ét(U×X Spec(L),F), where π : U→X is étale and s = πsU for
some morphism sU : x̄→U . We can replace U by an affine open U ′ ⊂ U such
that sU factors through U ′. The morphism U ′→X is quasi-compact [EGA, I,
Ch. 1, 6.6.1, p. 152], hence so is U ′×X Spec(L)→Spec(L), thus U ′×X Spec(L)
is a finite disjoint union of spectra of fields. Thus Hi

ét(U
′ ×X Spec(L),F) is

a finite direct product of Galois cohomology groups. For i ≥ 1 each of these
groups is a torsion group, hence so is their product. This implies our claim.
To show that Rif∗F is a torsion sheaf we need to show that (Rif∗F)(V )
is a torsion abelian group for any V→X, where V is quasi-compact. There
is a natural injective map (Rif∗F)(V )→

∏
(Rif∗F)x̄, where the product is

taken over the geometric points of V . Let σ ∈ (Rif∗F)(V ). The image of σ
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in (Rif∗F)x̄ extends to some étale open set, so we obtain an étale covering
{Vi→V }, i ∈ I, such that the restriction of σ to each Vi has finite order.
Since V is quasi-compact, we can assume that I is finite. It follows that σ
has finite order. This proves (v).

In our case the spectral sequence (2.4) takes the form

Epq2 = Hp
ét(X,R

qf∗F)⇒ Hn
ét(Spec(L),F).

The combination of (v) and a standard limit argument [Stacks, Lemma
0DDC] for quasi-compact and quasi-separated schemes shows that the terms
Epq2 are torsion groups for p ≥ 0 and q ≥ 1. It follows that the kernel of the
natural map

Hi
ét(X, f∗F) −→ Hi

ét(Spec(L),F)

is a torsion group. But Hi(Spec(L),F) is also a torsion group for i ≥ 1, so
statement (vi) follows. �

Proposition 2.4.2 Let X be a noetherian normal scheme. Then we have
H1

ét(X,ZX) = 0.

Proof. A locally noetherian, normal, connected scheme is integral [Stacks,
Lemma 033N]. We can thus assume that X is integral. Let i : η→X be the
generic point of X. We claim that the natural map ZX→i∗Zη is an isomor-
phism. Indeed, let U→X be an étale morphism such that U is connected.
Then U is normal [EGA, IV4, Prop. 18.10.7] and connected, hence U is in-
tegral and dominates X. Thus the generic fibre of U→X is connected. This
shows that the map ZX→i∗Zη is an isomorphism. Then Lemma 2.4.1 (i) gives
H1

ét(X,ZX) = 0. �

2.5 The Picard group and the Picard scheme

Definition 2.5.1 The Picard group Pic(X) of a scheme X is the group of
invertible coherent sheaves of OX-modules, considered up to isomorphism.

By this definition we have

Pic(X) = H1
zar(X,O∗X) = H1

zar(X,Gm,X).

Let π : Xét→Xzar be the continuous morphism induced by the identity on X.
We have (R1π∗)(Gm) = 0; this is Grothendieck’s version of Hilbert’s theorem
90, see [Mil80, Prop. III.4.9]. The Leray spectral sequence then entails a
canonical isomorphism

Pic(X) = H1
zar(X,Gm,X)

∼−→ H1
ét(X,Gm,X). (2.21)

https://stacks.math.columbia.edu/tag/0DDC
https://stacks.math.columbia.edu/tag/0DDC
https://stacks.math.columbia.edu/tag/033N
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The same is true for H1
fppf(X,Gm,X). Alternatively, to an invertible sheaf L

one directly associates a torsor T for Gm,X defined by

T (U) = IsomU (OU , f∗L),

where f : U→X is étale. This gives an equivalence of the category of invertible
sheaves of OX -modules and the category of étale X-torsors for Gm,X , see
[SGA4 1

2 , Arcata, Prop. II.2.3].
The rest of this section is based on Kleiman’s excellent survey [Kle05], see

also [BLR90, Ch. 8]. Fix a noetherian base scheme S and let f : X→S be a
separated morphism of finite type. For an S-scheme T we write XT = X×ST
and write fT : XT→T for the projection to T .

The relative Picard functor PicX/S from the category Sch/S to abelian
groups is defined as follows:

PicX/S(T ) : = Pic(XT )/f∗TPic(T ).

Let Pic(X/S) Zar, Pic(X/S) Ét, Pic(X/S) fppf be the associated sheaves on the
big sites SZar, SÉt, Sfppf .

Proposition 2.5.2 Assume that for any S-scheme T the canonical adjunc-
tion morphism OT→fT∗f∗TOS ∼= fT ∗OXT is an isomorphism. Then the fol-
lowing natural maps of presheaves on the category of schemes locally of finite
type over S are injective:

PicX/S ↪→ Pic(X/S) Zar ↪→ Pic(X/S) Ét

∼−→ Pic(X/S) fppf , (2.22)

and the last map is an isomorphism. The first two maps in (2.22) are iso-
morphisms if f has a section. The second map is an isomorphism if f has a
section locally in the Zariski topology.

Proof. This is [Kle05, Thm. 2.5]. We sketch the proof given in [Kle05, Remark
2.11] because it is a good illustration of the use of the spectral sequence (2.4).

Take an S-scheme T . The Zariski sheaf on T , which is associated to the
presheaf sending Z/T to H1

Zar(XZ ,Gm,XZ ), is R1fT∗Gm,XT . (Here fT∗ is the
direct image with respect to the Zariski topology.) Hence

Pic(X/S) Zar(T ) = H0
Zar(T,R

1fT∗Gm,XT ).

The morphism fT : XT→T gives rise to the spectral sequence (2.4):

Hp
Zar(T,R

qfT∗Gm,XT )⇒ Hp+q
Zar (XT ,Gm,XT ).

The assumption OT
∼−→ fT∗OXT implies that Gm,T

∼−→ f∗Gm,XT . Hence
the exact sequence of low degree terms of the spectral sequence is

0→Pic(T )→Pic(XT )→Pic(X/S) Zar(T )→H2
Zar(T,Gm,T )→H2

Zar(XT ,Gm,XT ),
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proving the injectivity of PicX/S→Pic(X/S) Zar. A section of f induces a re-
traction of each canonical map

Hn
Zar(T,Gm,T ) −→ Hn

Zar(XT ,Gm,XT ),

which is therefore injective. This implies that the first map in (2.22) is an
isomorphism.

Using (2.21), the same arguments apply to the étale and fppf topologies.
Hence we obtain a commutative diagram of exact sequences

Pic(T ) → Pic(XT ) → Pic(X/S) Zar(T ) → H2
Zar(T,Gm) → H2

Zar(XT ,Gm)
|| || ↓ ↓ ↓

Pic(T ) → Pic(XT ) → Pic(X/S) Ét(T ) → H2
Ét

(T,Gm) → H2
Ét

(XT ,Gm)

|| || ↓ ↓ ↓
Pic(T ) → Pic(XT ) → Pic(X/S) fppf(T ) → H2

fppf(T,Gm) → H2
fppf(XT ,Gm)

The injectivity of PicX/S→Pic(X/S) Ét formally implies the injectivity of

Pic(X/S) Zar −→ Pic(X/S) Ét,

since the latter map is obtained from the former by passing from presheaves
to associated Zariski sheaves, and this operation preserves injectivity by the
exactness of the functor a from presheaves to sheaves [Mil80, Thm. II.2.15
(a)].

In view of (2.8), the Five Lemma applied to the two lower rows of the
diagram gives an isomorphism Pic(X/S) Ét

∼−→ Pic(X/S) fppf . �

Remark 2.5.3 If f : X→S is flat and proper, and the geometric fibres
of f are reduced and connected, then for any morphism T→S the map
OT→fT∗OXT is an isomorphism. (See [Kle05, Exercise 9.3.11].) This applies
for instance when S = Spec(k) is the spectrum of a field and X is a proper,
geometrically integral variety over k.

The following proposition shows that the condition that OT→fT∗OXT is
an isomorphism holds for any flat S-scheme T if it holds for T = S.

Proposition 2.5.4 Let f : X→S be a separated morphism of noetherian
schemes such that OS→f∗OX is an isomorphism. Then for any flat scheme
T→S the map OT→fT∗OXT is an isomorphism.

Proof. The statement is local on S and T . We may thus assume S = Spec(A)
and T = Spec(B) with B flat over A. Since X is separated, we can write
X as a finite union X = ∪iXi of affine open sets Xi = Spec(Ai) with affine
intersections Xij = Spec(Aij). We have the obvious exact sequence of A-
modules

0 −→ H0(X,OX) −→
∏
i

Ai −→
∏
ij

Aij .
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The hypothesis that OS→f∗OX is an isomorphism then gives the exactness
of the sequence of A-modules

0 −→ A −→
∏
i

Ai −→
∏
ij

Aij .

Since B is flat over A, we have an exact sequence of B-modules

0 −→ B −→
∏
i

Ai ⊗A B −→
∏
ij

Aij ⊗A B.

The schemeXT = X×ST is covered by open subsets Xi×ST = Spec(Ai⊗AB)
with intersections Xij ×S T = Spec(Aij ⊗A B), hence we have an exact
sequence

0 −→ H0(XT ,OXT ) −→
∏
i

Ai ⊗A B −→
∏
ij

Aij ⊗A B.

Comparing the last two exact sequences, we find that

H0(T,OT ) ∼= B ∼= H0(XT ,OXT ).

Thus OT (T )→fT∗OXT (T ) is an isomorphism. The same argument works for
any Zariski open subset of T . This gives an isomorphism OT

∼−→ fT∗OXT . �

Remark 2.5.5 This result is a particular case of the following general state-
ment. Let f : X→S be a quasi-compact and quasi-separated morphism and
let F be a quasi-coherent sheaf on X. Then the formation of the direct image
sheaves Rif∗F , where i ≥ 0, commutes with flat base change over S. See
[EGA, III, Prop. 1.4.15] and [Stacks, Lemma 02KH].

If any of the functors PicX/S , Pic(X/S) Zar, Pic(X/S) Ét, Pic(X/S) fppf is rep-

resentable, then the representing scheme (which is uniquely determined) is
called the Picard scheme and is denoted by PicX/S .

The main existence theorem for PicX/S is the following result of Grothen-
dieck, see [Kle05, Thm. 4.8] for a slightly stronger statement.

Theorem 2.5.6 Assume that f : X→S is projective and flat with integral
geometric fibres. Then the scheme PicX/S representing Pic(X/S) Ét exists, is
separated and is locally of finite type over S.

Another important result of Grothendieck is the following theorem [Kle05,
Thm. 4.18.2, Cor. 4.18.3].

Theorem 2.5.7 Assume that S is integral and X→S is proper. Then there
is a non-empty open subset V ⊂ S such that PicXV /V exists, represents
Pic(XV /V ) fppf , and is a disjoint union of quasi-projective schemes. In partic-
ular, this holds for S = Spec(k), where k is a field.

https://stacks.math.columbia.edu/tag/02KH
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Corollary 2.5.8 Let X be a proper variety over a field k. Assume that it is
geometrically reduced and geometrically connected. Then for any k-scheme T
there is an exact sequence of abelian groups

0 −→ PicX/k(T ) −→ PicX/k(T ) −→ H2
ét(T,Gm) −→ H2

ét(XT ,Gm). (2.23)

If X(k) 6= ∅, then PicX/k(T ) = PicX/k(T ) for any k-scheme T , so that the
Picard group scheme PicX/k represents the relative Picard functor PicX/k.

Proof. By the representability of Pic(X/k) Ét we obtain (2.23) from the middle
row of the commutative diagram in the proof of Proposition 2.5.2, using
canonical isomorphisms

H2
ét(T,Gm)

∼−→ H2
Ét

(T,Gm), H2
ét(XT ,Gm)

∼−→ H2
Ét

(XT ,Gm),

see (2.6). If X(k) 6= ∅, then the morphism XT→T has a section, so that the
map H2

ét(T,Gm) −→ H2
ét(XT ,Gm) is injective. �

Corollary 2.5.9 Let X be a proper variety over a field k. Assume that it
is geometrically reduced and geometrically connected. Then there is an exact
sequence of abelian groups

0 −→ Pic(X) −→ PicX/k(k) −→ Br(k) −→ H2
ét(X,Gm). (2.24)

If K is a finite Galois field extension of k with Galois group G = Gal(K/k)
such that X(K) 6= ∅, then we have a canonical isomorphism

PicX/k(k) ∼= Pic(XK)G.

Proof. The exact sequence (2.24) is obtained from (2.23) by taking T =
Spec(k). Taking T = Spec(K) in (2.23), we obtain a compatible exact se-
quence

0 −→ Pic(XK) −→ PicX/k(K) −→ Br(K) −→ H2
ét(XK ,Gm).

This is also a sequence of G-modules. Since X(K) 6= ∅, Corollary 2.5.8 gives
an isomorphism Pic(XK)

∼−→ PicX/k(K). For the group k-scheme PicX/k,
we have PicX/k(k) = PicX/k(K)G. �

2.6 Excellent rings

The aim of this section is to give the definitions of excellent rings and excellent
schemes which feature mainly in Chapters 3 and 10. We refer the reader to
[EGA, IV2, §7.8], [Mat86, §32] and [RL14] for a detailed treatment.

Following Bourbaki [BouV, §15, no. 2, Déf. 1], a commutative k-algebra
A is called separable if the ring A ⊗k L is reduced (i.e., has no non-zero
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nilpotents) for any field extension L/k. By [BouV, §15, no. 2, Prop. 3] A is
a separable k-algebra if and only if A⊗k k̄ is a separable k̄-algebra, which is
equivalent to A⊗k k̄ being reduced [BouV, §15, no. 5, Thm. 3 (c)].

Let k ⊂ K be fields. The k-algebra K is separable if and only if for any
subextension k ⊂ K ′ ⊂ K with K ′ finitely generated over k, the field K ′

is a finite separable extension of a purely transcendental extension of k, see
[Stacks, Def. 030O], [Stacks, Lemma 030W].

A noetherian ring A is regular if the localisation AP at every prime ideal
P ⊂ A is a regular local ring. A noetherian k-algebra A is geometrically
regular if A⊗k k′ is regular for every finite field extension k ⊂ k′.

A commutative ring R is called catenary if for any prime ideals P ⊂ P ′ of
R there exists a finite chain of prime ideals

P = I0 ( I1 ( I2 ⊂ . . . ( In = P ′

with no prime ideal of R strictly contained between Im and Im+1 for m =
0, . . . , n − 1, and all such chains have the same length. A noetherian local
domain R is catenary if and only if for every prime ideal P ⊂ R we have
dim(R/I) + dim(RP ) = dim(R), see [Mat86, Thm. 31.4].

A commutative ring R is called universally catenary if R is noethe-
rian and every finitely generated R-algebra is catenary. (See [Mat86, §15].
For a noetherian R the last condition is equivalent to the condition that
R[x1, . . . , xn] is catenary for any n ≥ 1.)

A noetherian ring R is called a G-ring (G for Grothendieck) if all formal
fibres of R are regular. This means that for every prime ideal P ⊂ R the
fibres of the morphism Spec(R̂P )→Spec(RP ) are geometrically regular. Here

R̂P is the completion of the localisation RP of R at P .

Definition 2.6.1 A noetherian ring A is excellent if A is a universally
catenary G-ring such that for every finitely generated A-algebra B the set of
regular points of Spec(B) is an open subset of Spec(B).

The class of excellent rings is closed under localisations, finitely generated
extensions and taking quotients. Any field is excellent. Any complete noethe-
rian local ring is excellent. The excellence property of a noetherian local ring
is preserved by henselisation [EGA, IV4, Cor. 18.7.6].

Any Dedekind ring with fraction field of characteristic zero is excellent.
If R is an excellent integral domain with field of fractions K, then the

integral closure of R in any finite field extension of K is a finitely generated
R-module [EGA, IV2, (7.8.3) (vi)].

Definition 2.6.2 A locally noetherian scheme is excellent if it has an open
covering by affine open sets Spec(Ai), where each Ai is an excellent ring.

If X is an excellent scheme, then the set of regular points of X is an open
subset of X. If X ′→X is a morphism locally of finite type and X is excellent,
then X ′ is also excellent. See [EGA, IV2, Prop. 7.8.6].

https://stacks.math.columbia.edu/tag/030O
https://stacks.math.columbia.edu/tag/030W


Chapter 3

Brauer groups of schemes

There are two ways to generalise the Brauer group of fields to schemes. The
definition of the Brauer group of a field k in terms of central simple algebras
over k readily extends to schemes as the group of equivalence classes of Azu-
maya algebras. We call it the Brauer–Azumaya group, see Section 3.1. The
Brauer–Azumaya group BrAz(X) is a torsion group if X is quasi-compact (for
example, noetherian) or if X has finitely many connected components. The
cohomological description Br(k) ∼= H2(k, k∗s ) also extends and gives rise to
the Brauer–Grothendieck group Br(X) := H2

ét(X,Gm,X), see Section 3.2. In
Section 3.3 we discuss a natural injective map BrAz(X)→Br(X). There exist
integral, normal, noetherian schemes such that Br(X) is not a torsion group;
in fact, this is already the case for some normal complex surfaces, see Chapter
8. The focus of Section 3.4 is the Brauer group of henselian local rings. In Sec-
tion 3.5 we prove a theorem of Grothendieck that the Brauer–Grothendieck
group Br(X) of a regular, integral, noetherian scheme X is naturally a sub-
group of the Brauer group of its field of functions. In particular, Br(X) is
then a torsion group.

The purity theorem for the Brauer group of a regular, integral, noetherian
scheme X is discussed in Section 3.6 in the special case of schemes of dimen-
sion 1, and in Section 3.7 in the general case. For torsion of order invertible
on X the purity theorem can be stated and proved in terms of residues at the
generic points of the irreducible divisors on X. We state the absolute purity
theorem for the Brauer group of a regular scheme, whose proof was recently
completed by Česnavičius after work of Gabber. This leads to a description of
the Brauer group of a regular integral scheme in terms of discrete valuations
of its function field.
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3.1 The Brauer–Azumaya group

The following theorem is due to Azumaya [Az51] (over a local ring), Auslan-
der and Goldman [AG60] (over an arbitrary commutative ring), and Grothen-
dieck (over a scheme), see [Gro68, I, Thm. 5.1] and [Mil80, Ch. IV, §2].

Theorem 3.1.1 Let X be a scheme and let A be an OX-algebra which is a
finite locally free OX-module. The following conditions are equivalent:

(i) For each x ∈ X the fibre A ⊗ k(x) is a central simple algebra over the
residue field k(x).

(ii) The natural map A⊗OX Aop→EndOX -mod(A) is an isomorphism.
(iii) For each x ∈ X there exist an integer n ≥ 1, a Zariski open set U ⊂ X

with x ∈ U and a surjective étale morphism U ′→U such that we have
AU ′ ∼= Mn(OU ′).

(iv) For each x ∈ X there exist an integer n ≥ 1, a Zariski open set U ⊂ X
with x ∈ U and a surjective finite étale morphism U ′→U such that we
have AU ′ ∼= Mn(OU ′).

An OX -algebra A satisfying these equivalent conditions is called an Azu-
maya algebra. The integer n is called the degree of A at the point x.

Proposition 3.1.2 Let A be an Azumaya algebra of degree n over a scheme
X. Then A⊗n ' EndOX -mod(F ) for some locally free OX-module F of rank
nn.

Proof. This is sketched by Grothendieck in [Gro68, I, end of proof of
Prop. 1.4]. In the affine case, a more explicit proof was given by D. Salt-
man [Sal81]. That proof is extended to arbitrary schemes in [Stacks, Lemma
0A2L]. �

Azumaya algebras A and B over X are called equivalent if there exist finite
locally free OX -modules P and Q and an isomorphism of OX -algebras

A⊗OX EndOX -mod(P ) ' B ⊗OX EndOX -mod(Q).

Tensor product makes the set of equivalence classes of Azumaya OX -algebras
a commutative monoid with the class of OX as the identity element. By
Theorem 3.1.1 (ii), it is an abelian group.

Definition 3.1.3 The set of equivalence classes of Azumaya OX-algebras is
called the Brauer–Azumaya group BrAz(X).

Under very mild conditions, the Brauer–Azumaya group is a torsion group.

Corollary 3.1.4 Let X be a scheme. The order of the class in BrAz(X)
represented by an Azumaya algebra of degree n divides n. If X is quasi-
compact or has only finitely many connected components, then BrAz(X) is a
torsion group.

https://stacks.math.columbia.edu/tag/0A2L
https://stacks.math.columbia.edu/tag/0A2L
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Proof. Let A be an Azumaya algebra over X. Write [A] for the class of
A in BrAz(X). If the degree of A is n, then by Proposition 3.1.2 we have
[A⊗n] = n[A] = 0.

The scheme X is the union of the Zariski open sets Xn ⊂ X such that
A has degree n on Xn, for n ≥ 1. If X is quasi-compact or has only finitely
many connected components, then only finitely many of the open sets Xn are
non-empty. Thus [A] ∈ BrAz(X) has finite order for any Azumaya algebra A
over X. See also [Gro68, I.1.4, I.2], [Mil80, Prop. IV.2.7], [KO74b, IV.6.1]. �

A generalisation of the Skolem–Noether theorem leads to a bijection of
pointed sets between the set of isomorphism classes of Azumaya algebras
of degree n over X and the étale Čech cohomology set Ȟ1

ét(X,PGLn,X),
see [Mil80, Proof of Thm. IV.2.5, Step 1, p. 122]. This pointed set classifies
PGLn-torsors over Xét, see Section 2.2.1.

The equivalence of (iii) and (iv) in Theorem 3.1.1 is due to the following
remarkable fact: if R is a local ring, then any PGLn,R-torsor is split by a
finite étale extension of R. More generally, we have the following theorem.

Theorem 3.1.5 Let R be a semilocal ring and let G be a semisimple group
scheme over R. Then any G-torsor over R is split by a finite étale extension
of R. The same holds if G is a reductive group scheme over a semilocal ring
R which is also assumed to be noetherian and normal.

Proof. See [SGA3, XXIV, Thm. 4.1.5, Cor. 4.1.6]. �

3.2 The Brauer–Grothendieck group

Grothendieck’s definition of the (cohomological) Brauer group formally re-
sembles his formula for the Picard group (2.21).

Definition 3.2.1 The Brauer–Grothendieck group of a scheme X is

Br(X) = H2
ét(X,Gm,X).

By (2.6) and (2.8) there are canonical isomorphisms

Br(X) = H2
ét(X,Gm,X)

∼−→ H2
Ét

(X,Gm,X)
∼−→ H2

fppf(X,Gm,X).

Remark 3.2.2 Our notation may be different from the notation elsewhere in
the literature. Sometimes Br(X) is used to denote the Brauer–Azumaya group
(which we denote by BrAz(X)) or the torsion subgroup of H2

ét(X,Gm,X).

For an affine scheme X = Spec(R), where R is a commutative ring, one
often writes Br(R) := Br(X). In the particular case X = Spec(k), where k
is a field, we obtain the classical description of the Brauer group of a field
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in terms of equivalence classes of continuous 2-cocycles of its absolute Galois
group Γ = Gal(ks/k), where ks is a separable closure of k:

Br(k) = H2(k, k∗s ) = H2(Γ, k∗s ).

One may also consider the Zariski cohomological Brauer group of a scheme
X. Let us denote it by H2

zar(X,Gm). Write π : Xét→Xzar for the morphism
of sites. Then we have Gm,zar = π∗Gm and R1π∗(Gm) = 0. From the spectral
sequence (2.4) we get an injective map

H2
zar(X,Gm) ↪→ H2

ét(X,Gm).

Note, however, that it need not be an isomorphism. Indeed, if X is noetherian,
integral and locally factorial, then H2

zar(X,Gm) = 0, see Remark 3.5.2.

A morphism of schemes f : X→Y gives rise to a morphism (2.7). In the
case of G = Gm we obtain

f∗ : Hn
ét(Y,Gm,Y ) −→ Hn

ét(X,Gm,X). (3.1)

For n = 2 this gives a natural map of Brauer groups f∗ : Br(Y )→Br(X),
which is sometimes referred to as the restriction map. If K is a field and
M : Spec(K)→X is aK-point of X, then one writes A(M) = M∗(A) ∈ Br(K)
and refers to A(M) as the value, or specialisation, of A at M .

3.2.1 The Kummer exact sequence

The Brauer group is linked to étale cohomology with finite coefficients by the
Kummer exact sequence

1 −→ µ`n −→ Gm,X
x 7→x`

n

−−−−→ Gm,X −→ 1.

Here ` is a prime invertible on X and n is a positive integer. The associated
long exact sequence of cohomology gives an exact sequence

0 −→ Pic(X)/`n −→ H2
ét(X,µ`n) −→ Br(X)[`n] −→ 0. (3.2)

In degree 1 the Kummer sequence gives an exact sequence

0 −→ H0(X,Gm)/H0(X,Gm)`
n

−→ H1
ét(X,µ`n) −→ Pic(X)[`n] −→ 0,

where H0(X,Gm)`
n

stands for the group of `n-powers of invertible regular
functions on X. In degree 3 we have another useful exact sequence

0 −→ Br(X)/`n −→ H3
ét(X,µ`n) −→ H3

ét(X,Gm)[`n] −→ 0. (3.3)
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One can drop the restriction that ` is invertible on X by using the site
Xfppf instead of Xét. For any integer n ≥ 1, the sequence

1 −→ µn −→ Gm,X
x 7→xn−−−−→ Gm,X −→ 1

is an exact sequence on Xfppf . In view of the isomorphisms (2.8)

Hi
ét(X,Gm,X)

∼−→ Hi
fppf(X,Gm,X),

it gives rise to an exact sequence

0 −→ Pic(X)/n −→ H2
fppf(X,µn) −→ Br(X)[n] −→ 0. (3.4)

There are also fppf analogues of the other two exact sequences.

Theorem 1.3.7, which concerns fields of characteristic p > 0, admits a
generalisation to arbitrary commutative rings.

Theorem 3.2.3 Let A be a commutative ring of characteristic p > 0. Let
X = Spec(A). Then Br(X) = pBr(X).

Proof. Let X be a scheme of characteristic p > 0. (This means that we have
p = 0 in the structure sheaf OX .) The absolute Frobenius map Gm,X→Gm,X
given by x 7→ xp gives rise to an exact sequence of sheaves on Xét:

1 −→ µp,X −→ Gm,X −→ Gm,X −→M −→ 1,

where M is a p-torsion sheaf. By [SGA4, X, Thm. 5.1], for a noetherian
scheme X of characteristic p we have cdp(X) ≤ cdqc(X) + 1, where cdp(X)
is the étale cohomological dimension of p-torsion sheaves on X and cdqc(X)
is the quasi-coherent cohomological dimension of X. In particular, for X =
Spec(R), where R is a noetherian ring of characteristic p, we have cdp(X) ≤ 1.
Applying this to the above exact sequence of sheaves we deduce Br(X) =
pBr(X) when R is noetherian.

An arbitrary commutative ring A of characteristic p is a filtering direct
limit of finitely generated Fp-algebras. The limit statement for the Brauer
group in Section 2.2.2 allows us to deduce the result for A. �

3.2.2 The Mayer–Vietoris exact sequence

We now state a particular case of the Mayer–Vietoris sequence for the étale
sheaf Gm,X on X, see [Stacks, Lemma 0A50].

https://stacks.math.columbia.edu/tag/0A50
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Theorem 3.2.4 Let X be a scheme and let X = U ∪ V be a Zariski open
covering. Write W = U ∩ V . Then there is an infinite exact sequence

0 −→ Γ (X,O∗X) −→ Γ (U,O∗U )⊕ Γ (V,O∗V ) −→ Γ (W,O∗W )

−→ Pic(X) −→ Pic(U)⊕ Pic(V ) −→ Pic(W )

−→ Br(X) −→ Br(U)⊕ Br(V ) −→ Br(W ) −→ H3
ét(X,Gm) −→ · · ·

Here the arrows like Pic(X)→Pic(U) ⊕ Pic(V ) are the restriction maps,
and the arrows like Pic(U)⊕Pic(V )→Pic(W ) are differences of the restriction
maps.

If the open set U is locally factorial, for instance if U is regular, then
the restriction map Pic(U)→Pic(W ) is surjective. In this case Theorem 3.2.4
gives rise to an exact sequence

0 −→ Br(X) −→ Br(U)⊕ Br(V ) −→ Br(W ). (3.5)

This can be compared with Theorem 3.5.7 below.

3.2.3 Passing to the reduced subscheme

Proposition 3.2.5 Let X be a noetherian scheme. Let Xred ⊂ X be the
reduced subscheme.

(i) If X is affine, then the natural map Br(X)→Br(Xred) is an isomor-
phism.

(ii) If dim(X) ≤ 1, then Br(X)→Br(Xred) is an isomorphism.
(iii) If dim(X) ≤ 2, then the natural map Br(X)→Br(Xred) is surjective.

Proof. Cf. [De75], [CTOP02, Lemma 1.6]. There are closed immersions

Xred = X0 ⊂ X1 ⊂ . . . ⊂ Xn = X

and ideals Ij ⊂ OXj , for j = 1, . . . , n, such that OXj−1
= OXj/Ij and I2

j = 0.
On each Xj we have an exact sequence of sheaves for the étale topology

0 −→ Ij −→ Gm,Xj −→ r∗Gm,Xj−1
−→ 1,

where r : Xj−1→Xj is the given closed immersion, the coherent ideal Ij is
viewed as a sheaf for the étale topology, and the map Ij→Gm,Xj is given by
x 7→ 1 + x. For any i we have Hi

ét(Xj , Ij) = Hi
zar(Xj , Ij). If X is affine, then

all these groups vanish for i ≥ 1. If dim(X) ≤ 1, then these groups vanish for
i ≥ 2. If dim(X) ≤ 2, these groups vanish for i ≥ 3. Thus

H2
ét(Xj ,Gm,Xj ) −→ H2

ét(Xj , r∗Gm,Xj−1
)
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is an isomorphism if X is affine or if dim(X) ≤ 1. If dim(X) ≤ 2, then this
map is surjective. Since r is a closed immersion, we have Rir∗(F) = 0 for
i ≥ 1 and any sheaf F . Hence the Leray spectral sequence for the morphism
r : Xj−1→Xj and the sheaf Gm gives an isomorphism

H2
ét(Xj , r∗Gm,Xj−1

)
∼−→ H2

ét(Xj−1,Gm,Xj ).

Thus the natural map Br(Xj)→Br(Xj−1) is an isomorphism if X is affine or
dim(X) ≤ 1; it is surjective if dim(X) ≤ 2. �

As we shall see in Section 8.1, the map Br(X)→Br(Xred) is not necessarily
injective for dim(X) ≥ 2.

Proposition 3.2.6 Let X be a noetherian scheme. Let n be a positive integer
invertible on X. Then we have the following statements.

(i) The natural map Br(X)/n→Br(Xred)/n is injective.
(ii) The natural map Br(X)[n]→Br(Xred)[n] is surjective.

(iii) If X is a scheme over Q, then the natural map Br(X)tors→Br(Xred)tors

is surjective.

Proof. If F is a coherent sheaf on X, then multiplication by n on Hi
zar(X,F) ∼=

Hi
ét(X,F) is an isomorphism for any i ≥ 0. The arguments from the proof of

Proposition 3.2.5 then give an exact sequence

A −→ Br(X) −→ Br(Xred) −→ B,

where A and B are uniquely n-divisible. The three statements then follow
by diagram chase. Statements (i) and (ii) can also be established using the
Kummer sequence and the fact that the canonical morphism Xred→X induces
the identity map on étale cohomology groups with coefficients µn when n is
invertible on X, cf. [SGA4, VIII, §1]. �

3.3 Comparing the two Brauer groups, I

For a field k we gave in Section 1.3.3 a classical construction of a natural
injective map Br(k)→H2(k, k∗s ), which is in fact an isomorphism. It can be
generalised to schemes and gives a natural injective map BrAz(X)→Br(X).
For a general scheme X this map is not surjective; we shall discuss its image
in Chapter 4.

After some indications of Grothendieck in [Gro68, I, §2], Milne sketches
two constructions of this map in [Mil80, Thm. IV.2.5]. The first of them,
which we explain in this section, requires the additional assumption that X
is quasi-compact and any finite set of points of X is contained in an affine
open set. (This holds, for example, if X is quasi-projective over an affine
scheme.) This hypothesis allows one to use a theorem of Artin on the joins of
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Hensel rings. The second construction uses gerbes and Giraud’s work [Gir71],
and works for any scheme X; we shall discuss it in Section 4.2 below.

Theorem 3.3.1 Let X be a quasi-compact scheme such that any finite set
of points of X is contained in an affine open set. Then there is an injective
homomorphism BrAz(X)→Br(X)tors, which is functorial in X.

Proof. Let us first consider Azumaya algebras over X that have the same
degree at every point of X. As recalled in Section 3.1, there is a natural
bijection of pointed sets between the set of isomorphism classes of Azumaya
algebras of degree n over X and the Čech cohomology set Ȟ1

ét(X,PGLn,X).
By [Mil80, Cor. IV.2.4], there is a natural exact sequence of group schemes

over Xét

1 −→ Gm,X −→ GLn,X −→ PGLn,X −→ 1, (3.6)

where Gm,X ↪→ GLn,X is the central subgroup of scalar matrices. Under the
assumption on X, this sequence gives rise to an exact sequence of pointed
Čech cohomology sets [Mil80, p. 143]

Ȟ1
ét(X,GLn,X) −→ Ȟ1

ét(X,PGLn,X) −→ Ȟ2
ét(X,Gm,X).

By [Mil80, Cor. III.2.10] there is a canonical embedding

Ȟ2
ét(X,Gm,X) ↪→ H2

ét(X,Gm,X) = Br(X).

(Note that under our assumption on X, this map is actually an isomorphism
[Mil80, Thm. III.2.17].) Hence the boundary map attached to (3.6) gives rise
to a map of pointed sets

δn : Ȟ1
ét(X,PGLn,X) −→ Br(X),

whose kernel is the image of Ȟ1
ét(X,GLn,X)→Ȟ1

ét(X,PGLn,X), i.e. the classes
of Azumaya algebras of the form EndOX -mod(P ), where P is a locally free
OX -module of rank n.

For Azumaya algebras A and B of degrees n and m, respectively, one shows
that

δmn(A⊗OX B) = δn(A) + δm(B) ∈ Br(X).

In particular, this implies that δn(A) depends only on the class of A in
BrAz(X). Thus for a class α ∈ BrAz(X) represented by an Azumaya algebra
A of constant degree n we can define δ(α) = δn(A) ∈ Br(X). If β ∈ BrAz(X)
is also represented by an Azumaya algebra of constant degree, then we have
δ(α+ β) = δ(α) + δ(β).

An arbitrary element α ∈ BrAz(X) is represented by an Azumaya algebra
A over X which does not necessarily have the same degree everywhere. The
scheme X is the disjoint union of the open subsets Xn ⊂ X such that A has
degree n on Xn, for n ≥ 1. Since X is quasi-compact, we have Xn = ∅ for
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almost all n. Thus X =
∐r
n=1Xn. Let αn ∈ BrAz(Xn) be the restriction of

α ∈ BrAz(X). We define δ(α) ∈ Br(X) =
∏r
n=1 Br(Xn) as (δ(αn)).

For any α, β ∈ BrAz(X) the quasi-compact scheme X is a disjoint union of
finitely many open subsets Xn such that the restrictions αn, βn ∈ BrAz(Xn)
are represented by Azumaya algebras of constant degrees. This implies that
in Br(X) we have δ(α + β) = δ(α) + δ(β), hence δ : BrAz(X)→Br(X) is a
homomorphism with trivial kernel, and so is injective.

Since BrAz(X) is a torsion group by Corollary 3.1.4, the image of δ belongs
to the torsion subgroup Br(X)tors. �

The following theorem was proved by Gabber in his thesis [Gab81, Ch. II,
Thm. 1].

Theorem 3.3.2 (Gabber) If X is an affine scheme, then

BrAz(X)→Br(X)tors

is an isomorphism.

We do not prove this result here. Gabber’s proof uses gerbes (see Section
4.1.4 below); it proceeds by reduction to the case of local rings. A more
elementary proof was later given by Knus and Ojanguren [KO81]. A proof
in the language of twisted sheaves (see Section 4.1.5 below) can be found in
[Lie08, Cor. 3.1.4.2]. As we shall see in Chapter 4, the theorem holds more
generally for quasi-projective schemes over an affine scheme.

The following result was first proved directly in terms of Azumaya algebras
by Knus, Ojanguren and Saltman [KOS76, Cor. 4.4].

Proposition 3.3.3 Let A be a commutative ring of characteristic p > 0.
Then BrAz(A) = pBrAz(A).

Proof. This follows from Theorems 3.3.2 and 3.2.3. �

3.4 Localising elements of the Brauer group

Lemma 3.4.1 Let X be a scheme. For any element α ∈ Br(X) there exists
an étale cover f : U→X such that f∗α = 0 ∈ Br(U).

Proof. This is a special case of a general statement: for any scheme X, any
site XE with underlying category CX , any sheaf F on XE , any U ∈ CX ,
any i > 0 and any cohomology class α ∈ Hi

E(U,F ) there exists a covering
{Uj→U}j∈J such that the restriction of α to each Hi

E(Uj , F ) is zero [Mil80,
Prop. III.2.9, Remark III.2.11 (a)]. Take U =

∐
j∈J Uj . �
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Theorem 3.4.2 (Azumaya) Let R be a henselian local ring with residue
field k.

(i) The embedding of the closed point Spec(k)→Spec(R) induces an isomor-
phism Br(R)

∼−→ Br(k).
(ii) If R is a strictly henselian local ring, that is, if k is separably closed, then

Br(R) = 0.

Proof. For any smooth commutative group R-scheme G we have an isomor-
phism Hi

ét(Spec(R), G)
∼−→ Hi(k,G ×R k) when i ≥ 1, see [Mil80, Remark

III.3.11 (a)] and [Gro68, III, Thm. 11.7]. For G = Gm and i = 2 we get the
desired statement Br(R)

∼−→ Br(k).
(ii) follows from (i). Alternatively, by [Mil80, Thm. I.4.2 (d)] an étale

morphism U→Spec(R) has a section provided U contains a k-point which
goes to the closed point of Spec(R). Thus (ii) is a consequence of Lemma
3.4.1. �

The original theorem proved by Azumaya says that the evaluation map
BrAz(R)→Br(k) is an isomorphism. We briefly outline the proof of this
result given in [Mil80, Cor. IV.2.13]. Let α ∈ Br(R). Since R is local
henselian, Lemma 3.4.1 implies that there exists a finite étale extension
R ⊂ R′ of henselian local rings such that α goes to 0 under the natural map
Br(R)→Br(R′). This implies that α ∈ BrAz(R), so the embedding of BrAz(R)
into Br(R) is an isomorphism. Since the map BrAz(X)→Br(X) is functorial,
Theorem 3.4.2 and the result for fields BrAz(k)

∼−→ Br(k) (Theorem 1.3.5)
then imply that the evaluation map BrAz(R)→Br(k) is an isomorphism.

Corollary 3.4.3 Let R be a henselian noetherian local ring with maxi-
mal ideal m. Let R̂ be the m-adic completion of R. Then the natural map
Br(R)→Br(R̂) is an isomorphism.

Proof. Since R is noetherian, by [Mat86, Thm. 8.13] or [Stacks, Lemma

05GG], the ring R̂ is a complete local ring with maximal ideal mR̂, and

R̂/mR̂ ∼= R/m. Thus R̂ is henselian, see [Mil80, Prop. I.4.5] or [Stacks, Lemma

04GM]. By Theorem 3.4.2, the natural map Br(R)→Br(R̂) is identified with

Br(R/m)
∼−→ Br(R̂/mR̂). �

Corollary 3.4.4 Let k be a field, let X be a k-scheme and let P ∈ X(k)
be a k-point. For any α ∈ Br(X) with α(P ) = 0 ∈ Br(k) there exist an
étale morphism f : U→X and a k-point M ∈ U(k) such that f(M) = P and
f∗(α) = 0 ∈ Br(U).

Proof. Let R be the henselisation of the local ring of X at P . By Theorem
3.4.2 (i) the image of α under the natural map Br(X)→Br(R) is zero. The
ring R is a filtering direct limit of rings Ri, each of them equipped with an
étale map fi : Spec(Ri)→X and a k-point Mi such that fi(Mi) = P . The
group Br(R) is the direct limit of the groups Br(Ri), see Section 2.2.2. Thus
α goes to zero in Br(Ri) for some i, so we can take U = Spec(Ri). �.

https://stacks.math.columbia.edu/tag/05GG
https://stacks.math.columbia.edu/tag/05GG
https://stacks.math.columbia.edu/tag/04GM
https://stacks.math.columbia.edu/tag/04GM
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Lemma 3.4.5 Let k be a field and let X be a variety over k. Let A ∈ Br(X).
There exists an integer n ≥ 1 such that nA vanishes in each residue field of X.

Proof. Suppose this has been proved for all varieties of dimension at most d.
Let X be a variety of dimension d + 1. To prove the result for X we may
assume that X is reduced and irreducible. Let k(X) be the function field of
X. By Section 2.2.2, the torsion group Br(k(X)) is the direct limit of the
groups Br(U), where U is non-empty and open in X. Thus there exists a
non-empty open set U ⊂ X such that the restriction of A to U is an element
of Br(U) annihilated by some positive integer n. Let Z = X r U . By the
induction hypothesis there exists an integer m > 0 such that the restriction
of mA to the residue fields of Z is zero. Thus the restriction of nmA to the
residue fields of X is zero. �

3.5 Going over to the generic point

The following definition was suggested in [SGA2, Exposé XIII, §6] and
adopted in [CTS78].

Definition 3.5.1 A locally noetherian scheme X is geometrically locally
factorial if for any étale morphism U→X each local ring of U is factorial,
that is, a unique factorisation domain.

Equivalently, strict henselisations of the local rings of X are factorial.
It is clear that any geometrically locally factorial scheme is normal. By

[BouAC, Ch. VII, §2, Thm. 1] any prime ideal of height 1 in a factorial
ring is principal, hence any Weil divisor of a geometrically locally factorial
scheme is a Cartier divisor. A theorem of Auslander–Buchsbaum implies that
a regular scheme is geometrically locally factorial, see [SGA2, Thm. XI.3.13].
Grothendieck proved that a noetherian local ring which is a complete inter-
section and whose localisations Rp at primes p of height up to 3 are regular
is geometrically locally factorial, see [SGA2, Cor. XI.3.14].

Let X be a normal, integral, noetherian scheme. Let j : Spec(F ) ↪→ X be
the generic point of X. There is a natural exact sequence of sheaves on the
small étale site Xét, which describes the embedding of the group of invertible
regular functions into the group of non-zero rational functions as the kernel
of the divisor map:

0 −→ Gm,X −→ j∗Gm,F −→
⊕

D∈X(1)

iD∗Zk(D), (3.7)

see [Mil80, Example II.3.9]. Here iD : Spec(k(D)) ↪→ X is the embedding
of the generic point of an irreducible divisor D ⊂ X; the direct sum
ranges over all such divisors. On a connected étale open set U→X the
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map j∗Gm,F→iD∗Zk(D) can be described as follows. Let D′ be an irre-
ducible divisor on U contained in D ×X U . Since the scheme X is nor-
mal, the scheme U is also normal, hence the local ring OU,D′ is a discrete
valuation ring with valuation vD′ : OU,D′ r {0}→N. The group of sections
H0

ét(U, j∗Gm,F ) is the multiplicative group of the function field of U . The map
H0

ét(U, j∗Gm,F )→H0
ét(U, iD∗Zk(D)) sends a function f to the integer vD′(f).

Now assume, in addition, that the noetherian scheme X is geometrically
locally factorial. Then Weil divisors are the same as Cartier divisors, i.e., any
divisor locally at each point is given by one equation. Thus (3.7) extends to
an exact sequence of sheaves on Xét

0 −→ Gm,X −→ j∗Gm,F −→
⊕

D∈X(1)

iD∗Zk(D) −→ 0. (3.8)

Remark 3.5.2 The exact sequence (3.8) restricted to the small Zariski site
Xzar is a flasque resolution of the Zariski sheaf Gm,X . Recall that a Zariski
sheaf F on X is flasque if for any Zariski open set U ⊂ X the restriction map
H0(X,F)→H0(U,F) is surjective. As remarked by Grothendieck in [Gro57],
this implies Hi

zar(X,Gm,X) = 0 for i ≥ 2. This argument can be applied to
any scheme X which is locally factorial (in the usual sense, i.e., for the Zariski
topology) and not necessarily regular.

Lemma 3.5.3 Let X be a geometrically locally factorial, integral, noetherian
scheme, for example, a regular, integral, noetherian scheme. Then the groups
Hn

ét(X,Gm,X) are torsion for n ≥ 2. In particular, the Brauer group Br(X)
is a torsion group.

Proof. This follows from Lemma 2.4.1 and the long exact sequence of coho-
mology attached to (3.8). �

Lemma 3.5.4 Let X be a geometrically locally factorial (for example, reg-
ular), integral, noetherian scheme with generic point j : Spec(F ) ↪→ X. If
D ⊂ X is an irreducible divisor, we denote its generic point by Spec(k(D)).
There is an exact sequence

0 −→ Br(X) −→ H2
ét(X, j∗Gm,F ) −→

⊕
D∈X(1)

H1(k(D),Q/Z). (3.9)

Proof. By Lemma 2.4.1 the long exact sequence of cohomology groups at-
tached to (3.8) gives

0 −→ Br(X) −→ H2
ét(X, j∗Gm,F ) −→

⊕
D∈X(1)

H2
ét(X, iD∗(Zk(D))).

By the same Lemma 2.4.1 the spectral sequence

Hp
ét(X, (R

qiD∗)(Zk(D)))⇒ Hp+q(k(D),Z)
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gives an injective map H2
ét(X, iD∗(Zk(D)))→H2(k(D),Z). Multiplication by

any non-zero integer is an automorphism of the abelian group Q; however,
any Galois cohomology group of positive degree is a torsion group [SerCG,
Cor. 2.2.3], so Hn(k(D),Q) = 0 for n > 0. Thus the long exact sequence
associated to the exact sequence of trivial Galois modules

0 −→ Z −→ Q −→ Q/Z −→ 0 (3.10)

gives an isomorphism H1(k(D),Q/Z)
∼−→ H2(k(D),Z). This gives (3.9). �

For the Brauer–Azumaya group of a regular affine scheme, the following
theorem was proved by Auslander and Goldman [AG60, Thm. 7.2]. The gen-
eral case was proved by Grothendieck [Gro68, II, Cor. 1.8].

Theorem 3.5.5 Let X be a geometrically locally factorial, integral, noethe-
rian scheme with generic point Spec(F ), for example a regular, integral,
noetherian scheme. The natural map Br(X)→Br(F ) is injective. For any
non-empty open subset U ⊂ X this map factors through the natural map
Br(X)→Br(U), which is therefore also injective.

Proof. By Lemma 2.4.1 the spectral sequence

Hp
ét(X, (R

qj∗)(Gm,F ))⇒ Hp+q(F,Gm,F ) (3.11)

implies that H2
ét(X, j∗Gm,F ) is a subgroup of H2(F,Gm,F ) = Br(F ). Now

(3.9) shows that Br(X) is naturally a subgroup of Br(F ). �

Corollary 3.5.6 Let X be a geometrically locally factorial, integral, noethe-
rian scheme with generic point Spec(F ). Let α ∈ Br(F ). If α ∈ Br(OX,x)
for all points x ∈ X or, equivalently, if there exists a Zariski open covering
X = ∪iUi such that α ∈ Br(Ui) ⊂ Br(F ), then α ∈ Br(X).

Proof. This follows from the exact sequence (3.5) and Theorem 3.5.5. �

The definition of an excellent scheme was recalled in Section 2.6.

Theorem 3.5.7 [Ber05] Let X be an excellent, noetherian, integral scheme.
Let U ⊂ X be a non-empty open subscheme. Assume that U contains every
singular point of X. Then the restriction homomorphism Br(X)→Br(U) is
injective.

Proof. Let V be the set of regular points. Since X is excellent, this is an open
set. Then X = U ∪ V . Let W = U ∩ V . Since V is regular, the restriction
map Pic(V )→Pic(W ) is surjective. By the Mayer–Vietoris sequence (Theo-
rem 3.2.4) the diagonal restriction map Br(X)→Br(U) ⊕ Br(V ) is injective.
If α ∈ Br(X) has a trivial image in Br(U), then it has a trivial image at each
generic point of U , hence it has a trivial image in Br(V ). Indeed, as V is
regular, the restriction map to the generic point is injective (Theorem 3.5.5).
Thus α = 0 ∈ Br(X). �



84 3 Brauer groups of schemes

Remark 3.5.8 In Section 8.6 we give counter-examples to the injectivity of
the restriction map Br(R)→Br(K), where R is an integral local ring which is
a local complete intersection and K is the field of fractions of R. In the second
counter-example R is normal of dimension 2, in the third counter-example
R is regular in codimension 2, but not in codimension 3. The ring R is not
geometrically locally factorial.

3.6 Schemes of dimension 1

3.6.1 Regular schemes of dimension 1

This section follows [Gro68, III, §2] and [Mil80, III, Example 2.22]. Propo-
sition 1.4.5, whose proof uses the Krull–Akizuki Theorem, enables one to
recover all results stated in [Gro68, III, §2] without the excellence assump-
tion added in [Mil80, III, Example 2.22].

Theorem 3.6.1 Let X be an integral, regular, noetherian scheme of dimen-
sion 1 with generic point Spec(F ).

(i) For any prime ` invertible on X there is an exact sequence

0→Br(X){`}→Br(F ){`}→
⊕

x∈X(1)

H1(k(x),Q`/Z`)→H3
ét(X,Gm){`}→ . . .

. . .→Hi
ét(X,Gm){`}→Hi(F,Gm){`}→

⊕
x∈X(1)

Hi−1(k(x),Q`/Z`)→ . . .

where k(x) is the residue field of the point x ∈ X. For each x ∈ X(1) the map
Br(F ){`}→H1(k(x),Q`/Z`) is the Witt residue.

(ii) If for each closed point x ∈ X the residue field k(x) is perfect, then
there is an exact sequence

0→Br(X)→Br(F )→
⊕

x∈X(1)

H1(k(x),Q/Z)→H3
ét(X,Gm)→H3(F,Gm)→ . . .

. . .→Hi
ét(X,Gm)→Hi(F,Gm)→

⊕
x∈X(1)

Hi−1(k(x),Q/Z)→ . . .

For each x ∈ X(1) the map Br(F )→H1(k(x),Q/Z) is the Witt residue.

The Witt residue rW was introduced in Definition 1.4.11. We have

rW = −r = ∂,

where r is the Serre residue (Definition 1.4.3) and ∂ is the Gysin residue
(Definition 2.3.4), see Theorems 1.4.14 and 2.3.5.
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Proof of Theorem 3.6.1. The exact sequence of sheaves (3.8)

0 −→ Gm,X −→ j∗Gm,F −→
⊕

D∈X(1)

iD∗Zk(D) −→ 0

gives rise to the long exact sequence of étale cohomology groups

. . .→Hi
ét(X,Gm)→Hi

ét(X, j∗Gm,F )→Hi
ét(X,

⊕
x∈X(1) ix∗Z)→Hi+1

ét (X,Gm)→ . . .

Since dim(X) = 1, each inclusion ix : x→X is a closed immersion, hence a
finite morphism. Thus for any sheaf F on x we have Rqix∗(F) = 0 for i ≥ 1.
Therefore, we can rewrite the above sequence as follows:

. . .→Hi
ét(X,Gm)→Hi

ét(X, j∗Gm,F )→
⊕

x∈X(1)

Hi(k(x),Z)→Hi+1
ét (X,Gm)→ . . .

In particular, we have a long exact sequence

0→H2
ét(X,Gm)→H2

ét(X, j∗Gm,F )→
⊕

x∈X(1)

H1(k(x),Q/Z)→H3
ét(X,Gm)→ . . .

By Lemma 2.4.1 we have R1j∗Gm,F = 0. For q ≥ 2 the stalk of Rqj∗Gm,F
at the generic point of X is the Galois cohomology group Hq(Fs,Gm), where
Fs is a separable closure of F , hence this stalk is zero. The stalk at a geometric
point x̄ above a closed point x ∈ X is Hq(F sh

x ,Gm), where F sh
x is the field of

fractions of Osh
X,x. By Proposition 1.4.5 (ii) this group is px-primary, where

px is the characteristic exponent of the residue field k(x). If k(x) is perfect,
then Hq(F sh

x ,Gm) = 0 for all q ≥ 1, by Proposition 1.4.5 (iv). If this holds
for all x, then Rqj∗Gm,F = 0 all q ≥ 1.

From the spectral sequence Hp
ét(X,R

qj∗Gm,F ) ⇒ Hp+q(F,Gm,F ), see
(3.11), we then deduce the following statements.

• For q ≥ 2 the natural map Hq
ét(X, j∗Gm,F )→Hq(F,Gm) induces an iso-

morphism of the `-primary subgroups, for each prime ` invertible on X.
• The natural map Hq

ét(X, j∗Gm,F )→Hq(F,Gm) is an isomorphism for all
q ≥ 2 if for each closed point x ∈ X the residue field k(x) is perfect.

This gives the exact sequences in the proposition.
To identify the map Br(F )→H1(k(x),Q/Z) with the Witt residue in (ii)

and with its variant on the `-primary part in case (i) (where the residue fields
need not be perfect), we can assume that X = Spec(Oh

X,x). Let K = F h
x be

the field of fractions of Oh
X,x. We follow the arguments from the proof of

Theorem 2.3.5 using similar notation. Let Ks be a separable closure of K.
Then F sh

x coincides with the maximal unramified extension Knr of K in Ks.
Define G = Gal(Ks/K), I = Gal(Ks/Knr), and

Γ = Gal(k(x)s/k(x)) ∼= Gal(Knr/K) ∼= G/I.
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As discussed in Section 2.3.3, the category of étale sheaves on Spec(Oh
X,x)

is equivalent to the category of triples (M,N,ϕ), where M is a Γ -module,
N is a G-module, and ϕ : M→N I is a homomorphism of Γ -modules. Under
this equivalence, the sheaf j∗Gm,K corresponds to the triple (K∗nr,K

∗
s , id),

the sheaf i∗Zk(x) corresponds to (Z, 0, 0), and the map j∗Gm,K→i∗Zk(x) is
given by the valuation K∗nr→Z, see [Mil80, Example II.3.15]. According to
(2.18) there is a canonical isomorphism

H2(Oh
X,x, j∗Gm,K) ∼= H2(Γ,K∗nr).

Under this isomorphism, the map

H2(Oh
X,x, j∗Gm,K) −→ H2(k(x),Z) ∼= H1(k(x),Q/Z)

becomes the Witt residue H2(Γ,K∗nr)→H2(Γ,Z) ∼= H1(Γ,Q/Z). �

The following theorem gives a description of the Brauer group of a
henselian discrete valuation field K in the case when the residue field k is
perfect. It can be compared to a similar description (1.16), where n is coprime
to the characteristic of k but k is not necessarily perfect.

Theorem 3.6.2 (Witt) [Wit37] Let R be a henselian discrete valuation
ring with fraction field K and perfect residue field k. Then there is a split
exact sequence

0 −→ Br(k) −→ Br(K)
rW−→ H1(k,Q/Z) −→ 0. (3.12)

Proof. By the functoriality of étale cohomology the embedding of the closed
point Spec(k)→Spec(R) gives rise to the specialisation map Br(R)→Br(k).
This map is an isomorphism by Theorem 3.4.2. Now (3.12) follows from
Theorem 3.6.1 in view of the surjectivity of the Witt residue, see Section
1.4.3. That the sequence is split follows from the comments after Definition
1.4.11. �

Corollary 3.6.3 Let R be a henselian discrete valuation ring with fraction
field K and finite residue field k. Then Br(K)

∼−→ Q/Z.

Proof. By Theorem 1.2.13 (Wedderburn) we have Br(k) = 0. In this case the

Galois group Γ is the profinite completion Ẑ of Z generated by the Frobenius
automorphism. Hence Homcont(Γ,Q/Z) ∼= Q/Z. �

In particular, when K = Fv is the completion of a global field F at a
non-archimedean place v we obtain an isomorphism

invv : Br(Fv)
∼−→ Q/Z,

called the local invariant. For example, if Fv is the field of p-adic numbers
Qp, p 6= 2, and a ∈ Z∗p, by formula (1.18), invp(a, p) = 0 if and only if the

Legendre symbol
(
a
p

)
= 1.
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There are other cases when Theorem 3.6.1 gives rise to a short exact
sequence.

Theorem 3.6.4 Let A be a semilocal Dedekind domain of dimension 1 with
field of fractions K. Let ` be a prime invertible in A. Then there is an exact
sequence

0 −→ Br(A){`} −→ Br(K){`} {∂p}−→
⊕
p

H1(A/p,Q`/Z`) −→ 0,

where p ranges over the maximal ideals of A.

Proof. By Theorem 3.6.1 it remains to prove the surjectivity of the third map
in the sequence. Choose a maximal ideal p ⊂ A and let x ∈ H1(A/p,Q`/Z`).
The group H1(A/p,Q`/Z`) is the union of subgroups H1(A/p,Z/`m), so x is in
H1(A/p,Z/n) for some n = `m. It is enough to find an element α ∈ Br(K)[n]
such that ∂p(α) = x and ∂p′(α) = 0 for all maximal ideals p′ 6= p of A.

Let Ap be the localisation of A at p and let Ah
p be the henselisation of the

local ring Ap. Since Ah
p is a henselian local ring, the specialisation map

H1(Ah
p,Z/n)

∼−→ H1(A/p,Z/n)

is an isomorphism. Let x̃ ∈ H1(Ah
p,Z/n) be the inverse image of x under this

isomorphism.
Consider a finite separable field extension K ⊂ L with the following two

properties: if B is the integral closure of Ap in L, then the embedding of the
closed point Spec(A/p)→Spec(Ap) factors as

Spec(A/p) −→ Spec(B) −→ Spec(Ap)

and the morphism Spec(B)→Spec(Ap) is étale at the image of Spec(A/p) in
Spec(B). Let q ⊂ B be the prime ideal such that Spec(B/q) is this image of
Spec(A/p), and let Bq be the localisation of B at q. Then, as was recalled in
Section 2.1.4, we have

Ah
p = lim−→Bq.

There is an isomorphism of residue fields A/p = Ap/p ∼= Bq/q = B/q. Since
L is separable over K, the A-algebra B is a finitely generated A-module.
By the Krull–Akizuki theorem [BouAC, Ch. 7, §2, no. 5], B is a semilocal
Dedekind domain, so has finitely many maximal ideals [SerCL, Ch. I, §4].

Since H1(Ah
p,Z/n) is the inductive limit of H1(Bq,Z/n) (see Section 2.2.2),

our element x̃ ∈ H1(Ah
p,Z/n) comes from an element ρ ∈ H1(Bq,Z/n) for

some ring B as above. The injective map H1(Bq,Z/n)→H1(L,Z/n) allows us
to consider ρ as an element of H1(L,Z/n).

By the independence of valuations we can choose an element t ∈ B such
that the valuation of t at q is 1 and t ≡ 1 mod q′ for each maximal ideal
q′ ⊂ B, q′ 6= q. Let β ∈ H2(L, µn) = Br(L)[n] be the cup-product of the class
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of t in L∗/L∗n ∼= H1(L, µn) and the class ρ ∈ H1(L,Z/n). By Proposition
1.4.7, corestriction gives rise to a commutative diagram

Br(L)[n]
r //

coresL/K

��

⊕
J⊂B

H1(B/J,Z/n)

cores(B/J)/(A/I)

��
Br(K)[n]

r // ⊕
I⊂A

H1(A/I,Z/n)

where the horizontal maps are Serre residues, I ranges over the maximal ideals
of A, and J ranges over the maximal ideals of B. We have ∂q(β) = x and
∂q′(β) = 0 when q′ ⊂ B is a maximal ideal q′ 6= q. Now let α = coresL/K(β).
From the diagram we obtain ∂p(α) = x and ∂p′(α) = 0 when p′ ⊂ A is a
maximal ideal p′ 6= p. �

Remark 3.6.5 A similar proof gives surjectivity of the maps

{∂p} : Hi(K,µ⊗jn ) −→
⊕
p⊂A

Hi−1(A/p, µ⊗j−1
n )

in Theorem 3.6.1 for all i ≥ 2. The long exact localisation sequence then
breaks up into short exact sequences

0 −→ Hi(A,µ⊗jn ) −→ Hi(K,µ⊗jn ) −→
⊕
p⊂A

Hi−1(A/p, µ⊗j−1
n ) −→ 0,

where n is invertible in A, for any i, j ∈ Z, i ≥ 1, see [CTKH97, Cor. B.3.3].
It also works for various other theories such as Milnor K-theory with torsion
coefficients (H. Gillet).

3.6.2 Singular schemes of dimension 1

The following proposition clarifies some points in [Gro68, II, §1].

Proposition 3.6.6 Let X be a noetherian 1-dimensional scheme. The
Brauer group Br(X) is a torsion group. If α ∈ Br(X) vanishes when evaluated
at each generic point of X and also at each singular point of X, then α = 0.

Proof. By Proposition 3.2.5 (ii), the map Br(X)→Br(Xred) is an isomorphism.
Thus we can assume that X is reduced. Let us write x = Spec(k(x)) for a
closed point of X, and y = Spec(k(y)) for any of the finitely many points of
X of dimension 1. Let ix : x→X and iy : y→X be the natural morphisms.
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Then we have an exact sequence of étale sheaves

0 −→ Gm,X −→
∏
y

iy∗Gm,k(y) −→
⊕
x

ix∗Fx −→ 0, (3.13)

where Fx is an étale sheaf on x which is the constant sheaf Z, except possibly
when x is a singular point of X (if X is excellent, then there are only finitely
many of these).

Using Lemma 2.4.1 (ii) for the fields k(y), we deduce from (3.13) an exact
sequence

0 −→
⊕
x

H1(k(x), Fx) −→ Br(X) −→
∏
y

Br(k(y)). (3.14)

Note that H1(x, Fx) = 0 if x is a regular point, since H1(k(x),Z) = 0. From
this exact sequence we conclude that Br(X) is a torsion group.

Let Xx = Spec(Oh
X,x) be the henselisation of X at a singular point x.

Then we have a similar exact sequence

0 −→ H1(k(x), Fx) −→ Br(Xx) −→
∏
yx

Br(k(yx)),

where the product is over the generic points yx of Xx. The two sequences are
compatible via the maps induced by the natural morphism Xx→X.

If α ∈ Br(X) vanishes at each generic point of X, then α is the image
of a well-defined element {ζx} ∈ ⊕xH1(k(x), Fx), where the sum is over the
singular points of X. By Theorem 3.4.2 the evaluation map Br(Xx)→Br(k(x))
is an isomorphism. Thus if α also vanishes when evaluated at the closed point
x, then the image of α in Br(Xx) is zero, hence ζx = 0. This proves the
proposition. �.

Remark 3.6.7 If an excellent 1-dimensional scheme X is affine one may give
a proof of Proposition 3.6.6 in terms of Azumaya algebras, using conductors
and patching diagrams [CTOP02, Prop. 1.12]. See also [Chi74] and [KO74a].
For X not necessarily affine, the result then follows from Theorem 3.5.7 and
the fact that the set of singular points of X is contained in an affine open
subset.

Lemma 3.6.8 Let X be a noetherian separated scheme of dimension 1. Then
X has an ample invertible sheaf.

Proof. See [Stacks, Prop. 09NZ]. �

Proposition 3.6.9 Let X be a noetherian separated scheme of dimension
≤ 1. The natural inclusion BrAz(X) ↪→ Br(X) is an equality.

Proof. By Proposition 3.6.6, Br(X) is a torsion group. Now Lemma 3.6.8 and
Gabber’s theorem 4.2.1 give the result. �

https://stacks.math.columbia.edu/tag/09NZ
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Remark 3.6.10 As we shall see in Section 8.1, there exist 2-dimensional
reduced varieties X such that Br(X) is not a torsion group.

Let X be a reduced, excellent, noetherian scheme of dimension 1, and let
X̃→X be the normalisation of X. If one lets x̃ run through the closed points
of X̃ above the singular points x ∈ X, one obtains an obvious complex

Br(X) −→ Br(X̃)⊕
⊕
x

Br(k(x)) −→
⊕
x̃

Br(k(x̃)),

where x runs through the closed points of X. The proposition implies that
the first map here is injective. One may wonder whether the complex is
exact. This has been studied from the Azumaya point of view in [Chi74] and
[KO74a]. In the case of a curve over a field k of characteristic zero, this will
be established in Section 8.5. The proof there relies on a closer inspection of
the sheaves Fx.

3.7 Purity for the Brauer group

The results of this section were obtained by Grothendieck in the case of
smooth varieties over a field for the torsion prime to the characteristic of
the field. Thanks to Gabber’s absolute purity (Theorem 2.3.1) we can state
Grothendieck’s purity theorem for the Brauer group in a more general form.

Theorem 3.7.1 Let X be a regular, integral, noetherian scheme, let Z ⊂ X
be a regular1 closed subset of pure codimension c. Let U ⊂ X be the open set
X r Z. Let ` be a prime invertible on X.

(i) If c ≥ 2, then the restriction map Br(X){`}→Br(U){`} is an isomor-
phism.

(ii) If c = 1 and D1, . . . , Dm are the connected components of Z, then the
Gysin exact sequences

H2
ét(X,µ`n) −→ H2

ét(U, µ`n) −→
m⊕
i=1

H1
ét(Di,Z/`n)

for all n ≥ 1 give rise to exact sequences

0 −→ Br(X){`} −→ Br(U){`} −→
m⊕
i=1

H1
ét(Di,Q`/Z`), (3.15)

0 −→ Br(X){`} −→ Br(U){`} −→
m⊕
i=1

H1(k(Di),Q`/Z`). (3.16)

1 This regularity condition is missing in [Gro68, Ch. III, §6, formula (6.4) and Thm. 6.1].
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Proof. The exact sequence (3.2) based on the Kummer sequence gives rise to
the commutative diagram

0→ Pic(X)/`n → H2
ét(X,µ`n) → Br(X)[`n] → 0

↓ ↓ ↓
0→ Pic(U)/`n → H2

ét(U, µ`n) → Br(U)[`n] → 0

Since X is regular, the left-hand vertical map is surjective, and the right-hand
vertical map Br(X)[`n]→Br(U)[`n] is injective by Theorem 3.5.5.

The snake lemma applied to the above commutative diagram combined
with the Gysin exact sequence (2.16) gives the exact sequence

0 −→ Br(X)[`n] −→ Br(U)[`n] −→ H3−2c
ét (Z, µ`n)

−→ H3
ét(X,µ`n) −→ H3

ét(U, µ`n).
(3.17)

We now apply Gabber’s purity theorem. If c ≥ 2, then H3−2c
ét (Z, µ`n) = 0.

In this case the restriction map Br(X){`}→Br(U){`} is an isomorphism. If
c = 1, then the regular divisor Z is the disjoint union of its irreducible
components D1, . . . , Dm, and H3−2c

ét (D,µ`n) =
⊕m

i=1 H1
ét(Di,Z/`).

Taking the limit as n→∞ we obtain the long exact sequence

0 −→ Br(X){`} −→ Br(U){`} −→
⊕m

i=1 H1
ét(Di,Q`/Z`)

−→ H3
ét(X,Q`/Z`(1)) −→ H3

ét(U,Q`/Z`(1)).
(3.18)

Exact sequence (3.16) follows, since for Di regular (or even normal), the
restriction map H1

ét(Di,Q`/Z`)→H1(k(Di),Q`/Z`) is injective. �

Theorem 3.7.2 Let X be an excellent, regular, integral, noetherian scheme,
let U ⊂ X be a dense open set and let Z := XrU . Let ` be a prime invertible
on X. Let c be the codimension of Z in X.

(i) If c ≥ 2, then the restriction map Br(X){`}→Br(U){`} is an isomor-
phism.

(ii) If c = 1 and D1, . . . , Dm are the irreducible components of Z of codi-
mension 1 in X, then we have an exact sequence

0 −→ Br(X){`} −→ Br(U){`} −→
m⊕
i=1

H1(k(Di),Q`/Z`). (3.19)

Proof. The hypothesis that X is excellent ensures that for any closed Z ⊂ X
the singular locus of Z is closed. For an arbitrary proper closed reduced
subscheme Z ⊂ X we define a descending chain of reduced closed subschemes

Z = Z0 ⊃ Z1 ⊃ Z2 ⊃ . . .
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as follows. For n ≥ 1 define Zn as the union of the singular locus of Zn−1 and
the union of the irreducible components of Zn−1 which have codimension
at least n + 1 in X. Then Z is the disjoint union of locally closed regular
subschemes Zn−1 r Zn for n ≥ 1. We note that Zn−1 r Zn is either empty
or of pure codimension n in X r Zn.

Unless Z0 is regular and of pure codimension 1 in X, the last non-empty
complement Zn−1 r Zn, where n ≥ 2, is a closed regular subscheme of
X of pure codimension n, thus removing it from X does not affect the `-
primary torsion of the Brauer group, as we have seen in the proof of Theorem
3.7.1. Repeating the operation we end up with an isomorphism Br(X){`} ∼=
Br(X r Z1){`}. If Z = Z1, we are done. Otherwise, we can apply the ex-
act sequence (3.16) to the regular subscheme Z r Z1 of X r Z1 to obtain
(3.19). �

Theorem 3.7.3 Let X be an excellent, regular, integral, noetherian scheme
with generic point Spec(F ) and let ` be a prime invertible on X. Then we
have an exact sequence

0 −→ Br(X){`} −→ Br(F ){`} {∂D}−→
⊕

D∈X(1)

H1(k(D),Q`/Z`), (3.20)

where k(D) denotes the residue field at the generic point of D. For each D
the Gysin residue ∂D : Br(F ){`}→H1(k(D),Q`/Z`) coincides with the Witt
residue.

Proof. The sequence is obtained by passing to the direct limit over all open
sets U ⊂ X in (3.19). Let us justify the assertion regarding the maps

∂D : Br(F ){`} −→ H1(k(D),Q`/Z`).

We have been using the Gysin sequence in étale cohomology with finite coeffi-
cients. The embedding iD : Spec(k(D))→X of the generic point of an integral
divisor D ⊂ X factors as

Spec(k(D))→Spec(ÔX,D)→Spec(Oh
X,D)→Spec(OX,D)→X,

where ÔX,D is the completion and Oh
X,D is the henselisation of the local ring

OX,D (the henselisation and the completion of a noetherian local ring do not
affect the residue field). The Gysin residue ∂D : Br(F ){`}→H1(k(D),Q`/Z`)
can be computed with respect to any of these three discrete valuation rings
with residue field k(D). By Theorems 2.3.5 and 1.4.14 it equals the Witt
residue. �

Remark 3.7.4 Theorem 3.6.1 deals with regular schemes of dimension 1 us-
ing étale cohomology with coefficients Gm. The residue there is also identified
with the Witt residue.

It is important to understand the functorial behaviour of residues.
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Theorem 3.7.5 Let X be a regular, integral, noetherian scheme. Let Y be
a regular irreducible divisor in X. Let X ′ be a regular, integral, noetherian
scheme and let f : X ′→X be a morphism such that f(X ′) is not contained
in Y . The divisor f−1(Y ) ⊂ X ′ can be written as a finite sum

∑
t∈T rtZt,

where Zt ⊂ X ′ is an irreducible divisor and rt is a positive integer, for t ∈ T .
Let ` be a prime invertible on X. For any α ∈ Br(X r Y ){`} and any

t ∈ T the residue ∂Zt(f
∗(α)) is the image of rt∂Y (α) under the composite

map
H1

ét(Y,Q`/Z`) −→ H1
ét(Zt,Q`/Z`) −→ H1(k(Zt),Q`/Z`).

Proof. Let U = X r Y and let U ′ = f−1(U) = X ′ r f−1(Y ). Let Z ′ be a
regular dense open subset of Zt. By removing a closed subset from X ′ we can
assume that X ′ r U ′ = Z ′.

Let m ≥ 1 be such that `mα = 0. Then α comes from some element
α̃ ∈ H2

ét(U, µ`m). We have f∗α̃ ∈ H2
ét(U

′, µ`m). As (X,Y ) and (X ′, Z ′) are
regular pairs of codimension 1, we have the associated Gysin sequences.
The commutative diagram from Lemma 2.3.6 implies that ∂Z′(f

∗α̃) =
r(f∗∂Y (α̃)). The proof is finished by taking the restriction to the generic
point Spec(k(Zt)) = Spec(k(Z ′)). �

The following general result, many special cases of which had been estab-
lished earlier, was recently proved by Česnavičius [Čes19].

Theorem 3.7.6 Let X be a regular, integral, noetherian scheme. Let U ⊂ X
be an open subset whose complement is of codimension at least 2. Then the
restriction map

Br(X) −→ Br(U)

is an isomorphism.

For the `-primary subgroup of the Brauer group, where ` is a prime invert-
ible on X, this is a special case of Theorem 3.7.2, itself a consequence of
Gabber’s purity theorem. Česnavičius’ proof uses the result in dimension
≤ 2 (Auslander–Goldman, Grothendieck [Gro68, II, Thm. 2.1]), the result
in dimension 3 (Gabber [Gab81, Thm. 2’, p. 131]), Theorem 3.7.2 and other
results by Gabber, as well as Scholze’s recent theory of perfectoid spaces and
tilting equivalence to handle p-torsion in the local unequal characteristic case.
For a further extension of this purity result to singular schemes, see [ČS19,
Thm. 7.2.8].

As an easy consequence of Theorem 3.7.6, we obtain

Theorem 3.7.7 Let X be a regular, integral, noetherian scheme with func-
tion field F . Then Br(X) ⊂ Br(F ) is the subgroup⋂

x∈X(1)

Br(OX,x).

Proof. The inclusion Br(X) ⊂
⋂
x∈X(1) Br(OX,x) ⊂ Br(F ) is clear. Suppose

that α ∈ Br(F ) is contained in
⋂
x∈X(1) Br(OX,x). Using the fact that the
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Brauer group commutes with limits (Section 2.2.2), one finds a non-empty
open set U ⊂ X and an element β ∈ Br(U) such that β maps to α ∈ Br(F ).
Let U be a maximal open subset of X with this property. Suppose that there
exists a codimension 1 point x ∈ X which is not in U . Since α is in the
image of Br(OX,x), there exists an open set V ⊂ X containing x and an
element γ ∈ Br(V ) that maps to α ∈ Br(F ). Consider the Mayer–Vietoris
exact sequence (Theorem 3.2.4)

Br(U ∪ V ) −→ Br(U)⊕ Br(V ) −→ Br(U ∩ V ).

Since X is regular, by Theorem 3.5.5 the map Br(U ∩V )→Br(F ) is injective.
Thus there exists an element δ ∈ Br(U ∪ V ) that restricts to α. Since x /∈ U ,
we have a contradiction. Thus the complement to U in X has codimension at
least 2. By the purity theorem (Theorem 3.7.6) the inclusion Br(X) ⊂ Br(U)
is an equality. �

This immediately implies

Proposition 3.7.8 Let X be a regular, integral, noetherian scheme with
function field F . Let Ai ⊂ F , for i ∈ I, be the discrete valuation rings with
fraction field F which lie over X, that is, such that the map Spec(F )→X
factors through Spec(F )→Spec(A). Then

Br(X) =
⋂
i∈I

Br(Ai) ⊂ Br(F ).

Proposition 3.7.9 Let S be a scheme, let X be a regular, integral, noethe-
rian scheme with function field F , and let X→S be a proper morphism. Let
Ai ⊂ F , i ∈ I, be the discrete valuation rings with fraction field F which lie
over S, that is, such that the composition Spec(F )→X→S factors through
Spec(F )→Spec(A). Then

Br(X) =
⋂
i∈I

Br(Ai) ⊂ Br(F ).

Proof. The morphism X→S is proper, in particular, it is separated and of
finite type. By the valuative criterion of properness [EGA, II, Thm. 7.3.8],
[Stacks, Lemma 0BX5] there exists a unique morphism Spec(A)→X such
that the composition Spec(F )→X→S factors as

Spec(F ) −→ Spec(A) −→ X −→ S.

It remains to apply Proposition 3.7.8. �

This proposition can be applied to a smooth, proper, integral variety X
over a field k to deduce the birational invariance of Br(X), see Proposi-
tion 6.2.7.

https://stacks.math.columbia.edu/tag/0BX5
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Proposition 3.7.10 Let S be a scheme. Let X and Y be regular, integral,
proper, noetherian S-schemes, with function fields FX and FY , respectively.
Suppose that there exists an S-isomorphism g : FX

∼−→ FY . Then the induced
isomorphism Br(FX)

∼−→ Br(FY ) restricted to the subgroup Br(X) is an
isomorphism Br(X)

∼−→ Br(Y ) compatible with natural maps Br(S)→Br(X)
and Br(S)→Br(Y ).

Proof. Note that in Proposition 3.7.9 the collection of Ai, i ∈ I, is defined
solely in terms of the morphism Spec(F )→S. Therefore, an isomorphism of
S-schemes Spec(FY ) ∼= Spec(FX) gives rise to the desired isomorphisms. �

3.8 The Brauer group and finite morphisms

Let X be a connected scheme. Let f : Y→X be a finite locally free morphism
of schemes. This means that locally for the Zariski topology on X the mor-
phism is of the form Spec(B)→Spec(A), where B a free A-module of finite
rank. Since X is connected, this rank is constant; let us denote it by d. If X
is locally noetherian, the hypothesis on f is equivalent to f being flat and
finite.

The norm of an element b ∈ B is the determinant of the matrix that gives
the multiplication by b on B with respect to some A-basis of B. It does not
depend on the basis. The norm is multiplicative; the norm of a ∈ A is ad.
We obtain a map of quasi-coherent sheaves f∗OY→OX . The composition of
the canonical map OX→f∗OY with f∗OY→OX sends u to ud, cf. [Mum66,
Lecture 10]. Recall that the étale sheaf Gm,X is defined by setting Gm,X(U) =
Γ (U,OU )∗ for any étale morphism U→X, and similarly for Gm,Y . We thus
obtain natural morphisms of étale sheaves

Gm,X −→ f∗Gm,Y −→ Gm,X ,

whose composition sends u to ud. By the finiteness of f , the functor f∗ from
the category of étale sheaves on Y to the category of étale sheaves on X
is exact [Mil80, Cor. II.3.6], [SGA4, Prop. VIII.5.5]. Thus the Leray spectral
sequence (2.4) gives an isomorphism Hn

ét(X, f∗Gm,Y )
∼−→ Hn

ét(Y,Gm,Y ) which
identifies the canonical map (3.1) with Hn

ét(X,Gm,X)→Hn
ét(X, f∗Gm,Y ). We

thus obtain the restriction and corestriction maps

Hn
ét(X,Gm,X)

resY/X−−−−−−−→ Hn
ét(Y,Gm,Y )

coresY/X−−−−−−−→ Hn
ét(X,Gm,X)

whose composition is multiplication by d. Here the restriction resY/X is the
canonical map f∗ : Hn

ét(X,Gm,X)→Hn
ét(Y,Gm,Y ). For n = 2 we obtain the

restriction and corestriction maps of Brauer groups

resY/X : Br(X) −→ Br(Y ), coresY/X : Br(Y )→Br(X).
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The following proposition, which will be used in Section 6.4, is a standard
formalism that applies to various functors.

Proposition 3.8.1 Let Y and X be schemes and let f : Y→X be a finite
locally free morphism of constant rank. Let i : V→X be a morphism and let
W = V ×X Y . Let j : W→Y and g : W→V be the natural projections; here
g is a finite locally free morphism of constant rank. The following diagram
commutes:

Br(Y )
j∗ //

coresY/X

��

Br(W )

coresW/V

��
Br(X)

i∗ // Br(V )

Proof. We have fj = ig, hence f∗j∗Gm,W = i∗g∗Gm,W . There is a commuta-
tive diagram of étale sheaves on X

f∗Gm,Y //

��

i∗g∗Gm,W

��
Gm,X // i∗Gm,V

(3.21)

where the left vertical arrow is the norm map associated to f and the right
vertical arrow is induced by the norm map g∗Gm,W→Gm,V . Applying coho-
mology to (3.21), we see that the bottom left square of the following diagram
commutes:

H2
ét(Y,Gm,Y ) // H2

ét(Y, j∗Gm,W ) // H2
ét(W,Gm,W )

H2
ét(X, f∗Gm,Y ) //

∼=

OO

��

H2
ét(X, i∗g∗Gm,W ) //

∼=

OO

��

H2
ét(V, g∗Gm,W )

∼=

OO

����
H2

ét(X,Gm,X) // H2
ét(X, i∗Gm,V ) // H2

ét(V,Gm,V )

The right-hand horizontal and the top vertical arrows are natural maps
E2,0

2 →E2 in the spectral sequence attached to a morphism. In the case of
top vertical maps these are finite morphisms f and g, hence the functor f∗
from the category of étale sheaves on Y to the category of étale sheaves on X
is exact [Mil80, Cor. II.3.6], and the same applies to g∗. Thus the top vertical
maps are isomorphisms. The bottom vertical maps are induced by the norm
maps f∗Gm,Y→Gm,X and g∗Gm,W→Gm,V . All this ensures that the whole
diagram is commutative.

Retaining the four corners of the last diagram we obtain the commutative
diagram of the proposition. �
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The above definitions of restriction and corestriction can be applied to the
case when X is a scheme over a field k. A finite (not necessarily separable)
extension k ⊂ L gives rise to a finite locally free morphism X ×k L→X of
rank [L : k], so we obtain the restriction and corestriction maps

Br(X)
resL/k−−−−−−−→ Br(X ×k L)

coresL/k−−−−−−−→ Br(X)

whose composition is multiplication by [L : k].
In the particular case X = Spec(k) we obtain the corestriction map

coresL/k : Br(L) −→ Br(k).

The composition coresL/k ◦ resL/k is multiplication by [L : k] on Br(k).
One application is the following proposition.

Proposition 3.8.2 Let K be a field of transcendence degree 1 over a separa-
bly closed field k of characteristic p > 0. Then Br(K) is a p-primary divisible
torsion group.

Proof. Note that Br(K) = pBr(K) by Theorem 1.3.7. Take any α ∈ Br(K).
There is an integral curve C over k such that K = k(C). Let k̄ be an algebraic
closure of k and let C = C ×k k̄. Since k is separably closed, the curve C is
irreducible [EGA, IV2, Prop. 4.5.9 (c)], but C is not reduced if K is not a
separable k-algebra, i.e., if K ⊗k k̄ is not reduced. The function field of the
reduced k̄-curve (C)red is (K ⊗k k̄)red, which is the quotient of K ⊗k k̄ by
its nilradical. By Tsen’s Theorem 1.2.14, the image of α in Br((K ⊗k k̄)red)
is zero. By Proposition 3.2.5 (i), the image of α in Br(K ⊗k k̄) is zero. Since
Br(K ⊗k k̄) is the inductive limit of the groups Br(K ⊗k L), where L ⊂ k̄ is
a finite field extension of k, there is a finite extension L/k such that α goes
to zero in Br(K ⊗k L). Since k is separably closed, L is a purely inseparable
extension of k, hence [L : k] = pn for some n ≥ 0. By the corestriction-
restriction formula, the composition

Br(K) −→ Br(K ⊗k L) −→ Br(K)

is multiplication by [L : k] = pn, so pnα = 0. �

Remark 3.8.3 If the field k is separably closed but not algebraically closed,
then Br(A1

k) 6= 0 by Theorem 5.6.1 (vi) below. From Theorem 3.5.5 we deduce
that Br(k(A1

k)) 6= 0.

Proposition 3.8.4 Let X and Y be regular, integral, noetherian schemes
and let f : Y→X be a dominant, generically finite morphism of degree d.
Then the kernel of the natural map f∗ : Br(X)→Br(Y ) is killed by d. In par-
ticular, for any integer n > 1 coprime to d the map f∗ : Br(X)[n]→Br(Y )[n]
is injective.
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Proof. By Theorem 3.5.5 the embedding of the generic point Spec(k(X)) in
X induces an injective map Br(X) ↪→ Br(k(X)), and similarly for Y . Since
the composition of restriction and corestriction

coresk(Y )/k(X) ◦ resk(Y )/k(X) : Br(k(X)) −→ Br(k(Y )) −→ Br(k(X))

is the multiplication by d, the kernel of the natural map f∗ : Br(X)→Br(Y )
is killed by d, so our statement follows. �

Theorem 3.8.5 Let X and Y be regular, integral, noetherian schemes and
let f : Y→X be a finite flat morphism of degree d such that k(Y ) is a Galois
extension of k(X) with Galois group G. Then we have

dBr(Y )G ⊂ f∗Br(X) ⊂ Br(Y )G.

In particular, for any integer n > 1 coprime to d = |G| the natural map
f∗ : Br(X)[n]→Br(Y )[n]G is an isomorphism.

Proof. For a non-empty affine open set Spec(A) ⊂ X, the inverse image in
Y is an affine scheme Spec(B). The ring B is regular hence normal, is finite
over A, and its fraction field is k(Y ). Hence B is the integral closure of A in
k(Y ). Thus the action of G on k(Y ) induces an action of G on B. Covering
X by affine open sets, we see that the action of G on k(Y ) induces an action
of G on Y . This induces an action of G on Br(Y ).

We claim that the composition

resY/X ◦ coresY/X : Br(Y ) −→ Br(X) −→ Br(Y )

is given by the formula

α 7→
∑
σ∈G

σ∗(α).

Since X and Y are regular and noetherian, the embedding of the generic
point into X induces an injective map Br(X) ↪→ Br(k(X)), and there is a
similar injective map for Y . The claim is thus reduced to a similar claim
for a finite Galois extension of fields, which is well known, see [GS17, Ch. 3,
Exercise 3].

Thus for α ∈ Br(Y )G we obtain

resY/X ◦ coresY/X(α) =
∑
σ∈G

σ∗(α) = dα ∈ Br(Y ).

Thus dα = f∗(coresY/X(α)) belongs to f∗(Br(X)) ⊂ Br(Y ).
In the last statement of the theorem, the surjectivity is clear since

Br(Y )G[n] ⊂ dBr(Y )G. The injectivity follows from Proposition 3.8.4. �

The following lemma will be used in Section 6.4.
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Lemma 3.8.6 Let k be a field and let A be a finite-dimensional commuta-
tive k-algebra. Write A '

∏m
i=1Ai, where each Ai is a local k-algebra. For

i = 1, . . . ,m, let ki be the residue field of Ai, and let ni = dimk(Ai)/[ki : k].
For α ∈ Br(A) write αi ∈ Br(ki) for the image of α under the evaluation
map Br(A)→Br(ki). Then we have

coresA/k(α) =
m∑
i=1

ni(coreski/k(αi)) ∈ Br(k).

Proof. It is clearly enough to consider the case when A is a local k-algebra.
Let m ⊂ A be the maximal ideal and let κ = A/m be the residue field. We
need to calculate the map det : A∗→k∗ and the induced map

det∗ : H2(k, (A⊗k ks)
∗) −→ H2(k, k∗s ). (3.22)

The k-vector space A is a finite direct sum of mi/mi+1 for i ≥ 0. Each sum-
mand mi/mi+1 is naturally a κ-vector space. Let ri = dimκ(mi/mi+1). There
is a k-vector space Vi, with dimk(Vi) = ri, such that there is an isomorphism
of κ-vector spaces mi/mi+1 ' Vi ⊗k κ. Let r =

∑
i≥0 ri.

For a k-vector space V write GL(V, k) for the group of k-linear transfor-
mations of V . The subgroup A∗ ⊂ GL(A, k) preserves the flag m ⊃ m2 ⊃ . . .,
hence the determinant of an element x ∈ A∗ is the product of det(xi),
where xi is the image of x in GL(mi/mi+1, k), for all i ≥ 0. But x acts
on mi/mi+1 ' Vi ⊗k κ via the factor κ, on which it acts by multiplication
by x mod m. Hence the map det : A∗→k∗ is the composition of the following
three maps: reduction modulo m, the norm Nκ/k, and raising to the power r.

The induced map (3.22) is therefore the composition of the corresponding
induced maps. The first of these is an isomorphism Br(A)

∼−→ Br(κ), by
Azumaya’s theorem (Theorem 3.4.2 (i), which is applicable since an Artinian
local ring A is complete). The norm map Nκ/k : (κ ⊗k ks)

∗→k∗s induces the
corestriction map coresκ/k : Br(κ)→Br(k). This gives the desired formula in
the local case, thus finishing the proof. �



Chapter 4

Comparing the two Brauer groups, II

This section is devoted to the proof of Gabber’s Theorem 4.2.1, which de-
scribes the image of the natural map BrAz(X)→Br(X). In Section 4.2 we
reproduce a proof of this theorem found by de Jong. It uses the language of
stacks and gerbes, which we briefly introduce in Section 4.1.

4.1 The language of stacks

Our goal here is to give a very short list of key concepts with some exam-
ples. This is not a replacement for a detailed introduction to stacks, algebraic
spaces and gerbes, for which we refer the reader to a very helpful book by Ols-
son [Ols16], see also [SGA1, Ch. VI], [Gir71], [LMB00], [Vis05] and [Stacks].

4.1.1 Fibred categories

We start with the definition of a fibred category, see [Ols16, §3.1] and [Stacks,
Section 02XJ].

Let C be a category. (We shall mostly be interested in the case when C is
the category Sch/S of schemes over a base scheme S.)

Definition 4.1.1 A category over C is a pair (F, p) where F is a category
and p : F→C is a functor. For an object U of C the fibre F (U) over U is the
category whose objects are the objects u of F over U , i.e. such that p(u) = U ,
and whose morphisms are morphisms in F that lift id : U→U .

Definition 4.1.2 A morphism φ : u→v in F is cartesian if for any object

w in F , a morphism ψ : w→v and a factorisation p(w)
h−→ p(u)

p(φ)−→ p(v) of
p(ψ), there exists a unique morphism λ : w→u in F such that p(λ) = h and
φ ◦ λ = ψ.
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In this case u is called a pullback of v along f = p(φ) and is denoted by
u = f∗v; it is unique up to a unique isomorphism.

Definition 4.1.3 A fibred category over C is a category p : F→C over
C such that for every morphism f : U→V in C and for every v ∈ F (V ) there
exist an object u ∈ F (U) and a cartesian morphism φ : u→v which lifts f ,
i.e., p(φ) = f .

A morphism of fibred categories p : F→C to q : G→C is a functor g : F→G
sending cartesian morphisms to cartesian morphisms such that there is an
equality of functors p = q ◦ g.

Example 4.1.4 Let X be an object of a category C. Write C/X for the
localisation of C at the object X. This is the category whose objects are
the pairs (Y, f) where Y is an object of C and f is a morphism Y→X,
and the morphisms are the morphisms in C that make the obvious triangles
commutative. The forgetful functor C/X→C is a fibred category.

Example 4.1.5 Let F : Cop→(Sets) be a contravariant functor from a cate-
gory C to the category of sets. Let F be the category of pairs (U, x), where U
is an object of C and x ∈ F (U). A morphism (U ′, x′)→(U, x) is a morphism
g : U ′→U such that F (g)x = x′. It is easy to check that the functor F→C
sending (U, x) to U is a fibred category. This allows one to view presheaves
of sets as categories fibred in sets, see [Ols16, Prop. 3.2.8]. We shall return to
this example in the particular case when C is the category of schemes over a
base scheme S.

Categories fibred in groupoids

The references are [Ols16, §3.4] and [Stacks, Section 003S].

Definition 4.1.6 A fibred category p : F→C is a category fibred in group-
oids if the fibre F (U) is a groupoid for every U in C, i.e., every morphism
in F (U) is an isomorphism.

Equivalently, p : F→C is a category fibred in groupoids if and only if every
morphism in F is cartesian [Ols16, Exercise 3.D, p. 85]. For a given object
x of F , the functor p gives rises to an equivalence of the localised categories
F/x and C/p(x).

Example 4.1.7 To a group G one canonically associates a groupoid G with
one object and morphisms given by the elements of the group. A homomor-
phism of groups p : G1→G2 gives rise to a functor p : G1→G2. It makes G1

a category fibred over G2 if and only if p is surjective. Then G1 is a cate-
gory fibred in groupoids. In this case, the fibre of p : G1→G2 is the groupoid
associated to the kernel of p.

https://stacks.math.columbia.edu/tag/003S
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Let p : F→C be a category fibred in groupoids. For X in C and for objects
x1 and x2 in F (X) define the functor

Isom(x1, x2) : (C/X)op −→ (Sets)

that associates to f : Y→X the set IsomF (Y )(f
∗x1, f

∗x2), for some chosen
pullbacks f∗x1 and f∗x2 along f . The definition of a category fibred in
groupoids then implies that a morphism g : Z→Y gives rise to a canonical
map

Isom(x1, x2)(f : Y→X) −→ Isom(x1, x2)(fg : Z→X),

so this is indeed a functor. Up to a canonical isomorphism it does not depend
on the choice of pullbacks.

As a particular case, for an object x of F (X) we get a functor

Autx := Isom(x, x) : (C/X)op −→ (Groups).

The construction of Example 4.1.5 associated to Isom(x1, x2) a category
fibred in sets. Defining morphisms on a set to be the identity maps on its
elements, we obtain a category fibred in groupoids associated to Isom(x1, x2).

Yoneda’s lemma

For an S-scheme X we have the functor of points hX : (Sch/S)op→(Sets)
defined by hX(Y ) = HomS(Y,X). Yoneda’s lemma says that the functor
of points is a fully faithful functor Sch/S→Hom((Sch/S)op, (Sets)), hence
it gives an embedding of Sch/S into the category of contravariant functors
from Sch/S to (Sets). Moreover, for any functor F : (Sch/S)op→(Sets) we
have a bijection

Hom(hX , F )
∼−→ F (X)

given by evaluating on the object id : X→X of hX(X). This allows one to
replace an S-scheme X by its functor of points hX , which is an object of a
larger category. In what follows we often say a ‘scheme’ instead of a ‘functor
(Sch/S)op→(Sets) representable by a scheme’, i.e., a functor isomorphic to
hX where X is an S-scheme.

This operation can be refined as follows. As we have seen, for an S-scheme
X the category Sch/X of X-schemes is a category fibred over Sch/S, via the
functor that forgets X. This is a replacement for hX . The 2-Yoneda lemma
[Ols16, §3.2], [Stacks, Lemma 004B] says that if p : F→Sch/S is another
fibred category, then the functor

ξ : HOMSch/S(Sch/X,F ) −→ F (X)

that sends a morphism of fibred categories to the value of this morphism on
the object id : X→X of Sch/X, is an equivalence of categories.

https://stacks.math.columbia.edu/tag/004B
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Sheaves on a category fibred in groupoids over a site

Let p : X→SÉt be a category fibred in groupoids over the category of schemes
over a base scheme S equipped with the étale topology.

Firstly, the site SÉt induces a site XÉt where the coverings are families
of morphisms {xi→x}i∈I in X such that {p(xi)→p(x)}i∈I is a covering in
SÉt, see [Stacks, Lemma 06NU]. Thus we can talk about sheaves on XÉt.
The functor p induces an equivalence of the localised categories X/x and
Sch/p(x); moreover, XÉt/x and p(x)Ét are equivalent sites [Stacks, Lemma
06W0].

Secondly, we define the structure sheaf OX as follows. The structure sheaf
O on SÉt associates to an S-scheme T the ring Γ (T,OT ). Define OX as the
sheaf of rings on XÉt such that OX (x) = O(p(x)), for any object x of X .
Thus we can talk about sheaves of OX -modules. The sites XÉt/x and p(x)Ét

are also equivalent as ringed sites, i.e., if one also takes into account their
structure sheaves. Now the definitions of various classes of OX -modules are
the standard definitions on a ringed site, see [Stacks, Def. 03DL].

Definition 4.1.8 Let F be a sheaf of OX -modules.

(i) F is locally free if for every object x in X there is an étale covering
{xi→x}i∈I such that the restriction of F to each xi is a free Oxi-module.

(ii) F is finite locally free if for every object x in X there is an étale cov-
ering {xi→x}i∈I such that the restriction of F to each xi is isomorphic
to O⊕nxi for some n.

(iii) F is of finite type if for every object x in X there is an étale covering
{xi→x}i∈I such that the restriction of F to each xi is isomorphic to a
quotient of O⊕nxi for some n.

(iv) F is quasi-coherent if for every object x in X there is an étale covering
{xi→x}i∈I such that the restriction of F to each xi is isomorphic to the
cokernel of a map of free Oxi-modules.

(v) F is coherent if F is of finite type, and for any object x in X and any
n the kernel of any map O⊕nx →F is of finite type.

4.1.2 Stacks

The references for this section are [Ols16, §4.2, §4.6].
Let p : F→C be a category fibred in groupoids, where C has finite

fibred products. For a set of morphisms {Xi→X}i∈I in C one defines
F ({Xi→X}i∈I) to be the category of descent data, consisting of objects Ei of
F (Xi), for i ∈ I, and isomorphisms σij : pr∗1(Ei)→pr∗2(Ej) in F (Xi ×X Xj),
for each i, j ∈ I, satisfying the standard compatibility condition on triple in-
tersections. If the natural functor F (X)→F ({Xi→X}i∈I) is an equivalence of

https://stacks.math.columbia.edu/tag/06NU
https://stacks.math.columbia.edu/tag/06W0
https://stacks.math.columbia.edu/tag/06W0
https://stacks.math.columbia.edu/tag/03DL
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categories, then one says that the set of morphisms {Xi→X}i∈I is of effective
descent for F .

Now let C be a site, i.e. a category with a Grothendieck topology on it.
For example, we can consider SÉt, which is the category Sch/S of schemes
with the big étale topology over a base scheme S.

Definition 4.1.9 A category fibred in groupoids p : F→C is a stack if for
any object X of C every covering family {Xi→X}i∈I is of effective descent
for F .

Equivalently [Ols16, Prop. 4.6.2], for any covering of any X in C any
descent datum with respect to this covering is effective, and Isom(x1, x2) is
a sheaf on C/X, for any x1 and x2 in F (X). In particular, Autx is a sheaf
on C/X, for any x in F (X).

Example 4.1.10 The stack associated to a sheaf on a site. A set is canoni-
cally turned into a groupoid by defining morphisms to be the identity maps
on the elements of this set. In Example 4.1.5 we have seen that a functor
f : Cop→(Sets) naturally gives rise to a category fibred in sets over C, whose
fibre over X is the set f(X). Hence it can be seen as a category fibred in
groupoids. If C is a site, then this fibred category over C is a stack if and
only if f is a sheaf [Vis05, Prop. 4.9].

Example 4.1.11 The stack associated to an S-scheme. The 2-Yoneda lemma
allows one to replace an S-scheme X by the fibred category Sch/X→Sch/S.
One immediately checks that this is a category fibred in groupoids, more pre-
cisely, in sets with the identity maps. Moreover, it is a stack for the various
topologies on Sch/S since, by a theorem of Grothendieck, hX is a sheaf in the
fpqc topology, hence also in fppf and big étale topologies [Vis05, Thm. 2.55].
This is also trivially true for the big Zariski topology, since morphisms of
schemes can be obtained by glueing morphisms on Zariski open coverings.

4.1.3 Algebraic spaces and algebraic stacks

The definition of algebraic stacks [Ols16, §8.1] uses algebraic spaces, so we
need to recall their definition too, see [Ols16, Ch. 5]. See [Ols16, §3.4] for
the definition of the (2-categorical) fibred product of categories fibred in
groupoids.

Definition 4.1.12 Let S be a scheme. A morphism of sheaves of sets F→G
on SÉt is representable by schemes if for any S-scheme T and a morphism
T→G the fibred product F ×G T is a scheme.

(Recall that we write T for the sheaf hT .) If F and G are representable
sheaves, say F = hX and G = hY , then, by Yoneda’s lemma, any morphism
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F→G is induced by a morphism of schemes X→Y , which implies that F→G
is representable by schemes.

Let F be a sheaf of sets on SÉt. An important observation is that if the
diagonal morphism F→F ×S F is representable by schemes, then any S-
morphism T→F , where T is an S-scheme, is representable too. This follows
from the isomorphism T ×F Z ∼= (T ×S Z)×F×F F , for any S-scheme Z and
any S-morphism Z→F .

Let (P ) be a stable property of morphisms of schemes. This means
that for every covering {Ui→U} of S-schemes, U→S has property (P ) if
and only if Ui→S has property (P ) for each i. If F and G are functors
(Sch/S)op→(Sets), then a morphism of functors F→G has property (P )
if it is representable by schemes, i.e., for every T ∈ Sch/S and any mor-
phism T→G the fibred product functor F ×G T is isomorphic to hY for some
Y ∈ Sch/S, and the resulting morphism of schemes Y→T has property (P ).

If in the above characterisation of S-schemes as big Zariski sheaves with
certain additional properties (Example 4.1.11) we replace the Zariski topology
with the big étale topology, we obtain the definition of an algebraic space
[Ols16, Def. 5.1.10].

Definition 4.1.13 A sheaf of sets X on SÉt is an algebraic space over
S if

(1) the diagonal ∆ : X→X ×S X is representable by schemes, and
(2) there is a surjective étale S-morphism U→X, where U is an S-scheme.

Condition (1) implies that the morphism U→X in condition (2) is repre-
sentable by schemes, so the property ‘surjective étale’ makes sense.

Alternatively, one can define algebraic spaces as quotients of schemes by
étale equivalence relations [Ols16, §5.2]. (In particular, this leads to examples
of algebraic spaces which are quotients of schemes by free group actions, which
may not be schemes.)

Like schemes, algebraic spaces are sheaves for the fpqc and hence for
fppf topology on Sch/S. The fpqc property is a recent result of Gabber,
see [Stacks, Section 03W8]. The fppf property is an earlier result of M. Artin.

Consider stacks over SÉt. Since an algebraic space is a big étale sheaf, it
gives rise to a stack (see Example 4.1.10).

Definition 4.1.14 A morphism of stacks X→Y is representable by al-
gebraic spaces if for every algebraic space V and every morphism V→Y
the fibred product X ×Y V is an algebraic space.

Definition 4.1.15 A stack X over SÉt is called algebraic (or an Artin
stack) if

(1) the diagonal ∆ : X→X ×S X is representable by algebraic spaces, and
(2) there exists a smooth surjective S-morphism from an S-scheme to X .

https://stacks.math.columbia.edu/tag/03W8
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An algebraic stack X is a Deligne–Mumford stack if there is a surjective
étale S-morphism from an S-scheme to X .

Property (1) is equivalent to the following property: for every S-scheme U
and any two objects u1 and u2 in X (U) the sheaf Isom(u1, u2) is an algebraic
space [Ols16, Lemma 8.1.8].

Example 4.1.16 (Quotient stacks) Important examples of algebraic stacks
over SÉt are quotient stacks [Ols16, Example 8.1.12]. If G is a smooth group
S-scheme that acts on an algebraic space X over S, then [X/G] is defined as
the stack whose objects are triples (T,P, π), where T is an S-scheme, P is a
sheaf of torsors for G×S T on the big étale site of T , and π : P→X ×S T is a
G×S T -equivariant morphism of sheaves. Using the criterion in the previous
paragraph, one shows that [X/G] is an algebraic stack. A smooth covering is
obtained from the map X→[X/G] defined by the trivial GX -torsor over X.

In the particular case when X = S and G acts trivially on S, the quotient
stack [S/G] is called the classifying stack of G and is denoted by BG (or,
more precisely, by BSG).

We summarise the logical links between the concepts we discussed above
in the following diagram:

(S-schemes)
� � // (S-algebraic spaces)� _

��
(algebraic stacks over SÉt)� _

��

(Deligne–Mumford stacks over SÉt)
? _oo

(stacks over SÉt)
� � // (categories fibred in groupoids over Sch/S)

Let us finally mention that the category of quasi-coherent sheaves on an
algebraic stack is an abelian category. Moreover, it is a Grothendieck category,
in particular, it has direct sums, tensor products, direct and inverse limits.
The dual of a sheaf of OX -modules locally of finite presentation (for example,
finite locally free) is quasi-coherent. See [Stacks, Section 06WU].

4.1.4 Gerbes

The references for this section are [Ols16, §12.2], [deJ], [Lie08], see also [Gir71,
Ch. III, §2, Ch. IV, §2].

Let G be a sheaf of abelian groups on SÉt. For an S-scheme X, by an abuse
of notation, we write G for the sheaf of abelian groups on XÉt induced by G.

https://stacks.math.columbia.edu/tag/06WU
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Definition 4.1.17 A G-gerbe over SÉt is a stack p : F→SÉt together with
an isomorphism of sheaves of groups on SÉt

ιx : G
∼−→ Autx

for every object x in F such that the following conditions hold.

(G1) Objects exist locally: every S-scheme Y has a covering {fi : Yi→Y } such
that all the F (Yi) are non-empty.

(G2) Any two objects are locally isomorphic: for any objects y and y′ in
F (Y ) there exists a covering {fi : Yi→Y } such that f∗i y and f∗i y

′ are
isomorphic in F (Yi) for all i.

(G3) For every S-scheme Y if σ : y→y′ is an isomorphism in F (Y ), then
the induced isomorphism σ : Auty→Auty′ is compatible with the iso-
morphisms ιx, that is, ιy′ = σιy.

By (G1) and (G2) the sheaf Isom(x1, x2) is a G-torsor on Sch/X, for every
S-scheme X and every x1 and x2 in F (X), see [Ols16, Remark 12.2.3].

A morphism of G-gerbes is defined as a morphism of stacks f : F ′→F such

that for every object x of F ′ the composition G
ιx−→ Autx

f∗−→ Autf(x) is

equal to G
ιf(x)−→ Autf(x). Any morphism of G-gerbes is in fact an isomorphism

[Ols16, Lemma 12.2.4], so to prove that two G-gerbes are isomorphic it is
enough to construct a G-morphism between them.

A G-gerbe p : F→SÉt is called trivial if it has a global object, i.e., F (S) is
non-empty. In this case it is isomorphic to the classifying stack BSG.

Remark 4.1.18 If G is a smooth group S-scheme, for example G = Gm,
then any G-gerbe on SÉt is an algebraic stack [Ols16, Exercise 12.E].

The gerbe of liftings of a torsor

Let us give an example of a gerbe.
Consider an exact sequence of sheaves of groups on SÉt (where G is abelian

but not necessarily H and K)

1 −→ G
a−→ H

b−→ K −→ 1. (4.1)

A K-torsor P over S gives rise to the G-gerbe over SÉt whose objects are the
liftings of P to an H-torsor.
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More precisely, consider the fibred category SP over SÉt whose objects are
triples (X,R, ε), where X is an S-scheme, R is an H-torsor over X, and ε is an
isomorphism of the push-forward of R along b (the quotient of R by G) with
P×SX. A morphism (X ′, R′, ε′)→(X,R, ε) is a pair consisting of a morphism

of S-schemes f : X ′→X and an isomorphism of H-torsors f̃ : f∗R→R′ over
X ′ such that the following diagram commutes:

b∗f
∗R

b∗f̃ //

∼=
��

b∗R
′ ε′ // P ×S X ′

id

��
f∗b∗R

f∗ε // f∗(P ×S X)
∼= // P ×S X ′

It is clear that SP is a category fibred in groupoids over SÉt, via the forgetful
functor sending (X,R, ε) to X, and for any object x of SP the sheaf Autx
is canonically isomorphic to G over XÉt. Using the effectivity of descent for
sheaves and for morphisms of sheaves one shows that SP is a G-gerbe [Ols16,
Prop. 12.2.6].

The gerbe associated to a cohomology class

Using the previous construction, one associates a G-gerbe to any cohomol-
ogy class α ∈ H2

Ét
(S,G) ∼= H2

ét(S,G). Namely, consider an exact sequence

(4.1), where H and K are sheaves of abelian groups and H is injective. The
boundary map induces an isomorphism

H1
Ét

(S,K)
∼−→ H2

Ét
(S,G).

Thus α gives rise to a K-torsor P over S (understood as a sheaf over S); it
is unique up to isomorphism. To P we associate the gerbe SP of liftings of P
to an H-torsor as above. Embedding G into another injective sheaf H ′ gives
rise to an isomorphic gerbe. Indeed, write K ′ = H ′/G. Let P ′ be a K ′-torsor
that goes to α. Since H ′ is injective, we get a commutative diagram

1 // G //

id

��

H //

r

��

K //

s

��

1

1 // G // H ′ // K ′ // 1

Then P ′ is isomorphic to the K ′-torsor s∗P , since both torsors give rise to the
same α ∈ H2

Ét
(S,G). So we can assume that P ′ = s∗P . By the commutativity

of the diagram, the push-forward s∗ of K-torsors to K ′-torsors is compatible
with the push-forward r∗ of H-torsors to H ′-torsors; this gives a morphism
of G-gerbes SP→SP ′ , which is necessarily an isomorphism. We denote by Sα
a G-gerbe isomorphic to SP .
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A theorem from Giraud’s book [Gir71, Thm. IV.3.4.2 (i)] says that this
gives an isomorphism between H2

Ét
(S,G) and the group of isomorphism

classes of G-gerbes over SÉt. See also [Ols16, Thm. 12.2.8].

Suppose that
1 −→ A −→ B −→ C −→ D −→ 1 (4.2)

is an exact sequence of sheaves of abelian groups. Consider the map that
sends a section of D to its inverse image under C→D. This inverse image is
a B/A-torsor; so we obtain a map H0

Ét
(S,D)→H1

Ét
(S,B/A). (According to

[Gir71, III.3.5.5.1], this map is the negative of the map defined using injective
resolutions when torsors are assumed to be right torsors; in the case of left
torsors the two maps coincide.) Next, associating to a B/A-torsor the gerbe
of its liftings to a B-torsor defines a map H1

Ét
(S,B/A)→H2

Ét
(S,A), which is

in fact a homomorphism, see [Gir71, IV.3.4.1.1]. By [Gir71, Thm. IV.3.4.2
(ii)], the above identification of H2

Ét
(S,A) with the isomorphism classes of

A-gerbes over SÉt is such that the composition

H0
Ét

(S,D) −→ H1
Ét

(S,B/A) −→ H2
Ét

(S,A) (4.3)

is the negative of the map defined using injective resolutions (with the same
convention that torsors are right torsors).

Let us now assume that B and C in (4.2) are injective. Then the first map
in (4.3) is surjective with kernel the image of H0

Ét
(S,C), and the second map

is an isomorphism. Thus we can lift α ∈ H2
Ét

(S,A) to a section τ ∈ H0
Ét

(S,D).

Define the category Sτ whose objects are pairs (X,σ), whereX is an S-scheme
and σ ∈ Γ (X,C) lifts the restriction of τ to X. A morphism (X,σ)→(X ′, σ′)
is a pair consisting of a morphism of S-schemes f : X→X ′ and a section
ρ ∈ Γ (X,B) that maps to σ − f∗σ′. This implies that the composition of
morphisms

(X,σ)
(f,ρ)−−−−−−→ (X ′, σ′)

(f ′,ρ′)−−−−−−→ (X ′′, σ′′)

is the morphism (f ′ ◦ f, ρ + f∗ρ′). The forgetful functor Sτ→Sch/S makes
Sτ a category fibred in groupoids (the restriction of sheaves with respect to
X ′→X defines a natural pullback functor), which is in fact a stack. It is also
possible to prove directly that this stack is algebraic. Indeed, there is an étale
morphism U→S that trivialises α. Then there is a lifting σ ∈ Γ (U,C) of τ ; it
gives rise to a smooth surjective morphism U→Sτ . Finally, an automorphism
of (X,σ) is a pair (id, ρ), where ρ ∈ Γ (X,A). Thus Aut(X,σ)

∼= AX , and so
Sτ is an A-gerbe.

Let P be a B/A-torsor over S representing the class in H1
Ét

(S,B/A) cor-

responding to α ∈ H2
Ét

(S,A) under the second map in (4.3) (which is an

isomorphism). The gerbes SP and Sτ are isomorphic. Indeed, since B is in-
jective, every B-torsor is trivial, so given a triple (X,R, ε) as above, a section
of R over X gives rise to a section of P over X, which is a lifting of τ (since P
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is the inverse image of τ in C). In this way we obtain a morphism of A-gerbes,
which must be an isomorphism.

4.1.5 Twisted sheaves

For each α ∈ H2
Ét

(S,Gm) we denote by π : Sα→S a Gm-gerbe SP over SÉt as
above; it is well defined up to isomorphism. By Giraud’s theorem, this gives
a bijection between the group H2

Ét
(S,Gm) and the set of isomorphism classes

of Gm-gerbes over SÉt. By Remark 4.1.18, Sα is an algebraic stack over SÉt.
Twisted sheaves on a gerbe were studied by Giraud [Gir71] and more

recently by Lieblich [Lie08].
Let n be an integer. A quasi-coherent sheaf of OSα -modules F on Sα is

called an n-twisted sheaf if for any object x of Sα, the natural action of the
group of sections of Autx

∼= Gm,x on the group of sections of F over x is via
the character t 7→ tn.

We refer to [Ols16, Lemma 12.3.3] (which only treats finite locally free
twisted sheaves) and [Lie08, Lemma 3.1.1.7] for the following facts.

• The tensor product of an n-twisted sheaf and an m-twisted sheaf is an
(n+m)-twisted sheaf.
• The dual of an n-twisted finite locally free sheaf is a (−n)-twisted finite

locally free sheaf.
• The functor π∗ sends finite locally free OS-modules to 0-twisted finite

locally free sheaves on Sα, and induces an equivalence of these categories.
In particular, if E is an n-twisted finite locally free sheaf on the gerbe Sα,
then the sheaf End(E) is a 0-twisted finite locally free sheaf and hence
isomorphic to π∗A for a unique finite locally free sheaf of OS-algebras.

For a given α ∈ H2
Ét

(S,Gm), there is a closely related notion of an α-
twisted sheaf whose definition does not use gerbes. This approach has been
developed by A. Căldăraru in his thesis. Assume that there is an étale covering
{Ui→S}i∈I that trivialises α such that α is represented by a Čech cocycle
αijk ∈ Γ (Uijk,Gm), where we use the standard notation

Uij : = Ui ×S Uj , Uijk : = Ui ×S Uj ×S Uk.

By a theorem of Artin, this holds for any α when S is noetherian and every
finite subset of S is contained in an affine open set, for example, when S is
quasi-projective over the spectrum of a noetherian ring, see [Art71, Cor. 4.2].
Fix such an étale covering {Ui→S}i∈I . For α ∈ H2

Ét
(S,Gm), an α-twisted

sheaf with respect to this covering is given by quasi-coherent sheaves of OUi -
modules Mi together with isomorphisms ϕij : Mj |Uij

∼−→Mi|Uij such that
restricting to Uijk we have

ϕij ◦ ϕjk = αijkϕik. (4.4)
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Note that in general an α-twisted sheaf is not a sheaf on a scheme in the
usual sense. If βijk ∈ Γ (Uijk,Gm) is another Čech cocycle, defining a class
β ∈ H2

Ét
(S,Gm), then the naturally defined tensor product of an α-twisted

sheaf and a β-twisted sheaf (with respect to the same covering {Ui→S}i∈I)
is an (α + β)-twisted sheaf. The dual of a finite locally free α-twisted sheaf
is a (−α)-twisted sheaf.

