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Preface

The creation of public key cryptography by Diffie and Hellman in 1976 and the
subsequent invention of the RSA public key cryptosystem by Rivest, Shamir,
and Adleman in 1978 are watershed events in the long history of secret com-
munications. It is hard to overestimate the importance of public key cryp-
tosystems and their associated digital signature schemes in the modern world
of computers and the Internet. This book provides an introduction to the
theory of public key cryptography and to the mathematical ideas underlying
that theory.

Public key cryptography draws on many areas of mathematics, including
number theory, abstract algebra, probability, and information theory. Each
of these topics is introduced and developed in sufficient detail so that this
book provides a self-contained course for the beginning student. The only
prerequisite is a first course in linear algebra. On the other hand, students
with stronger mathematical backgrounds can move directly to cryptographic
applications and still have time for advanced topics such as elliptic curve
pairings and lattice-reduction algorithms.

Among the many facets of modern cryptography, this book chooses to con-
centrate primarily on public key cryptosystems and digital signature schemes.
This allows for an in-depth development of the necessary mathematics re-
quired for both the construction of these schemes and an analysis of their
security. The reader who masters the material in this book will not only be
well prepared for further study in cryptography, but will have acquired a real
understanding of the underlying mathematical principles on which modern
cryptography is based.

Topics covered in this book include Diffie–Hellman key exchange, discrete
logarithm based cryptosystems, the RSA cryptosystem, primality testing, fac-
torization algorithms, digital signatures, probability theory, information the-
ory, collision algorithms, elliptic curves, elliptic curve cryptography, pairing-
based cryptography, lattices, lattice-based cryptography, and the NTRU cryp-
tosystem. A final chapter very briefly describes some of the many other aspects
of modern cryptography (hash functions, pseudorandom number generators,

v



vi Preface

zero-knowledge proofs, digital cash, AES, etc.) and serves to point the reader
toward areas for further study.

Electronic Resources: The interested reader will find additional material
and a list of errata on the Mathematical Cryptography home page:

www.math.brown.edu/~jhs/MathCryptoHome.html

This web page includes many of the numerical exercises in the book, allowing
the reader to cut and paste them into other programs, rather than having to
retype them.

No book is ever free from error or incapable of being improved. We would
be delighted to receive comments, good or bad, and corrections from our
readers. You can send mail to us at

mathcrypto@math.brown.edu

Acknowledgments: We, the authors, would like the thank the following
individuals for test-driving this book and for the many corrections and helpful
suggestions that they and their students provided: Liat Berdugo, Alexander
Collins, Samuel Dickman, Michael Gartner, Nicholas Howgrave-Graham, Su-
Ion Ih, Saeja Kim, Yuji Kosugi, Yesem Kurt, Michelle Manes, Victor Miller,
David Singer, William Whyte. In addition, we would like to thank the many
students at Brown University who took Math 158 and helped us improve the
exposition of this book.

Acknowledgments for the Second Edition: We would like to thank
the following individuals for corrections and suggestions that have been
incorporated into the second edition: Stefanos Aivazidis, Nicole Andre,
John B. Baena, Carlo Beenakker, Robert Bond, Reinier Broker, Camp-
bell Hewett, Rebecca Constantine, Stephen Constantine, Christopher Davis,
Maria Fox, Steven Galbraith, Motahhareh Gharahi, David Hartz, Jeremy
Huddleston, Calvin Jongsma, Maya Kaczorowski, Yamamoto Kato, Jonathan
Katz, Chan-Ho Kim, Ariella Kirsch, Martin M. Lauridsen, Kelly McNeilly,
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White, Pomona College Math 113 (Spring 2009), University of California at
Berkeley Math 116 (Spring 2009, 2010).
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Introduction

Principal Goals of (Public Key) Cryptography
• Allow two people to exchange confidential information,
even if they have never met and can communicate only
via a channel that is being monitored by an adversary.
• Allow a person to attach a digital signature to a document,
so that any other person can verify the validity of the
signature, but no one can forge a signature on any other
document.

The security of communications and commerce in a digital age relies on the
modern incarnation of the ancient art of codes and ciphers. Underlying the
birth of modern cryptography is a great deal of fascinating mathematics,
some of which has been developed for cryptographic applications, but much
of which is taken from the classical mathematical canon. The principal goal
of this book is to introduce the reader to a variety of mathematical topics
while simultaneously integrating the mathematics into a description of modern
public key cryptography.

For thousands of years, all codes and ciphers relied on the assumption
that the people attempting to communicate, call them Bob and Alice, share
a secret key that their adversary, call her Eve, does not possess. Bob uses the
secret key to encrypt his message, Alice uses the same secret key to decrypt
the message, and poor Eve, not knowing the secret key, is unable to perform
the decryption. A disadvantage of these private key cryptosystems is that Bob
and Alice need to exchange the secret key before they can get started.

During the 1970s, the astounding idea of public key cryptography burst
upon the scene.1 In a public key cryptosystem, Alice has two keys, a public
encryption key KPub and a private (secret) decryption key KPri. Alice pub-
lishes her public key KPub, and then Adam and Bob and Carl and everyone
else can use KPub to encrypt messages and send them to Alice. The idea
underlying public key cryptography is that although everyone in the world
knows KPub and can use it to encrypt messages, only Alice, who knows the
private key KPri, is able to decrypt messages.

1A brief history of cryptography is given is Sects. 1.6, 2.1, 6.5, and 7.7.
xiii



xiv Introduction

The advantages of a public key cryptosystem are manifold. For example,
Bob can send Alice an encrypted message even if they have never previously
been in direct contact. But although public key cryptography is a fascinating
theoretical concept, it is not at all clear how one might create a public key
cryptosystem. It turns out that public key cryptosystems can be based on
hard mathematical problems. More precisely, one looks for a mathematical
problem that is initially hard to solve, but that becomes easy to solve if one
knows some extra piece of information.

Of course, private key cryptosystems have not disappeared. Indeed, they
are more important than ever, since they tend to be significantly more effi-
cient than public key cryptosystems. Thus in practice, if Bob wants to send
Alice a long message, he first uses a public key cryptosystem to send Alice
the key for a private key cryptosystem, and then he uses the private key
cryptosystem to encrypt his message. The most efficient modern private key
cryptosystems, such as DES and AES, rely for their security on repeated ap-
plication of various mixing operations that are hard to unmix without the
private key. Thus although the subject of private key cryptography is of both
theoretical and practical importance, the connection with fundamental un-
derlying mathematical ideas is much less pronounced than it is with public
key cryptosystems. For that reason, this book concentrates almost exclusively
on public key cryptography, especially public key cryptosystems and digital
signatures.

Modern mathematical cryptography draws on many areas of mathematics,
including especially number theory, abstract algebra (groups, rings, fields),
probability, statistics, and information theory, so the prerequisites for studying
the subject can seem formidable. By way of contrast, the prerequisites for
reading this book are minimal, because we take the time to introduce each
required mathematical topic in sufficient depth as it is needed. Thus this
book provides a self-contained treatment of mathematical cryptography for
the reader with limited mathematical background. And for those readers who
have taken a course in, say, number theory or abstract algebra or probability,
we suggest briefly reviewing the relevant sections as they are reached and then
moving on directly to the cryptographic applications.

This book is not meant to be a comprehensive source for all things cryp-
tographic. In the first place, as already noted, we concentrate on public key
cryptography. But even within this domain, we have chosen to pursue a small
selection of topics to a reasonable mathematical depth, rather than provid-
ing a more superficial description of a wider range of subjects. We feel that
any reader who has mastered the material in this book will not only be well
prepared for further study in cryptography, but will have acquired a real
understanding of the underlying mathematical principles on which modern
cryptography is based.

However, this does not mean that the omitted topics are unimportant.
It simply means that there is a limit to the amount of material that can
be included in a book (or course) of reasonable length. As in any text, the
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choice of particular topics reflects the authors’ tastes and interests. For the
convenience of the reader, the final chapter contains a brief survey of areas
for further study.

A Guide to Mathematical Topics: This book includes a significant amount
of mathematical material on a variety of topics that are useful in cryptography.
The following list is designed to help coordinate the mathematical topics that
we cover with subjects that the class or reader may have already studied.

Congruences, primes, and finite fields — Sects. 1.2, 1.3, 1.4, 1.5, 2.10.4
The Chinese remainder theorem — Sect. 2.8

Euler’s formula — Sect. 3.1
Primality testing — Sect. 3.4

Quadratic reciprocity — Sect. 3.9
Factorization methods — Sects. 3.5, 3.6, 3.7, 6.6

Discrete logarithms — Sects. 2.2, 3.8, 5.4, 5.5, 6.3
Group theory — Sect. 2.5

Rings, polynomials, and quotient rings — Sects. 2.10 and 7.9
Combinatorics and probability — Sects. 5.1 and 5.3

Information and complexity theory — Sects. 5.6 and 5.7
Elliptic curves — Sects. 6.1, 6.2, 6.7, 6.8
Linear algebra — Sects. 7.3

Lattices — Sects. 7.4, 7.5, 7.6, 7.13

Intended Audience and Prerequisites: This book provides a self-con-
tained introduction to public key cryptography and to the underlying math-
ematics that is required for the subject. It is suitable as a text for advanced
undergraduates and beginning graduate students. We provide enough back-
ground material so that the book can be used in courses for students with no
previous exposure to abstract algebra or number theory. For classes in which
the students have a stronger background, the basic mathematical material
may be omitted, leaving time for some of the more advanced topics.

The formal prerequisites for this book are few, beyond a facility with
high school algebra and, in Chap. 6, analytic geometry. Elementary calculus
is used here and there in a minor way, but is not essential, and linear alge-
bra is used in a small way in Chap. 3 and more extensively in Chap. 7. No
previous knowledge is assumed for mathematical topics such as number the-
ory, abstract algebra, and probability theory that play a fundamental role in
modern cryptography. They are covered in detail as needed.

However, it must be emphasized that this is a mathematics book with its
share of formal definitions and theorems and proofs. Thus it is expected that
the reader has a certain level of mathematical sophistication. In particular,
students who have previously taken a proof-based mathematics course will
find the material easier than those without such background. On the other
hand, the subject of cryptography is so appealing that this book makes a
good text for an introduction-to-proofs course, with the understanding that
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the instructor will need to cover the material more slowly to allow the students
time to become comfortable with proof-based mathematics.

Suggested Syllabus: This book contains considerably more material than
can be comfortably covered by beginning students in a one semester course.
However, for more advanced students who have already taken courses in num-
ber theory and abstract algebra, it should be possible to do most of the remain-
ing material. We suggest covering the majority of the topics in Chaps. 1–4,
possibly omitting some of the more technical topics, the optional material
on the Vigènere cipher, and the section on ring theory, which is not used
until much later in the book. The next three chapters on information theory
(Chap. 5), elliptic curves (Chap. 6), and lattices (Chap. 7) are mostly indepen-
dent of one another, so the instructor has the choice of covering one or two
of them in detail or all of them in less depth. We offer the following syllabus
as an example of one of the many possibilities. We have indicated that some
sections are optional. Covering the optional material leaves less time for the
later chapters at the end of the course.

Chapter 1. An Introduction to Cryptography.
Cover all sections.

Chapter 2. Discrete Logarithms and Diffie–Hellman.
Cover Sects. 2.1–2.7. Optionally cover the more mathematically sophis-
ticated Sects. 2.8–2.9 on the Pohlig–Hellman algorithm. Omit Sect. 2.10
on first reading.

Chapter 3. Integer Factorization and RSA.
Cover Sects. 3.1–3.5 and 3.9–3.10. Optionally, cover the more mathemat-
ically sophisticated Sects. 3.6–3.8, dealing with smooth numbers, sieves,
and the index calculus.

Chapter 4. Digital Signatures.
Cover all sections.

Chapter 5. Probability Theory and Information Theory.
Cover Sects. 5.1, 5.3, and 5.4. Optionally cover the more mathemati-
cally sophisticated sections on Pollard’s ρ method (Sect. 5.5), informa-
tion theory (Sect. 5.6), and complexity theory (Sect. 5.7). The material
on the Vigenère cipher in Sect. 5.2 nicely illustrates the use of statistics
in cryptanalysis, but is somewhat off the main path.

Chapter 6. Elliptic Curves.
Cover Sects. 6.1–6.4. Cover other sections as time permits, but note that
Sects. 6.7–6.10 on pairings require finite fields of prime power order,
which are described in Sect. 2.10.4.

Chapter 7. Lattices and Cryptography.
Cover Sects. 7.1–7.8. (If time is short, one may omit either or both of
Sects. 7.1 and 7.2.) Cover either Sects. 7.13–7.14 on the LLL lattice re-
duction algorithm or Sects. 7.9–7.11 on the NTRU cryptosystem, or
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both, as time permits. (The NTRU sections require the material on
polynomial rings and quotient rings covered in Sect. 2.10.)

Chapter 8. Additional Topics in Cryptography.
The material in this chapter points the reader toward other important
areas of cryptography. It provides a good list of topics and references
for student term papers and presentations.

Further Notes for the Instructor: Depending on how much of the harder
mathematical material in Chaps. 2–5 is covered, there may not be time to
delve into both Chaps. 6 and 7, so the instructor may need to omit either
elliptic curves or lattices in order to fit the other material into one semester.

We feel that it is helpful for students to gain an appreciation of the origins
of their subject, so we have scattered a handful of sections throughout the book
containing some brief comments on the history of cryptography. Instructors
who want to spend more time on mathematics may omit these sections without
affecting the mathematical narrative.

Changes in the Second Edition:
• The chapter on digital signatures has been moved, since we felt that
this important topic should be covered earlier in the course. More pre-
cisely, RSA, Elgamal, and DSA signatures are now described in the short
Chap. 4, while the material on elliptic curve signatures is covered in the
brief Sect. 6.4.3. The two sections on lattice-based signatures from the first
edition have been extensively rewritten and now appear as Sect. 7.12.

• Numerous new exercises have been included.

• Numerous typographical and minor mathematical errors have been cor-
rected, and notation has been made more consistent from chapter to
chapter.

• Various explanations have been rewritten or expanded for clarity, espe-
cially in Chaps. 5–7.

• New sections on digital cash and on homomorphic encryption have been
added to the additional topics in Chap. 8; see Sects. 8.8 and 8.9.



Chapter 1

An Introduction
to Cryptography

1.1 Simple Substitution Ciphers

As Julius Caesar surveys the unfolding battle from his hilltop outpost, an
exhausted and disheveled courier bursts into his presence and hands him a
sheet of parchment containing gibberish:

j s j r d k f q q n s l g f h p g w j f p y m w t z l m n r r n s j s y q z h n z x

Within moments, Julius sends an order for a reserve unit of charioteers to
speed around the left flank and exploit a momentary gap in the opponent’s
formation.

How did this string of seemingly random letters convey such important
information? The trick is easy, once it is explained. Simply take each letter in
the message and shift it five letters up the alphabet. Thus j in the ciphertext
becomes e in the plaintext,1 because e is followed in the alphabet by f,g,h,i,j.
Applying this procedure to the entire ciphertext yields

j s j r d k f q q n s l g f h p g w j f p y m w t z l m n r r n s j s y q z h n z x

e n e m y f a l l i n g b a c k b r e a k t h r o u g h i m m i n e n t l u c i u s

The second line is the decrypted plaintext, and breaking it into words and
supplying the appropriate punctuation, Julius reads the message

Enemy falling back. Breakthrough imminent. Lucius.

1The plaintext is the original message in readable form and the ciphertext is the
encrypted message.

© Springer Science+Business Media New York 2014
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2 1. An Introduction to Cryptography

There remains one minor quirk that must be addressed. What happens when
Julius finds a letter such as d? There is no letter appearing five letters before d
in the alphabet. The answer is that he must wrap around to the end of the
alphabet. Thus d is replaced by y, since y is followed by z,a,b,c,d.

This wrap-around effect may be conveniently visualized by placing the
alphabet abcd...xyz around a circle, rather than in a line. If a second alpha-
bet circle is then placed within the first circle and the inner circle is rotated
five letters, as illustrated in Fig. 1.1, the resulting arrangement can be used
to easily encrypt and decrypt Caesar’s messages. To decrypt a letter, simply
find it on the inner wheel and read the corresponding plaintext letter from
the outer wheel. To encrypt, reverse this process: find the plaintext letter on
the outer wheel and read off the ciphertext letter from the inner wheel. And
note that if you build a cipherwheel whose inner wheel spins, then you are no
longer restricted to always shifting by exactly five letters. Cipher wheels of
this sort have been used for centuries.2

Although the details of the preceding scene are entirely fictional, and in
any case it is unlikely that a message to a Roman general would have been
written in modern English(!), there is evidence that Caesar employed this
early method of cryptography, which is sometimes called the Caesar cipher
in his honor. It is also sometimes referred to as a shift cipher, since each
letter in the alphabet is shifted up or down. Cryptography, the methodology of
concealing the content of messages, comes from the Greek root words kryptos,
meaning hidden,3 and graphikos, meaning writing. The modern scientific study
of cryptography is sometimes referred to as cryptology.

In the Caesar cipher, each letter is replaced by one specific substitute
letter. However, if Bob encrypts a message for Alice4 using a Caesar cipher
and allows the encrypted message to fall into Eve’s hands, it will take Eve
very little time to decrypt it. All she needs to do is try each of the 26 possible
shifts.

Bob can make his message harder to attack by using a more complicated
replacement scheme. For example, he could replace every occurrence of a

by z and every occurrence of z by a, every occurrence of b by y and every
occurrence of y by b, and so on, exchanging each pair of letters c ↔ x,. . . ,
m↔ n.

This is an example of a simple substitution cipher, that is, a cipher in which
each letter is replaced by another letter (or some other type of symbol). The

2A cipher wheel with mixed up alphabets and with encryption performed using different
offsets for different parts of the message is featured in a fifteenth century monograph by
Leon Batista Alberti [63].

3The word cryptic, meaning hidden or occult, appears in 1638, while crypto- as a prefix
for concealed or secret makes its appearance in 1760. The term cryptogram appears much
later, first occurring in 1880.

4In cryptography, it is traditional for Bob and Alice to exchange confidential mes-
sages and for their adversary Eve, the eavesdropper, to intercept and attempt to read their
messages. This makes the field of cryptography much more personal than other areas of
mathematics and computer science, whose denizens are often X and Y !
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Figure 1.1: A cipher wheel with an offset of five letters

Caesar cipher is an example of a simple substitution cipher, but there are
many simple substitution ciphers other than the Caesar cipher. In fact, a
simple substitution cipher may be viewed as a rule or function

{a,b,c,d,e,...,x,y,z} −→ {A,B,C,D,E,...,X,Y,Z}

assigning each plaintext letter in the domain a different ciphertext letter in the
range. (To make it easier to distinguish the plaintext from the ciphertext, we
write the plaintext using lowercase letters and the ciphertext using uppercase
letters.) Note that in order for decryption to work, the encryption function
must have the property that no two plaintext letters go to the same ciphertext
letter. A function with this property is said to be one-to-one or injective.

A convenient way to describe the encryption function is to create a table
by writing the plaintext alphabet in the top row and putting each ciphertext
letter below the corresponding plaintext letter.

Example 1.1. A simple substitution encryption table is given in Table 1.1. The
ciphertext alphabet (the uppercase letters in the bottom row) is a randomly
chosen permutation of the 26 letters in the alphabet. In order to encrypt the
plaintext message

Four score and seven years ago,

we run the words together, look up each plaintext letter in the encryption
table, and write the corresponding ciphertext letter below.

f o u r s c o r e a n d s e v e n y e a r s a g o

N U R B K S U B V C G Q K V E V G Z V C B K C F U
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a b c d e f g h i j k l m n o p q r s t u v w x y z

C I S Q V N F O W A X M T G U H P B K L R E Y D Z J

Table 1.1: Simple substitution encryption table

j r a x v g n p b z s t l f h q d u c m o e i k w y

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Table 1.2: Simple substitution decryption table

It is then customary to write the ciphertext in five-letter blocks:

NURBK SUBVC GQKVE VGZVC BKCFU

Decryption is a similar process. Suppose that we receive the message

GVVQG VYKCM CQQBV KKWGF SCVKC B

and that we know that it was encrypted using Table 1.1. We can reverse
the encryption process by finding each ciphertext letter in the second row
of Table 1.1 and writing down the corresponding letter from the top row.
However, since the letters in the second row of Table 1.1 are all mixed up,
this is a somewhat inefficient process. It is better to make a decryption table
in which the ciphertext letters in the lower row are listed in alphabetical order
and the corresponding plaintext letters in the upper row are mixed up. We
have done this in Table 1.2. Using this table, we easily decrypt the message.

G V V Q G V Y K C M C Q Q B V K K W G F S C V K C B

n e e d n e w s a l a d d r e s s i n g c a e s a r

Putting in the appropriate word breaks and some punctuation reveals an
urgent request!

Need new salad dressing. -Caesar

1.1.1 Cryptanalysis of Simple Substitution Ciphers

How many different simple substitution ciphers exist? We can count them by
enumerating the possible ciphertext values for each plaintext letter. First we
assign the plaintext letter a to one of the 26 possible ciphertext letters A–Z. So
there are 26 possibilities for a. Next, since we are not allowed to assign b to the
same letter as a, we may assign b to any one of the remaining 25 ciphertext
letters. So there are 26 · 25 = 650 possible ways to assign a and b. We have
now used up two of the ciphertext letters, so we may assign c to any one of
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the remaining 24 ciphertext letters. And so on. . . . Thus the total number of
ways to assign the 26 plaintext letters to the 26 ciphertext letters, using each
ciphertext letter only once, is

26 · 25 · 24 · · · 4 · 3 · 2 · 1 = 26! = 403291461126605635584000000.

There are thus more than 1026 different simple substitution ciphers. Each
associated encryption table is known as a key.

Suppose that Eve intercepts one of Bob’s messages and that she attempts
to decrypt it by trying every possible simple substitution cipher. The process
of decrypting a message without knowing the underlying key is called crypt-
analysis. If Eve (or her computer) is able to check one million cipher alphabets
per second, it would still take her more than 1013 years to try them all.5 But
the age of the universe is estimated to be on the order of 1010 years. Thus Eve
has almost no chance of decrypting Bob’s message, which means that Bob’s
message is secure and he has nothing to worry about!6 Or does he?

It is time for an important lesson in the practical side of the science of
cryptography:

Your opponent always uses her best strategy to defeat you,
not the strategy that you want her to use. Thus the secu-
rity of an encryption system depends on the best known
method to break it. As new and improved methods are
developed, the level of security can only get worse, never
better.

Despite the large number of possible simple substitution ciphers, they are
actually quite easy to break, and indeed many newspapers and magazines
feature them as a companion to the daily crossword puzzle. The reason that
Eve can easily cryptanalyze a simple substitution cipher is that the letters
in the English language (or any other human language) are not random. To
take an extreme example, the letter q in English is virtually always followed
by the letter u. More useful is the fact that certain letters such as e and t

appear far more frequently than other letters such as f and c. Table 1.3 lists
the letters with their typical frequencies in English text. As you can see, the
most frequent letter is e, followed by t, a, o, and n.

Thus if Eve counts the letters in Bob’s encrypted message and makes a
frequency table, it is likely that the most frequent letter will represent e, and
that t, a, o, and n will appear among the next most frequent letters. In this
way, Eve can try various possibilities and, after a certain amount of trial and
error, decrypt Bob’s message.

5Do you see how we got 1013 years? There are 60 · 60 · 24 · 365 s in a year, and 26!
divided by 106 · 60 · 60 · 24 · 365 is approximately 1013.107.

6The assertion that a large number of possible keys, in and of itself, makes a cryptosys-
tem secure, has appeared many times in history and has equally often been shown to be
fallacious.
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By decreasing frequency
E 13.11% M 2.54%
T 10.47% U 2.46%
A 8.15% G 1.99%
O 8.00% Y 1.98%
N 7.10% P 1.98%
R 6.83% W 1.54%
I 6.35% B 1.44%
S 6.10% V 0.92%
H 5.26% K 0.42%
D 3.79% X 0.17%
L 3.39% J 0.13%
F 2.92% Q 0.12%
C 2.76% Z 0.08%

In alphabetical order
A 8.15% N 7.10%
B 1.44% O 8.00%
C 2.76% P 1.98%
D 3.79% Q 0.12%
E 13.11% R 6.83%
F 2.92% S 6.10%
G 1.99% T 10.47%
H 5.26% U 2.46%
I 6.35% V 0.92%
J 0.13% W 1.54%
K 0.42% X 0.17%
L 3.39% Y 1.98%
M 2.54% Z 0.08%

Table 1.3: Frequency of letters in English text

LOJUM YLJME PDYVJ QXTDV SVJNL DMTJZ WMJGG YSNDL UYLEO SKDVC

GEPJS MDIPD NEJSK DNJTJ LSKDL OSVDV DNGYN VSGLL OSCIO LGOYG

ESNEP CGYSN GUJMJ DGYNK DPPYX PJDGG SVDNT WMSWS GYLYS NGSKJ

CEPYQ GSGLD MLPYN IUSCP QOYGM JGCPL GDWWJ DMLSL OJCNY NYLYD

LJQLO DLCNL YPLOJ TPJDM NJQLO JWMSE JGGJG XTUOY EOOJO DQDMM

YBJQD LLOJV LOJTV YIOLU JPPES NGYQJ MOYVD GDNJE MSVDN EJM

Table 1.4: A simple substitution cipher to cryptanalyze

In the remainder of this section we illustrate how to cryptanalyze a simple
substitution cipher by decrypting the message given in Table 1.4. Of course the
end result of defeating a simple substitution cipher is not our main goal here.
Our key point is to introduce the idea of statistical analysis, which will prove to
have many applications throughout cryptography. Although for completeness
we provide full details, the reader may wish to skim this material.

There are 298 letters in the ciphertext. The first step is to make a frequency
table listing how often each ciphertext letter appears (Table 1.5).

J L D G Y S O N M P E V Q C T W U K I X Z B A F R H

Freq 32 28 27 24 23 22 19 18 17 15 12 12 8 8 7 6 6 5 4 3 1 1 0 0 0 0

% 11 9 9 8 8 7 6 6 6 5 4 4 3 3 2 2 2 2 1 1 0 0 0 0 0 0

Table 1.5: Frequency table for Table 1.4—Ciphertext length: 298

The ciphertext letter J appears most frequently, so we make the provisional
guess that it corresponds to the plaintext letter e. The next most frequent
ciphertext letters are L (28 times) and D (27 times), so we might guess from
Table 1.3 that they represent t and a. However, the letter frequencies in a
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th he an re er in on at nd st es en of te ed

168 132 92 91 88 86 71 68 61 53 52 51 49 46 46

(a) Most common English bigrams (frequency per 1000 words)

LO OJ GY DN VD YL DL DM SN KD LY NG OY JD SK EP JG SV JM JQ

9 7 6 each 5 each 4 each

(b) Most common bigrams appearing in the ciphertext in Table 1.4

Table 1.6: Bigram frequencies

short message are unlikely to exactly match the percentages in Table 1.3. All
that we can say is that among the ciphertext letters L, D, G, Y, and S are likely
to appear several of the plaintext letters t, a, o, n, and r.

There are several ways to proceed. One method is to look at bigrams,
which are pairs of consecutive letters. Table 1.6a lists the bigrams that most
frequently appear in English, and Table 1.6b lists the ciphertext bigrams that
appear most frequently in our message. The ciphertext bigrams LO and OJ

appear frequently. We have already guessed that J = e, and based on its fre-
quency we suspect that L is likely to represent one of the letters t, a, o, n,
or r. Since the two most frequent English bigrams are th and he, we make
the tentative identifications

LO = th and OJ = he.

We substitute the guesses J = e, L = t, and O = h, into the ciphertext,
writing the putative plaintext letter below the corresponding ciphertext letter.

LOJUM YLJME PDYVJ QXTDV SVJNL DMTJZ WMJGG YSNDL UYLEO SKDVC

the-- -te-- ----e ----- --e-t ---e- --e-- ----t --t-h -----

GEPJS MDIPD NEJSK DNJTJ LSKDL OSVDV DNGYN VSGLL OSCIO LGOYG

---e- ----- --e-- --e-e t---t h---- ----- ---tt h---h t-h--

ESNEP CGYSN GUJMJ DGYNK DPPYX PJDGG SVDNT WMSWS GYLYS NGSKJ

----- ----- --e-e ----- ----- -e--- ----- ----- --t-- ----e

CEPYQ GSGLD MLPYN IUSCP QOYGM JGCPL GDWWJ DMLSL OJCNY NYLYD

----- ---t- -t--- ----- -h--- e---t ----e --t-t he--- --t--

LJQLO DLCNL YPLOJ TPJDM NJQLO JWMSE JGGJG XTUOY EOOJO DQDMM

te-th -t--t --the --e-- -e-th e---- e--e- ---h- -hheh -----

YBJQD LLOJV LOJTV YIOLU JPPES NGYQJ MOYVD GDNJE MSVDN EJM

--e-- tthe- the-- --ht- e---- ----e -h--- ---e- ----- -e-

At this point, we can look at the fragments of plaintext and attempt to
guess some common English words. For example, in the second line we see the
three blocks
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VSGLL OSCIO LGOYG,

---tt h---h t-h--.

Looking at the fragment th---ht, we might guess that this is the word
thought, which gives three more equivalences,

S = o, C = u, I = g.

This yields

LOJUM YLJME PDYVJ QXTDV SVJNL DMTJZ WMJGG YSNDL UYLEO SKDVC

the-- -te-- ----e ----- o-e-t ---e- --e-- -o--t --t-h o---u

GEPJS MDIPD NEJSK DNJTJ LSKDL OSVDV DNGYN VSGLL OSCIO LGOYG

---eo --g-- --eo- --e-e to--t ho--- ----- -o-tt hough t-h--

ESNEP CGYSN GUJMJ DGYNK DPPYX PJDGG SVDNT WMSWS GYLYS NGSKJ

-o--- u--o- --e-e ----- ----- -e--- o---- --o-o --t-o --o-e

CEPYQ GSGLD MLPYN IUSCP QOYGM JGCPL GDWWJ DMLSL OJCNY NYLYD

u---- -o-t- -t--- g-ou- -h--- e-u-t ----e --tot heu-- --t--

LJQLO DLCNL YPLOJ TPJDM NJQLO JWMSE JGGJG XTUOY EOOJO DQDMM

te-th -tu-t --the --e-- -e-th e--o- e--e- ---h- -hheh -----

YBJQD LLOJV LOJTV YIOLU JPPES NGYQJ MOYVD GDNJE MSVDN EJM

--e-- tthe- the-- -ght- e---o ----e -h--- ---e- -o--- -e-

Now look at the three letters ght in the last line. They must be preceded
by a vowel, and the only vowels left are a and i, so we guess that Y = i. Then
we find the letters itio in the third line, and we guess that they are followed
by an n, which gives N = n. (There is no reason that a letter cannot represent
itself, although this is often forbidden in the puzzle ciphers that appear in
newspapers.) We now have

LOJUM YLJME PDYVJ QXTDV SVJNL DMTJZ WMJGG YSNDL UYLEO SKDVC

the-- ite-- --i-e ----- o-ent ---e- --e-- ion-t -it-h o---u

GEPJS MDIPD NEJSK DNJTJ LSKDL OSVDV DNGYN VSGLL OSCIO LGOYG

---eo --g-- n-eo- -ne-e to--t ho--- -n-in -o-tt hough t-hi-

ESNEP CGYSN GUJMJ DGYNK DPPYX PJDGG SVDNT WMSWS GYLYS NGSKJ

-on-- u-ion --e-e --in- ---i- -e--- o--n- --o-o -itio n-o-e

CEPYQ GSGLD MLPYN IUSCP QOYGM JGCPL GDWWJ DMLSL OJCNY NYLYD

u--i- -o-t- -t-in g-ou- -hi-- e-u-t ----e --tot heuni niti-

LJQLO DLCNL YPLOJ TPJDM NJQLO JWMSE JGGJG XTUOY EOOJO DQDMM

te-th -tunt i-the --e-- ne-th e--o- e--e- ---hi -hheh -----

YBJQD LLOJV LOJTV YIOLU JPPES NGYQJ MOYVD GDNJE MSVDN EJM

i-e-- tthe- the-- ight- e---o n-i-e -hi-- --ne- -o--n -e-

So far, we have reconstructed the following plaintext/ciphertext pairs:

J L D G Y S O N M P E V Q C T W U K I X Z B A F R H

e t - - i o h n - - - - - u - - - - g - - - - - - -

Freq 32 28 27 24 23 22 19 18 17 15 12 12 8 8 7 6 6 5 4 3 1 1 0 0 0 0
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Recall that the most common letters in English (Table 1.3) are, in order of
decreasing frequency,

e, t, a, o, n, r, i, s, h.

We have already assigned ciphertext values to e, t, o, n, i, h, so we guess
that D and G represent two of the three letters a, r, s. In the third line we
notice that GYLYSN gives -ition, so clearly G must be s. Similarly, on the
fifth line we have LJQLO DLCNL equal to te-th -tunt, so D must be a, not r.
Substituting these new pairs G = s and D = a gives

LOJUM YLJME PDYVJ QXTDV SVJNL DMTJZ WMJGG YSNDL UYLEO SKDVC

the-- ite-- -ai-e ---a- o-ent a--e- --ess ionat -it-h o-a-u

GEPJS MDIPD NEJSK DNJTJ LSKDL OSVDV DNGYN VSGLL OSCIO LGOYG

s--eo -ag-a n-eo- ane-e to-at ho-a- ansin -ostt hough tshis

ESNEP CGYSN GUJMJ DGYNK DPPYX PJDGG SVDNT WMSWS GYLYS NGSKJ

-on-- usion s-e-e asin- a--i- -eass o-an- --o-o sitio nso-e

CEPYQ GSGLD MLPYN IUSCP QOYGM JGCPL GDWWJ DMLSL OJCNY NYLYD

u--i- sosta -t-in g-ou- -his- esu-t sa--e a-tot heuni nitia

LJQLO DLCNL YPLOJ TPJDM NJQLO JWMSE JGGJG XTUOY EOOJO DQDMM

te-th atunt i-the --ea- ne-th e--o- esses ---hi -hheh a-a--

YBJQD LLOJV LOJTV YIOLU JPPES NGYQJ MOYVD GDNJE MSVDN EJM

i-e-a tthe- the-- ight- e---o nsi-e -hi-a sane- -o-an -e-

It is now easy to fill in additional pairs by inspection. For example, the
missing letter in the fragment atunt i-the on the fifth line must be l, which
gives P = l, and the missing letter in the fragment -osition on the third
line must be p, which gives W = p. Substituting these in, we find the fragment
e-p-ession on the first line, which gives Z = x and M = r, and the fragment
-on-lusion on the third line, which gives E = c. Then consi-er on the last
line gives Q = d and the initial words the-riterclai-e- must be the phrase
“the writer claimed,” yielding U = w and V = m. This gives

LOJUM YLJME PDYVJ QXTDV SVJNL DMTJZ WMJGG YSNDL UYLEO SKDVC

thewr iterc laime d--am oment ar-ex press ionat witch o-amu

GEPJS MDIPD NEJSK DNJTJ LSKDL OSVDV DNGYN VSGLL OSCIO LGOYG

scleo ragla nceo- ane-e to-at homam ansin mostt hough tshis

ESNEP CGYSN GUJMJ DGYNK DPPYX PJDGG SVDNT WMSWS GYLYS NGSKJ

concl usion swere asin- alli- leass oman- propo sitio nso-e

CEPYQ GSGLD MLPYN IUSCP QOYGM JGCPL GDWWJ DMLSL OJCNY NYLYD

uclid sosta rtlin gwoul dhisr esult sappe artot heuni nitia

LJQLO DLCNL YPLOJ TPJDM NJQLO JWMSE JGGJG XTUOY EOOJO DQDMM

tedth atunt ilthe -lear nedth eproc esses --whi chheh adarr

YBJQD LLOJV LOJTV YIOLU JPPES NGYQJ MOYVD GDNJE MSVDN EJM

i-eda tthem the-m ightw ellco nside rhima sanec roman cer

It is now a simple matter to fill in the few remaining letters and put in
the appropriate word breaks, capitalization, and punctuation to recover the
plaintext:
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The writer claimed by a momentary expression, a twitch of a mus-
cle or a glance of an eye, to fathom a man’s inmost thoughts. His
conclusions were as infallible as so many propositions of Euclid.
So startling would his results appear to the uninitiated that until
they learned the processes by which he had arrived at them they
might well consider him as a necromancer.7

1.2 Divisibility and Greatest Common Divisors

Much of modern cryptography is built on the foundations of algebra and
number theory. So before we explore the subject of cryptography, we need to
develop some important tools. In the next four sections we begin this devel-
opment by describing and proving fundamental results in these areas. If you
have already studied number theory in another course, a brief review of this
material will suffice. But if this material is new to you, then it is vital to study
it closely and to work out the exercises provided at the end of the chapter.

At the most basic level, Number Theory is the study of the natural numbers

1, 2, 3, 4, 5, 6, . . . ,

or slightly more generally, the study of the integers

. . . ,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, . . . .

The set of integers is denoted by the symbol Z. Integers can be added, sub-
tracted, and multiplied in the usual way, and they satisfy all the usual rules
of arithmetic (commutative law, associative law, distributive law, etc.). The
set of integers with their addition and multiplication rules are an example of
a ring. See Sect. 2.10.1 for more about the theory of rings.

If a and b are integers, then we can add them, a+ b, subtract them, a− b,
and multiply them, a · b. In each case, we get an integer as the result. This
property of staying inside of our original set after applying operations to a
pair of elements is characteristic of a ring.

But if we want to stay within the integers, then we are not always able
to divide one integer by another. For example, we cannot divide 3 by 2, since
there is no integer that is equal to 3

2 . This leads to the fundamental concept
of divisibility.

Definition. Let a and b be integers with b �= 0. We say that b divides a, or
that a is divisible by b, if there is an integer c such that

a = bc.

We write b | a to indicate that b divides a. If b does not divide a, then we
write b � a.

7A Study in Scarlet (Chap. 2), Sir Arthur Conan Doyle.
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Example 1.2. We have 847 | 485331, since 485331 = 847 · 573. On the other
hand, 355 � 259943, since when we try to divide 259943 by 355, we get a
remainder of 83. More precisely, 259943 = 355 · 732 + 83, so 259943 is not an
exact multiple of 355.

Remark 1.3. Notice that every integer is divisible by 1. The integers that are
divisible by 2 are the even integers, and the integers that are not divisible
by 2 are the odd integers.

There are a number of elementary divisibility properties, some of which
we list in the following proposition.

Proposition 1.4. Let a, b, c ∈ Z be integers.
(a) If a | b and b | c, then a | c.
(b) If a | b and b | a, then a = ±b.
(c) If a | b and a | c, then a | (b+ c) and a | (b− c).

Proof. We leave the proof as an exercise for the reader; see Exercise 1.6.

Definition. A common divisor of two integers a and b is a positive integer d
that divides both of them. The greatest common divisor of a and b is, as
its name suggests, the largest positive integer d such that d | a and d | b.
The greatest common divisor of a and b is denoted gcd(a, b). If there is no
possibility of confusion, it is also sometimes denoted by (a, b). (If a and b are
both 0, then gcd(a, b) is not defined.)

It is a curious fact that a concept as simple as the greatest common divisor
has many applications. We’ll soon see that there is a fast and efficient method
to compute the greatest common divisor of any two integers, a fact that has
powerful and far-reaching consequences.

Example 1.5. The greatest common divisor of 12 and 18 is 6, since 6 | 12
and 6 | 18 and there is no larger number with this property. Similarly,

gcd(748, 2024) = 44.

One way to check that this is correct is to make lists of all of the positive
divisors of 748 and of 2024.

Divisors of 748 = {1, 2, 4, 11, 17, 22, 34, 44, 68, 187, 374, 748},
Divisors of 2024 = {1, 2, 4, 8, 11, 22, 23, 44, 46, 88, 92, 184, 253,

506, 1012, 2024}.

Examining the two lists, we see that the largest common entry is 44. Even
from this small example, it is clear that this is not a very efficient method. If
we ever need to compute greatest common divisors of large numbers, we will
have to find a more efficient approach.
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The key to an efficient algorithm for computing greatest common divisors
is division with remainder, which is simply the method of “long division” that
you learned in elementary school. Thus if a and b are positive integers and if
you attempt to divide a by b, you will get a quotient q and a remainder r,
where the remainder r is smaller than b. For example,

13 R 9
17 ) 230

17
60
51
9

so 230 divided by 17 gives a quotient of 13 with a remainder of 9. What does
this last statement really mean? It means that 230 can be written as

230 = 17 · 13 + 9,

where the remainder 9 is strictly smaller than the divisor 17.

Definition. (Division With Remainder) Let a and b be positive integers.
Then we say that a divided by b has quotient q and remainder r if

a = b · q + r with 0 ≤ r < b.

The values of q and r are uniquely determined by a and b; see Exercise 1.14.

Suppose now that we want to find the greatest common divisor of a and b.
We first divide a by b to get

a = b · q + r with 0 ≤ r < b. (1.1)

If d is any common divisor of a and b, then it is clear from Eq. (1.1) that d
is also a divisor of r. (See Proposition 1.4(c).) Similarly, if e is a common
divisor of b and r, then (1.1) shows that e is a divisor of a. In other words, the
common divisors of a and b are the same as the common divisors of b and r;
hence

gcd(a, b) = gcd(b, r).

We repeat the process, dividing b by r to get another quotient and remainder,
say

b = r · q′ + r′ with 0 ≤ r′ < r.

Then the same reasoning shows that

gcd(b, r) = gcd(r, r′).

Continuing this process, the remainders become smaller and smaller, until
eventually we get a remainder of 0, at which point the final value gcd(s, 0) = s
is equal to the gcd of a and b.

We illustrate with an example and then describe the general method, which
goes by the name Euclidean algorithm.
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Example 1.6. We compute gcd(2024, 748) using the Euclidean algorithm,
which is nothing more than repeated division with remainder. Notice how
the b and r values on each line become the new a and b values on the subse-
quent line:

2024 = 748 · 2 + 528

748 = 528 · 1 + 220

528 = 220 · 2 + 88

220 = 88 · 2 + 44 ← gcd = 44

88 = 44 · 2 + 0

Theorem 1.7 (The Euclidean Algorithm). Let a and b be positive integers
with a ≥ b. The following algorithm computes gcd(a, b) in a finite number of
steps.
(1) Let r0 = a and r1 = b.

(2) Set i = 1.

(3) Divide ri−1 by ri to get a quotient qi and remainder ri+1,

ri−1 = ri · qi + ri+1 with 0 ≤ ri+1 < ri.

(4) If the remainder ri+1 = 0, then ri = gcd(a, b) and the algorithm termi-
nates.

(5) Otherwise, ri+1 > 0, so set i = i+ 1 and go to Step 3.

The division step (Step 3) is executed at most

2 log2(b) + 2 times.

Proof. The Euclidean algorithm consists of a sequence of divisions with
remainder as illustrated in Fig. 1.2 (remember that we set r0 = a and r1 = b).

a = b ·q1 + r2 with 0 ≤ r2 < b,
b = r2 ·q2 + r3 with 0 ≤ r3 < r2,

r2 = r3 ·q3 + r4 with 0 ≤ r4 < r3,
r3 = r4 ·q4 + r5 with 0 ≤ r5 <r4,

...
...

...
rt−2 = rt−1 · qt−1 + rt with 0 ≤ rt < rt−1,
rt−1 = rt · qt

Then rt = gcd(a, b).

Figure 1.2: The Euclidean algorithm step by step

The ri values are strictly decreasing, and as soon as they reach zero the
algorithm terminates, which proves that the algorithm does finish in a finite
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number of steps. Further, at each iteration of Step 3 we have an equation of
the form

ri−1 = ri · qi + ri+1.

This equation implies that any common divisor of ri−1 and ri is also a divisor
of ri+1, and similarly it implies that any common divisor of ri and ri+1 is also
a divisor of ri−1. Hence

gcd(ri−1, ri) = gcd(ri, ri+1) for all i = 1, 2, 3, . . . . (1.2)

However, as noted earlier, we eventually get to an ri that is zero, say rt+1 = 0.
Then rt−1 = rt · qt, so

gcd(rt−1, rt) = gcd(rt · qt, rt) = rt.

But Eq. (1.2) says that this is equal to gcd(r0, r1), i.e., to gcd(a, b), which com-
pletes the proof that the last nonzero remainder in the Euclidean algorithm
is equal to the greatest common divisor of a and b.

It remains to estimate the efficiency of the algorithm. We noted above
that since the ri values are strictly decreasing, the algorithm terminates, and
indeed since r1 = b, it certainly terminates in at most b steps. However, this
upper bound is far from the truth. We claim that after every two iterations
of Step 3, the value of ri is at least cut in half. In other words:

Claim: ri+2 <
1
2ri for all i = 0, 1, 2, . . . .

We prove the claim by considering two cases.

Case I: ri+1 ≤ 1
2ri

We know that the ri values are strictly decreasing, so

ri+2 < ri+1 ≤ 1
2ri.

Case II: ri+1 >
1
2ri

Consider what happens when we divide ri by ri+1. The value of ri+1 is
so large that we get

ri = ri+1 · 1 + ri+2 with ri+2 = ri − ri+1 < ri − 1
2ri =

1
2ri.

We have now proven our claim that ri+2 <
1
2ri for all i. Using this inequality

repeatedly, we find that

r2k+1 <
1

2
r2k−1 <

1

4
r2k−3 <

1

8
r2k−5 <

1

16
r2k−7 < · · · <

1

2k
r1 =

1

2k
b.

Hence if 2k ≥ b, then r2k+1 < 1, which forces r2k+1 to equal 0 and the algo-
rithm to terminate. In terms of Fig. 1.2, the value of rt+1 is 0, so we have
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t+ 1 ≤ 2k + 1, and thus t ≤ 2k. Further, there are exactly t divisions per-
formed in Fig. 1.2, so the Euclidean algorithm terminates in at most 2k iter-
ations. Choose the smallest such k, so 2k ≥ b > 2k−1. Then

# of iterations ≤ 2k = 2(k − 1) + 2 < 2 log2(b) + 2,

which completes the proof of Theorem 1.7.

Remark 1.8. We proved that the Euclidean algorithm applied to a and b with
a ≥ b requires no more than 2 log2(b) + 2 iterations to compute gcd(a, b). This
estimate can be somewhat improved. It has been proven that the Euclidean
algorithm takes no more than 1.45 log2(b) + 1.68 iterations, and that the
average number of iterations for randomly chosen a and b is approximately
0.85 log2(b) + 0.14; see [66].

Remark 1.9. One way to compute quotients and remainders is by long
division, as we did on page 12. You can speed up the process using a sim-
ple calculator. The first step is to divide a by b on your calculator, which will
give a real number. Throw away the part after the decimal point to get the
quotient q. Then the remainder r can be computed as

r = a− b · q.

For example, let a = 2387187 and b = 27573. Then a/b ≈ 86.57697748, so
q = 86 and

r = a− b · q = 2387187− 27573 · 86 = 15909.

If you need just the remainder, you can instead take the decimal part (also
sometimes called the fractional part) of a/b and multiply it by b. Continuing
with our example, the decimal part of a/b ≈ 86.57697748 is 0.57697748, and
multiplying by b = 27573 gives

27573 · 0.57697748 = 15909.00005604.

Rounding this off gives r = 15909.

After performing the Euclidean algorithm on two numbers, we can work
our way back up the process to obtain an extremely interesting formula. Before
giving the general result, we illustrate with an example.

Example 1.10. Recall that in Example 1.6 we used the Euclidean algorithm
to compute gcd(2024, 748) as follows:

2024 = 748 · 2 + 528

748 = 528 · 1 + 220

528 = 220 · 2 + 88

220 = 88 · 2 + 44 ← gcd = 44

88 = 44 · 2 + 0
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We let a = 2024 and b = 748, so the first line says that

528 = a− 2b.

We substitute this into the second line to get

b = (a− 2b) · 1 + 220, so 220 = −a+ 3b.

We next substitute the expressions 528 = a− 2b and 220 = −a+ 3b into the
third line to get

a− 2b = (−a+ 3b) · 2 + 88, so 88 = 3a− 8b.

Finally, we substitute the expressions 220 = −a + 3b and 88 = 3a − 8b into
the penultimate line to get

−a+ 3b = (3a− 8b) · 2 + 44, so 44 = −7a+ 19b.

In other words,

−7 · 2024 + 19 · 748 = 44 = gcd(2024, 748),

so we have found a way to write gcd(a, b) as a linear combination of a and b
using integer coefficients.

In general, it is always possible to write gcd(a, b) as an integer linear combi-
nation of a and b, a simple sounding result with many important consequences.

Theorem 1.11 (Extended Euclidean Algorithm). Let a and b be positive
integers. Then the equation

au+ bv = gcd(a, b)

always has a solution in integers u and v. (See Exercise 1.12 for an efficient
algorithm to find a solution.)

If (u0, v0) is any one solution, then every solution has the form

u = u0 +
b · k

gcd(a, b)
and v = v0 −

a · k
gcd(a, b)

for some k ∈ Z.

Proof. Look back at Fig. 1.2, which illustrates the Euclidean algorithm step
by step. We can solve the first line for r2 = a − b · q1 and substitute it into
the second line to get

b = (a− b · q1) · q2 + r3, so r3 = −a · q2 + b · (1 + q1q2).

Next substitute the expressions for r2 and r3 into the third line to get

a− b · q1 =
(
−a · q2 + b · (1 + q1q2)

)
q3 + r4.
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After rearranging the terms, this gives

r4 = a · (1 + q2q3)− b · (q1 + q3 + q1q2q3).

The key point is that r4 = a · u + b · v, where u and v are integers. It does
not matter that the expressions for u and v in terms of q1, q2, q3 are rather
messy. Continuing in this fashion, at each stage we find that ri is the sum of
an integer multiple of a and an integer multiple of b. Eventually, we get to
rt = a ·u+ b ·v for some integers u and v. But rt = gcd(a, b), which completes
the proof of the first part of the theorem. We leave the second part as an
exercise (Exercise 1.11).

An especially important case of the extended Euclidean algorithm arises
when the greatest common divisor of a and b is 1. In this case we give a and b
a special name.

Definition. Let a and b be integers. We say that a and b are relatively prime
if gcd(a, b) = 1.

More generally, any equation

Au+Bv = gcd(A,B)

can be reduced to the case of relatively prime numbers by dividing both sides
by gcd(A,B). Thus

A

gcd(A,B)
u+

B

gcd(A,B)
v = 1,

where a = A/ gcd(A,B) and b = B/ gcd(A,B) are relatively prime and sat-
isfy au+bv = 1. For example, we found earlier that 2024 and 748 have greatest
common divisor 44 and satisfy

−7 · 2024 + 19 · 748 = 44.

Dividing both sides by 44, we obtain

−7 · 46 + 19 · 17 = 1.

Thus 2024/44 = 46 and 748/44 = 17 are relatively prime, and u = −7 and
v = 19 are the coefficients of a linear combination of 46 and 17 that equals 1.

In Example 1.10 we explained how to substitute the values from the
Euclidean algorithm in order to solve au + bv = gcd(a, b). Exercise 1.12
describes an efficient computer-oriented algorithm for computing u and v.
If a and b are relatively prime, we now describe a more conceptual version of
this substitution procedure. We first illustrate with the example a = 73 and
b = 25. The Euclidean algorithm gives

73 = 25 · 2 + 23
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25 = 23 · 1 + 2

23 = 2 · 11 + 1

2 = 1 · 2 + 0.

We set up a box, using the sequence of quotients 2, 1, 11, and 2, as follows:

2 1 11 2

0 1 ∗ ∗ ∗ ∗
1 0 ∗ ∗ ∗ ∗

Then the rule to fill in the remaining entries is as follows:

New Entry = (Number at Top) · (Number to the Left)

+ (Number Two Spaces to the Left).

Thus the two leftmost ∗’s are

2 · 1 + 0 = 2 and 2 · 0 + 1 = 1,

so now our box looks like this:

2 1 11 2

0 1 2 ∗ ∗ ∗
1 0 1 ∗ ∗ ∗

Then the next two leftmost ∗’s are

1 · 2 + 1 = 3 and 1 · 1 + 0 = 1,

and then the next two are

11 · 3 + 2 = 35 and 11 · 1 + 1 = 12,

and the final entries are

2 · 35 + 3 = 73 and 2 · 12 + 1 = 25.

The completed box is

2 1 11 2

0 1 2 3 35 73
1 0 1 1 12 25

Notice that the last column repeats a and b. More importantly, the next to
last column gives the values of −v and u (in that order). Thus in this example
we find that 73 · 12− 25 · 35 = 1. The general algorithm is given in Fig. 1.3.
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In general, if a and b are relatively prime and if q1, q2, . . . , qt is the
sequence of quotients obtained from applying the Euclidean algorithm
to a and b as in Figure 1.2 on page 13, then the box has the form

q1 q2 . . . qt−1 qt

0 1 P1 P2 . . . Pt−1 a
1 0 Q1 Q2 . . . Qt−1 b

The entries in the box are calculated using the initial values

P1 = q1, Q1 = 1, P2 = q2 · P1 + 1, Q2 = q2 · Q1,

and then, for i ≥ 3, using the formulas

Pi = qi · Pi−1 + Pi−2 and Qi = qi · Qi−1 + Qi−2.

The final four entries in the box satisfy

a · Qt−1 − b · Pt−1 = (−1)t.

Multiplying both sides by (−1)t gives the solution u = (−1)tQt−1
and v = (−1)t+1Pt−1 to the equation au + bv = 1.

Figure 1.3: Solving au+ bv = 1 using the Euclidean algorithm

1.3 Modular Arithmetic

You may have encountered “clock arithmetic” in grade school, where after you
get to 12, the next number is 1. This leads to odd-looking equations such as

6 + 9 = 3 and 2− 3 = 11.

These look strange, but they are true using clock arithmetic, since for ex-
ample 11 o’clock is 3 h before 2 o’clock. So what we are really doing is first
computing 2 − 3 = −1 and then adding 12 to the answer. Similarly, 9 h af-
ter 6 o’clock is 3 o’clock, since 6 + 9− 12 = 3.

The theory of congruences is a powerful method in number theory that is
based on the simple idea of clock arithmetic.

Definition. Let m ≥ 1 be an integer. We say that the integers a and b are
congruent modulo m if their difference a− b is divisible by m. We write

a ≡ b (mod m)

to indicate that a and b are congruent modulo m. The number m is called the
modulus.
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Our clock examples may be written as congruences using the modulus
m = 12:

6 + 9 = 15 ≡ 3 (mod 12) and 2− 3 = −1 ≡ 11 (mod 12).

Example 1.12. We have

17 ≡ 7 (mod 5), since 5 divides 10 = 17− 7.

On the other hand,

19 �≡ 6 (mod 11), since 11 does not divide 13 = 19− 6.

Notice that the numbers satisfying

a ≡ 0 (mod m)

are the numbers that are divisible by m, i.e., the multiples of m.

The reason that congruence notation is so useful is that congruences be-
have much like equalities, as the following proposition indicates.

Proposition 1.13. Let m ≥ 1 be an integer.
(a) If a1 ≡ a2 (mod m) and b1 ≡ b2 (mod m), then

a1 ± b1 ≡ a2 ± b2 (mod m) and a1 · b1 ≡ a2 · b2 (mod m).

(b) Let a be an integer. Then

a · b ≡ 1 (mod m) for some integer b if and only if gcd(a,m) = 1.

Further, if a · b1 ≡ a · b2 ≡ 1 (mod m), then b1 ≡ b2 (mod m). We call b
the (multiplicative) inverse of a modulo m.

Proof. (a) We leave this as an exercise; see Exercise 1.15.
(b) Suppose first that gcd(a,m) = 1. Then Theorem 1.11 tells us that we can
find integers u and v satisfying au+mv = 1. This means that au− 1 = −mv
is divisible by m, so by definition, au ≡ 1 (mod m). In other words, we can
take b = u.

For the other direction, suppose that a has an inverse modulo m, say
a · b ≡ 1 (mod m). This means that ab− 1 = cm for some integer c. It follows
that gcd(a,m) divides ab− cm = 1, so gcd(a,m) = 1. This completes the
proof that a has an inverse modulo m if and only if gcd(a,m) = 1. It remains
to show that the inverse is unique modulo m.

So suppose that a · b1 ≡ a · b2 ≡ 1 (mod m). Then

b1 ≡ b1 · 1 ≡ β1 · (a · b2) ≡ (b1 · a) · b2 ≡ 1 · b2 ≡ b2 (mod m),

which completes the proof of Proposition 1.13.
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Proposition 1.13(b) says that if gcd(a,m) = 1, then there exists an
inverse b of a modulo m. This has the curious consequence that the fraction
a−1 = 1/a has a meaningful interpretation in the world of integers modulo m,
namely a−1 modulo m is the unique number b modulo m satisfying the con-
gruence ab ≡ 1 (mod m).

Example 1.14. We takem = 5 and a = 2. Clearly gcd(2, 5) = 1, so there exists
an inverse to 2 modulo 5. The inverse of 2 modulo 5 is 3, since 2·3 ≡ 1 (mod 5),
so 2−1 ≡ 3 (mod 5). Similarly gcd(4, 15) = 1 so 4−1 exists modulo 15. In fact
4 · 4 ≡ 1 (mod 15) so 4 is its own inverse modulo 15.

We can even work with fractions a/d modulom as long as the denominator
is relatively prime to m. For example, we can compute 5/7 modulo 11 by first
observing that 7 · 8 ≡ 1 (mod 11), so 7−1 ≡ 8 (mod 11). Then

5

7
= 5 · 7−1 ≡ 5 · 8 ≡ 40 ≡ 7 (mod 11).

Remark 1.15. In the preceding examples it was easy to find inverses mod-
ulo m by trial and error. However, when m is large, it is more challenging
to compute a−1 modulo m. Note that we showed that inverses exist by us-
ing the extended Euclidean algorithm (Theorem 1.11). In order to actually
compute the u and v that appear in the equation au +mv = gcd(a,m), we
can apply the Euclidean algorithm directly as we did in Example 1.10, or
we can use the somewhat more efficient box method described at the end of
the preceding section, or we can use the algorithm given in Exercise 1.12.
In any case, since the Euclidean algorithm takes at most 2 log2(b) + 2 itera-
tions to compute gcd(a, b), it takes only a small multiple of log2(m) steps to
compute a−1 modulo m.

We now continue our development of the theory of modular arithmetic.
If a divided by m has quotient q and remainder r, it can be written as

a = m · q + r with 0 ≤ r < m.

This shows that a ≡ r (mod m) for some integer r between 0 and m− 1, so
if we want to work with integers modulo m, it is enough to use the integers
0 ≤ r < m. This prompts the following definition.

Definition. We write

Z/mZ = {0, 1, 2, . . . ,m− 1}

and call Z/mZ the ring of integers modulo m. We add and multiply elements
of Z/mZ by adding or multiplying them as integers and then dividing the
result by m and taking the remainder in order to obtain an element in Z/mZ.

Figure 1.4 illustrates the ring Z/5Z by giving complete addition and mul-
tiplication tables modulo 5.
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+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

· 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Figure 1.4: Addition and multiplication tables modulo 5

Remark 1.16. If you have studied ring theory, you will recognize that Z/mZ

is the quotient ring of Z by the principal ideal mZ, and that the num-
bers 0, 1, . . . ,m− 1 are actually coset representatives for the congruence
classes that comprise the elements of Z/mZ. For a discussion of congruence
classes and general quotient rings, see Sect. 2.10.2.

Definition. Proposition 1.13(b) tells us that a has an inverse modulo m if
and only if gcd(a,m) = 1. Numbers that have inverses are called units. We
denote the set of all units by

(Z/mZ)∗ = {a ∈ Z/mZ : gcd(a,m) = 1}
= {a ∈ Z/mZ : a has an inverse modulo m}.

The set (Z/mZ)∗ is called the group of units modulo m.

Notice that if a1 and a2 are units modulo m, then so is a1a2. (Do you see
why this is true?) So when we multiply two units, we always get a unit. On
the other hand, if we add two units, we often do not get a unit.

Example 1.17. The group of units modulo 24 is

(Z/24Z)∗ = {1, 5, 7, 11, 13, 17, 19, 23}.

Similarly, the group of units modulo 7 is

(Z/7Z)∗ = {1, 2, 3, 4, 5, 6},

since every number between 1 and 6 is relatively prime to 7. The multiplication
tables for (Z/24Z)∗ and (Z/7Z)∗ are illustrated in Fig. 1.5.

In many of the cryptosystems that we will study, it is important to know
how many elements are in the unit group modulo m. This quantity is suffi-
ciently ubiquitous that we give it a name.

Definition. Euler’s phi function (also sometimes known as Euler’s totient
function) is the function φ(m) defined by the rule

φ(m) = # (Z/mZ)
∗
= #{0 ≤ a < m : gcd(a,m) = 1}.

For example, we see from Example 1.17 that φ(24) = 8 and φ(7) = 6.
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· 1 5 7 11 13 17 19 23

1 1 5 7 11 13 17 19 23
5 5 1 11 7 17 13 23 19
7 7 11 1 5 19 23 13 17
11 11 7 5 1 23 19 17 13
13 13 17 19 23 1 5 7 11
17 17 13 23 19 5 1 11 7
19 19 23 13 17 7 11 1 5
23 23 19 17 13 11 7 5 1

Unit group modulo 24
· 1 2 3 4 5 6

1 1 2 3 4 5 6
2 2 4 6 1 3 5
3 3 6 2 5 1 4
4 4 1 5 2 6 3
5 5 3 1 6 4 2
6 6 5 4 3 2 1

Unit group modulo 7

Figure 1.5: The unit groups (Z/24Z)∗ and (Z/7Z)∗

1.3.1 Modular Arithmetic and Shift Ciphers

Recall that the Caesar (or shift) cipher studied in Sect. 1.1 works by shifting
each letter in the alphabet a fixed number of letters. We can describe a shift
cipher mathematically by assigning a number to each letter as in Table 1.7.

a b c d e f g h i j k l m n o p q r s t u v w x y z

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Table 1.7: Assigning numbers to letters

Then a shift cipher with shift k takes a plaintext letter corresponding to
the number p and assigns it to the ciphertext letter corresponding to the
number p+ k mod 26. Notice how the use of modular arithmetic, in this case
modulo 26, simplifies the description of the shift cipher. The shift amount
serves as both the encryption key and the decryption key. Encryption is given
by the formula

(Ciphertext Letter) ≡ (Plaintext Letter) + (Secret Key) (mod 26),

and decryption works by shifting in the opposite direction,
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(Plaintext Letter) ≡ (Ciphertext Letter)− (Secret Key) (mod 26).

More succinctly, if we let

p = Plaintext Letter, c = Ciphertext Letter, k = Secret Key,

then
c ≡ p+ k (mod 26)
︸ ︷︷ ︸

Encryption

and p ≡ c− k (mod 26)
︸ ︷︷ ︸

Decryption

.

1.3.2 The Fast Powering Algorithm

In some cryptosystems that we will study, for example the RSA and Diffie–
Hellman cryptosystems, Alice and Bob are required to compute large powers
of a number g modulo another number N , where N may have hundreds of
digits. The naive way to compute gA is by repeated multiplication by g. Thus

g1 ≡ g (mod N), g2 ≡ g · g1 (mod N), g3 ≡ g · g2 (mod N),

g4 ≡ g · g3 (mod N), g5 ≡ g · g4 (mod N), . . . .

It is clear that gA ≡ gA (mod N), but if A is large, this algorithm is completely
impractical. For example, if A ≈ 21000, then the naive algorithm would take
longer than the estimated age of the universe! Clearly if it is to be useful, we
need to find a better way to compute gA (mod N).

The idea is to use the binary expansion of the exponent A to convert
the calculation of gA into a succession of squarings and multiplications. An
example will make the idea clear, after which we give a formal description of
the method.

Example 1.18. Suppose that we want to compute 3218 (mod 1000). The first
step is to write 218 as a sum of powers of 2,

218 = 2 + 23 + 24 + 26 + 27.

Then 3218 becomes

3218 = 32+23+24+26+27 = 32 · 323 · 324 · 326 · 327 . (1.3)

Notice that it is relatively easy to compute the sequence of values

3, 32, 32
2

, 32
3

, 32
4

, . . . ,

since each number in the sequence is the square of the preceding one. Further,
since we only need these values modulo 1000, we never need to store more
than three digits. Table 1.8 lists the powers of 3 modulo 1000 up to 32

7

.
Creating Table 1.8 requires only 7 multiplications, despite the fact that the
number 32

7

= 3128 has quite a large exponent, because each successive entry
in the table is equal to the square of the previous entry.
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i 0 1 2 3 4 5 6 7

32
i

(mod 1000) 3 9 81 561 721 841 281 961

Table 1.8: Successive square powers of 3 modulo 1000

We use (1.3) to decide which powers from Table 1.8 are needed to com-
pute 3218. Thus

3218 = 32 · 323 · 324 · 326 · 327

≡ 9 · 561 · 721 · 281 · 961 (mod 1000)

≡ 489 (mod 1000).

We note that in computing the product 9 · 561 · 721 · 281 · 961, we may reduce
modulo 1000 after each multiplication, so we never need to deal with very
large numbers. We also observe that it has taken us only 11 multiplications
to compute 3218 (mod 1000), a huge savings over the naive approach. And for
larger exponents we would save even more.

The general approach used in Example 1.18 goes by various names, includ-
ing the Fast Powering Algorithm and the Square-and-Multiply Algorithm.8 We
now describe the algorithm more formally.

The Fast Powering Algorithm

Step 1. Compute the binary expansion of A as

A = A0+A1 ·2+A2 ·22+A3 ·23+ · · ·+Ar ·2r with A0, . . . , Ar ∈ {0, 1},

where we may assume that Ar = 1.

Step 2. Compute the powers g2
i

(mod N) for 0 ≤ i ≤ r by successive squar-
ing,

a0 ≡ g (mod N)

a1 ≡ a20 ≡ g2 (mod N)

a2 ≡ a21 ≡ g2
2

(mod N)

a3 ≡ a22 ≡ g2
3

(mod N)

...
...

...

ar ≡ a2r−1 ≡ g2
r

(mod N).

Each term is the square of the previous one, so this requires r
multiplications.

8The first known recorded description of the fast powering algorithm appeared in India
before 200 BC, while the first reference outside India dates to around 950 AD. See [66,
page 441] for a brief discussion and further references.



26 1. An Introduction to Cryptography

Step 3. Compute gA (mod N) using the formula

gA = gA0+A1·2+A2·22+A3·23+···+Ar·2r

= gA0 · (g2)A1 · (g22)A2 · (g23)A3 · · · (g2r )Ar

≡ aA0
0 · aA1

1 · aA2
2 · aA3

3 · · · aAr
r (mod N). (1.4)

Note that the quantities a0, a1, . . . , ar were computed in Step 2. Thus the
product (1.4) can be computed by looking up the values of the ai’s whose
exponent Ai is 1 and then multiplying them together. This requires at
most another r multiplications.

Running Time. It takes at most 2r multiplications modulo N to com-
pute gA. Since A ≥ 2r, we see that it takes at most 2 log2(A) mul-
tiplications9 modulo N to compute gA. Thus even if A is very large,
say A ≈ 21000, it is easy for a computer to do the approximately 2000
multiplications needed to calculate 2A modulo N .

Efficiency Issues. There are various ways in which the square-and-multiply
algorithm can be made somewhat more efficient, in particular regarding
eliminating storage requirements; see Exercise 1.25 for an example.

1.4 Prime Numbers, Unique Factorization,
and Finite Fields

In Sect. 1.3 we studied modular arithmetic and saw that it makes sense to
add, subtract, and multiply integers modulo m. Division, however, can be
problematic, since we can divide by a in Z/mZ only if gcd(a,m) = 1. But
notice that if the integer m is a prime, then we can divide by every nonzero
element of Z/mZ. We start with a brief discussion of prime numbers before
returning to the ring Z/pZ with p prime.

Definition. An integer p is called a prime if p ≥ 2 and if the only positive
integers dividing p are 1 and p.

For example, the first ten primes are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, while the
hundred thousandth prime is 1299709 and the millionth is 15485863. There are
infinitely many primes, a fact that was known in ancient Greece and appears
as a theorem in Euclid’s Elements. (See Exercise 1.28.)

A prime p is defined in terms of the numbers that divide p. So the following
proposition, which describes a useful property of numbers that are divisible
by p, is not obvious and needs to be carefully proved. Notice that the proposi-
tion is false for composite numbers. For example, 6 divides 3 ·10, but 6 divides
neither 3 nor 10.

9Note that log2(A) means the usual logarithm to the base 2, not the so-called discrete
logarithm that will be discussed in Chap. 2.
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Proposition 1.19. Let p be a prime number, and suppose that p divides the
product ab of two integers a and b. Then p divides at least one of a and b.

More generally, if p divides a product of integers, say

p | a1a2 · · · an,

then p divides at least one of the individual ai.

Proof. Let g = gcd(a, p). Then g | p, so either g = 1 or g = p. If g = p, then
p | a (since g | a), so we are done. Otherwise, g = 1 and Theorem 1.11 tells us
that we can find integers u and v satisfying au+ pv = 1. We multiply both
sides of the equation by b to get

abu+ pbv = b. (1.5)

By assumption, p divides the product ab, and certainly p divides pbv, so p di-
vides both terms on the left-hand side of (1.5). Hence it divides the right-hand
side, which shows that p divides b and completes the proof of Proposition 1.19.

To prove the more general statement, we write the product as a1(a2 · · · an)
and apply the first statement with a = a1 and b = a2 · · · an. If p | a1, we’re
done. Otherwise, p | a2 · · · an, so writing this as a2(a3 · · · an), the first state-
ment tells us that either p | a2 or p | a3 · · · an. Continuing in this fashion, we
must eventually find some ai that is divisible by p.

As an application of Proposition 1.19, we prove that every positive integer
has an essentially unique factorization as a product of primes.

Theorem 1.20 (The Fundamental Theorem of Arithmetic). Let a ≥ 2 be an
integer. Then a can be factored as a product of prime numbers

a = pe11 · pe22 · pe33 · · · perr .

Further, other than rearranging the order of the primes, this factorization into
prime powers is unique.

Proof. It is not hard to prove that every a ≥ 2 can be factored into a product
of primes. It is tempting to assume that the uniqueness of the factorization is
also obvious. However, this is not the case; unique factorization is a somewhat
subtle property of the integers. We will prove it using the general form of
Proposition 1.19. (For an example of a situation in which unique factorization
fails to be true, see the E-zone described in [137, Chapter 7].)

Suppose that a has two factorizations into products of primes,

a = p1p2 · · · ps = q1q2 · · · qt, (1.6)

where the pi and qj are all primes, not necessarily distinct, and s does not
necessarily equal t. Since p1 | a, we see that p1 divides the product q1q2q3 · · · qt.
Thus by the general form of Proposition 1.19, we find that p1 divides one of
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the qi. Rearranging the order of the qi if necessary, we may assume that p1 | q1.
But p1 and q1 are both primes, so we must have p1 = q1. This allows us to
cancel them from both sides of (1.6), which yields

p2p3 · · · ps = q2q3 · · · qt.

Repeating this process s times, we ultimately reach an equation of the form

1 = qt−sqt−s+1 · · · qt.

It follows immediately that t = s and that the original factorizations of a
were identical up to rearranging the order of the factors. (For a more detailed
proof of the fundamental theorem of arithmetic, see any basic number theory
textbook, for example [35, 52, 59, 100, 111, 137].)

Definition. The fundamental theorem of arithmetic (Theorem 1.20) says that
in the factorization of a positive integer a into primes, each prime p appears
to a particular power. We denote this power by ordp(a) and call it the order
(or exponent) of p in a. (For convenience, we set ordp(1) = 0 for all primes.)

For example, the factorization of 1728 is 1728 = 26 · 33, so

ord2(1728) = 6, ord3(1728) = 3, and ordp(1728) = 0 for all primes p ≥ 5.

Using the ordp notation, the factorization of a can be succinctly written as

a =
∏

primes p

pordp(a).

Note that this product makes sense, since ordp(a) is zero for all but finitely
many primes.

It is useful to view ordp as a function

ordp : {1, 2, 3, . . .} −→ {0, 1, 2, 3, . . .}. (1.7)

This function has a number of interesting properties, some of which are de-
scribed in Exercise 1.31.

We now observe that if p is a prime, then every nonzero number modulo p
has a multiplicative inverse modulo p. This means that when we do arithmetic
modulo a prime p, not only can we add, subtract, multiply, but we can also
divide by nonzero numbers, just as we can with real numbers. This property
of primes is sufficiently important that we formally state it as a proposition.

Proposition 1.21. Let p be a prime. Then every nonzero element a in Z/pZ
has a multiplicative inverse, that is, there is a number b satisfying

ab ≡ 1 (mod p).

We denote this value of b by a−1 mod p, or if p has already been specified,
then simply by a−1.
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Proof. This proposition is a special case of Proposition 1.13(b) using the prime
modulus p, since if a ∈ Z/pZ is not zero, then gcd(a, p) = 1.

Remark 1.22. The extended Euclidean algorithm (Theorem 1.11) gives us an
efficient computational method for computing a−1 mod p. We simply solve
the equation

au+ pv = 1 in integers u and v,

and then u = a−1 mod p. For an alternative method of computing a−1 mod p,
see Remark 1.26.

Proposition 1.21 can be restated by saying that if p is prime, then

(Z/pZ)∗ = {1, 2, 3, 4, . . . , p− 1}.

In other words, when the 0 element is removed from Z/pZ, the remaining
elements are units and closed under multiplication.

Definition. If p is prime, then the set Z/pZ of integers modulo p with its
addition, subtraction, multiplication, and division rules is an example of a
field. If you have studied abstract algebra (or see Sect. 2.10), you know that
a field is the general name for a (commutative) ring in which every nonzero
element has a multiplicative inverse. You are already familiar with some other
fields, for example the field of real numbers R, the field of rational numbers
(fractions) Q, and the field of complex numbers C.

The field Z/pZ of integers modulo p has only finitely many elements. It
is a finite field and is often denoted by Fp. Thus Fp and Z/pZ are really just
two different notations for the same object.10 Similarly, we write F

∗
p inter-

changeably for the group of units (Z/pZ)∗. Finite fields are of fundamental
importance throughout cryptography, and indeed throughout all of mathe-
matics.

Remark 1.23. Although Z/pZ and Fp are used to denote the same concept,
equality of elements is expressed somewhat differently in the two settings. For
a, b ∈ Fp, the equality of a and b is denoted by a = b, while for a, b ∈ Z/pZ,
the equality of a and b is denoted by equivalence modulo p, i.e., a ≡ b (mod p).

1.5 Powers and Primitive Roots
in Finite Fields

The application of finite fields in cryptography often involves raising elements
of Fp to high powers. As a practical matter, we know how to do this effi-
ciently using the powering algorithm described in Sect. 1.3.2. In this section

10Finite fields are also sometimes called Galois fields, after Évariste Galois, who studied
them in the nineteenth century. Yet another notation for Fp is GF(p), in honor of Galois.
And yet one more notation for Fp that you may run across is Zp, although in number theory
the notation Zp is more commonly reserved for the ring of p-adic integers.
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we investigate powers in Fp from a purely mathematical viewpoint, prove a
fundamental result due to Fermat, and state an important property of the
group of units F∗

p.
We begin with a simple example. Table 1.9 lists the powers of 1, 2, 3, . . . , 6

modulo the prime 7.

11 ≡ 1 12 ≡ 1 13 ≡ 1 14 ≡ 1 15 ≡ 1 16 ≡ 1

21 ≡ 2 22 ≡ 4 23 ≡ 1 24 ≡ 2 25 ≡ 4 26 ≡ 1

31 ≡ 3 32 ≡ 2 33 ≡ 6 34 ≡ 4 35 ≡ 5 36 ≡ 1

41 ≡ 4 42 ≡ 2 43 ≡ 1 44 ≡ 4 45 ≡ 2 46 ≡ 1

51 ≡ 5 52 ≡ 4 53 ≡ 6 54 ≡ 2 55 ≡ 3 56 ≡ 1

61 ≡ 6 62 ≡ 1 63 ≡ 6 64 ≡ 1 65 ≡ 6 66 ≡ 1

Table 1.9: Powers of numbers modulo 7

There are quite a few interesting patterns visible in Table 1.9, including
in particular the fact that the right-hand column consists entirely of ones. We
can restate this observation by saying that

a6 ≡ 1 (mod 7) for every a = 1, 2, 3, . . . , 6.

Of course, this cannot be true for all values of a, since if a is a multiple
of 7, then so are all of its powers, so in that case an ≡ 0 (mod 7). On the
other hand, if a is not divisible by 7, then a is congruent to one of the val-
ues 1, 2, 3, . . . , 6 modulo 7. Hence

a6 ≡
{
1 (mod 7) if 7 � a,

0 (mod 7) if 7 | a.

Further experiments with other primes suggest that this example reflects a
general fact.

Theorem 1.24 (Fermat’s Little Theorem). Let p be a prime number and
let a be any integer. Then

ap−1 ≡
{
1 (mod p) if p � a,

0 (mod p) if p | a.

Proof. There are many proofs of Fermat’s little theorem. If you have studied
group theory, the quickest proof is to observe that the nonzero elements in Fp

form a group F
∗
p of order p− 1, so by Lagrange’s theorem, every element of F∗

p

has order dividing p− 1. For those who have not yet taken a course in group
theory, we provide a direct proof.
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If p | a, then it is clear that every power of a is divisible by p. So we only
need to consider the case that p � a. We now look at the list of numbers

a, 2a, 3a, . . . , (p− 1)a reduced modulo p. (1.8)

There are p− 1 numbers in this list, and we claim that they are all different.
To see why, take any two of them, say ja mod p and ka mod p, and suppose
that they are the same. This means that

ja ≡ ka (mod p), and hence that (j − k)a ≡ 0 (mod p).

Thus p divides the product (j − k)a. Proposition 1.19 tells us that either p
divides j − k or p divides a. However, we have assumed that p does not di-
vide a, so we conclude that p divides j − k. But both j and k are between 1
and p− 1, so their difference j − k is between −(p− 2) and p− 2. There is
only one number between −(p− 2) and p− 2 that is divisible by p, and that
number is zero! This proves that j − k = 0, which means that ja = ka. We
have thus shown that the p− 1 numbers in the list (1.8) are all different. They
are also nonzero, since 1, 2, 3, . . . , p− 1 and a are not divisible by p.

To recapitulate, we have shown that the list of numbers (1.8) consists of
p− 1 distinct numbers between 1 and p− 1. But there are only p− 1 distinct
numbers between 1 and p− 1, so the list of numbers (1.8) must simply be the
list of numbers 1, 2, . . . , p− 1 in some mixed up order.

Now consider what happens when we multiply together all of the numbers
a, 2a, 3a, . . . , (p−1)a in the list (1.8) and reduce the product modulo p. This is
the same as multiplying together all of the numbers 1, 2, 3, . . . , p− 1 modulo p,
so we get a congruence

a · 2a · 3a · · · (p− 1)a ≡ 1 · 2 · 3 · · · (p− 1) (mod p).

There are p − 1 copies of a appearing on the left-hand side. We factor these
out and use factorial notation (p− 1)! = 1 · 2 · · · (p− 1) to obtain

ap−1 · (p− 1)! ≡ (p− 1)! (mod p).

Finally, we are allowed to cancel (p− 1)! from both sides, since it is not
divisible by p. (We are using the fact that Fp is a field, so we are allowed to
divide by any nonzero number.) This yields

ap−1 ≡ 1 (mod p),

which completes the proof of Fermat’s “little” theorem.11

11You may wonder why Theorem 1.24 is called a “little” theorem. The reason is to
distinguish it from Fermat’s “big” theorem, which is the famous assertion that xn+yn = zn

has no solutions in positive integers x, y, z if n ≥ 3. It is unlikely that Fermat himself could
prove this big theorem, but in 1996, more than three centuries after Fermat’s era, Andrew
Wiles finally found a proof.



32 1. An Introduction to Cryptography

Example 1.25. The number p = 15485863 is prime, so Fermat’s little theorem
(Theorem 1.24) tells us that

215485862 ≡ 1 (mod 15485863).

Thus without doing any computing, we know that the number 215485862 − 1,
a number having more than two million digits, is a multiple of 15485863.

Remark 1.26. Fermat’s little theorem (Theorem 1.24) and the fast power-
ing algorithm (Sect. 1.3.2) provide us with a reasonably efficient method of
computing inverses modulo p, namely

a−1 ≡ ap−2 (mod p).

This congruence is true because if we multiply ap−2 by a, then Fermat’s theo-
rem tells us that the product is equal to 1 modulo p. This gives an alternative
to the extended Euclidean algorithm method described in Remark 1.22. In
practice, the two algorithms tend to take about the same amount of time,
although there are variants of the Euclidean algorithm that are somewhat
faster in practice; see for example [66, Chapter 4.5.3, Theorem E].

Example 1.27. We compute the inverse of 7814 modulo 17449 in two ways.
First,

7814−1 ≡ 781417447 ≡ 1284 (mod 17449).

Second, we use the extended Euclidean algorithm to solve

7814u+ 17449v = 1.

The solution is (u, v) = (1284,−575), so 7814−1 ≡ 1284 (mod 17449).

Example 1.28. Consider the number m = 15485207. Using the powering al-
gorithm, it is not hard to compute (on a computer)

2m−1 = 215485206 ≡ 4136685 (mod 15485207).

We did not get the value 1, so it seems that Fermat’s little theorem is not true
for m. What does that tell us? If m were prime, then Fermat’s little theorem
says that we would have obtained 1. Hence the fact that we did not get 1
proves that the number m = 15485207 is not prime.

Think about this for a minute, because it’s actually a bit astonishing. By
a simple computation, we have conclusively proven that m is not prime, yet
we do not know any of its factors!12

Fermat’s little theorem tells us that if a is an integer not divisible by p,
then ap−1 ≡ 1 (mod p). However, for any particular value of a, there may
well be smaller powers of a that are congruent to 1. We define the order of a
modulo p to be the smallest exponent k ≥ 1 such that13

12The prime factorization of m is m = 15485207 = 3853 · 4019.
13We earlier defined the order of p in a to be the exponent of p when a is factored into

primes. Thus unfortunately, the word “order” has two different meanings. You will need to
judge which one is meant from the context.
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ak ≡ 1 (mod p).

Proposition 1.29. Let p be a prime and let a be an integer not divisible
by p. Suppose that an ≡ 1 (mod p). Then the order of a modulo p divides n.
In particular, the order of a divides p− 1.

Proof. Let k be the order of a modulo p, so by definition ak ≡ 1 (mod p),
and k is the smallest positive exponent with this property. We are given
that an ≡ 1 (mod p). We divide n by k to obtain

n = kq + r with 0 ≤ r < k.

Then
1 ≡ an ≡ akq+r ≡ (ak)q · ar ≡ 1q · ar ≡ ar (mod p).

But r < k, so the fact that k is the smallest positive power of a that is
congruent to 1 tells us that r must equal 0. Therefore n = kq, so k divides n.

Finally, Fermat’s little theorem tells us that ap−1 ≡ 1 (mod p), so k di-
vides p− 1.

Fermat’s little theorem describes a special property of the units (i.e., the
nonzero elements) in a finite field. We conclude this section with a brief dis-
cussion of another property that is quite important both theoretically and
practically.

Theorem 1.30 (Primitive Root Theorem). Let p be a prime number. Then
there exists an element g ∈ F

∗
p whose powers give every element of F∗

p, i.e.,

F
∗
p = {1, g, g2, g3, . . . , gp−2}.

Elements with this property are called primitive roots of Fp or generators
of F∗

p. They are the elements of F∗
p having order p− 1.

Proof. See [137, Chapter 20] or one of the texts [35, 52, 59, 100, 111].

Example 1.31. The field F11 has 2 as a primitive root, since in F11,

20 = 1 21 = 2 22 = 4 23 = 8 24 = 5

25 = 10 26 = 9 27 = 7 28 = 3 29 = 6.

Thus all 10 nonzero elements of F11 have been generated as powers of 2. On
the other hand, 2 is not a primitive root for F17, since in F17,

20 = 1 21 = 2 22 = 4 23 = 8 24 = 16

25 = 15 26 = 13 27 = 9 28 = 1,

so we get back to 1 before obtaining all 16 nonzero values modulo 17. However,
it turns out that 3 is a primitive root for 17, since in F17,
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30 = 1 31 = 3 32 = 9 33 = 10 34 = 13 35 = 5

36 = 15 37 = 11 38 = 16 39 = 14 310 = 8 311 = 7

312 = 4 313 = 12 314 = 2 315 = 6.

Remark 1.32. If p is large, then the finite field Fp has quite a few primitive
roots. The precise formula says that Fp has exactly φ(p− 1) primitive roots,
where φ is Euler’s phi function (see page 22). For example, you can check that
the following is a complete list of the primitive roots for F29:

{2, 3, 8, 10, 11, 14, 15, 18, 19, 21, 26, 27}.

This agrees with the value φ(28) = 12. More generally, if k divides p− 1, then
there are exactly φ(k) elements of F∗

p having order k.

1.6 Cryptography Before the Computer Age

We pause for a short foray into the history of pre-computer cryptography.
Our hope is that these brief notes will whet your appetite for further reading
on this fascinating subject, in which political intrigue, daring adventure, and
romantic episodes play an equal role with technical achievements.

The origins of cryptography are lost in the mists of time, but presumably
secret writing arose shortly after people started using some form of written
communication, since one imagines that the notion of confidential information
must date back to the dawn of civilization. There are early recorded descrip-
tions of ciphers being used in Roman times, including Julius Caesar’s shift
cipher from Sect. 1.1, and certainly from that time onward, many civilizations
have used both substitution ciphers, in which each letter is replaced by an-
other letter or symbol, and transposition ciphers, in which the order of the
letters is rearranged.

The invention of cryptanalysis, that is, the art of decrypting messages
without previous knowledge of the key, is more recent. The oldest surviving
texts, which include references to earlier lost volumes, are by Arab scholars
from the fourteenth and fifteenth centuries. These books describe not only
simple substitution and transposition ciphers, but also the first recorded in-
stance of a homophonic substitution cipher, which is a cipher in which a single
plaintext letter may be represented by any one of several possible ciphertext
letters. More importantly, they contain the first description of serious methods
of cryptanalysis, including the use of letter frequency counts and the likelihood
that certain pairs of letters will appear adjacent to one another. Unfortunately,
most of this knowledge seems to have disappeared by the seventeenth century.

Meanwhile, as Europe emerged from the Middle Ages, political states in
Italy and elsewhere required secure communications, and both cryptography
and cryptanalysis began to develop. The earliest known European homo-
phonic substitution cipher dates from 1401. The use of such a cipher suggests
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contemporary knowledge of cryptanalysis via frequency analysis, since the
only reason to use a homophonic system is to make such cryptanalysis more
difficult.

In the fifteenth and sixteenth centuries there arose a variety of what are
known as polyalphabetic ciphers. (We will see an example of a polyalphabetic
cipher, called the Vigenère cipher, in Sect. 5.2.) The basic idea is that each
letter of the plaintext is enciphered using a different simple substitution ci-
pher. The name “polyalphabetic” refers to the use of many different cipher
alphabets, which were used according to some sort of key. If the key is rea-
sonably long, then it takes a long time for the any given cipher alphabet to
be used a second time. It wasn’t until the nineteenth century that statistical
methods were developed to reliably solve such systems, although there are
earlier recorded instances of cryptanalysis via special tricks or lucky guesses
of part of the message or the key. Jumping forward several centuries, we note
that the machine ciphers that played a large role in World War II were, in
essence, extremely complicated polyalphabetic ciphers.

Ciphers and codes14 for both political and military purposes become
increasingly widespread during the eighteenth, nineteenth, and early twentieth
centuries, as did cryptanalytic methods, although the level of sophistication
varied widely from generation to generation and from country to country. For
example, as the United States prepared to enter World War I in 1917, the
U.S. Army was using ciphers, inferior to those invented in Italy in the 1600s,
that any trained cryptanalyst of the time would have been able to break in a
few hours!

The invention and widespread deployment of long-range communication
methods, especially the telegraph, opened the need for political, military, and
commercial ciphers, and there are many fascinating stories of intercepted and
decrypted telegraph messages playing a role in historical events. One exam-
ple, the infamous Zimmerman telegram, will suffice. With the United States
maintaining neutrality in 1917 as Germany battled France and Britain on
the Western Front, the Germans decided that their best hope for victory was
to tighten their blockade of Britain by commencing unrestricted submarine
warfare in the Atlantic. This policy, which meant sinking ships from neutral
countries, was likely to bring the United States into the war, so Germany de-
cided to offer an alliance to Mexico. In return for Mexico invading the United
States, and thus distracting it from the ground war in Europe, Germany pro-
posed giving Mexico, at the conclusion of the war, much of present-day Texas,
New Mexico, and Arizona. The British secret service intercepted this commu-
nication, and despite the fact that it was encrypted using one of Germany’s

14In classical terminology, a code is a system in which each word of the plaintext is
replaced with a code word. This requires sender and receiver to share a large dictionary in
which plaintext words are paired with their ciphertext equivalents. Ciphers operate on the
individual letters of the plaintext, either by substitution, transposition, or some combina-
tion. This distinction between the words “code” and “cipher” seems to have been largely
abandoned in today’s literature.
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most secure cryptosystems, they were able to decipher the cable and pass its
contents on to the United States, thereby helping to propel the United States
into World War I.

The invention and development of radio communications around 1900
caused an even more striking change in the cryptographic landscape, espe-
cially in urgent military and political situations. A general could now instan-
taneously communicate with all of his troops, but unfortunately the enemy
could listen in on all of his broadcasts. The need for secure and efficient ci-
phers became paramount and led to the invention of machine ciphers, such as
Germany’s Enigma machine. This was a device containing a number of rotors,
each of which had many wires running through its center. Before a letter was
encrypted, the rotors would spin in a predetermined way, thereby altering the
paths of the wires and the resultant output. This created an immensely com-
plicated polyalphabetic cipher in which the number of cipher alphabets was
enormous. Further, the rotors could be removed and replaced in a vast number
of different starting configurations, so breaking the system involved knowing
both the circuits through the rotors and figuring out that day’s initial rotor
configuration.

Despite these difficulties, during World War II the British managed to
decipher a large number of messages encrypted on Enigma machines. They
were aided in this endeavor by Polish cryptographers who, just before hos-
tilities commenced, shared with Britain and France the methods that they
had developed for attacking Enigma. But determining daily rotor configura-
tions and analyzing rotor replacements was still an immensely difficult task,
especially after Germany introduced an improved Enigma machine having an
extra rotor. The existence of Britain’s ULTRA project to decrypt Enigma re-
mained secret until 1974, but there are now several popular accounts. Military
intelligence derived from ULTRA was of vital importance in the Allied war
effort.

Another WWII cryptanalytic success was obtained by United States cryp-
tographers against a Japanese cipher machine that they code-named Purple.
This machine used switches, rather than rotors, but again the effect was to
create an incredibly complicated polyalphabetic cipher. A team of cryptogra-
phers, led by William Friedman, managed to reconstruct the design of the Pur-
ple machine purely by analyzing intercepted encrypted messages. They then
built their own machine and proceeded to decrypt many important diplomatic
messages.

In this section we have barely touched the surface of the history of cryptog-
raphy from antiquity through the middle of the twentieth century. Good start-
ing points for further reading include Simon Singh’s light introduction [139]
and David Kahn’s massive and comprehensive, but fascinating and quite read-
able, book The Codebreakers [63].
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1.7 Symmetric and Asymmetric Ciphers

We have now seen several different examples of ciphers, all of which have a
number of features in common. Bob wants to send a secret message to Alice.
He uses a secret key k to scramble his plaintext message m and turn it into a
ciphertext c. Alice, upon receiving c, uses the secret key k to unscramble c and
reconstitute m. If this procedure is to work properly, then both Alice and Bob
must possess copies of the secret key k, and if the system is to provide security,
then their adversary Eve must not know k, must not be able to guess k, and
must not be able to recover m from c without knowing k.

In this section we formulate the notion of a cryptosystem in abstract math-
ematical terms. There are many reasons why this is desirable. In particular,
it allows us to highlight similarities and differences between different systems,
while also providing a framework within which we can rigorously analyze the
security of a cryptosystem against various types of attacks.

1.7.1 Symmetric Ciphers

Returning to Bob and Alice, we observe that they must share knowledge of
the secret key k. Using that secret key, they can both encrypt and decrypt
messages, so Bob and Alice have equal (or symmetric) knowledge and abil-
ities. For this reason, ciphers of this sort are known as symmetric ciphers.
Mathematically, a symmetric cipher uses a key k chosen from a space (i.e.,
a set) of possible keys K to encrypt a plaintext message m chosen from a
space of possible messages M, and the result of the encryption process is a
ciphertext c belonging to a space of possible ciphertexts C.

Thus encryption may be viewed as a function

e : K ×M→ C

whose domain K×M is the set of pairs (k,m) consisting of a key k and a plain-
text m and whose range is the space of ciphertexts C. Similarly, decryption is
a function

d : K × C →M.

Of course, we want the decryption function to “undo” the results of the en-
cryption function. Mathematically, this is expressed by the formula

d
(
k, e(k,m)

)
= m for all k ∈ K and all m ∈M.

It is sometimes convenient to write the dependence on k as a subscript.
Then for each key k, we get a pair of functions

ek :M−→ C and dk : C −→M

satisfying the decryption property

dk
(
ek(m)

)
= m for all m ∈M.
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In other words, for every key k, the function dk is the inverse function of
the function ek. In particular, this means that ek must be one-to-one, since if
ek(m) = ek(m

′), then

m = dk
(
ek(m)

)
= dk

(
ek(m

′)
)
= m′.

It is safest for Alice and Bob to assume that Eve knows the encryption
method that is being employed. In mathematical terms, this means that Eve
knows the functions e and d. What Eve does not know is the particular key k
that Alice and Bob are using. For example, if Alice and Bob use a simple
substitution cipher, they should assume that Eve is aware of this fact. This
illustrates a basic premise of modern cryptography called Kerckhoff’s princi-
ple, which says that the security of a cryptosystem should depend only on the
secrecy of the key, and not on the secrecy of the encryption algorithm itself.

If (K,M, C, e, d) is to be a successful cipher, it must have the following
properties:

1. For any key k ∈ K and plaintext m ∈ M, it must be easy to compute
the ciphertext ek(m).

2. For any key k ∈ K and ciphertext c ∈ C, it must be easy to compute the
plaintext dk(c).

3. Given one or more ciphertexts c1, c2, . . . , cn ∈ C encrypted using the
key k ∈ K, it must be very difficult to compute any of the corresponding
plaintexts dk(c1), . . . , dk(cn) without knowledge of k.

Here is another property that is desirable, although more difficult to
achieve.

4. Given one or more pairs of plaintexts and their corresponding cipher-
texts, (m1, c1), (m2, c2), . . . , (mn, cn), it must be very difficult to decrypt
any ciphertext c that is not in the given list without knowing k. This
property is called security against a known plaintext attack.

Even better is to achieve security while allowing the attacker to choose the
known plaintexts.

5. For any list of plaintextsm1, . . . ,mn ∈M chosen by the adversary, even
with knowledge of the corresponding ciphertexts ek(m1), . . . , ek(mn),
it is very difficult to decrypt any ciphertext c that is not in the
given list without knowing k. This is known as security against a cho-
sen plaintext attack. N.B. In this attack, the adversary is allowed to
choose m1, . . . ,mn, as opposed to a known plaintext attack, where the
attacker is given a list of plaintext/ciphertext pairs not of his choosing.
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Example 1.33. The simple substitution cipher does not have Property 4, since
even a single plaintext/ciphertext pair (m, c) reveals most of the encryption
table. Similarly, the Vigenère cipher discussed in Sect. 5.2 has the property
that a plaintext/ciphertext pair immediately reveals the keyword used for
encryption. Thus both simple substitution and Vigenère ciphers are vulnerable
to known plaintext attacks. See Exercise 1.43 for a further example.

In our list of desirable properties for a cryptosystem, we have left open the
question of what exactly is meant by the words “easy” and “hard.” We defer
a formal discussion of this profound question to Sect. 5.7; see also Sects. 2.1
and 2.6. For now, we informally take “easy” to mean computable in less than
a second on a typical desktop computer and “hard” to mean that all of the
computing power in the world would require several years (at least) to perform
the computation.

1.7.2 Encoding Schemes

It is convenient to view keys, plaintexts, and ciphertexts as numbers and to
write those numbers in binary form. For example, we could take strings of
8 bits,15 which give numbers from 0 to 255, and use them to represent the
letters of the alphabet via

a = 00000000, b = 00000001, c = 00000010, . . . , z = 00011001.

To distinguish lowercase from uppercase, we could let A = 00011011, B =
00011100, and so on. This encoding method allows up to 256 distinct symbols
to be translated into binary form.

Your computer may use a method of this type, called the ASCII code,16 to
store data, although for historical reasons the alphabetic characters are not as-
signed the lowest binary values. Part of the ASCII code is listed in Table 1.10.
For example, the phrase “Bed bug.” (including spacing and punctuation) is
encoded in ASCII as

B e d b u g .

66 101 100 32 98 117 103 46
01000010 01100101 01100100 00100000 01100010 01110101 01100111 00101110

Thus where you see the phrase “Bed bug.”, your computer sees the list of
bits

0100001001100101011001000010000001100010011101010110011100101110.

Definition. An encoding scheme is a method of converting one sort of
data into another sort of data, for example, converting text into numbers.
The distinction between an encoding scheme and an encryption scheme is one

15A bit is a 0 or a 1. The word “bit” is an abbreviation for binary digit.
16ASCII is an acronym for American Standard Code for Information Interchange.
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32 00100000
( 40 00101000
) 41 00101001
, 44 00101100
. 46 00101110

A 65 01000001
B 66 01000010
C 67 01000011
D 68 01000100
...

...
...

X 88 01011000
Y 89 01011001
Z 90 01011010

a 97 01100001
b 98 01100010
c 99 01100011
d 100 01100100
...

...
...

x 120 01111000
y 121 01111001
z 122 01111010

Table 1.10: The ASCII encoding scheme

of intent. An encoding scheme is assumed to be entirely public knowledge and
used by everyone for the same purposes. An encryption scheme is designed to
hide information from anyone who does not possess the secret key. Thus an
encoding scheme, like an encryption scheme, consists of an encoding function
and its inverse decoding function, but for an encoding scheme, both functions
are public knowledge and should be fast and easy to compute.

With the use of an encoding scheme, a plaintext or ciphertext may be
viewed as a sequence of binary blocks, where each block consists of 8 bits, i.e.,
of a sequence of eight ones and zeros. A block of 8 bits is called a byte. For
human comprehension, a byte is often written as a decimal number between 0
and 255, or as a two-digit hexadecimal (base 16) number between 00 and FF.
Computers often operate on more than 1 byte at a time. For example, a 64-bit
processor operates on 8 bytes at a time.

1.7.3 Symmetric Encryption of Encoded Blocks

In using an encoding scheme as described in Sect. 1.7.2, it is convenient to
view the elements of the plaintext space M as consisting of bit strings of
a fixed length B, i.e., strings of exactly B ones and zeros. We call B the
blocksize of the cipher. A general plaintext message then consists of a list of
message blocks chosen from M, and the encryption function transforms the
message blocks into a list of ciphertext blocks in C, where each block is a
sequence of B bits. If the plaintext ends with a block of fewer than B bits, we
pad the end of the block with zeros. Keep in mind that this encoding process,
which converts the original plaintext message into a sequence of blocks of bits
in M, is public knowledge.

Encryption and decryption are done one block at a time, so it suffices to
study the process for a single plaintext block, i.e., for a single m ∈M. This,
of course, is why it is convenient to break a message up into blocks. A message
can be of arbitrary length, so it’s nice to be able to focus the cryptographic
process on a single piece of fixed length. The plaintext block m is a string
of B bits, which for concreteness we identify with the corresponding number
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in binary form. In other words, we identify M with the set of integers m
satisfying 0 ≤ m < 2B via

list of B bits of m
︷ ︸︸ ︷
mB−1mB−2 · · ·m2m1m0 ←→

integer between 0 and 2B − 1
︷ ︸︸ ︷
mB−1 · 2B−1 + · · ·+m2 · 22 +m1 · 2 +m0 .

Here m0,m1, . . . ,mB−1 are each 0 or 1.
Similarly, we identify the key space K and the ciphertext space C with sets

of integers corresponding to bit strings of a certain blocksize. For notational
convenience, we denote the blocksizes for keys, plaintexts, and ciphertexts
by Bk, Bm, and Bc. They need not be the same. Thus we have identified K,M,
and C with sets of positive integers

K = {k ∈ Z : 0 ≤ k < 2Bk},
M = {m ∈ Z : 0 ≤ m < 2Bm},
C = {c ∈ Z : 0 ≤ c < 2Bc}.

An important question immediately arises: how large should Alice and Bob
make the set K, or equivalently, how large should they choose the key block-
size Bk? If Bk is too small, then Eve can check every number from 0 to 2Bk − 1
until she finds Alice and Bob’s key. More precisely, since Eve is assumed to
know the decryption algorithm d (Kerckhoff’s principle), she takes each k ∈ K
and uses it to compute dk(c). Assuming that Eve is able to distinguish between
valid and invalid plaintexts, eventually she will recover the message.

This attack is known as an exhaustive search attack (also sometimes re-
ferred to as a brute-force attack), since Eve exhaustively searches through the
key space. With current technology, an exhaustive search is considered to be
infeasible if the space has at least 280 elements. Thus Bob and Alice should
definitely choose Bk ≥ 80.

For many cryptosystems, especially the public key cryptosystems that form
the core of this book, there are refinements on the exhaustive search attack
that effectively replace the size of the space with its square root. These meth-
ods are based on the principle that it is easier to find matching objects (col-
lisions) in a set than it is to find a particular object in the set. We describe
some of these meet-in-the-middle or collision attacks in Sects. 2.7, 5.4, 5.5, 7.2,
and 7.10. If meet-in-the-middle attacks are available, then Alice and Bob
should choose Bk ≥ 160.

1.7.4 Examples of Symmetric Ciphers

Before descending further into a morass of theory and notation, we pause to
give a mathematical description of some elementary symmetric ciphers.
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Let p be a large prime,17 say 2159 < p < 2160. Alice and Bob take their
key space K, plaintext space M, and ciphertext space C to be the same set,

K =M = C = {1, 2, 3, . . . , p− 1}.

In fancier terminology, K = M = C = F
∗
p are all taken to be equal to the

group of units in the finite field Fp.
Alice and Bob randomly select a key k ∈ K, i.e., they select an integer k

satisfying 1 ≤ k < p, and they decide to use the encryption function ek de-
fined by

ek(m) ≡ k ·m (mod p). (1.9)

Here we mean that ek(m) is set equal to the unique positive integer between 1
and p that is congruent to k ·m modulo p. The corresponding decryption
function dk is

dk(c) ≡ k′ · c (mod p),

where k′ is the inverse of k modulo p. It is important to note that although p
is very large, the extended Euclidean algorithm (Remark 1.15) allows us to
calculate k′ in fewer than 2 log2 p+ 2 steps. Thus finding k′ from k counts as
“easy” in the world of cryptography.

It is clear that Eve has a hard time guessing k, since there are approxi-
mately 2160 possibilities from which to choose. Is it also difficult for Eve to
recover k if she knows the ciphertext c? The answer is yes, it is still difficult.
Notice that the encryption function

ek :M−→ C

is surjective (onto) for any choice of key k. This means that for every c ∈ C
and any k ∈ K there exists an m ∈ M such that ek(m) = c. Further, any
given ciphertext may represent any plaintext, provided that the plaintext is
encrypted by an appropriate key. Mathematically, this may be rephrased by
saying that given any ciphertext c ∈ C and any plaintext m ∈M, there exists
a key k such that ek(m) = c. Specifically this is true for the key

k ≡ m−1 · c (mod p). (1.10)

This shows that Alice and Bob’s cipher has Properties 1–3 as listed on page 38,
since anyone who knows the key k can easily encrypt and decrypt, but it is
hard to decrypt if you do not know the value of k. However, this cipher does
not have Property 4, since even a single plaintext/ciphertext pair (m, c) allows
Eve to recover the private key k using the formula (1.10).

17There are in fact many primes in the interval 2159 < p < 2160. The prime number
theorem implies that almost 1% of the numbers in this interval are prime. Of course, there
is also the question of identifying a number as prime or composite. There are efficient tests
that do this, even for very large numbers. See Sect. 3.4.
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It is also interesting to observe that if Alice and Bob define their encryption
function to be simply multiplication of integers ek(m) = k ·m with no reduc-
tion modulo p, then their cipher still has Properties 1 and 2, but Property 3
fails. If Eve tries to decrypt a single ciphertext c = k ·m, she still faces the
(moderately) difficult task of factoring a large number. However, if she man-
ages to acquire several ciphertexts c1, c2, . . . , cn, then there is a good chance
that

gcd(c1, c2, . . . , cn) = gcd(k ·m1, k ·m2, . . . , k ·mn)

= k · gcd(m1,m2, . . . ,mn)

equals k itself or a small multiple of k. Note that it is an easy task to compute
the greatest common divisor.

This observation provides our first indication of how reduction modulo p
has a wonderful “mixing” effect that destroys properties such as divisibility.
However, reduction is not by itself the ultimate solution. Consider the vulner-
ability of the cipher (1.9) to a known plaintext attack. As noted above, if Eve
can get her hands on both a ciphertext c and its corresponding plaintext m,
then she easily recovers the key by computing

k ≡ m−1 · c (mod p).

Thus even a single plaintext/ciphertext pair suffices to reveal the key, so the
encryption function ek given by (1.9) does not have Property 4 on page 38.

There are many variants of this “multiplication-modulo-p” cipher. For
example, since addition is more efficient than multiplication, there is an
“addition-modulo-p” cipher given by

ek(m) ≡ m+ k (mod p) and dk(c) ≡ c− k (mod p),

which is nothing other than the shift or Caesar cipher that we studied in
Sect. 1.1. Another variant, called an affine cipher, is a combination of the shift
cipher and the multiplication cipher. The key for an affine cipher consists of
two integers k = (k1, k2) and encryption and decryption are defined by

ek(m) ≡ k1 ·m+ k2 (mod p),

dk(c) ≡ k′1 · (c− k2) (mod p),
(1.11)

where k′1 is the inverse of k1 modulo p.
The affine cipher has a further generalization called the Hill cipher, in

which the plaintext m, the ciphertext c, and the second part of the key k2 are
replaced by column vectors consisting of n numbers modulo p. The first part of
the key k1 is taken to be an n-by-n matrix with mod p integer entries. Encryp-
tion and decryption are again given by (1.11), but now multiplication k1 ·m
is the product of a matrix and a vector, and k′1 is the inverse matrix of k1
modulo p. Both the affine cipher and the Hill cipher are vulnerable to known
plaintext attacks; see Exercises 1.43. and 1.44.
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Example 1.34. As noted earlier, addition is generally faster than multiplica-
tion, but there is another basic computer operation that is even faster than
addition. It is called exclusive or and is denoted by XOR or ⊕. At the lowest
level, XOR takes two individual bits β ∈ {0, 1} and β′ ∈ {0, 1} and yields

β ⊕ β′ =

{
0 if β and β′ are the same,

1 if β and β′ are different.
(1.12)

If you think of a bit as a number that is 0 or 1, then XOR is the same as
addition modulo 2. More generally, the XOR of 2 bit strings is the result of
performing XOR on each corresponding pair of bits. For example,

10110⊕ 11010 = [1⊕ 1] [0⊕ 1] [1⊕ 0] [1⊕ 1] [0⊕ 0] = 01100.

Using this new operation, Alice and Bob have at their disposal yet another
basic cipher defined by

ek(m) = k ⊕m and dk(c) = k ⊕ c.

Here K,M, and C are the sets of all binary strings of length B, or equivalently,
the set of all numbers between 0 and 2B − 1.

This cipher has the advantage of being highly efficient and completely
symmetric in the sense that ek and dk are the same function. If k is chosen
randomly and is used only once, then this cipher is known as Vernam’s one-
time pad. In Sect. 5.57 we show that the one-time pad is provably secure.
Unfortunately, it requires a key that is as long as the plaintext, which makes
it too cumbersome for most practical applications. And if k is used to encrypt
more than one plaintext, then Eve may be able to exploit the fact that

c⊕ c′ = (k ⊕m)⊕ (k ⊕m′) = m⊕m′

to extract information aboutm orm′. It’s not obvious how Eve would proceed
to find k, m, or m′, but simply the fact that the key k can be removed so
easily, revealing the potentially less random quantity m⊕m′, should make a
cryptographer nervous. Further, this method is vulnerable in some situations
to a known plaintext attack; see Exercise 1.48.

1.7.5 Random Bit Sequences and Symmetric Ciphers

We have arrived, at long last, at the fundamental question regarding the
creation of secure and efficient symmetric ciphers. Is it possible to use a single
relatively short key k (say consisting of 160 random bits) to securely and
efficiently send arbitrarily long messages? Here is one possible construction.
Suppose that we could construct a function

R : K × Z −→ {0, 1}
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with the following properties:

1. For all k ∈ K and all j ∈ Z, it is easy to compute R(k, j).

2. Given an arbitrarily long sequence of integers j1, j2, . . . , jn and given all
of the values R(k, j1), R(k, j2), . . . , R(k, jn), it is hard to determine k.

3. Given any list of integers j1, j2, . . . , jn and given all of the values

R(k, j1), R(k, j2), . . . , R(k, jn),

it is hard to guess the value of R(k, j) with better than a 50% chance
of success for any value of j not already in the list.

If we could find a function R with these three properties, then we could
use it to turn an initial key k into a sequence of bits

R(k, 1), R(k, 2), R(k, 3), R(k, 4), . . . , (1.13)

and then we could use this sequence of bits as the key for a one-time pad as
described in Example 1.34.

The fundamental problem with this approach is that the sequence of
bits (1.13) is not truly random, since it is generated by the function R. In-
stead, we say that the sequence of bits (1.13) is a pseudorandom sequence and
we call R a pseudorandom number generator.

Do pseudorandom number generators exist? If so, they would provide ex-
amples of the one-way functions defined by Diffie and Hellman in their ground-
breaking paper [38], but despite more than a quarter century of work, no one
has yet proven the existence of even a single such function. We return to this
fascinating subject in Sects. 2.1 and 8.2. For now, we content ourselves with
a few brief remarks.

Although no one has yet conclusively proven that pseudorandom number
generators exist, many candidates have been suggested, and some of these
proposals have withstood the test of time. There are two basic approaches
to constructing candidates for R, and these two methods provide a good il-
lustration of the fundamental conflict in cryptography between security and
efficiency.

The first approach is to repeatedly apply an ad hoc collection of mixing
operations that are well suited to efficient computation and that appear to
be very hard to untangle. This method is, disconcertingly, the basis for most
practical symmetric ciphers, including the Data Encryption Standard (DES)
and the Advanced Encryption Standard (AES), which are the two systems
most widely used today. See Sect. 8.12 for a brief description of these modern
symmetric ciphers.

The second approach is to construct R using a function whose efficient
inversion is a well-known mathematical problem that is believed to be difficult.
This approach provides a far more satisfactory theoretical underpinning for a
symmetric cipher, but unfortunately, all known constructions of this sort are
far less efficient than the ad hoc constructions, and hence are less attractive
for real-world applications.
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1.7.6 Asymmetric Ciphers Make a First Appearance

If Alice and Bob want to exchange messages using a symmetric cipher, they
must first mutually agree on a secret key k. This is fine if they have the oppor-
tunity to meet in secret or if they are able to communicate once over a secure
channel. But what if they do not have this opportunity and if every commu-
nication between them is monitored by their adversary Eve? Is it possible for
Alice and Bob to exchange a secret key under these conditions?

Most people’s first reaction is that it is not possible, since Eve sees every
piece of information that Alice and Bob exchange. It was the brilliant insight
of Diffie and Hellman18 that under certain hypotheses, it is possible. The
search for efficient (and provable) solutions to this problem, which is called
public key (or asymmetric) cryptography, forms one of the most interesting
parts of mathematical cryptography and is the principal focus of this book.

We start by describing a nonmathematical way to visualize public key
cryptography. Alice buys a safe with a narrow slot in the top and puts her
safe in a public location. Everyone in the world is allowed to examine the safe
and see that it is securely made. Bob writes his message to Alice on a piece of
paper and slips it through the slot in the top of the safe. Now only a person
with the key to the safe, which presumably means only Alice, can retrieve
and read Bob’s message. In this scenario, Alice’s public key is the safe, the
encryption algorithm is the process of putting the message in the slot, and the
decryption algorithm is the process of opening the safe with the key. Note that
this setup is not far-fetched; it is used in the real world. For example, the night
deposit slot at a bank has this form, although in practice the “slot” must be
well protected to prevent someone from inserting a long thin pair of tongs and
extracting other people’s deposits!

A useful feature of our “safe-with-a-slot” cryptosystem, which it shares
with actual public key cryptosystems, is that Alice needs to put only one safe
in a public location, and then everyone in the world can use it repeatedly
to send encrypted messages to Alice. There is no need for Alice to provide
a separate safe for each of her correspondents. And there is also no need for
Alice to open the safe and remove Bob’s message before someone else such as
Carl or Dave uses it to send Alice a message.

We are now ready to give a mathematical formulation of an asymmetric
cipher. As usual, there are spaces of keys K, plaintextsM, and ciphertexts C.
However, an element k of the key space is really a pair of keys,

k = (kpriv, kpub),

called the private key and the public key, respectively. For each public key kpub
there is a corresponding encryption function

ekpub
:M−→ C,

18The history is actually somewhat more complicated than this; see our brief discussion
in Sect. 2.1 and the references listed there for further reading.
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and for each private key kpriv there is a corresponding decryption function

dkpriv : C −→M.

These have the property that if the pair (kpriv, kpub) is in the key space K, then

dkpriv

(
ekpub

(m)
)
= m for all m ∈M.

If an asymmetric cipher is to be secure, it must be difficult for Eve to com-
pute the decryption function dkpriv(c), even if she knows the public key kpub.
Notice that under this assumption, Alice can send kpub to Bob using an inse-
cure communication channel, and Bob can send back the ciphertext ekpub

(m),
without worrying that Eve will be able to decrypt the message. To easily de-
crypt, it is necessary to know the private key kpriv, and presumably Alice is
the only person with that information. The private key is sometimes called
Alice’s trapdoor information, because it provides a trapdoor (i.e., a short-
cut) for computing the inverse function of ekpub

. The fact that the encryption
and decryption keys kpub and kpriv are different makes the cipher asymmetric,
whence its moniker.

It is quite intriguing that Diffie and Hellman created this concept without
finding a candidate for an actual pair of functions, although they did propose
a similar method by which Alice and Bob can securely exchange a random
piece of data whose value is not known initially to either one. We describe
Diffie and Hellman’s key exchange method in Sect. 2.3 and then go on to
discuss a number of asymmetric ciphers, including Elgamal (Sect. 2.4), RSA
(Sect. 3.2), Goldwassser–Micali (Sect. 3.10), ECC (Sect. 6.4), GGH (Sect. 7.8),
and NTRU (Sect. 7.10), whose security rely on the presumed difficulty of a
variety of different mathematical problems.

Remark 1.35. In practice, asymmetric ciphers tend to be considerably slower
than symmetric ciphers such as DES and AES. For that reason, if Bob needs
to send Alice a large file, he might first use an asymmetric cipher to send
Alice the key to a symmetric cipher, which he would then use to transmit the
actual file.

Exercises

Section 1.1. Simple Substitution Ciphers

1.1. Build a cipher wheel as illustrated in Fig. 1.1, but with an inner wheel that
rotates, and use it to complete the following tasks. (For your convenience, there
is a cipher wheel that you can print and cut out at www.math.brown.edu/~jhs/

MathCrypto/CipherWheel.pdf.)
(a) Encrypt the following plaintext using a rotation of 11 clockwise.

“A page of history is worth a volume of logic.”

(b) Decrypt the following message, which was encrypted with a rotation of 7 clock-
wise.

www.math.brown.edu/~jhs/MathCrypto/CipherWheel.pdf
www.math.brown.edu/~jhs/MathCrypto/CipherWheel.pdf
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AOLYLHYLUVZLJYLAZILAALYAOHUAOLZLJYLAZAOHALCLYFIVKFNBLZZLZ

(c) Decrypt the following message, which was encrypted by rotating 1 clockwise
for the first letter, then 2 clockwise for the second letter, etc.

XJHRFTNZHMZGAHIUETXZJNBWNUTRHEPOMDNBJMAUGORFAOIZOCC

a b c d e f g h i j k l m n o p q r s t u v w x y z

S C J A X U F B Q K T P R W E Z H V L I G Y D N M O

Table 1.11: Simple substitution encryption table for Exercise 1.3

1.2. Decrypt each of the following Caesar encryptions by trying the various possible
shifts until you obtain readable text.
(a) LWKLQNWKDWLVKDOOQHYHUVHHDELOOERDUGORYHOBDVDWUHH

(b) UXENRBWXCUXENFQRLQJUCNABFQNWRCJUCNAJCRXWORWMB

(c) BGUTBMBGZTFHNLXMKTIPBMAVAXXLXTEPTRLEXTOXKHHFYHKMAXFHNLX

1.3. For this exercise, use the simple substitution table given in Table 1.11.
(a) Encrypt the plaintext message

The gold is hidden in the garden.

(b) Make a decryption table, that is, make a table in which the ciphertext alphabet
is in order from A to Z and the plaintext alphabet is mixed up.

(c) Use your decryption table from (b) to decrypt the following message.

IBXLX JVXIZ SLLDE VAQLL DEVAU QLB

1.4. Each of the following messages has been encrypted using a simple substitution
cipher. Decrypt them. For your convenience, we have given you a frequency table
and a list of the most common bigrams that appear in the ciphertext. (If you do not
want to recopy the ciphertexts by hand, they can be downloaded or printed from
the web site listed in the preface.)
(a) “A Piratical Treasure”

JNRZR BNIGI BJRGZ IZLQR OTDNJ GRIHT USDKR ZZWLG OIBTM NRGJN

IJTZJ LZISJ NRSBL QVRSI ORIQT QDEKJ JNRQW GLOFN IJTZX QLFQL

WBIMJ ITQXT HHTBL KUHQL JZKMM LZRNT OBIMI EURLW BLQZJ GKBJT

QDIQS LWJNR OLGRI EZJGK ZRBGS MJLDG IMNZT OIHRK MOSOT QHIJL

QBRJN IJJNT ZFIZL WIZTO MURZM RBTRZ ZKBNN LFRVR GIZFL KUHIM

MRIGJ LJNRB GKHRT QJRUU RBJLW JNRZI TULGI EZLUK JRUST QZLUK

EURFT JNLKJ JNRXR S

The ciphertext contains 316 letters. Here is a frequency table:

R J I L Z T N Q B G K U M O S H W F E D X V

Freq 33 30 27 25 24 20 19 16 15 15 13 12 12 10 9 8 7 6 5 5 3 2

The most frequent bigrams are: JN (11 times), NR (8 times), TQ (6 times), and
LW, RB, RZ, and JL (5 times each).
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(b) “A Botanical Code”
KZRNK GJKIP ZBOOB XLCRG BXFAU GJBNG RIXRU XAFGJ BXRME MNKNG

BURIX KJRXR SBUER ISATB UIBNN RTBUM NBIGK EBIGR OCUBR GLUBN

JBGRL SJGLN GJBOR ISLRS BAFFO AZBUN RFAUS AGGBI NGLXM IAZRX

RMNVL GEANG CJRUE KISRM BOOAZ GLOKW FAUKI NGRIC BEBRI NJAWB

OBNNO ATBZJ KOBRC JKIRR NGBUE BRINK XKBAF QBROA LNMRG MALUF

BBG

The ciphertext contains 253 letters. Here is a frequency table:
B R G N A I U K O J L X M F S E Z C T W P V Q

Freq 32 28 22 20 16 16 14 13 12 11 10 10 8 8 7 7 6 5 3 2 1 1 1

The most frequent bigrams are: NG and RI (7 times each), BU (6 times), and BR

(5 times).

(c) In order to make this one a bit more challenging, we have removed all occur-
rences of the word “the” from the plaintext.
“A Brilliant Detective”
GSZES GNUBE SZGUG SNKGX CSUUE QNZOQ EOVJN VXKNG XGAHS AWSZZ

BOVUE SIXCQ NQESX NGEUG AHZQA QHNSP CIPQA OIDLV JXGAK CGJCG

SASUB FVQAV CIAWN VWOVP SNSXV JGPCV NODIX GJQAE VOOXC SXXCG

OGOVA XGNVU BAVKX QZVQD LVJXQ EXCQO VKCQG AMVAX VWXCG OOBOX

VZCSO SPPSN VAXUB DVVAX QJQAJ VSUXC SXXCV OVJCS NSJXV NOJQA

MVBSZ VOOSH VSAWX QHGMV GWVSX CSXXC VBSNV ZVNVN SAWQZ ORVXJ

CVOQE JCGUW NVA

The ciphertext contains 313 letters. Here is a frequency table:
V S X G A O Q C N J U Z E W B P I H K D M L R F

Freq 39 29 29 22 21 21 20 20 19 13 11 11 10 8 8 6 5 5 5 4 3 2 1 1

The most frequent bigrams are: XC (10 times), NV (7 times), and CS, OV, QA, and
SX (6 times each).

1.5. Suppose that you have an alphabet of 26 letters.
(a) How many possible simple substitution ciphers are there?

(b) A letter in the alphabet is said to be fixed if the encryption of the letter is the
letter itself. How many simple substitution ciphers are there that leave:
(i) No letters fixed?

(ii) At least one letter fixed?

(iii) Exactly one letter fixed?

(iv) At least two letters fixed?
(Part (b) is quite challenging! You might try doing the problem first with an alphabet
of four or five letters to get an idea of what is going on.)

Section 1.2. Divisibility and Greatest Common Divisors

1.6. Let a, b, c ∈ Z. Use the definition of divisibility to directly prove the following
properties of divisibility. (This is Proposition 1.4.)
(a) If a | b and b | c, then a | c.
(b) If a | b and b | a, then a = ±b.
(c) If a | b and a | c, then a | (b+ c) and a | (b− c).

1.7. Use a calculator and the method described in Remark 1.9 to compute the
following quotients and remainders.
(a) 34787 divided by 353.
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(b) 238792 divided by 7843.

(c) 9829387493 divided by 873485.

(d) 1498387487 divided by 76348.

1.8. Use a calculator and the method described in Remark 1.9 to compute the
following remainders, without bothering to compute the associated quotients.
(a) The remainder of 78745 divided by 127.

(b) The remainder of 2837647 divided by 4387.

(c) The remainder of 8739287463 divided by 18754.

(d) The remainder of 4536782793 divided by 9784537.

1.9. Use the Euclidean algorithm to compute the following greatest common divi-
sors.
(a) gcd(291, 252).

(b) gcd(16261, 85652).

(c) gcd(139024789, 93278890).

(d) gcd(16534528044, 8332745927).

1.10. For each of the gcd(a, b) values in Exercise 1.9, use the extended Euclidean
algorithm (Theorem 1.11) to find integers u and v such that au+ bv = gcd(a, b).

1.11. Let a and b be positive integers.
(a) Suppose that there are integers u and v satisfying au+ bv = 1. Prove that

gcd(a, b) = 1.

(b) Suppose that there are integers u and v satisfying au+ bv = 6. Is it necessarily
true that gcd(a, b) = 6? If not, give a specific counterexample, and describe in
general all of the possible values of gcd(a, b)?

(c) Suppose that (u1, v1) and (u2, v2) are two solutions in integers to the equation
au+ bv = 1. Prove that a divides v2 − v1 and that b divides u2 − u1.

(d) More generally, let g = gcd(a, b) and let (u0, v0) be a solution in integers to
au+ bv = g. Prove that every other solution has the form u = u0 + kb/g and
v = v0 − ka/g for some integer k. (This is the second part of Theorem 1.11.)

1.12. The method for solving au+ bv = gcd(a, b) described in Sect. 1.2 is somewhat
inefficient. This exercise describes a method to compute u and v that is well suited
for computer implementation. In particular, it uses very little storage.
(a) Show that the following algorithm computes the greatest common divisor g of

the positive integers a and b, together with a solution (u, v) in integers to the
equation au+ bv = gcd(a, b).

1. Set u = 1, g = a, x = 0, and y = b

2. If y = 0, set v = (g − au)/b and return the values (g, u, v)

3. Divide g by y with remainder, g = qy + t, with 0 ≤ t < y

4. Set s = u− qx

5. Set u = x and g = y

6. Set x = s and y = t

7. Go To Step (2)

(b) Implement the above algorithm on a computer using the computer language of
your choice.
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(c) Use your program to compute g = gcd(a, b) and integer solutions to the equa-
tion au+ bv = g for the following pairs (a, b).

(i) (527, 1258)
(ii) (228, 1056)
(iii) (163961, 167181)
(iv) (3892394, 239847)

(d) What happens to your program if b = 0? Fix the program so that it deals with
this case correctly.

(e) It is often useful to have a solution with u > 0. Modify your program so that
it returns a solution with u > 0 and u as small as possible. [Hint. If (u, v) is a
solution, then so is (u+ b/g, v − a/g).] Redo (c) using your modified program.

1.13. Let a1, a2, . . . , ak be integers with gcd(a1, a2, . . . , ak) = 1, i.e., the largest
positive integer dividing all of a1, . . . , ak is 1. Prove that the equation

a1u1 + a2u2 + · · ·+ akuk = 1

has a solution in integers u1, u2, . . . , uk. (Hint. Repeatedly apply the extended Eu-
clidean algorithm, Theorem 1.11. You may find it easier to prove a more general
statement in which gcd(a1, . . . , ak) is allowed to be larger than 1.)

1.14. Let a and b be integers with b > 0. We’ve been using the “obvious fact” that a
divided by b has a unique quotient and remainder. In this exercise you will give a
proof.
(a) Prove that the set

{a− bq : q ∈ Z}
contains at least one non-negative integer.

(b) Let r be the smallest non-negative integer in the set described in (a). Prove
that 0 ≤ r < b.

(c) Prove that there are integers q and r satisfying

a = bq + r and 0 ≤ r < b.

(d) Suppose that

a = bq1 + r1 = bq2 + r2 with 0 ≤ r1 < b and 0 ≤ r2 < b.

Prove that q1 = q2 and r1 = r2.

Section 1.3. Modular Arithmetic

1.15. Let m ≥ 1 be an integer and suppose that

a1 ≡ a2 (mod m) and b1 ≡ b2 (mod m).

Prove that

a1 ± b1 ≡ a2 ± b2 (mod m) and a1 · b1 ≡ a2 · b2 (mod m).

(This is Proposition 1.13(a).)

1.16. Write out the following tables for Z/mZ and (Z/mZ)∗, as we did in Figs. 1.4
and 1.5.
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(a) Make addition and multiplication tables for Z/3Z.

(b) Make addition and multiplication tables for Z/6Z.

(c) Make a multiplication table for the unit group (Z/9Z)∗.
(d) Make a multiplication table for the unit group (Z/16Z)∗.

1.17. Do the following modular computations. In each case, fill in the box with an
integer between 0 and m− 1, where m is the modulus.
(a) 347 + 513 ≡ (mod 763).

(b) 3274 + 1238 + 7231 + 6437 ≡ (mod 9254).

(c) 153 · 287 ≡ (mod 353).

(d) 357 · 862 · 193 ≡ (mod 943).

(e) 5327 · 6135 · 7139 · 2187 · 5219 · 1873 ≡ (mod 8157).
(Hint. After each multiplication, reduce modulo 8157 before doing the next
multiplication.)

(f) 1372 ≡ (mod 327).

(g) 3736 ≡ (mod 581).

(h) 233 · 195 · 114 ≡ (mod 97).

1.18. Find all values of x between 0 and m − 1 that are solutions of the following
congruences. (Hint. If you can’t figure out a clever way to find the solution(s), you
can just substitute each value x = 1, x = 2,. . . , x = m− 1 and see which ones
work.)
(a) x+ 17 ≡ 23 (mod 37).

(b) x+ 42 ≡ 19 (mod 51).

(c) x2 ≡ 3 (mod 11).

(d) x2 ≡ 2 (mod 13).

(e) x2 ≡ 1 (mod 8).

(f) x3 − x2 + 2x− 2 ≡ 0 (mod 11).

(g) x ≡ 1 (mod 5) and also x ≡ 2 (mod 7). (Find all solutions modulo 35, that is,
find the solutions satisfying 0 ≤ x ≤ 34.)

1.19. Suppose that ga ≡ 1 (mod m) and that gb ≡ 1 (mod m). Prove that

ggcd(a,b) ≡ 1 (mod m).

1.20. Prove that if a1 and a2 are units modulo m, then a1a2 is a unit modulo m.

1.21. Prove that m is prime if and only if φ(m) = m − 1, where φ is Euler’s phi
function.

1.22. Let m ∈ Z.
(a) Suppose that m is odd. What integer between 1 and m− 1 equals 2−1 mod m?

(b) More generally, suppose thatm ≡ 1 (mod b). What integer between 1 andm− 1
is equal to b−1 mod m?

1.23. Let m be an odd integer and let a be any integer. Prove that 2m + a2 can
never be a perfect square. (Hint. If a number is a perfect square, what are its possible
values modulo 4?)
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1.24. (a) Find a single value x that simultaneously solves the two congruences

x ≡ 3 (mod 7) and x ≡ 4 (mod 9).

(Hint. Note that every solution of the first congruence looks like x = 3+7y for
some y. Substitute this into the second congruence and solve for y; then use
that to get x.)

(b) Find a single value x that simultaneously solves the two congruences

x ≡ 13 (mod 71) and x ≡ 41 (mod 97).

(c) Find a single value x that simultaneously solves the three congruences

x ≡ 4 (mod 7), x ≡ 5 (mod 8), and x ≡ 11 (mod 15).

(d) Prove that if gcd(m,n) = 1, then the pair of congruences

x ≡ a (mod m) and x ≡ b (mod n)

has a solution for any choice of a and b. Also give an example to show that the
condition gcd(m,n) = 1 is necessary.

1.25. Let N , g, and A be positive integers (note that N need not be prime).
Prove that the following algorithm, which is a low-storage variant of the square-
and-multiply algorithm described in Sect. 1.3.2, returns the value gA (mod N). (In
Step 4 we use the notation �x� to denote the greatest integer function, i.e., round x
down to the nearest integer.)

Input. Positive integers N , g, and A.
1. Set a = g and b = 1.
2. Loop while A > 0.

3. If A ≡ 1 (mod 2), set b = b · a (mod N).
4. Set a = a2 (mod N) and A = �A/2�.
5. If A > 0, continue with loop at Step 2.

6. Return the number b, which equals gA (mod N).

1.26. Use the square-and-multiply algorithm described in Sect. 1.3.2, or the more
efficient version in Exercise 1.25, to compute the following powers.
(a) 17183 (mod 256).

(b) 2477 (mod 1000).

(c) 11507 (mod 1237).

1.27. Consider the congruence

ax ≡ c (mod m).

(a) Prove that there is a solution if and only if gcd(a,m) divides c.

(b) If there is a solution, prove that there are exactly gcd(a,m) distinct solutions
modulo m.

(Hint. Use the extended Euclidean algorithm (Theorem 1.11).)

Section 1.4. Prime Numbers, Unique Factorization, and Finite Fields
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1.28. Let {p1, p2, . . . , pr} be a set of prime numbers, and let

N = p1p2 · · · pr + 1.

Prove that N is divisible by some prime not in the original set. Use this fact to
deduce that there must be infinitely many prime numbers. (This proof of the infini-
tude of primes appears in Euclid’s Elements. Prime numbers have been studied for
thousands of years.)

1.29. Without using the fact that every integer has a unique factorization into
primes, prove that if gcd(a, b) = 1 and if a | bc, then a | c. (Hint. Use the fact that
it is possible to find a solution to au+ bv = 1.)

1.30. Compute the following ordp values:
(a) ord2(2816).

(b) ord7(2222574487).

(c) ordp(46375) for each of p = 3, 5, 7, and 11.

1.31. Let p be a prime number. Prove that ordp has the following properties.
(a) ordp(ab) = ordp(a) + ordp(b). (Thus ordp resembles the logarithm function,

since it converts multiplication into addition!)

(b) ordp(a+ b) ≥ min
{
ordp(a), ordp(b)

}
.

(c) If ordp(a) �= ordp(b), then ordp(a+ b) = min
{
ordp(a), ordp(b)

}
.

A function satisfying properties (a) and (b) is called a valuation.

Section 1.5. Powers and Primitive Roots in Finite Fields

1.32. For each of the following primes p and numbers a, compute a−1 mod p in two
ways: (i) Use the extended Euclidean algorithm. (ii) Use the fast power algorithm
and Fermat’s little theorem. (See Example 1.27.)
(a) p = 47 and a = 11.

(b) p = 587 and a = 345.

(c) p = 104801 and a = 78467.

1.33. Let p be a prime and let q be a prime that divides p− 1.
(a) Let a ∈ F

∗
p and let b = a(p−1)/q. Prove that either b = 1 or else b has order q.

(Recall that the order of b is the smallest k ≥ 1 such that bk = 1 in F
∗
p. Hint.

Use Proposition 1.29.)

(b) Suppose that we want to find an element of F∗
p of order q. Using (a), we can

randomly choose a value of a ∈ F
∗
p and check whether b = a(p−1)/q satisfies b �=

1. How likely are we to succeed? In other words, compute the value of the ratio

#{a ∈ F
∗
p : a(p−1)/q �= 1}
#F∗

p

.

(Hint. Use Theorem 1.30.)

1.34. Recall that g is called a primitive root modulo p if the powers of g give all
nonzero elements of Fp.
(a) For which of the following primes is 2 a primitive root modulo p?

(i) p = 7 (ii) p = 13 (iii) p = 19 (iv) p = 23
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(b) For which of the following primes is 3 a primitive root modulo p?
(i) p = 5 (ii) p = 7 (iii) p = 11 (iv) p = 17

(c) Find a primitive root for each of the following primes.
(i) p = 23 (ii) p = 29 (iii) p = 41 (iv) p = 43

(d) Find all primitive roots modulo 11. Verify that there are exactly φ(10) of them,
as asserted in Remark 1.32.

(e) Write a computer program to check for primitive roots and use it to find all
primitive roots modulo 229. Verify that there are exactly φ(228) of them.

(f) Use your program from (e) to find all primes less than 100 for which 2 is a
primitive root.

(g) Repeat the previous exercise to find all primes less than 100 for which 3 is a
primitive root. Ditto to find the primes for which 4 is a primitive root.

1.35. Let p be a prime such that q = 1
2
(p − 1) is also prime. Suppose that g is an

integer satisfying

g �≡ 0 (mod p) and g �≡ ±1 (mod p) and gq �≡ 1 (mod p).

Prove that g is a primitive root modulo p.

1.36. This exercise begins the study of squares and square roots modulo p.
(a) Let p be an odd prime number and let b be an integer with p � b. Prove that

either b has two square roots modulo p or else b has no square roots modulo p.
In other words, prove that the congruence

X2 ≡ b (mod p)

has either two solutions or no solutions in Z/pZ. (What happens for p = 2?
What happens if p | b?)

(b) For each of the following values of p and b, find all of the square roots of b
modulo p.

(i) (p, b) = (7, 2) (ii) (p, b) = (11, 5)
(iii) (p, b) = (11, 7) (iv) (p, b) = (37, 3)

(c) How many square roots does 29 have modulo 35? Why doesn’t this contradict
the assertion in (a)?

(d) Let p be an odd prime and let g be a primitive root modulo p. Then any
number a is equal to some power of g modulo p, say a ≡ gk (mod p). Prove
that a has a square root modulo p if and only if k is even.

1.37. Let p ≥ 3 be a prime and suppose that the congruence

X2 ≡ b (mod p)

has a solution.
(a) Prove that for every exponent e ≥ 1 the congruence

X2 ≡ b (mod pe) (1.14)

has a solution. (Hint. Use induction on e. Build a solution modulo pe+1 by
suitably modifying a solution modulo pe.)

(b) Let X = α be a solution to X2 ≡ b (mod p). Prove that in (a), we can find a
solution X = β to X2 ≡ b (mod pe) that also satisfies β ≡ α (mod p).
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(c) Let β and β′ be two solutions as in (b). Prove that β ≡ β′ (mod pe).

(d) Use Exercise 1.36 to deduce that the congruence (1.14) has either two solutions
or no solutions modulo pe.

1.38. Compute the value of
2(p−1)/2 (mod p)

for every prime 3 ≤ p < 20. Make a conjecture as to the possible values of
2(p−1)/2 (mod p) when p is prime and prove that your conjecture is correct.

Section 1.6. Cryptography by Hand

1.39. Write a 2–5 page paper on one of the following topics, including both cryp-
tographic information and placing events in their historical context:
(a) Cryptography in the Arab world to the fifteenth century.

(b) European cryptography in the fifteenth and early sixteenth centuries.

(c) Cryptography and cryptanalysis in Elizabethan England.

(d) Cryptography and cryptanalysis in the nineteenth century.

(e) Cryptography and cryptanalysis during World War I.

(f) Cryptography and cryptanalysis during World War II.
(Most of these topics are too broad for a short term paper, so you should choose a
particular aspect on which to concentrate.)

1.40. A homophonic cipher is a substitution cipher in which there may be more than
one ciphertext symbol for each plaintext letter. Here is an example of a homophonic
cipher, where the more common letters have several possible replacements.

a b c d e f g h i j k l m n o p q r s t u v w x y z

! 4 # $ 1 % & * ( ) 3 2 = + [ 9 ] { } : ; 7 < > 5 ?

♥ ◦ � ℵ 6 ↗ � ♦ ∧ ↘ Δ ∇ 8 ♣ Ω ∨ ⊗ ♠ �
Θ ∞ ⇑ � • � 	 ⊕ ⇐
↙ ⇓ ⇒ ↖

Decrypt the following message.

( % Δ ♠ ⇒ � # 4 ∞ : ♦ 6 ↗ � [ ℵ 8 % 2 [ 7 ⇓ ♣ ↘ ♥ 5 � ∇

1.41. A transposition cipher is a cipher in which the letters of the plaintext remain
the same, but their order is rearranged. Here is a simple example in which the
message is encrypted in blocks of 25 letters at a time.19 Take the given 25 letters
and arrange them in a 5-by-5 block by writing the message horizontally on the lines.
For example, the first 25 letters of the message

Now is the time for all good men to come to the aid...

is written as

N O W I S

T H E T I

M E F O R

A L L G O

O D M E N

19If the number of letters in the message is not an even multiple of 25, then extra random
letters are appended to the end of the message.
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Now the cipehrtext is formed by reading the letters down the columns, which gives
the ciphertext

NTMAO OHELD WEFLM ITOGE SIRON.

(a) Use this transposition cipher to encrypt the first 25 letters of the message

Four score and seven years ago our fathers...

(b) The following message was encrypted using this transposition cipher.
Decrypt it.

WNOOA HTUFN EHRHE NESUV ICEME

(c) There are many variations on this type of cipher. We can form the letters into a
rectangle instead of a square, and we can use various patterns to place the letters
into the rectangle and to read them back out. Try to decrypt the following
ciphertext, in which the letters were placed horizontally into a rectangle of
some size and then read off vertically by columns.

WHNCE STRHT TEOOH ALBAT DETET SADHE

LEELL QSFMU EEEAT VNLRI ATUDR HTEEA

(For convenience, we’ve written the ciphertext in 5 letter blocks, but that
doesn’t necessarily mean that the rectangle has a side of length 5.)

Section 1.7. Symmetric Ciphers and Asymmetric Ciphers

1.42. Encode the following phrase (including capitalization, spacing and punctua-
tion) into a string of bits using the ASCII encoding scheme given in Table 1.10.

Bad day, Dad.

1.43. Consider the affine cipher with key k = (k1, k2) whose encryption and de-
cryption functions are given by (1.11) on page 43.
(a) Let p = 541 and let the key be k = (34, 71). Encrypt the message m = 204.

Decrypt the ciphertext c = 431.

(b) Assuming that p is public knowledge, explain why the affine cipher is vulnerable
to a known plaintext attack. (See Property 4 on page 38.) How many plain-
text/ciphertext pairs are likely to be needed in order to recover the private
key?

(c) Alice and Bob decide to use the prime p = 601 for their affine cipher. The
value of p is public knowledge, and Eve intercepts the ciphertexts c1 = 324
and c2 = 381 and also manages to find out that the corresponding plaintexts
are m1 = 387 and m2 = 491. Determine the private key and then use it to
encrypt the message m3 = 173.

(d) Suppose now that p is not public knowledge. Is the affine cipher still vulnerable
to a known plaintext attack? If so, how many plaintext/ciphertext pairs are
likely to be needed in order to recover the private key?

1.44. Consider the Hill cipher defined by (1.11),

ek(m) ≡ k1 ·m+ k2 (mod p) and dk(c) ≡ k−1
1 · (c− k2) (mod p),

wherem, c, and k2 are column vectors of dimension n, and k1 is an n-by-n matrix.
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(a) We use the vector Hill cipher with p = 7 and the key k1 = ( 1 3
2 2 ) and k2 = ( 5

4 ).
(i) Encrypt the message m = ( 2

1 ).
(ii) What is the matrix k−1

1 used for decryption?
(iii) Decrypt the message c = ( 3

5 ).

(b) Explain why the Hill cipher is vulnerable to a known plaintext attack.

(c) The following plaintext/ciphertext pairs were generated using a Hill cipher with
the prime p = 11. Find the keys k1 and k2.

m1 = ( 5
4 ) , c1 = ( 1

8 ) , m2 = ( 8
10 ) , c2 = ( 8

5 ) , m3 = ( 7
1 ) , c3 = ( 8

7 ) .

(d) Explain how any simple substitution cipher that involves a permutation of the
alphabet can be thought of as a special case of a Hill cipher.

1.45. Let N be a large integer and let K = M = C = Z/NZ. For each of the
functions

e : K ×M −→ C
listed in (a)–(c), answer the following questions:

• Is e an encryption function?

• If e is an encryption function, what is its associated decryption function d?

• If e is not an encryption function, can you make it into an encryption function
by using some smaller, yet reasonably large, set of keys?

(a) ek(m) ≡ k −m (mod N).

(b) ek(m) ≡ k ·m (mod N).

(c) ek(m) ≡ (k +m)2 (mod N).

1.46. (a) Convert the 12 bit binary number 110101100101 into a decimal integer
between 0 and 212 − 1.

(b) Convert the decimal integer m = 37853 into a binary number.

(c) Convert the decimal integer m = 9487428 into a binary number.

(d) Use exclusive or (XOR) to “add” the bit strings 11001010⊕ 10011010.

(e) Convert the decimal numbers 8734 and 5177 into binary numbers, combine
them using XOR, and convert the result back into a decimal number.

1.47. Alice and Bob choose a key space K containing 256 keys. Eve builds a special-
purpose computer that can check 10,000,000,000 keys per second.
(a) How many days does it take Eve to check half of the keys in K?

(b) Alice and Bob replace their key space with a larger set containing 2B different
keys. How large should Alice and Bob choose B in order to force Eve’s computer
to spend 100 years checking half the keys? (Use the approximation that there
are 365.25 days in a year.)

For many years the United States government recommended a symmetric cipher
called DES that used 56 bit keys. During the 1990s, people built special purpose
computers demonstrating that 56 bits provided insufficient security. A new sym-
metric cipher called AES, with 128 bit keys, was developed to replace DES. See
Sect. 8.12 for further information about DES and AES.

1.48. Explain why the cipher

ek(m) = k ⊕m and dk(c) = k ⊕ c
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defined by XOR of bit strings is not secure against a known plaintext attack.
Demonstrate your attack by finding the private key used to encrypt the 16-bit ci-
phertext c = 1001010001010111 if you know that the corresponding plaintext is
m = 0010010000101100.

1.49. Alice and Bob create a symmetric cipher as follows. Their private key k is a
large integer and their messages (plaintexts) are d-digit integers

M = {m ∈ Z : 0 ≤ m < 10d}.

To encrypt a message, Alice computes
√
k to d decimal places, throws away the part

to the left of the decimal point, and keeps the remaining d digits. Let α be this
d-digit number. (For example, if k = 87 and d = 6, then

√
87 = 9.32737905 . . . and

α = 327379.)
Alice encrypts a message m as

c ≡ m+ α (mod 10d).

Since Bob knows k, he can also find α, and then he decrypts c by comput-
ing m ≡ c− α (mod 10d).
(a) Alice and Bob choose the secret key k = 11 and use it to encrypt 6-digit integers

(i.e., d = 6). Bob wants to send Alice the message m = 328973. What is the
ciphertext that he sends?

(b) Alice and Bob use the secret key k = 23 and use it to encrypt 8-digit integers.
Alice receives the ciphertext c = 78183903. What is the plaintext m?

(c) Show that the number α used for encryption and decryption is given by the
formula

α =
⌊
10d
(√

k − �
√
k �
)⌋
,

where �t� denotes the greatest integer that is less than or equal to t.

(d) (Challenge Problem) If Eve steals a plaintext/ciphertext pair (m, c), then it is
clear that she can recover the number α, since α ≡ c−m (mod 10d). If 10d is
large compared to k, can she also recover the number k? This might be useful,
for example, if Alice and Bob use some of the other digits of

√
k to encrypt

subsequent messages.

1.50. Bob and Alice use a cryptosystem in which their private key is a (large)
prime k and their plaintexts and ciphertexts are integers. Bob encrypts a message m
by computing the product c = km. Eve intercepts the following two ciphertexts:

c1 = 12849217045006222, c2 = 6485880443666222.

Use the gcd method described in Sect. 1.7.4 to find Bob and Alice’s private key.



Chapter 2

Discrete Logarithms
and Diffie–Hellman

2.1 The Birth of Public Key Cryptography

In 1976, Whitfield Diffie and Martin Hellman published their now famous
paper [38] entitled “New Directions in Cryptography.” In this paper they
formulated the concept of a public key encryption system and made several
groundbreaking contributions to this new field. A short time earlier, Ralph
Merkle had independently isolated one of the fundamental problems and in-
vented a public key construction for an undergraduate project in a computer
science class at Berkeley, but this was little understood at the time. Merkle’s
work “Secure communication over insecure channels” appeared in 1982 [83].

However, it turns out that the concept of public key encryption was orig-
inally discovered by James Ellis while working at the British Government
Communications Headquarters (GCHQ). Ellis’s discoveries in 1969 were clas-
sified as secret material by the British government and were not declassi-
fied and released until 1997, after his death. It is now known that two other
researchers at GCHQ, Malcolm Williamson and Clifford Cocks, discovered
the Diffie–Hellman key exchange algorithm and the RSA public key encryp-
tion system, respectively, before their rediscovery and public dissemination by
Diffie, Hellman, Rivest, Shamir, and Adleman. To learn more about the fas-
cinating history of public key cryptography, see for example [37, 42, 63, 139].

The Diffie–Hellman publication was an extremely important event—it set
forth the basic definitions and goals of a new field of mathematics/computer
science, a field whose existence was dependent on the then emerging age of
the digital computer. Indeed, their paper begins with a call to arms:

© Springer Science+Business Media New York 2014
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61



62 2. Discrete Logarithms and Diffie–Hellman

We stand today on the brink of a revolution in cryptography.

An original or breakthrough scientific idea is often called revolutionary, but
in this instance, as the authors were fully aware, the term revolutionary was
relevant in another sense. Prior to the publication of “New Directions. . . ,”
encryption research in the United States was the domain of the National Se-
curity Agency, and all information in this area was classified. Indeed, until the
mid-1990s, the United States government treated cryptographic algorithms as
munitions, which meant that their export was prosecutable as a treasonable
offense. Eventually, the government realized the futility of trying to prevent
free and open discussion about abstract cryptographic algorithms and the
dubious legality of restricting domestic use of strong cryptographic methods.
However, in order to maintain some control, the government continued to re-
strict export of high security cryptographic algorithms if they were “machine
readable.” Their object, to prevent widespread global dissemination of so-
phisticated cryptography programs to potential enemies of the United States,
was laudable,1 but there were two difficulties that rendered the government’s
policy unworkable.

First, the existence of optical scanners creates a very blurry line between
“machine readable” and “human text.” To protest the government’s policy,
people wrote a three line version of the RSA algorithm in a programming
language called perl and printed it on tee shirts and soda cans, thereby making
these products into munitions. In principle, wearing an “RSA enabled” tee
shirt on a flight from New York to Europe subjected the wearer to a large
fine and a 10 year jail term. Even more amusing (or frightening, depending
on your viewpoint), tattoos of the RSA perl code made people’s bodies into
non-exportable munitions!

Second, although these and other more serious protests and legal chal-
lenges had some effect, the government’s policy was ultimately rendered moot
by a simple reality. Public key algorithms are quite simple, and although it
requires a certain expertise to implement them in a secure fashion, the world is
full of excellent mathematicians and computer scientists and engineers. Thus
government restrictions on the export of “strong crypto” simply encouraged
the creation of cryptographic industries in other parts of the world. The gov-
ernment was able to slow the adoption of strong crypto for a few years, but
it is now possible for anyone to purchase for a nominal sum cryptographic
software that allows completely secure communications.2

1It is surely laudable to keep potential weapons out of the hands of one’s enemies,
but many have argued, with considerable justification, that the government also had the
less benign objective of preventing other governments from using communication methods
secure from United States prying.

2Of course, one never knows what cryptanalytic breakthroughs have been made by the
scientists at the National Security Agency, since virtually all of their research is classified.
The NSA is reputed to be the world’s largest single employer of Ph.D.s in mathematics.
However, in contrast to the situation before the 1970s, there are now far more cryptographers
employed in academia and in the business world than there are in government agencies.
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Domain Range

f

easy to compute

f−1

f−1

hard to compute

with trapdoor information

easy to compute

Figure 2.1: Illustration of a one-way trapdoor function

The first important contribution of Diffie and Hellman in [38] was the def-
inition of a Public Key Cryptosystem (PKC) and its associated components—
one-way functions and trapdoor information. A one-way function is an invert-
ible function that is easy to compute, but whose inverse is difficult to compute.
What does it mean to be “difficult to compute”? Intuitively, a function is dif-
ficult to compute if any algorithm that attempts to compute the inverse in
a “reasonable” amount of time, e.g., less than the age of the universe, will
almost certainly fail, where the phrase “almost certainly” must be defined
probabilistically. (For a more rigorous definition of “hardness,” see Sect. 2.6.)

Secure PKCs are built using one-way functions that have a trapdoor. The
trapdoor is a piece of auxiliary information that allows the inverse to be easily
computed. This idea is illustrated in Fig. 2.1, although it must be stressed
that there is a vast chasm separating the abstract idea of a one-way trapdoor
function and the actual construction of such a function.

As described in Sect. 1.7.6, the key for a public key (or asymmetric) cryp-
tosystem consists of two pieces, a private key kpriv and a public key kpub,
where in practice kpub is computed by applying some key-creation algorithm
to kpriv. For each public/private key pair (kpriv, kpub) there is an encryption
algorithm ekpub

and a corresponding decryption algorithm dkpriv . The encryp-
tion algorithm ekpub

corresponding to kpub is public knowledge and easy to
compute. Similarly, the decryption algorithm dkpriv must be easily computable
by someone who knows the private key kpriv, but it should be very difficult to
compute for someone who knows only the public key kpub.

One says that the private key kpriv is trapdoor information for the func-
tion ekpub

, because without the trapdoor information it is very hard to compute
the inverse function to ekpub

, but with the trapdoor information it is easy to
compute the inverse. Notice that in particular, the function that is used to
create kpub from kpriv must be difficult to invert, since kpub is public knowledge
and kpriv allows efficient decryption.

It may come as a surprise to learn that despite years of research, it is
still not known whether one-way functions exist. In fact, a proof of the exis-
tence of one-way functions would simultaneously solve the famous P = NP
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problem in complexity theory.3 Various candidates for one-way functions have
been proposed, and some of them are used by modern public key encryption
algorithms. But it must be stressed that the security of these cryptosystems
rests on the assumption that inverting the underlying function (or finding the
private key from the public one) is a hard problem.

The situation is somewhat analogous to theories in physics that gain cred-
ibility over time, as they fail to be disproved and continue to explain or gen-
erate interesting phenomena. Diffie and Hellman made several suggestions
in [38] for one-way functions, including knapsack problems and exponenti-
ation mod q, but they did not produce an example of a PKC, mainly for
lack of finding the right trapdoor information. They did, however, describe a
public key method by which certain material could be securely shared over
an insecure channel. Their method, which is now called Diffie–Hellman key
exchange, is based on the assumption that the discrete logarithm problem
(DLP) is difficult to solve. We discuss the DLP in Sect. 2.2, and then describe
Diffie–Hellman key exchange in Sect. 2.3. In their paper, Diffie and Hellman
also defined a variety of cryptanalytic attacks and introduced the important
concepts of digital signatures and one-way authentication, which we discuss
in Chap. 4 and Sect. 8.5.

With the publication of [38] in 1976, the race was on to invent a practical
public key cryptosystem. Within 2 years, two major papers describing public
key cryptosystems were published: the RSA scheme of Rivest, Shamir, and
Adleman [110] and the knapsack scheme of Merkle and Hellman [84]. Of these
two, only RSA has withstood the test of time, in the sense that its underly-
ing hard problem of integer factorization is still sufficiently computationally
difficult to allow RSA to operate efficiently. By way of contrast, the knap-
sack system of Merkle and Hellman was shown to be insecure at practical
computational levels [124]. However, the cryptanalysis of knapsack systems
introduces important links to hard computational problems in the theory of
integer lattices that we explore in Chap. 7.

2.2 The Discrete Logarithm Problem

The discrete logarithm problem is a mathematical problem that arises in many
settings, including the mod p version described in this section and the elliptic
curve version that will be studied later, in Chap. 6. The first published public
key construction, due to Diffie and Hellman [38], is based on the discrete log-
arithm problem in a finite field Fp, where recall that Fp is a field with a prime
number of elements. (See Sect. 1.4.) For convenience, we interchangeably use
the notations Fp and Z/pZ for this field, and we use equality notation for ele-
ments of Fp and congruence notation for elements of Z/pZ (cf. Remark 1.23).

3The P = NP problem is one of the so-called Millennium Prizes, each of which has a
$1,000,000 prize attached. See Sect. 5.7 for more on P versus NP .
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Let p be a (large) prime. Theorem 1.30 tells us that there exists a primitive
element g. This means that every nonzero element of Fp is equal to some power
of g. In particular, gp−1 = 1 by Fermat’s little theorem (Theorem 1.24), and
no smaller positive power of g is equal to 1. Equivalently, the list of elements

1, g, g2, g3, . . . , gp−2 ∈ F
∗
p

is a complete list of the elements in F
∗
p in some order.

Definition. Let g be a primitive root for Fp and let h be a nonzero element
of Fp. The Discrete Logarithm Problem (DLP) is the problem of finding an
exponent x such that

gx ≡ h (mod p).

The number x is called the discrete logarithm of h to the base g and is denoted
by logg(h).

Remark 2.1. An older term for the discrete logarithm is the index, denoted
by indg(h). The index terminology is still commonly used in number theory. It
is also convenient if there is a danger of confusion between ordinary logarithms
and discrete logarithms, since, for example, the quantity log2 frequently occurs
in both contexts.

Remark 2.2. The discrete logarithm problem is a well-posed problem, namely
to find an integer exponent x such that gx = h. However, if there is one so-
lution, then there are infinitely many, because Fermat’s little theorem (The-
orem 1.24) tells us that gp−1 ≡ 1 (mod p). Hence if x is a solution to gx = h,
then x+ k(p− 1) is also a solution for every value of k, because

gx+k(p−1) = gx · (gp−1)k ≡ h · 1k ≡ h (mod p).

Thus logg(h) is defined only up to adding or subtracting multiples of p− 1.
In other words, logg(h) is really defined modulo p− 1. It is not hard to verify
(Exercise 2.3(a)) that logg gives a well-defined function4

logg : F∗
p −→

Z

(p− 1)Z
. (2.1)

Sometimes, for concreteness, we refer to “the” discrete logarithm as the integer
x lying between 0 and p− 2 satisfying the congruence gx ≡ h (mod p).

Remark 2.3. It is not hard to prove (see Exercise 2.3(b)) that

logg(ab) = logg(a) + logg(b) for all a, b ∈ F
∗
p.

4If you have studied complex analysis, you may have noticed an analogy with the com-
plex logarithm, which is not actually well defined on C

∗. This is due to the fact that e2πi = 1,
so log(z) is well defined only up to adding or subtracting multiples of 2πi. The complex
logarithm thus defines an isomorphism from C

∗ to the quotient group C/2πiZ, analogous
to (2.1).
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n gn mod p

1 627

2 732

3 697

4 395

5 182

6 253

7 543

8 760

9 374

10 189

n gn mod p

11 878

12 21

13 934

14 316

15 522

16 767

17 58

18 608

19 111

20 904

h logg(h)

1 0

2 183

3 469

4 366

5 356

6 652

7 483

8 549

9 938

10 539

h logg(h)

11 429

12 835

13 279

14 666

15 825

16 732

17 337

18 181

19 43

20 722

Table 2.1: Powers and discrete logarithms for g = 627 modulo p = 941

Thus calling logg a “logarithm” is reasonable, since it converts multiplication
into addition in the same way as the usual logarithm function. In mathemat-
ical terminology, the discrete logarithm logg is a group isomorphism from F

∗
p

to Z/(p− 1)Z.

Example 2.4. The number p = 56509 is prime, and one can check that g = 2
is a primitive root modulo p. How would we go about calculating the discrete
logarithm of h = 38679? The only method that is immediately obvious is to
compute

22, 23, 24, 25, 26, 27, . . . (mod 56509)

until we find some power that equals 38679. It would be difficult to do this
by hand, but using a computer, we find that log2(h) = 11235. You can verify
this by calculating 211235 mod 56509 and checking that it is equal to 38679.

Remark 2.5. It must be emphasized that the discrete logarithm bears lit-
tle resemblance to the continuous logarithm defined on the real or complex
numbers. The terminology is still reasonable, because in both instances the
process of exponentiation is inverted—but exponentiation modulo p varies in
a very irregular way with the exponent, contrary to the behavior of its contin-
uous counterpart. The random-looking behavior of exponentiation modulo p
is apparent from even a cursory glance at a table of values such as those in
Table 2.1, where we list the first few powers and the first few discrete loga-
rithms for the prime p = 941 and the base g = 627. The seeming randomness
is also illustrated by the scatter graph of 627i mod 941 pictured in Fig. 2.2.

Remark 2.6. Our statement of the discrete logarithm problem includes the
assumption that the base g is a primitive root modulo p, but this is not strictly
necessary. In general, for any g ∈ F

∗
p and any h ∈ F

∗
p, the discrete logarithm

problem is the determination of an exponent x satisfying gx ≡ h (mod p),
assuming that such an x exists.

More generally, rather than taking nonzero elements of a finite field Fp and
multiplying them together or raising them to powers, we can take elements of
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Figure 2.2: Powers 627i mod 941 for i = 1, 2, 3, . . .

any group and use the group law instead of multiplication. This leads to the
most general form of the discrete logarithm problem. (If you are unfamiliar
with the theory of groups, we give a brief overview in Sect. 2.5.)

Definition. Let G be a group whose group law we denote by the symbol �.
The Discrete Logarithm Problem for G is to determine, for any two given
elements g and h in G, an integer x satisfying

g � g � g � · · · � g
︸ ︷︷ ︸

x times

= h.

2.3 Diffie–Hellman Key Exchange

The Diffie–Hellman key exchange algorithm solves the following dilemma.
Alice and Bob want to share a secret key for use in a symmetric cipher, but
their only means of communication is insecure. Every piece of information that
they exchange is observed by their adversary Eve. How is it possible for Alice
and Bob to share a key without making it available to Eve? At first glance it
appears that Alice and Bob face an impossible task. It was a brilliant insight
of Diffie and Hellman that the difficulty of the discrete logarithm problem
for F∗

p provides a possible solution.
The first step is for Alice and Bob to agree on a large prime p and a

nonzero integer g modulo p. Alice and Bob make the values of p and g public
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knowledge; for example, they might post the values on their web sites, so Eve
knows them, too. For various reasons to be discussed later, it is best if they
choose g such that its order in F

∗
p is a large prime. (See Exercise 1.33 for a

way of finding such a g.)
The next step is for Alice to pick a secret integer a that she does not reveal

to anyone, while at the same time Bob picks an integer b that he keeps secret.
Bob and Alice use their secret integers to compute

A ≡ ga (mod p)
︸ ︷︷ ︸
Alice computes this

and B ≡ gb (mod p)
︸ ︷︷ ︸
Bob computes this

.

They next exchange these computed values, Alice sends A to Bob and Bob
sends B to Alice. Note that Eve gets to see the values of A and B, since they
are sent over the insecure communication channel.

Finally, Bob and Alice again use their secret integers to compute

A′ ≡ Ba (mod p)
︸ ︷︷ ︸
Alice computes this

and B′ ≡ Ab (mod p)
︸ ︷︷ ︸
Bob computes this

.

The values that they compute, A′ and B′ respectively, are actually the same,
since

A′ ≡ Ba ≡ (gb)a ≡ gab ≡ (ga)b ≡ Ab ≡ B′ (mod p).

This common value is their exchanged key. The Diffie–Hellman key exchange
algorithm is summarized in Table 2.2.

Public parameter creation
A trusted party chooses and publishes a (large) prime p
and an integer g having large prime order in F

∗
p.

Private computations
Alice Bob

Choose a secret integer a. Choose a secret integer b.
Compute A ≡ ga (mod p). Compute B ≡ gb (mod p).

Public exchange of values

Alice sends A to Bob −−−−−−−−−−−−−−−−−−→ A

B ←−−−−−−−−−−−−−−−−−− Bob sends B to Alice

Further private computations
Alice Bob

Compute the number Ba (mod p). Compute the number Ab (mod p).

The shared secret value is Ba ≡ (gb)a ≡ gab ≡ (ga)b ≡ Ab (mod p).

Table 2.2: Diffie–Hellman key exchange
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Example 2.7. Alice and Bob agree to use the prime p = 941 and the
primitive root g = 627. Alice chooses the secret key a = 347 and computes
A = 390 ≡ 627347 (mod 941). Similarly, Bob chooses the secret key b = 781
and computes B = 691 ≡ 627781 (mod 941). Alice sends Bob the number 390
and Bob sends Alice the number 691. Both of these transmissions are done
over an insecure channel, so both A = 390 and B = 691 should be considered
public knowledge. The numbers a = 347 and b = 781 are not transmitted and
remain secret. Then Alice and Bob are both able to compute the number

470 ≡ 627347·781 ≡ Ab ≡ Ba (mod 941),

so 470 is their shared secret.
Suppose that Eve sees this entire exchange. She can reconstitute Alice’s

and Bob’s shared secret if she can solve either of the congruences

627a ≡ 390 (mod 941) or 627b ≡ 691 (mod 941),

since then she will know one of their secret exponents. As far as is known,
this is the only way for Eve to find the secret shared value without Alice’s or
Bob’s assistance.

Of course, our example uses numbers that are much too small to afford Al-
ice and Bob any real security, since it takes very little time for Eve’s computer
to check all possible powers of 627 modulo 941. Current guidelines suggest
that Alice and Bob choose a prime p having approximately 1000 bits (i.e.,
p ≈ 21000) and an element g whose order is prime and approximately p/2.
Then Eve will face a truly difficult task.

In general, Eve’s dilemma is this. She knows the values of A and B, so she
knows the values of ga and gb. She also knows the values of g and p, so if she
can solve the DLP, then she can find a and b, after which it is easy for her to
compute Alice and Bob’s shared secret value gab. It appears that Alice and
Bob are safe provided that Eve is unable to solve the DLP, but this is not
quite correct. It is true that one method of finding Alice and Bob’s shared
value is to solve the DLP, but that is not the precise problem that Eve needs
to solve. The security of Alice’s and Bob’s shared key rests on the difficulty
of the following, potentially easier, problem.

Definition. Let p be a prime number and g an integer. The Diffie–Hellman
Problem (DHP) is the problem of computing the value of gab (mod p) from
the known values of ga (mod p) and gb (mod p).

It is clear that the DHP is no harder than the DLP. If Eve can solve the
DLP, then she can compute Alice and Bob’s secret exponents a and b from the
intercepted values A = ga and B = gb, and then it is easy for her to compute
their shared key gab. (In fact, Eve needs to compute only one of a and b.) But
the converse is less clear. Suppose that Eve has an algorithm that efficiently
solves the DHP. Can she use it to also efficiently solve the DLP? The answer
is not known.
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2.4 The Elgamal Public Key Cryptosystem

Although the Diffie–Hellman key exchange algorithm provides a method of
publicly sharing a random secret key, it does not achieve the full goal of being
a public key cryptosystem, since a cryptosystem permits exchange of specific
information, not just a random string of bits. The first public key cryptosys-
tem was the RSA system of Rivest, Shamir, and Adleman [110], which they
published in 1978. RSA was, and still is, a fundamentally important discovery,
and we discuss it in detail in Chap. 3. However, although RSA was historically
first, the most natural development of a public key cryptosystem following the
Diffie–Hellman paper [38] is a system described by Taher Elgamal in 1985 [41].
The Elgamal public key encryption algorithm is based on the discrete log prob-
lem and is closely related to Diffie–Hellman key exchange from Sect. 2.3. In
this section we describe the version of the Elgamal PKC that is based on the
discrete logarithm problem for F∗

p, but the construction works quite generally
using the DLP in any group. In particular, in Sect. 6.4.2 we discuss a version
of the Elgamal PKC based on elliptic curve groups.

The Elgamal PKC is our first example of a public key cryptosystem, so
we proceed slowly and provide all of the details. Alice begins by publishing
information consisting of a public key and an algorithm. The public key is
simply a number, and the algorithm is the method by which Bob encrypts
his messages using Alice’s public key. Alice does not disclose her private key,
which is another number. The private key allows Alice, and only Alice, to
decrypt messages that have been encrypted using her public key.

This is all somewhat vague and applies to any public key cryptosystem. For
the Elgamal PKC, Alice needs a large prime number p for which the discrete
logarithm problem in F

∗
p is difficult, and she needs an element g modulo p of

large (prime) order. She may choose p and g herself, or they may have been
preselected by some trusted party such as an industry panel or government
agency.

Alice chooses a secret number a to act as her private key, and she computes
the quantity

A ≡ ga (mod p).

Notice the resemblance to Diffie–Hellman key exchange. Alice publishes her
public key A and she keeps her private key a secret.

Now suppose that Bob wants to encrypt a message using Alice’s pub-
lic key A. We will assume that Bob’s message m is an integer between 2
and p. (Recall that we discussed how to convert messages into numbers in
Sect. 1.7.2.) In order to encrypt m, Bob first randomly chooses another num-
ber k modulo p.5 Bob uses k to encrypt one, and only one, message, and then

5Most public key cryptosystems require the use of random numbers in order to operate
securely. The generation of random or random-looking integers is actually a delicate process.
We discuss the problem of generating pseudorandom numbers in Sect. 8.2, but for now we
ignore this issue and assume that Bob has no trouble generating random numbers modulo p.
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he discards it. The number k is called a random element ; it exists for the sole
purpose of encrypting a single message.

Bob takes his plaintext message m, his random element k, and Alice’s
public key A and uses them to compute the two quantities

c1 ≡ gk (mod p) and c2 ≡ mAk (mod p).

(Remember that g and p are public parameters, so Bob also knows their val-
ues.) Bob’s ciphertext, i.e., his encryption of m, is the pair of numbers (c1, c2),
which he sends to Alice.

How does Alice decrypt Bob’s ciphertext (c1, c2)? Since Alice knows a, she
can compute the quantity

x ≡ (ca1)
−1 (mod p).

She can this by first computing c11 (mod p) using the fast power algorithm, and
then computing the inverse using the extended Euclidean algorithm. Alterna-
tively, she can just use fast powering to compute cp−1−a

1 (mod p). Alice next
multiplies c2 by x, and lo and behold, the resulting value is the plaintext m.
To see why, we expand the value of x · c2 and find that

x · c2 ≡ (ca1)
−1 · c2 (mod p), since x ≡ (ca1)

−1 (mod p),

≡ (gak)−1 · (mAk) (mod p), since c1 ≡ gk, c2 ≡ mAk (mod p),

≡ (gak)−1 · (m(ga)k) (mod p), since A ≡ ga (mod p),

≡ m (mod p), since the gak terms cancel out.

The Elgamal public key cryptosystem is summarized in Table 2.3.
What is Eve’s task in trying to decrypt the message? Eve knows the pub-

lic parameters p and g, and she also knows the value of A ≡ ga (mod p),
since Alice’s public key A is public knowledge. If Eve can solve the dis-
crete logarithm problem, then she can find a and decrypt the message. More
precisely, it’s enough for Eve to solve the Diffie–Hellman problem; see Exer-
cise 2.9. Otherwise it appears difficult for Eve to find the plaintext, although
there are subtleties, some of which we’ll discuss after doing an example with
small numbers.

Example 2.8. Alice uses the prime p = 467 and the primitive root g = 2. She
chooses a = 153 to be her private key and computes her public key

A ≡ ga ≡ 2153 ≡ 224 (mod 467).

Bob decides to send Alice the messagem = 331. He chooses a random element,
say he chooses k = 197, and he computes the two quantities

c1 ≡ 2197 ≡ 87 (mod 467) and c2 ≡ 331 · 224197 ≡ 57 (mod 467).

The pair (c1, c2) = (87, 57) is the ciphertext that Bob sends to Alice.
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Public parameter creation
A trusted party chooses and publishes a large prime p
and an element g modulo p of large (prime) order.

Alice Bob

Key creation
Choose private key 1 ≤ a ≤ p− 1.
Compute A = ga (mod p).
Publish the public key A.

Encryption
Choose plaintext m.
Choose random element k.
Use Alice’s public key A

to compute c1 = gk (mod p)
and c2 = mAk (mod p).

Send ciphertext (c1, c2) to Alice.
Decryption

Compute (ca1)
−1 · c2 (mod p).

This quantity is equal to m.

Table 2.3: Elgamal key creation, encryption, and decryption

Alice, knowing a = 153, first computes

x ≡ (ca1)
−1 ≡ cp−1−a

1 ≡ 87313 ≡ 14 (mod 467).

Finally, she computes

c2x ≡ 57 · 14 ≡ 331 (mod 467)

and recovers the plaintext message m.

Remark 2.9. In the Elgamal cryptosystem, the plaintext is an integer m be-
tween 2 and p − 1, while the ciphertext consists of two integers c1 and c2 in
the same range. Thus in general it takes twice as many bits to write down the
ciphertext as it does to write down the plaintext. We say that Elgamal has a
2-to-1 message expansion.

It’s time to raise an important question. Is the Elgamal system as hard for
Eve to attack as the Diffie–Hellman problem? Or, by introducing a clever way
of encrypting messages, have we unwittingly opened a back door that makes
it easy to decrypt messages without solving the Diffie–Hellman problem? One
of the goals of modern cryptography is to identify an underlying hard problem
like the Diffie–Hellman problem and to prove that a given cryptographic con-
struction like Elgamal is at least as hard to attack as the underlying problem.

In this case we would like to prove that anyone who can decrypt arbitrary
ciphertexts created by Elgamal encryption, as summarized in Table 2.3, must
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also be able to solve the Diffie–Hellman problem. Specifically, we would like
to prove the following:

Proposition 2.10. Fix a prime p and base g to use for Elgamal encryption.
Suppose that Eve has access to an oracle that decrypts arbitrary Elgamal ci-
phertexts encrypted using arbitrary Elgamal public keys. Then she can use the
oracle to solve the Diffie–Hellman problem described on page 69.

Conversely, if Eve can solve the Diffie–Hellman problem, then she can
break the Elgamal PKC.

Proof. Rather than giving a compact formal proof, we will be more discursive
and explain how one might approach the problem of using an Elgamal oracle to
solve the Diffie–Hellman problem. Recall that in the Diffie–Hellman problem,
Eve is given the two values

A ≡ ga (mod p) and B ≡ gb (mod p),

and she is required to compute the value of gab (mod p). Keep in mind that
she knows both of the values of A and B, but she does not know either of the
values a and b.

Now suppose that Eve can consult an Elgamal oracle. This means that
Eve can send the oracle a prime p, a base g, a purported public key A, and
a purported cipher text (c1, c2). Referring to Table 2.3, the oracle returns to
Eve the quantity

(ca1)
−1 · c2 (mod p).

If Eve wants to solve the Diffie–Hellman problem, what values of c1 and c2
should she choose? A little thought shows that c1 = B = gb and c2 = 1 are
good choices, since with this input, the oracle returns (gab)−1 (mod p), and
then Eve can take the inverse modulo p to obtain gab (mod p), thereby solving
the Diffie–Hellman problem.

But maybe the oracle is smart enough to know that it should never decrypt
ciphertexts having c2 = 1. Eve can still fool the oracle by sending it random-
looking ciphertexts as follows. She chooses an arbitrary value for c2 and tells
the oracle that the public key is A and that the ciphertext is (B, c2). The
oracle returns to her the supposed plaintext m that satisfies

m ≡ (ca1)
−1 · c2 ≡ (Ba)−1 · c2 ≡ (gab)−1 · c2 (mod p).

After the oracle tells Eve the value of m, she simply computes

m−1 · c2 ≡ gab (mod p)

to find the value of gab (mod p). It is worth noting that although, with the
oracle’s help, Eve has computed gab (mod p), she has done so without knowl-
edge of a or b, so she has solved only the Diffie–Hellman problem, not the
discrete logarithm problem.

We leave the proof of the converse, i.e., that a Diffie–Hellman oracle breaks
the Elgamal PKC, as an exercise; see Exercise 2.9.
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2.5 An Overview of the Theory of Groups

For readers unfamiliar with the theory of groups, we briefly introduce a few
basic concepts that should help to place the study of discrete logarithms, both
here and in Chap. 6, into a broader context.

We’ve just spent some time talking about exponentiation of elements in F
∗
p.

Since exponentiation is simply repeated multiplication, this seems like a good
place to start. What we’d like to do is to underline some important properties
of multiplication in F

∗
p and to point out that these attributes appear in many

other contexts.
The properties are:

• There is an element 1 ∈ F
∗
p satisfying 1 · a = a for every a ∈ F

∗
p.

• Every a ∈ F
∗
p has an inverse a−1 ∈ F

∗
p satisfying a · a−1 = a−1 · a = 1.

• Multiplication is associative: a · (b · c) = (a · b) · c for all a, b, c ∈ F
∗
p.

• Multiplication is commutative: a · b = b · a for all a, b ∈ F
∗
p.

Suppose that instead of multiplication in F
∗
p, we substitute addition in Fp. We

also use 0 in place of 1 and −a in place of a−1. Then all four properties are
still true:

• 0 + a = a for every a ∈ Fp.

• Every a ∈ Fp has an inverse −a ∈ Fp with a+ (−a) = (−a) + a = 0.

• Addition is associative, a+ (b+ c) = (a+ b) + c for all a, b, c ∈ Fp.

• Addition is commutative, a+ b = b+ a for all a, b ∈ Fp.

Sets and operations that behave similarly to multiplication or addition are
so widespread that it is advantageous to abstract the general concept and talk
about all such systems at once. The leads to the notion of a group.

Definition. A group consists of a set G and a rule, which we denote by �,
for combining two elements a, b ∈ G to obtain an element a � b ∈ G. The
composition operation � is required to have the following three properties:

[Identity Law] There is an e ∈ G such that
e � a = a � e = a for every a ∈ G.

[Inverse Law] For every a ∈ G there is a (unique) a−1 ∈ G
satisfying a � a−1 = a−1 � a = e.

[Associative Law] a � (b � c) = (a � b) � c for all a, b, c ∈ G.
If, in addition, composition satisfies the

[Commutative Law] a � b = b � a for all a, b ∈ G,
then the group is called a commutative group or an abelian group.

If G has finitely many elements, we say that G is a finite group. The order
of G is the number of elements in G; it is denoted by |G| or #G.
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Example 2.11. Groups are ubiquitous in mathematics and in the physical
sciences. Here are a few examples, the first two repeating those mentioned
earlier:

(a) G = F
∗
p and � = multiplication. The identity element is e = 1. Propo-

sition 1.21 tells us that inverses exist. Then G is a finite group of or-
der p− 1.

(b) G = Z/NZ and � = addition. The identity element is e = 0 and the
inverse of a is −a. This G is a finite group of order N .

(c) G = Z and � = addition. The identity element is e = 0 and the inverse
of a is −a. This group G is an infinite group.

(d) Note that G = Z and � = multiplication is not a group, since most
elements do not have multiplicative inverses inside Z.

(e) However, G = R
∗ and � = multiplication is a group, since all elements

have multiplicative inverses inside R
∗.

(f) An example of a noncommutative group is

G =

{(
a b
c d

)
: a, b, c, d ∈ R and ad− bc �= 0

}

with operation � = matrix multiplication. The identity element is
e = ( 1 0

0 1 ) and the inverse is given by the familiar formula

(
a b
c d

)−1

=

(
d

ad−bc
−b

ad−bc−c
ad−bc

a
ad−bc

)
.

Notice that G is noncommutative, since for example, ( 1 1
0 1 ) (

1 1
1 0 ) is not

equal to ( 1 1
1 0 ) (

1 1
0 1 ).

(g) More generally, we can use matrices of any size. This gives the general
linear group

GLn(R) =
{
n-by-n matrices A with real coefficients and det(A) �= 0

}

and operation � = matrix multiplication. We can form other groups
by replacing R with some other field, for example, the finite field Fp.
(See Exercise 2.15.) The group GLn(Fp) is clearly a finite group, but
computing its order is an interesting exercise.

Let g be an element of a group G and let x be a positive integer. Then gx

means that we apply the group operation to x copies of the element g,

gx = g � g � g � · · · � g
︸ ︷︷ ︸

x repetitions

.
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For example, exponentiation gx in the group F
∗
p has the usual meaning, multi-

ply x copies of g. But “exponentiation” gx in the group Z/NZ means to add x
copies of g. Admittedly, it is more common to write the quantity “add x copies
of g” as x ·g, but this is just a matter of notation. The key concept underlying
exponentiation in a group is repeated application of the group operation to
an element of the group.

It is also convenient to give a meaning to gx when x is not positive. So if x
is a negative integer, we define gx to be (g−1)|x|. For x = 0, we set g0 = e,
the identity element of G.

We now introduce a key concept used in the study of groups.

Definition. Let G be a group and let a ∈ G be an element of the group.
Suppose there exists a positive integer d with the property that ad = e. The
smallest such d is called the order of a. If there is no such d, then a is said to
have infinite order.

We next prove two propositions describing important properties of the
orders of group elements. These are generalizations of Theorem 1.24 (Fermat’s
little theorem) and Proposition 1.29, which deal with the group G = F

∗
p. The

proofs are essentially the same.

Proposition 2.12. Let G be a finite group. Then every element of G has
finite order. Further, if a ∈ G has order d and if ak = e, then d | k.

Proof. Since G is finite, the sequence

a, a2, a3, a4, . . .

must eventually contain a repetition. That is, there exist positive integers i
and j with j < i such that ai = aj . Multiplying both sides by a−j and applying
the group laws leads to ai−j = e. Since i− j > 0, this proves that some power
of a is equal to e. We let d be the smallest positive exponent satisfying ad = e.

Now suppose that k ≥ d also satisfies ak = e. We divide k by d to obtain

k = dq + r with 0 ≤ r < d.

Using the fact that ak = ad = e, we find that

e = ak = adq+r = (ad)q � ar = eq � ar = ar.

But d is the smallest positive power of a that is equal to e, so we must
have r = 0. Therefore k = dq, so d | k.

Proposition 2.13 (Lagrange’s Theorem). Let G be a finite group and let
a ∈ G. Then the order of a divides the order G.

More precisely, let n = |G| be the order of G and let d be the order of a,
i.e., ad is the smallest positive power of a that is equal to e. Then

an = e and d | n.
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Proof. We give a simple proof in the case that G is commutative. For a proof
in the general case, see any basic algebra textbook, for example [40, §3.2]
or [45, §2.3].

Since G is finite, we can list its elements as

G = {g1, g2, . . . , gn}.

We now multiply each element of G by a to obtain a new set, which we call Sa,

Sa = {a � g1, a � g2, . . . , a � gn}.

We claim that the elements of Sa are distinct. To see this, suppose that
a � gi = a � gj . Multiplying both sides by a−1 yields gi = gj .

6 Thus Sa

contains n distinct elements, which is the same as the number of elements
of G. Therefore Sa = G, so if we multiply together all of the elements of Sa,
we get the same answer as multiplying together all of the elements of G. (Note
that we are using the assumption that G is commutative.) Thus

(a � g1) � (a � g2) � · · · � (a � gn) = g1 � g2 � · · · � gn.

We can rearrange the order of the product on the left-hand side (again using
the commutativity) to obtain

an � g1 � g2 � · · · � gn = g1 � g2 � · · · � gn.

Now multiplying by (g1 � g2 � · · · � gn)−1 yields an = e, which proves the
first statement, and then the divisibility of n by d follows immediately from
Proposition 2.12.

2.6 How Hard Is the Discrete Logarithm
Problem?

Given a group G and two elements g, h ∈ G, the discrete logarithm prob-
lem asks for an exponent x such that gx = h. What does it mean to talk
about the difficulty of this problem? How can we quantify “hard”? A natural
measure of hardness is the approximate number of operations necessary for
a person or a computer to solve the problem using the most efficient method
currently known. For example, we can solve the discrete logarithm problem
by computing the list of values g, g2, g3, . . . until we find one that is equal
to h. If g has order n, then this algorithm is guaranteed to find the solution

6We are being somewhat informal here, as is usually done when one is working with
groups. Here is a more formal proof. We are given that a�gi = a�gj . We use this assumption
and the group law axioms to compute
gi = e � gi = (a−1 � a) � gi = a−1 � (a � gi) = a−1 � (a � gj) = (a−1 � a) � gj = e � gj = gj .
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in at most n multiplications, but if n is large, say n > 280, then it is not a
practical algorithm with the computing power available today.

Alternatively, we might try choosing random values of x, compute gx, and
check if gx = h. Using the fast exponentiation method described in Sect. 1.3.2,
it takes a small multiple of log2(x) modular multiplications to compute gx.
If n and x are k-bit numbers, that is, they are each approximately 2k, then this
trial-and-error approach requires about k·2k multiplications. If we are working
in the group F

∗
p and if we treat modular addition as our basic operation,

then modular multiplication of two k-bit numbers takes (approximately) k2

basic operations, so solving the DLP by trial-and-error takes a small multiple
of k2 · 2k basic operations.

We are being somewhat imprecise when we talk about “small multiples”
of 2k or k · 2k or k2 · 2k. This is because when we want to know whether a
computation is feasible, numbers such as 3 · 2k and 10 · 2k and 100 · 2k mean
pretty much the same thing if k is large. The important property is that
the constant multiple is fixed as k increases. Order notation was invented
to make these ideas precise.7 It is prevalent throughout mathematics and
computer science and provides a handy way to get a grip on the magnitude
of quantities.

Definition (Order Notation). Let f(x) and g(x) be functions of x taking
values that are positive. We say that “f is big-O of g” and write

f(x) = O
(
g(x)

)

if there are positive constants c and C such that

f(x) ≤ cg(x) for all x ≥ C.

In particular, we write f(x) = O(1) if f(x) is bounded for all x ≥ C.

The next proposition gives a method that can sometimes be used to prove
that f(x) = O

(
g(x)

)
.

Proposition 2.14. If the limit

lim
x→∞

f(x)

g(x)

exists (and is finite), then f(x) = O
(
g(x)

)
.

Proof. Let L be the limit. By definition of limit, for any ε > 0 there is a
constant Cε such that

∣
∣
∣
∣
f(x)

g(x)
− L
∣
∣
∣
∣ < ε for all x > Cε.

7Although we use the same word for the order of a finite group and the order of growth
of a function, they are two different concepts. Make sure that you don’t confuse them.
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In particular, taking ε = 1, we find that

f(x)

g(x)
< L+ 1 for all x > C1.

Hence by definition, f(x) = O
(
g(x)

)
with c = L+ 1 and C = C1.

Example 2.15. We have 2x3 − 3x2 + 7 = O(x3), since

lim
x→∞

2x3 − 3x2 + 7

x3
= 2.

Similarly, we have x2 = O(2x), since

lim
x→∞

x2

2x
= 0.

(If you don’t know the value of this limit, use L’Hôpital’s rule twice.)
However, note that we may have f(x) = O

(
g(x)

)
even if the limit of

f(x)/g(x) does not exist. For example, the limit

lim
x→∞

(x+ 2) cos2(x)

x

does not exist, but

(x+ 2) cos2(x) = O(x), since (x+ 2) cos2(x) ≤ x+ 2 ≤ 2x for all x ≥ 2.

Example 2.16. Here are a few more examples of big-O notation. We leave the
verification as an exercise.

(a) x2 +
√
x = O

(
x2
)
. (d) (ln k)375 = O

(
k0.001

)
.

(b) 5 + 6x2 − 37x5 = O
(
x5
)
. (e) k22k = O

(
e2k
)
.

(c) k300 = O
(
2k
)
. (f) N102N = O

(
eN
)
.

Order notation allows us to define several fundamental concepts that are
used to get a rough handle on the computational complexity of mathematical
problems.

Definition. Suppose that we are trying to solve a certain type of mathemat-
ical problem, where the input to the problem is a number whose size may
vary. As an example, consider the Integer Factorization Problem, whose input
is a number N and whose output is a prime factor of N . We are interested
in knowing how long it takes to solve the problem in terms of the size of the
input. Typically, one measures the size of the input by its number of bits,
since that is how much storage it takes to record the input.

Suppose that there is a constant A ≥ 0, independent of the size of the
input, such that if the input is O(k) bits long, then it takes O(kA) steps to
solve the problem. Then the problem is said to be solvable in polynomial time.
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If we can take A = 1, then the problem is solvable in linear time, and if we can
take A = 2, then the problem is solvable in quadratic time. Polynomial-time
algorithms are considered to be fast algorithms.

On the other hand, if there is a constant c > 0 such that for inputs of
size O(k) bits, there is an algorithm to solve the problem in O

(
eck
)
steps,

then the problem is solvable in exponential time. Exponential-time algorithms
are considered to be slow algorithms.

Intermediate between polynomial-time algorithms and exponential-time
algorithms are subexponential-time algorithms. These have the property that
for every ε > 0, they solve the problem in Oε

(
eεk
)
steps. This notation

means that the constants c and C appearing in the definition of order no-
tation are allowed to depend on ε. For example, in Chap. 3 we will study
a subexponential-time algorithm for the integer factorization problem whose
running time is O

(
ec

√
k log k

)
steps.

As a general rule of thumb in cryptography, problems solvable in polyno-
mial time are considered to be “easy” and problems that require exponential
time are viewed as “hard,” with subexponential time lying somewhere in be-
tween. However, bear in mind that these are asymptotic descriptions that are
applicable only as the variables become very large. Depending on the big-O
constants and on the size of the input, an exponential problem may be easier
than a polynomial problem. We illustrate these general concepts by consider-
ing the discrete logarithm problem in various groups.

Example 2.17. We start with our original discrete logarithm problem gx = h
in G = F

∗
p. If the prime p is chosen between 2k and 2k+1, then g, h, and p

all require at most k bits, so the problem can be stated in O(k)-bits. (Notice
that O(k) is the same as O(log2 p).)

If we try to solve the DLP using the trial-and-error method mentioned
earlier, then it takes O(p) steps to solve the problem. Since O(p) = O(2k),
this algorithm takes exponential time. (If we consider instead multiplication
or addition to be the basic operation, then the algorithm takes O(k · 2k)
or O(k2 · 2k) steps, but these distinctions are irrelevant; the running time is
still exponential, since for example it is O(3k).)

However, there are faster ways to solve the DLP in F
∗
p, some of which

are very fast but work only for some primes, while others are less fast, but
work for all primes. For example, the Pohlig–Hellman algorithm described in
Sect. 2.9 shows that if p− 1 factors entirely into a product of small primes,
then the DLP is quite easy. For arbitrary primes, the algorithm described in
Sect. 2.7 solves the DLP in O(

√
p log p) steps, which is much faster than O(p),

but still exponential. Even better is the index calculus algorithm described in

Sect. 3.8. The index calculus solves the DLP in O(ec
√

(log p)(log log p)) steps, so
it is a subexponential algorithm.

Example 2.18. We next consider the DLP in the group G = Fp, where now
the group operation is addition. The DLP in this context asks for a solution x
to the congruence
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x · g ≡ h (mod p),

where g and h are given elements of Z/pZ. As described in Sect. 1.3, we
can solve this congruence using the extended Euclidean algorithm (Theo-
rem 1.11) to compute g−1 (mod p) and setting x ≡ g−1 · h (mod p). This
takes O(log p) steps (see Remark 1.15), so there is a linear-time algorithm to
solve the DLP in the additive group Fp. This is a very fast algorithm, so the
DLP in Fp with addition is not a good candidate for use as a one-way function
in cryptography.

This is an important lesson to learn. The discrete logarithm problems in
different groups may display different levels of difficulty for their solution.
Thus the DLP in Fp with addition has a linear-time solution, while the best
known general algorithm to solve the DLP in F

∗
p with multiplication is subex-

ponential. In Chap. 6 we discuss another sort of group called an elliptic curve.
The discrete logarithm problem for elliptic curves is believed to be even more
difficult than the DLP for F∗

p. In particular, if the elliptic curve group is cho-
sen carefully and has N elements, then the best known algorithm to solve the
DLP requires O(

√
N) steps. Thus it currently takes exponential time to solve

the elliptic curve discrete logarithm problem (ECDLP).

2.7 A Collision Algorithm for the DLP

In this section we describe a discrete logarithm algorithm due to Shanks. It
is an example of a collision, or meet-in-the-middle, algorithm. Algorithms of
this type are discussed in more detail in Sects. 5.4 and 5.5. Shanks’s algorithm
works in any group, not just F∗

p, and the proof that it works is no more difficult
for arbitrary groups, so we state and prove it in full generality.

We begin by recalling the running time of the trivial brute-force algorithm
to solve the DLP.

Proposition 2.19 (Trivial Bound for DLP). Let G be a group and let g ∈ G
be an element of order N . (Recall that this means that gN = e and that
no smaller positive power of g is equal to the identity element e.) Then the
discrete logarithm problem

gx = h (2.2)

can be solved in O(N) steps and O(1) storage, where each step consists of
multiplication by g.

Proof. We simply compute g, g2, g3, . . ., where each successive value is ob-
tained by multiplying the previous value by g, so we only need to store two
values at a time. If a solution to gx = h exists, then h will appear before we
reach gN .

Remark 2.20. If we work in F
∗
p, then each computation of gx (mod p) re-

quires O((log p)k) computer operations, where the constant k and the implied
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big-O constant depend on the computer and the algorithm used for modular
multiplication. Then the total number of computer steps, or running time,
is O(N(log p)k). In general, the factor contributed by the O((log p)k) is neg-
ligible, so we will suppress it and simply refer to the running time as O(N).

The idea behind a collision algorithm is to make two lists and look for
an element that appears in both lists. For the discrete logarithm problem
described in Proposition 2.19, the running time of a collision algorithm is a
little more than O(

√
N ) steps, which is a huge savings over O(N) if N is

large.

Proposition 2.21 (Shanks’s Babystep–Giantstep Algorithm). Let G be a
group and let g ∈ G be an element of order N ≥ 2. The following algo-
rithm solves the discrete logarithm problem gx = h in O(

√
N · logN) steps

using O(
√
N) storage.

(1) Let n = 1 + �
√
N �, so in particular, n >

√
N .

(2) Create two lists,

List 1: e, g, g2, g3, . . . , gn,

List 2: h, h · g−n, h · g−2n, h · g−3n, . . . , h · g−n2

.

(3) Find a match between the two lists, say gi = hg−jn.

(4) Then x = i+ jn is a solution to gx = h.

Proof. We begin with a couple of observations. First, when creating List 2,
we start by computing the quantity u = g−n and then compile List 2 by
computing h, h · u, h · u2, . . . , h · un. Thus creating the two lists takes approx-
imately 2n multiplications.8 Second, assuming that a match exists, we can
find a match in a small multiple of n log(n) steps using standard sorting and
searching algorithms, so Step (3) takes O(n log n) steps. Hence the total run-
ning time for the algorithm is O(n log n) = O(

√
N logN). For this last step

we have used the fact that n ≈
√
N , so

n log n ≈
√
N log

√
N =

1

2

√
N logN.

Third, the lists in Step (2) have length n, so require O(
√
N) storage.

In order to prove that the algorithm works, we must show that Lists 1
and 2 always have a match. To see this, let x be the unknown solution to
gx = h and write x as

x = nq + r with 0 ≤ r < n.

8Multiplication by g is a “baby step” and multiplication by u = g−n is a “giant step,”
whence the name of the algorithm.
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k gk h · uk

1 9704 347

2 6181 13357

3 5763 12423

4 1128 13153

5 8431 7928

6 16568 1139

7 14567 6259

8 2987 12013

k gk h · uk

9 15774 16564

10 12918 11741

11 16360 16367

12 13259 7315

13 4125 2549

14 16911 10221

15 4351 16289

16 1612 4062

k gk h · uk

17 10137 10230

18 17264 3957

19 4230 9195

20 9880 13628

21 9963 10126

22 15501 5416

23 6854 13640

24 15680 5276

k gk h · uk

25 4970 12260

26 9183 6578

27 10596 7705

28 2427 1425

29 6902 6594

30 11969 12831

31 6045 4754

32 7583 14567

Table 2.4: Babystep–giantstep to solve 9704x ≡ 13896 (mod 17389)

We know that 1 ≤ x < N , so

q =
x− r
n

<
N

n
< n since n >

√
N .

Hence we can rewrite the equation gx = h as

gr = h · g−qn with 0 ≤ r < n and 0 ≤ q < n.

Thus gr is in List 1 and h · g−qn is in List 2, which shows that Lists 1 and 2
have a common element.

Example 2.22. We illustrate Shanks’s babystep–giantstep method by using it
to solve the discrete logarithm problem

gx = h in F
∗
p with g = 9704, h = 13896, and p = 17389.

The number 9704 has order 1242 in F
∗
17389.

9 Set n = �
√
1242 � + 1 = 36 and

u = g−n = 9704−36 = 2494. Table 2.4 lists the values of gk and h · uk for
k = 1, 2, . . . . From the table we find the collision

97047 = 14567 = 13896 · 249432 in F17389.

Using the fact that 2494 = 9704−36, we compute

13896 = 97047 · 2494−32 = 97047 · (970436)32 = 97041159 in F17389.

Hence x = 1159 solves the problem 9704x = 13896 in F17389.

2.8 The Chinese Remainder Theorem

The Chinese remainder theorem describes the solutions to a system of simul-
taneous linear congruences. The simplest situation is a system of two congru-
ences,

9Lagrange’s theorem (Proposition 2.13) says that the order of g divides 17388 = 22 ·
33 · 7 · 23. So we can determine the order of g by computing gn for the 48 distinct divisors
of 17388, although in practice there are more efficient methods.
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x ≡ a (mod m) and x ≡ b (mod n), (2.3)

with gcd(m,n) = 1, in which case the Chinese remainder theorem says that
there is a unique solution modulo mn.

The first recorded instance of a problem of this type appears in a Chinese
mathematical work from the late third or early fourth century. It actually
deals with the harder problem of three simultaneous congruences.

We have a number of things, but we do not know exactly how
many. If we count them by threes, we have two left over. If we
count them by fives, we have three left over. If we count them by
sevens, we have two left over. How many things are there? [Sun Tzu
Suan Ching (Master Sun’s Mathematical Manual) circa 300 AD,
volume 3, problem 26.]

The Chinese remainder theorem and its generalizations have many appli-
cations in number theory and other areas of mathematics. In Sect. 2.9 we will
see how it can be used to solve certain instances of the discrete logarithm
problem. We begin with an example in which we solve two simultaneous con-
gruences. As you read this example, notice that it is not merely an abstract
statement that a solution exists. The method that we describe is really an
algorithm that allows us to find the solution.

Example 2.23. We look for an integer x that simultaneously solves both of
the congruences

x ≡ 1 (mod 5) and x ≡ 9 (mod 11). (2.4)

The first congruence tells us that x ≡ 1 (mod 5), so the full set of solutions
to the first congruence is the collection of integers

x = 1 + 5y, y ∈ Z. (2.5)

Substituting (2.5) into the second congruence in (2.4) gives

1 + 5y ≡ 9 (mod 11), and hence 5y ≡ 8 (mod 11). (2.6)

We solve for y by multiplying both sides of (2.6) by the inverse of 5 mod-
ulo 11. This inverse exists because gcd(5, 11) = 1 and can be computed using
the procedure described in Proposition 1.13 (see also Remark 1.15). How-
ever, in this case the modulus is so small that we find it by trial and error;
thus 5 · 9 = 45 ≡ 1 (mod 11).

In any case, multiplying both sides of (2.6) by 9 yields

y ≡ 9 · 8 ≡ 72 ≡ 6 (mod 11).

Finally, substituting this value of y into (2.5) gives the solution

x = 1 + 5 · 6 = 31

to the original problem.
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The procedure outlined in Example 2.23 can be used to derive a general
formula for the solution of two simultaneous congruences (see Exercise 2.20),
but it is much better to learn the method, rather than memorizing a for-
mula. This is especially true because the Chinese remainder theorem applies
to systems of arbitrarily many simultaneous congruences.

Theorem 2.24 (Chinese Remainder Theorem). Let m1,m2, . . . ,mk be a col-
lection of pairwise relatively prime integers. This means that

gcd(mi,mj) = 1 for all i �= j.

Let a1, a2, . . . , ak be arbitrary integers. Then the system of simultaneous con-
gruences

x ≡ a1 (mod m1), x ≡ a2 (mod m2), . . . , x ≡ ak (mod mk) (2.7)

has a solution x = c. Further, if x = c and x = c′ are both solutions, then

c ≡ c′ (mod m1m2 · · ·mk). (2.8)

Proof. Suppose that for some value of i we have already managed to find a
solution x = ci to the first i simultaneous congruences,

x ≡ a1 (mod m1), x ≡ a2 (mod m2), . . . , x ≡ ai (mod mi). (2.9)

For example, if i = 1, then c1 = a1 works. We are going to explain how to
find a solution to one more congruence,

x ≡ a1 (mod m1), x ≡ a2 (mod m2), . . . , x ≡ ai+1 (mod mi+1).

The idea is to look for a solution having the form

x = ci +m1m2 · · ·miy.

Notice that this value of x still satisfies all of the congruences (2.9), so we
need merely choose y so that it also satisfies x ≡ ai+1 (mod mi+1). In other
words, we need to find a value of y satisfying

ci +m1m2 · · ·miy ≡ ai+1 (mod mi+1).

Proposition 1.13(b) and the fact that gcd(mi+1,m1m2 · · ·mi) = 1 imply that
we can always do this. This completes the proof of the existence of a solution.
We leave to you the task of proving that different solutions satisfy (2.8); see
Exercise 2.21.

The proof of the Chinese remainder theorem (Theorem 2.24) is easily con-
verted into an algorithm for finding the solution to a system of simultaneous
congruences. An example suffices to illustrate the general method.
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Example 2.25. We solve the three simultaneous congruences

x ≡ 2 (mod 3), x ≡ 3 (mod 7), x ≡ 4 (mod 16). (2.10)

The Chinese remainder theorem says that there is a unique solution mod-
ulo 336, since 336 = 3 · 7 · 16. We start with the solution x = 2 to the first
congruence x ≡ 2 (mod 3). We use it to form the general solution x = 2 + 3y
and substitute it into the second congruence to get

2 + 3y ≡ 3 (mod 7).

This simplifies to 3y ≡ 1 (mod 7), and we multiply both sides by 5 (since 5 is
the inverse of 3 modulo 7) to get y ≡ 5 (mod 7). This gives the value

x = 2 + 3y = 2 + 3 · 5 = 17

as a solution to the first two congruences in (2.10).
The general solution to the first two congruences is thus x = 17 + 21z. We

substitute this into the third congruence to obtain

17 + 21z ≡ 4 (mod 16).

This simplifies to 5z ≡ 3 (mod 16). We multiply by 13, which is the inverse
of 5 modulo 16, to obtain

z ≡ 3 · 13 ≡ 39 ≡ 7 (mod 16).

Finally, we substitute this into x = 17 + 21z to get the solution

x = 17 + 21 · 7 = 164.

All other solutions are obtained by adding and subtracting multiples of 336
to this particular solution.

2.8.1 Solving Congruences with Composite Moduli

It is usually easiest to solve a congruence with a composite modulus by first
solving several congruences modulo primes (or prime powers) and then fitting
together the solutions using the Chinese remainder theorem. We illustrate
the principle in this section by discussing the problem of finding square roots
modulo m. It turns out that it is relatively easy to compute square roots
modulo a prime. Indeed, for primes congruent to 3 modulo 4, it is extremely
easy to find square roots, as shown by the following proposition.

Proposition 2.26. Let p be a prime satisfying p ≡ 3 (mod 4). Let a be an
integer such that the congruence x2 ≡ a (mod p) has a solution, i.e., such
that a has a square root modulo p. Then
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b ≡ a(p+1)/4 (mod p)

is a solution, i.e., it satisfies b2 ≡ a (mod p). (N.B. This formula is valid
only if a has a square root modulo p. In Sect. 3.9 we will describe an efficient
method for checking which numbers have square roots modulo p.)

Proof. Let g be a primitive root modulo p. Then a is equal to some power
of g, and the fact that a has a square root modulo p means that a is an even
power of g, say a ≡ g2k (mod p). (See Exercise 2.5.) Now we compute

b2 ≡ a
p+1
2 (mod p) definition of b,

≡ (g2k)
p+1
2 (mod p) since a ≡ g2k (mod p),

≡ g(p+1)k (mod p)

≡ g2k+(p−1)k (mod p)

≡ a · (gp−1)k (mod p) since a ≡ g2k (mod p),

≡ a (mod p) since gp−1 ≡ 1 (mod p).

Hence b is indeed a square root of a modulo p.

Example 2.27. A square root of a = 2201 modulo the prime p = 4127 is

b ≡ a(p+1)/4 = 22014128/4 ≡ 22011032 ≡ 3718 (mod 4127).

To see that a does indeed have a square root modulo 4127, we simply square b
and check that 37182 = 13823524 ≡ 2201 (mod 4127).

Suppose now that we want to compute a square root modulom, wherem is
not necessarily a prime. An efficient method is to factorm, compute the square
root modulo each of the prime (or prime power) factors, and then combine
the solutions using the Chinese remainder theorem. An example makes the
idea clear.

Example 2.28. We look for a solution to the congruence

x2 ≡ 197 (mod 437). (2.11)

The modulus factors as 437 = 19 · 23, so we first solve the two congruences

y2 ≡ 197 ≡ 7 (mod 19) and z2 ≡ 197 ≡ 13 (mod 23).

Since both 19 and 23 are congruent to 3 modulo 4, we can find these square
roots using Proposition 2.26 (or by trial and error). In any case, we have

y ≡ ±8 (mod 19) and z ≡ ±6 (mod 23).

We can pick either 8 or −8 for y and either 6 or −6 for z. Choosing the two
positive solutions, we next use the Chinese remainder theorem to solve the
simultaneous congruences

x ≡ 8 (mod 19) and x ≡ 6 (mod 23). (2.12)

We find that x ≡ 236 (mod 437), which gives the desired solution to (2.11).
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Remark 2.29. The solution to Example 2.28 is not unique. In the first place,
we can always take the negative,

−236 ≡ 201 (mod 437),

to get a second square root of 197 modulo 437. If the modulus were prime,
there would be only these two square roots (Exercise 1.36(a)). However,
since 437 = 19 · 23 is composite, there are two others. In order to find them,
we replace one of 8 and 6 with its negative in (2.12). This leads to the val-
ues x = 144 and x = 293, so 197 has four square roots modulo 437.

Remark 2.30. It is clear from Example 2.28 (see also Exercises 2.23 and 2.24)
that it is relatively easy to compute square roots modulo m if one knows how
to factor m into a product of prime powers. However, suppose that m is so
large that we are not able to factor it. It is then a very difficult problem to
find square roots modulo m. Indeed, in a certain reasonably precise sense, it
is just as difficult to compute square roots modulo m as it is to factor m.

In fact, if m is a large composite number whose factorization is unknown,
then it is a difficult problem to determine whether a given integer a has a
square root modulo m, even without requiring that the square root be com-
puted. The Goldwasser–Micali public key cryptosystem, which is described in
Sect. 3.10, is based on the difficulty of identifying which numbers have square
roots modulo a composite modulusm. The trapdoor information is knowledge
of the factors of m.

2.9 The Pohlig–Hellman Algorithm

In addition to being a theorem and an algorithm, we would suggest to the
reader that the Chinese remainder theorem is also a state of mind. If

m = m1 ·m2 · · ·mt

is a product of pairwise relatively prime integers, then the Chinese remainder
theorem says that solving an equation modulo m is more or less equivalent
to solving the equation modulo mi for each i, since it tells us how to knit the
solutions together to get a solution modulo m.

In the discrete logarithm problem (DLP), we need to solve the equation

gx ≡ h (mod p).

In this case, the modulus p is prime, which suggests that the Chinese remain-
der theorem is irrelevant. However, recall that the solution x is determined
only modulo p−1, so we can think of the solution as living in Z/(p−1)Z. This
hints that the factorization of p−1 into primes may play a role in determining
the difficulty of the DLP in F

∗
p. More generally, if G is any group and g ∈ G

is an element of order N , then solutions to gx = h in G are determined only
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modulo N , so the prime factorization of N would appear to be relevant. This
idea is at the core of the Pohlig–Hellman algorithm.

As in Sect. 2.7 we state and prove results in this section for an arbitrary
group G. But if you feel more comfortable working with integers modulo p,
you may simply replace G by F

∗
p.

Theorem 2.31 (Pohlig–Hellman Algorithm). Let G be a group, and suppose
that we have an algorithm to solve the discrete logarithm problem in G for
any element whose order is a power of a prime. To be concrete, if g ∈ G has
order qe, suppose that we can solve gx = h in O(Sqe) steps. (For example,
Proposition 2.21 says that we can take Sqe to be qe/2. See Remark 2.32 for a
further discussion.)

Now let g ∈ G be an element of order N , and suppose that N factors into
a product of prime powers as

N = qe11 · qe22 · · · qett .

Then the discrete logarithm problem gx = h can be solved in

O
( t∑

i=1

Sq
ei
i

+ logN

)
steps (2.13)

using the following procedure:

(1) For each 1 ≤ i ≤ t, let

gi = gN/q
ei
i and hi = hN/q

ei
i .

Notice that gi has prime power order qeii , so use the given algorithm to
solve the discrete logarithm problem

gyi = hi. (2.14)

Let y = yi be a solution to (2.14).

(2) Use the Chinese remainder theorem (Theorem 2.24) to solve

x ≡ y1 (mod qe11 ), x ≡ y2 (mod qe22 ), . . . , x ≡ yt (mod qett ). (2.15)

Proof. The running time is clear, since Step (1) takes O(
∑
Sq

ei
i
) steps, and

Step (2), via the Chinese remainder theorem, takesO(logN) steps. In practice,
the Chinese remainder theorem computation is usually negligible compared
to the discrete logarithm computations.

It remains to show that Steps (1) and (2) give a solution to gx = h. Let x
be a solution to the system of congruences (2.15). Then for each i we can
write

x = yi + qeii zi for some zi. (2.16)
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This allows us to compute

(
gx
)N/q

ei
i =

(
gyi+q

ei
i zi
)N/q

ei
i from (2.16),

=
(
gN/q

ei
i

)yi · gNzi

=
(
gN/q

ei
i

)yi
since gN is the identity element,

= gyi

i by the definition of gi,

= hi from (2.14)

= hN/q
ei
i by the definition of hi.

In terms of discrete logarithms to the base g, we can rewrite this as

N

qeii
· x ≡ N

qeii
· logg(h) (mod N), (2.17)

where recall that the discrete logarithm to the base g is defined only moduloN ,
since gN is the identity element.

Next we observe that the numbers

N

qe11
,

N

qe22
, . . .

N

qett

have no nontrivial common factor, i.e., their greatest common divisor is 1.
Repeated application of the extended Euclidean theorem (Theorem 1.11) (see
also Exercise 1.13) says that we can find integers c1, c2, . . . , ct such that

N

qe11
· c1 +

N

qe22
· c2 + · · ·+

N

qett
· ct = 1. (2.18)

Now multiply both sides of (2.17) by ci and sum over i = 1, 2, . . . , t. This
gives

t∑

i=1

N

qeii
· ci · x ≡

t∑

i=1

N

qeii
· ci · logg(h) (mod N),

and then (2.18) tells us that

x = logg(h) (mod N).

This completes the proof that x satisfies gx ≡ h.

Remark 2.32. The Pohlig–Hellman algorithm more or less reduces the discrete
logarithm problem for elements of arbitrary order to the discrete logarithm
problem for elements of prime power order. A further refinement, which we
discuss later in this section, essentially reduces the problem to elements of
prime order. More precisely, in the notation of Theorem 2.31, the running
time Sqe for elements of order qe can be reduced to O(eSq). This is the content
of Proposition 2.33.



2.9. The Pohlig–Hellman Algorithm 91

The Pohlig–Hellman algorithm thus tells us that the discrete logarithm
problem in a group G is not secure if the order of the group is a product
of powers of small primes. More generally, gx = h is easy to solve if the
order of the element g is a product of powers of small primes. This applies, in
particular, to the discrete logarithm problem in Fp if p−1 factors into powers
of small primes. Since p−1 is always even, the best that we can do is take p =
2q + 1 with q prime and use an element g of order q. Then the running time
of the collision algorithm described in Proposition 2.21 is O(

√
q ) = O(

√
p ).

However, the index calculus method described in Sect. 3.8 has running time
that is subexponential, so even if p = 2q + 1, the prime q must be chosen to
be quite large.

We now explain the algorithm that reduces the discrete logarithm prob-
lem for elements of prime power order to the discrete logarithm problem for
elements of prime order. The idea is simple: if g has order qe, then gq

e−1

has
order q. The trick is to repeat this process several times and then assemble
the information into the final answer.

Proposition 2.33. Let G be a group. Suppose that q is a prime, and suppose
that we know an algorithm that takes Sq steps to solve the discrete logarithm
problem gx = h in G whenever g has order q. Now let g ∈ G be an element of
order qe with e ≥ 1. Then we can solve the discrete logarithm problem

gx = h in O(eSq) steps. (2.19)

Remark 2.34. Proposition 2.21 says that we can take Sq = O(
√
q ), so Propo-

sition 2.33 says that we can solve the DLP (2.19) in O(e
√
q ) steps. Notice

that if we apply Proposition 2.21 directly to the DLP (2.19), the running time
is O(qe/2), which is much slower if e ≥ 2.

Proof of Proposition 2.33. The key idea to proving the proposition is to write
the unknown exponent x in the form

x = x0 + x1q + x2q
2 + · · ·+ xe−1q

e−1 with 0 ≤ xi < q, (2.20)

and then determine successively x0, x1, x2, . . . . We begin by observing that
the element gq

e−1

is of order q. This allows us to compute

hq
e−1

= (gx)q
e−1

raising both sides of (2.19)
to the qe−1 power

=
(
gx0+x1q+x2q

2+···+xe−1q
e−1
)qe−1

from (2.20)

= gx0q
e−1 ·

(
gq

e
)x1+x2q+···+xe−1q

e−2

=
(
gq

e−1)x0
since gq

e

= 1.
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Since gq
e−1

is an element of order q in G, the equation

(
gq

e−1)x0
= hq

e−1

is a discrete logarithm problem whose base is an element of order q. By as-
sumption, we can solve this problem in Sq steps. Once this is done, we know
an exponent x0 with the property that

gx0q
e−1

= hq
e−1

in G.

We next do a similar computation, this time raising both sides of (2.19)
to the qe−2 power, which yields

hq
e−2

= (gx)q
e−2

=
(
gx0+x1q+x2q

2+···+xe−1q
e−1
)qe−2

= gx0q
e−2 · gx1q

e−1 ·
(
gq

e
)x2+x3q+···+xe−1q

e−3

= gx0q
e−2 · gx1q

e−1

.

Keep in mind that we have already determined the value of x0 and that the
element gq

e−1

has order q in G. In order to find x1, we must solve the discrete
logarithm problem (

gq
e−1
)x1

=
(
h · g−x0

)qe−2

for the unknown quantity x1. Again applying the given algorithm, we can
solve this in Sq steps. Hence in O(2Sq) steps, we have determined values
for x0 and x1 satisfying

g(x0+x1q)q
e−2

= hq
e−2

in G.

Similarly, we find x2 by solving the discrete logarithm problem

(
gq

e−1
)x2

=
(
h · g−x0−x1q

)qe−3

,

and in general, after we have determined x0, . . . , xi−1, then the value of xi is
obtained by solving

(
gq

e−1
)xi

=
(
h · g−x0−x1q−···−xi−1q

i−1
)qe−i−1

in G.

Each of these is a discrete logarithm problem whose base is of order q, so each
of them can be solved in Sq steps. Hence after O(eSq) steps, we obtain an
exponent x = x0 + x1q + · · ·+ xe−1q

e−1 satisfying gx = h, thus solving the
original discrete logarithm problem.
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Example 2.35. We do an example to clarify the algorithm described in the
proof of Proposition 2.33. We solve

5448x = 6909 in F
∗
11251. (2.21)

The prime p = 11251 has the property that p − 1 is divisible by 54, and it
is easy to check that 5448 has order exactly 54 in F11251. The first step is to
solve

(
54485

3
)x0

= 69095
3

,

which reduces to 11089x0 = 11089. This one is easy; the answer is x0 = 1, so
our initial value of x is x = 1.

The next step is to solve

(
54485

3
)x1

= (6909 · 5448−x0)5
2

= (6909 · 5448−1)5
2

,

which reduces to 11089x1 = 3742. Note that we only need to check values
of x1 between 1 and 4, although if q were large, it would pay to use a faster
algorithm such as Proposition 2.21 to solve this discrete logarithm problem.
In any case, the solution is x1 = 2, so the value of x is now x = 11 = 1 + 2 · 5.

Continuing, we next solve

(
54485

3
)x2

=
(
6909 · 5448−x0−x1·5)5 =

(
6909 · 5448−11

)5
,

which reduces to 11089x2 = 1. Thus x2 = 0, which means that the value of x
remains at x = 11.

The final step is to solve

(
54485

3
)x3

= 6909 · 5448−x0−x1·5−x2·52 = 6909 · 5448−11.

This reduces to solving 11089x3 = 6320, which has the solution x3 = 4. Hence
our final answer is

x = 511 = 1 + 2 · 5 + 4 · 53.

As a check, we compute

5448511 = 6909 in F11251. �

The Pohlig–Hellman algorithm (Theorem 2.31) for solving the discrete log-
arithm problem uses the Chinese remainder theorem (Theorem 2.24) to knot
together the solutions for prime powers from Proposition 2.33. The following
example illustrates the full Pohlig–Hellman algorithm.

Example 2.36. Consider the discrete logarithm problem

23x = 9689 in F11251. (2.22)
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The base 23 is a primitive root in F11251, i.e., it has order 11250. Since
11250 = 2 · 32 · 54 is a product of small primes, the Pohlig–Hellman algorithm
should work well. In the notation of Theorem 2.31, we set

p = 11251, g = 23, h = 9689, N = p− 1 = 2 · 32 · 54.

The first step is solve three subsidiary discrete logarithm problems, as
indicated in the following table.

q e g(p−1)/qe h(p−1)/qe Solve
(
g(p−1)/qe

)x
= h(p−1)/qe for x

2 1 11250 11250 1
3 2 5029 10724 4
5 4 5448 6909 511

Notice that the first problem is trivial, while the third one is the problem that
we solved in Example 2.35. In any case, the individual problems in this step
of the algorithm may be solved as described in the proof of Proposition 2.33.

The second step is to use the Chinese remainder theorem to solve the
simultaneous congruences

x ≡ 1 (mod 2), x ≡ 4 (mod 32), x ≡ 511 (mod 54).

The smallest solution is x = 4261. We check our answer by computing

234261 = 9689 in F11251. �

2.10 Rings, Quotient Rings, Polynomial
Rings, and Finite Fields

Note to the Reader: In this section we describe some topics that are typ-
ically covered in an introductory course in abstract algebra. This material
is somewhat more mathematically sophisticated than the material that we
have discussed up to this point. For cryptographic applications, the most im-
portant topics in this section are the theory of finite fields of prime power
order, which in this book are used primarily in Sects. 6.7 and 6.8 in studying
elliptic curve cryptography, and the theory of quotients of polynomial rings,
which are used in Sect. 7.10 to describe the lattice-based NTRU public key
cryptosystem. The reader interested in proceeding more rapidly to additional
cryptographic topics may wish to omit this section at first reading and return
to it when arriving at the relevant sections of Chaps. 6 and 7.

As we have seen, groups are fundamental objects that appear in many
areas of mathematics. A group G is a set and an operation that allows us to
“multiply” two elements to obtain a third element. We gave a brief overview
of the theory of groups in Sect. 2.5. Another fundamental object in mathe-
matics, called a ring, is a set having two operations. These two operations
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are analogous to ordinary addition and multiplication, and they are linked by
the distributive law. In this section we begin with a brief discussion of the
general theory of rings, then we discuss how to form one ring from another
by taking quotients, and we conclude by examining in some detail the case of
polynomial rings.

2.10.1 An Overview of the Theory of Rings

You are already familiar with many rings, for example the ring of integers
with the operations of addition and multiplication. We abstract the funda-
mental properties of these operations and use them to formulate the following
fundamental definition.

Definition. A ring is a set R that has two operations, which we denote by +
and �,10 having the following properties:

Properties of +
[Identity Law ] There is an additive identity 0 ∈ R such that

0 + a = a+ 0 = a for every a ∈ R.
[Inverse Law ] For every element a ∈ R there is an additive

inverse b ∈ R such that a+ b = b+ a = 0.

[Associative Law ] a+ (b+ c) = (a+ b) + c for all a, b, c ∈ R.
[Commutative Law ] a+ b = b+ a for all a, b ∈ R,
Briefly, if we look at R with only the operation +, then it is a commutative
group with (additive) identity element 0.

Properties of �
[Identity Law ] There is a multiplicative identity 1 ∈ R such that

1 � a = a � 1 = a for every a ∈ R.
[Associative Law ] a � (b � c) = (a � b) � c for all a, b, c ∈ R.
[Commutative Law ] a � b = b � a for all a, b ∈ R,
Thus if we look at R with only the operation �, then it is almost a commu-
tative group with (multiplicative) identity element 1, except that elements
are not required to have multiplicative inverses.

Property Linking + and �
[Distributive Law ] a � (b+ c) = a � b+ a � c for all a, b, c ∈ R.

Remark 2.37. More generally, people sometimes work with rings that do not
contain a multiplicative identity, and also with rings for which � is not com-
mutative, i.e., a � b might not be equal to b � a. So to be formal, our rings
are really commutative rings with (multiplicative) identity. However, all of the
rings that we use will be of this type, so we will just call them rings.

10Addition in a ring is virtually always denoted by +, but there are many different
notations for multiplication. In this book use a � b, aḃ, or simply ab, depending on the
context.
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Every element of a ring has an additive inverse, but there may be many
nonzero elements that do not have multiplicative inverses. For example, in the
ring of integers Z, the only elements that have multiplicative inverses are 1
and −1.

Definition. A (commutative) ring in which every nonzero element has a
multiplicative inverse is called a field.

Example 2.38. Here are a few examples of rings and fields with which you are
probably already familiar.

(a) R = Q, � = multiplication, and addition is as usual. The multiplicative
identity element is 1. Every nonzero element has a multiplicative inverse,
so Q is a field.

(b) R = Z, � = multiplication, and addition is as usual. The multiplicative
identity element is 1. The only elements that have multiplicative inverses
are 1 and −1, so Z is a ring, but it is not a field.

(c) R = Z/nZ, n is any positive integer, � = multiplication, and addition
is as usual. The multiplicative identity element is 1. Here R is always a
ring, and it is a field if and only if n is prime.

(d) R = Fp, p is any prime integer, � = multiplication, and addition is
as usual. The multiplicative identity element is 1. By Proposition 1.21,
every nonzero element has a multiplicative inverse, so Fp is a field.

(e) The collection of all polynomials with coefficients taken from Z forms a
ring under the usual operations of polynomial addition and multiplica-
tion. This ring is denoted by Z[x]. Thus we write

Z[x] = {a0 + a1x+ a2x
2 + · · ·+ anx

n : n ≥ 0 and a0, a1, . . . , an ∈ Z}.

For example, 1+x2 and 3−7x4+23x9 are polynomials in the ring Z[x],
as are 17 and −203.

(f) More generally, if R is any ring, we can form a ring of polynomials whose
coefficients are taken from the ring R. For example, the ring R might
be Z/qZ or a finite field Fp. We discuss these general polynomial rings,
denoted by R[x], in Sect. 7.9.

2.10.2 Divisibility and Quotient Rings

The concept of divisibility, originally introduced for the integers Z in Sect. 1.2,
can be generalized to any ring.

Definition. Let a and b be elements of a ring R with b �= 0. We say that b
divides a, or that a is divisible by b, if there is an element c ∈ R such that

a = b � c.
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As before, we write b | a to indicate that b divides a. If b does not divide a,
then we write b � a.

Remark 2.39. The basic properties of divisibility given in Proposition 1.4
apply to rings in general. The proof for Z works for any ring. Similarly, it is
true in every ring that b | 0 for any b �= 0. (See Exercise 2.30.) However, note
that not every ring is as nice as Z. For example, there are rings with nonzero
elements a and b whose product a � b is 0. An example of such a ring is Z/6Z,
in which 2 and 3 are nonzero, but 2 · 3 = 6 = 0.

Recall that an integer is called a prime if it has no nontrivial factors. What
is a trivial factor? We can “factor” any integer by writing it as a = 1 · a and
as a = (−1)(−a), so these are trivial factorizations. What makes them trivial
is the fact that 1 and −1 have multiplicative inverses. In general, if R is a ring
and if u ∈ R is an element that has a multiplicative inverse u−1 ∈ R, then we
can factor any element a ∈ R by writing it as a = u−1 · (ua). Elements that
have multiplicative inverses and elements that have only trivial factorizations
are special elements of a ring, so we give them special names.

Definition. Let R be a ring. An element u ∈ R is called a unit if it has a
multiplicative inverse, i.e., if there is an element v ∈ R such that u � v = 1.

An element a of a ring R is said to be irreducible if a is not itself a unit
and if in every factorization of a as a = b � c, either b is a unit or c is a unit.

Remark 2.40. The integers have the property that every integer factors
uniquely into a product of irreducible integers, up to rearranging the order
of the factors and throwing in some extra factors of 1 and −1. (Note that a
positive irreducible integer is simply another name for a prime.) Not every
ring has this important unique factorization property, but in the next section
we prove that the ring of polynomials with coefficients in a field is a unique
factorization ring.

We have seen that congruences are a very important and powerful mathe-
matical tool for working with the integers. Using the definition of divisibility,
we can extend the notion of congruence to arbitrary rings.

Definition. Let R be a ring and choose a nonzero element m ∈ R. We say
that two elements a and b of R are congruent modulo m if their difference
a− b is divisible by m. We write

a ≡ b (mod m)

to indicate that a and b are congruent modulo m.

Congruences for arbitrary rings satisfy the same equation-like properties
as they do in the original integer setting.

Proposition 2.41. Let R be a ring and let m ∈ R with m �= 0. If

a1 ≡ a2 (mod m) and b1 ≡ b2 (mod m),

then

a1 ± b1 ≡ a2 ± b2 (mod m) and a1 � b1 ≡ a2 � b2 (mod m).
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Proof. We leave the proof as an exercise; see Exercise 2.32.

Remark 2.42. Our definition of congruence captures all of the properties that
we need in this book. However, we must observe that there exists a more
general notion of congruence modulo ideals. For our purposes, it is enough
to work with congruences modulo principal ideals, which are ideals that are
generated by a single element.

An important consequence of Proposition 2.41 is a method for creating new
rings from old rings, just as we created Z/qZ from Z by looking at congruences
modulo q.

Definition. Let R be a ring and let m ∈ R with m �= 0. For any a ∈ R,
we write a for the set of all a′ ∈ R such that a′ ≡ a (mod m). The set a is
called the congruence class of a, and we denote the collection of all congruence
classes by R/(m) or R/mR. Thus

R/(m) = R/mR = {a : a ∈ R}.

We add and multiply congruence classes using the obvious rules

a+ b = a+ b and a � b = a � b. (2.23)

We call R/(m) the quotient ring of R by m. This name is justified by the next
proposition.

Proposition 2.43. The formulas (2.23) give well-defined addition and multi-
plication rules on the set of congruence classes R/(m), and they make R/(m)
into a ring.

Proof. We leave the proof as an exercise; see Exercise 2.43.

2.10.3 Polynomial Rings and the Euclidean Algorithm

In Example 2.38(f) we observed that if R is any ring, then we can create a
polynomial ring with coefficients taken from R. This ring is denoted by

R[x] = {a0 + a1x+ a2x
2 + · · ·+ anx

n : n ≥ 0 and a0, a1, . . . , an ∈ R}.

The degree of a nonzero polynomial is the exponent of the highest power of x
that appears. Thus if

a(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n

with an �= 0, then a(x) has degree n. We denote the degree of a by deg(a),
and we call an the leading coefficient of a(x). A nonzero polynomial whose
leading coefficient is equal to 1 is called a monic polynomial. For example,
3 + x2 is a monic polynomial, but 1 + 3x2 is not.
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Especially important are those polynomial rings in which the ring R is a
field; for example, R could be Q or R or C or a finite field Fp. (For cryptogra-
phy, by far the most important case is the last named one.) One reason why
it is so useful to take R to be a field F is because virtually all of the properties
of Z that we proved in Sect. 1.2 are also true for the polynomial ring F[x].
This section is devoted to a discussion of the properties of F[x].

Back in high school you undoubtedly learned how to divide one polynomial
by another. We recall the process by doing an example. Here is how one divides
x5 + 2x4 + 7 by x3 − 5:

x2 + 2x R 5x2 + 10x+ 7

x3 − 5 ) x5 + 2x4 + 7
x5 − 5x2

2x4 + 5x2 + 7
2x4 − 10x

5x2 + 10x+ 7

In other words, x5+2x4+7 divided by x3−5 gives a quotient of x2+2x with
a remainder of 5x2 + 10x+ 7. Another way to say this is to write11

x5 + 2x4 + 7 = (x2 + 2x) · (x3 − 5) + (5x2 + 10x+ 7).

Notice that the degree of the remainder 5x2 +10x+7 is strictly smaller than
the degree of the divisor x3 − 5.

We can do the same thing for any polynomial ring F[x] as long as F is a
field. Rings of this sort that have a “division with remainder” algorithm are
called Euclidean rings.

Proposition 2.44 (The ring F[x] is Euclidean). Let F be a field and let a
and b be polynomials in F[x] with b �= 0. Then it is possible to write

a = b · k + r with k and r polynomials, and
either r = 0 or deg r < deg b.

We say that a divided by b has quotient k and remainder r.

Proof. We start with any values for k and r that satisfy

a = b · k + r.

(For example, we could start with k = 0 and r = a.) If deg r < deg b, then
we’re done. Otherwise we write

b = b0 + b1x+ · · ·+ bdx
d and r = r0 + r1x+ · · ·+ rex

e

11For notational convenience, we drop the � for multiplication and just write a · b, or
even simply ab.
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with bd �= 0 and re �= 0 and e ≥ d. We rewrite the equation a = b · k + r as

a = b ·
(
k +

re
bd
xe−d

)
+

(
r − re

bd
xe−d · b

)
= b · k′ + r′.

Notice that we have canceled the top degree term of r, so deg r′ < deg r.
If deg r′ < deg b, then we’re done. If not, we repeat the process. We can do
this as long as the r term satisfies deg r ≥ deg b, and every time we apply this
process, the degree of our r term gets smaller. Hence eventually we arrive at
an r term whose degree is strictly smaller than the degree of b.

We can now define common divisors and greatest common divisors in F[x].

Definition. A common divisor of two elements a, b ∈ F[x] is an element d ∈
F[x] that divides both a and b. We say that d is a greatest common divisor
of a and b if every common divisor of a and b also divides d.

We will see below that every pair of elements in F[x] has a greatest common
divisor,12 which is unique up to multiplying it by a nonzero element of F. We
write gcd(a, b) for the unique monic polynomial that is a greatest common
divisor of a and b.

Example 2.45. The greatest common divisor of x2 − 1 and x3 + 1 is x + 1.
Notice that

x2 − 1 = (x+ 1)(x− 1) and x3 + 1 = (x+ 1)(x2 − x+ 1),

so x+1 is a common divisor. We leave it to you to check that it is the greatest
common divisor.

It is not clear, a priori, that every pair of elements has a greatest common
divisor. And indeed, there are many rings in which greatest common divisors
do not exist, for example in the ring Z[x]. But greatest common divisors do
exist in the polynomial ring F[x] when F is a field.

Proposition 2.46 (The extended Euclidean algorithm for F[x]). Let F be
a field and let a and b be polynomials in F[x] with b �= 0. Then the greatest
common divisor d of a and b exists, and there are polynomials u and v in F[x]
such that

a · u+ b · v = d.

Proof. Just as in the proof of Theorem 1.7, the polynomial gcd(a, b) can
be computed by repeated application of Proposition 2.44, as described in
Fig. 2.3. Similarly, the polynomials u and v can be computed by substituting
one equation into another in Fig. 2.3, exactly as described in the proof of
Theorem 1.11.

12According to our definition, even if both a and b are 0, they have a greatest common
divisor, namely 0. However, some authors prefer to leave gcd(0, 0) undefined.
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a = b · k1 + r2 with 0 ≤ deg r2 < deg b,
b = r2 · k2 + r3 with 0 ≤ deg r3 < deg r2,

r2 = r3 · k3 + r4 with 0 ≤ deg r4 < deg r3,
r3 = r4 · k4 + r5 with 0 ≤ deg r5 < deg r4,
...

...
...

rt−2 = rt−1 · kt−2 + rt with 0 ≤ deg rt < deg rt−1,
rt−1 = rt · kt

Then d = rt = gcd(a, b).

Figure 2.3: The Euclidean algorithm for polynomials

Example 2.47. We use the Euclidean algorithm in the ring F13[x] to compute
gcd(x5 − 1, x3 + 2x− 3):

x5 − 1 = (x3 + 2x− 3) · (x2 + 11) + (3x2 + 4x+ 6)

x3 + 2x− 3 = (3x2 + 4x+ 6) · (9x+ 1) + (9x+ 4) ← gcd = 9x+ 4

3x2 + 4x+ 6 = (9x+ 4) · (9x+ 8) + 0

Thus 9x+4 is a greatest common divisor of x5 − 1 and x3 +2x− 3 in F13[x].
In order to get a monic polynomial, we multiply by 3 ≡ 9−1 (mod 13). This
gives

gcd(x5 − 1, x3 + 2x− 3) = x− 1 in F13[x].

We recall from Sect. 2.10.2 that an element u of a ring is a unit if it has
a multiplicative inverse u−1, and that an element a of a ring is irreducible
if it is not a unit and if the only way to factor a is as a = bc with either b
or c a unit. It is not hard to see that the units in a polynomial ring F[x] are
precisely the nonzero constant polynomials, i.e., the nonzero elements of F;
see Exercise 2.34. The question of irreducibility is subtler, as shown by the
following examples.

Example 2.48. The polynomial x5 − 4x3 + 3x2 − x + 2 is irreducible as a
polynomial in Z[x], but if we view it as an element of F3[x], then it factors as

x5 − 4x3 + 3x2 − x+ 2 ≡ (x+ 1)
(
x4 + 2x3 + 2

)
(mod 3).

It also factors if we view it as a polynomial in F5[x], but this time as a product
of a quadratic polynomial and a cubic polynomial,

x5 − 4x3 + 3x2 − x+ 2 ≡
(
x2 + 4x+ 2

) (
x3 + x2 + 1

)
(mod 5).

On the other hand, if we work in F13[x], then x5 − 4x3 + 3x2 − x + 2 is
irreducible.

Every integer has an essentially unique factorization as a product of
primes. The same is true of polynomials with coefficients in a field. And just
as for the integers, the key to proving unique factorization is the extended
Euclidean algorithm.
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Proposition 2.49. Let F be a field. Then every nonzero polynomial in F[x]
can be uniquely factored as a product of monic irreducible polynomials, in the
following sense. If a ∈ F[x] is factored as

a = αp1 · p2 · · ·pm and a = βq1 · q2 · · · qn,

where α, β ∈ F are constants and p1, . . . ,pm, q1, . . . , qn are monic irreducible
polynomials, then after rearranging the order of q1, . . . , qn, we have

α = β, m = n, and pi = qi for all 1 ≤ i ≤ m.

Proof. The existence of a factorization into irreducibles follows easily from the
fact that if a = b ·c, then dega = deg b+deg c. (See Exercise 2.34.) The proof
that the factorization is unique is exactly the same as the proof for integers, cf.
Theorem 1.20. The key step in the proof is the statement that if p ∈ F[x] is
irreducible and divides the product a · b, then either p | a or p | b (or both).
This statement is the polynomial analogue of Proposition 1.19 and is proved
in the same way, using the polynomial version of the extended Euclidean
algorithm (Proposition 2.46).

2.10.4 Quotients of Polynomial Rings and Finite Fields
of Prime Power Order

In Sect. 2.10.3 we studied polynomial rings and in Sect. 2.10.2 we studied
quotient rings. In this section we combine these two constructions and consider
quotients of polynomial rings.

Recall that in working with the integers modulo m, it is often convenient
to represent each congruence class modulom by an integer between 0 andm−
1. The division-with-remainder algorithm (Proposition 2.44) allows us to do
something similar for the quotient of a polynomial ring.

Proposition 2.50. Let F be field and let m ∈ F[x] be a nonzero polynomial.
Then every nonzero congruence class a ∈ F[x]/(m) has a unique representa-
tive r satisfying

deg r < degm and a ≡ r (mod m).

Proof. We use Proposition 2.44 to find polynomials k and r such that

a = m · k + r

with either r = 0 or deg r < degm. If r = 0, then a ≡ 0 (mod m), so a = 0.
Otherwise, reducing modulo m gives a ≡ r (mod m) with deg r < degm.
This shows that r exists. To show that it is unique, suppose that r′ has the
same properties. Then

r − r′ ≡ a− a ≡ 0 (mod m),

so m divides r − r′. But r − r′ has degree strictly smaller than the degree
of m, so we must have r − r′ = 0.
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Example 2.51. Consider the ring F[x]/(x2 + 1). Proposition 2.50 says that
every element of this quotient ring is uniquely represented by a polynomial of
the form

α+ βx with α, β ∈ F.

Addition is performed in the obvious way,

α1 + β1x + α2 + β2x = (α1 + α2) + (β1 + β2)x.

Multiplication is similar, except that we have to divide the final result by
x2 + 1 and take the remainder. Thus

α1 + β1x · α2 + β2x = α1α2 + (α1β2 + α2β1)x+ β1β2x2

= (α1α2 − β1β2) + (α1β2 + α2β1)x.

Notice that the effect of dividing by x2+1 is the same as replacing x2 with −1.
The intuition is that in the quotient ring F[x]/(x2 + 1), we have made the
quantity x2 + 1 equal to 0. Notice that if we take F = R in this example,
then R[x]/(x2 + 1) is simply the field of complex numbers C.

We can use Proposition 2.50 to count the number of elements in a poly-
nomial quotient ring when F is a finite field.

Corollary 2.52. Let Fp be a finite field and let m ∈ Fp[x] be a nonzero poly-
nomial of degree d ≥ 1. Then the quotient ring Fp[x]/(m) contains exactly pd

elements.

Proof. From Proposition 2.50 we know that every element of Fp[x]/(m) is
represented by a unique polynomial of the form

a0 + a1x+ a2x
2 + · · ·+ ad−1x

d−1 with a0, a1, . . . , ad−1 ∈ Fp.

There are p choices for a0, and p choices for a1, and so on, leading to a total
of pd choices for a0, a1, . . . , ad.

We next give an important characterization of the units in a polynomial
quotient ring. This will allow us to construct new finite fields.

Proposition 2.53. Let F be a field and let a,m ∈ F[x] be polynomials
with m �= 0. Then a is a unit in the quotient ring F[x]/(m) if and only if

gcd(a,m) = 1.

Proof. Suppose first that a is a unit in F[x]/(m). By definition, this means
that we can find some b ∈ F[x](m) satisfying a·b = 1. In terms of congruences,
this means that a · b ≡ 1 (mod m), so there is some c ∈ F[x] such that

a · b− 1 = c ·m.
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It follows that any common divisor of a and m must also divide 1. There-
fore gcd(a,m) = 1.

Next suppose that gcd(a,m) = 1. Then Proposition 2.46 tells us that
there are polynomials u,v ∈ F[x] such that

a · u+m · v = 1.

Reducing modulo m yields

a · u ≡ 1 (mod m),

so u is an inverse for a in F[x]/(m).

An important instance of Proposition 2.53 is the case that the modulus is
an irreducible polynomial.

Corollary 2.54. Let F be a field and let m ∈ F[x] be an irreducible polyno-
mial. Then the quotient ring F[x]/(m) is a field, i.e., every nonzero element
of F[x]/(m) has a multiplicative inverse.

Proof. Replacing m by a constant multiple, we may assume that m is a monic
polynomial. Let a ∈ F[x]/(m). There are two cases to consider. First, sup-
pose that gcd(a,m) = 1. Then Proposition 2.53 tells us that a is a unit, so
we are done. Second, suppose that d = gcd(a,m) �= 1. Then in particular,
we know that d |m. But m is monic and irreducible, and d �= 1, so we must
have d = m. We also know that d | a, so m | a. Hence a = 0 in F[x]/(m).
This completes the proof that every nonzero element of F[x]/(m) has a mul-
tiplicative inverse.

Example 2.55. The polynomial x2 + 1 is irreducible in R[x]. The quotient
ring R[x]/(x2+1) is a field. Indeed, it is the field of complex numbers C, where
the “variable” x plays the role of i =

√
−1, since in the ring R[x]/(x2 +1) we

have x2 = −1.
By way of contrast, the polynomial x2−1 is clearly not irreducible in R[x].

The quotient ring R[x]/(x2 − 1) is not a field. In fact,

(x− 1) · (x+ 1) = 0 in R[x]/(x2 − 1).

Thus ring R[x]/(x2−1) has nonzero elements whose product is 0, which means
that they certainly cannot be units. (Nonzero elements of a ring whose product
is 0 are called zero divisors.)

If we apply Corollary 2.54 to a polynomial ring with coefficients in a finite
field Fp, we can create new finite fields with a prime power number of elements.

Corollary 2.56. Let Fp be a finite field and let m ∈ Fp[x] be an irreducible
polynomial of degree d ≥ 1. Then Fp[x]/(m) is a field with pd elements.

Proof. We combine Corollary 2.54, which says that Fp[x]/(m) is a field, with
Corollary 2.52, which says that Fp[x]/(m) has pd elements.
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Example 2.57. It is not hard to check that the polynomial x3 + x + 1 is
irreducible in F2[x] (see Exercise 2.37), so F2[x]/(x

3 + x + 1) is a field with
eight elements. Proposition 2.50 tells us that the following are representatives
for the eight elements in this field:

0, 1, x, x2, 1 + x, 1 + x2, x+ x2, 1 + x+ x2.

Addition is easy as long as you remember to treat the coefficients modulo 2,
so for example,

(1 + x) + (x+ x2) = 1 + x2.

Multiplication is also easy, just multiply the polynomials, divide by x3+x+1,
and take the remainder. For example,

(1 + x) · (x+ x2) = x+ 2x2 + x3 = 1,

so 1 + x and x + x2 are multiplicative inverses. The complete multiplication
table for F2[x]/(x

3 + x+ 1) is described in Exercise 2.38.

Example 2.58. When is the polynomial x2 + 1 irreducible in the ring Fp[x]?
If it is reducible, then it factors as

x2 + 1 = (x+ α)(x+ β) for some α, β ∈ Fp.

Comparing coefficients, we find that α+ β = 0 and αβ = 1; hence

α2 = α · (−β) = −αβ = −1.

In other words, the field Fp has an element whose square is −1. Conversely,
if α ∈ Fp satisfies α2 = −1, then x2 + 1 = (x − α)(x + α) factors in Fp[x].
This proves that

x2 + 1 is irreducible in Fp[x] if and only if −1 is not a square in Fp.

Quadratic reciprocity, which we study later in Sect. 3.9, then tells us that

x2 + 1 is irreducible in Fp[x] if and only if p ≡ 3 (mod 4).

Let p be a prime satisfying p ≡ 3 (mod 4). Then the quotient field
Fp[x]/(x

2 + 1) is a field containing p2 elements. It contains an element x that
is a square root of −1. So we can view Fp[x]/(x

2 + 1) as a sort of analogue of
the complex numbers and can write its elements in the form

a+ bi with a, b ∈ Fp,

where i is simply a symbol with the property that i2 = −1. Addition, sub-
traction, multiplication, and division are performed just as in the complex
numbers, with the understanding that instead of real numbers as coefficients,
we are using integers modulo p. So for example, division is done by the usual
“rationalizing the denominator” trick,
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a+ bi

c+ di
=
a+ bi

c+ di
· c− di
c− di =

(ac+ bd) + (bc− ad)i
c2 + d2

.

Note that there is never a problem of 0 in the denominator, since the assump-
tion that p ≡ 3 (mod 4) ensures that c2 + d2 �= 0 (as long as at least one of c
and d is nonzero). These fields of order p2 will be used in Sect. 6.9.3.

In order to construct a field with pd elements, we need to find an irreducible
polynomial of degree d in Fp[x]. It is proven in more advanced texts that there
is always such a polynomial, and indeed generally many such polynomials.
Further, in a certain abstract sense it doesn’t matter which irreducible poly-
nomial we choose: we always get the same field. However, in a practical sense
it does make a difference, because practical computations in Fp[x]/(m) are
more efficient if m does not have very many nonzero coefficients.

We summarize some of the principal properties of finite fields in the fol-
lowing theorem.

Theorem 2.59. Let Fp be a finite field.
(a) For every d ≥ 1 there exists an irreducible polynomial m ∈ Fp[x] of

degree d.

(b) For every d ≥ 1 there exists a finite field with pd elements.

(c) If F and F
′ are finite fields with the same number of elements, then there

is a way to match the elements of F with the elements of F
′ so that

the addition and multiplication tables of F and F
′ are the same. (The

mathematical terminology is that F and F
′ are isomorphic.)

Proof. We know from Proposition 2.56 that (a) implies (b). For proofs of (a)
and (c), see any basic algebra or number theory text, for example [40,
§§13.5, 14.3], [53, Section 7.1], or [59, Chapter 7].

Definition. We write Fpd for a field with pd elements. Theorem 2.59 assures
us that there is at least one such field and that any two fields with pd elements
are essentially the same, up to relabeling their elements. These fields are
also sometimes called Galois fields and denoted by GF(pd) in honor of the
nineteenth-century French mathematician Évariste Galois, who studied them.

Remark 2.60. It is not difficult to prove that if F is a finite field, then F has pd

elements for some prime p and some d ≥ 1. (The proof uses linear algebra;
see Exercise 2.41.) So Theorem 2.59 describes all finite fields.

Remark 2.61. For cryptographic purposes, it is frequently advantageous to
work in a field F2d , rather than in a field Fp with p large. This is due to the
fact that the binary nature of computers often enables them to work more
efficiently with F2d . A second reason is that sometimes it is useful to have
a finite field that contains smaller fields. In the case of Fpd , one can show
that every field Fpe with e | d is a subfield of Fpd . Of course, if one is going to
use F2d for Diffie–Hellman key exchange or Elgamal encryption, it is necessary
to choose 2d to be of approximately the same size as one typically chooses p.
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Let F be a finite field having q elements. Every nonzero element of F has an
inverse, so the group of units F∗ is a group of order q− 1. Lagrange’s theorem
(Theorem 2.13) tells us that every element of F∗ has order dividing q − 1, so

aq−1 = 1 for all a ∈ F.

This is a generalization of Fermat’s little theorem (Theorem 1.24) to arbitrary
finite fields. The primitive root theorem (Theorem 1.30) is also true for all
finite fields.

Theorem 2.62. Let F be a finite field having q elements. Then F has a
primitive root, i.e., there is an element g ∈ F such that

F
∗ = {1, g, g2, g3, . . . , gq−2}.

Proof. You can find a proof of this theorem in any basic number theory text-
book; see for example [59, §4.1] or [137, Chapter 28].

Exercises

Section 2.1. Diffie–Hellman and RSA

2.1. Write a one page essay giving arguments, both pro and con, for the following
assertion:

If the government is able to convince a court that there is a valid reason
for their request, then they should have access to an individual’s private
keys (even without the individual’s knowledge), in the same way that
the government is allowed to conduct court authorized secret wiretaps
in cases of suspected criminal activity or threats to national security.

Based on your arguments, would you support or oppose the government being given
this power? How about without court oversight? The idea that all private keys should
be stored at a secure central location and be accessible to government agencies (with
or without suitably stringent legal conditions) is called key escrow.

2.2. Research and write a one to two page essay on the classification of cryptographic
algorithms as munitions under ITAR (International Traffic in Arms Regulations).
How does that act define “export”? What are the potential fines and jail terms for
those convicted of violating the Arms Export Control Act? Would teaching non-
classified cryptographic algorithms to a college class that includes non-US citizens
be considered a form of export? How has US government policy changed from the
early 1990s to the present?

Section 2.2. The Discrete Logarithm Problem

2.3. Let g be a primitive root for Fp.
(a) Suppose that x = a and x = b are both integer solutions to the congruence

gx ≡ h (mod p). Prove that a ≡ b (mod p− 1). Explain why this implies that
the map (2.1) on page 65 is well-defined.
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(b) Prove that logg(h1h2) = logg(h1) + logg(h2) for all h1, h2 ∈ F
∗
p.

(c) Prove that logg(h
n) = n logg(h) for all h ∈ F

∗
p and n ∈ Z.

2.4. Compute the following discrete logarithms.
(a) log2(13) for the prime 23, i.e., p = 23, g = 2, and you must solve the congruence

2x ≡ 13 (mod 23).

(b) log10(22) for the prime p = 47.

(c) log627(608) for the prime p = 941. (Hint. Look in the second column of Table 2.1
on page 66.)

2.5. Let p be an odd prime and let g be a primitive root modulo p. Prove that a
has a square root modulo p if and only if its discrete logarithm logg(a) modulo p−1
is even.

Section 2.3. Diffie–Hellman Key Exchange

2.6. Alice and Bob agree to use the prime p = 1373 and the base g = 2 for a
Diffie–Hellman key exchange. Alice sends Bob the value A = 974. Bob asks your
assistance, so you tell him to use the secret exponent b = 871. What value B should
Bob send to Alice, and what is their secret shared value? Can you figure out Alice’s
secret exponent?

2.7. Let p be a prime and let g be an integer. The Decision Diffie–Hellman Problem
is as follows. Suppose that you are given three numbers A, B, and C, and suppose
that A and B are equal to

A ≡ ga (mod p) and B ≡ gb (mod p),

but that you do not necessarily know the values of the exponents a and b. Determine
whether C is equal to gab (mod p). Notice that this is different from the Diffie–
Hellman problem described on page 69. The Diffie–Hellman problem asks you to
actually compute the value of gab.
(a) Prove that an algorithm that solves the Diffie–Hellman problem can be used to

solve the decision Diffie–Hellman problem.

(b) Do you think that the decision Diffie–Hellman problem is hard or easy? Why?
See Exercise 6.40 for a related example in which the decision problem is easy, but
it is believed that the associated computational problem is hard.

Section 2.4. The Elgamal Public Key Cryptosystem

2.8. Alice and Bob agree to use the prime p = 1373 and the base g = 2 for
communications using the Elgamal public key cryptosystem.
(a) Alice chooses a = 947 as her private key. What is the value of her public key A?

(b) Bob chooses b = 716 as his private key, so his public key is

B ≡ 2716 ≡ 469 (mod 1373).

Alice encrypts the message m = 583 using the random element k = 877. What
is the ciphertext (c1, c2) that Alice sends to Bob?

(c) Alice decides to choose a new private key a = 299 with associated public key
A ≡ 2299 ≡ 34 (mod 1373). Bob encrypts a message using Alice’s public key
and sends her the ciphertext (c1, c2) = (661, 1325). Decrypt the message.
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(d) Now Bob chooses a new private key and publishes the associated public key B =
893. Alice encrypts a message using this public key and sends the ciphertext
(c1, c2) = (693, 793) to Bob. Eve intercepts the transmission. Help Eve by
solving the discrete logarithm problem 2b ≡ 893 (mod 1373) and using the value
of b to decrypt the message.

2.9. Suppose that Eve is able to solve the Diffie–Hellman problem described on
page 69. More precisely, assume that if Eve is given two powers gu and gv mod p,
then she is able to compute guv mod p. Show that Eve can break the Elgamal PKC.

2.10. The exercise describes a public key cryptosystem that requires Bob and Alice
to exchange several messages. We illustrate the system with an example.

Bob and Alice fix a publicly known prime p = 32611, and all of the other numbers
used are private. Alice takes her message m = 11111, chooses a random exponent
a = 3589, and sends the number u = ma (mod p) = 15950 to Bob. Bob chooses a
random exponent b = 4037 and sends v = ub (mod p) = 15422 back to Alice. Al-
ice then computes w = v15619 ≡ 27257 (mod 32611) and sends w = 27257 to Bob.
Finally, Bob computes w31883 (mod 32611) and recovers the value 11111 of Alice’s
message.
(a) Explain why this algorithm works. In particular, Alice uses the numbers

a = 3589 and 15619 as exponents. How are they related? Similarly, how are
Bob’s exponents b = 4037 and 31883 related?

(b) Formulate a general version of this cryptosystem, i.e., using variables, and show
that it works in general.

(c) What is the disadvantage of this cryptosystem over Elgamal? (Hint. How many
times must Alice and Bob exchange data?)

(d) Are there any advantages of this cryptosystem over Elgamal? In particular, can
Eve break it if she can solve the discrete logarithm problem? Can Eve break it
if she can solve the Diffie–Hellman problem?

Section 2.5. An Overview of the Theory of Groups

2.11. The group S3 consists of the following six distinct elements

e, σ, σ2, τ, στ, σ2τ,

where e is the identity element and multiplication is performed using the rules

σ3 = e, τ2 = e, τσ = σ2τ.

Compute the following values in the group S3:
(a) τσ2 (b) τ(στ) (c) (στ)(στ) (d) (στ)(σ2τ).
Is S3 a commutative group?

2.12. Let G be a group, let d ≥ 1 be an integer, and define a subset of G by

G[d] = {g ∈ G : gd = e}.

(a) Prove that if g is in G[d], then g−1 is in G[d].

(b) Suppose that G is commutative. Prove that if g1 and g2 are in G[d], then their
product g1 � g2 is in G[d].

(c) Deduce that if G is commutative, then G[d] is a group.



110 Exercises

(d) Show by an example that if G is not a commutative group, then G[d] need not
be a group. (Hint. Use Exercise 2.11.)

2.13. Let G and H be groups. A function φ : G→ H is called a (group) homomor-
phism if it satisfies

φ(g1 � g2) = φ(g1) � φ(g2) for all g1, g2 ∈ G.

(Note that the product g1 � g2 uses the group law in the group G, while the prod-
uct φ(g1) � φ(g2) uses the group law in the group H.)
(a) Let eG be the identity element of G, let eH be the identity element of H, and

let g ∈ G. Prove that

φ(eG) = eH and φ(g−1) = φ(g)−1.

(b) Let G be a commutative group. Prove that the map φ : G → G defined
by φ(g) = g2 is a homomorphism. Give an example of a noncommutative group
for which this map is not a homomorphism.

(c) Same question as (b) for the map φ(g) = g−1.

2.14. Prove that each of the following maps is a group homomorphism.
(a) The map φ : Z → Z/NZ that sends a ∈ Z to a mod N in Z/NZ.

(b) The map φ : R∗ → GL2(R) defined by φ(a) =
(
a 0
0 a−1

)
.

(c) The discrete logarithm map logg : F∗
p → Z/(p−1)Z, where g is a primitive root

modulo p.

2.15. (a) Prove that GL2(Fp) is a group.

(b) Show that GL2(Fp) is a noncommutative group for every prime p.

(c) Describe GL2(F2) completely. That is, list its elements and describe the multi-
plication table.

(d) How many elements are there in the group GL2(Fp)?

(e) How many elements are there in the group GLn(Fp)?

Section 2.6. How Hard Is the Discrete Logarithm Problem?

2.16. Verify the following assertions from Example 2.16.

(a) x2 +
√
x = O

(
x2
)
. (d) (ln k)375 = O

(
k0.001

)
.

(b) 5 + 6x2 − 37x5 = O
(
x5
)
. (e) k22k = O

(
e2k
)
.

(c) k300 = O
(
2k
)
. (f) N102N = O

(
eN
)
.

Section 2.7. A Collision Algorithm for the DLP

2.17. Use Shanks’s babystep–giantstep method to solve the following discrete log-
arithm problems. (For (b) and (c), you may want to write a computer program
implementing Shanks’s algorithm.)
(a) 11x = 21 in F71.

(b) 156x = 116 in F593.

(c) 650x = 2213 in F3571.

Section 2.8. The Chinese Remainder Theorem
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2.18. Solve each of the following simultaneous systems of congruences (or explain
why no solution exists).
(a) x ≡ 3 (mod 7) and x ≡ 4 (mod 9).

(b) x ≡ 137 (mod 423) and x ≡ 87 (mod 191).

(c) x ≡ 133 (mod 451) and x ≡ 237 (mod 697).

(d) x ≡ 5 (mod 9), x ≡ 6 (mod 10), and x ≡ 7 (mod 11).

(e) x ≡ 37 (mod 43), x ≡ 22 (mod 49), and x ≡ 18 (mod 71).

2.19. Solve the 1700-year-old Chinese remainder problem from the Sun Tzu Suan
Ching stated on page 84.

2.20. Let a, b,m, n be integers with gcd(m,n) = 1. Let

c ≡ (b− a) ·m−1 (mod n).

Prove that x = a+ cm is a solution to

x ≡ a (mod m) and x ≡ b (mod n), (2.24)

and that every solution to (2.24) has the form x = a+ cm+ ymn for some y ∈ Z.

2.21. (a) Let a, b, c be positive integers and suppose that

a | c, b | c, and gcd(a, b) = 1.

Prove that ab | c.
(b) Let x = c and x = c′ be two solutions to the system of simultaneous congru-

ences (2.7) in the Chinese remainder theorem (Theorem 2.24). Prove that

c ≡ c′ (mod m1m2 · · ·mk).

2.22. For those who have studied ring theory, this exercise sketches a short
proof of the Chinese remainder theorem. Let m1, . . . ,mk be integers and let
m = m1m2 · · ·mk be their product.
(a) Prove that the map

Z

mZ
−−−−−→ Z

m1Z
× Z

m2Z
× · · · × Z

mkZ

a mod m −−−−−→ (a mod m1, a mod m2, . . . , a mod mk)

(2.25)

is a well-defined homomorphism of rings. (Hint. First define a homomorphism
from Z to the right-hand side of (2.25), and then show thatmZ is in the kernel.)

(b) Assume that m1, . . . ,mk are pairwise relatively prime. Prove that the map
given by (2.25) is one-to-one. (Hint. What is the kernel?)

(c) Continuing with the assumption that the numbers m1, . . . ,mk are pairwise
relatively prime, prove that the map (2.25) is onto. (Hint. Use (b) and count
the size of both sides.)

(d) Explain why the Chinese remainder theorem (Theorem 2.24) is equivalent to
the assertion that (b) and (c) are true.

2.23. Use the method described in Sect. 2.8.1 to find square roots modulo the
following composite moduli.
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(a) Find a square root of 340 modulo 437. (Note that 437 = 19 · 23.)
(b) Find a square root of 253 modulo 3143.

(c) Find four square roots of 2833 modulo 4189. (The modulus factors as 4189 =
59 · 71. Note that your four square roots should be distinct modulo 4189.)

(d) Find eight square roots of 813 modulo 868.

2.24. Let p be an odd prime, let a be an integer that is not divisible by p, and
let b be a square root of a modulo p. This exercise investigates the square root of a
modulo powers of p.
(a) Prove that for some choice of k, the number b+ kp is a square root of a mod-

ulo p2, i.e., (b+ kp)2 ≡ a (mod p2).

(b) The number b = 537 is a square root of a = 476 modulo the prime p = 1291.
Use the idea in (a) to compute a square root of 476 modulo p2.

(c) Suppose that b is a square root of a modulo pn. Prove that for some choice of j,
the number b+ jpn is a square root of a modulo pn+1.

(d) Explain why (c) implies the following statement: If p is an odd prime and if a
has a square root modulo p, then a has a square root modulo pn for every power
of p. Is this true if p = 2?

(e) Use the method in (c) to compute the square root of 3 modulo 133, given
that 92 ≡ 3 (mod 13).

2.25. Suppose n = pq with p and q distinct odd primes.
(a) Suppose that gcd(a, pq) = 1. Prove that if the equation x2 ≡ a (mod n) has

any solutions, then it has four solutions.

(b) Suppose that you had a machine that could find all four solutions for some
given a. How could you use this machine to factor n?

Section 2.9. The Pohlig–Hellman Algorithm

2.26. Let Fp be a finite field and let N | p − 1. Prove that F
∗
p has an element of

order N . This is true in particular for any prime power that divides p − 1. (Hint.
Use the fact that F∗

p has a primitive root.)

2.27. Write out your own proof that the Pohlig–Hellman algorithm works in the
particular case that p− 1 = q1 · q2 is a product of two distinct primes. This provides
a good opportunity for you to understand how the proof works and to get a feel for
how it was discovered.

2.28. Use the Pohlig–Hellman algorithm (Theorem 2.31) to solve the discrete log-
arithm problem

gx = a in Fp

in each of the following cases.
(a) p = 433, g = 7, a = 166.

(b) p = 746497, g = 10, a = 243278.

(c) p = 41022299, g = 2, a = 39183497. (Hint. p = 2 · 295 + 1.)

(d) p = 1291799, g = 17, a = 192988. (Hint. p− 1 has a factor of 709.)

Section 2.10. Rings, Quotient Rings, Polynomial Rings, and Finite Fields
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2.29. Let R be a ring with the property that the only way that a product a · b can
be 0 is if a = 0 or b = 0. (In the terminology of Example 2.55, the ring R has no zero
divisors.) Suppose further that R has only finitely many elements. Prove that R is a
field. (Hint. Let a ∈ R with a �= 0. What can you say about the map R → R defined
by b  → a · b?)

2.30. Let R be a ring. Prove the following properties of R directly from the ring
axioms described in Sect. 2.10.1.
(a) Prove that the additive identity element 0 ∈ R is unique, i.e., prove that there

is only one element in R satisfying 0 + a = a+ 0 = 0 for every a ∈ R.

(b) Prove that the multiplicative identity element 1 ∈ R is unique.

(c) Prove that every element of R has a unique additive inverse.

(d) Prove that 0 � a = a � 0 = 0 for all a ∈ R.

(e) We denote the additive inverse of a by −a. Prove that −(−a) = a.

(f) Let −1 be the additive inverse of the multiplicative identity element 1 ∈ R.
Prove that (−1) � (−1) = 1.

(g) Prove that b | 0 for every nonzero b ∈ R.

(h) Prove that an element of R has at most one multiplicative inverse.

2.31. Let R and S be rings. A function φ : R → S is called a (ring) homomorphism
if it satisfies

φ(a+ b) = φ(a) + φ(b) and φ(a � a) = φ(a) � φ(a) for all a, b,∈ R.

(a) Let 0R, 0S , 1R and 1S denote the additive and multiplicative identities of R
and S, respectively. Prove that

φ(0R) = 0S , φ(1R) = 1S , φ(−a) = −φ(a), φ(a−1) = φ(a)−1,

where the last equality holds for those a ∈ R that have a multiplicative inverse.

(b) Let p be a prime, and let R be a ring with the property that pa = 0 for
every a ∈ R. (Here pa means to add a to itself p times.) Prove that the map

φ : R −→ R, φ(a) = ap

is a ring homomorphism. It is called the Frobenius homomorphism.

2.32. Prove Proposition 2.41.

2.33. Prove Proposition 2.43. (Hint. First use Exercise 2.32 to prove that the con-
gruence classes a+ b and a � b depend only on the congruence classes of a and b.)

2.34. Let F be a field and let a and b be nonzero polynomials in F[x].
(a) Prove that deg(a · b) = deg(a) + deg(b).

(b) Prove that a has a multiplicative inverse in F[x] if and only if a is in F, i.e., if
and only if a is a constant polynomial.

(c) Prove that every nonzero element of F[x] can be factored into a product of
irreducible polynomials. (Hint. Use (a), (b), and induction on the degree of the
polynomial.)

(d) Let R be the ring Z/6Z. Give an example to show that (a) is false for some
polynomials a and b in R[x].
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2.35. Let a and b be the polynomials

a = x5 + 3x4 − 5x3 − 3x2 + 2x+ 2,

b = x5 + x4 − 2x3 + 4x2 + x+ 5.

Use the Euclidean algorithm to compute gcd(a, b) in each of the following rings.
(a) F2[x] (b) F3[x] (c) F5[x] (d) F7[x].

2.36. Continuing with the same polynomials a and b as in Exercise 2.35, for each
of the polynomial rings (a)–(d) in Exercise 2.35, find polynomials u and v satisfying

a · u+ b · v = gcd(a, b).

2.37. Prove that the polynomial x3 + x + 1 is irreducible in F2[x]. (Hint. Think
about what a factorization would have to look like.)

2.38. The multiplication table for the field F2[x]/(x
3 + x+1) is given in Table 2.5,

but we have omitted fourteen entries. Fill in the missing entries. (This is the field
described in Example 2.57. You can download and print a copy of Table 2.5 at www.
math.brown.edu/~jhs/MathCrypto/Table2.5.pdf.)

0 1 x x2 1 + x 1 + x2 x + x2 1 + x + x2

0 0 0 0 0 0 0 0 0

1 0 1 x 1 + x2 x + x2 1 + x + x2

x 0 x x2 x + x2 1 1 + x2

x2 0 x + x2 1 + x + x2 x 1 + x2 1

1 + x 0 x + x2 1 + x + x2 1 + x2 1 x

1 + x2 0 1 + x2 1 x 1 + x + x2 1 + x

x + x2 0 x + x2 1 + x2 1 1 + x x

1 + x + x2 0 1 + x + x2 1 + x2 1 x 1 + x

Table 2.5: Multiplication table for the field F2[x]/(x
3 + x+ 1)

2.39. The field F7[x]/(x
2 +1) is a field with 49 elements, which for the moment we

denote by F49. (See Example 2.58 for a convenient way to work with F49.)
(a) Is 2 + 5x a primitive root in F49?

(b) Is 2 + x a primitive root in F49?

(c) Is 1 + x a primitive root in F49?
(Hint. Lagrange’s theorem says that the order of u ∈ F49 must divide 48. So if uk �= 1
for all proper divisors k of 48, then u is a primitive root.)

2.40. Let p be a prime number and let e ≥ 2. The quotient ring Z/peZ and the
finite field Fpe are both rings and both have the same number of elements. Describe
some ways in which they are intrinsically different.

2.41. Let F be a finite field.
(a) Prove that there is an integer m ≥ 1 such that if we add 1 to itself m times,

1 + 1 + · · ·+ 1︸ ︷︷ ︸
m ones

,

www.math.brown.edu/~jhs/MathCrypto/Table2.5.pdf
www.math.brown.edu/~jhs/MathCrypto/Table2.5.pdf
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then we get 0. Note that here 1 and 0 are the multiplicative and additive identity
elements of the field F. If the notation is confusing, you can let u and z be the
multiplicative and additive identity elements of F, and then you need to prove
that u+ u+ · · ·+ u = z. (Hint. Since F is finite, the numbers 1, 1 + 1, 1 + 1 +
1,. . . cannot all be different.)

(b) Let m be the smallest positive integer with the property described in (a). Prove
that m is prime. (Hint. If m factors, show that there are nonzero elements
in F whose product is zero, so F cannot be a field.) This prime is called the
characteristic of the field F.

(c) Let p be the characteristic of F. Prove that F is a finite-dimensional vector
space over the field Fp of p elements.

(d) Use (c) to deduce that F has pd elements for some d ≥ 1.



Chapter 3

Integer Factorization
and RSA

3.1 Euler’s Formula and Roots Modulo pq

The Diffie–Hellman key exchange method and the Elgamal public key
cryptosystem studied in Sects. 2.3 and 2.4 rely on the fact that it is easy
to compute powers an mod p, but difficult to recover the exponent n if you
know only the values of a and an mod p. An essential result that we used to
analyze the security of Diffie–Hellman and Elgamal is Fermat’s little theorem
(Theorem 1.24),

ap−1 ≡ 1 (mod p) for all a �≡ 0 (mod p).

Fermat’s little theorem expresses a beautiful property of prime numbers.
It is natural to ask what happens if we replace p with a number m that is
not prime. Is it still true that am−1 ≡ 1 (mod m)? A few computations such
as Example 1.28 in Sect. 1.4 will convince you that the answer is no. In this
section we investigate the correct generalization of Fermat’s little theorem
when m = pq is a product of two distinct primes, since this is the case that is
most important for cryptographic applications. We leave the general case for
you to do in Exercises 3.4 and 3.5.

As usual, we begin with an example. What do powers modulo 15 look like?
If we make a table of squares and cubes modulo 15, they do not look very
interesting, but many fourth powers are equal to 1 modulo 15. More precisely,
we find that

a4 ≡ 1 (mod 15) for a = 1, 2, 4, 7, 8, 11, 13, and 14;

a4 �≡ 1 (mod 15) for a = 3, 5, 6, 9, 10, and 12.

© Springer Science+Business Media New York 2014
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What distinguishes the list of numbers 1, 2, 4, 7, 8, 11, 13, 14 whose fourth
power is 1 modulo 15 from the list of numbers 3, 5, 6, 9, 10, 12, 15 whose fourth
power is not 1 modulo 15? A moment’s reflection shows that each of the
numbers 3, 5, 6, 9, 10, 12, 15 has a nontrivial factor in common with the modu-
lus 15, while the numbers 1, 2, 4, 7, 8, 11, 13, 14 are relatively prime to 15. This
suggests that some version of Fermat’s little theorem should be true if the
number a is relatively prime to the modulus m, but the correct exponent to
use is not necessarily m− 1.

For m = 15 we found that the right exponent is 4. Why does 4 work? We
could simply check each value of a, but a more enlightening argument would
be better. In order to show that a4 ≡ 1 (mod 15), it is enough to check the
two congruences

a4 ≡ 1 (mod 3) and a4 ≡ 1 (mod 5). (3.1)

This is because the two congruences (3.1) say that

3 divides a4 − 1 and 5 divides a4 − 1,

which in turn imply that 15 divides a4 − 1.
The two congruences in (3.1) are modulo primes, so we can use Fermat’s

little theorem to check that they are true. Thus

a4 = (a2)2 = (a(3−1))2 ≡ 12 ≡ 1 (mod 3),

a4 = a5−1 ≡ 1 (mod 5).

If you think about these two congruences, you will see that the crucial property
of the exponent 4 is that it is a multiple of p− 1 for both p = 3 and p = 5.
Notice that this is not true of 14, which does not work as an exponent. With
this observation, we are ready to state the fundamental formula that underlies
the RSA public key cryptosystem.

Theorem 3.1 (Euler’s Formula for pq). Let p and q be distinct primes and let

g = gcd(p− 1, q − 1).

Then

a(p−1)(q−1)/g ≡ 1 (mod pq) for all a satisfying gcd(a, pq) = 1.

In particular, if p and q are odd primes, then

a(p−1)(q−1)/2 ≡ 1 (mod pq) for all a satisfying gcd(a, pq) = 1.

Proof. By assumption we know that p does not divide a and that g divides
q − 1, so we can compute

a(p−1)(q−1)/g =
(
a(p−1)

)(q−1)/g

since (q − 1)/g is an integer,
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≡ 1(q−1)/g (mod p) since ap−1 ≡ 1 (mod p)

from Fermat’s little theorem,

≡ 1 (mod p) since 1 to any power is 1!

The exact same computation, reversing the roles of p and q, shows that

a(p−1)(q−1)/g ≡ 1 (mod q).

This proves that a(p−1)(q−1)/g − 1 is divisible by both p and by q; hence it is
divisible by pq, which completes the proof of Theorem 3.1.

Diffie–Hellman key exchange and the Elgamal public key cryptosystem
(Sects. 2.3 and 2.4) rely for their security on the difficulty of solving equations
of the form

ax ≡ b (mod p),

where a, b, and p are known quantities, p is a prime, and x is the unknown vari-
able. The RSA public key cryptosystem, which we study in the next section,
relies on the difficulty of solving equations of the form

xe ≡ c (mod N),

where now the quantities e, c, and N are known and x is the unknown. In
other words, the security of RSA relies on the assumption that it is difficult
to take eth roots modulo N .

Is this a reasonable assumption? If the modulus N is prime, then it turns
out that it is comparatively easy to compute eth roots modulo N , as described
in the next proposition.

Proposition 3.2. Let p be a prime and let e ≥ 1 be an integer satisfying
gcd(e, p−1) = 1. Proposition 1.13 tells us that e has an inverse modulo p− 1,
say

de ≡ 1 (mod p− 1).

Then the congruence
xe ≡ c (mod p) (3.2)

has the unique solution x ≡ cd (mod p).

Proof. If c ≡ 0 (mod p), then x ≡ 0 (mod p) is the unique solution
and we are done. So we assume that c �≡ 0 (mod p). The proof is then an
easy application of Fermat’s little theorem (Theorem 1.24). The congruence
de ≡ 1 (mod p− 1) means that there is an integer k such that

de = 1 + k(p− 1).

Now we check that cd is a solution to xe ≡ c (mod p):

(cd)e ≡ cde (mod p) law of exponents,
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≡ c1+k(p−1) (mod p) since de = 1 + k(p− 1),

≡ c · (cp−1)k (mod p) law of exponents again,

≡ c · 1k (mod p) from Fermat’s little theorem,

≡ c (mod p).

This completes the proof that x = cd is a solution to xe ≡ c (mod p).
In order to see that the solution is unique, suppose that x1 and x2 are both

solutions to the congruence (3.2). We’ve just proven that zde ≡ z (mod p) for
any nonzero value z, so we find that

x1 ≡ xde1 ≡ (xe1)
d ≡ cd ≡ (xe2)

d ≡ xde2 ≡ x2 (mod p).

Thus x1 and x2 are the same modulo p, so (3.2) has at most one solution.

Example 3.3. We solve the congruence

x1583 ≡ 4714 (mod 7919),

where the modulus p = 7919 is prime. Proposition 3.2 says that first we need
to solve the congruence

1583d ≡ 1 (mod 7918).

The solution, using the extended Euclidean algorithm (Theorem 1.11; see
also Remark 1.15 and Exercise 1.12), is d ≡ 5277 (mod 7918). Then Proposi-
tion 3.2 tells us that

x ≡ 47145277 ≡ 6059 (mod 7919)

is a solution to x1583 ≡ 4714 (mod 7919).

Remark 3.4. Proposition 3.2 includes the assumption that gcd(e, p − 1) = 1.
If this assumption is omitted, then the congruence xe ≡ c (mod p) will have a
solution for some, but not all, values of c. Further, if it does have a solution,
then it will have more than one. See Exercise 3.2 for further details.

Proposition 3.2 shows that it is easy to take eth roots if the modulus is a
prime p. The situation for a composite modulus N looks similar, but there is a
crucial difference. If we know how to factor N , then it is again easy to compute
eth roots. The following proposition explains how to do this if N = pq is a
product of two primes. The general case is left for you to do in Exercise 3.6.

Proposition 3.5. Let p and q be distinct primes and let e ≥ 1 satisfy

gcd
(
e, (p− 1)(q − 1)

)
= 1.
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Proposition 1.13 tells us that e has an inverse modulo (p− 1)(q − 1), say

de ≡ 1 (mod (p− 1)(q − 1)).

Then the congruence
xe ≡ c (mod pq) (3.3)

has the unique solution x ≡ cd (mod pq).

Proof. We assume that gcd(c, pq) = 1; see Exercise 3.3 for the other cases. The
proof of Proposition 3.5 is almost identical to the proof of Proposition 3.2, but
instead of using Fermat’s little theorem, we use Euler’s formula (Theorem 3.1).
The congruence de ≡ 1 (mod (p− 1)(q − 1)) means that there is an integer k
such that

de = 1 + k(p− 1)(q − 1).

Now we check that cd is a solution to xe ≡ c (mod pq):

(cd)e ≡ cde (mod pq) law of exponents,

≡ c1+k(p−1)(q−1) (mod pq) since de = 1 + k(p− 1)(q − 1),

≡ c · (c(p−1)(q−1))k (mod pq) law of exponents again,

≡ c · 1k (mod pq) from Euler’s formula (Theorem 3.1),

≡ c (mod pq).

This completes the proof that x = cd is a solution to the congruence (3.3). It
remains to show that the solution is unique. Suppose that x = u is a solution
to (3.3). Then

u ≡ ude−k(p−1)(q−1) (mod pq) since de = 1 + k(p− 1)(q − 1),

≡ (ue)d · (u(p−1)(q−1))−k (mod pq)

≡ (ue)d · 1−k (mod pq) using Euler’s formula (Theorem 3.1),

≡ cd (mod pq) since u is a solution to (3.3).

Thus every solution to (3.3) is equal to cd (mod pq), so this is the unique
solution.

Remark 3.6. Proposition 3.5 gives an algorithm for solving xe ≡ c (mod pq)
that involves first solving de ≡ 1 (mod (p − 1)(q − 1)) and then computing
cd mod pq. We can often make the computation faster by using a smaller
value of d. Let g = gcd(p− 1, q − 1) and suppose that we solve the following
congruence for d:

de ≡ 1

(
mod

(p− 1)(q − 1)

g

)
.

Euler’s formula (Theorem 3.1) says that a(p−1)(q−1)/g ≡ 1 (mod pq). Hence
just as in the proof of Proposition 3.5, if we write de = 1+ k(p− 1)(q− 1)/g,
then

(cd)e = cde = c1+k(p−1)(q−1)/g = c · (c(p−1)(q−1)/g)k ≡ c (mod pq).
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Thus using this smaller value of d, we still find that cd mod pq is a solution
to xe ≡ c (mod pq).

Example 3.7. We solve the congruence

x17389 ≡ 43927 (mod 64349),

where the modulus N = 64349 = 229 · 281 is a product of the two primes
p = 229 and q = 281. The first step is to solve the congruence

17389d ≡ 1 (mod 63840),

where 63840 = (p − 1)(q − 1) = 228 · 280. The solution, using the method
described in Remark 1.15 or Exercise 1.12, is d ≡ 53509 (mod 63840). Then
Proposition 3.5 tells us that

x ≡ 4392753509 ≡ 14458 (mod 64349)

is the solution to x17389 ≡ 43927 (mod 64349).
We can save ourselves a little bit of work by using the idea described in

Remark 3.6. We have

g = gcd(p− 1, q − 1) = gcd(228, 280) = 4,

so (p− 1)(q − 1)/g = (228)(280)/4 = 15960, which means that we can find a
value of d by solving the congruence

17389d ≡ 1 (mod 15960).

The solution is d ≡ 5629 (mod 15960), and then

x ≡ 439275629 ≡ 14458 (mod 64349)

is the solution to x17389 ≡ 43927 (mod 64349). Notice that we obtained
the same solution, as we should, but that we needed to raise 43927 to
only the 5629th power, while using Proposition 3.5 directly required us to
raise 43927 to the 53509th power. This saves some time, although not quite
as much as it looks, since recall that computing cd mod N takes time O(ln d).
Thus the faster method takes about 80% as long as the slower method, since
ln(5629)/ ln(53509) ≈ 0.793.

Example 3.8. Alice challenges Eve to solve the congruence

x9843 ≡ 134872 (mod 30069476293).

The modulus 30069476293 is not prime, since (cf. Example 1.28)

230069476293−1 ≡ 18152503626 �≡ 1 (mod 30069476293).
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It happens that 30069476293 is a product of two primes, but if Eve does
not know the prime factors, she cannot use Proposition 3.5 to solve Alice’s
challenge. After accepting Eve’s concession of defeat, Alice informs Eve
that 30069476293 is equal to 104729 · 287117. With this new knowledge,
Alice’s challenge becomes easy. Eve computes 104728 ·287116 = 30069084448,
solves the congruence 9843d ≡ 1 (mod 30069084448) to find d ≡ 18472798299
(mod 30069084448), and computes the solution

x ≡ 13487218472798299 ≡ 25470280263 (mod 30069476293).

Bob Alice

Key creation
Choose secret primes p and q.
Choose encryption exponent e

with gcd(e, (p− 1)(q − 1)) = 1.
Publish N = pq and e.

Encryption
Choose plaintext m.
Use Bob’s public key (N, e)

to compute c ≡ me (mod N).
Send ciphertext c to Bob.

Decryption
Compute d satisfying

ed ≡ 1 (mod (p− 1)(q − 1)).
Compute m′ ≡ cd (mod N).
Then m′ equals the plaintext m.

Table 3.1: RSA key creation, encryption, and decryption

3.2 The RSA Public Key Cryptosystem

Bob and Alice have the usual problem of exchanging sensitive information
over an insecure communication line. We have seen in Chap. 2 various ways
in which Bob and Alice can accomplish this task, based on the difficulty of
solving the discrete logarithm problem. In this section we describe the RSA
public key cryptosystem, the first invented and certainly best known such
system. RSA is named after its (public) inventors, Ron Rivest, Adi Shamir,
and Leonard Adleman.

The security of RSA depends on the following dichotomy:

• Setup. Let p and q be large primes, let N = pq, and let e and c be
integers.
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• Problem. Solve the congruence xe ≡ c (mod N) for the variable x.

• Easy. Bob, who knows the values of p and q, can easily solve for x as
described in Proposition 3.5.

• Hard. Eve, who does not know the values of p and q, cannot easily find x.

• Dichotomy. Solving xe ≡ c (mod N) is easy for a person who possesses
certain extra information, but it is apparently hard for all other people.

The RSA public key cryptosystem is summarized in Table 3.1. Bob’s secret
key is a pair of large primes p and q. His public key is the pair (N, e) consisting
of the product N = pq and an encryption exponent e that is relatively prime
to (p− 1)(q − 1). Alice takes her plaintext and converts it into an integer m
between 1 and N . She encrypts m by computing the quantity

c ≡ me (mod N).

The integer c is her ciphertext, which she sends to Bob. It is then a simple
matter for Bob to solve the congruence xe ≡ c (mod N) to recover Alice’s
message m, because Bob knows the factorization N = pq. Eve, on the other
hand, may intercept the ciphertext c, but unless she knows how to factor N ,
she presumably has a difficult time trying to solve xe ≡ c (mod N).

Example 3.9. We illustrate the RSA public key cryptosystem with a small
numerical example. Of course, this example is not secure, since the numbers
are so small that it would be easy for Eve to factor the modulus N . Secure
implementations of RSA use moduli N with hundreds of digits.

RSA Key Creation
• Bob chooses two secret primes p = 1223 and q = 1987. Bob computes his
public modulus

N = p · q = 1223 · 1987 = 2430101.

• Bob chooses a public encryption exponent e = 948047 with the property
that

gcd(e, (p− 1)(q − 1)) = gcd(948047, 2426892) = 1.

RSA Encryption
• Alice converts her plaintext into an integer

m = 1070777 satisfying 1 ≤ m < N.

• Alice uses Bob’s public key (N, e) = (2430101, 948047) to compute

c ≡ me (mod N), c ≡ 1070777948047 ≡ 1473513 (mod 2430101).

• Alice sends the ciphertext c = 1473513 to Bob.
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RSA Decryption
• Bob knows (p− 1)(q − 1) = 1222 · 1986 = 2426892, so he can solve

ed ≡ 1 (mod (p− 1)(q − 1)), 948047 · d ≡ 1 (mod 2426892),

for d and find that d = 1051235.
• Bob takes the ciphertext c = 1473513 and computes

cd (mod N), 14735131051235 ≡ 1070777 (mod 2430101).

The value that he computes is Alice’s message m = 1070777.

Remark 3.10. The quantities N and e that form Bob’s public key are called,
respectively, the modulus and the encryption exponent. The number d that
Bob uses to decrypt Alice’s message, that is, the number d satisfying

ed ≡ 1 (mod (p− 1)(q − 1)), (3.4)

is called the decryption exponent. It is clear that encryption can be done
more efficiently if the encryption exponent e is a small number, and similarly,
decryption is more efficient if the decryption exponent d is small. Of course,
Bob cannot choose both of them to be small, since once one of them is selected,
the other is determined by the congruence (3.4). (This is not strictly true, since
if Bob takes e = 1, then also d = 1, so both d and e are small. But then the
plaintext and the ciphertext are identical, so taking e = 1 is a very bad idea!)

Notice that Bob cannot take e = 2, since he needs e to be relatively prime
to (p− 1)(q − 1). Thus the smallest possible value for e is e = 3. As far as is
known, taking e = 3 is as secure as taking a larger value of e, although some
doubts are raised in [22]. People who want fast encryption, but are worried
that e = 3 is too small, often take e = 216 + 1 = 65537, since it takes only
sixteen squarings and one multiplication to compute m65537 via the square-
and-multiply algorithm described in Sect. 1.3.2.