The following lemma is an expanded version of [deJ, Lemma 2.10].

Lemma 4.1.19 Let S be a scheme, let α ∈ H2
Ét

(S,Gm) and let Sα be a Gm-

gerbe over S defined by α. Suppose that there is an étale covering {Ui→S}i∈I
such that α is represented by a Čech cocycle αijk ∈ Γ (Uijk,Gm). Then the
category of α-twisted sheaves on S with respect to the covering {Ui→S}i∈I is
equivalent to the category of 1-twisted sheaves on Sα.

Proof. Choose an exact sequence (4.2) with A = Gm and B, C injective.
Choose a section τ ∈ H0

Ét
(S,D) that lifts α ∈ H2

Ét
(S,Gm), and then take Sα

to be the Gm-gerbe Sτ . Since α restricts to 0 on each Ui, our section τ lifts to
a section σi ∈ Γ (Ui, C). By the definition of the gerbe Sτ , the pairs (Ui, σi)
are objects of Sτ , as well as the pairs obtained by replacing Ui by any Uij
or Uijk.

Since α is represented by the Čech cocycle αijk ∈ Γ (Uijk,Gm), the differ-
ence σi − σj ∈ Γ (Uij , C) is the image of some ρij ∈ Γ (Uij , B) such that

αijk = ρij + ρjk − ρik ∈ Γ (Uijk,Gm). (4.5)

By the definition of Sτ , the pair (id, ρij) is a morphism (Uij , σi)→(Uij , σj)
in Sτ .

Let F be a quasi-coherent 1-twisted sheaf on Sτ . By Definition 4.1.8 (iv)
the restriction of F to each (Ui, σi) is a quasi-coherent sheaf Mi of OUi -
modules. For each i and j let

ϕij : Mj ⊗OUij
∼−→Mi ⊗OUij (4.6)

be an isomorphism on Uij induced by (id, ρij). The composition

ϕij ◦ ϕjk : Mk ⊗OUijk
∼−→Mj ⊗OUijk

∼−→Mi ⊗OUijk

is induced by the composition of morphisms (Uijk, σi)→(Uijk, σj)→(Uijk, σk)
given by (id, ρjk) ◦ (id, ρij) = (id, ρik +αijk), where the equality follows from
(4.5). Hence ϕij ◦ ϕjk differs from ϕik by the action of αijk ∈ Γ (Uijk,Gm)
onMi⊗OUijk . But F is a 1-twisted sheaf on Sτ , so Gm acts on the sections
of F by the tautological character. This gives the desired formula (4.4).

Conversely, suppose that we are given an α-twisted sheaf with respect to
the covering {Ui→S}i∈I . This is a collection of quasi-coherent OUi -modules
Mi together with isomorphisms (4.6) satisfying (4.4). The localisation of the
gerbe Sα with respect to the object (Ui, σi) is trivial, hence isomorphic to
the classifying stack BUiGm, see Example 4.1.16. An explicit isomorphism



4.2 de Jong’s proof of Gabber’s theorem 113

associates to the pair (Ui, σi) the Gm-torsor Pi over Ui which is the in-
verse image of σi under the map B→C. The translation by ρij defines an
isomorphism between the restrictions of Pi and Pj to Uij . The category
of quasi-coherent sheaves on BUiGm is equivalent to the category of Gm-
equivariant quasi-coherent sheaves on Ui, which are just the quasi-coherent
sheaves on Ui equipped with a fibre-wise action of Gm (cf. [Ols16, Exercise
9.H]). Let Fi be the 1-twisted quasi-coherent sheaf of O(Ui,σi)-modules ob-
tained from Mi with the tautological action of Gm. Recall that we have a
morphism (id, ρij) : (Uij , σi)→(Uij , σj). Now ϕij gives rise to an isomorphism
of 1-twisted sheaves of O(Uij ,σi)-modules:

ϕ̃ij : (id, ρij)
∗Fj |(Uij ,σj)

∼−→ Fi|(Uij ,σi).

Using (4.4) and (4.5) we verify that this gives a glueing datum of quasi-
coherent 1-twisted sheaves Fi ofO(Ui,σi)-modules with respect to the covering
of Sτ by the objects (Ui, σi)i∈I . Hence these sheaves glue together and give
rise to a quasi-coherent 1-twisted sheaf on Sτ . �

4.2 de Jong’s proof of Gabber’s theorem

The fundamental result linking the Brauer–Azumaya group to the Brauer–
Grothendieck group is the following Theorem 4.2.1, which is due to Gabber.

See https://mathoverflow.net/questions/158614 for some informa-
tion about Gabber’s original proof.

As mentioned in Theorem 3.3.2, the affine case was already established by
Gabber in his thesis [Gab81, Ch. II, Thm. 1]. Further partial results were
obtained by Gabber and by Hoobler. A proof which reduces the general case
to the affine case was given by de Jong [deJ]; it is this proof that we present
in this section.

Theorem 4.2.1 (Gabber) Let X be a scheme. There is a natural injective
map BrAz(X)→Br(X)tors. If X has an ample invertible sheaf, for example,
if X is a quasi-projective scheme over an affine scheme, then this map is an
isomorphism.

By definition [Stacks, Def. 01PS], to say that an invertible sheaf L is ample
on X means that X is quasi-compact and for any x ∈ X there is a section
s ∈ H0(X,L⊗n) for some n ≥ 1 such that s(x) 6= 0 and the open subset s 6= 0
is affine. By [Stacks, Lemma 09MP] if X has an ample invertible sheaf then X
is separated. The separatedness assumption is necessary. Indeed, there exists
a non-separated, normal scheme X over C with torsion elements in Br(X)
that are not in the image of BrAz(X), see [EHKV01] and [Ber05].

https://mathoverflow.net/questions/158614
https://stacks.math.columbia.edu/tag/01PS
https://stacks.math.columbia.edu/tag/09MP
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Let us construct a map BrAz(X)→Br(X) that associates to an Azumaya
algebra over X a certain Gm-gerbe over X. This construction is used in the
second proof of [Mil80, Thm. IV.2.5].

To an Azumaya algebra A on X one attaches the category X (A) whose
objects are triples (T,M, j), where T is an X-scheme, M is a finite locally
free OT -module, and j is an isomorphism j : End(M)

∼−→ AT . A morphism
of triples (T,M, j)→(T ′,M′, j′) is a pair (f, i) consisting of a morphism of
X-schemes f : T→T ′ and an isomorphism i : f∗M′ ∼−→ M compatible with
j and j′. Note that there is a natural map Gm(T )→Aut(T,M, j) sending u
to (idT , u).

Proposition 4.2.2 The forgetful functor π : X (A)→Sch/X is a Gm-gerbe
for the étale topology.

Proof. [Ols16, Prop. 12.3.6] One checks that X (A) is a stack. The verification
that X (A) is a Gm-gerbe can be done locally, so one can assume that A =
End(OnX). Furthermore, we can assume thatM = OnT . After localising again,
we can assume that j comes from the conjugation by an element of Aut(OnT ).
Thus any object in X (A) is locally isomorphic to (T,OnT , id), so any two
objects are locally isomorphic. Now the automorphism sheaf of the object
(T,OnT , id) is Gm acting by scalar multiplication on OnT . �

Since the isomorphism classes of Gm-gerbes over X are classified by the
elements of H2

Ét
(X,Gm), this gives a map BrAz(X)→Br(X). The class in

Br(X) associated to A can be described as follows. Assume that A is an
Azumaya algebra over X of degree n. Consider (3.6) as an exact sequence of
sheaves of groups for the étale topology. Let P be the functor on Sch/X send-
ing Y→X to IsomOY (Mn(OY ), AY ). Using essentially the Noether–Skolem
theorem one shows that this functor is a PGLn-torsor on Sch/X. Then the
class associated to A is the image of the class of this torsor under the map
H1

Ét
(X,PGLn)→H2

Ét
(X,Gm) which sends a PGLn-torsor to the gerbe of its

liftings to a GLn-torsor, as defined in Section 4.1.4, see [Ols16, Lemma 12.3.9].
To any cohomology class α ∈ Br(X) one associates a Gm-gerbe Xα over

X (well defined up to isomorphism) using the construction of the gerbe as-
sociated to a cohomology class in Section 4.1.4. Namely, one takes (4.1) to
be the extension (3.6). One wants to show that Xα is isomorphic to X (A) for
some A.

We refer to [Ols16, Ch. 9], [LMB00, Ch. 13] and [Stacks, Ch. 06TF],
[Stacks, Ch. 073P] for the theory of quasi-coherent sheaves on algebraic
stacks. In particular, the definition of the push-forward of quasi-coherent
sheaves with respect to a quasi-compact and quasi-separated morphism of
algebraic stacks can be found in [Stacks, Section 070A].

The gerbe X (A) has a tautological finite locally free 1-twisted sheaf M
together with an isomorphism End(M) ∼= π∗A of algebras over X (A). Then
A ∼= π∗End(M).

https://stacks.math.columbia.edu/tag/06TF
https://stacks.math.columbia.edu/tag/073P
https://stacks.math.columbia.edu/tag/070A
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Proposition 4.2.3 A Gm-gerbe X over XÉt is isomorphic to the gerbe X (A)
for some Azumaya algebra A on X if and only if X has a finite locally free
1-twisted OX -module M of positive rank. In this case A = π∗End(M) is an
Azumaya algebra on X, the adjunction map π∗A→End(M) is an isomor-
phism, and X ∼= X (A).

Proof. See [Ols16, Prop. 12.3.11] or [Lie08, Prop. 3.1.2.1 (i)]. �

The goal is thus to show that if X has an ample invertible sheaf, then for
any α ∈ Br(X)tors the Gm-gerbe X = Xα has a finite locally free 1-twisted
OX -module of positive rank. Recall that by Lemma 4.1.19 the category of
1-twisted sheaves on X is equivalent to the category of α-twisted sheaves on
X with respect to a given étale covering of S which trivialises α. This induces
an equivalence of the full subcategory of 1-twisted finite locally free sheaves
on X with the full subcategory of α-twisted finite locally free sheaves on X.
So our task is to construct a finite locally free α-twisted sheaf on X.

To avoid confusion, we shall denote the α-twisted sheaves on X by F , G,
H, and the corresponding 1-twisted sheaves on X = Xα by F , G, H.

Let L be an ample invertible sheaf on X.
By ‘absolute noetherian approximation’ [TT90, Thm. C.9] one can repre-

sent (X,L) as a filtering inverse limit of pairs (Xi, Li), where Xi is separated
and of finite type over Z and Li is an ample invertible sheaf on Xi, with
affine transition morphisms Xi→Xj . By Section 2.2.2 the group Hn

ét(X,Gm)
is naturally isomorphic to the direct limit of the groups Hn

ét(Xi,Gm). Hence
Br(X)tors is the direct limit of the groups Br(Xi)tors. Thus without loss of
generality we can assume that X is a scheme of finite type over Spec(Z) with
an ample invertible sheaf. In particular, X is noetherian. Since X is of finite
type, [Stacks, Lemma 01Q1] implies that X is a quasi-projective scheme over
an affine scheme. In particular, a theorem of Artin [Mil80, Thm. III.2.17]
applies, hence there is an étale covering {Ui→S} that trivialises α, so that α
is represented by a Čech cocycle αijk ∈ Γ (Uijk,Gm).

In the course of the proof X will be repeatedly replaced by XR for some
ring R which is finite and flat over Z. This is justified by the following lemma
due to Gabber [Gab81, Ch. II, Lemma 4] and Hoobler [Hoo82, Prop. 3].

Lemma 4.2.4 Let ϕ : Y→X be a finite surjective locally free morphism of
schemes. Then α ∈ H2

Ét
(X,Gm) comes from an Azumaya algebra on X if

and only if αY ∈ H2
Ét

(Y,Gm) comes from an Azumaya algebra on Y .

Proof. If αY comes from an Azumaya algebra on Y , then there is a finite
locally free 1-twisted sheaf F on the Gm-gerbe Y. Then the direct image
ϕ∗F is a finite locally free 1-twisted sheaf on the Gm-gerbe X . �

If X is locally noetherian, then ϕ : Y→X is a finite locally free morphism
if and only if ϕ is finite and flat, see [Stacks, Lemma 02KB].

https://stacks.math.columbia.edu/tag/01Q1
https://stacks.math.columbia.edu/tag/02KB
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The proof of Theorem 4.2.1

There is a section s ∈ H0(X,L⊗m) for some m ≥ 1 such that the open set
Xs is affine. By Theorem 3.3.2 the restriction of α to Xs is represented by
an Azumaya algebra A. Hence there is a finite locally free α-twisted sheaf Fs
on Xs. By taking direct sums on the connected components we can assume
that Fs has constant rank.

Write j : Xs→X for the open immersion of Gm-gerbes defined by the in-
clusion Xs ↪→ X. By Lemma 4.1.19, Fs corresponds to a finite locally free
1-twisted sheaf Fs on the Gm-gerbe Xs. The push-forward sheaf j∗Fs is a
quasi-coherent 1-twisted sheaf on the Gm-gerbe X . By [LMB00, Prop. 15.4]
every quasi-coherent sheaf on a noetherian algebraic stack is a filtering di-
rect limit of coherent subsheaves. A coherent subsheaf of a 1-twisted sheaf is
clearly a 1-twisted sheaf. This allows one to find a coherent 1-twisted subsheaf
F ⊂ j∗Fs such that j∗F = Fs.

We can ensure that Xs contains any given finite set of closed points (see
[EGA, II, Cor. 4.5.4]), so the coherent α-twisted sheaf F corresponding to F
is finite locally free at each of these points.

A quasi-coherent sheaf of OX -modules is finite locally free if and only if
it is flat and of finite type [Stacks, Lemma 05P2]. Thus the task is to ensure
that our coherent α-twisted sheaf F is flat. Let Sing(F ) be the closed set of
points of X at which F is not flat. What we have obtained now is the case
c = 1 of the following statement.

(Hc) For any finite set T of closed points of X, after a finite flat ring extension
of the base ring R, there exists a coherent α-twisted sheaf F which is finite
locally free at T , of constant positive rank outside of Sing(F ), and such that

codimX(Sing(F )) ≥ c.

The strategy of the proof is to use finite flat ring extensions R′ of R to
increase c. In doing so we replace T by its inverse image in X ×RR′. In view
of Lemma 4.2.4, the theorem will be proved if one can make c = dim(X) + 1.

Recall that α ∈ Br(X)tors. Let n be a positive integer such that nα = 0.

Step 1

Assume that (Hc) holds for a finite set of closed points T ⊂ X. The claim of
this step is that, after replacing R by a finite flat ring extension, there exist
n + 1 coherent α-twisted sheaves F0, . . . , Fn (where nα = 0) and finite sets
of closed points S0, . . . , Sn in X with the following properties:

(1) each Fi is finite locally free at each of the points of T ;
(2) each Fi has constant positive rank on X r Sing(Fi);

https://stacks.math.columbia.edu/tag/05P2
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(3) for each i = 0, . . . , n we have codimX(Sing(Fi)) ≥ c, and each irreducible
component of Sing(Fi) of codimension c contains a point of Si;

(4) for any i 6= j the sheaf Fj is finite locally free at all the points of Si.

Indeed, (Hc) ensures the existence of an F0 which is locally free at T . Choose
a closed point in each irreducible component of Sing(F0) of codimension c; let
S0 ⊂ X be the set of these points. Define T0 : = T ∪S0. Now (Hc) ensures the
existence of an F1 which is locally free at T0. If a codimension c irreducible
component of Sing(F1) is contained in Sing(F0), then it is a codimension
c irreducible component of Sing(F0), but this is not possible because F1 is
locally free at some closed point of this component. Thus we can choose a
closed point in each codimension c irreducible component of Sing(F1) such
that this point is not in Sing(F0). Let S1 ⊂ X be the set of these points,
and let T1 : = T0 ∪ S1. The pairs (F0, S0) and (F1, S1) satisfy properties (1)
to (4) with n = 1. Next, one constructs F2 and so on. If F0, . . . , Fj−1 are
already constructed so that properties (1) to (4) are satisfied, one constructs
Fj which is locally free at all the points of T ∪ S0 ∪ . . . ∪ Sj−1 and chooses
Sj in Sing(Fj) outside of the union of the Sing(Fi) for i = 0, . . . , j − 1.

Step 2

Replacing each Fi by F⊕mii for appropriate positive integers mi we ensure
that there is a positive integer r such that the rank of Fi on X r Sing(Fi) is
r for each i = 0, . . . , n. Later on we shall assume that r is large. Define

G1 = (F0 ⊕ . . .⊕ Fn)⊕r
n

, G2 = F0 ⊗ . . .⊗ Fn.

It is clear that G1 is a coherent α-twisted sheaf; in fact, G2 is also a coherent
α-twisted sheaf since nα = 0. It follows that

H = Hom(G1, G2)

is a coherent 0-twisted sheaf on X, so is just a coherent OX -module. Recall
that L is an ample invertible sheaf on X. Replacing X by XR preserves the
ampleness of L.

Let ψ be a section of H ⊗ L⊗N over X for some positive integer N , and
let F be the kernel of the map ψ : G1→G2 ⊗ L⊗N .

Let U be the complement to
⋃n
i=0 Sing(Fi) in X. The aim of Step 2

is to give conditions for F to be finite locally free of positive rank on a
larger open set than U . More precisely, one gives conditions ensuring that
codimX(Sing(F )) ≥ c+ 1, in terms of pullbacks at closed points of X.

The fibre of a coherent sheaf on the Gm-gerbe X at a geometric point
x̄ = Spec(κ(x̄)) ∈ X is defined by choosing a lifting of the morphism x̄→X
to a morphism x̄→X , which is possible as α ∈ Br(X) is annihilated by
the restriction to the algebraically closed residue field κ(x̄). This fibre is a
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finite-dimensional vector space over κ(x̄). (Different liftings give rise to non-
canonically isomorphic fibres.) This is used in (a) below, via the equivalence
of 1-twisted sheaves on X and α-twisted sheaves on X as in Lemma 4.1.19.
The same works for a closed point with a finite residue field, by the triviality
of the Brauer group of a finite field. This is used in (b) below.

Claim. Let
F = Ker[ψ : G1 −→ G2 ⊗ (L⊗N )],

where ψ ∈ Γ (X,H ⊗ (L⊗N )) for some positive integer N . Assume that the
following conditions are satisfied.

(a) For every geometric point x̄ = Spec(κ(x̄)) ∈ U the pullback to x̄ gives a
surjective map of κ(x̄)-vector spaces

ψx̄ : G1 ⊗ κ(x̄) −→ G2 ⊗ (L⊗N )⊗ κ(x̄).

(b) For any i = 0, . . . , n and any s = Spec(κ(s)) ∈ Si the composition

F⊕r
n

i ⊗ κ(s) ↪→ G1 ⊗ κ(s) −→ G2 ⊗ (L⊗N )⊗ κ(s)

is an isomorphism of κ(s)-vector spaces, but the following composition is
zero:

(⊕j 6=iFj)⊕r
n

⊗ κ(s) ↪→ G1 ⊗ κ(s) −→ G2 ⊗ (L⊗N )⊗ κ(s).

Then F is an α-twisted sheaf on X such that Sing(F ) ⊂
⋃n
i=0 Sing(Fi) and

Sing(F ) is disjoint from S = ∪ni=0Si. In particular, codimX(Sing(F )) ≥ c+1.

This shows that if ψ satisfying (a) and (b) exists, then (Hc) implies (Hc+1).

Proof of Claim. It is clear that F = Ker(ψ) is a coherent α-twisted sheaf
on X. The last sentence of the statement is a consequence of the fact that
each codimension c irreducible component of Sing(Fi) contains a point of Si.

Condition (a) implies that the restriction of F to the open subscheme
U ⊂ X is the kernel of a surjective map of finite locally free sheaves. Locally
such a map has a section, so its kernel is finite locally free.

Let us prove that condition (b) implies that F is finite locally free at each
x ∈ S. Let OX,x be the local ring at x and let Oh

X,x be the henselisation of

OX,x. The Brauer group Br(Oh
X,x) is canonically isomorphic to the Brauer

group of the residue field Br(κ(x)), see Theorem 3.4.2 (i). Since κ(x) is finite,
we have Br(κ(x)) = 0. It follows that there is a finite étale extension of local
rings OX,x ⊂ B with trivial residue field extension such that the image of α
in Br(B) is zero. Thus there is a lifting Spec(B)→X of Spec(B)→X so that
each Fi pulls back to a coherent sheaf on Spec(B). This sheaf is associated
to a finitely generated B-module Mi.
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We have x ∈ Si for some i. Then for j 6= i we can arrange that the
B-module Mj is free of rank r. Let us write M = Mi. Then

H ⊗B = HomB(M⊕r
n

,M⊕r
n

)⊕HomB(B⊕nr
n+1

,M⊕r
n

). (4.7)

Write ψ ⊗ B = ψ1 ⊕ ψ2. The residue field of the local ring B is κ(x), so by
Nakayama’s lemma condition (b) gives that ψ1 is an isomorphism and ψ2 = 0.

Hence F ⊗B = Ker(ψ⊗B) is the direct summand B⊕nr
n+1 ⊂ G1⊗B. Thus

F is finite locally free at each point of S. This proves the claim. �

For each s ∈ S we can tensor (4.7) for x = s with κ(s) and obtain the
following decomposition for the fibre H ⊗ κ(s) of the sheaf H at s:

H ⊗ κ(s) = Endκ(s)((M ⊗ κ(s))⊕r
n

)⊕Homκ(s)(κ(s)⊕nr
n+1

, (M ⊗ κ(s))⊕r
n

).

With respect to this decomposition define ψs = id⊕ 0.
For a geometric point x̄ ∈ U , we have an analogue of the previous formula

with M ⊗ κ(x̄) ' κ(x̄)r. Hence the fibre of H at x̄ is the κ(x̄)-vector space
of matrices of size (n + 1)rn+1 × rn+1. Condition (a) at x̄ is satisfied if ψx̄
avoids the subset of matrices of rank less than rn+1. By linear algebra, this
is a closed homogeneous subset of codimension

(n+ 1)rn+1 − rn+1 + 1 > nrn+1.

Here homogeneous means stable under multiplication of matrix entries by
any common multiple in κ(x̄)∗. We can make r arbitrarily large and thus
ensure that this codimension is greater than dim(X) + 1.

Step 3

It remains to show that if N is sufficiently large, then there exists a section ψ
satisfying conditions (a) and (b) above. This is a purely algebraic-geometric
statement, so this part of the proof has nothing to do with either Brauer
elements or gerbes.

Let R be a ring which is finite and flat over Z, and let X be a quasi-
projective scheme over R with an invertible sheaf L. Let H be a coherent
OX -module whose restriction to an open subscheme U ⊂ X is finite locally
free. For any x ∈ X choose an isomorphism between Lx = L⊗κ(x) and κ(x).

Suppose that for every u ∈ U we are given a closed homogeneous subset Cu
of the fibre Hu = H ⊗κ(u) of codimension greater than dim(X) + 1. Suppose
also that for a finite set of closed points S ⊂ XrU we are given ψs ∈ Hs for
each s ∈ S. Then there exist a positive integer N , a finite flat extension of
rings R ⊂ R′ and a section ψ ∈ Γ (XR′ , H ⊗L⊗N ) such that ψu /∈ Cu⊗L⊗Nu
for u ∈ UR′ , and for each closed point s′ of XR′ over a point s ∈ S the value
of ψ at s′ is a non-zero multiple of ψs.
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Using the isomorphism Lu ' κ(u) we identify Cu in Hu with Cu ⊗ L⊗Nu
in Hu ⊗ L⊗Nu .

For the proof we may assume that R = Z.
Let IS ⊂ OX be the sheaf of ideals defined by S. For all N sufficiently

large one can find sections Ψi ∈ Γ (X, IS ⊗ H ⊗ L⊗N ), for i in a finite set
I, such that the map of sheaves OIX→IS ⊗ H ⊗ L⊗N sending 1i to Ψi is
surjective. In particular, the sections Ψi generate the sheaf H ⊗L⊗N over U .
See [EGA, II, Prop. 4.5.5]. By increasing N further, for each s ∈ S one finds
a section

Ψs ∈ Γ (X, ISr{s} ⊗H ⊗ L⊗N )

whose value at s is ψs.
Let A = Spec(Z[xi, ys; i ∈ I, s ∈ S]) be the affine space over Z of relative

dimension |I|+|S|. Write A×X for A×ZX and consider the universal section

Ψ =
∑
i∈I

xiΨi +
∑
s∈S

ysΨs

of the pullback of H⊗L⊗N to A×X. The value Ψa,u of Ψ at (a, u) ∈ A×U is
an element of Hu ⊗ L⊗N ' Hu. Let Z ⊂ A× U be the closed subset defined
by the condition Ψa,u ∈ Cu. The values of the sections Ψi, for i ∈ I, generate
the κ(u)-vector space Hu, hence the dimension of each fibre of the natural
projection Z→U is at most |I|+ |S| − codimHu(Cu). By assumption we have
codimHu(Cu) > dim(X) + 1, hence dim(Z) < |I| + |S| − 1 = dim(A) − 2.
Thus the Zariski closure Z ′ of the projection of Z to A has codimension at
least 2.

Let π : A→Spec(Z) and p : X→Spec(Z) be the structure morphisms. For
each s ∈ S define Zs ⊂ A to be the closed subscheme defined by the ideal
(p(s), ys). To finish the proof we need to find a point in A(R) outside of the
codimension 2 closed subset Z ′∪

⋃
s∈S Zs, for some finite flat extension Z ⊂ R.

Note that π induces a surjective morphism A r (Z ′ ∪
⋃
s∈S Zs)→Spec(Z).

The result then follows from Rumely’s local-to-global principle [Rum86] in
the form of [Mor89, Thm. 1.7]: an irreducible scheme V which is separated
and of finite type over a ring of integers OK of a number field K has a point
in the ring of all algebraic integers if the structure morphism V→Spec(OK)
is surjective with geometrically irreducible generic fibre VK . It is clear that
such a point is defined over a finite extension of Z. �



Chapter 5

Varieties over a field

In this chapter we describe a general technique for computing the Brauer
group Br(X) of a smooth projective variety X over a field k. Let ks be a
separable closure of k and let Xs = X×k ks. The Galois group Γ = Gal(ks/k)
acts on the geometric Picard group Pic(Xs) and on the geometric Brauer
group Br(Xs). One would like to understand the kernel and the cokernel of
the natural map Br(X)→Br(Xs)Γ . This can be done (with some success)
using a Leray spectral sequence which involves Galois cohomology groups
with coefficients in Pic(Xs) and Br(Xs). The structure of Pic(Xs) is discussed
in the first section, and the structure of Br(Xs) is the subject of the second
section. In the third section, we consider the action of the absolute Galois
group on the Tate module of Br(Xs). This will be used in Chapter 16. The
spectral sequence and its differentials, with applications to the computation
of Br(X), are discussed in the fourth section. In Section 5.5 we consider
general geometric hypotheses on X that allow one to obtain more precise
results about Br(X). In Section 5.6 we discuss the Brauer groups of curves.
The last section of this chapter concerns the computation of the Picard and
Brauer groups of a product of two varieties.

5.1 The Picard group of a variety

Basic references on the Picard group are the book by Bosch, Lütkebohmert
and Raynaud [BLR90], and Kleiman’s contribution [Kle05] to [FGI+05].

Let k be a field with algebraic closure k̄. Let ks be the separable closure of
k in k̄. In this section we assume that X is a proper, geometrically reduced and
geometrically connected variety over k. Recall that we write Xs = X ×k ks

and X = X ×k k̄.
We have k = H0(X,OX), hence, by Proposition 2.5.4, OT = fT∗(OX×kT )

for any k-scheme T , where fT : X×kT→T is the base change of the structure
morphism f : X→Spec(k). Proposition 2.5.2 then gives that the natural map
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between the functors

Pic(X/k) ét
∼−→ Pic(X/k) fppf

is an isomorphism. By a fundamental result of Grothendieck (Theorem 2.5.7),
this functor is representable by a commutative group scheme PicX/k which is
a disjoint union of quasi-projective k-schemes. There is a functorial injective
map Pic(X)→PicX/k(k), which is an isomorphism if X(k) 6= ∅, see Corollary
2.5.9.

Let Pic0
X/k ⊂ PicX/k be the connected component of 0, see [SGA3, VIA,

§2]. This is the smallest connected open subgroup of PicX/k. It is a group
k-scheme of finite type. For any field extension K/k there is an isomorphism
Pic0

X/k ×k K ∼= Pic0
XK/K . We define

Pic0(X) := Pic(X) ∩Pic0
X/k(k) ⊂ PicX/k(k).

The following property will not be used in this book, but is worth mentioning.
An invertible sheaf on X is algebraically equivalent to 0 [Kle05, Def. 9.5.9]
if and only if the corresponding point in Pic(X) belongs to Pic0(X) [Kle05,
Prop. 9.5.10].

The Néron–Severi group k-scheme is defined as the quotient

NSX/k := PicX/k/Pic0
X/k. (5.1)

It is étale over k, see [SGA3, VIA, 5.5]. In particular, we have NSX/k(ks) =
NSX/k(k̄). By a theorem of Néron and Severi it is a finitely generated abelian
group, see [SGA6, XIII, 5.1]. For any field K containing ks the natural map
NSX/k(ks)→NSX/k(K) is an isomorphism.

Let us define the Néron–Severi group of X as

NS(X) := Pic(X)/Pic0(X).

Thus NS(X) = NSX/k(k̄). The positive integer ρ = dimQ(NS(X) ⊗ Q) is
called the Picard number of X.

The tangent space to PicX/k at 0 is the coherent cohomology group
H1(X,OX) [Kle05, Thm. 9.5.11]. It follows that

dim(PicX/k) ≤ dim(H1(X,OX)),

and equality holds if and only if PicX/k is smooth. If the characteristic of k
is zero, then PicX/k is smooth by Cartier’s theorem, so PicX/k has the same
dimension dim(H1(X,OX)) at every point. As recalled in [Kle05, Rem. 9.5.15,
Prop. 9.5.19], Mumford proved in [Mum66, Ch. 27] that for an algebraically
closed field k̄ the tangent space to PicX/k̄,red at 0 is the intersection of the
kernels of Bockstein homomorphisms

H1(X,OX) −→ H2(X,OX)
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defined by Serre using cohomology with values in Witt sheaves. Thus, over
any field k, the k-scheme PicX/k is smooth whenever X satisfies either
H1(X,OX) = 0 or H2(X,OX) = 0, e.g., if X is a curve. See [BLR90, Ch. 8,
§4, Prop. 2] for a quick proof that H2(X,OX) = 0 implies the smoothness
of PicX/k. Another important case is that PicX/k is smooth when X is an
abelian variety over k, see [EGM, Thm. 6.18].

5.1.1 Picard variety

If the k-variety X is projective, geometrically integral and geometrically
normal, then Pic0

X/k is projective [Kle05, Thm. 9.5.4]. Following [FGA6,
Prop. 3.1, Cor. 3.2, p. 236-16], we associate to such a variety X an abelian
variety A called the Picard variety of X.

If PicX/k is smooth, for instance if char(k) = 0, we define A = Pic0
X/k.

Now let us consider the general case. (The reader should be aware of a delicate
point in the proof. Namely, for an algebraic group G over an imperfect field k,
the reduced scheme Gred need not be an algebraic group over k. For examples
due to Raynaud, see [SGA3, VIA, Examples 1.3.2].) Let G = Pic0

X/k. The

reduced subgroup scheme (G ×k k̄)red of G ×k k̄ is smooth and projective
over k̄, so it is an abelian variety over k̄. The group G×k k̄ fits into an exact
sequence of commutative group k̄-schemes

0 −→ (G×k k̄)red −→ G×k k̄ −→ L −→ 0,

where L a finite group k̄-scheme satisfying L(k̄) = 1. Let n > 0 be the degree
of L/k̄. Let A ⊂ G be the scheme theoretic image of the homomorphism
[n] : G→G. (By definition, this is the smallest closed subscheme of G through
which [n] factors.) Then A is a proper, commutative group k-scheme which
satisfies

A×k k̄ ∼= (G×k k̄)red.

Thus A is geometrically reduced, hence is an abelian variety over k [FGA6,
Prop. 3.1, Cor. 3.2, p. 236-16]. The underlying topological spaces of A and G
are the same, so the k-variety A is equal to Pic0

X/k,red, which is therefore a

subgroup of Pic0
X/k and an abelian variety, and in particular is geometrically

reduced. The abelian variety A = Pic0
X/k,red over k is called the Picard

variety of X. It satisfies A(F ) = Pic0
X/k(F ) for any field F containing k.

We summarise the basic properties of the Picard scheme of a projective
variety over a field in the following theorem.
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Theorem 5.1.1 Let X be a projective, geometrically integral and geometri-
cally normal variety over a field k.

(i) The group k-scheme Pic0
X/k is projective and geometrically connected.

The tangent space to Pic0
X/k at 0 is the coherent cohomology group

H1(X,OX). There is an exact sequence of Γ -modules

0 −→ Pic0
X/k(ks) −→ Pic(Xs) −→ NS(Xs) −→ 0.

(ii) The reduced subscheme Pic0
X/k,red is an abelian variety over k, and is a

subgroup of Pic0
X/k.

(iii) If H1(X,OX) = 0 or H2(X,OX) = 0, or if char(k) = 0, then Pic0
X/k

is smooth, so Pic0
X/k = Pic0

X/k,red is an abelian variety of dimension

dim(H1(X,OX)).
(iv) The abelian group NS(X) is finitely generated. If char(k) = p > 0, then

the cokernel of the natural map NS(Xs)→NS(X) is a finite p-group.
(v) For ` 6= char(k), we have NS(Xs){`} ∼= H2

ét(X
s,Z`(1)){`}.

Proof. Let us prove the second claim of (iv). Each element α ∈ NS(X) lifts to
a Cartier divisor D on XK , where K is a finite, purely inseparable extension
of ks. Let q = pn = [K : ks]. Since the morphism XK→Xs is finite and flat,
hence locally free, there exists an open covering Xs = ∪i∈IUi and a rational
function fi ∈ K(Ui)

∗ for i ∈ I such that D ∩ (Ui ×ks
K) is the divisor of fi.

Then fi/fj ∈ K[Ui ∩ Uj ]∗. We have fqi ∈ k(Ui)
∗ with fqi /f

q
j ∈ k[Ui ∩ Uj ]∗

for each i and j, hence the family (Ui, f
q
i ) defines a Cartier divisor on Xs. It

equals pnD, hence pnα ∈ NS(Xs). Since NS(X) is generated by finitely many
elements, our claim is proved. For property (v), see (5.13) below. �

Example 5.1.2 There are smooth, projective, geometrically integral sur-
faces X over an algebraically closed field k such that the group k-scheme
Pic0

X/k is not reduced, hence not smooth. Such are the so-called non-classical
Enriques surfaces that exist when char(k) = 2. These are minimal surfaces of
Kodaira dimension zero such that H1

ét(X,Q`) = 0 and dim(H2
ét(X,Q`)) = 10

(where ` 6= 2) and dim(H1(X,OX)) = 1. For these surfaces Pic0
X/k is

α2 = Spec(k[t]/(t2)) or µ2 = Spec(k[t]/(t2 − 1)), depending on whether
the action of Frobenius on H1(X,OX) is trivial or not. (The classical En-
riques surfaces have dim(H1(X,OX)) = 0, and hence their Picard scheme is
smooth.) See [Dol16] for a detailed treatment and explicit examples.

Corollary 5.1.3 Let X be a projective, geometrically integral and geometri-
cally normal variety over a field k.

(i) If H1(X,OX) = 0, then the groups Pic(Xs), Pic(X), NS(Xs) and NS(X)
are all equal. In this case this is a finitely generated abelian group.

(ii) Assume that char(k) = 0. Then X has no non-trivial finite, connected,
abelian étale cover if and only if H1(X,OX) = 0 and NS(X) is torsion-
free.
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Proof. We only need to prove (ii). By the Kummer sequence, the variety X
has a non-trivial finite, connected, abelian étale cover if and only if Pic(X)
has non-trivial torsion, cf. [Mil80, Cor. III.4.19]. �

5.1.2 Albanese variety and Albanese torsor

We continue to assume that X is a projective, geometrically integral and
geometrically normal variety over a field k, so that the Picard scheme PicX/k
exists (see Section 2.5). If, in addition, PicX/k represents the relative Picard
functor PicX/k, then it is a formal consequence of Yoneda’s lemma that the
product X ×k PicX/k carries a universal invertible sheaf P. This is a sheaf
with the following property: for any k-scheme T and any invertible sheaf L on
X×kT there exists a unique morphism of k-schemes h : T→PicX/k such that
L ' (id, h)∗P⊗p∗2N , where N is an invertible sheaf on T and p2 : X×kT→T
is the natural projection. (See [Kle05, Ex. 9.4.3].) The sheaf P is unique up
to tensoring with the pullback of an invertible sheaf on PicX/k. By Corollary
2.5.8, the condition that PicX/k represents PicX/k is satisfied when X has a
k-point. In this case the universal sheaf can be made unique by normalising
at such a k-point x0, i.e., by imposing the condition that the restriction of
P to x0 ×PicX/k is trivial. If X is an abelian variety, then P normalised at
0 ∈ X(k) is the usual Poincaré sheaf.

Let A = Pic0
X/k,red be the Picard variety of X/k; as recalled above, it is

an abelian variety over k. The dual abelian variety A∨ = Pic0
A/k is called the

Albanese variety of X and is denoted by AlbX/k. If X has a k-point x0, then

the sheaf P on X ×k Pic0
X/k normalised at x0 induces a sheaf on X ×k A

normalised at x0, hence gives rise to a morphism X→AlbX/k which sends x0

to 0 ∈ A∨(k).
In general, if X does not necessarily have a k-point, we can find a K-

point on X, where K is a finite separable extension of k. By Galois de-
scent, the K-morphism X ×k K→AlbX/k ×k K, normalised so that the cho-

sen K-point goes to 0, descends to a k-morphism u : X→Alb1
X/k, where

Alb1
X/k is a k-torsor for AlbX/k, called the Albanese torsor. This morphism

u : X→Alb1
X/k has the following universal property: if T is a k-torsor for an

abelian variety B over k and f : X→T is a morphism of k-varieties, then
there exists a unique morphism of k-varieties g : Alb1

X/k→T and a unique
morphism of abelian varieties α : AlbX/k→B such that f = g ◦ u, where g is
compatible with α. In particular, the Albanese torsor is well defined up to
translation by a k-point of AlbX/k, whereas the triple (AlbX/k,Alb1

X/k, u) is
unique up to a unique isomorphism. See [FGA6] (the statement of Thm. 3.3
(iii), p. 236–17) and [Lang83a]; for a more recent reference see [Witt08].
For a helpful discussion of the Albanese torsor over a not necessarily per-
fect ground field see https://mathoverflow.net/questions/260982. As

https://mathoverflow.net/questions/260982
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explained there, the universal property of the Albanese torsor holds for any
proper, geometrically reduced and geometrically connected scheme.

5.2 The geometric Brauer group

Let X be a variety over a field k.

Definition 5.2.1 The group Br(Xs) is called the geometric Brauer group
of X.

In this section we investigate the structure of Br(Xs), keeping track of the
action of the Galois group Γ = Gal(ks/k) on it.

Proposition 5.2.2 Let X be a variety over a separably closed field k of
characteristic exponent p. Let S be a non-empty k-scheme. The kernel of the
map

Br(X) −→ Br(X ×k S)

is a p-primary torsion group. If k is algebraically closed or if S is smooth
over k, then this map is injective.

Proof. Suppose that α ∈ Br(X) is in the kernel of the map. We may replace
S by a non-empty affine open set, say S = Spec(R). The non-zero k-algebra
R is a direct filtering limit of non-zero k-algebras Ai of finite type. By Sec-
tion 2.2.2, Br(XR) is the direct limit of the Brauer groups Br(XAi). Thus
there exists a k-algebra of finite type A such that α goes to zero in Br(XA).
Let m be a maximal ideal of A. The quotient field K = A/m, which is a
finitely generated k-algebra, is a finite extension of k. Since k is separably
closed, the degree [K : k] is a power of p. The homomorphism A→A/m = K
induces a homomorphism Br(XA)→Br(XK). Thus α is in the kernel of the
map Br(X)→Br(XK). A corestriction argument (Section 3.8) gives that α
is annihilated by [K : k], which is a power of p and is 1 if k is algebraically
closed.

If S is smooth over a separably closed field k, then S has a k-point, so
Br(X)→Br(X ×k S) is injective in this case. �

We shall see (Theorem 5.6.1) that if k is a field of characteristic p which
is separably closed, but not algebraically closed, then the kernel of the map
Br(A1

k)→Br(A1
k̄
) contains a non-trivial p-torsion subgroup.

Recall that if p is a prime or p = 1, then for an abelian group A we write
A(p′) for the union of `-primary torsion subgroups A{`} for all primes ` 6= p.

Proposition 5.2.3 Let X be a variety over a separably closed field k of
characteristic exponent p. Then for any separably closed field K containing
k (for example, an algebraic closure of k) the map Br(X)(p′)→Br(XK)(p′)
is an isomorphism.
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Proof. It is enough to prove that for any prime ` 6= p and for any n ≥ 1 the
restriction map Br(X)[`n]→Br(XK)[`n] is an isomorphism. The smooth base
change theorem in étale cohomology [Mil80, Cor. VI.4.3] gives isomorphisms

Hi
ét(X,µ`n)

∼−→ Hi
ét(XK , µ`n), i ≥ 0.

Comparing the Kummer sequences (3.2) for X and XK , we deduce the sur-
jectivity of Br(X)[`n]→Br(XK)[`n]. The injectivity of this map follows from
Proposition 5.2.2. �

Corollary 5.2.4 Let X and Y be geometrically integral varieties over a field
k of characteristic exponent p. Let ks be a separable closure of k and let
Γ = Gal(ks/k). Then the natural map of Γ -modules

Br(Xs)(p′)⊕ Br(Y s)(p′) −→ Br(Xs × Y s)(p′)

is split injective.

Proof. Let k(Y ) be the function field of Y and let ks(Y ) be the function field
of Y s. Let L be a separable closure of ks(Y ). The group Γ ∼= Gal(ks(Y )/k(Y ))
is a quotient of Γ1 = Gal(L/k(Y )). The composition of natural maps

Br(Xs)(p′) −→ Br(Xs × Y s)(p′) −→ Br(Xs ×ks
L)(p′)

is an isomorphism by Proposition 5.2.3. It respects the action of Γ1, so is an
isomorphism of Γ1-modules, hence of Γ -modules. We note that

Br(Y s)(p′) −→ Br(Xs × Y s)(p′) −→ Br(Xs ×ks L)(p′)

is the zero map, since it factors through Br(L) = 0. Reversing the roles of X
and Y we prove the statement. �

Theorem 5.2.5 Let X be a proper, geometrically reduced and geometrically
connected variety over a separably closed field k.

(i) There is an embedding of p-primary torsion groups

Ker[Br(X)→Br(X)] ↪→ H1
fppf(k,PicX/k).

(ii) If either H1(X,OX) = 0 or H2(X,OX) = 0, then the natural map
Br(X)→Br(X) is injective.

Here we write k̄ for an algebraic closure of the separably closed field k and
X = X ×k k̄.

Proof. Let p : X→Spec(k) be the structure map. The hypothesis on X implies
that for any k-scheme T the map OT→p∗OXT is an isomorphism, see Remark
2.5.3. It follows that the natural map Gm,k

∼−→ p∗Gm,X is an isomorphism
of sheaves for the fppf topology on Spec(k).
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Since the group scheme Gm,k is smooth and k is separably closed, we have
Hi

fppf(k,Gm) ' Hi
ét(k,Gm) = 0 for any i > 0, see (2.8). By the same result

we also have an isomorphism

Br(X) = H2
ét(X,Gm,X) ∼= H2

fppf(X,Gm,X). (5.2)

Since Hi
fppf(k, p∗Gm,X) = Hi

fppf(k,Gm) = 0 for i > 0, the Leray spectral
sequence

Hp
fppf(k,R

qp∗Gm,X)⇒ Hp+q
fppf(X,Gm,X)

gives rise to the exact sequence

0 −→ H1
fppf(k,R

1p∗Gm,X) −→ H2
fppf(X,Gm,X) −→ H0(k,R2p∗Gm,X).

Since X is proper over a field k, the fppf sheaf R1p∗Gm,X is representable
by a k-group scheme PicX/k, see Theorem 2.5.7. Thus, using (5.2), we can
rewrite the above exact sequence as follows:

0 −→ H1
fppf(k,PicX/k) −→ Br(X) −→ H0(k,R2p∗Gm,X).

Since R2p∗Gm,X is a sheaf for the fppf topology, the last group is a subgroup
of H0(k̄, R2p∗Gm,X), so we get a natural map Br(X)→H0(k̄, R2p∗Gm,X),
which coincides with the composition

Br(X) −→ Br(X) −→ H0(k̄, R2p∗Gm,X).

This formally implies statement (i).
The definition of the Néron–Severi group k-scheme (5.1) and the property

NSX/k(ks) = NSX/k(k̄) imply that for k = ks the k-group scheme PicX/k
is an extension of the constant group of finite type NSX/k(k) by the con-

nected group k-scheme Pic0
X/k. If either H1(X,OX) = 0 or H2(X,OX) = 0,

then Pic0
X/k is smooth by Theorem 5.1.1 (iii). Using (2.8) again, we obtain

Hi
fppf(k,PicX/k) ∼= Hi

ét(k,PicX/k) = 0 for all i ≥ 1. �

Theorem 5.2.6 Let X be a variety over a separably closed field k. Let n ≥ 1
be an integer invertible in k. Then the group Hi

ét(X,Z/n) is finite for all i ≥ 0.

Proof. See [SGA4 1
2 , Finitude, Thm. 1.1]. �

Let A be an abelian group and let ` be a prime number. The `-adic Tate
module T`(A) is defined by

T`(A) = Hom(Q`/Z`, A) = lim←−
n

A[`n],

where the transition maps A[`n+1]→A[`n] are multiplications by `. It is easy
to check that T`(A) is a torsion-free Z`-module. There are natural injective
maps T`(A)/`n ↪→ A[`n]. If the group A[`] is finite, then the Z`-module T`(A)
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is finitely generated. By Nakayama’s lemma [AM69, Ch. 2, Prop. 2.8], we have
T`(A) ' Zr` where r ≤ dimF`(A[`]). If, moreover, A is an `-primary torsion
abelian group, then T`(A)⊗Q`/Z` is the divisible subgroup Adiv of A.

Let X be a variety over a field k and let ` be a prime invertible in k. For
any integer j the sheaves µ⊗j`n on Xét, n ≥ 1, form an inverse system with

respect to the natural surjective maps µ⊗j`n+1→µ⊗j`n . Then one shows that

Hi
ét(X

s,Z`(j)) := lim←−
n

Hi
ét(X

s, µ⊗j`n )

is isomorphic to lim←−n Hi
ét(X

s,Z`(j))/`n, from which one deduces that it is a

finitely generated Z`-module [Mil80, Lemma V.1.11]. The group
Hi

ét(X
s,Z`(j)) carries a continuous action of the Galois group Γ = Gal(ks/k).

One defines
Hi

ét(X
s,Q`(j)) := Hi

ét(X
s,Z`(j))⊗Z` Q`.

Remark 5.2.7 For ` different from char(k), let bi,` = dimQ` Hi
ét(X

s,Q`) be
the i-th `-adic Betti number of Xs. If char(k) > 0 and X is proper and smooth
over k, then for a given i the Betti number bi,` does not depend on ` when k is
a finite field, as follows from Deligne’s results on the Weil conjectures [Del80,
Cor. 3.3.9]. The case of an arbitrary field of positive characteristic follows
from this by a spreading out argument, invariance of étale cohomology under
extensions of separably closed ground fields, and the proper base change
theorem. If char(k) = 0, the Betti numbers do not depend on ` for any
k-variety. Indeed, this follows from the comparison theorem between `-adic
étale and Betti cohomology [SGA4, XVI, Thm. 4.1]

Hi(X,Q)⊗Q` ' Hi
ét(X,Q`),

where X is a variety over C, and from invariance of étale cohomology under
extensions of separably closed ground fields.

For each n ≥ 1 the Kummer sequence gives rise to the exact sequence (3.4)
of Γ -modules:

0 −→ Pic(Xs)/`n −→ H2
ét(X

s, µ`n) −→ Br(Xs)[`n] −→ 0. (5.3)

These sequences are compatible when n varies. By Theorem 5.2.6 these are
sequences of finite groups. In particular we have:

Corollary 5.2.8 Let X be a variety over a field k and let n be a positive
integer not divisible by char(k). Then the group Br(Xs)[n] is finite.

Let ` be a prime number. An `-primary torsion abelian group A is of
cofinite type if it is isomorphic to a direct sum of a finite number of copies
of Q`/Z` and a finite abelian `-primary group. It is the Pontryagin dual of a
finitely generated Z`-module.
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Recall that Br(Xs)(p′) is the prime-to-p torsion subgroup of Br(Xs). By
Proposition 5.2.3 we have Br(Xs)(p′) ∼= Br(X)(p′).

By definition, the Picard number ρ is the rank of NS(Xs).

Proposition 5.2.9 Let X be a projective, geometrically integral and geomet-
rically normal variety over a field k of characteristic exponent p. Let ` 6= p be
a prime. Let Br(Xs){`}div be the maximal divisible subgroup of Br(Xs){`}.
Then the following statements hold.

(i) There is an exact sequence of Γ -modules, which are `-primary torsion
groups of cofinite type

0 −→ Br(Xs){`}div −→ Br(Xs){`} −→ H3
ét(X

s,Z`(1))tors −→ 0, (5.4)

and H3
ét(X

s,Z`(1))tors is finite. There is an isomorphism

Br(Xs){`}div
∼=
(

H2
ét(X

s,Z`(1))

NS(Xs)⊗Z Z`

)
⊗Z` (Q`/Z`) ' (Q`/Z`)b2,`−ρ. (5.5)

(ii) Suppose that X is a smooth, projective and geometrically integral va-
riety over k. Then Br(Xs) is a torsion group and the Betti number b2,` does
not depend on `. There is an exact sequence of Γ -modules

0 −→ Br(Xs)(p′)div −→ Br(Xs)(p′) −→
⊕
` 6=p

H3
ét(X

s,Z`(1))tors −→ 0, (5.6)

where the direct sum is a finite group. If, moreover, k ⊂ C, then the finite
abelian group

⊕
` H3

ét(X
s,Z`(1))tors is isomorphic to the torsion subgroup of

H3(X(C),Z), and b2,` = dimC H2(X(C),C).

(iii) Suppose that char(k) = 0 and X is a smooth, projective and geomet-
rically integral variety over k. Then we have a natural exact sequence

0 −→ NS(Xs)/tors −→ NS(Xs)⊗Q

−→
⊕

` H2
ét(X

s,Z`(1))⊗Q/Z −→ Br(Xs)div −→ 0.
(5.7)

Proof. (i) Since the terms of (5.3) are finite groups, taking the inverse limit in
(5.3) preserves exactness, so we obtain exact sequences of Γ -modules which
are finitely generated Z`-modules

0 −→ lim←−
n

Pic(Xs)/`n −→ H2
ét(X

s,Z`(1)) −→ T`(Br(Xs)) −→ 0. (5.8)

Passing to the direct limit in (5.3) we obtain exact sequences of Γ -modules
which are `-primary torsion abelian groups:

0 −→ Pic(Xs)⊗Q`/Z` −→ H2
ét(X

s,Q`/Z`(1)) −→ Br(Xs){`} −→ 0. (5.9)

The groups are of cofinite type, see the proof of (5.4) below.
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By Theorem 5.1.1 (i) we have an exact sequence

0 −→ Pic0
X/k(ks) −→ Pic(Xs) −→ NS(Xs) −→ 0.

Multiplication by `n on the Picard variety A of X is a finite étale morphism,
because A is an abelian variety and ` 6= char(k), hence it is surjective on
ks-points. Thus Pic0

X/k(ks) = A(ks) is divisible by `n. Hence we obtain com-
patible isomorphisms of Γ -modules

Pic(Xs)/`n ∼= NS(Xs)/`n (5.10)

for all integers n. The abelian group NS(Xs) is finitely generated by Theorem
5.1.1 (iv). Thus from (5.9) we get the exact sequence of `-primary torsion
groups of cofinite type

0 −→ NS(Xs)⊗Q`/Z` −→ H2
ét(X

s,Q`/Z`(1)) −→ Br(Xs){`} −→ 0. (5.11)

From (5.8) we get the exact sequence of finitely generated Z`-modules

0 −→ NS(Xs)⊗Z Z` −→ H2
ét(X

s,Z`(1)) −→ T`(Br(Xs)) −→ 0. (5.12)

Since T`(Br(Xs)) is torsion-free, this gives an isomorphism of torsion sub-
groups

NS(Xs){`} ∼−→ H2
ét(X

s,Z`(1))tors, (5.13)

and the isomorphism (5.5). The maps in (5.11), (5.12), (5.13) respect the
action of the Galois group Γ .

Let us explain how to obtain (5.4). Consider a commutative diagram of
sheaves on Xét with exact rows:

1 // µ`m //

=

��

µ`m+n //

��

µ`n //

��

1

1 // µ`m // µ`m+n+1 // µ`n+1 // 1

Taking the inverse limit over m in the associated long exact sequences of étale
cohomology groups (using their finiteness) we obtain a commutative diagram

H2
ét(X

s,Z`(1))
`n //

=

��

H2
ét(X

s,Z`(1)) //

`

��

H2
ét(X

s, µ`n) //

��

H3
ét(X

s,Z`(1))

=

��
H2

ét(X
s,Z`(1))

`n+1
// H2

ét(X
s,Z`(1)) // H2

ét(X
s, µ`n+1) // H3

ét(X
s,Z`(1))
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Now taking the direct limit over n one obtains an exact sequence

. . . −→ H2
ét(X

s,Z`(1)) −→ H2
ét(X

s,Q`(1)) −→ H2
ét(X

s,Q`/Z`(1))

−→ H3
ét(X

s,Z`(1)) −→ H2
ét(X

s,Q`(1)) −→ . . . ,

hence an exact sequence

0→ H2
ét(X

s,Q`(1))

Im(H2
ét(X

s,Z`(1)))
−→ H2

ét(X
s,Q`/Z`(1)) −→ H3

ét(X
s,Z`(1))tors→0.

Passing to the quotients by NS(Xs) ⊗ Q`/Z` in the first and second terms,
we obtain (5.4).

(ii) If X is smooth over k, then for any field extension k ⊂ K the group
Br(X×kK) is a torsion group (Lemma 3.5.3). If X is projective and smooth,
then for a given i the Betti number bi,` does not depend on ` (Remark 5.2.7).
This proves the first claim. The étale cohomology groups of a variety over ks

with coefficients in a torsion sheaf of order not divisible by char(k) do not
change under extension of ks to a bigger separably closed field, for example
k̄, see [Mil80, Cor. VI.4.3]. This implies the second claim. If X is projective,
smooth and geometrically integral over k, then by a special case of a theorem
of Gabber [Gab83], for almost all ` the group H3

ét(X
s,Z`(1)) is torsion-free.

If k has characteristic zero, this is also a consequence of the comparison
theorem between étale cohomology and classical Betti cohomology, see [Mil80,
Thm. III.3.12]. Now the third claim follows from (i). Finally, in the case ks ⊂
C we have H3

ét(X
s,Z`(1)) = H3

ét(X ×k C,Z`(1)). The comparison theorem
[Mil80, Thm. III.3.12] says that the latter group is isomorphic to the Betti
cohomology group H3(X ×k C,Z)⊗Z Z`(1).

These arguments also prove (iii). �

We need to recall Poincaré duality for a smooth, proper, connected variety
Xs of dimension d over ks. For any m ≥ 1 we have compatible pairings of
abelian groups

Z/`m × HomZ/`m(Z/`m,Z/`m) −→ Z/`m
↓ ↑ ↓

Z/`m+1 × HomZ/`m+1(Z/`m+1,Z/`m+1) −→ Z/`m+1

For any i = 0, . . . , 2d they give rise to compatible bilinear pairings

Hi
ét(X

s,Z/`m) × Ext2d−i
Xs,Z/`m(Z/`m,Z/`m(d)) → H2d

ét (Xs,Z/`m(d))

↓ ↑ ↓
Hi

ét(X
s,Z/`m+1) × Ext2d−i

Xs,Z/`m+1(Z/`m+1,Z/`m+1(d)) → H2d
ét (Xs,Z/`m+1(d))

Here ExtnXs,Z/`m(−,−) is taken in the category of étale sheaves of Z/`m-
modules on Xs.
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The spectral sequence

Hp
ét(X

s, ExtqXs,Z/`m(Z/`m,Z/`m(d)))⇒ Extp+qXs,Z/`m(Z/`m,Z/`m(d))

degenerates since ExtqXs,Z/`m(Z/`m,Z/`m) = 0 for q ≥ 1, see [Mil80, Exercise

III.1.31 (c)]. This allows us to rewrite the previous diagram as

Hi
ét(X

s,Z/`m) × H2d−i
ét (Xs,Z/`m(d)) −→ H2d

ét (Xs,Z/`m(d))
↓ ↑ ↓

Hi
ét(X

s,Z/`m+1) × H2d−i
ét (Xs,Z/`m+1(d)) −→ H2d

ét (Xs,Z/`m+1(d))

The Poincaré duality theorem [Mil80, Thm. VI.11.1] gives an isomorphism

H2d
ét (Xs,Z/`m(d))

∼−→ Z/`m,

sending the image of the fundamental class of any ks-point sP/X to 1, and
making the above pairings perfect dualities [Mil80, Cor. VI.11.2]. These pair-
ings coincide with the pairings given by the cup-product [Mil80, Prop. V.1.20].

Proposition 5.2.10 Let X be a smooth, proper, geometrically integral sur-
face over a field k. Then for every prime ` 6= char(k) there is a natural
isomorphism of finite Γ -modules

Br(Xs){`}/Br(Xs){`}div
∼= Hom(NS(Xs){`},Q`/Z`).

Proof. As recalled above, the Poincaré duality theorem for the surface Xs

gives a perfect duality pairing

H2
ét(X

s, µ`m)×H2
ét(X

s, µ`m) −→ H4
ét(X

s, µ⊗2
`m ) ∼= Z/`m ⊂ Q`/Z`, (5.14)

hence a canonical isomorphism

H2
ét(X

s, µ`m) ∼= Hom(H2
ét(X

s, µ`m),Q`/Z`).

The pairings (5.14) for m and m + 1 are compatible with respect to the
natural inclusion µ`m ↪→ µ`m+1 in the first argument, the natural surjective
map µ`m+1→µ`m given by raising to the power ` in the second argument, and
the natural injective map Z/`m ↪→ Z/`m+1. Thus going over to the limit one
obtains an isomorphism of abelian groups of cofinite type

H2
ét(X

s,Q`/Z`(1)) ∼= Hom(H2
ét(X

s,Z`(1)),Q`/Z`).

Taking the quotients of these groups by their maximal divisible subgroups
(as given by sequence (5.2)), we obtain an isomorphism of finite groups

H3
ét(X

s,Z`(1))tors
∼= Hom(H2

ét(X
s,Z`(1))tors,Q`/Z`).
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This gives a perfect duality pairing of finite abelian groups

H2
ét(X

s,Z`(1))tors ×H3
ét(X

s,Z`(1))tors −→ Q`/Z`.

All these constructions are Galois equivariant. The result now follows from
the isomorphism (5.13) and the exact sequence (5.4). �

After classical work of Godeaux and of Campedelli, surfaces X over C
with H1(X,OX) = 0, H2(X,OX) = 0 and NS(X)tors 6= 0 have been much
discussed in the literature, see [BPV84, Ch. VII, §11] and [BCGP12].

Remark 5.2.11 Proposition 5.2.9 gives a precise formula for the size of the
Brauer group of a smooth projective variety X over C. In practice, it is very
hard to explicitly represent the elements of Br(X) by Azumaya algebras over
X. It is also hard to represent their images in Br(C(X)) by central simple
algebras or sums of symbols – which they are according to the Merkurjev–
Suslin theorem [GS17, Thm. 8.6.5].

5.3 The Tate module of the Brauer group as a Galois
representation

Let k be a field with separable closure ks and absolute Galois group Γ =
Gal(ks/k). Let X be a smooth, proper, geometrically integral variety over
k. Let ` be a prime such that ` 6= char(k). From Theorem 5.2.9 we know
that Br(Xs){`} is an abelian group of cofinite type. More precisely, it is an
extension of a finite abelian group by the divisible subgroup

Br0(Xs){`} = T`(Br(Xs))⊗Z` Q`/Z` ∼= (Q`/Z`)b2−ρ.

Let V`(Br(Xs)) = T`(Br(Xs))⊗Z`Q`. This is a vector space over Q` of dimen-
sion b2− ρ. Write cl` for the `-adic cycle class map NS(Xs)→H2

ét(X
s,Z`(1)),

defined as the second map in the exact sequence (5.12). Tensoring the terms
of (5.12) with Q` we obtain an exact sequence of Γ -modules

0 −→ NS(Xs)⊗Z Q`
cl`−→ H2

ét(X
s,Q`(1)) −→ V`(Br(Xs)) −→ 0. (5.15)

In view of the isomorphism (5.10) the exact sequence (5.3) is an exact se-
quence of Γ -modules

0 −→ NS(Xs)/`n −→ H2
ét(X

s, µ`n) −→ Br(Xs)[`n] −→ 0. (5.16)

We set ν := NS(Xs)tors and write ν` for the `-primary subgroup of ν. Recall
that we have canonical isomorphisms (5.13):

ν` ∼= NS(Xs)tors ⊗ Z` ∼= NS(Xs){`} ∼= H2
ét(X

s,Z`(1))tors.
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Theorem 5.3.1 Let X be a smooth, projective, geometrically integral variety
over a field k.

(i) There exist a positive integer N and a Γ -submodule M` ⊂ T`(Br(Xs)) for
every prime ` 6= char(k), such that T`(Br(Xs))/M` is annihilated by N
and the pullback of (5.12) to M` is a split exact sequence of Γ -modules.
In particular, the `-adic cycle class map NS(Xs)⊗Z`→H2

ét(X
s,Z`(1)) is

split injective for almost all primes `, making the Γ -module NS(Xs)⊗Z`
a direct summand of H2

ét(X
s,Z`(1)) for these primes.

(ii) For all primes ` 6= char(k), the exact sequence of Γ -modules (5.15) splits.

(iii) For almost all primes ` the exact sequence (5.16) is a split exact sequence
of Γ -modules, for all n ≥ 1. In particular, for almost all primes ` the
Γ -module NS(Xs)/`n is a direct summand of H2

ét(X
s, µ`n), for all n ≥ 1.

(iv) For almost all primes ` and all positive integers n there is a split exact
sequence of abelian groups

0 −→ (NS(Xs)/`n)Γ −→ H2
ét(X

s, µ`n)Γ −→ Br(Xs)[`n]Γ −→ 0. (5.17)

Recall that the cup-product gives rise to a bilinear pairing

∪ : H2i
ét(X

s,Z`(i))×H2j
ét (Xs,Z`(j)) −→ H

2(i+j)
ét (Xs,Z`(i+ j)).

The intersection of cycles is a symmetric bilinear pairing between Chow
groups

CHi(Xs)× CHj(Xs) −→ CHi+j(Xs).

The two pairings are compatible via the cycle class map

cl` : CHi(Xs) −→ H2i
ét(X

s,Z`(i)),

namely, for any a ∈ CHi(Xs) and b ∈ CHj(Xs) we have cl`(a) ∪ cl`(b) =
cl`
(
(a · b)Xs

)
, see [Lau76, Cor. 7.2.1]. Thus, for a fixed L ∈ NS(Xs), the

Z`-valued symmetric bilinear form on H2
ét(X

s,Z`(1)) given by

x ∪ y ∪ cl`(L)d−2 ∈ H2d
ét (Xs,Z`(d))

∼−→ Z`

restricts to an integral symmetric bilinear form (a · b · Ld−2)Xs on NS(Xs).
The last form clearly descends to a form on NS(Xs)/tors = NS(Xs)/ν.

The proof of Theorem 5.3.1 is based on the following general fact.

Lemma 5.3.2 Let X be a smooth, projective, geometrically integral variety
over a field k such that d = dim(X) ≥ 2. Let ` 6= char(k) be a prime. Let
L ∈ NS(Xs) be the class of an ample line bundle on X. Then the integral
symmetric bilinear form cl`(x)∪cl`(y)∪Ld−2 = (x·y·Ld−2)Xs on NS(Xs)/tors
is non-degenerate, i.e., its kernel is trivial.
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Proof. Let NS(Xs)L ⊂ NS(Xs) be the kernel of the map NS(Xs)→Z given by
x 7→ (x · Ld−1)Xs . It is clear that ν ⊂ NS(Xs)L. Since Ld > 0 and NS(Xs)L

is the orthogonal complement to L, it is enough to show that the restriction
of our form to NS(Xs)L/tors is negative definite. If d = 2 this statement is a
consequence of the Hodge index theorem when char(k) = 0, but it is actually
true in any characteristic [Gro58].

The case d ≥ 3 is reduced to the case d = 2 as follows.
The field ks is infinite, so by the Bertini theorem there is a smooth hyper-

plane section Y ⊂ Xs defined over ks. By the hyperplane (weak) Lefschetz
theorem, the restriction map

r : H2
ét(X

s,Z`(1)) −→ H2
ét(Y,Z`(1))

is an isomorphism for d ≥ 4 and is injective for d = 3, see [Kat04, Thm. B.4].
For any x, y ∈ H2

ét(X
s,Z`(1)) we have

x ∪ y ∪ cl`(L)d−2 = r(x) ∪ r(y) ∪ cl`(L|Y )d−3 ∈ Z`.

Similarly, for x, y ∈ NS(Xs) we have

(x · y · Ld−2)Xs = (r(x) · r(y) · (L|Y )d−3)Y ∈ Z.

The natural restriction map NS(Xs)⊗Z`→NS(Y )⊗Z` is identified with the
map r : cl`(NS(Xs)) ⊗ Z`→cl`(NS(Y )) ⊗ Z`, which is injective since d ≥ 3.
Applying this argument d − 2 times we obtain a smooth ks-surface S ⊂ Xs

such that the natural map NS(Xs)⊗Z`→NS(S)⊗Z` is injective. This gives
rise to an injective map NS(Xs)/tors ⊂ NS(S)/tors. Moreover, the restriction
of the intersection form (x ·y)S on NS(S)/tors to NS(Xs)/tors is our original
form (x · y · Ld−2)Xs .

Define NS(S)L ⊂ NS(S) as the orthogonal complement to L|S with respect
to the intersection pairing (x ·y)S . Then NS(Xs)L/tors ⊂ NS(S)L/tors. Since
the form (x ·y)S on NS(S)L/tors is negative definite, the form (x ·y ·Ld−2)Xs

on NS(Xs)L/tors is negative definite, hence non-degenerate. �

Proof of Theorem 5.3.1. Let d = dim(X). For d = 1 all statements are
trivial, so we can assume d ≥ 2. Let L ∈ NS(Xs) be the class of an ample
line bundle defined over k. Thus L ∈ NS(Xs)Γ , hence the symmetric bilinear
form x ∪ y ∪ cl`(L)d−2 on H2

ét(X
s,Z`(1)) is Γ -invariant.

Let us prove (i). Let M ′` be the orthogonal complement to NS(Xs)⊗Z` in
H2

ét(X
s,Z`(1)) with respect to x∪y∪cl`(L)d−2. Since this form is Γ -invariant,

M ′` is a Γ -submodule. Note that M ′` contains ν`, the torsion subgroup of
NS(Xs)⊗Z`. The discriminant δ ∈ Z of the integral symmetric bilinear form
(x · y ·Ld−2)Xs on NS(Xs)/tors, which is the restriction of x∪ y ∪ cl`(L)d−2,
is non-zero by Lemma 5.3.2. Let N = δ · |ν| and let M` = |ν`|M ′`. Then
M` ∩ (NS(Xs)⊗ Z`) = 0 and we have

N H2
ét(X

s,Z`(1)) ⊂M` ⊕ (NS(Xs)⊗ Z`) ⊂ H2
ét(X

s,Z`(1)).
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The restriction of the surjective map H2
ét(X

s,Z`(1))→T`(Br(Xs)) in (5.12) to
M` is an isomorphism, hence the pullback of (5.12) to M` is a split short exact
sequence of Γ -modules. This proves (i), from which (ii) follows immediately.

Let us prove (iii). From (i) we deduce that the Γ -module NS(Xs)/`n is a
direct summand of the Γ -module H2

ét(X
s,Z`(1))/`n for almost all `. We have

an exact sequence

0 −→ H2
ét(X

s,Z`(1))/`n −→ H2
ét(X

s, µ`n) −→ H3
ét(X

s,Z`(1))[`n] −→ 0.

By a theorem of Gabber [Gab83], the Z`-module H3
ét(X

s,Z`) has no tor-
sion for almost all `. Since H3

ét(X
s,Z`) and H3

ét(X
s,Z`(1)) are isomorphic

as abelian groups, for almost all ` we have H3
ét(X

s,Z`(1))[`] = 0, hence
H2

ét(X
s, µ`n) = H2

ét(X
s,Z`(1))/`n. This proves (iii).

Finally, (iv) follows directly from (iii) and (5.16). �

Remark 5.3.3 (1) A slightly different argument allows one to prove Theo-
rem 5.3.1 without using Lemma 5.3.2, so there is no need to choose an ample
divisor L. Let X = X × k̄, where k̄ is an algebraic closure of k. Consider the
intersection pairing

CH1(X)× CHd−1(X) −→ Z. (5.18)

Let Num1(X) be the quotient of CH1(X) = Pic(X) by the left kernel
of this paring. By Matsusaka’s theorem the kernel of the natural map
NS(X)→Num1(X) is the finite group ν = NS(X)tors. This implies that one
can find a Γ -invariant free abelian group W ⊂ CHd−1(X) such that the in-
tersection of cycles defines a non-degenerate pairing NS(X)/tors×W→Z (in
the sense that the right and left kernels of this pairing are trivial). This gives
a natural embedding NS(X)/tors ⊂ Hom(W,Z) with finite cokernel, say of
order δ. Let W⊥` ⊂ H2

ét(X,Z`(1)) be the orthogonal complement to the im-
age of W in H2d−2

ét (X,Z`(1)) with respect to the cup-product pairing. Define
M` = |ν`|W⊥` . Then M` ∩ (NS(X)⊗ Z`) = 0 and

N H2
ét(X,Z`(1)) ⊂M` ⊕ (NS(X)⊗ Z`) ⊂ H2

ét(X,Z`(1)),

where N = δ ·|ν|, and we conclude as before. (Since ` 6= char(k), the difference
between ks and k̄ is not important here, see Proposition 5.2.3.)

(2) If char(k) = 0, there is a canonical splitting of (5.15). Let Num1(X)
be the quotient of CHd−1(X) by the right kernel of (5.18). By a theorem
of Lieberman, in this case homological and numerical equivalences coincide
in dimension 1, so Num1(X) is the image of CHd−1(X) in the quotient
of H2d−2

ét (X,Z`(1)) by its torsion subgroup. We have a non-degenerate, Γ -
invariant pairing

NS(X)/tors × Num1(X) −→ Z.

The above arguments then apply. See [CTS13b, §1.1] and [Qin, Prop. 2.1] for
details and references to the literature.
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5.4 Algebraic and transcendental Brauer groups

5.4.1 The Picard group and the algebraic Brauer group

For a variety X over a field k there is a natural filtration on the Brauer group

Br0(X) ⊂ Br1(X) ⊂ Br(X),

which is defined as follows.

Definition 5.4.1 Let

Br0(X) = Im[Br(k)→Br(X)], Br1(X) = Ker[Br(X)→Br(Xs)].

The algebraic Brauer group of X is the subgroup Br1(X) ⊂ Br(X). The
transcendental Brauer group of X is the quotient Br(X)/Br1(X).

A particular case of the Leray spectral sequence (2.5) for the structure
morphism X→Spec(k) is the spectral sequence

Epq2 = Hp(k,Hq
ét(X

s,Gm))⇒ Hp+q
ét (X,Gm), (5.19)

which is contravariant functorial in the k-variety X. It gives rise to the func-
torial exact sequence of terms of low degree

0 −→ H1(k, ks[X]∗) −→ Pic(X) −→ Pic(Xs)Γ −→ H2(k, ks[X]∗) −→ Br1(X)

−→ H1(k,Pic(Xs)) −→ Ker[H3(k, ks[X]∗)→H3
ét(X,Gm)].

(5.20)

Proposition 5.4.2 Let X be a variety over a field k such that ks[X]∗ = k∗s .
Then there is an exact sequence

0 −→ Pic(X) −→ Pic(Xs)Γ −→ Br(k) −→ Br1(X)

−→ H1(k,Pic(Xs)) −→ Ker[H3(k, k∗s )→H3
ét(X,Gm)].

(5.21)

This sequence is contravariantly functorial in X.

Proof. This follows from (5.20), as H1(k, k∗s ) = 0 by Hilbert’s theorem 90. �

The assumption of Proposition 5.4.2 holds for any proper, geometrically
connected and geometrically reduced k-variety X. It also holds for X = Ank .

Remark 5.4.3 Let X be a variety over a field k such that ks[X]∗ = k∗s .
(1) If X has a k-point or, more generally, if X has a zero-cycle of degree 1,

then each of the maps Br(k)→Br1(X) and H3(k, k∗s )→H3
ét(X,Gm) in (5.21)

has a retraction, hence is injective. (Then Pic(X)→Pic(Xs)
Γ is an isomor-

phism.) Indeed, a k-point on X defines a section of the structure morphism
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X→Spec(k). A standard restriction-corestriction argument (see Section 3.8)
reduces the case when X has a zero-cycle of degree 1 to the case when X has
a k-point.

(2) The map Br1(X)→H1(k,Pic(Xs)) is surjective when there exists a va-
riety Y over k such that ks[Y ]∗ = k∗s and H1(k,Pic(Y s)) = 0, and there
is a morphism Y→X. This follows by comparing (5.21) for X and Y . These
conditions on Y are satisfied for proper, geometrically connected and geomet-
rically reduced k-varieties Y such that Pic(Y s) is a permutation Γ -module.
This holds, for example, when Y is a smooth projective quadric of dimension
at least 1 or a Brauer–Severi variety.

(3) If k is a number field, then H3(k, k∗s ) = 0, see [CF67, Ch. VII, §11.4,
p. 199]. Thus for a variety X over a number field k such that ks[X]∗ = k∗s we
have an isomorphism Br1(X)/Br0(X) ∼= H1(k,Pic(Xs)).

Proposition 5.4.4 Let k be a field finitely generated over Q. For any ge-
ometrically integral variety X over k, the kernel of the restriction map
Br(k)→Br(X) is a finite group.

Proof. Let U ⊂ X be the smooth locus of X. By Hironaka’s theorem there
exists a smooth, projective, geometrically integral variety Y over k which
contains U as an open set. The kernel of Br(k)→Br(X) is contained in the
kernel of Br(k)→Br(k(Y )), where k(Y ) is the function field of Y . By Theorem
3.5.5, the latter kernel is contained in the kernel of Br(k)→Br(Y ), which is
a quotient of Pic(Y s)Γ , by (5.21).

Let A be the Picard variety of Y . By Theorem 5.1.1 (i) the Γ -module
Pic(Y s) is an extension of the Néron–Severi group NS(Y s), which is finitely
generated, by A(ks). The group of k-points A(k) = A(ks)

Γ is finitely gen-
erated, by the theorem of Mordell–Weil–Néron, see [Con06, Cor. 7.2]. Thus
Pic(Y s)Γ is a finitely generated abelian group, and hence so is the kernel of
Br(k)→Br(Y ). By a restriction–corestriction argument, this kernel is annihi-
lated by the degree of any closed point on Y , and thus is finite. �

5.4.2 Geometric interpretation of differentials

Proposition 5.4.5 Let X be a smooth and geometrically integral variety
over a field k. For each n ≥ 0 the differential

Hn(k,Pic(Xs)) −→ Hn+2(k, ks[X]∗) (5.22)

from the spectral sequence (5.19) coincides, up to sign, with the connecting
map defined by the 2-extension of Γ -modules

0 −→ ks[X]∗ −→ ks(X)∗ −→ Div(Xs) −→ Pic(Xs) −→ 0. (5.23)
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Proof. This follows from the general description of connecting maps given in
[Sko07, Prop. 1.1], combined with [Sko01, Thm. 2.3.4 (a)]. �

Remark 5.4.6 The differential (5.22) can be seen as the map attached to
the exact triangle

p∗(Gm,X) −→ τ[0,1](Rp∗(Gm,X)) −→ (R1p∗)(Gm,X)[−1]

in the bounded below derived category D+(k) of Γ -modules. Here we write
p : X→Spec(k) for the structure morphism, Rp∗ : D+(X)→D+(k) is the de-
rived functor from the bounded below derived category D+(X) of étale
sheaves on X to D+(k), and τ[0,1] is the truncation functor. Proposition
5.4.5 then follows from the fact that τ[0,1](Rp∗(Gm,X)) is represented by the
2-term complex ks(X)∗→Div(Xs), as proved in [BvH09, Lemma 2.3].

Example 5.4.7 Let k be a field of characteristic 0 which contains a primitive
cube root of 1. Let a, b, c be independent variables and let K = k(a, b, c). Let
X ⊂ P3

K be the diagonal cubic surface given by the homogeneous equation

x3 + ay3 + bz3 + ct3 = 0.

By [CTKS87, Prop. 1], one has H1(K,Pic(Xs)) ' Z/3. By rather involved
cocycle calculations, Uematsu [Uem14] shows that the map

H1(K,Pic(Xs)) −→ H3(K,K∗s )

is injective. Thus in Proposition 5.4.5, for n = 1, the differential can be
non-zero.

For any k-variety X, the spectral sequence (5.19) gives rise to a complex

Br(X)
α−→ Br(Xs)Γ

β−→ H2(k,Pic(Xs)).

Assume that k∗s = ks[X]∗. From the general structure of spectral sequences
we see that if H3(k, k∗s ) = 0 (e.g., k is a number field) or if X has a k-point
(or a zero-cycle of degree 1), then, in view of Remark 5.4.3 (1), the above
complex fits into an exact sequence

0 −→ Br1(X) −→ Br(X)
α−→ Br(Xs)Γ

β−→ H2(k,Pic(Xs)). (5.24)

Thus Br(X)/Br1(X) = Ker(β). For concrete calculations of the Brauer group
one would like to be able to compute the map β.

Proposition 5.4.8 Let X be a smooth, projective, geometrically integral va-
riety over a field k of characteristic zero. Let N(Xs) = NS(Xs)/tors. The
composition

(Br(Xs)div)Γ ↪→ Br(Xs)Γ
β−→ H2(k,Pic(Xs)) −→ H2(k,N(Xs)) (5.25)
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coincides with the connecting map (Br(Xs)div)Γ→H2(k,N(Xs)) defined by
the exact sequence (5.7).

Proof. This is [CTS13b, Cor. 3.5]. �

Remark 5.4.9 By Theorem 5.1.1, if H1(X,OX) = 0, then Pic0
X/k = 0 and

Pic(Xs) ∼= NS(Xs), and if all the groups H2
ét(X

s,Z`) are torsion-free, then
NS(Xs) ∼= N(Xs). By Proposition 5.2.9 (i), if H3

ét(X
s,Z`) is torsion-free for

all `, then Br(Xs) is divisible. Hence when all these hypotheses are satisfied,
the composite map in the above proposition computes β. Thus the above
description covers many important cases.

There is a variant of this description of (5.25) which involves comparison
theorems between `-adic and classical cohomology as well as between the
corresponding cycle class maps. Here we discuss the important case of surfaces
and refer to [CTS13b, Prop. 4.1] for a somewhat more technical description
in the case of higher-dimensional varieties.

Let X be a smooth, projective, geometrically integral surface over a sub-
field k of C. Let ks be the algebraic closure of k in C. Since NS(Xs) ∼= NS(XC),
we haveN(Xs) ∼= N(XC). Let us write H2 = H2(XC,Z)/tors. For a surface X,
Poincaré duality gives rise to a perfect (unimodular) pairing

H2 ×H2 −→ Z

given by the cup-product. By the Hodge index theorem, the restriction of this
pairing to N(XC) has a non-zero discriminant. A classical argument based on
the exponential exact sequence shows that N(XC) is a saturated subgroup of
H2, in the sense that the quotient is torsion-free.

Let T (XC) be the transcendental lattice of XC defined as the orthogonal
complement to N(XC) in H2 with respect to the cup-product pairing. Thus
T (XC) is a saturated subgroup of H2, and N(XC) ∩ T (XC) = 0. Write

N(XC)∗ = Hom(N(XC),Z), T (XC)∗ = Hom(T (XC),Z).

The cup-product gives rise to the injective maps

N(XC) ↪→ N(XC)∗, T (XC) ↪→ T (XC)∗.

By the unimodularity of the pairing on H2 we have canonical isomorphisms
of finite abelian groups

N(XC)∗/N(XC) ∼= H2/(N(XC)⊕ T (XC)) ∼= T (XC)∗/T (XC).

We deduce an exact sequence

0 −→ N(Xs) −→ N(Xs)∗ −→ T (XC)⊗Z Q/Z −→ Hom(T (XC),Q/Z) −→ 0.
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By the comparison theorem between classical and étale cohomology, for i ≥ 0
we have isomorphisms Hi(XC,Z)⊗Z`(1) ∼= Hi(X,Z`(1)) compatible with the
cycle class map and the cup-product, for any prime `. Thus T (XC) ⊗ Z` is
the orthogonal complement to (NS(Xs) ⊗ Z`)/tors in H2(X,Z`(1))/tors. In
particular, T (XC)⊗ Z` is naturally a Γ -module, so that the previous 4-term
exact sequence is an exact sequence of Γ -modules.

Since N(XC) is the orthogonal complement to T (XC) in H2, we obtain
T (XC)∗ = H2/N(XC). Tensoring with Q`/Z` we get

Hom(T (XC),Q`/Z`) =
(
H2/N(XC)

)
⊗Z Q`/Z` ∼=

H2
ét(X

s,Z`(1))

NS(Xs)⊗ Z`
⊗Z` Q`/Z`,

where we used NS(Xs){`} ∼= H2
ét(X

s,Z`(1)){`}. From the description of
Br(Xs)div in Proposition 5.2.9 (i) we now obtain a canonical isomorphism
of Γ -modules

Br(Xs)div
∼= Hom(T (XC),Q/Z)

and an exact sequence of Γ -modules

0 −→ N(Xs) −→ N(Xs)∗ −→ T (XC)⊗Z Q/Z −→ Br(Xs)div −→ 0. (5.26)

The following proposition is a trimmed down version of Proposition 5.4.8
for surfaces, and is more suitable for concrete calculations.

Proposition 5.4.10 Let X be a smooth, projective, geometrically integral
surface over a field k ⊂ C. Let ks be the algebraic closure of k in C. The
composed map (5.25) coincides, up to sign, with the connecting map

(Br(Xs)div)Γ −→ H2(k,N(Xs))

defined by the 2-extension of Γ -modules (5.26).

Proof. This is a special case of [CTS13b, Prop. 4.1]. �

Remark 5.4.11 This remark is a continuation of Remark 5.4.6 and uses the
same notation. Let X be a smooth, projective, geometrically integral surface
over a subfield of C such that Pic(Xs) is torsion-free. Then NS(Xs) is torsion-
free, hence H2

ét(X
s,Z`) is torsion-free for any prime ` (see (5.13)). Since X

is a surface, this implies that H3
ét(X

s,Z`) is torsion-free. From Proposition
5.2.9 (i) we deduce that Br(Xs) is divisible. By [GvS, Prop. 1.2] the 2-term
complex of Γ -modules

NS(Xs)∗ −→ T (XC)⊗Z Q/Z, (5.27)

which is the middle part of (5.26), is quasi-isomorphic to τ[1,2](Rp∗(Gm,X)).
This explains the previous proposition, because the relevant differential in
the spectral sequence coincides with the map attached to the exact triangle

(R1p∗)(Gm,X)[−1] −→ τ[1,2](Rp∗(Gm,X)) −→ (R2p∗)(Gm,X)[−2].
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5.4.3 Galois invariants of the geometric Brauer group

Theorem 5.4.12 Let X be a smooth, projective, geometrically integral vari-
ety over a field k of characteristic exponent p. Then the cokernel of the natural
map α : Br(X)→Br(Xs)Γ is the direct sum of a finite group of order coprime
to p and a p-torsion group of finite exponent. In particular, if char(k) = 0,
then the image of Br(X) in Br(Xs) is finite if and only if Br(Xs)Γ is finite.

This was proved in [CTS13b] when char(k) = 0. As pointed out by X. Yuan
[Yua20], the same method works over an arbitrary ground field. Here we give
the proof of [CTS13b] assuming char(k) = 0, and refer the reader to [Yua20]
for the general case. See Theorem 16.1.4 for the case where k is a finite field.

We start with a lemma.

Lemma 5.4.13 Let L ⊂ ks be a finite separable extension of a field k of
degree [L : k] = n. Write Γk = Gal(ks/k) and ΓL = Gal(ks/L). Let X be a
k-scheme and let XL = X ×k L. The following diagram commutes:

Br(X)

α

��

resL/k // Br(XL)

αL

��

coresL/k // Br(X)

α

��
Br(Xs)Γk

� � // Br(Xs)ΓL
σ // Br(Xs)Γk

Here σ(x) =
∑
σi(x), where σi ∈ Γk are coset representatives of Γk/ΓL. The

composition of maps in each row of the diagram is the multiplication by n.

Proof. We have an isomorphism L ⊗k ks
∼−→ k⊕ns whose components corre-

spond to the n distinct embeddings of L into ks. By changing the base from
X to Xs we obtain the commutative diagram

Hp
ét(X,Gm)

��

resL/k // Hp
ét(XL,Gm)

��

coresL/k // Hp
ét(X,Gm)

��
Hp

ét(X
s,Gm)

� � // Hp
ét(X

s,Gm)⊕n // Hp
ét(X

s,Gm)

where the maps in the bottom row are the diagonal embedding and the sum.
The representation of the Galois group Γk in Hp

ét(X
s,Gm)⊕n is induced from

the natural representation of ΓL in Hp
ét(X

s,Gm). Passing to Γk-invariant
subgroups, and taking p = 2, we obtain the statement of the lemma. �

Proof of Theorem 5.4.12. We assume that char(k) = 0. By Proposition
5.2.9 (ii) the group Br(Xs)[n] is finite for any positive integer n. Hence it
is enough to show that Coker(α) has finite exponent.
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Suppose that k ⊂ L ⊂ ks is a finite extension of k such that [L : k] = n.
By Lemma 5.4.13 restriction and corestriction induce the maps

Coker(α) −→ Coker(αL) −→ Coker(α)

whose composition is the multiplication by n. Thus the kernel of the map
Coker(α)→Coker(αL) is annihilated by n, and to show that Coker(α) has
finite exponent it is enough to show that Coker(αL) has finite exponent.

Therefore without loss of generality we can replace k by any finite exten-
sion. In particular, we can assume that X(k) 6= ∅ and Γk acts trivially on
the Néron–Severi group NS(Xs). Since X(k) 6= ∅, we have the exact sequence
(5.24)

0 −→ Br1(X) −→ Br(X)
α−→ Br(Xs)Γ

β−→ H2(k,Pic(Xs)).

Thus it is enough to show that Im(β) has finite exponent. We do this by
considering finitely many curves on X and restricting our maps to each of
these curves. This is a meaningful strategy because for a proper curve C over
k we have Br(Cs) = 0 by Theorem 5.6.1 (v) below.

More precisely, NS(Xs)/tors is a finitely generated free abelian group, so
we can choose finitely many, say m, curves in Xs such that the intersection
pairing with the classes of these curves defines an injective group homomor-
phism ι : NS(Xs)/tors ↪→ Zm. By taking normalisation we obtain m mor-
phisms from smooth projective curves defined over ks to Xs. We replace k
by a finite extension over which all these curves and morphisms are defined.
We now have k-morphisms Ci→X for i = 1, . . . ,m.

By successively applying the Bertini theorem for hyperplane sections of
smooth projective varieties [Jou84, Ch. I, Cor. 6.7] we find a smooth and
connected curve in Xs. By replacing the field k by a finite extension we can
assume that this curve is obtained by base change from k to ks from a smooth
and geometrically connected curve C0 ⊂ X defined over k. We now add C0

to our finite family of curves equipped with finite morphisms to X.
A morphism f : C→X, where C is a smooth, projective and geometrically

integral curve over k gives rise to the commutative diagram

Br(Xs)Γ
βX //

f∗

��

H2(k,Pic(Xs))

f∗

��
0 = Br(Cs)Γ

βC // H2(k,Pic(Cs))

We have established the following claim.

Claim 1. For any morphism f : C→X the group Im(βX) is contained in the
kernel of the right vertical map in the diagram.
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The exact sequence of Γk-modules

0 −→ Pic0(Cs) −→ Pic(Cs) −→ NS(Cs) −→ 0

gives rise to a commutative diagram with exact rows

H2(k,Pic0(Xs)) → H2(k,Pic(Xs)) → H2(k,NS(Xs))
↓ ↓ ↓

0→ H2(k,Pic0(Cs)) → H2(k,Pic(Cs)) → H2(k,NS(Cs))
(5.28)

The zero in the bottom row is due to the fact that H1(k,Z) = 0.
A combination of the Bertini theorem and Zariski’s connectedness theorem

(see [SGA1, X, Cor. 2.11, p. 210]) implies that a connected finite étale cover of
Xs restricts to a connected cover of Cs

0. In particular, writing A for the Picard
variety of X, we obtain that the map of abelian varieties A→Pic0

C0/k has
trivial kernel. By the Poincaré reducibility theorem [MumAV, §19, Thm. 1]
there exists an abelian subvariety B ⊂ Pic0

C0/k such that the natural map

A×B −→ Pic0
C0/k

is an isogeny of abelian varieties over k, that is, a surjective morphism with fi-
nite kernel. It follows that the kernel of H2(k,Pic0(Xs))→H2(k,Pic0(Cs

0)) has
finite exponent. From diagram (5.28) we now obtain the following statement.

Claim 2. The kernel of the composite map

H2(k,Pic0(Xs)) −→ H2(k,Pic(Xs)) −→ H2(k,Pic(Cs
0))

has finite exponent.

In view of (5.28), Claims 1 and 2, to complete the proof it is enough to
show that the map of Γk-modules

NS(Xs) −→
m⊕
i=1

NS(Cs
i ) = Zm

induces a map ξ : H2(k,NS(Xs))→H2(k,Zm) whose kernel has finite expo-
nent. The map ξ is the composition of two maps:

H2(k,NS(Xs))
ξ1−→ H2(k,NS(Xs)/tors)

ξ2−→ H2(k,Zm).

It is enough to show that the kernel of each of these has finite exponent.
From the exact sequence of Galois cohomology attached to the exact se-

quence of Γk-modules

0 −→ NS(Xs)tors −→ NS(Xs) −→ NS(Xs)/tors −→ 0
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we deduce that Ker(ξ1) is annihilated by the exponent of the finite group
NS(Xs)tors.

There exists a homomorphism of abelian groups σ : Zm→NS(Xs)/tors
such that the composition σ ◦ ι is the multiplication by a positive integer
on NS(Xs)/tors. This integer annihilates Ker(ξ2). �

Remark 5.4.14 This proof can be used to produce an explicit upper bound
for the size of the cokernel of α : Br(X)→Br(Xs)Γ , see [CTS13b, Thm. 2.2].
When H1(X,OX) = 0 or k is a number field, Proposition 5.4.10 can also be
used to give upper bounds for this cokernel, see [CTS13b, Thm. 4.2, 4.3]. In
some cases, for example when X is a diagonal quartic surface in P3

Q, with the
help of Proposition 5.4.10 one can completely determine the image of Br(X)
in Br(Xs)Γ , see Section 16.8.

5.5 Projective varieties with Hi(X,OX) = 0

Theorem 5.5.1 Let X be a smooth, projective and geometrically integral
variety over a field k. Assume that H1(X,OX) = 0 and that NS(X) is torsion-
free. Then H1(k,Pic(Xs)) and Br1(X)/Br0(X) are finite groups.

Proof. From the exact sequence (5.21) we see that the quotient Br1(X)/Br0(X)
is a subgroup of H1(k,Pic(Xs)). The result then follows from Corollary 5.1.3
and the finiteness of H1(k,M) for any finitely generated torsion-free abelian
group M . �

Theorem 5.5.2 Let X be a smooth, projective and geometrically integral
variety over a field k of characteristic zero. Assume that Hi(X,OX) = 0 for
i = 1, 2 and that the Néron–Severi group NS(X) is torsion-free. Then we
have the following properties.

(i) The groups Br(X) and Br(X)/Br0(X) are finite.
(ii) Br(X) = 0 if and only if H3

ét(X,Z`(1))tors = 0 for every prime `. In this
case Br(X) = Br1(X).

(iii) If dimX = 2, then Br(X) = 0 and Br1(X) = Br(X).

Proof. By Corollary 5.1.3 the condition H1
zar(X,OX) = 0 implies that

Pic(X) ∼= NS(X).
Let us first consider the case k = C. Using the GAGA theorems, we get

Hi
an(X,OX) = 0 for i = 1, 2, and Pic(X) = H1

zar(X,O∗X) ∼= H1
an(X,O∗X). The

exponential sequence for the analytic topology

0 −→ Z(2π
√
−1) −→ OX

exp−→ O∗X −→ 0

then shows that the condition H2
zar(X,OX) = 0 gives an isomorphism of

finitely generated groups Pic(X) ∼= H2
an(X,Z), hence ρ = b2.
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If k is an arbitrary field of characteristic zero, we can find a subfield k0 ⊂ k
finitely generated over Q and a variety X0 over k0 such that X ∼= X0 ×k0

k.
Choose an embedding k0 ↪→ C. We proved that ρ = b2 holds forX0×k0

C. This
implies that the same is true for X0×k0 (k0)s and thus also for Xs = X×k ks.

Now Proposition 5.2.9 shows that Br(X) is isomorphic to the finite group
⊕`H3

ét(X,Z`(1))tors. Statements (i) and (ii) then follow from Theorem 5.5.1.
Statement (iii) follows from (ii) and Proposition 5.2.10. �

Corollary 5.5.3 Let X be a smooth, projective, geometrically integral vari-
ety over a field k. In each of the following cases:

(i) X is a complete intersection of dimension at least 2 in projective space,
(ii) X is K3 surface,

the groups H1(k,Pic(X)) and Br1(X)/Br0(X) are finite.

Proof. In both cases Pic(X) is torsion-free.
For case (i), see [SGA2, XII, Cor. 3.7] and [SGA7, XI, Thm. 1.8]. For case

(ii), see [Huy16, Ch. 1, Prop. 2.4]. �

For smooth, projective, geometrically integral varieties over a field of char-
acteristic zero, a similar statement is true for rationally connected varieties
(see Definition 14.1.1), and in particular for unirational varieties.

Corollary 5.5.4 Let X ⊂ Pnk be a smooth complete intersection of dimen-
sion at least 3 over a field k. Then Br(k)→Br1(X) is an isomorphism. If
char(k) = 0, then Br(k)→Br(X) is an isomorphism. If char(k) = p > 0, then
Br(k){`}→Br(X){`} is an isomorphism for any prime ` 6= p.

Proof. For such a variety X, the restriction map

Z ∼= Pic(Pnk ) ∼= Pic(Pnk̄ ) −→ Pic(X)

is an isomorphism [SGA2, XII, Cor. 3.7]. It is compatible with the action of
Γ , which thus acts trivially on Pic(X). Hence H1(k,Pic(X)) = 0. The map
Pic(X)→Pic(X)Γ is surjective, since Pic(Pnk )→Pic(Pn

k̄
)Γ is surjective. From

the exact sequence (5.21) we conclude that Br(k)→Br1(X) is an isomorphism.
For any prime ` 6= p we have a commutative diagram with exact rows:

Pic(Pn
k̄
)/`

∼ //

∼=
��

H2(Pn
k̄
,Z/`)

∼=
��

0 // Pic(X)/` // H2(X,Z/`) // Br(X)[`] // 0,

here the middle vertical map is an isomorphism by [SGA7, XI, Thm. 1.6 (ii)].
By the exactness of the bottom row we have Br(X)[`] = 0. �
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5.6 The Picard and Brauer groups of curves

Let us first recall the structure of the Picard group of a smooth, projective,
geometrically integral curve C over a field k. Let g = dim(H1(C,OC)) be the
genus of C. We have NS(Cs) ∼= Z, and the natural morphism PicC/k → Z
is given by the degree map on divisors. For an integer n, let PicnC/k be the

component of PicC/k of degree n. The Picard variety Pic0
C/k is an abelian

variety of dimension g; it is the Jacobian J of the curve C. The Jacobian is
principally polarised, hence isomorphic to its dual abelian variety, thus J is
also the Albanese variety of C. The variety PicnC/k is a k-torsor for J . For

g ≥ 1 there is a natural embedding C ↪→ Pic1
C/k, so Pic1

C/k is the Albanese
torsor of C.

There is an exact sequence of Γ -modules

0 −→ J(ks) −→ Pic(Cs) −→ Z −→ 0. (5.29)

The attached long exact sequence of Galois cohomology gives an exact se-
quence

0 −→ J(k) −→ Pic(Cs)Γ −→ Z −→ H1(k, J) −→ H1(k,Pic(Cs)) −→ 0.

The group H1(k, J) classifies J-torsors over k. The map Z→H1(k, J) sends
n ∈ Z to the class of the torsor PicnC/k.

In the following theorem we collect results about the Brauer groups of
curves.

Theorem 5.6.1 Let C be a quasi-projective curve over a field k. Then the
following statements hold.

(i) If α ∈ Br(C) vanishes at each point of C(K) for any field K containing
k, then α = 0 ∈ Br(C).

(ii) If k is algebraically closed, then Br(C) = 0.
(iii) If k is separably closed of characteristic p > 0, then Br(C) is a p-

primary torsion group.
(iv) If k is separably closed and C is proper over k, then Br(C) = 0.
(v) If k is finite and C is proper over k, then Br(C) = 0.

(vi) If k is not perfect, then Br(A1
k) 6= 0. If k is separably closed, then

Br(A1
k) = 0 if and only if k is algebraically closed.

(vii) The natural map Br(k)→Br(P1
k) is an isomorphism.

(viii) If k is perfect, then the natural map Br(k)→Br(A1
k) is an isomorphism.

(ix) For any prime ` 6= char(k), the map Br(k){`}→Br(A1
k){`} is an iso-

morphism.

Proof. Let Cred ⊂ C be the underlying reduced curve. By Proposition 3.2.5
(ii), the map Br(C)→Br(Cred) is an isomorphism. Thus it is enough to prove
the theorem when C is reduced. Then C is the union of connected purely
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1-dimensional quasi-projective curves and of spectra of finite field extensions
of k. Since a finite extension of a separably closed field is separably closed,
and the Brauer groups of separably closed fields and of finite fields are trivial,
to prove the theorem we may assume that C is purely 1-dimensional, reduced
and connected.

Statement (i) is then a special case of Proposition 3.6.6.
By (i) and the triviality of the Brauer groups of separably closed fields

and of finite fields, to prove (ii), (iii), (iv), (v) it is enough to consider the
generic points of the irreducible components of C.

(ii) By Tsen’s theorem (Theorem 1.2.14) the Brauer group of a function
field in one variable over an algebraically closed field is trivial. Now (ii) follows
from (i).

(iii) By a version of Tsen’s theorem over a separably closed field (Propo-
sition 3.8.2), the Brauer group of a function field in one variable over a sepa-
rably closed field of characteristic p > 0 is p-primary. The result now follows
from (i).

(iv) The normalisation of C is a finite disjoint union of proper, regular,
integral curves over k. Hence, by (i), it is enough to prove that for a proper,
regular, integral curve D over k we have Br(D) = 0. Let K be the algebraic
closure of k in the field k(D). Since the local rings of D are normal, the
elements of K are regular functions on D, that is, K ⊂ H0(D,OD). Thus
the structure morphism D→Spec(k) factors through D→Spec(K), and D is
geometrically integral over K. Since D is a curve, we have H2(D,OD) = 0,
thus (iv) follows from (ii) and Theorem 5.2.5.

(v) Arguing as in the proof of (iv) we reduce the statement to proving that
Br(C) = 0, where C is a regular, proper, geometrically integral curve over a
finite field. The exact sequence (5.21) gives an isomorphism

Ker[Br(C) −→ Br(Cs)]
∼−→ H1(k,Pic(Cs)).

By (ii), we have Br(Cs) = 0. Now consider the exact sequence (5.29):

0 −→ J(ks) −→ Pic(Cs) −→ Z −→ 0,

where the Γ -module J(ks) is the group of ks-points of the Jacobian J of
C. By Lang’s theorem on the triviality of the first Galois cohomology group
of a finite field with coefficients in a connected algebraic group, we have
H1(k, J) = 0. But H1(k,Z) = 0, so we deduce H1(k,Pic(Cs)) = 0. Hence
Br(C) = 0.

(vi) If k is algebraically closed, then (vi) is a particular case of (ii). Suppose
that k has characteristic p > 0 and is not perfect. Then there is an element
c ∈ k r kp. It gives rise to a non-zero class in H1

fppf(k, µp) and hence in

H1
fppf(A1

k, µp). The étale Artin–Schreier covering of A1
k = Spec(k[x])→A1

k =

Spec(k[t]) given by xp − x = t gives a non-zero element of H1
ét(A1

k,Z/p) =
H1

fppf(A1
k,Z/p). This finite étale cover extends to a finite cover P1

k→P1
k which
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is totally ramified of degree p above the point at infinity of P1
k. We claim that

the cup-product of these two classes is a non-zero element of H2
fppf(A1

k, µp) =

Br(A1
k)[p]. For this it is enough to prove that the class of the corresponding

cyclic algebra is non-zero in Br(k(t)). By Proposition 1.3.8 this holds if and
only if c ∈ k ⊂ k(t) is not a norm of an element from k(x). Consider the
completion of k(t) at the point at infinity. If c were a norm, then its image in
the residue field, which is just k, would be a p-th power, see [SerCL, Ch. V,
§3, Prop. 5 (i)].

(vii) For C = P1
k, we have an isomorphism of Pic(Cs) with the trivial

Γ -module Z given by the degree map. The map Pic(C)→Pic(Cs) = Z is an
isomorphism. By (iv), Br(Cs) = 0. Since H1(k,Z) = 0, the exact sequence
(5.21) gives an isomorphism Br(k)

∼−→ Br(P1
k).

(viii) Since the affine line has a k-point, we obtain from (5.21) that the
natural map Br(k)→Br1(A1

k) is an isomorphism. Since k is perfect, ks is
algebraically closed, hence Br(A1

ks
) = 0 by (ii). Thus Br(A1

k) = Br1(A1
k).

(ix) This follows from (iii) and (5.21). �

In connection with Theorem 5.6.1(vi), Knus, Ojanguren and Saltman
[KOS76, Thm. 5.5] computed Br(A1

k) for non-perfect fields k of positive char-
acteristic.

Remark 5.6.2 Let us return to the case of a smooth, projective and geomet-
rically integral curve C over a field k. If C has a k-point or, more generally, a
zero-cycle of degree 1, then (5.29) splits. In this case (5.21) gives an isomor-
phism Pic(C) = Pic(Cs)Γ and, in view of Theorem 5.6.1 (iv) below, a split
exact sequence

0 −→ Br(k) −→ Br(C) −→ H1(k, J) −→ 0.

5.7 The Picard and Brauer groups of a product

5.7.1 The Picard group of a product

Recall that if X is a smooth, projective, and geometrically integral variety
over a field k, then the connected component of 0 of the Picard scheme
Pic0

X/k ⊂ PicX/k is a projective and connected (but not necessarily reduced)
group k-scheme, see Theorem 5.1.1.

Proposition 5.7.1 Let X and Y be smooth, projective, geometrically inte-
gral varieties over a field k. Let pX : X ×k Y→X and pY : X ×k Y→Y be the
projection maps. Then the morphism of group k-schemes

Pic0
X/k ×Pic0

Y/k −→ Pic0
X×kY/k (5.30)

that sends (a, b) to p∗X(a) + p∗Y (a), is an isomorphism.
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Proof. By Galois descent, to prove that our map is an isomorphism we can
assume that k is separably closed [EGA, IV2, Prop. 2.7.1 (viii)]. Since X and
Y are smooth and k is separably closed, we can choose base points x0 ∈ X(k)
and y0 ∈ Y (k). The morphism (5.30) has a retraction

(
(id, y0)∗, (x0, id)∗

)
. In

particular, it identifies Pic0
X/k × Pic0

Y/k with a direct factor of Pic0
X×kY/k.

Let C ⊂ Pic0
X×kY/k be the kernel of

(
(id, y0)∗, (x0, id)∗

)
. Then we have

Pic0
X×kY/k

∼= C ×Pic0
X/k ×Pic0

Y/k.

As a surjective image of a connected group k-scheme, C is connected. From
the Künneth formula [Stacks, Lemma 0BED]

H1(X ×k Y,O) ∼= H1(X,O)⊕H1(Y,O)

we see that (5.30) induces an isomorphism of tangent spaces at 0. Thus the
tangent space to C at 0 is trivial, hence C = 0. �

We continue to assume that X and Y are smooth, projective, geometrically
integral varieties over a field k. Let A = Pic0

X/k,red and B = Pic0
Y/k,red be

the Picard varieties of X and Y , respectively. The dual abelian variety B∨

of B is the Albanese variety of Y .
We choose x0 ∈ X(ks) and y0 ∈ Y (ks). By Corollary 2.5.8 the Picard

scheme PicXs/ks
∼= Pics

X/k = PicX/k ×k ks represents the relative Picard
functor PicXs/ks

. Recall from Section 5.1 that there is a unique Poincaré
invertible sheaf P on Xs × Pics

X/k normalised so that it restricts trivially
to x0 × Pics

X/k. An invertible sheaf L on Xs × Y s that restricts trivially
to x0 × Y s and Xs × y0 corresponds to a unique morphism h : Y s→Pics

X/k

sending y0 to 0 such that L ∼= (id, h)∗P. Since Y s is reduced and connected,
h factors through a morphism h0 : Y s→As. The morphism h0 is zero if and
only if L is trivial.

There is a canonical Albanese morphism AlbY s,y0
: Y s→(B∨)s sending y0

to 0, see Section 5.1. By the universal property of the Albanese variety, h0 is
uniquely written as the composition of AlbY s,y0

with a morphism of abelian
varieties (B∨)s→As. This gives an isomorphism of abelian groups

Pic(Xs × Y s)x0,y0
∼= Hom((B∨)s, As),

where the subscript (x0, y0) denotes the kernel of
(
(id, y0)∗, (x0, id)∗

)
, and we

write Hom((B∨)s, As) for the group of homomorphisms of abelian varieties
(B∨)s→As. Thus we obtain a split exact sequence of abelian groups

0→Pic(Xs)⊕ Pic(Y s) −→ Pic(Xs × Y s) −→ Hom((B∨)s, As)→0. (5.31)

The second map here is induced by the k-morphisms pX and pY . The third
map does not depend on the choice of x0 and y0. This implies that if k0 ⊂ k is
a subfield and Γ = Aut(k/k0), then (5.31) is an exact sequence of Γ -modules.

https://stacks.math.columbia.edu/tag/0BED
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This exact sequence of Γ -modules is split when x0 and y0 are k0-points, but
not in general.

Proposition 5.7.2 Let X and Y be smooth, projective and geometrically
integral varieties over a field k. Assume that either (X × Y )(k) 6= ∅ or
H3(k, k∗s ) = 0, which holds when k is a number field. Then the natural map

Br1(X)⊕ Br1(Y ) −→ Br1(X × Y )

has finite cokernel.

Proof. This is a consequence of exact sequences (5.31) and (5.21), and the
fact that Hom((B∨)s, As) is a finitely generated free abelian group. �

Proposition 5.7.3 Let X and Y be smooth, projective and geometrically
integral varieties over a field k. Let A = Pic0

X/k,red and B = Pic0
Y/k,red

be the Picard varieties of X and Y , respectively. We have a commutative
diagram of Γ -modules with exact rows and columns:

0 0
↓ ↓

A(ks)⊕B(ks) = A(ks)⊕B(ks)
↓ ↓

0→ Pic(Xs)⊕ Pic(Y s) → Pic(Xs × Y s) → Hom((B∨)s, As) → 0
↓ ↓ ||

0→ NS(Xs)⊕NS(Y s) → NS(Xs × Y s) → Hom((B∨)s, As) → 0
↓ ↓
0 0

The bottom row is a split exact sequence of Γ -modules. If (X × Y )(k) 6= ∅,
then the middle row is also a split exact sequence of Γ -modules.

Proof. The vertical exact sequences are those of Theorem 5.1.1 (i). The upper
row of the diagram comes from (5.30) and the middle row is (5.31). It remains
to prove that the bottom row is split as a sequence of Γ -modules. This follows
from the fact that for φ ∈ Hom((B∨)s, As) the class of the invertible sheaf
(AlbX,x0

, φ ◦AlbY,y0
)∗P in NS(Xs×Y s) does not depend on the choice of x0

and y0. The last statement of the proposition is clear: it is enough to choose
(x0, y0) ∈ (X × Y )(k). �

Remark 5.7.4 (1) Let A1 and A2 be abelian varieties over an arbitrary field
k. By a theorem of Chow, the natural map Hom(As

1, A
s
2)→Hom(A1, A2) is

an isomorphism, see [Con06, Thm. 3.19].
(2) The bottom row of the previous diagram shows that

NS(Xs × Y s)tors
∼= NS(Xs)tors ⊕NS(Y s)tors,

because the abelian group Hom((B∨)s, As) is torsion-free.
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5.7.2 Topological Künneth formula in degrees 1 and 2

As a motivation for a version of the Künneth formula for étale cohomology in
degrees 1 and 2, we give a topological analogue of this theorem for singular
cohomology. The following proposition rectifies [SZ14, Prop. 2.2].

Proposition 5.7.5 Let X and Y be non-empty path-connected CW-compl-
exes such that H1(X,Z) and H1(Y,Z) are finitely generated abelian groups
(which holds when X and Y are finite CW-complexes). Suppose G = Z or
G = Z/n, where n is a positive integer. Then we have canonical isomorphisms
of abelian groups

H1(X × Y,G) ∼= H1(X,G)⊕H1(Y,G),

H2(X × Y,G) ∼= H2(X,G)⊕H2(Y,G)⊕Hom
(
H1(X,G)∨,H1(Y,G)

)
,

where for a G-module M we write M∨ = Hom(M,G).

Proof. To simplify the notation we write Hn(X) for Hn(X,Z). Since X is
non-empty and path-connected we have H0(X) = Z, see [Hat02, Prop. 2.7].
The Künneth formula for homology [Hat02, Thm. 3.B.6] gives a split exact
sequence of abelian groups

0→
n⊕
i=0

(
Hi(X)⊗Hn−i(Y )

)
→Hn(X × Y )→

n−1⊕
i=0

Tor(Hi(X),Hn−1−i(Y ))→0.

Since H0(X) = Z, in degrees 1 and 2 this gives canonical isomorphisms

H1(X × Y ) ∼= H1(X)⊕H1(Y ) (5.32)

and
H2(X × Y ) ∼= H2(X)⊕H2(Y )⊕

(
H1(X)⊗H1(Y )

)
. (5.33)

For any abelian group G, the universal coefficients theorem [Hat02, Thm. 3.2]
gives the following (split) exact sequence of abelian groups

0 −→ Ext(Hn−1(X), G) −→ Hn(X,G) −→ Hom(Hn(X), G) −→ 0, (5.34)

where the third map evaluates a cocycle on a cycle. This gives a canonical
isomorphism

H1(X,G) ∼= Hom(H1(X), G). (5.35)

The desired isomorphism for H1 now follows from (5.32).
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Using the functoriality of the universal coefficients formula (5.34) with re-
spect to the projections of X×Y to X and Y , together with the isomorphisms
(5.32) and (5.33), we obtain a split short exact sequence

0 −→ H2(X,G)⊕H2(Y,G) −→ H2(X × Y,G)

−→ Hom(H1(X)⊗H1(Y ), G) −→ 0.
(5.36)

The second map here has a retraction induced by the embedding of X × y0

and x0×Y , for some base points x0 and y0. The third map in (5.36) is given
by evaluating a cocycle on X×Y on the product of a cycle on X and a cycle
on Y . A similar map with G = G1 ⊗G2 fits into the following commutative
diagram with the natural right-hand vertical map:

H2(X × Y,G1 ⊗G2) // Hom(H1(X)⊗H1(Y ), G1 ⊗G2)

H1(X,G1)⊗H1(Y,G2)
∼ //

∪

OO

Hom(H1(X), G1)⊗Hom(H1(Y ), G2)

OO

(5.37)

Let G = Z. By assumption, H1(X) and H1(Y ) are finitely generated
abelian groups. Let M and N be their respective quotients by the torsion
subgroups. The map induced by multiplication in Z

Hom(H1(X),Z)⊗Hom(H1(Y ),Z) −→ Hom(H1(X)⊗H1(Y ),Z)

coincides with Hom(M,Z) ⊗ Hom(N,Z)→Hom(M ⊗ N,Z), which is clearly
an isomorphism, so the displayed map is also an isomorphism. Using (5.35)
we rewrite it as

H1(X,Z)⊗H1(Y,Z) ∼= Hom(H1(X)⊗H1(Y ),Z).

Now (5.36) gives a canonical isomorphism

H2(X × Y,Z) ∼= H2(X,Z)⊕H2(Y,Z)⊕
(
H1(X,Z)⊗H1(Y,Z)

)
. (5.38)

In view of the diagram (5.37) the last summand is embedded into H2(X×Y,Z)
via the cup-product map. Since H1(X,Z) is a free abelian group of finite rank,
we can rewrite (5.38) and obtain the desired isomorphism for H2(X × Y,Z).

Now let G = Z/n. Then Hom(H1(X)⊗H1(Y ),Z/n) is canonically isomor-
phic to

Hom(H1(X),Hom(H1(Y ),Z/n)) ∼= Hom(H1(X)/n,H1(Y,Z/n)).

Since Hom(H1(X)/n,Z/n) ∼= H1(X,Z/n), we have H1(X,Z/n)∨ ∼= H1(X)/n.
Now (5.36) produces the required isomorphism for H2(X × Y,Z/n). �
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Remark 5.7.6 (1) The näıve analogue of (5.38) is false for the third coho-
mology group. A counter-example is X = RP2.

(2) For X = Y = RP2 we have H1(X) = Z/2, so in this case the map
induced by multiplication in Z/n with n = 4

Hom(H1(X),Z/n)⊗Hom(H1(Y ),Z/n) −→ Hom(H1(X)⊗H1(Y ),Z/n)

is zero. From diagram (5.37) we see that in this case the cup-product map

H1(X,Z/n)⊗H1(Y,Z/n) −→ H2(X × Y,Z/n)

is zero.