An alternative is for Bob to use a small value for d and use the congru-
ence (3.4) to determine e, so e would be large. However, it turns out that
this may lead to an insecure version of RSA. More precisely, if d is smaller
than N1/4, then the theory of continued fractions allows Eve to break RSA.
See [17, 18, 19, 149] for details.

Remark 3.11. Bob’s public key includes the number N = pq, which is a
product of two secret primes p and q. Proposition 3.5 says that if Eve knows
the value of (p− 1)(q − 1), then she can solve xe ≡ c (mod N), and thus can
decrypt messages sent to Bob.

Expanding (p− 1)(q − 1) gives

(p− 1)(q − 1) = pq − p− q + 1 = N − (p+ q) + 1. (3.5)

Bob has published the value of N , so Eve already knows N . Thus if Eve
can determine the value of the sum p+ q, then (3.5) gives her the value
of (p− 1)(q − 1), which enables her to decrypt messages.
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In fact, if Eve knows the values of p+ q and pq, then it is easy for her to
compute the values of p and q. She simply uses the quadratic formula to find
the roots of the polynomial

X2 − (p+ q)X + pq,

since this polynomial factors as (X−p)(X− q), so its roots are p and q. Thus
once Bob publishes the value of N = pq, it is no easier for Eve to find the
value of (p− 1)(q − 1) than it is for her to find p and q themselves.

We illustrate with an example. Suppose that Eve knows that

N = pq = 66240912547 and (p− 1)(q − 1) = 66240396760.

She first uses (3.5) to compute

p+ q = N + 1− (p− 1)(q − 1) = 515788.

Then she uses the quadratic formula to factor the polynomial

X2 − (p+ q)X +N = X2 − 515788X + 66240912547

= (X − 241511)(X − 274277).

This gives her the factorization N = 66240912547 = 241511 · 274277.
Remark 3.12. One final, but very important, observation. We have shown that
it is no easier for Eve to determine (p− 1)(q − 1) than it is for her to factor N .
But this does not prove that that Eve must factor N in order to decrypt Bob’s
messages. The point is that what Eve really needs to do is to solve congruences
of the form xe ≡ c (mod N), and conceivably there is an efficient algorithm to
solve such congruences without knowing the value of (p− 1)(q − 1). No one
knows whether such a method exists, although see [22] for a suggestion that
computing roots modulo N may be easier than factoring N .

3.3 Implementation and Security Issues

Our principal focus in this book is the mathematics of the hard problems
underlying modern cryptography, but we would be remiss if we did not at
least briefly mention some of the security issues related to implementation.
The reader should be aware that we do not even scratch the surface of this
vast and fascinating subject, but simply describe some examples to show that
there is far more to creating a secure communications system than simply
using a cryptosystem based on an intractable mathematical problem.

Example 3.13 (Woman-in-the-Middle Attack). Suppose that Eve is not simply
an eavesdropper, but that she has full control over Alice and Bob’s commu-
nication network. In this case, she can institute what is known as a man-in-
the-middle attack. We describe this attack for Diffie–Hellman key exchange,
but it exists for most public key constructions. (See Exercise 3.12.)



3.3. Implementation and Security Issues 127

Recall that in Diffie–Hellman key exchange (Table 2.2), Alice sends Bob
the value A = ga and Bob sends Alice the value B = gb, where the compu-
tations take place in the finite field Fp. What Eve does is to choose her own
secret exponent e and compute the value E = ge. She then intercepts Alice
and Bob’s communications, and instead of sending A to Bob and sending B to
Alice, she sends both of them the number E. Notice that Eve has exchanged
the value Ae with Alice and the value Be with Bob, while Alice and Bob be-
lieve that they have exchanged values with each other. The man-in-the-middle
attack is illustrated in Fig. 3.1.

Alice
−−−−−−→

←−−−−−−
Eve

B=gbA=ga

←−−−−−−
E=geE=ge

−−−−−−→
Bob

Figure 3.1: “Man-in-the-middle” attack on Diffie–Hellman key exchange

Suppose that Alice and Bob subsequently use their supposed secret shared
value as the key for a symmetric cipher and send each other messages. For
example, Alice encrypts a plaintext message m using Ea as the symmetric
cipher key. Eve intercepts this message and is able to decrypt it using Ae

as the symmetric cipher key, so she can read Alice’s message. She then re-
encrypts it using Be as the symmetric cipher key and sends it to Bob. Since
Bob is then able to decrypt it using Eb as the symmetric cipher key, he is
unaware that there is a breach in security.

Notice the insidious nature of this attack. Eve does not solve the underly-
ing hard problem (in this case, the discrete logarithm problem or the Diffie–
Hellman problem), yet she is able to read Alice and Bob’s communications,
and they are not aware of her success.

Example 3.14. Suppose that Eve is able to convince Alice to decrypt “random”
RSA messages using her (Alice’s) private key. This is a plausible scenario,
since one way for Alice to authenticate her identity as the owner of the public
key (N, e) is to show that she knows how to decrypt messages. (One says that
Eve has access to an RSA oracle.)

Eve can exploit Alice’s generosity as follows. Suppose that Eve has in-
tercepted a ciphertext c that Bob has sent to Alice. Eve chooses a random
value k and sends Alice the “message”

c′ ≡ ke · c (mod N).

Alice decrypts c′ and returns the resulting m′ to Eve, where

m′ ≡ (c′)d ≡ (ke · c)d ≡ (ke ·me)d ≡ k ·m (mod N).

Thus Eve knows the quantity k · m (mod N), and since she knows k, she
immediately recovers Bob’s plaintext m.
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There are two important observations to make. First, Eve has decrypted
Bob’s message without knowing or gaining knowledge of how to factor N , so
the difficulty of the underlying mathematical problem is irrelevant. Second,
since Eve has used k to mask Bob’s ciphertext, Alice has no way to tell that
Eve’s message is in any way related to Bob’s message. Thus Alice sees only
the values ke · c (mod N) and k ·m (mod N), which to her look random when
compared to c and m.

Example 3.15. Suppose that Alice publishes two different exponents e1 and e2
for use with her public modulus N and that Bob encrypts a single plaintext m
using both of Alice’s exponents. If Eve intercepts the ciphertexts

c1 ≡ me1 (mod N) and c2 ≡ me2 (mod N),

she can take a solution to the equation

e1 · u+ e2 · v = gcd(e1, e2)

and use it to compute

cu1 · cv2 ≡ (me1)u · (me2)v ≡ me1·u+e2·v ≡ mgcd(e1,e2) (mod N).

If it happens that gcd(e1, e2) = 1, Eve has recovered the plaintext. (See
Exercise 3.13 for a numerical example.) More generally, if Bob encrypts a
single message using several exponents e1, e2, . . . , er, then Eve can recover the
plaintext if gcd(e1, e2, . . . , er) = 1. The moral is that Alice should use at most
one encryption exponent for a given modulus.

3.4 Primality Testing

Bob has finished reading Sects. 3.2 and 3.3 and is now ready to communicate
with Alice using his RSA public/private key pair. Or is he? In order to create
an RSA key pair, Bob needs to choose two very large primes p and q. It’s not
enough for him to choose two very large, but possibly composite, numbers p
and q. In the first place, if p and q are not prime, Bob will need to know how
to factor them in order to decrypt Alice’s message. But even worse, if p and q
have small prime factors, then Eve may be able to factor pq and break Bob’s
system.

Bob is thus faced with the task of finding large prime numbers. More pre-
cisely, he needs a way of distinguishing between prime numbers and composite
numbers, since if he knows how to do this, then he can choose large random
numbers until he hits one that is prime. We discuss later (Sect. 3.4.1) the like-
lihood that a randomly chosen number is prime, but for now it is enough to
know that he has a reasonably good chance of success. Hence what Bob really
needs is an efficient way to tell whether a very large number is prime.
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For example, suppose that Bob chooses the rather large number

n = 31987937737479355332620068643713101490952335301

and he wants to know whether n is prime. First Bob searches for small factors,
but he finds that n is not divisible by any primes smaller than 1000000. So
he begins to suspect that maybe n is prime. Next he computes the quantity
2n−1 mod n and he finds that

2n−1 ≡ 1281265953551359064133601216247151836053160074 (mod n). (3.6)

The congruence (3.6) immediately tells Bob that n is a composite number,
although it does not give him any indication of how to factor n. Why? Recall
Fermat’s little theorem, which says that if p is prime, then ap−1 ≡ 1 (mod p)
(unless p divides a). Thus if n were prime, then the right-hand side of (3.6)
would equal 1; since it does not equal 1, Bob concludes that n is not prime.

Before continuing the saga of Bob’s quest for large primes, we state a
convenient version of Fermat’s little theorem that puts no restrictions on a.

Theorem 3.16 (Fermat’s Little Theorem, Version 2). Let p be a prime num-
ber. Then

ap ≡ a (mod p) for every integer a. (3.7)

Proof. If p � a, then the first version of Fermat’s little theorem (Theorem 1.24)
implies that ap−1 ≡ 1 (mod p). Multiplying both sides by a proves that (3.7)
is true. On the other hand, if p | a, then both sides of (3.7) are 0 modulo p.

Returning to Bob’s quest, we find him undaunted as he randomly chooses
another large number,

n = 2967952985951692762820418740138329004315165131. (3.8)

After checking for divisibility by small primes, Bob computes 2n mod n and
finds that

2n ≡ 2 (mod n). (3.9)

Does (3.9) combined with Fermat’s little theorem 3.16 prove that n is prime?
The answer is NO! Fermat’s theorem works in only one direction:

If p is prime, then ap ≡ a (mod p).

There is nothing to prevent an equality such as (3.9) being true for composite
values of n, and indeed a brief search reveals examples such as

2341 ≡ 2 (mod 341) with 341 = 11 · 31.

However, in some vague philosophical sense, the fact that 2n ≡ 2 (mod n)
makes it more likely that n is prime, since if the value of 2n mod n had turned
out differently, we would have known that n was composite. This leads us to
make the following definition.
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Definition. Fix an integer n. We say that an integer a is a witness for (the
compositeness of ) n if

an �≡ a (mod n).

As we observed earlier, a single witness for n combined with Fermat’s little
theorem (Theorem 3.16) is enough to prove beyond a shadow of a doubt that n
is composite.1 Thus one way to assess the likelihood that n is prime is to try
a lot of numbers a1, a2, a3, . . . . If any one of them is a witness for n, then Bob
knows that n is composite; and if none of them is a witness for n, then Bob
suspects, but does not know for certain, that n is prime.

Unfortunately, intruding on this idyllic scene are barbaric numbers such
as 561. The number 561 is composite, 561 = 3·11·17, yet 561 has no witnesses!
In other words,

a561 ≡ a (mod 561) for every integer a.

Composite numbers having no witnesses are called Carmichael numbers, after
R.D. Carmichael, who in 1910 published a paper listing 15 such numbers.
The fact that 561 is a Carmichael number can be verified by checking each
value a = 0, 1, 2, . . . , 560, but see Exercise 3.14 for an easier method and for
more examples of Carmichael numbers. Although Carmichael numbers are
rather rare, Alford, Granville, and Pomerance [5] proved in 1994 that there
are infinitely many of them. So Bob needs something stronger than Fermat’s
little theorem in order to test whether a number is (probably) prime. What
is needed is a better test for compositeness. The following property of prime
numbers is used to formulate the Miller–Rabin test, which has the agreeable
property that every composite number has a large number of witnesses.

Proposition 3.17. Let p be an odd prime and write

p− 1 = 2kq with q odd.

Let a be any number not divisible by p. Then one of the following two condi-
tions is true:
(i) aq is congruent to 1 modulo p.

(ii) One of aq, a2q, a4q,. . . , a2
k−1q is congruent to −1 modulo p.

Proof. Fermat’s little theorem (Theorem 1.24) tells us that ap−1 ≡ 1 (mod p).
This means that when we look at the list of numbers

aq, a2q, a4q, . . . , a2
k−1q, a2

kq,

we know that the last number in the list, which equals ap−1, is congruent
to 1 modulo p. Further, each number in the list is the square of the previous
number. Therefore one of the following two possibilities must occur:

1In the great courthouse of mathematics, witnesses never lie!
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(i) The first number in the list is congruent to 1 modulo p.

(ii) Some number in the list is not congruent to 1 modulo p, but when it
is squared, it becomes congruent to 1 modulo p. But the only number
satisfying both

b �≡ 1 (mod p) and b2 ≡ 1 (mod p)

is −1, so one of the numbers in the list is congruent to −1 modulo p.

This completes the proof of Proposition 3.17.

Input. Integer n to be tested, integer a as potential witness.

1. If n is even or 1 < gcd(a, n) < n, return Composite.

2. Write n− 1 = 2kq with q odd.

3. Set a = aq (mod n).

4. If a ≡ 1 (mod n), return Test Fails.

5. Loop i = 0, 1, 2, . . . , k − 1

6. If a ≡ −1 (mod n), return Test Fails.

7. Set a = a2 mod n.

8. End i loop.

9. Return Composite.

Table 3.2: Miller–Rabin test for composite numbers

Definition. Let n be an odd number and write n− 1 = 2kq with q odd. An
integer a satisfying gcd(a, n) = 1 is called a Miller–Rabin witness for (the
compositeness of ) n if both of the following conditions are true:
(a) aq �≡ 1 (mod n).

(b) a2
iq �≡ −1 (mod n) for all i = 0, 1, 2, . . . , k − 1.

It follows from Proposition 3.17 that if there exists an a that is a Miller–
Rabin witness for n, then n is definitely a composite number. This leads to
the Miller–Rabin test for composite numbers described in Table 3.2.

Now suppose that Bob wants to check whether a large number n is prob-
ably a prime. To do this, he runs the Miller–Rabin test using a bunch of
randomly selected values of a. Why is this better than using the Fermat’s
little theorem test? The answer is that there are no Carmichael-like numbers
for the Miller–Rabin test, and in fact, every composite number has a lot of
Miller–Rabin witnesses, as described in the following proposition.

Proposition 3.18. Let n be an odd composite number. Then at least 75% of
the numbers a between 1 and n− 1 are Miller–Rabin witnesses for n.
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Proof. The proof is not hard, but we will not give it here. See for example [132,
Theorem 10.6].

Consider now Bob’s quest to identify large prime numbers. He takes his
potentially prime number n and he runs the Miller–Rabin test on n for (say)
10 different values of a. If any a value is a Miller–Rabin witness for n, then
Bob knows that n is composite. But suppose that none of his a values is a
Miller–Rabin witness for n. Proposition 3.18 says that if n were composite,
then each time Bob tries a value for a, he has at least a 75% chance of
getting a witness. Since Bob found no witnesses in 10 tries, it is reasonable2

to conclude that the probability of n being composite is at most (25%)10,
which is approximately 10−6. And if this is not good enough, Bob can use
100 different values of a, and if none of them proves n to be composite, then
the probability that n is actually composite is less than (25%)100 ≈ 10−60.

Example 3.19. We illustrate the Miller–Rabin test with a = 2 and the number
n = 561, which, you may recall, is a Carmichael number. We factor

n− 1 = 560 = 24 · 35

and then compute

235 ≡ 263 (mod 561),

22·35 ≡ 2632 ≡ 166 (mod 561),

24·35 ≡ 1662 ≡ 67 (mod 561),

28·35 ≡ 672 ≡ 1 (mod 561).

The first number 235 mod 561 is neither 1 nor −1, and the other numbers in
the list are not equal to −1, so 2 is a Miller–Rabin witness to the fact that 561
is composite.

Example 3.20. We do a second example, taking n = 172947529 and

n− 1 = 172947528 = 23 · 21618441.

We apply the Miller–Rabin test with a = 17 and find that

1721618441 ≡ 1 (mod 172947529).

2Unfortunately, although this deduction seems reasonable, it is not quite accurate. In
the language of probability theory, we need to compute the conditional probability that n
is composite given that the Miller–Rabin test fails 10 times; and we know the conditional
probability that the Miller–Rabin test succeeds at least 75% of the time if n is composite.
See Sect. 5.3.2 for a discussion of conditional probabilities and Exercise 5.30 for a derivation
of the correct formula, which says that the probability (25%)10 must be approximately
multiplied by ln(n).
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Thus 17 is not a Miller–Rabin witness for n. Next we try a = 3, but unfortu-
nately

321618441 ≡ −1 (mod 172947529),

so 3 also fails to be a Miller–Rabin witness. At this point we might suspect
that n is prime, but if we try another value, say a = 23, we find that

2321618441 ≡ 40063806 (mod 172947529),

232·21618441 ≡ 2257065 (mod 172947529),

234·21618441 ≡ 1 (mod 172947529).

Thus 23 is a Miller–Rabin witness and n is actually composite. In fact, n is a
Carmichael number, but it’s not so easy to factor (by hand).

3.4.1 The Distribution of the Set of Primes

If Bob picks a number at random, what is the likelihood that it is prime? The
answer is provided by one of number theory’s most famous theorems. In order
to state the theorem, we need a definition.

Definition. For any number X, let

π(X) = (# of primes p satisfying 2 ≤ p ≤ X).

For example, π(10) = 4, since the primes between 2 and 10 are 2, 3, 5, and 7.

Theorem 3.21 (The Prime Number Theorem).

lim
X→∞

π(X)

X/ ln(X)
= 1.

Proof. The prime number theorem was proven independently by Hadamard
and de la Vallée Poussin in 1896. The proof is unfortunately far beyond the
scope of this book. The most direct proof uses complex analysis; see for ex-
ample [7, Chapter 13].

Example 3.22. How many primes would we expect to find between 900000
and 1000000? The prime number theorem says that

(
Number of primes between 900000 and 1000000

)

= π(1000000)− π(900000) ≈ 1000000

ln 1000000
− 900000

ln 900000
= 6737.62 . . . .

In fact, it turns out that there are exactly 7224 primes between 900000
and 1000000.

For cryptographic purposes, we need even larger primes. For example,
we might want to use primes having approximately 300 decimal digits, or
almost equivalently, primes that are 1024 bits in length, since 21024 ≈ 10308.25.



134 3. Integer Factorization and RSA

How many primes p satisfy 21023 < p < 21024? The prime number theorem
gives us an answer:

# of 1024 bit primes = π(21024)− π(21023) ≈ 21024

ln 21024
− 21023

ln 21023
≈ 21013.53.

So there should be lots of primes in this interval.

Intuitively, the prime number theorem says that if we look at all of the
numbers between 1 and X, then the proportion of them that are prime is
approximately 1/ ln(X). Turning this statement around, the prime number
theorem says:

A randomly chosen number N has
probability 1/ ln(N) of being prime.

(3.10)

Of course, taken at face value, statement (3.10) is utter nonsense. A chosen
number either is prime or is not prime; it cannot be partially prime and
partially composite! A better interpretation of (3.10) is that it describes how
many primes one expects to find in an interval around N . See Exercise 3.19 for
a more precise statement of (3.10) that is both meaningful and mathematically
correct.

Example 3.23. We illustrate statement (3.10) and the prime number theorem
by searching for 1024-bit primes, i.e., primes that are approximately 21024.
Statement (3.10) says that the probability that a random number N ≈ 21024

is prime is approximately 0.14%. Thus on average, Bob checks about 700 ran-
domly chosen numbers of this size before finding a prime.

If he is clever, Bob can do better. He knows that he doesn’t want a number
that is even, nor does he want a number that is divisible by 3, nor divisible
by 5, etc. Thus rather than choosing numbers completely at random, Bob
might restrict attention (say) to numbers that are relatively prime to 2, 3, 5, 7
and 11. To do this, he first chooses a random number that is relatively prime
to 2·3·5·7·11 = 2310, say he chooses 1139. Then he considers only numbers N
of the form

N = 2 · 3 · 5 · 7 · 11 ·K + 1139 = 2310K + 1139. (3.11)

The probability that an N of this form is prime is approximately (see Exer-
cise 3.20)

2

1
· 3
2
· 5
4
· 7
6
· 11
10
· 1

ln(N)
≈ 4.8

ln(N)
.

So if Bob chooses a random number N of the form (3.11) with N ≈ 21024,
then the probability that it is prime is approximately 0.67%. Thus he only
needs to check 150 numbers to have a good chance of finding a prime.
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We used the Miller–Rabin test with 100 randomly chosen values of a to
check the primality of

2310K + 1139 for each 21013 ≤ K ≤ 21013 + 1000.

We found that 2310(21013+J)+1139 is probably prime for the following 12 val-
ues of J :

J ∈ {41, 148, 193, 251, 471, 585, 606, 821, 851, 865, 910, 911}.
This is a bit better than the 7 values predicted by the prime number theorem.
The smallest probable prime that we found is 2310 · (21013 + 41) + 1139, which
is equal to the following 308 digit number:

20276714558261473373313940384387925462194955182405899331133959349334105522983

75121272248938548639688519470034484877532500936544755670421865031628734263599742737518719

78241831537235413710389881550750303525056818030281312537212445925881220354174468221605146

327969430834440565497127875070636801598203824198219369.

Remark 3.24. There are many deep open questions concerning the distribution
of prime numbers, of which the most important and famous is certainly the
Riemann hypothesis.3 The usual way to state the Riemann hypothesis requires
some complex analysis. The Riemann zeta function ζ(s) is defined by the
series

ζ(s) =
∞∑

n=1

1

ns
,

which converges when s is a complex number with real part greater than 1. It
has an analytic continuation to the entire complex plane with a simple pole
at s = 1 and no other poles. The Riemann hypothesis says that if ζ(σ+it) = 0
with σ and t real and 0 ≤ σ ≤ 1, then in fact σ = 1

2 .
At first glance, this somewhat bizarre statement appears to have little

relation to prime numbers. However, it is not hard to show that ζ(s) is also
equal to the product

ζ(s) =
∏

p prime

(
1− 1

ps

)−1

,

so ζ(s) incorporates information about the set of prime numbers.
There are many statements about prime numbers that are equivalent to

the Riemann hypothesis. For example, recall that the prime number theorem
(Theorem 3.21) says that π(X) is approximately equal to X/ ln(X) for large
values of X. The Riemann hypothesis is equivalent to the following more
accurate statement:

π(X) =

∫ X

2

dt

ln t
+O

(√
X · ln(X)

)
. (3.12)

This conjectural formula is stronger than the prime number theorem, since
the integral is approximately equal to X/ ln(X). (See Exercise 3.21.)

3The Riemann hypothesis is another of the $1,000,000 Millennium Prize problems.
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3.4.2 Primality Proofs Versus Probabilistic Tests

The Miller–Rabin test is a powerful and practical method for finding large
numbers that are “probably prime.” Indeed, Proposition 3.18 says that every
composite number has many Miller–Rabin witnesses, so 50 or 100 repetitions
of the Miller–Rabin test provide solid evidence that n is prime. However, there
is a difference between evidence for a statement and a rigorous proof that the
statement is correct. Suppose that Bob is not satisfied with mere evidence.
He wants to be completely certain that his chosen number n is prime.

In principle, nothing could be simpler. Bob checks to see whether n is di-
visible by any of the numbers 1, 2, 3, 4, . . . up to

√
n. If none of these numbers

divides n, then Bob knows, with complete certainty, that n is prime. Unfor-
tunately, if n is large, say n ≈ 21000, then the sun will have burnt out before
Bob finishes his task. Notice that the running time of this naive algorithm
is O(

√
n), which means that it is an exponential-time algorithm according

to the definition in Sect. 2.6, since
√
n is exponential in the number of bits

required to write down the number n.
It would be nice if we could use the Miller–Rabin test to efficiently and

conclusively prove that a number n is prime. More precisely, we would like a
polynomial-time algorithm that proves primality. If a generalized version of
the Riemann hypothesis is true, then the following proposition says that this
can be done. (We discussed the Riemann hypothesis in Remark 3.24.)

Proposition 3.25. If a generalized version of the Riemann hypothesis is
true, then every composite number n has a Miller–Rabin witness a for its
compositeness satisfying

a ≤ 2(lnn)2.

Proof. See [87] for a proof that every composite number n has a wit-
ness satisfying a = O

(
(lnn)2

)
, and [9, 10] for the more precise estimate

a ≤ 2(lnn)2.

Thus if the generalized Riemann hypothesis is true, then we can prove
that n is prime by applying the Miller–Rabin test using every a smaller
than 2(lnn)2. If some a proves that n is composite, then n is composite,
and otherwise, Proposition 3.25 tells us that n is prime. Unfortunately, the
proof of Proposition 3.25 assumes that the generalized Riemann hypothesis
is true, and no one has yet been able to prove even the original Riemann
hypothesis, despite almost 150 years of work on the problem.

After the creation of public key cryptography, and especially after the
publication of the RSA cryptosystem in 1978, it became of great interest to
find a polynomial-time primality test that did not depend on any unproven
hypotheses. Many years of research culminated in 2002, when M. Agrawal, N.
Kayal, and N. Saxena [1] found such an algorithm. Subsequent improvements
to their algorithm have given the following result.
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Theorem 3.26 (AKS Primality Test). For every ε > 0, there is an algorithm
that conclusively determines whether a given number n is prime in no more
than O

(
(lnn)6+ε

)
steps.

Proof. The original algorithm was published in [1]. Further analysis and refine-
ments may be found in [76]. The monograph [36] contains a nice description
of primality testing, including the AKS test.

Remark 3.27. The result described in Theorem 3.26 represents a triumph of
modern algorithmic number theory. The significance for practical cryptogra-
phy is less clear, since the AKS algorithm is much slower than the Miller–
Rabin test. In practice, most people are willing to accept that a number is
prime if it passes the Miller–Rabin test for (say) 50–100 randomly chosen
values of a.

3.5 Pollard’s p − 1 Factorization Algorithm

We saw in Sect. 3.4 that it is relatively easy to check whether a large number
is (probably) prime. This is good, since the RSA cryptosystem needs large
primes in order to operate.

Conversely, the security of RSA relies on the apparent difficulty of factor-
ing large numbers. The study of factorization dates back at least to ancient
Greece, but it was only with the advent of computers that people started to
develop algorithms capable of factoring very large numbers. The paradox of
RSA is that in order to make RSA more efficient, we want to use a modu-
lus N = pq that is as small as possible. On the other hand, if an opponent
can factor N , then our encrypted messages are not secure. It is thus vital
to understand how hard it is to factor large numbers, and in particular, to
understand the capabilities of the different algorithms that are currently used
for factorization.

In the next few sections we discuss, with varying degrees of detail, some
of the known methods for factoring large integers. A further method using
elliptic curves is described in Sect. 6.6. Those readers interested in pursuing
this subject might consult [28, 34, 109, 150] and the references cited in those
works.

We begin with an algorithm called Pollard’s p − 1 method. Although not
useful for all numbers, there are certain types of numbers for which it is quite
efficient. Pollard’s method demonstrates that there are insecure RSA moduli
that at first glance appear to be secure. This alone warrants the study of
Pollard’s method. In addition, the p− 1 method provides the inspiration for
Lenstra’s elliptic curve factorization method, which we study later, in Sect. 6.6.

We are presented with a number N = pq and our task is to determine
the prime factors p and q. Suppose that by luck or hard work or some other
method, we manage to find an integer L with the property that
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p− 1 divides L and q − 1 does not divide L.

This means that there are integers i, j, and k with k �= 0 satisfying

L = i(p− 1) and L = j(q − 1) + k.

Consider what happens if we take a randomly chosen integer a and com-
pute aL. Fermat’s little theorem (Theorem 1.24) tells us that4

aL = ai(p−1) = (ap−1)i ≡ 1i ≡ 1 (mod p),

aL = aj(q−1)+k = ak(aq−1)j ≡ ak · 1j ≡ ak (mod q).

The exponent k is not equal to 0, so it is quite unlikely that ak will be
congruent to 1 modulo q. Thus with very high probability, i.e., for most choices
of a, we find that

p divides aL − 1 and q does not divide aL − 1.

But this is wonderful, since it means that we can recover p via the simple gcd
computation

p = gcd(aL − 1, N).

This is all well and good, but where, you may ask, can we find an expo-
nent L that is divisible by p− 1 and not by q − 1? Pollard’s observation is
that if p− 1 happens to be a product of many small primes, then it will di-
vide n! for some not-too-large value of n. So here is the idea. For each number
n = 2, 3, 4, . . . we choose a value of a and compute

gcd(an! − 1, N).

(In practice, we might simply take a = 2.) If the gcd is equal to 1, then we
go on to the next value of n. If the gcd ever equals N , then we’ve been quite
unlucky, but a different a value will probably work. And if we get a number
strictly between 1 and N , then we have a nontrivial factor of N and we’re
done.

Remark 3.28. There are two important remarks to make before we put
Pollard’s idea into practice. The first concerns the quantity an! − 1. Even
for a = 2 and quite moderate values of n, say n = 100, it is not feasible to
compute an! − 1 exactly. Indeed, the number 2100! has more than 10157 digits,
which is larger than the number of elementary particles in the known universe!
Luckily, there is no need to compute it exactly. We are interested only in the
greatest common divisor of an! − 1 and N , so it suffices to compute

an! − 1 (mod N)

4We have assumed that p � a and q � a, since if p and q are very large, this will almost
certainly be the case. Further, if by some chance p | a and q � a, then we can recover p as
p = gcd(a,N).
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and then take the gcd with N . Thus we never need to work with numbers
larger than N .

Second, we do not even need to compute the exponent n!. Instead, assum-
ing that we have already computed an! mod N in the previous step, we can
compute the next value as

a(n+1)! ≡
(
an!
)n+1

(mod N).

This leads to the algorithm described in Table 3.3.

Remark 3.29. How long does it take to compute the value of an! mod N? The
fast exponentiation algorithm described in Sect. 1.3.2 gives a method for com-
puting ak mod N in at most 2 log2 k steps, where each step is a multiplication
modulo N . Stirling’s formula5 says that if n is large, then n! is approximately
equal to (n/e)n. So we can compute an! mod N in 2n log2(n) steps. Thus it is
feasible to compute an! mod N for reasonably large values of n.

Input. Integer N to be factored.

1. Set a = 2 (or some other convenient value).

2. Loop j = 2, 3, 4, . . . up to a specified bound.

3. Set a = aj mod N .

4. Compute d = gcd(a− 1, N)†.
5. If 1 < d < N then success, return d.

6. Increment j and loop again at Step 2.

† For added efficiency, choose an appropriate k and
compute the gcd in Step 4 only every kth iteration.

Table 3.3: Pollard’s p− 1 factorization algorithm

Example 3.30. We use Pollard’s p−1 method to factorN = 13927189. Starting
with gcd(29!− 1, N) and taking successively larger factorials in the exponent,
we find that

29! − 1 ≡ 13867883 (mod 13927189), gcd(29! − 1, 13927189) = 1,

210! − 1 ≡ 5129508 (mod 13927189), gcd(210! − 1, 13927189) = 1,

211! − 1 ≡ 4405233 (mod 13927189), gcd(211! − 1, 13927189) = 1,

212! − 1 ≡ 6680550 (mod 13927189), gcd(212! − 1, 13927189) = 1,

213! − 1 ≡ 6161077 (mod 13927189), gcd(213! − 1, 13927189) = 1,

214! − 1 ≡ 879290 (mod 13927189), gcd(214! − 1, 13927189) = 3823.

The final line gives us a nontrivial factor p = 3823 of N . This factor is
prime, and the other factor q = N/p = 13927189/3823 = 3643 is also prime.

5Stirling’s formula says more precisely that ln(n!) = n ln(n)− n+ 1
2
ln(2πn) +O(1/n).
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The reason that an exponent of 14! worked in this instance is that p− 1 factors
into a product of small primes,

p− 1 = 3822 = 2 · 3 · 72 · 13.

The other factor satisfies q − 1 = 3642 = 2 · 3 · 607, which is not a product of
small primes.

Example 3.31. We present one further example using larger numbers. Let
N = 168441398857. Then

250! − 1 ≡ 114787431143 (mod N), gcd(250! − 1, N) = 1,

251! − 1 ≡ 36475745067 (mod N), gcd(251! − 1, N) = 1,

252! − 1 ≡ 67210629098 (mod N), gcd(252! − 1, N) = 1,

253! − 1 ≡ 8182353513 (mod N), gcd(253! − 1, N) = 350437.

So using 253! − 1 yields the prime factor p = 350437 of N , and the other
(prime) factor is 480661. We were lucky, of course, that p− 1 is a product of
small factors,

p− 1 = 350436 = 22 · 3 · 19 · 29 · 53.
Remark 3.32. Notice that it is easy for Bob and Alice to avoid the dangers of
Pollard’s p− 1 method when creating RSA keys. They simply check that their
chosen secret primes p and q have the property that neither p− 1 nor q − 1
factors entirely into small primes. From a cryptographic perspective, the im-
portance of Pollard’s method lies in the following lesson. Most people would
not expect, at first glance, that factorization properties of p− 1 and q − 1
should have anything to do with the difficulty of factoring pq. The moral is
that even if we build a cryptosystem based on a seemingly hard problem such
as integer factorization, we must be wary of special cases of the problem that,
for subtle and nonobvious reasons, are easier to solve than the general case.
We have already seen an example of this in the Pohlig–Hellman algorithm for
the discrete logarithm problem (Sect. 2.9), and we will see it again later when
we discuss elliptic curves and the elliptic curve discrete logarithm problem.

Remark 3.33. We have not yet discussed the likelihood that Pollard’s p − 1
algorithm succeeds. Suppose that p and q are randomly chosen primes of about
the same size. Pollard’s method works if at least one of p− 1 or q − 1 factors
entirely into a product of small prime powers. Clearly p− 1 is even, so we
can pull off a factor of 2, but after that, the quantity 1

2 (p− 1) should behave
more or less like a random number of size approximately 1

2p. This leads to the
following question:

What is the probability that a randomly chosen integer of
size approximately n divides B! (B-factorial)?

Notice in particular that if n divides B!, then every prime � dividing n must
satisfy � ≤ B. A number whose prime factors are all less than or equal to B
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is called a B-smooth number. It is thus natural to ask for the probability that
a randomly chosen integer of size approximately n is a B-smooth number.
Turning this question around, we can also ask:

Given n, how large should we choose B so that a randomly
chosen integer of size approximately n has a reasonably
good probability of being a B-smooth number?

The efficiency (or lack thereof) of all modern methods of integer factoriza-
tion is largely determined by the answer to this question. We study smooth
numbers in Sect. 3.7.

3.6 Factorization via Difference of Squares

The most powerful factorization methods known today rely on one of the
simplest identities in all of mathematics,

X2 − Y 2 = (X + Y )(X − Y ). (3.13)

This beautiful formula says that a difference of squares is equal to a product.
The potential applicability to factorization is immediate. In order to factor a
number N , we look for an integer b such that the quantity N + b2 is a perfect
square, say equal to a2. Then N + b2 = a2, so

N = a2 − b2 = (a+ b)(a− b),

and we have effected a factorization of N .

Example 3.34. We factorN = 25217 by looking for an integer bmakingN + b2

a perfect square:

25217 + 12 = 25218 not a square,

25217 + 22 = 25221 not a square,

25217 + 32 = 25226 not a square,

25217 + 42 = 25233 not a square,

25217 + 52 = 25242 not a square,

25217 + 62 = 25253 not a square,

25217 + 72 = 25266 not a square,

25217 + 82 = 25281 = 1592 Eureka! ** square **.

Then we compute

25217 = 1592 − 82 = (159 + 8)(159− 8) = 167 · 151.
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If N is large, then it is unlikely that a randomly chosen value of b will
make N + b2 into a perfect square. We need to find a clever way to select b.
An important observation is that we don’t necessarily need to write N itself
as a difference of two squares. It often suffices to write some multiple kN of N
as a difference of two squares, since if

kN = a2 − b2 = (a+ b)(a− b),

then there is a reasonable chance that the factors of N are separated by the
right-hand side of the equation, i.e., that N has a nontrivial factor in common
with each of a+ b and a− b. It is then a simple matter to recover the factors
by computing gcd(N, a+ b) and gcd(N, a− b). We illustrate with an example.

Example 3.35. We factor N = 203299. If we make a list of N + b2 for values
of b = 1, 2, 3, . . ., say up to b = 100, we do not find any square values. So next
we try listing the values of 3N + b2 and we find

3 · 203299 + 12 = 609898 not a square,

3 · 203299 + 22 = 609901 not a square,

3 · 203299 + 32 = 609906 not a square,

3 · 203299 + 42 = 609913 not a square,

3 · 203299 + 52 = 609922 not a square,

3 · 203299 + 62 = 609933 not a square,

3 · 203299 + 72 = 609946 not a square,

3 · 203299 + 82 = 609961 = 7812 Eureka! ** square **.

Thus
3 · 203299 = 7812 − 82 = (781 + 8)(781− 8) = 789 · 773,

so when we compute

gcd(203299, 789) = 263 and gcd(203299, 773) = 773,

we find nontrivial factors of N . The numbers 263 and 773 are prime, so the
full factorization of N is 203299 = 263 · 773.
Remark 3.36. In Example 3.35, we made a list of values of 3N + b2. Why
didn’t we try 2N + b2 first? The answer is that if N is odd, then 2N + b2

can never be a square, so it would have been a waste of time to try it. The
reason that 2N + b2 can never be a square is as follows (cf. Exercise 1.23).
We compute modulo 4,

2N + b2 ≡ 2 + b2 ≡
{
2 + 0 ≡ 2 (mod 4) if b is even,

2 + 1 ≡ 3 (mod 4) if b is odd.

Thus 2N+b2 is congruent to either 2 or 3 modulo 4. But squares are congruent
to either 0 or 1 modulo 4. Hence if N is odd, then 2N + b2 is never a square.
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The multiples of N are the numbers that are congruent to 0 modulo N ,
so rather than searching for a difference of squares a2 − b2 that is a multiple
of N , we may instead search for distinct numbers a and b satisfying

a2 ≡ b2 (mod N). (3.14)

This is exactly the same problem, of course, but the use of modular arithmetic
helps to clarify our task.

In practice it is not feasible to search directly for integers a and b satis-
fying (3.14). Instead we use a three-step process as described in Table 3.4.
This procedure, in one form or another, underlies most modern methods of
factorization.

1. Relation Building: Find many integers a1, a2, a3, . . . , ar with the
property that the quantity ci ≡ a2i (mod N) factors as a product of
small primes.

2. Elimination: Take a product ci1ci2 · · · cis of some of the ci’s so that
every prime appearing in the product appears to an even power. Then
ci1ci2 · · · cis = b2 is a perfect square.

3. GCD Computation: Let a = ai1ai2 · · · ais and compute the greatest
common divisor d = gcd(N, a− b). Since

a2 = (ai1ai2 · · · ais)
2 ≡ a2i1a

2
i2 · · · a

2
is ≡ ci1ci2 · · · cis ≡ b2 (mod N),

there is a reasonable chance that d is a nontrivial factor of N .

Table 3.4: A three step factorization procedure

Example 3.37. We factor N = 914387 using the procedure described in
Table 3.4. We first search for integers a with the property that a2 mod N
is a product of small primes. For this example, we ask that each a2 mod N be
a product of primes in the set {2, 3, 5, 7, 11}. Ignoring for now the question of
how to find such a, we observe that

18692 ≡ 750000 (mod 914387) and 750000 = 24 · 3 · 56,
19092 ≡ 901120 (mod 914387) and 901120 = 214 · 5 · 11,
33872 ≡ 499125 (mod 914387) and 499125 = 3 · 53 · 113.

None of the numbers on the right is a square, but if we multiply them together,
then we do get a square. Thus

18692 · 19092 · 33872 ≡ 750000 · 901120 · 499125 (mod 914387)

≡ (24 · 3 · 56)(214 · 5 · 11)(3 · 53 · 113) (mod 914387)
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= (29 · 3 · 55 · 112)2

= 5808000002

≡ 1642552 (mod 914387).

We further note that 1869 · 1909 · 3387 ≡ 9835 (mod 914387), so we compute

gcd(914387, 9835− 164255) = gcd(914387, 154420) = 1103.

Hooray! We have factored 914387 = 1103 · 829.
Example 3.38. We do a second example to illustrate a potential pitfall in this
method. We will factor N = 636683. After some searching, we find

13872 ≡ 13720 (mod 636683) and 13720 = 23 · 5 · 73,
27742 ≡ 54880 (mod 636683) and 54880 = 25 · 5 · 73.

Multiplying these two values gives a square,

13872 · 27742 ≡ 13720 · 54880 = (24 · 5 · 73)2 = 274402.

Unfortunately, when we compute the gcd, we find that

gcd(636683, 1387 · 2774− 27440) = gcd(636683, 3820098) = 636683.

Thus after all our work, we have made no progress! However, all is not lost.
We can gather more values of a and try to find a different relation. Extending
the above list, we discover that

33592 ≡ 459270 (mod 636683) and 459270 = 2 · 38 · 5 · 7.

Multiplying 13872 and 33592 gives

13872 · 33592 ≡ 13720 · 459270 = (22 · 34 · 5 · 72)2 = 793802,

and now when we compute the gcd, we obtain

gcd(636683, 1387 · 3359− 79380) = gcd(636683, 4579553) = 787.

This gives the factorization N = 787 · 809.
Remark 3.39. How many solutions to a2 ≡ b2 (mod N) are we likely to try
before we find a factor of N? The most difficult case occurs when N = pq is
a product of two primes that are of roughly the same size. (This is because
the smallest prime factor is O(

√
N), while in any other case the smallest

prime factor will be O(Nα), with α < 1/2. As α decreases, the difficulty of
factoring N decreases.) Suppose that we can find more or less random values
of a and b satisfying a2 ≡ b2 (mod N). What are our chances of finding a
nontrivial factor of N when we compute gcd(a− b,N)? We know that
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(a− b)(a+ b) = a2 − b2 = kN = kpq for some value of k.

The prime p must divide at least one of a− b and a+ b, and it has approx-
imately equal probability of dividing each. Similarly for q. We win if a− b
is divisible by exactly one of p and q, which happens approximately 50% of
the time. Hence if we can actually generate random a’s and b’s satisfying
a2 ≡ b2 (mod N), then it won’t take us long to find a factor of N . Of course
this leaves us with the question of just how hard it is to find these a’s and b’s.

Having given a taste of the process through several examples, we now do a
more systematic analysis. The factorization procedure described in Table 3.4
consists of three steps:

1. Relation Building
2. Elimination
3. GCD Computation

There is really nothing to say about Step 3, since the Euclidean algorithm
(Theorem 1.7) tells us how to efficiently compute gcd(N, a− b) in O(lnN)
steps. On the other hand, there is so much to say about relation building
that we postpone our discussion until Sect. 3.7. Finally, what of Step 2, the
elimination step?

We suppose that each of the numbers a1, . . . , ar found in Step 1 has the
property that ci ≡ a2i (mod m) factors into a product of small primes—say
that each ci is a product of primes chosen from the set of the first t primes
{p1, p2, p3, . . . , pt}. This means that there are exponents eij such that

c1 = pe111 pe122 pe133 · · · pe1tt ,

c2 = pe211 pe222 pe233 · · · pe2tt ,

...
...

cr = per11 per22 per33 · · · pertt .

Our goal is to take a product of some of the ci’s in order to make each prime
on the right-hand side of the equation appear to an even power. In other
words, our problem reduces to finding u1, u2, . . . , ur ∈ {0, 1} such that

cu1
1 · cu2

2 · · · cur
r is a perfect square.

Here we take ui = 1 if we want to include ci in the product, and we take ui = 0
if we do not want to include ci in the product.

Writing out the product in terms of the prime factorizations of c1, . . . , cr
gives the rather messy expression

cu1
1 · cu2

2 · · · cur
r

= (pe111 pe122 pe133 · · · pe1tt )
u1 · (pe211 pe222 pe233 · · · pe2tt )

u2 · · · (per11 per22 per33 · · · pertt )
ur
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= pe11u1+e21u2+···+er1ur
1 · pe12u1+e22u2+···+er2ur

2 · · · pe1tu1+e2tu2+···+ertur
t ·

(3.15)

You may find this clearer if it is written using summation and product
notation,

r∏

i=1

cui
i =

t∏

j=1

p
∑r

i=1 eijui

j . (3.16)

In any case, our goal is to choose u1, . . . , ur such that all of the exponents
in (3.15), or equivalently in (3.16), are even.

To recapitulate, we are given integers

e11, e12, . . . , e1t, e21, e22, . . . , e2t, . . . , er1, er2, . . . , ert

and we are searching for integers u1, u2, . . . , ur such that

e11u1 + e21u2 + · · ·+ er1ur ≡ 0 (mod 2),

e12u1 + e22u2 + · · ·+ er2ur ≡ 0 (mod 2),

...
...

e1tu1 + e2tu2 + · · ·+ ertur ≡ 0 (mod 2).

(3.17)

You have undoubtedly recognized that the system of congruences (3.17)
is simply a system of linear equations over the finite field F2. Hence standard
techniques from linear algebra, such as Gaussian elimination, can be used to
solve these equations. In fact, doing linear algebra in the field F2 is much
easier than doing linear algebra in the field R, since there is no need to worry
about round-off errors.

Example 3.40. We illustrate the linear algebra elimination step by factoring
the number

N = 9788111.

We look for numbers a with the property that a2 mod N is 50-smooth, i.e.,
numbers a such that a2 mod N is equal to a product of primes in the set

{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47}.
The top part of Table 3.5 lists the 20 numbers a1, a2, . . . , a20 between 3129
and 4700 having this property,6 together with the factorization of each

ci ≡ a2i (mod N).

The bottom part of Table 3.5 translates the requirement that a product
cu1
1 cu2

2 · · · cu20
20 be a square into a system of linear equation for (u1, u2, . . . , u20)

as described by (3.17). For notational convenience, we have written the system
of linear equations in Table 3.5 in matrix form.

6Why do we start with a = 3129? The answer is that unless a2 is larger than N , then
there is no reduction modulo N in a2 mod N , so we cannot hope to gain any information.
The value 3129 comes from the fact that

√
N =

√
9788111 ≈ 3128.6.
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The next step is to solve the system of linear equations in Table 3.5. This
can be done by standard Gaussian elimination, always keeping in mind that
all computations are done modulo 2. The set of solutions turns out to be an
F2-vector space of dimension 8. A basis for the set of solutions is given by
the following 8 vectors, where we have written the vectors horizontally, rather
than vertically, in order to save space:

v1 = (0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

v2 = (0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

v3 = (0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

v4 = (1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0),

v5 = (1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0),

v6 = (1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0),

v7 = (1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0),

v8 = (1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1).

Each of the vectors v1, . . . ,v8 gives a congruence a2 ≡ b2 (mod N) that
has the potential to provide a factorization of N . For example, v1 says that if
we multiply the 3rd, 5th, and 9th numbers in the list at the top of Table 3.5,
we will get a square, and indeed we find that

31312 · 31742 · 34812

≡ (2 · 52 · 7 · 43)(5 · 113 · 43)(2 · 53 · 7 · 113) (mod 9788111)

= (2 · 53 · 7 · 113 · 43)2

= 1001577502.

Next we compute

gcd(9788111, 3131 · 3174 · 3481− 100157750) = 9788111,

which gives back the original number N . This is unfortunate, but all is not
lost, since we have seven more independent solutions to our system of linear
equations. Trying each of them in turn, we list the results in Table 3.6.

Seven of the eight solutions to the system of linear equations yield no
useful information about N , the resulting gcd being either 1 or N . However,
one solution, listed in the penultimate box of Table 3.6, leads to a nontrivial
factorization of N . Thus 2741 is a factor of N , and dividing by it we obtain
N = 9788111 = 2741 · 3571. Since both 2741 and 3571 are prime, this gives
the complete factorization of N .

Remark 3.41. In order to factor a large number N , it may be necessary to use
a set {p1, p2, p3, . . . , pt} containing hundreds of thousands, or even millions,
of primes. Then the system (3.17) contains millions of linear equations, and
even working in the field F2, it can be very difficult to solve general systems
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31292 ≡ 2530 (mod 9788111) and 2530 = 2 · 5 · 11 · 23
31302 ≡ 8789 (mod 9788111) and 8789 = 11 · 17 · 47
31312 ≡ 15050 (mod 9788111) and 15050 = 2 · 52 · 7 · 43
31662 ≡ 235445 (mod 9788111) and 235445 = 5 · 72 · 312

31742 ≡ 286165 (mod 9788111) and 286165 = 5 · 113 · 43
32152 ≡ 548114 (mod 9788111) and 548114 = 2 · 73 · 17 · 47
33132 ≡ 1187858 (mod 9788111) and 1187858 = 2 · 72 · 17 · 23 · 31
34492 ≡ 2107490 (mod 9788111) and 2107490 = 2 · 5 · 72 · 11 · 17 · 23
34812 ≡ 2329250 (mod 9788111) and 2329250 = 2 · 53 · 7 · 113

35612 ≡ 2892610 (mod 9788111) and 2892610 = 2 · 5 · 7 · 312 · 43
43942 ≡ 9519125 (mod 9788111) and 9519125 = 53 · 7 · 11 · 23 · 43
44252 ≡ 4403 (mod 9788111) and 4403 = 7 · 17 · 37
44262 ≡ 13254 (mod 9788111) and 13254 = 2 · 3 · 472

44322 ≡ 66402 (mod 9788111) and 66402 = 2 · 32 · 7 · 17 · 31
44422 ≡ 155142 (mod 9788111) and 155142 = 2 · 33 · 132 · 17
44682 ≡ 386802 (mod 9788111) and 386802 = 2 · 33 · 13 · 19 · 29
45512 ≡ 1135379 (mod 9788111) and 1135379 = 72 · 17 · 29 · 47
45952 ≡ 1537803 (mod 9788111) and 1537803 = 32 · 17 · 19 · 232

46512 ≡ 2055579 (mod 9788111) and 2055579 = 3 · 23 · 313

46842 ≡ 2363634 (mod 9788111) and 2363634 = 2 · 33 · 7 · 132 · 37
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u17
u18
u19
u20

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

≡

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(mod 2)

Linear algebra elimination step

Table 3.5: Factorization of N = 9788111
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v1 = (0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

31312 · 31742 · 34812 ≡ (2 · 53 · 7 · 113 · 43)2

= 1001577502

gcd(9788111, 3131 · 3174 · 3481− 100157750) = 9788111
v2 = (0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

31302 · 31312 · 31662 · 31742 · 32152 ≡ (2 · 52 · 73 · 112 · 17 · 31 · 43 · 47)2

= 22101737850502

gcd(9788111, 3130 · 3131 · 3166 · 3174 · 3215− 2210173785050) = 1
v3 = (0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

31312 · 31662 · 35612 ≡ (2 · 52 · 72 · 312 · 43)2

= 1012413502

gcd(9788111, 3131 · 3166 · 3561− 101241350) = 9788111
v4 = (1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)

31292 · 31312 · 43942 ≡ (2 · 53 · 7 · 11 · 23 · 43)2

= 190382502

gcd(9788111, 3129 · 3131 · 4394− 19038250) = 9788111
v5 = (1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0)

31292 · 31312 · 31742 · 33132 · 44322 ≡ (22 · 3 · 52 · 72 · 112 · 17 · 23 · 31 · 43)2

= 9270637761002

gcd(9788111, 3129 · 3131 · 3174 · 3313 · 4432− 927063776100) = 1
v6 = (1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0)

31292 · 34492 · 44262 · 44422 ≡ (22 · 32 · 5 · 7 · 11 · 13 · 17 · 23 · 47)2

= 33111678602

gcd(9788111, 3129 · 3449 · 4426 · 4442− 3311167860) = 1
v7 = (1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0)

31292 · 33132 · 34492 · 44262 · 46512 ≡ (22 · 3 · 5 · 72 · 11 · 17 · 232 · 312 · 47)2

= 131360821145402

gcd(9788111, 3129 · 3313 · 3449 · 4426 · 4651− 13136082114540) = 2741
v8 = (1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1)

31292 · 34492 · 44252 · 44262 · 46842 ≡ (22 · 32 · 5 · 72 · 11 · 13 · 17 · 23 · 37 · 47)2

= 8575924757402

gcd(9788111, 3129 · 3449 · 4425 · 4426 · 4684− 857592475740) = 1

Table 3.6: Factorization of N = 9788111; computation of gcds
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of this size. However, it turns out that the systems of linear equations used in
factorization are quite sparse, which means that most of their coefficients are
zero. (This is plausible because if a number A is a product of primes smaller
than B, then one expects A to be a product of approximately ln(A)/ ln(B) dis-
tinct primes.) There are special techniques for solving sparse systems of linear
equations that are much more efficient than ordinary Gaussian elimination;
see for example [31, 72].

3.7 Smooth Numbers, Sieves, and Building
Relations for Factorization

In this section we describe the two fastest known methods for doing “hard”
factorization problems, i.e., factoring numbers of the form N = pq, where p
and q are primes of approximately the same order of magnitude. We begin
with a discussion of smooth numbers, which form the essential tool for building
relations. Next we describe in some detail the quadratic sieve, which is a fast
method for finding the necessary smooth numbers. Finally, we briefly describe
the number field sieve, which is similar to the quadratic sieve in that it provides
a fast method for finding smooth numbers of a certain form. However, when N
is extremely large, the number field sieve is much faster than the quadratic
sieve, because by working in a ring larger than Z, it uses smaller auxiliary
numbers in its search for smooth numbers.

3.7.1 Smooth Numbers

The relation building step in the three step factorization procedure described
in Table 3.4 requires us to find many integers with the property that a2 mod N
factors as a product of small primes. As noted at the end of Sect. 3.5, these
highly factorizable numbers have a name.

Definition. An integer n is called B-smooth if all of its prime factors are less
than or equal to B.

Example 3.42. Here are the first few 5-smooth numbers and the first few
numbers that are not 5-smooth:

5-smooth: 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32, 36, . . .

Not 5-smooth: 7, 11, 13, 14, 17, 19, 21, 22, 23, 26, 28, 29, 31, 33, 34, 35, 37, . . .

Definition. The function ψ(X,B) counts B-smooth numbers,

ψ(X,B) = Number of B-smooth integers n such that 1 < n ≤ X.

For example,
ψ(25, 5) = 15,
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since the 5-smooth numbers between 1 and 25 are the 15 numbers

2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25.

In order to evaluate the efficiency of the three step factorization method,
we need to understand how ψ(X,B) behaves for large values of X and B.
It turns out that in order to obtain useful results, the quantities B and X
must increase together in just the right way. An important theorem in this
direction was proven by Canfield, Erdős, and Pomerance [24].

Theorem 3.43 (Canfield, Erdős, Pomerance). Fix a number 0 < ε < 1
2 , and

let X and B increase together while satisfying

(lnX)ε < lnB < (lnX)1−ε.

For notational convenience, we let

u =
lnX

lnB
.

Then the number of B-smooth numbers less than X satisfies

ψ(X,B) = X · u−u(1+o(1)).

Remark 3.44. We’ve used little-o notation here for the first time. The ex-
pression o(1) denotes a function that tends to 0 as X tends to infinity. More
generally, we write

f(X) = o
(
g(X)

)

if the ratio f(X)/g(X) tends to 0 as X tends to infinity. Note that this is
different from the big-O notation introduced in Sect. 2.6, where recall that
f(X) = O

(
g(X)

)
means that f(X) is smaller than a multiple of g(X).

The question remains of how we should choose B in terms of X. It turns
out that the following curious-looking function L(X) is what we will need:

L(X) = e
√

(lnX)(ln lnX). (3.18)

Then, as an immediate consequence of Theorem 3.43, we obtain a fundamental
estimate for ψ.

Corollary 3.45. For any fixed value of c with 0 < c < 1,

ψ
(
X,L(X)c

)
= X · L(X)−(1/2c)(1+o(1)) as X →∞.

Proof. Note that if B = L(X)c and if we take any ε < 1
2 , then

lnB = c lnL(X) = c
√
(lnX)(ln lnX)

satisfies (lnX)ε < lnB < (lnX)1−ε. So we can apply Theorem 3.43 with



152 3. Integer Factorization and RSA

u =
lnX

lnB
=

1

c
·
√

lnX

ln lnX

to deduce that ψ
(
X,L(X)c

)
= X · u−u(1+o(1)). It is easily checked (see Exer-

cise 3.32) that this value of u satisfies

u−u(1+o(1)) = L(X)−(1/2c)(1+o(1)),

which completes the proof of the corollary.

The function L(X) = e
√

(lnX)(ln lnX) and other similar functions appear
prominently in the theory of factorization due to their close relationship to
the distribution of smooth numbers. It is thus important to understand how
fast L(X) grows as a function of X.

Recall that in Sect. 2.6 we defined big-O notation and used it to discuss
the notions of polynomial, exponential, and subexponential running times.
What this meant was that the number of steps required to solve a problem
was, respectively, polynomial, exponential, and subexponential in the number
of bits required to describe the problem. As a supplement to big-O notation,
it is convenient to introduce two other ways of comparing the rate at which
functions grow.

Definition (Order Notation). Let f(X) and g(X) be functions of X whose
values are positive. Recall that we write

f(X) = O
(
g(X)

)

if there are positive constants c and C such that

f(X) ≤ cg(X) for all X ≥ C.

Similarly, we say that f is big-Ω of g and write

f(X) = Ω
(
g(X)

)

if there are positive constants c and C such that7

f(X) ≥ cg(X) for all X ≥ C.

Finally, if f is both big-O and big-Ω of g, we say that f is big-Θ of g and
write f(X) = Θ

(
g(X)

)
.

7Note: Big-Ω notation as used by computer scientists and cryptographers does not
mean the same thing as the big-Ω notation of mathematicians. In mathematics, especially
in the field of analytic number theory, the expression f(n) = Ω

(
g(n)

)
means that there is

a constant c such that there are infinitely many integers n such that f(n) ≥ cg(n). In this
book we use the computer science definition.
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Remark 3.46. In analytic number theory there is an alternative version of
order notation that is quite intuitive. For functions f(X) and g(X), we write

f(X)� g(X) if f(X) = O
(
g(X)

)
,

f(X)� g(X) if f(X) = Ω
(
g(X)

)
,

f(X)�� g(X) if f(X) = Θ
(
g(X)

)
.

The advantage of this notation is that it is transitive, just as the usual “greater
than” and “less than” relations are transitive. For example, if f � g and g �
h, then f � h.

Definition. With this notation in place, a function f(X) is said to grow
exponentially if there are positive constants α and β such that

Ω(Xα) = f(X) = O(Xβ),

and it is said to grow polynomially if there are positive constants α and β
such that

Ω
(
(lnX)α

)
= f(X) = O

(
(lnX)β

)
.

In the alternative notation of Remark 3.46, exponential growth and polyno-
mial growth are written, respectively, as

Xα � f(X)� Xβ and (lnX)α � f(X)� (lnX)β .

A function that falls in between these two categories is called subexponen-
tial. Thus f(X) is subexponential if for every positive constant α, no matter
how large, and for every positive constant β, no matter how small,

Ω
(
(lnX)α

)
= f(X) = O(Xβ). (3.19)

(In the alternative notation, this becomes (lnX)α � f(X)� Xβ .)
Note that there is a possibility for confusion, since these definitions do

not correspond to the usual meaning of exponential and polynomial growth
that one finds in calculus. What is really happening is that “exponential” and
“polynomial” refer to growth rates in the number of bits that it takes to write
down X, i.e., exponential or polynomial functions of log2(X).

Remark 3.47. The function L(X) falls into the subexponential category. We
leave this for you to prove in Exercise 3.30. See Table 3.7 for a rough idea of
how fast L(X) grows as X increases.

Suppose that we attempt to factor N by searching for values a2 (mod N)
that are B-smooth. In order to perform the linear equation elimination step,
we need (at least) as many B-smooth numbers as there are primes less than B.
We need this many because in the elimination step, the smooth numbers
correspond to the variables, while the primes less than B correspond to the
equations, and we need more variables than equations. In order to ensure that



154 3. Integer Factorization and RSA

X lnL(X) L(X)

2100 17.141 224.73

2250 29.888 243.12

2500 45.020 264.95

21000 67.335 297.14

22000 100.145 2144.48

Table 3.7: The growth of L(X) = e
√

(lnX)(ln lnX)

this is the case, we thus need there to be at least π(B) B-smooth numbers,
where π(B) is the number of primes up to B. It will turn out that we can take
B = L(N)c for a suitable value of c. In the next proposition we use the prime
number theorem (Theorem 3.21) and the formula for ψ(X,L(X)c) given in
Corollary 3.45 to choose the smallest value of c that gives us some chance of
factoring N using this method.

Proposition 3.48. Let L(X) = e
√

(lnX)(ln lnX) be as in Corollary 3.45, let N

be a large integer, and set B = L(N)1/
√
2.

(a) We expect to check approximately L(N)
√
2 random numbers modulo N in

order to find π(B) numbers that are B-smooth.

(b) We expect to check approximately L(N)
√
2 random numbers of the form

a2 (mod N) in order to find enough B-smooth numbers to factor N .
Hence the factorization procedure described in Table 3.4 should have a subex-
ponential running time.

Proof. We already explained why (a) and (b) are equivalent, assuming that
the numbers a2 (mod N) are sufficiently random. We now prove (a).

The probability that a randomly chosen number modulo N is B-smooth
is ψ(N,B)/N . In order to find π(B) numbers that are B-smooth, we need to
check approximately

π(B)

ψ(N,B)/N
numbers. (3.20)

We want to choose B so as to minimize this function, since checking numbers
for smoothness is a time-consuming process.

Corollary 3.45 says that

ψ(N,L(N)c)/N ≈ L(N)−1/2c,

so we set B = L(N)c and search for the value of c that minimizes (3.20).
The prime number theorem (Theorem 3.21) tells us that π(B) ≈ B/ ln(B),
so (3.20) is equal to
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π
(
L(N)c

)

ψ
(
N,L(N)c

)
/N

≈ L(N)c

c lnL(N)
· 1

L(N)−1/2c
= L(N)c+1/2c · 1

c lnL(N)
.

The factor L(N)c+1/2c dominates this last expression, so we choose the value
of c that minimizes the quantity c+ 1

2c . This is an elementary calculus prob-

lem. It is minimized when c = 1√
2
, and the minimum value is

√
2. Thus if we

choose B ≈ L(N)1/
√
2, then we need to check approximately L(N)

√
2 values

in order to find π(B) numbers that are B-smooth, and hence to find enough
relations to factor N .

Remark 3.49. Proposition 3.48 suggests that we need to check approxi-

mately L(N)
√
2 randomly chosen numbers modulo N in order to find enough

smooth numbers to factor N . There are various ways to decrease the search
time. In particular, rather than using random values of a to compute numbers
of the form a2 (mod N), we might instead select numbers a that are only a
little bit larger than

√
N . Then a2 (mod N) is O(

√
N ), so is more likely to

be B-smooth than is a number that is O(N). Reworking the calculation in
Proposition 3.48, one finds that it suffices to check approximately L(N) ran-
dom numbers of the form a2 (mod N) with a close to

√
N . This is a significant

savings over L(N)
√
2. See Exercise 3.33 for further details.

Remark 3.50. When estimating the effort needed to factor N , we have
completely ignored the work required to check whether a given number
is B-smooth. For example, if we check for B-smoothness using trial division,
i.e., dividing by each prime less than B, then it takes approximately π(B)
trial divisions to check for B-smoothness. Taking this additional effort into
account in the proof of Proposition 3.48, one finds that it takes approxi-

mately L(N)
√
2 trial divisions to find enough smooth numbers to factor N ,

even using values of a ≈
√
N as in Remark 3.49.

The quadratic sieve, which we describe in Sect. 3.7.2, uses a more efficient
method for generating B-smooth numbers and thereby reduces the running
time down to L(N). (See Table 3.7 for a reminder of how L(N) grows and why

a running time of L(N) is much better than a running time of L(N)
√
2.) In

Exercise 3.29 we ask you to estimate how long it takes to perform L(N) opera-
tions on a moderately fast computer. For a number of years it was thought that
no factorization algorithm could take fewer than a fixed power of L(N) steps,
but the invention of the number field sieve (Sect. 3.7.3) showed this to be

incorrect. The number field sieve, whose running time of ec
3
√

(lnN)(ln lnN)2 is
faster than L(N)ε for every ε > 0, achieves its speed by moving beyond the
realm of the ordinary integers.

3.7.2 The Quadratic Sieve

In this section we address the final piece of the puzzle that must be solved in
order to factor large numbers via the difference of squares method described
in Sect. 3.6:
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How can we efficiently find many numbers a >
√
N

such that each a2 (mod N) is B-smooth?

From the discussion in Sect. 3.7.1 and the proof of Proposition 3.48, we know

that we need to take B ≈ L(N)1/
√
2 in order to have a reasonable chance of

factoring N .
An early approach to finding B-smooth squares modulo N was to look for

fractions a
b that are as close as possible to

√
kN for k = 1, 2, 3, . . . . Then

a2 ≈ b2kN,

so a2 (mod N) is reasonably small, and thus is more likely to be B-smooth.
The theory of continued fractions gives an algorithm for finding such a

b .
See [28, §10.1] for details.

An alternative approach that turns out to be much faster in practice is
to allow slightly larger values of a and to use an efficient cancellation process
called a sieve to simultaneously create a large number of values a2 (mod N)
that are B-smooth. We next describe Pomerance’s quadratic sieve, which is
still the fastest known method for factoring large numbers N = pq up to
about 2350. For numbers considerably larger than this, say larger than 2450,
the more complicated number field sieve holds the world record for quickest
factorization. In the remainder of this section we describe the simplest version
of the quadratic sieve as an illustration of modern factorization methods. For
a description of the history of sieve methods and an overview of how they
work, see Pomerance’s delightful essay “A Tale of Two Sieves” [105].

We start with the simpler problem of rapidly finding many B-smooth
numbers less than some boundX, without worrying whether the numbers have
the form a2 (mod N). To do this, we adapt the Sieve of Eratosthenes, which
is an ancient Greek method for making lists of prime numbers. Eratosthenes’
idea for finding primes is as follows. Start by circling the first prime 2 and
crossing off every larger multiple of 2. Then circle the next number, 3 (which
must be prime) and cross off every larger multiple of 3. The smallest uncircled
number is 5, so circle 5 and cross off all larger multiples of 5, and so on. At
the end, the circled numbers are the primes.

This sieving process is illustrated in Fig. 3.2, where we have sieved all
primes less than 10. (These are the boxed primes in the figure.) The remaining
uncrossed numbers in the list are all remaining primes smaller than 100.

2 3 4/ 5 //6 7 //0291//8171/61//51//4131//2111//01/9/8
//04/93/8373//63//53/43/33/2313///0392//82/72/62/52//4232/22//12
///0695/85/75//65/55//4535/25/15//05/94//8474/64//54/4434///2414
//0897//87/77/67//57/4737//2717///07/96/8676//66/56/46//36/2616

/99//8979//69/59/49/39/29/19///0998/88/78/68/58///4838/28/18

Figure 3.2: The sieve of Eratosthenes
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Notice that some numbers are crossed off several times. For example, 6,
12 and 18 are crossed off twice, once because they are multiples of 2 and once
because they are multiples of 3. Similarly, numbers such as 30 and 42 are
crossed off three times. Suppose that rather than crossing numbers off, we
instead divide. That is, we begin by dividing every even number by 2, then we
divide every multiple of 3 by 3, then we divide every multiple of 5 by 5, and
so on. If we do this for all primes less than B, which numbers end up being
divided all the way down to 1? The answer is that these are the numbers that
are a product of distinct primes less than B; in particular, they are B-smooth!
So we end up with a list of many B-smooth numbers.

Unfortunately, we miss some B-smooth numbers, namely those divisible by
powers of small primes, but it is easy to remedy this problem by sieving with
prime powers. Thus after sieving by 3, rather than proceeding to 5, we first
sieve by 4. To do this, we cancel an additional factor of 2 from every multiple
of 4. (Notice that we’ve already canceled 2 from these numbers, since they are
even, so we can cancel only one additional factor of 2.) If we do this, then at the
end, the B-smooth numbers less than X are precisely the numbers that have
been reduced to 1. One can show that the total number of divisions required
is approximately X ln(ln(B)). The double logarithm function ln(ln(B)) grows
extremely slowly, so the average number of divisions required to check each
individual number for smoothness is approximately constant.

However, our goal is not to make a list of numbers from 1 to X that are
B-smooth. What we need is a list of numbers of the form a2 (mod N) that
are B-smooth. Our strategy for accomplishing this uses the polynomial

F (T ) = T 2 −N.
We want to start with a value of a that is slightly larger than

√
N , so we set

a = �
√
N�+ 1,

where �x� denotes, as usual, the greatest integer less than or equal to x. We
then look at the list of numbers

F (a), F (a+ 1), F (a+ 2), . . . , F (b). (3.21)

The idea is to find the B-smooth numbers in this list by sieving away the
primes smaller than B and seeing which numbers in the list get sieved all the
way down to 1. We choose B sufficiently large so that, by the end of the sieving
process, we are likely to have found enough B-smooth numbers to factor N .
The following definition is useful in describing this process.

Definition. The set of primes less than B (or sometimes the set of prime
powers less than B) is called the factor base.

Suppose that p is a prime in our factor base. Which of the numbers in the
list (3.21) are divisible by p? Equivalently, which numbers t between a and b
satisfy

t2 ≡ N (mod p)? (3.22)
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If the congruence (3.22) has no solutions, then we discard the prime p, since p
divides none of the numbers in the list (3.21). Otherwise the congruence (3.22)
has two solutions (see Exercise 1.36 on page 55), which we denote by

t = αp and t = βp.

(If p = 2, there is only one solution αp.) It follows that each of the numbers

F (αp), F (αp + p), F (αp + 2p), F (αp + 3p), . . .

and each of the numbers

F (βp), F (βp + p), F (βp + 2p), F (βp + 3p), . . .

is divisible by p. Thus we can sieve away a factor of p from every pth entry in
the list (3.21), starting with the smallest a value satisfying a ≡ αp (mod p),
and similarly we can sieve away a factor of p from every pth entry in the
list (3.21), starting with the smallest a value satisfying a ≡ βp (mod p).

Example 3.51. We illustrate the quadratic sieve applied to the composite
number N = 221. The smallest number whose square is larger than N is
a = �

√
221�+ 1 = 15. We set

F (T ) = T 2 − 221

and sieve the numbers from F (15) = 4 up to F (30) = 679 using successively
the prime powers from 2 to 7. The initial list of numbers T 2 −N is8

4 35 68 103 140 179 220 263 308 355 404 455 508 563 620 679.

We first sieve by p = 2, which means that we cancel 2 from every second entry
in the list. This gives

4 35 68 103 140 179 220 263 308 355 404 455 508 563 620 679
↓ 2 ↓ 2 ↓ 2 ↓ 2 ↓ 2 ↓ 2 ↓ 2 ↓ 2

2 35 34 103 70 179 110 263 154 355 202 455 254 563 310 679

Next we sieve by p = 3. However, it turns out that the congruence

t2 ≡ 221 ≡ 2 (mod 3)

has no solutions, so none of the entries in our list are divisible by 3.

8In practice when N is large, the t values used in the quadratic sieve are close enough
to

√
N that the value of t2 −N is between 1 and N . For our small numerical example, this is

not the case, so it would be more efficient to reduce our values of t2 modulo N , rather than
merely subtracting N from t2. However, since our aim is illumination, not efficiency, we will
pretend that there is no advantage to subtracting additional multiples of N from t2 −N .
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We move on to the prime power 22. Every odd number is a solution of the
congruence

t2 ≡ 221 ≡ 1 (mod 4),

which means that we can sieve another factor of 2 from every second entry
in our list. We put a small 4 next to the sieving arrows to indicate that in
this step we are sieving by 4, although we cancel only a factor of 2 from each
entry.

2 35 34 103 70 179 110 263 154 355 202 455 254 563 310 679
↓ 4 ↓ 4 ↓ 4 ↓ 4 ↓ 4 ↓ 4 ↓ 4 ↓ 4

1 35 17 103 35 179 55 263 77 355 101 455 127 563 155 679

Next we move on to p = 5. The congruence

t2 ≡ 221 ≡ 1 (mod 5)

has two solutions, α5 = 1 and β5 = 4 modulo 5. The first t value in our list
that is congruent to 1 modulo 5 is t = 16, so starting with F (16), we find that
every fifth entry is divisible by 5. Sieving out these factors of 5 gives

1 35 17 103 35 179 55 263 77 355 101 455 127 563 155 679
↓ 5 ↓ 5 ↓ 5

1 7 17 103 35 179 11 263 77 355 101 91 127 563 155 679

Similarly, every fifth entry starting with F (19) is divisible by 5, so we sieve
out those factors

1 7 17 103 35 179 11 263 77 355 101 91 127 563 155 679
↓ 5 ↓ 5 ↓ 5

1 7 17 103 7 179 11 263 77 71 101 91 127 563 31 679

To conclude our example, we sieve the prime p = 7. The congruence

t2 ≡ 221 ≡ 4 (mod 7)

has the two solutions α7 = 2 and β7 = 5. We can thus sieve 7 away from
every seventh entry starting with F (16), and also every seventh entry starting
with F (19). This yields

1 7 17 103 7 179 11 263 77 71 101 91 127 563 31 679
↓ 7 ↓ 7 ↓ 7

1 1 17 103 7 179 11 263 11 71 101 91 127 563 31 97
↓ 7 ↓ 7

1 1 17 103 1 179 11 263 11 71 101 13 127 563 31 97

Notice that the original entries

F (15) = 4, F (16) = 35, and F (19) = 140
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have been sieved all the way down to 1. This tells us that

F (15) = 152 − 221, F (16) = 162 − 221, and F (19) = 192 − 221

are each a product of small primes, so we have discovered several squares
modulo 221 that are products of small primes:

152 ≡ 22 (mod 221),

162 ≡ 5 · 7 (mod 221),

192 ≡ 22 · 5 · 7 (mod 221).

(3.23)

We can use the congruences (3.23) to obtain various relations between
squares. For example,

(16 · 19)2 ≡ (2 · 5 · 7)2 (mod 221).

Computing

gcd(221, 16 · 19− 2 · 5 · 7) = gcd(221, 234) = 13

gives a nontrivial factor of 221.9

We have successfully factoredN = 221, but to illustrate the sieving process
further, we continue sieving up to B = 11. The next prime power to sieve
is 32. However, the fact that t2 ≡ 221 (mod 3) has no solutions means that
t2 ≡ 221 (mod 9) also has no solutions, so we move on to the prime p = 11.

The congruence t2 ≡ 221 ≡ 1 (mod 11) has the solutions α11 = 1 and
β11 = 10, which allows us to sieve a factor of 11 from F (23) and from F (21).
We recapitulate the entire sieving process in Fig. 3.3, where the top row gives
values of t and the subsequent rows sieve the values of F (t) = t2 − 221 using
prime powers up to 11.

Notice that two more entries, F (21) and F (23), have been sieved down
to 1, which gives us two additional relations

F (21) ≡ 212 ≡ 22 ·5 ·11 (mod 221) and F (23) ≡ 232 ≡ 22 ·7 ·11 (mod 221).

We can combine these relations with the earlier relations (3.23) to obtain new
square equalities, for example

(19 · 21 · 23)2 ≡ (23 · 5 · 7 · 11)2 (mod 221).

These give another way to factor 221:

gcd(221, 19 · 21 · 23− 23 · 5 · 7) = gcd(221, 6097) = 13.

9Looking back at the congruences (3.23), you may have noticed that it is even
easier to use the fact that 152 is itself congruent to a square modulo 221, yielding
gcd(15− 2, 221) = 13. In practice, the true power of the quadratic sieve appears only when
it is applied to numbers much too large to use in a textbook example.
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Remark 3.52. If p is an odd prime, then the congruence t2 ≡ N (mod p) has
either 0 or 2 solutions modulo p. More generally, congruences

t2 ≡ N (mod pe)

modulo powers of p have either 0 or 2 solutions. (See Exercises 1.36 and 1.37.)
This makes sieving odd prime powers relatively straightforward. Sieving with

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
4 35 68 103 140 179 220 263 308 355 404 455 508 563 620 679
↓2 ↓2 ↓2 ↓2 ↓2 ↓2 ↓2 ↓2

2 35 34 103 70 179 110 263 154 355 202 455 254 563 310 679
↓4 ↓4 ↓4 ↓4 ↓4 ↓4 ↓4 ↓4

1 35 17 103 35 179 55 263 77 355 101 455 127 563 155 679
↓5 ↓5 ↓5

1 7 17 103 35 179 11 263 77 355 101 91 127 563 155 679
↓5 ↓5 ↓5

1 7 17 103 7 179 11 263 77 71 101 91 127 563 31 679
↓7 ↓7 ↓7

1 1 17 103 7 179 11 263 11 71 101 91 127 563 31 97
↓7 ↓7

1 1 17 103 1 179 11 263 11 71 101 13 127 563 31 97
↓11

1 1 17 103 1 179 11 263 1 71 101 13 127 563 31 97
↓11

1 1 17 103 1 179 1 263 1 71 101 13 127 563 31 97

Figure 3.3: Sieving N = 221 using prime powers up to B = 11

powers of 2 is a bit trickier, since the number of solutions may be different
modulo 2, modulo 4, and modulo higher powers of 2. Further, there may
be more than two solutions. For example, t2 ≡ N (mod 8) has four different
solutions modulo 8 if N ≡ 1 (mod 8). So although sieving powers of 2 is not
intrinsically difficult, it must be dealt with as a special case.

Remark 3.53. There are many implementation ideas that can be used to
greatly increase the practical speed of the quadratic sieve. Although the run-
ning time of the sieve remains a constant multiple of L(N), the multiple can
be significantly reduced.

A time-consuming part of the sieve is the necessity of dividing every pth en-
try by p, since if the numbers are large, division by p is moderately compli-
cated. Of course, computers perform division quite rapidly, but the sieving
process requires approximately L(N) divisions, so anything that decreases
this time will have an immediate effect. A key idea to speed up this step is
to use approximate logarithms, which allows the slower division operations to
be replaced by faster subtraction operations.

We explain the basic idea. Instead of using the list of values

F (a), F (a+ 1), F (a+ 2), . . . ,
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we use a list of integer values that are approximately equal to

logF (a), logF (a+ 1), logF (a+ 2), logF (a+ 3), . . . .

In order to sieve p from F (t), we subtract an integer approximation of log p
from the integer approximation to logF (t), since by the rule of logarithms,

logF (t)− log p = log
F (t)

p
.

If we were to use exact values for the logarithms, then at the end of the sieving
process, the entries that are reduced to 0 would be precisely the values of F (t)
that are B-smooth. However, since we use only approximate logarithm values,
at the end we look for entries that have been reduced to a small number. Then
we use division on only those few entries to find the ones that are actually
B-smooth.

A second idea that can be used to speed the quadratic sieve is to use the
polynomial F (t) = t2−N only until t reaches a certain size, and then replace
it with a new polynomial. For details of these two implementation ideas and
many others, see for example [28, §10.4], [34], or [109] and the references that
they list.

3.7.3 The Number Field Sieve

The number field sieve is a factorization method that works in a ring that is
larger than the ordinary integers. The full details are very complicated, so in
this section we are content to briefly explain some of the ideas that go into
making the number field sieve the fastest known method for factoring large
numbers of the form N = pq, where p and q are primes of approximately the
same order of magnitude.

In order to factor N , we start by finding a nonzero integer m and an
irreducible monic polynomial f(x) ∈ Z[x] of small degree satisfying

f(m) ≡ 0 (mod N).

Example 3.54. Suppose that we want to factor the number N = 22
9

+1. Then
we could take m = 2103 and f(x) = x5 + 8, since

f(m) = f(2103) = 2515 + 8 = 8(2512 + 1) ≡ 0 (mod 22
9

+ 1).

Let d be the degree of f(x) and let β be a root of f(x). (Note that β might
be a complex number.) We will work in the ring

Z[β] = {c0 + c1β + c2β
2 + · · ·+ cd−1β

d−1 ∈ C : c0, c1, . . . , cd−1 ∈ Z}.

Note that although we have written Z[β] as a subring of the complex numbers,
it isn’t actually necessary to deal with real or complex numbers. We can work
with Z[β] purely algebraically, since it is equal to the quotient ring Z[x]/(f(x)).
(See Sect. 2.10.2 for information about quotient rings.)



3.7. Smooth Numbers and Sieves 163

Example 3.55. We give an example to illustrate how one performs addition
and multiplication in the ring Z[β]. Let f(x) = 1 + 3x− 2x3 + x4, let β be a
root of f(x), and consider the ring Z[β]. In order to add the elements

u = 2− 4β + 7β2 + 3β3 and v = 1 + 2β − 4β2 − 2β3,

we simply add their coefficients,

u+ v = 3− 2β + 3β2 + β3.

Multiplication is a bit more complicated. First we multiply u and v, treating β
as if it were a variable,

uv = 2− 9β2 + 29β3 − 14β4 − 26β5 − 6β6.

Then we divide by f(β) = 1 + 3β − 2β3 + β4, still treating β as a variable,
and keep the remainder,

uv = 92 + 308β + 111β2 − 133β3 ∈ Z[β].

The next step in the number field sieve is to find a large number of pairs
of integers (a1, b1), . . . , (ak, bk) that simultaneously satisfy

k∏

i=1

(ai − bim) is a square in Z and

k∏

i=1

(ai − biβ) is a square in Z[β].

Thus there is an integer A ∈ Z and an element α ∈ Z[β] such that

k∏

i=1

(ai − bim) = A2 and
k∏

i=1

(ai − biβ) = α2. (3.24)

By definition of Z[β], we can find an expression for α of the form

α = c0 + c1β + c2β
2 + · · ·+ cd−1β

d−1 with c0, c1, . . . , cd−1 ∈ Z. (3.25)

Recall our original assumption f(m) ≡ 0 (mod N). This means that we
have

m ≡ β (mod N) in the ring Z[β].

So on the one hand, (3.24) becomes

A2 ≡ α2 (mod N) in the ring Z[β],

while on the other hand, (3.25) becomes

α ≡ c0 + c1m+ c2m
2 + · · ·+ cd−1m

d−1 (mod N) in the ring Z[β].
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Hence

A2 ≡ (c0 + c1m+ c2m
2 + · · ·+ cd−1m

d−1)2 (mod N).

Thus we have created a congruence A2 ≡ B2 (mod N) that is valid in the ring
of integers Z, and as usual, there is then a good chance that gcd(A − B,N)
will yield a nontrivial factor of N .

How do we find the (ai, bi) pairs to make both of the products (3.24) into
squares? For the first product, we can use a sieve-type algorithm, similar to the
method used in the quadratic sieve, to find values of a− bm that are smooth,
and then use linear algebra to find a subset with the desired property.

Pollard’s idea is to simultaneously do something similar for the second
product while working in the ring Z[β]. Thus we look for pairs of integers (a, b)
such that the quantity a − bβ is “smooth” in Z[β]. There are many serious
issues that arise when we try to do this, including the following:
1. The ring Z[β] usually does not have unique factorization of elements into

primes or irreducible elements. So instead, we factor the ideal (a−bβ) into
a product of prime ideals. We say that a− bβ is smooth if the prime ideals
appearing in the factorization are small.

2. Unfortunately, even ideals in the ring Z[β] may not have unique factoriza-
tion as a product of prime ideals. However, there is a slightly larger ring,
called the ring of integers of Q(β), in which unique factorization of ideals
is true.

3. Suppose that we have managed to make the ideal (
∏
(ai − biβ)) into the

square of an ideal in Z[β]. There are two further problems. First, it need
not be the square of an ideal generated by a single element. Second, even
if it is equal to an ideal of the form (γ)2, we can conclude only that

∏
(a−

i − biβ) = uγ2 for some unit u ∈ Z[β]∗, and generally the ring Z[β] has
infinitely many units.

It would take us too far afield to explain how to deal with these potential
difficulties. Suffice it to say that through a number of ingenious ideas due
to Adleman, Buhler, H. Lenstra, Pomerance, and others, the obstacles were
overcome, leading to a practical factorization method. (See [105] for a nice
overview of the number field sieve and some of the ideas used to turn it from
a theoretical construction into a working algorithm.)

However, we will comment further on the first step in the algorithm. In
order to get started, we need an integer m and a monic irreducible polyno-
mial f(x) of small degree such that f(m) ≡ 0 (mod N). The trick is first to
choose the desired degree d of f , next to choose an integer m satisfying

(N/2)1/d < m < N1/d,

and then to write N as a number to the base m,

N = c0 + c1m+ c2m
2 + · · ·+ cd−1m

d−1 + cdm
d with 0 ≤ ci < m.
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The condition on m ensures that cd = 1, so we can take f to be the monic
polynomial

f(x) = c0 + c1x+ c2x
2 + · · ·+ cd−1x

d−1 + xd.

We also need f(x) to be irreducible, but if f(x) factors in Z[x], say f(x) =
g(x)h(x), then N = f(m) = g(m)h(m) gives a factorization of N and we are
done. So now we have an f(x) and an m, which allows us to get started using
the number field sieve.

There is no denying the fact that the number field sieve is much more
complicated than the quadratic sieve. So why is it useful? The reason has to
do with the size of the numbers that must be considered. Recall that for the
quadratic sieve, we sieved to find smooth numbers of the form

(
�
√
N �+ k

)2 −N for k = 1, 2, 3, . . . .

So we needed to pick out the smooth numbers from a set of numbers whose
size is a little larger than

√
N . For the number field sieve one ends up looking

for smooth numbers of the form

(a−mb) · bdf(a/b), (3.26)

and it turns out that by a judicious choice ofm and f , these numbers are much
smaller than

√
N . In order to describe how much smaller, we use a general-

ization of the subexponential function L(N) that was so useful in describing
the running time of the quadratic sieve.

Definition. For any 0 < ε < 1, we define the function

Lε(X) = e(lnX)ε(ln lnX)1−ε

.

Notice that with this notation, the function L(X) defined in Sect. 3.7.1
is L1/2(X).

Then one can show that the numbers (3.26) used by the number field
sieve have size a small power of L2/3(N). To put this into perspective, the
quadratic sieve works with numbers having approximately half as many digits
as N , while the number field sieve uses numbers K satisfying

(Number of digits of K) ≈ (Number of digits of N)2/3.

This leads to a vastly improved running time for sufficiently large values of N .

Theorem 3.56. Under some reasonable assumptions, the expected running
time of the number field sieve to factor the number N is L1/3(N)c for a small
value of c.

For general numbers, the best known value of c in Theorem 3.56 is a bit
less than 2, while for special numbers such as 22

9

+ 1 it is closer to 1.5. Of
course, the number field sieve is sufficiently complicated that it becomes faster
than other methods only when N is sufficiently large. As a practical matter,
the quadratic sieve is faster for numbers smaller than 10100, while the number
field sieve is faster for numbers larger than 10130.
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3.8 The Index Calculus Method for Computing
Discrete Logarithms in Fp

The index calculus is a method for solving the discrete logarithm problem in a
finite field Fp. The algorithm uses smooth numbers and bears some similarity
to the sieve methods that we have studied in this chapter, which is why we
cover it here, rather than in Chap. 2, where we originally discussed discrete
logarithms.

The idea behind the index calculus is fairly simple. We want to solve the
discrete logarithm problem

gx ≡ h (mod p), (3.27)

where the prime p and the integers g and h are given. For simplicity, we will
assume that g is a primitive root modulo p, so its powers give all of F∗

p.
Rather than solving (3.27) directly, we instead choose a value B and solve

the discrete logarithm problem

gx ≡ � (mod p) for all primes � ≤ B.

In other words, we compute the discrete logarithm logg(�) for every prime
satisfying � ≤ B.

Having done this, we next look at the quantities

h · g−k (mod p) for k = 1, 2, . . .

until we find a value of k such that h · g−k (mod p) is B-smooth. For this
value of k we have

h · g−k ≡
∏

�≤B

�e� (mod p) (3.28)

for certain exponents e�. We rewrite (3.28) in terms of discrete logarithms as

logg(h) ≡ k +
∑

�≤B

e� · logg(�) (mod p− 1), (3.29)

where recall that discrete logarithms are defined only modulo p−1. But we are
assuming that we already computed logg(�) for all primes � ≤ B. Hence (3.29)
gives the value of logg(h).

It remains to explain how to find logg(�) for small primes �. Again the idea
is simple. For a random selection of exponents i we compute

gi ≡ gi (mod p) with 0 < gi < p.

If gi is not B-smooth, then we discard it, while if gi is B-smooth, then we can
factor it as

gi =
∏

�≤B

�u�(i).
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In terms of discrete logarithms, this gives the relation

i ≡ logg(gi) ≡
∑

�≤B

u�(i) · logg(�) (mod p− 1). (3.30)

Notice that the only unknown quantities in the formula (3.30) are the dis-
crete logarithm values logg(�). So if we can find more than π(B) equations
like (3.30), then we can use linear algebra to solve for the logg(�) “variables.”

This method of solving the discrete logarithm problem in Fp is called the
index calculus, where recall from Sect. 2.2 that index is an older name for
discrete logarithm. The index calculus first appears in work of Western and
Miller [148] in 1968, so it predates by a few years the invention of public key
cryptography. The method was independently rediscovered by several cryp-
tographers in the 1970s after the publication of the Diffie–Hellman paper [38].

Remark 3.57. A minor issue that we have ignored is the fact that the lin-
ear equations (3.30) are congruences modulo p − 1. Standard linear algebra
methods such as Gaussian elimination do not work well modulo composite
numbers, because there are numbers that do not have multiplicative inverses.
The Chinese remainder theorem (Theorem 2.24) solves this problem. First we
solve the congruences (3.30) modulo q for each prime q dividing p− 1. Then,
if q appears in the factorization of p − 1 to a power qe, we lift the solution
from Z/qZ to Z/qeZ. Finally, we use the Chinese remainder theorem to com-
bine solutions modulo prime powers to obtain a solution modulo p − 1. In
cryptographic applications one should choose p such that p− 1 is divisible by
a large prime; otherwise, the Pohlig–Hellman algorithm (Sect. 2.9) solves the
discrete logarithm problem. For example, if we select p = 2q+1 with q prime,
then the index calculus requires us to solve simultaneous congruences (3.30)
modulo q and modulo 2.

There are many implementation issues that arise and tricks that have been
developed in practical applications of the index calculus. We do not pursue
these matters here, but are content to present a small numerical example
illustrating how the index calculus works.

Example 3.58. We let p be the prime p = 18443 and use the index calculus
to solve the discrete logarithm problem

37x ≡ 211 (mod 18443).

We note that g = 37 is a primitive root modulo p = 18443 We take B = 5,
so our factor base is the set of primes {2, 3, 5}. We start by taking random
powers of g = 37 modulo 18443 and pick out the ones that are B-smooth.
A couple of hundred attempts gives four equations:

g12708 ≡ 23 · 34 · 5 (mod 18443), g11311 ≡ 23 · 52 (mod 18443),

g15400 ≡ 23 · 33 · 5 (mod 18443), g2731 ≡ 23 · 3 · 54 (mod 18443).
(3.31)
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These in turn give linear relations for the discrete logarithms of 2, 3, and 5 to
the base g. For example, the first one says that

12708 = 3 · logg(2) + 4 · logg(3) + logg(5).

To ease notation, we let

x2 = logg(2), x3 = logg(3), and x5 = logg(5).

Then the four congruences (3.31) become the following four linear relations:

12708 = 3x2 + 4x3 + x5 (mod 18442),
11311 = 3x2 + 2x5 (mod 18442),
15400 = 3x2 + 3x3 + x5 (mod 18442),
2731 = 3x2 + x3 + 4x5 (mod 18442).

(3.32)

Note that the formulas (3.32) are congruences modulo

p− 1 = 18442 = 2 · 9221,

since discrete logarithms are defined only modulo p − 1. The number 9221
is prime, so we need to solve the system of linear equations (3.32) modulo 2
and modulo 9221. This is easily accomplished by Gaussian elimination, i.e.,
by adding multiples of one equation to another to eliminate variables. The
solutions are

(x2, x3, x5) ≡ (1, 0, 1) (mod 2),

(x2, x3, x5) ≡ (5733, 6529, 6277) (mod 9221).

Combining these solutions yields

(x2, x3, x5) ≡ (5733, 15750, 6277) (mod 18442).

We check the solutions by computing

375733 ≡ 2 (mod 18443), 3715750 ≡ 3 (mod 18443), 376277 ≡ 5 (mod 18443).

Recall that our ultimate goal is to solve the discrete logarithm problem

37x ≡ 211 (mod 18443).

We compute the value of 211 · 37−k (mod 18443) for random values of k until
we find a value that is B-smooth. After a few attempts we find that

211 · 37−9549 ≡ 25 · 32 · 52 (mod 18443).

Using the values of the discrete logs of 2, 3, and 5 from above, this yields

logg(211) = 9549 + 5 logg(2) + 2 logg(3) + 2 logg(5)

= 9549 + 5 · 5733 + 2 · 15750 + 2 · 6277 ≡ 8500 (mod 18442).

Finally, we check our answer logg(211) = 8500 by computing

378500 ≡ 211 (mod 18443). �
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Remark 3.59. We can roughly estimate the running time of the index calculus
as follows. Using a factor base consisting of primes less than B, we need to
find approximately π(B) numbers of the form gi (mod p) that are B-smooth.

Proposition 3.48 suggests that we should take B = L(p)1/
√
2, and then we

will have to check approximately L(p)
√
2 values of i. There is also the issue

of checking each value to see whether it is B-smooth, but sieve-type methods
can be used to speed the process. Further, using ideas based on the number
field sieve, the running time can be further reduced to a small power L1/3(p).
In any case, the index calculus is a subexponential algorithm for solving the
discrete logarithm problem in F

∗
p. This stands in marked contrast to the dis-

crete logarithm problem in elliptic curve groups, which we study in Chap. 6.
Currently, the best known algorithms to solve the general discrete logarithm
problem in elliptic curve groups are fully exponential.

3.9 Quadratic Residues and Quadratic
Reciprocity

Let p be a prime number. Here is a simple mathematical question:

How can Bob tell whether a given number a is
equal to a square modulo p?

For example, suppose that Alice asks Bob whether 181 is a square mod-
ulo 1223. One way for Bob to answer Alice’s question is by constructing a table
of squares modulo 1223 as illustrated in Table 3.8, but this is a lot of work,
so he gave up after computing 962 mod 1223. Alice picked up the computa-
tion where Bob stopped and eventually found that 4372 ≡ 181 (mod 1223).
Thus the answer to her question is that 181 is indeed a square modulo 1223.
Similarly, if Alice is sufficiently motivated to continue the table all the way
up to 12222 mod 1223, she can verify that the number 385 is not a square
modulo 1223, because it does not appear in her table. (In fact, Alice can save
half her time by computing only up to 6112 mod 1223, since a2 and (p− a)2
have the same values modulo p.)

Our goal in this section is to describe a more much efficient way to check
if a number is a square modulo a prime. We begin with a definition.

Definition. Let p be an odd prime number and let a be a number with p � a.
We say that a is a quadratic residue modulo p if a is a square modulo p, i.e.,
if there is a number c so that c2 ≡ a (mod p). If a is not a square modulo p,
i.e., if there exists no such c, then a is called a quadratic nonresidue modulo p.

Example 3.60. The numbers 968 and 1203 are both quadratic residues mod-
ulo 1223, since

4532 ≡ 968 (mod 1223) and 3752 ≡ 1203 (mod 1223).
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1
2 ≡ 1 2

2 ≡ 4 3
2 ≡ 9 4

2 ≡ 16 5
2 ≡ 25 6

2 ≡ 36 7
2 ≡ 49 8

2 ≡ 64 9
2 ≡ 81

10
2 ≡ 100 11

2 ≡ 121 12
2 ≡ 144 13

2 ≡ 169 14
2 ≡ 196 15

2 ≡ 225 16
2 ≡ 256 17

2 ≡ 289 18
2 ≡ 324

19
2 ≡ 361 20

2 ≡ 400 21
2 ≡ 441 22

2 ≡ 484 23
2 ≡ 529 24

2 ≡ 576 25
2 ≡ 625 26

2 ≡ 676 27
2 ≡ 729

28
2 ≡ 784 29

2 ≡ 841 30
2 ≡ 900 31

2 ≡ 961 32
2 ≡ 1024 33

2 ≡ 1089 34
2 ≡ 1156 35

2 ≡ 2 36
2 ≡ 73

37
2 ≡ 146 38

2 ≡ 221 39
2 ≡ 298 40

2 ≡ 377 41
2 ≡ 458 42

2 ≡ 541 43
2 ≡ 626 44

2 ≡ 713 45
2 ≡ 802

46
2 ≡ 893 47

2 ≡ 986 48
2 ≡ 1081 49

2 ≡ 1178 50
2 ≡ 54 51

2 ≡ 155 52
2 ≡ 258 53

2 ≡ 363 54
2 ≡ 470

55
2 ≡ 579 56

2 ≡ 690 57
2 ≡ 803 58

2 ≡ 918 59
2 ≡ 1035 60

2 ≡ 1154 61
2 ≡ 52 62

2 ≡ 175 63
2 ≡ 300

64
2 ≡ 427 65

2 ≡ 556 66
2 ≡ 687 67

2 ≡ 820 68
2 ≡ 955 69

2 ≡ 1092 70
2 ≡ 8 71

2 ≡ 149 72
2 ≡ 292

73
2 ≡ 437 74

2 ≡ 584 75
2 ≡ 733 76

2 ≡ 884 77
2 ≡ 1037 78

2 ≡ 1192 79
2 ≡ 126 80

2 ≡ 285 81
2 ≡ 446

82
2 ≡ 609 83

2 ≡ 774 84
2 ≡ 941 85

2 ≡ 1110 86
2 ≡ 58 87

2 ≡ 231 88
2 ≡ 406 89

2 ≡ 583 90
2 ≡ 762

91
2 ≡ 943 92

2 ≡ 1126 93
2 ≡ 88 94

2 ≡ 275 95
2 ≡ 464 96

2 ≡ 655 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3.8: Bob’s table of squares modulo 1223

On the other hand, the numbers 209 and 888 are quadratic nonresidues mod-
ulo 1223, since the congruences

c2 ≡ 209 (mod 1223) and c2 ≡ 888 (mod 1223)

have no solutions.

The next proposition describes what happens when quadratic residues and
nonresidues are multiplied together.

Proposition 3.61. Let p be an odd prime number.
(a) The product of two quadratic residues modulo p is a quadratic residue

modulo p.

(b) The product of a quadratic residue and a quadratic nonresidue modulo p
is a quadratic nonresidue modulo p.

(c) The product of two quadratic nonresidues modulo p is a quadratic residue
modulo p.

Proof. It is easy to prove (a) and (b) directly from the definition of quadratic
residue, but we use a different approach that gives all three parts simultane-
ously. Let g be a primitive root modulo p as described in Theorem 1.30. This
means that the powers 1, g, g2, . . . , gp−2 are all distinct modulo p.

Which powers of g are quadratic residues modulo p? Certainly if m = 2k
is even, then gm = g2k = (gk)2 is a square.

On the other hand, let m be odd, say m = 2k + 1, and suppose
that gm is a quadratic residue, say gm ≡ c2 (mod p). Fermat’s little theorem
(Theorem 1.24) tells us that

cp−1 ≡ 1 (mod p).

However, cp−1 (mod p) is also equal to



3.9. Quadratic Residues and Quadratic Reciprocity 171

cp−1 ≡ (c2)
p−1
2 ≡ (gm)

p−1
2 ≡ (g2k+1)

p−1
2 ≡ gk(p−1) · g

p−1
2 (mod p).

Another application of Fermat’s little theorem tells us that

gk(p−1) ≡ (gp−1)k ≡ 1k ≡ 1 (mod p),

so we find that
g

p−1
2 ≡ 1 (mod p).

This contradicts the fact that g is a primitive root, which proves that every
odd power of g is a quadratic nonresidue.

We have proven an important dichotomy. If g is a primitive root modulo p,
then

gm is a

{
quadratic residue if m is even,

quadratic nonresidue if m is odd.

It is now a simple matter to prove Proposition 3.61. In each case we write a
and b as powers of g, multiply a and b by adding their exponents, and read
off the result.
(a) Suppose that a and b are quadratic residues. Then a = g2i and b = g2j ,
so ab = g2(i+j) has even exponent, and hence ab is a quadratic residue.
(b) Let a be a quadratic residue and let b be a nonresidue. Then a = g2i

and b = g2j+1, so ab = g2(i+j)+1 has odd exponent, and hence ab is a quadratic
nonresidue.
(c) Finally, let a and b both be nonresidues. Then a = g2i+1 and b = g2j+1,
so ab = g2(i+j+1) has even exponent, and hence ab is a quadratic residue.

If we write QR to denote a quadratic residue and NR to denote a quadratic
nonresidue, then Proposition 3.61 may be succinctly summarized by the three
equations

QR · QR = QR, QR · NR = NR, NR · NR = QR.

Do these equations look familiar? They resemble the rules for multiplying 1
and −1. This observation leads to the following definition.

Definition. Let p be an odd prime. The Legendre symbol of a is the quan-
tity

(
a
p

)
defined by the rules

(
a

p

)
=

⎧
⎪⎨

⎪⎩

1 if a is a quadratic residue modulo p,

−1 if a is a quadratic nonresidue modulo p,

0 if p | a.

With this definition, Proposition 3.61 is summarized by the simple multi-
plication rule10

10Proposition 3.61 deals only with the case that p � a and p � b. But if p divides a or b,
then p also divides ab, so both sides of (3.33) are zero.
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(
a

p

)(
b

p

)
=

(
ab

p

)
. (3.33)

We also make the obvious, but useful, observation that

If a ≡ b (mod p), then

(
a

p

)
=

(
b

p

)
. (3.34)

Thus in computing
(
a
p

)
, we may reduce a modulo p into the interval from 0

to p− 1. It is worth adding a cautionary note: The notation for the Legendre
symbol resembles a fraction, but it is not a fraction!

Returning to our original question of determining whether a given number
is a square modulo p, the following beautiful and powerful theorem provides
a method for determining the answer.

Theorem 3.62 (Quadratic Reciprocity). Let p and q be odd primes.

(a)

(
−1
p

)
=

{
1 if p ≡ 1 (mod 4),

−1 if p ≡ 3 (mod 4).

(b)

(
2

p

)
=

{
1 if p ≡ 1 or 7 (mod 8),

−1 if p ≡ 3 or 5 (mod 8).

(c)

(
p

q

)
=

⎧
⎪⎪⎨

⎪⎪⎩

(
q

p

)
if p ≡ 1 (mod 4) or q ≡ 1 (mod 4),

−
(
q

p

)
if p ≡ 3 (mod 4) and q ≡ 3 (mod 4).

Proof. We do not give a proof of quadratic reciprocity, but you will find a proof
in any introductory number theory textbook, such as [35, 52, 59, 100, 111].

The name “quadratic reciprocity” comes from property (c), which tells us
how

(
p
q

)
is related to its “reciprocal”

(
q
p

)
. It is worthwhile spending some time

contemplating Theorem 3.62, because despite the simplicity of its statement,
quadratic reciprocity is saying something quite unexpected and profound. The
value of

(
p
q

)
tells us whether p is a square modulo q. Similarly,

(
q
p

)
tells us

whether q is a square modulo p. There is no a priori reason to suspect that
these questions should have anything to do with one another. Quadratic reci-
procity tells us that they are intimately related, and indeed, related by a very
simple rule.

Similarly, parts (a) and (b) of quadratic reciprocity give us some surprising
information. The first part says that the question whether −1 is a square
modulo p is answered by the congruence class of p modulo 4, and the second
part says that question whether 2 is a square modulo p is answered by the
congruence class of p modulo 8.

We indicated earlier that quadratic reciprocity can be used to determine
whether a is a square modulo p. The way to apply quadratic reciprocity is to
use (c) to repeatedly flip the Legendre symbol, where each time that we flip,
we’re allowed to reduce the top number modulo the bottom number. This
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leads to a rapid reduction in the size of the numbers, as illustrated by the
following example.

Example 3.63. We check whether −15750 is a quadratic residue modulo 37907
using quadratic reciprocity to compute the Legendre symbol

(−15750
37907

)
.

(
−15750
37907

)
=

(
−1

37907

)(
15750

37907

)
Multiplication rule (3.33)

= −
(
15750

37907

)
Quadratic Reciprocity 3.62(a)

= −
(
2 · 32 · 53 · 7

37907

)
Factor 15750

= −
(

2

37907

)(
3

37907

)2(
5

37907

)3(
7

37907

)

Multiplication rule (3.33)

= −
(

2

37907

)(
5

37907

)(
7

37907

)
since (−1)2 = 1

=

(
5

37907

)(
7

37907

)
Quadratic Reciprocity 3.62(b)

=

(
37907

5

)
×−

(
37907

7

)
Quadratic Reciprocity 3.62(c)

= −
(
2

5

)(
2

7

)
since 37907 ≡ 2 (mod 5)
and 37907 ≡ 2 (mod 7)

= −(−1)× 1 Quadratic Reciprocity 3.62(b)

= 1.

Thus
(−15750

37907

)
= 1, so we conclude that −15750 is a square modulo 37907.

Note that our computation using Legendre symbols does not tell us how to
solve c2 ≡ −15750 (mod 37907); it tells us only that there is a solution. For
those who are curious, we mention that c = 10982 is a solution.

Example 3.63 shows how quadratic reciprocity can be used to evaluate the
Legendre symbol. However, you may have noticed that in the middle of our
calculation, we needed to factor the number 15750. We were lucky that 15750
is easy to factor, but suppose that we were faced with a more difficult fac-
torization problem. For example, suppose that we want to determine whether
p = 228530738017 is a square modulo q = 9365449244297. It turns out that
both p and q are prime.11 Hence we can use quadratic reciprocity to compute
(
228530738017

9365449244297

)
=

(
9365449244297

228530738017

)
since 228530738017 ≡ 1 (mod 4),

=

(
224219723617

228530738017

)
reducing 9365449244297
modulo 228530738017.

11If you don’t believe that p and q are prime, use Miller–Rabin (Table 3.2) to check.
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Unfortunately, the number 224219723617 is not prime, so we cannot apply
quadratic reciprocity directly, and even more unfortunately, it is not an easy
number to factor (by hand). So it appears that quadratic reciprocity is useful
only if the intermediate calculations lead to numbers that we are able to factor.

Luckily, there is a fancier version of quadratic reciprocity that completely
eliminates this difficulty. In order to state it, we need to generalize the defini-
tion of the Legendre symbol.

Definition. Let a and b be integers and let b be odd and positive. Suppose
that the factorization of b into primes is

b = pe11 p
e2
2 p

e3
3 · · · pett .

The Jacobi symbol
(
a
b

)
is defined by the formula

(
a

b

)
=

(
a

p1

)e1( a
p2

)e2( a
p3

)e3

· · ·
(
a

pt

)et

.

Notice that if b is itself prime, then
(
a
b

)
is the original Legendre symbol, so

the Jacobi symbol is a generalization of the Legendre symbol. Also note that
we define the Jacobi symbol only for odd positive values of b.

Example 3.64. Here is a simple example of a Jacobi symbol, computed directly
from the definition:

(
123

323

)
=

(
123

17 · 19

)
=

(
123

17

)(
123

19

)
=

(
4

17

)(
9

19

)
= 1.

Here is a more complicated example:
(

171337608

536134436237

)

=

(
171337608

293 · 59 · 672 · 83

)

=

(
171337608

29

)3(
171337608

59

)(
171337608

67

)2(
171337608

83

)

=

(
171337608

29

)(
171337608

59

)(
171337608

83

)

=

(
11

29

)(
15

59

)(
44

83

)

= (−1) · 1 · 1 = −1.

From the definition, it appears that we need to know how to factor b
in order to compute the Jacobi symbol

(
a
b

)
, so we haven’t gained anything.

However, it turns out that the Jacobi symbol inherits most of the properties
of the Legendre symbol, which will allow us to compute

(
a
b

)
extremely rapidly

without doing any factorization at all. We start with the basic multiplication
and reduction properties.
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Proposition 3.65. Let a, a1, a2, b, b1, b2 be integers with b, b1, and b2 positive
and odd.

(a)

(
a1a2
b

)
=

(
a1
b

)(
a2
b

)
and

(
a

b1b2

)
=

(
a

b1

)(
a

b2

)
.

(b) If a1 ≡ a2 (mod b), then

(
a1
b

)
=

(
a2
b

)
.

Proof. Both parts of Proposition 3.65 follow easily from the definition of
the Jacobi symbol and the corresponding properties (3.33) and (3.34) of the
Legendre symbol.

Now we come to the amazing fact that the Jacobi symbol satisfies exactly
the same reciprocity law as the Legendre symbol.

Theorem 3.66 (Quadratic Reciprocity: Version II). Let a and b be integers
that are odd and positive.

(a)

(
−1
b

)
=

{
1 if b ≡ 1 (mod 4),

−1 if b ≡ 3 (mod 4).

(b)

(
2

b

)
=

{
1 if b ≡ 1 or 7 (mod 8),

−1 if b ≡ 3 or 5 (mod 8).

(c)

(
a

b

)
=

⎧
⎪⎪⎨

⎪⎪⎩

(
b

a

)
if a ≡ 1 (mod 4) or b ≡ 1 (mod 4),

−
(
b

a

)
if a ≡ 3 (mod 4) and b ≡ 3 (mod 4).

Proof. It is not hard to use the original version of quadratic reciprocity for
the Legendre symbol (Theorem 3.62) to prove the more general version for the
Jacobi symbol. See for example [59, Proposition 5.2.2] or [137, Theorem 22.2].

Example 3.67. When we tried to use the original version of quadratic reci-
procity (Theorem 3.62) to compute

(
228530738017
9365449244297

)
, we ran into the problem

that we needed to factor the number 224219723617. Using the new and im-
proved version of quadratic reciprocity (Theorem 3.66), we can perform the
computation without doing any factoring:
(

228530738017

9365449244297

)

=

(
9365449244297

228530738017

)

=

(
224219723617

228530738017

)

=

(
228530738017

224219723617

)

=

(
4311014400

224219723617

)

=

(
210 · 4209975
224219723617

)

=

(
224219723617

4209975

)

=

(
665092

4209975

)

=

(
22 · 166273
4209975

)

=

(
4209975

166273

)

=

(
53150

166273

)

=

(
2 · 26575
166273

)

=

(
26575

166273

)

=

(
166273

26575

)

=

(
6823

26575

)

= −
(
26575

6823

)

= −
(
6106

6823

)

= −
(
2 · 3053
6823

)
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= −
(
3053

6823

)

= −
(
6823

3053

)

= −
(

717

3053

)

= −
(
3053

717

)

= −
(
185

717

)

= −
(
717

185

)

= −
(
162

185

)

= −
(
2 · 81
185

)

= −
(

81

185

)

= −
(
185

81

)

= −
(
23

81

)

= −
(
81

23

)

= −
(
12

23

)

= −
(
22 · 3
23

)

=

(
23

3

)

=

(
2

3

)

= −1.

Hence 228530738017 is not a square modulo 9365449244297.

Remark 3.68. Suppose that
(
a
b

)
= 1, where b is some odd positive number.

Does the fact that
(
a
b

)
= 1 tell us that a is a square modulo b? It does if b

is prime, since that’s how we defined the Legendre symbol, but what if b is
composite? For example, suppose that b = pq is a product of two primes.
Then by definition, (

a

b

)
=

(
a

pq

)
=

(
a

p

)(
a

q

)
.

We see that there are two ways in which
(
a
b

)
can be equal to 1, namely 1 = 1 ·1

and 1 = (−1) · (−1). This leads to two different cases:

Case 1:

(
a

p

)
=

(
a

q

)
= 1, so a is a square modulo pq.

Case 2:

(
a

p

)
=

(
a

q

)
= −1, so a is not a square modulo pq.

We should justify our assertion that a is a square modulo pq in Case 1. Note
that in Case 1, there are solutions to c21 ≡ a (mod p) and c22 ≡ a (mod q).
We use the Chinese remainder theorem (Theorem 2.24) to find an integer c
satisfying c ≡ c1 (mod p) and c ≡ c2 (mod q), and then c2 ≡ a (mod pq).

Our conclusion is that if b = pq is a product of two primes, then although
it is easy to compute the value of the Jacobi symbol

(
a
pq

)
, this value does not

tell us whether a is a square modulo pq. This dichotomy can be exploited for
cryptographic purposes as explained in the next section.

Example 3.69 (An application of quadratic reciprocity to the discrete loga-
rithm problem). Let p be an odd prime, let g ∈ F

∗
p be a primitive root, and

let h ∈ F
∗
p. As we have discussed, it is in general a difficult problem to com-

pute the discrete logarithm logg(h), i.e., to solve gx = h. But one might ask
if it is possible to easily extract some information about logg(h). The answer
is yes, since we claim that

(−1)logg(h) =

(
h

p

)
. (3.35)

Thus the Legendre symbol
(
h
p

)
determines whether logg(h) is odd or even,

and quadratic reciprocity gives a fast algorithm to compute the value of
(
h
p

)
.
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In order to prove (3.35), we note that while proving Proposition 3.61, we
showed that gr is a quadratic residue if r is even and that gr is a quadratic
nonresidue if r is odd. Taking r = logg(h) gives (3.35). In fancier terminology,
one says that the 0th bit of the discrete logarithm is insecure. See Exercise 3.40
for a generalization.

3.10 Probabilistic Encryption and the
Goldwasser–Micali Cryptosystem

Suppose that Alice wants to use a public key cryptosystem to encrypt and
send Bob 1 bit, i.e., Alice wants to send Bob one of the values 0 and 1. At
first glance such an arrangement seems inherently insecure. All that Eve has
to do is to encrypt the two possible plaintexts m = 0 and m = 1, and then
she compares the encryptions with Alice’s ciphertext. More generally, in any
cryptosystem for which the set of possible plaintexts is small, Eve can encrypt
every plaintext using Bob’s public key until she finds the one that is Alice’s.

Probabilistic encryption was invented by Goldwasser and Micali as a way
around this problem. The idea is that Alice chooses both a plaintext m and
a random string of data r, and then she uses Bob’s public key to encrypt the
pair (m, r). Ideally, as r varies over all of its possible values, the ciphertexts
for (m, r) will vary “randomly” over the possible ciphertexts. More precisely,
for any fixed m1 and m2 and for varying r, the distribution of values of the
two quantities

e(m1, r) = the ciphertext for plaintext m1 and random string r,

e(m2, r) = the ciphertext for plaintext m2 and random string r,

should be essentially indistinguishable. Note that it is not necessary that Bob
be able to recover the full pair (m, r) when he performs the decryption. He
needs to recover only the plaintext m.

This abstract idea is clear, but how might one create a probabilistic en-
cryption scheme in practice? Goldwasser and Micali describe one such scheme,
which, although impractical, since it encrypts only 1 bit at a time, has the
advantage of being quite simple to describe and analyze. The idea is based on
the difficulty of the following problem.

Let p and q be (secret) prime numbers and let N = pq
be given. For a given integer a, determine whether a
is a square modulo N , i.e., determine whether there
exists an integer u satisfying u2 ≡ a (mod N).

Note that Bob, who knows how to factor N = pq, is able to solve this problem
very easily, since

a is a square modulo pq if and only if

(
a

p

)
= 1 and

(
a

q

)
= 1.



178 3. Integer Factorization and RSA

Eve, on the other hand, has a harder time, since she knows only the value
of N . Eve can compute

(
a
N

)
, but as we noted earlier (Remark 3.68), this does

not tell her whether a is a square modulo N . Goldwasser and Micali exploit
this fact12 to create the probabilistic public key cryptosystem described in
Table 3.9.

Bob Alice

Key creation
Choose secret primes p and q.
Choose a with

(
a
p

)
=
(
a
q

)
= −1.

Publish N = pq and a.
Encryption

Choose plaintext m ∈ {0, 1}.
Choose random r with 1 < r < N .
Use Bob’s public key (N, a)
to compute

c =

{
r2 mod N if m = 0,

ar2 mod N if m = 1.

Send ciphertext c to Bob.
Decryption

Compute
(
c
p

)
. Decrypt to

m =

{
0 if

(
c
p

)
= 1,

1 if
(
c
p

)
= −1.

Table 3.9: Goldwasser–Micali probabilistic public key cryptosystem

It is easy to check that the Goldwasser–Micali cryptosystem works as ad-
vertised, since

(
c

p

)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
r2

p

)
=

(
r

p

)2

= 1 if m = 0,

(
ar2

p

)
=

(
a

p

)(
r

p

)2

=

(
a

p

)
= −1 if m = 1.

Further, since Alice chooses r randomly, the set of values that Eve sees
when Alice encrypts m = 0 consists of all possible squares modulo N , and the
set of values that Eve sees when Alice encrypts m = 1 consists of all possible
numbers c satisfying

(
c
N

)
= 1 that are not squares modulo N .

12Goldwasser and Micali were not the first to use the problem of squares modulo pq
for cryptography. Indeed, an early public key cryptosystem due to Rabin that is provably
secure against chosen plaintext attacks (assuming the hardness of factorization) relies on
this problem.
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What information does Eve obtain if she computes the Jacobi sym-
bol

(
c
N

)
, which she can do since N is a public quantity? If m = 0, then

c ≡ r2 (mod N), so (
c

N

)
=

(
r2

N

)
=

(
r

N

)2

= 1.

On the other hand, if m = 1, then c ≡ ar2 (mod N), so

(
c

N

)
=

(
ar2

N

)
=

(
a

N

)
=

(
a

pq

)
=

(
a

p

)(
a

q

)
= (−1) · (−1) = 1

is also equal to 1. (Note that Bob chose a to satisfy
(
a
p

)
=
(
a
q

)
= −1.) Thus

(
c
N

)

is equal to 1, regardless of the value of N , so the Jacobi symbol gives Eve no
useful information.

Example 3.70. Bob creates a Goldwasser–Micali public key by choosing

p = 2309, q = 5651, N = pq = 13048159, a = 6283665.

Note that a has the property that
(
a
p

)
=
(
a
q

)
= −1. He publishes the pair (N, a)

and keeps the values of the primes p and q secret.
Alice begins by sending Bob the plaintext bit m = 0. To do this, she

chooses r = 1642087 at random from the interval 1 to 13048158. She then
computes

c ≡ r2 ≡ 16420872 ≡ 8513742 (mod 13048159),

and sends the ciphertext c = 8513742 to Bob. Bob decrypts the ciphertext
c = 8513742 by computing

(
8513742
2309

)
= 1, which gives the plaintext bit m = 0.

Next Alice decides to send Bob the plaintext bit m = 1. She chooses a
random value r = 11200984 and computes

c ≡ ar2 ≡ 6283665 · 112009842 ≡ 2401627 (mod 13048159).

Bob decrypts c = 2401627 by computing
(
2401627
2309

)
= −1, which tells him that

the plaintext bit m = 1.
Finally, Alice wants to send Bob another plaintext bit m = 1. She chooses

the random value r = 11442423 and computes

c ≡ ar2 ≡ 6283665 · 114424232 ≡ 4099266 (mod 13048159).

Notice that the ciphertext for this encryption ofm = 1 is completely unrelated
to the previous encryption of m = 1. Bob decrypts c = 4099266 by computing(
4099266
2309

)
= −1 to conclude that the plaintext bit is m = 1.

Remark 3.71. The Goldwasser–Micali public key cryptosystem is not practi-
cal, because each bit of the plaintext is encrypted with a number modulo N .
For it to be secure, it is necessary that Eve be unable to factor the number
N = pq, so in practice N will be (at least) a 1000-bit number. Thus if Alice
wants to send k bits of plaintext to Bob, her ciphertext will be 1000k bits long.
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Thus the Goldwasswer–Micali public key cryptosystem has a message expan-
sion ratio of 1000, since the ciphertext is 1000 times as long as the plaintext. In
general, the Goldwasswer–Micali public key cryptosystem expands a message
by a factor of log2(N).

There are other probabilistic public key cryptosystems whose message ex-
pansion is much smaller. Indeed, we have already seen one: the random ele-
ment k used by the Elgamal public key cryptosystem (Sect. 2.4) makes Elga-
mal a probabilistic cryptosystem. Elgamal has a message expansion ratio of 2,
as explained in Remark 2.9. Later, in Sect. 7.10, we will see another proba-
bilistic cryptosystem called NTRU. More generally, it is possible, and indeed
usually desirable, to take a deterministic cryptosystem such as RSA and turn
it into a probabilistic system, even at the cost of increasing its message ex-
pansion ratio. (See Exercise 3.43 and Sect. 8.6.)

Exercises

Section 3.1. Euler’s Theorem and Roots Modulo pq

3.1. Solve the following congruences.
(a) x19 ≡ 36 (mod 97).

(b) x137 ≡ 428 (mod 541).

(c) x73 ≡ 614 (mod 1159).

(d) x751 ≡ 677 (mod 8023).

(e) x38993 ≡ 328047 (mod 401227). (Hint. 401227 = 607 · 661.)

3.2. This exercise investigates what happens if we drop the assumption that
gcd(e, p − 1) = 1 in Proposition 3.2. So let p be a prime, let c �≡ 0 (mod p), let
e ≥ 1, and consider the congruence

xe ≡ c (mod p). (3.36)

(a) Prove that if (3.36) has one solution, then it has exactly gcd(e, p− 1) distinct
solutions. (Hint. Use primitive root theorem (Theorem 1.30), combined with
the extended Euclidean algorithm (Theorem 1.11) or Exercise 1.27.)

(b) For how many non-zero values of c (mod p) does the congruence (3.36) have a
solution?

3.3. Let p and q be distinct primes and let e and d be positive integers satisfying

de ≡ 1 (mod (p− 1)(q − 1)).

Suppose further that c is an integer with gcd(c, pq) > 1. Prove that

x ≡ cd (mod pq) is a solution to the congruence xe ≡ c (mod pq),

thereby completing the proof of Proposition 3.5.
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3.4. Recall from Sect. 1.3 that Euler’s phi function φ(N) is the function defined by

φ(N) = #{0 ≤ k < N : gcd(k,N) = 1}.

In other words, φ(N) is the number of integers between 0 and N − 1 that are
relatively prime to N , or equivalently, the number of elements in Z/NZ that have
inverses modulo N .
(a) Compute the values of φ(6), φ(9), φ(15), and φ(17).

(b) If p is prime, what is the value of φ(p)?

(c) Prove Euler’s formula

aφ(N) ≡ 1 (mod N) for all integers a satisfying gcd(a,N) = 1.

(Hint. Mimic the proof of Fermat’s little theorem (Theorem 1.24), but instead of
looking at all of the multiples of a as was done in (1.8), just take the multiples ka
of a for values of k satisfying gcd(k,N) = 1.)

3.5. Euler’s phi function has many beautiful properties.
(a) If p and q are distinct primes, how is φ(pq) related to φ(p) and φ(q)?

(b) If p is prime, what is the value of φ(p2)? How about φ(pj)? Prove that your
formula for φ(pj) is correct. (Hint. Among the numbers between 0 and pj − 1,
remove the ones that have a factor of p. The ones that are left are relatively
prime to p.)

(c) Let M and N be integers satisfying gcd(M,N) = 1. Prove the multiplication
formula

φ(MN) = φ(M)φ(N).

(d) Let p1, p2, . . . , pr be the distinct primes that divide N . Use your results from (b)
and (c) to prove the following formula:

φ(N) = N
r∏

i=1

(
1− 1

pi

)
.

(e) Use the formula in (d) to compute the following values of φ(N).

(i) φ(1728). (ii) φ(1575). (iii) φ(889056) (Hint. 889056 = 25 · 34 · 73).

3.6. Let N , c, and e be positive integers satisfying the conditions gcd(N, c) = 1 and
gcd
(
e, φ(N)

)
= 1.

(a) Explain how to solve the congruence

xe ≡ c (mod N),

assuming that you know the value of φ(N). (Hint. Use the formula in
Exercise 3.4(c).)

(b) Solve the following congruences. (The formula in Exercise 3.5(d) may be helpful
for computing the value of φ(N).)

(i) x577 ≡ 60 (mod 1463).

(ii) x959 ≡ 1583 (mod 1625).

(iii) x133957 ≡ 224689 (mod 2134440).
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Section 3.2. The RSA Public Key Cryptosystem

3.7. Alice publishes her RSA public key: modulus N = 2038667 and exponent
e = 103.
(a) Bob wants to send Alice the message m = 892383. What ciphertext does Bob

send to Alice?

(b) Alice knows that her modulus factors into a product of two primes, one of which
is p = 1301. Find a decryption exponent d for Alice.

(c) Alice receives the ciphertext c = 317730 from Bob. Decrypt the message.

3.8. Bob’s RSA public key has modulus N = 12191 and exponent e = 37. Alice
sends Bob the ciphertext c = 587. Unfortunately, Bob has chosen too small a modu-
lus. Help Eve by factoring N and decrypting Alice’s message. (Hint. N has a factor
smaller than 100.)

3.9. For each of the given values of N = pq and (p − 1)(q − 1), use the method
described in Remark 3.11 to determine p and q.
(a) N = pq = 352717 and (p− 1)(q − 1) = 351520.

(b) N = pq = 77083921 and (p− 1)(q − 1) = 77066212.

(c) N = pq = 109404161 and (p− 1)(q − 1) = 109380612.

(d) N = pq = 172205490419 and (p− 1)(q − 1) = 172204660344.

3.10. A decryption exponent for an RSA public key (N, e) is an integer d with the
property that ade ≡ a (mod N) for all integers a that are relatively prime to N .
(a) Suppose that Eve has a magic box that creates decryption exponents for (N, e)

for a fixed modulus N and for a large number of different encryption expo-
nents e. Explain how Eve can use her magic box to try to factor N .

(b) Let N = 38749709. Eve’s magic box tells her that the encryption exponent
e = 10988423 has decryption exponent d = 16784693 and that the encryp-
tion exponent e = 25910155 has decryption exponent d = 11514115. Use this
information to factor N .

(c) Let N = 225022969. Eve’s magic box tells her the following three encryp-
tion/decryption pairs for N :

(70583995, 4911157), (173111957, 7346999), (180311381, 29597249).

Use this information to factor N .

(d) Let N = 1291233941. Eve’s magic box tells her the following three encryp-
tion/decryption pairs for N :

(1103927639, 76923209), (1022313977, 106791263), (387632407, 7764043).

Use this information to factor N .

3.11. Here is an example of a public key system that was proposed at a cryptography
conference. It was designed to be more efficient than RSA.

Alice chooses two large primes p and q and she publishes N = pq. It is assumed
that N is hard to factor. Alice also chooses three random numbers g, r1, and r2
modulo N and computes

g1 ≡ gr1(p−1) (mod N) and g2 ≡ gr2(q−1) (mod N).
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Her public key is the triple (N, g1, g2) and her private key is the pair of primes (p, q).
Now Bob wants to send the messagem to Alice, wherem is a number modulo N .

He chooses two random integers s1 and s2 modulo N and computes

c1 ≡ mgs11 (mod N) and c2 ≡ mgs22 (mod N).

Bob sends the ciphertext (c1, c2) to Alice.
Decryption is extremely fast and easy. Alice uses the Chinese remainder theorem

to solve the pair of congruences

x ≡ c1 (mod p) and x ≡ c2 (mod q).

(a) Prove that Alice’s solution x is equal to Bob’s plaintext m.

(b) Explain why this cryptosystem is not secure.

Section 3.3. Implementation and Security Issues

3.12. Formulate a man-in-the-middle attack, similar to the attack described in
Example 3.13 on page 126, for the following public key cryptosystems.
(a) The Elgamal public key cryptosystem (Table 2.3 on page 72).

(b) The RSA public key cryptosystem (Table 3.1 on page 123).

3.13. Alice decides to use RSA with the public key N = 1889570071. In order to
guard against transmission errors, Alice has Bob encrypt his message twice, once
using the encryption exponent e1 = 1021763679 and once using the encryption
exponent e2 = 519424709. Eve intercepts the two encrypted messages

c1 = 1244183534 and c2 = 732959706.

Assuming that Eve also knows N and the two encryption exponents e1 and e2, use
the method described in Example 3.15 to help Eve recover Bob’s plaintext without
finding a factorization of N .

Section 3.4. Primality Testing

3.14. We stated that the number 561 is a Carmichael number, but we never checked
that a561 ≡ a (mod 561) for every value of a.
(a) The number 561 factors as 3 · 11 · 17. First use Fermat’s little theorem to prove

that

a561 ≡ a (mod 3), a561 ≡ a (mod 11), and a561 ≡ a (mod 17)

for every value of a. Then explain why these three congruences imply that
a561 ≡ a (mod 561) for every value of a.

(b) Mimic the idea used in (a) to prove that each of the following numbers is a
Carmichael number. (To assist you, we have factored each number into primes.)

(i) 1729 = 7 · 13 · 19
(ii) 10585 = 5 · 29 · 73
(iii) 75361 = 11 · 13 · 17 · 31
(iv) 1024651 = 19 · 199 · 271

(c) Prove that a Carmichael number must be odd.
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(d) Prove that a Carmichael number must be a product of distinct primes.

(e) Look up Korselt’s criterion in a book or online, write a brief description of how it
works, and use it to show that 29341 = 13·37·61 and 172947529 = 307·613·919
are Carmichael numbers.

3.15. Use the Miller–Rabin test on each of the following numbers. In each case,
either provide a Miller–Rabin witness for the compositeness of n, or conclude that n
is probably prime by providing 10 numbers that are not Miller–Rabin witnesses
for n.

(a) n = 1105. (Yes, 5 divides n, but this is just a warm-up exercise!)
(b) n = 294409 (c) n = 294439
(d) n = 118901509 (e) n = 118901521
(f) n = 118901527 (g) n = 118915387

3.16. Looking back at Exercise 3.10, let’s suppose that for a given N , the magic box
can produce only one decryption exponent. Equivalently, suppose that an RSA key
pair has been compromised and that the private decryption exponent corresponding
to the public encryption exponent has been discovered. Show how the basic idea in
the Miller–Rabin primality test can be applied to use this information to factor N .

3.17. The function π(X) counts the number of primes between 2 and X.
(a) Compute the values of π(20), π(30), and π(100).

(b) Write a program to compute π(X) and use it to compute π(X) and the ratio
π(X)/(X/ ln(X)) for X = 100, X = 1000, X = 10000, and X = 100000. Does
your list of ratios make the prime number theorem plausible?

3.18. Let

π1(X) = (# of primes p between 2 and X satisfying p ≡ 1 (mod 4)),

π3(X) = (# of primes p between 2 and X satisfying p ≡ 3 (mod 4)).

Thus every prime other than 2 gets counted by either π1(X) or by π3(X).
(a) Compute the values of π1(X) and π3(X) for each of the following values of X.

(i) X = 10. (ii) X = 25. (iii) X = 100.

(b) Write a program to compute π1(X) and π3(X) and use it to compute their
values and the ratio π3(X)/π1(X) for X = 100, X = 1000, X = 10000, and
X = 100000.

(c) Based on your data from (b), make a conjecture about the relative sizes of π1(X)
and π3(X). Which one do you think is larger? What do you think is the limit
of the ratio π3(X)/π1(X) as X → ∞?

3.19. We noted in Sect. 3.4 that it really makes no sense to say that the number n
has probability 1/ ln(n) of being prime. Any particular number that you choose
either will be prime or will not be prime; there are no numbers that are 35% prime
and 65% composite! In this exercise you will prove a result that gives a more sensible
meaning to the statement that a number has a certain probability of being prime.
You may use the prime number theorem (Theorem 3.21) for this problem.
(a) Fix a (large) number N and suppose that Bob chooses a random number n in

the interval 1
2
N ≤ n ≤ 3

2
N . If he repeats this process many times, prove that

approximately 1/ ln(N) of his numbers will be prime. More precisely, define
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P (N) =
number of primes between 1

2
N and 3

2
N

number of integers between 1
2
N and 3

2
N

=

[
Probability that an integer n in the
interval 1

2
N ≤ n ≤ 3

2
N is a prime number

]
,

and prove that

lim
N→∞

P (N)

1/ ln(N)
= 1.

This shows that if N is large, then P (N) is approximately 1/ ln(N).

(b) More generally, fix two numbers c1 and c2 satisfying c2 > c1 > 0. Bob chooses
random numbers n in the interval c1N ≤ n ≤ c2N . Keeping c1 and c2 fixed, let

P (c1, c2;N) =

[
Probability that an integer n in the inter-
val c1N ≤ n ≤ c2N is a prime number

]
.

In the following formula, fill in the box with a simple function of N so that the
statement is true:

lim
N→∞

P (c1, c2;N)
= 1.

3.20. Continuing with the previous exercise, explain how to make mathematical
sense of the following statements.
(a) A randomly chosen odd number N has probability 2/ ln(N) of being prime.

(What is the probability that a randomly chosen even number is prime?)

(b) A randomly chosen number N satisfying N ≡ 1 (mod 3) has probability
3/(2 ln(N)) of being prime.

(c) A randomly chosen number N satisfying N ≡ 1 (mod 6) has probability
3/ ln(N) of being prime.

(d) Let m = p1p2 · · · pr be a product of distinct primes and let k be a number
satisfying gcd(k,m) = 1. What number should go into the box to make state-
ment (3.37) correct? Why?

A randomly chosen number N satisfying

N ≡ k (mod m) has probability / ln(N)
of being prime.

(3.37)

(e) Same question, but for arbitrary m, not just for m that are products of distinct
primes.

3.21. The logarithmic integral function Li(X) is defined to be

Li(X) =

∫ X

2

dt

ln t
.

(a) Prove that

Li(X) =
X

lnX
+

∫ X

2

dt

(ln t)2
+O(1).

(Hint. Integration by parts.)
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(b) Compute the limit

lim
X→∞

Li(X)

X/ lnX
.

(Hint. Break the integral in (a) into two pieces, 2 ≤ t ≤
√
X and

√
X ≤ t ≤ X,

and estimate each piece separately.)

(c) Use (b) to show that formula (3.12) on page 135 implies the prime number
theorem (Theorem 3.21).

Section 3.5. Pollard’s p− 1 Factorization Algorithm

3.22. Use Pollard’s p− 1 method to factor each of the following numbers.

(a) n = 1739 (b) n = 220459 (c) n = 48356747

Be sure to show your work and to indicate which prime factor p of n has the property
that p− 1 is a product of small primes.

3.23. A prime of the form 2n − 1 is called a Mersenne prime.
(a) Factor each of the numbers 2n−1 for n = 2, 3, . . . , 10. Which ones are Mersenne

primes?

(b) Find the first seven Mersenne primes. (You may need a computer.)

(c) If n is even and n > 2, prove that 2n − 1 is not prime.

(d) If 3 | n and n > 3, prove that 2n − 1 is not prime.

(e) More generally, prove that if n is a composite number, then 2n − 1 is not prime.
Thus all Mersenne primes have the form 2p − 1 with p a prime number.

(f) What is the largest known Mersenne prime? Are there any larger primes known?
(You can find out at the “Great Internet Mersenne Prime Search” web site www.
mersenne.org/prime.htm.)

(g) Write a one page essay on Mersenne primes, starting with the discoveries of
Father Mersenne and ending with GIMPS.

Section 3.6. Factorization via Difference of Squares

3.24. For each of the following numbers N , compute the values of

N + 12, N + 22, N + 32, N + 42, . . .

as we did in Example 3.34 until you find a value N + b2 that is a perfect square a2.
Then use the values of a and b to factor N .

(a) N = 53357 (b) N = 34571 (c) N = 25777 (d) N = 64213

3.25. For each of the listed values of N , k, and binit, factor N by making a list of
values of k ·N + b2, starting at b = binit and incrementing b until k ·N + b2 is a
perfect square. Then take greatest common divisors as we did in Example 3.35.

(a) N = 143041 k = 247 binit = 1
(b) N = 1226987 k = 3 binit = 36
(c) N = 2510839 k = 21 binit = 90

3.26. For each part, use the data provided to find values of a and b satisfying
a2 ≡ b2 (mod N), and then compute gcd(N, a− b) in order to find a nontrivial factor
of N , as we did in Examples 3.37 and 3.38.

www.mersenne.org/prime.htm
www.mersenne.org/prime.htm
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(a) N = 61063

18822 ≡ 270 (mod 61063) and 270 = 2 · 33 · 5
18982 ≡ 60750 (mod 61063) and 60750 = 2 · 35 · 53

(b) N = 52907

3992 ≡ 480 (mod 52907) and 480 = 25 · 3 · 5
7632 ≡ 192 (mod 52907) and 192 = 26 · 3
7732 ≡ 15552 (mod 52907) and 15552 = 26 · 35

9762 ≡ 250 (mod 52907) and 250 = 2 · 53

(c) N = 198103

11892 ≡ 27000 (mod 198103) and 27000 = 23 · 33 · 53

16052 ≡ 686 (mod 198103) and 686 = 2 · 73

23782 ≡ 108000 (mod 198103) and 108000 = 25 · 33 · 53

28152 ≡ 105 (mod 198103) and 105 = 3 · 5 · 7

(d) N = 2525891

15912 ≡ 5390 (mod 2525891) and 5390 = 2 · 5 · 72 · 11
31822 ≡ 21560 (mod 2525891) and 21560 = 23 · 5 · 72 · 11
47732 ≡ 48510 (mod 2525891) and 48510 = 2 · 32 · 5 · 72 · 11
52752 ≡ 40824 (mod 2525891) and 40824 = 23 · 36 · 7
54012 ≡ 1386000 (mod 2525891) and 1386000 = 24 · 32 · 53 · 7 · 11

Section 3.7. Smooth Numbers, Sieves, and Building Relations for Factorization

3.27. Compute the following values of ψ(X,B), the number of B-smooth numbers
between 2 and X (see page 150).

(a) ψ(25, 3) (b) ψ(35, 5) (c) ψ(50, 7) (d) ψ(100, 5) (e) ψ(100, 7)

3.28. An integer M is called B-power-smooth if every prime power pe dividing M
satisfies pe ≤ B. For example, 180 = 22 · 32 · 5 is 10-power-smooth, since the largest
prime power dividing 180 is 9, which is smaller than 10.
(a) Suppose that M is B-power-smooth. Prove that M is also B-smooth.

(b) Suppose thatM is B-smooth. Is it always true thatM is also B-power-smooth?
Either prove that it is true or give an example for which it is not true.

(c) The following is a list of 20 randomly chosen numbers between 1 and 1000,
sorted from smallest to largest. Which of these numbers are 10-power-smooth?
Which of them are 10-smooth?

{84, 141, 171, 208, 224, 318, 325, 366, 378, 390, 420, 440,
504, 530, 707, 726, 758, 765, 792, 817}
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(d) Prove thatM isB-power-smooth if and only ifM divides the least common mul-
tiple of [1, 2, . . . , B]. (The least common multiple of a list of numbers k1, . . . , kr
is the smallest number K that is divisible by every number in the list.)

3.29. Let L(N) = e
√

(lnN)(ln lnN) as usual. Suppose that a computer does one
billion operations per second.
(a) How many seconds does it take to perform L(2100) operations?

(b) How many hours does it take to perform L(2250) operations?

(c) How many days does it take to perform L(2350) operations?

(d) How many years does it take to perform L(2500) operations?

(e) How many years does it take to perform L(2750) operations?

(f) How many years does it take to perform L(21000) operations?

(g) How many years does it take to perform L(22000) operations?
(For simplicity, you may assume that there are 365.25 days in a year.)

3.30. Prove that the function L(X) = e
√

(lnX)(ln lnX) is subexponential. That is,
prove the following two statements.
(a) For every positive constant α, no matter how large, L(X) = Ω

(
(lnX)α

)
.

(b) For every positive constant β, no matter how small, L(X) = O
(
Xβ).

3.31. For any fixed positive constants a and b, define the function

Fa,b(X) = e(lnX)1/a(ln lnX)1/b .

Prove the following properties of Fa,b(X).
(a) If a > 1, prove that Fa,b(X) is subexponential.

(b) If a = 1, prove that Fa,b(X) = Ω(Xα) for every α > 0. Thus Fa,b(X) grows
faster than every exponential function, so one says that Fa,b(X) has superex-
ponential growth.

(c) What happens if a < 1?

3.32. This exercise asks you to verify an assertion in the proof of Corollary 3.45.

Let L(X) be the usual function L(X) = e
√

(lnX)(ln lnX).
(a) Prove that there is a value of ε > 0 such that

(lnX)ε < lnL(X) < (lnX)1−ε for all X > 10.

(b) Let c > 0, let Y = L(X)c, and let u = (lnX)/(lnY ). Prove that

u−u = L(X)−
1
2c

(1+o(1)).

3.33. Proposition 3.48 assumes that we choose random numbers a modulo N , com-
pute a2 (mod N), and check whether the result is B-smooth. We can achieve better
results if we take values for a of the form

a =
⌊√

N
⌋
+ k for 1 ≤ k ≤ K.

(For simplicity, you may treat K as a fixed integer, independent of N . More rigor-
ously, it is necessary to take K equal to a power of L(N), which has a small effect
on the final answer.)
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(a) Prove that a2−N ≤ 2K
√
N+K2, so in particular, a2 (mod N) is smaller than

a multiple of
√
N .

(b) Prove that L(
√
N ) ≈ L(N)1/

√
2 by showing that

lim
N→∞

logL(
√
N )

logL(N)1/
√
2
= 1.

More generally, prove that in the same sense, L(N1/r) ≈ L(N)1/
√
r for any

fixed r > 0.

(c) Re-prove Proposition 3.48 using this better choice of values for a. Set B =
L(N)c and find the optimal value of c. Approximately how many relations are
needed to factor N?

3.34. Illustrate the quadratic sieve, as was done in Fig. 3.3 (page 161), by sieving
prime powers up to B on the values of F (T ) = T 2 −N in the indicated range.
(a) Sieve N = 493 using prime powers up to B = 11 on values from F (23) to F (38).

Use the relation(s) that you find to factor N .

(b) Extend the computations in (a) by using prime powers up to B = 16 and
sieving values from F (23) to F (50). What additional value(s) are sieved down
to 1 and what additional relation(s) do they yield?

3.35. Let Z[β] be the ring described in Example 3.55, i.e., β is a root of f(x) =
1 + 3x− 2x3 + x4. For each of the following pairs of elements u, v ∈ Z[β], compute
the sum u+ v and the product uv. Your answers should involve only powers of β up
to β3.
(a) u = −5− 2β + 9β2 − 9β3 and v = 2 + 9β − 7β2 + 7β3.

(b) u = 9 + 9β + 6β2 − 5β3 and v = −4− 6β − 2β2 − 5β3.

(c) u = 6− 5β + 3β2 + 3β3 and v = −2 + 7β + 6β2.

Section 3.8. The Index Calculus and Discrete Logarithms

3.36. This exercise asks you to use the index calculus to solve a discrete logarithm
problem. Let p = 19079 and g = 17.
(a) Verify that gi (mod p) is 5-smooth for each of the values i = 3030, i = 6892,

and i = 18312.

(b) Use your computations in (a) and linear algebra to compute the discrete loga-
rithms logg(2), logg(3), and logg(5). (Note that 19078 = 2 · 9539 and that 9539
is prime.)

(c) Verify that 19 · 17−12400 (mod p) is 5-smooth.

(d) Use the values from (b) and the computation in (c) to solve the discrete loga-
rithm problem

17x ≡ 19 (mod 19079).

Section 3.9. Quadratic Residues and Quadratic Reciprocity

3.37. Let p be an odd prime and let a be an integer with p � a.
(a) Prove that a(p−1)/2 is congruent to either 1 or −1 modulo p.

(b) Prove that a(p−1)/2 is congruent to 1 modulo p if and only if a is a quadratic
residue modulo p. (Hint. Let g be a primitive root for p and use the fact, proven
during the course of proving Proposition 3.61, that gm is a quadratic residue if
and only if m is even.)
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(c) Prove that a(p−1)/2 ≡
(
a
p

)
(mod p). (This holds even if p | a.)

(d) Use (c) to prove Theorem 3.62(a), that is, prove that

(
−1

p

)

=

{
1 if p ≡ 1 (mod 4),

−1 if p ≡ 3 (mod 4).

3.38. Prove that the three parts of the quadratic reciprocity theorem (Theo-
rem 3.62) are equivalent to the following three concise formulas, where p and q
are odd primes:

(a)

(
−1

p

)

= (−1)
p−1
2 (b)

(
2

p

)

= (−1)
p2−1

8 (c)

(
p

q

)(
q

p

)

= (−1)
p−1
2

· q−1
2

3.39. Let p be a prime satisfying p ≡ 3 (mod 4).
(a) Let a be a quadratic residue modulo p. Prove that the number

b ≡ a
p+1
4 (mod p)

has the property that b2 ≡ a (mod p). (Hint. Write p+1
2

as 1 + p−1
2

and use
Exercise 3.37.) This gives an easy way to take square roots modulo p for primes
that are congruent to 3 modulo 4.

(b) Use (a) to compute the following square roots modulo p. Be sure to check your
answers.

(i) Solve b2 ≡ 116 (mod 587).

(ii) Solve b2 ≡ 3217 (mod 8627).

(iii) Solve b2 ≡ 9109 (mod 10663).

3.40. Let p be an odd prime, let g ∈ F
∗
p be a primitive root, and let h ∈ F

∗
p. Write

p− 1 = 2sm with m odd and s ≥ 1, and write the binary expansion of logg(h) as

logg(h) = ε0 + 2ε2 + 4ε2 + 8ε3 + · · · with ε0, ε1, . . . ∈ {0, 1}.

Give an algorithm that generalizes Example 3.69 and allows you to rapidly com-
pute ε0, ε1, . . . , εs−1, thereby proving that the first s bits of the discrete logarithm
are insecure. You may assume that you have a fast algorithm to compute square
roots in F

∗
p, as provided for example by Exercise 3.39(a) if p ≡ 3 (mod 4). (Hint.

Use Example 3.69 to compute the 0th bit, take the square root of either h or g−1h,
and repeat.)

3.41. Let p be a prime satisfying p ≡ 1 (mod 3). We say that a is a cubic residue
modulo p if p � a and there is an integer c satisfying a ≡ c3 (mod p).
(a) Let a and b be cubic residues modulo p. Prove that ab is a cubic residue mod-

ulo p.

(b) Give an example to show that (unlike the case with quadratic residues) it is
possible for none of a, b, and ab to be a cubic residue modulo p.

(c) Let g be a primitive root modulo p. Prove that a is a cubic residue modulo p
if and only if 3 | logg(a), where logg(a) is the discrete logarithm of a to the
base g.
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(d) Suppose instead that p ≡ 2 (mod 3). Prove that for every integer a there is
an integer c satisfying a ≡ c3 (mod p). In other words, if p ≡ 2 (mod 3), show
that every number is a cube modulo p.

Section 3.10. Probabilistic Encryption and the Goldwasser–Micali Cryptosystem

3.42. Perform the following encryptions and decryptions using the Goldwasser–
Micali public key cryptosystem (Table 3.9).
(a) Bob’s public key is the pair N = 1842338473 and a = 1532411781. Alice en-

crypts 3 bits and sends Bob the ciphertext blocks

1794677960, 525734818, and 420526487.

Decrypt Alice’s message using the factorization

N = pq = 32411 · 56843.

(b) Bob’s public key is N = 3149 and a = 2013. Alice encrypts 3 bits and sends
Bob the ciphertext blocks 2322, 719, and 202. Unfortunately, Bob used primes
that are much too small. Factor N and decrypt Alice’s message.

(c) Bob’s public key is N = 781044643 and a = 568980706. Encrypt the
3 bits 1, 1, 0 using, respectively, the three random values

r = 705130839, r = 631364468, r = 67651321.

3.43. Suppose that the plaintext space M of a certain cryptosystem is the set of
bit strings of length 2b. Let ek and dk be the encryption and decryption functions
associated with a key k ∈ K. This exercise describes one method of turning the orig-
inal cryptosystem into a probabilistic cryptosystem. Most practical cryptosystems
that are currently in use rely on more complicated variants of this idea in order to
thwart certain types of attacks. (See Sect. 8.6 for further details.)

Alice sends Bob an encrypted message by performing the following steps:

1. Alice chooses a b-bit message m′ to be encrypted.

2. Alice chooses a string r consisting of b random bits.

3. Alice sets m = r ‖ (r ⊕m′), where ‖ denotes concatenation13 and ⊕ denotes
exclusive or (see Sect. 1.7.4). Notice that m has length 2b bits.

4. Alice computes c = ek(m) and sends the ciphertext c to Bob.

(a) Explain how Bob decrypts Alice’s message and recovers the plaintext m′. We
assume, of course, that Bob knows the decryption function dk.

(b) If the plaintexts and the ciphertexts of the original cryptosystem have the
same length, what is the message expansion ratio of the new probabilistic
cryptosystem?

(c) More generally, if the original cryptosystem has a message expansion ratio of μ,
what is the message expansion ratio of the new probabilistic cryptosystem?

13The concatenation of 2 bit strings is formed by placing the first string before the second
string. For example, 1101 ‖ 1001 is the bit string 11011001.



Chapter 4

Digital Signatures

4.1 What Is a Digital Signature?

Encryption schemes, whether symmetric or asymmetric, solve the problem
of secure communications over an insecure network. Digital signatures solve
a different problem, analogous to the purpose of a pen-and-ink signature on
a physical document. It is thus interesting that the tools used to construct
digital signatures are very similar to the tools used to construct asymmetric
ciphers.

Here is the exact problem that a digital signature is supposed to solve.
Samantha1 has a (digital) document D, for example a computer file, and she
wants to create some additional piece of information DSam that can be used
to prove conclusively that Samantha herself approves of the document. So
you might view Samantha’s digital signature DSam as analogous to her actual
signature on an ordinary paper document.

To contrast the purpose and functionality of public key (asymmetric) cryp-
tosystems versus digital signatures, we consider an analogy using bank deposit
vaults and signet rings. A bank deposit vault has a narrow slot (the “public
encryption key”) into which anyone can deposit an envelope, but only the
owner of the combination (the “private decryption key”) to the vault’s lock is
able to open the vault and read the message. Thus a public key cryptosystem
is a digital version of a bank deposit vault. A signet ring (the “private signing
key”) is a ring that has a recessed image. The owner drips some wax from
a candle onto his document and presses the ring into the wax to make an
impression (the “public signature”). Anyone who looks at the document can
verify that the wax impression was made by the owner of the signet ring, but

1In this chapter we give Alice and Bob a well deserved rest and let Samantha, the signer,
and Victor, the verifier, take over cryptographic duties.
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Figure 4.1: The two components of a digital signature scheme

only the owner of the ring is able to create valid impressions.2 Thus one may
view a digital signature system as a modern version of a signet ring.

Despite their different purposes, digital signature schemes are similar to
asymmetric cryptosystems in that they involve public and private keys and
invoke algorithms that use these keys. Here is an abstract description of the
pieces that make up a digital signature scheme:

KPri A private signing key.

KPub A public verification key.

Sign A signing algorithm that takes as input a digital document D and
a private key KPri and returns a signature Dsig for D.

Verify A verification algorithm that takes as input a digital document D,
a signature Dsig, and a public key KPub. The algorithm returns
True if Dsig is a signature for D associated to the private key KPri,
and otherwise it returns False.

The operation of a digital signature scheme is depicted in Fig. 4.1. An
important point to observe in Fig. 4.1 is that the verification algorithm does
not know the private key KPri when it determines whether D signed by KPri

is equal to Dsig. The verification algorithm has access only to the public
key KPub.

It is not difficult to produce (useless) algorithms that satisfy the digital
signature properties. For example, let KPub = KPri. What is difficult is to

2Back in the days when interior illumination was by candlelight, sealing documents with
signet rings was a common way to create unforgeable signatures. In today’s world, with its
plentiful machine tools, signet rings and wax images obviously would not provide much
security.
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create a digital signature scheme in which the owner of the private key KPri is
able to create valid signatures, but knowledge of the public key KPub does not
reveal the private key KPri. Necessary general conditions for a secure digital
signature scheme include the following:

• GivenKPub, an attacker cannot feasibly determineKPri, nor can she de-
termine any other private key that produces the same signatures asKPri.

• Given KPub and a list of signed documents D1, . . . , Dn with their sig-
natures Dsig

1 , . . . , Dsig
n , an attacker cannot feasibly determine a valid

signature on any document D that is not in the list D1, . . . , Dn.

The second condition is rather different from the situation for encryption
schemes. In public key encryption, an attacker can create as many cipher-
text/plaintext pairs as she wants, since she can create them using the known
public key. However, each time a digital signature scheme is used to sign a
new document, it is revealing a new document/signature pair, which provides
new information to an attacker. The second condition says that the attacker
gains nothing beyond knowledge of that new pair. An attack on a digital sig-
nature scheme that makes use of a large number of known signatures is called
a transcript attack. (See Sect. 7.12 for further discussion.)

Remark 4.1. Digital signatures are at least as important as public key cryp-
tosystems for the conduct of business in a digital age, and indeed, one might
argue that they are of greater importance. To take a significant instance, your
computer undoubtedly receives program and system upgrades over the Inter-
net. How can your computer tell that an upgrade comes from a legitimate
source, in this case the company that wrote the program in the first place?
The answer is a digital signature. The original program comes equipped with
the company’s public verification key. The company uses its private signing
key to sign the upgrade and sends your computer both the new program and
the signature. Your computer can use the public key to verify the signature,
thereby verifying that the program comes from a trusted source, before in-
stalling it on your system.

We must stress, however, that although this conveys the idea of how a
digital signature might be used, it is a vastly oversimplified explanation. Real-
world applications of digital signature schemes require considerable care to
avoid a variety of subtle, but fatal, security problems. In particular, as digital
signatures proliferate, it can become problematic to be sure that a purported
public verification key actually belongs to the supposed owner. And clearly
an adversary who tricks you into using her verification key, instead of the real
one, will then be able to convince you to accept all of her forged documents.

Remark 4.2. The natural capability of most digital signature schemes is to
sign only a small amount of data, say b bits, where b is between 80 and 1000.
It is thus quite inefficient to sign a large digital document D, both because it
takes a lot of time to sign each b bits of D and because the resulting digital
signature is likely to be as large as the original document.
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The standard solution to this problem is to use a hash function, which is
an easily computable function

Hash : (arbitrary size documents) −→ {0, 1}k

that is very hard to invert. (More generally, one wants it to be very difficult
to find two distinct inputs D and D′ whose outputs Hash(D) and Hash(D′)
are the same.) Then, rather than signing her document D, Samantha instead
computes and signs the hash Hash(D). For verification, Victor computes and
verifies the signature on Hash(D).

There are also security advantages to signing a hash of D, including in-
trinsically linking the signature to the entire document, and preventing an ad-
versary from choosing random signatures and determining which documents
they sign. For a brief introduction to hash functions and references for further
reading, see Sect. 8.1. We will not concern ourselves further with such issues
in this chapter.

Remark 4.3. There are many variants of the basic digital signature paradigm.
For example, a blinded signature is one in which the signer does not know
the contents of the document being signed. This could be useful, for example,
if voters want an election official to sign their votes without revealing what
those votes are. Further material on blinded signatures, with an RSA-style
example and applications to digital cash systems, are given in Sect. 8.8.

In this chapter we discuss digital signature schemes whose underlying hard
problems are integer factorization and the discrete logarithm problem in F

∗
p.

Subsequent chapters include descriptions of digital signature schemes based
on the discrete logarithm problem in elliptic curve groups (Sect. 6.4.3) and on
hard lattice problems (Sect. 7.12).

4.2 RSA Digital Signatures

The original RSA paper described both the RSA encryption scheme and an
RSA digital signature scheme. The idea is very simple. The setup is the same
as for RSA encryption, Samantha chooses two large secret primes p and q
and she publishes their product N = pq and a public verification exponent e.
Samantha uses her knowledge of the factorization of N to solve the congruence

de ≡ 1
(
mod(p− 1)(q − 1)

)
. (4.1)

Note that if Samantha were doing RSA encryption, then e would be her
encryption exponent and d would be her decryption exponent. However, in
the present setup d is her signing exponent and e is her verification exponent.

In order to sign a digital document D, which we assume to be an integer
in the range 1 < D < N , Samantha computes

S ≡ Dd (mod N).
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Samantha Victor

Key creation
Choose secret primes p and q.
Choose verification exponent e
with

gcd(e, (p− 1)(q − 1)) = 1.
Publish N = pq and e.

Signing
Compute d satisfying

de ≡ 1 (mod (p− 1)(q − 1)).
Sign document D by computing

S ≡ Dd (mod N).
Verification

Compute Se mod N and verify
that it is equal to D.

Table 4.1: RSA digital signatures

Victor verifies the validity of the signature S on D by computing

Se mod N

and checking that it is equal to D. This process works because Euler’s formula
(Theorem 3.1) tells us that

Se ≡ Dde ≡ D (mod N).

The RSA digital signature scheme is summarized in Table 4.1.

If Eve can factor N , then she can solve (4.1) for Samantha’s secret signing
key d. However, just as with RSA encryption, the hard problem underlying
RSA digital signatures is not directly the problem of factorization. In order
to forge a signature on a document D, Eve needs to find a eth root of D
modulo N . This is identical to the hard problem underlying RSA decryption,
in which the plaintext is the eth root of the ciphertext.

Remark 4.4. As with RSA encryption, one can gain a bit of efficiency by
choosing d and e to satisfy

de ≡ 1

(
mod

(p− 1)(q − 1)

gcd(p− 1, q − 1)

)
.

Theorem 3.1 ensures that the verification step still works.

Example 4.5. We illustrate the RSA digital signature scheme with a small
numerical example.
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RSA Signature Key Creation
• Samantha chooses two secret primes p = 1223 and q = 1987 and computes
her public modulus

N = p · q = 1223 · 1987 = 2430101.

• Samantha chooses a public verification exponent e = 948047 with the
property that

gcd
(
e, (p− 1)(q − 1)

)
= gcd(948047, 2426892) = 1.

RSA Signing
• Samantha computes her private signing key d using the secret values of p

and q to compute (p− 1)(q− 1) = 1222 · 1986 = 2426892 and then solving
the congruence

ed ≡ 1
(
mod(p− 1)(q − 1)

)
, 948047 · d ≡ 1 (mod 2426892).

She finds that d = 1051235.
• Samantha selects a digital document to sign,

D = 1070777 with 1 ≤ D < N.

She computes the digital signature

S ≡ Dd (mod N), S ≡ 10707771051235 ≡ 153337 (mod 2430101).

• Samantha publishes the document and signature

D = 1070777 and S = 153337.

RSA Verification
• Victor uses Samantha’s public modulus N and verification exponent e to
compute

Se mod N, 153337948047 ≡ 1070777 (mod 2430101).

He verifies that the value of Se modulo N is the same as the value of the
digital document D = 1070777.

4.3 Elgamal Digital Signatures and DSA

The transition from RSA encryption to RSA digital signatures, as described
in Sect. 4.2, is quite straightforward. This is not true for discrete logarithm
based encryption schemes such as Elgamal (Sect. 2.4).

An Elgamal-style digital signature scheme was put forward in 1985, and a
modified version called the Digital Signature Algorithm (DSA), which allows
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shorter signatures, was proposed in 1991 and officially published as a national
Digital Signature Standard (DSS) in 1994; see [98]. We start with the Elgamal
scheme, which is easier to understand, and then explain how DSA works.

Samantha, or some trusted third party, chooses a large prime p and a
primitive root g modulo p. Samantha next chooses a secret signing exponent a
and computes

A ≡ ga (mod p).

The quantity a, together with the public parameters p and g, form Samantha’s
public verification key.

Suppose now that Samantha wants to sign a digital document D, where D
is an integer satisfying 1 < D < p. She chooses a random element 1 < k < p
satisfying gcd(k, p− 1) = 1 and computes the two quantities

S1 ≡ gk (mod p) and S2 ≡ (D − aS1)k
−1 (mod p− 1). (4.2)

Notice that S2 is computed modulo p − 1, not modulo p. Samantha’s digital
signature on the document D is the pair (S1, S2).

Victor verifies the signature by checking that

AS1SS2
1 mod p is equal to gD mod p.

The Elgamal digital signature algorithm is illustrated in Table 4.2.
Why does Elgamal work? When Victor computes AS1SS2

1 , he is actually
computing

AS1 · SS2
1 ≡ gaS1 · gkS2

≡ gaS1+kS2 ≡ gaS1+k(D−aS1)k
−1 ≡ gaS1+(D−aS1) ≡ gD (mod p),

so verification returns TRUE for a valid signature.
Notice the significance of choosing S2 modulo p − 1. The quantity S2

appears as an exponent of g, and we know that gp−1 ≡ 1 (mod p), so in the
expression gS2 mod p, we may replace S2 by any quantity that is congruent
to S2 modulo p− 1.

If Eve knows how to solve the discrete logarithm problem, then she can
solve ga ≡ A (mod p) for Samantha’s private signing key a, and thence can
forge Samantha’s signature. However, it is not at all clear that this is the only
way to forge an Elgamal signature. Eve’s task is as follows. Given the values
of A and gD, Eve must find integers x and y satisfying

Axxy ≡ gD (mod p). (4.3)

The congruence (4.3) is a rather curious one, because the variable x appears
as both a base and an exponent. Using discrete logarithms to the base g, we
can rewrite (4.3) as

logg(A)x+ y logg(x) ≡ D (mod p− 1). (4.4)
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Public parameter creation
A trusted party chooses and publishes a large prime p

and primitive root g modulo p.

Samantha Victor

Key creation
Choose secret signing key

1 ≤ a ≤ p− 1.
Compute A = ga (mod p).
Publish the verification key A.

Signing
Choose document D mod p.
Choose random element 1 < k < p

satisfying gcd(k, p− 1) = 1.
Compute signature
S1 ≡ gk (mod p) and
S2 ≡ (D− aS1)k

−1 (mod p− 1).
Verification

Compute AS1S
S2
1 mod p.

Verify that it is equal to gD mod p.

Table 4.2: The Elgamal digital signature algorithm

If Eve can solve the discrete logarithm problem, she can take an arbitrary value
for x, compute logg(A) and logg(x), and then solve (4.4) for y. At present,
this is the only known method for finding a solution to (4.4).

Remark 4.6. There are many subtleties associated to using an ostensibly se-
cure digital signature scheme such as Elgamal. See Exercises 4.7 and 4.8 for
some examples of what can go wrong.

Example 4.7. Samantha chooses the prime p = 21739 and primitive root
g = 7. She selects the secret signing key a = 15140 and computes her public
verification key

A ≡ ga ≡ 715140 ≡ 17702 (mod 21739).

She signs the digital document D = 5331 using the random element k = 10727
by computing

S1 ≡ gk ≡ 710727 ≡ 15775 (mod 21739),

S2 ≡ (D − aS1)k
−1 ≡ (5331− 15140 · 15775) · 6353 ≡ 791 (mod 21738).

Samantha publishes the signature (S1, S2) = (15775, 791) and the digital doc-
ument D = 5331. Victor verifies the signature by computing

AS1SS2
1 ≡ 1770215775 · 15775791 ≡ 13897 (mod 21739)



4.3. Elgamal Digital Signatures and DSA 201

and verifying that it agrees with

gD ≡ 75331 ≡ 13897 (mod 21739).

An Elgamal signature (S1, S2) consists of one number modulo p and one
number modulo p− 1, so has length approximately 2 log2(p) bits. In order to
be secure against index calculus attacks on the discrete logarithm problem,
the prime p is generally taken to be between 1000 and 2000 bits, so signatures
are between 2000 and 4000 bits.

The Digital Signature Algorithm (DSA) significantly shortens the signa-
ture by working in a subgroup of F∗

p of prime order q. The underlying assump-
tion is that using the index calculus to solve the discrete logarithm problem
in the subgroup is no easier than solving it in F

∗
p. So it suffices to take a sub-

group in which it is infeasible to solve the discrete logarithm problem using a
collision algorithm. We now describe the details of DSA.

Samantha, or some trusted third party, chooses two primes p and q with

p ≡ 1 (mod q).

(In practice, typical choices satisfy 21000 < p < 22000 and 2160 < q < 2320.)
She also chooses an element g ∈ F

∗
p of exact order q. This is easy to do. For

example, she can take

g = g
(p−1)/q
1 for a primitive root g1 in Fp.

Samantha chooses a secret exponent a and computes

A ≡ ga (mod p).

The quantity A, together with the public parameters (p, q, g), form
Samantha’s public verification key.

Suppose now that Samantha wants to sign a digital document D, where D
is an integer satisfying 1 ≤ D < q. She chooses a random element k in the
range 1 < k < q and computes the two quantities

S1 = (gk mod p) mod q and S2 ≡ (D + aS1)k
−1 (mod q). (4.5)

Notice the similarity between (4.5) and the Elgamal signature (4.2). However,
there is an important difference, since when computing S1 in (4.5), Samantha
first computes gk mod p as an integer in the range from 1 to p− 1, and then
she reduces modulo q to obtain an integer in the range from 1 to q − 1.
Samantha’s digital signature on the document D is the pair (S1, S2), so the
signature consists of two numbers modulo q.

Victor verifies the signature by first computing

V1 ≡ DS−1
2 (mod q) and V2 ≡ S1S

−1
2 (mod q).

He then checks that
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Public parameter creation
A trusted party chooses and publishes large primes p and q satisfying

p ≡ 1 (mod q) and an element g of order q modulo p.

Samantha Victor

Key creation
Choose secret signing key

1 ≤ a ≤ q − 1.
Compute A = ga (mod p).
Publish the verification key A.

Signing
Choose document D mod q.
Choose random element 1 < k < q.
Compute signature

S1 ≡ (gk mod p) mod q and
S2 ≡ (D + aS1)k

−1 (mod q).
Verification

Compute V1 ≡ DS−1
2 (mod q) and

V2 ≡ S1S
−1
2 (mod q).

Verify that
(gV1AV2 mod p) mod q = S1.

Table 4.3: The digital signature algorithm (DSA)

(gV1AV2 mod p) mod q is equal to S1.

The digital signature algorithm (DSA) is illustrated in Table 4.3.

DSA seems somewhat complicated, but it is easy to check that it works.
Thus Victor computes

gV1AV2 (mod p) ≡ gDS−1
2 gaS1S

−1
2 since V1 ≡ DS−1

2 and V2 ≡ S1S
−1
2

and A ≡ ga,

≡ g(D+aS1)S
−1
2 (mod p)

≡ gk (mod p) since S2 ≡ (D + aS1)k
−1.

Hence

(gV1AV2 mod p) mod q = (gk mod p) mod q = S1.

Example 4.8. We illustrate DSA with a small numerical example. Samantha
uses the public parameters

p = 48731, q = 443, and g = 5260.
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(The element g was computed as g ≡ 748730/443 (mod 48731), where 7 is a
primitive root modulo 48731.) Samantha chooses the secret signing key a =
242 and publishes her public verification key

A ≡ 5260242 ≡ 3438 (mod 48731).

She signs the document D = 343 using the random element k = 427 by
computing the two quantities

S1 = (5260427 mod 48731) mod 443 = 2727 mod 443 = 59,

S2 ≡ (343 + 343 · 59)427−1 ≡ 166 (mod 443).

Samantha publishes the signature (S1, S2) = (59, 166) for the document
D = 343.

Victor verifies the signature by first computing

V1 ≡ 343 · 166−1 ≡ 357 (mod 443) and V2 ≡ 59 · 166−1 ≡ 414 (mod 443).

He then computes

gV1AV2 ≡ 5260357 · 3438414 ≡ 2717 (mod 48731)

and checks that

(gV1AV2 mod 48731) mod 443 = 2717 mod 443 = 59

is equal to S1 = 59.

Both the Elgamal digital signature scheme and DSA can be adapted to
other groups in which the discrete logarithm problem is ostensibly more diffi-
cult to solve. In particular, the use of elliptic curve groups leads to the Elliptic
Curve Digital Signature Algorithm (ECDSA), which is described in Sect. 6.4.3.

Exercises

Section 4.2. RSA Digital Signatures

4.1. Samantha uses the RSA signature scheme with primes p = 541 and q = 1223
and public verification exponent e = 159853.
(a) What is Samantha’s public modulus? What is her private signing key?

(b) Samantha signs the digital document D = 630579. What is the signature?

4.2. Samantha uses the RSA signature scheme with public modulus N = 1562501
and public verification exponent e = 87953. Adam claims that Samantha has signed
each of the documents

D = 119812, D′ = 161153, D′′ = 586036,

and that the associated signatures are

S = 876453, S′ = 870099, S′′ = 602754.

Which of these are valid signatures?
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4.3. Samantha uses the RSA signature scheme with public modulus and public
verification exponent

N = 27212325191 and e = 22824469379.

Use whatever method you want to factor N , and then forge Samantha’s signature
on the document D = 12910258780.

4.4. Suppose that Alice and Bob communicate using the RSA PKC. This means
that Alice has a public modulus NA = pAqA, a public encryption exponent eA, and a
private decryption exponent dA, where pA and qA are primes and eA and dA satisfy

eAdA ≡ 1
(
mod (pA − 1)(qA − 1)

)
.

Similarly, Bob has a public modulus NB = pBqB , a public encryption exponent eB ,
and a private decryption exponent dB .

In this situation, Alice can simultaneously encrypt and sign a message in the
following way. Alice chooses her plaintextm and computes the usual RSA ciphertext

c ≡ meB (mod NB).

She next applies a hash function to her plaintext and uses her private decryption
key to compute

s ≡ Hash(m)dA (mod NA).

She sends the pair (c, s) to Bob.
Bob first decrypts the ciphertext using his private decryption exponent dB ,

m ≡ cdB (mod NB).

He then uses Alice’s public encryption exponent eA to verify that

Hash(m) ≡ seA (mod NA).

Explain why verification works, and why it would be difficult for anyone other
than Alice to send Bob a validly signed message.

Section 4.3. Discrete Logarithm Digital Signatures

4.5. Samantha uses the Elgamal signature scheme with prime p = 6961 and primi-
tive root g = 437.
(a) Samantha’s private signing key is a = 6104. What is her public verification

key?

(b) Samantha signs the digital document D = 5584 using the random element
k = 4451. What is the signature?

4.6. Samantha uses the Elgamal signature scheme with prime p = 6961 and prim-
itive root g = 437. Her public verification key is A = 4250. Adam claims that
Samantha has signed each of the documents

D = 1521, D′ = 1837, D′′ = 1614,

and that the associated signatures are

(S1, S2) = (4129, 5575), (S′
1, S

′
2) = (3145, 1871), (S′′

1 , S
′′
2 ) = (2709, 2994).

Which of these are valid signatures?
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4.7. Let p be a prime, let i and j be integers with gcd(j, p − 1) = 1, and let A be
arbitrary. Set

S1 ≡ giAj (mod p), S2 ≡ −S1j
−1 (mod p− 1), D ≡ −S1ij

−1 (mod p− 1).

Prove that (S1, S2) is a valid Elgamal signature on the document D for the verifi-
cation key A. Thus Eve can produce signatures on random documents.

4.8. Suppose that Samantha is using the Elgamal signature scheme and that she is
careless and uses the same random element k to sign two documents D and D′.
(a) Explain how Eve can tell at a glance whether Samantha has made this mistake.

(b) If the signature on D is (S1, S2) and the signature on D′ is (S′
1, S

′
2), explain

how Eve can recover a, Samantha’s private signing key.

(c) Apply your method from (b) to the following example and recover Samantha’s
signing key a, where Samantha is using the prime p = 348149, base g = 113459,
and verification key A = 185149.

D = 153405, S1 = 208913, S2 = 209176,

D′ = 127561, S′
1 = 208913, S′

2 = 217800.

4.9. Samantha uses DSA with public parameters (p, q, g) = (22531, 751, 4488). She
chooses the secret signing key a = 674.
(a) What is Samantha’s public verification key?

(b) Samantha signs the document D = 244 using the random element k = 574.
What is the signature?

4.10. Samantha uses DSA with public parameters (p, q, g) = (22531, 751, 4488). Her
public verification key is A = 22476.
(a) Is (S1, S2) = (183, 260) a valid signature on the document D = 329?

(b) Is (S1, S2) = (211, 97) a valid signature on the document D = 432?

4.11. Samantha’s DSA public parameters are (p, q, g) = (103687, 1571, 21947), and
her public verification key is A = 31377. Use whatever method you prefer (brute-
force, collision, index calculus,. . . ) to solve the DLP and find Samantha’s private
signing key. Use her key to sign the document D = 510 using the random element
k = 1105.



Chapter 5

Combinatorics, Probability,
and Information Theory

In considering the usefulness and practicality of a cryptographic system, it is
necessary to measure its resistance to various forms of attack. Such attacks
include simple brute-force searches through the key or message space, some-
what faster searches via collision or meet-in-the-middle algorithms, and more
sophisticated methods that are used to compute discrete logarithms, factor
integers, and find short vectors in lattices. We have already studied some of
these algorithms in Chaps. 2 and 3, and we will see the others in this and later
chapters. In studying these algorithms, it is important to be able to analyze
how long they take to solve the targeted problem. Such an analysis generally
requires tools from combinatorics, probability theory, and information theory.
In this chapter we present, in a largely self-contained form, an introduction
to these topics.

We start with basic principles of counting, and continue with the devel-
opment of the foundations of probability theory, primarily in the discrete set-
ting. Subsequent sections introduce (discrete) random variables, probability
density functions, conditional probability and Bayes’s formula. The applica-
tions of probability theory to cryptography are legion. We cover in some detail
Monte Carlo algorithms and collision algorithms and their uses in cryptogra-
phy. We also include a section on the statistical cryptanalysis of a historically
interesting polyalphabetic substitution cipher called the Vigenère cipher, but
we note that the material on the Vigenère cipher is not used elsewhere in the
book, so it may be omitted by the reader who wishes to proceed more rapidly
to the more modern cryptographic material.

© Springer Science+Business Media New York 2014
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The chapter concludes with a very short introduction to the concept of
complexity and the notions of polynomial-time and nondeterministic polyno-
mial-time algorithms. This section, if properly developed, would be a book in
itself, and we can only give a hint of the powerful ideas and techniques used
in this subject.

5.1 Basic Principles of Counting

As I was going to St. Ives,
I met a man with seven wives,

Each wife had seven sacks,
Each sack had seven cats.

Each cat had seven kits.
Kits, cats, sacks, and wives,

How many were going to St. Ives?

The trick answer to this ancient riddle is that there is only one person going
to St. Ives, namely the narrator, since all of the other people and animals
and objects that he meets in the rhyme are not traveling to St. Ives, they are
traveling away from St. Ives! However, if we are in a pedantic, rather than a
clever, frame of mind, we might instead ask the natural question: How many
people, animals, and objects does the narrator meet?

The answer is

2801 = 1︸︷︷︸
man

+ 7︸︷︷︸
wives

+ 72︸︷︷︸
sacks

+ 73︸︷︷︸
cats

+ 74︸︷︷︸
kits

.

The computation of this number employs basic counting principles that are
fundamental to the probability calculations used in cryptography and in many
other areas of mathematics. We have already seen an example in Sect. 1.1.1,
where we computed the number of different simple substitution ciphers.

A cipher is said to be combinatorially secure if it is not feasible to break
the system by exhaustively checking every possible key.1 This depends to
some extent on how long it takes to check each key, but more importantly,
it depends on the number of keys. In this section we develop some basic
counting techniques that are used in a variety of ways to analyze the security
of cryptographic constructions.

Example 5.1 (A Basic Counting Principle). Bob is at a restaurant that
features two appetizers, egg rolls and fried wontons, and 20 main dishes. As-
suming that he plans to order one appetizer and one main dish, how many
possible meals could Bob order?

We need to count the number of pairs (x, y), where x is either “egg roll” or
“fried wonton” and y is a main dish. The total number is obtained by letting x

1Sometimes the length of the search can be significantly shortened by matching pieces of
keys taken from two or more lists. Such an attack is called a collision or meet-in-the-middle
attack; see Sect. 5.4.
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vary over the 2 possibilities and letting y vary over the 20 possibilities, and
then counting up the total number of pairs

(ER, 1), (ER, 2), . . . , (ER, 20), (FW, 1), (FW, 2), . . . , (FW, 20).

The answer is that there are 40 possibilities, which we compute as

40 = 2︸︷︷︸
appetizers

· 20︸︷︷︸
main dishes

.

In this example, we first counted the number of ways of assigning an appe-
tizer (egg roll or fried wonton) to the variable x. It is convenient to view this
assignment as the outcome of an experiment. That is, we perform an experi-
ment whose outcome is either “egg roll” or “fried wonton,” and we assign the
outcome’s value to x. Similarly, we perform a second independent experiment
whose possible outcomes are any one of the 20 main courses, and we assign
that value to y. The total number of outcomes of the two experiments is the
product of the number of outcomes for each one individually. This leads to
the following basic counting principle:

Basic Counting Principle
If two experiments are performed, one of which
has n possible outcomes and the other of which
has m possible outcomes, then there are nm
possible outcomes of performing both experi-
ments.

More generally, if k independent experiments are performed and if the
number of possible outcomes of the ith experiment is ni, then the total number
of outcomes for all of the experiments is the product n1n2 · · ·nk. It is easy to
derive this result by writing xi for the outcome of the ith experiment. Then
the outcome of all k experiments is the value of the k-tuple (x1, x2, . . . , xk),
and the total number of possible k-tuples is the product n1n2 · · ·nk.
Example 5.2. Suppose that Bob also wants to order dessert, and that there
are five desserts on the menu. We are now counting triples (x, y, z), where x
is one of the two appetizers, y is one of the 20 main dishes, and z is one of
the five desserts. Hence the total number of meals is

200 = 2︸︷︷︸
appetizers

· 20︸︷︷︸
main courses

· 5︸︷︷︸
desserts

.

The basic counting principle is used in the solution of the pedantic version
of the St. Ives problem. For example, the number of cats traveling from St.
Ives is

# of cats = 343 = 73 = 1︸︷︷︸
man

· 7︸︷︷︸
wives

· 7︸︷︷︸
sacks

· 7︸︷︷︸
cats

.

The earliest published version of the St. Ives riddle dates to around 1730, but
similar problems date back to antiquity; see Exercise 5.1.



210 5. Combinatorics, Probability, and Information Theory

5.1.1 Permutations

The numbers 1, 2, . . . , 10 are typically listed in increasing order, but suppose
instead we allow the order to be mixed. Then how many different ways are
there to list these ten integers? Each possible configuration is called a permu-
tation of 1, 2, . . . , 10. The problem of counting the number of possible permu-
tations of a given list of objects occurs in many forms and contexts throughout
mathematics.

Each permutation of 1, 2, . . . , 10 is a sequence of all ten distinct integers
in some order. For example, here is a random choice: 8, 6, 10, 3, 9, 2, 4, 7, 5, 1.
How can we create all of the possibilities? It’s easiest to create them by listing
the numbers one at a time, say from left to right. We thus start by assigning a
number to the first position. There are ten choices. Next we assign a number
to the second position, but for the second position there are only nine choices,
because we already used up one of the integers in the first position. (Remember
that we are not allowed to use an integer twice.) Then there are eight integers
left as possibilities for the third position, because we already used two integers
in the first two positions. And so on. Hence the total number of permutations
of 1, 2, . . . , 10 is

10! = 10 · 9 · 8 · · · 2 · 1.

The value of 10! is 3628800, so between three and four million.
Notice how we are using the basic counting principle. The only subtlety

is that the outcome of the first experiment reduces the number of possible
outcomes of the second experiment, the results of the first two experiments
further reduce the number of possible outcomes of the third experiment, and
so on.

Definition. Let S be a set containing n distinct objects. A permutation of S
is an ordered list of the objects in S. A permutation of the set {1, 2, . . . , n} is
simply called a permutation of n.

Proposition 5.3. Let S be a set containing n distinct objects. Then there are
exactly n! different permutations of S.

Proof. Our discussion of the permutations of {1, . . . , 10} works in general.
Thus suppose that S contains n objects and that we want to create a permu-
tation of S. There are n choices for the first entry, then n− 1 choices for the
second entry, then n− 2 choices for the third entry, etc. This leads to a total
of n · (n− 1) · (n− 2) · · · 2 · 1 possible permutations.

Remark 5.4 (Permutations and Simple Substitution Ciphers). By definition,
a permutation of the set {a1, a2, . . . , an} is a list consisting of the ai’s in some
order. We can also describe a permutation by using a bijective (i.e., one-to-one
and onto) function

π : {1, 2, . . . , n} −→ {1, 2, . . . , n}.
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The function π determines the permutation

(aπ(1), aπ(2), . . . , aπ(n)),

and given a permutation, it is easy to write down the corresponding function.
Now suppose that we take the set of letters {A, B, C, . . . , Z}. A permuta-

tion π of this set is just another name for a simple substitution cipher, where π
acts as the encryption function. Thus π tells us that A gets sent to the π(1)st
letter, and B gets sent to the π(2)nd letter, and so on. In order to decrypt, we
use the inverse function π−1.

Example 5.5. Sometimes one needs to count the number of possible permuta-
tions of n objects when some of the objects are indistinguishable. For example,
there are six permutations of three distinct objects A,B,C,

ABC, CAB, BCA, ACB, BAC, and CBA,

but if two of them are indistinguishable, say A,A,B, then there are only three
different arrangements,

AAB, ABA, and BAA.

To illustrate the idea in a more complicated case, we count the number
of different letter arrangements of the five letters A,A,A,B,B. If the five
letters were distinguishable, say they were labeled A1, A2, A3, B1, B2, then
there would be 5! permutations. However, permutations such as

A1A2B1B2A3 and A2A3B2B1A1

become the same when the subscripts are dropped, so we have overcounted
in arriving at the number 5!. How many different arrangements have been
counted more than once?

For example, in any particular permutation, the two B’s have been placed
into specific positions, but we can always switch them and get the same un-
subscripted list. This means that we need to divide 5! by 2 to compensate
for overcounting the placement of the B’s. Similarly, once the three A’s have
been placed into specific positions, we can permute them among themselves
in 3! ways, so we need to divide 5! by 3! to compensate for overcounting the
placement of the A’s. Hence there are 5!

3!·2! = 10 different letter arrangements
of the five letters A,A,A,B,B.

5.1.2 Combinations

A permutation is a way of arranging a set of objects into a list. A combination
is similar, except that now the order of the list no longer matters. We start
with an example that is typical of problems involving combinations.
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Example 5.6. Five people (Alice, Bob, Carl, Dave, and Eve2) are ordering
a meal at a Chinese restaurant. The menu contains 20 different items. Each
person gets to choose one dish, no dish may be ordered twice, and they plan
to share the food. How many different meals are possible?

Alice orders first and she has 20 choices for her dish. Then Bob orders from
the remaining 19 dishes, and then Carl chooses from the remaining 18 dishes,
and so on. It thus appears that there are 20 · 19 · 18 · 17 · 16 = 1860480 possi-
ble meals. However, the order in which the dishes are ordered is immaterial.
If Alice orders fried rice and Bob orders egg rolls, or if Alice orders egg rolls
and Bob orders fried rice, the meal is the same. Unfortunately, we did not
take this into account when we arrived at the number 1860480.

Let’s number the dishes D1, D2, . . . , D20. Then, for example, we want to
count the two possible dinners

D1, D5, D7, D18, D20 and D5, D18, D20, D7, D1

as being the same, although the order of the dishes is different. To correct the
overcount, note that in the computation 20 · 19 · 18 · 17 · 16 = 1860480, every
permutation of any set of five dishes was counted separately, but we really
want to count these permutations as giving the same meal. Thus we should
divide 1860480 by the number of ways to permute the five distinct dishes in
each possible order, i.e., we should divide by 5!. Hence the total number of
different meals is

20 · 19 · 18 · 17 · 16
5!

= 15504.

It is often convenient to rewrite this quantity entirely in terms of factorials
by multiplying the numerator and the denominator by 15! to get

20 · 19 · 18 · 17 · 16
5!

=
(20 · 19 · 18 · 17 · 16) · (15 · 14 · · · 3 · 2 · 1)

5! · 15! =
20!

5! · 15! .

Definition. Let S be a set containing n distinct objects. A combination of r
objects of S is a subset consisting of exactly r distinct elements of S, where
the order of the objects in the subset does not matter.

Proposition 5.7. The number of possible combinations of r objects chosen
from a set of n objects is equal to

(
n

r

)
=

n!

r!(n− r)! .

Remark 5.8. The symbol
(
n
r

)
is called a combinatorial symbol or a binomial

coefficient. It is read as “n choose r.” Note that by convention, zero factorial
is set equal to 1, so

(
n
0

)
= n!

n!·0! = 1. This makes sense, since there is only one
way to choose zero objects from a set.

2You may wonder why Alice and Bob, those intrepid exchangers of encrypted secret
messages, are sitting down for a meal with their cryptographic adversary Eve. In the real
world, this happens all the time, especially at cryptography conferences!
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Proof of Proposition 5.7. If you understand the discussion in Example 5.6,
then the proof of the general case is clear. The number of ways to make an
ordered list of r distinct elements from the set S is

n(n− 1)(n− 2) · · · (n− r + 1),

since there are n choices for the first element, then n− 1 choices for the second
element, and so on until we have selected r elements. Then we need to divide
by r! in order to compensate for the ways to permute the r elements in our
subset. Dividing by r! accounts for the fact that we do not care in which order
the r elements were chosen. Hence the total number of combinations is

n(n− 1)(n− 2) · · · (n− r + 1)

r!
=

n!

r!(n− r)! .

Example 5.9. Returning to the five people ordering a meal at the Chinese
restaurant, suppose that they want the order to consist of two vegetarian
dishes and three meat dishes, and suppose that the menu contains 5 vege-
tarian choices and 15 meat choices. Now how many possible meals can they
order? There are

(
5
2

)
possibilities for the two vegetarian dishes and there

are
(
15
3

)
choices for the three meat dishes. Hence by our basic counting prin-

ciple, there are (
5

2

)
·
(
15

3

)
= 10 · 455 = 4550

possible meals.

5.1.3 The Binomial Theorem

You may have seen the combinatorial numbers
(
n
r

)
appearing in the binomial

theorem,3 which gives a formula for the nth power of the sum of two numbers.

Theorem 5.10 (The Binomial Theorem).

(x+ y)n =

n∑

j=0

(
n

j

)
xjyn−j . (5.1)

Proof. Let’s start with a particular case, say n = 3. If we multiply out the
product

3The binomial theorem’s fame extends beyond mathematics. Moriarty, Sherlock
Holmes’s arch enemy, “wrote a treatise upon the Binomial Theorem,” on the strength of
which he won a mathematical professorship. And Major General Stanley, that very Model
of a Modern Major General, proudly informs the Pirate King and his cutthroat band:

About Binomial Theorem I’m teeming with a lot o’ news—
With many cheerful facts about the square of the hypotenuse.
(The Pirates of Penzance, W.S. Gilbert and A. Sullivan 1879)
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(x+ y)3 = (x+ y) · (x+ y) · (x+ y), (5.2)

the result is a sum of terms x3, x2y, xy2, and y3. There is only one x3 term,
since to get x3 we must take x from each of the three factors in (5.2). How
many copies of x2y are there? We can get x2y in several ways. For example,
we could take x from the first two factors and y from the last factor. Or we
could take x from the first and third factors and take y from the second factor.
Thus we get x2y by choosing two of the three factors in (5.2) to give x (note
that the order doesn’t matter), and then the remaining factor gives y. There
are thus

(
3
2

)
= 3 ways to get x2y. Similarly, there are

(
3
1

)
= 3 ways to get xy2

and only one way to get y3. Hence

(x+ y)3 =

(
3

3

)
x3 +

(
3

2

)
x2y +

(
3

1

)
xy2 +

(
3

0

)
y3 = x3 + 3x2y + 3xy2 + y3.

The general case is exactly the same. When multiplied out, the product

(x+ y)n = (x+ y) · (x+ y) · (x+ y) · · · (x+ y) (5.3)

is a sum of terms xn, xn−1y, . . . , xyn−1, yn. We get copies of xjyn−j by choos-
ing x from any j of the factors in (5.3) and then taking y from the other n− j
factors. Thus we get

(
n
j

)
copies of xjyn−j . Summing over the possible values

of j gives (5.1), which completes the proof of the binomial theorem.

Example 5.11. We use the binomial theorem to compute

(2t+ 3)4 =

(
4

4

)
(2t)4 +

(
4

3

)
(2t)3 · 3 +

(
4

2

)
(2t)2 · 32 +

(
4

1

)
2t · 33 +

(
4

0

)
34

= 16t4 + 4 · 8t3 · 3 + 6 · 4t2 · 9 + 4 · 2t · 27 + 81

= 16t4 + 96t3 + 216t2 + 216t+ 81.

5.2 The Vigenère Cipher

The simple substitution ciphers that we studied in Sect. 1.1 are examples of
monoalphabetic ciphers, since every plaintext letter is encrypted using only
one cipher alphabet. As cryptanalytic methods became more sophisticated in
Renaissance Italy, correspondingly more sophisticated ciphers were invented
(although it seems that they were seldom used in practice). Consider how
much more difficult a task is faced by the cryptanalyst if every plaintext
letter is encrypted using a different ciphertext alphabet. This ideal resurfaces
in modern cryptography in the form of the one-time pad, which we discuss
in Sect. 5.6, but in this section we discuss a less complicated polyalphabetic
cipher called the Vigenère cipher4 dating back to the sixteenth century.

4This cipher is named after Blaise de Vigenère (1523–1596), whose 1586 book Traicté
des Chiffres describes the known ciphers of his time. These include polyalphabetic ciphers
such as the “Vigenère cipher,” which according to [63] Vigenère did not invent, and an
ingenious autokey system (see Exercise 5.19), which he did.
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The Vigenère cipher works by using different shift ciphers to encrypt dif-
ferent letters. In order to decide how far to shift each letter, Bob and Alice
first agree on a keyword or phrase. Bob then uses the letters of the keyword,
one by one, to determine how far to shift each successive plaintext letter. If the
keyword letter is a, there is no shift, if the keyword letter is b, he shifts by 1,
if the keyword letter is c, he shifts by 2, and so on. An example illustrates the
process:

Example 5.12. Suppose that the keyword is dog and the plaintext is yellow.
The first letter of the keyword is d, which gives a shift of 3, so Bob shifts
the first plaintext letter y forward by 3, which gives the ciphertext letter b.
(Remember that a follows z.) The second letter of the keyword is o, which
gives a shift of 14, so Bob shifts the second plaintext letter e forward by 14,
which gives the ciphertext letter s. The third letter of the keyword is g, which
gives a shift of 6, so Bob shifts the third plaintext letter l forward by 6, which
gives the ciphertext letter r.

Bob has run out of keyword letters, so what does he do now? He simply
starts again with the first letter of the keyword. The first letter of the keyword
is d, which again gives a shift of 3, so Bob shifts the fourth plaintext letter l
forward by 3, which gives the ciphertext letter o. Then the second keyword
letter o tells him to shift the fifth plaintext letter o forward by 14, giving the
ciphertext letter c, and finally the third keyword letter g tells him to shift the
sixth plaintext letter w forward by 6, giving the ciphertext letter c.

In conclusion, Bob has encrypted the plaintext yellow using the keyword
dog and obtained the ciphertext bsrocc.

Even this simple example illustrates two important characteristics of the
Vigenère cipher. First, the repeated letters ll in the plaintext lead to non-
identical letters ro in the ciphertext, and second, the repeated letters cc in the
ciphertext correspond to different letters ow of the plaintext. Thus a straight-
forward frequency analysis as we used to cryptanalyze simple substitution
ciphers (Sect. 1.1.1) is not going to work for the Vigenère cipher.

A useful tool for doing Vigenère encryption and decryption, at least if no
computer is available (as was typically the case in the sixteenth century!), is
the so-called Vigenère tableau illustrated in Table 5.1. The Vigenère tableau
consists of 26 alphabets arranged in a square, with each alphabet shifted one
further than the alphabet to its left. In order to use a given keyword letter
to encrypt a given plaintext letter, Bob finds the plaintext letter in the top
row and the keyword letter in the first column. He then looks for the letter in
the tableau lying below the plaintext letter and to the right of the keyword
letter. That is, he locates the encrypted letter at the intersection of the row
beginning with the keyword letter and the column with the plaintext letter
on top.

For example, if the keyword letter is d and the plaintext letter is y, Bob
looks in the fourth row (which is the one that starts with d) and in the next
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a b c d e f g h i j k l m n o p q r s t u v w x y z

b c d e f g h i j k l m n o p q r s t u v w x y z a

c d e f g h i j k l m n o p q r s t u v w x y z a b

d e f g h i j k l m n o p q r s t u v w x y z a b c

e f g h i j k l m n o p q r s t u v w x y z a b c d

f g h i j k l m n o p q r s t u v w x y z a b c d e

g h i j k l m n o p q r s t u v w x y z a b c d e f

h i j k l m n o p q r s t u v w x y z a b c d e f g

i j k l m n o p q r s t u v w x y z a b c d e f g h

j k l m n o p q r s t u v w x y z a b c d e f g h i

k l m n o p q r s t u v w x y z a b c d e f g h i j

l m n o p q r s t u v w x y z a b c d e f g h i j k

m n o p q r s t u v w x y z a b c d e f g h i j k l

n o p q r s t u v w x y z a b c d e f g h i j k l m

o p q r s t u v w x y z a b c d e f g h i j k l m n

p q r s t u v w x y z a b c d e f g h i j k l m n o

q r s t u v w x y z a b c d e f g h i j k l m n o p

r s t u v w x y z a b c d e f g h i j k l m n o p q

s t u v w x y z a b c d e f g h i j k l m n o p q r

t u v w x y z a b c d e f g h i j k l m n o p q r s

u v w x y z a b c d e f g h i j k l m n o p q r s t

v w x y z a b c d e f g h i j k l m n o p q r s t u

w x y z a b c d e f g h i j k l m n o p q r s t u v

x y z a b c d e f g h i j k l m n o p q r s t u v w

y z a b c d e f g h i j k l m n o p q r s t u v w x

z a b c d e f g h i j k l m n o p q r s t u v w x y

• Find the plaintext letter in the top row.

• Find the keyword letter in the first column.

• The ciphertext letter lies below the plaintext letter and to the right of
the keyword letter.

Table 5.1: The Vigenère Tableau
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to last column (which is the one headed by y). This row and column intersect
at the letter b, so the corresponding ciphertext letter is b.

Decryption is just as easy. Alice uses the row containing the keyword letter
and looks in that row for the ciphertext letter. Then the top of that column is
the plaintext letter. For example, if the keyword letter is g and the ciphertext
letter is r, Alice looks in the row starting with g until she finds r and then
she moves to the top of that column to find the plaintext letter l.

Example 5.13. We illustrate the use of the Vigenère tableau by encrypting
the plaintext message

The rain in Spain stays mainly in the plain,

using the keyword flamingo. Since the key word has eight letters, the first
step is to split the plaintext into eight-letter blocks,

theraini | nspainst | aysmainl | yinthepl | ain.

Next we write the keyword beneath each block of plaintext, where for conve-
nience we label lines P, K, and C to indicate, respectively, the plaintext, the
keyword, and the ciphertext.

P t h e r a i n i n s p a i n s t a y s m a i n l y i n t h e p l a i n

K f l a m i n g o f l a m i n g o f l a m i n g o f l a m i n g o f l a

Finally, we encrypt each letter using the Vigenère tableau. The initial plaintext
letter t and initial keyword letter f combine in the Vigenère tableau to yield
the ciphertext letter y, the second plaintext letter h and second keyword
letter l combine in the Vigenère tableau to yield the ciphertext letter s, and
so on. Continuing in this fashion, we complete the encryption process.

P t h e r a i n i n s p a i n s t a y s m a i n l y i n t h e p l a i n

K f l a m i n g o f l a m i n g o f l a m i n g o f l a m i n g o f l a

C y s e d i v t w s d p m q a y h f j s y i v t z d t n f p r v z f t n

Splitting the ciphertext into convenient blocks of five letters each, we are ready
to transmit our encrypted message

ysedi vtwsd pmqay hfjsy ivtzd tnfpr vzftn.

Remark 5.14. As we already pointed out, the same plaintext letter in a
Vigenère cipher is represented in the ciphertext by many different letters.
However, if the keyword is short, there will be a tendency for repetitive parts
of the plaintext to end up aligned at the same point in the keyword, in which
case they will be identically enciphered. This occurs in Example 5.13, where
the ain in rain and in mainly are encrypted using the same three keyword
letters ing, so they yield the same ciphertext letters ivt. This repetition in
the ciphertext, which appears separated by 16 letters, suggests that the key-
word has length dividing 16. Of course, not every occurrence of ain in the
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plaintext yields the same ciphertext. It is only when two occurrences line up
with the same part of the keyword that repetition occurs.

In the next section we develop the idea of using ciphertext repetitions to
guess the length of the keyword, but here we simply want to make the point
that short keywords are less secure than long keywords.5 On the other hand,
Bob and Alice find it easier to remember a short keyword than a long one.
We thus see the beginnings of the eternal struggle in practical (as opposed to
purely theoretical) cryptography, namely the battle between

Efficiency (and ease of use)←−−−− versus −−−−→ Security.

As a further illustration of this dichotomy, we consider ways in which
Bob and Alice might make their Vigenère-type cipher more secure. They can
certainly make Eve’s job harder by mixing up the letters in the first row of their
Vigenère tableau and then rotating this “mixed alphabet” in the subsequent
rows. Unfortunately, a mixed alphabet makes encryption and decryption more
cumbersome, plus it means that Bob and Alice must remember (or write down
for safekeeping!) not only their keyword, but also the mixed alphabet. And
if they want to be even more secure, they can use different randomly mixed
alphabets in every row of their Vigenère tableau. But if they do that, then
they will certainly need to keep a written copy of the tableau, which is a
serious security risk.

5.2.1 Cryptanalysis of the Vigenère Cipher: Theory

At various times in history it has been claimed that Vigenère-type ciphers,
especially with mixed alphabets, are “unbreakable.” In fact, nothing could be
further from the truth. If Eve knows Bob and Alice, she may be able to guess
part of the keyword and proceed from there. (How many people do you know
who use some variation of their name and birthday as an Internet password?)
But even without lucky guesses, elementary statistical methods developed in
the nineteenth century allow for a straightforward cryptanalysis of Vigenère-
type ciphers. In the interest of simplicity, we stick with the original Vigenère,
i.e., we do not allow mixed alphabets in the tableau.

You may wonder why we take the time to cryptanalyze the Vigenère cipher,
since no one these days uses the Vigenère for secure communications. The
answer is that our exposition is designed principally to introduce you to the use
of statistical tools in cryptanalysis. This builds on and extends the elementary
application of frequency tables as we used them in Sect. 1.1.1 to cryptanalyze
simple substitution ciphers. In this section we describe the theoretical tools
used to cryptanalyze the Vigenère, and in the next section we apply those
tools to decrypt a sample ciphertext. If at any point you find that the theory
in this section becomes confusing, it may help to turn to Sect. 5.2.2 and see
how the theory is applied in practice.

5More typically one uses a key phrase consisting of several words, but for simplicity we
use the term “keyword” to cover both single keywords and longer key phrases.
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The first goal in cryptanalyzing a Vigenère cipher is to find the length of
the keyword, which is sometimes called the blocksize or the period. We already
saw in Remark 5.14 how this might be accomplished by looking for repeated
fragments in the ciphertext. The point is that certain plaintext fragments
such as the occur quite frequently, while other plaintext fragments such as ugw
occur infrequently or not at all. Among the many occurrences of the letters the
in the plaintext, a certain percentage of them will line up with exactly the
same part of the keyword.

This leads to the Kasiski method, first described by a German military
officer named Friedrich Kasiski in his book Die Geheimschriften und die
Dechiffrir-kunst6 published in 1863. One looks for repeated fragments within
the ciphertext and compiles a list of the distances that separate the repeti-
tions. The key length is likely to divide many of these distances. Of course, a
certain number of repetitions will occur by pure chance, but these are random,
while the ones coming from repeated plaintext fragments are always divisible
by the key length. It is generally not hard to pick out the key length from this
data.

There is another method of guessing the key length that works with
individual letters, rather than with fragments consisting of several letters.
The underlying idea can be traced all the way back to the frequency table
of English letters (Table 1.3), which shows that some letters are more likely
to occur than others. Suppose now that you are presented with a ciphertext
encrypted using a Vigenère cipher and that you guess that it was encrypted
using a keyword of length 5. This means that every fifth letter was encrypted
using the same rotation, so if you pull out every fifth letter and form them into
a string, this entire string was encrypted using a single substitution cipher.
Hence the string’s letter frequencies should look more or less as they do in En-
glish, with some letters much more frequent and some much less frequent. And
the same will be true of the string consisting of the 2nd, 7th, 12th,. . . letters
of the ciphertext, and so on. On the other hand, if you guessed wrong and the
key length is not five, then the string consisting of every fifth letter should be
more or less random, so its letter frequencies should look different from the
frequencies in English.

How can we quantify the following two statements so as to be able to
distinguish between them?

String 1 has letter frequencies similar to those in Table 1.3. (5.4)

String 2 has letter frequencies that look more or less random. (5.5)

One method is to use the following device.

Definition. Let s = c1c2c3 · · · cn be a string of n alphabetic characters. The
index of coincidence of s, denoted by IndCo(s), is the probability that two
randomly chosen characters in the string s are identical.

6Cryptography and the Art of Decryption.
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We are going to derive a formula for the index of coincidence. It is conve-
nient to identify the letters a,. . . ,z with the numbers 0, 1, . . . , 25 respectively.
For each value i = 0, 1, 2, . . . , 25, let Fi be the frequency with which letter i
appears in the string s. For example, if the letter h appears 23 times in the
string s, then F7 = 23, since h = 7 in our labeling of the alphabet.

For each i, there are
(
Fi

2

)
= Fi(Fi−1)

2 ways to select two instances of the
ith letter of the alphabet from s, so the total number of ways to get a re-

peated letter is the sum of Fi(Fi−1)
2 for i = 0, 1, . . . , 25. On the other hand,

there are
(
n
2

)
= n(n−1)

2 ways to select two arbitrary characters from s. The
probability of selecting two identical letters is the total number of ways to
choose two identical letters divided by the total number of ways to choose
any two letters. That is,

IndCo(s) =
1

n(n− 1)

25∑

i=0

Fi(Fi − 1). (5.6)

Example 5.15. Let s be the string

s = “A bird in hand is worth two in the bush.”

Ignoring the spaces between words, s consists of 30 characters. The following
table counts the frequencies of each letter that appears at least once:

A B D E H I N O R S T U W

i 0 1 3 4 7 8 13 14 17 18 19 20 22

Fi 2 2 2 1 4 4 3 2 2 2 3 1 2

Then the index of coincidence of s, as given by (5.6), is

IndCo(s) =
1

30 · 29(2·1+2·1+2·1+4·3+4·3+3·2+· · ·+3·2+2·1) ≈ 0.0575.

We return to our two statements (5.4) and (5.5). Suppose first that the
string s consists of random characters. Then the probability that ci = cj is
exactly 1

26 , so we would expect IndCo(s) ≈ 1
26 ≈ 0.0385. On the other hand,

if s consists of English text, then we would expect the relative frequencies to
be as in Table 1.3. So for example, if s consists of 10,000 characters, we would
expect approximately 815 A’s, approximately 144 B’s, approximately 276 C’s,
and so on. Thus the index of coincidence for a string of English text should
be approximately

815 · 814 + 144 · 143 + 276 · 275 + · · ·+ 8 · 7
10000 · 9999 ≈ 0.0685.

The disparity between 0.0385 and 0.0685, as small as it may seem, provides
the means to distinguish between Statement 5.4 and Statement 5.5. More
precisely:
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If IndCo(s) ≈ 0.068, then s looks like simple substitution English. (5.7)

If IndCo(s) ≈ 0.038, then s looks like random letters. (5.8)

Of course, the value of IndCo(s) will tend to fluctuate, especially if s is fairly
short. But the moral of (5.7) and (5.8) is that larger values of IndCo(s) make it
more likely that s is English encrypted with some sort of simple substitution,
while smaller values of IndCo(s) make it more likely that s is random.

Now suppose that Eve intercepts a message s that she believes was en-
crypted using a Vigenère cipher and wants to check whether the keyword has
length k. Her first step is to break the string s into k pieces s1, s2, . . . , sk,
where s1 consists of every kth letter starting from the first letter, s2 consists
of every kth letter starting from the second letter, and so on. In mathematical
terms, if we write s = c1c2c3 . . . cn, then

si = cici+kci+2kci+3k . . . .

Notice that if Eve’s guess is correct and the keyword has length k, then each si
consists of characters that were encrypted using the same shift amount, so
although they do not decrypt to form actual words (remember that si is
every kth letter of the text), the pattern of their letter frequencies will look
like English. On the other hand, if Eve’s guess is incorrect, then the si strings
will be more or less random.

Thus for each k, Eve computes IndCo(si) for i = 1, 2, . . . , k and checks
whether these numbers are closer to 0.068 or closer to 0.038. She does this
for k = 3, 4, 5, . . . until she finds a value of k for which the average value
of IndCo(s1), IndCo(s2), . . . , IndCo(sk) is large, say greater than 0.06. Then
this k is probably the correct blocksize.

We assume now that Eve has used the Kasiski test or the index of coinci-
dence test to determine that the keyword has length k. That’s a good start,
but she’s still quite far from her goal of finding the plaintext. The next step
is to compare the strings s1, s2, . . . , sk to one another. The tool she uses to
compare different strings is called the mutual index of coincidence. The gen-
eral idea is that each of the k strings has been encrypted using a different
shift cipher. If the string si is shifted by βi and the string sj is shifted by βj ,
then one would expect the frequencies of si to best match those of sj when
the symbols in si are shifted by an additional amount

σ ≡ βj − βi (mod 26).

This leads to the following useful definition.

Definition. Let

s = c1c2c3 . . . cn and t = d1d2d3 . . . dm

be strings of alphabetic characters. The mutual index of coincidence of s
and t, denoted by MutIndCo(s, t), is the probability that a randomly chosen
character from s and a randomly chosen character from t will be the same.



222 5. Combinatorics, Probability, and Information Theory

If we let Fi(s) denote the number of times the ith letter of the alphabet
appears in the string s, and similarly for Fi(t), then the probability of choosing

the ith letter from both is the product of the probabilities Fi(s)
n and Fi(t)

m .
In order to obtain a formula for the mutual index of coincidence of s and t,
we add these probabilities over all possible letters,

MutIndCo(s, t) =
1

nm

25∑

i=0

Fi(s)Fi(t). (5.9)

Example 5.16. Let s and t be the strings

s = “A bird in hand is worth two in the bush,”

t = “A stitch in time saves nine.”

Using formula (5.9) to compute the mutual index of coincidence of s and t
yields MutIndCo(s, t) = 0.0773.

The mutual index of coincidence has very similar properties to the index
of coincidence. For example, there are analogues of the two statements (5.7)
and (5.8). The value of MutIndCo(s, t) can be used to confirm that a guessed
shift amount is correct. Thus if two strings s and t are encrypted using the
same simple substitution cipher, then MutIndCo(s, t) tends to be large, be-
cause of the uneven frequency with which letters appear. On the other hand,
if s and t are encrypted using different substitution ciphers, then they have no
relation to one another, and the mutual index of coincidence MutIndCo(s, t)
will be much smaller.

We return now to Eve’s attack on a Vigenère cipher. She knows the key
length k and has split the ciphertext into k blocks, s1, s2, . . . , sk, as usual. The
characters in each block have been encrypted using the same shift amount,
say

βi = Amount that block si has been shifted.

Eve’s next step is to compare si with the string obtained by shifting the
characters in sj by different amounts. As a notational convenience, we write

sj + σ =

(
The string sj with every character
shifted σ spots down the alphabet.

)

Suppose that σ happens to equal βi−βj . Then sj+σ has been shifted a total of
βj + σ = βi from the plaintext, so sj + σ and si have been encrypted using the
same shift amount. Hence, as noted above, their mutual index of coincidence
will be fairly large. On the other hand, if σ is not equal to βi − βj , then sj + σ
and si have been encrypted using different shift amounts, so MutIndCo(s, t)
will tend to be small.

To put this concept into action, Eve computes all of the mutual indices of
coincidence
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MutIndCo(si, sj + σ) for 1 ≤ i < j ≤ k and 0 ≤ σ ≤ 25.

Scanning the list of values, she picks out the ones that are large, say larger
than 0.065. Each large value of MutIndCo(si, sj + σ) makes it likely that

βi − βj ≡ σ (mod 26). (5.10)

(Note that (5.10) is only a congruence modulo 26, since a shift of 26 is the same
as a shift of 0.) The leads to a system of equations of the form (5.10) for the
variables β1, . . . , βk. In practice, some of these equations will be spurious, but
after a certain amount of trial and error, Eve will end up with values γ2, . . . , γk
satisfying

β2 = β1 + γ2, β3 = β1 + γ3, β4 = β1 + γ4, . . . , βk = β1 + γk.

Thus if the keyword happens to start with A, then the second letter of the
keyword would be A shifted by γ2, the third letter of the keyword would be A
shifted by γ3, and so on. Similarly, if the keyword happens to start with B,
then its second letter would be B shifted by γ2, its third letter would be B

shifted by γ3, etc. So all that Eve needs to do is try each of the 26 possible
starting letters and decrypt the message using each of the 26 corresponding
keywords. Looking at the first few characters of the 26 putative plaintexts, it
is easy for her to pick out the correct one.

Remark 5.17. We make one final remark before doing an example. We noted
earlier that among the many occurrences of the letters the in the plaintext,
a certain percentage of them will line up with exactly the same part of the
keyword. It turns out that these repeated encryptions occur much more fre-
quently than one might guess. This is an example of the “birthday paradox,”
which says that the probability of getting a match (e.g. of trigrams or birth-
days or colors) is quite high. We discuss the birthday paradox and some of its
many applications to cryptography in Sect. 5.4.

5.2.2 Cryptanalysis of the Vigenère Cipher: Practice

In this section we illustrate how to cryptanalyze a Vigenère ciphertext by
decrypting the message given in Table 5.2.

zpgdl rjlaj kpylx zpyyg lrjgd lrzhz qyjzq repvm swrzy rigzh

zvreg kwivs saolt nliuw oldie aqewf iiykh bjowr hdogc qhkwa

jyagg emisr zqoqh oavlk bjofr ylvps rtgiu avmsw lzgms evwpc

dmjsv jqbrn klpcf iowhv kxjbj pmfkr qthtk ozrgq ihbmq sbivd

ardym qmpbu nivxm tzwqv gefjh ucbor vwpcd xuwft qmoow jipds

fluqm oeavl jgqea lrkti wvext vkrrg xani

Table 5.2: A Vigenère ciphertext to cryptanalyze
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Trigram Appears at places Difference
avl 117 and 258 141 = 3 · 47
bjo 86 and 121 35 = 5 · 7
dlr 4 and 25 21 = 3 · 7
gdl 3 and 24 16 = 24

lrj 5 and 21 98 = 2 · 72
msw 40 and 138 84 = 22 · 3 · 7
pcd 149 and 233 13 = 13
qmo 241 and 254 98 = 2 · 72
vms 39 and 137 84 = 22 · 3 · 7
vwp 147 and 231 84 = 22 · 3 · 7
wpc 148 and 232 21 = 3 · 7
zhz 28 and 49 21 = 3 · 7

Table 5.3: Repeated trigrams in the ciphertext given in Table 5.2

Key Average Individual indices
length index of coincidence

4 0.038 0.034, 0.042, 0.039, 0.035
5 0.037 0.038, 0.039, 0.043, 0.027, 0.036
6 0.036 0.038, 0.038, 0.039, 0.038, 0.032, 0.033
7 0.062 0.062, 0.057, 0.065, 0.059, 0.060, 0.064, 0.064
8 0.038 0.037, 0.029, 0.038, 0.030, 0.034, 0.057, 0.040, 0.039
9 0.037 0.032, 0.036, 0.028, 0.030, 0.026, 0.032, 0.045, 0.047, 0.056

Table 5.4: Indices of coincidence of Table 5.2 for various key lengths

We begin by applying the Kasiski test. A list of repeated trigrams is given
in Table 5.3, together with their location within the ciphertext and the number
of letters that separates them. Most of the differences in the last column are
divisible by 7, and 7 is the largest number with this property, so we guess that
the keyword length is 7.

Although the Kasiski test shows that the period is probably 7, we also
apply the index of coincidence test in order to illustrate how it works. Table 5.4
lists the indices of coincidence for various choices of key length and the average
index of coincidence for each key length. We see from Table 5.4 that key
length 7 has far higher average index of coincidence than the other potential
key lengths, which confirms the conclusion from the Kasiski test.

Now that Eve knows that the key length is 7, she compares the blocks
with one another as described in Sect. 5.2.1. She first breaks the ciphertext
into seven blocks by taking every seventh letter. (Notice how the first seven
letters of the ciphertext run down the first column, the second seven down
the second column, and so on.)
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Blocks Shift amount
i j 0 1 2 3 4 5 6 7 8 9 10 11 12

1 2 0.025 0.034 0.045 0.049 0.025 0.032 0.037 0.042 0.049 0.031 0.032 0.037 0.043
1 3 0.023 0.067 0.055 0.022 0.034 0.049 0.036 0.040 0.040 0.046 0.025 0.031 0.046
1 4 0.032 0.041 0.027 0.040 0.045 0.037 0.045 0.028 0.049 0.042 0.042 0.030 0.039
1 5 0.043 0.021 0.031 0.052 0.027 0.049 0.037 0.050 0.033 0.033 0.035 0.044 0.030
1 6 0.037 0.036 0.030 0.037 0.037 0.055 0.046 0.038 0.035 0.031 0.032 0.037 0.032
1 7 0.054 0.063 0.034 0.030 0.034 0.040 0.035 0.032 0.042 0.025 0.019 0.061 0.054
2 3 0.041 0.029 0.036 0.041 0.045 0.038 0.060 0.031 0.020 0.045 0.056 0.029 0.030
2 4 0.028 0.043 0.042 0.032 0.032 0.047 0.035 0.048 0.037 0.040 0.028 0.051 0.037
2 5 0.047 0.037 0.032 0.044 0.059 0.029 0.017 0.044 0.060 0.034 0.037 0.046 0.039
2 6 0.033 0.035 0.052 0.040 0.032 0.031 0.031 0.029 0.055 0.052 0.043 0.028 0.023
2 7 0.038 0.037 0.035 0.046 0.046 0.054 0.037 0.018 0.029 0.052 0.041 0.026 0.037
3 4 0.029 0.039 0.033 0.048 0.044 0.043 0.030 0.051 0.033 0.034 0.034 0.040 0.038
3 5 0.021 0.041 0.041 0.037 0.051 0.035 0.036 0.038 0.025 0.043 0.034 0.039 0.036
3 6 0.037 0.034 0.042 0.034 0.051 0.029 0.027 0.041 0.034 0.040 0.037 0.046 0.036
3 7 0.046 0.023 0.028 0.040 0.031 0.040 0.045 0.039 0.020 0.030 0.069 0.042 0.037
4 5 0.041 0.033 0.041 0.038 0.036 0.031 0.056 0.032 0.026 0.034 0.049 0.029 0.054
4 6 0.035 0.037 0.032 0.039 0.041 0.033 0.032 0.039 0.042 0.031 0.049 0.039 0.058
4 7 0.031 0.032 0.046 0.038 0.039 0.042 0.033 0.056 0.046 0.027 0.027 0.036 0.036
5 6 0.048 0.036 0.026 0.031 0.033 0.039 0.037 0.027 0.037 0.045 0.032 0.040 0.041
5 7 0.030 0.051 0.043 0.031 0.034 0.041 0.048 0.032 0.053 0.037 0.024 0.029 0.045
6 7 0.032 0.033 0.030 0.038 0.032 0.035 0.047 0.050 0.049 0.033 0.057 0.050 0.021

Blocks Shift amount
i j 13 14 15 16 17 18 19 20 21 22 23 24 25

1 2 0.034 0.052 0.037 0.030 0.037 0.054 0.021 0.018 0.052 0.052 0.043 0.042 0.046
1 3 0.031 0.037 0.038 0.050 0.039 0.040 0.026 0.037 0.044 0.043 0.023 0.045 0.032
1 4 0.039 0.040 0.032 0.041 0.028 0.019 0.071 0.038 0.040 0.034 0.045 0.026 0.052
1 5 0.042 0.032 0.038 0.037 0.032 0.045 0.045 0.033 0.041 0.043 0.035 0.028 0.063
1 6 0.040 0.030 0.028 0.071 0.051 0.033 0.036 0.047 0.029 0.037 0.046 0.041 0.027
1 7 0.040 0.032 0.049 0.037 0.035 0.035 0.039 0.023 0.043 0.035 0.041 0.042 0.027
2 3 0.054 0.040 0.028 0.031 0.039 0.033 0.052 0.046 0.037 0.026 0.028 0.036 0.048
2 4 0.047 0.034 0.027 0.038 0.047 0.042 0.026 0.038 0.029 0.046 0.040 0.061 0.025
2 5 0.034 0.026 0.035 0.038 0.048 0.035 0.033 0.032 0.040 0.041 0.045 0.033 0.036
2 6 0.033 0.034 0.036 0.036 0.048 0.040 0.041 0.049 0.058 0.028 0.021 0.043 0.049
2 7 0.042 0.037 0.041 0.059 0.031 0.027 0.043 0.046 0.028 0.021 0.044 0.048 0.040
3 4 0.037 0.045 0.033 0.028 0.029 0.073 0.026 0.040 0.040 0.026 0.043 0.042 0.043
3 5 0.035 0.029 0.036 0.044 0.055 0.034 0.033 0.046 0.041 0.024 0.041 0.067 0.037
3 6 0.023 0.043 0.074 0.047 0.033 0.043 0.030 0.026 0.042 0.045 0.032 0.035 0.040
3 7 0.035 0.035 0.035 0.028 0.048 0.033 0.035 0.041 0.038 0.052 0.038 0.029 0.062
4 5 0.032 0.041 0.036 0.032 0.046 0.035 0.039 0.042 0.038 0.034 0.043 0.036 0.048
4 6 0.034 0.034 0.036 0.029 0.043 0.037 0.039 0.036 0.039 0.033 0.066 0.037 0.028
4 7 0.043 0.032 0.039 0.034 0.029 0.071 0.037 0.039 0.030 0.044 0.037 0.030 0.041
5 6 0.052 0.035 0.019 0.036 0.063 0.045 0.030 0.039 0.049 0.029 0.036 0.052 0.041
5 7 0.040 0.031 0.034 0.052 0.026 0.034 0.051 0.044 0.041 0.039 0.034 0.046 0.029
6 7 0.029 0.035 0.039 0.032 0.028 0.039 0.026 0.036 0.069 0.052 0.035 0.034 0.038

Table 5.5: Mutual indices of coincidence of Table 5.2 for shifted blocks

s1 = zlxrhrrhwloehdweoklilwvlhphqbynwhwfjulrxx

s2 = pazjzezzitlwboamqbvuzpjpvmtiimiquptiqjkta

s3 = gjpgqpyvvndfjgjihjpagcqckfkhvqvvccqpmgtvn

s4 = dkydyvrrsliiocysoosvmdbfxkobdmxgbdmdoqiki

s5 = lpyljmiesieiwqarafrmsmrijrzmapmeoxoseewr

s6 = rygrzsggauayrhgzvrtsejnobqrqrbtfruofaavr

s7 = jllzqwzkowqkhkgqlygwvskwjtgsduzjvwwlvleg

She then compares the ith block si to the jth block shifted by σ, which we
denote by sj + σ, taking successively σ = 0, 1, 2, . . . , 25. Table 5.5 gives a
complete list of the 546 mutual indices of coincidence

MutIndCo(si, sj + σ) for 1 ≤ i < j ≤ 7 and 0 ≤ σ ≤ 25.

In Table 5.5, the entry in the row corresponding to (i, j) and the column
corresponding to the shift σ is equal to

MutIndCo(si, sj + σ) = MutIndCo(Block si,Block sj shifted by σ). (5.11)
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If this quantity is large, it suggests that sj has been shifted σ further than si.
As in Sect. 5.2.1 we let

i j Shift MutIndCo Shift relation

1 3 1 0.067 β1 − β3 = 1
3 7 10 0.069 β3 − β7 = 10
1 4 19 0.071 β1 − β4 = 19
1 6 16 0.071 β1 − β6 = 16
3 4 18 0.073 β3 − β4 = 18
3 5 24 0.067 β3 − β5 = 24
3 6 15 0.074 β3 − β6 = 15
4 6 23 0.066 β4 − β6 = 23
4 7 18 0.071 β4 − β7 = 18
6 7 21 0.069 β6 − β7 = 21

Table 5.6: Large indices of coincidence and shift relations

βi = Amount that the block si has been shifted.

Then a large value for (5.11) makes it likely that

βi − βj = σ. (5.12)

We have underlined the large values (those greater than 0.065) in Table 5.5
and compiled them, with the associated shift relation (5.12), in Table 5.6.

Eve’s next step is to solve the system of linear equations appearing in the
final column of Table 5.6, keeping in mind that all values are modulo 26, since
a shift of 26 is the same as no shift at all. Notice that there are 10 equations
for the six variables β1, β3, β4, β5, β6, β7. (Unfortunately, β2 does not appear,
so we’ll deal with it later). In general, a system of 10 equations in 6 variables
has no solutions,7 but in this case a little bit of algebra shows that not only
is there a solution, there is actually one solution for each value of β1. In
other words, the full set of solutions is obtained by expressing each of the
variables β3, . . . , β7 in terms of β1:

β3 = β1 + 25, β4 = β1 + 7, β5 = β1 + 1, β6 = β1 + 10, β7 = β1 + 15.
(5.13)

What should Eve do about β2? She could just ignore it for now, but instead
she picks out the largest values in Table 5.5 that relate to block 2 and uses
those. The largest such values are (i, j) = (2, 3) with shift 6 and index 0.060
and (i, j) = (2, 4) with shift 24 and index 0.061, which give the relations

β2 − β3 = 6 and β2 − β4 = 24.

7We were a little lucky in that every relation in Table 5.6 is correct. Sometimes there
are erroneous relations, but it is not hard to eliminate them with some trial and error.
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Substituting in from (5.13), these both yield β2 = β1 + 5, and the fact that
they give the same value gives Eve confidence that they are correct.

Shift Keyword Decrypted text
0 AFZHBKP zkhwkhulvkdoowxuqrxwwrehwkhkhurripbrzqolih

1 BGAICLQ yjgvjgtkujcnnvwtpqwvvqdgvjgjgtqqhoaqypnkhg

2 CHBJDMR xifuifsjtibmmuvsopvuupcfuififsppgnzpxomjgf

3 DICKENS whetherishallturnouttobetheheroofmyownlife

4 EJDLFOT vgdsgdqhrgzkkstqmntssnadsgdgdqnnelxnvmkhed

5 FKEMGPU ufcrfcpgqfyjjrsplmsrrmzcrfcfcpmmdkwmuljgdc

6 GLFNHQV tebqebofpexiiqroklrqqlybqebebollcjvltkifcb

7 HMGOIRW sdapdaneodwhhpqnjkqppkxapdadankkbiuksjheba

8 INHPJSX rczoczmdncvggopmijpoojwzoczczmjjahtjrigdaz
...

...
...

Table 5.7: Decryption of Table 5.2 using shifts of the keyword AFZHBKP

To summarize, Eve now knows that however much the first block s1 is
rotated, blocks s2, s3, . . . , s7 are rotated, respectively, 5, 25, 7, 1, 10, and 15
steps further than s1. So for example, if s1 is not rotated at all (i.e., if β1 = 0
and the first letter of the keyword is A), then the full keyword is AFZHBKP. Eve
uses the keyword AFZHBKP to decrypt the first few blocks of the ciphertext,
finding the “plaintext”

zkhwkhulvkdoowxuqrxwwrehwkhkhurripbrzqolihruzkhwkh.

That doesn’t look good! So next she tries β1 = 1 and a keyword starting with
the letter B. Continuing in this fashion, she need only check the 26 possibilities
for β1. The results are listed in Table 5.7.

Taking β1 = 3 yields the keyword DICKENS and an acceptable plaintext.
Completing the decryption using this keyword and supplying the appropriate
word breaks, punctuation, and capitalization, Eve recovers the full plaintext:

Whether I shall turn out to be the hero of my own life, or whether
that station will be held by anybody else, these pages must show.
To begin my life with the beginning of my life, I record that I was
born (as I have been informed and believe) on a Friday, at twelve
o’clock at night. It was remarked that the clock began to strike,
and I began to cry, simultaneously.8

8David Copperfield, 1850, Charles Dickens.
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5.3 Probability Theory

5.3.1 Basic Concepts of Probability Theory

In this section we introduce the basic ideas of probability theory in the dis-
crete setting. A probability space consists of two pieces. The first is a finite
set Ω consisting of all possible outcomes of an experiment and the second is
a method for assigning a probability to each possible outcome. In mathemat-
ical terms, a probability space is a finite set of outcomes Ω, called the sample
space, and a function

Pr : Ω −→ R.

We want the function Pr to satisfy our intuition that

Pr(ω) = “probability that event ω occurred.”

In particular, the value of Pr(ω) should be between 0 and 1.

Example 5.18. Consider the toss of a single coin. There are two outcomes,
heads and tails, so we let Ω be the set {H,T}. Assuming that it is a fair coin,
each outcome is equally likely, so Pr(H) = Pr(T ) = 1

2 .

Example 5.19. Consider the roll of two dice. The sample space Ω is the fol-
lowing set of 36 pairs of numbers:

Ω =
{
(n,m) : n,m ∈ Z with 1 ≤ n,m ≤ 6

}
.

As in Example 5.18, each possible outcome is equally likely. For example,
the probability of rolling (6, 6) is the same as the probability of rolling (3, 4).
Hence

Pr
(
(n,m)

)
=

1

36

for any choice of (n,m). Note that order matters in this scenario. We might
imagine that one die is red and the other is blue, so “red 3 and blue 5” is a
different outcome from “red 5 and blue 3.”

Example 5.20. Suppose that an urn contains 100 balls, of which 21 are red
and the rest are blue. If we pick 10 balls at random (without replacement),
what is the probability that exactly 3 of them are red?

The total number of ways of selecting 10 balls from among 100 is
(
100
10

)
.

Similarly, there are
(
21
3

)
ways to select 3 red balls from among the 21 that are

red, and there are
(
79
7

)
ways to pick the other 7 balls from among the 79

that are blue. There are thus
(
21
3

)(
79
7

)
ways to select exactly 3 red balls

and exactly 7 blue balls. Hence the probability of picking exactly 3 red balls
in 10 tries is

Pr

(
exactly 3 red balls in
10 attempts

)
=

(
21
3

)(
79
7

)

(
100
10

) =
20271005

91015876
≈ 0.223.
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We are typically more interested in computing the probability of compound
events. These are subsets of the sample space that may include more than one
outcome. For example, in the roll of two dice in Example 5.19, we might be
interested in the probability that at least one of the dice shows a 6. This
compound event is the subset of Ω consisting of all outcomes that include the
number six, which is the set
{
(1, 6), (2, 6), (3, 6), (4, 6), (5, 6), (6, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5)

}
.

Suppose that we know the probability of each particular outcome. How
then do we compute the probability of compound events or of events consisting
of repeated independent trials of an experiment? Analyzing this problem leads
to the idea of independence of events, a concept that gives probability theory
much of its complexity and richness.

The formal theory of probability is an axiomatic theory. You have probably
seen such theories when you studied Euclidean geometry and when you studied
abstract vector spaces. In an axiomatic theory, one starts with a small list of
basic axioms and derives from them additional interesting facts and formulas.
The axiomatic theory of probability allows us to derive formulas to compute
the probabilities of compound events. In this book we are content with an
informal presentation of the theory, but for those who are interested in a more
rigorous axiomatic treatment of probability theory, see for example [112, §2.3].

We begin with some definitions.

Definition. A sample space (or set of outcomes) is a finite9 set Ω. Each
outcome ω ∈ Ω is assigned a probability Pr(ω), where we require that the
probability function

Pr : Ω −→ R

satisfy the following two properties:

(a) 0 ≤ Pr(ω) ≤ 1 for all ω ∈ Ω and (b)
∑

ω∈Ω

Pr(ω) = 1. (5.14)

Notice that (5.14)(a) corresponds to our intuition that every outcome
has a probability between 0 (if it never occurs) and 1 (if it always occurs),
while (5.14)(b) says that some outcome must occur, so Ω contains all possible
outcomes for the experiment.

Definition. An event is any subset of Ω. We assign a probability to an event
E ⊂ Ω by setting

Pr(E) =
∑

ω∈E

Pr(ω). (5.15)

In particular, Pr(∅) = 0 by convention, and Pr(Ω) = 1 from (5.14)(b).

9General (continuous) probability theory also deals with infinite sample spaces Ω, in
which case only certain subsets of Ω are allowed to be events and are assigned probabilities.
There are also further restrictions on the probability function Pr : Ω → R. For our study of
cryptography in this book, it suffices to use discrete (finite) sample spaces.
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Definition. We say that two events E and F are disjoint if E ∩ F = ∅.

It is clear that

Pr(E ∪ F ) = Pr(E) + Pr(F ) if E and F are disjoint,

since then E ∪ F is the collection of all outcomes in either E or F . When
E and F are not disjoint, the probability of the event E ∪ F is not the sum
of Pr(E) and Pr(F ), since the outcomes common to both E and F should
not be counted twice. Thus we need to subtract the outcomes common to E
and F , which gives the useful formula

Pr(E ∪ F ) = Pr(E) + Pr(F )− Pr(E ∩ F ). (5.16)

(See Exercise 5.20.)

Definition. The complement of an event E is the event Ec consisting of all
outcomes that are not in E, i.e.,

Ec = {ω ∈ Ω : ω /∈ E}.

The probability of the complementary event is given by

Pr(Ec) = 1− Pr(E). (5.17)

It is sometimes easier to compute the probability of the complement of an
event E and then use (5.17) to find Pr(E).

Example 5.21. We continue with Example 5.19 in which Ω consists of the
possible outcomes of rolling two dice. Let E be the event

E = {at least one six is rolled}.

We can write down E explicitly; it is the set

E =
{
(1, 6), (6, 1), (2, 6), (6, 2), (3, 6), (6, 3), (4, 6), (6, 4), (5, 6), (6, 5), (6, 6)

}
.

Each of these 11 outcomes has probability 1
36 , so

Pr(E) =
∑

ω∈E

Pr(ω) =
11

36
.

We can then compute the probability of not rolling a six as

Pr(no sixes are rolled) = Pr(Ec) = 1− Pr(E) =
25

36
.

Next consider the event F defined by

F = {no number higher than two is rolled}.
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Notice that
F =

{
(1, 1), (1, 2), (2, 1), (2, 2)

}

is disjoint from E, so the probability of either rolling a six or else rolling no
number higher than two is

Pr(E ∪ F ) = Pr(E) + Pr(F ) =
11

36
+

4

36
=

15

36
.

For nondisjoint events, the computation is more complicated, since we
need to avoid double counting outcomes. Consider the event G defined by

G = {doubles},

i.e., G =
{
(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)

}
. Then E and G both contain

the outcome (6, 6), so their union E ∪G only contains 16 outcomes, not 17.
Thus the probability of rolling either a six or doubles is 16

36 . We can also
compute this probability using formula (5.16),

Pr(E ∪G) = Pr(E) + Pr(G)− Pr(E ∩G) = 11

36
+

6

36
− 1

36
=

16

36
=

4

9
.

To conclude this example, let H be the event

H = {the sum of the two dice is at least 4}.

We could compute Pr(H) directly, but it is easier to compute the probability
of Hc. Indeed, there are only three outcomes that give a sum smaller than 4,
namely

Hc =
{
(1, 1), (1, 2), (2, 1)

}
.

Thus Pr(Hc) = 3
36 = 1

12 , and then Pr(H) = 1− Pr(Hc) = 11
12 .

Suppose now that E and F are events. The event consisting of both E
and F is the intersection E ∩ F , so the probability that both E and F occur
is

Pr(E and F ) = Pr(E ∩ F ).
As the next example makes clear, the probability of the intersection of two
events is not a simple function of the probabilities of the individual events.

Example 5.22. Consider the experiment consisting of drawing two cards from
a deck of cards, where the second card is drawn without replacing the first
card. Let E and F be the following events:

E = {the first card drawn is a king},
F = {the second card drawn is a king}.

Clearly Pr(E) = 1
13 . It is also true that Pr(F ) = 1

13 , since with no information
about the value of the first card, there’s no difference between events E and F .
(If this seems unclear, suppose instead that the deck of cards were dealt to 52
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people. Then the probability that any particular person gets a king is 1
13 ,

regardless of whether they received the first card or the second card or. . . .)
However, it is also clear that if we know whether event E has occurred, then
that knowledge does affect the probability of F occurring. More precisely, if E
occurs, then there are only 3 kings left in the remaining 51 cards, so F is less
likely, while if E does not occur, then there are 4 kings left and F is more
likely. Mathematically we find that

Pr(F if E has occurred) =
3

51
and Pr(F if E has not occurred) =

4

51
.

Thus the probability of both E and F occurring, i.e., the probability of draw-
ing two consecutive kings, is smaller than the product of Pr(E) and Pr(F ),
because the occurrence of the event E makes the event F less likely. The
correct computation is

Pr(drawing two kings) = Pr(E ∩ F )
= Pr(E) · Pr(F given that E has occurred)

=
1

13
· 3

51
=

1

221
≈ 0.0045.

Let
G = {the second card drawn is an ace}.

Then the occurrence of E makes G more likely, since if the first card is known
to be a king, then there are still four aces left. Thus if we know that E occurs,
then the probability of G increases from 4

52 to 4
51 .

Notice, however, that if we change the experiment and require that the first
card be replaced in the deck before the second card is drawn, then whether E
occurs has no effect at all on F . Thus using this card replacement scenario,
the probability that E and F both occur is simply the product

Pr(E) Pr(F ) =

(
1

13

)2

≈ 0.006.

We learn two things from the discussion in Example 5.22. First, we see
that the probability of one event can depend on whether another event has
occurred. Second, we develop some probabilistic intuitions that lead to the
mathematical definition of independence.

Definition. Two events E and F are said to be independent if

Pr(E ∩ F ) = Pr(E) · Pr(F ),

where recall that the probability of the intersection Pr(E ∩ F ) is the proba-
bility that both E and F occur. In other words, E and F are independent
if the probability of their both occurring is the product of their individual
probabilities of occurring.
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Example 5.23. A coin is tossed 10 times and the results recorded. What are
the probabilities of the following events?

E1 = {the first five tosses are all heads}.
E2 = {the first five tosses are heads and the rest are tails}.
E3 = {exactly five of the ten tosses are heads}.

The result of any one toss is independent of the result of any other toss,
so we can compute the probability of getting H on the first five tosses by
multiplying together the probability of getting H on any one of these tosses.
Assuming that it is a fair coin, the answer to our first question is thus

Pr(E1) =

(
1

2

)5

=
1

32
≈ 0.031.

In order to compute the probability of E2, note that we are now asking for
the probability that our sequence of tosses is exactly HHHHHTTTTT. Again
using the independence of the individual tosses, we see that

Pr(E2) =

(
1

2

)10

=
1

1024
≈ 0.00098.

The computation of Pr(E3) is a little trickier, because it asks for exactly
five H’s to occur, but places no restriction on when they occur. If we were to
specify exactly when the five H’s and the five T’s occur, then the probability
would be 1

210 , just as it was for E2. So all that we need to do is to count
how many ways we can distribute five H’s and five T’s into ten spots, or
equivalently, how many different sequences we can form consisting of five H’s
and five T’s. This is simply the number of ways of choosing five locations
from ten possible locations, which is given by the combinatorial symbol

(
10
5

)
.

Hence dividing the number of outcomes satisfying E3 by the total number of
outcomes, we find that

Pr(E3) =

(
10

5

)
· 1

210
=

252

1024
=

63

256
≈ 0.246.

Thus there is just under a 25% chance of getting exactly five heads in ten
tosses of a coin.

5.3.2 Bayes’s Formula

As we saw in Example 5.22, there is a connection between the probability
that two events E and F occur simultaneously and the probability that one of
them occurs if we know that the other one has occurred. The former quantity
is simply Pr(E ∩ F ). The latter quantity is called the conditional probability
of F on E.
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Definition. The conditional probability of F on E is denoted by

Pr(F | E) = Pr(F given that E has occurred).

The probability that both E and F occur is related to the conditional
probability of F on E by the formula

Pr(F | E) =
Pr(F ∩ E)

Pr(E)
. (5.18)

The intuition behind (5.18), which is usually taken as the definition of the
conditional probability Pr(F | E), is simple. On the left-hand side, we are
assuming that E occurs, so our sample space or universe is now E instead
of Ω. We are asking for the probability that the event F occurs in this smaller
universe of outcomes, so we should compute the proportion of the event F
that is included in the event E, divided by the total size of the event E itself.
This gives the right-hand side of (5.18).

Formula (5.18) immediately implies that

Pr(F | E) Pr(E) = Pr(F ∩ E) = Pr(E ∩ F ) = Pr(E | F ) Pr(F ).

Dividing both sides by Pr(F ) gives a preliminary version of Bayes’s
formula:

Pr(E | F ) = Pr(F | E) Pr(E)

Pr(F )
(Bayes’s formula). (5.19)

This formula is useful if we know the conditional probability of F on E and
want to know the reverse conditional probability of E on F .

Sometimes it is easier to compute the probability of an event by dividing
it into a union of disjoint events, as in the next proposition, which includes
another version of Bayes’s formula.

Proposition 5.24. Let E and F be events.

(a) Pr(E) = Pr(E | F ) Pr(F ) + Pr(E | F c) Pr(F c). (5.20)

(b) Pr(E | F ) = Pr(F | E) Pr(E)

Pr(F | E) Pr(E) + Pr(F | Ec) Pr(Ec)
(Bayes’s formula).

(5.21)

Proof. The proof of (a) illustrates how one manipulates basic probability
formulas.

Pr(E | F ) Pr(F ) + Pr(E | F c) Pr(F c)

= Pr(E ∩ F ) + Pr(E ∩ F c) from (5.18),

= Pr
(
(E ∩ F ) ∪ (E ∩ F c)

)
since E ∩ F and E ∩ F c are disjoint,

= Pr(E) since F ∪ F c = Ω.
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This completes the proof of (a).
In order to prove (b), we reverse the roles of E and F in (a) to get

Pr(F ) = Pr(F | E) Pr(E) + Pr(F | Ec) Pr(Ec), (5.22)

and then substitute (5.22) into the denominator of (5.19) to obtain (5.21).

Here are some examples that illustrate the use of conditional probabilities.
Bayes’s formula will be applied in the next section.

Example 5.25. We are given two urns10 containing gold and silver coins.
Urn #1 contains 10 gold coins and 5 silver coins, and Urn #2 contains 2 gold
coins and 8 silver coins. An urn is chosen at random, and then a coin is picked
at random. What is the probability of choosing a gold coin?

Let
E = {a gold coin is chosen}.

The probability of E depends first on which urn was chosen, and then on
which coin is chosen in that urn. It is thus natural to break E up according
to the outcome of the event

F = {Urn #1 is chosen}.

Notice that F c is the event that Urn #2 is chosen. The decomposition
formula (5.20) says that

Pr(E) = Pr(E | F ) Pr(F ) + Pr(E | F c) Pr(F c).

The key point here is that it is easy to compute the conditional probabilities
on the right-hand side, and similarly easy to compute Pr(F ) and Pr(F c). Thus

Pr(E | F ) = 10

15
=

2

3
, Pr(E | F c) =

2

10
=

1

5
, Pr(F ) = Pr(F c) =

1

2
.

Using these values, we can compute

Pr(E) = Pr(E | F ) Pr(F ) + Pr(E | F c) Pr(F c) =
2

3
· 1
2
+

1

5
· 1
2
=

13

30
≈ 0.433.

Example 5.26 (The Three Prisoners Problem). The three prisoners problem is
a classical problem about conditional probability. Three prisoners, Alice, Bob,
and Carl, are informed by their jailer that the next day, one of them will be
released from prison, but that the other two will have to serve life sentences.
The jailer says that he will not tell any prisoner what will happen to him or
her. But Alice, who reasons that her chances of going free are now 1

3 , asks
the jailer to give her the name of one prisoner, other than herself, who will

10The authors of [51, chapter 1] explain the ubiquity of urns in the field of probability
theory as being connected with the French phrase aller aux urnes (to vote).
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not go free. The jailer tells Alice that Bob will remain in jail. Now what are
Alice’s chances of going free? Has the probability changed? Alice could argue
that she now has a 1

2 chance of going free, since Bob will definitely remain
behind. On the other hand, it also seems reasonable to argue that since one
of Bob or Carl had to stay in jail, this new information could not possibly
change the odds for Alice.

In fact, either answer may be correct. It depends on the strategy that the
jailer follows in deciding which name to give to Alice (assuming that Alice
knows which strategy is being used). If the jailer picks a name at random
whenever both Bob and Carl are possible choices, then Alice’s chances of
freedom have not changed. However, if the jailer names Bob whenever possi-
ble, and otherwise names Carl, then the new information does indeed change
Alice’s probability of release to 1

2 . See Exercise 5.26.
There are many other versions of the three prisoners problem, including

the “Monty Hall problem” that is a staple of popular culture. Exercise 5.27
describes the Monty Hall problem and other fun applications of these ideas.

5.3.3 Monte Carlo Algorithms

There are many algorithms whose output is not guaranteed to be correct. For
example, Table 3.2 in Sect. 3.4 describes the Miller–Rabin algorithm, which
is used to check whether a given large number is prime. In practice, one runs
the algorithm many times to obtain an output that is “probably” correct.
In applying these so-called Monte Carlo or probabilistic algorithms, it is im-
portant to be able to compute a confidence level, which is the probability that
the output is indeed correct. In this section we describe how to use Bayes’s
formula to do such a computation.

The basic scenario consists of a large (possibly infinite) set of integers S
and an interesting property A. For example, S could be the set of all integers,
or more realistically S might be the set of all integers between, say, 21024

and 21025. An example of an interesting property A is the property of being
composite.

Now suppose that we are looking for numbers that do not have property A.
Using the Miller–Rabin test, we might be looking for integers between 21024

and 21025 that are not composite, i.e., that are prime. In general, suppose
that we are given an integer m in S and that we want to know whether m has
property A. Usually we know approximately how many of the integers in S
have property A. For example, we might know that 99% of elements have
property A and that the other 1% do not. However, it may be difficult to
determine with certainty that any particularm ∈ S does not have property A.
So instead we settle for a faster algorithm that is not absolutely certain to be
correct.

A Monte Carlo algorithm for property A takes as its input both a num-
ber m ∈ S to be tested and a randomly chosen number r and returns as
output either Yes or No according to the following rules:



5.3. Probability Theory 237

(1) If the algorithm returns Yes, then m definitely has property A. In con-
ditional probability notation, this says that

Pr(m has property A | algorithm returns Yes) = 1.

(2) If m has property A, then the algorithm returns Yes for at least 50% of
the choices for r.11 Using conditional probability notation,

Pr(algorithm returns Yes | m has property A) ≥ 1

2
.

Now suppose that we run the algorithm N times on an integer m ∈ S,
using N different randomly chosen values for r. If even a single trial re-
turns Yes, then we know that m has property A. But suppose instead that
all N trials return the answer No. How confident can we be that our integer
does not have property A? In probability terminology, we want to estimate

Pr(m does not have property A | algorithm returns No N times).

More precisely, we want to show that if N is large, then this probability is
close to 1.

We define two events:

E = {an integer in S does not have property A},
F = {the algorithm returns No N times in a row}.

We are interested in the conditional probability Pr(E | F ), that is, the
probability that m does not have property A, given the fact that the al-
gorithm returned No N times. We can compute this probability using Bayes’s
formula (5.21),

Pr(E | F ) = Pr(F | E) Pr(E)

Pr(F | E) Pr(E) + Pr(F | Ec) Pr(Ec)
.

We are given that 99% of the elements in S have property A, so

Pr(E) = 0.01 and Pr(Ec) = 0.99.

Next consider Pr(F | E). If m does not have property A, which is our assump-
tion on this conditional probability, then the algorithm always returns No,
since Property (1) of the Monte Carlo method tells us that a Yes output
forces m to have property A. In symbols, Property (1) says that

Pr(No | not A) = Pr(A | Yes) = 1.

11More generally, the success rate in a Monte Carlo algorithm need not be 50%, but
may instead be any positive probability that is not too small. For the Miller–Rabin test
described in Sect. 3.4, the corresponding probability is 75%. See Exercise 5.28 for details.
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It follows that Pr(F | E) = Pr(No | not A)N = 1.
Finally, we must compute the value of Pr(F | Ec). Since the algorithm is

run N independent times, we have

Pr(F | Ec) = Pr(Output is No | m has property A)N

=
(
1− Pr(Output is Yes | m has property A)

)N

≤
(
1− 1

2

)N

from Property (2) of the Monte Carlo method,

=
1

2N
.

Substituting these values into Bayes’s formula, we find that if the algorithm
returns No N times in a row, then the probability that the integer m does not
have property A is

Pr(E | F ) ≥ 1 · (0.01)
1 · (0.01) + 2−N · (0.99) =

1

1 + 99 · 2−N
= 1− 99

2N + 99
.

Notice that if N is large, the lower bound is very close to 1.
For example, if we run the algorithm 100 times and get 100 No answers,

then the probability that m does not have property A is at least

99

99 + 2−100
≈ 1− 10−32.1.

So for most practical purposes, it is safe to conclude that m does not have
property A.

5.3.4 Random Variables

We are generally more interested in the consequences of an experiment, for
example the net loss or gain from a game of chance, than in the experiment
itself. Mathematically, this means that we are interested in functions that are
defined on events and that take values in some set.

Definition. A random variable is a function

X : Ω −→ R

whose domain is the sample space Ω and that takes values in the real numbers.
More generally, a random variable is a function X : Ω→ S whose range may
be any set; for example, S could be a set of keys or a set of plaintexts.

We note that since our sample spaces are finite, a random variable takes
on only finitely many values. Random variables are useful for defining events.
For example, if X : Ω → R is a random variable, then any real number x
defines three interesting events,

{ω ∈ Ω : X(ω) ≤ x}, {ω ∈ Ω : X(ω) = x}, {ω ∈ Ω : X(ω) > x}.



5.3. Probability Theory 239

Definition. Let X : Ω → R be a random variable. The probability density
function of X, denoted by fX(x), is defined to be

fX(x) = Pr(X = x).

In other words, fX(x) is the probability that X takes on the value x. Some-
times we write f(x) if the random variable is clear.

Remark 5.27. In probability theory, people often use the distribution function
of X, which is the function

FX(x) = Pr(X ≤ x),

instead of the density function. Indeed, when studying probability theory for
infinite sample spaces, it is essential to use FX . However, since our sample
spaces are finite, and thus our random variables are finite and discrete, the
two notions are essentially interchangeable. For simplicity, we will stick to
density functions.

There are a number of standard density functions that occur frequently
in discrete probability calculations. We briefly describe a few of the more
common ones.

Example 5.28 (Uniform Distribution). Let S be a set containing N elements;
for example, S could be the set S = {0, 1, . . . , N − 1}. Let X be a random
variable satisfying

fX(j) = Pr(X = j) =

⎧
⎨

⎩

1

N
if j ∈ S,

0 if j /∈ S.

This random variable X is said to be uniformly distributed or to have uniform
density, since each of the outcomes in S is equally likely.

Example 5.29 (Binomial Distribution). Suppose that an experiment has two
outcomes, success or failure. Let p denote the probability of success. The
experiment is performed n times and the random variable X records the
number of successes. The sample space Ω consists of all binary strings ω =
b1b2 . . . bn of length n, where bi = 0 if the i’th experiment is a failure and bi = 1
if the i’th experiment is a success. Then the value of the random variable X
at ω is simplyX(ω) = b1+b2+· · ·+bn, which is the number of successes. Using
the random variable X, we can express the probability of a single event ω as

Pr({ω}) = pX(ω)(1− p)n−X(ω).

(Do you see why this is the correct formula?) This allows us to compute the
probability of exactly k successes as

fX(k) = Pr(X = k)

=
∑

ω∈Ω, X(ω)=k

Pr({ω})
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=
∑

ω∈Ω, X(ω)=k

pX(ω)(1− p)n−X(ω)

=
∑

ω∈Ω, X(ω)=k

pk(1− p)n−k

= #
{
ω ∈ Ω : X(ω) = k

}
pk(1− p)n−k

=

(
n

k

)
pk(1− p)n−k.

Here the last line follows from the fact that there are
(
n
k

)
ways to select

exactly k of the n experiments to be successes. The function

fX(k) =

(
n

k

)
pk(1− p)n−k (5.23)

is called the binomial density function.

Example 5.30 (Hypergeometric Distribution). An urn contains N balls of
which m are red and N −m are blue. From this collection, n balls are chosen
at random without replacement. Let X denote the number of red balls chosen.
Then X is a random variable taking on the integer values

0 ≤ X(ω) ≤ min{m,n}.

In the case that n ≤ m, an argument similar to the one that we gave in
Example 5.20 shows that the density function of X is given by the formula

fX(i) = Pr(X = i) =

(
m

i

)(
N −m
n− i

)

(
N

n

) . (5.24)

This is called the hypergeometric density function.

Example 5.31 (Geometric Distribution). We give one example of an infinite
probability space. Suppose that we repeatedly toss an unfair coin, where the
probability of getting heads is some number 0 < p < 1. Let X be the random
variable giving the total number of coin tosses required before heads appears
for the first time. Note that it is possible for X to take on any positive integer
value, since it is possible (although unlikely) that we could have a tremen-
dously long string of tails.12

The sample space Ω consists of all binary strings ω = b1b2b3 . . ., where
bi = 0 if the i’th toss is tails and bi = 1 if the i’th toss is heads. Note that Ω is

12For an amusing commentary on long strings of heads, see Act I of Tom Stoppard’s
Rosencrantz and Guildenstern Are Dead.
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an infinite set. We assign probabilities to certain events, i.e. to certain subsets
of Ω, by specifying the values of some initial tosses. So for any given finite
binary string γ1γ2 . . . γn, we assign a probability

Pr
(
{ω ∈ Ω : ω starts γ1γ2 . . . γn}

)
= p(# of γi equal to 1)(1−p)(# of γi equal to 0).

The random variable X is defined by

X(ω) = X(b1b2b3 . . .) = (smallest i such that bi = 1).

Then

{X = n} =
{
ω ∈ Ω : X(ω) = n

}
=
{
000 . . . 00︸ ︷︷ ︸
n − 1 zeros

1bn+1bn+2 . . .
}
,

which gives the formula

fX(n) = Pr(X = n) = (1− p)n−1p for n = 1, 2, 3, . . . . (5.25)

A random variable with the density function (5.25) is said to have a geometric
density, because the sequence of probabilities fX(1), fX(2), fX(3), . . . form a
geometric progression.13 Later, in Example 5.37, we compute the expected
value of this X by summing an infinite geometric series.

Earlier we studied aspects of probability theory involving two or more
events interacting in various ways. We now discuss material that allows us
study the interaction of two or more random variables.

Definition. LetX and Y be two random variables. The joint density function
of X and Y , denoted by fX,Y (x, y), is the probability that X takes the value x
and Y takes the value y. Thus14

fX,Y (x, y) = Pr(X = x and Y = y).

Similarly, the conditional density function, denoted by fX|Y (x | y), is the prob-
ability that X takes the value x, given that Y takes the value y:

fX|Y (x | y) = Pr(X = x | Y = y).

We say that X and Y are independent if

13A sequence a1, a2, a3, . . . is called a geometric progression if all of the ratios an+1/an
are the same. Similarly, the sequence is an arithmetic progression if all of the differences
an+1 − an are the same.

14Note that the expression Pr(X = x and Y = y) is really shorthand for the probability
of the event {

ω ∈ Ω : X(ω) = x and Y (ω) = y
}
.

If you find yourself becoming confused about probabilities expressed in terms of values of
random variables, it often helps to write them out explicitly in terms of an event, i.e., as
the probability of a certain subset of Ω.
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fX,Y (x, y) = fX(x)fY (y) for all x and y.

This is equivalent to the events {X = x} and {Y = y} being independent in
the earlier sense of independence that is defined on page 232. If there is no
chance for confusion, we sometimes write f(x, y) and f(x | y) for fX,Y (x, y)
and fX|Y (x | y), respectively.
Example 5.32. An urn contains four gold coins and three silver coins. A coin is
drawn at random, examined, and returned to the urn, and then a second coin is
randomly drawn and examined. Let X be the number of gold coins drawn and
let Y be the number of silver ones. To find the joint density function fX,Y (x, y),
we need to compute the probability of the event {X = x and Y = y}. To help
explain the calculation, we define two additional random variables. Let

F =

{
1 if first pick is gold,

0 if first pick is silver,
and S =

{
1 if second pick is gold,

0 if second pick is silver.

Notice that X = F + S and Y = 2 − X = 2 − F − S. Further, the random
variables F and S are independent, and Pr(F = 1) = Pr(S = 1) = 4

7 . We can
compute fX,Y (1, 1) as follows:

fX,Y (1, 1) = Pr(X = 1 and Y = 1)

= Pr(F = 1 and S = 0) + Pr(F = 0 and S = 1)

= Pr(F = 1) · Pr(S = 0) + Pr(F = 0) · Pr(S = 1)

=
4

7
· 3
7
+

3

7
· 4
7
=

24

49
≈ 0.4898.

In other words, the probability of drawing one gold coin and one silver coin
is about 0.4898. The computation of the other values of fX,Y is similar.

These computations were easy because F and S are independent. How do
our computations change if the first coin is not replaced before the second
coin is selected? Then the probability of getting a silver coin on the second
pick depends on whether the first pick was gold or silver. For example, the
earlier computation of fX,Y (1, 1) changes to

fX,Y (1, 1) = Pr(X = 1 and Y = 1)

= Pr(F = 1 and S = 0) + Pr(F = 0 and S = 1)

= Pr(S = 0 | F = 1)Pr(F = 1) + Pr(S = 1 | F = 0)Pr(F = 0)

=
3

6
· 4
7
+

4

6
· 3
7
=

4

7
≈ 0.5714.

Thus the chance of getting exactly one gold coin and exactly one silver coin
is somewhat larger if the coins are not replaced after each pick.

We remark that this last computation is a special case of the hypergeo-
metric distribution; see Example 5.30. Thus the value fX,Y (1, 1) =

4
7 may be

computed using (5.24) with N = 7, m = 4, n = 2, and i = 1, which yields(
4
1

)(
3
1

) /(
7
2

)
= 4

7 .
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The following restatement of Bayes’s formula is often convenient for cal-
culations involving conditional probabilities.

Theorem 5.33 (Bayes’s formula). Let X and Y be random variables and
assume that fY (y) > 0. Then

fX|Y (x | y) =
fX(x)fY |X(y | x)

fY (y)
.

In particular,

X and Y are independent ⇐⇒ fX|Y (x | y) = fX(x) for all x and y.

Example 5.34. In this example we use Bayes’s formula to explore the inde-
pendence of pairs of random variables taken from a triple (X,Y, Z). Let X
and Y be independent random variables taking on values +1 and −1 with
probability 1

2 each, and let Z = XY . Then Z also takes on the values +1
and −1, and we have

fZ(1) =
∑

x∈{−1,+1}

∑

y∈{−1,+1}
Pr(Z = 1 | X = x and Y = y) · fX,Y (x, y).

(5.26)
If (X,Y ) = (+1,−1) or (X,Y ) = (−1,+1), then Z �= 1, so only the two terms
with (x, y) = (1, 1) and (x, y) = (−1,−1) appear in the sum (5.26). For these
two terms, we have Pr(Z = 1 | X = x and Y = y) = 1, so

fZ(1) = Pr(X = 1 and Y = 1) + Pr(X = −1 and Y = −1)

=
1

2
· 1
2
+

1

2
· 1
2
=

1

2
.

It follows that fZ(−1) = 1− fZ(1) is also equal to 1
2 .

Next we compute the joint probability density of Z and X. For example,

fZ,X(1, 1) = Pr(Z = 1 and X = 1)

= Pr(X = 1 and Y = 1)

=
1

4
since X and Y are independent,

= fZ(1)fX(1).

Similar computations show that

fZ,X(z, x) = fZ(z)fX(x) for all z, x ∈ {−1,+1},

so by Theorem 5.33, Z and X are independent. The argument works equally
well for Z and Y , so Z and Y are also independent. Thus among the three
random variables X, Y , and Z, any pair of them are independent. Yet we
would not want to call the three of them together an independent family,
since the value of Z is determined by the values of X and Y . This prompts
the following definition.
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Definition. A family of two or more random variables {X1, X2, . . . , Xn} is
independent if the events

{X1 = x1 and X2 = x2 and · · · and Xn = xn}

are independent for every choice of x1, x2, . . . , xn.

Notice that the random variables X, Y and Z = XY in Example 5.34 are
not an independent family, since

Pr(Z = 1 and X = 1 and Y = −1) = 0,

while

Pr(Z = 1) · Pr(X = 1) · Pr(Y = −1) = 1

8
.

5.3.5 Expected Value

The expected value of a random variableX is the average of its values weighted
by their probability of occurrence. The expected value thus provides a rough
initial indication of the behavior of X.

Definition. Let X be a random variable that takes on the values x1, . . . , xn.
The expected value (or mean) of X is the quantity

E(X) =

n∑

i=1

xi · fX(xi) =

n∑

i=1

xi · Pr(X = xi). (5.27)

Example 5.35. Let X be the random variable whose value is the sum of the
numbers appearing on two tossed dice. The possible values of X are the inte-
gers between 2 and 12, so

E(X) =

12∑

i=2

i · Pr(X = i).

There are 36 ways for the two dice to fall, as indicated in Table 5.8a. We read
off from that table the number of ways that the sum can equal i for each value
of i between 2 and 12 and compile the results in Table 5.8b. The probability
that X = i is 1

36 times the total number of ways that two dice can sum to i,
so we can use Table 5.8b to compute

E(X) = 2 · 1

36
+ 3 · 2

36
+ 4 · 3

36
+ 5 · 4

36
+ 6 · 5

36
+ 7 · 6

36

+ 8 · 5

36
+ 9 · 4

36
+ 10 · 3

36
+ 11 · 2

36
+ 12 · 1

36
= 7.

This answers makes sense, since the middle value is 7, and for any integer j,
the value of X is just as likely to be 7 + j as it is to be 7− j.
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1 2 3 4 5 6

1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

(a) Sum of two dice

Sum # of ways

2 or 12 1
3 or 11 2
4 or 10 3
5 or 9 4
6 or 8 5

7 6

(b) Number of ways to make a sum

Table 5.8: Outcome of rolling two dice

The name “expected” value is somewhat misleading, since the fact that
the expectation E(X) is a weighted average means that it may take on a value
that is not actually attained, as the next example shows.

Example 5.36. Suppose that we choose an integer at random from among
the integers {1, 2, 3, 4, 5, 6} and let X be the value of our choice. Then
Pr(X = i) = 1

6 for each 1 ≤ i ≤ 6, i.e., X is uniformly distributed. The ex-
pected value of X is

E(X) =
1

6
(1 + 2 + 3 + 4 + 5 + 6) =

7

2
.

Thus the expectation of X is a value that X does not actually attain. More
generally, the expected value of a random variable uniformly distributed
on {1, 2, . . . , N} is (N + 1)/2.

Example 5.37. We return to our coin tossing experiment (Example 5.31),
where the probability of getting H on any one coin toss is equal to p. Let X
be the random variable that is equal to n if H appears for the first time at the
nth coin toss. Then X has a geometric density, and its density function fX(n)
is given by the formula (5.25). We compute E(X), which is the expected
number of tosses before the first H appears:

E(X) =

∞∑

n=1

np(1− p)n−1 = −p
∞∑

n=1

d

dp

(
(1− p)n

)

= −p d
dp

( ∞∑

n=1

(1− p)n
)
= −p d

dp

(
1

p
− 1

)
=

p

p2
=

1

p
.

This answer seems plausible, since the smaller the value of p, the more tosses
we expect to need before obtaining our first H. The computation of E(X) uses
a very useful trick with derivatives followed by the summation of a geometric
series. See Exercise 5.33 for further applications of this method.
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5.4 Collision Algorithms
and Meet-in-the-Middle Attacks

A simple, yet surprisingly powerful, search method is based on the observation
that it is usually much easier to find matching objects than it is to find a
particular object. Methods of this sort go by many names, including meet-in-
the-middle attacks and collision algorithms.

5.4.1 The Birthday Paradox

The fundamental idea behind collision algorithms is strikingly illustrated by
the famous birthday paradox. In a random group of 40 people, consider the
following two questions:

(1) What is the probability that someone has the same birthday as you?

(2) What is the probability that at least two people share the same birthday?

It turns out that the answers to (1) and (2) are very different. As a warm-up,
we start by answering the easier first question.

A rough answer is that since any one person has a 1-in-365 chance of
sharing your birthday, then in a crowd of 40 people, the probability of some-
one having your birthday is approximately 40

365 ≈ 11%. However, this is an
overestimate, since it double counts the occurrences of more than one person
in the crowd sharing your birthday.15 The exact answer is obtained by com-
puting the probability that none of the people share your birthday and then
subtracting that value from 1.

Pr

(
someone has
your birthday

)
= 1− Pr

(
none of the 40 people
has your birthday

)

= 1−
40∏

i=1

Pr

(
ith person does not
have your birthday

)

= 1−
(
364

365

)40

≈ 10.4%.

Thus among 40 strangers, there is only slightly better than a 10% chance that
one of them shares your birthday.

Now consider the second question, in which you win if any two of the people
in the group have the same birthday. Again it is easier to compute the prob-
ability that all 40 people have different birthdays. However, the computation

15If you think that 40
365

is the right answer, think about the same situation with 366

people. The probability that someone shares your birthday cannot be 366
365

, since that’s
larger than 1.
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changes because we now require that the ith person have a birthday that is
different from all of the previous i− 1 people’s birthdays. Hence the calcula-
tion is

Pr

(
two people have
the same birthday

)
= 1− Pr

(
all 40 people have
different birthdays

)

= 1−
40∏

i=1

Pr

⎛

⎝
ith person does not have
the same birthday as any
of the previous i− 1 people

⎞

⎠

= 1−
40∏

i=1

365− (i− 1)

365

= 1− 365

365
· 364
365

· 363
365

· · · 326
365

≈ 89.1%.

Thus among 40 strangers, there is almost a 90% chance that two of them
share a birthday.

The only part of this calculation that merits some comment is the formula
for the probability that the ith person has a birthday different from any of
the previous i− 1 people. Among the 365 possible birthdays, note that the
previous i− 1 people have taken up i− 1 of them. Hence the probability that
the ith person has his or her birthday among the remaining 365− (i− 1)
days is

365− (i− 1)

365
.

Most people tend to assume that questions (1) and (2) have essentially the
same answer. The fact that they do not is called the birthday paradox. In fact,
it requires only 23 people to have a better than 50% chance of a matched
birthday, while it takes 253 people to have better than a 50% chance of
finding someone who has your birthday.

5.4.2 A Collision Theorem

Cryptographic applications of collision algorithms are generally based on the
following setup. Bob has a box that contains N numbers. He chooses n distinct
numbers from the box and puts them in a list. He then makes a second list by
choosing m (not necessarily distinct) numbers from the box. The remarkable
fact is that if n and m are each slightly larger than

√
N , then it is very likely

that the two lists contain a common element.
We start with an elementary result that illustrates the sort of calculation

that is used to quantify the probability of success of a collision algorithm.

Theorem 5.38 (Collision Theorem). An urn contains N balls, of which n
are red and N − n are blue. Bob randomly selects a ball from the urn, replaces
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it in the urn, randomly selects a second ball, replaces it, and so on. He does
this until he has looked at a total of m balls.
(a) The probability that Bob selects at least one red ball is

Pr(at least one red) = 1−
(
1− n

N

)m
. (5.28)

(b) A lower bound for the probability (5.28) is

Pr(at least one red) ≥ 1− e−mn/N . (5.29)

If N is large and if m and n are not too much larger than
√
N (e.g.,

m,n < 10
√
N), then (5.29) is almost an equality.

Proof. Each time Bob selects a ball, his probability of choosing a red one is n
N ,

so you might think that since he chooses m balls, his probability of getting
a red one is mn

N . However, a small amount of thought shows that this must
be incorrect. For example, if m is large, this would lead to a probability that
is larger than 1. The difficulty, just as in the birthday example in Sect. 5.4.1,
is that we are overcounting the times that Bob happens to select more than
one red ball. The correct way to calculate is to compute the probability that
Bob chooses only blue balls and then subtract this complementary probability
from 1. Thus

Pr

(
at least one red
ball in m attempts

)
= 1− Pr(all m choices are blue)

= 1−
m∏

i=1

Pr(ith choice is blue)

= 1−
m∏

i=1

(
N − n
N

)

= 1−
(
1− n

N

)m
.

This completes the proof of (a).
For (b), we use the inequality

e−x ≥ 1− x for all x ∈ R.

(See Exercise 5.38(a) for a proof.) Setting x = n/N and raising both sides of
the inequality to the mth power shows that

1−
(
1− n

N

)m
≥ 1− (e−n/N )m = 1− e−mn/N ,

which proves the important inequality in (b). We leave it to the reader (Ex-
ercise 5.38(b)) to prove that the inequality is close to being an equality if m
and n is not too large compared to

√
N .
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In order to connect Theorem 5.38 with the problem of finding a match
in two lists of numbers, we view the list of numbers as an urn containing N
numbered blue balls. After making our first list of n different numbered balls,
we repaint those n balls with red paint and return them to the box. The
second list is constructed by drawing m balls out of the urn one at a time,
noting their number and color, and then replacing them. The probability of
selecting at least one red ball is the same as the probability of a matched
number on the two lists.

Example 5.39. A deck of cards is shuffled and eight cards are dealt face up.
Bob then takes a second deck of cards and chooses eight cards at random,
replacing each chosen card before making the next choice. What is Bob’s
probability of matching one of the cards from the first deck?

We view the eight dealt cards from the first deck as “marking” those same
cards in the second deck. So our “urn” is the second deck, the “red balls”
are the eight marked cards in the second deck, and the “blue balls” are the
other 44 cards in the second deck. Theorem 5.38(a) tells us that

Pr(a match) = 1−
(
1− 8

52

)8

≈ 73.7%.

The approximation in Theorem 5.38(b) gives a lower bound of 70.8%.
Suppose instead that Bob deals ten cards from the first deck and chooses

only five cards from the second deck. Then

Pr(a match) = 1−
(
1− 10

52

)5

≈ 65.6%.

Example 5.40. A box contains 10 billion labeled objects. Bob randomly se-
lects 100,000 distinct objects from the box, makes a list of which objects
he’s chosen, and returns them to the box. If he next randomly selects an-
other 100,000 objects (with replacement) and makes a second list, what
is the probability that the two lists contain a match? Formula (5.28) in
Theorem 5.38(a) says that

Pr(a match) = 1−
(
1− 100,000

1010

)100,000

≈ 0.632122.

The approximate lower bound given by the formula (5.29) in Theorem 5.38(b)
is 0.632121. As you can see, the approximation is quite accurate.

It is interesting to observe that if Bob doubles the number of objects in
his lists to 200,000, then his probability of getting a match increases quite
substantially to 98.2%. And if he triples the number of elements in each list
to 300,000, then the probability of a match is 99.988%. This rapid increase
reflects that fact that the exponential function in (5.29) decreases very rapidly
as soon as mn becomes larger than N .
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Example 5.41. A set contains N objects. Bob randomly chooses n of them,
makes a list of his choices, replaces them, and then chooses another n of them.
How large should he choose n to give himself a 50% chance of getting a match?
How about if he wants a 99.99% chance of getting a match?

For the first question, Bob uses the reasonably accurate lower bound of
formula (5.29) to set

Pr(match) ≈ 1− e−n2/N =
1

2
.

It is easy to solve this for n:

e−n2/N =
1

2
=⇒ −n

2

N
= ln

(
1

2

)
=⇒ n =

√
N · ln 2 ≈ 0.83

√
N.

Thus it is enough to create lists that are a bit shorter than
√
N in length.

The second question is similar, but now Bob solves

Pr(match) ≈ 1− e−n2/N = 0.9999 = 1− 10−4.

The solution is
n =

√
N · ln 104 ≈ 3.035 ·

√
N.

Remark 5.42. Algorithms that rely on finding matching elements from within
one or more lists go by a variety of names, including collision algorithm,
meet-in-the-middle algorithm, birthday paradox algorithm, and square root al-
gorithm. The last refers to the fact that the running time of a collision al-
gorithm is generally a small multiple of the square root of the running time
required by an exhaustive search. The connection with birthdays was briefly
discussed in Sect. 5.4.1; see also Exercise 5.36. When one of these algorithms is
used to break a cryptosystem, the word “algorithm” is often replaced by the
word “attack,” so cryptanalysts refer to meet-in-the-middle attacks, square
root attacks, etc.

Remark 5.43. Collision algorithms tend to take approximately
√
N steps in

order to find a collision among N objects. A drawback of these algorithms
is that they require creation of one or more lists of size approximately

√
N .

When N is large, providing storage for
√
N numbers may be more of an ob-

stacle than doing the computation. In Sect. 5.5 we describe a collision method
due to Pollard that, at the cost of a small amount of extra computation,
requires essentially no storage.

5.4.3 A Discrete Logarithm Collision Algorithm

There are many applications of collision algorithms to cryptography. These
may involve searching a space of keys or plaintexts or ciphertexts, or for
public key cryptosystems, they may be aimed at solving the underlying hard
mathematical problem. In this section we illustrate the general theory by
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formulating an abstract randomized collision algorithm to solve the discrete
logarithm problem. For the finite field Fp, it solves the discrete logarithm
problem (DLP) in approximately

√
p steps.

One may well ask why the probabilistic collision algorithm described in
Proposition 5.44 with expected running time O

(√
N
)
is interesting, since the

baby step–giant step algorithm from Sect. 2.7 is deterministic and solves the
same problem in the same amount of time. One answer is that both algorithms
also require O

(√
N
)
storage, which is a serious constraint if N is large. So

the collision algorithm in Proposition 5.44 may be viewed as a warm-up for
Pollard’s ρ algorithm, which is a collision algorithm taking O

(√
N
)
time, but

using only O(1) storage. We will discuss Pollard’s algorithm in Sect. 5.5.
One might also inquire why any of these O

(√
N
)
collision algorithms are

interesting, since, the index calculus described in Sect. 3.8 solves the DLP in Fp

much more rapidly. But there are other groups, such as elliptic curve groups,
for which collision algorithms are the fastest known way to solve the DLP.
This explains why elliptic curve groups are used in cryptography; at present,
the DLP in an elliptic curve group is much harder than the DLP in F

∗
p for

groups of about the same size. Elliptic curves and their use in cryptography
is the subject of Chap. 6.

Proposition 5.44. Let G be a group, and let g ∈ G be an element of order N ,
i.e., gN = e and no smaller power of g is equal to e. Then, assuming that the
discrete logarithm problem

gx = h (5.30)

has a solution, a solution can be found in O
(√
N
)
steps, where each step is

an exponentiation in the group G. (Note that since gN = e, the powering al-
gorithm from Sect. 1.3.2 lets us raise g to any power using fewer than 2 log2N
group multiplications.)

Proof. The idea is to write x as x = y − z and look for a solution to

gy = h · gz.

We do this by making a list of gy values and a list of h · gz values and looking
for a match between the two lists.

We begin by choosing random exponents y1, y2, . . . , yn between 1 and N
and computing the values

gy1 , gy2 , gy3 , . . . , gyn in G. (5.31)
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Note that all of the values (5.31) are in the set

S = {1, g, g2, g3, . . . , gN−1},

so (5.31) is a selection of (approximately) n elements of S. In terms of the
collision theorem (Theorem 5.38), we view S as an urn containing N balls and
the list (5.31) as a way of coloring n of those balls red.

Next we choose additional random exponents z1, z2, . . . , zn between 1 and k
and compute the quantities

h · gz1 , h · gz2 , h · gz3 , . . . , h · gzn in G. (5.32)

Since we are assuming that (5.30) has a solution, i.e., h is equal to some
power of g, it follows that each of the values h · gzi is also in the set S. Thus
the list (5.32) may be viewed as selecting n elements from the urn, and we
would like to know the probability of selecting at least one red ball, i.e., the
probability that at least one element in the list (5.32) matches an element in
the list (5.31). The collision theorem (Theorem 5.38) says that

Pr

(
at least one match
between (5.31) and (5.32)

)
≈ 1−

(
1− n

N

)n
≈ 1− e−n2/N .

Thus if we choose (say) n ≈ 3
√
N , then our probability of getting a match

is greater than 99.98%, so we are almost guaranteed a match. Or if that
is not good enough, take n ≈ 5

√
N to get a probability of success greater

than 1− 10−10. Notice that as soon as we find a match between the two lists,
say gy = h · gz, then we have solved the discrete logarithm problem (5.30) by
setting x = y − z.16

How long does it take us to find this solution? Each of the lists (5.31)
and (5.32) has n elements, so it takes approximately 2n steps to assemble each
list. More precisely, each element in each list requires us to compute gi for some
value of i between 1 and N , and it takes approximately 2 log2(i) group mul-
tiplications to compute gi using the fast exponentiation algorithm described
in Sect. 1.3.2. (Here log2 is the logarithm to the base 2.) Thus it takes ap-
proximately 4n log2(N) multiplications to assemble the two lists. In addition,
it takes about log2(n) steps to check whether an element of the second list is
in the first list (e.g., sort the first list), so n log2(n) comparisons altogether.
Hence the total computation time is approximately

4n log2(N) + n log2(n) = n log2(N
4n) steps.

Taking n ≈ 3
√
N , which as we have seen gives us a 99.98% chance of success,

we find that

Computation Time ≈ 13.5 ·
√
N · log2(1.3 ·N).

16If this value of x happens to be negative and we want a positive solution, we can always
use the fact that gN = 1 to replace it with x = y − z +N .
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t gt h · gt
564 410 422
469 357 181
276 593 620
601 416 126

9 512 3
350 445 233

t gt h · gt
53 10 605

332 651 175
178 121 401
477 450 206
503 116 428
198 426 72

t gt h · gt
513 164 37
71 597 203

314 554 567
581 47 537
371 334 437
83 422 489

Table 5.9: Solving 2x = 390 in F659 with random exponent collisions

Example 5.45. We do an example with small numbers to illustrate the use of
collisions. We solve the discrete logarithm problem

2x = 390 in the finite field F659.

The number 2 has order 658 modulo 659, so it is a primitive root. In this
example g = 2 and h = 390. We choose random exponents t and compute
the values of gt and h · gt until we get a match. The results are compiled in
Table 5.9. We see that

283 = 390 · 2564 = 422 in F659.

Hence using two lists of length 18, we have solved a discrete logarithm problem
in F659. (We had a 39% chance of getting a match with lists of length 18, so
we were a little bit lucky.) The solution is

283 · 2−564 = 2−481 = 2177 = 390 in F659.

Remark 5.46. The algorithms described in Propositions 2.21 and 5.44 solve
the DLP in O

(√
N
)
steps. It is thus interesting that, in a certain sense, Victor

Shoup [130] has shown that there cannot exist a general algorithm to solve the
DLP in an arbitrary finite group in fewer than O

(√
p
)
steps, where p is the

largest prime dividing the order of the group. This is the so-called black box
DLP, in which you are given a box that instantaneously performs the group
operations, but you’re not allowed to look inside the box to see how it is doing
the computations.

5.5 Pollard’s ρ Method

As we noted in Remark 5.43, collision algorithms tend to require a considerable
amount of storage. A beautiful idea of Pollard often allows one to use almost
no storage, at the cost of a small amount of extra computation. We explain



254 5. Combinatorics, Probability, and Information Theory

Tail Length = T

Loop Length = M
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xT−1
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xM+T−2

xM+T−1

xM+T

Figure 5.1: Pollard’s ρ method

the basic idea behind Pollard’s method and then illustrate it by yet again
solving a small instance of the discrete logarithm problem in Fp. See also
Exercise 5.44 for a factorization algorithm based on the same ideas.

5.5.1 Abstract Formulation of Pollard’s ρ Method

We begin in an abstract setting. Let S be a finite set and let

f : S −→ S

be a function that does a good job at mixing up the elements of S. Suppose
that we start with some element x ∈ S and we repeatedly apply f to create
a sequence of elements

x0 = x, x1 = f(x0), x2 = f(x1), x3 = f(x2), x4 = f(x3), . . . .

In other words,
xi = (f ◦ f ◦ f ◦ · · · ◦ f

︸ ︷︷ ︸
i iterations of f

)(x).

The map f from S to itself is an example of a discrete dynamical system.
The sequence

x0, x1, x2, x3, x4, . . . (5.33)

is called the (forward) orbit of x by the map f and is denoted by O+
f (x).

The set S is finite, so eventually there must be some element of S that
appears twice in the orbit O+

f (x). We can illustrate the orbit as shown in
Fig. 5.1. For a while the points x0, x1, x2, x3, . . . travel along a “path” without
repeating until eventually they loop around to give a repeated element. Then
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they continue moving around the loop. As illustrated, we let T be the number
of elements in the “tail” before getting to the loop, and we let M be the
number of elements in the loop. Mathematically, T and M are defined by the
conditions

T =

(
largest integer such that xT−1

appears only once in O+
f (x)

)
M =

(
smallest integer such
that xT+M = xT

)

Remark 5.47. Look again at the illustration in Fig. 5.1. It may remind you of
a certain Greek letter. For this reason, collision algorithms based on following
the orbit of an element in a discrete dynamical system are called ρ algorithms.
The first ρ algorithm was invented by Pollard in 1974.

Suppose that S contains N elements. Later, in Theorem 5.48, we will
sketch a proof that the quantity T +M is usually no more than a small
multiple of

√
N . Since xT = xT+M by definition, this means that we obtain

a collision in O(
√
N ) steps. However, since we don’t know the values of T

and M , it appears that we need to make a list of x0, x1, x2, x3, . . . , xT+M in
order to detect the collision.

Pollard’s clever idea is that it is possible to detect a collision in O(
√
N )

steps without storing all of the values. There are various ways to accomplish
this. We describe one such method. Although not of optimal efficiency, it
has the advantage of being easy to understand. (For more efficient methods,
see [23, 28, §8.5], or [90].) The idea is to compute not only the sequence xi,
but also a second sequence yi defined by

y0 = x0 and yi+1 = f
(
f(yi)

)
for i = 0, 1, 2, 3, . . . .

In other words, every time that we apply f to generate the next element of
the xi sequence, we apply f twice to generate the next element of the yi
sequence. It is clear that

yi = x2i.

How long will it take to find an index i with x2i = xi? In general, for j > i
we have

xj = xi if and only if i ≥ T and j ≡ i (mod M).

This is clear from the ρ-shaped picture in Fig. 5.1, since we get xj = xi pre-
cisely when we are past xT , i.e., when i ≥ T , and xj has gone around the loop
past xi an integral number of times, i.e., when j − i is a multiple of M .

Thus x2i = xi if and only if i ≥ T and 2i ≡ i (mod M). The lat-
ter condition is equivalent to M | i, so we get x2i = xi exactly when i is
equal to the first multiple of M that is larger than T . Since one of the num-
bers T , T + 1,. . . , T +M − 1 is divisible by M , this proves that

x2i = xi for some 1 ≤ i < T +M .
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We show in the next theorem that the average value of T +M is approx-
imately 1.25 ·

√
N , so we have a very good chance of getting a collision in

a small multiple of
√
N steps. This is more or less the same running time

as the collision algorithm described in Sect. 5.4.3, but notice that we need to
store only two numbers, namely the current values of the xi sequence and
the yi sequence.

Theorem 5.48 (Pollard’s ρ Method: abstract version). Let S be a finite set
containing N elements, let f : S → S be a map, and let x ∈ S be an initial
point.
(a) Suppose that the forward orbit O+

f (x) = {x0, x1, x2, . . .} of x has a tail of
length T and a loop of length M, as illustrated in Fig. 5.1. Then

x2i = xi for some 1 ≤ i < T +M . (5.34)

(b) If the map f is sufficiently random, then the expected value of T +M is

E(T +M) ≈ 1.2533 ·
√
N.

Hence if N is large, then we are likely to find a collision as described
by (5.34) in O(

√
N ) steps, where a “step” is one evaluation of the

function f .

Proof. (a) We proved this earlier in this section.
(b) We sketch the proof of (b) because it is an instructive blend of probability
theory and analysis of algorithms. However, the reader desiring a rigorous
proof will need to fill in some details. Suppose that we compute the first k
values x0, x1, x2, . . . , xk−1. What is the probability that we do not get any
matches? If we assume that the successive xi’s are randomly chosen from the
set S, then we can compute this probability as

Pr

(
x0, x1, . . . , xk−1

are all different

)
=

k−1∏

i=1

Pr

(
xi �= xj for
all 0 ≤ j < i

∣
∣
∣
∣
x0, x1, . . . , xi−1

are all different

)

=

k−1∏

i=1

(
N − i
N

)
(5.35)

=

k−1∏

i=1

(
1− i

N

)
. (5.36)

Note that the probability formula (5.35) comes from the fact that if the first i
choices x0, x1, . . . , xi−1 are distinct, then among the N possible choices for xi,
exactly N − i of them are different from the previously chosen values. Hence
the probability of getting a new value, assuming that the earlier values were
distinct, is N−i

N .
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We can approximate the product (5.36) using the estimate

1− t ≈ e−t, valid for small values of t.

(Compare with the proof of Theorem 5.38(b), and see also Exercise 5.38.) In
practice, k will be approximately

√
N and N will be large, so i

N will indeed
be small for 1 ≤ i < k. Hence

Pr

(
x0, x1, . . . , xk−1

are all different

)
≈

k−1∏

i=1

e−i/N = e−(1+2+···+(k−1))/N ≈ e−k2/2N . (5.37)

For the last approximation we are using the fact that

1 + 2 + · · ·+ (k − 1) =
k2 − k

2
≈ k2

2
when k is large.