5.7.3 Künneth formula for étale cohomology in
degrees 1 and 2

Let k be a separably closed field. Let G be a finite commutative group k-
scheme of order not divisible by char(k). The Cartier dual of G is defined as

Ĝ = Hom(G,Gm,k) in the category of commutative group k-schemes.
For a proper and geometrically integral variety X over k, the natural

pairing
H1

ét(X,G)× Ĝ −→ H1
ét(X,Gm,X) = Pic(X)

gives rise to a canonical isomorphism

H1
ét(X,G)

∼−→ Hom(Ĝ,Pic(X)). (5.39)

The map in (5.39) associates to a class of a G-torsor T →X its ‘type’, see
[Sko01, Thm. 2.3.6]. (To see that this map is an isomorphism, we can assume

that G = µn so that Ĝ = Z/n, and use the Kummer sequence.)
We consider an important particular case. Let n be a positive integer not

divisible by char(k). Define SX as the finite commutative group k-scheme
whose Cartier dual is

ŜX = H1
ét(X,µn) ∼= Pic(X)[n]. (5.40)

For our purposes we shall often need to consider the twist ŜX(−1). So for a
finite commutative group k-scheme G such that nG = 0 we use the notation

G∨ = Hom(G,Z/n).

In particular, we have S∨X = H1
ét(X,Z/n). The pairing G × G∨→Z/n gives

rise to a canonical isomorphism G
∼−→ (G∨)∨.
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Let TX→X be an SX -torsor whose type is the identity in End(H1
ét(X,µn))

∼= End(H1
ét(X,Z/n)); it is unique up to isomorphism. The natural pairing

H1
ét(X,SX)× S∨X −→ H1

ét(X,Z/n)

with the class [TX ] ∈ H1
ét(X,SX) induces the identity map on S∨X =

H1
ét(X,Z/n). In other words, the image of [TX ] with respect to the map

induced by a : SX→Z/n equals a ∈ S∨X .
Suppose that Y is also a proper and geometrically integral variety over k.

The image of [TX ]⊗ [TY ] under the map

H1
ét(X,SX)⊗H1

ét(Y, SY ) −→ H1
ét(X,Z/n)⊗H1

ét(Y,Z/n)

induced by a : SX→Z/n and b : SY→Z/n, equals a⊗ b ∈ S∨X ⊗ S∨Y .
We refer to [Mil80, Prop. V.1.16] for the existence and properties of the

cup-product. Thus we can consider [TX ] ∪ [TY ] ∈ H2
ét(X ×k Y, SX ⊗ SY ) and

a ∪ b ∈ H2
ét(X ×k Y,Z/n⊗ Z/n) ∼= H2

ét(X ×k Y,Z/n).

The cup-product is functorial, so the image of [TX ] ∪ [TY ] under the map
induced by a ⊗ b is a ∪ b. This can be rephrased by saying that the natural
pairing

H2
ét(X ×k Y, SX ⊗ SY ) × S∨X ⊗ S∨Y −→ H2

ét(X ×k Y,Z/n) (5.41)

with [TX ] ∪ [TY ] gives rise to the cup-product map

S∨X ⊗ S∨Y = H1
ét(X,Z/n)⊗H1

ét(Y,Z/n) −→ H2
ét(X × Y,Z/n).

It is important to note that (5.41) factors through the pairing

H2
ét(X×k Y, SX⊗SY ) × Hom(SX⊗SY ,Z/n) −→ H2

ét(X×k Y,Z/n). (5.42)

The pairing (5.42) with [TX ] ∪ [TY ] induces a map

ε : Hom(SX ⊗ SY ,Z/n) −→ H2
ét(X ×k Y,Z/n).

We thus have a commutative diagram, where the map ξ is induced by mul-
tiplication in Z/n:

S∨X ⊗ S∨Y
ξ //

∼=
��

Hom(SX ⊗ SY ,Z/n)

ε

��
H1

ét(X,Z/n)⊗H1
ét(Y,Z/n)

∪ // H2
ét(X ×k Y,Z/n)

(5.43)

The canonical isomorphism Hom(SX ⊗ SY ,Z/n) ∼= Hom(SX , S
∨
Y ) allows us

to rewrite ε as the map sending ϕ ∈ Hom(SX , S
∨
Y ) to ε(ϕ) = ϕ∗[TX ] ∪ [TY ],
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where ∪ stands for the cup-product pairing

H1
ét(X,S

∨
Y )×H1

ét(Y, SY ) −→ H2
ét(X × Y, S∨Y ⊗ SY ) −→ H2

ét(X ×k Y,Z/n).

We write pX : X×kY→X and pY : X×kY→Y for the natural projections.
Since X and Y are geometrically integral over the separably closed field k,
we can choose base points x0 ∈ X(k) and y0 ∈ Y (k). We have the induced
map

(idX , y0)∗ : Hi
ét(X ×k Y,Z/n) −→ Hi

ét(X,Z/n)

and a similar map for Y . Using these maps we see that

(p∗X , p
∗
Y ) : Hi

ét(X,Z/n)⊕Hi
ét(Y,Z/n) −→ Hi

ét(X ×k Y,Z/n)

is split injective, so we have an isomorphism

Hi
ét(X ×k Y,Z/n) ∼= Hi

ét(X,Z/n)⊕Hi
ét(Y,Z/n)⊕ H̃i

ét(X ×k Y,Z/n), (5.44)

where H̃i
ét(X ×k Y,Z/n) is the intersection of kernels of (idX , y0)∗ and

(x0, idY )∗. Since k is separably closed, we have Hi(k,M) = 0 for any abelian
group M and any i ≥ 1. Thus [TX ] ∪ [TY ] goes to zero under the maps
induced by the restrictions to x0 × Y and to X × y0. This implies that
Im(ε) ⊂ H̃2

ét(X ×k Y,Z/n).

Now we can give a Künneth formula that appeared in [SZ14, Thm. 2.6]1.
Part (iii) of the following result is the degree 2 case of [Mil80, Cor. VI.8.13].

Theorem 5.7.7 Let X and Y be proper and geometrically integral varieties
over a separably closed field k. Let n be a positive integer not divisible by
char(k). Then we have the following statements.

(i) H̃1
ét(X ×k Y,Z/n) = 0, so there is a canonical isomorphism

H1
ét(X,Z/n)⊕H1

ét(Y,Z/n)
∼−→ H1

ét(X ×k Y,Z/n). (5.45)

(ii) Write H1
ét(X,Z/n)∨ = Hom(H1

ét(X,Z/n),Z/n) and similarly for Y . The
maps ε and ξ defined above fit into the following commutative diagram

H1
ét(X,Z/n)⊗H1

ét(Y,Z/n)
ξ //

∪
��

Hom(H1
ét(X,Z/n)∨,H1

ét(Y,Z/n))

ε∼=
��

H2
ét(X × Y,Z/n) H̃2

ét(X ×k Y,Z/n)? _oo

(5.46)

1 The precise statement of [SZ14, Thm. 2.6] in the case of degree 2 requires an additional
assumption. For example, it is enough to assume that H1

ét(Y,Z/n) is a free Z/n-module,

see [Mil80, Cor. VI.8.13]. What the proof of [SZ14, Thm. 2.6] actually shows is Theorem
5.7.7 below.
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Moreover, ε is an isomorphism.
(iii) If H1

ét(X,Z/n) is a free Z/n-module (which holds if NS(X)[n] = 0), then
all maps in (5.46) are isomorphisms, so we have

H2
ét(X × Y,Z/n)

∼= H2
ét(X,Z/n)⊕H2

ét(Y,Z/n)⊕
(
H1

ét(X,Z/n)⊗H1
ét(Y,Z/n)

)
.

Remark 5.7.8 Recall that for Z/n-modules A and B the map ξ is the canon-
ical map induced by multiplication in Z/n:

Hom(A,Z/n)⊗Hom(B,Z/n) −→ Hom(A⊗B,Z/n) ∼= Hom(A,Hom(B,Z/n)).

If n = 4 and A ∼= B ∼= Z/2, then ξ is the zero map, cf. Remark 5.7.6 (2).
Thus if X and Y are Enriques surfaces and char(k) 6= 2, then commutativity
of (5.46) implies that the cup-product map

H1
ét(X,Z/4)⊗H1

ét(Y,Z/4) −→ H2
ét(X × Y,Z/4)

is identically zero. (We have H1
ét(X,Z/4) ∼= H1

ét(Y,Z/4) ∼= Z/2.)

Remark 5.7.9 Suppose that k is a separable closure of a subfield k0 ⊂ k
and X = X0 ×k0

k for some k0-variety X0. Then the maps in (5.45) and
(5.46) respect the action of the Galois group Γ = Gal(k/k0). The tor-
sor TX is unique up to isomorphism, so the class [TX ] ∈ H1(X,SX) is Γ -
invariant (and similarly for TY ). Hence ε is an injective map of Γ -modules

Hom(SX , S
∨
Y )→H2

ét(X ×k Y,Z/n), therefore its image H̃2
ét(X ×k Y,Z/n) is a

Γ -submodule of H2
ét(X ×k Y,Z/n). After twisting, we obtain the following

canonical direct sum decomposition of Γ -modules

H2
ét(X × Y, µn) ∼= H2

ét(X,µn)⊕H2
ét(Y, µn)⊕Hom(SX , ŜY ), (5.47)

for any n not divisible by char(k). Here Hom(SX , ŜY ) consists of the elements
of H2

ét(X×Y, µn) that restrict trivially to X×y0 and x0×Y for any x0 ∈ X(k),
y0 ∈ Y (k). Finally, we note that the decompositions (5.47) are compatible
under the natural maps linking µn for different values of n.

Proof of Theorem 5.7.7. We have an obvious commutative diagram

Y

πY

��

X ×k Y
pYoo

pX

��
Spec(k) X

πXoo

Since X is connected, the map π∗X : H0
ét(k,Z/n) = Z/n→H0

ét(X,Z/n) is an
isomorphism with section x∗0. The k-variety Y is geometrically connected,
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hence pX has connected fibres, therefore we have an isomorphism of étale
X-sheaves Z/n−̃→pX∗(Z/n). We also obtain that

p∗X : H0
ét(X,Z/n) −→ H0

ét(X ×k Y,Z/n)

is an isomorphism with section (id, y0)∗.
The proper base change theorem [Mil80, Cor. VI.2.3] implies that the con-

stant étale X-sheaf π∗XHi
ét(Y,Z/n) is canonically isomorphic to RipX∗(Z/n).

Thus we have the Leray spectral sequence

Ep,q2 = Hp
ét(X,H

q
ét(Y,Z/n))⇒ Hp+q

ét (X ×k Y,Z/n). (5.48)

The standard properties of spectral sequences imply that the composition

Hi
ét(X,Z/n)−̃→Hi

ét(X,H
0
ét(Y,Z/n)) = Ei,02 −→ Hi

ét(X ×k Y,Z/n) (5.49)

coincides with p∗X . The functoriality of the spectral sequence (5.48) in X gives
rise to a commutative diagram

Hi
ét(X ×k Y,Z/n) //

(x0,id)∗

��

E0,i
2 = H0

ét(X,H
i
ét(Y,Z/n))

∼=x∗0
��

Hi
ét(Y,Z/n)

∼= // E0,i
2 = H0

ét(k,H
i
ét(Y,Z/n))

Hence the composition

Hi
ét(X ×k Y,Z/n) −→ E0,i

2 = H0
ét(X,H

i
ét(Y,Z/n)) ∼= Hi

ét(Y,Z/n)

coincides with the pullback (x0, id)∗.
For i = 1 we deduce from the spectral sequence the split exact sequence

0 −→ H1
ét(X,Z/n)

p∗X−−−−−→ H1
ét(X ×k Y,Z/n)

(x0,id)∗−−−−−→ H1
ét(Y,Z/n) −→ 0

with section p∗Y . This gives (i).
Let us prove (ii). Diagram (5.46) is obtained from diagram (5.43) since

Im(ε) is a subset of H̃2
ét(X ×k Y,Z/n), as explained before the statement

of the theorem. It remains to show that ε is an isomorphism. We give two
different proofs of this fact.

The first proof uses a counting argument based on the well-known Künneth
formula with coefficients in a field.2 Since the map (5.49) is injective, from
the spectral sequence (5.48) we get an isomorphism

H̃2
ét(X ×k Y,Z/n) ∼= H1

ét(X,H
1
ét(Y,Z/n)).

2 The idea of this proof was communicated to us by Yang Cao.
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As a particular case of (5.39) we get an isomorphism

H1
ét(X,H

1
ét(Y,Z/n)) ∼= Hom(SY , S

∨
X) ∼= Hom(SX , S

∨
Y ).

Thus the source and the target of ε are isomorphic, so it is enough to show
that

ε : Hom(SX ⊗ SY ,Z/n) −→ H̃2
ét(X ×k Y,Z/n)

is injective. More generally, for an integer m|n consider the map

εm : Hom(SX ⊗ SY ,Z/m) −→ H̃2
ét(X ×k Y,Z/m)

defined via pairing with [TX ]∪[TY ]. We prove that εm is injective by induction
on m|n. If p is a prime, the usual Künneth formula [Mil80, Cor. VI.8.13] for
the field Fp implies that the cup-product map

∪ : H1
ét(X,Fp)⊗H1

ét(Y,Fp) −→ H̃2
ét(X ×k Y,Fp)

is an isomorphism. We have a commutative diagram

Hom(SX ,Fp)⊗Hom(SY ,Fp)
ξ //

∼=
��

Hom(SX ⊗ SY ,Fp)

εp

��
H1

ét(X,Z/p)⊗H1
ét(Y,Z/p)

∪ // H̃2
ét(X ×k Y,Z/p)

(5.50)

In this case ξ is an isomorphism, hence εp is also an isomorphism.
Now for m|n assume that εa is injective for all a|m, a 6= m. Write m = ab.

An injective map of abelian groups A ↪→ A′ gives rise to an injective map
H1

ét(X,A) ↪→ H1
ét(X,A

′). Indeed, X is geometrically connected and so the
induced map

A ∼= H0
ét(X,A) −→ H0

ét(X,A
′/A) ∼= A′/A

is surjective. In particular, an injective map Z/a ↪→ Z/m gives rise to an in-
jective map H1

ét(Y,Z/a) ↪→ H1
ét(Y,Z/m). Let C ⊂ H1

ét(Y,Z/b) be its cokernel.
Applying the same argument we get an embedding

H1
ét(X,H

1
ét(Y,Z/a)) ↪→ H1

ét(X,H
1
ét(Y,Z/m)).

The cokernel of this map is contained in H1
ét(X,C), which is contained in

H1
ét(X,H

1
ét(Y,Z/b)).
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This gives rise to the top row of the following commutative diagram with
exact rows:

0 // H̃2
ét(X × Y,Z/a) // H̃2

ét(X × Y,Z/m) // H̃2
ét(X × Y,Z/b)

0 // Hom(SX ⊗ SY ,Z/a) //
?�

εa

OO

Hom(SX ⊗ SY ,Z/m) //

εm

OO

Hom(SX ⊗ SY ,Z/b)
?�

εb

OO

The diagram implies that the middle map is injective too. We conclude that
ε = εn is injective, hence an isomorphism.

The second proof uses a direct verification that ε is an isomorphism.
Let D(Ab) be the bounded derived category of the category of abelian

groups Ab, and let D(Z) be the bounded derived category of étale sheaves of
abelian groups on a scheme Z. Hom- and Ext-groups without subscript are
taken in Ab or D(Ab). Each of D(Ab) and D(Z) has the canonical truncation
functors τ≤m. Let RπX∗ : D(X×Y )→D(X) be the derived functor of πX , and
let RpY ∗ : D(Y )→D(Ab) be the derived functor of the structure morphism
pY : Y→Spec(k).

We need to recall the definition of the type of a torsor. The local-to-global
spectral sequence of Ext-groups

Ep,q2 = Hp
ét(Y, Ext

q
Y (Ĝ,Gm))⇒ Extp+qY (Ĝ,Gm)

completely degenerates since ExtqY (Ĝ,Gm) = 0 for q ≥ 1, thus giving an

isomorphism Hq
ét(Y,G)

∼−→ ExtqY (Ĝ,Gm), see [Sko01, Lemma 2.3.7]. Since

RHomY (Ĝ, ·) = RHom(Ĝ,RpY ∗(·)),

we have canonical isomorphisms

ExtqY (Ĝ,Gm) ∼= Extq(Ĝ,RpY ∗Gm) ∼= Extq(Ĝ, τ≤qRpY ∗Gm).

The type of a G-torsor on Y is defined as the composed map

H1
ét(Y,G)

∼−→ Ext1(Ĝ, τ≤1RpY ∗Gm) −→ Hom(Ĝ,Pic(Y )). (5.51)

Here the second map is induced by the obvious exact triangle in D(Ab)

k̄∗ −→ τ≤1RpY ∗Gm −→ Pic(Y )[−1],

where H0
ét(Y,Gm) = k∗, since Y is reduced and connected.

When nG = 0, the type of a G-torsor on Y is an element of

Hom(Ĝ,Pic(Y )[n]) = Hom(G∨, SY ),
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and the type map is the composition

H1
ét(Y,G) −→ Ext1(G∨, τ≤1RpY ∗Z/n) −→ Hom(G∨, SY ).

We claim that these maps fit into the following commutative diagram of
pairings:

H1
ét(X,G

∨) × H1
ét(Y,G) → H2

ét(X ×k Y,Z/n)
|| ↓ ||

H1
ét(X,G

∨) × Ext1
Y (G∨,Z/n) → H2

ét(X ×k Y,Z/n)
|| || ↑

H1
ét(X,G

∨) × Ext1(Ĝ, τ≤1RpY ∗Z/n) → H2
ét(X, τ≤1RπX∗Z/n)

|| ↓ ↓
H1

ét(X,G
∨) × Hom(G∨, S∨Y ) → H1

ét(X,S
∨
Y )

The first two pairings are compatible by [Mil80, Prop. V.1.20]. The two lower
pairings are natural, and the compatibility of the rest of the diagram is clear.

Now take G = SY , ϕ ∈ Hom(SX , S
∨
Y ), then ε(ϕ) is the value of the top

pairing on ϕ∗[TX ] ∈ H1
ét(X,S

∨
Y ) and [TY ] ∈ H1

ét(Y, SY ). The type of TY is
the identity in Hom(S∨Y , S

∨
Y ), hence the commutativity of the diagram shows

that ε(ϕ), as an element of H̃2
ét(X ×k Y,Z/n) ∼= H1

ét(X,S
∨
Y ), equals ϕ∗[TX ].

The type of this torsor is the precomposition of the type of TX , which is
the identity map S∨X→S∨X , with dual map ϕ∨ : SY→S∨X . This implies that ε

defines an isomorphism from Hom(SX , S
∨
Y ) to H̃2

ét(X ×k Y,Z/n).
To prove (iii) we note that if H1

ét(X,Z/n) is a free Z/n-module, then
ξ is an isomorphism. If NS(X)[n] = 0, then the Kummer sequence gives
H1

ét(X,µn) = A(ks)[n], where A is the Picard variety of X, thus H1
ét(X,µn) '

(Z/n)2g, where g = dimA. �

Let X and Y be smooth, projective and geometrically integral varieties
over a field k of characteristic exponent p. By Corollary 5.2.4 the natural
map of Γ -modules

Br(Xs)(p′)⊕ Br(Y s)(p′) −→ Br(Xs × Y s)(p′)

is split injective. We can describe the cokernel of this map.
Let A and B be the Picard varieties of X and Y , respectively. Fix points

x0 ∈ X(ks) and y0 ∈ Y (ks). By Proposition 5.7.3, the Γ -module NS(Xs×Y s)
is the direct sum of NS(Xs), NS(Y s), and Hom((B∨)s, As) identified with the
kernel of the pullback to x0 × Y s and Xs × y0. In view of Remark 5.7.9, the
first Chern class defines a map NS(Xs × Y s)/n ↪→ H2

ét(X
s × Y s, µn), which

is the direct sum of similar maps for X and Y and a certain injective map of
Γ -modules µ : Hom((B∨)s, As)/n→Hom(SX , ŜY ). Then the Kummer sequence
gives rise to a canonical direct sum decomposition of Γ -modules

Br(Xs × Y s)[n] ∼= Br(Xs)[n]⊕ Br(Y s)[n]⊕Hom(SX , ŜY )/Im(µ). (5.52)
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By the last sentence of Remark 5.7.9, the decompositions (5.52) for various
n are compatible.

Formula (5.52) for Br(Xs × Y s) becomes simpler if we impose a condition
on the torsion of the Néron–Severi groups of Xs and Y s.

Corollary 5.7.10 Let X and Y be smooth, projective and geometrically in-
tegral varieties over a field k of characteristic exponent p. Let A and B be the
Picard varieties of X and Y , respectively. Let n be a positive integer coprime
to char(k). If Pic(Xs)[n] 6= 0 and Pic(Y s)[n] 6= 0, then assume also that n is
coprime to |NS(Xs)tors| · |NS(Y s)tors|. Then we have a canonical isomorphism
of Γ -modules

Br(Xs × Y s)[n]

∼= Br(Xs)[n]⊕ Br(Y s)[n]⊕Hom(B∨[n], A[n])/
(
Hom((B∨)s, As)/n

)
.

Proof. From the isomorphism ŜX = H1
ét(X

s, µn) = Pic(Xs)[n] we see that this
group is an extension of NS(Xs)[n] by A[n], because A(ks) = nA(ks). Thus

in our assumptions ŜX ∼= A[n] and ŜY ∼= B[n]. Using the non-degeneracy
of the Weil pairing B[n]×B∨[n]→µn we identify SY with B∨[n], and hence
obtain canonical isomorphisms

Hom(SX , ŜY ) ∼= Hom(SY , ŜX) ∼= Hom(B∨[n], A[n]).

The statement now follows from (5.52). (Note that since A[n] and B[n] are
free Z/n-modules, we can conclude using [Mil80, Cor. VI.8.13], so for this
corollary we do not need the more sophisticated Theorem 5.7.7.) �

Remark 5.7.11 The map µ : Hom((B∨)s, As)→Hom(B∨[n], A[n]) in Corol-
lary 5.7.10 comes from the first Chern class map. Assume that char(k) = 0.
Then this map is the negative of the natural map defined by the action of
homomorphisms of abelian varieties on their n-torsion points. It is enough
to consider the case when X and Y coincide with their respective Albanese
varieties A∨ and B∨. For the verification in this case we refer the reader to
[OSZ, Lemma 2.6] (based on the Appell–Humbert theorem), which should be
applied to the abelian variety A∨ ×B∨.

Corollary 5.7.10 can be used to compute the Brauer group of a product
of two elliptic curves and the attached Kummer variety. Here we restrict
ourselves to one example, referring to [SZ12] for further results.

Example 5.7.12 [SZ12, Prop. 4.1, Example A1] Let E be an elliptic curve
over a number field k such that the representation of Γ in E[`] is a surjective
map Γ→GL(E[`]) for every prime `. Let E′ be an elliptic curve with complex
multiplication over k, which has a k-point of order 6. Then for A = E ×k E′
we have Br(A)Γ = 0. For example, one can take k = Q, the elliptic curve E
with equation y2 = x3 + 6x + 2 of conductor 2633, and the elliptic curve E′

with equation y2 = x3 + 1.



Chapter 6

Birational invariance

For a scheme X and a positive integer n the structure morphism AnX→X
induces an injective map Br(X)→Br(AnX). Similarly, PnX→X induces an in-
jective map Br(X)→Br(PnX). In Section 6.1 we give conditions on X under
which these maps are isomorphisms.

In Section 6.2 we discuss the unramified Brauer group Brnr(K/k) ⊂ Br(K)
of a field K over a subfield k. The definition of Brnr(K/k) only uses the
discrete valuations of K that are trivial on k, so this group depends only on
the extension of fields k ⊂ K. When K is the function field of an integral
variety over k, the group Brnr(K/k) is a birational invariant that can be used
even when one does not have an explicit smooth projective variety X over
k with function field K = k(X) at one’s disposal. If we have such an X
then there is an isomorphism Br(X) ' Brnr(K/k). We also recall that the
Galois module Pic(Xs) up to addition of a permutation module is a birational
invariant. Another birational invariant of smooth projective varieties X is
the Chow group CH0(X) of zero-cycles. In Section 6.4 we define a natural
pairing between CH0(X) and Br(X) with values in Br(k). This is used to
give a proof of Mumford’s theorem that for a smooth complex surface X
with H2(X,OX) 6= 0 the Chow group of 0-cycles of degree 0 is not “finite-
dimensional” (see Theorem 6.4.6 (iii) and Remark 6.4.7).

6.1 Affine and projective spaces

Theorem 6.1.1 Let X be an integral, regular, noetherian scheme with func-
tion field K. For any prime ` 6= char(K) and any integer n ≥ 0, the natu-
ral map Br(X)→Br(AnX) induces an isomorphism of `-primary torsion sub-
groups.

Proof. If X is integral and regular, then so is A1
X . Using induction we re-

duce the statement to the case n = 1. A section of A1
X→X gives rise to a
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commutative diagram
Br(A1

X) ↪→ Br(A1
K)

↓↑ ↓↑
Br(X) ↪→ Br(K)

where the downwards pointing arrows are induced by the restriction to the
section and the upwards pointing arrows are induced by structure morphisms.
To prove the result, it is thus enough to prove that for a field K of charac-
teristic different from `, the map Br(K){`}→Br(A1

K){`} is an isomorphism:
this is Theorem 5.6.1 (ix). �

Remark 6.1.2 We have already seen in Theorem 5.6.1 (vi) that when k is
separably closed but not algebraically closed, then Br(A1

k) 6= 0 and hence
Br(Ank ) 6= 0 for all n ≥ 1. Moreover, if k is an algebraically closed field of
characteristic p > 0 and n ≥ 2 is an integer, then Br(Ank ) 6= 0 [KOS76,
Prop. 5.3], [Hür81, Thm. 4.4, Cor. 6.5]. These papers build upon earlier work
of Zelinsky and Yuan (see [KO74b]).

Theorem 6.1.3 For any field k the natural map Br(k)→Br(Pnk ) is an iso-
morphism.

Proof. We proceed by induction on n. In the case n = 1 this is Theorem 5.6.1
(vii). Suppose that n ≥ 2 and we have the isomorphism Br(k)

∼−→ Br(Pn−1
k ).

Let ψ : W→Pnk be the blowing-up of Pnk in a k-point P . The projection of
Pnk rP onto Pn−1

k extends to a morphism π : W→Pn−1
k which is a P1-bundle

over Pn−1
k with a section. To see this we choose coordinates on Pnk so that

P = (1 : 0 : . . . : 0). The restriction of π : W→Pn−1
k to the open set Pnk r P

sends (x0 : . . . : xn) to (x1 : . . . : xn). Then the morphism σ : Pn−1
k →W

defined by σ(x1 : . . . : xn) = (0 : x1 : . . . : xn) is a section of π.
Let K = k(Pn−1

k ) be the field of functions on Pn−1
k . The section σ gives rise

to a K-point s of the generic fibre of π, hence this generic fibre is isomorphic
to the projective line P1

K . Theorem 3.5.5 implies that the restriction to the
generic fibre of π defines an injective map Br(W ) ↪→ Br(P1

K). The closed
embedding of the section σ(Pn−1

k ) into W defines a map Br(W )→Br(Pn−1
k ).

Similarly, we have a restriction to the generic point Br(Pn−1
k ) ↪→ Br(K) and

the map Br(P1
K)→Br(K) induced by the restriction to the K-point s of P1

K .
We obtain a commutative diagram

Br(W ) ↪→ Br(P1
K)

↓↑ ↓↑
Br(Pn−1

k ) ↪→ Br(K)

where the upwards pointing arrows are induced by π and the structure mor-
phism P1

K→Spec(K). By Theorem 5.6.1 (vii) we know that the vertical arrows
in the right-hand part of the diagram are isomorphisms which are inverse
to each other. The diagram shows that the map Br(Pn−1

k )→Br(W ) is an
isomorphism. The induction assumption now implies that the natural map
Br(k)→Br(W ) is an isomorphism.
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The contraction ψ : W→Pnk is a birational morphism of smooth varieties.
The restriction of ψ to some non-empty open subset U ⊂ W is an isomor-
phism. By Theorem 3.5.5 the restriction map Br(Pnk )→Br(U) is injective.
Since it factors through ψ∗ : Br(Pnk )→Br(W ), we see that ψ∗ is injective. It
is clear that we have a commutative diagram

Br(Pnk )
ψ∗−→ Br(W )

↑ ↑
Br(k) = Br(k)

We know that the right-hand vertical map is an isomorphism. This implies
that the left-hand vertical map is an isomorphism too. �

Corollary 6.1.4 Let X be an integral, regular, noetherian scheme. For any
positive integer n the canonical projection π : PnX→X induces an isomorphism

π∗ : Br(X)
∼−→ Br(PnX).

Proof. Let K be the function field of X. Fix a section of PnX→X. As in the
proof of the previous theorem we have a commutative diagram

Br(PnX) ↪→ Br(Pnk(X))

↓↑ ↓↑
Br(X) ↪→ Br(k(X))

where the downwards pointing arrows are induced by the restriction to the
section and the upwards pointing arrows are induced by structure morphisms.
By Theorem 6.1.3, the vertical arrows in the right-hand part of the diagram
are mutually inverse isomorphisms. The corollary follows from the diagram. �

Remark 6.1.5 Theorem 6.1.3 and Corollary 6.1.4 are special cases of gen-
eral results. A particular case of [Gab81, Thm. 2, p. 193] says that for any
scheme X the map Br(X)tors→Br(PnX)tors is an isomorphism. A proof of The-
orem 6.1.3 via the unramified Brauer group was given by Saltman [Sal85].

6.2 The unramified Brauer group

The following definition goes back to D. Saltman.

Definition 6.2.1 Let k ⊂ K be an extension of fields. The unramified
Brauer group of K over k is the subgroup Brnr(K/k) ⊂ Br(K) defined as
the intersection of images of the natural injective maps Br(A) ↪→ Br(K), for
all discrete valuation rings A with field of fractions K such that k ⊂ A.

It is clear that the image of the restriction map Br(k)→Br(K) is contained
in Brnr(K/k).
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Remark 6.2.2 If k is a separably closed field, then for any prime number
` 6= char(k) the multiplicative group k∗ is infinitely `-divisible. Thus for any
discrete valuation v : K→Z and any element a ∈ k∗ we have v(a) = 0. It
follows that any discrete valuation ring with field of fractions K contains k.
Thus for a separably closed field k we can write Brnr(K) for Brnr(K/k).

The unramified Brauer group is functorial in the following sense.

Proposition 6.2.3 Let k ⊂ K ⊂ L be extensions of fields. The restriction
map Br(K)→Br(L) induces a map Brnr(K/k)→Brnr(L/k).

Proof. Let v : L→Z be a discrete valuation with valuation ring B such that
k ⊂ B. The restriction of v to K can be trivial or non-trivial. In the first
case K ⊂ B, hence Br(K)→Br(L) factors through Br(B). In the second
case, A = B ∩K is a discrete valuation ring with field of fractions K. The
restriction to Br(L) of an element in the image of Br(A)→Br(K) is in the
image of Br(B)→Br(L). �

Proposition 6.2.4 Let k ⊂ K ⊂ L be fields such that the extension L/K is
finite and separable. The corestriction map coresK/L : Br(L)→Br(K) induces
a map Brnr(L/k)→Brnr(K/k).

Proof. Let A ⊂ K be a discrete valuation ring that contains k. Let B be the
integral closure of A in L. Then k ⊂ B. Due to the separability assumption,
B is a semilocal Dedekind domain which is a finitely generated A-module.
If β ∈ Brnr(L/k), then for any prime ideal q ⊂ B we have β ∈ Br(Bq). By
Corollary 3.5.6 this implies that β ∈ Br(B). The result now follows from
Proposition 3.8.1. Over a field of characteristic zero, an alternative proof via
residues can be given using Proposition 1.4.7. �

The following proposition, together with the explicit formulae from Section
1.3.4, is useful for computations.

Proposition 6.2.5 Let k ⊂ K be an extension of fields. Let A be a discrete
valuation ring with field of fractions K and residue field κ such that k ⊂ A.
Let Ah be the henselisation of A and let Kh be the fraction field of Ah. For
an element α ∈ Br(K)[n], where n is coprime to the characteristic exponent
of k, the following properties are equivalent.

(i) We have α ∈ Br(A) ⊂ Br(K).
(ii) The image of α in Br(Kh) belongs to Br(Ah) ⊂ Br(Kh).

(iii) The Serre residue r(α) ∈ H1(κ,Z/n) is zero.
(iv) The Witt residue rW (α) ∈ ⊕`|nH1(κ,Q`/Z`) is zero.
(v) The Gysin residue ∂(α) ∈ H1(κ,Z/n) is zero.

Proof. This is an immediate consequence of Theorem 3.6.1. Note that k ⊂ κ,
hence n is coprime to the characteristic exponent of κ. For the compatibility
of residues see Theorems 1.4.14 and 2.3.5. �
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Proposition 6.2.6 Let k ⊂ K be fields and let X be a smooth and geomet-
rically integral variety over k. Let K(X) be the function field of X ×kK. Let
α ∈ Br(K) be an element of order not divisible by char(k). If the image of
α ∈ Br(K) in Br(K(X)) belongs to Brnr(K(X)/k), then α ∈ Brnr(K/k).

Proof. Let A be a discrete valuation ring with fraction field K and residue
field κA, such that k ⊂ A. Clearly we have k ⊂ κA. The closed fibre of
X×k Spec(A)→Spec(A) is XκA = X×k κA; it is a smooth and geometrically
integral variety over κA. Let B ⊂ K(X) be the local ring of the generic point
of XκA . Thus B is a discrete valuation ring with fraction field K(X) such
that k ⊂ B. The residue field κB of B is the function field κA(XκA). Since κA
is integrally closed in κB , the restriction map H1(κA,Q/Z)→H1(κB ,Q/Z) is
injective (Lemma 11.1.2). By the functoriality of residues (Theorem 3.7.5),
we conclude that ∂A(α) = 0 ∈ H1(κA,Q/Z). �

Proposition 6.2.7 Let X be a proper, integral, regular variety over a field
k with function field k(X). The natural inclusion Br(X) ⊂ Br(k(X)) induces
an isomorphism Br(X)

∼−→ Brnr(k(X)/k).

Proof. This is a special case of Proposition 3.7.9. �

In spite of this proposition, there are good reasons for using the unrami-
fied Brauer group of function fields. Since its definition only involves discrete
valuation rings, usually one can easily determine whether a given element of
Br(K) belongs to Brnr(K/k). The group Brnr(K/k) is visibly a birational in-
variant of integral varieties over k. One may use it when no smooth projective
model is available – or even known to exist (in positive characteristic).

Let us recall some basic definitions.

Definition 6.2.8 Two integral varieties X and Y over a field k are k-
birationally equivalent if the following equivalent properties hold:

(a) There exist non-empty Zariski open sets U ⊂ X and V ⊂ Y such that U
and V are isomorphic as varieties over k.

(b) There exists a k-isomorphism of fields k(X) ' k(Y ), where k(X) and
k(Y ) are function fields of X and Y , respectively.

Two integral varieties X and Y over k are stably k-birationally equiva-
lent if there exist integers n ≥ 0 and m ≥ 0 such that X×kPnk is k-birationally
equivalent to Y ×k Pmk .

An integral variety X of dimension d is a k-rational variety, or is k-
rational, if X is k-birationally equivalent to the projective space Pdk. (Equiv-
alently, the function field k(X) is a purely transcendental extension of k).

An integral variety X is stably k-rational if there exists an integer n ≥ 0
such that X ×k Pnk is a k-rational variety.

Proposition 6.2.9 Let k ⊂ K ⊂ L be fields, where L = K(t1, . . . , tn) is a
purely transcendental extension of K. Then the restriction map Br(K)→Br(L)
induces an isomorphism Brnr(K/k)

∼−→ Brnr(L/k).
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Proof. It is enough to consider the case L = K(P1
K) = K(t), where t is an

independent variable. Let β ∈ Brnr(L/k). Then β ∈ Brnr(L/K), but this
group is equal to Br(P1

K) by Proposition 6.2.7. The map Br(K)→Br(P1
K) is

an isomorphism (this is not completely obvious in positive characteristic), see
Theorem 5.6.1 (vii). Thus β comes from a unique α ∈ Br(K), so it is enough
to show that α ∈ Brnr(K/k).

Let us check that α belongs to the image of Br(A)→Br(K), where A ⊂ K
is a discrete valuation ring with fraction field K such that k ⊂ A. Let π be a
uniformiser of A. LetB ⊂ L be the 2-dimensional local ring at the closed point
of Spec(A[t]) defined by the ideal (π, t). By purity of the Brauer group for
2-dimensional regular noetherian rings [AG60, Prop. 7.4], [Gro68, II, Cor. 2.2,
Prop. 2.3], β ∈ Brnr(L/k) is the image of an element γ ∈ Br(B) ⊂ Br(L).
The value of γ at t = 0 is an element of Br(A) whose image in Br(K) is α.
Since this holds for any such A, we conclude that α ∈ Brnr(K/k). �

Corollary 6.2.10 Let k be a field and let X and Y be integral varieties over
k. If X and Y are stably k-birationally equivalent, then

Brnr(k(X)/k) ' Brnr(k(Y )/k).

In particular, if X is stably k-rational, then Br(k) ∼= Brnr(k(X)/k). �

Proposition 6.2.7 then gives

Corollary 6.2.11 Let k be a field, and let X and Y be proper, integral,
regular varieties over k. If X and Y are stably k-birationally equivalent, then
Br(X) ' Br(Y ). �

Galois action on the Picard group

Proposition 6.2.12 Let X and Y be smooth, projective, geometrically inte-
gral varieties over a field k. If X and Y are stably k-birationally equivalent,
then there exist finitely generated permutation Γ -modules P1 and P2 and an
isomorphism of Γ -modules

Pic(Xs)⊕ P1 ' Pic(Y s)⊕ P2.

This gives an isomorphism H1(k,Pic(Xs)) ' H1(k,Pic(Y s)).
If X is stably k-rational, then the Γ -module Pic(Xs) is stably a permu-

tation Γ -module: there are finitely generated permutation Γ -modules P1 and
P2 such that Pic(Xs)⊕ P1 ' P2.

If there exists a smooth, projective, geometrically integral variety Z over
k such that X ×k Z is k-rational, then the Γ -module Pic(Xs) is a direct
summand of a permutation module.

This proposition originates in works of Shafarevich, Manin, Voskresenskĭı.
For an elegant proof due to Moret-Bailly, see [CTS87a, Prop. 2.A.1].
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Suppose that X(k) 6= ∅. In this case we have

Br1(X)/Br(k) ∼= H1(k,Pic(Xs))

by Proposition 5.4.2 and Remark 5.4.3. Thus Proposition 6.2.12 is closely
related to the birational invariance of Br1(X). However, in some cases the
birational invariant given by the Γ -module Pic(Xs) up to addition of a per-
mutation module is finer than Br1(X)/Br(k), see [CTS77, §8].

Proposition 6.2.13 Let k be a field. Let C be a class of smooth, projective,
geometrically integral varieties X over K, where K ranges over arbitrary
field extensions of k. Suppose that C is stable under field extensions, and
that for each variety X in C one has H1(X,OX) = 0. If one of the following
statements holds for all varieties X/K in C which have the additional property
X(K) 6= ∅, then it holds for all X/K in C:

(i) the Gal(Ks/K)-module Pic(XKs
) is a permutation module;

(ii) the Gal(Ks/K)-module Pic(XKs
) is a direct summand of a permutation

module;
(iii) H1(K,Pic(XKs)) = 0.

Proof. (Sketch) Let F = K(X). The F -variety XF = X ×K F has an F -
point. The hypothesis H1(X,OX) = 0 implies that Pic0

X/k = 0, so PicX/k
is a twisted constant group k-scheme split by a separable closure ks of k, see
Theorem 5.1.1. This implies that the natural maps

Pic(Xks
)
∼−→ Pic(Xks(X))

∼−→ Pic(XFs
)

are isomorphisms. For more details, see [CTS87a, Thm. 2.B.1]. �

6.3 Examples of unramified classes

Here are three types of unramified Brauer classes which will be used to con-
struct counter-examples to the Hasse principle in Section 13.3.3. We system-
atically use Proposition 6.2.5.

Example 6.3.1 Let k be a field, char(k) 6= 2, and let a ∈ k∗. Let P (x) be
a separable polynomial in k[x] such that P (x) = Q(x)R(x), where Q(x) is
a polynomial of even degree. Let X be a smooth projective variety over k
birationally equivalent to the smooth, affine, geometrically integral surface
with equation

y2 − az2 = P (x).

Let α ∈ Br(k(X))[2] be the class of the quaternion algebra (a,Q(x)). Let us
show that α is unramified. By Proposition 6.2.7 this implies that α ∈ Br(X).
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Let R ⊂ k(X) be a discrete valuation ring with fraction field k(X) such
that k ⊂ R. Let κ be the residue field of R and let v : k(X)∗→Z be the
valuation defined by R. As usual, we write

r : Br(k(X)) −→ H1(κ,Z/2) ∼= κ∗/κ∗2

for the associated Serre residue with coefficients Z/2 (Definition 1.4.3),
cf. Proposition 6.2.5. By (1.18), r(α) is the class of av(Q(x)) in κ∗/κ∗2.

If a is a square in κ, then r(α) = 1. If v(x) < 0, then v(Q(x)) is even,
hence r(α) = 1. Assume that v(x) ≥ 0 and that a is not a square in κ. Then
v(y2− az2) is even, hence the equality y2− az2 = Q(x)R(x) ∈ k(X)∗ implies
that v(Q(x))+v(R(x)) is even. The polynomials Q(x) and R(x) are coprime,
hence there exist polynomials a(x) and b(x) such that

a(x)Q(x) + b(x)R(x) = 1.

Since v(x) ≥ 0, if v(Q(x)) is odd hence positive, then v(R(x)) = 0, but then
v(Q(x)) + v(R(x)) is odd. Hence v(Q(x)) is even, so that r(α) = 1. From
Proposition 6.2.5 we see that α is unramified.

Let us show that if the following three conditions are satisfied, then α is
not in the image of the map Br(k)→Br(k(X)).

(1) a is not a square in k.
(2) Q(x) has an irreducible factor A(x) such that the image of a in the field

k[x]/(A(x)) is not a square.
(3) R(x) has an irreducible factor B(x) such that the image of a in the field

k[x]/(B(x)) is not a square.

Let vA : k(x)∗→Z and vB : k(x)∗→Z be the valuations defined by A and B,
respectively. We have vA(Q(x)) = vB(R(x)) = 1. Since P (x) = Q(x)R(x)
is separable, we have vB(Q(x)) = vA(R(x)) = 0. Calculating the residues
attached to vA and vB using (1.18) we obtain that (a, cQ(x)) and (a, cR(x))
are distinct non-zero elements of Br(k(x)), for any c ∈ k∗.

Suppose that α = (a,Q(x)) ∈ Br(k(X)) is the image of a β ∈ Br(k). We
have a commutative diagram of restriction maps

Br(k) //

��

Brnr(k(X)/k)

��
Br(k(

√
a))

∼ // Brnr(k(
√
a)(X)/k(

√
a))

The isomorphism in the bottom row follows from Proposition 6.2.9, because
the function field k(

√
a)(X) of X ×k k(

√
a) is a purely transcendental exten-

sion of k(
√
a) of transcendence degree 2. It is clear that α is in the kernel of the

right-hand vertical map, hence resk(
√
a)/k(β) = 0 in Br(k(

√
a)). By Proposi-

tion 1.1.9, we have β = (a, c) for some c ∈ k∗. Then (a, cQ(x)) ∈ Br(k(x))
goes to zero in Br(k(X)). By Proposition 7.2.1, which is an easy consequence
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of Proposition 5.4.2, the kernel of the restriction map Br(k(x))→Br(k(X)) is
of order at most 2 and is generated by the quaternion algebra (a, P (x)). It
follows that the kernel of Br(k(x))→Br(k(X)) contains distinct non-zero ele-
ments (a, cQ(x)) and (a, cR(x)), which is impossible. This finishes the proof.

As we have seen, condition (2) in the above example implies that (a,Q(x))
is a ramified and hence non-zero element of Br(k(x)). For the sake of com-
pleteness we give another equivalent condition for this.

Remark 6.3.2 Let k be a field, char(k) 6= 2, and let a ∈ k∗ r k∗2. For a
separable polynomial Q(x) ∈ k[x] the following conditions are equivalent.

(i) (a,Q(x)) = 0 ∈ Br(k(x)).
(ii) Q(x) = S(x)2 − aT (x)2 where S(x), T (x) ∈ k(x).

(iii) Q(x) = S(x)2 − aT (x)2 where S(x), T (x) ∈ k[x].

The equivalence of (i) and (ii) follows from Proposition 1.1.8. Let K = k(
√
a).

That (iii) implies (ii) is obvious. To prove that (ii) implies (iii), note that a
monic irreducible polynomial in k[x] either remains irreducible in K[x] or is
the norm of an irreducible polynomial in the principal ideal domain K[x], and
consider the decomposition of elements of k[x] into a product of irreducible
factors. That (ii) implies (iii) is a special case of the Cassels–Pfister theorem
[Lam05, Ch. IX, Thm. 1.3], which states that for any quadratic form ϕ over
k, if a polynomial in k[x] is represented by ϕ in k(x), then it is represented
by ϕ in k[x].

The following algebraic result will be used in Section 13.3.3.

Example 6.3.3 (Reichardt–Lind) Let k be a field, char(k) 6= 2, and let
a, b ∈ k∗. Let X be a smooth projective curve over k birationally equivalent
to the affine curve

ay2 = x4 − b.

Let us show that the class of the quaternion algebra α = (y, b) ∈ Br(k(X)) is
unramified. By Proposition 6.2.7 this implies that α ∈ Br(X).

Let R ⊂ k(X) be a discrete valuation ring such that k ⊂ R. Let
κ be the residue field of R, let v : k(X)∗→Z be the valuation and let
r : Br(k(X))→κ∗/κ∗2 be the associated Serre residue. By (1.18), the residue
r(α) is the class of bv(y) in κ∗/κ∗2. If b is a square in κ or if v(y) is even, the
residue is 1. Assume that b is not a square in κ. If v(x) < 0 then v(x4 − b) is
a multiple of 4, hence so is v(ay2), hence v(y) is even. Assume that v(x) ≥ 0.
Since b is not a square in κ, we have v(x4 − b) = 0. Thus v(ay2) = 0 hence
v(y) = 0.

When b is not a square in k, there does not seem to exist a simple criterion
for α = (y, b) to be in the image of Br(k).
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Example 6.3.4 [CT14] Let k be a field, char(k) 6= 2, let a, b, c ∈ k∗. Let
X be a smooth projective variety birationally equivalent to the affine variety
with equation

(x2 − ay2)(z2 − bt2)(u2 − abw2) = c.

Computing residues for the valuations of K(X) that are trivial on k, one
checks that the class α of the quaternion algebra (x2 − ay2, b) is unramified,
hence is an element of Br(X).

Projecting to affine space A4
k with coordinates (z, t, u, w), we represent

k(X) as the function field of a conic over k(A4
k). Using this and Proposition

7.2.1, one shows that if none of a, b, ab is a square in k, then α ∈ Br(k(X)) is
not in the image of Br(k). See [CT14, Thm. 4.1] for details.

Explicit examples of unramified classes in Br(C(X)), where X is a variety
over C, will be given in Section 11.3.3 (the Artin–Mumford example). See
also Sections 12.1.2 and 12.2.1.

6.4 Zero-cycles and the Brauer group

In this section we collect some results about the relations between the Brauer
group Br(X) of a variety X over a field k and another birational invariant
of smooth and proper varieties, the Chow group of zero-cycles CH0(X). See
also [ABBB]. The basic reference for the Chow group is the first chapter of
Fulton’s book [Ful98].

Let Z0(X) be the free abelian group whose generators are the closed points
of X. The elements of Z0(X) are called zero-cycles. In other words, a zero-
cycle is a finite sum

∑
P nPP , where P is a closed point and nP ∈ Z. A

zero-cycle is called effective if nP ≥ 0 for all P . The degree map

degk : Z0(X) −→ Z

sends a zero-cycle
∑
i niPi to

∑
i ni[k(Pi) : k].

A morphism of varieties f : X→Y gives rise to a natural homomorphism

f∗ : Z0(X) −→ Z0(Y )

sending the closed point P ∈ X to [k(P ) : k(f(P ))]f(P ). The degree map is
compatible with morphisms of varieties over k.

A zero-cycle on a normal integral curve C is called rationally equivalent to
zero if it is the divisor divC(g) of a non-zero rational function g ∈ k(C)∗. The
Chow group CH0(X) of zero-cycles on X is defined as the quotient of Z0(X)
by the group generated by the elements φ∗(divC(g)), for all proper morphisms
φ : C→X where C is a normal integral curve over k and all g ∈ k(C)∗.

Let k be a field, let X be a variety over k and let Y ⊂ X be a finite
subscheme. Then Y = Spec(A), where A =

∏m
i=1Ai and each Ai is a local
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k-algebra. For i = 1, . . . ,m, let ki be the residue field of Ai and let ni =
dimk(Ai)/[ki : k]. For each i, the composition

Spec(ki) −→ Spec(Ai) −→ Spec(A) −→ X

defines a closed point Pi ∈ Y with residue field ki. The zero-cycle associated
to Y ⊂ X is by definition the formal sum

∑m
i=1 niPi.

If f : X→Y is a proper morphism, then f∗ : Z0(X)→Z0(Y ) induces a map

f∗ : CH0(X) −→ CH0(Y ).

In particular, if X is a proper variety over k, then the structure morphism
X→Spec(k) induces a degree map degk : CH0(X)→Z. Define

A0(X) = Ker[degk : CH0(X) −→ Z].

By the functoriality of the Brauer group, an element α ∈ Br(X) can
be evaluated at a closed point P : Spec(k(P ))→X. We denote this value by
α(P ) ∈ Br(k(P )). Define

〈α, P 〉 = coresk(P )/k(α(P )) ∈ Br(k).

By linearity this extends to a pairing

Br(X)× Z0(X) −→ Br(k). (6.1)

This pairing is functorial in X. Namely, let f : X→Y be a morphism of
varieties over k, let α ∈ Br(Y ) and let z ∈ Z0(X). Using that the com-
position of restriction resk(P )/k(f(P )) : Br(k(f(P )))→Br(k(P )) with corestric-
tion coresk(P )/k(f(P )) : Br(k(P ))→Br(k(f(P ))) is multiplication by the degree
[k(P ) : k(f(P ))], we obtain

〈f∗(α), z〉 = 〈α, f∗(z)〉. (6.2)

Lemma 6.4.1 Let k be a field, let X be a k-variety and let Y = Spec(A) ⊂ X
be a finite subscheme. Let [Y ] ∈ Z0(X) be the associated zero-cycle. For any
α ∈ Br(X) we have 〈α, [Y ]〉 = coresA/k(αY ) ∈ Br(k).

Proof. For the identity map Y = X, this is Lemma 3.8.6. The general case
follows from the functoriality of the pairing. �

Proposition 6.4.2 Let X be a proper variety over a field k. Then the pairing
(6.1) induces a bilinear pairing

Br(X)× CH0(X) −→ Br(k). (6.3)

This pairing is functorial with respect to proper morphisms.
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Proof. Let C→X be a morphism from a proper, normal, integral curve C
over k. Let f : C→P1

k be a dominant morphism. This is a finite locally free
morphism of constant rank. Let z0 ∈ Z0(C), respectively z1 ∈ Z0(C), be
the zero-cycle on C associated to the finite scheme Spec(A0) = f−1(p0),
respectively to Spec(A1) = f−1(p1), where p0 and p1 are distinct k-points in
P1
k. Let α ∈ Br(X). By Lemma 6.4.1 we have

〈α, zi〉 = coresAi/k(αAi) ∈ Br(k)

for i = 0, 1. By Proposition 3.8.1, we have coresAi/k(αAi) = 〈coresC/P1(α), pi〉.
The map Br(k)→Br(P1

k) is an isomorphism (Theorem 6.1.3). Thus
coresC/P1(α) ∈ Br(P1

k) is a constant class, hence 〈α, z0〉 = 〈α, z1〉. Functo-
riality of the pairing follows from (6.2). �

Corollary 6.4.3 Let X ⊂ Pnk , n ≥ 2, be a hypersurface. A k-line L ⊂ Pnk ,
L 6⊂ X, cuts out on X the zero-cycle

∑m
i=1 niPi, where ni ∈ Z and Pi is a

closed point of X ∩ L, for i = 1, . . . ,m. Let α ∈ Br(X). Then

m∑
i=1

ni coresk(Pi)/k(α(Pi)) ∈ Br(k)

does not depend on L.

Proof. We may assume that k is infinite. By Proposition 6.4.2 it suffices to
check that for any k-lines L1 and L2 in Pnk not contained in X, the zero-
cycles cut out on X by L1 and L2 are rationally equivalent. Choose k-points
P ∈ L1 and Q ∈ L2 both outside of X, and let L3 be the line through P and
Q. It is enough to prove that the zero-cycles cut out on X by L1 and L3 are
rationally equivalent. Let Π ' P2

k be the plane spanned by L1 and L3. Let
C be the scheme-theoretic intersection Π ∩ X ⊂ Π. Thus C ⊂ P2

k is given
by one equation, so C is Cohen–Macaulay. It is enough to prove that the
zero-cycles cut out on C by L1 and L3 are rationally equivalent on C. Since
P /∈ X, the rational map from P2

k to P1
k given by l1/l3, where li = 0 is an

equation of Li ⊂ P2, defines a finite morphism f : C→P1
k. Since C is Cohen–

Macaulay, f is flat by [Mat86, Thm. 23.1]. Then [Ful98, Thm. 1.7] implies
that the zero-cycles cut out on C by L1 and L3 are rationally equivalent. �

Proposition 6.4.4 Let X and Y be smooth, proper, geometrically integral
varieties over a field k.

(i) If X and Y are stably k-birationally equivalent, then CH0(X) ' CH0(Y )
and A0(X) ' A0(Y ).

(ii) If X is stably k-rational, then A0(X) = 0.

Proof. See [Ful98, Exercise 16.1.11]. �.

The following definition was given in [ACTP17]. See also [Mer08].
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Definition 6.4.5 A projective variety X over a field k is called universally
CH0-trivial if for any field extension k ⊂ K the degree map

degK : CH0(XK) −→ Z

is an isomorphism.

For example, if X is smooth, projective and stably k-rational, then X is
universally CH0-trivial.

Theorem 6.4.6 Let X be a smooth, projective, geometrically integral variety
over a field k.

(i) Assume that X is universally CH0-trivial. Then for every field extension
K of k the natural map Br(K)→Br(XK) is an isomorphism.

(ii) Assume that for every field extension k ⊂ K, the group A0(XK) is a
torsion group. Then there exists a positive integer N such that for every
field extension k ⊂ K the quotient Br(XK)/Br(K) is annihilated by N .

(iii) Let k = C. Suppose that there exist a smooth, projective, integral curve
Y over C and a morphism f : Y→X such that f∗ : CH0(Y )→CH0(X) is
surjective. Then H2(X,OX) = 0 and Br(X) is isomorphic to the finite
group H3(X(C),Z)tors.

Proof. (i) It is enough to prove the statement over k. Since X is universally
CH0-trivial, it has a zero-cycle z of degree 1. The map Br(k)→Br(X) is
injective because evaluating at z gives a section. Now let α ∈ Br(X). Take
F = k(X) to be the function field of X. The pairing (6.3)

Br(XF )× CH0(XF ) −→ Br(F )

gives rise to the pairing

Br(X)× CH0(XF ) −→ Br(F ).

Let η be the generic point of X. It is clear that 〈α, η〉F is the image of
α under the natural map Br(X)→Br(F ). Since X is smooth, this map is
injective (Theorem 3.5.5). By hypothesis zF − η = 0 in CH0(XF ), hence
〈α, z〉F = 〈α, η〉F ∈ Br(F ). Therefore, 〈α, η〉F is the image of 〈α, z〉 ∈ Br(k)
under the restriction map Br(k)→Br(F ), hence α ∈ Br(X) is the image of
〈α, z〉 ∈ Br(k) under the map Br(k)→Br(X). See also [ABBB].

(ii) Let P be a closed point of X. Let η be the generic point of X and
let F = k(X) be the field of fractions. By assumption there is a positive
integer N such that N(degk(P )η − PF ) = 0 ∈ CH0(XF ). Arguing as above,
we see that for any α ∈ Br(X) we have N(degk(P )α− 〈α, P 〉) = 0 ∈ Br(X),
hence Br(X)/Br(k) is annihilated by Ndegk(P ). The proof shows that the
same statement, with the same factor Ndegk(P ), holds for XK over any field
extension K of k.
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(iii) As C is an algebraically closed field of infinite transcendence degree
over Q, there exists an algebraically closed field F ⊂ C of finite transcendence
degree over Q such that Y and X descend to varieties Y0 and X0 over F , that
is, X ∼= X0⊗F C and Y ∼= Y0⊗F C, and f : Y→X descends to an F -morphism
f0 : Y0→X0.

We first claim that for any such field F , the map CH0(Y0)→CH0(X0) is
surjective. Let z0 be a zero-cycle on X0. By assumption, over C there exist
a zero-cycle

∑
i niwi on Y , finitely many smooth, projective, integral curves

Cj , morphisms θj : Cj→X, and rational functions gj ∈ C(Cj)
∗ such that the

equality

z0,C = f∗
(∑

i

niwi
)

+
∑
j

θj,∗
(
divCj (gj)

)
holds in the group of zero-cycles Z0(X). This equality involves only finitely
many terms. One may thus realise all its constituents over a field L ⊂ C which
is of finite type over F . This field L itself is the field of fractions of a regular
F -algebra A of finite type. After suitable localisation, the displayed equality
holds over such an A. Since F is algebraically closed, the F -rational points
are Zariski dense on Spec(A), thus we can specialise the above equality to an
equality over F . We obtain an equality of cycles on X0. In this specialisation
process, the zero-cycle z ∈ Z0(X0) specialises to itself. This proves the claim.

Let us now consider K = F (X0), which we may embed into C, and let η
be the generic point of X0 over F . By the previous claim applied to the al-
gebraic closure of K in C, there exists a finite extension L/K such that ηL is
in the image of CH0(Y0,L)→CH0(X0,L). A restriction-corestriction argument
implies that there exists a positive integer N such that Nη ∈ CH0(X0,K)
is in the image of CH0(Y0,K), that is, we have Nη = f0,∗(z) for some
z ∈ CH0(Y0,K). From functoriality of the pairing between Chow groups of
zero-cycles and Brauer groups (Proposition 6.4.2), for any α ∈ Br(X0) we
obtain

〈α,Nη〉 = 〈α, f0,∗(z)〉 = 〈f∗0 (α), z〉 ∈ Br(K).

We have f∗0 (α) ∈ Br(Y0) and Br(Y0) = 0 since Y0 is a curve over the alge-
braically closed field F (Theorem 5.6.1). Thus N〈α, η〉 = 0 ∈ Br(K). But

〈α, η〉 ∈ Br(K) = Br(F (X0))

is the image of α ∈ Br(X0) under the injective map Br(X0)→Br(F (X0)). We
thus have N Br(X0) = 0.

The map Br(X0)→Br(X0 ×F C) is an isomorphism by Proposition 5.2.3.
We thus conclude that N Br(X) = 0 for the original X over C. Proposition
5.2.9 now gives that Br(X) is isomorphic to the finite group H3(X,Z)tors

and that ρ(X) = b2(X). By Hodge theory, this condition is equivalent to
H2(X,OX) = 0, see [Voi02, Ch. 6 and Thm. 11.30]. �

Remark 6.4.7 The proof of Theorem 6.4.6 (iii) given above is due to Sal-
berger (unpublished). It is a Brauer group version of a theorem of Bloch
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[Blo79], who, using the idea of the generic point, gave a radically new proof of
a theorem of Mumford [Mum68]: the Chow group of zero-cycles of a smooth,
complex, projective surface X with pg(X) 6= 0 is not representable. Bloch’s
argument was much developed by Bloch and Srinivas [BS83] and then by
many other authors. Under the assumptions of Theorem 6.4.6 (iii), A.A. Roit-
man showed that Hi(X,OX) = 0 for all i ≥ 2.



Chapter 7

Severi–Brauer varieties and
hypersurfaces

There is a natural bijection between the isomorphism classes of Severi–
Brauer varieties over a field k and the isomorphism classes of central simple
k-algebras. This leads to many intricate relations. In Section 7.1 we briefly
recall the basic properties of Severi–Brauer varieties. Any such variety is bi-
rationally equivalent to a principal homogeneous space of a torus. We give a
precise version of this statement. We then discuss morphisms from an arbi-
trary variety to a Severi–Brauer variety. In Section 7.2 we deal with another
simple class of projective homogeneous varieties, namely smooth projective
quadrics of dimension at least one. For a variety X of either type, the restric-
tion map Br(k)→Br(X) is surjective and the kernel is a finite cyclic group
with a natural generator. The knowledge of this kernel will be used to estab-
lish the non-vanishing of some classes in Br(C(X)), where X→P2

C is a conic
bundle (see Section 11.3.2). Recently the computation of the Brauer group
of open varieties attracted attention in connection with arithmetic investi-
gations of integral points. In Section 7.3 we give several examples of such
computations.

7.1 Severi–Brauer varieties

The following definition is due to F. Châtelet.

Definition 7.1.1 Let n be a positive integer. A Severi–Brauer variety of
dimension n− 1 over a field k is a twisted form of the projective space Pn−1

k .
Equivalently, this is a k-variety X such that there exist a field extension
k ⊂ K and an isomorphism of K-varieties X ×k K ' Pn−1

K .

A twisted form of P1
k is a smooth, projective, geometrically integral curve C

of genus zero. The linear system defined by the anticanonical bundle embeds
C as a smooth conic in P2

k. Conversely, any smooth plane conic is a twisted
form of P1

k.
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The automorphism group of the projective space Pn−1
k is the algebraic

group PGLn,k. Indeed, the line bundle OPnk (1) is the unique ample generator
of Pic(Pnk ), hence it is preserved by all k-automorphisms of the k-variety
Pn−1
k . By Proposition 1.2.3, the group PGLn(k) is the automorphism group

of the matrix algebra Mn(k). Galois descent (see Section 1.3.2) then gives a
bijection between the isomorphism classes of twisted forms of Pn−1

k and the
isomorphism classes of twisted forms of Mn(k), which are precisely the central
simple algebras of degree n over k. Thus we obtain canonical bijections of
pointed sets

H1(k,PGLn,k) ∼= {central simple algebras over k of degree n}/iso
∼= {Severi–Brauer varieties over k of dimension n− 1}/iso

and a map of pointed sets H1(k,PGLn,k)→Br(k) which sends a central simple
algebra A of degree n to its class [A] ∈ Br(k), as discussed in Section 1.3.3.
For a Severi–Brauer variety X of dimension n− 1 we denote by [X] ∈ Br(k)
the image of the isomorphism class of X under this map.

For a central simple algebra A over k of degree n define X(A) to be the
k-scheme of right ideals of A of rank n. More precisely, for any commutative
k-algebra R, the set X(A)(R) is the set of right ideals of the k-algebra A⊗kR
which are projective R-modules of rank n and are direct summands of the
R-module A ⊗k R, see [KMRT, Ch. I, §1.C]. This is a closed subscheme of
the Grassmannian of n-dimensional subspaces of the k-vector space A.

Theorem 7.1.2 Let X be a variety over a field k. The following properties
are equivalent.

(i) X is a Severi–Brauer variety of dimension n− 1.
(ii) There is an isomorphism X ' Pn−1

k̄
.

(iii) There is an isomorphism Xs ' Pn−1
ks

.
(iv) There is a central simple k-algebra A of degree n such that X ' X(A).

The central simple algebra A in (iv) is well defined up to isomorphism. If
X = X(A), then [X] = [A] ∈ Br(k).

For the proof of this theorem see [Lic68], [Art82], [KMRT, Ch. I, §1.C],
[GS17, Ch. 5], [Kol], [Po18, §4.5.1].

For a Severi–Brauer variety X over k one can construct a central simple
k-algebra A such that X ' X(A) in the following direct manner (Quillen,
Szabó, Kollár, see [Kol, Cor. 23]).

The exact sequence of locally free sheaves [Har77, Ch. II, Thm. 8.13]

0 −→ Ω1
Pn−1
k

−→ O(−1)⊕nPn−1
k

−→ OPn−1
k
−→ 0 (7.1)

gives an isomorphism H1(Pn−1
k , Ω1

Pn−1
k

) ∼= H0(Pn−1
k ,OPn−1

k
) ∼= k. Let TX be

the tangent bundle and let Ω1
X be the cotangent bundle of X. The k-vector
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space H1(X,Ω1
X) has dimension 1, as can be computed over k̄, where we have

X ' Pn−1
k̄

. We have canonical isomorphisms

H1(X,Ω1
X) ∼= H1(X,Hom(TX ,OX)) ∼= Ext1

X(TX ,OX).

Hence, up to multiplying the maps by non-zero scalars in k, there is a unique
non-split extension of vector bundles

0 −→ OX −→ FX −→ TX −→ 0. (7.2)

This is a twisted version of the dual sequence of (7.1). Now A := EndX(FX)
is a central simple k-algebra such that X = X(A).

Note [Kol, Warning 24] that the functor X(A) is defined using right ideals
of rank n. If one defines this functor using left ideals of rank n, then A must
be replaced by the opposite algebra Aop.

Let X be a Severi–Brauer variety of dimension n− 1. The Picard group

Pic(Xs) ∼= Pic(Pn−1
ks

) ∼= Z

is generated by the class LX of an ample line bundle of degree 1. The
class of the canonical bundle ωX ∈ Pic(X) is −nLX . The action of Γ
on Pic(Xs) is trivial, so LX ∈ Pic(Xs)Γ and H1(k,Pic(Xs)) = 0. Next,
Br(Xs) ' Br(Pn−1

ks
) = 0. Thus the exact sequence (5.21)

0 −→ Pic(X) −→ Pic(Xs)Γ −→ Br(k) −→ Br1(X) −→ H1(k,Pic(Xs))

takes the following form:

0 −→ Pic(X) −→ Pic(Xs)Γ
∂X−→ Br(k) −→ Br(X) −→ 0, (7.3)

where Pic(Xs) ∼= Z. The kernel of Br(k)→Br(X) is equal to the kernel of
Br(k)→Br(k(X)). It is a finite cyclic group annihilated by n. Let us denote
by αX = ∂X(LX) the image of LX in Br(k).

Proposition 7.1.3 Let A be a central simple algebra over a field k and let
X = X(A) be the associated Severi–Brauer variety. Then αX = [A] ∈ Br(k).

Proof. See [Lic68, p. 1217] and [GS17, Thm. 5.4.11]. �

Remark 7.1.4 (1) For X = X(A) as above, Amitsur proved that the kernel
of Br(k)→Br(k(X)) is the finite cyclic subgroup generated by [A] ∈ Br(k).

(2) Recall that for a scheme X, an X-scheme Y which is locally for the
étale topology isomorphic to Pn−1

X , is called a Severi–Brauer scheme. For a
generalisation of (1) to the torsion subgroup of the Brauer group of a Severi–
Brauer scheme over an arbitrary base, see [Gab81, Ch. II, Thm. 2].
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Proposition 7.1.5 (Châtelet) Let A be a central simple algebra over a
field k and let X = X(A) be the associated Severi–Brauer variety. The fol-
lowing properties are equivalent:

(i) X(k) 6= ∅;
(ii) αX = 0;

(iii) X ' Pn−1
k ;

(iv) there is a k-algebra isomorphism A 'Mn(k).

Proof. Condition (i) implies that the map Br(k)→Br(X) is injective, thus the
map Pic(X)→Pic(Xs)Γ is surjective. This implies (ii), which itself implies
that there is a line bundle L on X which over ks is isomorphic to LX . Such a
line bundle L defines a k-morphism X→Pnk which becomes an isomorphism
over ks, hence is an isomorphism over k. This gives (iii), which trivially gives
(i). The equivalence of (ii) and (iv) follows from Proposition 7.1.3. �

This proposition is a particular case of the following statement.

Proposition 7.1.6 Let X1 and X2 be Severi–Brauer varieties over k of the
same dimension. Then X1 ' X2 if and only if αX1

= αX2
∈ Br(k).

Proof. If X1 ' X2, then we have an isomorphism of sequences (7.3) for X1

and X2 sending LX1
to LX2

, hence αX1
= αX2

. Alternatively, an isomorphism
X1 ' X2 gives rise to an isomorphism A1 ' A2, since Ai = EndXi(FXi), for
i = 1, 2, see (7.2). This implies αX1 = αX2 by Proposition 7.1.3.

Let A1 and A2 be central simple k-algebras such that Xi
∼= X(Ai), for

i = 1, 2. Since dim(X1) = dim(X2), we have dimk(A1) = dimk(A2). By
Proposition 7.1.3 the condition αX1

= αX2
is equivalent to the condition

[A1] = [A2]. By Wedderburn’s theorem (Theorem 1.2.4), central simple k-
algebras of the same dimension and the same Brauer class, are isomorphic.
Then X1

∼= X(A1) ∼= X(A2) ∼= X2. �

Proposition 7.1.7 Let X1 and X2 be Severi–Brauer varieties over k. The
following properties are equivalent.

(i) The classes αX1
and αX2

generate the same cyclic subgroup of Br(k).
(ii) X1 and X2 are stably k-birationally equivalent, i.e., there exist projective

spaces Prk and Psk such that X1 ×k Prk and X2 ×k Psk are birationally
equivalent.

Proof. Since αX1
is a multiple of αX2

, the class αX1
goes to zero in Br(k(X2)).

Thus the generic fibre of the projection X1×X2→X2 is a split Severi–Brauer
variety, hence X1×X2 is birationally equivalent to X2×k Psk for some s ≥ 0.
Similarly, X1 ×X2 is birationally equivalent to X1 ×k Prk for some r ≥ 0. �

It is an open question whether stably birationally equivalent Severi–Brauer
varieties of the same dimension are birationally equivalent.
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7.1.1 Two applications of Severi–Brauer varieties

We first justify the claim of Remark 1.2.17.

Proposition 7.1.8 Let K be a henselian discretely valued field. Let K̂ be the
completion of K. Then the natural map Br(K)→Br(K̂) is an isomorphism.

Proof. By [BLR90, III, §6, Cor. 10, p. 82], if X is a smooth variety over K,

then X(K) is a dense subset of X(K̂). Let α be an element of the kernel of

Br(K)→Br(K̂). Choose a Severi–Brauer variety X over K such that the class

of X in Br(K) is α. Then X(K̂) 6= ∅ by Proposition 7.1.5, hence X(K) 6= ∅
and this implies α = 0 by Proposition 7.1.5. Let now β ∈ Br(K̂). There

is a positive integer n such that β is the image of β1 ∈ H1(K̂,PGLn) under

the map H1(K̂,PGLn)→H2(K̂,Gm). Choose a closed embedding of algebraic
K-groups PGLn ↪→ GLN . Then X = GLN/PGLn is a smooth variety over K.
Applying [SerCG, Ch. I, §5.4, Prop. 36] and using Hilbert’s theorem 90, we
obtain the following commutative diagram of pointed sets with exact rows:

GLN (K) //

��

X(K) //

��

H1(K,PGLn) //

��

0

GLN (K̂) // X(K̂) // H1(K̂,PGLn) // 0

Choose a lifting β2 ∈ X(K̂) of β1. By the implicit function theorem (see

Theorem 10.5.1), GLN (K̂)β2 is an open subset of X(K̂) in the topology

induced by the topology of K̂. Since X(K) is dense in X(K̂), we can find

an α2 ∈ X(K) and a g ∈ GLN (K̂) such that gβ2 = α2. Since gβ2 goes to

β1 ∈ H1(K̂,PGLn) (see [SerCG, Ch. I, p. 55]), the image α1 ∈ H1(K,PGLn)
of α2 goes to β1. This implies that the image α ∈ Br(K) of α1 goes to

β ∈ Br(K̂). �

The following proposition from [Duc98] is in the spirit of earlier results by
Merkurjev and Suslin.

Proposition 7.1.9 (Ducros) For any field k of characteristic zero there
exists a field extension L of k of cohomological dimension cd(L) at most 1
such that k is algebraically closed in L.

Proof. For k of characteristic zero, recall [SerCG, Ch. II, §3.1, Prop. 5] that
cd(k) ≤ 1 if and only if Br(k′) = 0 for every finite extension k′/k. By Proposi-
tion 7.1.5 this is also equivalent to the following condition: for any finite field
extension k′ of k, any Severi–Brauer variety over k′ is trivial, equivalently, it
has a k′-rational point.

If cd(k) ≤ 1, we take L = k. If cd(k) > 1, then there exist non-trivial
Severi–Brauer varieties W over some finite extensions k′/k. Choose one
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Severi–Brauer variety W in each k′-isomorphism class and consider the Weil
restriction of scalars Rk′/k(W ). The finite products of these varieties form
a filtering inductive system of geometrically integral varieties over k; their
fields of functions are extensions k ⊂ K such that k is algebraically closed
in K. Passing to the inductive limit we obtain a field extension k ⊂ k1 such
that k is algebraically closed in k1. Define kn : = (kn−1)1 for n ≥ 2. Let L be
the inductive limit of kn as n→∞. On the one hand, k is algebraically closed
in L. On the other hand, any variety RL′/L(V ), where V is a Severi–Brauer
variety over a finite extension L′ of L, is already defined over some kn. Any
integral variety has a rational point over its field of functions, so RL′/L(V )
has a kn+1-point which is also an L-point. Then V has an L′-point. This
proves that cd(L) ≤ 1. �

Remark 7.1.10 As a consequence of a theorem of Kollár, one has the fol-
lowing stronger result [CT08b, Thm. 2.1]: For any field k of characteristic
zero there exists a field extension k ⊂ L such that L is a C1-field and k is
algebraically closed in L.

7.1.2 Torsors for tori as birational models of
Severi–Brauer varieties

The following statement does not seem to be available in the literature.

Proposition 7.1.11 Let A be a central simple algebra over a field k and let
X = X(A) be the associated Severi–Brauer variety. Let K be a maximal com-
mutative étale k-subalgebra of A. The action of K on A by left multiplication
defines a maximal k-torus T ⊂ PGLA that fits into the exact sequence

1 −→ Gm,k −→ RK/k(Gm,K) −→ T −→ 1. (7.4)

The natural action of PGLA on X restricts to an action of T on X, which
has a dense open orbit E ⊂ X consisting of the points of X with trivial
stabilisers in T . Then E is a k-torsor for T . Moreover, the connecting map
defined by the exact sequence (7.4) sends the class [E] ∈ H1(k, T ) to the class
[A] ∈ Br(k).

Proof. Let n be the degree of A. Let c : Γ→PGLn,k(ks) be a 1-cocycle such
that A is the twisted form of the matrix algebra Mn(k) by c with respect to
the action of PGLn,k by conjugation. Twisting by c we obtain X = (Pn−1

k )c
and the inner form PGLA = (PGLn,k)c. After twisting, the left action of
PGLn,k on Pn−1

k becomes a left action of PGLA on X.
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We have a commutative diagram of algebraic groups over k:

1 // Gm,k //

=

��

RK/k(Gm,K) //
� _

��

T //� _

��

1

1 // Gm,k // GLA // PGLA // 1

(7.5)

The choice of a cocycle c in its cohomology class is equivalent to the choice of
an isomorphism A⊗kks 'Mn(ks). Under this isomorphism, the ks-subalgebra
K ⊗k ks ⊂ A ⊗k ks becomes a subalgebra of Mn(ks) conjugate to the sub-
algebra of diagonal matrices in Mn(ks). Hence the subset Es ⊂ Xs ' Pn−1

ks

is projectively isomorphic to the complement U to the union of coordinate
hyperplanes in Pn−1

ks
. Moreover, the action of T s on Es is isomorphic to the

action of the diagonal torus in PGLn,ks
on U . Hence Es is a torsor for T s.

This implies that E is a k-torsor for T .
It is a general fact (and is immediate to check) that c−1 is a cocycle

with coefficients in the inner form PGLA = (PGLn,k)c. Then PGLn,k =
(PGLA)c−1 . By a corollary of a theorem of Steinberg over perfect fields,
extended in [BS68, §8.6] to arbitrary fields, the cocycle c−1 : Γ→PGLA(ks)
factors through a 1-cocycle µ : Γ→T (ks) ⊂ PGLA(ks), see [PR94, Prop. 6.18]
and its proof.

Twisting (7.5) by µ with respect to the action of T by conjugation we
obtain the commutative diagram

1 // Gm,k //

=

��

RK/k(Gm,K) //
� _

��

T //� _

��

1

1 // Gm,k // GLn,k // PGLn,k // 1

(7.6)

Since T ⊂ PGLA acts on X preserving E, twisting by µ turns X into Pn−1
k ,

hence turns E into a trivial T -torsor. This shows that the class of E in
H1(k, T ) is represented by the inverse of µ.

We note that c : Γ→PGLn,k(ks) factors through µ−1 : Γ→T (ks). Since A is
the twisted form of Mn(k) by c, the connecting map H1(k,PGLn,k)→Br(k)
sends the class of c to [A]. By the commutativity of (7.6), the connecting
map H1(k, T )→Br(k) sends the class of µ−1, which is equal to the class of
the T -torsor E, to [A]. �

The following special case is better known, though it is sometimes stated
in the weaker form of a stable birational equivalence.

Proposition 7.1.12 Let X be the Severi–Brauer variety over a perfect field
k attached to a cyclic algebra Dk(χ, a). Let K ⊂ ks be the invariant subfield of
Ker(χ) ⊂ Γ . Then X contains a dense open subset isomorphic to the k-torsor
for the norm 1 torus R1

K/k(Gm,K) given by NK/k(x) = a.
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Proof. Write A = Dk(χ, a) and n = [K : k]. We note that K ⊂ A is a maximal
commutative étale k-subalgebra and T = RK/k(Gm,K)/Gm,k ⊂ PGLA is the
associated maximal k-torus. By Proposition 7.1.11, the Severi–Brauer variety
X contains a dense open subset isomorphic to a k-torsor E for T such that
the class [E] ∈ H1(k, T ) goes to

[A] = (χ, a) ∈ Br(K/k) = H2(G,K∗)

under the isomorphism H1(k, T )
∼−→ Br(K/k) provided by the connecting

map of (7.4).
Let σ be the generator of Gal(K/k) ' Z/n such that χ(σ) = 1 ∈ Z/n. We

construct an isomorphism of k-tori T
∼−→ R1

K/k(Gm,K) as follows. The map

K∗→K∗ sending x to σ(x)/x commutes with Gal(K/k) and hence induces an
endomorphism φ of the k-torus RK/k(Gm,K). It is clear that Ker(φ) is Gm,k
naturally embedded in RK/k(Gm,K). By Hilbert’s theorem 90 for a cyclic
extension, Coker(φ) = Gm,k and the surjective map RK/k(Gm,K)→Gm,k is
induced by the norm NK/k. We obtain an exact sequence of k-tori

1 −→ Gm,k −→ RK/k(Gm,K)
φ−→ RK/k(Gm,K) −→ Gm,k −→ 1. (7.7)

Hence φ induces an isomorphism ϕ : T
∼−→ R1

K/k(Gm,K), which thus depends
on the choice of the generator σ.

Recall that every k-torsor for R1
K/k(Gm,K) is isomorphic to the closed

subset Zc ⊂ RK/k(Gm,K) given by NK/k(x) = c for some c ∈ k∗. Indeed,
Shapiro’s lemma and Hilbert’s theorem 90 imply that H1(k,RK/k(Gm,K)) =
H1(K,Gm,K) = 0. The exact sequence of tori

1 −→ R1
K/k(Gm,K) −→ RK/k(Gm,K) −→ Gm,k −→ 1 (7.8)

gives an isomorphism

k∗/NK/k(K∗) = Ĥ0(G,K∗)
∼−→ H1(k,R1

K/k(Gm,K)).

Every element of this group is represented by some c ∈ k∗. The exact sequence
(7.8) shows that the inverse image of c in RK/k(Gm,K), which we called Zc,
is a k-torsor for R1

K/k(Gm,K) whose class is represented by c.

Let us show that the isomorphism ϕ induces an isomorphism E
∼−→ Za,

which is equivalent to ϕ∗[E] = [Za]. We have (χ, a) = a∪ ∂(χ), see (1.5). We
obtain the following diagram of isomorphisms:

[E] ∈ H1(k, T )
ϕ∗

∼=
//

∼=
��

H1(k,R1
K/k(Gm,K)) 3 [Za]

(χ, a) ∈ H2(G,K∗) Ĥ0(G,K∗)∼=

∪∂(χ)oo

∼=

OO

3 a
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To prove that ϕ∗[E] = [Za] it remains to show that this diagram commutes.
It suffices to prove that the connecting map attached to (7.7) is the cup-
product with the generator ∂(χ) of H2(G,Z) ' Z/n. This is the content of
the following Lemma 7.1.13. �

Lemma 7.1.13 The connecting map associated to the exact sequence

0 −→ Z −→ Z[G]
σ−1−→ Z[G] −→ Z −→ 0 (7.9)

sends 1 ∈ Z to ∂(χ).

Proof. Recall that χ : G→Z/n sends σ to 1 ∈ Z/n. Then the map χ̃ : G→Z
sending σi to i ∈ Z is a lifting of χ. Hence the cohomology class ∂(χ) is
represented by the 2-cocycle G×G→Z sending a pair (σi, σj) to(

χ̃(σi) + χ̃(σj)− χ̃(σi+j)
)
/n.

This equals 0 if i+ j < n, and 1 otherwise.
Now we turn to the exact sequence (7.9). Let I be the kernel of Z[G]→Z.

The element 1 ∈ Z[G] goes to 1 ∈ Z, hence the connecting map associated to
the exact sequence of G-modules

0 −→ I −→ Z[G] −→ Z −→ 0

sends 1 ∈ Z to the class in H1(G, I) represented by the 1-cocycle σi 7→ σi−1.
The function G→Z[G] sending σi to 1 + σ + . . . + σi−1 is a lifting of this
cocycle. Thus the image of 1 ∈ Z under the connecting map defined by (7.9)
is the class in H2(G,Z) represented by the 2-cocycle sending a pair (σi, σj)
to

(1 + σ + . . .+ σi−1) + σi(1 + σ + . . .+ σj−1)− (1 + σ + . . .+ σk−1),

where k = i + j if i + j < n and k = i + j − n otherwise. Thus the value
of this 2-cocycle on (σi, σj) is 0 if i + j < n, and the canonical generator
1 + σ + . . .+ σn−1 of Z = Z[G]G otherwise. Thus the two 2-cocycles are the
same. �

7.1.3 Morphisms to Severi–Brauer varieties

Let k be a field. Let Y be a Severi–Brauer variety and let X be an arbi-
trary k-scheme. A morphism f : X→Y gives rise to a map of Γ -modules
f∗ : Pic(Y s)→Pic(Xs) and a distinguished class f∗(LY ) ∈ Pic(Xs)Γ . More-
over, we have a map of Γ -modules

H0(Y s, LY ) −→ H0(Xs, f∗(LY )).
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The image of this map is a Γ -invariant finite-dimensional ks-vector subspace
V of H0(Xs, f∗(LY )). Since f is a morphism, the line bundle f∗(LY ) on Xs

is generated by the vector subspace of sections V ⊂ H0(Xs, f∗(LY )), so that
the natural map V ⊗ks

OXs→f∗(LY ) is surjective.
There is a converse to this observation.

Proposition 7.1.14 Let k be a field. Let X be a k-scheme. Let L ∈ Pic(Xs)Γ

and let V ⊂ H0(Xs, L) be a finite-dimensional Γ -invariant ks-vector sub-
space such that the map V ⊗ks

OXs→L is surjective. Let n = dim(V ).
Then there is an (n − 1)-dimensional Severi–Brauer variety Y over k and
a k-morphism f : X→Y such that f∗(LY ) = L ∈ Pic(Xs) and the map
f∗ : H0(Y s, LY )→H0(Xs, L) is injective with image V .

Proof. Under the assumption that X is proper over k, and V = H0(Xs, L), the
above proposition is established in [Lie17, Thm. 3.4]. The proof by descent
extends to the above more general statement. �

Let X be a smooth, quasi-projective, geometrically integral variety over
a field k such that ks[X

s]∗ = k∗s . By Proposition 5.4.2, we have an exact
sequence

0 −→ Pic(X) −→ Pic(Xs)Γ −→ Br(k) −→ Br1(X),

which is functorial contravariant with respect to morphisms of such vari-
eties. Let ∂X denote the map Pic(Xs)Γ −→ Br(k). If X(k) 6= ∅, then
Br(k)→Br1(X) has a retraction, hence ∂X = 0. More generally, if X has index
d, so has a zero-cycle of degree d, then d ∂X(L) = 0 for all L ∈ Pic(Xs)Γ .

We want to understand restrictions on the order of ∂X(L) in the general
case. By abuse of notation, we use the same notation for a line bundle L on
Xs and its class in Pic(Xs).

If Y is a Severi–Brauer variety of dimension n − 1, then the image in
Pic(Y s) of the canonical bundle ωY ∈ Pic(Y ) is the opposite of L⊗nY . This
implies that

n∂Y (LY ) = 0.

Part (i) of the following proposition is stated in various degrees of gener-
ality by S. Lichtenbaum [Lic68, Lic69]. Part (ii) was recently suggested by
A. Kuznetsov.

Proposition 7.1.15 Let X be a smooth, projective, geometrically integral
variety over a field k and let L ∈ Pic(Xs)Γ .

(i) If there exists a Γ -invariant vector subspace V ⊂ H0(Xs, L) of dimension
n ≥ 1, then n∂X(L) = 0.

(ii) Let χ(L) be the coherent Euler–Poincaré characteristic of L on Xs. Then

χ(L) ∂X(L) = 0.
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Proof. Let us prove (i). Suppose first that n = 1. Then there exists a unique
effective Cartier divisor D on Xs with OXs(D) ' L which is the zero set of a
generator of the one-dimensional vector space V . This divisor is Γ -invariant.
Hence it comes from Div(X), hence L comes from Pic(X), hence ∂X(L) = 0.

Suppose that n ≥ 1. If there exists a non-zero effective divisor D ∈ Div(Xs)
such that for every element ∆ of the linear system V ⊂ H0(Xs, L) the
difference ∆ − D is an effective divisor, then there is a maximal such
D; it is called the fixed component of the linear system. Since V is sta-
ble under the action of Γ , the fixed component D is defined over k. Let
M : = L ⊗ OXs(−D) ∈ Pic(Xs). We may identify V with a Γ -invariant
vector subspace of H0(Xs,M). Since there is now no fixed component in
this linear system, by Proposition 7.1.14 there exists a k-morphism g : U→Y ,
where U ⊂ X is an open set which contains all codimension 1 points of the
smooth variety X, so that ks[U

s]∗ = k∗s , and Y is a Severi–Brauer variety of
dimension n − 1, equipped with its natural line bundle LY ∈ Pic(Y s). We
have n∂Y (LY ) = 0.

The inverse image g∗(LY ) ∈ Pic(U s) coincides with the restriction of the
line bundle M s ∈ Pic(U s). By functoriality we get n∂U (M) = 0. Since U con-
tains all the codimension 1 points of X, the restriction map Pic(Xs)→Pic(U s)
is an isomorphism. By functoriality again we have n∂X(M) = 0. Now we have
∂(OXs(D)) = 0 since D is defined over k. Since ∂ is additive, and we have
L = M ⊗OXs(D), we conclude n∂X(L) = 0. This proves (i).

Let us prove (ii). Let O(1) ∈ Pic(X) be a very ample sheaf. By the
Hirzebruch–Grothendieck Riemann–Roch theorem [Har77, Appendix A, Thm.
4.1] for any line bundle L ∈ Pic(Xs) there exists a polynomial P (t) ∈ Q[t]
such that χ(L(m)) = P (m) for any integer m. Let a be a positive integer
such that aP (t) ∈ Z[t].

Let L ∈ Pic(Xs)Γ . By a result of Serre (see [Har77, III, Thm. 5.2]), there
exists an integer m0 = m0(L) such that for any integer m ≥ m0 the line
bundle L(m) is very ample and satisfies Hi(Xs, L(m)) = 0 for i > 0, hence
χ(L(m)) = h0(Xs, L(m)). From (i) we deduce that χ(L(m)) ∂X(L(m)) = 0.
Since ∂ is additive and O(1) ∈ Pic(X), this gives χ(L(m)) ∂X(L) = 0.

We have χ(L(m)) − χ(L) = a−1R(m), where R(t) ∈ Z[t] is a polynomial
with zero constant term. Let r be an integer such that r ∂X(L) = 0. Choose
m ≥ m0 to be a multiple of ra. Then χ(L(m))− χ(L) is an integer divisible
by r. Thus (χ(L(m))− χ(L)) ∂X(L) = 0, which implies χ(L) ∂X(L) = 0. �

7.2 Projective quadrics

Let C be a smooth, projective, geometrically integral curve of genus 0 over a
field k. Since C is smooth, it has a ks-point and hence Cs ∼= P1

ks
, cf. Remark

1.1.12 (3). The anticanonical line bundle of C is very ample of degree 2, so it
gives an embedding of C into P2

k as a smooth conic. From the isomorphism
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Cs ∼= P1
ks

we also see that the degree map gives an isomorphism of Pic(Cs)
with the trivial Γ -module Z, hence H1(k,Pic(Cs)) = 0. Since Br(Cs) = 0 by
Theorem 5.6.1 (iv), the exact sequence (5.21) can be written as

0 −→ Pic(C) −→ Pic(Cs)Γ −→ Br(k) −→ Br(C) −→ 0. (7.10)

Proposition 7.2.1 Let k be a field, char(k) 6= 2. Let C be a smooth conic
over k. Let Q be the quaternion algebra over k associated to C as in Definition
1.1.11. Then the image of a generator of Pic(Cs)Γ ∼= Z in Br(k) is the class
of Q, so that the natural map Br(k)→Br(C) is surjective with the kernel
generated by the class of Q.

Proof. By Remark 1.1.12 (3) or by the Riemann–Roch theorem, a smooth
conic C has a k-point if and only if C ∼= P1

k. In this case the natural map
Pic(C)→Pic(Cs) is visibly an isomorphism. The natural map Br(k)→Br(P1

k)
is an isomorphism by Theorem 5.6.1 (vii). On the other hand, Q is split over
k by Proposition 1.1.8, so the class of Q in Br(k) is zero.

If C has no k-point, then Q is a division algebra by Proposition 1.1.8,
so the class [Q] ∈ Br(k) is non-zero. By Exercise 1.1.13 (4), the class [Q]
lies in the kernel of the natural map Br(k)→Br(k(C)). This map factors
through the natural map Br(C)→Br(k(C)), which is injective by Theorem
3.5.5. We conclude that [Q] is a non-zero element in the kernel of the natural
map Br(k)→Br(C). To finish the proof it remains to show that the cokernel
of Pic(C)→Pic(Cs) is annihilated by 2. This follows from the fact that the
degree map identifies Pic(Cs) with Z and the canonical class of C is an
element of Pic(C) of degree −2. �

Remark 7.2.2 This proposition goes back to Witt [Wit35, Satz, S. 465].
Since the smooth projective conics are precisely the twisted forms of the
projective line, the above proof is a variant of Proposition 7.1.3, up to iden-
tification of the class of the quaternion algebra Q. There is a version of this
proposition over a field of characteristic 2, with appropriate descriptions of
smooth conics and quaternion algebras (see [GS17, Ch. I, Exercises 3, 4]).

Remark 7.2.3 Since Br(Cs) = 0 and H1(k,Pic(Cs)) = 0, the Leray spec-
tral sequence (5.19) shows that the homomorphism H3(k, k∗s )→H3(C,Gm) is
injective.

Proposition 7.2.4 Let k be a field, char(k) 6= 2. Let X ⊂ Pnk , n ≥ 2, be a
smooth projective quadric. The following properties hold.

(a) The map Br(k)→Br(X) is surjective.
(b) For n = 2, the conic X can be given by an equation

x2 − ay2 − bt2 = 0,

where a, b ∈ k∗. The map Br(k)→Br(X) is an isomorphism if and only
if X(k) 6= ∅. If X(k) = ∅, then Ker[Br(k)→Br(X)] ∼= Z/2 is generated
by the class of the quaternion algebra (a, b).
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(c) For n = 3, the quadric X can be given by an equation

x2 − ay2 − bz2 + dabt2 = 0,

where a, b, d ∈ k∗. The class of d in k∗/k∗2 is uniquely determined by X.
(c′) If d is not a square, then Br(k)→Br(X) is an isomorphism.
(c′′) Let C be the conic x2 − ay2 − bt2 = 0. If d is a square, then X is

isomorphic to C×k C and is k-birationally equivalent to P1
k×C. In this

case, the map Br(k)→Br(X) is an isomorphism if and only if X(k) 6= ∅.
If X(k) = ∅, then

Ker[Br(k)→Br(X)] = Ker[Br(k)→Br(C)] ∼= Z/2

is generated by the class of the quaternion algebra (a, b).
(d) For n ≥ 4, the map Br(k)→Br(X) is an isomorphism.

Proof. Statement (b) was proved in Proposition 7.2.1.
By an argument going back to the Greeks, a smooth quadric X ⊂ Pnk of

dimension at least 1 with a k-point is birationally equivalent to the projective
space: the stereographic projection from a k-point of X to a projective space
Pn−1
k ⊂ Pnk is a birational equivalence.

By Theorem 6.2.11 we have Br(Xs) = 0, hence Br1(X) = Br(X).
Thus statement (a) will follow from Proposition 5.4.2 once we prove that
H1(k,Pic(Xs)) = 0 for all n ≥ 2.

Let us prove (d). For n ≥ 4 an easy direct proof shows that the restric-
tion map Pic(Pnks

)→Pic(Xs) is an isomorphism. Indeed, the homogeneous
equation of Xs can be written as x0x1 + q(x2, . . . , xn) = 0, where q is a non-
degenerate quadratic form in n − 1 ≥ 3 variables. The hyperplane x0 = 0
cuts out the integral divisor D given by x0 = q(x2, . . . , xn) = 0 in Pnks

. The

complement Xs rD is isomorphic to the affine space An−1
ks

. From the exact
sequence

0 = ks[An−1
ks

]∗/k∗s −→ Z[D] −→ Pic(Xs) −→ Pic(An−1
ks

) = 0

we conclude that Z ∼= Pic(Pnks
)→Pic(Xs) is an isomorphism. Now the com-

mutative diagram

Pic(Pnks
)
∼= // Pic(Xs)

Pic(Pnk )

∼=

OO

// Pic(X)
?�

OO

implies that Pic(X)→Pic(Xs) is an isomorphism. In particular, in this case
we have H1(k,Pic(Xs)) = 0. Now the statement of (d) follows from the exact
sequence (5.21).
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Let us prove (c). Quadric surfaces were already discussed by F. Châtelet
in the 1940s. We refer to [CTS93, Thm. 2.5] for detailed proofs of some of the
following assertions. It is clear that any smooth quadric X ⊂ P3

k can be given
by an equation as in (c). We have Xs ' P1

ks
×P1

ks
, hence Pic(Xs) ∼= Ze1⊕Ze2,

where ei is the inverse image of a ks-point under the projection to the i-th
factor, for i = 1, 2. These are the two rulings of the quadric surface Xs. This
implies that the Z-basis {e1, e2} of Pic(Xs) is stable under the action of Γ .
The class of the hyperplane section is e1 + e2, which is thus in the image
of Pic(X). Over k(

√
a,
√
d), the two rulings can be given by factorising the

equation
x2 − ay2 = b(z2 − adt2). (7.11)

The action of Γ on {e1, e2} is trivial if d is a square. If d is not a square, then
the action of Γ factors through its image Gal(k(

√
d)/k); the generator of this

group permutes e1 and e2. Using Shapiro’s lemma we see that in all cases we
have H1(k,Pic(Xs)) = 0. The basic exact sequence (5.21) then becomes

0 −→ Pic(X) −→ Pic(Xs)Γ
∂X−→ Br(k) −→ Br(X) −→ 0.

Since X has a rational point over k(
√
a), the image of ∂X lies in the group

Ker[Br(k)→Br(k(
√
a)], hence is annihilated by 2.

If d is not a square, then Pic(Xs)Γ is generated by e1 + e2, hence the map
Pic(X)→Pic(Xs)Γ is surjective in this case and thus the map Br(k)→Br(X)
is an isomorphism.

Let C be the smooth conic x2 − ay2 − bt2 = 0. Suppose that d is a
square. Then (7.11) gives that b is the ratio of norms from the quadratic
extensions given by adjoining

√
a. From here it is easy to deduce that X

is k-birationally equivalent to C ×k P1
k. This implies that the kernel of

Br(k)→Br(X) ⊂ Br(k(X)) coincides with the kernel of Br(k)→Br(k(C)),
which by (b) is generated by the class of the quaternion algebra (a, b). We have
e1, e2 ∈ Pic(Xs)Γ and e1+e2 comes from Pic(X). Since 2∂X(e1) = 2∂X(e2) =
0 and ∂X(e1 + e2) = 0, we have ∂X(e1) = ∂X(e2) and this class generates the
kernel of Br(k)→Br(X) ⊂ Br(k(X)). Hence ∂X(e1) = ∂X(e2) = (a, b). Using
Proposition 7.1.14, one sees that each ei ∈ Pic(Xs)Γ gives rise to a morphism
X→C. Going over to ks, one checks that the morphism X→C ×k C defined
by (e1, e2) is an isomorphism.

Finally, statement (a) is now established for all n ≥ 2. �

7.3 Some affine hypersurfaces

Proposition 7.3.1 Let k be a field of characteristic zero. Let X ⊂ Pnk be a
smooth hypersurface and let Z ⊂ X be a smooth hyperplane section. If n ≥ 4,
then the natural map Br(k)→Br(X r Z) is an isomorphism.
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Proof. As usual we write X = X ×k k̄ and Z = Z ×k k̄, where k̄ is an
algebraic closure of k. Since n ≥ 4 the restriction map Pic(Pn

k̄
)→Pic(X)

is an isomorphism [SGA2, XII, Cor. 3.7], so Pic(X) = Z[Z]. Thus every
divisor class on X is a multiple of [Z], which implies that Z is integral. Let
U = X r Z. If a rational function f ∈ k̄(X)∗ is regular and invertible on U ,
then div(f) is a multiple of an ample divisor Z, hence div(f) = 0. This shows
that k̄[U ]∗ = k̄∗.

The natural restriction map Pic(X)→Pic(U) is surjective because X is
smooth. The kernel of this map is the cyclic subgroup generated by [Z],
hence the exact sequence

0 −→ Z[Z] −→ Pic(X) −→ Pic(U) −→ 0

shows that Pic(U) = 0.
Since Z is a smooth complete intersection of dimension at least 2 in Pn

k̄

[SGA2, X, Thm. 3.10] gives π1(Z) = 0 hence H1(Z,Q/Z) = 0. Since n ≥ 4,
we have Br(X) = 0 by Corollary 5.5.4. From the exact sequence (3.15)

0 −→ Br(X) −→ Br(U) −→ H1
ét(Z,Q/Z)

we conclude that Br(U) = 0. Now the exact sequence (5.21) gives the required
statement. �

The following proposition is taken from [CTX09, §5.8].

Proposition 7.3.2 Let k be a field, char(k) 6= 2. Let f(x, y, z) be a non-
degenerate quadratic form and let a ∈ k∗. Let X be the affine quadric defined
by the equation f(x, y, z) = a. Let d be the determinant of the quadratic form
f(x, y, z)− at2. If X(k) 6= ∅ and d /∈ k∗2, then Br(X)/Br(k) ∼= Z/2.

In [CTX09, §5.8] one proves that Br(X)/Br(k) = Z/2 and one gives an
explicit algorithm which starting with a k-point on X produces an element
in Br(X) whose image generates Br(X)/Br(k). There is a misprint in the
formulae in loc. cit., so we give a corrected description of the algorithm here.
Let K = k(

√
d). The algorithm generates a function ρ ∈ k(X)∗ whose divisor

divX(ρ) on the affine quadric X is the norm of a divisor on X ×k K, which
implies that the class of the quaternion algebra (ρ, d) ∈ Br(k(X)) belongs to
Br(X) and generates Br(X)/Br(k).

Let Y ⊂ P3
k be the smooth projective quadric given by the homogeneous

equation
f(x, y, z) = at2.

Let M ∈ Y (k). Let l1(x, y, z, t) be a linear form with coefficients in k defining
the tangent plane to Y at M . Then we have

f(x, y, z)− at2 = l1l2 + c(l23 − dl24),
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where l2, l3, l4 are linearly independent linear forms with coefficients in k and
c is a constant in k∗. Conversely, if we have such an identity, then l1 = 0 is
an equation for the tangent plane at the k-point l1 = l3 = l4 = 0. Define
ρ = l1(x, y, z, t)/t ∈ k(X) and let α = (ρ, d) ∈ Br(k(X)). We have

α = (l1(x, y, z, t)/t, d) = (−c l2(x, y, z, t)/t, d) ∈ Br(k(X)).

Thus α is unramified on X away from the plane at infinity t = 0, and the
finitely many closed points given by l1 = l2 = 0. By the purity theorem
for the Brauer group of smooth varieties (Theorem 3.7.2 (i)) we see that α
belongs to Br(X) ⊂ Br(k(X)). The complement to X in Y is the smooth
projective conic C given by f(x, y, z) = 0. An easy computation shows that
the residue of α at the generic point of this conic is the class of d in

k∗/k∗2 = H1(k,Z/2) ⊂ H1(k(C),Z/2) ⊂ H1(k(C),Q/Z)

(note that k is algebraically closed in k(C)). Since d is not a square in k,
this class is not trivial. Thus α ∈ Br(X) is not contained in the image of
Br(k), and hence it generates Br(X)/Br(k). Note that at any k-point of X,
either l1 or l2 is not zero. Thus, taking into account the isomorphism (1.4)
from Section 1.3.4, the map X(k)→Br(k) defined by evaluation of α can be
computed by means of the map X(k)→k∗/NK/k(K∗) given by either the
function ρ = l1(x, y, z, t)/t or the function −c l2(x, y, z, t)/t.

The following result was obtained by T. Uematsu [Uem16] by an explicit
cocycle computation.

Proposition 7.3.3 Let K = C(a, b, c) for independent variables a, b, c. Let
X ⊂ A3

K be the affine quadric

x2 + ay2 + bz2 + c = 0.

Then Br(X)/Br(K) = 0.

Exercise 7.3.4 Prove Proposition 7.3.3 without cocycle computations. Hint:
Go over to the quadratic extension K(

√
b)/K where the quadric acquires a

rational point. Then use [CTX09, §5.8].

The following propositions extend some of the computations in [Gun13].
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Proposition 7.3.5 Let k be a field. Let Q(x) ∈ k[x] be a separable polyno-
mial with Q(0) 6= 0. Let X ⊂ A3

k be the affine surface yz = xQ(x). Let Z ⊂ X
be the closed subset defined by y = Q(x) = 0, and let U = X r Z. Then we
have the following statements.

(i) U ' A2
k, hence Pic(U) = 0.

(ii) k[X]∗ = k[U ]∗ = k∗.
(iii) Pic(X) is a finitely generated torsion-free abelian group.
(iv) Assume that char(k) = 0. Then Br(k)

∼−→ Br(U) and Br(k)
∼−→ Br(X).

Proof. The function f(x, y, z) = x/y = z/Q(x) is defined everywhere on U .
We have a morphism U→A2

k given by (x, y, z) 7→ (f(x, y, z), y). The image
of the morphism A2

k→A3
k, (u, v) 7→ (uv, v, uQ(uv)), is contained in U . The

two morphisms U→A2
k and A2

k→U are inverse to each other. This proves (i),
from which the other statements easily follow. �

Corollary 7.3.6 Let k be a field of characteristic zero. Let a ∈ k∗ and let
P (x) ∈ k[x] be a separable polynomial. Let X ⊂ A3

k be the affine surface with
equation y2−az2 = P (x). Then the quotient Br(X)/Br0(X) is a finite group.

Proof. In view of Proposition 5.4.2, this follows from Proposition 7.3.5 applied
over ks. �

Remark 7.3.7 Note that the finiteness of Br(X)/Br0(X) for X as above is a
general algebraic result. By contrast, if Y ⊂ A3

Q is the geometrically rational

smooth surface given by x3 +y3 +z3 = a, where a ∈ Q∗, then the finiteness of
Br(Y )/Br0(Y ) is proved in [CTW12] using arithmetic arguments. The point
here is that the ‘curve at infinity’ in this case is a curve of genus one.

Let X be as in Corollary 7.3.6. Write P (x) =
∏n
i=1 Pi(x) as a product of

irreducible polynomials. One easily checks that the classes of quaternion al-
gebras (a, Pi(x)) ∈ Br(k(X)) are contained in Br(X) (compare with Example
6.3.1). For an arbitrary polynomial P (x), constructing a set of elements in
Br(X) that generate the quotient of Br(X) modulo the image of Br(k) may
require some work, see [Berg]. Here is one easy case.

Proposition 7.3.8 Let k be a field of characteristic zero. Let P (x) ∈ k[x]
be a separable irreducible polynomial of degree d such that K = k[x]/P (x)
is a cyclic extension of k. Let X ⊂ A3

k be the affine surface with equa-
tion yz = P (x). Then Br(X)/Br(k) ' Z/d. The class of the cyclic algebra
A = (K/k, σ, y) in Br(k(X)) lies in Br(X) and generates Br(X)/Br(k). �

In connection with applications to the integral Brauer–Manin obstruction,
the Brauer groups of many quasi-projective varieties have been computed
in recent years. See [CTX09], [CTW12], [CTHa12], [JS17], [BK19], [BL19],
[Harp17], [Harp19a], [Mit18], [Berg], [LM18], [CTWX].



Chapter 8

Singular schemes and varieties

This chapter collects and in some cases rectifies a number of results in the
literature on the Brauer groups of singular schemes.

The Brauer group of a field is a torsion group, but this is not always
so for schemes. Let X be an integral variety over a field k of characteristic
zero and let k(X) be the function field of X. If X is geometrically locally
factorial, for example smooth, Theorem 3.5.5 says that the restriction map
Br(X)→Br(k(X)) is injective, in particular Br(X) is a torsion group. If,
moreover, X is smooth over k, then, by Theorem 3.7.3, there is an exact
sequence

0 −→ Br(X) −→ Br(k(X))
{∂x}−→ ⊕x∈X(1)H1(k(x),Q/Z).

Thus there is a purity theorem for Br(k(X)): unramified classes in Br(k(X))
lie in the subgroup Br(X) ⊂ Br(k(X)). It is natural to ask whether and to
what extent the above results fail for a singular variety over k.

In Section 8.1 we give elementary examples of quasi-projective varieties
X, either non-reduced or reducible, such that the Brauer group Br(X) is
not a torsion group. In Section 8.2 we study integral normal schemes with
isolated singular points. Here the reader will find examples of affine integral
normal surfaces X over C with one singularity and of projective hypersurfaces
of dimension 3 with just one node over an algebraically closed field of any
characteristic other than 2 such that Br(X) is not a torsion group. Brauer
groups of possibly singular complete intersections and of projective cones are
the subjects of Sections 8.3 and 8.4, respectively.

For some singular varieties X, the exact computation of Br(X), for exam-
ple by comparison with the Brauer group of a desingularisation, turns out
to be of interest in connection with arithmetic investigations [HS14], [BL20].
Section 8.5 treats singular curves over a field; these computations give more
precise results than those in Section 3.6.2. The last section contains some
more examples of the behaviour of the Brauer groups of singular schemes.
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8.1 The Brauer–Grothendieck group is not always a
torsion group

In this section we give elementary examples of quasi-projective varieties X
for which Br(X) is not a torsion group.

A non-reduced variety

Let Y be a smooth projective variety over a field k. Let X = Y ×k k[ε] where
ε2 = 0. Let i : Y = Xred→X be the closed immersion. Since the k-algebra
homomorphism k[ε]→k has a section, there is a morphism s : X→Y such that
s ◦ i = id.

We have a split exact sequence of sheaves for the étale topology on X

0 −→ i∗OY −→ Gm,X −→ i∗Gm,Y −→ 0,

where the first map sends x to 1+εx. A closed immersion is a finite morphism,
hence the functor i∗ is exact for the étale topology [Mil80, Cor. II.3.6]. We
obtain a split exact sequence

0 −→ H2(Y,OY ) −→ Br(X) −→ Br(Y ) −→ 0.

If H2(Y,OY ) 6= 0, then the kernel of the reduction map Br(X)→Br(Xred) is
a non-zero finite-dimensional vector space over k.

If H2(Y,OY ) 6= 0 and char(k) = 0, then the kernel of the reduction map
Br(X)→Br(Xred) is a positive-dimensional vector space over a field of char-
acteristic zero, in particular Br(X) is not a torsion group. From the above
exact sequence we also deduce Br(X)tors

∼= Br(Xred)tors. By Theorem 4.2.1,
this translates as an isomorphism Br(X)Az

∼= Br(Xred)Az.
In characteristic p > 0, the kernel of Br(X)→Br(Xred) is a p-torsion group.

Remark 8.1.1 Let Y be a variety over a field k and let A is a local artinian
k-algebra. The study of the kernel of Br(Y ×k A)→Br(Y ) led Artin and
Mazur to define the formal Brauer group of Y , see [AM77, Ch. II, §4]. The
group H2(Y,OY ) is the tangent space to the formal Brauer group of Y (when
it exists). This group is of importance in studying varieties over fields of
positive characteristic. It is of particular interest in the case of K3 surfaces
(e.g. smooth quartics in P3

k) over a finite field.

A reduced, reducible variety

Here is another type of example of non-torsion elements in the Brauer group,
which works over fields of arbitrary characteristic.
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Lemma 8.1.2 Let k be a field. Let U be a non-empty open subset of a smooth
projective curve C of genus at least 1 over k. For any integer r there exists
a field K finitely generated over k such that the dimension of the Q-vector
space Pic(UK)⊗ZQ is at least r. There exists a field extension L/k such that
Pic(UL)⊗Z Q is an infinite-dimensional Q-vector space.

Proof. One may assume that C(k) 6= ∅. It is enough to prove that if A is an
abelian variety over k, then dimQ(A(K)⊗ZQ), where K is finitely generated
over k, can be made arbitrarily large, while dimQ(A(L) ⊗Z Q) can be made
infinite for even larger field extension L/k. Indeed, the generic point of A is
a point of A(k(A)) no multiple of which belongs to A(k). Now extend the
ground field from k to k(A) and iterate the process. �

Let k be a prime field. Let S ⊂ P3
k be a smooth cubic surface. Up to

replacing k by a finite extension, we can find a plane H ⊂ P3
k which intersects

S transversally along a smooth cubic E with a rational point. Write Y =
S ∪H ⊂ P3

k and X = S tH. Let p : X→Y be the natural morphism and let
i : E ↪→ Y be the natural inclusion. Both these morphisms are finite, thus i∗
and π∗ are exact functors for the étale topology [Mil80, Cor. II.3.6]. Hence
Rjp∗ = 0 and Rji∗ = 0 for any j > 0. We have an exact sequence of sheaves
for the étale topology on Y

1 −→ Gm,Y −→ p∗Gm,X −→ i∗Gm,E −→ 1.

The associated long exact cohomology sequence gives an exact sequence

Pic(S)⊕ Pic(H) −→ Pic(E) −→ Br(Y ).

Now Pic(H) ∼= Pic(P2
k) ' Z and we have Pic(S) ⊂ Pic(Xs). As is well

known [Man74, Thm. 24.4], any smooth cubic surface over ks is the blow-up
of P2

ks
in 6 points, hence Pic(Ss) ∼= Z7. Thus Pic(S) ⊕ Pic(H) is a finitely

generated free abelian group of rank at most 8. The group Pic(E) contains
E(k) as a subgroup. The same statements hold after replacing k by any
field extension K. Using Lemma 8.1.2 one finds a field K finitely generated
over its prime subfield k such that Br(YK) contains non-torsion elements and
dimQ(Br(YK) ⊗Z Q) is arbitrarily large. One can also find a field extension
L/k such that dimQ(Br(YL)⊗Z Q) =∞.

One may replace H and S by any two smooth surfaces in P3 transversally
intersecting in a smooth curve of genus at least 1. The same argument also
works for the Zariski topology, thus giving examples with non-torsion groups
H2

zar(XL,Gm).
Replacing S,H,E ⊂ P3

k by their respective intersections with any Zariski
open set W ⊂ P3

k such that W ∩ E 6= ∅ produces examples where Y is affine
and Br(YK) is non-torsion of rank as big as one wishes.

The above example implies the existence of an affine variety X over a finite
field such that Br(X) is not a torsion group. Indeed, let us start with a field L
of positive characteristic p and an affine variety Y over L with a non-torsion
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element β ∈ Br(Y ). The field L is a filtered union of Fp-algebras of finite type
Ai, i ∈ I. There exists an i ∈ I such that Y comes from an affine Ai-scheme
of finite type Yi, and β is the image of some βi ∈ Br(Yi). The element βi of
the Brauer group of the affine Fp-variety Yi has infinite order.

8.2 Isolated singularities

In this section we give examples of normal varieties for which the Brauer
group is not torsion.

This section elaborates on [Gro68, Ch. II, §1, Rem. 11 (b)] and on further
literature [Dan68, Dan72, Oja74], [Chi76, Thm. 1.1], [DF92, Ber05, Kol16].
It ends with an example due to B. Totaro.

Let X be a normal, integral, noetherian scheme with function field K.
Assume that the singular locus Xsing is the union of finitely many closed
points P1, . . . , Pn. Let ki denote the residue field at Pi, let ki,s be a separable
closure of ki and let Gi = Gal(ki,s/ki), for i = 1, . . . , n. We write Ri for the
local ring OX,Pi and Rsh

i for the strict henselisation of Ri. Let Cl(X) be the
class group of X, defined as the cokernel of the divisor map

div : K∗ −→
⊕

x∈X(1)

Z.

We define the étale sheaf DivX by the condition that the following sequence
is exact:

0 −→ Gm,X −→ j∗Gm,K −→ DivX −→ 0. (8.1)

Taking étale cohomology of (8.1) and using Lemma 2.4.1, we get an isomor-
phism

H1
ét(X,DivX)

∼−→ Ker[Br(X)→Br(K)]. (8.2)

Sending a Cartier divisor to the associated Weil divisor defines a natural
injective map DivX→⊕x∈X(1) ix∗(Zk(x)). This is an isomorphism when X is
regular or, more generally, when X is geometrically locally factorial. Let PX
be the cokernel of this map. This gives an exact sequence

0 −→ DivX −→
⊕

x∈X(1)

ix∗(Zk(x)) −→ PX −→ 0. (8.3)

It is clear that PX is supported on Xsing. Looking at the stalks of the terms
of (8.1) and (8.3) at the points Pi we see that

PX =
n⊕
i=1

iPi∗(Cl(Rsh
i )),
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where iPi : Spec(ki)→X is the natural map Pi→X. Taking étale cohomol-
ogy of (8.3) and using Lemma 2.4.1 together with (8.2), we obtain an exact
sequence

0 −→ H0(X,DivX) −→
⊕

x∈X(1)

Z −→
n⊕
i=1

Cl(Rsh
i )Gi −→ Br(X) −→ Br(K).