We now know the probability that x0, x1, . . . , xk−1 are all distinct.
Assuming that they are distinct, what is the probability that the next
choice xk gives a match? There are k elements for it to match among the N
possible elements, so this conditional probability is

Pr
(
xk is a match

∣
∣ x0, . . . , xk−1 are distinct

)
=

k

N
. (5.38)

Hence

Pr
(
xk is the first match

)

= Pr
(
xk is a match AND x0, . . . , xk−1 are distinct

)

= Pr
(
xk is a match

∣
∣ x0, . . . , xk−1 are distinct

)

·Pr
(
x0, . . . , xk−1 are distinct

)

≈ k

N
· e−k2/2N from (5.37) and (5.38).

The expected number of steps before finding the first match is then given
by the formula

E(first match) =
∑

k≥1

k ·Pr
(
xk is the first match

)
≈
∑

k≥1

k2

N
· e−k2/2N . (5.39)

We want to know what this series looks like as a function of N . The following
estimate, whose derivation uses elementary calculus, is helpful in estimating
series of this sort.

Lemma 5.49. Let F (t) be a “nicely behaved” real valued function17 with the
property that

∫∞
0
F (t) dt converges. Then for large values of n we have

∞∑

k=1

F

(
k

n

)
≈ n ·

∫ ∞

0

F (t) dt. (5.40)

17For example, it would suffice that F have a continuous derivative.
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Proof. We start with the definite integral of F (t) over an interval 0 ≤ t ≤ A.
By definition, this integral is equal to a limit of Riemann sums,

∫ A

0

F (t) dt = lim
n→∞

An∑

k=1

F

(
k

n

)
· 1
n
,

where in the sum we have broken the interval [0, A] into An pieces. In partic-
ular, if n is large, then

n ·
∫ A

0

F (t) dt ≈
An∑

k=1

F

(
k

n

)
.

Now letting A → ∞ yields (5.40). (We do not claim that this is a rigorous
argument. Our aim is merely to convey the underlying idea. The interested
reader may supply the details needed to complete the argument and to obtain
explicit upper and lower bounds.)

We use Lemma 5.49 to estimate

E(first match) ≈
∑

k≥1

k2

N
· e−k2/2N from (5.39),

=
∑

k≥1

F

(
k√
N

)
letting F (t) = t2e−t2/2,

≈
√
N ·
∫ ∞

0

t2e−t2/2 dt from (5.40) with n =
√
N ,

≈ 1.2533 ·
√
N by numerical integration.

For the last line, we used a numerical method to estimate the definite inte-
gral, although in fact the integral can be evaluated exactly. (Its value turns
out to be

√
π/2; see Exercise 5.43.) This completes the proof of (b), and

combining (a) and (b) gives the final statement of Theorem 5.48.

Remark 5.50. It is instructive to check numerically the accuracy of the esti-
mates used in the proof of Theorem 5.48. In that proof we claimed that for
large values of N , the expected number of steps before finding a match is
given by each of the following three formulas:

E1 =
∑

k≥1

k2

N

k−1∏

i=1

(
1− i

N

)
E2 =

∑

k≥1

k2

N
e−k2/2N E3 =

√
N

∫ ∞

0

t2e−t2/2 dt

More precisely, E1 is the exact formula, but hard to compute exactly if N is
very large, while E2 and E3 are approximations. We have computed the values
of E1, E2, and E3 for some moderate sized values ofN and compiled the results
in Table 5.10. As you can see, E2 and E3 are quite close to one another, and
once N gets reasonably large, they also provide a good approximation for E1.
Hence for very large values of N , say 280 < N < 2160, it is quite reasonable
to estimate E1 using E3.
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5.5.2 Discrete Logarithms via Pollard’s ρ Method

In this section we describe how to use Pollard’s ρ method to solve the discrete
logarithm problem

gt = h in F
∗
p

N E1 E2 E3 E1/E3

100 12.210 12.533 12.533 0.97421
500 27.696 28.025 28.025 0.98827
1000 39.303 39.633 39.633 0.99167
5000 88.291 88.623 88.623 0.99626

10000 124.999 125.331 125.331 0.99735
20000 176.913 177.245 177.245 0.99812
50000 279.917 280.250 280.250 0.99881

Table 5.10: Expected number of steps until a ρ collision

when g is a primitive root modulo p. The idea is to find a collision between gihj

and gkh� for some known exponents i, j, k, �. Then gi−k = h�−j , and taking
roots in Fp will more or less solve the problem of expressing h as a power of g.

The difficulty is finding a function f : Fp → Fp that is complicated enough
to mix up the elements of Fp, yet simple enough to keep track of its orbits.
Pollard [104] suggests using the function

f(x) =

⎧
⎪⎨

⎪⎩

gx if 0 ≤ x < p/3,

x2 if p/3 ≤ x < 2p/3,

hx if 2p/3 ≤ x < p.

(5.41)

Note that x must be reduced modulo p into the range 0 ≤ x < p before (5.41)
is used to determine the value of f(x).

Remark 5.51. No one has proven that the function f(x) given by (5.41) is
sufficiently random to guarantee that Theorem 5.48 is true for f , but experi-
mentally, the function f works fairly well. However, Teske [144, 145] has shown
that f is not sufficiently random to give optimal results, and she gives exam-
ples of somewhat more complicated functions that work better in practice.

Consider what happens when we repeatedly apply the function f given
by (5.41) to the starting point x0 = 1. At each step, we either multiply by g,
multiply by h, or square the previous value. So after each step, we end up
with a power of g multiplied by a power of h, say after i steps we have

xi = (f ◦ f ◦ f ◦ · · · ◦ f
︸ ︷︷ ︸

i iterations of f

)(1) = gαi · hβi .
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We cannot predict the values of αi and βi, but we can compute them at the
same time that we are computing the xi’s using the definition (5.41) of f .
Clearly α0 = β0 = 0, and then subsequent values are given by

αi+1 =

⎧
⎪⎨

⎪⎩

αi + 1 if 0 ≤ x < p/3,

2αi if p/3 ≤ x < 2p/3,

αi if 2p/3 ≤ x < p,

βi+1 =

⎧
⎪⎨

⎪⎩

βi if 0 ≤ x < p/3,

2βi if p/3 ≤ x < 2p/3,

βi + 1 if 2p/3 ≤ x < p.

In computing αi and βi, it suffices to keep track of their values modulo p− 1,
since gp−1 = 1 and hp−1 = 1. This is important, since otherwise the values
of αi and βi would become prohibitively large.

In a similar fashion we compute the sequence given by

y0 = 1 and yi+1 = f
(
f(yi)

)
.

Then
yi = x2i = gγi · hδi ,

where the exponents γi and δi can be computed by two repetitions of the
recursions used for αi and βi. Of course, the first time we use yi to determine
which case of (5.41) to apply, and the second time we use f(yi) to decide.

Applying the above procedure, we eventually find a collision in the x and
the y sequences, say yi = xi. This means that

gαi · hβi = gγi · hδi .

So if we let

u ≡ αi − γi (mod p− 1) and v ≡ δi − βi (mod p− 1),

then gu = hv in Fp. Equivalently,

v · logg(h) ≡ u (mod p− 1). (5.42)

If gcd(v, p− 1) = 1, then we can multiply both sides of (5.42) by the inverse
of v modulo p− 1 to solve the discrete logarithm problem.

More generally, if d = gcd(v, p− 1) ≥ 2, we use the extended Euclidean
algorithm (Theorem 1.11) to find an integer s such that

s · v ≡ d (mod p− 1).

Multiplying both sides of (5.42) by s yields

d · logg(h) ≡ w (mod p− 1), (5.43)
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where w ≡ s · u (mod p− 1). In this congruence we know all of the quantities
except for logg(h). The fact that d divides p− 1 will force d to divide w,
so w/d is one solution to (5.43), but there are others. The full set of solutions
to (5.43) is obtained by starting with w/d and adding multiples of (p− 1)/d,

logg(h) ∈
{
w

d
+ k · p− 1

d
: k = 0, 1, 2, . . . , d− 1

}
.

In practice, d will tend to be fairly small,18 so it suffices to check each of the d
possibilities for logg(a) until the correct value is found.

Example 5.52. We illustrate Pollard’s ρ method by solving the discrete loga-
rithm problem

19t ≡ 24717 (mod 48611).

The first step is to compute the x and y sequences until we find a match
yi = xi, while also computing the exponent sequences α, β, γ, δ. The initial
stages of this process and the final few steps before a collision has been found
are given in Table 5.11.

i xi yi = x2i αi βi γi δi

0 1 1 0 0 0 0
1 19 361 1 0 2 0
2 361 33099 2 0 4 0
3 6859 13523 3 0 4 2
4 33099 20703 4 0 6 2
5 33464 14974 4 1 13 4
6 13523 18931 4 2 14 5
7 13882 30726 5 2 56 20
8 20703 1000 6 2 113 40
9 11022 14714 12 4 228 80

...
542 21034 46993 13669 2519 27258 30257
543 20445 37138 27338 5038 27259 30258
544 40647 33210 6066 10076 5908 11908
545 28362 21034 6066 10077 5909 11909
546 36827 40647 12132 20154 23636 47636
547 11984 36827 12132 20155 47272 46664
548 33252 33252 12133 20155 47273 46665

Table 5.11: Pollard ρ computations to solve 19t = 24717 in F48611

18For most cryptographic applications, the prime p is chosen such that p−1 has precisely
one large prime factor, since otherwise, the Pohlig–Hellman algorithm (Theorem 2.31) may
be applicable. And it is unlikely that d will be divisible by the large prime factor of p− 1.
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From the table we see that x1096 = x548 = 33252 in F48611. The associated
exponent values are

α548 = 12133, β548 = 20155, γ548 = 47273, δ548 = 46665,

so we know that

1912133 · 2471720155 = 1947273 · 2471746665 in F48611.

(Before proceeding, we should probably check this equality to make sure that
we didn’t made an arithmetic error.) Moving the powers of 19 to one side
and the powers of 24717 to the other side yields 19−35140 = 2471726510, and
adding 48610 = p− 1 to the exponent of 19 gives

1913470 = 2471726510 in F48611. (5.44)

We next observe that

gcd(26510, 48610) = 10 and 970 · 26510 ≡ 10 (mod 48610).

Raising both sides of (5.44) to the 970th power yields

1913470·970 = 1913065900 = 1938420 = 2471710 in F48611.

Hence

10 · log19(24717) ≡ 38420 (mod 48610),

which means that

log19(24717) ≡ 3842 (mod 4861).

The possible values for the discrete logarithm are obtained by adding multiples
of 4861 to 3842, so log19(24717) is one of the numbers in the set

{3842, 8703, 13564, 18425, 23286, 28147, 33008, 37869, 42730, 47591}.

To complete the solution, we compute 19 raised to each of these 10 values
until we find the one that is equal to 24717:

193842 = 16580, 198703 = 29850, 1913564 = 23894, 1918425 = 20794,

1923286 = 10170, 1928147 = 32031, 1933008 = 18761, 1937869 = 24717 .

This gives the solution log19(24717) = 37869. We check our answer

1937869 = 24717 in F48611. �
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5.6 Information Theory

In 1948 and 1949, Claude Shannon published two papers [126, 127] that form
the mathematical foundation of modern cryptography. In these papers he
defines the concept of perfect (or unconditional) secrecy, introduces the idea of
entropy of natural language and statistical analysis, provides the first proofs
of security using probability theory, and gives precise connections between
provable security and the size of the key, plaintext, and ciphertext spaces.

In public key cryptography, one is interested in how computationally dif-
ficult it is to break the system. The issue of security is thus a relative one—a
given cryptosystem is hard to break if one assumes that some underlying
problem is hard to solve. It requires some care to formulate these concepts
properly. In this section we briefly introduce Shannon’s ideas and explain their
relevance to symmetric key systems. In [127], Shannon develops a theory of
security for cryptosystems that assumes that no bounds are placed on the com-
putational resources that may be brought to bear against them. For example,
symmetric ciphers such as the simple substitution cipher (Sect. 1.1) and the
Vigènere cipher (Sect. 5.2) are not computationally secure. With unlimited
resources—indeed with very limited resources—an adversary can easily break
these ciphers. If we seek unconditional security, we must either seek new algo-
rithms or modify the implementation of known algorithms. In fact, Shannon
shows that perfectly secure cryptosystems must have at least as many keys as
plaintexts and that every key must be used with equal probability. This means
that most practical cryptosystems are not unconditionally secure. We discuss
the notion of perfect security in Sect. 5.6.1.

In [126] Shannon develops a mathematical theory that measures the
amount of information that is revealed by a random variable. When the ran-
dom variable represents the possible plaintexts or ciphertexts or keys of a
cipher that is used to encrypt a natural language such as English, we obtain
a framework for the rigorous mathematical study of cryptographic security.
Shannon adopted the word entropy for this measure because of its formal
similarity to Boltzmann’s definition of entropy in statistical mechanics, and
also because Shannon viewed language as a stochastic process, i.e., as a sys-
tem governed by probabilities that produces a sequence of symbols. Later,
the physicist E.T. Jaynes [60] argued that thermodynamic entropy could be
interpreted as an application of a certain information-theoretic entropy. As
a measure of “uncertainty” of a system, the logarithmic formula for entropy
is determined, up to a constant, by requiring that it be continuous, mono-
tonic, and satisfy a certain additive property. We discuss information-theoretic
entropy and its application to cryptography in Sect. 5.6.2.

5.6.1 Perfect Secrecy

A cryptosystem has perfect secrecy if the interception of a ciphertext gives
the cryptanalyst no information about the underlying plaintext and no
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information about any future encrypted messages. To formalize this concept,
we introduce random variables M , C, and K representing the finite number
of possible messages, ciphertexts, and keys. In other words, M is a random
variable whose values are the possible messages (plaintexts), C is a random
variable whose values are the possible ciphertexts, and K is a random vari-
able whose values are the possible keys used for encryption and decryption.
We let fM , fC , and fK be the associated density functions.19 The density func-
tions fM , fK , and fC are related to one another via the encryption/decryption
formula dk(ek(m)) = m, which we will exploit shortly to prove (5.47).

We also have the joint densities and the conditional densities of all pairs
of these random variables, such as f(C,M)(c,m) and fC|M (c | m), and so
forth. We will let the variable names simplify the notation. For example,
we write f(c | m) for fC|M (c | m), the conditional probability density of the
random variables C and M , i.e.,

f(c | m) = Pr(C = c given that M = m).

Similarly, we write f(m) for fM (m), the probability that M = m.

Definition. A cryptosystem has perfect secrecy if

f(m | c) = f(m) for all m ∈M and all c ∈ C. (5.45)

What does (5.45) mean? It says that the probability of any particular
plaintext, Pr(M = m), is independent of the ciphertext. Intuitively, this means
that the ciphertext reveals no knowledge of the plaintext.

Bayes’s formula (Theorem 5.33) says that

f(m | c)f(c) = f(c | m)f(m),

which implies that perfect secrecy is equivalent to the condition

f(c | m) = f(c) for all c ∈ C and all m ∈M with f(m) �= 0. (5.46)

Formula (5.46) says that the appearance of any particular ciphertext is equally
likely, independent of the plaintext.

If we know fK and fM , then fC is determined. To see this, we note that
for a given key k, the probability that the ciphertext equals c is the same as
the probability that the decryption of c is the plaintext, assuming of course

19As is typical, we have omitted reference to the underlying sample spaces. To be com-
pletely explicit, we have three probability spaces with sample spaces ΩM , ΩC , and ΩK and
probability functions PrM , PrC , and PrK . Then M , C and K are random variables

M : ΩM → M, K : ΩK → K, C : ΩC → C.
Then by definition, the density function fM is

fM (m) = Pr(M = m) = PrM
({ω ∈ ΩM : M(ω) = m}),

and similarly for K and C.
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that c is the encryption of some plaintext for key k. This allows us to com-
pute the total probability fC(c) by summing over all possible keys and using
the decomposition formula (5.20) of Proposition 5.24, or more precisely, its
generalization described in Exercise 5.23. As usual, we let K denote the set
of all possible keys and ek : M → C and dk : C → M be the encryption
and decryption functions for the key k ∈ K. Then the probability that the
ciphertext is equal to c is given by the formula

m1 m2 m3

k1 c2 c1 c3
k2 c1 c3 c2

Table 5.12: Encryption of messages with keys k1 and k2

fC(c) =
∑

k ∈ K such
that c = ek(m)
for some m ∈ M

fK(k)fM
(
dk(c)

)
; (5.47)

see also Exercise 5.47. We note that if the encryption map ek :M→ C is onto
for all keys k, which is often true in practice, then the sum in (5.47) is over
all k ∈ K.
Example 5.53. Consider the Shift Cipher described in Sect. 1.1. Suppose that
each of the 26 possible keys (shift amounts) is chosen with equal probability
and that each plaintext character is encrypted using a new, randomly chosen,
shift amount. Then it is not hard to check that the resulting cryptosystem
has perfect secrecy; see Exercise 5.46.

Recall that an encryption function is one-to-one, meaning that each mes-
sage gives rise to a unique ciphertext. This implies that there are at least as
many ciphertexts as plaintexts (messages). Perfect secrecy gives additional
restrictions on the relative size of the key, message, and ciphertext spaces.
We first investigate an example of a (tiny) cryptosystem that does not have
perfect secrecy.

Example 5.54. Suppose that a cryptosystem has two keys k1 and k2, three
messages m1, m2, and m3, and three ciphertexts c1, c2, and c3. Assume that
the density function for the message random variable satisfies

fM (m1) = fM (m2) =
1

4
and fM (m3) =

1

2
. (5.48)

Suppose further that Table 5.12 describes how the different keys act on the
messages to produce ciphertexts.

For example, the encryption of the plaintext m1 with the key k1 is the
ciphertext c2. Under the assumption that the keys are used with equal prob-
ability, we can use (5.47) to compute the probability that the ciphertext is
equal to c1:
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f(c1) = f(k1)fM (dk1
(c1)) + f(k2)fM (dk2

(c1))

= f(k1)f(m2) + f(k2)f(m1)

=
1

2
· 1
4
+

1

2
· 1
4
=

1

4
.

On the other hand, we see from the table that f(c1 | m3) = 0. Hence this
cryptosystem does not have perfect secrecy.

This matches our intuition, since it is clear that seeing a ciphertext leaks
some information about the plaintext. For example, if we see the ciphertext c1,
then we know that the message was either m1 or m2, it cannot be m3.

As noted earlier, the number of ciphertexts must be at least as large as
the number of plaintexts, since otherwise, decryption is not possible. It turns
out that one consequence of perfect secrecy is that the number of keys must
also be at least as large as the number of plaintexts.

Proposition 5.55. If a cryptosystem has perfect secrecy, then #K ≥ #C+,
where C+ = {m ∈ M : f(m) > 0} is the set of plaintexts that have a positive
probability of being selected.

Proof. We start by fixing some ciphertext c ∈ C with f(c) > 0. Perfect secrecy
in the form of (5.46) tells us that

f(c | m) = f(c) > 0 for all m ∈ C+.

This says that there is a positive probability that m ∈ C+ encrypts to c,
so in particular there is at least one key k satisfying ek(m) = c. Further, if
we start with a different plaintext m′ ∈ C+, then we get a different key k′,
since otherwise ek(m) = c = ek(m

′), which would contradict the one-to-one
property of ek.

To recapitulate, we have shown that for every m ∈ C+, the set

{k ∈ K : ek(m) = c}

is nonempty, and further, these sets are disjoint for different m’s. Thus each
plaintext m ∈ C+ is matched with one or more keys, and different m’s are
matched with different keys, which shows that the number of keys is at least
as large as the number of plaintexts in C+.

Given the restriction on the relative sizes of the key, ciphertext, and plain-
text spaces in systems with perfect secrecy, namely

#K ≥ #M and #C ≥ #M,

it is most efficient to assume that the key space, the plaintext space, and
the ciphertext space are all of equal size. Assuming this, Shannon proves a
theorem characterizing perfect secrecy.
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Theorem 5.56. Suppose that a cryptosystem satisfies

#K = #M = #C,

i.e., the numbers of keys, plaintexts, and ciphertexts are all equal. Then the
system has perfect secrecy if and only if the following two conditions hold :
(a) Each key k ∈ K is used with equal probability.

(b) For a given message m ∈ M and ciphertext c ∈ C, there is exactly one
key k ∈ K that encrypts m to c.

Proof. Suppose first that a cryptosystem has perfect secrecy. We start by
verifying (b). For any plaintext m ∈ M and ciphertext c ∈ C, consider the
(possibly empty) set of keys that encrypt m to c,

Sm,c =
{
k ∈ K : ek(m) = c

}
.

We are going to prove that if the cryptosystem has perfect secrecy, then in
fact #Sm,c = 1 for every m ∈ M and every c ∈ C, which is equivalent to
statement (b) of the theorem. We do this in three steps.

Claim 1. If m �= m′, then Sm,c ∩ Sm′,c = ∅.

Suppose that k ∈ Sm,c ∩ Sm′,c. Then ek(m) = c = ek(m
′), which implies that

m = m′, since the encryption function ek is injective. This proves Claim 1.

Claim 2. If the cryptosystem has perfect secrecy, then Sm,c is nonempty
for every m and c.

We use the perfect secrecy assumption in the form f(m, c) = f(m)f(c). We
know that every m ∈M is a valid plaintext for at least one key, so f(m) > 0.
Similarly, every c ∈ C appears as the encryption of at least one plaintext using
some key, so f(c) > 0. Hence perfect secrecy implies that

f(m, c) > 0 for all m ∈M and all c ∈ C. (5.49)

But the formula f(m, c) > 0 is simply another way of saying that c is a
possible encryption of m. Hence there must be at least one key k ∈ K satis-
fying ek(m) = c, i.e., there is some key k ∈ Sm,c. This completes the proof of
Claim 2.

Claim 3. If the cryptosystem has perfect secrecy, then #Sm,c = 1.

Fix a ciphertext c ∈ C. Then

#K ≥ #

( ⋃

m∈M
Sm,c

)
since K contains every Sm,c,

=
∑

m∈M
#Sm,c since the Sm,c are disjoint from Claim 1,
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≥ #M since #Sm,c ≥ 1 from Claim 2,

= #K since #K = #M by assumption.

Thus all of these inequalities are equalities, so in particular,

∑

m∈M
#Sm,c = #M.

Then the fact (Claim 2) that every #Sm,c is greater than or equal to 1 implies
that every #Sm,c must equal 1. This completes the proof of Claim 3.

As noted above, Claim 3 is equivalent to statement (b) of the theorem. We turn
now to statement (a). Consider the set of triples

(k,m, c) ∈ K ×M× C satisfying ek(m) = c.

Clearly k and m determine a unique value for c, and (b) says that m and c
determine a unique value for k. It is also not hard, using a similar argument
and the assumption that #M = #C, to show that c and k determine a unique
value for m; see Exercise 5.48.

For any triple (k,m, c) satisfying ek(m) = c, we compute

f(m) = f(m | c) by perfect secrecy,

=
f(m, c)

f(c)
definition of conditional probability,

=
f(m, k)

f(c)
since any two of m, k, c determine the third,

=
f(m)f(k)

f(c)
since M and K are independent.

(There are cryptosystems in which the message forms part of the key; see for
example Exercise 5.19, in which case M and K would not be independent.)

Canceling f(m) from both sides, we have shown that

f(k) = f(c) for every k ∈ K and every c ∈ C. (5.50)

Note that our proof shows that (5.50) is true for every k and every c, because
Exercise 5.48 tells us that for every (k, c) there is a (unique) m satisfy-
ing ek(m) = c.

We sum (5.50) over all c ∈ C and divide by #C to obtain

f(k) =
1

#C
∑

c∈C
f(c) =

1

#C .

This shows that f(k) is constant, independent of the choice of k ∈ K, which
is precisely the assertion of (a). At the same time we have proven the useful
fact that f(c) is constant, i.e., every ciphertext is used with equal probability.
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In the other direction, if a cryptosystem has properties (a) and (b), then
the steps outlined to prove perfect secrecy of the shift cipher in Exercise 5.46
can be applied in this more general setting. We leave the details to the reader.

Example 5.57 (The one-time pad). Vernam’s one-time pad, patented in 1917,
is an extremely simple, perfectly secret, albeit very inefficient, cryptosystem.
The key k consists of a string of binary digits k0k1 . . . kN . It is used to encrypt a
binary plaintext stringm = m0m1 . . .mN by XOR’ing the two strings together
bit by bit. See (1.12) on page 44 for a description of the XOR operation, which
for convenience we will denote by ⊕. Then the ciphertext c = c0c1 . . . cN is
given by

ci = ki ⊕mi for i = 0, 1, . . . , N .

Each key is used only once and then discarded, whence the name of the system.
Since every key is used with equal probability, and since there is exactly one
key that encrypts a given m to a given c, namely the key m⊕ c, Theorem 5.56
shows that Vernam’s one-time pad has perfect secrecy.

Unfortunately, if Bob and Alice want to use a Vernam one-time pad to
exchange N bits of information, they must already know N bits of shared
secret information to use as the key. This makes one-time pads much too inef-
ficient for large-scale communication networks. However, there are situations
in which they have been used, such as top secret communications between
diplomatic offices or for short messages between spies and their home bases.

It is also worth noting that a one-time pad remains completely secure only
as long as its keys are never reused. When a key pad is used more than once,
either due to error or to the difficulty of providing enough key material, then
the cryptosystem may be vulnerable to cryptanalysis. This occurred in the
real world when the Soviet Union reused some one-time pads during World
War II. The United States mounted a massive cryptanalytic effort called the
VENONA project that successfully decrypted a number of documents.

5.6.2 Entropy

In efficient cryptosystems, a single key must be used to encrypt many differ-
ent plaintexts, so perfect secrecy is not possible. At best we can hope to build
cryptosystems that are computationally secure. Unfortunately, anything less
than perfect secrecy leaves open the possibility that a list of ciphertexts will
reveal significant information about the key. To study this phenomenon, Shan-
non introduced the concept of entropy, which is a measure of the uncertainty
in a system. Thus if we view fX(x) = Pr(X = x) as being the probability that
the outcome of a certain experiment is equal to x, then the entropy of X will
be small if the outcome of a single experiment reveals a significant amount of
information about the random variable X.

Let X be a random variable taking on finitely many values x1, x2, . . . , xn,
and let p1, p2, . . . , pn be the associated probabilities,
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pi = fX(xi) = Pr(X = xi).

The entropy H(X) of X is a number that depends only on the probabili-
ties p1, . . . , pn of the possible outcomes of X, so we write20

H(X) = H(p1, . . . , pn).

We would like to capture the idea that H is the expected value of a random
variable that measures the uncertainty that the outcome xi has occurred. Thus
the larger the value of H(X), the less information about X that is revealed
by the outcome of an experiment.

What properties should H possess?

Property H1 The function H should be continuous in the variables pi.

This reflects the intuition that a small change in pi should produce a small
change in the amount of information revealed by X.

Property H2 Let Xn be the random variable that is uniformly distributed

on a set {x1, . . . , xn}, i.e., the random variable Xn has n possible outcomes,
each occurring with probability 1

n . Then

H(Xn+1) > H(Xn) for all n ≥ 1.

This reflects the intuition that if all outcomes are equally likely, then the
uncertainty should increase as the number of outcomes increases.

Property H3 The third property is subtler. It says that if an outcome

of X is thought of as a choice, and if that choice can be broken down into
two successive choices, then the original value of H is a weighted sum of the
values of H for the successive choices. In order to quantify this intuition, we
consider random variables X, Y , and Z1, . . . , Zn taking values in the sets

X : Ω −→ {xij : 1 ≤ i ≤ n and 1 ≤ j ≤ mi},
Y :Ω −→ {Z1, . . . , Zn},
Zi :Ω −→ {xij : 1 ≤ j ≤ mi},

and satisfying

Pr(X = xij) = Pr(Y = Zi and Zi = xij).

This reflects the intuition that the outcome X = xij is being broken down
into the successive choices Y = Zi followed by Zi = xij . Then Property H3 is
the formula

H(X) = H(Y ) +

n∑

i=1

Pr(Y = Zi)H(Zi).

20Although this notation is useful, it is important to remember that the domain of H
is the set of random variables, not the set of n-tuples for some fixed value of n. Thus the
domain of H is itself a set of functions.
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Example 5.58. Let Xn be a uniformly distributed random variable on
n objects. Then we claim that

H(Xn2) = 2H(Xn).

To see this, we view Xn2 as choosing an element from {xij : 1 ≤ i, j ≤ n},
and we break this choice into two choices by first choosing an index i, and
then choosing an index j. Property H3 says that

H(Xn2) = H(Xn) +

n∑

i=1

1

n
H(Xn) = 2H(Xn).

Example 5.59. We illustrate PropertyH3 with a more elaborate example. Sup-
pose that X has five possible outcomes {x1, x2, x3, x4, x5} with probabilities

fX(x1) =
1

2
, fX(x2) =

1

4
, fX(x3) =

1

12
, fX(x4) =

1

8
, fX(x5) =

1

24
.

The five outcomes for X are illustrated by the branched tree in Fig. 5.2a.
Now suppose that X is written as two successive choices,the first deciding

between the subsets {x1, x2, x3} and {x4, x5}, and the second choosing an
element of the designated subset. So we have random variables Y , Z1, Z2,
where

fY (Z1) =
5

6
and fY (Z2) =

1

6
,

and

fZ1
(x1)=

3

5
, fZ1

(x2) =
3

10
, fZ1

(x3) =
1

10
, fZ2

(x4) =
3

4
, fZ2

(x5) =
1

4
,

as illustrated in Fig. 5.2b. Then Property H3 for this example says that

H

(
1

2
,
1

4
,
1

12
,
1

8
,
1

24

)
= H

(
5

6
,
1

6

)
+

5

6
H

(
3

5
,
3

10
,
1

10

)
+

1

6
H

(
3

4
,
1

4

)

↑ ↑ ↑ ↑
H(X) H(Y ) H(Z1) H(Z2)

Theorem 5.60. Every function having Properties H1, H2, and H3 is a con-
stant multiple of the function

H(p1, . . . , pn) = −
n∑

i=1

pi log2 pi, (5.51)

where log2 denotes the logarithm to the base 2, and if p = 0, then we set
p log2 p = 0.21

21This convention makes sense, since we want H to be continuous in the pi’s, and it is
true that limp→0 p log2 p = 0.
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Figure 5.2: Splitting X into Y followed by Z1 or Z2. (a) Five outcomes of a
choice. (b) Splitting into two choices

Proof. See Shannon’s paper [126].

To illustrate the notion of uncertainty, consider what happens when one
of the probabilities pi is one and the other probabilities are zero. In this case,
the formula (5.51) for entropy gives H(p1, . . . , pn) = 0, which makes sense,
since there is no uncertainty about the outcome of an experiment having only
one possible outcome.

It turns out that the other extreme, namely maximal uncertainly, occurs
when all of the probabilities pi are equal. In order to prove this, we use an
important inequality from real analysis known as Jensen’s inequality. Before
stating Jensen’s inequality, we first need a definition.

Definition. A function F on the real line is called concave (down) on an
interval I if the following inequality is true for all 0 ≤ α ≤ 1 and all s and t
in I:

(1− α)F (s) + αF (t) ≤ F
(
(1− α)s+ αt

)
. (5.52)

This definition may seem mysterious, but it has a simple geometric inter-
pretation. Notice that if we fix s and t and let a vary from 0 to 1, then the
points (1 − α)s + αt trace out the interval from s to t on the real line. So
inequality (5.52) is the geometric statement that the line segment connecting
any two points on the graph of F lies below the graph of F . For example, the
function F (t) = 1− t2 is concave. Illustrations of concave and noncave func-
tions, with representative line segments, are given in Fig. 5.3. If the function F
has a second derivative, then the second derivative test that you learned in
calculus can be used to test for concavity (see Exercise 5.54).

Theorem 5.61 (Jensen’s Inequality). Suppose that F is concave on an
interval I, and let α1, α2, . . . , αn be nonnegative numbers satisfying

α1 + α2 + · · ·+ αn = 1.
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a b

Figure 5.3: An illustration of concavity. (a) A concave function. (b) A non-
concave function

Then

n∑

i=1

αiF (ti) ≤ F
( n∑

i=1

αiti

)
for all t1, t2, . . . , tn ∈ I. (5.53)

Further, equality holds in (5.53) if and only if either F is a linear function
or t1 = t2 = · · · = tn.

Proof. Notice that for n = 2, the desired inequality (5.53) is exactly the
definition of concavity (5.52). The general case is then proven by induction;
see Exercise 5.55.

Corollary 5.62. Let X be a random variable that takes on finitely many
possible values x1, . . . , xn.
(a) H(X) ≤ log2 n.

(b) H(X) = log2 n if and only if every event X = xi occurs with the same
probability 1/n.

Proof. Let pi = Pr(X = xi) for i = 1, 2, . . . , n. Then p1 + · · ·+ pn = 1, so we
may apply Jensen’s inequality to the function F (t) = log2 t with αi = pi and
ti = 1/pi. (See Exercise 5.54 for a proof that log2 t is a concave function.) The
left-hand side of (5.53) is exactly the formula for entropy (5.51), so we find
that

H(X) = −
n∑

i=1

pi log2 pi =

n∑

i=1

pi log2
1

pi
≤ log2

(
n∑

i=1

pi
1

pi

)

= log2 n.

This proves (a). Further, the function log2 t is not linear, so equality occurs if
and only if p1 = p2 = · · · = pn, i.e., if all of the probabilities satisfy pi = 1/n.
This proves (b).

Notice that Corollary 5.62 says that entropy is maximized when all of
the probabilities are equal. This conforms to our intuitive understanding that
uncertainty is maximized when every outcome is equally likely.

The theory of entropy is applied to cryptography by computing the en-
tropy of random variables such as K, M , and C that are associated with
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the cryptosystem and comparing the actual values with the maximum pos-
sible values. Clearly the more entropy there is, the better for the user, since
increased uncertainty makes the cryptanalyst’s job harder.

For instance, consider a shift cipher and the random variable K associ-
ated with its keys. The random variable K has 26 possible values, since the
shift may be any integer between 0 and 25, and each shift amount is equally
probable, so K has maximal entropy H(K) = log2(26).

Example 5.63. We consider the system with two keys described in Exam-
ple 5.54 on page 265. Each key is equally likely, so H(K) = log2(2) = 1. Simi-
larly, we can use the plaintext probabilities for this system as given by (5.48)
to compute the entropy of the random variableM associated to the plaintexts.

H(M) = −1

4
log2

(
1

4

)
− 1

4
log2

(
1

4

)
− 1

2
log2

(
1

2

)
=

3

2
= 1.5.

Notice that H(M) is slightly smaller than log2(3) ≈ 1.585, which would be
the maximal possible entropy for M in a cryptosystem with three plaintexts.

We now introduce the concept of conditional entropy and its application
to secrecy systems. Suppose that a signal is sent over a noisy channel, which
means that the signal may be distorted during transmission. Shannon [126]
defines the equivocation to be the conditional entropy of the original signal,
given the received signal. He uses this quantity to measure the amount of un-
certainty in transmissions across a noisy channel. Shannon [127] later observed
that a noisy communication channel is also a model for a secrecy system. The
original signal (the plaintext) is “distorted” by applying the encryption pro-
cess, and the received signal (the ciphertext) is thus a noisy version of the
original signal. In this way, the notion of equivocation can be applied to cryp-
tography, where a large equivocation says that the ciphertext conceals most
information about the plaintext.

Definition. Let X and Y be random variables, and let x1, . . . , xn be the
possible values of X and y1, . . . , ym the possible values of Y . The equivocation,
or conditional entropy, of X on Y is the quantity H(X | Y ) defined by

H(X | Y ) = −
n∑

i=1

m∑

j=1

fY (yj)fX|Y (xi | yj) log2 fX|Y (xi | yj).

When X = K is the key random variable and Y = C is the cipher-
text random variable, the quantity H(K | C) is called the key equivocation.
It measures the total amount of information about the key revealed by the
ciphertext, or more precisely, it is the expected value of the conditional en-
tropy H(K | c) of K given a single observation c of C. The key equivocation
can be determined by computing all of the conditional probabilities f(k | c)
of the cryptosystem. Alternatively, one can use the following result.
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Proposition 5.64. The key equivocation of a cryptosystem (K,Mcal, C) is
related to the individual entropies of K, M , and C by the formula

H(K | C) = H(K) +H(M)−H(C). (5.54)

Proof. We leave the proof as an exercise; see Exercise 5.57

Example 5.65. We compute the key equivocation of the cryptosystem de-
scribed in Examples 5.54 and 5.63. We already computed H(K) = 1 and
H(M) = 3

2 , so it remains to compute H(C). To do this, we need the val-
ues of f(c) for each ciphertext c ∈ C. We already computed f(c1) =

1
4 , and a

similar computation using (5.48) and Table 5.12 yields

f(c2) = f(k1)f(m1) + f(k2)f(m3) =

(
1

2

)(
1

4

)
+

(
1

2

)(
1

2

)
=

3

8
,

f(c3) = f(k1)f(m3) + f(k2)f(m2) =

(
1

2

)(
1

2

)
+

(
1

2

)(
1

4

)
=

3

8
.

Therefore,

H(C) = −1

4
log2

(
1

4

)
− 2 · 3

8
log2

(
3

8

)
≈ 1.56,

and using (5.54), we find that

H(K | C) = H(K) +H(M)−H(C) ≈ 1 + 1.5− 1.56 ≈ 0.94.

5.6.3 Redundancy and the Entropy
of Natural Language

Suppose that the plaintext is written in a natural language such as English.22

Then nearby letters, or nearby bits if the letters are converted to ASCII, are
heavily dependent on one another, rather than looking random. For exam-
ple, correlations between successive letters (bigrams or trigrams) can aid the
cryptanalyst, as we saw when we cryptanalyzed a simple substitution cipher
in Sect. 1.1. In this section we use the notion of entropy to quantify the re-
dundancy inherent in a natural language.

We start by approximating the entropy of a single letter in English text.
Let L denote the random variable whose values are the letters of the English
language E with their associated probabilities as given in Table 1.3 on page 6.
For example, the table says that

fL(A) = 0.0815, fL(B) = 0.0144, fL(C) = 0.0276, . . . , fL(Z) = 0.0008.

22It should be noted that when implementing a modern public key cipher, one generally
combines the plaintext with some random bits and then performs some sort of invertible
transformation so that the resulting secondary plaintext looks more like a string of random
bits. See Sect. 8.6.



276 5. Combinatorics, Probability, and Information Theory

We can use the values in Table 1.3 to compute the entropy of a single letter
in English text,

H(L) = 0.0815 log2(0.0815) + · · ·+ 0.0008 log2(0.0008) ≈ 4.132.

If every letter were equally likely, the entropy would be log2(26) ≈ 4.7. The
fact that the entropy is only 4.132 shows that some letters in English are more
prevalent than others.

The concept of entropy can be used to measure the amount of information
conveyed by a language. Shannon [126] shows that H(L) can be interpreted
as the average number of bits of information conveyed by a single letter of a
language. The value of H(L) that we computed does reveal some redundancy:
it says that a letter conveys only 4.132 bits of information on average, although
it takes 4.7 bits on average to specify a letter in the English alphabet.

The fact that natural languages contain redundancy is obvious. For ex-
ample, you will probably be able to read the following sentence, despite our
having removed almost 40% of the letters:

Th prblms o crptgry nd scrcy sysms frnsh n ntrstng aplcatn o comm thry.

However, the entropy H(L) of a single letter does not take into account
correlations between nearby letters, so it alone does not give a good value for
the redundancy of the English language E. As a first step, we should take into
account the correlations between pairs of letters (bigrams). Let L2 denote the
random variable whose values are pairs of English letters as they appear in
typical English text. Some bigrams appear fairly frequently, for example

fL2(TH) = 0.00315 and fL2(AN) = 0.00172.

Others, such as JX and ZQ, never occur. Just as Table 1.3 was created ex-
perimentally by counting the letters in a long sample text, we can create a
frequency table of bigrams and use it to obtain an experimental value for L2.
This leads to a value of H(L2) ≈ 7.12, so on average, each letter of E has
entropy equal to half this value, namely 3.56. Continuing, we could exper-
imentally compute the entropy of L3, which is the random variable whose
values are trigrams (triples of letters), and then 1

3H(L3) would be an even
better approximation to the entropy of E. Of course, we need to analyze a
great deal of text in order to obtain a reliable estimate for trigram frequencies,
and the problem becomes even harder as we look at L4, L5, L6, and so on.
However, this idea leads to the following important concept.

Definition. Let L be a language (e.g., English or French or C++), and for
each n ≥ 1, let Ln denote the random variables whose values are strings
of n consecutive characters of L. The entropy of L is defined to be the quan-
tity23

23To be rigorous, one should really define upper and lower densities using liminf and
limsup, since it is not clear that limit defining H(L) exists. We will not worry about such
niceties here.
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H(L) = lim
n→∞

H(Ln)

n
.

Although it is not possible to precisely determine the entropy of the English
language E, experimentally it appears that

1.0 ≤ H(E) ≤ 1.5.

This means that despite the fact that it requires almost five bits to represent
each of the 26 letters used in English, each letter conveys less than one and a
half bits of information. Thus English is approximately 70% redundant!24

5.6.4 The Algebra of Secrecy Systems

Wemake only a few brief remarks about the algebra of cryptosystems. In [127],
Shannon considers ways of building new cryptosystems by taking algebraic
combinations of old ones. The new systems are described in terms of linear
combinations and products of the original encryption transformations.

Example 5.66 (Summation Systems). If R and T are two secrecy systems,
then Shannon defines the weighted sum of R and T to be

S = pR+ qT, where p+ q = 1.

The meaning of this notation is as follows. First one chooses either R or T ,
where the probability of choosing R is p and the probability of choosing T is q.
Imagine that the choice is made by flipping an unbalanced coin, but note that
both Bob and Alice need to have a copy of the output of the coin tosses. In
other words, the list of choices, or a method for generating the list of choices,
forms part of their private key.

The notion of summation extends to the sum of any number of secrecy
systems. The systems R and T need to have the same message space, but
they need not act on messages in a similar way. For example, the system R
could be a substitution cipher and the system T could be a shift cipher. As
another example, suppose that Ti is the shift cipher that encrypts a letter
of the alphabet by shifting it i places. Then the system that encrypts by
choosing a shift at random and encrypting according to the chosen shift is the
summation cipher

25∑

i=0

1

26
Ti.

Example 5.67 (Product Systems). In order to define the product of two cryp-
tosystems, it is necessary that the ciphertexts of the first system be plaintexts
for the second system. Thus let

24This does not mean that one can remove 70% of the letters and still have an intelligible
message. What it means is that in principle, it is possible to take a long message that
requires 4.7 bits to specify each letter and to compress it into a form that takes only 30% as
many bits.
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e :M→ C and e′ :M′ → C′

by two encryption functions, and suppose that C = M′, or more generally,
that C ⊆ M′. Then the product system e′ · e is defined to be the composition
of e and e′,

e′ · e :M e−−−−→ C ⊆M′ e′−−−−→ C′.
Product ciphers provide a means to strengthen security. They were used in the
development of DES, the Digital Encryption Standard [97], the first national
standard for symmetric encryption. DES features several rounds of a cipher
called S-box encryption, so it is a multiple product of a cipher with itself.
Further, each round consists of the composition of several different transfor-
mations. The use of product ciphers continues to be of importance in the
development of new symmetric ciphers, including AES, the Advanced En-
cryption Standard. See Sect. 8.12 for a brief discussion of DES and AES.

5.7 Complexity Theory and P Versus NP
A decision problem is a problem in a formal system that has a yes or no
answer. For example, PRIME is the decision problem of determining whether
a given integer is a prime. We discussed this problem in Sect. 3.4. Another
example is the decision Diffie–Hellman problem (Exercise 2.7): given ga mod
p and gb mod p, determine whether a given number C is equal to gab mod
p. Complexity theory attempts to understand and quantify the difficulty of
solving particular decision problems.

The early history of this field is fascinating, as mathematicians tried to
come to grips with the limitations on provability within formal systems.
In 1936, Alan Turing proved that there is no algorithm that solves the halting
problem. That is, there is no algorithm to determine whether an arbitrary
computer program, given an arbitrary input, eventually halts execution. Such
a problem is called undecidable. Earlier in that same year, Alonzo Church
had published a proof of undecidability of a problem in the lambda calculus.
He and Turing then showed that the lambda calculus and the notion of Tur-
ing machine are essentially equivalent. The breakthroughs on the theory of
undecidability that appeared in the 1930s and 1940s began as a response to
Hilbert’s questions about the completeness of axiomatic systems and whether
there exist unsolvable mathematical problems. Indeed, both Church and Tur-
ing were influenced by Gödel’s discovery in 1930 that all sufficiently strong and
precise axiomatic systems are incomplete, i.e., they contain true statements
that are unprovable within the system.

There are uncountably many undecidable problems in mathematics, some
of which have simple and interesting formulations. Here is an example of an
easy to state undecidable problem called Post’s correspondence problem [106].
Suppose that you are given a sequence of pairs of strings,

(s1, t1), (s2, t2), (s3, t3), . . . , (sk, tk),
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where a string is simply a list of characters from some alphabet containing
at least two letters. The correspondence problem asks you to decide whether
there is an integer r ≥ 1 and a list of indices

i1, i2, . . . , ir between 1 and k (5.55)

such that the concatenations

si1 ‖ si2 ‖ · · · ‖ sir and ti1 ‖ ti2 ‖ · · · ‖ tir are equal. (5.56)

Note that if we bound the value of r, say r ≤ r0, then the problem becomes
decidable, since there are only a finite number of concatentations to check. The
problem with r restricted in this way is called the bounded Post correspondence
problem.

On the other end of the spectrum are decision problems for which there
exist quick algorithms leading to their solutions. We have already talked about
algorithms being fast if they run in polynomial time and slow if they take
exponential time; see the discussion in Sects. 2.6 and 3.4.2.

Definition. A decision problem belongs to the class P if there exists a
polynomial-time algorithm that solves it. That is, given an input of length n,
the answer will be produced in a polynomial (in n) number of steps. One says
that the decision problems in P are those that can be solved in polynomial
time.

The concept of verification in polynomial time has some subtlety that
can be captured only by a more precise definition, which we do not give.
The class NP is defined by the concept of a polynomial-time algorithm on
a “nondeterministic” machine. This means, roughly speaking, that we are
allowed to guess a solution, but the verification time to check that the guessed
solution is correct must be polynomial in the length of the input.

An example of a decision problem in P is that of determining whether
two integers have a nontrivial common factor. This problem is in P because
the Euclidean algorithm takes fewer than O(n3) steps. (Note that in this
setting, the Euclidean algorithm takes more than O(n) steps, since we need
to take account of the time it takes to add, subtract, multiply, and divide n-bit
numbers.) Another decision problem in P is that of determining whether a
given integer is prime. The famous AKS algorithm, Theorem 3.26, takes fewer
than O(n7) steps to check primality.

Definition. A decision problem belongs to the class NP if a yes-instance of
the problem can be verified in polynomial time.

For example, the bounded Post correspondence problem is in NP . It is
clear that if you are given a list of indices (5.55) of bounded length such that
the concatenations (5.56) are alleged to be the same, it takes a polynomial
number of steps to verify that the concatenations are indeed the same. On the
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other hand, exhaustively checking all possible concatenations of length up
to r0 takes an exponential (in r0) number of steps. It is less clear, but can be
proven, that one cannot find a solution in a polynomial number of steps.

This brings us to one of the most famous open questions in all of mathe-
matics and computer science25:

Does P = NP?

Since the status of P versus NP is currently unresolved, it is useful to
characterize problems in terms of their relative difficulty. We say that prob-
lem A can be (polynomial-time) reduced to problem B if there is a constructive
polynomial-time transformation that takes any instance of A and maps it to
an instance of B. Thus any algorithm for solving B can be transformed into
an algorithm for solving A. Hence if problem B belongs to P, and if A is
reducible to B, then A also belongs to P. The intuition is that if A can be
reduced to B, then solving A is no harder than solving B (up to a polynomial
amount of computation).

Stephen Cook’s 1971 paper [30] entitled “The Complexity of Theorem
Proving Procedures” laid the foundations of the theory of NP-completeness.
In this paper, Cook works with a certain NP problem called “Satisfiability”
(abbreviated SAT). The SAT problem asks, given a Boolean expression in-
volving only variables, parentheses, OR, AND and NOT, whether there exists
an assignment of truth values that makes the expression true. Cook proves
that SAT has the following properties:

1. Every NP problem is polynomial-time reducible to SAT.

2. If there exists any problem in NP that fails to be in P, then SAT is not
in P.

A problem that has these two properties is said to be NP-complete. Since
the publication of Cook’s paper, many other problems have been shown to
be NP-complete.

A related notion is that of NP-hardness. We say that a problem is NP-
hard if it has the reducibility property (1), although the problem itself need not
belong to NP. All NP-complete problems are NP-hard, but not conversely.
For example, the halting problem is NP-hard, but not NP-complete.

In order to put our informal discussion onto a firm mathematical footing,
it is necessary to introduce some formalism. We start with a finite set of
symbols Σ, and we denote by Σ∗ the set of all (finite) strings of these symbols.
A subset of Σ∗ is called a language. A decision problem is defined to be the
problem of deciding whether an input string belongs to a language. The precise
definitions of P and NP are then given within this formal framework, which

25As mentioned in Sect. 2.1, the question of whether P = NP is one of the $1,000,000
Millennium Prize problems.
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we shall not develop further here. For an excellent introduction to the theory
of complexity, see [46], and for additional material on complexity theory as it
relates to cryptography, see for example [143, Chapters 2 and 3].

Up to now we have been discussing the complexity theory of decision prob-
lems, but not every problem has a yes/no answer. For example, the problem of
integer factorization (given a composite number, find a nontrivial factor) has
a solution that is an integer, as does the discrete logarithm problem (given g
and h in a F

∗
p, find an x such that gx = h). It is possible to formulate a

theory of complexity for general computational problems, but we are content
to give two examples. First, the integer factorization problem is in NP , since
given an integer N and a putative factor m, it can be verified in polynomial-
time that m divides N . Second, the discrete logarithm problem is in NP,
since given a supposed solution x, one can verify in polynomial time (using
the fast powering algorithm) that gx = h. It is not known whether either of
these computational problems is in P, i.e., there are no known polynomial-
time algorithms for either integer factorization or for discrete logarithms. The
current general consensus seems to be that they are probably not in P.

We turn now to the role of complexity theory in some of the problems
that arise in cryptography. The problems of factoring integers and finding
discrete logarithms are presumed to be difficult, since no one has yet discov-
ered polynomial-time algorithms to produce solutions. However, the problem
of producing a solution (this is called the function problem) may be different
from the decision problem of determining whether a solution exists. Here is a
version of the factoring problem phrased as a decision problem:

Does there exist a nontrivial factor of N that is less than k?

As we can see, a yes instance of this problem (i.e., N is composite) has a
(trivial) polynomial-time verification algorithm, and so this decision problem
belongs to NP. It can also be shown that the complementary problem belongs
to NP. That is, if N is a no instance (i.e., N is prime), then the primality
of N can be verified in polynomial time on a nondeterministic Turing machine.
When both the yes and no instances of a problem can be verified in polynomial
time, the decision problem is said to belong to the class co-NP . Since it is
widely believed that NP is not the same as co-NP , it was also believed
that factoring is not an NP-complete problem. In 2004, Agrawal, Kayal and
Saxena [1] showed that the decision problem of determining whether a number
is prime does indeed belong to P, settling the long-standing question whether
this decision problem could be NP-complete.

A cryptosystem is only as secure as its underlying hard problem, so it
would be desirable to construct cryptosystems based on NP-hard problems.
There has been a great deal of interest in building efficient public key cryp-
tosystems of this sort. A major difficulty is that one needs not only an NP-
hard problem, but also a trapdoor to the problem to use for decryption. This
has led to a number of cryptosystems that are based special cases of NP-
hard problems, but it is not known whether these special cases are themselves
NP-hard.
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The first example of a public key cryptosystem built around an NP-
complete problem was the knapsack cryptosystem of Merkle and Hellman.
More precisely, they based their cryptosystem on the subset-sum problem,
which asks the following:

Given n positive integers a1, . . . , an and a target
sum S, find a subset of the ai such that

ai1 + ai2 + · · ·+ ait = S.

The subset-sum problem is NP-complete, since one can show that any in-
stance of SAT can be reduced to an instance of the subset-sum problem, and
vice versa. In order to build a public key cryptosystem based on the (hard)
subset-sum problem, Merkle and Hellman needed to build a trapdoor into the
problem. They did this by using only certain special cases of the subset-sum
problem, but unfortunately it turned out that these special cases are signifi-
cantly easier than the general case and their cryptosystem was broken. And
despite further work by a number of cryptographers, no one has been able to
build a subset-sum cryptosystem that is both efficient and secure. See Sect. 7.2
for a detailed discussion of how subset-sum cryptosystems work and how they
are broken.

Another cautionary note in going from theory to practice comes from the
fact that even if a certain collection of problems is NP-hard, that does not
mean that every problem in the collection is hard. In some sense,NP-hardness
measures the difficulty of the hardest problem in the collection, not the average
problem. It would not be good to base a cryptosystem on a problem for which
a few instances are very hard, but most instances are very easy. Ideally, we
want to use a collection of problems with the property that most instances are
NP-hard. An interesting example is the closest vector problem (CVP), which
involves finding a vector in lattice that is close to a given vector. We discuss
lattices and CVP in Chap. 7, but for now we note that CVP is NP-hard.
Our interest in CVP stems from a famous result of Ajtai and Dwork [4] in
which they construct a cryptosystem based on CVP in a certain set of lattices.
They show that the average difficulty of solving CVP for their lattices can be
polynomially reduced to solving the hardest instance of CVP in a similar set of
lattices (of somewhat smaller dimension). Although not practical, their public
key cryptosystem was the first construction exhibiting worst-case/average-
case equivalence.

Exercises

Section 5.1. Basic Principles of Counting

5.1. The Rhind papyrus is an ancient Egyptian mathematical manuscript that is
more than 3500 years old. Problem 79 of the Rhind papyrus poses a problem that
can be paraphrased as follows: there are seven houses; in each house lives seven cats;
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each cat kills seven mice; each mouse has eaten seven spelt seeds26; each spelt seed
would have produced seven hekat27 of spelt. What is the sum of all of the named
items? Solve this 3500 year old problem.

5.2. (a) How many n-tuples (x1, x2, . . . , xn) are there if the coordinates are required
to be integers satisfying 0 ≤ xi < q?

(b) Same question as (a), except now there are separate bounds 0 ≤ xi < qi for
each coordinate.

(c) How many n-by-n matrices are there if the entries xi,j of the matrix are integers
satisfying 0 ≤ xi,j < q?

(d) Same question as (a), except now the order of the coordinates does not matter.
So for example, (0, 0, 1, 3) and (1, 0, 3, 0) are considered the same. (This one is
rather tricky.)

(e) Twelve students are each taking four classes, for each class they need two loose-
leaf notebooks, for each notebook they need 100 sheets of paper, and each sheet
of paper has 32 lines on it. Altogether, how many students, classes, notebooks,
sheets, and lines are there? (Bonus. Make this or a similar problem of your own
devising into a rhyme like the St. Ives riddle.)

5.3. (a) List all of the permutations of the set {A,B,C}.
(b) List all of the permutations of the set {1, 2, 3, 4}.
(c) How many permutations are there of the set {1, 2, . . . , 20}?
(d) Seven students are to be assigned to seven dormitory rooms, each student

receiving his or her own room. In how many ways can this be done?

(e) How many different words can be formed with the four symbols A,A,B,C?

5.4. (a) List the 24 possible permutations of the letters A1, A2, B1, B2. If A1 is
indistinguishable from A2, and B1 is indistinguishable from B2, show how the
permutations become grouped into 6 distinct letter arrangements, each con-
taining 4 of the original 24 permutations.

(b) Using the seven symbols A,A,A,A,B,B,B, how many different seven letter
words can be formed?

(c) Using the nine symbols A,A,A,A,B,B,B,C,C, how many different nine letter
words can be formed?

(d) Using the seven symbols A,A,A,A,B,B,B, how many different five letter
words can be formed?

5.5. (a) There are 100 students eligible for an award, and the winner gets to
choose from among 5 different possible prizes. How many possible outcomes
are there?

(b) Same as in (a), but this time there is a first place winner, a second place winner,
and a third place winner, each of whom gets to select a prize. However, there
is only one of each prize. How many possible outcomes are there?

(c) Same as in (b), except that there are multiple copies of each prize, so each of the
three winners may choose any of the prizes. Now how many possible outcomes
are there? Is this larger or smaller than your answer from (b)?

26Spelt is an ancient type of wheat.
27A hekat is 1

30
of a cubic cubit, which is approximately 4.8 l.
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(d) Same as in (c), except that rather than specifying a first, second, and third place
winner, we just choose three winning students without differentiating between
them. Now how many possible outcomes are there? Compare the size of your
answers to (b), (c), and (d).

5.6. Use the binomial theorem (Theorem 5.10) to compute each of the following
quantities.
(a) (5z + 2)3 (b) (2a− 3b)4 (c) (x− 2)5

5.7. The binomial coefficients satisfy many interesting identities. Give three proofs
of the identity (

n

j

)

=

(
n− 1

j − 1

)

+

(
n− 1

j

)

.

(a) For Proof #1, use the definition of
(
n
j

)
as n!

(n−j)!j!
.

(b) For Proof #2, use the binomial theorem (Theorem 5.10) and compare the
coefficients of xjyn−j on the two sides of the identity

(x+ y)n = (x+ y)(x+ y)n−1.

(c) For Proof #3, argue directly that choosing j objects from a set of n objects
can be decomposed into either choosing j − 1 objects from n− 1 objects or
choosing j objects from n− 1 objects.

5.8. Let p be a prime number. This exercise sketches another proof of Fermat’s
little theorem (Theorem 1.24).
(a) If 1 ≤ j ≤ p− 1, prove that the binomial coefficient

(
p
j

)
is divisible by p.

(b) Use (a) and the binomial theorem (Theorem 5.10) to prove that

(a+ b)p ≡ ap + bp (mod p) for all a, b ∈ Z.

(c) Use (b) with b = 1 and induction on a to prove that ap ≡ a (mod p) for
all a ≥ 0.

(d) Use (c) to deduce that ap−1 ≡ 1 (mod p) for all a with gcd(p, a) = 1.

5.9. We know that there are n! different permutations of the set {1, 2, . . . , n}.
(a) How many of these permutations leave no number fixed?

(b) How many of these permutations leave at least one number fixed?

(c) How many of these permutations leave exactly one number fixed?

(d) How many of these permutations leave at least two numbers fixed?
For each part of this problem, give a formula or algorithm that can be used to
compute the answer for an arbitrary value of n, and then compute the value for n =
10 and n = 26. (This exercise generalizes Exercise 1.5.)

Section 5.2. The Vigenère Cipher

5.10. Encrypt each of the following Vigenère plaintexts using the given keyword
and the Vigenère tableau (Table 5.1).
(a) Keyword: hamlet

Plaintext: To be, or not to be, that is the question.
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(b) Keyword: fortune
Plaintext: The treasure is buried under the big W.

5.11. Decrypt each of the following Vigenère ciphertexts using the given keyword
and the Vigenère tableau (Table 5.1).
(a) Keyword: condiment

Ciphertext: r s g h z b m c x t d v f s q h n i g q x r n b m

p d n s q s m b t r k u

(b) Keyword: rabbithole
Ciphertext: k h f e q y m s c i e t c s i g j v p w f f b s q

m o a p x z c s f x e p s o x y e n p k d a i c x

c e b s m t t p t x z o o e q l a f l g k i p o c

z s w q m t a u j w g h b o h v r j t q h u

5.12. Explain how a cipher wheel with rotating inner wheel (see Fig. 1.1 on page 3)
can be used in place of a Vigeǹere tableau (Table 5.1) to perform Vigenère encryption
and decryption. Illustrate by describing the sequence of rotations used to perform a
Vigenère encryption with the keyword mouse.

5.13. Let

s = “I am the very model of a modern major general.”

t = “I have information vegetable, animal, and mineral.”

(a) Make frequency tables for s and t.

(b) Compute IndCo(s) and IndCo(t).

(c) Compute MutIndCo(s, t).

5.14. The following strings are blocks from a Vigenère encryption. It turns out that
the keyword contains a repeated letter, so two of these blocks were encrypted with
the same shift. Compute MutIndCo(si, sj) for 1 ≤ i < j ≤ 3 and use these values
to deduce which two strings were encrypted using the same shift.

s1 = iwseesetftuonhdptbunnybioeatneghictdnsevi

s2 = qibfhroeqeickxmirbqlflgkrqkejbejpepldfjbk

s3 = iesnnciiheptevaireittuevmhooottrtaaflnatg

5.15. (a) One of the following two strings was encrypted using a simple substitution
cipher, while the other is a random string of letters. Compute the index of
coincidence of each string and use the results to guess which is which.

s1 = RCZBWBFHSLPSCPILHBGZJTGBIBJGLYIJIBFHCQQFZBYFP,

s2 = KHQWGIZMGKPOYRKHUITDUXLXCWZOTWPAHFOHMGFEVUEJJ.

(b) One of the following two strings was encrypted using a simple substitution
cipher, while the other is a random permutation of the same set of letters.

s1 = NTDCFVDHCTHKGUNGKEPGXKEWNECKEGWEWETWKUEVHDKK

CDGCWXKDEEAMNHGNDIWUVWSSCTUNIGDSWKE
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nhqrk vvvfe fwgjo mzjgc kocgk lejrj wossy wgvkk hnesg kwebi

bkkcj vqazx wnvll zetjc zwgqz zwhah kwdxj fgnyw gdfgh bitig

mrkwn nsuhy iecru ljjvs qlvvw zzxyv woenx ujgyr kqbfj lvjzx

dxjfg nywus rwoar xhvvx ssmja vkrwt uhktm malcz ygrsz xwnvl

lzavs hyigh rvwpn ljazl nispv jahym ntewj jvrzg qvzcr estul

fkwis tfylk ysnir rddpb svsux zjgqk xouhs zzrjj kyiwc zckov

qyhdv rhhny wqhyi rjdqm iwutf nkzgd vvibg oenwb kolca mskle

cuwwz rgusl zgfhy etfre ijjvy ghfau wvwtn xlljv vywyj apgzw

trggr dxfgs ceyts tiiih vjjvt tcxfj hciiv voaro lrxij vjnok

mvrgw kmirt twfer oimsb qgrgc

Table 5.13: A Vigenère ciphertext for Exercise 5.16

togmg gbymk kcqiv dmlxk kbyif vcuek cuuis vvxqs pwwej koqgg

phumt whlsf yovww knhhm rcqfq vvhkw psued ugrsf ctwij khvfa

thkef fwptj ggviv cgdra pgwvm osqxg hkdvt whuev kcwyj psgsn

gfwsl jsfse ooqhw tofsh aciin gfbif gabgj adwsy topml ecqzw

asgvs fwrqs fsfvq rhdrs nmvmk cbhrv kblxk gzi

Table 5.14: A Vigenère ciphertext for Exercise 5.17

s2 = IGWSKGEHEXNGECKVWNKVWNKSUTEHTWHEKDNCDXWSIEKD

AECKFGNDCPUCKDNCUVWEMGEKWGEUTDGTWHD

Thus their Indices of Coincidence are identical. Develop a method to compute
a bigram index of coincidence, i.e., the frequency of pairs of letters, and use it
to determine which string is most likely the encrypted text.

(Bonus: Decrypt the encrypted texts in (a) and (b), but be forewarned that the
plaintexts are in Latin.)

5.16. Table 5.13 is a Vigenère ciphertext in which we have marked some of the
repeated trigrams for you. How long do you think the keyword is? Why?

Bonus: Complete the cryptanalysis and recover the plaintext.

5.17. We applied a Kasiski test to the Vigenère ciphertext listed in Table 5.14
and found that the key length is probably 5. We then performed a mutual index of
coincidence test to each shift of each pair of blocks and listed the results for you in
Table 5.15. (This is the same type of table as Table 5.5 in the text, except that we
haven’t underlined the large values.) Use Table 5.15 to guess the relative rotations
of the blocks, as we did in Table 5.6. This will give you a rotated version of the
keyword. Try rotating it, as we did in Table 5.7, to find the correct keyword and
decrypt the text.

5.18. Table 5.16 gives a Vigenère ciphertext for you to analyze from scratch. It is
probably easiest to do so by writing a computer program, but you are welcome to
try to decrypt it with just paper and pencil.
(a) Make a list of matching trigrams as we did in Table 5.3. Use the Kasiski test

on matching trigrams to find the likely key length.



Exercises 287

Blocks Shift amount
i j 0 1 2 3 4 5 6 7 8 9 10 11 12
1 2 0.044 0.047 0.021 0.054 0.046 0.038 0.022 0.034 0.057 0.035 0.040 0.023 0.038
1 3 0.038 0.031 0.027 0.037 0.045 0.036 0.034 0.032 0.039 0.039 0.047 0.038 0.050
1 4 0.025 0.039 0.053 0.043 0.023 0.035 0.032 0.043 0.029 0.040 0.041 0.050 0.027
1 5 0.050 0.050 0.025 0.031 0.038 0.045 0.037 0.028 0.032 0.038 0.063 0.033 0.034
2 3 0.035 0.037 0.039 0.031 0.031 0.035 0.047 0.048 0.034 0.031 0.031 0.067 0.053
2 4 0.040 0.033 0.046 0.031 0.033 0.023 0.052 0.027 0.031 0.039 0.078 0.034 0.029
2 5 0.042 0.040 0.042 0.029 0.033 0.035 0.035 0.038 0.037 0.057 0.039 0.038 0.040
3 4 0.032 0.033 0.035 0.049 0.053 0.027 0.030 0.022 0.047 0.036 0.040 0.036 0.052
3 5 0.043 0.043 0.040 0.034 0.033 0.034 0.043 0.035 0.026 0.030 0.050 0.068 0.044
4 5 0.045 0.033 0.044 0.046 0.021 0.032 0.030 0.038 0.047 0.040 0.025 0.037 0.068

Blocks Shift amount
i j 13 14 15 16 17 18 19 20 21 22 23 24 25
1 2 0.040 0.063 0.033 0.025 0.032 0.055 0.038 0.030 0.032 0.045 0.035 0.030 0.044
1 3 0.026 0.046 0.042 0.053 0.027 0.024 0.040 0.047 0.048 0.018 0.037 0.034 0.066
1 4 0.042 0.050 0.042 0.031 0.024 0.052 0.027 0.051 0.020 0.037 0.042 0.069 0.031
1 5 0.030 0.048 0.039 0.030 0.034 0.038 0.042 0.035 0.036 0.043 0.055 0.030 0.035
2 3 0.039 0.015 0.030 0.045 0.049 0.037 0.023 0.036 0.030 0.049 0.039 0.050 0.037
2 4 0.027 0.048 0.050 0.037 0.032 0.021 0.035 0.043 0.047 0.041 0.047 0.042 0.035
2 5 0.033 0.035 0.039 0.033 0.037 0.047 0.037 0.028 0.034 0.066 0.054 0.032 0.022
3 4 0.040 0.048 0.041 0.044 0.033 0.028 0.039 0.027 0.036 0.017 0.038 0.051 0.065
3 5 0.039 0.029 0.045 0.040 0.033 0.028 0.031 0.037 0.038 0.036 0.033 0.051 0.036
4 5 0.049 0.033 0.029 0.043 0.028 0.033 0.020 0.040 0.040 0.041 0.039 0.039 0.059

Table 5.15: Mutual indices of coincidence for Exercise 5.17

mgodt beida psgls akowu hxukc iawlr csoyh prtrt udrqh cengx

uuqtu habxw dgkie ktsnp sekld zlvnh wefss glzrn peaoy lbyig

uaafv eqgjo ewabz saawl rzjpv feyky gylwu btlyd kroec bpfvt

psgki puxfb uxfuq cvymy okagl sactt uwlrx psgiy ytpsf rjfuw

igxhr oyazd rakce dxeyr pdobr buehr uwcue ekfic zehrq ijezr

xsyor tcylf egcy

Table 5.16: A Vigenère ciphertext for Exercise 5.18

(b) Make a table of indices of coincidence for various key lengths, as we did in
Table 5.4. Use your results to guess the probable key length.

(c) Using the probable key length from (a) or (b), make a table of mutual indices
of coincidence between rotated blocks, as we did in Table 5.5. Pick the largest
indices from your table and use them to guess the relative rotations of the
blocks, as we did in Table 5.6.

(d) Use your results from (c) to guess a rotated version of the keyword, and then
try the different rotations as we did in Table 5.7 to find the correct keyword
and decrypt the text.

5.19. The autokey cipher is similar to the Vigenère cipher, except that rather than
repeating the key, it simply uses the key to encrypt the first few letters and then
uses the plaintext itself (shifted over) to continue the encryption. For example, in
order to encrypt the message “The autokey cipher is cool” using the keyword
random, we proceed as follows:
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Plaintext t h e a u t o k e y c i p h e r i s c o o l

Key r a n d o m t h e a u t o k e y c i p h e r

Ciphertext k h r d i f h r i y w b d r i p k a r v s c

The autokey cipher has the advantage that different messages are encrypted using
different keys (except for the first few letters). Further, since the key does not repeat,
there is no key length, so the autokey is not directly susceptible to a Kasiski or index
of coincidence analysis. A disadvantage of the autokey is that a single mistake in
encryption renders the remainder of the message unintelligible. According to [63],
Vigenère invented the autokey cipher in 1586, but his invention was ignored and
forgotten before being reinvented in the 1800s.
(a) Encrypt the following message using the autokey cipher:

Keyword: LEAR

Plaintext: Come not between the dragon and his wrath.

(b) Decrypt the following message using the autokey cipher:
Keyword: CORDELIA

Ciphertext: pckkm yowvz ejwzk knyzv vurux cstri tgac

(c) Eve intercepts an autokey ciphertext and manages to steal the accompanying
plaintext:

Plaintext ifmusicbethefoodofloveplayon

Ciphertext azdzwqvjjfbwnqphhmptjsszfjci

Help Eve to figure out the keyword that was used for encryption. Describe your
method in sufficient generality to show that the autokey cipher is susceptible
to known plaintext attacks.

(d) Bonus Problem: Try to formulate a statistical or algebraic attack on the autokey
cipher, assuming that you are given a large amount of ciphertext to analyze.

Section 5.3. Probability Theory

5.20. Use the definition (5.15) of the probability of an event to prove the following
basic facts about probability theory.
(a) Let E and F be disjoint events. Then

Pr(E ∪ F ) = Pr(E) + Pr(F ).

(b) Let E and F be events that need not be disjoint. Then

Pr(E ∪ F ) = Pr(E) + Pr(F )− Pr(E ∩ F ).

(c) Let E be an event. Then Pr(Ec) = 1− Pr(E).

(d) Let E1, E2, E3 be events. Prove that

Pr(E1 ∪ E2 ∪ E3) = Pr(E1) + Pr(E2) + Pr(E3)− Pr(E1 ∩ E2)

− Pr(E1 ∩ E3)− Pr(E2 ∩ E3) + Pr(E1 ∩ E2 ∩ E3).

The formulas in (b) and (d) and their generalization to n events are known as the
inclusion–exclusion principle.

5.21. We continue with the coin tossing scenario from Example 5.23, so our ex-
periment consists in tossing a fair coin ten times. Compute the probabilities of the
following events.
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(a) The first and last tosses are both heads.

(b) Either the first toss or the last toss (or both) are heads.

(c) Either the first toss or the last toss (but not both) are heads.

(d) There are exactly k heads and 10 − k tails. Compute the probability for each
value of k between 0 and 10. (Hint. To save time, note that the probability of
exactly k heads is the same as the probability of exactly k tails.)

(e) There is an even number of heads.

(f) There is an odd number of heads.

5.22. Alice offers to make the following bet with you. She will toss a fair coin 14
times. If exactly 7 heads come up, she will give you $4; otherwise you must give
her $1. Would you take this bet? If so, and if you repeated the bet 10000 times, how
much money would you expect to win or lose?

5.23. Let E and F be events.
(a) Prove that Pr(E | E) = 1. Explain in words why this is reasonable.

(b) If E and F are disjoint, prove that Pr(F | E) = 0. Explain in words why this
is reasonable.

(c) Let F1, . . . , Fn be events satisfying Fi ∩ Fj = ∅ for all i �= j. We say
that F1, . . . , Fn are pairwise disjoint. Prove then that

Pr

( n⋃

i=1

Fi

)
=

n∑

i=1

Pr(Fi).

(d) Let F1, . . . , Fn be pairwise disjoint as in (c), and assume further that

F1 ∪ · · · ∪ Fn = Ω,

where recall that Ω is the entire sample space. Prove the following general
version of the decomposition formula (5.20) in Proposition 5.24(a):

Pr(E) =
n∑

i=1

Pr(E | Fi) Pr(Fi).

(e) Prove a general version of Bayes’s formula:

Pr(Fi | E) =
Pr(E | Fi) Pr(Fi)

Pr(E | F1) Pr(F1) + Pr(E | F2) Pr(F2) + · · ·+ Pr(E | Fn) Pr(Fn)
.

5.24. There are two urns containing pens and pencils. Urn #1 contains three pens
and seven pencils and Urn #2 contains eight pens and four pencils.
(a) An urn is chosen at random and an object is drawn. What is the probability

that it is a pencil?

(b) An urn is chosen at random and an object is drawn. If the object drawn is a
pencil, what is the probability that it came from Urn #1?

(c) If an urn is chosen at random and two objects are drawn simultaneously, what
is the probability that both are pencils?

5.25. An urn contains 20 silver coins and 10 gold coins. You are the sixth person
in line to randomly draw and keep a coin from the urn.
(a) What is the probability that you draw a gold coin?
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(b) If you draw a gold coin, what is the probability that the five people ahead of
you all drew silver coins?

5.26. Consider the three prisoners scenario described in Example 5.26. Let A, B,
and C denote respectively the events that Alice is to be released, Bob is to be
released, and Carl is to be released, which we assume to be equally likely, so Pr(A) =
Pr(B) = Pr(C) = 1

3
. Also let J be the event that the jailer tells Aice that Bob is to

stay in jail.
(a) Compute the values of Pr(B | J), Pr(J | B), and Pr(J | C).

(b) Compute the values of Pr(J | Ac) and Pr(Jc | Ac), where the event Ac is the
event that Alice stays in jail.

(c) Suppose that if Alice is the one who is to be released, then the jailer flips a fair
coin to decide whether to tell Alice that Bob stays in jail or that Carl stays in
jail. What is the value of Pr(A | J)?

(d) Suppose instead that if Alice is the one who is to be released, then the jailer
always tells her that Bob will stay in jail. Now what is the value of Pr(A | J)?

Other similar problems with counterintuitive conclusions include the Monty Hall
problem (Exercise 5.27), Bertrand’s box paradox, and the principle of restricted
choice in contract bridge.

5.27. (The Monty Hall Problem) Monty Hall gives Dan the choice of three curtains.
Behind one curtain is a car, while behind the other two curtains are goats. Dan
chooses a curtain, but before it is opened, Monty Hall opens one of the other curtains
and reveals a goat. He then offers Dan the option of keeping his original curtain or
switching to the remaining closed curtain. The Monty Hall problem is to figure out
Dan’s best strategy: “To stick or to switch?”
(a) What is the probability that Dan wins the car if he always sticks to his first

choice of curtain? What is the probability that Dan wins the car if he always
switches curtains? Which is his best strategy? (If the answer seems counter-
intuitive, suppose instead that there are 1000 curtains and that Monty Hall
opens 998 goat curtains. Now what are the winning probabilities for the two
strategies?)

(b) Suppose that we give Monty Hall another option, namely he’s allowed to force
Dan to stick with his first choice of curtain. Assuming that Monty Hall dislikes
giving away cars, now what is Dan’s best strategy, and what is his probability
of winning a car?

(c) More generally, suppose that there are N curtains and M cars, and suppose
that Monty Hall opens K curtains that have goats behind them. Compute the
probabilities

Pr(Dan wins a car | Dan sticks), Pr(Dan wins a car | Dan switches).

Which is the better strategy?

5.28. Let S be a set, let A be a property of interest, and suppose that for m ∈ S,
we have

Pr(m does not have property A) = δ.

Suppose further that a Monte Carlo algorithm applied to m and a random number r
satisfy:
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(1) If the algorithm returns Yes, then m definitely has property A.

(2) If m has property A, then the probability that the algorithm returns Yes is at
least p.

Notice that we can restate (1) and (2) as conditional probabilities:

(1) Pr(m has property A | algorithm returns Yes) = 1,

(2) Pr(algorithm returns Yes | m has property A) ≥ p.

Suppose that we run the algorithm N times on the number m, and suppose that
the algorithm returns No every single time. Derive a lower bound, in terms of δ, p,
and N , for the probability that m does not have property A. (This generalizes the
version of the Monte Carlo method that we studied in Sect. 5.3.3 with δ = 0.01 and
p = 1

2
. Be careful to distinguish p from 1− p in your calculations.)

5.29. We continue with the setup described in Exercise 5.28.
(a) Suppose that δ = 9

10
and p = 3

4
. If we run the algorithm 25 times on the

input m and always get back No, what is the probability that m does not have
property A?

(b) Same question as (a), but this time we run the algorithm 100 times.

(c) Suppose that δ = 99
100

and p = 1
2
. How many times should we run the algorithm

on m to be 99% confident that m does not have property A, assuming that
every output is No?

(d) Same question as (c), except now we want to be 99.9999% confident.

5.30. If an integer n is composite, then the Miller–Rabin test has at least a 75%
chance of succeeding in proving that n is composite, while it never misidentifies a
prime as being composite. (See Table 3.2 in Sect. 3.4 for a description of the Miller–
Rabin test.) Suppose that we run the Miller–Rabin test N times on the integer n
and that it fails to prove that n is composite. Show that the probability that n is
prime satisfies (approximately)

Pr(n is prime | the Miller–Rabin test fails N times) ≥ 1− ln(n)

4N
.

(Hint. Use Exercise 5.28 with appropriate choices of A, S, δ, and p. You may also
use the estimate from Sect. 3.4.1 that the probability that n is prime is approxi-
mately 1/ ln(n).)

5.31. It is natural to assume that if Pr(E | F ) is significantly larger than Pr(E),
then somehow F is causing E. Baye’s formula illustrates the fallacy of this sort of
reasoning, since it says that

Pr(E | F )

Pr(E)
=

Pr(F | E)

Pr(F )
.

So if F is “causing” E, then the same reasoning shows that E is “causing” F . All
that one can really say is that E and F are correlated with one another, in the sense
that either one of them being true makes it more likely that the other one is true.
It is incorrect to deduce a cause-and-effect relation.

Here is a concrete example. Testing shows that first graders are more likely to be
good spellers if their shoe sizes are larger than average. This is an experimental fact.
Hence if we stretch a child’s foot, it will make them a better speller! Alternatively,
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by Baye’s formula, if we give them extra spelling lessons, then their feet will grow
faster! Explain why these last two assertions are nonsense, and describe what’s really
going on.

5.32. Let fX(k) be the binomial density function (5.23). Prove directly, using the
binomial theorem, that

∑n
k=0 fX(k) = 1.

5.33. In Example 5.37 we used a differentiation trick to compute the value of the
infinite series

∑∞
n=1 np(1−p)

n−1. This exercise further develops this useful technique.
The starting point is the formula for the geometric series

∞∑

n=0

xn =
1

1− x
for |x| < 1 (5.57)

and the differential operator

D = x
d

dx
.

(a) Using the fact that D(xn) = nxn, prove that

∞∑

n=1

nxn =
x

(1− x)2
(5.58)

by applying D to both sides of (5.57). For which x does the left-hand side
of (5.58) converge? (Hint. Use the ratio test.)

(b) Applying D again, prove that

∞∑

n=0

n2xn =
x+ x2

(1− x)3
. (5.59)

(c) More generally, prove that for every value of k there is a polynomial Fk(x) such
that ∞∑

n=0

nkxn =
Fk(x)

(1− x)k+1
. (5.60)

(Hint. Use induction on k.)

(d) The first few polynomials Fk(x) in (c) are F0(x) = 1, F1(x) = x, and F2(x) =
x+x2. These follow from (5.57), (5.58), and (5.59). Compute F3(x) and F4(x).

(e) Prove that the polynomial Fk(x) in (c) has degree k.

5.34. In each case, compute the expectation of the random variable X.
(a) The values of X are uniformly distributed on the set {0, 1, 2, . . . , N − 1}. (See

Example 5.28.)

(b) The values of X are uniformly distributed on the set {1, 2, . . . , N}.
(c) The values of X are uniformly distributed on the set {1, 3, 7, 11, 19, 23}.
(d) X is a random variable with a binomial density function; see formula (5.23) in

Example 5.29 on page 240.

5.35. Let X be a random variable on the probability space Ω. It might seem more
natural to define the expected value of X by the formula
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∑

ω∈Ω

X(ω) · Pr(ω). (5.61)

Prove that the formula (5.61) gives the same value as Eq. (5.27) on page 244, which
we used in the text to define E(X).

Section 5.4. Collision Algorithms and the Birthday Paradox

5.36. (a) In a group of 23 strangers, what is the probability that at least two of
them have the same birthday? How about if there are 40 strangers? In a group
of 200 strangers, what is the probability that one of them has the same birthday
as your birthday? (Hint. See the discussion in Sect. 5.4.1.)

(b) Suppose that there are N days in a year (where N could be any number) and
that there are n people. Develop a general formula, analogous to (5.28), for the
probability that at least two of them have the same birthday. (Hint. Do a cal-
culation similar to the proof of (5.28) in the collision theorem (Theorem 5.38),
but note that the formula is a bit different because the birthdays are being
selected from a single list of N days.)

(c) Find a lower bound of the form

Pr(at least one match) ≥ 1− e−(some function of n and N)

for the probability in (b), analogous to the estimate (5.29).

5.37. A deck of cards is shuffled and the top eight cards are turned over.
(a) What is the probability that the king of hearts is visible?

(b) A second deck is shuffled and its top eight cards are turned over. What is the
probability that a visible card from the first deck matches a visible card from
the second deck? (Note that this is slightly different from Example 5.39 because
the cards in the second deck are not being replaced.)

5.38. (a) Prove that
e−x ≥ 1− x for all values of x.

(Hint. Look at the graphs of e−x and 1 − x, or use calculus to compute the
minimum of the function f(x) = e−x − (1− x).)

(b) Prove that for all a > 1, the inequality

e−ax ≤ (1− x)a +
1

2
ax2 is valid for all 0 ≤ x ≤ 1.

(This is a challenging problem.)

(c) We used the inequality in (a) during the proof of the lower bound (5.29) in the
collision theorem (Theorem 5.38). Use (b) to prove that

Pr(at least one red) ≤ 1− e−mn/N +
mn2

2N2
.

Thus if N is large andm and n are not much larger than
√
N , then the estimate

Pr(at least one red) ≈ 1− e−mn/N

is quite accurate. (Hint. Use (b) with a = m and x = n/N .)

5.39. Solve the discrete logarithm problem 10x = 106 in the finite field F811 by
finding a collision among the random powers 10i and 106 · 10i that are listed in
Table 5.17.
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i gi h · gi

116 96 444

497 326 494

225 757 764

233 517 465

677 787 700

622 523 290

i gi h · gi

519 291 28

286 239 193

298 358 642

500 789 101

272 24 111

307 748 621

i gi h · gi

791 496 672

385 437 95

178 527 714

471 117 237

42 448 450

258 413 795

i gi h · gi

406 801 562

745 194 289

234 304 595

556 252 760

326 649 670

399 263 304

Table 5.17: Data for Exercise 5.39, g = 10, h = 106, p = 811

Section 5.5. Pollard’s ρ Method

5.40. Table 5.18 gives some of the computations for the solution of the discrete
logarithm problem

11t = 41387 in F81799 (5.62)

using Pollard’s ρ method. (It is similar to Table 5.11 in Example 5.52.) Use the data
in Table 5.18 to solve (5.62).

i xi yi αi βi γi δi

0 1 1 0 0 0 0

1 11 121 1 0 2 0

2 121 14641 2 0 4 0

3 1331 42876 3 0 12 2

4 14641 7150 4 0 25 4
...

151 4862 33573 40876 45662 29798 73363

152 23112 53431 81754 9527 37394 48058

153 8835 23112 81755 9527 67780 28637

154 15386 15386 81756 9527 67782 28637

Table 5.18: Computations to solve 11t = 41387 in F81799 for Exercise 5.40

5.41. Table 5.19 gives some of the computations for the solution of the discrete
logarithm problem

7t = 3018 in F7963 (5.63)

using Pollard’s ρ method. (It is similar to Table 5.11 in Example 5.52.) Extend
Table 5.19 until you find a collision (we promise that it won’t take too long) and
then solve (5.63).

5.42. Write a computer program implementing Pollard’s ρ method for solving the
discrete logarithm problem and use it to solve each of the following:
(a) 2t = 2495 in F5011.

(b) 17t = 14226 in F17959.

(c) 29t = 5953042 in F15239131.
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i xi yi αi βi γi δi

0 1 1 0 0 0 0

1 7 49 1 0 2 0

2 49 2401 2 0 4 0

3 343 6167 3 0 6 0

4 2401 1399 4 0 7 1
...

87 1329 1494 6736 7647 3148 3904

88 1340 1539 6737 7647 3150 3904

89 1417 4767 6738 7647 6302 7808

90 1956 1329 6739 7647 4642 7655

Table 5.19: Computations to solve 7t = 3018 in F7963 for Exercise 5.41

5.43. Evaluate the integral I =
∫∞
0
t2e−t2/2 dt appearing in the proof of Theo-

rem 5.48. (Hint. Write I2 as an iterated integral,

I2 =

∫ ∞

0

∫ ∞

0

x2e−x2/2 · y2e−y2/2 dx dy,

and switch to polar coordinates.)

5.44. This exercise describes Pollard’s ρ factorization algorithm. It is particularly
good at factoring numbers N that have a prime factor p with the property that p
is considerably smaller than N/p. Later we will study an even faster, albeit more
complicated, factorization algorithm with this property that is based on the theory
of elliptic curves; see Sect. 6.6.

Let N be an integer that is not prime, and let

f : Z/NZ −→ Z/NZ

be a mixing function, for example f(x) = x2 + 1 mod N . As in the abstract version
of Pollard’s ρ method (Theorem 5.48), let x0 = y0 be an initial value, and generate
sequences by setting xi+1 = f(xi) and yi+1 = f(f(yi)). At each step, also compute
the greatest common divisor

gi = gcd
(
|xi − yi|, N

)
.

(a) Let p be the smallest prime divisor of N . If the function f is sufficiently random,
show that with high probability we have

gk = p for some k = O(
√
p).

Hence the algorithm factors N in O(
√
p) steps.

(b) Program Pollard’s ρ algorithm with f(x) = x2 + 1 and x0 = y0 = 0, and use it
to factor the following numbers. In each case, give the smallest value of k such
that gk is a nontrivial factor of N and print the ratio k/

√
N .

(i) N = 2201. (ii) N = 9409613. (iii) N = 1782886219.
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(c) Repeat your computations in (b) using the function f(x) = x2 + 2. Do the
running times change?

(d) Explain what happens if you run Pollard’s ρ algorithm and N is prime.

(e) Explain what happens if you run Pollard’s ρ algorithm with f(x) = x2 and any
initial values for x0.

(f) Try running Pollard’s ρ algorithm with the function f(x) = x2 − 2. Explain
what is happening. (Hint. This part is more challenging. It may help to use the
identity fn(u+ u−1) = u2n + u−2n , which you can prove by induction.)

Section 5.6. Information Theory

5.45. Consider the cipher that has three keys, three plaintexts, and four ciphertexts
that are combined using the following encryption table (which is similar to Table 5.12
used in Example 5.54 on page 265).

m1 m2 m3

k1 c2 c4 c1
k2 c1 c3 c2
k3 c3 c1 c2

Suppose further that the plaintexts and keys are used with the following probabili-
ties:

f(m1) = f(m2) =
2

5
, f(m3) =

1

5
, f(k1) = f(k2) = f(k3) =

1

3
.

(a) Compute f(c1), f(c2), f(c3), and f(c4).

(b) Compute f(c1 | m1), f(c1 | m2), and f(c1 | m3). Does this cryptosystem have
perfect secrecy?

(c) Compute f(c2 | m1) and f(c3 | m1).

(d) Compute f(k1 | c3) and f(k2 | c3).

5.46. Suppose that a shift cipher is employed such that each key, i.e., each shift
amount from 0 to 25, is used with equal probability and such that a new key is
chosen to encrypt each successive letter. Show that this cryptosystem has perfect
secrecy by filling in the details of the following steps.
(a) Show that

∑
k∈K fM (dk(c)) = 1 for every ciphertext c ∈ C.

(b) Compute the ciphertext density function fC using (5.47), which in this case
says that

fC(c) =
∑

k∈K
fK(k)fM (dk(c)).

(c) Compare fC(c) to fC|M (c | m).

5.47. Give the details of the proof of (5.47), which says that

fC(c) =
∑

k ∈ K such
that c ∈ ek(M)

fK(k)fM
(
dk(c)

)
.

(Hint. Use the decomposition formula from Exercise 5.23(d)).
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5.48. Suppose that a cryptosystem has the same number of plaintexts as it does
ciphertexts (#M = #C). Prove that for any given key k ∈ K and any given ci-
phertext c ∈ C, there is a unique plaintext m ∈ M that encrypts to c using the
key k. (We used this fact during the proof of Theorem 5.56. Notice that the proof
does not require the cryptosystem to have perfect secrecy; all that is needed is that
#M = #C.)

5.49. Let Sm,c =
{
k ∈ K : ek(m) = c

}
be the set used during the proof of

Theorem 5.56. Prove that if c �= c′, then Sm,c ∩ Sm,c′ = ∅. (Prove this for any
cryptosystem; it is not necessary to assume perfect secrecy.)

5.50. Suppose that a cryptosystem satisfies #K = #M = #C and that it has
perfect secrecy. Prove that every ciphertext is used with equal probability and that
every plaintext is used with equal probability. (Hint. We proved one of these during
the course of proving Theorem 5.56. The proof of the other is similar.)

5.51. Prove the “only if” part of Theorem 5.56, i.e., prove that if a cryptosystem
with an equal number of keys, plaintexts, and ciphertexts satisfies conditions (a)
and (b) of Theorem 5.56, then it has perfect secrecy.

5.52. LetXn be a uniformly distributed random variable on n objects, and let r ≥ 1.
Prove directly from Property H3 of entropy that

H(Xnr ) = rH(Xn).

This generalizes Example 5.58.

5.53. Let X, Y , and Z1, . . . , Zm be random variables as described in Property H3

on page 270. Let

pi = Pr(Y = Zi) and qij = Pr(Zi = xij), so Pr(X = xij) = piqij .

With this notation, Property H3 says that

H

(
(piqij) 1≤i≤n

1≤j≤mi

)
= H

(
(pi)1≤i≤n

)
+

n∑

i=1

piH
(
(qij)1≤j≤mi

)
.

(See Example 5.59.) Then the formula (5.51) for entropy given in Theorem 5.60
implies that

n∑

i=1

mi∑

j=1

piqij log2(piqij) =

n∑

i=1

pi log2(pi) +

n∑

i=1

pi

mi∑

j=1

qij log2(qij). (5.64)

Prove directly that (5.64) is true. (Hint. Remember that the probabilities satisfy∑
i pi = 1 and

∑
j qij = 1.)

5.54. Let F (x) be a twice differentiable function with the property that F ′′(x) < 0
for all x in its domain. Prove that F is concave in the sense of (5.52). Conclude in
particular that the function F (x) = log x is concave for all x > 0.

5.55. Use induction to prove Jensen’s inequality (Theorem 5.61).

5.56. Let X and Y be independent random variables.
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(a) Prove that the equivocation H(X | Y ) is equal to the entropy H(X).

(b) If H(X | Y ) = H(X), is it necessarily true that X and Y are independent?

5.57. Prove that key equivocation satisfies the formula

H(K | C) = H(K) +H(M)−H(C)

as described in Proposition 5.64.

5.58. We continue with the cipher described in Exercise 5.45.
(a) Compute the entropies H(K), H(M), and H(C).

(b) Compute the key equivocation H(K | C).

5.59. Suppose that the key equivocation of a certain cryptosystem vanishes, i.e.,
suppose that H(K | C) = 0. Prove that even a single observed ciphertext uniquely
determines which key was used.

5.60. Write a computer program that reads a text file and performs the following
tasks:
[1] Convert all alphabetic characters to lowercase and convert all strings of con-

secutive nonalphabetic characters to a single space. (The reason for leaving in
a space is that when you count bigrams and trigrams, you will want to know
where words begin and end.)

[2] Count the frequency of each letter a-to-z, print a frequency table, and use your
frequency table to estimate the entropy of a single letter in English, as we did
in Sect. 5.6.3 using Table 1.3.

[3] Count the frequency of each bigram aa, ab,. . . ,zz, being careful to include
only bigrams that appear within words. (As an alternative, also allow bigrams
that either start or end with a space, in which case there are 272 − 1 = 728
possible bigrams.) Print a frequency table of the 25 most common bigrams and
their probabilities, and use your full frequency table to estimate the entropy of
bigrams in English. In the notation of Sect. 5.6.3, this is the quantity H(L2).
Compare 1

2
H(L2) with the value of H(L) from step [1].

[4] Repeat [3], but this time with trigrams. Compare 1
3
H(L3) with the values

of H(L) and 1
2
H(L2) from [2] and [3]. (Note that for this part, you will need a

large quantity of text in order to get some reasonable frequencies.)
Try running your program on some long blocks of text. For example, the following
noncopyrighted material is available in the form of ordinary text files from Project
Gutenberg at http://www.gutenberg.org/. To what extent are the letter frequen-
cies similar and to what extent do they differ in these different texts?
(a) Alice’s Adventures in Wonderland by Lewis Carroll,

http://www.gutenberg.org/etext/11

(b) Relativity: the Special and General Theory by Albert Einstein,
http://www.gutenberg.org/etext/5001

(c) The Old Testament (translated from the original Hebrew, of course!),
http://www.gutenberg.org/etext/1609

(d) 20000 Lieues Sous Les Mers (20000 Leagues Under the Sea) by Jules Verne,
http://www.gutenberg.org/etext/5097. Note that this one is a little trickier,
since first you will need to convert all of the letters to their unaccented forms.

http://www.gutenberg.org/
http://www.gutenberg.org/etext/11
http://www.gutenberg.org/etext/5001
http://www.gutenberg.org/etext/1609
http://www.gutenberg.org/etext/5097


Chapter 6

Elliptic Curves
and Cryptography

The subject of elliptic curves encompasses a vast amount of mathematics.1

Our aim in this section is to summarize just enough of the basic theory for
cryptographic applications. For additional reading, there are a number of sur-
vey articles and books devoted to elliptic curve cryptography [14, 68, 81, 135],
and many others that describe the number theoretic aspects of the theory of
elliptic curves, including [25, 65, 73, 74, 136, 134, 138].

6.1 Elliptic Curves

An elliptic curve2 is the set of solutions to an equation of the form

Y 2 = X3 +AX +B.

Equations of this type are called Weierstrass equations after the mathe-
matician who studied them extensively during the nineteenth century. Two
examples of elliptic curves,

E1 : Y 2 = X3 − 3X + 3 and E2 : Y 2 = X3 − 6X + 5,

are illustrated in Fig. 6.1.

1Indeed, even before elliptic curves burst into cryptographic prominence, a well-known
mathematician [73] opined that “it is possible to write endlessly on elliptic curves!”

2A word of warning. You may recall from high school geometry that an ellipse is a
geometric object that looks like a squashed circle. Elliptic curves are not ellipses, and
indeed, despite their somewhat unfortunate name, elliptic curves and ellipses have only the
most tenuous connection with one another.

© Springer Science+Business Media New York 2014
J. Hoffstein et al., An Introduction to Mathematical Cryptography,
Undergraduate Texts in Mathematics, DOI 10.1007/978-1-4939-1711-2 6
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E2 : Y 2 = X3 − 6X+ 5E1 : Y 2 = X3 − 3X + 3

Figure 6.1: Two examples of elliptic curves

An amazing feature of elliptic curves is that there is a natural way to take
two points on an elliptic curve and “add” them to produce a third point. We
put quotation marks around “add” because we are referring to an operation
that combines two points in a manner analogous to addition in some respects
(it is commutative and associative, and there is an identity), but very unlike
addition in other ways. The most natural way to describe the “addition law”
on elliptic curves is to use geometry.

Let P and Q be two points on an elliptic curve E, as illustrated in Fig. 6.2.
We start by drawing the line L through P and Q. This line L intersects E at
three points, namely P , Q, and one other point R. We take that point R and
reflect it across the x-axis (i.e., we multiply its Y-coordinate by −1) to get a
new point R′. The point R′ is called the “sum of P and Q,” although as you
can see, this process is nothing like ordinary addition. For now, we denote this
strange addition law by the symbol ⊕. Thus we write3

P ⊕Q = R′.

Example 6.1. Let E be the elliptic curve

Y 2 = X3 − 15X + 18. (6.1)

The points P = (7, 16) and Q = (1, 2) are on the curve E. The line L
connecting them is given by the equation4

L : Y =
7

3
X − 1

3
. (6.2)

In order to find the points where E and L intersect, we substitute (6.2)
into (6.1) and solve for X. Thus

3Not to be confused with the identical symbol ⊕ that we used to denote the XOR
operation in a different context!

4Recall that the equation of the line through two points (x1, y1) and (x2, y2) is given

by the point–slope formula Y − y1 = λ · (X − x1), where the slope λ is equal to y2−y1
x2−x1

.
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P

Q

R

P ⊕ Q = R′

L

E

Figure 6.2: The addition law on an elliptic curve

(
7

3
X − 1

3

)2

= X3 − 15X + 18,

49

9
X2 − 14

9
X +

1

9
= X3 − 15X + 18,

0 = X3 − 49

9
X2 − 121

9
X +

161

9
.

We need to find the roots of this cubic polynomial. In general, finding the
roots of a cubic is difficult. However, in this case we already know two of the
roots, namely X = 7 and X = 1, since we know that P and Q are in the
intersection E ∩ L. It is then easy to find the other factor,

X3 − 49

9
X2 − 121

9
X +

161

9
= (X − 7) · (X − 1) ·

(
X +

23

9

)
,

so the third point of intersection of L and E has X-coordinate equal to − 23
9 .

Next we find the Y-coordinate by substituting X = − 23
9 into Eq. (6.2). This

gives R =
(
− 23

9 ,−
170
27

)
. Finally, we reflect across the X-axis to obtain

P ⊕Q =

(
−23

9
,
170

27

)
.

There are a few subtleties to elliptic curve addition that need to be ad-
dressed. First, what happens if we want to add a point P to itself? Imagine
what happens to the line L connecting P and Q if the point Q slides along
the curve and gets closer and closer to P . In the limit, as Q approaches P , the
line L becomes the tangent line to E at P . Thus in order to add P to itself,
we simply take L to be the tangent line to E at P , as illustrated in Fig. 6.3.
Then L intersects E at P and at one other point R, so we can proceed as
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P

R

2P = P ⊕ P = R′

L is tangent to E at P

L

E

Figure 6.3: Adding a point P to itself

before. In some sense, L still intersects E at three points, but P counts as two
of them.

Example 6.2. Continuing with the curve E and point P from Example 6.1, we
compute P ⊕P . The slope of E at P is computed by implicitly differentiating
equation (6.1). Thus

2Y
dY

dX
= 3X2 − 15, so

dY

dX
=

3X2 − 15

2Y
.

Substituting the coordinates of P = (7, 16) gives slope λ = 33
8 , so the tangent

line to E at P is given by the equation

L : Y =
33

8
X − 103

8
. (6.3)

Now we substitute (6.3) into Eq. (6.1) for E, simplify, and factor:

(
33

8
X − 103

8

)2

= X3 − 15X + 18,

X3 − 1089

64
X2 +

2919

32
X − 9457

64
= 0,

(X − 7)2 ·
(
X − 193

64

)
= 0.

Notice that the X-coordinate of P , which is X = 7, appears as a double root
of the cubic polynomial, so it was easy for us to factor the cubic. Finally, we
substitute X = 193

64 into Eq. (6.3) for L to get Y = − 223
512 , and then we switch

the sign on Y to get

P ⊕ P =

(
193

64
,
223

512

)
.
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A second potential problem with our “addition law” arises if we try to add
a point P = (a, b) to its reflection about the X-axis P ′ = (a,−b). The line L
through P and P ′ is the vertical line x = a, and this line intersects E in only
the two points P and P ′. (See Fig. 6.4.) There is no third point of intersection,
so it appears that we are stuck! But there is a way out. The solution is to
create an extra point O that lives “at infinity.” More precisely, the point O
does not exist in the XY -plane, but we pretend that it lies on every vertical
line. We then set

P ⊕ P ′ = O.

We also need to figure out how to add O to an ordinary point P = (a, b)
on E. The line L connecting P to O is the vertical line through P , since O
lies on vertical lines, and that vertical line intersects E at the points P , O,
and P ′ = (a,−b). To add P to O, we reflect P ′ across the X-axis, which gets
us back to P . In other words, P ⊕O = P , so O acts like zero for elliptic curve
addition.

Example 6.3. Continuing with the curve E from Example 6.1, notice that the
point T = (3, 0) is on the curve E and that the tangent line to E at T is the
vertical line X = 3. Thus if we add T to itself, we get T ⊕ T = O.

Definition. An elliptic curve E is the set of solutions to a Weierstrass
equation

E : Y 2 = X3 +AX +B,

together with an extra point O, where the constants A and B must satisfy

4A3 + 27B2 �= 0.

The addition law on E is defined as follows. Let P and Q be two points
on E. Let L be the line connecting P and Q, or the tangent line to E at P
if P = Q. Then the intersection of E and L consists of three points P , Q,
and R, counted with appropriate multiplicities and with the understanding
that O lies on every vertical line. Writing R = (a, b), the sum of P and Q is
defined to be the reflection R′ = (a,−b) of R across the X-axis. This sum is
denoted by P ⊕Q, or simply by P +Q.

Further, if P = (a, b), we denote the reflected point by �P = (a,−b), or
simply by −P ; and we define P � Q (or P − Q) to be P ⊕ (�Q). Similarly,
repeated addition is represented as multiplication of a point by an integer,

nP = P + P + P + · · ·+ P︸ ︷︷ ︸
n copies

.

Remark 6.4. What is this extra condition 4A3 + 27B2 �= 0? The quantity
ΔE = 4A3 + 27B2 is called the discriminant of E. The condition ΔE �= 0
is equivalent to the condition that the cubic polynomial X3 +AX +B have
no repeated roots, i.e., if we factor X3 +AX +B completely as
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E

L

O

P = (a,b)

P ′ = (a,−b)P

Vertical lines have no
third intersection
point with E

Figure 6.4: The vertical line L through P = (a, b) and P ′ = (a,−b)

X3 +AX +B = (X − e1)(X − e2)(X − e3),

where e1, e2, e3 are allowed to be complex numbers, then

4A3 + 27B2 �= 0 if and only if e1, e2, e3 are distinct.

(See Exercise 6.3.) Curves with ΔE = 0 have singular points (see Exercise 6.4).
The addition law does not work well on these curves. That is why we include
the requirement that ΔE �= 0 in our definition of an elliptic curve.

Theorem 6.5. Let E be an elliptic curve. Then the addition law on E has
the following properties:

(a) P +O = O + P = P for all P ∈ E. [Identity]

(b) P + (−P ) = O for all P ∈ E. [Inverse]

(c) (P +Q) +R = P + (Q+R) for all P,Q,R ∈ E. [Associative]

(d) P +Q = Q+ P for all P,Q ∈ E. [Commutative]

In other words, the addition law makes the points of E into an abelian group.
(See Sect. 2.5 for a general discussion of groups and their axioms.)

Proof. As we explained earlier, the identity law (a) and inverse law (b) are
true because O lies on all vertical lines. The commutative law (d) is easy to
verify, since the line that goes through P and Q is the same as the line that
goes through Q and P , so the order of the points does not matter.

The remaining piece of Theorem 6.5 is the associative law (c). One might
not think that this would be hard to prove, but if you draw a picture and
start to put in all of the lines needed to verify (c), you will see that it is quite
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complicated. There are many ways to prove the associative law, but none of
the proofs are easy. After we develop explicit formulas for the addition law
on E (Theorem 6.6), you can use those formulas to check the associative law
by a direct (but painful) calculation. More perspicacious, but less elementary,
proofs may be found in [74, 136, 138] and other books on elliptic curves.

Our next task is to find explicit formulas to enable us to easily add and
subtract points on an elliptic curve. The derivation of these formulas uses
elementary analytic geometry, a little bit of differential calculus to find a
tangent line, and a certain amount of algebraic manipulation. We state the
results in the form of an algorithm, and then briefly indicate the proof.

Theorem 6.6 (Elliptic Curve Addition Algorithm). Let

E : Y 2 = X3 +AX +B

be an elliptic curve and let P1 and P2 be points on E.
(a) If P1 = O, then P1 + P2 = P2.

(b) Otherwise, if P2 = O, then P1 + P2 = P1.

(c) Otherwise, write P1 = (x1, y1) and P2 = (x2, y2).

(d) If x1 = x2 and y1 = −y2, then P1 + P2 = O.

(e) Otherwise, define λ by

λ =

⎧
⎪⎪⎨

⎪⎪⎩

y2 − y1
x2 − x1

if P1 �= P2,

3x21 +A

2y1
if P1 = P2,

and let

x3 = λ2 − x1 − x2 and y3 = λ(x1 − x3)− y1.

Then P1 + P2 = (x3, y3).

Proof. Parts (a) and (b) are clear, and (d) is the case that the line through P1

and P2 is vertical, so P1+P2 = O. (Note that if y1 = y2 = 0, then the tangent
line is vertical, so that case works, too.) For (e), we note that if P1 �= P2,
then λ is the slope of the line through P1 and P2, and if P1 = P2, then λ is
the slope of the tangent line at P1 = P2. In either case the line L is given by
the equation Y = λX + ν with ν = y1 − λx1. Substituting the equation for L
into the equation for E gives

(λX + ν)2 = X3 +AX +B,

so

X3 − λ2X2 + (A− 2λν)X + (B − ν2) = 0.
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We know that this cubic has x1 and x2 as two of its roots. If we call the third
root x3, then it factors as

X3 − λ2X2 + (A− 2λν)X + (B − ν2) = (X − x1)(X − x2)(X − x3).

Now multiply out the right-hand side and look at the coefficient of X2 on each
side. The coefficient ofX2 on the right-hand side is −x1 − x2 − x3, which must
equal −λ2, the coefficient of X2 on the left-hand side. This allows us to solve
for x3 = λ2 − x1 − x2, and then the Y-coordinate of the third intersection
point of E and L is given by λx3 + ν. Finally, in order to get P1 + P2, we
must reflect across the X-axis, which means replacing the Y-coordinate with
its negative.

6.2 Elliptic Curves over Finite Fields

In the previous section we developed the theory of elliptic curves geometrically.
For example, the sum of two distinct points P and Q on an elliptic curve E
is defined by drawing the line L connecting P to Q and then finding the third
point where L and E intersect, as illustrated in Fig. 6.2. However, in order to
apply the theory of elliptic curves to cryptography, we need to look at elliptic
curves whose points have coordinates in a finite field Fp. This is easy to do.

Definition. Let p ≥ 3 be a prime. An elliptic curve over Fp is an equation
of the form

E : Y 2 = X3 +AX +B with A,B ∈ Fp satisfying 4A3 + 27B2 �= 0.

The set of points on E with coordinates in Fp is the set

E(Fp) =
{
(x, y) : x, y ∈ Fp satisfy y2 = x3 +Ax+B

}
∪ {O}.

Remark 6.7. Elliptic curves over F2 are actually quite important in cryptogra-
phy, but they require more complicated equations, so we delay our discussion
of them until Sect. 6.7.

Example 6.8. Consider the elliptic curve

E : Y 2 = X3 + 3X + 8 over the field F13.

We can find the points of E(F13) by substituting in all possible valuesX = 0, 1,
2, . . . , 12 and checking for which X values the quantity X3 + 3X + 8 is a
square modulo 13. For example, putting X = 0 gives 8, and 8 is not a square
modulo 13. Next we try X = 1, which gives 1+3+8 = 12. It turns out that 12
is a square modulo 13; in fact, it has two square roots,

52 ≡ 12 (mod 13) and 82 ≡ 12 (mod 13).

This gives two points (1, 5) and (1, 8) in E(F13). Continuing in this fashion,
we end up with a complete list,
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E(F13) = {O, (1, 5), (1, 8), (2, 3), (2, 10), (9, 6), (9, 7), (12, 2), (12, 11)}.

Thus E(F13) consists of nine points.

Suppose now that P and Q are two points in E(Fp) and that we want to
“add” the points P and Q. One possibility is to develop a theory of geometry
using the field Fp instead of R. Then we could mimic our earlier construc-
tions to define P +Q. This can be done, and it leads to a fascinating field of
mathematics called algebraic geometry. However, in the interests of brevity
of exposition, we instead use the explicit formulas given in Theorem 6.6 to
add points in E(Fp). But we note that if one wants to gain a deeper under-
standing of the theory of elliptic curves, then it is necessary to use some of
the machinery and some of the formalism of algebraic geometry.

Let P = (x1, y1) and Q = (x2, y2) be points in E(Fp). We define the sum
P +Q to be the point (x3, y3) obtained by applying the elliptic curve addition
algorithm (Theorem 6.6). Notice that in this algorithm, the only operations
used are addition, subtraction, multiplication, and division involving the co-
efficients of E and the coordinates of P and Q. Since those coefficients and
coordinates are in the field Fp, we end up with a point (x3, y3) whose coordi-
nates are in Fp. Of course, it is not completely clear that (x3, y3) is a point
in E(Fp).

Theorem 6.9. Let E be an elliptic curve over Fp and let P and Q be points
in E(Fp).
(a) The elliptic curve addition algorithm (Theorem 6.6) applied to P and Q

yields a point in E(Fp). We denote this point by P +Q.

(b) This addition law on E(Fp) satisfies all of the properties listed in
Theorem 6.5. In other words, this addition law makes E(Fp) into a
finite group.

Proof. The formulas in Theorem 6.6(e) are derived by substituting the equa-
tion of a line into the equation for E and solving for X, so the resulting point
is automatically a point on E, i.e., it is a solution to the equation defining E.
This shows why (a) is true, although when P = Q, a small additional argument
is needed to indicate why the resulting cubic polynomial has a double root.
For (b), the identity law follows from the addition algorithm steps (a) and (b),
the inverse law is clear from the addition algorithm Step (d), and the commu-
tative law is easy, since a brief examination of the addition algorithm shows
that switching the two points leads to the same result. Unfortunately, the as-
sociative law is not so clear. It is possible to verify the associative law directly
using the addition algorithm formulas, although there are many special cases
to consider. The alternative is to develop more of the general theory of elliptic
curves, as is done in the references cited in the proof of Theorem 6.5.

Example 6.10. We continue with the elliptic curve

E : Y 2 = X3 + 3X + 8 over F13
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from Example 6.8, and we use the addition algorithm (Theorem 6.6) to add
the points P = (9, 7) and Q = (1, 8) in E(F13). Step (e) of that algorithm
tells us to first compute

λ =
y2 − y1
x2 − x1

=
8− 7

1− 9
=

1

−8 =
1

5
= 8,

where recall that all computations5 are being performed in the field F13, so
−8 = 5 and 1

5 = 5−1 = 8. Next we compute

ν = y1 − λx1 = 7− 8 · 9 = −65 = 0.

Finally, the addition algorithm tells us to compute

x3 = λ2 − x1 − x2 = 64− 9− 1 = 54 = 2,

y3 = −(λx3 + ν) = −8 · 2 = −16 = 10.

This completes the computation of

P +Q = (1, 8) + (9, 7) = (2, 10) in E(F13).

Similarly, we can use the addition algorithm to add P = (9, 7) to itself.
Keeping in mind that all calculations are in F13, we find that

λ =
3x21 +A

2y1
=

3 · 92 + 3

2 · 7 =
246

14
= 12 and ν = y1 − λx1 = 7− 12 · 9 = 3.

Then

x3 = λ2−x1−x2 = (12)2−9−9 = 9 and y3 = −(λx3+ν) = −(12·9+3) = 6,

so P + P = (9, 7) + (9, 7) = (9, 6) in E(F13). In a similar fashion, we can
compute the sum of every pair of points in E(F13). The results are listed in
Table 6.1.

It is clear that the set of points E(Fp) is a finite set, since there are only
finitely many possibilities for the X- and Y-coordinates. More precisely, there
are p possibilities for X, and then for each X, the equation

Y 2 = X3 +AX +B

shows that there are at most two possibilities for Y . (See Exercise 1.36.)
Adding in the extra point O, this shows that #E(Fp) has at most 2p+ 1
points. However, this estimate is considerably larger than the true size.

5This is a good time to learn that 1
5
is a symbol for a solution to the equation 5x = 1.

In order to assign a value to the symbol 1
5
, you must know where that value lives. In Q, the

value of 1
5
is the usual number with which you are familiar, but in F13 the value of 1

5
is 8,

while in F11 the value of 1
5
is 9. And in F5 the symbol 1

5
is not assigned a value.
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O (1, 5) (1, 8) (2, 3) (2, 10) (9, 6) (9, 7) (12, 2) (12, 11)

O O (1, 5) (1, 8) (2, 3) (2, 10) (9, 6) (9, 7) (12, 2) (12, 11)
(1, 5) (1, 5) (2, 10) O (1, 8) (9, 7) (2, 3) (12, 2) (12, 11) (9, 6)
(1, 8) (1, 8) O (2, 3) (9, 6) (1, 5) (12, 11) (2, 10) (9, 7) (12, 2)
(2, 3) (2, 3) (1, 8) (9, 6) (12, 11) O (12, 2) (1, 5) (2, 10) (9, 7)
(2, 10) (2, 10) (9, 7) (1, 5) O (12, 2) (1, 8) (12, 11) (9, 6) (2, 3)
(9, 6) (9, 6) (2, 3) (12, 11) (12, 2) (1, 8) (9, 7) O (1, 5) (2, 10)
(9, 7) (9, 7) (12, 2) (2, 10) (1, 5) (12, 11) O (9, 6) (2, 3) (1, 8)
(12, 2) (12, 2) (12, 11) (9, 7) (2, 10) (9, 6) (1, 5) (2, 3) (1, 8) O
(12, 11) (12, 11) (9, 6) (12, 2) (9, 7) (2, 3) (2, 10) (1, 8) O (1, 5)

Table 6.1: Addition table for E : Y 2 = X3 + 3X + 8 over F13

When we plug in a value for X, there are three possibilities for the value
of the quantity

X3 +AX +B.

First, it may be a quadratic residue modulo p, in which case it has two square
roots and we get two points in E(Fp). This happens about 50% of the time.
Second, it may be a nonresidue modulo p, in which case we discard X. This
also happens about 50% of the time. Third, it might equal 0, in which case
we get one point in E(Fp), but this case happens very rarely.6 Thus we might
expect that the number of points in E(Fp) is approximately

#E(Fp) ≈ 50% · 2 · p+ 1 = p+ 1.

A famous theorem of Hasse, later vastly generalized by Weil and Deligne, says
that this is true up to random fluctuations.

Theorem 6.11 (Hasse). Let E be an elliptic curve over Fp. Then

#E(Fp) = p+ 1− tp with tp satisfying |tp| ≤ 2
√
p.

Definition. The quantity

tp = p+ 1−#E(Fp)

appearing in Theorem 6.11 is called the trace of Frobenius for E/Fp. We will
not explain the somewhat technical reasons for this name, other than to say
that tp appears as the trace of a certain 2-by-2 matrix that acts as a linear
transformation on a certain two-dimensional vector space associated to E/Fp.

Example 6.12. Let E be given by the equation

E : Y 2 = X3 + 4X + 6.

We can think of E as an elliptic curve over Fp for different finite fields Fp and
count the number of points in E(Fp). Table 6.2 lists the results for the first
few primes, together with the value of tp and, for comparison purposes, the
value of 2

√
p.

6The congruence X3 +AX +B ≡ 0 (mod p) has at most three solutions, and if p is
large, the chance of randomly choosing one of them is very small.
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p #E(Fp) tp 2
√
p

3 4 0 3.46
5 8 −2 4.47
7 11 −3 5.29
11 16 −4 6.63
13 14 0 7.21
17 15 3 8.25

Table 6.2: Number of points and trace of Frobenius for E : Y 2 = X3+4X+6

Remark 6.13. Hasse’s theorem (Theorem 6.11) gives a bound for #E(Fp), but
it does not provide a method for calculating this quantity. In principle, one can
substitute in each value for X and check the value of X3 +AX +B against
a table of squares modulo p, but this takes time O(p), so is very inefficient.
Schoof [120] found an algorithm to compute #E(Fp) in time O

(
(log p)6

)
, i.e.,

he found a polynomial-time algorithm. Schoof’s algorithm was improved and
made practical by Elkies and Atkin, so it is now known as the SEA algorithm.
We will not describe SEA, which uses advanced techniques from the theory
of elliptic curves, but see [121]. Also see Remark 6.32 in Sect. 6.7 for another
counting algorithm due to Satoh that is designed for a different type of finite
field.

6.3 The Elliptic Curve Discrete Logarithm
Problem (ECDLP)

In Chap. 2 we talked about the discrete logarithm problem (DLP) in the finite
field F

∗
p. In order to create a cryptosystem based on the DLP for F

∗
p, Alice

publishes two numbers g and h, and her secret is the exponent x that solves
the congruence

h ≡ gx (mod p).

Let’s consider how Alice can do something similar with an elliptic curve E
over Fp. If Alice views g and h as being elements of the group F

∗
p, then the

discrete logarithm problem requires Alice’s adversary Eve to find an x such
that

h ≡ g · g · g · · · g
︸ ︷︷ ︸

x multiplications

(mod p).

In other words, Eve needs to determine how many times g must be multiplied
by itself in order to get to h.

With this formulation, it is clear that Alice can do the same thing with the
group of points E(Fp) of an elliptic curve E over a finite field Fp. She chooses
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and publishes two points P and Q in E(Fp), and her secret is an integer n
that makes

Q = P + P + P + · · ·+ P︸ ︷︷ ︸
n additions on E

= nP.

Then Eve needs to find out how many times P must be added to itself in
order to get Q. Keep in mind that although the “addition law” on an elliptic
curve is conventionally written with a plus sign, addition on E is actually a
very complicated operation, so this elliptic analogue of the discrete logarithm
problem may be quite difficult to solve.

Definition. Let E be an elliptic curve over the finite field Fp and let P and Q
be points in E(Fp). The Elliptic Curve Discrete Logarithm Problem (ECDLP)
is the problem of finding an integer n such that Q = nP . By analogy with the
discrete logarithm problem for F∗

p, we denote this integer n by

n = logP (Q)

and we call n the elliptic discrete logarithm of Q with respect to P .

Remark 6.14. Our definition of logP (Q) is not quite precise. The first difficulty
is that there may be points P,Q ∈ E(Fp) such that Q is not a multiple of P . In
this case, logP (Q) is not defined. However, for cryptographic purposes, Alice
starts out with a public point P and a private integer n and she computes
and publishes the value of Q = nP . So in practical applications, logP (Q) exists
and its value is Alice’s secret.

The second difficulty is that if there is one value of n satisfying Q = nP ,
then there are many such values. To see this, we first note that there exists a
positive integer s such that sP = O. We recall the easy proof of this fact (cf.
Proposition 2.12). Since E(Fp) is finite, the points in the list P, 2P, 3P, 4P, . . .
cannot all be distinct. Hence there are integers k > j such that kP = jP ,
and we can take s = k − j. The smallest such s ≥ 1 is called the order of P .
(Proposition 2.13 tells us that the order of P divides #E(Fp).) Thus if s is
the order of P and if n0 is any integer such that Q = n0P , then the solutions
to Q = nP are the integers n = n0 + is with i ∈ Z. (See Exercise 6.9.)

This means that the value of logP (Q) is really an element of Z/sZ, i.e.,
logP (Q) is an integer modulo s, where s is the order of P . For concreteness we
could set logP (Q) equal to n0. However the advantage of defining the values
to be in Z/sZ is that the elliptic discrete logarithm then satisfies

logP (Q1 +Q2) = logP (Q1) + logP (Q2) for all Q1, Q2 ∈ E(Fp). (6.4)

Notice the analogy with the ordinary logarithm log(αβ) = log(α) + log(β)
and the discrete logarithm for F∗

p (cf. Remark 2.2). The fact that the discrete
logarithm for E(Fp) satisfies (6.4) means that it respects the addition law
when the group E(Fp) is mapped to the group Z/sZ. We say that the map logP
defines a group homomorphism (cf. Exercise 2.13)

logP : E(Fp) −→ Z/sZ.
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Example 6.15. Consider the elliptic curve

E : Y 2 = X3 + 8X + 7 over F73.

The points P = (32, 53) and Q = (39, 17) are both in E(F73), and it is easy
to verify (by hand if you’re patient and with a computer if not) that

Q = 11P, so logP (Q) = 11.

Similarly, R = (35, 47) ∈ E(F73) and S = (58, 4) ∈ E(F73), and after some
computation we find that they satisfy R = 37P and S = 28P , so

logP (R) = 37 and logP (S) = 28.

Finally, we mention that #E(F73) = 82, but P satisfies 41P = O. Thus P
has order 41 = 82/2, so only half of the points in E(F73) are multiples of P .
For example, (20, 65) is in E(F73), but it does not equal a multiple of P .

6.3.1 The Double-and-Add Algorithm

It appears to be quite difficult to recover the value of n from the two points P
and Q = nP in E(Fp), i.e., it is difficult to solve the ECDLP. We will say
more about the difficulty of the ECDLP in later sections. However, in order
to use the function

Z −→ E(Fp), n �−→ nP,

for cryptography, we need to efficiently compute nP from the known values n
and P . If n is large, we certainly do not want to compute nP by comput-
ing P, 2P, 3P, 4P, . . . .

The most efficient way to compute nP is very similar to the method that we
described in Sect. 1.3.2 for computing powers an (mod N), which we needed
for Diffie–Hellman key exchange (Sect. 2.3) and for the Elgamal and RSA
public key cryptosystems (Sects. 2.4 and 3.2). However, since the operation
on an elliptic curve is written as addition instead of as multiplication, we call
it “double-and-add” instead of “square-and-multiply.”

The underlying idea is the same as before. We first write n in binary
form as

n = n0 + n1 · 2 + n2 · 4 + n3 · 8 + · · ·+ nr · 2r with n0, n1, . . . , nr ∈ {0, 1}.

(We also assume that nr = 1.) Next we compute the following quantities:

Q0 = P, Q1 = 2Q0, Q2 = 2Q1, . . . , Qr = 2Qr−1.

Notice that Qi is simply twice the previous Qi−1, so

Qi = 2iP.
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Input. Point P ∈ E(Fp) and integer n ≥ 1.
1. Set Q = P and R = O.
2. Loop while n > 0.

3. If n ≡ 1 (mod 2), set R = R+Q.
4. Set Q = 2Q and n = �n/2�.
5. If n > 0, continue with loop at Step 2.

6. Return the point R, which equals nP .

Table 6.3: The double-and-add algorithm for elliptic curves

These points are referred to as 2-power multiples of P , and computing them
requires r doublings. Finally, we compute nP using at most r additional
additions,

nP = n0Q0 + n1Q1 + n2Q2 + · · ·+ nrQr.

We’ll refer to the addition of two points in E(Fp) as a point operation. Thus
the total time to compute nP is at most 2r point operations in E(Fp). Notice
that n ≥ 2r, so it takes no more than 2 log2(n) point operations to com-
pute nP . This makes it feasible to compute nP even for very large values
of n. We have summarized the double-and-add algorithm in Table 6.3.

Example 6.16. We use the Double-and-Add Algorithm as described in
Table 6.3 to compute nP in E(Fp) for

n = 947, E : Y 2 = X3 + 14X + 19, p = 3623, P = (6, 730).

The binary expansion of n is

n = 947 = 1 + 2 + 24 + 25 + 27 + 28 + 29.

The step by step calculation, which requires nine doublings and six additions,
is given in Table 6.4. The final result is 947P = (3492, 60). (The n column in
Table 6.4 refers to the n used in the algorithm described in Table 6.3.)

Remark 6.17. There is an additional technique that can be used to further
reduce the time required to compute nP . The idea is to write n using sums and
differences of powers of 2. The reason that this is advantageous is because there
are generally fewer terms, so fewer point additions are needed to compute nP .
It is important to observe that subtracting two points on an elliptic curve is as
easy as adding them, since −(x, y) = (x,−y). This is rather different from F

∗
p,

where computing a−1 takes significantly more time than it takes to multiply
two elements.

An example will help to illustrate the idea. We saw in Example 6.16 that
947 = 1+2+24+25+27+28+29, so it takes 15 point operations (9 doublings
and 6 additions) to compute 947P . But if we instead write

947 = 1 + 2− 24 − 26 + 210,



314 6. Elliptic Curves and Cryptography

Step i n Q = 2iP R
0 947 (6, 730) O
1 473 (2521, 3601) (6, 730)
2 236 (2277, 502) (2149, 196)
3 118 (3375, 535) (2149, 196)
4 59 (1610, 1851) (2149, 196)
5 29 (1753, 2436) (2838, 2175)
6 14 (2005, 1764) (600, 2449)
7 7 (2425, 1791) (600, 2449)
8 3 (3529, 2158) (3247, 2849)
9 1 (2742, 3254) (932, 1204)
10 0 (1814, 3480) (3492, 60)

Table 6.4: Computing 947 · (6, 730) on Y 2 = X3 + 14X + 19 modulo 3623

then we can compute

947P = P + 2P − 24P − 26P + 210P

using 10 doublings and 4 additions, for a total of 14 point operations. Writing
a number n as a sum of positive and negative powers of 2 is called a ternary
expansion of n.

How much savings can we expect? Suppose that n is a large number and
let k = �log n�+ 1. In the worst case, if n has the form 2k − 1, then comput-
ing nP using a binary expansion of n requires 2k point operations (k doublings
and k additions), since

2k − 1 = 1 + 2 + 22 + · · ·+ 2k−1.

But if we allow ternary expansions, then we prove below (Proposition 6.18)
that computing nP never requires more than 3

2k + 1 point operations (k + 1
doublings and 1

2k additions).
This is the worst case scenario, but it’s also important to know what hap-

pens on average. The binary expansion of a random number has approximately
the same number of 1’s and 0’s, so for most n, computing nP using the binary
expansion of n takes about 3

2k steps (k doublings and 1
2k additions). But if we

allow sums and differences of powers of 2, then one can show that most n have
an expansion with 2

3 of the terms being 0. So for most n, we can compute nP
in about 4

3k + 1 steps (k + 1 doublings and 1
3k additions).

Proposition 6.18. Let n be a positive integer and let k = �log n�+ 1, which
means that 2k > n. Then we can always write

n = u0 + u1 · 2 + u2 · 4 + u3 · 8 + · · ·+ uk · 2k (6.5)

with u0, u1, . . . , uk ∈ {−1, 0, 1} and at most 1
2k of the ui nonzero.
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Proof. The proof is essentially an algorithm for writing n in the desired form.
We start by writing n in binary,

n = n0 + n1 · 2 + n2 · 4 + · · ·+ nk−1 · 2k−1 with n0, . . . , nk−1 ∈ {0, 1}.

Working from left to right, we look for the first occurrence of two or more
consecutive nonzero ni coefficients. For example, suppose that

ns = ns+1 = · · · = ns+t−1 = 1 and ns+t = 0

for some t ≥ 2. In other words, the quantity

2s + 2s+1 + · · ·+ 2s+t−1 + 0 · 2s+t (6.6)

appears in the binary expansion of n. We observe that

2s + 2s+1 + · · ·+ 2s+t−1 + 0 · 2s+t = 2s(1 + 2 + 4 + · · ·+ 2t−1) = 2s(2t − 1),

so we can replace (6.6) with
−2s + 2s+t.

Repeating this procedure, we end up with an expansion of n of the form (6.5)
in which no two consecutive ui are nonzero. (Note that although the original
binary expansion went up to only 2k−1, the new expansion might go up to 2k.)

6.3.2 How Hard Is the ECDLP?

The collision algorithms described in Sect. 5.4 are easily adapted to any group,
for example to the group of points E(Fp) on an elliptic curve. In order to
solve Q = nP , Eve chooses random integers j1, . . . , jr and k1, . . . , kr between 1
and p and makes two lists of points:

List #1. j1P, j2P, j3P, . . . , jrP,

List #2. k1P +Q, k2P +Q, k3P +Q, . . . , krP +Q.

As soon as she finds a match (collision) between the two lists, she is done,
since if she finds juP = kvP +Q, then Q = (ju − kv)P provides the solution.
As we saw in Sect. 5.4, if r is somewhat larger than

√
p, say r ≈ 3

√
p, then

there is a very good chance that there will be a collision.
This naive collision algorithm requires quite a lot of storage for the two

lists. However, it is not hard to adapt Pollard’s ρ method from Sect. 5.5 to
devise a storage-free collision algorithm with a similar running time. (See Ex-
ercise 6.13.) In any case, there are certainly algorithms that solve the ECDLP
for E(Fp) in O(

√
p ) steps.

We have seen that there are much faster ways to solve the discrete loga-
rithm problem for F∗

p. In particular, the index calculus described in Sect. 3.8
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has a subexponential running time, i.e., the running time is O(pε) for ev-
ery ε > 0. The principal reason that elliptic curves are used in cryptography
is the fact that there are no index calculus algorithms known for the ECDLP,
and indeed, there are no general algorithms known that solve the ECDLP in
fewer than O(

√
p ) steps. In other words, despite the highly structured nature

of the group E(Fp), the fastest known algorithms to solve the ECDLP are no
better than the generic algorithm that works equally well to solve the discrete
logarithm problem in any group. This fact is sufficiently important that it
bears highlighting.

The fastest known algorithm to
solve ECDLP in E(Fp) takes ap-
proximately

√
p steps.

Thus the ECDLP appears to be much more difficult than the DLP. Recall,
however, there are some primes p for which the DLP in F

∗
p is comparatively

easy. For example, if p− 1 is a product of small primes, then the Pohlig–
Hellman algorithm (Theorem 2.31) gives a quick solution to the DLP in F

∗
p.

In a similar fashion, there are some elliptic curves and some primes for which
the ECDLP in E(Fp) is comparatively easy. We discuss some of these special
cases, which must be avoided in the construction of secure cryptosystems, in
Sect. 6.9.1.

6.4 Elliptic Curve Cryptography

It is finally time to apply elliptic curves to cryptography. We start with the
easiest application, Diffie–Hellman key exchange, which involves little more
than replacing the discrete logarithm problem for the finite field Fp with
the discrete logarithm problem for an elliptic curve E(Fp). We then describe
elliptic analogues of the Elgamal public key cryptosystem and the digital
signature algorithm (DSA).

6.4.1 Elliptic Diffie–Hellman Key Exchange

Alice and Bob agree to use a particular elliptic curve E(Fp) and a particular
point P ∈ E(Fp). Alice chooses a secret integer nA and Bob chooses a secret
integer nB . They compute the associated multiples

Alice computes this
︷ ︸︸ ︷
QA = nAP and

Bob computes this
︷ ︸︸ ︷
QB = nBP ,

and they exchange the values of QA and QB . Alice then uses her secret multi-
plier to compute nAQB , and Bob similarly computes nBQA. They now have
the shared secret value
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Public parameter creation
A trusted party chooses and publishes a (large) prime p,
an elliptic curve E over Fp, and a point P in E(Fp).

Private computations
Alice Bob

Chooses a secret integer nA. Chooses a secret integer nB .
Computes the point QA = nAP . Computes the point QB = nBP .

Public exchange of values
Alice sends QA to Bob −−−−−−−−−−−−−−−−−−→ QA

QB ←−−−−−−−−−−−−−−−−−− Bob sends QB to Alice

Further private computations
Alice Bob

Computes the point nAQB . Computes the point nBQA.
The shared secret value is nAQB = nA(nBP ) = nB(nAP ) = nBQA.

Table 6.5: Diffie–Hellman key exchange using elliptic curves

nAQB = (nAnB)P = nBQA,

which they can use as a key to communicate privately via a symmetric cipher.
Table 6.5 summarizes elliptic Diffie–Hellman key exchange.

Example 6.19. Alice and Bob decide to use elliptic Diffie–Hellman with the
following prime, curve, and point:

p = 3851, E : Y 2 = X3 + 324X + 1287, P = (920, 303) ∈ E(F3851).

Alice and Bob choose respective secret values nA = 1194 and nB = 1759, and
then

Alice computes QA = 1194P = (2067, 2178) ∈ E(F3851),

Bob computes QB = 1759P = (3684, 3125) ∈ E(F3851).

Alice sends QA to Bob and Bob sends QB to Alice. Finally,

Alice computes nAQB = 1194(3684, 3125) = (3347, 1242) ∈ E(F3851),

Bob computes nBQA = 1759(2067, 2178) = (3347, 1242) ∈ E(F3851).

Bob and Alice have exchanged the secret point (3347, 1242). As will be ex-
plained in Remark 6.20, they should discard the y-coordinate and treat only
the value x = 3347 as a secret shared value.

One way for Eve to discover Alice and Bob’s secret is to solve the ECDLP

nP = QA,
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since if Eve can solve this problem, then she knows nA and can use it to
compute nAQB . Of course, there might be some other way for Eve to com-
pute their secret without actually solving the ECDLP. The precise problem
that Eve needs to solve is the elliptic analogue of the Diffie–Hellman problem
described on page 69.

Definition. Let E(Fp) be an elliptic curve over a finite field and let P ∈
E(Fp). The Elliptic Curve Diffie–Hellman Problem is the problem of comput-
ing the value of n1n2P from the known values of n1P and n2P .

Remark 6.20. Elliptic Diffie–Hellman key exchange requires Alice and Bob
to exchange points on an elliptic curve. A point Q in E(Fp) consists of two
coordinates Q = (xQ, yQ), where xQ and yQ are elements of the finite field Fp,
so it appears that Alice must send Bob two numbers in Fp. However, those
two numbers modulo p do not contain as much information as two arbitrary
numbers, since they are related by the formula

y2Q = x3Q +AxQ +B in Fp.

Note that Eve knows A and B, so if she can guess the correct value of xQ,
then there are only two possible values for yQ, and in practice it is not too
hard for her to actually compute the two values of yQ.

There is thus little reason for Alice to send both coordinates of QA to Bob,
since the y-coordinate contains so little additional information. Instead, she
sends Bob only the x-coordinate of QA. Bob then computes and uses one of
the two possible y-coordinates. If he happens to choose the “correct” y, then
he is using QA, and if he chooses the “incorrect” y (which is the negative of
the correct y), then he is using −QA. In any case, Bob ends up computing
one of

±nBQA = ±(nAnB)P.

Similarly, Alice ends up computing one of ±(nAnB)P . Then Alice and Bob
use the x-coordinate as their shared secret value, since that x-coordinate is
the same regardless of which y they use.

Example 6.21. Alice and Bob decide to exchange another secret value using
the same public parameters as in Example 6.19:

p = 3851, E : Y 2 = X3 + 324X + 1287, P = (920, 303) ∈ E(F3851).
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However, this time they want to send fewer bits to one another. Alice and
Bob respectively choose new secret values nA = 2489 and nB = 2286, and as
before,

Alice computes QA = nAP = 2489(920, 303) = (593, 719) ∈ E(F3851),

Bob computes QB = nBP = 2286(920, 303) = (3681, 612) ∈ E(F3851).

However, rather than sending both coordinates, Alice sends only xA = 593 to
Bob and Bob sends only xB = 3681 to Alice.

Alice substitutes xB = 3681 into the equation for E and finds that

y2B = x3B + 324xB + 1287 = 36813 + 324 · 3681 + 1287 = 997.

(Recall that all calculations are performed in F3851.) Alice needs to compute a
square root of 997 modulo 3851. This is not hard to do, especially for primes
satisfying p ≡ 3 (mod 4), since Proposition 2.26 tells her that b(p+1)/4 is a
square root of b modulo p. So Alice sets

yB = 997(3851+1)/4 = 997963 ≡ 612 (mod 3851).

It happens that she gets the same point QB = (xB , yB) = (3681, 612) that
Bob used, and she computes nAQB = 2489(3681, 612) = (509, 1108).

Similarly, Bob substitutes xA = 593 into the equation for E and takes a
square root,

y2A = x3A + 324xA + 1287 = 5933 + 324 · 593 + 1287 = 927,

yA = 927(3851+1)/4 = 927963 ≡ 3132 (mod 3851).

Bob then uses the point Q′
A = (593, 3132), which is not Alice’s point QA, to

compute nBQ
′
A = 2286(593, 3132) = (509, 2743). Bob and Alice end up with

points that are negatives of one another in E(Fp), but that is all right, since
their shared secret value is the x-coordinate x = 509, which is the same for
both points.

6.4.2 Elliptic Elgamal Public Key Cryptosystem

It is easy to create a direct analogue of the Elgamal public key cryptosystem
described in Sect. 2.4. Briefly, Alice and Bob agree to use a particular prime p,
elliptic curve E, and point P ∈ E(Fp). Alice chooses a secret multiplier nA
and publishes the point QA = nAP as her public key. Bob’s plaintext is a
point M ∈ E(Fp). He chooses an integer k to be his random element and
computes

C1 = kP and C2 =M + kQA.

He sends the two points (C1, C2) to Alice, who computes

C2 − nAC1 = (M + kQA)− nA(kP ) =M + k(nAP )− nA(kP ) =M
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Public parameter creation
A trusted party chooses and publishes a (large) prime p,
an elliptic curve E over Fp, and a point P in E(Fp).

Alice Bob

Key creation
Choose a private key nA.
Compute QA = nAP in E(Fp).
Publish the public key QA.

Encryption
Choose plaintext M ∈ E(Fp).
Choose a random element k.
Use Alice’s public key QA to

compute C1 = kP ∈ E(Fp).
and C2 =M + kQA ∈ E(Fp).

Send ciphertext (C1, C2)
to Alice.

Decryption
Compute C2 − nAC1 ∈ E(Fp).
This quantity is equal to M .

Table 6.6: Elliptic Elgamal key creation, encryption, and decryption

to recover the plaintext. The elliptic Elgamal public key cryptosystem is sum-
marized in Table 6.6.

In principle, the elliptic Elgamal cryptosystem works fine, but there are
some practical difficulties.

1. There is no obvious way to attach plaintext messages to points in E(Fp).

2. The elliptic Elgamal cryptosystem has 4-to-1 message expansion, as
compared to the 2-to-1 expansion ratio of Elgamal using Fp. (See
Remark 2.9.)

The reason that elliptic Elgamal has a 4-to-1 message expansion lies in
the fact that the plaintext M is a single point in E(Fp). By Hasse’s theorem
(Theorem 6.11) there are approximately p different points in E(Fp), hence
only about p different plaintexts. However, the ciphertext (C1, C2) consists of
four numbers modulo p, since each point in E(Fp) has two coordinates.

Various methods have been proposed to solve these problems. The diffi-
culty of associating plaintexts to points can be circumvented by choosing M
randomly and using it as a mask for the actual plaintext. One such method,
which also decreases message expansion, is described in Exercise 6.17.

Another natural way to improve message expansion is to send only the x-
coordinates of C1 and C2, as was suggested for Diffie–Hellman key exchange
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in Remark 6.20. Unfortunately, since Alice must compute the difference
C2 − nAC1, she needs the correct values of both the x-and y-coordinates of C1

and C2. (Note that the points C2 − nAC1 and C2 + nAC1 are quite different!)
However, the x-coordinate of a point determines the y-coordinate up to change
of sign, so Bob can send one extra bit, for example

Extra bit =

{
0 if 0 ≤ y < 1

2p,

1 if 1
2p < y < p

(See Exercise 6.16.) In this way, Bob needs to send only the x-coordinates
of C1 and C2, plus two extra bits. This idea is sometimes referred to as point
compression.

6.4.3 Elliptic Curve Signatures

The Elliptic Curve Digital Signature Algorithm (ECDSA), which is described
in Table 6.7, is a straightforward analogue of the digital signature algorithm
(DSA) described in Table 4.3 of Sect. 4.3. ECDSA is in widespread use, es-
pecially, but not only, in situations where signature size is important. Offi-
cial specifications for implementing ECDSA are described in [6, 142]. (See
also Sect. 8.8 for an amusing real-world implementation of digital cash using
ECDSA.)

In order to prove that ECDSA works, i.e., that the verification step suc-
ceeds in verifying a valid signature, we compute

v1G+ v2V = ds−1
2 G+ s1s

−1
2 (sG)

= (d+ ss1)s
−1
2 G

= (es2)s
−1
2 G

= eG ∈ E(Fp).

Hence
x(v1G+ v2V ) mod q = x(eG) (mod q) = s1,

so the signature is accepted as valid.