Using the definition of Cl(X), we deduce the exact sequence

0 −→ Pic(X) −→ Cl(X) −→
n⊕
i=1

Cl(Rsh
i )Gi −→ Br(X) −→ Br(K). (8.4)

If X is the spectrum of a semilocal ring, one obtains the exact sequence

0 −→ Cl(X) −→
n⊕
i=1

Cl(Rsh
i )Gi −→ Br(X) −→ Br(K). (8.5)

If X = Spec(R) is the spectrum of a local ring R with field of fractions K
and residue field k, and G = Gal(ks/k), then the exact sequence takes the
form

0 −→ Cl(R) −→ Cl(Rsh)G −→ Br(R) −→ Br(K).

Let U : = X r {x} and let U sh : = Spec(Rsh) r {x}. Since U is regular, we
have Pic(U) ∼= Cl(U) ∼= Cl(R) and Pic(U sh) ∼= Cl(U sh) ∼= Cl(Rsh). The last
displayed sequence then becomes the formula (7) in [Gro68, Ch. II, §1].

Remark 8.2.1 (Cf. [Ber05]) In [Gro68, Ch. II, §1, (7)] it is claimed that for
any normal scheme X with isolated singular points P1, . . . , Pn there is the
following general formula:

H1
ét(X,DivX) ∼=

n⊕
i=1

[Pic(Spec(Rsh
i ) r Pi)

Gi/Im
(
Pic(Spec(Ri) r Pi)

)
]. (8.6)

(Here Pic(Spec(Ri)rPi) ∼= Cl(Ri) and Pic(Spec(Rsh
i )rPi) ∼= Cl(Rsh

i ).) This
is not correct. In view of (8.2) this would imply

n⊕
i=1

[Cl(Rsh
i )Gi/Im(Cl(Ri))]

∼−→ Ker[Br(X)→Br(K)].

There is a natural surjective map

[
n⊕
i=1

Cl(Rsh
i )Gi ]/Im(Cl(X)) −→

n⊕
i=1

[Cl(Rsh
i )Gi/Im(Cl(Ri))].
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Formula (8.6) holds if and only if the map Cl(X)→⊕ni=1 Cl(Ri) is surjective.
Ojanguren’s Example (4) in Section 8.6 below is precisely built on an example
where this map is not surjective [Oja74, §2, p. 511].

Example 8.2.2 Let R be the local ring of the vertex of the cone over a
smooth projective plane curve X ⊂ P2

C of degree d. This is a 2-dimensional lo-
cal normal domain. As explained in Childs [Chi76, Thm. 6.1], work of Danilov

[Dan68, Dan72] gives an isomorphism Cl(Rh)/Cl(R) ∼= Cl(R̂)/Cl(R). More-
over, this quotient is the finite-dimensional complex vector space
⊕i≥1H1(X,OX(i)), which has positive dimension if d ≥ 4. Hence for these
values of d the kernel of the map Br(R)→Br(K) is a non-zero vector space
over C. In particular, there are non-torsion elements in this kernel. Note that
this implies that the kernel of BrAz(R)→Br(K) is zero, because BrAz(R) is
a torsion group (Theorem 3.3.1).

Let Spec(Ri) be affine Zariski open neighbourhoods of the vertex of the
cone. We have R = lim−→Ri, in fact, R is the union of the rings Ri. By Section
2.2.2 we have Br(R) = lim−→Br(Ri). Let α ∈ Br(R) be a non-torsion element
in the kernel of the map Br(R)→Br(K). There exist an i and an αi ∈ Br(Ri)
such that the image of αi in R is α. Thus αi is a non-torsion element in the
kernel of Br(Ri)→Br(K). Now Y := Spec(Ri) is an affine, normal, integral
surface over C such that Br(Y ) is not a torsion group.

The following proposition and its proof were communicated to us by B. To-
taro.

Proposition 8.2.3 Let k be an algebraically closed field of characteristic
different from 2. Let X ⊂ P4

k be a hypersurface of degree d ≥ 3. Assume that
X is smooth outside one k-point, and that this point is a node. Then Br(X)
is not a torsion group.

Proof. Let P be the node of X. Let Y be the blow-up of X at P . Then Y is a
smooth hypersurface in the blow-up W of P4 at P . The Picard group Pic(W )
is the free abelian group generated by H := f∗O(1) and E, where f : W→P4

is the blow-up morphism and E = f−1(P ) ⊂ W is the exceptional divisor.
The hypersurface X has multiplicity 2 at the point P , hence the class of Y
in Pic(W ) is dH − 2E.

The divisors H and H − E are nef on W , because they are pullbacks
of ample divisors by the contraction f : W→P4 (for H) and the P1-bundle
W→P3 (for H −E). Therefore, any linear combination aH + b(H −E) with
a, b > 0 is in the interior of the nef cone in NS(W ) ⊗Z R ∼= R2, hence is
ample by Kleiman’s criterion [Kle66, §2, Thm. 1]. Since d ≥ 3, it follows that
[Y ] = dH − 2E is ample on W .

We want to apply the Grothendieck–Lefschetz theorem [SGA2, Cor.
XII.3.6] to the smooth hypersurface Y ⊂ W to deduce that the restriction
map

Pic(W ) −→ Pic(Y )
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is an isomorphism. Besides ampleness of OW (Y ), the hypothesis of that the-
orem requires Hi(Y,OY (−mY )) = 0 for i = 1, 2 and all integers m > 0. By
the long exact sequence of cohomology deduced from the exact sequence

0 −→ OW (−Y ) −→ OW −→ OY −→ 0

given by the divisor Y ⊂ W , and the twists of that sequence by the invert-
ible bundles OW (nY ), it is enough to show that Hi(W,OW (−mY )) = 0 for
1 ≤ i ≤ 3 and all integers m > 0. Since each OW (mY ) for m > 0 is an
ample sheaf on the 4-dimensional smooth projective variety Y , this follows
by the Kodaira vanishing theorem combined with Serre’s duality theorem.
Indeed, W is the blow-up of P4 in a point, hence is a toric variety, and the
Kodaira vanishing theorem holds for smooth projective toric varieties in any
characteristic [Fuj07, Cor. 1.5].

Thus Pic(Y ) is generated by f∗O(1) and the exceptional divisor EY ⊂ Y .
Since codimX(P ) = 3, by [Har77, Prop. 6.5 (b)] the class group Cl(X) is
isomorphic to

Cl(X r {P}) ∼= Pic(X r {P}) ∼= Pic(Y r EY ) = ZO(1).

In particular X is factorial. Let R be the local ring of X at the node P . From
the exact sequence (8.4)

Pic(X) −→ Cl(X) −→ Cl(Rh) −→ Br(X) −→ Br(k(X))

we see that Cl(Rh) is the kernel of Br(X)→Br(k(X)). Let A be the local
ring of the quadratic cone xy = zw in A4

k at the vertex (0, 0, 0, 0). The
class group Cl(Ah) is isomorphic to Z generated by the Weil divisor x =
z = 0. The rings R and A are isomorphic étale-locally, hence there is an
isomorphism of henselisations Rh ∼= Ah. It follows that Cl(Rh) ∼= Z is the
kernel of Br(X)→Br(k(X)), so that Br(X)⊗Q ' Q. �

Remark 8.2.4 Let k̄ be an algebraically closed field of characteristic p > 0
which is not algebraic over a finite field. An example of a normal projective
surface X over k̄ such that Br(X) is not a torsion group was recently given
in [Ess21, Thm. 2.3].

8.3 Intersections of hypersurfaces

Proposition 8.3.1 Let k be an algebraically closed field of characteristic
exponent p. Let X ⊂ PNk be a closed subscheme.

(i) If X is defined by the vanishing of at most N − 3 homogeneous forms,
then Br(X) has no prime-to-p torsion. For example, this holds for any
hypersurface X ⊂ PNk with N ≥ 4.



206 8 Singular schemes and varieties

(ii) If X is defined by the vanishing of at most N − 4 homogeneous forms,
then Br(X) is uniquely `-divisible for any prime ` 6= p. For example, this
holds for any hypersurface X ⊂ PNk with N ≥ 5.

Proof. Let ` 6= p be a prime. By [Kat04, Cor. B.6] the restriction map

H2
ét(PNk ,Z/`) −→ H2

ét(X,Z/`)

is an isomorphism under hypothesis (i), and

H3
ét(PNk ,Z/`) −→ H3

ét(X,Z/`)

is an isomorphism under hypothesis (ii). The Kummer sequence (3.2) then
gives that the map Br(PNk )[`]→Br(X)[`] is surjective. Since Br(PNk ) = 0
by Theorem 6.1.3, this finishes the proof in case (i). In case (ii), from
H3

ét(PNk ,Z/`) = 0 we deduce H3
ét(X,Z/`) = 0, and the Kummer sequence

(3.2) gives Br(X)/` ↪→ H3
ét(X,Z/`) = 0. �

Purity on some singular varieties

Corollary 5.5.4 can be extended to some singular complete intersections.
K. Česnavičius showed us that the following theorem is essentially a con-
sequence of results of Michèle Raynaud [MR62], a text which contains many
more purity theorems in a possibly singular context. Some of the purity re-
sults for singular schemes have recently been extended by Česnavičius and
Scholze [ČS19, Thm. 7.2.8].

Theorem 8.3.2 Let k be a field of characteristic zero. Let X ⊂ PNk be a
complete intersection of dimension d ≥ 3. Assume that the codimension of
the singular locus Xsing in X is at least 4. Let U = X r Xsing. Then the
natural maps Br(k)→Br(X)→Br(U) are isomorphisms, and the natural map
Br(k)→Brnr(k(X)/k) is an isomorphism.

Proof. The assumptions on X and on the codimension of Xsing imply [SGA2,
XI, Cor. 3.14] that X is geometrically locally factorial. Theorem 3.5.5 then
gives that the restriction map Br(X)→Br(U) is injective. In particular Br(X)
is a torsion group.

The restriction map Pic(X)→Pic(U) is surjective since X is locally facto-
rial and is injective since the codimension of Xsing in X is at least 2, so it is
an isomorphism.

Let us first assume that k is algebraically closed. We want to prove that

Br(X) ∼= Br(U) = 0.

Quite generally, for any complete intersection X ⊂ PNk of dimension d over an
algebraically closed field k, any i < d, and any integer n > 0 invertible in k,
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the restriction map Hi
ét(PNk , µn)→Hi

ét(X,µn) is an isomorphism, see [Kat04].
In particular, H2

ét(PNk , µn) ∼= H2
ét(X,µn). Now, from the Kummer sequence,

we obtain a commutative diagram with exact rows

Pic(PNk )/n
∼= //

∼=
��

H2
ét(PNk , µn)

∼=
��

0 // Pic(X)/n
∼= //

∼=
��

H2
ét(X,µn) //

��

Br(X)[n] //

��

0

0 // Pic(U)/n // H2
ét(U, µn) // Br(U)[n] // 0

Since char(k) = 0, this already gives Br(X)[n] = 0 for any integer n, hence
Br(X) = 0. To prove that Br(U) = 0 it is then enough to show that for any
prime ` the restriction map H2

ét(X,µ`)→H2
ét(U, µ`) is an isomorphism.

Let us describe the relevant results from [MR62]. Let X be a noetherian
scheme, let Y ⊂ X be a closed subscheme, and let U = X r Y . Assume
that ` is invertible on X. The étale depth depthY (X)(Z/`) of X along Y
is defined in [MR62, Déf. 1.2], which refers to [MR62, Prop. 1.1 (iii)]. If
n = depthY (X)(Z/`), then for any X ′ étale over X, the restriction map

Hi
ét(X

′,Z/`) −→ Hi
ét(X

′ ×X U,Z/`)

is an isomorphism for i < n− 1 and is injective for i = n− 1.
One defines a similar notion locally at any point x of X, as follows. Let

X x̄ = Spec(Osh
x̄ ) be the strict henselisation of X at a geometric point x̄ above

x. Define depthx(X)(Z/`) = depthx̄(X x̄)(Z/`), which is the étale depth of the
local scheme X x̄ at its closed point x̄. By [MR62, Thm. 1.8], depthY (X)(Z/`)
can be computed locally:

depthY (X)(Z/`) = inf
y∈Y

depthy(X)(Z/`),

where y ranges through the points of the scheme Y .
The geometric depth of an excellent local ring A is defined in [MR62,

Déf. 5.3]. If A is a complete intersection, then the geometric depth of A
coincides with the dimension of A [MR62, Prop. 5.4]. For an excellent local
ring A of characteristic zero, the étale depth is greater than or equal to the
geometric depth [MR62, Thm. 5.6].

We now resume the proof of the theorem. Let X be as in the statement
of the theorem. Write Y = Xsing so that U = X r Y . Since X is a complete
intersection, so is X ȳ, where y is a point of Y and ȳ is a geometric point over
y. Since codimX(Y ) ≥ 4, we have dim(X ȳ) ≥ 4. We conclude that the étale
depth at the local ring of X at y is at least 4. Thus depthY (X)(Z/`) ≥ 4 for
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any prime number `, hence the restriction map H2
ét(X,Z/`)→H2

ét(U,Z/`) is
an isomorphism. Thus H2

ét(X,µ`)
∼= H2

ét(U, µ`) for any prime number `.

Finally, let k be an arbitrary field of characteristic zero. Let k̄ be an al-
gebraic closure of k. Since X is geometrically locally factorial, X is locally
factorial, hence the restriction maps k̄[X]∗→k̄[U ]∗ and Pic(X)→Pic(U) are
isomorphisms. As a complete intersection of dimension at least 1 in pro-
jective space, X satisfies k̄ = H0(X,OX) hence k̄∗ = k̄[X]∗. For a com-
plete intersection X of dimension at least 3 in PN

k̄
, the restriction map

Z = Pic(PN
k̄

)→Pic(X) is an isomorphism [SGA2, XII, Cor. 3.7], and both
groups are generated by the hyperplane section class, which is defined over k.
We already know that Br(X) ∼= Br(U) = 0. From the exact sequence (5.21)
we then get isomorphisms Br(k) ∼= Br(X) ∼= Br(U).

By purity for the smooth k-variety U (Theorem 3.7.1(i)), the subgroup
Brnr(k(X)/k) ⊂ Br(k(X)) = Br(k(U)) is contained in Br(U) ⊂ Br(k(U)).
Thus Br(k)→Brnr(k(X)/k) is an isomorphism. �

Remark 8.3.3 Proposition 8.2.3 implies that the codimension condition on
the singular locus in Theorem 8.3.2 is best possible. See also the examples at
the end of Section 8.4.

8.4 Projective cones

Proposition 8.4.1 Let k be a field of characteristic zero. Let Y ⊂ Pnk , n ≥ 2,
be an integral closed subvariety. Let X ⊂ Pn+1

k be the projective cone over Y .
Write U = X rXsing.

(i) The restriction map Br(X)→Br(U) is the composition of the map
Br(X)→Br(k) given by evaluation at P and the map Br(k)→Br(U) in-
duced by the structure morphism U→Spec(k).

(ii) If Y is smooth, then U is the complement to the vertex of the cone X
and Br(U) ∼= Brnr(k(X)/k).

Proof. Let α ∈ Br(X). Let K = k(X) be the function field of X. The K-
variety XK = X ×k K has two obvious K-points: the point PK given by the
vertex P ∈ X(k) and the point given by the generic point η ∈ X. Any point
M ∈ XK(K) distinct from PK lies on the projective line P1

K ⊂ XK through
M and PK . Since Br(K)→Br(P1

K) is an isomorphism (Theorem 5.6.1 (vii))
we have

α(η) = α(PK) = resK/k(α(P )) ∈ Br(K).

But α(η) is just the image of α under the restriction map Br(X)→Br(k(X)).
The latter map is the composition Br(X)→Br(U)→Br(k(X)), where the map
Br(U)→Br(k(X)) is injective since U is smooth over k (Theorem 3.5.5).
Hence Br(X)→Br(U) factors as Br(X) −→ Br(k) −→ Br(U), where the first
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arrow is evaluation at P and the second arrow is induced by the structure
map U→Spec(k).

Assume that Y is smooth. Then U = X r {P} is also a smooth integral
variety. The projection map p : U→Y is a Zariski locally trivial A1-bundle,
hence the generic fibre Uη is isomorphic to A1

k(U). Since char(k) = 0, the

map Br(k(Y ))→Br(Uη) is an isomorphism by Theorem 6.1.1. Thus we have
a commutative diagram

Br(U) � � // Br(Uη)

Br(Y )
� � //

p∗

OO

Br(k(Y ))

∼=

OO

This shows that the map p∗ : Br(U)→Br(Y ) is injective. It is also surjective,
because an element of Br(k(Y )) whose image in Br(Uη) is contained in Br(Y )
must be unramified as p : U→Y is locally trivial for the Zariski topology on
Y , hence this element is contained in Br(Y ).

The k-varieties X and Y ×k P1
k are is k-birationally equivalent, hence

Brnr(k(X)/k) ∼= Brnr(k(Y )/k) by Proposition 6.2.9. Since Y is smooth,
Br(Y ) = Brnr(k(Y )/k) ⊂ Br(k(Y )) (Proposition 6.2.7). �

Let us discuss the case where Y ⊂ PN−1
C , N ≥ 3, is a smooth projective

hypersurface. Let X ⊂ PNC be the projective cone over Y . The vertex is the
only singularity of X; it has codimension N − 1 in X. Let U ⊂ X be the
complement to the vertex of X. By Proposition 8.4.1, the restriction map
Br(X)→Br(U) is zero. On the other hand, Proposition 8.3.1 says that Br(X)
is torsion-free for N ≥ 4 and Br(X) is uniquely divisible for N ≥ 5.

For N ≥ 5, we actually have Br(X) = Br(U) = 0. Indeed, X is geometri-
cally locally factorial by [SGA2, XI, Cor. 3.14], hence by Theorem 3.5.5 the
restriction map Br(X)→Br(U) is injective. Since Y is a smooth hypersurface
in PN−1 with N − 1 ≥ 4, we have Br(Y ) = 0 by Corollary 5.5.4. But U is
an A1-bundle over the smooth variety Y , so we have Br(U) = 0 by the same
argument as above.

If N = 3, then Y is a smooth curve of degree d in P2
C. We then have

Br(Y ) = 0 by Theorem 5.6.1 and then Br(U) = 0 for the A1-bundle U over
Y . Let R be the local ring of the vertex P of the cone. Assume d ≥ 4. By
Example 8.2.2, there exists an element of infinite order in Br(R). Thus one
can find an element α ∈ Br(V ) of infinite order for some Zariski open set
V ⊂ X containing P . Since U is smooth, so is U ∩ V , the restriction map
Pic(U)→Pic(U ∩ V ) is surjective, and Br(U ∩ V ) is a torsion group. The
Mayer–Vietoris sequence (Theorem 3.2.4) for the covering X = U ∪ V gives
an exact sequence

0 −→ Br(X) −→ Br(U)⊕ Br(V ) −→ Br(U ∩ V ).
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A multiple of (0, α) ∈ Br(U)⊕Br(V ) goes to zero in Br(U ∩ V ) hence comes
from a non-torsion element in Br(X). In particular, the map Br(X)→Br(U)
is not injective.

If N = 4, then Y ⊂ P3
C is a smooth surface, hence NS(Y ) is torsion-free

and H3(Y,Z) = 0. By Proposition 8.3.1 (i) the group Br(X) is torsion-free.
If the surface Y is of degree at least 4, then H2(Y,OY ) 6= 0, hence, by Hodge
theory (see [Voi02, Ch. 6 and Thm. 11.30]), we have b2 > ρ and then, from
Proposition 5.2.9 we obtain Br(Y ) ' (Q/Z)b2−ρ 6= 0. For the A1-bundle U
over the smooth variety Y we then have Br(U) ∼= Br(Y ) 6= 0. By Proposition
8.4.1, the map Br(X)→Br(U) factors through Br(C) = 0. This gives an
example of a hypersurface X of dimension 3 with an isolated singularity P of
codimension 3 such that the map Br(X)→Br(U), where U = X r P , is not
an isomorphism. This shows that the condition on the codimension of the
singular locus in Theorem 8.3.2 is necessary. Note that in this case we have
Brnr(C(X)) ∼= Brnr(C(Y )) ∼= Br(Y ) ∼= Br(U) 6= 0.

8.5 Singular curves and their desingularisation

Let k be a field of characteristic zero with an algebraic closure k̄ and Galois
group Γ = Gal(k̄/k). In this section we give a complement to Proposition
3.6.6, as developed in [HS14].

Let C be a reduced, separated, purely 1-dimensional curve over k. We define
the normalisation C̃ as the disjoint union of normalisations of the irreducible
components of C. The normalisation morphism ν : C̃→C factors as

C̃
ν′−→ C ′

ν′′−→ C,

where C ′ is a maximal intermediate curve universally homeomorphic to C,
see [BLR90, Section 9.2, p. 247] or [Liu10, Section 7.5, p. 308]. The curve C ′

is obtained from C̃ by identifying the points which have the same image in
C. This is the seminormalisation of C (see [Stacks, Section 0EUK]).

In particular, there is a canonical bijection ν′′ : C ′(K)
∼−→ C(K) for any

field extension K/k. The curve C ′ has relatively mild singularities: for each

singular point s ∈ C ′(k̄) the branches of C
′

through s intersect like n coor-
dinate axes at 0 ∈ Ank .

We define three reduced 0-dimensional schemes naturally arising in this
situation. Let Λ be the k-scheme of geometric irreducible components of
C (or the geometric connected components of C̃); it is the disjoint union
of finite integral k-schemes λ = Spec(k(λ)) such that k(λ) is the algebraic
closure of k in the function field of the corresponding irreducible component
k(Cλ) = k(C̃λ). Let

Π : = Csing, Ψ : =
(
Π ×C C̃

)
red
. (8.7)

https://stacks.math.columbia.edu/tag/0EUK
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Thus Ψ is the union of fibres of ν : C̃→C over the singular points of C with
their reduced subscheme structures. The morphism ν′′ induces an isomor-
phism

(
Π ×C C ′

)
red

∼−→ Π, so we can identify these schemes. Let i : Π→C,

i′ : Π→C ′ and j : Ψ→C̃ be the natural closed immersions. We have a com-
mutative diagram

C̃
ν′ // C ′

ν′′ // C

Ψ

j

OO

ν′ // Π

i′

OO

i

??

The restriction of ν to the smooth locus of C induces isomorphisms

C̃ r j(Ψ)
∼−→ C ′ r i′(Π)

∼−→ C r i(Π).

An algebraic group over Π is a product G =
∏
π iπ∗(Gπ), where π ranges

over the irreducible components of Π, the morphism iπ : Spec(k(π))→Π is
the natural closed immersion, and Gπ is an algebraic group over the field
k(π).

Lemma 8.5.1 (i) The maps Gm,C′→ν′∗(Gm,C̃) and Gm,C′→i′∗(Gm,Π) give

rise to the exact sequence of étale sheaves on C ′

0 −→ Gm,C′ −→ ν′∗(Gm,C̃)⊕ i′∗(Gm,Π) −→ i′∗(ν
′
∗(Gm,Ψ )) −→ 0, (8.8)

where ν′∗(Gm,Ψ ) is a torus over Π and the third map sends (a, b) to a− b.
(ii) The map Gm,C→ν′′∗ (Gm,C′) gives rise to the exact sequence of étale

sheaves on C

0 −→ Gm,C −→ ν′′∗ (Gm,C′) −→ i∗U −→ 0, (8.9)

where U is a commutative unipotent group over Π.

Proof. See [BLR90], the proofs of Propositions 9.2.9 and 9.2.10, or [Liu10,
Lemma 7.5.12]. By [Mil80, Thm. II.2.15 (b), (c)] it is enough to check the
exactness of (8.8) at each geometric point x̄ of C ′. If x̄ /∈ i′(Π), this is
obvious since locally at x̄ the morphism ν′ is an isomorphism, and the stalks
(i′∗(Gm,Π))x̄ and (i′∗(ν

′
∗Gm,Ψ ))x̄ are zero. Now let x̄ ∈ i′(Π), and let Osh

C′,x̄

be the strict henselisation of the local ring of x̄ in C ′. Each geometric point ȳ
of C̃ belongs to exactly one geometric connected component of C̃. Let Osh

C̃,ȳ

be the strict henselisation of the local ring of ȳ in its geometric connected
component. By the construction of C ′ we have an exact sequence

0 −→ Osh
C′,x̄ −→ k(x̄)×

∏
ν′(ȳ)=x̄

Osh
C̃,ȳ
−→

∏
ν′(ȳ)=x̄

k(ȳ) −→ 0,
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where Osh
C̃,ȳ
→k(ȳ) is the reduction modulo the maximal ideal of Osh

C̃,ȳ
, and

k(x̄)→k(ȳ) is the multiplication by −1. We obtain an exact sequence of
abelian groups

1 −→ (Osh
C′,x̄)∗ −→ k(x̄)∗ ×

∏
ν′(ȳ)=x̄

(Osh
C̃,ȳ

)∗ −→
∏

ν′(ȳ)=x̄

k(ȳ)∗ −→ 1.

Using [Mil80, Cor. II.3.5 (a), (c)] one sees that this is the sequence of stalks
of (8.8) at x̄, so that (i) is proved.

To prove (ii) consider the exact sequence

0 −→ Gm,C −→ ν′′∗ (Gm,C′) −→ ν′′∗ (Gm,C′)/Gm,C −→ 0.

The morphism ν′′ is an isomorphism away from i(Π), so the restriction of the
sheaf ν′′∗ (Gm,C′)/Gm,C to C r i(Π) is zero. Hence ν′′∗ (Gm,C′)/Gm,C = i∗U
for some sheaf U on Π. To see that U is a unipotent group scheme it is
enough to check the stalks at geometric points. Let x̄ be a geometric point
of i(Π), and let ȳ be the unique geometric point of C ′ such that ν′′(ȳ) = x̄.
Let Osh

C,x̄ and Osh
C′,ȳ be the corresponding strictly henselian local rings. The

stalk (ν′′∗ (Gm,C′)/Gm,C)x̄ is (Osh
C′,ȳ)∗/(Osh

C,x̄)∗, and by [Liu10, Lemma 7.5.12
(c)], this is a unipotent group over the field k(x̄). �

For fields k1, . . . , kn, we have Br
(∐n

i=1 Spec(ki)
)

= ⊕ni=1Br(ki).

Proposition 8.5.2 Let k be a field of characteristic zero. Let C be a reduced,
separated, purely 1-dimensional curve over k, and let Λ, Π and Ψ be the
schemes defined in (8.7). Let Λ =

∐
λ Spec(k(λ)) be the decomposition into

the disjoint union of connected components, so that C̃ =
∐
λ C̃λ, where C̃λ

is a smooth geometrically integral curve over the field k(λ). Then there is an
exact sequence

0 −→ Br(C) −→ Br(Π)⊕
⊕
λ∈Λ

Br(C̃λ) −→ Br(Ψ), (8.10)

where the maps are the composition of canonical maps

Br(C̃λ) −→ Br(C̃λ ∩ Ψ) −→ Br(Ψ),

and the opposite of the restriction map Br(Π)→Br(Ψ).

Proof. Let π range over the irreducible components of Π, so that U in
Lemma 8.5.1 decomposes as U =

∏
π iπ∗(Uπ), where Uπ is a commutative

unipotent group over the field k(π). Since i∗ is an exact functor [Mil80,
Cor. II.3.6], we have Hn

ét(C, i∗U) = Hn
ét(Π,U) =

∏
π Hn(k(π), Uπ). The

field k has characteristic 0, and it is well known that this implies that
any commutative unipotent group has zero cohomology in degree n > 0.
(Such a group has a composition series with factors Ga, and Hn(k,Ga) = 0
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for any n > 0, see [SerCL, Ch. X, Prop. 1].) Thus the long exact se-
quence of cohomology groups associated to (8.9) gives rise to an isomor-
phism Br(C) = H2

ét(C,Gm,C)
∼−→ H2

ét(C, ν
′′
∗ (Gm,C′)). Since ν′′ is finite,

the functor ν′′∗ is exact [Mil80, Cor. II.3.6], so we obtain an isomorphism
Br(C)

∼−→ Br(C ′). We now apply similar arguments to (8.8). Hilbert’s theo-
rem 90 gives H1

ét(Π, ν
′
∗(Gm,Ψ )) = H1

ét(Ψ,Gm,Ψ ) = 0, so we obtain the exact
sequence (8.10). �

8.6 Some examples

(1) Let k be a field of characteristic different from 2 with a, b ∈ k∗ such that
the quaternion algebra class (a, b) ∈ Br(k) is non-zero. (For example, k = R
and a = b = −1.) Consider the singular affine curve over k defined by the
equation

y2 = x2(x+ b).

Let X be the open set given by x+ b 6= 0. Consider the quaternion algebra

A = (a, x+ b) ∈ BrAz(X).

Over the function field k(X) of X, we have

(a, x+ b) = (a, (y/x)2) = 0 ∈ Br(k(X)).

But the evaluation of A at the singular point (x, y) = (0, 0) is the non-zero
element (a, b) ∈ Br(k), thus A 6= 0 lies in the kernel of BrAz(X)→Br(k(X)).
Compare with Proposition 3.6.6.
(2) Let k and a, b ∈ k∗ be the same as in (1). Consider the normal affine
surface over k defined by the equation

y2 − az2 = x2(x+ b).

Let X be the open set given by x+ b 6= 0. Consider the quaternion algebra

A = (a, x+ b) ∈ BrAz(X).

Over the function field k(X) of X, we have

(a, x+ b) = (a, (y2 − az2)/x2) = 0 ∈ Br(k(X)).

The evaluation of A at the singular point (x, y, z) = (0, 0, 0) is the non-zero
element (a, b) ∈ Br(k). Thus A 6= 0 lies in the kernel of Br(X)→Br(k(X)).

(3) Let k and a, b ∈ k∗ be the same as in (1). Consider the quadratic cone
X ⊂ A4

k defined by
x2 − ay2 − bz2 + abt2 = 0.
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Its singular locus is the point P = (0, 0, 0, 0), which has codimension 3 in X.
The class (a, b) ∈ Br(k) gives rise to α = (a, b)X ∈ BrAz(X) ⊂ Br(X). This
class is non-zero, because its evaluation at P is (a, b) ∈ Br(k). But the image
of α in Br(k(X)) is zero, since

(a, b)k(X) = (a, (x2 − ay2)/(z2 − at2)) = 0 ∈ Br(k(X)).

In particular, the map Br(X)→Br(k(X)) is not injective. The k-variety X
is a complete intersection with one singular point of codimension 3. The
variety X is not geometrically locally factorial, as one may see by factorisation
of x2 − ay2 = b(z2 − at2) over a field extension of k. This shows that in
Theorem 3.5.5 one cannot remove the hypothesis that X is geometrically
locally factorial. The same comments hold for the local ring of X at P . If
one replaces X by its closure in P4

k, we see that in Theorem 8.3.2 one cannot
weaken the hypothesis that the singular locus is of codimension at least 4.

(4) If X is a noetherian integral scheme with an isolated singularity P ∈ X,
and RP is the local ring of X at P , then the restriction map

Br(X) −→ Br(RP )

is injective. Indeed, one may write X = U ∪ V where U is regular and
V contains P . By Theorem 3.5.7 this implies that the restriction map
Br(X)→Br(V ) is injective. Passing over to the limit over all V containing
P gives the result.

The affine surface X over C given by z3 = (1 − x − y)xy is normal with
exactly three singular points Pi, i = 1, 2, 3. Let Ri be the local ring of X at
Pi. Ojanguren shows in [Oja74] that the natural map

BrAz(X) −→
3∏
i=1

BrAz(Ri)

has a non-trivial kernel.



Chapter 9

Varieties with a group action

One often needs to study the Brauer group of a variety equipped with an ac-
tion of an algebraic group. The Brauer groups of connected algebraic groups
themselves as well as the Brauer groups of their homogeneous spaces can be
explicitly computed in many cases. In Section 9.1 we deal with tori and in
Section 9.2 with simply connected semisimple groups. We then turn our atten-
tion to the unramified Brauer group of function fields of homogeneous spaces;
the challenge here is to compute these groups without having to construct
an explicit smooth projective model. In Section 9.3 we discuss Bogomolov’s
theorems which compute the unramified Brauer group of the invariant field
of a linear action of a finite group over an algebraically closed field, and a
related theorem of Saltman. Finally, in Section 9.4 we give an overview of
the unramified Brauer groups of homogeneous spaces over an arbitrary field
(mostly without proofs).

9.1 Tori

The étale cohomology of split tori has been studied by many authors, e.g.
[Mag78, GP08, GS14].

Lemma 9.1.1 Let X be a smooth geometrically integral variety over a field
k of characteristic zero. Let Γ := Gal(ks/k). There are split exact sequences

0 −→ H1
ét(X,Q/Z) −→ H1

ét(Gm,X ,Q/Z) −→
(
(Q/Z)(−1)

)Γ −→ 0,

where (Q/Z)(−1) is the direct limit of the Galois modules (Z/n)(−1) for
n→∞, and

0 −→ Br(X) −→ Br(Gm,X) −→ H1
ét(X,Q/Z) −→ 0.
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Proof. Let Y be the closed subset of A1
X which is the zero section of the

structure morphism A1
X→X. Then X ∼= Y . The open subset A1

X r Y is
isomorphic to Gm,X . The unit section of the structure morphism Gm,X→X
is an embedding X ↪→ Gm,X such that the composition X ↪→ Gm,X→A1

X→X
is an isomorphism.

For any integer n > 0 we have the Gysin exact sequence (2.16)

. . . −→Hi
ét(A1

X ,Z/n) −→ Hi
ét(Gm,X ,Z/n) −→ Hi−1

ét (X, (Z/n)(−1))

−→Hi+1
ét (A1

X ,Z/n) −→ . . .

As n > 0 is invertible in X, the natural map Hi
ét(X,Z/n)→Hi

ét(A1
X ,Z/n) is an

isomorphism for any integer i, see [Mil80, Cor. VI.4.20]. Specialisation at the
unit section of Gm,X→X shows that all maps Hi

ét(A1
X ,Z/n)→Hi

ét(Gm,X ,Z/n)
are split injective. Putting everything together, we get split short exact se-
quences

0 −→ Hi
ét(X,Z/n) −→ Hi

ét(Gm,X ,Z/n) −→ Hi−1
ét (X, (Z/n)(−1)) −→ 0.

For i = 1, this gives the first exact sequence. For i = 2, this gives the exact
sequence

0 −→ H2
ét(X,µn) −→ H2

ét(Gm,X , µn) −→ H1
ét(X,Z/n) −→ 0.

One then uses the compatible exact sequences

0 −→ Pic(X)/n −→ H2
ét(X,µn) −→ Br(X)[n] −→ 0

and

0 −→ Pic(Gm,X)/n −→ H2
ét(Gm,X , µn) −→ Br(Gm,X)[n] −→ 0

given by the Kummer sequence. The map Pic(X)→Pic(Gm,X) is the compo-
sition Pic(X)→Pic(A1

X)→Pic(Gm,X). The first map is an isomorphism since
X is regular and the second map is surjective since A1

X is regular. Since
Gm,X/X has the unit section, we conclude that the map Pic(X)→Pic(Gm,X)
is an isomorphism. We now get the exact sequence

0 −→ Br(X)[n] −→ Br(Gm,X)[n] −→ H1
ét(X,Z/n) −→ 0.

Since X and Gm,X are regular, both Br(X) and Br(Gm,X) are torsion groups,
so we obtain the second exact sequence of the lemma. �

Let k be a field with separable closure ks. Let T be a k-torus. By definition
there exists an isomorphism of ks-algebraic groups T s = T ×k ks

∼= Gdm,ks
for

some positive integer d. The group ks[T ]∗ of invertible functions on T s is

the direct sum of k∗s and the character group T̂ = Homks-groups(T
s,Gm,ks

).
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In particular, for any integer n invertible in k, there is a natural isomorphism
H0

ét(T
s,Gm)/n ∼= T̂ /n.

Proposition 9.1.2 Let k be a field of characteristic zero. Let T be a torus
of dimension d ≥ 1 over k with character group T̂ .

(i) There is a functorial isomorphism of Γ -modules

H1
ét(T

s,Q/Z)
∼−→ T̂ ⊗ (Q/Z)(−1)

and a non-canonical isomorphism of abelian groups

H1
ét(T

s,Q/Z) ' (Q/Z)d.

(ii) There is a functorial isomorphism of Γ -modules

∧2(T̂ )⊗ (Q/Z)(−1)
∼−→ Br(T s)

and a non-canonical isomorphism of abelian groups

Br(T s) ' (Q/Z)d(d−1)/2.

If k is algebraically closed, T ' Spec(k[x1, x
−1
1 , . . . , xd, x

−1
d ]) and ζ is a

primitive n-th root of unity, the composition

∧2(T̂ )⊗ Z/n ∼−→ Br(T )[n]⊗ µn −→ Br(k(T ))[n]⊗ µn

sends xi ∧ xj to (xi, xj)ζ ⊗ ζ, where (xi, xj)ζ is defined at the end of
Section 1.3.4.

(iii) There is a split exact sequence of abelian groups

0 −→ Br(k) −→ Br1(T ) −→ H2(k, T̂ ) −→ 0.

Proof. (i) Since Pic(T s) = 0, for any integer n, the Kummer sequence gives a
natural isomorphism

H0
ét(T

s,Gm)/n
∼−→ H1

ét(T
s, µn),

hence T̂ /n
∼−→ H1

ét(T
s, µn). We thus obtain an isomorphism

H1
ét(T

s,Q/Z)
∼−→ T̂ ⊗ (Q/Z)(−1).

(ii) Using this isomorphism and the second (split) exact sequence of Lemma
9.1.1 for X = Gd−1

m , we obtain by induction a non-canonical isomorphism
Br(T s) ' (Q/Z)d(d−1)/2. In particular, for each n ≥ 1, the order of Br(T s)[n]
is nd(d−1)/2.
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Consider the cup-product pairing of étale cohomology groups

H1
ét(T

s, µn)×H1
ét(T

s, µn) −→ H2
ét(T

s, µ⊗2
n ) = Br(T s)[n]⊗ µn, (9.1)

where the last equality follows from the Kummer sequence and the vanishing
of Pic(T s). This pairing is compatible with the cup-product pairing of Galois
cohomology groups

H1(ks(T ), µn)×H1(ks(T ), µn) −→ H2(ks(T ), µ⊗2
n ) (9.2)

via the injective map H1
ét(T

s, µn) ↪→ H1(ks(T ), µn) induced by the inclusion
of the generic point Spec(ks(T ))→T s. Since char(k) = 0, the field ks is alge-
braically closed. Thus (a, a) = (a,−a) = 0 for any a ∈ H1(ks(T ), µn). (For
the last equality, see the end of Section 1.3.4.) Hence the pairings (9.2) and
(9.1) are alternating. We thus have a map of Γ -modules

ξ : ∧2 (T̂ )⊗ Z/n −→ Br(T s)[n]⊗ µn.

It is enough to prove that ξ is an isomorphism of abelian groups. We already
know that the two groups have the same cardinality, so it remains to show
that ξ is injective.

Let us fix an isomorphism of ks-tori

T s ' Gdm,ks
= Spec(ks[x1, x

−1
1 , . . . , xd, x

−1
d ]) ⊂ Adm,ks

= Spec(ks[x1, . . . , xd]).

The free Z/n-module ∧2(T̂ ) ⊗ Z/n is generated by the elements xi ∧ xj for

1 ≤ i < j ≤ d. Let α =
∑
i<j aijxi∧xj be a non-zero element of ∧2(T̂ )⊗Z/n,

where each aij is a non-negative integer less than n. Write β for the image of
α in Br(ks(T ))[n]⊗µn. Let r be the smallest value such that art 6= 0 for some
t. Let Kr be the field ks(x1, . . . , xr−1, xr+1, . . . , xd). By formula (1.18), the
residue of β at the divisor xr = 0 of Adm,ks

is the class of
∏
t>r x

art
t in K∗r /K

∗n
r .

This class is non-trivial, hence β 6= 0. This shows that the composition of ξ
with the natural map Br(T s)[n]⊗ µn→Br(ks(T ))[n]⊗ µn is injective, so ξ is
injective. This proves (ii).

(iii) In view of Pic(T s) = 0, the spectral sequence (5.19)

Ep,q2 = Hp(k,Hq
ét(T

s,Gm)) =⇒ Hp+q
ét (T,Gm) (9.3)

gives rise to an isomorphism H2(k, ks[T ]∗)
∼−→ Br1(T ), hence to an isomor-

phism H2(k, k∗s )⊕H2(k, T̂ )
∼−→ Br1(T ) which gives (iii). �

Proposition 9.1.3 Let T be a torus over a field k.

(i) If k is perfect and T is split, i.e., T ∼= Gnm,k for some n ≥ 1, then the

natural map Br(T )→Br(T s)Γ is surjective.
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(ii) If char(k) = 0, then the image of Br(T )→Br(T s)Γ contains the sub-
group of Br(T s)Γ consisting of the elements of odd order. Hence the map

Br(T )→Br(T s)Γ is surjective if (∧2(T̂ )/2)Γ = 0.

Proof. We have H0(T s,Gm) ∼= k∗s ⊕ T̂ and H1(T s,Gm) ∼= Pic(T s) = 0. The
spectral sequence (9.3) thus gives rise to an exact sequence

0 −→ H2(Γ, k∗s ⊕ T̂ ) −→ Br(T ) −→ Br(T s)Γ −→ H3(Γ, k∗s ⊕ T̂ ) −→ H3(T,Gm).

Write

Bre(T ) = Ker[Br(T )→Br(k)], H3
e(T,Gm) = Ker[H3(T,Gm)→H3(k,Gm)]

for the kernels of the evaluation maps at the neutral element e ∈ T (k). Then
we get an exact sequence

0→H2(Γ, T̂ ) −→ Bre(T ) −→ Br(T s)Γ
α−→ H3(Γ, T̂ ) −→ H3

e(T,Gm). (9.4)

Since (9.3) is functorial in the k-variety T , the exact sequence (9.4) is func-
torial with respect to homomorphisms of tori over k. Hence for any homo-
morphism of k-tori R→T we get a commutative diagram with exact rows

Bre(T ) //

��

Br(T s)Γ
α //

��

H3(Γ, T̂ )

��
Bre(R) // Br(Rs)Γ // H3(Γ, R̂)

(9.5)

Let us prove (i). If dim(R) = 1, then Br(Rs) = 0 (using that k is perfect; for
k arbitrary we would only get a result up to the characteristic of k). This
implies that the composition of maps

Br(T s)Γ
α−→ H3(Γ, T̂ ) −→ H3(Γ, R̂) (9.6)

is zero.
For T ' Gnm,k we have an isomorphism of trivial Γ -modules T̂ ' Zn, and

we have H3(Γ,Zn) ∼= H3(Γ,Z)⊕n. Thus by (9.6) the map α is zero, hence the
map Br(T )→Br(T s)Γ is surjective.

Let us prove (ii). Let [n] : T→T be the multiplication by n map. The

induced map T̂→T̂ is multiplication by n. By the functoriality of the isomor-
phism in Proposition 9.1.2 (i), the map induced by [n] on Br(T s) is multipli-
cation by n2.

Consider the diagram (9.5) where T→R is the homomorphism [n] : T→T .
The commutativity of the diagram implies that the image of α is annihilated
by n2 − n, hence by 2. Now (ii) follows from the exactness of the top row of
diagram (9.5). �
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For an arbitrary torus T over a field k, it would be interesting to find some
explicit description of the map α : Br(T s)Γ→H3(Γ, T̂ ) from (9.4).

In the case when the field k is algebraically closed, Harari and Skoroboga-
tov [HS03, Thm. 1.6] computed the Brauer group of a torsor for a k-torus.

Theorem 9.1.4 Let k be an algebraically closed field of characteristic zero.
Let T = Gnm,k for some integer n ≥ 1. Let X be a smooth integral variety over
k such that k[X]∗ ∼= k∗ and Pic(X) is a finitely generated free abelian group.
Let f : Y→X be a torsor for T over X. If k[Y ]∗ ∼= k∗ and Pic(Y ) is a finitely
generated free abelian group, then f∗ : Br(X)→Br(Y ) is an isomorphism.

9.2 Simply connected semisimple groups

Proposition 9.2.1 Let k be a field of characteristic zero. Let G be a sim-
ply connected semisimple group over k. Let E be a G-torsor over k and let
X be a smooth, projective, geometrically integral variety over k birationally
equivalent to E. Then the following natural maps are isomorphisms:

(i) Br(k)
∼−→ Br(E); (ii) Br(k)

∼−→ Br(X).

Proof. For G and E as above we have ks[G]∗ ∼= k∗s , hence ks[E]∗ ∼= k∗s . We
also have Pic(Gs) = 0, see [San81, Lemme 6.9 (iv)], hence Pic(Es) = 0. The
natural map Br(k)→Br(G) is an isomorphism [Gil09], hence Br(Es) = 0.

The exact sequence (5.20) then gives an isomorphism in (i). For X as in
the proposition, there exists a non-empty open set U ⊂ E and a birational
morphism U→X. Since X is projective and E is smooth, we may assume that
U contains all codimension 1 points of E. By purity for the Brauer group
(Theorem 3.7.1) the restriction map Br(E)→Br(U) is an isomorphism. Since
X is smooth, the map Br(X)→Br(U) is injective. Now (ii) follows from (i).
�

If G is not simply connected, the map Br(k)→Br(G) is not necessarily an
isomorphism even when k is algebraically closed of characteristic zero, see
[Ive76].

The following important theorem of Bruhat and Tits [BT87, §4.7] will be
used in the proof of Proposition 10.1.15 leading to Corollary 11.2.3.

Theorem 9.2.2 (Bruhat–Tits) Let K be a complete discretely valued field
with perfect residue field of cohomological dimension 1. Let X be a torsor for
a simply connected semisimple group over K. Then X has a K-point.
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9.3 Theorems of Bogomolov and Saltman

In this section we discuss theorems of Bogomolov and Saltman. We refer to
[CTS07, §6] and to [GS17, Ch. 6, §6] for most of the proofs and for the history
of the subject.

In view of Remark 6.2.2, for a separably closed field k and any field ex-
tension k ⊂ K we can write Brnr(K) for Brnr(K/k). We shall follow this
convention.

An abelian group generated by at most two elements will be called bicyclic.

Theorem 9.3.1 Let L be a field finitely generated over an algebraically
closed field k of characteristic zero. Let G be a finite group of automorphisms
of L over k, and let BG be the set of bicyclic subgroups of G. Then

Brnr(L
G) = {α ∈ Br(LG) | αH ∈ Brnr(L

H) for all H ∈ BG},

where αH is the restriction of α ∈ Br(LG) to Br(LH).

Proof. (Cf. [CTS07, Thm. 6.1]) Let K = LG and let α ∈ Br(K) be such that
∂A(α) 6= 0 for some discrete valuation ring A ⊂ K with fraction field K.
By Proposition 6.2.3 it is enough to show that there is a subgroup H ∈ BG
such that αH /∈ Brnr(L

H).
The following facts can be found in [SerCL, I, §7]. Let p be a prime ideal

in the semilocal Dedekind ring Ã which is the integral closure of A in L, let
D ⊂ G be the associated decomposition group, and let I ⊂ D be the inertia
group, which is a normal subgroup of G. The localisation B = Ãp ⊂ L is a
discrete valuation ring. There is a tower of fields K = LG ⊂ LD ⊂ LI ⊂ L
and a corresponding tower of discrete valuation rings A = BG ⊂ BD ⊂ BI .
The corresponding residue field extensions are F = F ⊂ E = E, and we have
D/I = Gal(E/F ) = Gal(LI/LD). The Galois extension LI/K is unramified,
i.e., a uniformiser of A is also a uniformiser of BI .

Moreover, since the residue characteristic is zero, the inertia group I is
isomorphic to a cyclic group, namely, the subgroup µ of roots of unity in F
[SerCL, IV, §2, Cor. 1 et 2]. Furthermore, the conjugacy action of D on the
normal subgroup I is then trivial, since this action can be identified with the
action of D/I = Gal(E/F ) on µ ⊂ F , and all the roots of unity are in k ⊂ F .
Thus I is central in D.

If αI /∈ Brnr(L
I), we are done, since I is a cyclic subgroup of G. Thus we

may assume that αI ∈ Brnr(L
I). Since BD/A is an unramified extension of

discrete valuation rings which induces an isomorphism on the residue fields,
the assumption ∂A(α) 6= 0 implies that ∂BD (α) 6= 0 ∈ H1(F,Q/Z). On the
other hand, ∂BI (a) = 0 ∈ H1(E,Q/Z).
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Since BI/BD is unramified, the commutative diagram given by Proposi-
tion 1.4.7 (using Theorems 1.4.14 and 2.3.5)

Br(KI)
∂BI−−−−→ H1(E,Q/Z)x xresF/E

Br(KD)
∂BD−−−−→ H1(F,Q/Z)

implies that ∂BD (α) can be identified with a non-trivial character of D/I =
Gal(E/F ). Let g ∈ D be an element of D whose class ḡ in D/I satisfies
∂BD (α)(ḡ) 6= 0 ∈ Q/Z, let H = 〈I, g〉 ⊂ D be the subgroup spanned by I and
g, and let F1 be the residue class field of BH . Inserting Br(KH)→H1(F1,Q/Z)
in the above diagram, one immediately sees that ∂(αH) 6= 0, since ∂(αH) may
be identified with a character of Gal(E/F1) = H/I which does not vanish
on ḡ. This is enough to conclude, since H is an extension of the cyclic group
〈ḡ〉 by the central cyclic subgroup I (see above), hence is an abelian group
spanned by two elements. �

Let G be a finite group. Consider a faithful representation G→GL(V ),
where V is a finite-dimensional complex vector space. Write C(V ) for the
purely transcendental extension of C, which is the field of rational func-
tions on V considered as an affine space over C. Then the subfield of invari-
ants C(V )G is the function field of the quotient V/G. Speiser’s lemma (see,
e.g. [CTS07, Thm. 3.3]) states that the stably birational equivalence class of
V/G does not depend on the choice of a faithful representation G→GL(V ).
By Corollary 6.2.10, this implies that Brnr(C(V )G) does not depend on the
choice of V . In particular, considering the left action of GL(V ) on End(V )
gives a faithful representation of G in End(V ), so we get an isomorphism
Brnr(C(V )G) ' Brnr(C(GL(V )/G)).

If G = A is a finite abelian group, then V is a direct sum of 1-dimensional
representations, i.e. characters of A. This implies that C(V )A/C is purely
transcendental (Fischer’s theorem, see [GS17, Thm. 6.6.8]). In this case, by
Proposition 6.2.9, we have Brnr(C(V )A) = 0. Combining this with Theorem
9.3.1, one gets the following result.

Theorem 9.3.2 (Bogomolov) Let G ⊂ GL(V ) be a finite group. Let B be
the set of bicyclic subgroups of G. Then the unramified Brauer group of the
field C(V )G over C is given by the formula

Brnr(C(V )G) = Ker[H2(G,C∗) −→
∏
A∈B

H2(A,C∗)],

where G acts trivially on C∗ and H2(G,C∗)→H2(A,C∗) is the restriction
map.

See [Bog87], [CTS07, Thm. 7.1], [GS17, Thm. 6.6.12]. Fischer’s theorem
implies that the set B of bicyclic subgroups can be replaced by the larger set
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of all abelian subgroups. One may also write H2(G,C∗) ∼= H3(G,Z) and sim-
ilarly for each A. The same formula gives the value of Brnr(C(H/G)), where
G is a finite subgroup of H = SLn,C or any simply connected semisimple
group over C (see [CT12b] and [LA17]).

This theorem led to numerous examples of finite p-groups G such that
the quotient GLn,C/G is not rational (E. Noether’s problem). D. Saltman
(1984) was the first to use the unramified Brauer group to disprove the ra-
tionality of GLn,C/G for some finite groups G. Bogomolov [Bog87] developed
a technique for computing Brnr(C(GLn,C/G)) when G is a central exten-
sion of abelian groups. See [CTS07, §7] and the references therein. Since
[CTS07] was written, many papers have been devoted to the computation of
the group Brnr(C(GLn,C/G)) in Theorem 9.3.2, which often goes under the
name of ‘Bogomolov multiplier’. (Recall that H2(G,C∗) ∼= H3(G,Z) is the
Schur multiplier of the finite group G.) Kunyavskĭı [Kun10] proved that the
Bogomolov multiplier vanishes for all finite simple groups.

Definition 9.3.3 Let G be a finite group. A finitely generated free abelian
group with an action of G is called a G-lattice.

For a finitely generated free abelian group M we write C[M ] for the group
C-algebra of M . Let C(M) be the field of fractions of C[M ]. In other words,
C(M) is the function field C(T ) of the complex torus T = Spec(C[M ]). If M
is a G-lattice, then C(M)G is the function field of the quotient T/G.

Theorem 9.3.4 (Saltman [Sal90]) Let G be a finite group and let M be a
faithful G-lattice. Then

Brnr(C(M)G) = Ker[H2(G,C∗ ⊕M) −→
∏
A∈B

H2(A,C∗ ⊕M)],

where B is the set of bicyclic subgroups of G.

Further work along these lines has been done by D. Saltman, E. Peyre
[P08], and by B. Kahn and Nguyen Thi Kim Ngan [KN16].

There is an extension of Theorem 9.3.1 to almost free actions of (not
necessarily connected) reductive groups, see [Bog89, Thm. 2.1] and [CTS07,
Thm. 6.4].

Theorem 9.3.5 (Bogomolov) Let k be an algebraically closed field of char-
acteristic zero, let G be a reductive group over k, and let X be an integral
affine variety over k with an action of G such that all stabilisers are trivial.
Write BG for the set of finite bicyclic subgroups of G(k). Then

Brnr(k(X)G) = {α ∈ Br(k(X)G) | αA ∈ Brnr(k(X)A) for all A ∈ BG},

where αA is the restriction of α ∈ Br(k(X)G) to Br(k(X)A).

The following theorem was proved in several instalments.
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Theorem 9.3.6 Let k be an algebraically closed field of characteristic zero.
Let G be a connected linear algebraic group over k and let H ⊂ G be a
connected algebraic subgroup. Let Xc be a smooth compactification of G/H.
Then Br(Xc) = 0.

The case H = PGLn ⊂ G = GLN is due to Saltman [Sal85].
For semisimple simply connected G, the result is a theorem of Bogomolov

[Bog89, Thm. 2.4]. For a detailed account of his proof, see [CTS07, §9]. The
proof given there builds upon Theorem 9.3.5.

The result in the general case was obtained by Borovoi, Demarche and
Harari in [BDH13]. Their proof uses a long arithmetic detour. A direct re-
duction to the case when G is semisimple and simply connected was then
given by Borovoi [Bor13].

In the special case when G = GLn and H is a connected semisimple
group, a proof in arbitrary characteristic is given by Blinstein and Merkurjev
in [BM13, Thm. 5.10].

Over a separably closed field of characteristic p > 0, assuming that the
connected groups G and H are smooth and reductive, Borovoi, Demarche
and Harari [BDH13] prove that Br(Xc) is a p-primary torsion group.

Remark 9.3.7 (1) Let k = C. There exists a subgroup A ⊂ SLn, where
A is an extension of a finite abelian group by a torus, such that we have
Brnr(C(SLn/A)) 6= 0. Such examples can be constructed by a method sug-
gested by C. Demarche. Suppose that a group H ′ is a central extension of
a finite abelian group A by a finite abelian group Z. Let us embed Z into
a torus T and define H = (T × H ′)/Z. Then H is a central extension of A
by T . Suppose that we are given an embedding H ↪→ G = SLn. Since T
commutes with H, there is a right action of T on G/H ′. But H is generated
by T and H ′, hence the natural morphism G/H ′→G/H is a right torsor for
the quotient torus T/Z. This torus is split, hence G/H ′ is stably birationally
equivalent to G/H. Thus the natural map Brnr(G/H)→Brnr(G/H

′) is an iso-
morphism. Using Theorem 9.3.2, Bogomolov [Bog87] constructed examples
with Brnr(G/H

′) 6= 0. (See also [CTS07].)
(2) Let k = C. For a subgroup A ⊂ G, where G is semisimple and simply

connected, and A is an extension of a group of multiplicative type by a
semisimple simply connected group, we have Brnr(C(G/A)) = 0. This follows
by combining Theorem 9.3.6 with [LA15, Prop. 26], itself an elaboration of
Corollary 11.2.3.
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9.4 Homogeneous spaces over an arbitrary field

Let k be a field with separable closure ks and let Γ = Gal(ks/k).

Definition 9.4.1 For a continuous discrete Γ -module M and i ≥ 0 define

Xi
ω(Γ,M) : = Ker[Hi(Γ,M) −→

∏
g∈Γ

Hi(〈g〉,M)],

where 〈g〉 is the closed subgroup of Γ generated by g.

Using hypercohomology one extends this definition to bounded complexes
of Galois modules. The following statements are proved using standard prop-
erties of Galois cohomology.

(1) If K ⊂ ks is a Galois extension of k such that Gal(ks/K) acts trivially
on M , then the inflation map H1(Gal(K/k),MGal(ks/K))→H1(Γ,M) induces
an isomorphism

Ker[H1(Gal(K/k),M) −→
∏

g∈Gal(K/k)

H1(〈g〉,M)] ∼= X1
ω(Γ,M).

(2) If, in addition, the abelian group M is finitely generated and torsion-
free, then the inflation map H2(Gal(K/k),MGal(ks/K))→H2(Γ,M) induces
an isomorphism

Ker[H2(Gal(K/k),M) −→
∏

g∈Gal(K/k)

H2(〈g〉,M)] ∼= X2
ω(Γ,M).

Let G be a finite group and let M be a left G-lattice. The dual G-lattice
M◦ is HomZ(M,Z) with the action of G given by (gφ)(m) = φ(g−1m).

Definition 9.4.2 A G-lattice M is flasque if it satisfies the following equiv-
alent properties

(i) For any subgroup H ⊂ G, the Tate cohomology group Ĥ−1(H,M) is
zero.

(ii) For any subgroup H ⊂ G, we have H1(H,M◦) = 0.
(iii) For any subgroup H ⊂ G, we have Ext1

H(M,Z) = 0.

See [CTS87b, 0.5] for the equivalence of (i), (ii), and (iii). If Γ is a profinite
group and M is a finitely generated free abelian group which is a continuous,
discrete Γ -module, then Γ acts on M via a finite quotient by an open normal
subgroup of Γ . Let us call this quotient G. The Γ -module M is called flasque
if the G-lattice M is flasque. This definition does not depend on the choice
of G.

Work of many authors [Vos98, CTS77, San81, Bog89, BDH13, CTK98,
BK00, BKG04, CTK06, CTS07, CT08a, Bor13, BM13] has led to the follow-
ing theorem.
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Theorem 9.4.3 Let k be a field of characteristic zero with an algebraic clo-
sure k̄ and Galois group Γ = Gal(k̄/k). Let X be a homogeneous space of a
connected linear algebraic group such that the stabilisers of geometric points
are connected. Let Xc be a smooth compactification of X. Then the group
Pic(Xc) is free and finitely generated, and the following properties hold.

(i) Br(Xc) = 0, hence Br(Xc) = Br1(Xc).
(ii) Pic(Xc) is a flasque Γ -module.

(iii) For any procyclic subgroup C ⊂ Γ we have H1(C,Pic(Xc)) = 0.
(iv) There is an exact sequence

Br(k) −→ Br(Xc) −→X1
ω(Γ,Pic(Xc)) −→ H3(k, k̄∗).

(v) If X(k) 6= ∅, then there is an exact sequence

0 −→ Br(k) −→ Br(Xc) −→X1
ω(Γ,Pic(Xc)) −→ 0.

The group Br(Xc), up to isomorphism, does not depend on the choice
of Xc. Indeed, by Proposition 6.2.7, Br(Xc) is isomorphic to the unramified
Brauer group Brnr(k(X)/k).

A connected linear algebraic group over an algebraically closed field is a
rational variety, see [Bor91, IV.14.14]. This implies that Xc is unirational.
That the group Pic(Xc) is free and finitely generated is a general property
of smooth, projective, geometrically unirational varieties over a field of char-
acteristic zero.

The key statements are (i) and (ii). For simplicity assume that X(k) 6= ∅.
Then X = G/H, where G and H are connected linear algebraic groups over
k. The vanishing of Br(Xc) = 0, which is a generalisation of Bogomolov’s the-
orem for G semisimple and simply connected, is Theorem 9.3.6. In this gen-
erality it is due to Borovoi, Demarche and Harari [BDH13]. Once Br(Xc) = 0
has been established, the isomorphism Br(Xc)/Br(k) ∼= H1(Γ,Pic(Xc)) fol-
lows from Proposition 5.4.2.

Statement (ii), which is a generalisation of results of Voskresenskĭı [Vos98]
and Colliot-Thélène and Sansuc [CTS77], was established by Colliot-Thélène
and Kunyavskĭı [CTK06, Thm. 5.1].

Statement (ii) implies (iii) for purely algebraic reasons (the duality for
Tate cohomology of a finite group acting on a finitely generated free abelian
group and the periodicity of cohomology of a finite cyclic group). From (i)
and (iii) one immediately gets (iv), which implies (v).

Lemma 9.4.4 Let k be a field of characteristic zero with an algebraic closure
k̄ and Γ = Gal(k̄/k). Let W be a smooth projective variety over k such that
Pic(W ) is a finitely generated free abelian group and H1(C,Pic(W )) = 0 for
all procyclic subgroups C ⊂ Γ . If there exists a cyclic field extension K/k
such that Pic(WK) = Pic(W ), then H1(k,Pic(W )) = 0 and the Γ -module
Pic(W ) is a direct summand of a permutation Γ -module.
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Proof. Let K ⊂ k̄ be a cyclic extension of k as in the statement, so that G =
Gal(K/k) is cyclic. Let M = Pic(W ). The group Gal(k̄/K) acts trivially on
the finitely generated torsion-free abelian group M , hence H1(K,M) = 0. The
restriction-inflation sequence gives H1(G,M) ∼= H1(K/k,M) ∼= H1(k,M).
The map Γ→G is surjective, so we can find an element g ∈ Γ whose
image generates G. Let E = k̄g be the fixed field of g. The field ex-
tensions K/k and E/k are linearly disjoint. In particular, H1(K/k,M) ∼=
H1(KE/E,M). We have H1(KE,M) = 0, so the restriction-inflation se-
quence gives H1(KE/E,M) ∼= H1(E,M), and the latter group is trivial by
assumption. We thus get H1(K/k,M) = 0 and then H1(k,M) = 0. This re-
mains true if k is replaced by a finite field extension. The last part of the
statement is a consequence of a theorem of Endo and Miyata (cf. [CTS77,
Prop. 2, p. 184]): if G is a finite cyclic group acting on a finitely gener-
ated torsion-free abelian group M such that H1(H,M) = 0 for all subgroups
H ⊂ G, then M is a direct summand of a permutation G-module. �

Combining Proposition 6.2.12, Theorem 9.4.3 and Lemma 9.4.4, one gets
the following corollary.

Corollary 9.4.5 Let k be a field of characteristic zero. Let X be a smooth,
projective, geometrically integral variety over k with a k-point. Assume that X
is stably k-birationally equivalent to a homogeneous space of a connected lin-
ear algebraic group such that the stabilisers of geometric points are connected.
If there exists a finite cyclic extension K/k such that Pic(XK) = Pic(X),
then the map Br(k)→Br(X) is an isomorphism and the Γ -module Pic(X) is
a direct summand of a permutation Γ -module.

Example 9.4.6 A Châtelet surface Y given by the affine equation

y2 − az2 = (x− e1)(x− e2)(x− e3),

where a ∈ krk∗2 and ei 6= ej for i 6= j, admits a smooth compactification Yc
such that Pic(Yc,K) ∼= Pic(Y c), where K = k(

√
a). However, Br(Yc)/Br(k) ∼=

(Z/2)2 (see Exercise 11.3.7). Corollary 9.4.5 then shows that such a Châtelet
surface is not stably k-birationally equivalent to any homogeneous space of
a connected linear group with connected geometric stabilisers.

One would like to have a formula for X1
ω(Γ,Pic(Xc)) in terms of the

homogeneous space X and not in terms of its smooth compactification Xc.
Let G be a connected linear algebraic group over a field k of characteristic
zero and let X be a homogeneous space of G over k. Let H ⊂ G be the
stabiliser of a k̄-point of X. Assume that H is an extension of a group of
multiplicative type S by a connected linear algebraic group with trivial group
of characters. Then there is a natural group k-scheme S of multiplicative type
such that S = S ×k k̄, see [Bor93, 1.7 and 6.1], [CTK06, p. 739], [BDH13,
p. 673]. Let T be the torus over k which is the maximal toric quotient of G.

Then there is an induced homomorphism S→T defined over k. Let [T̂→Ŝ]
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be the dual map of respective groups of characters, viewed as a complex of
Γ -modules in degrees −1 and 0.

Theorem 9.4.7 ([BDH13, Thm. 8.1, Cor. 8.3]) With notation as above as-
sume that Pic(G) = 0. Then there is an exact sequence

0→Br1(Xc)/Br0(Xc) −→X1
ω(k, [T̂→Ŝ]) −→ Ker[H3(k, k̄∗)→H3

ét(Xc,Gm)].

If H is connected, then S is a torus and we have the same sequence with
Br1(Xc)/Br0(Xc) replaced by Br(Xc)/Br0(Xc).

Let us mention some special cases, some of which are used in the proof of
the general result.

• G = T is a torus and H = 1. Here S = 1, and

X1
ω([T̂→Ŝ]) = X1

ω([T̂→0]) = X2
ω(k, T̂ ).

Under the assumption X(k) 6= ∅, i.e., X ' T , the result in this case
appeared in [CTS87b]. The proof uses the theorem of Endo and Miyata
mentioned above: for any finite cyclic group G any H1-trivial G-lattice is
a direct summand of a permutation G-lattice (cf. [CTS77, Prop. 2]).
• G is a simply connected semisimple group, µ ⊂ G is a finite central

subgroup and X = G/µ. Here T = 1, S = µ, so

X1
ω([T̂→Ŝ]) = X1

ω([0→µ̂]) = X1
ω(k, µ̂),

where µ̂ = Homk-groups(µ,Gm,k). The result in this case was obtained in
[CTK98]. The proof relies on a reduction to the case of a finite ground
field k together with the above mentioned theorem on tori.
• G is a simply connected semisimple group and H is connected. Here T = 1

and we have

X1
ω([T̂→Ŝ]) = X1

ω([0→Ŝ]) = X1
ω(k, Ŝ).

Under the assumption X(k) 6= ∅, the result in this case appeared in
[CTK06] where Theorem 9.2.2 was used.
• G = GLn,k and H ⊂ G is semisimple. In this case

X1
ω([T̂→Ŝ]) = X1

ω([Z→0]) = X2
ω(k,Z) = 0.

The proof of Br1(Xc)/Br0(Xc) = X2
ω(k, T̂ ), where Xc is a smooth com-

pactification of a torus T , is done directly at the level of the field k. The proofs
of most other computations of Br1(Xc)/Br0(Xc) = X1

ω(Γ,Pic(Xc)) rely on
various reductions involving change of the ground field k. Let us mention
some of them, without going into details.

If X is a homogeneous space of a semisimple group G, it is helpful to reduce
to the case when G is quasi-split, that is, G contains a Borel subgroup B.
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Indeed, in this case the maximal torus of B is a quasi-trivial torus, that
is, a product of tori of the form Rk′/k(Gm,k′), where k′ is finite separable
extension of k. This implies that G is a rational variety over k. To reduce
to this situation one extends the ground field k to the function field K of
the variety of Borel subgroups of G. One then uses the fact that the map
Pic(Xc ×k ks)→Pic(Xc ×k Ks) is an isomorphism, see Proposition 6.2.13.

Another way to reduce to the case when G is quasi-split is first to reduce
to the case when k is the fraction field of a finitely generated Z-algebra over
which G, X, Xc can be extended, and then use Chebotarev’s density theorem
to reduce the whole situation to the case of a finite field where the Galois
action is preserved. See [CTK98] for details.

One also uses algebraic and arithmetic results from the theory of con-
nected linear algebraic groups: a semisimple algebraic group over a finite
field is quasi-split; a quasi-split semisimple group over a field k is birationally
equivalent to the product of an affine space and a torus. One also uses The-
orem 9.2.2.

The above theorems do not cover the case of quotients GLn,k/G where
G is a non-commutative finite subgroup subscheme of GLn,k. Such an ex-
tension of Theorem 9.3.2 to more general ground fields is given in [CT12a]
for constant G and in [LA17] for more general G. The case when G is con-
stant and k = Q is of interest in connection with the inverse Galois problem
[Har07a, Dem10, HW20]. For further work on unramified Brauer groups of
quotients, see [Dem10] and [LA14, LA15, LA17].

Exercise 9.4.8 [CTS77, Prop. 7] Let K/k be a finite Galois extension of
fields. Let T = R1

K/k(Gm,K) be the norm 1 torus, that is, the kernel of the

norm map RK/k(Gm,K)→Gm,k. Show that Brnr(k(T )/k) ∼= H3(Gal(K/k),Z).
If Gal(K/k) ∼= (Z/p)2, where p is a prime, show that Brnr(k(T )/k) ∼= Z/p.
Thus T is not k-rational. This example of a non-k-rational linear algebraic
group was first given by C. Chevalley (with a different proof).



Chapter 10

Schemes over local rings and fields

The object of study in this chapter is a scheme over the spectrum of a lo-
cal ring. A separately standing Section 10.1 is devoted to the concepts of a
split variety and of a split fibre of a morphism of varieties; for arithmetic
applications and for the calculation of the Brauer group, split fibres should
be considered as ‘good’ or ‘non-degenerate’. In Section 10.2 we look at the
classical case of quadrics over a discrete valuation ring.

In the ensuing sections the local ring is henselian or complete. In Section
10.3 we consider regular, integral, proper schemes of relative dimension 1 over
a henselian discrete valuation ring. The study of the Brauer group of such
schemes goes back to Artin and Grothendieck [Gro68, III, §3]. We also discuss
the parallel situation of proper regular desingularisations of a 2-dimensional
henselian local ring, already considered in [Art87]. This leads to local-to-
global theorems for the Brauer group of the function field. It also leads to
comparison of index and exponent of a central simple algebra of the function
field of such schemes under suitable assumptions on the residue field of the
local ring, as initiated by Artin and by Saltman. In Section 10.4 we analyse the
Brauer group of the generic fibre of a smooth proper scheme over a henselian
discrete valuation ring. In Section 10.5 we discuss various properties of the
Brauer group of a variety over a local field with respect to evaluation at
rational and closed points.

10.1 Split varieties and split fibres

10.1.1 Split varieties

Recall that k̄ is an algebraic closure of k, and ks is a separable closure of k
in k̄. For a k-scheme X we write Xs = X ×k ks and X = X ×k k̄.
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We follow the convention that an integral scheme is by definition non-
empty, see [Stacks, Def. 01OK]. For an integral scheme X over a field k we
call the residue field of the generic point η ∈ X the function field of X and
denote it by k(X). We write kX for the algebraic closure of k in k(X).

One can give criteria for an integral scheme X over a field k to be geo-
metrically reduced or geometrically irreducible in terms of the extension of
fields k ⊂ k(X). We refer to Section 2.6 for the definition of a separable field
extension. The integral k-scheme X is geometrically reduced if and only if
k(X) is a separable k-algebra [EGA, IV2, Prop. 4.6.1 (e)]. Next, X is geo-
metrically irreducible if and only if k is separably closed in k(X), that is, the
only separable algebraic field extension of k in k(X) is k itself [EGA, IV2,
Prop. 4.5.9 (c)]. See also [Po18, §2.2].

Recall our standard convention that a variety over a field k is a separated
scheme of finite type over k.

Definition 10.1.1 Let X be an irreducible variety over a field k. The multi-
plicity of X is the length of the (artinian) local ring of X at the generic point
η of X. The geometric multiplicity of X is the length of the (artinian)
local ring of X at a point η̄ of X over η.

The definition of geometric multiplicity does not depend on the choice of
η̄ because such points are conjugate under the action of Aut(k̄/k).

The multiplicity of an irreducible k-variety X is 1 if and only if X con-
tains a non-empty open reduced k-subscheme. The geometric multiplicity of
X is 1 if and only if X contains a non-empty open geometrically reduced
k-subscheme. By the above criterion, this is equivalent to the property: X
contains an integral open k-subscheme U such that k(U) is a separable
k-algebra. Equivalently, X contains a dense open smooth k-subscheme, see
[Stacks, Lemma 056V]. The multiplicity divides the geometric multiplicity;
the ratio is the geometric multiplicity of the reduced subscheme Xred [BLR90,
§9.1, Lemma 4 (a)]. It is a power of the characteristic exponent of k [BLR90,
§9.1, Lemma 4 (c)].

Lemma 10.1.2 If Y is a normal integral scheme over a field k, then the
structure morphism Y→Spec(k) factors through Spec(kY ). If X→Y is a mor-
phism of integral schemes over k, and Y is normal, then there is a natural
embedding kY ⊂ kX .

Proof. Let y ∈ Y be a point and let OY,y be the local ring of Y at y. Since
Y is normal, OY,y is integrally closed in the function field k(Y ). Thus the in-
clusions k ⊂ kY ⊂ k(Y ) induce inclusions k ⊂ kY ⊂ OY,y. It follows that kY
is contained in H0(Y,OY ), so that the structure morphism Y→Spec(k) fac-
tors through Spec(kY ). The structure morphism X→Spec(k) factors through
Y→Spec(k), hence also through Spec(kY ), thus kY ⊂ k(X). �

The following definition was introduced in [Sko96].

https://stacks.math.columbia.edu/tag/01OK
https://stacks.math.columbia.edu/tag/056V
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Definition 10.1.3 A variety over a field k is split if it contains an open
geometrically integral k-subscheme.

Proposition 10.1.4 Let X be a variety over a field k. The following prop-
erties are equivalent.

(i) X is split;
(ii) X contains an open integral k-subscheme U such that kU = k which is

geometrically reduced;
(iii) X contains an open integral k-subscheme of geometric multiplicity 1

which is geometrically irreducible;
(iv) X contains an open k-subscheme which is smooth and geometrically ir-

reducible.

Proof. Let us show that (i) implies (ii). Let U ⊂ X be an open geometrically
integral subscheme. Then k(U) is separable over k, so kU is also separable
over k. But k is separably closed in k(U), thus kU = k.

Conversely, kU = k implies that k is separably closed in k(X), so X is
geometrically irreducible. Thus (ii) implies (i).

An open integral subscheme U ⊂ X has geometric multiplicity 1 if and
only if it contains a dense open subscheme which is geometrically reduced, so
(i) and (iii) are equivalent. This happens precisely when U contains a dense
open smooth subscheme, so (iii) implies (iv). Any smooth scheme over k is
geometrically reduced [Stacks, Lemma 056T], hence (iv) implies (i). �

Lemma 10.1.5 A variety over a field k which contains a smooth k-point is
split.

Proof. Let X be a variety over k with a smooth k-point P . Then there exists
a smooth irreducible Zariski open set U ⊂ X which contains P . In partic-
ular, U is geometrically reduced. Lemma 10.1.2 applied to the morphism
P : Spec(k)→U gives kU = k. We conclude by invoking Proposition 10.1.4. �

Definition 10.1.6 A variety Z over a field k is geometrically split if the
ks-scheme Zs = Z ×k ks is split.

Equivalently, a variety over a field is geometrically split if it contains a
non-empty smooth open subscheme. In particular, a variety over a field is
geometrically split if and only if it contains a smooth closed point.

Remark 10.1.7 The notions of a split variety has its origin in arithmetical
considerations.

(1) Let X ⊂ PnF be a quasi-projective, integral, split variety over a finite
field F. Then there is an integer N which depends only on the Hilbert poly-
nomial of X such that for any finite field extension F ⊂ E with cardinality of
E at least equal to N , the variety X has a smooth E-point. The key ingre-
dient here is the Lang–Weil–Nisnevich inequality [Po18, Thm. 7.7.1] for the
number of rational points of a variety over a finite field.

https://stacks.math.columbia.edu/tag/056T
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(2) Let k be a number field. If X is a split variety over k, then for almost
all places v of k the variety X has a smooth kv-point. This follows from a
spreading out argument, Hensel’s lemma and the previous result for finite
fields.

10.1.2 Split fibres

Proposition 10.1.8 Let R be a regular local ring with fraction field K, max-
imal ideal m and residue field k. Let f : X→Spec(R) be a flat R-scheme of
finite type such that every point of the closed fibre is a regular point of X.
Let i : R ↪→ R′ be a flat extension of local rings such that m generates the
maximal ideal m′ ⊂ R′ and the residue field k′ of R′ is a separable extension
of k (not necessarily algebraic).

Then for any morphism σ : Spec(R′)→X such that fσ = Spec(i) the point
σ(Spec(k′)) lies in the smooth locus of the closed fibre Xk = X ×R k.

Proof. Let A be the local ring of X at P = σ(Spec(k′)) and let B = A/mA
be the local ring of the closed fibre Xk at P . Let mA be the maximal ideal
of A and let mB be the maximal ideal of B so that A/mA = B/mB = k(P )
is the residue field of P . The exact sequence

0 −→ mA −→ A −→ B −→ 0

gives rise to the commutative diagram with exact rows

0 // mA // mA // mB // 0

0 // mA ∩m2
A

//
?�

OO

m2
A

//
?�

OO

m2
B

//
?�

OO

0

Using m2A ⊂ mA ∩ m2
A we see that the upper row of the following diagram

is exact:

mA/m2A //

σ∗

��

mA/m
2
A

//

σ∗

��

mB/m
2
B

// 0

mR′/m2R′
∼= // m′/m′2

(10.1)

The isomorphism in the lower row is due to the assumption mR′ = m′. The
vertical maps are induced by the homomorphism of local rings σ∗ : A→R′, so
that the diagram is commutative.

Since X is flat over R, the ring A a flat R-module. Tensoring mn ↪→ R
with A we obtain that for any n ≥ 1 the natural map A⊗R mn→mnA is an
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isomorphism. Tensoring the exact sequence of R-modules

0 −→ m2 −→ m −→ m/m2 −→ 0

with A we obtain isomorphisms

mA/m2A
∼−→ A⊗R (m/m2) ∼= B ⊗k (m/m2). (10.2)

The local ring homomorphism i : R→R′ makes R′ a flat R-module, so the
same arguments give an isomorphism

mR′/m2R′
∼−→ k′ ⊗k (m/m2). (10.3)

Using (10.2) and (10.3) we rewrite (10.1) as follows:

B ⊗k (m/m2) //

σ∗

��

mA/m
2
A

//

σ∗

��

mB/m
2
B

// 0

k′ ⊗k (m/m2)
∼= // m′/m′2

(10.4)

In view of mAm ⊂ m2
A the first arrow in the top row of (10.4) factors through

k(P )⊗k(m/m2). The resulting map k(P )⊗k(m/m2)→k′⊗k(m/m2) is injective,
because it is induced by the embedding k(P ) ↪→ k′. From commutativity of
(10.4) we deduce that the upper row of that diagram gives rise to a short
exact sequence of k(P )-vector spaces

0 −→ k(P )⊗k m/m2 −→ mA/m
2
A −→ mB/m

2
B −→ 0. (10.5)

Since R and A are regular local rings, we have dimk(m/m2) = dim(R) and
dimk(P )(mA/m

2
A) = dim(A). Since X is flat over R, by [Liu10, Prop. 4.3.12]

we have dim(B) = dim(A) − dim(R). In view of (10.5), this equals
dimk(P )(mB/m

2
B), hence B is regular.

Let V be a regular open neighbourhood of P in the closed fibre Xk. The
residue field k(P ) is a subfield of k′, which is separable over k, hence k(P )
is separable over k. It is finitely generated over k. By one of the equivalent
properties of separable field extensions given in Section 2.6, there exist a
smooth integral k-variety U and a birational k-morphism φ : U→V sending
the generic point of U to P . Because U is smooth, it contains a closed point
M whose residue field is a finite separable extension of k. The residue field of
the image φ(M) in the regular k-variety V has the same property. By [Liu10,
Prop. 4.3.30], the point φ(M) is in the smooth locus of V . Since φ(M) is a
specialisation of P , we conclude that P lies in the smooth locus of V . �
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Corollary 10.1.9 Let R be a regular local ring with residue field k. Let X
be a regular scheme which is a flat R-scheme of finite type. If the morphism
X→Spec(R) has a section, then this section meets the closed fibre Xk in a
smooth k-point. Hence Xk is a split k-variety.

Proof. Taking R′ = R in Proposition 10.1.8 we obtain a smooth k-point P in
the closed fibre Xk. The last statement now follows from Lemma 10.1.5. �

Corollary 10.1.10 Let f : X→Y be a flat morphism of regular varieties over
a field k. Let P be a point of Y . The fibre XP is geometrically split if and
only if f has a section locally at P for the étale topology, i.e., the morphism
X ×Y Spec(R)→Spec(R) has a section, where R is the strict henselisation of
the local ring of Y at P .

Proof. Let X ′ = X×Y R and let X ′0 be the closed fibre of X ′/R. It is enough
to show that X ′0 is split if and only if X ′/R has a section.

The Y -scheme Spec(R) is the direct limit of étale schemes V/Y , thus X ′

is the limit of schemes V ×Y X. But V ×Y X is étale over a regular scheme
X, hence X ′ is regular. Now R is a regular local ring and X ′ is regular, so if
X ′/R has a section, then X ′0 is split by Corollary 10.1.9.

Conversely, since X ′0 is split over a separably closed field, Proposition
10.1.4 (iv) implies that X ′0 has a smooth rational point P . By assumption
the morphism X→Y is flat, so X ′ is a flat R-scheme. Hence the morphism
X ′→Spec(R) is smooth in a neighbourhood of P . Since R is henselian, P can
be lifted to a section of X ′/R [EGA, IV4, Thm. 18.5.17]. �

In the case of a regular integral scheme over a discrete valuation ring,
the multiplicity of an irreducible component of the closed fibre has a clear
geometric meaning.

Lemma 10.1.11 Let R be a discrete valuation ring with maximal ideal
m = (π) and residue field k = R/m. Let X be a regular integral scheme with
a faithfully flat morphism f : X→Spec(R). Then the (non-empty) closed fibre
Xt is the principal divisor

(π) =
n∑
i=1

miCi ∈ Div(X),

where C1, . . . , Cn are the (reduced) irreducible components of Xk, and mi is
the multiplicity of Ci, for i = 1, . . . , n.

Proof. Since f is faithfully flat, Xk is non-empty, and each Ci is a Weil divisor
on X. Since X is regular, each Ci is a Cartier divisor and the local ring OX,Ci
of X at the generic point of Ci is a discrete valuation ring. The local ring
of Xk at the generic point of Ci is OX,Ci/πOX,Ci , which by assumption is
a local Artinian ring of length mi. Hence the valuation of π is mi. Thus the
Cartier divisors Xk = (π) and

∑n
i=1miCi coincide at codimension 1 points

of X; this implies that they coincide as Cartier divisors on X. �
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Proposition 10.1.12 Let R be a discrete valuation ring with field of frac-
tions K, maximal ideal m and residue field k = R/m. Let Y and Y ′ be regular,
integral and flat R-schemes of finite type, with smooth generic fibres YK and
Y ′K . Assume that Y ′ is a proper R-scheme. If there is a rational map from YK
to Y ′K , then for any irreducible component C ⊂ Yk of geometric multiplicity 1
there exist an irreducible component C ′ ⊂ Y ′k of geometric multiplicity 1 and
an embedding kC′ ⊂ kC . In particular, if Yk is split, then Y ′k is split too.

Proof. The generic fibre YK is an integral variety over K. Write F = K(YK).
Let OC be the local ring of Y at the generic point of C. Since Y is integral,
the field of fractions of OC is F ; the residue field of OC is k(C). Since Y is
regular, OC is a discrete valuation ring. The geometric multiplicity of C is 1,
hence k(C) is a separable extension of k.

A rational map from YK to Y ′K can be thought of as an F -point of Y ′K .
By the valuative criterion of properness, it uniquely extends to a morphism
Spec(OC)→Y ′. Let P ∈ Y ′k be the image of the closed point of Spec(OC).
Since k(C) is separable over k, by Proposition 10.1.8, P is a smooth point of
Y ′k, hence P belongs to (the smooth locus of) a unique irreducible component
C ′ of Y ′k. Since C ′ contains a smooth point, the geometric multiplicity of C ′

is 1. A morphism of integral k-schemes P : Spec(k(C))→C ′smooth gives rise to
an embedding kC′ ⊂ kC by Lemma 10.1.2. �

Corollary 10.1.13 Let R be a discrete valuation ring with field of fractions
K and residue field k. Let X be a regular, integral, proper and flat R-scheme
with smooth generic fibre. Let ΣX be the (possibly, empty) partially ordered
set of irreducible components of geometric multiplicity 1 of Xk, where C dom-
inates D if there exists an embedding of kD into kC . The set of isomorphism
classes of finite separable field extensions k ⊂ kC , where C is a minimal el-
ement of ΣX , is a birational invariant of the generic fibre XK as a smooth,
integral, proper variety over K. In particular, the property of the closed fibre
Xk to be split is a birational invariant of XK .

Proof. Suppose that X and Y are regular, integral, proper and flat R-schemes,
with smooth generic fibres, such that K(XK) ∼= K(YK). Define the partially
ordered set ΣY in the same way as ΣX . Let C be a minimal element of ΣX .
By Proposition 10.1.12 there exists a C ′ ∈ ΣY such that kC′ can be embedded
into kC . By the same proposition, there is a C ′′ ∈ ΣX such that kC′′ can be
embedded into kC′ . By minimality of C we have kC′′ ' kC , hence kC ' kC′ .
Since C is minimal in ΣX , then, by Proposition 10.1.12, C ′ is minimal in ΣY .
The last statement then follows from the fact that Xk is split if and only if
there is a C ∈ ΣX such that kC = k, see Proposition 10.1.4. �

In some concrete cases, for example when the generic fibre is a quadric
and the residue field is of characteristic different from 2, it is not difficult to
determine this set of finite separable extensions.

One can give a criterion for the closed fibre to be split in terms of the
generic fibre [Sko96, Lemma 1.1].
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Theorem 10.1.14 Let R be a discrete valuation ring with field of fractions
K and residue field k. Let X be a regular, integral, proper and flat R-scheme
with smooth generic fibre. Then the closed fibre Xk is split if and only if
there exists a flat local homomorphism of discrete valuation rings i : R→R′
satisfying the following properties, where k′ is the residue field of R′ and K ′

is the fraction field of R′:

(a) k′ is a separable k-algebra, and k is algebraically closed in k′;
(b) the maximal ideal of R generates the maximal ideal of R′;
(c) the generic fibre XK has a K ′-point.

Following Bourbaki, an extension k′/k satisfying the conditions in (a) is
called regular [BouV, §17, no. 4, Déf. 2].

Proof of Theorem 10.1.14. Assume that Xk is split, so that Xk contains an
open geometrically integral subscheme U . Let R′ be the local ring of X at
the generic point of U . Since X is regular, R′ is a discrete valuation ring. It is
clear that the residue field of R′ is k(U) and the fraction field is k(X). Since
U is geometrically integral over k, the field k(U) is a separable extension of
k in which k is algebraically closed, so (a) is satisfied. The multiplicity of U
is 1, so Lemma 10.1.11 shows that the maximal ideal of R′ is generated by
the maximal ideal of R, which is (b). Finally, the generic point of XK is a
K ′-point, so (c) holds as well.

To prove the converse, let i : R→R′ be as in the statement of the theorem.
By the valuative criterion of properness, the given K ′-point of XK extends
to an R-morphism φ : Spec(R′)→X. Since the field extension k ⊂ k′ is sep-
arable, by Proposition 10.1.8 the morphism φ factors through the smooth
locus Xsmooth of X/R. Let P = φ(Spec(k′)) be the image of the closed point
of Spec(R′) in Xsmooth ∩Xk. It follows that Xk contains an open irreducible
smooth subscheme U such that P ∈ U .

Let us show that U is geometrically integral. Since U is smooth over k,
it is geometrically reduced. By Lemma 10.1.2 applied to the morphism of
k-schemes φ : Spec(k′)→U , the field kU is a subfield of the algebraic closure
of k in k′. But k is algebraically closed in k′ by assumption, hence kU = k,
so U is geometrically irreducible. �

As an example of application of this theorem let us prove the following
statement which is essentially [CTK06, Thm. 4.2].

Proposition 10.1.15 Let k be a field of characteristic zero. Let f : X→Y be
a proper dominant morphism of smooth and geometrically integral varieties
over k. Assume that the generic fibre Xη is birationally equivalent to a k(Y )-
torsor for a simply connected semisimple group over k(Y ). Then for any point
y ∈ Y of codimension 1, the fibre Xy is split.

Proof. Write κ = k(y). The local ring Oy of Y at y is a discrete valuation ring
with residue field κ. Let π ∈ Oy be a uniformiser. Since k has characteristic
zero, there is an isomorphism of discrete valuation rings and of k-algebras
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between the completion of Oy and the discrete valuation ring κ[[t]], sending
π to t. Let κ ⊂ L be a field extension as in Lemma 7.1.9. As cd(L) ≤ 1, by
Theorem 9.2.2 (Bruhat–Tits) any torsor for a simply connected semisimple
group over L((t)) has an L((t))-point. The generic fibre Xη of the morphism
f : X→Y is a proper variety over k(η) = k(Y ) birationally equivalent to
such a torsor. By the lemma of Lang and Nishimura [CTCS80, Lemme 3.1.1],
[Po18, Thm. 3.6.4], Xη has an L((t))-point. The local extension of discrete
valuation rings Oy ⊂ L[[t]] satisfies the conditions of Theorem 10.1.14, so by
this theorem the fibre Xy is split. �

Remark 10.1.16 Using the result mentioned in Remark 7.1.10, a similar
argument gives the following statement [CT08b, Thm. 2.2]: Let k be a field of
characteristic zero. Let f : X→Y be a proper dominant morphism of smooth
and geometrically integral varieties over k. Assume that the generic fibre Xη

is k(Y )-birationally equivalent to a smooth hypersurface of degree d in Pnk(Y ),

n ≥ d2. Then for every point y ∈ Y of codimension 1, the fibre Xy is split.

Let us give an example (taken from [LS18]) when one can determine if the
closed fibre is split using only the information about the birational equivalence
class of the generic fibre without constructing an explicit model.

Proposition 10.1.17 Let k be a field of characteristic zero. Let k1, . . . , kn
be finite field extensions of k, and let m1, . . . ,mn be positive integers such
that

g.c.d.
(
m1, . . . ,mn

)
= 1.

Let m be an integer and let X be the affine k((t))-variety defined by the
equation

n∏
i=1

Nki/k(xi)
mi = tm, (10.6)

in the k((t))-torus (
∏n
i=1Rki/kGm) ×k k((t)). Let X be a regular connected

scheme equipped with a proper morphism X→Spec(k[[t]]) whose generic fibre
is smooth, geometrically integral, and contains X as an open subscheme. Then
the closed fibre Xk is split if and only if r|m, where

r = g.c.d.
(
m1[k1 : k], . . . ,mn[kn : k]

)
.

Proof. Equation (10.6) with right-hand side replaced by 1 defines a k-torus.
Hence X is a k((t))-torsor for this torus; in particular, it is geometrically
integral.

If r|m we can write m = s1m1[k1 : k] + . . . + snmn[kn : k] for some
si ∈ Z. Then xi = tsi , for i = 1, . . . , n, is a k((t))-point of X. By the
valuative criterion of properness, it gives rise to a section of X→Spec(k[[t]]).
By Corollary 10.1.9 the closed fibre Xk is split.

Conversely, assume that Xk is split, so that Xk has a geometrically irre-
ducible component C of multiplicity 1. Let OC be the local ring of C in X .
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This a discrete valuation ring with field of fractions k((t))(X) and residue

field k(C). Let A = ÔC be the completion of OC . This is also a discrete val-
uation ring with residue field k(C). Let K be the field of fractions of A and
let v : K∗→Z be the valuation. Then k[[t]] ⊂ A is an unramified extension
of complete discrete valuation rings, so v(t) = 1. In fact, A is isomorphic
to k(C)[[t]]. Since C is geometrically irreducible, k is algebraically closed in
k(C), hence also in K.

The generic fibre X has a canonical k((t))(X)-point Q defined by the
generic point of X. This point is contained in the affine open subset given by
(10.6). Since k((t))(X) ⊂ K, we can think of Q as a K-point of X. Suppose
that Q has coordinates (xi), where xi ∈ K ⊗k ki for i = 1, . . . , n. Since k is
algebraically closed in K, the k-algebra Ki = K ⊗k ki is a field, hence Ki is
a complete discretely valued field which is an unramified extension of K of
degree [ki : k]. This implies that v(NKi/K(xi)) = si[ki : k] for some si ∈ Z.
But then (10.6) gives that m = s1m1[k1 : k] + . . . + snmn[kn : k], so we are
done. �

Split fibres naturally arise in applications to number-theoretic questions.
The following general theorem [Den19] includes many classical results, in
particular the Ax–Kochen–Ershov theorem.

Theorem 10.1.18 (J. Denef) Let f : X→Y be a proper dominant mor-
phism of smooth, projective, geometrically integral varieties over a number
field k with geometrically integral generic fibre. Assume that for any discrete
valuation ring R of the function field k(Y ) with k ⊂ R the generic fibre of
f has a regular proper model over Spec(R) with split closed fibre. Then for
almost all places v of k the induced map X(kv)→Y (kv) is surjective.

For motivation, proof and generalisations, see [CT08b] and [LSS20].
We refer to [CT11] for further discussion and applications of the type of

results discussed in this section.

10.2 Quadrics over a discrete valuation ring

Varieties fibred into quadrics are a natural testing ground in at least two
contexts: problems of rationality of complex varieties, and problems of ex-
istence of rational points on varieties over number fields. In both contexts,
computation of the Brauer group of the total space of a family of quadrics
plays an important rôle, as we shall see in Chapters 11 and 12 for varieties
over C and in Chapter 14 for rational points. This is usually reduced to a
local computation, namely the computation of the Brauer group of the total
space of a regular proper scheme over a discrete valuation ring and the way
it depends on the structure of the closed fibre.
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In this section R is a discrete valuation ring with fraction field K. Let
m ⊂ R be the maximal ideal and let k = R/m be the residue field. Any
generator of m is called a uniformiser. We assume that char(k) 6= 2, hence
also that char(K) 6= 2. For a ∈ R we denote by ā ∈ k the reduction of a
modulo m.

Let us recall a standard reduction. By a linear change of variables, any non-
degenerate quadratic form φ in n+1 variables over the field K can be written
in diagonal form

∑n
i=0 aix

2
i , where ai ∈ K∗ for i = 0, . . . , n. Multiplying the

equation by an element of K∗ and multiplying each xi by an element of K∗

does not change the isomorphism class of the smooth quadric Q ⊂ PnK defined
by φ = 0. Thus without loss of generality one can assume that φ is

∑n
i=0 aix

2
i ,

where a0 = 1, and for i = 1, . . . , n the valuation of ai ∈ K∗ is 0 or 1, and,
moreover, at least a half of the coefficients ai have valuation 0.

10.2.1 Conics

Lemma 10.2.1 Any smooth conic over K has a regular model which is the
closed subscheme of P2

R given either by an equation

x2 − ay2 − bz2 = 0 (type I)

with a, b ∈ R∗, or by an equation

x2 − ay2 − πz2 = 0, (type II)

where a ∈ R∗, π is a uniformiser, and ā is not a square in k.

Proof. In view of the standard reduction described above, we only need to
explain why a conic over K given by x2−ay2−πz2 = 0, where a ∈ R∗ and ā
is a square in k∗, has a model of type (I). The equation can be rewritten as

x2 − (b2 + πc)y2 − πz2 = 0

with b ∈ R∗ and c ∈ R. This is easily transformed into

x2 − (1 + πd)y2 − πz2 = 0

with d ∈ R. The linear change of variables x = y + πu gives

π2u2 + 2πuy − πdy2 − πz2 = 0.

Dividing by π we obtain

πu2 + 2uy − dy2 − z2 = 0.
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Since 1 + πd ∈ R∗, we can diagonalise this equation and obtain a diagonal
quadratic form of type (I). �

Proposition 10.2.2 Let W→Spec(R) be a proper flat morphism such that
W is regular and connected, and the generic fibre of W→Spec(R) is a smooth
conic over K. Then the natural map Br(R)→Br(W ) is surjective.

Proof. Let X be the generic fibre of W→Spec(R) and let X→Spec(R) be the
integral model of X given above. By a special case of Proposition 3.7.10 that
only involves purity for regular 2-dimensional schemes (which has been known
for some time, see [Gro68, II, Prop. 2.3]), there is an isomorphism Br(W ) '
Br(X ) compatible with the maps Br(R)→Br(W ) and Br(R)→Br(X ).

Thus we can assume that W = X as above. The conic X over K is a
Severi–Brauer variety of dimension 1. The exact sequence (7.3) shows that
the map Br(K)→Br(X) is surjective. Since char(K) 6= 2, the kernel of this
map is spanned by the class of the quaternion algebra (a, b)K in case (I) and
(a, π)K in case (II).

Choose any β ∈ Br(X ). Let βX be the image of β under the injective map
Br(X )→Br(X). Let α ∈ Br(K) be any element mapping to βX . Consider the
exact sequence

0 −→ Br(R) −→ Br(K)
∂R−→ H1(k,Q/Z)

from Theorem 3.6.1 (i). Comparing residues on Spec(R) and on X using
Theorem 3.7.5 one shows that either ∂R(α) = 0, or ∂R(α) is the non-trivial
class in H1(k(

√
ā)/k,Z/2), and this last possibility can occur only in case

(II). If ∂R(α) = 0, then α ∈ Br(R), hence the images of α and β in Br(X)
coincide, thus they also coincide in Br(X ) since X is regular. If ∂R(α) 6= 0,
we have

∂R(α) = ∂R((a, π)K)

hence α = (a, π)K + γ, where γ ∈ Br(R). We then get

β = (a, π)K(X) + γK(X) ∈ Br(K(X)).

But (a, π)K(X) = 0. Thus β − γX ∈ Br(X ) ⊂ Br(K(X)) vanishes, hence
β = γX ∈ Br(X ). The map Br(R)→Br(X ) is thus surjective. This proves the
statement for X , and hence also for W . �

Corollary 10.2.3 In the notation of Proposition 10.2.2 let Z be a closed sub-
scheme of the closed fibre of W→Spec(R). Then the image of the restriction
map Br(W )→Br(Z) is contained in the image of Br(k)→Br(Z).
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10.2.2 Quadric surfaces

References for this section are [Sko90], [CTS93, §3], [CTS94, Thm. 2.3.1],
[Pir18, Thm. 3.17] and [CT18].

We write a diagonal quadratic form
∑n
i=0 aix

2
i over K as 〈a0, . . . , an〉.

Let q be a quadratic form of rank 4 over K. By a linear change of variables
and multiplication of q by an element of K∗ we can reduce q to one of the
following forms:

(I) q = 〈1,−a,−b, abd〉, where a, b, d ∈ R∗.
(II) q = 〈1,−a,−b, π〉, where a, b ∈ R∗ and π ∈ R is a uniformiser.

(III) q = 〈1,−a,−π, πb〉, where a, b ∈ R∗ and π ∈ R is a uniformiser.

Proposition 10.2.4 Let X ⊂ P3
K be a smooth quadric, defined by a diagonal

quadratic form of rank 4 over K as in (I), (II) or (III) above. Let W be a
proper, regular, integral scheme over R whose generic fibre is isomorphic
to X. Then we have the following statements.

In case (I) the map Br(R)→Br(W ) is surjective. If d ∈ R is not a square,
this map is an isomorphism. If d is a square, the kernel is spanned by the
class (a, b) ∈ Br(R).

In case (II) the map Br(R)→Br(W ) is an isomorphism.
In case (III), if either ā or b̄ is a square in k, or if ā · b̄ is not a square in

k, then Br(R)→Br(W ) is surjective. Any element of Br(K) whose image in
Br(X) lies in Br(W ) belongs to Br(R).

In case (III), if ā · b̄ is a square in k, then the image of (a, π) ∈ Br(K) in
Br(X) belongs to Br(W ) and spans the cokernel of the map Br(R)→Br(W ).

The cokernel of Br(R)→Br(W ) is non-zero if and only if ab is not a square
in K, ā · b̄ is a square in k but neither ā nor b̄ is a square in k.

Proof. By [Har77, Prop. III.9.7], the morphism f : W→Spec(R) is flat; since
f is projective, it is also surjective. Each fibre of f has dimension 2 at every
point. Let W0 = W ×R k be the closed fibre of f . Each irreducible component
D of W0 of multiplicity e = eD gives rise to a commutative diagram of
complexes

0 // Br(W ) // Br(X)
∂D // H1(k(D),Q/Z)

0 // Br(R) //

OO

Br(K)
∂ //

OO

H1(k,Q/Z)

e resk(D)/k

OO

In the top sequence the map Br(W )→Br(X) is injective since W is regular.
The bottom sequence is the exact sequence given by Theorem 3.6.1 (ii). The
right-hand vertical arrow is the restriction map followed by multiplication by
e (by the functoriality of residues, see Theorem 3.7.5). Since X is a smooth
quadric over K, the middle vertical map is surjective by Proposition 7.2.4 (a),
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and it is an isomorphism unless ab is a square in K, in which case the kernel
is of order at most 2 spanned by the class of the quaternion algebra (a, π).

We can obtain information about the structure of W0 by considering the
closed subscheme X ⊂ P3

R given by q = 0 and examining its closed fibre X0.
We note that X is integral and the morphism X→Spec(R) is flat.

In case (I) the morphism X→Spec(R) is smooth, and in case (II) the
scheme X is regular and X0 is a cone over a smooth conic. In both cases X0

is split, hence W0 is also split by Proposition 10.1.12. Thus we can find a
geometrically irreducible component D ⊂W0 of multiplicity e = 1. Then the
map H1(k,Q/Z)→H1(k(D),Q/Z) is injective (see Lemma 11.1.2). From the
diagram we get surjectivity of Br(R)→Br(W ) in these cases, and computation
of the kernel follows from Proposition 7.2.4 (c).

Let us now consider case (III).
In case (III) the closed fibre X0 ⊂ P3

k is given by the equation x2− āy2 = 0.
If ā is a square, this is the union of two planes intersecting along the line
x = y = 0, in particular, X0 is split. If ā is not a square, X0 is an integral
scheme which splits up over k(

√
a) as a union of two planes. In each case the

scheme X is singular at the points of X0 given by x = y = z2 − b̄t2 = 0. (See
[Sko90, §2].)

Let β ∈ Br(W ). Its image under Br(W ) ↪→ Br(X) is the image of some
element α ∈ Br(K), which is uniquely defined if ab is not a square, and is
defined up to addition of (a, π) is ab is a square.

If ā is a square, then intersecting one of the two irreducible components of
x2− āy2 = 0 with the smooth locus Xsmooth of the morphism X→Spec(R) we
obtain a geometrically irreducible component of multiplicity 1 of the closed
fibre of Xsmooth→Spec(R). By Proposition 10.1.12, this implies that W0 is
split, so has a geometrically irreducible component D of multiplicity 1. By
the above diagram and Lemma 11.1.2 we have ∂(α) = 0, hence α ∈ Br(R).
If b̄ is a square, we consider the quadratic form q′ = 〈1,−b,−π, πa〉 and
the subscheme X ′ ⊂ P3

R given by q′ = 0. Since X ⊂ P3
K can also be given

by q′ = 0, the generic fibre of X ′→Spec(R) is isomorphic to X. The same
argument as above then gives that α ∈ Br(R).

Now assume that neither ā nor b̄ is a square. Then X0 is the integral
subscheme of P3

k given by x2− āy2 = 0. Applying Proposition 10.1.12 we find
an irreducible component D ⊂ W0 of multiplicity 1 such that the integral
closure of k in k(D) is contained in k(

√
ā). Using Lemma 11.1.2 we see that

∂(α) goes to zero in H1(k(
√
ā),Q/Z), so ∂(α) is contained in the image of

the Z/2-module generated by the class of ā in k∗/k∗2 under the natural
map H1(k,Z/2)→H1(k,Q/Z). Applying this argument to the model given by
q′ = 0 we obtain the same statement with ā replaced by b̄. If ā · b̄ is not a
square, we conclude that ∂(α) = 0, proving that α ∈ Br(R). In all of these
cases, we conclude that the map Br(R)→Br(W ) is onto.

For the rest of the proof we assume that ā · b̄ is a square but neither ā nor
b̄ is a square.
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From the above argument we know that α ∈ Br(R) or α+ (a, π) ∈ Br(R).
Let us show that (a, π) has trivial residues on W . We actually prove the
triviality of residues of (a, π) with respect to any discrete valuation v of the
function field K(X) of X. It is enough to consider only those v which extend
the valuation of K defined by R. In K(X) we have

x2 − ay2 = π(z2 − b),

where both sides are non-zero. Thus in Br(K(X)) we have the equality

(a, π) = (a, x2 − ay2) + (a, z2 − b) = (a, z2 − b),

since (a, x2 − ay2) = 0 by Proposition 1.1.8. To compute residues, we can

go over to the field extension K̂ ⊂ K̂(X), where K̂ is the completion of K

and K̂(X) is the completion of K(X) defined by v. We have ab ∈ K̂∗2, hence

ab ∈ K̂(X)
∗2

. But then in Br(K̂(X)) we have (a, z2 − b) = (b, z2 − b) = 0.
Hence the residue of (a, π) at v is zero.

We now invoke purity for the Brauer group of the regular scheme W , see
Theorem 3.7.6. (The earlier Theorem 3.7.2 is enough for our purposes here
since we assume that 2 invertible in R and we are only concerned with the 2-
torsion in the Brauer group.) We conclude that the image of (a, π) ∈ Br(K) in
Br(X) belongs to Br(W ) ⊂ Br(X) and generates the quotient Br(W )/Br(R).

If ab is a square in K, then the homogeneous equation of the quadric X is

x2 − ay2 − πz2 + aπt2 = 0.

Proposition 1.1.8 implies that the image of (a, π) in Br(X) is zero, hence the
image of (a, π) in Br(W ) ⊂ Br(X) is zero. In this case Br(R)→Br(W ) is onto.

If ab is not a square in K, then Br(K)→Br(X) is an isomorphism by
Proposition 7.2.4 (c′). Suppose that the image of (a, π) comes from some
α ∈ Br(R). Then α = (a, π) ∈ Br(K), which is absurd because ∂((a, π)) 6= 0
as ā is not a square. Hence in this case Br(R)→Br(W ) is not surjective. �

The following statement is a stronger version of Corollary 1.4.9 in the
situation considered here.

Corollary 10.2.5 In the notation of Proposition 10.2.4 let Z be a closed sub-
scheme of the closed fibre of W→Spec(R). Then the image of the restriction
map Br(W )→Br(Z) is contained in the image of Br(k)→Br(Z).

Proof. To prove the result, we may assume that R is henselian. Then the map
Br(R)→Br(W ) is surjective, as follows from Proposition 10.2.4. �
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10.3 Schemes of dimension 2 over a henselian local ring

Let D be a central simple algebra over a field F . Let ind(D) be the index of D,
that is, the square root of the dimension of the division algebra representing
the class [D] ∈ Br(F ). The index ind(D) can be also characterised as the
smallest degree of a field extension of F that splits D. Let exp(D) be the
exponent of D, that is, the order of [D] in Br(F ). The following facts were
established in the 1930s by Brauer, Albert and others, see [Alb31].

• exp(D) divides ind(D); moreover, the primes which divide exp(D) are
the same as the primes which divide ind(D).
• Let F be a number field or a p-adic field. Every central division algebra
D over F of exponent exp(D) = n is cyclic of degree n, hence is split by
a cyclic extension of F of degree n. In particular, ind(D) = exp(D).
• If F is a number field and D splits over each completion of F , then D

splits over F (the Albert–Brauer–Hasse–Noether theorem).
• Every central simple algebra over the function field of a curve over C is

split (Tsen’s theorem).

Such properties have applications to quadratic forms over F : the local-to-
global principle for a quadratic form to be isotropic (i.e., to have the zero
value on some non-zero vector) and the determination of the u-invariant of
F (the maximum dimension of an anisotropic quadratic form over F ).

One may wonder whether similar properties hold for other ‘arithmetic
fields’. Among the first examples one can think of are field extensions of C
of transcendence degree 2. In this case the equality of index and exponent
was established relatively recently by de Jong [deJ04]. One may also consider
more local situations, such as function fields in one variable over C((t)) or
the purely local situation, that is, finite extensions of C((x, y)). Further up
the cohomological dimension are function fields of curves over a p-adic field.
As early as 1970, Lichtenbaum [Lic69], using Tate’s duality theorems for
abelian varieties over a p-adic field, established a local-to-global principle in
this context. Later, Saltman showed that over such a field the index divides
the square of the exponent [Sal97].

We shall explain some of these results. Our starting point is the following
theorem, which is a more general version of a theorem of Artin about families
of curves over a henselian discrete valuation ring (written up by Grothendieck
[Gro68, III, Thm. 3.1]).

Theorem 10.3.1 Let R be a noetherian henselian local ring with residue
field k. Let X be a regular scheme of dimension 2 equipped with a proper
morphism X→Spec(R) whose closed fibre X0 has dimension 1. Then we have
the following statements.

(i) The natural map Br(X)→Br(X0) is an isomorphism.
(ii) If k is separably closed or finite, then Br(X) = 0.
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Proof. For statement (i) see [CTOP02, Thm. 1.8]. Statement (ii) then follows
from Theorem 5.6.1 (iv) and (v). �

Remark 10.3.2 (1) For ` invertible in k, the `-primary part of this theo-
rem is relatively easy to prove using the Kummer exact sequence [CTOP02,
Thm. 1.3].

(2) When R is a discrete valuation ring, Theorem 10.3.1 removes the ex-
cellence hypothesis in Artin’s theorem [Gro68, III, Thm. 3.1].

(3) The following two situations are of particular interest.

• The “semi-global” case: R is a henselian discrete valuation ring, X is in-
tegral, and the generic fibre of X→Spec(R) is smooth and geometrically
integral. This is the case considered in [Gro68, III, §3], with the addi-
tional hypothesis that the discrete valuation ring is excellent (used only
to handle the p-torsion part of the theorem, where p = char(k)).
• The “local” case: R is a 2-dimensional, noetherian, henselian local domain

and the morphism X→Spec(R) is birational. Then X is a resolution of
singularities of Spec(R). If R is excellent, such a desingularisation always
exists (Hironaka, Abhyankar, Lipman [Lip78], see [Stacks, Thm. 0BGP]).

In the ‘semi-global’ case, we have the following theorem.

Theorem 10.3.3 Let R be an excellent henselian discrete valuation ring
with residue field k and fraction field K. Let F be the function field of a
smooth, projective, connected curve over K. Let D be a central division alge-
bra over F .

(i) If k is algebraically closed of characteristic zero, then ind(D) = exp(D).
The algebra D is cyclic of degree n = exp(D). It is split by a field exten-
sion F ( n

√
f) for some f ∈ F ∗.

(ii) If k is a finite field, then ind(D)|exp(D)2.

Proof. Let us prove (i). This is a very slight variation on the proof of [CTOP02,
Thm. 2.1], which is Theorem 10.3.5 below. We fix an isomorphism Z/n ' µn.

By [Lip78], [Stacks, Thm. 0BGP] there exists a regular, projective, integral
model X→Spec(R) of the smooth, projective curve over K with function field
F . Then X is flat over R. The purity theorem gives an exact sequence (3.20):

0 −→ Br(X) −→ Br(F )
{∂x}−→ ⊕x∈X(1)H1(κ(x),Q/Z).

By Theorem 10.3.1 (ii), we have Br(X) = 0. Thus the total Gysin residue is
an injective map

Br(F ) ↪→ ⊕x∈X(1)H1(κ(x),Q/Z).

Let n = exp(D) and let ξ ∈ Br(F )[n] be the class of D. Let ∆ be the sum of
the closures of codimension 1 points of X where ξ has a non-zero residue. By
blowing up X we can assume that ∆ is a strict normal crossing divisor [Liu10,
Ch. 9, Thm. 2.26]. Since dim(X) = 2, the singular locus ∆sing is a union of

https://stacks.math.columbia.edu/tag/0BGP
https://stacks.math.columbia.edu/tag/0BGP
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closed points; these are the points where any two of the components meet.
Replace X by its blow up in ∆sing, write C for the strict transform of ∆ and
write E for the exceptional divisor. Thus D is unramified over Xr(C+E) and
both C and E are (not necessarily connected) regular curves in X without
common component, such that C + E has normal crossings. If C + E = 0,
i.e., if ξ is unramified on X, then ξ = 0 and the theorem is clear. We thus
assume that C + E 6= 0.

Let S be a finite set of closed points of X including all points of intersection
of C and E and at least one point of each component of C + E. Since X is
projective over Spec(R), there exists an affine open subset U ⊂ X containing
S. The semilocalisation of U at S is a semilocal regular domain, hence a
unique factorisation domain. Thus there exists an f ∈ F ∗ such that the
divisor of f on X is of the form divX(f) = C + E + G, where the support
of G does not contain any point of S, hence in particular has no common
component with C + E. Let L/F be the splitting field of the polynomial
Tn − f . At the generic point of each component of C + E, the extension
L/F is totally ramified of degree n. In particular, L/F is a field extension of
degree n. Let ξL be the image of ξ under the restriction map Br(F )→Br(L).
To prove (i) it suffices to show that ξL = 0.

Let X ′ be the normalisation of X in L and let π : Y→X ′ be a projective
birational morphism such that Y is regular. Let B be the integral closure
of R in L. The ring B is a henselian discrete valuation ring with the same
algebraically closed residue field k as R. By the universal property of nor-
malisation, the composition X ′→X→Spec(R) factors through a projective
morphism X ′→Spec(B) [Stacks, Lemma 0C4Q], hence induces a projective
morphism Y→Spec(B). By Theorem 10.3.1 (ii), we have Br(Y ) = 0. Just as
above, the total Gysin residue map on Y defines an injective map

Br(L) ↪→
⊕
y∈Y (1)

H1(κ(y),Q/Z).

It is thus enough to show that ξL is unramified on Y . Let y ∈ Y be a
codimension 1 point. We show that ∂y(ξL) = 0. Let x ∈ X be the image of y
under the map Y→X ′→X.

Suppose first that codim(x) = 1. If {x} is not a component of C + E,
then ∂x(ξ) = 0, hence, by Proposition 1.4.7, we have ∂y(ξL) = 0. Suppose

that D = {x} is a component of C + E. Then f is a uniformiser of the
discrete valuation ring OX,x. The extension L/F is totally ramified at x.
The restriction map Br(F )→Br(L) induces multiplication by the ramification
index on the character groups of the residue fields (Proposition 1.4.7). Hence
ξL is unramified at y.

Suppose now that codim(x) = 2. Note that x is in the closed fibre, hence
the residue field κ(x) = k, which is algebraically closed. If x /∈ C + E, then
ξ ∈ Br(OX,x), hence ξL is unramified at y. If x is a regular point of C+E, then
without loss of generality we can assume that x is in C but not in E (indeed,

https://stacks.math.columbia.edu/tag/0C4Q
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here the rôles of E and C are interchangeable). Let C0 be the irreducible
component of C that contains x, and let V ⊂ C0 be the complement to the
intersection of C0 with E. Then x ∈ V . Let π ∈ OX,x be a local equation of C
at x. (This is also a local equation of V at x.) By the exact sequence (3.15) and
Theorem 3.7.3, the residue ∂π(ξ) ∈ κ(C0)∗/κ(C0)∗n comes from an element
of H1(V,Z/n). Since C is regular, we can choose a δ ∈ OX,x such that (π, δ)
is a regular system of parameters of OX,x. As ∂π(ξ) comes from an element
of H1(V,Z/n), it goes to zero under the map κ(C0)∗/κ(C0)∗n→Z/n induced
by the valuation defined by x on the field κ(C0), which is the fraction field
of the discrete valuation ring OX,x/(π). Thus ∂π(ξ) is the class of a unit of
OX,x/(π), and such a unit lifts to a unit µ ∈ O∗X,x. Using (1.18) (via Theorems
1.4.14 and 2.3.5), we obtain that the residues of ξ − (µ, π) at all points of
codimension one of OX,x are trivial. Since OX,x is a regular two-dimensional
ring, this implies that ξ−(µ, π) is the class of an element η ∈ Br(OX,x). Now,
again using (1.18) (together with Theorems 1.4.14 and 2.3.5), we obtain

∂y(ξL) = ∂L((µ, π)) = µ−vy(π) mod κ(y)∗n ,

where κ(y) is the residue field of y and µ is the class of µ in κ(y). This class
comes from κ(x) = k, which is algebraically closed, therefore µ is an n-th
power and ∂y(ξL) = 0.

Suppose now that x belongs to C ∩ E. There exists a regular system of
parameters (π, δ) defining (C,E) such that f = uπδ, where u ∈ O∗X,x. Since
the ramification of ξ on Spec(OX,x) is only along π and δ, it can be shown
that

ξ = η + (π, µ1) + (δ, µ2) + r(π, δ) ,

for some η ∈ Br(OX,x), where µ1, µ2 ∈ O∗X,x and r ∈ Z. (This uses a Bloch–
Ogus argument similar to the one used in the proof of Theorem 11.3.9, see
[CTOP02] for details.) Since f = uπδ, taking into account that (π,−π) = 0
(see the end of Section 1.3.4), we get

(π, δ) = (π, fu−1π−1) = (π, f) + (π,−u−1) .

The symbol (π, f) vanishes over L and the other symbols become unramified
at y, since any unit in O∗X,x induces an n-power in the algebraically closed
residue field k.

For the proof of (ii) in the case when the index is coprime to the residual
characteristic we refer to [Sal97] (see also the review Zentralblatt 0902.16021).
This restriction was recently lifted by Parimala and Suresh [PS14]. �.

Remark 10.3.4 The technique used in the proof is essentially the technique
of [FS89] and [Sal97]. For function fields of curves over the field of fractions
K of a complete discrete valuation ring R with arbitrary residue field k, Har-
bater, Hartmann and Krashen introduced a new, patching technique which
among other things gives bounds [HHK09, Thm. 5.5] for the index in terms



250 10 Schemes over local rings and fields

of similar bounds for the field K and for the function fields of curves over the
residue field k.

Here is a ‘local’ analogue of Theorem 10.3.3.

Theorem 10.3.5 Let R be a 2-dimensional henselian local, normal, excellent
domain with fraction field F and residue field k. Let D be a central division
algebra over F . Then we have the following statements.

(i) If k is separably closed and exp(D) is not divisible by char(k), then
ind(D) = exp(D). Moreover, D is cyclic.

(ii) If k is a finite field and exp(D) is not divisible by char(k), then we have
ind(D)|exp(D)2.

Proof. For (i) see [FS89, Thm. 1.6], [CTOP02, Thm. 2.1]. For (ii) see [Hu13,
Thm. 3.4]. �

Lemma 10.3.6 Let R be a discrete valuation ring with fraction field K.
Let R̂ be the completion of R and let K̂ be the fraction field of R̂. If the
image of α ∈ Br(K) in Br(K̂) lies in Br(R̂) ⊂ Br(K̂), then α belongs to
Br(R) ⊂ Br(K).

Proof. There exists a positive integer n and elements x1 ∈ H1(K,PGLn) and

x2 ∈ H1(R̂,PGLn), with the same image in H1(K̂,PGLn), such that the
injective map H1(K,PGLn)→Br(K) sends x1 to α. There is an embedding
of reductive group R-schemes PGLn,R ↪→ GLN,R for some N . Then E =
GLN,R/PGLn,R is a smooth affine R-scheme. We have an exact sequence of
pointed sets [SerCG, Ch. 1, §5, Prop. 36]

E(K) −→ H1(K,PGLn) −→ H1(K,GLN ),

and a similar sequence for R̂ in place of K. By Hilbert’s theorem 90 we have
H1(K,GLN ) = 0 (Theorem 1.3.1), so we can lift x1 to a point y1 ∈ E(K).
It is known that H1(A,GLN ) = 0 for any local ring A, cf. [Mil80, Lemma

III.4.10], hence we can lift x2 to a point y2 ∈ E(R̂). There exists an element

g ∈ GLN (K̂) such that gy1 = y2. As GLN is an open subset of an affine

space, any element g ∈ GLN (K̂) can be written as a product g2g1 where

g1 ∈ GLN (K) and g2 ∈ GLN (R̂). Then g1y1 = g−1
2 y2 is an element of E(K̂)

contained in E(K) ∩ E(R̂) = E(R). This implies that α ∈ Br(R). �

For a more general statement, see [CTPS12, Lemma 4.1].

Theorem 10.3.7 Let R be a noetherian henselian local domain with residue
field k. Let X be an integral regular scheme of dimension 2 equipped with a
proper morphism X→Spec(R) whose closed fibre X0 is of dimension 1. Let
F be the function field of X. Let ΩX be the set of rank 1 valuations v on F
associated to codimension 1 points on X. Let Fv denote the completion of F
with respect to v. Then the natural restriction map Br(F )→

∏
v∈ΩX Br(Fv)

is injective.
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Proof. Since α ∈ Br(F ) goes to zero in each Br(Fv) for v attached to the points
of codimension 1 of the regular scheme X, by Lemma 10.3.6 (via a patching
argument) α can be represented by an Azumaya algebra over an open set
U ⊂ X which contains all codimension 1 points of X. Since X is regular
and 2-dimensional, by a theorem of Auslander, Goldman and Grothendieck
[Gro68, II, §2, Thm. 2.1] there exists an Azumaya algebra over X whose class
in Br(F ) is α. We thus have α ∈ Br(X) ⊂ Br(F ).

An irreducible component C of the curve X0 defines a valuation v ∈ ΩX .
The image of α in Br(Fv) belongs to the subgroup Br(Ov) ⊂ Br(Fv), where
Ov is the ring of integers of the complete field Fv. By assumption, this image
is zero. Thus the image of α in the Brauer group of the function field of C is
zero.

Now let P be a closed point of X0. Since X is regular, there exists a closed
integral curve D ⊂ X through P which is regular at P . Arguing as above,
we see that the value of α at the generic point of D is zero. This implies that
the restriction of α to the local ring of P on D is zero, hence α(P ) = 0. We
now apply Proposition 5.6.1 (i) to conclude that the image of α in Br(X0) is
zero. Now Theorem 10.3.1 implies that α = 0. �

Remark 10.3.8 (1) The above proof is essentially given by Y. Hu in [Hu12,
§3]. It extends proofs in [CTOP02].

(2) For R complete, in the semi-global case, a different proof of Theorem
10.3.7 is given in [CTPS12, Thm. 4.3]. This proof relies on [HHK09].

(3) There exist examples of R, X and F as above such that the map

H1(F,Q/Z) −→
∏
v∈ΩX

H1(Fv,Q/Z)

has a non-trivial kernel. See [CTPS12, §6].
(4) Let D be a central simple algebra over a field F . The relation between

ind(D) and exp(D) over specific fields F has been the object of much study.
Suppose F = C(X) is the function field of an integral algebraic variety X
of dimension d over C. It would be interesting to know if ind(D)|exp(D)d−1

for any D over F , which is the best possible bound [CT02]. The case d = 1
is Tsen’s theorem. The case d = 2 is a theorem of de Jong [deJ04], [CT06].
For more work on the comparison of index and exponent over various fields
of geometric or arithmetic origin, see [Lie08, Lie11, Lie15], [KL08], [HHK09]
and [AAI+].

The following theorem combines [CTPS16, Prop. 2.10] and work of
Izquierdo [Izq19].

Theorem 10.3.9 Let R be a 2-dimensional, normal, excellent, henselian lo-
cal domain with algebraically closed residue field k of characteristic zero. Let
K be the fraction field of R. Let X→Spec(R) be a resolution of singularities
such that the reduced divisor associated to the closed fibre Y/k is a divisor



252 10 Schemes over local rings and fields

on X with strict normal crossings. For each place v of K, let Kv be the
completion of K at v. Then we have the following statements.

(i) There is an exact sequence

0 −→ Br(K) −→
⊕

v∈X(1)

H1(k(x),Q/Z) −→
⊕

x∈X(2)

(Q/Z)(−1) −→ 0.

(ii) For each v ∈ R(1) there are isomorphisms

Br(Kv)
∼−→ H1(k(v),Q/Z)

∼−→ (Q/Z)(−1).

(iii) The sum of these maps for all v ∈ R(1) fits into an exact sequence

Br(K) −→ ⊕v∈R(1)Br(Kv) −→ (Q/Z)(−1) −→ 0,

(iv) If R is regular, then the map Br(K)→⊕v∈R(1) Br(Kv) is injective. As-
sume that Y is a curve. Let Γ be the graph associated to the reduced
divisor Yred whose vertices correspond to the irreducible components of
Yred and the edges correspond to the intersection points of components.
This graph is connected. Let nv be the number of vertices and let ne be
the number of edges. Let c = ne − nv + 1 be the Betti number of Γ . Let
mY = c+ 2

∑
y∈Y (1) gy, where gy is the genus of the smooth, irreducible,

projective curve defined by y. Then we have

Ker[Br(K)→⊕v∈R(1) Br(Kv)] ∼= (Q/Z)mY .

(v) We have Br(X) ∼= (Q/Z)mY .

Statements (iv) and (v) are due to Izquierdo. Statement (iv) is important,
it is one of the building blocks for the Poitou–Tate duality theorems which
Izquierdo establishes for finite commutative groups and for tori over K, with
respect to just the completions at the points of codimension 1 of Spec(R).

10.4 Smooth proper schemes over a henselian discrete
valuation ring

The content of the present section was developed in [CTS13a].
Let R be a henselian discrete valuation ring with field of fractions K and

residue field k. We assume that char(K) = 0 and that k is perfect. Let K
be an algebraic closure of K, and let Knr ⊂ K be the maximal unramified
extension of K. Let Rnr be the ring of integers of Knr. Let

g = Gal(K/K), G = Gal(Knr/K), I = Gal(K/Knr).
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The valuation of K gives rise to a split exact sequence of G-modules

1 −→ R∗nr −→ K∗nr −→ Z −→ 0.

We have Br(Knr) = 0 (Theorem 1.2.15), which implies H2(G,K∗nr)
∼= Br(K).

Let π : X→Spec(R) be a faithfully flat proper morphism of integral
schemes with geometrically integral generic fibre X = X ×R K. In partic-
ular, π is of finite type, but since R is noetherian, π is of finite presentation.
If π is also assumed to be smooth, then by [Stacks, Lemma 0E0N] (a con-
sequence of Stein factorisation) all fibres are geometrically connected, hence
geometrically integral. Write

Xnr = X ×K Knr, Xnr = X ×R Rnr, X = X ×K K.

Lemma 10.4.1 If the proper R-scheme X is smooth over R, then the fol-
lowing natural map is surjective:

Br(K)⊕Ker[Br(X )→Br(Xnr)] −→ Ker[Br(X)→Br(Xnr)].

Proof. The map is well defined since Br(Knr) = 0, so that the composition
Br(K)→Br(X)→Br(Xnr) is zero.

The restriction map Pic(Xnr)→Pic(Xnr) is surjective since Xnr is regular.
The kernel of this map is generated by the classes of components of the
closed fibre of Xnr→Spec(R). The closed fibre is a principal divisor in Xnr.
Since we assume that it is integral, the restriction map gives an isomorphism
of G-modules

Pic(Xnr)
∼−→ Pic(Xnr). (10.7)

There is a Hochschild–Serre spectral sequence attached to the morphism
Xnr→X :

Epq2 = Hp(G,Hq
ét(Xnr,Gm))⇒ Hp+q

ét (X ,Gm),

and a similar sequence attached to Xnr→X, see [Mil80, Thm. III.2.20, Re-
mark III.2.21 (b)]. By functoriality the maps in these sequences are compat-
ible with the inclusions of the generic fibres X ↪→ X and Xnr ↪→ Xnr. We
have H0

ét(Xnr,Gm) = R∗nr because the morphism π : X→Spec(R) is proper
with geometrically integral fibres. The low degree terms of the two spectral
sequences give rise to the following commutative diagram of exact sequences,
where the equality is induced by (10.7):

H2(G,R∗nr) → Ker[Br(X )→Br(Xnr)] → H1(G,Pic(Xnr)) → H3(G,R∗nr)
↓ ↓ || ↓

H2(G,K∗nr) → Ker[Br(X)→Br(Xnr)] → H1(G,Pic(Xnr)) → H3(G,K∗nr)

The inclusion of G-modules R∗nr ↪→ K∗nr has a G-module retraction, hence
the map H3(G,R∗nr)→H3(G,K∗nr) is injective. Since H2(G,K∗nr) = Br(K),
the statement follows from the above diagram. �

https://stacks.math.columbia.edu/tag/0E0N
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Proposition 10.4.2 Assume that the proper R-scheme X is smooth over R
with geometrically integral fibres. Assume also that H1(X,OX) = 0 and that
the Néron–Severi group NS(X) is torsion-free. Then

Br1(X) = Ker[Br(X)→Br(Xnr)].

Proof. For any prime ` 6= char(k) the smooth base change theorem in étale
cohomology for the smooth and proper morphism π : X→Spec(R) implies
that the natural action of the inertia subgroup I on H2

ét(X,Z`(1)) is trivial.
Indeed, by [Mil80, Cor. VI.4.2] the étale sheaf R2π∗(µ`m) is locally constant
for every m ≥ 1. Also, the fibre of R2π∗(µ`m) at the generic geometric point
Spec(K)→Spec(R) is H2

ét(X,µ`m). Now it follows from [Mil80, Remark V.1.2
(b)] that the action of g on H2

ét(X,µ`m) factors through

π1(Spec(R), Spec(K)) ∼= Gal(Knr/K) = G ∼= g/I,

see [Mil80, Ex. I.5.2(b)]. Thus I acts trivially on H2
ét(X,µ`m) for every m,

hence I acts trivially on H2
ét(X,Z`(1)).

Since K has characteristic zero, for any prime ` the Kummer sequence
gives a Galois equivariant embedding

NS(X)⊗ Z` ↪→ H2
ét(X,Z`(1)).

For any ` 6= char(k) we conclude that I acts trivially on NS(X) ⊗ Z`,
hence also on Pic(X) ∼= NS(X) ⊂ NS(X) ⊗ Z`. Thus H1(Knr,Pic(X)) =
H1(I,NS(X)) = 0. From the exact sequence

Br(Knr) −→ Ker[Br(Xnr)→Br(X)] −→ H1(Knr,Pic(X))

we conclude that the map Br(Xnr)→Br(X) is injective. The result follows. �

We are also interested in the situation when H2(X,OX) is not necessarily
zero, so we must take into account the transcendental Brauer group as well.

Proposition 10.4.3 Let ` be a prime, ` 6= char(k). Let π : X→Spec(R) be
a smooth proper morphism with geometrically integral fibres, such that the
closed geometric fibre has no connected unramified cyclic covering of de-
gree `. Then the group Br(X){`} is generated by the images of Br(X ){`}
and Br(K){`}.

Proof. Let Y = X ×R k be the closed fibre of π. We note that Y is a regular
subscheme of codimension 1 of the regular scheme X . Thus we can apply the
exact sequence (3.17):

0 −→ Br(X )[`m] −→ Br(X)[`m] −→ H1
ét(Y,Z/`m). (10.8)
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Let Y = Y ×k k, where k is an algebraic closure of k. As Y is connected,
the spectral sequence

Epq2 = Hp(k,Hq
ét(Y ,Z/`

n))⇒ Hp+q
ét (Y,Z/`n)

gives rise to the exact sequence

0 −→ H1(k,Z/`n) −→ H1
ét(Y,Z/`n) −→ H1

ét(Y ,Z/`n).

By assumption Y has no connected unramified cyclic covering of degree `,
hence H1

ét(Y ,Z/`n) = 0.
Let A ∈ Br(X){`}. Take an m such that A ∈ Br(X)[`m]. The image of

A in H1
ét(Y,Z/`m) belongs to the image of H1(k,Z/`m). We have the exact

sequence (3.12)

0 −→ Br(R)[`m] −→ Br(K)[`m] −→ H1(k,Z/`m) −→ 0,

with compatible maps to the terms of sequence (10.8) (see Lemma 2.3.6 and
Theorem 3.7.5). Hence there exists an element α ∈ Br(K)[`m] such that
A− α ∈ Br(X)[`m] goes to zero in H1

ét(Y,Z/`m). By the exactness of (10.8)
we have A− α ∈ Br(X )[`m]. �

Remark 10.4.4 (1) Let k be a field of characteristic p > 0. For a smooth
and proper morphism π, it is an interesting problem to decide when a sim-
ilar statement holds for the p-primary torsion subgroup Br(X){p}. For the
elements of Br(X) split by an unramified extension of K, including those of
order divisible by p, such a statement follows from Lemma 10.4.1 (see also
[Bri07, Prop. 6]). But the recent work of Bright and Newton [BN, Thm. C]
shows that Proposition 10.4.3 does not in general extend to Br(X){p}. See
Theorem 13.3.18.

(2) The hypotheses of Proposition 10.4.3 apply in particular when the
fibres of π : X→Spec(R) are smooth complete intersections of dimension at
least 2 in the projective space (an application of the weak Lefschetz theorem
in étale cohomology, see [Kat04]). In particular they apply to smooth surfaces
of arbitrary degree in P3.

10.5 Varieties over a local field

We start with the following statement, which is a generalisation of known
results such as the implicit function theorem for varieties over a complete
local field to the henselian case. Versions of this statement hold for the fields
of fractions of much more general henselian valuation rings, see [Con12],
[Mor12] and [GGM14, §3.1].
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Theorem 10.5.1 Let K be either the fraction field of a henselian discrete
valuation ring, the field of complex numbers C, or the field of real numbers R.

For any variety X over K there is a unique structure of a topological space
on X(K) which is functorial and compatible with fibred products, and such
that open (respectively, closed) immersions in X give rise to open (respec-
tively, closed) embeddings in X(K), and étale morphisms give rise to local
homeomorphisms. The topological space X(K) is Hausdorff.

If f : X→Y is a smooth morphism of varieties over K, then the induced
map X(K)→Y (K) is topologically open.

If X is a smooth K-variety and U ⊂ X is a Zariski dense open set, then
U(K) is dense in X(K).

Assume further that K is locally compact. Then X(K) is locally compact.
If f : X→Y is a proper morphism of varieties over K, then the induced map
X(K)→Y (K) is topologically proper.

A discretely valued field is locally compact if and only if it is complete and
has finite residue field, see [CF67, Ch. II, §7].

10.5.1 Evaluation at rational and closed points

Proposition 10.5.2 Let A be a henselian discrete valuation ring with field
of fractions K. Let X be a variety over K and let A ∈ Br(X). The evaluation
map X(K)→Br(K) sending M ∈ X(K) to A(M) ∈ Br(K) is locally constant
and its image is annihilated by some positive integer.

Proof. Take any P ∈ X(K). Then α = A−A(P ) ∈ Br(X) satisfies α(P ) = 0.
By Corollary 3.4.4 there exists an étale morphism f : U→X such that f∗α = 0
and P lifts to a point M ∈ U(K). Then α vanishes on f(U(K)) ⊂ X(K).
Since P ∈ f(U(K)), this is an open neighbourhood of P ∈ X(K) by the
implicit function theorem (Theorem 10.5.1). The last statement is a special
case of Lemma 3.4.5. �

It is clear that the same result also holds for a variety X over the field of
real numbers R.

By a p-adic field we mean a finite extension of Qp.

Proposition 10.5.3 Let k be a p-adic field and let R be the ring of integers
of k. Let X be a proper R-scheme and let X = X ×Rk. Let α ∈ Br(X ) and let
αX ∈ Br(X) be the restriction of α to X. Then for any closed point P ∈ X
we have αX(P ) = 0 ∈ Br(k(P )).

Proof. Let L = k(P ). Let S ⊂ L be the ring of integers of the p-adic field L.
Let F be the residue field of the complete discrete valuation ring S. Since X is
proper over R, we have X(L) = X (S). By functoriality of the evaluation map,
αX(P ) ∈ Br(L) is the restriction of an element in Br(S). Since F is finite, we
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have Br(S) ∼= Br(F) = 0, where the first equality follows from Theorem 3.4.2
(i) and the second one from Theorem 1.2.13. �

Theorem 10.5.4 Let k be a p-adic field and let R be the ring of integers
of k. Let X be a regular, proper, integral, flat R-scheme with geometrically
integral generic fibre X/k. If α ∈ Br(X) vanishes at each closed point of a
non-empty open set U ⊂ X, then α lies in Br(X ) ⊂ Br(X).

Proof. Here is a sketch of the proof for the prime to p-part of the statement
[CTS96, Thm. 2.1]. Let ` be a prime, ` 6= p. Using Chebotarev’s theorem
for varieties over a finite field, a suitable version of Hensel’s lemma, and
Theorem 3.7.5, one sees that the assumption implies that α ∈ Br(X){`} has
trivial residues at the codimension 1 points of X . Hence, by Gabber’s purity
theorem, α comes from an element of Br(X ). For the general case, combine
the result of Saito and Sato [SS14, Thm. 1.1.3], which is conditional on purity
for the Brauer group for regular schemes, with this purity theorem, proved
recently by Česnavičius using previous work of Gabber (Theorem 3.7.6). �

The case when X is a curve goes back to Lichtenbaum [Lic69].

Corollary 10.5.5 (Lichtenbaum) Let X be a smooth, projective, geomet-
rically integral curve over a p-adic field k. If α ∈ Br(X) vanishes at each
closed point of X, then α = 0.

Proof. Let R be the ring of integers of k. There exists a regular proper flat
model X→Spec(R) (as proved independently by Lipman and Shafarevich).
By the previous theorem, α lies in Br(X ) ⊂ Br(X). By Theorem 10.3.1, we
have Br(X )

∼−→ Br(X0), where X0 is the closed fibre of X→Spec(R). But
Br(X0) = 0 by Theorem 5.6.1 (v), hence α = 0. �

Proposition 10.5.6 Let k be a p-adic field and let R be the ring of inte-
gers of k. Let ` be a prime number invertible in R. Let π : X→Spec(R) be
a smooth proper morphism with geometrically integral fibres, such that the
closed geometric fibre has no connected unramified cyclic covering of degree
`. Let X = X ×R k. Assume X(K) 6= ∅. Then for any A ∈ Br(X){`} the
evaluation map evA : X(K)→Br(K) has constant image.

Proof. By Proposition 10.4.3 we can write A = A1 + A2 ∈ Br(X), where
A1 ∈ Br(X ) and A2 ∈ Br(K). By Proposition 10.5.3 the map evA1

sends
X(K) to 0. Hence evA(P ) = A2 ∈ Br(K) for any P ∈ X(K). �

Remark 10.5.7 (1) By Proposition 6.4.2, evaluation on closed points of a
smooth, projective, geometrically integral curve over a p-adic field induces a
bilinear pairing

Br(X)× Pic(X) −→ Br(k) ∼= Q/Z.

That the left kernel of this pairing is trivial (and, more precisely, the pairing
induces a duality) was proved by Lichtenbaum as a consequence of the Tate
duality theorems for abelian varieties over a p-adic field.
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(2) Let X be a smooth and geometrically integral curve over a p-adic field
k. Let U be a non-empty open subset of X. If α ∈ Br(U) vanishes at each
closed point of U , then α lies in Br(X) and, moreover, α = 0.

Let us explain this. Let P be a closed point in XrU and let K = k(P ) be
the residue field of P . Write XK = X ×kK. The morphism P : Spec(K)→X
gives rise to the morphism Spec(K ⊗k K)→XK that can be precomposed
with the dual morphism of the multiplication map K ⊗k K→K to define a
K-point P̃ : Spec(K)→XK above P .

Suppose that α has a non-trivial residue χ ∈ H1(K,Q/Z) at P . Let N > 1
be the order of χ in H1(K,Q/Z). Write αK for the image of α in Br(UK).

The multiplicity of P̃ in the fibre Spec(K ⊗k K) of XK→X above P is 1, so
by the functoriality of residues (Theorem 3.7.5) the residue of αK ∈ Br(UK)

at P̃ is χ ∈ H1(K,Q/Z).

Let π be a local equation at P̃ ∈ XK . By Proposition 3.6.4 and a limit
argument from section 2.2.2, αK differs from the cup-product (χ, π) by an

element β ∈ Br(V ), where V ⊂ XK is a Zariski neighbourhood of P̃ . By

Proposition 10.5.2, there exists a p-adic neighbourhood W ⊂ V (K) of P̃

such that β is constant on W and π is invertible on W r P̃ . The assumption
on α then implies that (χ, π) takes a constant value on WrP̃ . By the implicit
function theorem (Theorem 10.5.1), after shrinking V , the local parameter
π defines an isomorphism between W ⊂ V (K) and a p-adic neighbourhood

of 0 ∈ A1
K(K). Thus for points M 6= P̃ in W ⊂ U(K), the value π(M) ∈ K

takes all possible valuations. Thus (χ, π(M)) = v(π(M))χ ∈ H1(K,Z/N)
is not constant, which is a contradiction. (For a similar and more detailed
argument in a global context, we refer the reader to Theorem 13.4.1.) We
conclude that α has zero residues on X, hence belongs to Br(X). Since α
vanishes at all closed points of U , by the continuity of the evaluation map it
vanishes at all closed points of X. One then applies Corollary 10.5.5.

(3) There exist smooth, projective, geometrically integral curves X over
a p-adic field with non-zero elements in H1

ét(X,Z/`) which vanish at each
closed point of X, see [Sai85] and [CTPS12, §6].

(4) Let X be a variety over the field of real numbers R. The natural pairing

X(R)× Br(X) −→ Br(R) = Z/2

is locally constant on X(R) hence induces a map Br(X)→(Z/2)S , where S is
the set of connected components of X(R) for the real topology.

The real analogue of Tate’s duality theorem for abelian varieties over a p-
adic field and of Corollary 10.5.5 goes back to Witt (1934). For a smooth, pro-
jective, geometrically connected curve over R, evaluating elements of Br(X)
on the real points induces an isomorphism Br(X)

∼−→ (Z/2)S . In particular,
Br(X) = 0 if X(R) = ∅. If X is a quasi-projective but possibly singular curve
over R, then the map Br(X)→(Z/2)S is injective [CTOP02, Prop. 1.13].
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10.5.2 The index of a variety over a p-adic field

Let R be the ring of integers of a p-adic field K and let k be the (finite) residue
field. Let X be a regular, connected, projective, flat R-scheme. Let X/K be
the generic fibre of X . We assume that X is geometrically integral. The closed
fibre X0/k is a divisor

∑
i eiDi, where ei is a positive integer and Di is an

integral variety over k. Let fi be the degree over k of the integral closure of k
in the function field k(Di). In this context one defines the following positive
integers.

(1) IBr is the order of Ker[Br(K)→Br(X)/Br(X )].
(2) I is the g.c.d. of the degrees of the closed points of X.
(3) I0 is the g.c.d. of the eifi.

The positive integer I is called the index of X. Note, by the way, that the
kernel in (1) is cyclic; by the purity theorem 3.7.6 it does not depend on the
choice of X .

Theorem 10.5.8 We have IBr = I = I0.

Saito and Sato [SS14, Thm. 5.4.1] proved this theorem assuming purity for the
Brauer group of regular schemes, a result which is now known in full generality
(Theorem 3.7.6). Earlier results had been obtained by Lichtenbaum [Lic69]
(in the case of curves), then in [CTS96, Thm. 3.1] (for the prime-to-p part,
in arbitrary dimension) and in [GLL13, Cor. 9.1] which shows I = I0. The
paper [GLL13] studies the case of a henselian discrete valuation ring R with
an arbitrary residue field k.

10.5.3 Finiteness results for the Brauer group

In the good reduction case, Section 10.4 gives some control on the Brauer
group of a smooth proper variety over a p-adic field. Here are two general
results under weaker assumptions.

Proposition 10.5.9 Let X be a variety over a p-adic field K. Then for any
positive integer n the group Br(X)[n] is finite.

Proof. The Kummer exact sequence shows that Br(X)[n] is a quotient of
H2

ét(X,µn). Consider the spectral sequence

Epq2 = Hp(K,Hq
ét(X,µn))⇒ Hp+q

ét (X,µn).

The groups Hq
ét(X,µn) are finite for any q ≥ 0 (see [Mil80, Cor. VI.4.5]).

The Galois cohomology groups Hp(K,M), where K is a p-adic field and M
is finite, are finite for all p ≥ 0 [SerCG, Ch. 2, §5, Prop. 14]. �
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Proposition 10.5.10 Let X be a smooth, proper and geometrically integral
variety over a p-adic field K. Let Xnr = X×KKnr, where Knr is the maximal
unramified extension of K. Then Ker[Br(X)→Br(Xnr)]/Br0(X) is finite.

Proof. [CTS13a, Prop. 2.1] We assume that Knr ⊂ K and use the notation g =
Gal(K/K), G = Gal(Knr/K), I = Gal(K/Knr). Consider the Hochschild–
Serre spectral sequence [Mil80, Thm. III.2.20, Remark III.2.21 (b)] attached
to the morphism Xnr→X:

Epq2 = Hp(G,Hq
ét(Xnr,Gm))⇒ Hp+q

ét (X,Gm). (10.9)

Since H2(G,K∗nr) = Br(K), the exact sequence of low degree terms of (10.9)
shows that the group under consideration is a subgroup of H1(G,Pic(Xnr)).
There is an exact sequence of continuous discrete g-modules

0 −→ Pic0(X) −→ Pic(X) −→ NS(X) −→ 0.

By the representability of the Picard functor, and since char(K) = 0, there
exists an abelian variety A over K such that A(K) is isomorphic to Pic0(X)
as a g-module (Theorem 5.1.1). Thus we rewrite the previous sequence as

0 −→ A(K) −→ Pic(X) −→ NS(X) −→ 0. (10.10)

The Hochschild–Serre spectral sequence attached to X→Xnr is

Epq2 = Hp(I,Hq
ét(X,Gm))⇒ Hp+q

ét (Xnr,Gm).

By Hilbert’s theorem 90 we have H1(I,K
∗
) = 0. Since Br(Knr) = 0 we obtain

that the natural map Pic(Xnr)→Pic(X)I is an isomorphism. Now, by taking
I-invariants in (10.10) we obtain the exact sequence of G-modules

0 −→ A(Knr) −→ Pic(Xnr) −→ NS(X)I .

The group NS(X) is finitely generated by the theorem of Néron and Severi
[SGA6, XIII] hence so is NS(X)I . Thus there is a G-module N , finitely gen-
erated as an abelian group, that fits into the exact sequence of continuous
discrete G-modules

0 −→ A(Knr) −→ Pic(Xnr) −→ N −→ 0.

The resulting exact sequence of cohomology groups gives us an exact sequence

H1(G,A(Knr)) −→ H1(G,Pic(Xnr)) −→ H1(G,N). (10.11)

We note that G is canonically isomorphic to the profinite completion Ẑ, with
the Frobenius as a topological generator. If M is a continuous discrete G-
module which is finitely generated as an abelian group, then H1(G,M) is
finite. To see this, let G′ be a finite index subgroup of G that acts trivially
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on M . The group G′ ' Ẑ has a dense subgroup Z generated by a power of
the Frobenius. Now H1(G′,M) is the group of continuous homomorphisms

Homcont(G
′,M) = Homcont(G

′,Mtors) = Mtors,

which is visibly finite. An application of the restriction-inflation sequence
finishes the proof of the finiteness of H1(G,M).

To complete the proof of the proposition it remains to prove the finite-
ness of H1(G,A(Knr)). By [Mil86, Prop. I.3.8] this group is isomorphic to
H1(G, π0(A0)), where π0(A0) is the group of connected components of the
closed fibre A0 of the Néron model of A over Spec(R). Since π0(A0) is finite,
we see that H1(G, π0(A0)) is finite. �

10.5.4 Unramified Brauer classes and evaluation at
points

The following lemma and theorem are due to O. Wittenberg (private com-
munication). A partial earlier result in this direction is [Mer02, Prop. 3.4].

Lemma 10.5.11 Let X be a smooth geometrically integral variety over a
field k. For any α ∈ Br(X) and any point P : Spec(k((t)))→X there exists a
point P ′ : Spec(k((t)))→X such that the latter map is dominant and we have
α(P ) = α(P ′).

Proof. A k-morphism P ′ : Spec(k((t)))→X is dominant if it induces an in-
clusion of the fields of functions k(X) ⊂ k((t)). Let x ∈ X be the image
of the k-morphism P : Spec(k((t)))→X. Since X is smooth over k, there ex-
ist an open subset U ⊂ X containing x and an étale morphism f : U→Adk.
Let Q = f(P ) ∈ Adk(k((t))). The field k((t)) is of infinite transcendence
degree over k [MS39, §3, Lemma 1]. We can choose a k((t))-point Q′ in
Adk as close as we wish to Q in the topology of the field k((t)) such that
the d coordinates of Q′ are algebraically independent over k. Moreover, by
the implicit function theorem (Theorem 10.5.1) over the field k((t)), we can
choose Q′ with the additional property that Q′ lifts to a k((t))-point P ′ in
U which is as close as we wish to P . Corollary 3.4.4 applied over k((t)) (see
the proof of Proposition 10.5.2) then ensures the equality α(P ′) = α(P ) in
Br(k((t))). Since the coordinates of Q′ are algebraically independent over k,
the morphism Q′ : Spec(k((t)))→Adk induces a k-embedding of the fields of
functions k(x1, . . . , xd) ⊂ k((t)). But Q′ = f(P ′) and f is dominant, hence
this embedding factors as k(x1, . . . , xd) ⊂ k(X) ⊂ k((t)), which shows that
P ′ : Spec(k((t)))→X is dominant. �
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Theorem 10.5.12 Let X be a smooth geometrically integral variety over a
field k of characteristic zero. Let α ∈ Br(X) ⊂ Br(k(X)). The following
conditions are equivalent:

(i) α ∈ Brnr(k(X)/k);
(ii) for any field extension L/k and any P ∈ X(L((t))), the value α(P ) is

contained in the image of Br(L)→Br(L((t)));
(iii) for any field extension L/k with cd(L) ≤ 1 and any P ∈ X(L((t))) we

have α(P ) = 0 in Br(L((t))).

Proof. It is clear that (ii) implies (iii). Let us prove that (iii) implies (ii).
Choose an embedding L ⊂ L′ as in Proposition 7.1.9. We have a commutative
diagram with exact rows (3.12)

0 // Br(L′) // Br(L′((t))) // H1(L′,Q/Z) // 0

0 // Br(L)

OO

// Br(L((t)))

OO

// H1(L,Q/Z)
?�

OO

// 0

Here the third arrow in each row is the Gysin residue (equal to the Witt
residue), and the vertical arrows are restriction maps. The right-hand vertical
map is injective because L is algebraically closed in L′. This diagram implies
the statement of (ii).

Let us prove that (ii) implies (i). Let A ⊂ k(X) be a discrete valuation
ring which contains k. Let κ be the residue field of A. By the Cohen structure
theorem, the completion of A is isomorphic to κ[[t]]. We have k ⊂ κ, hence
we have a k-embedding k(X) ⊂ κ((t)) such that A = k(X)∩ κ[[t]]. This gives
a commutative diagram with exact rows

0 // Br(κ[[t]]) // Br(κ((t))) // H1(κ,Q/Z) // 0

0 // Br(A)

OO

// Br(k(X))

OO

// H1(κ,Q/Z)

=

OO

// 0

Here the top row is (3.12), and the bottom row comes from Proposition 3.6.4.
(Note that ∂ = rW .) The assumption of (ii) applied to L = κ implies that
the image of α in Br(κ((t))) goes to zero in H1(κ,Q/Z). By the diagram this
implies α ∈ Br(A). Thus (ii) implies (i).

Let us prove that (i) implies (ii). If X is projective, we have X(L((t))) =
X(L[[t]]). Hence P ∈ X(L[[t]]), and thus α(P ) ∈ Br(L[[t]]) = Br(L), proving
(ii). Let us now drop the assumption that X be projective (and avoid the reso-
lution of singularities). By Lemma 10.5.11 we may assume that the morphism
P : Spec(L((t)))→X is dominant while keeping the value of α(P ) ∈ Br(L((t))).
Then we have a k-embedding k(X) ⊂ L((t)). By the functoriality of the un-
ramified Brauer group we have α(P ) ∈ Br(L[[t]]) = Br(L). �



Chapter 11

The Brauer group and families of
varieties

In this section we are interested in the following question. Let f : X→Y be
a dominant morphism of regular integral varieties over a field k. Can one
compute the Brauer group Br(X) and its elements from the Brauer group of
the base Br(Y ) and the Brauer group of the generic fibre Br(Xη), in terms of
the geometry of varieties X, Y and the morphism f? For example, when is the
induced map f∗ : Br(Y )→Br(X) surjective or injective? Recall that Br(X)
is naturally a subgroup of Br(Xη), so when Br(Xη) is known, computing
Br(X) involves determining the elements of Br(Xη) that are unramified on
X. In general, this is a hard problem even if the generic fibre has very simple
geometry, for instance, when Xη is finite.

The focus of Section 11.1 is the so-called vertical subgroup Brvert(X/Y )
of Br(X). It is defined as the set of elements of Br(X) whose restriction to
Br(Xη) belongs to the image of Br(k(Y )), where k(Y ) = k(η) is the function
field of Y . There are several reasons to be interested in Brvert(X/Y ).

• In some cases there are clean-cut algebraic formulae for Brvert(X/Y ),
whereas it may be difficult to give such formulae for the full Brauer
group Br(X). For example, when Y = P1

k and Xη is geometrically inte-
gral, generators of Brvert(X/Y ) are explicitly computed in terms of the
structure of the degenerate fibres of f : X→Y .
• For certain types of morphisms, e.g. for families of quadrics of relative

dimension at least 1 or for families of Severi–Brauer varieties, the full
Brauer group is vertical, that is, the inclusion Brvert(X/Y ) ⊂ Br(X) is
an equality.
• Over a number field k, the vertical Brauer group Brvert(X/Y ) features

in the definition of an obstruction to the existence of a k-point P ∈ Y (k)
such that the fibre XP is smooth and has points in all completions of k.

In Section 11.2 we consider some dominant proper morphisms f : X→Y
for which the map f∗ : Br(Y )→Br(X) is surjective.

In Section 11.3.1 we illustrate the computations of Section 11.1 in the
basic classical case (originally due to Iskovskikh) of conic bundles over P1

k,
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with singular fibres allowed. The main result of Section 11.3.2 is a formula
for Br(X) in the case when Xη is a conic and Y is a rational surface over
C. This is used in Section 11.3.3 to recover the Artin–Mumford examples of
unirational non-rational threefolds, along with several other examples.

Section 11.4 gives a description of the 2-torsion subgroup Br(X)[2], where
f : X→Y is a double cover of a rational surface Y over an algebraically closed
field k. In Section 11.5 we study a universal family of cyclic twists and the
associated vertical Brauer group; this construction has useful arithmetic ap-
plications.

11.1 The vertical Brauer group

The following definition appeared for the first time in [Sko96, Def. 03].

Definition 11.1.1 Let Y be an integral scheme with generic point i : η→Y .
Let f : X→Y be a dominant morphism, and let Xη = X ×Y η be the generic
fibre of f . Write j : Xη→X for the natural inclusion, so that there is a carte-
sian square

Xη
j //

��

X

f

��
η

i // Y

(11.1)

The vertical Brauer group of X/Y is

Brvert(X/Y ) = {A ∈ Br(X)|j∗(A) ∈ Im[Br(η)→Br(Xη)]}.

Let ρ : Br(η)→Br(Xη) be the map induced by the morphism Xη→η which
is the left vertical arrow in (11.1). A formal consequence of the definition of
Brvert(X/Y ) is the exact sequence

0 −→ Brvert(X/Y ) −→ Br(X) −→ Br(Xη)/Im(ρ).

If X is regular and integral, then by Theorem 3.5.5 we have inclusions

Br(X) ⊂ Br(Xη) ⊂ Br(η′),

where η′ is the generic point of X and the first inclusion is induced by j.
Then we have Brvert(X/Y ) = ρ(ρ−1(Br(X))), so the following sequence is
exact:

0 −→ Ker(ρ) −→ ρ−1(Br(X)) −→ Brvert(X/Y ) −→ 0. (11.2)
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We shall mostly consider the case when X and Y are smooth, proper
and geometrically integral varieties over a field k, so that η = Spec(k(Y ))
and η′ = Spec(k(X)). Then Brvert(X/Y ) ⊂ Br(X) ⊂ Br(k(X)) is the in-
tersection of Br(X) = Brnr(k(X)/k) (see Proposition 6.2.7) with the image
of the restriction map Br(k(Y ))→Br(k(X)). In other words, the elements of
Brvert(X/Y ) are the restrictions to k(X) of the (possibly, ramified) classes
in Br(k(Y )) that become unramified in k(X). It is clear that Br0(X) is a
subgroup of Brvert(X/Y ).

The following standard lemmas are frequently used.

Lemma 11.1.2 Let k ⊂ K be an extension of fields such that k is separably
closed in K. Then the restriction map H1(k,Q/Z)→H1(K,Q/Z) is injective.

Proof. Let Ks be a separable closure of K. Let ks be the separable closure of k
in Ks. The assumption implies that the natural map Gal(Ks/K)→Gal(ks/k)
is surjective. Thus a non-trivial character Gal(ks/k)→Q/Z gives rise to a
non-trivial character Gal(Ks/K)→Q/Z. �

Lemma 11.1.3 Let k ⊂ K be a finite extension of fields. Then the kernel of
the restriction map H1(k,Q/Z)→H1(K,Q/Z) is finite.

Proof. By Lemma 11.1.2 we can replace K by the separable closure of k in K.
Thus we may assume that K is a finite separable extension of k. Increasing
K we can assume that K/k is a finite Galois extension with Galois group G.
In this case the kernel is H1(G,Q/Z) = Hom(G,Q/Z), which is finite. �

Lemma 11.1.4 Let k be a field. Let ki be a finite extension of k and let mi

be a positive integer, for i = 1, . . . , n. Define L ⊂ H1(k,Q/Z) as

L =

n⋂
i=1

Ker[mi reski/k : H1(k,Q/Z)→H1(ki,Q/Z)].

Then L is an extension of a finite abelian group by H1(k,Z/m), where m is
the g.c.d. of m1, . . . ,mn.

Proof. It is clear that L contains H1(k,Z/m) ⊂ H1(k,Q/Z). Let us denote by
Fi the kernel of reski/k : H1(k,Q/Z)→H1(ki,Q/Z). Let F be the subgroup of
H1(k,Q/Z) generated by the subgroups F1, . . . , Fn. By Lemma 11.1.3 each
subgroup Fi is finite, hence F is finite too. Let us write m =

∑n
i=1 aimi,

where ai ∈ Z for i = 1, . . . , n. If x ∈ L, then mx =
∑n
i=1 aimix ∈ F , since

mix ∈ Fi for all i. To finish the proof, it remains to use the isomorphism
H1(k,Q/Z)[m] ∼= H1(k,Z/m). �

Let k be a field of characteristic zero. Let X and Y be smooth integral
varieties over k and let f : X→Y be a dominant morphism with generic fibre
Xη, where η = Spec(k(Y )) is the generic point of Y .
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Then there is a commutative diagram of complexes

0 // Br(X) // Br(Xη)
{∂V } // ⊕

P∈Y (1)

⊕
V⊂XP

H1(k(V ),Q/Z)

0 // Br(Y ) //

f∗

OO

Br(k(Y ))
{∂P } //

OO

⊕
P∈Y (1)

H1(k(P ),Q/Z)

OO
(11.3)

The bottom row is the exact sequence (3.20); here P are the codimension 1
points of Y . In the top sequence, V ⊂ XP ranges over the irreducible com-
ponents of the fibre XP . Then the map H1(k(P ),Q/Z)→H1(k(V ),Q/Z) is
mV resk(V )/k(P ), where mV is the multiplicity of VP in XP . The diagram
(11.3) commutes by the functoriality of residues (Theorem 3.7.5).

In the top complex, the map Br(X)→Br(Xη) is injective since X is regular.
If, moreover, f : X→Y is flat, then the top row of the diagram is exact.
Indeed, then the fibres of f have dimension dim(X)−dim(Y ) at every point,
so the codimension 1 points of X that do not meet Xη are the generic points
of the fibres at codimension 1 points of Y . Hence in this case the top row of
(11.3) is obtained from (3.19) by taking the inductive limit over all the open
subsets f−1(U) ⊂ X, where U is a non-empty open subset of Y .

For an irreducible component V ofXP we define κV as the algebraic closure
of k(P ) in k(V ). For f : X→Y as above (not necessarily flat), the fibre XP

at a codimension 1 point P ∈ Y is a variety over k(P ) which is split if and
only if it contains an irreducible component V of multiplicity mV = 1 such
that κV = k(P ), see Proposition 10.1.4.

When Xη is geometrically integral, there is a non-empty Zariski open
subset U ⊂ Y such that the fibres of f at the points of U are geometrically
integral [EGA, IV3, Thm. 9.7.7]. Thus if Xη is geometrically integral, then
all but finitely many fibres of f over the points of codimension 1 in Y are
geometrically integral, hence split.

Proposition 11.1.5 Let f : X→Y be a dominant morphism of smooth inte-
gral varieties over a field k of characteristic zero with geometrically integral
generic fibre. Let S be the finite set of points P ∈ Y of codimension 1 such
that the fibre XP is not split (for example, XP can be empty). Then every
element of Brvert(X/Y ) can be written as f∗(α), where α ∈ Br(k(Y )) is such
that if P /∈ S, then ∂P (α) = 0, and if P ∈ S, then

∂P (α) ∈
⋂

V⊂XP

Ker[mV resκV /k(P ) : H1(k(P ),Q/Z)→H1(κV ,Q/Z)]. (11.4)

If f is flat, then for any α ∈ Br(k(Y )) which satisfies the above condition,
the inverse image f∗(α) ∈ Br(Xη) belongs to Br(X).

Proof. This follows from diagram (11.3) in view of Lemma 11.1.2. �
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If XP is empty, then the condition in (11.4) is vacuous.

This proposition shows, in particular, that split fibres can be disregarded,
that is, counted as ‘good’ fibres, for the purpose of determining the vertical
Brauer group attached to a morphism of varieties.

Corollary 11.1.6 Let f : X→Y be a dominant morphism of smooth inte-
gral varieties over a field k of characteristic zero with geometrically integral
generic fibre.

(i) Assume that for every point P ∈ Y of codimension 1, the g.c.d. of the
multiplicities mV , where V is an irreducible component of XP , is 1. (This
condition is satisfied if the fibres of f over all points of Y of codimension 1
are geometrically split.) Then Brvert(X/Y )/f∗(Br(Y )) is finite.

(ii) Assume that for every point P ∈ Y of codimension 1, the g.c.d. of the
integers mV [κV : k(P )], where V is an irreducible component of XP ,
is 1. (This condition is satisfied if the fibres of f over all points of Y of
codimension 1 are split.) Then Brvert(X/Y ) = f∗(Br(Y )).

Proof. Proposition 11.1.5 implies that Brvert(X/Y )/f∗(Br(Y )) is a subquo-
tient of ⊕

P∈Y (1)

Ker
[
H1(k(P ),Q/Z) −→

⊕
V⊂XP

H1(κV ,Q/Z)
]
,

where the map to H1(κV ,Q/Z) is mV resκV /k(P ). Now both statements fol-
low from Lemmas 11.1.2 and 11.1.4. For (ii) we also use the fact that
coresκV /k(P ) ◦ resκV /k(P ) is multiplication by [κV : k(P )]. This can be ap-
plied to the Galois module Q/Z because char(k) = 0. �

Remark 11.1.7 The proof of Corollary 11.1.6 (i) actually shows that the
subgroup of Br(k(Y )) consisting of the classes α such that f∗(α) ∈ Br(k(X))
lies in the image of Br(X), is finite modulo the image of Br(Y ).

Let k be a field of characteristic zero. Let X be a smooth, projective,
geometrically integral variety over k. Let f : X→P1

k be a dominant morphism
whose generic fibre Xη is geometrically integral over K = k(η) = k(P1

k). For
a closed point P ∈ P1

k, with residue field k(P ), let XP =
∑n
i=1miVi be the

decomposition of the fibre XP as a linear combination of integral divisors.
Let ki be the integral closure of k(P ) in the function field k(Vi). Define

LP =

n⋂
i=1

Ker[mireski/k(P ) : H1(k(P ),Q/Z)→H1(ki,Q/Z)] ⊂ H1(k(P ),Q/Z).

For almost all P ∈ P1
k we have LP = 0.

Recall that we write ρ : Br(K)→Br(Xη) for the restriction map.
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Proposition 11.1.8 With the hypotheses and notation as above, there are
exact sequences

Ker(ρ) −→ ρ−1(Br(X))/Br(k) −→ Brvert(X/P1
k)/Br0(X) −→ 0,

0 −→ Br(k) −→ ρ−1(Br(X)) −→
⊕
P∈P1

k

LP −→ H1(k,Q/Z),

where the last map is induced by corestriction H1(k(P ),Q/Z)→H1(k,Q/Z).

Proof. The first sequence follows from (11.2). Since X is integral and P1
k

is a regular integral curve, the dominant morphism X→P1
k is flat [Har77,

Prop. III.9.7]. Thus the rows of the diagram (11.3) for Y = P1
k are exact.

Moreover, for Y = P1
k, the bottom exact sequence can be completed to the

Faddeev exact sequence (1.34). (Recall that ∂ = rW .) We thus obtain the
following commutative diagram of exact sequences:

0 // Br(X) // Br(Xη)
{∂V } // ⊕

P∈(P1
k)(1)

⊕
V⊂XP

H1(k(V ),Q/Z)

0 // Br(k) //

f∗

OO

Br(K)
{∂P } //

ρ

OO

⊕
P∈(P1

k)(1)

H1(k(P ),Q/Z)

OO

// H1(k,Q/Z)→0

where each map H1(k(P ),Q/Z)→H1(k(V ),Q/Z) is given by mV resk(V )/k(P ),
where XP =

∑
mV V . The proposition now follows by diagram chase. �

When Corollary 11.1.6 can be applied, it gives sufficient conditions for
triviality or at least finiteness of Brvert(X)/Br0(X). The above proposition
can be used to give examples where this quotient is infinite.

Corollary 11.1.9 Let k be a field finitely generated over Q. Let X be a
smooth, projective, geometrically integral variety over k. Let f : X→P1

k be a
dominant morphism with geometrically integral generic fibre. For a closed
point P ∈ P1

k let mP be the multiplicity of the fibre XP , that is, the g.c.d. of
the multiplicities of the irreducible components of XP .

(i) Consider the composed map, where the second arrow is the sum of core-
striction maps coresk(P )/k:⊕

P∈P1
k

H1(k(P ),Z/mP ) ↪→
⊕
P∈P1

k

H1(k(P ),Q/Z) −→ H1(k,Q/Z).

The group Brvert(X/P1
k)/Br0(X) is finite if and only if the kernel of this

map is finite.
(ii) If there exist an integer m ≥ 2 and distinct k-points P1, P2 ∈ P1

k(k) such
that the fibres XP1 and XP2 are divisors on X which are divisible by m,
then Brvert(X/P1

k)/Br0(X) is infinite.
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Proof. Since k is finitely generated over Q, so is K = k(P1
k). By Proposition

5.4.4 this implies that the kernel of ρ : Br(K)→Br(Xη) is finite. Statement
(i) then follows from Proposition 11.1.8 and Lemma 11.1.4.

For any χ ∈ H1(k,Z/m), consider the element of the first direct sum
in (i) with the P1-component χ, the P2-component −χ, and all the other
components 0. This gives an embedding of H1(k,Z/m) into the kernel of the
map in (i). It remains to observe that for any field k finitely generated over Q
and any integer m ≥ 2 the group H1(k,Z/m) is infinite. Indeed, the algebraic
closure κ of Q in k is a finite extension of Q. By Lemma 11.1.2, H1(κ,Q/Z)
is a subgroup of H1(k,Q/Z). But H1(κ,Z/m) is infinite for any m ≥ 2 and
any number field κ, see, e.g. [Har17, Exercise 18.4 (b)]. �

When the ground field k is a number field, one can give a necessary and
sufficient condition for the finiteness of the vertical Brauer group modulo the
image of Br(k).

Theorem 11.1.10 Let k be a number field. Let X be a smooth, projective,
geometrically integral variety over k. Let f : X→P1

k be a dominant morphism
with geometrically integral generic fibre. Then Brvert(X/P1

k)/Br0(X) is infi-
nite if and only if there exist an integer m ≥ 2 and two distinct points of
P1
k(ks) such that the ks-fibres of f at these points are divisors divisible by m.

Proof. If there exist two such ks-points that are k-points, then the group
Brvert(X/P1

k)/Br0(X) is infinite by Corollary 11.1.9 (ii). If this is not the
case, there is a closed point P ∈ P1

k such that [k(P ) : k] ≥ 2 and the fibre
XP is a divisor on X divisible by m. By Corollary 11.1.9 (i) it is enough to
prove that the kernel of

coresk(P )/k : H1(k(P ),Z/m) −→ H1(k,Z/m)

is infinite. Let Γ = Gal(ks/k) and ΓP = Gal(ks/k(P )). Write (Z/m)[Γ/ΓP ]
for the induced Γ -module Z/m ⊗Z[ΓP ] Z[Γ ]. Consider the surjective map
of Γ -modules σ : (Z/m)[Γ/ΓP ]→Z/m given by the sum of coordinates. Let
M = Ker(σ). The isomorphism H1(k(P ),Z/m) ∼= H1(k, (Z/m)[Γ/ΓP ]) of
Shapiro’s lemma identifies coresk(P )/k with the induced map σ∗. This map
fits into the exact sequence

Z/m −→ H1(k,M) −→ H1(k, (Z/m)[Γ/ΓP ])
σ∗−→ H1(k,Z/m).

Since M is a finite non-zero Γ -module, the group H1(k,M) is infinite by
[Har17, Exercise 18.4 (b)].

It remains to show that when all the multiple fibres of f are above k-
points of P1

k, with pairwise coprime multiplicities, then Brvert(X/P1
k)/Br0(X)

is finite. This immediately follows from Corollary 11.1.9 (i). �

Exercise 11.1.11 Let t be a coordinate function on A1
Q ⊂ P1

Q. Let X be a
smooth, projective, geometrically integral surface over Q with a morphism
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X→P1
Q whose generic fibre Xη is the smooth plane cubic curve over Q(t)

defined by
u3 + tv3 + t2w3 = 0.

Prove that the group Brvert(X/P1
Q)/Br0(X) is infinite, using a valuative ar-

gument to show that divX(t) = 3D for some divisor D on X.

Remark 11.1.12 Vertical Brauer groups have been computed in various
set-ups, including some cases where the generic fibre is given explicitly but
no explicit smooth projective model has been constructed for the total space.
Examples include families of quadrics over P1

k and families of Severi–Brauer
varieties over P1

k, see [Sko90], [CTS94] and the detailed discussion of conic
bundles further below. In these cases one has Brvert(X/P1

k) = Br(X).
In more general cases this equality may not hold, and there is no systematic

way to compute the quotient Br(X)/Brvert(X/P1
k).

For instance, one would like to compute Br(X) for a smooth, projective
and geometrically integral variety X equipped with a morphism X→P1

k whose
generic fibre is geometrically integral and birationally equivalent to a homoge-
neous space of a connected linear algebraic group G over K = k(P1

k). Already
in the case when the generic fibre XK is birationally equivalent to a principal
homogeneous space for G = T ×k K, where T is a k-torus, it is difficult to
compute Br(X)/Brvert(X/P1

k). By [CTHS03, Lemme 2.1], in this case it is
a subgroup of a known group, namely the unramified Brauer group of the
k-torus T modulo Br(k), but in general one does not know which subgroup.
A concrete case is when XK is birationally equivalent to the affine K-variety
with equation

NL/k(Ξ) = P (t),

where L/k is a finite separable extension and P (t) ∈ k[t] is a non-zero poly-
nomial. (The morphism to P1

k is given by the coordinate t.) For some com-
putations in this direction see [CTHS03] and [Wei12]; see also [VV12].

11.2 Families of split varieties

Using diagram (11.3) one can compute the Brauer group of a product of two
varieties, under a simplifying assumption on the geometry of one of them.
(For more general statements see Sections 5.7 and 16.3.)

Proposition 11.2.1 Let k be a field of characteristic zero. Let X and Y be
smooth, projective, geometrically integral varieties over k such that X(k) 6= ∅.
If Pic(X) is torsion-free and Br(X) = 0, then Br(X×kY ) is generated by the
images of Br(X) and Br(Y ) with respect to the maps induced by projections.
Moreover, if H1(k,Pic(X)) = 0, then the map Br(Y )→Br(X ×k Y ) is an
isomorphism.
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Proof. The assumptions on X imply that Br(X) = Br1(X) and give a split
exact sequence (see Section 5.4)

0 −→ Br(k) −→ Br(X) −→ H1(k,Pic(X)) −→ 0.

If one extends the ground field from k to the function field K = k(Y ) of Y ,
the assumptions on the geometric Picard group and on the geometric Brauer
group of XK over the algebraic closure K of K are preserved. For the Picard
group, see Section 5.1. For the Brauer group, see Proposition 5.2.3. Thus one
still has the analogous exact sequence for the K-variety XK . Moreover, the
map Pic(X)→Pic(XK) is an isomorphism and the absolute Galois group of
k(Y ) acts on these finitely generated free abelian groups via its quotient Γk,
which gives an isomorphism H1(k,Pic(X))

∼−→ H1(K,Pic(XK)). Then the
compatible split exact sequences

0 −→ Br(k) −→ Br(X) −→ H1(k,Pic(X)) −→ 0

and
0 −→ Br(K) −→ Br(XK) −→ H1(K,Pic(XK)) −→ 0

show that the natural map Br(X)/Br(k)→Br(XK)/Br(K) is an isomorphism.
All the fibres of the projection X ×k Y→Y are geometrically integral. Corol-
lary 11.1.6 (ii) applied to the projection X ×k Y→Y then immediately gives
that Br(X ×k Y ) is generated by the images of Br(X) and Br(Y ) under the
two projections. Compare with [Gon18]. �

Theorem 11.2.2 Let k be a field of characteristic zero. Let f : X→Y be a
dominant projective morphism of smooth geometrically integral varieties over
k. Let K = k(Y ). Assume that the generic fibre XK is birationally equivalent
to a K-torsor for a simply connected semisimple group over K. Then the map
f∗ : Br(Y )→Br(X) is an isomorphism.

Proof. We have a commutative diagram of natural pullback maps

Br(X) � � // Br(XK)

Br(Y ) � � //

OO

Br(k(Y ))

∼=

OO

The injectivity of the horizontal arrows is due to the fact that X and Y are
smooth and integral. The right-hand vertical arrow is an isomorphism by
Proposition 9.2.1. Thus Br(X) = Brvert(X/Y ). Now the result follows from
Proposition 10.1.15 in view of Corollary 11.1.6 (ii). �

Corollary 11.2.3 Let k be a field of characteristic zero. Let H ↪→ GLn be
an arbitrary linear group over k. Let H ↪→ G be an embedding into a simply
connected semisimple group G. Then Brnr(k(GLn/H)/k) ∼= Brnr(k(G/H)/k).
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Proof. (Cf. [LA15, Prop. 26]) Let P = G ×k GLn. Consider the quotient
P/H with respect to the diagonal action of H on the right. The projec-
tion of P→G induces a morphism P/H→G/H which is a left GLn-torsor.
Similarly, the morphism P/H→GLn/H induced by the projection P→GLn
is a left G-torsor. Any GLn-torsor is locally trivial for the Zariski topol-
ogy, thus P/H is birationally equivalent to G/H ×k GLk, hence P/H and
G/H have isomorphic unramified Brauer groups (Corollary 6.2.10). Since G
is simply connected and semisimple, Theorem 11.2.2 implies that the map
Brnr(k(GLn/H))→Brnr(k(P/H)) is an isomorphism. �

Proposition 11.2.4 Let f : X→Y be a proper surjective morphism of smooth
geometrically integral varieties over a field k of characteristic zero such that
the generic fibre XK is a smooth quadric of dimension at least 1. Suppose
that either all the fibres over points of codimension 1 in Y are split, or
dim(XK) ≥ 3. Then the map f∗ : Br(Y )→Br(X) is surjective.

Proof. From Proposition 7.2.4 we see that Br(X) = Brvert(X/Y ). By Corol-
lary 11.1.6 (ii) we have Brvert(X/Y ) = f∗Br(Y ), whenever all the fibres over
the points of codimension 1 of Y are split. It remains to show that the split-
ness condition is satisfied when dim(XK) ≥ 3. Recall that, for P ∈ Y of
codimension 1, the property that XP is split does not depend on the choice
of a smooth and proper model X→Y over the local ring OP,Y , see Corollary
10.1.13. If dim(XK) ≥ 3, then the standard reduction procedure described
in the introduction to Section 10.2 allows one to construct a model whose
closed fibre is split. See [CTS93, §3] for more details. �

In the next two sections, we shall consider families f : X→Y for which the
map f∗ : Br(Y )→Br(X) is not necessarily surjective.

11.3 Conic bundles

In this section we assume that char(k) 6= 2. With extra care, one could extend
most results to an arbitrary ground field.

Recall that a conic over a field k is a closed subscheme C ⊂ P2
k defined by

an equation F = 0, where F is a non-zero quadratic form. Since char(k) 6= 2,
one can choose homogeneous coordinates so that F (x, y, z) = ax2 + by2 + cz2

with a, b, c not all equal to zero. The conic C is smooth if and only if abc 6= 0.
The conic C is reduced if and only if at least two of the coefficients are
non-zero.

For any smooth conic C over k there is a quaternion k-algebra Q such that
C is isomorphic to the conic C(Q) attached to Q, see Definition 1.1.11. By
Witt’s theorem (Theorem 1.1.15) two conics are isomorphic if and only if they
are associated to isomorphic quaternion algebras. (For a direct construction
of a quaternion algebra from a conic, see Section 7.1.) By Proposition 1.1.8,
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we have C(Q) ' P1
k if and only if Q is not a division algebra, see also Remark

1.1.12 (3).

Definition 11.3.1 Let B be a smooth and geometrically integral variety over
a field k. A conic bundle over B is a geometrically integral variety X over
k equipped with a proper morphism f : X→B whose generic fibre is a smooth
conic. A regular conic bundle is a conic bundle whose total space X is
smooth over k.

Let K = k(B) be the function field of B and let XK be the generic fibre of
f : X→B. Let A ∈ Br(K) be the class of the quaternion algebra Q such that
XK ' C(Q). If A = 0, then XK ' P1

K , hence Br(XK) ∼= Br(K). If A 6= 0
or, equivalently, XK has no K-point, then, by Proposition 7.2.1, we have an
exact sequence

0 −→ Z/2 −→ Br(K) −→ Br(XK) −→ 0, (11.5)

where 1 ∈ Z/2 is mapped to A ∈ Br(K). In particular, if f : X→B is a
regular conic bundle, then Br(X) = Brvert(X/B).

11.3.1 Conic bundles over a curve

In the case when the base is a curve, any conic bundle has a regular model
such that all fibres are irreducible conics.

Lemma 11.3.2 Let B be a smooth and geometrically integral curve with
function field K = k(B). For any conic bundle f : X→B there is a regular
conic bundle X ′→B such that XK ' X ′K and all fibres of X ′→B are reduced
irreducible conics.

Proof. There is a non-empty open subset U ⊂ B such that all the fibres of
f−1(U)→U are smooth conics. Let P be a closed point of P1

k not in U and let
OP be the local ring of P in B. By Lemma 10.2.1 the generic fibre XK has
a regular model over Spec(OP ) which is the closed subscheme of P2

OP given
either by an equation x2 − ay2 − bz2 = 0 with a, b ∈ O∗P , or by an equation
x2 − ay2 − πz2 = 0, where a ∈ O∗P , π ∈ OP is a uniformiser, and ā ∈ k(P ) is
not a square. We note that in both cases the closed fibre of this model is a
reduced irreducible conic. There exists a Zariski open neighbourhood UP ⊂ B
of P such that this regular model over Spec(OP ) extends to a regular UP -
scheme X ′P and the restrictions of X ′P and X to UP r {P} are isomorphic.
Thus we can glue f−1(U) with X ′P for all closed points P ∈ B not in U to
obtain a B-scheme X ′. Each fibre of the morphism X ′→P1

k is either a fibre of
f−1(U)→U or a fibre of one of the morphisms X ′P→UP , and these schemes
are separated, thus the k-scheme of finite type X ′ is separated and hence is
a variety over k. We conclude that X ′→B is a desired conic bundle. �
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Let f : X→B be a regular conic bundle over a smooth and geometrically
integral curve B all of whose fibres are reduced irreducible conics. In view
of Lemma 11.3.2 we may restrict our attention to such ‘relatively minimal’
conic bundles. As above, let K = k(B) and let A ∈ Br(K) be the class of the
quaternion algebra associated to the conic over K which is the generic fibre
of f . Let S be the finite set of closed points P ∈ B such that the fibre XP is
not smooth over k(P ). Then XP is a singular, reduced and irreducible conic.
Thus the restriction of X to Spec(OP ) is isomorphic to the closed subscheme
of P2

OP given by x2 − ay2 − πz2 = 0 for some a ∈ O∗P such that the image of
a in k(P ) is not a square. Let us denote this image by aP . The closed fibre
XP ⊂ P2

k(P ) is given by x2 − aP y2 = 0. To a point P ∈ S we associate the

quadratic field extension FP = k(P )(
√
aP ) of the residue field k(P ); it is the

extension over which XP decomposes as a pair of transversal lines, with a
unique intersection point defined over k(P ). We have A = (a, π) ∈ Br(K),
hence by (1.18) we get

∂P (A) = aP ∈ k(P )∗/k(P )∗2 = H1(k(P ),Z/2).

This shows that FP depends only on the generic fibre XK ; equivalently, aP
depends only on XK up to multiplication by a square in k(P )∗.

We now consider conic bundles over the projective line.

Lemma 11.3.3 Let k be a field of characteristic zero. Let f : X→P1
k be a

regular conic bundle all of whose fibres are reduced irreducible conics. Let
K = k(P1

k) and let A ∈ Br(K) be the class of the quaternion algebra associated
to the conic XK . Then the following properties are equivalent.

(a) The class A is in the image of Br(k)→Br(K).
(b) There exists a smooth conic C over k such that XK ' C ×k K.
(c) For every closed point P ∈ P1

k, the fibre XP is smooth.

If these properties do not hold, then the map Br(k)→Br(X) is injective.

Proof. We shall use Proposition 1.1.8 without further mention.
It is clear that (b) implies (a). Let us show the reverse implication. Write

A = (u, v) ∈ Br(K) with u, v ∈ K∗. Since k is infinite, there exists a k-point
P in P1

k where u and v are invertible. Let u(P ) ∈ k∗ be the value of u at P and
let v(P ) ∈ k∗ be the value of v at P . Under the assumption of (a), the class
(u, v) ∈ Br(K) is the image of (u(P ), v(P )) ∈ Br(k) under the restriction map
Br(k)→Br(K). Indeed, the composition of the natural map Br(k)→Br(OP )
and the evaluation map Br(OP )→Br(k) is the identity map on Br(k), and
the natural map Br(OP )→Br(K) is injective. Thus (a) implies (b).

The equivalence of (a) and (c) follows from the Faddeev exact sequence
(1.34) via the interpretation of the class of aP in k(P )∗/k(P )∗2 as the residue
of A at P .
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The kernel of Br(k)→Br(X) ↪→ Br(k(X)) is equal to the kernel of the
composition

Br(k) ↪→ Br(K)→Br(XK) ↪→ Br(k(X)).

By (11.5), this map is injective unless A 6= 0 is in the image of Br(k)→Br(K).
This establishes the last statement. �

Proposition 11.3.4 Let k be a field of characteristic zero. Let f : X→P1
k be

a regular conic bundle all of whose fibres are reduced irreducible conics. Let S
be the finite set of closed points P ∈ P1

k such that the fibre XP is not smooth
over the residue field k(P ). If the class A ∈ Br(K) associated to the conic
XK is not in the image of Br(k)→Br(K), then there is an exact sequence

0 −→ Br(k) −→ Br(X) −→
⊕
P∈S

(Z/2)P /〈∂(A)〉 −→ k∗/k∗2,

where ∂(A) ∈
⊕

P∈S(Z/2)P =
⊕

P∈S H1(FP /k(P ),Z/2) is the vector with
coordinates ∂P (A). The last map sends 1 ∈ (Z/2)P to the class of the norm
Nk(P )/k(aP ) in k∗/k∗2.

Proof. In our situation, the second exact sequence of Proposition 11.1.8 gives
rise to the exact sequence

0 −→ Br(k) −→ ρ−1(Br(X)) −→
⊕
P∈S

H1(FP /k(P ),Z/2) −→ H1(k,Z/2).

By the last claim of Proposition 11.1.8, each map

H1(FP /k(P ),Z/2) −→ H1(k,Z/2)

sends the generator of H1(FP /k(P ),Z/2) ∼= Z/2 to the class of Nk(P )/k(aP )
in k∗/k∗2 ∼= H1(k,Z/2). Recall that Ker(ρ) is the group of order 2 gener-
ated by A, see (11.5). The proposition now follows from the identification
Brvert(X/P1

k) = Br(X) established in Lemma 11.3.3. �

Corollary 11.3.5 Let k be a field of characteristic zero. Let f : X→P1
k be a

regular conic bundle all of whose fibres are reduced irreducible conics. Assume
that the class associated to the conic XK is not in the image of Br(k)→Br(K).
Let S be the finite set of closed points P ∈ P1

k such that the fibre XP is not
smooth over the residue field k(P ). Fix a k-point M ∈ P1

k(k) such that the
fibre XM is smooth. Let A1

k = Spec(k[t]) = P1
k r {M}. Then we have a direct

sum decomposition
Br(X) = Br(k)⊕ f∗B,

where B ⊂ Br(K) = Br(k(t)) is a finite subgroup whose elements have the
following explicit description.

Let P (t) ∈ k[t] be the monic irreducible polynomial such that P is the zero
set of P (t). Let τP ∈ k(P ) be the image of t in k(P ) = k[t]/(P (t)). Consider



276 11 Families of varieties

the subgroup B ⊂ F|S|2 of vectors ε = (εP ) such that∏
P∈S

Nk(P )/k(aP )εP = 1 ∈ k∗/k∗2.

The injective map B→Br(K) sends ε to

Aε =
∑
P∈S

εP coresk(P )(t)/k(t)(t− τP , aP ),

where (t − τP , aP ) is the class of the quaternion algebra Q(t − τP , aP ) in
Br(k(P )(t)).

Proof. A calculation based on Proposition 1.4.7 and formula (1.18), gives
∂P (Aε) = aεPP . (Compare with the discussion at the end of Section 1.5.) This
shows that the map B→Br(K) is indeed injective. Then the statement follows
from Proposition 11.3.4. �

Exercise 11.3.6 Show that for any ε ∈ B the class Aε is unramified at M
and, moreover, Aε(M) = 0.

Exercise 11.3.7 Let P (x) ∈ k[x] be a separable polynomial and let a ∈ k∗,
a /∈ k∗2. Let f : X→P1

k be a regular conic bundle birationally equivalent to
the Châtelet surface given by the affine equation

y2 − az2 = P (x)

over A1
k = Spec(k[x]). Prove the following statements.

(a) If P (x) is irreducible, or is the product of two irreducible polynomials of
odd degree, then Br(X)/Br(k) = 0.

(b) If P (x) is the product of two non-constant irreducible polynomials of even
degree, each of which is irreducible over k(

√
a), then Br(X)/Br(k) = Z/2.

(c) Assume that the degree of P (x) is even. (It is always possible to reduce to
this case by choosing the point at infinity in P1

k with smooth fibre.) Let n
be the number of monic irreducible factors of P (x) of even degree which
remain irreducible over k(

√
a). Let m be the (even) number of monic

irreducible factors of P (x) of odd degree. Then Br(X)/Br(k) = (Z/2)s,
where s = n− 1 if m = 0 and s = n+m− 2 if m > 0.

Remark 11.3.8 Let X→P1
k be a regular conic bundle all of whose fibres

are reduced irreducible conics. We assumed char(k) = 0, hence ks = k. The
generic fibre of Xs→P1

ks
is a smooth conic over the field ks(P1

k). By Theorem
1.1.14, this conic has a rational point, hence is isomorphic to the projective
line. Thus the function field ks(X) is a purely transcendental extension of
ks. The smooth projective surface Xs is birationally equivalent to P2

ks
, hence

Br(Xs) = 0 and Br1(X) = Br(X). Besides the recipe of Proposition 11.3.4,
one can determine Br(X)/Br(k) by identifying the Galois action on Pic(Xs)
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and then computing H1(k,Pic(Xs)). By Remark 5.4.3 (2), the last group is
Br1(X)/Br(k).

This method produces the finer birational invariant given by the Galois
module Pic(Xs) up to addition of a permutation module (Proposition 6.2.12)
but it is slightly less effective for producing explicit generators of the group
Br(X). Further references are [CTSS87], [Sko96], [Sko01, §7.1].

11.3.2 Conic bundles over a complex surface

The following result is due to Artin and Mumford [AM72, §3, Thm. 1] in
the case when S is a smooth, projective, rational surface. We sketch a proof
based on the Bloch–Ogus theory and Kato complexes.

Theorem 11.3.9 Let S be a smooth integral surface over C. Let n be a
positive integer.

(i) For any integer j, there is a natural complex

0 −→ H2(C(S), µ⊗jn )
{∂x}−→

⊕
x∈S(1)

H1(C(x), µ⊗(j−1)
n ) −→

⊕
y∈S(2)

µ⊗(j−2)
n −→ 0.

(ii) For each x ∈ S(1), the map ∂x in (i) is the Gysin residue. When j = 2,
the value of the residue map

∂x : H2(C(S), µ⊗2
n ) −→ C(x)∗/C(x)∗n

on a ∪ b, where a, b ∈ H1(C(S), µn) ∼= C(S)∗/C(S)∗n, is the inverse of the
value given by formula (1.18).

(iii) For each y ∈ S(2) and each x ∈ S(1), the map

H1(C(x), µ⊗(j−1)
n ) −→ µ⊗(j−2)

n

is zero when y is not in the closure of x, otherwise it is the sum of Gysin
residues ∂z computed at the points z above y on the normalisation of the
closure of x. For j = 1, this is the map C(x)∗/C(x)∗n→Z/n induced by the
valuation at z.

(iv) When j = 1, passing to the limit in n we obtain the complex

0 −→ Br(C(S)) −→
⊕
x∈S(1)

H1(C(x),Q/Z) −→
⊕
y∈S(2)

(Q/Z)(−1) −→ 0.

The kernel of the map Br(C(S))→
⊕

x∈S(1) H1(C(x),Q/Z) is Br(S).

(v) If S is projective and rational then the complexes in (i) are exact except

at the last term, where the homology group is µ
⊗(j−2)
n , the map being the sum
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over all points y ∈ S. In this case we have an exact sequence

0→Br(C(S))→
⊕
x∈S(1)

H1(C(x),Q/Z)→
⊕
y∈S(2)

(Q/Z)(−1)→(Q/Z)(−1)→0.

Proof. Let X be a smooth integral variety over C. We write η for the generic
point Spec(C(X)). Let q ≥ 0 be an integer. Let Hq(µ⊗jn ) be the Zariski
sheaf on X associated to the presheaf U 7→ Hq

ét(U, µ
⊗j
n ). Then there is the

local-to-global spectral sequence

Epq2 = Hp
zar(X,Hq(µ⊗jn ))⇒ Hn

ét(X,µ
⊗j
n ). (11.6)

By the Gersten conjecture for étale cohomology proved by Bloch and Ogus
in 1974 (see [CT95a, CTKH97]) there is an exact sequence of Zariski sheaves

0→Hq(µ⊗jn )→iη∗Hq(C(X), µ⊗jn )→
⊕

x∈X(1)

ix∗H
q−1(C(x), µ⊗(j−1)

n )→ . . .

(11.7)
which is a flasque resolution of the sheafHq(µ⊗jn ). Here iη∗ is the map induced
by the natural map i : η→X, and similarly for ix∗. This construction uses
Gysin maps, so the maps in the exact sequence (11.7) are induced by Gysin
residues. The second statement of (ii) follows from Theorems 1.4.14 and 2.3.5.

A priori different, explicit complexes with explicitly defined maps were
later introduced by K. Kato in [Kat86], where they are called “arithmetical
Bloch–Ogus complexes”. Kato’s complexes are compatible with maps from
Milnor K-theory to Galois cohomology, thus the values of residues on symbols
are easy to identify. See also [Kerz09] and [GS17, §8.1, §8.2]. That the maps
in the Bloch–Ogus complex and in the Kato complex coincide up to precise
changes of signs was established by Jannsen, Saito and Sato [JSS14, §3.5].
The above description of the maps in the complexes follows from the results
of this paper. In the main case of interest further down in this section, the
coefficients of the cohomology groups are Z/2, hence there are no problems
with signs.

Since flasque sheaves are acyclic, taking global sections of the flasque res-
olution gives the Zariski cohomology groups of the sheaves Hq(µ⊗jn ). In par-
ticular, we obtain

Hp
zar(X,Hq(µ⊗jn )) = 0, p > q.

Together with the spectral sequence (11.6) this gives an injective map

H1
zar(X,H2(µ⊗jn )) ↪→ H3

ét(X,µ
⊗j
n ). (11.8)

Now set q = 2 and j = 2. Taking global sections of the flasque resolution
(11.7) we obtain a complex

0 −→ H2(C(X), µ⊗2
n ) −→

⊕
x∈X(1)

H1(C(x), µn) −→
⊕

x∈X(2)

Z/n −→ 0. (11.9)
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By the purity theorem for the Brauer group we have an exact sequence

0 −→ Br(X)[n] −→ Br(C(X))[n] −→
⊕

x∈X(1)

H1(C(x),Z/n).

It shows that the cohomology group of (11.9) at H2(C(X), µ⊗2
n ) is canonically

isomorphic to Br(X)[n] ⊗ µn. The cohomology group at the middle term is
H1

zar(X,H2(µ⊗jn )). Finally, the cohomology group at the right term is the
cokernel of the map ⊕

x∈X(1)

C(x)∗/C(x)∗n −→
⊕

x∈X(2)

Z/n

induced by the divisor map on the normalisation of the closure of x in X.
This group is CH2(X)/n, the mod n quotient of the codimension 2 Chow
group CH2(X).

If X is a smooth, projective, integral, rational variety over C, then we
have H1

ét(X,Z/n) = 0. Indeed, H1
ét(X,Z/n) is a birational invariant and it

vanishes for X = PmC .
Let us specialise to the case when X = S is a smooth, projective, in-

tegral rational surface. From H1
ét(S,Z/n) = 0 and Poincaré duality for

étale cohomology we get H3
ét(S,Z/n) = 0. Now the inclusion (11.8) gives

H1
zar(S,H2(µ⊗jn )) = 0. The Chow group of zero-cycles of degree zero on any

smooth projective connected variety is divisible, as one sees by reducing to
the case of curves. Hence for a surface the degree map CH2(S)→Z induces
an isomorphism CH2(S)/n

∼−→ Z/n.
Since S is a smooth and projective rational variety, we have Br(S) = 0 by

Corollary 6.2.11. The complex (11.9) then gives the exact sequence

0→Br(C(S))[n]⊗ µn→⊕x∈X(1) C(x)∗/C(x)∗n→⊕x∈X(2) Z/n→Z/n→0.

Twisting by µ
⊗(−1)
n and passing to the direct limit over all integers n gives

the exact sequence in (v), which is [AM72, §3, Thm. 1]. �

Theorem 11.3.10 Let S be an integral surface over C. All elements of
Br(C(S))[2] are the classes of quaternion algebras.

Proof. Any element of order 2 in the Brauer group of a field of character-
istic not equal to 2 is the class of a tensor product of quaternion algebras.
This is a special case of Merkurjev’s theorem [Mer81], [GS17, Thm. 1.5.8],
which is itself a special case of the Merkurjev–Suslin theorem [MS82], [GS17,
Thm. 8.6.5]. In the special case when the field is the field of rational func-
tions on a surface over C, this theorem was proved earlier by S. Bloch [Blo80,
Thm. (5.7)]. The tensor product of two quaternion algebras over C(S) is
similar to a quaternion algebra. This follows from Albert’s criterion [GS17,
Thm. 1.5.5] and the fact that a quadratic form in at least five variables over
C(S) has a nontrivial zero [Lang52]. �
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For an elaborate proof using more elementary tools, see [Art82, Thm. 6.2].

Corollary 11.3.11 Let S be a smooth, projective, integral rational surface
over C. Suppose that {γx} ∈ ⊕x∈S(1)H1(C(x),Z/2) has trivial image in
⊕y∈S(2)Z/2. Then there exists a quaternion algebra α over C(S) whose class

in Br(C(S)) has residue γx ∈ H1(C(x),Z/2) at each x ∈ S(1). The class of α
in Br(C(S)) is uniquely defined.

Proof. This follows from Theorems 11.3.9 (v) and 11.3.10. �

Note that the above proof is far from constructive: it is not clear how to
find rational functions f and g in C(S)∗ such that α = (f, g) ∈ Br(C(S))[2].

Proposition 11.3.12 Let S be a smooth integral surface over C and let
π : X→S be a proper morphism. If X is smooth and all the fibres of π are
conics, then the morphism π is flat and the locus C ⊂ S of points P whose
fibre f−1(P ) is not smooth is a curve with at most ordinary quadratic singu-
larities.

Proof. See [Bea77, Ch. I, Prop. 1.2]. There the surface S is P2
C but the argu-

ments are purely local for the étale topology on S. �

Lemma 11.3.13 Let S be a smooth, projective, integral surface over C and
let π : X→S be a regular conic bundle. Let Xη be the generic fibre of π. Let
α ∈ Br(C(S))[2] be the associated quaternion algebra class. Let Σ be the finite
set of codimension 1 points x ∈ S such that ∂x(α) 6= 0. Then there exists a
regular conic bundle π′ : X ′→S with generic fibre isomorphic to Xη, such that
all fibres of π′ at codimension 1 points not in Σ are smooth conics, and such
that the fibre of π′ at a point x ∈ Σ is the union of two conjugate lines over
k(x) defined over the quadratic extension given by ∂x(α) ∈ k(x)∗/k(x)∗2.

Proof. This follows by patching from a similar statement for regular conic
bundles over discrete valuations rings, see Section 10.2. �

Theorem 11.3.14 Let S be a smooth projective rational surface over C and
let π : X→S be a regular conic bundle. Let α ∈ Br(C(S))[2] be the associated
quaternion algebra class. Assume that α 6= 0. Let C1, . . . , Cn be the integral
curves in S such that the residue of α at the generic point of Ci is non-zero:

0 6= ∂Ci(α) ∈ H1(C(Ci),Z/2) ∼= C(Ci)
∗/C(Ci)

∗2.

Assume that each Ci is smooth and that C = ∪ni=1Ci is a curve with at most
ordinary quadratic singularities. Let H ⊂ (Z/2)n be the subgroup consisting
of the elements (r1, . . . , rn) such that for i 6= j we have ri = rj if there is a
point P ∈ Ci ∩ Cj with the property that ∂P (∂Ci(α)) = ∂P (∂Cj (α)) ∈ Z/2 is
non-zero. Then Br(X) is the quotient of H by the diagonal element (1, . . . , 1)
which is the image of α.
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Proof. By the birational invariance of Br(X) we can assume without loss
of generality that π : X→S satisfies the conclusion of Lemma 11.3.13. The
generic fibre Xη of π is a smooth conic over the function field C(S). The
natural map Br(C(S))→Br(Xη) is surjective with kernel Z/2 spanned by
α 6= 0 (Proposition 7.2.1). Choose any β ∈ Br(X). The image of β in Br(Xη)
is the image of some ρ ∈ Br(C(S)). For x ∈ S(1) write γx = ∂x(α). Comparing
the residues of ρ on S and on X, see diagram (11.3), we note that for any x in
S(1) the residue of ρ in H1(C(x),Q/Z) lies in the subgroup of H1(C(x),Z/2)
generated by γx. Since S is rational, we have Br(S) = 0. Thus the total
residue map Br(C(S))→ ⊕s∈S(1) H1(C(x),Q/Z) is injective, hence 2ρ = 0,
so that Br(X) is of exponent 2. Moreover, the injective image of Br(X) in
Br(C(X)) coincides with the image of a certain subgroup of Br(C(S))[2] under
the natural map Br(C(S))[2]→Br(C(X))[2] (whose kernel Z/2 is generated
by α).

Let us prove that this subgroup consists of the classes ρ ∈ Br(C(S))[2]
unramified outside C and with the property that

(∂C1
(ρ), . . . , ∂Cn(ρ)) = (r1γ1, . . . , rnγn) ∈

n⊕
i=1

H1(C(Ci),Z/2)

is in the kernel of the map

n⊕
i=1

H1(C(Ci),Z/2) −→
⊕
y∈S(2)

Z/2.

Indeed, let v : C(X)→Z be a discrete valuation of the function field C(X)
of X. It restricts to a trivial valuation of C. Without loss of generality we
can assume that v restricts to a non-trivial valuation on C(S). Let Fv be the
residue field of v. Since S is projective, the valuation v is centred at a point
M of the scheme S. If M /∈ C, then clearly π∗(ρ) is unramified at v. If M is
the generic point of one of the Ci’s, then the residue of ρ at v is a multiple
of the residue of α at v, hence is zero since α = 0 in Br(C(X)).

In the following arguments, we shall systematically use formula (1.18).
Assume that M is a closed point which lies on exactly one Ci. Since (11.9)

is a complex, the residue γi can be represented by the class of a rational
function invertible at M . One may lift this function to a rational function h
on S invertible at M . If u is a local equation for Ci ⊂ S at M , the difference
α − (h, u) is in the Brauer group of the local ring of S at M , because it has
trivial residues at the curves passing through M . Thus the image of (h, u)
in Br(C(X)) is unramified at v. Similarly, the difference ρ− ri(h, u) is in the
Brauer group of the local ring of S at M . Hence the image of ρ in Br(C(X))
is unramified at v.

Let us now consider the case when M lies at the intersection of two curves
C1 and C2.
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Suppose first that ∂M (∂C1
(α)) = ∂M (∂C2

(α)) = 0 ∈ Z/2. Let u1, respec-
tively u2, be a local equation at M for C1 ⊂ S, respectively for C2 ⊂ S.
There are rational functions h1 and h2 on S invertible at M with the prop-
erty that ρ − r1(h1, u1) − r2(h2, u2) is in the Brauer group of the local ring
of S at M . The residue of the image of ρ in Br(C(X)) at v is then the class
of a product of powers of h1(M) and h2(M) in F ∗v /F

∗2
v , and this is 1, since

h1(M), h2(M) ∈ C∗.
Suppose now that ∂M (∂C1

(α)) = ∂M (∂C2
(α)) = 1 ∈ Z/2. By assumption,

we then have r1 = r2. Thus locally around M , the residue of ρ is a multiple
of the residue of α, hence there exists an integer s (equal to 0 or 1) such that
ρ − sα is in the Brauer group of the local ring of S at M . Since α vanishes
in Br(C(X)), we conclude that the image of ρ in Br(C(X)) is unramified at
v. �

Remark 11.3.15 By a definition common in the literature on complex al-
gebraic geometry, a “standard conic bundle” over a surface S is a proper
flat morphism f : X→S of smooth, projective, geometrically integral vari-
eties such that each fibre is a conic, the locus C ⊂ S where f is not smooth
is a simple normal crossings divisor with smooth components, and f is rela-
tively minimal. (Relative minimality means that any birational S-morphism
X→X ′, where X ′ is a smooth and projective variety with a morphism to S,
is an isomorphism.) Assume that X→S is a standard conic bundle – this is
a stronger assumption than the hypothesis of Theorem 11.3.14. At a point
P ∈ S where two irreducible components C1 and C2 of C meet, the conic
bundle can be given by an equation

X2 − uY 2 − vT 2 = 0

over the completion C[[u, v]], see [Bea77, Lemme 1.5.2]. Thus the associated
quaternion algebra α is (u, v). Then

∂P (∂C1
(α)) = 1 = ∂P (∂C2

(α)).

Hence for all Ci in a given connected component of C, the integers ri are
equal. Then Theorem 11.3.14 gives the formula Br(X) ' (Z/2)c−1, where c
is the number of connected components of C. This result is mentioned by
V.A. Iskovskikh in [Isk97, Teorema, p. 206]; it can also be extracted from the
paper [Zag77].

Remark 11.3.16 A. Pirutka [Pir18, Thm. 3.17] obtained an analogue of
Theorem 11.3.14 for the total space of a family of 2-dimensional quadrics
over a rational surface.
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11.3.3 Variations on the Artin–Mumford example

Now let us take S = P2
C. Let E1 and E2 be two transversal smooth cubic

curves in S. Let γi ∈ H1
ét(Ei,Z/2), γi 6= 0, for i = 1, 2. By Corollary 11.3.11

there exists a unique quaternion algebra class α ∈ Br(C(P2))[2] unramified
outside of E1 ∪ E2, with residues γ1 on E1 and γ2 on E2. Let π : X→P2

C
be a regular conic bundle whose generic fibre is a conic corresponding to
α ∈ Br(C(P2)) as in Definition 1.1.11. By Proposition 7.2.1 (Witt’s theorem)
the kernel of the map Br(C(P2))→Br(C(X)) is Z/2 generated by α. Theorem
11.3.14 gives Br(X) = Z/2.

Artin and Mumford [AM72] provided a concrete example of such a sit-
uation and proved that Br(X) 6= 0 by computing H3(X(C),Z)tors on an
explicit smooth projective model. In [AM72, §2] they construct a singular va-
riety V which is a double cover of P3

C ramified along a special quartic surface

with 10 nodes. They compute an explicit resolution of singularities Ṽ→V
and determine H3(Ṽ ,Z)tors. In [AM72, §3], they study general conic bundles
over rational complex surfaces. At the end of [AM72, §4], they come back to
the variety V of [AM72, §2] and show that it is birationally equivalent to a
conic bundle, and look at it from this point of view. Here are some details
(cf. [CTO89]).

Artin and Mumford start with the following data: a smooth conic C ⊂ P2
C

and two smooth cubic curves E1 and E2 which are each tritangent to C in
distinct points P1, Q1, R1 and P2, Q2, R2 and such that E1 and E2 intersect
transversally. Such configurations exist. Indeed, let us start with a smooth
conic C given by an equation q(x, y, t) = 0. Fix three distinct points P1, Q1,
R1 on C. Let l1 = 0, m1 = 0, n1 = 0 be equations of the lines through
two of these points. Let d1 be the equation of a line which is transversal to
l1m1n1 = 0, in particular, d1 does not pass through any of the points P1,
Q1, R1. The linear system of cubics given by λqd1 + µl1m1n1 = 0 has 6
base points: P1, Q1, R1 and the points A1, B1, C1 given by l1 = d1 = 0,
m1 = d1 = 0, n1 = d1 = 0, respectively. For each of the 6 points there is a
cubic curve in the linear system which is not singular at that point (the cubic
l1m1n1 is non-singular at A1, B1, C1, whereas qd1 is non-singular at P1, Q1,
R1). By one of the Bertini theorems over a field of characteristic zero [Jou84,
Ch. I, Thm. 6.3.2], there exist smooth curves in this pencil. Any such curve
intersects q = 0 exactly in the points P1, Q1, R1, each time with multiplicity
2, hence is tangent to q = 0 at these points. Fix such a curve, with equation
h1 = 0. Then we choose three other points P2, Q2, R2 on C; they give rise to
l2, m2, n2 as above. Choose a line d2 = 0 transversal to l2m2n2 = 0 and such
that d2 = 0 does contain any of the common points of h1 = 0 and l2m2n2 = 0.
The linear system of cubics λqd2 +µl2m2n2 = 0 has no base point contained
in the curve h1 = 0. As above, the Bertini theorem ensures that the general
member of this system is a smooth cubic curve h2 = 0 tangent to C at P2,
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Q2, R2. Moreover, the same Bertini theorem ensures that one can find h2

such that h2 = 0 is transversal to h1 = 0.

Let l = 0 be a general tangent line to C. Then it is not hard to check (see
[CTO89]) that the quaternion algebra (q/l2, h1h2/l

6) is unramified outside
E1 ∪ E2 and its residue at Ei is a non-zero element γi ∈ H1

ét(Ei,Z/2), for
i = 1, 2. Similarly, the unique non-trivial residue of the quaternion algebra
(q/l2, h1/l

3) is γ1 ∈ H1
ét(E1,Z/2). By Theorem 11.3.14, for any regular conic

bundle π : X→P2
C whose generic fibre is a conic with associated quaternion

algebra (q/l2, h1h2/l
6), the image of the class (q/l2, h1/l

3) ∈ Br(C(P2)) in
Br(C(X)) is a non-trivial element of Br(X).

One advantage of this concrete representation is that it leads to a proof
of the unirationality of this particular variety X. Indeed, the conic bundle
acquires a rational section after the base change from P2

C to the double cover
z2 = q(x, y, t). This equation defines a smooth quadric in P3

C which is a
rational variety.

In Section 12.1.2 we shall use this very special example for a deformation
argument.

Similar examples are given in [CTO89]. The ramification locus in [CTO89,
Example 2.4] is a union of eight lines.

Exercise 11.3.17 Let X→P2
C be a regular conic bundle. If the ramification

locus C = ∪ni=1Ci is a union of n ≤ 5 lines without triple intersections, then
Br(X) = 0.

In fact, one can drop the assumption about triple intersections. For this,
blow up P2

C in the points where more than two lines meet. We obtain a surface
S, where the reduced total transform of the five lines (including the excep-
tional curves produced in the process) is a divisor C with normal crossings.
We also obtain a regular conic bundle X ′→S unramified outside C. Check
that for any initial configuration of 5 lines, we have Br(X) = 0.

Exercise 11.3.18 Construct regular conic bundles X→P2
C with Br(X) 6= 0

ramified exactly in the union of six lines.
It is enough to take six lines in general position and partition them into two

triples, say L1, L2, L3 and M1,M2,M3. Choose γL1
∈ C(L1)∗/C(L1)∗2 to be

the class of a rational function whose divisor on L1 is (L1∩L2)−(L1∩L3), and
similarly for the other lines. One immediately checks that the assumptions
of Corollary 11.3.11 are fulfilled for the family γx with γx = γL1 at x = L1,
similarly at the other five lines, and 1 ∈ C(x)∗/C(x)∗2 at other codimension
1 points. There thus exists a quaternion algebra (a, b) over C(S) which has
exactly these residues. Thus one constructs a regular conic bundle X→S = P2

C
whose ramification locus is the union of these six lines in P2

C.
Choosing six lines tangent to a given smooth conic, one produces a degen-

erate version of the Artin–Mumford example.
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Exercise 11.3.19 Let (u, v) be the coordinates in A2
C. Let X→A2

C be the
conic bundle given in A2

C × P2
C by the equation

S2v(v2 − 1)− T 2u(u2 − 1) + uv(u2 − v2)W 2 = 0.

Let Y→A2
C be the conic bundle given in A2

C × P2
C by the equation

S2 − uT 2 − vR2 = 0.

By computing residues on A2
C show that X and Y are birationally equivalent

over A2
C. Hint: Use the fact that if two quaternions algebras have the same

class in the Brauer group, then the associated conics are isomorphic. Conclude
that X is rational over C. For background and a detailed proof, see [CT15].

Remark 11.3.20 A construction of a unirational but not stably rational va-
riety fibred in Severi–Brauer varieties over P2

C. In [CTO89, Exemple 2.4] one
constructs a non-trivial unramified Brauer class in the function field of a
conic bundle over P2

C without actually producing a nice explicit model. This
example can be generalised.

Let p be a prime. Let L1, respectively L2, be the line in P2
C given by the

affine equation u = 0, respectively by v = 0. Choose p distinct points on each
of these affine lines. Join each of these p points on L1 to all the p points on
L2. Let g1 be an equation of the union of these p2 lines. Do this construction
again using disjoint sets of points. Let g2 be an equation of the union of the
second family of p2 lines. Let ζ be a primitive p-th root of unity. Let X→P2

C
be a proper morphism such that X is smooth and the generic fibre Xη is the
Severi–Brauer variety over C(P2) = C(u, v) attached to the cyclic algebra
(g1g2, u/v)ζ .

By Amitsur’s theorem ([GS17, Thm. 5.4.1], see also Section 7.1), the kernel
of the restriction map Br(C(P2))→Br(C(X)) is the Z/p-module generated
by the class (g1g2, u/v)ζ . Comparing the residues of α = (g1g2, u/v)ζ and
β = (g1, u/v)ζ at codimension 1 points of P2

C, one sees that β is not a multiple
of α, hence its image βC(X) ∈ Br(C(X)) does not vanish. One then shows that
the residue of βC(X) is trivial at any point x of codimension 1 of X by studying
the behaviour of β at the point y ∈ P2 which is the image of x. (Note that y
can have dimension 0, 1 or 2.) Thus Br(X) 6= 0. This implies that X is not
stably rational.

Let K = C(u, v) = C(P2). Let L = K( p
√
g1g2). By Proposition 7.1.12

the generic fibre Xη is birationally equivalent to the affine K-variety with

equation NL/K(Ξ) = u/v. Let E = K( p
√
u/v). We have E = C(u, z), where

zp = u/v, so E is a purely transcendental extension of C. The variety XE =
Xη ×K E is then birationally equivalent to the affine variety over E with
equation NEL/E(Ξ) = 1. As is well-known (Hilbert’s theorem 90 for a cyclic
extension, see the proof of Proposition 7.1.11), the latter variety is an E-torus
isomorphic to the cokernel of the diagonal embedding Gm,E→REL/E(Gm).
But this is an open set of a projective space over E, hence the function field
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of XE is purely transcendental over E, hence over C. Thus the function field
C(X) is contained in a purely transcendental extension of C, hence X is
unirational.

For some recent computations of unramified Brauer groups of conic bun-
dles over threefolds, see [ABBP].

11.4 Double covers

The following theorem is a special case of [Sko17, Thm. 1.1]. We refer to
[Sko17] for the proof of this theorem and more general results.

Theorem 11.4.1 Let k be an algebraically closed field, char(k) 6= 2. Let S
be a smooth, projective, integral surface over k such that Pic(S)[2] = 0 and
Br(S)[2] = 0, for instance a rational surface. Let X be a smooth, projective,
integral surface over k with a morphism π : X→S which makes X a double
cover ramified exactly along a smooth irreducible curve C. Let j : C ↪→ X be
the natural closed embedding. There is a natural map Φ : Pic(C)[2]→Br(X)[2],
which gives rise to an exact sequence

0 −→ Pic(C)[2]/j∗(Pic(X)[π∗]) −→ Br(X)[2] −→ Pic(S)/π∗(Pic(X)) −→ 0.

Here Pic(X)[π∗] denotes the kernel of π∗ : Pic(X)→Pic(S).
In the special case when S = P2

k we have Pic(S) = Pic(P2
k) = Z, hence

Pic(S)/π∗(Pic(X)) is 0 or Z/2.
Here we content ourselves with giving the definition of the map Φ. It comes

from the comparison of the Gysin sequences for étale cohomology groups of
S and X with coefficients µ2 = Z/2:

H2
ét(X,µ2) // H2

ét(X r C, µ2) // H1
ét(C,Z/2) // H3

ét(X,µ2)

H2
ét(S, µ2) //

π∗

OO

H2
ét(S r C, µ2) //

π∗

OO

H1
ét(C,Z/2) //

[0]

OO

H3
ét(S, µ2)

π∗

OO

The morphism π : X→S is ramified along C with ramification index 2, hence
the induced map H1

ét(C,Z/2)→H1
ét(C,Z/2) is zero.

Since S and X are smooth, the restriction maps

Pic(S) −→ Pic(S r C), Pic(X) −→ Pic(X r C)

are surjective, and the restriction maps

Br(S) −→ Br(S r C), Br(X) −→ Br(X r C)
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are injective. Using the Kummer sequences with coefficients µ2, one obtains
a commutative diagram of exact sequences

0 // Br(X)[2] // Br(X r C)[2] // H1
ét(C,Z/2) // H3

ét(X,µ2)

0 // Br(S)[2] //

π∗

OO

Br(S r C)[2] //

π∗

OO

H1
ét(C,Z/2) //

[0]

OO

H3
ét(S, µ2)

π∗

OO

We thus get a map

Φ : Ker[H1
ét(C,Z/2)→H3

ét(S, µ2)] −→ Br(X)[2]/π∗(Br(S)[2]).

Assuming Pic(S)[2] = 0, we have H1
ét(S, µ2) = 0 and thus by Poincaré duality

H3
ét(S, µ2) = 0. If, moreover, Br(S)[2] = 0, then we get a map

Φ : Pic(C)[2] ∼= H1
ét(C,Z/2) −→ Br(X)[2].

Remark 11.4.2 (1) We have a natural inclusion

H1
ét(C,Z/2) ↪→ H1(k(C),Z/2) ∼= k(C)∗/k(C)∗2,

where injectivity is due to the fact that C is normal and the isomorphism
comes from the Kummer sequence. The image of H1

ét(C,Z/2) consists of the
classes of rational functions f ∈ k(C)∗ such that div(f) = 2D for a divisor
D on C. Via the map Φ such a rational function gives rise to an element of
Br(X)[2] ⊂ Br(k(X))[2]. By Merkurjev’s theorem [Mer81], [GS17, Theorems
1.5.8 and 8.6.5] every such class is a sum of quaternion algebras. When k is
algebraically closed, k(X) is a C2-field by a theorem of Lang [Lang52]. By
Albert’s criterion [GS17, Thm. 1.5.5] the class of a sum of quaternion algebras
in Br(k(X)) is equal to the class of a single quaternion algebra. It seems quite
a challenge to construct such a quaternion algebra explicitly starting from a
function f as above.

(2) Other papers have been concerned with double and more generally
cyclic covers [F92, vG05, CV15, IOOV17]. In [IOOV17] for a double cover of
S = P2 as above, one constructs an exact sequence

0→Pic(X)/(Zπ∗(O(1)) + 2Pic(X))→(Pic(C)/ZKC)[2]→Br(X)[2]→0,

where KC ∈ Pic(C) is the canonical class. The map

(Pic(C)/ZKC)[2] −→ Br(X)[2]

has a description in terms of a geometric construction of Azumaya algebras
on X. See also [CV15].

Remark 11.4.3 In a different direction, one can ask the following question.
Suppose that X→S is a double cover of smooth, projective, complex sur-
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faces. Can one compute the kernel of the restriction map Br(S)→Br(X)?
A restriction-corestriction argument shows that this kernel is contained in
Br(S)[2]. An interesting case is that of an Enriques surface S and its unram-
ified double K3 covering X→S over an algebraically closed field of charac-
teristic zero. Here Pic(S) ' Z10 ⊕ Z/2, Br(S) ∼= Z/2, Pic(X) is torsion-free,
and Br(X) ' (Q/Z)s for some integer s with 2 ≤ s ≤ 21. Beauville [Bea09]
showed that the kernel of the map Z/2 = Br(S)→Br(X) ' (Q/Z)s depends
on the Enriques surface S. He proved that in the (coarse) moduli space of
Enriques surfaces, the surfaces S for which the kernel is non-zero, hence is
equal to Z/2, form a countable, infinite union of non-empty algebraic hyper-
surfaces. In [HS05] one finds an example definable over Q for which the map
Br(S)→Br(X) is injective.

One step in Beauville’s proof is the following general result [Bea09,
Prop. 4.1]. Let π : X→S be a cyclic étale covering of smooth projective va-
rieties over an algebraically closed field k. Let σ be a generator of the Ga-
lois group G of π : X→S, and let N = π∗ : Pic(X)→Pic(S) be the natural
norm homomorphism. Then the kernel of π∗ : Br(S)→Br(X) is isomorphic to
Ker(N)/(1− σ∗)Pic(X).

11.5 The universal family of cyclic twists

Let k be a field of characteristic zero and let n ≥ 2 be an integer. Let X and
Y be smooth, projective, geometrically integral varieties over k such that X
has a generically free action of µn and Y is birationally equivalent to the
quotient of X by this action. The associated field extension k(Y ) ⊂ k(X)
can be written as k(X) = k(Y )[t]/(tn − f) for some f ∈ k(Y )∗. For any
a ∈ k∗ one may consider k-varieties Xa such that k(Xa) ' k(Y )[t]/(tn−af).
We shall call them cyclic twists of X. We shall define a ‘universal family of
cyclic twists’. This is a smooth, projective, geometrically integral k-variety
X̃ equipped with a proper morphism X̃→P1

k that is smooth over the open set
Gm,k ⊂ P1

k and such that the fibre at a ∈ k∗ is the cyclic twist Xa as above.

In this section we calculate the vertical Brauer group Brvert(X̃/P1
k) at-

tached to the universal family of cyclic twists X̃→P1
k. We shall identify

Brvert(X̃/P1
k) with a specific subgroup of Br(Y ).

This seemingly very special example of a vertical Brauer group is im-
portant for arithmetic applications to ‘ramified descent’ in Section 14.2.5.
Suppose that k is a number field and the variety Y discussed above is every-
where locally solvable. The vertical Brauer group of the universal family of
cyclic twists is a subgroup of Br(Y ); if it gives no Brauer–Manin obstruction
to the Hasse principle on Y , for example, if it is equal to Br(k), then, under
an appropriate assumption on the ramification, there is an a ∈ k∗ such that
Xa is everywhere locally solvable, see Theorem 14.2.25.
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Let X be a smooth, projective and geometrically integral variety over
k equipped with a generically free action of µn. Thus there is a dense open
subset U ⊂ X on which µn acts freely. By [MumAV, Ch. II, §7, Thm. 1] there
exists a variety V over k and a finite étale morphism π : U→V such that V
is a geometric quotient of U . Then U/V is a µn-torsor [GIT, Prop. 0.9]. This
implies that V is smooth and geometrically integral. Let Y be a smooth,
projective and geometrically integral variety which contains V as a dense
open set.

For a ∈ k∗ the cyclic twist Xa of X by a is the quotient of X ×k Ta by
the diagonal action of µn, where Ta is the µn-torsor over k given by xn = a.
The twists are naturally parameterised by the points of Gm,k and there is a
universal family of cyclic twists X→Gm,k. More precisely, one defines X as
the quotient of X ×k Gm,k by the diagonal action of µn, where µn ⊂ Gm,k
acts on Gm,k by multiplication. (The quotient exists as a variety because
X ×k Gm,k is quasi-projective, see [MumAV, Ch. II, §7, Thm. 1].) Then
V = (U ×k Gm,k)/µn is Zariski open in X . The projection U ×k Gm,k→U
gives rise to a map V→V which is a Gm,k-torsor. We have the following
commutative diagram, where the vertical arrows are quotients by µn and the
arrows pointing left are Gm,k-torsors:

U

��

U ×k Gm,koo //

��

Gm,k

��
V Voo // Gm,k

By Hilbert’s theorem 90 any Gm-torsor is trivial over the generic point. Hence
V, and thus X , is stably birationally equivalent to Y .

Using Hironaka’s theorem, we can compactify X to a smooth, projective,
geometrically integral variety X̃ equipped with a morphism f : X̃→P1

k so

that X = f−1(Gm,k). In particular, the restriction of X̃→P1
k to Gm,k ⊂ P1

k

is smooth with geometrically integral fibres. These fibres are twists of X, so
that the fibre over a ∈ k∗ is Xa. Since X̃ is stably birationally equivalent to
Y , we have an isomorphism (Propositions 6.2.7 and 6.2.9)

Br(X̃ ) ∼= Br(Y ).

Let [U/V ] be the class of the torsor π : U→V in H1
ét(V, µn). Let F ∈ k(Y )∗

be a non-zero rational function such that the generic fibre of π is given by
the equation xn = F . Since U is geometrically integral, F is not a constant
function. In k(X̃ ) we have the relation tun = F , for some u ∈ k(X̃ )∗, where

t ∈ k(X̃ )∗ is the coordinate on Gm,k. Write divY (F ) =
∑
DmDD, where

each D is an integral divisor in Y and mD is a non-zero integer. Let kD be
the integral closure of k in k(D).
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Recall from Lemma 11.1.4 the notation

L(F ) =
⋂
D

Ker[mD reskD/k : H1(k,Q/Z) −→ H1(kD,Q/Z)]. (11.10)

For χ ∈ H1(k,Z/n) we denote by [U/V ]∪χ ∈ H2
ét(V, µn) the element obtained

via the cup-product

H1
ét(V, µn)×H1(k,Z/n) −→ H1

ét(V, µn)×H1
ét(V,Z/n) −→ H2

ét(V, µn).

Let us denote by Aχ ∈ Br(V ) the image of this element under the map
H2

ét(V, µn)→Br(V ) defined by the Kummer sequence. The restriction of Aχ
to Br(k(Y )) is the class of the cyclic algebra (χ, F ). For each irreducible
divisor D ⊂ Y supported in divY (F ) we have

∂D(Aχ) = mDresk(D)/k(χ) ∈ H1(k(D),Q/Z),

which is zero if and only if mDreskD/k(χ) = 0 ∈ H1(kD,Q/Z), by Lemma
10.1.2. We have ∂D(Aχ) = 0 if D is not contained in Y rV . Thus Aχ ∈ Br(Y )
if and only if χ ∈ L(F )[n].

Proposition 11.5.1 In the above notation and assumptions we have the fol-
lowing statements.

(i) The group Brvert(X̃/P1
k) ⊂ Br(X̃ ) ∼= Br(Y ) is generated by Br(k) and

the classes Aχ = (χ, F ) = f∗((χ, t)), where χ ∈ L(F )[n].
(ii) Let m be the g.c.d. of the integers mD, for all integral divisors D in the

support of divY (F ). If (m,n) = 1, then Brvert(X̃/P1
k) is finite modulo

Br(k).
(iii) If (mD, n) = 1 for some integral divisor D in the support of divY (F ),

then each fibre of f : X̃→P1
k is geometrically split.

Proof. (i) Let ϕ : P1
k→P1

k be the finite morphism given by t = zn. By the defi-

nitions of X and X̃ the base change of X̃/P1
k along ϕ is a variety birationally

equivalent to X ×k P1
k over P1

k. We have a commutative diagram

Br(k(z)) // Br(k(X ×k P1
k)) Br(X ×k P1

k)? _oo

Br(k(t))

OO

// Br(k(X̃ ))

OO

Br(X̃ )

OO

? _oo

where the Brauer groups in the right-hand column are identified with the
unramified (over k) subgroups of their ambient groups.

By definition, any element of Brvert(X̃/P1
k) comes from some A ∈ Br(k(t))

whose image in Br(k(X̃ )) lies in Br(X̃ ). The fibres of X→Gm,k are ge-
ometrically integral, thus A can be ramified only at 0 and ∞ (Proposi-
tion 11.1.5). Let χ ∈ H1(k,Q/Z) be the residue of A at ∞. By the di-
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agram, ϕ∗A ∈ Br(k(z)) gives an element of Br(k(X ×k P1
k)) that lies in

Br(X ×k P1
k). However, all fibres of the projection X ×k P1

k→P1
k are geo-

metrically integral, which implies that already ϕ∗A is unramified over k,
so that ϕ∗A ∈ Br(P1

k) = Br(k). The covering ϕ : P1
k→P1

k is ramified at ∞
with ramification index n, hence nχ = 0. Thus χ ∈ H1(k,Z/n). The Fad-
deev exact sequence (Theorem 1.5.2) and formula (1.19) imply that up to
addition of an element of Br(k), the class A is represented by the cyclic al-

gebra (χ, t). In k(X̃ ) we have the relation tun = F , so the image of (χ, t) in

Br(k(X̃ )) = Br(k(Y ×k P1
k)) is the image of (χ, F ) ∈ Br(k(Y )), which is ex-

actly Aχ ∈ Br(V ) ⊂ Br(k(Y )). Thus (χ, t) ∈ Br(X̃ ) if and only if Aχ ∈ Br(Y ).
We have seen that Aχ ∈ Br(Y ) if and only if χ ∈ L(F ). This proves (i).

(ii) Lemma 11.1.4 implies that L(F )[n] is finite in this case.
(iii) Since the fibres over the points other than t = 0 and t = ∞ are

geometrically integral, it is enough to consider the fibre above 0 (the fibre
above ∞ is treated similarly). This geometric fibre has an integral compo-

nent of multiplicity 1 if and only if the morphism X̃→P1
k has a section over

k̄[[t]] (see Corollary 10.1.10). By the valuative criterion of properness, it suf-

fices to show that the generic fibre of X̃→P1
k has a k̄((t))-point. The generic

fibre is the cyclic cover of Y ×k k̄((t)) given by xn = t−1F . By assump-
tion, there is an irreducible divisor D ⊂ Y with valD(F ) = m such that
(m,n) = 1. Take a, b ∈ Z such that am − bn = 1 and a > 0. Consider the
‘constant’ k̄[[t]]-scheme Y = Y ×k k̄[[t]] and let D = D ×k k̄[[t]] ⊂ Y. Since
Y is smooth over k and D is generically smooth, using Hensel’s lemma, we
can find a section s of Y→Spec(k̄[[t]]) such that the value of s at the generic
point Spec(k̄((t))) is outside the support of divY (F ) and the value of s at
the closed point Spec(k̄) is contained in D but not in any other irreducible
component of div(F ); moreover, we can arrange that the intersection index
of D and s in Y is a. Let v be the valuation of the discrete valuation ring
k̄[[t]]. By the construction of s we have v(F (s)) = am, so v(t−1F (s)) =
am− 1 = bn. Thus s lifts to a k̄((t))-point on the cyclic cover of Y ×k k̄((t))
given by xn = t−1F . This means that the generic fibre of W→P1

k has a
k̄((t))-point. �

We compute the group in Proposition 11.5.1 in two concrete situations.
Let p(x) and q(y) be separable non-constant polynomials with coefficients in
k, and let n ≥ 2 be a positive integer. Let C1 and C2 be smooth, projective
curves with affine equations un = p(x) and vn = q(y), respectively.