6.5 The Evolution of Public
Key Cryptography

The invention of RSA in the late 1970s catapulted the problem of factoring
large integers into prominence, leading to improved factorization methods
such as the quadratic and number field sieves described in Sect. 3.7. In 1984,
Hendrik Lenstra Jr. circulated a manuscript describing a new factorization
method using elliptic curves. Lenstra’s algorithm [75], which we describe in
Sect. 6.6, is an elliptic analogue of Pollard’s p − 1 factorization algorithm
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Public parameter creation

A trusted party chooses a finite field Fp, an elliptic curve E/Fp,
and a point G ∈ E(Fp) of large prime order q.

Samantha Victor

Key creation

Choose secret signing key
1 < s < q − 1.

Compute V = sG ∈ E(Fp).
Publish the verification key V .

Signing

Choose document d mod q.
Choose random element e mod q.
Compute eG ∈ E(Fp) and then,

s1 = x(eG) mod q and
s2 ≡ (d+ ss1)e

−1 (mod q).
Publish the signature (s1, s2).

Verification

Compute v1 ≡ ds−1
2 (mod q) and

v2 ≡ s1s
−1
2 (mod q).

Compute v1G+v2V ∈ E(Fp) and ver-
ify that

x(v1G+ v2V ) mod q = s1.

Table 6.7: The elliptic curve digital signature algorithm (ECDSA)

(Sect. 3.5) and exploits the fact that the number of points in E(Fp) varies as
one chooses different elliptic curves. Although less efficient than sieve methods
for the factorization problems that occur in cryptography, Lenstra’s algorithm
helped introduce elliptic curves to the cryptographic community.

The importance of factorization algorithms for cryptography is that they
are used to break RSA and other similar cryptosystems. In 1985, Neal Koblitz
and Victor Miller independently proposed using elliptic curves to create cryp-
tosystems. They suggested that the elliptic curve discrete logarithm problem
might be more difficult than the classical discrete logarithm problem mod-
ulo p. Thus Diffie–Hellman key exchange and the Elgamal public key cryp-
tosystem, implemented using elliptic curves as described in Sect. 6.4, might
require smaller keys and run more efficiently than RSA because one could use
smaller numbers.

Koblitz [67] and Miller [88] each published their ideas as academic papers,
but neither of them pursued the commercial aspects of elliptic curve cryptog-
raphy. Indeed, at the time, there was virtually no research on the ECDLP,
so it was difficult to say with any confidence that the ECDLP was indeed
significantly more difficult than the classical DLP. However, the potential of
what became known as elliptic curve cryptography (ECC) was noted by Scott
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Vanstone and Ron Mullin, who had started a cryptographic company called
Certicom in 1985. They joined with other researchers in both academia and
the business world to promote ECC as an alternative to RSA and Elgamal.

All was not smooth sailing. For example, during the late 1980s, various
cryptographers proposed using so-called supersingular elliptic curves for added
efficiency, but in 1990, the MOV algorithm (see Sect. 6.9.1) showed that su-
persingular curves are vulnerable to attack. Some saw this as an indictment of
ECC as a whole, while others pointed out that RSA also has weak instances
that must be avoided, e.g., RSA must avoid using numbers that can be easily
factored by Pollard’s p− 1 method.

The purely mathematical question of whether ECC provided a secure and
efficient alternative to RSA was clouded by the fact that there were com-
mercial and financial issues at stake. In order to be commercially successful,
cryptographic methods must be standardized for use in areas such as commu-
nications and banking. RSA had the initial lead, since it was invented first,
but RSA was patented, and some companies resisted the idea that standards
approved by trade groups or government bodies should mandate the use of
a patented technology. Elgamal, after it was invented in 1985, provided a
royalty-free alternative, so many standards specified Elgamal as an alterna-
tive to RSA. In the meantime, ECC was growing in stature, but even as late
as 1997, more than a decade after its introduction, leading experts indicated
their doubts about the security of ECC.7

A major dilemma pervading the field of cryptography is that no one knows
the actual difficulty of the supposedly hard problems on which it is based.
Currently, the security of public key cryptosystems depends on the percep-
tion and consensus of experts as to the difficulty of problems such as integer
factorization and discrete logarithms. All that can be said is that “such-and-
such a problem has been extensively studied for N years, and here is the
fastest known method for solving it.” Proponents of factorization-based cryp-
tosystems point to the fact that, in some sense, people have been trying to
factor numbers since antiquity; but in truth, the modern theory of factor-
ization requires high-speed computing devices and barely predates the inven-
tion of RSA. Serious study of the elliptic curve discrete logarithm problem
started in the late 1980s, so modern factorization methods have a 10–15 year
head start on ECDLP. In Chap. 7 we will describe public key cryptosystems
(NTRU, GGH) whose security is based on certain hard problems in the the-
ory of lattices. Lattices have been extensively investigated since the nineteenth
century, but again the invention and analysis of modern computational algo-
rithms is much more recent, having been initiated by fundamental work of

7In 1997, the RSA corporation posted the following quote by RSA co-inventor Ron
Rivest on its website: “But the security of cryptosystems based on elliptic curves is not well
understood, due in large part to the abstruse nature of elliptic curves. . . .

Over time, this may change, but for now trying to get an evaluation of the security of
an elliptic-curve cryptosystem is a bit like trying to get an evaluation of some recently
discovered Chaldean poetry. Until elliptic curves have been further studied and evaluated,
I would advise against fielding any large-scale applications based on them.”
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Lenstra, Lenstra, and Lovász in the early 1980s. Lattices appeared as a tool
for cryptanalysis during the 1980s and as a means of creating cryptosystems
in the 1990s.

RSA, the first public key cryptosystem, was patented by its inventors.
The issue of patents in cryptography is fraught with controversy. One might
argue that the RSA patent, which ran from 1983 to 2000, set back the use
of cryptography by requiring users to pay licensing fees. However, it is also
true that in order to build a company, an inventor needs investors willing to
risk their money, and it is much easier to raise funds if there is an exclusive
product to offer. Further, the fact that RSA was originally the “only game
in town” meant that it automatically received extensive scrutiny from the
academic community, which helped to validate its security.

The invention and eventual commercial implementation of ECC followed a
different path. Since neither Koblitz nor Miller applied for a patent, the basic
underlying idea of ECC became freely available for all to use. This led Cer-
ticom and other companies to apply for patents giving improvements to the
basic ECC idea. Some of these improvements were based on significant new
research ideas, while others were less innovative and might almost be char-
acterized as routine homework problems.8 Unfortunately, the United States
Patents and Trademark Office (USPTO) does not have the expertise to effec-
tively evaluate the flood of cryptographic patent applications that it receives.
The result has been a significant amount of uncertainty in the marketplace as
to which versions of ECC are free and which require licenses, even assuming
that all of the issued patents can withstand a legal challenge.

6.6 Lenstra’s Elliptic Curve Factorization
Algorithm

Pollard’s p − 1 factorization method, which we discussed in Sect. 3.5, finds
factors of N = pq by searching for a power aL with the property that

aL ≡ 1 (mod p) and aL �≡ 1 (mod q).

Fermat’s little theorem tells us that this is likely to work if p− 1 divides L
and q − 1 does not divide L. So what we do is to take L = n! for some moderate
value of n. Then we hope that p− 1 or q − 1, but not both, is a product of
small primes, hence divides n!. Clearly Pollard’s method works well for some
numbers, but not for all numbers. The determining factor is whether p− 1
or q − 1 is a product of small primes.

What is it about the quantity p− 1 that makes it so important for Pollard’s
method? The answer lies in Fermat’s little theorem. Intrinsically, p− 1 is

8For example, at the end of Sect. 6.4.2 we described how to save bandwidth in elliptic
Elgamal by sending the x-coordinate and one additional bit to specify the y-coordinate.
This idea is called “point compression” and is covered by US Patent 6,141,420.
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important because there are p− 1 elements in F
∗
p, so every element α of F∗

p

satisfies αp−1 = 1. Now consider that last statement as it relates to the theme
of this chapter, which is that the points and the addition law for an elliptic
curve E(Fp) are very much analogous to the elements and the multiplication
law for F

∗
p. Hendrik Lenstra [75] made this analogy precise by devising a

factorization algorithm that uses the group law on an elliptic curve E in place
of multiplication modulo N .

In order to describe Lenstra’s algorithm, we need to work with an elliptic
curve modulo N , where the integer N is not prime, so the ring Z/NZ is not
a field. However, suppose that we start with an equation

E : Y 2 = X3 +AX +B

and suppose that P = (a, b) is a point on E modulo N , by which we mean
that

b2 ≡ a3 +A · a+B (mod N).

Then we can apply the elliptic curve addition algorithm (Theorem 6.6) to
compute 2P, 3P, 4P, . . ., since the only operations required by that algorithm
are addition, subtraction, multiplication, and division (by numbers relatively
prime to N).

Example 6.22. Let N = 187 and consider the elliptic curve

E : Y 2 = X3 + 3X + 7

modulo 187 and the point P = (38, 112), that is on E modulo 187. In order
to compute 2P mod 187, we follow the elliptic curve addition algorithm and
compute

1

2y(P )
=

1

224
≡ 91 (mod 187),

λ =
3x(P )2 +A

2y(P )
=

4335

224
≡ 34 · 91 ≡ 102 (mod 187),

x(2P ) = λ2 − 2x(P ) = 10328 ≡ 43 (mod 187),

y(2P ) = λ
(
x(P )− x(2P )

)
− y(P ) = 102(38− 43)− 112 ≡ 126 (mod 187).

Thus 2P = (43, 126) as a point on the curve E modulo 187.
For clarity, we have written x(P ) and y(P ) for the x-and y-coordinates

of P , and similarly for 2P . Also, during the calculation we needed to find the
reciprocal of 224 modulo 187, i.e., we needed to solve the congruence

224d ≡ 1 (mod 187).

This was easily accomplished using the extended Euclidean algorithm (The-
orem 1.11; see also Remark 1.15 and Exercise 1.12), since it turns out that
gcd(224, 187) = 1.
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We next compute 3P = 2P + P in a similar fashion. In this case, we are
adding distinct points, so the formula for λ is different, but the computation
is virtually the same:

1

x(2P )− x(P ) =
1

5
≡ 75 (mod 187),

λ =
y(2P )− y(P )
x(2P )− x(P ) =

14

5
≡ 14 · 75 ≡ 115 (mod 187),

x(3P ) = λ2 − x(2P )− x(P ) = 13144 ≡ 54 (mod 187),

y(3P ) = λ
(
x(P )− x(3P )

)
− y(P ) = 115(38− 54)− 112 ≡ 105 (mod 187).

Thus 3P = (54, 105) on the curve E modulo 187. Again we needed to compute
a reciprocal, in this case, the reciprocal of 5 modulo 187. We leave it to you to
continue the calculations. For example, it is instructive to check that P + 3P
and 2P + 2P give the same answer, namely 4P = (93, 64).

Example 6.23. Continuing with Example 6.22, we attempt to compute 5P for
the point P = (38, 112) on the elliptic curve

E : Y 2 = X3 + 3X + 7 modulo 187.

We already computed 2P = (43, 126) and 3P = (54, 105). The first step in
computing 5P = 3P + 2P is to compute the reciprocal of

x(3P )− x(2P ) = 54− 43 = 11 modulo 187.

However, when we apply the extended Euclidean algorithm to 11 and 187, we
find that gcd(11, 187) = 11, so 11 does not have a reciprocal modulo 187.

It seems that we have hit a dead end, but in fact, we have struck it rich!
Notice that since the quantity gcd(11, 187) is greater than 1, it gives us a
divisor of 187. So our failure to compute 5P also tells us that 11 divides 187,
which allows us to factor 187 as 187 = 11 · 17. This idea underlies Lenstra’s
elliptic curve factorization algorithm.

We examine more closely why we were not able to compute 5P modulo 187.
If we instead look at the elliptic curve E modulo 11, then a quick computation
shows that the point

P = (38, 112) ≡ (5, 2) (mod 11) satisfies 5P = O in E(F11).

This means that when we attempt to compute 5P modulo 11, we end up with
the point O at infinity, so at some stage of the calculation we have tried to
divide by zero. But here “zero” means zero in F11, so we actually end up
trying to find the reciprocal modulo 11 of some integer that is divisible by 11.

Following the lead from Examples 6.22 and 6.23, we replace multiplication
modulo N in Pollard’s factorization method with addition modulo N on an
elliptic curve. We start with an elliptic curve E and a point P on E modulo N
and we compute
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2! · P, 3! · P, 4! · P, 5! · P, . . . (mod N).

Notice that once we have computed Q = (n− 1)! · P , it is easy to com-
pute n! · P , since it equals nQ. At each stage, there are three things that
may happen. First, we may be able to compute n! · P . Second, during the
computation we may need to find the reciprocal of a number d that is a
multiple of N , which would not be helpful, but luckily this situation is quite
unlikely to occur. Third, we may need to find the reciprocal of a number d
that satisfies 1 < gcd(d,N) < N , in which case the computation of n! · P fails,
but gcd(d,N) is a nontrivial factor of N , so we are happy.

Input. Integer N to be factored.
1. Choose random values A, a, and b modulo N .
2. Set P = (a, b) and B ≡ b2 − a3 −A · a (mod N).

Let E be the elliptic curve E : Y 2 = X3 +AX +B.
3. Loop j = 2, 3, 4, . . . up to a specified bound.

4. Compute Q ≡ jP (mod N) and set P = Q.
5. If computation in Step 4 fails,

then we have found a d > 1 with d | N .
6. If d < N , then success, return d.
7. If d = N , go to Step 1 and choose a new curve and point.

8. Increment j and loop again at Step 2.

Table 6.8: Lenstra’s elliptic curve factorization algorithm

This completes the description of Lenstra’s elliptic curve factorization al-
gorithm, other than the minor problem of finding an initial point P on an
elliptic curve E modulo N . The obvious method is to fix an equation for the
curve E, plug in values of X, and check whether the quantity X3 +AX +B is
a square modulo N . Unfortunately, this is difficult to do unless we know how
to factor N . The solution to this dilemma is to first choose the point P = (a, b)
at random, second choose a random value for A, and third set

B ≡ b2 − a3 −A · a (mod N).

Then the point P is automatically on the curve E : Y 2 = X3 +AX +B mod-
ulo N . Lenstra’s algorithm is summarized in Table 6.8.

Example 6.24. We illustrate Lenstra’s algorithm by factoring N = 6887. We
begin by randomly selecting a point P = (1512, 3166) and a number A = 14
and computing

B ≡ 31662 − 15123 − 14 · 1512 ≡ 19 (mod 6887).

We let E be the elliptic curve
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E : Y 2 = X3 + 14X + 19,

so by construction, the point P is automatically on E modulo 6887. Now we
start computing multiples of P modulo 6887. First we find that

2P ≡ (3466, 2996) (mod 6887).

Next we compute

3! · P = 3 · (2P ) = 3 · (3466, 2996) ≡ (3067, 396) (mod 6887).

n n! · P mod 6887

1 P = (1512, 3166)
2 2! · P = (3466, 2996)
3 3! · P = (3067, 396)
4 4! · P = (6507, 2654)
5 5! · P = (2783, 6278)
6 6! · P = (6141, 5581)

Table 6.9: Multiples of P = (1512, 3166) on Y 2 ≡ X3+14X +19 (mod 6887)

And so on. The values up to 6! · P are listed in Table 6.9. These values are
not, in and of themselves, interesting. It is only when we try, and fail, to
compute 7! · P , that something interesting happens.

From Table 6.9 we read off the value of Q = 6! · P = (6141, 5581), and we
want to compute 7Q. First we compute

2Q ≡ (5380, 174) (mod 6887),

4Q ≡ 2 · 2Q ≡ (203, 2038) (mod 6887).

Then we compute 7Q as

Q ≡ (Q+ 2Q) + 4Q (mod 6887)

≡
(
(6141, 5581) + (5380, 174)

)
+ (203, 2038) (mod 6887)

≡ (984, 589) + (203, 2038) (mod 6887).

When we attempt to perform the final step, we need to compute the reciprocal
of 203− 984 modulo 6887, but we find that

gcd(203− 984, 6887) = gcd(−781, 6887) = 71.

Thus we have discovered a nontrivial divisor of 6887, namely 71, which gives
the factorization 6887 = 71 · 97.

It turns out that in E(F71), the point P satisfies 63P ≡ O (mod 71), while
in E(F97), the point P satisfies 107P ≡ O (mod 97). The reason that we suc-
ceeded in factoring 6887 using 7! · P , but not with a smaller multiple of P , is
precisely because 7! is the smallest factorial that is divisible by 63.
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Remark 6.25. In Sect. 3.7 we discussed the speed of sieve factorization meth-
ods and saw that the average running time of the quadratic sieve to factor a
composite number N is approximately

O
(
e
√

(logN)(log logN)
)

steps. (6.7)

Notice that the running time depends on the size of the integer N .
On the other hand, the most naive possible factorization method, namely

trying each possible divisor 2, 3, 4, 5, . . ., has a running time that depends on
the smallest prime factor of N . More precisely, this trial division algorithm
takes exactly p steps, where p is the smallest prime factor of N . If it happens
that N = pq with p and q approximately the same size, then the running time
is approximately

√
N , which is much slower than sieve methods; but if N

happens to have a very small prime factor, trial division may be helpful in
finding it.

It is an interesting and useful property of the elliptic curve factorization
algorithm that its expected running time depends on the smallest prime factor
of N , rather than on N itself. (See Exercise 5.44 for another, albeit slower,
factorization algorithm with this property.) More precisely, if p is the smallest
factor of N , then the elliptic curve factorization algorithm has average running
time approximately

O
(
e
√

2(log p)(log log p)
)

steps. (6.8)

If N = pq is a product of two primes with p ≈ q, the running times
in (6.7) and (6.8) are approximately equal, and then the fact that a sieve step is
much faster than an elliptic curve step makes sieve methods faster in practice.
However, the elliptic curve method is quite useful for finding moderately large
factors of extremely large numbers, because its running time depends on the
smallest prime factor.

6.7 Elliptic Curves over F2 and over F2k

Computers speak binary, so they are especially well suited to doing calcu-
lations modulo 2. This suggests that it might be more efficient to use ellip-
tic curves modulo 2. Unfortunately, if E is an elliptic curve defined over F2,
then E(F2) contains at most 5 points, so E(F2) is not useful for cryptographic
purposes.

However, there are other finite fields in which 2 = 0. These are the
fields F2k containing 2k elements. Recall from Sect. 2.10.4 that for every prime
power pk there exists a field Fpk with pk elements; and further, up to rela-
beling the elements, there is exactly one such field. So we can take an elliptic
curve whose Weierstrass equation has coefficients in a field Fpk and look at
the group of points on that curve having coordinates in Fpk . Hasse’s theorem
(Theorem 6.11) is true in this more general setting.
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Theorem 6.26 (Hasse). Let E be an elliptic curve over Fpk . Then

#E(Fpk) = pk + 1− tpk with tpk satisfying |tpk | ≤ 2pk/2.

Example 6.27. We work with the field

F9 = {a+ bi : a, b ∈ F3}, where i2 = −1.

(See Example 2.58 for a discussion of Fp2 for primes p ≡ 3 (mod 4).) Let E
be the elliptic curve over F9 defined by the equation

E : Y 2 = X3 + (1 + i)X + (2 + i).

By trial and error we find that there are 10 points in E(F9),

(2i, 1 + 2i), (2i, 2 + i), (1 + i, 1 + i), (1 + i, 2 + 2i), (2, 0),

(2 + i, i), (2 + i, 2i), (2 + 2i, 1), (2 + 2i, 2), O.

Points can be doubled or added to one another using the formulas for the
addition of points, always keeping in mind that i2 = −1 and that we are
working modulo 3. For example, you can check that

(2, 0) + (2 + i, 2i) = (2i, 1 + 2i) and 2(1 + i, 2 + 2i) = (2 + i, i).

Our goal is to use elliptic curves over F2k for cryptography, but there is
one difficulty that we must first address. The problem is that we cheated a
little bit when we defined an elliptic curve as a curve given by a Weierstrass
equation Y 2 = X3 + AX + B satisfying Δ = 4A3 + 27B2 �= 0. In fact, the
correct definition of the discriminant Δ is

Δ = −16(4A3 + 27B2).

As long as we work in a field where 2 �= 0, then the condition Δ �= 0 is
the same with either definition, but for fields such as F2k where 2 = 0, we
have Δ = 0 for every standard Weierstrass equation. The solution is to enlarge
the collection of allowable Weierstrass equations.

Definition. An elliptic curve E is the set of solutions to a generalized Weier-
strass equation

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6,

together with an extra point O. The coefficients a1, . . . , a6 are required to
satisfy Δ �= 0, where the discriminant Δ is defined in terms of certain quan-
tities b2, b4, b6, b8 as follows:

b2 = a21 + 4a2, b4 = 2a4 + a1a3, b6 = a23 + 4a6,

b8 = a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24,
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Δ = −b22b8 − 8b34 − 27b26 + 9b2b4b6.

(Although these formulas look complicated, they are easy enough to compute,
and the condition Δ �= 0 is exactly what is required to ensure that the curve E
is nonsingular.)

The geometric definition of the addition law on E is similar to our earlier
definition, the only change being that the old reflection step (x, y) �→ (x,−y)
is replaced by the slightly more complicated reflection step

(x, y) �−→ (x,−y − a1x− a3).

This is also the formula for the negative of a point.
Working with generalized Weierstrass equations, it is not hard to derive

an addition algorithm similar to the algorithm described in Theorem 6.6; see
Exercise 6.22 for details. For example, if P1 = (x1, y1) and P2 = (x2, y2) are
points with P1 �= ±P2, then the x-coordinate of their sum is given by

x(P1 + P2) = λ2 + a1λ− a2 − x1 − x2 with λ =
y2 − y1
x2 − x1

.

Similarly, the x-coordinate of twice a point P = (x, y) is given by the dupli-
cation formula

x(2P ) =
x4 − b4x2 − 2b6x− b8
4x3 + b2x2 + 4b4x+ b6

.

Example 6.28. The polynomial T 3 + T + 1 is irreducible in F2[T ], so as ex-
plained in Sect. 2.10.4, the quotient ring F2[T ]/(T

3 + T + 1) is a field F8 with
eight elements. Every element in F8 can be represented by an expression of
the form

a+ bT + cT 2 with a, b, c ∈ F2,

with the understanding that when we multiply two elements, we divide the
product by T 3 + T + 1 and take the remainder.

Now consider the elliptic curve E defined over the field F8 by the general-
ized Weierstrass equation

E : Y 2 + (1 + T )Y = X3 + (1 + T 2)X + T.

The discriminant of E is Δ = 1 + T + T 2. There are nine points in E(F8),

(0, T ), (0, 1), (T, 0), (T, 1 + T ), (1 + T, T ),

(1 + T, 1), (1 + T 2, T + T 2), (1 + T 2, 1 + T 2), O.

Using the group law described in Exercise 6.22, we can add and double points,
for example

(1 + T 2, T + T 2) + (1 + T, T ) = (1 + T 2, 1 + T 2) and 2(T, 1 + T ) = (T, 0).
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There are some computational advantages to working with elliptic curves
defined over F2k , rather than over Fp. We already mentioned the first, the bi-
nary nature of computers tends to make them operate more efficiently in situ-
ations in which 2 = 0. A second advantage is the option to take k composite, in
which case F2k contains other finite fields intermediate between F2 and F2k .
(The precise statement is that F2j is a subfield of F2k if and only if j | k.)
These intermediate fields can sometimes be used to speed up computations,
but there are also situations in which they cause security problems. So as is
often the case, increased efficiency may come at the cost of decreased security;
to avoid potential problems, it is often safest to use fields F2k with k prime.

The third, and most important, advantage of working over F2k lies in a
suggestion of Neal Koblitz to use an elliptic curve E over F2, while taking
points on E with coordinates in F2k . As we now explain, this allows the use
of the Frobenius map instead of the doubling map and leads to a significant
gain in efficiency.

Definition. The (p-power) Frobenius map τ is the map from the field Fpk to
itself defined by the simple rule

τ : Fpk −→ Fpk , α �−→ αp.

The Frobenius map has the surprising property that it preserves addition
and multiplication,9

τ(α+ β) = τ(α) + τ(β) and τ(α · β) = τ(α) · τ(β).
The multiplication rule is obvious, since

τ(α · β) = (α · β)p = αp · βp = τ(α) · τ(β).
In general, the addition rule is a consequence of the binomial theorem (see
Exercise 6.24). For p = 2, which is what we will need, the proof is easy,

τ(α+ β) = (α+ β)2 = α2 + 2α · β + β2 = α2 + β2 = τ(α) + τ(β),

where we have used the fact that 2 = 0 in F2k . We also note that τ(α) = α
for every α ∈ F2, which is clear, since F2 = {0, 1}.

Now let E be an elliptic curve defined over F2, i.e., given by a generalized
Weierstrass equation with coefficients in F2, and let P = (x, y) ∈ E(F2k) be a
point on E with coordinates in some larger field F2k . We define a Frobenius
map on points in E(F2k) by applying τ to each coordinate,

τ(P ) =
(
τ(x), τ(y)

)
. (6.9)

We are going to show that the map τ has some nice properties. For example,
we claim that

τ(P ) ∈ E(F2k). (6.10)

9In mathematical terminology, the Frobenius map τ is a field automorphism of Fpk .

It also fixes Fp. One can show that the Galois group of Fpk/Fp is cyclic of order k and is
generated by τ .
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Further, if P,Q ∈ E(F2k), then we claim that

τ(P +Q) = τ(P ) + τ(Q). (6.11)

In other words, τ maps E(F2k) to itself, and it respects the addition law.
(In mathematical terminology, the Frobenius map is a group homomorphism
of E(F2k) to itself.)

It is easy to check (6.10). We are given that P = (x, y) ∈ E(F2k), so

y2 + a1xy + a3y − x3 − a2x2 − a4x− a6 = 0.

Applying τ to both sides and using the fact that τ respects addition and
multiplication in F2k , we find that

τ(y)2+τ(a1)τ(x)τ(y)+τ(a3)τ(y)−τ(x)3−τ(a2)τ(x)2−τ(a4)τ(x)−τ(a6) = 0.

By assumption, the Weierstrass equation has coefficients in F2, and we know
that τ fixes elements of F2, so

τ(y)2 + a1τ(x)τ(y) + a3τ(y)− τ(x)3 − a2τ(x)2 − a4τ(x)− a6 = 0.

Hence τ(P ) =
(
τ(x), τ(y)

)
is a point of E(F2k).

A similar computation, which we omit, shows that (6.11) is true. The
key fact is that the addition law on E requires only addition, subtraction,
multiplication, and division of the coordinates of points and the coefficients
of the Weierstrass equation.

Our next result shows that the Frobenius map is closely related to the
number of points in E(Fp).

Theorem 6.29. Let E be an elliptic curve over Fp and let

t = p+ 1−#E(Fp).

Notice that Hasse’s theorem (Theorem 6.11) says that |t| ≤ 2
√
p.

(a) Let α and β be the complex roots of the quadratic polynomial Z2− tZ+p.
Then |α| = |β| = √p, and for every k ≥ 1 we have

#E(Fpk) = pk + 1− αk − βk.

(b) Let
τ : E(Fpk) −→ E(Fpk), (x, y) �−→ (xp, yp),

be the Frobenius map. Then for every point Q ∈ E(Fpk) we have

τ2(Q)− t · τ(Q) + p ·Q = O,
where τ2(Q) denotes the composition τ(τ(Q)).

Proof. The proof requires more tools than we have at our disposal; see for
example [136, V §2] or [147].
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Recall from Sect. 6.3.1 that to compute a multiple nP of a point P , we first
expressed n as a sum of powers of 2 and then used a double-and-add method to
compute nP . For random values of n, this required approximately log n dou-
blings and 1

2 log n additions. A refinement of this method using both positive
and negative powers of 2 reduces the time to approximately log n doublings
and 1

3 log n additions. Notice that the number of doublings remains at log n.
Koblitz’s idea is to replace the doubling map with the Frobenius map. This
leads to a large savings, because it takes much less time to compute τ(P )
than it does to compute 2P . The key to the approach is Theorem 6.29, which
tells us that the action of the Frobenius map on E(F2k) satisfies a quadratic
equation.

Definition. A Koblitz curve is an elliptic curve defined over F2 by an equation
of the form

Ea : Y 2 +XY = X3 + aX2 + 1

with a ∈ {0, 1}. The discriminant of Ea is Δ = 1.

For concreteness we restrict attention to the curve

E0 : Y 2 +XY = X3 + 1.

It is easy to check that

E0(F2) =
{
(0, 1), (1, 0), (1, 1),O

}
,

so #E0(F2) = 4 and

t = 2 + 1−#E0(F2) = −1.

To apply Theorem 6.29, we use the quadratic formula to find the roots of the
polynomial Z2 + Z + 2. The roots are

−1 +
√
−7

2
and

−1−
√
−7

2
.

Then Theorem 6.29(a) tells us that

#E0(F2k) = 2k + 1−
(
−1 +

√
−7

2

)k

−
(
−1−

√
−7

2

)k

. (6.12)

This formula easily allows us to compute the number of points in #E0(F2k),
even for very large values of k. For example,

#E0(F297) = 158456325028528296935114828764.

(See also Exercise 6.25.)
Further, Theorem 6.29(b) says that the Frobenius map τ satisfies the equa-

tion τ2 + τ + 2 = 0 when it acts on points of E(F2k), i.e.,
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τ2(P ) + τ(P ) + 2P = O for all P ∈ E(F2k).

The idea now is to write an arbitrary integer n as a sum of powers of τ , subject
to the assumption that τ2 = −2− τ . Say we have written n as

n = v0 + v1τ + v2τ
2 + · · ·+ v�τ

� with vi ∈ {−1, 0, 1}.

Then we can compute nP efficiently using the formula

nP = (v0 + v1τ + v2τ
2 + · · ·+ v�τ

�)P

= v0P + v1τ(P ) + v2τ
2(P ) + · · ·+ v�τ

�(P ).

This takes less time than using the binary or ternary method because it is far
easier to compute τ i(P ) than it is to compute 2iP .

Proposition 6.30. Let n be a positive integer. Then n can be written in the
form

n = v0 + v1τ + v2τ
2 + · · ·+ v�τ

� with vi ∈ {−1, 0, 1}, (6.13)

under the assumption that τ satisfies τ2 = −2 − τ . Further, this can always
be done with � ≈ 2 log n and with at most 1

3 of the vi nonzero.

Proof. The proof is similar to Proposition 6.18, the basic idea being that we
write integers as 2a + b with b ∈ {0, 1,−1} and replace 2 with −τ − τ2;
see Exercise 6.27. With more work, it is possible to find an expansion (6.13)
with � ≈ log n and approximately 1

3 of the vi nonzero; see [29, §15.1].

Example 6.31. We illustrate Proposition 6.30 with a numerical example.
Let n = 7. Then

7 = 1 + 3 · 2 = 1 + 3 · (−τ − τ2) = 1− 3τ − 3τ2 = 1− τ − τ2 − 2τ − 2τ2

= 1− τ − τ2 − (−τ − τ2)τ − (−τ − τ2)τ2 = 1− τ + 2τ3 + τ4

= 1− τ + (−τ − τ2)τ3 + τ4 = 1− τ − τ5.

Thus 7 = 1− τ − τ5.
Remark 6.32. As we have seen, computing #E(F2k) for Koblitz curves is
very easy. However, for general elliptic curves over F2k , this is a more difficult
task. The SEA algorithm and its variants [120, 121] that we mentioned in Re-
mark 6.13 are reasonably efficient at counting the number of points in E(Fq)
for any fields with a large number of elements. Satoh [113] devised an alter-
native method that is often faster than SEA when q = pe for a small prime p
and (moderately) large exponent e. Satoh’s original paper dealt only with the
case p ≥ 3, but subsequent work [44, 140] covers also the cryptographically
important case of p = 2.
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6.8 Bilinear Pairings on Elliptic Curves

You have probably seen examples of bilinear pairings in a linear algebra class.
For example, the dot product is a bilinear pairing on the vector space R

n,

β(v,w) = v ·w = v1w1 + v2w2 + · · ·+ vnwn.

It is a pairing in the sense that it takes a pair of vectors and returns a num-
ber, and it is bilinear in the sense that it is a linear transformation in each
of its variables. In other words, for any vectors v1,v2,w1,w2 and any real
numbers a1, a2, b1, b2, we have

β(a1v1 + a2v2,w) = a1β(v1,w) + a2β(v2,w),

β(v, b1w1 + b2w2) = b1β(v,w1) + b2β(v,w2).
(6.14)

More generally, if A is any n-by-n matrix, then the function β(v,w) = vAwt

is a bilinear pairing on R
n, where we write v as a row vector and we write wt,

the transpose of w, as a column vector.

Another bilinear pairing that you have seen is the determinant map on R
2.

Thus if v = (v1, v2) and w = (w1, w2), then

δ(v,w) = det

(
v1 v2
w1 w2

)
= v1w2 − v2w1

is a bilinear map. The determinant map has the further property that it is
alternating, which means that if we switch the vectors, the value changes sign,

δ(v,w) = −δ(w,v).

Notice that the alternating property implies that δ(v,v) = 0 for every
vector v.

The bilinear pairings that we discuss in this section are similar in that they
take as input two points on an elliptic curve and give as output a number.
However, the bilinearity condition is slightly different, because the output
value is a nonzero element of a finite field, so the sum on the right-hand side
of (6.14) is replaced by a product.

Bilinear pairings on elliptic curves have a number of important crypto-
graphic applications. For most of these applications it is necessary to work
with finite fields Fpk of prime power order. Fields of prime power order are
discussed in Sect. 2.10.4, but even if you have not covered that material, you
can just imagine a field that is similar to Fp, but that has p

k elements. (N.B.
The field Fpk is very different from the ring Z/pkZ; see Exercise 2.40.) Stan-
dard references for the material used in this section are [136] and [147].
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6.8.1 Points of Finite Order on Elliptic Curves

We begin by briefly describing the points of finite order on an elliptic curve.

Definition. Let m ≥ 1 be an integer. A point P ∈ E satisfying mP = O
is called a point of order m in the group E. We denote the set of points of
order m by

E[m] =
{
P ∈ E : mP = O

}
.

Such points are called points of finite order or torsion points.
It is easy to see that if P and Q are in E[m], then P +Q and −P are also

in E[m], so E[m] is a subgroup of E. If we want the coordinates of P to lie in a
particular field K, for example in Q or R or C or Fp, then we write E(K)[m].
(See Exercise 2.12.)

The group of points of order m has a fairly simple structure, at least if we
allow the coordinates of the points to be in a sufficiently large field.

Proposition 6.33. Let m ≥ 1 be an integer.
(a) Let E be an elliptic curve over Q or R or C. Then

E(C)[m] ∼= Z/mZ× Z/mZ

is a product of two cyclic groups of order m.

(b) Let E be an elliptic curve over Fp and assume that p does not divide m.
Then there exists a value of k such that

E(Fpjk)[m] ∼= Z/mZ× Z/mZ for all j ≥ 1.

Proof. For the proof, which is beyond the scope of this book, see any standard
text on elliptic curves, for example [136, Corollary III.6.4].

Remark 6.34. Notice that if � is prime and if K is a field such that

E(K)[�] = Z/�Z× Z/�Z,

then we may view E[�] as a 2-dimensional vector space over the field Z/�Z.
And even if m is not prime,

E(K)[m] = Z/mZ× Z/mZ

still has a “basis” {P1, P2} in the sense that every point P = E[m] can be
written as a linear combination

P = aP1 + bP2

for a unique choice of coefficients a, b ∈ Z/mZ. Of course, if m is large, it may
be very difficult to find a and b. Indeed, if P is a multiple of P1, then finding
the value of a is the same as solving the ECDLP for P and P1.
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6.8.2 Rational Functions and Divisors on Elliptic Curves

In order to define the Weil and Tate pairings, we need to explain how a rational
function on an elliptic curve is related to its zeros and poles. We start with
the simpler case of a rational function of one variable. A rational function is
a ratio of polynomials

f(X) =
a0 + a1X + a2X

2 + · · ·+ anX
n

b0 + b1X + b2X2 + · · ·+ bmXm
.

Any nonzero polynomial can be factored completely if we allow complex num-
bers, so a nonzero rational function can be factored as

f(X) =
a(X − α1)

e1(X − α2)
e2 · · · (X − αr)

er

b(X − β1)d1(X − β2)d2 · · · (X − βs)ds
.

We may assume that α1, . . . , αr, β1, . . . , βs are distinct numbers, since
otherwise we can cancel some of the terms in the numerator with some
of the terms in the denominator. The numbers α1, . . . , αr are called the zeros
of f(X) and the numbers β1, . . . , βs are called the poles of f(X). The expo-
nents e1, . . . , er, d1, . . . , ds are the associated multiplicities. We keep track of
the zeros and poles of f(X) and their multiplicities by defining the divisor
of f(X) to be the formal sum

div
(
f(X)

)
= e1[α1] + e2[α2] + · · ·+ er[αr]− d1[β1]− d2[β2]− · · · − dr[βr].

Note that this is simply a convenient shorthand way of saying that f(X) has
a zero of multiplicity e1 at α1, a zero of multiplicity e2 at α2, etc.

If E is an elliptic curve,

E : Y 2 = X3 +AX +B,

and if f(X,Y ) is a nonzero rational function of two variables, we may view f
as defining a function on E by writing points as P = (x, y) and setting f(P ) =
f(x, y). Then just as for rational functions of one variable, there are points
of E where the numerator of f vanishes and there are points of E where the
denominator of f vanishes, so f has zeros and poles on E. Further, one can
assign multiplicities to the zeros and poles, so f has an associated divisor

div(f) =
∑

P∈E

nP [P ].

In this formal sum, the coefficients nP are integers, and only finitely many of
the nP are nonzero, so div(f) is a finite sum. Of course, the coordinates of
the zeros and poles of f may require moving to a larger field. For example,
if E is defined over Fp, then the poles and zeros of f have coordinates in Fpk

for some k, but the value of k will, in general, depend on the function f .
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Example 6.35. Suppose that the cubic polynomial used to define E factors as

X3 +AX +B = (X − α1)(X − α2)(X − α3).

Then the points P1 = (α1, 0), P2 = (α2, 0), and P3 = (α3, 0) are distinct (see
Remark 6.4) and satisfy 2P1 = 2P2 = 2P3 = O, i.e., they are points of order 2.
The function Y , which remember is defined by

Y (P ) = (the y-coordinate of the point P ),

vanishes at these three points and at no other points P = (x, y). The divisor
of Y has the form [P1] + [P2] + [P3]− n[O] for some integer n, and it follows
from Theorem 6.36 that n = 3, so

div(Y ) = [P1] + [P2] + [P3]− 3[O].

More generally, we define a divisor on E to be any formal sum

D =
∑

P∈E

nP [P ] with nP ∈ Z and nP = 0 for all but finitely many P .

The degree of a divisor is the sum of its coefficients,

deg(D) = deg
(∑

P∈E

nP [P ]
)
=
∑

P∈E

nP .

We define the sum of a divisor by dropping the square brackets; thus

Sum(D) = Sum
(∑

P∈E

nP [P ]
)
=
∑

P∈E

nPP.

Note that nPP means to add P to itself nP times using the addition law
on E. It is natural to ask which divisors are divisors of functions, and to what
extent the divisor of a function determines the function. These questions are
answered by the following theorem.

Theorem 6.36. Let E be an elliptic curve.
(a) Let f and g be nonzero rational functions on E. If div(f) = div(g), then

there is a nonzero constant c such that f = cg.

(b) Let D =
∑

P∈E nP [P ] be a divisor on E. Then D is the divisor of a
rational function on E if and only if

deg(D) = 0 and Sum(D) = O.

In particular, if a rational function on E has no zeros or no poles, then it is
constant.

Proof. Again we refer the reader to any elliptic curve textbook such as [136,
Propositions II.3.1 and III.3.4].
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Example 6.37. Suppose that P ∈ E[m] is a point of order m. By defini-
tion, mP = O, so the divisor

m[P ]−m[O]

satisfies the conditions of Theorem 6.36(b). Hence there is a rational func-
tion fP (X,Y ) on E satisfying

div(fP ) = m[P ]−m[O].

The case m = 2 is particularly simple. A point P ∈ E has order 2 if
and only if its Y -coordinate vanishes. If we let P = (α, 0) ∈ E[2], then the
function fP = X − α satisfies

div(X − α) = 2[P ]− 2[O];

see Exercise 6.30.

6.8.3 The Weil Pairing

The Weil pairing, which is denoted by em, takes as input a pair of points
P,Q ∈ E[m] and gives as output an mth root of unity em(P,Q). The bilin-
earity of the Weil pairing is expressed by the equations

em(P1 + P2, Q) = em(P1, Q)em(P2, Q),

em(P,Q1 +Q2) = em(P,Q1)em(P,Q2).
(6.15)

This is similar to the vector space bilinearity described in (6.14), but note that
the bilinearity in (6.15) is multiplicative, in the sense that the quantities on
the right-hand side are multiplied, while the bilinearity in (6.14) is additive,
in the sense that the quantities on the right-hand side are added.

Definition. Let P,Q ∈ E[m], i.e., P and Q are points of order m in the
group E. Let fP and fQ be rational functions on E satisfying

div(fP ) = m[P ]−m[O] and div(fQ) = m[Q]−m[O].

(See Example 6.37.) The Weil pairing of P and Q is the quantity

em(P,Q) =
fP (Q+ S)

fP (S)

/
fQ(P − S)
fQ(−S)

, (6.16)

where S ∈ E is any point satisfying S /∈ {O, P,−Q,P − Q}. (This ensures
that all of the quantities on the right-hand side of (6.16) are defined and
nonzero.) One can check that the value of em(P,Q) does not depend on the
choice of fP , fQ, and S; see Exercise 6.32.

Despite its somewhat arcane definition, the Weil pairing em has many
useful properties.
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Theorem 6.38. (a) The values of the Weil pairing satisfy

em(P,Q)m = 1 for all P,Q ∈ E[m].

In other words, em(P,Q) is an mth root of unity.
(b) The Weil pairing is bilinear, which means that

em(P1 + P2, Q) = em(P1, Q)em(P2, Q) for all P1, P2, Q ∈ E[m],

and

em(P,Q1 +Q2) = em(P,Q1)em(P,Q2) for all P,Q1, Q2 ∈ E[m].

(c) The Weil pairing is alternating, which means that

em(P, P ) = 1 for all P ∈ E[m].

This implies that em(P,Q) = em(Q,P )−1 for all P,Q,∈ E[m], see
Exercise 6.31.

(d) The Weil pairing is nondegenerate, which means that

if em(P,Q) = 1 for all Q ∈ E[m], then P = O.

Proof. Some parts of Theorem 6.38 are easy to prove, while other parts are
not so easy. For a complete proof, see for example [136, Section III.8].

Remark 6.39. Where does the Weil pairing come from? According to
Proposition 6.33 (see also Remark 6.34), if we allow points with coordi-
nates in a sufficiently large field, then E[m] looks like a 2-dimensional “vector
space” over the “field” Z/mZ. So if we choose a basis P1, P2 ∈ E[m], then
any element P ∈ E[m] can be written in terms of this basis as

P = aPP1 + bPP2 for unique aP , bP ∈ Z/mZ,

and then we can define an alternating bilinear pairing by using the
determinant,

E[m]× E[m] −→ Z/mZ, (P,Q) �−→ det

(
aP aQ
bP bQ

)
= aP bQ − aQbP .

But there are two problems with this pairing. First, it depends on choosing
a basis, and second, there’s no easy way to compute it other than writing P
and Q in terms of the basis. However, it should come as no surprise that the
determinant and the Weil pairing are closely related to one another. To be pre-
cise, if we let ζ = em(P1, P2), then it is easy to check that (see Exercise 6.33)

em(P,Q) = ζ
det

( aP aQ

bP bQ

)

= ζaP bQ−aQbP .
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The glory10 of the Weil pairing is that it can be computed quite efficiently
without first expressing P and Q in terms of any particular basis of E[m].
(See Sect. 6.8.4 for a double-and-add algorithm to compute em(P,Q).) This is
good, since expressing a point in terms of the basis P1 and P2 is at least as
difficult as solving the ECDLP; see Exercise 6.10.

Example 6.40. We are going to compute e2 directly from the definition. Let E
be given by the equation

Y 2 = X3 +Ax+B = (X − α1)(X − α2)(X − α3).

Note that α1 + α2 + α3 = 0, since the left-hand side has no X2 term. The
points

P1 = (α1, 0), P2 = (α2, 0), P3 = (α3, 0),

are points of order 2, and as noted in Example 6.37 (see also Exercise 6.30),

div(X − αi) = 2[Pi]− 2[O].

In order to compute e2(P1, P2), we can take an arbitrary point S = (x, y) ∈ E.
Using the addition formula, we find that the x-coordinate of P1−S is equal to

X(P1 − S) =
(

−y
x− α1

)2

− x− α1

=
y2 − (x− α1)

2(x+ α1)

(x− α1)2

=
(x− α1)(x− α2)(x− α3)− (x− α1)

2(x+ α1)

(x− α1)2

since y2 = (x− α1)(x− α2)(x− α3),

=
(x− α2)(x− α3)− (x− α1)(x+ α1)

x− α1

=
(−α2 − α3)x+ α2α3 + α2

1

x− α1

=
α1x+ α2α3 + α2

1

x− α1
since α1 + α2 + α3 = 0.

Similarly,

X(P2 + S) =
α2x+ α1α3 + α2

2

x− α2
.

10For those who have taken a course in abstract algebra, we mention that the other
glorious property of the Weil pairing is that it interacts well with Galois theory. Thus let E
be an elliptic curve over a field K, let L/K be a Galois extension, and let P,Q ∈ E(L)[m].
Then for every element g ∈ Gal(L/K), the Weil pairing obeys the rule em

(
g(P ), g(Q)

)
=

g
(
em(P,Q)

)
.
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Using the rational functions fPi
= X − αi and assuming that P1 and P2 are

distinct nonzero points in E[2], we find directly from the definition of em that

e2(P1, P2) =
fP1

(P2 + S)

fP1
(S)

/
fP2

(P1 − S)
fP2

(−S)

=
X(P2 + S)− α1

X(S)− α1

/
X(P1 − S)− α2

X(−S)− α2

=

α2x+α1α3+α2
2

x−α2
− α1

x− α1

/
α1x+α2α3+α2

1

x−α1
− α2

x− α2

=
(α2 − α1)x+ α1α3 + α2

2 + α1α2

(α1 − α2)x+ α2α3 + α2
1 + α1α2

=
(α2 − α1)x+ α2

2 − α2
1

(α1 − α2)x+ α2
1 − α2

2

since α1 + α2 + α3 = 0,

= −1.

6.8.4 An Efficient Algorithm to Compute
the Weil Pairing

In this section we describe a double-and-add method that can be used to
efficiently compute the Weil pairing. The key idea, which is due to Victor
Miller [89], is an algorithm to rapidly evaluate certain functions with specified
divisors, as explained in the next theorem. (For further material on Miller’s
algorithm, see [136, Section XI.8].)

Theorem 6.41. Let E be an elliptic curve and let P = (xP , yP ) and Q =
(xQ, yQ) be nonzero points on E.
(a) Let λ be the slope of the line connecting P and Q, or the slope of the

tangent line to E at P if P = Q. (If the line is vertical, we let λ = ∞.)
Define a function gP,Q on E as follows :

gP,Q =

⎧
⎨

⎩

y − yP − λ(x− xP )
x+ xP + xQ − λ2

if λ �=∞,

x− xP if λ =∞.

Then
div(gP,Q) = [P ] + [Q]− [P +Q]− [O]. (6.17)

(b) (Miller’s Algorithm) Let m ≥ 1 and write the binary expansion of m as

m = m0 +m1 · 2 +m2 · 22 + · · ·+mn−12
n−1

with mi ∈ {0, 1} and mn−1 �= 0. The following algorithm returns a func-
tion fP whose divisor satisfies

div(fP ) = m[P ]− [mP ]− (m− 1)[O],
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where the functions gT,T and gT,P used by the algorithm are as defined
in (a).

[1] Set T = P and f = 1
[2] Loop i = n− 2 down to 0
[3] Set f = f2 · gT,T

[4] Set T = 2T
[5] If mi = 1
[6] Set f = f · gT,P

[7] Set T = T + P
[8] End If
[9] End i Loop
[10] Return the value f

In particular, if P ∈ E[m], then div(fP ) = m[P ]−m[O].

Proof. (a) Suppose first that λ �=∞ and let y = λx+ ν be the line through P
and Q or the tangent line at P if P = Q. This line intersects E at the three
points P , Q, and −P −Q, so

div(y − λx− ν) = [P ] + [Q] + [−P −Q]− 3[O].

Vertical lines intersect E at points and their negatives, so

div(x− xP+Q) = [P +Q] + [−P −Q]− 2[O].

It follows that

gP,Q =
y − λx− ν
x− xP+Q

has the desired divisor (6.17). Finally, the addition formula (Theorem 6.6) tells
us that xP+Q = λ2 − xP − xQ, and we can eliminate ν from the numerator
of gP,Q using yP = λxP + ν.

If λ =∞, then P+Q = O, so we want gP,Q to have divisor [P ]+[−P ]−2[O].
The function x− xP has this divisor.
(b) This is a standard double-and-add algorithm, similar to others that we
have seen in the past. The key to the algorithm comes from (a), which tells
us that the functions gT,T and gT,P used in Steps 3 and 6 have divisors

div(gT,T ) = 2[T ]− [2T ]− [O] and div(gT,P ) = [T ] + [P ]− [T + P ]− [O].

We leave to the reader the remainder of the proof, which is a simple induction
using these relations.

Let P ∈ E[m]. The algorithm described in Theorem 6.41 tells us how to
compute a function fP with divisor m[P ]−m[O]. Further, if R is any point
of E, then we can compute fP (R) directly by evaluating the functions gT,T (R)
and gT,P (R) each time we execute Steps 3 and 6 of the algorithm. Notice that
quantities of the form fP (R) are exactly what are needed in order to evaluate
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the Weil pairing em(P,Q). More precisely, given nonzero points P,Q ∈ E[m],
we choose a point S /∈ {O, P,−Q,P −Q} and use Theorem 6.41 to evaluate

em(P,Q) =
fP (Q+ S)

fP (S)

/
fQ(P − S)
fQ(−S)

by computing each of the functions at the indicated point.

Remark 6.42. For added efficiency, one can compute fP (Q + S) and fP (S)
simultaneously, and similarly for fQ(P −S) and fQ(−S). Further savings are
available using the Tate pairing, which is a variant of the Weil pairing that
we describe briefly in Sect. 6.8.5.

Example 6.43. We take the elliptic curve

y2 = x3 + 30x+ 34 over the finite field F631.

The curve has #E(F631) = 650 = 2 · 52 · 13 points, and it turns out that it
has 25 points of order 5. The points

P = (36, 60) and Q = (121, 387)

generate the points of order 5 in E(F631). In order to compute the Weil pairing
using Miller’s algorithm, we want a point S that is not in the subgroup spanned
by P and Q. We take S = (0, 36). The point S has order 130. Then Miller’s
algorithm gives

fP (Q+ S)

fP (S)
=

103

219
= 473 ∈ F631.

Reversing the roles of P and Q and replacing S by −S, Miller’s algorithm
also gives

fQ(P − S)
fQ(−S)

=
284

204
= 88 ∈ F631.

Finally, taking the ratio of these two values yields

e5(P,Q) =
473

88
= 242 ∈ F631.

We check that (242)5 = 1, so e5(P,Q) is a fifth root of unity in F631.
Continuing to work on the same curve, we take P ′ = (617, 5) and Q′ =

(121, 244). Then a similar calculation gives

fP ′(Q′ + S)

fP ′(S)
=

326

523
= 219 and

fQ′(P ′ − S)
fQ′(−S) =

483

576
= 83,

and taking the ratio of these two values yields

e5(P
′, Q′) =

219

83
= 512 ∈ F631.

It turns out that P ′ = 3P and Q′ = 4Q. We check that

e5(P,Q)12 = 24212 = 512 = e5(P
′, Q′) = e5(3P, 4Q),

which illustrates the bilinearity property of the Weil pairing.
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6.8.5 The Tate Pairing

The Weil pairing is a nondegenerate bilinear form on elliptic curves defined
over any field. For elliptic curves over finite fields there is another pairing,
called the Tate pairing (or sometimes the Tate–Lichtenbaum pairing), that
is often used in cryptography because it is computationally somewhat more
efficient than the Weil pairing. In this section we briefly describe the Tate
pairing. (For further material on the Tate pairing, see [136, Section XI.9].)

Definition. Let E be an elliptic curve over Fq, let � be a prime, let P ∈
E(Fq)[�], and let Q ∈ E(Fq). Choose a rational function fP on E with

div(fP ) = �[P ]− �[O].

The Tate pairing of P and Q is the quantity

τ(P,Q) =
fP (Q+ S)

fP (S)
∈ F

∗
q ,

where S is any point in E(Fq) such that fP (Q+S) and fP (S) are defined and
nonzero. It turns out that the value of the Tate pairing is well-defined only
up to multiplying it by the �th power of an element of F∗

q . If q ≡ 1 (mod �),
we define the (modified) Tate pairing of P and Q to be

τ̂(P,Q) = τ(P,Q)(q−1)/� =

(
fP (Q+ S)

fP (S)

)(q−1)/�

∈ F
∗
q .

Theorem 6.44. Let E be an elliptic curve over Fq and let � be a prime with

q ≡ 1 (mod �) and E(Fq)[�] ∼= Z/�Z.

Then the modified Tate pairing gives a well-defined map

τ̂ : E(Fq)[�]× E(Fq)[�] −→ F
∗
q

having the following properties :
(a) Bilinearity:

τ̂(P1+P2, Q) = τ̂(P1, Q)τ̂(P2, Q) and τ̂(P,Q1+Q2) = τ̂(P,Q1)τ̂(P,Q2).

(b) Nondegeneracy:

τ̂(P, P ) is a primitive �th root of unity for all nonzero P ∈ E(Fq)[�].

(A primitive �th root of unity is a number ζ �= 1 such that ζ� = 1.)

In applications such as tripartite Diffie–Hellman (Sect. 6.10.1) and ID-
based cryptography (Sect. 6.10.2), one may use the Tate pairing in place of
the Weil pairing. Note that Miller’s algorithm gives an efficient way to compute
the Tate pairing, since Theorem 6.41(b) explains how to rapidly compute the
value of fP .
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6.9 The Weil Pairing over Fields of Prime
Power Order

There are many applications of the Weil pairing in which it is necessary
to work in fields Fpk of prime power order. In this section we discuss the
m-embedding degree, which is the smallest value of k such that E(Fpk)[m]
is as large as possible, and we give an application called the MOV algorithm
that reduces the ECDLP in E(Fp) to the DLP in F

∗
pk . We then describe dis-

tortion maps on E and use them to define a modified Weil pairing êm for
which êm(P, P ) is nontrivial.

6.9.1 Embedding Degree and the MOV Algorithm

Let E be an elliptic curve over Fp and let m ≥ 1 be an integer with p � m.
In order to obtain nontrivial values of the Weil pairing em, we need to use
independent points of order m on E. According to Proposition 6.33(b), the
curve E has m2 points of order m, but their coordinates may lie in a larger
finite field.

Definition. Let E be an elliptic curve over Fp and let m ≥ 1 be an integer
with p � m. The embedding degree of E with respect to m is the smallest value
of k such that

E(Fpk)[m] ∼= Z/mZ× Z/mZ.

For cryptographic applications, the most interesting case occurs when m
is a (large) prime, in which case there are alternative characterizations of the
embedding degree, as in the following result.

Proposition 6.45. Let E be an elliptic curve over Fp and let � �= p be a
prime. Assume that E(Fp) contains a point of order �. Then the embedding
degree of E with respect to � is given by one of the following cases :
(i) The embedding degree of E is 1. (This cannot happen if � >

√
p+ 1; see

Exercise 6.39.)

(ii) p ≡ 1 (mod �) and the embedding degree is �.

(iii) p �≡ 1 (mod �) and the embedding degree is the smallest value of k ≥ 2
such that

pk ≡ 1 (mod �).

Proof. The proof uses more advanced methods than we have at our disposal.
See [147, Proposition 5.9] for a proof of case (iii), which is the case that most
often occurs in practice.

The significance of the embedding degree k is that the Weil pairing embeds
the ECDLP on the elliptic curve E(Fp) into the DLP in the field Fpk . The
basic setup is as follows. Let E be an elliptic curve over Fp and let P ∈ E(Fp)
be a point of order �, where � is a large prime, say � >

√
p + 1. Let k be the
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embedding degree with respect to � and suppose that we know how to solve
the discrete logarithm problem in the field Fpk . Let Q ∈ E(Fp) be a point
that is a multiple of P . Then the following algorithm of Menezes, Okamoto,
and Vanstone [82] solves the elliptic curve discrete logarithm problem for P
and Q.

The MOV Algorithm

1. Compute the number of points N = #E(Fpk). This is feasible if k is
not too large, since there are polynomial-time algorithms to count the
number of points on an elliptic curve; see Remarks 6.13 and 6.32. Note
that � | N , since by assumption E(Fp) has a point of order �.

2. Choose a random point T ∈ E(Fpk) with T /∈ E(Fp).

3. Compute T ′ = (N/�)T . If T ′ = O, go back to Step 2. Otherwise, T ′ is
a point of order �, so proceed to Step 4.

4. Compute the Weil pairing values

α = e�(P, T
′) ∈ F

∗
pk and β = e�(Q,T

′) ∈ F
∗
pk .

This can be done quite efficiently, in time proportional to log(pk), see
Sect. 6.8.4. If α = 1, return to Step 2.

5. Solve the DLP for α and β in F
∗
pk , i.e., find an exponent n such that

β = αn. If pk is not too large, this can be done using the index calculus.
Note that the index calculus (Sect. 3.8) is a subexponential algorithm,
so it is considerably faster than collision algorithms such as Pollard’s ρ
method (Sects. 5.4 and 5.5).

6. Then also Q = nP , so the ECDLP has been solved.

The MOV algorithm is summarized in Table 6.10. A few comments are in
order.

Remark 6.46. How does one generate a random point T ∈ E(Fpk) with T /∈
E(Fp) in Step 2? One method is to choose random values x ∈ Fpk and check
whether x3 + Ax + B is a square in Fpk , which is easy to do, since z is a

square in Fpk if and only if z(p
k−1)/2 = 1. (We are assuming that p is an

odd prime.) There then exist practical (i.e., polynomial time) algorithms to
compute square roots in finite fields, but to describe them would take us too
far afield; see [28, §§1.5.1, 1.5.2].
Remark 6.47. Why does the MOV algorithm solve the ECDLP? The point T ′

constructed by the algorithm is generally independent of P , so the pair of
points {P, T ′} forms a basis for the 2-dimensional vector space

E[�] = Z/�Z× Z/�Z.
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It follows from the nondegeneracy of the Weil pairing that e�(P, T
′) is a non-

trivial �th root of unity in F
∗
pk . In other words,

e�(P, T
′)r = 1 if and only if � | r.

Suppose now that Q = jP and that our goal is to find the value of j mod-
ulo �. The MOV algorithm finds an integer n satisfying e�(Q,T

′) = e�(P, T
′)n.

The linearity of the Weil pairing implies that

e�(P, T
′)n = e�(Q,T

′) = e�(jP, T
′) = e�(P, T

′)j ,

so e�(P, T
′)n−j = 1. Hence n ≡ j (mod �), which shows that n solves the

ECDLP for P and Q.

Remark 6.48. How practical is the MOV algorithm? The answer, obviously,
depends on the size of k. If k is large, say k > (ln p)2, then the MOV algorithm
is completely infeasible. For example, if p ≈ 2160, then we would have to solve
the DLP in Fpk with k > 4000. Since a randomly chosen elliptic curves over Fp

almost always has embedding degree that is much larger than (ln p)2, it would
seem that the MOV algorithm is not useful. However, there are certain special
sorts of curves whose embedding degree is small. An important class of such
curves consists of those satisfying

#E(Fp) = p+ 1.

These supersingular elliptic curves generally have embedding degree k = 2,
and in any case k ≤ 6. For example,

E : y2 = x3 + x

is supersingular for any prime p ≡ 3 (mod 4), and it has embedding de-
gree 2 for any � >

√
p + 1. This means that solving ECLDP in E(Fp) is no

harder than solving DLP in F
∗
p2 , which makes E a very poor choice for use in

cryptography.11

Remark 6.49. An elliptic curve E over a finite field Fp is called anomalous if
#E(Fp) = p. A number of people [114, 122, 141] more or less simultaneously
observed that there is a very fast (linear time) algorithm to solve the ECDLP
on anomalous elliptic curves, so such curves must be avoided in cryptographic
constructions.

There are also some cases in which the ECDLP is easier than expected for
elliptic curves E over finite fields F2m when m is composite. (A reason to use
such fields is that field operations can sometimes be done more efficiently.)
This attack uses a tool called Weil descent and was originally suggested by
Gerhard Frey. The idea is to transfer an ECDLP in E(F2m) to a discrete
logarithm problem on a hyperelliptic curve (see Sect. 8.10) over a smaller
field F2k , where k divides m. The details are complicated and beyond the
scope of this book. See [29, §22.3] for details.

11Or so it would seem, but we will see in Sect. 6.9.3 that the ECDLP on E does have its
uses in cryptography!
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1. Compute the number of points N = #E(Fpk).
2. Choose a random point T ∈ E(Fpk) with T /∈ E(Fp).
3. Let T ′ = (N/�)T . If T ′ = O, go back to Step 2. Otherwise T ′

is a point of order �, so proceed to Step 4.
4. Compute the Weil pairing values

α = e�(P, T
′) ∈ F

∗
pk and β = e�(Q,T

′) ∈ F
∗
pk .

If α = 1, go to Step 2.
5. Solve the DLP for α and β in F

∗
pk , i.e., find an exponent n

such that β = αn.
6. Then also Q = nP , so the ECDLP has been solved.

Table 6.10: The MOV algorithm to solve the ECDLP

6.9.2 Distortion Maps and a Modified Weil Pairing

The Weil pairing is alternating, which means that em(P, P ) = 1 for all P .
In cryptographic applications we generally want to evaluate the pairing at
points P1 = aP and P2 = bP , but using the Weil pairing directly is not
helpful, since

em(P1, P2) = em(aP, bP ) = em(P, P )ab = 1ab = 1.

One way around this dilemma is to choose an elliptic curve that has a “nice”
map φ : E → E with the property that P and φ(P ) are “independent”
in E[m]. Then we can evaluate

em
(
P1, φ(P2)

)
= em

(
aP, φ(bP )

)
= em

(
aP, bφ(P )

)
= em

(
P, φ(P )

)ab
.

For cryptographic applications one generally takes m to be prime, so we re-
strict our attention to this case.

Definition. Let � ≥ 3 be a prime, let E be an elliptic curve, let P ∈ E[�] be
a point of order �, and let φ : E → E be a map from E to itself. We say that φ
is an �-distortion map for P if it has the following two properties12:
(i) φ(nP ) = nφ(P ) for all n ≥ 1.

(ii) The number e�
(
P, φ(P )

)
is a primitive �th root of unity. This means that

e�
(
P, φ(P )

)r
= 1 if and only if r is a multiple of �.

The next proposition gives various ways to check condition (ii).

Proposition 6.50. Let E be an elliptic curve, let � ≥ 3 be a prime, and
view E[�] = Z/�Z×Z/�Z as a 2-dimensional vector space over the field Z/�Z.
Let P,Q ∈ E[�]. Then the following are equivalent :

12There are various definitions of distortion maps in the literature. The one that we give
distills the essential properties needed for most cryptographic applications. In practice, one
also requires an efficient algorithm to compute φ.
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(a) P and Q form a basis for the vector space E[�].

(b) P �= O and Q is not a multiple of P .

(c) e�(P,Q) is a primitive �th root of unity.

(d) e�(P,Q) �= 1.

Proof. It is clear that (a) implies (b), since a basis consists of independent
vectors. Conversely, suppose that (a) is false. This means that there is a linear
relation

uP + vQ = O with u, v ∈ Z/�Z not both 0.

If v = 0, then P = O, so (b) is false. And if v �= 0, then v has an inverse
in Z/�Z, so Q = −v−1uP is a multiple of P , again showing that (b) is false.
This completes the proof that (a) and (b) are equivalent.

To ease notation, we let
ζ = e�(P,Q).

From the definition of the Weil pairing, we know that ζ� = 1. Let r ≥ 1 be
the smallest integer such that ζr = 1. Use the extended Euclidean algorithm
(Theorem 1.11) to write the greatest common divisor of r and � as

sr + t� = gcd(r, �) for some s, t ∈ Z.

Then
ζgcd(r,�) = ζsr+t� = (ζr)s(ζ�)t = 1.

The minimality of r tells us that r = gcd(r, �), so r | �. Since � is prime, it
follows that either r = 1, so ζ = 1, or else r = �. This proves that (c) and (d)
are equivalent.

We next verify that (a) implies (d). So we are given that P and Q are a
basis for E[�]. In particular, P �= O, so the nondegeneracy of the Weil pairing
tells us that there is a point R ∈ E[�] with e�(P,R) �= 1. Since P and Q are a
basis for E[�], we can write R as a linear combination of P and Q, say

R = uP + vQ.

Then the bilinearity and alternating properties of the Weil pairing yield

1 �= e�(P,R) = e�(P, uP + vQ) = e�(P, P )
ue�(P,Q)v = e�(P,Q)v.

Hence e�(P,Q) �= 1, which shows that (d) is true.
Finally, we show that (d) implies (b) by assuming that (b) is false and

deducing that (d) is false. The assumption that (b) is false means that ei-
ther P = O or Q = uP for some u ∈ Z/�Z. But if P = O, then e�(P,Q) =
e�(O, Q) = 1 by bilinearity, while if Q = uP , then

e�(P,Q) = e�(P, uP ) = e�(P, P )
u = 1u = 1

by the alternating property of e�. Thus in both cases we find that e�(P,Q) = 1,
so (d) is false.
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Definition. Let E be an elliptic curve, let P ∈ E[�], and let φ be an �-
distortion map for P . The modified Weil pairing ê� on E[�] (relative to φ) is
defined by

ê�(Q,Q
′) = e�

(
Q,φ(Q′)

)
.

In cryptographic applications, the modified Weil pairing is evaluated at
points that are multiples of P . The crucial property of the modified Weil
pairing is its nondegeneracy, as described in the next result.

Proposition 6.51. Let E be an elliptic curve, let P ∈ E[�], let φ be an �-
distortion map for P , and let ê� be the modified Weil pairing relative to φ.
Let Q and Q′ be multiples of P . Then

ê�(Q,Q
′) = 1 if and only if Q = O or Q′ = O.

Proof. We are given that Q and Q′ are multiples of P , so we can write them
as Q = sP and Q′ = tP . The definition of distortion map and the linearity of
the Weil pairing imply that

ê�(Q,Q
′) = ê�(sP, tP ) = e�

(
sP, φ(tP )

)
= e�

(
sP, tφ(P )

)
= e�

(
P, φ(P )

)st
.

The quantity e�
(
P, φ(P )

)
is a primitive �th root of unity, so

ê�(Q,Q
′) = 1 ⇐⇒ � | st

⇐⇒ � | s or � | t
⇐⇒ Q = O or Q′ = O.

6.9.3 A Distortion Map on y2 = x3 + x

In order to use the modified Weil pairing for cryptographic purposes, we need
to give at least one example of an elliptic curve with a distortion map. In this
section we give such an example for the elliptic curve y2 = x3 + x over the
field Fp with p ≡ 3 (mod 4). (See Exercise 6.43 for another example.) We start
by describing the map φ.

Proposition 6.52. Let E be the elliptic curve

E : y2 = x3 + x

over a field K and suppose that K has an element α ∈ K satisfying α2 = −1.
Define a map φ by

φ(x, y) = (−x, αy) and φ(O) = O.

(a) Let P ∈ E(K). Then φ(P ) ∈ E(K), so φ is a map from E(K) to itself.
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(b) The map φ respects the addition law on E,13

φ(P1 + P2) = φ(P1) + φ(P2) for all P1, P2 ∈ E(K).

In particular, φ(nP ) = nφ(P ) for all P ∈ E(K) and all n ≥ 1.

Proof. (a) Let P = (x, y) ∈ E(K). Then

(αy)2 = −y2 = −(x3 + x) = (−x)3 + (−x),

so φ(P ) = (−x, αy) ∈ E(K).
(b) Suppose that P1 = (x1, y1) and P2 = (x2, y2) are distinct points. Then
using the elliptic curve addition algorithm (Theorem 6.6), we find that the
x-coordinate of φ(P1) + φ(P2) is

x
(
φ(P1) + φ(P2)

)
=

(
αy2 − αy1

(−x2)− (−x1)

)2

− (−x1)− (−x2)

= α2

(
y2 − y1
x2 − x1

)2

+ x1 + x2

= −
((

y2 − y1
x2 − x1

)2

− x1 − x2

)

= −x(P1 + P2).

Similarly, the y-coordinate of φ(P1) + φ(P2) is

y
(
φ(P1) + φ(P2)

)
=

(
αy2 − αy1

(−x2)− (−x1)

)
(
−x1 − x

(
φ(P1) + φ(P2)

))
− αy1

= −α
(
y2 − y1
x2 − x1

)
(
−x1 + x(P1 + P2)

)
− αy1

= α

((
y2 − y1
x2 − x1

)
(
x1 − x(P1 + P2)

)
+ y1

)

= αy(P1 + P2).

Hence

φ(P1) + φ(P2) =
(
−x(P1 + P2), αy(P1 + P2)

)
= φ(P1 + P2).

This handles the case that P1 �= P2. We leave the case P1 = P2 for the reader;
see Exercise 6.38.

We now have the tools needed to construct a distortion map on the
curve y2 = x3 + x over certain finite fields.

13In the language of abstract algebra, the map φ is a homomorphism of the group E(K)
to itself; see Exercise 2.13. In the language of algebraic geometry, a homomorphism from
an elliptic curve to itself is called an isogeny.
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Proposition 6.53. Fix the following quantities.
• A prime p satisfying p ≡ 3 (mod 4).

• The elliptic curve E : y2 = x3 + x.

• An element α ∈ Fp2 satisfying α2 = −1.
• The map φ(x, y) = (−x, αy).
• A prime � ≥ 3 such that there exists a nonzero point P ∈ E(Fp)[�].

Then φ is an �-distortion map for P , i.e., the quantity

ê�(P, P ) = e�(P, φ(P ))

is a primitive �th root of unity.

Proof. We first note that Fp does not contain an element satisfying α2 = −1.
This is part of quadratic reciprocity (Theorem 3.62), but it is also easy to
prove directly from the fact that F

∗
p is a group of order p − 1, so it cannot

have any elements of order 4, since p ≡ 3 (mod 4).
However, the field Fp2 of order p2 does contain a square root of−1, since if g

is a primitive root for F∗
p2 (see Theorem 2.62), then α = g(p

2−1)/4 satisfies α4 =

1 and α2 �= 1, so α2 = −1.
Since P �= O, it is clear that φ(P ) �= O. Since P is a point of order �,

Proposition 6.52(b) says that

�φ(P ) = φ(�P ) = φ(O) = O,

so φ(P ) is a point of order �. We are going to prove that φ(P ) is not a multiple
of P , and then Proposition 6.50 tells us that e�(P, φ(P )) is a primitive �th
root of unity.

Suppose to the contrary that φ(P ) is a multiple of P . We write P =
(x, y) ∈ E(Fp). The coordinates of P are in Fp, so the coordinates of any
multiple of P are also in Fp. Thus the coordinates of φ(P ) = (−x, αy) would
be in Fp. But α /∈ Fp, since Fp does not contain a square root of −1, so we
must have y = 0. Then P = (x, 0) is a point of order 2, which is not possible,
since P is a point of order � with � ≥ 3. Hence φ(P ) is not a multiple of P
and we are done.

Remark 6.54. We recall from Example 2.58 that if p ≡ 3 (mod 4), then the
field with p2 elements looks like

Fp2 = {a+ bi : a, b ∈ Fp},

where i satisfies i2 = −1. This makes it quite easy to work with the field Fp2

in the context of Proposition 6.53.

Example 6.55. We take E : y2 = x3 + x and the prime p = 547. Then

#E(F547) = 548 = 22 · 137.
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By trial and error we find the point P0 = (2, 253) ∈ E(F547), and then

P = (67, 481) = 4P0 = 4(2, 253) ∈ E(F547)

is a point of order 137.
In order to find more points of order 137, we go to the larger field

F5472 = {a+ bi : a, b ∈ F547}, where i2 = −1.

The distortion map gives

φ(P ) = (−67, 481i) ∈ E(F5472).

In order to compute the Weil pairing of P and φ(P ), we randomly choose a
point

S = (256 + 110i, 441 + 15i) ∈ E(F5472)

and use Miller’s algorithm to compute

fP (φ(P ) + S)

fP (S)
=

376 + 138i

384 + 76i
= 510 + 96i,

fφ(P )(P − S)
fφ(P )(−S)

=
498 + 286i

393 + 120i
= 451 + 37i.

Then

ê137(P, P ) = e137(P, φ(P )) =
510 + 96i

451 + 37i
= 37 + 452i ∈ F5472 .

We check that (37 + 452i)137 = 1, so ê137(P, P ) is indeed a primitive 137th
root of unity in F5472 .

Example 6.56. Continuing with the curve E, prime p = 547, and point P =
(67, 481) from Example 6.55, we use the MOV method to solve the ECDLP
for the point

Q = (167, 405) ∈ E(F547).

The distortion map gives φ(Q) = (380, 405i), and we use the randomly chosen
point S = (402 + 397i, 271 + 205i) ∈ E(F5472) to compute

ê547(P,Q) = e547(P, φ(Q)) =
368+305i
348+66i
320+206i
175+351i

= 530 + 455i ∈ F5472 .

From the previous example we have ê137(P, P ) = 37 + 452i, so we need to
solve the DLP

(37 + 452i)n = 530 + 455i in F5472 .

The solution to this DLP is n = 83, and the MOV algorithm tells us that
n=83 is also a solution to the ECDLP. We check by verifying that Q = 83P .
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6.10 Applications of the Weil Pairing

In Sect. 6.9.1 we described a negative application of the Weil pairing to cryp-
tography, namely the MOV algorithm to solve the ECDLP for an elliptic curve
over Fp by reducing the problem to the DLP in Fq, where q is a certain power
of p. In this section we describe two positive applications of the Weil pairing to
cryptography. The first is a version of Diffie–Hellman key exchange involving
three people, and the second is an ID-based public key cryptosystem in which
the public keys can be selected by their owners.

6.10.1 Tripartite Diffie–Hellman Key Exchange

We have seen in Sect. 6.4.1 how two people can perform a Diffie–Hellman
key exchange using elliptic curves. Suppose that three people, Alice, Bob,
and Carl, want to perform a triple exchange of keys with only one pass of
information between each pair of people. This is possible using a clever pairing-
based construction due to Antoine Joux [61, 62].

The first step is for Alice, Bob, and Carl to agree on an elliptic curve E
and a point P ∈ E(Fq)[�] of prime order such that there is an �-distortion
map for P . Let ê� be the associated modified Weil pairing.

As in ordinary Diffie–Hellman, they each choose a secret integer, say Alice
chooses nA, Bob chooses nB , and Carl chooses nC . They compute the associ-
ated multiples

Alice computes this
︷ ︸︸ ︷
QA = nAP,

Bob computes this
︷ ︸︸ ︷
QB = nBP, and

Carl computes this
︷ ︸︸ ︷
QC = nCP.

They now publish the values of QA, QB , and QC .
In order to compute the shared value, Alice computes the modified pairing

of the public points QB and QC and then raises the result to the nA power,
where nA is her secret integer. Thus Alice computes

ê�(QB , QC)
nA .

The points QB and QC are certain multiples of P , and although Alice doesn’t
know what multiples, the bilinearity of the modified Weil pairing implies that
the value computed by Alice is equal to

ê�(QB , QC)
nA = ê�(nBP, nCP )

nA = ê�(P, P )
nBnCnA .

Bob and Carl use their secret integers and the public points to perform similar
computations.

Bob computes: ê�(QA, QC)
nB = ê�(nAP, nCP )

nB = ê�(P, P )
nAnCnB ,

Carl computes: ê�(QA, QB)
nC = ê�(nAP, nBP )

nC = ê�(P, P )
nAnBnC .

Alice, Bob, and Carl have now shared the secret value ê�(P, P )
nAnBnC . Tripar-

tite (three-person) Diffie–Hellman key exchange is summarized in Table 6.11.
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Public parameter creation
A trusted authority publishes a finite field Fq, an elliptic curve E/Fq,
a point P ∈ E(Fq) of prime order �, and an �-distortion map φ for P .

Private computations
Alice Bob Carl

Choose secret nA. Choose secret nB . Choose secret nC .
Compute QA = nAP . Compute QB = nBP . Compute QC = nCP .

Publication of values
Alice, Bob, and Carl publish their points QA, QB , and QC

Further private computations
Alice Bob Carl

Compute ê�(QB , QC)
nA . Compute ê�(QA, QC)

nB . Compute ê�(QA, QB)
nC .

The shared secret value is ê�(P, P )
nAnBnC .

Table 6.11: Tripartite Diffie–Hellman key exchange using elliptic curves

If Eve can solve the ECDLP, then clearly she can break tripartite Diffie–
Hellman key exchange, since she will be able to recover the secret inte-
gers nA, nB , and nC . (Recovering any one of them would suffice.) But the
security of tripartite DH does not rely solely on the difficulty of the ECDLP.
Eve can use Alice’s public point QA and the public point P to compute both

ê�(P, P ) and ê�(QA, P ) = ê�(nAP, P ) = ê�(P, P )
nA .

Thus Eve can recover nA if she can solve the equation an = b in Fq, where
she knows the values of a = ê�(P, P ) and b = ê�(QA, P ). In other words, the
security of tripartite Diffie–Hellman also rests on the difficulty of solving the
classical discrete logarithm problem for a subgroup of F∗

q of order �. (See also
Exercise 6.48.)

Since there are subexponential algorithms to solve the DLP in Fq (see
Sect. 3.8), using tripartite Diffie–Hellman securely requires a larger field than
does two-person elliptic curve Diffie–Hellman. This is a drawback, to be sure,
but since there are no other methods known to do tripartite Diffie–Hellman,
one accepts half a loaf in preference to going hungry.

Example 6.57. We illustrate tripartite Diffie–Hellman with a numerical exam-
ple using the curve

E : y2 = x3 + x over the field F1303.

This curve has #E(F1303) = 1304 = 23·163 points. The point P = (334, 920) ∈
E(F1303) has order 163. Alice, Bob, and Carl choose the secret values

nA = 71, nB = 3, nC = 126.
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They use their secret values to compute and publish:

Alice publishes the point QA = nAP = (1279, 1171),

Bob publishes the point QB = nBP = (872, 515),

Carl publishes the point QC = nCP = (196, 815).

Finally, Alice, Bob, and Carl use their own secret integers and the public
points to compute:

Alice computes ê163(QB , QC)
71 = (172 + 256i)71 = 768 + 662i,

Bob computes ê163(QA, QC)
3 = (1227 + 206i)3 = 768 + 662i,

Carl computes ê163(QA, QB)
126 = (282 + 173i)126 = 768 + 662i.

Their shared secret value is 768 + 662i.

6.10.2 ID-Based Public Key Cryptosystems

The goal of ID-based cryptography is very simple. One would like a public
key cryptosystem in which the user’s public key can be chosen by the user.
For example, Alice might use her email address alice@liveshere.com as her
identity-based public key, and then anyone who knows how to send her email
automatically knows her public key. Of course, this idea is too simplistic; Alice
must have some secret information that is used for decryption, and somehow
that secret information must be used during the encryption process.

Here is a more sophisticated version of the same idea. We assume that
there is a trusted authority Tom who is available to perform computations
and distribute information. Tom publishes a master public key TomPub and
keeps secret an associated private key TomPri. When Bob wants to send Alice
a message, he uses the master public key TomPub and Alice’s ID-based public
key AlicePub (which, recall, could simply be her email address) in some sort
of cryptographic algorithm to encrypt his message.

In the meantime, Alice tells Tom that she wants to use AlicePub as her
ID-based public key. Tom uses the master private key TomPri and Alice’s ID-
based public key AlicePub to create a private key AlicePri for Alice. Alice then
uses AlicePri to decrypt and read Bob’s message.

The principle of ID-based cryptography is clear, but it is not easy to see
how one might create a practical and secure ID-based public key cryptosystem.

Remark 6.58. The trusted authority Tom needs to keep track of which public
keys he has assigned, since otherwise Eve could send Alice’s public key to
Tom and ask him to create and send her the associated private key, which
would be the same as Alice’s private key. But there is another threat that
must be countered. Eve is allowed to send Tom a large number of public
keys of her choice (other than ones that have already been assigned to other
people) and ask Tom to create the associated private keys. It is essential that
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knowledge of these additional private keys not allow Eve to recover Tom’s
master private key TomPri, since otherwise Eve would be able to reconstitute
everyone’s private keys! Further, Eve’s possession of a large number of public–
private key pairs should not allow her to create any additional public–private
key pairs.

The idea of ID-based cryptography was initially described by Shamir
in 1984 [125], and a practical ID-based system was devised by Boneh and
Franklin in 2001 [20, 21]. This system, which we now describe, uses pairings
on elliptic curves.

The first step is for Tom, the trusted authority, to select a finite field Fq,
an elliptic curve E, and a point P ∈ E(Fq)[�] of prime order such that there
is an �-distortion map for P . Let ê� be the modified Weil pairing relative to
the map. Tom also needs to publish two hash functions H1 and H2. (A hash
function is a function that is easy to compute, but hard to invert. See Sect. 8.1
for a discussion of hash functions.) The first one assigns a point in E(Fq)[�]
to each possible user ID,14

H1 : {User IDs} −→ E(Fq)[�].

The second hash function assigns to each element of F∗
q a binary string of

length B,
H2 : F∗

q −→ {bit strings of length B},
where the set of plaintexts M is the set of all binary strings of length B.

Tom creates his master key by choosing a secret (nonzero) integer s mod-
ulo � and computing the point

PTom = sP ∈ E(Fq)[�].

Tom’s master private key is the integer s and his master public key is the
point PTom.

Now suppose that Bob wants to send Alice a message M ∈ M using her
ID-based public key AlicePub. He uses her public key and the hash function H1

to compute the point

PAlice = H1(Alice
Pub) ∈ E(Fq)[�].

He also chooses a random number (a random element) 1 < r < q and computes
the two quantities

C1 = rP and C2 =M xorH2

(
ê�(P

Alice, PTom)r
)
. (6.18)

Here, to avoid confusion with addition of points on the elliptic curve, we
write xor for the XOR operation on bit strings; see (1.12) on page 44. The
ciphertext is the pair C = (C1, C2).

14There are various ways define a hash function H1 with values in E(Fq)[�]. For example,
take a given User ID I, convert it to a binary string β, apply a hash function to β that
takes values uniformly in {1, 2, . . . , �− 1} to get an integer m, and set H1(I) = mP .
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Public parameter creation
A trusted authority Tom publishes a finite field Fq, an elliptic
curve E/Fq, a point P ∈ E(Fq)[�] of prime order �, and an �-distortion
map φ for P . Tom also chooses hash functions

H1 : {IDs} → E(Fq)[�] and H2 : F∗
q → {0, 1}B .

Master key creation
Tom chooses a secret integer s modulo �.
Tom publishes the point PTom = sP ∈ E(Fq)[�].

Private key extraction

Alice chooses an ID-based public key AlicePub.

Tom computes the point PAlice = H1(Alice
Pub) ∈ E(Fq)[�].

Tom sends the point QAlice = sPAlice ∈ E(Fq)[�] to Alice.

Encryption
Bob chooses a plaintext M and a random number r modulo q − 1.

Bob computes the point PAlice = H1(Alice
Pub) ∈ E(Fq)[�].

Bob’s ciphertext is the pair
(C1, C2) =

(
rP,M xorH2

(
ê�(P

Alice, PTom)r
))
.

Decryption
Alice decrypts the ciphertext (C1, C2) by computing

C2 xorH2

(
ê�(Q

Alice, C1)
)
.

Table 6.12: Identity-based encryption using pairings on elliptic curves

In order to decrypt Bob’s message, Alice needs to request that Tom give
her the private key AlicePri associated to her ID-based public key AlicePub.
She can do this ahead of time, or she can wait until she has received Bob’s
message. In any case, the private key that Tom gives to Alice is the point

QAlice = sPAlice = sH1(Alice
Pub) ∈ E(Fq)[�].

In other words, Tom feeds Alice’s public key to the hash function H1 to get a
point in E(Fq)[�], and then he multiplies that point by his secret key s.

Alice is finally ready to decrypt Bob’s message (C1, C2). She first com-
putes ê�(Q

Alice, C1), which, by a chain of calculations using bilinearity, is
equal to

ê�(Q
Alice, C1) = ê�(sP

Alice, rP ) = ê�(P
Alice, P )rs

= ê�(P
Alice, sP )r = ê�(P

Alice, PTom)r.

Notice that this is exactly the quantity that Bob used in (6.18) to create
the second part of his ciphertext. Hence Alice can recover the plaintext by
computing

C2 xorH2

(
ê�(Q

Alice, C1)
)
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=
(
M xorH2

(
ê�(P

Alice, PTom)r
))

xorH2

(
ê�(P

Alice, PTom)r
)
=M.

The last step follows becauseM xorN xorN =M for any bit stringsM and N .

The full process of ID-based encryption is summarized in Table 6.12.

Exercises

Section 6.1. Elliptic Curves

6.1. Let E be the elliptic curve E : Y 2 = X3 − 2X + 4 and let P = (0, 2) and
Q = (3,−5). (You should check that P and Q are on the curve E.)
(a) Compute P ⊕Q.

(b) Compute P ⊕ P and Q⊕Q.

(c) Compute P ⊕ P ⊕ P and Q⊕Q⊕Q.

6.2. Check that the points P = (−1, 4) and Q = (2, 5) are points on the elliptic
curve E : Y 2 = X3 + 17.
(a) Compute the points P ⊕Q and P &Q.

(b) Compute the points 2P and 2Q.

(Bonus. How many points with integer coordinates can you find on E?)

6.3. Suppose that the cubic polynomial X3 +AX +B factors as

X3 +AX +B = (X − e1)(X − e2)(X − e3).

Prove that 4A3 + 27B2 = 0 if and only if two (or more) of e1, e2, and e3 are the
same. (Hint. Multiply out the right-hand side and compare coefficients to relate A
and B to e1, e2, and e3.)

6.4. Sketch each of the following curves, as was done in Fig. 6.1 on page 300.
(a) E : Y 2 = X3 − 7X + 3.

(b) E : Y 2 = X3 − 7X + 9.

(c) E : Y 2 = X3 − 7X − 12.

(d) E : Y 2 = X3 − 3X + 2.

(e) E : Y 2 = X3.

Notice that the curves in (d) and (e) have ΔE = 0, so they are not elliptic curves.
How do their pictures differ from the pictures in (a), (b), and (c)? Each of the
curves (d) and (e) has one point that is somewhat unusual. These unusual points
are called singular points.

Section 6.2. Elliptic Curves over Finite Fields

6.5. For each of the following elliptic curves E and finite fields Fp, make a list of
the set of points E(Fp).
(a) E : Y 2 = X3 + 3X + 2 over F7.

(b) E : Y 2 = X3 + 2X + 7 over F11.
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(c) E : Y 2 = X3 + 4X + 5 over F11.

(d) E : Y 2 = X3 + 9X + 5 over F11.

(e) E : Y 2 = X3 + 9X + 5 over F13.

6.6. Make an addition table for E over Fp, as we did in Table 6.1.
(a) E : Y 2 = X3 + X + 2 over F5.

(b) E : Y 2 = X3 + 2X + 3 over F7.

(c) E : Y 2 = X3 + 2X + 5 over F11.
You may want to write a computer program for (c), since E(F11) has a lot of points!

6.7. Let E be the elliptic curve

E : y2 = x3 + x+ 1.

Compute the number of points in the group E(Fp) for each of the following primes:
(a) p = 3. (b) p = 5. (c) p = 7. (d) p = 11.

In each case, also compute the trace of Frobenius

tp = p+ 1−#E(Fp)

and verify that |tp| is smaller than 2
√
p.

Section 6.3. The Elliptic Curve Discrete Logarithm Problem

6.8. Let E be the elliptic curve

E : y2 = x3 + x+ 1

and let P = (4, 2) and Q = (0, 1) be points on E modulo 5. Solve the elliptic curve
discrete logarithm problem for P and Q, that is, find a positive integer n such that
Q = nP .

6.9. Let E be an elliptic curve over Fp and let P and Q be points in E(Fp). Assume
that Q is a multiple of P and let n0 > 0 be the smallest solution to Q = nP . Also
let s > 0 be the smallest solution to sP = O. Prove that every solution to Q = nP
looks like n0 + is for some i ∈ Z. (Hint. Write n as n = is + r for some 0 ≤ r < s
and determine the value of r.)

6.10. Let {P1, P2} be a basis for E[m]. The Basis Problem for {P1, P2} is to express
an arbitrary point P ∈ E[m] as a linear combination of the basis vectors, i.e., to
find n1 and n2 so that P = n1P1 + n2P2. Prove that an algorithm that solves the
basis problem for {P1, P2} can be used to solve the ECDLP for points in E[m].

6.11. Use the double-and-add algorithm (Table 6.3) to compute nP in E(Fp) for
each of the following curves and points, as we did in Fig. 6.4.

(a) E : Y 2 = X3 + 23X + 13, p = 83, P = (24, 14), n = 19;

(b) E : Y 2 = X3 + 143X + 367, p = 613, P = (195, 9), n = 23;

(c) E : Y 2 = X3 + 1828X + 1675, p = 1999, P = (1756, 348), n = 11;

(d) E : Y 2 = X3 + 1541X + 1335, p = 3221, P = (2898, 439), n = 3211.
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6.12. Convert the proof of Proposition 6.18 into an algorithm and use it to write
each of the following numbers n as a sum of positive and negative powers of 2 with
at most 1

2
�log n� + 1 nonzero terms. Compare the number of nonzero terms in the

binary expansion of n with the number of nonzero terms in the ternary expansion
of n.
(a) 349. (b) 9337. (c) 38728. (d) 8379483273489.

6.13. In Sect. 5.5 we gave an abstract description of Pollard’s ρ method, and in
Sect. 5.5.2 we gave an explicit version to solve the discrete logarithm problem in Fp.
Adapt this material to create a Pollard ρ algorithm to solve the ECDLP.

Section 6.4. Elliptic Curve Cryptography

6.14. Alice and Bob agree to use elliptic Diffie–Hellman key exchange with the
prime, elliptic curve, and point

p = 2671, E : Y 2 = X3 + 171X + 853, P = (1980, 431) ∈ E(F2671).

(a) Alice sends Bob the point QA = (2110, 543). Bob decides to use the secret
multiplier nB = 1943. What point should Bob send to Alice?

(b) What is their secret shared value?

(c) How difficult is it for Eve to figure out Alice’s secret multiplier nA? If you know
how to program, use a computer to find nA.

(d) Alice and Bob decide to exchange a new piece of secret information using the
same prime, curve, and point. This time Alice sends Bob only the x-coordinate
xA = 2 of her point QA. Bob decides to use the secret multiplier nB = 875.
What single number modulo p should Bob send to Alice, and what is their
secret shared value?

6.15. Exercise 2.10 on page 109 describes a multistep public key cryptosystem based
on the discrete logarithm problem for Fp. Describe a version of this cryptosystem
that uses the elliptic curve discrete logarithm problem. (You may assume that Alice
and Bob know the order of the point P in the group E(Fp), i.e., they know the
smallest integer N ≥ 1 with the property that NP = O.)

6.16. A shortcoming of using an elliptic curve E(Fp) for cryptography is the fact
that it takes two coordinates to specify a point in E(Fp). However, as discussed
briefly at the end of Sect. 6.4.2, the second coordinate actually conveys very little
additional information.
(a) Suppose that Bob wants to send Alice the value of a point R ∈ E(Fp). Explain

why it suffices for Bob to send Alice the x-coordinate of R = (xR, yR) together
with the single bit

βR =

{
0 if 0 ≤ yR < 1

2
p,

1 if 1
2
p < yR < p.

(You may assume that Alice is able to efficiently compute square roots mod-
ulo p. This is certainly true, for example, if p ≡ 3 (mod 4); see Proposi-
tion 2.26.)

(b) Alice and Bob decide to use the prime p = 1123 and the elliptic curve

E : Y 2 = X3 + 54X + 87.
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Bob sends Alice the x-coordinate x = 278 and the bit β = 0. What point is Bob
trying to convey to Alice? What about if instead Bob had sent β = 1?

6.17. The Menezes–Vanstone variant of the elliptic Elgamal public key cryptosystem
improves message expansion while avoiding the difficulty of directly attaching plain-
texts to points in E(Fp). The MV-Elgamal cryptosystem is described in Table 6.13
on page 365.
(a) The last line of Table 6.13 claims that m′

1 = m1 and m′
2 = m2. Prove that this

is true, so the decryption process does work.

(b) What is the message expansion of MV-Elgamal?

(c) Alice and Bob agree to use

p = 1201, E : Y 2 = X3 + 19X + 17, P = (278, 285) ∈ E(Fp),

for MV-Elgamal. Alice’s secret value is nA = 595. What is her public key?
Bob sends Alice the encrypted message ((1147, 640), 279, 1189). What is the
plaintext?

6.18. This exercise continues the discussion of the MV-Elgamal cryptosystem de-
scribed in Table 6.13 on page 365.
(a) Eve knows the elliptic curve E and the ciphertext values c1 and c2. Show how

Eve can use this knowledge to write down a polynomial equation (modulo p)
that relates the two pieces m1 and m2 of the plaintext. In particular, if Eve
can figure out one piece of the plaintext, then she can recover the other piece
by finding the roots of a certain polynomial modulo p.

(b) Alice and Bob exchange a message using MV-Elgamal with the prime, elliptic
curve, and point in Exercise 6.17(c). Eve intercepts the ciphertext

((269, 339), 814, 1050),

and through other sources she discovers that the first part of the plaintext
is m1 = 1050. Use your algorithm in (a) to recover the second part of the
plaintext.

6.19. Section 6.4.3 describes ECDSA, an elliptic analogue of DSA. Formulate an
elliptic analogue of the simpler Elgamal digital signature algorithm described in
Table 4.2 in Sect. 4.3.

6.20. This exercise asks you to compute some numerical instances of the elliptic
curve digital signature algorithm described in Table 6.7 for the public parameters

E : y2 = x3 + 231x+ 473, p = 17389, q = 1321, G = (11259, 11278) ∈ E(Fp).

You should begin by verifying that G is a point of order q in E(Fp).
(a) Samantha’s private signing key is s = 542. What is her public verification

key? What is her digital signature on the document d = 644 using the random
element e = 847?

(b) Tabitha’s public verification key is V = (11017, 14637). Is (s1, s2) = (907, 296)
a valid signature on the document d = 993?

(c) Umberto’s public verification key is V = (14594, 308). Use any method that
you want to find Umberto’s private signing key, and then use the private key to
forge his signature on the document d = 516 using the random element e = 365.
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Public Parameter Creation
A trusted party chooses and publishes a (large) prime p,
an elliptic curve E over Fp, and a point P in E(Fp).

Alice Bob

Key Creation
Chooses a secret multiplier nA.
Computes QA = nAP .
Publishes the public key QA.

Encryption
Chooses plaintext values m1 and m2

modulo p.
Chooses a random number k.
Computes R = kP .
Computes S = kQA and writes it

as S = (xS , yS).
Sets c1 ≡ xSm1 (mod p) and

c2 ≡ ySm2 (mod p).
Sends ciphertext (R, c1, c2) to Alice.

Decryption
Computes T = nAR and writes

it as T = (xT , yT ).
Sets m′

1 ≡ x−1
T c1 (mod p) and

m′
2 ≡ y−1

T c2 (mod p).
Then m′

1 = m1 and m′
2 = m2.

Table 6.13: Menezes–Vanstone variant of Elgamal (Exercises 6.17, 6.18)

Section 6.6. Lenstra’s Elliptic Curve Factorization Algorithm

6.21. Use the elliptic curve factorization algorithm to factor each of the numbers N
using the given elliptic curve E and point P .

(a) N = 589, E : Y 2 = X3 + 4X + 9, P = (2, 5).

(b) N = 26167, E : Y 2 = X3 + 4X + 128, P = (2, 12).

(c) N = 1386493, E : Y 2 = X3 + 3X − 3, P = (1, 1).

(d) N = 28102844557, E : Y 2 = X3 + 18X − 453, P = (7, 4).

Section 6.7. Elliptic Curves over F2 and over F2k

6.22. Let E be an elliptic curve given by a generalized Weierstrass equation

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6.

Let P1 = (x1, y1) and P2 = (x2, y2) be points on E. Prove that the following
algorithm computes their sum P3 = P1 + P2.
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First, if x1 = x2 and y1 + y2 + a1x2 + a3 = 0, then P1 + P2 = O.

Otherwise define quantities λ and ν as follows:

[If x1 �= x2] λ =
y2 − y1
x2 − x1

, ν =
y1x2 − y2x1
x2 − x1

,

[If x1 = x2] λ =
3x21 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3
, ν =

−x31 + a4x1 + 2a6 − a3y1
2y1 + a1x1 + a3

.

Then

P3 = P1 + P2 = (λ2 + a1λ− a2 − x1 − x2, −(λ+ a1)x3 − ν − a3).

6.23. Let F8 = F2[T ]/(T
3 + T +1) be as in Example 6.28, and let E be the elliptic

curve

E : Y 2 +XY + Y = X3 + TX + (T + 1).

(a) Calculate the discriminant of E.

(b) Verify that the points

P = (1 + T + T 2, 1 + T ), Q = (T 2, T ), R = (1 + T + T 2, 1 + T 2),

are in E(F8) and compute the values of P +Q and 2R.

(c) Find all of the points in E(F8).

(d) Find a point P ∈ E(F8) such that every point in E(F8) is a multiple of P .

6.24. Let τ(α) = αp be the Frobenius map on Fpk .
(a) Prove that

τ(α+β) = τ(α)+ τ(β) and τ(α ·β) = τ(α) · τ(β) for all α, β ∈ Fpk .

(Hint. For the addition formula, use the binomial theorem (Theorem 5.10).)

(b) Prove that τ(α) = α for all α ∈ Fp.

(c) Let E be an elliptic curve over Fp and let τ(x, y) = (xp, yp) be the Frobenius
map from E(Fpk ) to itself. Prove that

τ(P +Q) = τ(P ) + τ(Q) for all P ∈ E(Fpk ).

6.25. Let E0 be the Koblitz curve Y 2 + XY = X3 + 1 over the field F2, and for
every k ≥ 1, let

tk = 2k + 1−#E(F2k ).
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(a) Prove that t1 = −1 and t2 = −3.

(b) Prove that tk satisfies the recursion

tk = t1tk−1 − 2tk−2 for all k ≥ 3.

(You may use the formula (6.12) that we stated, but did not prove, on page 334.)

(c) Use the recursion in (b) to compute #E(F16).

(d) Program a computer to calculate the recursion and use it to compute the values
of #E(F211), #E(F231), and #E(F2101).

6.26. Let E be an elliptic curve over Fp, and for k ≥ 1, let

tk = pk + 1−#E(Fpk ).

(a) Prove that

tk = t1tk−1 − ptk−2 for all k ≥ 2,

where by convention we set t0 = 2.

(b) Use (a) to express t2, t3, and t4 in terms of p and t1.

(Hint. Use Theorem 6.29(a). This generalizes Exercise 6.25.)

6.27. Let τ satisfy τ2 = −2−τ . Prove that the following algorithm gives coefficients
vi ∈ {−1, 0, 1} such that the positive integer n is equal to

n = v0 + v1τ + v2τ
2 + · · ·+ v�τ

�. (6.19)

Further prove that � ≤ 2'log(n)(+ 1.

[1] Set n0 = n and n1 = 0 and i = 0
[2] Loop while n0 �= 0 or n1 �= 0
[3] If n0 is odd
[4] Set vi = 2−

(
(n0 − 2n1) mod 4

)

[5] Set n0 = n0 − vi
[6] Else
[7] Set vi = 0
[8] End If
[9] Set i = i+ 1
[10] Set (n0, n1) =

(
n1 − 1

2
n0,− 1

2
n0

)

[11] End Loop

6.28. Implement the algorithm in Exercise 6.27 and use it to compute the τ -
expansion (6.19) of the following integers. What is the highest power of τ that
appears and how many nonzero terms are there?



368 Exercises

(a) n = 931 (b) n = 32755 (c) n = 82793729188

Section 6.8. Bilinear Pairings on Elliptic Curves

6.29. Let R(x) and S(x) be rational functions. Prove that the divisor of a product
is the sum of the divisors, i.e.,

div
(
R(x)S(x)

)
= div

(
R(x)

)
+ div

(
S(x)

)
.

6.30. This exercise sketches a proof that if P = (α, 0) ∈ E, then div(X − α) =
2[P ]− 2[O].
(a) Prove that

div(X − α) = m[P ]−m[O]

for some integer m ≥ 1.

(b) Prove that the Weierstrass equation of E can be written in the form

E : Y 2 = (X − α)(X2 + aX + b),

and that the polynomials of X − α and X2 + aX + b have no common roots.

(c) Prove that

div(X − α) = 2n[P ]− 2n[O]

for some integer n ≥ 1. (Hint. Take the divisor of both sides of Y 2 = (X − α)
(X2 + aX + b) and use (b).)

(d) Prove that

div(X − α) = 2[P ]− 2[O].

(Warning. This part requires some knowledge of discrete valuation rings that
is not developed in this book.)

6.31. Prove that the Weil pairing satisfies

em(P,Q) = em(Q,P )−1 for all P,Q,∈ E[m].

(Hint. Use the fact that em(P +Q,P +Q) = 1 and expand using bilinearity.)

6.32. This exercise asks you to verify that the Weil pairing em is well-defined.
(a) Prove that the value of em(P,Q) is independent of the choice of rational func-

tions fP and fQ.

(b) Prove that the value of em(P,Q) is independent of the auxiliary point S. (Hint.
Fix the points P and Q and consider the quantity

F (S) =
fP (Q+ S)

fP (S)

/
fQ(P − S)

fQ(−S)

as a function of S. Compute the divisor of F and use the fact that every
nonconstant function on E has at least one zero.)

You might also try to prove that the Weil pairing is bilinear, but do not be discour-
aged if you do not succeed, since the standard proofs use more tools than we have
developed in the text.
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6.33. Choose a basis {P1, P2} for E[m] and write each P ∈ E[m] as a linear com-
bination P = aPP1 + bPP2. (See Remark 6.39.) Use the basic properties of the Weil
pairing described in Theorem 6.38 to prove that

em(P,Q) = em(P1, P2)
det

(
aP aQ

bP bQ

)

= em(P1, P2)
aP bQ−aQbP .

6.34. Complete the proof of Proposition 6.52 by proving that φ(2P ) = 2φ(P ).

6.35. For each of the following elliptic curves E, finite fields Fp, points P and Q of
order m, and auxiliary points S, use Miller’s algorithm to compute the Weil pairing
em(P,Q). (See Example 6.43.)

E p P Q m S

(a) y2 = x3 + 23 1051 (109 203) (240 203) 5 (1,554)

(b) y2 = x3 − 35x− 9 883 (5, 66) (103, 602) 7 (1,197)

(c) y2 = x3 + 37x 1009 (8, 703) (49, 20) 7 (0,0)

(d) y2 = x3 + 37x 1009 (417, 952) (561, 153) 7 (0,0)

Notice that (c) and (d) use the same elliptic curve. Letting P ′ and Q′ denote the
points in (d), verify that

P ′ = 2P, Q′ = 3Q, and e7(P
′, Q′) = e7(P,Q)6.

6.36. Let E over Fq and � be as described in Theorem 6.44. Prove that the modified
Tate pairing is symmetric, in the sense that

τ̂(P,Q) = τ̂(Q,P ) for all P,Q ∈ E(Fq)[�].

6.37. Let E be an elliptic curve over Fq and let P,Q ∈ E(Fq)[�]. Prove that the
Weil pairing and the Tate pairing are related by the formula

e�(P,Q) =
τ(P,Q)

τ(Q,P )
,

provided that the Tate pairings on the right-hand side are computed consistently.
Thus the Weil pairing requires approximately twice as much work to compute as
does the Tate pairing.

Section 6.9. The Weil Pairing over Fields of Prime Power Order

6.38. Prove Proposition 6.52(b) in the case P1 = P2.

6.39. Let E be an elliptic curve over Fp and let � be a prime. Suppose that E(Fp)
contains a point of order � and that � >

√
p+ 1. Prove that E(Fp)[�] ∼= Z/�Z.

6.40. Let E be an elliptic curve over a finite field Fq and let � be a prime. Suppose
that we are given four points P, aP, bP, cP ∈ E(Fq)[�]. The (elliptic) decision Diffie–
Hellman problem is to determine whether cP is equal to abP . Of course, if we could
solve the Diffie–Hellman problem itself, then we could compute abP and compare it
with cP , but the Diffie–Hellman problem is often difficult to solve.

Suppose that there exists a distortion map φ for E[�]. Show how to use the
modified Weil pairing to solve the elliptic decision Diffie–Hellman problem without
actually having to compute abP .
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6.41. Let E be the elliptic curve E : y2 = x3 + x and let φ(x, y) = (−x, αy) be
the map described in Proposition 6.52. Prove that φ(φ(P )) = −P for all P ∈ E.
(Intuitively, φ behaves like multiplication by

√
−1 when it is applied to points of E.)

6.42. Let p ≡ 3 (mod 4), let E : y2 = x3 + x, let P ∈ E(Fp)[�], and let φ(x, y) =
(−x, αy) be the �-distortion map for P described in Proposition 6.53. Suppose further
that � ≡ 3 (mod 4). Prove that φ is an �-distortion map for every point in E[�]. In
other words, if Q ∈ E is any point of order �, prove that e�(Q,φ(Q)) is a primitive �th
root of unity.

6.43. Let E be the elliptic curve

E : y2 = x3 + 1

over a field K, and suppose that K contains an element β �= 1 satisfying β3 = 1.
(We say that β is a primitive cube root of unity.) Define a map φ by

φ(x, y) = (βx, y) and φ(O) = O.

(a) Let P ∈ E(K). Prove that φ(P ) ∈ E(K).

(b) Prove that φ respects the addition law on E, i.e., φ(P1 + P2) = φ(P1) + φ(P2)
for all P1, P2 ∈ E(K).

6.44. Let E : y2 = x3 + 1 be the elliptic curve in Exercise 6.43.
(a) Let p ≥ 3 be a prime with p ≡ 2 (mod 3). Prove that Fp does not contain a

primitive cube root of unity, but that Fp2 does contain a primitive cube root
of unity.

(b) Let β ∈ Fp2 be a primitive cube root of unity and define a map φ(x, y) = (βx, y)
as in Exercise 6.43. Suppose that E(Fp) contains a point P of prime order � ≥ 5.
Prove that φ is an �-distortion map for P .

6.45. Let E be the elliptic curve E : y2 = x3 +x over the field F691. The point P =
(301, 14) ∈ E(F691) has order 173. Use the distortion map on E from Exercise 6.42
to compute ê173(P, P ) (cf. Example 6.55). Verify that the value is a primitive 173rd
root of unity.

6.46. Continuing with the curve E, prime p = 691, and point P = (301, 14) from
Exercise 6.45, let

Q = (143, 27) ∈ E(F691).

Use the MOV method to solve the ECDLP for P and Q, i.e., compute ê173(P,Q) and
express it as the nth power of ê173(P, P ). Check your answer by verifying that nP
is equal to Q.

Section 6.10. Applications of the Weil Pairing

6.47. Alice, Bob, and Carl use tripartite Diffie–Hellman with the curve

E : y2 = x3 + x over the field F1723.

They use the point
P = (668, 995) of order 431.

(a) Alice chooses the secret value nA = 278. What is Alice’s public point QA?
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(b) Bob’s public point is QB = (1275, 1550) and Carl’s public point is QC =
(897, 1323). What is the value of ê431(QB , QC)?

(c) What is their shared value?

(d) Bob’s secret value is nB = 224. Verify that ê431(QA, QC)
nB is the same as the

value that you got in (c).

(e) Figure out Carl’s secret value nC . (Since P has order 431, you can do this on
a computer by trying all possible values.)

6.48. Show that Eve can break tripartite Diffie–Hellman key exchange as described
in Table 6.10.1 if she knows how to solve the Diffie–Hellman problem (page 69) for
the field Fq.

6.49. In this exercise we consider what is required to break the identity-based
encryption scheme described in Table 6.12 on page 360.
(a) Show that if Eve can solve the discrete logarithm problem in either E(Fq) or

in F
∗
q , then she can recover Tom’s secret key s, which means that she can do

anything that Tom can do, including decrypting everyone’s ciphtertexts.

(b) Suppose that Eve only knows how to solve the elliptic curve Diffie–Hellman
problem in E(Fq), as described on page 318. Show that she can decrypt all
ciphertexts.

(c) What if Eve only knows how to solve the Diffie–Hellman problem in F
∗
q . Can

she still decrypt all ciphertexts?



Chapter 7

Lattices and Cryptography

The security of all of the public key cryptosystems that we have previously
studied has been based, either directly or indirectly, on either the difficulty
of factoring large numbers or the difficulty of finding discrete logarithms in a
finite group. In this chapter we investigate a new type of hard problem arising
in the theory of lattices that can be used as the basis for a public key cryp-
tosystem. Lattice-based cryptosystems offer several potential advantages over
earlier systems, including faster encryption/decryption and so-called quantum
resistance. The latter means that at present there are no known quantum al-
gorithms to rapidly solve hard lattice problems; see Sect. 8.11. Further, we
will see that the theory of lattices has applications in cryptography beyond
simply providing a new source of hard problems.

Recall that a vector space V over the real numbers R is a set of vectors,
where two vectors can be added together and a vector can be multiplied by a
real number. A lattice is similar to a vector space, except that we are restricted
to multiplying the vectors in a lattice by integers. This seemingly minor re-
striction leads to many interesting and subtle questions. Since the subject of
lattices can appear somewhat abstruse and removed from the everyday re-
ality of cryptography, we begin this chapter with two motivating examples
in which lattices are not mentioned, but where they are lurking in the back-
ground, waiting to be used for cryptanalysis. We then review the theory of
vector spaces in Sect. 7.3 and formally introduce lattices in Sect. 7.4.

7.1 A Congruential Public Key Cryptosystem

In this section we describe a toy model of a real public key cryptosystem. This
version turns out to have an unexpected connection with lattices of dimen-
sion 2, and hence a fatal vulnerability, since the dimension is so low. However,
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it is instructive as an example of how lattices may appear in cryptanalysis
even when the underlying hard problem appears to have nothing to do with
lattices. Further, it provides a lowest-dimensional introduction to the NTRU
public key cryptosystem, which will be described in Sect. 7.10.

Alice begins by choosing a large positive integer q, which is a public
parameter, and two other secret positive integers f and g satisfying

f <
√
q/2,

√
q/4 < g <

√
q/2, and gcd(f, qg) = 1.

She then computes the quantity

h ≡ f−1g (mod q) with 0 < h < q.

Notice that f and g are small compared to q, since they are O(
√
q ), while

the quantity h will generally be O(q), which is considerably larger. Alice’s
private key is the pair of small integers f and g and her public key is the large
integer h.

In order to send a message, Bob chooses a plaintext m and a random
integer r (a random element) satisfying the inequalities

0 < m <
√
q/4 and 0 < r <

√
q/2.

He computes the ciphertext

e ≡ rh+m (mod q) with 0 < e < q

and sends it to Alice.
Alice decrypts the message by first computing

a ≡ fe (mod q) with 0 < a < q,

and then computing

b ≡ f−1a (mod g) with 0 < b < g. (7.1)

Note that f−1 in (7.1) is the inverse of f modulo g.
We now verify that b = m, which will show that Alice has recovered Bob’s

plaintext. We first observe that the quantity a satisfies

a ≡ fe ≡ f(rh+m) ≡ frf−1g + fm ≡ rg + fm (mod q).

The size restrictions on f, g, r,m imply that the integer rg + fm is small,

rg + fm <

√
q

2

√
q

2
+

√
q

2

√
q

4
< q.

Thus when Alice computes a ≡ fe (mod q) with 0 < a < q, she gets the exact
value
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Alice Bob

Key Creation
Choose a large integer modulus q.

Choose secret integers f and g with f <
√
q/2,√

q/4 < g <
√
q/2, and gcd(f, qg) = 1.

Compute h ≡ f−1g (mod q).
Publish the public key (q, h).

Encryption

Choose plaintext m with m <
√
q/4.

Use Alice’s public key (q, h)
to compute e ≡ rh+m (mod q).

Send ciphertext e to Alice.
Decryption

Compute a ≡ fe (mod q) with 0 < a < q.
Compute b ≡ f−1a (mod g) with 0 < b < g.
Then b is the plaintext m.

Table 7.1: A congruential public key cryptosystem

a = rg + fm. (7.2)

This is the key point: the formula (7.2) is an equality of integers and not
merely a congruence modulo q. Finally Alice computes

b ≡ f−1a ≡ f−1(rg + fm) ≡ f−1fm ≡ m (mod g) with 0 < b < g.

Since m <
√
q/4 < g, it follows that b = m. The congruential cryptosystem

is summarized in Table 7.1.

Example 7.1. Alice chooses

q = 122430513841, f = 231231, and g = 195698.

Here f ≈ 0.66
√
q and g ≈ 0.56

√
q are allowable values. Alice computes

f−1 ≡ 49194372303 (mod q) and h ≡ f−1g ≡ 39245579300 (mod q).

Alice’s public key is the pair (q, h) = (122430513841, 39245579300).
Bob decides to send Alice the plaintext m = 123456 using the random

value r = 101010. He uses Alice’s public key to compute the ciphertext

e ≡ rh+m ≡ 18357558717 (mod q),

which he sends to Alice.
In order to decrypt e, Alice first uses her secret value f to compute

a ≡ fe ≡ 48314309316 (mod q).
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(Note that a = 48314309316 < 122430513841 = q.) She then uses the value
f−1 ≡ 193495 (mod g) to compute

f−1a ≡ 193495 · 48314309316 ≡ 123456 (mod g),

and, as predicted by the theory, this is Bob’s plaintext m.

How might Eve attack this system? She might try doing a brute-force
search through all possible private keys or through all possible plaintexts, but
this takes O(q) operations. Let’s consider in more detail Eve’s task if she tries
to find the private key (f, g) from the known public key (q, h). It is not hard
to see that if Eve can find any pair of positive integers F and G satisfying

Fh ≡ G (mod q) and F = O(
√
q) and G = O(

√
q), (7.3)

then (F,G) is likely to serve as a decryption key. Rewriting the congru-
ence (7.3) as Fh = G + qR, we reformulate Eve’s task as that of finding
a pair of comparatively small integers (F,G) with the property that

F (1, h)
︸ ︷︷ ︸

−R (0, q)
︸ ︷︷ ︸

=
︷ ︸︸ ︷
(F,G) .

known vectors

unknown integers

unknown
small
vector

Thus Eve knows two vectors v1 = (1, h) and v2 = (0, q), each of which has
length O(q), and she wants to find a linear combination w = a1v1+a2v2 such
that w has length O(

√
q ), but keep in mind that the coefficients a1 and a2

are required to be integers. Thus Eve needs to find a short nonzero vector in
the set of vectors

L = {a1v1 + a2v2 : a1, a2 ∈ Z}.

This set L is an example of a two-dimensional lattice. Notice that it looks sort
of like a two-dimensional vector space with basis {v1,v2}, except that we are
allowed to take only integer linear combinations of v1 and v2.

Unfortunately for Bob and Alice, there is an extremely rapid method for
finding short vectors in two-dimensional lattices. This method, which is due
to Gauss, is described in Sect. 7.13.1 and used to break the congruential cryp-
tosystem in Sect. 7.14.1.
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7.2 Subset-Sum Problems and Knapsack
Cryptosystems

The first attempt to base a cryptosystem on an NP-complete problem1 was
made by Merkle and Hellman in the late 1970s [84]. They used a version of
the following mathematical problem, which generalizes the classical knapsack
problem.

The Subset-Sum Problem
Suppose that you are given a list of positive integers
(M1,M2, . . . ,Mn) and another integer S. Find a subset of
the elements in the list whose sum is S. (You may assume
that there is at least one such subset.)

Example 7.2. Let M = (2, 3, 4, 9, 14, 23) and S = 21. Then a bit of trial and
error yields the subset {3, 4, 14} whose sum is 21, and it is not hard to check
that this is the only subset that sums to 21. Similarly, if we take S = 29, then
we find that {2, 4, 23} has the desired sum. But in this case there is a second
solution, since {2, 4, 9, 14} also sums to 29.

Here is another way to describe the subset-sum problem. The list

M = (M1,M2, . . . ,Mn)

of positive integers is public knowledge. Bob chooses a secret binary vector
x = (x1, x2, . . . , xn), i.e., each xi may be either 0 or 1. Bob computes the sum

S =

n∑

i=1

xiMi

and sends S to Alice. The subset-sum problem asks Alice to find either the
original vector x or another binary vector giving the same sum. Notice that
the vector x tells Alice which Mi to include in S, since Mi is in the sum S
if and only if xi = 1. Thus specifying the binary vector x is the same as
specifying a subset of M .

It is clear that Alice can find x by checking all 2n binary vectors of length n.
A simple collision algorithm allows Alice to cut the exponent in half.

Proposition 7.3. Let M = (M1,M2, . . . ,Mn) and let (M , S) be a subset-
sum problem. For all sets of integers I and J satisfying

I ⊂ {i : 1 ≤ i ≤ 1
2n} and J ⊂ {j : 1

2n < j ≤ n},

compute and make a list of the values

1NP-complete problems are discussed in Sect. 5.7. However, if you have not read that
section, suffice it to say that NP-complete problems are considered to be very hard to solve
in a computational sense.
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AI =
∑

i∈I

Mi and BJ = S −
∑

j∈J

Mj .

Then these lists include a pair of sets I0 and J0 satisfying AI0 = BJ0 , and
the sets I0 and J0 give a solution to the subset-sum problem,

S =
∑

i∈I0

Mi +
∑

j∈J0

Mj .

The number of entries in each list is at most 2n/2, so the running time of the
algorithm is O(2n/2+ε), where ε is some small value that accounts for sorting
and comparing the lists.

Proof. It suffices to note that if x is a binary vector giving a solution to the
given subset-sum problem, then we can write the solution as

∑

1≤i≤ 1
2n

xiMi = S −
∑

1
2n<i≤n

xiMi.

The number of subsets I and J is O(2n/2), since they are subsets of sets of
order n/2.

If n is large, then in general it is difficult to solve a random instance of
a subset-sum problem. Suppose, however, that Alice possesses some secret
knowledge or trapdoor information about M that enables her to guarantee
that the solution x is unique and that allows her to easily find x. Then Alice
can use the subset sum problem as a public key cryptosystem. Bob’s plaintext
is the vector x, his encrypted message is the sum S =

∑
xiMi, and only Alice

can easily recover x from knowledge of S.
But what sort of sneaky trick can Alice use to ensure that she can solve

this particular subset-sum problem, but that nobody else can? One possibility
is to use a subset-sum problem that is extremely easy to solve, but somehow
to disguise the easy solution from other people.

Definition. A superincreasing sequence of integers is a list of positive integers
r = (r1, r2, . . . , rn) with the property that

ri+1 ≥ 2ri for all 1 ≤ i ≤ n− 1.

The following estimate explains the name of such sequences.

Lemma 7.4. Let r = (r1, r2, . . . , rn) be a superincreasing sequence. Then

rk > rk−1 + · · ·+ r2 + r1 for all 2 ≤ k ≤ n.

Proof. We give a proof by induction on k. For k = 2 we have r2 ≥ 2r1 > r1,
which gets the induction started. Now suppose that the lemma is true for
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some 2 ≤ k < n. Then first using the superincreasing property and next the
induction hypothesis, we find that

rk+1 ≥ 2rk = rk + rk > rk + (rk−1 + · · ·+ r2 + r1).

This shows that the lemma is also true for k + 1.

A subset-sum problem in which the integers in M form a superincreasing
sequence is very easy to solve.

Proposition 7.5. Let (M , S) be a subset-sum problem in which the integers
in M form a superincreasing sequence. Assuming that a solution x exists, it
is unique and may be computed by the following fast algorithm:

Loop i from n down to 1

If S ≥Mi, set xi = 1 and subtract Mi from S

Else set xi = 0

End Loop

Proof. The assumption that M is a superincreasing sequence means that
Mi+1 ≥ 2Mi. We are given that a solution exists, so to distinguish it from the
vector x produced by the algorithm, we call the actual solution y. Thus we
are assuming that y ·M = S and we need to show that x = y.

We prove by downward induction that xk = yk for all 1 ≤ k ≤ n. Our
inductive hypothesis is that xi = yi for all k < i ≤ n and we need to prove
that xk = yk. (Note that we allow k = n, in which case our inductive hypoth-
esis is vacuously true.) The hypothesis means that when we performed the
algorithm from i = n down to i = k + 1, we had xi = yi at each stage. So
before executing the loop with i = k, the value of S has been reduced to

Sk = S −
n∑

i=k+1

xiMi =

n∑

i=1

yiMi −
n∑

i=k+1

xiMi =

k∑

i=1

yiMi.

Now consider what happens when we execute the loop with i = k. There are
two possibilities:

(1) yk = 1 =⇒ Sk ≥Mk =⇒ xk = 1, �
(2) yk = 0 =⇒ Sk ≤Mk−1 + · · ·+M1 < Mk =⇒ xk = 0. �

(Note that in Case (2) we have used Lemma 7.4 to deduce thatMk−1+· · ·+M1

is strictly smaller than Mk.) In both cases we get xk = yk, which completes
the proof that x = y. Further, it shows that the solution is unique, since we
have shown that any solution agrees with the output of the algorithm, which
by its nature returns a unique vector x for any given input S.
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Example 7.6. The set M = (3, 11, 24, 50, 115) is superincreasing. We write
S = 142 as a sum of elements in M by following the algorithm. First S ≥ 115,
so x5 = 1 and we replace S with S − 115 = 27. Next 27 < 50, so x4 = 0.
Continuing, 27 ≥ 24, so x3 = 1 and S becomes 27 − 24 = 3. Then 3 < 11,
so x2 = 0, and finally 3 ≥ 3, so x1 = 1. Notice that S is reduced to 3− 3 = 0,
which tells us that x = (1, 0, 1, 0, 1) is a solution. We check our answer,

1 · 3 + 0 · 11 + 1 · 24 + 0 · 50 + 1 · 115 = 142. �

Merkle and Hellman proposed a public key cryptosystem based on a super-
increasing subset-sum problem that is disguised using congruences. In order
to create the public/private key pair, Alice starts with a superincreasing se-
quence r = (r1, . . . , rn). She also chooses two large secret integers A and B
satisfying

B > 2rn and gcd(A,B) = 1.

Alice creates a new sequence M that is not superincreasing by setting

Mi ≡ Ari (mod B) with 0 ≤Mi < B.

The sequence M is Alice’s public key.
In order to encrypt a message, Bob chooses a plaintext x that is a binary

vector and computes and sends to Alice the ciphertext

S = x ·M =

n∑

i=1

xiMi.

Alice decrypts S by first computing

S′ ≡ A−1S (mod B) with 0 ≤ S′ < B.

Then Alice solves the subset-sum problem for S′ using the superincreasing
sequence r and the fast algorithm described in Proposition 7.5.

The reason that decryption works is because S′ is congruent to

S′ ≡ A−1S ≡ A−1
n∑

i=1

xiMi ≡ A−1
n∑

i=1

xiAri ≡
n∑

i=1

xiri (mod B).

The assumption that B > 2rn and Lemma 7.4 tell Alice that

n∑

i=1

xiri ≤
n∑

i=1

ri < 2rn < B,

so by choosing S′ in the range from 0 to B − 1, she ensures that she gets an
exact equality S′ =

∑
xiri, rather than just a congruence.

The Merkle–Hellman cryptosystem is summarized in Table 7.2.
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Alice Bob

Key Creation
Choose superincreasing r = (r1, . . . , rn).
Choose A and B with B > 2rn and gcd(A,B) = 1.
Compute Mi = Ari (mod B) for 1 ≤ i ≤ n.
Publish the public key M = (M1, . . . ,Mn).

Encryption
Choose binary plaintext x.
Use Alice’s public key M

to compute S = x ·M .
Send ciphertext S to Alice.

Decryption
Compute S′ ≡ A−1S (mod B).
Solve the subset-sum problem S′

using the superincreasing sequence r.
The plaintext x satisfies x · r = S′.

Table 7.2: The Merkle–Hellman subset-sum cryptosystem

Example 7.7. Let r = (3, 11, 24, 50, 115) be Alice’s secret superincreasing se-
quence, and suppose that she chooses A = 113 and B = 250. Then her
disguised sequence is

M ≡ (113 · 3, 113 · 11, 113 · 24, 113 · 50, 113 · 115) (mod 250)

= (89, 243, 212, 150, 245).

Notice that M is not even close to being superincreasing (even if she rear-
ranges the terms so that they are increasing).

Bob decides to send Alice the secret message x = (1, 0, 1, 0, 1). He encrypts
x by computing

S = x ·M = 1 · 89 + 0 · 243 + 1 · 212 + 0 · 150 + 1 · 245 = 546.

Upon receiving S, Alice multiplies by 177, the inverse of 113 modulo 250, to
obtain

S′ ≡ 177 · 546 = 142 (mod 250).

Then Alice uses the algorithm in Proposition 7.5 to solve S′ = x · r for the
superincreasing sequence r. (See Example 7.6.) In this way she recovers the
plaintext x.

Cryptosystems based on disguised subset-sum problems are known as
subset-sum cryptosystems or knapsack cryptosystems. The general idea is to
start with a secret superincreasing sequence, disguise it using secret modular
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linear operations, and publish the disguised sequence as the public key. The
original Merkle and Hellman system suggested applying a secret permutation
to the entries of Ar (mod B) as an additional layer of security. Later versions,
proposed by a number of people, involved multiple multiplications and reduc-
tions modulo several different moduli. For an excellent survey of knapsack
cryptosystems, see the article by Odlyzko [103].

Remark 7.8. An important question that must be considered concerning knap-
sack systems is the size of the various parameters required to obtain a desired
level of security. There are 2n binary vectors x = (x1, . . . , xn), and we have
seen in Proposition 7.3 that there is a collision algorithm, so it is possible
to break a knapsack cryptosystem in O(2n/2) operations. Thus in order to
obtain security on the order of 2k, it is necessary to take n > 2k, so for
example, 280 security requires n > 160. But although this provides security
against a collision attack, it does not preclude the existence of other, more
efficient attacks, which, as we will see in Sect. 7.14.2, actually do exist. (See
also Remark 7.10.)

Remark 7.9. Assuming that we have chosen a value for n, how large must we
take the other parameters? It turns out that if r1 is too small, then there are
easy attacks, so we must insist that r1 > 2n. The superincreasing nature of
the sequence implies that

rn > 2rn−1 > 4rn−1 > · · · > 2nr1 > 22n.

Then B > 2rn = 22n+1, so we find that the entries Mi in the public key and
the ciphertext S satisfy

Mi = O(22n) and S = O(22n).

Thus the public key M is a list of n integers, each approximately 2n bits
long, while the plaintext x consists of n bits of information, and the ciphertext
is approximately 2n bits. Notice that the message expansion ratio is 2-to-1.

For example, suppose that n = 160. Then the public key size is about
2n2 = 51200 bits. Compare this to RSA or Diffie–Hellman, where, for se-
curity on the order of 280, the public key size is only about 1000 bits. This
larger key size might seem to be a major disadvantage, but it is compensated
for by the tremendous speed of the knapsack systems. Indeed, a knapsack
decryption requires only one (or a very few) modular multiplications, and
a knapsack encryption requires none at all. This is far more efficient than
the large number of computationally intensive modular exponentiations used
by RSA and Diffie–Hellman. Historically, this made knapsack cryptosystems
quite appealing.

Remark 7.10. The best known algorithms to solve a randomly chosen subset-
sum problem are versions of the collision algorithm such as Proposition 7.3.
Unfortunately, a randomly chosen subset-sum problem has no trapdoor, hence
cannot be used to create a cryptosystem. And it turns out that the use of
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a disguised superincreasing subset-sum problem allows other, more efficient,
algorithms. The first such attacks, by Shamir, Odlyzko, Lagarias and oth-
ers, used various ad hoc methods, but after the publication of the famous
LLL2 lattice reduction paper [77] in 1985, it became clear that knapsack-
based cryptosystems have a fundamental weakness. Roughly speaking, if n is
smaller than around 300, then lattice reduction allows an attacker to recover
the plaintext x from the ciphertext S in a disconcertingly short amount time.
Hence a secure system requires n > 300, in which case the private key length
is greater than 2n2 = 180000 bits ≈176 kB. This is so large as to make secure
knapsack systems impractical.

We now briefly describe how Eve can reformulate the subset-sum problem
using vectors. Suppose that she wants to write S as a subset-sum from the
set M = (m1, . . . ,mn). Her first step is to form the matrix

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 0 0 · · · 0 m1

0 2 0 · · · 0 m2

0 0 2 · · · 0 m3

...
...

...
. . .

...
...

0 0 0 · · · 2 mn

1 1 1 · · · 1 S

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (7.4)

The relevant vectors are the rows of the matrix (7.4), which we label as

v1 = (2, 0, 0, . . . , 0,m1),

v2 = (0, 2, 0, . . . , 0,m2),

...
...

vn = (0, 0, 0, . . . , 2,mn),

vn+1 = (1, 1, 1, . . . , 1, S).

Just as in the 2-dimensional example described at the end of Sect. 7.1, Eve
looks at the set of all integer linear combinations of v1, . . . ,vn+1,

L = {a1v1 + a2v2 + · · ·+ anvn + an+1vn+1 : a1, a2, . . . , an+1 ∈ Z}.

The set L is another example of a lattice.
Suppose now that x = (x1, . . . , xn) is a solution to the given subset-sum

problem. Then the lattice L contains the vector

t =

n∑

i=1

xivi − vn+1 = (2x1 − 1, 2x2 − 1, . . . , 2xn − 1, 0),

where the last coordinate of t is 0 because S = x1m1 + · · ·+ xnmn.

2The three L’s are A.K. Lenstra, H.W. Lenstra, and L. Lovász.
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We now come to the crux of the matter. Since the xi are all 0 or 1, all of
the 2xi − 1 values are ±1, so the vector t is quite short, ‖t‖ =

√
n. On

the other hand, we have seen that mi = O(22n) and S = O(22n), so the
vectors generating L all have lengths ‖vi‖ = O(22n). Thus it is unlikely that L
contains any nonzero vectors, other than t, whose length is as small as

√
n. If

we postulate that Eve knows an algorithm that can find small nonzero vectors
in lattices, then she will be able to find t, and hence to recover the plaintext x.

Algorithms that find short vectors in lattices are called lattice reduction al-
gorithms. The most famous of these is the LLL algorithm, to which we alluded
earlier, and its variants such as LLL-BKZ. The remainder of this chapter is
devoted to describing lattices, cryptosystems based on lattices, the LLL al-
gorithm, and cryptographic applications of LLL. A more detailed analysis of
knapsack cryptosystems is given in Sect. 7.14.2; see also Example 7.33.

7.3 A Brief Review of Vector Spaces

Before starting our discussion of lattices, we pause to remind the reader of
some important definitions and ideas from linear algebra. Vector spaces can be
defined in vast generality,3 but for our purposes in this chapter, it is enough to
consider vector spaces that are contained in R

m for some positive integer m.
We start with the basic definitions that are essential for studying vector

spaces.

Vector Spaces. A vector space V is a subset of Rm with the property that

α1v1 + α2v2 ∈ V for all v1,v2 ∈ V and all α1, α2 ∈ R.

Equivalently, a vector space is a subset of Rm that is closed under ad-
dition and under scalar multiplication by elements of R.

Linear Combinations. Let v1,v2, . . . ,vk ∈ V . A linear combination of
v1,v2, . . . ,vk ∈ V is any vector of the form

w = α1v1 + α2v2 + · · ·+ αkvk with α1, . . . , αk ∈ R.

The collection of all such linear combinations,

{α1v1 + · · ·+ αkvk : α1, . . . , αk ∈ R},

is called the span of {v1, . . . ,vk}.

Independence. A set of vectors v1,v2, . . . ,vk ∈ V is (linearly) independent
if the only way to get

α1v1 + α2v2 + · · ·+ αkvk = 0 (7.5)

is to have α1 = α2 = · · · = αk = 0. The set is (linearly) dependent if we
can make (7.5) true with at least one αi nonzero.

3For example, we saw in Sect. 3.6 a nice application of vector spaces over the field F2.
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Bases. A basis for V is a set of linearly independent vectors v1, . . . ,vn that
span V . This is equivalent to saying that every vector w ∈ V can be
written in the form

w = α1v1 + α2v2 + · · ·+ αnvn

for a unique choice of α1, . . . , αn ∈ R.

We next describe the relationship between different bases and the impor-
tant concept of dimension.

Proposition 7.11. Let V ⊂ R
m be a vector space.

(a) There exists a basis for V .

(b) Any two bases for V have the same number of elements. The number of
elements in a basis for V is called the dimension of V .

(c) Let v1, . . . ,vn be a basis for V and let w1, . . . ,wn be another set of n
vectors in V . Write each wj as a linear combination of the vi,

w1 = α11v1 + α12v2 + · · ·+ α1nvn,

w2 = α21v1 + α22v2 + · · ·+ α2nvn,

...
...

wn = αn1v1 + αn2v2 + · · ·+ αnnvn.

Then w1, . . . ,wn is also a basis for V if and only if the determinant of
the matrix ⎛

⎜
⎜
⎜
⎝

α11 α12 · · · α1n

α21 α22 · · · α2n

...
...

. . .
...

αn1 αn2 · · · αnn

⎞

⎟
⎟
⎟
⎠

is not equal to 0.

We next explain how to measure lengths of vectors in R
n and the angles

between pairs of vectors. These important concepts are tied up with the notion
of dot product and the Euclidean norm.

Definition. Let v,w ∈ V ⊂ R
m and write v and w using coordinates as

v = (x1, x2, . . . , xm) and w = (y1, y2, . . . , ym).

The dot product of v and w is the quantity

v ·w = x1y1 + x2y2 + · · ·+ xmym.

We say that v and w are orthogonal to one another if v ·w = 0.
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The length, or Euclidean norm, of v is the quantity

‖v‖ =
√
x21 + x22 + · · ·+ x2m.

Notice that dot products and norms are related by the formula

v · v = ‖v‖2.

Proposition 7.12. Let v,w ∈ V ⊂ R
m.

(a) Let θ be the angle between the vectors v and w, where we place the starting
points of v and w at the origin 0. Then

v ·w = ‖v‖ ‖w‖ cos(θ), (7.6)

(b) (Cauchy–Schwarz inequality)

|v ·w| ≤ ‖v‖ ‖w‖. (7.7)

Proof. For (a), see any standard linear algebra textbook. We observe that
the Cauchy–Schwarz inequality (b) follows immediately from (a), but we feel
that it is of sufficient importance to warrant a direct proof. If w = 0, there is
nothing to prove, so we may assume that w �= 0. We consider the function

f(t) = ‖v − tw‖2 = (v − tw) · (v − tw)

= v · v − 2tv ·w + t2w ·w
= ‖v‖2 − 2tv ·w + t2‖w‖2.

We know that f(t) ≥ 0 for all t ∈ R, so we choose the value of t that min-
imizes f(t) and see what it gives. This minimizing value is t = v · w/‖w‖2.
Hence

0 ≤ f

(
v ·w
‖w‖2

)
= ‖v‖2 − (v ·w)2

‖w‖2 .

Simplifying this expression and taking square roots gives the desired result.

Definition. An orthogonal basis for a vector space V is a basis v1, . . . ,vn

with the property that

vi · vj = 0 for all i �= j.

The basis is orthonormal if in addition, ‖vi‖ = 1 for all i.

There are many formulas that become much simpler using an orthogonal
or orthonormal basis. In particular, if v1, . . . ,vn is an orthogonal basis and
if v = a1v1 + · · ·+ anvn is a linear combination of the basis vectors, then

‖v‖2 = ‖a1v1 + · · ·+ anvn‖2

= (a1v1 + · · ·+ anvn) · (a1v1 + · · ·+ anvn)
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=
n∑

i=1

n∑

j=1

aiaj(vi · vj)

=

n∑

i=1

a2i ‖vi‖2 since vi · vj = 0 for i �= j.

If the basis is orthonormal, then this further simplifies to ‖v‖2 =
∑
a2i .

There is a standard method, called the Gram–Schmidt algorithm, for cre-
ating an orthonormal basis. We describe a variant of the usual algorithm that
gives an orthogonal basis, since it is this version that is most relevant for our
later applications.

Theorem 7.13 (Gram–Schmidt Algorithm). Let v1, . . . ,vn be a basis for
a vector space V ⊂ R

m. The following algorithm creates an orthogonal ba-
sis v∗

1, . . . ,v
∗
n for V :

Set v∗
1 = v1.

Loop i = 2, 3, . . . , n.

Compute μij = vi · v∗
j/‖v∗

j‖2 for 1 ≤ j < i.

Set v∗
i = vi −

∑i−1
j=1 μijv

∗
j .

End Loop

The two bases have the property that

Span{v1, . . . ,vi} = Span{v∗
1, . . . ,v

∗
i } for all i = 1, 2, . . . , n.

Proof. The proof of orthogonality is by induction, so we suppose that the
vectors v∗

1, . . . ,v
∗
i−1 are pairwise orthogonal and we need to prove that v∗

i is
orthogonal to all of the previous starred vectors. To do this, we take any k < i
and compute

v∗
i · v∗

k =

⎛

⎝vi −
i−1∑

j=1

μijv
∗
j

⎞

⎠ · v∗
k

= vi · v∗
k − μik‖v∗

k‖2 since v∗
k · v∗

j = 0 for j �= k,

= 0 from the definition of μik.

To prove the final statement about the spans, we note first that it is clear
from the definition of v∗

i that vi is in the span of v∗
1, . . . ,v

∗
i . We prove the

other inclusion by induction, so we suppose that v∗
1, . . . ,v

∗
i−1 are in the span

of v1, . . . ,vi−1 and we need to prove that v∗
i is in the span of v1, . . . ,vi. But

from the definition of v∗
i , we see that it is in the span of v∗

1, . . . ,v
∗
i−1,vi, so

we are done by the induction hypothesis.
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7.4 Lattices: Basic Definitions and Properties

After seeing the examples in Sects. 7.1 and 7.2 and being reminded of the
fundamental properties of vector spaces in Sect. 7.3, the reader will not be
surprised by the formal definitions of a lattice and its properties.

Definition. Let v1, . . . ,vn ∈ R
m be a set of linearly independent vectors. The

lattice L generated by v1, . . . ,vn is the set of linear combinations of v1, . . . ,vn

with coefficients in Z,

L = {a1v1 + a2v2 + · · ·+ anvn : a1, a2, . . . , an ∈ Z}.

A basis for L is any set of independent vectors that generates L. Any
two such sets have the same number of elements. The dimension of L is the
number of vectors in a basis for L.

Suppose that v1, . . . ,vn is a basis for a lattice L and that w1, . . . ,wn ∈ L
is another collection of vectors in L. Just as we did for vector spaces, we can
write each wj as a linear combination of the basis vectors,

w1 = a11v1 + a12v2 + · · ·+ a1nvn,

w2 = a21v1 + a22v2 + · · ·+ a2nvn,

...
...

wn = an1v1 + an2v2 + · · ·+ annvn,

but since now we are dealing with lattices, we know that all of the aij coeffi-
cients are integers.

Suppose that we try to express the vi in terms of the wj . This involves
inverting the matrix

A =

⎛

⎜
⎜
⎜
⎝

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

⎞

⎟
⎟
⎟
⎠
.

Note that we need the vi to be linear combinations of the wj using integer
coefficients, so we need the entries of A−1 to have integer entries. Hence

1 = det(I) = det(AA−1) = det(A) det(A−1),

where det(A) and det(A−1) are integers, so we must have det(A) = ±1. Con-
versely, if det(A) = ±1, then the theory of the adjoint matrix tells us that A−1

does indeed have integer entries. (See Exercise 7.10.) This proves the following
useful result.

Proposition 7.14. Any two bases for a lattice L are related by a matrix
having integer coefficients and determinant equal to ±1.
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For computational purposes, it is often convenient to work with lattices
whose vectors have integer coordinates. For example,

Z
n =

{
(x1, x2, . . . , xn) : x1, . . . , xn ∈ Z

}

is the lattice consisting of all vectors with integer coordinates.

Definition. An integral (or integer) lattice is a lattice all of whose vectors
have integer coordinates. Equivalently, an integral lattice is an additive sub-
group of Zm for some m ≥ 1.

Example 7.15. Consider the three-dimensional lattice L ⊂ R
3 generated by

the three vectors

v1 = (2, 1, 3), v2 = (1, 2, 0), v3 = (2,−3,−5).

It is convenient to form a matrix using v1,v2,v3 as the rows of the matrix,

A =

⎛

⎝
2 1 3
1 2 0
2 −3 −5

⎞

⎠ .

We create three new vectors in L by the formulas

w1 = v1 + v3, w2 = v1 − v2 + 2v3, w3 = v1 + 2v2.

This is equivalent to multiplying the matrix A on the left by the matrix

U =

⎛

⎝
1 0 1
1 −1 2
1 2 0

⎞

⎠ ,

and we find that w1,w2,w3 are the rows of the matrix

B = UA =

⎛

⎝
4 −2 −2
5 −7 −7
4 5 3

⎞

⎠ .

The matrix U has determinant −1, so the vectors w1,w2,w3 are also a
basis for L. The inverse of U is

U−1 =

⎛

⎝
4 −2 −1

−2 1 1
−3 2 1

⎞

⎠ ,

and the rows of U−1 tell us how to express the vi as linear combinations of
the wj ,

v1 = 4w1 − 2w2 −w3, v2 = −2w1 +w2 +w3, v3 = −3w1 + 2w2 +w3.



390 7. Lattices and Cryptography

Remark 7.16. If L ⊂ R
m is a lattice of dimension n, then a basis for L may

be written as the rows of an n-by-m matrix A, that is, a matrix with n rows
and m columns. A new basis for L may be obtained by multiplying the ma-
trix A on the left by an n-by-n matrix U such that U has integer entries and
determinant ±1. The set of such matrices U is called the general linear group
(over Z) and is denoted by GLn(Z); cf. Example 2.11(g). It is the group of
matrices with integer entries whose inverses also have integer entries.

There is an alternative, more abstract, way to define lattices that inter-
twines geometry and algebra.

Definition. A subset L of Rm is an additive subgroup if it is closed under
addition and subtraction. It is called a discrete additive subgroup if there is a
positive constant ε > 0 with the following property: for every v ∈ L,

L ∩
{
w ∈ R

m : ‖v −w‖ < ε
}
= {v}. (7.8)

In other words, if you take any vector v in L and draw a solid ball of radius ε
around v, then there are no other points of L inside the ball.

Theorem 7.17. A subset of R
m is a lattice if and only if it is a discrete

additive subgroup.

Proof. We leave the proof for the reader; see Exercise 7.9.

A lattice is similar to a vector space, except that it is generated by all
linear combinations of its basis vectors using integer coefficients, rather than
using arbitrary real coefficients. It is often useful to view a lattice as an orderly
arrangement of points in R

m, where we put a point at the tip of each vector.
An example of a lattice in R

2 is illustrated in Fig. 7.1.

Definition. Let L be a lattice of dimension n and let v1,v2, . . . ,vn be a
basis for L. The fundamental domain (or fundamental parallelepiped) for L
corresponding to this basis is the set

F(v1, . . . ,vn) = {t1v1 + t2v2 + · · ·+ tnvn : 0 ≤ ti < 1}. (7.9)

The shaded area in Fig. 7.1 illustrates a fundamental domain in dimen-
sion 2. The next result indicates one reason why fundamental domains are
important in studying lattices.

Proposition 7.18. Let L ⊂ R
n be a lattice of dimension n and let F be a

fundamental domain for L. Then every vector w ∈ R
n can be written in the

form
w = t+ v for a unique t ∈ F and a unique v ∈ L.

Equivalently, the union of the translated fundamental domains

F + v =
{
t+ v : t ∈ F}

as v ranges over the vectors in the lattice L exactly covers R
n; see Fig. 7.2.
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F

L

Figure 7.1: A lattice L and a fundamental domain F

Proof. Let v1, . . . ,vn be a basis of L that gives the fundamental domain F .
Then v1, . . . ,vn are linearly independent in R

n, so they are a basis of Rn.
This means that any w ∈ R

n can be written in the form

w = α1v1 + α2v2 + · · ·+ αnvn for some α1, . . . , αn ∈ R.

We now write each αi as

αi = ti + ai with 0 ≤ ti < 1 and ai ∈ Z.

Then

w =

this is a vector t ∈ F
︷ ︸︸ ︷
t1v1 + t2v2 + · · ·+ tnvn +

this is a vector v ∈ L
︷ ︸︸ ︷
a1v1 + a2v2 + · · ·+ anvn .

This shows that w can be written in the desired form.
Next suppose that w = t + v = t′ + v′ has two representations as a sum

of a vector in F and a vector in L. Then

(t1 + a1)v1 + (t2 + a2)v2 + · · ·+ (tn + an)vn

= (t′1 + a′1)v1 + (t′2 + a′2)v2 + · · ·+ (t′n + a′n)vn.

Since v1, . . . ,vn are independent, it follows that

ti + ai = t′i + a′i for all i = 1, 2, . . . , n.

Hence
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F
F + v1

F + v2

F + v1 − v2

F + v1 + v2

Figure 7.2: Translations of F by vectors in L exactly covers Rn

ti − t′i = a′i − ai ∈ Z

is an integer. But we also know that ti and t
′
i are greater than or equal to 0

and strictly smaller than 1, so the only way for ti − t′i to be an integer is
if ti = t′i. Therefore t = t′, and then also

v = w − t = w − t′ = v′.

This completes the proof that t ∈ F and v ∈ L are uniquely determined
by w.

It turns out that all fundamental domains of a lattice L have the same
volume. We prove this later (Corollary 7.22) for lattices of dimension n in R

n.
The volume of a fundamental domain turns out to be an extremely important
invariant of the lattice.

Definition. Let L be a lattice of dimension n and let F be a fundamental
domain for L. Then the n-dimensional volume of F is called the determinant
of L (or sometimes the covolume4 of L). It is denoted by det(L).

If you think of the basis vectors v1, . . . ,vn as being vectors of a given
length that describe the sides of the parallelepiped F , then for basis vectors

4Note that the lattice L itself has no volume, since it is a countable collection of points.
If L ⊂ R

n has dimension n, then the covolume of L is defined to be the volume of the
quotient group R

n/L.
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of given lengths, the largest volume is obtained when the vectors are pairwise
orthogonal to one another. This leads to the following important upper bound
for the determinant of a lattice.

Proposition 7.19 (Hadamard’s Inequality). Let L be a lattice, take any
basis v1, . . . ,vn for L, and let F be a fundamental domain for L. Then

detL = Vol(F) ≤ ‖v1‖ ‖v2‖ · · · ‖vn‖. (7.10)

The closer that the basis is to being orthogonal, the closer that Hadamard’s
inequality (7.10) comes to being an equality.

It is fairly easy to compute the determinant of a lattice L if its dimension
is the same as its ambient space, i.e., if L is contained in R

n and L has
dimension n. This formula, which luckily is the case that is of most interest
to us, is described in the next proposition. See Exercise 7.14 to learn how to
compute the determinant of a lattice in the general case.

Proposition 7.20. Let L ⊂ R
n be a lattice of dimension n, let v1,v2, . . . ,vn

be a basis for L, and let F = F(v1, . . . ,vn) be the associated fundamental
domain as defined by (7.9). Write the coordinates of the ith basis vector as

vi = (ri1, ri2, . . . , rin)

and use the coordinates of the vi as the rows of a matrix,

F = F (v1, . . . ,vn) =

⎛

⎜
⎜
⎜
⎝

r11 r12 · · · r1n
r21 r22 · · · r2n
...

...
. . .

...
rn1 rn2 · · · rnn

⎞

⎟
⎟
⎟
⎠
. (7.11)

Then the volume of F is given by the formula

Vol
(
F(v1, . . . ,vn)

)
=
∣
∣det
(
F (v1, . . . ,vn)

)∣∣.

Proof. The proof uses multivariable calculus. We can compute the volume
of F as the integral of the constant function 1 over the region F ,

Vol(F) =
∫

F
dx1 dx2 · · · dxn.

The fundamental domain F is the set described by (7.9), so we make a change
of variables from x = (x1, . . . , xn) to t = (t1, . . . , tn) according to the formula

(x1, x2, . . . , xn) = t1v1 + t2v2 + · · ·+ tnvn.
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In terms of the matrix F = F (v1, . . . ,vn) defined by (7.11), the change of
variables is given by the matrix equation x = tF . The Jacobian matrix of this
change of variables is F , and the fundamental domain F is the image under F
of the unit cube Cn = [0, 1]n, so the change of variables formula for integrals
yields

∫

F
dx1 dx2 · · · dxn =

∫

FCn

dx1 dx2 · · · dxn =

∫

Cn

| detF | dt1 dt2 · · · dtn

= | detF |Vol(Cn) = | detF |.

Example 7.21. The lattice in Example 7.15 has determinant

detL = | detA| =

∣
∣
∣
∣
∣
∣
det

⎛

⎝
2 1 3
1 2 0
2 −3 −5

⎞

⎠

∣
∣
∣
∣
∣
∣
= | − 36| = 36.

Corollary 7.22. Let L ⊂ R
n be a lattice of dimension n. Then every fun-

damental domain for L has the same volume. Hence det(L) is an invariant
of the lattice L, independent of the particular fundamental domain used to
compute it.

Proof. Let v1, . . . ,vn and w1, . . . ,wn be two fundamental domains for L,
and let F (v1, . . . ,vn) and F (w1, . . . ,wn) be the associated matrices (7.11)
obtained by using the coordinates of the vectors as the rows of the matrices.
Then Proposition 7.14 tells us that

F (v1, . . . ,vn) = AF (w1, . . . ,wn) (7.12)

for some n-by-n matrix with integer entries and det(A) = ±1. Now applying
Proposition 7.20 twice yields

Vol
(
F(v1, . . . ,vn)

)

=
∣
∣det
(
F (v1, . . . ,vn)

)∣∣ from Proposition 7.20,

=
∣
∣det
(
AF (w1, . . . ,wn)

)∣∣ from (7.12),

=
∣
∣det(A)

∣
∣
∣
∣det
(
F (w1, . . . ,wn)

)∣∣ since det(AB) = det(A) det(B),

=
∣
∣det
(
F (w1, . . . ,wn)

)∣∣ since det(A) = ±1,
= Vol

(
F(w1, . . . ,wn)

)
from Proposition 7.20.
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7.5 Short Vectors in Lattices

The fundamental computational problems associated to a lattice are those of
finding a shortest nonzero vector in the lattice and of finding a vector in the
lattice that is closest to a given nonlattice vector. In this section we discuss
these problems, mainly from a theoretical perspective. Section 7.13 is devoted
to a practical method for finding short and close vectors in a lattice.

7.5.1 The Shortest Vector Problem and the Closest
Vector Problem

We begin with a description of two fundamental lattice problems.

The Shortest Vector Problem (SVP): Find a shortest nonzero vector in a
lattice L, i.e., find a nonzero vector v ∈ L that minimizes the Euclidean
norm ‖v‖.

The Closest Vector Problem (CVP): Given a vector w ∈ R
m that is not

in L, find a vector v ∈ L that is closest to w, i.e., find a vector v ∈ L
that minimizes the Euclidean norm ‖w − v‖.

Remark 7.23. Note that there may be more than one shortest nonzero vector
in a lattice. For example, in Z

2, all four of the vectors (0,±1) and (±1, 0) are
solutions to SVP. This is why SVP asks for “a” shortest vector and not “the”
shortest vector. A similar remark applies to CVP.

We have seen in Sects. 7.1 and 7.2 that a solution to SVP can be used to
break various cryptosystems. We will see more examples later in this chapter.

Both SVP and CVP are profound problems, and both become computa-
tionally difficult as the dimension n of the lattice grows. On the other hand,
even approximate solutions to SVP and CVP turn out to have surprisingly
many applications in different fields of pure and applied mathematics. In full
generality, CVP is known to be NP-hard and SVP is NP-hard under a certain
“randomized reduction hypothesis.”5

In practice, CVP is considered to be “a little bit harder” than SVP, since
CVP can often be reduced to SVP in a slightly higher dimension. For exam-
ple, the (n+ 1)-dimensional SVP used to solve the knapsack cryptosystem in
Sect. 7.2 can be naturally formulated as an n-dimensional CVP. For a proof
that SVP is no harder than CVP, see [50], and for a thorough discussion of
the complexity of different types of lattice problems, see [86].

Remark 7.24. In full generality, both SVP and CVP are considered to be ex-
tremely hard problems, but in practice it is difficult to achieve this idealized
“full generality.” In real world scenarios, cryptosystems based on NP-hard

5This hypothesis means that the class of polynomial-time algorithms is enlarged to
include those that are not deterministic, but will, with high probability, terminate in poly-
nomial time with a correct result. See Ajtai [3] for details.
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or NP-complete problems tend to rely on a particular subclass of problems,
either to achieve efficiency or to allow the creation of a trapdoor. When this
is done, there is always the possibility that some special property of the cho-
sen subclass of problems makes them easier to solve than the general case.
We have already seen this with the knapsack cryptosystem in Sect. 7.2. The
general knapsack problem is NP-complete, but the disguised superincreasing
knapsack problem that was suggested for use in cryptography is much easier
to solve than the general knapsack problem.

There are many important variants of SVP and CVP that arise both in
theory and in practice. We describe a few of them here.

Shortest Basis Problem (SBP) Find a basis v1, . . . ,vn for a lattice that
is shortest in some sense. For example, we might require that

max
1≤i≤n

‖vi‖ or

n∑

i=1

‖vi‖2

be minimized. There are thus many different versions of SBP, depending
on how one decides to measure the “size” of a basis.

Approximate Shortest Vector Problem (apprSVP) Let ψ(n) be a func-
tion of n. In a lattice L of dimension n, find a nonzero vector that
is no more than ψ(n) times longer than a shortest nonzero vector. In
other words, if vshortest is a shortest nonzero vector in L, find a nonzero
vector v ∈ L satisfying

‖v‖ ≤ ψ(n)‖vshortest‖.

Each choice of function ψ(n) gives a different apprSVP. As specific ex-
amples, one might ask for an algorithm that finds a nonzero v ∈ L
satisfying

‖v‖ ≤ 3
√
n‖vshortest‖ or ‖v‖ ≤ 2n/2‖vshortest‖.

Clearly an algorithm that solves the former is much stronger than one
that solves the latter, but even the latter may be useful if the dimension
is not too large.

Approximate Closest Vector Problem (apprCVP) This is the same as
apprSVP, but now we are looking for a vector that is an approximate
solution to CVP, instead of an approximate solution to SVP.

7.5.2 Hermite’s Theorem and Minkowski’s Theorem

How long is the shortest nonzero vector in a lattice L? The answer depends
to some extent on the dimension and the determinant of L. The next result
gives an explicit upper bound in terms of dim(L) and det(L) for the shortest
nonzero vector in L.
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Theorem 7.25 (Hermite’s Theorem). Every lattice L of dimension n con-
tains a nonzero vector v ∈ L satisfying

‖v‖ ≤
√
ndet(L)1/n.

Remark 7.26. For a given dimension n, Hermite’s constant γn is the smallest
value such that every lattice L of dimension n contains a nonzero vector v ∈ L
satisfying

‖v‖2 ≤ γn det(L)
2/n.

Our version of Hermite’s theorem (Theorem 7.25) says that γn ≤ n. The exact
value of γn is known only for 1 ≤ n ≤ 8 and for n = 24:

γ22 γ
3
3 γ

4
4 γ

5
5 γ

6
6 γ

7
7 γ88 γ2424

4
3 2 4 8 64

3 64 256 4

For cryptographic purposes, we are mainly interested in the value of γn
when n is large. For large values of n it is known that Hermite’s constant
satisfies

n

2πe
≤ γn ≤

n

πe
, (7.13)

where π = 3.14159 . . . and e = 2.71828 . . . are the usual constants.

Remark 7.27. There are versions of Hermite’s theorem that deal with more
than one vector. For example, one can prove that an n-dimensional lattice L
always has a basis v1, . . . ,vn satisfying

‖v1‖ ‖v2‖ · · · ‖vn‖ ≤ nn/2(detL).

This complements Hadamard’s inequality (Proposition 7.19), which says that
every basis satisfies

‖v1‖ ‖v2‖ · · · ‖vn‖ ≥ detL.

We define the Hadamard ratio of the basis B = {v1, . . . ,vn} to be the quantity

H(B) =
(

detL

‖v1‖ ‖v2‖ · · · ‖vn‖

)1/n

.

Thus 0 < H(B) ≤ 1, and the closer that the value is to 1, the more orthogonal
are the vectors in the basis. (The reciprocal of the Hadamard ratio is some-
times called the orthogonality defect. We also note that some authors define
the Hadamard ratio without taking the nth root.)

The proof of Hermite’s theorem uses a result of Minkowski that is impor-
tant in its own right. In order to state Minkowski’s theorem, we set one piece
of useful notation and give some basic definitions.

Definition. For any a ∈ R
n and any R > 0, the (closed) ball of radius R

centered at a is the set

BR(a) =
{
x ∈ R

n : ‖x− a‖ ≤ R
}
.
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Definition. Let S be a subset of Rn.
(a) S is bounded if the lengths of the vectors in S are bounded. Equivalently, S

is bounded if there is a radius R such that S is contained within the
ball BR(0).

(b) S is symmetric if for every point a in S, the negation −a is also in S.

(c) S is convex if whenever two points a and b are in S, then the entire line
segment connecting a to b lies completely in S.

(d) S is closed if it has the following property: If a ∈ R
n is a point such that

every ball BR(a) contains a point of S, then a is in S.

Theorem 7.28 (Minkowski’s Theorem). Let L ⊂ R
n be a lattice of dimen-

sion n and let S ⊂ R
n be a bounded symmetric convex set whose volume

satisfies
Vol(S) > 2n det(L).

Then S contains a nonzero lattice vector.
If S is also closed, then it suffices to take Vol(S) ≥ 2n det(L).

Proof. Let F be a fundamental domain for L. Proposition 7.18 tells us that
every vector a ∈ S can be written uniquely in the form

a = va +wa with va ∈ L and wa ∈ F .

(See Fig. 7.2 for an illustration.) We dilate S by a factor of 1
2 , i.e., shrink S

by a factor of 2,
1

2
S =

{
1

2
a : a ∈ S

}
,

and consider the map

1

2
S −→ F , 1

2
a �−→ w 1

2a
. (7.14)

Shrinking S by a factor of 2 changes its volume by a factor of 2n, so

Vol

(
1

2
S

)
=

1

2n
Vol(S) > det(L) = Vol(F).

(Here is where we are using our assumption that the volume of S is larger
than 2n det(L).)

The map (7.14) is given by a finite collection of translation maps (this is
where we are using the assumption that S is bounded), so the map (7.14) is vol-
ume preserving. Hence the fact that the domain 1

2S has volume strictly larger
than the volume of the range F implies that there exist distinct points 1

2a1

and 1
2a2 with the same image in F .

We have thus found distinct points in S satisfying

1

2
a1 = v1 +w and

1

2
a2 = v2 +w with v1,v2 ∈ L and w ∈ F .
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Subtracting them yields a nonzero vector

1

2
a1 −

1

2
a2 = v1 − v2 ∈ L.

We now observe that the vector

1

2
a1 +

S is symmetric,
so −a2 is in S

︷ ︸︸ ︷(
−1

2
a2

)

︸ ︷︷ ︸
this is the midpoint of the line

segment from a1 to −a2,
so it is in S by convexity

is in the set S. Therefore

0 �= v1 − v2 ∈ S ∩ L,

so we have constructed a nonzero lattice point in S.
This completes the proof of Minkowski’s theorem assuming that the vol-

ume of S is strictly larger than 2n det(L). We now assume that S is closed and
allow Vol(S) = 2n det(L). For every k ≥ 1, we expand S by a factor of 1 + 1

k
and apply the earlier result to find a nonzero vector

0 �= vk ∈
(
1 +

1

k

)
S ∩ L.

Each of the lattice vectors v1,v2, . . . is in the bounded set 2S, so the dis-
creteness of L tells us that the sequence contains only finitely many distinct
vectors. Thus we can choose some v that appears infinitely often in the se-
quence, so we have found a nonzero lattice vector v ∈ L in the intersection

∞⋂

k=1

(
1 +

1

k

)
S. (7.15)

The assumption that S is closed implies that the intersection (7.15) is equal
to S, so 0 �= v ∈ S ∩ L.

Proof of Hermite’s theorem (Theorem 7.25). The proof is a simple applica-
tion of Minkowski’s theorem. Let L ⊂ R

n be a lattice and let S be the hyper-
cube in R

n, centered at 0, whose sides have length 2B,

S =
{
(x1, . . . , xn) ∈ R

n : −B ≤ xi ≤ B for all 1 ≤ i ≤ n
}
.

The set S is symmetric, closed, and bounded, and its volume is

Vol(S) = (2B)n.
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So if we set B = det(L)1/n, then Vol(S) = 2n det(L) and we can apply
Minkowski’s theorem to deduce that there is a vector 0 �= a ∈ S ∩L. Writing
the coordinates of a as (a1, . . . , an), by definition of S we have

‖a‖ =
√
a21 + · · ·+ a2n ≤

√
nB =

√
n det(L)1/n.

This completes the proof of Theorem 7.25.

7.5.3 The Gaussian Heuristic

It is possible to improve the constant appearing in Hermite’s theorem (Theo-
rem 7.25) by applying Minkowski’s theorem (Theorem 7.28) to a hypersphere,
rather than a hypercube. In order to do this, we need to know the volume of
a ball in R

n. The following material is generally covered in advanced calculus
classes.

Definition. The gamma function Γ(s) is defined for s > 0 by the integral

Γ(s) =

∫ ∞

0

tse−t dt

t
. (7.16)

The gamma function is a very important function that appears in many
mathematical formulas. We list a few of its basic properties.

Proposition 7.29. (a) The integral (7.16) defining Γ(s) is convergent for
all s > 0.

(b) Γ(1) = 1 and Γ(s+1) = sΓ(s). This allows us to extend Γ(s) to all s ∈ R

with s �= 0,−1,−2, . . . .
(c) For all integers n ≥ 1 we have Γ(n+ 1) = n!. Thus Γ(s) interpolates the

values of the factorial function to all real (and even complex ) numbers.

(d) Γ( 12 ) =
√
π.

(e) (Stirling’s formula) For large values of s we have

Γ(1 + s)1/s ≈ s

e
. (7.17)

(More precisely, ln Γ(1 + s) = ln(s/e)s + 1
2 ln(2πs) +O(1) as s→∞.)

Proof. The properties of the gamma function are described in real and com-
plex analysis textbooks; see for example [2] or [43].

The formula for the volume of a ball in n-dimensional space involves the
gamma function.

Theorem 7.30. Let BR(a) be a ball of radius R in R
n. Then the volume

of BR(a) is

Vol
(
BR(a)

)
=

πn/2Rn

Γ(1 + n/2)
. (7.18)
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For large values of n, the volume of the ball BR(a) ⊂ R
n is approximately

given by

Vol
(
BR(a)

)1/n ≈
√

2πe

n
R. (7.19)

Proof. See [43, §5.9], for example, for a proof of the formula (7.18) giving the
volume of a ball.

We can use (7.18) and Stirling’s formula (7.17) to prove (7.19). Thus

Vol
(
BR(a)

)1/n
=

π1/2R

Γ(1 + n/2)1/n
≈ π1/2R

(n/2e)1/2
=

√
2πe

n
R.

Remark 7.31. Theorem 7.30 allows us to improve Theorem 7.25 for large
values of n. The ball BR(0) is bounded, closed, convex, and symmetric, so
Minkowski’s theorem (Theorem 7.28) says that if we choose R such that

Vol
(
BR(0)

)
≥ 2n det(L),

then the ball BR(0) contains a nonzero lattice point. Assuming that n is large,
we can use (7.19) to approximate the volume of BR(0), so we need to choose R
to satisfy √

2πe

n
R � 2 det(L)1/n.

Hence for large n there exists a nonzero vector v ∈ L satisfying

‖v‖ �
√

2n

πe
· (detL)1/n.

This improves the estimate in Theorem 7.25 by a factor of
√
2/πe ≈ 0.484.

Although exact bounds for the size of a shortest vector are unknown when
the dimension n is large, we can estimate its size by a probabilistic argument
that is based on the following principle:

Let BR(0) be a large ball centered at 0. Then the number of lattice
points in BR(0) is approximately equal to the volume of BR(0)
divided by the volume of a fundamental domain F .

This is reasonable, since #
(
BR(0) ∩ L

)
should be approximately the number

of copies of F that fit into BR(0). (See Exercise 7.15 for a more rigorous
justification.)

For example, if we let L = Z
2, then this principle says that the area of

a circle is approximately the number of integer points inside the circle. The
problem of estimating the error term in

#
{
(x, y) ∈ Z

2 : x2 + y2 ≤ R2
}
= πR2 + (error term)
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is a famous classical problem. In higher dimensions, the problem becomes
more difficult because, as n increases, the error created by lattice points near
the boundary of the ball can be quite large until R becomes very large. Thus
the estimate

#
{
v ∈ L : ‖v‖ ≤ R

}
≈

Vol
(
BR(0)

)

Vol(F) (7.20)

is somewhat problematic when n is large and R is not too large. Still, one can
ask for the value of R that makes the right-hand side (7.20) equal to 1, since
in some sense this is the value of R for which we might expect to first find a
nonzero lattice point in the ball.

Assuming that n is large, we use the estimate (7.19) from Theorem 7.30.
We set

(
2πe

n

)n/2

Rn ≈ Vol
(
BR(0)

)
equal to Vol(F) = det(L),

and we solve for

R ≈
√

n

2πe
(detL)1/n.

This leads to the following heuristic.

Definition. Let L be a lattice of dimension n. The Gaussian expected shortest
length is

σ(L) =

√
n

2πe
(detL)1/n. (7.21)

The Gaussian heuristic says that a shortest nonzero vector in a “randomly
chosen lattice” will satisfy

‖vshortest‖ ≈ σ(L).

More precisely, if ε > 0 is fixed, then for all sufficiently large n, a randomly
chosen lattice of dimension n will satisfy

(1− ε)σ(L) ≤ ‖vshortest‖ ≤ (1 + ε)σ(L).

(See [133] for some mathematical justification of this heuristic principle.)

Remark 7.32. For small values of n, it is better to use the exact formula (7.18)
for the volume of BR(0), so the Gaussian expected shortest length for small n is

σ(L) =
(
Γ(1 + n/2) det(L)

)1/n
/
√
π. (7.22)

For example, when n = 6, then (7.21) gives σ(L) = 0.5927(detL)1/6, while
(7.22) gives σ(L) = 0.7605(detL)1/6, which is a significant difference. On the
other hand, if n = 100, then they give

σ(L) = 2.420(detL)1/100 and σ(L) = 2.490(detL)1/100,

respectively, so the difference is much smaller.
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Example 7.33. Let (m1, . . . ,mn, S) be a knapsack problem. The associated
lattice LM ,S is generated by the rows of the matrix (7.4) given on page 383.
The matrix LM ,S has dimension n+ 1 and determinant detLM ,S = 2nS. As
explained in Sect. 7.2, the number S satisfies S = O(22n), so S1/n ≈ 4. This
allows us to approximate the Gaussian shortest length as

σ(LM ,S) =

√
n+ 1

2πe
(detLM ,S)

1/(n+1) =

√
n+ 1

2πe
(2nS)1/(n+1)

≈
√

n

2πe
· 2S1/n ≈

√
n

2πe
· 8 ≈ 1.936

√
n.

On the other hand, as explained in Sect. 7.2, the lattice LM ,S contains a
vector t of length

√
n, and knowledge of t reveals the solution to the subset-

sum problem. Hence solving SVP for the lattice LM ,S is very likely to solve
the subset-sum problem. For a further discussion of the use of lattice methods
to solve subset-sum problems, see Sect. 7.14.2.

We will find that the Gaussian heuristic is useful in quantifying the diffi-
culty of locating short vectors in lattices. In particular, if the actual shortest
vector of a particular lattice L is significantly shorter than σ(L), then lattice
reduction algorithms such as LLL seem to have a much easier time locating
the shortest vector.

A similar argument leads to a Gaussian heuristic for CVP. Thus if L ⊂ R
n

is a random lattice of dimension n and w ∈ R
n is a random point, then we

expect that the lattice vector v ∈ L closest to w satisfies

‖v −w‖ ≈ σ(L).

And just as for SVP, if L contains a point that is significantly closer than σ(L)
to w, then lattice reduction algorithms have an easier time solving CVP.

7.6 Babai’s Algorithm and Using a “Good”
Basis to Solve apprCVP

If a lattice L ⊂ R
n has a basis v1, . . . ,vn consisting of vectors that are pairwise

orthogonal, i.e., such that

vi · vj = 0 for all i �= j,

then it is easy to solve both SVP and CVP. Thus to solve SVP, we observe
that the length of any vector in L is given by the formula

‖a1v1 + a2v2 + · · ·+ anvn‖2 = a21‖v1‖2 + a22‖v2‖2 + · · ·+ a2n‖vn‖2.

Since a1, . . . , an ∈ Z, we see that the shortest nonzero vector(s) in L are
simply the shortest vector(s) in the set {±v1, . . . ,±vn}.
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Similarly, suppose that we want to find the vector in L that is closest to a
given vector w ∈ R

n. We first write

w = t1v1 + t2v2 + · · ·+ tnvn with t1, . . . , tn ∈ R.

Then for v = a1v1 + · · ·+ anvn ∈ L, we have

‖v−w‖2 = (a1− t1)2‖v1‖2+(a2− t2)2‖v2‖2+ · · ·+(an− tn)2‖vn‖2. (7.23)

The ai are required to be integers, so (7.23) is minimized if we take each ai
to be the integer closest to the corresponding ti.

v

F + v
w

The vertex of F + v that is
closest to w is a candidate
for (approximate) closest vector

L

Figure 7.3: Using a given fundamental domain to try to solve CVP

It is tempting to try a similar procedure with an arbitrary basis of L. If
the vectors in the basis are reasonably orthogonal to one another, then we
are likely to be successful in solving CVP; but if the basis vectors are highly
non-orthogonal, then the algorithm does not work well. We briefly discuss the
underlying geometry, then describe the general method, and conclude with a
2-dimensional example.

A basis {v1, . . . ,vn} for L determines a fundamental domain F in the usual
way, see (7.9). Proposition 7.18 says that the translates of F by the elements
of L fill up the entire space R

n, so any w ∈ R
n is in a unique translate F + v

of F by an element v ∈ L. We take the vertex of the parallelepiped F + v
that is closest to w as our hypothetical solution to CVP. This procedure is
illustrated in Fig. 7.3. It is easy to find the closest vertex, since

w = v + ε1v1 + ε2v2 + · · ·+ εnvn for some 0 ≤ ε1, ε2, . . . , εn < 1,
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so we simply replace εi by 0 if it is less than 1
2 and replace it by 1 if it is

greater than or equal to 1
2 .

Looking at Fig. 7.3 makes it seem that this procedure is bound to work,
but that’s because the basis vectors in the picture are reasonably orthogonal
to one another. Figure 7.4 illustrates two different bases for the same lattice.
The first basis is “good” in the sense that the vectors are fairly orthogonal;
the second basis is “bad” because the angle between the basis vectors is small.

If we try to solve CVP using a bad basis, we are likely run into problems
as illustrated in Fig. 7.5. The nonlattice target point is actually quite close to
a lattice point, but the parallelogram is so elongated that the closest vertex

A “Good Basis” A “Bad Basis”

Figure 7.4: Two different bases for the same lattice

to the target point is quite far away. And it is important to note that the
difficulties get much worse as the dimension of the lattice increases. Examples
visualized in dimension 2 or 3, or even dimension 4 or 5, do not convey the
extent to which the following closest vertex algorithm generally fails to solve
even apprCVP unless the basis is quite orthogonal.

Theorem 7.34 (Babai’s Closest Vertex Algorithm). Let L ⊂ R
n be a lattice

with basis v1, . . . ,vn, and let w ∈ R
n be an arbitrary vector. If the vectors in

the basis are sufficiently orthogonal to one another, then the following algo-
rithm solves CVP.

Write w = t1v1 + t2v2 + · · ·+ tnvn with t1, . . . , tn ∈ R.

Set ai = �ti! for i = 1, 2, . . . , n.

Return the vector v = a1v1 + a2v2 + · · ·+ anvn.

In general, if the vectors in the basis are reasonably orthogonal to one another,
then the algorithm solves some version of apprCVP, but if the basis vectors are
highly nonorthogonal, then the vector returned by the algorithm is generally
far from the lattice vector that is closest to w.

Example 7.35. Let L ⊂ R
2 be the lattice given by the basis

v1 = (137, 312) and v2 = (215,−187).
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We are going to use Babai’s algorithm (Theorem 7.34) to find a vector in L
that is close to the vector

w = (53172, 81743).

The first step is to express w as a linear combination of v1 and v2 using real
coordinates. We do this using linear algebra. Thus we need to find t1, t2 ∈ R

such that
w = t1v1 + t2v2.

Target Point

Closest Vertex

Closest Lattice
Point

Figure 7.5: Babai’s algorithm works poorly if the basis is “bad”

This gives the two linear equations

53172 = 137t1 + 215t2 and 81743 = 312t1 − 187t2, (7.24)

or, for those who prefer matrix notation,

(53172, 81743) = (t1, t2)

(
137 312
215 −187

)
. (7.25)

It is easy to solve for (t1, t2), either by solving the system (7.24) or by invert-
ing the matrix in (7.25). We find that t1 ≈ 296.85 and t2 ≈ 58.15. Babai’s
algorithm tells us to round t1 and t2 to the nearest integer and then compute

v = �t1!v1 + �t2!v2 = 297(137, 312) + 58(215,−187) = (53159, 81818).
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Then v is in L and v should be close to w. We find that

‖v −w‖ ≈ 76.12

is indeed quite small. This is to be expected, since the vectors in the given
basis are fairly orthogonal to one another, as is seen by the fact that the
Hadamard ratio

H(v1,v2) =

(
det(L)

‖v1‖‖v2‖

)1/2

≈
(

92699

(340.75)(284.95)

)1/2

≈ 0.977

is reasonably close to 1.
We now try to solve the same closest vector problem in the same lattice,

but using the new basis

v′
1 = (1975, 438) = 5v1 + 6v2 and v′

2 = (7548, 1627) = 19v1 + 23v2.

The system of linear equations

(53172, 81743) = (t1, t2)

(
1975 438
7548 1627

)
(7.26)

has the solution (t1, t2) ≈ (5722.66,−1490.34), so we set

v′ = 5723v′
1 − 1490v′

2 = (56405, 82444).

Then v′ ∈ L, but v′ is not particularly close to w, since

‖v′ −w‖ ≈ 3308.12.

The nonorthogonality of the basis {v′
1,v

′
2} is shown by the smallness of the

Hadamard ratio

H(v′
1,v

′
2) =

(
det(L)

‖v1‖‖v2‖

)1/2

≈
(

92699

(2022.99)(7721.36)

)1/2

≈ 0.077.

7.7 Cryptosystems Based on Hard
Lattice Problems

During the mid-1990s, several cryptosystems were introduced whose un-
derlying hard problem was SVP and/or CVP in a lattice L of large di-
mension n. The most important of these, in alphabetical order, were the
Ajtai–Dwork cryptosystem [4], the GGH cryptosystem of Goldreich, Gold-
wasser, and Halevi [49], and the NTRU cryptosystem proposed by Hoffstein,
Pipher, and Silverman [54].

The motivation for the introduction of these cryptosystems was twofold.
First, it is certainly of interest to have cryptosystems based on a variety of
hard mathematical problems, since then a breakthrough in solving one math-
ematical problem does not compromise the security of all systems. Second,
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lattice-based cryptosystems are frequently much faster than factorization or
discrete logarithm-based systems such as Elgamal, RSA, and ECC. Roughly
speaking, in order to achieve k bits of security, encryption and decryption
for Elgamal, RSA, and ECC require O(k3) operations, while encryption and
decryption for lattice-based systems require only O(k2) operations.6 Further,
the simple linear algebra operations used by lattice-based systems are very
easy to implement in hardware and software. However, it must be noted that
the security analysis of lattice-based cryptosystems is not nearly as well un-
derstood as it is for factorization and discrete logarithm-based systems. So
although lattice-based systems are the subject of much current research, their
real-world implementations are few in comparison with older systems.

The Ajtai–Dwork system is particularly interesting because Ajtai and
Dwork showed that their system is provably secure unless a worst-case lattice
problem can be solved in polynomial time. Offsetting this important theoret-
ical result is the practical limitation that the key size turns out to be O(n4),
which leads to enormous keys. Nguyen and Stern [95] subsequently showed
that any practical and efficient implementation of the Ajtai–Dwork system is
insecure.

The basic GGH cryptosystem, which we explain in more detail in Sect. 7.8,
is a straightforward application of the ideas that we have already discussed.
Alice’s private key is a good basis Bgood for a lattice L and her public key is
a bad basis Bbad for L. Bob’s message is a binary vector m, which he uses to
form a linear combination

∑
miv

bad
i of the vectors in Bbad. He then perturbs

the sum by adding a small random vector r. The resulting vector w differs
from a lattice vector v by the vector r. Since Alice knows a good basis for L,
she can use Babai’s algorithm to find v, and then she expresses v in terms
of the bad basis to recover m. Eve, on the other hand, knows only the bad
basis Bbad, so she is unable to solve CVP in L.

A public key in the GGH cryptosystem is a bad basis for the lattice L,
so it consists of n2 (large) numbers. In the original proposal, the key size
was O(n3 log n), but using an idea of Micciancio [85], it is possible to reduce
the key size to O(n2 log n) bits.

Goldreich, Goldwasser and Halevi conjectured that for n > 300, the CVP
underlying GGH would be intractable. However, the effectiveness of LLL-type
lattice reduction algorithms on lattices of high dimension had not, at that
time, been closely studied. Nguyen [92] showed that a transformation of the
original GGH encryption scheme reduced the problem to an easier CVP. This
enabled him to solve the proposed GGH challenge problems in dimensions up
to 350. For n > 400, the public key is approximately 128 kB.

The NTRU public key cryptosystem [54], whose original public presenta-
tion took place at the Crypto ’96 rump session, is most naturally described in
terms of quotients of polynomial rings. However, the hard problem underlying

6There are various tricks that one can use to reduce these estimates. For example, using
a small encryption exponent reduces RSA encryption to O(k2) operations, while using
product-form polynomials reduces NTRU encryption to O(k log k) operations.
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NTRU is easily transformed into an SVP (for key recovery) or a CVP (for
plaintext recovery) in a special class of lattices. The NTRU lattices, which
are described in Sect. 7.11, are lattices of even dimension n = 2N consisting
of all vectors (x,y) ∈ Z

2N satisfying

y ≡ xH (mod q)

for some fixed positive integer q that is a public parameter. (In practice, q =
O(n).) The matrix H, which is the public key, is an N -by-N circulant matrix.
This means that each successive row of H is a rotation of the previous row,
so in order to describe H, it suffices to specify its first row. Thus the public
key has size O(n log n), which is significantly smaller than GGH.

The NTRU private key is a single short vector (f , g) ∈ L. The set
consisting of the short vector (f , g), together with its partial rotations,
gives N = 1

2 dim(L) independent short vectors in L. This allows the owner
of (f , g) to solve certain instances of CVP in L and thereby recover the en-
crypted plaintext. (For details, see Sect. 7.11 and Exercise 7.36.) Thus the
security of the plaintext relies on the difficulty of solving CVP in the NTRU
lattice. Further, the vector (f , g) and its rotations are almost certainly the
shortest nonzero vectors in L, so NTRU is also vulnerable to a solution of SVP.

7.8 The GGH Public Key Cryptosystem

Alice begins by choosing a set of linearly independent vectors

v1,v2, . . . ,vn ∈ Z
n

that are reasonably orthogonal to one another. One way to do this is to fix a
parameter d and choose the coordinates of v1, . . . ,vn randomly between −d
and d. Alice can check that her choice of vectors is good by computing the
Hadamard ratio (Remark 7.27) of her basis and verifying that it is not too
small. The vectors v1, . . . ,vn are Alice’s private key. For convenience, we let V
be the n-by-n matrix whose rows are the vectors v1, . . . ,vn, and we let L be
the lattice generated by these vectors.

Alice next chooses an n-by-n matrix U with integer coefficients and
det(U) = ±1. One way to create U is as a product of a large number of
randomly chosen elementary matrices. She then computes

W = UV.

The row vectors w1, . . . ,wn of W are a new basis for L. They are Alice’s
public key.

When Bob wants to send a message to Alice, he selects a small vector m
with integer coordinates as his plaintext, e.g., m might be a binary vector.
Bob also chooses a small random perturbation vector r that acts as a ran-
dom element. For example, he might choose the coordinates of r randomly
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between −δ and δ, where δ is a fixed public parameter. He then computes the
vector

e = mW + r =
n∑

i=1

miwi + r,

which is his ciphertext. Notice that e is not a lattice point, but it is close to
the lattice point mW , since r is small.

Alice Bob

Key creation
Choose a good basis v1, . . . ,vn.
Choose an integer matrix U

satisfying det(U) = ±1.
Compute a bad basis w1, . . . ,wn

as the rows of W = UV .
Publish the public key w1, . . . ,wn.

Encryption
Choose small plaintext vector m.
Choose random small vector r.
Use Alice’s public key to compute

e = x1w1 + · · ·+ xnwn + r.
Send the ciphertext e to Alice.

Decryption
Use Babai’s algorithm to compute

the vector v ∈ L closest to e.
Compute vW−1 to recover m.

Table 7.3: The GGH cryptosystem

Decryption is straightforward. Alice uses Babai’s algorithm, as described
in Theorem 7.34, with the good basis v1, . . . ,vn to find a vector in L that is
close to e. Since she is using a good basis and r is small, the lattice vector
that she finds is mW . She then multiplies by W−1 to recover m. The GGH
cryptosystem is summarized in Table 7.3.

Example 7.36. We illustrate the GGH cryptosystem with a 3-dimensional
example. For Alice’s private good basis we take

v1 = (−97, 19, 19), v2 = (−36, 30, 86), v3 = (−184,−64, 78).

The lattice L spanned by v1, v2, and v3 has determinant det(L) = 859516,
and the Hadamard ratio of the basis is

H(v1,v2,v3) =
(
det(L)/‖v1‖ ‖v2‖ ‖v3‖

)1/3 ≈ 0.74620.
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Alice multiplies her private basis by the matrix

U =

⎛

⎝
4327 −15447 23454
3297 −11770 17871
5464 −19506 29617

⎞

⎠ ,

which has determinant det(U) = −1, to create her public basis

w1 = (−4179163,−1882253, 583183),
w2 = (−3184353,−1434201, 444361),
w3 = (−5277320,−2376852, 736426).

The Hadamard ratio of the public basis is very small,

H(v1,v2,v3) =
(
det(L)/‖w1‖ ‖w2‖ ‖w3‖

)1/3 ≈ 0.0000208.

Bob decides to send Alice the plaintext m = (86,−35,−32) using the
random element r = (−4,−3, 2). The corresponding ciphertext is

e = (86,−35,−32)

⎛

⎝
−4179163 −1882253 583183
−3184353 −1434201 444361
−5277320 −2376852 736426

⎞

⎠+ (−4,−3, 2)

= (−79081427,−35617462, 11035473).
Alice uses Babai’s algorithm to decrypt. She first writes e as a linear

combination of her private basis with real coefficients,

e ≈ 81878.97v1 − 292300.00v2 + 443815.04v3.

She rounds the coefficients to the nearest integer and computes a lattice vector

v = 81879v1 − 292300v2 + 443815v3 = (−79081423,−35617459, 11035471)
that is close to e. She then recovers m by expressing v as a linear combination
of the public basis and reading off the coefficients,

v = 86w1 − 35w2 − 32w3.

Now suppose that Eve tries to decrypt Bob’s message, but she knows only
the public basis w1,w2,w3. If she applies Babai’s algorithm using the public
basis, she finds that

e ≈ 75.76w1 − 34.52w2 − 24.18w3.

Rounding, she obtains a lattice vector

v′ = 76w1 − 35w2 − 24w3 = (−79508353,−35809745, 11095049)
that is somewhat close to e. However, this lattice vector gives the incorrect
plaintext (76,−35,−24), not the correct plaintext m = (86,−35,−32). It is
instructive to compare how well Babai’s algorithm did for the different bases.
We find that

‖e− v‖ ≈ 5.39 and ‖e− v′‖ ≈ 472004.09
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Of course, the GGH cryptosystem is not secure in dimension 3, since even
if we use numbers that are large enough to make an exhaustive search im-
practical, there are efficient algorithms to find good bases in low dimension.
In dimension 2, an algorithm for finding a good basis dates back to Gauss. A
powerful generalization to arbitrary dimension, known as the LLL algorithm,
is covered in Sect. 7.13.

Remark 7.37. We observe that GGH is an example of a probabilistic cryp-
tosystem (see Sect. 3.10), since a single plaintext leads to many different ci-
phertexts due to the choice of the random perturbation r. This leads to a
potential danger if Bob sends the same message twice using different random
perturbations, or sends different messages using the same random perturba-
tion. One possible solution is to choose the random perturbation r deter-
ministically by applying a hash function (Sect. 8.1) to the plaintext m, but
this causes other security issues. See Exercises 7.20 and 7.21 for a further
discussion.

Remark 7.38. An alternative version of GGH reverses the roles of m and r,
so the ciphertext has the form e = rW +m. Alice finds rW by computing the
lattice vector closest to e, and then she recovers the plaintext as m = e−rW .

7.9 Convolution Polynomial Rings

In this section we describe the special sort of polynomial quotient rings
that are used by the NTRU public key cryptosystem, which is the topic of
Sects. 7.10 and 7.11. The reader who is unfamiliar with basic ring theory
should read Sect. 2.10 before continuing.

Definition. Fix a positive integer N . The ring of convolution polynomials
(of rank N) is the quotient ring

R =
Z[x]

(xN − 1)
.

Similarly, the ring of convolution polynomials (modulo q) is the quotient ring

Rq =
(Z/qZ)[x]

(xN − 1)
.

Proposition 2.50 tells us that every element of R or Rq has a unique
representative of the form

a0 + a1x+ a2x
2 + · · ·+ aN−1x

N−1

with the coefficients in Z or Z/qZ, respectively. We observe that it is easier to
do computations in the rings R and Rq than it is in more general polynomial
quotient rings, because the polynomial xN − 1 has such a simple form. The
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point is that when we mod out by xN − 1, we are simply requiring xN to
equal 1. So any time xN appears, we replace it by 1. For example, if we have
a term xk, then we write k = iN + j with 0 ≤ j < N and set

xk = xiN+j = (xN )i · xj = 1i · xj = xj .

In brief, the exponents on the powers of x may be reduced modulo N .

It is often convenient to identify a polynomial

a(x) = a0 + a1x+ a2x
2 + · · ·+ aN−1x

N−1 ∈ R

with its vector of coefficients

(a0, a1, a2, . . . , aN−1) ∈ Z
N ,

and similarly with polynomials in Rq. Addition of polynomials corresponds to
the usual addition of vectors,

a(x) + b(x)←→ (a0 + b0, a1 + b1, a2 + b2, . . . , aN−1 + bN−1).

The rule for multiplication in R is a bit more complicated. We write � for
multiplication in R and Rq, to distinguish it from standard multiplication of
polynomials.

Proposition 7.39. The product of two polynomials a(x), b(x) ∈ R is given
by the formula

a(x) � b(x) = c(x) with ck =
∑

i+j≡k (mod N)

aibk−i, (7.27)

where the sum defining ck is over all i and j between 0 and N−1 satisfying the
condition i+ j ≡ k (mod N). The product of two polynomials a(x), b(x) ∈ Rq

is given by the same formula, except that the value of ck is reduced modulo q.

Proof. We first compute the usual polynomial product of a(x) and b(x), after
which we use the relation xN = 1 to combine the terms. Thus

a(x) � b(x) =

(
N−1∑

i=0

aix
i

)

�

⎛

⎝
N−1∑

j=0

bjx
j

⎞

⎠

=

2N−2∑

k=0

⎛

⎝
∑

i+j=k

aibj

⎞

⎠xk

=

N−1∑

k=0

⎛

⎝
∑

i+j=k

aibj

⎞

⎠xk +

2N−2∑

k=N

⎛

⎝
∑

i+j=k

aibj

⎞

⎠xk−N
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=

N−1∑

k=0

⎛

⎝
∑

i+j=k

aibj

⎞

⎠xk +

N−2∑

k=0

⎛

⎝
∑

i+j=k+N

aibj

⎞

⎠xk

=
N−1∑

k=0

( ∑

i+j≡k (mod N)

aibj

)
xk.

Example 7.40. We illustrate multiplication in the convolution rings R and Rq

with an example. We take N = 5 and let a(x), b(x) ∈ R be the polynomials

a(x) = 1− 2x+ 4x3 − x4 and b(x) = 3 + 4x− 2x2 + 5x3 + 2x4.

Then

a(x) � b(x) = 3− 2x− 10x2 + 21x3 + 5x4 − 16x5 + 22x6 + 3x7 − 2x8

= 3− 2x− 10x2 + 21x3 + 5x4 − 16 + 22x+ 3x2 − 2x3

= −13 + 20x− 7x2 + 19x3 + 5x4 in R = Z[x]/(x5 − 1).

If we work instead in the ring R11, then we reduce the coefficients modulo 11
to obtain

a(x) � b(x) = 9 + 9x+ 4x2 + 8x3 + 5x4 in R11 = (Z/11Z)[x]/(x5 − 1).

Remark 7.41. The convolution product of two vectors is given by

(a0, a1, a2, . . . , aN−1) � (b0, b1, b2, . . . , bN−1) = (c0, c1, c2, . . . , cN−1),

where the ck are defined by (7.27). We use � interchangeably to denote con-
volution multiplication in the rings R and Rq and the convolution product of
vectors.

There is a natural map from R to Rq in which we simply reduce the
coefficients of a polynomial modulo q. This reduction modulo q map satisfies

(
a(x) + b(x)

)
mod q =

(
a(x) mod q

)
+
(
b(x) mod q

)
, (7.28)

(
a(x) � b(x)

)
mod q =

(
a(x) mod q

)
�
(
b(x) mod q

)
. (7.29)

(In mathematical terminology, the map R→ Rq is a ring homomorphism.)
It is often convenient to have a consistent way of going in the other direc-

tion. Among the many ways of lifting, we choose the following.

Definition. Let a(x) ∈ Rq. The center-lift of a(x) to R is the unique poly-
nomial a′(x) ∈ R satisfying

a′(x) mod q = a(x)

whose coefficients are chosen in the interval

−q
2
< a′i ≤

q

2
.

For example, if q = 2, then the center-lift of a(x) is a binary polynomial.
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Remark 7.42. It is important to observe that the lifting map does not satisfy
the analogs of (7.28) and (7.29). In other words, the sum or product of the
lifts need not be equal to the lift of the sum or product.

Example 7.43. Let N = 5 and q = 7, and consider the polynomial

a(x) = 5 + 3x− 6x2 + 2x3 + 4x4 ∈ R7.

The coefficients of the center-lift of a(x) are chosen from {−3,−2, . . . , 2, 3},
so

Center-lift of a(x) = −2 + 3x+ x2 + 2x3 − 3x4 ∈ R.

Similarly, the lift of b(x) = 3 + 5x2 − 6x3 + 3x4 is 3− 2x2 + x3 + 3x4. Notice
that

(Lift of a) � (Lift of b) = 20x+ 10x2 − 11x3 − 14x4

and

(Lift of a � b) = −x+ 3x2 + 3x3

are not equal to one another, although they are congruent modulo 7.

Example 7.44. Very few polynomials in R have multiplicative inverses, but
the situation is quite different in Rq. For example, let N = 5 and q = 2. Then
the polynomial 1 + x+ x4 has an inverse in R2, since in R2 we have

(1 + x+ x4) � (1 + x2 + x3) = 1 + x+ x2 + 2x3 + 2x4 + x6 + x7 = 1.

(Since N = 5, we have x6 = x and x7 = x2.) When q is a prime, the ex-
tended Euclidean algorithm for polynomials (Proposition 2.46) tells us which
polynomials are units and how to compute their inverses in Rq.

Proposition 7.45. Let q be prime. Then a(x) ∈ Rq has a multiplicative
inverse if and only if

gcd
(
a(x), xN − 1

)
= 1 in (Z/qZ)[x]. (7.30)

If (7.30) is true, then the inverse a(x)−1 ∈ Rq can be computed using
the extended Euclidean algorithm (Proposition 2.46) to find polynomi-
als u(x),v(x) ∈ (Z/qZ)[x] satisfying

a(x)u(x) + (xN − 1)v(x) = 1.

Then a(x)−1 = u(x) in Rq.

Proof. Proposition 2.46 says that we can find polynomials u(x) and v(x) in
the polynomial ring (Z/qZ)[x] satisfying

a(x)u(x) + (xN − 1)v(x) = gcd
(
a(x), xN − 1

)
.
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If the gcd is equal to 1, then reducing modulo xN − 1 yields a(x) � u(x) = 1
in Rq. Conversely, if a(x) is a unit in Rq, then we can find a polynomial u(x)
such that a(x) � u(x) = 1 in Rq. By definition of Rq, this means that

a(x)u(x) ≡ 1 (mod (xN − 1)),

so by definition of congruences, there is a polynomial v(x) satisfying

a(x)u(x)− 1 = (xN − 1)v(x) in (Z/qZ)[x].

Example 7.46. We let N = 5 and q = 2 and give the full details for computing
(1 + x+ x4)−1 in R2. First we use the Euclidean algorithm to compute the
greatest common divisor of 1 + x+ x4 and 1− x5 in (Z/2Z)[x]. (Note that
since we are working modulo 2, we have 1− x5 = 1 + x5.) Thus

x5 + 1 = x · (x4 + x+ 1) + (x2 + x+ 1),

x4 + x+ 1 = (x2 + x)(x2 + x+ 1) + 1.

So the gcd is equal to 1, and using the usual substitution method yields

1 = (x4 + x+ 1) + (x2 + x)(x2 + x+ 1)

= (x4 + x+ 1) + (x5 + 1 + x(x4 + x+ 1))

= (x4 + x+ 1)(x3 + x2 + 1) + (x5 + 1)(x2 + x).

Hence
(1 + x+ x4)−1 = 1 + x2 + x3 in R2.

(See Exercise 1.12 for an efficient computer algorithm and Fig. 1.3 for the
“magic box method” to compute a(x)−1 in Rq.)

Remark 7.47. The ring Rq makes perfect sense regardless of whether q is
prime, and indeed there are situations in which it can be advantageous to
take q composite, for example q = 2k. In general, if q is a power of a prime p,
then in order to compute the inverse of a(x) in Rq, one first computes the
inverse in Rp, then “lifts” this value to an inverse in Rp2 , and then lifts to
an inverse in Rp4 , and so on. (See Exercise 7.27.) Similarly, if q = q1q2 · · · qr,
where each qi = pki

i is a prime power, one first computes inverses in Rqi and
then combines the inverses using the Chinese remainder theorem.

7.10 The NTRU Public Key Cryptosystem

Cryptosystems based on the difficulty of integer factorization or the discrete
logarithm problem are group-based cryptosystems, because the underlying
hard problem involves only one operation. For RSA, Diffie–Hellman, and
Elgamal, the group is the group of units modulo m for some modulus m that
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may be prime or composite, and the group operation is multiplication mod-
ulo m. For ECC, the group is the set of points on an elliptic curve modulo p
and the group operation is elliptic curve addition.

Rings are algebraic objects that have two operations, addition and mul-
tiplication, which are connected via the distributive law. In this section we
describe NTRUEncrypt, the NTRU public key cryptosystem. NTRUEncrypt
is most naturally described using convolution polynomial rings, but the un-
derlying hard mathematical problem can also be interpreted as SVP or CVP
in a lattice. We discuss the connection with lattices in Sect. 7.11.

7.10.1 NTRUEncrypt

In this section we describe NTRUEncrypt, the NTRU (pronounced en-trū)
public key cryptosystem. We begin by fixing an integer N ≥ 1 and two mod-
uli p and q, and we let R, Rp, and Rq be the convolution polynomial rings

R =
Z[x]

(xN − 1)
, Rp =

(Z/pZ)[x]

(xN − 1)
, Rq =

(Z/qZ)[x]

(xN − 1)
,

described in Sect. 7.9. As usual, we may view a polynomial a(x) ∈ R as an
element of Rp or Rq by reducing its coefficients modulo p or q. In the other
direction, we use center-lifts to move elements from Rp or Rq to R. We make
various assumptions on the parameters N , p and q, in particular we require
that N be prime and that gcd(N, q) = gcd(p, q) = 1. (The reasons for these
assumptions are explained in Exercises 7.32 and 7.37.)

We need one more piece of notation before describing NTRUEncrypt.

Definition. For any positive integers d1 and d2, we let

T (d1, d2) =

⎧
⎨

⎩
a(x) ∈ R :

a(x) has d1 coefficients equal to 1,
a(x) has d2 coefficients equal to −1,
a(x) has all other coefficients equal to 0

⎫
⎬

⎭
.

Polynomials in T (d1, d2) are called ternary (or trinary) polynomials. They are
analogous to binary polynomials, which have only 0’s and 1’s as coefficients.

We are now ready to describe NTRUEncrypt. Alice (or some trusted au-
thority) chooses public parameters (N, p, q, d) satisfying the guidelines de-
scribed earlier (or see Table 7.4). Alice’s private key consists of two randomly
chosen polynomials

f(x) ∈ T (d+ 1, d) and g(x) ∈ T (d, d). (7.31)

Alice computes the inverses

F q(x) = f(x)−1 in Rq and F p(x) = f(x)−1 in Rp. (7.32)



418 7. Lattices and Cryptography

(If either inverse fails to exist, she discards this f(x) and chooses a new one.
We mention that Alice chooses f(x) in T (d + 1, d), rather than in T (d, d),
because elements in T (d, d) never have inverses in Rq; see Exercise 7.24.)

Alice next computes

h(x) = F q(x) � g(x) in Rq. (7.33)

The polynomial h(x) is Alice’s public key. Her private key, which she’ll need
to decrypt messages, is the pair

(
f(x),F p(x)

)
. Alternatively, Alice can just

store f(x) and recompute F p(x) when she needs it.
Bob’s plaintext is a polynomial m(x) ∈ R whose coefficients satisfy − 1

2p <
mi ≤ 1

2p, i.e., the plaintext m is a polynomial in R that is the center-lift
of a polynomial in Rp. Bob chooses a random polynomial (a random ele-
ment) r(x) ∈ T (d, d) and computes7

e(x) ≡ ph(x) � r(x) +m(x) (mod q). (7.34)

Bob’s ciphertext e(x) is in the ring Rq.
On receiving Bob’s ciphertext, Alice starts the decryption process by com-

puting
a(x) ≡ f(x) � e(x) (mod q). (7.35)

She then center lifts a(x) to an element of R and does a mod p computation,

b(x) ≡ F p(x) � a(x) (mod p). (7.36)

Assuming that the parameters have been chosen properly, we now verify that
the polynomial b(x) is equal to the plaintext m(x).

NTRUEncrypt, the NTRU public key cryptosystem, is summarized in
Table 7.4.

Proposition 7.48. If the NTRUEncrypt parameters (N, p, q, d) are chosen
to satisfy

q > (6d+ 1) p, (7.37)

then the polynomial b(x) computed by Alice in (7.36) is equal to Bob’s plain-
text m(x).

Proof. We first determine more precisely the shape of Alice’s preliminary cal-
culation of a(x). Thus

a(x) ≡ f(x) � e(x) (mod q) from (7.35),

≡ f(x) �
(
ph(x) � r(x) +m(x)

)
(mod q) from (7.34),

≡ pf(x) � F q(x) � g(x) � r(x) + f(x) �m(x) (mod q) from (7.33).

≡ pg(x) � r(x) + f(x) �m(x) (mod q) from (7.32).

7Note that when we write a congruence of polynomials modulo q, we really mean that
the computation is being done in Rq .
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Public parameter creation
A trusted party chooses public parameters (N, p, q, d) with N and p
prime, gcd(p, q) = gcd(N, q) = 1, and q > (6d+ 1)p.

Alice Bob

Key creation
Choose private f ∈ T (d+ 1, d)

that is invertible in Rq and Rp.
Choose private g ∈ T (d, d).
Compute F q, the inverse of f in
Rq.
Compute F p, the inverse of f in
Rp.
Publish the public key h = F q � g.

Encryption
Choose plaintext m ∈ Rp.
Choose a random r ∈ T (d, d).
Use Alice’s public key h to
compute e ≡ pr�h+m (mod q).

Send ciphertext e to Alice.

Decryption
Compute

f � e ≡ pg � r + f �m (mod q).
Center-lift to a ∈ R and compute

m ≡ F p � a (mod p).

Table 7.4: NTRUEncryt: the NTRU public key cryptosystem

Consider the polynomial

pg(x) � r(x) + f(x) �m(x), (7.38)

computed exactly in R, rather than modulo q. We need to bound its largest
possible coefficient. The polynomials g(x) and r(x) are in T (d, d), so if, in the
convolution product g(x)�r(x), all of their 1’s match up and all of their −1’s
match up, the largest possible coefficient of g(x)�r(x) is 2d. Similarly, f(x) ∈
T (d+1, d) and the coefficients of m(x) are between − 1

2p and
1
2p, so the largest

possible coefficient of f(x)�m(x) is (2d+1)· 12p. So even if the largest coefficient
of g(x) � r(x) happens to coincide with the largest coefficient of r(x) �m(x),
the largest coefficient of (7.38) has magnitude at most

p · 2d+ (2d+ 1) · 1
2
p =

(
3d+

1

2

)
p.

Thus our assumption (7.37) ensures that every coefficient of (7.38) has mag-
nitude strictly smaller than 1

2q. Hence when Alice computes a(x) modulo q
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(i.e., in Rq) and then lifts it to R, she recovers the exact value (7.38). In other
words,

a(x) = pg(x) � r(x) + f(x) �m(x) (7.39)

exactly in R, and not merely modulo q.
The rest is easy. Alice multiplies a(x) by F p(x), the inverse of f(x) mod-

ulo p, and reduces the result modulo p to obtain

b(x) ≡ F p(x) � a(x) (mod p) from (7.36),

≡ F p(x) �
(
pg(x) � r(x) + f(x) �m(x)

)
(mod p) from (7.39),

≡ F p(x) � f(x) �m(x) (mod p) reducing mod p,

≡m(x) (mod p). from (7.32).

Hence b(x) and m(x) are the same modulo p.

Remark 7.49. The condition q > (6d + 1)p in Proposition 7.48 ensures that
decryption never fails. However, an examination of the proof shows that de-
cryption is likely to succeed even for considerably smaller values of q, since it
is highly unlikely that the positive and negative coefficients of g(x) and r(x)
will exactly line up, and similarly for f(x) and m(x). So for additional effi-
ciency and to reduce the size of the public key, it may be advantageous to
choose a smaller value of q. It then becomes a delicate problem to estimate
the probability of decryption failure. It is important that the probability of
decryption failure be very small (e.g., smaller than 2−80), since decryption
failures have the potential to reveal private key information to an attacker.

Remark 7.50. Notice that NTRUEncrypt is an example of a probabilistic
cryptosystem (Sect. 3.10), since a single plaintext m(x) has many different
encryptions ph(x)�r(x)+m(x) corresponding to different choices of the ran-
dom element r(x). As is common for such systems, cf. Remark 7.37 for GGH,
it is a bad idea for Bob to send the same message twice using different random
elements, just as it is inadvisable for Bob to use the same random element to
send two different plaintexts; see Exercise 7.34. Various ways of ameliorating
this danger for GGH, which also apply mutatis mutandis to NTRUEncrypt,
are described in Exercises 7.20 and 7.21.

Remark 7.51. The polynomial f(x) ∈ T (d + 1, d) has small coefficients, but
the coefficients of its inverse F q(x) ∈ Rq tend to be randomly and uniformly
distributed modulo q. (This is not a theorem, but it is an experimentally
observed fact.) For example, let N = 11 and q = 73 and take a random
polynomial

f(x) = x10 + x8 − x3 + x2 − 1 ∈ T (3, 2).
Then f(x) is invertible in Rq, and its inverse

F q(x) = 22x10+33x9+15x8+33x7−10x6+36x5−33x4−30x3+12x2−32x+28
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has random-looking coefficients. Similarly, in practice the coefficients of the
public key and the ciphertext,

h(x) ≡ F q(x) � g(x) (mod q) and e(x) ≡ pr(x) � h(x) +m(x) (mod q),

also appear to be randomly distributed modulo q.

Remark 7.52. As noted in Sect. 7.7, a motivation for using lattice-based cryp-
tosystems is their high speed compared to discrete logarithm and factoriza-
tion-based cryptosystems. How fast is NTRUEncrypt? The most time consum-
ing part of encryption and decryption is the convolution product. In general, a
convolution product a�b requires N2 multiplications, since each coefficient is
essentially the dot product of two vectors. However, the convolution products
required by NTRUEncrypt have the form r �h, f �e, and F p �a, where r, f ,
and F p are ternary polynomials. Thus these convolution products can be
computed without any multiplications; they each require approximately 2

3N
2

additions and subtractions. (If d is smaller than N/3, the first two require
only 2

3dN additions and subtractions.) Thus NTRUEncrypt encryption and
decryption take O(N2) steps, where each step is extremely fast.

Example 7.53. We present a small numerical example of NTRUEncrypt with
public parameters

(N, p, q, d) = (7, 3, 41, 2).

We have
41 = q > (6d+ 1)p = 39,

so Proposition 7.48 ensures that decryption will work. Alice chooses

f(x) = x6−x4+x3+x2−1 ∈ T (3, 2) and g(x) = x6+x4−x2−x ∈ T (2, 2).

She computes the inverses

F q(x) = f(x)−1 mod q = 8x6 + 26x5 + 31x4 + 21x3 + 40x2 + 2x+ 37 ∈ Rq,

F p(x) = f(x)−1 mod p = x6 + 2x5 + x3 + x2 + x+ 1 ∈ Rp.

She stores
(
f(x),F p(x)

)
as her private key and computes and publishes her

public key

h(x) = F q(x) � g(x) = 20x6 + 40x5 + 2x4 + 38x3 + 8x2 + 26x+ 30 ∈ Rq.

Bob decides to send Alice the message

m(x) = −x5 + x3 + x2 − x+ 1

using the random element

r(x) = x6 − x5 + x− 1.
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Bob computes and sends to Alice the ciphertext

e(x) ≡ pr(x)�h(x)+m(x) ≡ 31x6+19x5+4x4+2x3+40x2+3x+25 (mod q).

Alice’s decryption of Bob’s message proceeds smoothly. First she computes

f(x) � e(x) ≡ x6 + 10x5 + 33x4 + 40x3 + 40x2 + x+ 40 (mod q). (7.40)

She then center-lifts (7.40) modulo q to obtain

a(x) = x6 + 10x5 − 8x4 − x3 − x2 + x− 1 ∈ R.

Finally, she reduces a(x) modulo p and computes

F p(x) � a(x) ≡ 2x5 + x3 + x2 + 2x+ 1 (mod p). (7.41)

Center-lifting (7.41) modulo p retrieves Bob’s plaintext m(x) = −x5 + x3 +
x2 − x+ 1.

7.10.2 Mathematical Problems for NTRUEncrypt

As noted in Remark 7.51, the coefficients of the public key h(x) appear to be
random integers modulo q, but there is a hidden relationship

f(x) � h(x) ≡ g(x) (mod q), (7.42)

where f(x) and g(x) have very small coefficients. Thus breaking NTRUEn-
crypt by finding the private key comes down to solving the following problem:

The NTRU Key Recovery Problem
Given h(x), find ternary polynomials f(x) and g(x) satis-
fying f(x) � h(x) ≡ g(x) (mod q).

Remark 7.54. The solution to the NTRU key recovery problem is not unique,
because if

(
f(x), g(x)

)
is one solution, then

(
xk � f(x), xk � g(x)

)
is also a

solution for every 0 ≤ k < N . The polynomial xk � f(x) is called a rotation
of f(x) because the coefficients have been cyclically rotated k positions. Rota-
tions act as private decryption keys in the sense that decryption with xk�f(x)
yields the rotated plaintext xk �m(x).

More generally, any pair of polynomials
(
f(x), g(x)

)
with sufficiently small

coefficients and satisfying (7.42) serves as an NTRU decryption key. For ex-
ample, if f(x) is the original decryption key and if θ(x) has tiny coefficients,
then θ(x) � f(x) may also work as a decryption key.

Remark 7.55. Why would one expect the NTRU key recovery problem to
be a hard mathematical problem? A first necessary requirement is that the
problem not be practically solvable by a brute-force or collision search. We
discuss such searches later in this section. More importantly, in Sect. 7.11.2
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we prove that solving the NTRU key recovery problem is (almost certainly)
equivalent to solving SVP in a certain class of lattices. This relates the NTRU
problem to a well-studied problem, albeit for a special collection of lattices.
The use of lattice reduction is currently the best known method to recover an
NTRU private key from the public key. Is lattice reduction the best possible
method? Just as with integer factorization and the various discrete logarithm
problems underlying other cryptosystems, no one knows for certain whether
faster algorithms exist. So the only way to judge the difficulty of the NTRU key
recovery problem is to note that it has been well studied by the mathematical
and cryptographic community. Then a quantitative estimate of the difficulty
of solving the problem is obtained by applying the fastest algorithm currently
known.

How hard is Eve’s task if she tries a brute-force search of all possible
private keys? Note that Eve can determine whether she has found the private
key f(x) by verifying that f(x)�h(x) (mod q) is a ternary polynomial. (In all
likelihood, the only polynomials with this property are the rotations of f(x),
but if Eve happens to find another ternary polynomial with this property, it
will serve as a decryption key.)

So we need to compute the size of the set of ternary polynomials. In
general, we can specify an element of T (d1, d2) by first choosing d1 coefficients
to be 1 and then choosing d2 of the remaining N − d coefficients to be −1.
Hence

#T (d1, d2) =
(
N

d1

)(
N − d1
d2

)
=

N !

d1! d2! (N − d1 − d2)!
. (7.43)

We remark that this number is maximized if d1 and d2 are both approxi-
mately N/3.

For a brute-force search, Eve must try each polynomial in T (d + 1, d)
until she finds a decryption key, but note that all of the rotations of f(x)
are decryption keys, so there are N winning choices. Hence it will take Eve
approximately #T (d+ 1, d)/N tries to find some rotation of f(x).

Example 7.56. We consider the set of NTRUEncrypt parameters

(N, p, q, d) = (251, 3, 257, 83).

(This set does not satisfy the q > (6d + 1)p requirement, so there may be a
rare decryption failure; see Remark 7.49.) Eve expects to check approximately

T (84, 83)
251

=
1

251

(
251

84

)(
167

83

)
≈ 2381.6

polynomials before finding a decryption key.

Remark 7.57. Not surprisingly, if Eve has a sufficient amount of storage,
she can use a collision algorithm to search for the private key. (This was
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first observed by Andrew Odlyzko.) We describe the basic idea. Eve searches
through pairs of ternary polynomials

f1(x) =
∑

0≤i<N/2

aix
i and f2(x) =

∑

N/2≤i<N

aix
i

having the property that f1(x) + f2(x) ∈ T (d+ 1, d). She computes

f1(x) � h(x) (mod q) and − f2(x) � h(x) (mod q)

and puts them into bins depending on their coefficients. The bins are set up
so that when a polynomial from each list lands in the same bin, the quantity

(
f1(x) + f2(x)

)
� h(x) (mod q)

has small coefficients, and hence f1(x) + f2(x) is a decryption key. For further
details, see [101].

The net effect of the collision algorithm is, as usual, to more or less take
the square root of the number of steps required to find a key, so the collision-
search security is approximately the square root of (7.43). Returning to Ex-

ample 7.56, a collision search takes on the order of
√
2381.6 ≈ 2190.8 steps.

In general, if we maximize the size of T (d+1, d) by setting d ≈ N/3, then
we can use Stirling’s formula (Proposition 7.29) to estimate

#T (d+ 1, d) ≈ N !

((N/3)!)3
≈
(
N

e

)N

·
((

N

3e

)N/3
)−3

≈ 3N .

So a collision search in this case take O(3N/2/
√
N ) steps.

Remark 7.58. We claimed earlier that f(x) and its rotations are probably the
only decryption keys in T (d + 1, d). To see why this is true, we ask for the
probability that some random f(x) ∈ T (d+ 1, d) has the property that

f(x) � h(x) (mod q) is a ternary polynomial. (7.44)

Treating the coefficients of (7.44) as independent8 random variables that are
uniformly distributed modulo q, the probability that any particular coefficient
is ternary is 3/q, and hence the probability that every coefficient is ternary is
approximately (3/q)N . Hence

(
Expected number of decryp-
tion keys in T (d+ 1, d)

)
≈ Pr

(
f(x) ∈ T (d+ 1, d)
is a decryption key

)
×#T (d+ 1, d)

=

(
3

q

)N (
N

d+ 1

)(
N − d− 1

d

)
.

8The coefficients of f(x) � h(x) (mod q) are not entirely independent, but they are
sufficiently independent for this to be a good approximation.
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Returning to Example 7.56, we see that the expected number of decryption
keys in T (84, 83) for N = 251 and q = 257 is

(
3

257

)251(
251

84

)(
167

83

)
≈ 2−1222.02. (7.45)

Of course, if h(x) is an NTRUEncrypt public key, then there do exist de-
cryption keys, since we built the decryption key f(x) into the construction
of h(x). But the probability calculation (7.45) makes it unlikely that there
are any additional decryption keys beyond f(x) and its rotations.

7.11 NTRUEncrypt as a Lattice Cryptosystem

In this section we explain how NTRU key recovery can be formulated as
a shortest vector problem in a certain special sort of lattice. Exercise 7.36
sketches a similar description of NTRU plaintext recovery as a closest vector
problem.

7.11.1 The NTRU Lattice

Let

h(x) = h0 + h1x+ · · ·+ hN−1x
N−1

be an NTRUEncrypt public key. The NTRU lattice LNTRU
h associated to h(x)

is the 2N -dimensional lattice spanned by the rows of the matrix

MNTRU
h =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 · · · 0 h0 h1 · · · hN−1

0 1 · · · 0 hN−1 h0 · · · hN−2

...
...

. . .
...

...
...

. . .
...

0 0 · · · 1 h1 h2 · · · h0
0 0 · · · 0 q 0 · · · 0
0 0 · · · 0 0 q · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 0 0 · · · q

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Notice that MNTRU
h is composed of four N -by-N blocks:

Upper left block = Identity matrix,

Lower left block = Zero matrix,

Lower right block = q times the identity matrix,

Upper right block = Cyclical permutations of the coefficients of h(x).
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It is often convenient to abbreviate the NTRU matrix as

MNTRU
h =

(
I h
0 qI

)
, (7.46)

where we view (7.46) as a 2-by-2 matrix with coefficients in R.
We are going to identify each pair of polynomials

a(x) = a0 + a1x+ · · ·+ aN−1x
N−1 and b(x) = b0 + b1x+ · · ·+ bN−1x

N−1

in R with a 2N -dimensional vector

(a, b) = (a0, a1, . . . , aN−1, b0, b1, . . . , bN−1) ∈ Z
2N .

We now suppose that the NTRUEncrypt public key h(x) was created using
the private polynomials f(x) and g(x) and compute what happens when we
multiply the NTRU matrix by a carefully chosen vector.

Proposition 7.59. Assuming that f(x) �h(x) ≡ g(x) (mod q), let u(x) ∈ R
be the polynomial satisfying

f(x) � h(x) = g(x) + qu(x). (7.47)

Then

(f ,−u)MNTRU
h = (f , g), (7.48)

so the vector (f , g) is in the NTRU lattice LNTRU
h .

Proof. It is clear that the first N coordinates of the product (7.48) are the
vector f , since the left-hand side ofMNTRU

h is the identity matrix atop the zero
matrix. Next consider what happens when we multiply the column ofMNTRU

h

whose top entry is hk by the vector (f ,−u). We get the quantity

hkf0 + hk−1f1 + · · ·+ hk+1fN−1 − quk,

which is the kth entry of the vector f(x) � h(x)− qu(x). From (7.47), this is
the kth entry of the vector g, so the secondN coordinates of the product (7.48)
form the vector g. Finally, (7.48) says that we can get the vector (f , g) by
taking a certain linear combination of the rows of MNTRU

h . Hence (f , g) ∈
LNTRU
h .

Remark 7.60. Using the abbreviation (7.46) and multiplying 2-by-2 matrices
having coefficients in R, the proof of Proposition 7.59 becomes the succinct
computation

(f ,−u)
(
1 h
0 q

)
= (f ,f � h− qu) = (f , g).

Proposition 7.61. Let (N, p, q, d) be NTRUEncrypt parameters, where for
simplicity we will assume that

p = 3 and d ≈ N/3 and q ≈ 6pd ≈ 2pN.

Let LNTRU
h be an NTRU lattice associated to the private key (f , g).
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(a) det(LNTRU
h ) = qN .

(b)
∥
∥(f , g)

∥
∥ ≈

√
4d ≈

√
4N/3 ≈ 1.155

√
N .

(c) The Gaussian heuristic predicts that the shortest nonzero vector in the
NTRU lattice has length

σ
(
LNTRU
h

)
≈
√
Nq/πe ≈ 0.838N.

Hence if N is large, then there is a high probability that the shortest nonzero
vectors in LNTRU

h are (f , g) and its rotations. Further,

∥
∥(f , g)

∥
∥

σ(L)
≈ 1.38√

N
,

so the vector (f , g) is a factor of O(1/
√
N ) shorter than predicted by the

Gaussian heuristic.

Proof. (a) Proposition 7.20 says that det(LNTRU
h ) is equal to the determinant

of the matrix MNTRU
h . The matrix is upper triangular, so its determinant is

the product of the diagonal entries, which equals qN .

(b) Each of f and g has (approximately) d coordinates equal to 1 and d
coordinates equal to −1.
(c) Using (a) and keeping in mind that LNTRU

h has dimension 2N , we estimate
the Gaussian expected shortest length using the formula (7.21),

σ
(
LNTRU
h

)
=

√
2N

2πe
(detL)1/2N =

√
Nq

πe
≈
√

6

πe
N.

7.11.2 Quantifying the Security of an NTRU Lattice

Proposition 7.61 says that Eve can determine Alice’s private NTRU key if she
can find a shortest vector in the NTRU lattice LNTRU

h . Thus the security of
NTRUEncrypt depends at least on the difficulty of solving SVP in LNTRU

h .
More generally, if Eve can solve apprSVP in LNTRU

h to within a factor of
approximately N ε for some ε < 1

2 , then the short vector that she finds will
probably serve as a decryption key.

This leads to the question of how to estimate the difficulty of finding a
short, or shortest, vector in an NTRU lattice. The LLL algorithm that we
describe in Sect. 7.13.2 runs in polynomial time and solves apprSVP to within
a factor of 2N , but ifN is large, LLL does not find very small vectors in LNTRU

h .
In Sect. 7.13.4 we describe a generalization of the LLL algorithm, called BKZ-
LLL, that is able to find very small vectors. The BKZ-LLL algorithm includes
a blocksize parameter β, and it solves apprSVP to within a factor of β2N/β ,
but its running time is exponential in β.
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Unfortunately, the operating characteristics of standard lattice reduction
algorithms such as BKZ-LLL are not nearly as well understood as are the
operating characteristics of sieves, the index calculus, or Pollard’s ρ method.
This makes it difficult to predict theoretically how well a lattice reduction
algorithm will perform on any given class of lattices. Thus in practice, the
security of a lattice-based cryptosystem such as NTRUEncrypt must be de-
termined experimentally.

Roughly, one takes a sequence of parameters (N, q, d) in whichN grows and
such that certain ratios involving N , q, and d are held approximately constant.
For each set of parameters, one runs many experiments using BKZ-LLL with
increasing block size β until the algorithm finds a short vector in LNTRU

h .
Then one plots the logarithm of the average running time against N , verifies
that the points approximately lie on line, and computes the best-fitting line

log(Running Time) = AN +B. (7.49)

After doing this for many values of N up to the point at which the com-
putations become infeasible, one can use the line (7.49) to extrapolate the
expected amount of time it would take to find a private key vector in an
NTRU lattice LNTRU

h for larger values of N . Such experiments suggest that
values of N in the range from 250 to 1000 yield security levels comparable to
currently secure implementations of RSA, Elgamal, and ECC. Details of such
experiments are described in [102].

Remark 7.62. Proposition 7.61 says that the short target vectors in an NTRU
lattice are O(

√
N ) shorter than predicted by the Gaussian heuristic. Theoret-

ically and experimentally, it is true that if a lattice of dimension n has a vector
that is extremely small, say O(2n) shorter than the Gaussian prediction, then
lattice reduction algorithms such as LLL and its variants are very good at
finding the tiny vector. It is a natural and extremely interesting question to
ask whether vectors that are only O(nε) shorter than the Gaussian prediction
might similarly be easier to find. At this time, no one knows the answer to
this question.

7.12 Lattice-Based Digital Signature Schemes

We have already seen digital signatures schemes whose security depends on the
integer factorization problem (Sect. 4.2) and on the discrete logarithm prob-
lem in the multiplicative group (Sect. 4.3) or in an elliptic curve (Sect. 6.4.3).
In this section we briefly discuss how digital signature schemes may be con-
structed from hard lattice problems.

7.12.1 The GGH Digital Signature Scheme

It is easy to convert the CVP idea underlying GGH encryption into a lattice-
based digital signature scheme. Samantha knows a good (i.e., short and



7.12. Lattice-Based Digital Signature Schemes 429

reasonably orthogonal) private basis B for a lattice L, so she can use Babai’s
algorithm (Theorem 7.34) to solve, at least approximately, the closest vector
problem in L for a given vector d ∈ R

n. She expresses her solution s ∈ L in
terms of a bad public basis B′. The vector s is Samantha’s signature on the
document d. Victor can easily check that s is in L and is close to d. The GGH
digital signature scheme is summarized in Table 7.5.

Samantha Victor

Key creation
Choose a good basis v1, . . . ,vn and

a bad basis w1, . . . ,wn for L.
Publish the public key w1, . . . ,wn.

Signing
Choose document d ∈ Z

n to sign.
Use Babai’s algorithm with the

good basis to compute a vector
s ∈ L that is close to d.

Write s = a1w1 + · · ·+ anwn.
Publish the signature (a1, . . . , an).

Verification
Compute s = a1w1 + · · ·+ anwn.
Verify that s is sufficiently close to d.

Table 7.5: The GGH digital signature scheme

Notice the tight fit between the digital signature and the underlying hard
problem. The signature s ∈ L is a solution to apprCVP for the vector d ∈ R

n,
so signing a document is equivalent to solving apprCVP.

Remark 7.63. In a lattice-based digital signature scheme, the digital docu-
ment to be signed is a vector in R

n. Just as with other signature schemes, in
practice Samantha applies a hash function to her actual document in order
to create a short document of just a few hundred bits, which is then signed.
(See Remark 4.2.) For lattice-based signatures, one uses a hash function whose
output is a vector in Z

n having coordinates in some specified range.

Example 7.64. We illustrate the GGH digital signature scheme using the lat-
tice and the good and bad bases from Example 7.36 on page 410. Samantha
decides to sign the document

d = (678846, 651685, 160467) ∈ Z
3.

She uses Babai’s algorithm to find a vector

s = 2213v1 + 7028v2 − 6231v3 = (678835, 651671, 160437) ∈ L
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that is quite close to d,
‖s− d‖ ≈ 34.89.

Samantha next uses linear algebra to express s in terms of the bad basis,

s = 1531010w1 − 553385w2 − 878508w3,

where w1,w2,w3 are the vectors on page 410. She publishes

(1531010,−553385,−878508)

as her signature for the document d. Victor verifies the signature by using the
public basis to compute

s = 1531010w1 − 553385w2 − 878508w3 = (678835, 651671, 160437),

which is automatically a vector in L, and then verifying that ‖s−d‖ ≈ 34.89
is small.

We observe that if Eve attempts to sign d using Babai’s algorithm with
the bad basis {w1,w2,w3}, then the signature that she obtains is

s′ = (2773584, 1595134,−131844) ∈ L.

This vector is not a good solution to apprCVP, since ‖s′ − d‖ > 106.

Remark 7.65 (Key Size Issues). The GGH signature scheme suffers the same
drawback as the GGH cryptosystem, namely security requires lattices of
high dimension, which in turn lead to very large public verification keys;
cf. Sect. 7.7. It is thus tempting to use an NTRU lattice LNTRU as the pub-
lic key, but there is an initial difficulty because LNTRU has dimension 2N ,
so the known (secret) short vector (f , g) and its rotations (xi � f , xi � g)
for 0 ≤ i < N give only half a very short basis for LNTRU. Using a technique
described in [55], it is possible to extend the half-basis to a full basis that
is short enough to make an NTRU signature scheme feasible. However, both
GGH and NTRU signature schemes have a more serious shortcoming which
we now describe.

7.12.2 Transcript Analysis

In any digital signature scheme, each document/signature pair (d, s) reveals
some information about the private signing key v, since at the very least, it re-
veals that the document d signed with the private key v yields the signature s.
Hence a sufficiently long transcript of signed documents

(d1, s1), (d2, s2), (d3, s3), . . . , (dr, sr) (7.50)

may reveal information about either the signing key or how to sign additional
documents.
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We illustrate with the GGH signature scheme. By construction, the sig-
nature s is created using Babai’s algorithm to solve apprCVP with the good
basis v1, . . . ,vn and target vector d. It follows that the difference d − s has
the form

d− s =

n∑

i=1

εi(d, s)vi with
∣
∣εi(d, s)

∣
∣ ≤ 1

2
.

As d and s vary, the εi(d, s) values are more or less randomly distributed
between − 1

2 and 1
2 . Hence the transcript (7.50) reveals to an adversary a large

number of points that are randomly scattered in the fundamental domain

F =
{
ε1v1 + ε2v2 + · · ·+ εnvn : − 1

2 < ε1, . . . , εn ≤ 1
2

}

spanned by the good secret basis v1, . . . ,vn. Using this collection of points, it
may be possible to (approximately) recover the basis vectors spanning the fun-
damental domain F . An algorithm to perform this task was given by Nguyen
and Regev [93, 94]. They used their algorithm to break instances of GGH in
dimension n with a transcript consisting of roughly n2 signatures, and they
gave similar applications to NTRU signatures. It is possible to blunt these at-
tacks by introducing small biased perturbations into each signature [55, 56],
but the process is inefficient and may still be subject to transcript attacks [39].

7.12.3 Rejection Sampling

An alternative method of thwarting transcript attacks was proposed by
Lyubashevsky [80, 79, 78]. It is based on an idea from statistics called rejection
sampling, in which one generates samples from a desired probability distri-
bution by using samples from another distribution. There are now a number
of proposed digital signature schemes that use rejection sampling to achieve
transcript security. In this section we discuss rejection sampling as a general
technique, after which we apply rejection sampling to an abstract signature
scheme (Sect. 7.12.4) and illustrate the method with a specific lattice-based
scheme (Sect. 7.12.5).

The notion of rejection sampling was introduced by J. von Neumann in
1951 [146]. His aim was to produce samples from a distribution F (x), which
is itself hard to sample, by using another distribution G(x) whose samples
are easy to produce.9 The use of rejection sampling in the context of foiling
a transcript attack on a digital signature scheme amounts to a clever reversal of
this situation. Imagine that the signature scheme somehow generates samples
that can be used to produce a distribution G(x). The signature scheme is
vulnerable to a transcript attack if this distribution G(x) possesses features
that provide information about the private key, since then sufficiently many
samples may reveal the key. In order to foil a transcript attack, one wants
to hide the unique identifying features of G(x). Under certain circumstances,

9Distribution functions are discussed in Sect. 5.3.4.
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there is a Monte Carlo type algorithm which does this.10 It works by rejecting
certain samples so that the resulting collection is disguised as a generic desired
distribution F (x).

Let F (x) and G(x) be probability distribution functions having the prop-
erty that

F (x) ≤MG(x) for some constant M .

The goal is to generate samples that are distributed according to F (x) from
samples generated from G(x). To do this, let U(x) be the uniform distribution
on the unit interval [0, 1]. One repeatedly takes samples x from G(x) and
samples u from U(x). The pair

(x, u) is

{
accepted if u < F (x)/MG(x),

rejected otherwise.

y

x

(−1, 1)

(−1, −1) (1, −1)

(1, 1)

Figure 7.6: Rejection sampling on the circle

Suppose that (x1, u1), (x2, u2), . . . is the list of accepted pairs. Then one can
show, using Bayes’s formula, that the collection of points

{(
xi, uiMG(xi)

)
: i = 1, 2, 3, . . .

}

is uniformly distributed under the graph of F (x). We do not give the proof,
but instead consider the following example where the situation is particularly
intuitive.

Suppose that we have a way of uniformly choosing numbers in the square

S =
{
(x, y) : −1 ≤ x ≤ 1, −1 ≤ y ≤ 1

}

and that we want to choose points that are uniformly distributed in the circle

C =
{
(x, y) : x2 + y2 ≤ 1

}

10Monte Carlo algorithms are discussed in Sect. 5.3.3.
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as illustrated in Fig. 7.6. So our samples are points (x, y) in the plane, and our
uniform distribution functions on the circle and the square are, respectively,11

FC(x, y) =

⎧
⎨

⎩

1

π
if x2 + y2 ≤ 1,

0 otherwise;

GS(x, y) =

⎧
⎨

⎩

1

4
if −1 ≤ x ≤ 1 and 1 ≤ y ≤ 1,

0 otherwise.

For all (x, y) we clearly have

FC(x, y) ≤MGS(x, y) with M =
4

π
,

since FC(x, y)/GS(x, y) =M if (x, y) is in the circle, and equals 0 otherwise.
Now the pair

(
(x, y), u

)
, where (x, y) is uniformly sampled from the square

and u is uniformly sampled from the interval [0, 1], will be accepted if and only
if FC(x, y)/MGS(x, y) = 1, which means it is accepted if and only if (x, y) is
in the circle. In brief, rejection sampling amounts to choosing points uniformly
in the square and rejecting those points which do not lie in the circle. The
result is a collection of points uniformly distributed in the circle.

7.12.4 Rejection Sampling Applied to an Abstract
Signature Scheme

In this section we describe, abstractly, how rejection sampling can be used to
protect a digital signature scheme from transcript attacks. Note that we are
describing the properties that such a scheme should have, without giving any
indication of how one might create such a scheme. (Just as Diffie and Hellman
described what a public key cryptosystem should do, without providing an
example of such a system.)

We consider an abstract digital signature scheme (KPri,KPub, Sign,Verify)
as described in Sect. 4.1. We assume further that the signing algorithm Sign
uses three inputs, the private key KPri, the document hash D being signed,
and a random number R. Rejection sampling introduces a conditional prop-
erty P. In order to sign D, Samantha chooses a random R and computes the
signature S = Sign(KPri, D,R). If S has property P, then she publishes S as
the signature on D; but if S does not have property P, then she rejects S,
chooses a new value for R, and repeats the process. This means that in any
transcript of Samantha’s signatures (D1, S1), (D2, S2), . . . , every Si has prop-
erty P.

Now for the tricky part. We want the attacker Eve, using only the
public key KPub, to be able to create a list of pairs (D′

1, S
′
1), (D

′
2, S

′
2), . . .

satisfying:

11Why does FC have the 1/π and GS have the 1/4? It’s because the total probabilities∫∞
−∞ FC(x, y) dx dy and

∫∞
−∞ GS(x, y) dx dy must equal 1.
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(i) S′
i is a valid signature on D′

i for the key KPub, i.e.,

Verify(KPub, D′
i, S

′
i) = TRUE for all i.

(ii) The distribution of Eve’s fake transcript (D′
1, S

′
1), (D

′
2, S

′
2), . . . is indis-

tinguishable from a transcript that Samantha creates using her private
key KPri.
Property (i) may seem problematic, since it says that Eve can produce an

unlimited number of valid document/signature pairs (D,S). However, recall
that D is really a hash of the actual document being signed. (See Sects. 4.2
and 8.1 for a discussion of hash functions and their uses.) So although we
want Eve to be able to easily create valid (D,S) pairs, she will not know what
document she has signed, because she is not able to invert the hash function.
In other words, although Eve can create valid pairs (D,S), if someone hands
her a particular D, she will not be able to find an associated S. Thus security,
as always, relies on various (reasonable) assumptions, in this case that we have
a sufficiently cryptographically secure hash function.

7.12.5 The NTRU Modular Lattice Signature Scheme

Lyubashevsky gave an example of a transcript-secure signature scheme based
on the learning with errors (LWE) problem. We briefly sketch a new rejection-
sampling signature scheme called NTRUMLS (NTRU modular lattice signa-
ture scheme) that uses NTRU lattices [57].12 We set one piece of notation.
The sup norm of a polynomial a(x) = a0 + a1x+ · · ·+ aN−1x

N−1 is denoted

‖a‖∞ = max
{
|a0|, |a1|, . . . , |aN−1|

}
.

The basic set-up for NTRUMLS is similar to the set-up for NTRUEn-
crypt in Sect. 7.10, with parameters (N, p, q), private key polynomials f and g
with small coefficients, and public key polynomial h ≡ f−1 � g (mod q).13

NTRUMLS also uses a public rejection parameter B and a public hash func-
tion that takes a digital document μ and a public key h and creates a pair of
mod p polynomials:

Hash : {documents} × {public keys} −→ {pairs of mod p polynomials}
Hash(μ,h) = (sp, tp).

An NTRUMLS signature on the document μ for the public key h is a pair of
polynomials (s, t) satisfying the following three conditions:

12NTRUMLS was released in 2014, so it is very new. We present it as an illustration of
how rejection sampling might work in practice, but as with all new systems, NTRUMLS
will require years of scrutiny before it can be deemed secure.

13There are some further minor requirements that we omit, since our aim is to illustrate
the idea of rejection sampling. See Exercise 7.42.
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(a) t ≡ s � h (mod q).

(b) s ≡ sp (mod p) and t ≡ tp (mod p), where (sp, tp) = Hash(μ,h).

(c) ‖s‖∞ ≤ 1
2q −B and ‖t‖∞ ≤ 1

2q −B.

Here are some further remarks on the three signing conditions:

(a) This ties the signature to the signing key. It is equivalent to the assertion
that (s, t) is in the lattice LNTRU

h associated to h; cf. Sect. 7.11.1.

(b) This ties the signature (s, t) to the document hash (sp, tp). It is equiv-
alent to the assertion that the difference (s, t) − (sp, tp) is in the lat-
tice (pZ)2N .

(c) This is the rejection sampling condition, since it says that we reject
the signature (s, t) if it is too large. Note the tension inherent in this
condition. If B is too large, then it will be difficult to generate signatures,
while one can show that if B is not large enough, then transcripts leak
private key information.

Using the private key (f , g), it is not hard to create a pair (s, t) satisfying
conditions (a) and (b). Further, for appropriately chosen values of p, q, and B,
one can show that it will not take too many tries to find an (s, t) that also
satisfies condition (c). (See Exercise 7.42 for details.)

The transcript security analysis relies on the following two facts. The proof,
which we omit (see [57]), relies on various reasonable randomness assumptions.

• When the signing algorithm is applied to a given document hash (sp, tp),
each pair (s, t) satisfying conditions (a), (b), (c) has an equal probability
of being chosen as the signature.

• Suppose that an attacker creates a list of (s, t) pairs by randomly choos-
ing s’s satisfying ‖s‖∞ ≤ 1

2q − B, computing t ≡ s � h (mod q), and
keeping the pair (s, t) if ‖t‖∞ ≤ 1

2q − B. Then the reduction of his list
modulo p is uniformly randomly distributed among all pairs of mod p
polynomials. (Note that the each of the attacker’s (s, t) pairs is a valid
signature on the document hash (s mod p, t mod p) for the verification
key h. He is thus able to create an arbitrarily long transcript of valid sig-
natures, but he not able to specify, a priori, the tp parts of the document
hashes that he is signing.)

These two facts show that an attacker, using only the public key h, can
create a transcript of signed document hashes that is indistinguishable from
a transcript created using the private key (f , g). Hence the latter transcript
contains no information about the private key. We refer the reader to the ref-
erences [57, 80, 79, 78] for further details on NTRUMLS and other transcript-
secure lattice-based signature schemes.
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7.13 Lattice Reduction Algorithms

We have now seen several cryptosystems whose security depends on the diffi-
culty of solving apprSVP and/or apprCVP in various types of lattices. In this
section we describe an algorithm called LLL that solves these problems to
within a factor of Cn, where C is a small constant and n is the dimension
of the lattice. Thus in small dimensions, the LLL algorithm comes close to
solving SVP and CVP, but in large dimensions it does not do as well. Ulti-
mately, the security of lattice-based cryptosystems depends on the inability
of LLL and other lattice reduction algorithms to efficiently solve apprSVP and
apprCVP to within a factor of, say, O(

√
n ). We begin in Sect. 7.13.1 with

Gauss’s lattice reduction algorithm, which rapidly solves SVP in lattices of
dimension 2. Next, in Sect. 7.13.2, we describe and analyze the LLL algo-
rithm. Section 7.13.3 explains how to combine LLL and Babai’s algorithm
to solve apprCVP, and we conclude in Sect. 7.13.4 by briefly describing some
generalizations of LLL.

7.13.1 Gaussian Lattice Reduction in Dimension 2

The algorithm for finding an optimal basis in a lattice of dimension 2 is essen-
tially due to Gauss. The underlying idea is to alternately subtract multiples
of one basis vector from the other until further improvement is not possible.

So suppose that L ⊂ R
2 is a 2-dimensional lattice with basis vectors v1

and v2. Swapping v1 and v2 if necessary, we may assume that ‖v1‖ < ‖v2‖.
We now try to make v2 smaller by subtracting a multiple of v1. If we were
allowed to subtract an arbitrary multiple of v1, then we could replace v2 with
the vector

v∗
2 = v2 −

v1 · v2

‖v1‖2
v1,

which is orthogonal to v1. The vector v∗
2 is the projection of v2 onto the

orthogonal complement of v1. (See Fig. 7.7.)

v1

v2

v2
∗

Figure 7.7: v∗
2 is the projection of v2 onto the orthogonal complement of v1

Of course, this is cheating, since the vector v∗
2 is unlikely to be in L. In

reality we are allowed to subtract only integer multiples of v1 from v2. So we
do the best that we can and replace v2 with the vector

v2 −mv1 with m =

⌊
v1 · v2

‖v1‖2
⌉
.
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If v2 is still longer than v1, then we stop. Otherwise, we swap v1 and v2

and repeat the process. Gauss proved that this process terminates and that
the resulting basis for L is extremely good. The next proposition makes this
precise.

Proposition 7.66 (Gaussian Lattice Reduction). Let L ⊂ R
2 be a 2-

dimensional lattice with basis vectors v1 and v2. The following algorithm ter-
minates and yields a good basis for L.

Loop

If ‖v2‖ < ‖v1‖, swap v1 and v2.

Compute m =
⌊
v1 · v2

/
‖v1‖2

⌉
.

If m = 0, return the basis vectors v1 and v2.

Replace v2 with v2 −mv1.

Continue Loop

More precisely, when the algorithm terminates, the vector v1 is a shortest
nonzero vector in L, so the algorithm solves SVP. Further, the angle θ be-
tween v1 and v2 satisfies | cos θ| ≤ ‖v1‖/2‖v2‖, so in particular, π

3 ≤ θ ≤ 2π
3 .

Proof. We prove that v1 is a smallest nonzero lattice vector and leave the
other parts of the proof to the reader. So we suppose that the algorithm has
terminated and returned the vectors v1 and v2. This means that ‖v2‖ ≥ ‖v1‖
and that

|v1 · v2|
‖v1‖2

≤ 1

2
. (7.51)

(Geometrically, condition (7.51) says that we cannot make v2 smaller by sub-
tracting an integral multiple of v1 from v2.) Now suppose that v ∈ L is any
nonzero vector in L. Writing

v = a1v1 + a2v2 with a1, a2 ∈ Z,

we find that

‖v‖2 = ‖a1v1 + a2v2‖2

= a21‖v1‖2 + 2a1a2(v1 · v2) + a22‖v2‖2

≥ a21‖v1‖2 − 2|a1a2| |v1 · v2|+ a22‖v2‖2

≥ a21‖v1‖2 − |a1a2|‖v1‖2 + a22‖v2‖2 from (7.51),

≥ a21‖v1‖2 − |a1a2|‖v1‖2 + a22‖v1‖2 since ‖v2‖ ≥ ‖v1‖,
=
(
a21 − |a1| |a2|+ a22

)
‖v1‖2.

For any real numbers t1 and t2, the quantity

t21 − t2t2 + t22 =

(
t1 −

1

2
t2

)2

+
3

4
t22 =

3

4
t21 +

(
1

2
t1 − t2

)2
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is not zero unless t1 = t2 = 0. So the fact that a1 and a2 are integers and not
both 0 tells us that ‖v‖2 ≥ ‖v1‖2. This proves that v1 is a smallest nonzero
vector in L.

Example 7.67. We illustrate Gauss’s lattice reduction algorithm (Proposi-
tion 7.66) with the lattice L having basis

v1 = (66586820, 65354729) and v2 = (6513996, 6393464).

We first compute ‖v1‖2 ≈ 8.71 · 1015 and ‖v2‖2 ≈ 8.33 · 1013. Since v2 is
shorter than v1, we swap them, so now v1 = (6513996, 6393464) and v2 =
(66586820, 65354729).

Next we subtract a multiple of v1 from v2. The multiplier is

m =

⌊
v1 · v2

‖v1‖2
⌉
= �10.2221! = 10,

so we replace v2 with

v2 −mv1 = (1446860, 1420089).

This new vector has norm ‖v2‖2 ≈ 4.11 · 1012, which is smaller than ‖v1‖2 ≈
8.33 · 1013, so again we swap,

v1 = (1446860, 1420089) and v2 = (6513996, 6393464).

We repeat the process with m =
⌊
v1 · v2

/
‖v1‖2

⌉
= �4.502! = 5, which

gives the new vector

v2 −mv1 = (−720304,−706981)

having norm ‖v2‖2 ≈ 1.01 · 1012, so again we swap v1 and v2. Continuing
this process leads to smaller and smaller bases until, finally, the algorithm
terminates. The step by step results of the algorithm, including the value
of m used at each stage, are listed in the following table:

Step v1 v2 m

1 (6513996, 6393464) (66586820, 65354729) 10
2 (1446860, 1420089) (6513996, 6393464) 5
3 (−720304,−706981) (1446860, 1420089) −2
4 (6252, 6127) (−720304,−706981) −115
5 (−1324,−2376) (6252, 6127) −3
6 (2280,−1001) (−1324,−2376) 0

The final basis is quite small, and (2280,−1001) is a solution to SVP for the
lattice L.



7.13. Lattice Reduction Algorithms 439

7.13.2 The LLL Lattice Reduction Algorithm

Gauss’s lattice reduction algorithm (Proposition 7.66) gives an efficient way to
find a shortest nonzero vector in a lattice of dimension 2, but as the dimension
increases, the shortest vector problem becomes much harder . A major advance
came in 1982 with the publication of the LLL algorithm [77]. In this section
we give a full description of the LLL algorithm, and in the next section we
briefly describe some of its generalizations.

Suppose that we are given a basis {v1,v2, . . . ,vn} for a lattice L. Our
object is to transform the given basis into a “better” basis. But what do we
mean by a better basis? We would like the vectors in the better basis to be
as short as possible, beginning with the shortest vector that we can find, and
then with vectors whose lengths increase as slowly as possible until we reach
the last vector in the basis. Alternatively, we would like the vectors in the
better basis to be as orthogonal as possible to one another, i.e., so that the
dot products vi · vj are as close to zero as possible.

Recall that Hadamard’s inequality (Proposition 7.19) says that

detL = Vol(F) ≤ ‖v1‖ ‖v2‖ · · · ‖vn‖, (7.52)

where Vol(F) is the volume of a fundamental domain for L. The closer that the
basis comes to being orthogonal, the closer that the inequality (7.52) comes
to being an equality.

To assist us in creating an improved basis, we begin by constructing a
Gram–Schmidt orthogonal basis as described in Theorem 7.13. Thus we start
with v∗

1 = v1, and then for i ≥ 2 we let

v∗
i = vi −

i−1∑

j=1

μi,jv
∗
j , where μi,j =

vi · v∗
j

‖v∗
j‖2

for 1 ≤ j ≤ i− 1. (7.53)

The collection of vectors B∗ = {v∗
1,v

∗
2, . . . ,v

∗
n} is an orthogonal basis for the

vector space spanned by B = {v1,v2, . . . ,vn}, but note that B∗ is not a basis
for the lattice L spanned by B, because the Gram–Schmidt process (7.53)
involves taking linear combinations with nonintegral coefficients. However, as
we now prove, it turns out that the two bases have the same determinant.

Proposition 7.68. Let B = {v1,v2, . . . ,vn} be a basis for a lattice L and
let B∗ = {v∗

1,v
∗
2, . . . ,v

∗
n} be the associated Gram–Schmidt orthogonal basis as

described in Theorem 7.13. Then

det(L) =

n∏

i=1

‖v∗
i ‖.

Proof. Let F = F (v1, . . . ,vn) be the matrix (7.11) described in Proposi-
tion 7.20. This is the matrix whose rows are the coordinates of v1, . . . ,vn.
The proposition tells us that det(L) = | detF |.
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Let F ∗ = F (v∗
1, . . . ,v

∗
n) be the analogous matrix whose rows are the vec-

tors v∗
1, . . . ,v

∗
n. Then (7.53) tells us that the matrices F and F ∗ are related by

MF ∗ = F,

where M is the change of basis matrix

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 · · · 0 0
μ2,1 1 0 · · · 0 0
μ3,1 μ3,2 1 · · · 0 0
...

...
...

. . .
...

μn−1,1 μn−1,2 μn−1,3 · · · 1 0
μn,1 μn,2 μn,3 · · · μn,n−1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Note thatM is lower diagonal with 1’s on the diagonal, so det(M) = 1. Hence

det(L) = | detF | = | det(MF ∗)| = |(detM)(detF ∗)| = | detF ∗| =
n∏

i=1

‖v∗
i ‖.

(The last equality follows from the fact that the v∗
i , which are the rows of F ∗,

are pairwise orthogonal.)

Definition. Let V be a vector space, and let W ⊂ V be a vector subspace
of V . The orthogonal complement of W (in V ) is

W⊥ =
{
v ∈ V : v ·w = 0 for all w ∈W}.

It is not hard to see that W⊥ is also a vector subspace of V and that every
vector v ∈ V can be written as a sum v = w +w′ for unique vectors w ∈W
and w′ ∈W⊥. (See Exercise 7.46.)

Using the notion of orthogonal complement, we can describe the intuition
behind the Gram–Schmidt construction as follows:

v∗
i = Projection of vi onto Span(v1, . . . ,vi−1)

⊥.

Although B∗ = {v∗
1,v

∗
2, . . . ,v

∗
n} is not a basis for the original lattice L, we

use the set B∗ of associated Gram–Schmidt vectors to define a concept that
is crucial for the LLL algorithm.

Definition. Let B = {v1,v2, . . . ,vn} be a basis for a lattice L and let
B∗ = {v∗

1,v
∗
2, . . . ,v

∗
n} be the associated Gram–Schmidt orthogonal basis as

described in Theorem 7.13. The basis B is said to be LLL reduced if it satisfies
the following two conditions:

(Size Condition) |μi,j | =
|vi · v∗

j |
‖v∗

j‖2
≤ 1

2
for all 1 ≤ j < i ≤ n.

(Lovász Condition) ‖v∗
i ‖2 ≥

(
3

4
− μ2

i,i−1

)
‖v∗

i−1‖2 for all 1 < i ≤ n.
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There are several different ways to state the Lovász condition. For example,
it is equivalent to the inequality

‖v∗
i + μi,i−1v

∗
i−1‖2 ≥

3

4
‖v∗

i−1‖2,

and it is also equivalent to the statement that

∥
∥Projection of vi onto Span(v1, . . . ,vi−2)

⊥∥∥

≥ 3

4

∥
∥Projection of vi−1 onto Span(v1, . . . ,vi−2)

⊥∥∥.

The fundamental result of Lenstra, Lenstra, and Lovász [77] says that
an LLL reduced basis is a good basis and that it is possible to compute
an LLL reduced basis in polynomial time. We start by showing that an LLL
reduced basis has desirable properties, after which we describe the LLL lattice
reduction algorithm.

Theorem 7.69. Let L be a lattice of dimension n. Any LLL reduced basis
{v1,v2, . . . ,vn} for L has the following two properties :

n∏

i=1

‖vi‖ ≤ 2n(n−1)/4 detL, (7.54)

‖vj‖ ≤ 2(i−1)/2‖v∗
i ‖ for all 1 ≤ j ≤ i ≤ n. (7.55)

Further, the initial vector in an LLL reduced basis satisfies

‖v1‖ ≤ 2(n−1)/4| detL|1/n and ‖v1‖ ≤ 2(n−1)/2 min
0 �=v∈L

‖v‖. (7.56)

Thus an LLL reduced basis solves apprSVP to within a factor of 2(n−1)/2.

Proof. The Lovász condition and the fact that |μi,i−1| ≤ 1
2 imply that

‖v∗
i ‖2 ≥

(
3

4
− μ2

i,i−1

)
‖v∗

i−1‖2 ≥
1

2
‖v∗

i−1‖2. (7.57)

Applying (7.57) repeatedly yields the useful estimate

‖v∗
j‖2 ≤ 2i−j‖v∗

i ‖2. (7.58)

We now compute

‖vi‖2 =

∥
∥
∥
∥v

∗
i +

i−1∑

j=1

μi,jv
∗
j

∥
∥
∥
∥

2

from (7.53),

= ‖v∗
i ‖2 +

i−1∑

j=1

μ2
i,j‖v∗

j‖2 since v∗
1, . . . ,v

∗
n are orthogonal,
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≤ ‖v∗
i ‖2 +

i−1∑

j=1

1

4
‖v∗

j‖2 since |μi,j | ≤
1

2
,

≤ ‖v∗
i ‖2 +

i−1∑

j=1

2i−j−2‖v∗
i ‖2 from (7.58),

=
1 + 2i−1

2
‖v∗

i ‖2

≤ 2i−1‖v∗
i ‖2 since 1 ≤ 2i−1 for all i ≥ 1. (7.59)

Multiplying (7.59) by itself for 1 ≤ i ≤ n yields

n∏

i=1

‖vi‖2 ≤
n∏

i=1

2i−1‖v∗
i ‖2 = 2n(n−1)/2

n∏

i=1

‖v∗
i ‖2 = 2n(n−1)/2(detL)2,

where for the last equality we have used Proposition 7.68. Taking square roots
completes the proof of (7.54).

Next, for any j ≤ i, we use (7.59) (with i = j) and (7.58) to estimate

‖vj‖2 ≤ 2j−1‖v∗
j‖2 ≤ 2j−1 · 2i−j‖v∗

i ‖2 = 2i−1‖v∗
i ‖2.

Taking square roots gives (7.55).
Now we set j = 1 in (7.55), multiply over 1 ≤ i ≤ n, and use Proposi-

tion 7.68 to obtain

‖v1‖n ≤
n∏

i=1

2(i−1)/2‖v∗
i ‖ = 2n(n−1)/4

n∏

i=1

‖v∗
i ‖ = 2n(n−1)/4 detL.

Taking nth roots gives the first estimate in (7.56).
To prove the second estimate, let v ∈ L be a nonzero lattice vector and

write

v =
i∑

j=1

ajvj =
i∑

j=1

bjv
∗
j

with ai �= 0. Note that a1, . . . , ai are integers, while bi, . . . , bi are real numbers.
In particular, |ai| ≥ 1.

By construction, for any k we know that the vectors v∗
1, . . . ,v

∗
k are pairwise

orthogonal, and we proved (Theorem 7.13) that they span the same space as
the vectors v1, . . . ,vk. Hence

v · v∗
i = aivi · v∗

i = biv
∗
i · v∗

i and vi · v∗
i = v∗

i · v∗
i ,

from which we conclude that ai = bi. Therefore |bi| = |ai| ≥ 1, and using this
and (7.55) (with j = 1) gives the estimate

‖v‖2 =

i∑

j=1

b∗j‖v∗
j‖2 ≥ b2i ‖v∗

i ‖2 ≥ ‖v∗
i ‖2 ≥ 2−(i−1)‖v1‖2 ≥ 2−(n−1)‖v1‖2.

Taking square roots gives the second estimate in (7.56).
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Remark 7.70. Before describing the technicalities of the LLL algorithm, we
make some brief remarks indicating the general underlying idea. Given a basis
{v1,v2, . . . ,vn}, it is easy to form a new basis that satisfies the Size Condition.
Roughly speaking, we do this by subtracting from vk appropriate integer
multiples of the previous vectors v1, . . . ,vk−1 so as to make vk smaller. In
the LLL algorithm, we do this in stages, rather than all at once, and we’ll
see that the size reduction condition depends on the ordering of the vectors.
After doing size reduction, we check to see whether the Lovász condition is
satisfied. If it is, then we have a (nearly) optimal ordering of the vectors. If
not, then we reorder the vectors and do further size reduction.

For simplicity, and because it is the case that we need, we state and analyze
the LLL algorithm for lattices in Z

n. See Exercise 7.54 for the general case.

Theorem 7.71 (LLL Algorithm). Let {v1, . . . ,vn} be a basis for a lattice L
that is contained in Z

n. The algorithm described in Fig. 7.8 terminates in a
finite number of steps and returns an LLL reduced basis for L.

More precisely, let B = max ‖vi‖. Then the algorithm executes the main
k loop (Steps [4–14]) no more than O(n2 log n+n2 logB) times. In particular,
the LLL algorithm is a polynomial-time algorithm.

Remark 7.72. The problem of efficiently implementing the LLL algorithm
presents many challenges. First, size reduction and the Lovász condition use
the Gram–Schmidt orthogonalized basis v∗

1, . . . ,v
∗
n and the associated projec-

tion factors μi,j = vi · v∗
j/‖v∗

j‖2. In an efficient implementation of the LLL
algorithm, one should compute these quantities as needed and store them for
future use, recomputing only when necessary. We have not addressed this is-
sue in Fig. 7.8, since it is not relevant for understanding the LLL algorithm,
nor for proving that it returns an LLL reduced basis in polynomial time. See
Exercise 7.50 for a more efficient version of the LLL algorithm.

Another major challenge arises from the fact that if one attempts to per-
form LLL reduction on an integer lattice using exact values, the intermedi-
ate calculations involve enormous numbers. Thus in working with lattices of
high dimension, it is generally necessary to use floating point approximations,
which leads to problems with round-off errors. We do not have space here to
discuss this practical difficulty, but the reader should be aware that it exists.

Remark 7.73. Before embarking on the somewhat technical proof of
Theorem 7.71, we discuss the intuition behind the swap step (Step [11]).
The swap step is executed when the Lovász condition fails for vk, so

∥
∥Projection of vk onto Span(v1, . . . ,vk−2)

⊥∥∥

<
3

4

∥
∥Projection of vk−1 onto Span(v1, . . . ,vk−2)

⊥∥∥. (7.60)

The goal of LLL is to produce a list of short vectors in increasing order of
length. For each 1 ≤ � ≤ n, let L� denote the lattice spanned by v1, . . . ,v�.
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[1] Input a basis {v1 , . . . ,vn} for a lattice L
[2] Set k = 2
[3] Set v1 = v1

∗

[4] Loop while k ≤ n
[5] Loop Down j = k − 1, k − 2, . . . , 2, 1
[6] Set vk = vk − �μk,j�vj [Size Reduction]
[7] End j Loop

[8] If ‖vk
∗‖2 ≥

(
3
4 − μk,k−1

2
)

‖vk−1
∗ ‖2 [Lovasz Condition]

[9] Set k = k + 1
[10] Else
[11] Swap vk−1 and vk [Swap Step]
[12] Set k = max(k − 1, 2)
[13] End If
[14] End k Loop
[15] Return LLL reduced basis {v1, . . . , vn}
Note: At each step, v1

∗, . . . ,vk is the orthogonal set of vectors obtained∗

by applying Gram–Schmidt (Theorem 7.13) to the current values of
v1, . . . ,vk , and μi,j is the associated quantity (vi · vj)/∗ ‖vj

∗‖2.

´

Figure 7.8: The LLL lattice reduction algorithm

Note that as LLL progresses, the sublattices L� change due to the swap step;
only Ln remains the same, since it is the entire lattice. What LLL attempts
to do is to find an ordering of the basis vectors (combined with size reduc-
tions whenever possible) that minimizes the determinants det(L�), i.e., LLL
attempts to minimize the volumes of the fundamental domains of the sublat-
tices L1, . . . , Ln.

If the number 3/4 in (7.60) is replaced by the number 1, then the LLL
algorithm does precisely this; it swaps vk and vk−1 whenever doing so reduces
the value of detLk−1. Unfortunately, if we use 1 instead of 3/4, then it is an
open problem whether the LLL algorithm terminates in polynomial time.

If we use 3/4, or any other constant strictly less than 1, then LLL runs
in polynomial time, but we may miss an opportunity to reduce the size of a
determinant by passing up a swap. For example, in the very first step, we swap
only if ‖v2‖ < 3

4‖v1‖, while we could reduce the determinant by swapping
whenever ‖v2‖ < ‖v1‖. In practice, one often takes a constant larger than 3/4,
but less than 1, in the Lovász condition. (See Exercise 7.51.)

Note that an immediate effect of swapping at stage k is (usually) to make
the new value of μk,k−1 larger. This generally allows us to size reduce the
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new vk using the new vk−1, so swapping results in additional size reduction
among the basis vectors, making them more orthogonal.

Proof (sketch) of Theorem 7.71. For simplicity, and because it is the case
that we need, we will assume that L ⊂ Z

n is a lattice whose vectors have
integral coordinates.

It is clear that if the LLL algorithm terminates, then it terminates with
an LLL reduced basis, since the j-loop (Steps [5–7]) ensures that the basis
satisfies the size condition, and the fact that k = n+1 on termination means
that every vector in the basis has passed the Lovász condition test in Step [8].

However, it is not clear that the algorithm actually terminates, because
the k-increment in Step [9] is offset by the k-decrement in Step [12]. What we
will do is show that Step [12] is executed only a finite number of times. Since
either Step [9] or Step [12] is executed on each iteration of the k-loop, this
ensures that k eventually becomes larger than n and the algorithm terminates.

Let v1, . . . ,vn be a basis of L and let v∗
1, . . . ,v

∗
n be the associated Gram–

Schmidt orthogonalized basis from Theorem 7.13. For each � = 1, 2, . . . , n,
we let

L� = lattice spanned by v1,. . . ,v�,

and we define quantities

d� =

�∏

i=1

‖v∗
i ‖2 and D =

n∏

�=1

d� =

n∏

i=1

‖v∗
i ‖2(n+1−i).

Using an argument similar to the proof of Theorem 7.68, one can show
that det(L�)

2 = d�; see Exercise 7.14(b,d).
During the LLL algorithm, the value of D changes only when we execute

the swap step (Step [11]). More precisely, when [11] is executed, the only d�
that changes is dk−1, since if � < k− 1, then d� involves neither v

∗
k−1 nor v∗

k,
while if � ≥ k, then the product defining d� includes both v∗

k−1 and v∗
k, so the

product doesn’t change if we swap them.
We can estimate the change in dk−1 by noting that when [11] is executed,

the Lovász condition in Step [8] is false, so we have

‖v∗
k‖2 <

(
3

4
− μ2

k,k−1

)
‖v∗

k−1‖2 ≤
3

4
‖v∗

k−1‖2.

Hence the effect of swapping v∗
k and v∗

k−1 in Step [11] is to change the value
of dk−1 as follows:

dnewk−1 = ‖v∗
1‖2 · ‖v∗

2‖2 · · · ‖v∗
k−2‖2 · ‖v∗

k‖2

= ‖v∗
1‖2 · ‖v∗

2‖2 · · · ‖v∗
k−2‖2 · ‖v∗

k−1‖2 ·
‖v∗

k‖2
‖v∗

k−1‖2

= doldk−1 ·
‖v∗

k‖2
‖v∗

k−1‖2
≤ 3

4
doldk−1.
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Hence if the swap step [11] is executed N times, then the value of D is reduced
by a factor of at least (3/4)N , since each swap reduces the value of some d�
by at least a factor of 3/4 and D is the product of all of the d�’s.

Since we have assumed that the lattice L is contained in Z
n, the basis

vectors v1, . . . ,v� of L� have integer coordinates. It follows from the definition
of d� and Exercise 7.14(d) that

d� =
�∏

i=1

‖v∗
i ‖2 = det

((
vi · vj

)
1≤i,j≤�

)
,

which shows d� is a positive integer. Hence

D =
n∏

�=1

d� ≥ 1. (7.61)

Hence D is bounded away from 0 by a constant depending only on the di-
mension of the lattice L, so it can be multiplied by 3/4 only a finite number
of times. This proves that the LLL algorithm terminates.

In order to give an upper bound on the running time, we do some fur-
ther estimations. Let Dinit denote the initial value of D for the original basis,
let Dfinal denote the value of D for the basis when the LLL algorithm termi-
nates, and as above, let N denote the number of times that the swap step
(Step [11]) is executed. (Note that the k loop is executed at most 2N + n
times, so it suffices to find a bound for N .) The lower bound for D is valid for
every basis produced during the execution of the algorithm, so by our earlier
results we know that

1 ≤ Dfinal ≤ (3/4)NDinit.

Taking logarithms yields (note that log(3/4) < 1)

N = O(logDinit).

To complete the proof, we need to estimate the size of Dinit. But this is easy,
since by the Gram–Schmidt construction we certainly have ‖v∗

i ‖ ≤ ‖vi‖, so

Dinit =

n∏

i=1

‖v∗
i ‖n+1−i ≤

n∏

i=1

‖vi‖n+1−i ≤
(
max
1≤i≤n

‖vi‖
)2(1+2+···+n)

= Bn2+n.

Hence logDinit = O(n2 logB).

Remark 7.74. Rather than counting the number of times that the main loop
is executed, we might instead count the number of basic arithmetic operations
required by LLL. This means counting how many times the internal j-loop
is executed and also how many times we perform operations on the coordi-
nates of a vector. For example, adding two vectors or multiplying a vector
by a constant is n basic operations. Counted in this way, it is proven in [77]
that the LLL algorithm (if efficiently implemented) terminates after no more
than O

(
n6(logB)3

)
basic operations.
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Example 7.75. We illustrate the LLL algorithm on the 6-dimensional lattice L
with (ordered) basis given by the rows of the matrix

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

19 2 32 46 3 33
15 42 11 0 3 24
43 15 0 24 4 16
20 44 44 0 18 15
0 48 35 16 31 31

48 33 32 9 1 29

⎞

⎟
⎟
⎟
⎟
⎟
⎠
.

The smallest vector in this basis is ‖v2‖ = 51.913.
The output from LLL is the basis consisting of the rows of the matrix

MLLL =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

7 −12 −8 4 19 9
−20 4 −9 16 13 16

5 2 33 0 15 −9
−6 −7 −20 −21 8 −12

−10 −24 21 −15 −6 −11
7 4 −9 −11 1 31

⎞

⎟
⎟
⎟
⎟
⎟
⎠
.

We check that both matrices have the same determinant,

det(M) = det(MLLL) = ±777406251.
Further, as expected, the LLL reduced matrix has a much better (i.e., larger)
Hadamard ratio than the original matrix,

H(M) = 0.46908 and H(MLLL) = 0.88824,

so the vectors in the LLL basis are more orthogonal. (The Hadamard ratio
is defined in Remark 7.27.) The smallest vector in the LLL reduced basis is
‖v1‖ = 26.739, which is a significant improvement over the original basis. This
may be compared with the Gaussian expected shortest length (Remark 7.32)
of σ(L) = (3! detL)1/3/

√
π = 23.062.

The LLL algorithm executed 19 swap steps (Step [11] in Fig. 7.8). The
sequence of k values from start to finish was

2, 2, 3, 2, 3, 4, 3, 2, 2, 3, 4, 5, 4, 3, 2, 3, 4, 5, 4, 3, 4, 5, 6, 5,

4, 3, 4, 5, 6, 5, 4, 3, 2, 2, 3, 2, 3, 4, 5, 6.

Notice how the algorithm almost finished twice (it got to k = 6) before finally
terminating the third time. This illustrates how the value of k moves up and
down as the algorithm proceeds.

We next reverse the order of the rows of M and apply LLL. Then LLL
executes only 11 swap steps and gives the basis

MLLL =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−7 12 8 −4 −19 −9
20 −4 9 −16 −13 −16

−28 11 12 −9 17 −14
−6 −7 −20 −21 8 −12
−7 −4 9 11 −1 −31
10 24 −21 15 6 11

⎞

⎟
⎟
⎟
⎟
⎟
⎠
.
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We find the same smallest vector, but the Hadamard ratio H(MLLL) =
0.878973 is a bit lower, so the basis isn’t quite as good. This illustrates the
fact that the output from LLL is dependent on the order of the basis vectors.

We also ran LLL with the original matrix, but using 0.99 instead of 3
4

in the Lovász Step [8]. The algorithm did 22 swap steps, which is more than
the 19 swap steps required using 3

4 . This is not surprising, since increasing the
constant makes the Lovász condition more stringent, so it is harder for the al-
gorithm to get to the k-increment step. Using 0.99, the LLL algorithm returns
the basis

MLLL =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−7 12 8 −4 −19 −9
−20 4 −9 16 13 16

6 7 20 21 −8 12
−28 11 12 −9 17 −14
−7 −4 9 11 −1 −31

−10 −24 21 −15 −6 −11

⎞

⎟
⎟
⎟
⎟
⎟
⎠
.

Again we get the same smallest vector, but now the basis has H(MLLL) =
0.87897. This is actually slightly worse than the basis obtained using 3

4 , again
illustrating the unpredictable dependence of the LLL algorithm’s output on
its parameters.

7.13.3 Using LLL to Solve apprCVP

We explained in Sect. 7.6 that if a lattice L has an orthogonal basis, then it
is very easy to solve both SVP and CVP. The LLL algorithm does not return
an orthogonal basis, but it does produce a basis in which the basis vectors are
quasi-orthogonal, i.e., they are reasonably orthogonal to one another. Thus
we can combine the LLL algorithm (Fig. 7.8) with Babai’s algorithm (Theo-
rem 7.34) to form an algorithm that solves apprCVP.

Theorem 7.76 (LLL apprCVP Algorithm). There is a constant C such that
for any lattice L of dimension n given by a basis v1, . . . ,vn, the following
algorithm solves apprCVP to within a factor of Cn.

Apply LLL to v1, . . . ,vn to find an LLL reduced basis.

Apply Babai’s algorithm using the LLL reduced basis.

Proof. We leave the proof for the reader; see Exercise 7.52.

Remark 7.77. In [8], Babai suggested two ways to use LLL as part of an ap-
prCVP algorithm. The first method uses the closest vertex algorithm that we
described in Theorem 7.34. The second method uses the closest plane algo-
rithm. Combining the closest plane method with an LLL reduced basis tends
to give a better result than using the closest vertex method. See Exercise 7.53
for further details.
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7.13.4 Generalizations of LLL

There have been many improvements to and generalizations of the LLL al-
gorithm. Most of these methods involve trading increased running time for
improved output. We briefly describe two of these improvements in order to
give the reader some idea of how they work and the trade-offs involved. For
further reading, see [71, 115, 116, 117, 118, 119].

The first variant of LLL is called the deep insertion method. In standard
LLL, the swap step involves switching vk and vk−1, which then usually allows
some further size reduction of the new vk. In the deep insertion method,
one instead inserts vk between vi−1 and vi, where i is chosen to allow a
large amount of size reduction. In the worst case, the resulting algorithm
may no longer terminate in polynomial time, but in practice, when run on
most lattices, LLL with deep insertions runs quite rapidly and often returns
a significantly better basis than basic LLL.

The second variant of LLL is based on the notion of a Korkin–Zolotarev
reduced basis. For any list of vectors v1,v2, . . . and any i ≥ 1, let v∗

1,v
∗
2, . . .

denote the associated Gram–Schmidt orthogonalized vectors and define a map

π : L −→ R
n, πi(v) = v −

i∑

j=1

v · v∗
j

‖v∗
j‖2

v∗
j .

(We also define π0 to be the identity map, π0(v) = v.) Geometrically, we may
describe πi as the projection map

πi : L −→ Span(v1, . . . ,vi)
⊥ ⊂ R

n

from L onto the orthogonal complement of the space spanned by v1, . . . ,vi.

Definition. Let L be a lattice. A basis v1, . . . ,vn for L is called Korkin–
Zolotarev (KZ ) reduced if it satisfies the following three conditions:

1. v1 is a shortest nonzero vector in L.

2. For i = 2, 3, . . . , n, the vector vi is chosen such that πi−1(vi) is the
shortest nonzero vector in πi−1(L).

3. For all 1 ≤ i < j ≤ n, we have
∣
∣πi−1(vi) · πi−1(vj)

∣
∣ ≤ 1

2

∥
∥πi−1(vi)

∥
∥2.

A KZ-reduced basis is generally much better than an LLL-reduced basis.
In particular, the first vector in a KZ-reduced basis is always a solution to
SVP. Not surprisingly, the fastest known methods to find a KZ-reduced basis
take time that is exponential in the dimension.

The block Korkin–Zolotarev variant of the LLL algorithm, which is abbre-
viated BKZ-LLL, replaces the swap step in the standard LLL algorithm by
a block reduction step. One way to view the “swap and size reduction” pro-
cess in LLL is Gaussian lattice reduction on the 2-dimensional lattice spanned
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by vk−1 and vk. In BKZ-LLL, one works instead with a block of vectors of
length β, say

vk,vk+1, . . . ,vk+β−1,

and one replaces the vectors in this block with a KZ-reduced basis spanning
the same sublattice. If β is large, there is an obvious disadvantage in that
it takes a long time to compute a KZ-reduced basis. Compensating for this
extra time is the fact that the eventual output of the algorithm is improved,
both in theory and in practice.

Theorem 7.78. If the BKZ-LLL algorithm is run on a lattice L of dimen-
sion n using blocks of size β, then the algorithm is guaranteed to terminate
in no more than O(βcβnd) steps, where c and d are small constants. Further,
the smallest vector v1 found by the algorithm is guaranteed to satisfy

‖v1‖ ≤
(
β

πe

)n−1
β−1

min
0 �=v∈L

‖v‖.

Remark 7.79. Theorem 7.78 says that BKZ-LLL solves apprSVP to within
a factor of approximately βn/β . This may be compared with standard LLL,
which solves apprSVP to within a factor of approximately 2n/2. As β increases,
the accuracy of BKZ-LLL increases, at the cost of increased running time.
However, if we want to solve apprSVP to within, say, O(nδ) for some fixed
exponent δ and large dimension n, then we need to take β ≈ n/δ, so the
running time of BKZ-LLL becomes exponential in n. And although these are
just worst-case running time estimates, experimental evidence also leads to
the conclusion that using BKZ-LLL to solve apprSVP to within O(nδ) requires
a block size that grows linearly with n, and hence has a running time that
grows exponentially in n.

7.14 Applications of LLL to Cryptanalysis

The LLL algorithm has many applications to cryptanalysis, ranging from
attacks on knapsack public key cryptosystems to more recent analysis of
lattice-based cryptosystems such as Ajtai–Dwork, GGH, and NTRU. There
are also lattice reduction attacks on RSA in certain situations, see for exam-
ple [19, 18, 32, 33, 58]. Finally, we want to stress that LLL and its general-
izations have a wide variety of applications in pure and applied mathematics
outside of their uses in cryptography.

In this section we illustrate the use of LLL in the cryptanalysis of the
four cryptosystems (congruential, knapsack, GGH, NTRU) described earlier
in this chapter. We note that LLL has no trouble breaking the examples
in this section because the dimensions that we use are so small. In practice,
secure instances of these cryptosystems require lattices of dimension 500–1000,
which, except for NTRUEncrypt, lead to impractical key lengths.
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7.14.1 Congruential Cryptosystems

Recall the congruential cipher described in Sect. 7.1. Alice chooses a modulus q
and two small secret integers f and g, and her public key is the integer h ≡
f−1g (mod q). Eve knows the public values of q and h, and she wants to
recover the private key f . One way for Eve to find the private key is to look
for small vectors in the lattice L generated by

v1 = (1, h) and v2 = (0, q),

since as we saw, the vector (f, g) is in L, and given the size constraints on f
and g, it is likely to be the shortest nonzero vector in L.

We illustrate by breaking Example 7.1. In that example,

q = 122430513841 and h = 39245579300.

We apply Gaussian lattice reduction (Proposition 7.66) to the lattice gener-
ated by

(1, 39245579300) and (0, 122430513841).

The algorithm takes 11 iterations to find the short basis

(−231231,−195698) and (−368222, 217835).

Up to an irrelevant change of sign, this gives Alice’s private key f = 231231
and g = 195698.

7.14.2 Applying LLL to Knapsacks

In Sect. 7.2 we described how to reformulate a knapsack (subset-sum) prob-
lem described by M = (m1, . . . ,mn) and S as a lattice problem using the
lattice LM ,S with basis given by the rows of the matrix (7.4) on page 383. We
further explained in Example 7.33 why the target vector t ∈ LM ,S , which has
length ‖t‖ = √n, is probably about half the size of all other nonzero vectors
in LM ,S .

We illustrate the use of the LLL algorithm to solve the knapsack problem

M = (89, 243, 212, 150, 245) and S = 546

considered in Example 7.7. We apply LLL to the lattice generated by the rows
of the matrix

AM ,S =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 0 0 0 0 89
0 2 0 0 0 243
0 0 2 0 0 212
0 0 0 2 0 150
0 0 0 0 2 245
1 1 1 1 1 546

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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LLL performs 21 swaps and returns the reduced basis
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1 1 −1 1 −1 0
1 −1 −1 1 −1 −1

−1 −1 −1 1 1 2
1 −1 −1 −1 −1 2

−2 −2 4 0 −2 0
−6 −4 −6 −6 0 −3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

We write the short vector

(−1, 1,−1, 1,−1, 0)

in the top row as a linear combination of the original basis vectors given by
the rows of the matrix AM ,S ,

(−1, 1,−1, 1,−1, 0) = (−1, 0,−1, 0,−1, 1)AM ,S .

The vector (−1, 0,−1, 0,−1, 1) gives the solution to the knapsack problem,

−89− 212− 245 + 546 = 0.

Remark 7.80. When using LLL to solve subset-sum problems, it is often help-
ful to multiply m1, . . . ,mn, S by a large constant C. This has the effect of
multiplying the last column of the matrix (7.4) by C, so the determinant
is multiplied by C and the Gaussian expected shortest vector is multiplied
by C1/(n+1). The target vector t still has length

√
n, so if C is large, the

target vector becomes much smaller than the likely next shortest vector. This
tends to make it easier for LLL to find t.

7.14.3 Applying LLL to GGH

We apply LLL to Example 7.36, in which the Alice’s public lattice L is gen-
erated by the rows w1,w2,w3 of the matrix

⎛

⎝
−4179163 −1882253 583183
−3184353 −1434201 444361
−5277320 −2376852 736426

⎞

⎠

and Bob’s encrypted message is

e = (−79081427,−35617462, 11035473).

Eve wants to find a vector in L that is close to e. She first applies LLL
(Theorem 7.71) to the lattice L and finds the quasi-orthogonal basis

⎛

⎝
36 −30 −86
61 11 67

−10 102 −40

⎞

⎠ .
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This basis has Hadamard ratio H = 0.956083, which is even better than
Alice’s good basis. Eve next applies Babai’s algorithm (Theorem 7.34) to find
a lattice vector

v = (−79081423,−35617459, 11035471)

that is very close to e. Finally she writes v in terms of the original lattice
vectors,

v = 86w1 − 35w2 − 32w3,

which retrieves Bob’s plaintext m = (86,−35,−32).

7.14.4 Applying LLL to NTRU

We apply LLL to the NTRU cryptosystem described in Example 7.53. Thus
N = 7, q = 41, and the public key is the polynomial

h(x) = 30 + 26x+ 8x2 + 38x3 + 2x4 + 40x5 + 20x6.

As explained in Sect. 7.11, the associated NTRU lattice is generated by the
rows of the matrix

MNTRU
h =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 30 26 8 38 2 40 20
0 1 0 0 0 0 0 20 30 26 8 38 2 40
0 0 1 0 0 0 0 40 20 30 26 8 38 2
0 0 0 1 0 0 0 2 40 20 30 26 8 38
0 0 0 0 1 0 0 38 2 40 20 30 26 8
0 0 0 0 0 1 0 8 38 2 40 20 30 26
0 0 0 0 0 0 1 26 8 38 2 40 20 30
0 0 0 0 0 0 0 41 0 0 0 0 0 0
0 0 0 0 0 0 0 0 41 0 0 0 0 0
0 0 0 0 0 0 0 0 0 41 0 0 0 0
0 0 0 0 0 0 0 0 0 0 41 0 0 0
0 0 0 0 0 0 0 0 0 0 0 41 0 0
0 0 0 0 0 0 0 0 0 0 0 0 41 0
0 0 0 0 0 0 0 0 0 0 0 0 0 41

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Eve applies LLL reduction to MNTRU
h . The algorithm performs 96 swap steps

and returns the LLL reduced matrix

MNTRU
red =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 −1 1 0 −1 −1 −1 0 −1 0 1 1 0
0 1 1 −1 0 1 −1 −1 −1 0 1 0 1 0
−1 1 0 −1 −1 1 0 −1 0 1 1 0 −1 0
−1 −1 1 0 −1 1 0 1 0 −1 0 −1 0 1
−1 1 0 −1 1 0 −1 0 −1 0 −1 0 1 1
−1 −1 −1 −1 −1 −1 −1 0 0 0 0 0 0 0
0 1 0 1 0 −1 1 −1 −1 0 0 2 0 0
−8 −1 0 9 0 −1 0 −4 2 6 0 −4 7 −7
8 1 0 0 −8 −1 2 0 −5 8 −7 −3 1 6
0 −9 −2 1 9 −1 0 −6 −3 2 5 0 −5 7
0 8 0 −9 −1 −8 8 2 7 −11 3 −5 2 2
1 0 0 9 2 −1 −9 5 −7 6 3 −2 −5 0
−2 1 9 −1 0 0 −9 2 5 0 −5 7 −6 −3
3 2 3 3 −6 2 −6 11 6 8 0 9 5 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

We can compare the relative quasi-orthogonality of the original and the
reduced bases by computing the Hadamard ratios,
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H(MNTRU
h ) = 0.1184 and H(MNTRU

red ) = 0.8574.

The smallest vector in the reduced basis is the top row of the reduced
matrix,

(1, 0,−1, 1, 0,−1,−1,−1, 0,−1, 0, 1, 1, 0).

Splitting this vector into two pieces gives polynomials

f ′(x) = 1− x2 + x3 − x5 − x6 and g′(x) = −1− x2 + x4 + x5.

Note that f ′(x) and g′(x) are not the same as Alice’s original private key
polynomials f(x) and g(x) from Example 7.53. However, they are simple
rotations of Alice’s key,

f ′(x) = −x3 � f(x) and g′(x) = −x3 � g(x),

so Eve can use f ′(x) and g′(x) to decrypt messages.

Exercises

Section 7.1. A Congruential Public Key Cryptosystem

7.1. Alice uses the congruential cryptosystem with q = 918293817 and private
key (f, g) = (19928, 18643).
(a) What is Alice’s public key h?

(b) Alice receives the ciphertext e = 619168806 from Bob. What is the plaintext?

(c) Bob sends Alice a second message by encrypting the plaintext m = 10220 using
the random element r = 19564. What is the ciphertext that Bob sends to Alice?

Section 7.2. Subset-Sum Problems and Knapsack Cryptosystems

7.2. Use the algorithm described in Proposition 7.5 to solve each of the following
subset-sum problems. If the “solution” that you get is not correct, explain what
went wrong.
(a) M = (3, 7, 19, 43, 89, 195), S = 260.

(b) M = (5, 11, 25, 61, 125, 261), S = 408.

(c) M = (2, 5, 12, 28, 60, 131, 257), S = 334.

(d) M = (4, 12, 15, 36, 75, 162), S = 214.

7.3. Alice’s public key for a knapsack cryptosystem is

M = (5186, 2779, 5955, 2307, 6599, 6771, 6296, 7306, 4115, 637).

Eve intercepts the encrypted message S = 4398. She also breaks into Alice’s com-
puter and steals Alice’s secret multiplier A = 4392 and secret modulus B = 8387.
Use this information to find Alice’s superincreasing private sequence r and then
decrypt the message.
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7.4. Proposition 7.3 gives an algorithm that solves an n-dimensional knapsack
problem in O(2n/2) steps, but it requires O(2n/2) storage. Devise an algorithm,
similar to Pollard’s ρ algorithm (Sect. 5.5), that takes O(2n/2) steps, but requires
only O(1) storage.