Example A Let n = 2. Consider the affine surface z2 = p(x)q(y). It is
birationally equivalent to the quotient of C1 ×k C2 by the diagonal action
of µ2 on u and v. Indeed, z = uv is invariant and satisfies z2 = p(x)q(y).
For example, if p(x) and q(y) are of degree 3 or 4, we obtain a K3 surface.
If deg p(x) = deg q(y) = 3, we obtain the Kummer surface associated to the
product of elliptic curves C1 and C2. If deg p(x) = deg q(y) = 4, we obtain
the Kummer surface associated to a 2-covering of the product of Jacobians
of C1 and C2. Such a situation occurs in [SkS05].



292 11 Families of varieties

Example B Here we assume that n = deg p(x) = deg q(x). Let P (x, y) and
Q(z, w) be homogeneous forms of degree n such that p(x) = P (x, 1) and
q(x) = Q(x, 1). The smooth surface S ⊂ P3

k of degree n given by P (x, y) =
Q(z, w) is birationally equivalent to the quotient of C1×kC2 by the diagonal
action of µn on u and v. Indeed, z = u/v is invariant under this action of µn
and satisfies p(x) = q(y)zn. If n = 3, then S is a smooth cubic surface; such
a situation occurs in Swinnerton-Dyer’s paper [SwD01]. If n = 4, then S is a
quartic K3 surface, cf. [GvS].

Let us consider both examples at the same time. In Example A, to fix
ideas, we assume that the degrees of p(x) and q(y) are even. The ramification
locus of the projection C1→P1

k given by x is exactly the zero set of p(x), and
similarly for C2. Define

L1 = k[x]/(p(x)), L2 = k[y]/(q(y)), L = L1 ⊗k L2.

Let Z = Spec(L) ⊂ C1 ×k C2 be the closed subset given by p(x) = q(y) = 0;
this is the fixed locus of the action of µn. Let U be the complement to Z in
C1×kC2. It is clear that U is the largest open subset of C1×kC2 on which the
diagonal action of µn is free. The singular locus of the quotient (C1×kC2)/µn
is Z/µn ∼= Z. We define Y as the minimal resolution of this quotient. Each
singular k̄-point of (C1 ×k C2)/µn is an isolated quotient singularity with a
well known resolution. Over the completion of its local ring, it is isomorphic
to the vertex of the affine cone over the rational normal curve of degree n. The
exceptional divisor of the resolution is a smooth irreducible rational curve E
with (E2) = −n.

Let X be the blow-up of Z in C1 ×k C2. Then we have a finite morphism
π : X→Y of smooth projective varieties whose restriction to U is a torsor
π : U→V with structure group µn. We have the following commutative dia-
gram where the vertical arrows are quotient morphisms by the action of µn
and the horizontal arrows are birational morphisms:

C1 ×k C2

��

Xoo //

��

S′

��
(C1 ×k C2)/µn Yoo // S

The surfaces S and S′ feature only in Example B: here S′ ⊂ P4
k is given

by tn = P (x, y) = Q(z, w) and the action of µn on S′ is by multiplication
on the coordinate t. The natural projection S′→S is a torsor for µn away
from its ramification divisor D which is given by P (x, y) = Q(z, w) = 0.
(Geometrically this is the union of n2 lines joining two sets of n points each.
So Dsing(k̄) consists of 2n points.) Note that S′sing is the union of closed
subsets x = y = 0 and z = w = 0; the image of S′sing in S is Dsing. The
morphism X→S′ is obtained by blowing-up S′sing, and the morphism Y→S
is obtained by blowing-up Dsing.



11.5 The universal family of cyclic twists 293

With notation as before we can take F = P (x, y)/xn, then

L(F )[n] = H1(L/k,Z/n) = Ker[resL/k : H1(k,Z/n)→H1(L,Z/n)].

Proposition 11.5.2 Assume that we are either in the situation of Exam-
ple A, with n = 2 and deg(p(x)), deg(q(x)) even, or Example B, with
n = deg(p(x)) = deg(q(x)).

(i) If L is generated by the subgroups H1(L1/k,Z/n) and H1(L2/k,Z/n),

then Brvert(X̃/P1
k) = Br0(Y ).

(ii) For n = 2 the condition of (i) is satisfied when each of p(x) and q(y) is
irreducible with a pluriquadratic splitting field.

(iii) If n is a prime number, the condition of (i) is satisfied when

p(x) = a1x
n + a2, q(y) = a3y

n + a4, where a1, a2, a3, a4 ∈ k∗.

Proof. (i) Recall that C1 and C2 are curves with affine equations un = p(x)
and vn = q(y), respectively. We have two natural morphisms Y→Ci→P1

k

given by the projections to the coordinates x and y, respectively. The rational
function F on Y can be represented by either p(x) or q(y) modulo n-th pow-
ers. Thus, if χ ∈ H1(L1/k,Z/n), then Aχ = (p(x), χ) ∈ Br(Y ) belongs to the
image of Br(k(x)) in Br(k(Y )). As an element of Br(k(x)), the class (p(x), χ)
is unramified away from the closed points of A1

k given by the monic irre-
ducible factors r(x) of p(x). The residue at the closed point r ∈ A1

k given by
r(x) = 0 is the restriction reskr/k(χ) ∈ H1(kr,Z/n), where kr = k[x]/(r(x)).
Since L1 =

∏
r kr, where the sum is over all monic irreducible r(x) dividing

p(x), we have reskr/k(χ) = 0. Hence (p(x), χ) is unramified everywhere on
A1
k. This implies that (p(x), χ) ∈ Br(k). Similar considerations apply to the

case χ ∈ H1(L2/k,Z/n). This proves (i).
(ii) In this case L is the direct sum of copies of L1L2, the compositum of L1

and L2. All these fields are pluriquadratic extensions of k, and the statement
follows at once.

(iii) In this case n is coprime to [k(ζ) : k] = n− 1, where ζ is a primitive
n-th root of unity. A restriction-corestriction argument then shows that it is
enough to establish (i) for k = k(ζ), but this is straightforward. �

If p(x) and q(y) are very general, then the map k∗/k∗2→L∗/L∗2 is injective.
Such is the case if p(x) and q(y) are both irreducible of degree 4, the Galois
closure of each of the extensions k[x]/(p(x)) and k[y]/(q(y)) is an extension of
k whose Galois group is the symmetric group S4, and these Galois extensions
are linearly disjoint. See [HS16, Prop. 3.1, Lemma 2.1].

For a proof of (iii) in terms of valuations which avoids discussing the
geometry of underlying varieties, see [CT03, Prop. 3.5].



Chapter 12

Rationality in a family

The specialisation method allows one to prove that a smooth and projective
complex variety is not stably rational if it can be deformed into a mildly
singular variety Z whose desingularisation has a non-zero Brauer group. The
original idea is due to C. Voisin [Voi15], who stated it in terms of the de-
composition of the diagonal. In this chapter we present this method in the
set-up proposed by Colliot-Thélène and Pirutka [CTP16] and later simplified
by S. Schreieder. In this form the method can be applied under very mild
additional assumptions. As an example of application, we construct a conic
bundle over P2

C ramified in a smooth sextic curve which is not stably rational.
In Section 12.2 we consider smooth projective fourfolds X with a dominant

morphism X→P2
C such that the generic fibre is a quadric. Using a calculation

of Br(X) in this case, we present the striking recent example of Hassett,
Pirutka and Tschinkel of an algebraic family of smooth projective fourfolds
some of whose elements are rational, whereas others are not even stably
rational.

Most of the material in this chapter follows the exposition in [CT18].

12.1 The specialisation method

12.1.1 Main theorem

The following theorem is Schreieder’s improvement [Sch18, Prop. 26] of the
specialisation method. The assumptions in [Sch18, Prop. 26] are weaker than
in this section. The same proof also works in the more general setting of
higher unramified cohomology with torsion coefficients in place of the Brauer
group.
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Schreieder’s proof is cast in the geometric language of the decomposition
of the diagonal. We give here a more ‘field-theoretic’ proof. It is known that
both points of view are equivalent, cf. [ACTP17, CTP16].

Theorem 12.1.1 Let R be a discrete valuation ring with field of fractions
K and algebraically closed residue field κ of characteristic zero. Let X be an
integral projective scheme over R, whose generic fibre X = XK is smooth and
geometrically integral and whose closed fibre Z/κ is geometrically integral.
Assume that

(i) there exist a non-empty open set U ⊂ Z and a projective, birational

desingularisation f : Z̃→Z such that V = f−1(U)→U is an isomorphism

and such that Z̃ r V is a union ∪iYi of smooth irreducible divisors of Z̃;
(ii) XK is stably rational, where K is an algebraic closure of K.

Then the restriction map Br(Z̃)→⊕i Br(κ(Yi)) is injective. In particular, if

each Br(Yi) = 0, then Br(Z̃) = 0.

Proof. The morphism X→Spec(R) is flat. We can replace R by its completion
and thus assume that R = κ[[t]] and K = κ((t)). Since XK is stably rational,
there exists a finite extension K ′ = κ((t1/n)) of K such that XK′ is stably
rational over K ′. Write R′ = κ[[t1/n]] and XR′ = X ×R R′. Since XR′/R′ is
flat, each of the irreducible components of XR′ dominates Spec(R′), by [EGA,
IV2, Prop. 2.3.4 (iii)]. Since X is geometrically integral, the generic fibre XK′

of XR′/R′ is integral, hence XR′ is an integral scheme. Thus we can replace
X/R by XR′/R′. This operation does not affect the closed fibre.

Now X/R is an integral projective scheme whose generic fibre X/K is
stably rational over K and whose closed fibre Z/κ satisfies (i). Since X is
stably rational over K, by Proposition 6.4.4, for any field extension K ⊂ F
the degree map CH0(XF )→Z is an isomorphism.

Let L = κ(Z). We have a commutative diagram of exact sequences

⊕
i CH0(Yi,L) // CH0(Z̃L) //

f∗

��

CH0(VL) //

∼=
��

0

CH0(ZL) // CH0(UL) // 0

Let us explain how this diagram is constructed. For each i, the closed em-
bedding ρi : Yi→Z̃ induces a map ρi∗ : CH0(Yi,L)→CH0(Z̃L). The top exact
sequence is the classical localisation sequence for the Chow group [Ful98,

Prop. 1.8]. The map f∗ : CH0(Z̃L)→CH0(ZL) is induced by the proper mor-

phism f : Z̃→Z. The map CH0(VL)
∼−→ CH0(UL) is the isomorphism induced

by the isomorphism1 f : V
∼−→ U . Finally, CH0(ZL)→CH0(UL) is the restric-

tion map.

1 Instead of assuming that f−1(U)→U is an isomorphism, it would be enough, as in
[Sch19a], to assume that this morphism is a universal CH0-isomorphism.
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Let ξ be the generic point of Z̃ and let η be the generic point of Z. Choose
m ∈ V (κ) and let n = f(m) ∈ U(κ). Thus η and nL are smooth L-points
of ZL.

Let S = L[[t]] and let F be the field of fractions of S. The extension R ⊂ S
of complete discrete valuation rings is compatible with the extension κ ⊂ L of
their residue fields. By Hensel’s lemma, the points η and nL lift to F -points
of the generic fibre XF of XS/S. Since the degree map CH0(XF )→Z is an
isomorphism, these two points are rationally equivalent in XF . By Fulton’s
specialisation theorem for the Chow group of a proper scheme over a discrete
valuation ring [Ful98, Ch. 20, §3], we obtain η = nL ∈ CH0(ZL). Then from
the above diagram we conclude that

ξ = mL +
∑
i

ρi∗(zi) ∈ CH0(Z̃L),

where zi ∈ CH0(Yi,L). There is a natural bilinear pairing (6.3)

CH0(Z̃L)× Br(Z̃) −→ Br(L).

Suppose that α ∈ Br(Z̃) goes to zero in Br(κ(Yi)), for each i. Since Yi is
smooth and integral, by Theorem 3.5.5 already the image of α in Br(Yi) is
zero. The value α(mL) ∈ Br(L) is just the image of α(m) ∈ Br(κ) = 0. Now

the above equality implies α(ξ) = 0 ∈ Br(L). But since Z̃ is smooth and

integral, the pairing of Br(Z̃) with the generic point ξ ∈ Z̃L(L) induces the

embedding Br(Z̃) ↪→ Br(κ(Z)) = Br(L). Thus α = 0 ∈ Br(Z̃). �

Remark 12.1.2 (1) One may replace condition (ii) in the above theorem
by the weaker condition that XK is universally CH0-trivial. The same proof
works.

(2) In the proof of the theorem, under the assumption of (ii), instead of
specialisation of the Chow group one can use specialisation of R-equivalence
on rational points. See [CTP16, Remarque 1.19], [Pir18, §2.4] and [CT18, §6].

(3) In [CTP16, Thm. 1.14], condition (i) of Theorem 12.1.1 is replaced by

the condition that the desingularisation f : Z̃→Z is universally CH0-trivial,
i.e., for any field extension κ ⊂ L the map f∗ : CH0(Z̃L)→CH0(ZL) is an

isomorphism. Under condition (ii), this implies that Br(Z̃) = 0.

12.1.2 Irrational conic bundles with smooth
ramification

The Artin–Mumford example was used by Voisin [Voi15] to prove that very
general double coverings of P3

C ramified in a smooth quartic hypersurface are
not stably rational. It was used by Colliot-Thélène and Pirutka [CTP16] to
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prove that very general quartic hypersurfaces in P4
C are not stably rational.

The specialisation method was applied in [HKT16] and [BB18] to prove that
for d ≥ 6 very general conic bundles over P2

C ramified in a smooth curve
of degree d are not stably rational. Let us show how the Artin–Mumford
example can be used to establish the following special case of this result.

Proposition 12.1.3 There exists a standard conic bundle X→P2
C ramified

in a smooth curve of degree 6 such that X is not stably rational.

Proof. In Deligne’s Bourbaki talk [Del71] we find the following presentation of
the Artin–Mumford example. As in Section 11.3.3 we are given two transver-
sal smooth cubic curves with homogeneous equations h1 = 0 and h2 = 0 and
a smooth conic q = 0 which is tangent to the cubic hi = 0 in three points
Pi, Qi, Ri, where i = 1, 2. Moreover, the points P1, Q1, R1, P2, Q2, R2 are dis-
tinct and disjoint from the intersection points of the two cubics. Let g = 0 be
a cubic curve that meets the conic in the divisor P1 +Q1 +R1 +P2 +Q2 +R2.
Multiplying g by a non-zero number we arrange that the curve h1h2−g2 = 0
contains the conic as an irreducible component, so that

h1h2 = g2 + qc

for some homogeneous polynomial c of degree 4. Consider the vector bundle
V = O(−2)⊕O(−1)⊕O on P2

C and the quadratic form Φ : V→O given by

Φ(x, y, z) = cx2 + 2gxy − qy2 − z2.

The vanishing of Φ defines a flat conic bundle X ⊂ P(V∗) over P2
C whose total

space has nine singular points, which are ordinary quadratic singularities.
Resolving the singularities gives a birational map X ′→X. There are many
ways to prove that Br(X ′) 6= 0, see Section 11.3.3.

One then considers the family of all quadratic forms Φ : V→O given by

Φ(x, y, z) = Cx2 + 2Gxy −Qy2 − z2,

where C,G,Q are homogeneous forms of degrees 4, 3, 2, respectively. We claim
that for a very general triple of such forms, the vanishing of the discriminant
G2 + QC = 0 defines a smooth curve in P2

C. (Then the total space X is
smooth.) More precisely, suppose that C = 0, G = 0, Q = 0 are smooth
curves such that the closed set C = G = Q = 0 is empty. We claim that for
almost all λ ∈ C, the curve G2 + λQC = 0 is smooth. By one of the Bertini
theorems ([Jou84, Ch. I, Cor. 6.7], [GH78, Ch. I, §1, p. 137]) since G2 and
QC have no common factor, it is enough to show that for λ 6= 0, the curve
G2 + λQC = 0 has no singular point with G2 = 0 and QC = 0. Any such
point would satisfy 2GG′x + λQ′xC + λQC ′x = 0 and similar equations with
respect to the variables y and z. If the point lies on G = C = 0 it then satisfies
QC ′x = QC ′y = QC ′z = 0, hence Q = 0 by the non-singularity of the curve
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C = 0. However, the set G = C = Q = 0 is empty, so we have a contradiction.
A similar argument shows that the point cannot lie on G = Q = 0.

Voisin’s deformation argument in its original form [Voi15] can now be
applied: by specialising to the Artin–Mumford example in the version recalled
above, we see that the very general conic bundle in the family defined by
C,G,Q is not stably rational. Alternatively, one can use Theorem 12.1.1 or
[CTP16, Thm. 1.14] to establish the result. �

12.2 Quadric bundles over the complex plane

Hassett, Pirutka and Tschinkel [HPT18] used the specialisation method to
give the first examples of families X→B of smooth, projective, integral com-
plex varieties with some fibres rational and some other fibres not even stably
rational. A simplified version of the specialisation method, as proposed by
Schreieder [Sch18, Sch19b], gives a streamlined proof of the main result of
[HPT18] which avoids explicit resolution of singularities. This simplified spe-
cialisation method was described in Section 12.1. In this section, following
[CT18], we give examples from [HPT18] in their simplest form.

12.2.1 A special quadric bundle

The references for this section are [HPT18], [Pir18], [CT18].
Let x, y, z be homogeneous coordinates in P2

k and let U, V,W, T be homo-
geneous coordinates in P3

k. Let

F (x, y, z) = x2 + y2 + z2 − 2(xy + yz + zx).

Let X ⊂ P3
C × P2

C be the hypersurface given by the bihomogeneous equation

yzU2 + zxV 2 + xyW 2 + F (x, y, z)T 2 = 0.

Let p : X→P2
C be the morphism given by the projection P3

C × P2
C→P2

C. Since
X is a hypersurface in a regular scheme, its local rings are Cohen–Macaulay.
The fibres of p : X→P2

C are 2-dimensional quadrics; in particular, p is a flat
morphism. The morphism p is smooth over the complement to the plane octic
curve defined by the vanishing of the determinant

x2y2z2F (x, y, z) = 0.

This equation describes the union of the smooth conic F = 0 and three
tangents to this conic taken with multiplicity 2. The variety X has singular
points over the singular points of the curve xyzF (x, y, z) = 0.
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Part (a) of the following proposition is a result of Hassett, Pirutka, and
Tschinkel [HPT18, Prop. 11]. Part (b) is a special case of the general state-
ment [Sch18, Prop. 7], the proof of which builds on results of Pirutka ([Pir18,
Thm. 3.17], [Sch18, Thm. 4]). As we shall now see, the proof of (a) can be
modified to simultaneously give a proof of (b).

Proposition 12.2.1 Let X̃→X be a projective birational desingularisation
of X. Let

α = (x/z, y/z) ∈ Br(C(P2))

and let β be the image of α under the map p∗ : Br(C(P2))→Br(C(X)).

(a) We have β ∈ Br(X̃) and β 6= 0.

(b) For each irreducible divisor Y ⊂ X̃ the restriction of β to Br(C(Y )) is 0.

Proof. The equation of X is symmetric in (x, y, z). In view of this symmetry,
it is enough to consider the open set z = 1 with affine coordinates x and y.
In the rest of the proof we consider only this open set. Then α = (x, y) has
non-trivial residues precisely at x = 0 and y = 0. In particular, α 6= 0.

Let K = C(P2) = C(x, y), let L = C(X), and let Xη/K be the generic
fibre of p : X→P2

C. The discriminant of the quadratic form 〈y, x, xy, F (x, y, 1)〉
is not a square in K, thus the map Br(K)→Br(Xη) is an isomorphism by

Proposition 7.2.4 (c), so that the composition Br(K)
∼−→ Br(Xη) ↪→ Br(L)

is injective. Thus β = p∗(α) ∈ Br(L) is non-zero.
Let v be a discrete valuation L∗→Z, let S be the valuation ring of v and

let κv be the residue field. If K ⊂ S, then v(x) = v(y) = 0, hence (x, y) is
unramified. If K 6⊂ S, then S ∩K = R is a discrete valuation ring with field
of fractions K. The image of the closed point of Spec(R) in P2

C is then either
a point m of codimension 1 or a (complex) closed point m of P2

C.
Consider the first case. If the codimension 1 point m does not belong to

xy = 0, then α = (x, y) ∈ Br(K) is unramified at m, hence β ∈ Br(L) is un-
ramified at v. Moreover, the evaluation of β in Br(κv) is just the image under
Br(C(m))→Br(κv) of the evaluation of α in Br(C(m)). By Tsen’s theorem
Br(C(m)) = 0, hence the image of β in Br(κv) is zero.

Suppose that m is a generic point of a component of xy = 0, say m is the
generic point of x = 0. In L = C(X) we have an identity

yU2 + xV 2 + xyW 2 + F (x, y, 1) = 0

with yU2 + xV 2 6= 0. In the completion of K at the generic point of x = 0,
F (x, y, 1) is a square, because F (x, y, 1) modulo x is equal to (y−1)2, a non-
zero square. Thus, in the completion Lv, the quadratic form 〈y, x, xy, 1〉 has
a non-trivial zero, hence (x, y) goes to zero in Br(Lv). Hence β is unramified
at v, thus β ∈ Br(S) and the image of β in Br(κv) is zero.

Now consider the second case, i.e., m is a closed point of P2
C. There is a local

homomorphism of local rings OP2
C,m
→S which induces an embedding C→κv

of residue fields. If x(m) 6= 0, then x becomes a non-zero square in the residue
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field C hence in κv. This implies that the residue of β = (x, y) ∈ Br(L) at v
is trivial. The analogous argument holds if y(m) 6= 0. It remains to discuss
the case x(m) = y(m) = 0. We have F (0, 0, 1) = 1 ∈ C∗. Thus F (x, y, 1)
reduces to 1 in κv, hence is a square in the completion Lv. As above, in the
completion Lv, the quadratic form 〈y, x, xy, 1〉 has a non-trivial zero, hence
(x, y) goes to zero in Br(Lv). Hence β is unramified at v, thus β ∈ Br(S) and
the image of β in Br(κv) is zero. �

As in the reinterpretation [CTO89] of the Artin–Mumford examples, the
intuitive idea behind the above result is that the quadric bundle X→P2

C
is ramified along xyzF (x, y, z) = 0 and the ramification of the symbol
(x/z, y/z), which is “contained” in the ramification of the quadric bundle
X→P2

C, disappears when one pulls back (x/z, y/z) to a smooth projective
model of X: ramification kills ramification (Abhyankar’s lemma). Here one
also uses the fact that the smooth conic defined by F (x, y, z) = 0 is tangent to
each of the lines x = 0, y = 0, z = 0, and does not vanish at the intersection
point of any two of these three lines.

12.2.2 Rationality is not deformation invariant

In this section we complete the simplified proof of the theorem of Hassett,
Pirutka and Tschinkel [HPT18].

Theorem 12.2.2 There exist a smooth projective family of complex fourfolds
X→T , where T is an open subset of the affine line A1

C, and points m and n
in T (C) such that the fibre Xn is rational whereas the fibre Xm is not stably
rational.

Proof. Consider the universal family of quadric bundles over P2
C given in

P3
C × P2

C by a bihomogeneous form of bidegree (2, 2). It is given by a non-
zero symmetric (4 × 4)-matrix whose entries aij(x, y, z) (1 ≤ i, j ≤ 4) are
homogeneous quadratic forms in x, y, z. The parameter space is B = P59

C
(the corresponding vector space is given by the coefficients of ten quadratic
forms in three variables). The determinant defines a hypersurface of degree 8
in B. We have the map X→B whose fibres Xm are quadric bundles Xm→P2

C,
where Xm ⊂ P3

C × P2
C is the zero set of a non-zero complex bihomogeneous

form of bidegree (2, 2).
Using Bertini’s theorem on smoothness for general members of a base point

free linear system, one shows [Sch19a, Lemma 19] that there exists a non-
empty open set B0 ⊂ B such that the fibres of X→B over the points m ∈ B0

are flat quadric bundles Xm→P2
C which are smooth as complex varieties.

Using Bertini’s theorem on smoothness for general members of a base point
free linear system, and the fact that the fibres are 2-dimensional quadrics over
a smooth surface (for dimension reasons the argument does not work for a
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family of conics over a smooth surface) one shows [Sch19a, Lemma 20] that
there exist points m ∈ B0 with the property that the corresponding quadric
bundle Xm→P2

C has a smooth total space Xm and satisfies a1,1 = 0. This
implies that the morphism Xm→P2

C has a rational section given by the point
(1, 0, 0, 0), hence the generic fibre of Xm→P2

C is rational over C(P2), so that
the complex variety Xm is rational over C.

The special example in Section 12.2.1 defines a point P0 ∈ B(C). Let
Z = XP0

. Using Proposition 12.2.1, one finds a projective birational desin-

gularisation f : Z̃→Z and a non-empty open set U ⊂ Z such that

• the induced map V = f−1(U)→U is an isomorphism;

• Z̃ r V is a union ∪iYi of smooth irreducible divisors of Z̃;
• there is a non-trivial element in Br(Z̃) which vanishes on each Yi.

Theorem 12.1.1 then implies that the generic fibre of X→B is not geo-
metrically stably rational.

The following has been known for some time.

Proposition 12.2.3 [dFF13, Prop. 2.3] Let T be a smooth connected variety
over an algebraically closed field k. Let f : X→T be a proper and smooth
morphism with connected, projective fibres of relative dimension d. The set
of points m ∈ T such that Xm is rational, respectively, stably rational, is a
countable union of locally closed subsets of T .

In particular, if the geometric generic fibre of f is not (stably) rational,
and k = C hence is uncountable, then there are uncountably many points
t ∈ T (C) such that the fibre Xt is not (stably) rational.

In the above family of quadric bundles we thus find points n ∈ B0(C) such
that Xn is not stably rational and m ∈ B0(C) such that Xm is rational. Over
an open set of the line joining m and n we get a projective family of smooth
varieties with one fibre rational and another fibre not stably rational. �

Remark 12.2.4 In [HPT18] it is shown that the set of points m ∈ B0(C)
such that Xm is rational is a countably infinite union of subvarieties of B0.
So rationality of smooth complex projective varieties is neither an open nor
a closed condition in the classical topology.

Remark 12.2.5 The proof by Hassett, Pirutka and Tschinkel [HPT18] uses
an explicit desingularisation of the variety Z in Section 12.2.1, with a de-
scription of the exceptional divisors appearing in the process. Schreieder’s
improvement of the specialisation method enables one to bypass this explicit
desingularisation. Papers [HPT18] and [Sch18] contain many other results
about families of quadric surfaces over the projective plane. For further de-
velopments the reader is referred to [ABBP], which gives a different approach
to [HPT18] as well as some generalisations, to [ABP] and [Sch19a, Sch19b].
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Let us summarise the current state of knowledge about the behaviour of
rationality and stable rationality in the fibres of an algebraic family of proper
and smooth varieties.

Recall that a property P of varieties over algebraically closed fields, which
is stable under extensions of such fields, extends by generisation if for any
smooth projective scheme X over Spec(C[[t]]), if P holds for the closed fibre,
then P holds for the geometric generic fibre, that is, the fibre over an algebraic
closure of C((t)). Over fields of characteristic zero, rational connectedness,
whose definition will be recalled in Section 14.1, enjoys this property (Kollár,
Miyaoka, Mori [Kol99, Thm. IV.3.11]).

Let T be a smooth connected variety over C and let X→T be a proper and
smooth morphism with connected, projective fibres of relative dimension d.

• For d ≤ 2, stable rationality is equivalent to rationality, and either all
fibres of X→T are rational or no fibre is rational.
• For arbitrary d, stable rationality specialises. Thus the set of points t

such that Xt is stably rational is a countable union of closed subsets of
T (Nicaise–Shinder [NSh19]).
• For arbitrary d, rationality specialises. Thus the set of points t such that
Xt is rational is a countable union of closed subsets of T (Kontsevich–
Tschinkel [KT19]).
• By the examples discussed in this section, for d ≥ 4, neither rational-

ity nor stable rationality extends by generisation (Hassett, Pirutka and
Tschinkel [HPT18]).
• For d = 3 stable rationality does not extend by generisation (Hassett,

Kresch and Tschinkel [HKT]).
• For d = 3 it is not known if rationality extends by generisation.



Chapter 13

The Brauer–Manin set and the formal
lemma

This is the first of three chapters which deal with applications of the Brauer
group to the arithmetic of varieties over a number field k. Section 13.1 is a
collection of preliminary results from algebraic number theory and class field
theory. In Section 13.2 we discuss the Hasse principle, weak and strong ap-
proximation. Section 13.3 contains the definition and basic properties of the
Brauer–Manin obstruction, which is the fundamental reason why the know-
ledge of the Brauer group is necessary for the study of local-to-global princi-
ples for rational points. When the cokernel of the natural map Br(k)→Br(X)
is finite, the Brauer–Manin obstruction on X involves only finitely many
primes; the set of these primes is studied in Section 13.3.2. Explicit examples
of calculation of the Brauer–Manin obstruction to the Hasse principle and
weak approximation are presented in Section 13.3.3. In Section 13.4 we state
and prove Harari’s formal lemma, which is a fundamental tool to study the
Brauer–Manin obstruction for the total space of a family of varieties.

13.1 Number fields

Throughout this chapter, unless otherwise stated, k is a number field. We
write Ω for the set of places of k. The completion of k at a place v is denoted
by kv. For a finite (=non-archimedean) place v we denote by v : k∗v→Z the
discrete valuation of kv. For example, vp : Q∗p→Z is the usual p-adic valuation.

For x ∈ Q∗p we have |x|p = p−vp(y). The unique extension of this norm to kv

is given by |x|v = |Nkv/Qp(x)|1/[kv :Qp]
p , see [CF67, Ch. II, §10]. When x ∈ R

or x ∈ C we write |x| for the euclidean norm of x.
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13.1.1 Primes and approximation

Let S be a finite set of places of k. The image of the diagonal map k→
∏
v∈S kv

is dense. This property is called weak approximation, see [CF67, Ch. II, §6].
Let v0 be a place of k such that v0 /∈ S. For any λv ∈ kv for v ∈ S, there

exists an element λ ∈ k with |λ|v ≤ 1 for every v ∈ Ω r (S ∪ {v0}) such that
λ is arbitrarily close to λv in the topology of kv for each v ∈ S. This property
is called strong approximation, see [CF67, Ch. II, §15]. It is a generalisation
of the Chinese remainder theorem.

Dirichlet’s theorem on primes in an arithmetic progression can be extended
to number fields in the following form [Has26, §8, Satz 13], [Lang70, Ch. VIII,
§4, p. 167].

Theorem 13.1.1 (Dirichlet, Hasse) Let S ⊂ Ω be a finite set of finite
places of k and let λv ∈ kv for each v ∈ S. For any ε > 0 there exist λ ∈ k∗
and a finite place v0 /∈ S of absolute degree 1 such that

(i) |λ− λv|v < ε for each place v ∈ S;
(ii) λ > 0 in each real completion of k;

(iii) λ is a unit at any place v /∈ S ∪ {v0}, whereas v0(λ) = 1.

Here v0 may not be fixed from the outset.
The next statement, whose proof combines Theorem 13.1.1 and a theorem

of Waldschmidt in transcendental number theory, enables one to approximate
also at the archimedean places, if one accepts to lose control over an infinite
set of places of k that can be chosen from the outset. Typically, this will be
the set of places split in a given finite extension of k, up to finitely many of
them.

Theorem 13.1.2 (Dirichlet, Hasse, Waldschmidt, Sansuc) Let S ⊂ Ω
be a finite set and let λv ∈ kv for each v ∈ S. Let V be an infinite set of
places of k. For any ε > 0 there exist λ ∈ k∗ and a finite place v0 /∈ S of
absolute degree 1 such that

(i) |λ− λv|v < ε for each v ∈ S,
(ii) λ is a unit at each finite place v /∈ S ∪ {v0} ∪ V and v0(λ) = 1.

Proof. See [San82, Cor. 4.4, p. 264]. �

Here again v0 may not be fixed from the outset.
We recall a corollary of the Chebotarev density theorem [Lang70, Ch. VIII,

§4, Thm. 10], [CF67, Ch. VIII, §3]. This special case has an elementary proof
(cf. [MumAV, App. I, p. 250]).

Theorem 13.1.3 Let K/k be a finite extension of number fields. There exists
an infinite set of places v of k which are completely split in K, i.e., such that

the kv-algebra K ⊗k kv is isomorphic to k
[K:k]
v .

Theorem 13.1.2 can be compared to the following proposition.



13.1 Number fields 307

Proposition 13.1.4 [HW16, Lemma 5.2] Let K/k be an extension of num-
ber fields. Let S ⊂ Ω be a finite set. Let ξv ∈ NK/k(K ⊗k k∗v) ⊂ k∗v for each
v ∈ S. Then there exists an element ξ ∈ k∗ arbitrarily close to ξv for v ∈ S
and such that ξ is a unit outside S except possibly at the places above which
K has a place of degree 1. Moreover, if v0 is a place of k not in S, over which
K has a place of degree 1, one can ensure that ξ is integral outside S ∪ {v0}.

Chebotarev’s theorem is used to prove the existence of such a place v0,
but the rest of the proof requires only the strong approximation theorem.

Here is another corollary of the Chebotarev density theorem.

Theorem 13.1.5 Let K/k be a non-trivial extension of number fields. There
exist infinitely many places v of k such that the kv-algebra K ⊗k kv has no
direct summand isomorphic to kv. In particular, given an irreducible polyno-
mial P (t) of degree at least 2, there exist infinitely many places v such that
P (t) has no root in kv.

It is well known that the second statement does not hold for reducible
polynomials. A classical example is P (t) = (t2−13)(t2−17)(t2−221) ∈ Q[t].

Here is another variation on the same theme [Har94, Prop. 2.2.1].

Theorem 13.1.6 Let k ⊂ K ⊂ L be number fields, where L/K is cyclic.
There exist infinitely many places w of K of degree 1 over k which are inert
in the extension L/K.

13.1.2 Class field theory and the Brauer group

There is a vast literature on class field theory [Has26, AT09, SerCL, CF67,
Lang70, NSW08]. We refer to Harari’s recent book [Har17] both for proofs
and for a list of further references to classical literature. For a historical
perspective, see Hasse’s contribution to [CF67] and Roquette’s book [Roq05].

The Witt residue was introduced in Definition 1.4.11.

Definition 13.1.7 For each place v of k define

invv : Br(kv) −→ Q/Z

as follows. If v is finite, let invv be the Witt residue Br(kv)→H1(Fv,Q/Z) =
Hom(Gal(Fv/Fv),Q/Z) followed by evaluation at the Frobenius element. For
a real place v define invv : Br(kv) ∼= Z/2 ↪→ Q/Z. For a complex place v set
invv = 0.

The definition of Br(kv)→Q/Z given here is used in [SerCL, Ch. XIII, §2],
[CF67, Ch. VI], [NSW08, Ch. VII, Cor. (7.1.4)], and [Har17, §8.2].
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Theorem 13.1.8 (i) For each finite place v of k, the map invv is an iso-
morphism. For each real place v, the map invv is the injective map Br(kv) =
Z/2 ↪→ Q/Z. For each complex place v we have Br(kv) = 0.

(ii) The diagonal map Br(k)→
∏
v∈Ω Br(kv) factors through the direct sum

⊕v∈ΩBr(kv).
(iii) The maps invv fit into an exact sequence

0 −→ Br(k) −→
⊕
v∈Ω

Br(kv) −→ Q/Z −→ 0, (13.1)

where the map to Q/Z is the sum of invv for all v ∈ Ω.

See [Har17, Thm. 8.9; Thm. 14.11]. The fact that (13.1) is a complex is
a generalisation of the Gauss quadratic reciprocity law. Injectivity of the
second arrow is a celebrated theorem of A.A. Albert, R. Brauer, H. Hasse,
and E. Noether, generalising results of Legendre and Hilbert.

Theorem 13.1.9 Let K/k be an abelian extension of number fields with Ga-
lois group G = Gal(K/k). For each place v ∈ Ω, let Gv ⊂ G be the decompo-
sition group of v. There is a well-defined isomorphism

jv : k∗v/NK/k((K ⊗k kv)∗)
∼−→ Gv

called the norm residue homomorphism, or the local Artin map [SerCL,
Ch. XIII, §4], [Har17, Ch. 9]. For a valuation v of k unramified in K, this

map sends an element c ∈ k∗ to Frobv(c)
v ∈ G (ibid.). These maps fit into an

exact sequence

k∗/NK/k(K∗) −→
⊕
v∈Ω

k∗v/NK/k((K ⊗k kv)∗) −→ G −→ 1. (13.2)

If K/k is cyclic, we have an exact sequence

1 −→ k∗/NK/k(K∗) −→
⊕
v∈Ω

k∗v/NK/k((K ⊗k kv)∗) −→ G −→ 1. (13.3)

Corollary 13.1.10 [AT09, Ch. 7, §3, Cor. 1 of Thm. 9] Let K/k be an
abelian extension of number fields. The following properties hold.

(i) If c ∈ k∗ is a local norm for K/k at all places of k except possibly one
place v0, then c is also a local norm at v0.

(ii) (Hasse) If K/k is cyclic, and c ∈ k∗ is a local norm for K/k at all places
of k except possibly one place v0, then it is a global norm for K/k.

Suppose K/k is a finite Galois extension of fields with Galois group G. Let
T = R1

K/kGm,K be the norm 1 torus. It fits into an exact sequence of k-tori

1 −→ T −→ RK/kGm,K −→ Gm,k −→ 1.
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The dual exact sequence of character groups is the exact sequence of G-
modules

0 −→ Z −→ Z[G] −→ T̂ −→ 0.

From the first exact sequence and Hilbert’s theorem 90 we obtain an iso-
morphism F ∗/NK/k(K ⊗k F )∗ ∼= H1(F, T ) for any field extension F/k. From

the second exact sequence we get Hi(G, T̂ ) ∼= Hi+1(G,Z) for any integer

i ≥ 1. In particular, H1(G, T̂ ) ∼= H2(G,Z) ∼= H1(G,Q/Z) ∼= Hom(G,Q/Z).
If k is a number field, almost all decomposition groups are cyclic, and all
cyclic subgroups of G are decomposition groups. Thus Theorem 13.1.9 and
Corollary 13.1.10 are special cases of the following theorem, which is a conse-
quence – and a special case – of many results due to Tate, Nakayama, Poitou,
Takahashi and other authors. A proof can be found in each of the following
references: [Mil86, Ch. I, Thm. 4.20], [NSW08, Theorems (8.6.7), (8.6.9),
(8.6.14)], [Har17, Exercise 17.8]. See also [Tate66a] and [SerCG, Ch. II, §5.8,
Thm. 6] (local duality).

Let M be a continuous discrete Γ -module, where Γ = Gal(ks/k). Define

Xi(M) := Ker[Hi(k,M) −→
∏
v∈Ω

H1(kv,M)].

Let us explain the construction of the map Hi(k,M)→H1(kv,M) following
[SerCG, Ch. 2, §6.1]. We can extend the valuation v to a valuation w of
ks. Let Dw = {g ∈ Γ |g(w) = w} be the decomposition group of w. Let
k̄v be the union of completions of all finite subextensions of ks at w. The
field k̄v is a separable closure of kv with Galois group Gal(k̄v/kv) ∼= Dw. The
homomorphism Hi(k,M)→H1(kv,M) is defined as the restriction map to the
subgroup Dw ⊂ Γ .

For a commutative algebraic group G locally of finite type over a field k
we write Hi(k,G) = Hi(k,G(ks)), for i ≥ 0.

Theorem 13.1.11 Let k be a number field and let T be an arbitrary k-torus.
Let T̂ be the character group of T considered as a Galois module. There are
perfect dualities of finite abelian groups

X2(k, T )×X1(k, T̂ ) −→ Q/Z, X1(k, T )×X2(k, T̂ ) −→ Q/Z,

and a natural exact sequence of abelian groups

H1(k, T ) −→
⊕

v∈Ω H1(kv, T ) −→ Hom(H1(k, T̂ ),Q/Z)

−→ H2(k, T ) −→
⊕

v∈Ω H2(kv, T ).

(13.4)

The map H1(kv, T )→Hom(H1(k, T̂ ),Q/Z) is induced by the perfect pairing

H1(kv, T )×H1(kv, T̂ ) −→ H2(kv,Gm) = Br(kv) ↪→ Q/Z
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given by the cup-product. The long exact sequence (13.4) is obtained as
follows. Consider a finite Galois extension K/k which splits T , i.e., such that
T ×kK ' Gnm,K for some n. Let G = Gal(K/k). Let AK be the ring of adèles
of K, see Section 13.1.3. Define CK(T ) := T (AK)/T (K) and consider the
exact sequence of the cohomology groups of G attached to the exact sequence
of G-modules

1 −→ T (K) −→ T (AK) −→ CK(T ) −→ 1.

We identify H1(G,CK(T )) with Hom(H1(k, T̂ ),Q/Z) using the global duality
theorem [NSW08, Thm. 8.4.4], whose proof relies on the duality theorem
[NSW08, Thm. 3.1.11].

Remark 13.1.12 Note that a priori there are two possible definitions of
the map Br(kv)→Q/Z (see Theorem 1.4.14). It is crucial for the discussion
of global problems that we define the local invariants

invv : Br(kv)→Q/Z and jv : k∗v/NK/k((K ⊗k kv)∗)→G

in a uniform way. It is not enough to define these maps up to sign, except
obviously in the case of real places. Formulae for invariants of cup-products
with values in Br(kv) ⊂ Q/Z are called explicit reciprocity laws [SerCL,
Ch. XIV], [Iwa68], [Har17, Ch. 9]. When applying formulae for residues of
cup-products from Section 1.4.1, one should remember that they compute
the Serre residue introduced in Definition 1.4.3 (and not the Witt residue
introduced later in Definition 1.4.11). By Theorem 1.4.14, the Witt residue is
the negative of the Serre residue. See [CTKS87] for a concrete example where
one handles 3-torsion elements.

Remark 13.1.13 Let k be a number field and let T be a k-torus. Let K/k
be a finite Galois field extension that splits T . Let G = Gal(K/k). As already
mentioned, the decomposition groups Gv are cyclic for almost all places v,
and any cyclic subgroup of G appears as a decomposition group at infinitely
many places v. From Theorem 13.1.11 we see that H1(k, T ) is finite if and only

if H1(kv, T̂ ) = 0 for almost all places v, hence if and only if H1(H, T̂ ) = 0
for each cyclic subgroup H ⊂ G. If M is a free finitely generated abelian
group with an action of G, then there is a perfect duality of (finite) Tate
cohomology groups

H1(G,M)× Ĥ−1(G,HomZ(M,Z)) −→ Q/Z,

see, e.g., [Bro82, Ch. VI, §7, Exercise 3]. Using periodicity of cohomology of
cyclic groups we see that H1(k, T ) is finite if and only if H1(k, T ◦) is finite,

where T ◦ is the torus with character group HomZ(T̂ ,Z).
Now let L/k be an arbitrary finite field extension and let again T be the

attached norm 1 torus R1
L/kGm,L. Then we have T ◦ ∼= (RL/kGm,L)/Gm,k

where Gm,k→RL/kGm,L is the natural map. Using Hilbert’s theorem 90, we



13.1 Number fields 311

obtain canonical isomorphisms

H1(k, T ) ∼= k∗/NL/k(L∗), H1(k, T ◦) ∼= Ker[Br(k)→Br(L)].

Thus k∗/NL/k(L∗) is finite if and only if the relative Brauer group Br(L/k) =
Ker[Br(k)→Br(L)] is finite (cf. [Ser16, Ch. 6, Thm. 6.5 and Thm. 6.6]).

In fact, Br(L/k) and hence also k∗/NL/k(L∗) are infinite if L 6= k. This is
easy to prove using Chebotarev’s theorem when the extension L/k is Galois.
The only known proof of this statement for an arbitrary finite extension
of number fields L/k, due to Fein, Kantor, and Schacher [FKS81], uses the
classification of finite simple groups (see [Ser16, Ch. 6, Thm. 6.4] and [Har17,
Exercise 18.8]).

13.1.3 Adèles and adelic points

In this section we use a very helpful article of B. Conrad [Con12] to which
we refer for many carefully worked out details.

If v is a non-archimedean place of k, we denote by Ov the ring of integers
of the completion kv. We shall write S for a finite set of places of k containing
all the archimedean places. Let O be the ring of integers of k and let OS be
the ring of S-integers, i.e. the elements of k that belong to Ov for v /∈ S.

The product
∏
v∈Ω kv is a topological ring equipped with the product

topology, where each kv carries its natural archimedean or non-archimedean
topology. The ring of adèles Ak is defined as a subring of

∏
v∈Ω kv given by

the condition that all but finitely many components are in Ov. The topology
of Ak induced by the topology of

∏
v∈Ω kv is such that a base is given by the

open sets
∏
v∈S Uv ×

∏
v/∈S Ov, where Uv is open in kv. We put

Ak,S =
∏
v∈S

kv ×
∏
v/∈S

Ov.

Then Ak is the direct limit of the open subrings Ak,S over all finite S ⊂ Ω
containing the archimedean places. The diagonal image of k in Ak is discrete
with compact quotient [CF67, Ch. II, Thm. 14.1], hence the diagonal image
of OS is discrete in Ak,S .

IfX ⊂ Ank is a closed affine subvariety, then the set X(Ak) is identified with
a closed subset of An

k and so acquires a locally compact Hausdorff subspace
topology. This topology does not depend on the closed immersion X ↪→ Ank ,
see [Con12, Prop. 2.1]. Since k is discrete in Ak, the set X(k) is discrete in
X(Ak) if X is affine. Although a closed immersion X ↪→ X ′ gives rise to a
closed embedding X(Ak) ↪→ X ′(Ak) of topological spaces, this is not true for
open immersions. The standard example is Gm,k ⊂ A1

k. Indeed, the topology
on the group of idèles A∗k coming from the closed immersion Gm,k ⊂ A2

k given
by xy = 1, is not the topology induced from Ak. (The elements a, b ∈ A∗k
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are close when not only a and b are close, but a−1 and b−1 are close too.)
This shows that to equip the set X(Ak) with the structure of a topological
space when X is not affine one cannot proceed by gluing over the affine open
subsets. Following Weil and Grothendieck, this goal is achieved by working
with integral models.

Nevertheless, the approach via gluing works for a local topological ring R
such that R∗ is open in R and has continuous inversion, e.g. if R = kv or
R = Ov. This crucially uses the fact that if {Ui} is an open covering of X,
then X(R) is the union of the sets Ui(R). See [Con12, Prop. 3.1, Prop. 5.4]
and Theorem 10.5.1.

Let X be a variety over k (that is, a separated scheme of finite type
over k). By [EGA, IV3, §8.8] for some finite set T of places there exists a
separated scheme X of finite type over OT with generic fibre X. Let S ⊂ Ω
be a finite set containing T . It is clear that an Ak,S-valued point of X gives
rise to an Ak-valued point of X ×OT Ak. Since OT ⊂ k ⊂ Ak, we have
X ×OT Ak = X×kAk, so an Ak-valued point of X ×OT Ak is identified with
an Ak-valued point of X. This gives rise to a map of sets

lim−→X (Ak,S) −→ X (Ak) = X(Ak). (13.5)

Here the limit is over S, and it does not depend on T . An Ak-valued point of
X comes from an Ak,S-valued point of X for some S, so this map is bijective.

The natural map of sets

X (Ak,S)
∼−→
∏
v∈S

X(kv)×
∏
v/∈S

X (Ov)

is a bijection [Con12, Thm. 3.6]. This implies that X(Ak) is the restricted
topological product of the sets X(kv), for v ∈ Ω, with respect to their subsets
X (Ov) for v /∈ S. Here X(kv) and X (Ov) are topologised via gluing, as
explained above. This makes X (Ak,S) a locally compact Hausdorff topological
space. If S ⊂ S′, then X (Ak,S)→X (Ak,S′) is an open embedding. Using
(13.5) we make X(Ak) a topological space in such a way that a subset of
X(Ak) is open if its intersection with each X (Ak,S) is open. Then X(Ak)
is a locally compact Hausdorff topological space with a countable basis of
open sets. We note that the sets X (Ak,S) form an open covering of X(Ak).
A morphism f : X→Y of varieties over k gives rise to a continuous map
X(Ak)→Y (Ak).

We refer to X(Ak) as the adelic space of X and call its elements the adelic
points of X. If X is an affine variety over k, the topology of the adelic space
X(Ak) is the natural topology defined earlier in the affine case.

If X is proper, we can take X to be proper over OT . For v /∈ S, by the
valuative criterion of properness, we have X(kv) = X (Ov), hence X(Ak) co-
incides with the product topological space

∏
v∈Ω X(kv), and so is compact by

Tychonoff’s theorem. More generally, if X→Y is a proper morphism of vari-
eties over k, then the continuous map of topological spaces X(Ak)→Y (Ak)
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is topologically proper: the inverse image of a compact set is compact. If
X→Y is a smooth surjective morphism of varieties over k with geometrically
integral fibres, then X(Ak)→Y (Ak) is open [Con12, Thm. 4.5]. (The proof
uses the Lang–Weil–Nisnevich estimates [LW54], [Po18, Thm. 7.7.1].)

For a finite set of places T ⊂ Ω let AT
k be the ring of T -adèles of k, i.e. the

adèles without the components at the places in T . We have the topological
space X(AT

k ) of T -adelic points.

13.2 The Hasse principle and approximation

A variety X over a number field k is called everywhere locally soluble if∏
v∈Ω

X(kv) 6= ∅.

Definition 13.2.1 A variety X over a number field k fails the Hasse
principle if X is everywhere locally soluble but has no k-points, that is,∏
v∈Ω X(kv) 6= ∅ whereas X(k) = ∅. A class of varieties over k satisfies the

Hasse principle if no variety in this class fails the Hasse principle.

If two smooth, proper, integral varieties X and Y over a field F are bira-
tionally equivalent, then X(F ) 6= ∅ if and only if Y (F ) 6= ∅. This is a special
case of the well known Lang–Nishimura lemma [Po18, Thm. 3.6.11]. As a
consequence, for smooth, projective, geometrically integral varieties over a
number field k the Hasse principle is a property which is k-birational invari-
ant.

Corollary 13.1.10 for a quadratic extension K/k implies that smooth con-
ics satisfy the Hasse principle. This can be generalised in several directions.
The Hasse principle holds for smooth quadrics of dimension at least 1, this
is Hasse’s original result. The Hasse principle holds for Severi–Brauer vari-
eties, as proved by F. Châtelet. This last result follows from the combina-
tion of Proposition 7.1.5 and Theorem 13.1.8 (iii). More generally, projective
homogeneous spaces of connected linear algebraic groups satisfy the Hasse
principle. This was proved by G. Harder as a consequence of the Hasse princi-
ple for principal homogeneous spaces of semisimple, simply connected linear
algebraic groups (itself proved by Eichler, Kneser, Harder, Chernousov).

For any subset S ⊂ Ω we consider
∏
v∈S X(kv) as the topological space

with respect to the product topology, where the topology on each X(kv) is
inherited from the topology of kv.

Definition 13.2.2 Weak approximation holds for a variety X over a
number field k if the image of the following diagonal map is dense:

X(k) −→
∏
v∈Ω

X(kv).



314 13 The Brauer–Manin set and the formal lemma

This is implied by the condition that for any finite set S ⊂ Ω, the image
of X(k) under the diagonal embedding

X(k) −→
∏
v∈S

X(kv)

is dense. If X(k) 6= ∅, the two conditions are equivalent.
Weak approximation holds for semisimple simply connected linear alge-

braic groups (Kneser, Harder, Platonov) see [San81, Thm. 3.1]. It also holds
if G is a semisimple adjoint group [San81, Prop. 9.8]

If an everywhere locally soluble variety over k satisfies weak approxima-
tion, then it has a k-point. Thus, according to our definition, if we have a
class of varieties over k such that weak approximation holds for each variety
of this class, then this class satisfies the Hasse principle. One should how-
ever be aware that for some classes of varieties it can be easy to prove weak
approximation assuming the existence of a k-point, while it can be hard to
prove the Hasse principle. The simplest example is the class of quadrics. In-
deed, a smooth quadric of dimension at least 1 over a field k is birationally
equivalent to projective space if and only if it has a k-point.

Proposition 13.2.3 (Kneser) Let X and Y be smooth integral varieties
over a number field k such that X is everywhere locally soluble. Suppose X
and Y are birationally equivalent. If weak approximation holds for X, then it
holds for Y .

Proof. There exist non-empty Zariski open sets U ⊂ X and V ⊂ Y which are
isomorphic. Let X be a finite set of places of k. By Theorem 10.5.1, the open
subset

∏
v∈S U(kv) ⊂

∏
v∈S X(kv) is dense, and similarly the open subset∏

v∈S V (kv) ⊂
∏
v∈S Y (kv) is dense. Weak approximation for X implies that

U(k) is dense in
∏
v∈S U(kv), thus V (k) is dense in

∏
v∈S V (kv), and hence

V (k) ⊂ Y (k) is dense in
∏
v∈S Y (kv). �

In particular, to prove weak approximation for a smooth integral variety,
it is enough to prove it for a non-empty Zariski open subset.

Definition 13.2.4 A variety X over a number field k satisfies weak weak
approximation if there exists a finite set T ⊂ Ω such that the image of the
following diagonal map is dense:

X(k) −→
∏

v∈ΩrT
X(kv).

Equivalently, for any finite set S ⊂ Ω with S ∩ T = ∅, the image of the
following diagonal map is dense:

X(k) −→
∏
v∈S

X(kv).
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This property holds for connected linear algebraic groups, see [PR94,
Ch. VII, §7.3, Thm. 7].

Let X be an integral variety over a number field k. A subset H ⊂ X(k)
is called a Hilbert set if there exists an integral variety Z over k and a domi-
nant quasi-finite morphism Z→X such that H is the set of k-points P with
connected fibre ZP = Z ×X P . For basic properties of Hilbert sets, we refer
to [Lang83b, Ch. 9] and [SerMW, Ch. 9]. The intersection of two Hilbert sets
in X(k) contains a Hilbert set.

Definition 13.2.5 A variety X over a number field k satisfies hilbertian
weak approximation if the image of any Hilbert set H ⊂ X(k) under the
following diagonal map is dense:

X(k) −→
∏
v∈Ω

X(kv).

Assume that Xsmooth(k) 6= ∅. If X satisfies hilbertian weak approximation,
then any Hilbert subset of X(k) is Zariski dense in X, so is not empty. The
following result shows that hilbertian weak approximation holds for any non-
empty Zariski open subset of the projective line.

Theorem 13.2.6 [Eke90] Let H ⊂ A1(k) = k be a Hilbert set. Let S ⊂ Ω
be a finite set of places and let λv ∈ kv for each v ∈ S. Then for any ε > 0
there exists a λ ∈ H such that |λ− λv|v < ε for each v ∈ S.

Let T ⊂ Ω be a finite non-empty subset. Recall that AT
k is the ring of

T -adèles of k, i.e. the adèles without the components at the places of T .

Definition 13.2.7 A variety X over a number field k satisfies strong ap-
proximation off a finite set T ⊂ Ω if the image of the diagonal map
X(k)→X(AT

k ) is dense.

The classical example is provided by the affine space Ank for any n ≥ 1,
a special case of which is the Chinese remainder theorem. A less classical
example is given by the complement of a closed subset of codimension at
least 2 in Ank . This was observed independently by D. Wei and by Y. Cao
and F. Xu, see [HW16, Lemma 1.8].

Strong approximation off T holds for semisimple simply connected lin-
ear algebraic groups under a suitable non-compactness condition on the set
of local points at the places in T (Kneser, Harder, Platonov [PR94, §7.4,
Thm. 7.12]).

Definition 13.2.8 A variety X over a number field k satisfies hilbertian
strong approximation off a finite set T ⊂ Ω if the image of any Hilbert
set H ⊂ X(k) under the diagonal map X(k)→X(AT

k ) is dense.

If X is proper, then X(AT
k ) =

∏
v∈ΩrT X(kv). Thus if weak approximation

holds for X, then strong approximation holds for X off any finite set T ⊂ Ω,
in particular, one can take T = ∅. The same is true in the hilbertian case.
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The following theorem may be viewed as a further extension of the Chinese
remainder theorem.

Theorem 13.2.9 [Eke90] Let H ⊂ A1(k) = k be a Hilbert set. Let S ⊂ Ω
be a finite set of places and let λv ∈ kv for each v ∈ S. Let v0 be a place of k
not in S. Then for any ε > 0 there exists an element λ ∈ H such that

(i) |λ− λv|v < ε for each v ∈ S, and
(ii) v(λ) ≥ 0 at each finite place v /∈ S ∪ {v0}.

Note that v0 can be chosen to be any place outside of S. Thus the affine
line A1

k satisfies hilbertian strong approximation off any non-empty finite set
T ⊂ Ω.

Ekedahl’s theorem [Eke90, Thm. 1.3] is actually more general.

Theorem 13.2.10 Let R be the ring of integers of a number field k. Let
π : X→Spec(R) be a morphism of finite type and let ρ : Y→X be an étale
cover such that the generic fibre of the composed morphism π ρ is geometri-
cally irreducible. Let T ⊂ Ω be a finite set. If weak approximation (respec-
tively, strong approximation off T ) holds for X×Rk, then weak approximation
(respectively, strong approximation off T ) holds for the set of points x ∈ X(k)
with connected fibres ρ−1(x).

13.3 The Brauer–Manin obstruction

13.3.1 The Brauer–Manin set

Proposition 13.3.1 Let k be a number field, let X be a variety over k and
let A ∈ Br(X).

(i) There exist a finite set of places T ⊂ Ω containing all the archimedean
places, a separated scheme X of finite type over OT with generic fibre
X, and an element A ∈ Br(X ) such that A ∈ Br(X) is the restriction
of A to X.

(ii) For X→Spec(OT ) as in (i), for any finite place v /∈ T and for any point
Mv ∈ X (Ov) ⊂ X(kv) we have A(Mv) = A(Mv) = 0.

(iii) If X is proper, there exists a finite set of places T ⊂ Ω such that for all
v /∈ T and for any Mv ∈ X(kv) we have A(Mv) = 0.

(iv) The map
evA : X(Ak) −→ Q/Z

which sends an adelic point (Mv) to
∑
v∈Ω invvA(Mv) ∈ Q/Z is a well-

defined continuous map whose image is annihilated by a positive integer.

Proof. (i) We have X = lim←−XS , where the limit is over separated OS-schemes
XS of finite type with generic fibre X such that S ⊂ Ω is finite and contains all
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the archimedean places. The transition maps are just base changes to smaller
open sets of Spec(OS). By Section 2.2.2 we have Br(X) = lim−→Br(XS), which
implies (i).

(ii) This follows from Br(Ov) = 0 (Theorem 3.4.2 (i) and Theorem 1.2.13).
(iii) If X is proper, then in (i) we can take X→Spec(OT ) to be proper.

Then for any finite place v /∈ T we have X (Ov) = X(kv). Now (iii) follows
from (ii) (cf. Proposition 10.5.3).

(iv) Let X→Spec(OT ) be as in (i). By Section 13.1.3 the sets∏
v∈S

Uv ×
∏
v/∈S

X (Ov),

where S ⊂ Ω is a finite set containing T and Uv ⊂ X(kv) is an open set
for v ∈ S, form a basis of open sets of X(Ak). By (ii), the adelic evaluation
map evA is well defined on such open sets. It is continuous on each of these
open sets. Indeed, the local evaluation map evA : X (Ov)→Br(kv) is zero for
v /∈ T and evA : X(kv)→Br(kv) is continuous for any place v (Corollary
10.5.2). Lemma 3.4.5 implies that the image of the adelic evaluation map
evA : X(Ak) −→ Q/Z is annihilated by a positive integer. �

Write AC
k for the ring of ΩC-adèles AΩC

k , where ΩC is the set of complex
places of k. In particular, AC

k = Ak if k is totally real, e.g., if k = Q. Since
Br(C) = 0, the evaluation map evA : X(Ak) −→ Q/Z factors through the
evaluation map

evC
A : X(AC

k ) −→ Q/Z.

The Brauer–Manin pairing

Let k be a number field and let X be a variety over k. By definition, the
Brauer–Manin pairing

X(Ak)× Br(X) −→ Q/Z

sends (Mv) ∈ X(Ak) and A ∈ Br(X) to

evA
(
(Mv)

)
=
∑
v∈Ω

invv(A(Mv)) ∈ Q/Z.

If X is proper over k, then X(Ak) =
∏
vX(kv). In this case the pairing

becomes ∏
v∈Ω

X(kv)× Br(X) −→ Q/Z.

For any subset B ⊂ Br(X), we denote by X(Ak)B ⊂ X(Ak) the set of
adelic points orthogonal to B with respect to the Brauer–Manin pairing,
that is, the intersection of ev−1

A (0) for A ∈ B. By the continuity of the
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evaluation map (Proposition 10.5.2), it is a closed subset of X(Ak). When B
is finite, Proposition 13.3.1 (iv) shows that the map X(Ak)→Maps(B,Q/Z)
factors through Maps(B,Z/n) for some n, hence X(Ak)B is closed and open
in X(Ak). The set X(Ak)Br(X) is called the Brauer–Manin set of X. We
abbreviate this notation by X(Ak)Br.

Similarly, the evaluation map without complex components gives rise to
the Brauer–Manin set X(AC

k )Br.
If X(Ak)Br is empty, the set X(Ak) has a covering by open subsets

X(Ak) r X(Ak)b, for all b ∈ Br(X). If X is proper, the topological space
X(Ak) is compact, hence there is a finite subset B ⊂ Br(X) such that

X(Ak) =
⋃
b∈B

(X(Ak) rX(Ak)b),

and therefore X(Ak)B = ∅.

Let X be a variety over k. For any A ∈ Br(X) we have the basic commu-
tative diagram

X(k) � � //

evA

��

X(Ak)

��

evA

##
Br(k) //

⊕
v∈Ω

Br(kv)
invv // Q/Z

where the bottom line is the complex given by the exact sequence of class
field theory (13.1).

Theorem 13.3.2 (Manin) [Man71] Let k be a number field and let X be a
variety over k. The Brauer–Manin set X(Ak)Br contains the closure of the
image of the diagonal map X(k)→X(Ak).

Proof. The inclusion X(k) ⊂ X(Ak)Br follows immediately from the above
diagram. Since X(Ak)Br is a closed subset of X(Ak), it contains the closure
of X(k). �

Manin’s observation is that this simple theorem accounted for most
counter-examples to the Hasse principle known at the time (the justifica-
tion for the Cassels–Guy example came later [CTKS87]). In these examples,
the rôle of (13.1) is played by some explicit form of the reciprocity law,
mostly the quadratic reciprocity law. We review some of these examples in
Section 13.3.3.

One commonly uses the following terminology.

If X is a variety over k such that X(Ak) 6= ∅ but X(Ak)Br = ∅, then one
says that there is a Brauer–Manin obstruction to the Hasse principle for X.
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If X is proper over k, then X(Ak) =
∏
v∈Ω X(kv) with the product topol-

ogy. In this case, if the inclusion X(Ak)Br ⊂ X(Ak) is not an equality, one
says that there is a Brauer–Manin obstruction to weak approximation for X.

The space X(Ak) is the union of subsets∏
v∈S

X(kv)×
∏
v/∈S

X (Ov),

where S ⊂ Ω is a finite set containing all infinite places, and X→Spec(OS)
is a separated scheme of finite type with generic fibre X. For each subset
B ⊂ Br(X) there is an inclusion

X (OS) ⊂

(∏
v∈S

X(kv)×
∏
v/∈S

X (Ov)

)B
.

The Brauer–Manin pairing can be used to show the failure of strong ap-
proximation outside a finite set of places, or even to give counter-examples
to the integral Hasse principle (proving the emptiness of the set X (OS) of
OS-integral points).

As we have seen in Proposition 13.3.1, for a given element A ∈ Br(X ), the
image of evA on the set

∏
v∈S X(kv)×

∏
v/∈S X (Ov) is computed using only

the places in S.

Remark 13.3.3 More generally, let F be a contravariant functor from the
category of k-schemes to the category of sets. For a variety X over k any
element ξ ∈ F (X) gives rise to a commutative diagram

X(k) → X(Ak)
↓ ↓

F (k) →
∏
v∈Ω F (kv)

where the vertical arrows are given by ‘evaluation’ of ξ on k-points of X
and on local points of X. This puts a constraint on the image of X(k) in
X(Ak). The Brauer–Manin obstruction corresponds to the functor F (X) =
Br(X). Another useful example is the functor that associates to X the étale
cohomology set H1

ét(X,G), where G is a fixed algebraic group over k.

General properties of the Brauer–Manin obstruction

We can make some simple observations about the Brauer–Manin obstruction.

Remark 13.3.4 Recall that Br0(X) ⊂ Br(X) is the image of the natu-
ral map Br(k)→Br(X) induced by the structure morphism X→Spec(k). If
X(k) 6= ∅, then the homomorphism Br(k)→Br0(X) has a section and so is an



320 13 The Brauer–Manin set and the formal lemma

isomorphism. Using the injective map of the exact sequence (13.1) one shows
that Br(k)→Br0(X) is an isomorphism when X(Ak) 6= ∅.

Remark 13.3.5 Here is another simple remark [CTS13a, Lemma 1.2]. Let
(Mv) ∈ X(Ak)Br. For any A ∈ Br(X) we have

∑
v invvA(Mv) = 0 ∈ Q/Z.

By exactness of the sequence (13.1), there is a well-defined homomor-
phism ρ : Br(X)→Br(k) such that the image of ρ(A) in each Br(kv) equals
invvA(Mv). Thus any element of X(Ak)Br 6= ∅ gives rise to a splitting of the
natural map Br(k)→Br(X). In particular, if X(Ak)Br 6= ∅ , then

Br(X) '
(
Br(X)/Br0(X)

)
⊕ Br(k).

Remark 13.3.6 Let B ⊂ Br(X). The set X(Ak)B depends only on the
image of B in the quotient Br(X)/Br0(X).

Remark 13.3.7 Let us write Xv for X ×k kv. Let B(X) ⊂ Br(X) be the
subgroup consisting of the elements A ∈ Br(X) such that for each place
v ∈ Ω there exists an αv ∈ Br(kv) whose image in Br(Xv) is the same as the
image of A. Assume that X(Ak) 6= ∅. Then Br(kv)→Br(Xv) is injective for
each v, so that αv is well defined and equal to the value of A at any kv-point
of X. By Proposition 13.3.1, we have αv = 0 for almost all v. For each adelic
point (Mv) ∈ X(Ak) one then has∑

v∈Ω
invv(A(Mv)) =

∑
v∈Ω

invv(αv) ∈ Q/Z.

The value of this sum does not depend on (Mv). Thus we have a homomor-
phism B(X)→Q/Z. If this homomorphism is not zero, then X(k) = ∅. The
Brauer–Manin obstruction attached to the “small” subgroup B(X) ⊂ Br(X)
plays a great rôle in the study of the Hasse principle for homogeneous spaces
of connected algebraic groups [Bor96, BCS08, Witt08] – but this subgroup is
too small to control weak approximation.

To state a finiteness property of B(X), we recall that the Tate–Shafarevich
group of an abelian variety A over a number field k is defined as

X(A) = Ker[H1(k,A)→
∏
v∈Ω

H1(kv, A)].

A conjecture of Tate and Shafarevich asserts that X(A) is finite for any
abelian variety A over any number field.

Proposition 13.3.8 [BCS08, Prop. 2.14] Let X be a smooth, projective, ge-
ometrically integral variety over a number field k such that X(Ak) 6= ∅. Let
A be the Picard variety of X. If X(A×kK) is finite for any finite extension
K/k, then B(X)/Br0(X) is finite.
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Remark 13.3.9 Let X be a smooth, projective, geometrically integral vari-
ety over a number field k. Suppose that there is a finite field extension K/k
such that XK(AK)Br = ∅. Then X(K) = ∅, hence X(k) = ∅. But can one
conclude that X(Ak)Br = ∅ ? This question is open in general. The answer is
positive if Pic(X) is a finitely generated free abelian group and Br(X) = 0.
The proof of this statement uses the theory of universal torsors as developed
in [CTS87a]. Since Br(X) = 0, for any finite field extension K/k we have
Br(XK) = Br1(XK). By [Sko01, Cor. 6.1.3 (1)] under our assumptions the
condition X(Ak)Br1(X) 6= ∅ is equivalent to the existence of a universal tor-
sor T →X such that T (Ak) 6= ∅. The base change to K is a universal torsor
TK→XK such that TK(AK) 6= ∅, hence XK(AK)Br = XK(AK)Br1(XK) 6= ∅.

The formation of the Brauer–Manin set is functorial.

Proposition 13.3.10 A morphism f : X→Y of varieties over a number field
k induces a continuous map of their Brauer–Manin sets X(Ak)Br→Y (Ak)Br.

Proof. We have a continuous map of topological spaces f : X(Ak)→Y (Ak),
see Section 13.1.3, and a map of Brauer groups f∗ : Br(Y )→Br(X), see
Section 3.2. For an adelic point (Pv) ∈ X(Ak) and A ∈ Br(Y ) we have
(f∗A)(Pv) = A(f(Pv)), hence f sends X(Ak)f

∗A to Y (Ak)A. Thus f sends
X(Ak)Br ⊂ X(Ak)f

∗Br(Y ) to Y (Ak)Br(Y ) = Y (Ak)Br. �

The following proposition deals with the behaviour of the Brauer–Manin
set under birational equivalence.

Proposition 13.3.11 [CTPS16, Prop. 6.1] Let k be a number field and let X
and Y be birationally equivalent smooth, projective, and geometrically integral
varieties over k.

(i) If X(Ak)Br 6= ∅, then Y (Ak)Br 6= ∅.
(ii) Assume, moreover, that Br(X)/Br0(X) is finite. Then X(k) is dense in

X(Ak)Br if and only if Y (k) is dense in Y (Ak)Br.

We refer to [CTPS16, §6] for the proof of this proposition and for some
additional remarks.

Failure of weak approximation

It is delicate to exhibit counter-examples to the Hasse principle or to prove
that for a given place v the set X(k) is not dense in X(kv). It is much easier
to give counter-examples to weak approximation at a finite set of places.
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Proposition 13.3.12 Let k be a number field and let X be a projective vari-
ety over k. Assume that X(k) 6= ∅ and that there exist an element α ∈ Br(X)
and a place w of k such that α takes at least two different values on X(kw).
Then there exists a finite set S of places of k containing w such that X(k) is
not dense in

∏
v∈S X(kv), so that weak approximation fails for X.

Proof. By Proposition 13.3.1, there exists a finite set S of places of k such
that α identically vanishes on each X(kv) for v /∈ S. We thus have w ∈ S. Let
P ∈ X(k) be a rational point. For v ∈ S, v 6= w, let Nv ∈ X(kv) be the image
of P ∈ X(k) ⊂ X(kv). Let Nw ∈ X(kw) be a point such that α(Nw) ∈ Br(kw)
is not equal to reskw/k(α(P )) ∈ Br(kw). By reciprocity (Theorem 13.1.8) and
vanishing of α on X(kv) for v /∈ S, we have

0 =
∑
v∈S

invv(reskv/k(α(P ))).

Then we obtain∑
v∈S

invv(α(Nv)) = invw(α(Nw))− invw(reskw/k(α(P ))) 6= 0 ∈ Q/Z.

This implies that for any choice of Nv ∈ X(kv) for v /∈ S we have∑
v∈Ω

invv(α(Nv)) 6= 0 ∈ Q/Z.

By Theorem 13.3.2, (Nv) ∈
∏
v∈S X(kv) is not in the closure of X(k). �

13.3.2 The structure of the Brauer–Manin set

When Br(X) is finite modulo Br0(X), the Brauer–Manin set of X is an open
and closed subset of X(Ak). More precisely, we have the following

Lemma 13.3.13 Let X be a proper variety over a number field k. Assume
that Br(X)/Br0(X) is finite. Then there exists a finite set S of places of k
such that

X(Ak)Br = Z ×
∏
v 6∈S

X(kv)

for an open and closed set Z ⊂
∏
v∈S X(kv).

Proof. There is a finite set B ⊂ Br(X) that generates Br(X) modulo Br0(X).
By Proposition 13.3.1 (iii) there is a finite set S of places such that A(Mv) = 0
for each A ∈ B and any Mv ∈ X(kv), where v /∈ S. Thus for each A ∈ B
the evaluation map evA : X(Ak)→Q/Z is the composition of the projection
X(Ak)→

∏
v∈S X(kv) and a continuous map

∏
v∈S X(kv)→Q/Z. The result-
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ing map
∏
v∈S X(kv)→(Q/Z)B is continuous with finite image (Proposition

13.3.1 (iv)) thus its kernel Z is an open and closed subset of
∏
v∈S X(kv). �

In this section we discuss how small the set S can be. We essentially follow
the paper [CTS13a].

The following question was originally asked by Peter Swinnerton-Dyer.

Question 13.3.14 Let X be a smooth, projective and geometrically integral
variety over a number field k. Assume that Pic(X) is a finitely generated
torsion-free abelian group. Can one choose S in Lemma 13.3.13 to be the
union of the archimedean places of k and the places of bad reduction for X?

The following result gives sufficient conditions under which the answer is
positive.

Theorem 13.3.15 Let k be a number field. Let S be a finite set of places of k
containing the archimedean places, and let OS be the ring of S-integers of k.
Let π : X→Spec(OS) be a smooth and proper OS-scheme with geometrically
integral generic fibre X/k. Assume that

(i) H1(X,OX) = 0;
(ii) the Néron–Severi group NS(X) has no torsion;

(iii) the transcendental Brauer group Br(X)/Br1(X) is a finite abelian group
of order invertible in OS.

Then X(Ak)Br = Z ×
∏
v 6∈S X(kv), where Z ⊂

∏
v∈S X(kv) is an open and

closed subset.

Proof. A proper morphism is of finite type, but since OS is noetherian, π is of
finite presentation. By Stein factorisation [Stacks, Lemma 0E0N], the closed
fibres of π (which are smooth and proper) are geometrically connected, hence
geometrically integral.

Let Xv = X×k kv for any v and Xv := X ×OS Ov for v /∈ S. We claim that
for any place v /∈ S, the image of Br(X) in Br(Xv) is contained in the sum
of the images of Br(kv) and Br(Xv). It is enough to prove this statement for
the `-primary component, for each prime `.

Let p be the residual characteristic of v. The combination of assumptions
(i) and (ii), Proposition 10.4.2 and Lemma 10.4.1 gives that the image of
Br1(X) in Br(Xv) is contained in the subgroup generated by the images of
Br(kv) and Br(Xv). Assumption (iii) implies that Br(X){p} ⊂ Br1(X). Thus
the image of Br(X){p} in Br(Xv) is contained in the subgroup generated by
the images of Br(kv){p} and Br(Xv){p}.

Let us prove the analogous statement for any prime ` 6= p. By Propo-
sition 10.4.3 we only need to check that H1

ét(X 0,Z/`) = 0, where X 0 is
the closed geometric fibre of π : Xv→Spec(Ov). By the smooth base change
theorem for étale cohomology [Mil80, Cor. VI.4.2] the group H1

ét(X 0,Z/`)
is isomorphic to H1

ét(Xv,Z/`), which in turn is isomorphic to H1
ét(X,Z/`)

by [Mil80, Cor. VI.4.3]. The Kummer exact sequence gives an isomorphism

https://stacks.math.columbia.edu/tag/0E0N
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H1
ét(X,µ`)

∼−→ Pic(X)[`], and the vanishing of the latter group follows from
conditions (i) and (ii).

We can assume that X(Ak)Br(X) 6= ∅. A point (Mv) ∈ X(Ak)Br(X) gives
rise to a retraction ρ : Br(X)→Br(k) of the map Br(k)→Br(X) such that for
each place v we have invv(ρ(A)) = A(Mv) ∈ Br(kv), see Remark 13.3.6. In
particular, Br(k) is isomorphic to its image Br0(X) in Br(X).

Assumptions (i) and (ii) imply that the quotient Br1(X)/Br(k) is finite
(Theorem 5.5.1). Since we also assume (iii), the group Br(X)/Br(k) is also
finite. Hence Br(X)/Br(k) is generated by the images of finitely many ele-
ments Ai ∈ Br(X) that can be assumed to satisfy ρ(Ai) = 0. For v /∈ S, we
have an equality

Ai ⊗k kv = βi,v + γi,v ∈ Br(Xv),

where βi,v ∈ Br(Xv) and γi,v ∈ Br(kv). We have βi,v(Mv) = 0 since the
kv-point Mv of Xv extends to an Ov-point of Xv by the properness of X/O,
and Br(Ov) = 0 (Theorem 3.4.2 (ii) and Theorem 1.2.13). It follows that
γi,v = 0 ∈ Br(kv). Hence Ai ⊗k kv belongs to Br(Xv), and so Ai vanishes at
every point of X(kv) = Xv(Ov).

Let B ⊂ Br(X) be the finite group generated by the elements Ai ∈ Br(X).
We conclude that the Brauer–Manin pairing

X(Ak)× Br(X) −→ Q/Z

is induced by the pairing ∏
v∈S

X(kv)×B −→ Q/Z.

This finishes the proof. �

Remark 13.3.16 Conditions (i) and (ii) together are equivalent to the as-
sumption that Pic(X) is a finitely generated torsion-free abelian group. In
general, condition (iii) cannot be dropped, see the discussion after Theorem
13.3.18 below. The finiteness of the transcendental Brauer group is closely
related to the Tate conjecture for divisors, see Theorem 16.1.1.

One can give purely geometric conditions under which the assumptions of
Theorem 13.3.15 are satisfied.

Corollary 13.3.17 Let π : X→Spec(OS) be a smooth proper OS-scheme
with geometrically integral generic fibre X/k. Assume that

(i) Hi(X,OX) = 0 for i = 1, 2;
(ii) the Néron–Severi group NS(X) has no torsion;

(iii) either dimX = 2, or H3
ét(X,Z`) is torsion-free for every prime ` invert-

ible in OS.

Then we have the same conclusion as in Theorem 13.3.15.
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Proof. As already mentioned, the closed fibres are automatically geometri-
cally integral. We only need to verify condition (iii) of Theorem 13.3.15. By
Theorem 5.2.9 and Theorem 5.5.2, if H2(X,OX) = 0, then Br(X) is finite and
isomorphic to the direct sum ⊕`H3

ét(X,Z`)tors. In the surface case, Proposi-
tion 5.2.10 gives a (non-canonical) isomorphism NS(X){`} ' H3

ét(X,Z`)tors.
Thus under assumptions (ii) and (iii), we have Br(X){`} = 0 for ` /∈ S.
The group Br(X)/Br1(X) is a subgroup of Br(X). Thus hypothesis (iii) in
Theorem 13.3.15 is satisfied. �

This corollary can be applied to rationally connected varieties. Indeed,
over a field of characteristic zero such a variety X is OX -acyclic, that is,
Hi(X,OX) = 0 for all i > 0, and is algebraically simply connected [Deb01,
Cor. 4.18], hence Pic(X)tors = NS(X)tors = 0.

In their very recent work, M. Bright and R. Newton consider the evaluation
map for a smooth, projective and geometrically integral variety X over a p-
adic field and A ∈ Br(X){p}. They link the filtration on Br(X) given by the
radius of p-adic disks on which evA is constant to a filtration defined earlier
by K. Kato, and give an explicit formula for evA in terms of this filtration.

Theorem 13.3.18 [BN, Thm. C] Let X be a smooth, projective and geo-
metrically integral variety over a number field k such that H2(X,OX) 6= 0.
Let v be a finite place of k at which X has good ordinary reduction, with
residue characteristic p. Then there exist a finite extension K/k, a place w
of K over v, and an element A ∈ Br(XK){p} such that the evaluation map
evA : X(Kw)→Br(Kw) is non-constant. In particular, if X(AK) 6= ∅, then A
obstructs weak approximation on XK .

Thus, without assumption (iii) of Theorem 13.3.15 (or the stronger as-
sumptions of Corollary 13.3.17), Question 13.3.14 has a negative answer.

Bright and Newton also show how to bound the set S of critical places
in Lemma 13.3.13. The issue is the behaviour of p-primary elements of the
Brauer group at a place of good reduction above a prime p. For a prime
number ` invertible in the residue field of a place of good reduction and
A ∈ Br(X){`}, the statement follows from Theorem 10.5.6.

Theorem 13.3.19 [BN, Thm. D] Let X be a smooth, projective and geomet-
rically integral variety over a number field k such that Pic(X) is torsion-free.
Let S be the union of the following finite sets of places of k:

(1) archimedean places;
(2) places of bad reduction for X;
(3) places v satisfying ev ≥ p− 1, where ev is the absolute ramification index

of kv and p is the residue characteristic of kv;
(4) places v for which, for any smooth proper model X→Spec(Ov) of X, we

have H0(X0, Ω
1
X0

) 6= 0, where X0 is the closed fibre of X .

Then the evaluation map evA : X(kv)→Br(kv) is constant for all A ∈ Br(X)
and all places v /∈ S.
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In contrast to Theorem 13.3.15, this theorem makes no assumption about
the finiteness of the transcendental Brauer group of X (although in the situ-
ation of the theorem it is natural to expect that Br(X)/Br0(X) is finite, see
Section 16.1). Thus Theorem 13.3.19 gives an explicit finite set S of places
of k such that

X(Ak)Br = Z ×
∏
v 6∈S

X(kv)

for a closed subset Z ⊂
∏
v∈S X(kv).

In the important particular case when X is a K3 surface, Theorem 16.7.3
says that Br(X)/Br0(X) is finite. Moreover, the set in (4) is empty, as follows
from a theorem of Rudakov and Shafarevich. Thus for any K3 surface X over
Q we have

X(AQ)Br = Z ×
∏
p 6∈S

X(Qp),

where Z is open and closed in
∏
v∈S X(Qv) for the set S consisting of the

real place, the primes of bad reduction, and the prime 2, see [BN, Remark
7.5]. M. Pagano showed that in general the prime 2 cannot be removed from
S, see Example 13.3.26 below.

13.3.3 Examples of Brauer–Manin obstruction

Reducible varieties

The following statements are Brauer group versions of the results of Stoll
[Sto07, Lemma 5.10, Prop. 5.11, Prop. 5.12].

Lemma 13.3.20 Let X = Spec(k) t Spec(k). Then X(k) = X(AC
k )Br.

Proof. Write X = P1 t P2, where P1
∼= P2

∼= Spec(k). Take any (Qv) in
X(AC

k )Br. Let S1 ⊂ Ω r ΩC consist of the places v such that Qv = P1. The
complement S2 = (Ω rΩC) r S1 consists of the places v such that Qv = P2.
If S1 = Ω r ΩC, then (Qv) = P1, and if S2 = Ω r ΩC, then (Qv) = P2. We
now suppose that we are not in one of these cases and deduce a contradiction.
Choose v1 ∈ S1 and v2 ∈ S2. Since neither v1 nor v2 is a complex place, there
is an α ∈ Br(k) such that invv1(αv1) = 1/2, invv2(αv2) = 1/2 and αv = 0 for
v 6= v1, v2. Consider the element β = (α, 0) ∈ Br(X) = Br(k)⊕ Br(k). Then∑
v∈ΩrΩC

invv(β(Qv)) = invv1
(αv1

) 6= 0. �

Proposition 13.3.21 Let X = X1t· · ·tXn be a disjoint union of varieties
over k. Then

X(AC
k )Br = X1(AC

k )Br t · · · tXn(AC
k )Br.
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Proof. It is enough to prove the statement for n = 2. By functoriality of
the Brauer–Manin set (Proposition 13.3.10), the right-hand side is included
in the left-hand side. Let Y = Spec(k) t Spec(k). Consider the projection
p : X1tX2→Spec(k)tSpec(k). By functoriality of the Brauer–Manin set, we
have p(X(AC

k )Br) ⊂ Y (AC
k )Br. Lemma 13.3.20 says that Y (AC

k )Br = Y (k).
Thus X(AC

k )Br ⊂ X1(AC
k ) t X2(AC

k ). Since Br(X) = Br(X1) ⊕ Br(X2), we
have X(AC

k )Br ⊂ X1(AC
k )Br tX2(AC

k )Br. �

As a special example, if X = X1 tX2, X1(Ak) = ∅ and X2(Ak) = ∅ then
X(Ak)Br = ∅ but we might have X(Ak) 6= ∅.

Corollary 13.3.22 Let X be a finite k-scheme. Then X(k) = X(AC
k )Br.

Proof. For X of dimension zero we have Br(Xred) = Br(X) (Proposition
3.2.5), so one may assume that X is reduced. By Proposition 13.3.21 it is
enough to prove the statement when X = Spec(K), where K is a non-trivial
field extension of k. In this case, by Theorem 13.1.5, there are infinitely many
places v such that kv is not a direct summand of K ⊗k kv. For such places v
we have X(kv) = ∅, in particular X(AC

k ) = ∅. �

Let us discuss the famous counter-example to the Hasse principle over Q

(x2 − 13)(x2 − 17)(x2 − 221) = 0

from another point of view. Let us think of x as a coordinate on A1
Q and

let Z ⊂ Gm,Q = A1
Q r {0} be the closed subset given by this polynomial.

Consider
A = (x, 13) ∈ Br(Gm,Q).

Take any (xv) ∈ Z(AQ), where v is a prime p or the infinite place. It is
clear that A(x∞) = 0. If p 6= 2 and p 6= 13, then 13 and xp are both in Z∗p,
hence we have (xp, 13)p = 1 and thus A(xp) = 0 ∈ Br(Qp). If p = 13, then
x13 ∈ Q13 satisfies x2

13 = 17 hence x13 = ±2 up to a square in Q∗13. Since
(±2, 13)13 = −1 we have A(x13) 6= 0. Finally, let p = 2. Then x2

2 = 17 in Q2,
hence x2 = ±1 up to a square in Q∗2. Then (±1, 13)2 = 1, as follows from the
reciprocity law since (±1, 13)13 = 1. We conclude that A(x2) = 0. This easy
calculation shows that there is a Brauer–Manin obstruction attached to the
restriction of A to Br(Z).

This example is a baby case of the situation investigated by Q. Liu and
F. Xu [LX15, Thm. 5.7] (finite closed subschemes of a torus), after the work
of Stoll [Sto07, Thm. 8.2] (finite closed subschemes of a smooth projective
curve of positive genus).

Let us now describe some counter-examples to the Hasse principle on ge-
ometrically irreducible varieties.
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Iskovskikh’s counter-example to the Hasse principle

The following example was explored in [CTCS80, Exemple 5.4]. In a different
guise, the case c = 3 is due to Iskovskikh [Isk71].

Let K = Q(
√
−1). We shall use the following properties, easily established

using Hensel’s lemma, and which are special cases of local class field theory.
For a place v of Q let Kv = K ⊗Q Qv. If v is a place defined by a prime
p ≡ 1 mod 4, then K/Q is split at v, that is, Kv is isomorphic to the product
of two copies of Qp. Then Qp = NK/Q(Kv). For the infinite place v, an
element of R∗ is a norm from K∗v ' C∗ if and only if it is positive. If v is a
place defined by a prime p ≡ 3 mod 4, then K/Q is inert at v, that is, Kv is
an unramified quadratic extension of Qp. Then an element of Q∗p is a norm
of an element of K∗p if and only if its p-adic valuation is even. An element of
Q∗2 is a norm of an element of K∗2 if and only if it equals 2ru, where r ∈ Z
and u ∈ Z∗2 is congruent to 1 modulo 4. Quite generally, an element a ∈ Q∗v
is a norm from K∗v if and only if it is a sum of two squares in Qv, that is,
if and only if the class of the quaternion algebra (−1, a) = 0 ∈ Br(Qv) (see
Proposition 1.1.8).

Let U = Uc be the smooth, affine, geometrically integral variety over Q
defined by the equation

y2 + z2 = (c− x2)(x2 − c+ 1) 6= 0, (13.6)

where c ∈ N is congruent to 3 modulo 4. Then U has points in all completions
of Q. This is clear for the real place and the p-adic places for p 6= 2: just take
xp = 1/p. For p = 2, take x = 0 if c is congruent to 3 mod 8 and x = 1 if c
is congruent to 7 mod 8.

Consider the Azumaya algebra on U defined by the quaternion algebra
A = (c − x2,−1). Let X = Xc be a smooth projective compactification
of Uc. As proved in Example 6.3.1 the class of A comes from a class in
Br(X) ⊂ Br(U). By Proposition 10.5.2, for any place v of Q, finite or infinite,
the image of the evaluation map evA : X(Qv)→Br(Qv) coincides with the
image of evA : U(Qv)→Br(Qv). Thus we need to compute the images of the
maps

φv : U(Qv) −→ Q∗v/NK/Q(K∗v ) ⊂ Z/2,

where φv sends Mv = (xv, yv, zv) ∈ U(Qv) to the class of c− x2
v.

If v splits in K, the target group of φv is zero. For v = v∞, the equation

y2
∞ + z2

∞ = (c− x2
∞)(x2

∞ − c+ 1) ∈ R∗

forces c− x2
∞ > 0, hence the image of φv is zero.

Suppose that v = p is a prime which is inert in K. If v(xv) < 0, then
v(c− x2

v) is even and thus c− x2
v is a norm. Suppose that v(xv) ≥ 0. From

(c− x2
v) + (x2

v − c+ 1) = 1
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we deduce that at least one of v(c− x2
v) and v(x2

v − c+ 1) is zero. From

y2
v + z2

v = (c− x2
v)(x

2
v − c+ 1) ∈ Q∗v,

we deduce that the sum of the valuations of c − x2
v and x2

v − c + 1 is even.
Thus v(c− x2

v) is even, and the image of φv is zero.
For the unique ramified prime v = 2, as recalled above, an element of Q∗2

is a sum of two squares if and only if it is the product of a power of 2 and a
unit in Z∗2 which is congruent to 1 modulo 4. Write x2 = u/v with u and v in
Z2, not both divisible by 2. Up to multiplication by a square, c− x2

2 is equal
to cv2− u2, which by the hypothesis on c is congruent to 3v2− u2 modulo 4.
Up to multiplication by a square, x2

2−c+1 is equal to u2−(c−1)v2 which by
the hypothesis on c is congruent to u2−2v2 modulo 4. The possible values for
(u2, v2) modulo 4 are (0, 1), (1, 0), (1, 1). In the first and second cases, 3v2−u2

is congruent to 3 modulo 4 hence is not a norm for K2/Q2. In the third case,
u2 − 2v2 is congruent to 3 modulo 4, hence is not a norm for K2/Q2. Since
Q∗2/NK/Q(K∗2 ) ∼= Z/2, and the product (c − x2

2)(x2
2 − c + 1) = y2

2 + z2
2 is a

norm, we conclude that c−x2
2 is never a norm for the extension K2/Q2. Thus

the image of φ2 is 1 ∈ Z/2.
For any (Mv) ∈ X(AQ), we thus have∑

v∈Ω
invv(A(Mv)) =

1

2
,

hence X(AQ)A = ∅ implying X(Q) = ∅.

Exercise 13.3.23 [CTCS80, Exemple 5.5], [San82, §2] Let c ≥ 2 be an in-
teger. Let Xc be a smooth projective variety over Q birationally equivalent
to the affine surface with the equation

y2 + 3z2 = (c− x2)(x2 − c+ 1).

Consider the unramified quaternion algebra A = (c− x2,−3) and prove that
Xc(AQ)A = ∅ if c = 32s+1(3n− 1) for some integers s ≥ 0 and n ≥ 1.

Exercise 13.3.24 [CTCS80, Exemple 5.6] Let c ≥ 3 be an integer. Let Xc

be a smooth projective variety over Q birationally equivalent to the affine
surface with the equation

y2 + z2 = (c− x2)(x2 − c+ 2).

Consider the unramified quaternion algebra A = (c− x2,−1) and prove that
Xc(AQ)A = ∅ if c = 4n(8m+ 7) for some integers n ≥ 0 and m ≥ 0.
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Swinnerton-Dyer’s counter-example to weak approximation

The reference is [SwD62]. Let U be the affine surface over Q defined by

y2 + z2 = (4x− 7)(x2 − 2) 6= 0.

Let
A = (4x− 7,−1) ∈ Br(U).

Let X be a smooth compactification of U . Using the equality

(4x− 7)(4x+ 7)− 16(x2 − 2) = −17,

and proceeding as in Example 6.3.1 to compute residues at an arbitrary
discrete valuation of the field k(X) trivial on k, one shows that A is in
Br(X) ⊂ Br(U). For any prime p 6= 2, a similar valuation argument based on
the same equality shows that A ∈ Br(X) vanishes identically on U(Qp) and
hence also, by continuity (Proposition 10.5.2), on X(Qp). For p = 2 a more
intricate computation in the same spirit as the computation in the previous
example shows that A also vanishes identically on U(Q2), hence on X(Q2)
by continuity. The set of real points U(R) has two connected components:
the first one given by −

√
2 < x <

√
2 and the second one given by x > 7/4.

The connected components of X(R) are obtained by taking the closure of the
connected components of U(R) in X(R). It is clear that A takes the non-zero
value in Br(R) on any point of the first component, and the zero value on
any point of the second component. The reciprocity law then implies that all
Q-points of X are contained in the second component of X(R).

Principal homogeneous spaces of a particular torus

The following example is discussed in more detail in [CT14].
Let k be a number field, a, b, c ∈ k∗, and let U be the smooth, geometrically

integral, affine variety over k defined by the equation

(x2 − ay2)(z2 − bt2)(u2 − abw2) = c.

It is clear that U is a principal homogeneous space for the 5–dimensional torus
defined by the same equation with c = 1. Let X be a smooth compactification
of U . Computing residues, one checks that the class of the quaternion algebra
A = (x2 − ay2, b) ∈ Br(U) is contained in the subgroup Br(X) ⊂ Br(U), see
Example 6.3.4.

The subgroup B(X) ⊂ Br(X) was defined in Remark 13.3.7.
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Proposition 13.3.25 Assume that a, b, c ∈ k∗ are such that for each place
v of k the field extension kv(

√
a,
√
b)/kv is cyclic, hence of degree at most 2.

Then we have the following statements.

(i) The class A is contained in the subgroup B(X) ⊂ Br(X).
(ii) For each (Mv) ∈ X(Ak) one has∑

v∈Ω
invv(A(Mv)) =

∑
v | a∈k∗2v

(c, b)v =
∑

v | a/∈k∗2v

(c, b)v ∈ Z/2.

Proof. (i) Let F be a field extension of k. If a, b or ab is a square in F , then
the left-hand side of the equation of U has a linear factor. This easily implies
that UF is rational over F . For instance, if a is square in F , the equation
may be rewritten

xy(z2 − bt2)(u2 − abw2) = c,

or with a further change of variables

x = cy(z2 − bt2)(u2 − abw2) 6= 0,

so that UF is isomorphic to the open set of A5
F defined by

y(z2 − bt2)(u2 − abw2) 6= 0.

Then the natural map Br(F )→Br(XF ) is an isomorphism by Corollary 6.2.11
and Theorem 6.1.3. This proves (i).

(ii) Let v ∈ Ω and let Mv = (xv, yv, zv, tv, uv, wv) be a point of U(kv). Let
us compute (x2

v−ay2
v , b)v ∈ Br(kv). Assume that a is not a square in kv. Then

either b or ab is a square in kv. In the first case (x2
v−ay2

v , b)v = 0, whereas in
the second case (x2

v − ay2
v , b)v = (x2

v − ay2
v , a)v = 0 (Proposition 1.1.8). Now

assume that a is a square in kv. From the equation of U we obtain

(x2
v − ay2

v , b)v = (z2
v − bt2v, b)v + (u2

v − abw2
v, b)v + (c, b)v.

Since a ∈ k∗2v we see that (u2
v − abw2

v, b)v = (u2
v − abw2

v, ab)v = 0. The first
term of the right-hand side is zero, hence (x2

v − ay2
v , b)v = (c, b)v. By the

continuity of evA this extends to any point of X(kv). �

Starting from this explicit formula, one easily produces counter-examples
to the Hasse principle. For k = Q take a = 17, b = 13, c = 5.

The Reichardt–Lind counter-example to the Hasse principle

Let X be the smooth compactification of the smooth affine curve U over Q
defined by

2y2 = x4 − 17 6= 0.
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One checks that X(AQ) 6= ∅. (For the primes of good reduction this follows
from Hensel’s lemma and the fact that every smooth projective curve of genus
1 over a finite field has a rational point.) In Example 6.3.3 we proved that
the quaternion algebra A = (y, 17) defines an element of Br(X) ⊂ Br(U).
It is obvious that A(U(R)) = 0, hence by the continuity of evA we have
A(X(R)) = 0. If p is a prime such that 17 is a square in Qp, then we have
A(U(Qp)) = 0 and hence A(X(Qp)) = 0. Suppose that p 6= 17 is a prime
such that 17 is not a square in Qp, in particular p 6= 2. Write vp for the
valuation of Qp. Let xp, yp ∈ Qp be such that 2y2

p = x4
p − 17 6= 0. Suppose

that vp(yp) < 0. Then from the equation we get 2vp(yp) = 4vp(x), hence
vp(yp) is even. Suppose that vp(yp) > 0. From the equation we deduce that
17 is a square modulo p, which we have excluded. Thus vp(yp) is even. This
implies (yp, 17) = 0. Thus A(U(Qp)) = 0, hence A(X(Qp)) = 0 for any
prime p 6= 17. For p = 17, an ad hoc local computation shows that we have
inv17(A(U(Q17))) = 1

2 ∈ Q/Z. This implies inv17(A(X(Q17))) = 1
2 . Thus

the adelic evaluation map evA sends X(AQ) to 1
2 ∈ Q/Z. We conclude that

X(Q) = ∅. (In fact, A is contained in the subgroup B(X) ⊂ Br(X) defined
in Remark 13.3.7, as can be deduced from Corollary 10.5.5.)

For the history of this example we quote from Cassels [Cas66, p. 284]:
“... Lind [Lin40] in his dissertation gave examples of curves of genus 1 with
points everywhere locally but not globally, including the example later given
by Reichardt. We reproduce Lind’s elegant argument, which has recently been
rediscovered by Mordell, and which does not fall readily into the paradigm
proposed in this paper. One has to prove that there are no solutions of

u4 − 17v4 = 2w2 (∗)

in coprime integers u, v, w. We first show that w is a quadratic residue of
17. For if p is an odd prime divisor of w, it follows from (∗) that 17 is a
quadratic residue of p, so p is a quadratic residue of 17 by the law of quadratic
reciprocity and 2 is in any case a quadratic residue of 17. Hence u4 and w2

are both quartic residues of 17. Then (∗) implies that 2 is a quartic residue
of 17, which is not the case.”

Reichardt [Rei42] considered this curve over Q(
√

2), computed its non-
empty set of Q(

√
2)-points, then showed that none of them is fixed by

Gal(Q(
√

2)/Q).

Other examples

Counter-examples to the Hasse principle and weak approximation which are
accounted for by the Brauer–Manin obstruction have been constructed for
the following classes of varieties.
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• Smooth projective curves of arbitrary genus g ≥ 1.
• Smooth, projective, geometrically rational varieties of dimension at least

2, including smooth del Pezzo surfaces of degree d with 2 ≤ d ≤ 4, in
particular, smooth cubic surfaces.
• Smooth compactifications of homogeneous spaces of connected linear al-

gebraic groups.
• Surfaces with a pencil of curves of genus one.
• K3 surfaces, such as smooth quartics in P3.
• Enriques surfaces.

We refer to surveys [VA13, VA17, Witt18] for precise references. Here we
give only the example mentioned at the end of Section 13.3.2.

Exercise 13.3.26 (M. Pagano) The K3 surface X ⊂ P3
Q given by

x3y + y3z + z3w + w3x+ xyzw = 0

has good reduction at the prime 2. The class of the quaternion algebra

A :=

(
z3 + xw2 + xyz

x3
,− z

x

)
∈ Br(Q(X))

is contained in Br(X). Moreover, evA : X(Q2)→Br(Q2) is a non-constant
function, so A gives an obstruction to weak approximation on X. See [Pag,
Thm. 1] for details and the relation to the ideas and constructions of [BN].

See Section 14.3 for counter-examples to the Hasse principle and weak
approximation which are not explained by the Brauer–Manin obstruction.

Remark 13.3.27 Diagonal cubic surfaces X ⊂ P3
Q given by an equation

ax3 + by3 + cz3 + dt3 = 0,

where a, b, c, d ∈ Q∗, were an early testing ground for the validity of the Hasse
principle and the study of the Brauer–Manin obstruction. Mordell conjec-
tured that they satisfy the Hasse principle. Cassels and Guy (1966) showed
that the cubic surface given by

5x3 + 9y3 + 10z3 + 12t3 = 0

is a counter-example. In 1987, in the paper [CTKS87], all non-singular diag-
onal surfaces with positive a, b, c, d ∈ Z such that max{a, b, c, d} ≤ 100 were
numerically analysed, and the Brauer–Manin set was determined. It turns out
that for such a surface X, we have either X(AQ)Br = ∅ or a search for ratio-
nal points of small height shows that X(Q) 6= ∅. This provides computational
support for Conjecture 14.1.2 discussed in the next chapter.

Without loss of generality we assume that the integers a, b, c, d have no
common prime factor. Absorbing cubes by changing variables, we can assume
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that for any prime p the highest power of p dividing any coefficient is at most
2. An interesting aspect of the investigation is that all surfaces in the list
with X(AQ) 6= ∅ and X(AQ)Br = ∅ have the property that no prime p
divides exactly one coefficient. A specific family of counter-examples to the
Hasse principle is provided by surfaces with equation

x3 + p2y3 + pqz3 + q2t3 = 0,

where p ≡ 2 and q ≡ 5 modulo 9 are prime numbers.
This is another instance of a phenomenon taught to us by experience: in

a given algebraic family of varieties over a number field, finding a counter-
example to the Hasse principle is akin to finding a needle in a haystack. This
is in sharp contrast to Proposition 13.3.12, which says that it is easy to find
counter-examples to weak approximation.

The two phenomena have now been studied from a quantitative point
of view. One tries to give estimates, or at least bounds, for the number of
points in the parameter space (in the above example, the number of points
(a, b, c, d) ∈ P3(Q) with height at most H, as H→∞) for which the Hasse
principle, or weak approximation fails. This is related to the geometry and
arithmetic of the locus of the parameter space where the fibres need not be
split. In the above example, this is the union of lines in P3

Q with homogeneous
coordinates (a, b, c, d) given by the simultaneous vanishing of two coordinates.
See the papers [BBL16, LS18, Bri18, Bro18].

13.3.4 The Brauer–Manin set of a product

Proposition 13.3.10 shows that for the varieties X and Y the Brauer–Manin
set of X×k Y is contained in X(Ak)Br×Y (Ak)Br. In the following basic case
this is an equality.

Theorem 13.3.28 Let X and Y be smooth and geometrically integral vari-
eties over a number field k. Then we have

(X × Y )(Ak)Br = X(Ak)Br × Y (Ak)Br.

Proof. Below we give the proof in the case when X and Y are projective
[SZ14, Thm. C]. The general case is due to Chang Lv, see [Lv20, Thm. 3.1].

It is clear that the left-hand side is contained in the right-hand side, so it
remains to prove that X(Ak)Br × Y (Ak)Br is a subset of (X × Y )(Ak)Br.

We use the same notation as in Section 5.7.3, in particular, we denote by
pX : X × Y→X and pY : X × Y→Y the natural projections.

We can assume that X(Ak)Br 6= ∅ and Y (Ak)Br 6= ∅. Since the Brauer
group of a smooth projective variety is a torsion group, is enough to show that
for any positive integer n the group Br(X×Y )[n] is generated by p∗XBr(X)[n],
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p∗Y Br(Y )[n] and the elements that pair trivially with X(Ak)Br × Y (Ak)Br

with respect to the Brauer–Manin pairing. Using the Kummer sequence, we
see that it suffices to show that H2

ét(X×Y, µn) is generated by p∗XH2
ét(X,µn),

p∗Y H2
ét(Y, µn) and the elements that pair trivially with X(Ak)Br × Y (Ak)Br.

If Z→X is a torsor for a k-group of multiplicative type G annihilated by
n, then the type of Z→X is the image of the class [Z/X] under the composed
map

H1
ét(X,G) −→ H1

ét(X
s, G)Γ −→ Homk(Ĝ,Pic(Xs)) = Homk(Ĝ,Pic(Xs)[n]),

see [Sko01, Def. 2.3.2]. As in Section 5.7.3 we denote by SX and SY the finite
commutative k-group schemes whose Cartier duals are

ŜX = H1
ét(X

s, µn) ∼= Pic(Xs)[n], ŜY = H1
ét(Y

s, µn) ∼= Pic(Y s)[n].

The assumption X(Ak)Br 6= ∅ allows us to ‘descend’ various data defined
in Section 5.7.3 over ks, to k. Indeed, by the descent theory of Colliot-Thélène
and Sansuc [Sko01, Cor. 6.1.3 (1)], X(Ak)Br 6= ∅ implies that there exists

an SX -torsor on X whose type is the identity in End(ŜX). Let us choose
one such torsor and call it TX . (The class of this torsor in H1

ét(X,SX) is
well defined up to an element of H1(k, SX).) Then T s

X is isomorphic to the
SXs -torsor TXs used in Section 5.7.3. Thus we have a map

ε : Homk(SX , ŜY ) −→ H2
ét(X × Y, µn)

that sends φ ∈ Homk(SX , ŜY ) to ε(φ) = φ∗[TX ] ∪ [TY ], where ∪ stands for
the cup-product pairing

H1
ét(X, ŜY )×H1

ét(Y, SY ) −→ H2
ét(X × Y, µn).

Note that ε is injective, as follows from Theorem 5.7.7 (ii).
The theorem is a consequence of Claims 1 and 2:

Claim 1: H2
ét(X × Y, µn) = p∗XH2

ét(X,µn) + p∗Y H2
ét(Y, µn) + Im(ε).

Claim 2: X(Ak)Br1(X)[n] × Y (Ak)Br1(Y )[n] ⊂ (X × Y )(Ak)Im(ε).

Proof of Claim 1. We use the spectral sequence

Ep,q2 = Hp(k,Hq
ét(X

s, µn))⇒ Hp+q
ét (X,µn). (13.7)

Let us point out some consequences of the assumption X(Ak) 6= ∅. The
canonical maps

Ep,02 = Hp(k, µn) −→ Hp
ét(X,µn)

are injective for p ≥ 3. Indeed, for such p the natural map

Hp(k,M) −→
⊕
kv'R

Hp(kv,M)
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is a bijection for any finite Galois module M , see [Mil86, Thm. I.4.10 (c)].
Next, the natural map Hp(kv,M)→Hp

ét(X ×k kv,M) is injective for any p
since any kv-point of X defines a section of this map. It follows that the
composite map

Hp(k,M) −→ Hp
ét(X,M) −→

⊕
kv'R

Hp
ét(X ×k kv,M)

is injective, and this implies our claim. We note that

E2,0
2 = H2(k, µn) −→ H2

ét(X,µn)

is also injective. The argument is similar; it uses the embedding of Br(k) into
the direct sum of the Brauer groups Br(kv), for all v ∈ Ω, provided by global
class field theory, together with the existence of kv-points on X for every
place v. This implies the triviality of all the canonical maps in the spectral
sequence with target Ep,02 = Hp(k, µn) for p ≥ 2.

Let us denote by H2
ét(X × Y, µn)′ the quotient of H2

ét(X × Y, µn) by the
(injective) image of H2(k, µn). Using the above remarks we obtain from (13.7)
the following exact sequence:

0 −→ H1(k,H1
ét(X

s × Y s, µn)) −→ H2
ét(X × Y, µn)′

−→ H2
ét(X

s × Y s, µn)Γ −→ H2(k,H1
ét(X

s × Y s, µn)).
(13.8)

There are similar sequences for Y and X×Y linked by the maps p∗X and p∗Y .
Let us define

H = π∗XH2
ét(X,µn) + π∗Y H2

ét(Y, µn) + Im(ε) ⊂ H2
ét(X × Y, µn).

It is clear that the (injective) image of H2(k, µn) in H2
ét(X×Y, µn) is contained

in H, so in order to prove Claim 1 it is enough to show that the natural map
H→H2

ét(X × Y, µn)′ is surjective.
By (5.45) we have an isomorphism of Γ -modules induced by pX and pY :

H1
ét(X

s × Y s, µn) ∼= H1
ét(X

s, µn)⊕H1
ét(Y

s, µn). (13.9)

This implies that the image of H1(k,H1
ét(X

s × Y s, µn)) in H2
ét(X × Y, µn)′ is

contained in H. In view of (13.8) it remains to show that every element of
the kernel of the map

αX×Y : H2
ét(X

s × Y s, µn)Γ −→ H2(k,H1
ét(X

s × Y s, µn))

comes from H. The isomorphism of Γ -modules (5.47) gives

H2
ét(X

s × Y s, µn)Γ ∼= H2
ét(X

s, µn)Γ ⊕H2
ét(Y

s, µn)Γ ⊕Homk(SX , ŜY ).
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By Theorem 5.7.7 and (5.47), any ϕ ∈ Homk(SX , ŜY ), considered as an
element of H2

ét(X
s× Y s, µn)Γ , lifts to φ∗[TX ]∪ [TY ] ∈ H2

ét(X × Y, µn). Hence

αX×Y is zero on Homk(SX , ŜY ), so that αX×Y is the direct sum of

αX : H2
ét(X

s, µn)Γ −→ H2(k,H1
ét(X

s, µn))

and a similar map αY for Y . Thus Ker(αX×Y ) is a surjective image of

H2
ét(X,µn)⊕H2

ét(Y, µn)⊕ Im(ε).

This finishes the proof of Claim 1.

Proof of Claim 2. Let M be a finite commutative group k-scheme such
that nM = 0. If v is a non-archimedean place of k, we write H1

nr(kv,M)
for the unramified subgroup of H1(kv,M). By definition, it consists of the
classes that are annihilated by the restriction to the maximal unramified
extension of kv. We write P 1(k,M) for the restricted product of the abelian
groups H1(kv,M), for v ∈ Ω, relative to the subgroups H1

nr(kv,M), where v
is a non-archimedean place of k. By [Mil86, Lemma I.4.8] the image of the
diagonal map

H1(k,M) −→
∏
v∈Ω

H1(kv,M)

is contained in P 1(k,M). Let us denote this image by U1(k,M).
The local cup-product pairings for v ∈ Ω

∪v : H1(kv,M)×H1(kv, M̂) −→ H2(kv, µn)

give rise to the global Poitou–Tate pairing

( , ) : P 1(k,M)× P 1(k, M̂) −→ Z/n.

It is a perfect duality of locally compact abelian groups, moreover, U1(k,M)

and U1(k, M̂) are exact annihilators of each other (the Poitou–Tate theorem,
see [Mil86, Thm. I.4.10 (b)] or [Har17, Thm. 17.13]). We shall use this pairing

with M = ŜY .
Let (Pv) ∈ X(Ak) be an adelic point that is Brauer–Manin orthogonal to

Br1(X)[n]. Let (Qv) ∈ Y (Ak) be an adelic point orthogonal to Br1(Y )[n]. For

ϕ ∈ Homk(SX , ŜY ) the Brauer–Manin pairing of the adelic point (Pv ×Qv)
of X × Y with the image of ε(ϕ) = ϕ∗[TX ] ∪ [TY ] in Br(X × Y ) is given by
the Poitou–Tate pairing of ϕ∗[TX ](Pv) with [TY ](Qv). Thus to prove Claim
2 we need to show that

(ϕ∗[TX ](Pv), [TY ](Qv)) =
∑
v∈Ω

invv
(
ϕ∗[TX ](Pv) ∪v [TY ](Qv)

)
= 0. (13.10)
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For any a ∈ H1(k, ŜY ) the image of a∪ [TY ] ∈ H2
ét(Y, µn) in Br(Y )[n] belongs

to Br1(Y )[n], and hence (a, [TY ](Qv)) = 0. If an element of P 1(k, SY ) is

orthogonal to U1(k, ŜY ), then it is contained in U1(k, SY ). Therefore, we
must have

[TY ](Qv) ∈ U1(k, SY ). (13.11)

Similarly, for any b ∈ H1(k, SY ) the image of ϕ∗[TX ] ∪ b ∈ H2
ét(X,µn) in

Br(X)[n] is contained in Br1(X)[n], and hence (ϕ∗[TX ](Pv), b) = 0. Since

every element of P 1(k, ŜY ) orthogonal to U1(k, SY ) belongs to U1(k, ŜY ),
this implies

ϕ∗[TX ](Pv) ∈ U1(k, ŜY ). (13.12)

Since (13.11) and (13.12) imply (13.10), this finishes the proof of Claim 2. �

13.4 Harari’s formal lemma

Let k be a number field and let a ∈ k∗ r k∗2. Let X = A1
k = Spec(k[t])

and let U = Gm,k ⊂ A1
k be the open subset given by t 6= 0. The quaternion

algebra class (a, t) ∈ Br(U)[2] has a non-trivial residue a ∈ k∗/k∗2 at t = 0
and t =∞. There exist infinitely many places v of k such that a is a unit and
not a square in the completion kv. If v is such a finite, odd place, and πv ∈ kv
is a uniformiser, then (a, πv) ∈ Br(kv) is non-zero. Thus there are infinitely
many places v such that α is not identically zero on U(kv). A conceptual
reason for this is that (a, t) is ramified on X.

This is the easiest case of the following general result [Har94, Thm. 2.1.1,
p. 226]. The presentation in this section follows [CT03].

Theorem 13.4.1 (Harari) Let X be a smooth integral variety over a num-
ber field k. Let S be a finite set of places of k and let X→Spec(OS) be a
morphism of finite type with generic fibre X. Let U ⊂ X be a non-empty
open subset of X and let α ∈ Br(U) r Br(X). There exist infinitely many
places v of k for which there is a point Mv ∈ U(kv)∩X (Ov) with α(Mv) 6= 0.

Proof. The first part of the proof is a reduction to the case when X is a curve.
There is an irreducible divisor Z ⊂ X such that the residue of α at the

generic point of Z is a non-zero element ∂Z(α) ∈ H1(k(Z),Q/Z). Let n be
the order of ∂Z(α). Then ∂Z(α) is an element of the subgroup H1(k(Z),Z/n)
of H1(k(Z),Q/Z). After replacing X by an open subset we can assume that
Z is smooth, U = X r Z and α ∈ Br(U). Using exact sequence (3.15) in
Theorem 3.7.1, we see that ∂Z(α) comes from a non-zero element

ρ ∈ H1
ét(Z,Z/n) ⊂ H1(k(Z),Z/n).
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Let Z1→Z be the finite cyclic cover defined by ρ, or, equivalently, the Z-
torsor for Z/n with class ρ. The scheme Z1 is connected. Indeed, the invariant
subfield K of the kernel of the homomorphism Gal(k(Z)/k(Z))→Q/Z corre-
sponding to ∂Z(α) is a field extension of k(Z) of degree n, so Spec(K) must
be the generic point of Z1.