Section 7.3. A Brief Review of Vector Spaces

7.5. (a) Let

B = {(1, 3, 2), (2,−1, 3), (1, 0, 2)}, B′ = {(−1, 0, 2), (3, 1,−1), (1, 0, 1)}.

Each of the sets B and B′ is a basis for R
3. Find the change of basis matrix

that transforms B′ into B.
(b) Let v = (2, 3, 1) and w = (−1, 4,−2). Compute the lengths ‖v‖ and ‖w‖ and

the dot product v ·w. Compute the angle between v and w.

7.6. Use the Gram–Schmidt algorithm (Theorem 7.13) to find an orthogonal basis
from the given basis.
(a) v1 = (1, 3, 2), v2 = (4, 1,−2), v3 = (−2, 1, 3).

(b) v1 = (4, 1, 3,−1), v2 = (2, 1,−3, 4), v3 = (1, 0,−2, 7).

Section 7.4. Lattices: Basic Definitions and Properties

7.7. Let L be the lattice generated by {(1, 3,−2), (2, 1, 0), (−1, 2, 5)}. Draw a picture
of a fundamental domain for L and find its volume.

7.8. Let L ⊂ R
m be an additive subgroup with the property that there is a positive

constant ε > 0 such that

L ∩
{
w ∈ R

m : ‖w‖ < ε
}
= {0}.

Prove that L is discrete, and hence is a lattice. (In other words, show that in the
definition of discrete subgroup, it suffices to check that (7.8) is true for the single
vector v = 0.)

7.9. Prove that a subset of Rm is a lattice if and only if it is a discrete additive
subgroup.

7.10. This exercise describes a result that you may have seen in your linear algebra
course.

Let A be an n-by-n matrix with entries aij , and for each pair of indices i and j,
let Aij denote the (n− 1)-by-(n− 1) matrix obtained by deleting the ith row of A
and the jth column of A. Define a new matrix B whose ijth entry bij is given by
the formula

bij = (−1)i+j det(Aji).

(Note that bij is the determinant of the submatrix Aji, i.e., the indices are reversed.)
The matrix B is called the adjoint of A.
(a) Prove that

AB = BA = det(A)In,

where In is the n-by-n identity matrix.
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(b) Deduce that if det(A) �= 0, then

A−1 =
1

det(A)
B.

(c) Suppose that A has integer entries. Prove that A−1 exists and has integer entries
if and only if det(A) = ±1.

(d) For those who know ring theory from Sect. 2.10 or from some other source,
suppose that A has entries in a ring R. Prove that A−1 exists and has entries
in R if and only if det(A) is a unit in R.

7.11. Recall from Remark 7.16 that the general linear group GLn(Z) is the group
of n-by-n matrices with integer coefficients and determinant ±1. Let A and B be
matrices in GLn(Z).
(a) Prove that AB ∈ GLn(Z).

(b) Prove that A−1 ∈ GLn(Z).

(c) Prove that the n-by-n identity matrix is in GLn(Z).

(d) Prove that GLn(Z) is a group. (Hint. You have already done most of the work
in proving (a), (b), and (c). For the associative law, either prove it directly or
use the fact that you know that it is true for matrices with real coefficients.)

(e) Is GLn(Z) a commutative group?

7.12. Which of the following matrices are in GLn(Z)? Find the inverses of those
matrices that are in GLn(Z).

(a) A1 =

(
3 1
2 2

)
(b) A2 =

(
3 −2
2 −1

)

(c) A3 =

⎛

⎝
3 2 2
2 1 2
−1 3 1

⎞

⎠ (d) A4 =

⎛

⎝
−3 −1 2
1 −3 −1
3 0 −2

⎞

⎠

7.13. Let L be the lattice given by the basis

B =
{
(3, 1,−2), (1,−3, 5), (4, 2, 1)

}
.

Which of the following sets of vectors are also bases for L? For those that are, express
the new basis in terms of the basis B, i.e., find the change of basis matrix.
(a) B1 = {(5, 13,−13), (0,−4, 2), (−7,−13, 18)}.
(b) B2 = {(4,−2, 3), (6, 6,−6), (−2,−4, 7)}.

7.14. Let L ⊂ R
m be a lattice of dimension n and let v1, . . . ,vn be a basis for L.

Note that we are allowing n to be smaller than m. The Gram matrix of v1, . . . ,vn

is the matrix
Gram(v1, . . . ,vn) =

(
vi · vj

)
1≤i,j≤n

.

(a) Let F (v1, . . . ,vn) be the matrix (7.11) described in Proposition (7.20), except
that now F (v1, . . . ,vn) is an n-by-m matrix, so it need not be square. Prove
that

Gram(v1, . . . ,vn) = F (v1, . . . ,vn)F (v1, . . . ,vn)
t,

where F (v1, . . . ,vn)
t is the transpose matrix, i.e., the matrix with rows and

columns interchanged.
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(b) Prove that
det
(
Gram(v1, . . . ,vn)

)
= det(L)2, (7.62)

where note that det(L) is the volume of the parallelepiped spanned by any basis
for L. (You may find it easier to first do the case n = m.)

(c) Let L ⊂ R
4 be the 3-dimensional lattice with basis

v1 = (1, 0, 1,−1), v2 = (1, 2, 0, 4), v3 = (1,−1, 2, 1).

Compute the Gram matrix of this basis and use it to compute det(L).

(d) Let v∗
1, . . . ,v

∗
n be the Gram–Schmidt orthogonalized vectors (Theorem 7.13)

associated to v1, . . . ,vn. Prove that

det
(
Gram(v1, . . . ,vn)

)
= ‖v∗

1‖2‖v∗
2‖2 · · · ‖v∗

n‖2.

Section 7.5. The Shortest and Closest Vector Problems

7.15. Let L be a lattice and let F be a fundamental domain for L. This exercise
sketches a proof that

lim
R→∞

#
(
BR(0) ∩ L

)

Vol
(
BR(0)

) =
1

Vol(F)
. (7.63)

(a) Consider the translations of F that are entirely contained within BR(0), and
also those that have nontrivial intersection with BR(0). Prove the inclusion of
sets ⋃

v∈L
F+v⊂BR(0)

(F + v) ⊂ BR(0) ⊂
⋃

v∈L
(F+v)∩BR(0) �=∅

(F + v).

(b) Take volumes in (a) and prove that

#
{
v ∈ L : F + v ⊂ BR(0)

}
·Vol(F)

≤ Vol
(
BR(0)

)
≤ #

{
v ∈ L : (F + v) ∩ BR(0) �= ∅

}
·Vol(F).

(Hint. Proposition 7.18 says that the different translates of F are disjoint.)

(c) Prove that the number of translates F + v that intersect BR(0) without being
entirely contained within BR(0) is comparatively small compared to the number
of translates Fv that are entirely contained within BR(0). (This is the hardest
part of the proof.)

(d) Use (b) and (c) to prove that

Vol
(
BR(0)

)
= #

(
BR(0) ∩ L

)
·Vol(F) + (smaller term).

Divide by Vol
(
BR(0)

)
and let R → ∞ to complete the proof of (7.63).

7.16. A lattice L of dimension n = 251 has determinant det(L) ≈ 22251.58. With no
further information, approximately how large would you expect the shortest nonzero
vector to be?

Section 7.6. Babai’s Algorithm and Solving CVP with a “Good” Basis

7.17. Let L ⊂ R
2 be the lattice given by the basis v1 = (213,−437) and v2 =

(312, 105), and let w = (43127, 11349).
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(a) Use Babai’s algorithm to find a vector v ∈ L that is close to w. Compute the
distance ‖v −w‖.

(b) What is the value of the Hadamard ratio
(
det(L)/‖v1‖‖v2‖

)1/2
? Is the ba-

sis {v1,v2} a “good” basis?

(c) Show that the vectors v′
1 = (2937,−1555) and v′

2 = (11223,−5888) are also a
basis for L by expressing them as linear combinations of v1 and v2 and checking
that the change-of-basis matrix has integer coefficients and determinant ±1.

(d) Use Babai’s algorithm with the basis {v′
1,v

′
2} to find a vector v′ ∈ L. Compute

the distance ‖v′ −w‖ and compare it to your answer from (a).

(e) Compute the Hadamard ratio using v′
1 and v′

2. Is {v′
1,v

′
2} a good basis?

Section 7.8. The GGH Public Key Cryptosystem

7.18. Alice uses the GGH cryptosystem with private basis

v1 = (4, 13), v2 = (−57,−45),

and public basis

w1 = (25453, 9091), w2 = (−16096,−5749).

(a) Compute the determinant of Alice’s lattice and the Hadamard ratio of the
private and public bases.

(b) Bob sends Alice the encrypted message e = (155340, 55483). Use Alice’s private
basis to decrypt the message and recover the plaintext. Also determine Bob’s
random perturbation r.

(c) Try to decrypt Bob’s message using Babai’s algorithm with the public ba-
sis {w1,w2}. Is the output equal to the plaintext?

7.19. Alice uses the GGH cryptosystem with private basis

v1 = (58, 53,−68), v2 = (−110,−112, 35), v3 = (−10,−119, 123)

and public basis

w1 = (324850,−1625176, 2734951),

w2 = (165782,−829409, 1395775),

w3 = (485054,−2426708, 4083804).

(a) Compute the determinant of Alice’s lattice and the Hadamard ratio of the
private and public bases.

(b) Bob sends Alice the encrypted message e = (8930810,−44681748, 75192665).
Use Alice’s private basis to decrypt the message and recover the plaintext. Also
determine Bob’s random perturbation r.

(c) Try to decrypt Bob’s message using Babai’s algorithm with the public ba-
sis {w1,w2,w3}. Is the output equal to the plaintext?

7.20. Bob uses the GGH cryptosystem to send some messages to Alice.
(a) Suppose that Bob sends the same message m twice, using different random

elements r and r′. Explain what sort of information Eve can deduce from the
ciphertexts e = mW + r and e′ = mW + r′.
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(b) For example, suppose that n = 5 and that random permutations are chosen with
coordinates in the set {−2,−1, 0, 1, 2}. This means that there are 55 = 3125
possibilities for r. Suppose further that Eve intercepts two ciphertexts

e = (−9,−29,−48, 18, 48) and e′ = (−6,−26,−51, 20, 47)

having the same plaintext. With this information, how many possibilities are
there for r?

(c) Suppose that Bob is lazy and uses the same perturbation to send two different
messages. Explain what sort of information Eve can deduce from the ciphertexts
e = mW + r and e′ = m′W + r.

7.21. The previous exercise shows the danger of using GGH to send a single mes-
sage m twice using different values of r.
(a) In order to guard against this danger, suppose that Bob generates r by applying

a publicly available hash function Hash to m, i.e., Bob’s encrypted message is

e = mW + Hash(m).

(See Sect. 8.1 for a discussion of hash functions.) If Eve guesses that Bob’s
message might be m′, explain why she can check whether her guess is correct.

(b) Explain why the following algorithm eliminates both the problem with repeated
messages and the problem described in (a), while still allowing Alice to decrypt
Bob’s message. Bob chooses an message m0 and a random string r0. He then
computes

m = (m0 xor r0) ‖ r0, r = Hash(m), e = mW + r.

(c) In (b), the advantage of constructing m from m0 xorr0 is that none of the bits
of the actual plaintext m0 appear unaltered in m. In practice, people replace
(m0 xor r0) ‖ r0 with more complicated mixing functions M(m0, r0) having
the following two properties: (1) M is easily invertible. (2) If even one bit of
either m0 or r0 changes, then the value of every bit of M(m0, r0) changes in
an unpredictable manner. Try to construct a mixing function M having these
properties.

Section 7.9. Convolution Polynomial Rings

7.22. Compute (by hand!) the polynomial convolution product c = a � b using the
given value of N .

(a) N = 3, a(x) = −1 + 4x+ 5x2, b(x) = −1− 3x− 2x2;

(b) N = 5, a(x) = 2− x+ 3x3 − 3x4, b(x) = 1− 3x2 − 3x3 − x4;

(c) N = 6, a(x) = x+ x2 + x3, b(x) = 1 + x+ x5;

(d) N = 10, a(x) = x+ x2 + x3 + x4 + x6 + x7 + x9,

b(x) = x2 + x3 + x6 + x8.

7.23. Compute the polynomial convolution product c = a � b modulo q using the
given values of q and N .
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(a) N = 3, q = 7, a(x) = 1 + x, b(x) = −5 + 4x+ 2x2;

(b) N = 5, q = 4, a(x) = 2 + 2x− 2x2 + x3 − 2x4,

b(x) = −1 + 3x− 3x2 − 3x3 − 3x4;

(c) N = 7, q = 3, a(x) = x+ x3, b(x) = x+ x2 + x4 + x6;

(d) N = 10, q = 2, a(x) = x2 + x5 + x7 + x8 + x9,

b(x) = 1 + x+ x3 + x4 + x5 + x7 + x8 + x9.

7.24. Let a(x) ∈ (Z/qZ)[x], where q is a prime.
(a) Prove that

a(1) ≡ 0 (mod q) if and only if (x− 1) | a(x) in (Z/qZ)[x].

(b) Suppose that a(1) ≡ 0 (mod q). Prove that a(x) is not invertible in Rq.

7.25. Let N = 5 and q = 3 and consider the two polynomials

a(x) = 1 + x2 + x3 ∈ R3 and b(x) = 1 + x2 − x3 ∈ R3.

One of these polynomials has an inverse in R3 and the other does not. Compute the
inverse that exists, and explain why the other doesn’t exist.

7.26. For each of the following values of N , q, and a(x), either find a(x)−1 in Rq

or show that the inverse does not exist.
(a) N = 5, q = 11, and a(x) = x4 + 8x+ 3;

(b) N = 5, q = 13, and a(x) = x3 + 2x− 3.

(c) N = 7, q = 23, and a(x) = 20x6 + 8x5 + 4x4 + 15x3 + 19x2 + x+ 8.

7.27. This exercise illustrates how to find inverses in

Rm =
(Z/mZ)[x]

(xN − 1)

when m is a prime power pe.
(a) Let f(x) ∈ Z[x]/(XN − 1) be a polynomial, and suppose that we have already

found a polynomial F (x) such that

f(x) � F (x) ≡ 1 (mod pi)

for some i ≥ 1. Prove that the polynomial

G(x) = F (x) �
(
2− f(x) � F (x)

)

satisfies

f(x) � G(x) ≡ 1 (mod p2i).

(b) Suppose that we know an inverse of f(x) modulo p. Using (a) repeatedly, how
many convolution multiplications does it take to compute the inverse of f(x)
modulo pe?



Exercises 461

(c) Use the method in (a) to compute the following inverses modulo m = pe, where
to ease your task, we have given you the inverse modulo p.

(i) N = 5, m = 24, f(x) = 7 + 3x+ x2,

f(x)−1 ≡ 1 + x2 + x3 (mod 2).

(ii) N = 5, m = 27, f(x) = 22 + 11x+ 5x2 + 7x3,

f(x)−1 ≡ 1 + x2 + x3 (mod 2).

(iii) N = 7, m = 55, f(x) = 112 + 34x+ 239x2 + 234x3 + 105x4

+ 180x5 + 137x6,

f(x)−1 ≡ 1 + 3x2 + 2x4 (mod 5).

7.28. Let a ∈ R
N be a fixed vector.

(a) Suppose that b is an N -dimensional vector whose coefficients are chosen
randomly from the set {−1, 0, 1}. Prove that the expected values of ‖b‖2
and ‖a � b‖2 are given by

E
(
‖b‖2

)
=

2

3
N and E

(
‖a � b‖2

)
= ‖a‖2E

(
‖b‖2

)
.

(b) More generally, suppose that the coefficients of b are chosen at random from
the set of integers {−T,−T + 1, . . . , T − 1, T}. Compute the expected values
of ‖b‖2 and ‖a � b‖2 as in (a).

(c) Suppose now that the coefficients of b are real numbers that are chosen uni-
formly and independently in the interval from −R to R. Prove that

E
(
‖b‖2

)
=
R2N

3
and E

(
‖a � b‖2

)
= ‖a‖2E

(
‖b‖2

)
.

(Hint. The most direct way to do (c) is to use continuous probability theory. As
an alternative, let the coefficients of b be chosen uniformly and independently
from the set {jR/T : −T ≤ j ≤ T}, redo the computation from (b), and then
let T → ∞.)

(d) For each of the scenarios described in (a), (b), and (c), prove that

E
(
‖a+ b‖2

)
= ‖a‖2 + E

(
‖b‖2

)
.

Section 7.10. The NTRU Public Key Cryptosystem

7.29. Alice and Bob agree to communicate using NTRUEncrypt with

(N, p, q) = (7, 3, 37).

Alice’s private key is

f(x) = −1 +X −X3 +X4 +X5,

F 3(x) = 1 +X −X2 +X4 +X5 +X6.

(You can check that f � F 3 ≡ 1 (mod 3).) Alice receives the ciphertext

e(x) = 2 + 8X2 − 16X3 − 9X4 − 18X5 − 3X6.

from Bob. Decipher the message and find the plaintext.
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7.30. Alice and Bob decide to communicate using NTRUEncrypt with parameters
(N, p, q) = (7, 3, 29). Alice’s public key is

h(x) = 3 + 14X − 4X2 + 13X3 − 6X4 + 2X5 + 7X6.

Bob sends Alice the plaintext message m(x) = 1 + X − X2 − X3 − X6 using the
random element r(x) = −1 +X2 −X5 +X6.
(a) What ciphertext does Bob send to Alice?

(b) Alice’s private key is f(x) = −1 +X −X2 +X4 +X6 and F 3(x) = 1 +X +
X2 +X4 +X5 −X6. Check your answer in (a) by using f and F 3 to decrypt
the message.

7.31. What is the message expansion of NTRUEncrypt in terms of N , p, and q?

7.32. The guidelines for choosing NTRUEncrypt public parameters (N, p, q, d) re-
quire that gcd(p, q) = 1. Prove that if p | q, then it is very easy for Eve to decrypt
the message without knowing the private key. (Hint. First do the case that p = q.)

7.33. The guidelines for choosing NTRUEncrypt public parameters (N, p, q, d) in-
clude the assumption that gcd(N, q) = 1. Suppose instead that Alice takes q = N ,
where as always, N is an odd prime.
(a) Make a change of variables x = y+ 1 in the ring Z[x]/(xN − 1), and show that

the NTRU lattice takes a simpler form.

(b) Can you find an efficient way to break NTRU in the case that q = N that does
involve lattice reduction? (This appears to be an open problem.)

7.34. Alice uses NTRUEncrypt with p = 3 to send messages to Bob.
(a) Suppose that Alice uses the same random element r(x) to encrypt two dif-

ferent plaintexts m1(x) and m2(x). Explain how Eve can use the two cipher-
texts e1(x) and e2(x) to determine approximately 2

9
of the coefficients ofm1(x).

(See Exercise 7.38 for a way to exploit this information.)

(b) For example, suppose that N = 8, so there are 38 possibilities for m1(x).
Suppose that Eve intercepts two ciphertexts

e1(x) = 32 + 21x− 9x2 − 20x3 − 29x4 − 29x5 − 19x6 + 38x7,

e2(x) = 33 + 21x− 7x2 − 19x3 − 31x4 − 27x5 − 19x6 + 38x7,

that were encrypted using the same random element r(x). How many coeffi-
cients of m1(x) can she determine exactly? How many possibilities are there
for m1(x)?

(c) Formulate a similar attack if Alice uses two different random elements r1(x)
and r2(x) to encrypt the same plaintext m(x). (Hint. Do it first assuming
that h(x) has an inverse in Rq. The problem is harder without this assumption.)

7.35. This exercise describes a variant of NTRUEncrypt that eliminates a step in
the decryption algorithm at the cost of requiring slightly larger parameters. Suppose
that the NTRUEncrypt private key polynomials f(x) and g(x) are chosen to satisfy

f(x) = 1 + pf0(x) ≡ 1 (mod p) and g(x) = pg0(x) ≡ 0 (mod p),

and that NTRU encryption is changed to

e(x) ≡ h(x) � r(x) +m(x) (mod q).

(The change is the omission of p before h(x).)



Exercises 463

(a) Prove that if q is sufficiently large, then the following algorithm correctly
decrypts the message:

• Compute a(x) ≡ f(x) � e(x) (mod q) and center-lift to an element of R.

• Compute a(x) (mod p). The result is m(x).
Note that this eliminates the necessity to multiply a(x) by f(x)−1 (mod p).

(a) Suppose that we choose f0, g0 ∈ T (d, d), and that we also assume that m is
ternary. Prove that decryption works provided q > 8dp + 2. (Hint. Mimic the
proof of Proposition 7.48.)

Section 7.11. NTRU as a Lattice Cryptosystem

7.36. This exercise explains how to formulate NTRU message recovery as a closest
vector problem. Let h(x) be an NTRU public key and let

e(x) ≡ pr(x) � h(x) +m(x) (mod q)

be a message encrypted using h(x).
(a) Prove that the vector (pr, e−m) is in LNTRU

h .

(b) Prove that the lattice vector in (a) is almost certainly the closest lattice vector
to the known vector (0, e). Hence solving CVP reveals the plaintext m. (For
simplicity, you may assume that d ≈ N/3 and q ≈ 2N , as we did in Proposi-
tion 7.61.)

(c) Show how one can reduce the lattice-to-target distance, without affecting the
determinant, by using instead a modified NTRU lattice of the form

(
1 ph
0 q

)
.

7.37. The guidelines for choosing NTRUEncrypt public parameters (N, p, q, d) in-
clude the requirement that N be prime. To see why, suppose (say) that N is even.
Explain how Eve can recover the private key by solving a lattice problem in dimen-
sion N , rather than in dimension 2N . Hint. Use the natural map

Z[x]/(xN − 1) → Z[x]/(xN/2 − 1).

7.38. Suppose that Bob and Alice are using NTRUEncrypt to exchange messages
and that Eve intercepts a ciphertext e(x) for which she already knows part of the
plaintext m(x). (This is not a ludicrous assumption; see Exercise 7.34, for example.)
More precisely, suppose that Eve knows t of the coefficients of m(x). Explain how
to set up a CVP to find m(x) using a lattice of dimension 2N − 2t.

Section 7.12. Lattice-Based Digital Signature Schemes

7.39. Samantha uses the GGH digital signature scheme with private and public
bases

v1 = (−20,−8, 1), w1 = (−248100, 220074, 332172),

v2 = (14, 11, 23), w2 = (−112192, 99518, 150209),

v3 = (−18, 1,−12), w3 = (−216150, 191737, 289401).

What is her signature on the document

d = (834928, 123894, 7812738)?
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7.40. Samantha uses the GGH digital signature scheme with public basis

w1 = (3712318934,−14591032252, 11433651072),

w2 = (−1586446650, 6235427140,−4886131219),

w3 = (305711854,−1201580900, 941568527).

She publishes the signature

(6987814629, 14496863295,−9625064603)

on the document

d = (5269775, 7294466, 1875937).

If the maximum allowed distance from the signature to the document is 60, verify
that Samantha’s signature is valid.

7.41. Samantha uses the GGH digital signature scheme with public basis

w1 = (−1612927239, 1853012542, 1451467045),

w2 = (−2137446623, 2455606985, 1923480029),

w3 = (2762180674,−3173333120,−2485675809).

Use LLL or some other lattice reduction algorithm to find a good basis for Saman-
tha’s lattice, and then use the good basis to help Eve forge a signature on the
document

d = (87398273893, 763829184, 118237397273).

What is the distance from your forged signature lattice vector to the target vector?
(You should be able to get a distance smaller than 100.)

7.42. This exercise gives further details of the NTRUMLS signature scheme. We
fix parameters (N, p, q) and set

B =

⌈
p2N

4

⌉
and A =

⌊
q

2p
− 1

2

⌋
.

We choose private key polynomials f and g as follows. For f we first choose a
polynomial F whose coefficients are randomly selected from the set {−1, 0, 1} and
then let f = pF . For g we choose a polynomial whose coefficients are randomly
selected to lie between −p/2 and p/2. We further assume that both F and g are
invertible modulo p and that f is invertible modulo q, otherwise we discard them
and choose new polynomials.
(a) If a and b are polynomials whose coefficients lie between −p/2 and p/2, prove

that ‖a � b‖∞ ≤ B.

(b) Prove that the following algorithm outputs a pair of polynomials (s, t) satisfying

t ≡ h � s (mod q) and s ≡ sp (mod p) and t ≡ tp (mod p).
0: Input polynomials sp and tp with coefficients between − 1

2
p and 1

2
p.

1: Choose a random polynomial r with coefficients between −A and A.

2: Set s0 = sp + pr.

3: Set t0 ≡ h � s0 (mod q) with ‖t0‖∞ ≤ 1
2
q.
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4: Set a ≡ g−1 � (tp − t0) (mod p) with ‖a‖∞ ≤ 1
2
p.

5: Set s = s0 + a � f and t = t0 + a � g.

(c) Prove that the output from the algorithm in (b) satisfies

‖s‖∞ ≤ q

2
+B and ‖t‖∞ ≤ q

2
+B.

(d) Make the simplifying assumption that the output produces polynomials whose
coefficients are uniformly and independently distributed between − 1

2
q−B and

1
2
q + B. Assume further that k := q/NB is not too large, say 2 ≤ k ≤ 50.

Prove that the probability that the algorithm in (b) produces a valid signature
is approximately e−8/k. (Note that according to (b), the output (s, t) will be a
valid signature if it satisfies the size criteria ‖s‖∞ ≤ 1

2
q−B and ‖t‖∞ ≤ 1

2
q−B.)

Section 7.13. Lattice Reduction Algorithms

7.43. Let b1 and b2 be vectors, and set

t = b1 · b2/‖b1‖2 and b∗2 = b2 − tb1.

Prove that b∗2 · b1 = 0 and that b∗2 is the projection of b2 onto the orthogonal
complement of b1.

7.44. Let a and b be nonzero vectors in R
n.

(a) What value of t ∈ R minimizes the distance ‖a − tb‖? (Hint. It’s easier to
minimize the value of ‖a− tb‖2.)

(b) What is the minimum distance in (a)?

(c) If t is chosen as in (a), show that a−tb is the projection of a onto the orthogonal
complement of b.

(d) If the angle between a and b is θ, use your answer in (b) to show that the
minimum distance is ‖a‖ sin θ. Draw a picture illustrating this result.

7.45. Apply Gauss’s lattice reduction algorithm (Proposition 7.66) to solve SVP for
the following two dimensional lattices having the indicated basis vectors. How many
steps does the algorithm take?
(a) v1 = (120670, 110521) and v2 = (323572, 296358).

(b) v1 = (174748650, 45604569) and v2 = (35462559, 9254748).

(c) v1 = (725734520, 613807887) and v2 = (3433061338, 2903596381).

7.46. Let V be a vector space, let W ⊂ V be a vector subspace of V , and let W⊥

be the orthogonal complement of W in V .
(a) Prove that W⊥ is also a vector subspace of V .

(b) Prove that every vector v ∈ V can be written as a sum v = w+w′ for unique
vectors w ∈ W and w′ ∈ W⊥. (One says that V is the direct sum of the
subspaces W and W⊥.)

(c) Let w ∈W and w′ ∈W⊥ and let v = aw + bw′. Prove that

‖v‖2 = a2‖w‖2 + b2‖w′‖2.
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7.47. Let L be a lattice with basis vectors v1 = (161, 120) and v2 = (104, 77).
(a) Is (0, 1) in the lattice?

(b) Find an LLL reduced basis.

(c) Use the reduced basis to find the closest lattice vector to
(
− 9

2
, 11
)
.

7.48. Use the LLL algorithm to reduce the lattice with basis

v1 = (20, 16, 3), v2 = (15, 0, 10), v3 = (0, 18, 9).

You should do this exercise by hand, writing out each step.

7.49. Let L be the lattice generated by the rows of the matrix

M =

⎛

⎜⎜
⎜
⎜
⎜⎜
⎝

20 51 35 59 73 73
14 48 33 61 47 83
95 41 48 84 30 45
0 42 74 79 20 21
6 41 49 11 70 67

23 36 6 1 46 4

⎞

⎟⎟
⎟
⎟
⎟⎟
⎠

.

Implement the LLL algorithm (Fig. 7.8) on a computer and use your program to
answer the following questions.
(a) Compute det(L) and H(M). What is the shortest basis vector?

(b) Apply LLL to M . How many swaps (Step [11]) are required? What is the value
of H(MLLL)? What is the shortest basis vector in the LLL reduced basis? How
does it compare with the Gaussian expected shortest length?

(c) Reverse the order of the rows of M and apply LLL to the new matrix. How
many swaps are required? What is the value of H(MLLL) and what is the
shortest basis vector?

(d) Apply LLL to the original matrix M , but in the Lovász condition (Step [8]),
use 0.99 instead of 3

4
. How many swaps are required? What is the value

of H(MLLL) and what is the shortest basis vector?

7.50. A more efficient way to implement the LLL algorithm is described in Fig. 7.9,
with Reduce and Swap subroutines given in Fig. 7.10. (This implementation of LLL
follows [28, Algorithm 2.6.3]. We thank Henri Cohen for his permission to include
it here.)
(a) Prove that the algorithm described in Figs. 7.9 and 7.10 returns an LLL reduced

basis.

(b) For any given N and q, let LN,q be the N -dimensional lattice with ba-
sis v1, . . . ,vN described by the formulas

vi = (ri1, ri2, . . . , riN ), rij ≡ (i+N)j (mod q), 0 ≤ rij < q.

Implement the LLL algorithm and use it to LLL reduce LN,q for each of the
following values of N and q:

(i) (N, q) = (10, 541) (ii) (N, q) = (20, 863)

(iii) (N, q) = (30, 1223) (iv) (N, q) = (40, 3571)

In each case, compare the Hadamard ratio of the original basis to the Hada-
mard ratio of the LLL reduced basis, and compare the length of the shortest
vector found by LLL to the Gaussian expected shortest length.
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{v1, . . . ,vn} for a lattice L

k = 2, kmax = 1, v∗
1 = v1, and B1 = ‖v1‖2

k ≤ kmax go to Step [9]
kmax = k and v∗

k = vk

j = 1, 2, . . . , k − 1
μk,j = vk · v∗

j/Bj and v∗
k = v∗

k − μk,jv
∗
j

j Loop
Bk = ‖v∗

k‖2

(k, k − 1)
Bk <

(
3
4 − μ2

k,k−1

)
Bk−1

(k)
k = max(2, k − 1) and go to Step [9]

� = k − 2, k − 3, . . . , 2, 1
(k, �)

� Loop
k = k + 1

k ≤ n go to Step [3]
{v1, . . . ,vn}

[1] Input a basis
[2] Set
[3] If
[4] Set
[5] Loop
[6] Set
[7] End
[8] Set
[9] Execute Subroutine RED

[10] If
[11] Execute Subroutine SWAP
[12] Set
[13] Else
[14] Loop
[15] Execute Subroutine RED
[16] End
[17] Set
[18] End If
[19] If
[20] Return LLL reduced basis

Figure 7.9: The LLL algorithm—main routine

7.51. Let 1
4
< α < 1 and suppose that we replace the Lovász condition with the

condition

‖v∗
i ‖2 ≥

(
α− μ2

i,i−1

)
‖v∗

i−1‖2 for all 1 < i ≤ n. (7.64)

(a) Prove a version of Theorem 7.69 assuming the alternative Lovász condi-
tion (7.64). What quantity, depending on α, replaces the 2 that appears in
the estimates (7.54)–(7.56)?

(b) Prove a version of Theorem 7.71 assuming the alternative Lovász condi-
tion (7.64). In particular, how does the upper bound for the number of swap
steps depend on α? What happens as α→ 1?

7.52. Let v1, . . . ,vn be an LLL reduced basis for a lattice L.
(a) Prove that there are constants C1 > 1 > C2 > 0 such that for all y1, . . . , yn ∈ R

we have

Cn
1

n∑

i=1

y2i ‖vi‖2 ≥
∥
∥
∥
∥

n∑

i=1

yivi

∥
∥
∥
∥

2

≥ Cn
2

n∑

i=1

y2i ‖vi‖2. (7.65)

(This is a hard exercise.) We observe that the inequality (7.65) is another way
of saying that the basis v1, . . . ,vn is quasi-orthogonal, since if it were truly
orthogonal, then we would have an equality ‖

∑
yivi‖2 =

∑
y2i ‖vi‖2.
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—— Subroutine RED(k, �) ——
|μk,�| ≤ 1

2 , return to Main Routine
m = �μk,��
vk = vk − mv� and μk,� = μk,� − m

i = 1, 2, . . . , � − 1
μk,i = μk,i − mμ�,i

i Loop

—— Subroutine SWAP(k) ——
vk−1 and vk

j = 1, 2, . . . , k − 2
μk−1,j and μk,j

j Loop
μ = μk,k−1 and B = Bk + μ2Bk−1
μk,k−1 = μBk−1/B and Bk = Bk−1Bk/B and Bk−1 = B

i = k + 1, k + 2, . . . , kmax
m = μi,k and μi,k = μi,k−1 − μm and μi,k−1 = m + μk,k−1μi,k

i Loop

[1] If
[2] Set
[3] Set
[4] Loop
[5] Set
[6] End
[7] Return to Main Routine

[1] Exchange
[2] Loop
[3] Exchange
[4] End
[5] Set
[6] Set
[7] Loop
[8] Set
[9] End
[10] Return to Main Routine

Figure 7.10: The LLL algorithm—RED and SWAP subroutines

(b) Prove that there is a constant C such that for any target vector w ∈ R
n, Babai’s

algorithm (Theorem 7.34) finds a lattice vector v ∈ L satisfying

‖w − v‖ ≤ Cn min
u∈L

‖w − u‖.

Thus Babai’s algorithm applied with an LLL reduced basis solves apprCVP to
within a factor of Cn. This is Theorem 7.76.

(c) Find explicit values for the constants C1, C2, and C in (a) and (b).

7.53. Babai’s Closest Plane Algorithm, which is described in Fig. 7.11, is an alter-
native rounding method that uses a given basis to solve apprCVP. As usual, the
more orthogonal the basis, the better the solution, so generally people first use LLL
to create a quasi-orthogonal basis and then apply one of Babai’s methods. In both
theory and practice, Babai’s closest plane algorithm seems to yield better results
than Babai’s closest vertex algorithm.

Implement both of Babai’s algorithms (Theorem 7.34 and Fig. 7.11) and use
them to solve apprCVP for each of the following lattices and target vectors. Which
one gives the better result?
(a) L is the lattice generated by the rows of the matrix

ML =

⎛

⎜⎜
⎜
⎜
⎜⎜
⎝

−5 16 25 25 13 8
26 −3 −11 14 5 −26
15 −28 16 −7 −21 −4
32 −3 7 −30 −6 26
15 −32 −17 32 −3 11
5 24 0 −13 −46 15

⎞

⎟⎟
⎟
⎟
⎟⎟
⎠
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Input a basis v1, . . . , vn of a lattice L.
Input a target vector t.
Compute Gram–Schmidt orthogonalized vectors v∗

1, . . . , v
∗
n (Theorem 7.13).

Set w = t.
Loop i = n, n− 1, . . . , 2, 1

Set w = w− ⌊w · v∗
i/‖v∗

i ‖2
⌉
vi.

End i Loop
Return the lattice vector t− w.

Figure 7.11: Babai’s closest plane algorithm

and the target vector is t = (−178, 117,−407, 419,−4, 252). (Notice that the
matrix ML is LLL reduced.)

(b) L is the lattice generated by the rows of the matrix

ML =

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎝

−33 −15 22 −34 −32 41
10 9 45 10 −6 −3

−32 −17 43 37 29 −30
26 13 −35 −41 42 −15

−50 32 18 35 48 45
2 −5 −2 −38 38 41

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎠

and the target vector is t = (−126,−377,−196, 455,−200,−234). (Notice that
the matrix ML is not LLL reduced.)

(c) Apply LLL reduction to the basis in (b), and then use both of Babai’s methods
to solve apprCVP. Do you get better solutions?

7.54. We proved that the LLL algorithm terminates and has polynomial running
time under the assumption that L ⊂ Z

n; see Theorem 7.71. Show that this assump-
tion is not necessary by proving that LLL terminates in polynomial time for any
lattice L ⊂ R

n. You may assume that your computer can do exact computations
in R, although in practice one does need to worry about round-off errors. (Hint. Use
Hermite’s theorem to derive a lower bound, depending on the length of the shortest
vector in L, for the quantity D that appears in the proof of Theorem 7.71.)

Section 7.14. Applications of LLL to Cryptanalysis

7.55. You have been spying on George for some time and overhear him receiv-
ing a ciphertext e = 83493429501 that has been encrypted using the congruen-
tial cryptosystem described in Sect. 7.1. You also know that George’s public key is
h = 24201896593 and the public modulus is q = 148059109201. Use Gaussian lattice
reduction to recover George’s private key (f, g) and the message m.

7.56. Let

M = (81946, 80956, 58407, 51650, 38136, 17032, 39658, 67468, 49203, 9546)

and let S = 168296. Use the LLL algorithm to solve the subset-sum problem for M
and S, i.e., find a subset of the elements of M whose sum is S.
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7.57. Alice and Bob communicate using the GGH cryptosystem. Alice’s public key
is the lattice generated by the rows of the matrix

⎛

⎜
⎜
⎜⎜
⎝

10305608 −597165 45361210 39600006 12036060
−71672908 4156981 −315467761 −275401230 −83709146
−46304904 2685749 −203811282 −177925680 −54081387
−68449642 3969419 −301282167 −263017213 −79944525
−46169690 2677840 −203215644 −177405867 −53923216

⎞

⎟
⎟
⎟⎟
⎠
.

Bob sends her the encrypted message

e = (388120266,−22516188, 1708295783, 1491331246, 453299858).

Use LLL to find a reduced basis for Alice’s lattice, and then use Babai’s algorithm
to decrypt Bob’s message.

7.58. Alice and Bob communicate using NTRUEncrypt with public parameters
(N, p, q, d) = (11, 3, 67, 3). Alice’s public key is

h = 39 + 9x+ 33x2 + 52x3 + 58x4 + 11x5 + 38x6 + 6x7 + x8 + 48x9 + 41x10.

Apply the LLL algorithm to the associated NTRU lattice to find an NTRU private
key (f , g) for h. Check your answer by verifying that g ≡ f � h (mod q). Use the
private key to decrypt the ciphertext

e = 52 + 50x+ 50x2 + 61x3 + 61x4 + 7x5 + 53x6 + 46x7 + 24x8 + 17x9 + 50x10.

7.59. (a) Suppose that k is a 10 digit integer, and suppose that when
√
k is com-

puted, the first 15 digits after the decimal place are 418400286617716. Find the
number k. (Hint. Reformulate it as a lattice problem.)

(b) More generally, suppose that you know the first d-digits after the decimal place
of

√
K. Explain how to set up a lattice problem to find K.

See Exercise 1.49 for a cryptosystem associated to this problem.



Chapter 8

Additional Topics
in Cryptography

The emphasis of this book has been on the mathematical underpinnings of
public key cryptography. We have developed most of the mathematics from
scratch and in sufficient depth to enable the reader to understand both the
underlying mathematical principles and how they are applied in cryptographic
constructions. Unfortunately, in achieving this laudable goal, we have now
reached the end of a hefty textbook with many important cryptographic topics
left untouched.

This final chapter contains a few brief words about some of these additional
topics. The reader should keep in mind that each of these areas is important
and that the brevity of our coverage reflects only a lack of space, not a lack of
interest. We hope that you will view this chapter as a challenge to go out and
learn more about mathematical cryptography. In particular, each section in
this chapter provides a good starting point for a term paper or class project.

We also note that we have made no attempt to provide a full history of
the topics covered, nor have we tried to give credit to all of the researchers
working in these areas. For the convenience of the reader and the instructor,
here is a list of the topics introduced in this chapter:
Section 8.1 Hash Functions
Section 8.2 Random Numbers and Pseudorandom Number Generators
Section 8.3 Zero-Knowledge Proofs
Section 8.4 Secret Sharing Schemes
Section 8.5 Identification Schemes
Section 8.6 Padding Schemes, the Random Oracle Model, and Provable

Security
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Section 8.7 Building Protocols from Cryptographic Primitives
Section 8.8 Blind Digital Signatures, Digital Cash, and Bitcoin
Section 8.9 Homomorphic Encryption
Section 8.10 Hyperelliptic Curve Cryptography
Section 8.11 Quantum Computing
Section 8.12 Modern Symmetric Cryptosystems: DES and AES

8.1 Hash Functions

There are many cryptographic constructions for which one needs a function
that is easy to compute, but hard to invert. We have seen a number of exam-
ples, including digital signatures (Remark 4.2), randomization of plaintexts
in probabilistic cryptosystems (Exercise 7.21), and ID based cryptography
(Sect. 6.10.2).

Definition. A hash function takes as input an arbitrarily long document D
and returns a short bit string H. The primary properties that a hash func-
tion Hash should possess are as follows:

• Computation of Hash(D) should be fast and easy, roughly linear time.

• Inversion of Hash should be difficult, meaning exponential time. More
precisely, given a hash value H, it should be difficult to find any docu-
ment D such that Hash(D) = H.

• For many applications it is also important that Hash be collision
resistant. This means that it should be hard to find two different doc-
uments D1 and D2 whose hash values Hash(D1) and Hash(D2) are the
same.

Remark 8.1. Why do we want our hash function to be collision resistant?
Suppose that Eve can find two documents D1 and D2 that have the same
hash value Hash(D1) = Hash(D2), and suppose that D1 says “Pay the bearer
$5” and that D2 says “Pay the bearer $500.” Eve can give Alice $5 and
ask her to sign D1. Since Alice has actually signed Hash(D1), she has also
signed Hash(D2), so Eve can go to the bank, present the signature as being
on D2, and get paid $500.

In practice, most hash functions use a mixing algorithmM that transforms
a bit string of length n into another bit string of length n. Then Hash works
by breaking a long document into blocks and successively usingM to combine
each block with the previously processed material.

Thus to compute H(D), we first append extra 0 bits to D so that the
length of D is an even multiple of n bits. This allows us to write D as a
concatenation

D = D1 ‖D2 ‖D3 ‖D4 ‖ · · · ‖Dk

of bit strings of length n. (See Exercise 3.43 for a discussion of concatenation.)
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Having broken D into pieces, we start the computation of Hash(D)
with an initial bit string H0, which is the always the same. We then com-
pute M(D1) and set H1 = H0 xorM(D1). We repeat this process k times to
obtain H2, H3, . . . , Hk, where

1

Hi = Hi−1 xorM(Di) for 1 ≤ i ≤ k.

Then Hash(D) is equal to the final output value Hk.
For practical applications, it is very important that a hash function be

extremely fast. For example, when digitally signing a document such as a
computer program or a video file, the entire document needs to be run through
the hash function, so one needs to be able to compute Hash(D) on megabyte,
or even gigabyte, length files.

Since speed is of fundamental importance for hash functions, in the real
world one tends to use hash functions constructed using ad hoc mixing opera-
tions, rather than basing them on classical hard mathematical problems such
as factoring or discrete logarithms. The hash functions in most widespread
use today go by the name of SHA (Secure Hash Algorithm). There are sev-
eral versions of SHA, released at various times, that achieve various levels of
security.

How do SHA and other similar hash algorithms work? We briefly illustrate
by describing the structure of SHA-1, omitting the specifics of the mixing
operations. (See [99] for the official government description of SHA.)

Break document D (with extra bits appended) into 512-bit chunks.
Start with five specific initial values h0, . . . , h4.
LOOP over the 512-bit chunks.

Break a 512 bit chunk into sixteen 32-bit words.
Create a total of eighty 32-bit words w0, . . . , w79 by

rotating the initial words.
LOOP i = 0, 1, 2, . . . , 79

Set a = h0, b = h1, c = h2, d = h3, e = h4.
Compute f using XOR and AND operations on a, b, c, d, e.
Mix a, b, c, d, e, by rotating some of their bits, permuting

them, and add f and wi to a.
END i LOOP
Set h0 = h0 + a, h1 = h1 + b, . . . , h4 = h4 + e.

END LOOP over chunks
Output h0 ‖ h1 ‖ h2 ‖ h3 ‖ h4.

The SHA-1 Hash Algorithm

1In practice, the Hi−1 and M(Di) values would be combined in a slightly more com-
plicated fashion to form Hi.
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Remark 8.2. Notice that SHA-1 has an inner loop that is repeated 80 times.
We say that SHA-1 has 80 rounds. Each round involves various mixing op-
erations that use the results from the previous round together with a small
amount of new data. For SHA-1, the new data used in the ith round is the
32-bit word wi. This idea of repeating a simple mixing operation is typical
of modern hash functions, pseudorandom number generators (Sect. 8.2), and
symmetric ciphers such as DES and AES (Sect. 8.12). In principle, one could
make SHA-1 faster by doing fewer rounds, but if one uses too few rounds,
then there are known methods to break the system. It is an area of ongoing
research to understand how many rounds are necessary to make SHA-1 and
similar round-based systems secure.

The original SHA, which was later amended as SHA-1 to fix a minor
security flaw, is a hash function whose output has length 160 bits. Starting
around 2005 and continuing to the present day, various attacks have been
developed for SHA-1, originally for fewer than 80 rounds, but eventually for
the full 80-round SHA-1 implementation. To give a rough idea of progress, as
of 2012 researchers have theoretical methods that they claim will find a SHA-1
collision in around 261 operations, much less than the ostensible 280 security
level.

This prompted the development and publication in 2001 of a suite of hash
functions known collectively as SHA-2. The individual hash functions in SHA-
2 are called SHA-n, where n ∈ {224, 256, 384, 512} indicates the block size.2

As with SHA-1, these hash functions were developed internally by the NSA.
They are similar in some ways to SHA-1, but have so far resisted any serious
attacks when the full number of rounds are used. However, given the attacks
on SHA-1, it was felt desirable to create an alternative hash function based
on different principles, so in 2007 the United States government opened a
5-year competition to design a new general purpose hash function to be called
SHA-3. The winner of the competition, announced in 2012, was created by
G. Bertoni, J. Daemen, G. Van Assche, and M. Peeters. As of 2014, a draft
standard for SHA-3 is available, but a final standardization document is not
yet ready.

8.2 Random Numbers and Pseudorandom
Number Generators

We have seen that many cryptographic constructions require the use of
random numbers. For example:

2This means that a direct search takes approximately 2n steps to invert SHA-n, and
a naive collision algorithm takes approximately 2n/2 steps to find a collision for SHA-n.
Of course, none of this proves that SHA is secure, and indeed the difficulty of inverting or
finding collisions for SHA is not related, as far as is known, to any standard mathematical
problem.
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• The key creation phase of virtually all cryptosystems requires the user
to choose one or more random (prime) numbers. The same is true for
creating keys in digital signature schemes.

• The Elgamal public key cryptosystem (Sect. 2.4) uses a random element
(random number) during the encryption process, and ElGamal-type dig-
ital signature schemes such as DSA and ECDSA (Sect. 4.3) use a random
element for signing.

• The NTRU public key cryptosystem (Sect. 7.10) also uses a random
element during the encryption process.

• The entire premise of probabilistic encryption schemes (Sect. 3.10) is to
incorporate randomness into the encryption process.

• Even completely deterministic cryptosystems such as RSA gain impor-
tant security features when some randomness is incorporated into the
plaintext; see Sect. 8.6.

Ideally, we would like a device that generates a completely random list
of 0s and 1s. Such devices exist, at least if one believes that quantum the-
ory is correct. They are based on measuring the radioactive decay of atoms.
According to quantum theory, given an atom of some radioactive substance,
there is a number T such that the atom has a 50% chance of decaying in
the next T seconds, but there is no way of predicting in advance whether the
atom will decay. So the device can wait T seconds and then output a 1 if the
atom decays and a 0 if it does not decay. The device then chooses another (un-
decayed) atom and repeats the process. In principle, this gives a completely
random unpredictable bit string.3 Unfortunately, as a practical matter, it is
expensive to build a Geiger counter into every computer!

Modern cryptosystems avoid this problem by starting with a random seed
and feeding it and other data into a function to produce a long random-looking
bit string. A function of this sort is called a pseudorandom number genera-
tor (PRNG). Notice the contradiction in the terminology. A pseudorandom
number generator is a function, so the output that it produces is not random
at all, the output is completely determined by the input. However, one hopes
that it should be difficult to distinguish output of a PRNG from the output
of a true random number generator.

One model of a PRNG is as a function of two variables F (X,Y ). In order
to get started, Alice chooses a truly random seed value S. (Or if not truly
random, then as random as she can make it.) She then computes the numbers

R0 = F (0, S), R1 = F (1, S), R2 = F (2, S), . . . .

The list of bits R0 ‖R1 ‖R2 ‖ · · · is Alice’s (pseudo)random bit string.

3In practice, more sophisticated measurements of radioactivity are used, but the under-
lying principle is that quantum theory gives precise probabilities that certain measurable
events will occur over a given time period.
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In order to be useful for cryptography, a PRNG should have the following
two properties:

1. If Eve knows the first k bits of Alice’s random bit string, she should have
no better than a 50% chance of predicting whether the next bit will be
a 0 or a 1. More precisely, there should not be a fast (e.g., polynomial-
time) algorithm that can predict the next bit with better than 50%
chance of success.

2. Suppose that Eve somehow learns part of Alice’s random bit string, for
example, suppose that she finds out the values of Rt, Rt+1, Rt+2, . . . .
This should not help Eve to determine the earlier part R0, R1, . . . , Rt−1

of Alice’s string.

A PRNG with these properties is said to be cryptographically secure.

Example 8.3. One can build a PRNG out of a hash function Hash by choosing
an initial random value S and setting

Ri = Hash(i ‖ S).

(See Sect. 8.1 for a discussion of hash functions.) Of course, not every hash
function yields a cryptographically secure PRNG.

Example 8.4. One can also build a PRNG from a symmetric (i.e., private
key) cryptosystem, for example DES or AES (see Sect. 8.12). Here is one way
to build a PRNG that has been accepted as a public standard. Start with a
random seed S and a keyK for the cryptosystem, and let EK be the associated
encryption function. Each time a random number is required, use some system
parameters, e.g., the date and time as returned by the computer’s CPU, to
form a number D and encrypt D using the key K, say

C = EK(D).

Then output the “random” number

R = EK(C xor S)

and replace S with EK(R xor C).

Remark 8.5. Alternatively, a PRNG can be used as a symmetric cipher. The
seed value S is Alice and Bob’s private key. In order to send a message M ,
Alice breaksM into piecesM =M0 ‖M1 ‖M2 ‖ · · · . She then encrypts the ith
piece of the message as

Ci =Mi xorRi.

Since Bob knows the seed value S, he can compute the same pseudorandom
stringR0‖R1‖R2‖· · · that Alice used to encrypt, so he can recover the message
as Mi = Ci xor Ri. (Notice that if the Ri were truly random, then Alice and
Bob would be using a one-time pad. However, in that case, they would need
to have exchanged all of the Ri’s before sending encrypted messages.)
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Remark 8.6. PRNGs that are based on hash functions such as SHA or
symmetric ciphers such as DES or AES are fast and, as far as is known, crypto-
graphically secure, but the security is not based on reduction to a well-known
mathematical problem. There are PRNGs whose security can be reduced to
the difficulty of solving a hard mathematical problem such as factoring, but
such PRNGs are much slower and thus not used in practice.

8.3 Zero-Knowledge Proofs

In this section we introduce you to two new characters: Peggy, the prover,
and Victor, the verifier. Informally, a zero-knowledge proof is a procedure
that allows Peggy to convince Victor that a certain fact is true without giving
Victor any information that would let Victor convince other people that the
fact is true. As with many cryptographic constructions, this seems at first
glance to be impossible. For example, how could Peggy (in New York) convince
Victor (in California) that her house is red without sending Victor a picture
of the house? And if she sends Victor a picture, then Victor can show the
picture to other people as proof of Peggy’s house color.4

In practice, an (interactive) zero-knowledge proof generally involves a num-
ber of challenge–response communication rounds between Peggy and Victor.
In a typical round, Victor sends Peggy a challenge, Peggy sends back a re-
sponse, and then Victor evaluates the response and decides whether to accept
or reject it. After a certain number of rounds, a good zero-knowledge proof
showing that a quantity y has some property P should satisfy the following
two conditions:

Completeness If y does have property P, then Victor should always accept
Peggy’s responses as being valid.

Soundness If y does not have property P, then there should be only a very
small probability that Victor accepts all of Peggy’s responses as being
valid.

In addition to being both sound and complete, a zero-knowledge proof
should not convey useful information to Victor, whence the name. Before
attempting to describe the somewhat subtle idea contained in the phrase
“zero-knowledge,” we pause to present a concrete example of a zero-know-
ledge proof.

Example 8.7. Peggy chooses two large primes p and q and publishes their
product N . Peggy’s task is to prove to Victor that a certain number y is a
square modulo N without revealing to Victor any information that would help
him to prove to other people that y is a square modulo N . We note that since
Peggy knows how to factor N , if y is a square modulo N , then she can find a
square root for y, say x, satisfying

4This house color scenario is just an informal analogy. Since Victor and Peggy undoubt-
edly both own Photoshop, a picture of Peggy’s house doesn’t actually prove anything!
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x2 ≡ y (mod N).

In each round, Peggy and Victor perform the following steps:

1. Peggy chooses a random number r modulo N . She computes and sends
to Victor the number

s ≡ r2 (mod N).

2. Victor randomly chooses a value β ∈ {0, 1} and sends β to Peggy.

3. Peggy computes and sends to Victor the number

z ≡
{
r (mod N) if β = 0,

xr (mod N) if β = 1.

4. Victor computes z2 (mod N) and checks that

z2 ≡
{
s (mod N) if β = 0,

ys (mod N) if β = 1.

If this is true, Victor accepts Peggy’s response; otherwise, he rejects it.

Peggy and Victor repeat this procedure n times, where n is reasonably large,
say n = 80. If all of Peggy’s responses are acceptable, then Victor accepts
Peggy’s proof that y is a square modulo N ; otherwise, he rejects her proof.

It is easy to check completeness and soundness. For completeness, note
that if y is a square modulo N , then the z that Peggy sends to Victor satisfies
z ≡ xβr (mod N), so

z2 ≡ x2βr2 ≡ yβs (mod N).

Thus Victor always accepts Peggy’s response.
Conversely, suppose that y is not a square modulo N . Then regardless of

how Peggy chooses s, only one of the two values s and ys is a square moduloN .
Hence there is a 50% chance that Peggy will not be able to answer Victor’s
challenge, since half the time Victor will require Peggy to prove that s is a
square and half the time he will require her to prove that ys is a square.
Thus if y is not a square, then the probability that Peggy can provide valid
responses to n different challenges is 2−n. So if Peggy is able to send 80 valid
responses, Victor should be convinced that y is indeed a square modulo N .

We now consider in what sense Peggy’s zero-knowlege proof that y has
property P should not help Victor to subsequently prove to anyone else that y
has property P. Informally, the idea is that Victor should be able to gener-
ate lists of bogus responses that are indistinguishable from lists of genuine
responses created by Peggy. The conclusion is that Peggy’s responses do not
give Victor any information, because if they did, he could get the same sort
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of information using his self-generated bogus lists of responses. Rather than
giving the precise mathematical formulation of this idea, which involves the
statement that two probability distributions are identical, we are content to
present an example.

Example 8.8. Continuing with the zero-knowledge proof described in Example
8.7, suppose that Victor has finished talking to Peggy, and now he wants to
convince some other verifier, say Valerie, that y is a square modulo N . At the
end of his communications with Peggy, Victor has amassed a list of triples

(s1, β1, z1), (s2, β2, z2), (s3, β3, z3), . . . ,

where each triple satisfies

z2i ≡ yβisi (mod N).

Thus if βi = 0, then Victor knows a square root of si modulo N , and if βi =1,
then Victor knows a square root of ysi modulo N , but unless the list is ex-
tremely long, it is unlikely that there will be any values of s for which Victor
knows a square root modulo N of both s and ys. And if Victor knows only one
of these two square roots, then there is a 50% chance that he will be unable
to answer each of Valerie’s challenges. Hence Peggy’s responses are of minimal
help to Victor if he wants to prove to Valerie that y is a square modulo N .

Even more is true. Without talking to Peggy at all, Victor can create
lists of triples (s1, β1, z1), (s2, β2, z2), . . . that are indistinguishable from valid
lists generated by Peggy and Victor together. For example, if, when actually
talking to Peggy, Victor chooses β = 0 and β = 1 randomly in Step 2, then
he can generate a similar list of triples (s, β, z) without talking to Peggy by
randomly choosing z mod N and β ∈ {0, 1} and setting

s ≡ z2(yβ)−1 (mod N).

This informal argument shows why the data that Peggy sends to Victor during
their interaction does not help Victor prove to anyone else that y is a square
modulo N . If it did, then Victor could use his self-generated list of triples for
the same purpose.

Remark 8.9. There are various levels of zero knowledge. For example, there is
perfect zero-knowledge, in which Victor’s bogus list of responses is statistically
identical to Peggy’s actual list; there is statistical zero-knowledge, in which
the bogus list is statistically extremely close to the actual list; and there is
computational zero-knowledge, which means that there is no efficient algorithm
that can distinguish a bogus list from an actual list. The proof that “y is a
square modulo N” described in Example 8.7 is an example of a perfect zero-
knowledge proof.
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8.4 Secret Sharing Schemes

A secret sharing scheme does what its name suggests: it provides a way of
sharing a secret among several people. For example, the combination to a
vault in a bank might be shared among the president and two vice-presidents
by giving each of them one third of the combination. It then requires all three
of them to open the vault. Alternatively, we might give half to the president
and the other half to each vice-president. Then the vault can be opened by
the president and either of his vice-presidents.

However, this example does not meet the requirements of a true secret
sharing scheme, since knowledge of any part of the vault’s combination makes
it easier to guess the full combination. In a true secret sharing scheme among
a group of n people, no subgroup of n − 1 people should be able to gain an
advantage in discovering the secret.

It is not hard to construct such a scheme. For example, to share a secret
number S mod m among n people, select n− 1 random numbers

D1, D2, . . . , Dn−1 modulo m,

and set

Dn ≡ S −D1 −D2 − · · · −Dn−1 (mod m).

The ith participant receives the value of Di, and it requires all n values to
recover the secret

S ≡ D1 +D2 + · · ·+Dn (mod m).

More generally, suppose that we want to share a secret among n people in
such a way that any t of them can recover the secret, but no t − 1 of them
can do so. These are called (t, n) threshold sharing schemes, where n is the
number of participants and t is the threshold of the scheme. Threshold secret
sharing schemes with t < n are more difficult to construct; the first ones were
invented independently by Adi Shamir [123] and George Blakley [15] in 1979.

We briefly describe Shamir’s secret sharing scheme for n participants and
threshold t. The underlying idea is that it takes k + 1 values to determine
a polynomial of degree k. Thus a linear polynomial ax+ b is determined
by two values (a line is determined by two points), a quadratic polyno-
mial ax2 + bx+ c by three values, etc.

Suppose that we want to share a secret number S among n people so that
any t of them can recover S, but fewer than t cannot. We set a0 = S, choose
random numbers a1, a2, . . . , at−1, and form the polynomial

f(x) = a0 + a1x+ a2x
2 + · · ·+ at−1x

t−1.

Next we choose n random values for x, say x1, x2, . . . , xn, and compute

yi = f(xi) for 1 ≤ i ≤ n.
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(In practice, one might simply take xi = i.) The ith participant is given the
value yi.

Suppose now that t of the participants want to recover the secret, where
to ease notation, we will assume that they are participants 1 through t. After
sharing their yi values, these t participants can form the following system of
equations:

y1 = f(x1) = a0 + a1x1 + a2x
2
1 + · · ·+ at−1x

t−1
1 ,

y2 = f(x2) = a0 + a1x2 + a2x
2
2 + · · ·+ at−1x

t−1
2 ,

...
...

yt = f(xt) = a0 + a1xt + a2x
2
t + · · ·+ at−1x

t−1
t .

The participants know all of the xi and yi values, so they know this system
of t linear equations for the t unknown values a0, a1, . . . , at−1. They can now
solve the system, e.g., using Gaussian elimination, to find the aj values and
thus recover the secret value a0 = S. (In practice, a more efficient way to
reconstruct f(x) is to use what are known as Lagrange interpolation polyno-
mials.)

8.5 Identification Schemes

An identification scheme is an algorithm that permits Alice to prove to Bob
that she is really Alice. If Alice is meeting Bob face to face, then Alice might
use her driver’s license or passport for this purpose. But the problem becomes
more difficult when Bob and Alice are communicating over an insecure net-
work. An important feature of a secure identification scheme is that if Eve
listens to Bob and Alice’s exchange of information, she should not be able to
impersonate Alice. Indeed, even Bob should not be able to impersonate Alice.

Identification schemes typically operate by performing a challenge and
response. This means that Bob starts by sending some sort of challenge to
Alice. Alice’s response to the challenge demonstrates her identity by showing
that she has knowledge that only Alice possesses. Sometimes there is more
than one round of challenges and responses.

In practice, the first step is for some trusted authority (TA) to issue private
and public identification keys to Alice. Before doing this, the TA actually
verifies Alice’s identity, say by meeting her and looking at her passport. Then,
when Bob issues Alice the challenge, she uses her private key to create the
response, and Bob verifies the response using Alice’s public key. However, this
is too simplistic. How can Bob be sure that Alice’s purported public key was
created for the real Alice? The answer is that when the TA issues Alice’s
identification keys, he also gives Alice a digital signature on a hash of her
identity and her public key. Part of Bob’s verification routine then includes
using the TA’s public verification key to check the signature on Alice’s public
information.



482 8. Additional Topics in Cryptography

There are many identification schemes based on the usual underlying hard
problems. For example, there are identification schemes due to Schnorr and
to Okamoto that use the discrete logarithm problem, there is an RSA-style
scheme due to Guillou and Quisquater that relies on exponentiation modulo a
composite modulus, and there is an identification scheme due to Feige, Fiat,
and Shamir whose security is based on the difficulty of taking square roots
modulo a composite modulus.

Identification schemes are closely related to digital signatures (Chap. 4)
and to zero-knowledge proofs (Sect. 8.3). The latter connection is clear, since
Alice identifies herself by demonstrating that she has a piece of information.
Ideally, Alice should prove that she has this knowledge without giving Bob or
Eve any useful information about the proof.

For the relation with digital signatures, it is a standard observation that
any challenge–response identification scheme can be turned into a digital sig-
nature scheme. The trick is to use a hash of the document being signed as
the challenge. Alice’s response serves as the signature. Since a secure hash
function prevents Alice from having any a priori knowledge of Hash(D), the
hash value truly acts as a random challenge. Bob can then easily verify Alice’s
signature on D by computing Hash(D) and checking that Alice’s signature is
the correct response for the challenge Hash(D). Conversely, all of the digital
signature schemes described in Chap. 4 can be used as identification schemes,
with the hash of the document being replaced by Bob’s challenge and Alice’s
signature serving as the response.

8.6 Padding Schemes, the Random Oracle
Model, and Provable Security

Alice asks Bob to send her a bit string x consisting of 1024 bits. Bob is
supposed to use Alice’s 1024-bit RSA public key (N, e) and apply the following
algorithm: Bob first computes y ≡ xe (mod N), then computes z = N xor x,
and finally transmits the concatenation y ‖ z to Alice.

Of course, this is completely silly. Eve can simply ignore y and recover x
immediately after peeling off z. The question is, why is this cryptosystem
particularly silly? What if another system that we actually use is equally silly
for some reason that would be obvious if only we were a bit smarter. For
example, Exercise 3.11 describes a somewhat complicated cryptosystem that
appears to require knowledge of the factorization of an integer into two primes
to break, but in fact, the public key already gives away the factorization.

Our problem boils down to the following. We have convinced ourselves
that a certain process, for example RSA encryption, is hard to reverse unless
an adversary possesses a key piece of information. We have a cryptosystem
that uses this process to encrypt a message. But how do we know for sure
that the only way to decrypt the message is to invert the process? It’s a little
like protecting a treasure in your house by building an incredibly strong lock
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on the front door, but then walking off and leaving a side door open. What’s
missing is a guarantee that the only way to steal the treasure is by opening
the front door, and by that we mean opening it by picking the lock, not by
cutting a hole in the door or knocking it off its hinges.

In order to solve this problem, cryptographers try to do a precise analysis
and to give a proof of security for a given cryptosystem. The ultimate goal
is to nail down exactly the underlying hard problem, and then to construct a
proof showing that anyone who can break the cryptosystem can also solve the
hard problem. Even more challenging, the argument has to be correct! Such
analyses and arguments make up a significant part of modern-day academic
cryptography.

Consider the RSA cryptosystem, for example. RSA is based on the hard-
ness of the problem of factorization, but it is not clear at all that breaking
RSA is equivalent to factorization. That is, the ability to quickly factor large
numbers would enable one to break RSA, but there might be another way to
solve the RSA problem without directly solving the problem of factorization.
It is tempting to circumvent this difficulty by defining the hard problem that
RSA is based on to be precisely the hard problem on which RSA is based.
This gains you theoretical security, since your proof of security is now a tau-
tology, and it might even gain you a little bit of practical security, since the
passing of years lends credence to the belief that the RSA problem itself is
fundamentally hard.

The other cryptosystems that we have studied have similar difficulties.
For example, Diffie–Hellman key exchange and the Elgamal cryptosystem are
not known to be equivalent to the discrete logarithm problem, and discrete
logarithm digital signature schemes such as DSA (Sect. 4.3) rely on the dif-
ficulty of solving a strange equation in which the unknown quantity appears
as both a base and an exponent. Similarly, the security of NTRUEncrypt is
(probabilistically) equivalent to the problem of solving the shortest or closest
vector problems in a certain class of lattices. Thus if SVP or CVP were solved
for general lattices, then NTRUEncrypt would certainly be broken, but it is
also possible that there is an easier way to solve SVP or CVP in the NTRU
lattices due to their special form.

In 1979 Rabin [108] introduced a method of public key encryption based
on taking square roots modulo a composite modulus N = pq. The novelty of
Rabin’s cryptosystem was that he could prove that an adversary capable of
decrypting arbitrary ciphertexts could also, with high probability, factor the
modulus. This is, on the face of it, quite encouraging. On the other hand,
it also means that Rabin’s cryptosystem is susceptible to a chosen ciphertext
attack, since Rabin’s proof essentially says that a decryption oracle allows one
to factor the modulus.

At first glance, the whole notion of chosen ciphertext attacks seems coun-
terintuitive and artificial. After all, why would Alice blindly return the de-
cryption of any ciphertext given to her. The answer is that these days Alice
is a computer program, and computer programs will do anything that they
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are programmed to do. In particular, they might be programmed to inter-
change various types of information, including possibly decrypted messages
as a means of identification.

As cryptography developed into a modern science, cryptographers realized
that a potential way around this type of problem is to pad encrypted messages
using a padding that mixes random data with the message. The object is to
somehow create a situation in which Bob can verify that the ciphertext that
he is decrypting was actually created by a person (Alice) who had knowledge
of the original plaintext. Further, Bob should be confident that when Alice
created the ciphertext, she had no significant control over the padding. (An
early padding scheme for RSA that lacked this randomness feature was broken
by Bleichenbacher [16] by simply sending a large number of messages and
seeing which ones were accepted as valid plaintexts, without even being told
their decryptions!) The standard way to introduce random-like qualities is
to create the padding by applying a hash function to the plaintext. This
makes the padding essentially “random” and hence removes it from Alice’s
direct control, while still leaving it predetermined because it is obtained by
evaluating a (hash) function. This crucial assumption, i.e., that hash functions
are somehow simultaneously random and deterministic, was introduced by
Bellare and Rogaway [12] in 1993. They called security proofs based on this
assumption the random oracle model.

It was hoped that it would be possible, with precise definitions and careful
assumptions, to prove that certain padding schemes really were secure against
chosen ciphertext attacks. An early proposal called the Optimal Asymmetric
Encryption Padding (OAEP) scheme was proposed by Bellare and Rogaway
in 1994 [13]. In this article they proved that OAEP provides security against
chosen ciphertext attacks, an assertion that was accepted by the cryptographic
community for 7 years, during which time OAEP was written into industry
standards.

We illustrate padding schemes by describing OAEP. Bob uses an encryp-
tion function E and two hash functions G and H. He chooses a plaintext m
and a random bit string r and computes

b = G(r) xor (m ‖ 00 · · · 0),
c = E

(
b ‖
(
H(b) xor r

))
.

Bob sends the ciphertext c to Alice. She decrypts c and breaks it apart to
recover b and H(b) xor r. She uses this to compute first H(b) and then

r = H(b) xor
(
H(b) xor r

)
.

Finally, she computes G(r) xor b to recoverm ‖ 00 · · · 0. If this string ends with
an appropriate number of 0’s, Alice accepts m as a valid plaintext; otherwise,
she rejects it. Notice how OAEP uses the hash functions to make every bit
of c depend on every bit of m and r, in the sense that changing any one bit
of either m or r causes every bit of c to have a 50% chance of changing.
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Unfortunately, it was shown by Shoup in 2001 [131] that one of the
assumptions in the security proof of OAEP was unreasonable, in the sense
that it assumed that no amount of probing of a certain piece of information
could produce useful information. This embarrassing incident underlined one
of the fundamental limitations of security proofs. Just as it is possible for a
complicated cryptographic system to be insecure because the cryptographer
has protected it only against the lines of attack that he knows, a “proof of
security” is only as secure as the validity of its assumptions (not to mention
the correctness of its logic). Shoup proposed a variant called OAEP+ and
gave a correct proof of its security in the random oracle model.

One might think that for the purposes of analyzing the security of a cryp-
tosystem, it is very reasonable to assume that hash functions behave exactly
as they are supposed to behave, with no hidden flaws, biases, or weaknesses.
However, there have been fierce arguments regarding the use of the random
oracle model as the basis for the security of cryptosystems, with the result
that an alternative (stronger) assumption called the standard model has been
developed to provide what has become known as provable security. For some
hint of the controversy that this has engendered, see for example [69].

For an overview of this subject we recommend the highly readable survey
articles of Koblitz and Menezes [70] and Bellare [11]. Koblitz and Menezes
remark that “The first books on cryptography that the two of us wrote in our
naive youth suffer from this defect: the sections on security deal only with
the problem of inverting the one-way function.” (Also included is a footnote
clarifying the meaning of the word “youth.”) This quotation highlights the
tendency of those trained in pure mathematics, when introduced to the field of
public key cryptography, to concentrate primarily on the concept of (trapdoor)
one-way functions, to the exclusion of the many practical issues that arise
in real-world implementations. Indeed, the authors of the present book must
admit that even with full knowledge of this pitfall, it is the quest to construct,
understand, and apply new one-way functions to cryptographic systems that
draws them to the subject.5

8.7 Building Protocols from Cryptographic
Primitives

The use of public key cryptography and digital signature schemes in the real
world involves far more than simply implementing one or two basic algorithms.
Applications almost always involve a number of different cryptographic primi-
tives. For example, a public key might itself be digitally signed, and the public
key cryptosystem, whose plaintexts are padded using a hash function, might be
used to send the key for a symmetric cipher. So this single application involves

5And unfortunately, the authors of this book cannot even offer up youth, by any
definition, as an excuse for their behavior.
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choosing a public key cryptosystem and digital signature scheme (e.g., RSA),
a hash function (e.g., SHA-1), a padding scheme (e.g., OAEP+), and a sym-
metric cipher (e.g., AES).

However, even this simple description is far from sufficient. For example,
are Bob and Alice using RSA with 1024-bit keys or with 2048-bit keys? How
long are their AES keys? Exactly how do they use their hash function or sym-
metric cipher to generate pseudorandom numbers? And even if they specify
all of the obvious parameters and decide how to use all of the cryptographic
primitives, they’re still not ready to communicate. They need to agree on for-
matting. This may seem pedantic, but it is very important. Before Bob and
Alice exchange messages, they need to specify the exact meaning of each byte
of the data, e.g., which bytes are the ciphertext, which bytes are the signature,
etc. Even something as seemingly trivial as the order in which data is stored
in memory and transmitted between computers can cause total system failure
if not specifically addressed.6

A cryptographic protocol is a complete description of everything that is
needed in order to implement a cryptographic procedure. The term is not en-
tirely precise, but it generally refers to the way in which one or more crypto-
graphic algorithms are to be implemented and coordinated with one another.

The theory of cryptographic protocols, especially their creation and proofs
of security, is a subject in its own right, with numerous articles and books de-
voted to the topic. We note that even if one assumes that the underlying
cryptographic primitives such as RSA or ECC are secure, it is extremely easy
to use such primitives to create a seemingly secure protocol that is, in fact,
vulnerable to attack. This is especially true if one designs the protocol pri-
marily with a view toward efficiency and flexibility; it is vital that security
considerations be given top priority. Further, given the complexity of any pro-
tocol that is formed by fitting together several cryptographic primitives, it
can be difficult to give even a convincing heuristic argument that the pro-
tocol has no security weaknesses. In brief, the construction and analysis of
cryptographic protocols is not for the faint of heart, but it is of fundamental
importance if modern cryptography is to be of any use in the real world.

In order for computers in far-flung parts of the world to communicate se-
curely (or at all), someone needs to sit down and specify precise cryptographic
protocols. This is normally done by standard-setting bodies that are formed
either by the government or by representatives from the relevant industries.
Even restricting to the field of secure communications, there are many such
bodies in existence, each of which consumes countless man-hours of effort
and innumerable reams of paper7 as it spends years issuing draft versions

6Data stored on a computer as least-significant-byte first is said to be in little-endian for-
mat, while the reverse order is called big-endian. These amusing names come from Gulliver’s
Travels, in which the inhabitants of one kingdom are required to crack their soft-boiled eggs
at the “little end,” while those in a rival kingdom crack their eggs at the “big end.”

7We ask the reader to excuse our hyperbole. In particular, the aforementioned reams of
paper are figurative, having largely been replaced by megabytes of disk space.
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of the eventual final standard. Among the many organizations involved in
this process are the Internet Engineering Task Force (IETF), the Institute of
Electrical and Electronics Engineers (IEEE), and the American National Stan-
dards Institute (ANSI). The IETF supervises Request for Comment (RFC)
documents, which are sometimes later released as official standards. The IEEE
sponsors the important P1363 standardization project on public key cryptog-
raphy. There are many reasons why the setting of standards for cryptographic
protocols is such an arduous process, including legitimate differences of opin-
ion as to the security of different protocols and the financially serious issue of
the extent to which patented algorithms should be incorporated into publicly
approved standards. A successful member of a standards-setting board needs
not only a solid technical background, but also must have excellent political
skills.

8.8 Blind Digital Signatures, Digital Cash,
and Bitcoin

Digital cash, and the blind digital signatures on which it is based, were both
introduced by David Chaum in 1982 [26]. The idea of a blind digital signature
is that the document to be signed is first blinded (concealed) and then signed,
yet the signature can still be verified against the original unblinded document.
One situation where blind signatures are used is in voting protocols, where
a voter might want an election official to validate (sign) her ballot without
revealing to the official how she voted.

Example 8.10. Here is a simple example of a blind signature scheme using
RSA. Alice has a document hash D, and she wants Samantha to create a blind
RSA signature on D using Samantha’s signing triple (N, e, d) as described in
Table 4.1.
• Alice picks a random number R mod N and uses Samantha’s public ver-
ification key e to compute D′ ≡ ReD (mod N).

• Samantha uses her private signing key d to compute the signature

S ≡ (D′)d ≡ (RvD)d ≡ RedDd ≡ RDd (mod N).

(In this computation, we have used the fact that Red ≡ R (mod N).)

• Since Alice knows R, she can compute R−1S ≡ Dd (mod N), which is
the signature on her document D.

Notice that Alice does not know Samantha’s private signing key d, while
Samantha does not know the document D that was signed.

A second application of blind digital signatures is to digital cash. The idea
is that when Alice withdraws digital cash from her bank account and spends
it, her bank is unable to determine who received the money. Thus digital cash
should preserve the anonymity of physical cash transactions, since when Alice
withdraws actual currency from her account, her bank does not know who
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she gives it to. (Of course, her bank can record the serial numbers of the
bills that she receives and then track those bills as they move through the
banking system.) Cryptographic methods adding various enhancements, such
as off-line transactions and safeguards against double spending of digital cash
units, were described in later work of Chaum, his co-authors, and others; see
for example [27].

A potential weakness of these digital cash systems is the necessity of hav-
ing a trusted central authority, be it a bank, an e-cash company, or a govern-
ment, that is responsible for issuing cash and safe-guarding the security of the
system. In principle, the fiat currencies issued by any government have this
weakness, since at any time the issuing body might decide to (say) halve the
value of everyone’s wealth by doubling the amount of available currency. In
the short term, this would make the government very rich, since they would
suddenly have a lot of extra cash to spend. In practice, it would lead to run-
away inflation.8

The article “Bitcoin: A Peer-to-Peer Electronic Cash System” [91] pro-
posed a practical way to create a digital cash system without requiring a
trusted central authority. The idea is to digitally sign and cryptographically
join every transaction into a massive linked chain. To prevent a small group of
users from modifying the chain and, say, repudiating or canceling a payment,
the system is designed so that it takes a significant amount of computing
power to add a transaction to the chain. People who do these time-consuming
mining computations that keep the system running are rewarded with a small
fraction of a bitcoin. The complete transaction chain is stored on myriad com-
puters and is always available for public scrutiny.

There is much hype and much controversy surrounding Bitcoin, including
for example the question of whether a currency that is not backed by anything
tangible can have value.9 This being a mathematical text, we will also not
pursue the fascinating economic and sociological issues raised by Bitcoin, nor
will we discuss how Bitcoin has been used as a (highly) speculative investment
tool and as a way of concealing illegal activities. Instead, we turn to the
cryptographic protocols that underlie Bitcoin.

Bitcoin uses the elliptic curve digital signature algorithm (ECDSA,
Sect. 6.4.3) to sign transactions. It uses the specific elliptic curve, prime,
and point (E, p, P ) denoted by secp256k1 in the Standards for Efficient
Cryptography document [142, page 21]. Based on our current knowledge of
the difficulty of solving the ECDHP, this provides approximately 128 bit
security. Since it’s fun to see the actual public parameters used to secure the

8Many economists feel that a small amount of inflation is a good thing, since it encour-
ages investment while allowing governments to slowly outgrow their accumulated debts.

9In fairness, it is not entirely clear in what sense the “full faith and credit of the United
States government” that backs US currency is tangible, although one can argue that this
faith and credit represents the taxing authority of the government on the US economy,
whose productivity and output are eminently tangible.
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Bitcoin chain, we list them here. The Bitcoin curve is

E : y2 = x3 + 7,

and the prime

p = 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1

was chosen to have low Hamming weight, which speeds up computations in
the field Fp. The prime p and curve E have the further property that

N = #E(Fp) = p+ 1− 432420386565659656852420866390673177327

is prime, which means that every non-zero point in E(Fp) has order N . The
public point P = (x, y) ∈ E(Fp) specified by the secp256k1 standard is

x = 5506626302227734366957871889516853432625060345377

7594175500187360389116729240,

y = 3267051002075881697808308513050704318447127338065

9243275938904335757337482424.

As mentioned earlier, Bitcoin miners perform time-consuming calculations
in order to add bitcoin transactions to the chain. They do this by finding
an input to the hash function SHA-25610 (see Sect. 8.1) that is tied to the
transaction(s) and has output containing a specified number of leading (or
trailing) zeros. Over time, as more CPU power is devoted to mining, the
SHA-256 requirements are constantly being strengthened so that it always
takes 5–10min on average for a transaction to be added to the chain. Again,
the purpose of this requirement is to prevent any small group from going back
and altering the existing chain.

We close this section with a few interesting Bitcoin tidbits:
• Unlike ordinary currency, it is possible to create Bitcoins that can only
be spent using two signatures, or two out of three signatures, etc.

• The total number of bitcoins is designed to stabilize at 21,000,000. This
will, in principle, eliminate bitcoin inflation (which many would argue is
a bug, not a feature, of a currency).

• As with all protocols that rely on factorization or discrete logarithm based
cryptography, the construction of quantum computers (Sect. 8.11) will
require switching to a quantum secure cryptosystem. The logistics of such
a switch are likely to be problematic without considerable preparation and
forethought.

10It is interesting that the hash function SHA-256 used by Bitcoin provides 256 bit
security, while the ECDSA signature scheme secp256k1 provides only 128 bit security.
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8.9 Homomorphic Encryption

The basic RSA PKC has an interesting multiplicativity property. Suppose
that Bob sends Alice two ciphertexts c1 and c2 associated to the plaintexts m1

and m2. Then the ciphertext associated to the product m1m2 is the product
of the ciphtertexts c1c2. This is true because

c1c2 ≡ me
1m

e
2 ≡ (m1m2)

e (mod N).

On the other hand, the ciphertext associated to m1 +m2 is almost certainly
not the sum of the ciphtertexts c1 + c2, since in general

(m1 +m2)
e �≡ me

1 +me
2 (mod N).

A fully homomorphic cryptosystem is one that respects both addition and
multiplication. Since homomorphic encryption involves two operations, this
suggests that the correct setting for homomorphic encryption is ring theory;
see Sect. 2.10. In particular, we recall from Exercise 2.31 that if R and S are
rings, then a ring homomorphism φ : R→ S is a function satisfying

φ(a+ b) = φ(a) + φ(b) and φ(a � b) = φ(a) � φ(b) for all a, b,∈ R.

Definition. A fully homomorphic encryption scheme (FHE scheme) is an en-
cryption scheme (K,M, C, e, d) with the property that the plaintext spaceM
and the ciphertext space C are rings and such that for every key k ∈ K, the
encryption function

ek :M−→ C
is a ring homomorphism.11

Example 8.11. Here is an example of an FHE scheme. Let M = C = Fpd be
a finite field with pd elements (see Sect. 2.10.4), and let K = {1, 2, . . . , d− 1}.
Then for each k ∈ K, the encryption function

ek(m) = mpk

is fully homomorphic, with decryption function dk(c) = cp
d−k

. (We are using

the fact that ap
d

= a and (a + b)p = ap + bp for all elements a, b ∈ Fpd .) Of
course, this cryptosystem is either very insecure, if d is small, or completely
impractical, if d is large.

11We like this definition of FHE because it stresses the homomorphism in the name, but
we note that the standard definition allows more general constructions. Thus a cryptosystem
is said to be fully homomorphic if it is possible to compute any function or circuit on
encrypted data without knowing the decryption key. Thus one only needs to do addition
and multiplication on encryptions of F2, and it is not strictly necessary for the ciphteretxt
space to be a ring.
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The search for a secure and practical FHE scheme started shortly after
the invention of RSA in the 1970s, but it remained an elusive goal until Craig
Gentry devised the first such system in 2009 [47, 48]. Although neither Gen-
try’s original system, nor subsequent improvements, are fast enough to be
used in practical applications, research continues on this important topic.

Why, one might ask, is homomorphic encryption interesting or useful? The
answer is that using the basic operations of addition and multiplication (even
just moduo 2), one can perform any computation that can be done by any
computer. Consider the following scenario. Bob has a large amount of data to
analyze, but the analysis requires a tremendous amount of computing power,
far more than Bob possesses. Alice, on the other hand, owns a lot of computers
and is happy to rent computing time to Bob.12 Unfortunately, the data that
Bob needs to analyze is confidential; for example, it might include medical or
financial records. So what Bob would like to do is the following:

• Encrypt the data, and also encrypt the computer program that will
analyze the data.

• Send the encrypted data and the encrypted program to Alice.

• Have Alice run the encrypted program using the encrypted data without
decrypting either.

• Receive the encrypted output from Alice, which he then decrypts.

The miracle of an FHE scheme is that it allows Alice to run an encrypted
computer program on encrypted data and produce encrypted output, without
ever seeing any of Bob’s unencrypted material.

Gentry’s original FHE scheme has two components. First he constructs a
system that is “somewhat homomorphic,” and then he uses an ingenious boot-
strapping procedure to make it fully homomorphic. The following definition
will be used to quantify the notion of “somewhat homomorphic.”

Definition. A monic monomial in n variables is a polynomial of the form

M(X1, . . . , Xn) = Xe1
1 X

e2
2 · · ·Xen

n with e1, . . . , en ≥ 0.

The degree of M is deg(M) = e1 + · · ·+ en. More generally, let

P (X1, . . . , Xn) =M1(X1, . . . , Xn) + · · ·+Mr(X1, . . . , Xn)

be a sum of monic monomials, and let d = maxdegMi. Then we say that P has
additive level r and multiplicative level d. We write Levela(P ) and Levelm(P ),
respectively, for the additive and multiplicative levels of P

Every computation in a ring R may be viewed as evaluating some polyno-
mial P (X1, . . . , Xn) at some point (a1, . . . , an) ∈ Rn, although this may first
require simplification using the distributive law. For example,

12This situation is quite realistic. There are many companies, large and small, from which
one can rent computing power.
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(((a1 + a2 + a3) � a4) + a5) � a6 = a1a4a6 + a2a4a6 + a3a4a6 + a5a6

= P (a1, . . . , a6)

with

P (X1, . . . , X6) = X1X4X6 +X2X4X6 +X3X4X6 +X5X6.

We note that in order to compute P (a1, . . . , an), we need to do at
most Levela(P ) additions of quantities, each of which is a product of at
most Levelm(P ) elements of R.

Definition. Let (K,M, C, e, d) be a cryptosystem such that M and C are
rings. We say that it is a leveled homomorphic cryptosystem of level (La, Lm)
if for every key k ∈ K, every polynomial P (X1, . . . , Xn) satisfying

Levela(P ) ≤ La and Levelm(P ) ≤ Lm,

and every m1, . . . ,mn ∈M, we have

dk
(
P
(
ek(m1), . . . , ek(mn)

))
= P (m1, . . . ,mn),

i.e., P
(
ek(m1), . . . , ek(mn)

)
is a valid encryption of P (m1, . . . ,mn) for the

key k.

Informally, a cryptosystem is leveled homomorphic if encryption ek is a
ring homomorphism when it is applied to expressions that involve a limited
number of additions and multiplications in the ringM. Leveled homomorphic
cryptosystems are interesting for two reasons. First, Gentry’s bootstrapping
method sometimes allows one to turn a leveled system into a fully homomor-
phic system, albeit at a significant loss of efficiency. Second, if the levels La

and Lm are sufficiently large, then even a leveled system may be useful in
practice.

A number of leveled homomorphic cryptosystems have been proposed, and
the construction of secure and efficient systems is an active area of research.
We illustrate by briefly explaining how the NTRU cryptosystem described in
Sect. 7.10 can be used as a leveled homomorphic system.

Example 8.12 (Leveled Homomorphic NTRUEncrypt). To simplify the expo-
sition, we use a variant of NTRUEncrypt in which we assume that the private
key polynomials f(x) and g(x) are chosen to satisfy

f(x) ≡ 1 (mod p) and g(x) ≡ 0 (mod p); (8.1)

see Exercise 7.35. The NTRU plaintext and ciphertext spaces are rings
M = Rp and C = Rq, and encryption of a plaintext m(x) using the (public)
key h(x) ≡ f(x)−1 � g(x) (mod q) and random element r(x) is given by the
formula

e(x) ≡ h(x) � r(x) +m(x) (mod q).
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Decryption is done by first computing the center-lift of f(x) � e(x) (mod q),
and then reducing the result modulo p. Just as in the proof of Proposition 7.48,
see also Exercise 7.35, decryption works provided that every coefficient of the
polynomial

g(x) � r(x) + f(x) �m(x)

(without any reduction) has magnitude smaller than 1
2q.

We now consider two ciphtertexts e1 and e2. We claim that if q is large
enough, then the decryption of e1 + e2 using the private key f yields the
plaintext m1 +m2, and similarly, the decryption of e1 � e2 using the private
key f2 yields the plaintext m1 �m2. To see why, we compute

f � (e1 + e2) ≡ (g � r1 + f �m1) + (pg � r2 + f �m2) (mod q)

≡ g � (r1 + r2) + f � (m1 +m2) (mod q),

so if q is large enough, then the center-lift is exactly the polynomial

g � (r1 + r2) + f � (m1 +m2).

Using (8.1), we see that when we reduce modulo p, we get m1+m2 (mod p).
Similarly,

f2 � (e1 � e2) ≡ (g � r1 + f �m1) � (g � r2 + f �m2) (mod q)

≡ g � (g � r1 � r2 + f � r1 �m2 + f � r2 �m1)

+ f2 � (m1 �m2) (mod q).

So again, if q is large enough, then the center-lift gives us exactly the polyno-
mial

g � (g � r1 � r2 + f � r1 �m2 + f � r2 �m1) + f2 � (m1 �m2),

and reducing modulo p gives m1 �m2 (mod p).
We have just shown that if q is large enough, then e1 + e2 is an NTRU

encryption ofm1+m2 and e1�e2 is an NTRU encryption ofm1�m2, although
for the latter the decryption key is f2. In leveled homomorphic terminology,
if q is large enough, then the addition property says that NTRUEncrypt is
leveled homomorphic with level (2, 1), and the multiplication property says
that it is leveled homomorphic with level (1, 2). Further, it is clear that by
increasing q, we can create leveled homomorphic versions of NTRUEncrypt
of any level.

In order to derive a rough relationship between the value of q and the
levels achieved, we make the simplifying assumption that f , g, m, and r have
coefficients between −p and p, and we put no restriction on the number of
nonzero coefficients.

Let P (X1, . . . , Xn) be a sum of monic monomials, and to ease notation,
let
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α = α(P ) = Levela(P ) and μ = μ(P ) = Levelm(P ).

It is also convenient to use the homogenized version of P defined by

P ∗(X0, . . . , Xn) = Xμ
0 P (X1/X0, . . . , Xn/X0),

so P ∗ is a sum of monic monomials, each of which has degree exactly μ.
Let m1, . . . ,mn be plaintexts, and let e1, . . . , en be associated ciphertexts.
Then P (e1, . . . , en) decrypts correctly to P (m1, . . . ,mn) using the decryption
key fμ if the largest coefficient of

P (f , g � r1 + f �m1, . . . , g � rn + f �mn) (8.2)

has magnitude smaller than 1
2q.

We observe that if a1, . . . ,at ∈ R have coefficients between −C and C,
then the largest coefficient of the product a1 � · · · � at is at most CtN t−1,
obtained for example if every coefficient of every ai is C. Hence the largest
coefficient of

g � ri + f �mi

is at most 2p2N . The monomials appearing in (8.2) are products of μ ex-
pressions of the form g � ri + f �mi with 0 ≤ i ≤ n, where for convenience
we set r0 = 0 and m0 = 1. So the monomials in (8.2) have coefficients that
are at most (2p2N)μNμ−1, which is smaller than (2pN)2μ. Finally, we note
that (8.2) is a sum of at most α monomials, and hence the largest coeffi-
cient in (8.2) is at most α(2pN)2μ. This proves that P (e1, . . . , en) decrypts
correctly to P (m1, . . . ,mn) using the decryption key fμ if q satisfies

q > 2α(2pN)2μ.

Thus the size of q increases linearly with the number of additions, but expo-
nentially with the number of multiplications

8.10 Hyperelliptic Curve Cryptography

A hyperelliptic curve of genus g is the set of solutions to an equation of the
form13

C : Y 2 = X2g+1 +A1X
2g + · · ·+A2gX +A2g+1,

with the added requirement that the polynomial F (X) = X2g+1+ · · ·+A2g+1

have distinct roots.14 And just as for elliptic curves, we throw in one extra
point O that lives “at infinity.” Thus an elliptic curve is a curve of genus 1.

13When working over a field F2k , one uses the more general form Y 2 + Y = F (X).
14When one is working over C, the distinct roots condition means complex roots. Over a

finite field Fp, the condition may be formulated by requiring that the discriminant of F (X)
not vanish, or equivalently that gcd

(
F (X), F ′(X)

)
= 1, where F ′(X) is obtained by formally

differentiating F (X).
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In general there is no addition law for the individual points on a hyper-
elliptic curve, but it is possible to define an addition law for collections of
points. Roughly speaking, we can take two collections of g points, say

{P1, P2, . . . , Pg} and {Q1, Q2, . . . , Qg},

and “add” them to obtain a new collection of g points {R1, R2, . . . , Rg}. This
generalizes the addition law on an elliptic curve, but a precise formulation is
somewhat more complicated.

To describe the addition law exactly, we define a divisor on C to be a
formal sum of points

n1[P1] + n2[P2] + · · ·+ nr[Pr] with P1, . . . , Pr ∈ C and n1, . . . , nr ∈ Z.

Note that a divisor is simply a convenient shorthand for a finite set of points,
each of which has an attached multiplicity. In particular, if f(X,Y ) is a ra-
tional function on C, then we can attach a divisor to f(X,Y ) by listing the
points where f vanishes and the points where f has poles, with their appro-
priate multiplicities. The degree of a divisor is the sum of its multiplicities,

deg(D) = deg
(
n1[P1] + n2[P2] + · · ·+ nr[Pr]

)
= n1 + n2 + · · ·+ nr.

(See Sect. 6.8.2 for a discussion of rational functions and divisors on elliptic
curves.)

We next define the divisor group of C, denoted by Div(C), to be the set
of divisors on C. Note that we can add and subtract divisors by adding and
subtracting the multiplicities of each point. We also let Div0(C) be the set of
divisors of degree 0. One can prove that the divisor of a function always has
degree 0. Two divisors D1 and D2 are said to be linearly equivalent if

D1 −D2 = divisor of a function.

We write Jac0(C) for the set of divisors of degree 0, with the understand-
ing that linearly equivalent divisors are considered to be identical. The
set Jac0(C), with the addition law obtained by adding the multiplicities of
points, is called the Jacobian variety of C. It is the higher-genus analogue of
elliptic curves and their addition laws.

A crucial property of Jac0(C) is that it can be described as the set of solu-
tions to a system of polynomial equations, and the addition law may also be
described using polynomials. So if we take solutions with coordinates in Fp,
then we obtain a group (i.e., a set with an addition law) that is completely
analogous to the group E(Fp) of points on an elliptic curve. For notational
convenience, let J = Jac0(C) and J(Fp) be the points on Jac0(C) with coor-
dinates in Fp. The Hyperelliptic Curve Discrete Logarithm Problem (HCDLP)
is as follows:

Given P and Q in J(Fp), find an integer m such that Q = mP .
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It is clear how one can use hyperelliptic curves for public key cryptography by
mimicking the constructions for the multiplicative group (Sects. 2.3 and 2.4)
and for elliptic curves (Sect. 6.4). This leads to hyperelliptic Diffie–Hellman
key exchange and the hyperelliptic Elgamal public key cryptosystem.

The primary, and from cryptographic purposes fundamental, difference
between elliptic curves and hyperelliptic curves is that the latter have larger
groups of points. More precisely, there is an analogue of Hasse’s theorem
(Theorem 6.11), due to André Weil, which says that

#J(Fp) = pg +O
(
pg−

1
2

)
.

For example, a hyperelliptic curve of genus 2 has approximately p2 points.

As with elliptic curves, one hopes that the best algorithms to solve the
HCDLP are collision algorithms such as Pollard’s ρ algorithm. (But see Re-
mark 8.13.) Since the group J(Fp) has approximately pg elements, this means
that it takes O(pg/2) steps to solve HCDLP. Thus using curves with g > 1
allows us to achieve security levels equivalent to those on elliptic curves while
using a smaller prime p.

However, as g gets large, the computational complexity of the addition law
becomes formidable (and there are also security issues), so for concreteness,
we consider the case g = 2. Then J(Fp) has approximately p2 elements and
it takes O(p) steps to solve the HCDLP. This may be compared with an
elliptic curve, for which #E(Fp) ≈ p and ECDLP takes O(

√
p ) steps to solve.

Thus J(Fp) allows us to use primes with approximately half as many digits.
This does not lead to a significant speed advantage, because the addition law
on J is significantly more complicated than the addition law on E. However,
it does mean that ciphertexts, and even more importantly, digital signatures,
are half as large using J as they are using E. This becomes a large advantage
on highly constrained devices such as radio frequency identification (RFID)
tags.

Remark 8.13. It is not actually true that the best known methods to solve
the HCDLP are collision algorithms. If the genus g of the curve is moderately
large compared to the prime p, then Adleman, DeMarrais, and Huang found
an index calculus algorithm that solves the HCDLP in subexponential time.
They show that if 2g+ 1 ≥ (ln p)1+ε for some ε > 0, then the HCDLP can be
solved in L(p2g+1)c steps for some small constant c. In the opposite direction,
if p is large, say p > g!, then Gaudry found an algorithm to solve the HCDLP
in O(g3p2+ε) steps. This is not helpful if g = 1 or 2, but it is significant
if g ≥ 3 and p is large. This is one of the reasons that only hyperelliptic curves
of genus 2 and 3 are being seriously considered for use in cryptography.

Finally, just as for elliptic curves, there are various attacks on the HCDLP
using versions of the Weil and Tate pairing (see Sect. 6.9.1), but it is easy to
avoid such attacks by appropriate choices of parameters.
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8.11 Quantum Computing

The value of each bit in a classical computer is either 0 or 1. In a quantum
computer, each so-called quantum bit (qubit) may simultaneously takes on
every value between 0 and 1 with varying probabilities. This added flexibil-
ity allows many computations, including integer factorization and discrete
logarithm problems, to be done very quickly. Thus a working quantum com-
puter with sufficiently many qubits would break RSA and both the classical
and the elliptic curve versions of Elgamal. (However, there is at present no
polynomial-time quantum algorithm that solve the shortest or closest lattice
vector problems.)

Tempting though it is, we will not use this opportunity to give a serious
introduction to quantum mechanics. The aim of this section is fairly modest.
We sketch the basic ideas behind one remarkable application of quantum me-
chanics to cryptography: Shor’s polynomial-time quantum algorithm [128] for
factoring integers and for finding discrete logarithms. The following presen-
tation owes a great deal to Shor’s accessible and beautifully written exposi-
tion [129], which would serve as a nice start for the interested reader familiar
with the concept of a Hilbert space. For those with a less robust background
in mathematics and quantum theory, see for example [64].

The fundamental unit of information in classical computers is the binary
digit (bit), represented as a 0 or 1. Bits are manipulated according to the
principles of Boolean logic, in which connectives such as AND and OR oper-
ate on pairs of bits in the usual way, and NOT reverses 0 and 1. Sequences of
bits are manipulated by Boolean logic gates, using these Boolean rules, and a
succession of gates yields an end state, or computation. A quantum computer
manipulates quantum bits (qubits) via quantum logic gates, which are sup-
posed to simulate the laws of quantum mechanics, especially properties such
as superposition and entanglement, which give the field of quantum mechanics
its distinctive nonclassical characteristics.

A qubit with two states is typically represented using ket notation,15 in
which |0〉 denotes the 0-state and |1〉 the 1-state. Then the (pure) states of
the system have the form

α |0〉+ β |1〉 ,
where α and β are complex numbers satisfying |α|2 + |β|2 = 1.

In an n-component system, the 2n basis elements are represented by se-
quences such as |si〉 = |0110 . . . 0〉 consisting of a list of n zeros and ones, and
a state of the system is

2n−1∑

i=0

αi |si〉 , where
∑

|αi|2 = 1. (8.3)

15The rather strange word ket is the latter half of the word bracket. In quantummechanics
there is also bra notation 〈x| and a “bracket pairing” 〈x|y〉.



498 8. Additional Topics in Cryptography

A sum (8.3) is called a superposition of states. There are other quantum states
known as “mixed” states that we do not discuss here, so we omit the word
pure in the rest of this discussion. Thus a quantum state is represented by a
vector of complex numbers of length 2n such that sum of the squares of their
moduli is equal to one. These are called complex unit vectors.

Just as for classical computers, manipulating qubits via quantum logic
gates requires the notion of a change of state. A quantum change of state is
the result of applying a unitary linear transformation16 to one of the complex
unit vectors representing a state. Actually, there are additional restrictions on
which unitary transformations are permitted for changes of state. One of these
restrictions is the requirement of locality : the unitary matrices should operate
on only a fixed finite number of bits. It turns out that 2-bit transformations
form the building blocks of the allowable transformations.

The quantum-mechanical interpretation of the αi’s is that |αi|2 represents
the probability that a measurement of the system yields state |si〉. It is the
probabilistic interpretation of the complex coefficients of these vectors that
encodes the physical realities observed in experiment and predicted by physical
theory.

In [129], Shor describes a quantum polynomial-time algorithm to find (with
high probability) the order r of a number x mod n. (Recall that the order
of x is the smallest integer r ≥ 1 such that xr ≡ 1 mod n.) Factorization
can be reduced to the problem of finding the order of an integer, because if x
is chosen randomly and has even order r, then gcd (xr/2 − 1, n) is likely to
be a nontrivial odd factor of n. (See [87].) Shor also gives a polynomial-time
quantum algorithm to solve the discrete logarithm problem in F

∗
p, and such

algorithms also exist for the elliptic curve discrete logarithm problem [107].
Interestingly, there are still no polynomial-time (or even subexponential-time)
quantum algorithms to solve the shortest or closest vector problems, so lattice-
based cryptosystems are currently secure even against the construction of a
quantum computer.17

The basic building block of Shor’s algorithm is a quantum version of the
Fast Fourier Transform. In order to find the order r of a number a modulo n,
we choose q to be a power of 2 in the interval between n2 and 2n2. Then for
any 0 < a < q, the state |a〉 is obtained from the binary representation of the
number a. The Fourier transform of |a〉 is the state

1

q1/2

q−1∑

c=0

|c〉 exp(2πiac/q).

16A unitary linear transformation is given by a matrix with determinant one whose
conjugate transpose is equal to its inverse.

17This is not strictly true because there is a general quantum search algorithm that
essentially cuts searches by a square root. So if a quantum computer were built, the key
size of lattice-based cryptosystems might need to double. But this would be a small price
compared to the devastation that a working quantum computer would cause to factorization
and discrete logarithm-based systems.
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It turns out that this transformation can be achieved in polynomial time.
Shor then applies the quantum Fourier transform to a certain superposition
of states and measures the resulting system. The key computation shows that
the probability of seeing state |c〉 is relatively large if there exists a rational
number d

r ∈ Q satisfying ∣
∣
∣
∣
c

q
− d

r

∣
∣
∣
∣ <

1

2q
.

(Recall that r is the order of a.) Using the continued fraction expansion of the
known rational number c

q , it is not hard to determine the fraction d
r in lowest

terms, since q > n2.
There remains only the “minor” challenge of building a functioning quan-

tum computer. Research in this field has focused on the issue of decoherence,
which involves controlling the errors in quantum computation introduced by
the interaction of the computer with its environment. There is already a vast
literature on quantum computing and quantum computers, reflecting to some
extent the large amount of government funding that has been allocated to the
subject. One place to start gathering resources about quantum computers is
the website for NIST’s Quantum Information Program at qubit.nist.gov.

Finally, we would be remiss if we did not mention the theory of quantum
cryptography. The idea is to use quantum-mechanical principles such as the
Heisenberg uncertainty principle or the entanglement of quantum states to
perform a completely secure key exchange. In particular, if Eve attempts to
read either Bob’s or Alice’s transmission, then quantum theory says that she
must alter the data, so Bob and Alice will know that their communication
has been compromised.

8.12 Modern Symmetric Cryptosystems:
DES and AES

In Sect. 1.7.1 we gave an abstract formulation of symmetric ciphers, and in
Sect. 1.7.4 we described several elementary examples. Not surprisingly, none
of the examples in Sect. 1.7.4 is secure. Modern symmetric ciphers such as
the Data Encryption Standard (DES) and the Advanced Encryption Standard
(AES) are based on ad hoc mixing operations, rather than on intractable
mathematical problems used by asymmetric ciphers. The reason that DES
and AES and other symmetric ciphers are used in practice is that they are
much faster than asymmetric ciphers. Thus if Alice wants to send Bob a long
message, she first uses an asymmetric cipher such as RSA to send Bob a key
for a symmetric cipher, and then she uses a symmetric cipher such as DES or
AES to send the actual data.

DES was created by a team of cryptographers at IBM in the early 1970s,
and with some modifications suggested by the United States National Security
Agency (NSA), it was officially adopted in 1977 as a government standard

qubit.nist.gov
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suitable for use in commercial applications. (See [97].) DES uses a 56-bit
private key and encrypts blocks of 64 bits at a time. Most of DES’s mixing
operations are linear, with the only nonlinear component being the use of
eight S-boxes (substitution boxes). Each S-box is a look-up table in which six
input bits are replaced by four output bits. Figure 8.1 illustrates one of the
S-boxes used by DES.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
2 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
3 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

Figure 8.1: The first of eight S-boxes used by DES

Here is how an S-box is used. The input is a list of six bits, say

Input = β1β2β3β4β5β6.

First use the 2-bit binary number β1β6, which is a number between 0 and 3, to
choose the row of the S-box, and then use the 4-bit binary number β2β3β4β5,
which is a number between 0 and 15, to choose the column of the S-box. The
output is the entry of the S-box for the chosen row and column. This entry,
which is between 0 and 15, is converted into a 4-bit number.

For example, suppose that the input string is ‘110010’. Binary ‘10’ is 2, so
we use row 2, and binary ‘1001’ is 9, so we use column 9. The entry of the S-box
in Fig. 8.1 for row 2 and column 9 is 12, which we convert to binary ‘1100’.

The S-boxes were designed to prevent various sorts of attacks, including
especially an attack called differential cryptanalysis, which was known to IBM
and the NSA in the 1970s, but published only after its rediscovery by Biham
and Shamir in the 1980s. Differential cryptanalysis and other non-brute-force
attacks are somewhat impractical because they require knowledge of a large
number (>240) of plaintext/ciphertext pairs.

A more serious flaw of DES is its comparatively short 56-bit key. As
computer hardware became increasingly fast and inexpensive and comput-
ing power more distributed in the 1990s, it became feasible to break DES by
a brute-force search of all possible keys, either using many machines over the
Internet or building a dedicated DES cracking machine. To demonstrate this
vulnerability, in 1999 a group broke a 56-bit DES key in less than 24 h.

One solution to this problem, which has been widely adopted, is to use
DES multiple times. There are a number of different versions of Triple DES,
the simplest of which is to simply encrypt the plaintext three times using
three different keys. Thus if we write DES(k,m) for the DES encryption of
the message m using the key k, then one version of triple DES is

TDES(k1, k2, k3,m) = DES(k3,DES(k2,DES(k1,m))).
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A variation replaces the middle DES encryption by a DES decryption; this has
the effect that setting k1 = k2 = k3 = k yields ordinary DES encryption. An-
other variation, used by the electronics payment industry, takes k1 = k3, which
reduces key size at the cost of some security reduction. Finally, since three
DES encryptions triple the encryption time, another version called DES-X
uses a single DES encryption combined with initial and final XOR operations
with two 64-bit keys. Thus DES-X looks like

DESX(k1, k2, k3,m) = k3 xorDES(k2,m xor k1).

Although DES and its variants were widely deployed, it suffers from short
and inflexible key and block sizes. Further, although DES is fast when im-
plemented in specialized hardware, it is comparatively slow in software. So in
1997 the United States National Institute of Standards (NIST) organized an
open competition to choose a replacement for DES. There were many submis-
sions, and after several years of analysis and several international conferences
devoted to the selection process, NIST announced in 2000 that the Rijndael
cipher, invented by the Belgian cryptographers J. Daemen and V. Rijmen, had
been chosen as AES. Since that time AES has been widely adopted, although
variants of DES are still in use.18

AES is a block cipher in which the plaintext–ciphertext blocks are 128 bits
in length and the key size may be 128, 192, or 256 bits. AES is similar to
DES in that it encrypts and decrypts by repeating a basic operation several
times. In the case of AES, there are 10, 12, or 14 rounds depending on the size
of the key. AES is also similar to DES in that it uses an S-box to provide the
all-important nonlinearity to the encryption process. However, AES’s S-box
is constructed using the operation of taking multiplicative inverses in the
field F28 with 28 elements. (See Sect. 2.10.4 for a discussion of finite fields
with a prime power number of elements.) Many of AES’s basic operations use
128 bit blocks, which are broken up into 16 bytes. Each byte consists of 8 bits
and is treated as an element of the field F28 . Then various operations, including
inversion, are performed in F28 . The details of AES are too complicated to
give here, but they are designed to be very fast when implemented in either
software or hardware. The interested reader will find a full description in the
official NIST publication FIPS PUB 197 [96] and in many other sources.

18All of the AES finalists (MARS, RC6, Rijndael, Serpent, Twofish) were believed to be
secure, and none was clearly superior in all aspects. So the choice of Rijndael was based on
its balance of flexibility, ease of implementation, and speed in both hardware and software.
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Z the integers {. . . ,−4,−3,−2,−1, 0, 1, 2, 3, 4, . . .}, 10
b | a b divides a (integers), 10
b � a b does not divide a (integers), 10
gcd greatest common divisor, 11
a ≡ b (mod m) a and b are congruent modulo m, 19
Z/mZ the ring of integers modulo m, 21
(Z/mZ)∗ the group of units in Z/mZ, 22
ordp(a) order (or exponent) of p in a, 28
a−1 mod p the multiplicative inverse of a modulo p, 28
R the field of real numbers, 29
Q the field of rational numbers, 29
C the field of complex numbers, 29
Fp the finite field Z/pZ, 29
K space of keys, 37
M space of messages (plaintexts), 37
C space of ciphertexts, 37
e or ek encryption function, 37
d or dk decryption function, 37
⊕ exclusive or (XOR), 43
�x� the greatest integer in x, 53
logg(h) the discrete logarithm of h to the base g, 65
� composition operation in a group, 74
|G| the order of the group G, 74
#G the order of the group G, 74
GLn the general linear group, 75
gx exponentiation of g in a group G, 75
O
(
g(x)

)
big-O notation, 78

� multiplication in a ring, 95
Z[x] ring of polynomials with integer coefficients, 96
b | a b divides a (in a ring), 96
b � a b does not divide a (in a ring), 96
a ≡ b (mod m) a and b are congruent modulo m (in a ring), 97
R/mR quotient ring of R by m, 98
R/(m) quotient ring of R by m, 98
R[x] ring of polynomials with coefficients in R, 98
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deg degree of a polynomial, 98

Fpd a finite field with pd elements, 106

GF(pd) a field with pd elements, 106
π(X) number of primes between 2 and X, 133
ζ(s) Riemann zeta function, 135
ψ(X,B) Number of B-smooth integers between 2 an X, 150
o
(
g(x)

)
little-o notation, 151

L(X) the function e
√

(lnX)(ln lnX), 151
Ω
(
g(x)

)
big-Ω notation, 152

Θ
(
g(x)

)
big-Θ notation, 152

f(X) + g(X) alternative for f(X) = O
(
g(X)

)
, 152

f(X) , g(X) alternative for f(X) = Ω
(
g(X)

)
, 152

f(X) ,+ g(X) alternative for f(X) = Θ
(
g(X)

)
, 152

Z[β] the ring generated by the complex number β, 162

Lε(X) the function e(lnX)ε(ln lnX)1−ε

, 165(
a
p

)
the Legendre symbol of a modulo p, 171

Li(X) the logarithmic integral function, 186
KPri private signing key, 194

KPub public verification key, 194
Sign signing algorithm, 194
Verify verification algorithm, 194(
n
r

)
combinatorial symbol n choose r, 212

IndCo(s, t) index of coincidence of s, 219
MutIndCo(s, t) mutual index of coincidence of s and t, 221
Pr a probability function, 229
Pr(F | E) conditional probability of F on E, 234
fX(x) probability density function of X, 239
FX(x) probability distribution function of X, 239
fX,Y (x, y) joint density function of X and Y , 241
fX,Y (x | y) conditional density function of X and Y , 241
O+

f (x) orbit of x under iteration of f , 254

H(X) the entropy of the random variable X, 270
⊕ addition on an elliptic curve, 302
O point at infinity on elliptic curve, 305
ΔE discriminant of the elliptic curve E, 306
E(Fp) points of elliptic curve with coordinates in Fp, 308
logP (Q) the elliptic discrete logarithm of Q with respect to P , 313
τ the p-power Frobenius map Fpk → Fpk , 334
τ the p-power Frobenius map on an elliptic curve E(Fpk ), 334
E[m] points of order m on an elliptic curve E, 339
deg(D) degree of the divisor D, 341
Sum(D) sum of points in the divisor D, 341
em the Weil pairing on an elliptic curve, 342
τ(P,Q) Tate pairing on an elliptic curve, 348
τ̂(P,Q) modified Tate pairing on an elliptic curve, 348
ê� modified Weil pairing on an elliptic curve, 354
a · b dot product of a and b, 385
‖a‖ Euclidean norm of a, 385
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GLn(Z) the special linear group (over Z), 390
det(L) the determinant (covolume) of the lattice L, 392
γn Hermite constant, 397
H(B) the Hadamard ratio of the basis B, 397
BR(a) closed ball of radius R centered at a, 397
Γ(s) the gamma function, 400
σ(L) Gaussian expected shortest length of a vector in L, 402
R the convolution polynomial ring Z[x]/(xN − 1), 412
Rq the convolution polynomial ring (Z/qZ)[x]/(xN − 1), 412
a � b multiplication in convolution polynomial ring, 413
� convolution product of vectors, 414
T (d1, d2) ternary polynomial, 417
LNTRU

h the NTRU lattice associated to h(x), 425
MNTRU

h matrix for the NTRU lattice associated to h(x), 425
‖a‖∞ sup norm of a, 434
B∗ Gram–Schmidt orthogonal basis associated to B, 439

W⊥ the orthogonal complement of W , 440
Hash a hash function, 472
Div(C) group of divisors on a curve, 495
Div0(C) group of divisors of degree 0 on a curve, 495
Jac0(C) the Jacobian variety of the curve C, 495
J(Fp) the group of points modulo p on the Jacobian Jac0(C), 495
|0〉 ket notation in quantum mechanics, 497
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polyalphabetic, 35, 214
shift, 2, 23, 34, 265, 296
simple substitution, 2, 34, 48, 211,

263, 285
symmetric, 37–39, 263, 499
transposition, 34, 56
Vigenère, 35, 214–227, 263,

284–287
cipher machine, 36

ciphertext, 1
blocksize, 41
entropy, 274
random variable, 264
space of, 37

cipherwheel, 2, 47, 285
clock arithmetic, 19
closed ball, 397

volume, 400
closed set, 398
closest plane algorithm, 448, 468
closest vector problem, 395, 483

approximate, 396, 429
at least as hard as SVP, 395
average case versus hardest case,

282, 408
Babai algorithm, 403
cryptosystems based on, 407
is NP-hard, 395
LLL solves approximate, 448, 468
no quantum algorithm known, 498
NTRU plaintext recovery, 463

closest vertex algorithm, see Babai
closest vertex algorithm

Cocks, Clifford, 61
code, 35, 39

ASCII, 39, 57
Codebreakers, The, 36
coding scheme, 39
Cohen, Henri, 466
coin toss experiment, 233, 240, 288, 289
collision algorithm, 208, 246, 250, 315,

496
discrete logarithm problem, 81,

251, 293
NTRU, 424
requiring little storage, 256
subset-sum problem, 377

collision attack, 41
collision resistance, 472
collision theorem, 247
combination, 211–213

number of, 212
combinatorial security, 208
combinatorial symbol, 212
common divisor, 11, 100
commutative group, 74, 304
commutative law, 74, 95, 304
commutative ring, 95
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complement, probability of, 230, 288
completeness, 477
complex numbers, 29, 103
complexity theory, 278

average case versus hardest case,
282, 408

composite number
Miller–Rabin test, 131, 135, 184,

291
small witness for, 136
test for, 32, 129
witness for, 130, 131, 291

compound event, 229
zero-knowledge proof, 479
concatenation, 191, 279, 472
concave function, 272

geometric interpretation, 272
second derivative test, 272, 297

conditional density function, 241
for key, plaintext, and ciphertext,

264
conditional entropy, 274, 298
conditional probability, 234

Monty Hall problem, 290
congruence, 19, 97

behaves like equality, 20, 51, 97
Chinese remainder theorem, 85
Euler formula, 118, 181
fraction modulo m, 21
group of units, 22, 52
multiplicative inverse, 20, 28, 29,

32, 54
ring modulo m, 21, 98
root modulo N , 181
root modulo p, 119
root modulo pq, 120, 180
simultaneous, 85
square root modulo m, 87
square root modulo p, 86, 108, 190
square root modulo pn, 112

congruence class, 98, 102
congruential cryptosystem, 373

lattice attack, 376, 451
random element, 374

co-NP, 281
continued fraction, 156, 499
convex set, 398
convolution polynomial ring, 412

center-lift, 414

formula for product, 413
inverses in, 415, 460

looks random, 420
modulo pk, 416, 460

modulo q, 412
norm of product, 461
reduction modulo q map, 414
rotation, 422
speed of multiplication, 421
vector of coefficients, 413

convolution product, 414
expected value of norm, 461
norm of, 461

Cook, Stephen, 280
counting principle, 208, 209
cryptanalysis, 5, 34

Arabic, 34
differential, 500
substitution cipher, 4–10
Vigenère cipher, 218

cryptogram, 2
cryptographic protocol, 486
cryptographically secure PRNG, 476
cryptography, 2

asymmetric, 46
export of, 62, 107
ID-based, 358
implementation issues, 126
Kerckhoff’s principle, 38
practical lesson, 5
public key, 46
the role of patents in, 323, 324

cryptology, 2
cryptosystem

Ajtai–Dwork, 407, 408
autokey, 287
Caesar, 2
combinatorially secure, 208
congruential, 373
Elgamal, 70, 496
elliptic Elgamal, 319
GGH, 407, 409, 410
Goldwasser–Micali, 178
hyperelliptic, 494
knapsack, 282, 380, 381
lattice-based, 407
MV-Elgamal, 364, 365
NTRU, 323, 407, 416, 417, 419
one-time pad, 44, 269, 476
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perfect secrecy, 264
probabilistic, 177, 412

conversion to, 191, 475, 484
product, 277
RSA, 124
subset-sum, 282, 380, 381
substitution, 2, 211, 263, 285
summation of, 277
transposition, 56
Vigenère, 214, 263, 284

cube root of unity, 370
cubic polynomial, 301, 303, 361
cubic residue, 190
CVP, see closest vector problem

Daemen, J., 474, 501
Data Encryption Standard, see DES
decision problem, 278

Diffie–Hellman, 108, 278
elliptic Diffie–Hellman, 369
NP-complete, 280
NP-hard, 280
P, 279
polynomial-time, 279
polynomial-time reduction, 280
primality, 278
satisfiability, 280
undecidable, 278

decryption
is a function, 37

decryption exponent, 125, 182
decryption failure, 420
decryption function, 3, 46, 63, 211

ECC, 319
Elgamal, 70
GGH, 410
knapsack, 380
NTRU, 418
RSA, 124

decryption table, 4
deep insertion method, 449
degree

of a polynomial, 98
of divisor, 339, 495
of product is sum of degrees, 113

Deligne, Pierre, 309
DeMarais, J., 496
density

binomial, 240

geometric, 241
hypergeometric, 240
uniform, 239

density function, 239
conditional, 241
for key, plaintext, and ciphertext,

264
joint, 241

dependent vectors, 384
derangement, 284
DES, 45, 58, 278, 499

DES-X, 501
S-box, 500
triple, 500
used to build PRNG, 476

determinant, 336
of Gram–Schmidt basis, 439
of lattice, 392
of lattice for m �= n, 457
of NTRU lattice, 427
Weil pairing, 341
Weil pairing is, 369

DHP, see Diffie–Hellman problem
difference of squares, 141, 143
differential cryptanalysis, 500
differentiation trick, 245, 292
Diffie–Hellman decision problem, 108,

278, 369
Diffie–Hellman key exchange, 67–69, 483

elliptic, 316, 363
hyperelliptic, 496
man-in-the-middle attack, 126
tripartite, 356, 370, 371

Diffie–Hellman problem, 69, 108, 109,
371

Elgamal oracle solves, 73
elliptic, 318

Diffie, Whitfield, 45, 61
digital cash, 487
digital signature, 193, 482

blind, 196, 487
Elgamal, 198
elliptic curve, 321, 322
forgery on random document, 205
GGH, 428, 429
hash function used in, 196, 429
lattice-based, 428
NTRUMLS, 434
real-world applications, 195
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rejection sampling, 431
RSA, 196, 197
signet ring analogy, 193
signing algorithm, 194
transcript attack, 195, 430, 431
verification algorithm, 194

Digital Signature Algorithm (DSA),
199, 201, 202

Digital Signature Standard (DSS), 199
dimension, 385

of a lattice, 388
direct sum, 465
discrete additive subgroup, 390, 455
discrete dynamical system, 254
discrete logarithm, 65

coverts product to sum, 65, 108,
311

defined modulo order of base, 65,
107

irregular behavior, 66
is even if and only if has square

root, 108
is homomorphism, 110
of a power, 108

discrete logarithm problem (DLP),
64–67, 357

babystep–giantstep algorithm, 82
base not a primitive root, 66
base of prime power order, 91
bit security, 176, 190
black box, 253
brute-force algorithm, 81
collision algorithm, 81, 251, 293
Elgamal digital signature, 199
elliptic curve, see elliptic curve

discrete logarithm problem
finite field, 65
for addition modulo p, 81
group, 67
how hard is the. . . , 77
hyperelliptic curve, 349, 495
index calculus, 166, 316, 348
is NP, 281
parity computed using quadratic

reciprocity, 176
Pohlig–Hellman algorithm, 89
Pollard ρ algorithm, 259
quantum algorithm, 498
time to solve, 80

discriminant, 494
cubic polynomial, 303, 361
elliptic curve, 303, 330
equal to zero, 361

disjoint events, 230, 289
distortion map, 350, 356, 359, 369

for y2 = x3 + x, 352, 354, 370
for y2 = x3 + 1, 370

distribution
binomial, 239, 292
function, 239, 431
geometric, 240
hypergeometric, 240
uniform, 239

distributive law, 95
divisibility, 10, 96

properties of, 11, 49
division with remainder, 12, 49–51, 99

computing on a calculator, 15
divisor, 338, 495

common, 11, 100
degree of, 339, 495
group of, 495
is divisor of rational function if. . . ,

339
linearly equivalent, 495
of degree zero, 495
of product is sum of, 368
on elliptic curve, 339
on hyperelliptic curve, 495
sum of, 339

DLP, see discrete logarithm problem
dot product, 336, 385
double-and-add algorithm, 312, 313

ternary method, 314
Doyle, Sir Arthur Conan , 10
DSA, see Digital Signature Algorithm
DSS, see Digital Signature Standard
Dwork, Cynthia, 282, 407, 408
dynamical system, 254

ECC, 316–321
Chaldean poetry, 323
Diffie–Hellman key exchange, 316,

363
Elgamal, 319
invention of, 322
message expansion, 320
point compression, 321, 363
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send only x coordinate, 318, 321,
363

versus RSA, 323
ECDHP, see elliptic curve

Diffie–Hellman problem
ECDLP, see elliptic curve discrete

logarithm problem
ECDSA, see elliptic curve digital

signature algorithm
efficiency versus security, 218
Einstein, Albert, 298
Elements, of Euclid, 26, 54
Elgamal, 70–73, 483

Diffie–Hellman oracle decrypts, 109
digital signature, 198

discrete logarithm problem, 199
forged on random document, 205
random element, 199
repeated use of random element,

205
signature length, 201

elliptic, 319
hyperelliptic, 496
is probabilistic, 180
man-in-the-middle attack, 183
Menezes–Vanstone variant, 364,

365
message expansion, 72, 320
oracle solves Diffie–Hellman

problem, 73
public parameters, 70
random element, 475
send only x coordinate, 321, 363

Elgamal, Taher, 70
elimination step in linear algebra, 146
Elkies, Noam, 310
elliptic curve, 299, 303

adding point to reflection, 303
adding point to self, 301
addition law, 300, 303, 304

formulas, 305, 325
works over finite field, 307

anomalous, 349
basis problem, 362
bilinear pairing, 336
cryptography, see ECC
degree of divisor, 339
Diffie–Hellman problem, 318
discriminant, 303, 330

distortion map, 350, 356, 359, 369
for y2 = x3 + x, 352, 354, 370
for y2 = x3 + 1, 370

divisor, 339
is divisor of rational function

if. . . , 339
of rational function, 338

double-and-add algorithm, 312,
313

embedding degree, 347
example over F8, 331
factorization algorithm, 321,

324–329
running time, 329

Frobenius-and-add algorithm, 335,
367

Frobenius map, 332
Frobenius used to count points, 333
generalized Weierstrass equation,

330, 365
genus one, 494
Hasse theorem, 309, 330
homomorphism, 353
is not an ellipse, 299
isogeny, 353
Koblitz, 334, 366
Miller algorithm, 343, 355
modified Weil pairing, 352, 356,

359
number of points in finite field,

309, 330
order of point, 311
over field with pk elements, 330
over finite field, 306
point at infinity, 303
point counting, 310, 335
point of finite order, 337
point operation, 313
rational function, 338

with no zeros or poles, 339
Satoh algorithm, 335
SEA algorithm, 310, 335
singular point, 361
sum of divisor, 339
supersingular, 323, 349
Tate pairing, 346
torsion point, 337
torsion subgroup structure, 337
Weierstrass equation, 299, 330
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Weil pairing, 340
zero discriminant, 361

elliptic curve cryptography, see ECC
Elliptic Curve Digital Signature

Algorithm (ECDSA), 203,
321, 322, 488

elliptic curve discrete logarithm, 311
defined modulo order of P , 311
takes sum to sum, 311

elliptic curve discrete logarithm
problem, 81, 310, 311, 357

how hard is the. . . , 315
is homomorphism, 311
MOV algorithm, 323, 348, 370
on anomalous curve, 349
Pollard ρ algorithm, 363
quantum algorithm, 498
Weil descent, 349

elliptic Diffie–Hellman decision
problem, 369

elliptic Diffie–Hellman problem, 318
Ellis, James, 61
embedding degree, 347

prime, 347
small, 349

encoding scheme, 39–40
encryption exponent, 125, 182
encryption function, 3, 46, 63, 211

ECC, 319
Elgamal, 70
GGH, 410
is a function, 37
knapsack, 380
NTRU, 418
RSA, 124

encryption table, 3
English frequency table, 6, 219
Enigma machine, 36
entropy, 263, 269, 270, 297

bigram, 276, 298
conditional, 274
equivocation, 274, 298
for key, plaintext, and ciphertext,

274
is at most log2 n, 273
is sum of p log p, 271
measures uncertainty, 272
of a language, 276
of a single letter, 275

properties of, 270
trigram, 276, 298

equivocation, 274, 298
key, 274, 298

Eratosthenes, sieve of, 156
Erdős, Paul, 151
escrow, key, 107
Euclid, 26, 54
Euclidean algorithm, 13, 50, 145, 279

extended, 16, 27, 29, 50, 81, 100,
102, 120, 260, 325, 351, 415

running time, 13, 15
Euclidean norm, 386
Euclidean ring, 99
Euler formula, 118, 121, 181, 197
Euler φ function, 22, 34, 52, 181

product formula for, 181
value at prime, 181

Eve, 2
even integer, 11
event, 228, 229

compound, 229
disjoint, 230, 289
independent, 229, 232, 241, 244
pairwise disjoint, 289

exclusive or, 44, 58, 59, 359, 473
exhaustive search attack, 41
expected value, 244

alternative formula, 292
binomial distribution, 292
of geometric distribution, 245
of uniform distribution, 245, 292

experiment, 209
exponent of a prime dividing a number,

28
exponential growth, 153
exponential time algorithm, 80, 136
exponentiation to a negative power, 76
export of cryptographic algorithms, 62,

107
extended Euclidean algorithm, 16, 27,

50, 81, 90, 120, 260, 325, 351
box method, 18, 416
computes inverses modulo p, 29, 54
for polynomial ring, 100, 102, 415

factor base, 157, 169
factorial, 31

gamma function interpolates, 400
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number of permutations, 210
Stirling’s formula, 139, 400, 424

factorization
elimination step, 145
gcd step, 145
harder than roots mod N?, 126
Lenstra elliptic curve algorithm,

321, 324–329
running time, 329

linear algebra elimination step, 146
number field sieve, 162
number of relations needed, 154
Pollard p− 1 algorithm, 137, 139,

322, 324
Pollard ρ algorithm, 295
probability of success, 144
quadratic sieve, 155
running time, 154, 155
subexponential algorithm, 154
three step procedure, 143
unique, 27
via difference of squares, 141, 143

fast Fourier transform, 498
fast powering algorithm, 24, 25, 53, 251,

281
computes inverses modulo p, 32, 54
double-and-add, 312

Fermat little theorem, 30, 33, 117–119,
129, 170, 284, 324

Euler formula generalizes, 118, 181
generalization to finite field, 107

FHE scheme, 490
field, 29, 96

characteristic, 115
examples of, 29, 96
finite, 29
Galois, 106
quotient polynomial ring, 104
with 2d elements, 106
with p2 elements, 105, 330, 336,

354
with pd elements, 104, 106, 329

finite field, 29
characteristic, 115
discrete logarithm problem, 65–66
elliptic curve over, 306
exponentiation, 74
Frobenius map, 332
Galois group, 332

generalization of Fermat little
theorem, 107

generator of F∗
p, 33, 54, 55

has element of order N for
N | p− 1, 112

has prime power number of
elements, 115

isomorphic, 106
linear algebra over, 146
multiplicative inverse, 29, 32, 54
number of primitive roots, 34
order of an element, 32, 54
powers in, 29–34
primitive root, 33, 54, 55, 107, 114,

170, 354
quadratic residue, 169, 309
square root, 55, 86, 108, 158, 161,

169, 190, 309, 363
two with same number of elements,

106
used in AES, 501
with 2d elements, 106
with 49 elements, 114
with 8 elements, 114
with p2 elements, 105, 330, 336,

354
with pd elements, 104, 106, 329

finite group, 74
finite order, 76

point on elliptic curve, 337
forgery on random document, 205
formal language, 280
fraction modulo m, 21
Franklin, Matthew, 359
frequency analysis, 6, 215
frequency table, 6, 48, 219
Frey, Gerhard, 349
Friedman, William, 36
Frobenius-and-add algorithm, 335, 367
Frobenius map, 113, 332

elliptic curve, 332
is field automorphism, 332, 366
is homomorphism, 333
respects elliptic curve addition,

333, 366
trace of, 309, 362
used to count points, 333

fully homomorphic encryption, 490
function
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bijective, 210
concave, 272
encryption/decryption, 3, 46, 63,

211
exponential growth, 153
iteration of, 254
one-to-one, 3, 210, 265
one-way, 63
onto, 210
polynomial growth, 153
rational, 338, 368, 495
subexponential growth, 153
trapdoor, 63

fundamental domain, 390, 431
all have same volume, 394
determinant formula for volume,

393
translates cover Rn, 390, 398, 404,

457
volume, 392, 457

fundamental parallelepiped, 390
fundamental theorem of arithmetic, 27

Galois, Évariste, 29, 106
Galois field, 29, 106
Galois group, 332

Weil pairing invariant for, 342
gamma function, 400

interpolates factorial, 400
Stirling’s formula, 400

Gaudry, P., 496
Gaussian elimination, 146, 481

modulo composite number, 167
Gaussian heuristic, 400, 402, 447

exact value, 402
for CVP, 403
NTRU lattice, 427
subset sum lattice, 403, 451

Gaussian lattice reduction, 436, 437
solves SVP, 437

gcd, see greatest common divisor
general linear group, 75, 110, 390, 456
generalized Weierstrass equation, 330,

365
Gentry, C., 491
genus, 494
geometric distribution, 240

expected value, 245
geometric progression, 241

geometric series, 292

GGH, 407, 409, 410

digital signature, 428, 429

transcript attack, 430

is probabilistic, 412

lattice reduction attack, 452

public key size, 408

random element, 409

repeated plaintext, 458

repeated random element, 412, 458

Gilbert, W.S., 213

GIMPS, 186

GLn, see general linear group

GLn(Z), 390, 456

Gödel incompleteness, 278

Goldreich, Oded, 407

Goldwasser–Micali public key
cryptosystem, 88, 178

message expansion, 180

Goldwasser, Shafi, 407

good basis, 405

Gram matrix, 456

Gram–Schmidt algorithm, 387, 439

determinant of basis, 439

Granville, Andrew, 130

great Internet Mersenne prime search,
186

greatest common divisor, 11, 100

equals au+ bv, 16, 27, 29, 50, 54,
100

Euclidean algorithm, 13, 50, 145

of relatively prime integers, 17

polynomial ring, 103

solve au+ bv efficiently, 50

greatest integer function, 53, 59, 157

group, 74–77

abelian, 74, 304

commutative, 74, 304

discrete logarithm problem, 67

elements of order dividing d, 109

examples of, 75

finite, 74

general linear, 390, 456

homomorphism, 110, 311

Lagrange theorem, 76

noncommutative, 75

of divisors, 495

of points on elliptic curve, 304
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of tuples on hyperelliptic curve,
495

order of, 74
order of element, 76
order of element divides order of

group, 76
Pohlig–Hellman algorithm, 89

group exponentiation, 75
group of units, 22, 52
Gulliver’s Travels, 486

H (entropy), 270
Hadamard inequality, 393, 397, 439
Hadamard ratio, 397, 407, 409, 447, 453

reciprocal of orthogonality defect,
397

Halevi, Shai, 407
halting problem, 278

is NP-hard, 280
hardest case versus average case

equivalence, 282, 408
hash function, 196, 359, 429, 472

collision resistant, 196, 472
difficult to invert, 472
rounds, 474
used to build PRNG, 476

Hasse, Helumt, 309
Hasse theorem, 309, 330, 333
HCC, see hyperelliptic curve

cryptography
HCDLP, see hyperelliptic curve discrete

logarithm problem
Heisenberg uncertainty principle, 499
Hellman, Martin, 45, 61, 282, 377, 380
Hermite constant, 397
Hermite theorem, 396, 397, 399
hexadecimal, 40
Hilbert question, 278
Hilbert space, 497
Hill cipher, 43, 57
Hoffstein, Jeffrey, 407
homomorphic encryption, 490
homomorphism, 110, 113, 311, 353, 490

Frobenius, 113
Frobenius map is, 333
group, 110
ring, 111, 414

homophonic substitution cipher, 34, 56
Huang, M., 496

hyperelliptic curve, 349, 494
addition law, 495
divisor, 495
divisor group, 495
Jacobian variety, 495
number of points in finite field, 496

hyperelliptic curve cryptography, 494
has shorter signatures, 496

hyperelliptic curve discrete logarithm
problem, 349, 495

index calculus, 496
MOV algorithm, 496
solution for big p, 496

hyperelliptic Diffie–Hellman key
exchange, 496

hyperelliptic Elgamal public key
cryptosystem, 496

hypergeometric distribution, 240

IATR, 107
IBM, 499
ID-based cryptography, 358

hash function, 359, 360
random element, 359

ideal, 98
identification scheme, 481
identity law, 74, 95, 304
IEEE, 487
IETF, 487
IFP, see integer factorization problem
implementation, 126
inclusion–exclusion principle, 288
independent events, 229, 232, 241, 244
independent vectors, 384
index, 65, 167
index calculus, 80, 166–169, 201, 348

factor base, 169
none known for ECDLP, 316
running time, 169
subexponential algorithm, 169

index of coincidence, 219, 285, 287
for bigrams, 286
formula for, 220
mutual, 221, 285–287

infinite order, 76
infinite series

differentiation trick, 245, 292
geometric, 292

infinity, point at, 303



528 Index

information theory, 263
injective function, 3, 210, 265
integer, 10

divisibility, 10
division with remainder, 12, 49–51
even/odd, 11
greatest common divisor, 11
modulo m, 21
order of p in, 28
relatively prime, 17
unique factorization of, 27

integer factorization problem, 79
is NP, 281
quantum algorithm, 498
subexponential algorithm, 154

integral lattice, 389
international traffic in arms regulations

(IATR), 107
interpolation polynomial, 481
intersection, 231

probability of, 231–233
inverse

in convolution polynomial ring,
415, 460

looks random, 420
in polynomial ring, 101, 113
of a matrix, 456

inverse law, 74, 95, 304
inverse modulo m, 20
inverse modulo p, 28, 29, 32, 54
irreducible element, 97
irreducible polynomial, 102

depends on coefficient ring, 101
of every degree exists, 106
quotient ring is field, 104

isogeny, 353
isomorphism, 106
iteration, 254

Jacobi symbol, 174, 179
multiplication formula, 175
quadratic reciprocity, 175

Jacobian variety, 495
group of points with coordinates

in Fp, 495
Jaynes, E.T., 263
Jensen inequality, 272, 297
joint density function, 241

for key, plaintext, and ciphertext,
264

Joux, Antoine, 356

Kasiski, Friedrich, 219
Kasiski method, 219, 286
Kayal, N., 136, 281
Kerckhoff’s principle, 38, 41
ket notation, 497
key, 5, 44

asymmetric cipher, 46, 63
blocksize, 41
creation uses random number, 475
ECC, 319
Elgamal, 70
entropy, 274
equivocation, 274, 298
GGH, 409
knapsack, 380
NTRU, 417
private/public, 46, 63
random variable, 264
RSA, 124
space of, 37
substitution cipher, 5
used once, 269

key escrow, 107
key exchange

Diffie–Hellman, 67, 496
elliptic Diffie–Hellman, 316, 363
tripartite Diffie–Hellman, 356, 370,

371
key recovery problem for NTRU, 422
knapsack cryptosystem, 64, 282, 380,

381
faster than RSA, 382
lattice reduction attack, 451
message expansion, 382

knapsack problem, 377
Pollard ρ algorithm, 455

known plaintext attack, 38, 59, 288
Koblitz curve, 334, 366

Frobenius-and-add algorithm, 335,
367

Koblitz, Neal, 322, 332, 485
Korkin–Zolotarev reduced basis, 449
Korselt criterion, 184
kryptos, 2
KZ reduced basis, 449
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L(X), 151
is subexponential, 153, 188

Lε(X), 165
Lagarias, Jeffrey, 383
Lagrange interpolation polynomial, 481
Lagrange theorem, 30, 76, 107
lambda calculus, 278
language, 280

entropy of, 276
lattice, 373, 388

all fundamental domains have
same volume, 394

approximate closest vector
problem, 396

approximate shortest vector
problem, 396

associated to subset-sum problem,
383, 403, 451

Babai algorithm, 403
basis, 388
change-of-basis formula, 388
change-of-basis matrix, 388
closest vector problem, 395
covolume, 392
determinant, 392

for m �= n, 457
digital signature, 428
dimension, 388
fundamental domain, 390, 431
Gaussian heuristic, 400, 402, 447

for CVP, 403
Gram matrix of basis, 456
Gram–Schmidt basis has same

determinant, 439
Hadamard inequality, 393, 439
Hadamard ratio, 397, 407, 409,

447, 453
Hermite theorem, 396, 397,

399
integral, 389
is discrete additive subgroup, 390,

455
Korkin–Zolotarev reduced basis,

449
large symmetric convex set

contains lattice point, 398
Minkowski theorem, 396, 398,

401
NTRU, 409, 425

orthogonality defect, 397
quasi-orthogonal basis, 448, 452,

453, 467, 468
reduction, see lattice reduction
shortest basis problem, 396
shortest vector problem, 395
translates of F cover Rn, 390, 398,

404, 457
volume, 392

lattice-based cryptosystems, 407
faster than RSA and ECC, 408

lattice problem
CVP average case versus hardest

case, 408
lattice reduction, 384, 436

attack on congruential
cryptosystem, 376, 451

attack on GGH, 452
attack on knapsack cryptosystem,

451
attack on NTRU, 453
attack on RSA, 450
BKZ-LLL, 449, 450
CVP average case versus hardest

case, 282
efficient implementation of LLL,

466
finding very short vectors, 428
Gaussian, 436, 437
LLL, 439
matrix scaling, 452

leading coefficient, 98
learning with errors, 434
least common multiple, 188
Legendre symbol, 171

computes parity of discrete
logarithm, 176

Jacobi symbol, 174
multiplication formula, 172

length, 386
Lenstra factorization algorithm, 321,

324–329
running time, 329

Lenstra, Arjen, 383
Lenstra, Hendrik, 321, 325, 383
L’Hôpital’s rule, 79
Li(X), 185
Lichtenbaum pairing, 346
linear algebra, 146, 384–387, 481
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modulo composite number, 167
sparse system of equations, 150

linear combination, 384
linear equivalence, 495
linear time algorithm, 80
little-endian, 486
little theorem (of Fermat), see Fermat

little theorem
little-o notation, 151
LLL algorithm, 384, 427, 443, 444

attack on congruential
cryptosystem, 451

attack on GGH, 452
attack on knapsack cryptosystem,

451
attack on NTRU, 453
attack on RSA, 450
deep insertion method, 449
efficient implementation, 443, 466
finding very short vectors, 428
is polynomial-time, 443
Lovász condition, 440, 467
matrix scaling, 452
running time, 443, 446
size condition, 440
subset-sum problem solution, 451
swap step, 443

LLL reduced basis, 440
properties of, 441

logarithm
complex, 65, 311
discrete, see discrete logarithm
is concave, 273, 297

logarithmic integral, 135, 185
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