Replacing X by an open subset, we may assume that there is a generically
finite dominant morphism Z→Adk, where d = dim(Z). Since Z1 is connected,
Hilbert’s irreducibility theorem [SerMW, Ch. 9] shows the existence of in-
finitely many k-points M of Adk such that the fibre of the composite morphism
Z1→Z→Adk at M is integral. Let us choose one such point M . The inverse
image of M under the morphism Z→Adk is a closed point P ∈ Z such that
ρ(P ) 6= 0 ∈ H1(k(P ),Q/Z).

A local equation of Z ⊂ X at P can be extended to a regular system of
parameters of the regular local ring OX,P . One thus finds a closed integral
curve C ⊂ X containing the closed point P such that C is a smooth at P
and transversal to Z at P . Shrinking X even more, we may assume that
C is smooth and Z ∩ C = P . Let αC ∈ Br(C r P ) be the restriction of
α ∈ Br(X r Z). Since C and Z are transversal at P , by Theorem 3.7.5 the
residue of αC at P is

∂P (αC) = ρ(P ) ∈ H1(k(P ),Q/Z),

thus ∂P (αC) 6= 0. The embedding C ⊂ X extends to an embedding of integral
models over a suitable open subset of Spec(OS). Therefore, it is enough to
prove the statement of the theorem for the smooth connected curve C.

So let C be a connected integral curve over k with a closed point P . Write
U = C r {P}. Let α ∈ Br(U) be an element with a non-zero residue

χ = ∂P (α) ∈ H1(k(P ),Q/Z)

of order n. Thus χ ∈ H1(k(P ),Z/n) ⊂ H1(k(P ),Q/Z). Replacing C by an
open set, we may assume that C is affine, C = Spec(A), and P is defined
be the vanishing of some f ∈ A. Let Ah be the henselisation of A at P .
The natural restriction map H1(Ah,Z/n)→H1(k(P ),Z/n) is an isomorphism
(Section 2.3.3, formula (2.18)). Thus there exists a connected affine curve
D = Spec(B) over k and an étale morphism q : D→C such that q induces an
isomorphism Q = q−1(P )

∼−→ P and, moreover, χ is the restriction of some
ξ ∈ H1

ét(D,Z/n).
Let V = D rQ. The restriction of q to V is a morphism q : V→U . Write

αV = q∗(α) ∈ Br(V ). Define g := f ◦ q ∈ k[D] and consider the cup-product
(ξ, g) ∈ Br(V ) of ξ ∈ H1

ét(D,Z/n) with the class of g in k[V ]
∗
/k[V ]

∗n ⊂
H1

ét(V, µn). By formula (1.20) for the Serre residue r and Theorem 2.3.5
(which gives r = −∂) the difference β = αV − (ξ, g) is an element of Br(V )
with trivial residue ∂Q(β) at Q, hence β ∈ Br(D).
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Replacing S by a larger finite set of places we can assume the existence of
affine curves C andD, each of them smooth over Spec(OS), such that q : D→C
extends to an étale OS-morphism q : D→C. Let P be the Zariski closure of
P in C. By increasing S further we can ensure the following properties:

f ∈ A comes from an element f ∈ OS [C];
ξ ∈ H1

ét(D,Z/n) is the restriction of an element ξ ∈ H1
ét(D,Z/n);

β ∈ Br(D) is the restriction of an element β ∈ Br(D);
the natural morphism P→Spec(OS) is finite and étale;
the inverse image Q of P in D is integral and maps isomorphically onto

its image in C.
By a version of Chebotarev’s theorem (Theorem 13.1.6), there exist in-

finitely many places v of k for which there is a place w of k(P ) over v with
kv ∼= k(P )w (i.e., w has degree 1 over v) and w is inert in the cyclic extension
k(P )(χ)/k(P ) defined by χ ∈ H1(k(P ),Z/n).

For such a place v the k(P )w-points of D and C given by Q and P extend
to isomorphic Ov-points N0

v of D and M0
v of C, respectively.

Let Nv ∈ D(Ov) be such that g(Nv) 6= 0 and let Mv = q(Nv) ∈ C(Ov) be
the image of Nv. Then by viewing Nv and Mv as kv-points, one has

α(Mv) = αV (Nv) = β(Nv) + (ξ(Nv), g(Nv)) ∈ Br(kv)
∼−→ Q/Z.

We have β(Nv) ∈ Br(Ov) = 0. The place w of k(P ) is inert in the cyclic
extension k(P )(χ), so if Nv is close enough to N0

v for the v-adic topology on
D(Ov), which is an open set of D(kv), the class

ξ(Nv) ∈ H1(k(P )w,Z/n) = H1(kv,Z/n)

has order n. Indeed, for any kv-variety W and any χ ∈ H1
ét(W,Z/n), an appli-

cation of Theorem 10.5.1 gives that the evaluation map W (kv)→H1(kv,Z/n),
given by Mv 7→ χ(Mv) with values in the finite group H1(kv,Z/n), is locally
constant.

Using formula (1.20) for the Serre residue, Theorem 1.4.14 (for r = −rW )
and the fact that the isomorphism Br(kv)

∼−→ Q/Z is given by rW (Definition
13.1.7), we find that α(Mv) = (ξ(Nv), g(Nv)) ∈ Z/n ⊂ Q/Z is equal to
v(g(Nv)) modulo n, where v : k∗v→Z is the valuation. The closed set

Q×OS Ov ⊂ D ×OS Ov

contains the Ov-section of D×OS Ov→Spec(Ov) defined by N0
v , and is finite

and étale over Ov. The map g induces an étale map D ×k kv→A1
kv

sending
N0
v to 0 ∈ A1(kv), hence by Theorem 10.5.1 induces a local isomorphism

from D(kv) to A1(kv). Thus on any neighbourhood of N0
v in D(kv), the

function g takes all possible valuations. The set D(Ov) is open in D(kv). We
conclude that there exists a point Nv ∈ D(Ov) arbitrarily close to N0

v such
that v(g(Nv)) ≡ 1 mod n, hence its image Mv ∈ C(Ov) ⊂ C(kv) satisfies
α(Mv) 6= 0. �
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Remark 13.4.2 In the simple example before the theorem, there also ex-
ist infinitely many places v of k such that α identically vanishes on U(kv),
namely those where a becomes a square in kv. Thus one may ask the following
question.

Let k be a number field and let U ⊂ X be a non-empty open subset of a
smooth geometrically integral variety over k. Let α ∈ Br(U) \ Br(X). Does
there exist infinitely many places v such that α vanishes identically on U(kv)?

This holds if X is a curve, but can fail in higher dimension. Suppose that
dim(X) ≥ 2 and there exists a geometrically integral subvariety Z ⊂ X \U of
codimension 1 in X such that ∂(α) ∈ H1(k(Z),Q/Z) defines a cyclic extension
L/k(Z) such that k is algebraically closed in L. Then, for almost all places v
of k, the class α takes at least one non-zero value on U(kv).

Starting from Theorem 13.4.1, a combinatorial argument leads to the fol-
lowing extremely useful result. This version of D. Harari’s “formal lemma”
[Har94, Cor. 2.6.1, p. 233] was given in [CTS00].

Theorem 13.4.3 (Harari) Let X be a smooth geometrically integral variety
over a number field k. Let U ⊂ X be a non-empty open set and let B ⊂ Br(U)
be a finite subgroup. Let (Pv) ∈ U(Ak)B∩Br(X). For any finite set S of places
of k there exists an adelic point (Mv) ∈ U(Ak), where Mv = Pv for v ∈ S,
such that for any β ∈ B we have∑

v∈Ω
invv (β(Mv)) = 0.

Proof. Replacing S by a larger finite set of places which contains all the
archimedean places of k, we can find OS-schemes X and U of finite type,
together with an open immersion of OS-schemes U→X which gives the open
immersion U→X after restricting to the generic point Spec(k) of Spec(OS).
In doing so we can ensure that Pv ∈ U(Ov) for v /∈ S. Since B is finite, by
increasing S further, we may assume that B ⊂ Br(U) and B∩Br(X) ⊂ Br(X ).
Since Br(Ov) = 0, this implies that β(Pv) = 0 for any β ∈ B and any v /∈ S.
Likewise, β(Mv) = 0 for any β ∈ B ∩ Br(X) and any point Mv ∈ X (Ov),
where v /∈ S.

Let α ∈ B, α /∈ Br(X). According to Theorem 13.4.1, there exist an infinite
set Tα of places of k disjoint from S and a family of points (Nv)v∈Tα with
each Nv ∈ U(kv) ∩ X (Ov) such that for α(Nv) 6= 0 for each v ∈ Tα. The
elements of B ∩ Br(X) ⊂ Br(X ) take the zero value at a point Nv since we
have Nv ∈ X (Ov). Thus for each v ∈ Tα, the evaluation of the elements of B
at the point Nv defines a homomorphism

ϕα,v : B/(B ∩ Br(X)) −→ Br(kv)
∼−→ Q/Z

such that ϕα,v(α) 6= 0. Since B/(B ∩ Br(X)) is a finite group, the group
Hom(B/(B ∩ Br(X)),Q/Z) is finite too. Thus there exists an infinite subset
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of Tα such that the attached homomorphisms ϕα,v are all equal. Replacing
Tα by this subset, we may thus assume that there exists a homomorphism

ϕα : B/(B ∩ Br(X)) −→ Q/Z

with the property ϕα(α) 6= 0, such that for any β ∈ B and any v ∈ Tα we
have

ϕα(β) = invv(β(Nv)) ∈ Q/Z. (13.13)

Let C be the subgroup of Hom(B/(B ∩ Br(X)),Q/Z) generated by the ϕα
for α ∈ B. Consider the natural bilinear pairing

B/(B ∩ Br(X))× C −→ Q/Z.

Since ϕα(α) 6= 0, the left kernel of this pairing is zero. We thus obtain an
injective map of B/(B∩Br(X)) into Hom(C,Q/Z). Comparing the orders of
these finite groups we conclude that C ∼= Hom(B/(B ∩ Br(X)),Q/Z).

From the assumption on the given (Pv) ∈ U(Ak)B∩Br(X) and the con-
ditions imposed on S at the beginning of the proof, we deduce that the
linear map B→Q/Z that sends β to −

∑
v∈S β(Pv) descends to a linear map

B/(B ∩ Br(X))→Q/Z. We have just seen that such a map can be written
as a sum of maps ϕα (possibly with repetitions). By (13.13) each of the ϕα
involved in this sum can be written as β 7→ invv(β(Nv)), this time with-
out repeating v – since for each α we have an infinite set of places Tα at
our disposal. We have thus found a finite set T of places v /∈ S and points
Nv ∈ U(kv) ∩ X (Ov) for v ∈ T such that∑

v∈S
invv(β(Pv)) +

∑
v∈T

invv(β(Nv)) = 0

for each β ∈ B. We then have∑
v∈S

invv(β(Pv)) +
∑
v∈T

invv(β(Nv)) +
∑

v/∈S∪T

invv(β(Pv)) = 0

for each β ∈ B. This completes the proof once we take Mv = Nv for v ∈ T
and Mv = Pv for v /∈ T . �

Remark 13.4.4 In [Witt07, p. 17] one finds the following variant of the
formal lemma. Let k be a number field and let X be a smooth, proper,
geometrically integral variety over k. For any non-empty open subset U of
X, any finite subgroup B ⊂ Br(U), any finite set S ⊂ Ω and any family
(Pv) ∈ X(Ak)Br(X)∩B such that Pv ∈ U(kv) for v ∈ S, there exists a finite
set S1 ⊂ Ω containing S and points Qv ∈ U(kv) for v ∈ S1 such that Qv = Pv
for v ∈ S and ∑

v∈S1

invv (β(Qv)) = 0 for any β ∈ B.
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Remark 13.4.5 Let X ⊂ Xc be a smooth compactification. Theorem 13.4.3
for U ⊂ Xc implies the same theorem for U ⊂ X since Br(Xc) ⊂ Br(X).
Since Br(Xc) = Brnr(k(U)/k), in the condition of Theorem 13.4.3 we can
replace B ∩Br(X) by the smaller subgroup B ∩Brnr(k(U)/k), with the same
conclusion.

Let us illustrate the idea and the use of the formal lemma on a simple
case. Let k be a number field, let a ∈ k∗ \ k∗2 and let P (x) and Q(x) be two
coprime irreducible polynomials of odd degree in k[x]. Let U be the smooth,
affine, geometrically integral variety over k defined by the equation

y2 − az2 = P (x)Q(x) 6= 0

and let U ⊂ X be a smooth compactification. Consider the quaternion class
β = (a, P (x)) ∈ Br(U). Suppose X, and hence U , has kv-points for all com-
pletions of k. For almost all places v, the set U(kv) contains a point (xv, yv, zv)
with v(xv) = −1 and also a point with v(P (xv)) = 0. If v is inert in k(

√
a)

and v(xv) = −1, then (a, P (xv)) = 1/2 ∈ Q/Z. If v is unramified in k(
√
a)

and v(P (xv)) = 0, then (a, P (xv)) = 0 ∈ Q/Z.
Suppose we are given a finite set S of places of k and points Mv ∈ U(kv)

for v ∈ S. It is then easy to extend the family (Mv)v∈S to an adelic point
(Mv) ∈ U(Ak) such that ∑

v∈Ω
β(Mv) = 0.

One can check that the map Br(k)→Br(X) is surjective (Exercise 11.3.7 (i))
and that β ∈ Br(U) does not belong to Br(X). From the above equality and
the exact sequence (13.2) it follows that there exists an element c ∈ k∗ such
that the family (Mv) ∈ U(Ak) is the image of an adelic point of the k-variety
Vc given by the system of equations

u2
1 − av2

1 = cP (x)
u2

2 − av2
2 = c−1Q(x)

via the projection map defined by the formal identity

x+
√
ay = (u1 +

√
av1)(u2 +

√
av2).

One thus reduces the question of the Hasse principle for

y2 − az2 = P (x)Q(x) 6= 0

to the Hasse principle for the varieties Vc.
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A formal lemma for torsors

The following statement and its proof are taken from [BMS14, Prop. 3.1].

Theorem 13.4.6 Let U be a smooth and geometrically integral variety over
a number field k. Let T be a k-torus. Let Y→U be a T -torsor over U , and
let θ ∈ H1

ét(U, T ) be its class. Let B ⊂ Br(U) be the finite subgroup consisting

of cup-products θ∪ γ, where γ is an element of the finite group H1(k, T̂ ). Let
(Mv) ∈ U(Ak) be a point orthogonal to B ∩ Brnr(k(U)/k). Let S ⊂ Ω be a
finite set of places. Then there exists an α ∈ H1(k, T ) such that the twisted
torsor Y α has points in all completions of k and such that for each v ∈ S,
the point Mv lies in the image of Y α(kv)→U(kv).

Proof. By Theorem 13.4.3 and Remark 13.4.5 there exists an adelic point
(Pv) ∈ U(Ak) with Mv = Pv for v ∈ S such that∑

v∈Ω
invv [θ(Pv) ∪ γ] = 0 ∈ Q/Z for all γ ∈ H1(k, T̂ ).

Thus (θ(Pv)) ∈ ⊕v∈ΩH1(kv, T ) is orthogonal to H1(k, T̂ ). From the exact
sequence (13.1.11) we obtain that (θ(Pv)) is the image of some α ∈ H1(k, T )
under the diagonal map H1(k, T )→⊕v∈Ω H1(kv, T ). Twisting Y by α gives
a torsor over Y under T which has a kv-point over Pv for each v ∈ Ω. �

Remark 13.4.7 In the proof of [CTHS03, Thm. 3.1] there is a similar ar-
gument with a stronger hypothesis and a stronger conclusion. There we have
an additional condition k̄[U ]∗ = k̄∗. Starting from an element of X(Ak)Br, in
the situation described in loc. cit. one produces an adelic point on a suitable
twist Y α with the additional property that this adelic point is orthogonal to
(a suitable subgroup) of the unramified Brauer group of Y α.



Chapter 14

Are rational points dense in the
Brauer–Manin set?

Let X be a smooth, projective and geometrically integral variety over a num-
ber field k. When X(k) is dense in X(Ak), weak approximation holds for X.
In the previous chapter we have seen that this is impossible if the Brauer–
Manin set X(Ak)Br is smaller than X(Ak). Thus a natural question is this:
is X(k) a dense subset of X(Ak)Br? Write X(k)cl for the closure of X(k)
in X(Ak). If X(k)cl = X(Ak)Br we shall say that weak approximation holds
for the Brauer–Manin set of X. Informally speaking, the question is whether
the Brauer–Manin obstruction is the only obstruction to weak approxima-
tion – and, in particular, to the Hasse principle, – in the sense that weak
approximation holds for the adelic points which are not obstructed by the
Brauer group. One would like to determine geometric classes of varieties such
that weak approximation holds for their Brauer–Manin sets. It is not reason-
able to expect this for all varieties, and it is interesting to explore further
obstructions.

In Section 14.1 we discuss Colliot-Thélène’s conjecture that weak approx-
imation holds for the Brauer–Manin set of rationally connected varieties.
This is a rather strong conjecture. Indeed, it implies that rational points are
Zariski dense on any smooth, projective, and geometrically rational variety
over a number field with at least one rational point. This is not known already
for general conic bundles over the projective line and for general del Pezzo
surfaces of degree 1. Any progress in this direction would be significant.

In Section 14.2 we look at Schinzel’s Hypothesis (H), its consequences for
rational points, and we report on results of Green, Tao and Ziegler from
additive combinatorics that in some cases can be used instead of Schinzel’s
Hypothesis.

We then state a conjecture of Harpaz and Wittenberg which allows one
to deduce Colliot-Thélène’s conjecture for a variety fibred over P1

k from the
same conjecture for the smooth k-fibres. We explain the idea of the proof in
an important particular case.
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In a number of concrete cases, the conjecture of Harpaz and Wittenberg
was proved by analytic methods, thus leading to new results on existence and
density of rational points on certain types of varieties.

In Section 14.3 we give an overview of the theory of obstructions to the
local-to-global principle, in other words, various canonically defined subsets
of X(Ak) that contain X(k). We discuss relations between them and give
several examples to demonstrate insufficiency of these obstructions for several
types of varieties which are not rationally connected.

14.1 Rationally connected varieties: a conjecture

Rationally connected varieties

Let k be a field of characteristic zero. As usual, we denote an algebraic closure
of k by k̄ . Unless otherwise mentioned, a geometrically rational variety X over
k is a smooth, projective, geometrically integral variety such that X = X×k k̄
is birationally equivalent to the projective space of the same dimension.

Concrete examples of such varieties whose geometry is simple but arith-
metic is difficult are smooth projective birational models of affine hypersur-
faces in Ad+1

k with a simple looking defining equation of the following type.

Let x1, . . . , xn, t be coordinates on Ad+1
k . Let K/k be a finite field exten-

sion of degree d with a basis e1, . . . , ed of K as a vector space over k. Write
Ξ :=

∑d
i=1 xiei. One sometimes says that Ξ is a variable with values in K.

Let NK/k : K→k be the norm map. Let P (t) ∈ k[t] be a non-zero polynomial

in t. Consider the hypersurface in Ad+1
k given by the equation

NK/k(Ξ) = P (t).

This is a geometrically rational variety. Indeed, over k̄ the equation can be
rewritten as x1 . . . xn = P (t). The dense open set defined by

∏n
i=1 xi 6= 0 is

isomorphic to an open set of the affine space Ank with coordinates x2, . . . , xn.

We refer to [Kol99, Ch. IV.3], [Deb01, Ch. 4] and [AK01, Def.-Thm. 29]
for the following definitions and statements.

Definition 14.1.1 A rationally connected variety over a field k of char-
acteristic zero is a smooth, proper and geometrically integral variety X over
k such that for any algebraically closed field K containing k, any two K-
points of X are connected by a rational curve, i.e., belong to the image of a
morphism P1

K→XK .

Rationally connected varieties have been studied by Kollár, Miyaoka and
Mori, and by Campana. In characteristic zero, they can be characterised by
many equivalent properties. In particular, in the above definition one may



14.1 Rationally connected varieties: a conjecture 347

simply assume that any two points are connected by a chain of rational
curves, or even that two ‘general’ points are connected by such a chain.

In arbitrary characteristic, there is a notion of separably rationally con-
nected varieties [Kol99, Ch. IV, Def. (3.2.3)], [AK01, Def. 35]. In characteristic
zero, as assumed here, both notions coincide.

(1) A rationally connected variety of dimension 1 is a smooth conic.
(2) A separably rationally connected variety of dimension 2 is a geometri-

cally rational surface [Kol99, Ch. IV, 3.3.5].
(3) Any smooth, projective, geometrically unirational variety is a ratio-

nally connected variety. (The converse is an open question.) For example,
any smooth compactification of a homogeneous space of a connected linear
algebraic group is a rationally connected variety.

(4) By a theorem of Campana and Kollár–Miyaoka–Mori [Kol99, Thm.
V.2.13], any Fano variety (that is, a smooth, projective, geometrically in-
tegral variety with ample anticanonical bundle) is rationally connected. In
particular, smooth hypersurfaces in Pnk of degree d ≤ n are rationally con-
nected.

(5) If char(k) = 0 and f : X→C is a dominant morphism of smooth, projec-
tive, geometrically integral k-varieties such that C is a curve and the generic
geometric fibre of f is rationally connected, then f has a section over k̄. This
is a deep theorem, proved by Graber, Harris and Starr [GHS03, Thm. 1.1]
(with an extension by de Jong and Starr to separably rationally connected
varieties in arbitrary characteristic [deJS03]). It implies that every closed fi-
bre of f has an irreducible component of multiplicity 1. As a consequence
of the existence of sections over curves one obtains that if X→Y is a dom-
inant k-morphism of smooth, projective, geometrically integral k-varieties
such that Y and the generic geometric fibre are rationally connected, then X
is rationally connected [GHS03, Cor. 1.3].

(6) If X is a rationally connected variety over a field k of characteristic
zero, then Hi(X,OX) = 0 for i ≥ 1 and Pic(X) is a free abelian group of finite
type [Deb01, Cor. 4.18]. In particular, Br(X) is finite and Br(X)/Br0(X) is
finite (Theorem 5.5.2).

(7) By a theorem of Enriques, Manin, Iskovskikh [Isk79] and Mori [Kol99,
III.2], any geometrically rational smooth projective surface over a field k is
k-birationally equivalent to a surface of at least one of the following families:

(i) A smooth del Pezzo surface of degree d, where 1 ≤ d ≤ 9.
(ii) A conic bundle over a conic (possibly with degenerate fibres).

A del Pezzo surface is a smooth, projective, geometrically integral surface
X such that the anticanonical bundle ω−1

X is ample. The integer d = (ωX .ωX)
is called the degree of X; it satisfies 1 ≤ d ≤ 9. Del Pezzo surfaces of degree
4 are smooth complete intersections of two quadrics in P4

k, and del Pezzo
surfaces of degree 3 are smooth cubic surfaces in P3

k, see [Man74] and [Kol99].
The arithmetic theory of geometrically rational, smooth, projective sur-

faces X of degree d = (ωX .ωX) ≥ 5 is not difficult. If such a surface X has
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a k-point, then it is rational over k, that is, X is k-birationally equivalent to
P2
k. (If d = 5 or d = 7, then X(k) 6= ∅.) If k is a number field, the property
X(k)cl = X(Ak) holds for such surfaces. In particular, they satisfy the Hasse
principle.

The reference for del Pezzo surfaces is [Man74, IV.29.4; IV.30.1]; for del
Pezzo surfaces of degree 5 see also [Sko01, Cor. 3.1.5]. For conic bundles over
a conic, see [Isk79, Teorema 5]. More recent references are [VA13, Ch. 2] and
[Po18, §9.4.2].

Colliot-Thélène’s conjecture

In the case of surfaces, the following conjecture was put forward as an open
question by Colliot-Thélène and Sansuc in 1979, see [CTS80]. The gen-
eral question was raised in Colliot-Thélène’s lectures at the Institut Henri
Poincaré in 1999 and mentioned again in [CT03].

Conjecture 14.1.2 If X is a rationally connected variety over a number
field k, then X(k)cl = X(Ak)Br.

In other words, the Brauer–Manin obstruction to the Hasse principle for a
rationally connected variety should be the only obstruction, and the Brauer–
Manin set of a rationally connected variety is conjectured to satisfy weak
approximation.

Since Br(X)/Br0(X) is finite when X is rationally connected, the closed
set X(Ak)Br ⊂ X(Ak) is open and the conjecture is birationally invariant
[CTPS16, Prop. 6.1].

Also, if the conjecture holds, and X(k) 6= ∅, then weak weak approximation
(Definition 13.2.4) holds for X.

A partial converse is due to Harari: if a smooth, projective and geometri-
cally integral variety X over a number field k satisfies weak weak approxima-
tion over every finite extension of k, then the geometric fundamental group
of X is trivial, see [Har00, Cor. 2.4] and the remark after it. This implies
H1(X,OX) = 0. See Theorem 13.3.18 for a connection between weak approx-
imation and the condition H2(X,OX) = 0.

Here are some of the consequences of conjectural weak weak approximation
for rationally connected varieties. In particular, these are consequences of
Conjecture 14.1.2.

(1) For any rationally connected variety X over a number field k with a k-
point, the set X(k) is Zariski dense in X. Already in dimension 2, i.e.,
for geometrically rational surfaces, this is not known.

(2) Over any rationally connected variety X over a number field k with a
k-point, Hilbert’s irreducibility theorem holds [Ser92, Ch. 3, §5].

(3) Let G be a finite group. For any number field k there exists a finite
Galois field extension K/k with Gal(K/k) ' G ([Ser92, Thm. 3.5.9],
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[Har07a]). The case k = Q is the inverse Galois problem, a well-known
open problem. For recent progress, see [HW20].

(4) Let X be a geometrically rational surface over a number field k such that
the Brauer–Manin obstruction is the only obstruction to the existence of
a rational point on X over any finite extension of k. Then X contains a
point defined over some abelian extension of k [Kan87, Thm. 3, Remark].

There is theoretical evidence for Conjecture 14.1.2 for geometrically ra-
tional conic bundle surfaces. Indeed, in this case it follows from Schinzel’s
Hypothesis (H), see Section 14.2.1.

Conjecture 14.1.2 is known for conic bundles over the projective line with
r ≤ 5 geometric degenerate fibres. The case r ≤ 3 is easy: in this case
the Hasse principle and weak approximation hold. Châtelet surfaces are the
simplest non-trivial family of conic bundles with r = 4. They are given by an
affine equation

y2 − az2 = P (x),

where a ∈ k∗ and P (x) ∈ k[x] is a separable polynomial of degree 3 or 4.
The conjecture was proved for such surfaces by Colliot-Thélène, Sansuc and
Swinnerton-Dyer [CTSS87], after an earlier result of Colliot-Thélène, Coray
and Sansuc [CTCS80]. In particular, it allows one to describe the values of
c ∈ Z for which the surface of Iskovskikh’s type (13.6) over Q

y2 + z2 = (c− x2)(x2 − c+ 1)

has a rational point, and similarly for the surfaces in Examples 13.3.23 and
13.3.24.

For general conic bundles with r = 4 the conjecture was proved by Sal-
berger (unpublished) and by Colliot-Thélène [CT90]. The case r = 5 is due to
Salberger and Skorobogatov [SSk91]. Swinnerton-Dyer discusses some special
cases with r = 6. For short proofs of his results see [Sko01, Ch. 7].

Conjecture 14.1.2 is known for del Pezzo surfaces of degree 4 with a k-
point [SSk91]. This is one case where theorems about zero-cycles ultimately
lead to results on rational points. For general del Pezzo surfaces of degree
4, Wittenberg in his thesis [Witt07] develops a method of Swinnerton-Dyer
[SwD95, CTSS98b] to produce strong evidence – conditional on Schinzel’s
Hypothesis (H) and finiteness of Tate–Shafarevich groups of elliptic curves.

In higher dimensions, the case of intersections of two quadrics has been
much discussed (Mordell; Swinnerton-Dyer; Colliot-Thélène, Sansuc and
Swinnerton-Dyer [CTSS87]; Heath-Brown [HB18]). Let us quote the results
for arbitrary smooth complete intersections of two quadrics in Pnk . For n ≥ 5,
if there is a k-point, then weak approximation holds. For n ≥ 7, the Hasse
principle is known. For n ≥ 5, this is also conjectured to hold, and is
proved conditionally on Schinzel’s Hypothesis (H) and the finiteness of Tate–
Shafarevich groups of elliptic curves in [Witt07].
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For diagonal cubic surfaces X over Q, there is numerical evidence [CTKS87]
that X(AQ)Br 6= ∅ implies X(Q) 6= ∅. For diagonal cubic hypersurfaces of
dimension at least 3 over Q, Swinnerton-Dyer [SwD01] proves the Hasse prin-
ciple conditionally on the finiteness of Tate–Shafarevich groups of elliptic
curves over number fields.

Further evidence is given by unconditional theorems for some classes of
singular cubic hypersurfaces [CTS89].

When the number of variables is large with respect to the degree, the circle
method can be applied. A celebrated general result is due to Birch [Bir61],
and a more general result for smooth projective varieties X ⊂ PnQ is due to
Browning and Heath-Brown [BH17]. In particular, such varieties satisfy the
Hasse principle and weak approximation if dim(X) ≥ (deg(X)−1)2deg(X)−1.

This method also gives good results in relatively low dimension for cubic
hypersurfaces: smooth cubic hypersurfaces in PnQ have rational points when
n ≥ 9 (Heath-Brown [HB83]) and satisfy the Hasse principle for n = 8
(Hooley [Hoo88]). See [Hoo14] for a discussion of the case n = 7.

If X is a smooth, projective, integral variety birationally equivalent to
a homogeneous space of a connected linear algebraic group with connected
geometric stabilisers, then X(k)cl = X(Ak)Br. The case when the stabilisers
are trivial is a theorem of Sansuc [San81, Cor. 8.7]. Using [San81, Lemme 6.1]
(a special case of Harari’s formal lemma) as in the proof of [San81, Cor. 8.7],
one immediately reduces the case of connected stabilisers to a theorem of
Borovoi [Bor96, Cor. 2.5]. For such a variety X, one has the refined statement
that X(k) is not empty if X(Ak)B(X) 6= ∅, where B(X) ⊂ Br(X) is defined
in Remark 13.3.7.

It is worth mentioning that in the function field case, that is, when k
is the function field of a curve over a finite field, geometric methods may
give sharper, unconditional results. Zhiyu Tian [Tian17] proved the Hasse
principle for smooth complete intersections of two quadrics in Pnk for n ≥ 5
in odd characteristic, and the Hasse principle for smooth cubic hypersurfaces
in Pnk for n ≥ 5 in characteristic p ≥ 7.

14.2 Schinzel’s Hypothesis (H) and additive number
theory

14.2.1 Applications of Schinzel’s hypothesis

Let us state Schinzel’s Hypothesis (H) (1958) [SS58], which is a generalisation
of conjectures of Bouniakowsky (1854) [Bou57, p. 328] and Dickson (1904).
Its quantitative version is the conjecture of Bateman and Horn (1962), a more
general version of conjectures of Hardy and Littlewood (1922).
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Conjecture 14.2.1 Schinzel’s Hypothesis (H) Let Pi(x) ∈ Z[x], for
i = 1, . . . , r, be non-constant irreducible polynomials with positive leading co-
efficients. Assume that no prime divides all the numbers

∏r
i=1 Pi(m), where

m ∈ Z. Then there exist infinitely many positive integers n such that each
Pi(n) is a prime number, for i = 1, . . . , r.

After stating his conjecture Bouniakowsky adds this remark: “Il est à
présumer que la démonstration rigoureuse du théorème énoncé sur les pro-
gressions arithmétiques des ordres supérieurs conduirait, dans l’état actuel
de la théorie des nombres, à des difficultés insurmontables ; néanmoins, sa
réalité ne peut pas être révoquée en doute”. This is still the case today.

Note that only primes p with p ≤
∑
i deg(Pi) may divide all the numbers∏n

i=1 Pi(m). The only known case of this conjecture is the case of one poly-
nomial of degree one: this is Dirichlet’s theorem on primes in an arithmetic
progression. That theorem was used by Hasse (1924) to prove the Hasse prin-
ciple for zeros of quadratic forms in 4 variables once the case of 3 variables is
known. In 1979, it was noticed [CTS82] that Hypothesis (H) can be used to
give conditional proofs of the Hasse principle for other diophantine equations.
Here is one of the simplest cases, taken directly from [CTS82, §5].

Theorem 14.2.2 (Colliot-Thélène–Sansuc) Let P (x) ∈ Q[x] be an irre-
ducible polynomial and let a ∈ Q∗. Assume Schinzel’s Hypothesis (H). Then
the Hasse principle and weak approximation hold for any smooth model of
the affine variety

y2 − az2 = P (x) 6= 0.

Proof. Let us denote this affine variety by U . By the implicit function theorem
(Theorem 10.5.1), it is enough to prove the theorem for U . Here, we shall
make two simplifying hypotheses. We shall assume a > 0 and shall prove
weak approximation only at the finite places. We refer the reader to [CTS82,
§5] for the technical arguments required to handle the real place. Such extra
efforts are often needed when handling the archimedean places.

Assume that we are given points

(yp, zp, xp) ∈ U(Qp)

for all primes p. Let S be a finite set of primes containing p = 2, the primes
p such that vp(a) 6= 0, the primes p such that P (x) /∈ Zp[x], the primes for
which the reduction of P (x) modulo p has degree less than degP (x) or is not
separable, and the primes p ≤ deg(P ).

Using the irreducibility of P (x), Hensel’s lemma and Schinzel’s Hypothesis
(H), one finds λ ∈ Q very close to each xp ∈ Qp for p ∈ S and such that

P (λ) = q
∏
p∈S

pnp ∈ Q,

where np ∈ Z and q is a prime not in S (“the Schinzel prime”).
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Then the rational number P (λ) 6= 0 is represented by the quadratic form
y2 − az2 in each completion of Q (including the reals, since we assumed
a > 0), except possibly in Qq. By Corollary 13.1.10, P (λ) is represented by
this form over Qq and over Q. Using weak approximation on the affine conic
y2 − az2 = P (λ) and the implicit function theorem (Theorem 10.5.1), one
concludes that weak approximation away from the reals holds for U . �

In the above theorem, the condition that P (t) is irreducible implies that for
any smooth projective model X of U we have Br(X)/Br0(X) = 0 (see Propo-
sition 11.3.4, the exercises after it, and Remark 11.3.8). If one allows the sep-
arable polynomial P (x) to be reducible, then the finite group Br(X)/Br0(X)
can be non-zero, and there can be counter-examples to the Hasse principle,
e.g. Iskovskikh’s counter-example (Section 13.3.3). Using a descent argument
[CTS82] or Harari’s formal lemma for elements of the Brauer group (Theo-
rem 13.4.3) or for U -torsors for suitable tori (Theorem 13.4.6), one can prove
that Schinzel’s hypothesis implies that X(Q) is dense in X(AQ)Br.

To prove general theorems along these lines, it is convenient to use the
following Hypothesis (H1). As noted by Serre, this statement follows from
Hypothesis (H). The proof of this implication is given in [CTS94, Prop. 4.1].

Conjecture 14.2.3 Hypothesis (H1) Let k be a number field and let Pi(t),
for i = 1, · · · , n, be non-constant irreducible polynomials in k[t]. Let S be
a finite set of places of k containing the infinite places, the finite places v
where the coefficients of some Pi(t) are either all contained in the maximal
ideal of Ov or one of the coefficients is not in Ov, and the finite places above
the primes p ≤ [k : Q]

∑n
i=1 deg(Pi). Given λv ∈ kv for v ∈ S, one can find

λ ∈ k, integral away from S, arbitrarily close to each λv in the v-adic topology
for finite v ∈ S, arbitrarily large in the archimedean completions kv, and such
that for each i = 1, · · · , n, Pi(λ) ∈ k is a unit in the ring of integers of kw
for all places w /∈ S except perhaps one place wi, where it is a uniformiser.

Using Theorem 13.4.1 (Harari’s formal lemma), one proves the following
general result. For the definition of the vertical Brauer group attached to a
morphism X→Y , see Section 11.1. When a morphism X→Y of varieties over
a number field k is given, we write X(Ak)Brvert for X(Ak)Brvert(X/Y ).

Theorem 14.2.4 Let X be a smooth, projective and geometrically integral
variety over a number field k and let X→P1

k be a dominant morphism. As-
sume that the generic fibre is geometrically integral and that each closed fibre
Xm/k(m) contains a component Y of multiplicity 1 such that the integral clo-
sure of k(m) in the function field of Y is an abelian extension of k(m). As-
suming Hypothesis (H), if X(Ak)Brvert 6= ∅, then there exists a point c ∈ P1(k)
such that Xc is smooth and Xc(Ak) 6= ∅. Moreover, given a finite set S of
places of k and an adelic point (Mv) ∈ X(Ak)Brvert , one can choose this point
c ∈ P1(k) so that Xc contains a kv-point close to Mv for each v ∈ S.

Proof. This is [CTSS98, Thm. 1.1]. �
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Here the same reciprocity argument as in Hasse’s proof is used: the abelian
extensions mentioned in the theorem give rise to a cyclic extension L/K of
number fields together with an element in K∗ which is a local norm at all
places of K except possibly one; then one concludes that the element is a
global norm (Corollary 13.1.10).

The following special case was proved in [CTS94].

Theorem 14.2.5 Let X be a smooth, projective and geometrically integral
variety over a number field k and let X→P1

k be a dominant morphism.
Assume that the generic fibre is a smooth quadric of dimension 1 or 2.
Then Br(X) = Brvert(X/P1

k). Assuming Schinzel’s hypothesis (H), we have
X(k)cl = X(Ak)Br.

In relative dimension at least 3, this theorem holds unconditionally and is
easy to prove.

14.2.2 Additive combinatorics enters

Over the field of rational numbers, a breakthrough happened in 2010. Work
of B. Green and T. Tao, and further work with T. Ziegler (2012) established a
statement which implies a two-variable version of Schinzel’s Hypothesis (H),
when restricted to a system of polynomials with integral coefficients each of
total degree one. We refer the reader to the report [Zie14].

The initial results of Green and Tao, together with further work by
L. Matthiesen on additive combinatorics, first led to unconditional results
in the spirit of ‘Schinzel implies Hasse’. This is the work of Browning,
Matthiesen and Skorobogatov [BMS14]. A typical result is the unconditional
proof of weak approximation for the Brauer–Manin set of a conic bundle over
P1
Q when all the singular fibres are above Q-rational points of P1

Q. They also
prove a similar result for the total space of quadric bundles of relative dimen-
sion 2 over P1

Q. Until then, for most such Q-varieties, we did not know that
existence of one rational point implies that rational points are Zariski dense
– unless one was willing to accept Schinzel’s Hypothesis (H).

The work of Green, Tao and Ziegler led to further progress. Here is the
exact result used, reproduced from [HSW14].

Theorem 14.2.6 (Green–Tao–Ziegler) Let L1(x, y), . . . , Lr(x, y) be pair-
wise non-proportional linear forms with coefficients in Z, and let c1, . . . , cr be
integers. Assume that for each prime p there exists a pair (m,n) ∈ Z2 such
that p does not divide Li(m,n) + ci for any i = 1, . . . , r. Let K ⊂ R2 be an
open convex cone containing a point (m,n) ∈ Z2 such that Li(m,n) > 0 for
i = 1, . . . , r. Then there exist infinitely many pairs (m,n) ∈ K ∩Z2 such that
each Li(m,n) + ci is a prime.
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From this theorem, Harpaz, Skorobogatov and Wittenberg [HSW14] de-
duce a number of results on weak approximation for the Brauer–Manin set.
Let us describe the argument in a simple case. We start with an easy conse-
quence of Theorem 14.2.6, where for simplicity we do not consider approxi-
mation at the real place.

Proposition 14.2.7 [HSW14, Prop. 1.2] Let ei, for i = 1, . . . ,m, be distinct
integers. Let S be a finite set of primes containing all the primes that divide
some ei − ej for i 6= j. Suppose that we are given (up, vp) ∈ Q2

p for each
p ∈ S. Then there exist a pair (u0, v0) ∈ Q2 which is arbitrarily close to each
(up, vp) for the p-adic topology, and distinct primes pi outside of S such that
for each i,

u0 − eiv0 = piqi ∈ Q∗,

where qi ∈ Q∗ is a unit outside of S. �

Theorem 14.2.8 Let k = Q. Let U be the surface

y2 − az2 = b

2n∏
i=1

(t− ei) 6= 0,

where a, b ∈ Q∗ and e1, . . . , e2n are distinct elements of Q. Assume that a > 0.
Let X be a smooth projective variety containing U as a dense open subset and
let (Mp) ∈ X(AQ)Br. Then there are Q-points of U arbitrarily close to (Mp)
at the finite primes. In particular, Q-points are Zariski dense in U and weak
weak approximation holds.

Proof. A linear change of variables allows us to assume ei ∈ Z for each i. The
argument in the proof of Theorem 14.2.4 would require the use of Schinzel’s
Hypothesis in the (H1) version for the system of polynomials t− ei, but this
is a difficult open conjecture even over Q.

Instead, we shall use a simple but slightly mysterious trick and replace the
variable t by two variables (u, v) such that t = u/v. Let V be the variety

Y 2 − aZ2 = b
2n∏
i=1

(u− eiv) 6= 0, v 6= 0.

The formulae y = Y/vn, z = Z/vn, t = u/v give an isomorphism V ∼= U×Gm,
where the coordinate on Gm is v. Let V ⊂ Vc be a smooth compactification.
Then Vc is birationally equivalent to X×P1

Q. By Corollary 6.2.11 the Brauer
group is a stable birational invariant, so Br(X) ∼= Br(Vc).

Since X is geometrically rational, Br(X)/Br0(X) is finite. By Lemma
13.3.13, moving (Mp) in a small adelic neighbourhood we can arrange that
(Mp) ∈ U(AQ)∩X(AQ)Br and find an adelic point (Np) ∈ V (AQ) orthogonal
to Br(Vc) which projects to (Mp) ∈ U(AQ).

We are given a finite set S of places and a neighbourhood of Mp ∈ U(Qp)
for each p ∈ S. We fix neighbourhoods of the points Np that project into
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the given neighbourhoods of Mp. Now we apply Theorem 13.4.3 (Harari’s
formal lemma) to (Np) ∈ V (AQ) and the finite family of quaternion algebras
αi = (a, u − eiv) ∈ Br(V ); these classes need not belong to Br(Vc). This
gives a new element (Pp) ∈ V (AQ) with Pp = Np for p ∈ S (the points with
coordinates Yp, Zp, up, vp) and such that

∑
p invv(αi(Pp)) = 0 for each i. Let

K = Q(
√
a). From the exact sequence of class field theory (13.3)

1 −→ Q∗/N(K∗) −→
⊕
p≤∞

Q∗p/N(Kp)
∗ −→ Z/2,

we conclude that for each i there exists a ci ∈ Q∗ such that for each place p,
the map Br(Q)→Br(Qp) sends the quaternion class (a, ci) to (a, up − eivp).
We thus have elements ci ∈ Q∗ and an adelic point (Rp) on the variety given
by the system{

Y 2 − aZ2 = b
∏2n
i=1(u− eiv) 6= 0,

y2
i − az2

i = ci(u− eiv) 6= 0, i = 1, . . . , 2n,

such that Rp projects to Pp. The variety given by this system is isomorphic

to the product of the conic Y 2−aZ2 = b
∏2n
i=1 ci and the variety W given by

y2
i − az2

i = ci(u− eiv) 6= 0, i = 1, . . . , 2n.

The conic given by Y 2 − aZ2 = b
∏2n
i=1 ci satisfies Hasse principle and weak

approximation. Now we apply Proposition 14.2.7 to a finite set S of primes
containing the primes dividing some ei−ej , i 6= j, the prime 2 and the primes
p such that a or some ci is not a unit in Zp. This produces a pair (u0, v0) ∈ Q2

close to each (up, vp) at each place p ∈ S such that each equation

y2
i − az2

i = ci(u0 − eiv0) 6= 0

has solutions in all completions of Q, except possibly in Qpi . Since each of
these equations is the equation of a conic, it has a solution over Q, and it
satisfies weak approximation. �

Theorem 14.2.8 is a special case of the following result.

Theorem 14.2.9 [HSW14, Cor. 3.2] Let X be a smooth, proper, geometri-
cally integral variety over Q with a dominant morphism f : X→P1

Q satisfying
the following conditions.

(i) The generic fibre of f is geometrically integral.
(ii) The non-split fibres of f are above Q-rational points of P1

Q and each
such fibre contains a component Y of multiplicity 1 such that the integral
closure of Q in Q(Y ) is an abelian extension of Q.

(iii) The Hasse principle and weak approximation hold for the smooth fibres.

Then X(Q)cl = X(AQ)Br.
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See Definition 10.1.3 for the definition of a split scheme over a field. The
fibre Xm over the residue field k(m) at a closed point m is split if and only
if it contains a multiplicity 1 component which is geometrically integral.

Here are some concrete examples.

Corollary 14.2.10 [HSW14, Cor. 4.1] Let Ki/Q, for i = 1, . . . , r, be cyclic
extensions. Let Pi(t), for i = 1, . . . , r, be non-zero separable polynomials that
are products of linear factors over Q. Let X be a smooth projective variety
over Q that contains the variety given by the system of equations

NKi/Q(Ξi) = Pi(t) 6= 0, i = 1, . . . , r,

as a dense open subset. Then X(Q)cl = X(AQ)Br.

Corollary 14.2.11 [HSW14, Cor. 4.2] Let Ki/Q, for i = 1, . . . , r, be cyclic
extensions. Let bi ∈ Q∗ and ei ∈ Q, for i = 1, . . . , r. Then the variety over Q
given by the system of equations

NKi/Q(Ξi) = bi(t− ei) 6= 0, i = 1, . . . , r,

satisfies the Hasse principle and weak approximation.

To put this last result in perspective, here is what has been proved without
the input of additive combinatorics. Corollary 14.2.11 is obvious when r = 1.
The case r = 2 and K1 and K2 both of degree 2 is easy, as it reduces to
quadrics. An old result of Birch, Davenport and Lewis obtained by the circle
method gives the statement for r = 2 and K1 = K2 of arbitrary degree over
Q. The case r = 3 and K1 = K2 = K3 of degree 2 over Q was covered by
Colliot-Thélène, Sansuc and Swinnerton-Dyer in [CTSS87]. Not much else
was known.

The results above concern the total space of a 1-parameter family X→P1
k

with the following properties:

(i) The smooth fibres satisfy weak approximation (in particular, they satisfy
the Hasse principle).

(ii) Each non-split fibre Xm over a closed point m contains a component
Y of multiplicity 1 such that the algebraic closure of k(m) in k(Y ) is
abelian.

(iii) k = Q and the non-split fibres are over Q-rational points (this last
hypothesis is needed to use the results of Green, Tao and Ziegler).

It took some time to obtain results without assuming (i) or (ii). Uncondi-
tional results without these assumptions were obtained under the following
strong condition: all fibres of the morphism X→P1

k, except possibly one fibre
above a k-point, contain a geometrically integral component of multiplicity 1
(Harari [Har94, Har97]).
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Several unconditional results were obtained for varieties given by an equa-
tion

NK/k(Ξ) = P (t) (14.1)

for an arbitrary finite field extension K/k, assuming that the polynomial P (t)
has at most two roots over k̄ [HBS02, CTHS03, BH12, DSW12].

The first interesting results where the abelianity condition was relaxed,
while allowing an arbitrary number of bad fibres, were obtained by D. Wei
[Wei12]. Assuming Schinzel’s hypothesis (H), he considered (14.1) where K/k
is an arbitrary field extension of degree 3.

The case when k = Q, K/k is an arbitrary field extension, and P (t) ∈ Q[t]
is a polynomial of arbitrary degree all of whose roots are in Q, was dealt with
in [BM17].

14.2.3 Hypothesis of Harpaz and Wittenberg

In this section we discuss a new approach of Harpaz and Wittenberg that
does not require conditions (i) or (ii). The following statement is [HW16,
Conjecture 9.1]; we shall refer to it as Hypothesis (HW). As explained in
[HW16, §9.1], this is a replacement for a homogeneous version of Hypothesis
(H1), itself a consequence of Schinzel’s Hypothesis (H). A closely related,
more geometric version of (HW) is given below (Proposition 14.2.13).

Conjecture 14.2.12 Hypothesis (HW) Let k be a number field. Let n ≥ 1
be an integer and let P1(t), . . . , Pn(t) ∈ k[t] be pairwise distinct irreducible
monic polynomials. Write ki = k[t]/(Pi(t)) and let ai ∈ ki denote the class of
t. Suppose that for each i = 1, . . . , n we are given a finite extension Li of ki
and an element bi ∈ k∗i . Let S be a finite set of places of k containing the real
places of k and the finite places above which, for some i, bi is not a local unit
or Li/ki is ramified. Finally, for each v ∈ S, fix an element tv ∈ kv. Assume
that for each i = 1, . . . , n and each v ∈ S, there exists an xi,v ∈ (Li ⊗k kv)∗
such that

tv − ai = biNLi⊗kkv/ki⊗kkv (xi,v) ∈ ki ⊗k kv.

Then there exists a t0 ∈ k satisfying the following conditions:

(1) t0 is arbitrarily close to tv for v ∈ S;
(2) for every i = 1, ..., n and every finite place w of ki with w(t0 − ai) > 0,

either w lies above a place of S or the field Li has a place of degree 1
over w.

Note that the above conjecture for a given family {ai, bi, ki, Li}i∈I and
any finite family S of places as above is equivalent to the same conjecture
where all the i ∈ I with ki = Li are removed.
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Techniques of analytic number theory have already established Hypothesis
(HW) in a number of significant cases, which we now list.

It is convenient to define

ε =
n∑
i=1

[ki : k].

For an arbitrary number field k, Hypothesis (HW) is known in the following
cases.

(i) ε ≤ 2 (see [HW16, Thm. 9.11 (i)]). The essential ingredient is strong
approximation for the complement of a closed subset of codimension at
least 2 in Amk . In the case k1 = k2 = k, one may use Dirichlet’s theorem
to prove the result. This is the proof of [CTSS98, Thm. 2.2.1]. To handle
approximation at the non-archimedean places, that proof makes use of
Theorem 13.1.2.

(ii) ε = 3 and [Li : ki] = 2 for each i (see [HW16, Thm. 9.11 (ii)]).

When k = Q, Hypothesis (HW) is also known in these cases:

(iii) Any ε = n ≥ 1, ki = Q for each i = 1, . . . , n, and arbitrary number fields
L1, . . . , Ln. This important case is due to Matthiesen [Mat18], who used
the results by Green, Tao and Ziegler, as well as her joint work with
Browning [BM17]. See [HW16, Thm. 9.14].

(iv) ε = 3, n = 2, k1 = Q and [k2 : Q] = 2. This case was established by
Browning and Schindler [BS19] who used [Mat18] to strengthen the sieve
method approach of Browning and Heath-Brown in [BH12].

(v) ε = 3, n = 1, [k1 : Q] = 3 and the extension L1/k1 is abelian, or is
of degree 3, or is of the shape L1 = k1(c1/p) for some c ∈ k1 and p a
prime number – these are all special cases of “almost abelian” extensions
as defined in [HW16, Def. 9.4]. As noticed in [HW16, Remark 9.7], this
follows from the work of Heath-Brown and Moroz on primes represented
by cubic forms in two variables.

In [HW16, Prop. 9.9, Cor. 9.10] we find more geometric versions of Hy-
pothesis (HW).

Let k be a number field. Let k ⊂ ki ⊂ Li be finite field extensions and let
ai ∈ ki and bi ∈ k∗i , for i = 1, . . . , r. To this set of data, one attaches the
affine k-variety defined in A2

k ×
∏
iRLi/k(A1

Li
) by the system of equations

u− aiv = biNLi/ki(Ξi), i = 1 . . . , r, (14.2)

where u, v are variables and Ξi is a variable with values in the k-vector space
Li. Here we write

NLi/ki : RLi/k(A1
Li) −→ Rki/k(A1

ki)
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for the map induced by the norm map from Li to ki. Let W be the smooth
open subset of the variety (14.2) defined by the conditions

(u, v) 6= (0, 0), Ξi /∈ [RLi/k(A1
Li) \RLi/k(Gm,Li)]sing.

There is a natural projection map W→A2
k \ (0, 0)→P1

k.

A key insight is that W→P1
k is a kind of universal model for varieties fibred

over P1
k with bad, irreducible fibres of multiplicity 1 over the closed points with

residue field ki defined by (u, v) = (ai, 1) and split by the extension Li/ki.

Proposition 14.2.13 [HW16, Cor. 9.10] If strong approximation off any
finite place v0 of k holds for every k-variety W as above, then Hypothesis
(HW) holds.

Note that the assumption of strong approximation implies that the vari-
eties W satisfy the Hasse principle.

Harpaz and Wittenberg prove the following theorem [HW16, Cor. 9.25],
the main ideas of which will be discussed in Section 14.2.4 below.

Theorem 14.2.14 Let X be a smooth, projective and geometrically inte-
gral variety over a number field k and let X→P1

k be a dominant morphism.
Assume that the generic fibre is a rationally connected variety. Assuming
Hypothesis (HW), if X(Ak)Br 6= ∅, then there exists a point t0 ∈ P1(k) with
smooth fibre Xt0 such that Xt0(Ak)Br 6= ∅. Moreover, given a finite set S of
places of k and an adelic point (Mv) ∈ X(Ak)Br, one can choose t0 such that
Xt0 contains kv-points close to Mv for v ∈ S.

Remark 14.2.15 For X→P1
k as above, with rationally connected generic

fibre, the total space X is a rationally connected variety by the theorem
of Graber, Harris and Starr, hence the quotient Br(X)/Br(k) is finite. The
general results of Harpaz and Wittenberg [HW16, Thm. 9.17, Cor. 9.23] hold
for X→P1

k with weaker assumptions on the generic fibre.

Using Borovoi’s theorem [Bor96] mentioned at the end of Section 14.1 we
obtain the following statement.

Corollary 14.2.16 Let X be a smooth, projective and geometrically integral
variety over a number field k and let X→P1

k be a dominant morphism. As-
sume that the generic fibre is birationally equivalent to a homogeneous space
of a connected linear algebraic group over k(P1) with connected geometric
stabilisers. Assuming Hypothesis (HW), we have X(k)cl = X(Ak)Br.

This result applies in particular to any smooth projective model X of a
variety given by a system of equations

NKi/k(Ξi) = Pi(t), i = 1, . . . , n.

Such systems have been considered in many special situations.
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Remark 14.2.17 It is a non-trivial algebraic problem to decide when such
a variety X satisfies Br(X) = Br0(X). For instance, if the polynomials Pi(t)
are all of degree 1 and no two of them are proportional, do we have Br(X) =
Br0(X)?

14.2.4 Main steps of the proof of Theorem 14.2.14

For a finite place v of k we denote the ring of integers of kv by Ov, the
maximal ideal of Ov by mv, and the residue field Ov/mv by κ(v).

As mentioned in [HW16, Remark 9.18 (i)], if one assumes Hypothesis (HW)
for arbitrary irreducible monic polynomials P1(t), . . . , Pn(t), one can give a
proof of Theorem 14.2.14 which is shorter than the proof of [HW16, Theorem
9.17] (where a minimal set of such polynomials is chosen for each situation
under consideration). This is what we do here, under some further simplifying
assumptions. Unlike the proof in [HW16], the proof below uses Severi–Brauer
schemes.

Two important steps are Theorems 14.2.18 and 14.2.21, leading to the
proof of Theorem 14.2.14. The first of them addresses the following question:
given a dominant morphism X→P1

k for which there is no vertical Brauer–
Manin obstruction, is there a k-point in P1

k such that the fibre over this point
is smooth and everywhere locally soluble?

Theorem 14.2.18 Let X be a smooth, projective and geometrically integral
variety over a number field k and let X→P1

k be a dominant morphism. As-
sume that the generic fibre is geometrically integral and that each closed fibre
contains a component of multiplicity 1. Assume X(Ak)Brvert 6= ∅. Then, as-
suming Hypothesis (HW), there exists a point t0 ∈ k = A1

k(k) such that Xt0

is smooth and has points in all completions of k. Moreover, given a finite set
S of places of k, and an adelic point (Mv) ∈ X(Ak)Brvert , one can choose t0
such that Xt0 contains kv-points close to Mv for v ∈ S.

Proof. We can choose A1
k = Spec(k[t]) ⊂ P1

k so that the fibre X∞ at the point
at infinity is smooth and geometrically integral. For simplicity of notation let
us only consider the case where all the singular fibres are above k-points of
A1
k. Let a1 . . . , an ∈ k be the coordinates of these points.
Thus all the other fibres, including the fibre at infinity, are smooth and

geometrically integral. We concentrate on the existence of a k-point with
everywhere locally soluble fibre and omit the proof of the last claim of the
theorem.

Let Ei be an irreducible component of multiplicity 1 in the fibre above ai
and let Li be the integral closure of k in the function field k(Ei). Let U ⊂ X
be the complement to the union of the fibre at infinity and the fibres above
the points ai. Let T :=

∏n
i=1R

1
Li/k

Gm,Li be the product of norm 1 tori.
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Consider the T -torsor over U given by the equations

t− ai = NLi/k(Ξi) 6= 0, i = 1, . . . , n.

This torsor over U ⊂ X is the inverse image of a T -torsor over the complement
to {a1, . . . , an} in P1

k. Thus in this particular case the group B introduced
in the proof of the formal lemma for torsors (Theorem 13.4.6) consists of
elements coming from Br(k(P1)), which are therefore vertical elements. Ap-
plying this theorem, under the hypothesis X(Ak)Brvert 6= ∅, we find elements
bi ∈ k∗ and a family (Mv) ∈ U(Ak), with projections tv ∈ kv for v ∈ Ω, such
that for each v ∈ Ω the system

0 6= tv − ai = biNLi/k(Ξi), i = 1, . . . , n,

has solutions over kv.
Choose a finite set S of places of k, large enough for various purposes.

Firstly, we include into S all archimedean places and all non-archimedean
places v for which v(ai) < 0 for some i. Next, we require that the following
conditions hold.

(i) Each Li/k is unramified at any v /∈ S.
(ii) Each bi is a unit at any v /∈ S.

(iii) The fibre at infinity X∞ has good reduction at any v /∈ S and has points
in all kv for v /∈ S (this is possible by the Lang–Weil–Nisnevich estimates
as this fibre is smooth and geometrically integral).

(iv) Each Ei,smooth (which is geometrically integral over Li) has points in all
completions Li,w, where w is a place of Li not lying above a place of S.

(v) There exists a connected, regular proper model X/P1
OS of X/P1

k.

Given a place v /∈ S and a point tv ∈ kv one can consider the reduction
of Xtv at v. Namely, tv extends to a unique point of P1(Ov), we consider the
restriction of X/P1

OS to Ov, and then the reduction modulo mv.

Now we appeal to Hypothesis (HW). It produces a point t0 ∈ k very close
to tv for v ∈ S, and such that for any i and any v /∈ S either v(t0 − ai) ≤ 0
or there exists a place of Li of degree 1 over v.

Claim. Xt0(Ak) 6= ∅.
For v ∈ S this follows from the implicit function theorem (Theorem 10.5.1).
If v /∈ S and v(t0 − ai) < 0 for some i, then v(t0) < 0 and so the fibre Xt0

reduces modulo mv to the same smooth κ(v)-variety as the fibre X∞, hence
has kv-points.

If v /∈ S and v(t0− ai) = 0 for each i, then t0 does not reduce to the same
point as any of the ai. Thus, provided the set S was chosen large enough,
the fibre Xt0 reduces to a smooth and geometrically integral variety over the
finite field κ(v) with a fixed Hilbert polynomial. This allows one to apply the
Lang–Weil–Nisnevich estimates which guarantee that the reduction of Xt0

modulo mv has a κ(v)-point. By Hensel’s lemma, Xt0 has a kv-point.
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Finally, suppose that v /∈ S is such that v(t0 − ai) > 0 for some i. On the
one hand, this implies that Xt0 reduces to the same variety over κ(v) as Xai .
On the other hand, by Hypothesis (HW), this implies that there is a place w
of Li of degree 1 over v such that Ei ×Li Li,w is geometrically integral over
Li,w. Again, provided the fixed set S was chosen large enough, the reduction
of Ei ×Li Li,w over the field κ(w) = κ(v) is geometrically integral and by
the Lang–Weil–Nisnevich estimates has a smooth κ(v)-point. Using Hensel’s
lemma, we conclude that Xt0 contains a kv-point. �

Assume that the smooth fibres of X→P1
k satisfy the Hasse principle and

weak approximation. Then, assuming Hypothesis (HW), the proof of Theo-
rem 14.2.18 easily implies that X(k) is dense in X(Ak)Brvert , hence also in
X(Ak)Br – which then coincides with X(Ak)Brvert . Such a general result was
out of reach of the theorems based on Hypothesis (H).

The following (unconditional) corollary was originally obtained by the de-
scent method, see [CTS00, Thm. A] which is an improvement of an earlier
result [CTSS98, §2.2].

Corollary 14.2.19 [HW16, Thm. 9.11 (i)] Let k be a number field and let
X be a smooth, projective and geometrically integral variety over k. Let
f : X→P1

k be a dominant morphism. Assume that the generic fibre is geomet-
rically integral and that each closed fibre contains an irreducible component
of multiplicity 1. Assume that the sum of the degrees of the closed points of
P1
k with a non-split fibre is at most 2. If X(Ak)Brvert 6= ∅, then there exists a

point t0 ∈ k = A1(k) such that Xt0 is smooth and has points in all comple-
tions of k. Moreover, given a finite set S of places of k, and an adelic point
(Mv) ∈ X(Ak)Brvert , one can choose t0 such that Xt0 contains kv-points close
to Mv for v ∈ S.

Proof. The case when the non-split fibres are above two k-points corresponds
to the case n ≤ 2 in the proof of Theorem 14.2.18. In general, we have ε ≤ 2,
where ε is defined after the statement of Hypothesis (HW) in Section 14.2.3.
As recalled there, Hypothesis (HW) is known for ε ≤ 2. �

Lemma 14.2.20 Let K be a field extension of k. Let ρ1, . . . , ρn ∈ Br(k) and
α1, . . . , αn ∈ Br(K) be elements of order not divisible by char(k). Let F be the
function field of the product of Severi–Brauer varieties over K with classes
α1, . . . , αn. Let F ′ be the function field of the product of Severi–Brauer vari-
eties over K with classes α1−resK/k(ρ1), . . . , αn−resK/k(ρn). For γ ∈ Br(K)
we have resF/K(γ) ∈ Brnr(F/k) if and only if resF ′/K(γ) ∈ Brnr(F

′/k).

Proof. For i = 1, . . . , n let Pi be a Severi–Brauer variety over k with class ρi.
Let P = P1×k . . .×k Pn. Each ρi goes to zero in Br(k(P )), hence the images
of αi and αi − resK/k(ρi) in Br(K(P )) are the same for each i. By Lemma
7.1.7 this implies the existence of an isomorphism of field extensions of K:

F (P )(x1, . . . , xr) ' F ′(P )(y1, . . . , ys),
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where x1, . . . , xr, y1, . . . , ys are independent variables, for some r and s. Now
the lemma follows from Propositions 6.2.3, 6.2.6 and 6.2.9. �

Theorem 14.2.21 Let X be a smooth, projective and geometrically integral
variety over a number field k and let f : X→P1

k be a dominant morphism.
Assume that the generic fibre is geometrically integral and that each closed
fibre contains a component of multiplicity 1. Let U ⊂ P1

k be a non-empty open
set such that XU = f−1(U)→U is a smooth morphism. Let B ⊂ Br(XU ) be
a finite subgroup and let (Mv) ∈ X(Ak) be an adelic point orthogonal to the
intersection of Br(X) with B + f∗(Br(k(P1))) ⊂ Br(k(X)). Then, assuming
Hypothesis (HW), for any finite set of places S there exists a point t0 ∈ U(k)
such that Xt0(Ak)B contains an adelic point (Pv), where Pv is close to Mv

for each v ∈ S.

Proof. Let k be an arbitrary field of characteristic zero. By Gabber’s theorem
(Theorem 4.2.1) the cohomological Brauer–Grothendieck group of a smooth
variety coincides with its Brauer–Azumaya group. Thus we can assume that
B ⊂ Br(XU ) is generated by the classes of Azumaya algebras Ai over XU , for
i = 1, . . . , n. Let YU→XU be the fibred product of the corresponding Severi–
Brauer schemes. Using resolution of singularities, the morphism YU→XU

can be extended to a morphism g : Y→X, where Y is a smooth, projective,
geometrically integral variety over k.

Let us prove that each closed fibre of the composition h : Y→X→P1
k con-

tains an irreducible component of multiplicity 1. Indeed, this condition is
equivalent to the condition that h is locally split for the étale topology on
P1
k. To check it we can assume k = k̄. Since the morphism X→P1

k is locally
split by assumption, for any closed point m ∈ P1

k there exists a connected étale
neighbourhood V→P1

k whose image contains m and such that XV→V has a
section V→XV . The image of this section is an integral curve W ⊂ XV which
is étale over P1

k. The morphism Y→X gives rise to a morphism YV→XV . Let
YW→W be the restriction of YV→XV to the curve W . The generic fibre of
YW→W is a product of Severi–Brauer varieties. Applying Tsen’s theorem
(Theorem 1.2.14 (i)) to k(W ) shows that YW→W has a rational section,
which must be a morphism since W is a regular curve and YW→W is proper.
This proves that h is locally split for the étale topology.

For each closed point M ∈ P1 \ U , let EM ⊂ YP be an irreducible com-
ponent of multiplicity 1. Let α ∈ Br(U). Assume h∗(α) ∈ Br(YU ) belongs to
the subgroup Br(Y ) ⊂ Br(YU ). By Theorem 3.7.5, the residue of α at P lies
in the kernel of H1(k(M),Q/Z)→H1(k(EM ),Q/Z), which is a finite group
(Lemma 11.1.3). From the exact sequence

0 −→ Br(P1
k) −→ Br(U) −→

⊕
M∈P1

k\U

H1(k(M),Q/Z)

(see Sections 1.5 and 3.6) and the isomorphism Br(k) ∼= Br(P1
k) (see Section

6.1) we conclude that the subgroup of Br(U), which consists of the elements α
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such that h∗(α) ∈ Br(YU ) belongs to Br(Y ) ⊂ Br(YU ), is finite modulo Br(k).
Let γ1, . . . , γm ∈ Br(U) be elements generating this group modulo Br(k).

Write B′ for the intersection of Br(X) with B+f∗(Br(k(P1
k))) ⊂ Br(k(X)).

Let β ∈ B ⊂ Br(XU ) and let ξ ∈ Br(k(P1)). Suppose β + f∗(ξ) ∈ Br(k(X))
belongs to Br(X). Then f∗(ξ) belongs to Br(XU ). Just as above, by Theorem
3.7.5, the residues of ξ at the closed points M ∈ U are trivial, and the residues
at the closed points M ∈ P1

k, M /∈ U , belong to finitely many classes. By
the same exact sequence as above, this implies that the class of ξ lies in a
finite subgroup of Br(U)/Br(k), and we conclude that B′ ⊂ Br(k(X)) is finite
modulo the image of Br(k).

From now on, let k be a number field. By assumption, we have an adelic
point (Mv) ∈ X(Ak)B

′
. By Proposition 10.5.2, each element of Br(X) is

locally constant on X(kv). Since X is proper over k, by Proposition 13.3.1
(iii), each element of Br(X) vanishes on X(kv) for almost all places v. By the
implicit function theorem for the smooth kv-variety X ×k kv, the set XU (kv)
is dense in X(kv) for the v-topology. Since B′ ⊂ Br(X) is finite modulo Br(k),
this implies that there is an adelic point (M ′v) ∈ XU (Ak)B

′
such that M ′v is

very close to Mv for each v ∈ S. We now rename M ′v and call it Mv.
By Harari’s formal lemma (Theorem 13.4.3) we may assume that∑

v∈Ω
invvAi(Mv) =

∑
v∈Ω

invvγj(Mv) = 0,

for each i = 1, . . . , n and j = 1, . . . ,m. By class field theory (Theorem
13.1.8 (iii)) it follows that there exists a ρi ∈ Br(k) whose image in Br(kv) is
Ai(Mv) for each place v ∈ Ω.

Let A′i = Ai − ρi ∈ Br(XU ), for i = 1, . . . , n. We can choose Azumaya al-
gebras over XU representing these classes and consider the associated Severi–
Brauer schemes. Let Y ′U be the fibred product of these schemes over XU . As
above, we extend the smooth, projective morphism Y ′U→XU to a morphism
Y ′→X, where Y ′ is a smooth, projective and geometrically integral variety
over k.

Since A′i(Mv) = 0, there is a kv-point Nv in the fibre of Y ′U→XU above
Mv. Thus we have an adelic point (Nv) ∈ Y ′U (Ak) above (Mv) ∈ XU (Ak).

We claim that (Nv) ∈ Y ′U (Ak) is orthogonal to Brvert(Y
′/P1

k), where the
vertical part of the Brauer group is taken with respect to the morphism
Y ′→P1

k. Indeed, Brvert(Y
′/P1

k), consists of the images of the elements of
Br(U) which become unramified on Y ′. By Lemma 14.2.20, these elements of
Br(U) are exactly those which become unramified on Y . Modulo Br(k), this
group is spanned by the classes γj , for j = 1, . . . ,m, and we have∑

v∈Ω
invv γj(Nv) = 0,

since Nv is over Mv.
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If we now assume Hypothesis (HW) and apply Theorem 14.2.18 to Y ′→P1
k,

we find that there exists a t0 ∈ U(k) such that the fibre Y ′t0 has an adelic
point (Rv), with Rv close to Nv for v ∈ S. Let Qv ∈ Xt0(kv) be the image of
Rv under the morphism Y ′t0→Xt0 . For each i = 1, . . . , n and each v ∈ Ω we
have A′i(Qv) = 0, hence Ai(Qv) is the image of ρi in Br(kv). Thus∑

v∈Ω
invvAi(Qv) = 0,

with Qv close to Mv for v ∈ S. �

Remark 14.2.22 In the special case when P1
k \U is a union of k-points, the

morphism Y ′→P1
k is smooth over U , hence the simplifying assumption made

in the above proof of Theorem 14.2.18 applies to Y ′→P1
k.

We are now ready to sketch the proof of Theorem 14.2.14.

Proof of Theorem 14.2.14. (Sketch) The generic fibre Xη of the morphism
X→P1

k is a rationally connected variety. As mentioned in Section 14.1, this
implies that Br(Xη) is finite modulo the image of Br(k(t)). Thus we can
choose an open subset U ⊂ P1

k such that XU→U is smooth and there is a finite
group B ⊂ Br(XU ) that generates Br(Xη) modulo the image of Br(k(t)). By
the theorem of Graber–Harris–Starr [GHS03] the rational connectedness of
Xη also implies that each closed fibre of f : X→P1

k contains an irreducible
component of multiplicity 1. Thus Theorem 14.2.21 can be applied. Then one
looks for a t0 as in that theorem with the additional condition that the image
of B generates the finite group Br(Xt0)/Br(k). By Harari’s specialisation
result ([Har94, §3] and [Har97, Thm. 2.3.1], see also [HW16, Prop. 4.1]), the
set of k-points such that the last condition is fulfilled is a Hilbert set. Thus
we need to show that in Theorem 14.2.21 we can require t0 to be an element
of a Hilbert set. For this we refer to [HW16, Thm. 9.22] (see also [Sme15,
Prop. 6.1]). �

Building on the results of additive combinatorics one obtains the following
unconditional statement, first proved by Skorobogatov [Sko13]. His proof (of a
slightly more general statement) uses the result of Browning and Matthiesen
[BM17] on systems of equations

u− aiv = biNLi/k(Ξi), i = 1 . . . , r,

obtained using additive combinatorics, but his argument looks somewhat
different as it uses descent and universal torsors [CTS87a, Sko01]. In the
proof we give here, descent has been replaced by the use of the formal lemma
for torsors in the proof of Theorem 14.2.18.
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Theorem 14.2.23 (Skorobogatov) Let U ⊂ A1
Q be the open subset given

by P1(t) . . . Pn(t) 6= 0, where each polynomial Pi(t) is a product of linear
factors over Q. Let X0 be the smooth quasi-affine variety over Q defined by

NKi/Q(Ξi) = Pi(t) 6= 0, i = 1, . . . , n,

where K1, . . . ,Kn are number fields, and let g : X0→U be the projection to
the coordinate t. Let X0 ⊂ X be an open embedding into a smooth, projective
and geometrically integral variety over Q equipped with a dominant morphism
f : X→P1

Q extending the map X0→U . Then X(Q)cl = X(AQ)Br. In particu-
lar, if X(Q) is not empty, then X(Q) is Zariski dense in X and weak weak
approximation holds for X.

Proof. The statement of the theorem does not depend on the choice of X. A
convenient way to construct X is as follows. Let T be the product of norm 1
tori given by

NKi/Q(Ξi) = 1, i = 1, . . . , n.

Choose a smooth T -equivariant compactification T ⊂ Y , which exists by
[CTHS03]. The contracted product X0×TY has a natural proper morphism to
U such that all fibres are smooth compactifications of T -torsors, in particular,
they are geometrically integral. Extending X0×T Y→U we produce a smooth,
projective and geometrically integral variety X over Q together with a proper
morphism f : X→P1

Q such that XU→U is smooth and X0 ⊂ XU is an open
subset.

Let m ∈ U be a closed point and let Xm be the closed fibre at m. We
have arranged that Xm is smooth and geometrically integral; moreover, Xm

is geometrically rational. Any element of Br(Xη) is a restriction of some
β ∈ Br(X ×P1

Q
V ), where V is a non-empty open subset of U . By the Gysin

sequence (2.16), the residue of β at the generic point of Xm lies in

H1
ét(Xm,Q/Z) ⊂ H1(k(m)(Xm),Q/Z).

Using the fact that smooth, projective, rational varieties over an algebraically
closed field of characteristic zero have no non-trivial finite étale covers, one
shows that the natural map

H1(k(m),Q/Z)
∼−→ H1

ét(Xm,Q/Z)

is an isomorphism. Thus the above residue is an element of H1(k(m),Q/Z).
Using the Faddeev exact sequence (Theorem 1.33) one sees that

Br(Xη) ⊂ f∗Br(Q(P1)) + Br(XU ).

From this one deduces that there exists a finite subgroup B ⊂ Br(XU ) which
surjects onto the (finite) group Br(Xη)/f∗Br(Q(P1)). Then one proceeds as in
the proofs of Theorems 14.2.21 and 14.2.14. The composition Y ′U→XU→U is
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smooth; the complement of U consists of Q-points. Since k = Q, Matthiesen’s
theorem (see Section 14.2.3) guarantees the validity of Hypothesis (HW) in
the present situation. Thus in our case the proof of Theorem 14.2.14, via
Theorem 14.2.21, gives an unconditional result. �

Again over the rationals, using Matthiesen’s results [Mat18], Harpaz and
Wittenberg [HW16] prove the more general, unconditional result:

Theorem 14.2.24 Let X be a smooth, projective, geometrically integral va-
riety over Q and let X→P1

Q be a morphism with rationally connected generic

fibre. Assume that all non-split fibres are above Q-points of P1
Q. If XP (Q)

is dense in XP (AQ)Br(XP ) for smooth fibres XP over rational points of P1
Q,

then X(Q) is dense in X(AQ)Br.

The theorem also holds if X→P1
Q has exactly two non-split fibres, one

above a Q-point and another one above a closed point of degree 2. Indeed, in
this case Hypothesis (HW) was proved by Browning and Schindler in [BS19].
This subsumes the earlier result of Derenthal–Smeets–Wei [DSW12] for the
equation (14.2) where P (t) is irreducible of degree 2 and K is an arbitrary
number field. Both proofs are based on the work of Browning and Heath-
Brown [BH12], who used sieve methods.

14.2.5 Fibrations with two non-split fibres and
ramified descent

A very special example for Corollary 14.2.19 is the Hasse principle for
quadratic forms in four variables. Consider the system

0 6= t = b1(x2
1 − a1y

2
1) = b2(x2

2 − a2y
2
2), (14.3)

where a1, a2, b1, b2 are non-zero elements of a number field k, and assume that
it has solutions everywhere locally. Let S be the set of places of k containing
the infinite places, the places above 2, and the primes where at least one of
a1, a2, b1, b2 is not a unit. Hasse’s method is to apply Dirichlet’s theorem on
primes in an arithmetic progression to find a t0 ∈ k which is a unit away
from S ∪ {v0}, where v0 is a finite place where t0 has valuation 1, and such
that t0 is close to the t-coordinate of given kv-points for v ∈ S. Then each
conic t0 = bi(x

2
i − aiy2

i ), i = 1, 2, has points in all completions of k except
possibly in kv0

. The reciprocity law (Corollary 13.1.10) then implies that it
has a solution also in kv0

and in k.
We now give a different proof of this result (which does not use Theorem

14.2.18). The argument based on the Tate–Nakayama duality and the formal
lemma for torsors directly produces a point t0 such that each of the two
equations t0 = bi(x

2
i − aiy2

i ) has solutions in all completions. (Note that the
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proof of Theorem 14.2.18 given above is arranged in such a way that the fibre
at infinity is smooth, but for the equation (14.3) the fibre at infinity is not
smooth.)

Let U be the quasi-affine variety given by (14.3). Assume that U is every-
where locally soluble. Let L = k(

√
a1,
√
a2). The equation

0 6= t = NL/k(Ξ)

defines a torsor over Gm,k whose structure group is the norm 1 torus T =
R1
L/k(Gm,L). Let Y→U be the torsor obtained by pulling it back to U via

the projection U→Gm,k given by the coordinate t. We have Brnr(k(U)/k) =
Im(Br(k)), since U is birationally equivalent to the product of P1

k and a
quadric, hence the Brauer group of a smooth projective model of U is reduced
to the image of Br(k). The formal lemma for torsors (Theorem 13.4.6) now
gives an element c ∈ k∗ such that the system

0 6= t = b1(x2
1 − a1y

2
1) = b2(x2

2 − a2y
2
2) = cNL/k(Ξ)

is everywhere locally soluble. This implies that the system

b1(x2
1 − a1y

2
1) = c = b2(x2

2 − a2y
2
2)

is everywhere locally soluble too. In other words, the fibre of U→Gm,k over
c ∈ k∗ is everywhere locally soluble. It is the product of two conics, so we use
the Hasse principle for conics to conclude that U(k) 6= ∅.

If one considers a system of equations

0 6= t = biNki/k(Ξi), i = 1, . . . , r,

with arbitrary number fields k1, . . . , kr, and with no vertical Brauer–Manin
obstruction to the existence of a rational point, the same argument will pro-
duce an element c ∈ k∗ such that the system

c = biNki/k(Ξi), i = 1, . . . , r,

is everywhere locally soluble. However, in the case of arbitrary number fields
k1, . . . , kr one cannot ensure that this system has solutions in k: here the
obstruction coming from the vertical Brauer group is not enough. As in The-
orem 14.2.14, the whole Brauer group of (a smooth projective model) of the
variety must be taken into account.

Note that in Theorem 14.2.18 there is no geometric assumption on the
generic fibre of X→P1

k other than it is geometrically integral. This theorem
can be applied to the problem of lifting an adelic point to some twist of a
ramified cyclic cover, as discussed in Section 11.5.
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Theorem 14.2.25 Let k be a number field. Let X and Y be smooth, pro-
jective and geometrically integral varieties over k. Assume that µn acts on
X, and Y is birationally equivalent to X/µn. Let F ∈ k(Y )∗ be a rational
function such that the generic fibre of X→X/µn is given by tn = F . Write
div(F ) =

∑
mDD, where D are irreducible divisors in Y . Let kD be the

algebraic closure of k in the function field k(D). Assume that (n,mD) = 1
for some D. Let B ⊂ Br(Y ) be the subgroup consisting of the classes (χ, F ),
where χ is an element of the finite group⋂

D

Ker[mD reskD/k : H1(k,Z/n)→H1(kD,Z/n)].

If Y (Ak)B 6= ∅, then there exists an element c ∈ k∗ such that the twisted cover
Xc with generic fibre ctn = F has points in all completions of k. Moreover,
given a finite set S of places of k and an adelic point (Mv) ∈ Y (Ak)B, where
Mv /∈ Supp(div(F )) for v ∈ S, one can choose c close to F (Mv) for v ∈ S.

Proof. In the notation of Section 11.5 consider the morphism W→P1
k. Recall

that W is stably birationally equivalent to Y and that at most two closed
fibres of W→P1

k, namely the k-fibres above 0 and ∞, are non-split. The k-
fibres of W→P1

k other than the fibres at 0 and ∞ are cyclic twists of X. By
Proposition 11.5.1 (i) the vertical Brauer group Brvert(W/P1

k) is generated
by B modulo the image of Br(k). By Proposition 11.5.1 (iii), the assumption
(n,mD) = 1 implies that each closed fibre of W→P1

k contains an irreducible
component of multiplicity 1. It remains to apply Corollary 14.2.19. �

Let n be a positive integer. Let a, b, c, d ∈ k∗ and let S ⊂ P3
k be the smooth

surface given by
axn + byn = czn + dwn.

We assume that S is everywhere locally soluble and there is no Brauer–Manin
obstruction with respect to the finite subgroup B ⊂ Br(S) consisting of the
classes (χ, a(x/y)n + b). Here χ belongs to the kernel of the restriction map

H1(k,Z/n) −→ H1(L,Z/n),

where L is the étale k-algebra

L =
(
k[t]/(tn + b/a)

)
⊗k
(
k[t]/(tn + d/c)

)
.

Then, by Theorem 14.2.25, there exists an element ρ ∈ k∗ such that each of
the smooth plane curves

axn + byn = ρvn, czn + dwn = ρvn (14.4)

is everywhere locally soluble. When n = p is a prime, we have B = 0, hence
the relevant vertical Brauer group is reduced to the image of Br(k) (Propo-
sition 11.5.2).
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For n = 3 this statement is a starting point in Swinnerton-Dyer’s paper
[SwD01, Lemma 2, p. 901], see also a similar situation in [SkS05] and [HS16].
The challenge here, assuming S(Ak)Br 6= ∅, is to produce a ρ ∈ k∗ such that
for each of the two curves (14.4) there is no Brauer–Manin obstruction to the
existence of a k-point, or at least to the existence of a zero-cycle of degree 1.

14.3 Beyond the Brauer–Manin obstruction

14.3.1 Insufficiency of the Brauer–Manin obstruction

Let k be a number field. For n ≥ 4 any smooth hypersurface X ⊂ Pnk satisfies
Br(k) = Br(X) (Corollary 5.5.4). Thus X(Ak)Br = X(Ak). If d > n, where
d is the degree of X, then the canonical bundle on X is ample, and the
Bombieri–Lang conjecture ([Lang91], [Po18, 9.5.3]) states that X(k) is not
Zariski dense in X. A refinement of this conjecture, also discussed in [Lang91],
predicts that a ‘hyperbolic’ hypersurface has finitely many rational points.
If these conjectures are true, then for any such X with X(k) 6= ∅, the set
X(k) cannot be dense in X(Ak)Br = X(Ak). It is also very unlikely that the
Hasse principle holds for rational points of smooth projective hypersurfaces of
dimension at least 3 of large degree. Conditional examples with X(Ak)Br 6= ∅
and X(k) = ∅ can be found in [SW95, Po01].

In 1999 Skorobogatov [Sko99] gave the first unconditional example of a
smooth, projective, geometrically integral variety X over a number field k
such that X(Ak)Br 6= ∅ but nevertheless X(k) = ∅. In this example k = Q
and the variety X is a surface of Kodaira dimension zero, which geometrically
is a bielliptic surface. See also [Sko01, Ch. 8].

14.3.2 Quadric bundles over a curve, I

The following, more elementary example was constructed in [CTPS16]. The
idea to use a curve with a unique rational point is due to Poonen [Po10].

Let C be a smooth, projective, geometrically integral curve over a number
field k ⊂ R such that C(k) consists of just one point, C(k) = {P}. Poonen
[Po10b, Thm. 1.1] showed that such a curve C exists for any number field k.
Mazur and Rubin [MR10, Thm. 1.1] proved that C can be chosen to be an
elliptic curve. Let us write v0 for the given real place k ⊂ R. Let Π ⊂ C(R)
be an open interval containing P . Let f : C→P1

k be a surjective morphism
unramified at P . Choose a coordinate function t on A1

k = P1
k r f(P ) such

that f is unramified above t = 0. We have f(P ) = ∞. Take any a > 0 in
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k such that a is an interior point of the interval f(Π) and f is unramified
above t = a.

Let v 6= v0 be a place of k. From the exact reciprocity sequence 13.3 from
class field theory we see that there exists a quadratic homogeneous form
Q(x0, x1, x2) over k of rank 3 that represents zero in all completions of k other
than kv and kv0 , but not in kv or kv0 , and we may take Q positive definite at
v0. Choose an n ∈ k with n > 0 and −nQ(1, 0, 0) ∈ k∗2v . Let Y1 ⊂ P3

k×A1
k be

given by Q(x0, x1, x2) + nt(t − a)x2
3 = 0, and let Y2 ⊂ P3

k × A1
k be given by

Q(X0, X1, X2)+n(1−aT )X2
3 = 0. We glue Y1 and Y2 by identifying T = t−1,

X3 = tx3, and Xi = xi for i = 0, 1, 2. This produces a quadric bundle Y→P1
k

with exactly two degenerate fibres (over t = a and t = 0), each given by the
quadratic form Q(x0, x1, x2) of rank 3. It is straightforward to check that Y
is smooth over k.

Define X = Y ×P1
k
C. This is a flat surjective proper morphism X→C

whose fibres are geometrically integral quadrics. The assumption that f is
unramified at t = 0 and t = a implies that X is also smooth.

For example, we can take k = Q, Qv = Q2 and consider Y defined by

x2
0 + x2

1 + x2
2 + 7t(t− a)x2

3 = 0.

Proposition 14.3.1 In the above notation we have X(Ak)Br 6= ∅ whereas
X(k) = ∅.

Proof. Since C(k) = {P} we have X(k) ⊂ XP . The fibre XP is the smooth
quadric Q(x0, x1, x2) + nx2

3 = 0. This quadratic form is positive definite
thus XP has no points in kv0

= R and so X(k) = ∅. By assumption XP

has local points in all completions of k other than kv and kv0
. The condition

−nQ(1, 0, 0) ∈ k∗2v implies that XP contains kv-points, so XP has local points
in all completions of k but one. Choose Nu ∈ XP (ku) for each place u 6= v0.
Let M ∈ Π be such that f(M) = a. Then the singular point of the real fibre
XM (the vertex of the quadratic cone) is a smooth real point of X. Take it
as the v0-component of the adelic point (Nu) of X.

We claim that (Nu) ∈ X(Ak)Br. Indeed, the fibres of X→C are geomet-
rically integral. Thus, by Proposition 11.2.4 the natural map Br(C)→Br(X)
is surjective. Thus it is enough to show that the adelic point on C such that
its components at all places other than v0 are equal to P and its component
at v0 is M , is orthogonal to Br(C). The real point M is path-connected to
P , so this adelic point is in the connected component of the diagonal image
of the k-point P in C(Ak). By the continuity of the real evaluation map it is
contained in C(Ak)Br, so the proposition follows. �
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14.3.3 Distinguished subsets of the adelic space

Let k be a number field. Let G be a linear algebraic group over k. Let X and
Y be varieties over k and let f : Y→X be a left G-torsor. Up to isomorphism,
such torsors are classified by the pointed set H1

ét(X,G). For a number field
k, we have a natural map

θ : H1(k,G) −→
∏
v∈Ω

H1(kv, G).

By a theorem of Borel and Serre, the fibres of θ are finite, see [SerCG, III.4.6].
For any ring R containing k, the pullback of the torsor f : Y→X to an

R-point of X induces a map X(R) −→ H1(R,G). When R = k we obtain a
map X(k)→H1(k,G). When R is the ring of adèles Ak we obtain a map

X(Ak) −→
∏
v

H1(kv, G).

Define X(Ak)f ⊂ X(Ak) as the inverse image of θ(H1(k,G)) under this
map. It is clear that the diagonal map X(k) ↪→ X(Ak) gives an embedding
X(k) ⊂ X(Ak)f , cf. Remark 13.3.3.

To a continuous 1-cocycle σ : Γ = Gal(k̄/k)→G(k̄) one associates an inner
form Gσ of G, which is a twisted (k̄/k)-form of G defined with respect to the
action of G on itself by conjugations. (See Section 1.3.2.) The isomorphism
class of Gσ depends only on the class [σ] ∈ H1(k,G). Twisting the left G-
torsor f : Y→X we obtain a left Gσ-torsor fσ : Y σ→X; its isomorphism class
depends only on [σ]. See [Sko01, Ch. 2] for more details.

The class [σ] is the image of a k-point P ∈ X(k) under the map
X(k)→H1(k,G) if and only if there exists a k-point M ∈ Y σ(k) such that
fσ(M) = P . This implies

X(k) =
∐

[σ]∈H1(k,G)

fσ(Y σ(k)).

Similarly, by the definition of X(Ak)f we have

X(Ak)f =
⋃

[σ]∈H1(k,G)

fσ(Y σ(Ak)).

Proposition 14.3.2 Let X be a variety over a number field k. Let G be a
linear algebraic group over k. Let f : Y→X be a G-torsor. Then X(Ak)f is
a closed subset of X(Ak).

Proof. See [Sko09a, Cor. 2.7] in the case when X is proper, and [CDX,
Prop. 6.4] in general. The proof combines existence of good models over an
open set of the ring of integers of k, the implicit function theorem over local
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fields, finiteness of H1(kv, G) for a linear algebraic group G over a local field
kv, the theorem of Borel and Serre mentioned above, and Lang’s theorem
that torsors under a connected linear algebraic group over a finite field have
a rational point. �

Let us define
X(Ak)H1

ét(X,G) =
⋂
f

X(Ak)f ,

where f ranges over all G-torsors f : Y→X.
For a smooth, projective variety over k, a close relation between the inter-

section of X(Ak)H1
ét(X,T ) for all k-tori T , and X(Ak)Br was established by

Colliot-Thélène and Sansuc [CTS87a]. This was extended by Skorobogatov
[Sko99] to groups of multiplicative type, see [Sko01, §6.1]. The set X(Ak)f

attached to a torsor f : Y→X for a finite, non-commutative group k-scheme
was used by Harari [Har00] to construct examples where weak approximation
fails and this failure is not accounted for by the Brauer–Manin obstruction.
The general definition of X(Ak)f was spelled out in [HS02, §4], see also
[Sko01, §5.3].

For various classes of linear groups we define closed subsets of X(Ak)
containing X(k), as follows:

X(Ak)desc =
⋂

linear G

X(Ak)H1
ét(X,G),

X(Ak)ét =
⋂

finite G

X(Ak)H1
ét(X,G),

X(Ak)conn =
⋂

connected linear G

X(Ak)H1
ét(X,G).

If X is a smooth quasi-projective variety over a field k, then BrAz(X) ∼=
Br(X) by Gabber’s theorem (Theorem 4.2.1). So, if X is smooth and quasi-
projective over a number field k, the connection between torsors for PGLn
and Azumaya algebras gives X(Ak)Br =

⋂
nX(Ak)H1

ét(X,PGLn), see [HS02,
Thm. 4.10]. One concludes that

X(Ak)desc ⊂ X(Ak)Br. (14.5)

A theorem of Harari [Har02] gives

X(Ak)Br ⊂ X(Ak)conn

for any geometrically integral X.
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Allowing f : Y→X to be a torsor for any finite group k-scheme G, we
define more subsets of X(Ak) containing X(k):

X(Ak)ét,Br =
⋂
f

⋃
[σ]∈H1(k,G)

fσ(Y σ(Ak)Br);

X(Ak)ét,desc =
⋂
f

⋃
[σ]∈H1(k,G)

fσ(Y σ(Ak)desc).

Next, allowing f : Y→X to be a torsor for any linear group k-scheme G,
define

X(Ak)desc,desc =
⋂
f

⋃
[σ]∈H1(k,G)

fσ(Y σ(Ak)desc).

Skorobogatov’s example was first interpreted in [Sko99] as an example of a
smooth projective variety such that X(Ak)Br 6= ∅ but X(Ak)ét,Br = ∅. It

was then interpreted in [HS02] as an example with X(Ak)H1
ét(X,G) = ∅ for a

suitable finite k-group G, hence with X(Ak)desc = ∅. This raised the question
of the relation between these various obstructions.

Theorem 14.3.3 Let k be a number field. Let X be a smooth, quasi-
projective, geometrically integral variety over k. Then

X(Ak)desc = X(Ak)ét,desc = X(Ak)ét,Br.

In particular, the following two conditions are equivalent:

(i) any left G-torsor Y→X, where G is a linear group k-scheme, has a
twisted form Y σ→X such that Y σ(Ak) 6= ∅;

(ii) any left G-torsor Y→X, where G is a finite group k-scheme, has a twisted
form Y σ→X such that Y σ(Ak)Br 6= ∅.

This theorem is a consequence of the following inclusions

X(Ak)desc ⊂ X(Ak)ét,desc ⊂ X(Ak)ét,Br ⊂ X(Ak)desc.

The second inclusion is (14.5). In the case when X is projective, the first
inclusion is a theorem of Skorobogatov [Sko09a, Thm. 1.1] built on results of
Stoll [Sto07], and the third inclusion is a theorem of Demarche [Dem09] built
on results of Harari [Har02]. The general case of quasi-projective varieties is
due to Cao, Demarche, and Xu, see [CDX, Thm. 7.5]. Among the ingredients
of their proof is the result that with suitable modifications and isotropy con-
ditions at the archimedean places, the Brauer–Manin obstruction to strong
approximation for homogeneous spaces of connected linear algebraic groups
with connected stabilisers is the only obstruction (Borovoi and Demarche
[BD13], after work of Colliot-Thélène and Xu [CTX09], Harari [Har08], and
Demarche [Dem11]).
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This theorem is complemented by the following result of Y. Cao [Cao20],
which answers a question that was asked by Poonen in the case when X is
projective.

Theorem 14.3.4 (Y. Cao) Let X be a smooth, quasi-projective, geometri-
cally integral variety over a number field k. Then

X(Ak)desc,desc = X(Ak)desc,

hence

X(Ak)desc,desc = X(Ak)desc = X(Ak)ét,desc = X(Ak)ét,Br.

As an immediate corollary, we obtain X(Ak)desc,...,desc = X(Ak)desc.

Y. Harpaz and T. Schlank [HSc13] used étale homotopy theory of Artin
and Mazur to produce a subset X(Ak)h ⊂ X(Ak) which contains X(k). For
any smooth and geometrically integral variety X (not necessarily proper)
they prove that X(Ak)h = X(Ak)ét,Br. See also [Stix].

The above results raise the question: is the étale Brauer–Manin obstruction
the only obstruction to the existence of rational points, that is, if the set X(k)
is empty, then is the set X(Ak)ét,Br empty too? This seems to be unlikely
already in the case of smooth hypersurfaces of dimension at least 3 and of
arbitrary degree in projective space, which have trivial geometric fundamen-
tal group [SGA2, X, Thm. 3.10] and trivial Brauer group Br(X) = Br0(X)
(Corollary 5.5.4). Hence the question in that case reduces to the very unlikely
Hasse principle for such hypersurfaces.

Unconditional examples of smooth, projective, geometrically integral va-
rieties X over a number field k with X(Ak)ét,Br 6= ∅ but X(k) = ∅ have been
found. Poonen [Po10] uses a threefold with a dominant morphism to a curve
with finitely many rational points such that the generic fibre is a Châtelet
surface. Over k̄ such a variety becomes birationally equivalent to the product
of a curve (of genus at least one) and a projective space. Harpaz and Sko-
robogatov [HS14] construct surfaces with a dominant morphism to a curve
(of genus at least one) with finitely many rational points such that the fibres
over some rational points are singular unions of curves of genus 0.

14.3.4 Quadric bundles over a curve, II

In this section we discuss simpler examples of varieties over a number field k
such that X(Ak)ét,Br 6= ∅ but X(k) = ∅ that were constructed in [CTPS16].

To control the étale Brauer–Manin obstruction, one uses the following
proposition.
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Proposition 14.3.5 Let f : X→B be a surjective flat morphism of smooth,
proper, geometrically integral varieties over a field k of characteristic zero.
If the geometric generic fibre is simply connected and all geometric fibres
are reduced, then for any torsor X ′→X for a finite k-group scheme G there
exists a G-torsor B′→B such that there is an isomorphism X ′ ∼= X×B B′ of
G-torsors over X.

Proof. By [SGA1, X, Cor. 2.4] the hypotheses imply that each geometric fibre
is simply connected. The result then follows from [SGA1, IX, Cor. 6.8]. �

It is easy to construct examples over k = Q that are varieties fibred into
quadrics of dimension d ≥ 2 over a curve: in fact, the threefold from Section
14.3.4 is such an example (also reproduced in [Po18, §8.6.2]).

Proposition 14.3.6 The threefold X over k = Q considered in Proposition
14.3.1 satisfies X(Ak)ét,Br 6= ∅ and X(k) = ∅.

Proof. We keep the notation of the proof of Proposition 14.3.1. There we
constructed an adelic point (Nu) ∈ X(Ak)Br. Let us show that in fact

(Nu) ∈ X(Ak)ét,Br.

Let G be a finite k-group scheme. Proposition 14.3.5 implies that any
G-torsor X ′/X is isomorphic to X ×C C ′→X for some G-torsor C ′/C. Let
σ ∈ Z1(k,G) be a 1-cocycle defining the k-torsor which is the fibre of C ′→C
at P . Twisting X ′/X and C ′/C by σ and replacing the group G by the
twisted group Gσ and changing notation, we can assume that C ′ contains a
k-point P ′ that maps to P in C. The irreducible component C ′′ of C ′ that
contains P ′ is a geometrically integral curve over k. Let X ′′ ⊂ X ′ denote the
inverse image of C ′′ inX ′. The fibres of the morphism X→C are geometrically
integral, hence such are also the fibres of X ′→C ′ and X ′′→C ′′. Thus X ′′ is
a geometrically integral variety over k.

There are natural isomorphisms X ′′P ′
∼= X ′P ′

∼= XP , so we can define
N ′u ∈ X ′′(ku) as the point that maps to Nu ∈ X(ku) for each u 6= v. The
map C ′′→C is finite and étale. The image of C ′′(R) in C(R) is thus closed
and open. The image of the connected component of P ′ ∈ C ′′(R) is the whole
connected component of P ∈ C(R), hence contains Π. The inverse image in
C ′′(R) of the interval Π is a disjoint union of intervals, one of which contains
P ′ and maps bijectively onto Π. Let us call this interval Π ′. Let M ′ be the
unique point of Π ′ over M . Let N ′v ∈ X ′′M ′(R) be the point that maps to
Nv ∈ XM (R). Thus the adelic point (N ′u) ∈ X ′′(Ak) ⊂ X ′(Ak) projects
to the adelic point (Nu) ∈ X(Ak). By the definition of the étale Brauer–
Manin obstruction, to prove that (Nu) ∈ X(Ak)ét,Br it suffices to show that
(N ′u) ∈ X ′(Ak)Br. This follows by the argument in the last paragraph of
Proposition 14.3.1. �

It is more delicate to give examples with d = 1, that is, conic bundles.
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Theorem 14.3.7 There exist a real quadratic field k, an elliptic curve E
and a smooth, projective and geometrically integral surface X over k with a
surjective morphism f : X→E satisfying the following properties:

(i) the fibres of f : X→E are conics;
(ii) there exists a closed point P ∈ E such that the field k(P ) is a totally

real biquadratic extension of Q and the restriction X \ f−1(P )→E \ P
is a smooth morphism;

(iii) X(Ak)ét,Br 6= ∅ and X(k) = ∅.

Here one can take k = Q(
√

10) and take E to be the elliptic curve

y2 + y = x3 + x2 − 12x− 21

of conductor 67 and discriminant −67. We refer to [CTPS16, §5] for the
construction of the conic bundle f : X→E and the proof of Theorem 14.3.7.
Note that in this theorem we cannot take the ground field to be Q, see
Proposition 14.3.11. The construction given in [CTPS16] works over a number
field with at least two real places, and requires good control of the Galois
representation on the torsion points of E over k.

In all these unconditional examples with X(Ak)ét,Br 6= ∅ and X(k) = ∅,
the varieties X have a non-constant map to a curve of genus at least one,
hence have a non-trivial Albanese variety. A. Smeets [Sme17] has given ex-
amples with trivial Albanese varieties. Under the abc conjecture, he even
produces examples with trivial geometric fundamental group. In the function
field case, where k is a function field in one variable over a finite field, uncon-
ditional examples with trivial geometric fundamental group have been found
by Kebekus, Pereira and Smeets [KPS19].

Definition 14.3.8 Let X be a variety over a number field k. Define the
topological space X(Ak)• by replacing X(kv) in the definition of X(Ak) by
the set of connected components π0(X(kv)), for each archimedean place v.

This definition is due to Poonen and Stoll, see [Sto07]. The evaluation map
defined by a class in the Brauer group of a variety X over R is constant on
each connected component of X(R), see Remark 10.5.7 (4). Thus X(Ak)Br

is the inverse image of a well-defined subset X(Ak)Br
• ⊂ X(Ak)• under the

natural map X(Ak)→X(Ak)•.

Here are some complements to Proposition 14.3.6 and Theorem 14.3.7.

Proposition 14.3.9 Let E be an elliptic curve over a number field k such
that the Tate–Shafarevich group X(E) is finite. Let f : X→E be a Severi–
Brauer scheme over E. Then X(Ak)Br 6= ∅ implies X(k) 6= ∅. Moreover,
X(k) is dense in X(Ak)Br

• .

Proof. Since f : X→E is a projective morphism of projective varieties with
smooth geometrically integral fibres, by a spreading argument, the Lang–
Weil–Nisnevich estimates and Hensel’s lemma, one sees that there exists a
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finite set of places Σ such that E(kv) = f(X(kv)) for v /∈ Σ. We may assume
that Σ contains the archimedean places of k. At an arbitrary place v the set
f(X(kv)) is open and closed in E(kv). Let (Mv) ∈ X(Ak)Br. By functoriality
(Proposition 13.3.10) we then have (f(Mv)) ∈ E(Ak)Br. The finiteness of
X(E) implies [Sko01, Prop. 6.2.4] the exactness of the Cassels–Tate dual
sequence

0 −→ E(k)⊗ Ẑ −→
∏
v

E(kv)• −→ Hom(Br(E),Q/Z), (14.6)

where E(kv)• = E(kv) if v is a finite place of k, and E(kv)• = π0(E(kv))
if v is an archimedean place. By a theorem of Serre [Ser64, II, Thm. 3], the

image of E(k) ⊗ Ẑ in that product coincides with the topological closure of
E(k). Approximating at the places of Σ, we find a k-point M ∈ E(k) such
that the fibre XM = f−1(M) is a Severi–Brauer variety with points in all kv
for v ∈ Σ, hence also for all places v. Since XM is a Severi–Brauer variety
over k, it contains a k-point (see Section 13.2), hence X(k) 6= ∅. For the last
statement of the theorem we include into Σ the places where we want to
approximate. If kv ' R, each connected component X(kv) maps surjectively
onto a connected component of E(kv). By Proposition 7.1.5 Severi–Brauer
varieties with a k-point are isomorphic to the projective space, hence satisfy
weak approximation. It remains to apply the implicit function theorem. �

Remark 14.3.10 The same argument works more generally for any projec-
tive morphism f : X→E with split fibres, provided that the smooth k-fibres
satisfy the Hasse principle. For the last statement to hold, the smooth k-fibres
also need to satisfy weak approximation.

The following proposition explains why a counter-example similar to that
of Theorem 14.3.7 cannot be constructed over Q.

Proposition 14.3.11 Let E be an elliptic curve over a number field k such
that both E(k) and X(E) are finite. Let f : X→E be a conic bundle. Suppose
that there exists a real place v0 of k such that for all real places v 6= v0 all
kv-fibres of f : X→E are smooth. Then X(Ak)Br 6= ∅ implies X(k) 6= ∅.

Proof. If a k-fibre of f is not smooth, then this fibre contains a k-point. Thus
we can assume that the fibres above E(k) are smooth. Let (Mv) ∈ X(Ak)Br.
Then (f(Mv)) ∈ E(Ak)Br. Set Nv = f(Mv) for each place v. The finiteness of
X(E) implies the exactness of (14.6). Hence there exists an N ∈ E(k) such
that N = Nv for each finite place v and such that N lies in the same connected
component as Nv for v archimedean. The fibre XN is a smooth conic with
points in all finite completions of k. For an archimedean place v 6= v0, the map
X(kv)→E(kv) sends each connected component of X(kv) onto a connected
component of E(kv). Since N and Nv are in the same connected component
of E(kv), this implies that XN (kv) 6= ∅. Thus the conic XN has points in
all completions of k except possibly kv0 . By the reciprocity law (Corollary
13.1.10) it has points in all completions of k and hence in k. �
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14.3.5 Curves, K3 surfaces, Enriques surfaces

One may wonder whether there are classes beyond rationally connected va-
rieties for which one could hope that the Brauer–Manin obstruction or one
of its substitutes discussed in this chapter controls the existence of rational
points.

Let X be a smooth, projective, geometrically integral variety over a num-
ber field k. Here are some open problems concerning the closure X(k)cl of
X(k) in the topological space X(Ak)• introduced in Definition 14.3.8.

Curves

In [Sko01, p. 133] Skorobogatov asked if X(Ak)Br 6= ∅ implies X(k) 6= ∅ for
every smooth and projective curve X over a number field k. Computational
evidence (the Mordell–Weil sieve [Fly04, Po06, BSt08, BSt10]) seems to sug-
gest that the answer to this question could be in the affirmative. When X is a
curve, it is an open question whether the image of X(k) is dense in X(Ak)Br

• .
If the genus of X is 1, this is the case if the Tate–Shafarevich group of the
Jacobian of X is finite [Sko01, Thm. 6.2.3, Cor. 6.2.4]. More generally, if X
is a torsor for an abelian variety A with finite Tate–Shafarevich group, then
X(k) is dense in X(Ak)Br

• . If X is a curve of higher genus with Jacobian J
such that X(J) is finite (which is expected to be always true) and also J(k)
is finite, it is a theorem of Scharaschkin and (independently) Skorobogatov
[Sko01, Cor. 6.2.6] that X(k) = X(Ak)Br

• . Stoll has shown that the same
statement remains true under the weaker assumption that J is isogenous to
an abelian variety which has a direct factor A of positive dimension such that
X(A) and A(k) are both finite [Sto07].

The question whether X(Ak)Br 6= ∅ implies X(k) 6= ∅ has interesting
connections with Grothendieck’s section conjecture [Stix, Ch. 11, Thm. 161].

Although the case of number fields remains wide open, more is known in
the function field case. A theorem of Poonen and Voloch [PV10] states that
under certain conditions on a smooth projective curve X over a global field
k of finite characteristic, one has X(k) = X(Ak)Br.

K3 surfaces

That some form of the Hasse principle could hold for classes of varieties be-
yond curves and rationally connected varieties seems to have been mentioned
for the first time in the introduction to [CTSS98b]. This paper is concerned
with certain families of surfaces X with a pencil of curves of genus 1, among
which one finds some classes of diagonal quartics in P3

k. The result is that
conditionally on two hard conjectures (Schinzel’s hypothesis and finiteness
of Tate–Shafarevich groups of elliptic curves), under suitable hypotheses,
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X(Ak)Br 6= ∅ implies X(k) 6= ∅. (To quote from [CTSS98b]: “Until we em-
barked on the current research, we would not have supposed that this was
a sensible question to ask”.) Further work along these lines was done by
Swinnerton-Dyer [SwD00]. The treatment of geometrically Kummer surfaces
in [SkS05, HS16, Harp19b] does not rely on Schinzel’s hypothesis. More pre-
cisely, just like Swinnerton-Dyer’s paper [SwD01], it uses the only known
case of Schinzel’s hypothesis: the Dirichlet theorem on primes in an arith-
metic progression.

The following conjecture was proposed in [Sko09b], see also the introduc-
tion to [SZ08].

Conjecture 14.3.12 (Skorobogatov) Let X be a K3 surface over a num-
ber field k. Then X(k) is dense in X(Ak)Br.

There are conditional results in this direction, particularly, but not exclu-
sively, for surfaces which are geometrically Kummer, see [CTSS98b, SkS05,
HS16, Harp19b]. See also [EJ] for some numerical experiments with rational
points on Kummer surfaces.

Enriques surfaces

Enriques surfaces with interesting X(Ak)ét,Br were studied by Harari and
Skorobogatov in [HS05], where the following example was constructed. Let
Y be the Kummer surface over Q with affine equation

z2 = (x2 − a)(x2 − ab2)(y2 − a)(y2 − ac2),

where a = 5, b = 13, c = 2. Let X be the quotient of Y by the involution
that changes the signs of all three coordinates. Then X is an Enriques surface
such that X(Q) is not dense in X(AQ)Br. Following work of Várilly-Alvarado
and Viray [VV11], an Enriques surface X such that X(Ak)ét,Br = ∅, hence
X(k) = ∅, whereas X(Ak)Br 6= ∅, was constructed in [BBMPV].

One may ask if X(k)cl = X(Ak)ét,Br for any Enriques surface X. See
[Sko09a, §3] for a discussion of this question for arbitrary surfaces of Kodaira
dimension zero.



Chapter 15

The Brauer–Manin obstruction for
zero-cycles

The Brauer–Manin obstruction for rational points has an analogue for zero-
cycles, which conjecturally governs the local-to-global principle for zero-cycles
on an arbitrary smooth projective variety X – unlike the original version for
rational points! For example, one expects that if X has a family of local zero-
cycles of degree 1 for each completion of k, which is orthogonal to Br(X)
with respect to the Brauer–Manin pairing, then X has a global zero-cycle of
degree 1. The precise conjectures are stated in Section 15.1.

If one knows that the Brauer–Manin obstruction is the only obstruction
to the Hasse principle for rational points (as is conjectured for rationally
connected varieties), then in some cases one can conclude that the Brauer–
Manin obstruction controls the existence of zero-cycles of degree 1 as well.
This work of Y. Liang is presented in Section 15.2.

In 1988 P. Salberger proved the conjectures of Section 15.1 for arbitrary
conic bundles over the projective line. His method may be viewed as an
accessible analogue of Schinzel’s Hypothesis (H). We describe the method in
a simple case in Section 15.3.

Finally, in Section 15.4 we explain the general fibration theorem of Harpaz
and Wittenberg, which roughly says that the Brauer–Manin obstruction con-
trols the local-to-global properties of zero-cycles of degree 1 on a variety fibred
over P1

k with rationally connected generic fibre, if the same property holds
for the smooth fibres.

15.1 Local-to-global principles for zero-cycles

The Brauer–Manin pairing for zero-cycles

Let k be a number field. As in the previous chapter, we denote by Ω the set
of places of k. For a place v ∈ Ω we always identify Br(kv) with a subgroup
of Q/Z via the local invariant invv, see Definition 13.1.7.
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Let X be a smooth, projective, geometrically integral variety over k. For
each place v ∈ Ω we have the pairing from Section 6.4:

CH0(Xkv )× Br(Xkv ) −→ Br(kv) ⊂ Q/Z. (15.1)

If v is an archimedean place, this pairing vanishes on Nv(CH0(Xk′v )), where
k′v is an algebraic closure of kv and Nv is the natural norm map

CH0(Xk′v )→CH0(Xkv ).

Define
CH′0(Xkv ) = CH0(Xkv )/Nv(CH0(Xk′v ))

if v is archimedean, and CH′0(Xkv ) = CH0(Xkv ) otherwise.
For any α ∈ Br(X) there exists a finite set S ⊂ Ω and a smooth projective

model X over the ring of S-integers OS ⊂ k such that α belongs to the image
of Br(X )→Br(X), see Proposition 13.3.1. If v /∈ S is a non-archimedean
place, then by Proposition 10.5.3 we have α(Mv) = 0 for any closed point
Mv of Xkv . Thus each α ∈ Br(X) pairs trivially with the local Chow groups
CH0(Xkv ) for almost all places v ∈ Ω, as well as with Nv(CH0(Xk′v )) if v is
archimedean. Therefore we have a well-defined map∏

v∈Ω
CH′0(Xkv ) −→ Hom(Br(X),Q/Z).

Class field theory gives an exact sequence (13.1)

0 −→ Br(k) −→
⊕
v∈Ω

Br(kv) −→ Q/Z −→ 0.

The mere fact that this is a complex at the middle term implies that the
following sequence is a complex too:

CH0(X) −→
∏
v∈Ω

CH′0(Xkv ) −→ Hom(Br(X),Q/Z).

Here the first map is the diagonal map and the second map is induced by the
local pairings (15.1).

For an abelian group A, write Â = lim←−A/n, where the projective limit is
over the set of natural numbers ordered by divisibility. Since Br(Xkv ) is a
torsion group, the local pairing (15.1) gives rise to a pairing

̂CH0(Xkv )× Br(Xkv ) −→ Q/Z.

From this we obtain a complex

̂CH0(X) −→
∏
v∈Ω

̂CH′0(Xkv ) −→ Hom(Br(X),Q/Z). (15.2)
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Recall from Section 6.4 that A0(X) is the degree 0 subgroup of CH0(X). By
[CT95b, Thm. 1.3 (b)], if v is an archimedean place, then Nv(A0(Xk′v )) is
the divisible subgroup of A0(Xkv ). Thus restricting (15.2) to the degree 0
subgroups we obtain a complex

Â0(X) −→
∏
v∈Ω

̂A0(Xkv ) −→ Hom(Br(X),Q/Z). (15.3)

Conjectures

Work of Cassels and Tate on elliptic curves (the Cassels–Tate dual exact
sequence), of Colliot-Thélène and Sansuc on geometrically rational surfaces
[CTS81], and of Kato and Saito [KS86] on higher class field theory has led
to the following general conjecture, which encompasses a number of earlier
conjectures.

Conjecture 15.1.1 (E) For any smooth, projective, geometrically integral
variety X over a number field k, the complex (15.2) is exact.

Conjecture (E) subsumes the following two conjectures.

Conjecture 15.1.2 (E0) For any smooth, projective, geometrically integral
variety X over a number field k, the complex (15.3) is exact.

Conjecture 15.1.3 (E1) For any smooth, projective, geometrically integral
variety X over a number field k, if there exists a family (zv) of local zero-
cycles of degree 1 on X such that, for all A ∈ Br(X), we have∑

v∈Ω
invv(A(zv)) = 0 ∈ Q/Z,

then there exists a zero-cycle of degree 1 on X.

For the history of these conjectures, see [CTS81], [KS86, p. 303], [Sai89, §8],
[CT95b], [CT99], [vHa03], and the introduction to [Witt12]. Note that these
conjectures are about all smooth, projective, geometrically integral varieties
over number fields. The groups involved are rather mysterious. Indeed, it is
a conjecture of Bloch and Beilinson that for a smooth and projective variety
X over a number field k, the group CH0(X) is finitely generated. Important
work on the groups CH0(Xkv ) was done by Kollár [Kol04] and by S. Saito
and K. Sato [SS10, SS14].

In the case X = Spec(k), conjecture (E) follows from the exact sequence
(13.1) of class field theory.

For curves, classical results of Cassels and Tate imply the conjecture –
modulo finiteness of Tate–Shafarevich groups. See [Man66] (for curves of
genus 1), [Sai89], [CT99], [Witt12, Remark 1.1 (iv), p. 2121].
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For Châtelet surfaces, i.e. smooth projective models X of surfaces given
by an affine equation y2−az2 = P (x), where a ∈ k∗ and P (x) ∈ k[x] is a sep-
arable polynomial of degree 3 or 4, conjectures (E0) and (E1) were proved in
[CTSS87] by reduction to the theorem X(k)cl = X(Ak)Br, also proved there.
Indeed, these surfaces have the very special property that any zero-cycle of
degree 1 is rationally equivalent to a k-point. Then Salberger [Salb88], by
an innovative method, to be discussed in Section 15.3, proved the conjec-
tures for arbitrary conic bundles over P1

k. For varieties fibred over P1
k, with

generic fibre a Severi–Brauer variety, further progress was achieved in papers
by Colliot-Thélène, Swinnerton-Dyer, Skorobogatov [CTS94, CTSS98], and
Salberger [Salb03].

A series of papers by Colliot-Thélène [CT00, CT10], Frossard [Fro03], van
Hamel [vHa03], Wittenberg [Witt12] and Y. Liang [Lia12, Lia13a, Lia13b,
Lia14, Lia15] established cases of conjecture (E) for varieties fibred over an
arbitrary curve C, when the Tate–Shafarevich group of the Jacobian of C
is finite, and the generic fibre is birationally equivalent to a Severi–Brauer
variety or to a homogeneous space of a connected linear algebraic group,
with various restrictions. Most of these results are now covered by the work
of Harpaz and Wittenberg [HW16].

The smooth projective surface X over Q with the property X(AQ)Br 6= ∅
but X(Q) = ∅ discovered by Skorobogatov in [Sko99] does not belong to
the class of varieties handled in [HW16] (it is not geometrically uniruled).
B. Creutz has recently shown that it contains a zero-cycle of degree one
[Cre17], as predicted by the conjecture.

15.2 From rational points to zero-cycles

Let k be a number field. There are classes of smooth projective varieties X
over k for which one can prove that if X(K)cl = X(AK)Br holds for all finite
field extensions K/k then the conjectures for zero-cycles on X mentioned
above are true. This insight is due to Y. Liang [Lia13b].

Here is a baby case.

Proposition 15.2.1 [Lia13b, Prop. 3.2.3] Let k be a number field and let X
be a smooth, proper, geometrically integral variety over k. Assume that for
any finite field extension K/k, the Hasse principle holds for rational points
of XK . Then the Hasse principle holds for zero-cycles of degree 1 on X.

Proof. By the Lang–Weil–Nisnevich estimates and Hensel’s lemma, there ex-
ists a finite set S of places of k containing all the archimedean places, such
that for any place v /∈ S, one has X(kv) 6= ∅. Fix a closed point m of some
degree N on X. For each v ∈ S, let zv = z+

v − z−v be a local zero-cycle of
degree 1 where z+

v and z−v are effective zero-cycles. Let z1
v = z+

v + (N −1)z−v .
This is an effective zero-cycle on Xkv of degree congruent to 1 modulo N .
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Since S is finite, we can add to each z1
v a suitable positive multiple nvm of the

closed point m and ensure that all the effective local cycles z2
v = z1

v + nvm,
for v ∈ S, have the same common degree d congruent to 1 modulo N .

Here comes the basic argument. Let Y = X ×k P1
k and let f : Y→P1

k be
the natural projection. Fix a rational point q ∈ P1(k). On Ykv we have the
effective zero-cycle z2

v × q of degree d, for v ∈ S.
A moving lemma [CTS94, Lemma 6.2.1] based on the implicit function

theorem (Theorem 10.5.1) ensures that there exists an effective zero-cycle
z3
v on Y very close to z2

v × q and such that z3
v and f∗(z

3
v) are “reduced”.

This means that z3
v =

∑
j Rj with distinct closed points Rj on Ykv , mapping

to distinct closed points f(Rj) and such that f : Rj→f(Rj) is an isomor-
phism for each j. We may assume that for each v ∈ S, the support of the
zero-cycle f∗(z

3
v) lies in Spec(k[t]) = A1

k ⊂ P1
k. Each f∗(z

3
v) is defined by

a separable monic polynomial Pv(t) ∈ kv[t] of degree d. We choose a finite
place v0 outside of S and a monic irreducible polynomial Pv0

(t) ∈ kv0
[t] of

degree d. By weak approximation on the coefficients, we then approximate
the Pv(t), for v ∈ S ∪ {v0}, by a monic polynomial P (t) ∈ k[t] of degree d.
The polynomial P (t) is irreducible, hence it defines a closed point M ∈ A1

k of
degree d.

If the approximation is close enough, Krasner’s lemma [Po18, Prop. 3.5.74]
and the implicit function theorem (Theorem 10.5.1, [Po18, Prop. 3.5.73])
imply that the fibre f−1(M) = X ×k k(M) has points in all completions
of k(M) at the places above v ∈ S. By the choice of S, it also has points
in all the other completions. By assumption, X ×k k(M) satisfies the Hasse
principle over k(M), hence it has a k(M)-point. Thus X has a point in an
extension of degree d. As d is congruent to 1 mod N , and the closed point m
has degree N , we conclude that the k-variety X has a zero-cycle of degree 1.
�

Theorem 15.2.2 (Y. Liang) [Lia13b, Thm. 3.2.1] Let k be a number field
and let X be a smooth, projective, geometrically integral variety over k. As-
sume that Hi(X,OX) = 0 for i = 1, 2 and that the Néron–Severi group
NS(X) is torsion-free. For any finite field extension K of k, assume that the
Brauer–Manin obstruction is the only obstruction to the Hasse principle for
rational points of XK . Then the Brauer–Manin obstruction to the existence
of a zero-cycle of degree 1 on X is the only obstruction: conjecture (E1) holds
for X.

Proof. Over any field k of characteristic zero, the assumptions on the geometry
of X imply that Br(X)/Br0(X) is finite (Theorem 5.5.2). Let A1, . . . , An be
elements of Br(X) whose images generate Br(X)/Br0(X).

Let S be a finite set of places containing the archimedean places such
that X has a smooth projective model X over the ring OS of S-integers,
the elements Ai extend to elements of Br(X ), and X(kv) 6= ∅ for v /∈ S. By
Proposition 10.5.3, each Ai vanishes when evaluated on any zero-cycle of Xkv .
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Suppose that we have a family of zero-cycles zv of degree 1 on Xkv , for
v ∈ Ω, which is orthogonal to Br(X) with respect to the Brauer–Manin
pairing. This is equivalent to the condition∑

v∈Ω
invv(Ai(zv)) = 0 ∈ Q/Z, for all i = 1, . . . , n.

Let N be an integer which is a multiple of the degree of a closed point of X
and also annihilates each Ai ∈ Br(X).

Let Y = X ×k P1
k and let f : Y→P1

k be the projection. Proceeding as in
the previous proof, we replace the original zero-cycles zv, v ∈ S, by reduced
effective zero-cycles z′v on Y each of the same degree d congruent to 1 modulo
N , with the property that f∗(z

′
v) is reduced. We may choose coordinates so

that the support of f∗(z
′
v) lies in Spec(k[t]) = A1

k ⊂ P1
k. The cycles f∗(z

′
v)

are then defined by the vanishing of separable, monic polynomials Pv(t) of
degree d. One then approximates the Pv(t) for v ∈ S and an irreducible monic
polynomial Pv0 ∈ kv0 [t] of degree d at a place v0 /∈ S by a monic polynomial
P (t) ∈ k[t] of degree d. Just as before, P (t) defines a closed point M ∈ P1

k.
For each place v ∈ S, we have the effective zero-cycle z′v close to zv on

XM ⊗k kv. This gives rise to k(M)w-rational points Rw of the k(M)-variety
Xk(M) over the completions of k(M) at the places w above the places in S.

At each place w of k(M) above a place v /∈ S, we take an arbitrary k(M)w-
point, for instance, a point coming from a kv-point on X. Then we have∑

w∈Ωk(M)

invw(Ai(Rw)) = 0 ∈ Q/Z, for all i = 1, . . . , n.

This is enough to ensure that the adelic point (Rw) ∈ Xk(M)(Ak(M)) is
orthogonal to Br(Xk(M)) provided we can choose the point M , i.e. the poly-
nomial P (t), in such a way that the map

Br(X)/Br(k) −→ Br(Xk(M))/Br(k(M))

is surjective. By [Lia13b, Prop. 3.1.1] (an easy special case of a more general
theorem of Harari [Har97, Thm. 2.3.1]), the geometric assumptions on X
imply that there exists a finite Galois extension L of k such that the above
surjectivity holds for any closed point M as long as L⊗k k(M) is a field. But
this last condition is easy to ensure. Indeed, it is enough to require from the
very beginning that N is also a multiple of [L : k]. Then d = [k(M) : k],
being congruent to 1 modulo N , is prime to [L : k]. �

Liang [Lia13b, Thm. A and Thm. B] proves the following general result.

Theorem 15.2.3 Let k be a number field. Let X be a smooth, projective,
geometrically integral, rationally connected variety over k. Assume that for
any finite field extension K of k, the set X(K) is dense in X(AK)Br. Then
conjecture (E) holds for X.
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To prove this, Liang first proves a version of Theorem 15.2.2 for zero-
cycles of degree 1, keeping track of “approximation” modulo a positive in-
teger. Here z is said to be close to zv modulo n if z and zv have the same
image in CH0(Xkv )/n. This uses work of Wittenberg [Witt12]. Under the hy-
pothesis that X is a rationally connected variety, one then proceeds from this
statement to the exact sequence (E). This uses results of Kato–Saito [KS83],
Kollár–Szabó [KS03] and Saito–Sato [SS10, SS14] on the Chow groups of
zero-cycles of rationally connected varieties over finite fields and local fields.

This gives the following result [Lia13b, Cor. of Thm. B].

Corollary 15.2.4 If a smooth projective variety X over a number field is
birationally equivalent to a homogeneous space of a connected linear algebraic
group with connected geometric stabilisers, then conjecture (E) holds for X.

Indeed, the property X(k)cl = X(Ak)Br is known for such varieties (San-
suc [San81] when the stabilisers are trivial, Borovoi [Bor96] in general).

Until [Lia13b] the validity of (E) was unknown even for smooth compact-
ifications of 3-dimensional tori.

Further work along these lines was done by Ieronymou [Ier19] who ex-
tended Theorem 15.2.2 to K3 surfaces. His proof uses Theorems 16.7.2 and
16.7.5. See also the paper of Balestrieri and Newton [BN19] who extended
Theorem 15.2.2 to generalised Kummer varieties and their products.

15.3 Salberger’s method

In the paper [Salb88] Salberger devised a method which gives unconditional
proofs of Conjecture (E) for large classes of varieties for which the rational
point analogue is still conjectural. Salberger’s method was streamlined in
[CTS94, CTSS98], where it is interpreted as an appropriate substitute to
Schinzel’s Hypothesis (H).

In this section we display this argument in a simple case.

Theorem 15.3.1 (Salberger) Let k be a number field, let a, c ∈ k∗, and
let P (t) ∈ k[t] be a monic irreducible polynomial of degree d. Assume that the
equation

y2 − az2 = c P (t) 6= 0 (15.4)

is solvable in kv for all places v of k. Then we have the following statements.

(i) For any integer N ≥ d equation (15.4) has a solution in a field extension
of k of degree N .

(ii) There exists a zero-cycle of degree 1 on the affine surface (15.4).
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Proof. Statement (ii) follows from (i) by considering N and N + 1. Of course,
(15.4) is solvable in k(

√
a), so the task is to prove that (15.4) has a solution

in an odd degree extension of k.
Let us prove (i). Let U be the affine surface defined by (15.4). There is a

finite set of places S containing all the archimedean and dyadic places of k,
all the finite places v such that v(a) 6= 0, and such that at any place w /∈ S we
have the following properties: c ∈ O∗w, the coefficients of P (t) are in Ow, the
reduction of P modulo the maximal ideal of Ow is a separable polynomial.

For each v ∈ S, choose a monic separable polynomial Gv(t) ∈ kv[t] of
degree N with all its roots in kv, each of them corresponding to the image of
a point of U(kv). In particular, Gv(t) is coprime to P (t).

Choose a place v0 /∈ S such that a is a square in kv0
. Then choose a monic

irreducible polynomial Gv0
(t) ∈ kv0

[t] of degree N over kv0
.

For each v ∈ S ∪ {v0} Euclid’s algorithm gives polynomials Qv(t) and
Rv(t) in kv[t], with deg(Rv(t)) < d ≤ N such that

Gv(t) = P (t)Qv(t) +Rv(t).

Hence each Qv(t) is monic and deg(Qv(t)) = N − d. Each Rv(t) is coprime
to P (t) since Gv(t) is coprime to P (t).

Let K be the field k[t]/P (t). Let ξv ∈ (K ⊗k kv)∗ be the image of Rv(t).
Let V be the set of places of k outside of S for which a is a square in kv.

By Chebotarev’s theorem 13.1.3, this set V is infinite.
Theorem 13.1.2 (a modified version of Dirichlet’s theorem) for the field K

implies that there is an element ξ ∈ K∗ which is arbitrarily close to each ξv
for v ∈ S∪{v0} (thus also at the archimedean places) and such that its prime
decomposition in K involves only primes split in k(

√
a)/k, primes above the

primes in S ∪ {v0}, and a prime w such that w(ξ) = 1 and w has degree 1
over k. The element ξ ∈ k[t]/P (t) lifts to a unique polynomial R(t) of k[t]
such that deg(R(t)) < d.

Choose a place v1 /∈ S ∪ {v0} such that a is a square at v1. If N > d we
use strong approximation (13.2.7) in k away from v1 and the primes in V to
produce a monic polynomial Q(t) ∈ k[t] of degree N − d whose coefficients
are integral away from V ∪ {v1} and very close to respective coefficients of
Qv(t) for v ∈ S ∪ {v0}. If N = d, then take Q(t) = 1.

One then defines
G(t) := P (t)Q(t) +R(t).

By Krasner’s lemma [Po18, Prop. 3.5.74] this polynomial is irreducible, since
it is close to the irreducible polynomial Gv0

(t). It is monic and has integral
coefficients away from V ∪ S ∪ {v0, v1}.

Let L = k[t]/G(t). This is a field extension of degree N of k. Let θ ∈ L be
the class of t. The element θ is integral outside V ∪S ∪{v0, v1}. The theorem
will follow from the claim:

Claim. The conic over L with equation y2 − az2 = c P (θ) has an L-point.
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If w is a place of L above a place in S, then the conic has an Lw-point
because G(t) is very close to Gv(t). If w is a place above v0, v1 or a place in
V , then the conic has an Lw-point because a is a square in kv.

The formula for the resultant of two polynomials shows that the product
of the conjugates of P (θ) is an element of k∗ which is equal, up to sign, to the
product of the conjugates of G(α), where α is the class of t in K = k[t]/P (t).
Since P (α) = 0, the definition of G(t) implies that G(α) = R(α) = ξ. The
degree 1 condition on the prime w implies that NK/k(ξ) ∈ k∗, away from
S ∪ {v0} ∪ V , has in its factorisation only one prime, and that its valuation
at this prime is 1. Since P (θ) ∈ L is integral away from S ∪{v0, v1}∪V , this
implies that the prime decomposition of P (θ) ∈ L involves only one prime w′

of L not dividing a prime of S ∪ {v0, v1} ∪ V . Thus the conic has points in
all completions of L except possibly at the prime w′. Corollary 13.1.10 then
implies that it has an L-point. �

Remark 15.3.2 In the above proof, we appealed to Theorem 13.1.2, which
is a modified version of Dirichlet’s theorem 13.1.1, because we needed to
approximate at the real places of k. If a ∈ k is totally positive, to get the
above existence result, there is no need to introduce the infinite set V of
places, Dirichlet’s theorem is enough.

Remark 15.3.3 In the above theorem we assumed that U(Ak) 6= ∅ but we
did not assume the existence of an adelic point orthogonal to the unramified
Brauer group of U . But this is automatic. Indeed, the hypothesis that P (t)
is irreducible implies that the Brauer group of a smooth projective model of
y2 − az2 = P (t) is reduced to the image of Br(k), see Exercise 11.3.7 (a).

Remark 15.3.4 Salberger’s method may be interpreted as a successful sub-
stitute for Schinzel’s hypothesis (H). Given an irreducible polynomial P (t)
over a number field k, it is hard to find an almost integral element α ∈ k
such that P (α) is almost a prime. However, for any N ≥ deg(P (t)) one may
produce a field extension L of k of degree N and an almost integral element
β ∈ L such that P (β) is almost a prime in L. There is a similar comparison in
the case of a finite set of polynomials (see [CT98, Prop. 17] for the example of
twin primes). The above proof then becomes parallel to the proof of Theorem
14.2.2.

15.4 A fibration theorem for zero-cycles

The papers mentioned at the end of Section 15.1 were inspired by Salberger’s
paper [Salb88] and its reformulation in [CTS94, CTSS98]. In a manner paral-
lel to the (conditional) case of rational points (Theorem 14.2.4), Salberger’s
method allows one to obtain unconditional results for zero-cycles on varieties
X fibred over P1

k when the following two assumptions are fulfilled:
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• for any closed point m ∈ P1
k, the fibre Xm contains an irreducible com-

ponent Y of multiplicity 1 such that the integral closure of k(m) in k(Y )
is abelian;
• the Hasse principle and weak approximation hold for the smooth closed

fibres of X→P1
k.

If all fibres over closed points of A1
k ⊂ P1

k are split, the second assumption
can be weakened [CT10, Lia12] using arguments similar to those of Harari
[Har94, Har07b] in the case of rational points.

These restrictions on the algebra and arithmetic of fibres have now been
removed. In fact, we have the following unconditional results.

Theorem 15.4.1 (Harpaz and Wittenberg) [HW16, Thm. 8.3] Let X be
a smooth, projective, geometrically integral variety over a number field k,
and let f : X→P1

k be a dominant morphism. Assume that the generic fibre
is rationally connected. If the smooth fibres satisfy Conjecture (E), then X
satisfies Conjecture (E).

Combined with Corollary 15.2.4, this implies

Theorem 15.4.2 [HW16, Thm. 1.4] Let X be a smooth, projective, geomet-
rically integral variety over a number field k, and let f : X→P1

k be a dominant
morphism. Assume that the generic fibre is birationally equivalent to a homo-
geneous space of a connected linear algebraic group over k(P1) with connected
geometric stabilisers. Then Conjecture (E) holds for X.

This last result can be applied to smooth projective models of varieties
given by a system of equations

NKi/k(Ξi) = Pi(t), i = 1, . . . , n,

where Ki is a finite étale k-algebra (for example, a finite field extension) and
Pi(t) ∈ k[t], for each i = 1, . . . , n.

Harpaz and Wittenberg actually prove their result for varieties fibred over
a smooth projective curve C of arbitrary genus, under the assumption that
Conjecture (E) holds for C, for instance when the Tate–Shafarevich group of
the Jacobian of C is finite.

We shall only describe one idea in the proof of Theorem 15.4.1. This is a
zero-cycle analogue of Theorem 14.2.18.

Theorem 15.4.3 Let X be a smooth, projective, geometrically integral va-
riety over a number field k, and let f : X→P1

k be a dominant morphism.
Assume that all non-split fibres of f are above k-points of A1

k, say given by
t = ei ∈ k, where i = 1, . . . , n and t is a coordinate in A1

k = Spec(k[t]).
Assume that each non-split fibre contains an irreducible component of multi-
plicity 1. If there exists an adelic point (Pv) ∈ X(Ak) which is orthogonal to
Brvert(X/P1

k), then for any integer N ≥ n there exists a closed point m ∈ P1
k

of degree N such that the fibre Xm has points in all the completions of k(m).
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Proof. Write P (t) =
∏n
i=1(t − ei). Let U ⊂ A1

k be the open set given by
P (t) 6= 0, and let V = f−1(U). Fix an irreducible component Ei ⊂ Xei of
multiplicity 1, and let ki be the integral closure of k in k(Ei). The smooth
locus Ei,smooth is a geometrically integral variety over ki.

Since X(Ak) 6= ∅, the natural map Br(k)→Brvert(X) ⊂ Br(X) is injec-
tive. By Corollary 11.1.6, the assumption on the multiplicity of Ei implies
that Brvert(X)/Br(k) is a finite group. Using this, by a small deformation
argument we can assume that (Pv) ∈ V (Ak).

Let T be the product of norm 1 k-tori attached to the extensions ki/k, for
i = 1, . . . , n. Consider the T -torsor over U given by the system of equations

t− ei = Nki/k(Ξi), i = 1, . . . , n.

Its pullback to V is a T -torsor over V . Since there is no vertical Brauer–
Manin obstruction for rational points, by the formal lemma for torsors and
rational points (Theorem 13.4.6) applied to this torsor over V , there exist
bi ∈ k∗, for i = 1, . . . , n, and for each v ∈ Ω, αv ∈ f(V (kv)) ⊂ U(kv) ⊂ kv,
such that the system of equations

αv − ei = biNki/k(Ξi) 6= 0, i = 1, . . . , n,

has solutions with Ξi ∈ (ki ⊗k kv)∗. Let S ⊂ Ω be a finite set of places
containing the infinite places, the primes where at least one of the extensions
ki/k is ramified, the primes of bad reduction for X, the primes where at
least one ei is not integral, then the primes v dividing some ei − ej , where
i 6= j, and the primes where bi is not a unit. Then f : X→P1

k extends to a
dominant morphism X→P1

OS , where X is proper over OS . Using the Lang–
Weil–Nisnevich estimates, we arrange that for any closed point s ∈ P1

OS such
that the fibre Xs is split, Xs has a smooth rational point over the residue
field of s. This is achieved by including in S enough places with small residue
characteristic.

By Chebotarev’s theorem (Theorem 13.1.3), there are infinitely many
primes outside of S that completely split in each of the extensions ki/k.
Let v0 and v1 be such primes.

By the implicit function theorem (Theorem 10.5.1, [Po18, Prop. 3.5.73])
for each v ∈ S we can find pairwise distinct αvr ∈ f(V (kv)) ⊂ U(kv) ⊂ kv,
for r = 1, . . . , N , that are close to αv. In particular, we can arrange that for
any v ∈ S and i = 1, . . . , n we have

b−1
i (αvr − ei) ∈ Nki/k((ki ⊗k kv)∗) ⊂ k∗v .

For each place v ∈ S, we define

Gv(t) =
N∏
r=1

(t− αvr).
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We note that Gv(ei) is the product of a global element (−1)NbNi ∈ k and an
element of Nki/k((ki⊗kkv)∗) ⊂ k∗v . Let Gv1

(t) ∈ Ov1
[t] be a monic irreducible

polynomial of degree N with integral coefficients. Dividing Gv(t) by P (t) in
kv[t], for v ∈ S ∪ {v1}, and using Lagrange interpolation, we obtain

Gv(t) = P (t)Qv(t) +
n∑
i=1

Gv(ei)

∏
j 6=i(t− ej)∏
j 6=i(ei − ej)

,

where the polynomials Qv(t) are monic of degree N − n.
Applying Proposition 13.1.4, for each i = 1, . . . , n we find an element ci ∈ k

close to Gv(ei) for v ∈ S ∪ {v1} and such that for any v /∈ S ∪ {v1} either ci
is a unit at v, or ki has a place of degree 1 over v. Moreover, we choose ci
integral away from S ∪ {v0, v1}.

Using strong approximation in k away from v0 for the coefficients of poly-
nomials, we find Q(t) ∈ k[t] with coefficients integral away from S ∪ {v0, v1}
and close to each Qv(t) for v ∈ S ∪ {v1} coefficient-wise. Consider the poly-
nomial

G(t) = P (t)Q(t) +
n∑
i=1

ci

∏
j 6=i(t− ej)∏
j 6=i(ei − ej)

.

By construction, G(ei) = ci for i = 1, . . . , n. Also, the coefficients of G(t)
are integral away from S ∪ {v0, v1}. Moreover, in the v-adic topology, where
v ∈ S ∪ {v1}, the element ci is close to Gv(ei) and Q(t) is close to Qv(t),
hence G(t) is close to Gv(t). Since Gv1

(t) is irreducible in kv1
[t], we see that

G(t) is irreducible in k[t].
Write F = k[t]/(G(t)), so that m = Spec(F ) is the closed point of U ⊂ A1

k

defined by G(t) = 0. We claim that Xm has points in all completions of F .
If w is a place of F over v ∈ S, then G(t) is v-adically close to Gv(t) =∏N
r=1(t−αvr). But each αvr ∈ kv lifts to V (kv), proving the claim for such w.
The primes of F not above S are closed points of P1

OS . We only need to
consider the finitely many closed points in P1

OS where the closure of m in
P1
OS meets the closure of one of the ei’s. Indeed, S was chosen big enough

so that the fibre of X→P1
OS above any other closed point is split, and then

by the Lang–Weil–Nisnevich estimates has a smooth rational point over the
residue field.

Let w be a closed point of P1
OS contained in the closure of m and in the

closure of ei. The degree of w is 1 since the degree of ei is 1. This closed point
w lies above a prime v /∈ S dividing ci = G(ei). Let us first consider the case
v 6= v0, v1. By the construction of ci, the field ki has a place of degree 1 over
v. This implies that the fibre Xw is split. By the choice of S, we have that
Xw has a smooth rational point over the residue field. As Xw is the reduction
of Xm at the place w of F = k(m), we can apply Hensel’s lemma to deduce
that Xm has a point in the completion Fw.
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It remains to deal with v0 and v1. Recall that these primes are split in all
extensions ki/k. This implies that all the fibres of X ×k kv0

→P1
v0

are split.
The same argument works for v1. �

Remark 15.4.4 The argument in Theorem 15.3.1 only shows the existence
of a fibre XM over a closed point M which has points in all completions of
k(M) except, possibly, one. In the above theorem, whose proof uses Propo-
sition 13.1.4, we get a fibre with points in all completions of k(M).

Using their work [HW16], Harpaz and Wittenberg have recently removed
the assumption of connectedness of stabilisers in Corollary 15.2.4.

Theorem 15.4.5 [HW20, Thm. A] If a smooth projective variety X over a
number field is birationally equivalent to a homogeneous space of a connected
linear algebraic group over k, then conjecture (E) holds for X.



Chapter 16

The Tate conjecture, abelian varieties
and K3 surfaces

M. Artin and J. Tate conjectured that the Brauer group of a smooth and pro-
jective variety over a finite field is a finite group. In his 1966 Bourbaki talk
[Tate66b], Tate explains why this is analogous to the conjectured finiteness
of the Tate–Shafarevich group of an abelian variety over a number field. In
[Tate66b, Tate91] he also discusses how this is closely related to his conjec-
tures [Tate63, Tate66b] on the image of the cycle map from the Picard group
to the second `-adic étale cohomology group. The precise interplay between
these statements has been discussed in many papers, see [Tate91].

The `-adic Tate conjecture for divisors on abelian varieties over a finite
field was proved by Tate in 1966. Work of several people over a long period
of time established the conjecture for K3 surfaces over any finite field, see
[MP15], [Ben15] and [Tot17].

Already in [Tate63], Tate extended his conjectures over finite fields to
conjectures over fields finitely generated over the prime subfield. Here again,
the question for divisors has various incarnations, see Section 16.1 below.

One may ask the following questions about the Brauer group:

Question 1. Let X be a smooth, proper and geometrically integral variety
over a field k that is finitely generated over its prime subfield. Is Br(Xs)Γ

finite?

Question 2. Let X be a smooth, proper and geometrically integral variety
over a field k that is finitely generated over its prime subfield. Is the image of
Br(X) in Br(Xs) finite?

These questions are closely related, see Theorem 5.4.12.
The `-adic Tate conjecture for divisors on an abelian variety A over a field

finitely generated over its prime field was proved in positive characteristic by
Zarhin (and Mori) and in characteristic zero by Faltings. This leads to the
finiteness of Br(As){`}Γ for each ` 6= char(k). A similar result for K3 surfaces
over a field finitely generated over Q was proved by S.G. Tankeev [Tan88]
and Y. André [And96], see the brief sketch by D. Ramakrishnan in [Tate91,
Thm. 5.6].
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The first main result of this chapter says that if A is an abelian variety over
a field finitely generated over its prime field, then Br(As){`}Γ = 0 for almost
all `. This is proved in Section 16.2, using the material developed in Sections
5.3 and 16.1. In Section 16.3 we discuss the Brauer group of a product of
varieties over a field k finitely generated over Q and deduce finiteness results
for the Brauer group of a variety over k dominated by a product of curves.

The rest of the chapter is devoted to a positive answer to Questions 1 and 2
for K3 surfaces over fields which are finitely generated over Q. In Section 16.4
we recall the basic properties of K3 surfaces such as their Hodge structure
and the period map. Section 16.5 introduces the original Kuga–Satake con-
struction [KS67] and its interpretation by Deligne [Del72]. A uniform version
of this construction in terms of Shimura varieties carrying universal families
of abelian varieties is given in Section 16.6. Section 16.7 contains the proofs of
the main results in the case of K3 surfaces over a field finitely generated over
Q: the Tate conjecture for divisors and the finiteness of Br(Xs)Γ . The exposi-
tion in these sections is based on the papers [SZ08, OS18, OSZ] and previous
work of André [And96], Rizov [Riz10] and Madapusi Pera [MP15, MP16].
Finally, in the last section we discuss the example of diagonal quartic sur-
faces over Q, where a classification of all possible Brauer groups has been
recently completed.

16.1 Tate conjecture for divisors

The Tate conjecture for divisors asserts that the equivalent properties in the
following theorem hold when the ground field k is finitely generated over its
prime field.

Theorem 16.1.1 Let X be a smooth, projective, geometrically integral va-
riety over a field k. Let Γ = Gal(ks/k). Let ` 6= char(k) be a prime. The
following conditions are equivalent.

(i) The natural injective map (NS(Xs)⊗ Z`)Γ→H2
ét(X

s,Z`(1))Γ is an iso-
morphism.

(ii) The natural injective map (NS(Xs)⊗Q`)Γ→H2
ét(X

s,Q`(1))Γ is an iso-
morphism.

(iii) (T`(Br(Xs)))Γ = 0.
(iv) (V`(Br(Xs)))Γ = 0.
(v) Br(Xs){`}Γ is finite.

(vi) The image of the map Br(X){`}→Br(Xs){`} is finite.

Proof. As explained in Section 5.3, the Kummer exact sequence gives rise to
an exact sequence of finitely generated Z`-modules (5.12)

0 −→ NS(Xs)⊗ Z` −→ H2
ét(X

s,Z`(1)) −→ T`(Br(Xs)) −→ 0,



16.1 Tate conjecture for divisors 397

with a continuous action of Γ . When tensored with Q`, it gives the exact
sequence

0 −→ NS(Xs)⊗Q` −→ H2
ét(X

s,Q`(1)) −→ V`(Br(Xs)) −→ 0. (16.1)

By Theorem 5.3.1 (ii) this sequence is split as a sequence of Γ -modules. Thus
(ii) is equivalent to (iv). The group T`(Br(Xs)) is torsion-free. Thus (iii) is
equivalent to (iv). It is clear that (iii) implies (i). That (i) implies (ii) follows
from the simple observation that for any finitely generated Z`-module M
with an action of Γ , the map MΓ ⊗Z` Q`→(M ⊗Z` Q`)Γ is surjective.

For any abelian group A with an action of a group Γ , one has a natural iso-
morphism T`(A)Γ ∼= T`(A

Γ ). The group Br(Xs){`} is of cofinite type (Propo-
sition 5.2.9), hence so is Br(Xs){`}Γ , that is, Br(Xs){`}Γ ' (Q`/Z`)m ⊕ B,
where B is a finite abelian group. Then T`(Br(Xs){`}Γ ) ' Zm` . It follows that
(iii) is equivalent to (v), because both statements are equivalent to m = 0.

The equivalence of (v) and (vi) is a consequence of Theorem 5.4.12. �

Corollary 16.1.2 [CTS13b, Thm. 6.2] Let U be a smooth, quasi-projective
and geometrically integral variety over a field k that is finitely generated over
Q. Then the cokernel of the natural map Br(U)→Br(U s)Γ is finite. If ` is
a prime such that the `-adic Tate conjecture for divisors holds for a smooth
compactification of U , then Br(U s){`}Γ is finite.

Proof. (Sketch) One uses Theorem 3.7.2 over ks. The first statement is a con-
sequence of Theorem 5.4.12 and finiteness of H1

ét(Y
s,Q/Z)Γ for any smooth

quasi-projective variety Y over a field k that is finitely generated over Q (a
theorem of Katz and Lang, see [CTS13b, Prop. 6.1]). One proves the second
statement by combining the same finiteness theorem with Theorem 16.1.1. �

Corollary 16.1.3 Let A be an abelian variety over a field k that is finitely
generated over its prime subfield. Then Br(As){`}Γ is finite for all primes `
not equal to char(k).

Proof. This follows from Theorem 16.1.1 because statement (ii) in that theo-
rem (the original Tate conjecture for divisors) is known for abelian varieties
(which are projective): over a finite field, this was proved by Tate, over a field
finitely generated over the prime field, it was proved by Zarhin in character-
istic p > 2 [Zar75, Zar76], by Faltings in characteristic zero [Fal83, Fal86],
and by Mori in characteristic 2, see [Mor85]. �

Finite fields

Let F be a finite field of cardinality |F| = q. The Galois group Γ = Gal(Fs/F)

is isomorphic to the procyclic group Ẑ generated by the Frobenius automor-
phism Frob: x 7→ xq.
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Theorem 16.1.4 Let X be a smooth, projective, geometrically integral vari-
ety over a finite field F of characteristic p. The natural map Br(X)→Br(Xs)Γ

has finite kernel, and its cokernel is the product of a finite group and a p-
primary torsion group. In particular, for any prime ` 6= p, Br(X){`} is finite
if and only if Br(Xs){`}Γ is finite, and these two groups are equal for almost
all primes `.

Proof. Let A be the Picard variety of X, and let T := NS(Xs)tors. The
groups Br(F) = H2(F,F∗s ), H3(F,F∗s ), H2(F, A(Fs)) and H2(F, T ) all vanish

for the same reason: the cohomological dimension of Γ ∼= Ẑ is 1 and the
coefficient module is a torsion group, see [SerCG, Ch. I, §3.1]. By a theorem
of Lang, for the connected algebraic group A over the finite field F, we have
H1(F, A(Fs)) = 0.

For any continuous, discrete Γ -module M that is finitely generated as an
abelian group, the group H1(Γ,M) is finite. To see this, use the restriction-
inflation exact sequence to reduce to the case when M is a trivial Γ -module.
Then H1(F,M) = Homcont(Γ,M) is the group of continuous homomorphisms
from the compact group Γ to the discrete, finitely generated abelian group M ,
hence H1(F,M) = Hom(Γ,Mtors). Since Γ ∼= Ẑ, the group Hom(Γ,Mtors) ∼=
Mtors is finite. The Néron–Severi group NS(Xs) is a finitely generated abelian
group, so we conclude that H1(F,NS(Xs)) is finite.

By Theorem 5.1.1 we have the exact sequence of Γ -modules

0 −→ A(Fs) −→ Pic(Xs) −→ NS(Xs) −→ 0.

From the long exact sequence of Galois cohomology groups we deduce that
H1(F,Pic(Xs)) ∼= H1(F,NS(Xs)) is finite. For a finite field, this group is the
kernel of Br(X)→Br(Xs)Γ , which is thus finite.

Let ` be a prime, ` 6= p. Theorem 5.3.1 (i) shows that there exists a positive
integer N not depending on `, and for each ` 6= p there is a Γ -submodule
M` ⊂ T`(Br(Xs)) such that T`(Br(Xs))/M` is annihilated by N and the exact
sequence of continuous Γ -modules (5.12)

0 −→ NS(Xs)⊗Z Z` −→ H2
ét(X

s,Z`(1)) −→ T`(Br(Xs)) −→ 0

pulled back with respect to the map M`→T`(Br(Xs)) is split. Tensoring with
Q`/Z` we obtain the exact sequence

0 −→ NS(Xs)⊗Z (Q`/Z`) −→ H2
ét(X

s,Q`/Z`(1))div −→ Br(Xs){`}div −→ 0,

whose pullback with respect to the map M` ⊗Q`/Z`→Br(Xs){`}div is split.
An easy diagram chase shows that the cokernel of the map

[H2
ét(X

s,Q`/Z`(1))div]Γ −→ [Br(Xs){`}div]Γ

is killed by N . Since H3
ét(X

s,Z`(1))tors is finite for all ` 6= p, and zero for
almost all ` (see Proposition 5.2.9), by (5.4) this implies that the cokernel of
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the lower horizontal map in the commutative diagram

H2
ét(X,Q`/Z`(1)) //

��

Br(X){`}

��
H2

ét(X
s,Q`/Z`(1))Γ // Br(Xs){`}Γ

(16.2)

is killed by some positive integer which does not depend on `.
Since H1

ét(X
s,Q`/Z`(1)) is a torsion group, H2(F,H1

ét(X
s,Q`/Z`(1))) = 0

because F has cohomological dimension 1. Thus the Hochschild–Serre spectral
sequence for Galois cohomology gives the surjectivity of the map

H2
ét(X,Q`/Z`(1)) −→ H2

ét(X
s,Q`/Z`(1))Γ .

The commutativity of (16.2) implies that the prime-to-p subgroup of the cok-
ernel of Br(X)→Br(Xs)Γ is killed by a positive integer. The group Br(Xs){`},
hence also any subquotient, is an `-primary torsion group of cofinite type
(Proposition 5.2.9). Hence the cokernel of Br(X){`}→Br(Xs){`}Γ is finite
for any ` 6= p and is zero for almost all `. �

Remark 16.1.5 The above proposition and its proof should be compared
to Theorem 5.4.12. For a variety X over a finite field as above, the cokernel
of Br(X)→Br(Xs)Γ is actually finite, so the restriction ` 6= p in the above
proposition can be dropped, see [Yua20, Thm. 1.3 (4)].

The following theorem is proved for surfaces in [Tate66b, Thm. 5.2] and in
arbitrary dimension in [Zar82], [Lic83]. It is a consequence of Deligne’s work
on the Weil conjectures.

Theorem 16.1.6 Let X be a smooth, projective, geometrically integral vari-
ety over a finite field F of characteristic p. If there exists a prime ` 6= p such
that Br(X){`} is finite, then Br(X){`} is finite for all primes ` 6= p, and is
zero for almost all `.

Proof. By Theorem 16.1.4, the finiteness of Br(X){`} implies the finiteness
of Br(Xs){`}Γ . By Theorem 16.1.1, this implies (V`(Br(Xs)))Γ = 0.

Let us write (16.1), which is an exact sequence of continuous Γ -modules
and of finite-dimensional Q`-vector spaces, as

0 −→ U` −→W` −→ V` −→ 0.

Thus we have an equality of characteristic polynomials of Frob ∈ Γ :

det(t Id− Frob∗,W`) = det(t Id− Frob∗, U`) · det(t Id− Frob∗, V`) ∈ Q`[t].

It is clear that det(t Id − Frob∗, U`) is the characteristic polynomial of Frob
acting on the Q-vector space NS(Xs)⊗Q, so it belongs to Q[t] and does not
depend on `.
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The polynomial det(t Id−Frob∗,W`) is in Q[t] and does not depend on `.
For surfaces this was already known in 1964. In general this is a special case
of Deligne’s result [Del74, Thm. 1.6], [Del80, Cor. 3.3.9].

Thus det(t Id− Frob∗, V`) ∈ Q[t] is independent of `. This polynomial has
a root equal to 1 if and only if (V`(Br(Xs)))Γ 6= 0. Thus if (V`(Br(Xs)))Γ = 0
for one ` 6= p, then det(Id− Frob∗, V`) ∈ Q∗. This implies that the endomor-
phism Id−Frob∗ of the torsion-free Z`-module T`(Br(Xs)) is injective for all
` 6= p, with finite cokernel, and is an isomorphism for all but finitely many
` 6= p. Since

T`(Br(Xs))⊗Z` (Q`/Z`) = Br(Xs){`}div,

we get that [Br(Xs){`}div]Γ is finite for all ` 6= p and zero for almost all `.
By Proposition 5.2.9, for each ` 6= p, the quotient of Br(Xs){`} by its

maximal divisible subgroup is a finite group which is zero for almost all `.
We conclude that Br(Xs){`}Γ is finite for any ` 6= p and zero for almost all
`. By Theorem 16.1.4, the natural map Br(X)→Br(Xs)Γ has finite kernel.
Thus the prime-to-p subgroup of Br(X) is finite. �

Remark 16.1.7 For arbitrary fields finitely generated over a finite field,
Y. Qin [Qin, Thm. 1.2] recently proved the following version of Theorem
16.1.6. Let k be a field finitely generated over the finite field Fp. For a
smooth, projective, and geometrically integral variety X over k, finiteness
of Br(Xs){`}Γ for one prime ` 6= p implies finiteness of the subgroup of
Br(Xs)Γ consisting of the elements of order not divisible by p.

Corollary 16.1.8 Let X be a smooth, projective, geometrically integral vari-
ety over a finite field of characteristic p. For any prime ` 6= p, the equivalent
conditions in Theorem 16.1.1 are equivalent to finiteness of Br(X){`}. They
are also equivalent to the statement: the natural map

Pic(X)⊗ Z` −→ H2
ét(X,Z`(1))

is an isomorphism. If they hold for one ` they hold for all `.

Proof. The first claim follows from Theorem 16.1.1 and Theorem 16.1.4. To
prove the second claim, note that the Kummer sequence gives rise to com-
patible short exact sequences of finite abelian groups

0 −→ Pic(X)/`n −→ H2
ét(X,µ`n) −→ Br(X)[`n] −→ 0.

Taking projective limits over n gives the exact sequence

0 −→ Pic(X)⊗ Z` −→ H2
ét(X,Z`(1)) −→ T`(Br(X)) −→ 0.

If Br(X){`} is finite, then we have T`(Br(X)) = 0. The converse holds since
Br(X){`} is a torsion group of cofinite type. (Indeed, it is an extension of
a subgroup of Br(Xs) by a finite group.) The last claim follows from Theo-
rem 16.1.6. �
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Remark 16.1.9 The `-adic Tate conjecture for divisors on all smooth, pro-
jective, connected surfaces over a finite field implies the same conjecture for
all smooth, projective varieties, see [Mor19, Thm. 4.3]. It also implies the
`-adic Tate conjecture for divisors on all smooth, proper, connected varieties
over fields finitely generated over a finite field [Amb20, Thm. 1.1.2].

Remark 16.1.10 Let X be a smooth, projective, geometrically integral sur-
face over a finite field F of characteristic p 6= 2. Let ` 6= p be a prime. The
abelian group

(
Br(X)/Br(X)div

)
{`} carries a natural pairing with values in

Q/Z defined by Artin and Tate, see [Tate66b]. (The Tate conjecture pre-
dicts that Br(X)div = 0.) This pairing can be thought of as an analogue of
the Cassels–Tate pairing on the Tate–Shafarevich group of an elliptic curve
over a number field. The Artin–Tate pairing is skew-symmetric. In his the-
sis, using ideas from algebraic topology (Steenrod squares, Stiefel–Whitney
classes), Tony Feng proved that this pairing is alternating [Fen20, Thm. 1.2];
this is non-trivial for ` = 2. This implies that the cardinality of the finite
group

(
Br(X)/Br(X)div

)
{`} is a square. See [Fen20] for the history of this

question and references to the literature.

16.2 Abelian varieties

For an abelian variety A over a field k and a prime ` 6= char(k) the cohomology
group H2

ét(A
s, µ`) has a nice interpretation in terms of the torsion subgroup

A[`] := A(ks)[`]. Namely, for each n ≥ 1 we have a canonical isomorphism

Hn
ét(A

s,Z/`) = ∧nZ/`H
1
ét(A

s,Z/`).

The Kummer sequence gives a canonical isomorphism

H1
ét(A

s, µ`) = Pic(As)[`] = A∨[`],

where A∨ is the dual abelian variety of A. We have (A∨)∨ = A, see [Lang83a,
Ch. V, §2, Prop. 9], [MumAV, p. 132]. The `-torsion subgroups of A and A∨

are related by the Weil pairing

e`,A : A[`]×A∨[`] −→ µ`,

which is a perfect Γ -invariant pairing. Thus we obtain a canonical isomor-
phism of Γ -modules

H1
ét(A

s, µ`) = Hom(A[`], µ`),

which gives a canonical isomorphism and an injective map of Γ -modules

H2
ét(A

s, µ`) = Hom(∧2
Z/`A[`], µ`) ↪→ Hom(A[`], A∨[`]).
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By definition, ∧2
Z/`A[`] is the quotient of A[`]⊗Z/`A[`] by the Z/`-submodule

generated by x⊗x for x ∈ A[`]. Hence a homomorphism φ : A[`]→A∨[`] comes
from an element of Hom(∧2

Z/`A[`], µ`) if and only if e`,A(x, φx) = 0 for all

x ∈ A[`].

Definition 16.2.1 A homomorphism φ : A[`]→A∨[`] is called symmetric if
we have e`,A(x, φy) = e`,A∨(φx, y) for any x, y ∈ A[`].

Lemma 16.2.2 Let ` 6= 2. Then the injective image of H2
ét(A

s, µ`) in
Hom(A[`], A∨[`]) is the subgroup Hom(A[`], A∨[`])sym of symmetric homo-
morphisms.

Proof. This crucially uses the subtle fact that the Weil pairings for A and
A∨ differ by sign, see [Lang83a, Ch. VII, §2, Thm. 5 (iii), p. 193] or [Oda69,
Cor. 1.3 (ii)]. That is, we have

e`,A∨(y, x) = −e`,A(x, y)

for all x ∈ A[`], y ∈ A∨[`]. Thus φ ∈ Hom(A[`], A∨[`])sym if and only if

e`,A(x, φy) = −e`,A∨(φy, x) = −e`,A(y, φx).

Equivalently, φ is symmetric if and only if the bilinear form e`,A(x, φy) is
skew-symmetric:

e`,A(x, φy) = −e`,A(y, φx), x, y ∈ A[`].

When ` 6= 2, the group ∧2
Z/`A[`] is the quotient of A[`]⊗Z/` A[`] by the Z/`-

submodule generated by the elements of the form x⊗y+y⊗x for x, y ∈ A[`].
Hence φ ∈ Hom(A[`], A∨[`]) is contained in the image of Hom(∧2

Z/`A[`], µ`)

if and only if e`,A(x, φy) + e`,A(y, φx) = 0 for all x, y ∈ A[`], which says that
φ is symmetric. �

For abelian varieties A and B we write Hom(A,B) for the group of ho-
momorphisms A→B (defined over k). A divisor D on As defines the ho-
momorphism As→(A∨)s sending a ∈ A(ks) to the linear equivalence class
of T ∗a (D) − D in Pic0(As), where Ta is the translation by a in As. If L is
the class of D in NS(As), then this map depends only on L, and is denoted
by ϕL : As→(A∨)s [MumAV, §8]. For α ∈ Hom(As, (A∨)s) we denote by
α∨ ∈ Hom(As, (A∨)s) the dual map of α, see [MumAV, §13]. Then ϕ∨L = ϕL.
Moreover, if we define

Hom(As, (A∨)s)sym = {u ∈ Hom(As, (A∨)s) | u = u∨},

then the group homomorphism

NS(As) −→ Hom(As, (A∨)s)sym, L 7→ φL,
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is an isomorphism [Lang83a], [MumAV, §20, formula (I) and Thm. 1 on p. 186,
Thm. 2 on p. 188 and Remark on p. 189]. For any α ∈ Hom(As, (A∨)s) we
have (α∨)∨ = α, and thus

α+ α∨ ∈ Hom(As, (A∨)s)sym. (16.3)

We have Hom(A,B) = HomΓ (As, Bs) = Hom(As, Bs)Γ . Since Hom(As, Bs)
has no torsion, the group Hom(A,B)/` is a subgroup of Hom(As, Bs)/`.

The action of homomorphisms on points of order ` defines a natural map
of Γ -modules

Hom(As, Bs) −→ Hom(A[`], B[`]).

A homomorphism As→Bs annihilates A[`] if and only if it factors through the
multiplication by ` map, hence the image of Hom(As, Bs) in Hom(A[`], B[`])
is Hom(As, Bs)/`. We thus obtain an embedding

Hom(A,B)/` ⊂ HomΓ (A[`], B[`]).

Now let B = A∨. Then for any α ∈ Hom(As, (A∨)s) and any x, y ∈ A[`] we
have

e`,A∨(αx, y) = e`,A(x, α∨y),

see [Lang83a, Ch. VII, §2, Thm. 4], [MumAV, p. 186], or [Oda69, Cor. 1.3
(ii)]. Thus Hom(As, (A∨)s)sym/` is a subgroup of Hom(A[`], A∨[`])sym. Note
that if ` 6= 2, then using (16.3) we see that this subgroup consists precisely
of the elements of Hom(As, (A∨)s)/` that define symmetric homomorphisms
on `-torsion subgroups:

Hom(As, (A∨)s)sym/` = Hom(As, (A∨)s)/` ∩ Hom(A[`], A∨[`])sym. (16.4)

(To see that the natural inclusion of the left-hand side into the right-hand side
is an isomorphism, note that any α in the right-hand side lifts to `+1

2 (α+α∨).)

Now we are ready to prove the main theorem of this section [SZ08,
Thm. 1.1]. Assume that the field k is finitely generated over its prime sub-
field. By Corollary 16.1.3 we know that Br(As){`}Γ is finite for all prime
numbers ` 6= char(k). Our aim now is to prove that this group is actually
zero for almost all `. For this it is enough to prove that Br(As)[`]Γ = 0 for
almost all `. By Theorem 5.3.1 for almost all ` we have an exact sequence of
Γ -modules (5.17):

0 −→ (NS(As)/`)Γ −→ H2
ét(A

s, µ`)
Γ −→ Br(As)[`]Γ −→ 0,

so our task is to prove that for almost all ` each Γ -invariant class in
H2

ét(A
s, µ`) comes from a divisor on A.
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Theorem 16.2.3 Let A be an abelian variety over a field k that is finitely
generated over its prime subfield. Then Br(As)[`]Γ = 0 for almost all primes
`. The subgroup of Br(As)Γ that consists of the elements of order not divisible
by char(k) is finite.

Proof. The second statement follows from the first statement and Corollary
16.1.3. The first statement is a consequence of the following variant of the
Tate conjecture on homomorphisms first stated by Zarhin in [Zar77]: for
abelian varieties A and B over k the natural injective map

Hom(A,B)/` ↪→ HomΓ (A[`], B[`]) (16.5)

is an isomorphism for almost all `. In the finite characteristic case this is due
to Zarhin [Zar77, Thm. 1.1]. When k is a number field, [Zar85, Cor. 5.4.5]
based on the results of Faltings [Fal83] says that for almost all ` we have

End(A)/` ∼= EndΓ (A[`]). (16.6)

The same proof works over arbitrary fields that are finitely generated over
Q, if one replaces the reference to [Zar85, Prop. 3.1] by the reference to the
corollary on p. 211 of [Fal86]. Applying (16.6) to the abelian variety A× B,
one deduces that (16.5) is a bijection.

Since the Néron–Severi group of an abelian variety is torsion-free,
NS(As)Γ /` maps injectively into (NS(As)/`)Γ . By the Kummer sequence,
(NS(As)/`)Γ is a subgroup of H2

ét(A
s, µ`)

Γ , so we have

NS(As)Γ /` ⊂ (NS(As)/`)Γ ⊂ H2
ét(A

s, µ`)
Γ . (16.7)

In view of (16.4), taking B = A∨ in (16.5) gives an isomorphism of

NS(As)Γ /` ∼= HomΓ (As, (A∨)s)sym/` ∼= Hom(A,A∨)sym/`

with HomΓ (A[`], A∨[`])sym
∼= H2

ét(A
s, µ`)

Γ for almost all `. Hence all three
groups in (16.7) coincide. By Theorem 5.3.1 (iv), this implies that for almost
all ` we have Br(As)[`]Γ = 0. �

16.3 Varieties dominated by products

The following results appeared as [SZ14, Theorems A, B].

Theorem 16.3.1 Let k be a field finitely generated over Q. Let X and Y be
smooth, projective and geometrically integral varieties over k. Then(

Br(Xs × Y s)/(Br(Xs)⊕ Br(Y s))
)Γ

is a finite group.
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Proof. By Corollary 5.2.4 the Γ -module Br(Xs)⊕Br(Y s) is a direct summand
of Br(Xs×Y s). Since Br(Xs×Y s) is a torsion group such that Br(Xs×Y s)[n]
is finite for every positive integer n, the same is true for the group in the
statement of the theorem. Thus it is enough to prove the following statements.

(a) For every prime ` we have V`
(
(Br(Xs × Y s)/(Br(Xs)⊕ Br(Y s)))Γ

)
= 0.

(b)
(
Br(Xs × Y s)[`]/(Br(Xs)[`]⊕ Br(Y s)[`])

)Γ
= 0 for almost all primes `.

Let us prove (a). We can pass to the limit in the isomorphism of Corollary
5.7.10, taking into account what was said in Remark 5.7.11. This produces
an isomorphism of Γ -modules between

V`(Br(Xs × Y s))/(V`(Br(Xs))⊕ V`(Br(Y s)))

∼= V`
(
Br(Xs × Y s)/(Br(Xs)⊕ Br(Y s))

)
and the quotient of HomQ`

(
V`(B

∨), V`(A)
)

by Hom((B∨)s, As)⊗Q` (embed-
ded via the map given by the action on torsion points). Hence we obtain

V`
(
(Br(Xs × Y s)/(Br(Xs)⊕ Br(Y s)))Γ

)
∼= V`

(
Br(Xs × Y s)/(Br(Xs)⊕ Br(Y s))

)Γ
∼=
(
HomQ`

(
V`(B

∨), V`(A)
)
/Hom((B∨)s, As)⊗Q`

)Γ
.

By the fundamental results of Faltings [Fal83, Fal86], the Γ -modules V`(B
∨)

and V`(A) are semisimple and

HomΓ (V`(B
∨), V`(A)) ∼= Hom(B∨, A)⊗Q`.

By a theorem of Chevalley [Che54, p. 88], the semisimplicity of Γ -modules
V`(B

∨) and V`(A) implies the semisimplicity of HomQ`(V`(B
∨), V`(A)). From

this we deduce (a).

Let us prove (b). By Corollary 5.7.10 and Remark 5.7.11 it is enough to
show that (

Hom(B∨[`], A[`])/(Hom((B∨)s, As)/`)
)Γ

= 0

for almost all primes `. Since Hom((B∨)s, As)Γ = Hom(B∨, A), the exact
sequence

0→Hom((B∨)s, As)Γ /`→
(
Hom((B∨)s, As)/`

)Γ→H1(k,Hom((B∨)s, As))

implies, in view of the finiteness of H1(k,Hom((B∨)s, As)), that for all but
finitely many primes ` we have(

Hom((B∨)s, As)/`
)Γ ∼= Hom(B∨, A)/`.

If we further assume that ` > 2 dim(A) + 2 dim(B) − 2, then, by a theorem
of Serre [Ser94], the semisimplicity of the Γ -modules B∨[`] and A[`] implies
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the semisimplicity of Hom(B∨[`], A[`]). Hence we obtain(
Hom(B∨[`], A[`])/(Hom((B∨)s, As)/`)

)Γ
= Hom(B∨[`], A[`])Γ /(Hom((B∨)s, As)/`)Γ

= HomΓ (B∨[`], A[`])/(Hom(B∨, A)/`) = 0.

This is zero for almost all `, since (16.5) is a bijection for almost all `. �

Corollary 16.3.2 Let k be a field finitely generated over Q. Let X and Y be
smooth, projective and geometrically integral varieties over k. Assume that
either H3(k, k∗s ) = 0 (for example, k is a number field) or (X × Y )(k) 6= ∅.
Then the cokernel of the natural map

Br(X)⊕ Br(Y ) −→ Br(X × Y )

is finite.

Proof. From the functoriality of the spectral sequence (5.19), in view of our
assumption, we obtain the following commutative diagram with exact rows:

Br(X × Y ) → Br(Xs × Y s)Γ → H2(k,Pic(Xs × Y s))
↑ ↑ ↑

Br(X)⊕ Br(Y ) → Br(Xs)Γ ⊕ Br(Y s)Γ → H2(k,Pic(Xs))⊕H2(k,Pic(Y s))

The middle vertical map is injective by Corollary 5.2.4. Next, the kernel of
the right-hand vertical map is finite. Indeed, in view of the exact sequence
(5.31) it is enough to remark that the abelian group Hom((B∨)s, As) is free
and finitely generated, hence H1(k,Hom((B∨)s, As)) is finite.

By Theorem 16.3.1 this diagram shows that the subgroup of Br(X × Y )
generated by Br1(X × Y ) and the images of Br(X) and Br(Y ), has finite
index. By Proposition 5.7.2, Br1(X × Y ) is finite modulo Br1(X)⊕ Br1(Y ),
so we are done. �.

Varieties dominated by products of curves

A smooth, projective and geometrically integral variety X over a field k
is called a variety dominated by a product of curves if there is a dominant
rational map from a product of geometrically integral ks-curves to Xs.

Theorem 16.3.3 Let k be a field finitely generated over Q. Let X be a va-
riety dominated by a product of curves. Then Br(Xs)Γ is finite.

Proof. To prove the finiteness of Br(Xs)Γ we can replace k by a finite field
extension.

If V and W are smooth, projective and geometrically integral varieties over
a field k that is finitely generated over Q, then the cokernel of the natural map
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Br(V s)Γ ⊕Br(W s)Γ→Br(V s×W s)Γ is finite by Theorem 16.3.1. The Brauer
group of a smooth, projective, integral curve over an algebraically closed
field is zero (Theorem 5.6.1). Thus if Z is a product of smooth, projective
and geometrically integral curves over k, then Br(Zs)Γ is finite.

Replacing k by a finite extension we obtain geometrically integral k-curves
C1, . . . , Cn such that there is a dominant rational map f from S =

∏n
i=1 Ci to

X defined over k. Let d = dim(X). There is a dense open subset U ⊂ S such
that the restriction of f to U is a smooth morphism U→X. After another
finite extension of k we can find a k-point P ∈ U(k). The induced map of
tangent spaces f∗ : TS,P→TX,f(P ) is surjective, so we can choose a d-element
subset I ⊂ {1, . . . , n} such that f∗(TSI ,P ) = TX,f(P ), where SI ∼=

∏
i∈I Ci is

the k-fibre of the projection S→
∏
i/∈I Ci which contains P . Thus f restricts to

a dominant, generically finite rational map from a product of d geometrically
integral k-curves to X.

Since char(k) = 0, we can assume that there is a smooth, projective and
geometrically integral variety Y over k, a birational morphism Y→Z, where
Z is a product of d smooth, projective and geometrically integral curves, and
a dominant, generically finite morphism f : Y→X. By the birational invari-
ance of the Brauer group (Corollary 6.2.11) we have Br(Y s)Γ ∼= Br(Zs)Γ .
By Theorem 3.5.5 the natural map Br(Xs) ↪→ Br(ks(X)) is injective. The
standard restriction-corestriction argument then gives that the kernel of
f∗ : Br(Xs)→Br(Y s) is killed by the degree [ks(Y ) : ks(X)]. Since Br(Xs)
is a torsion group of cofinite type, this kernel is finite. Hence Br(Xs)Γ is
finite. �

The following statement can be applied, for example, to smooth surfaces
in P3

k given by a diagonal equation.

Corollary 16.3.4 Let k be a field finitely generated over Q. Let f(t) and
g(t) be separable polynomials of degree d ≥ 2. Let F (x, y) and G(x, y) be
homogeneous forms of degree d such that f(t) = F (t, 1) and g(t) = G(t, 1). Let
X ⊂ P3

k be the surface with equation F (x, y) = G(z, w). Then Br(X)/Br0(X)
is finite.

Proof. An immediate verification shows that X is smooth. The surface X is
dominated by the product of smooth plane curves of degree d, namely, the
curves zd = F (x, y) and zd = G(x, y). Since Pic(Xs) is torsion-free [SGA2,
XII, Cor. 3.7], the group Br1(X)/Br0(X) is finite, see the exact sequence
(5.21). The finiteness of Br(Xs)Γ follows from Theorem 16.3.3. �
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16.4 K3 surfaces

Preliminaries on K3 surfaces

For a detailed introduction to the geometry of K3 surfaces we refer the reader
to Huybrechts’ book [Huy16], see also [Voi02, §7.2]. Here we briefly recall the
definition and the basic geometric properties of K3 surfaces.

In this chapter we use the term lattice for a finitely generated free abelian
group together with a non-degenerate integral symmetric bilinear form.

A smooth, projective and geometrically integral surface X over a field k
is called a K3 surface if Ω2

X
∼= OX and H1(X,OX) = 0. Standard examples

of K3 surfaces are smooth quartic surfaces in P3
k and double covers of P2

k

ramified in a smooth sextic curve.
Let k = C. Using Serre duality and the Riemann–Roch theorem one finds

that the classical (Betti) cohomology group H2(X,Z) is a free abelian group
of rank 22. We have the cup-product

∪ : H2(X,Z)×H2(X,Z) −→ H4(X,Z) ∼= Z,

where the last isomorphism is due to the fact that dim(X) = 2. This is a
symmetric bilinear pairing. Poincaré duality implies that this pairing is a
perfect duality, that is, it induces an isomorphism

H2(X,Z)
∼−→ Hom(H2(X,Z),Z).

Thus the determinant of the matrix of this bilinear form with respect to a
Z-basis of H2(X,Z) lies in Z∗ = {±1}. Topological arguments (Wu’s formula,
Thom–Hirzebruch index theorem) give that the associated integral quadratic
form is even, i.e., x∪x ∈ 2Z for any x ∈ H2(X,Z), and of signature (3, 19). By
the classification of even integral quadratic forms [Ser70, Ch. V, §2, Thm. 5]
this implies that H2(X,Z) can be written as the orthogonal direct sum

L ∼= E8(−1)⊕2 ⊕ U⊕3. (16.8)

Here E8 is the (positive definite) root lattice of the root system E8; the lattice
E8(−1) is obtained by multiplication of the form on E8 by −1, and U is the
hyperbolic lattice of rank 2.

Hodge structures of complex tori

Let M be a finitely generated free abelian group. Following Deligne, an in-
tegral Hodge structure on M is a representation of the 2-dimensional real
torus S = ResC/R(Gm,C) in GL(MR). Then we have a Hodge decomposition
MC = ⊕p,qMp,q such that z ∈ S(R) = C∗ acts on Mp,q by zpz̄q. The space
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Mq,p is the complex conjugate of Mp,q. If p+ q = n for each summand Mp,q,
then the Hodge structure is called pure of weight n.

A complex torus is a quotient Cg/Λ, where Λ ∼= Z2g spans Cg as a vector
space over R. To give a complex torus is the same as to give an integral Hodge
structure of type {(1, 0), (0, 1)} on Λ. (The complex structure on Λ ⊗Z R is
defined by the action of i ∈ C∗ = S(R).) An abelian variety is a complex
torus with a polarisation, which is an integral skew-symmetric form on Λ
satisfying some conditions. (This can be also rephrased by saying that the
integral Hodge structure is polarisable.)

An example of a complex torus is the Jacobian of a smooth projective
curve. For a curve C of genus g the spaces H1,0 ∼= H0(C,Ω1

C) and H0,1 ∼=
H1(C,OC) have dimension g, so the Hodge decomposition

H1(C,Z)C = H1(C,C) = H1,0 ⊕H0,1

gives rise to a complex torus. Explicitly, integrating g linearly independent
holomorphic 1-forms over 2g elements of a Z-basis of H1(C,Z) produces a
rank 2g free abelian group Λ ⊂ Cg which spans Cg as a real vector space.
Then one shows that the complex torus Cg/Λ has a polarisation, so is an
abelian variety. This is the Jacobian of C.

Hodge structures of K3 type

In a very rough analogy to the Jacobian of a curve, one would like to associate
an abelian variety to a polarised K3 surface over C (a complex K3 surface
X together with an ample line bundle whose class in Pic(X) is primitive, i.e.
non-divisible). The Hodge decomposition on the second integral cohomology
group of a complex K3 surface X is

H2(X,Z)C = H2(X,C) = H2,0 ⊕H1,1 ⊕H0,2,

where H2,0 ∼= H0(X,Ω2
X) and H0,2 ∼= H2(X,OX) are both 1-dimensional

vector spaces over C. This is a pure Hodge structure of weight 2.
Choose a non-zero ω ∈ H2,0. Since H4,0 = 0 we have ω ∪ ω = 0. The

complex conjugate ω is a non-zero element of H0,2. Since the pairing

H2,0 ×H0,2 −→ H2,2 = H4(X,C) ∼= C

is non-degenerate and the cup-product is symmetric, ω ∪ω is a non-zero real
number. We have ω ∪ ω > 0, see [Voi02, Thm. 6.32]. Since H3,1 = H1,3 = 0,
we have H2,0 ⊥ H1,1 and H0,2 ⊥ H1,1. It is convenient to twist this Hodge
structure by 1 in order to obtain a Hodge structure of weight 0:

H2(X,Z(1))C = H1,−1 ⊕H0,0 ⊕H−1,1.
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The advantage of this is that now the image of S lies in SO(H2(X,Z))R.
(Twisting by 1 also means rescaling the image of the integral cohomology
inside the complex cohomology by 2πi.)

The Picard group of a complex K3 surface X is a free abelian group, hence
Pic(X) = NS(X). Its rank ρ is called the Picard number of X. The cycle class
map gives an embedding

NS(X) ↪→ H2(X,Z(1)).

We have NS(X) = H2(X,Z(1)) ∩ H(0,0) by the Lefschetz (1, 1)-theorem, see
[Voi02, Thm. 7.2]. This implies 1 ≤ ρ ≤ 20. The orthogonal complement
T (X) ⊂ H2(X,Z(1)) to NS(X) is the transcendental lattice of X, see Sec-
tion 5.4.

Definition 16.4.1 Let M be a lattice with symmetric bilinear form (x, y).
An integral Hodge structure on M is called a Hodge structure of K3 type,
if the Hodge decomposition is

MC = M1,−1 ⊕M0,0 ⊕M−1,1,

where M1,−1 ⊥ M0,0, dim(M1,−1) = 1 and for a non-zero ω ∈ M1,−1 we
have

(ω2) = 0, (ω, ω) > 0.

Recall that L denotes the K3 lattice (16.8). Take a primitive element λ ∈ L
such that (λ2) > 0. Let d = 1

2 (λ2) ∈ Z. By [Huy16, Cor. 14.1.10], for any
d ∈ Z primitive elements x ∈ L with (x2) = 2d exist and form an orbit of
Aut(L). Hence the isomorphism class of the orthogonal complement λ⊥ ⊂ L
depends only on d. Thus the lattice λ⊥ is isomorphic to the orthogonal direct
sum

Ld := E8(−1)⊕2 ⊕ U⊕2 ⊕ (−2d), (16.9)

where (−2d) denotes the abelian group Z equipped with the quadratic form
(n, n) = −2dn2. The signature of Ld is (2, 19). Thus a K3 surface with a
primitive polarisation of degree 2d gives rise to an integral Hodge structure
of K3 type on the lattice Ld.

Associating to an integral Hodge structure of K3 type on Ld the 1-
dimensional complex subspace H1,−1 ⊂ Ld,C := Ld ⊗Z C defines a point
in the period domain

Ωd = {x ∈ P(Ld,C) | (x2) = 0, (x, x̄) > 0},

see [Voi02, Thm. 7.18]. One identifies Ωd with the Grassmannian of positive
definite oriented 2-dimensional real subspaces of Ld ⊗R ' R21, by attaching
to x the plane spanned by Re(x), Im(x) in this order. Thus

Ωd ∼= SO(2, 19)(R)/SO(2)(R)× SO(19)(R).
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The period domain Ωd has two isomorphic connected components that are
interchanged by complex conjugation (or reversing the orientation).

16.5 Kuga–Satake variety

Hodge structures of curves and K3 surfaces are quite different, so we cannot
construct an analogue of Jacobian for K3 surfaces without more work. Nev-
ertheless, we have the following very important result. The classical Torelli
theorem can be stated as follows: the isometry class of the integral Hodge
structure on H1(C,Z), where C is a smooth and connected complex curve,
uniquely determines C. The Torelli theorem for K3 surfaces of Piatetskii-
Shapiro and Shafarevich [PSS71] leads to the following result: the isometry
class of the integral Hodge structure on H2(X,Z), where X is a complex K3
surface, uniquely determines X, see [Huy16, Thm. 7.5.3].

Another obstacle is that the cup-product pairing on H2(X,Z) is symmetric,
whereas for an abelian variety one would need a skew-symmetric pairing,
such as that given by the cup-product on H1(C,Z). To overcome this issue
one employs the Clifford algebra of the quadratic form on H2(X,Z).

Clifford algebra and spinor group

Let us recall the general construction of the Clifford algebra and the spinor
group, see [BouIX, §9].

Let M be a finitely generated free abelian group with a non-degenerate
quadratic form q : M→Z. Define the Clifford algebra Cl(M) as the quotient
of the full tensor algebra ⊕n≥0M

⊗n by the two-sided ideal I generated by the
elements x⊗ x− q(x) for x ∈M . There is an isomorphism of abelian groups

Cl(M) ' ⊕rk(M)
n=0 ∧nM , hence rk(Cl(M)) = 2rk(M). Multiplication by −1 on

M acts on ⊕n≥0M
⊗n. Since x⊗ x− q(x) is invariant, we have I = I+ ⊕ I−,

where I+ is the subgroup of invariant elements and I− is the subgroup of
anti-invariant elements. Thus we can define

Cl+(M) = (⊕n≥0M
⊗2n)/I+, Cl−(M) = (⊕n≥0M

⊗2n+1)/I−,

where the first equality is the quotient of a ring by an ideal, whereas the sec-
ond one is the quotient of a (left or right) (⊕n≥0M

⊗2n)-module ⊕n≥0M
⊗2n+1

by the submodule I−. The natural embedding of M into ⊕n≥0M
⊗n gives rise

to an injective map M→Cl−(M). Define the Clifford group

GSpin(M) = {g ∈ Cl+(M)∗|gMg−1 = M}.
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The group GSpin(M) acts by conjugation on M preserving the quadratic
form. This gives an exact sequence of algebraic groups over Q:

1 −→ Gm,Q −→ GSpin(M)Q −→ SO(M)Q −→ 1.

The adjoint action of GSpin(M) on Cl+(M), i.e. the action by conjugations,
gives rise to a representation of GSpin(M)Q, which is isomorphic to the direct
sum of ∧2nMQ for n ≥ 0.

The spinor group Spin(M)Q is the algebraic group over Q defined by the
exact sequence

1 −→ Spin(M)Q −→ GSpin(M)Q −→ Gm,Q −→ 1,

where the third arrow is the spinor norm.
It is instructive to consider the case of an orthogonal direct sum of n

hyperbolic planes U⊕n, i.e. rank 2 lattices with Z-basis ei, fi such that q(ei) =
q(fi) = 0, (ei, fi) = 1, for i = 1, . . . , n, where (a, b) = q(a + b) − q(a) − q(b)
is the associated bilinear form. Let Λ be the full exterior algebra of the
abelian group Ze1 ⊕ . . . ⊕ Zen. Then Cl(U⊕n) is isomorphic to End(Λ), see
the proof of [BouIX, §9, no. 4, Thm. 2]. Next, Cl+(U⊕n) is isomorphic to
End(Λ+) ⊕ End(Λ−), where Λ+ and Λ− are the even and odd parts of Λ,
respectively.

From this it follows that if rk(M) is even, then Cl(MC) is isomorphic to
a matrix algebra. The unique simple module of this simple algebra is called
the spinor representation. We have Cl(MC) = EndC(W ). The restriction of
W to Cl+(MC) splits into the direct sum of two non-isomorphic semi-spinor
representations, so that Cl+(MC) = EndC(W1) ⊕ EndC(W2), where we have
W = W1 ⊕W2 and dim(W1) = dim(W2). The spaces W1 and W2 are non-
isomorphic representations of Spin(M)C.

If rk(M) is odd, then Cl+(MC) is isomorphic to a matrix algebra EndC(W ),
where W is called the spinor representation. In this case the full Clifford
algebra Cl(MC) is the direct sum of two isomorphic matrix algebras, see
[BouIX, §9, no. 4, Thm. 3]. More precisely, if e0, . . . , e2n is an orthonormal
basis of q over C, then one can choose a sign so that τ = ±e0 . . . e2n is in
the centre of Cl(MC) and τ2 = 1. Then Cl(MC) is the direct sum of its two-
sided ideals Cl+(MC)(1+τ) and Cl+(MC)(1−τ). Thus Cl(MC) is isomorphic
to EndC(W )⊕2, that is, the two resulting representations of Spin(M)C are
isomorphic to W .

Kuga–Satake construction, I

The preceding considerations can be applied to the second cohomology group
of a polarised complex K3 surface X.



16.5 Kuga–Satake variety 413

Fix a primitive ample class λ ∈ H2(X,Z(1)) and define P as the orthogonal
complement to λ in H2(X,Z(1)), so that rk(P ) = 21. We have

PC = P 1,−1 ⊕ P 0,0 ⊕ P−1,1.

Kuga and Satake [KS67] showed how to define a canonical complex struc-
ture on the real vector space Cl+(PR). We can normalise ω ∈ P 1,−1 so
that (ω, ω) = 2. Write ω = ω1 + iω2, where ω1, ω2 ∈ H2(X,R). Then
(ω2

1) = (ω2
2) = 1 and (ω1, ω2) = 0. By the definition of the Clifford alge-

bra, the following holds in Cl(PR):

ω2
1 = ω2

2 = 1, ω1ω2 = −ω2ω1.

Let I = ω1ω2 ∈ Cl+(PR). (It is immediate to check that I does not depend
on ω.) Then I2 = −1, so left multiplication by I defines a complex structure
on the real vector space Cl+(PR), thus making Cl+(PR)/Cl+(P ) a complex
torus. It has a polarisation [Huy16, Ch. 4, 2.2], so is an abelian variety.

Kuga–Satake construction, II, d’après Deligne

In Deligne’s version [Del72] one equips Cl+(P ) with an integral Hodge struc-
ture of type {(1, 0), (0, 1)} as follows. Since S preserves the quadratic form
on PR, we have a homomorphism h : S→SO(P )R whose kernel is {±1}.
For any a, b ∈ R, not both equal to 0, we have a + bI ∈ GSpin(P )(R).
Deligne points out that this is a canonical lifting of h : S→SO(P )R to

h̃ : S ↪→ GSpin(P )R. (Indeed, if we write z = a + bi, then a + bI ∈ Cl+(PR)
and x 7→ (a + bI)x(a + bI)−1 acts on ω as multiplication by zz̄−1, on ω as
multiplication by z̄z−1, and on P 0,0 ∩ PR as the identity.) This means that
the adjoint action of GSpin(PQ) on P induces our original Hodge structure
of K3 type on P .

Lemma 16.5.1 The left action of GSpin(P )Q on Cl+(PQ) induces an inte-
gral Hodge structure of type {(1, 0), (0, 1)} on Cl+(PQ). The same is true for
Cl(PQ).

Proof. The adjoint representation of GSpin(P )Q on Cl+(PQ) is isomorphic
to the direct sum of ∧2nPQ for n ≥ 0. The Hodge structure on P is of
K3 type, hence the induced Hodge structure on each ∧2nP is of Hodge
type {(1,−1), (0, 0), (−1, 1)}. Thus the Hodge structure on Cl+(P ), is also
of Hodge type {(1,−1), (0, 0), (−1, 1)}.

The action of S ⊂ GSpin(P )R by left multiplication induces an integral
Hodge structure on Cl+(P ). We would like to determine its type. Note that
the C-algebra Cl+(PC) can be identified with a matrix algebra EndC(W ),
where the complex vector space W is the unique simple module of Cl+(PC).
Hence the action of GSpin(P )C on Cl+(PC) by left multiplication is iso-
morphic to W dim(W ). The adjoint representation GSpin(P )C on Cl+(PC)
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is isomorphic to EndC(W ) = W ⊗C W
∗, where W ∗ = HomC(W,C). Thus

the type of the Hodge structure on Cl+(P ) defined by left multiplication
of S ⊂ GSpin(P )R must be {(a, b), (b, a)} with a − b = ±1, otherwise the
Hodge structure on W ⊗CW

∗ cannot be of type {(1,−1), (0, 0), (−1, 1)}. But
R∗ ⊂ C∗ acts on Cl+(PC) tautologically, so the weight of W is a + b = 1.
Thus the type is {(1, 0), (0, 1)}.

The right multiplication by x ∈ M , q(x) 6= 0, is an isomorphism
of Q-vector spaces Cl+(PQ)→Cl−(PQ) which preserves the left action of
GSpin(P )Q. This shows that the integral Hodge structure on Cl(PQ) is of
type {(1, 0), (0, 1)}. �

It can be shown that the integral Hodge structures on Cl+(P ) and
Cl(P ) are polarisable, so we actually obtain abelian varieties and not just
complex tori. The complex abelian variety Cl+(PR)/Cl+(P ) is sometimes
called the even Kuga–Satake variety of (X,λ). The complex abelian variety
Cl(PR)/Cl(P ) is usually called the Kuga–Satake variety of (X,λ).

16.6 Moduli spaces of K3 surfaces and Shimura varieties

Moduli spaces of polarised K3 surfaces

Let O(Ld) be the orthogonal group of the lattice Ld defined in (16.9) with
associated period domain Ωd. Write L∗d = Hom(Ld,Z). We have a natural
injective map Ld→L∗d. Its cokernel is the discriminant group of Ld. Define

Õ(Ld) = {g ∈ O(Ld) | g acts trivially on L∗d/Ld ' Z/2d}.

Equivalently, Õ(Ld) is the stabiliser of λ in O(L). The key (difficult) facts
are:

(1) Õ(Ld)\Ωd is a quasi-projective irreducible variety over C (Baily–Borel);
(2) there is a coarse moduli space Md of K3 surfaces with a primitive polar-

isation of degree 2d;
(3) Md is a Zariski open subscheme of Õ(Ld)\Ωd.

Note that Md is not smooth, though it is smooth as an orbifold (or as a
Deligne–Mumford stack). It is constructed as a categorical quotient of the
open subscheme of the relevant Hilbert scheme parameterising K3 surfaces
in a given projective space by the action of the projective linear group. Fact
(3) uses local and global Torelli theorems, and surjectivity of the period map,
see [Huy16, Cor. 6.4.3]. This description is a K3 analogue of the coarse moduli
space of elliptic curves SL(2,Z)\H or the moduli space of dimension g prin-
cipally polarised abelian varieties Ag = Sp(2g,Z)\Hg, where H is the usual
upper half-plane and Hg is the Siegel upper half-plane. Here Ωd, H, Hg are
Hermitian symmetric domains, so property (1) follows from the Baily–Borel
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theorem about quotients of Hermitian symmetric domains by torsion-free
arithmetic subgroups of their automorphism groups. (One needs to first ap-

ply the Baily–Borel theorem to a torsion-free finite index subgroup of Õ(Ld),
and then take a quotient of a variety by a finite group action.)

Replacing O(Ld) by the index 2 subgroup SO(Ld) gives rise to an unram-

ified cover M̃d→Md. Here M̃d is a Zariski open subset of S̃O(Ld)\Ωd, where

S̃O(Ld) = SO(Ld)∩Õ(Ld). This replaces the non-connected orthogonal group

by the connected special orthogonal group. The degree of M̃d→Md is 2 unless
d = 1. In the exceptional case d = 1 the group O(L1) = Õ(L1) contains −1

which acts trivially on Ω1, hence O(L1) = {±1}×SO(L1) and thus M̃1→M1

is an isomorphism.
We have seen that a point in Ωd is a homomorphism S→SO(Ld)R. The

action of SO(Ld)(R) on Ωd is transitive, so Ωd can be identified with the
conjugacy class of h in Hom(S, SO(Ld)(R)). This is similar to the classi-
cal identification of H = SL(2)(R)/SO(2)(R) with the conjugacy class of
S ⊂ GL(2)+

R . (Here GL(2)+
R is given by the condition det(x) > 0; note that

GL(2)(R)/S = H±.)

In modern language Ag and S̃O(Ld)\Ωd are the sets of complex points of
Shimura varieties. To exploit the connection between moduli spaces of prim-
itively polarised K3 surfaces and Shimura varieties, we now give a very brief
introduction to Shimura varieties, referring the reader to Deligne’s founda-
tional paper [Del79] and Milne’s lecture notes [Mil05] for a systematic treat-
ment.

Orthogonal Shimura varieties

A Shimura datum is a pair (G,X), where G is a connected reductive algebraic
group over Q and X is a G(R)-conjugacy class in Hom(S, G(R)) satisfying
certain axioms ensuring that each connected component of X is a Hermitian
symmetric domain. Morphisms of Shimura data are defined in the obvious
way. In the K3 case, let SO(Ld) be the group scheme over Z whose functor
of points associates to a ring R the group SO(Ld⊗ZR). Then (SO(Ld)Q, Ωd)
is a Shimura datum. In the case of principally polarised abelian varieties the
Shimura datum is (GSp2g,Q,H±g ).

A congruence subgroup is a subgroup of G(Q) cut out by a compact open

subgroup K ⊂ G(AQ,f), where AQ,f = Ẑ ⊗Z Q is the ring of finite adèles.
Deligne’s definition of the Shimura variety defined by the Shimura datum
(G,X) and a compact open subgroup K ⊂ G(AQ,f) is

ShK(G,X)C = G(Q)\X ×G(AQ,f)/K,

where G(Q) acts diagonally on both factors on the left, whereas K acts on
G(AQ,f) on the right. The crucial fact is that any Shimura variety ShK(G,X)



416 16 The Tate conjecture, abelian varieties and K3 surfaces

descends to a certain natural variety over a number field; it is the so-called
canonical model. The set ShK(G,X)(C) is a disjoint union of the quotients
Γ\X+, where X+ is a connected component of X and Γ is a congruence
subgroup of the stabiliser of X+ in G(Q).

We now go back to the K3 surfaces Shimura datum (SO(Ld)Q, Ωd). Let
K ⊂ SO(Ld)(AQ,f) be a compact open subgroup. The canonical model of
the associated Shimura variety ShK(Ld) := ShK(SO(Ld)Q, ΩL) is a quasi-
projective variety over Q. By construction, the C-points of ShK(Ld) param-
eterise Z-Hodge structures on Ld of K3 type, see Definition 16.4.1.

Suppose that K is neat. (See R. Pink’s thesis [Pin, pp. 4–5] for the
definition of neatness and the fact that every compact open subgroup of
SO(Ld)(AQ,f) contains a neat subgroup of finite index.) Then for each prime `
there is a lisse Z`-sheaf Ld,` on ShK(Ld) defined by the inverse system of fi-
nite étale covers ShK(`m)(Ld)→ShK(Ld), where K(`m) is the largest subgroup
of K that acts trivially on L/`m. Thus, to a k-point x of ShK(Ld) there cor-
responds a representation Gal(k̄/k)→SO(Ld ⊗Z Z`). Putting together these
representations for all ` gives a representation

φx : Gal(k̄/k) −→ SO(Ld ⊗Z Ẑ). (16.10)

We refer to this as the monodromy representation.

Spin Shimura varieties

From a lattice with signature (2, n), n ≥ 1, one can also construct a
spin Shimura variety. Recall that Cl(Ld) is the Clifford algebra of Ld, and
Cl+(Ld) ⊂ Cl(Ld) is the even Clifford algebra. Let GSpin(Ld) be the Z-group
scheme whose functor of points associates to a commutative ring R the group
of invertible elements g of Cl+(Ld⊗ZR) such that g(Ld⊗ZR)g−1 = Ld⊗ZR.

Recall that h : S→SO(Ld)R canonically lifts to h̃ : S→GSpin(Ld)R. It fol-

lows that the GSpin(Ld)(R)-conjugacy class of h̃ : S→GSpin(Ld)R maps bi-
jectively to Ωd, which is the SO(Ld)(R)-conjugacy class of h. This shows that
the homomorphism GSpin(Ld)→SO(Ld) naturally extends to a morphism of
Shimura data

(GSpin(Ld)Q, Ωd) −→ (SO(Ld)Q, Ωd).

If K̃ ⊂ GSpin(Ld)(AQ,f) is a compact open subgroup, we write Shspin

K̃
(Ld) for

the Shimura variety ShK̃(GSpin(Ld)Q, Ωd). We can take K to be the image of

K̃ in SO(L)(AQ,f); indeed, by [And96, 4.4] this image is compact and open
in SO(Ld)(AQ,f). The natural group homomorphism GSpin(Ld)Q→SO(Ld)Q
induces a morphism Shspin

K̃
(Ld)→ShK(Ld). This morphism is finite and sur-

jective, and is defined over Q, see [And96, App. 1].

For a positive integer N let K̃N be the subgroup of GSpin(Ld)(Ẑ) con-

sisting of the elements of GSpin(Ld)(Ẑ) that are congruent to 1 modulo N
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in Cl+(Ld ⊗Z Ẑ). If K̃ ⊂ K̃N for N ≥ 3, then K̃ and K are neat and the

morphism Shspin

K̃
(Ld)→ShK(Ld) is étale. This morphism restricts to an iso-

morphism on each geometric connected component [Riz10, §5.5, (32)]. Thus

Shspin

K̃
(Ld)→ShK(Ld) has a section defined over a number field E which only

depends on K̃.

Kuga–Satake construction, III: the Kuga–Satake abelian scheme

By Lemma 16.5.1, left action of GSpin(Ld)Q on Cl(Ld,Q) gives rise to an
integral Hodge structure of type {(1, 0), (0, 1)} on Cl(Ld). The choice of a
polarisation of this Hodge structure defines a morphism of Shimura data

(GSpin(Ld)Q, Ωd) −→ (GSp2g,Q,H±g ),

where g = 220. Moreover, there is a finite morphism of Shimura varieties from
Shspin

K̃
(Ld) to a moduli space of abelian varieties, defined over Q. In order to

construct this, we find a skew-symmetric form on Cl(Ld) following [Huy16,
Ch. 4, 2.2]. For this we choose orthogonal elements f1, f2 ∈ Ld satisfying
(f2

1 ), (f2
2 ) > 0 and define a skew-symmetric form on Cl(Ld) by ±Tr(f1f2v

∗w),
where Tr(x) is the trace of the left multiplication by x ∈ Cl(Ld) on Cl(Ld).
The action of GSpin(Ld) on this form is multiplication by the spinor norm
(see [Huy16, Ch. 4, Prop. 2.5] for proofs of these facts, as well as the correct
choice of sign). The group GSpin(Ld) injects into the group of symplectic
similitudes GSp(Cl(Ld)) of this form.

If K̃ ⊂ K̃N , then we have a morphism from Shspin

K̃
(Ld) to the Shimura vari-

ety ShΓN (GSp(Cl(Ld))Q,H±), where ΓN is the subgroup of GSp(Cl(Ld))(Ẑ)
consisting of the elements that are congruent to 1 modulo N . The latter
Shimura variety is identified with the moduli variety Ag,δ,N parameterising
abelian varieties of dimension g = 2n+1, polarisation type δ (explicitly com-
putable in terms of L and f1, f2) and level structure of level N . If N ≥ 3, then
Ag,δ,N is a fine moduli space carrying a universal family of abelian varieties.

Recall that E is a number field over which there exists a section of the
morphism of Shimura varieties Shspin

K̃
(Ld)E→ShK(Ld)E . The definition of the

Kuga–Satake abelian scheme depends on the choice of E.

Definition 16.6.1 The Kuga–Satake abelian scheme f : A→ShK(Ld)E
is defined as the pullback of the universal family of abelian varieties on Ag,δ,N
to Shspin

K̃
(Ld), and then, after extending the ground field from Q to E, to

ShK(Ld)E.
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The left multiplication by the elements of Ld ⊂ Cl(Ld) on Cl(Ld) gives
a homomorphism Ld ↪→ EndZ(Cl(Ld)) whose cokernel is torsion-free. Since
Cl(Ld) = R1fan,∗Z as sheaves on ShK(Ld)C, this gives rise to a morphism of
variations of Z-Hodge structures

Ld ↪→ Cl(Ld) ↪→ EndZ(R1fan,∗Z). (16.11)

Via the comparison theorems we get a morphism of Z`-sheaves

Ld,` ↪→ EndZ`(R
1f∗Z`). (16.12)

Back to moduli spaces of K3 surfaces

Recall that Md introduced in the beginning of this section is the coarse moduli
space over Q of primitively polarised K3 surfaces of degree 2d; this is a quasi-
projective variety defined over Q. Let M̃d be the coarse moduli space over Q
of triples (X,λ, u) such that X is a K3 surface over a field of characteristic
zero, λ is a primitive polarisation of X of degree 2d, and u is an isometry

det(P 2(X,Z2(1))) −→ det(Ld ⊗Z Z2),

where P 2(X,Z2(1)) is the orthogonal complement of the image of λ in the

2-adic étale cohomology H2(X,Z2(1)). We have an unramified cover M̃d→Md

(of degree 2 unless d = 1, when this is an isomorphism). By the work of Rizov
and Madapusi Pera based on the Torelli theorem [PSS71], there is an open

immersion M̃d ↪→ ShKd(Ld) defined over Q, where

Kd = {g ∈ SO(Ld ⊗Z Ẑ) : g acts trivially on L∗d/Ld}. (16.13)

For a proof that this immersion is defined over Q, see [MP15, Cor. 5.4] (see
also [Riz10, Thm. 3.9.1]).

To a polarised K3 surface (X,λ) defined over a field k of characteristic
zero one can attach two Galois representations: the representation in étale
cohomology and the monodromy representation. The first of them comes
from the natural action of the Galois group Γ = Gal(k̄/k) on H2

ét(X, Ẑ(1)).
For a prime ` define P 2(X,Z`(1)) as the orthogonal complement to λ in
H2

ét(X,Z`(1)). Choose an isometry u : det(P 2(X,Z2(1)))
∼−→ det(Ld⊗Z Z2).

After replacing k by a quadratic extension we can assume that Γ acts trivially
on det(P 2(X,Z2(1))). By [Sai12, Cor. 3.3] the quadratic character through
which Γ acts on the 1-dimensional vector space det(H2

ét(X,Q`(1))) does not
depend on `. Thus Γ acts trivially on det(P 2(X,Z`(1))) for all primes `,

hence the representation ρX : Γ→O(P 2(X, Ẑ(1))) attached to X takes values

in SO(P 2(X, Ẑ(1))).
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The triple (X,λ, u) defines a k-point x in M̃2d ⊂ ShKd(Ld). Choose a neat
compact open subgroup K′d ⊂ Kd and let x′ be a lift of x to ShK′d(Ld), so

that x′ is defined over a finite extension k′ of k. Let Γ ′ = Gal(k̄/k′) and let

φx′ : Γ
′→SO(Ld⊗Z Ẑ) denote the monodromy representation associated with

the point x′, as defined at (16.10).

Lemma 16.6.2 Let (X,λ) be a primitively polarised K3 surface over a field k
of characteristic zero. There exists a finite extension k′/k of explicitly bounded
degree such that the adelic Galois representations

ρX|Γ ′ : Γ
′→SO(P 2(X, Ẑ(1))) and φx′ : Γ

′→SO(Ld ⊗Z Ẑ)

are isometric, where Γ ′ = Gal(k̄/k′).

Proof. This is an immediate consequence of [MP16, Prop. 5.6 (1)]. �

The conclusion of the work done in this section is the following proposition.

Proposition 16.6.3 Let k be a field of characteristic zero, and let (X,λ) be
a primitively polarised K3 surface over k. Let P 2(X,Z`(1)) be the orthogonal
complement to λ in H2

ét(X,Z`(1)), where ` is a prime. There exists a finite
extension k′/k and an abelian variety A over k′ with the following properties.

(i) Let Γ ′ = Gal(k̄/k′). For any prime ` there is an embedding of Γ ′-modules:

P 2(X,Z`(1)) ↪→ EndZ`(H
1
ét(A,Z`)). (16.14)

(ii) Let k ⊂ C, and let P 2(XC,Z(1)) be the orthogonal complement to λ
in H2(XC,Z(1)). There is an embedding of integral Hodge structures of
weight 0:

P 2(XC,Z(1)) ↪→ EndZ(H1(AC,Z)). (16.15)

The two embeddings are compatible via comparison isomorphisms between
classical and `-adic étale cohomology.

Proof. Let x be the k-point in Md defined by (X,λ). After replacing k by
a quadratic extension k′/k we can assume that x lifts to a k′-point on

M̃d ↪→ ShKd(Ld), where Kd is defined in (16.13). Choose a neat compact open

subgroup K̃d in GSpin(Ld)(AQ,f), for example, the subgroup of GSpin(Ld)(Ẑ)

consisting of the elements of GSpin(Ld)(Ẑ) congruent to 1 modulo N in

Cl+(Ld⊗Ẑ), where N ≥ 3. Let K′d be the intersection of Kd with the image of

K̃d in SO(Ld)(AQ,f). Then K′d is a neat compact open subgroup of Kd. We en-
large k′ so that x comes from a k′-point s on the cover ShK′d(Ld) of ShKd(Ld).
We extend k′ further to include the number field E over which there is a sec-
tion of the morphism of Shimura varieties Shspin

K̃d
(Ld)E→ShK′d(Ld)E . Now we

have the Kuga–Satake abelian scheme f : A→ShK′d(Ld), so A = f−1(s) is an
abelian variety over k′. Now (16.14) is just the specialisation of (16.12) at
the k′-point s. Similarly, (16.15) is the specialisation of (16.11). �
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Given a polarised K3 surface X over k we can call an abelian variety A
from Proposition 16.6.3 a Kuga–Satake variety of X. Indeed, for k ⊂ C, by
construction AC is isomorphic to the complex Kuga–Satake variety of the
complex K3 surface XC as defined at the end of the previous section. What
we gain now is that A is defined over a finite extension of k.

It is worth noting that Lemma 16.6.2 replaces Proposition 6.4 and Lemma
6.5.1 in Deligne’s pioneering work [Del72] (written before the machinery of
Shimura varieties was fully developed) in establishing that (16.14) is an iso-
morphism of Galois modules, cf. [Del72, Prop. 6.5].

16.7 Tate conjecture and Brauer group of K3 surfaces

We continue the discussion of the previous section using the same assumptions
and notation. By Proposition 16.6.3 a primitively polarised K3 surface X has
a Kuga–Satake abelian variety A defined over a finite extension k′ of k such
that there is an embedding of Gal(k̄/k′)-modules

P 2(X,Q`(1)) ↪→ EndQ`(H
1
ét(A×k′ k̄,Q`)). (16.16)

Deligne used this to prove the Weil conjectures for K3 surfaces over finite
fields (before he proved them for arbitrary varieties), but this theory has
many other applications. For example, if k is finitely generated over Q, then
the semisimplicity of the Galois module H2

ét(X,Q`(1)) for a K3 surface X
follows from (16.16) and semisimplicity for abelian varieties established by
Faltings.

The Tate conjecture for divisors for K3 surfaces over finitely generated
fields of characteristic zero was proved by S.G. Tankeev [Tan88] and Y. André
[And96].

Theorem 16.7.1 (Tankeev, André) Let X be a K3 surface over a field k
finitely generated over Q. Then the Tate conjecture holds for X, that is, we
have

H2
ét(X,Q`(1))Γ = NS(X)Γ ⊗Z Q`.

Proof. Let A be a Kuga–Satake abelian variety of X defined over a finite field
extension k′ of k, as constructed in Proposition 16.6.3.

The profinite, hence compact group Γ acts continuously on the discrete
group NS(X), so by extending k′ we can assume that this action factors
through a finite quotient Gal(k′/k) of Γ , where k′ is a finite Galois extension
of k. Thus it is enough to prove the theorem under the additional assumption
that Γ acts trivially on NS(X) and on End(A). We need to show that the
Γ -invariant subspace of H2

ét(X,Q`(1)) is NS(X)⊗Z Q`.



16.7 Tate conjecture and Brauer group of K3 surfaces 421

By a theorem of Faltings, the Tate conjecture holds for A:(
EndQ`(H

1
ét(A,Q`))

)Γ
= End(A)⊗Z Q`.

Hence the image of P 2(X,Q`(1))Γ in EndQ`(H
1
ét(A,Q`)) belongs to the Q`-

span of the intersection of the image of P 2(XC,Q(1)) in EndQ(H1(AC,Q))
with End(A) ⊗Z Q ⊂ EndQ(H1(AC,Q)). Such elements of EndQ(H1(AC,Q))
have Hodge type (0, 0). Hence every element of H2

ét(X,Q`(1))Γ is a Q`-linear
combination of classes of type (0, 0) in H2(XC,Q(1)). By the Lefschetz theo-
rem, each such class is algebraic. �

The following result was obtained in [SZ08], using Deligne’s version of the
Kuga–Satake construction [Del72].

Theorem 16.7.2 (Skorobogatov–Zarhin) Let X be a K3 surface over a
field k finitely generated over Q. Then Br(X)Γ is finite.

Proof. The `-primary torsion subgroup Br(X)Γ {`} is finite for all primes
` as follows from Theorems 16.1.1 and 16.7.1. It remains to prove that
Br(X)Γ [`] = 0 for almost all `. By Theorem 5.3.1 (iv) it is enough to show
that for almost all ` we have H2

ét(X,µ`)
Γ = (NS(X)/`)Γ .

Fixing an embedding of k into C we define the transcendental lattice T (XC)
as the orthogonal complement to NS(XC) in H2(XC,Z(1)) with respect to
the cup-product pairing. As was discussed in Section 5.4, by the comparison
theorem between classical and étale cohomology, we have isomorphisms

H2(XC,Z)⊗ Z`(1) ∼= H2
ét(X,Z`(1))

compatible with the cycle class map and the cup-product. Thus T (XC)⊗ Z`
is the orthogonal complement to NS(X)⊗Z` in H2

ét(X,Z`(1)), so T (XC)⊗Z`
has a natural structure of a Γ -module. As in Theorem 5.3.1, for the primes
` not dividing the discriminant of the intersection pairing on NS(X) we have
a direct sum decomposition of Γ -modules

H2
ét(X,Z`(1)) =

(
NS(X)⊗ Z`

)
⊕
(
T (XC)⊗ Z`

)
.

These are free Z`-modules of finite rank, hence for these ` we have a direct
sum decomposition of Γ -modules

H2
ét(X,µ`) =

(
NS(X)/`

)
⊕
(
T (XC)/`

)
.

Thus we need to prove that (T (XC)/`)Γ = 0 for almost all `. Let A be a
Kuga–Satake abelian variety of X defined over a finite field extension k′ of
k, as in Proposition 16.6.3. As in the previous proof we assume that Γ acts
trivially on End(A), so that End(A) = End(A) = End(AC). By the Lefschetz
theorem and the non-degeneracy of the intersection pairing on NS(X), the
transcendental lattice T (XC) does not contain non-zero elements of Hodge
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type (0, 0). Hence the image of T (XC) in EndZ(H1(AC,Z)) has trivial inter-
section with End(AC). It follows that for almost all ` the image of T (XC)/`
in EndF`(A[`]) intersects trivially with End(A)/` = End(A)/`. By Faltings
and Zarhin, for almost all ` we have

EndF`(A[`])Γ = End(A)/`.

Thus (T (XC)/`)Γ = 0 for almost all `. �

Theorem 16.7.2 and Corollary 5.5.3 then give

Corollary 16.7.3 Let X be a K3 surface over a field k that is finitely gen-
erated over Q. The group Br(X)/Br0(X) is finite.

Remark 16.7.4 Let k be a field of characteristic p > 0 which is finitely
generated over Fp. Then the subgroups of Br(X)Γ and Br(X)/Br0(X), which
consist of the elements of order prime to p, are both finite. For p > 2 this
is proved in [SZ15] using work of Rizov and Madapusi Pera [MP15], and
Zarhin [Zar76, Zar77, Zar85]. For p = 2 this is proved by K. Ito in [Ito18]
using instead of [MP15] a more recent work of W. Kim and Madapusi Pera
proving the Tate conjecture and essentially establishing the Kuga–Satake
construction in characteristic 2.

The following stronger variant of Theorem 16.7.2 was obtained by M. Orr
and Skorobogatov, see [OS18, Thm. C].

Theorem 16.7.5 Let X be a K3 surface over a field k that is finitely gen-
erated over Q. Let n be a positive integer. There exists a constant Cn,X de-
pending only on n and X such that for every K3 surface Y defined over
a field K ⊂ k̄ of degree [K : k] ≤ n such that Y ×K k̄ ' X we have
|Br(Y )Gal(k̄/K)| < Cn,X .

The main ingredients of the proof are the results of Cadoret and Moonen
on the Mumford–Tate conjecture, which build on the previous work of many
authors, including Serre, Wintenberger, Larsen, Pink, Cadoret and Kret, and
the proof of the Mumford–Tate conjecture for K3 surfaces by Tankeev and
André. Although the finiteness of Br(Y )Gal(k̄/K) in Theorem 16.7.5 follows
from Theorem 16.7.2, it is not used in the proof, so Theorem 16.7.5 also gives
a different approach to the finiteness result of Theorem 16.7.2.

16.8 Diagonal surfaces

The aim of this section is to illustrate general methods for calculating the
Brauer group of a variety over a number field in the particular case of surfaces
in P3

k given by diagonal equations, with focus on degree 4.
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Let k be a field, char(k) 6= 2. Consider smooth surfaces X ⊂ P3
k given by

x4
0 + a1x

4
1 + a2x

4
2 + a3x

4
3 = 0,

where a1, a2, a3 ∈ k∗. The group H1(k,Pic(Xs)) was computed by Bright
in his thesis [Bri02, Bri06] using the fact that the 48 lines contained in
Xs generate the abelian group Pic(Xs). (In fact, one can choose 20 lines
that freely generate Pic(Xs), see [GvS].) When k is a number field, we have
Br1(X)/Br0(X) ∼= H1(k,Pic(Xs)) by Remark 5.4.3 (3). An explicit form of
the elements of Br1(X) is not known in general, cf. [Bri11]. When k ⊂ C,
Ieronymou [Ier10, Thm. 3.1] constructed generators of Br(XC)[2] and showed
[Ier10, Prop. 4.9] that they come from 4-torsion elements of the Brauer group
of the quartic Fermat surface over Q(i, 4

√
2) (in fact, they come from 2-torsion

elements, see [GvS, Cor. 3.5]). He then obtained sufficient conditions on the
diagonal quartic surface X over Q under which the 2-torsion subgroup of
Br(X)/Br1(X) is trivial [Ier10, Thm. 5.2]. See [GvS] for further references.

Over a number field k, computation of Br(X) can proceed in the following
steps.

(a) Determine the action of Γ = Gal(ks/k) on the geometric Brauer group
Br(X), hence compute Br(X)Γ . For a K3 surface with complex multiplication
this involves identifying the Grössencharakter which describes the action of
Γ on the Tate module of Br(X). For diagonal quartic surfaces, this has es-
sentially been done by Pinch and Swinnerton-Dyer in [PSD91] using classical
work of Weil [Weil52].

(b) Determine the image of Br(X)→Br(X)Γ , that is, the transcendental
Brauer group. This uses a geometric description of the differentials given in
Section 5.4.2, see Proposition 5.4.10.

(c) The group Br1(X)/Br0(X) ∼= H1(k,Pic(X)) is finite; it can be de-
termined if we know a finite generating set of Pic(X) and the action of Γ
on it. The group Br(X)/Br0(X), an extension of the finite abelian group
Br(X)/Br1(X) by the finite abelian group Br1(X)/Br0(X), is computed
as the first Galois hypercohomology group with coefficients in the complex
(5.27). See Remark 5.4.11.

The additional tool that we have in the case of diagonal surfaces is the
description of the primitive complex cohomology of the Fermat hypersurface
of degree d obtained by F. Pham and further developed by Looijenga. The
idea of Pham is to consider a natural “vanishing cycle” in the complement
to a hyperplane section of the Fermat hypersurface and show that its orbit
under the action of diagonal automorphisms generates the primitive integral
homology group. This allows one to compute the cup-product bilinear form
and the Hodge decomposition. The Galois representation in the étale coho-
mology of the Fermat hypersurface was studied and computed by Weil, Katz,
Shioda, and Ulmer, among others, see the references in [GvS].

To state the main result of this section, we call two diagonal quartic forms∑3
i=0 aix

4
i , where ai ∈ k∗, equivalent if one is obtained from another by
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permuting the variables x0, x1, x2, x3, multiplying the coefficients ai by fourth
powers in k∗, and multiplying all four coefficients by a common multiple in
k∗. Diagonal surfaces given by equivalent forms will be called equivalent. It
is clear that equivalent surfaces are isomorphic.

The following theorem gives a classification of the transcendental Brauer
groups of diagonal quartic surfaces with coefficients in Q over the ground
fields Q and Q(

√
−1). It was proved in [IS15, Thm. 1.1] in the case of torsion

of odd order. A general method was given in [GvS].

Theorem 16.8.1 Let a1, a2, a3 ∈ Q∗ and let X ⊂ P3
Q be the surface

x4
0 + a1x

4
1 + a2x

4
2 + a3x

4
3 = 0.

(i) Let K = Q(
√
−1). If XK = X×QK is equivalent to the diagonal quartic

surface with (a1, a2, a3) = (1, 2,−2), then the 2-primary torsion subgroup of
Br(XK)/Br1(XK) is Z/2; otherwise this subgroup is 0.

The odd order torsion subgroup of Br(X)/Br1(X) is 0, unless −3a1a2a3 is
in Q∗4∪−4Q∗4 when this subgroup is (Z/3)2, or 125a1a2a3 is in Q∗4∪−4Q∗4
when this subgroup is (Z/5)2.

(ii) If X is equivalent to the diagonal quartic surface with coefficients
(1, 2,−2) or (1, 8,−8), then the 2-primary torsion subgroup of Br(X)/Br1(X)
is Z/2; otherwise this subgroup is 0.

The odd order torsion subgroup of Br(X)/Br1(X) is 0, unless −3a1a2a3 is
in Q∗4 ∪ −4Q∗4 when this subgroup is Z/3, or 125a1a2a3 is in Q∗4 ∪ −4Q∗4
when this subgroup is Z/5.

Corollary 16.8.2 Let X be a diagonal quartic surface over Q with coeffi-
cients a1, a2, a3 such that a1a2a3 is a square in Q. Then Br(X) = Br1(X).

Carrying out calculations of step (c) one can describe the structure of the
extension of finite abelian groups

0→Br1(X)/Br0(X) −→ Br(X)/Br0(X) −→ Br(X)/Br1(X)→0. (16.17)

Since Γ acts on Pic(X) via a finite 2-group, the order of Br1(X)/Br0(X) ∼=
H1(k,Pic(Xs)) is always a power of 2, so it is enough to consider the case of
2-primary torsion.

Supplement to Theorem 16.8.1 Let X be the diagonal quartic surface
with coefficients (1, 2,−2) or (1, 8,−8) over Q.

(i) Let K = Q(
√
−1). Then the exact sequence (16.17) for XK over K is

the extension

0 −→ Z/2× Z/4 −→ (Z/4)2 −→ Z/2 −→ 0.

(ii) The exact sequence (16.17) for X over Q is the extension

0 −→ Z/4 −→ Z/8 −→ Z/2 −→ 0.
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Combined with Bright’s classification of algebraic Brauer groups of diag-
onal quartic surfaces over number fields, this gives a classification of Brauer
groups of diagonal quartic surfaces with coefficients in Q over the ground
fields Q and Q(

√
−1).

The supplement illustrates a difficulty in lifting Galois-invariant elements
of Br(X)[2] to Br(X): an element in the image of Br(X)→Br(X) may not
lift to an element of Br(X) of the same order.

The above method can be applied to diagonal surfaces of other degrees,
as well as to diagonal surfaces in weighted projective spaces, see [GLN]. We
refer to [SZ12] for general methods and examples of calculation of the Brauer
group of Kummer surfaces.

We refer the reader to [IS15] for explicit examples of Brauer–Manin ob-
struction to weak approximation on diagonal quartic surfaces X over Q given
by (transcendental) elements of Br(X) of odd order (that is, of order 3 and 5).
Ieronymou proved that the Fermat quartic surface over Q(

√
−1, 4
√

2) does
not satisfy weak approximation [Ier10, Thm. 6.1]: there is a transcendental
Brauer element of order 2 that takes both the zero and non-zero values when
evaluated at local points at the unique prime of Q(

√
−1, 4
√

2) above 2. Similar
examples for the diagonal quartic surfaces over Q with coefficients (1, 2,−2)
or (1, 8,−8) are currently unknown.
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algébrique du Bois-Marie 1967–1969. Vol. 1, A. Grothendieck. Lecture Notes
in Mathematics 288, Springer-Verlag, 1972. Vol. 2, P. Deligne, N. Katz. Lec-

ture Notes in Mathematics 340. Springer-Verlag, 1973. 147

427© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 
J.-L. Colliot-Thélène, A. N. Skorobogatov, The Brauer–Grothendieck Group, Ergebnisse der 

Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics 71, 

https://doi.org/10.1007/978-3-030-74248-5

https://doi.org/10.1007/978-3-030-74248-5


428 References

Alb31 A. Adrian Albert. Structure of algebras. Amer. Math. Soc. Colloquium Publi-

cations, 24, 1931; revised edition 1961. 3, 11, 246
Amb20 E. Ambrosi. A note on the behaviour of the Tate conjecture under finitely

generated field extensions. Pure Appl. Math. Quart. 14 (2018) 515–527. 401
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ABP A. Auel, C. Böhning, and A. Pirutka. Stable rationality of quadric and cubic
surface bundle fourfolds. Eur. J. Math. 4 (2018) 732–760. 302

ACTP17 A. Auel, J.-L. Colliot-Thélène, and R. Parimala. Universal unramified coho-

mology of cubic fourfolds containing a plane. Brauer groups and obstruction
problems: moduli spaces and arithmetic, Progress in Math. 320, Birkhäuser,
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mologique. Masson, 1980. 37, 38
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1383–1446. 357, 358, 365
BMS14 T.D. Browning, L. Matthiesen and A.N. Skorobogatov. Rational points on pen-

cils of conics and quadrics with many degenerate fibres. Ann. of Math. 180

(2014) 381–402. 344, 353
BS19 T.D. Browning and D. Schindler. Strong approximation and a conjecture of

Harpaz and Wittenberg. Int. Math. Res. Notices (2019), no. 14, 4340–4369.

358, 367
BT87 F. Bruhat and J. Tits. Groupes algébriques sur un corps local. Ch. III.
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ČS19 K. Česnavičius and P. Scholze. Purity for flat cohomology. arxiv: 1912.10932

93, 206
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à une variable représentées par une norme. Number theory and algebraic geome-
try, M. Reid and A. Skorobogatov eds., London Math. Soc. Lecture Note Series
303, Cambridge University Press, 2003, pp. 69–89. 270, 344, 357, 366

CTKH97 J.-L. Colliot-Thélène, B. Kahn and R. Hoobler. The Bloch–Ogus–Gabber theo-
rem. Proc. of the Great Lakes K-Theory Conf. (Toronto, 1996) R. Jardine and
V. Snaith, eds. Fields Inst. Res. Math. Sci. Communications Series 16, Amer.

Math. Soc., 1997, pp. 31–94. 88, 278
CTKS87 J.-L. Colliot-Thélène, D. Kanevsky and J.-J. Sansuc. Arithmétique des sur-

faces cubiques diagonales. Diophantine approximation and transcendence the-
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Gon18 C.D. González-Avilés. The units-Picard complex and the Brauer group of a

product. J. Pure Appl. Algebra 222 (2018) 2746–2772. 271
GSh18 S. Gorchinskiy and C. Shramov. Unramified Brauer group and its applications.

Translations of Mathematical Monographs 246. Amer. Math. Soc., 2018. ix
GHS03 T. Graber, J. Harris, and J. Starr. Families of rationally connected varieties. J.

Amer. Math. Soc. 16 (2003) 57-67. 347, 365
GH78 P. Griffiths and J. Harris. Principles of algebraic geometry. Wiley, 1978. 298
Gro57 A. Grothendieck. Sur quelques points d’algèbre homologique. Tôhoku Math. J.
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École Norm. Sup. 4e série 33 (2000) 467–484. 348, 373
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2017, pp. 115–153. 287

Isk71 V.A. Iskovskikh. A counter-example to the Hasse principle for systems of two

quadratic forms in five variables. Mat. Zametki 10 (1971) 253–257. (Russian)
328

Isk79 V.A. Iskovskikh. Minimal models of rational surfaces over an arbitrary field.

Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979) 19–43, 237. English translation:
Math. USSR Izvestija 14 (1980) 17–39. 347, 348

Isk97 V.A. Iskovskikh. On the rationality problem for algebraic threefolds. Trudy
Mat. Inst. Steklova 218 (1997) 190–232. (Russian) English translation: Proc.

Steklov Inst. Math. 218 (1997) 186–227. 282



References 439

Ito18 K. Ito. Finiteness of Brauer groups of K3 surfaces in characteristic 2. Int. J.

Number Theory 14 (2018) 1813–1825. 422
Ive76 B. Iversen. Brauer group of a linear algebraic group. J. Algebra 42 (1976) 295–

301. 220
Iwa68 K. Iwasawa. On explicit formulas for the norm residue symbol. J. Math. Soc.

Japan 20 (1968) 151–165. 310
Izh96 O. Izhboldin. On the cohomology groups of the field of rational functions. Math-

ematics in St. Petersburg, 21–44, Amer. Math. Soc.Transl. Ser. 2, 174, Amer.

Math. Soc. (1996). 36, 42
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Math. 282, Birkhäuser, 2010. 223

Lam05 T.-Y. Lam. Introduction to quadratic forms over fields. Graduate Studies in
Mathematics 67, Amer. Math. Soc., 2005. 173

Lang52 S. Lang. On quasi-algebraic closure. Ann. of Math. 55 (1952) 373–390. 15, 279,

287
Lang70 S. Lang. Algebraic number theory. Addison Wesley, 1970. 306, 307
Lang83a S. Lang. Abelian varieties. 2nd ed., Springer-Verlag, 1983. 125, 401, 402, 403

Lang83b S. Lang. Fundamentals of Diophantine geometry. Springer-Verlag, 1983. 315
Lang91 S. Lang. Number Theory III. Diophantine Geometry. Encyclopaedia of Math-

ematical Sciences 60, Springer-Verlag, 1991. 370

LW54 S. Lang and A. Weil. Number of points of varieties over finite fields. Amer. J.
Math. 76 (1954) 819–827. 313

Lau76 G. Laumon. Homologie étale. Ch. VII. Sém. géométrie analytique. A. Douady
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